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Abstract

Non Destructive Testing (NDT) and Structural Health Monitoring (SHM)

are becoming essential in many application contexts, e.g. civil, industrial,

aerospace, automotive etc., to reduce structures maintenance costs and im-

prove safety. To foster the widespread diffusion of these techniques, essential

features are reliability, precision, low cost, low invasiveness and scalability.

Conventional inspection methods typically exploit bulky and expensive in-

struments and rely on high computational cost signal processing techniques.

In such a context, the pressing need to overcome these limitations is the com-

mon thread that guided the work presented in this Thesis. In particular, this

dissertation will investigate both embedded systems solutions and advanced

signal processing for Acousto-Ultrasonic inspections.

In the first part, a scalable, low–cost and multi–sensors smart sensor net-

work is introduced. The capability of this technology to carry out accurate

modal analysis on structures undergoing flexural vibrations has been validated

by means of two experimental campaigns. Then, the suitability of low–cost

piezoelectric disks in modal analysis has been demonstrated. To enable the

use of this kind of sensing technology in such non conventional applications,

ad–hoc data merging algorithms have been developed.

In the second part, instead, imaging algorithms for Lamb waves inspection

have been developed. More specifically, two beamforming algorithms capable
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to achieve high–quality images (namely DMAS and DS-DMAS) have been im-

plemented and validated on a carbon fibre plate. Results show that DMAS

outperforms the canonical Delay and Sum (DAS) approach in terms of image

resolution and contrast. Similarly, DS-DMAS can achieve better results than

both DMAS and DAS by suppressing artefacts and noise. Moreover, an ad–

hoc filtering technique referred to as Fresnel zone filtering has been presented

to further enhance the damage imaging. To exploit the full potential of these

procedures, accurate group velocity estimations are required. Since numeri-

cal models are not sufficiently accurate for this goal, novel wavefield analysis

tools that can address the estimation of the dispersion curves from Scanner

Laser Doppler Vibrometer acquisitions have been investigated. In particular,

an image segmentation technique (called DRLSE) which operates in the wave-

field k–space to draw out the wavenumber profile was validated. The DRLSE

method was compared with compressive sensing methods to extract the group

and phase velocity information. The validation, performed on three different

carbon fibre plates, showed that the proposed solutions can accurately deter-

mine the wavenumber and velocities in polar coordinates at multiple excitation

frequencies.
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Chapter 1

Introduction

1.1 Motivations

All structures deteriorate with time. Civil, aerospace, automotive, oil and gas

structures such as industrial facilities are subjected to natural and artificial

decay which reduce the margin of safety or might generate serviceability prob-

lems. These issues can lead to high financial losses due to corrective mainte-

nance. In the worst–case scenario, life losses can occur if critical failures remain

undetected thus generating sudden structural collapse. For instance, in civil

engineering context, famous bridge collapses can be remembered, such as the

Tacoma Narrows Bridge in 1940 [1], the Laval overpass in Quebec, Canada, in

2006 [2] and the Morandi bridge in 2018 [3]. To avoid such kind of dramatic

events, preventive maintenance is periodically scheduled to check the exis-

tence of critical damages which might put the structure itself at risk [4]. The

main limitations of such an approach are the following. First, the structure

history is usually exploited to determine significant changes in the main struc-

tural response, making the analysis difficult for novel constructions. Second,

preventive maintenance is not effective against unexpected external actions,
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16 Introduction

possibly due to both natural and human actions (e.g. earthquakes, floods or

sudden impacts). Finally, it is not cost-effective, since human intervention is

required and the duty of the structure under test is usually interrupted. To

tackle these problems, Structural Health Monitoring (SHM)) aim to contin-

uously acquire and process data to assess the structural integrity by using

permanently attached sensors. SHM is usually based on well established Non

Destructive Testing (NDT) techniques, which aim to find material discontinu-

ities and assess the structural conditions.

In this Thesis, both SHM and NDT approaches are investigated.

Among the many NDT methods, some can be adapted for permanent instal-

lation and exploited in SHM. Anyway, the migration of NDT technologies to

address SHM needs is usually non-trivial, since conventional inspection instru-

mentation is often bulky and expensive. Thus, novel approaches have been

investigated to perform reliable, affordable and accurate SHM. In particular,

Smart Sensor Network (SSN) and Wireless Smart Sensor Network (WSSN)

are rising as the most promising strategies to inspect large structures by con-

tinuous monitoring. The main idea is to exploit interconnected nodes with

embedded signal processing capabilities to acquire, pre–process and transfer

data to a central unit or a cloud. In such a way, a real–time evaluation of the

structural integrity is enabled. This approach reduces drastically the overall

cost since human intervention and unoptimized maintenance can be avoided.

Moreover, the inspection capabilities can be enhanced by exploiting multi sen-

sor types that act simultaneously. The acquisition of signals related to different

physical phenomena is fundamental in data fusion, where the information gath-

ered by the sensing technologies are complemented each other. The pressing

need to develop such kind of hardware architectures, as well as suitable signal

processing techniques, lays the groundwork for the first part of this Thesis,
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where a novel heterogeneous approach based on multi sensing sensor network

is presented.

In the second part of this dissertation, instead, the focus is on NDT meth-

ods. In 2008, Thomas Aastroem [5] discussed the fast evolution of NDT and

their proliferation over the last sixty years. Just focusing on machine diag-

nostic, up to two hundred various methods can be listed. The availability

of different approaches for specific needs makes NDT extremely efficient and

adaptable to many different application contexts. Among NDT approaches,

ultrasonic inspections based on Lamb waves have attracted a considerable at-

tention, specially in the aerospace and automotive fields [6]. Lamb waves are

stress waves that propagate through plate–like structures. Then, waves can

be acquired by sensing elements such as piezoelectric sensors and processed

to detect and characterize damages. In particular, localization of damages,

delaminations and discontinuities in metallic and composite laminates is a hot

topic in the SHM community. Despite the variety of techniques proposed in lit-

erature, one of the most exploited imaging methods still remain the well known

Delay and Sum (DAS) beamforming algorithm due to its ease of use, low com-

putational requirements and overall good performances. Nevertheless, DAS

imaging has a low resolution due to the high levels of side lobes and limited

off-axis signal rejection which leads to limited image resolution and contrast.

Moreover, multimodal propagation, dispersion and material anisotropy can

affect the imaging result and applicability to a real application case. Since

very few comprehensive experimental methods for characterizing the propaga-

tion medium exist in literature, compensation and tuning procedures which

might be applied to improve the damage localization are usually carried on by

exploiting numerical models that are often not accurate enough.

For such reasons, the development of imaging methods that overcome DAS
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limitations in terms of resolution and contrast, without dramatically rising

the computational burden and implementation complexity, is fundamental.

Similarly, the development of new tools for characterizing the waves propaga-

tion is a critical need in such a context. Thus, in this Thesis, both issues are

addressed. In detail, innovative beamforming algorithms based on DAS are in-

troduced and validated in different application case scenarios. Moreover, new

wavefield analysis tools for the characterization of Lamb waves propagating in

anisotropic plates are presented.

1.2 Contributions

The main points investigated and discussed in this Thesis lead to the following

contributions:

• A novel SSN for SHM based on multi–sensing technologies, i.e. piezo-

electric and accelerometers, is presented. The importance of using dif-

ferent types of sensors for improving the reliability and effectiveness of

the monitoring assessment is demonstrated by two experimental setups.

In the first one, an aluminium cantilever beam is characterized by ex-

ploiting data from both accelerometers and piezo sensors, comparing the

performance of the two technologies. It has been demonstrated that the

capability of the multi sensing combined approach enriches the frequency

insight for a more reliable and complete modal inspection. Consequently,

low–cost piezo sensors can be used alongside traditional accelerometers

to characterize the modal response of structures undergoing flexural vi-

brations. In the second one, a supported beam was instrumented. To

compensate intrinsic piezoelectric non idealities which affect the deriva-

tion of modal shapes, a tuning based on merging data from accelerome-
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ters is implemented. Thus, a complete damage detection and localization

strategy was successfully performed.

• Innovative signal processing techniques for Ultrasonic NDT inspection

are introduced. In particular, two main methods, referred to as De-

lay Multiply and Sum (DMAS) and Double-Stage Delay Multiply and

Sum (DS-DMAS) are presented in order to improve the performance of

conventional Delay and Sum in terms of image resolution and contrast.

The proposed methods are validated and characterized by mainly using a

freely available online guided waves dataset (http://openguidedwaves.

de/), where pitch–catch measurements from a Carbon Fiber Reinforced

Plate are collected. Experimental results show a clear improvement w.r.t.

DAS approach quantified by different metrics, such as contrast–to–noise

ratio, peak signal to noise ratio or contrast ratio. In particular, DS-

DMAS shows a marked noise reduction and artefacts suppression capa-

bilities which enhances the localization. To further improve the method,

a filtering technique addressed as Fresnel Zone Filtering is presented. In

such a way, the beamforming partial sums are restricted in a physical

way to the area around the scattering point. Nevertheless, such methods

are strongly dependant on the precision of the group velocity estimation

of Lamb waves. In anisotropic materials, where the propagation proper-

ties change for the different directions, very few experimental methods

exist to address group velocity extraction. The last contribution of this

Thesis is related to this issue.

• New wavefield analysis tools for Lamb waves characterization are intro-

duced. In particular, the experimental extraction of dispersion curves

in anisotropic plates by means of scanning laser Doppler vibrometer is

http://openguidedwaves.de/
http://openguidedwaves.de/
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addressed to tackle intrinsic limits of theoretical models where material

inaccuracies and non-idealities cannot be easily considered. By exploit-

ing a three dimensional analysis, the polar representation of wavenumber,

phase and group velocity at the excitation frequency are extracted, en-

abling a direction dependant inspection. For such a goal, two methods

were studied. The former is based on a image segmentation technique

called Distance Regularized Level Set Evolution (DRLSE), which per-

mits the extraction of the wavenumber profile in the k–space of the

wavefield. The latter, instead, is based on compressive sensing by ex-

ploiting the sparse representation of the wavefield in the 2D wavenum-

ber domain. Both the methods are validated and characterized in three

different anisotropic plates with different properties.

1.3 Organization

This manuscript is subdivided as follows. In chapter 2 a brief overview on

SHM and NDT techniques is presented. SSNs role in SHM is introduced,

highlighting their importance for low–cost, high performance monitoring ap-

proaches. Then, in chapter 3, a modal analysis inspection strategy is carried

on two different experimental setups by exploiting an innovative heterogeneous

smart sensor network in conjunction with data fusion algorithms. In chapter

4, instead, Lamb waves inspection is described, starting from the physical phe-

nomena to the different possible monitoring strategies and sensing technologies.

Lamb waves are then experimentally applied in chapters 5 and 6. In particu-

lar, chapter 5 focuses on damage localization techniques in both passive–only

and active–passive networks. In the former case, a wavelet–based approach

is exploited to determine the direction of arrival of impact–generated Lamb
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waves. In the latter, instead, beamforming imaging techniques are character-

ized and validated on a composite plate. Since the described techniques are

strongly dependant on the estimation of the group velocity of the propagating

waves, in chapter 6, wavefield analysis tools for dispersion curves extraction

in anisotropic plates are presented. Two different approaches are discussed,

the former based on image segmentation techniques, the latter on compres-

sive sensing. Finally, conclusions such as future developments are provided in

chapter 7.
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Chapter 2

Background

Damage detection and characterization are usually carried on by different dis-

ciplines, which the most widely known and exploited are Structural Health

Monitoring (SHM), Non Destructive Testing (NDT), also known as Non De-

structive Evaluation (NDE), and Damage Prognosis (DP).

SHM, according to Balageas et al. [7] definition, aims to give, at every mo-

ment during the life of a structure, a diagnosis of the state of the constituent

materials, of the different parts, and of the full assembly of these parts consti-

tuting the structure as a whole. The process is based on collecting structural

response measurements over prolonged periods of time, extracting damage-

sensitive features from data. In particular, long-term SHM must periodically

provide updates of the structure status by online monitoring - even in harsh

environmental conditions - to develop suitable maintenance strategies.

NDT, instead, usually refers to off-line techniques able to determine the

severity and the location of potential damages. This kind of approach usually

requires the structure to be off-duty, with the exceptions of pressure vessels

and rails monitoring [8]. Since SHM and NDT are based on the understanding

of the same material properties and physical phenomena which occur in the

23
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material, the main difference lies in the monitoring approach. On one hand,

SHM aims to perform continuous monitoring over the entire lifetime of the

structure, by exploiting non–invasive sensors technologies to be embedded in

the SHM system. On the other hand, NDT is usually carried on with high

precision bench instruments by interrupting the duty of the structure.

Finally, DP aims to predict the remaining useful time of a structure by

estimating damages and structural conditions evolution through probabilis-

tic models [9]. DP has applications to almost all engineered structures and

mechanical systems, with different models depending on the application case.

For instance, a stochastic model based on the Gaussian process was used by

Liu et al. [10] to determine the remaining useful life of composite structures.

The non-homogeneous hidden semi Markov model, instead, was exploited by

Eleftheroglou et al. [11] for modelling the damage accumulation of compos-

ite structures, subjected to fatigue loading. Chen et al [12], instead, used a

mixture proposal particle filter and on-line crack monitoring in a dual crack

growth in an aluminium specimen. Although DP is a promising technique for

estimating the severity of damages and thus, estimating the remaining struc-

ture lifetime, there are many drawbacks which are not been fully addressed so

far. Traditional methods, in fact, exploit analytical methods and numerical

simulations to characterize the damage evolution from a physical point of view.

This kind of analysis is usually restricted to the specific case under evaluation,

and it is difficult to migrate the same model to different structures or different

damage types. Moreover, several uncertainties might affect the model which

can lead to relevant errors in the real–case scenario prediction. Conversely,

data–driven approaches can be agnostic to a–priori physical phenomena since

these methods learn the prognosis model from the experimental data. Never-

theless, online monitoring data is usually not sufficient during the early crack
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growth stage and off–stage learning requires a huge amount of data in different

operational conditions, which is not trivial to obtain.

2.1 NDT and SHM methods

NDT methods permit the materials or components examination without com-

promising their serviceability and future usefulness. In particular, NDT allows

the detection, localization, measurement and evaluation of different types of

damages, leaks, and discontinuities. Thus, it enables the characterization of

integrity, properties and composition of the structure, such as the measure-

ment of geometrical characteristics. Many standard practices are published

including ASME, ASTM, BS, and ABS (e.g. ASTM E1316 [13]). In particu-

lar, a wide range of different inspection techniques exists, for addressing many

different types of structures and damages, such as Acoustic Emission (AE),

X–radiology, vibration analysis, Eddy currents inspection, ultrasonic testing,

and others. In the following, a brief overview of the principles and applications

of the main NDT methods is provided.

2.1.1 Acoustic Emission

AE exploits elastic waves which are generated in a structure by discontinu-

ities formation, i.e. cracks, delaminations, corrosion, etc., and then propagate

through the material. By means of suitable piezoelectric sensors and acqui-

sition systems, AE can be recorded and characterized [14]. AE is widely ex-

ploited in many different application fields due to the possibility to apply the

technique to several different materials, such as alloy (aluminium [15], iron [16],

steel [17], copper [18], etc), fiber-reinforced composites [19], concrete [20], and

wood [21]. Some application examples can be mentioned, such as bridge mon-
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itoring [22], pressure vessels [23] and tanks [24], aircrafts [25], wind turbine

blades [26] and others [27]. Each specific application field can exploit suitable

signal processing techniques. In particular, signal features such as amplitude,

energy, rise time, duration, and counts can provide qualitative and quantita-

tive information about the damage event which created the record. Recently,

more complex algorithms have been introduced to address complex structures

analysis and damage discrimination, such as classification algorithms [28], Ar-

tificial Neural Network (ANN) [29], auto regressive modelling [30], principal

component analysis [31] and supervised and unsupervised classification tech-

niques for damage diagnosis and defect distinction [32,33].

2.1.2 X–Ray

X–ray inspection is based on short wavelength electromagnetic radiations which

are a penetrating form of high-energy electromagnetic radiation. Thus, a

shadow graph image of the material under test can be obtained. The main

principle is that the denser the material, the longer the path length and the

higher the X-ray absorption, the more the X-ray radiations is attenuated while

it passes through the test object toward an X-ray detector [34]. This relation-

ship can be expressed by the Beer–Lambert law:

ln(
I0

I
) =

∫
µ(x, y, z) dl (2.1)

where I is the intensity of the transmitted X beam, I0 is the incident beam

intensity and µ(x, y, z) is the attenuation coefficient at point (x, y, z) along

the ray path. Nowadays, accurate inspections by X–rays can be performed

using micro Computer Tomography (uCT) and X-ray Computed Laminogra-

phy (XCL) which enable micro–scale monitoring. In general, tomography is a

very powerful tool to characterise with high accuracy structures and compo-



27 Background

nents. Anyway, the method is quite expensive and features some limitations,

such as component size limitations, attenuation contrast issues and in–situ

monitoring difficulties. In particular, Garcea et al. [35] demonstrated that

the samples must be no larger than 1000–2000 times the smallest feature size,

which disables the inspection of large structures. Moreover, in composite ma-

terials where the attenuation contrast between carbon fibres and resin is low,

the characterization of the material porosity, such as fibre architecture or dam-

ages inspection is challenging. Usually, uCT is exploited in such application

cases, due to the better resolution achievable. Finally, it’s worthy to address

the difficulties to perform X–ray inspection for in-situ monitoring. In fact, the

requirements of mounting test rigs within laboratory X-ray CT systems are

extremely strict. Test object position, illumination, synchronization and other

aspects must be designed very accurately to obtain satisfactory measurements

results [36–38].

2.1.3 Vibration analysis

NDT methods can be grouped into two main categories: local and global. In

the former, techniques such as AE and X–ray can be pointed. In particular,

these techniques can detect damage in a restricted area or portion of the entire

structure where the damage is supposed to exist. This is due to the intrinsic

behaviour and characteristics of the NDT. For instance, X–ray is limited by

component size limitations, and AE is limited by the attenuation in the propa-

gation path of the stress waves. In the latter category, instead, vibration based

damage identification can be addressed. In particular, the main idea is that

structural changes induced by damages lead to modifications in the physical

properties of the material, such as mass, damping, and stiffness, which can be

detected by analysing the modal properties of the structure itself. In particu-
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lar, the conventional modal analysis relies on the characterization of vibration

signals in both the time domain and frequency domain, where modal informa-

tion can be extracted such as natural frequencies, modal damping, and mode

shapes. Then, by comparing the structural signature with the one extracted

when the structure was undamaged, it is possible to evaluate and locate the

damage. Parameters can be synthesised, such as the Modal Assurance Crite-

rion (MAC) or the Coordinate MAC Damage (COMAC) [39]. By using both

frequency analysis and modal shapes, local damages can be identified since

not only global information but also local is exploited for the structural anal-

ysis. Capecchi et al. [40] investigated the damage identification capabilities

in a parabolic arch by exploiting natural frequencies, modal shapes and cur-

vatures. Khiem et al. [41], instead, addressed the problem of multiple crack

identification for beam–like structures from a natural vibration mode following

the same principle. Furthermore, many signal processing techniques have been

developed. Finite Element Method (FEM) model and iterative algorithms are

presented in [42] for implementing FE model updating algorithm to regenerate

baselines of frequencies and mode shapes. A genetic algorithm in conjunction

with pattern search was used by Ghodrati et al. [43] to detect and estimate

damage in plates. An Artificial Neural Network (ANN), instead, was exploited

by Neves et al. [44] to detect damages in bridges without the need of a-priori

model. Moreover, other methods such as machine learning [45], Bayesian clas-

sification [46], sparse Bayesian learning [47], unsupervised learning [48] and

artificial bee colony algorithms [49] can be mentioned.

2.1.4 Eddy currents and Electromagnetic inspection

Electromagnetic sensors exploit electromagnetic induction. In particular, if

a time–varying current passes through an excitation coil, an electromagnetic
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field will be created. Following Faraday’s Law, if an electrically conductive

material is in the proximity of this electromagnetic field, an Eddie Currents

(EC) is induced in the material [50]. By analysing the induced EC, information

can be extracted. Thus, Eddy currents can be exploited for conductive materi-

als NDT. In particular, EC NDT is based on AC–driven excitation coil which

induces the current via electromagnetic coupling. In turn, the circulation of

the eddy current induces a secondary magnetic field. If the electrical conduc-

tivity, magnetic permeability or thickness of the sample change, the secondary

magnetic field will change accordingly, thus enabling multiple different types

of inspections. For instance, ECs have been used for crack detection [51], ma-

terial and coating thickness measurement [52], conductivity measurement for

material identification [53], heat damage detection, case depth determination,

and heat treatment monitoring [54]. Nevertheless, conventional EC testing is

based on a single frequency excitation which does not permit the detection of

sub–surface damages. To tackle this limitation, several solutions have been

introduced in the scientific literature. A multi–frequency EC testing has been

presented in [55], where different excitation frequencies are excited in a row.

Pulsed Eddie Currents (PEC), instead, is considered one of the most effective

methods in multilayer structures [56]. Albidin et al. [57] demonstrated the

effectiveness of the method for the evaluation of the integrity of rivet joints.

Hosseini and Lakis [58], instead, used PEC data in time-frequency domain. In

particular, by exploiting maximum variances of Principal Component Analy-

sis (PCA) they automatically determined corrosion in thin multi-layer struc-

tures. Finally, it’s worthy to mention the Pulsed Eddie Currents Tomography

(PECT), which enables imaging of conductive structures without scanning.

The two main PECTs techniques are the ones based on induction, which is

stimulated by short bursts of electromagnetic excitation and the ones based
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on heat diffusion, which use flash thermography. Examples of PECT can be

found in [59–61]

2.1.5 Ultrasonic inspection

Ultrasonic Wave (UW) are stress waves with frequencies ranging from 20 kHz

to 10 MHz. UW can travel freely in liquid and solid (bulk wave) or, alterna-

tively, being guided (guided waves), depending on the medium. In the former

case, bulk waves have been extensively exploited for NDT purposes for flaws,

i.e. cracks or inclusions, far beneath the inspection surface. The most simple

ultrasonic test which can be performed is the so called Through-transmission

or shadow test, where the inspection is carried on by placing a probe on each

of two opposite surfaces of the structure. Then, flaws are detected and mea-

sured by exploiting the shadow that they generate in the direct path of the

wave. Nevertheless, many different ultrasonic tests have been developed, such

as contact testing, immersion testing, air-coupled ultrasonic testing, laser ul-

trasonic testing, and Electromagnetic Acoustic Transducer (EMAT) [62–65].

Each method is characterized by different sensing elements, e.g. piezoelectric

transducers, laser or electromagnetic transducer, and different characteristics

such as limitations. For instance, air–coupled ultrasonic testing suffers from

low efficiency if a large impedance difference exist [66]. All the methods above

are able to detect and characterize the crack size in the material under test.

In particular, ultrasonic sizing techniques can be divided into four main cat-

egories: Amplitude [67], temporal [68], imaging [69] and inversion [70] tech-

niques. A comprehensive review of ultrasonic bulk waves inspection, such as

ultrasonic sizing techniques can be found in [71]. Guided waves inspection,

instead, is widely exploited for plate–like structures, where Lamb waves are

mostly involved. An in–depth description of guided Lamb waves principles,
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equations and applications is provided in chapter 4.

2.2 SHM Smart Sensor Networks

Disclaimer: the following section was partially published by ©2020 IEEE [AP1]

Usually, an SHM system is composed of four main actors: the sensing ele-

ments, data acquisition/transmission sub–system, data management/control

module and structure performance evaluation system [39]. The installation of

such real–time, long term systems is usually not trivial, due to the large num-

ber of sensors required which increase the monitoring complexity and cost. At

the same time, the SHM system is supposed to satisfy strict requirements in

terms of accuracy and reliability for the safety of the entire structure. For such

reasons, SHM is still suffering to be widely used in industrial and civil real ap-

plication scenarios where these technologies are only partially exploited. The

cost reduction of the devices employed, without losing accuracy and reliability,

is fundamental in order to achieve a widespread diffusion of SHM techniques.

In particular, low–cost electronic devices which feature embedded signal pro-

cessing capabilities, low power consumption, small size and small weight are

preferable in comparison with conventional SHM instruments, made of expen-

sive transducers and data acquisition systems. Thus, in the last few years,

different kinds of Smart Sensor Network (SSN) are rising, tackling the lim-

its of conventional SHM instruments. While wired smart sensor networks,

such as [72], feature more security against external hacks, a robust trans-

mission synchronization and the possibility to exploit a stable wired power

supply, Wireless Smart Sensor Network (WSSN) are the most promising sys-

tems for SHM applications because they don’t require long cables leading a

significant cost reduction and an easier installation procedure of the network
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Figure 2.1: Academic wireless sensors prototypes [74]: (a) Narada wireless pro-

totype [75], (b) PCB two-layer circuit board [76], (c) Thinner wireless sensor

node [77], (d) SmartBrick V2.0 [78], (e) WISAN coordinator [79], (f) WSNG2

Prototype [80], (g) PWSMS portable wireless system [81], (h) AEPod Proto-

type V1.0. [82], and (i) Xnode smart sensor [83].

on the structure under test. Moreover, the implementation of WSSNs by the

Internet of Things (IoT) paradigm [73], will probably lead to a new Internet

of Structures (IoS) paradigm in which real–time and continuous monitoring

will strictly interact with IoT devices, such as temperature sensor, humidity

sensor, GPS etc. Due to the limited cost and miniaturization required for

WSSNs devices, it is important to consider even limits and constraints that

such features lead. Usually, the most important constraint in WSSN is the

power consumption of the nodes, which are typically supplied by batteries or
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by energy harvesting solutions. The energy–saving capability of the network,

and thus its flexibility is a fundamental metrics to consider. At first, different

kinds of topologies exist for WSSN. Usually, the choice of one topology among

others is related to the specific application case. Shrestha et al. [84] discussed

the various WSSNs topologies performance by comparing performance crite-

ria such reliability, energy–efficiency, network life, scalability, self–organizing

capability and data latency. Star topologies are one of the simplest and most

common forms of communication topology. Unfortunately, because of the di-

rect connection between each element of the network and the central unit, or

sink, the energy–saving techniques which can be exploited for such kind of ar-

chitecture are limited. In fact, it has been demonstrated that communication

is the most energy–consuming activity performed by sensor nodes, and typi-

cally one–bit transmission requires around 100 to 1000 times more energy in

comparison with one instruction processing. Thus, it is fundamental to embed

signal processing directly inside the nodes, reducing the amount of data to be

transmitted. This is not a trivial task, because the processing capabilities of

the nodes are limited by the hardware architecture and technology constraints,

such as memory space, Floating Point Unit (FPU) operation capabilities, clock

speed, Microcontroller Unit (MCU) performance. Thus, an accurate feasibility

analysis and performance study must be performed in order to determine if

a specific signal processing is actually beneficial for the sensor network. In

the case of mesh WSSN and Clustered Hierarchical Configurations there is

more flexibility and different energy–saving techniques can be exploited. In

the former, the intra–node communication can be used to distribute the com-

putational effort to multiple devices, meanwhile, in the latter, a Cluster Head

(CH) with advanced signal processing capabilities can be exploited in order

to perform more complex signal processing reducing the effort of the nodes.
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Thus, it’s evident that the right strategy to adopt depends not only on the

pure sensor node capabilities but even on the right topology and Network ar-

chitecture, which has to be analysed on the specific application case. For a

sake of completeness, an exhaustive overview of WSSNs technologies, hardware

implementations and SHM applications is presented by Abdulkarem et al. [74].

In Figure 2.1 some of the WSSNs implemented in the last years by academic

research groups are shown. A general trend can be observed by analysing the

existing solutions. In fact, WSSNs and SSNs are usually designed to acquire

different types of signals from different sensing elements. In such a way, the

SHM inspection is more robust, reliable and complete. The idea behind Het-

erogeneous Sensor Network (HSN) is to enable advanced signal processing,

which might be on board or off boards, correlating different types of informa-

tion [AP2]. This kind of approach tackles the single inspection limits, enabling

data cross–validation and prognosis.

In the next chapter, a lightweight, heterogeneous sensor network, consist-

ing of strictly synchronized nodes based on low–cost Lead Zirconate Titanate

(PbZrxTi1−xO3, or PZT) transducers and triaxial Micro Electro-Mechanical

Systems (MEMS) Accelerometer (ACC) is presented. The multi–sensor net-

work is validated and investigated by analysing the modal characteristic of

defective structures. A numerical model built on closed analytic formulae was

developed to investigate the adherence of experimentally extracted modal pa-

rameters to the predicted ones. A dedicated processing flow comprising a PZT

tuning step was specifically implemented to recover modal shapes. Damage-

sensitive parameters were finally employed for fault detection in presence of

structurally perturbed conditions.



Chapter 3

Heterogeneous Sensor Networks

for SHM

Disclaimer: the following section was previously published by ©2020 IEEE

[AP1] and ©2019 IEEE [AP2]

Modern SHM systems are typically constituted by a multitude of sensor

nodes. Such devices should be based on low–cost and low–power solutions both

to ease the deployment of progressively denser sensor networks and to be com-

patible with a permanent installation. Thus, real–time monitoring, mainte-

nance costs reductions and safety increase are enabled. In civil infrastructures,

vibrational analysis based on Operational Modal Analysis (OMA) is one of the

most effective and reliable tools to assess the integrity of the structures [85], by

observing the structural vibration characteristics which change with respect to

baseline healthy values [86, 87]. In OMA, natural frequencies are commonly

tracked to detect global damages, while mode shapes can be used for defect

localization [88]. To achieve good localization capabilities, dense sensor net-

works must be implemented. However, the high cost of such SHM networks

35
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inhibits their widespread implementation. Nowadays, rapid advances in sig-

nal processing and sensor technology allow for the implementation of smart

maintenance schemes for conventional buildings and infrastructures [AP3].

In this framework, this chapter presents a sensor network that is based on

either MEMS accelerometers and cost–effective piezoelectric devices to extract

strictly synchronized modal parameters. In literature, many research studies

validated MEMS for vibrational analysis. For instance, Testoni et al. [89] de-

scribed low power and low–cost smart sensor network based on three-axial

MEMS with local data processing and data-to-cloud capabilities. Bedon et

al. [90], instead, presented original self–made MEMS sensor prototypes. The

prototype has been then validated in preliminary laboratory tests, such as

shaking table experiments and noise level measurements. Nevertheless, most

types of MEMS accelerometers can not perform wideband analysis due to

frequency range limitations. Conversely, piezoelectric (PZT) transducer tech-

nology is suitable to work in the range of up to hundreds of kHz or more. For

such a reason, PZT-based modal analysis can be successfully exploited when

the frequencies of interests are usually up to and higher than 10 kHz [91]. Con-

trarily, in the low-frequency range, down to and lower than 10 Hz, PZTs are

scarcely exploited. This is mostly due to the fact that in this frequency range

accelerometers are classically understood to be more reliable than PZT trans-

ducers. Thus, in this chapter, the fusion of these two technologies (PZT trans-

ducers and MEMS accelerometers) is presented. It can be demonstrated that

the exploitation of hybrid, multiple sensing elements in smart sensor networks

is beneficial for continuous SHM applications in the low–frequency regime in

several application fields, such as civil or industrial infrastructures [92, 93].

The performances of the two sensing technologies are evaluated in two differ-

ent setups, to assess the reliability in the estimation of modal features even in
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presence of potential damages. Moreover, the consistency of the obtained re-

sults demonstrates the potential of a more compact and affordable monitoring

system exploiting piezoelectric–driven modal analysis.

3.1 Smart Sensor Network Technology

Disclaimer: the following section was previously published by ©2020 IEEE [AP1]

Comparisons of different research prototypes and commercial MEMS acceler-

ation sensors are presented in [94, 95]. An exhaustive literary survey on the

most advanced sensing solutions currently available for vibration analysis is

provided by [96]. Nevertheless, very few analyses have been conducted on

systems based on disc-shaped piezoceramic patches (discs) in the vibrational

field. An interesting byproduct of using PZT discs is the possibility to simul-

taneously perform OMA and acoustic emission testing [97]. This evaluation

strategy is of primary importance in the integrity assessment of metallic or

composite structures, either intended for civil and construction engineering

(e.g. bridges, towers, buildings) [92] or industrial applications (e.g. rotating

motors and hydraulic pumps [93], wind turbines [98, 99]), where the nominal

vibration behaviour co-exists with important acoustic phenomena occurring

as a consequence of structural deterioration (delaminations, soldering, etc)

and external agents (corrosion, etc). The network discussed in this section

is based on a compact sensor–near electronics, capable of data merging and

feature extraction thanks to the embedded Digital Signal Processing (DSP)

functionalities. The architecture of the proposed network is based on two

main elements: two compact Sensor Node (SN), and a network interface, also

called gateway, which can coordinate up to 64 sensor nodes at a time. The

former SN is connected up to three PZT discs, while the latter incorporates
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Figure 3.1: A schematic representation of the developed up-scalable and het-

erogeneous sensor network architecture. ACC and piezoelectric (PZT) sensor

nodes can be simultaneously exploited under the orchestration of a gateway

network interface [AP1].

a triaxial LSM6DSL iNEMO MEMS accelerometer accessed by means of a

dedicated SPI interface. A comprehensive description of these elements can

be found in [100] [AP4] and [72]. Nevertheless, a fast description is provided

here below. Moreover, a sketch of the sensor network architecture is depicted

in Fig. 3.1.

All these devices are joined in a daisy–chain fashion by means of a mul-

tidrop Sensor Area Network (SAN) bus, which exploits Data over Power (DoP)

communication [89] based on the EIA RS–485 standard. A wired connection

was preferred over a wireless one in order to grant the possibility to continu-

ously acquire data from the structure at the highest possible data–rate; this

choice also led to the design of lighter nodes, which did not require the presence

of a battery. The communication protocol can be used effectively over long

distances and in electrically noisy environments, which are common in many

application fields. Meaningful information is transmitted to a PC through the

gateway. A maximum effective data–rate of 200 kbps was selected, enough to
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accommodate up to twelve 16-bit data channels simultaneously acquiring at

1 ksps. Data are transmitted sequentially, in packets, by exploiting a propri-

etary lossless encoding technique. The reception of each data packet must be

acknowledged by the receiver before the next packet is sent by the transmitter.

During acquisition, signals are collected simultaneously by each sensor node.

A unique time-stamp is provided by means of an internal 32 bit high–speed

hardware counter, clocked at 64 MHz; once every hour a 32 bit low–speed

software counter is updated. According to the core microcontroller manufac-

turer [101], the cycle–to–cycle jitter of the internal high speed clock system is

300 ps whereas its accuracy for soldered parts working in the −10 ◦C to 85 ◦C

temperature range is −1.9 % to 2.3 % with respect to the nominal value. Mea-

surements taken on the implemented sensor network showed cycle–to–cycle

jitter [102] of 239.5 ps, a minimum deviation of -0.069% and a maximum de-

viation of 0.026% over a time period of 2400 s. These results are compatible

with the figure of merit reported by the manufacturer. Synchronization among

the different nodes of the network is an essential requirement in order to per-

form data merging, data comparison and mixed–signal processing during the

post–processing phase [103]. The synchronisation algorithm exploited in this

work is based on a software implementation of the classical three-way hand-

shake adopted by the RFC 793 Transmission Control Protocol [104]. First,

the gateway sends a synchronization command addressed to a single node;

the receiving node responds with a similar command, addressed to the gate-

way; finally the gateway sends an acknowledge message to the sensor node.

The first two steps allow the gateway to computing the Round Trip Time

(RTT), whereas the last two steps allow the sensor node to compute the RTT.

Several factors contribute to the RTT: the messages encoding/decoding time,

the messages transmission time, the delays between the messages transmission
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and reception at the electrical level, and the messages processing time. The

messages transmission time is already known to the gateway and the sensor

nodes, since messages length and data rate are known a-priori, and do not

change over time; the sum of remaining terms, called residual RTT, conversely

can change over time and must be estimated. The mean of the residual RTT

of the proposed network, estimated from 1000 observations, is 33 µs with a

standard deviation of 160 ns and is dominated by large by the messages encod-

ing/decoding time: as such, RTT/2 is considered a good approximation of the

propagation delay at the software level. Once each node in the network knows

its own Round Trip Time (RTTi), the gateway issues a broadcast synchro-

nization command containing its local time T0: following this last command,

each sensor node in the network sets its internal counters to T0 + RTTi/2.

Due to clocks’ drift, in absence of periodic transmission of the broadcast syn-

chronization command, the maximum divergence between the sensor nodes’

clocks in the proposed network over 2400 s of observations was 2.254 s. This

value was reduced to 4.7 ms by issuing the synchronization command once per

acquisition (i.e. 5 s), which is acceptable for vibration-based structural inspec-

tion [76]. The scalability and high flexibility of the network allow the user to

independently handle the configuration of the parameters related to each sen-

sor node. This is crucial for the optimization of the system according to each

experimental case–study, while maintaining the same hardware architecture.

Similarly, it is also possible to completely reconfigure the monitoring system

during the life-cycle of the structure, by changing the network cardinality or

the acquisition parameters.
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3.2 Modal parameter extraction

Disclaimer: the following section was previously published by ©2020 IEEE [AP1]

Natural frequencies of vibration and modal shapes can be addressed as modal

parameters. Usually, these parameters change according to structural evolu-

tion, enabling dynamic identification [105]. In particular, the Power Spectral

Density (PSD) of vibration signals, which describes the signal distribution

of power in the frequency domain, is useful for characterizing structural in-

tegrity. PSD estimators can be divided into two main groups: Autoregressive

(AR) based methods and non–parametric procedures (such as periodogram

and Welch’s evaluation) [106]. The former methods are characterized on the

dark side by high computational cost. On the bright side, instead, this strategy

features the capability to effectively extract narrowband spectral peaks, which

is suitable for the typical frequency response of vibrating structures [105]. The

latter, instead, usually assume that the structural response can be modelled

as the output of an equivalent all–pole Infinite Impulse Response (IIR) filter.

Thus, let’s define s(t) as the time–domain structural response in the following

form:

s(t) =
n∑
i=1

θis(t− iT ) + ε(t) (3.1)

where each signal sample (with sample period of T ) can be modelled as the

linear combination of the n previous values of the observed process, summed to

a zero–mean white noise signal ε(t) as a driving source. The set of parameters

θ = [θ1...θn], instead, refer to the filter bank. By determining θ and the noise

variance σ2
ε , the AR model of order n can be solved. In particular, in the

frequency domain, the power spectrum Sx(f) can be directly addressed as

Sx(f) =
σ2
ε

|1−
∑N

i=1 θie
−i2πfi |2

(3.2)

A variant of the conventional AR parametric method was adopted for the pre-
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sented work: the AR + Noise approach [107]. AR main approach is to consider

the noise as the only source to describe the different causes for misalignment

between the model and the data. In AR + Noise method, instead, an additive

observation error is introduced in the AR model output. This approach outper-

forms conventional AR strategies by exploiting combined feedback–feedforward

prediction model which ensures the congruence of the obtained solution with

the second–order statistics of the noisy data and with the cost of a negligi-

ble increase in the computational complexity [108]. In particular, the main

effort in the algorithm is the eigen decomposition of the predicted signal’s

autocorrelation matrix. Then, a convex optimization problem is performed

to obtain the optimal set of model parameters compatible with the second

order characteristics of the noisy input signal [109]. Finally, it’s worthy to

notice that the harmonic energy of vibrating structures decreases w.r.t. the

frequency. Thus, high-order modes are usually affected by low Signal-to-Noise

Ratio (SNR), requiring ad–hoc signal processing. For instance, the Frequency

Domain Decomposition (FDD) technique [89] can be employed due to its es-

tablished effectiveness in presence of noisy vibration data [110].

3.3 Multi-type OMA of a cantilever beam

Disclaimer: the following section was previously published by ©2020 IEEE

[AP1] and ©2019 IEEE [AP2]

In this section, a first case study is presented. In particular, a lightweight

aluminium beam fixed at one end was sensorized with both one PZT cluster

made of three closely–located active areas and one triaxial MEMS ACC. The

PZT cluster and the MEMS were placed in the same vertical position but
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Figure 3.2: Experimental setup comprising one PZT sensor node and a tri-axial

MEMS accelerometer (ACC) installed on a cantilever beam [AP2]

on opposite faces of the beam. The beam features 420 mm of length, 40 mm

of depth and 1.98 mm of thickness. Moreover, the beam is characterized by

density ρ = 2700 kg/m3 and Young modulus E = 70 GPa. A mass of 100 g of

weight has been attached at the free end of the beam to permit the natural

oscillation of the cantilever. The centre of gravity of the additional mass has

been chosen to be exactly aligned on the mid–depth, xA = 15 mm distant from

the longitudinal border. For sake of clarity, the experimental setup is shown

in Figure 3.2.

The theoretical modes of vibration were extracted by a numerical first–

order model of the cantilever beam. In particular, the first four frequencies

f1 = 3.85 Hz, f2 = 36.50 Hz, f3 = 107.75 Hz, f4 = 204.93 Hz were estimated.

The vertical acceleration component az is discussed in this analysis since it

is predominant in the cantilever configuration. The az response such as the

piezo signals are shown in Figure 3.3. It can be observed that the sinusoidal

signals of the two transducers are in phase and consistent during the entire

time window depicted. Thus, their frequency response is identical. In Fig. 3.3,

instead, the normalized time signals of PZT and the derivative of the nor-
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Figure 3.3: Comparison between PZT and ACC acquisitions: original signals

(top) and normalized acceleration time-derivative superimposed to normalized

PZT signals (bottom) [AP1]

Vq

Cp

RL CL

Vout

Figure 3.4: First order electrical model of a PZT sensor [AP2].

malized time signal of ACC are plotted revealing a perfect overlap, and thus

a strict relationship between the two physical dimensions. In fact, from one

side strain is proportional to the second order derivative w.r.t. space of the

orthogonal displacement. On the other side, acceleration is the second order

derivative w.r.t. time of the displacements. Since the voltage acquired by the

PZT sensor node is caused by the deformation of the beam which effect is

a charge redistribution, piezo voltage and strain are linearly related. Thus,

a linear dependency exists also between signals measured by PZT and ACC

nodes, respectively. In particular, to better understand how these dimensions
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Figure 3.5: Comparison between spectral trend of az acceleration signal (top)

and ch1 PZT sensor (bottom) computed with different processing techniques

[AP1].

are related, a few considerations about the PZT model can be addressed. The

first order electrical PZT model is depicted in Fig. 3.4. In particular, CP is

the piezoelectric capacitance, Vout is the measured voltage at the PZT elec-

trodes, while CL and RL are the load capacitor and resistor, respectively. The

input–output voltage transfer function of the circuit can be written as:

H(s) =
Vout(s)

Vq(s)
=

sRLCp
1 + sRL(CL + Cp)

(3.3)

Assuming that ω � 1/[RL(CL + Cp)], where ω is the vibration frequency, the

expression can be simplified as follows:

H(s) = sRLCp (3.4)

which acts as a derivative block on Vq. Thus, the signal measured by the PZT

nodes is proportional to the first derivative of the strain, and then, to the
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first derivative of the acceleration measured by the ACC node. In conclusion,

these considerations demonstrate that these devices register different physical

quantities relative to the same vibrating behaviour. Then, the vibration anal-

ysis in the frequency domain has been addressed. The PSD was estimated

through different processing techniques. The resulting spectra are depicted in

Fig. 3.5. It is worthy to notice that the spectral peaks are consistent between

PZT/ACC signals and predictions. This demonstrates the capabilities of PZT

disks to capture the frequency signature of the vibration of the beam at very

low frequencies, i.e. below a few tens of Hertz. Moreover, the frequency con-

tent above 100 Hz has been successfully detected only by PZT sensor node,

although the the ACC bandwidth is nominally up to 1 kHz. To quantitatively

assess the quality of the frequency response of the two sensor nodes, the Peak-

to-Noise Ratio (PNR) has been considered as the main metric. In particular,

PNR characterizes the difference between the peak amplitude level and the

noise floor, related to each identified peak. In the first and second harmonic,

the PNR is PNR = 25 dB for all the spectra from both PZT and ACC. Thus,

a significant deviation was not found. On the contrary, the PNR value around

the third and fourth modes drops from 15 dB and 10 dB to 0 dB while moving

from the PZT to the ACC spectral trends. In conclusion, by averaging all the

experimentally estimated peaks with AR+Noise, the dominant modes are cen-

tered at the following frequencies: f1 = 2.93 Hz, f2 = 37.11 Hz, f3 = 104.49 Hz,

f4 = 208.98 Hz.
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Figure 3.6: Experimental setup deployed on a sensorized supported steel beam.

The gateway, the five MEMS accelerometers and the PZT transducers con-

nected to two PZT sensor nodes are depicted as magenta, red, blue and green,

respectively. The light–grey wiring lines identify the PZT transducer–to–sensor

connections, whereas the blue ones refer to the sensor–to–sensor communica-

tion cables. Four different positions x1, x2, x3, x4 were considered to simulate

the presence of crack-like faults by means of hanging masses.

3.4 Damage detection of a simply supported

beam

Disclaimer: the following section was previously published by ©2020 IEEE [AP1]

In order to further validate the conjunction of ACC and PZT node technologies

in modal analysis applications, another experimental setup was arranged. A

supported steel beam characterized by length L = 2052 mm, cross–section

base b = 60 mm and 10 mm height, was sensorized with a double chain of five

PZT transducers and as many accelerometers almost equally spaced. As in the

previous case, the sensors were attached in the same vertical position but on

opposite surfaces. The total weight of the network is 53.1 g, less than 0.54% of

the beam mass which weights 9.70 kg. Moreover, the weight of the network is

uniformly distributed over the whole beam span. Thus, can be stated that its

effects on the dynamic response of the structure is negligible. Damages, e.g.

cracks or local discontinuities, were mimicked by hanging additional masses

of two different weights, i.e. mA = 988 g and mB = 1754 g, on the beam
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Figure 3.7: Spectral trends. ACC are depicted as red lines/circle markers,

while PZT are green lines/triangle markers. Signals in nominal condition, are

drawn as dotted lines/blue markers. Conversely, signals in damage condition

are solid lines/yellow markers. Data were acquired in correspondence of the

mid–span [AP1].

at four different positions: x4 = 335 mm, x3 = 820 mm, x2 = 1353 mm and

x1 = 1854 mm distant from the left edge of the beam. In fact, the effect of

the presence of the mass is a perturbation in the natural frequencies which

depends on both its weight and placement. In Fig. 3.6 the experimental setup

is depicted. Finally, it’s worthy to notice that the selected positions of the

sensing elements are proximal to the nodal and antinodal values of the first

two modes of vibration.

After a preliminary characterization in nominal conditions, eight config-

urations with simulated damage were tested stimulating the beam in a free

position by means of an impact hammer. In all the experiments, 5000 sam-

ples were acquired at fs = 1 kHz. In such a way, not only the effectiveness of

the sensor network to extract modal parameters was validated, but also the

possibility to detect a defective condition.
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Figure 3.8: From left to right are shown the relative errors between AR–

driven experimental estimation and numerical prediction obtained in nominal

and damaged conditions of the first, second, and third natural frequency of

vibration, respectively [AP1].

Frequency-based assessment

Due to the complexity of the experimental setup, the AR+Noise method with

order 60 was exploited to compute signals spectrum. The main issue consisted

of the non–ideal beam fixing mechanism which generated undesired harmonics.

In Fig. 3.7, the nominal and the altered spectra, i.e. when the mass is attached,

of the ACC sensors, PZT sensors and simulation expectations are shown. In

particular, the PSDs of ACC and PZT nodes are obtained by averaging the re-

sponses acquired by the same type of transducers in the same condition. Then,

the Finite Element Method was purposely developed to predict the expected

modal parameters in all the inspected scenarios. At first, the agreement in the

frequency response between ACC and PZT nodes is evident, thus validating

the suitability of low–cost piezoelectric sensors in classical OMA–based SHM.

Moreover, the frequency deviation from nominal values is coherent with ex-

pectations and numerical simulations. A quantitative evaluation is reported

in Fig. 3.8. The relative percentage error E
(i)
r =

∣∣∣1− f (i)
e /f

(i)
Model

∣∣∣ for every

vibration component i between the first three experimentally extracted (f
(i)
e )

and numerical modal frequencies (f
(i)
Model) is shown. The non–uniform distribu-

tion of the error among the different acceleration components follows the same
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pattern in both the adopted sensing technologies. The most noticeable fluctu-

ation can be observed in the third mode, independently from the position or

entity of the hanging mass due to the low energy content and thus, low signal–

to–noise ratio of this modal component. In general, PZT response quality and

precision are competitive over the MEMS accelerometers, demonstrating good

performance even at low frequencies. In fact, it’s worthy to underline that the

error of PZT is averagely below 3.10% and 2.66% respectively for the first and

second modes. On the other side, the average errors of ACC sensors are 3.38%

and 1.40%. Finally, can be stated that, despite some isolated peaks, concen-

trated around the most deeply perturbed configurations (e.g. 6% error for

the second natural frequency when mB is in position x2), the precision of the

PZT transducers in detecting the most energetic and low–frequency harmonics

outperforms the one obtained from acceleration data.

Modal shape–based assessment

In conventional model–driven SHM scenarios, frequency–based damage metrics

alone are recognized to be insufficient to ensure a reliable structural integrity

assessment. Thus, the frequency analysis is usually accompanied by the ex-

traction of modal shapes which define the point–wise relationship between the

specific pattern of vibration revealed by a modal component [105]. In such a

way, external fluctuations such as temperature and humidity variations which

might affect the frequency response of the sensors, and thus the accuracy of

the analysis, are tackled [111]. The strategy for extracting the modal shapes

from PZT sensors is depicted in Fig. 3.9. The final goal is to reconstruct the

first three modal shapes for each tested configuration.

At first, because of differences in the amplitude response of the PZT trans-

ducers due to intrinsic non–idealities in the sensors’ fabrication, wiring and
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coupling mechanism, a modal shape tuning (or scaling) procedure was im-

plemented. The tuning is performed when the structure is in pristine con-

ditions and, subsequently, evaluated for on-condition damage assessment in

presence of defective configurations. At first, M acquisitions from ACC and

PZT sensor nodes were repeated under nominal dynamic behaviour. Then, the

first three modal shape vectors Φ
(i,mN)
ACC = [Φ

(i,mN)
1,ACC . . .Φ

(i,mN)
P,ACC ] and Φ

(i,mN)
PZT =

[Φ
(i,mN)
1,PZT . . .Φ

(i,mN)
P,PZT ], m = 1 . . .M , for ACC and PZT acquisitions, respectively,

were extracted by means of FDD algorithm. During the second step, the PZT

tuning was implemented as following. By exploiting a leave–one–out strategy,

M − 1 acquisitions were used to tune the PZTs and the remaining one, which

will be addressed as k-th data set, was exploited for cross validation. the scal-

ing coefficient α
(i,kN)
p,PZT for the i − th PZT modal coordinate at the individual

sampling position p can be defined as:

α
(i,kN)
p,PZT =

1

M − 1

M∑
m=1,m6=k

Φ
(i,mN)
p,ACC

Φ
(i,mN)
p,PZT

(3.5)

The scaling factors were then used to compute the estimated modal shape

coordinates Φ̂
(i)
PZT :

Φ̂
(i,kN)
p,PZT = α

(i,kN)
p,PZTΦ

(i,kN)
p,PZT (3.6)

In particular, the experimental setup relies on M = 5 acquisitions from P = 5

acceleration and piezoelectric devices on the beam in pristine conditions. Then,

5 different sets of tuning factors were derived, the cardinality of each set being

equal to the number of the extracted modes.

The tuning procedure can be validated by computing the Modal Assurance

Criterion (MAC) [112], which measures the level of coherence between numer-

ically predicted modal shapes Φ
(i,N)
Model and experimentally scaled PZT modal

shapes Φ
(i,kN)
PZT coming from the k − th data–set. The MAC index swings be-

tween 0 and 100%, where zero stands for totally inconsistent data, while 100%
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Figure 3.9: Processing steps adopted for PZT–based damage detection pur-

poses. In the left column, the preliminary analysis carried on without the

presence of damage. In detail: (1) the extraction of both the ACC and PZT

raw modal shape curves, (2.a) the PZT mode shape scaling factors estima-

tion built and (2.b) final structural validation of the reconstructed PZT modal

shapes. In the right column, the damage detection processing. In (3) the FDD

was used to estimate the modal shapes. Then (step 4) the previously estimated

tuning factors are employed to re–scale the currently obtained raw PZT modal

shapes; the comparison with reference values (step 5) is performed to notify

damage alarms in case of occurrence [AP1].
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expresses a perfect modal superimposition. Usually, the percentage threshold

of 90% is used to discriminate between healthy (MAC indexes ≥ 90%) and

defective (MAC indexes ≤ 90%) structural behaviour [113]. Table 3.1, the

average of the MAC achieved for the five different sets in nominal conditions

of tuning factors is shown in the first row. The percentages are consistently

above 90%, demonstrating the good performance of the tuning procedure, also

considering the low minimal standard deviations reported. Only the third

harmonic is below 95%, because higher modal components only comprise a

minimal part of the total mechanical energy of the structure, [91].

After the tuning phase, the capability to identify the damage by monitoring

the modal shapes extracted from PZT acquisitions was tested. The damage

configuration is the same described in the Frequency–based assessment section,

and sum up in Fig. 3.9 in steps 3-5. FDD method was used to determine the

modal shapes vectors in damaged conditions Φ
(i,D)
PZT = [Φ

(i,D)
1,PZT . . .Φ

(i,D)
P,PZT ] from

PZT sensors. Then, the tuning coefficients α
(i,kN)
p,PZT are applied to compensate

PZT non–idealities following Eq.3.6. For instance, In Fig. 3.9 at step (4) the

modal shape in damaged condition, depicted as the blue dashed curve, with the

mass placed in position x1, is superimposed with the nominal one extracted in

pristine conditions, depicted as green dashed curve. The deviation around the

actual damage position is evident. Finally, the results are further validated

by estimating MAC indexes with respect to reference modal values. Table 3.1

reports the mean values µ(i) and the associated standard deviations σ(i) of the

MAC related to each set of five modal correlation percentages for the different

considered defective conditions. For each case, it is possible to identify at least

one mode with MAC correlation degrading below 90%.
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Table 3.1: Mean values µ and associated standard deviations σ of MAC values

obtained in nominal condition validation and damage detection assessment

after applying the proposed PZT modal shapes tuning procedure.

Φ(1) Φ(2) Φ(3)

µ(1) σ(1) µ(2) σ(2) µ(3) σ(3)

Nominal 96.75 1.33 96.56 2.71 94.40 1.57

A @ x1 91.23 2.06 76.07 3.60 41.38 3.24

A @ x2 90.03 2.34 67.78 4.16 73.57 3.28

A @ x3 83.32 2.60 78.44 2.60 72.24 3.17

A @ x4 88.14 2.09 66.42 4.10 38.64 11.24

B @ x1 95.24 0.93 51.32 3.79 49.44 20.72

B @ x2 75.65 1.89 49.94 1.94 13.96 6.24

B @ x3 96.49 0.21 54.64 3.08 96.09 1.01

B @ x4 71.65 2.79 52.04 2.06 90.26 1.92



Chapter 4

Guided Waves in SHM

Guided waves have been studied since the late eighteenth century with Rayleigh

studies [114]. During the last century, instead, Lamb [115], Love [116] and

Stoneley [117] made the biggest contribution in understanding guided waves

physical phenomena. A Guided Wave (GW) is essentially an ultrasonic me-

chanical wave that propagates through bounded structural media. The nature

of the bounded configuration which acts as a waveguide leads to multi–modal,

dispersive and attenuated propagation. On the bright side, GWs can travel at

large distance, enabling many different application possibilities. Several types

of GWs exist [118]. Among them, surface waves propagate on the surface of a

structure and, depending on the structural stress and boundary conditions can

be listed in different categories. For instance, Rayleigh waves are GWs whose

propagation is confined in an elastic half–space. Although Rayleigh waves are

not dispersive for uniform materials, their propagation is complex, following

an ellipse shape particles movement. Moreover, waves amplitude and velocity

might be affected by coupling effects between the propagation surface and a

medium surrounding the structure. In general, Rayleigh waves are exploited to

detect surface defects [119, 120]. Love waves can be also addressed as surface

55
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waves travelling in layered materials. In particular, Love waves are horizon-

tally polarized shear waves that also exist on the surface. They feature highly

dispersive characteristic and high–velocity propagation. Love waves are not

usually exploited for damage detection and characterization, with few excep-

tions such as [121], being more suitable for seismology [122]. Finally, Lamb

waves propagate in thin plate–like structures with parallel free boundaries,i.e.

the top and bottom of the plate [123]. Propagation through curved structures

with shallow curvatures is allowed as well. Lamb waves were used for the first

time for detecting damage in 1961 by Worlton [124]. Nowadays, they are seen

as a prime candidate in damage detection and characterization of damages in

composite structures due to their capability to propagate over a long distance

even in materials with high attenuation, such as Carbon Fibre Reinforced Plate

(CFRP), thus enabling the analysis of large structures [125]. Moreover, Lamb

waves can easily detect damages due to their high sensitivity to interference

in the propagation path. The thickness of the laminate, instead, can be in-

terrogated by multiple Lamb modes, enabling the possibility to spot internal

damages. For such reasons, Lamb waves are widely exploited in many fields,

such as automotive, nautical and aerospace for non–destructive testing.

4.1 Lamb waves dispersion curves

Lamb waves are essentially made by the superimposition of longitudinal and

shear waves. The resulting pattern can be divided into two main categories. In

particular, by observing the wave across the thickness of the plate–like struc-

ture, a stationary pattern that features symmetric or anti–symmetric mode

w.r.t. a longitudinal symmetry line at half of the thickness can be identified.

The symmetric Sn and anti–symmetric An modes, where n is the number of
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(a)

(b)

Figure 4.1: Symmetric (a) and anti–symmetric (b) modes [123]

inflection points [126], are dispersive. Moreover, at any possible frequency

value, multiple modes can exist, making the GWs analysis not trivial. From

a mathematical point of view, the analytical dispersion curves for symmetric

modes can be written as:

tan(qh)

tan(ph)
+

4k2qp

(k2 − q2)2
= 0 (4.1)

For the anti–symmetric mode, instead, the dispersion curves can be defined as

follows:

tan(qh)

tan(ph)
+

(k2 − q2)2

4k2qp
= 0 (4.2)

where:

p2 =
ω2

c2
L

− k2, q2 =
ω2

c2
T

− k2, k =
2π

λ
(4.3)
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(a)

(b)

Figure 4.2: Group velocity dispersion curves for an aluminium Alloy1100 plate

(a) and a CFRP T300M914 with layup [0/90]s (b).
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In particular, p and q are placeholder variables, h is the half thickness of the

plate, k, λ and ω are the wavenumber, wavelength and angular frequency,

respectively. The longitudinal and shear velocities, instead, are addressed as

cL and cT and defined by the following relationship:

cL =

√
E(1− ν)

ρ(1 + ν)(1− 2ν)
(4.4)

cT =

√
E

2ρ(1 + ν)
(4.5)

where E, ν and ρ are the Young’s modulus, the Poisson’s coefficient and the

material density, respectively. The multimodal behaviour of Lamb waves is

determined by the multiple roots which solve Eq.4.1 and 4.2. Usually, the an-

alytical dispersion curves equations are solved by exploiting numerical meth-

ods. Thus, the relationship between wavenumber, phase velocity and group

velocity w.r.t. frequency can be obtained and plotted in dispersion curves di-

agrams. For instance, in Figure 4.2a the group velocity dispersion curves of

an aluminium plate are depicted w.r.t. frequency. In particular, the plate is

an aluminium Alloy1100 plate of thickness 1 mm, density ρ = 2.71 kg/cm2, Pois-

son’s ratio and Young modulus of ν = 0 33 and E = 69 GPa, respectively. The

A0 and S0 modes are labelled since usually these modes are predominant, es-

pecially at lower frequencies, i.e. below 1 MHz, but multiple higher modes can

be observed. In the case of plates made of laminates, the propagation is more

complex due to the dependence of the waves modes on the laminate layup,

the interface conditions and the heterogeneity of the constituents. Moreover,

a shear motion perpendicular to the plane of wave travel, which differs from

normal vertical shear waves, propagates between layers. This waves mode is

addressed as Shear Horizontal (SH) mode, and usually is treated together with

Lamb modes although it is a Love wave. In general, SH propagation is not

extensively exploited in SHM, although studies in composite plate–like struc-
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tures and composite pipe–like structures seem promising [127]. In Figure 4.2b,

dispersion curves for a 4 layers CFRP plate T300M914 with layup [0/90]s are

depicted. SH modes are represented as dotted lines, while anti–symmetric and

symmetric modes are continuous blue and red lines, respectively. As it can be

observed, the multimodal propagation is extremely complex, especially above

500 kHz. In this case, the plate is a transversely isotropic laminate, i.e. its

physical properties are symmetric about an axis that is normal to a plane of

isotropy. In general, anisotropy introduces many propagation phenomena in

the composite structure, such as direction–dependent speed and difference be-

tween phase and group velocities. Following [128], a composite laminate made

of N layers can be mathematically described by means of its displacement field

u, by solving the Navier’s displacement equations within each layer:

µn∇2un + (λn + µn)∇(∇ · un) = ρn
∂2un

∂t2
(n = 1, 2, ...N) (4.6)

where λi, µi and ρ are the Lamé constants and the density of the layer i.

In general, the solution of the above–mentioned equation is computed by nu-

merical and simulation tools. In particular, four main methods can be ad-

dressed: Finite Element Method (FEM), Finite Difference Method (FDM),

Semi-Analytical Finite Element (SAFE) and Local Interaction Simulation Ap-

proach (LISA). FEM exploits the discretization of the material into small parts

to create a mesh. In such a way, Partial Differential Equation (PDE) related

to each discretization can be approximated by a numerical model, simplify-

ing the mathematical approach. FEM is widely exploited in both commercial

software [129] and research studies [130,131]. The main idea of FDM, instead,

is to substitute PDEs with finite difference equations. Usually, the method is

exploited in a regular grid and rectangular shapes [132]. On the other hand,

SAFE methods require only the discretization of the cross–section of the wave

which can be modelled by analytical description. For instance, Marzani [133]
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(a) (b) (c)

Figure 4.3: Wavenumber (a), phase velocity (b) and group velocity (c) profiles

at 300 kHz in a 2 mm CFRP.

and Bocchini [134] developed a Graphical User Interface for Graphical User In-

terface for Guided Ultrasonic Waves (GUIGUW) based on SAFE simulations.

The core code which derives from the studies [135–138], has been extended

in a user–friendly tool able to deal with guided waves propagation in different

materials of different shapes. Finally, LISA is essentially a FDM variant. LISA

exploits iterative equations taken from elastodynamic equilibrium to model the

displacements at a given point based on those at their neighbours at past time

steps. Examples of studies that used this technique are [139, 140]. Once the

propagation characteristics are computed along a specific direction, the anal-

ysis can be extended to anisotropic plates by repeatedly extracting the dis-

persion curves along with multiple directions. Thus, the direction–dependant

characteristics of the waves propagation can be addressed. For instance, in

Figure 4.3, the wavenumber, phase and group velocity propagation character-

istic is shown for a T300M914 plate of thickness 2 mm and layup [0/90]s at

300 kHz.
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4.2 Sensing and actuation of Lamb waves

Once the plate is theoretically characterized, an experimental analysis can

be carried on. The experimental validation of the plate structural integrity

has been addressed in many research studies by means of different meth-

ods [141–144]. Usually, an actuator is exploited to generate the Lamb wavefield

in the structure which will be captured by one or multiple passive sensors.

Then the signal is digitized by an acquisition system and stored. Finally,

the plate condition can be addressed by signal processing. The type of ex-

citation signal is fundamental for obtaining an advantageous signal–to–noise

ratio, reducing dispersion and separating different modes in time or frequency

domain. In particular, signals characterized by both short duration and nar-

row frequency band limit dispersion effects [125]. In particular, the main idea

is to exploit narrowband characteristic to focus the signal at a specific fre-

quency where dispersion, i.e. the variation of the velocity in the band, is

minimized. Moreover, narrowband excitation signals are usually windowed in

time domain. In fact, the time window is used to concentrate the energy of the

signal thus reducing broadening. The most common windows are Hann [145],

Gaussian [146] and Gaussian pulse [147] windows. To generate and then re-

ceive Lamb waves, many different strategies and sensors can be exploited,

depending on the type of damage, inspection and material properties. Con-

ventional ultrasonic probes have been widely used both to actuate and acquire

ultrasonic signals due to their precision and the possibility to tune the angle

perspex wedges [148]. In this case, GWs are actuated by the probe obliquely

to the plate by exploiting a wedge. Both pressure and shear waves are gener-

ated. Nevertheless, this technology is heavy and expensive, thus not suitable

in an SHM scenario [149]. Non contact probes, i.e. air–coupled [150], fluid–

coupled [151] and EMATs [152, 153], have been introduced lately. Anyway,
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Figure 4.4: Laser Doppler Vibrometer setup [155]

similar issues w.r.t. conventional probes affect these technologies which are

limited in practical scenarios. As an alternative, Laser Doppler Vibrometer

(LDV) is a non–contact instrument that exploit the Doppler shift principle to

measure the velocity of a moving object. In particular, LDVs compare the fre-

quency of the light reflected by the object with a reference, i.e. the frequency

of the emitted light [154]. Thus, LDV provides a series of images that repre-

sent wave propagation and interaction in time and space. For a more accurate

measurement, each point of the grid can be acquired multiple times and aver-

aged to increase the signal–to–noise ratio. For instance, in Figure 4.4 a typical

LDV setup is shown. The interface between the user and the instrument is

the workstation, which exploits the LDV software for the configuration. Then,

the scanning head which generates the laser is connected to a Data AQuisition

(DAQ) enabling the wavefield acquisition. The synchronization between the

signal actuation and the acquisition is handled by the controller. Finally, the

signal is generated by a waveform generator and an amplifier, connected to a

PZT sensor placed at the centre of the specimen. Due to the LDV measurement
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accuracy, a wide range of applications can be addressed [156]. For instance,

Staszewski et al. [157] demonstrated the LDV potential in fatigue crack detec-

tion in metallic structures. Duflo et al. [158], instead, characterized defects in

the bonding of two carbon epoxy composite plates by means of laser vibrometer

measurements. Although LDV measurements permit accurate and complete

analysis with high–quality images, this approach is time–consuming and ex-

pensive. Recently, different techniques based on Compressive Sensing (CS)

have been presented to speed up the acquisition phase. Di Ianni et al. [159]

demonstrated that the reduction of the measurement locations required for

accurate signal recovery is less than 34% w.r.t. the original measurement grid

by using CS. Similarly, Mesnil et al. [160] presented a CS technique for re-

constructing the Lamb wavefield by using propagation dispersion properties

of the plate. Harley et al [161–163], instead, introduced a sparse wavefield

analysis for reconstructing the wavefield in isotropic and anisotropic plates ex-

ploiting suitable dictionaries. Nevertheless, the most exploited technology so

far for inspecting plate–like structures are piezoelectric sensors due to many

different reasons, such as small volume, low weight, easy integration, good me-

chanical strength, different frequency responses depending on the PZT type

(resonators, flat band, wide band etc.), and low cost. Generally, PZT elements

are manufactured in thin wafers of piezoelectric material. In such a case, they

are addressed as Piezoelectric Wafer Active Sensors (PWAS). Another sens-

ing technology, instead, are interdigital transducers, such as PolyVinyliDene

Fluoride (PVDF) piezoelectric polymer film. PVDFs usually feature good

flexibility such as higher dimensional stability. Moreover, by changing the

space between interdigital electrodes, it is possible to select a specific wave-

length [164]. Nevertheless, their application is quite limited so far [165]. In

general, the main principle of piezoelectric materials relies on the cause–effect
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relationship between the material shape and the electrical voltage which can be

imposed/measured at the PZT electrodes. If the PZT transducer is subjected

to an electrical voltage, the material changes its shape. Thus, if a signal is

applied, the sensor vibrates accordingly, generating Lamb waves. Conversely,

if the sensor is hit by a Lamb wave that mechanically deforms the PZT, a pro-

portional voltage is generated at the electrodes. As a consequence, PWAS can

be exploited for both generating and sensing Lamb waves. The relationship

between electrical and mechanical properties of PWAS can be expressed as:

Sij = sEijklTkl + dkijEk

Dj = djklTkl + εTjkEk

(4.7)

where Sij, Tkl, Ek and Dj are the mechanical strain, mechanical stress, elec-

trical field, and electrical displacement, respectively. Moreover, sEijkl and djkl

are the mechanical compliance of the material at E = 0 and T = 0, and the

piezoelectric coupling effect, respectively. By considering a PWAS of length

l, width b and thickness h, where h << b << l, the above equations can be

simplified assuming one–dimensional case:

S1 = s11T1 + d31E3

D3 = d31T1 + ε33E3

(4.8)

In the case of active PWAS configuration, the actuated strain which follows

the application of a harmonic voltage V (t) = V eiωt at the electrodes can be

defined as:

S1 = d31
V (t)

h
(4.9)

Conversely, in the case of passive PWAS configuration, let’s assume longitu-

dinal expansion u1. As a result of harmonic vibration, harmonic voltage at

the same natural frequency ω can be assumed. Thus, Eq.4.8 can be rewritten
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using Newton’s notation for derivatives as:

Ṡ1 = s11Ṫ1 + d31Ė3

Ḋ3 = d31Ṫ1 + ε33Ė3

(4.10)

where the harmonic regime in one dimension is assumed. As a consequence

of harmonic strain, an AC current is generated if the sensor is plugged in a

suitable sensing circuit:

I = Ḋ3A

I = V Ye

(4.11)

where Ye is the admittance of the circuit connected to the PWAS, and A is

the PWAS area. By exploiting Kirchhoff’s equations, it is possible to obtain

the corresponding generated voltage following the passages shown in [166]:

V =
1

Ye + (1− k2
31)Y0

A
d31

s11

Ṡ1 (4.12)

Both PWAS and conventional ultrasonic transducers [167] employ piezoelec-

tric materials, but they differ for some fundamental aspects. At first, PWAS

can be strongly attached to the structure by means of adhesive bonds, resin,

glue or even directly embedded in the structure itself during the manufacturing

process [168]. On the other hand, conventional ultrasonic sensors are usually

coupled using gel, water or air. Another important difference between PWAS

and ultrasonic sensors is their frequency response. In fact, the former fea-

tures non–resonant broad–band response, while the latter presents a resonant

narrow–band frequency characteristic. Moreover, it’s worthy to underline the

possibility to selectively tune PWAS into certain Lamb modes. The tuning

between PWAS and Lamb waves has been extensively studied by Giurgiutiu

in both metallic plates [149,168,169] and composites [170]. The main concept

is that the PWAS mechanical deformation properties depend on the excita-

tion frequency. This leads to the stimulation of a certain preferential guided
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wave mode which depends on the excited frequency. This aspect is funda-

mental since specific propagation modes are more sensitive to specific defects.

Generally, the selection of A0 and S0 mode is used, depending on the appli-

cation case. Although S0 is the preferred in many studies [171], A0 selection

is highly recommended for the detection of delaminations and transverse ply

cracks [172–174].

4.3 SHM techniques with Piezo transducers

Thanks to the characteristics mentioned in the previous section, piezoelectric

sensors are widely exploited for many SHM needs. An SHM strategy is to

exploit near–field damage detection by using piezoelectric sensors for high–

frequency impedance method. This technique is based on the ElectroMechan-

ical Impedance (EMI) principle [175]. When a piezoelectric sensor is bonded

to a structure, it is possible to detect changes in the mechanical properties of

the structure by measuring the electrical impedance of the transducer [176].

In particular, an accurate model of the interaction between the PWAS and the

structure is fundamental to predict the impedance behaviour and thus iden-

tify damage. For instance, Giurgiutiu at al. [177] modelled a thin isotropic

circular plate with a PWAS surface mounted at its centre. Nevertheless, ac-

curacy limitation rise between the model and the real application case, thus

models are mostly applied only to simple structures such as beams, shells and

plates. For such a reason, recently Finite–Elements based simulations are usu-

ally exploited, such as in [178–180]. After the definition of the model, the

impedance signatures are acquired and analysed. Among the many differ-

ent methods, Root Mean Square Deviation (RMSD), Mean Absolute Percent-

age Deviation (MAPD), covariance and Correlation Coefficient (CC) are the
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most used [181–183]. Other examples of EMI applied to SHM can be found

in [184–187]. Nevertheless, the difficulties to migrate this kind of analysis from

a controlled environment, i.e. laboratory, to a real case scenario, where tem-

perature, PZT durability - especially if not protected by a proper case - and

bonding layer deterioration can affect the impedance signature lead to ques-

tions regarding their potential in real–life applications. On the other hand,

the most common NDT strategy which employs PZT sensors is the active ul-

trasonic inspection by means of Lamb waves. By using active-passive sensor

networks, where the plate–like structure is sensorized with both active and

passive transducers, it is possible to accurately detect, localize and character-

ize damages [188]. In this configuration, a guided wave source generated by

a PZT actuator stimulates stress waves that propagate through the material.

The two main actuation–reception strategies are pulse–echo and pitch–catch

methods [189]. In pulse–echo mode, the same sensor acts as both actuator and

receiver, by switching the role in a well–temporized dance [190]. In pitch–catch

configuration, instead, a single sensor is used as actuator while one or multiple

transducers are exploited as receivers. This configuration can be static, or, as

an alternative, each sensor can act in turn as actuator in a round–robin fash-

ion, where each transducer of the network acts as transmitter for a turn before

giving the role to another sensor [AP5]. In such a way, the entire structure area

is interrogated from a variety of angles, maximizing the probability of damage

detection. The main idea is to exploit the unique scattering waves and mode

conversion generated by damages. Since scatters are usually low signal–to–

noise ratio, array of PWAS specifically designed are exploited. The optimal

sensors configuration to minimize undesired edges reflections which might af-

fect the measurement and at the same time increase the SNR of the signals

which actually provide information is not trivial. For example, Lee et al. [131]
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analysed the sensor positions by local interaction simulations made on an alu-

minium plate with a rectangular damage slot and a fatigue crack. Fendzi et

al. [191], instead, enhanced the damage detectability by optimizing the sensors

placements with a Genetic Algorithm (GA). Another strategy to increase the

signal to noise ratio of ultrasonic signals is to exploit constructive interference

among multiple excited signals delayed by a specific phase [192]. Nevertheless,

this method is difficult to practically implement, thus conventional pitch–catch

measurements are usually preferred. In this case, to overcome signal–to–noise

limitations sophisticated signal processing techniques are required to analyse

GWs signals. Fourier Transform [193], wavelet decomposition [194], statis-

tical based methods [195] and machine learning methods [196] are only few

techniques which might be used for detecting and localizing the damage. Con-

versely, a only-passive sensor network can be adopted by exploiting AE [197].

Usually, the GW sources are impacts or material discontinuities such as cracks

or corrosion events, which generate sudden energy release. Data acquisition

relies on acquiring a continuous data stream by the sensing elements. Then,

signals are stored after the crossing of a pre–determined threshold. Similarly

to active–passive ultrasonic inspection, it is possible to detect [198], local-

ize [199,200] and discriminate damages [201] in different types of structures by

AEs as well.

In the next section, both passive–only and active–passive network ap-

proaches will be investigated. In particular, damage localization methods are

addressed.
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Chapter 5

Ultrasonic Guided Waves

localization techniques

Ultrasonic guide waves have increasingly been adopted in SHM of plate-like

structures because of their effectiveness and versatility. Usually, arrays of

spatially distributed piezoelectric transducers are exploited for damage detec-

tion, localization and quantification. In particular, damage localization can be

carried on by several different techniques depending on the data acquisition

strategy i.e. passive–only or active–passive inspection. The former usually

exploits strategies based on Time-of-Flight (ToF) [202] between the acquired

waves since actuation time is unknown. For instance, hyperbolic positioning

algorithms can perform impact or crack localization by calculating the ToF of

the wavefronts acquired by different sensors. Other approaches exists, such as

neural networks [203], genetic algorithms [204] or wavelet analysis [205]. In

active–passive networks, instead, receivers can be triggered on exact actuation

time. Thus, ToF between the transmitter and the receivers can be estimated

by exploiting specific procedure to extract the time of arrival [206]. The pres-

ence of damages, indeed, generates scattering waves and echoes, which can be

71
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detected and manipulated to characterize and localize the damage. Thus, de-

fects are generally located by triangulation procedures [207], statistical–based

approaches [208] or Elliptical algorithm [209].

In this chapter, different localization algorithms and approaches are inves-

tigated. In particular, a Lamb waves localization algorithm based on wavelet

decomposition for passive–only networks is introduced. The approach is vali-

dated by means of an experimental setup and enhanced by a calibration pro-

cedure enabling high precision waves Direction of Arrival (DoA) estimation.

Similarly, damage localization algorithms for active–passive networks are in-

vestigated as well. By exploiting pitch–catch measurements in a round–robin

fashion acquisition strategy, beamforming imaging techniques are introduced.

Specifically, two DAS–family imaging techniques are presented, i.e. the De-

lay Multiply and Sum (DMAS) and the Double-Stage Delay Multiply and

Sum (DS-DMAS). Moreover, a filtering procedure called Fresnel filtering has

been implemented to further enhance artefacts suppression. The proposed

algorithms testing has been carried out on an online, freely available Guided

Waves dataset Open Guided Waves (http://openguidedwaves.de/) that col-

lects piezoelectric guided waves signals travelling through a quasi -isotropic

composite plate in different damage conditions.

5.1 Impact localization in passive-only networks

Literature offers many strategies for evaluating the impact localization over

a sensorized material by Lamb waves passive inspection. The most common

method is based on the conjunction of conventional passive monitoring sys-

tems [205, 210–213] and hyperbolic positioning algorithms. The main idea

is to exploit the Difference Time of Arrival (DToA) of the wavefronts ac-

http://openguidedwaves.de/
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quired by multiple sensors. Then, knowing the transducers position and the

group velocity of the propagating waves, by geometric considerations it is pos-

sible to determine the hyperbolae on which the impact or crack point must

lie [214,215]. As a drawback, a precise and reliable DToA estimation is not triv-

ial [216, 217]. Usually, threshold–based procedures [211, 218], peak detection

methods [219,220] and cross–correlation based techniques [221,222] are mostly

used. Anyway, guided waves dispersion might affect the precision of the DToA

estimation. To tackle this aspect, Azaria et al. [223] exploited generalized

correlation methods to enhance the receiver frequency band thus reducing the

DToA estimation. However, the proposed approaches are most effective only in

the case of non-perfect dispersion compensation or in reverberating structures.

Thus, Perelli et al. [224] enhanced conventional generalized cross–correlation

methods with a two-step processing framework. In the firsts step a dispersion

compensation based on warped frequency transform [188, 225] is performed.

Then, DToA is estimated by wavelet decomposition of cross–correlating sig-

nals. In fact, the wavelet coefficients in the warped distance-frequency domain

can estimate accurately the guided wave DToA between two sensors. Another

strategy, instead, is based on the exploitation of inverse optimization processes.

Park et al. [213] used the transfer functions in the system-identification tech-

nique able to identify the location and force time history of an impact event

on a structure. The bright side of this approach is the capability to accurately

estimate the impact position without full–scale structural model or excessive

training data. Xu [226], instead, investigated extreme learning machine, i.e.

a learning algorithm for single-hidden layer feedforward neural network, and

least squares support vector machine for structural impact localization. Morse

et al. [227], instead, exploited ANN in conjunction with Bayesian updating and

Kalman filter techniques to improve the reliability of the detection algorithm.
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Furthermore, Coverley and Staszewski [228] used a genetic optimization of

the sensor triangulation procedure. Finally, the extraction of useful informa-

tion for impact localization can be directly addressed by ad–hoc transducers,

specifically designed to estimate the damage position or the waves’ direction

of arrival. Matt and Lanza di Scalea [229] exploited composite piezoelectric

rosettes for acoustic source location in anisotropic or geometrically complex

structures. Romanoni et al. [230] synthesised the beam steering by exploiting

interference phenomena due to the periodic structure and activation time of the

designed sensor array. Thus, directional scanning among 4 different propaga-

tion directions can be enabled by properly selecting the appropriate excitation

frequency. Bavarelli et al. [231, 232], instead, were able to achieve arbitrary

beam steering directionality in the [0°-180°] angular range by means of a shaped

array with a spatial distribution that defines a spiral in the wavenumber space.

Following the same design concepts, De Marchi et al. [233] developed a piezo-

electric sensor made of two patches of different shapes able to retrieve the

Lamb waves direction of arrival. The same author extended the sensor with

another patch for improving the estimation accuracy in [234]. These solutions

are supposed to achieve a complexity reduction of passive monitoring systems,

reducing signal channels to be recorded and simplifying the related signal pro-

cessing tasks. As a drawback, the design and fabrication of these sensors are

not trivial. In this work, a novel impact localization method that exploits a

novel cluster of three piezoelectrics ( PZTs) transducers in 60 degrees configu-

ration with dedicated signal processing is presented. Despite the above–cited

ad–hoc sensors, the proposed cluster is made of round–shape PZT buzzers

which are very simple to produce. In fact, the DoA estimation is extracted

by geometrical considerations on the PZTs spatial arrangement, reducing the

computational cost of the algorithm and without any information about the
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Figure 5.1: PZT Cluster [AP6].

material characteristics. Moreover, a multiresolution DFT-Based Continuous

Wavelet Transform (CWT) decomposition applied to the signals acquired is

performed. The multiple frequency-based filtering of the signals in the wavelet

domain counteracts the dispersive propagation characteristic of the material,

enabling a robust and reliable cross–correlation among signals. Subsequently,

the angle estimation are applied for each computed scale. The approach is val-

idated by means of an experimental setup on a sensorised aluminium plate. As

a further step, a calibration procedure based on a Cubic Spline Interpolation

is implemented to significantly reduce the DoA estimation error.

5.1.1 PZT Cluster description

Disclaimer: the following section is an extension of ©2021 IEEE [AP6].

The designed sensor is a cluster of three circular closely-located PZT elements

[235] featuring 10 mm of diameter each, forming an angle of 60°. The sensor is

shown in Fig.5.1. Moreover, the following considerations can be carried on by

considering Fig.5.2. In the picture, PZT areas are outlined as blue dots and

addressed as S1, S2 and S3. The distances between their centroid depicted as

a black dot are constant and equal to R. Let’s assume that an impact occurs
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Figure 5.2: Active elements arrangement: the sensors active areas form an

equilateral triangle. The GW travels from the right to the left of the figure.

in a generic point P on the plate which has been represented as a star, and

the resulting wavefront W propagates from P to the cluster. If the Fraunhofer

approximation for far fields is valid, the incident wavefront may be assumed

as planar. Then, it is possible to define the following distances:

• R0 is the distance between the impact point P and the wavefront at the

time instant in which reaches the first PZT transducer S1;

• Rx is the distance between P and the cluster centroid

• D1/D2 are the distances between the wavefront at the time instant in

which reaches the first PZT transducer S1, and S3/S2, respectively.

• R1 = D1 +R0

• R2 = D2 +R0
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Moreover, two angles are highlighted, θx and θ, respectively. If an angle θ1 is

defined as θ1 = θ + θx, then the following is valid [236]:

R2
1 = R2 +R2

x − 2RRxcos(θ1 − θx)

(D1 +R0)2 = R2 +R2
x − 2RRxcos(θ1 − θx)

D12 + 2D1R0 +R02 = R2 +R2
x − 2RRxcos(θ1 − θx)

(5.1)

Similarly, R0 can be expressed using the law of cosines as:

R2
0 = R2 +R2

x − 2RRxcos(θx) (5.2)

Thus, by using Eq.5.2 in Eq.5.1:

D12 + 2D1R0 +R2 +R2
x − 2RRxcos(θx) = R2 +R2

x − 2RRxcos(θ1 − θx)

D12 + 2D1R0 = −2RRx[cos(θ1 − θx)− cos(θx)]

(5.3)

Similarly, the same considerations can be carried out starting from R2
2 expan-

sion. Thus, the following equation can be written:

D22 + 2D2R0 = −2RRx[cos(θ2 − θx)− cos(θx)] (5.4)

Since the Fraunhofer approximation has been assumed, then R0 > 0, D1/R0 < 1

and D2/R0 < 1. Consequently, if both terms in Eqs.5.3 and 5.4 are divided by

R2
0, the following approximation can be computed:

2D1/R0 ≈ −2RRx/R2
0[cos(θ1 − θx)cos(θx)]

2D2/R0 ≈ −2RRx/R2
0[cos(θ2 − θx)cos(θx)]

(5.5)

Finally, by dividing each other the two main equations in 5.5, the D1/D2 rela-

tionship is highlighted:

D1

D2
≈ cos(θ1 − θx)cos(θx)

cos(θ2 − θx)cos(θx)

≈ cos(θ1)cos(θx) + sin(θx)sin(θ1)− cos(θx)

cos(θ2)cos(θx) + sin(θx)sin(θ2)− cos(θx)

(5.6)
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Because of the spatial distribution of the PZT transducers, we can assume

that θ1 = −θ2 = 120°. The minus sign on θ2 is due to orientation convention.

Thus:

D1

D2
≈ −

1/2cos(θx) +
√

(3)/2sin(θx)− cos(θx)

−1/2cos(θx) +
√

(3)/2sin(θx)− cos(θx)

≈ −
3/2cos(θx)−

√
(3)/2sin(θx)

3/2cos(θx) +
√

(3)/2sin(θx)

≈ 1− 1/
√

3tan(θx)

1 + 1/
√

3tan(θx)

(5.7)

Finally, θx can be extracted:

tan(θx) ≈

(
√

3
1− D1/D2

1 + D1/D2

)

θx ≈ atan

(
√

3
1− D1/D2

1 + D1/D2

) (5.8)

where D1/D2 ∈ [0, 1] and θx ∈ [0, 60°]. Because of the strict relationship be-

tween the distance travelled by the stress wave, its velocity and the time taken

to cover such distance, 5.9 can be rearranged in terms of the DToAs ∆t1,2

and ∆t1,3. Let’s consider a rotation of 30° for a more convenient coordinate

reference system. Thus, θ = θx − 30°, with θ ∈ [−30°, 30°]. Starting from the

first equation of 5.9, the following can be derive:

tan(θ + 30°) ≈
√

3
1− D1/D2

1 + D1/D2

tan(θ) + tan(30°)
1− tan(θ) tan(30°)

≈
√

3
1− D1/D2

1 + D1/D2

tan(θ) + 1√
3

1− 1√
3
tan(θ)

≈
√

3
1− D1/D2

1 + D1/D2

√
3

1 +
√

3tan(θ)

3−
√

3tan(θ)
≈
√

3
1− D1/D2

1 + D1/D2

1 +
√

3tan(θ)

3−
√

3tan(θ)
≈ 1− D1/D2

1 + D1/D2

(5.9)
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For lightening the expression, D1/D2 can be addressed as x and
√

3tan(θ) as k.

(1− x)(3− k) = (1 + k)(1 + x)

3− 3x− k + xk = 1 + k + x+ kx

k = 1− 2x

(5.10)

Finally, by expanding x and k, the final expression can be written:

√
3tan(θ) = 1− 2

D1

D2

θ = atan

(
1− 2D1

D2√
3

)

θ = atan

1− 2∆t1,3
∆t1,2√
3


(5.11)

where:

∆t1,2 =
D2

vg(θ, f)

∆t1,3 =
D1

vg(θ, f)

(5.12)

It is worthy to underline that the group velocity vg(θ, f), where f is the fre-

quency dependence of the velocity which mathematically explains dispersion,

is suppressed in the final equation 5.11 under the far field approximation due

to the ratio D1/D2. In fact, due to the close position of the sensors, vg(θ, f) can

be supposed with a good approximation the same for both the signals that

hit the sensors. Thus, the method does not require any a–priori information

about the group velocity. Nevertheless, a precise estimation of the difference

in the time of arrivals between the PZT sensors is still required.
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Figure 5.3: DoA estimation algorithm

5.1.2 DoA estimation algorithm

Disclaimer: the following section is an extension of ©2021 IEEE [AP6].

The precision of the impact DoA θ estimation is strictly related to the DToA

evaluation. Nevertheless, conventional cross-correlation techniques in the time

domain usually lack in accuracy in a real case scenario. In fact, stress waves

are affected during their propagation by dispersion, where signals broaden

due to the different velocities of different wave harmonics. Thus, the DToA

evaluation by just cross–correlating the PZT raw signals results to be not

sufficiently accurate. A multiresolution isofrequential analysis employing DFT-

Based CWT is adopted to limit the dispersion effect. In practical terms, the

algorithm performs narrow band filtering by exploiting CWT decomposition

as a filtering technique. Thus, cross–correlation is applied recursively for each

narrowband frequency band defined by the multiresolution analysis to estimate

the DToA and then, DoA, multiple times. Finally, once the procedure is

concluded, an averaging procedure on the estimated angles for each computed

scale is performed. The continuous wavelet transform is usually exploited to

investigate non–stationary signals in time–frequency domain. By exploiting

windows of variable width, it is possible to tune the resolution analysis for a

specific time–frequency characteristic. For instance, long time windows permit
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the extraction of more precise low–frequency information, conversely, shorter

windows permit the extraction of high–frequency information. To do that,

a function called mother–wavelet characterized by two main parameters, the

translating parameter b and the scaling factor a must be synthesised. Thus,

the mother wavelet can be defined as:

ψab(t) = |a|−
1
2ψ

(
t− b
a

)
(5.13)

where b defines the time shift of the window, meanwhile a is strictly related to

the wavelet dilatation. |a|− 1
2 , instead, is an energy normalized factor due to

the fact that the energy of the wavelet must be the same for different a values

of the scale. To be classified as a wavelet, ψa,b(t) must have finite energy. Let

si(t) be the signal associated to the i -th active area Si of the PZT cluster, then

the CWT, addressed as Wi, can be written:

Wi(ψ; a, b) =

∫ +∞

−∞
si(t)ψ

∗
ab(t) dt =< si(t), ψab(t) > (5.14)

As an inverse transformation, it is possible to obtain again the original signal

si by the following relationship:

si(t) =
1

Cψ

∫ ∫ +∞

−∞

1

a2
Wi(ψ; a, b)ψab(t) da db (5.15)

where Cψ is a finite constant defined as the integral of the square value of

the mother wavelet in absolute terms in the Fourier domain, divided by the

angular frequency:

Cψ =

∫ +∞

0

|Ψ(ω)|2

ω
dω <∞ (5.16)

The convergence of Cψ is ensured if Ψ(0) = 0. Thus, the wavelet mother must

be a zero–mean signal. To reduce the computational complexity of the Wavelet

Transform, it is possible to rearrange 5.14 following the convolution theorem.

In fact, the wavelet transform given 5.14 can be viewed as the convolution of
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the signal with a wavelet function. Thus:

Wi(Ψ; a, b) =
1

2π

∫ +∞

−∞
Si(ω)Ψ∗a,b(ω) dω (5.17)

where Ψ∗a,b(ω) =
√
aψ∗(aω)eiωb. Moreover, the product between the signal in

the frequency domain and Ψ∗a,b(ω) can be read as a band pass filtering of the

signal in the frequency domain. By Cross-correlating the CWT coefficients for

each scale a, the DToA between two PZT sensors is extracted, as shown in the

following equations.

Ci,j(a, t) =

∫ +∞

−∞
W ∗
i (Ψ, a, b)Wj(Ψ, a, t+ b) db (5.18)

∆ti,j(a) = max
t

(Ci,j(a, t)) (5.19)

Then, the DoA is estimated by applying Eq.5.11 for each a value. Finally,

the dependence on the scale factor is overcome by means of an averaging

procedure that provides to the user the final estimation of the DoA in angular

terms [237,238]. The algorithm is outlined in the diagram of Fig.5.3.

5.1.3 Experimental investigation and results

Disclaimer: the following section was previously published by ©2021 IEEE [AP6] and [AP7]

The methodology has been tested in a laboratory experimental setup. An

aluminium square plate 1000 mm wide and 3 mm thick was sensorized with

the PZT cluster, as shown in Fig. 5.4a. Signals from the cluster were acquired

by a Tektronix 3014 digital oscilloscope at a sampling frequency of 10 MHz. For

a complete characterization of the DoA estimation algorithm, two approaches

were tested. In the first one, the impact was mimicked by a buzzer connected

to a function generator and an amplifier. In particular, an Agilent 33220A

function generator and a Tegam 2350 amplifier were used to obtain repeatable,

precise and accurate control on the actuated signals. A burst of one sine wave
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(a) Experimental Setup (b) PZT Cluster output Signals

Figure 5.4: The experimental setup exploited to test the DoA estimation al-

gorithm (left) and the acquired waveforms (right) [AP6].

at 1 Vpp at 4 kHz was emitted by the function generator every 50 ms to simulate

impacts on the plate. Then, the generated sinusoidal pulses were amplified by

the Tegam 2350 with a gain factor of 50. The PZT actuator was placed along

a circumference of radius 20 cm centred at the cluster position. The circle

was divided into 24 angular intervals, each one 15° wide. GWs were made of

128 sinusoidal bursts at each angle of the quantized circumference. Thus, an

average among all the 128 acquisitions was performed automatically by the

oscilloscope to enhance the signal to noise ratio. An acquisition example after

the average procedure is depicted in Fig.5.4b. Finally, the signals so obtained

were processed by the localisation algorithm and the DoA was estimated for

each actuation angle. The result of the localisation is shown in Fig.5.5, where

the estimated DoA are depicted as small red circles. By comparing the actual

DoA with the estimated angle, the high level of accuracy achieved by the

algorithm is evident. In fact, the maximum error observed was 1.74°, with

an average error of 1.15°. It’s worthy to notice that, the DFT-based CWT

implementation approach permits to reduce the computational cost of the

entire algorithm, which has been executed in just 0.2 s for the estimation of all
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Figure 5.5: DoA estimation [AP6].

(a) (b)

Figure 5.6: (a) Calibration phase results. (b) Calibration curve [AP7].

the 24 angles of arrival. Afterwards, a second test was conducted by exploiting

actual impacts on the aluminium plate generated by a metallic screw. Thus,

GWs were generated by hitting the plate with the screw along a circumference

of radius R ≈ 20 cm � D1,2 centred at the PZT cluster position in order to

satisfy the far–field approximation. The circle was divided into 48 angular

intervals, each 7.5° wide. At first, a calibration procedure was implemented

to compensate intrinsic inaccuracies which may occur if a real screw impact is

used as a GWs source. Two cycles of impacts were generated on each angle of



85 Ultrasonic Guided Waves localization techniques

Figure 5.7: DoA estimation error before (blue line) and after (red line) the

calibration procedure [AP7].

the quantized circumference, for a total of 96 training impacts. Signals from

each impact were acquired and processed. Thus, the DoA is estimated for each

point. In Fig. 5.6a, the estimated DoA for each impact position is depicted

w.r.t. the actual DoA. At this stage, the maximum absolute error was around

5° with an average error of about 2°. Afterwards, a calibration procedure

was conducted. The calibration curve was computed by associating the actual

DoAs with the estimated ones by means of a Cubic Spline Interpolation (CSI)

[239]. The calibration curve obtained is depicted in Fig.5.6b. During the test

phase, another dataset of 21 randomly distributed impacts was acquired. The

modalities, the instrumentation and the setup exploited are identical to the

previous experiment. Thus, DoA and its relative error were computed for each

impact before applying the calibration. The average error achieved was around

1.4°, with a maximum error of 4.8°. As expected, the performance of the DoA

estimation algorithm is consistent with the estimation carried out during the

calibration phase results. Finally, DoAs are tuned by means of the computed

calibration curve. As a result, the average error from 1.4° drops to 0.0517°,
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while the maximum error decreases from 4.8° to 0.8°. Fig.5.7 shows in detail the

error trend. As expected, the estimation of the GW DoA, in conjunction with

an appropriate calibration procedure, is able to perform reliable and accurate

evaluations of the angle of arrival, with a resolution of less than one degree. As

a final consideration, it is also worthy to mention that the computational time

of the entire algorithm is just 0.13 seconds, due to the DFT-based Wavelet

approach.

5.2 Damage localization in active–passive net-

works

Disclaimer: the following section is an extension of ©2022 IEEE [AP5].

Many imaging procedures have been developed for characterizing and localiz-

ing the damage in active–passive NDT and SHM fields [240]. In particular,

correlation–based methods, probability imaging methods [241, 242], model–

based methods, and Delay and Sum (DAS) family methods can be mentioned.

In correlation–based methods, the image is synthesised by correlating the ac-

quired signals with theoretical predictions computed on each point of a defined

spatial grid. Since this approach is strongly dependent on the accuracy of the

propagation model, hybrid empirical/analytical models have been recently pro-

posed. Quaegebeur et al. [243] introduced an axisymmetric analysis of guided

wave generation by a circular piezoceramic, where the complex shear and nor-

mal interfacial stress profiles between the transducer and the host structure

were considered. In this study, excitation terms are estimated empirically by

exploiting a best-fit model and a function derived from measured admittance.

Ostiguy et al. [244], instead, compared delay–and–sum, dispersion compensa-

tion and correlation–based techniques in unidirectional transversely isotropic
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laminate to quantitatively evaluate the robustness of the models which rule

these techniques.

Probability imaging techniques, instead, such as Reconstruction Algorithm

for the Probabilistic Inspection of Damage (RAPID), merge the Signal Differ-

ence Coefficient (SDC) which can be defined as the probability of the damage

existence between the transmitter-receiver pair usually computed by baseline

subtraction. Gao et al. [245] sensorized a wing of an E2 aircraft and com-

puted different tomography algorithms based on SDS for damage localiza-

tion, such as the back–projection method, Algebraic Reconstruction (ART)

and Multi-resolution Algebraic Reconstruction Technology (MART). Hay et

al., [195] exploited RAPID algorithm for comparing Lamb wave tomography

approaches. This work demonstrated that tomographic images generated by

fan-beam back–projection are less sensitive to material loss w.r.t. SDC meth-

ods. Afterwards, different solutions were presented as RAPID modifications

for improving the algorithm performance. For instance, Azuara et al. [246] pre-

sented a geometrical modification of conventional RAPID method addressed

as RAPIG–G. The proposed approach reduces the influence of the intersection

points between sensor paths, thus improving the damage localization accuracy.

Similarly, Dziendzikowski et al. [247] generalized RAPID approach for different

PZT networks geometries. As a result, the estimated damage location is less

biased by inhomogeneous distributions of sensing paths.

Model–based methods, instead, exploit the Green’s function solution of the

GWs propagation model in conjunction with the measured scattered wave-

field. Neubeck et al. [248] recently proposed a unified framework of model–

based imaging algorithms. In particular, results for different operators, i.e.

Kirchhoff-Migration operator and Reverse Time Migration (RTM) operator,

and solvers, i.e. joint or conventional solution, the Least-Squares Method
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(LSM), the Orthogonal Matching Pursuit (OMP) and the SPGL1, are com-

pared for a typical SHM experimental setup made of a sensorized aluminium

plate and drilled holes as artificial defects.

Finally, DAS beamforming is based on back–propagating the signals resid-

uals by exploiting the transmitter-receiver Time-of-Flight (ToF) estimation,

knowing the group velocity. Residuals are computed by means of a baseline

subtraction, where the baseline is acquired when the material is in pristine

conditions. Usually, each transducer of the sensor array acts both as transmit-

ter and receiver in a round robin fashion. Thus, one element of the array is

excited for every transmission event, while all the remaining elements of the

array are exploited to acquire the signal and a low–resolution image is com-

puted over a defined spatial grid by a summation operation. This procedure

is repeated as many times as the number of the transducers in the array, by

changing the transmitter at each transmission event. Due to its low computa-

tional cost which permits real–time evaluation, its simple implementation and

overall good performance, DAS is one of the most commonly adopted meth-

ods [249, 250]. As a drawback, DAS shows a limited imaging resolution and

contrast which degrades with the decrease of the number of sensors. Moreover,

DAS is sensitive to dispersive and multimodal behaviour of Lamb waves, as well

as to noise and temperature variations in the baseline subtraction. To over-

come these aspects, literature offers many different DAS modifications, which

can be grouped into two main approaches. The former approach rely on pre–

processing techniques such as dispersion [251, 252] and temperature [253, 254]

compensation, sensors placement optimization [255] and sparse representa-

tion [256]. In the latter, instead, DAS resolution and SNR limitations are

tackled by the development of modifications of the DAS approach. For in-

stance, Lu et al. [257], proposed the multi–delay–and–sum imaging algorithm
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which suppresses artefacts and reduces damage localization errors. The main

idea is to exploit not only the ellipsis with the actuator and the receiver as

foci, but also the hyperbola with two foci at two different receivers positions

to compute a more robust damage localization. Another common strategy is

to use specific fixed or adaptive beamforming weighting coefficients to improve

image reconstruction. For instance, in the Minimum Variance (MV) [258,259]

method, DAS weighting coefficients are adaptively computed at each point

of the spatial grid. Zhang et al. [260], instead, computed a sparse matrix

of weights via a multiple sparse Bayesian learning. Delay Multiply and Sum

(DMAS), instead, recently introduced in the SHM field by [AP8] and [248],

aims to improve the conventional DAS imaging by combinatorially coupling

and multiplying the backscattered signals before the final summation. In such

a way, better contrast resolution, object definition and dynamic range can be

achieved. DMAS was originally introduced by Lim et al. [261] in confocal mi-

crowave imaging, and then successfully applied to ultrasound B-mode medical

imaging [262] and photoacoustic microscopy [263]. Nevertheless, it has been

demonstrated that conventional DAS and DMAS algorithms can be outper-

formed (in terms of noise suppression, image resolution and dynamic range) by

the so–called Double-Stage Delay Multiply and Sum (DS-DMAS) procedure in

both medical ultrasounds [264] and photoacoustic imaging [265]. Afterwards,

DS-DMAS has also been applied to radar-based microwave breast imaging for

breast cancer localization [AP9]. Conversely, DS-DMAS has never been ap-

plied to NDT and SHM fields. In this work, DS-DMAS is introduced in an

SHM application scenario. An exhaustive theoretical overview of DAS, DMAS

and DS-DMAS is presented in the next section. Then, both medical imaging

(i.e. breast cancer localization) and SHM imaging applications are presented

and discussed highlighting the pro and cons of the techniques.
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Figure 5.8: Schematic representation of the relationship between damage lo-

cation and a single transmitter–receiver sensors pair.

5.2.1 Elliptical algorithms

The relationship between a damage location and a single transmitter-receiver

pair of PZT transducers in an isotropic plate-like structure is depicted in

Fig.5.8 The transmitter and receiver transducers are the red and blue circles,

respectively, while the damage is represented as a star. The direct path of the

propagating wave is the continuous arrow of length TR and azimuth angle θ

between the transmitter and the receiver, while the scattering wave path is

depicted as a dotted arrow which goes from the transmitter to the damage

location and then, from the damage location to the receiver. As described in

Moll et al. [266], it is possible to determine the length of the travel path of

the scattering wave TDR as a function of the scattering wave Time of Flight

ToFs in the case of an isotropic plate given the waves group velocity cg, :

TDR = TD +DR = ToFs ∗ cg (5.20)

where TD and DR are the transmitter/damage location and damage loca-

tion/receiver propagation distances, respectively. Nevertheless, the knowledge
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of TDR and ToFs is not enough for localizing the damage, since an infinite

locus of points which lie in an ellipsis passing through the damage location

with the transmitter and receiver sensors positions as foci satisfies 5.20. In

particular, the ellipse equation can be written as follows:

x = xM + a ∗ cos(α)cos(θ)− b ∗ sin(α)sin(θ)

y = yM + a ∗ sin(α)cos(θ) + b ∗ cos(α)sin(θ)
(5.21)

where a and b are the semi-axes and (xM , yM) are the coordinate of the middle

point of the wave direct path. The angle α and the semi–axes a and b, instead,

can be defined as: 
a = TDR

2

b =

√
a2 −

(
TR
2

)2
(5.22)

α =


arctan

(
yR−yT
xR−xT

)
if xR < xT

arctan
(
yR−yT
xR−xT

)
+ π otherwise

(5.23)

where TDR ≥ TR, and [(xT , yT ), (xR, yR)] are the transmitter and receiver co-

ordinates, respectively. Thus, multiple transmitter-receiver pairs are required

to determine uniquely the damage position. Several signal processing tech-

niques can be adopted for evaluating the acquired signals and extract useful

information, such as DAS, DMAS and DS-DMAS approaches.

5.2.2 DAS

In the Delay–And–Sum imaging algorithm, a low–quality image is synthesised

for each transmission event. Usually, pitch–catch strategies can be exploited

for generating and acquiring signals. If the actuator–receiver distance and the

wave velocity are known, it is possible to focus the ultrasonic beam at each
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(a) (b)

Figure 5.9: DAS output images in a plate–like structure. (a) Single

transmitter–receiver pair. Diamond and circular markers are the transmit-

ter and receiver sensors, respectively. Meanwhile the red star represents the

damage. (b) Final DAS output after the summation. White dots are the PZT

sensors.

point of the spatial grid by applying appropriate phase sets for the compensa-

tion of the differences in time of arrivals (backpropagation). A baseline dataset

acquired in pristine conditions can be exploited as a reference for enhancing

scatters contribution. In particular, following Eq.5.21, ellipses will be drawn

in the resulting image if one or more discontinuities exists. For instance, in

Fig.5.9a the ellipse generated by a scatter point in a plate–like structure is

depicted in yellow. The red star represents the damage position, while the

diamond and circular markers are the transmitter and receiver sensors, respec-

tively. Finally, the images obtained for each transmission event are summed

together in order to reveal the scatter location, as depicted in Fig.5.9b. From a

mathematical point of view, the general DAS main equation can be expressed
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as:

yDAS(x, y) =

NT∑
i=1

NR∑
j=1

wijsij(τ
xy
ij ) (5.24)

where NT and NR are the number of transmitters and receivers, respectively.

sij(τ
xy
ij ) is the delayed time signal related to the i−th transmitter at coordinates

(xi, yi) and the j − th receiver in (xj, yj). It’s worthy to notice that NR =

NT − 1 = N − 1 if pitch catch measurements in round–robin fashion are

exploited, where N is the total number of sensors. The propagation time

delay τxyij of a GW, instead, that travels from the transmitter to the receiver

passing through a generic point located at (x, y) can be defined as:

τxyij =

√
(xi − x)2 + (yi − y)2 +

√
(xj − x)2 + (yj − y)2

cg
(5.25)

where cg is the GW group velocity that in anisotropic media depends on the

propagation direction. Finally, wij is a weighting function. In conventional

DAS wij = 1∀(i, j). Nevertheless, many weighting strategies are adopted in lit-

erature for improving image reconstruction. For instance, Michaels et al. [267],

exploited wij to compensate the reduction in amplitude with the square root

of the distance, such as reductions in amplitudes due to transducers bonding

variations. Zhang et al. [268], instead, defined the weighting factors as sparse

coefficients in time-domain specific to the i-th transmitter and j-th receiver

for reducing the influence of interference waves. Regarding the propagation

time delay, Eq.5.25 shows the dependency between the propagation time and

the group velocity. In general, the a–priori knowledge of the group veloc-

ity is not trivial in some application cases, since dispersion and multimodal

propagation of Lamb waves affect signals integrity. If the material proper-

ties are partially or not known and it is not possible to simulate the GWs

behaviour by means of numerical tools, such as SAFE models [134], experi-

mental extraction of the group velocity can be performed. Threshold cross-



94 Ultrasonic Guided Waves localization techniques

ing [267] and threshold–based double–peak techniques [220], cross–correlation

methods [269], and time–frequency methods [270] can be exploited to deter-

mine the wave time of arrival and thus, the group velocity. Alternatively,

dedicated measurement strategies can be performed to address this task. In

particular, Semi-Analytical Finite Element (SAFE) measurements have been

widely exploited for extracting the dispersion curves of materials. Among all

the different signal processing techniques, Matrix Pencil Methods [271, 272],

DRLSE method [AP10] and genetic algorithms [155] can be addressed for this

purpose. In isotropic and quasi–isotropic materials, the experimentally esti-

mated group velocity of the fundamental wave mode can be directly included

in the propagation model. In non–isotropic plates, instead, velocity compen-

sation is required to address the propagation complexity of Lamb waves. As a

result, the elliptical model fails, since non–elliptical or quasi–elliptical curves

characterize the relationship between each transmission–receiver pair and the

damage position [266] [273]. Another aspect to take into account is the sensi-

tivity of the algorithm to different environmental and operational conditions.

In particular, DAS usually relies on baseline subtraction to enhance the scat-

ter contribution w.r.t. measurements on the plate in pristine conditions. The

method is straightforward and very simple to implement. As a drawback,

baselines measurements are affected by fluctuations due to temperature and

humidity variation over time. In particular, thermal effects such as thermal ex-

pansion and temperature-induced changes to the transducers and their bonds

might significantly reduce the quality and reliability of the beamforming ap-

proach. To tackle this issue, multiple labelled baselines signals over a range of

temperatures can be acquired [274]. Thus, the Optimal Baseline Subtraction

(OBS) can be applied in the baseline subtraction knowing the temperature

during the inspection measurement. Nevertheless, the method requires large
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datasets. As an alternative, compensation strategies can be applied. Baseline

Signal Stretch (BSS) modifies a single baseline time signal to match the current

time signal. Croxford et at. [275] compared the performance of BSS and OBS.

Then, a methodology that exploits both OBS and BSS is introduced, demon-

strating that the combination of the two techniques is a robust and practical

solution for temperature compensation. Salmanpour et al. [276], studied the

performance of DAS applied to a plate subjected to vibration and tempera-

ture variations. The same author proposed a baseline signal stretch method

with an improved minimum residual allowing temperature correction over a

larger temperature range [277]. Nokhbatolfoghahai et al. [278], instead, eval-

uated the robustness of DAS under multiple environmental and operational

conditions, such as temperature–variation, boundary–reflection, SNR, error in

sensor placement, error in the calculation of wave-speed and number of PZTs.

In particular, a methodology based on the Taguchi method was exploited. As a

final consideration, dispersion has to be considered. In fact, dispersion directly

affects the accuracy of the time of arrival of the GWs by generating broaden-

ing of the uncertainty zone of the DAS ellipse which leads to fuzzy final image

reconstruction. Usually, narrowband excitation frequencies [224] are exploited

to reduce the dispersion effect. On the other side, compensation techniques

can be adopted. For instance, Fu et al. [279] computed DAS in conjunction

with the dispersion compensation method based on Warping Frequency Trans-

form developed by De Marchi et al. [188], demonstrating the enhancement of

the final result w.r.t. conventional DAS and time-reversal method. Moll et

al. [252] estimated signals time of arrival exploiting dispersion compensation

based on Warping Frequency transform as well. Then, compensated signals

were used for comparing four different beamforming techniques, i.e. delay and

sum, weighted coherence-factor, channel rank and Capon beamformer. Finally,
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(a) (b) (c)

Figure 5.10: DMAS output images in a plate–like structure for a specific Tx–

Rx pair. (a) First Tx–Rx pair imaging output; (b) Second Tx–Rx pair imaging

output; (c) Imaging output after multiplication.

a nonlinear data-fusion technique that takes as input the results of the previous

methods was presented. Hall et al. [280], instead, demonstrated the significant

imaging performance that can be achieved by incorporating phase information

into the imaging algorithm and the necessity for adaptive parameter compen-

sation. In fact, conventional imaging algorithms usually are restricted to using

the envelope of narrowband signals which feature minimally dispersive charac-

teristics. By exploiting adaptive dispersion estimation obtained from in–situ

measurements, it is possible to use the phase information for achieving better

imaging quality.

5.2.3 DMAS

DMAS can be considered as an improved version of the classic DAS algorithm.

In particular, a nonlinear multiply operation among combinatorially coupled

signals is performed before summation. As a result, uncorrelated samples are

lowered, reducing noise and artefact. On the other hand, correlated samples are

intensified enhancing the scatter contribution. In such a way, DMAS achieves
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better imaging resolution, contrast and image dynamic range. For sake of clar-

ity, in Fig.5.10, DMAS main idea is shown. In Fig.5.10a and Fig.5.10b, the

imaging outputs for the transmitter i and two generic receivers (j, k), respec-

tively, are depicted. The single pairs (Txi, Rxj) and (Txi, Rxk) draw an ellipse

passing through the damage position, as expected. The imaging result after

the multiplication of these contributions is shown in Fig.5.10. By exploiting

the multiplication operation, the damaged area is significantly shrunk, while

noise is reduced. If a single transmitter i is exploited, DMAS–beamformed

output for any point (x, y) can be written as:

yiDMAS(x, y) =

NR−1∑
j=1

NR∑
k=j+1

swj (τxyj )swk (τxyk ) (5.26)

where swj,k(t
xy
j,k) = wj,ksj,k(t

xy
j,k) are the weighted back propagated signals re-

ferred to the j -th and k -th receivers, respectively, passing through (x, y). More-

over, it’s worthy to mention that in Eq.5.26 auto-product terms are not con-

sidered and the coefficients are halved due to reciprocity [281]. By extending

the method for all the transmitter–receiver pairs, Eq.5.26 becomes as follows:

yDMAS(x, y) =

NT∑
i=1

NR−1∑
j=1

NR∑
k=j+1

swij(τ
xy
ij )swik(τ

xy
ik ) (5.27)

In the case of pitch–catch measurements in round–robin configuration, NR =

NT − 1 = N − 1.

Finally, the same considerations as in the DAS case can be raised. The

weighting function can be defined as w = 1 in conventional DMAS, but many

different exceptions can be addressed as already discussed. Similarly, the esti-

mation of the group velocity, the sensitivity to environmental and operational

conditions such as multimodal and dispersive behaviour of Lamb waves can

affect the final imaging output. In this work, DMAS is introduced for NDT

and SHM application fields. The capabilities of the method are quantitatively
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characterized and compared with conventional DAS by means of metrics in

the following.

SHM experimental setup

Disclaimer: the following section was previously published in [AP8]

The DMAS validation in an SHM scenario has been carried on data from the

online platform Open Guided Waves described in Moll et al. [145]. The speci-

men is a Carbon Fibre Reinforced Plate (CFRP) plate based on prepreg ma-

terial Hexply M21/34%/UD134/T700/300 with dimensions 500 mm x 500 mm

x 2 mm and layup [45/0/ − 45/90/ − 45/0/45/90]S. Twelve DuraAct lead-

zirconate-titanate (PZT) circular disk transducers of 0.2 mm in thickness and

5 mm in diameter were attached on the plate as depicted in Fig.5.12 (white

circles). During the signals acquisitions, the plate was placed in a climate

chamber at a controlled constant temperature of 23° and 50% RH. Data has

been acquired in round–robin pitch–catch configuration, exploiting a ±100 V,

5 cycles, Hann-filtered sine wave as excitation signal. A reversible defect model

made of an aluminium disk of 10 mm of diameter is mounted on the surface of

the CFRP plate by a tacky tape to mimic a damaged condition. The entire

dataset is composed of 60 baseline and 28 different damage position mea-

surements for each narrowband excitation frequency. In particular, excitation

frequencies from 30 to 240 kHz with a frequency step of 20 kHz were exploited.

In particular, the 60 kHz excitation dataset has been used for characterizing

the DMAS performance at this stage.
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Figure 5.11: Algorithm chain [AP8]

Processing

Disclaimer: the following section was previously published in [AP8]

Since the described algorithms are sensitive to many different factors (e.g.

environmental variation, dispersion, multimodal propagation etc.), some pre-

liminary observations must be carried out. Single A0 mode propagation was

supposed since the wavelength tuning behaviour of the PZT transducers peaks

at 80 kHz for the A0 mode as demonstrated in [145]. Then, due to the quasi–

isotropic behaviour of the material, the A0 group velocity has been considered

in the first approximation as constant and estimated by SAFE simulations.

Moreover, dispersion and noise have been limited by exploiting a bandpass

filter centred at 60 kHz, from 40 to 80 kHz. Finally, specific temperature com-

pensation was not required since the CFRP was placed in a controlled envi-

ronment, i.e. a climate chamber.

The algorithm steps adopted for processing raw data is schematically de-

picted in Fig. 5.11. In the first block, after filtering, signals are subtracted

with a reference signal, a.k.a. baseline, acquired in pristine conditions to high-

light the mismatch when damage occurs. Then, the Hilbert transform has

been performed to obtain envelope–detected differenced signals. In fact, dur-

ing the sum operation in the beamforming algorithm, signals might be affected

by phase cancellation even if the signal envelopes are in alignment due to dis-
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persion [282]. After the pre–processing phase, the beamforming techniques are

applied, providing as output the normalized images which represent the health

condition of the plate in spatial coordinates.

As a final step, DAS and DMAS are directly compared by the Contrast to

Noise Ratio (CNR) which was used as a metric to assess the damage image

quality. The CNR can be defined as:

CNR =
µD − µB
σB

(5.28)

where µD is the spatial average computed in the damaged area, µB and σB are

the spatial average and standard deviation of the undamaged area, respectively.

In order to compute the CNR metric, a circular region centered at the actual

reversible defect model with radius 5 cm has been considered as damaged area.

The complementary region has been considered as undamaged.

Results

Disclaimer: the following section was previously published in [AP8]

Results from the beamforming outputs are presented in Fig.5.12 for different

damage positions. These results lead to some considerations. At first, DMAS

improves the damage reconstruction in comparison with the DAS output by

shrinking the colour gradient around the actual damage position, depicted as a

black circle, and thus, both highlighting the damaged zone and reducing noise

elsewhere. In fact, an increase of 18%, 22% and 14% of the CNR for damages

D1, D9 and D22 respectively is achieved. It’s worthy to notice that in the case

of the damage D1 (Fig.5.12(a,b)), the images show a well–localized damaged

zone, shifted on the left w.r.t. the actual damage position. The error is both

due to the approximated constant group velocity used in the algorithms and

the effect of reflections of the edges of the plate. Nevertheless, these aspects
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(a) (b)

(c) (d)

(e) (f)

Figure 5.12: DAS (left column: a,c,e) and DMAS (right column: b,d,f) image

output [AP8].
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(a) (b)

Figure 5.13: (a) Comparison between DAS and DMAS CNR in terms of ab-

solute value and (b) percentage increment of DMAS CNR with respect to

DAS [AP8].

do not affect the considerations related to the DAS and DMAS capabilities

comparison. Regarding the D9 imaging results (Fig.5.12(c,d)), instead, the

damage region is wider and less focused with respect to the other cases pre-

sented, but still, the DMAS approach achieves better CNR w.r.t. DAS, with

an increase of 22%. As a further step, the analysis has been carried out on the

entire dataset in order to validate the algorithm for all 28 damage positions.

Results are shown in Fig.5.13(a) where CNR values for each damage position

are plotted for both DAS and DMAS cases. Moreover, the DMAS percentage

increment in comparison with DAS is shown in Fig.5.13(b). Attention may be

drawn to the fact that the DMAS algorithm provides a better CNR for each

damage condition, with a mean increment of 14.5 % and a peak of 27 %.

The results achieved prove the suitability of the DMAS algorithm in the

GWs based SHM application, by enhancing the image reconstruction in terms

of contrast and resolution with respect to the DAS approach.
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5.2.4 DS–DMAS

DS-DMAS is based on exploiting DMAS algebra by combinatorially coupling

and multiplying the DMAS expansion terms. As a result, blurring would

be prevented, and the effects of noise in the reconstructed images would be

reduced w.r.t. conventional DAS and DMAS. Let’s start from the expansion

of DMAS main equation for a single transmitter i as follows:

yiDMAS(x, y) =

NR−1∑
j=1

NR∑
k=j+1

swj (τxyj )swk (τxyk )

= [sw1 s
w
2 + sw1 s

w
3 + ...+ sw1 s

w
NR

]︸ ︷︷ ︸
α1

+ [sw2 s
w
3 + sw2 s

w
4 + ...+ sw2 s

w
NR

]︸ ︷︷ ︸
α2

+ ...

+ [swNR−1s
w
NR

]︸ ︷︷ ︸
αNR−1

(5.29)

The yiDMAS(x, y) expansion has been divided into NR − 1 terms addressed as

α which are summed together. Thus, DMAS–beamformed main equation for

a single transmitter can be rewritten in a more compact notation as:

yiDMAS(x, y) =

NR−1∑
j=1

αj (5.30)

Eq.5.30 reveals that DMAS exploits DAS algebra between its expansion terms

α. The main idea of DS-DMAS, instead, is to use DMAS algebra between the

DMAS expansion terms. Thus, the DS-DMAS beamforming main equation

can be defined as:

yiDS−DMAS(x, y) =

NR−2∑
j=1

NR−1∑
k=j+1

αjαk (5.31)
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Finally, by considering multiple transmitters i, Eq.5.32 can be rewritten:

yDS−DMAS(x, y) =

NT∑
i=1

NR−2∑
j=1

NR−1∑
k=j+1

αjαk (5.32)

The same considerations of DAS and DMAS cases can be addressed for DS-

DMAS. In fact, the algorithm requires the estimation of the group velocity

and it is sensitive to dispersion, multimodal propagation and environmental

effects in the baseline subtraction.

In this work, DS-DMAS has been tested and characterized in two differ-

ent application scenarios. In the former, DS-DMAS is introduced for radar–

based microwave breast imaging in 3–dimensional case. The algorithm has

been tested and validated by comparing the imaging results w.r.t. DAS and

DMAS approaches. In the latter, instead, DS-DMAS is applied to NDT/SHM

case, demonstrating the method suitability even in this application scenario.

Moreover, a filtering technique for artefacts suppression is presented to further

enhance the imaging quality.

5.2.5 Radar–based microwave breast imaging

Disclaimer: the following section was previously published in ©IEEE [AP9].

Breast cancer is the most common cancer which affects women worldwide.

Early–stage diagnosis is fundamental for a successful treatment. Nowadays,

X–ray mammography, ultrasound and Magnetic Resonance Imaging (MRI)

are the most exploited techniques for cancer detection and evaluation. Each

technique can be characterized by many factors, such as radiation exposure,

sensitivity and costs. Anyway, other approaches have been investigated as

well. In particular, one of the most promising alternative methods is broad-

band microwave radiation [283]. In fact, Microwave-based Imaging (MI) detec-

tion techniques are inexpensive, non–invasive, non–ionizing, and are an overall



105 Ultrasonic Guided Waves localization techniques

comfortable form of treatment. Moreover, MI provides high–resolution im-

ages able to detect small tumours. The main idea is to exploit the contrast

of electrical properties, i.e. permittivity and conductivity, between healthy

and tumourous tissues. In particular, radar–based techniques use an exter-

nal microwave source to illuminate breast tissue with Ultra-Wideband (UWB)

signals. Scattering signals are then exploited to detect breast tumours. The

diagnosis accuracy depends on how signals obtained from Multiple Inputs Mul-

tiple Outputs antennas, i.e. MIMO approach, are transferred to a meaningful

medical image. Thus, the effort of many studies has been focusing on the devel-

opment and optimization of confocal image reconstruction techniques. Among

many, DAS [284], DMAS [285], Difference Time of Arrival (DToA) [286],

channel–ranked beam–forming [287] and also compressed sensing based image

reconstruction techniques [288,289] have been investigated in literature. In this

work, the DS-DMAS is introduced for microwave biomedical imaging in a 3–

dimensional case. In particular, the image quality is quantitatively evaluated

against conventional DAS and DMAS using metrics such as Signal-to-Noise

Ratio (SNR), Contrast-to-Noise Ratio (CNR), and Contrast Ratio (CR).

Simulation setup and Results

Disclaimer: the following section was previously published in ©IEEE [AP9].

The available dataset proposed in [286] has been exploited for characterizing

the algorithms. The arrangement of the 15 transmitters and 15 receivers is

shown in Fig. 5.14. Moreover, a point–like radar target depicted as an ’x’

models the tumour, which is supposed to be located in a homogeneous di-

electric environment with fibroglandular tissue properties. Each transmitter

sends a spread spectrum waveform based on a Gold sequence of length 28-1 at

a carrier frequency of 2 GHz. All receiver elements demodulate the recorded
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Figure 5.14: Visualization of the imaging domain showing the transmitters,

receivers and the tumour (modeled as a point target) [AP9].

signal mixture by a matched filter to obtain the echo signals s(t) that are used

subsequently during image reconstruction.

In Fig. 5.15, instead, the imaging outputs for DAS, DMAS and DS-DMAS

beamforming are shown. Three breast sections are depicted, i.e. along with

x − y dimension in the first column, x − z in the second column and y − z

in the third column. Conversely, the imaging outputs in the same row were

generated by the same imaging technique. In particular, DAS, DMAS and

DS-DMAS outputs are shown in the first, second and third row starting from

the top, respectively. It can be observed that DAS output features high levels

of artefacts, blurring and noise which are significantly reduced in the DMAS

imaging. Nevertheless, DMAS is still characterized by noise mostly around the

tumour point. Conversely, DS-DMAS output shows an overall improvement

in terms of resolution, noise reduction and artefacts suppression. Thus, DS-
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5.15: Imaging output at three different breast sections, i.e. x-y, x-z and

y-z. In particular, DAS (a,b,c), DMAS (d,e,f) and DS-DMAS (g,h,i) outputs

are shown. The black cross is the actual tumour position [AP9].
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(a) (b) (c)

Figure 5.16: SNR (a), CR (b) and CNR (c) values at each breast section for

DAS, DMAS and DS-DMAS approaches [AP9].

DMAS output is the most performative in terms of tumour recognition from an

external observer. To quantitatively describe the performance of the methods,

three classic metrics were adopted: SNR, CR and CNR. At first, a circular

region around the point-like target is defined as Region of Interest (RoI). RoI

radius is 5 mm of radius, which is in the order of the tumour size that should be

detected in this microwave frequency range. Thus, metrics can be computed

following [290]:

SNR =
µi
σo

(5.33)

CR = 20 ∗ log10(
µi
µo

) (5.34)

CNR =
|µi − µo|√
σ2
i + σ2

o

(5.35)

where [µi, σi] and [µo, σo] are the expectation and the variance values of the

pixels intensity inside and outside RoI, respectively. In Fig. 5.24 the main

results are depicted. The trend is the same in all the three metrics, in which

DMAS outperforms DAS while DS-DMAS outperforms both DAS and DMAS.

The average improvements among different sections between DS-DMAS w.r.t.

DMAS and DAS are summed up in TABLE 5.1. According to these results,
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SNR CR CNR

DAS DMAS DAS DMAS DAS DMAS

127.5% 95.4% 300.8% 78.1% 171.7% 71.1%

Table 5.1: Percentage improvement of the DS-DMAS approach w.r.t. DAS

and DMAS for each metric

the overall better performance of DS-DMAS in terms of image contrast, noise

suppression and image resolution is evident.

5.2.6 DS–DMAS imaging in SHM

In this section, DS-DMAS has been implemented and compared with DAS

and DMAS algorithms in an SHM case as well. A multi–frequency analysis is

carried on to provide a robust characterization of the techniques. Results are

presented both as imaging outputs, to visually evaluate the localization capa-

bilities of the methods, and by means of metrics to quantitatively characterize

the images.

Setup

The online free data set for guided waves inspection (http://openguidedwaves.de/)

which collects piezo pitch–catch 5 cycles, Hann-filtered sine wave signals trav-

elling through a quasi isotropic CFRP at different actuated frequencies and

damage positions has been used in this work. The plate and the experimental

setup is described in Section 5.2.3. Nevertheless, in this case, datasets from

160 kHz to 240 kHz with a frequency step of 20 kHz were exploited for a deep-

ening investigation. In particular, the specific frequency range has been chosen

in order to have a single–mode with a predominant symmetric S0 mode prop-
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agation which leads to a quasi isotropic plate behaviour, as described in [145].

Processing and Results

Disclaimer: the following section was previously published in ©IEEE [AP5].

The beamforming algorithms were applied to the datasets. In particular, 60

baselines of each dataset were averaged to synthesise a more robust baseline.

In fact, by averaging the baselines, outliers and non–correlated noise are mini-

mized. Thus, no optimal baseline selection method was required. Similarly, no

dispersion compensation was needed, since a narrowband excitation signal was

exploited [224]. Due to the wavelength tuning behaviour of the PZT trans-

ducers, a single S0–mode propagation was assumed. Then, the S0 polar group

velocity profile at the excitation frequency cg(θ, fex) was computed by SAFE

simulation [134]. Due to the quasi–isotropic velocity profile of the S0 mode at

the excitation frequencies, a constant velocity obtained by averaging cg(θ, fex)

was considered as a fitting approximation.

Under these assumptions, DAS, DMAS and DS-DMAS beamforming meth-

ods were performed. At first, signals were filtered in a frequency band from

fc − fc/4 to fc + fc/4 for reducing noise and dispersion effects. Then, residuals

are computed by baseline subtraction. Finally, beamformers are applied and a

spatial damage influence map is synthesized. For instance, in Figs.5.17a, 5.17b

and 5.17c the normalized imaging outputs of the three algorithms in the case

of excitation frequency of 200 kHz are shown. The white dots represent the

sensors placed on the plate, while the black circle is the damage location. It

is evident that the noise suppression capabilities improve from the DAS ap-

proach, which is the noisiest, to DS-DMAS case which shows a low noise level.

In Figs.5.17d, 5.17e and 5.17f, instead, the damaged area is magnified for a

better visualization of this region. It can be noticed that the resolution and
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 5.17: In the first row, (a) DAS, (b) DMAS and (c) DS–DMAS at the

excitation frequency of 200 kHz are shown. In the second row, the same results

are depicted with the damaged zone magnified. In the third and fourth rows,

(g,j) DAS, (h,k) DMAS and (i,l) DS–DMAS are computed for two different

damage positions. [AP5]
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 5.18: Imaging outputs at different excitation frequencies. das, DMAS

and DS–DMAS are plotted in the first, second and third column from left to

right, respectively. Beamforming output from datasets at excitation frequen-

cies of 160 kHz (a,b,c), 180 kHz (d,e,f), 220 kHz (g,h,i) and 240 kHz (j,k,l) are

plotted.
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damage detection capabilities are enhanced as well, due to stronger contrast

and a shrink of pixels at a high intensity around the damage. In fact, the

beamformings are seemingly able to map the impedance discontinuities of the

reversible defect model, a.k.a. the edge of the aluminium disk, especially in the

DS-DMAS case where noise is minimized. The same considerations can be ad-

dressed for Figs. 5.17g, 5.17h, 5.17i.5.17j, 5.17k and 5.17l, where the imaging

results for damages at different positions at 200 kHz are shown. Nevertheless,

even if noise is almost fully suppressed in the DS-DMAS output, some arte-

facts are still present. In this case, artefacts are intrinsic to the experimental

setup, since they are mostly due to the reflections of scattered waves, which

are generated by the damage, along the plate edges.

In Fig.5.18, instead, it is possible to observe the imaging outputs for

datasets at different excitation frequencies. DAS, DMAS and DS-DMAS imag-

ing outputs are depicted in subplots of the first, second and third column from

left to right, respectively. Meanwhile, subplots along rows belong to datasets

at excitation frequencies of 160 kHz, 180 kHz, 220 kHz and 240 kHz, from top

to bottom respectively. The imaging results are overall coherent with the ex-

pectations and the same considerations of the 200 kHz case can be raised. In

general, the imaging results seem to be more precise and effective at 200 kHz

and above, due to a more isotropic behaviour of the S0 mode. For this reason,

at 180 and 160 kHz the resolution is lower and a blurry effect can be observed.

Anyway, the damage can be perfectly localized and it does not affect the fi-

nal result. The only exception is Fig.5.18c where DS-DMAS can not provide

a satisfactory result. In fact, due to the highly non–linear characteristic of

the method, DS-DMAS drawback is the more accentuated sensitivity to inac-

curacies of group velocity estimation and mismatches of the baseline due to

operational and environmental conditions. By applying specific filtering tech-
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niques, this aspect can be tackled. By using the same filters, artefacts can be

suppressed as well. In this work, the Fresnel Zone Filtering (FZF) technique is

introduced. The main idea is to transform the ideal ultrasonic ray which passes

through the transmitter–receiver positions and the scatterer point, which can

be easily defined by the standard ray–tracing theory, into a physical ray of

finite thickness. Thus, the waves backpropagation can be restricted in the

constructive inference zone of scattered waves, a.k.a. the first Fresnel zone, by

means of weighting coefficients. This technique is an adaption of the Fresnel

volume migration which is commonly adopted for reconstructing subsurface

structures from seismic wavefields [291,292].

Fresnel Zone Filtering

Disclaimer: the following section was previously published in ©IEEE [AP5].

The Fresnel zone filtering consists in focusing the ultrasonic beam around the

actual scatterer, by restricting the backpropagation region. The conventional

Fresnel migration method for seismic imaging as described in [291], can not

be directly applied to an SHM application scenario. In fact, in plate–like

structures edges reflections such as multimodal and dispersive propagation of

Lamb waves do not permit a reliable and accurate migration procedure based

on cross–correlation methods [293] or slowness analysis [294]. Thus, an adap-

tion of Fresnel Migration for SHM imaging is implemented as follows. The

beamforming algorithm is performed twice. In the first run, the damage loca-

tion is estimated, enabling the focus on that damage point. The ray between

the receiver, the reflection point and the virtual source, defined as the point

where the wave would start if it propagates in a straight line along with the

receiver–damage line, is determined. Then, the Fresnel zone is computed on

this ray. The first Fresnel zone radius in a homogeneous medium can be ex-
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pressed as [292]:

rF =

√
3

4

λx(L− x)

L
(5.36)

where λ is the wavelength of the direct wave, L is the transmitter–receiver

distance and x is the length of the projection of a generic scatterer on the wave

direct path. From the Fresnel zone radius, the Fresnel weighting function can

be computed as [291]:

wFZF =


1 d ≤ rF

1− d−rF
d

rF < d < 2rF

0 d ≥ 2rF

(5.37)

where d is the distance between the image point and its nearest point on the

previously determined ray. FZF limits the beamforming imaging in the first

Fresnel zone where any scatterer point interferes constructively with the direct

wave. In such a way, both beamforming artefacts and noise are attenuated

and the damage scattering profile is enhanced. Neubeck et al. [295] introduced

this concept for model–based beamforming in SHM field, but it has never been

applied in conjunction with DMAS and DS-DMAS techniques.

Beamforming with Fresnel Zone Filtering approach

Disclaimer: the following section was previously published in ©IEEE [AP5].

A comparative analysis has been carried on to validate and characterize the

Fresnel zone filtering. FZF is divided into two phases which are addressed as

localization phase and filtering phase. In the localization phase, the beamform-

ing algorithm is performed with a constant weighting factor w = 1. Then, an

estimation of the damage position is computed. In particular, pixels intensity

of the beamforming imaging output which are above a certain threshold are

selected. By considering a normalized swing [0, 1], a threshold of 0.8 has been
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(a) (b)

Figure 5.19: (a) Localization method: DAS output where over-threshold in-

tensity pixels are depicted as grey dots. The distributions of these pixels along

x and y axes are shown on the top and left, respectively. (b) Fresnel weighting

function in Cartesian coordinates [AP5].

used in this work for all the beamforming algorithms. Afterwards, probabil-

ity density functions of the distribution of the selected pixels along each axis

are derived. In particular, a normal distribution has been exploited. Finally,

the damage position is estimated as the location of the peaks of the distribu-

tions. In Fig.5.19a a localization example is depicted. The figure shows the

DAS output where the damaged area is magnified. Pixels whose intensity is

above the threshold are highlighted with grey dots. On the top and on the

left, the probability density functions of the grey dots distribution along the

x–axis, pdfx, and y–axis, pdfy are shown, respectively. The difference between

the peak values of the two distributions can be explained by considering the

spatial pixel density which is higher along x–axis. Once the damage position

is estimated, the FZF can be implemented in the filtering phase. At first, the

Fresnel zone and its corresponding weighting function wFZF are computed for
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 5.20: DAS, DMAS and DS–DMAS are shown in columns from left to

right, respectively. Rows are organized as follows. In the first and second rows,

imaging outputs without and with FZF are depicted, respectively. In the third

and fourth rows, instead, imaging output at two different damage positions are

plotted. The excitation frequency of the dataset is 200 kHz [AP5].
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(a) (b) (c)

(d) (e) (f)

Figure 5.21: DS–DMAS with FZF imaging results for six different damage

locations at the excitation frequency of 200 kHz [AP5].

each Tx–Rx pair and the estimated damage position. Then, the imaging algo-

rithm is carried on again by using w = wFZF in the beamformer main equation.

An example of a 2D Fresnel zone is depicted in Fig.5.19b. The receiver sen-

sor, such as the actual and the virtual sources are superimposed as full–filled

blue, red and black circles, respectively. The black asterisk, instead, is the

estimated damage position computed in the localization phase. Moreover, the

actual and virtual propagation paths are highlighted in continuous black and

dotted blue lines, respectively. To reduce the computational cost of the entire

procedure, DAS is exploited in the localization phase to estimate the damage

position, while either DAS, DMAS or DS-DMAS beamforming methods were

applied in the filtering phase. In Fig.5.20, results achieved by beamformers

in conjunction with FZF at the excitation frequency of 200 kHz are shown.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 5.22: Imaging outputs at different excitation frequencies. DAS, DMAS

and DS–DMAS are plotted in the first, second and third column from left to

right, respectively. Beamforming output from datasets at excitation frequen-

cies of 160 kHz (a,b,c), 180 kHz (d,e,f), 220 kHz (g,h,i) and 240 kHz (j,k,l) are

plotted.
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For a clear comparison, the first and second rows of the figure include DAS,

DMAS and DS-DMAS outputs (from left to right) without and with FZF for

the same damage position, respectively. The images with the FZF show a

reduction of both noise and artefacts, thus highlighting the damaged region of

the plate, as expected. In the third and fourth row of Fig.5.20, instead, the

beamforming images computed with FZF at 200 kHz for two different dam-

age positions are depicted. Also in these cases, the FZF method enhances

the beamforming algorithms performance, as it can be observed by compar-

ing Fig.5.20 with Fig.5.17, in which the beamforming outputs without FZF

are shown for the same damage positions and excitation frequency. Similarly,

DS-DMAS with FZF results at different damage positions are summed up in

Fig.5.21. It is evident that the images feature well–defined sparkles close to the

actual damage position. Moreover, almost the entire information refer to the

damage influence, with no significant noise and artefacts. To complete the vi-

sual characterization, beamforming outputs at different excitation frequencies

computed with FZF can be observed in Fig.5.22. Frequencies from 160 kHz to

180 kHz with a frequency step of 20 kHz are considered at each row, from top

to bottom. As usual, DAS, DMAS and DS-DMAS outputs are plotted in each

column from left to right, respectively. By comparing Fig.5.22 and Fig.5.18,

it is possible to clearly evaluate the improvements of the FZF methods. In

particular, it’s worthy to notice that the DS-DMAS output at 160 kHz was

not able to locate the defect in Fig. 5.18c. Meanwhile, the damage location is

perfectly identifiable if the FZF method is applied, as Fig.5.22c demonstrates.

Nevertheless, it’s worthy to notice that FZF is sensitive to the precision of

the damage location estimated during the first phase. Thus, a robust localiza-

tion leads to high performative FZF. Conversely, high error in the localization

estimation may focus the beams in the wrong plate area leading to poor results.
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Figure 5.23: DAS output in which ROI is depicted as a white circle [AP5].

Results

Disclaimer: the following section was previously published in ©IEEE [AP5].

The beamforming algorithms have been characterized in order to quantitatively

compare the imaging results. Three metrics were adopted for the analysis,

i.e. the Contrast Ratio (CR), Peak Signal-to-Noise ratio (PSNR) and the

generalized Contrast-to-Noise ratio (gCNR). CR is defined as follows:

CR = 20 ∗ log10(
µi
µo

) (5.38)

where µi and µo are are the average pixel intensity inside and outside a defined

Region of Interest (RoI), respectively. In particular, RoI was defined as the

circular region centered in the actual damage position with a radius of 20 mm.

In this work, we have considered a RoI bigger w.r.t. the actual damage area

dimensions to take into account the finite spatial resolution imposed by the

narrowband actuation in the heat map, and to ensure a representative mea-

surement of the figures of merit. In Fig.5.23, the RoI is depicted as a white

circle which surrounds the damaged area.

The PSNR, instead, is the ratio between the signal peak and the power
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(a)

(b)

(c)

Figure 5.24: Metrics used to characterize the imaging outputs: (a,b,c) CR,

PSNR and gCNR boxplots, respectively. Blue and red boxes refer to the

beamforming with and without the FZF, respectively. Each plot is divided

into three sections: DAS, DMAS and DS–DMAS, respectively. In each sec-

tion, metrics are depicted in relation to specific datasets at different excitation

frequencies, from 160 kHz to 240 kHz [AP5].
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noise signal PNoise:

PSNR = 10 ∗ log10(
Peak2

PNoise
) (5.39)

Assuming that noise affects the imaging output outside the RoI, PNoise can be

computed as [296]:

PNoise =
1

M

M∑
i=1

∣∣xi2∣∣ (5.40)

where xi is the i− th pixel value out of M pixels located outside the RoI.

Finally, gCNR is a metric recently introduced by Rodriguez–Molares et

al. [297, 298] and used in photoacoustic imaging [290] and medical ultrasound

imaging [299]. gCNR is supposed to overcome limits of conventional Contrast-

to-Noise Ratio (CNR) [300] in quantifying the damage detectability. In non–

linear imaging algorithms characterized by high contrast or high dynamic

range, conventional CNR decreases because of the sharper speckle pattern

due to the variance rise [301]. gCNR, instead, is more robust to dynamic

range alterations and less influenced by speckle noise. The histogram-based

expression for the gCNR is [302]:

gCNR = 1−
B−1∑
k=0

min{hi(lk), ho(lk)} (5.41)

where hi and ho are the histograms related to the intensity of the pixels inside

and outside the RoI, respectively. They both feature the same number of bins

B centered at intensity levels [l1, l2, l3, ..., lB−1]. In particular, in this work, 512

bins were used to compute the metric.

gCNR aim is to measure the capability to distinguish if a certain image pixel

represents damage from an ideal observer perspective [297]. gCNR = 0 means

that the beamforming imaging output does not give any information about

the plate conditions, while gCNR = 1 leads to perfect pixel classification.

In Fig.5.24 metrics are shown by means of boxplots, which are a compact

statistical visualization of the data. In particular, each dataset at a specific fre-
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quency is represented by a box in which the central mark is the median, while

the bottom and top edges of the box represent the 25th and 75th percentiles, re-

spectively. Outliers, instead, are plotted as cross marker symbols. To sum up,

in TABLE 5.2, instead, the median values computed on all the datasets from

160 kHz to 240 kHz for all the different beamforming techniques are shown.

For a compact notation, the metrics median values will be addressed as CR,

PSNR and gCNR. As a general definition, CR points out the contrast level

of the imaging outputs. By looking at Fig. 5.24a, DS-DMAS features higher

CR valuers w.r.t. DAS and DMAS independently to the use of the FZF. Sim-

ilarly, DMAS CR is higher than DAS. If we analyse the FZF impact, the CR

improvement w.r.t. the corresponding algorithm without the use of the FZF

can be estimated with an increase of 75 %, 86.2 % and 83.2 % for DAS, DMAS

and DS-DMAS, respectively. Similarly, PSNR boxplot shows a clear rise of

the metric between DAS, DMAS and DS-DMAS. PSNR is strictly related to

artefacts and noise level of the imaging outputs. The higher the PSNR, the

lower is the noise outside the RoI. As expected, DMAS outperforms DAS, while

DS-DMAS features a better performance of both DAS and DMAS. Moreover,

FZF procedure is able to further enhance the image quality in all the different

methods. In TABLE 5.2, the PSNR values demonstrate the effectiveness of

the proposed methodology. In fact, in the case of FZF the PSNR values in-

crease from 21.07 dB to 29.78 dB till 38.94 dB, for DAS, DMAS and DS-DMAS

respectively. By considering the imaging improvement carried on by the FZF,

instead, the enhancement in the PSNR value is 34.5 %, 32.6 % and 25 % for the

DAS, DMAS and DS-DMAS, respectively. Finally, gCNR can be associated

with the probability of damage detection in ultrasound images. Thus, gCNR

is intended to determine if the damage is actually detectable from an ideal

observer. In Fig.5.24c the gCNR boxplot is depicted. All the beamforming
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FZF Y/N DAS DMAS DS-DMAS

C
R Y 34.62 51.92 76.27

N 19.78 27.88 41.62

P
S
N
R Y 21.07 29.78 38.94

N 15.18 22.46 31.16

g
C
N
R Y 0.74 0.82 0.88

N 0.55 0.62 0.64

Table 5.2: CR, PSNR and gCNR median values for all the imaging outputs

analysed with and without FZF. The median is performed using all the datasets

from 160 kHz to 240 kHz [AP5].

algorithms with the FZF have gCNR > 0.7 with maximum of gCNR = 0.88

for the DS-DMAS. The results demonstrate the overall good performance of

the FZF which is able to significantly enhance the damage recognition. In

fact, by considering the imaging without the FZF, gCNR ranges between 0.55

and 0.64, which is a quite poor result. The improvement of the gCNR metric

between the beamforming output with and without the FZF is about 34.5 %,

32.2 % and 37.5 % for DAS, DMAS and DS-DMAS, respectively. Moreover,

gCNR confirms the general trend which has been highlighted by other met-

rics. In particular, the results show that DS-DMAS generates a better image

than DMAS, which, similarly, outperforms DAS.

Future works will investigate the behaviour of this approach in a more com-

plex SHM scenario, such as the open dataset described in Marzani et al. [303],

which provides GWs propagating on a composite panel of a full–scale aero-

nautical structure in non controlled environmental conditions. In this case,

temperature and humidity variations, the complexity of multimodal propa-
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gation and different operation conditions will be challenging tasks to address

in order to extend the capabilities and robustness of the proposed method.

Moreover, velocity compensation techniques will be investigated to improve

the localization precision by exploiting accurate velocity models. In particu-

lar, since FEM and SAFE models are usually not accurate in non–homogeneous

structures such as in real case scenarios where the structural properties are par-

tially, or not known, a precise experimental estimation of the velocity model

is fundamental to achieve good beamforming results. Even if the literature

offers many research studies about the experimental extraction of dispersion

curves, the proposed techniques are usually limited by investigating the struc-

ture along a single direction, which is not sufficient in anisotropic contexts.

Very few examples of direct methods for the extraction of the velocity along

all the propagation directions at a given frequency exist. This consideration

is the basis of the work introduced in the next chapter, where novel wavefield

analysis tools for the extraction of the dispersion curves in polar coordinates

will be provided.



Chapter 6

Dispersion curves

characterization

Disclaimer: the following section was previously published by ©2021 IEEE [AP10].

Due to the complex behaviour of Lamb waves propagation, the experimental

characterization of Lamb waves dispersion curves in plate–like structures is

fundamental for a precise and reliable SHM/NDT inspection. Anyway, even if

many different techniques exist for the dispersion curves extraction in a single

propagation direction when an anisotropic material has to be characterized, a

multi–direction analysis must be carried on. This can be done by repeatedly

extracting the dispersion curves along multiple directions [304–306] which is

extremely expensive from a computational point of view. Unfortunately, very

few examples in literature with the aim of a complete and efficient Lamb

waves analysis along with multiple directions of propagation simultaneously

are present.

In this chapter, two techniques for the extraction of the wavenumber pro-

file from Scanner Laser Doppler Vibrometer (SLDV) measurements are intro-

127
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duced. The first approach is based on an image segmentation algorithm called

Distance Regularized Level Set method which is extensively exploited in image

processing and computer vision. The second, instead, relies on a compressive

sensing technique addressed as 2D sparse wavenumber analysis. Once the

wavenumber profile is obtained, the velocity dispersion curves are computed

accordingly by numerical methods. The proposed approaches have been tested

on three different CFRP with different degrees of non-isotropy properties. The

results show the effectiveness of the two methods, highlighting the advantages

and disadvantages of both.

6.1 Introduction

Disclaimer: the following section was previously published by ©2021 IEEE [AP10].

The complex behaviour of Lamb waves which propagates through the material

is not trivial to be precisely predicted. Thus, waves propagation is usually mod-

elled by Finite Element Method (FEM) [307] or SAFE [134,308] formulations,

such as boundary elements [309, 310], spectral elements [311], transfer matrix

methods [312] and global matrix methods [313]. Although these methods are

fundamental for a first characterization, a complete and precise analysis can

not be achieved due to:

• models approximations;

• material non idealities;

• material non-homogeneity

• uncertainties or deviations of material parameters;

• material parameters unknown.
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Thus, experimental characterization, i.e. extraction of the dispersion curves,

of the structure under investigation is fundamental to support and integrate

the preliminary analysis carried on with modelling tools. Different approaches

exist for this task, such as different technologies. One of the most exploited is

wavefield imaging, in which ultrasonic guided waves which propagate through

a specific area are acquired and mapped in a spatial 2D coordinate system. As

a result, a series of images showing the waves propagation at different instants

is obtained. The wavefield can be generated and acquired by various types of

technologies. Usually, a source at a fixed position is exploited to generate the

mechanical waves, while a scanning receiver acquires data. For instance, SLDV

or Air coupled probes can be used to collect the wavefield on a spatial sampling

grid and generate images. In particular, SLDV can measure the displacement

of the test object by a laser beam and records the data across a large number

of grid points within a short time. To focus the beam, SLDV can exploit either

the mechanical motion of the laser head or high precision controlled mechani-

cal mirrors [314]. As a drawback, automatic measurements might take several

hours to be completed, since usually measurements are repeated multiple times

for each scan point and then averaged to enhance signal–to–noise ratio. De-

pending on the SLDV technology, different information can be extracted from

the measurement. For instance, 1–D SLDV can measure only the out of plane

wave component, if a plate–like structure is placed normal to the laser beam.

Thus, this SLDV technology is suitable for investigating A0 mode propagation.

On the other hand, 3–D SLDV provides 3-D wave components along X, Y and

Z components, respectively, which enables the complete characterization of

complex multimodal propagation patterns. Swenson et al. [315] performed a

comparison between 1–D and 3–D SLDVs wavefield measurements using lead

zirconate titanate (PZT) transducers, highlighting differences between these
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systems. In [156], instead, an exhaustive and complete description of Laser ul-

trasonics techniques and their applications are provided. In general, SLDV for

full wavefield measurements have been used in many research works [316–320].

The most common approach is to generate the ultrasonic waves by exploiting

PZT actuators while the SLDV acquires the displacements associated with the

motion of the elastic waves in space and time domains. Once the full wave-

field is acquired, several characterizations can be carried on. For instance,

SLDV measurements enable solid damage detection and localization in NDT

field. Sohn et al. [321] presented signal and image processing algorithms to

automatically detect delamination and disbond in composite plates from wave-

field images. Ruzzene et al. [322], introduced a full wavefield data technique

able to perform damage detection, visualization and characterization in the

wavenumber/frequency domain. Mesnil et al. [323], instead, presented an ex-

haustive comparison between two imaging methods, i.e. instantaneous and

local wavenumber damage quantification techniques.

SLDV measurements can also be exploited for characterizing the guided

waves dispersion curves. Malladi et al. [324] were able to experimentally ex-

tract the frequency response functions (FRFs) which were used to develop

data–driven models, and then, dispersion curves. Ma and Yu [325], instead,

extracted the A0 dispersion curves of an aluminium plate by exploiting 2D

Fourier Transform from full wavefield data. In fact, Lamb waves dispersion

curves are usually drawn out by exploiting the Fourier Transform in order

to depict the waves in the frequency–wavenumber domain. Then, the ex-

traction of the wavenumber characteristic can be performed by Matrix Pencil

Method [271, 272] and ridge detection algorithms [326, 327]. Therefore, the

velocity profiles, i.e. phase and group velocities can be computed accordingly.

Depending on the experimental setup and instrumentation involved, different
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Figure 6.1: Wavefield representation in the 3D Fourier Domain [AP10].

types of analysis can be carried on. For instance, Harb and Yuan [208] used

an air-coupled transducer and an LDV to compute the dispersion curves by

means of Snell laws. Hernandez et al. [328], instead, extracted the dispersion

curves by determining the phase difference and time lag between two pulses

acquired by two transducers at different distances w.r.t. the active sensor. In

the case of anisotropic materials, instead, the characterization of the waves

propagation along with a single direction is no longer sufficient [304–306].

Moreover, conventional time–frequency based methods might be affected by

complex geometries such as multi–path interference which can lead to arte-

facts and noise. To tackle these limitations, a multi–direction analysis in

the wavenumber-frequency domain can be addressed, especially in the case

of SLDV measurements. The main idea is to compute the Fourier Transform

multiple times to transform the original SLDV measurements from t − x − y

into f − kx − ky domain, where t is time, (x, y) are the spatial directions, f is

frequency and (kxkx) are the wavenumbers. In particular, a 3D Fourier Trans-

form, or 3D-DFT is required. In the case of wavefield analysis, the 3D-DFT
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can be defined as follows:

U(ω, kx, ky) =
N∑
t=1

Mx∑
x=1

My∑
y=1

u(t, x, y)e−j(ωt+kxx+kyy) (6.1)

where N and (Mx,My) are the number of temporal and spatial samples ac-

quired, respectively. The wavefield in the transformation domain can be viewed

as in Fig.6.1, where each slice at a fixed frequency is addressed as k -space or

2D wavenumber domain.

Thus, the wavenumber profile of the most energetic propagation mode is

clearly revealed along with all the different propagation directions [329]. More-

over, the results show the possibility to perform many signal processing tech-

niques, such as mode separation [322], wavenumber filtering [330] and wavefield

manipulation [321]. Multiscale representations such as those generated by mul-

tidimensional Wavelet [331] or Curvelet transforms [332] allow to better track

non-stationary effects. Nevertheless, the extraction of the wavenumber profile

for a defined fi is not trivial, due to the closed–loop shape which inhibits the

exploitation of conventional ridge detection algorithms [333]. In general, very

few research studies addresses this aspect. Ma and Yu [334], for instance, ex-

ploited a maximum–tracking based technique, in which, after the conversion

from the Cartesian U(fi,k) to the polar U(fi, r, θ) plane, for each angle θ the

radius at the maximum wavenumber index value was extracted. Anyway, this

technique is highly sensitive to noise. An interesting perspective among full

wavefield signal processing techniques is provided by Sabeti et al. [335, 336].

Due to the sparse wavefield representation in the k -space, they exploited com-

pressive sensing techniques for reconstructing the time-space wavefield from

sub-sampled SLDV acquisitions. Since the wavefield reconstruction is based

on the dispersion curves computation, the method implicitly estimates the

wavenumber curves. In the case of anisotropic plates, the Anisotropic Sparse
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Wavefield Analysis (ASWA) and the 2DSWA can be exploited. The former

features very high levels of compression, although it is not suitable for char-

acterizing scatters and edge reflections, such as multimodal propagation. The

latter, instead, even if features lower compression rates, is able to properly

handle reflections and multi-mode propagation.

6.2 The Distance Regularized Level Set Evo-

lution

Disclaimer: the following section was previously published by ©2021 IEEE [AP10].

Level Set algorithms for image processing can determine contours of highly–

complex images without any parametrization [337]. By defining a Level Set

Function (LSF) φ : Ω −→ < as a three dimensional curve in the xyz-surface, the

zero level set can be expresses as φ(x, y) = c, where φ(x, y) = c. Thus, the zero

level set can be thought of as a horizontal slice of the graph at height z = c in

which a closed–loop shape divides two distinct regions. Starting from the zero

level set, the evolution of the level set, i.e. the evolution of the closed–loop

shape, can be synthesised following a curve evolution expression:

∂φ

∂t
= F |∇φ| (6.2)

where F is the speed function that controls the contour motion. Unfortunately,

this formulation is affected by irregularities of the LSF which rise during the

evolution process. Distance Regularized Level Set Evolution (DRLSE) formu-

lation, instead, by exploiting a distance regularization term and an external

energy term, can achieve better performance overcoming conventional LS al-

gorithms limits. Thus, the level set evolution is derived as a gradient flow that
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minimizes an energy functional E(φ):

E(φ) = µRp(φ) + λLg(φ) + αAg(φ) (6.3)

where Rp(φ) is the level set regularization term, Lg(φ) and Ag(φ) are energy

functionals, µ > 0, λ > 0 and α ∈ < are constant coefficients for Rp(φ), Lg(φ)

and Ag(φ) respectively. In particular:

Rp(φ) =

∫
Ω

p(|∇φ|) dx (6.4)

where p : [0 inf) −→ < is the potential function which features two minimum

points (double well points) p(|∇φ|) = 1, in the proximity of the zero level

set, and p(|∇φ|) = 0, otherwise. As a consequence, a strong smoothing effect

and an accurate computation during the level set evolution is ensured. Lg(φ),

instead, reaches its minimum value when the zero level contour of φ and the

actual image contour overlap. It is defined as:

Lg(φ) =

∫
Ω

gδ(φ)|∇φ| dx (6.5)

where g is an edge indicator function whose value is smaller at the target image

boundary and δ is the Dirac function. Finally, Ag(φ) is the energy functional

introduced for speeding up the convergence:

Ag(φ) =

∫
Ω

gH(−φ) dx (6.6)

where H is the Heaviside function. Then, the minimum of Eq.(6.3) can be

obtained by resolving the gradient flow equation [338] defined as:

∂φ

∂t
= −∂E(φ)

∂φ
(6.7)

where ∂E(φ)
∂φ

is the Gâteaux derivative of the functional E , which can be devel-

oped as:

∂φ

∂t
= µdiv(dp(|∇φ|)∇φ) + λδ(φ)div(g

∇φ
|∇φ|

) + αgδ(φ) (6.8)
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given an initial φ(x, 0) = φ0(x) and dp is a function defined as:

dp(s) =
p′(s)

s
(6.9)

In practical terms, Eq.(6.8) is an edge-based geometric active contour model,

in which, once the steady–state is found, the contour of the figure is extracted

(for a more in–deep mathematical presentation, see [337]).

6.3 2DSWA based method

Disclaimer: the following section was previously published by ©2021 IEEE [AP10].

Although SLDV is capable to perform high precision measurements in SHM

field, the data acquisition process is highly time–consuming as well. To tackle

this limitation, many research papers address signal processing techniques to

make the process faster, such as continuous-wave excitations [339,340], multi-

point laser vibrometry [341] and global-local sensing [342]. Recently, Compres-

sive Sensing (CS) techniques have been rising as the most promising method-

ology to make SLDV measurements faster. To effectively perform CS, a few

requirements are needed. At first, the acquired signals must feature sparsity,

i.e. with only a few nonzero coefficients in a transformation domain in order to

be fit by a linear superposition of a few atoms of an appropriate basis. Then,

the samples must be incoherent, i.e. the elements of the sparsifying basis

are not or poorly correlated with the acquired samples. If the requirements

are satisfied, CS techniques permit to sub–sample signals below the Nyquist

sampling rate without losing information [343, 344]. Thus, by exploiting the

sparse signal representation in the Fourier domain, it has been demonstrated

that CS is able to accurately reconstruct the full wavefield on a dense regular

grid from a reduced number of actual measured signals acquired randomly.
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Di Ianni et al. [159] investigated the most suitable CS bases to recover the

full wavefield on both aluminium and composite plates. The experimental

results validated the CS effectiveness with a reduction of the measurements

points to less than 34 %. Esfandabadi et al. [344], instead, presented a damage

detection and localization method in conjunction with CS. In such a way, a

complete damage characterization has been carried on achieving high perfor-

mance by removing up to 80 % of the Nyquist sampling grid. The same authors

in [345, 346], combined CS with Super-Resolution Convolutional Neural Net-

work (SRCNN) schemes to achieve high-resolution images from low-resolution

wavefield images. Finally, Sabeti et al. [335] presented a comparative study

on compressing sensing techniques for full wavefield reconstruction addressed

as Sparse Wavefield Synthesis. In particular, the comparison was carried on

among ASWA [163], 2DSWA [347], and Fourier reconstruction. As a result,

they found that:

• Fourier reconstruction is a valid and reliable tool if the spatial Nyquist

sampling rate is affordable.

• 2DSWA can accurately reconstruct wavefields with low compression rate.

The bright side is that the 2DSWA model is flexible and do not require

any assumptions on the location of the wave source, single-mode propa-

gation, material isotropy and material shape or geometry, i.e. reflection

properties.

• ASWA is highly performative and can achieve high compression rates.

Nevertheless, ASWA model can not handle reflections, inhomogeneities,

multi-mode propagation. Moreover, ASWA requires a-priori knowledge

of the source location.

In this work, 2DSWA was exploited to extract the wavenumber profile from
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sub-sampled wavefield measurements. In fact, the sparse wavefield reconstruc-

tion by means of 2DSWA described in [347] is based on the extraction of the

dispersion curves in the frequency wavenumber domain.

At first, let’s define random sub–sampled wavefield measurements y ∈ Rm:

y = Φx (6.10)

where Φ ∈ Rm×n represents the measurement matrix and x ∈ Rn is the wave-

field without sub–sampling. Since, x has a sparse representation in some model

basis Ψ ∈ Rn×n, (6.10) can be reorganized as follows:

y = ΦΨs = Θs (6.11)

where s is the sparse representation of x in the f-k domain, and Θ is called

dictionary [335]. It’s worthy to notice that s contains the dispersion curves

information if the frequency-wavenumber domain is exploited as transforma-

tion domain. To determine the most suitable dictionary, the analytical Lamb

waves model is considered. As a starting point, let’s consider the ideal Lamb

wave propagation model in the frequency domain for isotropic plate expressed

by [161]:

y(r, ω) =
∑√

1

kn(ω)r
Gn(ω)e−jkn(ω)r (6.12)

where r is the actuator–receiver points distance, ω is the angular frequency,

kn(ω) the n–th mode wavenumber dispersion curve and Gn(ω) is the complex

wavenumber amplitude. Equation 6.12 can be viewed as a linear combination

of a set of bases that constitute the wavefield. Thus, the dictionary Θ can be

defined accordingly:

Θ =

√
1

knrm
e−jknrm (6.13)

To solve the undetermined system of equations (6.11) a sparse recovery algo-

rithm, such as the Orthogonal Matching Pursuit (OMP) technique [348] can
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be used. In such a way, the wavenumber profile can be extracted in the trans-

formation domain. Nevertheless, the Lamb waves model in Equation (6.12) is

only valid in the frequency-wavenumber domain for isotropic plates. To extend

the approach to anisotropic materials, the following considerations have to be

carried on. In Fig.6.1, the wavefield in the 3D Fourier domain is depicted. It

clearly shows its sparse nature where almost the entire representation is char-

acterized by zero or quasi zero values. Thus, the 3D Fourier domain can be

exploited as a transformation domain for the CS procedure. Since the compu-

tation of a 3D CS which starts from the time-space domain and lands in the 3D

Fourier domain is not trivial, the procedure can be simplified by starting from

the frequency-space domain. In such a way, a 2D transformation is required

to correctly land in the k -space. Accordingly, Eq.(6.11) can be rearranged as

follows:

Yi = Θ1SiΘ
T
2 (6.14)

where Yi ∈ My × Nx is the frequency-domain wavefield (fi, x, y) and Si ∈

My ×Mx is the 2–D sparse representation of the wavefield in the fi − kx − ky
domain. Θ1 ∈ My × Ny and Θ2 ∈ Mx × Nx, instead, are the left and right

dictionaries, which can be defined as spatial Fourier bases that are synthesized

with respect to Cartesian coordinates of the grid points and the wavenumber

range in each direction:

Θ1 = e−jyk
T
y (6.15)

Θ2 = e−jxk
T
x (6.16)

This approach is addressed as 2DSWA and can be exploited to deal with non–

isotropic Lamb waves propagation. Since the wavenumber information resides

in Si, the wavenumber extraction is possible by solving (6.14). In this case, the

solution of the undetermined system of equations can be computed by a modi-
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Figure 6.2: DRLSE–based signal processing. URPW (f,k) is the OGW Re-

flected Paths Wavefield in the Fourier domain [AP10].

fied 2D version of the OMP algorithm which was presented in [349]. As a result,

a point cloud for each frequency of interest is extracted in the 2D wavenumber

plane. Thus, the wavenumber polar representation at given frequencies can

be extracted enabling the analysis of direction-dependent velocity variations

in anisotropic structures [335]. For a more exhaustive perspective of 2DSWA

mathematical aspects and performance description in the case of Sparse Wave-

field Analysis of both isotropic and anisotropic plates, refer to [347].

Finally, it’s worthy to mention that this technique is very effective for low

undersampling rates, i.e. close to the Nyquist rate. On the bright side, borders

and scatter reflections such as multimodal propagation are well characterized.

6.4 Materials and Methods

Disclaimer: the following section was previously published by ©2021 IEEE [AP10].

DRLSE -based approach and 2DSWA for dispersion curves extraction have

been tested on SLDV measurements. In particular, three datasets on three

different CFRP were exploited. The plates feature different anisotropic prop-

erties and different acquisition strategies, for a complete and reliable algorithms

validation. The first plate, which is characterized by slightly anisotropic prop-
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agation, is described in [155] and addressed in this work as SANI dataset.

The second plate, instead, is described in [350]. It features a unidirectional

highly anisotropic characteristic. For such a reason it will be addressed as

HANI dataset. The last dataset is related to a plate made of quasi–isotropic

laminates and it is freely available on the online Open Guided Waves (OGW)

website (http://www.open-guided-waves.de [145]). For this reason, it will

be addressed as OGW dataset.

6.4.1 Experimental setups

Disclaimer: the following section was previously published by ©2021 IEEE [AP10].

The SANI wavefield was acquired on a carbon/epoxy 16-layers laminate made

of prepregs GG 205 P (fibres Toray FT 300-3K 200 tex) by G. Angeloni and

epoxy resin IMP503Z-HT by Impregnatex Compositi. The specimen dimen-

sions are 1200x1200 mm with average thickness 3.9 mm, weight of 8550 g and

density 1522.4 kg/m3. The HANI plate, instead, features 40 layers made of uni-

directional carbon/epoxy fibers stacked in one direction (90 degrees). In this

case, the plate dimensions are 1200x1200 mm for 2.85 mm of average thickness,

weight of 6460 g and density of about 1574 kg/m3. In both cases, a piezoelectric

PZT disk of 10 mm diameter was attached at the centre of the CFRP plates

and used as actuator. The excitation signal was a narrowband signal cen-

tred at 50 kHz. Due to the symmetric characteristic of the plates which yield

the same propagation properties in all the four quadrants, only one–quarter

of the plate was scanned with the SLDV (Polytec PSV–400) to reduce data

acquisition time. In the previous works of Kudela et al. [155] and [350], the

SANI and HANI plates were characterized by broadband measurements to ex-

tract experimentally the elastic constants of the composites starting from the

http://www.open-guided-waves.de
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C SANI HANI

C11 52.55 138.67

C12 6.51 5.72

C13 5.94 6.53

C22 51.83 12.36

C23 5.88 5.99

C33 10.28 11.80

C44 2.93 3.12

C55 2.92 5.11

C66 3.81 4.89

Table 6.1: The optimized elastic constants of the SANI [155] and HANI [350]

plates [GPa] [AP10].

measured dispersion curves. Then, by using a genetic algorithm, the best fit

between theoretical and experimental curves was extracted. The so obtained

elastic constants have been used for reliable and accurate SAFE simulations

in order to permit a solid characterization of the results. The elastic constants

are shown in TABLE 6.1.

Finally, the last dataset was acquired on a plate made of prepreg material

Hexply M21/T700, with dimensions 500x500 mm and 2 mm of thickness. The

laminates layup is [45/0/ − 45/90/ − 45/0/45/90]S, giving to the laminate

quasi–isotropic properties. In this case, a 5 mm diameter PZT sensor was

attached at the centre of the plate and used to actuate a narrowband signal

centred at 60 kHz. It’s worthy to notice that at the plate at 60 kHz shows an

anisotropic behaviour with A0 mode propagation which is predominant [145].

The wavefield was acquired by a NDT (Polytec PSV-400) on one–quarter of

the plate, with the PZT transducer in the upper right corner. To reduce the
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environmental effects, measurements were performed in a climate chamber at

23 ◦C of temperature and averaged 100 times for reducing noise. In the OGW

plate the waves propagation follows central symmetry:

u(r, α) = u(r, α + π) (6.17)

where u(r, α) is the wavefield in time and space domain but in polar coordi-

nates. It’s worthy to underline that the wavefield which propagates in only

one–quarter of the laminate was acquired. Thus, the propagation characteris-

tic along with 90° was scanned, which is not enough for a plate that features

central symmetry, if only the wave direct path is considered. To perform a

complete characterization along with 360°, information carried on by edges

reflections was exploited. By exploiting a signal processing procedure that

isolates the reflections from the plate edges, normalizes and enhances the re-

flections contribution, a high–resolution wavenumber profile is still achievable

along with all the possible directions of propagation. In general, this technique

can be applied on both narrowband or broadband measurements, without lim-

itations regarding the central excitation frequency. Nevertheless, the SLDV

intrinsic limits have to be considered. For instance, the Polytec PSV-400

shows a quite uniform sensitivity in the range up to about 300kHz. Moreover,

at lower frequencies, only A0, S0 and SH0 propagation modes can be captured

by the SLDV. Among them, the A0 mode is the most energetic since SLDV

mostly measures particle velocities perpendicular to the surface of the speci-

men, which are dominant in A0 mode. For this reason, only the extraction of

the antisymmetric mode A0 will be addressed.

Fourier–DRLSE approach

Disclaimer: the following section was previously published by ©2021 IEEE [AP10].
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(a) (b) (c)

(d) (e)

Figure 6.3: SANI wavenumber extraction: (a) SANI 3DFT output at 50 kHz.

(b) SANI wavefield in the 2D wavenumber domain after the ’symmetry pro-

cessing’. (c) SANI cumulative image. (d) LSF obtained after the evolution

process. (e) SANI DRLSE output superimposed to the 2D wavenumber do-

main. (f) HANI DRLSE output [AP10].

In this section, the signal processing which has been developed for extracting

the wavenumber characteristic in the k -space by exploiting the DRLSE algo-

rithm is presented. Before applying the DRLSE method, some pre-processing

steps have to be implemented to properly manipulate the wavefield in the

k -space to let the DRLSE work optimally. The main steps of the Fourier–

DRLSE processing are shown in Fig. 6.2. At first, a time window of 500 µs

and 600 µs was exploited in the SANI /HANI and OGW cases, respectively,

for cancelling noise and undesired plate edge reflections. Then, a spatial 2D
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(a) (b) (c)

(d) (e)

Figure 6.4: HANI wavenumber extraction: (a) HANI 3DFT output at 50 kHz.

(b) HANI wavefield in the 2D wavenumber domain after the ’symmetry pro-

cessing’. (c) HANI cumulative image. (d) LSF after the evolution process. (e)

HANI DRLSE output [AP10].

Gaussian filtering is defined as:

G(x, y) =
1

2πσ2
e−

x2+y2

2σ2

with standard deviation σ = 0.5, has been applied to mitigate artefacts in

the Fourier domain caused by plate borders. After the 3DFT computation,

the Fourier coefficients are normalized in the interval [0,1]. For instance, in

Fig. 6.3a, the SANI Wavefield in the 2D wavenumber domain at the funda-

mental frequency of 50 kHz is shown. The wavefield direct path is the main

contribution in the fourth quadrant, which outlines the wavenumber at the

excitation frequency. Due to the symmetry properties of the plate, the com-

plete wavenumber characteristic can be synthesised by mirroring the partial
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Figure 6.5: SANI wavefield in the 2D Wavenumber domain at 50 kHz. SAFE

simulations of the A0, S0 and SH0 modes are superimposed [AP10].

profile revealed by the 3DFT. Similar results are achieved with HANI data.

In Figs.6.3b and 6.4b, the SANI and HANI wavefields in the k -space after the

described steps are shown. By close observation, the A0, S0 and SH0 modes

profiles exist, even if the A0 mode features a higher intensity. For instance,

in Fig.6.5, the theoretical dispersion curves are superimposed to the processed

wavefield in the 2D wavenumber domain. Nevertheless, DRLSE can handle the

contour detection of a single closed–loop shape, making it unable to process

multiple modes at the same time. Thus, the S0 and SH0 modes are filtered

out by a 2D wavenumber filter. In fact, A0 features a higher signal-to-noise

ratio and signal resolution, making it suitable for a reliable algorithms evalu-

ation. Anyway, the procedure can be theoretically carried on similarly to any

propagation mode.

The OGW dataset, instead, is more complex and requires some additional

steps. To clarify, in Fig. 6.6a, the OGW wavenumber profile in the k–space at

60 kHz is depicted.

The wavefield direct path shapes the wavenumber in just one–fourth quad-
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(a) (b) (c)

(d) (e)

Figure 6.6: OGW wavenumber extraction: (a) 3DFT output at 60 kHz without

any pre–processing. (b) U(f60 kHz,k) after the ’merge’ processing block. (c)

Cumulative image. (d) LSF after the evolution process. (e) DRLSE wavenum-

ber output [AP10].

rant as in the previous case. Nevertheless, some information that is carried

by edges reflections is barely visible in the other quadrants, even if the profile

features with low signal-to-noise ratio and it is not visible in some propagation

angles due to the strong signal attenuation. To extract much information as

possible, two distinct time domain filters were applied to the raw wavefield to

split information related to direct and reflected paths, respectively. In par-

ticular, the first interval which contains the wavefield direct path ranges from

zero to 400 µs, meanwhile the second interval ranges from 200 µs to 600 µs. An

overlap between the two time windows was used to reduce artefacts and max-

imize the wavefield energy. Afterwards, both the resulting filtered wavefields
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were normalized in the [0 1] interval and merged again by selecting for each

element of the two matrices the highest intensity value. Finally, the symme-

try properties of the plate were exploited to generate a high–resolution image

with all directions of propagation. In particular, by using 6.17, the picture

depicted in Fig.6.6b has been synthesized. Since the DRLSE algorithm is

essentially an edge detection algorithm, the wavefields so far processed have

been manipulated in order to generate artificial edges. In particular, the cu-

mulative function of U(fi, kx, ky) along with each propagation angle have been

performed and then converted into a cartesian grid. To further enhance the

picture edges, a contrast filter has been applied to help the DRLSE conver-

gence. As a result, Figs. 6.3c, 6.4c and 6.6c show the synthesised cumulative

images for the SANI, HANI and OGW cases, respectively. Afterwards, the

DRLSE algorithm has been applied to the processed images. In particular,

the resulting level set function which is obtained from the level set evolution

is shown in Figs.6.3d, 6.4d and 6.6d. Then, the LSF contour is extracted and

the wavenumber profile is drawn. Finally, In Figs. 6.3e and 6.4e the SANI

and HANI final wavenumber reconstructions are shown superimposed to the

corresponding wavefield Fourier transform, revealing an almost perfect over-

lap. Similar good results were achieved with the OGW (see Fig. 6.6e) and

HANI datasets. In the OGW case, the DRLSE algorithm is able to reconstruct

correctly the full wavenumber profile even in a complex scenario, where info is

only partially known. In fact, the flexibility in the wavefield pre–processing,

which can be customized easily with respect to the specific scenario, allows

optimizing the DRLSE convergence even in datasets with low signal–to–noise

ratios.
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2DSWA based approach

Disclaimer: the following section was previously published by ©2021 IEEE [AP10].

The second approach for extracting the wavenumber profile in polar coor-

dinates from full wavefield measurements is based on the 2DSWA. At first,

specific pre–processing is exploited to reduce noise and reflections interference.

In particular, a time windowing and a band pass filter have been applied to

the wavefield. In particular, the selected frequency band ranges from 42 kHz

to 58 kHz for the SANI and HANI datasets, while the spectral content from

50 kHz to 70 kHz have been used in the OGW case. After the pre–processing

stage, compressive sensing is implemented. Let’s define the sub–sampling ratio

RUN defined as follows:

RUN =
NU

NNyq

(6.18)

where NU is the number of points on the random sample grid and NNyq is the

number of the points in the Nyquist grid [335]. A random sampling strategy

with sub–sampling ratio RUN = 34.9 %, RUN = 34.96 % and RUN = 83.3 %

have been used for the SANI , HANI and OGW datasets, respectively. Then,

the 2DSWA method is applied and the sparse representation of the wavefield

is obtained. In Figs. 6.7a,6.7c and 6.7e, the point clouds which are given back

by 2DSWA are depicted. Then, points related to the dataset excitation fre-

quencies are selected. In Figs. 6.7b,6.7d and 6.7f, the selected points and their

accordance with the corresponding wavefield Fourier transforms are shown

for the SANI , HANI and OGW wavefields, respectively. It is evident that

2DSWA approach provides a good tracking of wavenumber profile, especially

in the SANI and HANI cases. In the OGW dataset, instead, some propagation

angles are not fully populated leading to a loss of information. Finally, due

to the discrete nature of the 2DSWA output, a fitting procedure based on the
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(a) (b)

(c) (d)

(e) (f)

Figure 6.7: 2DSWA approach: (a,c,e) Points cloud obtained by 2DSWA output

for the SANI, HANI and OGW datasets. Frequencies from 42 to 58 kHz for the

SANI/HANI datasets, and from 50 to 70 kHz for the OGW dataset, are com-

puted. (b,d,f) Points related to the dataset excitation frequency superimposed

to the k–space for the SANI, HANI and OGW datasets, respectively [AP10].

Fourier series is used to find a good approximation of the wavenumber polar

profile [351], after a mode filtering, if required.
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Figure 6.8: Single mode A0 wavenumber reconstruction for frequencies from

42 kHz to 58 kHz with a step of 2 kHz by DRLSE method. In black the theo-

retical A0 wavenumber along with 0° direction of propagation by SAFE simu-

lation [AP10].

6.5 Results

6.5.1 Wavenumber extraction characterization

Disclaimer: the following section was previously published by ©2021 IEEE [AP10].

RUN [%] Max[m−1] Average [m−1]

83.3 4.72 2.79

41.66 5.47 3.15

31.26 6.63 2.37

23.45 76.46 32.17

Table 6.2: OGW wavenumber reconstruction errors by 2DSWA method vary-

ing RUN [AP10].
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(a) (b) (c)

(d) (e) (f)

(g) (h)

(i) (j) (k)

Figure 6.9: Wavenumbers extraction results ([m−1]): (a,d) SANI,HANI

DRLSE wavenumber reconstruction compared with SAFE simulation. (b,e)

SANI,HANI 2DSWA wavenumber recontruction compared with SAFE simu-

lation. (c,f) SANI,HANI error comparison between the two methods. (g,h)

2DSWA error analysis varying RUN for the SANI,HANI datasets. (i,j,k)

2DSWA wavenumber reconstruction for the OGW dataset with RUN =

83.3%, 41.66%, 31.26%, respectively, compared with DRLSE output [AP10].
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In this section, the extracted wavenumber profiles obtained by DRLSE and

2DSWA approaches are compared to SAFE simulations, which are supposed

to be a reliable and accurate reference in the SANI and HANI cases. In Fig.

6.9a, 6.9b, 6.9d, and 6.9e, the DRLSE and 2DSWA outputs are depicted as

a red continuous line, while SAFE simulations are drawn with a black dotted

line. In both cases, the wavenumbers are extracted at the excitation frequency

of 50 kHz. In Fig. 6.9c and 6.9f, instead, the DRLSE (in blue) and 2DSWA (in

red) errors at each propagation angle are plotted. It’s evident that the DRLSE

results match extremely well the simulations. Meanwhile, 2DSWA features

lower precision, even if the wavenumber reconstruction is still satisfactory if

we consider that a sub–sampling of about RUN = 35 % was performed. In

Fig. 6.9g, the error characterization of the SANI wavenumber at multiple

compression rates, i.e. RUN = 34.9 %, RUN = 17.43 % and 4.36 %, is shown.

By reducing RUN the error increases, as expected. Anyways, the maximum

error achieved is below 8 m−1, demonstrating that it is possible to obtain an

accurate wavenumber reconstruction even with high compression levels. In

Fig. 6.9h, the same analysis is carried on for the HANI dataset at compression

rates of RUN = 34.9 %, RUN = 17.4 % and 6.55 %. Similarly to the previous

case, the errors oscillate below 8 m−1. Therefore, the same conclusions can be

drawn.

The characterization of the OGW dataset results, instead, can not be car-

ried on similarly to SANI and HANI cases. In fact, difficulties arise in the

estimation of the optimized elastic constants at lower frequencies, as described

in [350]. Thus, an accurate and reliable error characterization based on SAFE

simulations is not enabled. Thus, we relied on the DRLSE outputs to charac-

terize those achieved with 2DSWA. In particular, the DRLSE OGW wavenum-

ber profile matches very well the profile drown by the Fourier transform in the
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k–space, as it can be observed in Fig. 6.6d. In Fig. 6.9i, 6.9j and 6.9k, the

wavenumber reconstructions for RUN = 83.3 %, RUN = 41.66 % and 31.26 %

are depicted. In TABLE 6.2, instead, the maximum and average errors at

each compression rate are shown. It can be observed that the performances

are comparable for RUN = 83.3, RUN = 41.66 and RUN = 31.26, while the

error rises dramatically at RUN lower than 31.26 %. Moreover, it is worthy

to notice that the compression rates are significantly higher w.r.t. the other

datasets to achieve a good estimation.

6.5.2 Phase and group velocity extraction

Disclaimer: the following section was previously published by ©2021 IEEE [AP10].

In the previous section, it has been demonstrated that DRLSE and 2DSWA

methods are able to accurately extract the wavenumber profile of the most

energetic propagation mode at the excitation frequency of the datasets char-

acterized. If a precise estimation of the wavenumber profile is performed, the

phase and group velocities can be computed as well. The former quantity by

exploiting the simple wavenumber–phase velocity relationship:

vp(r, θ) =
ω

k(r, θ)
(6.19)

where ω is the angular frequency. The group velocity estimation, instead, is

not trivial due to the derivative operation involved:

vg(r, θ) =
∂ω

∂k
(6.20)

In literature, the derivative is usually computed only in numerical models,

where noise and inaccuracies of experimental data are not involved [270]. Any-

way, thanks to the high precision wavenumber reconstructions obtained in this

work, we propose to exploit numerical derivatives even with experimental data
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 6.10: Phase and group velocity results ([m/s]) for SANI and HANI

datasets. In particular: (a,b) SANI vp by DRLSE,2DSWA methods. (c,d)

SANI vg by DRLSE,2DSWA methods. (e,f) HANI vp by DRLSE,2DSWA

methods. (g,h) HANI vg by DRLSE,2DSWA methods [AP10].
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(a) (b) (c)

Figure 6.11: (a,b) vg error characterization at different RUN for SANI,HANI

datasets. (c) SANI vg at RUN = 4.36 % [AP10].

(a) (b) (c)

(d) (e) (f)

Figure 6.12: OGW dataset phase and group velocity results ([m/s]): (a,b,c) vp at

RUN = 83.28 % , RUN = 41.66 % , RUN = 31.26 %. (d,e,f) vg atRUN = 83.28 %

, RUN = 41.66 % , RUN = 31.26 % [AP10].
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as follows. In the SANI and HANI cases, the wavenumber W(f, r, θ) has been

extracted for frequencies from 42 kHz to 58 kHz, with a step of ∆f = 2 kHz.

For instance, in Fig.6.8, the A0 wavenumber profiles extracted by means of

DRLSE in (kx, ky) coordinates are shown. Blue dots represent wavenumbers

values along with the 0° direction, superimposed with the theoretical disper-

sion curve in black. Then, the W(r, f)|θ=θi profile has been interpolated by

a second–order polynomial method, reducing the frequency step to 100 Hz at

each fixed propagation angle. Finally, the numerical derivative was computed

by central difference for interior data points and single-sided differences along

the edges of the numerical vector. The procedure is then repeated for each

propagation direction. In Fig. 6.10, the computed phase and group velocities

are shown. The estimation of the wavenumbers was carried on by the DRLSE

and 2DSWA approaches. In the 2DSWA computations, compression rates of

RUN = 34.9 % and RUN = 34.96 % were used for the SANI and HANI veloci-

ties extraction, respectively. In TABLE 6.3, the maximum and average errors

of the velocities w.r.t. SAFE simulations are shown. It can be observed that

the errors of the DRLSE approach are slightly lower in comparison with the

2DSWA in both the SANI and HANI datasets, as expected. Since 2DSWA at

35 % of compression rate was able to satisfactorily reconstruct the dispersion

curves, the group velocity estimation with different compression rates has been

deepened in order to determine the minimum RUN achievable. In Fig. 6.11,

the errors of the group velocity estimations for the SANI and HANI datasets at

different RUN are depicted. As expected, by reducing RUN the quality of the

group velocities gets worse. In particular, the SANI group velocity reconstruc-

tion can be considered successful only for RUN = 34.95 % and RUN = 17.43 %.

In fact, even if the errors remain below 35m/s at a compression rate of 4.36 %,

the velocity shape in polar coordinates is not satisfactory and do not follows
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Max[m/s] Average [m/s]

SANI DRLSE vp 7.48 3.84

SANI 2DSWA vp 15.31 10.9

HANI DRLSE vp 8.01 3.36

HANI 2DSWA vp 14.38 5.91

OGW 2DSWA vp 12.5 6.79

SANI DRLSE vg 14.74 5.35

SANI 2DSWA vg 17.71 10.16

HANI DRLSE vg 29.04 11.62

HANI 2DSWA vg 30.6 16.05

OGW 2DSWA vg 113.53 66.93

Table 6.3: Phase and group velocity errors. In the 2DSWA cases, RUN at

34.9 %, 34.96 % and 83.3 % were considered for the SANI, HANI and OGW

datasets, respectively [AP10].

anymore the expected profile (Fig. 6.11c). Similarly, the HANI group ve-

locity is satisfactory at RUN = 34.9 % and RUN = 17.48 %. The error rises

dramatically at RUN = 6.55 %, instead.

In the case of OGW velocity curves, W(f, r, θ) has been extracted for fre-

quencies from 50 kHz to 70 kHz, with a step of ∆f = 2.5 kHz, and then interpo-

lated. To facilitate the group velocity estimation, the interpolation frequency

step was reduced to ∆f = 10 Hz. In Fig. 6.12 the phase and group velocities

are depicted with RUN = 83.3 %, RUN = 41.66 % and RUN = 31.26 %, from

left to right, respectively. Unfortunately, the group velocity errors are not neg-

ligible, with a maximum of 113.53m/s and average 66.93m/s at RUN = 83.3 %.

In the other cases, the errors are even higher and, as it can be observed in Fig.

6.12e and 6.12f, the extracted profiles are distorted and do not follow anymore
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the expected behaviour. Thus, it is evident that the 2DSWA approach was

not able to properly reconstruct the group velocity in this application case.

Conversely, the phase velocity computation shows good accordance in all the

compression rates addressed.



Chapter 7

Conclusions

This dissertation describes the research work conducted to develop embedded

systems and advanced signal processing for Acousto-Ultrasonic Inspections. In

particular, this Thesis explores innovative solutions in both SHM and NDT

application contexts.

• In the first part, it was discussed how conventional instrumentation for

materials and structures inspection is often expensive and bulky, not

suitable for permanent monitoring. The recent development of tiny, low–

cost and scalable smart sensor networks leads the way to a new SHM

paradigm, in which real–time, long–term monitoring is enabled. The de-

velopment of such kinds of technologies is a pressing need in SHM field

for widespread diffusion. In this context, a heterogeneous smart sensor

network that features low–weight, low–price and low–power consump-

tion with suitable signal processing has been presented in this Thesis.

In detail, a multi–sensor strategy which exploits the simultaneous acqui-

sition of both piezoelectric and MEMS accelerometer signals has been

implemented and tested in two different experimental setups. The phys-

ical relationship between PZT and ACC data has been verified, and the

159
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effectiveness of piezoelectric transducers for low–frequency application

fields such as vibration and modal analysis has been demonstrated. Both

the natural frequencies and modal shapes were extracted, the former by

adopting an AR +Noise parametric model, the latter, instead, by ex-

ploiting a processing scheme that primarily performs a tuning procedure

capable to compensate for intrinsic non–idealities in PZT transducers.

Thus, the damage detection suitability of the PZT circuitry was prof-

itably assessed. From these results, it can be concluded that low-cost

PZT sensors might be used either alone or alongside traditional MEMS

accelerometers to efficiently estimate the modal parameters of structures

undergoing flexural vibrations with minimal invasivity.

• In the second part, damage localization methods based on Lamb waves

inspection have been investigated. In literature, many solutions with

distinctive features (high resolution, computational effort, damage de-

tectability, etc) can be found. Among these, the most exploited methods

still are DAS and RAPID due to their globally good performance and

ease of implementation. In this work, the need of developing solutions

that are both performative and straightforward has been addressed. In

detail, the Delay Multiply and Sum, and the Double Stage Delay Multi-

ply and Sum have been introduced for SHM and NDT purposes. These

techniques can be considered as evolutions of the DAS beamforming al-

gorithm which exploit the enhancement of correlated samples by means

of multiplication operations to achieve better contrast and resolution.

Moreover, to further improve the beamformings output, a specifically de-

veloped filtering approach referred to as Fresnel Zone Filtering has been

introduced. In particular, FZF enhances ultrasonic beams which interact

constructively with the damage scatters in the first Fresnel zone, reduc-
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ing noise and artefacts. The methods have been validated and compared

on a carbon fibre plate with artificial damages in a standard pitch–catch,

round–robin ultrasonic inspection. The imaging results characterized by

CR , PSNR and gCNR metrics show a clear trend in which DMAS en-

hances DAS image quality, while DS-DMAS outperforms both DAS and

DMAS . Finally, each beamforming algorithm is significantly improved

by the exploitation of FZF , demonstrating the effectiveness of the pro-

posed approach. Nevertheless, the proposed localization methods are

limited by the precision of the group velocity model, especially in highly

anisotropic plates. A comprehensive method that can directly address

the extraction of the dispersion curves in polar coordinates at a given

frequency along with all the directions simultaneously does not exist in

literature. Thus, innovative solutions have been developed to address

this need. In particular, by exploiting scanner laser Doppler vibrometer

measurements, two different signal processing techniques have been in-

vestigated and compared. The first approach relies on the extraction of

the wavenumber profile in the wavenumber domain obtained by 3DFT

and proper signal processing. A DRLSE algorithm has been used to pre-

cisely determine the wavenumber profile in the Fourier domain at a fixed

frequency. The second approach, namely the 2DSWA, is based on sub-

sampling the wavefield in the frequency–space domain in order to extract

the Wavenumber profile by a 2–D OMP strategy that exploits the inher-

ent signal sparsity. Then, phase and group velocities were extracted.

The techniques have been validated on datasets related to carbon fiber

plates with different anisotropy degrees and propagation properties. It

has been demonstrated the capability of both the algorithms to accu-

rately extract the wavenumber profile in all the case scenarios. Mean-
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while, 2D–SWA struggles in the evaluation of the group velocity where

the dataset is characterized by low signal–to–noise ratio and complex

propagation behavior. From this analysis, it can be concluded that the

DRLSE method is a robust and reliable technique for the wavenumber

and velocities extraction in polar coordinates at a given frequency thanks

to its flexibility in the signal pre/post processing. While the 2DSWA is

a viable alternative in high signal–to–noise ratio measurements to speed

up the characterization of materials.

7.1 Future work developments

The results described in this dissertation open the way to different future work

developments which might further improve the state–of–the–art. In particular,

the following extensions and improvements can be addressed.

• The capabilities of the proposed heterogeneous smart sensor network in

a real application scenario for long–term monitoring will be investigated.

Moreover, the possibility to insert more sensing elements (strain gauges,

temperature and humidity sensors, etc.) will be investigated, such as the

development of suitable data merging algorithms.

• The beamforming algorithms will be extended to allow them to handle

multidamage cases, multimodal, dispersive and highly anisotropic waves

propagation. For instance, the damage localization phase can be inte-

grated with spatial clustering algorithms, e.g. DBSCAN, or machine

learning methods to cluster and characterize multiple damages. Disper-

sion compensation, instead, can be addressed by exploiting, for instance,

the Warping Frequency Transform described in [188] [AP11], while com-

plex anisotropic velocity models can be inserted in the beamforming de-
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lay terms computation. In particular, the DRLSE approach described in

chapter 6 can be used for accurate velocity estimation enabling specific

correction procedures such the one described in [266]. Finally, the val-

idation of the proposed method in more complex application scenarios

will be addressed by exploiting the open dataset described in Marzani

et al. [303], which collects pitch–catch ultrasonic measurements in a real

full scale aeronautical structure.

• The proposed DRLSE–based approach for the extraction of the polar

representation of dispersion curves will be extended to the 3–D case for

broadband measurements. So far, a multifrequency analysis can be car-

ried on by performing the DRLSE at each frequency. A 3–D–DRLSE,

instead, would speed up the procedure enabling an automatic and com-

plete 3–D dispersion characterization. Moreover, to deal simultaneously

with multiple modes, the DRLSE will be adapted for the identification

of multiple concentric shapes.
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of mems accelerometers for structural health monitoring-the case study of

the pietratagliata cable-stayed bridge,” Journal of Sensor and Actuator

Networks, vol. 7, no. 3, p. 30, 2018.



177 BIBLIOGRAPHY

[91] G. Piana, E. Lofrano, A. Carpinteri, A. Paolone, and G. Ruta, “Experi-

mental modal analysis of straight and curved slender beams by piezoelectric

transducers,” Meccanica, vol. 51, no. 11, pp. 2797–2811, 2016.

[92] A. Belisario-Briceño, S. F. Zedek, T. Camps, R. François, C. Escriba,

and J.-Y. Fourniols, “Shm based on modal analysis: accelerometer and

piezoelectric transducers instrumentation for civil engineering in hetero-

geneous structures,” in EWSHM-7th European Workshop on Structural

Health Monitoring, 2014.

[93] H. Wang and P. Chen, “Intelligent diagnosis method for a centrifugal

pump using features of vibration signals,” Neural Computing and Applica-

tions, vol. 18, no. 4, pp. 397–405, 2009.

[94] C. Acar and A. M. Shkel, “Experimental evaluation and comparative

analysis of commercial variable-capacitance mems accelerometers,” Journal

of Micromechanics and Microengineering, vol. 13, no. 5, p. 634, 2003.

[95] A. Sabato, C. Niezrecki, and G. Fortino, “Wireless mems-based accelerom-

eter sensor boards for structural vibration monitoring: a review,” IEEE

Sensors Journal, vol. 17, no. 2, pp. 226–235, 2017.

[96] R. R. Ribeiro and R. d. M. Lameiras, “Evaluation of low-cost mems ac-

celerometers for shm: frequency and damping identification of civil struc-

tures,” Latin American Journal of Solids and Structures, vol. 16, no. 7,

2019.

[97] G. Lacidogna, G. Piana, and A. Carpinteri, “Damage monitoring of three-

point bending concrete specimens by acoustic emission and resonant fre-

quency analysis,” Engineering Fracture Mechanics, vol. 210, pp. 203–211,

2019.



178 BIBLIOGRAPHY
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and R. Lammering, “Accurate determination of dispersion curves of guided

waves in plates by applying the matrix pencil method to laser vibrometer

measurement data,” CEAS Aeronautical Journal, vol. 4, no. 1, pp. 61–68,

2013.

[273] A. Nokhbatolfoghahai, H. Navazi, and R. Groves, “Using the hybrid

das-sr method for damage localization in composite plates,” Composite

Structures, vol. 247, p. 112420, 2020.



202 BIBLIOGRAPHY

[274] G. Konstantinidis, B. W. Drinkwater, and P. D. Wilcox, “The tempera-

ture stability of guided wave structural health monitoring systems,” Smart

Materials and Structures, vol. 15, no. 4, p. 967, 2006.

[275] A. J. Croxford, J. Moll, P. D. Wilcox, and J. E. Michaels, “Efficient tem-

perature compensation strategies for guided wave structural health moni-

toring,” Ultrasonics, vol. 50, no. 4-5, pp. 517–528, 2010.

[276] M. S. Salmanpour, Z. Sharif Khodaei, and M. H. Aliabadi, “Impact

damage localisation with piezoelectric sensors under operational and envi-

ronmental conditions,” Sensors, vol. 17, no. 5, p. 1178, 2017.

[277] M. Salmanpour, Z. Sharif Khodaei, and M. Aliabadi, “Guided wave tem-

perature correction methods in structural health monitoring,” Journal of

Intelligent Material Systems and Structures, vol. 28, no. 5, pp. 604–618,

2017.

[278] A. Nokhbatolfoghahai, H. Navazi, and R. Groves, “Evaluation of the

sparse reconstruction and the delay-and-sum damage imaging methods for

structural health monitoring under different environmental and operational

conditions,” Measurement, vol. 169, p. 108495, 2021.

[279] S. Fu, L. Shi, Y. Zhou, and J. Cai, “Dispersion compensation in lamb

wave defect detection with step-pulse excitation and warped frequency

transform,” IEEE transactions on ultrasonics, ferroelectrics, and frequency

control, vol. 61, no. 12, pp. 2075–2088, 2014.

[280] J. S. Hall and J. E. Michaels, “Adaptive dispersion compensation for

guided wave imaging,” in AIP Conference Proceedings, vol. 1430, no. 1.

American Institute of Physics, 2012, pp. 623–630.



203 BIBLIOGRAPHY

[281] H. Jia, H. Liu, Z. Zhang, F. Dai, Y. Liu, and J. Leng, “A baseline-free

approach of locating defect based on mode conversion and the reciprocity

principle of lamb waves,” Ultrasonics, vol. 102, p. 106063, 2020.

[282] J. E. Michaels and T. E. Michaels, “Enhanced differential methods for

guided wave phased array imaging using spatially distributed piezoelectric

transducers,” in AIP conference proceedings, vol. 820, no. 1. American

Institute of Physics, 2006, pp. 837–844.

[283] M. A. Aldhaeebi, K. Alzoubi, T. S. Almoneef, S. M. Bamatraf, H. Attia,

and O. M. Ramahi, “Review of microwaves techniques for breast cancer

detection,” Sensors, vol. 20, no. 8, p. 2390, 2020.

[284] J. Moll, T. Kelly, D. Byrne, M. Sarafianou, V. Krozer, and I. Craddock,

“Microwave Radar Imaging of Heterogeneous Breast Tissue Integrating

A-Priori Information,” International Journal of Biomedical Imaging, pp.

Article ID 943 549, 10 pages, 2014.

[285] M. Elahi, D. O’Loughlin, B. Lavoie, M. Glavin, E. Jones, E. Fear, and

M. O’Halloran, “Evaluation of Image Reconstruction Algorithms for Con-

focal Microwave Imaging: Application to Patient Data,” Sensors, vol. 18,

no. 6, p. 1678, May 2018.

[286] J. Moll and V. Krozer, “Time-Difference-of-Arrival Imaging for Ultra-

Wideband Microwave Mammography,” in 7th European Conference on An-

tennas and Propagation, Gothenburg, Sweden, 2013, pp. 2595–2599.

[287] M. O’Halloran, M. Glavin, and E. Jones, “Channel-ranked beamformer

for the early detection of breast cancer,” Progress In Electromagnetics Re-

search, vol. 103, pp. 153–168, 2010.



204 BIBLIOGRAPHY

[288] M. T. Islam, M. T. Islam, M. Samsuzzaman, S. Kibria, and M. E. H.

Chowdhury, “Microwave Breast Imaging Using Compressed Sensing Ap-

proach of Iteratively Corrected Delay Multiply and Sum Beamforming,”

Diagnostics, vol. 11, no. 3, p. 470, Mar. 2021.

[289] C. Kexel, J. Moll, M. Kuhnt, F. Wiegandt, and V. Krozer, “Compressed

Sensing for Three-Dimensional Microwave Breast Cancer Imaging,” in 8th

European Conference on Antennas and Propagation, 2014, pp. 1634–1638.

[290] K. M. Kempski, M. T. Graham, M. R. Gubbi, T. Palmer, and M. A. L.

Bell, “Application of the generalized contrast-to-noise ratio to assess pho-

toacoustic image quality,” Biomedical Optics Express, vol. 11, no. 7, pp.

3684–3698, 2020.

[291] S. Buske, S. Gutjahr, and C. Sick, “Fresnel volume migration of single-

component seismic data,” Geophysics, vol. 74, no. 6, pp. WCA47–WCA55,

2009.

[292] J. Spetzler and R. Snieder, “The fresnel volume and transmitted waves,”

Geophysics, vol. 69, no. 3, pp. 653–663, 2004.

[293] N. Hirabayashi, “Reflector imaging using trial reflector and crosscorrela-

tion: Application to fracture imaging for sonic data,” Geophysics, vol. 81,

no. 6, pp. S433–S446, 2016.

[294] C. Hu and P. L. Stoffa, “Slowness-driven gaussian-beam prestack depth

migration for low-fold seismic data,” Geophysics, vol. 74, no. 6, pp.

WCA35–WCA45, 2009.

[295] R. NEUBECK, B. WEIHNACHT, and B. FRANKENSTEIN, “Mode–

selective imaging procedures of acoustic ultrasonic data on hollow cylinder

geometries for structural-health-monitoring,” 2014.



205 BIBLIOGRAPHY

[296] P. Brémaud, Mathematical principles of signal processing: Fourier and

wavelet analysis. Springer, 2002.

[297] A. Rodriguez-Molares, O. M. H. Rindal, J. D’hooge, S.-E. Måsøy,
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