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Abstract 
Industrial robots are playing a central role within the context of Industry 4.0, enabling 

the flexible industrial automation typical of the modern Smart Factories. The key 

feature of industrial robots is that they are functionally flexible and capable of 

operating at high speed, repeatability and accuracy. One caveat of industrial robots, 

however, is that, for safety reasons, they have to be relegated inside closed fences 

and/or virtual safety barriers, to keep them strictly separated from human operators. 

This can be a limitation in some scenarios in which it can be useful to combine the 

human cognitive skill and know-how with the accuracy and repeatability of a robot, 

or simply to allow a safe coexistence in a shared workspace. To fill this gap, in the last 

decades a new paradigm in robotics has emerged, and it is represented by the 

collaborative robots, often referred to as cobots. Cobots are intrinsically limited in 

speed and power in order to share workspace and tasks with human operators. Other 

than that, they provide an additional and very intuitive programming method, the 

hand guiding method, which consists in programming the trajectory by manually 

guiding the robot through the desired waypoints. Cobots, however, come with some 

limitations: concerning speed and power, they cannot compete with industrial robots, 

and are thus useful only in a limited niche, where they can actually bring an 

improvement in productivity and/or in the quality of the work thanks to their synergy 

with human operators.  

This Thesis falls inside the very recent trend of proposing methods to overcome the 

limitations of both the pure industrial and the collaborative paradigms, by combining 

industrial robots with artificial vision. This way, the so-called human-robot 

collaboration is achieved in a non-intrinsic fashion, since it does not leverage on the 

robot itself, but on additional external sensors. Modern vision sensors provide a 

detailed real-time perception of the surrounding environment that can serve to 

enhance the safety and the robot functional flexibility, which are key features in an 

environment shared simultaneously by human operators and robots. In particular, 

vision can be exploited for a real-time adjustment of the pre-programmed task-based 

robot trajectory, by means of the visual tracking of dynamic obstacles (e.g. human 

operators). This strategy allows the robot to modify its motion only when necessary, 

thus maintain a high level of productivity but at the same time increasing its 

versatility. Other than that, vision offers the possibility of more intuitive programming 

paradigms for the industrial robots as well, such as the programming by 

demonstration paradigm. These possibilities offered by artificial vision enable, as a 

matter of fact, an efficacious and promising way of achieving human-robot 

collaboration, which has the advantage of overcoming the limitations of both the 

previous paradigms yet keeping their strengths. 
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Acronyms 
2D  Two-dimension 

3D  Three-dimension 

AR  Augmented Reality 

CAD  Computer-Aided Design 

CCD   Charged Coupled Device 
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CPU  Central Processing Unit 

DOF  Degree of Freedom 

DH  Denavit-Hartemberg 

FMS  Flexible Manufacturing System 

FOV  Field of View 

FPGA  Field Programmable Gate Array 

GOT  Graphic Operator Terminal 

GPU  Graphics Processing Unit 

HDD  Human Demonstration Device 

HG  Hand Guiding 

HRC   Human-Robot Collaboration 

ICP  Iterative Closest Point 

IDE  Integrated Development Environment 

IR   Infrared 

LiDAR  Light Detection and Ranging 

NUI  Natural User Interface 

OCR  Optical Character Recognition 

PbD  Programming by Demonstration 

PCHIP  Piecewise Cubic Hermite Interpolating Polynomial 

PFL  Power and Force Limiting 

PLC  Programmable Logic Controller 

PSD  Protective Separation Distance 

QP  Quadratic Program 

RF  Reference Frame 

RGB  Red-Green-Blue 

RGB-D Red-Green-Blue-Depth 

SMS   Safety-Rated Monitored Stop 

SSM  Speed and Separation Monitoring 

TCP  Tool Centre Point 

ToF  Time-of-Flight 

TUI  Tangible User Interface 
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1 Introduction 
 

Since the 60s, when the first industrial robot appeared, robots have evolved, 

diversified and proceeded to become more and more popular in many fields. Robotics 

is nowadays a well-known research branch that fuses computer science with 

engineering and, especially in the industrial field, robots have established as pivotal 

devices in a plethora of different applications. The main fields in which robots can be 

found are here listed: 

• Industry: they are efficaciously used in many tasks as pick and place, palletizing, 

welding, painting, machining, drilling, machine tending and so on. 

• Medical field: they aid with surgery, rehabilitation, training.  

• Military field: mobile robots are used for bomb disposal, surveillance, 

transport, search, rescue, and other military operations. 

• Domestic use: domestic robots are utilized to perform various daily tasks at 

home, for example for cleaning or assistance.  

• Exploration: space (e.g. the Mars Curiosity Rover), deep sea (e.g. the Ocean 

One). 

• Constructions: they can serve to aid in dangerous and/or impractical tasks 

which arise when constructing and doing the maintenance of building or other 

facilities. 

• Entertainment and other social activities: they have also been used for 

entertainment purposes in various places such as amusement parks, sports etc.  

The focus of this Thesis will be on the robots used in the industrial field, namely both 

the traditional industrial robots and the more recent collaborative industrial robots. 

Artificial vision, also central in this Thesis, is nowadays a powerful tool that can be 

used to acquire real-time detailed information about the environment, thanks to the 

advancements in technology and to the vast and mature research behind it. The 

combination of both industrial robots and artificial vision has the potential of being 

highly beneficial inside the context of Human-Robot Collaboration (HRC), which is a 

recent, multidisciplinary and very hot research topic that aims at breaking down the 

barriers (both metaphorically and literally) between human and robots, to realize a 

workplace with enhanced flexibility, productivity and interconnections. This Thesis 

gives a contribution inside this context by proposing some methods to endow 
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industrial robots with artificial vision, with the aim of enhancing their functional 

flexibility, making possible a safe coexistence with human operators and 

implementing some intuitive robot programming methods. The motivation and the 

problem statement will be better defined in Section 1.4, after having analysed some 

concepts concerning industrial and collaborative robots, artificial vision and HRC. 

The Thesis is structured as follows:  

1. Introduction: some brief notions about industrial robots, collaborative robots and 

artificial vision are given, by emphasizing the distinctive features of each one. Then, a 

state of art of industrial HRC is carried out, with particular emphasis on integration of 

industrial robots with artificial vision. Lastly, the aim and motivation of the Thesis is 

stated. 

2. Experimental setup: the experimental setup is described. 

3. Description of the method: the proposed methods to enable HRC are described, 

and concerns: 

 a collision avoidance method; 

 two programming by demonstration methods; 

 a study on the optimal placement of cameras. 

4. Conclusions: conclusions are drawn. 

1.1 Industrial vs. collaborative robots 

In modern industries both traditional industrial robots and collaborative robots can 

be found. As reported by the International Federation of Robotics [1] and shown in 

Figure 1.1, the annual operational stock of industrial robots (traditional + 

collaborative) is significantly rising, almost triplicating in the last decade. This high 

demand is due to the ongoing trend towards automation and continued technological 

innovation in industrial robotics. 
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Figure 1.1  Annual operational stock of industrial (traditional + collaborative) robots [1]. 

Figure 1.2 shows the annual installation of traditional industrial robots and 

collaborative robots. One first consideration is that traditional industrial robots are 

the vast majority of the robots installed, although there is an increase in the 

percentage of collaborative robots. One second consideration is that there is a slightly 

drop in installation starting from 2019, which reflected the difficult times the two 

main customer industries, automotive and electrical/electronics, experienced. 

 

Figure 1.2  Annual installation of collaborative and traditional industrial robots [1]. 

As it can be seen, collaborative robots are still relegated to a limited niche. To fully 

understand the reason why, in the next Sections both the traditional industrial robots 
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and collaborative robots are described, with the aim of highlighting both their 

strengths and limitations. Henceforth, for sake of brevity, traditional industrial robots 

will be referred to as industrial robots, whereas collaborative industrial robots will be 

referred to as collaborative robots or simply cobots. 

1.1.1 Industrial robots 

According to ISO 8373:2012 [2], An industrial robot is an “automatically controlled, 

reprogrammable, multipurpose manipulator programmable in three or more axes, 

which can be either fixed in place or mobile for use in industrial automation 

applications”.  

This definition specifies the key characteristics that classify an industrial device as a 

robot: 

 Having at least three axes 

 Automatically controlled: the robot control system operates in accordance 

with a task program, which is a set of instructions for motion and auxiliary 

functions that define the specific intended task.  

 Reprogrammable: designed so that the programmed motions or auxiliary 

functions can be changed without alterations of the mechanical systems. 

 Multipurpose: capable of being adapted to a different application without 

physical alteration. 

 Manipulator: machine for the purpose of grasping and/or moving objects like 

pieces or tools. The end effector is not part of the manipulator  

 Fixed in place or mobile: the robot can be mounted to a stationary point, but 

it can also be mounted to a non-stationary point, e.g. railways. 

As it emerges, the robot and its controller form a complex and highly versatile system. 

The mechanical structure is composed of a series of links connected by joints, in a 

variable number, typically from three to six. The most common architectures that can 

be found on the market are the following:  

 Articulated robot 

 SCARA robot 

 Delta robot 

 Cartesian robot  

 Cylindrical robot 

 Spherical robot 

Among all, the articulated robot is possibly the most common in industrial 

applications, due to its high dexterity provided by its six actuated revolute joints. 
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In Table 1.1 the typical features of an industrial serial robot are quantitatively 

summarized: 

Table 1.1  Range of the main indicators of an industrial robot 

Axis number  3 – 6 

Payload (kg) 3 – 200 

Maximum reach (mm) 500 – 3000 

Maximum joint speed (deg/s) 600 

Repeatability (mm) 0.01 – 0.1 

Weight (kg) 30 – 1500 

The ranges of values of Table 1.1 are extremely wide, especially in terms of payload, 

weight and maximum reach. An industrial robot can operate at high power and speed, 

which makes it a perfect candidate for automated tasks in which both a high 

productivity and a high functional flexibility are needed. On the other hand, since it 

operates at high speed and power, it has to comply with strictly safety requirements, 

and the human-robot collaboration is normally not contemplated. In fact, industrial 

robots are relegated inside closed fenced and/or virtual safety barrier, which have to 

be designed in compliance with ISO 10218-2:2011 [3]. 

Industrial robots are the ideal candidates to be exploited in a system of programmable 

or flexible automation, that is to say in a context of production of batches of variable 

features, since they can easily adapt the sequence of the operations to the gamma of 

product variations. They can be utilized both in rigid manufacturing systems and in 

Flexible Manufacturing Systems (FMS). Here are reported some of the main 

applications: 

• Pick and place 

• Palletization 

• Machine tending 

• Selection and sorting 

• Packaging 

• Quality control and inspection 

Some other applications concern manufacturing operations, such as: 

• Arc welding and spot welding 

• Spray painting and coating 

• Bonding and sealing 

• Laser cutting and water cutting 

• Deburring and grinding 

• Tightening, wiring and fixing 

• Assembly of mechanical groups, electrical groups and electronic boards 
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1.1.2 Collaborative robots 

Collaborative robots, often referred to as cobots, usually have a mechanical structure 

similar to the industrial articulated robot. A variation could be the presence of an 

additional axis (e.g. the KUKA LBR iiwa), generally located on the elbow, or a double 

arm configuration (e.g. the ABB YuMi). These latter configurations are kinematically 

redundant and allow them to execute the main task while fulfilling a secondary task, 

for example minimizing the occlusion of a particular workspace area or avoiding 

collisions by moving the elbow. This comes with the cost of a more complex design 

and control algorithms.  

Some other distinctive features are the presence of torque and/or force sensor on the 

joints and/or wrist and the design without sharp edges. 

Differently from industrial robots, cobots provide for the possibility of interaction 

with human operators, since they are designed to be intrinsically safe. Incidentally, it 

is to be pointed out that even if the cobots are intrinsically safe, there could be a risk 

depending on the application (e.g. if a dangerous tool is mounted on the robot), so an 

hazard identification and a risk assessment are in any case required. This intrinsic 

safety is realized in compliance with the technical specification ISO/TS 15066:2016 

Collaborative Robots [4], which establishes four collaborative modalities, here briefly 

described (a detailed description is provided by Villani et al. in [5]): 

1. Safety-Rated Monitored Stop (SMS): it is the simplest type of collaboration; the 

robot stops with a Stop of Category 2 [6] (power is left available to the machine 

actuators after the movement ends) if a human operator enters the 

collaborative area, and resumes the cycle after the operator leaves the 

collaborative area. In modern industrial robots, this functionality is usually 

provided by means of the addition of optional safety modules. 

2. Hand Guiding (HG): the operator can teach the robot waypoints by hand guiding 

the end effector through them. This collaborative scenario requires the robot to 

be equipped with both the safety-rated monitored stop and the safety-rated 

monitored speed functionality. 

3. Speed and Separation Monitoring (SSM): it allows the human presence within 

the robot workspace, given that a protective separation distance is always 

guaranteed. This distance can be computed from data acquired through safety-

rated monitoring sensors. 

4. Power and Force Limiting (PFL): this collaborative modality allows the human 

to physically interact with the robot, at the cost of specific and significant 

limitations on the robot actuators power and exchangeable forces. 
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Cobots are designed to enable out-of-the-box the 1,2 and 4 collaborative modalities 

(a risk assessment, however, is in any case needed). Their light-weight mechanical 

design is a consequence of the necessity of fulfilling the Point 4 - Power and Force 

Limiting, which provides for the possibility of contact with the moving parts of the 

robot. The contacts can be intentional or non-intentional, and, based on their physical 

modality, can be classified as transient or quasi-static. The former refers to a short-

dynamic free contact (< 500 ms) where the operator body part is not clamped and 

can retract from the moving part of the robot system, whereas the latter refers to 

cases in which the human body part is clamped for an extended time between the 

robot and another component. The cobots are designed so that the kinetic energy 

exchanged during the impact is limited and fall under specific thresholds defined in 

the technical specification (which vary in the case of transient or quasi-static contacts) 

ISO/TS 15066:2016 [4]. The fact that the exchanged energy depends on both the mass 

and the speed entails the limitations on the cobots weight and speed, which are key 

factors in defining its safe level. When fulfilling the PFL collaborative mode, other than 

limiting the exchanged energy, one must also comply with limits on other related 

quantities, specifically the maximum force and pressure that can be exerted on the 

human body, as outlined in Figure 1.3 (from [4]). These biomechanical limits, based 

on pain thresholds and reported in [4], depend on the body part and are twice as 

much higher in the case of transient contacts than in the case of quasi-static contacts. 

It is worth recalling that since the exchanged energy, exerted force and pressure 

depend, besides from the robot itself, also on the mounted tool, workpiece, etc. (in 

general on the application), a risk assessment is always necessary. 

 
Figure 1.3  Acceptable and unacceptable regions based on the type of contact (transient or quasi-

static) and force or pressure threshold. 
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Collisions can be further mitigated and managed by the use of post-collision methods, 

which define strategies to react to the collisions based on the torque/force sensors 

feedback.   

The design makes cobots also suitable for the hand guiding collaborative mode. This 

collaborative modality consists in moving the robot by manually carrying the end 

effector throughout the workspace, without the robot opposing any reaction force to 

the movement thanks to the enabled force-control modality. The hand guiding 

feature is typically used as a convenient tool to facilitate the robot programming, 

since the identification of the robot waypoints can be done by guiding the robot end 

effector in an intuitive and straightforward way. 

As outlined, the intrinsic safety of a cobot is achieved by limiting its weight and speed. 

The former is typically a design choice, resulting in a light-weight robot, which can be 

achieved by a proper choice of light alloy material for the links and lighter motors, 

thus less powerful, which ultimately impacts on the maximum payload and on the 

maximum joint speed. The speed limitation can be alternatively achieved by adopting 

proper and safety-rated control strategies on each axis. In each case, it is to be 

pointed out that there is a clear trade-off between safety and performances: a robot 

with high performances, namely high payload, speed, and repeatability, necessarily 

requires a very rigid structure and powerful actuators, which increment its weight and 

thus reduce its safety. Vice versa, a safe robot, namely with limited weight and limited 

maximum speed, will necessarily have lower performances. Table 1.2 summarizes the 

typical indicators of a collaborative robot. 

Table 1.2  Range of indicators of a collaborative robot 

Axis number  6 – 7 

Payload (kg) 3 – 14 

Maximum reach (mm) 500 – 1300 

Maximum joint speed (deg/s) 360 

Repeatability (mm) 0.03 – 0.1 

Weight (kg) < 35 

In the context of Industry 4.0, cobots are used inside the Smart Factories to relieve 

operators from burdens and stress, to protect them from injuries or to aid them in 

complex tasks where both the human cognitive skills and the robot accuracy and 

repeatability are required. The niche in which this is actually beneficial for the 

productivity is expanding but still limited. The most common cobots applications are: 

• Pick and place 

• Packaging and palletizing 

• Assembly  
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• Polishing 

• Machine tending 

• Quality control and inspection 

Other advantages of cobots, that are often emphasized in marketing strategies, are 

the following: 

 ease of programming: aside from the hand guiding modality, already 

mentioned, the programming interfaces are particularly user-friendly (touch 

screens, advanced visualization modalities and features and so on).  

 fast setup: the installation of both the robot and of its additional components 

(end effector, additional sensors) is easy and quick and the robot can be made 

operational in a plug-and-play fashion, resulting in reduced commissioning time. 

 flexible deployment: due to its lightweight, the robot can be easily moved and 

re-used with minimum effort for different tasks in different machines. Also, due 

to its small footprint, no major modifications of the layout are needed. 

As a last consideration, it is worth pointing out that there exists the possibility, for 

some models of industrial robots, of the application of the AIRSKIN technology [7], 

which allows to (partially) convert them into cobots, by means of a covering 

protective skin able to detect collisions and absorb the impact energy. It is to be 

noted, however, that this strategy is to be combined with a safe speed limitation 

(maximum speed up to 1 m/s). 

1.2     Artificial vision 

Artificial vision can be defined as the collection of systems aiming at creating an 

approximate model of the real world starting from data acquired from vision sensors. 

This involves, other than vision sensors, algorithms and methods for acquiring, 

processing and analysing the data, with the scope of transforming raw data to high 

level information (similar concept to what human brain does). Modern vision sensors 

can provide a detailed perception of the environment by means of different core 

technologies. Digital 2D cameras, which provide bidimensional images or videos, 

represent the traditional sensors, but they are not the sole. The other prominent 

category encompasses 3D sensors, which allow to capture a 3D representation of the 

world. The long-established type of 3D sensors comprehends laser scanners, also 

called LiDAR, acronym for Light Detection and Ranging, that have applications in rapid 

prototyping, cultural heritage, autonomous navigation, terrestrial and airborne 

mapping and so on. They are usually bulky devices that can reconstruct a dense and 

accurate point cloud, but they usually rely on the relative movement between a 
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unidimensional laser beam and the surface to scan, which makes them not suitable 

for all the real-time applications in which a one-shot updating of the whole is required 

at a high frame rate. In the last decade, the use of the so-called depth cameras took 

off, largely thanks to the pivotal role that the Microsoft Kinect v1 and Microsoft Kinect 

v2 [8] had. Depth cameras can acquire a 3D representation of a whole scene at a 

relatively high frame rate, making them suitable for real-time applications. Nowadays, 

there are on the market several models of depth sensors based on different 

technologies. 

Due to its great potential and versatility, artificial vision is currently exploited also in 

many branches of robotics, absolving different purposes. A list of the main 

applications of vision in the industrial robotic field is reported below, divided between 

traditional and most recent ones, the latter mainly validated at laboratory level: 

TRADITIONAL APPLICATIONS 

 Object recognition and robot grasping/manipulating [9]: in this case, artificial 

vision is used to recognise the pose of unordered objects. This information is then 

used to define the proper position and orientation of the robot end effector to 

pick them or perform other operations on them. Common examples can be the 

picking of unordered objects placed on a conveyor belt or from inside a bin, the 

latter commonly known as bin picking [10]. 

 Aiding in robot assembly or other processes [11]. 

 Visual servoing and tracking [12]: data obtained from the camera are used as 

feedback signals in a closed loop control system. In particular, the controller moves 

the robot with the aim of minimizing the error between the assigned position and 

the one detected by the camera. The camera information can be used also in an 

open loop control technique that exploits the information obtained by the camera 

only to detect the pose to reach, without the correction of a possible mismatching. 

 Quality control and inspection [13]: typically, a camera is mounted on the robot 

end effector and used to inspect objects with complex geometry and/or difficult 

to reach. 

CUTTING-EDGE APPLICATIONS 

 Real-time collision avoidance [14,15]: in this technique, the vision systems are 

used to detect dynamic obstacles inside the robot workspace in order to adjust the 

robot motion by means of real-time strategies. 

 Automatic guidance [16-18]: artificial vision is used for mobile robots to allow a 

safe navigation in a completely or partially unstructured environment inside a 

factory. 

 Motion planning [19,20]: it can incorporate low-to-high-levels planning of 

sequence of actions used to manage variations in the tasks due to external factors 
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such as human collaboration. The planner usually makes use of sophisticate 

control strategies that are not performed within a cycle time.  

 Programming by demonstration [21-23]: this programming strategy consists in 

automatically converting a demonstration of a certain task, captured by a vision 

sensor, into a ready-to-use robot program. 

 Others [24,25]: other novel human-robot interaction modalities are enabled by 

artificial vision. They can rely on gesture recognition, facial expression recognition, 

leap motion, augmented reality and so on. 

1.2.1  2D cameras 

2D cameras are the traditional well-known digital cameras and are here just outlined, 

an exhaustive description being beyond the scope of this Thesis. The core technology 

could rely on one of the following sensors: 

• CMOS (Complementary Metal-Oxide Semiconductor): it is a digital sensor that 

converts the charge from a photosensitive pixel to a voltage at the pixel site. The 

signal is then multiplexed by row and column to multiple on-chip, digital-to-analog 

converters. CMOS sensors feature high speed, low sensitivity, and high, fixed-

pattern noise. 

• CCD (Charged Coupled Device): it is an analog device that converts light into 

electrons by means of a silicon chip containing an array of photosensitive sites. 

Being an analog device, output is immediately converted to a digital signal by an 

analog-to-digital converter. The voltage is read from each site to reconstruct an 

image. 

CCD sensors are more expensive than CMOS sensors and they consume more power 

but are traditionally known to achieve higher-quality and lower-noise image. 

Nowadays, however, CMOS sensor technology has advanced to such an extent that it 

is fast approaching the quality and capabilities of CCD technology, and with a 

significantly lower price tag, smaller size, and power consumption, which makes it a 

good fit for machine vision. For industrial applications, 2D cameras are typically paired 

with a controller with a proprietary software which contains a collection of functions 

for object and features recognition, Optical Character Recognition (OCR), filters of 

various type and other functionalities (see for example [26]). 

For this type of cameras, illumination plays a key role, highly affecting the image 

quality. A proper lighting system allows to remove shadows and to uniform the 

brightness on the scene, avoiding fluctuations and making acquisition repeatable. 

Several illumination techniques can be utilized, a description of which can be found 

in [27]. 
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1.2.2 3D cameras 

As the name suggests, 3D cameras are sensors capable of acquiring information about 

the tridimensional nature of a scene. Typically, the sensor acquires a set of distances, 

that can be converted into a 3D representation of the object, namely a point cloud. 

They can be seen as an evolution of range/distance/proximity sensors, which output 

the distance to the object as a single number. Several types of 3D sensors exist. They 

can be divided into two main categories based on whether they can be used only for 

offline measurements or can capture a real-time representation of the scene. The 

former category is not relevant for the scope of this Thesis, so only the latter category 

will be the focus of this Section. Sensors that can provide a real-time 3D scene 

information are often referred to as depth cameras, since they store depth values 

(distances) inside a matrix of pixels (a normal digital camera stores RGB values 

instead). If also an RGB triplet is associated, the device is often referred to as RGB-D 

camera. If a series of camera parameters, namely the intrinsic parameters, are known, 

the depth matrix can be converted into a 3D point cloud. Usually, this process is 

already done by the camera manufacturer, which accounts for the possibility of 

proving an actual point cloud as output, other than the depth matrix. Sometimes 

however, there can be the need of performing what is called an intrinsic calibration, 

to estimate the intrinsic parameters, because either are unknown or a better 

estimation than the one provided by the manufacturer is required.  

The single depth data matrix and the corresponding point cloud are sometimes 

referred to as 2.5D [28], since they are obtained by a single-view acquisition. 

Following this reasoning, the real 3D data is obtained by merging multiple 2.5D 

acquisitions, obtained from different point of views.  

Below a list of the current technologies used in depth cameras is presented and briefly 

descripted (for an exhaustive description, cf. [29]). 

 Structured Light: it uses one camera and a structured light projector. The depth 

estimation is obtained by triangulating over the codified rays projected over the 

scene.  

 Time-of-Flight (ToF): the core of this system consists in a light transmitter and a 

light receiver. The light emitted bounces back on the object surface and comes 

back to the receiver in a specific amount of time, that is measured and used to 

estimate the distance.  

 Stereoscopy: passive stereoscopy is based on the use of two cameras to 

triangulate over homologous keypoints on the scene. In modern devices the two 

cameras are embedded inside small and compact devices, which take care of 

the stereo-vision algorithms implementation and processing. In some cases, 

particular expedients are used to increase speed, one of the most recent and 
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notable being the use of Field Programmable Gate Array (FPGA), such as 

described in [30]. 

 Active Infrared (IR) Stereoscopy: it uses two cameras and a light projector to 

triangulate with the two cameras over the codified rays projected on the scene. 

This helps the identification of keypoints, since the projector always provide a 

texture, that might otherwise be absent on the scene. 

Recent years have seen an important raising of the available off-the-shelf depth 

cameras and a significant improvement of their features. Differently from the classical 

2D digital cameras, they can directly provide spatial information, which allow a 

straightforward reconstruction of the 3D scene and are particularly suitable to 

reconstruct unstructured environments. Whereas in the case of 2D digital cameras 

the technology has reached a mature stadium, the widespread, improvement and 

diversification of depth cameras is particularly evident in the current times. This 

motivates one to keep an eye on their market, with the aim to spot quantum leaps 

that can have important repercussions, for instance, in safety-related questions. Just 

to give a practical example, the camera latency, frame rate, data quality and reliability 

determine the rapidity and certainty by which the camera senses an obstacle, thus 

directly affecting the safety of the system.  

A market analysis was carried out, motivated by these considerations. Table 1.3 

reports a collection of the current most popular and cutting-edge depth cameras on 

the market, with indications on their core technology, depth resolution, depth frame 

rate, Field of View (FOV) and operating range. Here only the depth features are 

presented, since are the distinctive traits of the camera. It is noteworthy, however, 

that most of the cameras are paired with an RGB sensor, and the camera has the 

ability to synchronize and merge 3D data with the colour stream, possibly necessary 

for certain applications. Furthermore, other parameters have an important impact on 

the choice of the camera, but are here not reported; for instance, the latency 

(typically ≈ 1 frame), the accuracy, the spatial noise and the temporal noise. One last 

note: for each manufacturer, only the most representative cameras are shown. 
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Table 1.3  Most popular cameras on the market and their main depth features. The first column 

reports an identification number used for later reference and the second column the model name. 

The third column reports the core technology, which can be Structured Light (SL), Time-of-Flight 

(ToF), Stereoscopy (S) or Active IR Stereoscopy (AIRS). Since certain cameras allow to stream in 

different combination of resolutions and frame rates (frame per second, fps), the minimum 

resolution and maximum resolution streaming modalities with their corresponding achievable 

frame rates are here reported. 

ID Model name  Tech. 
min res – max 

fps 

max res – min 

fps 
FOV [°] 

Range 

[m] 

1 Arcure Omega S 512x256 – 18 1024x512 – 11  100x70 0.5 – 10 

2 
ASUS Xtion 

Pro 
SL / 640x480 – 30 58x45 0.8 – 3.5 

3 
Basler ToF 

camera 
ToF / 640x480 – 20 57x43 0.5 – 0.8 

4 

Carnegie 

Robotics 

MultiSense S7 

S 1024 x 544 – 30 
2048x1088 – 

7.5 
80x45 > 0.2  

5 
duo3d DUO 

MC 
S 320x120 – 320 752x480 – 45 128x91 0.3 – 2.5 

6 Ensenso N35 SL / 1280x1024 – 10 58x52 0.27 – 3  

7 

FRAMOS 

Depth Camera 

D435e 

AIRS / 1280x720 – 30 86x57 0.2 – 10 

8 Ifm O3D302 ToF / 176x132 – 25 60x45 0.3 – 8 

9 

Intel 

Realsense 

D455 

AIRS 848x480 – 90 1280x720 – 30  86x57 0.52 – 10 

10 
Microsoft 

Azure Kinect 
ToF / 

6540x576 or 

1024x1024 – 30 

75x65 or  

120x129 

0.25 – 

5.46 

11 
Microsoft 

Kinect v2 
ToF / 512x424 – 30 70x60 0.5 – 4.5 

12 
MYNT EYE 

S1030 
S / 752x480 – 60 122x76 0.5 – 18  

13 Nerian Scarlet S 832x608 – 125 2432x2048 – 16 80x84  > 0.14 

14 

Nerian 

SceneScan 

Pro + Karmin3 

S 640x480 – 100 1600x1200 – 15 variable variable 

15 

Occipital 

Structure 

Core 

AIRS 1280x800 – 60 1280x960 – 54 59x46 0.3 – 5 

16 
Orbbec Astra 

Mini 
SL / 640x480 – 30 60x49 0.6 – 5 
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17 
PMD Pico 

Flexx 
ToF / 224x171 – 45 62x45 0.1 – 4 

18 
PMD Pico 

Monstar 
ToF / 352x287 – 60 100x85 0.5 – 6 

19 
Roboception 

rc_visard 65 
S 214×160 – 25 1280×960 – 1  61x48 0.2 – 1 

20 
SICK 

Visionary-T 
ToF / 144x176 – 30 69x56 0.5 – 40 

21 
Stereolabs 

ZED 
S 640x480 – 120 2208x1242 – 15 96x54 1.5 – 20 

22 Zivid Two SL / 1944x1200 – 13 50x36 0.3 – 1.5 

Figure 1.4 shows the region of the plane resolution – frame rate covered by the 

currently available depth cameras on the market. The maximum resolution 

(2432x2048) is achieved by the Nerian Scarlet (at a frame rate of 16 fps), whereas the 

maximum fps (320) is achieved by the duo3d DUO MC (with a corresponding 

resolution of 320x120). 

 
Figure 1.4  Resolution and frame rate of the considered commercial cameras. Annotated numbers 

refer to the Camera ID of Table 1.3. 

Figure 1.5a shows the camera FOVs, which are mainly concentrated around 60° x 50° 

but can be pretty variable depending on the optics used, which can be replaced in 
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some cameras. Figure 1.5b shows the operational range, which varies between 0.1 m 

and 40 m. Typically, the minimum distance extends to a maximum of 0.5 m, whereas 

the maximum varies depending on the camera. 

 

Figure 1.5  (a) FOVs (annotated numbers refer to the Camera ID) and (b) operating ranges 

distribution of the considered depth cameras. H and V stand for Horizontal and Vertical, 

respectively; Camera ID is referred to Table 1.3.  

 

1.3 Human Robot Collaboration in industrial settings by 

means of artificial vision 

HRC has recently gained a vast amount of interest in both academic and industrial 

field. It has the potential of enhancing the functional flexibility and efficiency of 

several processes typical of the Smart Factories, which realize the current trend of 

automation and intelligent manufacturing called Industry 4.0. Notably, HRC was 

considered inside the EU project ROBO-PARTNER [31] which aimed at integrating 

assembly systems and human capabilities. Specifically, the project focused on 

intuitive interfaces, safety strategies and equipment, and proper methods for 

planning and executions, all considered as key enablers for HRC.  In literature, 

different taxonomies of HRC are proposed, with the aim of identifying various levels 

of interaction between robots and human operators [32-35]. It is noteworthy that 

some publications, e.g. [36,37], present a semantic distinction between HRC, which 

refers to the concept of human and robot working together by sharing a common 
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task, and Human-Robot Interaction (HRI) that is limited to the concept of a safe 

coexistence. The distinction of HRC levels presented by De Luca and Flacco [35] is here 

adopted: according to the proposed framework, HRC can be divided in three nested 

levels of interaction between human and robot. The order is progressive, i.e. each 

level of interaction entails the fulfilment of the lower level(s):  

1 – Safety: workspace is shared, but task is not shared (no direct or indirect 

cooperation occurs); 

2 – Coexistence: workspace is shared, robot and human operator can work on the 

same object, but without any mutual contact nor any operative coordination; 

3 – Collaboration: robot and human operator perform a complex task together, 

through direct interaction and coordination and with possible physical contact. 

When dealing with HRC, safety is of paramount importance. In [38], an example of 

the application of the technical specification ISO/TS 15066:2016 [4] is presented in 

the case of a collaborative assembly scenario. Figure 1.6 outlines the laws, the 

directives, and the standards that are relevant in the field of HRC.  

 

Figure 1.6  Overview of the standards that regulates the field of HRC (figure from [38]). 

In [39], Zacharaki et al. survey and summarize features for minimizing the risk of a 

HRC application. The authors identify and analyse the following categories: 

perception, cognition, action, hardware features, societal and psychological factors, 

risk assessment through hazard identification techniques. 

In general, HRC can be achieved in several ways and with different level of interaction 

(according to [35]). The most popular way is undoubtedly through collaborative 

robots, which are lightweight robots that rely on the PFL collaborative mode of the 
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technical specification ISO/TS 15066:2016 [4] (cf. Section 1.1.2), and can achieve the 

HRC Level 3 - Collaboration. Another modality that enables HRC up to Level 2 - 

Coexistence is the Speed and Separation Monitoring (SSM) collaborative modality of 

ISO/TS 15066:2016 [4]. This modality, deeply analysed in Section 1.3.1, consists in 

enabling HRC by imposing a safety threshold on the relative distance between the 

robot and possible obstacles (mainly referring to the human body). This threshold is 

dynamical since it also depends on the robot-obstacle relative velocity. Other tools 

suitable for HRC consist in intuitive human-robot interfaces, which can provide highly 

natural and tangible ways of interaction. Interfaces of these types can be referred to 

as Natural User Interface (NUI) and Tangible User Interface (TUI). The idea at the basis 

of NUI is to offer a reality-based interaction by exploiting users’ pre-existing 

knowledge and using actions that corresponds to daily practice in the real world [40], 

overcoming the classical interaction devices such as keyboards and mice. The term 

TUI refers to the interaction systems that rely on embodied interaction, tangible 

manipulation, physical representation of data and embeddedness in real space [41]. 

These intuitive interaction systems can be used either to facilitate the robot 

programming or to interact with the robot online, while it is executing a task. Some 

examples of intuitive programming modalities are the hand guiding modality typical 

of collaborative robots, teleoperation through haptic technologies [42] or hand 

movements [43], or programming by demonstration [21-23]. Methods for interacting 

with the robot while operating can rely on automatic recognition of gestures, eye 

gaze, facial recognition, and other physical cues [24,25,44] or even vocal commanding 

[45,46]. A relevant research branch is focused on motion planning [19,20], that can 

incorporate low-to-high-levels planning of sequence of actions used to update the 

robot behaviour when performing a side-by-side collaboration with human operators. 

In addition, an emerging trend is to combine interfaces with Augmented Reality (AR) 

or Virtual Reality (VR), for instance to facilitate robot programming [47] or to increase 

system productivity while enhancing human safety [48].  

One further aspect when considering HRC is that, by cancelling the barrier between 

human and robots, also the impact on the psychological state of the operator is to be 

addressed. In fact, it is necessary to ensure that the operator feels comfortable and 

safe and that mental strains associated with the cooperative tasks are bearable [49].  

It is noteworthy the fact, pointed out by Villani et al. in [5], that the vast majority of 

academic solutions concerning HRC, validated at laboratory, have not found concrete 

application in industry yet, and an important effort in terms of technology transfer is 

thus required. 
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1.3.1 Collision avoidance  

Inside the HRC context, collision avoidance strategies can be used to enable the Level 

2 – Coexistence, or to enhance the Level 3 – Collaboration. However, it should be 

noted that they are not sufficient for the third level, which accounts for physical 

contact, that hence is to be handled by limiting the power and force and by using 

post-collision methods. Collision avoidance strategies are, as a matter of fact, pre-

collision strategies, and allow collisions to be prevented by means of a real-time 

online adjustment of the robot motion, possible by exploiting data provided by vision 

sensor. This has several advantages: the first one is that it allows to enhance the robot 

functional flexibility, in such a way that it can operate in an environment unstructured 

to a certain degree. The second one is that it allows, by preventing collisions before 

they occur, a workspace sharing with human operator, while maintaining high 

productivity when possible. In fact, the robot can operate at high dynamics when no 

human operators are detected and activate appropriate safety measures only when 

the presence of a human operator is detected by vision sensors. These safety 

measures can range from the simple robot temporary stop or speed limiting to a real-

time dynamic adjustment of the robot speed (procedure known as trajectory scaling) 

and/or modifications of the trajectory geometry (this latter by means of the so-called 

escape motions). While the simpler strategies can rely on the use of traditional safety 

laser scanners and optical barriers, these latter more complex strategies are enabled 

thanks to the detailed reconstruction and prediction of the human body motion 

possible by means of modern vision sensors. One interesting aspect of this approach 

is that it is theoretically applicable to industrial robots, since it does not require 

intrinsic limitations on the robot design. 

In robotics, obstacle avoidance is a well-known topic that emerged way before the 

raise of the modern industrial HRC. As reported in [50], several methods have been 

developed, and some of them have been adapted to the HRC context. An example of 

pioneering work is the one by O. Khatib, who in 1986 proposed a real-time obstacle 

avoidance approach based on the concept of artificial potential field [51]. The idea is 

that the robot moves in a field of forces, where there are attractive poles in 

correspondence of the target to be reached and repulsive poles in correspondence of 

the obstacles to be avoided. In [52], an impedance control method is developed, 

which establishes virtual spheres between the robot and the surrounding objects. The 

work [53] used a danger index, defined as the product of the distance, velocity and 

inertia, to generate alternative trajectories when the index exceeds a predefined 

threshold. The trajectory generation relies on a virtual force that aims to push the 

robot away from the danger area. In [54], the concept of kinetostatic danger field is 

introduced, which is a quantity that captures the complete state of the robot, namely 
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its configuration and velocity, and further used in [55] to implement a reactive control 

strategy which exploits information acquired from distributed distance sensors. In 

[35], the concept of repulsive vectors, applied to a series of robot control points, is 

used for collision avoidance purpose. 

More recent methods, based on the concept of safety constraints [15,56], continuous 

speed adaptation based on dynamic SSM [57], and control barrier functions [58,59] 

have been developed focusing on the fulfilment of the SSM collaborative mode 

presented in the technical specification ISO/TS 15066:2016 [4]. This approach is 

particularly safety-oriented and thus proves theoretically suitable for industrial robot 

applications. These new methods represent a change in the approach, which shifts 

from considering safety as a requirement that necessarily limits the performance of 

machines towards a constraint driving the optimization of the robot performance, 

which is one of the future goals identified in [5]. The main concept around which these 

latter methods revolve is the formula for the Protective Separation Distance (PSD) 

presented in the SSM collaborative mode section of the ISO/TS 15066:2016 [4], whose 

most general formulation is: 
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   (1) 

where: ����� is the PSD at the current time instant ��; �
 is the reaction time of the robot system; �� is the stopping time of the robot, from the activation of the stop until the 

robot is halted (it is not constant but depends on the robot configuration, 

speed, load); �	 is the speed of the human operator in the robot direction; �
 is the speed of the robot in the human operator direction; �� is the robot speed in the human operator direction during the stopping 

operation; � is the intrusion distance, as defined in ISO 13855:2010 [60]; it is the distance 

that a part of the body can intrude into the sensing field before it is detected;  �� is the position uncertainty of the operator in the collaborative workspace, 

as measured by the presence sensing device resulting from the sensing system 

measurement tolerance; 
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�
 is the position uncertainty of the robot system, resulting from the accuracy 

of the robot position measurement system; 

Further discussion and guidelines about the implementation of SSM in collaborative 

workcells can be found in [61]. Furthermore, it is worth noting that some (uncommon) 

works exploit the concept of PSD, rather than to develop collision avoidance 

strategies, on ways to visualize it, specifically by projecting on the robot mounting 

surface a real-time enclosing shape delimiting its PSD, the interruption of which can 

be sensed and used to trigger a robot stop [62,63].   

To implement the aforementioned collision avoidance strategies, obstacles position 

and -where needed- obstacles speed have to be estimates in real-time. Several 

typologies of sensors can be exploited for this purpose, and can be subdivided in four 

main categories: 

 motion captures systems [64]; 

 pressure-sensitive mats [65] 

 proximity/distance/capacitive sensors [55];  

 vision sensors (either 2D or 3D) [25,59]. 

Motion captures systems are typically based on optoelectronic measurement systems 

and/or inertial sensors, they can be reliable and precise, but they have the significant 

downside that they need to be wore or attached to the human operator or to the 

generic obstacle to be monitored, which is thus to be known in advance and to be 

suitable for the sensor attachment. Pressure-sensitive mats can safely detect the 

worker feet position, but only operate at the ground level and cannot track the upper-

body. Proximity sensors, mounted on robot, can be effective in particular situations, 

but they provide a non-detailed sensing of the environment, are often limited in range 

and precision and need a method to process and integrate together the data. One 

unique example of commercial robotic solution using this concept is the sensor skin 

based on capacitive sensing developed by Bosch for the APAS Assistant robot [66], 

which has a sensing range of 50 mm. The third category is undoubtedly the one who 

gained the most popularity in the recent years [67], due to the popularization of depth 

cameras, analysed in Section 1.2.2.  Compared to the other typologies of sensors, they 

have the advantage of being capable of reconstructing a detailed long-range portion 

of the environment and the obstacles do not need to be known in advance nor any 

sensor attachment on them is required. Some methods rely on the use of 2D cameras, 

but they sometimes need visual markers [68] to track the obstacle, or the obstacle 

typology needs to be known in advance in order to exploit data driven recognition 

approaches [69]. 3D vision sensors, on the other hand, can directly output a 3D 

representation of the environment, which leads to a straightforward obstacle 



25 

 

 

reconstruction. Traditional safety laser scanners fall inside this category, but they are 

essentially only used for obstacle detection (typically at the ground level), since they 

are not suitable (due to their working principle and limitation, e.g. concerning the 

frame rate) for the more advanced obstacle tracking needed in collision avoidance 

applications. Depth cameras, on the other hand, can be used to efficaciously 

reconstruct the obstacle 3D geometry and to estimate its motion. Furthermore, the 

vast majority of them can provide RGB data as well, in the form of classical RGB images 

or fused with the 3D data. There are some caveats, however, in the use of vision 

sensors. The first one is that they are sensible to occlusion, so their positioning is to 

be carefully chosen, since it has important repercussions on safety. In general, inside 

the collision avoidance framework, they are placed in a fixed fashion on an external 

frame, but there are some exceptions [70,71]. This topic will be further discussed in 

Section 5.1, where considerations on the optimal placement will be made. One other 

important limitation of depth cameras is the lack of safety certifications, differently 

from the classical safety laser scanners and optical barriers. One unique exception is 

the PILZ SafetyEYE [72], which was commercialized as the first safe camera. To 

address this problem, some solutions can be to pair the unsafety sensors with a safety 

one [25,73] or to create a particular infrastructure that acts as a safe network for 

unsafe devices [74]. 

Even with their caveats, depth cameras currently represent the most valid devices to 

track dynamic obstacles. Furthermore, the depth camera technology is rapidly 

evolving, by means of enhancements in terms of both resolution and frame rate, and 

hopefully, the reliability will be subjected to improvements as well.     

In Table 1.4, a list of the most recent and notable collision avoidance systems based 

on artificial vision are reported, providing the main references used for the 

development of the real-time collision avoidance method presented in this Thesis. It 

is worth reporting the recent commercialization of the plug-and-play 3D smart 

assistant by SMART ROBOTS [75]. It is essentially a 3D camera with advanced 

embedded functionalities that can be paired with any collaborative robot. One 

function concerns collision avoidance: the system can detect human body parts 

(body, arms, hands) and human-robot distance in real-time, slowing down the robot 

before the collision occurs. The provided functionalities, though being safety related, 

are not certified as such. 
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Table 1.4  List of some notable publications of the last decade concerning vision-based pre-collision 

methods that enable HRC. It is mentioned the year of publication, the hardware and software used 

for the test, where indicated by the authors (a remand to the article is suggested in the case of 

extensive description given by the authors difficult to summarize), and the topic in which novelties 

are proposed by the Authors. Abbreviations are used for the sake of conciseness: 

For the robot: DOFs: Degrees of Freedom; C: Collaborative; I: industrial 

For the sensors: F: mounted on a fixed external frame; R: mounted on the robot 

N/A: not applicable; used in the case where no info was found  

Paper 

Year 
Robot Sensors 

Other 

hardware 

Software/Frame

works 
Main focus 

 [35] 

2012 

KUKA 

LWR-IV  

7 DOFs; C 

1 x Kinect V1 

F 

Eight core 

CPU 
N/A 

Collision reaction, 

avoidance 

(+ gesture and voice 

recognition) 

 [16] 

2012 

iRobot 

ATRV Jr. 

Mobile 

2 x 

Swissranger 

SR4000S 

(range 

cameras) 

F 

2 x Tyzx G3 

EVS (stereo 

cameras) 

F 

2 x External 

PC (2.67 GHz 

Intel Core i7 

920 quadcore 

with 64-bit 

Ubuntu Linux 

10.04 LTS) 

All connected 

through a 

wired gigabit 

Ethernet 

network 

N/A 
Obstacle detection; 

Sensor fusion 

 [76] 

2012 
N/A 

3 x Kinect V1 

F 

3 x External 

PC (Intel i7-

2600 3.4 GHz 

processor, 16 

GB RAM, 

Nvidia 

GeForce GTX 

560-1GB) 

Point Cloud 

Library (PCL) 
Obstacle detection 

 [77] 

2013 

Willow 

garage PR2 

(Simulated) 

Humanoid 

(but 

standing 

still) 

 

1 x Kinect V1 

F 
PC 

MATLAB 

Move3D 

Manipulation 

planning based on 

human motion 

prediction 

 [78] 

2013 

KUKA 

LWR IV 

7 DOFs; C 

1 x Kinect V1 

F 

1 x Stingray 

F201 B (gray 

2D camera) 

R 

1 x External 

PC 

OpenNI 

ViSP library 

Reflexxes 

Visual-based 

human-robot 

cooperation 

 [74] 

2013 

COMAU 

NS16 

6 DOFs; I 

N/A -See the paper for info- 

Safe network of 

unsafe devices; 

Collision avoidance 
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 [79] 

2014 

COMAU 

NS16 

6 DOFs; I 

-No info on 

the number- 

MESA ToF 

cameras 

F 

-See the paper for info- 
Dynamic SSM 

(speed adjustment) 

 [80] 

2014 

KUKA 

LWR4+ 

7 DOFs; C 

1 x NDI 

Polaris optical 

tracker 

F 

Real-time CPU N/A 
Dynamic SSM 

(speed adjustment) 

 [81] 

2014 

ABB 

IRB120 

6 DOFs; I 

PhaseSpace 

motion 

capture system 

On human 

hand/arm 

External PC 

(Core i7-3610 

QM 2.3GHz, 

Windows 7) 

-See the paper 

for info- 

Dynamic SSM 

(speed adjustment) 

 [17] 

2014 

KUKA 

omniRob 

7 DOFs; C 

(on mobile 

platform) 

2 x Kinect V1  

F (on robot 

platform) 

2 x 2D lidar 

laser scanners  

F (on robot 

platform) 

N/A N/A Obstacle tracking 

 [55] 

2014 

ABB IRB 

140 

(controller: 

ABB IRC 5) 

6 DOFs; I 

20 x IR LED 

(Sharp 

GP2Y0A02YK) 

R 

1 x National 

instrument 

PCI 6071E 

board 

1 x External 

PC (Linux OS 

with Xenomai 

patch for real-

time) 

Interface 

developed for 

exchanging data 

with ABB 

controllers; 

Strategy 

developed with 

Simulink GUI 

and converted 

into an 

executable 

trough Simulink 

Real-Time 

workshop  

Collision avoidance 

 [82] 

2014 
/ 

2 x AXIS PTZ 

RGB (fish-eye 

surveillance 

cameras) 

F 

1 x External 

PC (cameras 

connected to it 

via Ethernet)  

ROS (Robot 

Operating 

System) 

OpenCV  

Human Detection 

and Tracking  

 [83] 

2014 

Lab-Volt 

5150 

5 DOFs 

4 x Kinect V1 

F 

1 x client PC 

+ 

1 x server PC 

Virtual 

simulation 

engine based on 

Tundra software 

Human Detection 

and Tracking  

 [84] 

2015 

 

KUKA 

LWR 

7 DOFs; C 

1 x Kinect V1 

F 

1 x External 

PC 

ROS 

Point Cloud 

Library (PCL) 

Reflexxes 

SoftMotion 

Collision avoidance 

 [85] 

2015 

KUKA 

LWR-IV  

7 DOFs; C 

1 x Kinect V1 

F 

Eight core 

CPU 
N/A Collision avoidance 
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 [62] 

2015 

Custom-

made light-

weight 

robot 

5 DOFs 

1 x RGB 

camera + 1 x 

light projector  

F 

1 x PC MATLAB 
Dynamic SSM 

(through projection) 

 [73] 

2016 

ABB IRB 

4600 

6 DOFs; I 

1 x Kinect V1  

F 

1 x Sick Laser 

Scanner 

F 

 

1 x Safety 

controller 

1 x Dynamic 

safety 

controller 

N/A 
Dynamic safety 

system 

 [18] 

2016 

KUKA 

omniRob 

7 DOFs; C 

(on mobile 

platform) 

2 x Laser 

scanners -No 

info on the 

model- 

On mobile 

platform 

N/A N/A 

Dynamic SSM 

(size of safety area 

based on the 

platform speed) 

 [86] 

2016 

ABB 

FRIDA 

(dual arm) 

(controller: 

ABB IRC 5) 

14 DOFs; C 

1 x Kinect V1 

(scenario 1) F 

2 x Kinect V1 

(scenario 2) F 

Real Time 

Linux 

Xenomai PC  

IBM CPLEX 

Optimization 

Studio for the 

LP algorithm 

Dynamic SSM for 

redundant robots 

(and non) 

 [87] 

2017 

ABB IRB 

140  

6 DOFs; I 

2 x Kinect V1 

F 

External PC 

(Intel Core i7, 

CPU of 2.7 

GHz, 4 GB 

RAM, 64-bit 

Windows 7) 

C/C++ libraries, 

communication 

and framework 

implemented in 

Java 

Collision avoidance 

 [88] 

2017 

Willow 

garage PR2 

Humanoid 

1 x Kinect V1 

F (on mobile 

platform) 

/ ROS  

Trajectory planner 

that consider 

“interaction 

potential” (gesture 

and speech) 

[89] 

2017 

KUKA LBR 

iiwa 7 R800  

7 DOFs; C 

Heptagon 

Taro (TOF) R 

Camera 

connected via 

Wireless to the 

robot 

controller unit 

N/A Obstacle detection 

[90] 

2017 

KUKA 

LWR-IV  

7 DOFs; C 

2 x Kinect V1 

F 

Fast Research 

Interface (FRI), 

Intel core i7-

2600 CPU 3.4 

GHz, 8Gb of 

RAM 

Code developed 

in C++ 

Collision avoidance 

(focus on depth 

maps merging) 

[63] 

2017 

KUKA LBR 

iiwa 14 

7 DOFs; C 

Custom setup: 

LED-DLP 

projector + 

RGB camera   

F 

N/A N/A 

Dynamic SSM 

(through projection, 

same concept as [62]) 
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 [33] 

2017 

KUKA 

KR180  

6 DOFs; I 

2 x Intenta 

S2000 (stereo 

cameras) 

F 

1 x RGBD 

camera -No 

info on the 

model- 

R 

1 x Schunk 

Multi-axis 

force/torque 

sensor 

N/A N/A Levels of interaction 

 [70] 

2018 

KUKA LBR 

iiwa 7 R800  

7 DOFs; C 

SICK 

Visionary- T 

camera (TOF) 

R 

External PC 

(camera 

connected via 

Ethernet) 

MATLAB Obstacle detection 

 [71] 

2018 

Universal 

Robot 

UR10 

6 DOFs; C 

3 x SICK 

TiM551 Laser 

scanners 

1 F; 2 R 

N/A N/A 

Obstacle detection 

(consequent robot 

security mode 

switching) 

 [15] 

2018 

ABB IRB 

140 

(controller: 

ABB IRC 5) 

6 DOFs; I 

1 x Kinect V1 

1 x ASUS 

Xtion 

F 

2 x External 

PC (Linux OS 

with Xenomai 

patch for real-

time) 

-See the paper 

for info- 

Dynamic SSM 

(trajectory + speed 

adjustment) 

 [91] 

2019 

KUKA LBR 

iiwa 7 R800  

7 DOFs; C 

Terabee 

TeraRanger 

One (single 

pixel TOF) R 

External PC 

(camera 

connected via 

USB) 

MATLAB Obstacle detection 

 [57] 

2019 

ABB 

IRB140 

6 DOFs; I 

1 x Leuze 

RSL440 safety 

laser scanner 

F 

External PC MATLAB 
Dynamic SSM 

(speed adjustment) 

 [25] 

2020 

ABB IRB 

4600  

6 DOFs; I 

2 x Kinect V2  

F 

+ 

2 x Laser 

scanner 

KEYENCE SZ-

V32n 

F 

-See the paper for info- 
Obstacle detection; 

Gesture recognition  

 [58] 

2020 

 

Universal 

Robot 

UR5 

6 DOFs; C 

1 x Intel 

Realsense 

D415 

F 

OROCOS 

ROS (C++) 

CVXGEN 

SSM and PFL 

 [59] 

2020 

Universal 

Robot 

UR5 

6 DOFs; C 

Tested both 

with 1 x Intel 

Realsense 

D415 

and 1 x Asus 

Xtion F 

OROCOS 

ROS (C++) 

CVXGEN 

Collision avoidance 
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1.3.2 Programming by demonstration 

There are nowadays different methodologies to program a robot, either traditional 

or recently popularized. A list is here presented, with a brief overview, whereas a 

more detailed description can be found in [5]. 

 Lead-through programming. It is the older and most traditional methodology. It 

consists in leading the robot through the waypoints by the use of a teaching 

pendant (also known as teaching box). This operation is often referred to as 

“robot jogging”. 

 Offline programming. This methodology is nowadays highly widespread and it 

consists in programming the robot offline via a dedicated proprietary software 

and test the program execution on a simulator, which is included in the software. 

 Walk-through programming. It has been popularized with the commercialization 

of cobots, and it relies on the hand guiding collaboration mode of the technical 

specification ISO/TS 15066:2016 [4]. It consists in grabbing the tool attached on 

the end effector and “walking” the robot through the desired waypoints, which 

are stored and can be used to command the robot the desired path. The 

possibility of manually moving the end effector is made possible by means of 

compliant control schemes or force control, which rely on the use of force/torque 

sensors (typically mounted on robot wrist and/or joints).     

 Programming by Demonstration (PbD). It is not widespread in actual industrial 

frameworks yet, even if a considerable amount of work has been done at 

laboratory level. In literature, this technique can refer to both the following 

scenarios: 

o the robot replicates as is the movement demonstrated (through a single 

demonstration) by the human operator [21],[92]. 

o The robot learns the demonstration movements with the aim of performing 

them under varying conditions and to generalize them in new scenarios 

[22,23]. 

 Others. Further novel miscellaneous programming methods have been 

proposed, typically validated at laboratory level only, but not appeared in 

industrial frameworks yet. They can rely on haptic devices, leap motion 

recognition, augmented or virtual reality, vocal commanding and so on. 

Walk-through programming, PbD and the other novel methods perfectly fit inside the 

HRC context, since they provide intuitive and user-friendly robot interfaces that do 

not require much cognitive interaction effort, time consuming procedures nor highly 

skilled and trained human workers.   
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1.4 Problem statement: the necessity of a new paradigm 

As depicted, HRC is a broad and hot topic that has recently gained popularity in both 

academic and industrial fields. Even if a considerable amount of work has been done, 

it is still in its infancy and rapidly evolving. Keeping in mind the practical utility in 

industrial scenarios, especially in terms of productivity enhancement, in the very last 

years a significant number of research studies shifted the focus from implementing 

HRC by means of cobots to realizing HRC by exploiting traditional industrial robots. In 

fact, cobots, even if increasingly widespread, are still relegated to a small niche of 

applications in which a sharing of tasks (with possible contact) and intentions (Level 3 

of HRC, see Section 1.3) is actually beneficial to the productivity or the quality of work. 

As outlined in Section 1.1.2, in facts, cobots comes with limitations in speed and 

power, thus preventing their use in the vast majority of industrial traditional tasks, 

where high productivity is achieved thanks to robot power and speed. Rather than 

having to choose between cobots and industrial robots, which are somehow 

according to current paradigms, the key idea and motivation of this Thesis is to 

propose some methodologies to enable a new paradigm, which incorporates the 

perks of both industrial and collaborative robots. The necessity of this new paradigm 

is also pointed out by the robot company Comau, which, at the time of this writing, 

has commercialized the robot Comau Racer5 COBOT [93], which can switch from 

industrial robot speed to collaborative (limited) speed when a human operator enters 

its working area. 

The solutions proposed in this Thesis rely on the integration of industrial robots with 

artificial vision systems, in particular exploiting depth cameras. Among other devices, 

the choice of depth cameras is motivated by several factors, the main ones being the 

following: 

 they are compact, have an affordable price, and the most recent products can 

achieve high frame rate and resolution; 

 they can reconstruct in a straightforward way the objects and the environment 

in the scene, which neither are to be known in advance nor have to be previously 

manipulated; 

 they are based on a technology which is rapidly improving and thus proves very 

promising. 

When integrated with industrial robots, the mentioned features of depth cameras 

allow the implementation of the following main HRC enablers: 

 Enhancing robot functional flexibility while maintaining high productivity, 

realizing the HRC collaborative modality SSM, which allows safe coexistence of 
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human operators and robots inside the same workspace. Other than human 

operators, artificial vision can be used to sense generic dynamic obstacles, which 

can ultimately lead to manage unstructured environments.  

 Enabling the intuitive programming method programming by demonstration: the 

demonstration of the task can be easily acquired by means of artificial vision. 

 Enabling the online interaction with the robot by means of recognition of physical 

cues such as hand gesture, facial recognition and so on.   

This Thesis focuses on proposing some implementations of the first two points, 

specifically a collision avoidance method based on SSM and two programming by 

demonstration methods. The latter are here intended in the sense that the robot 

replicates, after a single demonstration, the motion of a Human Demonstration 

Device (HDD), which is manually carried through a series of target waypoints.  

A last section of the Thesis is devoted to an investigation on the optimal placement 

of robot onboard cameras, which was identified as a topic of interest not properly 

analysed in literature to the best of the Candidate’s knowledge. This last topic, even 

if addressed as a stand-alone problem, well fits into the context of HRC based on 

vision sensors, since the sensor placement has important implications on safety and 

on the general effectiveness of vision-based HRC applications.  As outlined by its title, 

the scope of this Thesis is the proposal of vision-based solutions to enable HRC in 

industrial settings. The key concept is the realization of HRC not by intrinsically 

limiting the robot, but rather to pair it with vision sensors, which allows the utilization 

of traditional industrial robots. In this scenario, safety is to be fulfilled, other than by 

the hardware itself, also by all the involved methods, algorithms and procedures, an 

important set of those being the ones concerning the integration of the robot and 

vision sensors. It is clear that a proper camera placement is necessary for an effective 

and safe monitor of the region in which HRC is intended to be realized, and serves as 

a basis for the successive stages. Every systematic procedure that helps at better 

quantifying this grade of safety and effectiveness of the monitoring is relevant to the 

topic, and, for this reason, the aforementioned study about camera placement was 

also included in this Thesis.   

One last motivation of the present work concerns the fact that, in order to introduce 

collaborative solutions in small and medium companies, that might have a limited 

budget to invest in innovation, robot retrofitting could represent a valid option, as 

pointed out by Villani et al. in [5]. Further to this point, the proposed approach has 

the advantage of allowing integration of novel HRC solutions in deprecated robots, to 

upgrade them, where needed, to fulfil the highly flexible and smart production style 

typical of Smart Factories.     
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The main contributions of this Thesis to the state of art are here briefly summarized, 

whereas the technical novelties are outlined and detailed throughout the specific 

parts of the Thesis.  

 The developed collision avoidance method is suitable for the case of generic 

dynamic obstacles (not only humans) which may be present in either traditional 

closed workcells or collaborative workcells. Also, it allows an easy integration of 

different vison sensors and is particularly efficient so that only one pc (but with 

enough GPU resources) is needed.  

 The developed PbD methods have the characteristic traits of relying on cheap 

vision sensors and hardware, and are easily implementable in a generic 

framework.  

 The study about the optimal placement of onboard cameras is one of the first 

presented in literature and provides some insights and tool for a more systematic 

approach for a safe monitoring of the robot workspace.   
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2 Experimental setup 

The work was carried out inside the research and educational laboratory named 

TAILOR (Technology and Automation for Industry LabORatory), born nearly at the 

time of the beginning of the PhD thanks to a collaboration between the University of 

Bologna and the company Siropack Italia s.r.l. (Cesenatico, FC). In particular, the most 

striking facility of the “Robotics division” of the laboratory is a robotic cell (cf. Section 

2.1), whose project was mainly borne by the Candidate (ranging from the design to 

the operative commissioning phases). A number of commercial products were 

courteously granted by the Italian branch of Mitsubishi Electric Europe B.V., Omron 

(Italian branch) and SMC Europe (Italian branch), which are gratefully acknowledged.    

2.1 Robotic cell 

Tests are conducted inside the aforementioned robotic cell, which was designed in 

such a way to resemble an automatic robotized machine, able to realize as a matter 

of fact the flexible automation typical of the modern Smart Factories, being adaptable 

to various different tasks. The robotic cell is endowed with a series of movable guards, 

granting access to various zones of the cell, valuable feature that was exploited to test 

HRC application directly into industrial settings. This was very beneficial, since the 

HRC tests are carried out in a realistic industrial scenario rather than on a standalone 

robot or by using a simplified setup. The robotic cell is composed of the following 

main components: 

o Two industrial robots by Mitsubishi Electric: 

 one articulated robot RV-4FM-1Q1-S15 (4 kg payload, 514.5 mm reach), 

henceforth referred to as RV4F, equipped with a Mitsubishi Electric 1F-FS001-

W200 force sensor mounted on the wrist and a SCHUNK KGG-70-48 

pneumatic gripper; 

 one SCARA robot RH-1FHR5515-Q1-S60 (1 kg payload, 550 mm reach) 

henceforth referred to as RH1F, equipped with a custom-made vacuum 

gripper. 

o Additional mechanical drives, driven by brushless motors and set as robots’ 

additional axes, which guarantees ease of programming and flexibility: 

 one railway under the articulated robot (additional axis for the RV4F); 

 one conveyor belt traversing the robotic cell (additional axis for the RV4F); 

 one rotary table (additional axis for the RH1F); 

 one conveyor belt afferent to the rotary table (additional axis for the RH1F). 
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o A series of vision sensors: 

 three Omron FH-SCX cameras, paired with the Omron FH-3050-20 vision 

controller; 

 one webcam HD Logitech® C930e; 

 one Ifm Electronic O3D302 depth camera; 

 one Intel Realsense D435 depth camera; 

 one Microsoft Kinect v2 depth camera.  

Figure 2.1 shows some overall pictures of the robotic cell from different points of 

view, whereas Figure 2.2 shows some close-ups of the inside of the robotic cell. In 

Figure 2.3 the vision sensors mounted inside the cell are highlighted. For a more 

detailed overview of the design and components of the robotic cell, see Appendix A. 

 
Figure 2.1  Various overall pictures of the robotic cell inside the TAILOR laboratory. (a) front view; 

(b) left view; (c) rear view; (d) right view.   



36 

 

 

 

Figure 2.2  Close-ups on the inside of the robotic cell, highlighting in particular the Mitsubishi Electric 

RV4F articulated robot (c) and the Mitsubishi Electric RH1F robot (d).  

 

Figure 2.3  Mounting of the vision sensors highlighted, with indications on the type and on the 

model.  
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2.2 External workstation and programming frameworks 

All the programming is carried out on an external computer, a Dell Precision 5820 

Tower workstation, featuring an Intel® Core™ i7-9800X 3.8 GHz octa-core processor, 

16.5 MB of cache, 32 GB (4 x 8 GB) RAM of DDR4 at 2.666 MHz. This external 

workstation is connected to the robotic cell Ethernet switch, allowing the 

communication with the various devices inside the cell. The Robot Operating System 

(ROS) middleware was chosen as a tool to implement the advanced functionalities 

required by the research applications, more specifically regarding the developed 

collision avoidance method. ROS was used to efficiently manage the CPU 

multithreading and acted as a wrapper for the code written in the C++ programming 

language. The C++ language is a common choice in real-time applications involving 

vision-based robot control because of both its high performances in terms of speed 

and the availability to users of versatile and efficient artificial vision and robotics 

libraries. The communication with the robot controller, managed with the aid of ROS, 

takes place via a UDP socket, enabled thanks to a particular functionality of the robot 

controller. This allows a data exchange between the external pc and the robot 

controller with a 7.1 ms cycle time. One advantage of coding in C++ is the possibility 

to exploit the Graphics Processing Unit (GPU) resources, which allow to parallelize 

certain general-purpose computations and to significantly speed them up, a GPU 

usage commonly known as General Purpose GPU (GPGPU). In practice, this is achieved 

by exploiting the Compute Unified Device Architecture (CUDA), which is a parallel 

computing platform and application programming interface model created by NVIDIA 

(the only requirement to use it is to have a NVIDIA graphics card). This is a promising 

approach adopted in some recent works in this field, such as [25]. To fully exploit the 

CUDA capabilities, the workstation was endowed with the recent and powerful 

graphic card NVIDIA GeForce RTX 3070, showed in Figure 2.4, which also reports its 

main technical specifications. Linux Ubuntu 18.04 was chosen as operating system. In 

addition, MATLAB® was extensively used as an aid to develop and test several 

algorithms involved, other than to fully implement some of the algorithms that did 

not need to run online. 

 
Figure 2.4  NVIDIA GeForce RTX 3070 
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3 Collision Avoidance  
In this Chapter the developed collision avoidance method is presented. It is inspired 

by the very recent safety constraint approach [15], which is a safety-oriented 

approach particularly suitable for industrial robots. The method is developed for an 

articulated robot and tested inside the robotic cell described in Section 2.1 on the 

Mitsubishi Electric RV4F robot. It exploits the depth data from the Intel Realsense 

D435 (active IR stereo camera) and the Microsoft Kinect v2 (ToF camera), shown in 

Figure 3.1, which also reports their main depth features. The RGB stream, even if 

available from both the cameras, was not used. 

 
Figure 3.1  Depth sensors used for the collision avoidance method. 

The method was developed on the external workstation described in Section 2.2, by 

using both MATLAB® and ROS, this latter run on Linux Ubuntu 18.04. Inside the ROS 

framework, the code was written in the C++ language, by exploiting the IDE VS Code. 

In Figure 3.2, a high-level pipeline of the method is shown. The method can be 

conceptually divided into two main blocks, one designed for the online trajectory 

generation and one designated for the obstacle tracking. The robot normally follows 

a pre-programmed task-based reference trajectory; in order to keep the PSD, an 

adjustment of the robot trajectory, which can be in terms of path (which diverges 

from the reference one by means of an escape motion) and/or speed, is produced 

whenever necessary based on the monitored positions and velocities of obstacles 

possibly present within the robot workspace. The obstacle tracking block relies on the 

use of a voxel grid, in which the occupancy of each voxel is estimated starting from 

the point clouds acquired by the two depth cameras. By exploiting the voxel 

occupancy, the obstacles speed is then estimated by means of a particle filter. Based 

on real-time estimation of positions and speeds, an obstacle segmentation is then 
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performed, which outputs a set of obstacles and some corresponding relevant 

quantities, used as an input in the online trajectory generation block.  

 

Figure 3.2  High level pipeline of the collision avoidance method.  

The proposed implementation introduces some novelties, and has the following 

distinctive features: 

 It is voxel-based. 

 It is suitable for generic dynamic obstacles since it does not rely on the typical 

human-tracking algorithms.  

 The voxel-based approach allows an easy fusion of data from different sensors, 

which can rely on different technologies, thus potentially increasing reliability. 

 It can prioritize escape-motions or adherence to the reference trajectory.   

Most recent collision avoidance methods, which generates online command at each 

discrete time step, favour the use of acceleration-based input commands [15,59]. The 

hypothesis normally made is that the controller closed-control loop is sufficiently 

reliable and performant, so that there is no significant difference (relatively to the 

application to develop) between the commanded and the actual trajectory. Typically, 

modern robot controllers accounts for the possibility of commanding the robot in 

velocity or acceleration, which results in smoother motion laws. In the developed 

method, the trajectory generation algorithms were partly affected by the need of 
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adapting to the external communication modality of the RV4F controller, a Mitsubishi 

Electric CR751-Q, featuring a sample time of 7.1 ms. This controller accounts for the 

possibility of commanding the robot by a direct communication with an external PC, 

via a UDP socket. The communication modality (named MXT, which stands for Move 

External) is highlighted in Figure 3.3 (image from [94]). This modality allows one to 

command the robot by means of position values, in terms of either joint angles or the 

Cartesian pose of the Tool Center Point (TCP).   

 

Figure 3.3  Data exchange modality between the robot controller and the personal computer (image 

from [94]). 

The command value generated online at each time step and sent to the robot 

controller is used as reference in an internal closed-control loop managed by the 

controller, which exploits the joint encoder feedback values. The available data 

exchange modality (position) was seen as an opportunity to add originality to the 

trajectory generation method, since the adherence to this modality fostered 

variations with respect to the literature methods taken as reference. One of its perks, 

for instance, was the fact that it demonstrated to be particularly suitable for 

implementing strategies relying on the motion geometry instead of on the motion 

laws, which can have some benefits, as will be discussed in Section 3.5.   

In the next Section, the online trajectory-generation algorithms are detailed, 

considering at first the case of a point-like obstacle. Later, in the obstacle tracking 

Section, the case of real-world obstacles is considered, the algorithms to fuse and 

transform the data detailed, and the methods for estimating the obstacles positions 

and speeds presented.   
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3.1 Online trajectory generation 

3.1.1 RV4F robot kinematics 

The trajectory generation make use of the robot kinematics, here detailed in the case 

of the Mitsubishi Electric RV4F, which is a wrist partitioned articulated robot. Its 

mechanical architecture and dimensions are shown in Figures 3.4-3.5. 

  

 

Figure 3.4  Mitsubishi Electric RV4F robot architecture, with axes highlighted (image from [95]). 
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Figure 3.5  Mitsubishi Electric RV4F mechanical drawing of the architecture, with highlighted the 

axis distances and axes limits (image from [95]). 

The solution of the robot kinematics can be computed by means of the Denavit-

Hartemberg convention (DH) [96]. In order to do so, a robot model based on the DH 

parameters is to be constructed, which was done as shown in Figure 3.6a. Figure 3.6b 

shows the zero-joint-angles configuration, obtained by adding proper offsets to the 

joint angles. The corresponding DH parameters are reported in Table 3.1. Other 

quantities reported in Figure 3.6b are: 



43 

 

 

Ok: origin of the kth Reference Frame (RF) RFk 

ek: axis of the joint k 

Ek: matrix representing the pose of RFk with respect to the Robot Base reference 

frame (RF0) 

 

 

Figure 3.6  RV4F DH parameters. 
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Table 3.1  Table summarizing the RV4F DH parameters. 

k ak αk dk θk offset 

1 0 -π/2 L1 θ1 0 

2 -L2 0 0 θ2 π /2 

3 -L3 π /2 0 θ3 -π/2 

4 0 -π/2 L4 θ4 0 

5 0 π /2 0 θ5 0 

6 0 0 L6 θ6 0 

where L1 = 350 mm, L2 = 235 mm, L3 = 50 mm, L4 = 275 mm and L6 = 85 mm (L6 = 85+ 

191.1 mm if considering the TCP placed on the e6 axis at the end of the gripper jaws).  

Methods for solving the kinematics and other considerations, for instance concerning 

the singularities, can be found in [96, 97]. 

3.1.2 Pre-programmed reference trajectory 

The reference trajectory is the trajectory of the pre-programmed task, that the robot 

would normally follow inside the automated working cycle. Typically, this type of 

trajectories can be programmed inside the robot proprietary offline-programming 

software, which provides a robot simulator, a proprietary programming language and 

other tools. There, the most common approach to program robot movements is to 

define a series of waypoints, usually in the Cartesian space, and the type of movement 

the robot must perform between them. In the vast majority of cases, the motion laws 

used to construct the reference trajectory are not defined from scratch, but rely on 

the use of already available functions, typically:  

 joint interpolated motion: given a series of waypoints, the laws of motion are 

generated by interpolating the waypoints in the joint space; 
 

 linear Cartesian motion: given two waypoints, the robot follows a straight line in 

the Cartesian space to move from one to the other. 

Inside the proprietary Mitsubishi Electric robot programming software RTToolBox3, 

using the proprietary MELFA programming language, the joint interpolated motion is 

identified with the keyword mov (move), whereas the linear Cartesian movement 

with the keyword mvs (move straight). For the sake of conciseness, these two 

keywords will be henceforth utilized to identify these two motion types.  

The mov motion is typically used in situations in which one has a certain freedom of 

movement between the waypoints, it is not affected by configuration singularities 

and the inverse kinematics needs to be applied only to convert the waypoints from 

the Cartesian space to the joint space.  
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The command mvs, on the other hand, it is used when the robot needs to necessarily 

follow a straight line in the Cartesian space, for example in insertion tasks, object 

picking, etc. The joint commands to send to the robot actuators are obtained by 

dividing the straight line in the Cartesian space in a high number of points, which 

approximate the line, for each of which the corresponding joint angles are computed 

by means of the robot inverse kinematics. In this case, configuration singularity 

problems could arise.  

In the case study, there was the necessity of constructing reference trajectories 

outside the software RTToolbox3, so one or more motion types had to be chosen. The 

main point of the collision avoidance method was to adjust the robot motion based 

on obstacles information; the mvs movement, however, is used when the reference 

trajectory is strictly required to follow a straight line, often with a required speed, 

precondition for the fulfilment of that specific part of the task. Thus, since it was more 

appropriate for the scope of this Thesis, the reference trajectory was constructed by 

means of the only mov motion. Note however that the proposed collision avoidance 

method can be easily modified to account for reference trajectories based on other 

motion types, that can be the other typical ones or can be specifically tailored for the 

task.  

The mov motion can rely on different types of interpolation, a common choice is the 

use of cubic splines. Here the Piecewise Cubic Hermite Interpolating Polynomial 

(PCHIP) [98] was used since it produced motion laws similar to the mov function of 

RTToolbox3. PCHIP has the advantage of having no overshoot and less oscillation 

compared to other cubic interpolations methods, however, in the junction points only 

C1 continuity (continuity up to the first derivative) is granted, which may not be 

sufficient in some specific cases. 

Let us consider the kth joint, the abscissa τ (which can be seen as a dimensionless 

time), and m waypoints (thus m -1 spline pieces). The spline interpolating the kth joint 

target positions has then the form shown in Eq. (3.1): 

 

���
� =
⎩⎪⎨
⎪⎧ !�,#
$ + %�,#
& + '�,#
 + ��,#                         )* +# ≤ 
 < +&           !�,&
$ + %�,&
& + '�,&
 + ��,&                         )* +& ≤ 
 < +$           …                                                                !�,/0#
$ + %�,/0#
& + '�,/0#
 + ��,/0#    )* +/0# ≤ 
 < +/          

   (3.1) 

 

 



46 

 

 

The 6-dimensional spline is then a function S: ℝ → ℝ6, defined according to Eq. (3.2): 

��
� = 1�#…�23     (3.2) 

When considering the totality of the joints, it is useful to organize the spline 

coefficients into a matrix �� ∈ ℝ2×[8×�/0#�], in the following way: 

�� =
⎣⎢⎢
⎢⎢⎡
!#,# %#,# '#,# �#,# … !#,/0# %#,/0# '#,/0# �#,/0#…!�,# %�,# '�,# ��,# … !�,/0# %�,/0# '�,/0# ��,/0#…!2,# %2,# '2,# �2,# … !2,/0# %2,/0# '2,/0# �2,/0#⎦⎥⎥

⎥⎥⎤     (3.3) 

The matrix Cs and the vector T = [T1, …, Tm], this latter containing the abscissa of each 

waypoint, completely define the reference trajectory.  

These two quantities were computed offline using MATLAB®, by specifying a set of 

waypoints in the joint space and the corresponding T vector, and by carrying out the 

interpolation by means of the MATLAB® built-in function pchip. T can be constructed 

in several ways, for example in order to minimize the working cycle time, or simply by 

an arbitrary choice of the time interval between the waypoints. In this context, Ti (i = 

1, …, m) can be considered as a matter of fact equal to the time instant ti at which the 

robot is desired to reach each waypoint.  

Let us define a series of variables that will be extensively used from now on: ) ∈ ℕ discrete time step. It will also be used as subscript for other variables to 

indicate the reference to the time step i. Δ� ∈ ℝ  robot controller sample time (≈ 7.1 ms). B ∈ ℝ2  command variable: it is the vector of joint coordinates sent to the robot 

controller at each time step i. The robot controller moves the robot to 

the commanded position within the next time step i+1. If the robot 

cannot move to the commanded joint position within the time step i+1, 

the controller outputs the encountered error (e.g. due to the fact that 

the needed joint speed exceeds the joint speed limit). 

In absence of obstacles, u can be computed at each time step i as shown in Eq. (3.4). 

In this situation, the robot simply follows the pre-programmed task-based reference 

trajectory. B = ��)∆��     (3.4) 
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3.1.3 Safety constraints 

In this Section the constraints on the command variable u that grant the compliance 

with the PSD are obtained.  

Figure 3.7 shows the convention used when considering a discrete time domain, by 

showing the relation between generic positions x and the corresponding velocities v. 

Inside the time step interval, the approximation of considering constant velocities is 

made. 

 
Figure 3.7  Discrete domain conventions and approximations. 

In the next Section, the case of a single robot point and a single obstacle point is 

considered in the computation of the safety constraints. After that, the case of the 

whole robot body will be addressed. The case of real-word obstacles will be addressed 

later in the Thesis, in Section 3.2. 

3.1.3.1 Single robot-point  

Let us consider a point-like obstacle and the robot TCP (but the following discussion 

can be adapted to a generic robot point). Figure 3.8 depicts the positions and the 

velocity vectors of the robot point (“rb” subscript) and the obstacle “ob” subscript), 

in the Cartesian space. 

 

 

Figure 3.8  Robot (“rb” subscript) and obstacle (“ob” subscript) positions and velocity vectors. 
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Eq. (3.5), which is the starting equation, is a simplified version of Eq. (1), which gives 

the general expression for the PSD. Here the simplified version adopted in [15] is used. �D�# ≥ −�FD�#∆�� + ∆ (3.5)

where: 

TS is the robot worst-case stopping time; �D�#is the distance between the robot and the obstacle at the time step i + 1;  �FD�#is the robot-obstacle relative speed at the time step i + 1; 

Δ is a constant positive offset on the separation distance, which can be seen 

as the PSD to guarantee at robot-obstacle relative speed equal to zero. 

 

Considering the convention of Figure 3.7, �D�# can be computed according to Eq. 

(3.6). �D�# = �D + �FD�#∆� (3.6)

The relative velocity can be expanded according to Eq. (3.7), where the operator ∙ 
denotes the scalar product: �FD�# = ��HID�# − �JID�#� ∙ KL  (3.7)

where KL  is the unit-vector pointing in the robot-obstacle direction and can be 

estimated according to Eq. (3.8): 

KL ≈ NHID − NJIDONHID − NJIDO (3.8)

Substituting Eq. (3.6) in Eq. (3.5) and rearranging the terms leads to Eq. (3.9): 

�FD�#��� + ∆�� ≥ ∆ − �D (3.9)

Substituting Eq. (3.7) in Eq. (3.9), expanding and rearranging the terms leads to Eq. 

(3.10): 

�HID�# ∙ KL ≥ ∆ − �D�� + ∆� + �JID�# ∙ KL  (3.10)

The Cartesian velocity can be computed from the joint velocity, as shown in Eq. (3.11). 
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�HID�# = P��QD�#�QFD�# (3.11)

where Jt is the tangential part of the Jacobian, which has dimension 3 x 6, and q 

identifies the joint coordinates.  

The approximations of Eqs. (3.12-3.13) are made: P��QD�#� ≈ P��QD� (3.12)�JID�# ≈ �JID (3.13)

The joint velocity can be computed according to Eq. (3.14). 

QFD�# = QD�# − QD∆�  (3.14)

By combining Eqs. (3.10-3.14), Eq. (3.15) is obtained: 

[P��QD�QD�#] ∙ KL ≥ ∆��� + ∆� �∆ − �D� + �JID ∙ KL∆� + P��QD�QD ∙ KL  (3.15)

By exploiting the commutative property of the scalar product and the fact that it can 

be rewritten in terms of a row and a column vector multiplication leads to Eq. (3.16): 

KL �P��QD�QD�# ≥ ∆��� + ∆� �∆ − �D� + KL ��JID∆� + KL �P��QD�QD (3.16)

QD�# represents the command variable u, and Eq. (3.16) is a linear inequality with 

respect to it, since it has the form shown in Eq. (3.17). !B ≥ % (3.17)

where: B = QD�#         ∈ ℝ2R# (3.18)! =  KL �P��QD�           ∈ ℝ#R2 (3.19)

% = ∆��� + ∆� �∆ − �D� + KL ��JID�#∆� + KL �P��QD�QD           ∈ ℝ (3.20)

Eq. (3.16), or equivalently Eqs. (3.17-3.20) represent the safety constraints 

considering one robot point and one obstacle point. 
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3.1.3.2 Multiple robot-points 

The adherence to the constraint of Eqs. (3.17-3.20) guarantees that the robot point 

considered is always at a safe separation distance from the point-like obstacle 

considered. However, the safe separation distance is to be guaranteed for all the 

robot dangerous moving parts. To address this, one solution can be to consider a set 

of spheres encapsulating the robot dangerous moving parts, by properly choosing 

their centres and radiuses. Figure 3.9 shows an example of four spheres, the centres 

and radiuses of which are chosen to encapsulate the most dangerous moving part of 

the robot. A higher number of spheres can be considered to include all the moving 

parts and/or to better approximate a properly enlarged robot shape. The use of 

spheres instead of other geometrical shapes such as cuboids or capsules to 

approximate the robot shape is adopted for the sake of simplicity and efficiency, since 

it has a direct connection with Eqs. (3.17-3.20). Indeed, each safety constraint on the 

generated command has the following geometrical interpretation: the command is 

generated so that the sphere of radius Δ (cf. Eq. (3.20)) centred on the robot point 

considered will not come into contact with the obstacle point considered. 

 

Figure 3.9  Four spheres used to encapsulate the robot. 

Once the sphere centres and radiuses are defined, they can be used to construct a set 

of safety constraints. Let us suppose the quantity Jt and xrb are already available for 

each robot point Ok of Figure 3.6, one can then construct the safety constraints for 

the generic robot point P, lying between Ok-1 and Ok, in the following way:  

 Δ is set equal to the radius of the sphere centred in P;  

 Jt and xrb can be computed according to Eqs. (3.21-3.23), which exploits the 

concept of natural coordinates s ∈ [0, 1].  
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NU = NVWXY + Z�NVW − NVWXY� (3.21)P�[ = P�\WXY + Z�P�\W − P�\WXY � (3.22)

where: Z = ‖^ − _�0#‖‖_� − _�0#‖ (3.23)

Let us suppose ns spheres are used to encapsulate the robot; this results in a set of ns 

safety constraints, that can be organized in the form shown in Eq. (3.24).  `B ≥ a (3.24)

where ` ∈ bcd×2 is a matrix constructed by concatenating by rows the vector a of Eq. 

(3.19) of each safety constraint, u is the command vector and  a ∈ bcd×#is a 

vector containing the scalar b of Eq. (3.20) of each safety constraint. 

3.1.4 Constraints on joint position, velocity, acceleration 

Other than the safety constraints, the generated joint command B �= QD�#� must 

satisfy other constraints, here described. 

3.1.4.1 Joint position constraint 

u must contain angles that lie within the RV4F joint limits, reported in Table 3.2. 

Table 3.2  Joint position limits. 

 Q# Q& Q$ Q8 Qe Q2 

Lower bounds  -240° -120° 0° -200° -120° -360° 

Upper bounds +240° +120° +161° +200° +120° +360° 

Eq. (3.25) shows the constraint on the joint position, where qlb e qub are the lower 

and upper joint position bounds, respectively: QfI ≤ QD�# ≤ QgI (3.25)

3.1.4.2 Joint velocity constraint 

The RV4F joint velocity limits are reported in Table 3.3. The maximum velocity is the 

same in both the joint motion direction, so only the module is reported. 

Table 3.3  Joint velocity limits. QF#_/iR QF&_/iR QF$_/iR QF8_/iR  QFe_/iR QF2_/iR 

450°/s 450°/s 300°/s 540°/s 623°/s 720°/s 
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The RV4F joint velocity that results from u must lie within the joint speed limits, which 

can be expressed with Eq. (3.26), which leads to the constraint on u of Eq. (3.27). 

QFfI ≤ QD�# − QD∆� ≤ QFgI (3.26)

QD + QFfI∆� ≤ QD�# ≤ QD + QFgI∆� (3.27)

3.1.4.3 Joint acceleration constraint 

If considering constant velocity between two time-steps, one wants to find a 

command that limits the velocity variation. The bounds on the acceleration can be 

expressed as shown in Eq. (3.28): 

QjfI ≤ QFD�# − QFD∆� ≤ QjgI (3.28)

The velocities can be expressed according to Eq. (3.29): 

QFD�# − QFD = QD�# − QD∆� − QD − QD0#∆� = QD�# − 2QD + QD0#∆�  (3.29)

which leads to the constraint on u of Eq. (3.30): QjfI∆�& + 2QD − QD0# ≤ QD�# ≤ QjgI∆�& + 2QD − QD0# (3.30)

or equivalently, of Eq. (3.31): QjfI∆�& + QFD∆� + QD ≤ QD�# ≤ QjgI∆�& + QFD∆� + QD (3.31)

Given that the bounds on the position, velocity and acceleration intersect (which must 

be previously verified), the three bounds can be combined to form a unique bound, 

in the way shown in Eqs. (3.32-3.34). QfI_�J� = maxoQp%, �Q) + QF p%q��, �Q) + QF )q� + Qj p%q�2�r (3.32)QgI_�J� = minoQB%, �Q) + QF B%q��, �Q) + QF )q� + Qj B%q�2�r (3.33)

 QfI_�J� ≤ QD�# ≤ QgI_�J� (3.34)
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3.1.5 Optimization problem 

The safety constraints can be used to constraint the joint angles commanded to the 

robot so that the PSD is always kept. The generated command must also satisfy the 

constraints derived from the limitations on the joint position, velocity and 

acceleration, which, as seen, can be combined into the single constraint of Eq. (3.34). 

A constraint of this type is a particular type of linear inequality constraint, known in 

literature as simple bounds. Both the safety constraints, organized in the matrix form 

of Eq. (3.24) and the simple bounds of Eq. (3.34) act on the pre-programmed 

reference trajectory, that the robot follows whenever it is admissible. The aim of this 

part is to set up a proper optimization problem which can generate a trajectory that 

satisfy all the constraints while minimizing the distance to the pre-programmed 

reference trajectory. The underlying mathematical problem involved is a Quadratic 

Program (QP), which is an optimization problem with a quadratic objective function 

and linear constraints [99]. In this specific case it can be stated as a linear-inequality-

constrained least-norm problem, which has the form of Eqs. (3.35-3.37). In the case 

study, the norm represents the distance between the command and a reference point 

on the pre-programmed task trajectory. 

minR 12 ‖�N − �‖&             � ∈ ℝc×c, N ∈ ℝc, � ∈ ℝc (3.35)

s.t. uN ≥ *            u ∈ ℝ/×c, * ∈ ℝ/      (3.36)NfI� ≤ N� ≤ NgI�            K = 1, … , v      (3.37)

Instead of the form presented in Eq. (3.35), the QP objective function is usually 

presented in the form of Eq. (3.38) [99]: 

w)vR 12 N�xN + N�'             x ∈ ℝc×c, N ∈ ℝc, ' ∈ ℝc (3.38)

where G is a symmetric n x n matrix, named Hessian matrix and c and x are vectors in ℝc. 

It can be shown that the form of Eq. (3.35) can be converted in the form of Eq. (3.38), 

in the following way:  

minR 12 ‖�N − �‖& = minR 12 ��N − �� ∙ ��N − �� = w)vR 12 �N ∙ �N − 12 �N ∙ � − 12 �N ∙ � + � ∙ �
= w)vR 12 ��N���N − ��N��� = w)vR 12 N����N − N���� 
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Given the formulation of Eq. (3.35), the Hessian matrix G and the vector c can be 

computed according to Eq. (3.39) and Eq. (3.40), respectively: x = ��� (3.39)' = −��� (3.40)

In the case study, the C matrix is the identity matrix I, whereas the d vector is the 

reference joint vector. If the Hessian matrix is positive semidefinite, the QP is said to 

be convex, which significantly reduces its difficulty (it is the case, and, more precisely, 

since the identity matrix is positive definite, the QP is said to be strictly convex). Eqs. 

(3.41-3.43) shows the final form in which the optimization problem is presented, 

detailed for the case study: 

w)vg 12 B�xB + B�'             x �= y� ∈ ℝc×c, B ∈ ℝc, ' �= −QHz{� ∈ ℝc (3.41)

s.t. `B ≥ a            ` ∈ ℝcd×c, a ∈ ℝcd     safety constraints (3.42)QfI_�J�W ≤ B� ≤ QgI_�J�W            K = 1, … , v     simple bounds (3.43)

Note on the dimension n: 

Note that, if the TCP is chosen on the joint axis e6 (see Figure 3.6), Jt does not depend 

on q6. This is common in practical scenarios and will be considered as hypothesis. If 

TCP-related quantities do not depend on q6, neither q6 appears on the safety 

constraints of the other robot points; in fact, if considering robot points with 

decreasing distance to the robot base, the safety constraints will depend on a 

decreasing number of joint angles. This means that the last column of the matrix ` 

contains all zeros. That being the case, for the sake of computation speed, n was set 

equal to 5 in Eqs. (3.41-3.43), adopting a different strategy for the command angle u6, 

which was generated according to Eq. (3.44): 

B2 = max |Q2}~_��� , min �Q2��� , Q2�~_����� (3.44)

QP resolution 

The QP of Eqs. (3.41-3.43) is to be solved at each time step. In the final ROS 

implementation, the problem was solved by means of qpOASES [100], which is an 

open-source C++ implementation of the online active set strategy [101], which is one 

of the methods for solving a QP. 
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It is worth noting that a custom MATLAB® implementation of the active set strategy 

for convex QP, based on the algorithm presented in [99, p. 472], was exploited to 

carry out preliminary tests of the method. The implementation, specifically tailored 

for the case study, outperformed the more general MATLAB® built-in function lsqlin 

(designed to solve constrained linear least-squares problems), which had proved to 

be too slow for the intended tests. 

Choice of qref 

At each time step, the reference joint position vector qref is to be chosen along the 

reference pre-programmed task trajectory. Two ways of choosing it are proposed, a 

conventional one based on the motion laws and an original one based on a geometric 

approach. Both are detailed in the next Section. 

3.1.6 Reference trajectory heading point 

At each time step i, the term heading point, denoted with QHz{�, is used to identify the 

value, belonging to the reference trajectory, to which the robot tries to head 

(minimize the joint space distance to it, while adhering to the various constraints, 

according to Eqs. (3.41-3.43)).  

3.1.6.1 Heading point computation – laws of motion approach 

This is the conventional approach, based on the motion laws: at each time step, the 

heading point is computed considering the current time instant as abscissa of the 

reference pre-programmed trajectory (which is the 6-dimensional spline S, see 

Section 3.1.2), according to Eq. (3.45): QHz{� = ��)∆�� (3.45)

If iΔt becomes higher than Tm, QHz{� is kept equal to the spline end-point S(Tm), until 

the robot reaches it. Since tasks are normally implemented as cycles, a similar process 

is then repeated, resetting the value of i and considering a (symmetrical) spline joining 

the end of S with the beginning of S. Once the robot reaches the beginning, the cycle 

is closed and can be repeated for the wanted number of times. This logic is applied as 

well to the case examined in the next Section.  

3.1.6.2 Heading point computation – geometrical approach 

In this approach, the heading point on the reference trajectory is chosen based on the 

minimum distance between the current joint position vector and the reference 

trajectory, in the joint space. In the next part, a method for finding the spline point of 

minimum distance with respect to a given external point is detailed. For sake of 
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simplicity, let us consider a specific time step and, at first, a single spline piece (which 

has dimensionality of six). The expression of the squared distance D between the 

current robot joint position q0 and the spline piece considered can be computed as a 

function of the abscissa τ, as shown in Eq. (3.46). 

��
� = ��!#�
$ + !&�
& + !$�
 + !8� − Q���&2
��#  (3.46)

To find the τ that minimizes D, one can compute the first derivative of Eq. (3.46) with 

respect to τ and search for stationary points. The derivative of D with respect to τ is 

shown in Eqs. (3.47-3.53):  

���
� = �� 'e��2
��# 
e + �� '8��2

��# 
8 + �� '$��2
��# 
$ + �� '&��2

��# 
& + �� '#��2
��# 
 + �� '���2

��#  (3.47)

where: 'eW = 6!#W& (3.48)

'8W = 10!#W!&W  (3.49)

'$W = 8!#W!$W + 4!&W & (3.50)

'&W = 6!&W!$W + 6!#W �!8W − Q��� (3.51)

'#W = 2!$W& + 4!&W�!8W − Q��� (3.52)

'�W = 2!$W�!8W − Q��� (3.53)

Eq. (3.47) represent a fifth-grade polynomial. Let us consider a spline piece indexed 

by j (j = 1, …, m-1), and defined in the closed interval [Tj, Tj+1]. The adherence to all 

the Conditions 1-4 is sufficient for τ0 to be a local minimizer: 

 Cond. 1:  ��
�� = 0  τ0 has imaginary part equal to zero 

 Cond. 2:  
� ∈ ]�� , ���#[    τ0 belongs to the spline-piece open interval 

 Cond. 3:  �′�
�� = 0  τ0 is a stationary point 

 Cond. 4:  �′′�
�� > 0  τ0 is a local minimum 

Cond. 2 comes from the fact that in the spline-piece junction points the second 

derivative is not continuous, so if Conds. 1,3,4 hold true but τ0 is a juncture point, no 

conclusion can be drawn. Also, if �′′�
�� = 0 but Conds. 1,3 and τ0 ∈ [Tj, Tj+1] hold 

true, no conclusion can be drawn. In these cases, τ0 can be stored, along with the τ 

values that satisfy all Conds. 1-4, for successive comparisons. For each spline piece, a 
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set of candidates can be stored this way. The global minimizer can then be identified 

by evaluating which candidate corresponds to the minimum distance, also 

considering the extrema of the whole spline, which can be global minimizers even 

without being stationary points.    

Here the final algorithm for finding the minimum distance between a point and a 

spline is outlined:  

//Initialization of τ_dmin, done considering the spline extrema (τ = T1, τ = Tm). 

τ_dmin = T1 

if (D(T1) ≤ D(Tm)) τ_dmin = Tm 

//Computing the candidates for each spline piece and choosing the one with min distance 

for each spline piece j 

τ_candj = {τ | D’(τ) == 0} 

τ_candj ← {τ_candj | 1 (τ_candj) == 0} 

τ_candj ← {τ_candj | τ_candj ∈ [Tj, Tj+1]} 

τ_candj ← {τ_candj | (D’’(τ_candj) ≥ 0 || τ_candj == junction point)} 

τ_candj ← min{τ_candj} 

if (τ_candj ≤ τ_dmin) τ_dmin = τ_candj 

end for 

In practical applications, the trajectory can be usually defined through a low number 

of waypoints, which results in a low number of spline pieces. The core computations 

take place in the process of extracting the roots of Eq. (3.47).  Eq. (3.47) is a quintic 

function, and the Abel-Ruffini theorem [102] states that there is no algebraic 

expression (that is, in terms of radicals), for the solutions of general quintic equations 

over the rational numbers. Nevertheless, several numerical methods are available for 

estimating the roots of a generic nth degree polynomial. However, since this 

computation needed to be carried out at each time step and for each spline piece, an 

efficient method was required. The C++ implementation [103] of the iterative method 

[104], specifically designed to find the solutions of quintic equations, was exploited, 

since it proved to be effective and particularly fast (it outputs all the solutions, even 

the complex ones, which motivates Cond. 1). Note however that, if the spline pieces 

are especially numerous, it may be more efficient to use other methods to find the 

minimum distance to the spline.  

Once the τ corresponding to the minimum distance τdmin at the time step i is obtained, 

it is used to compute the heading point QHz{�, according to Eq. (3.54): 
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QHz{� = ��
�/Dc + ∆
� (3.54)

where Δτ is a τ increment chosen to satisfy the Conditions A, B, C: 

Cond. A: if the distance to the spline is zero (i.e. the current joint position vector 

belongs to the spline, at a certain τ, which corresponds to the τdmin), the reference 

point is to be computed so that the robot follows the motion laws in a nominal way, 

as in absence of external disturbances, that is to say according to Eq. (3.55): ∆
 = Δ�      )* �/Dc = 0 (3.55)

Cond. B: if the minimum distance is superior to a certain threshold, Δτ is to be 

proportional to the minimum distance. This condition derives from the idea of 

approaching the reference trajectory with a certain heading angle, which appeared a 

suitable and simple strategy.   

Cond. C: the transition between Cond. A and Cond. B must be smooth. 

These three conditions can be satisfied by constructing a function as shown in Eq. 

(3.56), and by guarantying the C1 continuity in the junction point d0. 

∆
��/Dc� = |!�/Dc& + %        )* 0 ≤ �/Dc ≤ ���/Dctg�                      )* �/Dc > ��  (3.56)

where, a, b, α and d0 are parameters that have to be properly chosen. The angle α 

can be chosen by the user depending on the wanted heading angle; from the 

condition of Eq. (3.55) derives the fact that b = Δt. a and d0 can be determined by 

imposing the continuity of both the function and its derivative at the juncture point 

d0, which results in the system of Eq. (3.57) of two equations and two unknowns.  

�!��& + % = ��tg�          continuity of ∆
 in �� 2!�� =  tg�     continuity of ∆
�in ��                  (3.57)

This system can be easily solved for example by isolating d0 from the second 

expression and substituting it into the first one to then solve for a. 

It results that: 

! = 14% tg&� (3.58)

�� = 2%tg� (3.59)

Eq. (3.56) finally becomes: 
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∆
��/Dc� = ⎩⎨
⎧ 14∆� tg&��/Dc& + ∆�        )* 0 ≤ �/Dc ≤ 2∆�tg��/Dctg�                      )* �/Dc > 2∆�tg�                 (3.60)

 

Figure 3.10a shows the graph of the function of Eq. (3.60), considering α = 30° and Δt 

= 0.0071 s. Figure 3.10b depicts a simplified two-dimensional example of the 

approaching joint trajectory generated (blue trajectory). It is traced starting from an 

initial perturbed joint position until it reaches a simple linear reference trajectory 

(cyan dashed line).  

 

Figure 3.10  (a) Δτ as a function of the minimum spline distance; (b) two-dimensional example of 

the approaching joint trajectory generated (blue trajectory), which reaches a simple linear reference 

trajectory (cyan dashed line). 

3.2 Obstacle tracking 

In this Section, the method developed to handle real-world obstacles is presented. 

The scope is to define a procedure aimed at detecting all the generic dynamic 

obstacles in the scene and estimating their position and velocity, a procedure 

commonly known as obstacle tracking. These estimations are then used as inputs in 

the trajectory generation block, in a way that will be detailed in the last part of this 

Section.  

As for the online trajectory generation, in parts of this Section there will be references 

to discrete time steps, once again denoted with the letter i, and with duration Δt. In 

this case, however, Δt will not refer to the controller sample time but to the inverse 

of the camera frame rate. The Kinect v2 run at ≈ 30 fps, whereas the Realsense D435, 
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can achieve higher frame rates. Nonetheless, for the scope of this Thesis, the 

Realsense frame rate was set to 30 fps and its depth resolution at 848 x 480, a choice 

mainly motivated by experimental evaluations. Each camera acquisition and 

processing cycle was managed by ROS independent nodes (for an overview of the ROS 

architecture see Appendix B); after a data fusion stage, computations are performed 

inside ROS nodes running at a specific frequency (≈ 35 fps). After the data fusion, time 

step will thus refer to the time step of these latter ROS nodes.  

In addition, for the sake of conciseness, henceforth the Realsense D435 camera will 

be referred to Realsense, whereas the Kinect v2 will be referred to as Kinect. 

Furthermore, the subscript 1 and 2 will be used, in some occasions, to refer to the 

Realsense and the Kinect, respectively. 

3.2.1 Control volume 

The first step was the definition of the space region here called control volume, 

namely a volume which identifies the robot operational zone, which is to be 

monitored by the cameras. The control volume was placed in the rear-part of the 

robotic cell, which gives the chance of interacting with the robot thanks to the 

movable guards (cf. Figure 2.1c). The control volume was constructed as a cuboid and 

placed as shown in Figure 3.11 (red volume); the robot workspace (in blue), is also 

highlighted, referred to a TCP positioned at the extremity of the gripper jaws; the 

robot is depicted with the J1 axis rotated by 180 degrees.  

 
Figure 3.11  Four different view of the control volume (in red). The robot workspace, referred to a 

TCP positioned at the extremity of the gripper jaws, is shown in blue. The robot is depicted with the 

axis J1 rotated by 180 degrees. 
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The control volume bounds and dimensions are listed in Table 3.4, referring to the 

Robot Base RF. 

Table 3.4  Lower bounds (lb), upper bounds (ub) and dimensions (dim), in the x, y and z direction 

of the control volume, with respect to the Robot base RF. 
 

lb (mm) ub (mm) dim (mm) 

x -712.50 135.50 848.0 

y -768.75 370.75 1139.5 

z 144.25 859.75 715.5 

3.2.2 Camera placement  

Once defined the control volume, the two depth cameras were placed so that the 

union of their camera viewing frustum completely covers the control volume. The 

concept of camera frustum is depicted in Figure 3.12a: it is the volume defined by the 

blue lines, which represents the space region that the camera can frame. Depth 

cameras typically have a blind spot near the optical centre, so this volume is a 

truncated pyramid, fully defined by the Horizontal and Vertical FOV and by the depth 

range, both reported in Figure 3.1 for the camera models used. Figure 3.12b and 

Figure 3.12c show an isometric and a top view, respectively, of the camera placement 

with respect to the control volume, in which the camera viewing frustums are 

highlighted.  

 

Figure 3.12  (a) Illustration of the concept of camera frustum; (b), (c): two views of the camera 

placement (Realsense at the left, Kinect at the right) with respect to the control volume (cuboid in 

red), with highlighted their viewing frustum (in blue the one of the Kinect, in green the one of the 

Realsense).  
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It is worth pointing out that the camera placement has important implications on the 

safety, since it affects the visibility and determines whether an obstacle is spotted or 

not inside the area that one wants to monitor. In an ideal scenario, the cameras have 

to be placed to maximize the control volume coverage, to frame potential keypoints 

with sufficient quality and to minimize the possibility of occlusions. Some studies for 

the optimal placement of fixed cameras are available in literature [105,106]. This topic 

will be better analysed in Chapter 5 of the Thesis, in a different case study. In general, 

it is clear that the positioning and dimensions of the control volume inevitably 

determines both the minimum number of cameras needed for an effective 

monitoring and their placement. In the case addressed in this Section, given the 

simple geometry of the control volume, the usage of only two cameras and some 

constraints on the available mounting places, the placement was made based on the 

sensibility of the Candidate, with successive refinements relying on CAD visualization 

tools and practical experimental tests. 

3.2.3 Camera extrinsic calibration 

Camera calibration is a fundamental procedure omnipresent in computer vision. In 

Appendix C some basic notions and nomenclature are reported. For a detailed 

discussion, see for example [29].  

The two depth cameras output the point clouds with respect to their reference frame, 

but they need to be referred to the Robot base RF, so that obstacle-related quantities 

can be used in the trajectory generation block.   

The method here used for the extrinsic calibration exploits the fact that both the 

cameras used contain an RGB sensor; since the RGB sensor and the depth module are 

separated entities, each one has its own Camera RF, henceforth named Depth camera 

RF and RGB camera RF. In the case study, extrinsic calibration consists in the process 

of estimating: ¡�#H   the homogeneous matrix representing the pose of the Depth camera RF of the 

Realsense depth module with respect to the Robot base RF;  ¡�&H   the homogeneous matrix representing the pose of the Depth camera RF of the 

Kinect depth module with respect to the Robot base RF.  

This process was carried out in two steps, one used for an initial estimation of ¡�#H  

and ¡�&H  and the second one for a refinement of the transformations found. 
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3.2.3.1 Step 1: estimation of an initial transformation 

The first step, used for an initial estimation of ¡�#H  and ¡�&H  , involves the use of ArUco 

markers [107,108], acquired by means of the RGB sensors present on both the 

Realsense and the Kinect (see Figure 3.1). ArUco markers are 2D fiducial markers 

whose pose can be estimated starting from an RGB image in which the marker is 

visible and specific related algorithms, given that the intrinsic parameters of the RGB 

sensor are known. One ArUco marker was fixed on a robot part in such a way that 

could be framed by the RGB sensors of both the cameras (as shown in Figure 3.13), 

and so that its pose with respect to the Robot base RF could be easily estimated via 

CAD. Furthermore, for each camera also the rigid transformation between its own 

RGB camera RF and Depth camera RF was estimated. For the sake of conciseness, let 

us consider only the Realsense (the same applies to the Kinect); the pose of its Depth 

camera RF with respect to the Robot base RF can be computed according to Eq. (3.61): ¡�#H = ¡/H �¡/H¢I#�0#¡�#H¢I#
 (3.61)

where:  ¡H¢I#H   is the pose of the RGB camera RF with respect to the Robot base 

RF. ¡/H   is the pose of the ArUco marker with respect to the Robot base RF 

(estimated via CAD). ¡/H¢I#
  is the pose of the ArUco marker with respect to the RGB camera 

RF (output of the ArUco-related function). ¡�#H¢I#
  is the pose of the Depth camera RF with respect to the RGB camera 

RF (value that can be either found in literature/given by the 

manufacturer/estimated by specific function available in the 

camera libraries). 
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Figure 3.13  ArUco marker placement, edges recognition and reconstruction of its 3D pose. 

3.2.3.2 Step 2: refinement 

For each camera, the transformation obtained in Step 1 was used as initial 

transformation for an Iterative Closest Point (ICP) algorithm [109]. ICP is a very well-

known algorithm which allows one to align generic 3D shapes having the same 

geometry. Through a series of iterations, it finds the transformation that minimizes 

the distance between two sets of points. This algorithm is very versatile but works 

better if a good initial estimation of the transformation is given. Otherwise, in fact, it 

can easily get stuck in local minima, not properly converging to the right 

transformation. The ICP algorithm was run between a point cloud of the robot shape 

acquired by each camera and the CAD robot model, previously converted into a point 

cloud with an appropriate point density, by means of the open-source software 

CloudCompare [110]. For the acquisition, the robot was moved in a position in which 

each camera could acquire a significant amount of its shape with good quality. Before 

using the point clouds inside the ICP algorithm, a box filter was applied to keep only 

the robot shape, which was then filtered to remove the noise and properly 

downsampled. These routines were carried out in MATLAB®, and the results shown 

in Figure 3.14.  
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Figure 3.14  (a) Final robot shape obtained from the Kinect point cloud, (b) final robot shape 

obtained from the Realsense point cloud. (c) alignment of the point cloud (a) and (b) on the point 

cloud obtained from the robot CAD. 

The final obtained value of ¡�#H  and ¡�&H , other than the poses of the Depth camera 

RFs with respect to the Robot base RF, can be seen as the transformation matrices 

that can convert a point cloud, referred to the Depth camera RF, to the Robot base 

RF, according to Eq. (3.62). 

£¤# … ¤¥¦# … ¦¥�# … �¥1 … 1 § = ¡�#H
⎣⎢⎢
⎡¤¨# … ¤¨¥¦̈ # … ¦̈ ¥�¨# … �¨¥1 … 1 ⎦⎥⎥

⎤
 (3.62)

where N denotes the number of point cloud points. 

Figure 3.15 summarizes the various steps of the extrinsic calibration. 

 

Figure 3.15  Conceptual pipeline of the extrinsic calibration method. “T.” stands for Transformation. 
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3.2.4 Voxel-based data fusion 

In this Section, the method to filter and fuse the 3D data acquired by the two depth 

cameras is detailed. The concept of control volume and the knowledge of the 

transformations estimated by means of extrinsic calibration in Section 3.2.3 are 

exploited. These latter transformations are computed offline and need to be re-

computed for each sensor only if its pose, relatively to the Robot base RF, changes. In 

this Section the concept of voxel grid is introduced, and will serve as a basis for the 

development of the algorithms used to online manipulate the 3D data that the depth 

cameras output and to ultimately estimate the obstacle positions and velocities. The 

use of a voxel grid has the advantage of creating a structure that can be manipulated 

with simpler and faster algorithms (that can be GPU-parallelized), but has also other 

perks, such as the fact that acts itself as a spatial filter, in a way better detailed later. 

A notable example of the use of voxel-based GPU-accelerated algorithms can be 

found in [111, 112], in which Hermann et al. exploit them for collision detection and 

mobile manipulation planning.   

3.2.4.1 Creation of a voxel grid  

The control volume defined in Section 3.2.1 is divided into a set of cubic voxels of the 

same side length Lvox, set equal to 26.5 mm, resulting in a voxel grid, composed of Nx, 

Ny and Nz number of voxels on each side, as shown in Figure 3.16. A generic voxel of 

the grid is identified by a set of three indexes jx (= 1, …, Nx), jy (= 1, …, Ny), jz (= 1, …, 

Nz) which are incremented with respect to a RF located at a grid vertex, henceforth 

named Voxel grid RF. These concepts are shown in Figure 3.16. 

 

Figure 3.16  Voxel grid and related quantities. 
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This choice of Lvox is the result of a trade-off between different necessities. One is to 

limit the computational burden, which is affected by the number of voxels involved, 

which depends on Lvox. On the other hand, a too high value of Lvox might lead to an 

over-simplification of the obstacle shape and to consequent losses of precision in the 

various related estimations. However, if voxels are too small compared to the density 

of the sensors point cloud, there can be problem in the voxelization process, since 

might result in a series of sparse isolated voxels. The voxelization process consist in 

assigning an occupancy to each voxel corresponding to the number of point cloud 

points that are contained in that voxel. The occupancy can be seen as a measure of 

the confidence that a particular voxel actually contains a part of an obstacle (is non-

empty). Among other perks, the use of a voxel grid has the advantage of creating a 

structure that acts as a spatial filter: voxel occupancies under a certain threshold δ 

can in fact be set to zero to filter out the spatial noise of the 3D data. The dimension 

of the voxels also affects the effectiveness of this spatial filter, hence becoming a 

further factor to account in the choice of Lvox. Furthermore, the voxel size also affects 

other stages of the method in a non-trivial way.  

Given its complex role, the final value of Lvox was mainly decided based on empirical 

evaluations. Once a proper value was found, it was slightly tweaked, alongside with a 

first choice of the control volume dimensions (final ones reported in Table 3.4), to 

generate an integer number of voxels multiple of 32, which is the warp size of the 

most recent NVIDIA GPUs. This grants a minor improvement in speed in the GPU-

parallelized algorithms, as reported in [113], which were used for the implementation 

of a particle filter (cf. Section 3.2.7).    

The final values of voxel-grid features are summarized in Table 3.5. Nvox denotes the 

total number of voxels. 

Table 3.5  Voxel grid features. 

Lvox (mm) Nx Ny Nz Nvox 

26.5 32 43 27 37152 

It is worthy to point out that the voxel grid here described is a fixed structure, which 

makes it particularly suitable for GPU-accelerated algorithms. One different, thus 

common approach to speed up computations consists in exploiting octrees or k-d 

trees, which are dynamically growing data structures, most suitable for the 

programming paradigm typical of CPU algorithms, even if some GPU implementations 

have been proposed [112]. In the case study, the number of voxels and the algorithms 

involved suggested an approach based on a fixed voxel grid and GPU-accelerated 

algorithms. In the case of significantly higher number of voxels, which could arise for 

instance in the case of mobile robots or automotive applications, where a remarkably 
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higher volume is to be monitored, the use of an approach based on octrees or k-d 

tree might be preferred for the sake of efficiency [114].  

In the actual implementation, arrays were used to store voxel-related quantities 

instead of a 3D voxel grid. Given that Nx, Ny, Nz are known, an index triplet (jx, jy, jz), 

identifying a voxel of the voxel grid, can be converted into an index j in the voxel-

related array, in the following way:  © = ©ª«¬«R + ©¬«R + ©R  (3.63)

In case, given the index j, one can revert back to the 3D index in the following way: 

⎩⎪⎨
⎪⎧©R = �©%�«¬«R�� %«R ©¬ = ®�©%�«¬«R�� /«R°©ª = ±©/�«¬«R�²               (3.64)

where % denotes the modulo operator and ⌊N⌋ is the floor operator, which takes as 

input a real number and gives as output the greatest integer less than or equal 

to x. 

Henceforth, the index j will be used to index a voxel, considering that it refers to the 

voxel identified by the corresponding 3D index.  

3.2.4.2 Filtering, voxelization, data fusion 

The various filtering and processing need to be performed for each voxel at each time 

step, thus need to be efficient. One first expedient is to limit the number of 3D points 

involved more upstream possible in the pipeline, which is shown in its entirety in 

Figure 3.17. For this purpose, a first filter consists in a range filter, which, for each 

camera, allows to filter out the 3D points with a distance from the optical centre 

higher than a certain threshold. This filter was already available for both the Realsense 

and the Kinect. The threshold values were evaluated by means of a CAD assembly 

containing both the control volume and camera viewing frustum (cf. Figure 3.12). For 

each camera, the threshold distance is set equal to the maximum distance for which 

some points of its viewing frustum are contained in the control volume. After that, 

the point clouds are transformed into the Robot base RF, according to Eq. (3.62). 

Then, a box filter was applied to eliminate the 3D points outside the control volume. 

Next, the voxelization process was performed, separately for each camera. This 

process consisted in evaluating the number of 3D points inside each voxel. In order to 

do so, for a generic 3D point (X, Y, Z) referred to the Robot base RF one can compute 

the corresponding voxel index j, according to Eq. (3.65). 



69 

 

 

©�¤, ¦, �� = µ� − _¶R�ª · «¬«R + µ¦ − _¶¬�¬ · «R + ¸¤ − _¶ª�R ¹ (3.65)

where:  

 Dx, Dy, Dz are the voxel grid dimensions; 

 _¶R, _¶¬ , _¶ª are the coordinate of the origin of the Voxel grid RF (cf. Figure 

 3.16). ⌊N⌋ is the floor operator, which takes as input a real number and gives as 

output the greatest integer less than or equal to x. 

For the Realsense, an occupancy vector n1 (with length equal to Nvox and all elements 

initialized to zero) can be constructed as follows: for each point of the Realsense point 

cloud, the corresponding index j is computed, and the quantity n1[j] incremented by 

one. This way, at the end of the process, each cell of n1 will contain the number of 

points of the Realsense point cloud contained in the voxel j. The same process is 

carried out for the Kinect point cloud, considering this time an array n2. Then, a filter 

is applied to set to zero all the occupancies under a specific threshold (different for 

the two cameras and set empirically), to filter out part of the spatial noise. The next 

step consists in merging the two occupancies vectors n1 and n2 into a single one. For 

this purpose, the function of Eq. (3.66) was created, considering the following:  

 The two occupancies n1 and n2 are to be manipulated so that they are comparable. 

In fact, each depth camera generates point clouds with different densities (which, 

in addition, could not be uniform in the space). This depends on the sensor 

technology and resolution.  
 

 If, inside a voxel, points from both the Realsense and the Kinect are present, the 

resulting combination is to be greater than the sum of the occupancies, since the 

confidence benefits from the data heterogeneity. This is accounted by an 

additional term which is product of the single scaled occupancies. 

º = *�v#, v&� =  ±'#�#»v# + '&�&¼v& + '$�#»�&¼v#v&² (3.66)

where: 

σ, n1, n2, d1, d2 are vectors and their product and operators applied on them 

are to be intended component-wise (equivalently, they can be considered 

referred to the voxel j, which subscript is here omitted for sake of clarity). c1, 

c2, c3, α and β are scalar parameters. More precisely: 
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σ is a vector containing a combination of the final voxel occupancies, 

henceforth named voxel confidence and representing the confidence that each 

voxel is non-empty; 

d1 is a vector containing the distances of the centres of the voxels from the 

Realsense depth RF optical centre; 

d2 is a vector containing the distances of the centres of the voxels from the 

Kinect depth RF optical centre; 

α, β are exponents that, combined with d1 and d2, are used eliminate the 

dependency of the point cloud density on the distance from the optical centre;  

 c1, c2, c3 are constant scaling factors.  

In the case of a stereo camera, the density of 3D points decreases as the camera 

distance increases [114], more precisely, the maximum number of points remains 

constants inside windows obtained by intersecting planes parallel to the image plane 

with the camera viewing frustum at distance d from the optical centre. It can be easily 

seen that the area of these windows is proportional to d2, so a value of α = 2 was 

chosen. In the case of Kinect, a less remarkable variation of the point cloud density 

was observed in the range interval considered, and a value of β = 0.5 was set, based 

on empirical observations. However, a more accurate choice is planned to be done in 

future experiments.   

For better performances, the vectors d1
α and d2

β are pre-computed offline, 

considering the Cartesian coordinates of each voxel centre of the voxel grid.  

The values of c1, c2, c3 can be set according to different strategies, here the following 

was used: 

• c2 was set equal to 1; 

• c1 was computed so that the mean of the vector �#»v# was equal to the mean 

of �&¼v&. These means were computed considering whole sets of frames, not 

a specific time step; this resulted in a value of c1 ≈ 1.1. 

• c3 was set equal to c1c2.  

The σ obtained according to Eq. (3.66) was further scaled and capped to a maximum 

of 255. The choice of 255 allowed to store the final occupancy in a vector containing 

8-bit values (UInt8MultiArray ROS message type), with the aim of both limiting the 

computational burden and allow an easier interpretation: this final value of σ 

represents the voxel confidences as scores between zero and 255. The higher the 

value, the higher is the probability that the voxel is non-empty. Emphasis is placed on 
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the fact that the voxel confidence account for the sensor heterogeneity, which was 

quantified by a specific term in Eq. (3.66).   

The confidence vector σ, paired with a specific confidence threshold δ3 (δ3 = 50) can 

be used to construct a Boolean voxel map BV, in the following way: 

if σ[j] > δ3     BV[j] = 1 non-empty voxel 

else  BV[j] = 0 empty voxel  

The pipeline of the method is summarized in Figure 3.17. 

 

Figure 3.17  Pipeline consisting in all the steps utilized to covert the point clouds acquired by the 

two depth cameras into a final Boolean voxel map.  
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This method, even if presented in the case of two depth cameras, can be adapted to 

a generic number of sensors. Eq. (3.66) can include different additional terms for all 

the combinations of sensors, properly choosing only the scalar parameters involved.   

In the actual implementation, the algorithms presented in this Section were not 

parallelized, since no performance enhancement was deemed necessary. Note 

however that, in case of need, most of them can be implemented in a GPU-

parallelized way, which is significantly facilitated by the fact that they rely on the use 

of a voxel grid.  

3.2.5 Voxel types 

In the previous Section, the classification of voxels in empty and non-empty was 

carried out, starting from the depth cameras point clouds. The non-empty voxel 

identified, however, can belong to different entities, which are: 

• static obstacles: fixed parts of the background, which remains constant at each 

time step;  

• robot body: the robot body is part of the scene, and thus acquired by the depth   

cameras;   

• dynamic obstacles: obstacles whose positions may change at each time step. 

This information was stored in the vox_type vector, constructed by assigning a natural 

number to each cell, identifying the voxel type, in the following way (j = 1, …, Nvox): 

vox_typej = 0:    type0-voxel: empty voxel 

vox_typej = 1:    type1-voxel: part of a static obstacle  

vox_typej = 2:    type2-voxel: part of the robot body    

vox_typej = 3:    type3-voxel: part of a dynamic obstacle  

The static obstacles can be theoretically considered as a subset of the dynamic 

obstacles with speed equal to zero, however, since they are known in advance, it is 

useful to treat them separately. More precisely, the vox_type indices corresponding 

to a static obstacle are computed offline and remains constant. This provides the 

following benefits: 

 The voxels corresponding to static obstacles are certainly non-empty, which allows 

to completely avoid the possibilities of false negatives which can arise in the case 

of reconstructing them starting from sensor point clouds. 
 

 They are not subjected to occlusion.  
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 Efficiency is higher, in particular related to the part of the speed estimation: static 

obstacles are simply not considered in that part.  

As part of the static obstacles, a voxel-composed external shell of the control volume 

was also considered, with the aim of restricting the robot movement inside the 

control volume, in a way better detailed later. 

The computation of the voxel indices corresponding to static obstacles was carried 

out offline in MATLAB®, by exploiting the CAD model of the robotic cell, which is 

comprehensive of all its components. Part of the code exploits the polygon2voxel 

function [115] from MATLAB Central File Exchange, which allows one to convert an 

.stl file into a voxel map. 

The type2-voxels, belonging to the robot body, have to be filter out, so that the robot 

itself is not categorized as obstacle. The way this is achieved is detailed in the next 

Section. 

3.2.6 Robot body filter 

The robot body filter is a common filter having the function of filtering out the points 

belonging to the robot body captured by the sensors, so that are not considered as 

obstacles in the successive computations. Common implementations of this type of 

filter make use of the Unified Robot Description Format (URDF), which is a format 

representing the robot model, and, if it is the case, it is sometimes referred to as URDF 

filter. Some examples of available ROS implementation are [116,117]. In the proposed 

method, a custom implementation of the robot body filter was developed, specifically 

designed to operate on a voxel grid. This was a performance-motivated choice, for 

two reasons:  

1 - it allows its application only once per cycle, after the data from the different 

sensors are integrated on the voxel grid. Other available implementations, as a matter 

of fact, operate on depth images or point clouds, so, in case of multiple sensors, the 

filter normally needs to run separately on each sensor data, which makes it 

computationally expensive (and, in general, this type of filter is already 

computationally expensive, as reported in [116]). 

2 – it takes advantage of the regular structure of the voxel grid and of the previous 

processing in the pipeline, which reduced the data size and complexity. 

The developed robot body filter has the function of identifying a series of voxels that 

belong to the robot body, so that are not considered as part of dynamic obstacles. In 

order to do so, the robot links and end effector were encapsulated in cuboids, as 

shown in Figure 3.18.  
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Figure 3.18  Cuboids encapsulating the various robot parts. 

The choice of cuboids was motivated by the fact that are particularly suitable for the 

successive operation described involving the voxel grid. Each cuboid is divided into a 

set of points, evenly distanced in the three dimensions, thus forming a grid, 

henceforth named cuboid grid.  

At each time step, each point of the cuboid grids is transformed as it is attached to 

the link that the cuboid encapsulates. This is made by exploiting the real-time 

knowledge of the robot joint position and forward kinematics, available from the 

online trajectory generation block. 

For each point of the cuboid grids, the corresponding voxel index is computed by 

means of Eq. (3.65). If the cuboid grids are sufficiently dense, this results in sets of 

adjacent voxels, which can be exploited to properly filter out the robot body. To 

better explain this concept, let us consider the simpler 2D case: the cuboid grid and 

the voxel grid corresponds to a rectangular grid of evenly distanced points and a 

matrix of pixel, respectively, shown in Figure 3.19. Figure 3.19a shows the case of a 

sparse rectangular grid, whereas Figure 3.19b of a dense one. The pixels that contain 

at least one point of the rectangular grid are highlighted. 

 

Figure 3.19 Rectangular grid of (a) sparse points and (b) dense points and a pixel matrix containing 

them.  
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On one hand, one wants that the voxels containing the points of each cuboid grid are 

all adjacent, for all the possible pose of the cuboid grid, which can be achieved by a 

small step size of the grid Δg. On the other hand, performances benefit from a low 

number of points, thus a high value of Δg. 

To take into accounts both necessities, it is convenient to choose Δg the maximum 

value that results in all adjacent voxels (i.e. each voxel has to contain at least one 

point of the grid), for all the possible pose of the cuboid grid.  

To evaluate that, the worst-case pose is to be considered. In the 2D version of the 

problem, the worst case, and the consequent maximum value of Δg chosen, is shown 

in Figure 3.20. 

 

Figure 3.20  Worst-case pose of four point of the rectangular grid of the 2D version of the problem. 

The limit case of Figure 3.20 can be used to choose Δg as follows: ∆½ = ¾/√2 (3.67)

It is easy to see that this reasoning is appliable to the 3D case as well. In this case, the 

maximum step of the cuboid grid that results in all adjacent voxels can be computed 

according to Eq. (3.68). ∆½ = ¾ÀJR/√3 (3.68)

Some last remarks are the following: 

 the lower Lvox is, the better the shape of the cuboid is approximated, so for very 

high values of Lvox this method can produce very poor cuboid shapes, which can 

lead to false negatives (dynamic obstacles not properly classified since recognized 

as part of the robot shape). If being the case, alternative methods are to be 

considered; 
 

 even if it was implemented using the CPU, this method is suitable for a GPU 

parallelization.  



76 

 

 

3.2.7 Speed estimation by particle filter 

Inside the context of HRC, Kalman filter is typically used to estimate the human 

motion or to enhance its accuracy and reliability [15,59,87,118]. Kalman filter, 

however, is known for having limitations in dealing with high non-linear models, or 

when some of the model parameters are not known [43,119]. To tackle the case of 

generic dynamic obstacles, particle filter was chosen instead, since it can 

commendably deal with non-linearity and does not require the obstacle to be 

modelized. Particle filter relies on the use of a set of particles, generated with a series 

of Monte Carlo algorithms, that are used to reconstruct the motion of the obstacle. 

One of its drawbacks is that it normally causes a high computational burden. To 

overcome this, a GPU-parallelized implementation was developed. The specific 

details of the GPU implementation are not presented here, but in Appendix D instead.  

The particle filter is used to associate a speed to each of the type3-voxels. The 

proposed method is inspired by the work of Morales et al. [114] in the automotive 

field; in particular, as in [114], the implemented filter has the following features:   

o it is specifically designed for a voxel grid; 

o it accounts for the particle age: to each particle, other than a position and a speed, 

also an age is associated. The higher the age, the higher the probability that the 

particle motion resembles the obstacle motion;   

o particles are not used as an indicator for the occupancy probability but only to 

compute voxel speeds.  

An overview of the algorithm flow of the implemented particle filter is shown in Figure 

3.21. It is composed of the following main stages:  

 Initialization: (only once, at the first time step): a set of particles is generated 

by means of a Monte Carlo method;  
 

 Evolution: the particle positions are updated according to a specific law of 

motion; 
 

 Measurement-based particle selection: particles whose position is in disagree 

with the data from the depth cameras are eliminated; 
 

 Voxel speed computation: the voxel speed is estimated based on the survived 

particles inside that voxel; 
 

 Resampling: the survived particles are resampled by exploiting Monte Carlo 

methods. 

Each stage will be detailed in the next Sections. 
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Figure 3.21  Algorithm flow overview. 

3.2.7.1 Initialization 

At an initial time step, a number of particles Qmax (= 96) is generated inside each type3-

voxel. A particle generated inside the voxel j is denoted with pjk. It is an array, with a 

position, speed and age as components, as shown in Eq. (3.69). Â�� = �N��, Ã�� , Ä�� , B��, ���, Å�� , Æ��� (3.69)

where x, y, z ϵ ℝ are the position components, u, v, w ϵ ℝ are the speed components 

and ζ ϵ ℕ is its age. 

Inside each type3-voxel, the particles are generated in the following way: 

 Each position is generated inside the voxel with a uniform random distribution; 

 Each velocity component is generated with a uniform random distribution in the 

interval [−‖Ç‖ÈÉÊ/√3, ‖Ç‖ÈÉÊ/√3], where ‖Ç‖ÈÉÊ is the maximum velocity 

norm, set to 1 m/s. It is to be noted that there is a trade-off between the choice of 

the maximum velocity and the precision of the velocity estimation: the higher the 

maximum velocity, the coarser the velocity estimation, since the same number of 

particles are generated but considering a wider velocity range. 

 The age ζ is set to 0. 

3.2.7.2 Evolution 

In this stage, the particle state is updated based on a specific law of motion, 

represented by Eq. (3.70); the particle age is also included, which is incremented by 

1. For the sake of clarity, the subscripts j and k are here omitted; the subscript i refers 

to the time step. 
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where δ is a noise generated with uniform random distribution in the interval [-0.05, 

0.05] m/s. 

3.2.7.3 Measurement-based particle selection and voxel speed estimation 

This stage consists in keeping only the particles that, after the evolution stage, end up 

inside the control volume AND inside a type3-voxel.   

The survived particles are used to associate a speed Vj ϵ ℝ3, to each type3-voxel, 

computed as a weighted mean (where ζjk is the weight) of the particle speed γjk = (ujk, 

vjk, wjk), of the number Qj of the particles inside the voxel j, as shown in Eq. (3.71). 

Ë� = ∑ Æ��Ç��ÍÎ��#∑ Æ��ÍÎ��#  (3.71)

3.2.7.4 Resampling 

In this stage, the following operations are carried out, considering each type3-voxel: 

 If the voxel contains a number of particles higher than Qmax, only the Qmax older 

particles (i.e. with higher values of ζ) are kept.   

 If the voxel contains no particles, Qmax particles are generated. Each one is 

generated as follows:  

• its position is generated with a uniform random distribution inside the voxel; 

• each velocity component is generated with a uniform random distribution in the 

interval [−‖Ç‖ÈÉÊ/√3, ‖Ç‖ÈÉÊ/√3], where ‖Ç‖ÈÉÊ is the max velocity norm, 

set to 1 m/s (the same trade-off between maximum velocity and precision holds 

true here as well as for the case of the initialization stage). 

• The age ζ is set to 0. 
 

 If the voxel contains a number of particles higher than zero but minor than Qmax, 

nb blocks of particles are generated, each containing a block_size number of 

particles. nb is set equal to the minimum integer number for which nb*block_size 

≥ Qmax. Each particle is generated as follows: 

• its position is generated with a uniform random distribution inside the voxel; 
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• each velocity component is generated with a normal random distribution, with 

mean equal to Vj and standard deviation SD, which was empirically tweaked to 

a value of 0.15 m/s.  

• The age ζ is set to 0. 

3.2.8 Obstacle segmentation 

The obstacle segmentation refers to the process of identifying all the different 

dynamic obstacles on the scene. In the case study, this means to form different 

clusters of type3-voxels. The clustering process relies on both the knowledge of the 

indices of type3-voxels (thus their adjacencies) and of their voxel speed Vj, estimated 

through the particle filter. Adjacent voxels might not belong to the same obstacle (e.g. 

in the case of two obstacles passing one very close to the another while moving in 

opposite directions), but an obstacle is always composed of a group of contiguous 

voxels. To address this, the clustering algorithm exploits the concept of velocity 

similarity, also used in [114]. Let us consider two tangential velocities v1 ϵ ℝ3 and v2 ϵ ℝ3, their similarity was evaluated by means of a Boolean function s (returning 1 if they 

are considered similar and 0 otherwise), constructed according to the following 

pseudocode: 

if ‖�#‖ < Ï# AND ‖�&‖ < Ï#      s = 1    // can be noise, considered similar 

else if ��# ∙ �&�/�‖�#‖‖�&‖� < Ï&      s = 0    // condition on the cosine  

  else if  |‖�#‖ − ‖�&‖| > Ï$      s = 0    // condition on the norm difference  

   else  s = 1 

  endif 

endif 

endif 

where ε1, ε2, ε3 are threshold parameters empirically set. 

If both the velocities have a norm below a threshold ε1 they are considered as roughly 

null velocities plus random noise, and thus similar. Otherwise, the similarity on the 

direction is evaluated (by considering a threshold on the cosine of the angle between 

them) and on the norm (by considering a threshold on the absolute value of the norm 

difference). 

The clustering algorithm exploits the function s and the voxel adjacencies. It is here 

outlined in form of a pseudocode. In the pseudocode, the index i is here used to 

identify the ith obstacle ϑ (not the time step, which is here fixed) and the function 
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adj(vox) finds all the adjacent type3-voxels of a type3-voxel. One voxel is here 

considered adjacent to another if they are direct neighbours (for each voxel, the 26 

neighbours are considered).     

While ∃ a voxel of Type 3 marked as “non-assigned” do 

pick a “non-assigned” Type 3 voxel vox_init 

ϑ i = {vox_init} 

A = {vox_init} 

while A != { } do 

 A_new = { } 

for each voxj ϵ A  

 find voxk | {voxk ϵ adj(voxj) AND voxk not already marked as “assigned”} 

 for each voxk 

  if s(V(voxk), V(voxj)) == 1 

   A_new ← {A_new, voxk} 

   ϑ i ← { ϑ i, voxk} 

   mark voxk as “assigned” 

endif 

endfor 

endfor 

A ← A_new 

endwhile 

i = i + 1 

endwhile 

The clustering algorithm outputs a two-level array structure: an array of obstacles in 

which each obstacle, in turn, is represented by an array of voxel indices. In the 

presented version, this algorithm is not suitable for a parallelization, since it relies on 

sequential computing of voxels neighbours. It proved suitable for the case study, 

however alternative faster versions should be used in case performances require it. It 

is noteworthy the fact that obstacles with a structure with more than one degree of 

freedom (such as the human body), might legitimately result in more than one 

obstacle, since different parts could have significantly different speeds.  
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First, this segmentation is used as an additional spatial filter: if an obstacle contains a 

number of voxels lower than a threshold, it is considered noise and eliminated. Then, 

a velocity is associated to each remaining obstacle, computed as the mean of the 

velocity of the voxels by which is composed. To each obstacle, also a barycentre is 

associated, computed as the mean of the Cartesian coordinates of the centres of the 

voxels by which is composed. Furthermore, each voxel speed Vj is updated and set 

equal to the velocity of the obstacle to which the voxel belongs, which allows to 

reduce the noise in the voxel speeds. These latter operations are legit only for motions 

that, at each time instant, can be approximated to pure translational motion, which 

is here assumed. Considering a fixed time instant, points belongings to an object 

subjected to a roto-translational motion, in fact, would have velocities with the same 

direction but different module, depending on the distance from the rolling point. 

3.2.9 Input quantities in the online trajectory generation block 

The entity “obstacle” as a whole, is actually not used in the trajectory generation 

block, but only for visualization purposes; the segmentation process served 

essentially as an additional spatial filter and as a filter for the voxel velocities. At each 

time step, for each robot point k, only the voxel with the minimum dynamical distance 

is considered in the computation of the safety constraints (cf. Section 3.1.3), picked 

considering both type1-voxels (belonging to static obstacles, Vj = 0) and type3-voxels, 

according to Eq. (3.72). © such that  ���� + �F����� is minimum   (3.72)

where: ��� = ONHIW − �ÖN_'×v�Ø×�O (3.73)

 �F�� = ��HI� − Ë�� ∙ NHI� − �ÖN_'×v�Ø×����  (3.74)

where vox_centre is an array containing at the index j the coordinate of the centre of 

the voxel j, the operator ∙ denotes the scalar product and Vj is the voxel speed, 

updated after the segmentation process (set equal to the speed of the obstacle 

to which it belongs). 

For the sake of efficiency, vox_centre was pre-computed offline and used as a lookup 

table. If needed, the computation of the voxel with the minimum dynamical distance 

can be easily GPU-parallelized on the index j in order to optimize performances 

(according to experimental tests it was not required in the case study). 
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The fact that the computation of the safety constraints relies on the use of single 

voxels rather than obstacles is an original approach, having its pros and cons, and it is 

worth some further remarks. This approach allows one to consider an indefinite 

number of obstacles with generic shapes, without additional computational burden, 

which only depends on the number of voxels (computations can be easily GPU-

parallelized). Other than that, it allows one to define in a straightforward way 

particular zones, identified by clusters of type1-voxels, that can be used to constraint 

the robot Cartesian movement. This principle was used to create the external shell of 

type1-voxels, representing the control volume boundaries, exploited to confine the 

robot movement inside of it: the PSD is always to be maintained with respect to the 

type1-voxels composing the external shell, so the robot cannot exit the control 

volume. A possible improvement can be to specify a different expression for the 

dynamical distance for the static and dynamic voxels, so that, for instance, all else 

being equal, the robot is allowed to move closer to type1-voxels with respect to type3-

voxels.  

On the other hand, one downside of this approach is that, by considering only a single 

“most critical” voxel at the time, undesired motion phenomena can appear, deriving 

from the fact that the motion adjustment is not being constrained considering the 

totality of the obstacle voxels. By varying the time step, oscillations can possibly 

appear in the selection of the voxel with minimum dynamical distance, degrading the 

quality of the generated motion (especially in terms of smoothness). In experimental 

tests, however, this phenomenon was not prevalent, and it was reduced by lowering 

the joint acceleration limits. Nevertheless, further research is planned to address this 

liability.     

3.3 Other features and remarks 

In this Section some other features involving the whole method are outlined, and 

some additional remarks are made.  

3.3.1 Fault handling 

One situation that can occur is that at one time step the optimization problem of Eqs. 

(3.41-3.43) results infeasible. This can be due to different causes, for example to the 

fact that the obstacle speed/and or acceleration are so high that one or both of the 

following can occur: 
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 the robot, with its limitation in speed and acceleration, cannot produce a 

modification of its motion able to keep the distance under the threshold 

imposed by the PSD; 

 the depth camera frame rates and robot sample time are not high enough to 

account for very high obstacle accelerations: the hypothesis of velocity 

approximately constant between two time steps does not hold anymore.   

Other than that, there can be faults due to other issues, for examples false positives 

in depth camera acquisitions, which might result in an infeasible optimization 

problem. In addition, in the presented methodology, the recursive feasibility [120] is 

not formally guaranteed, so there is the possibility that the state is driven to a region 

where the optimization problem has no solution. Even if in the conducted 

experimental tests this has not appeared to have a significant impact, further tests 

and developments are planned to address this issue, with the aim to enhance the 

method reliability. 

In the current implementation, if the problem results infeasible, to the robot is 

commanded a position equal to its current one. In this case, the robot controller stops 

the robot with the maximum deceleration possible. The robot stay stopped until the 

optimization problem becomes feasible again.  

The handling of low-level errors is still made by the robot controller, which checks 

that each command actually respects the position and velocity limits (by definition, 

the command is generated so that it does, so it is an additional check), and stops the 

robot prompting specific errors in case it does not occur. This can be due for example 

to the fact that the external computer used acts as a soft real time system, which has 

a higher jitter in loop times compared to a hard real-time system, which conversely, 

guarantees time-determinism. The soft real-time communication is handled by ROS 

and the jitter was observed to be negligible in the case study, but is in general a factor 

to consider and that could affect the system behaviour. One way to improve the 

system reliability could be the use of a real-time operating system; this can be done 

for example by means of the Linux Xenomai or the RT PREEMPT kernel patch for Linux. 

3.3.2 Operating modalities 

One additional feature of the method is that the robot can switch between two 

modalities. If no dynamic obstacles are present inside the control volume, the robot 

operates at its full dynamics; when a dynamic obstacle is detected inside the control 

volume, the robot switches to a collaborative modality: the joint speed and 

acceleration limits are lowered and the motion adjustment enabled. This limiting is 

not strictly necessary, since the safety constraints by themselves guarantee that robot 
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motions are generated so to keep the PSD, but it serves both to add a layer of safety 

and to reduce the human operator mental strain, by raising the perceived safety. If 

no dynamic obstacles are present anymore inside the workspace, joint speed and 

acceleration limits are restored to their original values, in order to fully exploit the 

industrial robot dynamic capability and maximize the productivity. 

3.3.3 Enabling the real-time communication with the robot controller 

A basic conceptual scheme outlining how the (soft) real-time communication 

between the various elements is shown in Figure 3.22.  

 

Figure 3.22  Conceptual scheme of the various elements involved in the real-time communication. 

The custom application, developed by means of ROS (see Appendix B for more details 

about the implemented ROS architecture), runs inside the external workstation, 

processing data acquired from the external sensors and generating a command, sent 

to the robot controller through Ethernet. For the communication of the robot 

command to be effective, a specific program must run inside the robot controller. This 

program, named MOVEXT in Figure 3.22, can be written and loaded inside the 

controller by using the RTToolbox3 Mitsubishi Electric proprietary software. Its 

structure is very simple, and it is reported in Figure 3.23. It basically moves the robot 

into a starting position and enables an external communication by activating a specific 

UDP port of the controller. Also, a time filter is specified as a parameter in the function 

which takes care of receiving external command data. The filter was set to 30 ms and 

allowed to produce smother trajectories, an aspect better highlighted in the next 

Section. 

 

Figure 3.23  RTToolBox3 program, running on the controller and enabling the real-time external 

communication. 
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3.4   Results 
To enable a real-time visualization of the various elements involved in the collision 

avoidance method (and providing an HRC interface), the rear part of the cell was 

endowed with a display, connected to a Raspberry Pi4, in turn remotely connected 

with the workstation. During the tests, the display was just used as a monitor, showing 

a custom-made visualization window; a remote control of the workstation was also 

possible in case. The visualization window was created by means of the ROS 

visualization tool RViz, refreshing in real-time all of its elements with a rate set equal 

to 30 Hz. All the elements of the visualization windows are highlighted in Figure 3.24. 

The robot model in the visualization window replicates in real-time the movement of 

the real robot. Figure 3.24c and Figure 3.24d are close-ups of parts of Figure 3.24a 

and Figure 3.24b, respectively, showing how velocities are visualized: a purple arrow 

that points in the motion direction and whose length is proportional to its norm. The 

four robot points considered are identified by different values of k, as shown in Figure 

3.24a; this will be later used to reference them in various plots. 

 
Figure 3.24  Visualization window and all its elements. 

Figure 3.25 shows the effect of the robot body filter. The type2-voxels, belonging to 

the robot body (Figure 3.25a) are filtered out by means of the violet voxels (Figure 

3.25b) resulting from the use of the cuboid grid as outlined in Section 3.2.6.  
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Figure 3.25  Robot body filter.  

Tests reported here were carried out considering a task-based trajectory having the 

shape shown in Figure 3.26, consisting of six frames extracted from a recording of the 

visualization window, numbered according to their temporal order. The task based-

reference trajectory was constructed by means of four waypoints (robot traverse 

them in the images of Figure 3.26 identified by 1, 2, 5, 6); the robot moves from one 

to another by means of joint interpolated motions. 

 
Figure 3.26  Task-based pre-programmed reference trajectory. 



87 

 

 

In absence of dynamic obstacles, the robot follows the task-based reference 

trajectory. When a dynamic obstacle enters the workspace, the robot performs a 

trajectory adjustment, whose trace can be monitored online, along with other 

quantities, as shown in Figure 3.27, which report four frames (with increasing 

timestamps from left to right) extracted from a recording of the visualization 

windows. The dynamical obstacle is the cluster of red voxels; the yellow lines join each 

robot point with the voxel having minimum dynamical distance from it, among both 

type1-voxels (static obstacles, in cyan) and type3-voxels (dynamic obstacles, in red). 

The control volume is composed of an external shell of type1-voxels, not visualized as 

the other type1-voxels and type3-voxels since it would clutter the visualization and 

obscure the elements inside the control volume. It can be seen however, that some 

of the yellow lines are connected to that external shell, since the voxels with minimum 

dynamical distance are there.  

 
Figure 3.27 Example of trajectory adjustment, allowing the robot to keep the PSD in case of an 

approaching dynamic obstacle (in red). Time stamps increases from left to right. 

The next part (Figures 3.28-3.35) shows in detail one example of trajectory 

adjustment in the case of heading point computation based on motion laws (cf. 

Section 3.1.6.1). All the video frames and plots refer to synchronize data, so they can 

be compared considering the reported timestamps. 

For safety reasons and to minimize the risk of damages to the equipment, tests on 

the real robot were performed using a wooden shaft with rubber at one end. This is 

shown in Figure 3.28, consisting in some frames extracted from a video where the 

robot performs an evasive motion to maintain the PSD. Figure 3.29 shows the 

corresponding frames extracted from a recording of the visualization window.       
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Figure 3.28  Robot performing an evasive motion to maintain the PSD while the moving shaft is 

approaching. 

 
Figure 3.29  Frames extracted from the visualization windows corresponding to the frames of Figure 

3.28. 
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Figure 3.30a shows the Cartesian trajectory generated by the commanded joint 

position, whereas Figure 3.30b shows the actual robot Cartesian trajectory, 

reconstructed by means of the joint position feedback values available from joint 

encoders. Henceforth, the term command and feedback will refer to this distinction. 

 

 

Figure 3.30  (a) Cartesian trajectory resulting from the commanded joint position; (b) feedback 

Cartesian trajectory. The axes unit of measurement is mm. 

 

Figure 3.31 and Figure 3.32 shows the joint positions (in degree) and velocities (in 

degree/s), respectively. The reference, command and feedback joint values are 

reported.  
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Figure 3.31  Joint reference (magenta dotted line), command (red solid line) and feedback (blue 

solid line) positions. Values are reported in degree. 



91 

 

 

 

Figure 3.32  Joint reference (magenta dotted line), command (red solid line) and feedback (blue 

solid line) velocities.  

Figure 3.33 and Figure 3.34 shows a comparison, for each of the four robot points 

(identified by different k, according to Figure 3.24a) between the distance and the 

PSD, computed considering at each time step the voxel with the minimum dynamical 

distance (cf. Section 3.2.9). Figure 3.33 reports the values computed considering the 
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commanded robot joint positions, whereas Figure 3.34 reports the values computed 

considering the robot joint feedback positions.  

 

 

 

Figure 3.33  Distance (blue) and PSD (red), for each of the four robot points considered, identified 

by different values of k. Values are obtained considering the commanded robot joint positions. 
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Figure 3.34  Distance (magenta) and PSD (light blue), for the four robot points, identified by different 

values of k. Values are obtained considering the feedback robot joint positions. 

Figure 3.35 shows the x-y-z velocity components of the considered voxels (in the case 

of k = 4), estimated through the particle filter.  

 
Figure 3.35  x-y-z velocity components of the considered voxels (in the case of k = 4), estimated by 

means of the particle filter. 
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The next part (Figures 3.36-3.38) shows some relevant plots in the case of heading 

point computation based on the geometrical approach (cf. Section 3.1.6.2). In this 

case, in Figure 3.37, the dotted lines do not represent the reference motion laws but 

are the set of heading points qref computed online according to the procedure 

explained in Section 3.1.6.2.  

 
Figure 3.36  (a) Cartesian trajectory resulting from the commanded joint position; (b) feedback 

Cartesian trajectory. The axes unit of measurement is mm. 
 

 
Figure 3.37  Reference (dotted lines) and commanded (solid lines) joint positions. 
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Figure 3.38  Distance and PSD, for two of the four robot points (k=3, k=4). Data are obtained 

considering the joint commanded position (two plots on the upper part) and the joint feedback 

positions (two plots on the lower part).  

Figures 3.39 and Figures 3.40 highlight the obstacle speed estimation by means of 

particle filter, in a case in which the speed changes direction. Both figures report 

frames numbered according to their temporal order, and have roughly corresponding 

timestamps. 
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Figure 3.39  Online visualization of the obstacle speed: purple arrow, applied in the obstacle 

barycentre, having the obstacle speed direction and length proportional to the obstacle speed 

norm.   

 

 

Figure 3.40  Alternative (offline) visualization, where an arrow (in purple) is associated to each voxel 

(in yellow). The arrows point into the motion direction and their length is proportional to obstacle 

speed norm. 
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Figure 3.41 shows the switching between the industrial modality and the 

collaborative modality, this latter with lower maximum joint speed and acceleration 

limits, when a dynamic obstacle enters the control volume. 

 
Figure 3.41  Lowering of the maximum joint speed when a dynamic obstacle enters the control 

volume. 

3.5 Discussion 

The adherence to the safety constraints has the aim of generating a robot command 

in such a way that the robot distance from obstacles does not drop below the 

corresponding PSD. If considering the command case, the experimental results of 

Figures 3.33 and Figure 3.38 show that this approximately happens, if neglecting the 

occurrence of short and low-amplitude spikes that cause very short temporary 

violations of the PSD threshold. This can be due to various factors, such as: 

 errors in the prediction of the obstacle position, due to approximations 

concerning their velocity, considered constant inside the time step duration;  
 

 

 approximations caused by the discretization of the environment by means of 

voxels; 
 

 approximations assumed in the computations of the safety constraints; 
 

 nature of the strategy for the voxel selection detailed in Section 3.2.9, which 

considers only the “most critical” voxel at each time step. 
 

 soft real-time system; 
 



98 

 

 

 small imperfections and variability in the obstacle reconstructions due to 

inevitable sensor limitations. 

In the feedback case, the distance and dynamical distances are less spiky, and in the 

case study the controller proved sufficiently performant to guarantee that an 

acceptable difference from the command is kept throughout the motions. In the 

various conducted tests, the values assumed by the distances with respect to the PSD 

were considered tolerable due to the negligibility of the drops under the PSD 

threshold. Nonetheless, further research is planned to better understand and limit 

the observed phenomenon in the command case.  

It is very evident (e.g. in Figure 3.32) that the actual (feedback) trajectory is smoother 

than the commanded one, which is a positive aspect; this is due to different factors: 

 the robot controller performs a smoothing action before actually commanding 

the robot, by exploiting a temporal filter whose sample time is specified by the 

user (a filter of 30 ms was applied in the case study);   

 the closed loop control system implemented in the robot controller and the 

robot dynamics affects the smoothness.    

The smoothing action of the robot controller is a valid feature, which allows it to 

handle position commands in an optimal way. Future implementations of the method 

aim at directly generating smoother commands without relying on this feature of the 

robot controller, to make the method more fitting for a general use.  

The trajectory resulting from the heading point computation based on the laws of 

motion approach (cf. Section 3.1.6.1) could present some anomalies, that can be seen 

for instance in the last part of the Cartesian trajectory of Figure 3.30: it diverges from 

the reference one, but not because of the need to fulfil the safety constraints: the 

obstacle is left behind and assumes nearly zero speed, thus not affecting the robot 

trajectory anymore. This behaviour can be explained by thinking the heading point as 

constantly moving forward following the reference laws of motion, but not being 

closely followed by the robot, which in the meantime must perform a different 

motion to adhere to the various constraints. As an extremum exemplificative case, let 

us consider the following: the robot is deviated for a long time from the reference 

trajectory, and when the external disturbance ends the heading point has already 

reached the spline end, assuming a constant value; at this point the robot does not 

follow anymore the reference trajectory to reach it, even if it is on it, but finds another 

path, generated piece by piece by the optimization problem, which considers a 

constant QHz{� equal to the last trajectory point S(Tm). This behaviour does not occur 

in the heading point computation based on the geometrical approach, since the 

heading point progresses on the reference trajectory based on the current robot joint 
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positions. At each time step, the robot tries to approach the geometrical shape of the 

trajectory (in the joint space), rather than to follow the laws of motions. This latter 

approach guaranteed a better adherence of the motion to the geometrical shape of 

the reference trajectory. In doing so, a trend commonly observed was the performing 

of speed adjustments rather than escape motions. Another way to put it is that, in 

this latter approach, the algorithm is aware about the deviation from the original 

trajectory, differently from the case of the laws of motion approach, which thus 

produces huge variations with respect to the reference trajectory. A way to 

remove/mitigate this problem in the laws of motion approach could be a replanning, 

which, however, is a routine typically computationally expensive not suitable for an 

execution within a cycle time, and that would thus run occasionally according to a 

specific rule. The geometrical approach, on the other hand, has the advantage of 

being intrinsically capable of overcoming this issue.  In general, however, the possible 

advantages of a replanning will be investigated in future developments.    

One further and related consideration concerns the fact that, since the optimization 

problem is solved in the joint space, the corresponding generated shape of the escape 

motions in the Cartesian space may sometimes appear not very intuitive to a human 

operator and not predictable by them, which can be the cause of mental strains. This 

is accentuated in the case of the laws of motion approach, which, as has been pointed 

out, produces motion that can significantly diverge from the geometry of the 

reference trajectory, even after the influence of the obstacle ends.  
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4 Programming by demonstration 

This Chapter is devoted to the developments of methods, enabled by artificial vision, 

aimed at facilitating the robot programming, which is normally a mansion relegated 

to highly trained operators, since it requires specific programming knowledge and 

may be difficult and time-consuming. As already mentioned, one important enabler 

of HRC consists in all the tools, methods and interfaces that can facilitate the 

interaction with robots, making easier, more natural and intuitive the various 

common tasks and routines performed by humans in which robots are involved. In 

the case of industrial robots, the hand guiding modality typical of collaborative robots 

is not available out-of-the-box, so it is useful to investigate and propose other suitable 

methods easily appliable to traditional industrial robot as well. In this Chapter, two 

methods aimed at enabling the intuitive PbD paradigm by means of artificial vision 

are presented. Here, PbD is referred to the case in which the robot replicates as is the 

movement demonstrated by the human operator and not to the case of the 

generalization of the movement from a set of demonstrated motions (c.f. Section 

1.3.2). Both the proposed methods do not need an online interaction with the robot, 

which makes them suitable for industrial robots without additional layers of safety. 

The two methods exploit different types of vision sensors and algorithms to 

reconstruct the trajectory. The first one exploits a ToF camera, whereas the second 

one a normal 2D digital camera. 

In both cases, the general workflow is as follows: 

1. The human operator performs the task-based movement by using a Human 

Demonstration Device (HDD), while data acquired by a vision sensor are 

recorded.  

2. The recorded data are processed, the movement reconstructed and converted 

into a set of poses.  

3. Starting from the poses, a ready-to-use program, written in the Mitsubishi 

Electric MELFA proprietary language is automatically generated. The program 

makes the robot replicate the demonstrated motion.  

The algorithms of Points 2 and Point 3, operating offline on the data recorded on Point 

1, were developed in MATLAB®. 

4.1 Markerless PbD method using a ToF camera 

This first method relies on the use of a ToF camera. It was tested by using the 

Microsoft Kinect v2, mounted as shown in Figure 4.1, also highlighting the three RF 
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involved (in red, the Robot base RF, in yellow the Kinect depth RF, in green the Robot 

tool RF).  

 
Figure 4.1  Kinect mounting and RFs involved. In red: Robot base RF; in green: Robot tool RF; in 

yellow: Kinect Depth RF. 

This method does not rely on the use of markers; instead, the motion is reconstructed 

by means of step-by-step (referring to time steps) point cloud alignments of the 

acquired HDD shape, performed by means of the ICP algorithm. The HDD, shown in 

Figure 4.2, is composed of an external shell, whose dimension and geometry were 

designed in order to enhance the ICP algorithm effectiveness. Figure 4.2a depicts a 

CAD model of the external geometry, consisting in a regular polygonal base extruded 

in depth while wrapping on itself (swept blend). Figure 4.3b shows the actual 

realization of the device, by means of additive manufacturing (differently from Figure 

4.2a, it is hollow inside). The device is grabbed by an internal handle and contains a 

manual mechanism to open and close a mock-up gripper, used to simulate 

manipulation tasks. The external geometry can be modified by detaching parts of the 

external shells. 

 
Figure 4.2  (a) CAD model of the external shell; (b) actual realization of the device, by means of 3D 

printing.   
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Figure 4.3 shows some aligned consecutive point clouds (red and blue) by the ICP 

algorithm. The resulting alignment is good since point clouds does not vary 

significantly from one time step to the consecutive one.  The ICP algorithm is executed 

on the acquired 3D points belonging to the HDD, extracted from the background. This 

extraction is automatically performed at each time step by exploiting a bounding box 

of fixed dimensions, which encapsulates the HDD and is used to filter out other 

external points. It is defined at an initial instant and transformed step-by-step 

according to the ICP transformations, as if attached to the HDD.  

 

Figure 4.3  Step-by-step ICP alignment process. 

Let us consider an acquisition in a time interval composed of n time steps, each having 

a duration equal to the inverse of the Kinect frame rate, being ≈ 30 Hz. The pose ¡D�  of 

HDD TCP RF (corresponding to the Robot tool RF of Figure 4.1 but placed on the HDD 

instead), at the time step i, can be computed according to Eq. (4.1).  ¡D� = �D�D0# … �$�&¡#� (4.1)

where: 

the superscript k stands for “with respect to the Kinect depth RF”; ¡#� is the homogeneous matrix representing the initial HDD TCP RF pose; �D is the homogeneous transformation matrix that allows one to align the 

HDD point cloud i-1 (moving) with the point cloud i (fixed), and it is computed 

by means of the built-in ICP MATLAB® function pcregistericp.  
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The pose ¡D� is then referred to the Robot base RF (superscript r) by means of Eq. 

(4.2): ¡DH = �H�¡D� (4.2)

where Trk is the homogeneous transformation matrix that links the Kinect depth RF 

with the Robot base RF.  ¡#� and �H� are to be estimated. Trk is fixed and depends on the relative pose between 

the Kinect mounting position and the robot, and it was estimated via CAD; ¡#�, being 

the initial pose of HDD TCP RF, with respect to the Kinect depth RF, was estimated by 

a manual selection of a set of points on the initial HDD point cloud, univocally 

identifying the pose of HDD TCP RF. These two estimation modalities are coarse and 

lead to a loss of accuracy, so a potential improvement could consist in exploiting more 

accurate estimation methods.  

The trajectory is defined by the set of poses ¡DH, with i ranging from an initial time step 

to a final one. In occurrence, this set can be downsampled. Figure 4.4 shows an 

example of the final set of poses, defining the motion.  

 

Figure 4.4  Reconstructed motion. The Robot base RF and the initial point cloud of the HDD are 

shown as well.  

The final set of poses is then utilized to create a ready-to-use program, written in the 

Mitsubishi Electric MELFA proprietary language. Each pose is converted into a specific 

string containing the pose information in the MELFA language, and a Cartesian linear 
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movement (mvs function in MELFA) is specified between each pose (same strategy 

used in [21]). The junction points are filleted by means of the MELFA function cnt. 

Speed is also set. The program generation was automatized, so that the process 

directly outputs a program file, the only additional operation being to load it within 

the Mitsubishi Electric robot programming software RTToolBox3. There, it is possible 

to test it on a robot simulator and carry out possible final adjustments, before loading 

it into the robot controller and use it on the real robot. Figure 4.5 shows a comparison 

between a set of frames extracted from a video of the movement demonstration and 

the replicated movement performed by the robot. 

 
Figure 4.5  Movement demonstration by means of the HDD (top four images, in temporal order 

from left to right) and replicated movement performed by the robot (bottom four images, in 

temporal order from left to right). 

4.2 PbD using a 2D digital camera and fiducial markers 

This PbD method relies on a 2D digital camera, used to detect fiducial markers 

attached to a specifically designed HDD. More precisely, the webcam HD Logitech® 

C930e was used, mounted as shown in Figure 2.3, whereas as fiducial markers the 

AprilTags [121] were used. Their detection and pose estimation were carried out 

exploiting the built-in MATLAB® function readAprilTag. For the pose estimation, the 
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camera intrinsic parameters were needed, so an intrinsic calibration was performed 

by using a checkboard pattern and the MATLAB® Camera Calibration Toolbox. 

The HDD, realized by means of additive manufacturing, is shown in Figure 4.6. It is 

composed of a cube with five markers attached (on each face except for the bottom 

one) and a mock-up gripper, comprehensive of a manually actuated mechanism used 

to open and close it, to simulate manipulation tasks. Figure 4.7 shows an example of 

the pose detection of the markers: each marker has an RF with origin on the square 

centre, the z axis perpendicular to the marker surface and the x and y axes parallel to 

the marker edges; the function readAprilTag outputs the pose of each detected 

Marker RF with respect to the Camera RF.     

  

Figure 4.6  HDD device, composed of a cube with markers attached and a mock-up gripper. 

 

Figure 4.7 Example of the detection of three markers and reconstruction of their pose. 
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Figure 4.8 shows the various RFs involved attached to the HDD.  

 
Figure 4.8  Various RFs attached to the HDD. 

Let us consider an acquisition in a time interval composed of n time steps, each having 

a duration equal to the inverse of the camera frame rate (being ≈ 60 Hz in the case 

study, maximum value for the HD Logitech® C930e). Let us consider a fixed time step 

i, whose subscript will be omitted for the sake of clarity. Let us denote with ¡iI  the 

homogeneous matrix representing the pose of a RF with respect to b RF. 

The function readAprilTag outputs the pose of each tag attached to the cube that is 

framed and detected by the camera with respect to the Camera RF (henceforth 

abbreviated as cam RF). More than one tag can be detected at once, obtaining 

multiple poses. These poses are combined and used to estimate the pose ¡ÙzcÙi/. The 

poses are combined according to the following steps: 

1 – For each detected marker j, an estimation of the pose ¡ÙzcÙi/�
 is computed as: 

¡ÙzcÙi/� = ¡/ÙIÙi/� ¡Ùzc/ÙI�
 (4.3)

where: ¡/ÙIÙi/�
 is the pose of the mcbj RF with respect to cam RF, available as 

output of the readAprilTag function. ¡Ùzc/ÙI�
 is the nominal pose of cen RF with respect to mcbj RF, constructed 

considering the orientations of the RF of Figure 4.8 and the 

knowledge of the cube side length (= 50 mm); 

2 – the translational part t ϵ ℝ3 of ¡ÙzcÙi/ is obtained by averaging the set of 

translational parts ��
 ϵ ℝ3 of ¡ÙzcÙi/�
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3 – the rotational part R ϵ ℝ3x3 of ¡ÙzcÙi/ is obtained by combining the set of rotational 

parts b�
 ϵ ℝ3x3 as follows: 

     1 – b�
 is converted to a quaternion Ú�

 

     2 –  The set Ú�
 is averaged by means of the built-in MATLAB® function   

meanRot, obtaining a quaternion Q 

     3 –  The quaternion Q is converted back to a rotation matrix R 

The matrix ¡ÙzcÙi/ obtained can be used to estimate the pose of tcp RF with respect to 

Robot base RF (abbreviated as rob RF), according to Eq. (4.4): ¡�ÙÛHJI = ¡Ùi/HJI ¡ÙzcÙi/¡�ÙÛÙzc (4.4)

where: ¡�ÙÛÙzc is the pose of tcp RF with respect to cen RF, and is to be estimated. ¡Ùi/HJI  is the pose of cam RF with respect to rob RF, and is to be estimated; ¡�ÙÛÙzc was constructed considering the nominal orientations of cen RF and tcp RF of 

Figure 4.8 and by a direct measurement of the distances for an estimation of its 

translational part;   ¡Ùi/HJI  was estimated by exploiting another AprilTag marker, of larger dimensions 

(side equal to 160 mm) used this time for a calibration purpose, fixed onto a surface 

parallel to the robot mounting surface (which is a requisite to use this calibration 

method, whereas the orientation of the marker in the x-y plane can be arbitrary) and 

in such a way that was both visible from the camera and reachable by the robot end 

effector. The robot was equipped with a conic tool and jogged so that the end of the 

conic tool was coincident with each marker corner, as shown in Figure 4.9.  

 
Figure 4.9  Calibration marker, fixed parallel to the robot mounting surface and alignment of the 

robot end effector with a marker corner, by means of a conic tool grasped by the gripper. 
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That way, it was possible to read the positions of the four marker corners with respect 

to the Robot base RF. They have a constant Z value (since the marker mounting 

surface is parallel to the robot base) and different X-Y values. Once the set of marker 

corner coordinates was read and stored, it was used to fit a square of known side L 

(L = 160 mm), used to estimate the pose of the Calibration marker RF (having origin 

located at the square centre and x and y axes parallel to the square edges). In order 

to construct the square from four approximate corner coordinates, two different 

approaches are proposed and outlined in Figure 4.10a and Figure4.10b respectively, 

which show them in the exaggerated case, for the sake of visualization, of very 

unprecise alignments of the conic tool with the marker corners. The actual recorded 

points are shown in Figure 4.11, along with the constructed square (Method 2 was 

used). To construct a square starting from four approximate corner coordinates, the 

two following methods are proposed: 

Method 1: the centre of the square is located at the intersection of the segments 

joining the opposite points; the orientation of the x and y axes are coincident with the 

bisectors of the angles created by the segment intersection (note that for 

construction, the bisectors are always perpendicular between each other). 

Method 2: note that each couple of contiguous points is theoretically sufficient to 

uniquely identify the pose of the Calibration marker RF (mcl RF): the centre belongs 

to the median of the segment joining the 2 points, at a distance L/2 from the segment. 

There are four couples of contiguous points. The mcl RF origin is obtained as a mean 

of the coordinates of the centres obtained considering each couple of points; the 

orientation is obtained as a mean of the orientations, computed, as done previously, 

by means of quaternions. It is noteworthy that this method is similar to the one used 

to compute cen RF starting from mcbj RFs, but in a space of one lower dimension.    
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Figure 4.10  Example of application of (a) Method 1 and (b) Method 2 to fit a square of known 

dimensions (in blue) into four approximate jog points (error exaggerated for the sake of 

visualization). To better convey how each method works, a set of construction lines (in magenta) 

are also depicted.  

 
Figure 4.11  Square constructed (Method 2) in the case of the actually recorded points by means of 

robot jogging. 
 ¡Ùi/HJI  can then be computed as the product of two matrices, as shown in Eq. (4.5): ¡Ùi/HJI = ¡/ÙfHJI ¡Ùi//Ùf  (4.5)

where:  
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¡/ÙfHJI  is the pose of the Calibration marker (mcl) RF with respect to the Robot 

base (rob) RF, and is estimated via the previously described procedure, which 

exploits the alignment between the conic tool and the marker edges.   ¡Ùi//Ùf  is the pose of cam RF with respect to mcl RF. It is computed as the inverse 

of ¡/ÙfÙi/, this latter being the output of the function readAprilTag.  

Once each matrix of Eq. (4.4) is estimated, at each time frame the pose of tcp RF with 

respect to rob RF can be computed, and thus the motion reconstructed (an example 

of that is shown in Figure 4.12). Then, the set of poses representing the motion is 

automatically converted into a ready-to-use program, following the same procedure 

used for the PbD method of Section 4.1.  

 

 

Figure 4.12  (a) Reconstructed motion; the Robot base RF and a sphere representing the robot 

workspace are shown as well. (b) close-up on the set of poses representing the motion. 

Figure 4.13 shows a comparison between a series of frames extracted from videos of 

(a) demonstrated movement and (b) movement replicated by the robot, 

corresponding to a part of the motion of Figure 4.12. 
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Figure 4.13  Comparison between a series of frames extracted from videos of (a) demonstrated 

movement and (b) movement replicated by the robot. 
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Figure 4.14 shows another comparison between a series of frames extracted from 

videos of (a) demonstrated movement and (b) movement replicated by the robot, in 

case of a simple pick-and-place task. The opening and closing of the gripper were 

accounted by providing as input to the algorithm, other than the video, the video 

timestamps in which the gripper was opened and closed (they were graphically 

evaluated). A more sophisticate and user-friendly way to account for gripper 

opening/closing is planned to be implemented in future developments.  

 

Figure 4.14  Comparison between a series of frames extracted from videos of (a) demonstrated 

movement and (b) movement replicated by the robot, in the case of a simple pick-and-place task. 
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Figure 4.15 shows a distribution of the position error of cen RF, obtained considering 

993 video frames (only the ones having at least two detected markers, more precisely 

two or three), extracted from various recorded videos of demonstrated motions. For 

each single frame, the error is computed according to Eq. (4.6): 

uØØÖØ =  ∑ O_� − _OcÜ��# v/  (4.6)

where nm is the number of detected markers, Oj is the origin of mcbj RF, O is the        

origin of cen RF.  

The distribution has a mode of 1.08 mm, a median of 1.46 mm and a mean of 1.98 

mm. Errors lower than 4-5 mm are mainly attributable to the achievable precision of 

the function readAprilTag, dependent on the combination of the tag dimension, 

working distance, image resolution and image quality. Errors higher than around 4-5 

mm are observed to be mainly due to motion blur (higher in case of higher errors), 

which significantly degrades the image quality and thus the precision and reliability 

of the marker detection and pose reconstruction.   

It is noteworthy to point out that an evaluation of this type is only useful for an 

estimate of the precision of the method, but not of the accuracy, since a ground truth 

would be needed. The accuracy was only qualitatively evaluated by visually observing 

the difference between the poses of the HDD and of the actual robot gripper. This 

was easier in the case of an interaction with elements of the scene, used as reference, 

such in the case of the task of Figure 4.14.  

 
Figure 4.15 Error distribution considering 993 frames extracted from various videos of 

demonstrated motions. Only the case of multiple detected markers is considered. Cyan vertical lines 

(from left to right) refer to the following distribution parameters: mode = 1.08 mm; median = 1.46 

mm; mean = 1.98 mm. Error higher than around 4-5 millimetres are observed to be due to increasing 

motion blur.  
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4.3 Discussion 

The two methods, in their current implementations, have different pro and cons, here 

briefly presented and descripted.  

Markerless PbD using a ToF camera: 

Advantages: 

 Very low dependency on the scene illumination (one of the perks of ToF 

cameras). 

 Movement can be demonstrated at (relatively) high speed. 

Drawbacks: 

 Low accuracy in the initial pose estimation. 

 HDD relatively bulky. 

 The movement reconstruction depends on the step-by-step alignment, so 

disturbance in the acquisition (e.g. temporary occlusion) can lead to problems 

in the point cloud alignments. 

PbD using a 2D digital camera and fiducial markers: 

Advantages: 

 Compact HDD. 

 The movement is reconstructed considering independently each time frame, so 

disturbances in the acquisition do not affect the whole movement 

reconstruction. Also, the initial pose is estimated as the others. 

 Cheap and commonly available vision sensor (mid-end 2D camera). 

Drawbacks: 

 Precision dependant on the image quality (more precisely, on the quality of the 

marker shape in the image), affected by several factors, such as:  

 Illumination.  

 Speed of the demonstrated motion: if the motion is too fast, motion blur 

might appear, which can drastically lower the precision. Motion blur 

depends mainly on the camera frame rate, so this issue can be mitigated 

by choosing a camera model able to operate at a high frame rate.  

 Markers may go out of focus. In the experimental tests, focus was manually 

set to a fixed value, so that the acquisition was more reliable. However, if 

the motion spans in a large space portion, the markers could significantly 

go out of focus, lowering the precision of the detection.  
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In general, the second method seems more promising since its drawbacks can be 

drastically mitigated by a careful design of the lighting system and a proper choice of 

the 2D digital camera. High-end video cameras feature both high frame rate and 

resolution. The focus issue can be addressed by implementing strategies to 

dynamically adapt the focus during the acquisition, so that the detected markers are 

always kept on focus, also if their distance to the optical centre significantly varies. 

More tests are planned to be conducted to refine the method and find an optimal 

setup to improve its precision and robustness. An additional way to improve the 

precision can be to substitute the cube of markers with a different polyhedron (or to 

consider a completely different marker disposition and number), for instance an 

icosahedron [21] or a dodecahedron [122]. Polyhedrons of these latter types 

guarantee a higher number of detected markers (higher precision), but, on the other 

hand, being equal the HDD dimensions, markers have to be smaller (lower precision).  
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5 Investigation on the placement 

of onboard cameras 
In this Chapter, an investigation on the placement of onboard cameras to maximize 

the observability of the workspace of an articulated robot is presented. As was 

emphasised throughout the Thesis (and applied in the collision avoidance method of 

Chapter 3), inside the context of HRC, vision sensors can have the function of enabling 

a safe coexistence between robots and human operators, by monitoring the shared 

area with the aim of detecting dynamic obstacles. The placement of vision sensors is 

a crucial aspect, since it determines the efficacy in detecting the obstacles present in 

the area that one wants to monitor, and thus has important implications on safety. In 

the ideal case, one wants to be able to detect with sufficient certainty every obstacle 

that could possibly appear inside the area to monitor, which can coincide with robot 

workspace, include part of it or its totality. That is a non-trivial problem, and one first 

step to tackle it concerns the choice of the sensor mounting configuration, which can 

be divided in two types: vision sensors can be mounted on a fixed frame or on the 

robot links (onboard). This latter configuration has the advantage of being effective 

in unstructured environments and can efficaciously monitor the workspace region 

that the robot itself would occlude if monitored by external fixed cameras. Whilst a 

number of procedures have been proposed to optimally locate fixed cameras, to the 

best of the Candidate’s knowledge no optimization technique for placing cameras on 

robot links is present in literature. This was the main motivation of the study 

presented in this Chapter, consisting in a numerical procedure for optimizing the 

placement of cameras on the moving links of an articulated robot, with the aim of 

maximizing the observability of its workspace. Given the nature of the topic, the 

indices and variables used in this Chapter, defined case by case, are to be intended 

stand-alone and not linked to the ones of the other Chapters. 

5.1 Background  

Inside the context of HRC, cameras can serve to predict collisions before they occur 

and enable the safe coexistence collaboration level. To fulfil this scope, cameras can 

be mounted on the robot or on a fixed frame, but rather than pointing largely towards 

the robot end effector (eye-to-hand) or being fixed on the robot end effector (eye-in-

hand), the idea is to monitor the whole robot operating area and the space region 
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nearby, to account for any approaching dynamic obstacles. In this sense, one 

procedure is to mount fixed cameras in the upper parts of the frame, pointing 

downwards towards the robot [76,82,123]. Whilst on one hand this leads to the 

monitoring of a wide and strategic view, on the other hand, as outlined in [55,91], 

placing fixed camera around the robot workspace could lead to some limitations: one 

is the fact that these fixed camera systems are not capable of detecting obstacles that, 

for certain robot configurations, happen to be occluded by the manipulator itself: in 

facts, it could happen that certain space regions become confined between the robot 

links and the ground, thus being hidden or difficult to monitor by fixed external 

cameras. The occlusion problem can be particularly marked when dealing with big 

industrial robots, such as the Kuka KR180 (180 Kg of payload), which was used in [33] 

for testing a new human-robot safety strategy. One further and relevant limitation is 

that fixed sensors require to some extent a structuring of the environment. In the 

case of robots mounted on mobile platforms ([17,18,124]) the assumption of a 

structured environment is not valid. Furthermore, one key feature of collaborative 

robots is that they can be easily set to be operative, so that their mounting spot can 

be changed without difficulty if needed. Another aspect that goes against the 

assumption of a structured environment is the fact that modern workcells can have a 

modular or modifiable structure. To overcome these limitations, a different strategy 

is to mount vision sensors on robot (onboard). Some recent papers in which vision or 

distance sensors are mounted onboard are for example [55,71,91,125]. This strategy 

appears promising also because of the recent development of small ToF cameras, 

such as the PMD Pico Flexx, the Stereolabs Zed Mini or the even smaller ones 

embedded in the new generation smartphones.  

In general, when there is the need of monitoring a space region by mounting a set of 

cameras, the problem that arises is to find the optimal number of cameras and their 

optimal placement. In the case of fixed cameras in a robotic framework, some studies 

have been carried out in literature (e.g. [105,106]). In the case of onboard sensors, in 

[125] an optimization of the distance sensors arrangement is carried out (tested and 

further developed in [55]): distributed distance sensors are used (i.e. a high number 

of spot sensors mounted in clusters), whose optimal position and number was 

investigated in a set of feasible nodes. Although the optimal placement of onboard 

distance sensors has already been investigated, to the best of the Candidate’s 

knowledge no studies are present in literature concerning the optimal placement of 

onboard vision sensors.   

This study aims at finding the optimal placement of cameras on the links of an 

articulated robot, with the scope of maximizing the observability of the workspace 

region that is likely to be hidden to external cameras, which can result in critical issues 
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in the case of the presence of dynamic obstacles. In the case that both fixed and 

mobile cameras are present, the application of this method can be used to decouple 

the problem of the optimal placement of fixed sensors from the one concerning 

onboard sensors. The fixed sensors can be placed with the aim of maximizing the 

overall monitoring of the workspace and the adjacent space region, whereas the 

onboard sensors with the aim of monitoring the area hidden to the external cameras 

by the robot. The general idea is to provide some insights and instruments to tackle a 

broader problem, which is the one concerning the comprehensive monitoring of the 

full space around the robot, which is a very hot topic due to the important 

implications on tasks where safety of human operators is to be guaranteed. The 

problem addressed in this Chapter concerns the monitor of a variable region of space 

which is enclosed by the robot, and thus variable as a function of configuration. The 

aim is to find the placement of cameras on the robot links that, for a given set of robot 

configurations, maximizes the monitoring of the space region covered by the robot, 

namely the space region confined between the robot links and the robot mounting 

surface. 

The underlying mathematical problem is an original variation of the camera 

positioning problem, which in turn is a variation of the art gallery problem. An 

exhaustive explanation of the problem (which has computational complexity NP-

hard) and its most common variations can be found in [126].  

The main contribution of this study is the definition of an original method to tackle 

the problem, by adapting existing discrete approaches used in the case of the 

optimization of the placement of fixed cameras ([126-128]). The problem is addressed 

in a simplified bidimensional version, in the case of an articulated robot, and for a 

number of cameras ranging from one to five.  

5.2 Materials and Methods  

5.2.1 Problem simplification 

The problem is tackled in the case of an articulated robot (with 6 DOFs) and under the 

following hypotheses, depicted in Figure 5.1: 

1. cameras are mounted exclusively on the robot links; 

2. the problem is treated as bidimensional; 

3. cameras can only be mounted on the front side of each robot link. 

To tackle the 2D optimization problem, the robot links are modelled as segments. To 

explain the hypothesis 3 let us consider each segment representing each link as an 
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oriented segment, that starts from the point Pi and ends at the point Pi+1 (see Figure 

5.1). The front side of each robot link is then defined as the segment side that faces 

the right half-space (with respect to its orientation) formed by the straight line 

containing the segment. 

 

Figure 5.1  (a) Three-dimensional robot model, with highlighted the six revolute joint J1, ..., J6. (b) 

Bidimensional robot model, with a camera placement that satisfies the hypotheses (cameras 

represented as green triangles). 

5.2.2 Optimization procedure 

First, a definition of the space region covered by the robot is presented (see Figure 

5.2): let us consider the polygon obtained by casting the “vertical shadow” of the 

robot links. Only the polygon parts that have at least one link with the front side that 

faces the generated shadow are kept, since no camera placement allows to monitor 

the other polygon parts (because of hypothesis 3 of Section 5.2.1). The final 

geometries of these polygons, which are hereinafter referred to as robot polygons, 

are shown in Figure 5.2 (dark orange regions) for different robot configurations. The 

joint limits and link lengths were modelled similarly to the ones of the articulated 

robot Mitsubishi Electric RV4F. The last link was extended by 100 mm to consider the 

presence of an end effector. The more general problem of the case in which 

hypothesis 3 is not made can be tackled by first solving the problem under hypothesis 

3 and then solving a specular and independent problem with the hypothesis that the 

cameras are to be mounted only on the rear side of the links (left half-space of the 

oriented segments) instead of on the front side. If the joint limits are symmetric, then 

this latter problem has the same solution of the first one (same optimal placement 

but on the rear side). 
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Figure 5.2  Robot polygons for different robot configurations. 

The robot polygons are the polygons whose monitor is to be maximized. The idea is 

to maximize a quantity, henceforth referred to as degree of monitoring, that 

represents the effectiveness of the camera placement considering the whole set of 

robot configurations. In each robot configuration, cameras monitor a fraction of the 

robot polygon. This fraction depends on their placement. With reference to Figure 

5.3, let us call Ri the robot polygon of the ith configuration (i = 1, ..., N) and Cj the 

viewing frustum of the jth camera (j = 1, …, n, where n is considered fixed in this 

analysis).  

 

Figure 5.3  Various polygons involved. (a) In light green, intersection of the viewing frustum of the 

camera 1 with the robot polygon, in violet, intersection of the viewing frustum of the camera 2 with 

the robot polygon. (b) In red: robot polygon; in blue: total fraction of the robot polygon seen by the 

cameras.    

In the robot configuration i, the fraction Mi of the robot polygon Ri seen by the 

cameras can be computed according to Eq. (5.1).  
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ÝD = Þ�bD ß ��
Hi¬ � = *�Z� , Ç�   (5.1) 

Cj is a function of both the vector s = (s1, ..., sn) containing the position of each camera, 

and the vector γ = (γ1, ..., γn) containing the orientation of each camera. The 

intersection between Ri and Cj is not a simple intersection, but it is a ray intersection, 

since the robot polygon is not necessarily convex (for an example, see Figure 5.4).  

The degree of monitoring is quantitatively represented by three indices, presented in 

Eqs. (5.2-5.4) and described hereafter, each one more suitable for a specific 

optimization scope. 

Ø# =  ∑ area�ÝD�¥D�#∑ area�bD�¥D�#    (5.2) 

Ø& = 1« � area�ÝD�area�bD�
¥

D�#    (5.3) 

Ø$ = minD |area�ÝD�area�bD��   (5.4) 

 the index r1 weights the robot configuration based on the robot polygon area, 

so robot polygons with a small area (e.g. the one in bottom-right in Figure 5.2) 

affects less the camera placement;  

 the index r2 gives the same weight to each robot configuration regardless of 

the area of the robot polygon, and it is to be interpreted as a simple mean 

among all the robot configurations of the ratio Mi/Ri, which quantifies the 

degree of monitoring for a single configuration; 

 the index r3 considers only the minimum value of the ratio Mi/Ri and it is 

suitable to be considered in situations in which a minimum camera coverage 

is to be guaranteed in all the configuration, for example for safety purposes. 

To speed up the computations, after the ray intersections of Eq. (5.1), for which a 

custom analytical algorithm was exploited, the various polygons involved were 

converted into masks composed of pixel elements. These masks are binary matrices, 

and the mask areas can be computed simply by counting the number of pixels equal 

to one in the corresponding binary matrices. The parameters search space was 

discretized as well.  
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The camera viewing frustum was modelled as the one of the depth camera PMD Pico 

Flexx (considering its vertical FOV, equal to 45°), which is a ToF camera. ToF cameras 

have a blind spot (in which the measure is not reliable) near the optical centre, so the 

FOV results to be a trapezoid. 1000 robot configurations were considered, obtained 

by randomly sampling a set of reachable configurations via a Monte Carlo method, as 

done in [125, 129]. 

Figure 5.4 shows an example of the polygon resulting from a ray intersection between 

a camera viewing frustum and the robot polygon, converted afterwards into a binary 

matrix, showed for different resolution in Pixel Per Centimetre (PPC).   

 

Figure 5.4  (a) Ray intersection check between the camera frustum and the robot polygon. Light 

green region: polygon obtained after the ray intersection between the camera viewing frustum and 

the robot polygon; small dark green triangle: camera; (b) conversion of the polygon obtained into a 

binary mask of different resolutions (expressed in pixels per centimetre). 

Once defined the three indices of Eqs. (5.2-5.4) The optimization problem is then 

formulated according to Eq. (5.5): maxâ,ã *   (5.5) 

where, based on which quantity one wants to maximize, f can be intended as r1, r2 or 

r3 (referring to Eqs. (5.2-5.4)).  

The study is performed considering up to five cameras and carried out separately for 

each number of cameras. The optimization problem has computational complexity 

NP-hard, and the computational time rises exponentially by rising the number of 

cameras. Up to four cameras it was possible to solve the problem via an exhaustive 
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search. In the case of five cameras, a simple trust-region based metaheuristic 

algorithm was exploited. The algorithm was run starting from each combination of 

camera positions so that it explores only the γ space. A fixed number of random 

neighbours are generated in the n-dimensional γ space within a certain radius and the 

greatest one is picked and becomes the current γ if it is greater than the current γ. 

The cycle repeats with a gradually decreasing radius, until the process becomes a 

simple hill-climbing algorithm.  

5.3 Results 

In this section, the results concerning the optimization procedures in the case of 

number of cameras ranging from one to five are reported. Two studies were 

conducted, based on the choice of the candidate positions and orientations. These 

two studies, presented in Section 5.3.1 and Section 5.3.2, were carried out by 

considering a fixed FOV equal to 45° for each camera. One further analysis, presented 

in Section 5.3.3, concerned the evaluation of the effect of the variation of the FOV of 

the cameras, and was carried out in the case of one and two cameras. 

The algorithms were implemented in MATLAB® 2020b, by exploiting the parallel 

computing toolbox to speed up the computations, whereas the hardware used 

consisted of a Dell Precision 3520 Laptop Intel Core i7- 7700HQ-CPU 2.80 GHz, 4 cores. 

5.3.1 First type of positions and orientations discretization  

In this first analysis, ten positions and nine orientations (for each position) were 

considered as candidates for the camera placements, and chosen as shown in Figure 

5.5.  

 

Figure 5.5  Camera candidate positions and orientations. 
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In this analysis, only the placement of one camera in each position is considered. The 

candidate camera positions were chosen in the median point of each robot segment 

and in proximity of each segment endpoints, except for the segment P4P5, where only 

the median point was considered as a candidate point. The candidate camera 

orientations were chosen by dividing in eight parts the angle interval that has as 

extrema the case in which the camera has the FOV tangent to the link where it is 

mounted. Figure 5.6 shows the optimal placement of the cameras obtained by 

maximizing in turn each one of the three different indices. The figure contains only 

one robot configuration, but the optimal placement is to be intended for the whole 

set of the robot configurations. 

 
Figure 5.6  Optimal camera placements (one to five cameras) according to the maximization of the 

three different indices r1, r2 and r3. 

Figure 5.7 shows the optimal values of the indices, expressed in percentage, 

corresponding to the placements illustrated in Figure 5.6. 
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Figure 5.7  Optimal values of the three indices considered, expressed in percentage, for a different 

number of cameras, in a bar plot (a) and in tabular form (b).  

5.3.2 Second type of positions and orientations discretization 

In this second study, the number of candidate positions was increased whereas the 

number of candidate orientations was reduced. In particular, the same positions of 

the first study were considered, but this time with the possibility of placing multiple 

cameras in each one, whereas the candidate orientations were limited to five for each 

position. Figure 5.8 shows the placements found with this study. Only the placements 

for which an improvement in the values of the indices was achieved with respect to 

the first analysis are shown. The placements not shown are the same of the 

corresponding ones in the first analysis. 
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Figure 5.8  Optimal camera placements (one to five cameras) according to the maximization of the 

three different indices r1, r2 and r3. 

Figure 5.9 shows the optimal values of the indices, expressed in percentage, obtained 

by considering, where occurred, the improvements obtained by the second study. 

 
Figure 5.9  Optimal values of the three indices considered, expressed in percentage, for a different 

number of cameras, in a bar plot (a) and in tabular form (b), obtained considering the two studies.  
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5.3.3 Effect of the variation of the Field of View 

This analysis was conducted with the aim of assessing the influence of the FOV on the 

optimal value of the three indices. This study was carried out in the case of one (Figure 

5.10a) and two cameras (Figure 5.10b), and the FOV of both cameras was varied 

between 15° and 60° (with a step of 5°). The results shown are obtained by performing 

both the two studies presented in Section 5.3.1 and Section 5.3.2 and by choosing the 

highest values obtained from them. 

 

 

Figure 5.10  Variation of the optimal indices by varying the FOV of the cameras, in the case of (a) 

one and (b) two cameras. 

5.4 Discussion 

The results obtained give various insights about the optimal placement of cameras on 

the links of an articulated robot. One first consideration, which emerges by analysing 

Figure 5.6 and Figure 5.8, is that, at optimum, cameras tend to be placed oriented 

with the FOV tangent to the robot link on which they are mounted, or possibly tangent 

to the FOV of another camera, if mounted on the same position. Furthermore, the 

optimal positions are likely to be on the first and third robot segment, near the joints. 

Another consideration (cf. Figure 5.9) is that the optimal value of the indices r1 and r2 

increase in a less-than-linear way by increasing the number of cameras. In scenarios 

in which there are no constraints on a minimum percentage of the robot polygon to 

be always monitored, so that the indices r1 or r2 are suitable, results show that a good 

degree of monitoring can be achieved (up to roughly 99% with five cameras). An 

optimization based on the index r3, on the other hand, can be particularly useful in 
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situation in which the sensing of the obstacles in the critical area under the robot is 

of utmost importance in every robot configuration, for example for safety reasons. In 

the case of five cameras, the optimal values of the index r3 is around 83%, which is a 

high value but still seems not suitable to ensure a proper monitoring for safety 

purposes. However, it can be significantly improved in specific cases in which the set 

of configurations taken into account can be restricted. For what concerns the effect 

of the camera FOV, the graphs of Figure 5.10 show that it has a big impact on the 

indices r1 and r2, but it has a less significant impact on the index r3, especially in the 

case of one camera. 

The advantage of using vision sensors instead of distributed distance sensors to 

ensure a safety-aimed monitoring is that it is possible non only to sense obstacles, but 

to extract more detailed information about the obstacles, that can be better 

combined and elaborated, with, for instance, the aim of recognize the obstacle shape 

and type and behave consequently. This type of approach seems particularly 

promising considering the increase in the availability of small off-the-shelf ToF 

cameras: the more the sensor is compact, the more of them is possible to mount on 

the robot links; using a sufficiently high number of cameras, it is predictable that for 

a certain number of cameras the r3 index will step to 100% (which automatically 

implies an equality to 100% even for r1 and r2). This would grant that each robot 

polygon can be fully monitored in each configuration, which is particularly suitable for 

safety purposes. With proper computational capabilities, and possibly with an 

improvement of the meta-heuristic algorithm, this method can be applied to a greater 

number of cameras.    

5.4.1 Notes on the computational time 

Considered the NP-Hard nature of the problem, the numerical implementation of the 

exhaustive search had to be carefully designed to avoid redundant computations, and 

its basic concept is here briefly described. The problem was divided into three main 

parts. For each part, the number of computational steps T is here indicated, in terms 

of the “big O” notation.  

N: number of robot configurations; ns: number of camera positions; nγ: number of 

camera orientations (for each position). 

1. Computation of the robot polygon (Ri in Eqs. (5.1-5.4), Section 5.2.2) for every 

robot configuration. T(N) = O(N). 

2. Computation of each possible polygons obtained by ray-intersecting the 

frustum of a single camera with the robot polygon, considering all the possible 
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placements (position and orientation) of a single camera and all the robot 

configurations. T(N, ns, nγ) = O(N*ns*nγ). These polygons are then converted to 

binary masks. 

3. This is the NP-hard part, which is the core of the problem. For an exhaustive 

search, all the possible unions of n masks extracted from the set generated in 

the Point 2 are to be evaluated. T(N, ns, nγ, n) = O(N*Cns,n* nγ
n) where Cns,n 

represents the number of combinations of ns positions by group of n elements. 

This is because different cameras are considered to have different positions, 

whereas different cameras can have the same orientations (still, the case of k 

cameras placed on the same position can be considered by inserting that 

position k times as input in the algorithm). 

To limit the computational time, the product N*ns*nγ has to be sufficiently low. For 

the Point 3, this condition is not enough for a large number of cameras, since the steps 

increase exponentially. In this case, the exhaustive search can be substituted by a 

proper optimization method (usually metaheuristic methods are used in this type of 

scenarios), so that the steps do not increase exponentially; the downside, however, 

is that only a sub-optimal solution is guaranteed. One further consideration on the 

computational time is that it is highly affected (Figure 5.11a) by the resolution of the 

grid used to compute the binary masks. This resolution is to be set as low as possible 

without compromising the results; the value of 0.5 pixels per centimetre was chosen 

by an experimental evaluation on how its variation impacts on the results (Figure 

5.11b shows it in the case if two cameras). 

 

Figure 5.11  (a) Influence of the resolution of the binary mask grid on the computation time, in the 

case of two cameras; (b) optimal values of the indices for different values of the resolution, in the 

case of two cameras. 
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5.4.2 Notes on the 3D case 

The problem tackled was a bidimensional problem, even if, in reality, the robot 

configuration can lie outside the plane of Figure 5.1b (if the joint angle J4 is different 

from zero) in a way that depends on the combined value of the joint angle J4 and J5. 

Furthermore, cameras mounted after the joint J4 rotate outside the plane jointly with 

J4 and, if mounted after J6, their 3D orientation depends on both J4, J5, and J6. In the 

bidimensional case, results show that no optimal placement is on the robot last link, 

so the implications of mounting cameras after the joint J6 will not be discussed. For 

small rotations of the joint J4, a common situation in a series of practical applications, 

the hypothesis of bidimensional problem holds true. In case the hypothesis of small 

rotations of J4 does not hold true, the solution of the 2D problem can be used as a 

starting point to find the solution for the more general 3D problem. One way to 

proceed could be to consider the 2D problem as a sub-problem of the 3D one, and 

solve this latter by mounting additional cameras given the optimal placement found 

solving the proposed 2D problem. Future research is aimed at better investigating and 

developing this point. 

5.4.3 Final remarks 

The high-level aim of this study was to provide some additional tools and insights 

useful to tackle the complex problem of granting a complete and effective monitoring 

of the workspace of an articulated robot. This examined question is closely connected 

to HRC and its safety-related issues. More specifically, the aim of this study was to 

propose a methodology to maximize the observability of the space region of the 

workspace that tends to be confined between the robot and its mounting surface. 

This region is difficult to be monitored by fixed external cameras, since it can be 

occluded by the robot itself, so onboard cameras were considered. Also, external 

fixed cameras have the drawback of requiring some structuring of the environment, 

differently from onboard cameras. A bidimensional version of the problem was 

tackled by using a discrete approach, which is typical when dealing with NP-hard 

problem of this type. The optimization was carried out up to five cameras on three 

different proposed indices r1, r2 and r3, which quantify the effectiveness of the 

camera placement. The indices r1 and r2 quantify the overall observability, whereas 

the index r3 consider the worst-case observability and thus it is more safe-oriented. 

Several insights emerge from the analysis: one is that, at optimum, cameras tend to 

be placed near the robot joints and oriented with the FOV tangent to the link where 

they are mounted. Furthermore, up to five cameras, the indices are shown to increase 

in a less-than linear way by increasing the number of cameras. Even if the proposed 
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optimization relies on these indices, it is to be pointed out that the proposed 

approach can still be effective on indices constructed in different ways and tailored 

to specific situations.  
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Conclusions 

Various vision-based solutions aimed at enabling HRC inside industrial workcells have 

been proposed in this Thesis. These solutions have the scope to overcome the 

limitations of both the pure industrial and the collaborative paradigms, by endowing 

industrial robots with artificial vision. This way, the high productivity typical of 

industrial robots can be combined with the high versatility typical of collaborative 

robots.  

The first solution, central in the Thesis, consisted in the development of a collision 

avoidance method, which permits a safe coexistence between human operators and 

industrial robots. The method was developed for an articulated robot, but can be 

adapted, with minor modifications, also to other serial robot models, such as SCARA 

robots. The method produces real-time adjustments of a pre-programmed task-based 

robot trajectory, by exploiting data acquired from depth cameras. This allows to 

modify the trajectory only when needed, enhancing the robot functional flexibility 

while maintaining, when possible, the high dynamics typical of industrial robots, 

which ultimately grants elevated productivity. The proposed methodology has some 

distinctive features, concerning both the online trajectory generation and the 

obstacle tracking. The trajectory generation relies on the use of safety constraints, a 

recent approach which guarantees that the robot always keeps a distance from 

obstacles higher that a protective separation distance, while minimizing the distance 

to a reference setpoint value. Two methodologies to generate the trajectory have 

been proposed, one more conventional in which the setpoint is computed based on 

the reference motion laws and an alternative one in which the setpoint is computed 

based on geometrical considerations. The latter was observed to produce motions 

with better adherence to the shape of the reference trajectory, deviating from it only 

for a period strictly necessary to maintain the protective separation distance. For 

what concern the obstacle tracking, a methodology to track generic dynamic 

obstacles has been proposed based on the use of a voxel grid in combination with a 

GPU-accelerated particle filter, the latter being used for a fast and obstacle-

independent speed estimation. Some significant perks of the use of the voxel grid 

consist in making it possible a straightforward data fusion, enhanced with algorithms 

that accounts for boosts in measurement confidence in the case of using 

heterogeneous sensors. The fact that the obstacle tracking was designed for generic 

obstacles is significant, since it can extend the use of this methodology to the case of 

a widely unstructured environment, where it might happen that not only human 

operators, but also robots and other generic moving objects (e.g. moving parts of a 
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machinery) enter the robot workspace. Further tests are planned to improve several 

aspects of the proposed methodology, in particular the smoothness of the generated 

command and the general reliability and robustness.  

In the second part of the Thesis, two vision-based programming by demonstration 

methods have been presented. The scope was to provide intuitive interfaces (suitable 

tool for HRC) to facilitate the programming of industrial robots, for which the hand 

guiding modality typical of collaborative robots is not available. The methods consist 

in making the robot mimic a motion performed by a human operator through a 

human demonstration device, whose movement is captured by vision sensors. The 

first method relies on the use of a ToF camera and a markerless human demonstration 

device, whereas the second one on the use of a 2D digital camera combined with 2D 

fiducial markers attached to a specifically designed human demonstration device. The 

second method resulted more promising and further developments are planned, in 

order to improve its accuracy and precision.    

In vision-based HRC applications, camera placement has important implications on 

safety, which motivates the study, presented on the third part of the Thesis, on the 

optimal placement of onboard cameras, to maximize the observability of the 

workspace of an articulated robot. The aim was to maximize the observability of the 

space region of the workspace that tends to be confined between the robot and its 

mounting surface, thus being difficult to be monitored by fixed external cameras, 

which also have the drawback of requiring some structuring of the environment. The 

analysis, carried out considering a bidimensional simplified case, reports the optimal 

camera placement in case of different numbers of cameras, and gives a series of 

insights possibly useful also in real and more complex scenarios. Improvement of the 

method and future developments may consist in considering a more realistic model 

of the robot links and addressing the more general three-dimensional optimal 

placement problem of onboard vision sensors, with the aim of improving the robot 

functional flexibility and safety.  
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Appendix A. Design of the robotic cell 

In this Section the design of the robotic cell, to which the Candidate devoted the most 

part of the first year of the PhD, is described. The cell was designed from scratch, with 

the aim of realizing a functionally flexible testbed suitable for both academic research 

and industrial applications.  

A.1   Layout definition 

The knowledge of the two robot models, which were provided to the TAILOR 

laboratory by Mitsubishi Electric, represented the starting point in the design of the 

robotic cell. Exploiting this initial information, the first step was the definition of the 

layout, specifically the choice of the distance between the two robots, the choice of 

the various devices to include and where to place them, and the overall dimensions 

of the frame. Figure A.1 shows a top-view (a) and front view (b) of the final layout, in 

which the robot workspaces, the rotary table, the conveyor belts and the fixed 

worktables are depicted. These devices were chosen with the aim of realizing a layout 

possibly resembling an automatic robotized machine. At the same time, the focus was 

not on a specific task, but on granting the possibility of testing different types of 

applications. Since the RV4F can translate due to the railway, its workspace (showed 

in red) is not fixed, but can be moved (dashed lines) towards the worktable at its left 

or towards the RH1F robot (workspace fixed, shown in blue), up to a significant 

workspace intersection, that allows tasks in cooperation. The rotary table, shown in 

green, was placed in a position reachable from both the RH1F and the RV4F (given 

that is properly positioned on the railway). In occurrence, the position of the rotary 

table can be modified to a certain extent (dashed green lines). In addition, also the 

height of the rotary table can be adjusted by manually turning a knob (the mechanism 

is descripted more in detail in Section A.2.4).  

The conveyor belt crossing the whole the robotic cell, henceforth named Conveyor 

belt A, was placed in such a way that it intersects the workspaces of both robots, in 

order to be accessible by both, for example for pick-and-place operations “on the fly” 

on the moving conveyor belt. The other conveyor belt, henceforth named Conveyor 

belt B, has the function of transporting objects on the rotary table. 
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Figure A.1  Layout of the robotic cell. (a) top view; (b) front view. In red: RV4F workspace (dashed 

line: possible translation, thanks to the railway); in blue: RH1F workspace; in green: rotary table 

(dashed line: possible translation); other elements in grey: robotic cell internal facades, conveyor 

belts, worktables. 

Figure A.2 shows a top view of the CAD model, to further illustrate the disposition of 

the various elements inside the robotic cell. Other than the devices of Figure A.1, also 

the areas (at the height of the Conveyor Belt A) framed by the three Omron FH-SCX 

cameras (cf. Figure 2.3) are shown. Referring to Figure A.2, CAMERA 0 and CAMERA 1 

were mounted over the Conveyor belt A to frame the objects transported on it, either 

entering or exiting the cell (the conveyor motion is possible in both directions). The 

camera optics were chosen to frame only a window of the width of the conveyor belt, 

so that the resolution is fully exploited. CAMERA 1 has wider optics and it is placed so 

that it can frame both the rotary table and the Conveyor belt A.  
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Figure A.2  Top view of the robotic cell CAD, where the main elements of the layout can be seen: in 

clear blue and clear red the workspace of the RV4F and of the RH1F, respectively; in blue the 

conveyor belts, in light blue the fixed worktables, at the centre the rotary table, in yellow the areas 

framed by the Omron FH-SCX camera at the height of the Conveyor belt A. 

A.2   Mechanical design 

For the mechanical design, the CAD Software SolidEdge was utilized. First, starting 

from the layout previously defined, a set of assembly groups were identified, and for 

each the various components were 3D designed. Afterwards, the as-built drawings 

were created for each single and assembly parts. For the manufacturing, except for 

the frame, most of the non-commercial components of the various assembly groups 

were realized in aluminium by CNC machining. In the next part, each main assembly 

group is briefly described.  

A.2.1   Frame 

Two main requirements were accounted in the design of the frame. The first one was 

to bestow it with sufficient rigidity, needed to limit the vibrations due to the robots’ 

high dynamic, especially of the RH1F robot (SCARA robots are renowned for their high 

speed). The second one was to make it transportable through the stairs of the TAILOR 

laboratory, located at the first floor of the building. This second necessity required 

the division of the frame in different parts, to be assembled once transported in place. 

It is noteworthy the fact that dividing the frame in several parts affects its rigidity in a 

negative way, so a trade-off between the two requirements was necessarily made. 

The structure was realized in a series of welded parts as shown in Figure A.3, 

transported in place and then assembled together by means of bolts. The structure is 

mainly composed of Fe360 hollow tubulars of 80 x 80 mm section and 4 mm thickness. 
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Also, a thinner welded part was realized in the rear as a place for the electrical panel. 

To confer further rigidity to the structure, gusset plates were mounted at the frame 

corners, as shown in Figure A.3b. Figure A.3b also shown other elements, such as 

supporting plates in the lower part of the frame, a thick plate onto which the RH1F 

robot was mounted (ceiling mounting) and a planar structure composed of aluminium 

profiles, which served as a mounting place for the two conveyor belts, the rotary 

table, and the fixed worktables. 

The aluminium profiles were used since they have the advantage of granting an easy 

fixing of the components over them and the possibility of modifying their position in 

a straightforward way, which accounts for future modifications, thus granting more 

functional flexibility. 

 
 

Figure A.3  (a) Welded parts to be mounted to constitute the frame. (b) additional elements, such 

as supporting plates in the lower part, the gusset plates, the plane of aluminium profiles and the 

fixture plate for the RH1F robot.  

A.2.2   RV4F railway 

The railway for the articulated robot RV4F is moved by means of a recirculating ball 

screw (by the company HIWIN), connected to a Mitsubishi Electric 1.5 kW brushless 

motor coupled with a reductor with a reduction ratio of 16. Figure A.4 shows the CAD 

assembly (a) and (b) and two pictures (c) and (d) of the railway. The railway has a total 

mechanical stroke of 540 mm.  
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Figure A.4  (a) CAD railway composed of all its elements; CAD (b) detail of the recirculating ball 

screw. (c), (d): picture of the railway. 

A.2.3   Conveyor belt A 

The Conveyor belt A (CAD assembly shown in Figure A.5) can transport objects from 

one end to the cell to the other (cf. Figure 2.1), goes through the robots’ workspace, 

so that they can pick objects from it, and is monitored by three Omron FH-SCX 

cameras. It is driven by a Mitsubishi Electric 400 W brushless motor coupled with a 

reductor with a reduction ratio of 7. The belt fabric (blue in Figure A.5 for visualization 

purpose) is made of polyurethane, which confers it high friction, useful to prevent 

unwanted slips of the objects due to rapid variations of the conveyor belt speed. At 

the belt sides, it has two barriers that prevent objects from falling, one of which is 

adjustable and allows to reduce the disposable width. At its beginning and end, it is 

endowed with polycarbonate tunnels to prevent the intrusion of limbs into the 

interior dangerous parts of the robotic cell. 

 
Figure A.5  CAD assembly of the Conveyor belt A. 
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A.2.4   Rotary table 

The rotary table is shown in Figure A.6 (two CAD assembly views and a picture). The 

assembly is composed of a mechanism to adjust the rotary table height. This can be 

done by manually turning a knob, the rotation of which is transmitted to a trapezoidal 

screw (shown in green) which makes a nut translate. The nut is connected in a fixed 

way to the rotary table plate, which moves accordingly. The rotation of the table is 

driven by a Mitsubishi Electric 400 W brushless motor coupled with a reductor with 

reduction ratio of 50, which transmits the motion to the rotary table by means of a 

belt-pulleys coupling, with a reduction gear of roughly 2. 

 
Figure A.6  (a), (b) Two different views of the CAD assembly of the rotary table. Both its driving 

mechanism and height regulation mechanism can be seen. (c): picture of the rotary table. 

A.2.5   Conveyor belt B 

The Conveyor belt B, shown in Figure A.7, has the task of transporting objects to the 

rotary table. It is equipped with a mechanism to manually adjust its height that works 

with the same principle of the one of the rotary table. Like the Conveyor belt A, it is 

driven by a Mitsubishi Electric 400 W brushless motor coupled with a reductor with a 

reduction ratio of 7. Also, its belt fabric is polyurethane, and it is endowed with one 

adjustable barrier and a polycarbonate tunnel, this latter for safety purposes. 
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Figure A.7  (a), (b) Two different views of the CAD assembly of the Conveyor belt B. Both its driving 

mechanism and height regulation mechanism can be seen. (c), (d), (e) Three pictures of the Conveyor 

Belt B. 

A.2.6   Carters 

Figure A.8 shows the robotic cell’s both fixed and mobile carters. The rear-upper part 

of the cell is endowed with three movable guards, whereas other movable guards are 

present on each of the upper part of the short sides of the cell. This way, the access 

to the various devices is granted, allowing regulations, modifications and 

maintenance, other than to deposit workpiece on the worktables. Each movable 

guard is equipped with security switches and safety light curtains. The rear lower part 

is reserved to the electrical panel. The carters are manufactured in polycarbonate. 

 
Figure A.8  Rear view of the robotic cell, complete of all its components. 
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A.3 Wiring and piping design 

A high-level conceptual scheme of the wiring and piping is shown in Figure A.9. The 

various mechanical drives other than the robots (railway, conveyor belts, rotary table) 

are connected and configured as robot additional axes (each robot can manage up to 

two additional axes). More precisely, the railway and the Conveyor belt A, are 

configured as RV4F additional axes, whereas the rotary table and the Conveyor belt B 

are configured as RH1F additional axes. This configuration (possible if using brushless 

motors) has the advantage of granting both higher versatility and ease of 

programming of the working cycle. In fact, the motions of the additional axes can be 

directly programmed inside the Mitsubishi Electric proprietary robot programming 

software RTToolbox3. The programming is normally carried out on an external 

computer connected to the robotic cell ethernet switch, which allows to transfer the 

robot programs to and from the robots’ controller. By means of the Graphic Operator 

Terminal (GOT), also connected to the ethernet switch, it is possible to start/stop the 

working cycle, regulate the cycle speed and perform other operations, while directly 

monitoring the cycle (it is attached to the very front left of the robotic cell, at the left 

of the two robot teaching pendants, cf. Figure 2.1a).  

For additional monitoring purposes, in the rear of the cell a Raspberry Pi 4, connected 

to the ethernet switch, is used to output visualization data on a screen. Furthermore, 

robots are connected to their teaching pendants, which enable robot jogging. The 

pneumatic circuits of the scheme of Figure A.9 derives from the necessity of managing 

the robots’ pneumatic grippers, whose closing/opening is commanded by means of 

electrovalves (also known as solenoid valves). The device that controls the various 

signals is a modular PLC, which manage the communications between the 

miscellaneous devices inside the cell, both in terms of inputs/outputs and in terms of 

more complex data types. The various vision sensors are connected in different ways, 

some of them to the ethernet switch of the robotic cell, whereas some of them (the 

ones that come with USB connectors) are directly connected to the external 

computer. 
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Figure A.9 Conceptual scheme of the wiring and piping of the robotic cell. 
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Appendix B. ROS architecture 

One of the primary purposes of the use of ROS was the need of an easy and efficient 

way to handle multithreading, given the various processes involved running at 

different frame rates. ROS makes use of nodes and topics, represented in Figure B.1. 

Nodes are processes that run independently at their own frequency and can 

communicate with other nodes by means of topics. A node can publish messages to a 

topic; these messages can be retrieved by other nodes that subscribe to that topic. 

 

Figure B.1  ROS nodes exchanging messages (Msgs) by means of a topic. 

The implemented ROS architecture is shown in Figure B.2. The various nodes of the 

Realsense and the Kinect, encapsulated in coloured blocks, come from the already 

available packets [130] and [131], respectively. In the actual implemented 

architecture, the online trajectory generation is handled by the node generate_traj, 

whereas the obstacle tracking part by the other various nodes.  

The ROS architecture also comprehends a hardware interface, having the function of 

communicating with the robot controller (in a nutshell, packing command data in a 

specific format and sending them to a UDP socket). The hardware interface was 

implemented by modifying the already available ROS code [132], written for a similar 

Mitsubishi Electric robot controller.   
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Figure B.2  ROS architecture 
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Appendix C. Basic notions on camera 

calibration 

The term calibration can refer to either intrinsic calibration or extrinsic calibration. 

Figure C.1 highlights the difference and shows the main elements involved, here 

reported: 

Optical Axis Zc  

Optical centre O 

Image plane: plane perpendicular to the optical axis, located at a distance f 

(focal length) from it. 

Principal point C:  intersection between the optical axis and the image plane. 

Three reference frames are involved: 

Camera RF (Xc, Yc, Zc): 3D reference frame with origin on the optical centre and 

optical axis as z-axis. 

Image RF (x, y):  2D reference frame located on the image plane, with origin 

in C and x and y axis orientated as the one of Camera RF. 

Global RF (X, Y, Z):  generic 3D reference frame with a pose different from 

Camera RF. 

Intrinsic calibration refers to the process of estimating the perspective transformation 

(which incorporates f and C) that allows one to transform a point P from the camera 

coordinates to the image coordinates. This relies on the use of the so-called pinhole 

camera model, that can be added complexity if accounting for example for lens 

distortions. For RGB cameras, intrinsic calibration usually relies on the use of 

chessboards patterns, whose images, acquired in different poses, are then processed 

by specific algorithms that estimates the camera intrinsic parameters.    

Extrinsic calibration refers to the process of estimating the rigid transformation 

between the reference frame of the sensor considered and an external global 

reference frame. Extrinsic calibration can be done in different ways, depending on the 

sensor type, features of the scene, needed accuracy, position of the global reference 

frame and so on. A common case is the estimation of the transformation between the 

Camera RFs of two RGB cameras. In this case the extrinsic calibration can once again 
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rely on the use of a chessboard pattern, acquired by both cameras in different poses, 

and related processing algorithms.  

 

 

Figure C.1  Main elements involved in intrinsic and extrinsic calibration. 
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Appendix D. GPU implementation of the 

particle filter 

Here some insights about the GPU-parallelized implementation of the particle filter 

are given. It is to be considered, however, that for the sake of conciseness only the 

main steps are presented and in a simplified way. 

The GPU implementation exploited the functionalities of the NVIDIA CUDA (Compute 

Unified Device Architecture) parallel computing platform. In particular, other than 

some of the CUDA Toolkit basic functionalities, explained in the book [133], the 

following CUDA libraries were used: 

 cuRAND: random number generation library, which contains efficient 

generation of high-quality pseudorandom and quasirandom numbers;  

 Thrust: provides a rich collection of data parallel primitives, such as containers 

and parallelized versions of common algorithms.  

1 – Creation and initialization of GPU particle arrays 

The particle-related quantities are created on the GPU as seven large memory arrays, 

each of fixed length equal to the maximum number of total particles np = Qmax*Nvox (= 

96*37156 = 3566892 particles) and initialized with zeros. Let us denote with the index 

k the kth cell of a GPU array (k = 1, …, np). A representation on how the particles are 

stored on the GPU is shown in Figure D.1. 

 

Figure D.1  Representation of the GPU memory arrays used to store the particle-related quantities. 
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In the initialization stage of the particle filter, a number of particles equal to Qmax 

times the number of type3-voxels is generated and stored in a first fraction of the GPU 

arrays, leaving the other cells to the initialization value (zero). This is done by 

exploiting the CUDA library cuRAND. 

2 – Particle evolution  

Each particle is evolved according to Eq. (3.70). The evolution is parallelized over the 

total number of particles. 

3 – Particle selection 

1 – For each particle, the index j of the voxel where it belongs is computed (if after 

the evolution stage it ended up inside the control volume) and stored in the GPU array 

par_vox. This is parallelized over the total number of particles. 

2 – If the particle ended up outside the control volume or not inside a type3-voxel, 

the corresponding cell of x is set to zero. It is worthy to note that zero can be used as 

a value to mark a particle as “eliminated” since the probability of a particle having x 

exactly equal to zero (accounting also the machine precision) is nearly zero, and in the 

case it happens simply the particle is eliminated, not causing unexpected behaviours.  

To evaluate if the particle belongs to a type3-voxel, a GPU array version of the vector 

vox_type is used. 

Figure D.2 shows the GPU arrays and the manipulations involved in this stage.   

 

Figure D.2  Particle selection methodology. 

4 – Particle reorganization 

In this stage, summarized in Figure D.3, all the particle-related GPU arrays are 

reorganized, using the functions of the CUDA library Thrust. More specifically, the x 

array is partitioned so that all the non-zero elements are collected into a first part and 

all the zero element into a second part. y, z, u, v, w, ζ, par_vox are then reordered 
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according to the same index permutation used for the x partition. Then, the first nps 

(number of survived particles) particles are reordered so that the corresponding voxel 

index is in ascending order, and, inside the groups of particles with the same voxel 

index, the particles are sorted in ascending order of ζ. This was done in an efficient 

way by exploiting two consecutive stable sort algorithms operating on the first part 

of the arrays, containing only the survived particles.  

 

Figure D.3  Particle reorganization steps. 

5 – Counting of the number of particles associated to each voxel and computation of 

the voxel speed 

The voxel speeds are stored in a GPU array of length Nvox. The current number of 

particles contained in each voxel is stored in another GPU array, of length Nvox, named 

Q, used in the next stage. Some passage needed for the construction of Q and for 

computing the velocity to associate to each voxel (cf. Eq. (3.71)), exploited the CUDA 

function atomicAdd. 
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6 – Resampling 

By exploiting the GPU arrays Q, vox_type and the scalar Qmax (number of max particles 

per voxel), it is possible to fill the GPU arrays Qadd, and Qrmv, containing the number of 

particles to be added or removed in each voxel. These latter, in turn, can be used to 

fill the GPU arrays indadd and indrmv, which contains the indices of x (and others 

particle-related arrays) where to start to add or remove (set to zero) block of particles 

(whose dimensions are contained in Qadd and Qrmv). indadd and indrmv were computed 

by exploiting the exclusive_scan function of the Thrust library: the kth cell of indadd (or 

indrmv) is obtained by summing the previous k-1 cells of Qadd (or Qrmv). The particle 

addition consists in overwriting part of the memory region containing zeros on the 

second part of the GPU particle-related arrays. Their organized structure, combined 

with use of Qadd, indadd and Qrmv, indrmv allows to fully parallelize this stage, which was 

the main scope of the reorganization stage. The generation of the new particles relies 

on the CUDA library cuRAND. The main passages are summarized in Figure D.4 and 

Figure D.5.  

 

Figure D.4  Various GPU arrays involved in the resampling stage. 

 

 

Figure D.5  Particle remotion and generation, carried out during the resampling stage. 
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One last consideration concerns the fact that, when adding particles, it is theoretically 

possible that the particle-related arrays overflow, because the particles set to zero in 

this stage are kept in the first part of the array, and no new particles can be added 

there. In practice, however, this is extremely unlikely, since the dynamic obstacles 

occupy only a relatively small fraction of the entire voxel grid and np demonstrated to 

be a sufficient length in all the experimental tests conducted. In any case, the actual 

implementation accounts for a possible overflow and takes specific measures in 

occurrence. The consideration that dynamic obstacles typically occupy a small 

fraction of the voxel grid can be viewed as a cue to implement strategies to reduce 

the GPU memory usage, considering for example shorter arrays to store the particle-

related quantities or variable-size arrays. 
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