
1

Alma Mater Studiorum – Università di Bologna

DOTTORATO DI RICERCA IN

MECCANICA E SCIENZE AVANZATE DELL’INGEGNERIA

Ciclo XXXIV

Settore Concorsuale: 09/A2

Settore Scientifico Disciplinare: ING-IND/13

VISION-BASED SOLUTIONS FOR HUMAN-ROBOT COLLABORATION IN

INDUSTRIAL WORKCELLS

Presentata da: Ivo Campione

Coordinatore Dottorato Supervisore

Prof. Marco Carricato Prof. Marco Troncossi

Esame finale anno 2022

2

3

Abstract
Industrial robots are playing a central role within the context of Industry 4.0, enabling

the flexible industrial automation typical of the modern Smart Factories. The key

feature of industrial robots is that they are functionally flexible and capable of

operating at high speed, repeatability and accuracy. One caveat of industrial robots,

however, is that, for safety reasons, they have to be relegated inside closed fences

and/or virtual safety barriers, to keep them strictly separated from human operators.

This can be a limitation in some scenarios in which it can be useful to combine the

human cognitive skill and know-how with the accuracy and repeatability of a robot,

or simply to allow a safe coexistence in a shared workspace. To fill this gap, in the last

decades a new paradigm in robotics has emerged, and it is represented by the

collaborative robots, often referred to as cobots. Cobots are intrinsically limited in

speed and power in order to share workspace and tasks with human operators. Other

than that, they provide an additional and very intuitive programming method, the

hand guiding method, which consists in programming the trajectory by manually

guiding the robot through the desired waypoints. Cobots, however, come with some

limitations: concerning speed and power, they cannot compete with industrial robots,

and are thus useful only in a limited niche, where they can actually bring an

improvement in productivity and/or in the quality of the work thanks to their synergy

with human operators.

This Thesis falls inside the very recent trend of proposing methods to overcome the

limitations of both the pure industrial and the collaborative paradigms, by combining

industrial robots with artificial vision. This way, the so-called human-robot

collaboration is achieved in a non-intrinsic fashion, since it does not leverage on the

robot itself, but on additional external sensors. Modern vision sensors provide a

detailed real-time perception of the surrounding environment that can serve to

enhance the safety and the robot functional flexibility, which are key features in an

environment shared simultaneously by human operators and robots. In particular,

vision can be exploited for a real-time adjustment of the pre-programmed task-based

robot trajectory, by means of the visual tracking of dynamic obstacles (e.g. human

operators). This strategy allows the robot to modify its motion only when necessary,

thus maintain a high level of productivity but at the same time increasing its

versatility. Other than that, vision offers the possibility of more intuitive programming

paradigms for the industrial robots as well, such as the programming by

demonstration paradigm. These possibilities offered by artificial vision enable, as a

matter of fact, an efficacious and promising way of achieving human-robot

collaboration, which has the advantage of overcoming the limitations of both the

previous paradigms yet keeping their strengths.

4

1

Acronyms
2D Two-dimension

3D Three-dimension

AR Augmented Reality

CAD Computer-Aided Design

CCD Charged Coupled Device

CMOS Complementary Metal-Oxide Semiconductor

CPU Central Processing Unit

DOF Degree of Freedom

DH Denavit-Hartemberg

FMS Flexible Manufacturing System

FOV Field of View

FPGA Field Programmable Gate Array

GOT Graphic Operator Terminal

GPU Graphics Processing Unit

HDD Human Demonstration Device

HG Hand Guiding

HRC Human-Robot Collaboration

ICP Iterative Closest Point

IDE Integrated Development Environment

IR Infrared

LiDAR Light Detection and Ranging

NUI Natural User Interface

OCR Optical Character Recognition

PbD Programming by Demonstration

PCHIP Piecewise Cubic Hermite Interpolating Polynomial

PFL Power and Force Limiting

PLC Programmable Logic Controller

PSD Protective Separation Distance

QP Quadratic Program

RF Reference Frame

RGB Red-Green-Blue

RGB-D Red-Green-Blue-Depth

SMS Safety-Rated Monitored Stop

SSM Speed and Separation Monitoring

TCP Tool Centre Point

ToF Time-of-Flight

TUI Tangible User Interface

2

UDP User Datagram Protocol

URDF Unified Robot Description Format

USB Universal Serial Bus

VR Virtual Reality

1

Contents
1 Introduction ... 4

1.1 Industrial vs. collaborative robots ... 5

1.1.1 Industrial robots .. 7

1.1.2 Collaborative robots .. 9

1.2 Artificial vision ... 12

1.2.1 2D cameras .. 14

1.2.2 3D cameras .. 15

1.3 Human Robot Collaboration in industrial settings by means of artificial vision 19

1.3.1 Collision avoidance .. 22

1.3.2 Programming by demonstration ... 30

1.4 Problem statement: the necessity of a new paradigm ... 31

2 Experimental setup .. 34

2.1 Robotic cell .. 34

2.2 External workstation and programming frameworks ... 37

3 Collision Avoidance .. 38

3.1 Online trajectory generation ... 41

3.1.1 RV4F robot kinematics ... 41

3.1.2 Pre-programmed reference trajectory .. 44

3.1.3 Safety constraints .. 47

3.1.3.1 Single robot-point .. 47

3.1.3.2 Multiple robot-points .. 50

3.1.4 Constraints on joint position, velocity, acceleration ... 51

3.1.4.1 Joint position constraint .. 51

3.1.4.2 Joint velocity constraint ... 51

3.1.4.3 Joint acceleration constraint ... 52

3.1.5 Optimization problem ... 53

3.1.6 Reference trajectory heading point... 55

3.1.6.1 Heading point computation – laws of motion approach... 55

3.1.6.2 Heading point computation – geometrical approach ... 55

3.2 Obstacle tracking ... 59

3.2.1 Control volume .. 60

3.2.2 Camera placement... 61

3.2.3 Camera extrinsic calibration .. 62

3.2.3.1 Step 1: estimation of an initial transformation ... 63

2

3.2.3.2 Step 2: refinement ... 64

3.2.4 Voxel-based data fusion .. 66

3.2.4.1 Creation of a voxel grid .. 66

3.2.4.2 Filtering, voxelization, data fusion ... 68

3.2.5 Voxel types .. 72

3.2.6 Robot body filter .. 73

3.2.7 Speed estimation by particle filter .. 76

3.2.7.1 Initialization ... 77

3.2.7.2 Evolution .. 77

3.2.7.3 Measurement-based particle selection and voxel speed estimation 78

3.2.7.4 Resampling .. 78

3.2.8 Obstacle segmentation .. 79

3.2.9 Input quantities in the online trajectory generation block ... 81

3.3 Other features and remarks .. 82

3.3.1 Fault handling .. 82

3.3.2 Operating modalities ... 83

3.3.3 Enabling the real-time communication with the robot controller .. 84

3.4 Results ... 85

3.5 Discussion .. 97

4 Programming by demonstration ... 100

4.1 Markerless PbD method using a ToF camera .. 100

4.2 PbD using a 2D digital camera and fiducial markers ... 104

4.3 Discussion .. 114

5 Investigation on the placement of onboard cameras ... 116

5.1 Background .. 116

5.2 Materials and Methods ... 118

5.2.1 Problem simplification ... 118

5.2.2 Optimization procedure .. 119

5.3 Results ... 123

5.3.1 First type of positions and orientations discretization .. 123

5.3.2 Second type of positions and orientations discretization ... 125

5.3.3 Effect of the variation of the Field of View .. 127

5.4 Discussion .. 127

5.4.1 Notes on the computational time ... 128

5.4.2 Notes on the 3D case ... 130

5.4.3 Final remarks ... 130

3

Conclusions .. 132

Appendix A. Design of the robotic cell .. 134

A.1 Layout definition ... 134

A.2 Mechanical design ... 136

A.2.1 Frame .. 136

A.2.2 RV4F railway ... 137

A.2.3 Conveyor belt A .. 138

A.2.4 Rotary table .. 139

A.2.5 Conveyor belt B .. 139

A.2.6 Carters .. 140

A.3 Wiring and piping design ... 141

Appendix B. ROS architecture ... 143

Appendix C. Basic notions on camera calibration ... 145

Appendix D. GPU implementation of the particle filter .. 147

References ... 152

4

1 Introduction

Since the 60s, when the first industrial robot appeared, robots have evolved,

diversified and proceeded to become more and more popular in many fields. Robotics

is nowadays a well-known research branch that fuses computer science with

engineering and, especially in the industrial field, robots have established as pivotal

devices in a plethora of different applications. The main fields in which robots can be

found are here listed:

• Industry: they are efficaciously used in many tasks as pick and place, palletizing,

welding, painting, machining, drilling, machine tending and so on.

• Medical field: they aid with surgery, rehabilitation, training.

• Military field: mobile robots are used for bomb disposal, surveillance,

transport, search, rescue, and other military operations.

• Domestic use: domestic robots are utilized to perform various daily tasks at

home, for example for cleaning or assistance.

• Exploration: space (e.g. the Mars Curiosity Rover), deep sea (e.g. the Ocean

One).

• Constructions: they can serve to aid in dangerous and/or impractical tasks

which arise when constructing and doing the maintenance of building or other

facilities.

• Entertainment and other social activities: they have also been used for

entertainment purposes in various places such as amusement parks, sports etc.

The focus of this Thesis will be on the robots used in the industrial field, namely both

the traditional industrial robots and the more recent collaborative industrial robots.

Artificial vision, also central in this Thesis, is nowadays a powerful tool that can be

used to acquire real-time detailed information about the environment, thanks to the

advancements in technology and to the vast and mature research behind it. The

combination of both industrial robots and artificial vision has the potential of being

highly beneficial inside the context of Human-Robot Collaboration (HRC), which is a

recent, multidisciplinary and very hot research topic that aims at breaking down the

barriers (both metaphorically and literally) between human and robots, to realize a

workplace with enhanced flexibility, productivity and interconnections. This Thesis

gives a contribution inside this context by proposing some methods to endow

5

industrial robots with artificial vision, with the aim of enhancing their functional

flexibility, making possible a safe coexistence with human operators and

implementing some intuitive robot programming methods. The motivation and the

problem statement will be better defined in Section 1.4, after having analysed some

concepts concerning industrial and collaborative robots, artificial vision and HRC.

The Thesis is structured as follows:

1. Introduction: some brief notions about industrial robots, collaborative robots and

artificial vision are given, by emphasizing the distinctive features of each one. Then, a

state of art of industrial HRC is carried out, with particular emphasis on integration of

industrial robots with artificial vision. Lastly, the aim and motivation of the Thesis is

stated.

2. Experimental setup: the experimental setup is described.

3. Description of the method: the proposed methods to enable HRC are described,

and concerns:

 a collision avoidance method;

 two programming by demonstration methods;

 a study on the optimal placement of cameras.

4. Conclusions: conclusions are drawn.

1.1 Industrial vs. collaborative robots

In modern industries both traditional industrial robots and collaborative robots can

be found. As reported by the International Federation of Robotics [1] and shown in

Figure 1.1, the annual operational stock of industrial robots (traditional +

collaborative) is significantly rising, almost triplicating in the last decade. This high

demand is due to the ongoing trend towards automation and continued technological

innovation in industrial robotics.

6

Figure 1.1 Annual operational stock of industrial (traditional + collaborative) robots [1].

Figure 1.2 shows the annual installation of traditional industrial robots and

collaborative robots. One first consideration is that traditional industrial robots are

the vast majority of the robots installed, although there is an increase in the

percentage of collaborative robots. One second consideration is that there is a slightly

drop in installation starting from 2019, which reflected the difficult times the two

main customer industries, automotive and electrical/electronics, experienced.

Figure 1.2 Annual installation of collaborative and traditional industrial robots [1].

As it can be seen, collaborative robots are still relegated to a limited niche. To fully

understand the reason why, in the next Sections both the traditional industrial robots

7

and collaborative robots are described, with the aim of highlighting both their

strengths and limitations. Henceforth, for sake of brevity, traditional industrial robots

will be referred to as industrial robots, whereas collaborative industrial robots will be

referred to as collaborative robots or simply cobots.

1.1.1 Industrial robots

According to ISO 8373:2012 [2], An industrial robot is an “automatically controlled,

reprogrammable, multipurpose manipulator programmable in three or more axes,

which can be either fixed in place or mobile for use in industrial automation

applications”.

This definition specifies the key characteristics that classify an industrial device as a

robot:

 Having at least three axes

 Automatically controlled: the robot control system operates in accordance

with a task program, which is a set of instructions for motion and auxiliary

functions that define the specific intended task.

 Reprogrammable: designed so that the programmed motions or auxiliary

functions can be changed without alterations of the mechanical systems.

 Multipurpose: capable of being adapted to a different application without

physical alteration.

 Manipulator: machine for the purpose of grasping and/or moving objects like

pieces or tools. The end effector is not part of the manipulator

 Fixed in place or mobile: the robot can be mounted to a stationary point, but

it can also be mounted to a non-stationary point, e.g. railways.

As it emerges, the robot and its controller form a complex and highly versatile system.

The mechanical structure is composed of a series of links connected by joints, in a

variable number, typically from three to six. The most common architectures that can

be found on the market are the following:

 Articulated robot

 SCARA robot

 Delta robot

 Cartesian robot

 Cylindrical robot

 Spherical robot

Among all, the articulated robot is possibly the most common in industrial

applications, due to its high dexterity provided by its six actuated revolute joints.

8

In Table 1.1 the typical features of an industrial serial robot are quantitatively

summarized:

Table 1.1 Range of the main indicators of an industrial robot

Axis number 3 – 6

Payload (kg) 3 – 200

Maximum reach (mm) 500 – 3000

Maximum joint speed (deg/s) 600

Repeatability (mm) 0.01 – 0.1

Weight (kg) 30 – 1500

The ranges of values of Table 1.1 are extremely wide, especially in terms of payload,

weight and maximum reach. An industrial robot can operate at high power and speed,

which makes it a perfect candidate for automated tasks in which both a high

productivity and a high functional flexibility are needed. On the other hand, since it

operates at high speed and power, it has to comply with strictly safety requirements,

and the human-robot collaboration is normally not contemplated. In fact, industrial

robots are relegated inside closed fenced and/or virtual safety barrier, which have to

be designed in compliance with ISO 10218-2:2011 [3].

Industrial robots are the ideal candidates to be exploited in a system of programmable

or flexible automation, that is to say in a context of production of batches of variable

features, since they can easily adapt the sequence of the operations to the gamma of

product variations. They can be utilized both in rigid manufacturing systems and in

Flexible Manufacturing Systems (FMS). Here are reported some of the main

applications:

• Pick and place

• Palletization

• Machine tending

• Selection and sorting

• Packaging

• Quality control and inspection

Some other applications concern manufacturing operations, such as:

• Arc welding and spot welding

• Spray painting and coating

• Bonding and sealing

• Laser cutting and water cutting

• Deburring and grinding

• Tightening, wiring and fixing

• Assembly of mechanical groups, electrical groups and electronic boards

9

1.1.2 Collaborative robots

Collaborative robots, often referred to as cobots, usually have a mechanical structure

similar to the industrial articulated robot. A variation could be the presence of an

additional axis (e.g. the KUKA LBR iiwa), generally located on the elbow, or a double

arm configuration (e.g. the ABB YuMi). These latter configurations are kinematically

redundant and allow them to execute the main task while fulfilling a secondary task,

for example minimizing the occlusion of a particular workspace area or avoiding

collisions by moving the elbow. This comes with the cost of a more complex design

and control algorithms.

Some other distinctive features are the presence of torque and/or force sensor on the

joints and/or wrist and the design without sharp edges.

Differently from industrial robots, cobots provide for the possibility of interaction

with human operators, since they are designed to be intrinsically safe. Incidentally, it

is to be pointed out that even if the cobots are intrinsically safe, there could be a risk

depending on the application (e.g. if a dangerous tool is mounted on the robot), so an

hazard identification and a risk assessment are in any case required. This intrinsic

safety is realized in compliance with the technical specification ISO/TS 15066:2016

Collaborative Robots [4], which establishes four collaborative modalities, here briefly

described (a detailed description is provided by Villani et al. in [5]):

1. Safety-Rated Monitored Stop (SMS): it is the simplest type of collaboration; the

robot stops with a Stop of Category 2 [6] (power is left available to the machine

actuators after the movement ends) if a human operator enters the

collaborative area, and resumes the cycle after the operator leaves the

collaborative area. In modern industrial robots, this functionality is usually

provided by means of the addition of optional safety modules.

2. Hand Guiding (HG): the operator can teach the robot waypoints by hand guiding

the end effector through them. This collaborative scenario requires the robot to

be equipped with both the safety-rated monitored stop and the safety-rated

monitored speed functionality.

3. Speed and Separation Monitoring (SSM): it allows the human presence within

the robot workspace, given that a protective separation distance is always

guaranteed. This distance can be computed from data acquired through safety-

rated monitoring sensors.

4. Power and Force Limiting (PFL): this collaborative modality allows the human

to physically interact with the robot, at the cost of specific and significant

limitations on the robot actuators power and exchangeable forces.

10

Cobots are designed to enable out-of-the-box the 1,2 and 4 collaborative modalities

(a risk assessment, however, is in any case needed). Their light-weight mechanical

design is a consequence of the necessity of fulfilling the Point 4 - Power and Force

Limiting, which provides for the possibility of contact with the moving parts of the

robot. The contacts can be intentional or non-intentional, and, based on their physical

modality, can be classified as transient or quasi-static. The former refers to a short-

dynamic free contact (< 500 ms) where the operator body part is not clamped and

can retract from the moving part of the robot system, whereas the latter refers to

cases in which the human body part is clamped for an extended time between the

robot and another component. The cobots are designed so that the kinetic energy

exchanged during the impact is limited and fall under specific thresholds defined in

the technical specification (which vary in the case of transient or quasi-static contacts)

ISO/TS 15066:2016 [4]. The fact that the exchanged energy depends on both the mass

and the speed entails the limitations on the cobots weight and speed, which are key

factors in defining its safe level. When fulfilling the PFL collaborative mode, other than

limiting the exchanged energy, one must also comply with limits on other related

quantities, specifically the maximum force and pressure that can be exerted on the

human body, as outlined in Figure 1.3 (from [4]). These biomechanical limits, based

on pain thresholds and reported in [4], depend on the body part and are twice as

much higher in the case of transient contacts than in the case of quasi-static contacts.

It is worth recalling that since the exchanged energy, exerted force and pressure

depend, besides from the robot itself, also on the mounted tool, workpiece, etc. (in

general on the application), a risk assessment is always necessary.

Figure 1.3 Acceptable and unacceptable regions based on the type of contact (transient or quasi-

static) and force or pressure threshold.

11

Collisions can be further mitigated and managed by the use of post-collision methods,

which define strategies to react to the collisions based on the torque/force sensors

feedback.

The design makes cobots also suitable for the hand guiding collaborative mode. This

collaborative modality consists in moving the robot by manually carrying the end

effector throughout the workspace, without the robot opposing any reaction force to

the movement thanks to the enabled force-control modality. The hand guiding

feature is typically used as a convenient tool to facilitate the robot programming,

since the identification of the robot waypoints can be done by guiding the robot end

effector in an intuitive and straightforward way.

As outlined, the intrinsic safety of a cobot is achieved by limiting its weight and speed.

The former is typically a design choice, resulting in a light-weight robot, which can be

achieved by a proper choice of light alloy material for the links and lighter motors,

thus less powerful, which ultimately impacts on the maximum payload and on the

maximum joint speed. The speed limitation can be alternatively achieved by adopting

proper and safety-rated control strategies on each axis. In each case, it is to be

pointed out that there is a clear trade-off between safety and performances: a robot

with high performances, namely high payload, speed, and repeatability, necessarily

requires a very rigid structure and powerful actuators, which increment its weight and

thus reduce its safety. Vice versa, a safe robot, namely with limited weight and limited

maximum speed, will necessarily have lower performances. Table 1.2 summarizes the

typical indicators of a collaborative robot.

Table 1.2 Range of indicators of a collaborative robot

Axis number 6 – 7

Payload (kg) 3 – 14

Maximum reach (mm) 500 – 1300

Maximum joint speed (deg/s) 360

Repeatability (mm) 0.03 – 0.1

Weight (kg) < 35

In the context of Industry 4.0, cobots are used inside the Smart Factories to relieve

operators from burdens and stress, to protect them from injuries or to aid them in

complex tasks where both the human cognitive skills and the robot accuracy and

repeatability are required. The niche in which this is actually beneficial for the

productivity is expanding but still limited. The most common cobots applications are:

• Pick and place

• Packaging and palletizing

• Assembly

12

• Polishing

• Machine tending

• Quality control and inspection

Other advantages of cobots, that are often emphasized in marketing strategies, are

the following:

 ease of programming: aside from the hand guiding modality, already

mentioned, the programming interfaces are particularly user-friendly (touch

screens, advanced visualization modalities and features and so on).

 fast setup: the installation of both the robot and of its additional components

(end effector, additional sensors) is easy and quick and the robot can be made

operational in a plug-and-play fashion, resulting in reduced commissioning time.

 flexible deployment: due to its lightweight, the robot can be easily moved and

re-used with minimum effort for different tasks in different machines. Also, due

to its small footprint, no major modifications of the layout are needed.

As a last consideration, it is worth pointing out that there exists the possibility, for

some models of industrial robots, of the application of the AIRSKIN technology [7],

which allows to (partially) convert them into cobots, by means of a covering

protective skin able to detect collisions and absorb the impact energy. It is to be

noted, however, that this strategy is to be combined with a safe speed limitation

(maximum speed up to 1 m/s).

1.2 Artificial vision

Artificial vision can be defined as the collection of systems aiming at creating an

approximate model of the real world starting from data acquired from vision sensors.

This involves, other than vision sensors, algorithms and methods for acquiring,

processing and analysing the data, with the scope of transforming raw data to high

level information (similar concept to what human brain does). Modern vision sensors

can provide a detailed perception of the environment by means of different core

technologies. Digital 2D cameras, which provide bidimensional images or videos,

represent the traditional sensors, but they are not the sole. The other prominent

category encompasses 3D sensors, which allow to capture a 3D representation of the

world. The long-established type of 3D sensors comprehends laser scanners, also

called LiDAR, acronym for Light Detection and Ranging, that have applications in rapid

prototyping, cultural heritage, autonomous navigation, terrestrial and airborne

mapping and so on. They are usually bulky devices that can reconstruct a dense and

accurate point cloud, but they usually rely on the relative movement between a

13

unidimensional laser beam and the surface to scan, which makes them not suitable

for all the real-time applications in which a one-shot updating of the whole is required

at a high frame rate. In the last decade, the use of the so-called depth cameras took

off, largely thanks to the pivotal role that the Microsoft Kinect v1 and Microsoft Kinect

v2 [8] had. Depth cameras can acquire a 3D representation of a whole scene at a

relatively high frame rate, making them suitable for real-time applications. Nowadays,

there are on the market several models of depth sensors based on different

technologies.

Due to its great potential and versatility, artificial vision is currently exploited also in

many branches of robotics, absolving different purposes. A list of the main

applications of vision in the industrial robotic field is reported below, divided between

traditional and most recent ones, the latter mainly validated at laboratory level:

TRADITIONAL APPLICATIONS

 Object recognition and robot grasping/manipulating [9]: in this case, artificial

vision is used to recognise the pose of unordered objects. This information is then

used to define the proper position and orientation of the robot end effector to

pick them or perform other operations on them. Common examples can be the

picking of unordered objects placed on a conveyor belt or from inside a bin, the

latter commonly known as bin picking [10].

 Aiding in robot assembly or other processes [11].

 Visual servoing and tracking [12]: data obtained from the camera are used as

feedback signals in a closed loop control system. In particular, the controller moves

the robot with the aim of minimizing the error between the assigned position and

the one detected by the camera. The camera information can be used also in an

open loop control technique that exploits the information obtained by the camera

only to detect the pose to reach, without the correction of a possible mismatching.

 Quality control and inspection [13]: typically, a camera is mounted on the robot

end effector and used to inspect objects with complex geometry and/or difficult

to reach.

CUTTING-EDGE APPLICATIONS

 Real-time collision avoidance [14,15]: in this technique, the vision systems are

used to detect dynamic obstacles inside the robot workspace in order to adjust the

robot motion by means of real-time strategies.

 Automatic guidance [16-18]: artificial vision is used for mobile robots to allow a

safe navigation in a completely or partially unstructured environment inside a

factory.

 Motion planning [19,20]: it can incorporate low-to-high-levels planning of

sequence of actions used to manage variations in the tasks due to external factors

14

such as human collaboration. The planner usually makes use of sophisticate

control strategies that are not performed within a cycle time.

 Programming by demonstration [21-23]: this programming strategy consists in

automatically converting a demonstration of a certain task, captured by a vision

sensor, into a ready-to-use robot program.

 Others [24,25]: other novel human-robot interaction modalities are enabled by

artificial vision. They can rely on gesture recognition, facial expression recognition,

leap motion, augmented reality and so on.

1.2.1 2D cameras

2D cameras are the traditional well-known digital cameras and are here just outlined,

an exhaustive description being beyond the scope of this Thesis. The core technology

could rely on one of the following sensors:

• CMOS (Complementary Metal-Oxide Semiconductor): it is a digital sensor that

converts the charge from a photosensitive pixel to a voltage at the pixel site. The

signal is then multiplexed by row and column to multiple on-chip, digital-to-analog

converters. CMOS sensors feature high speed, low sensitivity, and high, fixed-

pattern noise.

• CCD (Charged Coupled Device): it is an analog device that converts light into

electrons by means of a silicon chip containing an array of photosensitive sites.

Being an analog device, output is immediately converted to a digital signal by an

analog-to-digital converter. The voltage is read from each site to reconstruct an

image.

CCD sensors are more expensive than CMOS sensors and they consume more power

but are traditionally known to achieve higher-quality and lower-noise image.

Nowadays, however, CMOS sensor technology has advanced to such an extent that it

is fast approaching the quality and capabilities of CCD technology, and with a

significantly lower price tag, smaller size, and power consumption, which makes it a

good fit for machine vision. For industrial applications, 2D cameras are typically paired

with a controller with a proprietary software which contains a collection of functions

for object and features recognition, Optical Character Recognition (OCR), filters of

various type and other functionalities (see for example [26]).

For this type of cameras, illumination plays a key role, highly affecting the image

quality. A proper lighting system allows to remove shadows and to uniform the

brightness on the scene, avoiding fluctuations and making acquisition repeatable.

Several illumination techniques can be utilized, a description of which can be found

in [27].

15

1.2.2 3D cameras

As the name suggests, 3D cameras are sensors capable of acquiring information about

the tridimensional nature of a scene. Typically, the sensor acquires a set of distances,

that can be converted into a 3D representation of the object, namely a point cloud.

They can be seen as an evolution of range/distance/proximity sensors, which output

the distance to the object as a single number. Several types of 3D sensors exist. They

can be divided into two main categories based on whether they can be used only for

offline measurements or can capture a real-time representation of the scene. The

former category is not relevant for the scope of this Thesis, so only the latter category

will be the focus of this Section. Sensors that can provide a real-time 3D scene

information are often referred to as depth cameras, since they store depth values

(distances) inside a matrix of pixels (a normal digital camera stores RGB values

instead). If also an RGB triplet is associated, the device is often referred to as RGB-D

camera. If a series of camera parameters, namely the intrinsic parameters, are known,

the depth matrix can be converted into a 3D point cloud. Usually, this process is

already done by the camera manufacturer, which accounts for the possibility of

proving an actual point cloud as output, other than the depth matrix. Sometimes

however, there can be the need of performing what is called an intrinsic calibration,

to estimate the intrinsic parameters, because either are unknown or a better

estimation than the one provided by the manufacturer is required.

The single depth data matrix and the corresponding point cloud are sometimes

referred to as 2.5D [28], since they are obtained by a single-view acquisition.

Following this reasoning, the real 3D data is obtained by merging multiple 2.5D

acquisitions, obtained from different point of views.

Below a list of the current technologies used in depth cameras is presented and briefly

descripted (for an exhaustive description, cf. [29]).

 Structured Light: it uses one camera and a structured light projector. The depth

estimation is obtained by triangulating over the codified rays projected over the

scene.

 Time-of-Flight (ToF): the core of this system consists in a light transmitter and a

light receiver. The light emitted bounces back on the object surface and comes

back to the receiver in a specific amount of time, that is measured and used to

estimate the distance.

 Stereoscopy: passive stereoscopy is based on the use of two cameras to

triangulate over homologous keypoints on the scene. In modern devices the two

cameras are embedded inside small and compact devices, which take care of

the stereo-vision algorithms implementation and processing. In some cases,

particular expedients are used to increase speed, one of the most recent and

16

notable being the use of Field Programmable Gate Array (FPGA), such as

described in [30].

 Active Infrared (IR) Stereoscopy: it uses two cameras and a light projector to

triangulate with the two cameras over the codified rays projected on the scene.

This helps the identification of keypoints, since the projector always provide a

texture, that might otherwise be absent on the scene.

Recent years have seen an important raising of the available off-the-shelf depth

cameras and a significant improvement of their features. Differently from the classical

2D digital cameras, they can directly provide spatial information, which allow a

straightforward reconstruction of the 3D scene and are particularly suitable to

reconstruct unstructured environments. Whereas in the case of 2D digital cameras

the technology has reached a mature stadium, the widespread, improvement and

diversification of depth cameras is particularly evident in the current times. This

motivates one to keep an eye on their market, with the aim to spot quantum leaps

that can have important repercussions, for instance, in safety-related questions. Just

to give a practical example, the camera latency, frame rate, data quality and reliability

determine the rapidity and certainty by which the camera senses an obstacle, thus

directly affecting the safety of the system.

A market analysis was carried out, motivated by these considerations. Table 1.3

reports a collection of the current most popular and cutting-edge depth cameras on

the market, with indications on their core technology, depth resolution, depth frame

rate, Field of View (FOV) and operating range. Here only the depth features are

presented, since are the distinctive traits of the camera. It is noteworthy, however,

that most of the cameras are paired with an RGB sensor, and the camera has the

ability to synchronize and merge 3D data with the colour stream, possibly necessary

for certain applications. Furthermore, other parameters have an important impact on

the choice of the camera, but are here not reported; for instance, the latency

(typically ≈ 1 frame), the accuracy, the spatial noise and the temporal noise. One last

note: for each manufacturer, only the most representative cameras are shown.

17

Table 1.3 Most popular cameras on the market and their main depth features. The first column

reports an identification number used for later reference and the second column the model name.

The third column reports the core technology, which can be Structured Light (SL), Time-of-Flight

(ToF), Stereoscopy (S) or Active IR Stereoscopy (AIRS). Since certain cameras allow to stream in

different combination of resolutions and frame rates (frame per second, fps), the minimum

resolution and maximum resolution streaming modalities with their corresponding achievable

frame rates are here reported.

ID Model name Tech.
min res – max

fps

max res – min

fps
FOV [°]

Range

[m]

1 Arcure Omega S 512x256 – 18 1024x512 – 11 100x70 0.5 – 10

2
ASUS Xtion

Pro
SL / 640x480 – 30 58x45 0.8 – 3.5

3
Basler ToF

camera
ToF / 640x480 – 20 57x43 0.5 – 0.8

4

Carnegie

Robotics

MultiSense S7

S 1024 x 544 – 30
2048x1088 –

7.5
80x45 > 0.2

5
duo3d DUO

MC
S 320x120 – 320 752x480 – 45 128x91 0.3 – 2.5

6 Ensenso N35 SL / 1280x1024 – 10 58x52 0.27 – 3

7

FRAMOS

Depth Camera

D435e

AIRS / 1280x720 – 30 86x57 0.2 – 10

8 Ifm O3D302 ToF / 176x132 – 25 60x45 0.3 – 8

9

Intel

Realsense

D455

AIRS 848x480 – 90 1280x720 – 30 86x57 0.52 – 10

10
Microsoft

Azure Kinect
ToF /

6540x576 or

1024x1024 – 30

75x65 or

120x129

0.25 –

5.46

11
Microsoft

Kinect v2
ToF / 512x424 – 30 70x60 0.5 – 4.5

12
MYNT EYE

S1030
S / 752x480 – 60 122x76 0.5 – 18

13 Nerian Scarlet S 832x608 – 125 2432x2048 – 16 80x84 > 0.14

14

Nerian

SceneScan

Pro + Karmin3

S 640x480 – 100 1600x1200 – 15 variable variable

15

Occipital

Structure

Core

AIRS 1280x800 – 60 1280x960 – 54 59x46 0.3 – 5

16
Orbbec Astra

Mini
SL / 640x480 – 30 60x49 0.6 – 5

18

17
PMD Pico

Flexx
ToF / 224x171 – 45 62x45 0.1 – 4

18
PMD Pico

Monstar
ToF / 352x287 – 60 100x85 0.5 – 6

19
Roboception

rc_visard 65
S 214×160 – 25 1280×960 – 1 61x48 0.2 – 1

20
SICK

Visionary-T
ToF / 144x176 – 30 69x56 0.5 – 40

21
Stereolabs

ZED
S 640x480 – 120 2208x1242 – 15 96x54 1.5 – 20

22 Zivid Two SL / 1944x1200 – 13 50x36 0.3 – 1.5

Figure 1.4 shows the region of the plane resolution – frame rate covered by the

currently available depth cameras on the market. The maximum resolution

(2432x2048) is achieved by the Nerian Scarlet (at a frame rate of 16 fps), whereas the

maximum fps (320) is achieved by the duo3d DUO MC (with a corresponding

resolution of 320x120).

Figure 1.4 Resolution and frame rate of the considered commercial cameras. Annotated numbers

refer to the Camera ID of Table 1.3.

Figure 1.5a shows the camera FOVs, which are mainly concentrated around 60° x 50°

but can be pretty variable depending on the optics used, which can be replaced in

19

some cameras. Figure 1.5b shows the operational range, which varies between 0.1 m

and 40 m. Typically, the minimum distance extends to a maximum of 0.5 m, whereas

the maximum varies depending on the camera.

Figure 1.5 (a) FOVs (annotated numbers refer to the Camera ID) and (b) operating ranges

distribution of the considered depth cameras. H and V stand for Horizontal and Vertical,

respectively; Camera ID is referred to Table 1.3.

1.3 Human Robot Collaboration in industrial settings by

means of artificial vision

HRC has recently gained a vast amount of interest in both academic and industrial

field. It has the potential of enhancing the functional flexibility and efficiency of

several processes typical of the Smart Factories, which realize the current trend of

automation and intelligent manufacturing called Industry 4.0. Notably, HRC was

considered inside the EU project ROBO-PARTNER [31] which aimed at integrating

assembly systems and human capabilities. Specifically, the project focused on

intuitive interfaces, safety strategies and equipment, and proper methods for

planning and executions, all considered as key enablers for HRC. In literature,

different taxonomies of HRC are proposed, with the aim of identifying various levels

of interaction between robots and human operators [32-35]. It is noteworthy that

some publications, e.g. [36,37], present a semantic distinction between HRC, which

refers to the concept of human and robot working together by sharing a common

20

task, and Human-Robot Interaction (HRI) that is limited to the concept of a safe

coexistence. The distinction of HRC levels presented by De Luca and Flacco [35] is here

adopted: according to the proposed framework, HRC can be divided in three nested

levels of interaction between human and robot. The order is progressive, i.e. each

level of interaction entails the fulfilment of the lower level(s):

1 – Safety: workspace is shared, but task is not shared (no direct or indirect

cooperation occurs);

2 – Coexistence: workspace is shared, robot and human operator can work on the

same object, but without any mutual contact nor any operative coordination;

3 – Collaboration: robot and human operator perform a complex task together,

through direct interaction and coordination and with possible physical contact.

When dealing with HRC, safety is of paramount importance. In [38], an example of

the application of the technical specification ISO/TS 15066:2016 [4] is presented in

the case of a collaborative assembly scenario. Figure 1.6 outlines the laws, the

directives, and the standards that are relevant in the field of HRC.

Figure 1.6 Overview of the standards that regulates the field of HRC (figure from [38]).

In [39], Zacharaki et al. survey and summarize features for minimizing the risk of a

HRC application. The authors identify and analyse the following categories:

perception, cognition, action, hardware features, societal and psychological factors,

risk assessment through hazard identification techniques.

In general, HRC can be achieved in several ways and with different level of interaction

(according to [35]). The most popular way is undoubtedly through collaborative

robots, which are lightweight robots that rely on the PFL collaborative mode of the

21

technical specification ISO/TS 15066:2016 [4] (cf. Section 1.1.2), and can achieve the

HRC Level 3 - Collaboration. Another modality that enables HRC up to Level 2 -

Coexistence is the Speed and Separation Monitoring (SSM) collaborative modality of

ISO/TS 15066:2016 [4]. This modality, deeply analysed in Section 1.3.1, consists in

enabling HRC by imposing a safety threshold on the relative distance between the

robot and possible obstacles (mainly referring to the human body). This threshold is

dynamical since it also depends on the robot-obstacle relative velocity. Other tools

suitable for HRC consist in intuitive human-robot interfaces, which can provide highly

natural and tangible ways of interaction. Interfaces of these types can be referred to

as Natural User Interface (NUI) and Tangible User Interface (TUI). The idea at the basis

of NUI is to offer a reality-based interaction by exploiting users’ pre-existing

knowledge and using actions that corresponds to daily practice in the real world [40],

overcoming the classical interaction devices such as keyboards and mice. The term

TUI refers to the interaction systems that rely on embodied interaction, tangible

manipulation, physical representation of data and embeddedness in real space [41].

These intuitive interaction systems can be used either to facilitate the robot

programming or to interact with the robot online, while it is executing a task. Some

examples of intuitive programming modalities are the hand guiding modality typical

of collaborative robots, teleoperation through haptic technologies [42] or hand

movements [43], or programming by demonstration [21-23]. Methods for interacting

with the robot while operating can rely on automatic recognition of gestures, eye

gaze, facial recognition, and other physical cues [24,25,44] or even vocal commanding

[45,46]. A relevant research branch is focused on motion planning [19,20], that can

incorporate low-to-high-levels planning of sequence of actions used to update the

robot behaviour when performing a side-by-side collaboration with human operators.

In addition, an emerging trend is to combine interfaces with Augmented Reality (AR)

or Virtual Reality (VR), for instance to facilitate robot programming [47] or to increase

system productivity while enhancing human safety [48].

One further aspect when considering HRC is that, by cancelling the barrier between

human and robots, also the impact on the psychological state of the operator is to be

addressed. In fact, it is necessary to ensure that the operator feels comfortable and

safe and that mental strains associated with the cooperative tasks are bearable [49].

It is noteworthy the fact, pointed out by Villani et al. in [5], that the vast majority of

academic solutions concerning HRC, validated at laboratory, have not found concrete

application in industry yet, and an important effort in terms of technology transfer is

thus required.

22

1.3.1 Collision avoidance

Inside the HRC context, collision avoidance strategies can be used to enable the Level

2 – Coexistence, or to enhance the Level 3 – Collaboration. However, it should be

noted that they are not sufficient for the third level, which accounts for physical

contact, that hence is to be handled by limiting the power and force and by using

post-collision methods. Collision avoidance strategies are, as a matter of fact, pre-

collision strategies, and allow collisions to be prevented by means of a real-time

online adjustment of the robot motion, possible by exploiting data provided by vision

sensor. This has several advantages: the first one is that it allows to enhance the robot

functional flexibility, in such a way that it can operate in an environment unstructured

to a certain degree. The second one is that it allows, by preventing collisions before

they occur, a workspace sharing with human operator, while maintaining high

productivity when possible. In fact, the robot can operate at high dynamics when no

human operators are detected and activate appropriate safety measures only when

the presence of a human operator is detected by vision sensors. These safety

measures can range from the simple robot temporary stop or speed limiting to a real-

time dynamic adjustment of the robot speed (procedure known as trajectory scaling)

and/or modifications of the trajectory geometry (this latter by means of the so-called

escape motions). While the simpler strategies can rely on the use of traditional safety

laser scanners and optical barriers, these latter more complex strategies are enabled

thanks to the detailed reconstruction and prediction of the human body motion

possible by means of modern vision sensors. One interesting aspect of this approach

is that it is theoretically applicable to industrial robots, since it does not require

intrinsic limitations on the robot design.

In robotics, obstacle avoidance is a well-known topic that emerged way before the

raise of the modern industrial HRC. As reported in [50], several methods have been

developed, and some of them have been adapted to the HRC context. An example of

pioneering work is the one by O. Khatib, who in 1986 proposed a real-time obstacle

avoidance approach based on the concept of artificial potential field [51]. The idea is

that the robot moves in a field of forces, where there are attractive poles in

correspondence of the target to be reached and repulsive poles in correspondence of

the obstacles to be avoided. In [52], an impedance control method is developed,

which establishes virtual spheres between the robot and the surrounding objects. The

work [53] used a danger index, defined as the product of the distance, velocity and

inertia, to generate alternative trajectories when the index exceeds a predefined

threshold. The trajectory generation relies on a virtual force that aims to push the

robot away from the danger area. In [54], the concept of kinetostatic danger field is

introduced, which is a quantity that captures the complete state of the robot, namely

23

its configuration and velocity, and further used in [55] to implement a reactive control

strategy which exploits information acquired from distributed distance sensors. In

[35], the concept of repulsive vectors, applied to a series of robot control points, is

used for collision avoidance purpose.

More recent methods, based on the concept of safety constraints [15,56], continuous

speed adaptation based on dynamic SSM [57], and control barrier functions [58,59]

have been developed focusing on the fulfilment of the SSM collaborative mode

presented in the technical specification ISO/TS 15066:2016 [4]. This approach is

particularly safety-oriented and thus proves theoretically suitable for industrial robot

applications. These new methods represent a change in the approach, which shifts

from considering safety as a requirement that necessarily limits the performance of

machines towards a constraint driving the optimization of the robot performance,

which is one of the future goals identified in [5]. The main concept around which these

latter methods revolve is the formula for the Protective Separation Distance (PSD)

presented in the SSM collaborative mode section of the ISO/TS 15066:2016 [4], whose

most general formulation is:

����� ≥ � �	�
��
 + � �
�
��
�������
����

+ � ���
��
 + � + �� + �

����������
�������

����������
����

 (1)

where: ����� is the PSD at the current time instant ��; �
 is the reaction time of the robot system; �� is the stopping time of the robot, from the activation of the stop until the

robot is halted (it is not constant but depends on the robot configuration,

speed, load); �	 is the speed of the human operator in the robot direction; �
 is the speed of the robot in the human operator direction; �� is the robot speed in the human operator direction during the stopping

operation; � is the intrusion distance, as defined in ISO 13855:2010 [60]; it is the distance

that a part of the body can intrude into the sensing field before it is detected; �� is the position uncertainty of the operator in the collaborative workspace,

as measured by the presence sensing device resulting from the sensing system

measurement tolerance;

24

�
 is the position uncertainty of the robot system, resulting from the accuracy

of the robot position measurement system;

Further discussion and guidelines about the implementation of SSM in collaborative

workcells can be found in [61]. Furthermore, it is worth noting that some (uncommon)

works exploit the concept of PSD, rather than to develop collision avoidance

strategies, on ways to visualize it, specifically by projecting on the robot mounting

surface a real-time enclosing shape delimiting its PSD, the interruption of which can

be sensed and used to trigger a robot stop [62,63].

To implement the aforementioned collision avoidance strategies, obstacles position

and -where needed- obstacles speed have to be estimates in real-time. Several

typologies of sensors can be exploited for this purpose, and can be subdivided in four

main categories:

 motion captures systems [64];

 pressure-sensitive mats [65]

 proximity/distance/capacitive sensors [55];

 vision sensors (either 2D or 3D) [25,59].

Motion captures systems are typically based on optoelectronic measurement systems

and/or inertial sensors, they can be reliable and precise, but they have the significant

downside that they need to be wore or attached to the human operator or to the

generic obstacle to be monitored, which is thus to be known in advance and to be

suitable for the sensor attachment. Pressure-sensitive mats can safely detect the

worker feet position, but only operate at the ground level and cannot track the upper-

body. Proximity sensors, mounted on robot, can be effective in particular situations,

but they provide a non-detailed sensing of the environment, are often limited in range

and precision and need a method to process and integrate together the data. One

unique example of commercial robotic solution using this concept is the sensor skin

based on capacitive sensing developed by Bosch for the APAS Assistant robot [66],

which has a sensing range of 50 mm. The third category is undoubtedly the one who

gained the most popularity in the recent years [67], due to the popularization of depth

cameras, analysed in Section 1.2.2. Compared to the other typologies of sensors, they

have the advantage of being capable of reconstructing a detailed long-range portion

of the environment and the obstacles do not need to be known in advance nor any

sensor attachment on them is required. Some methods rely on the use of 2D cameras,

but they sometimes need visual markers [68] to track the obstacle, or the obstacle

typology needs to be known in advance in order to exploit data driven recognition

approaches [69]. 3D vision sensors, on the other hand, can directly output a 3D

representation of the environment, which leads to a straightforward obstacle

25

reconstruction. Traditional safety laser scanners fall inside this category, but they are

essentially only used for obstacle detection (typically at the ground level), since they

are not suitable (due to their working principle and limitation, e.g. concerning the

frame rate) for the more advanced obstacle tracking needed in collision avoidance

applications. Depth cameras, on the other hand, can be used to efficaciously

reconstruct the obstacle 3D geometry and to estimate its motion. Furthermore, the

vast majority of them can provide RGB data as well, in the form of classical RGB images

or fused with the 3D data. There are some caveats, however, in the use of vision

sensors. The first one is that they are sensible to occlusion, so their positioning is to

be carefully chosen, since it has important repercussions on safety. In general, inside

the collision avoidance framework, they are placed in a fixed fashion on an external

frame, but there are some exceptions [70,71]. This topic will be further discussed in

Section 5.1, where considerations on the optimal placement will be made. One other

important limitation of depth cameras is the lack of safety certifications, differently

from the classical safety laser scanners and optical barriers. One unique exception is

the PILZ SafetyEYE [72], which was commercialized as the first safe camera. To

address this problem, some solutions can be to pair the unsafety sensors with a safety

one [25,73] or to create a particular infrastructure that acts as a safe network for

unsafe devices [74].

Even with their caveats, depth cameras currently represent the most valid devices to

track dynamic obstacles. Furthermore, the depth camera technology is rapidly

evolving, by means of enhancements in terms of both resolution and frame rate, and

hopefully, the reliability will be subjected to improvements as well.

In Table 1.4, a list of the most recent and notable collision avoidance systems based

on artificial vision are reported, providing the main references used for the

development of the real-time collision avoidance method presented in this Thesis. It

is worth reporting the recent commercialization of the plug-and-play 3D smart

assistant by SMART ROBOTS [75]. It is essentially a 3D camera with advanced

embedded functionalities that can be paired with any collaborative robot. One

function concerns collision avoidance: the system can detect human body parts

(body, arms, hands) and human-robot distance in real-time, slowing down the robot

before the collision occurs. The provided functionalities, though being safety related,

are not certified as such.

26

Table 1.4 List of some notable publications of the last decade concerning vision-based pre-collision

methods that enable HRC. It is mentioned the year of publication, the hardware and software used

for the test, where indicated by the authors (a remand to the article is suggested in the case of

extensive description given by the authors difficult to summarize), and the topic in which novelties

are proposed by the Authors. Abbreviations are used for the sake of conciseness:

For the robot: DOFs: Degrees of Freedom; C: Collaborative; I: industrial

For the sensors: F: mounted on a fixed external frame; R: mounted on the robot

N/A: not applicable; used in the case where no info was found

Paper

Year
Robot Sensors

Other

hardware

Software/Frame

works
Main focus

 [35]

2012

KUKA

LWR-IV

7 DOFs; C

1 x Kinect V1

F

Eight core

CPU
N/A

Collision reaction,

avoidance

(+ gesture and voice

recognition)

 [16]

2012

iRobot

ATRV Jr.

Mobile

2 x

Swissranger

SR4000S

(range

cameras)

F

2 x Tyzx G3

EVS (stereo

cameras)

F

2 x External

PC (2.67 GHz

Intel Core i7

920 quadcore

with 64-bit

Ubuntu Linux

10.04 LTS)

All connected

through a

wired gigabit

Ethernet

network

N/A
Obstacle detection;

Sensor fusion

 [76]

2012
N/A

3 x Kinect V1

F

3 x External

PC (Intel i7-

2600 3.4 GHz

processor, 16

GB RAM,

Nvidia

GeForce GTX

560-1GB)

Point Cloud

Library (PCL)
Obstacle detection

 [77]

2013

Willow

garage PR2

(Simulated)

Humanoid

(but

standing

still)

1 x Kinect V1

F
PC

MATLAB

Move3D

Manipulation

planning based on

human motion

prediction

 [78]

2013

KUKA

LWR IV

7 DOFs; C

1 x Kinect V1

F

1 x Stingray

F201 B (gray

2D camera)

R

1 x External

PC

OpenNI

ViSP library

Reflexxes

Visual-based

human-robot

cooperation

 [74]

2013

COMAU

NS16

6 DOFs; I

N/A -See the paper for info-

Safe network of

unsafe devices;

Collision avoidance

27

 [79]

2014

COMAU

NS16

6 DOFs; I

-No info on

the number-

MESA ToF

cameras

F

-See the paper for info-
Dynamic SSM

(speed adjustment)

 [80]

2014

KUKA

LWR4+

7 DOFs; C

1 x NDI

Polaris optical

tracker

F

Real-time CPU N/A
Dynamic SSM

(speed adjustment)

 [81]

2014

ABB

IRB120

6 DOFs; I

PhaseSpace

motion

capture system

On human

hand/arm

External PC

(Core i7-3610

QM 2.3GHz,

Windows 7)

-See the paper

for info-

Dynamic SSM

(speed adjustment)

 [17]

2014

KUKA

omniRob

7 DOFs; C

(on mobile

platform)

2 x Kinect V1

F (on robot

platform)

2 x 2D lidar

laser scanners

F (on robot

platform)

N/A N/A Obstacle tracking

 [55]

2014

ABB IRB

140

(controller:

ABB IRC 5)

6 DOFs; I

20 x IR LED

(Sharp

GP2Y0A02YK)

R

1 x National

instrument

PCI 6071E

board

1 x External

PC (Linux OS

with Xenomai

patch for real-

time)

Interface

developed for

exchanging data

with ABB

controllers;

Strategy

developed with

Simulink GUI

and converted

into an

executable

trough Simulink

Real-Time

workshop

Collision avoidance

 [82]

2014
/

2 x AXIS PTZ

RGB (fish-eye

surveillance

cameras)

F

1 x External

PC (cameras

connected to it

via Ethernet)

ROS (Robot

Operating

System)

OpenCV

Human Detection

and Tracking

 [83]

2014

Lab-Volt

5150

5 DOFs

4 x Kinect V1

F

1 x client PC

+

1 x server PC

Virtual

simulation

engine based on

Tundra software

Human Detection

and Tracking

 [84]

2015

KUKA

LWR

7 DOFs; C

1 x Kinect V1

F

1 x External

PC

ROS

Point Cloud

Library (PCL)

Reflexxes

SoftMotion

Collision avoidance

 [85]

2015

KUKA

LWR-IV

7 DOFs; C

1 x Kinect V1

F

Eight core

CPU
N/A Collision avoidance

28

 [62]

2015

Custom-

made light-

weight

robot

5 DOFs

1 x RGB

camera + 1 x

light projector

F

1 x PC MATLAB
Dynamic SSM

(through projection)

 [73]

2016

ABB IRB

4600

6 DOFs; I

1 x Kinect V1

F

1 x Sick Laser

Scanner

F

1 x Safety

controller

1 x Dynamic

safety

controller

N/A
Dynamic safety

system

 [18]

2016

KUKA

omniRob

7 DOFs; C

(on mobile

platform)

2 x Laser

scanners -No

info on the

model-

On mobile

platform

N/A N/A

Dynamic SSM

(size of safety area

based on the

platform speed)

 [86]

2016

ABB

FRIDA

(dual arm)

(controller:

ABB IRC 5)

14 DOFs; C

1 x Kinect V1

(scenario 1) F

2 x Kinect V1

(scenario 2) F

Real Time

Linux

Xenomai PC

IBM CPLEX

Optimization

Studio for the

LP algorithm

Dynamic SSM for

redundant robots

(and non)

 [87]

2017

ABB IRB

140

6 DOFs; I

2 x Kinect V1

F

External PC

(Intel Core i7,

CPU of 2.7

GHz, 4 GB

RAM, 64-bit

Windows 7)

C/C++ libraries,

communication

and framework

implemented in

Java

Collision avoidance

 [88]

2017

Willow

garage PR2

Humanoid

1 x Kinect V1

F (on mobile

platform)

/ ROS

Trajectory planner

that consider

“interaction

potential” (gesture

and speech)

[89]

2017

KUKA LBR

iiwa 7 R800

7 DOFs; C

Heptagon

Taro (TOF) R

Camera

connected via

Wireless to the

robot

controller unit

N/A Obstacle detection

[90]

2017

KUKA

LWR-IV

7 DOFs; C

2 x Kinect V1

F

Fast Research

Interface (FRI),

Intel core i7-

2600 CPU 3.4

GHz, 8Gb of

RAM

Code developed

in C++

Collision avoidance

(focus on depth

maps merging)

[63]

2017

KUKA LBR

iiwa 14

7 DOFs; C

Custom setup:

LED-DLP

projector +

RGB camera

F

N/A N/A

Dynamic SSM

(through projection,

same concept as [62])

29

 [33]

2017

KUKA

KR180

6 DOFs; I

2 x Intenta

S2000 (stereo

cameras)

F

1 x RGBD

camera -No

info on the

model-

R

1 x Schunk

Multi-axis

force/torque

sensor

N/A N/A Levels of interaction

 [70]

2018

KUKA LBR

iiwa 7 R800

7 DOFs; C

SICK

Visionary- T

camera (TOF)

R

External PC

(camera

connected via

Ethernet)

MATLAB Obstacle detection

 [71]

2018

Universal

Robot

UR10

6 DOFs; C

3 x SICK

TiM551 Laser

scanners

1 F; 2 R

N/A N/A

Obstacle detection

(consequent robot

security mode

switching)

 [15]

2018

ABB IRB

140

(controller:

ABB IRC 5)

6 DOFs; I

1 x Kinect V1

1 x ASUS

Xtion

F

2 x External

PC (Linux OS

with Xenomai

patch for real-

time)

-See the paper

for info-

Dynamic SSM

(trajectory + speed

adjustment)

 [91]

2019

KUKA LBR

iiwa 7 R800

7 DOFs; C

Terabee

TeraRanger

One (single

pixel TOF) R

External PC

(camera

connected via

USB)

MATLAB Obstacle detection

 [57]

2019

ABB

IRB140

6 DOFs; I

1 x Leuze

RSL440 safety

laser scanner

F

External PC MATLAB
Dynamic SSM

(speed adjustment)

 [25]

2020

ABB IRB

4600

6 DOFs; I

2 x Kinect V2

F

+

2 x Laser

scanner

KEYENCE SZ-

V32n

F

-See the paper for info-
Obstacle detection;

Gesture recognition

 [58]

2020

Universal

Robot

UR5

6 DOFs; C

1 x Intel

Realsense

D415

F

OROCOS

ROS (C++)

CVXGEN

SSM and PFL

 [59]

2020

Universal

Robot

UR5

6 DOFs; C

Tested both

with 1 x Intel

Realsense

D415

and 1 x Asus

Xtion F

OROCOS

ROS (C++)

CVXGEN

Collision avoidance

30

1.3.2 Programming by demonstration

There are nowadays different methodologies to program a robot, either traditional

or recently popularized. A list is here presented, with a brief overview, whereas a

more detailed description can be found in [5].

 Lead-through programming. It is the older and most traditional methodology. It

consists in leading the robot through the waypoints by the use of a teaching

pendant (also known as teaching box). This operation is often referred to as

“robot jogging”.

 Offline programming. This methodology is nowadays highly widespread and it

consists in programming the robot offline via a dedicated proprietary software

and test the program execution on a simulator, which is included in the software.

 Walk-through programming. It has been popularized with the commercialization

of cobots, and it relies on the hand guiding collaboration mode of the technical

specification ISO/TS 15066:2016 [4]. It consists in grabbing the tool attached on

the end effector and “walking” the robot through the desired waypoints, which

are stored and can be used to command the robot the desired path. The

possibility of manually moving the end effector is made possible by means of

compliant control schemes or force control, which rely on the use of force/torque

sensors (typically mounted on robot wrist and/or joints).

 Programming by Demonstration (PbD). It is not widespread in actual industrial

frameworks yet, even if a considerable amount of work has been done at

laboratory level. In literature, this technique can refer to both the following

scenarios:

o the robot replicates as is the movement demonstrated (through a single

demonstration) by the human operator [21],[92].

o The robot learns the demonstration movements with the aim of performing

them under varying conditions and to generalize them in new scenarios

[22,23].

 Others. Further novel miscellaneous programming methods have been

proposed, typically validated at laboratory level only, but not appeared in

industrial frameworks yet. They can rely on haptic devices, leap motion

recognition, augmented or virtual reality, vocal commanding and so on.

Walk-through programming, PbD and the other novel methods perfectly fit inside the

HRC context, since they provide intuitive and user-friendly robot interfaces that do

not require much cognitive interaction effort, time consuming procedures nor highly

skilled and trained human workers.

31

1.4 Problem statement: the necessity of a new paradigm

As depicted, HRC is a broad and hot topic that has recently gained popularity in both

academic and industrial fields. Even if a considerable amount of work has been done,

it is still in its infancy and rapidly evolving. Keeping in mind the practical utility in

industrial scenarios, especially in terms of productivity enhancement, in the very last

years a significant number of research studies shifted the focus from implementing

HRC by means of cobots to realizing HRC by exploiting traditional industrial robots. In

fact, cobots, even if increasingly widespread, are still relegated to a small niche of

applications in which a sharing of tasks (with possible contact) and intentions (Level 3

of HRC, see Section 1.3) is actually beneficial to the productivity or the quality of work.

As outlined in Section 1.1.2, in facts, cobots comes with limitations in speed and

power, thus preventing their use in the vast majority of industrial traditional tasks,

where high productivity is achieved thanks to robot power and speed. Rather than

having to choose between cobots and industrial robots, which are somehow

according to current paradigms, the key idea and motivation of this Thesis is to

propose some methodologies to enable a new paradigm, which incorporates the

perks of both industrial and collaborative robots. The necessity of this new paradigm

is also pointed out by the robot company Comau, which, at the time of this writing,

has commercialized the robot Comau Racer5 COBOT [93], which can switch from

industrial robot speed to collaborative (limited) speed when a human operator enters

its working area.

The solutions proposed in this Thesis rely on the integration of industrial robots with

artificial vision systems, in particular exploiting depth cameras. Among other devices,

the choice of depth cameras is motivated by several factors, the main ones being the

following:

 they are compact, have an affordable price, and the most recent products can

achieve high frame rate and resolution;

 they can reconstruct in a straightforward way the objects and the environment

in the scene, which neither are to be known in advance nor have to be previously

manipulated;

 they are based on a technology which is rapidly improving and thus proves very

promising.

When integrated with industrial robots, the mentioned features of depth cameras

allow the implementation of the following main HRC enablers:

 Enhancing robot functional flexibility while maintaining high productivity,

realizing the HRC collaborative modality SSM, which allows safe coexistence of

32

human operators and robots inside the same workspace. Other than human

operators, artificial vision can be used to sense generic dynamic obstacles, which

can ultimately lead to manage unstructured environments.

 Enabling the intuitive programming method programming by demonstration: the

demonstration of the task can be easily acquired by means of artificial vision.

 Enabling the online interaction with the robot by means of recognition of physical

cues such as hand gesture, facial recognition and so on.

This Thesis focuses on proposing some implementations of the first two points,

specifically a collision avoidance method based on SSM and two programming by

demonstration methods. The latter are here intended in the sense that the robot

replicates, after a single demonstration, the motion of a Human Demonstration

Device (HDD), which is manually carried through a series of target waypoints.

A last section of the Thesis is devoted to an investigation on the optimal placement

of robot onboard cameras, which was identified as a topic of interest not properly

analysed in literature to the best of the Candidate’s knowledge. This last topic, even

if addressed as a stand-alone problem, well fits into the context of HRC based on

vision sensors, since the sensor placement has important implications on safety and

on the general effectiveness of vision-based HRC applications. As outlined by its title,

the scope of this Thesis is the proposal of vision-based solutions to enable HRC in

industrial settings. The key concept is the realization of HRC not by intrinsically

limiting the robot, but rather to pair it with vision sensors, which allows the utilization

of traditional industrial robots. In this scenario, safety is to be fulfilled, other than by

the hardware itself, also by all the involved methods, algorithms and procedures, an

important set of those being the ones concerning the integration of the robot and

vision sensors. It is clear that a proper camera placement is necessary for an effective

and safe monitor of the region in which HRC is intended to be realized, and serves as

a basis for the successive stages. Every systematic procedure that helps at better

quantifying this grade of safety and effectiveness of the monitoring is relevant to the

topic, and, for this reason, the aforementioned study about camera placement was

also included in this Thesis.

One last motivation of the present work concerns the fact that, in order to introduce

collaborative solutions in small and medium companies, that might have a limited

budget to invest in innovation, robot retrofitting could represent a valid option, as

pointed out by Villani et al. in [5]. Further to this point, the proposed approach has

the advantage of allowing integration of novel HRC solutions in deprecated robots, to

upgrade them, where needed, to fulfil the highly flexible and smart production style

typical of Smart Factories.

33

The main contributions of this Thesis to the state of art are here briefly summarized,

whereas the technical novelties are outlined and detailed throughout the specific

parts of the Thesis.

 The developed collision avoidance method is suitable for the case of generic

dynamic obstacles (not only humans) which may be present in either traditional

closed workcells or collaborative workcells. Also, it allows an easy integration of

different vison sensors and is particularly efficient so that only one pc (but with

enough GPU resources) is needed.

 The developed PbD methods have the characteristic traits of relying on cheap

vision sensors and hardware, and are easily implementable in a generic

framework.

 The study about the optimal placement of onboard cameras is one of the first

presented in literature and provides some insights and tool for a more systematic

approach for a safe monitoring of the robot workspace.

34

2 Experimental setup

The work was carried out inside the research and educational laboratory named

TAILOR (Technology and Automation for Industry LabORatory), born nearly at the

time of the beginning of the PhD thanks to a collaboration between the University of

Bologna and the company Siropack Italia s.r.l. (Cesenatico, FC). In particular, the most

striking facility of the “Robotics division” of the laboratory is a robotic cell (cf. Section

2.1), whose project was mainly borne by the Candidate (ranging from the design to

the operative commissioning phases). A number of commercial products were

courteously granted by the Italian branch of Mitsubishi Electric Europe B.V., Omron

(Italian branch) and SMC Europe (Italian branch), which are gratefully acknowledged.

2.1 Robotic cell

Tests are conducted inside the aforementioned robotic cell, which was designed in

such a way to resemble an automatic robotized machine, able to realize as a matter

of fact the flexible automation typical of the modern Smart Factories, being adaptable

to various different tasks. The robotic cell is endowed with a series of movable guards,

granting access to various zones of the cell, valuable feature that was exploited to test

HRC application directly into industrial settings. This was very beneficial, since the

HRC tests are carried out in a realistic industrial scenario rather than on a standalone

robot or by using a simplified setup. The robotic cell is composed of the following

main components:

o Two industrial robots by Mitsubishi Electric:

 one articulated robot RV-4FM-1Q1-S15 (4 kg payload, 514.5 mm reach),

henceforth referred to as RV4F, equipped with a Mitsubishi Electric 1F-FS001-

W200 force sensor mounted on the wrist and a SCHUNK KGG-70-48

pneumatic gripper;

 one SCARA robot RH-1FHR5515-Q1-S60 (1 kg payload, 550 mm reach)

henceforth referred to as RH1F, equipped with a custom-made vacuum

gripper.

o Additional mechanical drives, driven by brushless motors and set as robots’

additional axes, which guarantees ease of programming and flexibility:

 one railway under the articulated robot (additional axis for the RV4F);

 one conveyor belt traversing the robotic cell (additional axis for the RV4F);

 one rotary table (additional axis for the RH1F);

 one conveyor belt afferent to the rotary table (additional axis for the RH1F).

35

o A series of vision sensors:

 three Omron FH-SCX cameras, paired with the Omron FH-3050-20 vision

controller;

 one webcam HD Logitech® C930e;

 one Ifm Electronic O3D302 depth camera;

 one Intel Realsense D435 depth camera;

 one Microsoft Kinect v2 depth camera.

Figure 2.1 shows some overall pictures of the robotic cell from different points of

view, whereas Figure 2.2 shows some close-ups of the inside of the robotic cell. In

Figure 2.3 the vision sensors mounted inside the cell are highlighted. For a more

detailed overview of the design and components of the robotic cell, see Appendix A.

Figure 2.1 Various overall pictures of the robotic cell inside the TAILOR laboratory. (a) front view;

(b) left view; (c) rear view; (d) right view.

36

Figure 2.2 Close-ups on the inside of the robotic cell, highlighting in particular the Mitsubishi Electric

RV4F articulated robot (c) and the Mitsubishi Electric RH1F robot (d).

Figure 2.3 Mounting of the vision sensors highlighted, with indications on the type and on the

model.

37

2.2 External workstation and programming frameworks

All the programming is carried out on an external computer, a Dell Precision 5820

Tower workstation, featuring an Intel® Core™ i7-9800X 3.8 GHz octa-core processor,

16.5 MB of cache, 32 GB (4 x 8 GB) RAM of DDR4 at 2.666 MHz. This external

workstation is connected to the robotic cell Ethernet switch, allowing the

communication with the various devices inside the cell. The Robot Operating System

(ROS) middleware was chosen as a tool to implement the advanced functionalities

required by the research applications, more specifically regarding the developed

collision avoidance method. ROS was used to efficiently manage the CPU

multithreading and acted as a wrapper for the code written in the C++ programming

language. The C++ language is a common choice in real-time applications involving

vision-based robot control because of both its high performances in terms of speed

and the availability to users of versatile and efficient artificial vision and robotics

libraries. The communication with the robot controller, managed with the aid of ROS,

takes place via a UDP socket, enabled thanks to a particular functionality of the robot

controller. This allows a data exchange between the external pc and the robot

controller with a 7.1 ms cycle time. One advantage of coding in C++ is the possibility

to exploit the Graphics Processing Unit (GPU) resources, which allow to parallelize

certain general-purpose computations and to significantly speed them up, a GPU

usage commonly known as General Purpose GPU (GPGPU). In practice, this is achieved

by exploiting the Compute Unified Device Architecture (CUDA), which is a parallel

computing platform and application programming interface model created by NVIDIA

(the only requirement to use it is to have a NVIDIA graphics card). This is a promising

approach adopted in some recent works in this field, such as [25]. To fully exploit the

CUDA capabilities, the workstation was endowed with the recent and powerful

graphic card NVIDIA GeForce RTX 3070, showed in Figure 2.4, which also reports its

main technical specifications. Linux Ubuntu 18.04 was chosen as operating system. In

addition, MATLAB® was extensively used as an aid to develop and test several

algorithms involved, other than to fully implement some of the algorithms that did

not need to run online.

Figure 2.4 NVIDIA GeForce RTX 3070

38

3 Collision Avoidance
In this Chapter the developed collision avoidance method is presented. It is inspired

by the very recent safety constraint approach [15], which is a safety-oriented

approach particularly suitable for industrial robots. The method is developed for an

articulated robot and tested inside the robotic cell described in Section 2.1 on the

Mitsubishi Electric RV4F robot. It exploits the depth data from the Intel Realsense

D435 (active IR stereo camera) and the Microsoft Kinect v2 (ToF camera), shown in

Figure 3.1, which also reports their main depth features. The RGB stream, even if

available from both the cameras, was not used.

Figure 3.1 Depth sensors used for the collision avoidance method.

The method was developed on the external workstation described in Section 2.2, by

using both MATLAB® and ROS, this latter run on Linux Ubuntu 18.04. Inside the ROS

framework, the code was written in the C++ language, by exploiting the IDE VS Code.

In Figure 3.2, a high-level pipeline of the method is shown. The method can be

conceptually divided into two main blocks, one designed for the online trajectory

generation and one designated for the obstacle tracking. The robot normally follows

a pre-programmed task-based reference trajectory; in order to keep the PSD, an

adjustment of the robot trajectory, which can be in terms of path (which diverges

from the reference one by means of an escape motion) and/or speed, is produced

whenever necessary based on the monitored positions and velocities of obstacles

possibly present within the robot workspace. The obstacle tracking block relies on the

use of a voxel grid, in which the occupancy of each voxel is estimated starting from

the point clouds acquired by the two depth cameras. By exploiting the voxel

occupancy, the obstacles speed is then estimated by means of a particle filter. Based

on real-time estimation of positions and speeds, an obstacle segmentation is then

39

performed, which outputs a set of obstacles and some corresponding relevant

quantities, used as an input in the online trajectory generation block.

Figure 3.2 High level pipeline of the collision avoidance method.

The proposed implementation introduces some novelties, and has the following

distinctive features:

 It is voxel-based.

 It is suitable for generic dynamic obstacles since it does not rely on the typical

human-tracking algorithms.

 The voxel-based approach allows an easy fusion of data from different sensors,

which can rely on different technologies, thus potentially increasing reliability.

 It can prioritize escape-motions or adherence to the reference trajectory.

Most recent collision avoidance methods, which generates online command at each

discrete time step, favour the use of acceleration-based input commands [15,59]. The

hypothesis normally made is that the controller closed-control loop is sufficiently

reliable and performant, so that there is no significant difference (relatively to the

application to develop) between the commanded and the actual trajectory. Typically,

modern robot controllers accounts for the possibility of commanding the robot in

velocity or acceleration, which results in smoother motion laws. In the developed

method, the trajectory generation algorithms were partly affected by the need of

40

adapting to the external communication modality of the RV4F controller, a Mitsubishi

Electric CR751-Q, featuring a sample time of 7.1 ms. This controller accounts for the

possibility of commanding the robot by a direct communication with an external PC,

via a UDP socket. The communication modality (named MXT, which stands for Move

External) is highlighted in Figure 3.3 (image from [94]). This modality allows one to

command the robot by means of position values, in terms of either joint angles or the

Cartesian pose of the Tool Center Point (TCP).

Figure 3.3 Data exchange modality between the robot controller and the personal computer (image

from [94]).

The command value generated online at each time step and sent to the robot

controller is used as reference in an internal closed-control loop managed by the

controller, which exploits the joint encoder feedback values. The available data

exchange modality (position) was seen as an opportunity to add originality to the

trajectory generation method, since the adherence to this modality fostered

variations with respect to the literature methods taken as reference. One of its perks,

for instance, was the fact that it demonstrated to be particularly suitable for

implementing strategies relying on the motion geometry instead of on the motion

laws, which can have some benefits, as will be discussed in Section 3.5.

In the next Section, the online trajectory-generation algorithms are detailed,

considering at first the case of a point-like obstacle. Later, in the obstacle tracking

Section, the case of real-world obstacles is considered, the algorithms to fuse and

transform the data detailed, and the methods for estimating the obstacles positions

and speeds presented.

41

3.1 Online trajectory generation

3.1.1 RV4F robot kinematics

The trajectory generation make use of the robot kinematics, here detailed in the case

of the Mitsubishi Electric RV4F, which is a wrist partitioned articulated robot. Its

mechanical architecture and dimensions are shown in Figures 3.4-3.5.

Figure 3.4 Mitsubishi Electric RV4F robot architecture, with axes highlighted (image from [95]).

42

Figure 3.5 Mitsubishi Electric RV4F mechanical drawing of the architecture, with highlighted the

axis distances and axes limits (image from [95]).

The solution of the robot kinematics can be computed by means of the Denavit-

Hartemberg convention (DH) [96]. In order to do so, a robot model based on the DH

parameters is to be constructed, which was done as shown in Figure 3.6a. Figure 3.6b

shows the zero-joint-angles configuration, obtained by adding proper offsets to the

joint angles. The corresponding DH parameters are reported in Table 3.1. Other

quantities reported in Figure 3.6b are:

43

Ok: origin of the kth Reference Frame (RF) RFk

ek: axis of the joint k

Ek: matrix representing the pose of RFk with respect to the Robot Base reference

frame (RF0)

Figure 3.6 RV4F DH parameters.

44

Table 3.1 Table summarizing the RV4F DH parameters.

k ak αk dk θk offset

1 0 -π/2 L1 θ1 0

2 -L2 0 0 θ2 π /2

3 -L3 π /2 0 θ3 -π/2

4 0 -π/2 L4 θ4 0

5 0 π /2 0 θ5 0

6 0 0 L6 θ6 0

where L1 = 350 mm, L2 = 235 mm, L3 = 50 mm, L4 = 275 mm and L6 = 85 mm (L6 = 85+

191.1 mm if considering the TCP placed on the e6 axis at the end of the gripper jaws).

Methods for solving the kinematics and other considerations, for instance concerning

the singularities, can be found in [96, 97].

3.1.2 Pre-programmed reference trajectory

The reference trajectory is the trajectory of the pre-programmed task, that the robot

would normally follow inside the automated working cycle. Typically, this type of

trajectories can be programmed inside the robot proprietary offline-programming

software, which provides a robot simulator, a proprietary programming language and

other tools. There, the most common approach to program robot movements is to

define a series of waypoints, usually in the Cartesian space, and the type of movement

the robot must perform between them. In the vast majority of cases, the motion laws

used to construct the reference trajectory are not defined from scratch, but rely on

the use of already available functions, typically:

 joint interpolated motion: given a series of waypoints, the laws of motion are

generated by interpolating the waypoints in the joint space;

 linear Cartesian motion: given two waypoints, the robot follows a straight line in

the Cartesian space to move from one to the other.

Inside the proprietary Mitsubishi Electric robot programming software RTToolBox3,

using the proprietary MELFA programming language, the joint interpolated motion is

identified with the keyword mov (move), whereas the linear Cartesian movement

with the keyword mvs (move straight). For the sake of conciseness, these two

keywords will be henceforth utilized to identify these two motion types.

The mov motion is typically used in situations in which one has a certain freedom of

movement between the waypoints, it is not affected by configuration singularities

and the inverse kinematics needs to be applied only to convert the waypoints from

the Cartesian space to the joint space.

45

The command mvs, on the other hand, it is used when the robot needs to necessarily

follow a straight line in the Cartesian space, for example in insertion tasks, object

picking, etc. The joint commands to send to the robot actuators are obtained by

dividing the straight line in the Cartesian space in a high number of points, which

approximate the line, for each of which the corresponding joint angles are computed

by means of the robot inverse kinematics. In this case, configuration singularity

problems could arise.

In the case study, there was the necessity of constructing reference trajectories

outside the software RTToolbox3, so one or more motion types had to be chosen. The

main point of the collision avoidance method was to adjust the robot motion based

on obstacles information; the mvs movement, however, is used when the reference

trajectory is strictly required to follow a straight line, often with a required speed,

precondition for the fulfilment of that specific part of the task. Thus, since it was more

appropriate for the scope of this Thesis, the reference trajectory was constructed by

means of the only mov motion. Note however that the proposed collision avoidance

method can be easily modified to account for reference trajectories based on other

motion types, that can be the other typical ones or can be specifically tailored for the

task.

The mov motion can rely on different types of interpolation, a common choice is the

use of cubic splines. Here the Piecewise Cubic Hermite Interpolating Polynomial

(PCHIP) [98] was used since it produced motion laws similar to the mov function of

RTToolbox3. PCHIP has the advantage of having no overshoot and less oscillation

compared to other cubic interpolations methods, however, in the junction points only

C1 continuity (continuity up to the first derivative) is granted, which may not be

sufficient in some specific cases.

Let us consider the kth joint, the abscissa τ (which can be seen as a dimensionless

time), and m waypoints (thus m -1 spline pieces). The spline interpolating the kth joint

target positions has then the form shown in Eq. (3.1):

���
� =
⎩⎪⎨
⎪⎧ !�,#
$ + %�,#
& + '�,#
 + ��,#)* +# ≤
 < +& !�,&
$ + %�,&
& + '�,&
 + ��,&)* +& ≤
 < +$ … !�,/0#
$ + %�,/0#
& + '�,/0#
 + ��,/0#)* +/0# ≤
 < +/

 (3.1)

46

The 6-dimensional spline is then a function S: ℝ → ℝ6, defined according to Eq. (3.2):

��
� = 1�#…�23 (3.2)

When considering the totality of the joints, it is useful to organize the spline

coefficients into a matrix �� ∈ ℝ2×[8×�/0#�], in the following way:

�� =
⎣⎢⎢
⎢⎢⎡
!#,# %#,# '#,# �#,# … !#,/0# %#,/0# '#,/0# �#,/0#…!�,# %�,# '�,# ��,# … !�,/0# %�,/0# '�,/0# ��,/0#…!2,# %2,# '2,# �2,# … !2,/0# %2,/0# '2,/0# �2,/0#⎦⎥⎥

⎥⎥⎤ (3.3)

The matrix Cs and the vector T = [T1, …, Tm], this latter containing the abscissa of each

waypoint, completely define the reference trajectory.

These two quantities were computed offline using MATLAB®, by specifying a set of

waypoints in the joint space and the corresponding T vector, and by carrying out the

interpolation by means of the MATLAB® built-in function pchip. T can be constructed

in several ways, for example in order to minimize the working cycle time, or simply by

an arbitrary choice of the time interval between the waypoints. In this context, Ti (i =

1, …, m) can be considered as a matter of fact equal to the time instant ti at which the

robot is desired to reach each waypoint.

Let us define a series of variables that will be extensively used from now on:) ∈ ℕ discrete time step. It will also be used as subscript for other variables to

indicate the reference to the time step i. Δ� ∈ ℝ robot controller sample time (≈ 7.1 ms). B ∈ ℝ2 command variable: it is the vector of joint coordinates sent to the robot

controller at each time step i. The robot controller moves the robot to

the commanded position within the next time step i+1. If the robot

cannot move to the commanded joint position within the time step i+1,

the controller outputs the encountered error (e.g. due to the fact that

the needed joint speed exceeds the joint speed limit).

In absence of obstacles, u can be computed at each time step i as shown in Eq. (3.4).

In this situation, the robot simply follows the pre-programmed task-based reference

trajectory. B = ��)∆�� (3.4)

47

3.1.3 Safety constraints

In this Section the constraints on the command variable u that grant the compliance

with the PSD are obtained.

Figure 3.7 shows the convention used when considering a discrete time domain, by

showing the relation between generic positions x and the corresponding velocities v.

Inside the time step interval, the approximation of considering constant velocities is

made.

Figure 3.7 Discrete domain conventions and approximations.

In the next Section, the case of a single robot point and a single obstacle point is

considered in the computation of the safety constraints. After that, the case of the

whole robot body will be addressed. The case of real-word obstacles will be addressed

later in the Thesis, in Section 3.2.

3.1.3.1 Single robot-point

Let us consider a point-like obstacle and the robot TCP (but the following discussion

can be adapted to a generic robot point). Figure 3.8 depicts the positions and the

velocity vectors of the robot point (“rb” subscript) and the obstacle “ob” subscript),

in the Cartesian space.

Figure 3.8 Robot (“rb” subscript) and obstacle (“ob” subscript) positions and velocity vectors.

48

Eq. (3.5), which is the starting equation, is a simplified version of Eq. (1), which gives

the general expression for the PSD. Here the simplified version adopted in [15] is used. �D�# ≥ −�FD�#∆�� + ∆ (3.5)

where:

TS is the robot worst-case stopping time; �D�#is the distance between the robot and the obstacle at the time step i + 1; �FD�#is the robot-obstacle relative speed at the time step i + 1;

Δ is a constant positive offset on the separation distance, which can be seen

as the PSD to guarantee at robot-obstacle relative speed equal to zero.

Considering the convention of Figure 3.7, �D�# can be computed according to Eq.

(3.6). �D�# = �D + �FD�#∆� (3.6)

The relative velocity can be expanded according to Eq. (3.7), where the operator ∙
denotes the scalar product: �FD�# = ��HID�# − �JID�#� ∙ KL (3.7)

where KL is the unit-vector pointing in the robot-obstacle direction and can be

estimated according to Eq. (3.8):

KL ≈ NHID − NJIDONHID − NJIDO (3.8)

Substituting Eq. (3.6) in Eq. (3.5) and rearranging the terms leads to Eq. (3.9):

�FD�#��� + ∆�� ≥ ∆ − �D (3.9)

Substituting Eq. (3.7) in Eq. (3.9), expanding and rearranging the terms leads to Eq.

(3.10):

�HID�# ∙ KL ≥ ∆ − �D�� + ∆� + �JID�# ∙ KL (3.10)

The Cartesian velocity can be computed from the joint velocity, as shown in Eq. (3.11).

49

�HID�# = P��QD�#�QFD�# (3.11)

where Jt is the tangential part of the Jacobian, which has dimension 3 x 6, and q

identifies the joint coordinates.

The approximations of Eqs. (3.12-3.13) are made: P��QD�#� ≈ P��QD� (3.12)�JID�# ≈ �JID (3.13)

The joint velocity can be computed according to Eq. (3.14).

QFD�# = QD�# − QD∆� (3.14)

By combining Eqs. (3.10-3.14), Eq. (3.15) is obtained:

[P��QD�QD�#] ∙ KL ≥ ∆��� + ∆� �∆ − �D� + �JID ∙ KL∆� + P��QD�QD ∙ KL (3.15)

By exploiting the commutative property of the scalar product and the fact that it can

be rewritten in terms of a row and a column vector multiplication leads to Eq. (3.16):

KL �P��QD�QD�# ≥ ∆��� + ∆� �∆ − �D� + KL ��JID∆� + KL �P��QD�QD (3.16)

QD�# represents the command variable u, and Eq. (3.16) is a linear inequality with

respect to it, since it has the form shown in Eq. (3.17). !B ≥ % (3.17)

where: B = QD�# ∈ ℝ2R# (3.18)! = KL �P��QD� ∈ ℝ#R2 (3.19)

% = ∆��� + ∆� �∆ − �D� + KL ��JID�#∆� + KL �P��QD�QD ∈ ℝ (3.20)

Eq. (3.16), or equivalently Eqs. (3.17-3.20) represent the safety constraints

considering one robot point and one obstacle point.

50

3.1.3.2 Multiple robot-points

The adherence to the constraint of Eqs. (3.17-3.20) guarantees that the robot point

considered is always at a safe separation distance from the point-like obstacle

considered. However, the safe separation distance is to be guaranteed for all the

robot dangerous moving parts. To address this, one solution can be to consider a set

of spheres encapsulating the robot dangerous moving parts, by properly choosing

their centres and radiuses. Figure 3.9 shows an example of four spheres, the centres

and radiuses of which are chosen to encapsulate the most dangerous moving part of

the robot. A higher number of spheres can be considered to include all the moving

parts and/or to better approximate a properly enlarged robot shape. The use of

spheres instead of other geometrical shapes such as cuboids or capsules to

approximate the robot shape is adopted for the sake of simplicity and efficiency, since

it has a direct connection with Eqs. (3.17-3.20). Indeed, each safety constraint on the

generated command has the following geometrical interpretation: the command is

generated so that the sphere of radius Δ (cf. Eq. (3.20)) centred on the robot point

considered will not come into contact with the obstacle point considered.

Figure 3.9 Four spheres used to encapsulate the robot.

Once the sphere centres and radiuses are defined, they can be used to construct a set

of safety constraints. Let us suppose the quantity Jt and xrb are already available for

each robot point Ok of Figure 3.6, one can then construct the safety constraints for

the generic robot point P, lying between Ok-1 and Ok, in the following way:

 Δ is set equal to the radius of the sphere centred in P;

 Jt and xrb can be computed according to Eqs. (3.21-3.23), which exploits the

concept of natural coordinates s ∈ [0, 1].

51

NU = NVWXY + Z�NVW − NVWXY� (3.21)P�[= P�\WXY + Z�P�\W − P�\WXY � (3.22)

where: Z = ‖^ − _�0#‖‖_� − _�0#‖ (3.23)

Let us suppose ns spheres are used to encapsulate the robot; this results in a set of ns

safety constraints, that can be organized in the form shown in Eq. (3.24). `B ≥ a (3.24)

where ` ∈ bcd×2 is a matrix constructed by concatenating by rows the vector a of Eq.

(3.19) of each safety constraint, u is the command vector and a ∈ bcd×#is a

vector containing the scalar b of Eq. (3.20) of each safety constraint.

3.1.4 Constraints on joint position, velocity, acceleration

Other than the safety constraints, the generated joint command B �= QD�#� must

satisfy other constraints, here described.

3.1.4.1 Joint position constraint

u must contain angles that lie within the RV4F joint limits, reported in Table 3.2.

Table 3.2 Joint position limits.

 Q# Q& Q$ Q8 Qe Q2

Lower bounds -240° -120° 0° -200° -120° -360°

Upper bounds +240° +120° +161° +200° +120° +360°

Eq. (3.25) shows the constraint on the joint position, where qlb e qub are the lower

and upper joint position bounds, respectively: QfI ≤ QD�# ≤ QgI (3.25)

3.1.4.2 Joint velocity constraint

The RV4F joint velocity limits are reported in Table 3.3. The maximum velocity is the

same in both the joint motion direction, so only the module is reported.

Table 3.3 Joint velocity limits. QF#_/iR QF&_/iR QF$_/iR QF8_/iR QFe_/iR QF2_/iR

450°/s 450°/s 300°/s 540°/s 623°/s 720°/s

52

The RV4F joint velocity that results from u must lie within the joint speed limits, which

can be expressed with Eq. (3.26), which leads to the constraint on u of Eq. (3.27).

QFfI ≤ QD�# − QD∆� ≤ QFgI (3.26)

QD + QFfI∆� ≤ QD�# ≤ QD + QFgI∆� (3.27)

3.1.4.3 Joint acceleration constraint

If considering constant velocity between two time-steps, one wants to find a

command that limits the velocity variation. The bounds on the acceleration can be

expressed as shown in Eq. (3.28):

QjfI ≤ QFD�# − QFD∆� ≤ QjgI (3.28)

The velocities can be expressed according to Eq. (3.29):

QFD�# − QFD = QD�# − QD∆� − QD − QD0#∆� = QD�# − 2QD + QD0#∆� (3.29)

which leads to the constraint on u of Eq. (3.30): QjfI∆�& + 2QD − QD0# ≤ QD�# ≤ QjgI∆�& + 2QD − QD0# (3.30)

or equivalently, of Eq. (3.31): QjfI∆�& + QFD∆� + QD ≤ QD�# ≤ QjgI∆�& + QFD∆� + QD (3.31)

Given that the bounds on the position, velocity and acceleration intersect (which must

be previously verified), the three bounds can be combined to form a unique bound,

in the way shown in Eqs. (3.32-3.34). QfI_�J� = maxoQp%, �Q) + QF p%q��, �Q) + QF)q� + Qj p%q�2�r (3.32)QgI_�J� = minoQB%, �Q) + QF B%q��, �Q) + QF)q� + Qj B%q�2�r (3.33)

 QfI_�J� ≤ QD�# ≤ QgI_�J� (3.34)

53

3.1.5 Optimization problem

The safety constraints can be used to constraint the joint angles commanded to the

robot so that the PSD is always kept. The generated command must also satisfy the

constraints derived from the limitations on the joint position, velocity and

acceleration, which, as seen, can be combined into the single constraint of Eq. (3.34).

A constraint of this type is a particular type of linear inequality constraint, known in

literature as simple bounds. Both the safety constraints, organized in the matrix form

of Eq. (3.24) and the simple bounds of Eq. (3.34) act on the pre-programmed

reference trajectory, that the robot follows whenever it is admissible. The aim of this

part is to set up a proper optimization problem which can generate a trajectory that

satisfy all the constraints while minimizing the distance to the pre-programmed

reference trajectory. The underlying mathematical problem involved is a Quadratic

Program (QP), which is an optimization problem with a quadratic objective function

and linear constraints [99]. In this specific case it can be stated as a linear-inequality-

constrained least-norm problem, which has the form of Eqs. (3.35-3.37). In the case

study, the norm represents the distance between the command and a reference point

on the pre-programmed task trajectory.

minR 12 ‖�N − �‖& � ∈ ℝc×c, N ∈ ℝc, � ∈ ℝc (3.35)

s.t. uN ≥ * u ∈ ℝ/×c, * ∈ ℝ/ (3.36)NfI� ≤ N� ≤ NgI� K = 1, … , v (3.37)

Instead of the form presented in Eq. (3.35), the QP objective function is usually

presented in the form of Eq. (3.38) [99]:

w)vR 12 N�xN + N�' x ∈ ℝc×c, N ∈ ℝc, ' ∈ ℝc (3.38)

where G is a symmetric n x n matrix, named Hessian matrix and c and x are vectors in ℝc.

It can be shown that the form of Eq. (3.35) can be converted in the form of Eq. (3.38),

in the following way:

minR 12 ‖�N − �‖& = minR 12 ��N − �� ∙ ��N − �� = w)vR 12 �N ∙ �N − 12 �N ∙ � − 12 �N ∙ � + � ∙ �
= w)vR 12 ��N���N − ��N��� = w)vR 12 N����N − N����

54

Given the formulation of Eq. (3.35), the Hessian matrix G and the vector c can be

computed according to Eq. (3.39) and Eq. (3.40), respectively: x = ��� (3.39)' = −��� (3.40)

In the case study, the C matrix is the identity matrix I, whereas the d vector is the

reference joint vector. If the Hessian matrix is positive semidefinite, the QP is said to

be convex, which significantly reduces its difficulty (it is the case, and, more precisely,

since the identity matrix is positive definite, the QP is said to be strictly convex). Eqs.

(3.41-3.43) shows the final form in which the optimization problem is presented,

detailed for the case study:

w)vg 12 B�xB + B�' x �= y� ∈ ℝc×c, B ∈ ℝc, ' �= −QHz{� ∈ ℝc (3.41)

s.t. `B ≥ a ` ∈ ℝcd×c, a ∈ ℝcd safety constraints (3.42)QfI_�J�W ≤ B� ≤ QgI_�J�W K = 1, … , v simple bounds (3.43)

Note on the dimension n:

Note that, if the TCP is chosen on the joint axis e6 (see Figure 3.6), Jt does not depend

on q6. This is common in practical scenarios and will be considered as hypothesis. If

TCP-related quantities do not depend on q6, neither q6 appears on the safety

constraints of the other robot points; in fact, if considering robot points with

decreasing distance to the robot base, the safety constraints will depend on a

decreasing number of joint angles. This means that the last column of the matrix `

contains all zeros. That being the case, for the sake of computation speed, n was set

equal to 5 in Eqs. (3.41-3.43), adopting a different strategy for the command angle u6,

which was generated according to Eq. (3.44):

B2 = max |Q2}~_��� , min �Q2��� , Q2�~_����� (3.44)

QP resolution

The QP of Eqs. (3.41-3.43) is to be solved at each time step. In the final ROS

implementation, the problem was solved by means of qpOASES [100], which is an

open-source C++ implementation of the online active set strategy [101], which is one

of the methods for solving a QP.

55

It is worth noting that a custom MATLAB® implementation of the active set strategy

for convex QP, based on the algorithm presented in [99, p. 472], was exploited to

carry out preliminary tests of the method. The implementation, specifically tailored

for the case study, outperformed the more general MATLAB® built-in function lsqlin

(designed to solve constrained linear least-squares problems), which had proved to

be too slow for the intended tests.

Choice of qref

At each time step, the reference joint position vector qref is to be chosen along the

reference pre-programmed task trajectory. Two ways of choosing it are proposed, a

conventional one based on the motion laws and an original one based on a geometric

approach. Both are detailed in the next Section.

3.1.6 Reference trajectory heading point

At each time step i, the term heading point, denoted with QHz{�, is used to identify the

value, belonging to the reference trajectory, to which the robot tries to head

(minimize the joint space distance to it, while adhering to the various constraints,

according to Eqs. (3.41-3.43)).

3.1.6.1 Heading point computation – laws of motion approach

This is the conventional approach, based on the motion laws: at each time step, the

heading point is computed considering the current time instant as abscissa of the

reference pre-programmed trajectory (which is the 6-dimensional spline S, see

Section 3.1.2), according to Eq. (3.45): QHz{� = ��)∆�� (3.45)

If iΔt becomes higher than Tm, QHz{� is kept equal to the spline end-point S(Tm), until

the robot reaches it. Since tasks are normally implemented as cycles, a similar process

is then repeated, resetting the value of i and considering a (symmetrical) spline joining

the end of S with the beginning of S. Once the robot reaches the beginning, the cycle

is closed and can be repeated for the wanted number of times. This logic is applied as

well to the case examined in the next Section.

3.1.6.2 Heading point computation – geometrical approach

In this approach, the heading point on the reference trajectory is chosen based on the

minimum distance between the current joint position vector and the reference

trajectory, in the joint space. In the next part, a method for finding the spline point of

minimum distance with respect to a given external point is detailed. For sake of

56

simplicity, let us consider a specific time step and, at first, a single spline piece (which

has dimensionality of six). The expression of the squared distance D between the

current robot joint position q0 and the spline piece considered can be computed as a

function of the abscissa τ, as shown in Eq. (3.46).

��
� = ��!#�
$ + !&�
& + !$�
 + !8� − Q���&2
��# (3.46)

To find the τ that minimizes D, one can compute the first derivative of Eq. (3.46) with

respect to τ and search for stationary points. The derivative of D with respect to τ is

shown in Eqs. (3.47-3.53):

���
� = �� 'e��2
��#
e + �� '8��2

��#
8 + �� '$��2
��#
$ + �� '&��2

��#
& + �� '#��2
��#
 + �� '���2

��# (3.47)

where: 'eW = 6!#W& (3.48)

'8W = 10!#W!&W (3.49)

'$W = 8!#W!$W + 4!&W & (3.50)

'&W = 6!&W!$W + 6!#W �!8W − Q��� (3.51)

'#W = 2!$W& + 4!&W�!8W − Q��� (3.52)

'�W = 2!$W�!8W − Q��� (3.53)

Eq. (3.47) represent a fifth-grade polynomial. Let us consider a spline piece indexed

by j (j = 1, …, m-1), and defined in the closed interval [Tj, Tj+1]. The adherence to all

the Conditions 1-4 is sufficient for τ0 to be a local minimizer:

 Cond. 1: ��
�� = 0 τ0 has imaginary part equal to zero

 Cond. 2:
� ∈]�� , ���#[τ0 belongs to the spline-piece open interval

 Cond. 3: �′�
�� = 0 τ0 is a stationary point

 Cond. 4: �′′�
�� > 0 τ0 is a local minimum

Cond. 2 comes from the fact that in the spline-piece junction points the second

derivative is not continuous, so if Conds. 1,3,4 hold true but τ0 is a juncture point, no

conclusion can be drawn. Also, if �′′�
�� = 0 but Conds. 1,3 and τ0 ∈ [Tj, Tj+1] hold

true, no conclusion can be drawn. In these cases, τ0 can be stored, along with the τ

values that satisfy all Conds. 1-4, for successive comparisons. For each spline piece, a

57

set of candidates can be stored this way. The global minimizer can then be identified

by evaluating which candidate corresponds to the minimum distance, also

considering the extrema of the whole spline, which can be global minimizers even

without being stationary points.

Here the final algorithm for finding the minimum distance between a point and a

spline is outlined:

//Initialization of τ_dmin, done considering the spline extrema (τ = T1, τ = Tm).

τ_dmin = T1

if (D(T1) ≤ D(Tm)) τ_dmin = Tm

//Computing the candidates for each spline piece and choosing the one with min distance

for each spline piece j

τ_candj = {τ | D’(τ) == 0}

τ_candj ← {τ_candj | 1 (τ_candj) == 0}

τ_candj ← {τ_candj | τ_candj ∈ [Tj, Tj+1]}

τ_candj ← {τ_candj | (D’’(τ_candj) ≥ 0 || τ_candj == junction point)}

τ_candj ← min{τ_candj}

if (τ_candj ≤ τ_dmin) τ_dmin = τ_candj

end for

In practical applications, the trajectory can be usually defined through a low number

of waypoints, which results in a low number of spline pieces. The core computations

take place in the process of extracting the roots of Eq. (3.47). Eq. (3.47) is a quintic

function, and the Abel-Ruffini theorem [102] states that there is no algebraic

expression (that is, in terms of radicals), for the solutions of general quintic equations

over the rational numbers. Nevertheless, several numerical methods are available for

estimating the roots of a generic nth degree polynomial. However, since this

computation needed to be carried out at each time step and for each spline piece, an

efficient method was required. The C++ implementation [103] of the iterative method

[104], specifically designed to find the solutions of quintic equations, was exploited,

since it proved to be effective and particularly fast (it outputs all the solutions, even

the complex ones, which motivates Cond. 1). Note however that, if the spline pieces

are especially numerous, it may be more efficient to use other methods to find the

minimum distance to the spline.

Once the τ corresponding to the minimum distance τdmin at the time step i is obtained,

it is used to compute the heading point QHz{�, according to Eq. (3.54):

58

QHz{� = ��
�/Dc + ∆
� (3.54)

where Δτ is a τ increment chosen to satisfy the Conditions A, B, C:

Cond. A: if the distance to the spline is zero (i.e. the current joint position vector

belongs to the spline, at a certain τ, which corresponds to the τdmin), the reference

point is to be computed so that the robot follows the motion laws in a nominal way,

as in absence of external disturbances, that is to say according to Eq. (3.55): ∆
 = Δ�)* �/Dc = 0 (3.55)

Cond. B: if the minimum distance is superior to a certain threshold, Δτ is to be

proportional to the minimum distance. This condition derives from the idea of

approaching the reference trajectory with a certain heading angle, which appeared a

suitable and simple strategy.

Cond. C: the transition between Cond. A and Cond. B must be smooth.

These three conditions can be satisfied by constructing a function as shown in Eq.

(3.56), and by guarantying the C1 continuity in the junction point d0.

∆
��/Dc� = |!�/Dc& + %)* 0 ≤ �/Dc ≤ ���/Dctg�)* �/Dc > �� (3.56)

where, a, b, α and d0 are parameters that have to be properly chosen. The angle α

can be chosen by the user depending on the wanted heading angle; from the

condition of Eq. (3.55) derives the fact that b = Δt. a and d0 can be determined by

imposing the continuity of both the function and its derivative at the juncture point

d0, which results in the system of Eq. (3.57) of two equations and two unknowns.

�!��& + % = ��tg� continuity of ∆
 in �� 2!�� = tg� continuity of ∆
�in �� (3.57)

This system can be easily solved for example by isolating d0 from the second

expression and substituting it into the first one to then solve for a.

It results that:

! = 14% tg&� (3.58)

�� = 2%tg� (3.59)

Eq. (3.56) finally becomes:

59

∆
��/Dc� = ⎩⎨
⎧ 14∆� tg&��/Dc& + ∆�)* 0 ≤ �/Dc ≤ 2∆�tg��/Dctg�)* �/Dc > 2∆�tg� (3.60)

Figure 3.10a shows the graph of the function of Eq. (3.60), considering α = 30° and Δt

= 0.0071 s. Figure 3.10b depicts a simplified two-dimensional example of the

approaching joint trajectory generated (blue trajectory). It is traced starting from an

initial perturbed joint position until it reaches a simple linear reference trajectory

(cyan dashed line).

Figure 3.10 (a) Δτ as a function of the minimum spline distance; (b) two-dimensional example of

the approaching joint trajectory generated (blue trajectory), which reaches a simple linear reference

trajectory (cyan dashed line).

3.2 Obstacle tracking

In this Section, the method developed to handle real-world obstacles is presented.

The scope is to define a procedure aimed at detecting all the generic dynamic

obstacles in the scene and estimating their position and velocity, a procedure

commonly known as obstacle tracking. These estimations are then used as inputs in

the trajectory generation block, in a way that will be detailed in the last part of this

Section.

As for the online trajectory generation, in parts of this Section there will be references

to discrete time steps, once again denoted with the letter i, and with duration Δt. In

this case, however, Δt will not refer to the controller sample time but to the inverse

of the camera frame rate. The Kinect v2 run at ≈ 30 fps, whereas the Realsense D435,

60

can achieve higher frame rates. Nonetheless, for the scope of this Thesis, the

Realsense frame rate was set to 30 fps and its depth resolution at 848 x 480, a choice

mainly motivated by experimental evaluations. Each camera acquisition and

processing cycle was managed by ROS independent nodes (for an overview of the ROS

architecture see Appendix B); after a data fusion stage, computations are performed

inside ROS nodes running at a specific frequency (≈ 35 fps). After the data fusion, time

step will thus refer to the time step of these latter ROS nodes.

In addition, for the sake of conciseness, henceforth the Realsense D435 camera will

be referred to Realsense, whereas the Kinect v2 will be referred to as Kinect.

Furthermore, the subscript 1 and 2 will be used, in some occasions, to refer to the

Realsense and the Kinect, respectively.

3.2.1 Control volume

The first step was the definition of the space region here called control volume,

namely a volume which identifies the robot operational zone, which is to be

monitored by the cameras. The control volume was placed in the rear-part of the

robotic cell, which gives the chance of interacting with the robot thanks to the

movable guards (cf. Figure 2.1c). The control volume was constructed as a cuboid and

placed as shown in Figure 3.11 (red volume); the robot workspace (in blue), is also

highlighted, referred to a TCP positioned at the extremity of the gripper jaws; the

robot is depicted with the J1 axis rotated by 180 degrees.

Figure 3.11 Four different view of the control volume (in red). The robot workspace, referred to a

TCP positioned at the extremity of the gripper jaws, is shown in blue. The robot is depicted with the

axis J1 rotated by 180 degrees.

61

The control volume bounds and dimensions are listed in Table 3.4, referring to the

Robot Base RF.

Table 3.4 Lower bounds (lb), upper bounds (ub) and dimensions (dim), in the x, y and z direction

of the control volume, with respect to the Robot base RF.

lb (mm) ub (mm) dim (mm)

x -712.50 135.50 848.0

y -768.75 370.75 1139.5

z 144.25 859.75 715.5

3.2.2 Camera placement

Once defined the control volume, the two depth cameras were placed so that the

union of their camera viewing frustum completely covers the control volume. The

concept of camera frustum is depicted in Figure 3.12a: it is the volume defined by the

blue lines, which represents the space region that the camera can frame. Depth

cameras typically have a blind spot near the optical centre, so this volume is a

truncated pyramid, fully defined by the Horizontal and Vertical FOV and by the depth

range, both reported in Figure 3.1 for the camera models used. Figure 3.12b and

Figure 3.12c show an isometric and a top view, respectively, of the camera placement

with respect to the control volume, in which the camera viewing frustums are

highlighted.

Figure 3.12 (a) Illustration of the concept of camera frustum; (b), (c): two views of the camera

placement (Realsense at the left, Kinect at the right) with respect to the control volume (cuboid in

red), with highlighted their viewing frustum (in blue the one of the Kinect, in green the one of the

Realsense).

62

It is worth pointing out that the camera placement has important implications on the

safety, since it affects the visibility and determines whether an obstacle is spotted or

not inside the area that one wants to monitor. In an ideal scenario, the cameras have

to be placed to maximize the control volume coverage, to frame potential keypoints

with sufficient quality and to minimize the possibility of occlusions. Some studies for

the optimal placement of fixed cameras are available in literature [105,106]. This topic

will be better analysed in Chapter 5 of the Thesis, in a different case study. In general,

it is clear that the positioning and dimensions of the control volume inevitably

determines both the minimum number of cameras needed for an effective

monitoring and their placement. In the case addressed in this Section, given the

simple geometry of the control volume, the usage of only two cameras and some

constraints on the available mounting places, the placement was made based on the

sensibility of the Candidate, with successive refinements relying on CAD visualization

tools and practical experimental tests.

3.2.3 Camera extrinsic calibration

Camera calibration is a fundamental procedure omnipresent in computer vision. In

Appendix C some basic notions and nomenclature are reported. For a detailed

discussion, see for example [29].

The two depth cameras output the point clouds with respect to their reference frame,

but they need to be referred to the Robot base RF, so that obstacle-related quantities

can be used in the trajectory generation block.

The method here used for the extrinsic calibration exploits the fact that both the

cameras used contain an RGB sensor; since the RGB sensor and the depth module are

separated entities, each one has its own Camera RF, henceforth named Depth camera

RF and RGB camera RF. In the case study, extrinsic calibration consists in the process

of estimating: ¡�#H the homogeneous matrix representing the pose of the Depth camera RF of the

Realsense depth module with respect to the Robot base RF; ¡�&H the homogeneous matrix representing the pose of the Depth camera RF of the

Kinect depth module with respect to the Robot base RF.

This process was carried out in two steps, one used for an initial estimation of ¡�#H

and ¡�&H and the second one for a refinement of the transformations found.

63

3.2.3.1 Step 1: estimation of an initial transformation

The first step, used for an initial estimation of ¡�#H and ¡�&H , involves the use of ArUco

markers [107,108], acquired by means of the RGB sensors present on both the

Realsense and the Kinect (see Figure 3.1). ArUco markers are 2D fiducial markers

whose pose can be estimated starting from an RGB image in which the marker is

visible and specific related algorithms, given that the intrinsic parameters of the RGB

sensor are known. One ArUco marker was fixed on a robot part in such a way that

could be framed by the RGB sensors of both the cameras (as shown in Figure 3.13),

and so that its pose with respect to the Robot base RF could be easily estimated via

CAD. Furthermore, for each camera also the rigid transformation between its own

RGB camera RF and Depth camera RF was estimated. For the sake of conciseness, let

us consider only the Realsense (the same applies to the Kinect); the pose of its Depth

camera RF with respect to the Robot base RF can be computed according to Eq. (3.61): ¡�#H = ¡/H �¡/H¢I#�0#¡�#H¢I#
 (3.61)

where: ¡H¢I#H is the pose of the RGB camera RF with respect to the Robot base

RF. ¡/H is the pose of the ArUco marker with respect to the Robot base RF

(estimated via CAD). ¡/H¢I#
 is the pose of the ArUco marker with respect to the RGB camera

RF (output of the ArUco-related function). ¡�#H¢I#
 is the pose of the Depth camera RF with respect to the RGB camera

RF (value that can be either found in literature/given by the

manufacturer/estimated by specific function available in the

camera libraries).

64

Figure 3.13 ArUco marker placement, edges recognition and reconstruction of its 3D pose.

3.2.3.2 Step 2: refinement

For each camera, the transformation obtained in Step 1 was used as initial

transformation for an Iterative Closest Point (ICP) algorithm [109]. ICP is a very well-

known algorithm which allows one to align generic 3D shapes having the same

geometry. Through a series of iterations, it finds the transformation that minimizes

the distance between two sets of points. This algorithm is very versatile but works

better if a good initial estimation of the transformation is given. Otherwise, in fact, it

can easily get stuck in local minima, not properly converging to the right

transformation. The ICP algorithm was run between a point cloud of the robot shape

acquired by each camera and the CAD robot model, previously converted into a point

cloud with an appropriate point density, by means of the open-source software

CloudCompare [110]. For the acquisition, the robot was moved in a position in which

each camera could acquire a significant amount of its shape with good quality. Before

using the point clouds inside the ICP algorithm, a box filter was applied to keep only

the robot shape, which was then filtered to remove the noise and properly

downsampled. These routines were carried out in MATLAB®, and the results shown

in Figure 3.14.

65

Figure 3.14 (a) Final robot shape obtained from the Kinect point cloud, (b) final robot shape

obtained from the Realsense point cloud. (c) alignment of the point cloud (a) and (b) on the point

cloud obtained from the robot CAD.

The final obtained value of ¡�#H and ¡�&H , other than the poses of the Depth camera

RFs with respect to the Robot base RF, can be seen as the transformation matrices

that can convert a point cloud, referred to the Depth camera RF, to the Robot base

RF, according to Eq. (3.62).

£¤# … ¤¥¦# … ¦¥�# … �¥1 … 1 § = ¡�#H
⎣⎢⎢
⎡¤¨# … ¤¨¥¦̈ # … ¦̈ ¥�¨# … �¨¥1 … 1 ⎦⎥⎥

⎤
 (3.62)

where N denotes the number of point cloud points.

Figure 3.15 summarizes the various steps of the extrinsic calibration.

Figure 3.15 Conceptual pipeline of the extrinsic calibration method. “T.” stands for Transformation.

66

3.2.4 Voxel-based data fusion

In this Section, the method to filter and fuse the 3D data acquired by the two depth

cameras is detailed. The concept of control volume and the knowledge of the

transformations estimated by means of extrinsic calibration in Section 3.2.3 are

exploited. These latter transformations are computed offline and need to be re-

computed for each sensor only if its pose, relatively to the Robot base RF, changes. In

this Section the concept of voxel grid is introduced, and will serve as a basis for the

development of the algorithms used to online manipulate the 3D data that the depth

cameras output and to ultimately estimate the obstacle positions and velocities. The

use of a voxel grid has the advantage of creating a structure that can be manipulated

with simpler and faster algorithms (that can be GPU-parallelized), but has also other

perks, such as the fact that acts itself as a spatial filter, in a way better detailed later.

A notable example of the use of voxel-based GPU-accelerated algorithms can be

found in [111, 112], in which Hermann et al. exploit them for collision detection and

mobile manipulation planning.

3.2.4.1 Creation of a voxel grid

The control volume defined in Section 3.2.1 is divided into a set of cubic voxels of the

same side length Lvox, set equal to 26.5 mm, resulting in a voxel grid, composed of Nx,

Ny and Nz number of voxels on each side, as shown in Figure 3.16. A generic voxel of

the grid is identified by a set of three indexes jx (= 1, …, Nx), jy (= 1, …, Ny), jz (= 1, …,

Nz) which are incremented with respect to a RF located at a grid vertex, henceforth

named Voxel grid RF. These concepts are shown in Figure 3.16.

Figure 3.16 Voxel grid and related quantities.

67

This choice of Lvox is the result of a trade-off between different necessities. One is to

limit the computational burden, which is affected by the number of voxels involved,

which depends on Lvox. On the other hand, a too high value of Lvox might lead to an

over-simplification of the obstacle shape and to consequent losses of precision in the

various related estimations. However, if voxels are too small compared to the density

of the sensors point cloud, there can be problem in the voxelization process, since

might result in a series of sparse isolated voxels. The voxelization process consist in

assigning an occupancy to each voxel corresponding to the number of point cloud

points that are contained in that voxel. The occupancy can be seen as a measure of

the confidence that a particular voxel actually contains a part of an obstacle (is non-

empty). Among other perks, the use of a voxel grid has the advantage of creating a

structure that acts as a spatial filter: voxel occupancies under a certain threshold δ

can in fact be set to zero to filter out the spatial noise of the 3D data. The dimension

of the voxels also affects the effectiveness of this spatial filter, hence becoming a

further factor to account in the choice of Lvox. Furthermore, the voxel size also affects

other stages of the method in a non-trivial way.

Given its complex role, the final value of Lvox was mainly decided based on empirical

evaluations. Once a proper value was found, it was slightly tweaked, alongside with a

first choice of the control volume dimensions (final ones reported in Table 3.4), to

generate an integer number of voxels multiple of 32, which is the warp size of the

most recent NVIDIA GPUs. This grants a minor improvement in speed in the GPU-

parallelized algorithms, as reported in [113], which were used for the implementation

of a particle filter (cf. Section 3.2.7).

The final values of voxel-grid features are summarized in Table 3.5. Nvox denotes the

total number of voxels.

Table 3.5 Voxel grid features.

Lvox (mm) Nx Ny Nz Nvox

26.5 32 43 27 37152

It is worthy to point out that the voxel grid here described is a fixed structure, which

makes it particularly suitable for GPU-accelerated algorithms. One different, thus

common approach to speed up computations consists in exploiting octrees or k-d

trees, which are dynamically growing data structures, most suitable for the

programming paradigm typical of CPU algorithms, even if some GPU implementations

have been proposed [112]. In the case study, the number of voxels and the algorithms

involved suggested an approach based on a fixed voxel grid and GPU-accelerated

algorithms. In the case of significantly higher number of voxels, which could arise for

instance in the case of mobile robots or automotive applications, where a remarkably

68

higher volume is to be monitored, the use of an approach based on octrees or k-d

tree might be preferred for the sake of efficiency [114].

In the actual implementation, arrays were used to store voxel-related quantities

instead of a 3D voxel grid. Given that Nx, Ny, Nz are known, an index triplet (jx, jy, jz),

identifying a voxel of the voxel grid, can be converted into an index j in the voxel-

related array, in the following way: © = ©ª«¬«R + ©¬«R + ©R (3.63)

In case, given the index j, one can revert back to the 3D index in the following way:

⎩⎪⎨
⎪⎧©R = �©%�«¬«R�� %«R ©¬ = ®�©%�«¬«R�� /«R°©ª = ±©/�«¬«R�² (3.64)

where % denotes the modulo operator and ⌊N⌋ is the floor operator, which takes as

input a real number and gives as output the greatest integer less than or equal

to x.

Henceforth, the index j will be used to index a voxel, considering that it refers to the

voxel identified by the corresponding 3D index.

3.2.4.2 Filtering, voxelization, data fusion

The various filtering and processing need to be performed for each voxel at each time

step, thus need to be efficient. One first expedient is to limit the number of 3D points

involved more upstream possible in the pipeline, which is shown in its entirety in

Figure 3.17. For this purpose, a first filter consists in a range filter, which, for each

camera, allows to filter out the 3D points with a distance from the optical centre

higher than a certain threshold. This filter was already available for both the Realsense

and the Kinect. The threshold values were evaluated by means of a CAD assembly

containing both the control volume and camera viewing frustum (cf. Figure 3.12). For

each camera, the threshold distance is set equal to the maximum distance for which

some points of its viewing frustum are contained in the control volume. After that,

the point clouds are transformed into the Robot base RF, according to Eq. (3.62).

Then, a box filter was applied to eliminate the 3D points outside the control volume.

Next, the voxelization process was performed, separately for each camera. This

process consisted in evaluating the number of 3D points inside each voxel. In order to

do so, for a generic 3D point (X, Y, Z) referred to the Robot base RF one can compute

the corresponding voxel index j, according to Eq. (3.65).

69

©�¤, ¦, �� = µ� − _¶R�ª · «¬«R + µ¦ − _¶¬�¬ · «R + ¸¤ − _¶ª�R ¹ (3.65)

where:

 Dx, Dy, Dz are the voxel grid dimensions;

 _¶R, _¶¬ , _¶ª are the coordinate of the origin of the Voxel grid RF (cf. Figure

 3.16). ⌊N⌋ is the floor operator, which takes as input a real number and gives as

output the greatest integer less than or equal to x.

For the Realsense, an occupancy vector n1 (with length equal to Nvox and all elements

initialized to zero) can be constructed as follows: for each point of the Realsense point

cloud, the corresponding index j is computed, and the quantity n1[j] incremented by

one. This way, at the end of the process, each cell of n1 will contain the number of

points of the Realsense point cloud contained in the voxel j. The same process is

carried out for the Kinect point cloud, considering this time an array n2. Then, a filter

is applied to set to zero all the occupancies under a specific threshold (different for

the two cameras and set empirically), to filter out part of the spatial noise. The next

step consists in merging the two occupancies vectors n1 and n2 into a single one. For

this purpose, the function of Eq. (3.66) was created, considering the following:

 The two occupancies n1 and n2 are to be manipulated so that they are comparable.

In fact, each depth camera generates point clouds with different densities (which,

in addition, could not be uniform in the space). This depends on the sensor

technology and resolution.

 If, inside a voxel, points from both the Realsense and the Kinect are present, the

resulting combination is to be greater than the sum of the occupancies, since the

confidence benefits from the data heterogeneity. This is accounted by an

additional term which is product of the single scaled occupancies.

º = *�v#, v&� = ±'#�#»v# + '&�&¼v& + '$�#»�&¼v#v&² (3.66)

where:

σ, n1, n2, d1, d2 are vectors and their product and operators applied on them

are to be intended component-wise (equivalently, they can be considered

referred to the voxel j, which subscript is here omitted for sake of clarity). c1,

c2, c3, α and β are scalar parameters. More precisely:

70

σ is a vector containing a combination of the final voxel occupancies,

henceforth named voxel confidence and representing the confidence that each

voxel is non-empty;

d1 is a vector containing the distances of the centres of the voxels from the

Realsense depth RF optical centre;

d2 is a vector containing the distances of the centres of the voxels from the

Kinect depth RF optical centre;

α, β are exponents that, combined with d1 and d2, are used eliminate the

dependency of the point cloud density on the distance from the optical centre;

 c1, c2, c3 are constant scaling factors.

In the case of a stereo camera, the density of 3D points decreases as the camera

distance increases [114], more precisely, the maximum number of points remains

constants inside windows obtained by intersecting planes parallel to the image plane

with the camera viewing frustum at distance d from the optical centre. It can be easily

seen that the area of these windows is proportional to d2, so a value of α = 2 was

chosen. In the case of Kinect, a less remarkable variation of the point cloud density

was observed in the range interval considered, and a value of β = 0.5 was set, based

on empirical observations. However, a more accurate choice is planned to be done in

future experiments.

For better performances, the vectors d1
α and d2

β are pre-computed offline,

considering the Cartesian coordinates of each voxel centre of the voxel grid.

The values of c1, c2, c3 can be set according to different strategies, here the following

was used:

• c2 was set equal to 1;

• c1 was computed so that the mean of the vector �#»v# was equal to the mean

of �&¼v&. These means were computed considering whole sets of frames, not

a specific time step; this resulted in a value of c1 ≈ 1.1.

• c3 was set equal to c1c2.

The σ obtained according to Eq. (3.66) was further scaled and capped to a maximum

of 255. The choice of 255 allowed to store the final occupancy in a vector containing

8-bit values (UInt8MultiArray ROS message type), with the aim of both limiting the

computational burden and allow an easier interpretation: this final value of σ

represents the voxel confidences as scores between zero and 255. The higher the

value, the higher is the probability that the voxel is non-empty. Emphasis is placed on

71

the fact that the voxel confidence account for the sensor heterogeneity, which was

quantified by a specific term in Eq. (3.66).

The confidence vector σ, paired with a specific confidence threshold δ3 (δ3 = 50) can

be used to construct a Boolean voxel map BV, in the following way:

if σ[j] > δ3 BV[j] = 1 non-empty voxel

else BV[j] = 0 empty voxel

The pipeline of the method is summarized in Figure 3.17.

Figure 3.17 Pipeline consisting in all the steps utilized to covert the point clouds acquired by the

two depth cameras into a final Boolean voxel map.

72

This method, even if presented in the case of two depth cameras, can be adapted to

a generic number of sensors. Eq. (3.66) can include different additional terms for all

the combinations of sensors, properly choosing only the scalar parameters involved.

In the actual implementation, the algorithms presented in this Section were not

parallelized, since no performance enhancement was deemed necessary. Note

however that, in case of need, most of them can be implemented in a GPU-

parallelized way, which is significantly facilitated by the fact that they rely on the use

of a voxel grid.

3.2.5 Voxel types

In the previous Section, the classification of voxels in empty and non-empty was

carried out, starting from the depth cameras point clouds. The non-empty voxel

identified, however, can belong to different entities, which are:

• static obstacles: fixed parts of the background, which remains constant at each

time step;

• robot body: the robot body is part of the scene, and thus acquired by the depth

cameras;

• dynamic obstacles: obstacles whose positions may change at each time step.

This information was stored in the vox_type vector, constructed by assigning a natural

number to each cell, identifying the voxel type, in the following way (j = 1, …, Nvox):

vox_typej = 0: type0-voxel: empty voxel

vox_typej = 1: type1-voxel: part of a static obstacle

vox_typej = 2: type2-voxel: part of the robot body

vox_typej = 3: type3-voxel: part of a dynamic obstacle

The static obstacles can be theoretically considered as a subset of the dynamic

obstacles with speed equal to zero, however, since they are known in advance, it is

useful to treat them separately. More precisely, the vox_type indices corresponding

to a static obstacle are computed offline and remains constant. This provides the

following benefits:

 The voxels corresponding to static obstacles are certainly non-empty, which allows

to completely avoid the possibilities of false negatives which can arise in the case

of reconstructing them starting from sensor point clouds.

 They are not subjected to occlusion.

73

 Efficiency is higher, in particular related to the part of the speed estimation: static

obstacles are simply not considered in that part.

As part of the static obstacles, a voxel-composed external shell of the control volume

was also considered, with the aim of restricting the robot movement inside the

control volume, in a way better detailed later.

The computation of the voxel indices corresponding to static obstacles was carried

out offline in MATLAB®, by exploiting the CAD model of the robotic cell, which is

comprehensive of all its components. Part of the code exploits the polygon2voxel

function [115] from MATLAB Central File Exchange, which allows one to convert an

.stl file into a voxel map.

The type2-voxels, belonging to the robot body, have to be filter out, so that the robot

itself is not categorized as obstacle. The way this is achieved is detailed in the next

Section.

3.2.6 Robot body filter

The robot body filter is a common filter having the function of filtering out the points

belonging to the robot body captured by the sensors, so that are not considered as

obstacles in the successive computations. Common implementations of this type of

filter make use of the Unified Robot Description Format (URDF), which is a format

representing the robot model, and, if it is the case, it is sometimes referred to as URDF

filter. Some examples of available ROS implementation are [116,117]. In the proposed

method, a custom implementation of the robot body filter was developed, specifically

designed to operate on a voxel grid. This was a performance-motivated choice, for

two reasons:

1 - it allows its application only once per cycle, after the data from the different

sensors are integrated on the voxel grid. Other available implementations, as a matter

of fact, operate on depth images or point clouds, so, in case of multiple sensors, the

filter normally needs to run separately on each sensor data, which makes it

computationally expensive (and, in general, this type of filter is already

computationally expensive, as reported in [116]).

2 – it takes advantage of the regular structure of the voxel grid and of the previous

processing in the pipeline, which reduced the data size and complexity.

The developed robot body filter has the function of identifying a series of voxels that

belong to the robot body, so that are not considered as part of dynamic obstacles. In

order to do so, the robot links and end effector were encapsulated in cuboids, as

shown in Figure 3.18.

74

Figure 3.18 Cuboids encapsulating the various robot parts.

The choice of cuboids was motivated by the fact that are particularly suitable for the

successive operation described involving the voxel grid. Each cuboid is divided into a

set of points, evenly distanced in the three dimensions, thus forming a grid,

henceforth named cuboid grid.

At each time step, each point of the cuboid grids is transformed as it is attached to

the link that the cuboid encapsulates. This is made by exploiting the real-time

knowledge of the robot joint position and forward kinematics, available from the

online trajectory generation block.

For each point of the cuboid grids, the corresponding voxel index is computed by

means of Eq. (3.65). If the cuboid grids are sufficiently dense, this results in sets of

adjacent voxels, which can be exploited to properly filter out the robot body. To

better explain this concept, let us consider the simpler 2D case: the cuboid grid and

the voxel grid corresponds to a rectangular grid of evenly distanced points and a

matrix of pixel, respectively, shown in Figure 3.19. Figure 3.19a shows the case of a

sparse rectangular grid, whereas Figure 3.19b of a dense one. The pixels that contain

at least one point of the rectangular grid are highlighted.

Figure 3.19 Rectangular grid of (a) sparse points and (b) dense points and a pixel matrix containing

them.

75

On one hand, one wants that the voxels containing the points of each cuboid grid are

all adjacent, for all the possible pose of the cuboid grid, which can be achieved by a

small step size of the grid Δg. On the other hand, performances benefit from a low

number of points, thus a high value of Δg.

To take into accounts both necessities, it is convenient to choose Δg the maximum

value that results in all adjacent voxels (i.e. each voxel has to contain at least one

point of the grid), for all the possible pose of the cuboid grid.

To evaluate that, the worst-case pose is to be considered. In the 2D version of the

problem, the worst case, and the consequent maximum value of Δg chosen, is shown

in Figure 3.20.

Figure 3.20 Worst-case pose of four point of the rectangular grid of the 2D version of the problem.

The limit case of Figure 3.20 can be used to choose Δg as follows: ∆½ = ¾/√2 (3.67)

It is easy to see that this reasoning is appliable to the 3D case as well. In this case, the

maximum step of the cuboid grid that results in all adjacent voxels can be computed

according to Eq. (3.68). ∆½ = ¾ÀJR/√3 (3.68)

Some last remarks are the following:

 the lower Lvox is, the better the shape of the cuboid is approximated, so for very

high values of Lvox this method can produce very poor cuboid shapes, which can

lead to false negatives (dynamic obstacles not properly classified since recognized

as part of the robot shape). If being the case, alternative methods are to be

considered;

 even if it was implemented using the CPU, this method is suitable for a GPU

parallelization.

76

3.2.7 Speed estimation by particle filter

Inside the context of HRC, Kalman filter is typically used to estimate the human

motion or to enhance its accuracy and reliability [15,59,87,118]. Kalman filter,

however, is known for having limitations in dealing with high non-linear models, or

when some of the model parameters are not known [43,119]. To tackle the case of

generic dynamic obstacles, particle filter was chosen instead, since it can

commendably deal with non-linearity and does not require the obstacle to be

modelized. Particle filter relies on the use of a set of particles, generated with a series

of Monte Carlo algorithms, that are used to reconstruct the motion of the obstacle.

One of its drawbacks is that it normally causes a high computational burden. To

overcome this, a GPU-parallelized implementation was developed. The specific

details of the GPU implementation are not presented here, but in Appendix D instead.

The particle filter is used to associate a speed to each of the type3-voxels. The

proposed method is inspired by the work of Morales et al. [114] in the automotive

field; in particular, as in [114], the implemented filter has the following features:

o it is specifically designed for a voxel grid;

o it accounts for the particle age: to each particle, other than a position and a speed,

also an age is associated. The higher the age, the higher the probability that the

particle motion resembles the obstacle motion;

o particles are not used as an indicator for the occupancy probability but only to

compute voxel speeds.

An overview of the algorithm flow of the implemented particle filter is shown in Figure

3.21. It is composed of the following main stages:

 Initialization: (only once, at the first time step): a set of particles is generated

by means of a Monte Carlo method;

 Evolution: the particle positions are updated according to a specific law of

motion;

 Measurement-based particle selection: particles whose position is in disagree

with the data from the depth cameras are eliminated;

 Voxel speed computation: the voxel speed is estimated based on the survived

particles inside that voxel;

 Resampling: the survived particles are resampled by exploiting Monte Carlo

methods.

Each stage will be detailed in the next Sections.

77

Figure 3.21 Algorithm flow overview.

3.2.7.1 Initialization

At an initial time step, a number of particles Qmax (= 96) is generated inside each type3-

voxel. A particle generated inside the voxel j is denoted with pjk. It is an array, with a

position, speed and age as components, as shown in Eq. (3.69). Â�� = �N��, Ã�� , Ä�� , B��, ���, Å�� , Æ��� (3.69)

where x, y, z ϵ ℝ are the position components, u, v, w ϵ ℝ are the speed components

and ζ ϵ ℕ is its age.

Inside each type3-voxel, the particles are generated in the following way:

 Each position is generated inside the voxel with a uniform random distribution;

 Each velocity component is generated with a uniform random distribution in the

interval [−‖Ç‖ÈÉÊ/√3, ‖Ç‖ÈÉÊ/√3], where ‖Ç‖ÈÉÊ is the maximum velocity

norm, set to 1 m/s. It is to be noted that there is a trade-off between the choice of

the maximum velocity and the precision of the velocity estimation: the higher the

maximum velocity, the coarser the velocity estimation, since the same number of

particles are generated but considering a wider velocity range.

 The age ζ is set to 0.

3.2.7.2 Evolution

In this stage, the particle state is updated based on a specific law of motion,

represented by Eq. (3.70); the particle age is also included, which is incremented by

1. For the sake of clarity, the subscripts j and k are here omitted; the subscript i refers

to the time step.

78

⎣⎢⎢
⎢⎢⎢
⎡ND�#ÃD�#ÄD�#BD�#�D�#ÅD�#ÆD�# ⎦⎥⎥

⎥⎥⎥
⎤

=
⎣⎢⎢
⎢⎢⎢
⎡1 0 0 ∆� 0 0 00 1 0 0 ∆� 0 00 0 1 0 0 ∆� 00 0 0 1 0 0 00 0 0 0 1 0 00 0 0 0 0 1 00 0 0 0 0 0 1⎦⎥⎥

⎥⎥⎥
⎤

⎣⎢⎢
⎢⎢⎢
⎡NDÃDÄDBD�DÅDÆD ⎦⎥⎥

⎥⎥⎥
⎤

+
⎣⎢⎢
⎢⎢⎢
⎡000qqq1⎦⎥⎥

⎥⎥⎥
⎤
 (3.70)

where δ is a noise generated with uniform random distribution in the interval [-0.05,

0.05] m/s.

3.2.7.3 Measurement-based particle selection and voxel speed estimation

This stage consists in keeping only the particles that, after the evolution stage, end up

inside the control volume AND inside a type3-voxel.

The survived particles are used to associate a speed Vj ϵ ℝ3, to each type3-voxel,

computed as a weighted mean (where ζjk is the weight) of the particle speed γjk = (ujk,

vjk, wjk), of the number Qj of the particles inside the voxel j, as shown in Eq. (3.71).

Ë� = ∑ Æ��Ç��ÍÎ��#∑ Æ��ÍÎ��# (3.71)

3.2.7.4 Resampling

In this stage, the following operations are carried out, considering each type3-voxel:

 If the voxel contains a number of particles higher than Qmax, only the Qmax older

particles (i.e. with higher values of ζ) are kept.

 If the voxel contains no particles, Qmax particles are generated. Each one is

generated as follows:

• its position is generated with a uniform random distribution inside the voxel;

• each velocity component is generated with a uniform random distribution in the

interval [−‖Ç‖ÈÉÊ/√3, ‖Ç‖ÈÉÊ/√3], where ‖Ç‖ÈÉÊ is the max velocity norm,

set to 1 m/s (the same trade-off between maximum velocity and precision holds

true here as well as for the case of the initialization stage).

• The age ζ is set to 0.

 If the voxel contains a number of particles higher than zero but minor than Qmax,

nb blocks of particles are generated, each containing a block_size number of

particles. nb is set equal to the minimum integer number for which nb*block_size

≥ Qmax. Each particle is generated as follows:

• its position is generated with a uniform random distribution inside the voxel;

79

• each velocity component is generated with a normal random distribution, with

mean equal to Vj and standard deviation SD, which was empirically tweaked to

a value of 0.15 m/s.

• The age ζ is set to 0.

3.2.8 Obstacle segmentation

The obstacle segmentation refers to the process of identifying all the different

dynamic obstacles on the scene. In the case study, this means to form different

clusters of type3-voxels. The clustering process relies on both the knowledge of the

indices of type3-voxels (thus their adjacencies) and of their voxel speed Vj, estimated

through the particle filter. Adjacent voxels might not belong to the same obstacle (e.g.

in the case of two obstacles passing one very close to the another while moving in

opposite directions), but an obstacle is always composed of a group of contiguous

voxels. To address this, the clustering algorithm exploits the concept of velocity

similarity, also used in [114]. Let us consider two tangential velocities v1 ϵ ℝ3 and v2 ϵ ℝ3, their similarity was evaluated by means of a Boolean function s (returning 1 if they

are considered similar and 0 otherwise), constructed according to the following

pseudocode:

if ‖�#‖ < Ï# AND ‖�&‖ < Ï# s = 1 // can be noise, considered similar

else if ��# ∙ �&�/�‖�#‖‖�&‖� < Ï& s = 0 // condition on the cosine

 else if |‖�#‖ − ‖�&‖| > Ï$ s = 0 // condition on the norm difference

 else s = 1

 endif

endif

endif

where ε1, ε2, ε3 are threshold parameters empirically set.

If both the velocities have a norm below a threshold ε1 they are considered as roughly

null velocities plus random noise, and thus similar. Otherwise, the similarity on the

direction is evaluated (by considering a threshold on the cosine of the angle between

them) and on the norm (by considering a threshold on the absolute value of the norm

difference).

The clustering algorithm exploits the function s and the voxel adjacencies. It is here

outlined in form of a pseudocode. In the pseudocode, the index i is here used to

identify the ith obstacle ϑ (not the time step, which is here fixed) and the function

80

adj(vox) finds all the adjacent type3-voxels of a type3-voxel. One voxel is here

considered adjacent to another if they are direct neighbours (for each voxel, the 26

neighbours are considered).

While ∃ a voxel of Type 3 marked as “non-assigned” do

pick a “non-assigned” Type 3 voxel vox_init

ϑ i = {vox_init}

A = {vox_init}

while A != { } do

 A_new = { }

for each voxj ϵ A

 find voxk | {voxk ϵ adj(voxj) AND voxk not already marked as “assigned”}

 for each voxk

 if s(V(voxk), V(voxj)) == 1

 A_new ← {A_new, voxk}

 ϑ i ← { ϑ i, voxk}

 mark voxk as “assigned”

endif

endfor

endfor

A ← A_new

endwhile

i = i + 1

endwhile

The clustering algorithm outputs a two-level array structure: an array of obstacles in

which each obstacle, in turn, is represented by an array of voxel indices. In the

presented version, this algorithm is not suitable for a parallelization, since it relies on

sequential computing of voxels neighbours. It proved suitable for the case study,

however alternative faster versions should be used in case performances require it. It

is noteworthy the fact that obstacles with a structure with more than one degree of

freedom (such as the human body), might legitimately result in more than one

obstacle, since different parts could have significantly different speeds.

81

First, this segmentation is used as an additional spatial filter: if an obstacle contains a

number of voxels lower than a threshold, it is considered noise and eliminated. Then,

a velocity is associated to each remaining obstacle, computed as the mean of the

velocity of the voxels by which is composed. To each obstacle, also a barycentre is

associated, computed as the mean of the Cartesian coordinates of the centres of the

voxels by which is composed. Furthermore, each voxel speed Vj is updated and set

equal to the velocity of the obstacle to which the voxel belongs, which allows to

reduce the noise in the voxel speeds. These latter operations are legit only for motions

that, at each time instant, can be approximated to pure translational motion, which

is here assumed. Considering a fixed time instant, points belongings to an object

subjected to a roto-translational motion, in fact, would have velocities with the same

direction but different module, depending on the distance from the rolling point.

3.2.9 Input quantities in the online trajectory generation block

The entity “obstacle” as a whole, is actually not used in the trajectory generation

block, but only for visualization purposes; the segmentation process served

essentially as an additional spatial filter and as a filter for the voxel velocities. At each

time step, for each robot point k, only the voxel with the minimum dynamical distance

is considered in the computation of the safety constraints (cf. Section 3.1.3), picked

considering both type1-voxels (belonging to static obstacles, Vj = 0) and type3-voxels,

according to Eq. (3.72). © such that ���� + �F����� is minimum (3.72)

where: ��� = ONHIW − �ÖN_'×v�Ø×�O (3.73)

 �F�� = ��HI� − Ë�� ∙ NHI� − �ÖN_'×v�Ø×���� (3.74)

where vox_centre is an array containing at the index j the coordinate of the centre of

the voxel j, the operator ∙ denotes the scalar product and Vj is the voxel speed,

updated after the segmentation process (set equal to the speed of the obstacle

to which it belongs).

For the sake of efficiency, vox_centre was pre-computed offline and used as a lookup

table. If needed, the computation of the voxel with the minimum dynamical distance

can be easily GPU-parallelized on the index j in order to optimize performances

(according to experimental tests it was not required in the case study).

82

The fact that the computation of the safety constraints relies on the use of single

voxels rather than obstacles is an original approach, having its pros and cons, and it is

worth some further remarks. This approach allows one to consider an indefinite

number of obstacles with generic shapes, without additional computational burden,

which only depends on the number of voxels (computations can be easily GPU-

parallelized). Other than that, it allows one to define in a straightforward way

particular zones, identified by clusters of type1-voxels, that can be used to constraint

the robot Cartesian movement. This principle was used to create the external shell of

type1-voxels, representing the control volume boundaries, exploited to confine the

robot movement inside of it: the PSD is always to be maintained with respect to the

type1-voxels composing the external shell, so the robot cannot exit the control

volume. A possible improvement can be to specify a different expression for the

dynamical distance for the static and dynamic voxels, so that, for instance, all else

being equal, the robot is allowed to move closer to type1-voxels with respect to type3-

voxels.

On the other hand, one downside of this approach is that, by considering only a single

“most critical” voxel at the time, undesired motion phenomena can appear, deriving

from the fact that the motion adjustment is not being constrained considering the

totality of the obstacle voxels. By varying the time step, oscillations can possibly

appear in the selection of the voxel with minimum dynamical distance, degrading the

quality of the generated motion (especially in terms of smoothness). In experimental

tests, however, this phenomenon was not prevalent, and it was reduced by lowering

the joint acceleration limits. Nevertheless, further research is planned to address this

liability.

3.3 Other features and remarks

In this Section some other features involving the whole method are outlined, and

some additional remarks are made.

3.3.1 Fault handling

One situation that can occur is that at one time step the optimization problem of Eqs.

(3.41-3.43) results infeasible. This can be due to different causes, for example to the

fact that the obstacle speed/and or acceleration are so high that one or both of the

following can occur:

83

 the robot, with its limitation in speed and acceleration, cannot produce a

modification of its motion able to keep the distance under the threshold

imposed by the PSD;

 the depth camera frame rates and robot sample time are not high enough to

account for very high obstacle accelerations: the hypothesis of velocity

approximately constant between two time steps does not hold anymore.

Other than that, there can be faults due to other issues, for examples false positives

in depth camera acquisitions, which might result in an infeasible optimization

problem. In addition, in the presented methodology, the recursive feasibility [120] is

not formally guaranteed, so there is the possibility that the state is driven to a region

where the optimization problem has no solution. Even if in the conducted

experimental tests this has not appeared to have a significant impact, further tests

and developments are planned to address this issue, with the aim to enhance the

method reliability.

In the current implementation, if the problem results infeasible, to the robot is

commanded a position equal to its current one. In this case, the robot controller stops

the robot with the maximum deceleration possible. The robot stay stopped until the

optimization problem becomes feasible again.

The handling of low-level errors is still made by the robot controller, which checks

that each command actually respects the position and velocity limits (by definition,

the command is generated so that it does, so it is an additional check), and stops the

robot prompting specific errors in case it does not occur. This can be due for example

to the fact that the external computer used acts as a soft real time system, which has

a higher jitter in loop times compared to a hard real-time system, which conversely,

guarantees time-determinism. The soft real-time communication is handled by ROS

and the jitter was observed to be negligible in the case study, but is in general a factor

to consider and that could affect the system behaviour. One way to improve the

system reliability could be the use of a real-time operating system; this can be done

for example by means of the Linux Xenomai or the RT PREEMPT kernel patch for Linux.

3.3.2 Operating modalities

One additional feature of the method is that the robot can switch between two

modalities. If no dynamic obstacles are present inside the control volume, the robot

operates at its full dynamics; when a dynamic obstacle is detected inside the control

volume, the robot switches to a collaborative modality: the joint speed and

acceleration limits are lowered and the motion adjustment enabled. This limiting is

not strictly necessary, since the safety constraints by themselves guarantee that robot

84

motions are generated so to keep the PSD, but it serves both to add a layer of safety

and to reduce the human operator mental strain, by raising the perceived safety. If

no dynamic obstacles are present anymore inside the workspace, joint speed and

acceleration limits are restored to their original values, in order to fully exploit the

industrial robot dynamic capability and maximize the productivity.

3.3.3 Enabling the real-time communication with the robot controller

A basic conceptual scheme outlining how the (soft) real-time communication

between the various elements is shown in Figure 3.22.

Figure 3.22 Conceptual scheme of the various elements involved in the real-time communication.

The custom application, developed by means of ROS (see Appendix B for more details

about the implemented ROS architecture), runs inside the external workstation,

processing data acquired from the external sensors and generating a command, sent

to the robot controller through Ethernet. For the communication of the robot

command to be effective, a specific program must run inside the robot controller. This

program, named MOVEXT in Figure 3.22, can be written and loaded inside the

controller by using the RTToolbox3 Mitsubishi Electric proprietary software. Its

structure is very simple, and it is reported in Figure 3.23. It basically moves the robot

into a starting position and enables an external communication by activating a specific

UDP port of the controller. Also, a time filter is specified as a parameter in the function

which takes care of receiving external command data. The filter was set to 30 ms and

allowed to produce smother trajectories, an aspect better highlighted in the next

Section.

Figure 3.23 RTToolBox3 program, running on the controller and enabling the real-time external

communication.

85

3.4 Results
To enable a real-time visualization of the various elements involved in the collision

avoidance method (and providing an HRC interface), the rear part of the cell was

endowed with a display, connected to a Raspberry Pi4, in turn remotely connected

with the workstation. During the tests, the display was just used as a monitor, showing

a custom-made visualization window; a remote control of the workstation was also

possible in case. The visualization window was created by means of the ROS

visualization tool RViz, refreshing in real-time all of its elements with a rate set equal

to 30 Hz. All the elements of the visualization windows are highlighted in Figure 3.24.

The robot model in the visualization window replicates in real-time the movement of

the real robot. Figure 3.24c and Figure 3.24d are close-ups of parts of Figure 3.24a

and Figure 3.24b, respectively, showing how velocities are visualized: a purple arrow

that points in the motion direction and whose length is proportional to its norm. The

four robot points considered are identified by different values of k, as shown in Figure

3.24a; this will be later used to reference them in various plots.

Figure 3.24 Visualization window and all its elements.

Figure 3.25 shows the effect of the robot body filter. The type2-voxels, belonging to

the robot body (Figure 3.25a) are filtered out by means of the violet voxels (Figure

3.25b) resulting from the use of the cuboid grid as outlined in Section 3.2.6.

86

Figure 3.25 Robot body filter.

Tests reported here were carried out considering a task-based trajectory having the

shape shown in Figure 3.26, consisting of six frames extracted from a recording of the

visualization window, numbered according to their temporal order. The task based-

reference trajectory was constructed by means of four waypoints (robot traverse

them in the images of Figure 3.26 identified by 1, 2, 5, 6); the robot moves from one

to another by means of joint interpolated motions.

Figure 3.26 Task-based pre-programmed reference trajectory.

87

In absence of dynamic obstacles, the robot follows the task-based reference

trajectory. When a dynamic obstacle enters the workspace, the robot performs a

trajectory adjustment, whose trace can be monitored online, along with other

quantities, as shown in Figure 3.27, which report four frames (with increasing

timestamps from left to right) extracted from a recording of the visualization

windows. The dynamical obstacle is the cluster of red voxels; the yellow lines join each

robot point with the voxel having minimum dynamical distance from it, among both

type1-voxels (static obstacles, in cyan) and type3-voxels (dynamic obstacles, in red).

The control volume is composed of an external shell of type1-voxels, not visualized as

the other type1-voxels and type3-voxels since it would clutter the visualization and

obscure the elements inside the control volume. It can be seen however, that some

of the yellow lines are connected to that external shell, since the voxels with minimum

dynamical distance are there.

Figure 3.27 Example of trajectory adjustment, allowing the robot to keep the PSD in case of an

approaching dynamic obstacle (in red). Time stamps increases from left to right.

The next part (Figures 3.28-3.35) shows in detail one example of trajectory

adjustment in the case of heading point computation based on motion laws (cf.

Section 3.1.6.1). All the video frames and plots refer to synchronize data, so they can

be compared considering the reported timestamps.

For safety reasons and to minimize the risk of damages to the equipment, tests on

the real robot were performed using a wooden shaft with rubber at one end. This is

shown in Figure 3.28, consisting in some frames extracted from a video where the

robot performs an evasive motion to maintain the PSD. Figure 3.29 shows the

corresponding frames extracted from a recording of the visualization window.

88

Figure 3.28 Robot performing an evasive motion to maintain the PSD while the moving shaft is

approaching.

Figure 3.29 Frames extracted from the visualization windows corresponding to the frames of Figure

3.28.

89

Figure 3.30a shows the Cartesian trajectory generated by the commanded joint

position, whereas Figure 3.30b shows the actual robot Cartesian trajectory,

reconstructed by means of the joint position feedback values available from joint

encoders. Henceforth, the term command and feedback will refer to this distinction.

Figure 3.30 (a) Cartesian trajectory resulting from the commanded joint position; (b) feedback

Cartesian trajectory. The axes unit of measurement is mm.

Figure 3.31 and Figure 3.32 shows the joint positions (in degree) and velocities (in

degree/s), respectively. The reference, command and feedback joint values are

reported.

90

Figure 3.31 Joint reference (magenta dotted line), command (red solid line) and feedback (blue

solid line) positions. Values are reported in degree.

91

Figure 3.32 Joint reference (magenta dotted line), command (red solid line) and feedback (blue

solid line) velocities.

Figure 3.33 and Figure 3.34 shows a comparison, for each of the four robot points

(identified by different k, according to Figure 3.24a) between the distance and the

PSD, computed considering at each time step the voxel with the minimum dynamical

distance (cf. Section 3.2.9). Figure 3.33 reports the values computed considering the

92

commanded robot joint positions, whereas Figure 3.34 reports the values computed

considering the robot joint feedback positions.

Figure 3.33 Distance (blue) and PSD (red), for each of the four robot points considered, identified

by different values of k. Values are obtained considering the commanded robot joint positions.

93

Figure 3.34 Distance (magenta) and PSD (light blue), for the four robot points, identified by different

values of k. Values are obtained considering the feedback robot joint positions.

Figure 3.35 shows the x-y-z velocity components of the considered voxels (in the case

of k = 4), estimated through the particle filter.

Figure 3.35 x-y-z velocity components of the considered voxels (in the case of k = 4), estimated by

means of the particle filter.

94

The next part (Figures 3.36-3.38) shows some relevant plots in the case of heading

point computation based on the geometrical approach (cf. Section 3.1.6.2). In this

case, in Figure 3.37, the dotted lines do not represent the reference motion laws but

are the set of heading points qref computed online according to the procedure

explained in Section 3.1.6.2.

Figure 3.36 (a) Cartesian trajectory resulting from the commanded joint position; (b) feedback

Cartesian trajectory. The axes unit of measurement is mm.

Figure 3.37 Reference (dotted lines) and commanded (solid lines) joint positions.

95

Figure 3.38 Distance and PSD, for two of the four robot points (k=3, k=4). Data are obtained

considering the joint commanded position (two plots on the upper part) and the joint feedback

positions (two plots on the lower part).

Figures 3.39 and Figures 3.40 highlight the obstacle speed estimation by means of

particle filter, in a case in which the speed changes direction. Both figures report

frames numbered according to their temporal order, and have roughly corresponding

timestamps.

96

Figure 3.39 Online visualization of the obstacle speed: purple arrow, applied in the obstacle

barycentre, having the obstacle speed direction and length proportional to the obstacle speed

norm.

Figure 3.40 Alternative (offline) visualization, where an arrow (in purple) is associated to each voxel

(in yellow). The arrows point into the motion direction and their length is proportional to obstacle

speed norm.

97

Figure 3.41 shows the switching between the industrial modality and the

collaborative modality, this latter with lower maximum joint speed and acceleration

limits, when a dynamic obstacle enters the control volume.

Figure 3.41 Lowering of the maximum joint speed when a dynamic obstacle enters the control

volume.

3.5 Discussion

The adherence to the safety constraints has the aim of generating a robot command

in such a way that the robot distance from obstacles does not drop below the

corresponding PSD. If considering the command case, the experimental results of

Figures 3.33 and Figure 3.38 show that this approximately happens, if neglecting the

occurrence of short and low-amplitude spikes that cause very short temporary

violations of the PSD threshold. This can be due to various factors, such as:

 errors in the prediction of the obstacle position, due to approximations

concerning their velocity, considered constant inside the time step duration;

 approximations caused by the discretization of the environment by means of

voxels;

 approximations assumed in the computations of the safety constraints;

 nature of the strategy for the voxel selection detailed in Section 3.2.9, which

considers only the “most critical” voxel at each time step.

 soft real-time system;

98

 small imperfections and variability in the obstacle reconstructions due to

inevitable sensor limitations.

In the feedback case, the distance and dynamical distances are less spiky, and in the

case study the controller proved sufficiently performant to guarantee that an

acceptable difference from the command is kept throughout the motions. In the

various conducted tests, the values assumed by the distances with respect to the PSD

were considered tolerable due to the negligibility of the drops under the PSD

threshold. Nonetheless, further research is planned to better understand and limit

the observed phenomenon in the command case.

It is very evident (e.g. in Figure 3.32) that the actual (feedback) trajectory is smoother

than the commanded one, which is a positive aspect; this is due to different factors:

 the robot controller performs a smoothing action before actually commanding

the robot, by exploiting a temporal filter whose sample time is specified by the

user (a filter of 30 ms was applied in the case study);

 the closed loop control system implemented in the robot controller and the

robot dynamics affects the smoothness.

The smoothing action of the robot controller is a valid feature, which allows it to

handle position commands in an optimal way. Future implementations of the method

aim at directly generating smoother commands without relying on this feature of the

robot controller, to make the method more fitting for a general use.

The trajectory resulting from the heading point computation based on the laws of

motion approach (cf. Section 3.1.6.1) could present some anomalies, that can be seen

for instance in the last part of the Cartesian trajectory of Figure 3.30: it diverges from

the reference one, but not because of the need to fulfil the safety constraints: the

obstacle is left behind and assumes nearly zero speed, thus not affecting the robot

trajectory anymore. This behaviour can be explained by thinking the heading point as

constantly moving forward following the reference laws of motion, but not being

closely followed by the robot, which in the meantime must perform a different

motion to adhere to the various constraints. As an extremum exemplificative case, let

us consider the following: the robot is deviated for a long time from the reference

trajectory, and when the external disturbance ends the heading point has already

reached the spline end, assuming a constant value; at this point the robot does not

follow anymore the reference trajectory to reach it, even if it is on it, but finds another

path, generated piece by piece by the optimization problem, which considers a

constant QHz{� equal to the last trajectory point S(Tm). This behaviour does not occur

in the heading point computation based on the geometrical approach, since the

heading point progresses on the reference trajectory based on the current robot joint

99

positions. At each time step, the robot tries to approach the geometrical shape of the

trajectory (in the joint space), rather than to follow the laws of motions. This latter

approach guaranteed a better adherence of the motion to the geometrical shape of

the reference trajectory. In doing so, a trend commonly observed was the performing

of speed adjustments rather than escape motions. Another way to put it is that, in

this latter approach, the algorithm is aware about the deviation from the original

trajectory, differently from the case of the laws of motion approach, which thus

produces huge variations with respect to the reference trajectory. A way to

remove/mitigate this problem in the laws of motion approach could be a replanning,

which, however, is a routine typically computationally expensive not suitable for an

execution within a cycle time, and that would thus run occasionally according to a

specific rule. The geometrical approach, on the other hand, has the advantage of

being intrinsically capable of overcoming this issue. In general, however, the possible

advantages of a replanning will be investigated in future developments.

One further and related consideration concerns the fact that, since the optimization

problem is solved in the joint space, the corresponding generated shape of the escape

motions in the Cartesian space may sometimes appear not very intuitive to a human

operator and not predictable by them, which can be the cause of mental strains. This

is accentuated in the case of the laws of motion approach, which, as has been pointed

out, produces motion that can significantly diverge from the geometry of the

reference trajectory, even after the influence of the obstacle ends.

100

4 Programming by demonstration

This Chapter is devoted to the developments of methods, enabled by artificial vision,

aimed at facilitating the robot programming, which is normally a mansion relegated

to highly trained operators, since it requires specific programming knowledge and

may be difficult and time-consuming. As already mentioned, one important enabler

of HRC consists in all the tools, methods and interfaces that can facilitate the

interaction with robots, making easier, more natural and intuitive the various

common tasks and routines performed by humans in which robots are involved. In

the case of industrial robots, the hand guiding modality typical of collaborative robots

is not available out-of-the-box, so it is useful to investigate and propose other suitable

methods easily appliable to traditional industrial robot as well. In this Chapter, two

methods aimed at enabling the intuitive PbD paradigm by means of artificial vision

are presented. Here, PbD is referred to the case in which the robot replicates as is the

movement demonstrated by the human operator and not to the case of the

generalization of the movement from a set of demonstrated motions (c.f. Section

1.3.2). Both the proposed methods do not need an online interaction with the robot,

which makes them suitable for industrial robots without additional layers of safety.

The two methods exploit different types of vision sensors and algorithms to

reconstruct the trajectory. The first one exploits a ToF camera, whereas the second

one a normal 2D digital camera.

In both cases, the general workflow is as follows:

1. The human operator performs the task-based movement by using a Human

Demonstration Device (HDD), while data acquired by a vision sensor are

recorded.

2. The recorded data are processed, the movement reconstructed and converted

into a set of poses.

3. Starting from the poses, a ready-to-use program, written in the Mitsubishi

Electric MELFA proprietary language is automatically generated. The program

makes the robot replicate the demonstrated motion.

The algorithms of Points 2 and Point 3, operating offline on the data recorded on Point

1, were developed in MATLAB®.

4.1 Markerless PbD method using a ToF camera

This first method relies on the use of a ToF camera. It was tested by using the

Microsoft Kinect v2, mounted as shown in Figure 4.1, also highlighting the three RF

101

involved (in red, the Robot base RF, in yellow the Kinect depth RF, in green the Robot

tool RF).

Figure 4.1 Kinect mounting and RFs involved. In red: Robot base RF; in green: Robot tool RF; in

yellow: Kinect Depth RF.

This method does not rely on the use of markers; instead, the motion is reconstructed

by means of step-by-step (referring to time steps) point cloud alignments of the

acquired HDD shape, performed by means of the ICP algorithm. The HDD, shown in

Figure 4.2, is composed of an external shell, whose dimension and geometry were

designed in order to enhance the ICP algorithm effectiveness. Figure 4.2a depicts a

CAD model of the external geometry, consisting in a regular polygonal base extruded

in depth while wrapping on itself (swept blend). Figure 4.3b shows the actual

realization of the device, by means of additive manufacturing (differently from Figure

4.2a, it is hollow inside). The device is grabbed by an internal handle and contains a

manual mechanism to open and close a mock-up gripper, used to simulate

manipulation tasks. The external geometry can be modified by detaching parts of the

external shells.

Figure 4.2 (a) CAD model of the external shell; (b) actual realization of the device, by means of 3D

printing.

102

Figure 4.3 shows some aligned consecutive point clouds (red and blue) by the ICP

algorithm. The resulting alignment is good since point clouds does not vary

significantly from one time step to the consecutive one. The ICP algorithm is executed

on the acquired 3D points belonging to the HDD, extracted from the background. This

extraction is automatically performed at each time step by exploiting a bounding box

of fixed dimensions, which encapsulates the HDD and is used to filter out other

external points. It is defined at an initial instant and transformed step-by-step

according to the ICP transformations, as if attached to the HDD.

Figure 4.3 Step-by-step ICP alignment process.

Let us consider an acquisition in a time interval composed of n time steps, each having

a duration equal to the inverse of the Kinect frame rate, being ≈ 30 Hz. The pose ¡D� of

HDD TCP RF (corresponding to the Robot tool RF of Figure 4.1 but placed on the HDD

instead), at the time step i, can be computed according to Eq. (4.1). ¡D� = �D�D0# … �$�&¡#� (4.1)

where:

the superscript k stands for “with respect to the Kinect depth RF”; ¡#� is the homogeneous matrix representing the initial HDD TCP RF pose; �D is the homogeneous transformation matrix that allows one to align the

HDD point cloud i-1 (moving) with the point cloud i (fixed), and it is computed

by means of the built-in ICP MATLAB® function pcregistericp.

103

The pose ¡D� is then referred to the Robot base RF (superscript r) by means of Eq.

(4.2): ¡DH = �H�¡D� (4.2)

where Trk is the homogeneous transformation matrix that links the Kinect depth RF

with the Robot base RF. ¡#� and �H� are to be estimated. Trk is fixed and depends on the relative pose between

the Kinect mounting position and the robot, and it was estimated via CAD; ¡#�, being

the initial pose of HDD TCP RF, with respect to the Kinect depth RF, was estimated by

a manual selection of a set of points on the initial HDD point cloud, univocally

identifying the pose of HDD TCP RF. These two estimation modalities are coarse and

lead to a loss of accuracy, so a potential improvement could consist in exploiting more

accurate estimation methods.

The trajectory is defined by the set of poses ¡DH, with i ranging from an initial time step

to a final one. In occurrence, this set can be downsampled. Figure 4.4 shows an

example of the final set of poses, defining the motion.

Figure 4.4 Reconstructed motion. The Robot base RF and the initial point cloud of the HDD are

shown as well.

The final set of poses is then utilized to create a ready-to-use program, written in the

Mitsubishi Electric MELFA proprietary language. Each pose is converted into a specific

string containing the pose information in the MELFA language, and a Cartesian linear

104

movement (mvs function in MELFA) is specified between each pose (same strategy

used in [21]). The junction points are filleted by means of the MELFA function cnt.

Speed is also set. The program generation was automatized, so that the process

directly outputs a program file, the only additional operation being to load it within

the Mitsubishi Electric robot programming software RTToolBox3. There, it is possible

to test it on a robot simulator and carry out possible final adjustments, before loading

it into the robot controller and use it on the real robot. Figure 4.5 shows a comparison

between a set of frames extracted from a video of the movement demonstration and

the replicated movement performed by the robot.

Figure 4.5 Movement demonstration by means of the HDD (top four images, in temporal order

from left to right) and replicated movement performed by the robot (bottom four images, in

temporal order from left to right).

4.2 PbD using a 2D digital camera and fiducial markers

This PbD method relies on a 2D digital camera, used to detect fiducial markers

attached to a specifically designed HDD. More precisely, the webcam HD Logitech®

C930e was used, mounted as shown in Figure 2.3, whereas as fiducial markers the

AprilTags [121] were used. Their detection and pose estimation were carried out

exploiting the built-in MATLAB® function readAprilTag. For the pose estimation, the

105

camera intrinsic parameters were needed, so an intrinsic calibration was performed

by using a checkboard pattern and the MATLAB® Camera Calibration Toolbox.

The HDD, realized by means of additive manufacturing, is shown in Figure 4.6. It is

composed of a cube with five markers attached (on each face except for the bottom

one) and a mock-up gripper, comprehensive of a manually actuated mechanism used

to open and close it, to simulate manipulation tasks. Figure 4.7 shows an example of

the pose detection of the markers: each marker has an RF with origin on the square

centre, the z axis perpendicular to the marker surface and the x and y axes parallel to

the marker edges; the function readAprilTag outputs the pose of each detected

Marker RF with respect to the Camera RF.

Figure 4.6 HDD device, composed of a cube with markers attached and a mock-up gripper.

Figure 4.7 Example of the detection of three markers and reconstruction of their pose.

106

Figure 4.8 shows the various RFs involved attached to the HDD.

Figure 4.8 Various RFs attached to the HDD.

Let us consider an acquisition in a time interval composed of n time steps, each having

a duration equal to the inverse of the camera frame rate (being ≈ 60 Hz in the case

study, maximum value for the HD Logitech® C930e). Let us consider a fixed time step

i, whose subscript will be omitted for the sake of clarity. Let us denote with ¡iI the

homogeneous matrix representing the pose of a RF with respect to b RF.

The function readAprilTag outputs the pose of each tag attached to the cube that is

framed and detected by the camera with respect to the Camera RF (henceforth

abbreviated as cam RF). More than one tag can be detected at once, obtaining

multiple poses. These poses are combined and used to estimate the pose ¡ÙzcÙi/. The

poses are combined according to the following steps:

1 – For each detected marker j, an estimation of the pose ¡ÙzcÙi/�
 is computed as:

¡ÙzcÙi/� = ¡/ÙIÙi/� ¡Ùzc/ÙI�
 (4.3)

where: ¡/ÙIÙi/�
 is the pose of the mcbj RF with respect to cam RF, available as

output of the readAprilTag function. ¡Ùzc/ÙI�
 is the nominal pose of cen RF with respect to mcbj RF, constructed

considering the orientations of the RF of Figure 4.8 and the

knowledge of the cube side length (= 50 mm);

2 – the translational part t ϵ ℝ3 of ¡ÙzcÙi/ is obtained by averaging the set of

translational parts ��
 ϵ ℝ3 of ¡ÙzcÙi/�

107

3 – the rotational part R ϵ ℝ3x3 of ¡ÙzcÙi/ is obtained by combining the set of rotational

parts b�
 ϵ ℝ3x3 as follows:

 1 – b�
 is converted to a quaternion Ú�

 2 – The set Ú�
 is averaged by means of the built-in MATLAB® function

meanRot, obtaining a quaternion Q

 3 – The quaternion Q is converted back to a rotation matrix R

The matrix ¡ÙzcÙi/ obtained can be used to estimate the pose of tcp RF with respect to

Robot base RF (abbreviated as rob RF), according to Eq. (4.4): ¡�ÙÛHJI = ¡Ùi/HJI ¡ÙzcÙi/¡�ÙÛÙzc (4.4)

where: ¡�ÙÛÙzc is the pose of tcp RF with respect to cen RF, and is to be estimated. ¡Ùi/HJI is the pose of cam RF with respect to rob RF, and is to be estimated; ¡�ÙÛÙzc was constructed considering the nominal orientations of cen RF and tcp RF of

Figure 4.8 and by a direct measurement of the distances for an estimation of its

translational part; ¡Ùi/HJI was estimated by exploiting another AprilTag marker, of larger dimensions

(side equal to 160 mm) used this time for a calibration purpose, fixed onto a surface

parallel to the robot mounting surface (which is a requisite to use this calibration

method, whereas the orientation of the marker in the x-y plane can be arbitrary) and

in such a way that was both visible from the camera and reachable by the robot end

effector. The robot was equipped with a conic tool and jogged so that the end of the

conic tool was coincident with each marker corner, as shown in Figure 4.9.

Figure 4.9 Calibration marker, fixed parallel to the robot mounting surface and alignment of the

robot end effector with a marker corner, by means of a conic tool grasped by the gripper.

108

That way, it was possible to read the positions of the four marker corners with respect

to the Robot base RF. They have a constant Z value (since the marker mounting

surface is parallel to the robot base) and different X-Y values. Once the set of marker

corner coordinates was read and stored, it was used to fit a square of known side L

(L = 160 mm), used to estimate the pose of the Calibration marker RF (having origin

located at the square centre and x and y axes parallel to the square edges). In order

to construct the square from four approximate corner coordinates, two different

approaches are proposed and outlined in Figure 4.10a and Figure4.10b respectively,

which show them in the exaggerated case, for the sake of visualization, of very

unprecise alignments of the conic tool with the marker corners. The actual recorded

points are shown in Figure 4.11, along with the constructed square (Method 2 was

used). To construct a square starting from four approximate corner coordinates, the

two following methods are proposed:

Method 1: the centre of the square is located at the intersection of the segments

joining the opposite points; the orientation of the x and y axes are coincident with the

bisectors of the angles created by the segment intersection (note that for

construction, the bisectors are always perpendicular between each other).

Method 2: note that each couple of contiguous points is theoretically sufficient to

uniquely identify the pose of the Calibration marker RF (mcl RF): the centre belongs

to the median of the segment joining the 2 points, at a distance L/2 from the segment.

There are four couples of contiguous points. The mcl RF origin is obtained as a mean

of the coordinates of the centres obtained considering each couple of points; the

orientation is obtained as a mean of the orientations, computed, as done previously,

by means of quaternions. It is noteworthy that this method is similar to the one used

to compute cen RF starting from mcbj RFs, but in a space of one lower dimension.

109

Figure 4.10 Example of application of (a) Method 1 and (b) Method 2 to fit a square of known

dimensions (in blue) into four approximate jog points (error exaggerated for the sake of

visualization). To better convey how each method works, a set of construction lines (in magenta)

are also depicted.

Figure 4.11 Square constructed (Method 2) in the case of the actually recorded points by means of

robot jogging.
 ¡Ùi/HJI can then be computed as the product of two matrices, as shown in Eq. (4.5): ¡Ùi/HJI = ¡/ÙfHJI ¡Ùi//Ùf (4.5)

where:

110

¡/ÙfHJI is the pose of the Calibration marker (mcl) RF with respect to the Robot

base (rob) RF, and is estimated via the previously described procedure, which

exploits the alignment between the conic tool and the marker edges. ¡Ùi//Ùf is the pose of cam RF with respect to mcl RF. It is computed as the inverse

of ¡/ÙfÙi/, this latter being the output of the function readAprilTag.

Once each matrix of Eq. (4.4) is estimated, at each time frame the pose of tcp RF with

respect to rob RF can be computed, and thus the motion reconstructed (an example

of that is shown in Figure 4.12). Then, the set of poses representing the motion is

automatically converted into a ready-to-use program, following the same procedure

used for the PbD method of Section 4.1.

Figure 4.12 (a) Reconstructed motion; the Robot base RF and a sphere representing the robot

workspace are shown as well. (b) close-up on the set of poses representing the motion.

Figure 4.13 shows a comparison between a series of frames extracted from videos of

(a) demonstrated movement and (b) movement replicated by the robot,

corresponding to a part of the motion of Figure 4.12.

111

Figure 4.13 Comparison between a series of frames extracted from videos of (a) demonstrated

movement and (b) movement replicated by the robot.

112

Figure 4.14 shows another comparison between a series of frames extracted from

videos of (a) demonstrated movement and (b) movement replicated by the robot, in

case of a simple pick-and-place task. The opening and closing of the gripper were

accounted by providing as input to the algorithm, other than the video, the video

timestamps in which the gripper was opened and closed (they were graphically

evaluated). A more sophisticate and user-friendly way to account for gripper

opening/closing is planned to be implemented in future developments.

Figure 4.14 Comparison between a series of frames extracted from videos of (a) demonstrated

movement and (b) movement replicated by the robot, in the case of a simple pick-and-place task.

113

Figure 4.15 shows a distribution of the position error of cen RF, obtained considering

993 video frames (only the ones having at least two detected markers, more precisely

two or three), extracted from various recorded videos of demonstrated motions. For

each single frame, the error is computed according to Eq. (4.6):

uØØÖØ = ∑ O_� − _OcÜ��# v/ (4.6)

where nm is the number of detected markers, Oj is the origin of mcbj RF, O is the

origin of cen RF.

The distribution has a mode of 1.08 mm, a median of 1.46 mm and a mean of 1.98

mm. Errors lower than 4-5 mm are mainly attributable to the achievable precision of

the function readAprilTag, dependent on the combination of the tag dimension,

working distance, image resolution and image quality. Errors higher than around 4-5

mm are observed to be mainly due to motion blur (higher in case of higher errors),

which significantly degrades the image quality and thus the precision and reliability

of the marker detection and pose reconstruction.

It is noteworthy to point out that an evaluation of this type is only useful for an

estimate of the precision of the method, but not of the accuracy, since a ground truth

would be needed. The accuracy was only qualitatively evaluated by visually observing

the difference between the poses of the HDD and of the actual robot gripper. This

was easier in the case of an interaction with elements of the scene, used as reference,

such in the case of the task of Figure 4.14.

Figure 4.15 Error distribution considering 993 frames extracted from various videos of

demonstrated motions. Only the case of multiple detected markers is considered. Cyan vertical lines

(from left to right) refer to the following distribution parameters: mode = 1.08 mm; median = 1.46

mm; mean = 1.98 mm. Error higher than around 4-5 millimetres are observed to be due to increasing

motion blur.

114

4.3 Discussion

The two methods, in their current implementations, have different pro and cons, here

briefly presented and descripted.

Markerless PbD using a ToF camera:

Advantages:

 Very low dependency on the scene illumination (one of the perks of ToF

cameras).

 Movement can be demonstrated at (relatively) high speed.

Drawbacks:

 Low accuracy in the initial pose estimation.

 HDD relatively bulky.

 The movement reconstruction depends on the step-by-step alignment, so

disturbance in the acquisition (e.g. temporary occlusion) can lead to problems

in the point cloud alignments.

PbD using a 2D digital camera and fiducial markers:

Advantages:

 Compact HDD.

 The movement is reconstructed considering independently each time frame, so

disturbances in the acquisition do not affect the whole movement

reconstruction. Also, the initial pose is estimated as the others.

 Cheap and commonly available vision sensor (mid-end 2D camera).

Drawbacks:

 Precision dependant on the image quality (more precisely, on the quality of the

marker shape in the image), affected by several factors, such as:

 Illumination.

 Speed of the demonstrated motion: if the motion is too fast, motion blur

might appear, which can drastically lower the precision. Motion blur

depends mainly on the camera frame rate, so this issue can be mitigated

by choosing a camera model able to operate at a high frame rate.

 Markers may go out of focus. In the experimental tests, focus was manually

set to a fixed value, so that the acquisition was more reliable. However, if

the motion spans in a large space portion, the markers could significantly

go out of focus, lowering the precision of the detection.

115

In general, the second method seems more promising since its drawbacks can be

drastically mitigated by a careful design of the lighting system and a proper choice of

the 2D digital camera. High-end video cameras feature both high frame rate and

resolution. The focus issue can be addressed by implementing strategies to

dynamically adapt the focus during the acquisition, so that the detected markers are

always kept on focus, also if their distance to the optical centre significantly varies.

More tests are planned to be conducted to refine the method and find an optimal

setup to improve its precision and robustness. An additional way to improve the

precision can be to substitute the cube of markers with a different polyhedron (or to

consider a completely different marker disposition and number), for instance an

icosahedron [21] or a dodecahedron [122]. Polyhedrons of these latter types

guarantee a higher number of detected markers (higher precision), but, on the other

hand, being equal the HDD dimensions, markers have to be smaller (lower precision).

116

5 Investigation on the placement

of onboard cameras
In this Chapter, an investigation on the placement of onboard cameras to maximize

the observability of the workspace of an articulated robot is presented. As was

emphasised throughout the Thesis (and applied in the collision avoidance method of

Chapter 3), inside the context of HRC, vision sensors can have the function of enabling

a safe coexistence between robots and human operators, by monitoring the shared

area with the aim of detecting dynamic obstacles. The placement of vision sensors is

a crucial aspect, since it determines the efficacy in detecting the obstacles present in

the area that one wants to monitor, and thus has important implications on safety. In

the ideal case, one wants to be able to detect with sufficient certainty every obstacle

that could possibly appear inside the area to monitor, which can coincide with robot

workspace, include part of it or its totality. That is a non-trivial problem, and one first

step to tackle it concerns the choice of the sensor mounting configuration, which can

be divided in two types: vision sensors can be mounted on a fixed frame or on the

robot links (onboard). This latter configuration has the advantage of being effective

in unstructured environments and can efficaciously monitor the workspace region

that the robot itself would occlude if monitored by external fixed cameras. Whilst a

number of procedures have been proposed to optimally locate fixed cameras, to the

best of the Candidate’s knowledge no optimization technique for placing cameras on

robot links is present in literature. This was the main motivation of the study

presented in this Chapter, consisting in a numerical procedure for optimizing the

placement of cameras on the moving links of an articulated robot, with the aim of

maximizing the observability of its workspace. Given the nature of the topic, the

indices and variables used in this Chapter, defined case by case, are to be intended

stand-alone and not linked to the ones of the other Chapters.

5.1 Background

Inside the context of HRC, cameras can serve to predict collisions before they occur

and enable the safe coexistence collaboration level. To fulfil this scope, cameras can

be mounted on the robot or on a fixed frame, but rather than pointing largely towards

the robot end effector (eye-to-hand) or being fixed on the robot end effector (eye-in-

hand), the idea is to monitor the whole robot operating area and the space region

117

nearby, to account for any approaching dynamic obstacles. In this sense, one

procedure is to mount fixed cameras in the upper parts of the frame, pointing

downwards towards the robot [76,82,123]. Whilst on one hand this leads to the

monitoring of a wide and strategic view, on the other hand, as outlined in [55,91],

placing fixed camera around the robot workspace could lead to some limitations: one

is the fact that these fixed camera systems are not capable of detecting obstacles that,

for certain robot configurations, happen to be occluded by the manipulator itself: in

facts, it could happen that certain space regions become confined between the robot

links and the ground, thus being hidden or difficult to monitor by fixed external

cameras. The occlusion problem can be particularly marked when dealing with big

industrial robots, such as the Kuka KR180 (180 Kg of payload), which was used in [33]

for testing a new human-robot safety strategy. One further and relevant limitation is

that fixed sensors require to some extent a structuring of the environment. In the

case of robots mounted on mobile platforms ([17,18,124]) the assumption of a

structured environment is not valid. Furthermore, one key feature of collaborative

robots is that they can be easily set to be operative, so that their mounting spot can

be changed without difficulty if needed. Another aspect that goes against the

assumption of a structured environment is the fact that modern workcells can have a

modular or modifiable structure. To overcome these limitations, a different strategy

is to mount vision sensors on robot (onboard). Some recent papers in which vision or

distance sensors are mounted onboard are for example [55,71,91,125]. This strategy

appears promising also because of the recent development of small ToF cameras,

such as the PMD Pico Flexx, the Stereolabs Zed Mini or the even smaller ones

embedded in the new generation smartphones.

In general, when there is the need of monitoring a space region by mounting a set of

cameras, the problem that arises is to find the optimal number of cameras and their

optimal placement. In the case of fixed cameras in a robotic framework, some studies

have been carried out in literature (e.g. [105,106]). In the case of onboard sensors, in

[125] an optimization of the distance sensors arrangement is carried out (tested and

further developed in [55]): distributed distance sensors are used (i.e. a high number

of spot sensors mounted in clusters), whose optimal position and number was

investigated in a set of feasible nodes. Although the optimal placement of onboard

distance sensors has already been investigated, to the best of the Candidate’s

knowledge no studies are present in literature concerning the optimal placement of

onboard vision sensors.

This study aims at finding the optimal placement of cameras on the links of an

articulated robot, with the scope of maximizing the observability of the workspace

region that is likely to be hidden to external cameras, which can result in critical issues

118

in the case of the presence of dynamic obstacles. In the case that both fixed and

mobile cameras are present, the application of this method can be used to decouple

the problem of the optimal placement of fixed sensors from the one concerning

onboard sensors. The fixed sensors can be placed with the aim of maximizing the

overall monitoring of the workspace and the adjacent space region, whereas the

onboard sensors with the aim of monitoring the area hidden to the external cameras

by the robot. The general idea is to provide some insights and instruments to tackle a

broader problem, which is the one concerning the comprehensive monitoring of the

full space around the robot, which is a very hot topic due to the important

implications on tasks where safety of human operators is to be guaranteed. The

problem addressed in this Chapter concerns the monitor of a variable region of space

which is enclosed by the robot, and thus variable as a function of configuration. The

aim is to find the placement of cameras on the robot links that, for a given set of robot

configurations, maximizes the monitoring of the space region covered by the robot,

namely the space region confined between the robot links and the robot mounting

surface.

The underlying mathematical problem is an original variation of the camera

positioning problem, which in turn is a variation of the art gallery problem. An

exhaustive explanation of the problem (which has computational complexity NP-

hard) and its most common variations can be found in [126].

The main contribution of this study is the definition of an original method to tackle

the problem, by adapting existing discrete approaches used in the case of the

optimization of the placement of fixed cameras ([126-128]). The problem is addressed

in a simplified bidimensional version, in the case of an articulated robot, and for a

number of cameras ranging from one to five.

5.2 Materials and Methods

5.2.1 Problem simplification

The problem is tackled in the case of an articulated robot (with 6 DOFs) and under the

following hypotheses, depicted in Figure 5.1:

1. cameras are mounted exclusively on the robot links;

2. the problem is treated as bidimensional;

3. cameras can only be mounted on the front side of each robot link.

To tackle the 2D optimization problem, the robot links are modelled as segments. To

explain the hypothesis 3 let us consider each segment representing each link as an

119

oriented segment, that starts from the point Pi and ends at the point Pi+1 (see Figure

5.1). The front side of each robot link is then defined as the segment side that faces

the right half-space (with respect to its orientation) formed by the straight line

containing the segment.

Figure 5.1 (a) Three-dimensional robot model, with highlighted the six revolute joint J1, ..., J6. (b)

Bidimensional robot model, with a camera placement that satisfies the hypotheses (cameras

represented as green triangles).

5.2.2 Optimization procedure

First, a definition of the space region covered by the robot is presented (see Figure

5.2): let us consider the polygon obtained by casting the “vertical shadow” of the

robot links. Only the polygon parts that have at least one link with the front side that

faces the generated shadow are kept, since no camera placement allows to monitor

the other polygon parts (because of hypothesis 3 of Section 5.2.1). The final

geometries of these polygons, which are hereinafter referred to as robot polygons,

are shown in Figure 5.2 (dark orange regions) for different robot configurations. The

joint limits and link lengths were modelled similarly to the ones of the articulated

robot Mitsubishi Electric RV4F. The last link was extended by 100 mm to consider the

presence of an end effector. The more general problem of the case in which

hypothesis 3 is not made can be tackled by first solving the problem under hypothesis

3 and then solving a specular and independent problem with the hypothesis that the

cameras are to be mounted only on the rear side of the links (left half-space of the

oriented segments) instead of on the front side. If the joint limits are symmetric, then

this latter problem has the same solution of the first one (same optimal placement

but on the rear side).

120

Figure 5.2 Robot polygons for different robot configurations.

The robot polygons are the polygons whose monitor is to be maximized. The idea is

to maximize a quantity, henceforth referred to as degree of monitoring, that

represents the effectiveness of the camera placement considering the whole set of

robot configurations. In each robot configuration, cameras monitor a fraction of the

robot polygon. This fraction depends on their placement. With reference to Figure

5.3, let us call Ri the robot polygon of the ith configuration (i = 1, ..., N) and Cj the

viewing frustum of the jth camera (j = 1, …, n, where n is considered fixed in this

analysis).

Figure 5.3 Various polygons involved. (a) In light green, intersection of the viewing frustum of the

camera 1 with the robot polygon, in violet, intersection of the viewing frustum of the camera 2 with

the robot polygon. (b) In red: robot polygon; in blue: total fraction of the robot polygon seen by the

cameras.

In the robot configuration i, the fraction Mi of the robot polygon Ri seen by the

cameras can be computed according to Eq. (5.1).

121

ÝD = Þ�bD ß ��
Hi¬ � = *�Z� , Ç� (5.1)

Cj is a function of both the vector s = (s1, ..., sn) containing the position of each camera,

and the vector γ = (γ1, ..., γn) containing the orientation of each camera. The

intersection between Ri and Cj is not a simple intersection, but it is a ray intersection,

since the robot polygon is not necessarily convex (for an example, see Figure 5.4).

The degree of monitoring is quantitatively represented by three indices, presented in

Eqs. (5.2-5.4) and described hereafter, each one more suitable for a specific

optimization scope.

Ø# = ∑ area�ÝD�¥D�#∑ area�bD�¥D�# (5.2)

Ø& = 1« � area�ÝD�area�bD�
¥

D�# (5.3)

Ø$ = minD |area�ÝD�area�bD�� (5.4)

 the index r1 weights the robot configuration based on the robot polygon area,

so robot polygons with a small area (e.g. the one in bottom-right in Figure 5.2)

affects less the camera placement;

 the index r2 gives the same weight to each robot configuration regardless of

the area of the robot polygon, and it is to be interpreted as a simple mean

among all the robot configurations of the ratio Mi/Ri, which quantifies the

degree of monitoring for a single configuration;

 the index r3 considers only the minimum value of the ratio Mi/Ri and it is

suitable to be considered in situations in which a minimum camera coverage

is to be guaranteed in all the configuration, for example for safety purposes.

To speed up the computations, after the ray intersections of Eq. (5.1), for which a

custom analytical algorithm was exploited, the various polygons involved were

converted into masks composed of pixel elements. These masks are binary matrices,

and the mask areas can be computed simply by counting the number of pixels equal

to one in the corresponding binary matrices. The parameters search space was

discretized as well.

122

The camera viewing frustum was modelled as the one of the depth camera PMD Pico

Flexx (considering its vertical FOV, equal to 45°), which is a ToF camera. ToF cameras

have a blind spot (in which the measure is not reliable) near the optical centre, so the

FOV results to be a trapezoid. 1000 robot configurations were considered, obtained

by randomly sampling a set of reachable configurations via a Monte Carlo method, as

done in [125, 129].

Figure 5.4 shows an example of the polygon resulting from a ray intersection between

a camera viewing frustum and the robot polygon, converted afterwards into a binary

matrix, showed for different resolution in Pixel Per Centimetre (PPC).

Figure 5.4 (a) Ray intersection check between the camera frustum and the robot polygon. Light

green region: polygon obtained after the ray intersection between the camera viewing frustum and

the robot polygon; small dark green triangle: camera; (b) conversion of the polygon obtained into a

binary mask of different resolutions (expressed in pixels per centimetre).

Once defined the three indices of Eqs. (5.2-5.4) The optimization problem is then

formulated according to Eq. (5.5): maxâ,ã * (5.5)

where, based on which quantity one wants to maximize, f can be intended as r1, r2 or

r3 (referring to Eqs. (5.2-5.4)).

The study is performed considering up to five cameras and carried out separately for

each number of cameras. The optimization problem has computational complexity

NP-hard, and the computational time rises exponentially by rising the number of

cameras. Up to four cameras it was possible to solve the problem via an exhaustive

123

search. In the case of five cameras, a simple trust-region based metaheuristic

algorithm was exploited. The algorithm was run starting from each combination of

camera positions so that it explores only the γ space. A fixed number of random

neighbours are generated in the n-dimensional γ space within a certain radius and the

greatest one is picked and becomes the current γ if it is greater than the current γ.

The cycle repeats with a gradually decreasing radius, until the process becomes a

simple hill-climbing algorithm.

5.3 Results

In this section, the results concerning the optimization procedures in the case of

number of cameras ranging from one to five are reported. Two studies were

conducted, based on the choice of the candidate positions and orientations. These

two studies, presented in Section 5.3.1 and Section 5.3.2, were carried out by

considering a fixed FOV equal to 45° for each camera. One further analysis, presented

in Section 5.3.3, concerned the evaluation of the effect of the variation of the FOV of

the cameras, and was carried out in the case of one and two cameras.

The algorithms were implemented in MATLAB® 2020b, by exploiting the parallel

computing toolbox to speed up the computations, whereas the hardware used

consisted of a Dell Precision 3520 Laptop Intel Core i7- 7700HQ-CPU 2.80 GHz, 4 cores.

5.3.1 First type of positions and orientations discretization

In this first analysis, ten positions and nine orientations (for each position) were

considered as candidates for the camera placements, and chosen as shown in Figure

5.5.

Figure 5.5 Camera candidate positions and orientations.

124

In this analysis, only the placement of one camera in each position is considered. The

candidate camera positions were chosen in the median point of each robot segment

and in proximity of each segment endpoints, except for the segment P4P5, where only

the median point was considered as a candidate point. The candidate camera

orientations were chosen by dividing in eight parts the angle interval that has as

extrema the case in which the camera has the FOV tangent to the link where it is

mounted. Figure 5.6 shows the optimal placement of the cameras obtained by

maximizing in turn each one of the three different indices. The figure contains only

one robot configuration, but the optimal placement is to be intended for the whole

set of the robot configurations.

Figure 5.6 Optimal camera placements (one to five cameras) according to the maximization of the

three different indices r1, r2 and r3.

Figure 5.7 shows the optimal values of the indices, expressed in percentage,

corresponding to the placements illustrated in Figure 5.6.

125

Figure 5.7 Optimal values of the three indices considered, expressed in percentage, for a different

number of cameras, in a bar plot (a) and in tabular form (b).

5.3.2 Second type of positions and orientations discretization

In this second study, the number of candidate positions was increased whereas the

number of candidate orientations was reduced. In particular, the same positions of

the first study were considered, but this time with the possibility of placing multiple

cameras in each one, whereas the candidate orientations were limited to five for each

position. Figure 5.8 shows the placements found with this study. Only the placements

for which an improvement in the values of the indices was achieved with respect to

the first analysis are shown. The placements not shown are the same of the

corresponding ones in the first analysis.

126

Figure 5.8 Optimal camera placements (one to five cameras) according to the maximization of the

three different indices r1, r2 and r3.

Figure 5.9 shows the optimal values of the indices, expressed in percentage, obtained

by considering, where occurred, the improvements obtained by the second study.

Figure 5.9 Optimal values of the three indices considered, expressed in percentage, for a different

number of cameras, in a bar plot (a) and in tabular form (b), obtained considering the two studies.

127

5.3.3 Effect of the variation of the Field of View

This analysis was conducted with the aim of assessing the influence of the FOV on the

optimal value of the three indices. This study was carried out in the case of one (Figure

5.10a) and two cameras (Figure 5.10b), and the FOV of both cameras was varied

between 15° and 60° (with a step of 5°). The results shown are obtained by performing

both the two studies presented in Section 5.3.1 and Section 5.3.2 and by choosing the

highest values obtained from them.

Figure 5.10 Variation of the optimal indices by varying the FOV of the cameras, in the case of (a)

one and (b) two cameras.

5.4 Discussion

The results obtained give various insights about the optimal placement of cameras on

the links of an articulated robot. One first consideration, which emerges by analysing

Figure 5.6 and Figure 5.8, is that, at optimum, cameras tend to be placed oriented

with the FOV tangent to the robot link on which they are mounted, or possibly tangent

to the FOV of another camera, if mounted on the same position. Furthermore, the

optimal positions are likely to be on the first and third robot segment, near the joints.

Another consideration (cf. Figure 5.9) is that the optimal value of the indices r1 and r2

increase in a less-than-linear way by increasing the number of cameras. In scenarios

in which there are no constraints on a minimum percentage of the robot polygon to

be always monitored, so that the indices r1 or r2 are suitable, results show that a good

degree of monitoring can be achieved (up to roughly 99% with five cameras). An

optimization based on the index r3, on the other hand, can be particularly useful in

128

situation in which the sensing of the obstacles in the critical area under the robot is

of utmost importance in every robot configuration, for example for safety reasons. In

the case of five cameras, the optimal values of the index r3 is around 83%, which is a

high value but still seems not suitable to ensure a proper monitoring for safety

purposes. However, it can be significantly improved in specific cases in which the set

of configurations taken into account can be restricted. For what concerns the effect

of the camera FOV, the graphs of Figure 5.10 show that it has a big impact on the

indices r1 and r2, but it has a less significant impact on the index r3, especially in the

case of one camera.

The advantage of using vision sensors instead of distributed distance sensors to

ensure a safety-aimed monitoring is that it is possible non only to sense obstacles, but

to extract more detailed information about the obstacles, that can be better

combined and elaborated, with, for instance, the aim of recognize the obstacle shape

and type and behave consequently. This type of approach seems particularly

promising considering the increase in the availability of small off-the-shelf ToF

cameras: the more the sensor is compact, the more of them is possible to mount on

the robot links; using a sufficiently high number of cameras, it is predictable that for

a certain number of cameras the r3 index will step to 100% (which automatically

implies an equality to 100% even for r1 and r2). This would grant that each robot

polygon can be fully monitored in each configuration, which is particularly suitable for

safety purposes. With proper computational capabilities, and possibly with an

improvement of the meta-heuristic algorithm, this method can be applied to a greater

number of cameras.

5.4.1 Notes on the computational time

Considered the NP-Hard nature of the problem, the numerical implementation of the

exhaustive search had to be carefully designed to avoid redundant computations, and

its basic concept is here briefly described. The problem was divided into three main

parts. For each part, the number of computational steps T is here indicated, in terms

of the “big O” notation.

N: number of robot configurations; ns: number of camera positions; nγ: number of

camera orientations (for each position).

1. Computation of the robot polygon (Ri in Eqs. (5.1-5.4), Section 5.2.2) for every

robot configuration. T(N) = O(N).

2. Computation of each possible polygons obtained by ray-intersecting the

frustum of a single camera with the robot polygon, considering all the possible

129

placements (position and orientation) of a single camera and all the robot

configurations. T(N, ns, nγ) = O(N*ns*nγ). These polygons are then converted to

binary masks.

3. This is the NP-hard part, which is the core of the problem. For an exhaustive

search, all the possible unions of n masks extracted from the set generated in

the Point 2 are to be evaluated. T(N, ns, nγ, n) = O(N*Cns,n* nγ
n) where Cns,n

represents the number of combinations of ns positions by group of n elements.

This is because different cameras are considered to have different positions,

whereas different cameras can have the same orientations (still, the case of k

cameras placed on the same position can be considered by inserting that

position k times as input in the algorithm).

To limit the computational time, the product N*ns*nγ has to be sufficiently low. For

the Point 3, this condition is not enough for a large number of cameras, since the steps

increase exponentially. In this case, the exhaustive search can be substituted by a

proper optimization method (usually metaheuristic methods are used in this type of

scenarios), so that the steps do not increase exponentially; the downside, however,

is that only a sub-optimal solution is guaranteed. One further consideration on the

computational time is that it is highly affected (Figure 5.11a) by the resolution of the

grid used to compute the binary masks. This resolution is to be set as low as possible

without compromising the results; the value of 0.5 pixels per centimetre was chosen

by an experimental evaluation on how its variation impacts on the results (Figure

5.11b shows it in the case if two cameras).

Figure 5.11 (a) Influence of the resolution of the binary mask grid on the computation time, in the

case of two cameras; (b) optimal values of the indices for different values of the resolution, in the

case of two cameras.

130

5.4.2 Notes on the 3D case

The problem tackled was a bidimensional problem, even if, in reality, the robot

configuration can lie outside the plane of Figure 5.1b (if the joint angle J4 is different

from zero) in a way that depends on the combined value of the joint angle J4 and J5.

Furthermore, cameras mounted after the joint J4 rotate outside the plane jointly with

J4 and, if mounted after J6, their 3D orientation depends on both J4, J5, and J6. In the

bidimensional case, results show that no optimal placement is on the robot last link,

so the implications of mounting cameras after the joint J6 will not be discussed. For

small rotations of the joint J4, a common situation in a series of practical applications,

the hypothesis of bidimensional problem holds true. In case the hypothesis of small

rotations of J4 does not hold true, the solution of the 2D problem can be used as a

starting point to find the solution for the more general 3D problem. One way to

proceed could be to consider the 2D problem as a sub-problem of the 3D one, and

solve this latter by mounting additional cameras given the optimal placement found

solving the proposed 2D problem. Future research is aimed at better investigating and

developing this point.

5.4.3 Final remarks

The high-level aim of this study was to provide some additional tools and insights

useful to tackle the complex problem of granting a complete and effective monitoring

of the workspace of an articulated robot. This examined question is closely connected

to HRC and its safety-related issues. More specifically, the aim of this study was to

propose a methodology to maximize the observability of the space region of the

workspace that tends to be confined between the robot and its mounting surface.

This region is difficult to be monitored by fixed external cameras, since it can be

occluded by the robot itself, so onboard cameras were considered. Also, external

fixed cameras have the drawback of requiring some structuring of the environment,

differently from onboard cameras. A bidimensional version of the problem was

tackled by using a discrete approach, which is typical when dealing with NP-hard

problem of this type. The optimization was carried out up to five cameras on three

different proposed indices r1, r2 and r3, which quantify the effectiveness of the

camera placement. The indices r1 and r2 quantify the overall observability, whereas

the index r3 consider the worst-case observability and thus it is more safe-oriented.

Several insights emerge from the analysis: one is that, at optimum, cameras tend to

be placed near the robot joints and oriented with the FOV tangent to the link where

they are mounted. Furthermore, up to five cameras, the indices are shown to increase

in a less-than linear way by increasing the number of cameras. Even if the proposed

131

optimization relies on these indices, it is to be pointed out that the proposed

approach can still be effective on indices constructed in different ways and tailored

to specific situations.

132

Conclusions

Various vision-based solutions aimed at enabling HRC inside industrial workcells have

been proposed in this Thesis. These solutions have the scope to overcome the

limitations of both the pure industrial and the collaborative paradigms, by endowing

industrial robots with artificial vision. This way, the high productivity typical of

industrial robots can be combined with the high versatility typical of collaborative

robots.

The first solution, central in the Thesis, consisted in the development of a collision

avoidance method, which permits a safe coexistence between human operators and

industrial robots. The method was developed for an articulated robot, but can be

adapted, with minor modifications, also to other serial robot models, such as SCARA

robots. The method produces real-time adjustments of a pre-programmed task-based

robot trajectory, by exploiting data acquired from depth cameras. This allows to

modify the trajectory only when needed, enhancing the robot functional flexibility

while maintaining, when possible, the high dynamics typical of industrial robots,

which ultimately grants elevated productivity. The proposed methodology has some

distinctive features, concerning both the online trajectory generation and the

obstacle tracking. The trajectory generation relies on the use of safety constraints, a

recent approach which guarantees that the robot always keeps a distance from

obstacles higher that a protective separation distance, while minimizing the distance

to a reference setpoint value. Two methodologies to generate the trajectory have

been proposed, one more conventional in which the setpoint is computed based on

the reference motion laws and an alternative one in which the setpoint is computed

based on geometrical considerations. The latter was observed to produce motions

with better adherence to the shape of the reference trajectory, deviating from it only

for a period strictly necessary to maintain the protective separation distance. For

what concern the obstacle tracking, a methodology to track generic dynamic

obstacles has been proposed based on the use of a voxel grid in combination with a

GPU-accelerated particle filter, the latter being used for a fast and obstacle-

independent speed estimation. Some significant perks of the use of the voxel grid

consist in making it possible a straightforward data fusion, enhanced with algorithms

that accounts for boosts in measurement confidence in the case of using

heterogeneous sensors. The fact that the obstacle tracking was designed for generic

obstacles is significant, since it can extend the use of this methodology to the case of

a widely unstructured environment, where it might happen that not only human

operators, but also robots and other generic moving objects (e.g. moving parts of a

133

machinery) enter the robot workspace. Further tests are planned to improve several

aspects of the proposed methodology, in particular the smoothness of the generated

command and the general reliability and robustness.

In the second part of the Thesis, two vision-based programming by demonstration

methods have been presented. The scope was to provide intuitive interfaces (suitable

tool for HRC) to facilitate the programming of industrial robots, for which the hand

guiding modality typical of collaborative robots is not available. The methods consist

in making the robot mimic a motion performed by a human operator through a

human demonstration device, whose movement is captured by vision sensors. The

first method relies on the use of a ToF camera and a markerless human demonstration

device, whereas the second one on the use of a 2D digital camera combined with 2D

fiducial markers attached to a specifically designed human demonstration device. The

second method resulted more promising and further developments are planned, in

order to improve its accuracy and precision.

In vision-based HRC applications, camera placement has important implications on

safety, which motivates the study, presented on the third part of the Thesis, on the

optimal placement of onboard cameras, to maximize the observability of the

workspace of an articulated robot. The aim was to maximize the observability of the

space region of the workspace that tends to be confined between the robot and its

mounting surface, thus being difficult to be monitored by fixed external cameras,

which also have the drawback of requiring some structuring of the environment. The

analysis, carried out considering a bidimensional simplified case, reports the optimal

camera placement in case of different numbers of cameras, and gives a series of

insights possibly useful also in real and more complex scenarios. Improvement of the

method and future developments may consist in considering a more realistic model

of the robot links and addressing the more general three-dimensional optimal

placement problem of onboard vision sensors, with the aim of improving the robot

functional flexibility and safety.

134

Appendix A. Design of the robotic cell

In this Section the design of the robotic cell, to which the Candidate devoted the most

part of the first year of the PhD, is described. The cell was designed from scratch, with

the aim of realizing a functionally flexible testbed suitable for both academic research

and industrial applications.

A.1 Layout definition

The knowledge of the two robot models, which were provided to the TAILOR

laboratory by Mitsubishi Electric, represented the starting point in the design of the

robotic cell. Exploiting this initial information, the first step was the definition of the

layout, specifically the choice of the distance between the two robots, the choice of

the various devices to include and where to place them, and the overall dimensions

of the frame. Figure A.1 shows a top-view (a) and front view (b) of the final layout, in

which the robot workspaces, the rotary table, the conveyor belts and the fixed

worktables are depicted. These devices were chosen with the aim of realizing a layout

possibly resembling an automatic robotized machine. At the same time, the focus was

not on a specific task, but on granting the possibility of testing different types of

applications. Since the RV4F can translate due to the railway, its workspace (showed

in red) is not fixed, but can be moved (dashed lines) towards the worktable at its left

or towards the RH1F robot (workspace fixed, shown in blue), up to a significant

workspace intersection, that allows tasks in cooperation. The rotary table, shown in

green, was placed in a position reachable from both the RH1F and the RV4F (given

that is properly positioned on the railway). In occurrence, the position of the rotary

table can be modified to a certain extent (dashed green lines). In addition, also the

height of the rotary table can be adjusted by manually turning a knob (the mechanism

is descripted more in detail in Section A.2.4).

The conveyor belt crossing the whole the robotic cell, henceforth named Conveyor

belt A, was placed in such a way that it intersects the workspaces of both robots, in

order to be accessible by both, for example for pick-and-place operations “on the fly”

on the moving conveyor belt. The other conveyor belt, henceforth named Conveyor

belt B, has the function of transporting objects on the rotary table.

135

Figure A.1 Layout of the robotic cell. (a) top view; (b) front view. In red: RV4F workspace (dashed

line: possible translation, thanks to the railway); in blue: RH1F workspace; in green: rotary table

(dashed line: possible translation); other elements in grey: robotic cell internal facades, conveyor

belts, worktables.

Figure A.2 shows a top view of the CAD model, to further illustrate the disposition of

the various elements inside the robotic cell. Other than the devices of Figure A.1, also

the areas (at the height of the Conveyor Belt A) framed by the three Omron FH-SCX

cameras (cf. Figure 2.3) are shown. Referring to Figure A.2, CAMERA 0 and CAMERA 1

were mounted over the Conveyor belt A to frame the objects transported on it, either

entering or exiting the cell (the conveyor motion is possible in both directions). The

camera optics were chosen to frame only a window of the width of the conveyor belt,

so that the resolution is fully exploited. CAMERA 1 has wider optics and it is placed so

that it can frame both the rotary table and the Conveyor belt A.

136

Figure A.2 Top view of the robotic cell CAD, where the main elements of the layout can be seen: in

clear blue and clear red the workspace of the RV4F and of the RH1F, respectively; in blue the

conveyor belts, in light blue the fixed worktables, at the centre the rotary table, in yellow the areas

framed by the Omron FH-SCX camera at the height of the Conveyor belt A.

A.2 Mechanical design

For the mechanical design, the CAD Software SolidEdge was utilized. First, starting

from the layout previously defined, a set of assembly groups were identified, and for

each the various components were 3D designed. Afterwards, the as-built drawings

were created for each single and assembly parts. For the manufacturing, except for

the frame, most of the non-commercial components of the various assembly groups

were realized in aluminium by CNC machining. In the next part, each main assembly

group is briefly described.

A.2.1 Frame

Two main requirements were accounted in the design of the frame. The first one was

to bestow it with sufficient rigidity, needed to limit the vibrations due to the robots’

high dynamic, especially of the RH1F robot (SCARA robots are renowned for their high

speed). The second one was to make it transportable through the stairs of the TAILOR

laboratory, located at the first floor of the building. This second necessity required

the division of the frame in different parts, to be assembled once transported in place.

It is noteworthy the fact that dividing the frame in several parts affects its rigidity in a

negative way, so a trade-off between the two requirements was necessarily made.

The structure was realized in a series of welded parts as shown in Figure A.3,

transported in place and then assembled together by means of bolts. The structure is

mainly composed of Fe360 hollow tubulars of 80 x 80 mm section and 4 mm thickness.

137

Also, a thinner welded part was realized in the rear as a place for the electrical panel.

To confer further rigidity to the structure, gusset plates were mounted at the frame

corners, as shown in Figure A.3b. Figure A.3b also shown other elements, such as

supporting plates in the lower part of the frame, a thick plate onto which the RH1F

robot was mounted (ceiling mounting) and a planar structure composed of aluminium

profiles, which served as a mounting place for the two conveyor belts, the rotary

table, and the fixed worktables.

The aluminium profiles were used since they have the advantage of granting an easy

fixing of the components over them and the possibility of modifying their position in

a straightforward way, which accounts for future modifications, thus granting more

functional flexibility.

Figure A.3 (a) Welded parts to be mounted to constitute the frame. (b) additional elements, such

as supporting plates in the lower part, the gusset plates, the plane of aluminium profiles and the

fixture plate for the RH1F robot.

A.2.2 RV4F railway

The railway for the articulated robot RV4F is moved by means of a recirculating ball

screw (by the company HIWIN), connected to a Mitsubishi Electric 1.5 kW brushless

motor coupled with a reductor with a reduction ratio of 16. Figure A.4 shows the CAD

assembly (a) and (b) and two pictures (c) and (d) of the railway. The railway has a total

mechanical stroke of 540 mm.

138

Figure A.4 (a) CAD railway composed of all its elements; CAD (b) detail of the recirculating ball

screw. (c), (d): picture of the railway.

A.2.3 Conveyor belt A

The Conveyor belt A (CAD assembly shown in Figure A.5) can transport objects from

one end to the cell to the other (cf. Figure 2.1), goes through the robots’ workspace,

so that they can pick objects from it, and is monitored by three Omron FH-SCX

cameras. It is driven by a Mitsubishi Electric 400 W brushless motor coupled with a

reductor with a reduction ratio of 7. The belt fabric (blue in Figure A.5 for visualization

purpose) is made of polyurethane, which confers it high friction, useful to prevent

unwanted slips of the objects due to rapid variations of the conveyor belt speed. At

the belt sides, it has two barriers that prevent objects from falling, one of which is

adjustable and allows to reduce the disposable width. At its beginning and end, it is

endowed with polycarbonate tunnels to prevent the intrusion of limbs into the

interior dangerous parts of the robotic cell.

Figure A.5 CAD assembly of the Conveyor belt A.

139

A.2.4 Rotary table

The rotary table is shown in Figure A.6 (two CAD assembly views and a picture). The

assembly is composed of a mechanism to adjust the rotary table height. This can be

done by manually turning a knob, the rotation of which is transmitted to a trapezoidal

screw (shown in green) which makes a nut translate. The nut is connected in a fixed

way to the rotary table plate, which moves accordingly. The rotation of the table is

driven by a Mitsubishi Electric 400 W brushless motor coupled with a reductor with

reduction ratio of 50, which transmits the motion to the rotary table by means of a

belt-pulleys coupling, with a reduction gear of roughly 2.

Figure A.6 (a), (b) Two different views of the CAD assembly of the rotary table. Both its driving

mechanism and height regulation mechanism can be seen. (c): picture of the rotary table.

A.2.5 Conveyor belt B

The Conveyor belt B, shown in Figure A.7, has the task of transporting objects to the

rotary table. It is equipped with a mechanism to manually adjust its height that works

with the same principle of the one of the rotary table. Like the Conveyor belt A, it is

driven by a Mitsubishi Electric 400 W brushless motor coupled with a reductor with a

reduction ratio of 7. Also, its belt fabric is polyurethane, and it is endowed with one

adjustable barrier and a polycarbonate tunnel, this latter for safety purposes.

140

Figure A.7 (a), (b) Two different views of the CAD assembly of the Conveyor belt B. Both its driving

mechanism and height regulation mechanism can be seen. (c), (d), (e) Three pictures of the Conveyor

Belt B.

A.2.6 Carters

Figure A.8 shows the robotic cell’s both fixed and mobile carters. The rear-upper part

of the cell is endowed with three movable guards, whereas other movable guards are

present on each of the upper part of the short sides of the cell. This way, the access

to the various devices is granted, allowing regulations, modifications and

maintenance, other than to deposit workpiece on the worktables. Each movable

guard is equipped with security switches and safety light curtains. The rear lower part

is reserved to the electrical panel. The carters are manufactured in polycarbonate.

Figure A.8 Rear view of the robotic cell, complete of all its components.

141

A.3 Wiring and piping design

A high-level conceptual scheme of the wiring and piping is shown in Figure A.9. The

various mechanical drives other than the robots (railway, conveyor belts, rotary table)

are connected and configured as robot additional axes (each robot can manage up to

two additional axes). More precisely, the railway and the Conveyor belt A, are

configured as RV4F additional axes, whereas the rotary table and the Conveyor belt B

are configured as RH1F additional axes. This configuration (possible if using brushless

motors) has the advantage of granting both higher versatility and ease of

programming of the working cycle. In fact, the motions of the additional axes can be

directly programmed inside the Mitsubishi Electric proprietary robot programming

software RTToolbox3. The programming is normally carried out on an external

computer connected to the robotic cell ethernet switch, which allows to transfer the

robot programs to and from the robots’ controller. By means of the Graphic Operator

Terminal (GOT), also connected to the ethernet switch, it is possible to start/stop the

working cycle, regulate the cycle speed and perform other operations, while directly

monitoring the cycle (it is attached to the very front left of the robotic cell, at the left

of the two robot teaching pendants, cf. Figure 2.1a).

For additional monitoring purposes, in the rear of the cell a Raspberry Pi 4, connected

to the ethernet switch, is used to output visualization data on a screen. Furthermore,

robots are connected to their teaching pendants, which enable robot jogging. The

pneumatic circuits of the scheme of Figure A.9 derives from the necessity of managing

the robots’ pneumatic grippers, whose closing/opening is commanded by means of

electrovalves (also known as solenoid valves). The device that controls the various

signals is a modular PLC, which manage the communications between the

miscellaneous devices inside the cell, both in terms of inputs/outputs and in terms of

more complex data types. The various vision sensors are connected in different ways,

some of them to the ethernet switch of the robotic cell, whereas some of them (the

ones that come with USB connectors) are directly connected to the external

computer.

142

Figure A.9 Conceptual scheme of the wiring and piping of the robotic cell.

143

Appendix B. ROS architecture

One of the primary purposes of the use of ROS was the need of an easy and efficient

way to handle multithreading, given the various processes involved running at

different frame rates. ROS makes use of nodes and topics, represented in Figure B.1.

Nodes are processes that run independently at their own frequency and can

communicate with other nodes by means of topics. A node can publish messages to a

topic; these messages can be retrieved by other nodes that subscribe to that topic.

Figure B.1 ROS nodes exchanging messages (Msgs) by means of a topic.

The implemented ROS architecture is shown in Figure B.2. The various nodes of the

Realsense and the Kinect, encapsulated in coloured blocks, come from the already

available packets [130] and [131], respectively. In the actual implemented

architecture, the online trajectory generation is handled by the node generate_traj,

whereas the obstacle tracking part by the other various nodes.

The ROS architecture also comprehends a hardware interface, having the function of

communicating with the robot controller (in a nutshell, packing command data in a

specific format and sending them to a UDP socket). The hardware interface was

implemented by modifying the already available ROS code [132], written for a similar

Mitsubishi Electric robot controller.

144

Figure B.2 ROS architecture

145

Appendix C. Basic notions on camera

calibration

The term calibration can refer to either intrinsic calibration or extrinsic calibration.

Figure C.1 highlights the difference and shows the main elements involved, here

reported:

Optical Axis Zc

Optical centre O

Image plane: plane perpendicular to the optical axis, located at a distance f

(focal length) from it.

Principal point C: intersection between the optical axis and the image plane.

Three reference frames are involved:

Camera RF (Xc, Yc, Zc): 3D reference frame with origin on the optical centre and

optical axis as z-axis.

Image RF (x, y): 2D reference frame located on the image plane, with origin

in C and x and y axis orientated as the one of Camera RF.

Global RF (X, Y, Z): generic 3D reference frame with a pose different from

Camera RF.

Intrinsic calibration refers to the process of estimating the perspective transformation

(which incorporates f and C) that allows one to transform a point P from the camera

coordinates to the image coordinates. This relies on the use of the so-called pinhole

camera model, that can be added complexity if accounting for example for lens

distortions. For RGB cameras, intrinsic calibration usually relies on the use of

chessboards patterns, whose images, acquired in different poses, are then processed

by specific algorithms that estimates the camera intrinsic parameters.

Extrinsic calibration refers to the process of estimating the rigid transformation

between the reference frame of the sensor considered and an external global

reference frame. Extrinsic calibration can be done in different ways, depending on the

sensor type, features of the scene, needed accuracy, position of the global reference

frame and so on. A common case is the estimation of the transformation between the

Camera RFs of two RGB cameras. In this case the extrinsic calibration can once again

146

rely on the use of a chessboard pattern, acquired by both cameras in different poses,

and related processing algorithms.

Figure C.1 Main elements involved in intrinsic and extrinsic calibration.

147

Appendix D. GPU implementation of the

particle filter

Here some insights about the GPU-parallelized implementation of the particle filter

are given. It is to be considered, however, that for the sake of conciseness only the

main steps are presented and in a simplified way.

The GPU implementation exploited the functionalities of the NVIDIA CUDA (Compute

Unified Device Architecture) parallel computing platform. In particular, other than

some of the CUDA Toolkit basic functionalities, explained in the book [133], the

following CUDA libraries were used:

 cuRAND: random number generation library, which contains efficient

generation of high-quality pseudorandom and quasirandom numbers;

 Thrust: provides a rich collection of data parallel primitives, such as containers

and parallelized versions of common algorithms.

1 – Creation and initialization of GPU particle arrays

The particle-related quantities are created on the GPU as seven large memory arrays,

each of fixed length equal to the maximum number of total particles np = Qmax*Nvox (=

96*37156 = 3566892 particles) and initialized with zeros. Let us denote with the index

k the kth cell of a GPU array (k = 1, …, np). A representation on how the particles are

stored on the GPU is shown in Figure D.1.

Figure D.1 Representation of the GPU memory arrays used to store the particle-related quantities.

148

In the initialization stage of the particle filter, a number of particles equal to Qmax

times the number of type3-voxels is generated and stored in a first fraction of the GPU

arrays, leaving the other cells to the initialization value (zero). This is done by

exploiting the CUDA library cuRAND.

2 – Particle evolution

Each particle is evolved according to Eq. (3.70). The evolution is parallelized over the

total number of particles.

3 – Particle selection

1 – For each particle, the index j of the voxel where it belongs is computed (if after

the evolution stage it ended up inside the control volume) and stored in the GPU array

par_vox. This is parallelized over the total number of particles.

2 – If the particle ended up outside the control volume or not inside a type3-voxel,

the corresponding cell of x is set to zero. It is worthy to note that zero can be used as

a value to mark a particle as “eliminated” since the probability of a particle having x

exactly equal to zero (accounting also the machine precision) is nearly zero, and in the

case it happens simply the particle is eliminated, not causing unexpected behaviours.

To evaluate if the particle belongs to a type3-voxel, a GPU array version of the vector

vox_type is used.

Figure D.2 shows the GPU arrays and the manipulations involved in this stage.

Figure D.2 Particle selection methodology.

4 – Particle reorganization

In this stage, summarized in Figure D.3, all the particle-related GPU arrays are

reorganized, using the functions of the CUDA library Thrust. More specifically, the x

array is partitioned so that all the non-zero elements are collected into a first part and

all the zero element into a second part. y, z, u, v, w, ζ, par_vox are then reordered

149

according to the same index permutation used for the x partition. Then, the first nps

(number of survived particles) particles are reordered so that the corresponding voxel

index is in ascending order, and, inside the groups of particles with the same voxel

index, the particles are sorted in ascending order of ζ. This was done in an efficient

way by exploiting two consecutive stable sort algorithms operating on the first part

of the arrays, containing only the survived particles.

Figure D.3 Particle reorganization steps.

5 – Counting of the number of particles associated to each voxel and computation of

the voxel speed

The voxel speeds are stored in a GPU array of length Nvox. The current number of

particles contained in each voxel is stored in another GPU array, of length Nvox, named

Q, used in the next stage. Some passage needed for the construction of Q and for

computing the velocity to associate to each voxel (cf. Eq. (3.71)), exploited the CUDA

function atomicAdd.

150

6 – Resampling

By exploiting the GPU arrays Q, vox_type and the scalar Qmax (number of max particles

per voxel), it is possible to fill the GPU arrays Qadd, and Qrmv, containing the number of

particles to be added or removed in each voxel. These latter, in turn, can be used to

fill the GPU arrays indadd and indrmv, which contains the indices of x (and others

particle-related arrays) where to start to add or remove (set to zero) block of particles

(whose dimensions are contained in Qadd and Qrmv). indadd and indrmv were computed

by exploiting the exclusive_scan function of the Thrust library: the kth cell of indadd (or

indrmv) is obtained by summing the previous k-1 cells of Qadd (or Qrmv). The particle

addition consists in overwriting part of the memory region containing zeros on the

second part of the GPU particle-related arrays. Their organized structure, combined

with use of Qadd, indadd and Qrmv, indrmv allows to fully parallelize this stage, which was

the main scope of the reorganization stage. The generation of the new particles relies

on the CUDA library cuRAND. The main passages are summarized in Figure D.4 and

Figure D.5.

Figure D.4 Various GPU arrays involved in the resampling stage.

Figure D.5 Particle remotion and generation, carried out during the resampling stage.

151

One last consideration concerns the fact that, when adding particles, it is theoretically

possible that the particle-related arrays overflow, because the particles set to zero in

this stage are kept in the first part of the array, and no new particles can be added

there. In practice, however, this is extremely unlikely, since the dynamic obstacles

occupy only a relatively small fraction of the entire voxel grid and np demonstrated to

be a sufficient length in all the experimental tests conducted. In any case, the actual

implementation accounts for a possible overflow and takes specific measures in

occurrence. The consideration that dynamic obstacles typically occupy a small

fraction of the voxel grid can be viewed as a cue to implement strategies to reduce

the GPU memory usage, considering for example shorter arrays to store the particle-

related quantities or variable-size arrays.

152

References

[1] International Federation of Robotics (https://ifr.org/).

[2] ISO 8373:2012 Robots and robotic devices – Vocabulary. ISO; 2012.

[3] ISO 10218-2:2011 Robots and robotic devices — Safety requirements for industrial robots — Part 2: Robot

systems and integration. ISO; 2011.

[4] ISO/TS 15066:2016 Collaborative robots. ISO; 2016.

[5] Villani, V.; Pini, F.; Leali, F.; Secchi, C. Survey on Human–Robot Collaboration in Industrial Settings: Safety,

Intuitive Interfaces and Applications. Mechatronics 2018, 55, 248–266.

https://doi.org/10.1016/j.mechatronics.2018.02.009.

[6] IEC 60204-1:2016 Safety of machinery – electrical equipment of machines – Part 1: general requirements.

IEC; 2016.

[7] AIRSKIN, https://www.airskin.io/ (accessed 13/05/2022)

[8] Wasenmüller, O.; Stricker, D. Comparison of Kinect V1 and V2 Depth Images in Terms of Accuracy and

Precision. In Computer Vision – ACCV 2016 Workshops; Chen, C.-S., Lu, J., Ma, K.-K., Eds.; Lecture Notes in

Computer Science; Springer International Publishing: Cham, 2017; Vol. 10117, pp 34–45.

https://doi.org/10.1007/978-3-319-54427-4_3.

[9] Bellandi, P.; Docchio, F.; Sansoni, G. Roboscan: A Combined 2D and 3D Vision System for Improved Speed

and Flexibility in Pick-and-Place Operation. Int J Adv Manuf Technol 2013, 69 (5–8), 1873–1886.

https://doi.org/10.1007/s00170-013-5138-z.

[10] Liu, M.-Y.; Tuzel, O.; Veeraraghavan, A.; Taguchi, Y.; Marks, T. K.; Chellappa, R. Fast Object Localization

and Pose Estimation in Heavy Clutter for Robotic Bin Picking. The International Journal of Robotics Research

2012, 31 (8), 951–973. https://doi.org/10.1177/0278364911436018.

[11] Nerakae, P.; Uangpairoj, P.; Chamniprasart, K. Using Machine Vision for Flexible Automatic Assembly

System. Procedia Computer Science 2016, 96, 428–435. https://doi.org/10.1016/j.procs.2016.08.090.

[12] Chaumette, F.; Hutchinson, S. Visual Servo Control. I. Basic Approaches. IEEE Robot. Automat. Mag. 2006,

13 (4), 82–90. https://doi.org/10.1109/MRA.2006.250573.

[13] Edinbarough, I.; Balderas, R.; Bose, S. A Vision and Robot Based On-Line Inspection Monitoring System

for Electronic Manufacturing. Computers in Industry 2005, 56 (8–9), 986–996.

https://doi.org/10.1016/j.compind.2005.05.022.

[14] Flacco, F.; Kroger, T.; De Luca, A.; Khatib, O. A Depth Space Approach to Human-Robot Collision

Avoidance. In 2012 IEEE International Conference on Robotics and Automation; IEEE: Saint Paul, MN, 2012;

pp 338–345. https://doi.org/10.1109/ICRA.2012.6225245.

[15] Ragaglia, M.; Zanchettin, A. M.; Rocco, P. Trajectory Generation Algorithm for Safe Human-Robot

Collaboration Based on Multiple Depth Sensor Measurements. Mechatronics 2018, 55, 267–281.

https://doi.org/10.1016/j.mechatronics.2017.12.009.

[16] Rybski, P.; Anderson-Sprecher, P.; Huber, D.; Niessl, C.; Simmons, R. Sensor Fusion for Human Safety in

Industrial Workcells. In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems; IEEE:

Vilamoura-Algarve, Portugal, 2012; pp 3612–3619. https://doi.org/10.1109/IROS.2012.6386034.

153

[17] Frese, C.; Fetzner, A.; Frey, C. Multi-Sensor Obstacle Tracking for Safe Human-Robot Interaction.

ISR/Robotik 2014; 41st International Symposium on Robotics, Munich, Germany, 2014, pp. 1-8.

[18] Magnanimo, V.; Walther, S.; Tecchia, L.; Natale, C.; Guhl, T. Safeguarding a Mobile Manipulator Using

Dynamic Safety Fields. In 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS);

IEEE: Daejeon, South Korea, 2016; pp 2972–2977. https://doi.org/10.1109/IROS.2016.7759460.

[19] Pellegrinelli, S.; Orlandini, A.; Pedrocchi, N.; Umbrico, A.; Tolio, T. Motion Planning and Scheduling for

Human and Industrial-Robot Collaboration. CIRP Annals 2017, 66 (1), 1–4.

https://doi.org/10.1016/j.cirp.2017.04.095.

[20] Cheng, Y.; Sun, L.; Liu, C.; Tomizuka, M. Towards Efficient Human-Robot Collaboration With Robust Plan

Recognition and Trajectory Prediction. IEEE Robot. Autom. Lett. 2020, 5 (2), 2602–2609.

https://doi.org/10.1109/LRA.2020.2972874.

[21] Ferreira, M.; Costa, P.; Rocha, L.; Moreira, A. P. Stereo-Based Real-Time 6-DoF Work Tool Tracking for

Robot Programing by Demonstration. Int J Adv Manuf Technol 2016, 85 (1–4), 57–69.

https://doi.org/10.1007/s00170-014-6026-x.

[22] Hamabe, T.; Goto, H.; Miura, J. A Programming by Demonstration System for Human-Robot Collaborative

Assembly Tasks. In 2015 IEEE International Conference on Robotics and Biomimetics (ROBIO); IEEE: Zhuhai,

2015; pp 1195–1201. https://doi.org/10.1109/ROBIO.2015.7418934.

[23] Koert, D.; Maeda, G.; Lioutikov, R.; Neumann, G.; Peters, J. Demonstration Based Trajectory Optimization

for Generalizable Robot Motions. In 2016 IEEE-RAS 16th International Conference on Humanoid Robots

(Humanoids); IEEE: Cancun, Mexico, 2016; pp 515–522.

https://doi.org/10.1109/HUMANOIDS.2016.7803324.

[24] El Makrini, I.; Elprama, S. A.; Van den Bergh, J.; Vanderborght, B.; Knevels, A.-J.; Jewell, C. I. C.; Stals, F.;

De Coppel, G.; Ravyse, I.; Potargent, J.; Berte, J.; Diericx, B.; Waegeman, T.; Jacobs, A. Working with Walt:

How a Cobot Was Developed and Inserted on an Auto Assembly Line. IEEE Robot. Automat. Mag. 2018, 25

(2), 51–58. https://doi.org/10.1109/MRA.2018.2815947.

[25] Magrini, E.; Ferraguti, F.; Ronga, A. J.; Pini, F.; De Luca, A.; Leali, F. Human-Robot Coexistence and

Interaction in Open Industrial Cells. Robotics and Computer-Integrated Manufacturing 2020, 61, 101846.

https://doi.org/10.1016/j.rcim.2019.101846.

[26] OMRON, Vision System, FH Series, https://www.ia.omron.com/products/family/3210/ (accessed

13/05/2022)

[27] Vision Doctor, solutions for industrial illumination: illumination techniques, https://www.vision-

doctor.com/en/illumination-techniques.html (accessed 13/05/2022).

[28] Tateno, K.; Tombari, F.; Navab, N. When 2.5D Is Not Enough: Simultaneous Reconstruction,

Segmentation and Recognition on Dense SLAM. In Proceedings of the 2016 IEEE International Conference on

Robotics and Automation (ICRA), Stockholm, Sweden, 16–21 May 2016; pp. 2295–2302,

doi:10.1109/ICRA.2016.7487378.

[29] Giancola, S.; Valenti, M.; Sala, R. A Survey on 3D Cameras: Metrological Comparison of Time-of-Flight,

Structured-Light and Active Stereoscopy Technologies; SpringerBriefs in Computer Science; Springer

International Publishing: Cham, 2018. https://doi.org/10.1007/978-3-319-91761-0.

[30] Schauwecker, K. Real-Time Stereo Vision on FPGAs with SceneScan. arXiv:1809.07977 [cs] 2018.

154

[31] Michalos, G.; Makris, S.; Spiliotopoulos, J.; Misios, I.; Tsarouchi, P.; Chryssolouris, G. ROBO-PARTNER:

Seamless Human-Robot Cooperation for Intelligent, Flexible and Safe Operations in the Assembly Factories

of the Future. Procedia CIRP 2014, 23, 71–76. https://doi.org/10.1016/j.procir.2014.10.079.

[32] Yanco, H. A.; Drury, J. Classifying Human-Robot Interaction: An Updated Taxonomy. In 2004 IEEE

International Conference on Systems, Man and Cybernetics (IEEE Cat. No.04CH37583); IEEE: The Hague,

Netherlands, 2004; Vol. 3, pp 2841–2846. https://doi.org/10.1109/ICSMC.2004.1400763.

[33] Bdiwi, M.; Pfeifer, M.; Sterzing, A. A New Strategy for Ensuring Human Safety during Various Levels of

Interaction with Industrial Robots. CIRP Annals 2017, 66 (1), 453–456.

https://doi.org/10.1016/j.cirp.2017.04.009.

[34] Matthias, B; Kock, S; Jerregard, H; Kallman, M; Lundberg, I; Mellander, R. Safety of collaborative

industrial robots: Certification possibilities for a collaborative assembly robot concept. 2011 IEEE

International Symposium on Assembly and Manufacturing (ISAM), 2011, pp. 1-6, doi:

10.1109/ISAM.2011.5942307.

[35] De Luca, A.; Flacco, F. Integrated Control for PHRI: Collision Avoidance, Detection, Reaction and

Collaboration. In 2012 4th IEEE RAS & EMBS International Conference on Biomedical Robotics and

Biomechatronics (BioRob); IEEE: Rome, Italy, 2012; pp 288–295.

https://doi.org/10.1109/BioRob.2012.6290917.

[36] Bauer, A.; Wollherr, D.; Buss, M. Human–Robot Collaboration: a survey. Int. J. Human. Robot. 2008, 05

(01), 47–66. https://doi.org/10.1142/S0219843608001303.

[37] Geravand, M.; Flacco, F.; De Luca, A. Human-Robot Physical Interaction and Collaboration Using an

Industrial Robot with a Closed Control Architecture. In 2013 IEEE International Conference on Robotics and

Automation; IEEE: Karlsruhe, Germany, 2013; pp 4000–4007. https://doi.org/10.1109/ICRA.2013.6631141.

[38] Matthias, B. Example Application of ISO/TS 15066 to a Collaborative Assembly Scenario. 6. In Proceedings

of ISR 2016: 47th International Symposium on Robotics, 2016; Munich, Germany, 2016; pp 1–5.

[39] Zacharaki, A.; Kostavelis, I.; Gasteratos, A.; Dokas, I. Safety Bounds in Human Robot Interaction: A Survey.

Safety Science 2020, 127, 104667. https://doi.org/10.1016/j.ssci.2020.104667.

[40] Jacob, R. J. K.; Girouard, A.; Hirshfield, L. M.; Horn, M. S.; Shaer, O.; Solovey, E. T.; Zigelbaum, J. Reality-

Based Interaction: A Framework for Post-WIMP Interfaces. In Proceeding of the twenty-sixth annual CHI

conference on Human factors in computing systems - CHI ’08; ACM Press: Florence, Italy, 2008; p 201.

https://doi.org/10.1145/1357054.1357089.

[41] Hornecker, E.; Buur, J. Getting a Grip on Tangible Interaction: A Framework on Physical Space and Social

Interaction. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems; ACM:

Montréal Québec Canada, 2006; pp 437–446. https://doi.org/10.1145/1124772.1124838.

[42] Jaju, A.; Das, A. P.; Pal, P. K. Evaluation of Motion Mappings from a Haptic Device to an Industrial Robot

for Effective Master–Slave Manipulation. International Journal of Robotics and Automation 2013, 28 (1).

https://doi.org/10.2316/Journal.206.2013.1.206-3657.

[43] Du, G.; Zhang, P.; Liu, X. Markerless Human–Manipulator Interface Using Leap Motion With Interval

Kalman Filter and Improved Particle Filter. IEEE Trans. Ind. Inf. 2016, 12 (2), 694–704.

https://doi.org/10.1109/TII.2016.2526674.

155

[44] Kulić, D.; Croft, E. Pre-Collision Safety Strategies for Human-Robot Interaction. Auton Robot 2007, 22 (2),

149–164. https://doi.org/10.1007/s10514-006-9009-4.

[45] Norberto Pires, J. Robot-by-voice: Experiments on Commanding an Industrial Robot Using the Human

Voice. Industrial Robot 2005, 32 (6), 505–511. https://doi.org/10.1108/01439910510629244.

[46] Silaghi, H.; Rohde, U.; Spoiala, V.; Silaghi, A.; Gergely, E.; Nagy, Z. Voice Command of an Industrial Robot

in a Noisy Environment. In 2014 International Symposium on Fundamentals of Electrical Engineering (ISFEE);

IEEE: Bucharest, Romania, 2014; pp 1–5. https://doi.org/10.1109/ISFEE.2014.7050596.

[47] Ong, S. K.; Chong, J. W. S.; Nee, A. Y. C. Methodologies for Immersive Robot Programming in an

Augmented Reality Environment. In Proceedings of the 4th international conference on Computer graphics

and interactive techniques in Australasia and Southeast Asia - GRAPHITE ’06; ACM Press: Kuala Lumpur,

Malaysia, 2006; p 237. https://doi.org/10.1145/1174429.1174470.

[48] Michalos, G.; Karagiannis, P.; Makris, S.; Tokçalar, Ö.; Chryssolouris, G. Augmented Reality (AR)

Applications for Supporting Human-Robot Interactive Cooperation. Procedia CIRP 2016, 41, 370–375.

https://doi.org/10.1016/j.procir.2015.12.005.

[49] Arai, T.; Kato, R.; Fujita, M. Assessment of Operator Stress Induced by Robot Collaboration in Assembly.

CIRP Annals 2010, 59 (1), 5–8. https://doi.org/10.1016/j.cirp.2010.03.043.

[50] Robla-Gomez, S.; Becerra, V. M.; Llata, J. R.; Gonzalez-Sarabia, E.; Torre-Ferrero, C.; Perez-Oria, J.

Working Together: A Review on Safe Human-Robot Collaboration in Industrial Environments. IEEE Access

2017, 5, 26754–26773. https://doi.org/10.1109/ACCESS.2017.2773127.

[51] Khatib, O. Real-time obstacle avoidance for manipulators and mobile robots. The international journal

of robotic research 1986, 5 (1), 396-404.

[52] Tsuji, T.; Kaneko, M. Noncontact Impedance Control for Redundant Manipulators. IEEE Trans. Syst., Man,

Cybern. A 1999, 29 (2), 184–193. https://doi.org/10.1109/3468.747853.

[53] Kulić, D.; Croft, E. Real-time safety for human-robot interaction. Robot. Auto. Syst. 2006, 54 (1), pp. 1-

12.

[54] Lacevic, B.; Rocco, P. Kinetostatic Danger Field - a Novel Safety Assessment for Human-Robot Interaction.

In 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems; IEEE: Taipei, 2010; pp 2169–

2174. https://doi.org/10.1109/IROS.2010.5649124.

[55] Buizza Avanzini, G.; Ceriani, N. M.; Zanchettin, A. M.; Rocco, P.; Bascetta, L. Safety Control of Industrial

Robots Based on a Distributed Distance Sensor. IEEE Trans. Contr. Syst. Technol. 2014, 22 (6), 2127–2140.

https://doi.org/10.1109/TCST.2014.2300696.

[56] Maiocchi, M.; Zanchettin, A. M.; Rocco, P. Physical and Perceived Safety in Human-Robot collaboration.

In Proceedings of IRIM 2020: 2nd Italian Conference on Robotics and Intelligent Machines; Pisa, Italia, 2020;

pp 147-148.

[57] Byner, C.; Matthias, B.; Ding, H. Dynamic Speed and Separation Monitoring for Collaborative Robot

Applications – Concepts and Performance. Robotics and Computer-Integrated Manufacturing 2019, 58, 239–

252. https://doi.org/10.1016/j.rcim.2018.11.002.

[58] Ferraguti, F.; Bertuletti, M.; Landi, C. T.; Bonfe, M.; Fantuzzi, C.; Secchi, C. A Control Barrier Function

Approach for Maximizing Performance While Fulfilling to ISO/TS 15066 Regulations. IEEE Robot. Autom. Lett.

2020, 5 (4), 5921–5928. https://doi.org/10.1109/LRA.2020.3010494.

156

[59] Ferraguti, F.; Talignani Landi, C.; Costi, S.; Bonfè, M.; Farsoni, S.; Secchi, C.; Fantuzzi, C. Safety Barrier

Functions and Multi-Camera Tracking for Human–Robot Shared Environment. Robotics and Autonomous

Systems 2020, 124, 103388. https://doi.org/10.1016/j.robot.2019.103388.

[60] ISO 13855:2010 Safety of machinery — Positioning of safeguards with respect to the approach speeds

of parts of the human body. ISO; 2010.

[61] Marvel, J. A.; Norcross, R. Implementing Speed and Separation Monitoring in Collaborative Robot

Workcells. Robotics and Computer-Integrated Manufacturing 2017, 44, 144–155.

https://doi.org/10.1016/j.rcim.2016.08.001.

[62] Leso, M.; Zilkova, J.; Vacek, M. Robotic Manipulator with Optical Safety System. In 2015 International

Conference on Electrical Drives and Power Electronics (EDPE); IEEE: Tatranska Lomnica, Slovakia, 2015; pp

389–393. https://doi.org/10.1109/EDPE.2015.7325326.

[63] Vogel, C.; Walter, C.; Elkmann, N. Safeguarding and Supporting Future Human-Robot Cooperative

Manufacturing Processes by a Projection- and Camera-Based Technology. Procedia Manufacturing 2017, 11,

39–46. https://doi.org/10.1016/j.promfg.2017.07.127.

[64] Corrales, J. A.; Candelas, F. A.; Torres, F. Safe Human–Robot Interaction Based on Dynamic Sphere-Swept

Line Bounding Volumes. Robotics and Computer-Integrated Manufacturing 2011, 27 (1), 177–185.

https://doi.org/10.1016/j.rcim.2010.07.005.

[65] Safety mat PSENmat by Pilz:https://www.automationinside.com/article/the-pressure-sensitive-safety-

mat-psenmat-from-pilz-combines-safe-area-monitoring-with-plant-and-machine-operation-virtual-control

(accessed 13/05/2022).

[66] Bosh, APAS Assistant, https://apps.boschrexroth.com/microsites/apas/ (accessed 13/05/2022).

[67] Halme, R.-J.; Lanz, M.; Kämäräinen, J.; Pieters, R.; Latokartano, J.; Hietanen, A. Review of Vision-Based

Safety Systems for Human-Robot Collaboration. Procedia CIRP 2018, 72, 111–116.

https://doi.org/10.1016/j.procir.2018.03.043.

[68] Feng Duan; Tan, J.; Arai, T. Using Motion Capture Data to Regenerate Operator’s Motions in a Simulator

in Real Time. In 2008 IEEE International Conference on Robotics and Biomimetics; IEEE: Bangkok, 2009; pp

102–107. https://doi.org/10.1109/ROBIO.2009.4912987.

[69] Wang, P.; Liu, H.; Wang, L.; Gao, R. X. Deep Learning-Based Human Motion Recognition for Predictive

Context-Aware Human-Robot Collaboration. CIRP Annals 2018, 67 (1), 17–20.

https://doi.org/10.1016/j.cirp.2018.04.066.

[70] Himmelsbach, U. B.; Wendt, T. M.; Lai, M. Towards Safe Speed and Separation Monitoring in Human-

Robot Collaboration with 3D-Time-of-Flight Cameras. In 2018 Second IEEE International Conference on

Robotic Computing (IRC); IEEE: Laguna Hills, CA, 2018; pp 197–200. https://doi.org/10.1109/IRC.2018.00042.

[71] Long, P.; Chevallereau, C.; Chablat, D.; Girin, A. An Industrial Security System for Human-Robot

Coexistence. Industrial Robot 2018, 45 (2), 220–226. https://doi.org/10.1108/IR-09-2017-0165.

[72] https://www.pilz.com/en-INT/products/sensor-technology/safe-camera-systems (accessed

13/05/2022).

[73] Salmi, T.; Marstio, I.; Malm, T; Montonen, J. Advanced Safety Solutions for Human-Robot-Cooperation.

Proceedings of the forty seventh international symposium robotics (ISR). VDE; 2016, pp. 1-6

157

[74] Pedrocchi, N.; Vicentini, F.; Matteo, M.; Tosatti, L. M. Safe Human-Robot Cooperation in an Industrial

Environment. International Journal of Advanced Robotic Systems 2013, 10 (1), 27.

https://doi.org/10.5772/53939.

[75] Smart Robots, http://smartrobots.it/product/ (accessed 13/05/2022).

[76] Lenz, C.; Grimm, M.; Roder, T.; Knoll, A. Fusing Multiple Kinects to Survey Shared Human-Robot-

Workspaces. Technical report. Technische Universität München. 2012.

[77] Mainprice, J.; Berenson, D. Human-Robot Collaborative Manipulation Planning Using Early Prediction of

Human Motion. In 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems; IEEE: Tokyo,

2013; pp 299–306. https://doi.org/10.1109/IROS.2013.6696368.

[78] Cherubini, A.; Passama, R.; Meline, A.; Crosnier, A.; Fraisse, P. Multimodal Control for Human-Robot

Cooperation. In 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems; IEEE: Tokyo, 2013;

pp 2202–2207. https://doi.org/10.1109/IROS.2013.6696664.

[79] Vicentini, F.; Pedrocchi, N.; Giussani, M.; Tosatti, L. M. Dynamic Safety in Collaborative Robot

Workspaces through a Net- Work of Devices Fulfilling Functional Safety Requirements. 2014, 8.

[80] Vicentini, F.; Giussani, M.; Tosatti, L. M. Trajectory-Dependent Safe Distances in Human-Robot

Interaction. In Proceedings of the 2014 IEEE Emerging Technology and Factory Automation (ETFA); IEEE:

Barcelona, Spain, 2014; pp 1–4. https://doi.org/10.1109/ETFA.2014.7005316.

[81] Lasota, P. A.; Rossano, G. F.; Shah, J. A. Toward Safe Close-Proximity Human-Robot Interaction with

Standard Industrial Robots. In 2014 IEEE International Conference on Automation Science and Engineering

(CASE); IEEE: Taipei, 2014; pp 339–344. https://doi.org/10.1109/CoASE.2014.6899348.

[82] Ragaglia, M.; Bascetta, L.; Rocco, P. Multiple Camera Human Detection and Tracking inside a Robotic Cell

- An Approach Based on Image War, Computer Vision, K-d Trees and Particle Filtering: In Proceedings of the

11th International Conference on Informatics in Control, Automation and Robotics; SCITEPRESS - Science and

and Technology Publications: Vienna, Austria, 2014; pp 374–381.

https://doi.org/10.5220/0005045703740381.

[83] Morato, C.; Kaipa, K. N.; Zhao, B.; Gupta, S. K. Toward Safe Human Robot Collaboration by Using Multiple

Kinects Based Real-Time Human Tracking. Journal of Computing and Information Science in Engineering 2014,

14 (1), 011006. https://doi.org/10.1115/1.4025810.

[84] Dumonteil, G.; Manfredi, G.; Devy, M.; Confetti, A.; Sidobre, D. Reactive Planning on a Collaborative

Robot for Industrial Applications: In Proceedings of the 12th International Conference on Informatics in

Control, Automation and Robotics; SCITEPRESS - Science and and Technology Publications: Colmar, Alsace,

France, 2015; pp 450–457. https://doi.org/10.5220/0005575804500457.

[85] Flacco, F.; Kroeger, T.; De Luca, A.; Khatib, O. A Depth Space Approach for Evaluating Distance to Objects:

With Application to Human-Robot Collision Avoidance. J Intell Robot Syst 2015, 80 (S1), 7–22.

https://doi.org/10.1007/s10846-014-0146-2.

[86] Zanchettin, A. M.; Ceriani, N. M.; Rocco, P.; Ding, H.; Matthias, B. Safety in Human-Robot Collaborative

Manufacturing Environments: Metrics and Control. IEEE Trans. Automat. Sci. Eng. 2016, 13 (2), 882–893.

https://doi.org/10.1109/TASE.2015.2412256.

[87] Mohammed, A.; Schmidt, B.; Wang, L. Active Collision Avoidance for Human–Robot Collaboration Driven

by Vision Sensors. International Journal of Computer Integrated Manufacturing 2017, 30 (9), 970–980.

https://doi.org/10.1080/0951192X.2016.1268269.

158

[88] Mead, R.; Matarić, M. J. Autonomous Human–Robot Proxemics: Socially Aware Navigation Based on

Interaction Potential. Auton Robot 2017, 41 (5), 1189–1201. https://doi.org/10.1007/s10514-016-9572-2.

[89] Wendt, T.M.; Himmelsbach, U. B.; Lai, M.; Waβmer, M; Time of flight cameras enabling collaborative

robots for improving safety in medical applications. In International Journal of Interdisciplinary

Telecommunications and Networking 2017, 9 (4), pp 10-17. https://doi.org/10.4018/IJITN.2017100102.

[90] Fabrizio, F.; De Luca, A. Real-Time Computation of Distance to Dynamic Obstacles With Multiple Depth

Sensors. IEEE Robot. Autom. Lett. 2017, 2 (1), 56–63. https://doi.org/10.1109/LRA.2016.2535859.

[91] Himmelsbach, U. B.; Wendt, T. M.; Hangst, N.; Gawron, P. Single Pixel Time-of-Flight Sensors for Object

Detection and Self-Detection in Three-Sectional Single-Arm Robot Manipulators. In 2019 Third IEEE

International Conference on Robotic Computing (IRC); IEEE: Naples, Italy, 2019; pp 250–253.

https://doi.org/10.1109/IRC.2019.00046.

[92] Folscher, D. J.; Kruger, K. Saving Time on Robot Programming: Programming by Demonstration Using

Stereoscopic Motion Capturing. In 2016 Pattern Recognition Association of South Africa and Robotics and

Mechatronics International Conference (PRASA-RobMech); IEEE: Stellenbosch, South Africa, 2016; pp 1–6.

https://doi.org/10.1109/RoboMech.2016.7813133.

[93] Comau Racer-5-0.80 COBOT, https://www.comau.com/it/competencies/robotics-

automation/collaborative-robotics/racer-5-0-80-cobot/ (accessed 13/05/2022).

[94] Mitsubishi Electric manual “Mitsubishi Industrial Robot – CR750/CR751 series controller – Ethernet

Function Instruction Manual”.

[95] Mitsubishi Electric manual “Mitsubishi Industrial Robot – CR750-Q/CR751-Q Controller - RV-

4/7/13/20FM-Q-SE Series - Standard Specifications Manual”.

[96] Siciliano B., Sciavicco L., Villani L., Oriolo G., Robotics: Modelling, Planning and Control, Springer, 2009.

[97] Hayes, M. J. D.; Husty, M. L.; Zsombor-Murray, P. J. Singular Configurations of Wrist-Partitioned 6R Serial

Robots: a Geometric Perspective for Users. Transactions of the Canadian Society for Mechanical Engineering

2002, 26 (1), 41–55. https://doi.org/10.1139/tcsme-2002-0003.

[98] Fritsch, F. N.; Carlson, R. E. Monotone Piecewise Cubic Interpolation. In SIAM Journal on Numerical

Analysis 1980, Vol. 17, pp 238–246.

[99] Nocedal, J.; Wright, S. J. Numerical Optimization, 2nd ed.; Springer series in operations research;

Springer: New York, 2006.

[100] Ferreau, H. J.; Kirches, C.; Potschka A.; Bock, H.G.; Diehl, M. qpOASES: A parametric active-set algorithm

for quadratic programming. Mathematical Programming Computation 2014, 6 (4), pp 327—363.

[101] Ferreau, H. J.; Bock, H. G.; Diehl, M. An online active set strategy to overcome the limitations of explicit

MPC. International Journal of Robust and Nonlinear Control 2008, 18 (8), pp 816—830.

[102] Ayoub, Raymond G. Paolo Ruffini's Contributions to the Quintic. Archive for History of Exact Sciences

1980, 22 (3), pp 253–277. https://doi.org/10.1007/BF00357046.

[103] https://github.com/jwezorek/quintic (accessed 13/05/2022).

[104] Doyle, P.; McMullen, C. Solving the Quintic by Iteration. Acta Math. 1989, 163 (0), 151–180.

https://doi.org/10.1007/BF02392735.

159

[105] Flacco, F.; De Luca, A. Multiple Depth/Presence Sensors: Integration and Optimal Placement for

Human/Robot Coexistence. In 2010 IEEE International Conference on Robotics and Automation; IEEE:

Anchorage, AK, 2010; pp 3916–3923. https://doi.org/10.1109/ROBOT.2010.5509125.

[106] Hanoun, S.; Bhatti, A.; Creighton, D.; Nahavandi, S.; Crothers, P.; Esparza, C. G. Target Coverage in

Camera Networks for Manufacturing Workplaces. J Intell Manuf 2016, 27 (6), 1221–1235.

https://doi.org/10.1007/s10845-014-0946-z.

[107] Garrido-Jurado, S.; Muñoz-Salinas, R.; Madrid-Cuevas, F. J.; Medina-Carnicer, R. Generation of Fiducial

Marker Dictionaries Using Mixed Integer Linear Programming. Pattern Recognition 2016, 51, 481–491.

https://doi.org/10.1016/j.patcog.2015.09.023.

[108] Romero-Ramirez, F. J.; Muñoz-Salinas, R.; Medina-Carnicer, R. Speeded up Detection of Squared

Fiducial Markers. Image and Vision Computing 2018, 76, 38–47.

https://doi.org/10.1016/j.imavis.2018.05.004.

[109] Besl, P. J.; B.; McKay, N. D. A Method for Registration of 3-D Shapes. IEEE Transactions on Pattern

Analysis and Machine Intelligence 1992, 14 (2), pp 239 – 256.

[110] CloudCompare, 3D point cloud and mesh processing software, https://www.danielgm.net/cc/

(accessed 13/05/2022).

[111] Hermann, A.; Bauer, J.; Klemm, S.; Dillmann, R. Mobile Manipulation Planning Optimized for GPGPU

Voxel- Collision Detection in High Resolution Live 3D-Maps. In ISR/Robotik 2014; 41st International

Symposium on Robotics ISR/Robotik, 2014, Munich, Germany, pp 1–8.

[112] Hermann, A.; Drews, F.; Bauer, J.; Klemm, S.; Roennau, A.; Dillmann, R. Unified GPU Voxel Collision

Detection for Mobile Manipulation Planning. In 2014 IEEE/RSJ International Conference on Intelligent Robots

and Systems; IEEE: Chicago, IL, USA, 2014; pp 4154–4160. https://doi.org/10.1109/IROS.2014.6943148.

[113] NVIDIA, CUDA C++ Best Practices Guide, 2021, https://docs.nvidia.com/cuda/cuda-c-best-practices-

guide/index.html (accessed 09/01/2022).

[114] Morales, N.; Toledo, J.; Acosta, L.; Medina, J. S. A combined voxel and particle filter-based approach for

fast obstacle detection and tracking in automotive applications. IEEE Transactions on Intelligent

Transportation Systems 2017, 18 (7), pp 1824 – 1833.

[115] Dirk-Jan Kroon (2022), Polygon2Voxel.

(https://www.mathworks.com/matlabcentral/fileexchange/24086-polygon2voxel), MATLAB Central File

Exchange. Retrieved January 10, 2022.

[116] https://github.com/peci1/robot_body_filter (accessed 13/05/2022)

[117] https://github.com/blodow/realtime_urdf_filter (accessed 13/05/2022)

[118] Pereira, A.; Althoff, M. Overapproximative Human Arm Occupancy Prediction for Collision Avoidance.

IEEE Trans. Automat. Sci. Eng. 2018, 15 (2), 818–831. https://doi.org/10.1109/TASE.2017.2707129.

[119] Naushad Ali, M. M.; Abdullah-Al-Wadud, M.; Lee, S. L. Moving Object Detection and Tracking Using

Particle Filter. AMM 2013, 321–324, 1200–1204. https://doi.org/10.4028/www.scientific.net/AMM.321-

324.1200.

[120] Löfberg, J. Oops! I Cannot Do It Again: Testing for Recursive Feasibility in MPC. Automatica 2012, 48

(3), 550–555. https://doi.org/10.1016/j.automatica.2011.12.003.

160

[121] Olson, E. AprilTag: A Robust and Flexible Visual Fiducial System. In 2011 IEEE International Conference

on Robotics and Automation; IEEE: Shanghai, China, 2011; pp 3400–3407.

https://doi.org/10.1109/ICRA.2011.5979561.

[122] Wu, P.-C.; Wang, R.; Kin, K.; Twigg, C.; Han, S.; Yang, M.-H.; Chien, S.-Y. DodecaPen: Accurate 6DoF

Tracking of a Passive Stylus. In Proceedings of the 30th Annual ACM Symposium on User Interface Software

and Technology; ACM: Québec City QC Canada, 2017; pp 365–374.

https://doi.org/10.1145/3126594.3126664.

[123] Coupeté, E.; Moutarde, F.; Manitsaris, S. Multi-Users Online Recognition of Technical Gestures for

Natural Human–Robot Collaboration in Manufacturing. Auton Robot 2019, 43 (6), 1309–1325.

https://doi.org/10.1007/s10514-018-9704-y.

[124] Jaiganesh, V.; Kumar, J. D.; Girijadevi, J. Automated Guided Vehicle with Robotic Logistics System.

Procedia Engineering 2014, 97, 2011–2021. https://doi.org/10.1016/j.proeng.2014.12.444.

[125] Ceriani, N. M.; Buizza Avanzini, G.; Zanchettin, A. M.; Bascetta L.; Rocco P. Optimal placement of spots

in distributed proximity sensors for safe human-robot interaction. In 2013 IEEE International Conference on

Robotics and Automation, Karlsruhe, Germany, 2013, pp. 5858-5863.

[126] Kritter, J.; Brévilliers, M.; Lepagnot, J.; Idoumghar, L. On the Optimal Placement of Cameras for

Surveillance and the Underlying Set Cover Problem. Applied Soft Computing 2019, 74, 133–153.

https://doi.org/10.1016/j.asoc.2018.10.025.

[127] Gonzalez-Barbosa, J.-J.; Garcia-Ramirez, T.; Salas, J.; Hurtado-Ramos, J.-B.; Rico-Jimenez, J. -d.-J.

Optimal Camera Placement for Total Coverage. In 2009 IEEE International Conference on Robotics and

Automation; IEEE: Kobe, 2009; pp 844–848. https://doi.org/10.1109/ROBOT.2009.5152761

[128] Komabashiri, Y.; Mashita, T.; Photchara, R.; Uranishi, Y.; Koike, M.; Maruyama, K. Optimal Arrangement

of Surveillance Cameras Using Space Division and a Genetic Algorithm. In Proceedings of the 25th

International Conference on Intelligent User Interfaces Companion; ACM: Cagliari Italy, 2020; pp 99–100.

https://doi.org/10.1145/3379336.3381488.

[129] Campi, M. C.; Garatti, S.; Prandini, M. The Scenario Approach for Systems and Control Design. Annual

Reviews in Control 2009, 33 (2), 149–157. https://doi.org/10.1016/j.arcontrol.2009.07.001.

[130] https://github.com/IntelRealSense/realsense-ros (accessed 13/05/2022).

[131] https://github.com/paul-shuvo/iai_kinect2_opencv4 (accessed 13/05/2022).

[132] https://github.com/vustormlab/mitsubishi_arm (accessed 13/05/2022).

[133] Sanders, Jason, and Edward Kandrot. 2011. CUDA by example: an introduction to general-purpose GPU

programming. Upper Saddle River, NJ: Addison-Wesley.

