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PREFACE  
This Thesis work, originates as a response to the challenge concerning the integration of multiple 

disciplines aiming to the creation of more efficient and resilient smart cities. The idea has evolved 

along the way into an articulated project that has touched various aspects of air quality mitigation in 

urban areas and in general of the urban environment. The experience within the EU H2020-iSCAPE 

project was crucial, to identify a concrete and tangible product useful for the community but above 

all for citizens. During the iSCAPE project, different activities were carried out, for example, the 

thermographic campaign that made it possible to study and analyze the thermal behavior within a 

street canyon, a very important aspect for the thermal comfort and health of citizens. The use of low 

cost sensors and citizen science laboratories, useful for understanding the potential of low cost sensors 

and their future use in more capillary monitoring networks in the area, perhaps managed by each 

individual citizen. The specific use of a dispersion model to evaluate, test, study and predict policies 

and interventions has led to the introduction of new modeling methodologies, new approaches and 

the improvement of scientific knowledge on everything related to urban air quality.  

All these activities always had the citizen as the final target, in fact the one who is most affected by 

pollution and all phenomena related to climate change is always the citizen. These considerations, 

together with the desire to transform the research project into something tangible, led me to conceive 

the final product of this thesis: a forecasting tool that can be used by citizens. 
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ABSTRACT  
Air pollution is one of the greatest health risks in the world. At the same time, the strong correlation 

with climate change, as well as with Urban Heat Island and Heat Waves, make more intense the 

effects of all these phenomena. A good air quality and high levels of thermal comfort are the big goals 

to be reached in urban areas in coming years.  

Air quality forecast help decision makers to improve air quality and public health strategies, 

mitigating the occurrence of acute air pollution episodes. Air quality forecasting approaches combine 

an ensemble of models to provide forecasts from global to regional air pollution and downscaling for 

selected countries and regions. The development of models dedicated to urban air quality issues 

requires a good set of data regarding the urban morphology and building material characteristics. 

Only few examples of air quality forecast system at urban scale exist in the literature and often they 

are limited to selected cities.  

Following the motivation, this Thesis addresses the topic of filling the knowledge gap and to design 

the practical tool that can be used for practical applications. This thesis develops by setting up a 

methodology for the development of a forecasting tool. The forecasting tool can be adapted to all 

cities and uses a new parametrization for vegetated areas. The parametrization method, based on 

aerodynamic parameters, produce the urban spatially varying roughness. At the core of the forecasting 

tool there is a dispersion model (urban scale) used in forecasting mode, and the meteorological and 

background concentration forecasts provided by two regional numerical weather forecasting models. 

The tool produces the 1-day spatial forecast of NO2, PM10, O3 concentration, the air temperature, the 

air humidity and BLQ-Air index values. The tool is developed in python programming language, and 

it is automatized to run every day, the maps produced are displayed on the e-Globus platform, updated 

every day. The results obtained indicate that the forecasting output were in good agreement with the 

observed measurements.  
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1 INTRODUCTION 
Air pollution is one of the greatest risks to environmental health in Europe and in general 

overall the world. It can be considered a sneaky enemy because it is difficult to escape 

(Kampa and Castanas, 2008; Robertson and Miller, 2018). Although much progress has 

been made in recent years, it is still not enough. Various challenges remain on air 

pollution, which can be summarized as follows: how to reduce pollutant emissions, how 

to reduce pollutant concentrations, how to reduce the effects of air pollution on human 

health. This Thesis project is placed exactly in this context and ranges from the 

improvement of modeling techniques for the simulation of the dispersion of pollutants in 

an urban environment to the creation of a practical tool that allows the end user to predict 

which part of the city is to be avoided because it is affected by high levels of pollution 

or because it is affected by too high temperatures. 

This chapter introduces the problem, provides an overview of the challenges related to 

air quality in the cities and in general of the Thesis work, starting from its motivation and 

following with its main limitations. Lastly, the outline of this Thesis is presented. 

 

1.1 Background  

Projections of population growth suggest that in 2050 the world population will reach 

9.7 billion (ONU, 2019) and the percentage of the world's population residing in urban 

areas will increase from 55% in 2018 to 68% in 2050 (ONU, 2018). Urban population 

growth poses many serious negative consequences, one of which is poor air quality. In 

fact, urban areas are more susceptible to the accumulation of air pollutants owing both 

to the large quantity and diversity of emissions in a concentrated area and to the limited 

dispersion caused by the physical constraints of the urban environment (Goodsite et al., 

2021). To protect citizens from high levels of pollution, many countries have developed 

air quality forecasting tools capable to predict the concentrations of major air pollutants. 

This information is used to issue early warnings that allow the government and people to 

take precautionary measures such as temporarily blocking major sources of emissions in 

some areas of the city (typically, urban city centers) or suggesting the adoption of 

alternative cleaner means of transport (e.g. public transport, cycling and walking). 

At local level, several different emergency response systems are adopted to mitigate the 

problem in case of exceedances and air pollution events occurring in the short term (e.g., 

traffic restrictions, traffic stops). However, most often nowadays, city and regional 

management plans consider longer term solutions, generally consisting of land planning 

strategies and adoption of policies of emission reductions. Among urban planning and 

management plans, urban greening has become increasingly important thanks to the 

ability of green infrastructure to provide benefits for environmental, social and economic 

ecosystem services (European Commission, 2012; Tzoulas et al., 2007). It has become 
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evident that urban greening can counteract different urban problems, among which urban 

heat island, air quality, biodiversity and citizen health (Ahern, 2007; Hamada and Ohta, 

2010; Kong et al., 2014, 2010; Wolf, 2003). All the measures at the local level, together 

with the new green technologies adopted in transport and industries have allowed an 

improvement in pollution levels. In fact, in Europe, air pollution levels are decreasing 

and in many cases comply with European Union (EU) and World Health Organization 

(WHO) guidelines on air quality. However, many studies have reported associations 

between air pollution and mortality at concentrations below these guidelines, with no 

evidence of a safe exposure threshold (Brauer et al., 2019; Cesaroni et al., 2013; Fischer 

et al., 2015).  

In this context, a tool on urban scale is required to provide high spatial resolution 

information on air pollution, useful to all citizen to limit their exposure at high air 

pollutant concentrations. However, nowadays this approach is limited by the low density 

of air quality monitoring stations and the resolution of mesoscale air quality modeling 

systems (of the order of 1 km of grid resolution) which cannot represent adequately 

represent the concentration gradients occurring typically near busy roads (Duyzer et al., 

2015). Urban dispersion models can estimate these gradients but their use is often limited 

to a posteriori use, i.e. to evaluate and understand pollution phenomena that have already 

occurred, partly because background concentrations and necessary meteorological inputs 

are often represented by observed data. 

 

1.1.1 Framework and research scope  

This Thesis aims to make a concrete contribution in the advancement and improvement 

of the methodologies in the field of urban air quality. In particular, a high resolution 

forecasting tool was developed for citizen use. This Thesis is composed of two parts: one 

part is devoted to the development of the modelling framework and the second part is 

devoted to the development of the forecasting tool. Specifically, we focus on the 

development of an automated forecasting tool based on a dispersion model capable to 

predict the high spatial resolution distribution of hourly pollutant concentrations and 

other environmental variables (air temperature and air humidity), which are visualized 

as web maps. 

 

1.2 Overview of the Thesis  

This Thesis work is the result of several interconnected research activities that have the 

citizen's well-being as a common thread. As mentioned above, two main sections can be 

identified: modeling and forecasting tool development. The whole first part includes the 

research work carried out within the iSCAPE (Improving the Smart Control of Air 

Pollution in Europe, https://www.iscapeproject.eu/) H2020 project, mainly concerning 

https://www.iscapeproject.eu/
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all the simulations conducted in the city of Bologna. Furthermore, in the modeling part, 

minor research activities were also included, concerning an intensive thermographic 

campaign and the evaluation of a set of air quality low cost sensors, also carried out as 

part of the iSCAPE project. All these activities enabled a better understanding of the 

functioning of the dispersion model and of its potential as well as the testing of innovative 

methodologies and modeling approaches.  

The second part concerns the design, development and testing of an automated 

forecasting tool to predict the spatial distribution of hourly variables. It is a high 

resolution tool that produces forecast 3D maps for the main urban pollutants, air 

temperature and humidity. The 3D maps have hourly time resolution and a spatial 

resolution of 200x200 meters, on eight levels of height from the ground. In addition, 2D 

maps of a newly developed air quality index are produced; these maps, again with an 

hourly time resolution, have a spatial resolution of 200x200 meters, on a single level of 

height from the ground. 

All the research activities reported in this Thesis were in support of and preparatory to 

the realization of the Thesis objective. The whole Thesis work aims to address the 

following main research questions: 

I. Can a simple urban dispersion model simulate detailed, high-resolution 

scenarios? 

II. How can the performance of a dispersion model be improved in high resolution 

simulations?  

III. What is the performance of a dispersion model used in forecasting mode? 

 

1.2.1 Significance and limitations of the Study 

Air pollution forecast on urban level is beneficial for the citizens. This study contributing 

to inform citizens about the concentration of air pollutants in their cities, to increase their 

awareness and care, together with the adoption of alternative pathways to reduce their 

exposure to air pollution or urban heat.  

The project has been completed according with its requirements, however, there were 

some unavoidable limitations. The forecasting tool will in any case be updated on the 

basis of new and more recent research developments in the field, but above all an annual 

update of the emissions inventory must be provided. In fact, since the emissions 

inventory is not automated, it will have to be updated manually, or it will be possible to 

think about its future automation. 
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1.3 Outline of Thesis 

Following this introduction chapter, the Thesis is structured as follows:  

Chapter 2 contains an introduction on air pollution, describes the monitoring 

methodologies and the air quality models, finally includes an overview on the 

relationship between air quality and climate.  

Chapter 3 presents the iSCAPE project, describing the field campaigns and some 

preliminary results. The study area, the data sets and the methodology of the dispersion 

simulations carried out during the project are also described. 

Chapter 4 illustrates in detail all iSCAPE simulations, discusses the new methodologies 

developed for improving the simulations, and presents the results of all case studies. 

Chapter 5 presents the forecasting tool, the design of the tool and the methodology for 

its development, including the coding part. The input dataset is validated with observed 

data and the forecast over the test period is evaluated. Finally, the web version for user 

end is illustrated. 

Chapter 6 contains the conclusion on overall research project and in particular on the 

forecasting tool.   
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2 AIR POLLUTION IN THE URBAN ENVIRONMENT 
This chapter is a brief introduction to air pollution, with brief insights into the topics 

necessary for reading and understanding the remaining of the Thesis. In particular, main 

pollutants, their relative classification and the reactions that pollutants undergo once 

emitted into the atmosphere are illustrated. A few notions will be introduced on 

monitoring methods, and the various approaches for modeling air pollution. This 

information is helpful in understanding the dispersion model setup. Finally, the 

interactions between air pollution and the effects of climate change will be reported, 

which is why the thermal aspects of the urban environment are included in this Thesis. 

In this Thesis, the urban environment refers to the urban physical environment (i.e. the 

built environment, pollution, and the geological and climate conditions of the area the 

city occupies (Ompad et al., 2007). 

 

2.1 Introduction to air pollution 

Air pollution is one of the well-studied aspects of the urban physical environment. The 

WHO defines air pollution as the presence chemical, physical or biological agents in the 

air that modify the natural characteristics of the atmosphere. According to the WHO 

(https://www.who.int/health-topics/air-pollution#tab=tab_1), air pollution kills around 

seven million people around the world each year. The deaths associated with air 

pollution, however, are not only related to developing countries, in fact, as the map 

(Figure 1) clearly shows, mortality rates attributable to air pollution are high even in 

industrialized countries.  

The sources of atmospheric pollutants can be classified into three broad groups: primary, 

secondary and re-emission sources. A source can be defined as primary when it emits 

directly into the atmosphere. A secondary source is the formation of a pollutant in the 

atmosphere because of chemical or microphysical reactions. Finally, a source of re-

emission results from the primary or secondary pollutants depositing on the terrestrial or 

aquatic surfaces of the Earth, followed by re-emission into the atmosphere. Secondary 

and re-emission sources tend to have lower temporal and spatial concentration gradients 

than primary sources. The primary sources can be further divided into point sources, 

mobile sources and area sources. The emission chimneys are point sources. Mobile 

sources are associated with transport. Area sources are sources with relatively dispersed 

emissions over large areas (IARC, 2016). 

https://www.who.int/health-topics/air-pollution#tab=tab_1
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Figure 1. World map of ambient air pollution attributable death rate (per 100 000 population). (Source: The Global 

Health Observatory (WHO), available on https://www.who.int/data/gho/data/indicators/indicator-

details/GHO/ambient-air-pollution-attributable-death-rate-(per-100-000-population)). 

According to the European Environment Agency (EEA), the main emission sources of 

the main pollutants are represented by: road transport, commercial, institutional and 

households, energy production and distribution and industrial processes and product use 

(Figure 2). 

Over the years, many researchers have studied and analyzed the health effects of air 

pollution (e.g. Brunekreef and Holgate, 2002; Pope et al., 1995; Pope and Dockery, 2006) 

and it is still a hot topic (Dominski et al., 2021; Gignac et al., 2022; Kurt et al., 2016). 

Even the various local and national governments consider the issue as crucial and are 

committed in various ways to reducing the concentrations of pollutants in urban areas in 

particular, especially in developed countries (e.g., Europe, USA). In fact, numerous laws, 

regulations and suggestions on air quality standards have been prepared (EPA, 1970; EU, 

2016). 

 

https://www.who.int/data/gho/data/indicators/indicator-details/GHO/ambient-air-pollution-attributable-death-rate-(per-100-000-population)
https://www.who.int/data/gho/data/indicators/indicator-details/GHO/ambient-air-pollution-attributable-death-rate-(per-100-000-population)
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Figure 2. Percentage of emissions of the main atmospheric pollutants by sector group. Note: NMVOCs: non-methane 

volatile organic compounds, such as benzene, ethanol, etc. Figure source: EEA, available on 

https://www.eea.europa.eu/data-and-maps/daviz/share-of-eea-33-emissions-5#tab-chart_1; Data sources: Emissions 

of main air pollutants provided by European Environment Agency (EEA). 

Air pollutants can be classified into primary or secondary. Primary pollutants are those 

emitted directly from a source into the atmosphere, such as carbon monoxide (CO) 

emitted by a motor vehicle. Secondary pollutants are those that are formed in the 

atmosphere, i.e. which originate when the primary pollutants react or interact with other 

https://www.eea.europa.eu/data-and-maps/daviz/share-of-eea-33-emissions-5#tab-chart_1
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substances or physical variables present in the atmosphere. An example of a secondary 

pollutant is tropospheric ozone (O3), which is the result of chemical reactions between 

primary pollutants in the presence of sunlight. Some pollutants can be both primary and 

secondary. The main primary pollutants are: 

 sulfur dioxide (SO2) is part of the sulfur oxides (SOx) that are formed during the 

combustion of substances containing sulfur, the production of gasoline from 

petroleum and the extraction of metals from the raw mineral; 

 Volatile organic compounds (VOCs) comprise a wide range of carbon-based 

molecules, including aldehydes, ketones and other light hydrocarbons. VOCs 

play a fundamental role in the formation of secondary pollutants, such as ozone 

and particulate matter; 

 ammonia (NH3) is emitted from agricultural processes and is a by-product of 

animal origin; 

 carbon monoxide (CO) is a colorless, odorless and tasteless toxic gas produced 

by the incomplete combustion of fuels such as wood, gasoline, coal, natural gas, 

etc.. 

To the list are added the following pollutants which are both primary and secondary: 

 nitrogen oxides (NOx) are a group of highly reactive gases (including nitrogen 

dioxide (NO2) and nitrogen oxide (NO)). NOx is the result of combustion at high 

temperatures, such as those used for heating, transport and energy production. 

NO2 is an important precursor to ozone; 

 Particulate matter (PM) is a complex mixture of particles (sulfate, nitrates, 

ammonia, sodium chloride, black carbon, mineral powder or water) and 

extremely small droplets. PM is typically classified on the basis of its size in: 

PM10, the fraction of suspended particles with a diameter equal to or less than 10 

μm; and PM2.5, formed by particles with a maximum diameter of 2.5 µm. PM can 

be a primary or secondary pollutant. Black carbon is an important component of 

PM2.5, a powerful climate-altering agent due to its efficient absorption of solar 

radiation and consequent heating capacity of the surrounding area. 

The main secondary pollutants are PM and tropospheric ozone. Due to its 

photochemical nature, the highest ozone levels are observed during periods of sunny 

weather (Künkli et al., 2010). 
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According to the WHO and the EEA, particulate matter (Figure 3), nitrogen dioxide and 

ground-level ozone (Figure 4) are currently considered the three pollutants with a most 

significant effect on human health. Some pollutants often record concentrations higher 

than the limit values for the protection of human health (tropospheric ozone in the 

summer months, PM10 and NO2 in the winter months).  

 

 
Figure 3. World maps of mean concentration of PM10 (top) and PM2.5 (bottom). Averaging period: 1 year. reference 

year: 2019.  Source: National Air Quality Standards (WHO) https://whoairquality.shinyapps.io/AirQualityStandards/.   

 

https://whoairquality.shinyapps.io/AirQualityStandards/
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Figure 4. World maps of mean concentration of NO2 (top) and O3 (bottom). Averaging period: 1 year for NO2 and 8 

hours (daily max) for O3. reference year: 2019. Source: National Air Quality Standards (WHO) 

https://whoairquality.shinyapps.io/AirQualityStandards/. 

The EEA defines photochemical smog as: “a combination of fog and chemicals that come 

from automobile and factory emissions and is acted upon by the action of the sun”. The 

formation of photochemical smog consists of a series of reactions that can give rise to 

hundreds of different compounds. Generally, the conditions that lead to the formation of 

photochemical smog occur during the hours of intense traffic in the morning, when the 

emissions increase the presence in the atmosphere of hydrocarbons and nitrogen oxides 

(monoxide (NO) and dioxide (NO2)).  

https://whoairquality.shinyapps.io/AirQualityStandards/
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The action of sunlight causes at the same time the photolysis of NO2 into NO and an 

oxygen radical (O) (EPA, 2004): 

𝑁𝑂2 + 𝑠𝑢𝑛𝑙𝑖𝑔ℎ𝑡 → 𝑁𝑂 + 𝑂 

This reaction increases in speed with increasing solar radiation. The oxygen atoms that 

are formed during this reaction react with the oxygen molecules present in the air to 

produce ozone, thus increasing the levels of ozone at ground level:  

𝑂 + 𝑂2  →  𝑂3 

Ozone in turn can react with nitric oxide to produce NO2 and oxygen: 

𝑂3 + 𝑁𝑂 →  𝑁𝑂2 +  𝑂2 

These three reactions make up the photo stationary ozone cycle and keep the ozone 

concentration at a stable level through a dynamic equilibrium. At night, ozone is 

consumed in the course of other processes. However, the dynamic balance of O3 

consumption/formation can be altered by the following conditions: 

 the presence of sunlight (which acts as a catalyst); 

 an air temperature of at least 18 °C, necessary because many of the reactions of 

the photochemical smog formation process require specific activation energies 

(guaranteed by the relatively high environmental temperature); 

 the presence of volatile organic compounds (VOCs); 

 the presence of nitrogen oxides. 

If these requirements persist, then a series of chemical reactions take place, in which 

nitric oxide and NO2 are consumed by VOCs, allowing for the accumulation of ozone at 

ground level. The most of the air pollution models includes modules for the calculation 

of chemical transformation. The complexity of these modules ranges from those simple 

to those describing complex photochemical reactions. 

The fate of a pollutant emitted by human activities or natural sources depends on the 

meteorological conditions of the atmosphere in which it is released. The main 

phenomena that caused the movement of pollutants in the atmosphere are transport, 

dispersion, and deposition. Transport is primarily caused by mean wind flow. Deposition 

processes (such as precipitation, scavenging, and sedimentation) remove the pollutants 

from the air and move it to the ground surface. Dispersion results from local turbulence  

(Watson et al., 1988). Turbulence is generated in the Planetary Boundary Layer (PBL): 

the portion of the troposphere that is directly influenced by the Earth's surface, the PBL 

responds to combined action of mechanical and thermal forcing, in the order of 1-h 

timescale (Stull, 1988). In atmospheric dispersion models, turbulence parameterization 

is a key parameter. Within this layer, wind speed and wind direction are influenced by 

the roughness of the surface and the vertical height of flows (Seinfeld and Pandis, 1998). 

Furthermore, the urban surface morphology (presence of buildings), urban materials, 

vegetation differences and human activities profoundly modify the PBL structure over 
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urban areas (Roth, 2000). This has important implications for the transport and dispersion 

of pollutants (Martilli, 2002). 

 

2.2 Air pollutants monitoring 

The adverse effects caused by air pollution on the state of the environment and on human 

health causes extreme attention of the wide public and of different authorities. In order 

to reduce the negative impact of air pollution on health and the environment, it is of great 

importance to "measure pollution" to obtain information on (Michulec et al., 2005): 

 qualitative and quantitative composition of pollutants; 

 spatial and temporal fluctuations; 

 sources and intensity of polluting emissions; 

 impact range of the emitters; 

 processes of transport and transformation of pollutants in the atmosphere; 

 level of emission and intensity of deposition of pollutants; 

 effectiveness of the actions undertaken. 

In particular, quantitative information on pollutants makes it possible to evaluate air 

quality. Air quality (AQ) refers to the degree to which air is suitable or clean enough for 

humans or the environment, and government agencies have set standards for this. Air 

quality standards refer to the levels of air pollutants prescribed by regulations that cannot 

be exceeded during a specified period of time in a defined area.  

In Europe, the Directive 2008/50/EC, as well as its daughter directives, require the 

assessment of the ambient air quality existing in the Member States on the basis of 

common methods and criteria. The minimum requirements, described in the directives, 

are linked to the specific concentration thresholds and the population present in each zone 

or agglomeration. Although continuous monitoring is mandatory in specific cases, 

modeling is always encouraged in order to provide better information on the spatial 

distribution of concentrations. 

The methods of measuring air quality vary significantly and range from occasional 

campaigns conducted with passive sampling to automatic remote monitoring systems 

based on optical absorption spectroscopy. In particular, methods for air quality sampling 

can be classified into three main groups (Marć et al., 2015; WHO, 1999): 

 Passive Monitoring - Passive sampling technology is any device that monitors 

gas concentrations simply by allowing air to pass over it rather than being 

pumped. They have relatively low sampling rates, and require long sampling 

times in environments with low concentrations of pollutants; 

 Active sampling - the gas is pumped into the absorbent medium, the sample is 

analyzed in the laboratory sampling devices are bulky and complex, however the 
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measured gas concentrations are less sensitive to environmental influences such 

as changes in wind speed or humidity; 

 Automatic Monitoring - Automatic analyzers draw in ambient (outside) air and 

measure the pollutant concentration in the sampled air. They provide high 

resolution data and can collect data online. 

In Europe, in the last 10 years, a lot of work has been done in order to standardize the 

monitoring techniques used in the various countries and to be able to create platforms for 

exchanging data. The EEA air quality database consists of a multiannual time series of 

AQ measurement data and statistics calculated for a range of air pollutants. It also 

contains meta-information about the monitoring networks involved, their stations and 

measurements, AQ modeling techniques, as well as air quality zones, assessment 

schemes, compliance results, and plans and programs for air quality reported by EU 

Member States (https://www.eea.europa.eu/data-and-maps/data/aqereporting-9). 

Monitoring stations are generally classified as rural, suburban or urban, but the 

definitions of these categories may vary between the various bodies and between the 

various countries. Monitoring stations provide important information on pollutant 

concentrations, such data are also used as inputs in dispersion models. 

 

2.2.1 Air quality models 

Dispersion models take into account chemical and physical processes and assumptions 

of the dispersion for explaining the transformation of pollutant considering the emission 

sources to predict the concentrations, as well as pollutants spatiotemporal variability 

(Vardoulakis et al., 2003). The dispersion modelling approach requires a different kind 

of data to estimate pollutants concentration, such as emission inventory, meteorological 

data, topography data, and other environmental information.  

Air pollution models can be categorized into three generic classes (Figure 5): statistical 

models, physical models and deterministic approach (Weber, 1982). The statistical 

models calculate ambient air concentrations using an empirical established statistical 

relationship. The statistical model is very useful for short-term forecast of concentrations 

and for drawn semi quantitative conclusions on some particular air quality issues. They 

require small computational effort and no emission inventory is needed (Srivastava and 

Sinha, 2004). In physical models, a real process is simulated on a smaller scale in the 

laboratory by a physical experiment. In the case of complex air pollution situation, 

laboratory simulation using scaled-down models in wind tunnels is used. In this 

approach, the scale-model geometry, flow speed and other essential variables can be 

changed and controlled (Srivastava and Sinha, 2004). Deterministic models basically 

deal with different types of numerical approximations in the solution of the partial 

equations representing the relevant physical process of atmospheric dispersion. For these 

https://www.eea.europa.eu/data-and-maps/data/aqereporting-9
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models an emission inventory has to be available and meteorological data. The 

deterministic model is most suitable for long-term planning decisions (Srivastava and 

Sinha, 2004).  

 

 
Figure 5. Classification of Air Quality Models (adapted from Weber, 1982)) 

The deterministic models in turn are divided into (Srivastava and Sinha, 2004): 

 Time-Dependent Model: In this kind of model all variables are functions of time. 

Examples of Time-Dependent Models are: the box models, the grid models, 

Lagrangian and Random Walk Models and Trajectory Models. 

 Steady State Models: the steady state condition implies that all variables and 

parameters are constant in time, including the concentration. Steady-state models 

calculate concentrations for each hour from an emission rate and meteorological 

conditions that are uniform across the modelling domain. Thus they simulate 

hourly-average concentrations (NIWAR, 2002). The most common of this kind 

of models is the Gaussian Model, it is based on the assumption that the plume 

concentration, at each leeward distance, has independent Gaussian distributions 

both horizontally and vertically. Some Gaussian models have been modified to 

incorporate special dispersion cases (Zannetti, 1993). 

Dispersion modelling in the atmosphere is generally a difficult task due to the complex 

effects of meteorology on advection and diffusion, and the wide range of different scales 

involved. Therefore, the spatial scale at which the models work is closely related to the 
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spatial scale of atmospheric processes (Figure 6, Moussiopoulos et al., 1996; Silveira et 

al., 2019). Britter and Hanna (2003) used the following spatial scales to describe the 

major urban flow features: regional scale (up to 100 or 200 km), city scale (up to 10 or 

20 km), neighborhood scale (up to 1 or 2 km), and street scale (less than 100 to 200 m). 

 

 
Figure 6. Scheme of spatial scales and atmospheric processes and spatial scales of air quality models (adapted from 

(Britter and Hanna, 2003; Moussiopoulos et al., 1996; Silveira et al., 2019).  

In particular, urban-scale modeling systems should consider variations in local-scale 

effects, such as the influence of buildings and obstacles, downwash and plume rise 

phenomena, along with chemical transformation and deposition. Urban features affect 

atmospheric flow and microclimate, increasing atmospheric turbulence and modifying 

turbulent transport, dispersion and deposition of atmospheric pollutants (Srivastava and 

Rao, 2011). 

 

2.3 Climate change and Air Pollution 

Historically, air pollution and climate change have been handled as separate problems. 

Today it has been realized that climate change and air pollution are closely intertwined. 

Indeed, the two problems share the same origins and sources: for example, the use of 

fossil fuels in energy and industrial production and transport is simultaneously the main 

source of carbon dioxide (CO2) (one of the most important greenhouse gases) as well as 

of air pollutants (Künzli et al., 2000). The same source can emit pollutants and climate-

altering substances at the same time, and in turn some pollutants (e.g., particulate matter) 

can have an impact on the climate system or be precursors of climate-altering species 

(Mangia et al., 2020). 

In the past, scientific analyzes of the causes, dynamics and impacts of climate change 

have mainly focused on the role of CO2 and the other five long-lived trace gases 

recognized as powerful greenhouse gases and subject to international climate 

negotiations (CH4, N2O, HFC, PFC, SF6). Less prominence has been given to some of 

the short-lived "conventional" air pollutants, in particular ozone, methane and particulate 

matter. Particulate matter plays a very important role in global warming because it 

contributes to cloud formation and influences the transfer of radiant energy and the 

spatial distribution of latent heating through the atmosphere, thereby influencing the 

weather and climate. Particulate matter interacts with solar radiation through absorption 

and scattering and, to a lesser extent with terrestrial radiation through absorption, 
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scattering and emission. Generally, aerosols influence the climate directly by scattering 

and absorbing incoming solar radiation, and indirectly by acting as cloud condensation 

nuclei and/or ice nuclei (Boucher et al., 2013; Huang et al., 2007). For this reason, the 

reduction of PM emissions will have the effect of protecting both human health and 

climate. Ground-level ozone is a greenhouse gas because it inhibits the process of plants 

absorbing atmospheric carbon, which significantly contributes to global warming. 

Methane, in addition to being one of the greenhouse gases included in the Kyoto 

Protocol, also contributes to the formation of ground-level ozone. The reduction of 

methane emissions contributes to the reduction of both ozone levels that are harmful to 

health and ecosystems and climate change (Swart et al., 2004). 

Conversely, climatic variations (e.g., variations in temperature, pressure, mixing layer 

height, wind speed and direction, precipitation patterns) can impact on air quality by 

increasing or reducing the concentration of air pollutants. The intensity of precipitation 

determines the atmospheric concentration and deposition of compounds. By acting on 

atmospheric circulation and hydrogeological regimes, climate changes can alter the 

weather and emission conditions that affect air quality (Mangia et al., 2020). 

 

2.3.1 Heat wave and Urban Heat Island 

The Urban Heat Island (UHI) is defined when an urban area is significantly warmer than 

the surrounding (rural) environment. This temperature difference is usually greater at 

night than during the day, and is more noticeable when the winds are low. It is mainly 

caused by the retention of solar heat in the urban fabric (buildings and ground surfaces) 

and by the obstruction and reabsorption of the outgoing long-wave nocturnal radiation 

by buildings obstructing the view of the sky. Furthermore, changes in the earth's surface 

due to urban development together with the heat released into the environment generated 

by energy use generate a corresponding increase in average temperature. In particular, 

paved surfaces store heat during the day and release it during the night. Reduced 

ventilation can hinder the dispersion of urban heat islands (Parker, 2010). 

The high temperatures caused by the UHI have the effect of increasing the demand for 

cooling energy in commercial and residential buildings to maintain thermal comfort 

levels. The increase in energy demand results in increased electricity production and 

related higher emissions of SO2, CO, NOx and suspended particles, as well as carbon 

dioxide, which contribute to the increase in atmospheric pollution and global warming 

and climate change (Gorsevski et al., 1998). Furthermore, temperature increases resulting 

from climate change are expected to impact cities, exacerbating the UHI effect. 

At the same time, global warming has led to more frequent, severe and longer-lasting 

excessive heat events (Heat Waves (HW)) around the world. In addition to environmental 

and economic impacts, heat waves have a fairly devastating impact on human health with 
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deaths in many parts of the world (Changnon, 2003; McMichael et al., 2006). The 

frequency and severity of such extreme events will further increase in the near future 

(Coumou and Robinson, 2013; Perkins et al., 2012; Schär et al., 2004). HW can be 

increase in frequency and duration due to UHI effects (Li et al., 2020), and the UHI 

impacts can be intensified during HW events (O’Neill and Ebi, 2009; Whitman et al., 

1997). Negative HW effects are more pronounced in urban areas due to higher population 

density and the potential additive effect of UHI (Gabriel and Endlicher, 2011; McCarthy 

et al., 2010). However, the interaction between UHI and HW is complex and remains a 

hot topic: many researchers (An et al., 2020; Li et al., 2016) showed synergies, other 

researchers (Chew et al., 2021; Oliveira et al., 2021) did not find synergies.  

There is a synergistic association between elevated temperature, and air pollutants: the 

photochemical reactions happen in the presence of sunlight, so there is likely to be 

increased production of secondary pollutants during warm seasons (Elminir, 2005; 

Tressol et al., 2008). For example, during HW events, stagnant phenomena happen that 

trap emitted pollutants, increasing level tropospheric O3 (Monks et al., 2015; Solberg et 

al., 2008). 

 

2.4 Summary 

Air pollution kills around seven million people around the world each year. The main 

emission sources of the main pollutants are represented by: road transport, commercial, 

institutional and households, energy production and distribution. The local and national 

governments are committed to reducing the concentrations of pollutants in urban areas. 

In order to reduce the negative impact of air pollution on health and the environment, it 

is of great importance to monitoring the concentration of the pollutant. Beyond 

continuous monitoring, modeling provides better information on the spatial distribution 

of concentrations. The fate of a pollutant emitted depends on the meteorological 

conditions of the atmosphere. In the PBL, wind speed and wind direction are influenced 

by the roughness of the surface. The structure of the PBL and the roughness are very 

important parameters in the dispersion of pollutants, for this reason their 

parameterization should always be included in the modeling of the dispersion. 

Climate change and air pollution are closely intertwined: the same source can emit 

pollutants and climate-altering substances at the same time, and some pollutants can have 

an impact on the climate system or be precursors of climate-altering species. On the other 

hand, climatic variations can impact on air quality by increasing or reducing the 

concentration of air pollutants. UHI and air pollution are also closely related, UHI 

increasing the demand of energy for cooling, that increases electricity production and 

related higher emissions of pollutant. The related higher emissions of pollutant contribute 

to the increase in atmospheric pollution and global warming and climate change. The 
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global warming has led to more frequent HW. UHI and HW are also closely related, HW 

can be increase in frequency and duration due to UHI effects and the UHI impacts can 

be intensified during HW events. Moreover, a synergistic association between elevated 

temperature and air pollutants exists: during warm season, the high presence of sunlight 

increases production of secondary pollutants. All of these connections have an effect on 

the health levels of the urban environment. Therefore, in the evaluation of urban quality, 

in addition to atmospheric pollution, the thermal aspects of a city must also be taken into 

consideration. 
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3 CASE STUDY: BOLOGNA IN THE ISCAPE PROJECT 
This chapter contains an overview of the experimental campaigns and the dispersion 

models application in Bologna case study within the H2020 iSCAPE project (Improving 

the Smart Control of Air Pollution in Europe, https://www.iscapeproject.eu/). Briefly, 

iSCAPE was a project funded by the European Union’s H2020 Research and Innovation 

programme (H2020-SC5-04-2015) under the Grant agreement No. 689954. The project 

focus was the integration and advancement of the control of air quality in European cities 

in the context of climate change. Therefore, the main objectives were the efficiency 

evaluation of air pollution control strategies, policy interventions and behavioral change 

initiatives. The different strategies were being assessed using seven pilot sites in different 

cities across the EU (Dublin, Bottrop, Guilford, Lazzaretto, Vantaa, Hasselt and 

Bologna), which were being used as Living Labs. During the iSCAPE project (started on 

September 2016 and ended on December 2019), experimental field campaigns were 

carried out in different target cities, aimed monitoring air pollution and meteorological 

variables. At the same time, in order to evaluate the efficacy of the solutions, air quality 

and meteorological simulations were run at different scales. The experimental data 

collected during the field campaigns were used to provide the scientific basis to establish 

the efficacy of different pollution control strategies (such as Passive Control System 

(PCS)) in each city and as input and feedback for the simulations. 

 

3.1 The Bologna experimental campaigns  

The experimental campaigns carried out in Bologna (Figure 7) aimed at creating a 

baseline on which to evaluate the efficiency of the Green Infrastructure (GI)1 in urban 

road canyons, as well as using the measurements as inputs for the simulations and 

validations of the models used.  

Bologna is located at the foot of the Apennines in the vast flat area of the Po Plain in the 

north of Italy (44°29' N, 11°20' E, with a mean altitude about of 54 m a.s.l.). It is the 

capital city of Emilia-Romagna with about 400,000 inhabitants on an area of 140 km2; 

and the center of the homonymous metropolitan city populated by more than 1 million 

people (Città Metropolitana di Bologna). The climate in Bologna is strongly dependent 

on its location: a warm and humid summer and long, cold winter, with scarce rainfall that 

concentrates in spring and autumn periods. During autumn and winter, there are often 

strong thermal inversions that favor fog. Bologna is characterized by a regime of breezes 

favored by the presence of the Adriatic Sea on the eastern side and mostly all by the 

presence of the mountains south of the city, that prevent the development of intense 

winds. However, Bologna appears to be the windiest city in the Po Valley and 

                                                 
1 Green infrastructure (GI) is a term that can mean different things. Here, we use the term to refer to trees 

and vegetation that provide ecological benefits in urban areas. 

https://www.iscapeproject.eu/
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consequently records better air quality than the nearby cities affected by the same 

emission sources, thanks to the dilution of pollutants by ventilation (Di Sabatino et al., 

2019). 

The campaigns were carried out in two different periods: (1) the summer campaign from 

10/08/2017 to 24/09/2017; (2) the winter campaign from 16/01/2018 to 14/02/2018. The 

area interested by the experimental campaigns comprehends both the historical city 

center as well as the residential part of Bologna. Two urban street canyons inside the city 

were identified (Figure 7), sharing similar traffic conditions and emitting sources, but 

characterized by different presence of vegetation (Di Sabatino et al., 2019). Laura Bassi 

St. is a typical street on the outskirts of Bologna, 700 m long in which there are low 

buildings with 2-3 floors and taller buildings with 4-5 floors, the average height of the 

buildings is about 17 m. The road is surrounded by deciduous trees present regularly on 

both sides of the street. Marconi St. is a representative street of the historical territory, 

about 600 m long, it is surrounded by buildings with 4-5 floors up to buildings with 9-10 

floors and an average height of 33 m. Along the roadway there are arcades, but there is 

no vegetative element, except for the 50 m near one end of the road, here there are 

deciduous trees placed on one side of the road. In both campaigns, high-resolution 

instrumentation was used to monitor meteorological and air quality variables. The 

equipment consisted of two mobile laboratories of local environmental protection agency 

ARPAE (Agenzia Regionale per la Protezione Ambientale ed Energetica), i.e., vans 

equipped for continuous measurements of the main air pollution pollutants (NOx, PM10, 

PM2.5, CO, O3 and SO2). ARPAE mobile laboratories are also equipped with instruments 

for measuring meteorological variables (wind speed and direction, pressure, air 

temperature and air relative humidity): GILL Windmaster sonic anemometers (Gill 

Instruments Limited, Hampshire, UK), HCS2S3 Rotronic thermos-hygrometers 

(Rotronic Instruments Ltd., Crawley, UK) and Vaisala PTB110 barometers (Vaisala, 

Helsinki, Finland) and CNR4 radiometers (Kipp & Zonen B.V., Delft, The Netherlands).  

A further experimental campaign was conducted in the summer 2018, to evaluate the 

efficacy of TiO2 photocatalytic coatings for NOx abatement during weak synoptic 

conditions. The experimental site comprised two real street canyons within the 

Lazzaretto, area in the outskirts of Bologna (44°29′ N, 11°20′ E, Italy). 
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Figure 7. Locations of Bologna, Marconi and Laura Bassi Sts.. The left map indicates the positions of Bologna (red 

dot) in Italy and its municipal boundaries with the cyan line (map with red box). The right map at bottom shows the 

location of the two streets in Bologna where the iSCAPE experimental campaigns were conducted: Marconi St. (red 

line) and Laura Bassi St. (green line). Source: Open Street Map. 

Furthermore, two intensive thermographic campaigns lasting 24 hours were also carried 

out, one for each experimental campaign (Di Sabatino et al., 2018), the high-performance 

thermal imaging cameras were used to quantify thermal characteristics of various 

physical elements on urban streets (building façades and asphalt) (Di Sabatino et al., 

2018). During the intensive thermographic campaign carried out in the winter, I took care 

of the acquisition methodology. In addition, I dealt with the analysis of the data collected 

during both campaigns, as described below. In the winter campaign Low-Cost Sensors 

(LCSs) for the measurement of pollutants were collocated with ARPAE reference AQ 

sensor in order to collect sensor data and evaluate their usability, through feedback about 

operation and installation. I took care of the sensor setup, installation, data collection and 

related data analysis.  

 

3.1.1 Intensive thermographic campaigns 

Here, the theoretical and operating notions of an Infra-Red (IR) camera are illustrated, 

followed by the description of the methodology I used for the acquisition of the thermal 

images (or frames) and for the analysis of the same. 

During both the winter and summer experimental field campaigns, two intensive 

thermographic campaigns in the two streets (Marconi (MA) and Laura Bassi (LB) Sts.) 

were carried out. The main goal of the intensive thermographic campaigns was to collect 
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and analyze temperature data at street scale levels and to evaluate the UHI effect, defined 

as the phenomenon of enhanced temperatures in urban areas compared to the surrounding 

countryside. For this reason, two thermal cameras were used, one for each site. 

Specifically, two high performance FLIR T620 Thermal Imaging IR Camera (Figure 8) 

were used, with uncooled micro-bolometer, 640x480 pixels resolution and an image 

acquisition frequency of 30 Hz (https://www.flir.it/products/t620/). The main parameters 

of the cameras that must be set are:  

• reflected temperature can be changed in post-processing; 

• atmospheric attenuation correction is automatic and is based on input distance, 

ambient temperature and relative humidity: (1) Distance below 50 m, the 

missed/incorrect entry of the distance leads to a maximum measurement error of 

0.3° C; (2) air temperature and (3) air humidity were entered via the Extech device 

(digital USB Thermo-Hygrometer, FLIR).  

• Emissivity, the maximum measurement error associated with the failure/incorrect 

setting of the emissivity will be less than one degree if the error on the emissivity 

estimate will be included within 0.1. Since the value of common materials used in 

construction is between 0.85 and 0.95 (in agreement with FLIR documentation); 

a constant emissivity value equal to 0.9 was set on the thermal imager.  

 

 
Figure 8. The high performance FLIR T620 Thermal Imaging IR Camera (a) rear section (b) front section. 

In post-processing this value is adjusted according to the specific values of the prevailing 

material using values reported in the literature. Images were simultaneously collected in 

both sites, while the days of the campaigns were selected according to the weather 

forecast in order to have meteorological conditions characterized by the absence of 

precipitation and intense wind, and with clear skies. On the basis of these criteria, 22-

23/08/2017 during the summer campaign, and 08-09/02/2018 during the winter 

campaign were selected. Each thermographic campaign covered a 24-hour period, and 

acquisitions with the thermal cameras were carried out at regular 2-hour intervals. The 

buildings analyzed were selected (Figure 9) on the basis of the homogeneity of the 

construction material and the absence of obstacles in order to set a unique emissivity 

value. Furthermore, to obtain excellent quality thermal images, it is necessary to avoid 

the sky and any unwanted materials (people, cars, metal objects, glass, vegetation, etc.).  

https://www.flir.it/products/t620/
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Figure 9. Location of the buildings selected for winter intensive thermographic campaigns. Right) Marconi St. building 

location and Left) Laura Bassi St. building location. Source: Google Maps. 

For each site and each building, the scene target was established. For the larger buildings, 

more shots were planned with different portions of the same façade. In each site, the 

thermal information of the road surface was also collected. Each shot taken is a matrix 

that contains the thermal information of each pixel: we will refer to this type of data as a 

frame, in which each shot corresponds to a frame (Figure 10). 

 

 
Figure 10. Examples frame of summer intensive thermographic campaigns in Laura Bassi St.. Left) Street canyon 

view: road surface and Right) building façade. 

The data collected as part of the experimental campaigns were subjected to post-

processing aimed at eliminating the pixels containing obstacles that could have altered 

the temperature value of the facade. The dataset was then subjected to an in-depth 

statistical analysis and comparison with the measurements collected in the two canyons 

and at other fixed ARPAE stations. 
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3.1.1.1 Post-processing methodology 

In the post-processing, a series of elaborations were carried out aimed at identifying the 

exact temperature of each facade in the 24 hours of the campaigns carried out. As a first 

step the FLIR software is used to check the air temperature and air humidity data with 

the data recorded manually during the campaigns, and the effective distance between the 

thermal imaging camera and the target object (road 2m, buildings 8m) was entered. As 

regards the emissivity, the data recommended by FLIR (FLIR Systems, 2019) and 

consistent with values proposed by several authors (e.g. Carnielo and Zinzi, 2013; Danov 

et al., 2007; Di Sabatino et al., 2015) were used: 0.96 for asphalt and 0.94 for brick-

limestone (building façade). For road surface, the correct data was extracted for each 

frame only for homogeneous areas, avoiding any types of other objects present in the 

scene. For the buildings, the methodology was more complex as there were many areas 

occupied by windows on all the facades (Figure 11).  

 

 
Figure 11. Building façade with windows that alter the thermal profile: red line) thermal profile with no windows; 

black line) thermal profile with the presence of windows. FLIR ResearchIR Max® software elaboration. 

Therefore, the windowed areas and portions of the sky were identified manually using 

the tools of the FLIR ResearchIR Max® software. Using the '' box '' tool (Figure 12) for 

each frame, the areas were delimited and a file was saved containing information on the 

number of pixels for each identified area. The temperature information for each pixel of 

the detected area was then exported as a MAT file (MATLAB® file format). 
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Figure 12. Example of frame with selection of areas containing windows. Box 1 (black) indicates the entire frame, the 

other boxes bound the different windows present; for each box, basic statistical information and the number of pixels 

contained are exported. FLIR ResearchIR Max® software elaboration. 

The second post-processing step concerns the cleaning of the frame from the presence of 

windowed areas and portions of the sky. The scripts for reading the temperature data and 

information on the number of pixels of the windowed areas have been created in 

MATLAB®, in the same script a command has been included to cut the portions of the 

sky. The weighted average for each building was then calculated as follows: 

�̅� =
∑ 𝑥𝑖∙𝑝𝑖

𝑛
𝑖=1

∑ 𝑝𝑖
𝑛
𝑖=1

                                                                [ 1 ] 

where 𝑥𝑖 is the average temperature value of the i-th frame and 𝑝𝑖 is the weight of the i-

th frame: 

𝑝𝑖 =
𝐴𝑡𝑜𝑡−𝐴𝑓

𝐴𝑡𝑜𝑡
                                                                 [ 2 ] 

where 𝐴𝑡𝑜𝑡 is the total area of the frame expressed in pixels (the entire original frame 

(box1) contains 307200 pixels); 𝐴𝑓 is the total area of the windows in the frame:  

∑ 𝐴𝑓 = 𝐴𝑓(𝑏𝑜𝑥2) + 𝐴𝑓(𝑏𝑜𝑥3) + ⃨ + 𝐴𝑓(𝑏𝑜𝑥𝑗)𝑛
𝑗=1                               [ 3 ] 

 

3.1.1.2 Results of intensive thermographic campaigns 

In order to evaluate the UHI effect at neighborhood and city scale, firstly the temperature 

distribution of building façades and ground surfaces in the two streets was retrieved from 

the thermal images collected during the campaigns; after that the thermal measurements 

in the two canyons were compared with those collected by the thermo-hygrometers by 

the ARPAE at nearby fixed weather stations (Bologna Urbana (urban station) and 

Mezzolara (rural station)). The results highlight the overheating of the urban area 

compared to the rural area (5-7 °C, Figure 13).  
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Figure 13. Daily temperature evolution in the summer thermographic campaign. The data are collected by: the 

thermo-hygrometers located at several heights in the streets: MA 6m and LB 6m: temperature measured 6 meters 

above the ground in Marconi St. and Laura Bassi St.; MA van and LB van: temperature measured on the roof of the 

van ARPAE in Marconi St. and Laura Bassi St.; the ARPAE weather stations located in the urban area (Bologna 

Urbana (BU)) and in the rural one (Mezzolara (Mz)), thermal Imaging IR Camera for the building façade temperatures 

refer to West (T MAP1W in Marconi St. and T LBP9W in Laura Bassi St.) and East (T MAP5E in Marconi St. and T LBP1E) 

side of the 2 street canyons (Marconi St. upper and Laura Bassi St. lower).  .  
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The UHI effect is different in the two city neighborhoods, and specifically is reduced in 

Laura Bassi St. with respect to Marconi St.. This result is due to different factors, 

including the presence of vegetation and the position of the street in residential area far 

apart from the city center. Conversely the higher UHI effect at Marconi is due to its 

position in the historic center of Bologna and the presence of high-density buildings. The 

same analysis carried out for the winter campaign highlights similar UHI effects in both 

neighborhoods, with differences between the urban and the surrounding rural area of 

about 6° C. The lack of difference between the two urban neighborhoods is likely a result 

of the absence of vegetation leaves in Laura Bassi.  

 

3.1.2 Low cost sensors  

Low Cost Sensor (LCS) assessment was carried out during the iSCAPE project. I took 

care of all the phases of the evaluation, from their setup to the analysis of the collected 

data, all the activities I carried out in this regard will be illustrated below. The LCSs 

provide high-density spatio-temporal pollution data offering a valid solution to make AQ 

monitoring devices available for large-scale use via a monitoring network. However, to 

implement a large-scale sensor network and to use all data generated in a meaningful 

way, it is necessary to formulate standard guidelines to evaluate its performance in the 

short and long terms (Rai et al., 2017). The main problems of this kind of sensors are 

related to: calibration, stability, measurements in the field, interferences between gas and 

influence of temperature and relative humidity (Rai et al., 2017; Spinelle et al., 2017). 

The assessment of sensors requires the knowledge of Repeatability, Reproducibility, 

Stability and Limit of detection of each sensor and for each pollutant: 

 Repeatability: is defined as the closeness between successive measurements 

carried out under identical conditions of measurement, it denotes the dispersion 

between consecutive measurements obtained from a given sensor. 

 Reproducibility: is defined as the closeness between successive measurements 

carried out under non-identical conditions of measurement it is used for 

designating dispersion between measurements obtained by using different 

sensors of the same model. 

 Stability: is defined as a sensor's capability to maintain its performance 

characteristics over a sufficiently long duration (at least a few months).  

 Limit of detection (LOD): is defined as the lowest concentration of a gas that can 

be significantly differentiated from zero concentration.   

While the performance assessment under real-world conditions must take into account 

environmental conditions, especially temperature and humidity, and other parameters 

that can affect the measure. Finally, the stability of the sensor in long-term measure 
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should be evaluated. Thus, based on the literature, the evaluation of LCSs followed a 

logical scheme consisting of three steps (Figure 14): 

 determine Repeatability, Reproducibility, Stability and Limit of detection; 

 consider environmental conditions, such as temperature and humidity, and 

calibrate the sensors in the field; 

 consider a long term valuation. 

 

 

 
Figure 14. Logical scheme for the LCSs evaluation. 

The steps coincide with three tests carried out: 

 in a closed room; 

 in real conditions, short term co-located with reference instruments; 

 in real conditions, long term. 

 

3.1.2.1 LCSs evaluation methodology 

The sensor technology developed during the iSCAPE project bases its core design on the 

Smart Citizen project (Fablab Barcelona - IAAC) with his Smart Citizen Kit (SCK): a 

modular stack of self-designed electronics with a set of low-cost environmental sensors 

and data logging capabilities. The original sensors in the SCK supported qualitative 

measurements of air pollutants (CO and NOx) via Metal Oxide sensors (MOs), light, 

temperature, humidity and noise readings. Data was logged via WiFi connectivity and 

sent to a dedicated API (Application Programming Interface, API indicates a set of 

procedures (generally grouped by specific tools) suitable for carrying out a given task; 

often this term designates the software libraries of a programming language), or locally 

in a sd-card.  

Two solutions have been developed and used in sensor monitoring experiences: low-cost 

sensors, i.e. the SCK for Citizen Science and awareness activities, and High-end sensors, 

i.e. the Living Lab Station (LLS) designed as a more complex and accurate set of air 

pollution sensors. The updated version of the Smart Citizen Kits (SCK1.5) was tested in 



47 

 

Bologna, in real world conditions during the iSCAPE winter field campaign (15/01/2018-

15/02/2018). The SCKs were available in three different configurations: i) Data Board 

(air Temperature (T), air Relative Humidity (RH), Light and Noise) with two sensors 

named MA02 and LB02; ii) Urban sensor Board (T, RH, Light, Noise, CO and NO2) 

with two sensors named MA03 and LB03 iii) Gas Pro Board (T, RH, Light, Noise, CO, 

NO2, plus three Alphasense Electrochemical gas sensors) with two sensors MA04 and 

LB04. Following the logical scheme (Figure 14), the sensors were tested in closed room 

(Figure 15A) for one day (23-24/01/2018); in real conditions on the roof of the ARPAE 

van equipped with air quality and meteorological instrumentations, located in Marconi 

St. (Figure 15B) for one day (30-31/01/2018); and in real conditions as long-term 

measurements in Marconi and Laura Bassi Sts. (Figure 15C and Figure 16) for 13 days 

(1-14/02/2018). This test should include consideration of stability issues, which, 

however, would require a longer test time, typically 2-6 months. 

 

 
Figure 15. SCKs tests locations: A) in a closed room; B) on the roof of the ARPAE van; C) detail of a sensor during 

long-term measurements, located near one street intersection. 

The LLSs were tested in Bologna, in real world conditions in the Lazzaretto site (6 - 29 

/08/2018). The two LLS were installed in different locations (Figure 16), LLS2 was 

located in a street canyon treated with photocatalytic coating, and LLS3 in a canyon 

without this treatment.  

 

 
Figure 16. Maps of sensor locations 1) in Marconi St.; 2) in Laura Bassi St.; 3) in Lazzaretto site. 
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This version measures T, RH, CO, NO2, O3, PM1, PM2.5 and PM10. In both Lazzaretto 

sites, instrumentation for the monitoring of air quality (ARPAE Van: mobile station) and 

meteorological variables was installed. 

 

3.1.2.2 LCSs evaluation results 

During the winter campaign, three tests were performed for SCKs: in a closed 

environment, and real conditions co-located with a reference measurement 

instrumentation for short-term and long term measurements.  

Closed environment: Repeatability is satisfactory, as the low Standard Deviation (SD) 

values indicate. The reproducibility is good, in fact the values of the coefficient of 

determination (R2) obtained by comparing sensors of the same type with themselves are 

close to 1. The LOD sensor was supplied by the manufacturer, since in our working 

conditions the concentrations of gaseous pollutants were always lower than the LOD, it 

was not possible to evaluate it (Table 1). 

Short-term measurements in real conditions: The R2 values of the same variable from 

different sensors show a good performance for T, RH and CO, while for NO2 there are 

cases where its value is low. R2 results of a variable against the same variable from a 

reference instrument (e.g. high-end) indicate a good agreement for T and RH while for 

gaseous pollutants the agreement is considerably poor. The latter may depend on the low 

concentrations in the real conditions, well under the sensor's LOD (Table 1).  

 

Closed Room Short-term 

 R2 SD Mean R2 R2
Ref SD SDRef Mean 

Mean

Ref 

T (°C) 0.7 - 1.0 0.3 - 0.5 26.1 0.7 - 1.0 0.7 - 1.0 0.6 - 0.8 0.6 6.5 5.6 

RH (%) 0.8 - 1.0 0.5 - 0.9 34.9 0.8 - 1.0 0.7 - 0.9 3.6 - 4.4 7.8 88.5 92.2 

CO 
(mg/m3) 

0.8 - 1.0 0.1 0.9 0.9 0.3 - 0.4 0.1 0.2 0.7 0.8 

NO2 
(ug/m3) 

0.9 - 1.0 1.5 - 4.4 44.9 0.3 - 0.9 
-0.3 - -

0.4 
0.7 - 1.2 12.1 19.4 58.3 

Long 

Term 

MARCONI LAURA BASSI 

R2 SD SDRef Mean 
Mean

Ref 
R2 SD SDRef Mean 

Mean

Ref 

T (°C) 0.9 - 1 2.1 - 2.9 2.2 9.3 7.7 0.9 - 1 2.6 - 3.0 3.1 7.7 6.3 

RH (%) 0.8 - 1 8.7 - 10.8 13.8 70 65.6   10.5 - 13.3 NA 77.6 NA 

CO 
(mg/m3) 

0.3  0.3 - 0.4 0.3 0.9 0.9 0.3 - 0.6 0.2 - 0.8 0.4 1.8 0.8 

NO2 
(ug/m3) 

0.2 
32.3 - 

37.6 
26 128 69.6 -0.4 12.3 - 20.3 13.8 125.8 58.1 

Table 1. Coefficient of determination (R2), Standard deviation (SD) and mean of LCSs data collected Closed 

environment, Short-term measurements in real conditions and Long-term measurements in real conditions. (Ref)= 

refers to the reference instruments.  
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Long-term measurements in real conditions: The T and RH sensors responded very well 

as shown by the values of the standard deviation of both LCSs and of the reference 

instrument. In fact, they are very close to each other with R2 values close to 1. Results 

are worse for gas sensors with R2 rather variable (Table 1). 

Figure 17 shows an example of diurnal temporal evolution measured during this 

campaign: in this case, the higher NO2 levels measured by SCKs are due to their location 

(near street intersection). In particular, the SCK MA04 follows the trend of the traffic 

profile obtained by ARPAE data elaborations, while the SCK MA03 shows peaks around 

17:30, which could result from NO2 accumulation inside the arches (where MA03 is 

located) during rush hours. 

 
Figure 17. Example of diurnal temporal evolution of NO2 concentration. 1) SCKs located in Marconi street. ARPAE 

data (BLACK), MA03 data (VIOLET), MA04(GREEN); 2) SCKs located in Laura Bassi street. ARPAE data (BLACK), 

LB03 data (VIOLET), LB04 (GREEN). 

The LLSs were then tested in real world conditions in the Lazzaretto site, where each 

LLS was co-located with an ARPAE van equipped with air quality and meteorological 

instrumentations. The R2 results of a variable against the same variable from a reference 

instrument indicate again good agreement only for T and RH, while the agreement is 

poor for CO and NO2 gaseous pollutants. The latter results in this case may depend on 

the temperature dependence of the pollutants measurements. Figure 18 shows an example 



50 

 

of diurnal temporal evolution observed during the campaign: in this case, the higher NO2 

levels measured by LLSs correspond to the sunny hours of the day.  

 

 
Figure 18. Example of diurnal temporal evolution of NO2 concentration of the LLSs located in the Lazzaretto site. 

ARPAE data (BLACK), SCK data (VIOLET). 

Figure 19 shows the result of curve fitting with a linear polynomial 1st order model 

(poly1); although the parameters indicate a bad fit, the figure clearly shows two distinct 

patterns, as highlighted also in Figure 20. To understand whether air temperature actually 

influenced the functioning of LLSs, Multi Linear Regression analysis was used (Figure 

19). The level of significance obtained (p<0.001) shows that indeed T impacted on the 

concentration measured by the LLSs. 

 

 
Figure 19. Curve fitting and table of Linear Regression analysis (MLRA). Top) Curve fitting with linear model poly1: 

f(x) = p1*x + p2 where x is normalized with mean value of 9.309 and SD of 5.32. X data=ARPAE data; Y data=LLS 

data. Bottom) R2, Multi Linear Regression analysis (MLRA). The Fisher (F) test is used to evaluate the statistical 

significance of the predictors within the model. With observed p-value<theoretical p-value (0.001), the predictors 

explain the 36% of the variance of LLS, improving the adaptation.  
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Figure 20. 3D Scatterplot: X data=ARPAE data; Y data=LLS data; colorbar=Temperature. 

The results of LLSs tests highlighted that the T and RH sensors have excellent 

repeatability and reproducibility; in addiction, the comparison with the reference 

instrumentation indicated that the sensors are reliable in field measurements. Conversely, 

the R2 values for CO and NO2 gaseous pollutants indicated poor agreement, but in the 

range of those observed by Borrego et al. (2016) and Spinelle et al. (2015), who reported 

R2 < 0.1 and low (0.20–0.21) R2 values for NO2 and CO, respectively.  

The LLSs turned out to be better than the SCKs due to different technical aspects (such 

as humidity resistance and monitoring PM pollution). The LLS were assessed to be 

reliable for spatial and temporal collection of detailed data of T and RH. Regarding the 

NO2 and CO sensors, the teste conducted were still not conclusive, and further 

investigations on the interaction with the surrounding physical environment are required. 

However, the preliminary results presented above, show a possible alteration of the 

measurement due to high air temperatures. 

Subsequent evaluations of the performance of the sensors provided indications and 

advice on the use of LCS for measuring particulate matter, as detailed described in 

Brattich et al. (2020). Specifically, in this work, the performance of the low-cost sensors 

was evaluated through a comprehensive and robust approach by considering long-term 

measurements with a reference instruments. The results indicated that low-cost sensors 

are affected by significant bias and low correlations when working at high time 

resolution, while the performance improves when time resolution is reduced to hourly or 

daily averages. Other biases that impact on the performance of the sensors are mainly 

related to the prevailing meteorological conditions, suggesting particular caution in their 

use under high relative humidity, such as rainy and foggy days. 
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3.2 The iSCAPE simulations 

An important part of the iSCAPE project concerned the simulations on the dispersion of 

pollutants, which were carried out in various cities with different purposes. In particular, 

in Bologna, the simulations were conducted with the following objectives: 

 evaluation of the efficacy of policy options to improve AQ; 

 evaluation of the efficacy of PCSs in improving AQ and urban thermal comfort; 

 evaluation of the efficacy of greening policies in improving AQ and urban 

thermal comfort in present and future climate projections. 

To these aims, various simulations at different spatial and temporal scales were carried 

out with different numerical approaches. I took care of the simulations conducted in the 

city of Bologna, in particular, I focused on the urban scale and used an advanced 

dispersion model called ADMS (Atmospheric Dispersion Modelling System; CERC, 

2017) developed by the Cambridge Environmental Research Consultants (CERC, 

http://www.cerc.co.uk/). The model is a quasi-Gaussian plume air dispersion model 

capable of simulating a wide range of passive and buoyant releases to the atmosphere. 

This model has been already extensively verified within numerous studies and its 

performance has been compared with other EU and US EPA models, such as CALPUFF 

and AERMOD for instance (e.g., Carruthers et al., 2000; Di Sabatino et al., 2008; Stocker 

et al., 2012). Furthermore, the ADMS model includes different modules depending on 

the scope of the investigation. 

Here, the dispersion of pollutants has been simulated with the ADMS-Urban, in which 

the dispersion calculations are driven by hourly meteorological. The complex terrain 

module applies a three-dimensional flow and turbulence field to the dispersion modelling 

calculations. In addition, the ADMS-Temperature and Humidity (ADMS-TH) Module 

was used to derive the resulting distributions as a perturbation of an existing field and 

reports the spatial distribution of the temperature and humidity field generated by spatial 

variations in land use, city morphology and anthropogenic heat emissions with respect 

to the unperturbed upwind input values (CERC, 2018). 

In order to accurately use the models over the study area, a set of input parameters are 

required: the parameters of the emission sources and their variability over time, the 

meteorology, the background concentrations and the topography. The following sections 

will detail the necessary input parameters and how they were obtained. 

 

3.2.1 Domain 

The study area includes all sources of urban air pollutants, meteorological stations and 

the AQ monitoring network, over a domain of 12x19 km. Several cartography data used 

were downloaded from the geo-portal of the Emilia Romagna Region 

(http://geoportale.regione.emilia-romagna.it/it), while road network and buildings data 

http://www.cerc.co.uk/
http://geoportale.regione.emilia-romagna.it/it
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were provided by the municipality of Bologna. For road emission sources, the 

municipality of Bologna provided traffic flows divided into light, heavy vehicles and 

buses, in a geo-referenced format and displayed as roads. Each road consists of several 

arcs (links), i.e. road segments in which the traffic flow was counted. Given the presence 

of many links (about 9000) that constitute the road network of Bologna, roads were 

divided into major and minor ones. Major roads are a source type, for which traffic 

emissions are represented explicitly as a line source. Minor road is instead a source type, 

in which emissions from traffic are not represented explicitly but are combined 

(aggregated) over one or more grid squares. In order to split the whole graph into major 

and minor roads, it was assumed that all the arches inside the internal ring road are major 

roads, while the arches outside the ring road are considered major roads in case the traffic 

flow was more than 500 vehicles. The remaining arches are treated as minor roads. The 

main roads are extrapolated from the spatial analysis carried out in the Geographic 

Information System (GIS) using QGis Desktop 3.2.3 with Grass 7.4.1 (Qgis Project, 

2017). The final number of major roads considered in the emission inventory turns out 

to be 1593 (Figure 21). 

The roads outside the ring road, with a traffic flow less than 500 vehicles, were 

considered as minor roads, i.e. emissions are combined (aggregated) over one or more 

grid squares. This typology of source is modelled as an area: from the Shapefile of roads 

(a vector data storage format developed by Esri which stores the location, shape, and 

attribute of geographic features as a set of related files), the lines are converted in square 

areas of 1000x1000 meters, so that the road sources become grid sources. 

 

 
Figure 21. Maps of Bologna emissions. Left) Map of NOx emissions from road sources ("Major Roads") in Bologna; 

right) Map of PM10 emissions from "Domestic" sources in Bologna. (Google satellite and OpenStreetMap base map 

provided by QGis). 



54 

 

The emissions from residential heating sources were modelled as grid sources, since it is 

very difficult to obtain the emission data of each household.  

 

3.2.2 Meteorological data  

The IdroMeteoClima Service of ARPAE Emilia-Romagna (Arpae-Simc) carries out 

operational observational and forecasting activities, supporting planning and research 

and development, in meteorology, climatology, hydrology, agro-meteorology, radar-

meteorology and environmental meteorology (https://www.arpae.it/sim/). The network 

includes almost a thousand sensors of various types located in over three hundred 

regional survey sites. The instruments are connected in real time and feed different 

databases, data are stored in a computerized archive and can be consulted in various ways 

on the website (https://www.arpae.it/dettaglio_generale.asp?id=2897&idlivello=1625). 

For instance, observational meteorological network data are available for free through 

the Dexter system (https://simc.arpae.it/dext3r). 

Here, I used the measurements collected at the following Weather Stations (WS, Figure 

22) taken into account in the simulations are: 1) Bologna Urbana (BU) and Asinelli (As) 

stations as urban WSs; 2) Mezzolara (Mz) stations as rural reference WS; 3) San Pietro 

Capofiume (SPC), Imola (Im), Sasso Marconi (SM) and Padulle-Sala Bolognese (PSB) 

stations as WSs for boundary condition of Bologna. 

In addition, measurements from the synoptic Bologna airport weather station (LIPE, 

WMO (World Meteorological Organization) number: 16140; Latitude: 44.5308 and 

Longitude: 11.2969) were also included. In particular, since the Bologna airport weather 

station is not influenced by the presence of buildings in the city itself, this station was 

considered the reference meteorological station for the city of Bologna. 

 

https://www.arpae.it/sim/
https://www.arpae.it/dettaglio_generale.asp?id=2897&idlivello=1625
https://simc.arpae.it/dext3r
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Figure 22. Weather stations (WS) for boundary condition of Bologna: San Pietro Capofiume (SPC), Imola (Im), Sasso 

Marconi (SM), Padulle-Sala Bolognese (PSB), Reference meteorological WS: Marconi airport (LIPE); rural reference 

WS: Mezzolara (Mz); urban WSs: Asinelli (As), Marconi mobile station (MA), Laura Bassi mobile station (LB) 

(source: Own account and OpenStreetMap). 

In addition, during the two intensive field campaigns in Bologna (one summer campaign 

in August-September 2017, one winter campaign in January-February 2018, thoroughly 

described in 3.1), additional measurements of the main meteorological variables (wind 

speed and direction, pressure, temperature and relative humidity) collected in Marconi 

(MA) and Laura Bassi (LB) Sts. by instruments located on the roof of the two ARPAE 

mobile laboratories were used.  

 

3.2.3 Air quality data  

The regional AQ monitoring network of Emilia Romagna region (ARPAE) consists of 

47 monitoring stations, with a total of 171 automatic analyzers for the main atmospheric 

pollutants: particulate matter (in form of PM10 and PM2.5), nitrogen oxides (NOx, NO2 

and NO), carbon monoxide (CO), benzene (C6H6), sulfur dioxide (SO2), and ozone (O3). 

The network is completed by other sensors of micro pollutants, as well as by 10 mobile 

laboratories and numerous mobile units for the implementation of evaluation campaigns. 

Out of the 47 stations belonging to the regional network, 4 are in the agglomeration of 

Bologna, 18 are in the West Plain area, 20 in the Eastern Plain area, while the remaining 

5 are located in the Apennines area. Among the automatic air quality monitoring stations 
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located in the agglomeration of Bologna, 3 are located within its urban agglomeration: 

Porta San Felice (SF), Via Chiarini (VC) and Giardini Margherita (GM). Table 2 

provides information on the position (Figure 23), the type of station and the pollutants 

measured at the three AQ stations. 

 

Station Type Lat Lon NOx NO2 CO O3 PM10 PM2.5 

Porta San Felice (SF) Traffic 44.5000 11.3285 
Hourly 

data 

Hourly 

data 

Hourly 

data 
 

Daily 

data 

Daily 

data 

Via Chiarini (VC) 
Suburban 

background 
44.5001 11.2861 

Hourly 

data 

Hourly 

data 
 

Hourly 

data 

Daily 

data 
 

Giardini Margherita 

(GM) 

Urban 

background 
44.4836 11.3550  

Hourly 

data 
 

Hourly 

data 

Daily 

data 

Daily 

data 
Table 2. Information on reference monitoring stations in Bologna: type, location (latitude and longitude), measured 

pollutants with associated time resolution. Empty cell indicates pollutants that are not measured at that station or 

unavailable data. 

 

 
Figure 23. Location of Air Quality (AQ) stations and Weather Stations (WS): AQ stations in red: Porta San Felice 

(SF), Via Chiarini (VC), Giardini Margherita (GM), AQ mobile laboratories in green: Marconi (MA) and Laura 

Bassi (LB); and Weather station in blue: LIPE; (map source: OpenStreetMap and contributors). 

In addition, during the intensive field campaigns in Bologna (thoroughly described in 

Section 3.1) hourly (NOx, PM10, PM2.5, CO, O3 and SO2) pollutant concentrations were 

collected in Marconi and Laura Bassi Sts. by the two ARPAE mobile laboratories. 

 

 



57 

 

3.2.4 Bologna emission database 

An atmospheric emission inventory is a collection of data presenting an emission of a 

pollutant and related parameters including: 

 chemical identity: the chemical properties of the pollutant; 

 activity or technology: the cause of the emission; 

 location: describes both the location on the map and the height of the emission; 

 time dependence: in general, as annual totals.  

Bologna is one of the main crossroads between North and South Italy, heavily interested 

by large-scale transportation infrastructure, and mobility in general, represents the main 

considerable environmental pressure on the entire metropolitan area. As, the territory is 

not directly influenced by large-scale industrial facilities, the most important sources of 

emissions are traffic and domestic heating (Tositti et al., 2014). The compilation and 

build-up of the emission inventory of Bologna was built through the EMIT (Atmospheric 

Emissions Inventory Toolkit) tool available from CERC (CERC, 2015), a database tool 

for storing, manipulating and assessing emissions data from several sources (major roads, 

rail and industrial sources, minor road, commercial and domestic sources). EMIT allows 

storing emissions data that have been directly imported, or to calculate emissions from 

source activity data using emission factors. Alternately, EMIT can calculate emissions 

using a scaling of national or regional emissions by a local statistic, such as population. 

The EMIT tool was also developed to estimate the consequences of traffic management 

schemes such as clean air zones and local emission zones regarding emissions.  

EMIT calculates the emissions of local pollutants starting from traffic flows in the roads, 

considering the emission factors, the fleet components and the route type. The emission 

factors are a set of data obtained from experimental results that relate emission rates for 

different pollutants to vehicle subcategories. There are numerous sets of emission factors 

available for road and rail traffic sources in the EMIT database. EMIT calculates the 

emissions using its own database containing UK emission factors. Comparing Italian and 

English fleet composition (fuel type and technology), it was estimated that the fleet for 

UK are quite likely the Italian one. In the case of Bologna, emission factor data was 

derived from NAEI (National Atmospheric Emissions Inventory) 2014 datasets. In this 

dataset the emission factor data are taken from the COPERT 4 model version 10.0 (Karsis 

et al., 2012) compiled as part of the UK NAEI 2014. Among the emission factors, the 

non-exhaust emissions, i.e. road traffic particulate emissions emitted due to mechanical 

abrasion and corrosion, and the re-suspension of material deposited on the road surface 

by tire shear, vehicle-induced turbulence and wind are very important. In fact, while the 

improvements in vehicle technologies are constantly decreasing the exhaust emissions, 

non-exhaust emissions are less controlled and increase with the increase in traffic 

volumes. Here, non-exhaust emission factors derived using the Tier 2 methodology in 
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the 2009 EMEP2/EEA emission inventory guidebook (EEA, 2009) were considered. 

EMIT calculates the emission rate (the mass flux of a particular pollutant from a specified 

source, g/s or kg/year) for all sources and allows to directly create the input files for 

ADMS-Urban.  

 

In the case of road traffic, source specific data needed are as follows: 

• Annual Average Daily Traffic count (AADT) 

• Fleet components, the breakdown of the AADT into the different fleet 

components (e.g. heavy vehicles, light vehicles and motorcycles). EMIT supports 

3 or 11 fleet components for road traffic; 

• Length of road; 

• Drive cycle (driving behavior in ‘urban’, ‘rural’, and ‘motorway’ environment 

leads to differing rates of engine deterioration and thus of emissions). 

For road emission sources, the municipality of Bologna provided traffic flows divided 

into light, heavy vehicles and buses, in a georeferenced format and displayed as roads. 

EMIT calculates the emission rates using its own database for both minor roads and 

major roads. The count of vehicles in the roads is used to calculate the emissions and to 

create the input files for the ADMS-Urban dispersion model. 

The emissions from residential heating sources instead are modelled as area sources, in 

which an emission rate was is assigned to each grid cell scaling groups of sources using 

the population as a local statistic. The population at the municipal level is spread over 

the territory based on the resident population spread over cells of 1 km (Figure 21). 

 

3.2.5 Model evaluation  

In order to evaluate the performance of the ADMS-Urban dispersion model, predicted 

pollutant concentrations were compared with hourly data measured at ARPAE AQ 

stations. Data analysis and comparison of modelling results with observations were 

carried out using the Model Evaluation Toolkit (CERC, 2015). In particular, the 

performance of the ADMS-Urban model was evaluated by calculating some basic 

statistical parameters, (mean and standard deviation), and other indicators with a 

methodology developed by Hanna (1993) and summarized by Chang and Hanna (2004). 

Specifically, the following set of indicators, proposed by Carruthers et al. (2000) was 

considered for the evaluation of the performance of the dispersion model: 

• the Normalized Mean Square Error (NMSE), a measure of the mean difference 

between matched pairs of modelled and observed concentrations  

                                                 
2 European Monitoring and Evaluation Programme (EMEP) 
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𝑁𝑀𝑆𝐸 =
(𝐶𝑚 − 𝐶𝑜)2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝐶𝑚𝐶𝑜
̅̅ ̅̅ ̅̅ ̅

 

• the Pearson’s correlation coefficient (r), a measure of the extent of a linear 

relationship between the modelled and observed concentrations  

𝑟 =
∑ (𝐶𝑜.𝑖 − 𝐶𝑜

̅̅ ̅)(𝐶𝑚.𝑖 − 𝐶𝑚
̅̅ ̅̅ )𝑛

𝑖=1

√∑ (𝐶𝑜,𝑖 − 𝐶𝑜
̅̅ ̅)

2𝑛
𝑖=1 ∑ (𝐶𝑚,𝑖 − 𝐶𝑚

̅̅ ̅̅ )
2𝑛

𝑖=1

 

• the coefficient of determination (R2), the proportion of the variance in the 

dependent variable that is predictable from the independent variable(s) 

𝑅2 =
[∑ (𝐶𝑜.𝑖 − 𝐶𝑜

̅̅ ̅)(𝐶𝑚.𝑖 − 𝐶𝑚
̅̅ ̅̅ )𝑛

𝑖=1 ]2

∑ (𝐶𝑜,𝑖 − 𝐶𝑜
̅̅ ̅)

2𝑛
𝑖=1 ∑ (𝐶𝑚,𝑖 − 𝐶𝑚

̅̅ ̅̅ )
2𝑛

𝑖=1

 

 

• the Fractional bias (Fb), a measure of the mean difference between the modelled 

and observed concentrations  

𝐹𝑏 =
(𝐶𝑜
̅̅ ̅ − 𝐶𝑚)̅̅ ̅̅ ̅

0.5(𝐶𝑜
̅̅ ̅ + 𝐶𝑚)̅̅ ̅̅ ̅

 

• the Factor of two (Fac2), i.e. the fraction of modelled concentrations within a 

factor of 2 of observations 

Fac2 = the fraction of data for which     0.5 < 𝐶𝑚 𝐶𝑜 < 2⁄  

• the Mean Bias (MB), the mean difference between the modelled and observed 

concentrations 

𝑀𝐵 = (𝐶𝑚 − 𝐶𝑜)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅                 

where Cm is modelled concentration and Co in observed concentration. 

The recommended statistical criteria for the NMSE, Fac2 and Fb parameters of an 

acceptable model, are: NMSE ≤ 1.5, Fac2 ≥ 0.5 and –0.3 ≤ Fb ≤ 0.3 (Di Sabatino et al., 

2011) while r and R2 must tend to 1.  

 

3.3 Summary 
iSCAPE (H2020 Research and Innovation programme) focus was the integration and 

advancement of the control of air quality in European cities in the context of climate 

change. During the iSCAPE project experimental field campaigns were carried out in 

different target cities. The Bologna experimental campaigns aimed at creating a baseline 

on which to evaluate the efficiency of the GI in urban area and using the measurements 

as inputs for the simulations. Two urban street canyons were identified, sharing similar 

traffic conditions and emitting sources, but characterized by different presence of 



60 

 

vegetation. Within the iSCAPE project, I took care of the acquisition of thermal images 

and their analysis, the performance evaluation of LCS (SCKs and LLSs) and the urban-

scale Bologna simulations. 

I processed an acquisition protocol, as well as a post processing methodology for thermal 

images. The results highlight a UHI effect around 5-7 °C. The UHI effect was different 

in the two city neighborhoods due to the different presence of trees, the position in the 

city center and the different building density. This step of my work provided information 

on the state of the UHI of the city of Bologna, identifying the thermal aspect of the city 

as a critical one. The problem of citizens’ thermal comfort is very much felt during the 

summer, which is why it has been included in the forecasting tool design.  

The LCS performance were assessed in a closed room and in real conditions, in both 

short term and long term measurements. The test results, for both for SCKs and LLSs, 

highlighted that the T and RH sensors are reliable in field measurements, while gas 

sensors indicated poor agreement with reference instrumentation (due to the interaction 

with the surrounding physical environment). This step of my work aimed to evaluate 

whether LCS could be used to improve pollutant dispersion simulations, but the results 

obtained discouraged their inclusion in the forecasting tool. 

For the Bologna simulations at the urban scale an advanced dispersion model called 

ADMS was used. All simulations conducted are detailed in the next chapter.  
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4 CASES AND SIMULATED SCENARIOS ON BOLOGNA 
In this chapter, the simulations conducted on the city of Bologna are presented. In 

particular, the simulations conducted to test traffic policies and to test greening 

interventions will be presented, also considering the effect of future climate change. In 

the case of greening interventions, simulations are also carried out to evaluate the effects 

of greening on the variation in air temperature. Furthermore, a new methodology is 

presented to consider the effects of trees on the dispersion of pollutants within the 

dispersion model. For each case and scenario, the methodology used and the results 

obtained are described. 

 

4.1 Traffic management policies 

This section focuses on the efficacy of policy options to improve air quality at urban 

scale, considering also possible behavioral changes. One of the main results is the 

evaluation of the model's performance, obtained from an ad-hoc setting of the model on 

Bologna. In addition, the efficacy evaluation of policy options was conducted by 

reconstructing detailed air quality maps using ADMS-Urban dispersion model. The 

evaluation of the policies implemented was carried out considering the current scenario, 

i.e., implementing only the policies but with no change in the rest of the setup of the 

dispersion model (as for meteorology, background concentrations, and emission sources 

other than traffic). The estimation of the effectiveness of the policies is then evaluated, 

comparing the results obtained for long-term averages with those obtained in the 

reference current case (baseline scenario). 

The main traffic area in Bologna is the city center (inside the inner ring road) which also 

corresponds to the main commercial area. In order to improve the air quality, the policies 

chosen to be implemented and simulated in Bologna act specifically on the composition 

of the fleet and on certain traffic limitations, and as such also indirectly affect the 

behavior of citizens. In particular, the policies investigated are: 

 Policy 1 "Electric Centre" (2017P1EC): light and heavy vehicles are banned from 

the internal ring road, and only electric vehicles are allowed in this area. 

 Policy 2 "Electric Buses" (2017P2EB): conversion of the bus fleet in Bologna to 

electric with increase in bus frequency in the center, and all non-electric vehicles 

are banned from the internal ring road. 

 

4.1.1 The ADMS-Urban model setup 

The dispersion of pollutants on Bologna was modeled considering the year 2017 as a 

base case. The Bologna Emissions inventory created based on traffic flow counts 

provided by municipality (as described in section 3.2.4). The input meteorological 

dataset contained hourly sequential data measured by the Bologna airport weather 
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station, considered the reference meteorological station for the city of Bologna not 

influenced by the presence of buildings in the city itself. The MET file (input file for 

ADMS-Urban) must contain hourly data of the meteorological variables (temperature 

(T0C), relative humidity (RHUM), wind speed (U), wind direction (PHI), cloud cover 

(CL) and solar radiation (SOLAR RAD)) observed at the coordinates that identify the 

LIPE meteorological station (Bologna airport). 

Background pollutant concentrations were obtained from observations at measured at the 

ARPAE monitoring stations located in the outskirts of Bologna: Via Chiarini (VC), in 

the western part of Bologna, measuring hourly data for NOx, NO2, O3 and daily data for 

PM10 and Giardini Margherita (GM) in the southern part of Bologna, measuring hourly 

data for NO2. Since the legal limit for CO is 0.6 mg/m3 and the annual average CO is 

lower than this limit, this pollutant is no longer included in the AQ monitoring for 

background stations (GM and VC). According to the work of Righi et al. (2009), to model 

well also the CO emissions, it is necessary to insert its background value, in particular 

considering that it is affected by a "memory effect" that can be corrected taking into 

account the concentrations of CO present in the hours immediately preceding the specific 

time considered in the model. For these reasons, here the concentration referred to the 

previous hour from the urban traffic Porta San Felice (SF) station, was used as 

background concentration. 

The emissions from air pollution sources are time dependent, so time varying emission 

factors for road and grid sources need to be considered. The ADMS-Urban model is 

capable of considering hourly factors for weekdays, Saturdays, and Sundays and monthly 

factors. In this study, detailed data of hourly factors for weekdays (24 hours), Saturdays 

(24 hours) and Sundays (24 hours) (i.e. diurnal profiles) and monthly profiles are defined.  

 

4.1.2 The evaluation of ADMS-Urban model performance 

The validation of dispersion modeling simulations carried out for Bologna was 

performed comparing hourly concentrations of pollutants (NOx, NO2, O3, CO, and PM10) 

observed at the fixed AQ measuring stations (SF, GM and VC stations) with those 

simulated with the ADMS-Urban model during the 2017 year. In particular, the 

assessment was made considering pollutant measurements over the whole 2017 year. 

Figure 24 represent the comparison of daily simulated and observed NOx and PM10 

concentrations related to SF station. The modeled data are comparable with those 

observed, even though the model tends to overestimate simulated concentrations, as 

highlighted in Figure 25, which shows the NOx weekly time concentration cycle in San 

Felice.  
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However, as from Table 3, statistical parameters for the ADMS simulations are 

reasonably good. The NMSE, Fac2 and Fb parameters fulfill the recommended statistical 

criteria (i.e. NMSE ≤ 1.5, Fac2 ≥ 0.5 and –0.3 ≤ Fb ≤ 0.3 (Di Sabatino et al., 2011)). 

 

 
Figure 24. Time series of daily average pollutant concentrations for 2017 at the AQ ARPAE Porta San Felice (SF) 

station. Top) NOx concentration and Bottom) PM10 concentration. Modeled data (Mod) in red and observed data (Obs) 

in blue. 
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Figure 25. Diurnal, weekly and monthly pattern for NOx, period:1/01/2017 – 1/01/2018 for the base case simulation 

as compared to the measured values at Porta San Felice (SF) station.  

Station Pollutant MeanObs ± SD MeanMod ± SD MB NMSE Fb R R2 Fac2 

SF NOx 81.8 ± 43.7 91.9 ± 47.4 10.18 0.07 0.12 0.91 0.82 1.00 

SF NO2 46.1 ± 14.9 43.9 ± 16.7 -2.17 0.05 -0.05 0.82 0.68 0.97 

SF CO 0.7 ± 0.2 0.7 ± 0.2 -0.01 0.00 -0.01 1.00 0.47 1.00 

SF PM10 28.9 ± 24.2 30.3 ± 21.7 1.37 0.05 0.05 0.97 0.94 0.96 

GM NO2 25.0 ± 16.8 25.6 ± 15.0 0.61 0.02 0.02 0.99 0.96 0.97 

GM O3 48.0 ± 35.4 44.2 ± 32.2 -3.81 0.02 -0.08 1.00 0.95 0.98 

GM PM10 25.0 ± 23.0 26.4 ± 20.8 1.42 0.06 0.06 0.96 0.93 0.94 

VC NOx 33.2 ± 28.6 33.3 ± 24.7 0.17 0.04 0.01 0.98 0.99 0.99 

VC NO2 20.4 ± 10.6 24.9 ± 15.1 4.50 0.11 0.20 0.94 0.89 0.98 

VC O3 41.2 ± 32.9 42.9 ± 32.9 1.70 0.09 0.04 0.92 0.83 0.88 

VC PM10 27.7 ± 20.4 27.7 ± 20.4 0.01 0.00 0.00 1.00 1.00 1.00 

Table 3. Statistical indices calculated to compare the simulated data (mod) of pollutant concentrations with the 

measured values (obs) in the ARPAE background AQ stations (Porta S. Felice (SF), Giardini Margherita (GM) and 

Via Chiarini (VC)) in Bologna for the period from 1/01/2017 – 1/01/2018. SD: Standard deviation; MB: mean bias; 

NMSE: normalized mean square error; R: Pearson’s correlation coefficient; Fac2: factor of two; Fb: fractional bias. 

Considering SF station (traffic reference station), R2 correlation coefficients are in the 

range 0.47-0.94 (for CO and PM10, respectively). The normalized mean square error is 

low for all pollutants. The values of the fractional bias are very low (0.01 for CO): 

specifically, the low positive values observed for fb (NOx and PM10 in SF; NO2 and PM10 

in GM and all pollutant in VC) indicate a slight overestimation, while the low negative 

values (NO2 and CO in SF and O3 in GM) indicate a slight underestimation. 
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4.1.3 Base Case Vs Polices  

The concentrations of pollutants present large seasonal variations, and these variations 

are especially consistent between the summer and winter periods. Therefore, two periods 

were analyzed, i.e. winter (January, February and March 2017) and summer (June July 

and August 2017) to present the current (baseline) scenario (base case, 2017BC) and the 

application of the two selected policies (Policy1 and Policy2).  

In general, this simulation shows that the center of Bologna is the main pollution hot spot 

for all pollutants. The comparison of the average values at the receptors (point 

corresponding to the ARPAE control units, used in the simulations to model the 

dispersion at that point), highlights how winter represents a critical period (Table 4).  

 

Season Receptor name NOx (µg m-3) NO2 (µg m-3) CO (mg m-3) O3 (µg m-3) PM10 (µg m-3) 

Winter V. Chiarini          64.81 41.44 0.82 24.80 38.79 

Winter Porta S. Felice      166.00 60.55 0.85 18.37 43.15 

Winter Giardini Margherita  66.20 41.83 0.82 24.67 38.87 

Summer V. Chiarini          15.81 12.07 0.47 76.19 19.67 

Summer Porta S. Felice      60.77 30.21 0.48 63.25 21.60 

Summer Giardini Margherita  16.17 12.29 0.47 76.02 19.68 

Table 4. Average pollutant concentration values at receptor sites in winter and summer for the 2017BC scenario in 

Bologna. 

The concentration maps in the 2017BC scenario for Bologna are reported below (Figure 

26 and Figure 27). 
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Figure 26. Concentration maps in the 2017BC scenario for Bologna, A) O3 (µg m-3) in winter and B) O3 (µg m-3) in 

summer). 

Figure 26 shows the spatial distribution of the O3 concentration in the 2017BC scenario 

in winter and summer seasons, governed by atmospheric chemistry. The spatial 

distribution of the concentration of O3 shows lower concentrations in trafficked areas 

than in non-urban areas, as expected. 
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Figure 27. Concentration maps in the 2017BC scenario for Bologna, for: A) NOx (µg m-3) in winter; B) NOx (µg m-3) 

in summer; C) PM10 (µg m-3) in winter, D) PM10 (µg m-3) in summer. 
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The spatial distribution of the concentration of air pollutants (Figure 27) in the 2017BC 

scenario appears similar in the two seasons for both NOx and PM10 concentration, while 

the simulated concentration ranges are very different in the two seasons, as expected.  

 

4.1.3.1 Policy 1: Electric Centre 

The Policy 1 tested on the territory of Bologna is a traffic limitation for the entire area 

inside the inner ring road: only electric vehicles are allowed to enter and circulate in this 

area. The comparison of the average values of receptors in Electric Centre scenario 

(2017P1EC scenario) for the two periods (Table 5), shows that winter is still a critical 

period. However, the average concentrations are lower than in the 2017BC scenario for 

all pollutants, except for ozone.  

 

Season Receptor NOx (µg m-3) NO2 (µg m-3) CO (mg m-3) O3 (µg m-3) PM10 (µg m-3) 

Winter VC          64.67 41.37 0.82 24.82 38.78 

Winter SF      65.27 41.47 0.83 24.82 39.26 

Winter GM  64.65 41.29 0.82 24.89 38.80 

Summer VC          15.71 12.01 0.47 76.23 19.66 

Summer SF      15.92 12.10 0.47 76.16 19.86 

Summer GM  15.70 11.98 0.47 76.25 19.67 

Table 5. Average concentration values to receptors (Via Chiarini (VC); Porta San Felice (SF) and Giardini 

Margherita (GM) in winter and summer for 2017P1EC scenario in Bologna. 

Considering the winter case, the concentration maps for NOx and PM10 pollutants in 

2017P1EC scenario for comparison with the 2017BC scenario, show that the maximum 

values have decreased compared to the base case, especially for NOx. Furthermore, the 

spatial pattern changed (Figure 28), in fact the hot spot located over the center of Bologna 

is no more present, but it is possible to recognize different less intense hot spots 

distributed on the territory, near the busiest streets. 
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Figure 28. Concentration (µg m-3) maps for the 2017P1EC scenario for winter 2017 in Bologna. The maps represent: 

A) concentration for NOx and B) PM10; Maps of concentration differences for C) NOx and D) PM10. The differences 

are calculated between 2017P1EC scenario and 2017BC scenario. 
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To highlight more clearly the effect of the policy in terms of increase and decrease in 

concentrations, maps of concentration differences between the two scenarios are 

calculated. These maps show a decrease in concentrations over the city center. Therefore, 

the effect of the policy can be considered satisfactory, as shown by the percentages of 

reduction/increase in concentration, compared to the base case (Table 7, calculated for 

all the receptor sites). 

 

4.1.3.2 Policy 2: Electric Buses 

The second policy implemented concerns the conversion of the entire urban buses fleet 

to electric. Furthermore, the city center (the area inside the internal ring road) was 

affected by an increase in bus frequency and a ban on all non-electric vehicles. The 

comparison of the average values of receptors in Electric Buses scenario (2017P2EB 

scenario) for the two periods shows that the winter is still a critical period (Table 6). 

However, average pollutant concentrations are lower than the 2017BC scenario for all 

pollutants, with the exception of ozone and PM10. 

 

Season Receptor NOx (µg m-3) NO2 (µg m-3) CO (mg m-3) O3 (µg m-3) PM10 (µg m-3) 

Winter VC          64.77 41.39 0.82 24.79 38.81 

Winter SF      65.80 41.55 0.83 24.74 44.66 

Winter GM  64.74 41.31 0.82 24.87 38.92 

Summer VC          15.77 12.04 0.47 76.20 19.68 

Summer SF      16.14 12.22 0.47 76.04 22.20 

Summer GM  15.75 12.01 0.47 76.22 19.70 

Table 6. Average concentration values to receptors (Via Chiarini (VC); Porta San Felice (SF) and Giardini 

Margherita (GM) in winter and summer for 2017P2EB scenario in Bologna. 

Compared to the base case, the Policy 2 also results in a decrease in the maximum 

pollutant values, especially for NOx. Regarding the spatial pattern (Figure 29), NOx 

concentrations present several hot spots, less intense and distributed throughout the 

territory, close to the most trafficked roads, while the PM10 concentrations still show a 

hot spot in the center of Bologna. This could be caused by non-exhaust emissions due to 

increased frequency in electric buses. In fact, the electrification of the fleet though having 

potential for NOx and CO abatement, has limited impact on PM10 reductions because of 

the high contribution of non-exhaust which is not reduced by fleet electrification. 
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Figure 29. Concentration (µg m-3) maps for the 2017P2EB scenario for winter 2017 in Bologna. The maps represent: 

concentration for A) NOx and B) PM10; Maps of concentration differences for C) NOx and D) PM10 (bottom). The 

differences are calculated between 2017P2EB scenario and 2017BC scenario. 
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The maps of concentration difference between 2017P2EB scenario and 2017BC scenario 

(Figure 29), highlight a decrease in NOx concentrations. Also, it can be noted that there 

is no decrease for PM10, which can be attributed to the non-exhaust emission due to the 

increased frequency of electric buses. The effect of Policy 2 can thus be considered 

satisfactory, as shown by the percentages of reduction/increase in concentration 

compared to the base case (Table 7, calculated for all receptor). 

 

Policy Season Receptor NOx NO2 CO O3 PM10 
1 Winter VC          0.2%  -0.2% 0.0% 0.1% 0.0% 

1 Summer VC -1%  -1% 0.0% 0.1% 0.0% 

2 Winter VC -0.1% -0.1% 0.0% 0.0% 0.1% 

2 Summer VC  -0.3%   -0.3% 0.0% 0.0% 0.0% 

1 Winter GM  -2%  -1% -0.1% 1% -0.2% 

1 Summer GM  -3%  -3% 0.0% 0.3% -0.1% 

2 Winter GM  -2.2%  -1.2% -0.1% 0.8% 0.1% 

2 Summer GM  -2.6%  -2.3% 0.0% 0.3% 0.1% 

1 Winter SF      -61% -32% -2% 35% -9% 

1 Summer SF  -74% -60% -2% 20% -8% 

2 Winter SF  -60.4%  -31.4% -2.3% 34.7% 3.5% 

2 Summer SF  -73.4%  -59.6% -1.8% 20.2% 2.8% 

Table 7. Percentages of reduction/increase in concentration of the Policy 1 and Policy 2 compared to the base case 

(calculated for all receptor (Via Chiarini (VC); Porta San Felice (SF) and Giardini Margherita (GM)). 

The only exception to the improvement are the increases in PM10 concentration already 

found in the map, this increase is greater for the SF station (3.5% in winter and 2.8% in 

summer) than for the GM and VC stations. 

 

4.2 Passive Control System and infrastructure interventions 

This section illustrates the approaches used to evaluate the effects of PCSs on AQ and 

UHI. The PCSs (such as low boundary walls, avenue trees) are effective passive controls 

in air pollution (e.g., Abhijith et al., 2017; Buccolieri et al., 2009; Gallagher et al., 2012; 

Gromke, 2011). In particular, trees may provide air quality benefit through a combination 

of the deposition and dispersion effects on air pollutants (Abhijith and Kumar, 2019; 

Janhäll, 2015). The effects caused by the insertion of trees on UHI and AQ were studied 

at the urban scale in the current scenario and with the possible introduction of PCS, 

through: (1) a UHI analysis with ADMS-TH model and (2) an AQ analysis with ADMS-

Urban model. 

In this case, the challenge was to parameterize the PCSs within the ADMS-TH and 

ADMS-Urban models. In the first case, the inclusion of PCSs in the model was 

implemented by modifying parameters referred to land use (calculated following an ad-



73 

 

hoc methodology), in the case of ADMS-Urban, the PCSs were considered as a factor 

that modifies the deposition of pollutants. In addition, the performance evaluation for the 

ADMS-TH model is presented. 

 

4.2.1 The UHI analysis 

To evaluate the effects of PCSs on UHI, the ADMS - Temperature and Humidity 

(ADMS-TH) Module is used (CERC, 2018). It belongs to the category of models that 

derives the resulting distributions as a perturbation of an existing field. In particular, 

ADMS-TH reports the spatial distribution of the temperature and humidity field 

generated by spatial variations in land use, city morphology and anthropogenic heat 

emissions with respect to the unperturbed upwind input values. The land use dataset 

includes the radiative characteristics of the surface, soil moisture and related exchange 

processes with the adjoin atmosphere, and the friction force generated by the surface 

asperities on the air motion. This last input is fundamental when dealing with urban 

environments since ADMS-TH displays the city texture as a morphologically complex 

obstacle, treated as a variation of the surface roughness, which perturbates the input 

meteorological conditions. Moreover, the urban environment is also a source of heat due 

to the thermal forcing of the materials by which the city structures are built, that as a 

general inclination to behaves as a black body to solar radiation. Last, meteorological 

data or mesoscale model outputs need to be provided as input to assess the atmospheric 

patterns which will be considered as upwind conditions with respect to the analyzed 

domain. The model computes a spatial variation of the temperature and humidity fields 

resulting in the heat fluxes distribution depending on the adopted land use, and then a 

distribution of such temperature and humidity fields according to the meteorological 

input conditions. The model carries out the computation by solving the linearized forms 

of the heat transfer equations together with the appropriate boundary conditions. 

In order to evaluate the effect of PCSs on the UHI, three scenarios are investigated: base 

case scenario (Bologna without trees) and two scenarios with presence of trees: Marconi 

St. with trees and Centre with trees. In particular, the modeling of the current base case 

scenario refers to the days 22 and 23 August 2017, when the summer experimental 

campaign and the thermographic campaign were carried out. 

 

4.2.1.1 Land use data  

The essential parameters that define the land use which the model needs to compute the 

temperature and humidity fields perturbations are the spatial variation of the surface 

resistance to evaporation and the surface roughness. In addition, other parameters, such 

as the surface albedo, the thermal admittance and the normalized building volume, can 

be specified to enhance the reliability of the simulation (Table 8). 
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Parameter Units 
Surface resistance to evaporation  𝑠

𝑚⁄  

Surface roughness length for momentum transfer 𝑚 

Albedo - 

Thermal admittance 𝐽

𝑚2𝑠
1

2⁄ 𝐾
⁄  

Normalized building volume (NBV) 𝑚 

Perturbation to the net radiation 𝑊
𝑚2⁄  

Perturbation to the ground heat flux 𝑊
𝑚2⁄  

Table 8. Summary of spatially varying parameters that can be entered into the ADMS-TH model. 

Land use type used for the analysis is derived from the Local Climate Zone (LCZ) 

classification adopted by Stewart and Oke (2012). The term LCZ describes regions of 

uniform surface cover, structure, material and human activity on a defined horizontal 

spatial scale. Each LCZ has a characteristic temperature regime associated with urban 

environments, natural biomes and agricultural lands. The classification consists of 17 

LCZs, subdivided into built types (1-10) related to structural features of the surface, and 

land cover types (A-G) accounting for seasonal and ephemeral properties (Stewart and 

Oke, 2012). A brief description of the LCZs used in the study is reported in Table 9.  

 

 LCZ 2: Compact Midrise:  

Dense mix of midrise buildings (3–9 stories). Few or no trees. Land cover 

mostly paved. Stone, brick, tile, and concrete construction materials. 

 LCZ 5: Open Midrise: 

Open arrangement of midrise buildings (3–9 stories). Abundance of pervious 

land cover (low plants, scattered trees). Concrete, steel, stone, and glass 

construction materials. 

 LCZ 6: Open Lowrise: 

Open arrangement of low-rise buildings (1–3 stories). Abundance of pervious 

land cover (low plants, scattered trees). Wood, brick, stone, tile, and concrete 

construction materials. 

 LCZ 8: Large Lowrise: 

Open arrangement of large low-rise buildings (1–3 stories). Few or no trees. 

Land cover mostly paved. Steel, concrete, metal, and stone construction 

materials. 

 LCZ B: Scattered Trees: 

Lightly wooded landscape of deciduous and/or evergreen trees. Land cover 

mostly pervious (low plants). Zone function is natural forest, or urban park. 

 LCZ D: Low plants: 

Featureless landscape of grass or herbaceous plants/crops. Few or no trees. 

Zone function is natural grassland, agriculture, or urban park. 

 LCZ G: Water: 

Large, open water bodies such as seas and lakes, or small bodies such as rivers, 

reservoirs, and lagoons. 

Table 9. LCZ classes used to determine the actual domain (source: Stewart and Oke, 2012). 
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Following this classification, the domain of the model is subdivided among the land use 

type (Figure 30). In th specific case of Bologna not all the classes are present in the 

domain. Once the surface types are defined, the first 5 parameters in Table 8 have been 

computed and provided as input to the model (Figure 31). 

 

 
Figure 30. Land use for the simulation domain following LCZ classification. 

Surface resistance to evaporation (Figure 31B) assesses the surface capacity to hold its 

humidity level, it is larger in urban areas, especially in the city center and for densely 

packaged arrays of buildings where the bare soil is covered by a complex texture of 

concrete and tarmac. The minimum values can be found in the plain, because bare soil, 

agriculture and low-risen plants offer a weak resistance to evaporation. The hill chain to 

the south of Bologna shows an intermediate value between urban and rural environments 

since the presence of forests inhibits surface evaporation due to the moist entrapment 

inside the canopy.  

The thermal admittance (Figure 31C) determines the efficacy of the surface to absorb 

and emit heat from and to the atmosphere. It is strongly dependent on the material the 

soil is made of and it is a good indicator of the surface thermal forcing. It reaches 

maximum values in the city center and the most urbanized peripheral areas, while it 

rapidly decreases in the countryside.  

Albedo and Normalized Building Volume (NBV) are directly related to the net radiation 

since they influence the absorbance and scattering features of the surface. Surface albedo 

(Figure 31D) is a measure of the reflectivity of materials to the incident solar radiation. 

Generally, materials like concrete and tarmac have low values for albedo, letting the solar 

radiation been almost all absorbed and emitted at larger wavelength enhancing the urban 

temperature. 
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Figure 31. Domain modelling and input parameters. A) Areal view of the spatial domain and maps of the B) surface 

resistance to evaporation ( 𝑠 𝑚⁄  ); C) thermal admittance ( 
𝐽

𝑚2𝑠
1

2⁄ 𝐾
⁄  ); D) surface albedo; E) normalized building 

volume ( 𝑚 ); F) roughness length ( 𝑚 ).  

NBV (Figure 31E) is an exclusive parameter of the urban environment, describing the 

volume of built space in every grid cell of the domain. The larger values are located in 

the city center, the more the distance from the city center is, the less the density of the 

building packaging will be. 

The surface roughness length (Figure 31F) is the parameter responsible for the 

momentum loss due to the interaction of the atmospheric flows with the obstacles on the 

surface. Together with the surface resistance to evaporation, it has a direct impact on the 

flow. The roughness length is computed following the formulation by (MacDonald et al., 

1998): 

𝑧0

𝐻
=  (1 −

𝑑

𝐻
) 𝑒𝑥𝑝 (− (0.5𝛽

𝐶𝐷

𝑘2
(1 −

𝑑

𝐻
) 𝜆𝑓)

−0.5

) 

The larger values are displayed inside the urban environment, together with the larger 

and more frequent horizontal gradients. In rural areas roughness is more homogeneous, 



77 

 

since despite the different cultivation types, cultivated fields offer small friction to 

atmospheric flows. 

4.2.1.2 The ADMS-TH model setup 

The spatial domain (Figure 31A) used for the simulation is a 20x40 km box centered on 

the Metropolitan Area of Bologna. It covers a most extended area than domain used in 

AQ analysis, including the rural areas around Bologna in order to evaluate the 

temperature difference between urban and rural areas. 

Meteorological data for model input must be provided as unperturbed upwind conditions 

with respect to the domain, i.e. undisturbed flow conditions approaching the study area 

retrieved outside the domain (Maggiotto et al., 2014a, 2014b). Therefore, an array of 

measured meteorological data must be obtained around the simulation domain in order 

to cover all the possible wind directions. First, observations of wind velocity and 

directions for whole month of August 2017, were collected from the station at Bologna 

Airport, located to the north-east with respect to the city but inside the domain and 

representative of conditions not affected by the presence of buildings in the city. The 

most suitable stations to describe upwind conditions with respect to the domain were 

identified from the analysis of wind directions. All meteorological input data were then 

collected from different stations surrounding the domain depending on wind directions 

(φ). Specifically, meteorological input data were collected from meteorological stations 

located in:  

• San Pietro Capofiume (SPC) if 20° < φ < 90°; 

• Imola (Im) if 90° < φ < 180°; 

• Sasso Marconi (SM) if 180° < φ < 300°; 

• Padulle-Sala Bolognese (PSB) if 300° < φ < 20°. 

Model performance was evaluated by comparing hourly simulated air temperature values 

with measured ones. This comparison was carried out for three specific sites 

corresponding to the reference measurement stations of Bologna Urbana (BU), Asinelli 

(As) and Mezzolara (Mz) (Figure 22). The time series of simulated values and measured 

data for the whole month of August 2017 at the BU, As and Mz WS (Figure 32) show an 

overestimation of the model that tends to be larger at the Bologna Urbana site. This 

overestimation might be attributed to site-specific parameters that do not emerge in 

albedo maps, thermal admittance, and surface resistance to evaporation. 

The statistical indices (Table 10, methodology in section 3.2.5) indicate an overall good 

agreement between the simulated and observed temperature values, with Fac2 results 

close to 1. Also, the values of the fractional bias are very low (0.07 in BU station and in 

the range of 0.06 to 0.08), where the low positive values indicate the tendency of the 

simulations to a slight overestimation of temperature values. Also, R values close to 1, 

and R2 values higher than 0.7 and even larger at BU and Mz stations show the good 
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performance of the model simulations. Finally, the NMSE, Fac2 and Fb parameters fulfill 

recommended statistical criteria (NMSE ≤ 1.5, Fac2 ≥ 0.5 and –0.3 ≤ Fb ≤ 0.3 (Di 

Sabatino et al., 2011)) at all stations. 
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Figure 32. Time series of modelled (red line) and observed (blue dotted line) hourly temperature values for the month 

of August 2017 (1/08/2017 0:00 – 31/08/2017 23:00) at the Bologna Urbana (BU) (top), Asinelli (As) synoptic 

meteorological station (middle) and Mezzolara (Mz) rural WS (bottom). 
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Station Type Meanobs + SD Meanmod + SD MB NMSE R R2 Fac2 Fb 

BU Urban 27.4 ± 3.0 29.5 ± 3.2 2.11 0.01 0.99 0.77 1.00 0.07 

AS Urban 27.3 ± 3.1 28.8 ± 3.1 1.56 0.00 0.97 0.70 1.00 0.06 

Mz Rural 25.7 ± 2.6 27.9 ± 3.1 2.18 0.01 0.99 0.84 1.00 0.08 

Table 10. Statistical indices calculated to compare the simulated data (mod) of pollutant concentrations with the 

measured values (obs) in the ARPAE weather stations (Bologna Urbana (BU), Asinelli (As) and Mezzolara (Mz)) in 

Bologna for the period from 1/08/2017to 31/08/2017. SD: Standard deviation; MB: mean bias; NMSE: normalized 

mean square error; R: Pearson’s correlation coefficient; Fac2: factor of two; Fb: fractional bias. 

The center of Bologna has been classified as "Compact Midrise" (from the previously 

presented LCZ classification: Dense mix of midrise buildings. Few or no trees. Land 

cover mostly paved. Stone, brick, tile, and concrete construction materials) and the 

effects that PCSs produce on the UHI effect at city scale were evaluated by modifying 

the LCZ classes (Figure 33).  

 

 
Figure 33. Map of the area affected by the modification of the surface parameter where trees were introduced: left) in 

Marconi St; right) over the whole Bologna city center. 

In particular, two scenarios were simulated: 

 Marconi St. with trees: considering Marconi St. as a typical representative street 

canyon in the Bologna city center (LCZ2), the presence of trees was simulated 

by modifying the surface parameter of the reference class with that used in the 

LCZ5 class. 

 Centre with trees: the parameter thermal admittance was changed over the whole 

city center of Bologna. 

 

4.2.1.3 Results 

The temperature simulated by the ADMS-TH model provides with an indication of the 

UHI extension at that time. In this way, it is possible to evaluate the change in the 

temperature and UHI effect when introducing a variation of land use, which might be 

consider as an indication of the effect of the introduction of trees in that location. For the 

period of 22 and 23 August analyzed, the temperature in the case when trees were added 
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in Marconi St. seems to present a similar value as that of the base case, with a reduction 

during some hours and especially at night and during the first hours of the day (Figure 

34). 

 
Figure 34. Difference between the temperature before and after the change in land use in Marconi St. 

Considering the first hours of the day, for example the 4:00 am on 23 august, the map of 

differences in temperature shows the temperature reduction (in °C) and shows how the 

introduction of trees over a small area, i.e. Marconi St. can produce effects over the 

observed temperature even in the surrounding areas (Figure 35). 

 

 
Figure 35. The difference of temperature between the NO PCSs (base case) case and: top) Marconi PCSs (adding 

trees in the street canyon); bottom) Center PCSs (trees added over the whole city center). The difference is expressed 

in °C. 
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In the second scenario (change in land use extended over the whole center of Bologna) 

the presence of trees induces a temperature reduction over a large area covering the city 

center and surrounding areas. 

 

4.2.2 The Air Quality analysis 

In order to evaluate the effect of PCSs on the AQ, two scenarios were investigated: Urban 

scenario (base case, Bologna without trees, considering as Urban surfaces the walls) and 

PCSs scenario (Bologna with trees) where the deposition velocity values were set to 

consider the presence of trees over 30% of the Bologna area. Similar to what presented 

in the previous section for UHI effects in Bologna, the modeling of the scenarios was 

carried out for August. 

 

4.2.2.1 The ADMS-Urban model setup 

For the AQ analysis, the ADMS-Urban model was used with the same setup described 

in section 3.2.1. Briefly, the emission inventory is covering the Bologna area and 

consisting of traffic sources over a domain of 12x19 km, the year 2017 was selected as a 

base case. The simulations used hourly measured meteorological data from Marconi 

airport for the whole domain and the background pollutant concentrations included in the 

modelling were obtained from the ARPAE monitoring stations, as described in section 

4.1.1. The model simulations carried out in Bologna with the ADMS-Urban dispersion 

model were verified comparing simulated pollutant concentrations with measured values 

at ARPAE AQ stations for the whole 2017 year, as described in section 3.2.5. 

In order to set up the dry deposition it is necessary to set the deposition velocity (Vdep) 

values for each pollutant. This speed varies according to the type of pollutant (gas, 

particle), the size, the reactivity, and the type of surface on which it is deposited. Zhang 

et al. (2003) provided the deposition velocity values for the gaseous pollutants deposited 

over a wide range of surfaces, in particular tabulating the values for urban surfaces and 

different types of trees. In the model, tabulated values for deciduous broad-leaved, the 

most widespread in Bologna, were used (Table 11). The PM10 deposition velocity values 

were istead provided in the report of the National Radiological Protection Board 

(National Radiological Protection Board (NRPB), 2001) was used. 

 

 Vdep (m s-1) - Urban Vdep (m s-1) - Tree Ref. 

NO2 0.0060 0.0078 Zhang et al., 2003 

NOx 0.0060 0.0078 Zhang et al., 2003 

O3 0.0060 0.0078 Zhang et al., 2003 

SO2 0.0080 0.0101 Zhang et al., 2003 

PM10 0.0085 0.0099 NRPB, 2001 

Table 11. Deposition velocity values used for Urban scenario and PCSs scenario in Bologna. 
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4.2.2.2 Results 

The results are illustrated below with deposition maps of NOx and PM10 for the Urban 

scenario (base case), while in order to evaluate the effect of PCSs, the scenario with PCSs 

was compared with the base case through differences maps. In the Urban scenario, the 

NOx and PM10 deposition maps (Figure 36) show that the spatial deposition pattern 

follows the spatial concentration pattern so that the deposition is larger in the most 

trafficked areas. To compare the Urban and PCSs scenarios, maps of deposition 

difference in the two scenarios were calculated (Figure 37). 
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Figure 36. Deposition map (μg/m2/s) for Bologna: NOx A) in Urban scenario and B) in PCSs scenario; and PM10 D) 

in Urban scenario and) in PCSs scenario.  
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Figure 37. Maps of differences in deposition (μg/m2/s) between the two scenarios for top) NOx and bottom) PM10. The 

differences are calculated between the PCSs scenario and the Base Case Scenario 

The maps of difference in deposition show an increase in deposition in the same areas 

where the deposition is more active. In order to quantify the increase in deposition due 

to PCSs, a proxy of the reductions in concentrations, the percentage of increase maps 

(Table 12) was calculated both at the Porta San Felice (SF) receptor located at the urban 

traffic ARPAE AQ station in Bologna and considering the maximum value of the maps 

(max Grid). 

 

 Urban (μg m-2 s) PCSs (μg m-2 s) Difference (μg m-2 s) Deposition increase (%) 

NOx (max Grid) 0.014 0.028 0.014 100% 

PM10 (max Grid) 0.012 0.016 0.004 33% 

NOx (SF) 0.071 0.140 0.966 97% 

PM10 (SF) 0.111 0.165 0.485 49% 

Table 12. Summary of deposition data calculated from the map (max Grid) and at Porta San Felice receptor (SF). 

NOx and PM10 deposition values for the Urban scenario (Urban) and PCSs scenario (PCSs); deposition differences 

between PCSs scenario and the Urban scenario, percentage of increase in deposition due to PCSs. 

The deposition increases in the case of the PCSs scenario, and the increment is greater 

for NOx than for PM10, both considering the point identified by the coordinates of the SF 

station, and considering the maximum value on the whole map. 
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4.3 New parametrization for vegetate areas 

This section reports the main results of the work carried out to integrate the effects of 

vegetation in dispersion models, such as ADMS-Urban (Di Nicola et al., 2022, under 

revision). Compared to section 4.2, where the vegetation effect was considered through 

deposition, the challenge here was to include also the parameterization of aerodynamic 

effects. To simulate the effects of the presence of trees at urban scale, a reliable 

methodology is the Computational Fluid Dynamics (CFD) approach, that completely 

reconstructs urban geometry within a (generally relatively small) computational domain 

and solves the system of governing equations. However, CFD approaches work on very 

reduced spatial and temporal scales and need high calculation costs when modeling the 

entire city. In the urban scale dispersion models, the exact geometry of vegetation is not 

the possibility of making explicit, an alternative to this issue is given by the possibility 

of providing a suitable parameterization of the vegetation that can be included in the 

dispersion model (Tiwari et al., 2019). For this purpose, a parameterization for vegetation 

based on aerodynamic parameters (i.e. length of the aerodynamic roughness (z0), and the 

displacement in the zero plane (zd)) is developed, which consider the surface roughness 

of vegetation spatially-varying in the domain. Only few models include the possibility to 

specify a surface roughness that takes into account spatial variability (i.e. SIRANE 

(Soulhac et al., 2011) and ADMS-Urban (CERC, 2017). The ADMS-Urban model 

performance improvement due to the introduction of spatially varying roughness, 

calculated starting from aerial LIDAR and cartographic data, was demonstrated (Barnes 

et al., 2014). In a recent study (Tiwari and Kumar, 2020) have use spatially variable 

roughness calculated on the basis of the land use of Guildford in the United Kingdom. 

However, the land use data fails to capture the effect of urban vegetation that is not 

classified as public green, such as roadside trees or hedges. 

The aerodynamic parameters can be derived from morphometric parameters such as: the 

average height of the building (weighted with the planar area); the maximum height of 

the building; standard deviation of the building height; the density of the planar area (λp); 

and the density of the frontal area, (λf) (Britter and Hanna, 2003). The fundamental 

morphometric parameters can be retrieved from cartographic data of the territory or 

LIDAR data, typically, detailed open databases of cartographic data are available in 

major cities. 

In this work a detailed 3D database of buildings and vegetation, it is available from the 

open data of Bologna municipality. In particular, the database contains aerodynamic 

information in high spatial resolution, including details such as trees along a road or a 

hedge around a lawn. The vegetation is included in roughness parameter calculation 

using the morphometric method (MacDonald et al., 1998), according to the following 

equations: 
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𝑧𝑑 = [1 + 𝛼−𝜆𝑝(𝜆𝑝 − 1)] ∙ 𝑧                                         [ 4 ] 

𝑧0 = ((1 −
𝑧𝑑

𝑧
) 𝑒𝑥𝑝

[−(
1

𝜅20.5𝛽𝐶𝐷(1−
𝑧𝑑
𝑧

)𝜆𝑓)
−0.5

]
) ∙ 𝑧                     [ 5 ] 

where α is zd correction coefficient equal to 4.43 (MacDonald et al., 1998), λp is the plan 

area index of roughness elements (the area occupied by each building and the projection 

of the trees crown to the surface, this one it is equal to the area of the circle with a radius 

equal to half the width of the crown), z is the average height of roughness-elements, κ is 

von Karman’s constant equal to 0.4 (Hogstrom, 1996), β is the drag correction coefficient 

set equal to 0.55 (MacDonald et al., 1998), CD is the drag coefficient equal to 1.2, λf is the 

frontal area index of roughness elements of both solid and porous elements. The trees are 

included considering them as porous bodies (Kent et al., 2017) in the calculation of λf: 

𝜆𝑓 =
{𝐴𝑓𝑏+𝐴𝑓𝑡}

𝐴𝑇𝑜𝑡
                                                                              [ 6 ] 

where Afb is frontal area of buildings, Aft is frontal area of trees, ATot is the total area under 

consideration. The frontal area was instead calculated starting from the perimeter of the 

buildings and trees divided by 4, buildings are approximated to a square shape and then 

multiplying the value with the height of the building. For the trees, the same criterion 

using the circumference and height of the crown was used. A good estimator of the 

porosity of the tree can be the Leaf Area Index (LAI) (Yuan et al., 2017), a dimensionless 

index defined as the leaf area per unit ground area (m2 m−2). Thus, the frontal area index 

of trees is calculated by multiply Aft and LAI, and the equation of λf became: 

𝜆𝑓 =
{𝐴𝑓𝑏+(𝐴𝑓𝑡∙𝐿𝐴𝐼)}

𝐴𝑇𝑜𝑡
                                                                  [ 7 ] 

The data of the database used are stored in georeferenced files, containing the 

geographical coordinates, height of each building and tree; the perimeter of the buildings 

and the circumference of the crown of trees. All calculations are performed in a GIS 

environment, the affected area is divided into regular cells of 100x100m and the Urban 

Spatially Varying Roughness (USVR) map is obtained by Equations [4], [5] and [7]. 

Considering that the data on vegetation (trees and shrubs) were limited (LAI of each 

species present in the domain was not available, and crown and height values were 

approximate), I subdivided of the tree population into 4 classes: Deciduous trees, 

evergreen trees, deciduous shrubs and evergreen shrubs, and we used the LAI values 

reported in Breuer et al. (2003) (Table 13). In the calculation are included only buildings 

with a minimum height of 1 m, and trees with a minimum height of 3 m.  

The USVR maps created are: 1) BUILD Roughness (BR): calculated using only data of 

buildings; 2) TREES Roughness in summer (TRS): calculated using data of both 

buildings and trees for the summer and 3) TREES Roughness in winter (TRW): 
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calculated using data of both buildings and trees for the winter (i.e. absence of trees 

foliage for deciduous trees and shrubs). 

 

Tree type LAI mean LAI leaf-off LAI leaf-on 

Evergreen tree 6.3 6.3 6.3 

Deciduous tree  5.4 3.7 7.1 

Evergreen shrub 6.2 6.2 6.2 

Deciduous shrub  6.2 2.4 10 

Table 13. Leaf Area Index (LAI) values used for evergreen and deciduous trees and shrubs (source: Breuer et al., 

2003). Leaf-off refers to the cold winter period and leaf-on refers to the warm summer period. 

Numerical simulations are carried out at two different spatial scales, one at the urban 

scale considering the whole urban area of Bologna and one focusing on two specific 

neighborhoods of the city characterized by different presence of vegetation and building 

packing density (Figure 38): Marconi neighborhoods (MA) and Laura Bassi 

neighborhoods (LB) in the vicinity of two parallel urban street canyons (Marconi and 

Laura Bassi Sts.).  

 

 

Figure 38. Domain of simulations of the neighborhoods: left) Marconi neighborhoods (MA): 134 links and 625 output 

points; and right) Laura Bassi neighborhoods (LB): 113 links and 400 output points (map source: OpenStreetMap 

and contributors). 

The choice of the two neighborhoods was based on the different presence of vegetation 

and well different morphology of the two canyons: in particular, Marconi St. is a tree-

free street canyon located in the city center, while Laura Bassi St. is a tree street canyon 

in a residential area close to the city center.  

In the case of urban scale, the emission inventory for the whole urban area of Bologna 

was used (see 3.2.2). Meteorological input data was obtained from the Bologna Airport 

synoptic weather station. Hourly background pollutant concentrations were obtained 

from suburban AQ stations of the ARPAE monitoring network (GM and VC) and the 

same was used for model evaluation. In neighborhoods scale, the emissions of all main 

links around the two street canyons are represented explicitly as a line source, while the 
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emissions of all other links are combined (aggregated) over one or more grid squares. In 

these two cases, the emission inventory contains 134 and 113 links represented explicitly 

for Marconi and Laura Bassi neighborhood respectively. Hourly background pollutant 

concentrations and meteorological input data were the same of those used for the 

simulations conducted for the urban scale case. In order to evaluate the model 

performance at neighborhoods scale, experimental data from iSCAPE intensive 

experimental field campaign during the period August-September 2017 (Barbano et al., 

2020; Di Sabatino et al., 2020) were used. 

Dispersion modeling simulations were performed for different cases (Figure 39), which 

can be summarized as follows: 1) the Base case (BASE), i.e. the base situation in which 

only two single roughness values at the meteorological and dispersion sites are specified; 

2) Buildings case (BUILD), i.e. the case in which information of urban spatially varying 

roughness is added considering the presence of buildings over the simulation domain. 3) 

Trees case (TREES), in which information of USVR is calculated considering the 

presence of both buildings and trees.  

 

 

Figure 39. Summary diagram of the simulations by scale (BLQ, LB and MA), case (BASE, BUILD and TREES) and 

pollutants considered (NOx, NO2, and O3). 

The urban scale simulations (BLQ) cover the entire year 2017, while the neighborhood 

scale simulations cover the periods of the experimental campaigns, in particular spanning 

the period 10-23 August 2017 for Marconi (MA) and 10 August-23 September 2017 for 

Laura Bassi (LB).  The performance of the ADMS-Urban model was evaluated through 

the method described in section 3.2.5. 

Specifically, simulations conducted at city-wide scale were verified against hourly 

pollutant concentrations (NOx and NO2) observed during the year 2017 at an urban traffic 
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AQ station located in the city center (Porta San Felice; SF) in Bologna. Conversely, 

simulations conducted at neighborhood scale in the vicinity of the two urban street 

canyons were evaluated against data collected by mobile laboratories located along the 

two street canyons in Bologna (Marconi and Laura Bassi) during the previously 

mentioned intensive field campaign.  

 

4.3.1 Model evaluation 

The model evaluation carried out in the BASE case considering a single fixed value of 

roughness for dispersion site shows an overestimation of the model’s output compared 

to the observations especially in neighborhood scale simulations (Table 14), as indicated 

by the fractional bias values. The high values of the Pearson coefficient (0.9 and 0.8 

respectively for NOx and NO2) obtained for the urban scale simulation (BLQ) indicate 

the good agreement with the observations.  

 

Sites Pollutant Case NMSE r Fac2 Fb 

SF NOx BASE 0.1 0.9 0.9 0.3 

SF NO2 BASE 0.1 0.8 1.0 0.1 

MA NOx BASE 0.8 -0.7 0.2 0.8 

MA NO2 BASE 0.4 0.3 0.7 0.5 

LB NOx BASE 0.9 0.5 0.2 0.9 

LB NO2 BASE 0.7 0.5 0.4 0.7 

Table 14. Model evaluation for the simulations conducted on BASE case for urban scale (Bologna (BLQ)at Porta san 

Felice site (SF)) and both neighborhood scales (Marconi (MA) and Laura Bassi (LB)). Evaluation by comparison with 

the observations data and calculation of a set of statistical parameters (NMSE= normalized mean square error, r= 

Pearson correlation coefficient, Fac2=factor of two, Fb= fractional bias). 

For neighborhood scale simulations (MA and LB) the statistical parameters indicate a 

bad performance of the model, with low correlation coefficients. Despite this result, the 

numerical outputs obtained for the urban scale simulation fulfill the recommended 

statistical criteria for the NMSE, Fac2 and Fb parameters, specifically NMSE ≤ 1.5, Fac2 

≥ 0.5 and –0.3 ≤ Fb ≤ 0.3 (Di Sabatino et al., 2011), Figure 40 clearly shows the 

overestimation of the model especially in the maximum values. 
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Figure 40. Time series of NOx daily concentration at Porta San Felice site (SF) for urban scale during 2017. Observed 

data in black and simulated values for BASE case in red. 

Figure 41 shows an example of the spatial distribution of the NOx concentration 

simulated by the model, in particular the average distribution for the month of August 

2017.  

 

 
Figure 41. Example of map of NOx concentration in BASE cases for urban scale (BLQ), reference month: August 2017 

(map source: OpenStreetMap and contributors). 

 

On the map, the area with the highest NOx concentrations coincides with the city center, 

and some areas with higher concentration corresponding to the busiest streets in the 
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center can be recognized, while lower concentrations are observed in the outskirts of 

Bologna. Figure 42 and Figure 43 present respectively the time series of NOx 

concentrations and maps of NOx concentrations obtained for MA and LB sites in the 

BASE case. 

 

 
Figure 42. Time series of NOx concentration at Marconi site (MA) for neighborhood scale. Observed data in black 

and simulated values for BASE case in red. 

 
Figure 43. Time series of NOx concentration at Laura Bassi site (LB) for neighborhood scale. Observed data in black 

and simulated values for BASE case in red 

The results obtained for the BASE case on a neighborhood scale show a greater 

overestimation of NOx concentrations compared to the urban scale, as already 

highlighted by the values of the statistical indices reported in Table 14. The maps in the 

following show the spatial distribution of the NOx concentrations simulated by the model 

in BASE case for the two neighborhoods MA (Figure 44) and LB (Figure 45) sites.  

 



93 

 

 
Figure 44. Map of NOx concentration in BASE cases for neighborhood scale (MA) (map source: OpenStreetMap and 

contributors). 

 
Figure 45. Map of NOx concentration in BASE cases for neighborhood scale (LB) (map source: OpenStreetMap and 

contributors) 

The distribution pattern of pollutant concentrations is consistent with the maximum 

values that coincide with the locations impacted by the highest emission (street canyons 

and road crossings of higher relevance). 

 

4.3.2 Results 

The USVR method proposed in this work for the parameterization of buildings and trees 

has been applied for the BUILD and TREES cases, respectively with spatial roughness 

calculated considering only the buildings and considering both buildings and trees. The 
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inclusion of trees in the calculation of spatial roughness on average leads to a decrease 

in the roughness value, due to the inclusion of trees in the calculation. Indeed, the 

calculation of the percentage differences between the TREES and BUILD cases shows a 

decrease reaching 90% (Figure 46a) in summer, and a slightly lower reduction with a 

maximum value of 86.5% in winter (Figure 46b). The seasonal effect due to the presence 

of foliage on deciduous trees during summer cause a difference between the roughness 

value in the two seasons not exceeding 1% (Figure 46c). In particular, the percentage 

variations in the USVR around the AQ stations in the three sites are respectively: SF= -

14% (BUILD = 5.7 m; TREES = 4.9 m); MA= -5% (BUILD = 4.2 m; TREES = 4.0 m) 

and LB= -39% (BUILD = 6.7 m; TREES = 4.1 m). 

In computational terms, the USVR method involves an increase in the run time, a relevant 

aspect to take into account in the simulations planning, especially when considering the 

urban scale. Indeed, the time required to perform a short term run switches from 2 hours 

and 24 minutes in the BASE case to 61 hours and 36 minutes in the BUILD case for the 

BLQ simulations. At neighborhood scale, where the sources considered are much smaller 

and the simulated period is short, the required run time is far less than that needed to 

perform the simulation at urban scale. However, also in this case the insertion of the 

roughness information increases considerably the run time (1 minute for the BASE case 

vs. 22 hours and 33 minutes for the BUILD case). 
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Figure 46. map of the percentage differences of roughness. a) between TREES roughness in summer (TRS) and BUILD 

roughness (BR); b) between TREES roughness in winter (TRW) and BUILD roughness (BR); between TREES 

roughness in winter (TRW) and TREES roughness in summer (TRS) (map source: OpenStreetMap and contributors). 
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At the urban scale, the comparison of simulated and observed time series (Figure 47a) 

shows the better agreement of numerical values obtained in this case with respect to the 

BASE case, without the tendency for the model to overestimate the maximum values. 

This observation is confirmed from Figure 47b which reports the diurnal cycle for the 

observed and simulated concentrations in the BASE and BUILD cases, which highlights 

that the maximum values during the day are much closer to the observations when the 

information on roughness from the buildings is inserted in the simulation.  

 

 

Figure 47. NOx daily concentration in Porta San Felice (SF) site for urban scale during 2017. Observed data in black, 

simulated values for Base case in red and simulated values for BUILD case in blue. a) Time series and b) Mean diurnal 

temporal variations, the shaded area shows the 95 % confidence interval (C.I.) around the mean.  

The percentage difference between the simulated concentrations in BUILD and BASE 

case is -24% at SF site. When considering the spatial distribution of the concentrations 

we observe that the percentage difference increases locally in some areas, for example it 

reaches -65% in the city center for the month of August (Figure 48). Considering the 

minimal differences between the winter and summer, I chose to examine the results in 

the summer period when foliage is present on trees and when observations from the 

intensive experimental campaign in Bologna were available. In particular, August was 

chosen as the representative month for the summer period of 2017 because of its 

meteorological characteristics and because of the availability of the observations from 

the intensive field campaign in the two street canyons (see 3.2.1). The percentage 

differences indicate a decrease in concentration due to the aerodynamic effect of the 

buildings included in the model through the USVR. Furthermore, the combined effect 

with wind direction and speed, such as ventilation paths and stagnation areas, must be 

considered. Some areas of the city can be identified as turbulence producing areas, with 

a higher dispersion capacity and therefore lower pollutant concentrations, while other 

areas show an increase in concentration. These differences with respect to the BASE case 

are attributable to the USVR use that identifies roughness heterogeneity in the domain. 
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Even at the neighborhood scale, the comparison of the simulated and observed time series 

(Figure 49) shows a better agreement between observations and the numerical values 

obtained in this case with respect to the BASE case at both neighborhoods. As the diurnal 

cycle for the observed and simulated concentrations in the BASE and BUILD cases also 

shows, the model no longer tends to overestimate, as indicated by the reduced bias 

between simulated and observed peak concentrations when information on the roughness 

of the buildings is inserted in the simulation. 

 

 

Figure 48. Example of map of NOx concentration difference between BUILD and BASE cases for urban scale (BLQ), 

reference month: August (map source: OpenStreetMap and contributors). 

For the Marconi site, the percentage difference between the simulated concentrations in 

the BUILD and BASE case is -69%, while the map of the percentage difference shows 

that in the neighborhood considered the percentage difference reaches a maximum of -

60% (Figure 50a). The percentage resulting in the MA site does not appear in the map 

due to the spatial average carried out at the output resolution level. Furthermore, the 

distribution pattern indicates that the considered area is characterized by the presence of 

highly packaged buildings. In Laura Bassi site, the percentage difference between the 

simulated concentrations in the BUILD and BASE case also is -69%, and the map of the 

percentage difference shows a maximum of -82% (Figure 50b). In this case the spatial 

distribution pattern is clearly related with a different conformation of the district with 

low and distant buildings, as can be observed by the fact that the variation is visible at 

the street level.  
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Figure 49. NOx daily concentration for neighborhood scale: a) Marconi site and c) Laura Bassi site. Observed data 

in black, simulated values for BASE case in red and simulated values for BUILD case in blue. Mean diurnal temporal 

variations: b) Marconi site and d) Laura Bassi site. The shaded area shows the 95 % confidence interval (C.I.) around 

the mean. 

The statistical parameters for the BUILD and TREES cases for all simulations and spatial 

scales considered, relative to NOx and NO2 pollutants are reported in Table 15, Table 16 

and Table 17. Also for the NO2 the results of the BUILD case show the improvement of 

the model. In all cases and at all scales, the values of Fac2 and Fb fully satisfy the 

recommended criteria. 
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Figure 50. Map of NOx concentration difference between BUILD and BASE cases for neighborhood scale: a) Marconi 

site (MA) and b) Laura Bassi site (LB) (map source: OpenStreetMap and contributors). 

 

pollutant case n. valid values r Fac2 Fb 

NOx BUILD 352 0.9 1.0 0.0 

NOx TREES 352 0.9 1.0 0.0 

NO2 BUILD 352 0.8 1.0 -0.1 

NO2 TREES 352 0.8 1.0 -0.1 

Table 15. Model evaluation on BASE and BUILD cases for urban scale (SF site). Evaluation by comparison with the 

observations data and calculation of a set of statistical parameters (r= Pearson correlation coefficient, Fac2=factor 

of two, Fb= fractional bias). 
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pollutant case n. valid values r Fac2 Fb 

NOx BUILD 48 0.9 1.0 0.1 

NOx TREES 48 0.9 1.0 0.0 

NO2 BUILD 48 0.9 1.0 0.1 

NO2 TREES 48 0.9 1.0 0.1 

Table 16. Model evaluation on BASE and BUILD cases for neighborhood scale (LB site). Evaluation by comparison 

with the observations data and calculation of a set of statistical parameters (r= Pearson correlation coefficient, 

Fac2=factor of two, Fb= fractional bias). 

 

pollutant case n. valid values r Fac2 Fb 

NOx BUILD 14 0.7 0.9 0.1 

NOx TREES 14 0.7 1.0 0.1 

NO2 BUILD 14 0.7 0.9 -0.2 

NO2 TREES 14 0.7 1.0 -0.2 

Table 17. Model evaluation on BASE and BUILD cases for neighborhood scale (MA site). Evaluation by comparison 

with the observations data and calculation of a set of statistical parameters (r= Pearson correlation coefficient, 

Fac2=factor of two, Fb= fractional bias). 

The comparison of the statistical parameters obtained for the two cases does not show 

significant differences at urban scale (BLQ), while at neighborhood scale the 

performance of the model greatly improves when the aerodynamic effects of the trees 

are included. Specifically, for LB neighborhood with an important presence of 

vegetation, the mean bias between modeled and observed values decreases from 3.4 to -

0.7 μg m-3. The high correlation coefficients of 0.9, 0.7 and 0.9 (respectively for the urban 

scale, and for the two neighborhoods MA and LB simulations) indicate the good 

performance of the model in reproducing the observed variability of NOx pollutant 

concentrations. In this case, the statistical parameters meet the previously mentioned 

criteria for all sites and cases. The inclusion of the information of the urban spatially 

varying roughness improves the model's performance, as indicated by the increase in the 

correlation coefficients, and the decrease in Fb and MB.  

In the TREES case, the improvement in the model’s performance is much less evident, 

especially in the SF and MA sites. This can be explained from the fact that at the urban 

scale and for the MA neighborhood, the evaluation of the model was conducted 

considering only one monitoring site, located in an area of the city characterized by 

reduced variations in the USVR and reduced presence of vegetation. In fact, the 

percentage difference between the simulated concentrations in TREES and BUILD case 

is -1.4% in SF site for August, where the percentage variations in the USVR is only -

14%. However, when considering the spatial distribution of the concentrations we 

observe that the percentage difference decreases in some areas, for example it reaches -

29% in the city center for the month of August (Figure 51). In fact, in Figure 51b areas 

of both concentration decreases and increases can be observed in the city center 
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compared to the BUILD case. The areas of decrease in concentration can be identified as 

locations where the decrease in roughness is higher than 20%, whereas the concentrations 

tend to increase at intersections of busy roads and at the edges of areas of decrease. 

 

 

Figure 51. Difference between TREES and BUILD cases for urban scale (BLQ): a) example of map of NOx 

concentration difference; b) Map of roughness difference and c) Wind rose showing occurrences of hourly average 

wind direction and speed for the city of Bologna in august 2017, as recorded at the Bologna Urbana (BU) WS (map 

source: OpenStreetMap and contributors). 

The improvement evidenced for the simulation in the LB neighborhood is instead due to 

the high presence of vegetation in this area, reflected in the strong variation in roughness 

between BUILD and TREES (-39%). Therefore, the inclusion of trees in the roughness 
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calculation further improves the simulation of pollutants in this case, as it better describes 

local aerodynamic characteristics. Figure 52 shows the comparison of observed and 

simulated hourly NOx and O3 concentrations at the MA and LB sites considering the 

different simulation setups. The regression lines confirm the previously discussed 

overestimation of the model and a very low agreement of simulations with the 

observations at all sites obtained in the BASE case. Conversely, the agreement between 

simulations and observations improves considerably for the BUILD and TREES cases. 

Further, Figure 52 shows that the simulations conducted with the USVR method agree 

better with both NOx and O3 observations, suggesting that the improvement in NOx 

concentrations increases the capability of the model to correctly reproduce not only the 

share between NO and NO2 but also all the photochemical reactions involved in the 

simplified chemical scheme adopted by ADMS.  

 

 

Figure 52. Scatter plot of simulated vs. observed concentrations and linear regression lines. NOx (left) and O3 (right) 

concentration, respectively for Marconi (MA) (top) and for Laura Bassi (LB) (bottom) site. 
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Figure 53 provides the evaluation of the mean NOx and O3 diurnal cycles, for the BUILD 

and TREES cases. As previously indicated by the increase in the correlation coefficients, 

the plots demonstrate how the model is capable to capture the diurnal cycle of NOx 

concentration, that strongly reflects the pattern of source emissions, showing morning 

and afternoon traffic-related NOx peaks and a dip around midday. Conversely, O3 peaks 

are observed around midday, related to NO accumulation and intense solar radiation.  

 

 

Figure 53. Mean diurnal temporal variations of NOx (left) and O3 (right) concentrations, respectively for Marconi 

(MA) (top) and Laura Bassi (LB) (bottom) sites. The shaded area shows the 95 % confidence interval around the mean. 

As from Figure 53, NOx diurnal cycles observed in the two urban street canyons are well 

different. Specifically, at Laura Bassi NOx shows the typical traffic pattern with two 

peaks during the morning and evening rush hours, while at Marconi concentrations 

exhibit a single peak with very high concentrations in the morning rush hours gradually 

decreasing until reaching a nighttime minimum. This pattern, evident in observations and 

correctly reproduced in the simulations, is likely produced by the transit of buses, more 

frequent during the morning than in the evening rush hours. At both sites, the daytime 

O3 cycles show a drop in correspondence of the NOx peaks and a peak around midday. 
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More specifically, in this case we can observe that the model tends to underestimate the 

O3 peak concentrations at Laura Bassi, while at Marconi the underestimation occurs for 

secondary maxima observed in early morning and late evening. Taking into account the 

good model performance in reproducing NOx concentrations, this bias in O3 may be 

connected to a range of different factors, including issues with the O3 and VOCs 

background concentrations advected to the study sites and participating in the 

photochemical reaction cycle of ADMS, flaws in the input meteorological values of 

temperature and solar radiation. The results clearly suggest the presence of a relationship 

between the VOC/NOx ratio and the overestimation of the model during the hours 

highlighted in the diurnal cycle (Figure 54), suggesting that the O3 production tends to 

be more VOC-sensitive rather than NOx sensitive (high VOC/NOx values) late in the 

evening. This is clearly linked with the biases observed in the simulated O3 pattern, and 

in particular with the absence of VOCs background concentrations in our simulation 

setup.  

 

 

Figure 54. Time series of the difference between simulated and observed O3 concentrations (green line) and VOC/NOx 

ratio (blue marker). The marker dimension and color scale is proportional to the value of VOC/NOx ratio. 

Figure 54 shows the pattern of observed VOC/NOx ratio at Marconi together with the 

difference between the simulated and observed O3 concentrations, for O3 secondary 

maxima observed in early morning and late evening we note the sensitivity to VOC and 

not to NOx concentrations, suggesting a link with the absence of VOC background 

concentrations in our simulation setup. 

The percentage difference between the simulated concentrations in TREES and BUILD 

case is 2.5% in MA site. Considering the spatial distribution of the concentrations we 
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note that the percentage difference increases in some areas, reaching 9% (Figure 55), and 

in other areas it shows a decrease in NOx concentration (-2%). The concentration increase 

can be explained from the fact that the MA neighborhood is characterized by reduced 

variations in the urban spatially varying roughness (-5%) and reduced presence of 

vegetation.  

 

 

 

Figure 55. Difference between TREES and BUILD cases for neighborhood scale (Marconi, MA): a) map of NOx 

concentration difference; b) Map of roughness difference and c) Wind rose showing occurrences of hourly average 

wind direction and speed for the city of Bologna from 10 to 23 august 2017, as recorded at the Bologna Urbana (BU) 

WS (map source: OpenStreetMap and contributors). 
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In LB site, the evaluation of the diurnal cycles shows that on average the NOx 

concentrations tend to decrease in the TREES case compared to the BUILD case. In fact, 

the percentage difference between the simulated concentrations in TREES and BUILD 

case is -7.6%. Considering the spatial distribution of the concentrations we can observe 

that the percentage difference decreases in some areas, in particular reaching -19% within 

the canyon (Figure 56), while, in the remaining area it increases of 38%. In this site, 

variations in the USVR due to the presence of vegetation are around -39%. 

 

 
Figure 56. Difference between TREES and BUILD cases for neighborhood scale (Laura Bassi, LB): a) map of NOx 

concentration difference; b) Map of roughness difference and c) Wind rose showing occurrences of hourly average 

wind direction and speed for the city of Bologna from 10 to 23 august 2017, as recorded at the Bologna Urbana (BU) 

WS (map source: OpenStreetMap and contributors). 
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The contribution of deposition to concentration was assessed for the neighborhood scale. 

Simulations were conducted at LB site for BUILD and TREES scenarios by adding the 

dry deposition to the pollutants investigated (NOx). The value of the deposition velocity 

was chosen on the basis of the type of material over which the deposition occurred: 

specifically, a value for urban surfaces was used in the BUILD case (0.0006 m s-1; 

(Environment Agency, 2008)), while in the TREES case, the deposition rate was 

calculated taking into account the surface occupied by buildings (urban surface) and trees 

(conifers (0.001 m s-1) and deciduous (0.004 m s-1; (Environment Agency, 2008)). 

Specifically, a value representative for urban surfaces was used in the BUILD case, while 

in the TREES case, the deposition rate was calculated taking into account the surface 

occupied by buildings (urban surface) and trees (conifers and deciduous) (Table 18).  

 

Deposition material Deposition velocity (m s-1) 

BUILD 0.0006 

TREES 0.0012 

Table 18. NOx deposition velocity values used in BUILD and TREES case. 

The results obtained at the LB site show that the deposition has a reduced contribution 

on NOx concentration, both in the BUILD and in the TREES case (Table 19). The same 

result is highlighted in the percentage difference maps (Figure 57) considering the two 

cases with and without deposition. 

 

 NOx Concentration (μg m-3) NOx concentration (μg m-3)   Percentage differences (%) 

 
BUILD TREES 

BUILD  

(with 

deposition) 

TREES  

(with 

deposition) 

BUILD TREES 

Mean 50.2 38.9 50.3 38.7 0.2 -0.5 

Min 6.2 5.5 6.2 5.5 0.0 0.0 

Max 234.0 301.8 235.8 296.3 0.8 -1.8 

SD 36.8 31.7 36.9 31.4   
Table 19. Results for BUILD and TREES cases in LB site with and without deposition. 

The results indicate that deposition has a reduced impact on the concentration of gaseous 

pollutants such as NOx, lowering the concentration of 0.5% at maximum in the TREES 

case, in agreement with previous works who suggested that the largest effects exerted by 

trees on pollutant concentrations are mainly related with the aerodynamic effects 

(Jeanjean et al., 2017; Jeanjean et al., 2016; Santiago et al., 2017).  
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Figure 57. Map of NOx concentration difference between simulation with and without deposition for Laura Bassi site 

(LB): a) BUILD case and b) TREES case (map source: OpenStreetMap and contributors). 

In conclusion, despite the urban-scale model in the BASE case fulfills the recommended 

criteria for the NMSE, Fac2 and Fb parameters, it shows a tendency for the simulation 

to overestimate observed concentrations. Instead, the simulations conducted for the two 

neighborhoods show a poor model’s performance. Significant improvements were 

obtained at all scales and sites introducing USVR. The introduction of the presence of 

buildings improves the agreement of the simulations with the observations. 

The insertion of the roughness due to buildings and trees has produced different results 

based on the spatial scale and on the characteristics of the dispersion site. At the urban 

scale, the presence of trees does not seem to significantly alter the results. However, this 

observation may result from the fact that the observations used to evaluate the model 
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performance were available only for a not densely vegetated site. Indeed, the spatial map 

highlights the presence of areas characterized by significant variations in pollutant 

concentrations where vegetation is present. At the neighborhood scale, the inclusion of 

vegetation significantly improves the agreement of the simulations with observations, 

especially for vegetated areas such Laura Bassi in our case. Therefore, this methodology 

is strongly recommended to improve the performance of dispersion simulations, and 

particularly to limit the overestimation of the simulated concentrations. The inclusion of 

vegetation is particularly necessary in high spatial resolution studies, and for densely 

vegetated sites. In inhomogeneous urban cases, in order to study local dispersion and the 

influence of vegetation, it is instead advisable to divide the area into homogeneous sub-

areas. 

 

4.4 Climate change and air quality 

This section focused on greening policy, and their effects on AQ and urban thermal 

comfort in the present and in the future. The strategy followed was those to simulate a 

reference base case of a tree-free street canyon, Marconi St., which trees were added 

along the street using new parametrization for vegetate areas presented in section 4.3. 

The simulations in this street canyon were conducted in a real base case (Base Case - 

Actual Trees scenario) and in a scenario of tree planting (Base Case - Added Trees 

scenario). The two scenarios created were compared to evaluate the impact of planting 

trees in a neighborhood in the vicinity of the street canyon. Furthermore, the impact of 

the intervention under the influence of climate change is also tested, for which purpose 

two additional scenarios are created: Future Case - Actual Trees scenario to assess the 

impact of climate change only and Future Case - Added Trees scenario to evaluate the 

effectiveness of trees in mitigating air pollution in the future climate conditions. Unlike 

section 4.2, which dealt with the effects of trees on deposition, here, the effect of trees 

on dispersion was evaluated. 

 

4.4.1 The greening of Marconi St. 

In order to evaluate the effectiveness of PCSs in Bologna, the simulations were 

conducted at the neighborhood scale. In particular, Marconi St., one of the two street 

canyons where the two iSCAPE campaigns were carried out is considered as study site. 

In summary, Marconi St. is a tree-free street canyon located in the city center of Bologna. 

Marconi St. is a tree-free street canyon in the base current scenario, so a scenario in which 

trees will be planted in the center of the road (Figure 58) was take into account. In 

particular, the scenario was developed considering the planting of deciduous trees, to 

include also the seasonal effects due to the fall of foliage and of trees having all the same 

dimensions (crown diameter = 7 m, tree height = 10 m, distance between two crowns = 
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3 m, Figure 58). In the model, the trees are modeled as elements of roughness (porous 

bodies), which, together with the buildings, contribute to modify the wind field.  

 

 
Figure 58. Site of PCSs intervention. Left) Roads inside the area around Marconi street and location of the receptor 

sites (points corresponding to the ARPAE AQ stations): 1) Porta S. Felice Receptor; 5) ARPAE van receptor; 2) 

Asinelli Receptor. Right) Detail of the location of trees added in Marconi and relative crown diameter and distance 

between two crowns. 

In AQ analysis, emissions covering the Bologna area were considered, using the same 

emission inventory illustrated in section 3.2.2. In order to get down to the street canyons 

scale, the whole road graph is split into major and minor roads. For the purpose of this 

work, it has been assumed that all the main roads around Marconi street canyon are major 

roads (Figure 58), while all the other roads are considered minor roads. Also, the USVR 

is used in these dispersion simulations, the methodology to calculate the USVR is 

described in section 4.3, together the results of evaluation of the model.  

In UHI analysis, the LCZ classification (Stewart and Oke, 2012) was used to define the 

land use of the domain. The PCSs effects on the UHI effect were evaluated by modifying 

the LCZ classes and using the USVR (like in dispersion model). In Marconi St., the 

presence of trees was simulated by modifying the surface parameter of the reference class 

(LCZ2) with that used in the LCZ5 class, as described in section 4.2.1.2. Furthermore, 

the trees were also modeled as elements of roughness, so the USVR was modified with 

trees added in Marconi St. (as described above). 

 

4.4.2 AQ analysis results  

The results of the dispersion modelling were conducted in the current and future 

scenarios. In the actual case, the dispersion of pollutants in the neighborhood of the street 

canyon was modeled considering the months of August in 2017 and February 2018 as 

representative of both the summer and winter seasons. The future case was derived 

running high resolution with the mesoscale numerical weather prediction model WRF 

(Weather Research and Forecasting). The WRF simulations were performed for two time 

periods, one in the warm period 20–26 August 2050, and one in the warm period 20-25 
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February 2050. For both actual case and future case, the simulations were conducted in 

a scenario of trees planting (added trees) and in the absence of trees (actual trees) (Table 

20). 

 

Case Street Year Season Trees Scenario 

Base Case Marconi 2017 summer actual trees Base Case-Actual trees-summer (BC-AcT-sum) 

Base Case Marconi 2017 summer added trees Base Case-Added trees-summer (BC-AdT-sum) 

Base Case Marconi 2018 winter actual trees Base Case-Actual trees-winter (BC-AcT-win) 

Base Case Marconi 2018 winter added trees Base Case-Added trees-winter (BC-AdT-win) 

Future Case Marconi 2050 summer actual trees Future Case-Actual trees-summer (FC-AcT-sum) 

Future Case Marconi 2050 summer added trees Future Case-Added trees-summer (FC-AdT-sum) 

Future Case Marconi 2050 winter actual trees Future Case-Actual trees-winter (FC-AcT-win) 

Future Case Marconi 2050 winter added trees Future Case-Added trees-winter (FC-AdT-win) 

Table 20. Scheme of the simulations carried out on Bologna for AQ analysis. 

The statistical evaluation (Table 21) of the performance of the ADMS-Urban model was 

carried out comparing simulated and observed values at Marconi St. for August 2017 and 

February 2018 from the ARPAE van during the summer and winter experimental field 

campaign in Bologna.  

 

Station Season MeanOBS ± SD MeanMOD ± SD NMSE r Fac2 FB 

Arpae van Summer 65. ± 18.0 58.7 ± 26.1 0.05 0.91 1 -0.10 

Arpae van Winter 165.3 ± 41.0 160.8 ± 43.7 0.07 0.48 1 -0.03 

Table 21. Statistical indices calculated to compare the simulated data (mod) of for NOx concentration with the 

measured values (obs) in the reference station: ARPAE van located in Marconi street in Bologna for August 2017 

(summer) and February 2018 (winter). SD: Standard deviation; MB: mean bias; NMSE: normalized mean square 

error; R: Pearson’s correlation coefficient; Fac2: factor of two; Fb: fractional bias.  

In particular, the assessment was carried out considering NOx concentrations. The results 

show that the model represents correctly the overall pattern of pollutants, even though it 

tends to underestimate NOx concentrations. In particular, snow events occurred during 

the winter period, besides affecting deeply wet deposition, might have impacted on the 

traffic flow, determining a non-optimal correspondence between simulated and measured 

data. However, statistical parameters for the ADMS simulations are reasonably good and 

fulfill the recommended statistical criteria, specifically NMSE ≤ 1.5, Fac2 ≥ 0.5 and –

0.3 ≤ Fb ≤ 0.3 (Di Sabatino et al., 2011). 

 

4.4.2.1 Base Case Vs Future Case 

The simulations for the current scenario (base case) were conducted selecting two 

periods, one during summer (20 - 25 August 2017) and one during winter (6 - 11 February 
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2018). For each period, simulations were conducted both in a scenario of trees planting 

(added trees) and in the absence of trees (actual trees). 

In the base case for 2017, the NOx concentration maps (Figure 59) appear similar in the 

two seasons as for the spatial distribution, with higher values in the study area and a 

lower and more homogeneous background around; however, the winter case shows 

higher concentrations in a larger spatial area, in agreement with the more frequent 

stagnation regimes typical of the winter season. 

The concentration maps for NOx in Base Case - Added Trees (Figure 60) show that the 

trees planting intervention does not impact neither on maximum values have not 

substantially changed compared to the base case, neither on the spatial pattern. The 

comparison between the two cases is presented in terms of maps of concentration 

differences (Figure 61), which highlight more clearly the presence of areas of reduced 

and increased NOx concentrations. 

 

 
Figure 59. Concentration maps for NOx (top: summer 2017, bottom: winter 2018) in the current reference case (Base 

Case - Actual trees) for a neighborhood of Marconi St. in Bologna.  The location of the receptor sites is indicated with 

a number: 1) Porta S. Felice Receptor; 5) ARPAE van receptor; 2) Asinelli Receptor. 
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Figure 60. Concentration maps for NOx with a trees planting scenario (Base Case - Added trees) in the current climate 

conditions (top: summer 2017, bottom: winter 2018) for a neighborhood of Marconi St. in Bologna. The location of 

the receptor sites is indicated with a number: 1) Porta S. Felice Receptor; 5) ARPAE van receptor; 2) Asinelli 

Receptor.  
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Figure 61 Maps of concentration differences for NOx in the current climate conditions (top: summer 2017, bottom: 

winter 2018) for a neighborhood of Marconi St. in Bologna. The differences are calculated between the Base Case - 

Added Trees scenario and the Base Case - Actual Trees scenario. The location of the receptor sites is indicated with 

a number: 1) Porta S. Felice Receptor; 5) ARPAE van receptor; 2) Asinelli Receptor.  

The results in the future case for 2050 are presented below as concentration maps (Figure 

62) for reference case (Future Case - Actual trees), concentration map (Figure 63) for a 

trees planting scenario (Future Case - Added trees) and maps of concentration differences 

(Figure 64) calculated between the Future Case - Added Trees scenario and the Future 

Case - Actual Trees scenario. 
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Figure 62. Concentration maps for NOx (top: summer 2050, bottom: winter 2050) in the future reference case (Future 

Case - Actual trees) for a neighborhood of Marconi St. in Bologna. The location of the receptor sites is indicated with 

a number: 1) Porta S. Felice Receptor; 5) ARPAE van receptor; 2) Asinelli Receptor. 

The spatial distribution of pollutant concentrations in the future case for 2050 (Figure 

62) appears similar in the two seasons with regard to the spatial distribution, with higher 

values in the study area and a lower and more homogeneous background around. Even 

here, as in the base case, the winter period shows higher concentrations in a wider spatial 

area. 
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Figure 63. Concentration maps for NOx with a trees planting scenario (Future Case - Added trees) in the future climate 

conditions (top: summer 2050, bottom: winter 2050) for a neighborhood of Marconi St. in Bologna. The location of 

the receptor sites is indicated with a number: 1) Porta S. Felice Receptor; 5) ARPAE van receptor; 2) Asinelli 

Receptor. 
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Figure 64. Maps of concentration differences for NOx in the future climate conditions (top: summer 2050, bottom: 

winter 2050) for a neighborhood of Marconi St. in Bologna. The differences are calculated between the Future Case 

- Added Trees scenario and the Future Case - Actual Trees scenario. The location of the receptor sites is indicated 

with a number: 1) Porta S. Felice Receptor; 5) ARPAE van receptor; 2) Asinelli Receptor. 

The NOx concentration maps (Figure 63) in the scenario when planting trees under future 

climate conditions (Future Case - Added Trees scenario) compared with the results 

obtained under climate change only (Future Case - Actual Trees scenario) indicate a 

similar spatial pattern in the two scenarios, but in the summer period concentration levels 

are more reduced than in the scenario without trees (Future Case - Actual Trees scenario). 

The maps of concentration differences (Figure 64) highlight more clearly the presence 

of areas of reduced or increased concentrations.   

 

4.4.3 UHI analysis results  

The simulations with ADMS-TH model were conducted in the current and future 

scenarios considering the months of August in 2017. The future case was derived running 

high resolution with the mesoscale numerical weather prediction WRF model, performed 

in the warm period 20-26 August 2050. For both the actual and future cases, the 
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simulations were conducted in a scenario of trees planting (added trees) and in the 

absence of trees (actual trees) (Table 22). 

 

Case Street Year Season Trees Scenario 

Base Case Marconi 2017 summer actual trees Base Case-Actual trees-summer (BC-AcT-sum) 

Base Case Marconi 2017 summer added trees Base Case-Added trees-summer (BC-AdT-sum) 

Future Case Marconi 2050 summer actual trees Future Case-Actual trees-summer (FC-AcT-sum) 

Future Case Marconi 2050 summer added trees Future Case-Added trees-summer (FC-AdT-sum) 

Table 22. Scheme of the simulations carried out on Bologna for UHI analysis. 

The model performance was evaluated by comparing hourly temperature modelled 

values with measured ones at reference measurement stations of Bologna Urbana (BU), 

Asinelli (As) and Mezzolara (Mz); see section 3.2.5 for more methodology details and 

section 4.2.1.2 for the model evaluation results. 

 

4.4.3.1 Base Case Vs Future Case 

The simulations of the ADMS-TH model in the current scenario, i.e. considering the 

actual land use and the hourly meteorological variables recorded by ARPAE stations 

during the summer 2017, have produced the map of temperature for the base case – 

Actual Trees, PCSs intervention and map of temperature differences (Figure 65). The 

same maps are produced for the future case (Figure 66). 
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Figure 65. UHI analysis for Bologna: A) Maps of the temperature for Base Case –Actual Trees scenario; B) Maps of 

the temperature for Base Case –Added Trees scenario; C) Difference of temperature between the Base Case - Actual 

Trees scenario and Base Case - Added Trees scenario (adding trees in the street canyon); D) view of the entire domain, 

below: zoom on Marconi St., street canyon affected by PCSs intervention. The location of the receptor sites is indicated 

with a number: 1) Bologna Urbana Receptor; 5) Marconi ARPAE van receptor; 2) Asinelli Receptor; 3) Mezzolara 

receptor; 10) Laura Bassi ARPAE van receptor. 
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Figure 66. UHI analysis for Bologna: A) Maps of the temperature for Future Case –Actual Trees scenario; B) Maps 

of the temperature for Future Case –Added Trees scenario; C) Difference of temperature between the Future Case - 

Actual Trees scenario and Future Case - Added Trees scenario (adding trees in the street canyon); D) view of the 

entire domain, below: zoom on Marconi St., street canyon affected by PCSs intervention. The location of the receptor 

sites is indicated with a number: 1) Bologna Urbana Receptor; 5) Marconi ARPAE van receptor; 2) Asinelli Receptor; 

3) Mezzolara receptor; 10) Laura Bassi ARPAE van receptor. 
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The map for the base case clearly shows the urban heat island of Bologna, with higher 

temperatures in the city center compared with the surrounding rural areas. For the Base 

Case considering the PCSs intervention (Figure 65B), the spatial pattern of temperature 

distribution is substantially the same, but the map of temperature differences (Figure 

65C) indicates a variation in the difference between urban and rural temperature. 

In the future case, as in the base case, the map of the temperature for Future Case - Actual 

Trees scenario (Figure 66A) shows the urban heat island of Bologna, which tends to 

increase in the future as a result of climate change. The same spatial pattern is highlighted 

in the temperature map in the scenario considering the implementation the intervention 

planting deciduous trees in Marconi St. (Figure 66B). The map of temperature 

differences (Figure 66C) shows the same reduction values, with a slightly different 

pattern than in the Base Case; however also in this case it can be observe how the 

introduction of trees over a small area potentially affects the temperature observed even 

in the surrounding areas. 

 

4.5 Summary 

The cases and simulated scenarios in Bologna aimed to evaluate: 

 Effect of traffic management policies on AQ; 

 Effect of PCS interventions on AQ and UHI; 

 Effect of greening policy on AQ and UHI in the present and in the future. 

The setup of the ADMS models (ADMS-Urban and ADMS-TH) involves the use of the 

chemical module, input data from the ARPAE (pollutant concentrations) and LIPE 

(meteorological) stations and use of the complex terrain module. For ADMS-TH, the 

meteorological input data were collected from different stations surrounding the domain 

depending on wind directions. The performance evaluation of the ADMS-Urban and 

ADMS-TH models highlighted slight overestimates in the urban site. However, the 

statistical indices indicate an overall good agreement between the simulated and 

observed values.  

The traffic policies simulated in Bologna are two: (1) Policy 1 "electric centre" 

(2017P1EC) and (2) Policy 2 "electric buses" (2017P2EB). In order to evaluate the effect 

of the policies, base case (2017BC) was compared with both scenarios. The concentration 

differences calculated between 2017P1EC scenario and 2017BC scenario show a 

decrease in NOx and PM10 concentrations over the city center. The differences calculated 

between 2017P2EB scenario and 2017BC scenario highlight a decrease in NOx 

concentrations, but there is no decrease for PM10. Therefore, the effect of the Policy 1 

can be considered more satisfactory than Policy 2. 

The effects caused by the insertion of trees on UHI and AQ were studied through: (1) a 

UHI and (2) an AQ analysis. The inclusion of PCSs in the ADMS-TH model was 
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implemented by modifying parameters referred to land use, in the case of ADMS-Urban, 

the PCSs were considered as a factor that modifies the deposition of pollutants. In UHI 

analysis, two scenarios were simulated: (1) Marconi PCSs (adding trees in the street 

canyon) and (2) Center PCSs (trees added over the whole city center). NO PCSs (base 

case) case was compared with both scenarios. The difference of temperature between NO 

PCSs and Marconi PCSs scenarios shows the temperature reduction even in the 

surrounding areas. In the comparison between NO PCSs and Center PCSs scenarios, the 

presence of trees induces a temperature reduction over a large area covering the city 

center and surrounding areas. In AQ analysis, two scenarios were investigated: (1) Urban 

scenario (Bologna without trees) and (2) PCSs scenario (Bologna with trees). The 

deposition differences calculated between Urban and PCSs scenarios show an increase 

in deposition in the case of the PCSs scenario, and the increment is greater for NOx than 

for PM10. 

The greening policy effects on AQ and urban thermal comfort in the present and in the 

future, were evaluated, simulating the follow scenarios: (1) real base case (Base Case - 

Actual Trees scenario); (2) tree planting (Base Case - Added Trees scenario) scenario; 

(3) Future Case - Actual Trees scenario and (4) Future Case - Added Trees scenario. The 

trees were added along the street using new parametrization for vegetate areas, using the 

urban spatially varying roughness (USVR) map in the complex terrain module. This 

methodology was described in detail, and its inclusion in ADMS-Urban models 

significantly improves the agreement of the simulations with observations. The future 

case was derived using as meteorological input the output of running with the mesoscale 

numerical weather prediction model WRF. The concentration differences were 

calculated between Actual Trees and Added Trees scenarios in both present and future 

case. The results highlight clearly the presence of areas of reduced and increased NOx 

concentrations, with a slightly higher decrease in the future than in the present. About 

the UHI analysis, the urban heat island of Bologna tends to increase in the future as a 

result of climate change. The temperature differences, calculated between Actual Trees 

and Added Trees scenarios in both present and future case, shows the same reduction 

values, with a slightly different pattern with a smaller spatial area for Future case than in 

the Base Case. 
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5 FORECASTING TOOL 
In a city like Bologna, affected by significant levels of traffic (as extensively discussed 

in previous chapters), cyclists and pedestrians can be the most exposed to pollution and 

extreme heat situations (i.e. heat waves, see section 2.3). In this context, the users need 

specific tools capable of providing forecasts on AQ and other environmental parameters 

to assess and choose the city areas that is better. The tools currently available are AQ 

indices processed on the data measured at the monitoring stations, or pollution maps with 

regional resolution. To date, there is no tool that can predict whether a road has a higher 

or lower air quality/thermal comfort in respect to another road. This chapter illustrates 

the path that led to the development of the high resolution air quality, temperature and 

humidity forecasting tool for the city of Bologna (Figure 67).  

 

 
Figure 67. Summary diagram of the forecasting tool: the meteorological forecast and background concentration 

datasets are used as inputs in the ADMS-Urban model for pollutant forecasting and in the ADMS-TH model for 

temperature and humidity forecasting. The outputs of the models are processed to obtain maps of: pollutant 

concentration, AQ index, air temperature and air relative humidity, which are provided to the end-user through a web 

platform. 
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The implemented forecasting tool allows to obtain the necessary inputs and to create the 

files required by the models, to start the simulations for both ADMS-Urban model and 

ADMS-TH model and to process the results to obtain the maps of pollutant concentration 

(NO2, O3 and PM10), AQ index, air temperature, and air relative humidity, which will be 

displayed to the end users through a web platform. 

In the following sections, the methodology, the implementation of the code that allows 

to automate the various pieces that make up the forecasting tool, the results obtained and 

the public accessibility to the forecasts will be illustrated. 

 

5.1 Forecasting methodology 

The AQ monitoring, analysis and forecasting systems should operate at different spatial 

scales from the global scale to urban scales. Thanks to research advancement, high-

performance computational resources, and data access, a full chain of multi-scale AQ 

modelling and forecasting can be build (Baklanov and Zhang, 2020). Since the 

complexity in the modeling unfolds, as the scale gets finer, in terms of geospatial data 

and its physic-chemical interactions with the atmosphere, the fine scale models need to 

be integrated with coarser scale models to get realistic initial and boundary conditions 

(Kadaverugu et al., 2019). There are some recent examples where mesoscale models of 

weather and chemistry are coupled with dispersion models at urban scale. CALIOPE-

Urban (Benavides et al., 2019) is a coupled regional- to street-scale modelling system, 

comprising the mesoscale AQ forecasting system CALIOPE with the urban roadway 

dispersion model, R-LINE. The coupled system shows better agreement in highly 

trafficked areas, while, overestimates spatially close to highly trafficked areas. Hood et 

al. (2018) have tested a coupled regional-to-local modelling system comprising a 

regional chemistry–climate model with 5 km horizontal resolution (EMEP4UK) and an 

urban dispersion and chemistry model with explicit road source emissions (ADMS-

Urban). The results of the test show that the regional model underestimates 

concentrations of gases at near-road sites, while the urban and coupled models both show 

good agreement compared to measurements.  

ADMS models (ADMS-Urban and ADMS-TH) can be used in forecasting mode (Hood 

et al., 2017), using numerical forecasts of meteorological variables and boundary 

pollutant concentrations as meteorological input and background respectively. The 

meteorological forecasts and concentration forecasts for Bologna are provided as open 

data by ARPAE. The meteorological forecasts and concentration forecasts as well as the 

results of the two models were validated with data measured by reference monitoring 

stations. Following the logical flow presented in the summary scheme, detailed 

information on the datasets used, the validation, the processing of the variables 

considered and the calculation of the AQ index for Bologna are provided below. 
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5.1.1 Input for ADMS models 

The meteorological forecast dataset provided by ARPAE contains the numerical weather 

forecasts for Emilia Romagna in GRIB (GRIdded Binary or General Regularly-

distributed Information in Binary form3) format. The forecasts are produced by Arpae 

Emilia-Romagna and based on the COSMO numerical meteorological model. The 

COSMO model is developed and managed by a European Consortium among the various 

National Meteorological Services, called COSMO. At a national level, an agreement 

called Lami was stipulated between the Meteorological Service of the Air Force, the 

IdroMeteoClima Service (SIMC) of Arpae Emilia-Romagna and Arpa Piemonte for the 

development and operational management of national forecast numerical chains in Italy. 

Within Lami, Arpae manages the Cosmo 5M and Cosmo 2I operating chains, which 

respectively provide numerical forecasts on the Mediterranean area with a grid pitch of 

5 km and on the national territory with a grid pitch of 2.2 km. All processing is performed 

on the supercomputing systems of CINECA, on the basis of a contract stipulated with 

the IdroMeteoClima Service and the Department of National Civil Protection. COSMO-

5M data are produced twice a day (00 and 12 UTC), on a grid that covers the entire 

Mediterranean Sea with a step of 5 km and with a time horizon of 72 hours, and are 

available from 03/07/2018. The initial analysis is produced by the analysis system of the 

Air Force Meteorological Service, the boundary conditions come from The European 

Centre for Medium-Range Weather Forecasts (ECMWF) forecasts. COSMO-2I data are 

produced twice a day (00 and 12 UTC), on a grid covering Italy with a pitch of 2.2 km 

and with a time horizon of 48 hours, and are available from 06/02/2020. The initial 

analysis is produced by Arpae-SIMC with a continuous data assimilation system that 

uses measurements provided by the Meteorological Service of the Air Force, the 

surrounding conditions come from COSMO-5M forecasts. For the purposes of this 

Thesis, the COSMO-2I dataset was used (available on 

https://dati.arpae.it/dataset/previsioni-meteorologiche-numeriche-emilia-romagna). 

Each GRIB file contains information on: geographical coordinates, date and 

meteorological variables. MET files, which are needed as input to ADMS models were 

obtained from GRIB files. For this purpose, a code in python language was developed to 

download the GRIB files needed and to extract the hourly values of the meteorological 

variables in correspondence with the LIPE station. 

In order to evaluate and validate the meteorological forecasts, the forecasted values were 

compared with the observed data from airport weather station (LIPE) available as open 

data on https://www.ogimet.com/metars.phtml.en. For this analysis a period of one year 

(from 25/10/2020 to 20/10/2021) was considered in order to take into account the 

seasonal variations of the weather parameters. In general, the statistical indexes (Table 

                                                 
3 This is a concise data format commonly used in meteorology to store historical and forecast weather data. 

https://dati.arpae.it/dataset/previsioni-meteorologiche-numeriche-emilia-romagna
https://www.ogimet.com/metars.phtml.en


126 

 

23) indicate a quite satisfactory agreement between simulated and measured data, which 

is confirmed also by the time series of forecasted values (mod) and measured data (obs) 

(Figure 68).  

 

Variable Meanobs Meanmod SDobs SDmod MB NMSE R Fac2 Fb 

Air temperature (°C) 15.5 13.8 8.0 8.1 -1.7 0.0 1.0 0.9 -0.1 

Air relative 

Humidity (%) 
69.0 68.0 16.9 15.7 -0.9 0.0 0.8 1.0 0.0 

Table 23. Statistical indices calculated to compare forecasted (mod) and measured values (obs) of air temperature 

and air relative humidity at the LIPE meteorological station in Bologna for the period from 25/10/2020 to 20/10/2021. 

SD: Standard deviation; MB: mean bias; NMSE: normalized mean square error; R: Pearson’s correlation coefficient; 

Fac2: factor of two; Fb: fractional bias.  

 
Figure 68. Time series of modelled (green line) and observed (black line) daily averages of A) wind direction, B) air 

temperature, C) air relative humidity and D) wind speed at the LIPE weather station for the period from 25/10/2020 

to 20/10/2021. 
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In particular, the forecasted values of temperature and relative humidity match perfectly 

the observations, while the simulated values of wind direction and intensity present some 

discrepancies from the measurements. Indeed, the simulations of wind direction present 

a higher frequency of wind coming from NNE with relatively higher speeds than the 

measured data (Figure 69). 

 

 
Figure 69. Wind rose obtained from wind speed and directions at the LIPE station from the COSMO model (left) and 

from observations (right) in the period from 25/10/2020 to 20/10/2021. 

The pollutant concentration forecast dataset in netCDF (Network Common Data Form4) 

format, is provided by the ARPAE modeling chain called NINFA (Northern Italy 

Network for Photochemical Smog and Aerosol forecasts). The NINFA suite is based on 

the regional version of the CHIMERE chemical transport model, combined with the 

COSMO meteorological model. The pollutant concentrations at the edges of the NINFA 

simulation domain (boundary conditions) are provided by both the PREV'AIR air quality 

modeling system and the national scale model currently under development under the 

SNPA (National Environmental Protection System). CHIMERE is an open-access multi-

scale Eulerian chemistry transport model mainly intended to produce hourly forecasts of 

several aerosol and gaseous pollutant concentrations. The concentrations are computed 

by solving the continuity equation for processes such as emissions, transport, deposition, 

chemical reactions, and aerosol dynamics. 

For the purposes of this Thesis, the CHIMERE dataset was used (not yet available in 

open data mode to the public). Each netCDF file contains information on: geographical 

coordinates, date and pollutant concentrations. BGD files, needed as input to ADMS-

urban model, were obtained from netCDF files. The BGD file must contain hourly data 

                                                 
4 It is a set of software libraries and self-describing, machine-independent data formats that support the 

creation, access, and sharing of array-oriented scientific data 



128 

 

of the pollutant concentrations (NO2, O3, PM10) foreseen at the coordinates that identify 

the ARPAE AQ stations (SF, VC and GM). For this purpose, a code in python language 

was written to download the netCDF files and to extract hourly pollutant concentration 

values in correspondence with the AQ stations.  

In order to evaluate and validate the forecasts of pollutant concentrations, the forecasted 

values were compared with the observations at two ARPAE AQ stations (GM and VC) 

available on https://sdati-test.datamb.it/arex/. For this analysis a period of one year (from 

13/10/2020 to 12/10/2021) was considered in order to take into account the seasonal 

variability of pollutant concentrations. The time series of simulated values (mod) and 

measured data (obs) indicate the tendency for the model to overestimate the observations 

for all pollutant species and in particular for NO2 and O3 at both stations (Figure 70 and 

Figure 71). 

 

 
Figure 70. Time series of modelled (green line) and observed (black line) daily averages of A) NO2, B) PM10, C) O3 

concentration at the Giardini Margherita (GM) ARPAE AQ station for the period from 13/10/2020 to 12/10/2021.  

https://sdati-test.datamb.it/arex/
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Figure 71. Time series of modelled (green line) and observed (black line) daily averages of A) NO2, B) PM10, C) O3 

concentration at the Via Chiarini (VC) ARPAE AQ station for the period from 13/10/2020 to 12/10/2021. 

The overestimation is greater in the winter period for O3 concentrations, while for NO2 

concentrations the overestimation concerns all seasons. The overestimation of the 

CHIMERE simulations implies that the dataset used as background concentrations in 

input to the ADMS model presents higher values than the observed one, resulting in a 

consequent overestimation of the simulations from ADMS Model. The statistical 

parameters (Table 24) however indicate a good agreement between simulations and 

observations, highlighting the overestimation already identified previously.  

 

Station Pollutant Meanobs Meanmod SDobs SDmod MB NMSE R Fac2 Fb 
GM NO2 15.71 33.81 9.07 19.19 18.1 1.1 0.6 0.4 0.7 

GM O3 45.82 56.75 30.91 29.56 10.9 0.2 0.8 0.7 0.2 

GM PM10 24.11 20.34 17.50 17.14 -3.8 1.0 0.2 0.6 -0.2 

VC NO2 18.50 36.69 9.95 18.80 18.2 0.8 0.6 0.5 0.7 

VC O3 45.49 53.33 29.96 28.77 7.8 0.2 0.7 0.7 0.2 

VC PM10 21.93 21.27 15.01 18.52 -0.7 1.0 0.2 0.6 0.0 

Table 24. Statistical indices comparing the simulated (mod) and observations (obs) of NO2, O3, PM10 pollutant 

concentrations at the two the ARPAE background AQ stations (Giardini Margherita (GM) and Via Chiarini (VC)) in 

Bologna for the period from 13/10/2020 to 12/10/2021. SD: Standard deviation; MB: mean bias; NMSE: normalized 

mean square error; R: Pearson’s correlation coefficient; Fac2: factor of two; Fb: fractional bias. 
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Furthermore, the numerical outputs of CHIMERE model fulfill the recommended 

statistical criteria for most pollutant at both stations, specifically NMSE ≤ 1.5 for all 

pollutant, Fac2 ≥ 0.5 for NO2 and PM10 and -0.3 ≤ Fb ≤ 0.3 for O3 and PM10 (Di Sabatino 

et al., 2011) while R value is very low for PM10. 

 

5.1.2 Setup of the ADMS models 

This section illustrates the methodology followed to simulate the concentrations of the 

selected pollutants (NO2, O3, PM10), the air temperature and air humidity, and to calculate 

the AQ index for the city of Bologna. In the forecasting tool, the two models presented 

previously, the ADMS-Urban and the ADMS-TH, were used. In both models, the domain 

considered is 10x20 km with a resolution of 200x200 m.  

The ADMS-Urban dispersion model was used to simulate the concentration of NO2, O3, 

PM10 for the city of Bologna. The simulations provide as output the forecast of the spatial 

variation of pollutant concentrations with an hourly time resolution. The emission 

inventory previously presented in section 2.2.4 based on traffic flow counts provided by 

municipality was used. Following, the simulations are ingested with forecasted 

meteorological variables at the Bologna airport weather station (LIPE), and with 

forecasted background pollutant concentration at two ARPAE monitoring stations (VC 

and GM). Furthermore, the chemical module was set up and for complex terrain module 

the USVR (see section 4.3) was used. 

The ADMS-TH module was used to simulate temperature and humidity for the city of 

Bologna. The simulations provide forecasts of the spatial variations of temperature and 

humidity values, with an hourly time resolution. The input datasets contained hourly 

forecast values on the Bologna airport weather station (LIPE). The land use data, such as 

the spatial variation of the surface resistance to evaporation, the surface roughness, the 

surface albedo, the thermal admittance and the normalized building volume are 

calculated as described in section 4.2.1.1. 

 

5.1.3 Performance evaluation of the ADMS models 

In order to evaluate the performance of the forecasting tool, the outputs of the two models 

were compared with hourly data observed at several ARPAE reference stations (SF, GM 

and VC for air quality and BU, Mz for meteorological variables). In particular, the 

performance of the models was evaluated by calculating the set of indicators described 

in section 3.2.5. 

 

5.1.3.1 Air pollutants 

The validation of dispersion simulations carried out in forecasting mode was performed 

comparing hourly concentrations of pollutants (NO2, O3, and PM10) observed at the fixed 
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AQ measuring stations (SF, GM and VC stations) with the forecasts simulated with the 

ADMS-Urban model during the period from 13/11/2021 to 15/12/2021. In general, the 

statistical parameters (Table 25) indicate a poor performance of the model, with low 

correlation coefficients (0.4< R < 0.6).  

 

Station Pollutant MeanObs ± SD MeanMod ± SD MB NMSE R Fac2 Fb 

SF NO2 70.5 ± 17.1 71.9 ± 25.2 1.4 0.1 0.4 0.9 0.0 

SF PM10 27.9 ± 12.5 35.1 ± 18.9 7.2 0.3 0.5 0.8 0.2 

GM NO2 28.9 ± 11.5 53.7 ± 20.6 24.8 0.6 0.4 0.6 0.6 

GM O3 13.6 ± 14.8 17.2 ± 20.2 3.7 1.3 0.6 0.3 0.2 

GM PM10 24.5 ± 11.8 30.8 ± 18.5 6.3 0.4 0.6 0.8 0.2 

VC NO2 27.5 ± 10.0 54.0 ± 20.7 26.5 0.7 0.5 0.5 0.7 

VC O3 9.9 ± 12.7 17.5 ± 20.2 7.6 1.9 0.6 0.4 0.6 

VC PM10 23.1 ± 11.2 30.8 ± 18.4 7.6 0.5 0.5 0.7 0.3 

Table 25. Statistical indices calculated to compare the simulated data (mod) of pollutant concentrations with the 

measured values (obs) in the ARPAE background AQ stations (Porta S. Felice (SF), Giardini Margherita (GM) and 

Via Chiarini (VC)) in Bologna for the period from 13/11/2021 to 15/12/2021. SD: Standard deviation; MB: mean bias; 

NMSE: normalized mean square error; R: Pearson’s correlation coefficient; Fac2: factor of two; Fb: fractional bias. 

Despite this result, the numerical outputs obtained for SF stations fulfill the 

recommended statistical criteria for the NMSE, Fac2 and Fb parameters, specifically 

NMSE ≤ 1.5, Fac2 ≥ 0.5 and –0.3 ≤ Fb ≤ 0.3 (Di Sabatino et al., 2011). The evaluation 

shows an overestimation of the model’s output compared to the observations for NO2 

concentration in GM and VC stations (Table 25), as indicated by the fractional bias 

values, and as clearly shown in Figure 73. Figure 72 represents the comparison of hourly 

simulated and observed NO2, O3 and PM10 concentrations averaged over all stations. The 

modeled data are comparable with the observed ones, indicating a good temporal 

representation of the pollutant dispersion over the domain. 
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Figure 72. Time series of modelled (green line) and observed (black line) hourly averages of NO2 (top) and O3 (bottom) 

concentration averaged over all ARPAE AQ stations: Porta S. Felice, Giardini Margherita (GM) and Via Chiarini 

(VC) for the period from 13/11/2021 to 15/12/2021. 
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Figure 73. scatter plot of modelled (orange) and observed (blue) A) NO2, B) O3, C) PM10 concentration at ARPAE AQ 

stations: Porta S. Felice (SF), Giardini Margherita (GM) and Via Chiarini (VC) for the period from 13/11/2021 to 

15/12/2021. 

The overestimation of the model concentration, already highlighted by Fb, concerns in 

particular the NO2 concentrations at the two background stations and the maximum 

concentrations of PM10 and O3 (Figure 73). This overestimation is attributed to the 

overestimation of the background concentrations in the CHIMERE forecast model, as 

already discussed in section 5.1.1. 
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5.1.3.2 Temperature and humidity 

The validation of temperature and humidity forecast was performed comparing hourly 

data observed at the fixed weather measuring stations (urban station: Bologna Urbana 

(BU) and rural station: Mezzolara (Mz), see section 3.2.2) with the forecasts from the 

ADMS-TH model during the period from 13/11/2021 to 15/12/2021. In general, the 

statistical parameters (Table 26) indicate a good performance of the model, with 

particularly elevated correlation coefficients for the urban site and for temperature at the 

rural site. 

 

Station Variable MeanObs ± SD MeanMod ± SD MB NMSE R Fac2 Fb 

BU T  7.0 ± 2.8 8.5 ± 3.3 1.5 0.1 0.8 1.0 0.2 

BU RH 75.5 ± 17.5 63.9 ± 8.4 -11.6 0.1 0.6 1.0 -0.2 

Mz T  7.0 ± 3.1 8.3 ± 3.3 1.4 0.1 0.9 1.0 0.2 

Mz RH 85.6 ± 9.7 70.0 ± 6.9 -15.6 0.1 0.2 1.0 -0.2 

Table 26. Statistical indices comparing the simulations (mod) and observations of temperature and humidity at 

twoARPAE weather stations (Bologna Urbana (BU) and Mezzolara (MZ)) for the period from 13/11/2021 to 

15/12/2021. SD: Standard deviation; MB: mean bias; NMSE: normalized mean square error; R: Pearson’s correlation 

coefficient; Fac2: factor of two; Fb: fractional bias. 

The evaluation shows an overestimation of the model’s output compared to the 

observations for temperature as clearly shown in Figure 74 (A and B), and an 

underestimation of relative humidity values especially for the rural site. Figure 74 (C and 

D) represents the comparison of hourly simulated and observed values of temperature 

and relative humidity averaged over all stations. The modeled data are comparable with 

the observed ones, indicating a good temporal representation of the variables over the 

domain. 
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Figure 74. Time series and scatter plot of modelled and observed hourly average of temperature and humidity 

averaged over all ARPAE weather stations: Bologna Urbana (BU) and Mezzolara (Mz) for the period from 13/11/2021 

to 15/12/2021. A and B) time series: modelled values in green line and observed data in black line; C and D) scatter 

plot: modelled values in orange and observed data in blue. 

The underestimation of humidity is due to the period considered in simulation carried out 

in order to evaluate the performance of the model. In fact, the evaluation was made on 

the period from November to December, generally affected by rain and fog phenomena 

not considered in the forecasting tool. The choice of this period was dictated by the date 

of finalization of the tool. 

 

5.1.4 BLQ-Air Index 

Most air pollution control policies are based on the quantitative assessment of pollution 

levels. An AQ index is a combination of pollutants levels based on a classification scale 

anchored to legal limits and / or impacts on human health. Typically, these classification 

models consider only the worst pollutant, that is, the one with higher concentration than 

others. In identifying an AQ index suitable for the city of Bologna, I started from the 

cityAIR index (Silva and Mendes, 2011). The mathematical formulation of cityAIR 

follows two fundamental points: when the concentration of one of the pollutants 

considered exceeds the legal limits, this pollutant will be the only one relevant for the 

calculation of the index; when there is no violation of the limit, all pollutants are 

considered for the overall air quality, which is calculated by combining concentrations 

and considering several criteria. 

𝑐𝑖𝑡𝑦𝐴𝐼𝑅 = ∑ 𝑤𝑖𝑐𝑖 ∏ 𝑣𝑖

𝑖𝑖
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where 𝑤𝑖  is the relative weight of the pollutant i; 𝑐𝑖 is the normalized concentration of 

the pollutant i; 𝑣𝑖 is the dummy variable of the legal limit violation 𝐿𝑖of pollutant i, 

defined as follows: 

𝑣𝑖  = 1 when 𝑐𝑖 ≤ 𝐿𝑖  

𝑣𝑖  = 0 when 𝑐𝑖 > 𝐿𝑖 

The Bologna AQ index (BLQ-Air index) was designed to provide a qualitative estimate 

of the air quality, easy to understand and of immediate interpretation. BLQ-Air index is 

a spatial index, and unlike the commonly used indexes, it needs not to standardize the 

information to a single color. For example, in case the estimated concentration for a 

certain hour of a given day should be "bad", this index should be able to visually provide 

the " more bad" and "least bad" areas. A simple color scale to be associated with the 

index could be composed of three colors: green when all pollutants are below the limits, 

orange when a pollutant exceeding the limit, and Red when all pollutants exceed the 

limits. The use of the original cityAIR index formulation emphasizes the overcoming of 

the limits, and in particular the overcoming of the one with the highest limit: 

 

𝐵𝐿𝑄 − 𝐴𝑖𝑟 = ∑ 𝑤𝑖𝑐𝑖 ∏ 𝑣𝑖

𝑖𝑖

 

𝑐𝑖
∗ =

𝐶𝑖−𝐶𝑚𝑖𝑛

𝐶𝑚𝑎𝑥−𝐶𝑚𝑖𝑛
 = standardized concentration of pollutant i (NO2, O3 and PM10), 

𝑤𝑖 = 1 𝑖𝑓 𝑐𝑖 > 𝐿𝑖 𝑒𝑙𝑠𝑒 0 = dummy variable of the legal limit violation Li of pollutant i 

(NO2, O3 and PM10), 

𝑣𝑖 = 0.33 = is the relative weight of the pollutant i (NO2, O3 and PM10), 

Li = legal limit violation of pollutant i (NO2= 200 ug/m3; O3= 180 ug/m3 and PM10= 50 

ug/m3). 

This type of formulation assigns 𝑤𝑖 = 0 if the pollutant does not exceed the limit, 

therefore the index will be different from zero only in case all pollutants exceed the limit 

and the associated color scale will therefore indicate green until all pollutants do not 

exceed the limit. An index thus formulated (Figure 75A) does not provide therefore the 

expected information, and flattens the information to only two alternatives: exceeded 

limits or not exceeded limits. To avoid this, in this Thesis the assignment of the value to 

𝑤𝑖 has been changed: 𝑤𝑖 = 1 𝑖𝑓 𝑐𝑖 > 𝐿𝑖 𝑒𝑙𝑠𝑒 0.33 (Figure 75B). 
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Figure 75. Formulations of the BLQ-Air index and related color scale: A) 𝑤𝑖 = 1 𝑖𝑓 𝑐𝑖 > 𝐿𝑖  𝑒𝑙𝑠𝑒 0; B) 𝑤𝑖 = 1 𝑖𝑓 𝑐𝑖 >

𝐿𝑖  𝑒𝑙𝑠𝑒 0.33 And C) 𝑤𝑖 = 1 𝑖𝑓 𝐶𝑖 > 𝐿𝑖; 0.5 𝑖𝑓 𝐶𝑖 > 1
2⁄ 𝐿𝑖  𝑒𝑙𝑠𝑒 0.33. In the tables with the color scale, the index value 

(BLQ-Air) and the relative concentration value (ci) are indicated for each color. 

With this new formulation, the index has a scale indicating green for no violation of the 

limits, yellow for a violation of one limit, orange for two violations and red for three 

violations. A further improvement concerns the cases falling in the green color: also in 

this case the values assigned to 𝑤𝑖 were changed: 𝑤𝑖 = 1 𝑖𝑓 𝐶𝑖 > 𝐿𝑖; 0.5 𝑖𝑓 𝐶𝑖 >
1

2⁄ 𝐿𝑖  𝑒𝑙𝑠𝑒 0.33 (Figure 75C). This approach is based on the identification of a lower 

limit for each pollutant, for this purpose half of Li was considered as the lower limit. 
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5.2 Coding 

In this Thesis, Python programming language was used to develop the forecast tool 

because it is frequently used for data analysis and there are many libraries, such as 

Pandas, that can be used for data processing. Python is a Very High Level Programming 

Language and an Object Oriented Dynamic Language, widely used in science in the 

fields of numeric programming, artificial intelligence, image processing, biology and 

others. The definitions (functions and variables) introduced in the Python interpreter are 

lost every time it is terminated. Therefore, Python allows you to put the definitions in a 

file and use them in a script or in an interactive interpreter session. Such a file is called a 

module; definitions in one module can be imported into other modules. This aspect 

makes Python ideal as a scripting language within bigger scripts, as required in this 

Thesis.  

 

5.2.1 Code setup 

Several Python libraries were used in this project such as Pandas, Numpy, Matplotlib, 

etc. Following, the main libraries, modules and package used are described briefly. 

1. Pandas (http://pandas.pydata.org/) is a library for manipulating data in sequential 

or tabular format, such as time series or microarray data. The main features of 

Pandas are: 

 Loading and saving standard formats for tabular data, such as CSV (Comma-

Separated Values), TSV (Tab-Separated Values), Excel files, and database 

formats 

 Simplicity in performing indexing and data aggregation operations 

 Simplicity in the execution of numerical and statistical operations 

 Simplicity in viewing the results of operations 

2. The NumPy (https://numpy.org/) library allows  to work with vectors and 

matrices more efficiently and quickly than with lists and lists of lists (matrices). 

The basic construct is the ndarray, which can be of any size. One of the strengths 

of NumPy is to be able to work on vectors by exploiting the vector calculation 

optimizations of the machine's processor. This makes calculations particularly 

efficient, compared to lists. 

3. Matplotlib (https://matplotlib.org/) is a 2d and 3d graphing library for the Python 

programming language. 

4. Pygrib (https://pypi.org/project/pygrib/2.0.5/) is a Python module for reading and 

writing GRIB files (edition 1 and edition 2). GRIB is the WMO standard file 

format for the exchange of weather data. 

5. Netcdf4 (https://unidata.github.io/netcdf4-python/) is a Python interface to the 

netCDF C library. This module can read and write files in both the new netCDF 

https://numpy.org/
https://matplotlib.org/
https://pypi.org/project/pygrib/2.0.5/
https://unidata.github.io/netcdf4-python/
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4 and the old netCDF 3 format. NetCDF is a set of "platform independent" self-

describing software and data libraries (independent of the Operating System) for 

the creation, access, modification and sharing of "array oriented" data ("grid 

data"), developed and maintained by the UNIDATA program at UCAR 

(University Corporation for Atmospheric Research). 

6. The math module (https://docs.python.org/3/library/math.html) is a standard 

module in Python and is always available. This module provides access to the 

mathematical functions defined by the C standard. 

7. The OS module (https://docs.python.org/3/library/os.html) of the Python 

language has several useful functions for making the program interact with the 

computer's operating system (Windows, Linux or Mac OS). 

8. The sys module (https://docs.python.org/3/library/sys.html) is one of the basic 

packages included in the Python Standard Library. It contains a series of 

functions and parameters that will be very useful every time our program has to 

interact with the operating system you are working on. 

9. The io module (https://docs.python.org/3/library/io.html) provides Python’s main 

facilities for dealing with various types of I/O. There are three main types of I/O: 

text I/O, binary I/O and raw I/O. These are generic categories, and various 

backing stores can be used for each of them. A concrete object belonging to any 

of these categories is called a file object, so io module allows to manage file 

objects, such as to create files in a given directory. 

10. The datetime module (https://docs.python.org/3/library/datetime.html) provides 

classes to manipulate dates and times, the implementation of the module focuses 

above all on an efficient extraction of the components, for the manipulation and 

formatting of the output. 

11. The dateutil module (https://pypi.org/project/python-dateutil/) provides powerful 

extensions to the standard datetime module, available in Python. 

12. The httplib2 module (https://pypi.org/project/httplib2/) is a comprehensive HTTP 

client library, defines the classes that implement the client side of the HTTP and 

HTTPS protocols. 

13. MetPy (https://unidata.github.io/MetPy/latest/index.html) is a collection of tools 

in Python for reading, visualizing, and performing calculations with weather data. 

14. Json (https://docs.python.org/3/library/json.html) is a lightweight data 

interchange format, it can be used to work with JSON data. 

15. Zipfile (https://docs.python.org/3/library/zipfile.html) is a python module 

provides tools to create, read, write, append, and list a ZIP file. 

In addition, a Google API was included within the forecasting tool code. Google APIs 

(https://github.com/googleapis) are application programming interfaces (APIs) 

developed by Google which allow communication with Google Services and their 

https://docs.python.org/3/library/math.html
https://docs.python.org/3/library/os.html
https://docs.python.org/3/library/sys.html
https://docs.python.org/3/library/io.html
https://docs.python.org/3/library/datetime.html
https://pypi.org/project/python-dateutil/
https://pypi.org/project/httplib2/
https://unidata.github.io/MetPy/latest/index.html
https://docs.python.org/3/library/json.html
https://docs.python.org/3/library/zipfile.html
https://github.com/googleapis
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integration to other services. Examples of these include Search, Gmail, Translate or 

Google Maps. Third-party apps can use these APIs to take advantage of or extend the 

functionality of the existing services. The APIs provide functionality like analytics, 

machine learning as a service (the Prediction API) or access to user data (Drive API (V3), 

when permission to read the data is given).  

 

5.2.2 Code elaboration/creation 

In this project, the DRIVE API was used to allow access to Google drive services. In 

fact, the Drive API is required to access forecasting weather and AQ dataset stored in 

folders on google drive.  In order to create a simple Python command-line application 

that makes requests to the Drive API, the following steps are needed: 

1. Create a project and enable an API - This project forms the basis for creating, 

enabling, and using all Google Cloud services, including managing APIs, 

enabling billing, adding and removing collaborators, and managing permissions 

(for more information refers to 

https://developers.google.com/workspace/guides/create-project) 

2. Create credentials for a desktop application - Credentials are used to obtain an 

access token from Google's authorization servers, so your app can call Google 

Workspace APIs (for more information, refers to 

https://developers.google.com/workspace/guides/create-credentials) 

3. Install the Google client library 

4. Configure the code (Figure 76 and Figure 77) 

 

 
Figure 76. Python code example to authenticate and save the login credentials needed to use the Google drive API. 

 

https://developers.google.com/workspace/guides/create-project
https://developers.google.com/workspace/guides/create-credentials
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Figure 77. Example of python code to call the Google drive V3 API and access the ARPAE “cosmo-2I_er” drive folder 

and download the weather forecast for the current day. 

The purpose of these lines of code is to download the ARPAE forecasted weather data 

from the COSMO model: at this point the data is processed to obtain the input 

meteorological files (Figure 78) necessary for the ADMS-Urban and ADMS-TH models 

(Figure 79, see section 5.1.1).  

 

 
Figure 78. Example of Python code to elaborate COSMO model forecasts and obtain the meteorological variables 

needed by the ADMS models. 
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The same procedure is used to access the ARPAE "sup" Drive folder to download the 

AQ forecasts of the CHIMERE model. Each variable needed in the final ADMS input 

file required a series of mathematical processing. As for the meteorological input data, 

i.e. the variables contained in the METEO.MET file, the following steps were performed: 

 Coordinate identification of the LIPE station; 

 Extraction of the variables in the point identified by the coordinates identified; 

 Temperature conversion from kelvin to celsius; 

 Calculation of wind speed from the x and y components of the wind; 

 Calculation of the wind direction from the x and y components of the wind; 

 Calculation of relative humidity from saturation vapor pressure and actual vapor 

pressure; 

 Cloud cover conversion from decimal numbers to oktas; 

 Creation of the final METEO.MET file with all the calculated variables. 

For the background pollutant concentration input data, i.e. the variables contained in the 

BGD.bgd file, the following steps were performed: 

 Coordinate identification of VC and GM reference stations; 

 Extraction of the variables in the points identified by the coordinates identified; 

 conversion of the concentration of NO2 and O3 from ppb to ug/m3; 

 Choice based on the hourly wind direction, from which reference station to take 

the hourly pollutant concentration data for the creation of the final file; 

 Creation of the final BGD.bgd file with all pollutant concentrations selected. 
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Figure 79. Python code example to create the input MET file needed to run ADMS models. 

Other important lines of code are the ones when the two ADMS models are called and 

run (Figure 80). The two models are executed in sequence and represent the part of the 

code that takes more time, in fact ADMS-Urban needs 2 hours and 15 minutes to finish 

a 24-hour simulation, while ADMS-TH takes 8 minutes and 34 seconds to a 24-hour 

simulation. 

 

 
Figure 80. Python code example to call and start ADMS-Urban and ADMS-TH models. 

The model outputs are then processed to produce related maps depicting the spatial 

variation of pollutant and meteorological variables as PNG (Figure 81) files. PNG is a 

file extension which stands for Portable Network Graphic, it is a raster graphic file format 

that supports lossless compression and is an open format with no copyright limit. Among 
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the advantages of the PNG format, the possibility of using transparency and opacity is 

interesting. It also allows the use of color palettes and supports 24-bit RGB and 32-bit 

RGBA colors.  

 

 
Figure 81. Example of python code to create PNG images, from line 917 to line 932 the code changes time zone from 

UTC to local so that the date of each image conforms to that used by the end user. The image metadata are created 

on the line 933 and will be added to the JSON archive (line 936). 

For each pollutant (PM10, NO2 and O3) 24 maps are created every day (one for each hour 

of the day, from 1:00 to 24:00 UTC) for 8 height levels (5, 10, 15, 20, 25, 30, 35 and 40 

m above the ground). 24 maps (24 hours) for 8 levels (ground clearance) are also created 

every day for temperature and humidity forecasts. Only the BLQ-Air index forecasts are 

produced at a single level (5 m).  

Diverging colormaps have been chosen for each pollutant and for temperature and 

humidity, to have monotonically increasing L*5 values up to a maximum, which should 

be close to L* = 100, followed by monotonically decreasing L* values (for more 

                                                 
5 L* is the lightness parameter used to learn more about how the matplotlib colormaps will be perceived 

by viewers. 
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information see https://matplotlib.org/stable/tutorials/colors/colormaps.html). This 

colormap (RdYlGn_r) assigns to maximum concentration values the red color, to 

minimum concentration values the green color and yellow color for intermediate 

concentration values. 

The same kind of colormap is used for temperature and humidity, but with other colors: 

 temperature - (RdYlBu_r) red color for maximum values, yellow color for 

intermediate values and blue color for minimum values. 

 humidity - (PRGn_r) purple color for maximum values, white color for 

intermediate values and green color for minimum values. 

Qualitative colormap personalized was used for BLQ-Air index, in this case the L* values 

move all over the place throughout the colormap, and are clearly not monotonically 

increasing. This kind of colormap was choice because allow assigning a color to each 

class of index, furthermore, each color can be customized such as adding a transparency 

that increases as the values of that specific class decrease. The final colormap allows to 

identify the index class, associating the state of the air quality and within the class if the 

air quality is closest to the previous or next class. A legend relating to the colormap has 

been created, as PNG file, for each map that allows easy reading and interpretation of the 

maps. 

Along with the PNG files, a JSON file which contains all the images metadata is also 

created. JSON (Java Script Object Notation) is a type of format typically used for data 

exchange in client-server applications. It allows the description and above all the 

exchange of data and is comfortable, tidy, easily readable. All PNG images created are 

compressed in a ZIP file which together with the JSON file are uploaded to the e-Globus 

drive. In addition, an additional compressed folder is created containing the model input 

files and all model outputs which is uploaded to a drive folder for storage. 

All this series of operations (drive access, data download, data processing, file creation, 

model run, model output processing, map creation, saving and sending of maps, legends 

and metadata on the drive) are contained in the ForecastingTool.py file which must run 

every day in order to keep the dedicated section on the e-Globus platform updated. The 

automation of this part was achieved using crontab. On Linux operating systems, the 

crontab command allows you to schedule automatic periodic execution of tasks or 

scripts. Each scheduled activity is called a cron job. Cron means “command run on 

notice” (ie: “command run on notification”) and the command is run as a cron daemon 

(also known as a cron system). The cron system works in the background in an operating 

system and can automatically execute jobs at specific and predetermined times. The 

cronjob therefore arises from the union between a cron system and a predefined process 

(job). The information needed to program the action (time and defined action) is 

https://matplotlib.org/stable/tutorials/colors/colormaps.html
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indicated in the crontab file. Each row of the crontab has a sequence of fields, divided by 

a space, as shown in the figure Figure 82. 

 
Figure 82. Crontab compilation scheme. 

In the case of the forecasting tool, crontab is set up to execute a script.sh at 20:00 every 

day. The script.sh contains the command to run the ForecastingTool.py file. 

 

5.3 E-Globus platform 

The e-Globus (https://www.e-globus.it/) platform is an experimental project developed 

by e-Soft (https://www.e-soft.it/) to visualize data and statistics related to different topics 

and coming from various sources. Most of the information is based on free and open data 

and services. The information is displayed through interactive and "responsive" tables, 

vector graphics and cartographic maps based on geographic information systems and 

three-dimensional libraries (3D GIS). At the moment the platform has two sections: i) 

Data and Weather Forecast section which contains maps, tables and graphs on weather 

data and forecasts; and ii) Data section on Covid-19 where it is possible to analyze the 

official international and Italian data on the spread of the Covid-19 pandemic using 3D 

maps, interactive tables and graphs. In particular, the Data and Weather Forecast section 

has the following subsections: 

 Emilia Romagna Weather Forecast 

 Radar Map Emilia Romagna 

 Hydrographic Levels Emilia Romagna 

 3D Rain Simulator Emilia Romagna 

The e-Globus platform was chosen to make the forecasting tool products available to 

citizens and other end-users. The section added to the platform is called Environmental 

Forecasts at urban scale of Bologna and contains a brief description: 

Forecasts relating to atmospheric pollutants (PM10, NO2, Ozone) and environmental 

parameters (Temperature and Humidity) estimated at various heights from the ground 

https://www.e-globus.it/
https://www.e-soft.it/
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by the Department of Physics and Astronomy of the University of Bologna on the basis 

of an advanced model of atmospheric pollution dispersion (ADMS model) developed by 

Cambridge Environmental Research Consultants (CERC). 

The model takes into account the meteorological forecasts made available by ARPA 

Emilia Romagna (ARPAE) (wind direction and intensity, rain, humidity, etc.) and 

numerous other territorial parameters (altimetry, land use, ...) and environmental, 

generating an overall AQ index (BLQ-Air Index) useful for those who intend to move to 

Bologna.  

The screen (Figure 83) that opens by clicking on the section is occupied by the map 

display. The section hosts all the results of the forecasting tool, updated every day.  

 

 
Figure 83. Visualization of the forecast maps produced by the forecast tool on the e-Globus platform. 1) Platform 

name and command to come back Home; 2) Information on the displayed map: variable, level, date, time; 3) variable 

choice menu; 4) level choice menu; 5) menu choice now; 6) base map choice menu; 7) Cardinal points indicator; 8) 

zoom command; 9) Latitude, longitude and altitude of the point indicated by the cursor; 10) scale of representation; 

11) Sources. 

There are also some commands and information, in particular, at the top, from left to 

right: Information on the map displayed: variable, level, date, time; variable choice 

menu; level choice menu; time selection menu; base map choice menu.  Bottom: Cardinal 

points indicator; zoom command; Latitude, longitude and altitude of the point indicated 

by the cursor; scale of representation; Sources.  

The variables (PM10, NO2 and O3 concentration, BLQ-Air index and Temperature and 

humidity) are organized in hourly maps from 1:00 to 24:00 UTC on 8 levels (BLQ-Air 

index only one level (5 m)). Examples of maps that can be viewed on the platform are 

presented below (Figure 84 and Figure 85). 
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Figure 84. Examples of maps on the E-Globus platform: top) map of temperature ( °C) at 5 m for 20/01/2022 at 19:00; 

bottom) map of Humidity (%) at 5 m for 20/01/2022 at 18:00. 
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Figure 85. Examples of maps on the E-Globus platform: top) map of PM10 concentration (ug m-3) at 5 m for 12/01/2022 

at 11:00; bottom) zoom of the same map. 

Figure 84 shows an example of displaying the temperature map on the e-Globus platform 

relating to the day 20/01/2022 at 19:00, and an example of displaying the humidity map 

on the relating to the day 20/01/2022 at 18:00. On the left of each map we find the legend, 

which allows us to understand that the temperature in Bologna at 19:00 on 20/01/2022 

will be below 10 °C while the humidity on Bologna at 18:00 on 20/01/2022 will be 

included is approximately 80%. 

Figure 85 shows an example of visualization of the map of the concentration of PM10 on 

the e-Globus platform relative to the day 12/01/2022 at 11:00. The relative legend allows 

us to understand that the concentration of PM10 in Bologna at 11:00 on 12/01/2022 will 

be around 50 ug/m3, by zooming in on the center of Bologna (Figure 85), some areas are 

highlighted from a darker red, indicating that in those areas the concentration will be 

higher, around 70 ug/m3. 
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5.4 Summary 

In a city affected by significant levels of traffic, cyclists and pedestrians can be the most 

exposed to pollution and extreme heat situations. The citizens need specific tools capable 

of providing forecasts on AQ and other environmental parameters to assess and choose 

the city areas that is better. The development of the high resolution air quality, 

temperature and humidity forecasting tool for the city of Bologna was presented. ADMS 

models (ADMS-Urban and ADMS-TH) can be used in forecasting mode, using 

numerical forecasts of meteorological variables and boundary pollutant concentrations 

as meteorological input and background respectively. In both models, the domain 

considered is 10x20 km with a resolution of 200x200 m. The meteorological forecasts 

(COSMO model) and concentration (CHIMERE model) forecasts for Bologna are 

provided as open data by ARPAE. The meteorological forecasts and concentration 

forecasts as well as the results of ADMS models were validated with data measured by 

reference monitoring stations. 

The simulated values of temperature and relative humidity match perfectly the 

observations, while the simulations of wind direction present a higher frequency of wind 

coming from NNE with relatively higher speeds than the measured data. 

The results of CHIMERE performance evaluation indicate the tendency for the model to 

overestimate all pollutant and in particular for NO2 and O3. This overestimation implies 

that the dataset used as background concentrations in input to the ADMS model presents 

higher values than the observed, resulting in a consequent overestimation of the 

simulations from ADMS Model. 

The performance evaluation of ADMS models carried out in forecasting mode was 

performed comparing hourly observed data with the forecasts values simulated with the 

ADMS-Urban models. In general, the simulated data are comparable with the observed 

ones, indicating a good temporal representation of the pollutant dispersion over the 

domain. There is an overestimation for NO2 concentration in suburban stations, that can 

be attributed to the overestimation of the background concentrations in the CHIMERE 

forecast model; an overestimation for temperature and an underestimation for humidity, 

especially for the rural site.  

Python programming language, with several libraries, API and modules, were used to 

develop the forecast tool. The ForecastingTool.py file contains all the operations 

necessary for the forecasting tool to work. A Google API was included within the code 

to allow access to Google drive services and download the ARPAE forecasted weather 

data from the COSMO and CHIMERE models. Each variable needed in the final ADMS 

input files required a series of mathematical processing. 

Subsequently, the two ADMS models are called and run in sequence, taking the most of 

the code execution time. The model outputs are processed to produce maps, of spatial 
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variation of pollutant and meteorological variables, saved as PNG files. For each 

pollutant (PM10, NO2 and O3) 24 maps are created every day (one for each hour of the 

day, from 1:00 to 24:00 UTC) for 8 height levels (5, 10, 15, 20, 25, 30, 35 and 40 m 

above the ground). 24 maps (24 hours) for 8 levels (ground clearance) are also created 

every day for temperature and humidity forecasts. Only the BLQ-Air index forecasts are 

produced at a single level (5 m). Along with the PNG files, a JSON file which contains 

all the images metadata is also created. JSON. All PNG images created are compressed 

in a ZIP file which together with the JSON file are uploaded to the e-Globus drive. The 

e-Globus platform is an experimental project developed by e-Soft to visualize data and 

statistics related to different topics and coming from various sources.  The e-Globus 

platform was chosen to make the forecasting tool products available to citizens and other 

end-users. The section added to the platform is called Environmental Forecasts at urban 

scale of Bologna. The ForecastingTool.py file must run every day to update the maps on 

the e-globus platform. The automation was achieved using crontab. 
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6 CONCLUSIONS  
This research aimed to develop a forecasting tool for citizen use, adaptable to all cities. 

The tool provides high resolution forecast maps, useful for choosing the healthiest areas 

of the city. To achieve this, a series of steps were performed, including the simulation of 

different scenarios and the development of new parametrization for vegetated areas.  

The simulation of each scenario had as its objective the evaluation of the effects of traffic 

management policies, PCSs interventions and greening policies; while the ultimate goal 

of all simulations was to develop methodologies that improve the performance of the 

dispersion model. On the basis of the results obtained with the modeling simulations of 

traffic policies, PCSs interventions and greening policies, it can be concluded that the 

models used are able to simulate very detailed and high resolution scenarios, moreover, 

they allow to also simulate future scenarios to include possible interactions with climate 

change. The results of traffic policy simulations show that the use of electric vehicles 

improves air quality, while increasing the frequency of buses would lead to a slight 

increase in PM10 emissions. As for PCSs interventions, they favor the deposition of 

pollutants, contributing to the reduction of pollutant concentrations in the air. PCSs 

interventions also improve thermal comfort in the areas adjacent to where they are 

performed. Finally, the results of simulations of greening policies show that the addition 

of trees in a road leads to an alteration of the dispersion, determining both areas of 

reduction of the NOx concentration and areas of decrease. Furthermore, the UHI tends to 

increase in the future due to climate change. The differences between present and future 

are limited. To simulate the individual scenarios, different methodologies have been 

developed (such as simulating the scenario in which the vehicles were all electric, 

modeling the deposition due to the presence of vegetation, modeling the dispersion in the 

presence of trees considered as a physical obstacle). All these methodologies were useful 

for the development of the forecasting tool. In particular, the methodology for calculating 

the USVR allows very good performances, therefore the relative map produced was 

included in the setup of the dispersion model. Using the morphological method, detailed 

aerodynamic information of the city such as road trees otherwise not identifiable with 

other methodologies can be provided to the model. The insertion of the roughness due to 

buildings and trees has produced different results based on the spatial scale and on the 

characteristics of the dispersion site. At the urban scale, the presence of trees does not 

seem to significantly alter the simulation output, this result can be influenced by the not 

densely vegetated site used for the evaluation. At the neighborhood scale, the inclusion 

of vegetation significantly improves the agreement of the simulations with observations, 

especially for vegetated areas. Therefore, this methodology is strongly recommended to 

improve the performance of dispersion simulations, and particularly to limit the 

overestimation of the simulated concentrations. The inclusion of vegetation is 

particularly necessary in high spatial resolution studies, and for densely vegetated sites. 
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In the second part of this research, the high resolution forecasting tool was proposed. The 

tool developed for the city of Bologna and tested on it is presented. The tool produces 

the 1-day forecast NO2, PM10, O3 concentration, the air temperature, the air humidity and 

BL-Air index values. The regional numerical forecasts of meteorological variables 

(COSMO model) and pollutant concentrations (CHIMERE model) were used as 

meteorological and background concentration input, respectively, into the ADMS 

models (ADMS-Urban and ADMS-TH), used in forecasting mode. A python code 

executes all operations necessary for the forecasting tool to work. The code is 

automatically executed every day and the maps produced are displayed on the e-Globus 

platform, updated every day. The output of the code are maps of pollutants concentration, 

temperature, Humidity, and BLQ-Air Index: 24 maps are created every day, for 8 height 

levels (BLQ-Air index had only one level).  

During the testing phase of the tool, the two regional forecast models were evaluated by 

comparing the forecast values with observed data. The results of this evaluation highlight 

some critical issues: the COSMO simulated values of wind direction and intensity present 

some discrepancies from the measurements and the CHIMERE model overestimate all 

pollutant, in particular for NO2 and O3. To evaluate the final product of the tool, a 

performance evaluation of the ADMS models was performed. The results indicate an 

overestimation for NO2 concentration in suburban stations, and an overestimation for 

temperature and an underestimation for humidity, especially for the rural site. The final 

product of the forecasting tool is available and can be consulted by everyone at the URL: 

https://www.e-globus.it/adms01.aspx.  

 

6.1 Further remarks 

The emissions inventory used is based on annual average traffic count data, this figure 

should be updated every year for the simulations to make reliable predictions. 

The overestimation of the CHIMERE model amplifies the tendency of the dispersion 

model to overestimate the predicted concentrations, although the performance evaluation 

of the model gives excellent results, the input data from the CHIMERE model should be 

correct. The discrepancies found for wind speed and direction in the COSMO model 

predictions could lead to incorrect distribution patterns (both for pollutants and for 

temperature and humidity). Both criticalities should be studied in detail to improve the 

forecasting tool. 

 

6.2 Future Perspectives  

The results found so far lead to a series of recommendations, in the field of AQ, the most 

important is to include modeling approaches among the methodologies for evaluating 

https://www.e-globus.it/adms01.aspx


154 

 

urban policies. They, as has been amply documented in this thesis, allow to have space-

time information, allow to evaluate multiple scenarios and to make future predictions. 

As for the policies on traffic management, it is necessary to pay close attention to the 

effect of the policies on the different pollutants, the effect is not always the same for all. 

PCS interventions and greening policies are much more complex, they act on various 

processes that affect the dispersion of pollutants, such as the deposition and alteration of 

atmospheric flows due to roughness. The effects due to the change in roughness are 

greater than the deposition, therefore it is advisable to include detailed spatial 

information on roughness, such as the USVR map (methodology presented in this thesis), 

especially at high resolution scale. 

Regarding the forecasting tool, future improvements may concern: 

 Include the creation of the emission inventory based on daily traffic data. 

 Correct the overestimation and the criticalities found in the forecasts provided by 

the COSMO and CHIMERE forecast models. 

 Improve the efficiency of the code: evaluate the use of one library rather than 

another, replace for or if loops with more efficient Python constructs, define 

classes to make it reusable. 

Finally, a section dedicated to product evaluation by end users would be very useful for 

improving the tool.  

 

 

  



155 

 

7 REFERENCES 
Abhijith, K. V., Kumar, P., 2019. Field investigations for evaluating green infrastructure effects on air 

quality in open-road conditions. Atmos. Environ. 201, 132–147. 

https://doi.org/10.1016/j.atmosenv.2018.12.036 

Abhijith, K. V., Kumar, P., Gallagher, J., McNabola, A., Baldauf, R., Pilla, F., Broderick, B., Di Sabatino, 

S., Pulvirenti, B., 2017. Air pollution abatement performances of green infrastructure in open road 

and built-up street canyon environments – A review. Atmos. Environ. 162, 71–86. 

https://doi.org/10.1016/j.atmosenv.2017.05.014 

Ahern, J., 2007. Green infrastructure for cities: the spatial dimension. In, in: Cities of the Future: Towards 

Integrated Sustainable Water and Landscape Management. IWA Publishing. 

An, N., Dou, J., González-Cruz, J.E., Bornstein, R.D., Miao, S., Li, L., 2020. An observational case study 

of synergies between an intense heat wave and the urban heat island in Beijing. J. Appl. Meteorol. 

Climatol. 59, 605–620. https://doi.org/10.1175/JAMC-D-19-0125.1 

Baklanov, A., Zhang, Y., 2020. Advances in air quality modeling and forecasting. Glob. Transitions 2, 

261–270. https://doi.org/10.1016/j.glt.2020.11.001 

Barbano, F., Di Sabatino, S., Stoll, R., Pardyjak, E.R., 2020. A numerical study of the impact of vegetation 

on mean and turbulence fields in a European-city neighbourhood. Build. Environ. 186, 107293. 

https://doi.org/10.1016/j.buildenv.2020.107293 

Barnes, M.J., Brade, T.K., Mackenzie, A.R., Whyatt, J.D., Carruthers, D.J., Stocker, J., Cai, X., Hewitt, 

C.N., 2014. Spatially-varying surface roughness and ground-level air quality in an operational 

dispersion model. Environ. Pollut. 185, 44–51. https://doi.org/10.1016/j.envpol.2013.09.039 

Benavides, J., Snyder, M., Guevara, M., Soret, A., Pérez García-Pando, C., Amato, F., Querol, X., Jorba, 

O., 2019. CALIOPE-Urban v1.0: Coupling R-LINE with a mesoscale air quality modelling system 

for urban air quality forecasts over Barcelona city (Spain). Geosci. Model Dev. 12, 2811–2835. 

https://doi.org/10.5194/gmd-12-2811-2019 

Borrego, C., Costa, A.M., Ginja, J., Amorim, M., Coutinho, M., Karatzas, K., Sioumis, T., Katsifarakis, 

N., Konstantinidis, K., De Vito, S., Esposito, E., Smith, P., André, N., Gérard, P., Francis, L.A., 

Castell, N., Schneider, P., Viana, M., Minguillón, M.C., Reimringer, W., Otjes, R.P., von Sicard, O., 

Pohle, R., Elen, B., Suriano, D., Pfister, V., Prato, M., Dipinto, S., Penza, M., 2016. Assessment of 

air quality microsensors versus reference methods: The EuNetAir joint exercise. Atmos. Environ. 

147, 246–263. https://doi.org/10.1016/j.atmosenv.2016.09.050 

Boucher, O., Randall, D., Artaxo, P., Bretherton, C., Feingold, G., Forster, P., Kerminen, V.-M., Kondo, 

Y., Liao, H., Lohmann, U., Rasch, P., Satheesh, S.K., Sherwood, S., Stevens, B., Zhang, X.Y., 2013. 

Clouds and aerosols, in: Cambridge University Press, Cambridge, United Kingdom and New York, 

NY, U. (Ed.), Climate Change 2013 the Physical Science Basis: Working Group I Contribution to 

the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. pp. 571–658. 

https://doi.org/10.1017/CBO9781107415324.016 

Brattich, E., Bracci, A., Zappi, A., Morozzi, P., Sabatino, S. Di, Porcù, F., Nicola, F. Di, Tositti, L., 2020. 

How to get the best from low-cost particulate matter sensors: Guidelines and practical 

recommendations. Sensors (Switzerland) 20, 1–33. https://doi.org/10.3390/s20113073 

Brauer, M., Brook, J.R., Christidis, T., Chu, Y., Crouse, D.L., Erickson, A., Hystad, P., Li, C., Martin, R. 

V, Meng, J., Pappin, A.J., Pinault, L.L., Tjepkema, M., Donkelaar, A. Van, Weichenthal, S., Burnett, 

R.T., 2019. R E S E A R C H R E P O RT 5505. 

Breuer, L., Eckhardt, K., Frede, H.G., 2003. Plant parameter values for models in temperate climates. Ecol. 

Modell. 169, 237–293. https://doi.org/10.1016/S0304-3800(03)00274-6 

Britter, R.E., Hanna, S.R., 2003. Flow and dispersion in urban areas. Annu. Rev. Fluid Mech. 35, 469–

496. https://doi.org/10.1146/annurev.fluid.35.101101.161147 

Brunekreef, B., Holgate, S.T., 2002. Air pollution and health. Lancet 360, 1233–1242. 

https://doi.org/10.1016/S0140-6736(02)11274-8 

Buccolieri, R., Gromke, C., Di Sabatino, S., Ruck, B., 2009. Aerodynamic effects of trees on pollutant 



156 

 

concentration in street canyons. Sci. Total Environ. 407, 5247–5256. 

https://doi.org/10.1016/j.scitotenv.2009.06.016 

Carnielo, E., Zinzi, M., 2013. Optical and thermal characterisation of cool asphalts to mitigate urban 

temperatures and building cooling demand. Build. Environ. 60, 56–65. 

https://doi.org/10.1016/j.buildenv.2012.11.004 

Carruthers, D.J., Edmunds, H.A., Lester, A.E., McHugh, C.A., Singles, R.J., 2000. Use and validation of 

ADMS-Urban in contrasting urban and industrial locations. Int. J. Environ. Pollut. 14, 364–374. 

CERC, 2018. ADMS-Urban Temperature and Humidity. 

CERC, 2017. ADMS-Urban Urban Air Quality Management System Version 4.1 User Guide CERC 390. 

CERC, 2015. EMIT Atmospheric Emissions Inventory Toolkit User Guide. 

Cesaroni, G., Badaloni, C., Gariazzo, C., Stafoggia, M., Sozzi, R., Davoli, M., Forastiere, F., 2013. Long-

term exposure to urban air pollution and mortality in a cohort of more than a million adults in Rome. 

Environ. Health Perspect. 121, 324–331. https://doi.org/10.1289/ehp.1205862 

Chang, J.C., Hanna, S.R., 2004. Air quality model performance evaluation. Meteorol. Atmos. Phys. 87, 

167–196. https://doi.org/10.1007/s00703-003-0070-7 

Changnon, S.D., 2003. MEASURES OF ECONOMIC IMPACTS OF WEATHER EXTREMES. Am. 

Meteorol. Soc. 

Chew, L.W., Liu, X., Li, X.X., Norford, L.K., 2021. Interaction between heat wave and urban heat island: 

A case study in a tropical coastal city, Singapore. Atmos. Res. 247, 105134. 

https://doi.org/10.1016/j.atmosres.2020.105134 

Coumou, D., Robinson, A., 2013. Historic and future increase in the global land area affected by monthly 

heat extremes. Environ. Res. Lett. 8. https://doi.org/10.1088/1748-9326/8/3/034018 

Danov, M., Tsanev, V., Petkov, D., 2007. Investigation of thermal infrared emissivity spectra of mineral 

and rock samples. New Dev. Challenges Remote Sens. 145–152. 

Di Nicola, F., Brattich, E., Di Sabatino, S., 2022. A new approach for roughness representation within 

urban dispersion models. 

Di Sabatino, S., Barbano, F., Brattich, E., 2020. The Multiple-Scale Nature of Urban Heat Island and Its 

Footprint on Air Quality in Real Urban Environment. Atmosphere (Basel). 11, 1186. 

Di Sabatino, S., Brattich, E., Barbano, F., Gharbia, S., Pilla, F., Abhijith, K. V., Kumar, P., Drebs, A., 

Jylhä, K., Mäkelä, A., Deserti, M., Torreggiani, L., Barbieri, C., 2018. Air pollution and meteorology 

- D5.2. 

Di Sabatino, S., Brattich, E., Di Nicola, F., Barbano, F., Adnan, M., Ahmed, S., Jylhä, K., Ruosteenoja, 

K., Deserti, M., Agostini, C., Poluzzi, V., 2019. Report on policy options for AQ and CC - D4.5. 

Di Sabatino, S., Buccolieri, R., Olesen, H.R., Ketzel, M., Berkowicz, R., Franke, J., Schatzmann, M., 

Schlünzen, K.H., Leitl, B., Britter, R., Borrego, C., Costa, A.M., Castelli, S.T., Reisin, T.G., Hellsten, 

A., Saloranta, J., Moussiopoulos, N., Barmpas, F., Brzozowski, K., Goricsán, I., Balczò, M., Bartzis, 

J.G., Efthimiou, G., Santiago, J.L., Martilli, A., Piringer, M., Baumann-Stanzer, K., Hirtl, M., 

Baklanov, A.A., Nuterman, R.B., Starchenko, A. V., 2011. COST 732 in practice: The MUST model 

evaluation exercise. Int. J. Environ. Pollut. 44, 403–418. https://doi.org/10.1504/IJEP.2011.038442 

Di Sabatino, S., Buccolieri, R., Pappaccogli, G., Leo, L.S., 2015. The effects of trees on micrometeorology 

in a real street canyon: Consequences for local air quality. Int. J. Environ. Pollut. 58, 100–111. 

https://doi.org/10.1504/IJEP.2015.076587 

Di Sabatino, S., Buccolieri, R., Pulvirenti, B., Britter, R.E., 2008. Flow and pollutant dispersion in street 

canyons using FLUENT and ADMS-Urban. Environ. Model. Assess. 13, 369–381. 

https://doi.org/10.1007/s10666-007-9106-6 

Dominski, F.H., Lorenzetti Branco, J.H., Buonanno, G., Stabile, L., Gameiro da Silva, M., Andrade, A., 

2021. Effects of air pollution on health: A mapping review of systematic reviews and meta-analyses. 

Environ. Res. 201. https://doi.org/10.1016/j.envres.2021.111487 

Duyzer, J., van den Hout, D., Zandveld, P., van Ratingen, S., 2015. Representativeness of air quality 

monitoring networks. Atmos. Environ. 104, 88–101. 



157 

 

https://doi.org/10.1016/j.atmosenv.2014.12.067 

EEA, 2009. EMEP/EEA air pollutant emission inventory guidebook - 2009 — European Environment 

Agency. 

Elminir, H.K., 2005. Dependence of urban air pollutants on meteorology. Sci. Total Environ. 350, 225–

237. https://doi.org/10.1016/j.scitotenv.2005.01.043 

Environment Agency, 2008. Review of modelling methods of near-field acid deposition. 

EPA, 2004. Photochemical smog: what it means for us. Epa 90/04 1, 1–7. 

EPA, 1970. Clean air act. Public Health. https://doi.org/10.1016/S0033-3506(31)80400-7 

EU, 2016. DIRETTIVA (UE) 2016/2284 DEL PARLAMENTO EUROPEO E DEL CONSIGLIO del 14 

dicembre 2016. Gazz. Uff. dell’Unione Eur. 

European Commission, 2012. The Multifunctionality of Green Infrastructure. DG Environ. Brussells. 

Fischer, P.H., Marra, M., Ameling, C.B., Hoek, G., Beelen, R., De Hoogh, K., Breugelmans, O., Kruize, 

H., Janssen, N.A.H., Houthuijs, D., 2015. Air pollution and mortality in seven million adults: The 

dutch environmental longitudinal study (DUELS). Environ. Health Perspect. 123, 697–704. 

https://doi.org/10.1289/ehp.1408254 

FLIR Systems, 2019. User’s manual FLIR T6 series. 

Gabriel, K.M.A., Endlicher, W.R., 2011. Urban and rural mortality rates during heat waves in Berlin and 

Brandenburg, Germany. Environ. Pollut. 159, 2044–2050. 

https://doi.org/10.1016/j.envpol.2011.01.016 

Gallagher, J., Gill, L.W., McNabola, A., 2012. Numerical modelling of the passive control of air pollution 

in asymmetrical urban street canyons using refined mesh discretization schemes. Build. Environ. 56, 

232–240. https://doi.org/10.1016/j.buildenv.2012.03.013 

Gignac, F., Righi, V., Toran, R., Errandonea, L.P., Ortiz, R., Nieuwenhuijsen, M., Creus, J., Basagaña, X., 

Balestrini, M., 2022. Co-creating a local environmental epidemiology study: the case of citizen 

science for investigating air pollution and related health risks in Barcelona, Spain. Environ. Heal. 

21, 1–13. https://doi.org/10.1186/s12940-021-00826-8 

Goodsite, M.E., Hertel, O., Johnson, M.S., Jørgensen, N.R., 2021. Urban Air Quality: Sources and 

Concentrations, in: Goodsite, M.E., Johnson, M.S., Hertel, O. (Eds.), Air Pollution Sources, 

Statistics and Health Effects. Springer US, New York, NY, pp. 193–214. 

https://doi.org/10.1007/978-1-0716-0596-7_321 

Gorsevski, V., Taha, H., Quattrochi, D., Luvall, J., 1998. Air Pollution Prevention Through Urban Heat 

Island Mitigation: An Update on the Urban Heat Island Pilot Project. Proc. ACEEE Summer Study 

23–32. 

Gromke, C., 2011. A vegetation modeling concept for building and environmental aerodynamics wind 

tunnel tests and its application in pollutant dispersion studies. Environ. Pollut. 159, 2094–2099. 

https://doi.org/10.1016/j.envpol.2010.11.012 

Hamada, S., Ohta, T., 2010. Seasonal variations in the cooling effect of urban green areas on surrounding 

urban areas. Urban For. Urban Green. 9, 15–24. https://doi.org/10.1016/j.ufug.2009.10.002 

Hanna, S.R., 1993. Uncertainties in air quality model predictions. Boundary-Layer Meteorol. 62, 3–20. 

https://doi.org/10.1007/BF00705545 

Hogstrom, U., 1996. Review of some basic characteristics of the atmospheric surface layer. Boundary-

Layer Meteorol. 78, 215–246. https://doi.org/10.1007/BF00120937 

Hood, C., MacKenzie, I., Stocker, J., Johnson, K., Carruthers, D., Vieno, M., Doherty, R., 2018. Air quality 

simulations for London using a coupled regional-to-local modelling system. Atmos. Chem. Phys. 

18, 11221–11245. https://doi.org/10.5194/acp-18-11221-2018 

Hood, C.M., Stocker, J.R., Carruthers, D.J., Grayson, W., Handley, J., Fung, J., Yueng, D., 2017. 

Integrating regional and local modeling to create a high-resolution air quality forecasting system for 

Hong Kong. 

Huang, Y., Chameides, W.L., Dickinson, R.E., 2007. Direct and indirect effects of anthropogenic aerosols 

on regional precipitation over east Asia. J. Geophys. Res. Atmos. 112, 1–17. 



158 

 

https://doi.org/10.1029/2006JD007114 

IARC, 2016. Outdoor Air Pollution. IARC Monograph 109. 

Janhäll, S., 2015. Review on urban vegetation and particle air pollution - Deposition and dispersion. Atmos. 

Environ. 105, 130–137. https://doi.org/10.1016/j.atmosenv.2015.01.052 

Jeanjean, A., Buccolieri, R., Eddy, J., Monks, P., Leigh, R., 2017. Air quality affected by trees in real street 

canyons: The case of Marylebone neighbourhood in central London. Urban For. Urban Green. 22, 

41–53. https://doi.org/10.1016/j.ufug.2017.01.009 

Jeanjean, A.P.R., Monks, P.S., Leigh, R.J., 2016. Modelling the effectiveness of urban trees and grass on 

PM2.5 reduction via dispersion and deposition at a city scale. Atmos. Environ. 147, 1–10. 

https://doi.org/10.1016/j.atmosenv.2016.09.033 

Kadaverugu, R., Sharma, A., Matli, C., Biniwale, R., 2019. High Resolution Urban Air Quality Modeling 

by Coupling CFD and Mesoscale Models: a Review. Asia-Pacific J. Atmos. Sci. 55, 539–556. 

https://doi.org/10.1007/s13143-019-00110-3 

Kampa, M., Castanas, E., 2008. Human health effects of air pollution. Environ. Pollut. 151, 362–367. 

https://doi.org/10.1016/j.envpol.2007.06.012 

Karsis, P., Ntziachritos, L., Mellios, G., 2012. Description of new elements in COPERT 4 v10.0 1–71. 

Kent, C.W., Grimmond, S., Barlow, J., Gatey, D., Kotthaus, S., Lindberg, F., Halios, C.H., 2017. 

Evaluation of Urban Local-Scale Aerodynamic Parameters: Implications for the Vertical Profile of 

Wind Speed and for Source Areas. Boundary-Layer Meteorol. 164, 1–31. 

https://doi.org/10.1007/s10546-017-0248-z 

Kong, F., Yin, H., James, P., Hutyra, L.R., He, H.S., 2014. Effects of spatial pattern of greenspace on urban 

cooling in a large metropolitan area of eastern China. Landsc. Urban Plan. 128, 35–47. 

https://doi.org/10.1016/j.landurbplan.2014.04.018 

Kong, F., Yin, H., Nakagoshi, N., Zong, Y., 2010. Urban green space network development for biodiversity 

conservation: Identification based on graph theory and gravity modeling. Landsc. Urban Plan. 95, 

16–27. https://doi.org/10.1016/j.landurbplan.2009.11.001 

Künkli, N., Perez, L., Rapp, R., 2010. Qualità dell’aria e Salute, European Respiratory Society. 

Künzli, N., Kaiser, R., Medina, S., Studnicka, M., Chanel, O., Filliger, P., Herry, M., Horak Jr, F., 

Puybonnieux-Texier, V., Quénel, P., others, 2000. Public-health impact of outdoor and traffic-related 

air pollution: a European assessment. Lancet 356, 795–801. 

Kurt, O.K., Zhang, J., Pinkerton, K.E., 2016. HHS Public Access. Curr. Opin. Pulm. Med. 22, 138–143. 

https://doi.org/10.1097/MCP.0000000000000248.Pulmonary 

Li, D., Sun, T., Liu, M., Wang, L., Gao, Z., 2016. Changes in wind speed under heat waves enhance urban 

heat islands in the Beijing metropolitan area. J. Appl. Meteorol. Climatol. 55, 2369–2375. 

https://doi.org/10.1175/JAMC-D-16-0102.1 

Li, Y., Schubert, S., Kropp, J.P., Rybski, D., 2020. On the influence of density and morphology on the 

Urban Heat Island intensity. Nat. Commun. 11, 1–9. https://doi.org/10.1038/s41467-020-16461-9 

MacDonald, R.W., Griffiths, R.F., Hall, D.J., 1998. An improved method for the estimation of surface 

roughness of obstacle arrays. Atmos. Environ. 32, 1857–1864. 

Maggiotto, G., Buccolieri, R., Santo, M.A., Di Sabatino, S., Leo, L.S., 2014a. Study of the urban heat 

island in Lecce (Italy) by means of ADMS and ENVI-MET. Int. J. Environ. Pollut. 55, 41–49. 

https://doi.org/10.1504/IJEP.2014.065903 

Maggiotto, G., Buccolieri, R., Santo, M.A., Leo, L.S., Di Sabatino, S., 2014b. Validation of temperature-

perturbation and CFD-based modelling for the prediction of the thermal urban environment: The 

Lecce (IT) case study. Environ. Model. Softw. 60, 69–83. 

https://doi.org/10.1016/j.envsoft.2014.06.001 

Mangia, C., Ielpo, P., Cesari, R., Facchini, M., 2020. Crisi climatica e inquinamento atmosferico. Ithaca 

Viaggio nella Sci. 2020, 57–68. 

Marć, M., Tobiszewski, M., Zabiegała, B., Guardia, M. de la, Namieśnik, J., 2015. Current air quality 

analytics and monitoring: A review. Anal. Chim. Acta 853, 116–126. 



159 

 

https://doi.org/10.1016/j.aca.2014.10.018 

Martilli, A., 2002. Numerical Study of Urban Impact on Boundary Layer Structure: Sensitivity to Wind 

Speed, Urban Morphology, and Rural Soil Moisture. Am. Meteorol. Soc. 41. 

McCarthy, M.P., Best, M.J., Betts, R.A., 2010. Climate change in cities due to global warming and urban 

effects. Geophys. Res. Lett. 37, 1–5. https://doi.org/10.1029/2010GL042845 

McMichael, A.J., Woodruff, R.E., Hales, S., 2006. Climate change and human health: Present and future 

risks. Lancet 367, 859–869. https://doi.org/10.1016/S0140-6736(06)68079-3 

Michulec, M., Wardencki, W., Partyka, M., Namieśnik, J., 2005. Analytical techniques used in monitoring 

of atmospheric air pollutants. Crit. Rev. Anal. Chem. 35, 117–133. 

https://doi.org/10.1080/10408340500207482 

Monks, P.S., Archibald, A.T., Colette, A., Cooper, O., Coyle, M., Derwent, R., Fowler, D., Granier, C., 

Law, K.S., Mills, G.E., Stevenson, D.S., Tarasova, O., Thouret, V., Von Schneidemesser, E., 

Sommariva, R., Wild, O., Williams, M.L., 2015. Tropospheric ozone and its precursors from the 

urban to the global scale from air quality to short-lived climate forcer. Atmos. Chem. Phys. 15, 8889–

8973. https://doi.org/10.5194/acp-15-8889-2015 

Moussiopoulos, N., Berge, E., Bøhler, T., Leeuw, F. De, Grønskei, K., Mylona, S., Tombrou, M., 1996. 

European Topic Centre on Air Quality AMBIENT AIR QUALITY , POLLUTANT by. Policy. 

National Radiological Protection Board (NRPB), 2001. Atmospheric Dispersion Modelling Liaison 

Committee annual report 1998/99 : including review of deposition velocity and washout coefficient 

and review of flow and dispersion in the vicinity of groups of buildings. 158. 

NIWAR, N.I. of W. and A.R., 2002. Good practice guide for atmospheric dispersion modelling. 

O’Neill, M.S., Ebi, K.L., 2009. Temperature extremes and health: Impacts of climate variability and 

change in the United States. J. Occup. Environ. Med. 51, 13–25. 

https://doi.org/10.1097/JOM.0b013e318173e122 

Oliveira, A., Lopes, A., Correia, E., Niza, S., Soares, A., 2021. Heatwaves and summer urban heat islands: 

A daily cycle approach to unveil the urban thermal signal changes in Lisbon, Portugal. Atmosphere 

(Basel). 12. https://doi.org/10.3390/atmos12030292 

Ompad, D.C., Galea, S., Vlahov, D., 2007. Chapter 3: Urbanicity, Urbanization, and the Urban 

Environment Danielle, in: Macrosocial Determinants of Population Health. pp. 1–502. 

https://doi.org/10.1007/978-0-387-70812-6 

ONU, 2019. World population prospects 2019, Department of Economic and Social Affairs. World 

Population Prospects 2019. 

ONU, 2018. World Urbanization Prospects 2018, Departemen of Economic and Social Affairs United 

Nation. 

Parker, D.E., 2010. Urban heat island effects on estimates of observed climate change. Wiley Interdiscip. 

Rev. Clim. Chang. 1, 123–133. https://doi.org/10.1002/wcc.21 

Perkins, S.E., Alexander, L. V., Nairn, J.R., 2012. Increasing frequency, intensity and duration of observed 

global heatwaves and warm spells. Geophys. Res. Lett. 39, 1–5. 

https://doi.org/10.1029/2012GL053361 

Pope, C.A., Bates, D. V., Raizenne, M.E., 1995. Health Effects of Particulate Air Pollution: Time for 

Reassessment? Ann. Epidemiol. 103, 472–480. https://doi.org/10.1016/j.annepidem.2009.01.018 

Pope, C.A., Dockery, D.W., 2006. Health effects of fine particulate air pollution: Lines that connect. J. Air 

Waste Manag. Assoc. 56, 709–742. https://doi.org/10.1080/10473289.2006.10464485 

Qgis Project, 2017. QGIS User Guide Release 2.14. 

Rai, A.C., Kumar, P., Pilla, F., Skouloudis, A.N., Di Sabatino, S., Ratti, C., Yasar, A., Rickerby, D., 2017. 

End-user perspective of low-cost sensors for outdoor air pollution monitoring. Sci. Total Environ. 

607–608, 691–705. https://doi.org/10.1016/j.scitotenv.2017.06.266 

Righi, S., Lucialli, P., Pollini, E., 2009. Statistical and diagnostic evaluation of the ADMS-Urban model 

compared with an urban air quality monitoring network. Atmos. Environ. 43, 3850–3857. 

https://doi.org/10.1016/j.atmosenv.2009.05.016 



160 

 

Robertson, S., Miller, M.R., 2018. Ambient air pollution and thrombosis. Part. Fibre Toxicol. 15, 1–16. 

https://doi.org/10.1186/s12989-017-0237-x 

Roth, M., 2000. Review of atmospheric turbolence over cities. Q. J. R. Meteorol.Soc. 126, 941–990. 

Santiago, J.L., Martilli, A., Martin, F., 2017. On Dry Deposition Modelling of Atmospheric Pollutants on 

Vegetation at the Microscale: Application to the Impact of Street Vegetation on Air Quality. 

Boundary-Layer Meteorol. 162, 451–474. https://doi.org/10.1007/s10546-016-0210-5 

Schär, C., Vidale, P.L., Lüthi, D., Frei, C., Häberli, C., Liniger, M.A., Appenzeller, C., 2004. The role of 

increasing temperature variability in European summer heatwaves. Nature 427, 332–336. 

https://doi.org/10.1038/nature02300 

Seinfeld, J.H., Pandis, S.N., 1998. Atmospheric Chemistry and Physics: From Air Pollution to Climate 

Change. John Wiley and Sons, New York. 

Silva, L.T., Mendes, J.F.G., 2011. A New Air Quality Index for Cities. Adv. Air Pollut. 13. 

Silveira, C., Ferreira, J., Miranda, A.I., 2019. The challenges of air quality modelling when crossing 

multiple spatial scales. Air Qual. Atmos. Heal. 12, 1003–1017. https://doi.org/10.1007/s11869-019-

00733-5 

Solberg, S., Hov, Søvde, A., Isaksen, I.S.A., Coddeville, P., De Backer, H., Forster, C., Orsolini, Y., Uhse, 

K., 2008. European surface ozone in the extreme summer 2003. J. Geophys. Res. Atmos. 113, 1–16. 

https://doi.org/10.1029/2007JD009098 

Soulhac, L., Salizzoni, P., Cierco, F.X., Perkins, R., 2011. The model SIRANE for atmospheric urban 

pollutant dispersion; part I, presentation of the model. Atmos. Environ. 45, 7379–7395. 

https://doi.org/10.1016/j.atmosenv.2011.07.008 

Spinelle, L., Gerboles, M., Villani, M.G., Aleixandre, M., Bonavitacola, F., 2017. Field calibration of a 

cluster of low-cost commercially available sensors for air quality monitoring. Part B: NO, CO and 

CO2. Sensors Actuators, B Chem. 238, 706–715. https://doi.org/10.1016/j.snb.2016.07.036 

Spinelle, L., Gerboles, M., Villani, M.G., Aleixandre, M., Bonavitacola, F., 2015. Field calibration of a 

cluster of low-cost available sensors for air quality monitoring. Part A: Ozone and nitrogen dioxide. 

Sensors Actuators, B Chem. 215, 249–257. 

https://doi.org/http://dx.doi.org/10.1016/j.snb.2015.03.031 

Srivastava, A., Rao, B.P.S., 2011. Urban Air Pollution Modeling, Air Quality-Models and Applications, 

InTech. 

Srivastava, S., Sinha, I.N., 2004. Classification of Air Pollution CLASSIFICATION OF AIR 

POLLUTION DISPERSION MODELS: A CRITICAL REVIEW, in: Proceedings of the National 

Seminar on Environmental Engineering with Special Emphasis on Mining Environment. pp. 2004–

19. 

Stewart, I.D., Oke, T.R., 2012. Local climate zones for urban temperature studies. Bull. Am. Meteorol. 

Soc. 93, 1879–1900. https://doi.org/10.1175/BAMS-D-11-00019.1 

Stocker, J., Hood, C., Carruthers, D., McHugh, C., 2012. ADMS-Urban: developments in modelling 

dispersion from the city scale to the local scale. Int. J. Environ. Pollut. 50, 308–316. 

Stull, R.B., 1988. An introduction to boundary layer meteorology. Springer Science & Business Media. 

Swart, R., Amann, M., Raes, F., Tuinstra, W., 2004. A good climate for clean air: Linkages between 

climate change and air pollution. An editorial essay. Clim. Change 66, 263–269. 

https://doi.org/10.1023/B:CLIM.0000044677.41293.39 

Tiwari, A., Kumar, P., 2020. Integrated dispersion-deposition modelling for air pollutant reduction via 

green infrastructure at an urban scale. Sci. Total Environ. 723, 138078. 

https://doi.org/10.1016/j.scitotenv.2020.138078 

Tiwari, A., Kumar, P., Baldauf, R., Zhang, K.M., Pilla, F., Di Sabatino, S., Brattich, E., Pulvirenti, B., 

2019. Considerations for evaluating green infrastructure impacts in microscale and macroscale air 

pollution dispersion models. Sci. Total Environ. 672, 410–426. 

https://doi.org/10.1016/j.scitotenv.2019.03.350 

Tositti, L., Brattich, E., Masiol, M., Baldacci, D., Ceccato, D., Parmeggiani, S., Stracquadanio, M., 

Zappoli, S., 2014. Source apportionment of particulate matter in a large city of southeastern Po 



161 

 

Valley (Bologna, Italy). Environ. Sci. Pollut. Res. 21, 872–890. https://doi.org/10.1007/s11356-013-

1911-7 

Tressol, M., Ordonez, C., Zbinden, R., Brioude, J., Thouret, V., Mari, C., Nedelec, P., Cammas, J.P., Smit, 

H., Patz, H.W., Volz-Thomas, A., 2008. Air pollution during the 2003 European heat wave as seen 

by MOZAIC airliners. Atmos. Chem. Phys. 8, 2133–2150. https://doi.org/10.5194/acp-8-2133-2008 

Tzoulas, K., Korpela, K., Venn, S., Yli-Pelkonen, V., Kaźmierczak, A., Niemela, J., James, P., 2007. 

Promoting ecosystem and human health in urban areas using Green Infrastructure: A literature 

review. Landsc. Urban Plan. 81, 167–178. https://doi.org/10.1016/j.landurbplan.2007.02.001 

Vardoulakis, S., Fisher, B.E.A., Pericleous, K., Gonzalez-Flesca, N., 2003. Modelling air quality in street 

canyons: A review. Atmos. Environ. 37, 155–182. https://doi.org/10.1016/S1352-2310(02)00857-9 

Watson, A.Y., Bates, R.R., Kennedy, D., 1988. Assessment of Human Exposure to Air Pollution: Methods, 

Measurements, and Models, Air Pollution, the Automobile, and Public Health. 

Weber, E., 1982. Air Pollution: Assessment Meteorology and Modelling. Plenum Press. 

Whitman, S., Good, G., Donoghue, E.R., 1997. Mortality in Chicago attributed to the July 1995 heat wave 

Public Health Biefs Mortality in Chicago Attributed to the July 1995 Heat Wave. Am. J. Public 

Health 87, 1515–1518. 

WHO, 1999. Monitoring ambient air quality for health impact assessment. World Heal. Organ. Reg. Publ. 

- Eur. Ser. 85. 

Wolf, K.L., 2003. Ergonomics of the City : Green Infrastructure and Social Benefits. Eng. Green Proc. 

2003 Natl. Urban For. Conf. 2003, 5. 

Yuan, C., Norford, L., Ng, E., 2017. A semi-empirical model for the effect of trees on the urban wind 

environment. Landsc. Urban Plan. 168, 84–93. https://doi.org/10.1016/j.landurbplan.2017.09.029 

Zannetti, P., 1993. Numerical simulation modeling of air pollution: an overview Paolo. Trans. Ecol. 

Environ. 1, 54–60. 

Zhang, L., Brook, J.R., Vet, R., 2003. A revised parameterization for gaseous dry deposition in air-quality 

models. Atmos. Chem. Phys. 3, 2067–2082. https://doi.org/10.5194/acp-3-2067-2003 

 

  



162 

 

APPENDICES 

A.  Python codes 

 

import pandas as pd 

import numpy as np 

import sys 

import os 

from matplotlib import pyplot 

import matplotlib.pyplot as plt 

from matplotlib import cm 

from matplotlib.colors import ListedColormap,LinearSegmentedColormap 

import matplotlib.gridspec as gridspec 

import matplotlib as mpl 

import matplotlib.pylab as pl 

import matplotlib 

import pygrib 

import math  

import netCDF4 as nc 

import os.path 

from google.auth import impersonated_credentials, default 

from googleapiclient.discovery import build 

from google_auth_oauthlib.flow import InstalledAppFlow 

from google.auth.transport.requests import Request 

from google.oauth2.credentials import Credentials 

from apiclient.http import MediaFileUpload 

from googleapiclient.http import MediaIoBaseDownload 

import json as jsn 

import datetime 

from zipfile import ZipFile 

import httplib2 

import io 

from dateutil import tz 

import metpy.calc as mpcalc 

from metpy.units import units 

 

print('\n=== FORECASTING TOOL CODE IS RUNNING 

====================================') 

 

#---------------------------------DATA from ARPAE 

#--------- Cosmo forecast - Download 
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SCOPES = ['https://www.googleapis.com/auth/drive']# If modifying these 

scopes, delete the file token.json. 

creds = None 

# The file token.json stores the user's access and refresh tokens, and 

is 

# created automatically when the authorization flow completes for the 

first time. 

if 

os.path.exists('/home/PERSONALE/francesca.dinicola2/TPHD/tokenGDrive/t

oken.json'): 

    creds = 

Credentials.from_authorized_user_file('/home/PERSONALE/francesca.dinic

ola2/TPHD/tokenGDrive/token.json', SCOPES) 

# If there are no (valid) credentials available, let the user log in. 

if not creds or not creds.valid: 

    if creds and creds.expired and creds.refresh_token: 

      creds.refresh(Request()) 

    else: 

        flow = InstalledAppFlow.from_client_secrets_file( 

            

'/home/PERSONALE/francesca.dinicola2/TPHD/tokenGDrive/client_secret_79

6322916484-

qo98lnpunkc8srulqjel24qdi07b10ib.apps.googleusercontent.com.json', 

SCOPES) 

        creds = flow.run_local_server(port=0) 

    # Save the credentials for the next run 

    with 

open('/home/PERSONALE/francesca.dinicola2/TPHD/tokenGDrive/token.json'

, 'w') as token: 

        token.write(creds.to_json()) 

 

service = build('drive', 'v3', credentials=creds) 

 

# Call the Drive v3 API 

nextpage=None 

while True: 

  results = service.files().list( 

      pageSize=1000, fields="nextPageToken, files(id, 

name)",pageToken=nextpage,q="name='cosmo-2I_er'").execute() 

 

  items = results.get('files', []) 

  nextpage = results.get('nextPageToken', None) 
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  if not items: 

      print('No files found.') 

  else: 

      #print('Files:') 

      for item in items: 

          print(u'{0} ({1})'.format(item['name'], item['id'])) 

          my_id=item['id']             

  if nextpage == None: 

    break 

 

results=service.files().list(pageSize=2, fields="nextPageToken, 

files(id, name)",q="'"+my_id+"'"+' in parents',orderBy='name 

desc').execute() 

items = results.get('files') 

my_ids=[] 

for item in items: 

  print(u'{0} ({1})'.format(item['name'], item['id'])) 

  my_ids.append(item['id']) 

   

   

# daily files .grib (First_data = hour 00:00:00 and Second_data = hour 

12:00:00) 

names=['Second_data.grib','First_data.grib'] 

for i,my_id in enumerate(my_ids):   

  file_id = my_id 

  request = service.files().get_media(fileId=file_id) 

  fh = io.FileIO(names[i],'wb') 

  downloader = MediaIoBaseDownload(fh, request) 

  done = False 

  while done is False: 

      status, done = downloader.next_chunk() 

    

print('grib data Done') 

 

gr1 = pygrib.open('First_data.grib') 

gr2 = pygrib.open('Second_data.grib') 

#LIPE coordinates 

lat_target=44.302700 

lons_target=11.21504 

lat,lons=gr2[1].latlons() 

 

difference_array = np.absolute(lat-lat_target) 
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index_lat =difference_array.argmin(axis=0).mean().round() 

difference_array = np.absolute(lons-lons_target) 

index_lons =difference_array.argmin(axis=1).mean().round() 

 

# calculation of MET data 

# Temperature (C) -> T0C 

Idxs=[1,71,123,175,227,279,331,383,435,487,539,591]#,643,695,747,799,8

51,903,955,1007,1059,1111,1163,1215]##,1267,1319,1371,1423,1475,1527,1

579,1631,1683,1735,1787] 

T=[] 

for Idx in Idxs: 

  T.append(gr1[Idx].values[int(index_lat),int(index_lons)]) 

for Idx in Idxs: 

  T.append(gr2[Idx].values[int(index_lat),int(index_lons)]) 

## T0C 

T0C=[] 

for t in T: 

  tC=t-273.15 

  T0C.append(int(tC)) 

T0C 

 

# Specific Humidity (H) 

Idxs=[2,72,124,176,228,280,332,384,436,488,540,592] 

H=[] 

for Idx in Idxs: 

  H.append(int(gr1[Idx].values[int(index_lat),int(index_lons)])) 

for Idx in Idxs: 

  H.append(int(gr2[Idx].values[int(index_lat),int(index_lons)])) 

 

# U wind component at 10 metre (m/s) -> U 

Idxs=[8,78,130,182,234,286,338,390,442,494,546,598] 

Ucomp=[] 

for Idx in Idxs: 

  Ucomp.append(gr1[Idx].values[int(index_lat),int(index_lons)]) 

for Idx in Idxs: 

  Ucomp.append(gr2[Idx].values[int(index_lat),int(index_lons)]) 

 

# V wind component at 10 metre (m/s)  

Idxs=[9,79,131,183,235,287,339,391,443,495,547,599] 

Vcomp=[] 

for Idx in Idxs: 

  Vcomp.append(gr1[Idx].values[int(index_lat),int(index_lons)]) 
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for Idx in Idxs: 

  Vcomp.append(gr2[Idx].values[int(index_lat),int(index_lons)]) 

 

# wind speed at 10 metre (U) --- (calm < 0.75) 

U=[] 

for a,b in zip(Ucomp,Vcomp): 

  WS=math.sqrt(((pow(a,2))+(pow(b,2)))) 

  #U.append(int(WS)) 

  if round(WS,1)<=0.7: 

    WS=0.8 

  U.append(round(WS,1)) #una cifra dopo virgola 

 

# Wind direction (degrees) -> PHI 

def wind_uv_to_dir(U,V): 

    WDIR= ((270-np.rad2deg(np.arctan2(V,U)))%360)-180 

    cond=WDIR<0 

    WDIR[cond]=WDIR[cond]+360 

    return WDIR 

 

PHI=np.around(wind_uv_to_dir(Ucomp,Vcomp),0) 

 

 

## Relative Humidity (%) -> RHUM (pressione di vapore di saturazione 

(Es) e la pressione di vapore reale (E) in HPa -> RHUM = (E/Es)*100) 

# T2m 

Idxs=[10,80,132,184,236,288,340,392,444,496,548,600] 

T2m=[] 

for Idx in Idxs: 

  T2m.append(gr1[Idx].values[int(index_lat),int(index_lons)]) 

for Idx in Idxs: 

  T2m.append(gr2[Idx].values[int(index_lat),int(index_lons)]) 

T2mC=[] 

for t in T2m: 

  tC=t-273.15 

  T2mC.append(tC) 

# T2mdewp 

Idxs=[11,81,133,185,237,289,341,393,445,497,549,601] 

T2mdewp=[] 

for Idx in Idxs: 

  T2mdewp.append(gr1[Idx].values[int(index_lat),int(index_lons)]) 

for Idx in Idxs: 

  T2mdewp.append(gr2[Idx].values[int(index_lat),int(index_lons)]) 
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T2mdewpC=[] 

for t in T2mdewp: 

  tC=t-273.15 

  T2mdewpC.append(tC) 

#Es 

Es=[] 

for t1 in T2mC: 

  valueEs=6.11*10.0**(7.5*t1/(237.7+t1)) 

  Es.append(valueEs) 

#E 

E=[] 

for t2 in T2mdewpC: 

  valueE=6.11*10.0**(7.5*t2/(237.7+t2)) 

  E.append(valueE) 

# RHUM 

RHUM=[] 

for a,b in zip(Es,E): 

  RH=(b/a)*100 

  RHUM.append(int(RH)) 

 

 

# Cloud amount (oktas) -> CL 

Idxs=[15,85,137,189,241,293,345,397,449,501,553,605] 

TCC=[] 

for Idx in Idxs: 

  TCC.append(gr1[Idx].values[int(index_lat),int(index_lons)]) 

for Idx in Idxs: 

  TCC.append(gr2[Idx].values[int(index_lat),int(index_lons)]) 

#CL: Conversion between decimal numbers and oktas 

CL=[] 

for c in TCC: 

  if c == 0: 

    value=0 

  elif c>0 and c<18.75: 

    value=1 

  elif c>18.75 and c<31.25: 

    value=2 

  elif c>31.25 and c<43.75: 

    value=3 

  elif c>43.75 and c<56.25: 

    value=4 
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  elif c>56.25 and c<68.75: 

    value=5 

  elif c>68.75 and c<81.25: 

    value=6 

  elif c>81.25 and c<100: 

    value=7 

  elif c==100: 

    value=8 

  else: 

    value=NAN 

  CL.append(value) 

 

 

# Incoming Solar Radiation (W/m2) -> SOLAR RAD 

Idxs=[19,89,141,193,245,297,349,401,453,505,557,609] 

SOLAR_RAD=[] 

for Idx in Idxs: 

  

SOLAR_RAD.append(round(gr1[Idx].values[int(index_lat),int(index_lons)]

,3)) 

for Idx in Idxs: 

  

SOLAR_RAD.append(round(gr2[Idx].values[int(index_lat),int(index_lons)]

,3)) 

 

# Sensible Heat Flux (W/m2) -> FTHETA0 

Idxs=[24,94,146,198,250,302,354,406,458,510,562,614] 

FTHETA0=[] 

for Idx in Idxs: 

  FTHETA0.append(int(gr1[Idx].values[int(index_lat),int(index_lons)])) 

for Idx in Idxs: 

  FTHETA0.append(int(gr2[Idx].values[int(index_lat),int(index_lons)])) 

 

#Surface pressure: Pa 

Idxs=[51,121,173,225,277,329,381,433,485,537,589,641] 

SP=[] 

for Idx in Idxs: 

  SP.append(int(gr1[Idx].values[int(index_lat),int(index_lons)])) 

for Idx in Idxs: 

  SP.append(int(gr2[Idx].values[int(index_lat),int(index_lons)])) 

layers=np.ones((60,100)) 

layers_P=[] 
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for i in range (24): 

  layers_P.append(layers*SP[i]) 

 

 

 

# .MET file creation 

times = 

['1','2','3','4','5','6','7','8','9','10','11','12','13','14','15','16

','17','18','19','20','21','22','23','24'] 

YEAR = [str(datetime.date.today())[:4] for x in range(24)]  

TDAY =['1' for x in range(24)] #modificare 

THOUR = times 

 

METDATA=pd.DataFrame.from_dict({ 

    'YEAR':YEAR, 

    'TDAY' :TDAY, 

    'THOUR' :THOUR, 

    'T0C' :T0C, 

    'RHUM':RHUM, 

    'U' :U, 

    'PHI' :PHI, 

    'CL' :CL, 

    'SOLAR RAD' :SOLAR_RAD 

                        }) 

METDATA=METDATA[['YEAR','TDAY','THOUR','T0C','RHUM','U','PHI','CL','SO

LAR RAD']]                        

METDATA.to_csv('Meteo.csv',index = False, header=False) 

Meteo=open('Meteo.csv','r') 

print('meteo.csv Done') 

 

ADMS_input=open('METEO.MET','w') 

ADMS_input_text='VARIABLES:'+'\n'+'9'+'\n'+'YEAR'+'\n'+'TDAY'+'\n'+'TH

OUR'+'\n'+'T0C'+'\n'+'RHUM'+'\n'+'U'+'\n'+'PHI'+'\n'+'CL'+'\n'+'SOLAR 

RAD'+'\n'+'DATA:'+'\n' 

for line in Meteo: 

  ADMS_input_text=ADMS_input_text+line 

 

ADMS_input.write(ADMS_input_text) 

ADMS_input.close() 

print('METEO.MET Done') 
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#--------- CHIMERE forecast - Download and read data------------------

--------------------------- 

SCOPES = ['https://www.googleapis.com/auth/drive']# If modifying these 

scopes, delete the file token.json. 

creds = None 

# The file token.json stores the user's access and refresh tokens, and 

is 

# created automatically when the authorization flow completes for the 

first time. 

if 

os.path.exists('/home/PERSONALE/francesca.dinicola2/TPHD/tokenGDrive/t

oken.json'): 

    creds = 

Credentials.from_authorized_user_file('/home/PERSONALE/francesca.dinic

ola2/TPHD/tokenGDrive/token.json', SCOPES) 

# If there are no (valid) credentials available, let the user log in. 

if not creds or not creds.valid: 

    if creds and creds.expired and creds.refresh_token: 

      creds.refresh(Request()) 

    else: 

        flow = InstalledAppFlow.from_client_secrets_file( 

            

'/home/PERSONALE/francesca.dinicola2/TPHD/tokenGDrive/client_secret_79

6322916484-

qo98lnpunkc8srulqjel24qdi07b10ib.apps.googleusercontent.com.json', 

SCOPES) 

        creds = flow.run_local_server(port=0) 

    # Save the credentials for the next run 

    with 

open('/home/PERSONALE/francesca.dinicola2/TPHD/tokenGDrive/token.json'

, 'w') as token:    

        token.write(creds.to_json()) 

 

service = build('drive', 'v3', credentials=creds) 

 

# Call the Drive v3 API 

nextpage=None 

while True: 

  results = service.files().list( 

      pageSize=1000, fields="nextPageToken, files(id, 

name)",pageToken=nextpage,q="name='sup'").execute() 

 

  items = results.get('files', []) 
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  nextpage = results.get('nextPageToken', None) 

 

  if not items: 

      print('No files found.') 

  else: 

      #print('Files:') 

      for item in items: 

          print(u'{0} ({1})'.format(item['name'], item['id'])) 

          my_id=item['id'] 

             

  if nextpage == None: 

    break 

 

my_ids=[] 

 

 

results=service.files().list(pageSize=250, fields="nextPageToken, 

files(id, name)",pageToken=nextpage, q="'"+my_id+"'"+" in parents 

",orderBy='name desc').execute() 

 

nextpage=results.get('nextPageToken', None) 

items = results.get('files') 

 

for item in items: 

  if 'd1' in item['name'] and 'EMR' not in item['name']: 

    print(u'{0} ({1})'.format(item['name'], item['id'])) 

    my_ids.append(item['id']) 

    break 

 

 

for i,my_id in enumerate(my_ids):   

  file_id = my_id 

  request = service.files().get_media(fileId=file_id) 

  fh = io.FileIO(str(i)+'.nc','wb') 

  downloader = MediaIoBaseDownload(fh, request) 

  done = False 

  while done is False: 

      status, done = downloader.next_chunk() 

 

 

f=nc.Dataset(str(i)+'.nc') 
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lat = f.variables['lat'][:] 

lon = f.variables['lon'][:] 

times = 

['1','2','3','4','5','6','7','8','9','10','11','12','13','14','15','16

','17','18','19','20','21','22','23','24'] 

Inqs = ['NO', 'NO2', 'O3', 'PM10', 'PM2.5'] 

 

# desired station time series location 

 

# Giardini Margherita 

lonGM = 11.355035 

latGM = 44.483628 

difference_array = np.absolute(lat-latGM) 

index_lat_GM =difference_array.argmin(axis=0).mean().round() 

difference_array = np.absolute(lon-lonGM) 

index_lon_GM =difference_array.argmin(axis=1).mean().round() 

 

# Via Chiarini 

lonVC = 11.286065 

latVC = 44.500093 

difference_array = np.absolute(lat-latVC) 

index_lat_VC =difference_array.argmin(axis=0).mean().round() 

difference_array = np.absolute(lon-lonVC) 

index_lon_VC =difference_array.argmin(axis=1).mean().round() 

 

# calculation of BGD data 

YEAR = 

[''.join(np.asarray(f.variables['Times'][0,0:4].data).astype(str)) for 

x in range(24)] 

TDAY =['1' for x in range(24)] 

THOUR = times 

 

 

# NO 

NO_GM=[] 

NO_VC=[] 

for time in times: 

  

NO_GM.append(np.asarray(f.variables['NO'][int(time),0,index_lat_GM,ind

ex_lon_GM].data).reshape(-1)[0]) 
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NO_VC.append(np.asarray(f.variables['NO'][int(time),0,index_lat_VC,ind

ex_lon_VC].data).reshape(-1)[0]) 

# ppb->ug/m3 conversion 

NO_GM=np.asarray(NO_GM)*1.91 

NO_VC=np.asarray(NO_VC)*1.91 

 

# No2 

NO2_GM=[] 

NO2_VC=[] 

for time in times: 

  

NO2_GM.append(np.asarray(f.variables['NO2'][int(time),0,index_lat_GM,i

ndex_lon_GM].data).reshape(-1)[0]) 

  

NO2_VC.append(np.asarray(f.variables['NO2'][int(time),0,index_lat_VC,i

ndex_lon_VC].data).reshape(-1)[0]) 

# ppb->ug/m3 conversion 

NO2_GM=np.asarray(NO2_GM)*1.91 

NO2_VC=np.asarray(NO2_VC)*1.91 

 

# Nox 

NOx_GM=(NO2_GM+NO_GM) 

NOx_VC=(NO2_VC+NO_VC) 

 

# O3 

Oz_GM=[] 

Oz_VC=[] 

for time in times: 

  

Oz_GM.append(np.asarray(f.variables['O3'][int(time),0,index_lat_GM,ind

ex_lon_GM].data).reshape(-1)[0]) 

  

Oz_VC.append(np.asarray(f.variables['O3'][int(time),0,index_lat_VC,ind

ex_lon_VC].data).reshape(-1)[0]) 

# ppb->ug/m3 conversion 

Oz_GM=np.asarray(Oz_GM)*2 

Oz_VC=np.asarray(Oz_VC)*2 

 

# PM10 

PM10_GM=[] 

PM10_VC=[] 

for time in times: 
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PM10_GM.append(np.asarray(f.variables['PM10'][int(time),0,index_lat_GM

,index_lon_GM].data).reshape(-1)[0]) 

  

PM10_VC.append(np.asarray(f.variables['PM10'][int(time),0,index_lat_VC

,index_lon_VC].data).reshape(-1)[0]) 

 

# PM2.5 

PM25_GM=[] 

PM25_VC=[] 

for time in times: 

  

PM25_GM.append(np.asarray(f.variables['PM25'][int(time),0,index_lat_GM

,index_lon_GM].data).reshape(-1)[0]) 

  

PM25_VC.append(np.asarray(f.variables['PM25'][int(time),0,index_lat_VC

,index_lon_VC].data).reshape(-1)[0]) 

 

# SO2 

SO2_GM=[] 

SO2_VC=[] 

for time in times: 

  SO2_GM.append(0.000001) 

  SO2_VC.append(0.000001) 

 

# BGD data based on wind direction -----------------------------------

--------- 

wind_direction=PHI 

NO=[0 for x in range(24)] 

NO2=[0 for x in range(24)] 

NOx=[0 for x in range(24)] 

O3=[0 for x in range(24)] 

PM10=[0 for x in range(24)] 

PM25=[0 for x in range(24)] 

SO2=[0 for x in range(24)] 

 

for i,wd in enumerate(wind_direction):   

  if wd>180: 

    NO[i]=NO_GM[i] 

    NO2[i]=NO2_GM[i] 

    NOx[i]=NOx_GM[i] 

    O3[i]=Oz_GM[i] 

    PM10[i]=PM10_GM[i] 
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    PM25[i]=PM25_GM[i] 

    SO2[i]=SO2_GM[i] 

  else: 

    NO[i]=NO_VC[i] 

    NO2[i]=NO2_VC[i] 

    NOx[i]=NOx_VC[i] 

    O3[i]=Oz_VC[i] 

    PM10[i]=PM10_VC[i] 

    PM25[i]=PM25_VC[i] 

    SO2[i]=SO2_VC[i] 

 

 

# .bgd file creation 

BGDDATA=pd.DataFrame.from_dict({ 

    'YEAR' :YEAR, 

    'TDAY' :TDAY, 

    'THOUR' :THOUR, 

    'NO' :NO, 

    'NO2' :NO2, 

    'NOx':NOx, 

    'O3'  :O3, 

    'PM10':PM10, 

    'PM2.5':PM25, 

    'SO2':SO2        }) 

 

BGDDATA=BGDDATA[['YEAR','TDAY','THOUR','NO','NO2','NOx','O3','PM10','P

M2.5','SO2']]  

BGDDATA.to_csv('BGD.csv',index = False, header=False) 

BGD=open('BGD.csv','r') 

print('BGD.csv Done') 

 

ADMS_input_bgd=open('BGD.bgd','w') 

ADMS_input_text_bgd='BackgroundVersion2'+'\n'+'7'+'\n'+'NO'+'\n'+'NO2'

+'\n'+'NOx'+'\n'+'O3'+'\n'+'PM10'+'\n'+'PM2.5'+'\n'+'SO2'+'\n\n'+'UNIT

S:'+'\n'+'ug/m3'+'\n'+'ug/m3'+'\n'+'ug/m3'+'\n'+'ug/m3'+'\n'+'ug/m3'+'

\n'+'ug/m3'+'\n'+'ug/m3'+'\n\n'+'DATA:'+'\n' 

for line in BGD: 

  ADMS_input_text_bgd=ADMS_input_text_bgd+line 

 

ADMS_input_bgd.write(ADMS_input_text_bgd) 

ADMS_input_bgd.close() 

print('BGD.bgd Done') 
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#---------------------------------ADMS URBAN run 

ADMScom='/home/PERSONALE/francesca.dinicola2/ADMS/ADMSUrbanModel.out 

/home/PERSONALE/francesca.dinicola2/TPHD/Urbanv1.UPL' 

print('ADMS Urban run') 

os.system(ADMScom) 

print('ADMS Urban run Done') 

 

#---------------------------------ADMS TH run 

ADMScom='/home/PERSONALE/francesca.dinicola2/ADMS/ADMSUrbanModel.out 

/home/PERSONALE/francesca.dinicola2/TPHD/THv1.UPL' 

print('ADMS T&H run') 

os.system(ADMScom) 

print('ADMS T&H run Done') 

 

#---------Pollution 

## import Concentration data (.gst file) 

DF=pd.read_csv('/home/PERSONALE/francesca.dinicola2/TPHD/Urbanv1.level

s.gst',delimiter=',') 

size=(60,100) 

zs=[5,10,15,20,25,30,35,40] 

idx=['PM10','NO2','O3'] 

 

#PM10 

layers_PM10=[] 

for i in range(len(zs)): 

  array_listPM10=[] 

  for hour in range(24):     

    DF_hour=DF[DF['Hour']==hour+1] 

    DF_PM10_hour=DF_hour.iloc[:,7+(i*3)] 

    PM10_hour=DF_PM10_hour.values 

    IMG_PM10_hour=PM10_hour.reshape(size) 

    array_listPM10.append(np.flip(IMG_PM10_hour,axis=0)) 

  layers_PM10.append(array_listPM10) 

 

#NO2 

layers_NO2=[] 

for i in range(len(zs)): 

  array_listNO2=[] 

  for hour in range(24):     

    DF_hour=DF[DF['Hour']==hour+1] 

    DF_NO2_hour=DF_hour.iloc[:,8+(i*3)] 

    NO2_hour=DF_NO2_hour.values 
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    IMG_NO2_hour=NO2_hour.reshape(size) 

    array_listNO2.append(np.flip(IMG_NO2_hour,axis=0)) 

  layers_NO2.append(array_listNO2) 

 

#O3 

layers_O3=[] 

for i in range(len(zs)): 

  array_listO3=[] 

  for hour in range(24):     

    DF_hour=DF[DF['Hour']==hour+1] 

    DF_O3_hour=DF_hour.iloc[:,9+(i*3)] 

    O3_hour=DF_O3_hour.values 

    IMG_O3_hour=O3_hour.reshape(size) 

    array_listO3.append(np.flip(IMG_O3_hour,axis=0)) 

  layers_O3.append(array_listO3) 

 

 

#---------Temperature and Humidity 

DF_single=[] 

for i in range(24): 

  try: 

    

DF_single.append(pd.read_csv('/home/PERSONALE/francesca.dinicola2/TPHD

/THv1.E'+str(i+1).zfill(2),delimiter=',')) 

  except: 

    try: 

      

DF_single.append(pd.read_csv('/home/PERSONALE/francesca.dinicola2/TPHD

/THv1.E'+str(i).zfill(2),delimiter=',')) 

    except: 

      try: 

        

DF_single.append(pd.read_csv('/home/PERSONALE/francesca.dinicola2/TPHD

/THv1.E'+str(i+2).zfill(2),delimiter=',')) 

      except: 

        print('An error occurred') 

 

 

DF=pd.concat([DF_single[0], DF_single[1].drop('Z(m)   ',axis=1), 

DF_single[2].drop('Z(m)   ',axis=1), DF_single[3].drop('Z(m)   

',axis=1), 
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                    DF_single[4].drop('Z(m)   ',axis=1), 

DF_single[5].drop('Z(m)   ',axis=1), DF_single[6].drop('Z(m)   

',axis=1), 

                    DF_single[7].drop('Z(m)   ',axis=1), 

DF_single[8].drop('Z(m)   ',axis=1), DF_single[9].drop('Z(m)   

',axis=1), 

                    DF_single[10].drop('Z(m)   ',axis=1), 

DF_single[11].drop('Z(m)   ',axis=1), DF_single[12].drop('Z(m)   

',axis=1), 

                    DF_single[13].drop('Z(m)   ',axis=1), 

DF_single[14].drop('Z(m)   ',axis=1), DF_single[15].drop('Z(m)   

',axis=1), 

                    DF_single[16].drop('Z(m)   ',axis=1), 

DF_single[17].drop('Z(m)   ',axis=1), DF_single[18].drop('Z(m)   

',axis=1), 

                    DF_single[19].drop('Z(m)   ',axis=1), 

DF_single[20].drop('Z(m)   ',axis=1), DF_single[21].drop('Z(m)   

',axis=1), 

                    DF_single[22].drop('Z(m)   ',axis=1), 

DF_single[23].drop('Z(m)   ',axis=1)], axis=1) 

 

 

size=(60,100)  

zs=[5,10,15,20,25,30,35,40]  

idx=['T','H'] 

 

#T 

layers_T=[] 

for i in range(len(zs)): 

  array_listT=[] 

  for hour in range(24): 

    DF_lev=DF[DF['Z(m)   ']==zs[i]]  

    DF_T_lev=DF_lev.iloc[:,3+(hour*6)]  

    T_lev=DF_T_lev.values  

    IMG_T_Lev=T_lev.reshape(size) 

    array_listT.append(np.flip(IMG_T_Lev,axis=0)) 

  layers_T.append(array_listT) 

     

#H 

layers_H=[] 

for i in range(len(zs)): 

  array_listH=[] 

  for hour in range(24):     
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    DF_hour=DF[DF['Z(m)   ']==zs[i]] 

    DF_H_hour=DF_lev.iloc[:,5+(hour*6)] 

    H_lev=DF_H_hour.values 

    IMG_H_lev=H_lev.reshape(size) 

    array_listH.append(np.flip(IMG_H_lev,axis=0)) 

  layers_H.append(array_listH) 

 

# assign units of measure 

layers_H = units.Quantity(layers_H, "kg/kg") 

layers_T = units.Quantity(layers_T, "degC") 

layers_P = units.Quantity(layers_P, "Pa") 

 

#RH 

layers_RH=[] 

for i in range(len(zs)): 

  array_listRH=[] 

  array_RH=[] 

  for hour in range(24):     

    

array_listRH=mpcalc.relative_humidity_from_specific_humidity(layers_P[

i],layers_T[i],layers_H[i]) 

    array_RH=array_listRH*100 

  layers_RH.append(array_RH) 

 

print('layers done') 

#---------------------------------Calculation Bologna Air Quality 

Index (BLQ-Air Index)  

size=(60,100) 

zs=[5] 

Vi=0.33 #relative weight of the pollutant i 

# legal limit violation 

Li_PM10=50 

Li_O3=160 

Li_NO2=200 

Delta=0.00001 

 

# standardized concentration 

Cistar_PM10=[] 

for z in range(len(zs)): 

  Norm_PM10=[] 

  for hour in range(24):  

    DF=layers_PM10[z][hour]   
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    MaxDF_PM10= DF.max() 

    Max_PM10= MaxDF_PM10.max() 

    MinDF_PM10= DF.min() 

    Min_PM10= MinDF_PM10.min() 

    Norm_PM10.append((DF-Min_PM10)/(Max_PM10-Min_PM10+Delta)) 

  Cistar_PM10.append(Norm_PM10) 

 

Cistar_NO2=[] 

for z in range(len(zs)): 

  Norm_NO2=[] 

  for hour in range(24):  

    DF=layers_NO2[z][hour]   

    MaxDF_NO2= DF.max() 

    Max_NO2= MaxDF_NO2.max() 

    MinDF_NO2= DF.min() 

    Min_NO2= MinDF_NO2.min() 

    Norm_NO2.append((DF-Min_NO2)/(Max_NO2-Min_NO2+Delta)) 

  Cistar_NO2.append(Norm_NO2) 

 

Cistar_O3=[] 

for z in range(len(zs)): 

  Norm_O3=[] 

  for hour in range(24):  

    DF=layers_O3[z][hour]   

    MaxDF_O3= DF.max() 

    Max_O3= MaxDF_O3.max() 

    MinDF_O3= DF.min() 

    Min_O3= MinDF_O3.min() 

    Norm_O3.append((DF-Min_O3)/(Max_O3-Min_O3+Delta)) 

  Cistar_O3.append(Norm_O3) 

 

# dummy variable   

wi_PM10=[] 

for z in range(len(zs)): 

  peso_PM10=[] 

  for hour in range(24):  

    DF=layers_PM10[z][hour]  

    DF=np.where(DF>Li_PM10, 1,DF) 

    peso_PM10.append(np.where(DF>(Li_PM10/2),0.5,0.33)) 

  wi_PM10.append(peso_PM10) 
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wi_NO2=[] 

for z in range(len(zs)): 

  peso_NO2=[] 

  for hour in range(24):  

    DF=layers_NO2[z][hour]  

    DF=np.where(DF>Li_NO2, 1,DF) 

    peso_NO2.append(np.where(DF>(Li_NO2/2),0.5,0.33)) 

  wi_NO2.append(peso_NO2) 

 

 

wi_O3=[] 

for z in range(len(zs)): 

  peso_O3=[] 

  for hour in range(24):  

    DF=layers_O3[z][hour]  

    DF=np.where(DF>Li_O3, 1,DF) 

    peso_O3.append(np.where(DF>(Li_O3/2),0.5,0.33)) 

  wi_O3.append(peso_O3) 

 

 

Prod=(np.asarray(wi_PM10)*np.asarray(wi_NO2)*np.asarray(wi_O3)) 

 

Pi_PM10=[] 

for z in range(len(zs)): 

  p_PM10=[] 

  for hour in range(24):  

    DF=Cistar_PM10[z][hour]  

    p_PM10.append(DF*Prod[z,hour]*Vi) 

  Pi_PM10.append(p_PM10) 

 

Pi_NO2=[] 

for z in range(len(zs)): 

  p_NO2=[] 

  for hour in range(24):  

    DF=Cistar_NO2[z][hour]  

    p_NO2.append(DF*Prod[z,hour]*Vi) 

  Pi_NO2.append(p_NO2) 

 

Pi_O3=[] 

for z in range(len(zs)): 

  p_O3=[] 
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  for hour in range(24):  

    DF=Cistar_O3[z][hour]  

    p_O3.append(DF*Prod[z,hour]*Vi) 

  Pi_O3.append(p_O3) 

 

BLQI=[] 

for z in range(len(zs)): 

  BLQindex=[] 

  for hour in range(24):  

    SommaInd=Pi_PM10[z][hour] +Pi_NO2[z][hour] +Pi_O3[z][hour]  

    BLQindex.append(SommaInd) 

  BLQI.append(BLQindex) 

   

print('Bologna Air Quality Index done') 

 

# create colormaps 

N = 256 

 

dark_red = np.ones((N, 4)) 

dark_red[:, 0] = np.linspace(159/256, 1, N) 

dark_red[:, 1] = np.linspace(3/256, 1, N) 

dark_red[:, 2] = np.linspace(3/256, 1, N) 

dark_red_cmp = ListedColormap(dark_red) 

 

red = np.ones((N, 4)) 

red[:, 0] = np.linspace(245/256, 1, N) 

red[:, 1] = np.linspace(3/256, 1, N) 

red[:, 2] = np.linspace(3/256, 1, N) 

red_cmp = ListedColormap(red) 

 

orange = np.ones((N, 4)) 

orange[:, 0] = np.linspace(230/256, 1, N) 

orange[:, 1] = np.linspace(186/256, 1, N) 

orange[:, 2] = np.linspace(8/256, 1, N) 

orange_cmp = ListedColormap(orange) 

 

yellow = np.ones((N, 4)) 

yellow[:, 0] = np.linspace(255/256, 1, N)  

yellow[:, 1] = np.linspace(255/256, 1, N)  

yellow[:, 2] = np.linspace(6/256, 1, N)   

yellow_cmp = ListedColormap(yellow) 



183 

 

 

light_green = np.ones((N, 4)) 

light_green[:, 0] = np.linspace(106/256, 1, N)  

light_green[:, 1] = np.linspace(255/256, 1, N)  

light_green[:, 2] = np.linspace(6/256, 1, N)  

light_green_cmp = ListedColormap(light_green) 

 

green = np.ones((N, 4)) 

green[:, 0] = np.linspace(6/256, 1, N)  

green[:, 1] = np.linspace(146/256, 1, N)  

green[:, 2] = np.linspace(6/256, 1, N)   

green_cmp = ListedColormap(green) 

 

# define BLQ-Air index colormaps  

BLQcmap = np.vstack((green_cmp(np.linspace(0.5, 0, 128)), 

                        light_green_cmp(np.linspace(0.5, 0, 128)), 

                        yellow_cmp(np.linspace(0.5, 0, 128)), 

                        orange_cmp(np.linspace(0.5, 0, 128)), 

                        red_cmp(np.linspace(0.5, 0, 128)), 

                        dark_red_cmp(np.linspace(0.5, 0, 128)), 

                        )) 

Index = ListedColormap(BLQcmap, name='Index') 

 

def multilinearize(bounds,array): 

  polys=[] 

  for j in range(len(bounds)-1): 

    

polys.append(np.poly1d(np.polyfit(np.asarray([j,j+1]),np.asarray([boun

ds[j],bounds[j+1]]),1))) 

  output_array=[] 

  for i in array: 

    for j in range(len(bounds)-1): 

      if j<=i<j+1: 

        output_array.append(polys[j](i)) 

        break 

  

  return output_array,polys 

 

print('Colormaps done') 

#------------------------------Sending maps to Drive 

nextpage=None 

while True: 
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  results = service.files().list( 

      pageSize=1000, fields="nextPageToken, files(id, 

name)",pageToken=nextpage,q="name= 'ADMS-BO'").execute() 

 

  items = results.get('files', []) 

  nextpage = results.get('nextPageToken', None) 

 

  if not items: 

      print('No files found.') 

  else: 

      print('Files:') 

      for item in items: 

          print(u'{0} ({1})'.format(item['name'], item['id'])) 

          my_id=item['id'] 

           

  if nextpage == None: 

    break 

     

#------------------------------Delete files in ADMS-BO drive 

# all images (PNG) 

response =service.files().list(q="name contains '.zip' and 

'"+str(my_id)+"' in parents",pageSize=1000, 

                                      spaces='drive', 

                                      fields='nextPageToken, files(id, 

name)').execute() 

for file in response.get('files', []): 

    # Process change 

    print ('Found file: %s (%s)' % (file.get('name'), file.get('id'))) 

    service.files().delete(fileId=file.get('id')).execute() 

 

#Cancella .json nella cartella   

response =service.files().list(q="name contains '.json' and 

'"+str(my_id)+"' in parents",pageSize=1000, 

                                      spaces='drive', 

                                      fields='nextPageToken, files(id, 

name)').execute() 

for file in response.get('files', []): 

    # Process change 

    print ('Found file: %s (%s)' % (file.get('name'), file.get('id'))) 

    service.files().delete(fileId=file.get('id')).execute() 

 

# create a ZipFile object 
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zipObj = ZipFile('Previsioni.zip', 'w') 

json={'Datasets':[]} 

to_zone = tz.gettz('Europe/Rome') 

from_zone = tz.gettz('UTC') 

 

print('Delete files done') 

 

#------------------------------Image creation 

#BLQ-Air Index 

bounds = [0, 0.5, 2, 5, 9, 30, 50, 51] 

cmap=Index 

 

(fitted_bounds,polys)=multilinearize(bounds,np.linspace(0,6,Index.N).t

olist()) 

 

norm = cm.colors.BoundaryNorm(fitted_bounds,Index.N) 

 

 

layer='BLQ-Air Index' 

for z in range(len(zs)): 

  for hour in range(24): 

    plt.close() 

    #Modifica fuso orario 

    if hour==0: 

      filename=str(datetime.date.today()+datetime.timedelta(2))+'-

'+str(hour).zfill(2)+'0000-'+layer+'-'+str(zs[z]).zfill(2) 

      

UTCtime=datetime.datetime.strptime(str(datetime.date.today()+datetime.

timedelta(2))+' '+str(hour).zfill(2)+':00', '%Y-%m-%d 

%H:%M').replace(tzinfo=from_zone) 

      italian_time=UTCtime.astimezone(to_zone) 

      descrizione=layer+' '+str(zs[z])+'m '+str(italian_time)[:-6] 

      

date=str(datetime.date.today()+datetime.timedelta(2))+'T'+str(hour).zf

ill(2)+':00:00Z' 

      img=BLQI[z][23] 

    else: 

      filename=str(datetime.date.today()+datetime.timedelta(1))+'-

'+str(hour).zfill(2)+'0000-'+layer+'-'+str(zs[z]).zfill(2) 

      

UTCtime=datetime.datetime.strptime(str(datetime.date.today()+datetime.

timedelta(1))+' '+str(hour).zfill(2)+':00', '%Y-%m-%d 

%H:%M').replace(tzinfo=from_zone) 
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      italian_time=UTCtime.astimezone(to_zone) 

      descrizione=layer+' '+str(zs[z])+'m '+str(italian_time)[:-6] 

      

date=str(datetime.date.today()+datetime.timedelta(1))+'T'+str(hour).zf

ill(2)+':00:00Z' 

      img=BLQI[z][hour-1] 

    

metadata={'Id':filename,'Descr':descrizione,'Layer':layer,'Date':date,

'Altitude':(zs[z]),'Opacity':0.7,'CornersLonLat': 

[[11.22831,44.56201],[11.45497,44.55236],[11.44221,44.46318],[11.21579

,44.47280]],'Source':filename+'.png'} 

    plt.imshow(img,  norm=norm, cmap=Index, vmin = 0, vmax =50) 

    plt.axis('off') 

    plt.savefig(filename+'.png',bbox_inches='tight',pad_inches=0) 

    zipObj.write(filename+'.png') 

    json['Datasets'].append(metadata) 

     

FIGSIZE = (2,3) 

mpb = plt.pcolormesh(img, norm=norm, cmap=Index, vmin = 0, vmax =50) 

fig,ax = plt.subplots(figsize=FIGSIZE) 

cb=plt.colorbar(mpb,label = 'BLQ-Air Index', extend = 'both', pad = 

0.1, ticks=[0, 0.5, 2, 5, 9, 30, 50,60]) 

cb.ax.set_title('') 

ax.remove() 

plt.savefig('Legend BLQ-Air 

Index.png',bbox_inches='tight',transparent=True) 

zipObj.write('Legend BLQ-Air Index.png') 

 

zs=[5,10,15,20,25,30,35,40] 

 

#PM10 

v_green=25 

v_yellow=50 

v_min=v_green-(v_yellow-v_green) 

v_max=v_yellow+(v_yellow-v_green) 

cmap = matplotlib.cm.get_cmap('RdYlGn_r') 

alpha_cmap = cmap(np.arange(cmap.N)) # Get the colormap colors 

alpha_cmap[:,-1] = np.linspace(0.5, 1, cmap.N) # Set alpha 

alpha_cmap = ListedColormap(alpha_cmap) # Create new colormap 

 

layer='PM10' 

for z in range(len(zs)): 
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  for hour in range(24): 

    #Change time zone 

    if hour==0: 

      filename=str(datetime.date.today()+datetime.timedelta(2))+'-

'+str(hour).zfill(2)+'0000-'+layer+'-'+str(zs[z]).zfill(2) 

      

UTCtime=datetime.datetime.strptime(str(datetime.date.today()+datetime.

timedelta(2))+' '+str(hour).zfill(2)+':00', '%Y-%m-%d 

%H:%M').replace(tzinfo=from_zone) 

      italian_time=UTCtime.astimezone(to_zone) 

      descrizione=layer+' '+str(zs[z])+'m '+str(italian_time)[:-6] 

      

date=str(datetime.date.today()+datetime.timedelta(2))+'T'+str(hour).zf

ill(2)+':00:00Z' 

      img=layers_PM10[z][23] 

    else: 

      filename=str(datetime.date.today()+datetime.timedelta(1))+'-

'+str(hour).zfill(2)+'0000-'+layer+'-'+str(zs[z]).zfill(2) 

      

UTCtime=datetime.datetime.strptime(str(datetime.date.today()+datetime.

timedelta(1))+' '+str(hour).zfill(2)+':00', '%Y-%m-%d 

%H:%M').replace(tzinfo=from_zone) 

      italian_time=UTCtime.astimezone(to_zone) 

      descrizione=layer+' '+str(zs[z])+'m '+str(italian_time)[:-6] 

      

date=str(datetime.date.today()+datetime.timedelta(1))+'T'+str(hour).zf

ill(2)+':00:00Z' 

      img=layers_PM10[z][hour-1] 

    

metadata={'Id':filename,'Descr':descrizione,'Layer':layer,'Date':date,

'Altitude':(zs[z]),'Opacity':1,'CornersLonLat': 

[[11.22831,44.56201],[11.45497,44.55236],[11.44221,44.46318],[11.21579

,44.47280]],'Source':filename+'.png'} 

    

plt.imsave(filename+'.png',img,cmap=alpha_cmap,vmin=v_min,vmax=v_max) 

    zipObj.write(filename+'.png') 

    json['Datasets'].append(metadata) 

 

FIGSIZE = (2,3) 

mpb = plt.pcolormesh(img,cmap=alpha_cmap,vmin=v_min,vmax=v_max) 

fig,ax = plt.subplots(figsize=FIGSIZE) 

cb=plt.colorbar(mpb,ax=ax) 

cb.ax.set_title('ug/m3') 

ax.remove() 
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plt.savefig('Legend PM10.png',bbox_inches='tight',transparent=True) 

zipObj.write('Legend PM10.png') 

mpb.remove() 

 

 

#NO2 

v_green=100 

v_yellow=200 

v_min=v_green-(v_yellow-v_green) 

v_max=v_yellow+(v_yellow-v_green) 

cmap = matplotlib.cm.get_cmap('RdYlGn_r') 

alpha_cmap = cmap(np.arange(cmap.N)) # Get the colormap colors 

alpha_cmap[:,-1] = np.linspace(0.5, 1, cmap.N) # Set alpha 

alpha_cmap = ListedColormap(alpha_cmap) # Create new colormap 

 

layer='NO2' 

for z in range(len(zs)): 

  for hour in range(24): 

    #Modifica fuso orario 

    if hour==0: 

      filename=str(datetime.date.today()+datetime.timedelta(2))+'-

'+str(hour).zfill(2)+'0000-'+layer+'-'+str(zs[z]).zfill(2) 

      

UTCtime=datetime.datetime.strptime(str(datetime.date.today()+datetime.

timedelta(2))+' '+str(hour).zfill(2)+':00', '%Y-%m-%d 

%H:%M').replace(tzinfo=from_zone) 

      italian_time=UTCtime.astimezone(to_zone) 

      descrizione=layer+' '+str(zs[z])+'m '+str(italian_time)[:-6] 

      

date=str(datetime.date.today()+datetime.timedelta(2))+'T'+str(hour).zf

ill(2)+':00:00Z' 

      img=layers_NO2[z][23] 

    else: 

      filename=str(datetime.date.today()+datetime.timedelta(1))+'-

'+str(hour).zfill(2)+'0000-'+layer+'-'+str(zs[z]).zfill(2) 

      

UTCtime=datetime.datetime.strptime(str(datetime.date.today()+datetime.

timedelta(1))+' '+str(hour).zfill(2)+':00', '%Y-%m-%d 

%H:%M').replace(tzinfo=from_zone) 

      italian_time=UTCtime.astimezone(to_zone) 

      descrizione=layer+' '+str(zs[z])+'m '+str(italian_time)[:-6] 
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date=str(datetime.date.today()+datetime.timedelta(1))+'T'+str(hour).zf

ill(2)+':00:00Z' 

      img=layers_NO2[z][hour-1] 

    

metadata={'Id':filename,'Descr':descrizione,'Layer':layer,'Date':date,

'Altitude':(zs[z]),'Opacity':1,'CornersLonLat': 

[[11.22831,44.56201],[11.45497,44.55236],[11.44221,44.46318],[11.21579

,44.47280]],'Source':filename+'.png'} 

    

plt.imsave(filename+'.png',img,cmap=alpha_cmap,vmin=v_min,vmax=v_max) 

    zipObj.write(filename+'.png') 

    json['Datasets'].append(metadata) 

 

FIGSIZE = (2,3) 

mpb = plt.pcolormesh(img,cmap=alpha_cmap,vmin=v_min,vmax=v_max) 

fig,ax = plt.subplots(figsize=FIGSIZE) 

cb=plt.colorbar(mpb,ax=ax) 

cb.ax.set_title('ug/m3') 

ax.remove() 

plt.savefig('Legend NO2.png',bbox_inches='tight',transparent=True) 

zipObj.write('Legend NO2.png') 

mpb.remove() 

 

 

#O3 

v_green=80 

v_yellow=160 

v_min=v_green-(v_yellow-v_green) 

v_max=v_yellow+(v_yellow-v_green) 

cmap = matplotlib.cm.get_cmap('RdYlGn_r') 

alpha_cmap = cmap(np.arange(cmap.N)) # Get the colormap colors 

alpha_cmap[:,-1] = np.linspace(0.5, 1, cmap.N) # Set alpha 

alpha_cmap = ListedColormap(alpha_cmap) # Create new colormap 

 

layer='Ozono' 

for z in range(len(zs)): 

  for hour in range(24): 

  #Modifica fuso orario 

    if hour==0: 

      filename=str(datetime.date.today()+datetime.timedelta(2))+'-

'+str(hour).zfill(2)+'0000-'+layer+'-'+str(zs[z]).zfill(2) 
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UTCtime=datetime.datetime.strptime(str(datetime.date.today()+datetime.

timedelta(2))+' '+str(hour).zfill(2)+':00', '%Y-%m-%d 

%H:%M').replace(tzinfo=from_zone) 

      italian_time=UTCtime.astimezone(to_zone) 

      descrizione=layer+' '+str(zs[z])+'m '+str(italian_time)[:-6] 

      

date=str(datetime.date.today()+datetime.timedelta(2))+'T'+str(hour).zf

ill(2)+':00:00Z' 

      img=layers_O3[z][23] 

    else: 

      filename=str(datetime.date.today()+datetime.timedelta(1))+'-

'+str(hour).zfill(2)+'0000-'+layer+'-'+str(zs[z]).zfill(2) 

      

UTCtime=datetime.datetime.strptime(str(datetime.date.today()+datetime.

timedelta(1))+' '+str(hour).zfill(2)+':00', '%Y-%m-%d 

%H:%M').replace(tzinfo=from_zone) 

      italian_time=UTCtime.astimezone(to_zone) 

      descrizione=layer+' '+str(zs[z])+'m '+str(italian_time)[:-6] 

      

date=str(datetime.date.today()+datetime.timedelta(1))+'T'+str(hour).zf

ill(2)+':00:00Z' 

      img=layers_O3[z][hour-1] 

    

metadata={'Id':filename,'Descr':descrizione,'Layer':layer,'Date':date,

'Altitude':(zs[z]),'Opacity':1,'CornersLonLat': 

[[11.22831,44.56201],[11.45497,44.55236],[11.44221,44.46318],[11.21579

,44.47280]],'Source':filename+'.png'} 

    

plt.imsave(filename+'.png',img,cmap=alpha_cmap,vmin=v_min,vmax=v_max) 

    zipObj.write(filename+'.png') 

    json['Datasets'].append(metadata) 

     

FIGSIZE = (2,3) 

mpb = plt.pcolormesh(img,cmap=alpha_cmap,vmin=v_min,vmax=v_max) 

fig,ax = plt.subplots(figsize=FIGSIZE) 

cb=plt.colorbar(mpb,ax=ax) 

cb.ax.set_title('ug/m3') 

ax.remove() 

plt.savefig('Legend Ozono.png',bbox_inches='tight',transparent=True) 

zipObj.write('Legend Ozono.png') 

mpb.remove() 
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#Temperature 

v_green=18 

v_yellow=28 

v_min=v_green-(v_yellow-v_green) 

v_max=v_yellow+(v_yellow-v_green) 

cmap = matplotlib.cm.get_cmap('RdYlBu_r') 

alpha_cmap = cmap(np.arange(cmap.N)) # Get the colormap colors 

alpha_cmap[:,-1] = np.linspace(0.5, 1, cmap.N) # Set alpha 

alpha_cmap = cmap # Create new colormap 

 

layer='Temperature' 

for z in range(len(zs)): 

  for hour in range(24): 

  #Modifica fuso orario 

    if hour==0: 

      filename=str(datetime.date.today()+datetime.timedelta(2))+'-

'+str(hour).zfill(2)+'0000-'+layer+'-'+str(zs[z]).zfill(2) 

      

UTCtime=datetime.datetime.strptime(str(datetime.date.today()+datetime.

timedelta(2))+' '+str(hour).zfill(2)+':00', '%Y-%m-%d 

%H:%M').replace(tzinfo=from_zone) 

      italian_time=UTCtime.astimezone(to_zone) 

      descrizione=layer+' '+str(zs[z])+'m '+str(italian_time)[:-6] 

      

date=str(datetime.date.today()+datetime.timedelta(2))+'T'+str(hour).zf

ill(2)+':00:00Z' 

      print(len(layers_T[z])) 

      img=layers_T[z][23] 

    else: 

      filename=str(datetime.date.today()+datetime.timedelta(1))+'-

'+str(hour).zfill(2)+'0000-'+layer+'-'+str(zs[z]).zfill(2) 

      

UTCtime=datetime.datetime.strptime(str(datetime.date.today()+datetime.

timedelta(1))+' '+str(hour).zfill(2)+':00', '%Y-%m-%d 

%H:%M').replace(tzinfo=from_zone) 

      italian_time=UTCtime.astimezone(to_zone) 

      descrizione=layer+' '+str(zs[z])+'m '+str(italian_time)[:-6] 

      

date=str(datetime.date.today()+datetime.timedelta(1))+'T'+str(hour).zf

ill(2)+':00:00Z' 

      img=layers_T[z][hour-1] 

    

metadata={'Id':filename,'Descr':descrizione,'Layer':layer,'Date':date,
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'Altitude':(zs[z]),'Opacity':0.7,'CornersLonLat': 

[[11.22831,44.56201],[11.45497,44.55236],[11.44221,44.46318],[11.21579

,44.47280]],'Source':filename+'.png'} 

    

plt.imsave(filename+'.png',img,cmap=alpha_cmap,vmin=v_min,vmax=v_max) 

    zipObj.write(filename+'.png') 

    json['Datasets'].append(metadata) 

 

FIGSIZE = (2,3) 

mpb = plt.pcolormesh(img,cmap=alpha_cmap,vmin=v_min,vmax=v_max) 

fig,ax = plt.subplots(figsize=FIGSIZE) 

cb=plt.colorbar(mpb,ax=ax) 

cb.ax.set_title('°C') 

ax.remove() 

plt.savefig('Legend 

Temperature.png',bbox_inches='tight',transparent=True) 

zipObj.write('Legend Temperature.png') 

mpb.remove() 

 

 

#Humidity 

v_green=50 

v_yellow=75 

v_min=v_green-(v_yellow-v_green) 

v_max=v_yellow+(v_yellow-v_green) 

cmap = matplotlib.cm.get_cmap('PRGn_r') 

alpha_cmap = cmap(np.arange(cmap.N)) # Get the colormap colors 

alpha_cmap[:,-1] = np.linspace(0.5, 1, cmap.N) # Set alpha 

alpha_cmap = cmap # Create new colormap 

 

layer='Humidity' 

for z in range(len(zs)): 

  for hour in range(24): 

    #Modifica fuso orario 

    if hour==0: 

      filename=str(datetime.date.today()+datetime.timedelta(2))+'-

'+str(hour).zfill(2)+'0000-'+layer+'-'+str(zs[z]).zfill(2) 

      

UTCtime=datetime.datetime.strptime(str(datetime.date.today()+datetime.

timedelta(2))+' '+str(hour).zfill(2)+':00', '%Y-%m-%d 

%H:%M').replace(tzinfo=from_zone) 

      italian_time=UTCtime.astimezone(to_zone) 
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      descrizione=layer+' '+str(zs[z])+'m '+str(italian_time)[:-6] 

      

date=str(datetime.date.today()+datetime.timedelta(2))+'T'+str(hour).zf

ill(2)+':00:00Z' 

      img=layers_RH[z][23] 

    else: 

      filename=str(datetime.date.today()+datetime.timedelta(1))+'-

'+str(hour).zfill(2)+'0000-'+layer+'-'+str(zs[z]).zfill(2) 

      

UTCtime=datetime.datetime.strptime(str(datetime.date.today()+datetime.

timedelta(1))+' '+str(hour).zfill(2)+':00', '%Y-%m-%d 

%H:%M').replace(tzinfo=from_zone) 

      italian_time=UTCtime.astimezone(to_zone) 

      descrizione=layer+' '+str(zs[z])+'m '+str(italian_time)[:-6] 

      

date=str(datetime.date.today()+datetime.timedelta(1))+'T'+str(hour).zf

ill(2)+':00:00Z' 

      img=layers_RH[z][hour-1] 

    

metadata={'Id':filename,'Descr':descrizione,'Layer':layer,'Date':date,

'Altitude':(zs[z]),'Opacity':0.7,'CornersLonLat': 

[[11.22831,44.56201],[11.45497,44.55236],[11.44221,44.46318],[11.21579

,44.47280]],'Source':filename+'.png'} 

    

plt.imsave(filename+'.png',img,cmap=alpha_cmap,vmin=v_min,vmax=v_max) 

    zipObj.write(filename+'.png') 

    json['Datasets'].append(metadata) 

 

FIGSIZE = (2,3) 

mpb = plt.pcolormesh(img,cmap=alpha_cmap,vmin=v_min,vmax=v_max) 

fig,ax = plt.subplots(figsize=FIGSIZE) 

cb=plt.colorbar(mpb,ax=ax) 

cb.ax.set_title('%') 

ax.remove() 

plt.savefig('Legend 

Humidity.png',bbox_inches='tight',transparent=True) 

zipObj.write('Legend Humidity.png') 

mpb.remove() 

 

print('.png done') 

 

zipObj.close() 

file_metadata = { 'name': 'Previsioni.zip', 'parents': [my_id] } 
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media = MediaFileUpload('Previsioni.zip',mimetype='application/zip', 

resumable=True) 

file = service.files().create(body=file_metadata, 

media_body=media,fields='id').execute() 

 

f=open('Catalogo.json','w') 

jsn.dump(json,f) 

f.close() 

 

file_metadata = { 'name': 'Catalogo.json', 'parents': [my_id] } 

media = MediaFileUpload('Catalogo.json',mimetype='apllication/json', 

resumable=True) 

file = service.files().create(body=file_metadata, 

media_body=media,fields='id').execute() 

 

print('UPload Done') 

 

print('\n\n\n========================================================\

n============== FORECASTING TOOL CODE COMPLETED SUCCESSFULLY 

=============\n=======================================================

=') 
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