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Abbreviations 
 

1D/2D -PAGE Mono/bidimensional electrophoresis 

CD   Crohn’s disease 

CID   Collision induced dissociation 

CIR   Cirrhosis 

DIGE   Differential in gel electrophoresis 

ESI   Electrospray ionization 

HPLC    High-performance liquid chromatography  

H   Healthy  

HCC   Hepatocellular carcinoma 

HV   Hepatitis virus 

HBV   Hepatitis virus B 

HCV   Hepatitis virus C 

IBD   Inflammatory bowel disease 

IC   Inflammatory controls 

ICAT   Isotope coded affinity tags 

IDA   Imminodiacetic acid 

IECs   Intestinal epithelial cells 

IMAC   Metal-ion affinity chromatography 

iTRAQ  Isobaric tags for quantitative proteomica 

LC   Liquid Chromatography 

LDA   Linear discriminant analysis 

LMW    Low molecular weight 

m/z   Mass to charge ratio 

MALDI  Matrix assisted laser desorption/ionization  

MS   Mass spectrometry 

MudPIT  Multidimensional protein identification technology 

MWCO  Molecular weight cut-off 

PCA   Principal component analysis 

PIQS   Parent ion quantification scanning 

Q   Quadrupole 

RP   Reverse phase 

SAX   Strong anion exchange 
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SELDI   Surface enhanced laser desorpion/ionization 

TOF   Time-of-Flight 

UC   Ulcerative colitis 



 6

Introduction 

 

Proteomics studies represent an important tool for the characterization of the 

phenotype of a population of cells, a serum sample, a tissue sample and for the 

identification of specific biomarkers of a given disease. For this reason proteomics 

has emerged as one of the most important topics in all of bioscience and is a rapidly 

growing multidisciplinary field that combines separation techniques, mass 

spectrometry and bioinformatic approaches. Many factors are involved in this 

increasing interest, first of all the huge potential of clinical proteomic research for the 

discovery of diseases biomarkers, molecules whose concentrations in the biological 

fluids or tissues can help in the early diagnosis or therapy monitoring of pathologies, 

thanks to the possibility of the simultaneous analysis of all proteins expressed in 

cells, biological fluids or tissues in specific physiological conditions. Furthermore in 

the last years proteins became central in biological studies after the complete 

deciphering of human genoma. There was an important shift in the molecular 

biology dogma due the evidence of the non-direct correlation between genome 

sequence and protein function, well summarized in a recent editorial: “proteins, not 

genes, are the business end of biology” [1].  

Protein analysis and identification is greatly improved in the last years but 

methodological problems still limited the identification of proteins and peptides in 

complex biological matrices. Several gel-free proteomics and labelling techniques 

have appeared as important alternative to conventional bidimensional gel 

electrophoresis and many technological advancements have recently occurred, 

most of them due to the introduction of new mass spectrometers, but to better 

characterize samples in term of protein expression and functional proteomics 

studies novel proteomics approaches still need to be developed. 

In this thesis work the development of two mass spectrometry-based protein 

profiling strategies and their application to biomarker discovery in liver and 

inflammatory bowel diseases is described and discussed. 
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Chapter 1 

 

1.1 The complexity of biological samples 
 

Biological samples such as cells, saliva, urine and serum are very complex and 

contain a high number of proteins which concentration ranges of many order of 

magnitude. Furthermore the biological samples are dynamic because of the 

enzymatic activity, the post-translational modifications and protein-protein 

interactions.  

An example of the complexity of the interactions among proteins and of the way they 

work together forming multi complexes to carry out specific functions is shown in 

figure 1.1. Figure 1.2 shows the distribution of serum proteins among highly-

abundant proteins (HAP), moderately-abundant proteins (MAP) and low abundant 

proteins (LAP): few HAP represent the 96% of the total amount of serum proteins, 

while LAP, that are often the potential biomarkers of pathological states, are less 

than 1%.  

For these reasons always more sophisticated analytical tools are needed for an in-

depth analysis of biological samples proteome. In particular proteomics challenges 

for robust, automated, and sensitive high-throughput technologies able to resolve 

complex biological samples using the combination of different separation techniques. 

 

 
 
Figure 1.1: example of protein-protein interaction network. Image from Giot, Rothberg et al. 

[2] 
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Figure 1.2: Part A. Highly-abundant (HAP), moderately-abundant (MAP) and low-abundant 

(LAP) proteins in human plasma. Relative abundance of HAP, MAP and LAP fractions is 

shown in percentage of the bulk mass of the proteins from each fraction to the bulk weight 

of the total plasma protein. Part B: list of HAP. Image from www.genway.com 

 

 

1.2 Protein profiling strategies  
 
The ability of protein biomarkers to give indications of physiological states or change 

make them an important diagnostic and predictive tool in many clinical settings. 

Since disease processes involve very complex interactions of large numbers of 

proteins, there is a considerable interest in the technologies and data analysis 

techniques specially designed to handle this level of complexity, making it possible 

to study the entire complement of proteins, the “proteome”, of a blood or tissue 

sample. The simultaneous analysis of many proteins in a single sample may reveal 

patterns in their presence, abundance and modifications that result in a “protein 

signature” associated with the presence or absence of disease at a stage when it is 

otherwise undetectable. Such a signature, involving dozens or even hundreds of 

markers, is more likely to provide accurate predictive or diagnostic information than 

Highly-abundant 
proteins 
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proteins 

Low abundant 
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4% 2%

A. 

B. 
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a single marker. The same techniques may also be used to analyse a complex 

disease process and identify key molecules that could be targets for drug 

development.  

Two main strategies are used for protein profiling studies, gel-based and gel-free 

proteomics, which differ on the use of mono-bidimensional gel electrophoresis as 

separation technique. 

 

1.2.1 Gel-based protein profiling  
In the gel-based approach the proteins are separated by bidimensional gel 

electrophoresis (2DE), an established technique since the late 1970s [3], according 

to their isoelectric point (pI) in the first dimension and to the molecular mass weight 

in the second dimension. After the separation the proteins maps obtained from the 

different samples can be visualized and compared using appropriate bioinformatic 

tools, and the differently expressed proteins can be excised, in-gel digested and 

identified by mass spectrometry. 

Bidimensional electrophoresis is a technique widely used because of its potentiality 

to separate thousands of proteins, but is time consuming and needs expert and 

qualified personal to be performed. However, thanks to many improvements in the 

technique such as Differential In Gel Electrophoresis (DIGE), the feasibility, the 

reproducibility and the sensitivity of the experiments have been drastically increased 

and allowed the use of this approach for very in-depth studies of protein expression 

in different biological states. 

 

1.2.2 Gel-free protein profiling 
The gel-free protein profiling approaches are based on the study by mass 

spectrometry of the fingerprint (or protein pattern) of proteins characteristic of a 

specific sample or biological state.  

A typical mass spectrometry protein profiling approach can be performed by 

enrichment of proteins according to their physical/chemical features followed by 

MALDI-TOF analysis. The comparison among spectra, one of the critical points of 

this approach, allows the evaluation of the proteins differentially expressed which 

can be identified by MALDI-TOF-TOF analysis or by isolation of the proteins of 

interest followed by tryptic digestion and MS analysis. The surface-enhanced laser 

desorption/ionization (SELDI) TOF MS technology, an extension of MALDI MS, can 

be also used for these purposes. This technique differs from MALDI-TOF MS 
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because of its sample target, which is derivatized with different planar 

chromatographic chemistries, the design of the analyser and the software tools used 

to interpret the data. On the sample target the proteins actively interact with the 

chromatographic array surface, and become sequestered according to their surface 

interaction potential as well as separated from salts and other sample contaminants 

by subsequent on-spot washing with appropriate buffer solutions.  

Other gel-free protein profiling approaches are based on multidimensional 

separation of peptides from enzimatically digested proteins by bi/tri-dimensional 

liquid chromatography (LC) or by the combination of monodimensional gel and LC 

analysis, both of them followed by ESI-QTOF analysis. The experiment can be 

performed both in the MS/MS or MS operational mode. The former modality, the so-

called “shot-gun” proteomics, was initiated with the introduction of the 

Multidimensional Protein Identification Technology (MudPIT) [4] and can yield to the 

identification of hundreds of proteins.  

The latter modality allows the evaluation of the differentially expressed proteins 

among the proteins from different biological states and their identification by a 

following a MS/MS analysis. This comparative studies can be carried out using 

label-free approaches or isobaric-isotopic derivatizing strategies such as iTRAQ [5] 

or ICAT [6,7] that permit the simultaneous analysis of the different samples.   

 

 

1.3 Mass spectrometry soft ionization techniques and 

analysers 
 

Mass spectrometry (MS) is an analytical technique that measures the molecular 

weight of molecules based upon the motion of a charged particle in an electric or 

magnetic field. 

The analytes are ionized in the gas phase and separated according to their 

mass/charge ratio (m/z). Due to its ability to acquire high-content of information, 

mass spectrometry has emerged among the proteomics techniques as the method 

of choice for analysing the study of the composition, regulation and function of 

protein complexes in biological systems [8-10].  
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Mass spectrometers are used either to measure simply the molecular mass of a 

polypeptide or to determine additional structural features including the amino acid 

sequence or the site of attachment and type of posttranslational modifications [11]. 

A mass spectrometer can be split into three main parts: the ionization source where 

the gas phase ions are produced from sample molecules, the mass analyser where 

the ion separation occurs and the mass detector where the signal is recorded.  

 

1.3.1 Soft ionization techniques 
For a long time mass spectrometry was restricted to small and thermostable 

compounds because of the lack of effective techniques to softly ionize and transfer 

the ionized molecules from the condensed phase into the gas phase without 

excessive fragmentation. Only in the late 1980s the situation evolved with the 

development of two techniques for the formation of molecular ions of intact 

biomolecules: electrospray ionization (ESI) [12] and matrix assisted laser 

desorption/ionization (MALDI) [13]. The proteins became accessible to mass-

spectrometric analysis.  

 
1.3.1.1 MALDI 
MALDI is a pulsed ionization technique which utilises the energy from a laser to 

desorb and ionize the analyte molecules that are co-crystallised on a target with an 

excess of small organic molecules which absorbs light at the wavelength of the laser 

(matrix)[13].  

The crystals are bombarded with a UV-laser with a typical wavelength of 337nm and 

the matrix adsorbs most of the energy transferring only a little amount of it to the 

analytes which sublimates into the gas phase and ionizes by protonation (positively 

charged ions) or by deprotonation (negatively charged ions).  

Many different matrices have been adopted for bio-mass spectrometry, but the most 

important are α-cyano, 4-hydroxy cinnamic acid (CHCA) for peptides and sinapinic 

acid (SA) for proteins. 

MALDI produces mostly single charged ions that are generated into high-vacuum 

(5x10-6) and accelerated into the mass analyser, typically a Time-of-Flight (TOF). 
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Figure 1.3: schematic of the MALDI process 

 

1.3.1.2 ESI 
Electrospray ionization is a technique that uses an electric field to yield a spray of 

fine droplets. A diluted solution of the sample is sprayed from a narrow capillary tube 

which carries a high potential (about 4–5 kV). If the needle carries a positive 

potential, the droplets will have an excess of positive charges, usually protons. 

Evaporation of the volatile solvent (i.e. H2O, CH3OH, or CH3CN) results in increased 

Coulombic repulsion between the positive charges, which causes fragmentation of 

the droplet, generating smaller droplets. This process continues till nanometer sized 

droplets are produced. 

The charges are statistically distributed over the analyte’s potential charge sites, 

enabling the formation of multiply charged ions. Each multiply charged ion can be 

termed “charge state”, and the distribution of charge states is characteristic of large 

macromolecules during ESI analysis [14].  

This feature of ESI to produce predominantly multiply charged ions (opposed to 

singly charged ions produced by MALDI) yields a reduced mass for the analytes of 

interest. Figure 1.4 shows the comparison among MALDI and ESI spectra of 

Cytochrome C. From a MALDI spectra its possible to easily obtain information about 

the molecular weight of the proteins, while from ESI spectra a deconvolution need to 

be performed. Furthermore for complex biological samples a separation step prior to 

mass spectrometry analysis is necessary.  

Since ESI ionizes the analytes out of a solution, it can be easily coupled to liquid 

chromatography and capillary electrophoresis, but for analysis of low abundant 

samples a low flow rate is needed (sub-micolitre). The use of a nanospray ionization 
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source with a flow rates in the order of nanolitres per minute increased drastically 

the sensitivity [15]. 

 

 
 
Figure 1.4: schematic of electrospray ionization. 
 
 

 
 
Figure 1.5: example of Cytochrome C spectrum after MALDI (a) and ESI (b) ionization. 

Differently charged ions are generated. 

 

1.3.2 Mass analysers 
The mass analyser is the region of the mass spectrometer where the ions are 

separated according to their mass to charge ratio (m/z), and can be considered as 

the central part of the technology. The main four different analysers that have been 

developed for proteomics applications are the Time-of-Flight (TOF), the ion-trap, the 

quadrupole and the Fourier Transform ion cyclotron (FT-MS). All of them differs for 

sensitivity, resolution and mass accuracy. In order to improve the analysis of 

complex proteins samples many different multistage combinations of these 

analysers have been developed, such as hybrid quadrupole - Time-of-Flight 

(QqTOF) and tandem Time-of-Flight (TOF-TOF) [16,17]. 

 

 
A B. 
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1.3.2.1 QUADRUPOLE  
The quadrupole analyser consists of four parallel hyperbolic rods through which the 

gas phase ions have to achieve a stable trajectory [18]. A stable voltage and an 

oscillating voltage (radio frequency, rf) is applied to one pair of rods and an opposite 

polarity voltage and rf of different phase is applied to the opposite pair of rods. For 

every specific voltage the created electric field allows only to ions with a certain m/z 

value to cross the analyser and reach the detector. The quadrupole voltage can be 

set to allow a wide mass range to be observed or a single ions to be selected.  

Few advantages can be observed in proteomics study if the analyser is constituted 

of a single quadrupole, but the coupling of three quadrupoles analysers in sequence 

or two quadrupoles followed by a TOF can yield to important structural information 

(see tandem and hybrid analysers section).  

 

1.3.2.2 TIME-OF-FLIGHT (TOF) 
TOF analyser separates the ions that have been produced in the ion source and 

accelerated by high voltage to a final velocity dependant on their mass. Since the 

accelerating voltage is constant, the mass measurement can be recorded by the 

Time-of-Flight of an ion into the TOF tube, that is proportional to the square root of 

its mass to charge ratio. 

Time-of-Flight = zmk /  

 

The linear TOF analyser, the simplest one, can claim high sensitivity and a very 

broad mass range. However also if the resolution increases with longer flight tubes 

it’s usually very poor and can hardly discriminate among isotopes. This kind of 

analyser is for this reason used only for high molecular weight proteins (more than 

10kDa), while for peptides the reflectron TOF analyser is preferred.  

A reflectron acts as an ion mirror reversing the trajectory of the ions back into the 

flight tube and for this reason increasing the length of the flight tube [19]. Moreover 

the reflectron focuses the ions that have a different kinetic energy due to their 

position in the source during the application of the accelerating voltage. The full 

width half maximum (FWHM) mass resolution obtained is usually more than 5000. 
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1.3.2.3 TANDEM AND HYBRID ANALYSERS 
Different combinations of mass analysers have been developed. The most important 

for proteomic studies, schematized in figure 1.6, are the triple quadrupole (Q-q-Q), 

the quadrupole – ion trap (Q-Trap),  the quadrupole – Time-of-Flight (Q-TOF) and 

the Time-of-Flight – Time-of-Flight (TOF-TOF) because they allow a wide range of 

research strategies with their capability in collecting useful information about protein 

identity and modifications.  

 

 
Figure 1.6: Different mass analysers configurations. Image obtained by Aebersold and 

Mann 2003 [17].  

 

The introduction of these multiple analysers permits the use of two operation modes 

of a mass spectrometer: the MS mode where molecular weight are measured, and 

the MS/MS mode where the analyte of interest can be mass measured, selected 

and fragmented in the mass spectrometer by collision induced dissociation (CID) 

generating important structural information. MS/MS experiments using triple 

quadrupole (Q-q-Q), quadrupole – Time-of-Flight (Q-TOF) and Time-of-Flight – 

Time-of-Flight (TOF-TOF) analysers are widely performed in proteomics.  

All of these analysers can be operated in four different ways to perform MS/MS 

experiments: product ion scanning, precursor ion scanning, neutral loss scanning 

and multiple ion monitoring (see figure 1.7). 
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Figure 1.7: schematic representation of the four operation modes to perform MS/MS 

analysis 

 

In the parent ion scanning the first analyser (MS1) selects a specific m/z (precursor 

ion) at a time and after CID in the collision cell the resulting fragments are analysed 

in the second analyser (MS2). This operation mode is particularly useful in 

proteomic for the identification of the aminoacidic sequence of specific peptides.  

The precursor ion scanning operation mode scans the ions in the MS1 and after CID 

the MS2 selects only specific fragments. The signal is recorded only when the 

desired m/z fragment reaches the detector. This method is useful for the detection of 

peptides with functionalised groups such as phosphate esters or carbohydrate 

modification, since they produce specific ions after fragmentation. 

In the neutral loss scanning method both the analysers are synchronised to allow 

only specific mass differences, a neutral fragment lost from the peptides in the 

collision cell, to pass through MS1 and MS2. The detection of peptides with specific 

functional groups can be performed, such as phosphorylation at serine residues via 

the loss of phosphoric acid. 

The last operation mode, the multiple ion monitoring (MRM), is used for the 

detection of specific fragments in MS1 and of specific peptides in the MS2. This 

method is particularly useful for the detection of known analytes with known 

fragmentation patterns present into a complex mixture. 
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1.4 Mass spectrometry analysis of complex 

protein/peptides mixtures 

 
Several strategies have been developed for mass-spectrometry based protein 

analysis that can all be summarized in three main steps: (I) isolation of protein from 

the biological sample, fractionation (optional), enzymatic digestion and further 

fractionation of the resulting peptides (very common); (II) qualitative and quantitative 

analysis of the peptide mixture by mass spectrometry; (III) bioinformatic analysis of 

the large data set generated by MS/MS analysis, aimed at the identification, and 

potentially quantification, of the proteins in the sample. The identification is 

performed by database searching according to specific guidelines [20,21]. 

Figure 1.8 shows the detailed workflow of the four main strategies used in MS-

based proteomics. In part A the proteins are separated by 2D gel electrophoresis, 

digested, analysed by MS and the proteins identified by peptide mass fingerprint 

(PMF); part B shows the shotgun proteomics approach, where the protein 

identification and quantification are performed on randomly selected peptides which 

are subjected to product ion scanning. In part C a LC-MS analysis step followed by 

differential analysis of the peptide mixture is performed, with the aim to drive the 

choice of the peptides to identify and quantify in a second step of MS/MS analysis 

on the differently expressed ones. Finally, in part D of the figure the peptides chosen 

for the identification and quantification are selected according to hypothesis from 

previous experiments, and subjected to multiple ion monitoring (MRM) for a better 

precision. 

 

 
Figure 1.8: mass spectrometry based proteomics workflows. Image adapted from Domon 

B and Aebersold R [11] 
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1.5 Chemometric and bioinformatic tools for proteomic 

data analysis 

 

The development of new analytical strategies, workflows and instruments allows to 

acquire for every experiment a huge amount of proteomic data that need new 

statistical and bioinformatic tools to be used and correlated properly. In particular in 

this thesis work the software PARVUS [22], for the multivariate analysis of MALDI 

mass spectra, msInspect [23] for the visualization of LC-MS data and the database 

server PROTEIOS [24] for the conversion of data and the differential analysis of LC- 

MS runs have been used. 
 
1.5.1 Parvus 
In protein profiling studies the comparison of data such as MALDI spectra, the 

classification of samples and the evaluation of the discriminating peptides/proteins 

need complex multivariate statistical techniques to be used. PARVUS is a package 

of programs for explorative data analysis, classification and regression analysis that, 

among the others, allows to perform the linear discriminant analysis (LDA), the 

principal components analysis (PCA) and the selection of variables with high 

disciminant power. 

 

 
 
Figure 1.9: screenshot of the PARVUS software, that allows the use of many different 

multivariate analysis techniques. 
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1.5.2 MsInspect 
Successful application of differential proteomics by liquid chromatography mass 

spectrometry (LC-MS) requires extraction of peptide features, estimation of peptide 

abundances, relative quantification, alignment e normalization across multiple 

related runs, and identification of features.  

MsInspect is an open-source software that applies new algorithm for each step of 

this process, looking for peptide signatures rather than isolated peaks in LC-MS 

data. It can be used both by command line for batch processing of very large data 

set or by graphical interface (figure 1.10), thus allowing a better comprehension of 

the LC-MS data visualization [23]. 

 
 
Figure 1.10: the msInspect window has four panes: the Image Pane displays an image of 

the data from MS1 run, the Detail Pane displays a zoomed in view of the area in the Image 

Pane, the Chart Pane displays m/z spectra and elution profiles corresponding to the scan 

and m/z value, the optional Properties Pane displays properties of the open mzXML or 

Feature Set file or the peptide feature selected in the Detail Pane.  

 
1.5.3 Proteios 
Proteios is a comprehensive database server to manage and track all the massive 

amounts of data generated by proteomics experiment and analysis [24]. In particular 

it can manage the whole workflow from images, raw data and database search 

results. Furthermore it can be used for data format conversion and statistical 

analysis on alignment files produces by msInspect software, in order to evaluate the 

differently expressed peptides in various LC-MS runs. 
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Figure 1.11: screenshots of PROTEIOS database server interface 

 

1.6 Liver and inflammatory bowel diseases: 

ethiopathogenesis and existing biomarkers   
 

Mass spectrometry-based protein profiling is a relative young field of analysis that 

observed a massive increase in the available technologies. Many efforts are made 

for the discovery of new biomarkers, but frequently the studies become only a 

proposal of new technology approaches, losing the biological meaning of what is 

found out. "Bio" must be put back into biomarkers [25]. 

For this reason in this thesis mass spectrometry based protein profiling strategies 

have been developed and applied to biomarker discovery in two important 

gastrointestinal diseases: liver and inflammatory bowel diseases. 

 

1.6.1 Inflammatory bowel diseases (IBDs) 
Ulcerative colitis (UC) and Crohn’s disease (CD) are clinico-pathologic constructs 

that collectively are termed inflammatory bowel diseases (IBDs). Given the non-

specific nature of the symptoms that herald disease onset (diarrhea, often bloody, 

abdominal pain, malaise, fever, weight loss), the diagnosis is usually made by 

endoscopic, histologic or radiographic testing.  

Serum antibody testing represents another diagnostic avenue for distinguishing IBD 

from non-IBD patients. While individual tests may suffer from low sensitivity or 

specificity, the combination of multiple antibodies into a summary panel holds 

promise. IgA antibodies to the outer membrane porin C of E. coli, (anti-OmpC); 

Antibodies to the bacterial flagellin Cbir1(anti-Cbir1); and Perinuclear anti-

neutrophilic cytoplasmic antibodies (pANCA) based on three measures: 
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autoantibody by ELISA; perinuclear pattern of ANCA by immunofluorescence; and 

DNAse sensitivity. The clinical relevance of such panel testing, however, is 

uncertain based on two important features.  

The same lack of specificity seen in endoscopic, histologic, and radiographic testing 

impacts not just the distinction between IBD and non-IBD patients, but also 

distinguishing ulcerative colitis from Crohn’s colitis. The term “indeterminate colitis” 

refers to the inability to distinguish ulcerative colitis from Crohn's disease even after 

colectomy [26]. The clinical importance in these patients lies in the consequences of 

medical, and more importantly, surgical therapy.  

Several studies have recently been published using proteomic approaches for 

serum profiling in IBD. Meuwis et al. analysed serum samples from IBD patients and 

controls with SELDI-TOF mass spectrometry [27]. They found that a proteomic 

approach had greater sensitivity and specificity than testing for pANCA and ASCA. 

The markers they found, however, seemed to correlate best with activity of disease. 

Proteomic strategies have also been applied to isolated intestinal epithelial cells 

from IBD mucosa [28].   

 

1.6.2 Liver diseases 
Liver diseases consist in at least two classes: one in which the hepatocytes are 

damaged (viral, alcholic, autoimmune…) and one in which the bile flow is interrupted 

(colestatic diseases).  

The developed work is focused on the hepatocellular damage and in particular in the 

viral infection of the hepatocytes. Viral infections of the liver are very common 

diseases and can be caused by different virus such as hepathytis C virus (HCV), B 

(HBV), A (HAV).  

HAV is more common under 25 years age and is usually an acute infection without 

any consequences if treated correctly, whereas HCV and HBV are more common 

after the first quarter of life. These infections can be acute or chronic if persist for 

more than 6 months. 

Different antiviral treatments exists for those infections but the main issue is that if 

the infection of the liver persists the cells will be totally damaged, the architecture of 

the liver will be completely altered and the tissue will be replaced with fibrosis. 

Therefore the infection can cause cirrhosis (CIR) of the liver and the cirrhosis itself is 

a way to the development of the hepatocellular carcinoma (HCC). 
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The HCV virus may cause a chronic infection in 60-70% of the people who get 

infected, while the HBV virus may cause a chronic infection in 1%. Thus, the 

development of cirrhosis and consequently the hepatocellular carcinoma is more 

frequent in HCV patients. 

Diagnosis for the infection is supported by the detection of viral markers in the 

blood, while the ultra-sounds are the gold standard for the detection of cirrhosis and 

the development of the carcinoma. The damage of the liver is also evident in a blood 

routine analysis (coagulation, cholesterol, bilirubin, platelets….). The prediction of 

the switch from chronic infection to cirrhosis, and must of all the development of the 

hepatocellular carcinoma, is often a challenge. 

The characteristic tumoral marker for HCC is α-fetoprotein (AFP), but its 

concentration is very variable and for this reason both sensitivity and specificity are 

very low. For this reason new markers have been proposed, such as des-gamma-

carboxy prothrombin (DCP). The combination of these two markers increases a lot 

both specificity and sensitivity, but new biomarkers are still needed. Many protein 

profiling studies for biomarker discovery, well reviewed by Chignard N. and Beretta 

L. [29], have been performed both on serum and cellular samples, allowing the 

identification of different signalling pathways in liver carcinogenesis and providing 

source of novel molecular targets for new therapies [30]. 
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Chapter 2 
 
Serum protein profiling by solid-phase bulk extraction MALDI-

TOF MS and chemometric data analysis 

 
Serum is a complicated matrix containing more than 20000 proteins with a wide 

range of concentrations exceeding even 10 decades [31]. Furthermore the 

presence of high abundant proteins such as albumin, masks the low abundant 

proteins which usually are of diagnostic utility since they change their expression 

level and regulation in relation to a given disease.  

Despite the powerful of the new soft impact mass spectrometry (MS) technologies 

such as matrix-assisted laser desorption/ionization – Time-of-Flight (MALDI-

TOF/TOF) and electrospray ionization quadrupole Time-of-Flight (ESI-QTOF), the 

main problem in clinical proteomics is the difficulty to efficiently isolate the proteins 

of interest from the matrix to produce a “clean” sample suitable for MS analysis. 

Differences in the protein expression patterns between diseased and normal 

samples is generally carried out using two dimensional polyacrylamide gel 

electrophoresis (2D-PAGE). After gel staining the protein(s) of interest are removed, 

proteolytically or chemically digested and identified by MS analysis and proteomic 

databases search. The need for protein staining often limits the sensitivity of the 

overall approach. The development of two-dimensional nano-liquid chromatography 

(nano-LC) coupled with ESI-QTOF MS greatly improved the analysis of proteins at 

low concentration levels, but sample preparation and clean-up procedures are still 

necessary [32]. 

Methods for sample preparation [33], including size cut-off membrane-based 

methods like dialysis and ultracentrifugation, selective protein precipitation and solid 

phase extraction (SPE) have gained importance, but none of them yet fulfil criteria of 

applicability.  

SPE is the most used approach for selective protein extraction both on-line with LC 

ESI-MS [34,35] and, in particular, off-line with MALDI MS [36,37]. Many different 

devices for the off-line coupling such as micropipet tips packed with SPE media [38], 

microtiter plates with integrated SPE [39] and modified MALDI target plates for the 

purification of the sample directly on-target like Integrated Selective Enrichment 

target (ISET) [40] are now available. 
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Recently other approaches based on technologies such as SELDI (surface-

enhanced laser desorption/ionization) or MassPREP PROtarget (Waters, Milford, 

MA) have been developed [41-43].  

As alternative approach we developed a simple and rapid top-down analytical 

proteomic method, based on the selective solid phase extractions of serum proteins 

in bulk using differently derivatized beads prior to the analysis by MALDI-TOF MS, 

followed by chemometric analysis for the recognition of a pattern of proteins more 

relevant for the discrimination between diseased/non-diseased samples and the 

classification of samples. 

The developed method was applied to the study of MALDI-TOF MS serum protein 

expression profiles of two important types of diseases: liver and inflammatory bowel 

diseases (IBDs, Crohn’s disease and ulcerative colitis). Because of the not specific 

nature of the symptoms, the differential diagnosis in IBDs cannot be made with the 

common serological tests and requires endoscopic, histological or radiological 

examination; also if recently new tests have been introduced none of them alone 

can be of diagnostic utility [44,45]. Liver diseases are extremely common and there 

is still a strong demand for specific markers of switch from chronic infection to 

cirrhosis and hepatocellular carcinoma. 

Linear discriminant analysis (LDA), a multivariate classification technique, was here 

used as classification method. LDA is a probabilistic parametric classification 

technique based on the estimates of the probability distributions which allows the 

classification of an object in the class with the higher assignment probability. Since 

an excessive number of variables prevents the use of LDA, the initial large amount 

of variables (m/z values), due to the high resolution of TOF analyser, was reduced 

by features selection. The selection of a pattern of 10-20 relevant m/z values not 

only allows the application of LDA, but also the direct correlation between the 

selected m/z and proteins involved in the discrimination between healthy subjects 

and among the IBD patients, opening the possibility of their identification as 

biomarkers. 
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2.1 Introduction 
 
The search for disease protein biomarkers by MALDI MS needs the development of 

serum sample preparation techniques and the use of statistical analysis methods for 

their identification and validation.  

A simple methodological approach able to evaluate the differences in MALDI-TOF 

MS serum protein expression profiles among liver and inflammatory bowel diseases 

was developed.  

The developed procedure uses the interaction of proteins with different 

functionalized beads (SAX, C18, IDA-Cu(II)) added directly to the serum samples. 

Selective solid-phase bulk extraction, purification and concentration of proteins were 

simultaneously performed and the suspension of beads-bound proteins was directly 

analysed by MALDI-TOF MS. Feasibility studies for the application of functionalized 

carrier materials for direct MALDI-TOF MS serum protein profiling were already 

performed by other research groups [46-48], but to our knowledge none of them 

applied it for biomarkers discovery. In this thesis the first application in clinical 

proteomics of this methodological approach combined to chemometric analysis of 

the obtained mass spectra is reported.  

The use of beads in bulk procedure instead of derivatized surfaces (such as SELDI 

chips) for the solid phase extraction increases the interaction area between analytes 

and functionalized groups allowing to extract more proteins with a faster kinetic due 

to polydispersion of the microsized beads reducing diffusion problems when the 

solid phase is a surface with a consequent steric hindrance problem. 

The elution step was performed by the application of the matrix on the suspension of 

beads-bound proteins previously spotted directly on the MALDI-target plate, thus 

preventing the potential loss of proteins/peptides typical of the extraction during the 

elution step. The whole workflow is shown in figure 2.1. 
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Figure 2.1: workflow of the developed MALDI-TOF MS protein profiling approach. 

 

 

2.2 Experimental 
2.2.1 Materials 
Silica C18/Corasil beads (Bondapak® 37-50µm) were purchased from Waters and 

strong anion-exchange (SAX, 40-50µm) beads were from Varian (Palo Alto, CA). All 

the chemicals and solvent were purchased from Sigma Aldrich (St. Louis, MO, USA) 

and used without further purification. 

 

2.2.2 Patients 
Blood samples were provided by the Gastroenterology Unit at S.Orsola University 

Hospital of Bologna (Italy) after obtaining informed consent from the patient. 

A total of 63 subjects, including 22 healthy donors volunteers (H; 9 M and 13 F), 15 

Crohn’s disease (CD; 9 M and 6 F), and 26 ulcerative colitis patients (UC; 13 M and 

13 F), were admitted to the preliminary step of the study of the inflammatory bowel 

diseases while a total 129 subjects were included in the follow-up study (50 H; 20 M 
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and 30 F; 30 CD; 21 M and 9 F, 40 UC; 20 M and 20 F, 9 non-specific inflammatory 

controls (IC) such as irritable bowel, celiac disease, arthritis, liver disease; 5 M and 

4 F). 

A total of 61 subjects, including 17 healthy donors (H; 9 M and 8 F), 19 hepatitis C 

(HCV; 6 M and 4 F) and hepatitis B (HBV; 6 M and 3 F), 13 cirrhosis of the liver 

without malignant or suspicious nodules (CIR; 8 M and 5 F) and 12 hepatocellular 

carcinoma diagnosed during chronic hepatopathy (HCC; 8 M and 4 F) patients were 

admitted to the study of liver diseases.  

All the subjects were ranging in age from 20-65 years. The diagnosis of the IBD was 

achieved by clinical symptoms, clinical chemistry data and conventional endoscope 

procedures and patients with either active and inactive disease were included. The 

clinical diagnosis of the disease was assessed according to the CDAI (Crohn’s 

disease activity index) and to the Truelove & Witt classification. 

The diagnosis of liver diseases was achieved by clinical symptoms, blood analysis 

and ultrasound examination. 

From each subject five millilitres of blood sample were collected and centrifuged at 

4000 rpm for 10 min. The obtained serum samples were distributed into aliquots and 

stored frozen in plastic vials at -80°C until use.  

 

2.2.3 Sample preparation 
All the serum samples were subjected to solid phase extractions. In the study of IBD 

three different SPE were used: reverse phase (silica C18), anion exchange (SAX) 

and immobilized metal ion affinity-Cu(II) (IMAC-Cu(II)). In the liver diseases study 

only IMAC-Cu(II) extraction was carried out. The SPE was performed directly in 500 

µL assay tube using 5 mg of derivatized beads. Each sample was analysed in 

duplicate. 

 

Reverse phase extraction 

Silica C18 beads were washed two times with 150 µL acetonitrile (ACN), mixed for 2 

minutes and centrifuged at 13.400 rpm for 1 min. The surnatant was removed and 

the residue was equilibrated twice using 150 µL 0.1% trifluoroacetic acid (TFA), then 

40 µL of serum sample was added. 

After 10 min of room temperature incubation two washing steps with 150 µL 

0.1%TFA for the removal of unbound proteins were performed and a 10 µL 

suspension of beads-bound proteins residue in the washing solution was obtained. 
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Anionic exchange extraction 

Strong anion exchange beads were washed two times with 150 µL methanol 

(MeOH), mixed for 2 minutes and centrifuged at 13.400 rpm for 1 min. The surnatant 

was removed and the residue was equilibrated twice using 150 µL 10 mM 

ammonium bicarbonate buffer (pH 7.7) then 40 µL of serum sample was added. 

After 10 min of room temperature incubation two washing steps with 150 µL 10 mM 

ammonium bicarbonate buffer (pH 7.7) for the removal of unbound proteins were 

performed and a 10 µL suspension of beads-bound proteins residue in the washing 

solution was obtained. 

 

Metal ion affinity - Cu(II) extraction 

For immobilized metal ion affinity chromatography (IMAC), Cu(II) was loaded on 

derivatized cellulose particles. Both the procedure for derivatization of cellulose with 

iminodiacetic acid (IDA) and the saturation with Cu(II) ions were previously 

described by Feuerstein et al [49].  

The beads were washed two times with 150 µL 50 mM sodium acetate buffer pH 

4.0, mixed for 2 minutes and centrifuged at 13.400 rpm for 1 min. The surnatant was 

removed and the residue was equilibrated twice using 150 µl phosphate buffered 

saline buffer (PBS) pH 7.4.  

At the same time 40 µl of serum sample was treated with 30 µl 8 M urea containing 

1% 3-[(3-cholamidopropyl) dimethylammonio]-1-propanesulfonate (CHAPS) in PBS 

by mixing for 2 min. Afterwards 100 µl 1 M urea containing 0.125% CHAPS was 

added, the mixture was diluted to 850 µl with PBS and vortexed at 4 °C for 10 min. 

Four hundred microlitres of the diluted serum sample were added after the 

equilibration step and the whole suspension mixture was incubated on a platform 

shaker at 1500 rpm for 2 h at 30 °C. To remove unbound proteins two washing 

steps with 150 µl equilibration buffer, followed by a quick washing step with 200 µl 

deionized water were performed. A 10 µL suspension of beads-bound proteins 

residue in deionized water was obtained.  

 

2.2.5 Mass spectrometry 
One microlitre of each suspension of beads-bound proteins was directly applied 

onto a standard 100-spot stainless steel MALDI-target plate, mixed with 1 µL of 

sinapinic acid matrix (30 mg/mL, 50% ACN/0.1% TFA) and analysed. It is important 

to add the matrix solution before the sample is air-dried.  



 29

Proteins bound to the derivatized beads were analysed by matrix-assisted laser 

desorption/ionization time-of-flight (MALDI-TOF) using an Applied Biosystems 

Voyager-DE PRO mass spectrometer equipped with a 337-nm nitrogen laser. 

Analysis were performed in linear positive-ion mode, using delayed extraction. The 

acceleration voltage was 25 kV, guide wire was 0.15 of the accelerating voltage, grid 

voltage was 93%, and the delay time was 200 ns. Four spectra for each sample 

were collected manually in the m/z range 2000-10000 averaging 120 laser shots.  

External mass calibration was performed using the calibration mixture 2 of the 

Sequazyme peptide mass standard kit (Applied Biosystems, Darmstadt, Germany), 

containing bovine insuline (3 pmol/µL), ACTH (1.5 pmol/µL) and angiotensin I (2 

pmol/µL). 

Intra-assay repeatability and inter-assay reproducibility studies were performed 

using healthy donor serum samples. For the repeatability study, solid phase 

extractions were performed in duplicate and four MALDI spectra were acquired for 

each replicate. The reproducibility of the procedure was assessed by analysing the 

same samples in different days.  

The raw spectra were processed with the Voyager Data Explorer software (version 

4.0.0.0, Applied Biosystems). 

 

2.2.5 Data pre-processing 
Before statistical analysis data pre-processing steps were needed. Beside the 

external calibration a re-alignment process was done. A healthy donor serum 

sample, considered as quality control, was internally calibrated by deposition on 

MALDI-target plate of 1 µL of the suspension of beads-bound proteins with 1 µL of 

calibration mixture diluted 1:6 in matrix solution for serum samples extracted by SAX 

and 1:2 for serum samples extracted by IDA-Cu(II) and C18. Four peaks present in 

all the spectra obtained from the same SPE were considered as references peaks 

and used for a re-alignment process (m/z = 4213.15, 5341.26, 7772.62, 9296.50 for 

SAX; m/z = 3955.76, 4644.01, 6631.03, 8929.64 for C18; m/z = 4283.2, 6432.21, 

7764. 67, 8932.41 for IDA-Cu(II)).  

No peak detection step was performed on the mass spectra. Data were exported 

from Voyager Data Explorer software as ASCII text files and m/z values were 

reduced from more than 16000 to 1600 data points by average every 5 m/z values. 
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For each sample 8 spectra were collected (4 spectra for sample, each sample in 

duplicate), 4 were selected according to signal/noise ratio and averaged in order to 

obtain a single representative spectra for each subject.  

 

2.2.6 Statistical analysis 
After pre-processing of MALDI spectra a data matrix for each extraction procedure 

was obtained. The three final data matrices contain as many rows as samples and 

as many columns as m/z values obtained after data pre-processing (1600).  

The three data sets were imported in the chemometrical software package V-

PARVUS [22] and the multivariate analysis was performed.  

Normalization of the data by row profile and column centering was applied to correct 

the drift sensitivity [50]. 

Linear Discriminant Analysis (LDA) [51] was used as classification method after 

applying SELECT [52], a features selection technique for the reduction of the 

original number of variable that permits to retain only the useful variables (m/z). 

 
 

2.3 Results and discussion 
The main goals of profiling studies are the evaluation of protein patterns that 

distinguish between classes such as diseased/non-diseased, the classification of 

samples and the identification of the protein biomarkers involved in these patterns 

[53]. For this comparative analysis of protein profiles spectra reproducible MALDI 

protein profiling strategies are pivotal, but has been recently demonstrated that also 

the data pre-processing step and the statistical analysis are critical points that must 

be improved [54]. 

In figure 2.2 it’s possible to notice the differences among the typical MALDI MS 

protein profiles obtained by the three serum proteins extraction principles.  

In order to evaluate the variability of the MALDI-TOF MS spectra obtained an intra-

assay repeatability and inter-assay reproducibility study were performed. Figure 2.3 

shows how among a given extraction principle the protein profiles showed a stable 

pattern of peaks with similar intensity ratio between them, thus allowing the use of 

this analytical method for MALDI MS protein profiling.   
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Figure 2.2: example of MALDI-TOF mass spectra obtained after sample preparation using 

C18, IDA-Cu(II) and SAX solid-phase bulk extractions.  

 

 
Figure 2.3: reproducibility of serum protein profiles obtained by C18, IDA-Cu(II) and SAX 

solid-phase bulk extraction combined with MALDI-TOF MS analysis. As described in the 

Results and Discussion section, each serum sample was extracted in duplicate with every 

bulk-SPE, spotted twice on the MALDI-target plate and two spectra were acquired for each 

spot (eight spectra from four spots). The figure shows for each serum sample the four 

spectra with the higher signal/noise ratio. 
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A well designed data pre-processing and multivariate analysis step must be 

performed for the recognition of the proteins evaluated as significant in the 

classification, otherwise from the same data set different results can be obtained. 

For example in many recent comparative studies concerning the same tumor/non-

tumor protein patterns [55-61] a prediction ability >90% was always obtained, but 

there was no agreement about the proteins involved in the discrimination. 

After baseline subtraction the re-alignment of the peaks was done, since during the 

acquisition of the data a mass error up to 200 ppm was sometimes obtained despite 

the external calibration step. A pattern of peptides was evaluated as stable between 

the spectra obtained from the same extraction principle and for this reason used for 

the re-alignment. Usually a number of about 16000 m/z values (variables) in the 

selected m/z range (2000-10000) was obtained for each raw mass spectrum. To 

each m/z value is associated one intensity value. 

In our approach we reduced the variables number to 1600 by averaging every 5 m/z 

values, since the TOF analyser resolution doesn’t allow the discrimination between 

peaks closer than this value. Using this procedure the data dimension was 

extremely reduced.  

With the aim to decrease the variability due to sample preparation steps and the 

crystallization of the protein-bound beads with the matrix every sample was 

analysed in duplicate. Each sample was spotted twice on the MALDI-target plate 

and two spectra were acquired. A total of eight spectra were obtained. The spectra 

with the higher signal/noise ratio for each spot were taken into account and the 

average (arithmetic mean of the intensities for each m/z value) among the obtained 

four spectra was calculated to reduce the number of data without loss of information. 

In this way a representative spectrum for each serum sample was obtained 

facilitating the subsequent multivariate analysis. 

LDA was applied to the obtained data set. LDA is a classification method that 

searches for directions (discriminant functions) with maximum separation among 

categories. The first discriminant function is the direction of maximum ratio between 

inter-class and intra-class variances.  

In these works classification and prediction abilities were computed for every class 

(H, CD, UC and IC for the IBDs study and H, HCC, HCV, CIR for the study of liver 

diseases). When the prediction ability is almost equal to the classification ability 

validates the classification rule built on the training set. To evaluate the prediction 

rate the cross-validation procedure was performed with five cancellation groups 
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(CV): the classification rule was computed five times, each time with the objects of 

four CV. The classification ability was calculated as the percentage of training set 

objects correctly classified while the prediction ability was measured on the objects 

of the left-out group. The number of CV, five, is considered to provide a more 

realistic, not too optimistic, evaluation of the prediction rate, as usually happens 

using the leave-one-out validation procedure [62]. 

Since the high number of variables in the MALDI spectra (more than 16000 m/z 

values) prevents the use of LDA a variables reduction is needed.  

This can be done applying the Principal Component Analysis (PCA) and using the 

scores as input for LDA [63]. In these studies the variables selection is proposed as 

an alternative to the use of the significant principal components because it presents 

some advantages such as the easy identification of a pattern of m/z values with high 

discriminant power. 

Features selection is an important aim of chemometrics: its goal is to discard 

variables without discriminant information and to maintain only those variables which 

really improve classification ability. SELECT is a feature selection technique based 

on the stepwise decorrelation of the variables and it is implemented in the V-

PARVUS; it generates a set of decorrelated variables ordered according to their 

Fisher weights. SELECT searches, at each step, for the variable with the largest 

classification weight. This variable is selected and decorrelated from the other 

variables; then the algorithm is repeated until a fixed number of variables is selected. 

In these works different protein patterns with different numbers of retained variables 

(10, 15, 20, 25, 30) corresponding to m/z values were used as input for the following 

LDA.  
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2.3.1 Inflammatory bowel diseases 

 

The study of inflammatory bowel diseases was performed in two steps. The first 

step, a  preliminary study where only 63 subjects were included, was necessary for 

the evaluation of the extraction procedure able to obtain the serum protein profiles 

with the best classification ability. In the second step the work was carried out with 

the previously selected extraction procedure by analysing serum samples from 129 

subjects. 

 

2.3.1.1 PRELIMINARY STUDY 
In table 2.1 are reported the variables selected for the three data matrices while 

table 2.2 shows the LDA results for each data set. It’s possible to observe that LDA 

results improve by using the pattern of 20 variables. In general all the extraction 

methods gave similar results, but overall we preferred C18 principle both for the 

prediction ability achieved and for the easy and fast extraction procedure. In 

particular using this procedure the 100% of samples were correctly classified and 

the 96.9% of average prediction ability with 5 CV was achieved. The prediction 

ability was 95.5% for healthy subjects, 100% for Crohn’s disease patients and 

96.3% for ulcerative colitis patients. A graphical display of C18, SAX and IDA-Cu(II) 

results, where the objects are projected on the first two canonical variables of LDA, 

is here reported (figure 2.4). Results show a perfect separation among the three 

categories (H, CD and UC), thus proving the capability of this methodological 

approach for the identification of discriminating protein profiles in the detection of 

IBDs. 
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SPE 
Number of 
selected 
variables 

Selected variables 

   

10 2555, 3505, 3525, 3745, 3815, 3885, 4635, 4650, 5755, 7610 

15 2555, 2755, 2975, 3505, 3525, 3745, 3815, 3885, 4635, 4650, 
4735, 5755, 7610, 8605, 9155 C18 

20 2555, 2615, 2755, 2975, 3505, 3525, 3600, 3745, 3815, 3885, 
4635, 4650, 4735, 4740, 5755, 6610, 6850, 7610, 8605, 9155 

   

10 2275, 3030, 3775, 3995, 4305, 5165, 5270, 5770, 5815, 6830 

15 2275, 3030, 3125, 3775, 3950, 3995, 4305, 4740, 5165, 5270, 
5770, 5815, 6830, 8210, 8760 SAX 

20 2275, 3030, 3125, 3225, 3775, 3950, 3995, 4000, 4305, 4740, 
5165, 5270, 5470, 5475, 5770, 5815, 6830, 8210, 8760, 8935 

   

10 2420, 2795, 2935, 4155, 4180, 4215, 4785, 5925, 8960, 9305 

15 2340, 2420, 2440, 2795, 2935, 3940, 4155, 4180, 4190, 4215, 
4785, 5925, 6685, 8960, 9305 

IDA-
Cu(II) 

20 2205, 2340, 2420, 2440, 2795, 2935, 3260, 3940, 4155, 4180, 
4190, 4215, 4785, 4795, 5580, 5925, 6075, 6685, 8960, 9305 

   

 
Table 2.1: variables (m/z values) selected by SELECT features selection technique. 

 
  LDA results 
 Classification ability (%)  Prediction ability (%) SPE 

Number 
of 

selected 
variables  H CD UC Average  H CD UC Average 

            
10  94.5 88.8 88.1 90.5  90.9 81.5 82.5 84.6 
15  98.2 88.8 97.0 95.4  90.9 81.5 92.6 89.2 C18 
20  100.0 100.0 100.0 100.0  95.5 100.0 96.3 96.9 

            
10  95.5 76.0 86.7 87.2  95.5 73.3 87.5 86.9 
15  97.3 91.0 100.0 96.7  95.5 86.7 83.3 88.6 SAX 
20  98.2 93.3 100.0 97.7  86.4 93.3 95.8 91.8 

            
10  92.7 96.0 99.1 96.0  90.9 86.7 82.6 86.7 
15  95.5 98.7 100.0 98.0  90.9 80.0 95.7 90.0 IDA-

Cu(II) 
20  100.0 100.0 100.0 100.0  86.4 93.3 95.7 91.7 

            
 
Table 2.2: classification and prediction ability results of LDA.  
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Figure 2.4: graphical display of LDA results obtained from MALDI-TOF MS serum protein 

profiles of healthy donors and IBD patients. Objects are projected on the first two canonical 

variables. 

 
 
2.3.1.2 C18 SOLID-PHASE BULK EXTRACTION 
After the selection of C18 solid-phase bulk extraction the follow-up to the study was 

performed including more serum samples for every category (n° 50 healthy subjects 

(H), n° 30 Crohn’s disease (CD) and n° 40 ulcerative colitis (UC) and an optimum 

classification and prediction ability was achieved (97.0% and 87.5% respectively, 

data shown in table 2.3; figure 2.5). For this more representative set of data 30 

variables were selected. 
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Table 2.3: classification and prediction ability values obtained by the analysis of 120 serum 

samples from H donors, CD and UC patients 

 

 
 

Figure 2.5: graphical display on the first two canonical variables of the results of LDA of 120 

serum spectra from healthy subjects and patients affected from IBD (Crohn’s disease and 

ulcerative Colitis, both in the active and inactive phases) treated with C18 solid phase. 

 
The patients included in the study were both in active and inactive disease phases, 

hence the obtained results are particularly promising for further studies. Indeed 

performing LDA including only healthy donors and CD and UC patients in the active 

disease phases (data reported in table 2.4 and figure 2.5) results even better were 

obtained. This can be explained by the higher number of differences among the 

protein expression profiles in the active phase. 

 LDA results 
 Classification ability (%) Prediction ability (%) 

Number 
of 

selected 
variables  H CD UC Average H CD UC Average 

          
30  97.6 96.7 98.5 97.0 86.0 86.7 90.0 87.5 
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Table 2.4: classification and prediction ability values obtained by the analysis of 91 serum 

samples from H donors and CD and UC patients in the active phases of the disease. 

 

 
Figure 2.6: graphical display of LDA results obtained from MALDI-TOF MS serum protein 

profiles of healthy donors (H) and IBD patients in the active phase of disease (Crohn’s 

disease active (CDact) and ulcerative colitis active (UCact)). The objects are projected on 

the first and second canonical variables. 
 

Afterwards a little number of non-specific inflammatory controls (IC: irritable bowel, 

celiac disease, arthritis, liver diseases…), analysed in the same lack of time of H, 

CD and UC samples, has been introduced in the classification model and the 

classification and prediction ability were calculated (table 2.5). 

Figures 2.7A and B show the LDA results on different canonical variable planes and 

a perfect discrimination of the inflammatory controls from the other categories can 

be observed. However the inclusion of the inflammatory controls decreases the 

prediction ability of all the other groups. This can be due to the little number of 

samples in this category compared to the number of samples in the other ones: one 

 LDA results 
 Classification ability (%) Prediction ability (%) 

Number 
of 

selected 
variables  H CDact UCact Average H CDact UCact Average 

          
25  100.0 100.0 100.0 100.0 92.0 94.7 77.7 89.0 
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more category is added but it’s not strongly represented. For this reason more 

inflammatory control serum samples need to be analysed in order to better validate 

the classification model. 

 
 

LDA results 

Classification ability (%) Prediction ability (%) 
Number 

of 
selected 
variables H CD UC IC Averag

e HV CIR HCC H Average

           
30 94.0 92.7 83 100 90.7 76.0 66.7 67.5 100 72.9 

           
 
Table 2.5: classification and prediction ability values obtained by the analysis of 129 

samples from H, CD, UC and IC serum samples  

 

 
Figure 2.7: graphical display of LDA results obtained from 129 MALDI-TOF MS serum 

protein profiles of healthy donors (H), IBD patients (Crohn’s disease (CD) and ulcerative 

colitis (UC)) and inflammatory controls (IC). In figure A the objects are projected on the first 

and third canonical variables, while in figure B on the second and third canonical variables. 

 

An in-depth analysis of the final results was carried out to calculate the sensitivity 

(true positive), the specificity (true negative) and the accuracy of the method (table 

2.6). The comparison of the classification results of IBD samples and controls (H 

and IC) allowed to obtain a sensitivity and a specificity of 87.1% and 76.0% 

respectively, thus meaning that the protein expression profiles in IBD and controls 

samples are very different. Otherwise a lower sensitivity and specificity have been 

obtained comparing CD and UC samples (both of them about 67%) that can be 

explained by the higher similarity among the respective protein patterns. Finally the 

classification results of both active and inactive samples from CD and UC samples 

A B
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were compared among them: a high accuracy was obtained for CD samples while 

only a 60% accuracy was calculated for UC. The method seems to be more 

sensitive and specific for Crohn’s disease than for ulcerative colitis. 

 
Sensitivity  Specificity C18 
(true pos)  (true neg) 

Accuracy 

IBD vs H 61 / 70 87.1% 38 / 50 76.0% 99 / 120 82.5% 
IBD vs all control 61 / 70 87.1% 47 / 59 79.7% 108 / 129 83.7% 

CD vs UC 20 / 30 66.7% 27 / 40 67.5% 47 / 70 67.1% 
Active CD vs inactive CD 17 / 19 89.5% 8 / 11 72.7% 25 / 30 83.3% 
Active UC vs inactive UC 12 / 22 54.6% 12 / 18 66.7% 24 / 40 60.0% 

  
Table 2.6: sensitivity (true positive), specificity (true negative) and accuracy results. 

  

 

2.3.2 Liver diseases  
 

 

The developed method has been applied to the analysis of serum samples from 

healthy donors and patients affected from different liver diseases. The serum 

proteins were extracted only by IDA-Cu(II) bulk-solid phase extraction due its 

capability to extract phosphorylated proteins, and the MALDI spectra acquired. 

Figure 2.8 shows a MALDI spectrum from one sample of each group analysed. 

Protein phosphorylation is a dynamic and reversible event essential to the proper 

functioning of physiological processes, including cell proliferation and programmed 

cell death. Since protein phosphorylation is a regulatory event, it follows that the 

protein kinases that catalyze phosphorylation, should themselves be subject to 

regulation. The improper regulation of protein kinases has been implicated in many 

human pathologies, including cancer. 
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Figure 2.8: example of MALDI-TOF mass spectra obtained after sample preparation using 

IDA-Cu(II) solid-phase bulk extractions on serum from healthy donors (A) and patients 

affected by hepatitis C (B), cirrhosis (C) and hepatocellular carcinoma. 
 

Two classification models have been calculated for the discrimination among 

hepatitis, cirrhosis and hepatocellular carcinoma patients (A), and for the 

discrimination among healthy donors, hepatitis, cirrhosis and hepatocellular 

carcinoma patients (B). 

In table 2.7 and 2.8 the LDA results of the two classification models are reported. 

Figure 2.9A shows the perfect classification among the different diseases, with a 

classification and prediction ability of 97.3% and 88.6% respectively. This model has 

been calculated after selection of 10 relevant variables. 
 

 LDA results 
 Classification ability (%) Prediction ability (%) 

Number 
of 

selected 
variables  HV CIR HCC Average HV CIR HCC Average

          
10  93.7 100 100 97.3 78.9 92.3 100 88.6 

          
 
Table 2.7: classification and prediction ability results of LDA for the classification model A: 

hepatitis (HV), cirrhosis (CIR) and hepatocellular carcinoma (HCC) patients 
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In the classification model B (15 variables selected) the healthy donors category has 

been included, thus decreasing both the classification and prediction ability to 95.1% 

and 80.6%. This can be explained by the low number of serum samples analysed 

and to the greater differences among healthy and diseased serum protein profiles 

than the one existing among the different diseases (data shown in figure 2.9B). 

 

LDA results 

Classification ability (%) Prediction ability (%) 

Number 
of 

selected 
variables HV CIR HCC H Average HV CIR HCC H Average

            
15 91.6 96.9 91.7 100 95.1  78.9 69.2 75.0 94.4 80.6 

            
 
Table 2.8: classification and prediction ability results of LDA for the classification model B: 

healthy donors (H) and hepatitis (HV), cirrhosis (CIR) and hepatocellular carcinoma (HCC) 

patients. 
 

   
Figure 2.9: graphical display of LDA results obtained from MALDI-TOF MS serum protein 

profiles of hepatitis, cirrhosis and hepatocellular carcinoma patients (A), and healthy donors, 

hepatitis, cirrhosis and hepatocellular carcinoma patients (B). Objects are projected on the 

first two canonical variables. 

 
2.3.3 Protein profiles specificity  
 
A very common problem in protein profiling studies is the evaluation of the specificity 

of the obtained protein profiles, indeed the studies are often performed without the 

inclusion of  sample to be used as a control (physiological state or other type of 

diseases). For this reason some of the data from both the studies have been 

A B
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combined in a single dataset and analysed by LDA. In particular, since the two 

works have been performed in different lack of time, the MALDI-TOF MS spectra of 

hepatitis, cirrhosis and hepatocellular carcinoma were combined with a new set of 

MALDI-TOF MS spectra of ulcerative colitis serum samples analysed in the same 

period. The results (figure 2.10) demonstrate a good discrimination among 

ulcerative colitis and the different liver diseases, with an average classification and 

prediction ability of 92.5% and 75.8% respectively. 

 

 
Figure 2.10: graphical display of LDA results obtained from MALDI-TOF MS serum protein 

profiles of hepatitis (HV), cirrhosis (CIR), hepatocellular carcinoma patients (HCC) and 

ulcerative colitis (UC). Objects are projected on the first two canonical variables.  

 
 

2.4 Conclusions 

 
The bulk solid-phase extraction was proved to be an useful methodological 

approach for the sample preparation and clean-up prior to MALDI-TOF MS analysis. 

This approach allows to obtain an enrichment of serum protein/peptides due to the 

high interaction surface between analytes and functionalized groups and a high 

recovery due to the elution step performed directly on the MALDI-target plate. 

The application of LDA to the analysis of MALDI-TOF MS serum proteins profiles 

from IBD and liver diseases patients allows the classification of serum samples. In 

particular among healthy subjects and Crohn’s disease and ulcerative colitis patients 

the serum protein profiles obtained using the reverse phase extraction gave the best 
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prediction ability results (96.9%) and for this reason this technique has been the first 

choice for the prosecution of the IBDs serum protein profiling studies. After the 

analysis of 129 samples from H, CD, UC and inflammatory controls using C18 a 

90.7% of classification ability and a 72.9% prediction ability were obtained.  

Furthermore the use of SELECT features selection technique for the selection of the 

variables with high discriminant power permitted the identification of a pattern of 25-

30 m/z values involved in the differentiation and classification of serum samples. 

The recognition of this m/z values may give useful information in order to identify 

protein biomarkers involved in the disease.   

The application of the method to serum biomarker discovery of viral hepatitis, 

cirrhosis and hepatocellular carcinoma using IDA-Cu(II) as extraction procedure 

allowed to identify a pattern of 15 discriminating peptides an to classify the samples 

with a 80.6% of correct prediction ability. 

Finally, a cross-study was performed for the evaluation of the obtained profiles and 

the MALDI spectra from serum of healthy donors, ulcerative colitis, hepatocellular 

carcinoma, viral hepatitis and cirrhosis patients were combined in a single data set, 

obtaining a 75.8% of prediction ability. 

The obtained results are very promising for the use of this analytical method as a 

simple tool for diagnostic and biomarker discovery in liver and inflammatory bowel 

diseases.  
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Chapter 3 
 
Label-free liquid chromatography electrospray ionization- 
quadrupole/Time-of-Flight mass spectrometry differential 
analysis of protein profiles 
 
3.1 Introduction 
 
 
The development of new mass spectrometry protein profiling strategies is a 

fundamental step for the discovery, identification, quantification and validation of 

disease related alterations of protein abundance in clinical samples. For this reason 

recently several comparative proteomics approaches have been developed, most of 

them based on the use of isotopes or mass tag labelling of the peptides in the 

samples to be compared [5, 6, 64, 65]. Despite some disadvantages such as the 

high cost of isotopic labelling and the impossibility of retrospective comparisons 

among samples due to their pairwise analysis, a high accuracy can be obtained.  

Quantification methods based on a label-free strategy have been proposed [66-68] 

as promising alternatives. It’s here described a label-free liquid chromatography 

electrospray ionization / Quadrupole - Time-of-Flight (LC ESI/QTOF) differential 

mass spectrometry (MS) approach combined with targeted MS/MS analysis of only 

identified differences for the study of inflammatory bowel diseases, and in particular 

Crohn’s disease.  

Two parallel studies in serum samples and epithelial cells (IECs) isolated from fresh 

biopsies or surgical specimen of Crohn’s disease patients (CD) and healthy controls  

(H) (endoscopical screening for colorectal cancer, diverticulitis cancer) were carried 

out with different aims.  

In serum samples from H an CD the study was performed for biomarker discovery 

on the low molecular weight (LMW) proteins, enriched by ultrafiltration using 

molecular filter devices with a 10 kDa cut-off,  

The purpose of the work on IECs was the study of the protein involved in the 

mechanism of inflammation on the isolated subcellular fractions, while the 

evaluation of new potential biomarkers for CD, which could be initially produced at 

the site of disease, was only a sub-aim of this second work because of the invasive 
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procedure necessary for sample collection. Monodimensional electrophoresis was 

performed on the compartmental proteins, and afterwards the slices were cut in 

three parts and digested with trypsin.  

After sample preparation reverse phase (RP) - LC ESI/QTOF MS analysis was 

performed for both works, and using appropriate bioinformatic tools the LC-MS runs 

were aligned. The differentially expressed peptides in the pooled samples were 

statistically evaluated and identified by RP-LC ESI/QTOF MS/MS analysis followed 

by database search.  

 
 
3.2 Experimental 
 
3.2.1 Materials and reagents 
All the reagents, the Lowry and Bradford protein assay kits and the solvents for 

high-performance liquid chromatography were purchased from Sigma Aldrich (St. 

Louis, MO, USA). 

 

3.2.2 Serum 

3.2.2.1 SERUM SAMPLES 
Blood samples were provided by the Gastroenterology Unit at S.Orsola University 

Hospital of Bologna (Italy) after obtaining informed consent from the patient. 

A total of 65 subjects, including 50 healthy donors volunteers (H; 22 M and 28 F) 

and 15 Crohn’s disease patients (CD; 9 M and 6 F), were admitted to this study. All 

the subjects were ranging in age from 20-65 years. The diagnosis of the IBD was 

achieved by clinical symptoms, clinical chemistry data and conventional endoscope 

procedures and only patients with active disease were included.  

From each subject five millilitres of blood sample were collected and centrifuged at 

4000 rpm for 10 min. The obtained serum samples were distributed into aliquots and 

stored frozen in plastic vials at -80°C until use.  

Six pools of serum samples from healthy donors (250 µL from 8 different serum 

samples each) and five pools of serum samples from Crohn’s disease patients (250 

µL from 3 different serum sample each) were created and aliquoted.  

 



 47

3.2.2.2 LOW MOLECULAR WEIGHT SERUM PROTEINS ENRICHMENT 
Protein quantification of each pooled serum sample was performed in triplicate by 

Lowry protein assay using bovine serum albumin (BSA) as a standard according to 

the manufacturers’ instructions (Sigma-Aldrich). 

For each sample 25 mg of proteins amount was diluted to 2 mL of 25 mM NH4HCO3 

pH 8.2 containing 10% (v/v) acetonitrile (ACN), 10 pmol of Alcohol deydrogenase 

(ADH) tryptic digest were added as internal standard and incubated at room 

temperature for 30 minutes to disrupt the protein-protein interactions [69]. 

The diluted serum sample was transferred to a Centricon centrifugal filters with a 10 

kDa molecular weight cut-off (MWCO)(Millipore Corporation, Bedford, MA, U.S.A.) 

to deplete the high molecular weight proteins [70]. The sample was centrifuged at 

3000 g until 90% of the diluted serum had passed through the membrane. At the 

end of the process approximately 1400 µL of LMW protein enriched serum sample 

was collected and distributed into aliquots. Two hundreds microlitres of the pooled 

serum collected filtrate was lyophilized to dryness and resuspended in 30 µL of 

deionized H2O containing 0.1% formic acid (FA) for the following LC-MS analysis. 

 

3.2.3 Cells 
3.2.3.1 CELL LINE 
HT29 colorectal adenocarcinoma cell line (American Type Culture Collection) was 

used. HT29Cl.16E is a goblet cell line and was grown in Dulbecco’s Modified Eagle 

Medium (DMEM) with 10% Fetal Calf Serum (FCS) supplemented with 50 units of 

penicillin/ml and 50 µg of streptomycin/ml (Sigma). For stimulation experiments, 1% 

FCS was used. HT29 were grown in Falcon flasks (75-cm2) and the medium was 

changed every 2 or 3 days.   

HT29 cell line was cultured in the absence of interferon γ (IFNγ, Sigma) or treated 

for 5 hours with a concentration of  IFNγ 75 ng/mL. 

 

3.2.3.2 ISOLATION OF HUMAN INTESTINAL EPITHELIAL CELLS 
Intestinal epithelial cells (IECs) were isolated from surgical specimens of patients 

undergoing operative procedures for cancer and diverticulitis (healthy control) and of 

patients affected by Crohn’s disease obtained directly from the operating room at 

the Gastroenterology Unit at S.Orsola University Hospital of Bologna (Italy) after 

informed consent from the patients. IECs were isolated as described previously [71]. 

Briefly, specimens were washed extensively with PBS. The mucosa was stripped 
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from the submucosa, cut into small pieces and placed in 1 mM dithiothreitol, (DTT, 

Sigma) for 15 minutes at room temperature to remove mucous. The tissue was then 

washed in PBS and incubated twice in Dispase II 3 mg/ml (Roche Diagnostics, 

Mannheim, Germany) in RPMI1640 (Sigma) for 30 minutes in a 37°C incubator, 

vortexing every 5 minutes. The supernatant (released IECs) was collected and 

washed in medium (RPMI). The viability of isolated IECs was >95%. Only IECs 

derived from colon were analysed. 

 

3.2.3.3 PROTEIN EXTRACTION FROM SUBCELLULAR FRACTIONS 
Proteins from cytosolic, membrane, nuclear and cytoskeletal fractions were 

extracted from 5x106 of stimulated and non-stimulated HT29 cells and healthy and 

affected by Crohn’s disease IECs using QProteome cell compartment kit (Qiagen, 

Milano, Italy) according to manufacturer instructions and purified from contaminants 

by acetone precipitation. Four volumes of ice-cold acetone were added to every 

sample and proteins were allowed to precipitate for 1 hour at -20°C. After 

centrifuging the protein pellets were air dried and resuspended with ammonium 

bicarbonate 100 mM. The quantification was performed by BCA method (Cyanagen, 

Bologna, Italy) and every sample diluted to a final concentration of 2 µg/uL. 

 
3.2.3.4 MONODIMENSIONAL GEL ELECTROPHORESIS 
Proteins from all the isolated compartments were separated on 9% sodium-dodecyl 

sulphate (SDS)-PAGE monodimensional gels. Fifteen micrograms of proteins for 

each compartment were loaded for treated/non-treated HT29 cells while five 

micrograms of proteins for H and CD IECs isolated compartments. Each sample 

was diluted with Lemmli buffer and loaded on the gel in a way to easily compare 

same compartments from both H and CD samples. The gel staining was performed 

using Comassie Blu (Bio-rad, Hercules CA), while the destaining was done by 

washing with a mixture 50% methanol, 30% water and 20% glacial acetic acid. Each 

lane was cut into 2 slices (same area for every couple of samples to be compared) 

before reduction with 10 mM DTT (Sigma) in 100 mM ammonium bicarbonate for 45 

minutes at 56°C. Afterwards alkylation was performed by addition of 55 mM 

iodoacetamide in 100 mM ammonium bicarbonate for 30 minutes at room 

temperature in the dark. The gel slices were washed with 100 mM ammonium 

bicarbonate and acetonitrile and incubated overnight in a 50:1 (w/w) ratio with 12 

ng/µL sequencing-grade-modified trypsin (Promega, Falkenberg, Sweden). The day 



 49

after the digested peptides were extracted from the slices by following addictions of 

ammonium bicarbonate 25 mM, acetonitrile and 5% formic acid. Every sample were 

lyophilized to dryness and resuspended with 16 µL of 0.1% formic acid.  

The reproducibility of the whole digestion process has been tested and the 

coefficient of variation calculated by using bovine serum albumine (BSA) as a 

standard. 

 

3.2.3.5 WESTERN BLOT ANALYSIS OF IECs AND HT29 CELL LINES  
To evaluate the subcellular fractionation of each protein sample one more 

monodimensional gel separation was performed as described above. Membrane 

protein Gp180, nuclear protein SOX9 and cytoskeletal protein β-actin were used as 

controls of the subcellular fractionation.  

Equal amounts of proteins from each subcellular fraction (20 µg) were subjected to 

sodium dodecyl sulfate (SDS)-9% polyacrylamide gel electrophoresis. The proteins 

were transferred onto a nitrocellulose membrane (Hybond-C extra, Amersham), that 

was blocked with PBS/Tween 0.1% + 5% milk for 2 hours and incubated overnight 

at 4°C with the primary antibodies anti-Gp180 (kindly provided by the 

immunobiology center, Mount Sinai Hospital, NY, 10 µg/mL in in PBS/Tween 0.1% + 

5% milk), the rabbit-polyclonal antibody anti-SOX9 (Santa-Cruz, CA, USA, diluted 

1:100 in PBS/Tween 0.1% + 5% milk) and the monoclonal antibody anti-β-actin 

produced in mouse (Sigma, diluted 1:2000 in PBS/Tween 0.1% + 5% BSA). 

Afterwards the incubation with the appropriate horseradish peroxidase-conjugated 

secondary antibodies (DAKO, Glostrup, Denmark, diluted 1:200 in PBS/Tween 0.1% 

+ 5% milk) was performed. The presence of bands was revealed with the enhanced 

chemiluminescence detection kit Westar Nova (Cyanagen). 

 

3.3.3 Liquid chromatography and mass spectrometry 
 

3.3.3.1 LMW SERUM PROTEINS 
LC-MS analysis was performed on a CapLC with flow splitting from 5 µL/min to 250 

nL/min, connected with a nano electrospray interface to a QTOF Ultima (Waters, 

Manchester, U.K.) using MassLynx v4.0 software as operating software. An Atlantis 

dC18 NanoEase column (150 × 0.75 mm, 3 µm) (Waters) with a C18 Intersil 

precolumn (0.3 × 5 mm, 3 µm particle size) (LC-Packings, Skandinaviska Genetec 

AB) was used.  
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The mobile phase had a constant concentration of 0.1% formic acid, with an 

acetonitrile gradient after 10 min from 5 to 60% over 125 minutes, followed by 10 

minutes column cleaning at 80% acetonitrile, and 15 minutes equilibration. Two 

blank injections and a 60 minute gradient plus column washing were run between 

samples to minimize sample carry over. For quantitative experiments, the QTOF 

was set to scan in profile mode m/z 400-1800 with 1.9 seconds per scan and 0.1 

seconds of scan delay.  

Each sample was analysed in triplicate, each with a 3 µl injection. For targeted 

MS/MS, 6 µl sample was injected, the same LC gradient was run and the survey 

scan used 1 second scan time and a peak limit of 20 count to switch to MS/MS 

mode. For inclusion lists the time tolerance was set to 180 s.  

 

3.3.3.2 CELL PROTEINS 
LC-MS analysis was performed on a CapLC with flow splitting from 4.8 µL/min to 

260 nL/min, connected with a nano electrospray interface to a QTOF micro (Waters, 

Manchester, U.K.) using MassLynx v4.1 software as operating software. An Atlantis 

dC18 NanoEase column (150 × 0.75 mm, 3 µm) (Waters) with an Atlantis dC18 

NanoEase precolumn (0.3 × 5 mm, 5 µm particle size) (Waters) was used.  

The mobile phase A for the nanoLC separation was H2O/acetonitrile (95:5) 0.1% FA 

while the mobile phase B was acetonitrile/H2O (95:5) 0.1% FA. The chromatograpic 

gradient was set up to give a linear increase after 3 min from 2% B to 10% B in 7 

min, from 10% B to 60% B in 15 min and from 60% B to 80% B in 10 min. After 8 

min at 80% B the column is conditioned again at 5% B for 20 min. The time of a 

single run was 100 min. 

A 30 min gradient blank injection was run between sample to minimize carry over. 

For quantitative experiments, the QTOF was set to scan in profile mode m/z 400-

1800 with 1.9 seconds per scan and 0.1 seconds of scan delay. 

Each sample was analysed in triplicate, each with a 3 µl injection. For targeted 

MS/MS, 4 µl sample was injected, the same LC gradient was run and the survey 

scan used 1 second scan time and a peak limit of 15 count to switch to MS/MS 

mode. For inclusion lists the time tolerance was set to 120 s. 

 

3.3.3.3 MS DATA ANALYSIS AND INCLUDE LIST GENERATION 
Both LC-MS MassLynx v4.0 and v4.1 raw data files were converted to mzXML using  

the appropriate massWolf version [72]. Peptide feature finding was performed using 
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msInspect version 1.01 [23]. The resulting feature lists were aligned using 

msInspect, (setting a mass window of 0.2 m/z and a time window of 75 scans) and 

the detailed results files were used for further processing. For the alignments of 

LMW serum protein analysis the triplicates of each pool of serum sample from 

healthy donors were analysed with the triplicates of each pool of serum sample from 

Crohn’s disease patients, while for the alignments of cell subfraction proteins the 

triplicates of each control gel slice were analysed with the triplicates of the 

corresponding sample gel slice. The normalization was performed using the 

msInspect algorithm during the alignment step.  

The aligned peak lists were analysed using newly developed plugins for the 

PROTEIOS 2 analysis platform [24]. First the MsInspect Details Analyser (version 

0.91) plugin was used to find features which were significantly upregulated in the 

treated samples and to automatically produce include lists for MS/MS identification. 

For a feature to be identified as significantly up regulated it had to be present in at 

least two sample replicates and have a p-value of less than 0.05 in a homoscedastic 

student's t-test. For the t-test the total intensities, which represents the peak volume, 

were used. For features where peaks could not be found in the control samples, a 

value of 50 ion counts was used, which was an estimate for the detection level in the 

present setup. Features which were upregulated at least 1.5 times in the treated 

sample compared to the control and with a significant pValue were sorted according 

to intensity and put into include lists with a maximum of 150 peaks per include list. 

The retention time of the lastly acquired sample was used for the include list.  

 
3.3.3.4 FEATURE PEPTIDE IDENTIFICATION 
To generate peak lists for peptide identification, ProteinLynx Global Server 2.2 

(Waters) was used. The xml format peak lists were converted to mzData using 

PROTEIOS. Mascot version 2.1.02 (www.matrixscience.com) was used for peptide 

identification.  

For LMW serum proteins the Sprot human database, version 53.0 was used, 

191913 sequences in total. The search settings were 0.1 Da precursor and fragment 

tolerances, no fixed modification carbamidomethylation of cysteine and none 

enzyme. For cell subfraction proteins the Sprot human database, version 54.7.0 was 

used (333445 sequences in total) with 0.2 Da precursor and fragment tolerances, 

carbamidomethylation of cysteine as fixed modification and trypsin as enzyme. 
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The search results were exported as XML and analysed using the “ProteinLynx 

Global Server to mzdata converter” PROTEIOS plugin. Using the plugin, peptide 

search results were matched with the MS features, with a retention time tolerance of 

100 s and a mass tolerance of 0.12 Da.  

 

3.3 Results and discussion 
 

The goal of these works was the development of a methodological approach for the 

analysis of the protein expression profiles in serum samples and intestinal epithelial 

cells from healthy donors (H) and Crohn’s disease patients (CD), based on a label-

free LC ESI/QTOF differential MS approach combined with targeted MS/MS 

analysis of only identified differences.  

Different sample preparation approaches have been developed for the two studies, 

but similar mass spectrometry and data analysis strategies have been used. The 

general workflow is shown in figure 3.1. 

 

 
 
Figure 3.1: Outline of the sample preparation procedure (low molecular weight serum 

proteins enrichment or cell compartment fractionation) (A), label-free LC ESI/QTOF MS 

differential analysis (B) and protein identification (C). 

 

Protein samples were analysed in triplicate by LC-MS using scan mode in the 400-

1800 m/z and the data from the samples to be compared have been converted to 

mzXML format in order to be imported into the opensource software msInspect. 

Bidimensional maps of the LC-MS runs have been created for each sample and a 
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specific algorithm for feature finding was used with the aim to evaluate and filtrate 

the protein/peptides signals. Figure 3.2B shows a bidimensional image obtained 

from the LC-MS run (3.2A) analysis of a serum sample. In the box the zoom of an 

area is proposed as an example, in order to highlight the feature finding step: the 

red points represent the m/z values which satisfy the parameter described in the 

material and method section (minimum number of scan, intensity, charge, peaks…). 

 

 

 
 
Figure 3.2: example of LC ESI/QTOF MS run of a serum protein sample. Part A: BPI 

visualization of a chromatogram; part B: msInspect bidimensional data visualization. The 

spot dimension is the ion intensity. The extracted features (peaks) are highlighted in red. 

 

Afterwards the features from each sample were normalized and aligned by an 

algorithm implemented in the software and the resulting peptide arrays were used 

for further analysis by PROTEIOS with the aim to evaluate the differences in protein 

expression (at least 1.5-fold change) and the creation of a list of peptides to include 

in the following MS/MS analysis. At the time this approach allowed the comparison 

B

A 
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of only two categories of samples (healthy donors and Crohn’s diseases for both the 

study performed). 

Two alignment were done for every set of data to be compared: one to the last 

acquired healthy donor sample and one to last acquired Crohn’s disease sample. 

This permitted to create for each category an include list containing the 

overexpressed peptides, reducing the normal problems of retention time shift due to 

the lag of time between MS and MS/MS analysis.  

The details concerning sample preparation and the results of the works are 

discussed in the following sections. 

 
3.3.1 Serum protein profiling in IBD by LC ESI-QTOF MS differential 
analysis 

 

The Low Molecular Weight (LMW) serum proteome was investigated. Since its high 

variability, due to different factors such as sample collection, clotting time, storage 

and presence of high abundant proteins [73-77], some researchers consider it as 

“biological trash” or noise [78,79]. Despite this, the LMW proteome contains a huge 

amount of disease-related information which only need to be understood [80,81]. 

New approaches have been recently proposed for its comprehension, and in 

particular Villanueva et al [82] suggested and demonstrated that some biomarkers 

are not directly expressed by the diseased tissues, but are ex-vivo products from 

exoprotease activity in the coagulation and complement activation pathways. In his 

work he focused in particular on different types of cancers (breast, ladder and 

prostate) because they involve the transformation of altered cells types that produce 

specific proteins, but the same theory can be potentially applied to every type of 

disease, such as IBDs.  

There are many factors related to serum proteins analysis that must be controlled, 

first of all the serum sampling procedure. For this reason a standard protocol 

concerning clotting time, storing and aliquoting has been used. The consequence of 

a non-well designed sample collection procedure can be the serum transformation 

that brings to high level of degradation peptides presents in the sample caused by 

the ex-vivo enzymatic activity. Furthermore it must be considered that the presence 

of high abundance proteins (HAP) such as albumine or immunoglobuline hides the 

low molecular weight proteome which need to be enriched. Different approaches 

have been developed for their depletion (most of them based on immunoaffinity [83-
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86], but a lack of reproducibility and specificity [87-92], and the removal of LMW 

proteins bound to albumine [93,94] have been reported [95]. Moreover the high cost 

of the columns prevents their use for large-scale studies. 

In this work the LMW serum samples proteins enrichment was performed by 

ultrafiltration using a molecular filter devices with a 10 kDa cut-off, after testing the 

reproducibility of the whole process using Universal Proteomics Standard (Sigma) 

digest as a standard.  

The Lowry assay from Sigma for the protein quantification of the filtrates was tested, 

but since this assay is not suitable for the quantification of peptides (such as 

Bradford or Nanodrop), it was tested to evaluate the order of magnitude of 

concentration of the peptides in the filtrate. The obtained results allowed to estimate 

a peptide concentration around 150 ng/µL, in agreement with the results presented 

in other paper where a similar approach is described [96], but due to the extremely 

low precision and accuracy in the quantification of the peptides in the filtrate, the 

normalization of the protein amount was performed in the pooled serum samples 

before the ultrafiltration step. 

Ten picomoles of Alcohol dehydrogenase (ADH) tryptic digest were added as 

internal standard to 25 mg proteins of each pooled serum sample to evaluate the 

sample-to-sample variations in the whole process. Afterwards samples were diluted 

to 2 mL with 25 mM ammonium bicarbonate containing 10% (v/v) acetonitrile and 

incubated 30 min at room temperature in order to disrupt the protein-protein 

interactions [96,97]. 

After the LC-MS analysis the msInspect software was used for the feature finding in 

all the LC-MS run, and afterwards all the peaks were filtered, aligned and 

normalized as described in the Material and Methods section. Due to the length of 

the LC analysis (165 min) and to the flow that is passively split in the CapLC (from 5 

µL/min to 250 nL/min) the retention time varied of almost one minutes among the LC 

runs, and for this reason the alignment was performed using a quite wide retention 

time windows (75 scans), with an associated m/z window of only 0.1 Da.  

The differently expressed LMW proteins in CD and H serum samples were 

evaluated by statistical analysis, performed using PROTEIOS. One include peak list 

for the overexpressed peptides in CD samples and one for the overexpressed 

peptides in H samples were created. 
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The LC-MS/MS analysis of the peaks inside the include lists followed by MASCOT 

database search allowed the identification of many peptides resulting from some 

proteins commonly involved in the inflammatory processes (table 3.1).  

 

Protein Entry 
name MW (Da) N° of AA Overexpression

Apolipoprotein A-IV  APOA4 45399 396 H 
Apolipoprotein E  APO E 36154 317 H 

Alpha-2-HS-glycoprotein (Fetuin A) FETUA 39325 367 H 
Fibrinogen alpha chain  FIBA 94973 866 CD 

Fibrinopeptide A FPA 1537 16 CD 
Complement C3  C3 187148 1663 CD 

Complement C3f fragment C3f 2021 17 CD 
Complement C4-A  C4-A 192771 1744 CD 

 
Table 3.1: overexpressed proteins in CD and H samples identified by LC-MS/MS analysis 

and MASCOT database search  

 
At first glance these results didn’t seem to be interesting, but after an in-depth 

analysis of the MASCOT results we discovered that most of the identified differently 

expressed peptides in CD and H subjects fall into tight clusters (table 3.2). These 

clusters seem to be generated by exopeptidase activities allowing the discrimination 

between CD and H patients based on a fingerprint of peptides resulting from specific 

proteolytic and complement degradation pathways as described by Villanueva et al 

[82]. Moreover most of the differently expressed proteins identified are exactly the 

same he discovered as involved in breast, ladder and prostate cancer (table 3.3). 

Fibrinopeptide A, a peptide released from the amino end of fibrinogen by the action 

of thrombin to form fibrin during clotting of the blood, is the most overexpressed 

peptide in Crohn’s disease: for its identification a cluster of 8 peptides was identified 

with an impressive medium variation of almost 700-fold between CD and H. The 

identification of proteins such as fibrinogen-α and complement 3 that have a 

molecular weight much higher than 10 kDa (the MWCO applied to the serum) can 

be explained only by the activity of serum protease and the consequent production 

of their degradation peptides. The peptides from all these proteins had a 3-fold 

increase in CD samples. Among the peptides from complement 3 protein, that plays 

a central role in the activation of the complement system, three peptides from its 

fragment C3f have been identified with a 3 fold-change.  
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  m/z   H CD 

655.27 DSGEGDFLAEGGGV 
733.33 DSGEGDFLAEGGGVR    
675.79    SGEGDFLAEGGGVR    
632.29       GEGDFLAEGGGVR     
603.79          EGDFLAEGGGVR   
539.28             GDFLAEGGGVR    
510.72                DFLAEGGGVR    

FPA 

453.25                   FLAEGGGVR   

 
  
 
 
  

 
 
 
 
  

574.25                                              MADEAGSEADHEGTHSTKRGHA 
624.92                                           KMADEAGSEADHEGTHST 
679.28                                        YKMADEAGSEADHEGTHST 
708.3                                    SYKMADEAGSEADHEGTHST 

695.82           NRGDSTFESKSY 
560.74                GDSTFESKSY 
532.23                  DSTFESKSY 

FIBA 

725.82 STSYNRGDSTFES 

  
  

  
  

549.78          HWESASLLR     
471.74          HWESASLL   C3f 
568.8 THRIHWESA     

C3 641.31 ENEGFTVTAEGK     
542.64 GFKSHALQLNNRQI C4-A 647.36         SHALQLNNRQI 

  
  

  
  

886.44 SLAELGGHLDQQVEEF 
786.39     AELGGHLDQQVEEF 
750.85        ELGGHLDQQVEEF 
686.34          LGGHLDQQVEEF 

  
APOA4 

629.79             GGHLDQQVEEF 

 
    

  

803.74 AATVGSLAGQPLQERAQAWGERL APO E 756.38      TVGSLAGQPLQERAQAWGERL 
  
   

  
  

FETUA 694.34     HTFMGVVSLGSPSGEVSHPR     
 
Table 3.2: Serum peptide signatures for Crohn’s disease (CD) and healthy donors (H). The 

peptides are listed in clusters of overlapped sequences and the differences in their 

expression in CD and H serum samples is reported (arrows). 

 
Apoliprotein A-IV and E have been found less expressed in diseased patients with a 

difference of about 2.5-fold. This is perfectly in agreement with recent studies that 

showed how apoliprotein A-IV inhibits experimental colitis in vivo [98] and can be 

considered as an independent predictor of disease activity in patients with 

inflammatory bowel diseases [99]. 

Apolipoprotein E (apoE) is a polymorphic multifunctional protein with three common 

isoforms in humans (E2, E3, and E4): ApoE3 is the wild-type and most common 

isoform, but the identification of the isoform involved in this study was not possible. 

The role of ApoE as “inflammatory imbalance” between pro- and anti-inflammatory 

mediators has been reported [100-101].  

Table 3.3 lists and compares the clusters of peptides found both in this and in 

Villanueva work: the overlapping among peptides involved in different diseases 
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underlines the importance of the abundance of the proteins in the sample as 

substrate for protease activity. Indeed by looking at the differences in the peptides 

patterns it’s possible to observe how high abundance proteins such as fibrinogen-α 

are only the target of the exoproteases and are not themselves really overexpressed. 

This means that specific exoproteases can be involved in Crohn’s disease and the 

peptide signature they produce can be potentially used as biomarker.  

Further studies need to be performed for the validation of the obtained results, and 

for this aim the sequence-specific exopeptidase activity test (SSEAT) [102] could be 

used. Briefly, it consists in the addiction to a serum sample of a standard of cluster 

precursor peptide (Fibrinopeptide A, C3f…), followed by a short incubation and 

MALDI-TOF MS analysis at different times. In this way the standard peptide is 

degraded and the degradation product signature acquired. By using in a proper 

combination more cluster precursor peptides it seems possible to create a 

fingerprint of peptides able to discriminate between healthy donors and Crohn’s 

disease patients. 
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Cancer IBD 

  
Prostate Bladder Breast Crohn's 

disease Healthy
1536.68 ADSGEGDFLAEGGVR + + +     
1465.65 DSGEGDFLAEGGVR + +   +   
1350.64 SGEGDFLAEGGVR + + + +   
1263.6 GEGDFLAEGGVR + + + +   

1206.57 EGDFLAEGGVR + +   +   
1077.53 GDFLAEGGVR + +   +   
1020.47 DFLAEGGVR + +   +   
905.5 FLAEGGVR   +   +   

FPA 

758.45 LAEGGVR + +       
                

3261.43 (K) SSSYSKQFTSSTSYNRGDSTFESKSYKMA + +       
3190.36 (K) SSSYSKQFTSSTSYNRGDSTFESKSYKM + +       
2931.2 (K) SSSYSKQFTSSTSYNRGDSTFESKSY   +       

2768.26 (K) SSSYSKQFTSSTSYNRGDSTFESKS   +       
2553.01 (K) SSSYSKQFTSSTSYNRGDSTFES = = =     
2379.03        .SSYSKQFTSSTSYNRGDSTFE   +       
 1390.62                                        NRGDSTFESKSY       +   
 1120.47                                            GDSTFESKSY       +   
 1063.45                                               DSTFESKSY       +   
 1450.53                               STSYNRGDSTFES       +   
2816.25 (R) GSESGIPTNTKESSSHHPGIAEFPSRG (K)           
 2293.97 MADEAGSEADHEGTHSTKRGHA       +   
 1872.74 KMADEAGSEADHEGTHST        +   
 2035.33 YKMADEAGSEADHEGTHST        +   
 2022.87 SYKMADEAGSEADHEGTHST        +   
3239.22 SYKMADEAGSEADHEGTHSTKRGHAKSRPV (R) / / /     

Fibrinogen α 

2659.03 DEAGSEADHEGTHSTKRGHAKSRPV (R)           
                

1098.55 HWESALLR       +   
2021.06 SSKITHRIHWESASLLR = = =     
1864.95 SSKITHRIHWESASLL.     +     
1777.93 SKITHRIHWESASLL.           
1690.9 KITHRIHWESASLL.           

1562.84 ITHRIHWESASLL.     +     
1449.76 THRIHWESASLL.           
1348.7 HRIHWESASLL. / / / +   
1211.7 RIHWESASLL.           
1055.6 IHWESASLL.           
942.43 HWESASLL.     +     

1851.88 SSKITHRIHWESASL..            

C3f 

 1136.55 THRIHWESA.        +   
                

1895.99 RNGFKSHALQLNNRQI (R)           
1739.93 NGFKSHALQLNNRQI (R)           
1626.85 NGFKSHALQLNNRQI.            
1498.91 NGFKSHALQLNNR..            
 1625.85 GFKSHALQLNNRQI.        +   
 1293.68 SHALQLNNRQI.        +   
3200.52 (R) GLEEELQFSLGSKINUKVGGNSKGTLKVLR / / /     
2704.13 (R) GLEEELQFSLGSKINUKVGGNSKGTL           
2305.2 (R) GLEEELQFSLGSKINUKVGGNS           

C4a 

1762.87 (R) GLEEELQFSLGSKINUKV   +       
                

2508.16 ISESEEELRQRLAPLAEDVRGNL (K)           
2755.2 (K) GNTEGLQKSLAELGGHLDQQVEEFR           

1927.94                        SLAELGGHLDQQVEEFR           
1771.81                        SLAELGGHLDQQVEEF.         + 
 1571.75                            AELGGHLDQQVEEF.         + 
 1500.71                               ELGGHLDQQVEEF.         + 
 1371.66                                 LGGHLDQQVEEF.         + 

ApoA-IV 

 1258.57                                   GGHLDQQVEEF.         + 
                

2565.45 (R) AATVGSLAGQPLQERAQAWGERLR         + 
2409.13 (R) AATVGSLAGQPLQERAQAWGERL.           ApoE 
2267.12             TVGSLAGQPLQERAQAWGERL.         + 

 
Table 3.3: serum peptides patterns in Crohn’s disease and healthy controls, compared to 

peptides signature for breast, prostate and bladder evaluated in other research work by 

Villanueva et al. [82]. Coloured box corresponds to peptide presence, “+” to overexpression, 

“=” and “/” respectively to equally and randomly observed. 
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3.3.2 Protein profiling in HT29 cell lines and intestinal epithelial 
cells 
 

The mucosal immune system uses a large number of mechanisms to protect the 

host against an aggressive immune response to luminal constituents. 

These include a physical barrier, the luminal enzymes that alters the nature of the 

antigen itself, the presence of specific regulatory T cells in both the organized and 

disorganized lymphoid tissue of the gut, and the production of an antibody, the 

secretory immunoglobulin A (IgA). All these factors work in concert. 

There is a balance between aggressive factors and endogenous protective and 

adaptive mechanisms in the intestinal mucosa. Mucosal inflammation is a process 

that represents a physiological response to microbes, foreign antigens but, if 

exaggerated, can represent the presence of a disease. In inflammatory bowel 

diseases (IBDs) the inflammation is very intense and there is a loss of barrier 

function. 

The intestinal epithelium provides a barrier against both endogenous commensal 

microorganisms of the gut flora and enteropathogenic bacteria and viruses. In 

response to injury, intestinal epithelial cells increase their barrier activity by 

upregulating the production of anti-microbial factors such as α and β-defensins, and 

release chemokines that recruit other effector cells representing a connection 

between innate and adaptive immunity. Intestinal epithelial cells express various 

receptors for microorganisms (PRR), such as Toll like receptors (not in the normal 

state). Its activation (NFkB pathway) provokes secretion of cytokines, antimicrobial 

defensins and tissue remodeling enzymes. 

The mucosal barrier is important because it represents a system that alters antigen 

exposure with the help of enzymes and the emulsifying effect of bile salts, produce 

mucin glycoproteins that line the surface of epithelium and represent a protection 

against mechanical damage induced by the passage of fecal material or solid food. 

Intestinal epithelial cells (IECs) function as a first line of defense, signaling the 

presence of noxious stimuli or pathogens to other effector cells, and separate the 

antigens in the lumen from the lymphoid tissue in the lamina propria.  

Lamina propria lymphocytes (LPLs) are below the basement membrane and they 

are in contact with the projections of IECs that represent a way to interact with 

immune cells. That these cells play a role in regulating inflammation is seen in 

patients with IBD. 
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For example in ulcerative colitis there is an increase in IEC proliferation and an 

alteration in electrolyte secretion; in Crohn’s disease T cells are more activated and 

as a consequence there is an increase in IEC proliferation. The inflammation 

process by itself alters the permeability of intestinal epithelial cells and as a 

consequence alters the function of other cells. 

All of these processes are linked together and they trigger a cascade of alterations. 

Thus, the proliferation of IECs is the result of inflammation but is also involved in 

interactions with other cells of the innate immune system such as neutrophils. 

The epithelial cells are joined together by tight junctions apically and basolaterally. 

Only ions can pass between the epithelium. In contrast in an inflamed state cells, 

proteins, luminal contents can pass because the tight junctions are less tight. 

Lastly IECs are able to function as antigen-presenting cells for both CD4+ T (IBD) 

cells and CD8+ T cells (normal state). 

Several studies have demonstrated that normal IECs selectively stimulate CD8+ T 

cells that are suppressive in function [103]. In contrast IECs from patients with IBD 

stimulate CD4+ T cells and these cells proliferate and secrete interferon-γ.  

Due to the importance of IECs in IBD, the study of variations in their protein 

expression profiles in normal or diseased states is crucial for understanding new 

mechanisms insight the pathology, with the ultimate goal to develop clinically 

relevant biomarkers of the specific disease status in individual patients and to 

identify potential targets for therapeutic intervention. For this reason the developed 

MS-based protein profiling method has been applied to this clinical problem. 

Since the work is based on the comparison among different samples, the 

preliminary phase of the work consisted in the evaluation of the yield of the tryptic 

digestion and peptide extraction from the gel and the calculation of the 

reproducibility. Six samples of 10 µg of Bovine serum albumine (BSA) were loaded 

on a 9% SDS-PAGE monodimensional gel, digested by trypsin and the resulting 

peptides analysed in triplicate by LC-MS. The intensity of five peaks for every 

spectrum was considered and their coefficients of variation (CV%) were calculated. 

A medium CV% of 34.9 was obtained (data not shown), thus allowing to fix to 1.5 

the fold-change threshold for the peptides. 

Another parameter evaluated in the preliminary phase of the study was the 

efficiency of the subfractionation protocol. Three proteins from different 

compartments were used for western-blot analysis: β-actin is a predominantly 

cytoskeletal protein, but findable in every compartment, while gp180 (membrane 
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protein) and SOX9 (nuclear protein) were chosen because both of them are involved 

in Crohn’s disease. In particular gp180 seems to be overexpressed in membranes 

from healthy donors and SOX9 in nuclei from Crohn’s disease patients. Figure 3.3 

shows the compartmental distribution of the proteins obtained by the analysis of 

compartments from treated and normal HT29 cells. As expected gp180 was 

detected only in membranes from normal cells while SOX9 was more concentrated 

in nuclei from treated samples. β-actin is present in every compartment with the 

same concentration ratio among normal/treated samples. 
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Figure 3.3: subcellular fractions from HT29 cells analysed by western blot. Gp180 is a 

membrane protein and SOX9 is a nuclear protein, while β-actin is present in every 

compartment (C: cytosol; M: membrane, N: nuclei; Ck: cytoskeleton) 

  

Once the method was developed, before analysing IECs from intestinal biopsies, it 

was applied to a cellular inflammation model of intestinal HT29 cells treated with 

cytokines at the concentrations of IFNγ 75 ng/mL to simulate the chronic 

inflammation (concentration evaluated in previous studies conducted in our 

laboratories). The subcellular fractionation was performed on five million of cells 

both treated and normal and the cytosolic, nuclear, membrane and cytoskeletal 

compartments were obtained. Afterwards the proteins were concentrated by 

acetone precipitation and for each fraction 15 µg of proteins were loaded on a 

monodimensional gel (figure 3.4A). The different protein patterns in the different 

compartments confirm the subcellular fractionations, while the similarity among the 

corresponding compartments of treated and normal cells was expected. 

Cytosol and nuclei lanes were divided into three slices in order to perform a further 

fractionation of the sample prior to tryptic digestion and LC-MS analysis. 
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Figure 3.4A: monodimensional gels of cytosolic (C), membrane (M), nuclear (N) and 

cytoskeletal (Ck) cells subfractions. Part A.: cell compartments of intestinal HT29 cells 

normal (N) and treated with cytokines(T). The middle lane is the marker. Part B.: cells 

compartments of IECS from healthy donors (H) and Crohn’s disease patients (CD). The 

right lane is the marker. 
 

The triplicate analysis of every digested sample, followed by the comparison of the 

LC-MS runs of corresponding slices for the two categories of sample and by the 

identification of the selected proteins by MS/MS permitted to identify proteins 

involved in the inflammation both in the cytosolic and in the nuclear fractions of 

treated HT29 (table 3.4).  

Most of the differences were found in treated cells as expected, because of the 

higher number of proteins produced compared to the ones produced during the 

basal activity. The most interesting upregulated protein is adenosylhomocysteinase 

(SAHH), a protein that may play a key role in the control of methylations via 

regulation of the intracellular concentration of adenosylhomocysteine, a competitive 

inhibitor of S-adenosyl-L-methionine-dependent methyl transferase reactions. The 

implication of SAHH in inflammation processes in epithelial cells was already 

reported in previous works from other groups, that brought to its choice as a specific 

target for design of immunosuppressive and anti-inflammatory agents [104]. It has 

also been found to be involved in the aldosterone-induced activity of epithelial Na+ 

channels [105]. 

The nuclear histone H2A type 1-B and the heterogeneous nuclear ribonucleoprotein 

C-like 1 were also found overexpressed. 

  

A B 
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HT29 

  
Protein Entry name Mass 

(Da) 
Prot. 
score Peptide sequences m/z Fold 

change
R.AGLQFPVGR.V  472.62 7.98 

Histone H2A type 1-B H2A1B_HUMAN 14127 112 
R.VTIAQGGVLPNIQAVLLPK.K 965.71 15.45 

Heterogeneous nuclear 
ribonucleoprotein C-

like 1  
HNRCL_HUMAN 32180 68 R.VFIGNLNTLVVK.K 658.73 20.25 

Actin, cytoplasmic 1 ACTB_HUMAN 42052 61 K.IWHHTFYNELR.V 505.91 6.76 
K.WLNENAVEK.V  551.77 2.61 

T 

Adenosyl-
homocysteinase SAHH_HUMAN 48255 58 

K.VPAINVNDSVTK.S  628.84 1.86 
        

N 
Heterogeneous nuclear 

ribonucleoproteins 
A2/B1  

ROA2_HUMAN 37464 39 R.GGGGNFGPGPGSNFR.G 689.11 2.33 

 

Table 3.4: list of the upregulated proteins and the corresponding peptides in treated (T) and 

normal (N) HT29 cell lines.  
 

The same protocol was applied to isolated IECs both from healthy donors and 

Crohn’s disease surgical specimens, subjected to subcellular fractionation as 

described above. The proteins were concentrated by acetone precipitation, but due 

to the lower number of cells compared to HT29 (4x106 instead of 5x106) and to the 

higher number of dead cells that avoided to obtain an optimum yield of compartment 

subfractionation, a lower amount of proteins was extracted for every fraction. For 

this reason only 5 µg of proteins for each compartment were loaded on the gel for 

the separation (figure 3.4B), and every lane was divided only into two slices. 

The results obtained by LC-MS and the following LC-MS/MS analysis allowed the 

identification of many proteins (table 3.5) involved in the inflammatory processes. In 

the nuclear compartment Annexin A1 (ANXA1), a protein also known as Lipocortin 1 

which regulates phospolipase A2 activity, was found upregulated in healthy donors 

(13.3 fold-change). The involvement of ANXA1 in Crohn’s disease is known since 

many years, indeed its presence or absence can be used for the discrimination 

among two clinical forms of IBDs (perforating and non-perforating respectively) [106]. 

Furthermore lipocortin 1 is a mediator of the anti-inflammatory actions of 

glucocorticoids, but the mechanism of its anti-inflammatory effects is still not clear 

[107,108]. It has been proved to regulate the MAPK pathway too [109] by inhibition 

of the interleukine-6 (IL-6), a mediator of inflammation. 

Intestinal epithelial cells 

  
Protein Entry name Mass 

(Da) 
Prot. 
score Peptide sequences m/z fold 

change
K.CCTESLVNR.R  569.76 4.3 CD Albumine ALBU_HUMAN 71317 52 
K.VPQVSTPTLVEVSR.N  756.44 2.2 
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DEP domain-containing 
protein 1B DEP1B_HUMAN 62472 35 K.FIIHNVYSVSK.Q 653.37 5.2 

Cytochrome P450 2J2 CP2J2_HUMAN  57859 35 K.FTFRPPNNEK.L  625.32 15.2 
K.WPWQVSLR.V  536.37 8.3 
K.YHLGAYTGDDVR.I  683.89 5.9 
R.VTYYLDWIHHYVPK.K  917.63 23.8 
R.EQHLYYQDQLLPVSR.I  630.41 125.0 

Tryptase alpha-1 precursor  TRYA1_HUMAN 31209 247 

R.EQHLYYQDQLLPVSR.I 945.13 53.0 
K.ASGPPVSELITK.A  599.90 3.8 
R.KASGPPVSELITK.A 663.95 2.7 Histone H1.2  H12_HUMAN 21352 98 
K.AAKPKVVKPK.K  532.83 12.7 
R.DAVTYTEHAK.R  567.83 2.7 
R.DNIQGITKPAIR.R  663.44 2.7 Histone H4  H4_HUMAN 11360 89 
K.RISGLIYEETR.G  668.93 2.0 
R.LLLPGELAK.H  477.37 3.3 
K.ESYSVYVYK.V  569.33 1.8 
K.QVHPDTGISSK.A  584.85 1.9 

Histone H2B type 1-
C/E/F/G/I  H2B1C_HUMAN 13811 86 

R.KESYSVYVYK.V  633.39 5.2 
R.LLLPGELAK.H  477.37 3.3 
K.QVHPDTGISSK.A  584.85 1.9 Histone H2B type 1-B  H2B1B_HUMAN 13942 53 
R.KESYSIYVYK.V  640.39 23.5 

Histone H3-like  H3L_HUMAN 15318 38 R.YRPGTVALR.E 516.84 2.2 
Histone H2AV  H2AV_HUMAN 13501 37 R.GDEELDSLIK.A  559.88 1.6 

K.ESTLHLVLR.L  534.37 2.1 Ubiquitin UBIQ_HUMAN 8560 36 
K.TITLEVEPSDTIENVK.A  894.61 20.5 

Tetratricopeptide repeat 
protein 24  TTC24_HUMAN 64041 36 R.GLELLLR.A 407.28 1.7 

Lamin-A/C  LMNA_HUMAN 74380 35 R.LADALQELR.A  514.78   7.6 
ATP synthase subunit beta, 

mitochondrial precursor  ATPB_HUMAN 56525 127 R.FTQAGSEVSALLGR.I 718.33 82.3 

Protein disulfide-isomerase 
A6 precursor  PDIA6_HUMAN 48490 56 R.TGEAIVDAALSALR.Q  693.85 1.8 

K.AGFAGDDAPR.A  488.72 3.1 
R.AVFPSIVGRPR.H 599.85 2.6 
K.DSYVGDEAQSKR.G  677.81 12.4 

Actin, cytoplasmic 1 ACTB_HUMAN 42052 37 

R.VAPEEHPVLLTEAPLNPK.A 652.00 8.2 
R.ITPSYVAFTPEGER.L  783.83 37.0 78 kDa glucose-regulated 

protein precursor  GRP78_HUMAN 72402 37 
R.IINEPTAAAIAYGLDKR.E 605.97 11.5 
K.FLASVSTVLTSK.Y  626.86 9.4 Hemoglobin subunit alpha HBA_HUMAN 15305 49 
K.VGAHAGEYGAEALER.M 765.35 3.9 
K.GCDVVVIPAGVPR.K 669.92 15.7 Malate dehydrogenase, 

mitochondrial precursor  MDHM_HUMAN 35969 58 
K.TIIPLISQCTPK.V  685.96 6.1 

Annexin A1 ANXA1_HUMAN 38918 82 K.GLGTDEDTLIEILASR.T 851.99 13.3 
Dermcidin precursor DCD_HUMAN 11277 27 K.GAVHDVKDVLDSVL.  733.94 3.1 

H 
Histone H3-like H3L_HUMAN 15318 28 R.YRPGTVALR.E 516.87 4.0 

 

Table 3.5: list of upregulated proteins identified in healthy (H) and Crohn’s disease (CD) 

intestinal epithelial cells (IECs). For each peptide the sequence, m/z value and fold-change 

calculated is reported. 
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Malate dehydrogenase (MDHM), an enzyme in the citric acid cycle that catalyzes 

the conversion of malate into oxaloacetate, has been found overexpressed in 

healthy donors. This data is in agreement with other previously published results 

[110]. 

Among the more interesting upregulated proteins in Crohn’s disease nuclear fraction, 

different histones (H1.2, H4, H2B type 1-C/E/F/G/I, H2B type 1-B, H3-like, H2AV), 

ubiquitin (UBIQ), tryptase alpha-1 precursor (TRYA1), ATP synthase subunit beta 

(ATPB) and Heat shock 70 kDa protein 5 (HSP70k5) were found. The 

overexpression of histones can be due to the activation of the transcription of the 

p21.3 tandem region of chromosome 6, while the upregulation of TRYA1 (the major 

neutral protease present in mast cell whose secretion is coupled to the activation-

degranulation response of this cell type) can be associated with the increase of the 

paracellular permeability of the intestine [111]. Since mast cells are present in 

intestinal mucosa, they can be co-extracted during the enzymatic digestion step of 

the tissue for isolation of IECs. 

Ubiquitin is a protein present in all the cells and tissues that marks damaged or 

obsolete proteins for destruction by proteasome, and its almost 10 fold-change 

overexpression is probably not specific for the discrimination among H and CD. 

However the upregulation of UBIQ can be explained by the increased activity of 

IECs, also confirmed by the overexpression of ATP synthase subunit beta. 

The heat shock proteins (HSP) are a group of proteins whose expression increases 

after exposure of the cells to stress. HSP70k5 in particular has been demonstrated 

to be involved in the protection of intestinal epithelial [112], hence its upregulation in 

epithelial cells was expected. 

 

3.4 Conclusions 

 
The developed label-free LC ESI-QTOF MS comparative analysis approaches were 

proved to be useful for the study of protein expression profiles and the identification 

of the differently expressed proteins in serum samples and intestinal epithelial cells 

from Crohn’s disease patients.  

The combining of the LC-MS strategy with the low molecular weight serum proteins 

enrichment step allowed to evaluate a pattern of peptides derived from exoprotease 

activity in the coagulation and complement activation pathways. Among the obtained 
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results, particularly interesting was the discovery of eight peptides from 

fibrinopeptide A (FPA) that were found even 700-fold upregulated, thus meaning the 

overexpression of both FPA and of a specific exoprotease that degraded it. Since 

other research group found the same cluster of peptides involved also in breast, 

ladder and prostate cancers but with a different pattern than the one found in 

Crohn’s disease, further study need to be performed to evaluate the specificity of the 

cluster and validate the results, in order to develop a fast serum diagnostic test. 

The study of subcellular fractions of intestinal epithelial cells from Crohn’s disease 

patients and healthy donors permitted to find many proteins involved in the 

inflammation process, such as heat shock protein 70 and tryptase alpha-1 precursor, 

and proteins whose upregulation can be explained by the increased activity of IECs 

in Crohn’s disease. Follow-up studies based on immunochemical strategies will be 

performed to validate the obtained results and to further investigate the inflammation 

pathways involved in the disease. 
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General conclusions 

 
The study of protein expression profiles in serum and in population of cells needs 

the continuous improvement and combination of proteins/peptides separation 

techniques, mass spectrometry, statistical and bioinformatic approaches. In this 

thesis work two different mass spectrometry-based protein profiling strategies have 

been developed and applied to liver and inflammatory bowel diseases for new 

biomarker discovery.  

The bulk solid-phase extraction combined with MALDI-TOF MS and chemometric 

analysis allowed to enrich serum protein/peptides due the high interaction surface 

between analytes and functionalized groups and the high recovery due to the elution 

step performed directly on the MALDI-target plate. The use of chemometric 

algorithm for the selection of the variables with higher discriminant power permitted 

to evaluate patterns of 20-30 proteins involved in the differentiation and 

classification of serum samples from healthy donors and diseased patients. These 

proteins profiles permit to discriminate among the pathologies with an optimum 

classification and prediction abilities. In particular in the study of inflammatory bowel 

diseases, after the analysis using C18 of 129 serum samples from healthy donors 

and Crohn’s disease, ulcerative colitis and inflammatory controls patients, a 90.7% 

of classification ability and a 72.9% prediction ability were obtained. In the study of 

liver diseases (hepatocellular carcinoma, viral hepatitis and cirrhosis) a 80.6% of 

prediction ability was achieved using IDA-Cu(II) as extraction procedure.  

The identification of the selected proteins by MALDI-TOF/TOF MS analysis or by 

their selective enrichment followed by enzymatic digestion and MS/MS analysis may 

give useful information in order to identify new biomarkers involved in the diseases.  

The search for biomarkers of inflammatory bowel diseases, and in particular of 

Crohn’s disease, was also performed by using the developed label-free LC ESI-

QTOF MS differential analysis strategy combined with targeted MS/MS analysis of 

only identified differences. The enriched serum peptidome and the subcellular 

fractions of intestinal epithelial cells (IECs) from healthy donors and Crohn’s disease 

patients were analysed.  

The combining of the low molecular weight serum proteins enrichment step and the 

LC-MS approach allowed to evaluate a pattern of peptides derived from specific 

exoprotease activity in the coagulation and complement activation pathways. Among 



 69

these peptides, particularly interesting was the discovery of clusters of peptides from 

fibrinopeptide A, Apolipoprotein E and A4, and complement C3 and C4. Further 

studies need to be performed to evaluate the specificity of these clusters and 

validate the results, in order to develop a rapid serum diagnostic test.  

The analysis by label-free LC ESI-QTOF MS differential analysis of the subcellular 

fractions of IECs from Crohn’s disease patients and healthy donors permitted to find 

many proteins that could be involved in the inflammation process. Among them heat 

shock protein 70, tryptase alpha-1 precursor and proteins whose upregulation can 

be explained by the increased activity of IECs in Crohn’s disease were identified. 

Follow-up studies for the validation of the results and the in-depth investigation of 

the inflammation pathways involved in the disease will be performed. 

Both the developed mass spectrometry-based protein profiling strategies have been 

proved to be useful tools for the discovery of disease biomarkers that need to be 

validated in further studies.  
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