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Abstract

Noise is constant presence in measurements. Its origin is related to the mi-
croscopic properties of matter. Since the seminal work of Brown in 1828,
the study of stochastic processes has gained an increasing interest with the
development of new mathematical and analytical tools. In the last decades,
the central role that noise plays in chemical and physiological processes has
become recognized. The dual role of noise as nuisance/resource pushes to-
wards the development of new decomposition techniques that divide a signal
into its deterministic and stochastic components.

In this thesis I show how methods based on Singular Spectrum Analy-
sis have the right properties to fulfil the previously mentioned requirement.
During my work I applied SSA to different signals of interest in chemistry:
I developed a novel iterative procedure for the denoising of powder X-ray
diffractograms; I “denoised” bi-dimensional images from experiments of elec-
trochemiluminescence imaging of micro-beads obtaining new insight on ECL
mechanism. I also used Principal Component Analysis to investigate the
relationship between brain electrophysiological signals and voice emission.
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Introduction

Observing any measurement it is evident the presence of noise. Thermal
fluctuations, fluctuations in the electrical current, effects of the electronic
circuits, are some of the sources of noise in a measurement. Looking at
noises some questions spontaneously arise. How to remove the noise from
the data? What are its properties? Is it only a nuisance or does it contain
information on the observed system? Or, better, are fluctuations only due
to unwanted noises or are they intrinsic to the system?

In this thesis I tried to address the topics touched in the previous ques-
tions.

According to the Encyclopaedia Britannica noise is “any undesired sound,
either one that is intrinsically objectionable or one that interferes with other
sounds that are being listened to. In information theory, noise refers to those
random, unpredictable, and undesirable signals, or changes in signals, that
mask the desired information content”.1 Also in this definition, noise is only
a nuisance, something that interferes with the process of interest. One of
the properties of noise that causes its bad reputation is randomness: noise
values are unpredictable, it is impossible to write down an equation to track
its behaviour in time. This contrasts with the predictability of deterministic
processes whose values can be inferred solving equations.

Another name, less prone to prejudices, for noises is stochastic processes.
A stochastic process refers to a family of random variables indexed against
some other variable or set of variables.

One of the first observation of stochastic process has been done by Robert
Brown in 1828.2 The Scottish botanist in 1828 published a paper on his obser-
vation “on the particles contained in the pollen of plants; and on the general
existence of active molecules in organic and inorganic bodies”.2 In this work
he describes the irregular motion of small particles on the surface of a water
droplet. It is only after Einstein 1905 work on the theory of diffusion that
the motion of those “molecules” was theorized.3 Since Einstein, the study
of stochastic processes gained new interest. It is applying Einstein’s results
that Jean Baptiste Perrin, A. Westgren and Eugen Kappler experimentally
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2 INTRODUCTION

measured the Avogadro number with increasing accuracy.4–6 The random
walk, experimentally observable, represents a link between the microscopic
dynamics of atoms and molecules bombarding a larger particle in suspension,
and macroscopic observable like the Avogadro number and the diffusion co-
efficient.5

We can deduce that natural processes are intrinsically noisy with fluctu-
ations that arise as a consequence of the complex system of interaction that
is present in Nature. Even simple laws, like Maxwell’s equations for electro-
magnetism or Schrödinger’s equation for quantum mechanics, when applied
billions of billions of times, produce an extremely complex system.7 It is this
complexity that is observed during measurement.

If nature is intrinsically noisy, then we can consider the noise in mea-
surements as a fingerprint of the observed processes. In the last decades an
increasing interest has been attracted by the constructive role of noise, as for
example in stochastic resonance or Brownian ratchet,8 in brain activity,9 in
ecology10 or in reaction simulations.11

The recent interest on noises has been possible thanks to the work of many
scientists from different fields of research that developed analysis methods for
stochastic time series. A pioneer in the study of stochastic time series was
been the hydrologist Harold Edwin Hurst. While making measurements for
the building of the Aswan dam on the Nile river, he observed that records of
flows or levels at the Roda gauge, near Cairo, were not random, but showed
a certain correlation, with series of low-flow years and high-flow years. The
“memory” or correlation between successive years created a serious problem:
the dam would need to be much larger than it would if annual rainfalls
and river flows were random. Observing other sets of data, he developed
an approach to examining accumulations, or integrals, of natural stochastic
time series.12

Another ground breaking scientist has been Benoit Mandelbrot, a Polish-
born French American mathematician that developed the concept of fractal.
In his book “The Fractal Geometry of Nature”, published in its final version
in 1983, he made a manifesto of the study of fractals.13 Starting from the ob-
servation that “Clouds are not spheres, mountains are not cones, coastlines
are not circles, and bark is not smooth, nor does lightning travel in a straight
line.”,13 he developed a new field of math: fractal analysis. Using the con-
cepts of self-similarity and scale-invariance, Mandelbrot developed a set of
tools for the analysis of time series.13,14 According to Bassingthwaighte, for
a statistical insight on a time series it is necessary to perform three analysis:
autocorrelation analysis, spectral analysis and the Hurst exponent.15 All this
descriptors provide a brief idea on the properties of the given time series. In
Chapter 1 I present a list of methods and tools for the analysis of a stochastic
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time series.
The different analysis tools give information on the different properties

of a time series. Looking at their properties, time series can be classified as
correlated or anticorelated, if the autocorrelation function is considered; the
power exponent gives the color of noises; from the generalization of Brownian
motion, it is possible to obtain Fractional Brownian motion and Fractional
Gaussian noises.14 In Chapter 2 I give a short introduction on colored noises
and fractional noises.

The proposed analysis methods have been successfully applied in dif-
ferent fields of chemistry. Bakalis et al. 16 studied the diffusion of lipid in
a membrane using molecular dynamics simulations. They observed a sub-
diffusional motion in the case of a heterogeneous bi-layer. Liu et al. 17 com-
bined multifractal detrended fluctuation analysis and neural networks into a
novel technique for the determination of oleic acid content in rapeseed. An-
other application field of tools for the analysis of stochastic time series is in
the study of biological system where it was observed an important contribu-
tion of 1/f noises in membrane processes.18,19 Also physiological data show
stochastic behaviour as observed in Bakalis et al. 20 during the study of eye
movement.

All the previous tools and classifications consider a time series as it con-
tains mostly information on the system of interest and it is not contaminated
by noise from other sources, like the environment or the instrument. When
the contribution of external noise sources is relevant, the performances of the
analysis tools drop producing biased results.

Typical denoising methods are mainly focused on the complete removal
of all the stochastic components in a signals. In particular, they are based
on frequency filters and Fourier transform.21,22 Removing all the stochastic
components from a signal precludes the possibility to extract information not
only from the deterministic components but also from the noisy ones.

If we are interested in the study of the different components of a signal,
instead of using filters, it is useful the use of signal decomposition techniques
that separate a signal into a set of constituting components according to
a given rule. Among them a remarkable role is played by Empirical Mode
Decomposition (EMD) and Singular Spectrum Analysis (SSA).23

EMD decomposes a signal into a set of intrinsic mode functions based on
the local characteristic time scale of the data.24 Recently EMD was used for
baseline correction for signals of analytical instruments improving the quality
of signals from mass spectrometer or gas chromatography.25

SSA is a technique that decomposes a given signal into a set of inter-
pretable components such as a trend, oscillatory components and noise.26

SSA decomposition is based on the Karhunen–Loeve transformation that
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decompose a given signal into a set of orthogonal components.
Restricted to the chemistry field SSA has not found large application.

Among the applications, SSA was used to remove the solvent artefact in
multidimensional NMR.27 NMR spectra of the solvent distort the weak sig-
nal of the protein. Using SSA the effect of solvent was removed from the
acquired data unveiling the weak signals. In this way NMR performances
were improved. Habasaki applied SSA to the analysis of molecular dynamics
of ionic liquids.28,29 With SSA he was able to distinguish the different time
scales of the ion diffusion improving the phase-space plot for glass transition.

Chapter 3 of this thesis is fully devoted to Singular Spectrum Analysis.
SSA has been the method of choice for the projects presented in this thesis
thanks to its flexibility. Being non-parametric and dividing a given signal into
a set of additive components makes SSA a method of choice for automated
signal denoising, giving the possibility to analyse the different components
individually, obtaining information on all the processes involved in the mea-
surement. In this thesis, SSA has been applied in denoising methods for
powder X-ray diffractograms and ECL imaging.

Chapter 4 introduces Principal Components Analysis (PCA), a powerful
technique for the reduction of dimensionality of large dataset with minimal
loss of information30,31 If a multivariate dataset is considered, it should be
necessary to re-express the data in a more concise way making the interpre-
tation of the analysis results easier. PCA express the dataset using a new set
of orthogonal components obtained from the diagonalization of the covari-
ance matrix of the dataset. Using only the components that weigh more in
terms of eigenvalues, it is possible to reduce the dimensionality of the dataset
preserving its information content.30 PCA is widely applied in chemistry re-
lated fields whenever it is necessary to find the most important observable
in a multivariate dataset. In a high cited review, Bro and Smilde 32 showed
PCA applied to the study of wine properties. In chromatography, PCA was
successfully applied in order to make a comparison between measured and
calculated data for background extraction and for the reduction of the num-
ber of chromatographic systems, or analytes, to the minimum necessary for
the solution of both practical and theoretical problems in chromatography.33

PCA plays an important role also in organic chemistry where it was used
in the selection of the best combination of ligand and solvent in challenging
catalytic reactions.34 In this thesis, PCA has been applied to the study of
electrophysiological data as a tool to find a correlation between speech and
neural signals.
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Chapter 1

Stochastic Time Series Analysis

Introduction

Stochastic fluctuations are driving processes in Nature. In order to under-
stand Nature in terms of stochastic processes, a way to rationalize them is
needed. Given a temporal process X(t), it is possible to define a series of
samples xi for i = 1, . . . , N that are events of the process X(t). This series
X(i) is called time series. If the time interval between two consecutive sam-
ples is constant, then the time series is defined as equidistant with a sampling
time ∆t and sampling frequency f = 1/∆t.

Given a time series, it can be either deterministic, chaotic or stochastic.
A deterministic time series can be expressed explicitly by an analytical ex-
pression, its past and future can be obtained given the analytical law. In a
chaotic time series, strong nonlinear interactions between few factors shape
the fluctuations. In a stochastic time series, a large number of weak influ-
ences is responsible for the fluctuations.1 Looking at a stochastic time series,
emerges that the values do not make any sense if taken individually, only
looking at the sequence as a whole makes the description of the time series
possible.

Many different approaches can be used to obtain insight from stochastic
time series. In this chapter I present a workflow for the analysis of a stochastic
time series. Each section of this chapter focuses on a step of the analysis

1.1 Preliminary Analysis

Given a time seriesX(t), before performing the analysis, is necessary to check
for a trend and deterministic components.
The removal of the trend can be done fitting the analytical law of the trend

11



12 CHAPTER 1. STOCHASTIC TIME SERIES

or using decomposition techniques like SSA (see Chapter 3).

After detrending and removal of the deterministic components, the stochas-
tic time series can be described using a set of parameters that belongs to the
field of descriptive statistics. Descriptive statistics treats the elements of
the time series as independent and the order is not important. Complemen-
tary to the use of descriptive statistics are the methods that consider the
relationship between the elements of the time series.

1.1.1 Descriptive Statistics

A time series can be described in terms of its location and shape or in terms
of its central tendency via mean, median and mode; and its variability using
standard deviation (or variance), minimum and maximum values, skewness
and kurtosis.

Mean, mode and median give information on the location of the distribu-
tion. The mean (eq. 1.1) is the most representative value of the set, mode
is the value that appears most often in the set, median is the point that is
located halfway between minimum and maximum.

The standard deviation (eq. 1.2) gives information on the amount of
dispersion of the dataset.

Skewness (eq. 1.3) and kurtosis (eq. 1.4) give information on the shape
of the distribution. Skewness describes the symmetry of the distribution and
gives the directions of the tails, with positive skewed data tailed to the left
and negative skewed data tailed to the right. Kurtosis describes how many
data are far from the mean, it describes how fat are the tails.

µ ≡ E[X] =
1

N

N∑
i=1

xi (1.1)

σ ≡
√

E[(X − µ)2] =

√√√√ 1

N − 1

N∑
i=1

(xi − µ) (1.2)

µ̃3 = E

[(
X − µ

σ

)3
]
=

1
N

∑N
i=1(xi − µ)3

σ3
(1.3)

µ̃4 = E

[(
X − µ

σ

)4
]
=

µ4

σ4

(1.4)

µ̃n standardized moment of order n, µn central moment of order n
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1.1.2 Fourier Analysis

Given a time series, it is possible to decompose it in a sum of sine and cosine
functions. This is done using the Fourier transform (FT). For a continuous
signal s(t) the Fourier transform reads

S(f) =

∫ ∞

−∞
s(t) · e−i2πftdt (1.5)

with S(f) that is the transform of s(t) and is function of frequency. In the
case of a discrete series the integral becomes a sum.

Sk =
N−1∑
n=0

sn · e−
i2π
N

kn (1.6)

The Fourier transform is usually performed using an effective computational
technique called Fast Fourier Transform (FFT). FFT performs the discrete
FT using an efficient algorithm that reduces the computational cost.

Fourier transform gives information on amplitude and phases of the fre-
quencies forming the signal.

xi =

N/2∑
n=0

An cos[ωnti + φn] =

N/2∑
n=0

An cos

[
2πn

N
i+ φn

]
(1.7)

were An is the amplitude, φn is the phase of the cosine component and
ωn the angular frequency (fn = ωn/2π). An(fn) and ϕn(fn) are called the
amplitude, and phase spectrum of the signal, respectively. The square of the
amplitudes An(fn)

2 is called the power spectrum or power spectral density
of the signal (PSD). It gives information on the amount of energy contained
at the different frequencies.

The form of the power spectral density gives information on the nature
of the time series. In particular, if it presents a power law form, then the
time series is fractal and can be analyzed using the tools I present in the next
sections

A2
n = pω−β

n (1.8)

with β that is the spectral index.
A power law relationship expresses the idea that doubling the frequency,

the power changes by the same fraction (2−β) regardless of the chosen fre-
quency.2 Before applying FFT, the signal has to be preprocessed in order to
improve the performances of the analysis. The main preprocessing steps are:

1. Subtraction fo the mean;
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2. Windowing with a parabolic window. In this step each value of the
time series is multiplied by a parabolic function given by

W (i) = 1−
(

2j

N + 1
− 1

)2

for j = 1, . . . , N (1.9)

applying this window reduces the effects of discontinuities at both ends
of the data series;3

3. End matching. This step makes the first and last point of the time
series to be equal. It works subtracting to the data the line connecting
the first and last points of the series.

The preprocessing is extremely recommended for time series with β > 2.2

The fitting of the spectral index, β, is improved if the high-frequency
part of the PSD is excluded from the fitting. For a good fitting the range
1/8 < f < 1/2 is excluded.

Coloured Noises

As for light the colour is defined by its spectrum, also for stochastic processes
it is possible to classify them according to their power spectrum defining a
colour. Coloured noises show a power law scaling in their PSD and have a
different color depending on the spectral index. White noises show flat PSD
(β = 0); anticorrelated noises have β < 0; correlated noises have β > 0 A
detailed dissertation is contained in Chapter 2

1.1.3 Autocorrelation Analysis

The aim of the Autocorrelation Analysis is to determine to what extent
the value at a given time st of the time series depends on its past values
k lag apart. The k -lag autocorrelation coefficient defines the magnitude
of the dependence. The k -lagged autocorrelation may be positive, zero or
negative in the range [−1; 1]. Estimates of the autocorrelation for the lags
k = 0, 1, . . . , N can be calculated as:

ρ̂k =
1

N−k−1

∑N
i=k+1(si − µ)(si−k − µ)

1
N−1

∑N
i=1(si − µ)2

(1.10)

where µ is the mean (eq. 1.1). A positive correlation indicates that si and
si−k are on the same side of the distribution with respect to the mean while a
negative correlation indicate that the two points are on the opposite sides of
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the mean, they are anticorrelated. At any time, in a correlated signal a step
in one direction is more likely followed by a step in the same direction, in an
anticorrelated signal, a step in one direction is more likely followed by a step
in the opposite direction. In an uncorrelated signal the steps are completely
random and ρ̂k = 0 ∀ k ≥ 1.

1.2 Fractal Analysis

1.2.1 Fractals, definition and properties

Before introducing the techniques used to characterize a fractal signal we
need the define what a fractal is and which are its properties.

“Clouds are not spheres, mountains are not cones, coastlines are not cir-
cles, and bark is not smooth, nor does lightning travel in a straight line.”

With this statement Mandelbrot opens his book on fractals,4 introducing
for the first time the concept of fractals and their properties. The idea of
fractals dates back to the late 19th and early 20th century, when mathemati-
cians started generating complex geometrical structures starting from simple
objects (the initiator) applying a simple rule (the generator) an infinite num-
ber of iterative steps. In this way they obtained a complex structure that
is equally rich in details at every scale of observation.5 In his “The frac-
tal geometry of Nature”,4 Mandelbrot makes a manifesto of the study of
fractals. It is in this book that he invented the word fractal, from the Latin
word fractus, broken, fragmented, used in relation to the irregular shape of
fractal objects.

Fractals properties

The two main properties that define a fractal are self-similarity and scaling,
but other properties are also relevant for fractals.

Self-similarity Self-similarity means that fractals are equal to themselves
at the different scales: a part of a fractal, if enlarged, is equal to the whole
fractal. For mathematical fractals this is strictly true while natural fractal
object are statistically self-similar. It means that the statistical properties
of the pieces are proportional to the statistical properties of the whole, the
pieces are like the whole but not identical.

Scaling The value measured for any property of an object depends on the
characteristics of the object. If these characteristics depend on the mea-



16 CHAPTER 1. STOCHASTIC TIME SERIES

surement resolution, then the measured value depends on the measurement
resolution. There is no one true value for a measurement, the value changes
with the scale.

Scale invariance Scale-invariance is strictly related to self-similarity, quan-
titative properties of the structure depends only on the ratio of scales and
not on the absolute scale due to the uniform geometry.1 The ratio of two
estimates of q measures at two different scales, s1 and s2, q1/q2 depends only
on the ratio of scales s1/s2 and not on the absolute scale. For a natural frac-
tal, scale-invariance holds only for a restricted range of scales. It is possible
to define a scaling range as the ratio between the biggest and the smallest
scale at which scale-invariance holds.

SR = log10(smax/smin) (1.11)

Power law scaling Self-similarity has effects on the scaling relationship
between a quantitative property, q, and the scale, s.

q = f(s) (1.12)

For a non fractal object, q converges to a single value when s becomes in-
finitely small. For fractals, q does not converge, but it exhibits a power law
scaling relationship with s.

q = psϵ (1.13)

where p is a proportionality factor and ϵ is the scaling exponent (ϵ < 0). ϵ
can be determined from the log of eq.1.13

A useful relationship arising from eq.1.13 is between power and frequency
in power spectral density with power increasing with frequency in anticor-
related time series and decreasing in correlated ones. For this reason it is
possible to search for the power law in the power spectral density in order to
define if a time series is fractal or not.

1.2.2 Fractal dimensions

Given a geometrical object it is possible to define the dimension of its em-
bedding space, the embedding dimension or Euclidean dimension, E. The
embedding dimension tells if the object is found on a line (E = 1), on a
plane (E = 2) or in a three dimensional space (E = 3). E gives the number
of coordinates needed to address a point of the object in space.

The topological dimension DT indicates the number of coordinates needed
to determine the position of a point on the actual geometrical structure.
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DT ≤ E. The topological dimension describes the connectedness between
the points in the fractal set.

For a classical geometrical object, embedding and topological dimensions
define the object. For fractals a new dimension exists: the fractal dimension.
It has values that usually are not integer and, accordingly to Mandelbrot 4 ,
DT ≤ D ≤ E. D describes space-filling properties of the fractal set. D is
related to the scaling exponent of a given attribute of the object. For an
exact fractal D can be expressed as self-similarity dimension (Dss) and tells
how may structural units of the object, N , are seen at a given resolution,
R = 1/s.

Dss = logN/ logR (1.14)

For real, non-exact, fractals it is not possible to determine Dss. Thus, in
order to estimate Dss for a real fractal, a generalization of the self-similarity
dimension is needed. The capacity dimension, Dcap, and the box-counting
dimension, Dbox, have been developed. The idea is to cover the fractal with
‘balls’ whose dimension equals E and then count the number of balls used.

For Dcap the fractal is covered by ‘balls’ whose dimension equals E. For
E = 1 the ball is a segment of length 2r, for E = 2 is a circle of radius r and
for E = 3 is a sphere of radius r. Given a radius r, the minimum number of
balls of size r, N(r), is found, then r is decreased and N(r) is found again.6

Dcap = lim
r→0

logN(r)/ log(1/r) (1.15)

with one ball covering the object at r = 1.

The box-counting dimension uses balls that are contiguous nonoverlap-
ping rectangular boxes. N(r) is the number of boxes containing at least one
point of the object.

Given this definition we can conclude that, in a broad sense, the topo-
logical dimension tells us about the type of object the fractal is, and the
fractional dimension tells us how wiggly it is.6

Fractal Dimension from Scaling Properties

Self-similarity is a core property of fractals. The power law scaling is a
result of it, while the fractal dimension is based on self-similarity. Using
this observation we can find a direct way to determine the fractal dimension
starting from the power law scaling. Using eq. 1.13 and modifying eq. 1.15
as:

N(r) = Br−D (1.16)
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where B is a constant, we can determine the fractal dimension D from the
scaling exponent ϵ if we know how the measured property q depends on the
number of pieces N(r).

1.2.3 Dispersional Analysis

Dispersional analysis is one of the statistical approaches used to determine
the fractal dimension. It was introduced by Bassingthwaighte in 1988 and it
involves the measurement of variance or standard deviation of a signal at a
succession of different levels of resolution. The resolution is changed grouping
adjacent data points and using the mean to replace them: increasing the size
of the groups reduces the resolution. Bassingthwaighte 7 observed that the
relationship between the log of the variance, or of the Relative Dispersion
(SD/µ), and the log of the size of the observed unit is linear

RD(m)/RD(m0) = (m/m0)
1−D (1.17)

and the fractal dimension is

D = 1− log[RD(m)/RD(m0)]

log(m/m0)
(1.18)

withm the element size used to calculate RD andm0 the reference size. From
this analysis it is possible to obtain the Hurst coefficient H = E + 1−D for
any euclidean dimension E.

Procedure

The typical sequence used to estimate the Hurst exponent of a time series
using dipersional analysis is presented here.

1. Given a time series xi, i = 1, . . . , N , obtained from a signal sampled
at even time intervals ∆t, we can define a resolution of the observation
m as the number of sample points grouped in the observation interval.
For each resolution n = N/m intervals are defined;

2. Using the highest resolution, calculate the mean x̄ of the whole time
series

x̄ =
1

N

N∑
i=1

xi (1.19)

3. Calculate the standard deviation of the set at the resolution m

SD(m) =
1

n

√
n
∑

x2
i −

(∑
xi

)2

(1.20)
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4. Calculate the relative deviation as

RD(m) = SD(m)/x̄ (1.21)

5. Increase m decreasing the resolution. Define a new time series grouping
adjacent points according to m and substituting the values with the
mean on the interval

yi,m =
1

m

mi+m∑
j=mi

xj i = 0, . . . , n (1.22)

6. For the new time series calculate standard deviation and relative dis-
persion;

7. Repeat steps 5 and 6;

8. Plot the logarithm of RD versus the logarithm of m and determine the
slope of the relationship. Using the fitted value determine the Hurst
exponent H = slope + 1;

Strengths and Limitations

According to an exhaustive study by Bassingthwaighte and Raymond 8 , Dis-
persional analysis is more robust than Hurst Rescaled Range method. In
particular, it performs well also for short time series and the Hurst coeffi-
cient suffers of low bias.

A weakness of dispersional analysis is the susceptibility to nonstationarity
of the signal, with the trend that will increase the variance at all levels of
resolution. This weakness limits dispersional analysis to stationary time
series.

1.2.4 Rescaled Range Analysis

Rescaled range analysis was invented by Hurst while studying for the con-
struction of the Aswan dam.9 In his work, Hurst proposed an empirical de-
scriptor to describe temporal signals of natural phenomena. The idea had
been developed in order to determine the minimum height of the proposed
Aswan dam that would have allowed a control on the flow of the Nile down-
stream. The descriptor proposed by Hurst is now known as Hurst expo-
nent (or parameter), H, and the method proposed to determine it is called
Rescaled Range Analysis (R/S)
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Rescaled Range Analysis is an approach to examining accumulations or
integrals of naturally fluctuating events. The rescaled range R/S is the range
R of cumulative deviations from the mean, divided by the standard deviation
S, where R/S is estimated for subsets of duration τ for many different values
of τ .

Given a time process X(t), for each interval, the time series of cumulative
deviations from the mean V (u) is defined as

V (u) =

∫ u

0

(X(λ)−X(τ)) dλ; 0 < u ≤ τ (1.23)

where X(τ) is the mean value on the interval of duration τ and λ is a
dummy variable for integration.

The range of V (u) over the period τ is defined

R(t, τ) = Vmax − Vmin = max
(
V (u)

)
−min

(
V (u)

)
for 0 < u ≤ τ (1.24)

To normalize the range relative to the fluctuations, the standard deviation
of X(t) over the same period is used

S(t, τ) =
[1
τ

∫ τ

0

(X(t)−X(τ))2 dt
]1/2

(1.25)

thus several estimates of the “rescaled range”, R/S have been obtained for
each τ .

R/S = R(t, τ)/S(t, τ) (1.26)

Hurst observed that the relationship between R/S and the length of ob-
servation τ shows a power low scaling.

(R/S)τ = pτH (1.27)

where p is a prefactor and H is the Hurst exponent (see Section 1.2.5).
H is related to the fractal dimension with the relationship

H = E + 1−D (1.28)

Procedure

Here we present rescaled range analysis for a time series Xi consisting of
equidistant samples of the time process X(t), sampled at intervals ∆t.

1. Define the total duration as τmax = N∆t and calculate the mean over
the whole dataset

XN =
1

N

N∑
i=1

xi (1.29)
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2. Sum the differences from the mean to get an accumulation time series
using the discrete form of equation (1.23)

V (n, k) =
k∑

j=0

(xj − x̄N); 0 < k ≤ n (1.30)

3. Find the maximum, Vmax, and the minimum, Vmin of V (N, k) for 0 <
k ≤ n and calculate the range

R(n) = Vmax − Vmin (1.31)

4. Calculate the standard deviation of the observation over the period
τ = n∆t

S(n) =
[ 1
n

n∑
i=0

(xi − x̄N)
2
]1/2

(1.32)

where x̄N is the mean over the whole time series.

5. Calculate R/S = R(n)/S(n)

6. Decrease the dimension of the intervals, n, from N to nmin, and repeat
the entire procedure.

7. Plot the logarithm of R/S versus the logarithm of n and obtain the
Hurst exponent as the slope of the regression line.

H =
log(R/S)n − log p

log n
(1.33)

For each n, N/n estimates of R/S are produced. In order to fit the slope,
two different procedure have been proposed: i) averaging the values of R/S
for each n, ii) using 10 values of R/S for each n without averaging. The
second method was proposed by Mandelbrot and avoids overweighting the
values of R/S for small n.10

Strengths and Limitations

Bassingthwaighte and Raymond 11 in 1994 evaluated rescaled range method.
From this study emerges that the linear regression on the logarithms pro-
duces an estimate of H that is indistinguishable from that obtained using
the nonlinear optimization (fitting directly the exponential law). ForH < 0.5
the method overestimates H for all lengths. For H > 0.5 a systematic error
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in the results is present. A suggested correction for this error is to remove the
trend of the signal. However, the method gives biased estimates converging
to the true value for a signal of infinite length. Series with positive corre-
lation leads to better estimates of H using R/S. For series with H < 0.5
alternative methods should be used instead.

1.2.5 Hurst exponent

Introduced by Hurst in 1951, the Hurst exponent, H, is a parameter that
gives information on the smoothness of a fractal object. In other terms it
is a measure of the correlation between elements in a time series. H is
related to the fractal dimension and Euclidean dimension with the following
relationship

H = E + 1−D (1.34)

in this way 0 ≤ H ≤ 1.
A signal with H close to 0 is one with rough structuring, frequently

changing sign with respect to the mean; a signal with H close to 1 is a
smooth one, with gentle changes of sign. In the case of H = 0.5 the signal
is completely random; for H ̸= 0.5 the signal is not completely random, for
H < 0.5 the signal is anticorrelated while for H > 0.5 the signal is correlated.

Two equivalent ways of defining H are common in literature. The two
definitions are based on two different stochastic processes. One is based on
fractional Gaussian noise (fGn), a stationary random process that shows a
correlation given by eq. (1.35) that represent a process that is second-order
stationary.12 The other is based on fractional Brownian motion (fBm), a
non-stationary self-similar process with interdependent increments.13 The
two processes are strictly related, a fGn is often defined as the differentiation
of a fBm.12,13

ρn = 0.5
{
|n+ 1|2H − 2|n|2H + |n− 1|2H

}
(1.35)

H is also related to the spectral index β with a relationship depending on class
of the process. For a Fractional Gaussian noise H = β+1

2
, for a Fractional

Brownian motion H = β−1
2

In Chapter 2 I will give a more detailed view on
fBm and fGn.

1.2.6 Detrended Fluctuation Analysis (DFA)

Detrended fluctuation analysis (DFA) was introduced by Peng et al. in 1994
with the aim to detect long-range correlations embedded in a patchy land-
scape.14 After that publication, DFA became a widely used method for the
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analysis of noisy data in the presence of trends of unknown origin.15 Nonsta-
tionarity, due to a trend, introduces artifacts in long-range correlation mak-
ing difficult to extract a scaling property. Generally, an artificial crossover
between scaling regimes appears in the presence of a trend.15,16 Detrending
fluctuation analysis permits the detection of long-range correlation in nonsta-
tionary time series removing a “local trend” that is responsible for an excess
of short-range correlation.

The DFA method applies as follow:
Given a sequence of length N and elements xi, i = 1, . . . , N :

1. Sum the signal and subtract the mean

yj =

j∑
i=1

xi − µ̂ (1.36)

The subtraction of the mean is not compulsory, it would be eliminated
by later detrending.

2. Divide the summed signal y into Nl = N/l nonoverlapping boxes of size
l, and define the “local trend”, yj,l, as the least-squares fit for the signal
in that box. If the signal length, N , is not a multiple of the considered
box size, a short part of the signal will remain out of the boxes. In
order to not disregard this part of the record, the same procedure is
repeated starting from the other end of the signal. In this way 2Nl

segments are obtained;

3. Define the detrended signal as the difference between the original signal
and the local trend. Calculate the variance about the detrended signal
for each box, and calculate the average of these variances over all the
boxes of size l, Fl;

Fl =

√√√√ 1

N

N∑
j=1

(yj − yj,l)
2 (1.37)

Fl is the root mean square fluctuation

4. Repeat steps 2 and 3 for different sizes l.

The scaling properties of the fluctuations arises between l and the variances.

Fl ∼ lα (1.38)

where α is the scaling exponent.
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The function used for detrending can be a polynomial of different order, l,
and the method names DFA-l (DFA-1 if l = 1,DFA-2 if l = 2).15,16 Different
polynomial degrees differ in the capability of eliminating trends in the data.
In n-th order DFA, trends of order n in the summed signal (of order n − 1
in the original data) are removed . Thus, a comparison of results for DFA-l
of different order allows to estimate the strength of the trends in the time
series.15 Changing the order of detrending allows for a “correct” identification
of the trend for the subsequent analysis.

For a fGn signal, yj will be an fBm and Fl = plH with α = H. For an
fBm, yj becomes a summed fBm and Fl = plH+1, Eke et al. 1

1.2.7 Multifractal Detrended Fluctuation Analysis

Many signals do not exhibit a simple monofractal scaling behavior, since they
do not have a single scaling exponent. The different scaling properties can
be distributed in different parts of the series, requiring a scaling exponent for
each of them or, the scaling changes with the scale of the observation. In this
case there exist a crossover scale, s×, separating regimes with different scaling
exponents.15–17 The existence of more than one scaling exponent defines the
series as multifractal.

In general, it is possible to distinguish two different types of multifractal-
ity in time series:

(i) Multifractality due to a broad probability density function for the val-
ues of the time series. This type of multifractality can not be removed
by shuffling the time series.

(ii) Multifractality due to different long-range correlations of the small and
large fluctuations. In this case, shuffling removes multifractality with
the shuffled series that is nonmultifractal.

If both kinds of multifractality are present, the shuffled series will exhibit a
weaker multifractality than the original one.

Given a multifractal time series, many analysis methods are available,
examples are reported in Salat et al. 18 and Kantelhardt et al. 17 . Among
them, the method developed by Kantelhardt et al., Multifractal detrended
fluctuation analysis(MFDFA), is widely used. The method develops as a
generalization of the DFA method (Subsec. 1.2.6). MFDFA consists of five
steps, the first three of them are identical to those in DFA.
We can rewrite step 3 in DFA as follow:
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• determine the variance

F 2(i, l) =
1

l

l∑
j=1

{
y [(i− 1)l + j]− pi(j)

}2
(1.39)

for each segment i, i = 1, . . . , Nl

• determine the variance

F 2(i, l) =
1

l

l∑
j=1

{
y [N − (i−Nl)l + j]− pi(j)

}2
(1.40)

for segments i = Nl + 1, . . . , 2Nl.

pi(j) is the fitting polynomial in segment i. Equation (1.40) is necessary in
order to consider the fact that a short part of the signal will remain out of
the boxes if the signal length, N , is not a multiple of the box size l.

After the first three steps MDFDA has the following steps:

1. Average over all segments to obtain the fluctuation function of order q

Fq(l) =

{
1

2
Nl

2Nl∑
i=1

[
F 2(i, l)

]q/2}1/q

(1.41)

where the order q can take any real value. For q = 0 eq. (1.41) becomes

F0(l) = exp

{
1

4Nl

2Nl∑
i=1

ln
[
F 2(i, l)

]}
∼ lh(0) (1.42)

2. Determine the scaling behavior of the fluctuation functions for each
value of q analyzing log-log plots fq(l) versus l

Fq(s) ∼ lh(q) (1.43)

where h(q) is a generalized Hurst exponent, for q = 2 the classical
Hurst exponent is retrieved.

For very large scales, l > N/4, the number of segments becomes very small
making Fq(l) statistically unreliable. Usually, only scales l < N/4 are used.

Another range with fq(l) that deviates from eq. (1.43) is for l < 10. For
this region Kantelhardt et al. 17 proposed a correction: instead of using fq(l)
they proposed to use Fq(l)/F

shuf
q (l) where F shuf

q (l) is the fluctuation function
for the shuffled time series. In order to obtain a more robust estimation,
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F shuf
q (l) can be obtained averaging over a large number of randomly shuffled

time series.17

For monofractal time series h(q) is independent on q and is equal to H.
Only when small and large fluctuations scale differently there is a dependence
of h(q) on q. The presence of different scaling exponents defines multifrac-
tality.

1.2.8 Generalized Moments Method

Another method for the analysis of fractal time series is the Generalized
Moments Method (GMM). GMM is one of the most robust methods for
the analysis of nonstationary time series.19 It uses the scaling of statistical
moments of various orders and gives information on whether the time series
is monofractal or multifractal.

Procedure

Given a time series xi of length N sampled at time interval τ = τmin, its
length in time is T = Nτ .

1. Given xi define a lag time ∆ = n τ and compute the time series of the
increments for the given lag time as

yi(∆) = |xi+∆ − xi| (1.44)

with i = 1, . . . , (T −∆)τ

2. The statistical moments of y∆ are estimated as

Kq(∆) =
1

T −∆

T−∆∑
i=1

yi(∆)q (1.45)

where the values of q are selected in the range 0 < q ≤ 2 as in Bakalis
et al. 20

3. steps 1 and 2 are repeated changing the lag time, ∆, from the range
∆ = τmin, . . . , τmax, usually τmax = N/10τ

the relationship between Kq(∆) and ∆ is a power law

Kq(∆) ≈ ∆qH(q) (1.46)

where H(q) is a generalized form of the well known Hurst exponent21 and
qH(q) = z(q) is also known as structure function. The shape of z(q) gives



1.2. FRACTAL ANALYSIS 27

information on the stochastic mechanism governing the process. If z(q) is
linear with respect to q then the process is monofractal, H(q) is constant for
all q values while, if the structure function has a convex shape, the process
is multifractal.22,23 Moments of different order, q, provide information on
different portion of the PDF of the given time series. Small values of q
sample the central part of the distribution while, large values of q sample the
tails.24

Generalized Hurst exponent

The Hurst exponent is related to the scaling properties of a time series, in
particular, it is associated with the scaling of the absolute spread in the
increments or to the variance. Using moments of different order q, a set
of scaling exponents H(q) is produced with each q that is associated with
different characterizations of the scaling complexity of the signal.25 For q = 1,
H(q) is the classical Hurst exponent, while for q = 2, H(q) is proportional
to the autocorrelation function.21 H(2) is also related to the power spectrum
β = 1 + 2H(2) with β spectral index. Only for fBm H(2) = H too, lets
remember that, for fBm, H = β−1

2
.

In order to use GMM to compute the Hurst exponent, the time series has
to be of an fBm process, if not, the accumulation time series can be used.
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Chapter 2

Coloured Noises and Fractional
Noises

Introduction

Noise is a lot more than a nuisance playing a central role in many physical,
chemical and biological processes.1 White noise is connected to thermal fluc-
tuations, Brownian noise is related to the motion of molecules and particles,
flicker noise to cooperativity.

As light color is defined according to its frequency spectrum, also for
noises exists a color code classification based on their frequency content.
Depending on the scaling law of the power spectral density(PSD), noises can
have different “colors”.

In this chapter I present the main properties of the different coloured
noises classified according to their PSD. I also introduce a second classi-
fication method that develops from the extension of Brownian motion to
processes that are not Brownian in order to define two classes of processes
that are one the integral (derivative) of the other.2 All the stochastic pro-
cesses considered in this chapter belongs to monofractal processes. They are
random processes with a unique time scale.

For all the considered noises, the typical relationship between power and
frequency is of the form

PSD(f) ∝ 1/fβ (2.1)

2.1 White Noises

White noise is widely used as a descriptor for fluctuation in physical, chemical
and biological systems. White noise contains no information, it is completely
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32 CHAPTER 2. COLOURED NOISES

random. At any time, a step in one direction is as likely as a step in the
opposite direction. A white noise is an uncorrelated stochastic process that
is stationary. Its values are independent and identically distributed (i.i.d).
Its mean value is constant in time and its autocorrelation function is a delta
function with correlation vanishing even for the smallest lag time. Looking
at the power spectrum of a white noise, it results flat with the power equally
distributed on all frequencies. A white noise is considered a good represen-
tation for thermal fluctuations. In fact, at equilibrium, thermal fluctuations
are not directional nor changing in time. In a gas or a liquid molecules move
randomly in all directions.

According to the central limit theorem, typical white noises are with a
Gaussian probability distribution, however white noises with other PDFs can
be observed.

2.2 Correlated Noises

In a correlated noise, at any time, a step in one direction is more likely
followed by a step in the same direction. In this way the autocorrelation
function is no longer a delta function but is positive also for lags larger than
the minimum. Correlated noises have the power in PSD that decreases at
the increasing of the frequency (see eq. 2.1) with the power exponent, β, that
is positive.

2.2.1 Red Noise

Red noise is the most famous coloured noise. It arises from the temporal
integration of a white noise and has a power exponent β = 2. Red noise is
also known as Brownian noise as an extension of the Brownian motion to
stochastic processes other than motion.

Brownian motion has been observed and described in details by the Scot-
tish botanist Robert Brown in 1827.3 He observed that, when a pollen grain
is placed on the surface of a liquid starts moving randomly. Physically Brow-
nian motion (BM) arises as the combined effect of all the collision between
liquid molecules and the particle. It is only after Einstein publication in 1905
that a unified theoretical explanation of Brownian motion was established.4

Autocorrelation function (ACF) for a red noise is exponential in linear
lag-time, as ACF (t) ∼ exp(−t/τ) and τ is the characteristic time.
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2.2.2 Pink Noise

The power exponent for a pink noise is β = 1. It can be considered the
integration of order 1

2
of a white noise. Sometimes pink noise is also known as

flicker noise, which actually is any noise with a power exponent 0.5 < β < 1.5.
Pink noises are commonly found in nature2,5 with a proven presence in

human cognition processes. The wide occurrence of pink noises is also due
the fact that, several red (Brownian) noises with different relaxation times
sums to a pink noise like time series.6 Caution has to be paid when analysing
signals in order to distinguish pink noises from similar processes.

The Hurst exponent shows a discontinuity for β = 1. H = 1 if computed
with Dispersional analysis and considering the process as the half-integration
of a white noise H = (β + 1)/2. H = 0 if pink is considered as half-
differentiation of red noise and using the relationH = (β−1)/2. In section 2.4
a wider explanation is given.

2.3 Anti-correlated Noises

In an anti-correlated noise, at any time, a step in one direction is more likely
followed by a step in the opposite direction. It is not completely random. The
autocorrelation function shows a negative peak for the minimum lag time.
Anticorrelated noises have a PSD with power that increases proportionally
to the frequency with power exponent β < 1.

2.3.1 Blue Noise

A blue noise is characterized by a power exponent β = −1. It can be con-
sidered the fractional derivative of order 1

2
of a white noise.

Blue noise characterizes image processing and vision with retina cells
arranged in a blue-noise pattern.7 For blue noises the Hurst exponent H = 0,
H = (β + 1)/2.

2.3.2 Purple Noise

Purple (or violet) noise has a power exponent β = −2, that is the power
density increases per octave with increasing frequency over a finite frequency
range. It can be considered as the derivative of a white noise. It has been
suggested that acoustic thermal noise of water in the Oceans has a violet
spectrum at high frequencies.8 Anticorrelation in purple noises is so strong
that for lag time τ = 2 the ACF shows a positive value before setting to zero
for larger lag times.
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2.4 Fractional Noises

Brownian motion can be described as the integer integral, in time, of a ther-
mal (white) noise. For a BM the average displacement,

√
⟨X2(t)⟩ are pro-

portional to tH with H = 1/2. Measurements of single particle trajectories in
crowded environment show that motion is not Brownian with H ̸= 1/2. One
of the way to describe anomalous diffusion is to use an extension of Brownian
motion in order to consider the slower(faster) motion of the particles.

Mandelbrot an Van Ness(MVN)2 proposed a family of Gaussian func-
tion that modifies ordinary Brownian motion calling it “fractional Brownian
motion”, fBm. Fractional Brownian motion can be defined as follow:

• define a Brownian motion B(t) and a parameter (Hurst) H, 0 < H < 1;

• Its increments dB(t) are from a Gaussian white noise W (t);

• fBm of exponent H is a moving average of W (t) with the past incre-
ments of B(t) weighted by a kernel (t− s)H−1/2

For an ordinary BM kernel exponent vanishes and no memory is retained. In
fBm increments retain memory either persistent H > 1/2 or antipersistent
H < 1/2 with a memory that can be infinite.

The equation of such process can be written as

BH(t)−BH(0) =
1

Γ(H + 1
2
)

{∫ 0

−∞

[
(t− s)H−1/2 − (−s)H−1/2]W0(s) ds

+

∫ t

0

(t− s)H−1/2W0(s) ds

}
(2.2)

with BH(0) = b0 that is the starting value. The second integral is the
Holmgren-Riemann-Liouville fractional integral, already proposed by Lévy
for fBm while the first integral is the Weyl integral that MVN proposed to
adjust the effects of the origin.2,9

For the process generated by equation (2.2) the increments BH(t + τ)−
BH(t) are stationary: the mean of increments is constant. The Hurst expo-
nent for fBm defines three families with different properties:

• For 0 < H < 1
2
the process is antipersistent with increments that are

anticorrelated;

• For 1
2
< H < 1 the process is persistent with increments that are

correlated;
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• H = 1
2
the process is ordinary Brownian motion and increments are

uncorrelated.

Persistency or antipersistency give information on the nature of the memory
of the process.9

Looking at the power spectrum of fBm, it shows a power exponent β > 1
indicating a strong positive correlation. β is related to the Hurst exponent
in the form

HfBm =
β − 1

2
(2.3)

Fractional Brownian motion, as ordinary Brownian motion, is not dif-
ferentiable, so an approximate method is used. As for ordinary Brownian
motion its “derivative” is a Gaussian white noise, for fBm the derivative
may be called fractional Gaussian noise, fGn.

fGn has spectral density equal to f 1−2H with βfGn = βfBm − 1. As a
consequence, the Hurst exponent becomes

HfGn =
β + 1

2
(2.4)

The differentiation/integration relationship between fBm and fGn implies
the facts that a fBm and its fGn have the same Hurst exponent and βfBm =
βfGn + 2.

In the analysis of a signal the methods used to estimate H differs whether
the signal is fBm or fGn. For fBm, usually Rescaled range analysis or gen-
eralized Hurst are used while, for fGn Dispersional analysis is the method of
choice.10

2.5 Langevin Equation and Coloured Noises

The Langevin equation is the simplest equation of motion that one can use to
reproduce a Brownian motion. It directly originates from Newton’s equation
of motion

m
dv

dt
= Ftot(t) (2.5)

where m is the mass of a spherical particle, v is the velocity and Ftot(t) is the
instantaneous force experienced by the particle. If the initial position and all
the terms contributing to the force are known, then the motion of the parti-
cle is predicted in time. An exact form for Ftot is impractically complicated.
Other than the friction forces slowing down the particle velocities, the colli-
sion between the particle and the surrounding fluid need to be considered in
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the equation of motion. This originates what is known as Langevin equation

m
dv

dt
= −ζv + δF (t) (2.6)

with −ζv friction force and δF (t) a fluctuating force. The introduction of
the fluctuating forces in eq. 2.6 allows to reproduce the mean square velocity
at thermal equilibrium ⟨v2⟩eq = kBT/m

In classical Langevin equation, fluctuations are assumed as instantaneous.
This correspond to a random force with uncorrelated variations or, in terms
of coloured noises, as a white noise.〈

δF (t)
〉
= 0,

〈
δF (t)δF (t′)

〉
= 2Bδ(t− t′) (2.7)

with B that is a measure of the strength of the fluctuating force. At equilib-
rium

B = ζkBT (2.8)

that is the Fluctuation-dissipation theorem. It relates the strength of the
fluctuating forces B with the magnitude of the friction ζ.11 Coupling the
forces with the friction coefficient results in what is called a thermostat that
maintains the energies of the system at values connected to the given tem-
perature.

A thermostat that is based on a white noise is typical for Markovian pro-
cesses and imply no memory.12 However, Markovian processes are only a sub-
set of all possible stochastic processes. In order to generate non-Markovian
processes, it is possible to use coloured noises in the thermostat.

The use of coloured noises introduces the effects of degrees of freedom
of the system that were excluded with white noises. In this way, Langevin
equation simulates not only Brownian motions but also anomalous diffu-
sion. Coloured noises posses memory, the history of the system influences it
present value either with a correlated force that speeds up motion or with
an anticorrelated force that slows down motion. In the first case the sys-
tem is said superdiffusive while in the second case the system is subdiffusive.
Anomalous diffusion, and so environmental noises other than white, gives
information about the properties of the environment like deep traps immo-
bilizing the diffusing particle in the case of subdiffusion.4,13

2.6 Applications of Coloured Noises

Generalized Langevin equation is one of the possible applications of coloured
noises, but 1/fβ noises are ubiquitous with applications, among the others,
in Molecular Dynamics, Biology, Physiology and Electronics.
Here I will present a short list of examples for each one of the previous fields.
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2.6.1 Noises in Molecular Dynamics

Molecular simulations investigate a variety of systems that exhibit stochastic
fluctuations other than white.

A widely studied system is the membrane protein aquaporin. This chan-
nel protein, involved in the transport of water molecules across cell mem-
branes, exhibits 1/f fluctuations. In particular, Yamamoto et al. 14 observed
that 1/f fluctuations of amino acids contribute to water transportation in
aquaporins. The effect of 1/f noises was also observed experimentally by
López et al. in a study on the ion channels in bacteria.15

A study on dynamic self-assembly by Lugli and Zerbetto shows how a
coloured noise can improve the catalytic activity of self-assembled nanopar-
ticles.16 In particular, they observed that, randomly changing the interaction
parameter for the self-assembly increases the reaction rate thanks to an higher
number of interaction between reactant and catalyst. The effect of coloured
noises is thought to be similar to the real behaviour in Nature where many
processes are affected or driven by stochastic fluctuations.

All this studies suggest that coloured noises are far from being rare with
a spreading from biomolecules to reactions.

2.6.2 Noises in Biology

Noises affect all biological processes from cellular level to population dynam-
ics. Other than being a disruptive factor, noise is the driving force for all
the cellular processes from gene expression to signalling to motility.17 The
stochastic variability introduced during the transcription processes in gene
expression is thought to play a central role in stress responses and survival
strategies of microorgansims.18

A remarkable example of noises as driving forces is in the antibiotic re-
sistance: some bacteria are antibiotic-resistant thanks to the presence of a
small number of slow growing cells (persisters) that are strongly resistant to
antibiotic. Their resistance is not due to a different genome but to the level of
expression of a particular antitoxine. Fluctuations in the level of expression
of this toxin above or below an effective threshold result in the coexistence
of normal and pesisiter cells. This helps the population to survive antibiotics
and spread again when antibiotics were removed.19

Fluctuations are also central in population evolution in ecosystems. Noises
act on the deterministic law for population evolution as the effects of the
environment. Changes in the environment results in a variation of the pop-
ulation equilibrium. Coloured noises are used to introduce correlations of
the environment in the model. For example, in noise-delayed extinction the
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environment fluctuations increase the population lifetime with respect to the
one predicted in the case of constant environmental conditions.20

2.6.3 Noise in Physiology

Many studies on brain activity observed a 1/f -like power spectrum using
different techniques, including electroencephalography (EEG), local field po-
tential (LFP) and functional magnetic resonance imaging (fMRI).

1/f brain activity, called arrhythmic activity, represents the majority of
the signal power in LFP, EEG and fMRI, nevertheless, it is less studied
than the brain oscillations. Despite it ubiquitous presence suggests a lack
of functional specificity, arrhythmic activity plays a central role in brain
functionality. In particular, it has different properties depending on the
different observed activity.

Among the studies on 1/f brain activity, a work by He et al. observed that
the scale-free brain activity in different arousal states posses a characteristic
scaling exponent for the different states.21 Other studies have demonstrated
that the power exponent can be modulated by sensory stimuli or task per-
formance.22,23

In order to have a wider view about coloured noises in brain activity
I suggest to the reader the short review by He 23 and the work by Toronov
et al. 24 The first is a perspective on the studies on the scale free brain activity
The latter gives an overview on different models for the brain processes and
makes a comparison with the results of experimental studies.

2.6.4 Noise in Electronics

Electric and electronic devices present a wide variety of noises.
Thermal fluctuations contribute to the current according to the Johnson-

Nyquist formula

⟨I2⟩ = 4kBTG∆f (2.9)

where ⟨I2⟩ is the mean-square noise current, kBT is the temperature in energy
units, G = 1/R is the conductance of the resistor, and ∆f is the measurement
bandwidth.25 The relationship depicted in equation 2.9 is crucial for the
design of all the electrical and electronic devices and it represent a baseline
for the noise level in an electric circuit.

Another noise present in a circuit is the 1/f noise. It is a rich source
of information about the device under study that cannot be extracted using
mean conductance data. Sources of 1/f noises are the trapping/de-trapping
processes of electrons or the scattering of electrons in metals.
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The quantization of charge carrier (the charge is transported by electrons)
generates the shot noise. It is due to the motion of independent electrons
through a barrier. Shot noise is a Poisson white noise.26

2.7 Synthesis of Coloured noises

Different methods can be used to numerically generate a stochastic time series
with prescribed properties, such as a certain Hurst or spectral exponent.
Generation methods can be divided in two classes: methods acting in the time
domain and methods acting in the frequency domain. Among those methods
I present spectral processing, as an example of method in the frequency
domain, and fractional calculus, as an example of method in the time domain.
Both methods, starting from a white noise of given probability distribution,
produces self similar time series with a predetermined β.

2.7.1 Spectral Processing

Spectral processing is a simple way to generate a coloured noise that acts in
the frequency domain. With spectral processing, a white noise is converted
to a coloured noise rotating its power spectrum.27,28

The basic procedure for spectral processing reads:

1. generate a pseudorandom white noise vector w(t) of the given length
with the desired probability distribution;

2. Generate the Fourier transform of the white noise using the Fast Fourier
Transform, W = FFT (w);

3. Multiply the complex spectral coefficients of the white noise by a power
law of the desired coloured noise, W ′ = Wfh where h = β/2;

4. Apply the inverse Fourier transform to obtain the coloured noise, y =
IFFT (W ′).

2.7.2 Fractional Calculus

Fractional Calculus (FC) is a time-domain method to generate coloured
noises based on the use of derivative and integrals. Red noises can be gen-
erated by integration of white noises, while purple noise con be obtained by
differentiation of white noises. Other colours can be generated using integrals
and derivatives of non-integer orders, that is using Fractional Calculus.29
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A coloured noise obtained by Fractional Calculus con be expressed as

Dνw(t) = Nβ (2.10)

whereD is the fractional operator, ν is the fractional order, N is the coloured
noise sequence and β is the power exponent. For ν < 0 eq. 2.7.2 describes
fractional integration, for ν > 0 describes fractional derivation. For ν integer
eq. 2.7.2 reduces to classical integration/derivation.

Different definitions of fractional derivatives and integrals exists, among
them Grünwald-Letnikov(GL), Riemann-Liouville, Caputo,etc,30 Here I in-
troduce the Grünwald-Letnikov (GL) definition.31

The GL definition for fractional derivative is given by

aD
ν
tw(t) = lim

h→0
h−ν

⌊ t−a
h

⌋∑
j=0

(−1)j
(
ν

j

)
w(t− jh) (2.11)

where a is a real constant which express a limit value, h is the discretization
step, and ⌊ t−a

h
⌋ is the floor function. The binomial coefficients are obtained

through the Euler’s Gamma function as(
ν

j

)
=

ν!

j!(ν − j)!
=

Γ(ν + 1)

Γ(j + 1)Γ(ν − j + 1)
(2.12)

Coloured noises are generated starting from a white noise of the given
probability distribution applying equation 2.7.2 for t = 0 to t = N .



Bibliography

[1] P. V. McClintock, Nature, 1999, 401, 23–25.

[2] B. B. Mandelbrot and J. W. Van Ness, SIAM Review, 1968, 10, 422–437.

[3] R. Brown, The Philosophical Magazine, 1828, 4, 161–173.

[4] R. Metzler and J. Klafter, Physics Report, 2000, 339, 1–77.

[5] P. Bak, C. Tang and K. Wiesenfeld, Phys. Rev. Lett., 1987, 59, 381–384.

[6] E. Milotti, Phys. Rev. E, 2005, 72, 056701.

[7] J. I. Yellott, Science, 1983, 221, 382–385.

[8] J. A. Hildebrand, Marine Ecology Progress Series, 2009, 395, 5–20.
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Chapter 3

Singular Spectrum Analysis

Introduction

Singular Spectrum Analysis (SSA) is a model-free technique that decompose
a time series into a sum of a small number of interpretable components like
a trend, oscillatory components and noise. According to Golyandina et al. 1 ,
the main methodological principle of SSA arises from multivariate geometry,
with the signal matrix projected into a new space of almost non-interacting
components. SSA incorporates elements from classical time series analysis,
multivariate statistics, multivariate geometry, dynamical systems, and sig-
nal processing. The origin of the technique dates back in the 1980s with
the seminal works of Broomhead.2,3 Since then, more than three thousands
articles on this topic were published mainly in Electrical and Electronic En-
gineering, Meteorology and Atmospheric sciences and Geosciences with an
increasing interest in the last decade with less than 100 articles published
in 2010 and about 300 in 2020 (Web of Science) Different monographs have
been published on this technique mainly form Golyandina et al.1,4 In its
original formulation SSA it is widely used in engineering, climate sciences,
economics and financial mathematics to decompose complex signals into a
set of elementary components.5–7 SSA is based on principal component anal-
ysis (PCA) in the vector space of the delayed coordinates for a time series.
We will see in Chapter 4 that PCA is performed in the vector space of the
multivariate data set. In the absence of a set of multiple measurements it
is not possible to perform PCA in order to extract meaningful components
of the signal. SSA circumvent this limit creating a vector space using the
time as generator. In this way, it is possible to apply a decomposition that
reduces the information contained in the signal.

Let us briefly explain the basic version of SSA. Basic SSA consist of four

45
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steps as follow. Given a time series S = (s0, s1, . . . , sn−1) of length N, it is
defined an integer window length L. Set K = N − L + 1 and define the L-
lagged vectors Xk = (sk−1, . . . , sk+L−2)

T , k = 1, 2, . . . , K, and the trajectory
matrix

H = (si+j−2)
L,K
i,j=1 = [X1, . . . , XK ]

Matrix H is a Hankel matrix, it has all the elements along the diagonal
i+ j = const that are equal. The second step is the singular value decompo-
sition (SVD) of the matrix H or, that is the same, the eigendecomposition
of the matrix A = HHT of size L × L. In this way we obtain a set of L
singular values. H can be represented as a sum of biorthogonal matrices Hi

that are related to the eigenvectors of A. The third step is the grouping of
the previous matrices in sets summing the matrices in the same set. The last
step is the diagonal averaging of the group matrices in order to obtain a new
time series from each group. This results in a decomposition of the original
time series S into a sum of series. The possibility to choose the number of
components in which decompose the signal makes SSA more flexible than
PCA, where the number of components is defined by the dimension of the
dataset.

In the next section I will explain the basic algorithm for SSA decomposi-
tion of a time series.
Section 3.2 introduces the algorithm for SSA decomposition applied to im-
ages.
Section 3.3 and 3.4 present variations of basic SSA. In the chapters of this
thesis devoted to practical application I will present projects in which SSA
has played a central role in obtaining results.

3.1 1D SSA

The simplest application of SSA is to the decomposition of a one-dimensional
time series.

3.1.1 Method

Consider a time series S = (s1, s2, . . . , sN) of length N > 2. Define a window
length L, (1 < L < N/2) and set K = N − L+ 1

Step 1: Embedding

The embedding maps the original time series into a trajectory matrix whose
columns are lagged version of the original time series. Given L, K lagged
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vectors are formed:

Xi = (si−1, . . . , si+L−2)
T , 1 ≤ i ≤ K,

which have length L. The trajectory matrix of S then is:

X = (xij)
L,K
i,j=1 =


s0 s1 s2 . . . sK−1

s1 s2 s3 . . . sK
s2 s3 s4 . . . sK+1
...

...
...

. . .
...

sL−1 sL sL+1 . . . sN−1

 (3.1)

The trajectory matrix presents equal elements on the skew diagonals i+ j =
const thus, the trajectory matrix is a Hankel matrix.

Step 2: Singular Value Decomposition

In this step the singular value decomposition of the trajectory matrix is
computed.
Let A = XXT be the correlation matrix of the trajectory matrix. It is a
square matrix of size L×L. Denote by λ1, . . . , λL the eigenvalues of A sorted
in decreasing order of magnitude (λ1 ≥ λ2 ≥ . . . ≥ λL ≥ 0) and by U1, . . . , UL

the eigenvectors of the matrix A corresponding to these eigenvalues.
If we define Vi = XTUi/

√
λi, then the SVD of matrix X can be written

as follows:
X = X1 + . . .+XL (3.2)

with Xi =
√
λiUiV

T
i . The collection (

√
λi,Ui,Vi) is called the ith-eigentriple

of the SVD.

Step 3: Grouping

With the SVD the original signal is expanded as stated in equation 3.2. In
this third step the expansion is partitioned in m disjoint subset I1, . . . , Im,
I = {i1, . . . , ip}. The resultant matrix XI of the group I is defined as

XI = Xi1 + . . .+Xip (3.3)

Step 4: Diagonal averaging or projection

The last step of Basic SSA transforms back the matrices from the grouping
step into a set of time series of length N. For this step exist two different
approaches: the one reported by Golyandina et al. 1 , based on the diagonal
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averaging of the matrix X and the one proposed by Vautard et al. 8 based
on the projection of the trajectory matrix onto the eigenvectors. Here I will
present both approaches.

Diagonal Averaging (Golyandina et al.) In the approach proposed
by Golyandina et al. the new series are obtained from the matrices XI (3.3)
by averaging on the skew diagonals. Given the matrix XI of shape L×K and
elements xij, 1 ≤ i ≤ L, 1 ≤ j ≤ K set L∗ = min(L,K), K∗ = max(L,K)
and N = L+K − 1. Let x∗

ij = xij. The matrix X is transferred to the series
g0, . . . , gN−1 by the formula:

gk =



1
k+1

k+1∑
m=1

x∗
m,k−m+2 for 0 ≤ k < L∗ − 1,

1
L∗

L∗∑
m=1

x∗
m,k−m+2 for L∗ − 1 ≤ k < K∗,

1
N−k

N−K∗+1∑
m=k−K∗+2

x∗
m,k−m+2 for K∗ ≤ k < N.

(3.4)

The equation 3.4 corresponds to averaging of the matrix elements over the
‘diagonals’ i + j = k + 2. This procedure is necessary because the grouped
matrices XI are not Hankel matrices, elements on the ‘diagonals’ are not
equals.

Projection (Vautard et al.) The method proposed by Vautard et
al. is based on the projection of the trajectory matrix on the space pro-
duced by the grouped eigenvectors like what is done in PCA (see Chapter4).
The equations presented here resemble those reported in Groth and Ghil 9

and used in popular implementation of SSA. The first step is the projection
of the trajectory matrix X onto the eigenbasis U producing the principal
components of the signal.

P = XU (3.5)

with P containing the principal components as columns.
In order to obtain the reconstructed components of X, an inverse transfor-
mation with respect to eq. 3.5 is necessary:

R = XUU′ (3.6)

or
RI = PIU

′
I (3.7)

with I = {I1, . . . , Im} RI is the matrix of the reconstructed component of
X related to the group I. The last step transforms back the reconstructed



3.1. 1D SSA 49

components matrix to a vector. This is done by averaging the skew diagonals
of RI :

gI(n) =
1

Ld

n∑
m=1

RI(m,n−m+ 1) (3.8)

series gI is the i-th component of the original time series.

3.1.2 Window length and decomposition

The window size L is the only parameter in the SSA decomposition and its
choice determines the performances of the entire process. As introduced in
section 3.1.1,the recommended range 1 < L < N/2 is due to the fact that,
for L > N/2, L and K change order of magnitude and the correlation matrix
becomes of size K × K with K < N/2. Except for the previous condition,
no further constraint exist on L. The choice of the window size depends on
the time series properties. In the presence of a periodic component a good
choice is to take L proportional to the period. A large value of L corresponds
to a detailed decomposition of the signal, but with the drawback of a trend
that is spread in a large number of components and contaminated by other
components. A small value of L is good for the extraction of the trend from
the signal, but it is limited in the ability of removing the noise from the
signal. A general rule for the choice of the window size does not exist and
the choice is made based on the purposes of the decomposition. In the book
by Golyandina et al. 1 and in10 an entire section is devoted to the discussion
of the choice of SSA parameters. Sometimes the basic SSA is unable to
produce good results. In section 3.4 I present the reasons for the fail of basic
SSA and some methods that try to overcome the problem.

3.1.3 Separability

The main purpose of SSA is the decomposition of a given series into a sum
of identifiable series such as a trend, periodic components and noise. SSA
succeeds at its purpose if the additive components are in different groups:
the eigenvectors in one group are orthogonal to the eigenvectors of the others
groups. In this case the series are weakly separable. If the eigendecomposition
of the main series can be grouped to obtain the trajectory matrices of the
sub-series then the series are strongly separable. Separability depends on
the size of the embedding window L. Adjusting L increases separability as
presented in Golyandina 11 .
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W-correlation Matrix

A measure of separability is given by the so called weighted correlation ma-
trix, w-correlation matrix. This matrix consists of weighted cosines of angles
between the reconstructed time series components and can be easily gener-
ated.

Defined L∗ = min(L,K) and K∗ = max(L,K) it is possible to define the
weights as

wi =


i+ 1 for 0 ≤ i ≤ L∗ − 1

L∗ for L∗ ≤ i ≤ K∗

N − i for K∗ ≤ i ≤ N − 1

(3.9)

and the inner product of two series S(1), S(2) as

(
S(1), S(2)

)
w
=

N−1∑
i=0

wis
(1)
i s

(2)
i (3.10)

If
(
S(1), S(2)

)
w
= 0, S(1) and S(2) are calledw-orthogonal. Separability im-

plies w-orthogonality. w-orthogonality can be expressed in the w-correlation
matrix where the inner products are normalized producing the weighted cor-
relation

ρ
(w)
12 =

(
S(1), S(2)

)
w

∥S(1)∥w∥S(2)∥w
(3.11)

where ∥S(i)∥w =
√(

S(i), S(i)
)
w
, i = 1, 2.

If the w-correlation is small in absolute value, then the two series can be
consideredw-orthogonal, otherwise, if it is large, the series are not orthogonal
and therefore badly separable.

Looking at the w-correlation matrix one can find groups of correlated
series components and use them for the grouping. If two components are
correlated, usually they belong to the same signal. If this is not true, the
two series are not separable using the given embedding window.

3.2 2D SSA

A first example of bidimensional implementation of SSA is in Golyandina
et al. 12 where they apply 2D-SSA to a digital terrain model.12 Other appli-
cations of 2D-SSA is in the analysis of hydrological data and in processing of
hyperspectral images. As its monodimensional version, bidimensional SSA is
based on the Singular Value Decomposition of a trajectory matrix. In bidi-
mensional case this matrix is in the form of an Hankel-block-Hankel matrix
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and it is generated from the 2D array corresponding to the input signal. Here
we report a brief explanation of the method. A detailed implementation of
2D-SSA is presented in Golyandina and Usevich 13 .

3.2.1 Method

As for basic SSA, also 2D-SSA can be divided in four steps. Only step 1
and 4 differ from the 1D version. Let consider the input greyscale image as
a 2D-array of Nr rows and Nc columns

P =


p(1, 1) p(1, 2) · · · p(1, Nc)
p(2, 1) p(2, 2) · · · p(2, Nc)

...
...

. . .
...

p(Nr, 1) p(Nr, 2) · · · p(Nr, Nc)

 (3.12)

Define the window sizes (Lr, Lc) with 1 ≤ Lr ≤ Nr; 1 ≤ Lc ≤ Nc; 1 <
LrLc < NrNc. Set Kr = Nr − Lr + 1; Kc = Nc − Lc + 1 and K = KrKc

Step 1: Embedding

At this step, the input 2D-array is arranged into a Hankel-block-Hankel
(HbH) matrix corresponding to the trajectory matrix. To build the HbH
matrix the columns are arranged in a set of 2D matrices

Hi =


p(1, i) p(2, i) · · · p(Kr, i)
p(2, i) p(3, i) · · · p(Kr + 1, i)

...
...

. . .
...

p(Lr, i) p(Lr + 1, 2) · · · p(Nr, i)

 (3.13)

1 ≤ i ≤ Nr. Then the matrices are arranged in a HbH matrix:

HbH = W =


H1 H2 · · · HKc

H2 H3 · · · HKc+1
...

...
. . .

...
HLc HLc+1 · · · HNc

 (3.14)

Step 2: Singular Value Decomposition

The SVD is applied to the HbH matrix obtaining the eigenvalues and the
eigenvectors of the correlation matrix of W, WWT .

W =
d∑

1=1

Wi =
d∑

i=1

√
λiUiV

T
i (3.15)
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with λi, . . . , λd eigenvalues in decreasing order of magnitude, Ui, . . . , Ud

eigenvectors and Vi, . . . , Vd factor vectors. Vi = WTUi/
√
λi. The set

(λi, Ui, Vi) is called the i-th eigentriple.

Step 3: Grouping

Grouping is the most important step of SSA and determines the properties of
the reconstructed components. In this step the eigentriples form the previous
step are grouped in M disjoint groups based on their properties, M ≤ LrLc.

W =
M∑
k=1

WIk (3.16)

with WI =
∑

i∈I
√
λiUiV

T
i and I1 ∪ I2 ∪ . . . ∪ Im = {1, . . . , d}.

Step 4: Projection

In order to obtain a decomposition of the input array a projection step is
necessary moving back from a set of 4D objects to a set of 2D-arrays corre-
sponding to the reconstructed images.

Let us explain in details the projection algorithm. Take one of the ma-
trices from the previous step:

WI =


W1,1 W1,2 · · · W1,Kc

W2,1 W2,2 · · · W2,Kc

...
...

. . .
...

WLc,1 WLc,2 · · · WLc,Kc


where Wi,j are Lr ×Kr blocks.

For the signal reconstruction, WI and Wi,j have to be Hankel matri-
ces. To make the Hankel matrices two sequential averaging procedures are
necessaries:

1. ‘Within block’ hankelization. Averaging (k,l)-entries ofWi,j with k+l =
s, 1 ≤ s ≤ Nr to make a matrix with Hankel blocks W′

i,j:

W′
I =


W ′

1,1 W ′
1,2 · · · W ′

1,Kc

W ′
2,1 W ′

2,2 · · · W ′
2,Kc

...
...

. . .
...

W ′
Lc,1

W ′
Lc,2

· · · W ′
Lc,Kc

 (3.17)
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2. ‘Between block’ hankelization. Averaging the blocksW′
i,j with i+j = s,

1 ≤ s ≤ Nc to make Hankel the blocks obtaining an Hankel-bolck-
Hankel matrix

W̃I =


H̃1 H̃2 · · · H̃Kc

H̃2 H̃3 · · · H̃Kc+1
...

...
. . .

...

H̃Lc H̃Lc+1 · · · H̃,Nc

 (3.18)

reverting step 1 the reconstructed images are obtained.

For the practical implementation of the algorithm, the grouping step has
been performed after step 4. Each component will produce an output that is
subsequently summed with other components in order to obtain the proper
grouping.

3.3 Circulant SSA

Here I want to introduce a method that differs from basic SSA: Circulant
SSA. It has been introduced by Bógalo in 201714 and developed by the same
group in two articles Bógalo et al. 2018,15 2021.16

This method is not based on the SVD of the trajectory matrix but on
the use of a circulant matrix (the Fourier matrix) for the decomposition.
The advantage of using the Fourier matrix is that the signal is decomposed
in band of frequencies with the reconstructed components ordered in term
of frequency and not of magnitude of the associated eigenvalue. Sorting
the components in terms of frequency enable an automatic extraction of the
signal.

The method proposed differs from basic SSA in step 2 and 3. Let discuss
Circulant SSA in details.

Step 2: Decomposition

In basic SSA the decomposition step is based on the SVD of the trajectory
matrix or on the eigendecomposition of the covariance matrix. In Circulant
SSA the eigendecomposition is applied to a circulant matrix (in a circulant
matrix every row is a right cyclic shift of the row above) whose elements are
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a scaled form of the sample second moment.

SC =


ĉ0 ĉ1 ĉ2 · · · ĉL−1

ĉL−1 ĉ0 ĉ1 · · · ĉL−2
...

...
...

. . .
...

ĉ1 ĉ2 ĉ3 · · · ĉ0

 (3.19)

ĉm =
L−m

L
γ̂m +

m

L
γ̂L−m m = 0, 1, . . . , L− 1 (3.20)

γ̂m =
1

T −m

T−m∑
t=1

xtxt+m (3.21)

In equation 3.20 {γ̂m}L−1
m=0 are the sample second moments defined as in

equation 3.21. The diagonalization of SC produces the eigenvalues λ̂k that are
associated to the k-th frequency wk = k−1

L
, k = 1, . . . , L. They correspond

to the power spectral density evaluated at frequency wk. The analytical form
for the eigenvalues is:

λ̂L,k =
L−1∑
m=0

ĉmexp

(
i2πm

k − 1

L

)
(3.22)

and for the associated eigenvectors is:

uk = L−1/2(uk,1, . . . , uk,L)
′ (3.23)

with uk,j = exp
(
−i2π(j − 1)k−L

L

)
for k = 1, . . . , L.

Step 3: Grouping

The power spectral density is symmetrical so λ̂k = λ̂L+2−k Their correspond-
ing eigenvectors given by 3.23 are complex, therefore, they are conjugated
complex by pairs, uk = u∗

L+2−k with u∗ complex conjugate of u. In order to
reconstruct the signal, the reconstructed matrices must be real. This is done
using the conjugate transpose of the eigenvectors instead of the transposed
as in equation 3.6.

Xk = uku
†
k (3.24)

Due to the pairs of complex conjugate vectorsXk andXL+2−k can be grouped
producing a new elementary matrix that contains all the contribution at
frequency band k for k = 2, . . . ,M with M = ⌊L+1

2
⌋

XBk
= Xk +XL+2−k

= uku
†
kX+ uL+2−ku

†
L+2−kX

= (uku
†
k + u∗

ku
′
k)X

= 2(Ruk
R′

uk
+ Iuk

I ′uk
)X

(3.25)
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where Ruk
denotes the real part of uk, Iuk

its imaginary part and u† the
conjugate transpose of u. Bk denotes the grouping Bk = {k, L + 2 − k}
for k = 2, . . . ,M , B1 = {1} and BL

2
+1 =

{
L
2
+ 1

}
if L is even. After this

procedure XBk
are real matrices that can be used in the last step of SSA.

3.4 New SSA methods

Basic SSA relays only on the parameter L. This can be a limit. Very long
noisy time series or time series with a variable content are poorly extracted
and decomposed if processed at once. In fact, using a big embedding window
spreads the trend over a large number of components and is computationally
expensive; on the other side, a small window has good performances for
region with low noise intensity but is unable to remove it in region with high
noise intensity.

If the trend has a complex shape, a large number of components is needed
for reconstruction, this can be a problem if the last components of the trend
contain not only the trend but also other components.

In this section I introduce a segmentation approach and an iterative pro-
cedure that can improve the performances of SSA solving that issues.

3.4.1 Windowed (Overlap) SSA

The easiest way to deal with a very long series is to chop it and work with
the shorter segments produced. In this way not only SSA computational
cost is reduced but also the time-frequency characterization of the signal is
improved.17

A pure segmentation approach has been proposed by Rekapalli and Ti-
wari 18 . In their work, a long time series containing data on the surface air
temperature has been divided into seven window before applying SSA de-
composition. The processed segments are then joint in order to reconstruct
the entire length of the original series. As pointed out in Leles et al. 19 , in the
approach proposed by Rekapalli and Tiwari 18 there is not treatment for the
boundary effects arising at the union of consecutive segments.19 The solution
proposed by Leles is to use not a set disjointed segments, as in Rekapalli, but
a set of overlapping segments.17,19 With the overlap, the overlapped region
are computed twice: once in the right segment and once in the left segment.
In this way the points at the junctions are inner points and do not suffer for
border effects. The reduction of border effects is due to the fact that the
surroundings of the junction point are almost the same in the left and right
segment.
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If the properties of the signal strongly changes from one segment to the
following, the border effect are small but still noticeable. In order to reduce
the gap between one segment and the other I propose a new way to join
segments. In particular, I have changed the kind of junction: from one point
to a region. In this way, the transition between the two segments becomes
gradual. Let define xT the transition point, SL the segment on the left of xT

and SR the segment on the right. In the approaches by Rekapalli and Leles
the jointed signal S is:

S(x) =

{
SL(lx) for x < xT

SR(rx) for x ≥ xT

(3.26)

with a discontinuity at x = xT .
In my approach with a transition region, the problem of a discontinuity

is removed. In fact, there is a gentle transition between one segment to the
other through the transition region. If NT is the number of points involved
in the transition region:

S(x) =


SL(lx) for x ≤ xT − NT

2

(1− wix)SL(lx) + wixSR(rx) for xT − NT

2
< x < xT + NT

2

SR(rx) for x ≥ xT + NT

2

(3.27)
with ix = {1, . . . , NT − 1} and w = 1

NT
.

lx, rx indices in the left (right) segment that correspond to the index x in
the entire signal.

3.4.2 Iterative Trend Extraction SSA (ITE-SSA)

For a signal with a sharp trend, basic SSA acts as a smoothing. This can
be a problem if we want to preserve the shape of the signal. The use of
a large window increases the computational cost and spread the trend in
many components producing a suboptimal decomposition. A small L easily
extracts the gentle trend from the signal but completely fails to extract the
other features of the signal.

In this section I propose a new iterative procedure that improve the ex-
traction of the trend from the signal. In this procedure, after each SSA
decomposition, the first reconstructed component is stored while the other
components are grouped and undergo a new cycle of SSA. The reconstructed
signal then is the sum of all the first components. In this way at each itera-
tion the signal is concentrated in the first component while the noise remains
in the other components. A pseudo code for the procedure is given in Algo-
rithm 1
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Algorithm 1 Iterative trend extraction SSA

Require: Series X, window length L and iterations number C
Ensure: Complete extraction of the low frequency signal from the raw signal
1: Decompose the signal X using basic SSA (Section 3.1.1)
2: S← g1

3: Y ←
L∑
i=2

gi

4: c← 2
5: while c ≤ C do
6: Decompose Y using basic SSA
7: S← S+ gY

1

8: Y ←
L∑
i=2

gi

9: c← c+ 1
10: end while
11: Return S

The number of iterations C has to be selected empirically in order to
make S matching the expected properties.

Improvement

If the signal is strongly contaminated by noise, basic SSA should be unable to
completely recover the signal. In basic SSA components are sorted according
to their prevalence in the mixture, this does not assure that all signal com-
ponents appear before noise ones. If some noise components precede signal
ones, then part of the signal is lost or, in order to recover all the signal, part
of the noise is included.

To overcome this shortcoming, I propose to apply after the ITE-SSA, a
small number of refinement cycles of ITE-SSA with circulant SSA instead
of basic SSA. In CiSSA components are sorted according to their frequency
and not by their prevalence, this assure a univocal sorting of the components.
Introduced in the iterative trend extraction, CiSSA extracts from residuals
the components of the signal that weight less that the noise. In this way all
the signal is reconstructed.
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Digital Signal Processing, 2018, 77, 63–76.

[18] R. Rekapalli and R. K. Tiwari, Journal of Geological Resource and En-
gineering, 2014, 2, 167–173.

[19] M. C. R. Leles, J. P. H. Sansão, L. A. Mozelli and H. N. Guimarães,
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Chapter 4

Principal Component Analysis

Introduction

Principal Component Analysis (PCA) is crucial technique in multivariate
data analysis. PCA has the objective to make a dataset more readable. This
can be done searching for the most meaningful basis to re-express the dataset.
The change of base allows also for a reduction of the system dimensionality.
The axes of the new bases that do not contain information about the process
are dropped or, in other word, only the directions containing the majority of
the information are used to re-express the data.

The first idea of PCA appeared in 1901 in the work of Pearson1 in which
he introduced a method of lines and planes to rationalize a dataset. Fur-
ther developments of the method were done by Hotelling in 1933.2,3 It is
after Hotelling that PCA received its name. Since then, PCA has gained
interest in many diverse scientific fields, often with a different name. Among
them, Singular Value Decomposition (SVD) and Karhunen-Loéve expansion
are often used to refer to PCA. The main fields of application of PCA are
Engineering, Computer Sciences, Biological Sciences and Analytical chem-
istry with more than 10000 articles per year published in the last ten years
(Scopus).

In this chapter I present PCA starting from its history then I introduce
the basic method for PCA and some properties.
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4.1 Basic PCA

4.1.1 History

Pearson

The first idea of PCA proposed by Pearson in 1901 was a method of “best
fitting” that can be used to represent a set of points in plane or space using
the “best fitting” line or plane.1 In his seminal work he used the Least squares
method to define the best line or plane that fits a dataset. He proposed also
a geometrical interpretation using what he calls “ellipsoid of residuals” . He
defined the ellipsoid of residuals and the correlation ellipsoid, then he express
the properties of the best-fitting plane and line in terms of the correlation
ellipsoid. Using the relation between the two ellipsoids he observed that
the directions of independent variation and the standard deviation of the
independent variables may be found from the ellipsoid of residuals. The use
of the ellipsoid of residuals involves a much simpler arithmetic with respect
to the use of the correlation ellipsoid.1

Hotelling

It is in the works of Hotelling that the method of principal component analysis
starts developing.2–4 In his 1933 work he shows the first examples of the use
of PCA in order to reduce the dimension of a dataset.2,3 In the same work
he proposed a recursive method to compute the principal components sorted
in terms of their weights in the dataset. With that method one can compute
PCs until the desired amount of information is extracted from the dataset.3

4.1.2 Method

The main context for the application of PCA is in the reduction of dimension-
ality of a dataset with observation on many different variables. The method
proposed in this section is inspired by Jolliffe and Cadima 5 .

If we define m the number of variables and n the number of observations,
we have a set of m vectors of length n x1, . . . ,xm that can be seen as a matrix
X of shape n ×m whose columns are the observation of the variables. The
first way we can use PCA is to search for a new basis of the dataset that is
orthogonal. PCA searches for a linear combination of the original basis set
that is orthogonal.

Y = PX (4.1)

with P is the combination matrix. In order to obtain advantages from the
change of bases, PCA searches for a linear combination that maximize vari-
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ance. In this way the information content is preserved. In Pearson’s defini-
tion of PCA this is done finding the line or plane that best fit the data.1 It
is possible to extract all the m orthogonal components of the dataset in a
recursive way:

1. Select a normalized direction in n-dimensional space that maximize the
variance of X. Save the vector as p1.

2. Find another direction, orthogonal to the previous direction, along with
the variance of residuals is maximized. Save the new vector as pi

3. Repeat until m vectors are selected.

The resulting set P = {p1, . . . ,pm} contains the principal components of the
dataset.

Maximizing the variance of a vector means that the autocovariance is
maximum and the covariance with the other vectors is zero. A matrix of this
form is diagonal. Starting from this property we can use a linear algebra ap-
proach that considers the linear combination that diagonalize the covariance
matrix of the dataset. A diagonal covariance matrix, CY, assure that the
basis vectors are orthogonal and the variance is maximized

CY =
1

n− 1
YYT (4.2)

where Y is an (n×m) matrix with Y(i,j) = xij − x̄j, x̄j mean for the variable
j.
If we express CY in terms of P we have:

CY =
1

n− 1
YYT

=
1

n− 1
(PX)(PX)T

=
1

n− 1
PXXTPT (4.3)

=
1

n− 1
P(XXT )PT

CY =
1

n− 1
PAPT (4.4)

with A that is symmetric. We can then diagonalize A as follows

A = EDET (4.5)
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where D is the diagonal matrix of eigenvalues and E is the matrix of eigen-
vectors. If we take P = E, then we can re-express CY:

CY =
1

n− 1
P(PTDP)PT

=
1

n− 1
(PPT )D(PPT ) (4.6)

=
1

n− 1
(PP−1)D(PP−1)

CY =
1

n− 1
D (4.7)

using the property PT = P−1. In this way we have proved that the nor-
malized eigenvalues of XXT are the variance of X. The products of the
eigenvectors Xpk are the principal components of X

In standard PCA terminology, the elements of the eigenvectors pk are
called PC loadings, whereas the elements of the linear combinations Xpk are
called PC scores, as they are the values that each individual would score on
a given PC.

SVD

Another way to express PCA is through the singular value decomposition
(SVD) of X.

X = USVT (4.8)

whereX is the n×m matrix of the measurements, U is an (n×m) orthogonal
matrix of the left singular vectors, S is the diagonal matrix of the singular
values and V is an (m× n) orthogonal matrix of the right singular vectors.
The right singular vectors correspond to the eigenvectors of the square matrix
covariance matrix.

proof : Consider XTX

XTX = VSTUTUSVT = VS2VT (4.9)

In this way the eigenvalues of the covariance matrix are equals to the square
of S

Assumptions and Limits

The PCA method discussed above starts from strong assumption and has
some limitations. The first assumption is linearity. It considers the dataset
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as a linear combination of independent processes.
The second assumption is that the probability distribution of the data is
considered fully described by mean and variance. This is not always true. In
this case the decomposition leads to unsatisfactory results.
The sorting of PCs is based on the associated variance, this is possible if
the assumption that large variance correspond to high information content
is true.

4.1.3 PCA Reconstruction

Using the principal components it is possible to reconstruct the dataset using
only a selected set of PCs in order to remove the unwanted information. The
reconstruction is done projecting the dataset onto the PCs

X̂ = PX̃+ µ = X̃WW
T
+ µ (4.10)

with X̃ matrix of the centered and normalized signal, µ vector of the means,
P matrix containing the selected PCs and W matrix of the corresponding
eigenvectors organized as columns.

X̂ differs from X due to the different information content. The differ-
ence X− X̂ is called reconstruction error, or residuals, and accounts for the
information content that is not included in the reconstructed signal.

4.1.4 Implementation

In the sections above I have presented the main properties of PCA. In this
section I make a summary on how to apply PCA on a real dataset.

Step 1: Preprocessing

For an optimal performance, PCA needs that the variables in the dataset
contribute equally to the analysis. To assure this, each variable is centered
and normalized.

X̃′ = X− µv (4.11)

X̃ = X̃′/σv (4.12)

Step 2: Covariance matrix computation

The standardized dataset is used to compute the covariance matrix between
the different variables. In this way we obtain a (m × m) square matrix.
Covariance matrix is symmetric.
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Step 3: Eigendecomposition

The covariance matrix is diagonalized in order to maximize the variance and
minimize the correlation between the variables. This step produces a set of
m eigenvalues that are sorted in decreasing order of magnitude. In this way
we have a unique way to express the decomposition with the eigenvectors
ordered by their significance.

Step 4: Selection of the PCs

From the set of eigenvectors, only those associated with the desired level of
variance are selected to represent the dataset.

Step 5: Reconstruction

The set of selected PCs is used to build the new dataset using the equation
proposed in subsection 4.1.3. In this way a new dataset containing only the
information enclosed in the selected PCs is obtained.
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Chapter 5

SSA and XRD

Introduction

Crystals play a key role in materials science with new properties arising from
their structure. Knowing or predicting the crystal structure of a solid is
of great importance in order to rationalize its properties and design new
materials.

Among the numerous techniques available for solid state analysis, X-ray
diffraction (XRD) is the method of choice for crystal structure determination,
in particular, single crystal diffraction. Unfortunately, single crystals are
not available for many materials and the structure determination relays on
powder diffraction methods.

In a collaboration with professor Giuseppe Falini of Biocrystallography
and Biomineralization group in our department and the group of profes-
sor Boaz Pokroy form the Department of Materials Science & Engineering,
Technion-Israel Institute of Technology (Haifa, Israel), we developed a pre-
processing technique to improve the quality of diffractograms for structure
resolution. In particular, a novel recursive application of Singular Spectrum
Analysis has been used in order to remove the background from our samples
retrieving the majority of diffraction information.

5.1 Powder X-ray diffraction and Structure

Determination

5.1.1 Diffraction

In crystals, atoms or molecules are arranged in a three-dimensional periodic
structure. It is this lattice that plays a central role in diffraction. When
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X-rays, whose wavelength similar to the lattice distances, are incident on
a crystal, interact in different ways: they can be scattered with exactly the
same wavelength (elastic scattering), or with a small loss of energy (Compton
scattering); other photons can be absorbed causing photoelectric effects.1

Looking at the total intensity of the scattered X-ray beam, IT , it is composed
of several parts

IT = IE + IC + IMC + IBG

where IE is the elastic scattering, IC Compton, IMC the multiple scattering
and IBG the background intensity.2The elastic scattering for a crystal is not
diffuse in all directions but it is arranged in a regular pattern that is related to
the crystal lattice. Lattice in fact acts as interference grid with the position
of diffraction spots that depends on the crystallographic distances according
to the Bragg’s Law3

λ = 2dhkl sinΘ (5.1)

where λ is the wavelength, Θ is the diffraction angle and dhkl is a normalized
distance between crystallographic planes.

For a single crystal Bragg’s law results in a grid of spots, called reflections
that generate the reciprocal lattice. It is the Fourier transform of the crystal
lattice. Given a set of randomly oriented crystals, reciprocal lattices are
also oriented randomly resulting in a sequence of concentric bright circles,
remember the dependence on Θ (eq. 5.1). In powder X-ray diffraction, X-ray
intensity is measured along a line producing a diagram Intensity vs diffraction
angle Θ.4

5.1.2 X-ray Sources

The typical X-ray source is the Sealed-tube, a glass tube under vacuum with
two electrodes. When a very high voltage is applied through the electrodes
a flux of electrons is generated. The electrons hit the anode and lose energy
producing a continuous spectrum of X-rays known as white radiation. If the
energy of electrons is higher than a threshold (that depends on the metal
anode), a second spectrum, named characteristic radiation, is obtained. It is
caused by electrons being knocked out of the K shell of an atom and then the
electrons from the L shell cascading down into the vacancies in this K shell.
The energy emitted in this process corresponds to the so-called K alpha and
K beta lines.4,5 A system of slits then selects the line and focus the beam.

The wavelength and intensity of this radiation are limited by the metal
used for the anode and the electric potential applied to the tube. Another
defect of conventional X-ray generators is that radiation is not focused and
coherent. In order to solve this issue, in the 1980s, scientist started to use
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synchrotrons as generators of bright X-rays. In synchrotrons, X-rays are
produced using the property of accelerated electrons: when they change di-
rection they emit energy. In this way, a strong pulse of highly coherent and
monochromatic X-rays is produced.4 6

The use of synchrotron X-rays opened up the possibility to study new
specimens with particular interest in unstable or small crystals that are im-
possible to study with traditional sources.

5.1.3 Rietveld method

The Rietveld method generates an analytical representation of a powder
diffractogram.7 This is extremely useful for quantitative phase analysis where
we are interested in the amount of each phase in the mixture. The idea
behind the Rietveld method is simple: Instead of analyzing the integrated
peak intensities from a powder pattern in a single crystal-like fashion, the
entire information content of a powder pattern is fitted with a model whose
parameters are refined using a least squares procedure to optimize the fit.
In this way it is possible to account for the accidental or systematic overlap
of some reflections typical of powder diffractograms. Given a powder with p
phases, the expression for the intensity (Yc), used in the Rietveld method is

Yc(s) = BKG+
∑
p

Sp

(∑
hkl

m|FT |2I C
)

(5.2)

where s = 2 sinΘ/λ, λ wavelength; BKG is a smooth function reproducing
the background; Sp is a scale factor typical for each phase; m multiplic-
ity; |FT |2 square of the structure factor; C correcting factors; I line profile
function.8 The value of the difference Yo(s)− Yc(s) is then minimized.

In order to obtain a set of parameters with a physical meaning it is nec-
essary to set the initial guess according to an hypothetical crystal structure.
Many different method exist for structure determination from powder diffrac-
tion working in reciprocal (diffraction) space and in direct (crystal) space. In
David et al. 9 a comprehensive review on the different methods for structure
determination. All this method should be applied before Rietveld in order
to define the initial guess.10

5.2 Method

Looking at a powder X-ray diffractogram (Figure 5.1a), it presents a sequence
of sharp peaks of different height and width emerging from a fluctuating
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background that increases its intensity at increasing diffraction angles. For
this reason, small diffraction peaks may be covered by noise, especially at high
angles, making difficult to solve the crystal structure. The peak position is
one of the most important parameter for the structure determination and it is
determined by the crystal lattice. Using also peaks of higher order increases
the quality of the final structure.

In order to solve a structure using a powder diffractogram it is necessary
to reduce the amount of noise. This is usually done averaging over a set
of different measurement on the same sample. Another way should be the
direct subtraction of the noise, but it needs a good model for the noise that
it is not available.

Singular Spectrum Analysis (SSA) is a non-parametric technique that
decomposes a signal into a set of interpretable components, namely a trend,
periodic components and noise. In the case of powder x-ray diffractograms,
the signal has a complex form with sharp peaks that are difficult to recon-
struct.

In order to apply SSA to XDR it is necessary to consider that:

1. the signal has a complex form;

2. usually the diffractogram is a long series N ≃ 104;

3. the content of the signal changes for the different region with the noise
that increases in amplitude at the increasing of the diffraction angle;

4. some noise components can lead the components of the diffractogram.

All these considerations may prevent the application of SSA in an automatic
way to XRD. We developed a new procedure that introduces the use of SSA
in denoising of XRD.

Our procedure starts slicing the original series in a set of overlapping
windows. Each slice is then processed individually using Iterative Trend Ex-
traction SSA (ITE-SSA). In this method, the signal is reconstructed applying
iteratively basic SSA to the residuals after storing the first component. In
section 3.4.2 ITE-SSA is presented in details.

For SSA decomposition we used a fixed embedding window and changed
the number of iteration for each slice. The number of iteration was set
empirically as the maximum number of iteration before the introduction of
noise in the reconstructed signal. If, at the end of iterations, residuals still
contain signal, a small number of iteration using CiSSA should be applied.
The reason is that CiSSA sorts components according to their frequency
and not according to their weight. In this way, signal components, usually
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containing low frequencies, precede the noise ones and can be easily extracted
in an automatic procedure.

The reconstruction of the entire diffractogram is obtained joining the
different slices with a smooth transition between two adjacent slices. The
smooth transition is done using a weighted average for the 100 points around
the transition point with the weight of the left slice decreasing and the weight
of the right slice increasing

XRDi =


XRDLi

for i <= t− 50

XRDLi
∗ (1− j) +XRDRi

∗ j for t− 50 < i < t+ 50

XRDRi
for i >= t+ 50

(5.3)

with j = (i− (t− 50)) /100, t index of the transition point, XRDL left slice,
XRDR right slice. In this way discontinuities at the end of each section are
smoothed out and the reconstructed signal looks continuous. The overlap
between adjacent windows is necessary to avoid border effects that distort
the reconstructed signal.11

5.3 Results and Discussion

We tested our method on different sets of powder diffractograms recorded at
ESRF in Grenoble.

5.3.1 First Set

The first set consists of a diffractogram of hydroxyapatite sample. It was
recorded at room temperature, vscan = 5deg /min, wavelength: 0.4 Å. with
an angular resolution ∆Θ = 0.001◦. The total number of points, N , is
N = 32913 The diffractogram is an average over 3 runs recorded with the
same settings.

In figure 5.1a it is shown the given diffractogram. We can see how noise
fluctuations increase for increasing values of 2Θ. Figure 5.1b presents the first
attempt to denoise the diffractogram. We applied SSA on the entire dataset
using an embedding window L = 329, a tenth of the diffractogram length.
For the reconstruction only the first 10 components were used. Applying
SSA on the entire diffractogram has the disadvantage that the content of
each component changes changing the diffraction angle.

In order to avoid big differences in the content of SSA components, we
divided the diffractogram in a set of overlapping windows and then we applied
SSA on each of them. In this way, it is possible to tune both L and the number
of components used for reconstruction.
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Figure 5.1: HRPXRD for Hydroxiapatite: (a) raw diffractogram for Hydrox-
iapatite; (b) denoised diffractogram using SSA on the entire series (L = 329,
the first 10 components are used for reconstruction); (c) denoised diffrac-
togram applying SSA on windowed signal.The original signal has been di-
vided into 4 overlapping segments and reconstructed using a different number
of components for each segment.
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Figure 5.2: Comparison between the denoised diffractogram applying SSA
on the entire signal (orange line) and on overlapping segments (green lines).
We can notice that the latter approach removes also the fluctuations in the
last part of the signal while SSA applied on the entire signal does not.

In figure 5.2 we show a comparison between our method and SSA applied
on the entire SSA. In the inset it is evident how our method improves the
reconstruction of the diffractogram also for high diffraction angles.

5.3.2 Second Set

The second set contains diffractograms for two Vaterite samples obtained
at different scan rate. The measurement were carried at room temperature,
wavelength: 0.4 Å. with an angular resolution ∆Θ = 0.005◦. The scanning
rate is changed from vscan = 5deg /min to vscan = 25 deg /min with step of
5 deg /min

Due to the low angular resolution, the embedding window has to be small
in order to reduce smoothing effects. Using a small window has the disadvan-
tage that signal and noise are poorly divided. Our iterative method improves
the reconstruction extracting more information than basic SSA.

In Figures 5.4 and 5.5 we show the results of this method of reconstruc-
tion. Looking in particular at Figure 5.5c,d we notice that reconstruction is
not complete, with a big amount of information left in residuals.
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Figure 5.3: HRPXRD for Vaterite: (a) Vaterite sample 1; (b) Vaterite sample
2. The plot is an average over 5 runs with the same experimental setup for
each angular speed. At the increasing of the angular speed, the amplitude of
noise increases.
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Figure 5.4: Iterative Trend Extraction SSA applied to HRPXRD for Vaterite:
(a) Vaterite sample 1; (b) Vaterite sample 2. For each angular speed the
average reconstructed signal is plotted with the standard deviation area.
The reconstructed signal is similar for the different scan speeds. The inset
zoom shows that, increasing the scan speed, the signal extracted decreases.
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From this result we conclude that iterative application of SSA, as ITE-SSA,
are not enough for a good reconstruction in an automated way.
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Figure 5.5: Vaterite HRPXRD denoised using ITE-SSA, L = 64. The num-
ber of cycles depends on the section of the signal. (a) Vaterite sample 2
recorded at Vang = 25 deg /min; (b) Vaterite sample 2 recorded at Vang =
5deg /min. Using ITE-SSA the signal is reconstructed, but a large amount
of signal remains in the residuals as shown in (c) for Vang = 25 deg /min and
in (d) for Vang = 5deg /min. The higher the scanning speed the greater the
amount of signal left.

The bigger problem for an automated reconstruction process is that pe-
riodic components come before components containing information of the
peaks in the decomposition sequence making the selection of components
not automatable.

Circulant SSA (CiSSA) decomposes a given signal according to the Fourier
matrix generated by the embedding window. In this way, components are
sorted by frequency and not according to the magnitude of their eigenvalue
making automatic reconstruction easier.
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CiSSA alone is unable to perform well in the first cycle of decomposition
and extraction. In order to improve the automatic reconstruction, CiSSA
is applied after the usual recursive reconstruction. Doing so allow the ex-
traction from residuals of diffractogram components that come after periodic
components of the noise. Carefully tuning the number of recursion for clas-
sical SSA and for CiSSA allow for an almost complete denoising.

For our dataset the number of iteration for ITE-SSA was manually se-
lected depending on the given segment: we stop iteration one cycle before
the appearance of periodic oscillation. After SSA cycles a sequence of CiSSA
iteration is performed on residuals, the number of cycles is fixed for all the
segments. The signal from CiSSA is the sum of the first component for each
iteration plus the second component of the last iteration. Summing the sig-
nal from ITE-SSA and from CiSSA refinement results in the reconstructed
signal.

As shown in Figure 5.6 and Figure 5.7, the application of CiSSA on the
residuals improves the reconstruction of the signal, in particular, for the part
with small peaks whose contribution to the signal is smaller that the one of
the noise.

Usually, the reduction of noise is done accumulating many diffractograms.
In this way noise cancels out and the signal is less noisy. With our denois-
ing method, less runs are necessary for a good signal. This can speeds up
measurements.

In figure 5.8 we present the results for the average over five runs and two
runs. In order to increase reproducibility, the accumulation of two runs has
been computed for three independent couples.

In order to test the goodness of our method we perform the structure
resolution using The Rietveld method comparing the results for the raw data
and the denoised data. In table 5.1 and table 5.3, the results for the raw
data are presented. At the increasing of the scan speed the quality of the
structure reduces. In table 5.2 and table 5.4, the results for the processed
data are presented. The structure resolution is more stable for the processed
data. We can see a generalized increments in the values of the cell parameters
for the processed XRD.

Looking at table 5.5 it is possible to see that our denoising method im-
proves the quality of the structure resolution at all the scan speeds with a
slightly bigger improvements for the high scan speeds. Remember that the
high speeds correspond to a higher noise level in the raw data.
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Figure 5.6: Vaterite HRPXRD denoised using ITE-SSA and subsequently
iterative CiSSA refinement, L = 64 for SSA and CiSSA. The number of
cycles for SSA depends on the section, for CiSSA the number of iteration is
fixed for all section. (a) Vaterite sample 2 recorded at Vang = 25 deg /min; (b)
Vaterite sample 2 recorded at Vang = 5deg /min. (c) Residuals for Vang =
25 deg /min; (d) Residuals for Vang = 5deg /min. Applying CiSSA after
ITE-SSA the residuals decrease

Table 5.1: Crystallographic parameters obtained with Rietveld method for
the Vaterite sample 1 before SSA denoising

scan speed a da da/a c dc dc/c wR GoF
[deg/min] [Å] [Å] [%] [Å] [Å] [%] [%]

5 4.1255 0.0002 0.004 85 8.4787 0.0005 0.0059 11.71 2.96
10 4.1256 0.0002 0.004 85 8.4788 0.0005 0.0059 12.38 2.21
15 4.1256 0.0003 0.007 27 8.4780 0.0005 0.0059 13.05 1.85
20 4.1257 0.0003 0.007 27 8.4777 0.0005 0.0059 13.42 1.65
25 4.1261 0.0003 0.007 27 8.4784 0.0005 0.0059 14.02 1.54
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Table 5.2: Crystallographic parameters obtained with Rietveld method for
the Vaterite sample 1 after SSA denoising

scan speed a da da/a c dc dc/c wR GoF
[deg/min] [Å] [Å] [%] [Å] [Å] [%] [%]

5 4.1268 0.0007 0.016 35 8.480 0.001 0.016 52 9.14 0.09
10 4.1267 0.0007 0.016 74 8.480 0.001 0.017 49 9.20 0.08
15 4.1265 0.0007 0.016 91 8.479 0.001 0.017 43 9.26 0.09
20 4.1268 0.0007 0.016 91 8.479 0.001 0.017 14 9.44 0.09
25 4.1270 0.0007 0.018 10 8.481 0.001 0.018 52 9.59 0.1

Table 5.3: Crystallographic parameters obtained with Rietveld method for
the Vaterite sample 2 before SSA denoising

scan speed a da da/a c dc dc/c wR GoF
[deg/min] [Å] [Å] [%] [Å] [Å] [%] [%]

5 4.1257 0.0003 0.007 27 8.4824 0.0005 0.005 89 14.00 3.35
10 4.1256 0.0003 0.007 27 8.4825 0.0005 0.005 89 15.00 2.56
15 4.1257 0.0003 0.007 27 8.4827 0.0006 0.007 07 15.65 2.18
20 4.1261 0.0003 0.007 27 8.4824 0.0006 0.007 07 15.78 1.91
25 4.1264 0.0003 0.007 27 8.4818 0.0006 0.007 07 16.47 1.78

Table 5.4: Crystallographic parameters obtained with Rietveld method for
the Vaterite sample 2 after SSA denoising

scan speed a da da/a c dc dc/c wR GoF
[deg/min] [Å] [Å] [%] [Å] [Å] [%] [%]

5 4.1277 0.0007 0.016 69 8.485 0.001 0.015 12 9.46 0.1
10 4.1273 0.0007 0.016 21 8.484 0.001 0.014 90 8.91 0.09
15 4.1272 0.0007 0.015 87 8.483 0.001 0.014 71 8.78 0.09
20 4.1270 0.0007 0.016 62 8.484 0.001 0.015 21 9.01 0.09
25 4.1281 0.0007 0.017 64 8.483 0.001 0.016 02 9.36 0.09
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Figure 5.7: Comparison between ITE-SSA and ITE-SSA with CiSSA re-
finement. (a) comparison for Vang = 25 deg /min; (b) comparison for
Vang = 5deg /min. From the insets it is possible to see that CiSSA improves
the reconstruction with new peaks emerging in the reconstructed signal

5.3.3 Third Set

The third set contains three diffractograms of a Vaterite sample It was
recorded at room temperature with vscan = 5deg /min and an angular res-
olution ∆Θ = 0.002◦, wavelength: 0.4 Å. The total number of points, N , is
N = 14452. In this set diffractograms are the accumulation of many runs.
With accumulation the amount of noise is reduced. Applying our denoising
method produces a cleaner signal. The higher angular resolution, and so
the greater number of points, improves the performances of the analysis: a
larger embedding window can be used increasing the separability between
signal and noise.

From the results emerges that, when the noise level is low, ITE-SSA is
almost enough for the reconstruction with a very small amount of informa-
tion left in the residuals. Only for high diffraction angles CiSSA refinement
increases the amount of signal extracted.
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Figure 5.8: Analysis on the effect of the number of runs accumulated for the
reconstruction of the signal. (a) comparison for Vang = 25 deg /min; (b) com-
parison for Vang = 5deg /min. M5 accumulation of five runs; M0

2, M
1
2, M

2
2,

accumulation of two runs. For accumulation of two runs, three independent
couples of runs are used. The variability of the independent accumulation is
smaller for the slowest scanning speed. From the inset it is possible to see
that, with CiSSA, the reconstruction accumulating two runs is similar to the
one produced with accumulation of five runs. This can reduce the time of
acquisition.

Table 5.5: Improvement for the Rietveld parameters after the SSA denoising

sample scan speed wR GoF
[deg/min] [%] [%]

V1

5 21.95 96.96
10 25.69 96.38
15 29.04 95.14
20 29.66 94.55
25 31.60 93.51

V2

5 32.43 97.01
10 40.60 96.48
15 43.83 95.87
20 42.90 95.29
25 43.17 94.94
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Figure 5.9: Denoising for three different samples of Vaterite. L = 160 for
ITE-SSA, L = 80 for CiSSA refinement. The low noise level makes CiSSA
almost unnecessary. Improvement due to CiSSA are visible at high diffraction
angles as shown in the insets. (a) Vaterite sample 1; (b) Vaterite sample 2;
(c) Vaterite sample 3.
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5.4 Conclusions

High Resolution Powder X-ray Diffraction is a powerful technique used to
determine the crystal structure for a microcrystalline solid. The scan speed
strongly affects the quality of the diffractogram and, consequently, the quality
of the crystal parameters.

Our denoising method based on SSA can be used to improve the quality
of diffractograms as a preprocessing for the Rietveld method. Improving the
quality of the data after the acquisition can change the acquisition protocols.
A good data quality can be obtained also for faster scan speed or a smaller
number of scans for each sample. In this way, the number of analysed samples
is increased or a sample that undergoes degradation is preserved due to the
shorter exposure to the X-rays.
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Chapter 6

SSA and ECL Imaging

Introduction

Electrochemiluminescence (ECL) is the emission of light induced by an ini-
tial electrochemical reaction at the electrode surface. It has been a successful
transduction method in many analytical application thanks to its outstand-
ing properties. The combination between electrochemical and spectroscopic
methods allows for a better temporal and spatial control on light emission,
a very low background and high sensitivity compared to chemiluminescence
and photoluminescence.1 All these properties make ECL a powerful analyti-
cal technique widely applied also in commercial applications.

Recently ECL was coupled with microscopy paving the way for new an-
alytical application with imaging at the nanoscale.1 As examples, with ECL
were successfully observed microbeads2 and cells.3

Even if ECL has intrinsically a good signal to noise ratio, the low emis-
sion intensity can be a limit. In order to capture even low intensities, the
sensitivity of the detector and the time of acquisition have to be increased.
For static measurement it is possible to increase the integration time in order
to collect a greater amount of light. However, if we are interested in dynam-
ical properties of the system, the integration time has to be short so it is
the sensitivity of the detector that must be increased. One way to increase
the sensitivity of detector is the use of CCD cameras with electron multiplier
(EM-CCD). In EM-CCD a signal amplifier is placed immediately after the
CCD sensor increasing the current generated by the photons.

Even if EM-CCD cameras are optimized for very low light emission, in
ECL imaging we observed a very strong noise that corrupt the output images.
Given the low intrinsic noise of ECL, it is crucial to find a method that is
able to remove the instrumental noise. Another issue in ECL is the fading of
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emission in time. The reason is not completely understood but it is supposed
to be related to the degradation of the electrode.

In this work we propose 2D-SSA as a valid tool to remove the strong
noise corrupting ECL and to allow the observation for short integration time.
Decomposing the signal into a set of almost orthogonal components, SSA can
separate the ECL emission from noise in a precise way.

We tested the performances of our procedure using images of microbeads
acquired for different beads diameters and integration times. We used spher-
ical beads because a well established acquisition protocol exists.

For the images acquisition we collaborated with Sara Rebeccani and Gio-
vanni Valenti from the EMFM (Electrochemistry of Molecular and Functional
Materials) group of our department.

6.1 Electrochemiluminescence

Electrochemically induced chemiluminescence uses an electrochemical stim-
ulus to activate a light emission. It is the electric potential between the
electrodes in the electrochemical cell that promotes the formation of the ac-
tive species responsible for the chemiluminescence reaction.

The first time ECL has been observed was in the 1960s through the
use of rubrene, 9,10-diphenylanthracene (DPA), and similar compounds.4,5

These compounds react through the annihilation pathway with oxidized and
reduced form of the luminophore produced at the electrode during two dif-
ferent potential steps. This pathway has many limitation, in particular, the
potential window needed for this reaction may exceed the potential window
of water making the use of deoxigenated organic solvent necessary.6

Another ECL system is based on the coreactant pathway. It is not only
the luminophore that reacts, but also another reactive species is reduced or
oxidized at the electrode. In this way, the active species are generated at
the same potential step. A key advantage of using the coreactant pathway
is that it is possible to work in aqueous solution. In particular, tris(2,2’-
bipyridine)ruthenium(II), [Ru(bpy)3]

2+, as the light emitting species, and
tri-n-propylamine,TPrA, as coreactant, is the system of choice in many ap-
plications.1,7–9 Many other ECL system are used on different applications, a
short collection can be found in Forster et al. 6 and Richter 10 .

ECL emission can happen both in solution, with luminophore and core-
actant freely diffusing in the electrochemical cell or in heterogeneous setup
with the dye immobilized on the electrode or on objects adhering on the
electrode.

The reaction mechanism of [Ru(bpy)3]
2+/TPrA has been widely explored
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for liquid10,11 and heterogeneous system.11 In Sentic et al. they explored also
the ECL emission in space studying the vertical distribution of emission.
From the experiments, they observed that emission is strictly related to the
stability of radicals generated at the electrode: the more stable they are the
further they diffuse. This limits the emission to a thin layer of 3/4µm of
height.9

6.2 Method

6.2.1 ECL Images

The ECL emission of microbeads functionalised with [Ru(bpy)3]
2+ has been

studied for different acquisition time and beads size using an optical micro-
scope equipped with a CCD camera with electron multiplier. All the mea-
surements have been performed using the protocol defined in Zanut et al.12,13

and Rebeccani et al. 14 . According to the protocol, the electrochemical cell
was equipped with a platinum working electrode and a Pt wire as counter
electrode. A constant potential of 1.4V (vs. Ag/AgCl) was applied for the
established amount of time and the ECL emission was collected using an
EM-CCD camera.

Two different types of measurements have been performed:

• Long integration time: a constant potential of 1.4V (vs. Ag/AgCl)
is applied for 4 s in 180mM TPrA and 0.2M phosphate buffer (PB).
Integration time: 8 s; magnification: ×100.

• Transient ECL emission: a constant potential of 1.4V (vs. Ag/AgCl) is
applied for 15 s. Pictures have been acquired sequentially with exposure
of 200ms; magnification: ×100.

6.2.2 Images Elaboration

The acquired images have been processed using bi-dimensional Singular Spec-
trum Analysis (2D-SSA). 2D-SSA decomposes the raw signal into a set of
components dividing the noise from the signal. In this way the ECL emission
is cleaned from instrumental noise. Look at chapter 3 for details on SSA and
2D-SSA.

SSA decomposition has been performed using a FORTRAN subroutine
coupled with a Python interface in order to exploit the capabilities of both
programming languages. In particular, FORTRAN has been used for the



92 CHAPTER 6. ECL IMAGING

computationally intensive part of the analysis with capabilities further im-
proved using GPGPU paradigms OpenACC 15 while Python has been used
for the input-output interface.

The 512 × 512 pixel images have been decomposed using a square em-
bedding window of size Lx = Ly = 32. In order to avoid border effects, the
images have been expanded adding on each side a border of size Lx(Ly) pixels
containing the values of the last pixels on the edge. In this way picture is
preserved with border effects acting only on dummy pixels.

ECL emission has been reconstructed looking at the W-correlation matrix
in order to select the SSA components to be used in the process. The first n
leading components in the W-correlation matrix have been selected in such
a way that the components used for the reconstruction correlated among
them and are uncorrelated to the others. Remember from section 3.1.3 that
the W-correlation matrix gives information on the orthogonality between the
SSA components and, as a consequence, on the intrinsic groups of the signal.

In order to evaluate the reconstruction, the signal to noise ratio (S/N)
was computed as the ratio between the mean and the standard deviation of
the pixels containing a bead.

S/N =
µsig

σsig

(6.1)

6.3 Results and Discussion

The different set of images have been processed with 2D-SSA. For images
acquired with long acquisition time, the signal to noise ratio is good also for
raw images (S/N > 1). In the case of short acquisition time, the S/N ratio
decreases in time, with ECL emission that decreases due to degradation of
the electrode surface.

6.3.1 Long integration time

With long integration times the ECL emission of the beads clearly emerges
from the background as presented in figure 6.1 and figure 6.3.

The signal to noise ratio, reported in table 6.1 and table 6.2 is good also
for the raw image with values always larger than one.

Keeping fixed the embedding window for the SSA decomposition, the
number of components containing the ECL emission changes changing the
bead size as reported in figure 6.2 and figure 6.4.
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(a) (b) (c)

Figure 6.1: ECL emission for 2.8µm microbeads. Magnification: ×100; scale
bar 10µm; integration time: 8s. (a) optical; (b) raw ECL emission; (c)
denoised ECL emission; SSA embedding windows, Lx = Ly = 32, recon-
struction using the first 10 components.

Table 6.1: Signal to noise ratio for the 2.8µm microbeads depicted in fig-
ure 6.1. The intensities have been averaged over a region of 11 × 11 pixels
centred on the maximum of ECL emission

Bead Raw SSA processed

1 1.797 11.719
2 1.726 12.261
3 1.581 12.539
4 1.424 11.015
5 1.621 12.631
6 1.409 11.599

Mean 1.593 11.961

Table 6.2: Signal to noise ratio for the 8.9µm microbeads depicted in fig-
ure 6.3. The intensities have been averaged over a region of 25 × 25 pixels
centred on the maximum of ECL emission

Bead Raw SSA processed

1 2.428 10.062
2 2.467 11.691
3 2.217 9.012

Mean 2.371 10.255
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Figure 6.2: W-correlation matrix for the SSA decomposition for 2.8µm mi-
crobeads in figure 6.1; SSA embedding windows Lx = Ly = 32. (a) correla-
tion for the first 300 components; (b) correlation for the first 25 components.
The first 10 components contain the ECL emission.

(a) (b) (c)

Figure 6.3: ECL emission for 8.9µm microbeads. Magnification: ×100; scale
bar 10µm; integration time: 8s. (a) optical; (b) raw ECL emission; (c)
denoised ECL emission; SSA embedding windows, Lx = Ly = 32, recon-
struction using the first 6 components.
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Figure 6.4: W-correlation matrix for the SSA decomposition for 8.9µm mi-
crobeads in figure 6.3; SSA embedding window Lx = Ly = 32. (a) correlation
for the first 300 components; (b) correlation for the first 25 components. The
first 6 components contain the ECL emission.
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Figure 6.5: Examples of ECL emission profiles for microbeads, blue line
raw data, orange line denoised data. Magnification: ×100; integration time:
8s. The reported profiles are an average over a line three pixels deep. (a)
2.8µm microbeads; (b) 8.9µm microbeads. SSA strongly reduces the noise
highlighting the bell-shape of the intensity distribution.
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From the analysis of the raw Intensities it is not clear if the emission
happens through flashes of the individual luminophores or if it is constant
and the flashes are due to the noise. Looking at the intensity distribution
after SSA denoising it appears that emission is uniform on the surface of the
beads with a bell-shaped distribution due to the spherical shape of the beads.
For the 2.8µmmicrobeads the ECL emission show a regular distribution along
the beads diameters, this should indicate that the diffusion of the coreactant
is not a limiting factor for the reaction. In figure 6.5a the emission profiles,
along the diameter, for a sample bead.

6.3.2 Transient ECL emission

With short integration times it is possible to record the variation of the ECL
emission in time. For raw data the ECL emission is masked by the noise
as shown in pictures 6.6b,c and pictures 6.8b,c. Applying SSA to the data
has a huge effect in the S/N ratio moving from a prevalence of noise to a
prevalence of signal as reported in table 6.3 and table 6.4. In pictures 6.6d,e
and pictures 6.8d,e the denoised ECL emission are reported.

Looking at the ECL distribution for the 8.9µm microbeads (figure 6.8)
emerges that it is not regularly distributed around the centre of the beads
indicating an effect of the size on the ECL emission. This is due to the fact
that the active coreactant is unable to reach the top of the beads.

The study of beads of different diameters shows that emission efficiency
decreases at the increasing of bead diameter reaching a plateau. If we con-
sider the emission efficiency of ECL, it is possible to define a Turnover fre-
quency (TOF) as a function of bead size, expressed as the number of photons
generated by a mole of luminophore per time unit

TOF =

(
ECLRu@Bead − ECLBead

)
n◦ of

[
Ru(bpy)3

]2+ × t
(6.2)

where ECLRu@Bead is the integrated ECL signal of a single bead, ECLBead

is the background and [Ru(bpy)3]
2+ is the amount of Ru luminophores.13

Another effect that is observable in the transient analysis is the fading of
the ECL intensity in time. Figure 6.10 shows the emission profiles for two
beads, of the two diameters, at two different times: (6.10a) and (6.10c) im-
mediately after the potential step; (6.10b) and (6.10d) 1s after the potential
step; the ECL intensity is clearly diminished.

In figure 6.11 the ECL intensity for the entire transient is reported. The
decay is similar to a second order kinetics

1

[ECL]
=

1

[ ˜ECL]0
+ ktα (6.3)
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(a) (b) (c)

(d) (e)

Figure 6.6: ECL emission for 2.8µm microbeads. Magnification: ×100; scale
bar 10µm; integration time: 0.2s; SSA embedding windows, Lx = Ly = 32.
(a) optical; (b) raw ECL emission frame 11, the first frame after the potential
step; (c) raw ECL emission frame 16, 1s after the potential step; (d) denoised
ECL emission frame 11, reconstruction using the first 4 components; (e)
denoised ECL emission frame 16, reconstruction using the first 4 components;

Table 6.3: Signal to noise ratio for the 2.8µm microbeads depicted in fig-
ure 6.6. The intensities have been averaged over a region of 11 × 11 pixels
centred on the maximum of ECL emission. F11, frame 11; F16 frame 16.

Bead Raw F11 SSA processed F11 Raw F16 SSA processed F16

1 0.723 14.156 0.386 15.624
2 0.725 12.859 0.345 20.152
3 0.668 11.934 0.414 13.010
4 0.704 13.256 0.428 17.107
5 0.515 14.101 0.324 15.546

Mean 0.667 13.261 0.380 16.288
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Figure 6.7: W-correlation matrix for the SSA decomposition for 2.8µm mi-
crobeads in figure 6.6, SSA embedding windows Lx = Ly = 32. (a) corre-
lation for the first 25 components frame 11; (b) correlation for the first 25
components frame 16

Table 6.4: Signal to noise ratio for the 8.9µm microbeads depicted in fig-
ure 6.8. The intensities have been averaged over a region of 25 × 25 pixels
centred on the maximum of ECL emission. F11, frame 11; F16 frame 16.

Bead Raw F11 SSA processed F11 Raw F16 SSA processed F16

1 0.562 6.024 0.384 8.997
2 0.572 8.760 0.399 12.019
3 0.512 5.343 0.402 9.589

Mean 0.549 6.709 0.395 10.202
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(a) (b) (c)

(d) (e)

Figure 6.8: ECL emission for 8.9µm microbeads. Magnification: ×100; scale
bar 10µm; integration time: 0.2s; SSA embedding windows, Lx = Ly = 32.
(a) optical; (b) raw ECL emission frame 11, the first frame after the potential
step; (c) raw ECL emission frame 16, 1s after the potential step; (d) denoised
ECL emission frame 11, reconstruction using the first 6 components; (e)
denoised ECL emission frame 16, reconstruction using the first 3 components.

with [ ˜ECL]0 ECL intensity at t = 0, k decay constant and α time correction.
Superimposed to the decay the intensity presents a sequence of fluctu-

ations. The origin of those fluctuations is not clear. They should be due
to the fluctuation of the local concentration of the active coreactant that is
consumed during the emission process, or they should be due to instrumental
noise that SSA has not removed.

We observed that fluctuations are almost white with anticorrelated in-
crements and the PDFs of the increments are not Gaussian with left tails.
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Figure 6.9: W-correlation matrix for the SSA decomposition for 2.8µm mi-
crobeads in figure 6.8; SSA embedding windows Lx = Ly = 32. (a) corre-
lation for the first 25 components frame 11; (b) correlation for the first 25
components frame 16
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Figure 6.10: Examples of ECL emission profiles for microbeads, blue line
raw data, orange line denoised data. Magnification: ×100; integration time:
8s. The reported profiles are an average over a line three pixels deep. (a)
2.8µm microbeads at frame 11; (b) 2.8µm microbeads at frame 16; (c) 8.9µm
microbeads at frame 11; (d) 8.9µm microbeads at frame 16; SSA strongly
reduces the noise highlighting the bell-shape of the intensity distribution.
the ECL intensity strongly decreases int time.
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Figure 6.11: ECL emission intensity of the 1st SSA component for 2.8µm
microbeads. Integration time: 0.2s; SSA denoising, with embedding windows
Lx = Ly = 20, performed on each individual bead processing an area of
100× 100 centred around the maximum of emission at frame 11. Beads have
been selected processing with SSA the entire image as in figure 6.6d.
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Figure 6.12: Analysis of the fluctuations of ECL intensity. (a) fluctuations;
(b) increments; (c) ACF for the fluctuations; (d) ACF for the increments; (e)
PDF for the increments. Fluctuations are almost white with anticorrelated
increments. the PDFs of the increments are not Gaussian with left tails.
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6.4 Conclusions

ECL imaging is a powerful technique that can be used for analytical purposes,
but also for the study of the ECL mechanisms. Using Singular Spectrum
Analysis we improved the quality of the ECL images reducing the S/N ratio.
In this way we shed new light on the properties of ECL. The main result is on
the distribution of ECL intensity on the bead, from the noisy images it was
not clear if the emission was uniformly distributed on the entire surface or if
the individual luminophores were emitting with flashes. The noise removal
reveals that emission is uniform on the bead surface.

The study of the transient emission revealed a non-constant decay rate
with fluctuations superimposed to a second order decay. Further studies are
necessary to determine the nature of that fluctuations. Among the different
hypothesis they should be due to noise components that remain after SSA
decomposition or to a temporary reduction of the local concentration of active
coreactant due to the reaction at the bead surface and the diffusion processes
from and to the reaction sites.
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Chapter 7

Electrocorticogram Analysis

Introduction

The study of the brain involves many scientific areas from physiology and
psychology to chemistry, physics and statistics. All these sciences strive to
understand the intimate mechanisms that result in the behaviours of animals
and humans, in the development of brain diseases, and in the effects of the
environment on the brain.

In order to study the brain activity, different techniques are used such
as functional magnetic resonance imaging (fMRI), magneto-encephalograpy
(MEG), Electroencephalography (EEG) and electrocorticography (ECoG).
The first three techniques non-invasively investigate the brain from the out-
side while ECoG is an invasive technique with electrodes placed directly on
the brain in the skull.

In this project we want to obtain new information on the brain processes
involved in naming task using ECoG for measurements. Using time series
analysis we investigated the brain activity searching for a correlation with
the speech in order to find a precursor signal for the speech. This will be
useful for Brain Computer Interfaces.

7.1 State of the art

Electrocorticography is an electrophysiological invasive technique that allows
the study of the brain activity with high spatial and temporal resolution. In
this technique, a grid of electrodes is placed directly on the cortical surface.
A craniotomy is necessary in order to expose the cortex thus, ECoG is per-
formed on humans only in clinical applications for which surgery is already
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planned. Among the reasons for a craniotomy the main ones are pharmaco-
resistant epilepsy and brain tumours.

Human ECoG data have been used to address neuroscience issues, such as
map cortical function and investigate functional mechanism of brain oscilla-
tions. A limited use of ECoG data has been done in cognitive studies for the
lack of data on the areas involved in cognitive processes; ECoG recording are
performed only alongside surgical intervention and the grid placement is led
by clinical requirements and not for neuroscientific purposes (Todaro et al. 1

and references therein).

It is known that the brain is a dynamic system working out of equilibrium
with oscillating electric potential. The oscillations can be divided into two
components, namely, rhythmic and arrhythmic. The rhythmic component
is the oscillatory periodic component in the oscillations of the brain activ-
ity. The rhythm can be divided in frequency bands: delta (1-3Hz), theta
(4-8Hz), alpha (9-12Hz), beta (12-30Hz) and gamma(> 30Hz). These oscil-
latory rhythms characterise specific behavioural states e.g. delta oscillations
during sleep, alpha oscillations during eye-closure. The arrhythmic oscilla-
tions are those with no periodicity, they show a power law in the form 1/fβ

that is typical of scale free (fractal) processes and is ubiquitous in nature.
Regardless of the fact that arrhythmic oscillations constitute a significant
part of the brain activities and strongly contribute to the EEG and ECoG
records, classical analysis methods remove them because of their ubiquity.2

In the last two decades an increasing number of studies has focused on
the scale-free component of the brain activity.2–5 From these studies emerged
that the noise (another name for the aperiodic oscillations) plays a central
role in neuronal activity and in the development and maintenance of life in
general. As pointed out in a review by McDonnell and Abbott,6 noise acts
with the so-called Stochastic Resonance (SR) that increase the effectiveness
of the neuron signals.

All the studies that analyse the arrhythmic component of the brain ac-
tivity focused on its power exponent or, in addition, on the Hurst exponent.
Those indicators are related to the scaling and self-similarity of the neuronal
signal. With these studies it is possible to distinguish between a resting state
and a task or between normal activity and an epileptic seizure.

Even if there is an increasing effort in the study of the properties of the
arrhythmic brain activity, studies do not exist that extract the stochastic
mechanisms that underlie these processes. In particular, the stochastic anal-
ysis of ECoG signals is scarce. With this work we will contribute to the
knowledge of the stochastic properties of ECoG signals.
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7.1.1 Speech Brain Computer Interface

Recent works on speech Brain Computer Interfaces (sBCI) focus on the iden-
tification of speech-preparatory neural signals to detect the speech onset.

It is known that the most reliable speech onset/offset neuronal signals
are found in the temporal cortex.7,8 Those signals unfortunately are related
to the auditory feedback of the subject’s own voice, that is not available for
real life sBCI deployment that will be used for patients that can no longer
speak.

A good candidate should be a signal that precede the speech onset, in
order to give enough time to trigger the decoder, and is highly correlated
with the speech preparation process, being available also in the absence of
speech emission.

One suitable region of the brain where to find a physiological signal related
speech preparation is the speech arrest in Broca’s area. In this region, a direct
electrical stimulation during speech production induces the so called speech
arrest phenomenon, the complete interruption of ongoing speech.9–12

Broca’s area is known to be active prior to articulation with an increase
of the high-gamma activity immediately before the speech onset.13,14

7.2 Project description

Human ECoG data are rare because the technique is invasive and data
recorded during a task are even rarer. Because of the scarce availability
of ECoG data, it is important to perform an exhaustive analysis of the as-
sociated time series. In order to achieve good results it is necessary to use
robust and trusted analysis methods and have a good knowledge of them.

The data recording is part of a wider project that involves the “Center for
Translational Neurophysiology” at Istituto Italiano di Tecnologia (Ferrara)
and the Section of Physiology of University of Ferrara. Data were collected
from a patients undergoing awake neurosurgery for tumour resection (low-
grade glioma). The patient gaves his informed consent, and the protocol
was approved by the Ethics Committee of Azienda Ospedaliera Universitaria
Santa Maria della Misericordia (Udine, Italy) after verification of the Italian
Ministry of Health.

The data set we analysed is from a male Italian native speaker (hereinafter
subject). the data are collected during a session of naming task. The task
consisted in naming 10 different images shown on a screen and representing
Italian nouns. The session consisted of three repetition of the 10 pictures for
a total of 30 trials. The neuronal data were collected using the Epi array of
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Table 7.1: List of the speech production tasks. In the naming task, the
subject has to name the object presented on the screen as listed in this table

Italian Translation

Antenna Antenna
Ananas Pineapple
Elefante Elephant
Pecora Sheep
Stivale Boot
Coltello Knife
Bottiglia Bottle
Fungo Mushroom

Elicottero Helicopter
Pavone Peacock

electrodes∗. Using the same data acquisition equipment, the voice and the
neural signals have been recorded. The sampling frequency for the neural
signal was 3051.8Hz while for audio was 24kHz. Before the analysis audio
was downsampled to 3051.8Hz.15

7.3 Results

Our analysis started from the routine methods for the analysis of time series
with a stochastic component. In particular: check for stationarity, autocor-
relation function, power spectral density, first and second moments,. . . All
this techniques show no differences between the time regions when the task
was performed and the resting periods.

In figure 7.1 an example of our dataset is presented. Looking at the second
moment, presented here as an example of the time series analysis performed,
it is possible to see that signal differs from one task to the other making the
analysis almost useless for our purposes.

In order to improve our results we compared the signal with the recorded
audio using cross-correlation.

R̂xy,k =
1

N − k − 1

N∑
i=k+1

(xi − µx)(yi−k − µy) (7.1)

∗Epi array: Total working area: 4.3×4.3mm; Electrodes diameter: 140µm; Electrodes
pitch: 600µm; electrodes number: 64, 8× 8 grid15
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(a)

(b) (c)

Figure 7.1: Example of the time series analysis. a) presents the ECoG for
one electrode and the audio track. Colours highlight the portion containing
a speech emission; the same color refers to the same task. b), c) show the
second moment for two different tasks. It is possible to see that the two tasks
differs a lot making a direct comparison between the tasks almost impossible.

where µ is the mean and k is the lag.
We cross-correlated, for each EcoG channel, the region containing the

entire sequence of ten recognitions with the track for the voice sampled at
the same frequency of the EcoG. We analysed the raw signal and different
filtered versions of the signal. Filtering has been done using a rectangular
low pass Fourier filter, placing to zero all the unwanted frequencies in the
Fourier transform of the signal and making the inverse transform of the
obtained sequence. The upper boundary of the filter was set from 1Hz to
15Hz with step 1Hz.

From the results we observed that cross-correlation between voice and
signal is at maximum few hundreds milliseconds before speech. In a work on
the same dataset,15 the group of the IIT that collected the data, observed
that, around 400 ms before speech there is a spike in the high gamma activity.
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Figure 7.2: Maximum of x-corr for the different filter frequencies. From col-
ormap (a) emerges that the XCF with the voice decreases with the increasing
of the filter frequency. (b) shows a plateaux for frequencies between 5Hz and
8Hz.

 1  9 17 25 33 41 49 57

 2 10 18 26 34 42 50 58

 3 11 19 27 35 43 51 59

 4 12 20 28 36 44 52 60

 5 13 21 29 37 45 53 61

 6 14 22 30 38 46 54 62

 7 15 23 31 39 47 55 63

 8 16 24 32 40 48 56 64

(a) 1Hz

 1  9 17 25 33 41 49 57

 2 10 18 26 34 42 50 58

 3 11 19 27 35 43 51 59

 4 12 20 28 36 44 52 60

 5 13 21 29 37 45 53 61

 6 14 22 30 38 46 54 62

 7 15 23 31 39 47 55 63

 8 16 24 32 40 48 56 64

(b) 5Hz

 1  9 17 25 33 41 49 57

 2 10 18 26 34 42 50 58

 3 11 19 27 35 43 51 59

 4 12 20 28 36 44 52 60

 5 13 21 29 37 45 53 61

6 14 22 30 38 46 54 62

 7 15 23 31 39 47 55 63

 8 16 24 32 40 48 56 64

(c) 10Hz

Figure 7.3: Maximum cross-correlation. Xcorr normalized with respect to the
maximum value. At 1Hz filtering frequency the variability of the channels
activity is higher than for 10Hz filtering frequency
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Figure 7.4: Comparison between the audio track and the XCF for three
channels with filter at 1Hz. Voice and ECoG signal correlates in the pauses
between words with a peak before the words

Our work shows that, also the low frequencies can provide information on
the speech processes.

In order to improve our results we used the Principal Component Analysis
(PCA) with the aim of finding a combination of channels that are related to
the voice emission. Firstly we computed PCA including the audio track in
the input matrix. In this way it is possible to find how the voice mixes with
the ECoG channels. We can see, from figure 7.5, that voice does not mix
with ECoG when unfiltered. After filtering voice mixes with ECoG signals
contributing to different sets of PCs at the different filter frequencies.

We used the geometric distance (
√

x2 + y2) between the eigenvectors in
PCA and the maximum XCF for the different filter frequencies to find out
which electrodes correlate the most with the voice.

Looking at figure 7.6 we can see how the different electrodes contribute to
the eigenvectors containing also the voice contribution. For 1Hz filter many
electrodes contribute in the mixture while, for 5Hz and 10Hz filters, a small
number of electrodes is involved with the contributing electrodes that are the
same for both frequencies.
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(a) unfiltered (b) 1Hz

(c) 5Hz (d) 10Hz

Figure 7.5: Contribution of the voice to the different PCs at the different fil-
ter frequencies. In the abscissae the number of the PCs and in ordinate the
contribution of the voice. With the signal unfiltered the voice is in an eigen-
vector on its own. Changing the filter frequency changes the eigenvectors
containing contribution from the voice.
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(a) 1Hz (b) 5Hz (c) 10Hz

Figure 7.6: Contribution of the different electrodes to the PCs containing also
a contribution from the voice. In order to obtain a compact representation we
used the geometric distance between the PC and the XCF. In the colormap,
the different PCs are arrenged in columns with the electrodes in the rows.
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7.4 Conclusions

Electrophysiology data are a valuable source of information on the mecha-
nisms in the human brain. The information content is so rich that a unique
method for its extraction does not exist. This poses a challenge in the de-
sign of the best analysis procedure for the given task or to extract unnoticed
informations.

Too naive approaches, like the direct application of stochastic time series
analysis methods, fail to obtain insight on such complex phenomena. On the
other side, methods based on multivariate analysis are good in finding time
or spatial regions where something different from the surroundings happens,
but are unable to fully describe the involved mechanisms.

In this project, at its early stages, we presented a new exploratory method,
based on frequency filters and PCA, that can be used in assessing the time
and spatial region where a brain process related to a given output (speech in
this project) happens.

The results of the exploratory methods tell little or nothing about the
properties of the signal that characterize the speech emission process, but
indicate where to look. In particular, our analysis found out that brain
activity changes few hundreds milliseconds before speech emission also for
low frequencies and not only for high frequencies as previously observed.
Regarding the spatial region for the activity changes, our method measures
the different correlation between brain activity and speech, corresponding to
different levels of activity. According to the needs one can group electrodes
on the basis of the correlation and then process the different groups.

In future analysis we will try to asses the stochastic properties that char-
acterize the speech emission processes applying classical techniques to the
regions indicated by our preliminary analysis. The idea is to find if the brain
activity changes, not only in the rhythmic part but also in the scale free.
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General Concluding Remarks

The subject of this PhD research thesis has been the development of analysis
procedures to investigate noisy data along with the related computer soft-
ware. Noise has the Janus-like nature of being a nuisance and a resource. It
is an unavoidable component of all measurements, where it interferes with
the main signal originated by the system of interest masking the desired
information. Noise is also intrinsically connected to many physical, chemi-
cal and biological processes, playing an important role in vital physiological
processes.

Many mathematical tools are available for the analysis of stochastic pro-
cesses (noises). They can be exploited to provide a deeper insight into the
underlying system. A variety of tools exist for denoising a signal, although
most of them are unsuitable for retrieving the noise for further analysis.

Singular Spectrum Analysis (SSA) has proved to be a powerful technique
for data decomposition and denoising. It is non-parametric and data-driven
and it satisfies very well the double purpose of decomposing deterministic
and stochastic components of a signal.

We proved the ability of SSA on mono-dimensional and bi-dimensional
set of data. In order to improve the capability of SSA in the decomposition
of data with complicated trends, we developed a procedure that iteratively
extracts the signal from the dataset. Using a combination of Basic SSA and
CiSSA our method is able to completely separate noise from signal.

The method has been used to improve the quality of diffractograms as a
preprocessing tool for the Rietveld method. With preprocessing, a good data
quality can be obtained also for faster scan speeds or for a smaller number
of scans for each sample. This can change the acquisition protocols.

The performances of 2D-SSA have been tested on images obtained by
ECL imaging. The high dynamical range and the low S/N ratio make denois-
ing challenging. Using 2D-SSA we improved the quality of the ECL images
reducing the S/N ratio. From the study of transient emission emerges a non-
constant decay rate with fluctuations superimposed to a second order decay.
Further studies will be necessary to determine the nature of the fluctuations.
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Combining PCA and cross-correlation in a new way resulted in a good
exploratory method for the analysis of electrophysiology data. With our
method, we observed that brain activity changes before speech also for low
frequencies and not only for high frequencies as previously observed using
only Fourier analysis.

We conclude that, in order to extract all the information contained into
a dataset, it is useful to combine decomposition techniques and tools for
fractal analysis. In this way, it is possible to divide a given signal into a set
of different components that can be analysed individually obtaining insight
into all the processes that generate the signal.
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