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Abstract
This thesis deals with robust adaptive control and its applications, and it is di-

vided into three main parts. The first part is about the design of robust estimation
algorithms based on recursive least squares. First, we present an estimator for the
frequencies of biased multi-harmonic signals, and then an algorithm for distributed
estimation of an unknown parameter over a network of adaptive agents. In the
second part of this thesis, we consider a cooperative control problem over uncer-
tain networks of linear systems and Kuramoto systems, in which the agents have to
track the reference generated by a leader exosystem. Since the reference signal is not
available to each network node, novel distributed observers are designed so as to
reconstruct the reference signal locally for each agent, and therefore decentralizing
the problem. In the third and final part of this thesis, we consider robust estimation
tasks for mobile robotics applications. In particular, we first consider the problem
of slip estimation for agricultural tracked vehicles. Then, we consider a search and
rescue application in which we need to drive an unmanned aerial vehicle as close as
possible to the unknown (and to be estimated) position of a victim, who is buried
under the snow after an avalanche event. In this thesis, robustness is intended as an
input-to-state stability property of the proposed identifiers (sometimes referred to as
adaptive laws), with respect to additive disturbances, and relative to a steady-state
trajectory that is associated with a correct estimation of the unknown parameter to
be found.
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Sommario
Questa tesi riguarda il controllo adattativo robusto e le sue applicazioni ed è di-

visa in tre parti. Nella prima parte vengono presentati algoritmi di stima robusti
basati su minimi quadrati ricorsivi. Innanzitutto, presentiamo uno stimatore per le
frequenze di segnali multi-armonici e successivamente un algoritmo per la stima
distribuita di parametri sconosciuti all’interno di una rete di agenti adattativi. Nella
seconda parte di questa tesi, consideriamo un problema di controllo cooperativo su
reti di sistemi lineari incerti e sistemi di Kuramoto, in cui gli agenti devono inseguire
il riferimento generato da un esosistema leader. Poiché il segnale di riferimento non
è disponibile per ciascun nodo della rete, nuovi osservatori distribuiti vengono pro-
gettati in modo da ricostruire localmente il segnale di riferimento per ciascun agente,
e quindi decentralizzare il problema. Nella terza e ultima parte di questa tesi, con-
sideriamo problemi di stima robusta per applicazioni di robotica mobile. In partico-
lare, consideriamo innanzitutto il problema della stima dello slittamento per i veicoli
cingolati agricoli. Quindi, consideriamo un’applicazione di ricerca e soccorso in cui
dobbiamo guidare un drone il più vicino possibile alla posizione sconosciuta (e da
stimare) di una vittima, sepolta sotto la neve in seguito ad una valanga. In questa
tesi, la robustezza è intesa come una proprietà di stabilità input-to-state degli iden-
tificatori proposti, rispetto a disturbi additivi, e relativa a una traiettoria a regime
associata a una stima corretta dei parametri sconosciuti da trovare.
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1

Introduction

To adapt means to change oneself so that one’s behavior will conform to new or
changed circumstances. This feature is what we would like to embed in our regula-
tors, in a scenario where we are able to get a model of the system we want to control,
but we lack (a precise) knowledge of its parameters. In fact, adaptive control does
not deal with unknown systems/models, but rather with systems having a known
“structure” (e.g. we know that the system can be described by a linear model, or by a
Kuramoto model, etc.) but unknown parameters. In system identification literature,
this is sometimes referred to as a grey box problem.

The design of autopilots for high-performance aircraft was one of the primary
motivations for active research on adaptive control in the early 1950s. The lack of
understanding of stability and robustness properties of the proposed adaptive con-
trol schemes coupled with a disaster in the well known Nasa X-15-3 flight test, in
1967. One of the factors that caused the 1967 crash was an electrical disturbance
that degraded the controls. The take-home message was that adaptive control is
not intrinsically robust, and sources of uncertainty should be included in the model,
in order to design robust adaptive controllers (Dydek, Annaswamy, and Lavretsky,
2010). A lot of work was done in the field of robust adaptive control starting from
1979. In fact, many adaptive control schemes were redesigned as a byproduct of
crucial discoveries as state-space techniques, stability theory based on Lyapunov,
dynamic programming, stochastic control, system identification and parameter esti-
mation (Ioannou and Sun, 2012).

The fact that a system is always different from the model that we mathematically
develop to describe it, is a key concept in control theory. There will always be para-
metric uncertainties, unmodeled dynamics, or (bounded) disturbances affecting our
model and thus making it an approximation for representing the system, with a cer-
tain degree of precision. For this fundamental reason, robustness should always be
a requirement in control system design, and adaptive/learning control algorithms
make no exception.

As often happens in science, theoretical results of independent interest arise from
application-oriented studies. This thesis, in its own small way, is another proof of
this phenomenon, within the vast world of adaptive control. This thesis is divided
into three parts. The first part deals with the design of robust estimation algorithms
based on recursive least squares. First, we present an estimator for the frequencies
of biased multi-harmonic signals (Azzollini et al., 2021a), and then an algorithm for
distributed estimation of an unknown parameter over a network of adaptive agents.
In the second part of this thesis, we consider a cooperative control problem over
uncertain networks of linear systems and Kuramoto systems, in which the agents
have to track the reference generated by a leader exosystem (Baldi, Azzollini, and
Ioannou, 2020; Bosso et al., 2021b). Since the reference signal is not available to
each network node, novel distributed observers are designed so as to reconstruct
the reference signal locally for each agent, and therefore decentralizing the problem.
In the third and final part of this thesis, we consider robust estimation for mobile
robotics applications. In particular, we first consider the problem of slip estimation
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for agricultural tracked vehicles (Tazzari, Azzollini, and Marconi, 2021). Then, we
consider a search and rescue application in which we need to drive a drone as close
as possible to the unknown (and to be estimated) position of a victim, who is buried
under the snow after an avalanche event (Azzollini, Mimmo, and Marconi, 2020;
Azzollini et al., 2021b).

In this thesis, robustness is intended as an input-to-state stability property of the
proposed identifiers (sometimes referred to as adaptive laws), with respect to addi-
tive disturbances, and relative to a steady-state trajectory that is associated with a
correct estimation of the unknown parameter to be found. When dealing with linear
time invariant systems, this is easily obtained by ensuring or requiring persistency
of excitation. In fact, persistency of excitation property does not only guarantee
convergence to the true parameters, but it also guarantees robustness for the (esti-
mation or tracking) error system with respect to additive perturbations as it induces
uniform global asymptotic stability (or even exponential in case of linear systems).
In spite of this well known facts, we find that persistency of excitation is not neces-
sary to obtain strong robustness properties. In this case, as expected, the estimated
parameters will not converge to the true parameters. Nevertheless, it can be proven
the existence and stability of an optimal steady state (where a cost function - being a
function of the estimation or tracking error - is minimized), and robustness with re-
spect to the disturbances in form of input-to-state and input-output stability relative
to the unperturbed steady-state trajectories. This is found in three different works in
this thesis: the first two dealing with recursive least squares estimation (Chapters 1
and 2), and the other one dealing with adaptive distributed control over a Kuramoto
network (Chapter 4). This makes us conjecture that there is a common underlying
principle linking the three works, possibly applicable to general adaptive estima-
tion/control problems, which is briefly discussed in the concluding remarks.
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Part I

Robust Estimation: Least Squares





5

Chapter 1

Robust Frequency Estimation of
Multi-Harmonic Signals

In this chapter we propose a robust estimator for the frequencies of biased multi-
harmonic signals in the presence of unknown additive disturbances. The estimator
consists of a continuous-time stable linear system and a discrete-time recursive least-
squares identifier. In absence of additive disturbances, the proposed design guaran-
tees global exponential convergence to the optimal (in the least-squares sense) pa-
rameter estimates. In presence of disturbances, instead, an input-to-state stability
property relative to such optimal estimates holds.

1.1 Introduction

The online frequency estimation problem has attracted considerable interest from
the control community, and its applications span many engineering fields such as
telecommunications and signal processing, power systems, health monitoring, and
all those control applications in which this class of signals have to be tracked and/or
rejected (Carnevale et al., 2016; Bodson, Jensen, and Douglas, 2001; Chen et al., 2014;
Bin, Marconi, and Teel, 2019; Baldi, Azzollini, and Ioannou, 2020).

A wide variety of approaches exist in the literature, based on fast Fourier trans-
form (Schoukens, Pintelon, and Van Hamme, 1992), extended Kalman filters (Haji-
molahoseini, Taban, and Soltanian-Zadeh, 2012), adaptive notch filters (Hsu, Ortega,
and Damm, 1999; Mojiri and Bakhshai, 2004), phase-locked loop (Karimi-Ghartemani
and Ziarani, 2004; Wu and Bodson, 2003), second and third order generalized integrator-
based orthogonal signal generators (Fedele and Ferrise, 2011; Fedele and Ferrise,
2014), nonlinear estimation algorithms (Pin et al., 2013; Na et al., 2015), and observer-
based (adaptive (Marino and Tomei, 2002; Hou, 2011; Chen et al., 2017), nonlinear
Luenberger (Praly, Isidori, and Marconi, 2006), and hybrid (Carnevale et al., 2016;
Carnevale and Astolfi, 2009)). Discontinuous (sliding mode-based) estimation laws
also exist (Na et al., 2015; Pin, Chen, and Parisini, 2017), ensuring finite-time conver-
gence.

Initial research on this topic dealt with a single sinusoid (Hsu, Ortega, and Damm,
1999; Bodson, Jensen, and Douglas, 2001). Without disturbances or noise, adaptive
approaches typically guarantee global convergence of the estimates (Marino and
Tomei, 2002; Chen et al., 2017). Nevertheless, most works lack of a formal robustness
analysis and only conjecture that their approaches are robust to noise by means of
numerical simulations (Praly, Isidori, and Marconi, 2006). In this sense, only very
recent works formally show robustness to quite general disturbances in an Input-to-
State-Stability (ISS) (Pin et al., 2013; Pin, Chen, and Parisini, 2017; Chen et al., 2017)
or Uniformly Ultimate Boundedness (UUB) (Na et al., 2015) sense.
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The vast majority of existing observer-based methodologies rely on the fact that
harmonic or multi-harmonic signals can be thought of as generated by a marginally
stable autonomous linear system, which is completely observable, and whose eigen-
values are directly related to the frequencies to be estimated (Marino and Tomei,
2002; Hou, 2011; Chen et al., 2017). In particular, in (Chen et al., 2017) the signal
generator is first augmented with a stable filter. Then, an adaptive observer is de-
signed for this augmented system. This was the first estimator in literature establish-
ing semiglobal stability properties and robustness (in an ISS sense) to disturbances,
when the number of harmonics is possibly overestimated. In (Na et al., 2015), the
signal is also first filtered via a stable filter, in order to obtain stable estimates of the
signal derivatives. Then, a continuous-time online estimation algorithm processing
the signal and its derivatives is proposed, guaranteeing global exponential stability
and UUB properties.

It can be noticed how, both observer-based (Praly, Isidori, and Marconi, 2006;
Chen et al., 2017) and online parameter estimation (Na et al., 2015) approaches share
the need to design stable filters for the measured signal, usually with the purpose
of estimating its derivatives (or some other signals equivalent to derivatives, up to
a change of coordinates). This is in line with “classic” online parameter estima-
tion approaches (Ioannou and Sun, 2012) and can be traced back to (Kreisselmeier,
1977). This common feature is justified in this chapter by means of well-known
steady-state tools (Serrani, Isidori, and Marconi, 2001; Nikiforov, 1998; Isidori, 2017),
which are instrumental in order to design the proposed estimator. Not surprisingly,
our steady-state analysis is in line with the nonlinear analysis presented in (Afri et
al., 2016), where the unknown parameters of parameterized linear systems are esti-
mated thanks to a nonlinear Luenberger observer design strategy.

In this chapter, we propose a hybrid system able to robustly estimate the frequen-
cies of a biased multi-harmonic signal in the presence of unknown additive distur-
bances. The proposed estimator consists of a continuous-time stable linear system
and a discrete-time recursive least-squares identifier. The main contributions of this
work are that (i) the proposed design is globally ISS with a guaranteed exponential
rate of convergence; (ii) the discrete-time identifier can work at any sampling fre-
quency (or with every aperiodic clock strategy ensuring uniform upper and lower
bounds on successive sampling times); (iii) uniform continuity between the asymp-
totic disturbances size and the induced asymptotic deviation from the noiseless es-
timates is established.

1.2 Notation

We denote by R and N the set of real and natural numbers, respectively. We define
R�0 := [0, •). Given a set S, K(S) indicates the collection of nonempty, compact
subsets of S. We use |·| to denote norms whenever the underlying normed space is
clear. Let X and Y be two nonempty subsets of a metric space (M, d). We define the
Hausdorff distance dH(X, Y) = max

n
supx2X infy2Y d(x, y), supy2Y infx2X d(x, y)

o
.

On the set K(S) of all nonempty compact subsets of S, dH is a metric. We use
minsv(A) to denote the minimum singular value of a matrix A. A function g :
R+ ! R+ belongs to class-K (g 2 K) if it is continuous, strictly increasing and
g(0) = 0. Moreover, if g(s) !s!• •, g is said to belong to class-K• (g 2 K•). A
continuous function b : R+ ⇥R+ ! R+ belongs to class-KL (b 2 KL) if, for each
t 2 R+ b(·, t) 2 K, and for each s 2 R+, b(s, ·) is decreasing and b(s, t) !t!• 0.
In this chapter we deal with hybrid dynamical systems (Goebel, Sanfelice, and Teel,
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2012), described by equations of the form

S :

(
ẋ = F(x, u) (x, u) 2 C
x+ = G(x, u) (x, u) 2 D

(1.1)

where x is the state, u is the input, C is the flow set, F is the flow map, D is the jump
set, and G is the jump map. The state of the hybrid system can either flow accord-
ing to the differential equation ẋ = F (while (x, u) 2 C), or jump according to the
difference equation x+ = G (while (x, u) 2 D). Solutions to (1.1) are defined over
hybrid time domains. A compact hybrid time domain is a subset of R+ ⇥N of the
form T = [J�1

j=0 [tj, tj+1]⇥ {j} for some finite J 2 N and 0 = t0  t1  · · ·  tJ 2 R+.
A set T ⇢ R+ ⇥N is called a hybrid time domain if for each (T, J) 2 R+ ⇥N,
T \ [0, T] ⇥ {1, . . . , J} is a compact hybrid time domain. For any (t, j) 2 T , we
let tj = supt2R(t, j) 2 T , tj = inft2R(t, j) 2 T and we similarly define jt and jt.
A function x : T ! X is called an hybrid arc if x(·, j) is locally absolutely con-
tinuous for each j. A hybrid input u is a hybrid arc such that u(·, j) is locally es-
sentially bounded and Lebesgue measurable for each j. A solution pair to (1.1) is
a pair (x, u), with x a hybric arc and u a hybrid input satisfying those dynamical
equations. We call a solution pair complete if its time domain is unbounded. For
simplicity, if x is constant during flows (resp. jumps), we neglect the “t” (resp. “j”)
argument and we write x(j) (resp. x(t)). With u : dom u ! U a hybrid input, and
G(u) := {(t, j) 2 dom u | (t, j + 1) 2 dom u}, for (t, j) 2 dom u, we let |u|(t,j) :=
max{sup(t,j)2G(dom u),(0,0)�(s,i)�(t,j)|u(s, i)|, ess. sup(s,i)2dom u/G(dom u),(0,0)�(s,i)�(t,j)|u(s, i)|}.
If u is constant during jumps (resp. flows), we write |u|t (resp. |u|j) as short for
|u|(t,j). The pseudoinverse operator is indicated by ·

†. We denote by i the imaginary
unit. We denote by In 2 Rn⇥n the identity matrix of order n.

1.3 Problem statement

We consider a signal of the form

y(t) = y0(t) + n(t) (1.2)

where y0(t) 2 R is the nominal signal, given by the sum of N harmonics and a
bias, and n(t) 2 R is an unknown additive disturbance term which may represent
measurement noise, exogenous perturbations, or any other unmodeled component.
The disturbance n(t) is locally essentially bounded and integrable on each compact
subset of its time domain. Without loss of generality, the nominal signal can be
written as

y0(t) = a0 +
N

Â
i=1

ai sin(wit + f0i), (1.3)

where a0 is the unknown constant bias, and ai and fi(t) = wit+ f0i are the unknown
amplitude and phase of the i-th harmonic, respectively, with f0i the initial phases.
In particular, the constants wi are the unknown frequencies we aim at estimating.
Without loss of generality we can consider wi > 0, and f0i 2 [�p, p], for all i =
1, 2, . . . , N. We define the set of frequencies to be estimated as

W = {w1, w2, . . . , wN}.
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The nominal output can be seen as generated by a continuous-time linear system
of the form

ẋ = Ax
y0 = Cx

(1.4)

in which A 2 Rn⇥n, C 2 Rn, with n = 2N + 1, and the pair (C, A) is completely
observable. In particular, the matrix A has spectrum

s(A) = {l0, l1,1, l1,2, . . . , lN,1, lN,2}

in which (
l0 = 0
li,1 = + wii, li,2 = � wii, i 2 {1, 2, . . . , N}.

(1.5)

Then, we consider the following problem, under the following assumptions.

Problem 1.1. Design a dynamical system with input y, producing as output a set of esti-
mated frequencies Ŵ = {ŵ1, ŵ2, . . . , ŵN}, where ŵi is an estimate of wi in (1.5), such that
the following properties are guaranteed:

• Nominal convergence - the estimates converge exactly/practically1 to the true fre-
quencies when disturbances are not present (i.e. n = 0);

• Robustness - when disturbances are present, the asymptotic amplitude of the distur-
bance maps continuously to the asymptotic deviation between the nominal estimates
and the disturbed ones.

Assumption 1.1. There exists a known bound y0 on the nominal output (1.3), such that
|y0(t)|  y0.

Assumption 1.2. There exists a known bound w on the maximum frequency in (1.3), such
that maxi wi  w.

1.4 The Estimator

The proposed estimator solving Problem 1.1 is
8
><

>:

ṫ = 1
ż = Fz + Gy

ḣ1 = 0, ḣ2 = 0

(t, z, h1, h2, y) 2 [0, T]⇥Rn
⇥Rn⇥n

⇥Rn
⇥R

8
><

>:

t+ = 0, z+ = z

h+
1 = µh1 + zz>

h+
2 = µh2 + zy

(t, z, h1, h2, y) 2 [T, T]⇥Rn
⇥Rn⇥n

⇥Rn
⇥R

(1.6)

in which the matrices (F, G) 2 Rn⇥n
⇥Rn, as well as the scalar parameters µ, T, T,

are degrees of freedom to be designed. The measured signal y is the only input to
this hybrid system.

1practical convergence means convergence to a neighborhood of the actual frequencies, whose size
can be reduced arbitrarily by tuning some design parameters accordingly.
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We associate with (1.6) the output map

Ŵ = G(q̂) (1.7)

with q̂ 2 Rn given by

q̂ = sat(g(h)) = sat
⇣
(h1 + R)†h2

⌘
(1.8)

where R 2 Rn⇥n is yet another design parameter, and sat is a suitable saturation
function to be chosen. The function G : Rn

! K(R�0) maps the current estimate q̂
to the set Ŵ of estimated frequencies, where we recall that K(R�0) is the collection
of nonempty, compact subsets of R�0. As shown later in this section, at steady-state,
the matrix (F + Gq) is similar to the signal generator matrix A, where q indicates
the vector of “true” parameters to be estimated by (1.6), (1.8) (we want that q̂ !
q). Therefore, considering the link between the eigenvalues and the frequencies in
(1.5), the map G can be constructed by using the current estimate q̂ to compute the
eigenvalues of the matrix (F + Gq̂), then taking the absolute value of the imaginary
part of each eigenvalue. In particular, we have

G(q̂) = l � r(q̂) = l(r(q̂))

in which

r : Rn
! K(C),

r(q̂) = {l 2 C : det(lIn � F� Gq̂) = 0}
l : C ! R�0, l(l) = |Im(l)| ,

and we give K(C) and K(R�0) the Hausdorff metric dH.
System (1.6) can be conveniently decomposed into three subsystems: a clock, a

continuous-time filter, and a discrete-time identifier.

1.4.1 The Clock

The clock is the hybrid system
(

ṫ = 1 t 2 [0, T]
t+ = 0 t 2 [T, T]

(1.9)

in which T, T 2 R satisfy 0 < T  T < •. Jumps do not need to be periodic, and the
only constraints on the time between two successive jumps are that it must be lower
bounded by T and upper bounded by T. Notice that we may also choose T = T = T,
corresponding to a periodic clock with a sampling period of T seconds. In order to
solve Problem 1.1, the Nyquist-Shannon Theorem suggests

T <
1

2w
(1.10)

in which w comes from Assumption 1.2.
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1.4.2 The Continuous-Time Filter

The measured signal (1.2) is filtered through the continuous-time linear system

ż = Fz + G(y0 + n) (1.11)

in which z 2 Rn, F 2 Rn⇥n is a Hurwitz matrix, G 2 Rn, and the pair (F, G) is
completely reachable.

It is well known that any Globally Asymptotically Stable (GAS) linear system,
subject to a harmonic input, exhibits a steady-state response which is itself a har-
monic function of time oscillating at the same frequency of the input, while having
different amplitude and phase (Isidori, 2017, Appendix A.5). Moreover, for linear
systems GAS implies ISS. Formally we say that the filter has a unique steady-state
which is ISS, as emphasized by the following lemma.

Lemma 1.1. The cascade

ẋ = Ax
ż = Fz + GCx + Gn,

(1.12)

is ISS relative to the set

Z
? := {(x, z) 2 Rn

⇥Rn : z = Tx} (1.13)

with respect to the input n, where T 2 Rn⇥n is the unique and nonsingular solution to the
Sylvester equation

TA = FT + GC. (1.14)

Lemma 1.1 states that for n = 0 the “steady-state” set (1.13) is invariant and
GAS (Serrani, Isidori, and Marconi, 2001; Nikiforov, 1998; Isidori, 2017). The state
trajectory of the stable filter (1.11), in absence of disturbances, can be then written as
the sum of a vanishing transient component z̃ and a steady-state component z?:

z(t) = z̃(t) + z?(t)!t!• z?(t) = Tx(t).

In particular, at steady-state, we have

ż? = Fz? + Gy0 = (F + GCT�1)z? = TAT�1z? (1.15)

in which we used (1.14) and nonsingularity of T. Thus, A is similar to F + GCT�1. In
fact, the row vector CT�1 is precisely the unique solution to the problem of assigning
the eigenvalues of A to F + GCT�1. Therefore, the model linking the output y0 and
the filter state at steady-state z? is simply the linear-in-the-parameter model

y0(t) = CT�1z?(t) = q>z?(t) (1.16)

with q 2 Rn a vector of (unknown) “true” parameters to be estimated.
Under Assumption 1.1, the steady-state solution z? of (1.15) satisfies the follow-

ing bound

|z?(t)|  2

s
lmax

lmin

|P| |G|

1� e
y0 = z (1.17)

in which 0 < e < 1, P 2 Rn⇥n is the solution to the Lyapunov equation

PF + F>P = �In (1.18)
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and lmax and lmin are the maximum and minimum eigenvalues of P, respectively.

1.4.3 The Discrete-Time Identifier

The identifier is a discrete-time system taking as input the signals y and z at jump
times. It has state h = (h1, h2) 2 H with h1 2 Rn⇥n symmetric and positive definite,
and h2 2 Rn. We equip H with the norm |h| = |h1| + |h2|. The dynamics of the
identifier is

h+
1 = µh1 + zz>

h+
2 = µh2 + zy

(1.19)

with output (1.8), in which µ 2 [0, 1) and R = R> > 0 2 Rn⇥n are design parameters
called forgetting factor and regularization matrix, respectively. The role of these two
parameters will be discussed below. The map sat is constructed hereafter under the
following persistency of excitation assumption.

Assumption 1.3. There exist j? 2 N and # > 0 such that, for each solution (t, z?) of
(1.9),(1.15), the following holds

minsv

 
R +

j�1

Â
i=0

µj�i�1z?(ti)z?(ti)>
!
� #, 8 j � j?.

With y0 given by Assumption 1.1, let

Y
? := {y0 2 R : y0  y0} (1.20)

and define the constants

c1 := (1� µ)�1supz2Z? |z z>|

c2 := (1� µ)�1sup(z,y0)2Z?⇥Y? |z y0|.
(1.21)

With # given in Assumption 1.3, define the compact set

H
? = {h 2 H | minsv(h1 + R) � #, |h1|  c1, |h2|  c2} . (1.22)

Then, sat in (1.8) is any continuous function Rn
! Rn satisfying for some c > 0

(
sat(g(h)) = (h1 + R)†h2, h 2 H

?

|sat(g(h))|  c, otherwise.
(1.23)

In view of (1.16), the multi-harmonic signal and the steady-state filter state z? are
related by a linear regression. The identifier (1.19) is designed so as to asymptotically
find the “best” linear model fitting (1.16) to the measured samples. Formally, we
have a prediction model

ŷ0 = q̂>z? (1.24)

with the associated prediction error

e = y0 � ŷ0 = y0 � q̂>z?.
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The estimate q̂(j), generated by (1.19)-(1.8), is such that at each j the model
q̂>(j)z? is optimal with respect to the cost functional

Jj(q̂) =
j�1

Â
i=0

µj�i�1
���y0(ti)� q̂>z?(ti)

���
2
+ q̂>Rq̂ (1.25)

which is a weighted sum of the squares of the prediction errors. We associate with
the cost functional, the (set-valued) map

Opt(j) := argminq̂2RnJj(q̂) (1.26)

which collects, at each j, the set of minima of Jj. The intuition behind the design
of the identifier (1.19)-(1.8), in relation to the chosen cost functional (1.25), resides in
the fact that the optimal trajectory (1.26) can be proven to satisfy

Opt(j) =
�

q̂ 2 Rn
| (h?

1 (j) + R)q̂ = h?
2 (j)

 
(1.27)

in which

h?
1 (j) =

j�1

Â
i=0

µj�i�1z?(ti)z?(ti)>

h?
2 (j) =

j�1

Â
i=0

µj�i�1z?(ti)y0(ti).

(1.28)

It can be proven that (1.28) is an asymptotically stable trajectory for system (1.19)
when fed with the ideal inputs (y0, z?). Therefore we can say that the identifier (1.19)-
(1.8) is designed so as to track the map of minima (1.27) when fed with (y0, z?).
These ideal signals are clearly not available, thus the identifier processes the “proxy”
variables (y0 + n, z? + z̃). For this reason, (1.19)-(1.8) is required to be robust, relative
to the optimal trajectory (1.27), with respect to the additive disturbances (n, z̃). In
particular, robustness can be proven in an ISS sense. The required properties are
precisely characterized by considering the system

8
><

>:

ṫ = 1

ż? = TAT�1z?

ḣ1 = 0, ḣ2 = 0

(t, z?, h, y0, z̃, n) 2 [0, T]⇥Rn
⇥H⇥R⇥Rn

⇥R
8
><

>:

t+ = 0, z+ = z

h+
1 = µh1 + (z? + z̃)(z? + z̃)>

h+
2 = µh2 + (z? + z̃)(y0 + n)

(t, z?, h, y0, z̃, n) 2 [T, T]⇥Rn
⇥H⇥R⇥Rn

⇥R

(1.29)

with output (1.8).

Lemma 1.2. Under Assumptions 1.1, 1.2, and 1.3, there exist j? 2 N, two Lipschitz func-
tions rh , rq 2 K, and for each solution (t, z?) of (1.9),(1.15), a hybrid arc h? : dom(t, z?)!
H, such that ((t, z?, h?), (z̃, n)) with (z̃, n) = (0, 0) is a solution pair to (1.29) satisfying
h?(j) 2 H

? for all j � j?, and the following properties, relative to Jj in (1.25), hold
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• For all j � j?, the signal q? := sat(g(h?)) satisfies

q?(j) 2 Opt(j).

• For every solution pair ((t, z?, h), (z̃, n)) to (1.29) with (t, z?) the same as above, for
each jump it holds

|h(j)� h?(j)|  µj
|h(0)� h?(0)|+ rh(|(z̃, n)|j).

• The map sat(g(·)) satisfies

|sat(g(h))� sat(g(h?))|  rq(|h � h?
|)

for all (h, h?) 2 H⇥H
?.

Remark 1.1. Assumption 1.3 always holds if R is positive definite. In fact, if this is the
case, we have # � minsv(R). Instead, if R = 0, Assumption 1.3 boils down to a canonical
persistence of excitation condition on z?(ti) (Bin, Marconi, and Teel, 2019). However, it
is important to remark that having a positive definite R introduces a bias on the parameter
estimates. In fact, for any nonzero R, the optimal q̂ minimizing (1.25) does not necessar-
ily correspond to a zero prediction error, and the parameter estimates rather converge to a
neighborhood of the true parameters, whose size is related to the eigenvalues of R and can
be reduced arbitrarily. This is the reason why we distinguish between q, which we called
vector of “true” parameters, and q? which are the optimal parameters according to (1.25)
(see Lemma 2).

The properties of the identifier can be summarized as follows. There exists
a steady-state h? with corresponding output q?, associated with the ideal signals
(y0, z?), which is optimal with respect to the chosen cost functional (1.25), and ISS
with respect to the “disturbance input” (z̃, n). Finally, the map sat(g(·)) is regular,
which means that as h approaches h?, it is also guaranteed that q̂ approaches q? (Bin,
Marconi, and Teel, 2019; Bin and Marconi, 2020).

1.4.4 Main Result

As shown in Figure 1.1, the proposed design (1.6)-(1.7)-(1.8) is a “cascade” of the
filter and the identifier. There follows from Lemmas 1.1 and 1.2, that the overall
system is ISS relative to the ideal and optimal steady state (t, z?, h?

1 , h?
2 ) with output

q?, and with respect to the input n. In particular, we can conclude that there exists
rd 2 K such that the following asymptotic bound holds (Cai and Teel, 2009)

lim sup
j!•

|q?(j)� q̂(j)|  rd

✓
lim sup

t!•
(|n(t)|)

◆
. (1.30)

This result leads to the following theorem, which is the main result of this work.

Theorem 1.1. Consider the estimator (1.6)-(1.7)-(1.8), and suppose that Assumptions 1.1,
1.2, and 1.3 hold. Let W?(j) = G (q?(j)). Then, there exists a function rw 2 K such that

lim sup
j!•

dH
�
W?(j), Ŵ(j)

�
 rw

✓
lim sup

t!•
(|n(t)|)

◆
. (1.31)
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Filter Identifier

Clock

⌦̂ = �(✓̂)
y

y
z

⌧

✓̂ ⌦̂

FIGURE 1.1: Overall system.

Remark 1.2. Since x(t) is persistently exciting in the continuous-time sense (see, e.g.,
(Ioannou and Sun, 2012, Definition 4.3.1) and (Ioannou and Sun, 2012, Section 5.2.1)),
then it can be proven that so is z?(t). Therefore, if (1.10) is satisfied, it can be proven that
Assumption 1.3 holds with R = 0. Nevertheless, we chose to present this general framework
anyway, as it is well-known in the pertinent literature that, in presence of disturbances n, a
nonzero regularization matrix R may play a beneficial role by smoothing the estimates and
making ill-posed realizations numerically treatable (Sjöberg, McKelvey, and Ljung, 1993).
Hence, in the ideal case with no disturbances, if we choose the sampling time sufficiently
small (satisfying (1.10)), we can take R = 0 to obtain exact exponential convergence to the
true parameters.

1.5 Technical Proofs

1.5.1 Proof of Lemma 1

Being the spectra of A and F in (1.12) disjoint by construction, and being the pair
(A, C) completely observable, and the pair (F, G) completely reachable, it is well-
known in the literature that the solution T to the Sylvester equation (1.14) exists
and it is unique and nonsingular (Isidori, 2017; Serrani, Isidori, and Marconi, 2001;
Nikiforov, 1998). Consider the change of variables


x
z

�
!


x

z̃ = z� Tx

�

resulting in the cascade

ẋ = Ax
˙̃z = ż� Tẋ
= Fz + GCx + Gn� TAx
= F(z̃ + Tx) + GCx + Gn� TAx
= Fz̃ + Gn

(1.32)

where we used (1.14). Being F Hurwitz, the origin of the z̃-subsystem with n = 0 is
GAS and, being (1.32) linear, it is ISS relative to the origin with respect to the input
n. In the original coordinates this means that the z-subsystem is ISS relative to the
set (1.13) with respect to the input n. Then we can write

TAT�1 = F + GCT�1 (1.33)
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therefore A is similar to F + GCT�1. In fact, the row vector CT�1 is precisely the
unique solution to the problem of assigning the eigenvalues of A to F + GCT�1.

To conclude this part, we want to find a computable estimate of the asymptotic
bound for the signal z when no disturbances are present. We consider the perturba-
tion free system

ż = Fz + Gy0 (1.34)

which is a GAS system with input y0. An asymptotic bound for the signal z cor-
responds, by definition of input-to-state stability, to the so-called gain function. We
now prove ISS for system (1.34) in order to give an estimate of the gain function. We
make use of Definition 10.4.1, Definition 10.4.2, and Theorem 10.4.1 from (Isidori,
1999). We take as ISS-Lyapunov function candidate

V(z) = z>Pz (1.35)

where P is the symmetric and positive definite solution to the Lyapunov equation
(1.18), which is guaranteed to exist because F is Hurwitz. We call lmax and lmin the
maximum and minimum eigenvalues of the matrix P, respectively, and we have

lmin |z|
2
 z>Pz  lmax |z|2 (1.36)

where a = lmin |z|
2 and ā = lmax |z|2 are both class-K• functions. The derivative of

(1.35) along the system trajectories results in

∂V
∂z

f (x, u) = 2z>P[Fz + Gy0]

= x>(PF + F>P)x + 2z>PGy0

 � |z|2 + 2 |P| |G| |z| |y0|

(1.37)

from which we conclude that the system with y0 = 0 is GAS. Now we want to find
a class class-K• function a(·) and a class-K function c(·) such that

∂V
∂z

f (x, u)  �a(|z|), 8(z, y0) : |z| � c(|z|). (1.38)

We try to force
∂V
∂z

f (x, u)  �# |z|2

with 0 < # < 1, obtaining

� |z|2 + 2 |P| |G| |z| |y0|  �# |z|2

2 |P| |G| |z| |y0|  (1� #) |z|2

2 |P| |G| |y0|

(1� #)
 |z|

(1.39)

from which we conclude
c(|z|) =

2 |P| |G|

(1� #)
|y0| . (1.40)
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We can now compute an estimate of the gain function g(·) as

g(r) = a�1
� ā � c(r)

=

s
lmax

lmin

2 |P| |G|

(1� #)
r

(1.41)

from which we obtain (1.17) by using Assumption 1.1.

1.5.2 Proof of Lemma 2

We refer to (Bin, Marconi, and Teel, 2019; Bin and Marconi, 2020) for the proof of the
first and last items. We provide a proof for the second item. In the following, the
argument ti is almost always omitted for the sake of space and clarity.

We define the identifier ideal steady-state trajectory h?(j) := (h?
1 (j), h?

2 (j)) by
taking h?(0) = 0 and

h?
1 (j) =

j�1

Â
i=0

µj�i�1z?(ti)z?(ti)>

h?
2 (j) =

j�1

Â
i=0

µj�i�1z?(ti)y0(ti)

(1.42)

for j � 1. It is easy to see that h? is a solution to (1.19) when (z, y) = (z?, y0).
By direct computation, we obtain

|h(j)� h?(j)|  µj
|h(0)� h?(0)|

+
j�1

Â
i=0

µj�i�1
⇣
|(z? + z̃)(z? + z̃)> + (z? + z̃)(y0 + n)|

⌘

�

j�1

Â
i=0

µj�i�1
⇣
|z?z?> + z?y0|

⌘

= µj
|h(0)� h?(0)|

+
j�1

Â
i=0

µj�i�1
⇣
|z? z̃> + z̃z?> + z̃z̃> + z?n + z̃y0 + z̃n|

⌘

 µj
|h(0)� h?(0)|

+
j�1

Â
i=0

µj�i�1
⇣
|z̃|2 + 2 |z?| |z̃|+ |z?| |n|+ |z̃| |y0|+ |z̃| |n|

⌘

(1.43)

from where we can distinguish the required exponentially decaying-term µj
|h(0)�

h?(0)|. An estimate of the gain function rh 2 K is given by what is left from (1.43).
In particular, by using the bounds given by Assumption 1.1 and (1.17), and conver-
genge of the geometric series, we obtain

j�1

Â
i=0

µj�i�1
⇣
|z̃|2 + 2 |z?| |z̃|+ |z?| |n|+ |z̃| |y0|+ |z̃| |n|

⌘

 (1� µ)�1
h
|z̃|2 + |z̃| (2z + y0) + z |n|+ |z̃| |n|

i
.

(1.44)
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Now, considering that |(z̃, 0)|  |(z̃, n)| and |(n, 0)|  |(z̃, n)|, we obtain

rh(|(z̃, n)|) = (1� µ)�1
h
2 |(z̃, n)|2 + (3z + y0) |(z̃, n)|

i
(1.45)

which concludes the proof.

1.5.3 Proof of Theorem 1

In view of (1.23), both q? and q̂ belong to the ball Bc of radius c on Rn. Since G :
Rn
! K(R�0) is continuous, then by (Observer design for nonlinear systems, Lemma

A.2.1) we conclude the existence of a function rG 2 K such that

dH [G(q?(j)), G(q̂(j))]  rG[|q
?(j)� q̂(j)|] (1.46)

for all q?, q 2 Bc. This, together with (1.30), directly results in (1.31).

1.6 Numerical examples

The simulations presented in this section are obtained by means of the well-known
HyEQ toolbox for Matlab&Simulink (Sanfelice, Copp, and Nanez, 2013). We con-
sider the signal

y(t) = 1 + [2 sin(t + p) + sin(3t� p/2)] + n(t) (1.47)

in which n(t) is a bounded realization of a zero-mean white noise. We assume that
our prior knowledge corresponds to a maximum amplitude for the y signal of 10,
and a maximum frequency of 4 rad/s. We thus select y0 = 10, w = 4, relative to
Assumptions 1.1 and 1.2.

We choose a periodic clock (1.9) with sampling period

T = 0.1 
1

2w
.

The filter is taken as

ż =

2

66664

�1 1 0 0 0
0 �1.1 1 0 0
0 0 �1.2 1 0
0 0 0 �1.3 1
0 0 0 0 �1.4

3

77775
z +

2

66664

0
0
0
0
1

3

77775
y

with zero initial conditions. Regarding the identifier, we choose µ = 0.99, R =
10�5

· I5, h1(0) = 0.1 · I5, h2(0) = 0n, and sat as the component-wise saturation
function. In particular, we construct (1.23) as follows. Given the vector (h1 +R)†h2 =
[v1j] 2 R1⇥n, j = (1, 2, . . . , n), and the constant c > 0, sat((h1 +R)†h2) = [s1j] 2 R1⇥n

where each entry is given by s1j := min{max{vij,�c}, c}. Now, in order to find
c, we consider the Euclidian norm |·|2 as tool of choice, and from (1.23) we have��(h1 + R)†h2

��
2  c, then we notice that

���(h1 + R)†h2

���
2


���(h1 + R)†
���
2
|h2|2


1

minsv(h1 + R)
c2 

c2

#
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for all h 2 H
?, resulting in c � c2/#. Now, as already emphasized in Remark 2, we

can choose # � minsv(R) = 10�5, while, in order to find c2, we have to use the a
priori knowledge y0 as well as computing z as in (1.17). First, we solve the Lyapunov
equation (1.18) from where we also compute lmin and lmax. Then we can compute
(1.17) by choosing e = 0.5, obtaining z = 209.42. Finally c2 = 2.1 · 105 from (1.21),
and then c = 2.1 · 1010.

We consider three different experiments in order to test the performance of the
proposed design:

• Disturbance-free experiment (experiment #1), shown in Figure 1.2. From the
top to the bottom we see the signal y and the reconstructed signal ŷ = q̂>z, the
convergence of q̂ to q?, and the convergence of the set Ŵ which approaches the
set W = {1, 3};

• Experiment #2 with a SNR of 15.5 dB, shown in Figure 1.3. On top we see the
measurement, while at the bottom we see the convergence of the frequency
estimates.

• Experiment #3 with a SNR of 6.4 dB, shown in Figure 1.4. On top we see the
measurement, while at the bottom we see the convergence of the frequency
estimates.

Finally, Figure 1.5 shows the good filtering capabilities of the proposed estimator
relative to the reconstruction of y, which we did not discuss but could be appealing
for some applications.

FIGURE 1.2: Disturbance-free experiment.
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FIGURE 1.3: Experiment with a SNR of 15.5 dB.

FIGURE 1.4: Experiment with a SNR of 6.4 dB.
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FIGURE 1.5: Signal reconstruction relative to the three different ex-
periments.

1.7 Conclusions

The problem of robust estimation of the frequencies of biased multi-harmonic sig-
nals has been considered in this chapter. The proposed estimator consists of a stable
linear filter and a discrete-time recursive least squares identifier. Using a discrete-
time identifier better fits the needs of practical applications. Future work will be
devoted to a precise characterization of the impact that the design parameters have
on the performance (for instance, if we have some prior knowledge about the nature
of the disturbance, we may choose a convenient form for the stable filter), as well
as the important problems of overparameterization and underparameterization (i.e.
when we underestimate or overestimate the number of harmonics present in y, re-
spectively).
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Chapter 2

Robust and Scalable Distributed
Recursive Least Squares

In this chapter, we consider the problem of distributed estimation of an unknown
parameter, over a network of discrete-time adaptive systems. Each system measures
noisy samples of different pairs of signals related by a linear regression. As a conse-
quence, we are in the so-called errors-in-variables context. The proposed estimator
provides a robust stability result for the overall network trajectories, relative to a
steady state that is associated with a correct estimation of the unknown parame-
ter. Everything works under a cooperative excitation assumption, which is formally
investigated and, not surprisingly, it is strictly weaker than (classic) persistence of
excitation of the local data set.

2.1 Introduction

2.1.1 Problem Overview

We consider a set of n 2 N agents. Each agent i measures noisy samples of a pair
(yi, fi) of signals related by a linear regression of the form

yi(t) = fi(t)>q, (2.1)

in which q is a common unknown parameter. Agents exchange information through a
communication network, possibly disconnected and asymmetric. In this setting, we
consider the problem of decentralized online asymptotic estimation of the unknown
parameter q.

While this is a problem that can be solved with n independent local algorithms,
each one trying to estimate q from the local samples, communication permits agents
to benefit from the information gathered by the other agents, and thus ensures faster
convergence under excitation conditions that are strictly weaker than persistence of
excitation of the local data set. Thus, looking for a distributed design is well moti-
vated in all those context where measurements are difficult or expensive, or when
sensors are spatially distributed by construction, or in large-scale problems where
the number of parameters is large, or simply when faster convergence is needed.

For ease of exposition, we focus on the “single-variable” case where, for some
arbitrary nq 2 N, q 2 Rnq and, for each i = 1, . . . , n, yi : N ! R and fi : N ! Rnq .
Nevertheless, we remark that the approach easily extends to a multi-variable setting,
where yi(t) 2 Rm, fi(t) 2 Rnq⇥m and q 2 Rnq⇥m for some m > 1, by concatenating
m single-variable solutions.

We assume that the collection of new samples, the communication, and the up-
date of the local estimates are synchronous (while synchronicity is not necessary in
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principle, it considerably simplifies the analysis.). At each step, every agent collects
the new samples, exchanges its local state with a subset of other agents, and then
updates its local estimate of q. This is repeated in an infinite time horizon. We sup-
pose that the measured samples are corrupted by additive disturbances on which we
make no assumption other than local boundedness. These disturbances can model
measurement noise, unmodeled dynamics/terms in (2.1), or any other sources of
uncertainty in the measurement process. As disturbances affect both yi and fi, we
are in an errors-in-variables context (Söderström, 2007).

We propose a decentralized estimation law by which each agent can robustly es-
timate the common unknown parameter q asymptotically. In particular, we provide
a robust stability result of the aggregate trajectories relative to a steady state that, if
a “cooperative persistence of excitation” condition holds, is associated with a cor-
rect estimation of q. Robustness is meant in the sense of input-output stability with
respect to the exogenous disturbances, and the main result of the chapter states that
each agent’s asymptotic estimation error of q is bounded by a continuous function
of the asymptotic size of the disturbances. In particular, when disturbances vanish,
exact convergence is recovered.

2.1.2 Related Works

Multi-agent systems are well suited to model complex behaviors exhibited by bio-
logical, social, economic, and engineering networks. We want to focus on adaptive
networks, which consist of spatially distributed agents having some learning capa-
bilities. In this context, nature provides several examples of real-time learning and
adaptation behaviors, emerging from highly localized interactions among agents
having limited capabilities. Over the last decades, many distributed estimation algo-
rithms have been developed to solve signal processing or control/optimization tasks
by mimicking the aforementioned behaviors observed in natural networks (Sayed et
al., 2013).

In particular, we focus our attention on distributed estimation over networks of
systems locally sensing a pair of signals which are related by a linear regression. The
vast majority of the approaches present in the literature are based on distributed
versions of Least Squares (LS) (Mateos, Schizas, and Giannakis, 2009; Mateos and
Giannakis, 2012; Yu et al., 2019; Breschi, Bemporad, and Kolmanovsky, 2020; Xie,
Zhang, and Guo, 2020), Least Mean Squares (LMS) (Lopes and Sayed, 2008; Schizas,
Mateos, and Giannakis, 2009; Xie and Guo, 2018a; Xie and Guo, 2018c; Xie and Guo,
2018b), or Total Least Squares (TLS) (Li, Zhao, and Lv, 2021).

In general, different cooperation strategies (imposed by the network topology
or by what and how many information can be exchanged among neighbors) lead
to different estimation algorithms. We can distinguish among 3 types of estimation
strategies in the distributed RLS literature, namely consensus (Mateos, Schizas, and
Giannakis, 2009; Schizas, Mateos, and Giannakis, 2009; Mateos and Giannakis, 2012;
Xie and Guo, 2018a; Xie and Guo, 2018c; Breschi, Bemporad, and Kolmanovsky,
2020), diffusion (Lopes and Sayed, 2008; Cattivelli, Lopes, and Sayed, 2008; Chen and
Sayed, 2012; Sayed et al., 2013; Xie and Guo, 2018b; Yu et al., 2019; Xie, Zhang, and
Guo, 2020), and incremental (Lopes and Sayed, 2007; Cattivelli and Sayed, 2010).

Diffusion strategies introduce an aggregation step that helps to incorporate into
the adaptation mechanism the local information collected from the neighbors. At
each iteration, this aggregation step may either be performed before adaptation
(combine then adapt) or after (adapt then combine). On the other hand, adaptive
consensus-type strategies rely on the use of two-time scales: one for the collection of
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the measurements across the nodes, and another one to perform a sufficient number
of iterations such that the agreement on some variable of interest is reached, before
the process is repeated. Recently, inspired by distributed optimization literature,
single time-scale implementations for consensus strategies have been proposed as
well.

Considering single time scale consensus strategies having also a constant step
size (to enable continuous adaptation and learning), it can be noticed how they have
the same computational complexity of diffusion-type strategies. However, diffusion
strategies should be preferred over consensus strategies (Tu and Sayed, 2012; Sayed
et al., 2013): diffusion networks converge faster and reach lower mean-square error
deviations. Moreover, consensus-based adaptive networks may become unstable
even if all individual nodes are stable, while this is not the case in diffusion-based
adaptive networks.

Since those two strategies require all nodes to share data simultaneously with all
their neighbors and process everything in real time, it is important to mention that
other strategies exist (which are not conceptually different in terms of the local adap-
tation algorithms), having the goal of reducing the required overall computational
complexity. In terms of reducing the communication burden, we find the afore-
mentioned incremental (Lopes and Sayed, 2007; Cattivelli and Sayed, 2010) and the
partial diffusion ones (Arablouei et al., 2014; Rastegarnia, 2019). For instance, in the
incremental approach, a cyclic path is defined over the nodes and data are processed
in a cyclic manner through the network until optimization is achieved. However, de-
termining a cyclic path that covers all nodes is known to be an NP-hard problem and,
in addition, cyclic trajectories are prone to link and node failures. On the other hand,
in terms of targeting low computational complexity at each node, we could adopt
sparse RLS (Liu, Liu, and Li, 2014) or RLS with data-adaptive censoring (Wang et al.,
2018), which could be beneficial in large-scale networks.

Most approaches rely on the typical assumptions of independence, stationarity,
or gaussian properties of the measured signals. Recently, both distributed LMS (Xie
and Guo, 2018a; Xie and Guo, 2018c; Xie and Guo, 2018b) and LS (Xie, Zhang, and
Guo, 2020) strategies have been developed, which do not need these assumptions
and thus are potentially applicable to stochastic feedback systems. In addition, they
formally discuss the concept of cooperative excitation. Finally, another recent work
(Li, Zhao, and Lv, 2021) considers an errors-in-variables context, where it is allowed
to have noise affecting both measured signals.

In terms of the literature just mentioned, our work could be categorized as a
combine then adapt diffusion RLS. However, the main objective of this work is that of
approaching the problem of estimating q under a different control-oriented perspec-
tive. We consider that both yi and fi are affected by generic disturbance terms, on
which we make no statistical assumption, and we shift the focus from unbiasedness
and consistency to robustness of the estimate with respect to the disturbance, for-
malized in terms of input-to-state stability (ISS) (Sontag and Wang, 1996). In this
way, as in (Bin, Marconi, and Teel, 2019; Bin, Bernard, and Marconi, 2021), we enable
the use of canonical nonlinear control techniques applying to ISS systems, such as
small-gain methods (Jiang, Teel, and Praly, 1994), for the analysis of interconnections
between controlled systems and identifiers. To the best of our knowledge, this is the
first time that asymptotic stability and ISS properties are addressed in distributed
RLS literature, while they constitute the main focus of this chapter.



24 Chapter 2. Robust and Scalable Distributed Recursive Least Squares

2.1.3 Notation

We denote by R and N the set of real and natural numbers, respectively. If A is a
set, An denotes the n-fold Cartesian product of A. If (S,�) is a preordered set, for
every s 2 S we let S�s := {z 2 S : z � s}. If A1, . . . , An are matrices, we denote
by diag(A1, . . . , An) their diagonal concatenation. By ⌦ we denote the Kronecker
product and by s(A) the spectrum of a matrix A. For p = 1, . . . , •, | · |p denotes the
vector, or matrix induced, p-norm. We denote by ¶n the set of positive semi-definite
symmetric operators on Rn. We write A � B if A � B 2 ¶n. The n-dimensional
identity matrix is denoted by In and the n ⇥ m zero matrix by 0n⇥m. Dimensions
are omitted when clear. A function g : R�0 ! R�0 is of class-K (g 2 K) if it is
continuous, strictly increasing, and g(0) = 0. We denote by ·

+ the shift operator, i.e.
x+(t) = x(t + 1).

2.2 The Framework

2.2.1 Samples Acquisition

Let N := {1, . . . , n} denote the set of agents. At each time t 2 N, each agent i 2 N

samples the signals (yi, fi) of its regression (2.1) and obtains the samples

xi(t) = yi(t) + dy,i(t),
ji(t) = fi(t) + df,i(t),

(2.2)

in which di := (dy,i, df,i) : N ! Rnd , nd := nq + 1, are the exogenous perturbations
adding to the measurements of yi and fi and representing, for example, noise affect-
ing the measurement process and/or unmodeled dynamics or components in the
case in which a non-ideal regression of the form

yi(t) = (fi(t) + wi(t))>q + # i(t)

is sampled in place of (2.1). Due to the presence of di affecting both the regressor
fi and the regressand yi, estimating q is an errors-in-variables problem (Söderström,
2007). In the remainder of the chapter, we let y := (yi)i2N , f := (fi)i2N , d := (di)i2N ,
x := (xi)i2N , j := (ji)i2N , and we make the following uniform boundedness as-
sumption.

Assumption 2.1. There exist ȳ, f̄ > 0, such that |yi(t)|  ȳ and |fi(t)|•  f̄ for every
i 2 N and t 2 N.

2.2.2 Communication

We assume that agents can exchange information over a communication network
formally described by a family C = {Ii}i2N of sets Ii ⇢ N satisfying i 2 Ii. We call
C the communication network, and the set Ii the (inward) neighborhood of i. Each agent
can receive information by all the agents k 2 Ii, and can send information to all the
agents in the set Oi := {k 2 N : i 2 Ik}. It is not required that k 2 Ii implies i 2 Ik,
so the network may be undirected. We denote by di the cardinality of Ii, and we
associate with C the adjacency matrix A 2 Rn⇥n, defined by letting Aik = 1 if k 2 Ii
and Aik = 0 otherwise, where Aik denotes the (i, k)-th entry of A. We stress that
Aii = 1 for all i 2 N . Finally, we define the matrix

L := diag(d1, . . . , dn)
�1A.
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2.2.3 Problem Statement

With the previous definitions in mind, the problem we consider in this chapter is that
of defining, for each agent i 2 N , a recursive procedure that exploits the samples
acquired by (2.2) and the information coming from the neighboring agents to find,
asymptotically, a “good” estimate q̂i of the unknown common parameter q in (2.1).
The sought procedure must have the following properties:

1. Regulation: In absence of disturbances, i.e. when d = 0, lim q̂i(t) = q for all
i 2 N .

2. Robustness: If d 6= 0, then the asymptotic estimation errors must be bounded
continuously by the “asymptotic size” of d. Specifically, there must exists k 2
K such that lim sup |q̂i � q|  k(lim sup |d|) for all i 2 N and all bounded d.

3. Decentralization: The update law of q̂i and of all other state variables must de-
pend only from the current samples produced by (2.2) and the values of the
state variables communicated by the agents j 2 Ii.

4. Scalability: The update laws must be independent, as far as possible, from “cen-
tralized” parameters or quantities.

2.3 Distributed Recursive Least Squares

2.3.1 The Update Laws

To approach the problem delineated in Section 2.2.3, for each agent i 2 N , we pro-
pose the following update law

Y+
i =

µi
di

Â
k2Ii

Yk + (1� µi)ji j
>

i ,

h+
i =

µi
di

Â
k2Ii

hk + (1� µi)jixi,
(2.3)

with output
q̂i = gi(Yi, hi), (2.4)

in which Yi and hi are the state variables associated with Agent i and take their
values in ¶nq and Rnq respectively, Y := (Yi)i2N and h := (hi)i2N , the output q̂i is
the estimate Agent i has on q and it takes values in Rnq , ji and xi are the samples
produced by (2.2), the parameters µi 2 (0, 1) are arbitrarily chosen, and the functions
gi : ¶nq ⇥Rnq ! Rnq are degrees of freedom fixed later in Section 2.3.5.

2.3.2 The Aggregate System

Let F : (Rnq )n
! (¶nq )

n and X : (Rnq )n
⇥ Rn

! (Rnq )n be functions mapping
j = (ji)i2N 2 (Rnq )n and (j, x) = ((ji)i2N , (xi)i2N ) 2 (Rnq )n

⇥Rn respectively to

F(j) := (ji j
>

i )i2N , X(j, x) := (jixi)i2N .

Let W := diag(µ1, . . . , µn), F := WL ⌦ Inq , and G := (In �W) ⌦ Inq . Then, the
composition of (2.2) and (2.3) is a system with input (y, f, d), state variable x :=
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(Y, h) ranging in the sate-space X := (¶nq )
n
⇥ (Rnq )n, output q̂ := (q̂i)i2N , and its

dynamics is described by the following equation

x+ = g(x, y, f, d) (2.5)

in which

g(x, y, f, d) := (FY, Fh) + (GF(f + df), GX(f + df, y + dy)) (2.6)

where df := (df,i)i2N and dy := (dy,i)i2N . We equip X with the norm

|x| := max{|Y|•, |h|•}.

2.3.3 Existence and Robust Stability of a Steady State

Let µ̄ := maxi=1,...,n µi. Then, µ̄ < 1 for every choice of µi 2 (0, 1), and the operator
F is Schur stable as established by the following proposition.

Proposition 2.1. |F|•  µ̄ and, for all l 2 s(F), |l|  µ̄.

Proof. By definition of A in Section 2.2.2, Ân
k=1 Aik = di for all i = 1, . . . , n. Thus,

|F|• = |WL|• = max
i=1,...,n

n

Â
k=1

µid�1
i Aik = µ̄.

As | · |• is sub-multiplicative, then maxl2s(F) |l|  |F|•  µ̄, which concludes the
proof

As in (Bin, 2020), with each solution pair (x, (y, f, d)) of (2.5), we associate a
signal x? = (Y?, h?) : N ! X defined as

Y?(t) :=
t�1

Â
s=0

Ft�s�1GF(f(s)),

h?(t) :=
t�1

Â
s=0

Ft�s�1GX(f(s), y(s)).
(2.7)

Let (Y?
i )i2N be such that Y?(t) = (Y?

i (t))i2N for all t 2 N. Then, Y?
i (t) 2

¶nq for all t 2 N, since 0 2 ¶nq and, by construction, fi(s)fi(s)> 2 ¶nq for all
i 2 N and s 2 N. Moreover, we underline that x? is defined only by the ideal
unperturbed samples of (2.1), and does not depend on d or on the aggregate state
variable x. Finally, we also observe that (x?, (y, f, 0)) is the unique solution pair of
(2.5) satisfying x?(0) = 0.

The forthcoming proposition establishes an input-to-state stability property of
the motion x? relative to the input d. If d = 0, the result implies asymptotic conver-
gence of x to x?. Thus, we refer to x? as the ideal steady state of x. Let µ := mini2N µi
and, with ȳ and f̄ given by Assumption 2.1, let

w(s) = (1� µ)(1� µ̄)�1(2 max{f̄, ȳ}s + s2). (2.8)

Then, w 2 K and the following holds.
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Proposition 2.2. Suppose that Assumption 2.1 holds. Then, there exists a > 0 such that,
for every solution pair (x, (y, f, d)) of (2.2), the following holds

|x(t)� x?(t)|  aµ̄t
|x(0)� x?(0)|+ w( sup

s2Nt�1

|d(s)|•)

for all t 2 N.

The proof of the proposition is in Section 2.7.

Remark 2.1. If the estimation scheme (2.2), (2.3) has to be used within a closed-loop con-
trol system, one may want to have a function w which is sub-linear, as this is necessary to
enforce small-gain like conditions with linear feedback (see, e.g. (Bin and Marconi, 2020;
Bin, Bernard, and Marconi, 2021)). We remark that this can be achieved by “saturating”
the terms ji j

>

i and jixi in (2.3) within a ball of radius larger than max{ȳ, f̄}. We refer to
(Bin, 2020; Bin and Marconi, 2020; Bin, Bernard, and Marconi, 2021) for further details.

Remark 2.2. We underline that d represents disturbances on all the variables. It is well-
known that in this errors-in-variables setting, least-squares schemes are biased also if d is
a realization of a white noise (Söderström, 2007). We notice, however, that this is not in
contrast with the claim of Proposition 2.2, which in turn implies that if a bias is present due
to d, then it vanishes continuously with d. See also (Bin and Marconi, 2020, Remark 3 and
Example 1).

2.3.4 Cooperative Persistence of Excitation and Optimality of the Steady
State

Existence and robust stability of the steady state x? is always guaranteed if the sig-
nals y and f are bounded. In this section we show that, under suitable persistence
of excitation conditions, x? is also associated with a correct estimate of q for each
agent. Let (Y?

i )i2N and (h?
i )i2N be such that Y? and h?, defined in (2.7), satisfy

Y?(t) = (Y?
i (t))i2N and h?(t) = (h?

i (t))i2N at each t 2 N. Then, the following
holds.

Lemma 2.1. For every solution pair (x, (y, f, d)) of (2.5)

Y?
i (t)q = h?

i (t) (2.9)

for all i 2 N and t 2 N.

Lemma 2.1, proved in Section 2.8, guarantees that the sought parameter q satis-
fies Yi(t)q = hi(t) for all t 2 N in the ideal steady state x?, which is attractive when
d = 0. However, it does not guarantee that q can be uniquely determined by Y?

i (t)
and h?

i (t), as in general Y?
i (t) may be singular or ill-conditioned. Identifiability of q

requires further conditions formalized in this chapter as a persistence of excitation
property of the samples taken and exchanged by the agents.

Definition 2.1. Let (x, (y, f, d)) be a solution pair of (2.5). The samples of Agent i 2 N

ar said to be persistently exciting with parameters (# i, ti) 2 R>0 ⇥N if

Y?
i (t) � # i I (2.10)

holds for all t � ti.
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For ease of exposition we shall say that “Agent i is (# i, ti)-PE” to say that its
samples are persistently exciting with parameters (# i, ti). We omit (# i, ti) if clear
or unimportant. The following proposition follows directly from Lemma 2.1 and
shows that persistence of excitation implies indentifiability of q.

Proposition 2.3. Let (x, (y, f, d)) be a solution pair to (2.5). If Agent i 2 N is (# i, ti)-PE,
then for all t � ti, Y?

i (t) is invertible and

q = Y?
i (t)

�1h?
i (t). (2.11)

In the remainder of the section, we further discuss the persistence of excitation
condition of Definition 2.1. Let (x, (y, f, d)) be a solution pair of (2.5). In view of
(2.7), for each t 2 N,

Y?(t) =
t�1

Â
s=0

Ft�s�1G(f?
i (s)f

?
i (s)

>)i2N (2.12)

in which (fi(s))s=0,...,t�1 are samples of the regressor fi of (2.1), and F = WL ⌦ I
incorporates the communication network. Therefore, each matrix Y?

i (t) is an “ag-
gregate” quantity obtained by summing terms of the kind fk(s)fk(s)> obtained by
mixing the local endogenous samples (k = i) and the ones accumulated and commu-
nicated by the other agents of the network (k 2 N \ {i}), all properly weighted by
the factors µi and filtered. As a consequence, the persistence of excitation condition
(2.10) is not just a property of the samples of Agent i, but depends on all the samples
of all the other agents of the network. Hence, the name “cooperative persistence of
excitation”.

At this point, one may wonder if the contribution of communication in achieving
PE does actually carry some advantages with respect to the case in which Agent i
only uses its own samples to compute an estimate of q. In our setting, this is a well-
posed question, since the communication network has no connectivity requirements
to satisfy (Proposition 2.1 holds for every row-stochastic adjacency matrix A). For
every i 2 N , define YL

i : N ! ¶nq by letting YL
i (0) := 0 and

YL
i (t + 1) =

µi
di

YL
i (t) + (1� µi)fi(t)fi(t)> (2.13)

for t 2 N. Then, YL
i represents the ideal steady-state of Y in case the informa-

tion coming from other agents is discarded in (2.3) (i.e. if Âk2Ii
Yk is substituted by

Yi). Therefore, the condition YL
i (t) � # i I refers to a persistence of excitation prop-

erty concerning only the local samples, hence called “local PE”. Lemma 2.2 below,
proved in Section 2.9, establishes that local PE always implies that Agent i is PE if
the information coming from the neighboring agents is not discarded.

Lemma 2.2. For every solution pair (x, (y, f, d)) of (2.5), every i 2 N , every t 2 N, and
every # i > 0,

YL
i (t, j) � # i I =) Y?

i (t) � # i I.

The converse implication is instead false in general. Therefore, cooperative PE as
defined in Definition 2.1 is strictly weaker than local PE.

Finally, we remark that the PE condition is not required if one uses regularization,
as explained later in Section 2.5.2.
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2.3.5 Input-to-Output Stability and Design of gi

The only degrees of freedom of (2.3)-(2.4) that remain to be fixed are the functions
gi. In this section, we choose gi according to (Bin, 2020) (see also (Bin and Marconi,
2020; Bin, Bernard, and Marconi, 2021)) in order to force an input-to-output stabil-
ity property (made precise by Lemma 2.3 below) that will be needed for the main
convergence result later in Section 2.4. In particular, in view of Proposition 2.3, a
reasonable choice for gi(Yi, hi) would be gi(Yi, hi) = Y�1

i hi. This choice, however,
is only valid at the ideal steady state where Yi = Y?

i and hi = h?
i and if Agent i

is PE. During transitory, Yi(t) can be singular or of variable rank and, with such
choice of gi, we would fail to establish a relation of the kind (2.14) below between
the difference gi(Yi(t), hi(t))� gi(Y?

i (t), h?
i (t)) and the deviation x(t)� x?(t) from

the ideal steady state, which is needed to bound |q̂i � q| by using the stability result
of Proposition 2.2.

To avoid these problems, in this section we use the construction of (Bin, 2020) as
follows. With #i > 0 arbitrary and f̄, ȳ given by Assumption 2.1, define the set

Gi := {(Yi, hi) 2 ¶nq ⇥Rnq : |Yi|• 

✓1� µ

1� µ̄

◆
f̄2 + 1

|hi|• 

✓1� µ

1� µ̄

◆
f̄ȳ + 1, Yi �

#i
2

I}.

Then, we pick gi : ¶nq ⇥Rnq ! Rnq in such a way that:

G1. gi is continuous and bounded.

G2. gi(Yi, hi) = Y�1
i hi for all (Yi, hi) 2 Gi (notice that in this case Yi is invertible).

Then, by means of the same arguments used in (Bin, 2020), the following property
can be established.

Lemma 2.3. For each i 2 N , let gi be chosen such that G1 and G2 hold. Then, there exists
`i > 0 such that

|gi(Yi, hi)� gi(Y0i, h0i)|•  `i(|Yi �Y0i|• + |hi � h0i |•)

holds for all (Yi, hi) 2 Gi and all (Y0i, h0i) 2 ¶nq ⇥Rnq .

In view of Proposition 2.1, from (2.7) we obtain |Y?
i (t)|•  |Y?(t)|•  (1 �

µ)(1� µ̄)�1f̄2 and |h?
i (t)|•  |h?(t)|•  (1� µ)(1� µ̄)�1f̄ȳ for all t 2 N. Hence,

if Agent i is (# i, ti)-PE with # i � #i, then (F?
i (t), h?

i (t)) 2 Gi for all t � ti. Therefore,
Lemma 2.3 implies that for every solution pair (x, (y, f, d)) of (2.5) such that Agent i
is (# i, ti)-PE with # i � #i, the input-to-output stability property

|gi(Y?
i (t), h?

i (t))� gi(Yi(t), hi(t)|  2`i|x?(t)� x(t)| (2.14)

holds for all t � ti.

Remark 2.3 (Choice of gi). A possible choice of gi satisfying the above properties con-
sists in taking gi(Yi, hi) as a vector with k-th component gi(Yi, hi)k := satq̄i

(ui,k), where
ui,k is the k-th component of Y†

i hi (·† denotes the Moore-Penrose pseudoinverse), q̄i :=
2(f̄ȳ(1� µ)(1� µ̄)�1 + 1)/#i, and sat?(·) := min{max{·, �?}, ?} denotes the stan-
dard saturation function. See (Bin, 2020) for further details.
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2.4 Main Result

Let w be the class-K function (2.8) for which Proposition 2.2 holds and, for each
i 2 N , let #i > 0 be the constant used in the construction of the set Gi and `i > 0 be
such that Lemma 2.3 holds. Then, the following theorem establishes the main result
of the chapter, which relates the asymptotic estimation error on q to the asymptotic
“size” of the disturbance d.

Theorem 2.1. Suppose that Assumption 2.1 holds. Then, every solution pair (x, (y, f, d))
of (2.5) with d bounded is bounded. Moreover, if Agent i 2 N is (# i, t?

i )-PE for some
ti 2 N and with # i � #i, then

lim sup |q̂i � q|•  2`iw(lim sup |d|•). (2.15)

Proof. In view of (2.7), under Assumption 2.1 x? is bounded. Then, boundedness of
x when d is bounded follows by Proposition 2.2. Moreover, by means of standard
ISS arguments (see, e.g. (Cai and Teel, 2009, Lemma 3.6)), one can deduce from
Proposition 2.2 that

lim sup |x� x?|  w(lim sup |d|•). (2.16)

Finally, if Agent i is (# i, ti)-PE with # i � #i then, as shown at the end of Section
2.3.5, (Y?

i (t), h?
i (t)) 2 Gi for all t � ti. Since in this case Propositions 2.3 implies

q = Y?
i (t)

�1h?
i (t) = gi(Y?

i (t), h?
i (t)) for t � ti, then the claim follows from (2.14)

and (2.16).

2.5 Some Remarks on Convergence, Regularization and Scal-
ability

2.5.1 Convergence Rate and Exact Convergence

For a given i 2 N , we say that the limit (2.15) holds uniformly if, for fixed d,
the following property holds: for every e > 0 and r > 0, there exists t̄ > 0,
such that every solution pair (x, (y, f, d)) with |x(0)|  r satisfies |q̂i(t) � q|• 
2`iw(lim sup |d|•) + e for all t � t̄.

In general, (2.15) does not hold uniformly since (2.14) starts to hold only after
time ti, which is the time after which Agent i is PE. However, after ti has passed,
convergence is uniform and exponential with rate µ̄, in view of Proposition 2.2. There-
fore, if one can guarantee that there exists t̄ 2 N such that Agent i is (# i, t̄)-PE for
every solution pair of (2.5) with # i � #i, then (2.15) is uniform and an exponential
convergence rate is guaranteed.

Finally, we stress that, if lim d = 0, then (2.15) can be strengthen to

lim q̂i(t) = q,

which is exact convergence.

2.5.2 On the Use of Regularizers

As the persistence of excitation condition of Definition 2.1 cannot be checked a priori
in general, one may wonder whether such assumption can be eliminated. It turns
out it is possible at the price, however, of introducing a bias in the estimates. In
particular, by following (Bin, 2020), we can define a matrix Wi 2 ¶nq arbitrarily and
choose gi such that the following property holds in place of Item G2:
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G2’. gi(Yi, hi) = (Yi + Wi)�1hi for all (Yi, hi) 2 G0i,

in which G0i is defined by modifying Gi as follows

G0i := {(Yi,hi) 2 ¶nq ⇥Rnq : |hi|• 

✓1� µ

1� µ̄

◆
f̄ȳ + 1

|Yi|• 

✓1� µ

1� µ̄

◆
f̄2 + |Wi|• + 1, Yi �

#i
2

I}.

If Wi is chosen such that Wi � # i I, then Y?
i (t) + Wi � # i I for all t 2 N and, hence,

Y?
i (t) + Wi 2 G0i for all t 2 N. Therefore, the PE condition of Definition 2.1 is not

needed anymore to conclude (2.14). Furthermore, in this case also the saturation of gi
(Item G1) can be avoided. Indeed, Wi � # i I implies Yi(t) + Wi � # i I for all t 2 N

and for all solution pairs (x, (y, f, d)) of (2.5), since Yi(t) 2 ¶nq for all t 2 N. Hence,
one has1

|(Y?
i (t) + Wi)

�1h?
i (t)� (Yi(t) + Wi)

�1hi(t)|•


n(1� µ)f̄ȳ
(1� µ̄)#2 |Y?

i (t)�Yi(t)|• +

p
n

#
|h?

i (t)� hi(t)|•,

which implies (2.14) with 2`i = n(1� µ)f̄ȳ(1� µ̄)�1#�2 +
p

n#�1. Thus, if Wi � # i I,
one can simply pick

gi(Yi, hi) := (Yi + Wi)
�1hi. (2.17)

Nevertheless, if Wi 6= 0, one cannot conclude (2.15) anymore. Instead, one ob-
tains the weaker inequality

lim sup |q̂i � q|•  ci(Wi) + 2`iw(lim sup |d|•), (2.18)

in which ci(Wi) � 0 is a bias vanishing with |Wi|. For further details, we refer to
(Bin, 2020).

2.5.3 Remarks on Scalability and Decentralization

The update laws (2.3) are decentralized, since the update of the state variables of
each agent i depends only on the state variables of the neighboring agents k 2 Ii.
Moreover, the “gains” µi are arbitrary, and each agent can fix µi independently from
the others. The construction of gi, however, uses centralized quantities since the set
Gi relies on the knowledge of µ, µ̄, and the constants f̄ and ȳ given by Assumption
2.1. Nevertheless, we observe the following:

• The quantities µ, µ̄, f̄, and ȳ are only used to estimate an a priori upper bound
on the norm of Y?

i and h?
i . If such quantities are not available, an agent can

either estimate the upper bound by looking at the local quantities |Yi(t)|• and
|hi(t)|•, or take a very large upper bound that is likely to be achieved.

• If Agent i uses a regularization matrix Wi � # i I then, as explained in previous
Section 2.5.2, gi can be chosen as in (2.17), and thus no knowledge of µ, µ̄, f̄,
and ȳ is required anymore.

1We used the fact that for every A, B 2 ¶nq satisfying A, B � #I, one has |A�1
� B�1

| = |B�1(B�
A)A�1

|  |B�1
||A�1

||A� B| for every sub-multiplicative norm, and |A�1
|• 

p
n|A�1

|2 
p

n/#.
Hence, for every x, y 2 Rnq , |A�1x � B�1y|• = |(A�1

� B�1)x + B�1(x � y)|•  (n/#2)|x|•|A �
B|• + (

p
n/#)|x� y|•.
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Overall, we can therefore conclude that (2.3) has good scalability properties for
what concerns the definition of the update laws. Nevertheless, the update laws (2.3)
are synchronous, and synchronization may be seen as a centralized feature. We re-
mark, however, that synchronicity is not strictly necessary, as long as a stability prop-
erty of the kind proved in Proposition 2.2 holds, and it has been assumed to simplify
the forthcoming analysis. The same applies to the communication topology, which
can be time-varying as far as stability is preserved.

Finally, we observe that the function w, defined in (2.8), for which the claim of
Proposition 2.2 holds is proportional to the factor (1� µ)(1� µ̄)�1. Thus, while the
choice of each gain µi is independent from the others, the more the gains are similar,
the better it is from the standpoint of sensitivity to disturbances. In the limit case in
which the gains satisfy µ1 = · · · = µn, then (1� µ)(1� µ̄)�1 = 1, and w does not
depend on them.

2.6 Numerical Example

Given a road network, represented by a directed graph (V ,N ) as in Figure 2.1, with
V a set of vertices representing crossings and N ⇢ V

2 the set of roads, the problem
of road pricing pertains the assignment of a toll ti to each road i 2 N with the aim of
mitigating congestion. Road pricing boasts a long academic history, especially in the
economics community (Pigou, 1920; Walters, 1961; Small and Verhoef, 2007; Yang
and Huang, 2005). The basic idea follows the principle of marginal cost (or Pigovian
tax): Efficiency is obtained when each driver pays a toll balancing the externalities
caused by their journey. Formally, if di denotes the density of vehicles on Road i 2
N , and `(di) the corresponding latency2 (the average travel time), then the marginal
cost pricing theory suggests taking (Yang and Huang, 2005, Section 3.2)

ti = `0(di)di, (2.19)

where `0 denotes the derivative of `.
In this section, we consider the problem of adaptive decentralized marginal cost pric-

ing described hereafter. We assume that with each arc i there is associated a unique
agent (labeled by i as the corresponding arc). Agents aim to implement the marginal
cost policy (2.19) in a distributed way, with each agent responsible of deciding the
toll levied on its arc. To implement (2.19), agents need the function `0, which is un-
known a priori (the uncertain form of such functions is, indeed, one of the main
obstacles for the implementation of marginal cost pricing, see e.g.(Yang, Meng, and
Lee, 2004)). Hence, `0 must be estimated at run time. We approach this problem
by applying the methodology developed in the previous sections. Specifically, we
suppose that each agent i can measure (with the due approximation) the density
di(t) and the corresponding latency `(di(t)) on the associated road i at each time t.
In terms of (2.2), we thus have yi(t) = `(di(t)), fi(t) = (y1(di(t)), . . . , ynq (di(t))).
Furthermore, we assume that agents can communicate with those associated with
neighboring arcs. Namely, we assume that a communication network (Section 2.2.2)
C = {Ii}i2N is given with Ii := {j 2 N : j1 = i1 _ j1 = i2 _ j2 = i1 _ j2 = i2},
where for an arc k 2 N we let k1, k2 2 V be such that k = (k1, k2). In this set-
ting, we consider the approximation ` ⇡ Ânq

k=1 qkyk for some C
1 basis-functions yk,

2Here, we tacitly assume that the latency function ` is the same for each road. This assumption is
justified when considering similar roads, as we do in the forthcoming simulations.
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FIGURE 2.1: Road Network.

and we equip each agent with the distributed estimation scheme (2.3)-(2.4). Theo-
rem 2.1 ensures robustness with respect to the unavoidable uncertainty in the mea-
surements and in the approximation of `. Finally, with q̂i denoting the approxima-
tion of q := (q1, . . . , qnq ) that Agent i obtains from (2.4), each agent approximates `0

by b̀0i := q̂>i y0, with y0 := (y01, . . . , y0nq
).

A similar problem has been considered in (Poveda et al., 2017) where, however,
each agent estimates its own parameters alone without communicating with others.
We stress that, in our context, estimating the parameters q in a collective way has
the advantage that each agent can exploit the information coming from the traffic
data in other roads. This is particularly useful for agents controlling empty or very
low congested roads, as otherwise they could not obtain a meaningful estimate from
their own measurements and thus levy a proper toll.

In the forthcoming simulation, we consider a road network represented by the
graph shown in Figure 2.1. The simulation setting is the following. Arcs represent
one-way one-lane paths. Their length Li is measured in cells (a cell is the discrete
unit of space), and in the following is set to Li = 50 for all i 2 N . Vehicles flows are
simulated microscopically and in discrete-time. Each vehicle v enters the network
with a given origin Ov and destination Dv, and has state variable (av, cv) 2 N ⇥N,
where av represents the current arc and cv the current cell occupied by v. These
variables are updated as follows

a+
v =

(
av if cv < Lav or (J(av), 1) is occupied
J(av) otherwise

c+v =

8
><

>:

cv if cv = Lav and (J(av), 1) is occupied
1 if cv = Lav and (J(av), 1) is free
cv + Kv otherwise

in which Kv := sup{k 2 NV : cv + k  Lav and (av, cv + h) is not occupied for all h 2
Nk} denotes the maximal number of cells v can advance, where V = 4 denotes a
common maximal speed (in cells per time units), and J(av) is the first arc produced
by a shortest-path algorithm finding the shortest weighted path3 between the cur-
rent node to which av is incident and the vehicle’s destination Dv. Here, the weights

3This corresponds to the simplifying (yet widespread) assumption of fully rational drivers with
perfect knowledge of the network weights.
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on each i 2 N at each t 2 N are given by

wi(t) := Li/V + ti(t),

namely, by the sum of an expected travel time Li/V when no congestion is present,
and the time-equivalent of the toll levied on i at time t (here, we assume that all
vehicles have a unitary value of time factor, so as we can measure ti(t) in time units).
The order of update of the vehicles is chosen randomly at each time.

For the estimation phase, we pick nq = 6 and choose the basis functions y1, . . . , y6
as the elements of a biorthogonal spline basis4 for L2([0, 1]) (Daubechies, 1992, Pages
271–280). Each agent is then equipped with the estimator (2.3)-(2.4). For simplicity,
the update of the estimation law is synchronized with that of the vehicles. The den-
sity di(t) and latency yi(t) = `(di(t)) on Road i are estimated from microscopic
observations as di(t) = cardV t

i /Li, and yi(t) = Li · (Âv2V t
i

st
v)

†, where V
t
i := {v 2

V : av(t) = i} denotes the set of vehicles on Road i at time t, and st
i is the speed of

vehicles v at time t, estimated as st
i = cv(t)� cv(t� 1) if av(t) = av(t� 1), or st

i = 1
otherwise. The parameters µi are chosen as µi = 0.99 + i1 · 10�3 (i1 denotes the tail
node of the arc i). Moreover, for each i, gi is chosen as in (2.17) with Wi = 10�3 I.

Figures 2.2-2.5 show the results of a simulation running for T = 1000 units of
time with the inflow form node 1 to node 4 at full capacity and that from 6 to 4 at
80%. Namely, at each time t, after the update of the vehicles’ state variables, if the
first cell of the first arc of the current shortest path connecting 1 and 4 (resp. 6 and
4) is free, then with probability 1 (resp. 0.8) a new vehicle v with origin-destination
pair (Ov, Dv) = (1, 4) (resp. (Ov, Dv) = (6, 4)) is added to the network.

In particular, Figure 2.2 shows that, without tolls, all drivers seek the path that
would be the shortest in absence of congestion. Consequently, we observe a high
congestion concentrated to few roads, which provokes a low traveling speed. In-
stead, Figure 2.3 shows a simulation where tolls are levied according to the adaptive
methodology described previously. As the figure clearly shows, the levied tolls have
the effect of distributing more equally the drivers over the networks’ roads, with the
consequence of a lower congestion on each road and a larger mean speed. Figure 2.4
shows a comparison between these two simulations in terms of mean congestion,
mean speed, and mean travel time from the origin to the destinations. As shown by
the figure, the developed adaptive pricing mechanism permits to more than double
the mean speed while more than halving congestion and travel time. Finally, for the
case where tolls are levied, Figure 2.5 shows the dynamics of the estimated parame-
ters. As it can be seen from the figure, all agents estimate similar parameters thanks
to the communication and the updates (2.3).

2.7 Proof of Proposition 2.2

Pick arbitrarily a solution pair (x, (y, f, d)) to (2.5), and let x? be defined as in (2.7).
By direct solution, (2.5) yields

Y(t) = FtY(0) +
t�1

Â
s=0

Ft�s�1GF(f(s) + df(s))

4Specifically, yk can be obtained in MATLAB as yk(·) := 2�s/2 j(2�s
·�k) with s = �2 and where j

is the dual scaling function obtained with the command wavefun of the Wavelet Toolbox with argument
‘bior3.5’.
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FIGURE 2.2: Time series of the congestion (red) and mean speed
(blue) on each road in absence of tolls. The speed is normalized with
respect to the maximum speed V. The time series are averaged on
a moving window of size 15 time units. Label (i, j) denotes the arc

(road) from Node i to Node j in the graph of Figure 2.1.
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FIGURE 2.3: Time series of the congestion (red), mean speed (blue),
and levied toll (green) on each road in presence of tolls. The speed is
normalized with respect to the maximum speed V, the tolls are nor-
malized with respect to the maximum toll levied. The time series are
averaged on a moving window of size 15 time units. Label (i, j) de-
notes the arc (road) from Node i to Node j in the graph of Figure 2.1.
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FIGURE 2.4: Comparison between performances when no tolls are
levied (red) and when tolls are levied (blue). The mean speed an the
mean congestion are computed by averaging the corresponding time
series shown in Figures 2.2 and 2.3 over the roads with non-zero oc-
cupation. The mean travel time is the average of the time each driver

takes to go from its origin to its destination.
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FIGURE 2.5: Estimated parameters when tolls are levied. Brighter
and darker shades of the same color are used to plot the time series

of the same parameter for different agents.

for all t 2 N. Define eY := Y� Y? and eF(f, df) := F(f + df)� F(f). In view of
(2.7), we obtain

|eY(t)|•  µ̄t
|eY(0)|• + (1� µ)

t�1

Â
s=0

µ̄t�s�1
|eF(f(s), df(s))|•,

for all t 2 N, where we have used the fact that, by construction, Y?(0) = 0, |G|• =
1� µ, and that, in view of of Proposition 2.1, |F|•  µ̄.

Similar arguments show that, with h̃ := h � h? and eX(f, y, d) := X(f + df, y +
dy)� X(f, y), we have

|h̃(t)|•  µ̄t
|h̃(0)|• + (1� µ)

t�1

Â
s=0

µ̄t�s�1
|eX(f(s), y(s), d(s))|•

for all t 2 N.
Next, observe that, for all a, b 2 Rnq and c, d 2 R

|aa> � bb>|•  2|a|•|a� b|• + |a� b|2•
|ac� bd|•  |a|•|c� d|• + |c|•|a� b|•

+ |a� b|•|c� d|•.

By using these relations with a = f(s), b = f(s) + df(s), c = y(s), and d = y(s) +
dy(s), we obtain

max
n
|eF(f(s), df(s))|•, |eX(f(s), y(s), d(s))|•

o

 2 max{f̄, ȳ}|d(s)|+ |d(s)|2

for all s 2 N. Hence, x̃ := x� x? satisfies

|x̃(t)| = max
n
|eY(t)|•, |h̃(t)|•

o

 µ̄t
|x̃(0)|+

✓1� µ

1� µ̄

◆ �
2 max{f̄, ȳ}|d|•,t + |d|2•,t

�
,
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where we let |d|•,t := sups2Nt�1
|d(s)|• and we used the fact that Ât

s=0 µ̄t�s�1


Â•
s=0 µ̄s = (1� µ̄)�1.

2.8 Proof of Lemma 2.1

For every t 2 N, we have Y?
i (t)q = h?

i (t) for all i 2 N if and only if

Y?(t)q = h?(t). (2.20)

It thus suffices to prove that (2.20) holds for all t 2 N. We proceed by induction.
Suppose that at some t 2 N, (2.20) holds. Then, and at t + 1 we have

Y?(t + 1)q � h?(t + 1)
= F(Y?(t)q � h?(t)) + G(F(f(t))q � X(f(t), y(t)))
= G(F(f(t))q � X(f(t), y(t))).

By definition of F and X, and using (2.1), we obtain F(f(t))q = (fi(t)fi(t)q)i2N =
(fi(t)yi(t))i2N = X(f(t), y(t)), and thus we conclude that F(t + 1)q � h(t + 1) = 0,
which implies Y?(t + 1)q = h?(t + 1).

Since Y?(0) = 0 and h?(0) = 0, then (2.20) holds at t = 0. Therefore, the claim
follows by induction on t.

2.9 Proof of Lemma 2.2

The proof is by induction. Pick a solution pair (x, (y, f, d)) to (2.5), and assume that
Y?

i (t) � YL
i (t) for some t 2 N, then in view of (2.7) and (2.13), we obtain

Y?
i (t + 1) =

µi
di

Â
k2Ii

Y?
k (t) + (1� µi)f

?
i (t)f

?
i (t)

>

= YL
i (t + 1) +

µi
di

⇣
Y?

i (t)�YL
i (t)

⌘
+

µi
di

Â
k2Ii\{i}

Y?
k (t)

� YL
i (t + 1),

where we used the fact that Y?
k (t) � 0 for all i, k 2 N and, by assumption, Y?

i (t) �
YL

i (t).
By arbitrariness of t 2 N, and since Y?

i (0) = 0 � 0 = YL
i (0), then we conclude

that Y?
i (t) � YL

i (t) holds for all t 2 N. Thus, for all t 2 N, YL
i (t) � # i I implies

Yi(t) � YL
i (t) � # i I.

2.10 Conclusions

We proposed a distributed recursive least squares algorithm for the estimation of
an unknown parameter over a network. The main feature and novelty of this work
consists in robustness to general bounded disturbances in an ISS sense, considering
an errors-in-variables context. In addition to robustness and cooperative excitation,
also convergence rate and scalability were discussed. Finally, a road pricing example
was discussed and simulated.

The most important concept to be stressed is that this distributed identifier could
be easily used in control problems like, for instance, cooperative adaptive output



2.10. Conclusions 39

regulation. Indeed, the ISS property of the identifier (usually not investigated in
other works in distributed estimation literature) enables the use of canonical nonlin-
ear control techniques such as small-gain methods for the analysis of the intercon-
nection between controlled systems and identifiers.
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Part II

Robust Adaptive Control of
Multi-Agent Systems
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Chapter 3

A distributed indirect adaptive
approach to cooperative tracking in
networks of uncertain single-input
single-output systems

Current approaches to the cooperative control of network systems are based on a
priori knowledge about the (follower) system dynamics: either the dynamics are
known, or assumed to be minimum phase, or initial stabilizing controllers are avail-
able for each system. The purpose of this chapter is to show that for single-input
single-output systems the above assumptions can be relaxed. We propose an indi-
rect adaptive methodology that does not require the knowledge of the parameters of
the systems, or the systems to be minimum phase, or initial stabilizing controllers,
in order to guarantee asymptotic tracking.

3.1 Introduction

Cooperative output tracking refers to the problem of making a network of follower
systems (hereafter referred to simply as systems) to track the behavior of a leader
exosystem (hereafter referred to simply as exosystem). This problem can be viewed
as a special case of cooperative output regulation, where tracking and disturbance
rejection can be treated in a unified way, even for Multi-Input Multi-Output (MIMO)
systems (Su and Huang, 2012a). Cooperation arises from solving the problem in a
distributed way when not all systems in the network can access the signals of the
exosystem: the main idea is that the systems not directly connected to the exosys-
tem reconstruct the exosystem signals through communication with neighbors (Xi-
ang, Wei, and Li, 2009). In the traditional formulations of cooperative tracking (see
(Wang et al., 2010) for a linear example and (Isidori, Marconi, and Casadei, 2014) for
a nonlinear one), the dynamics of the systems are considered to be perfectly known
or belonging to a sufficiently small uncertainty set, and the exosystem dynamics are
assumed to be globally known in the network. For example, in the linear case, the ex-
osystem dynamics correspond to a multi-dimensional harmonic oscillator (Wieland,
Sepulchre, and Allgöwer, 2011), whose frequencies are traditionally considered to
be globally known in the network (Su, Hong, and Huang, 2013). However, in real-
life networked environments, information is partial or not available. Therefore, it is
desirable to consider cooperative tracking problems in which: (a) the dynamics of
the systems involve large parametric uncertainties, and (b) the exosystem dynam-
ics are not globally known. Different distributed observer designs with adaptive
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gains have been used to reconstruct the state of the exosystem not only for homoge-
neous (Li et al., 2013) and heterogeneous (Li, Chen, and Ding, 2016) known system
dynamics, but also for special classes of heterogeneous uncertain system dynam-
ics (e.g. harmonic oscillators (Baldi and Frasca, 2019), Euler-Lagrange dynamics
(Abdessameud, Tayebi, and Polushin, 2017; Feng et al., 2018), dynamics in model
reference form (Harfouch, Yuan, and Baldi, 2018) or observer canonical form (Ding,
2017)).

When the leader exosystem dynamics are not globally known, it has been as-
sumed in (Cai et al., 2017) that the systems connected to the exosystem know the
leader state matrix and share it across the network through consensus dynamics.
Communicating such matrices in addition to the observer states requires extra com-
munication. To avoid the use of extra communication, estimation techniques for
the exosystem dynamics have been combined with: robust designs where the dy-
namics of the (follower) systems belong to a sufficiently small uncertainty set (Wu
et al., 2017); learning-based designs where the dynamics of the (follower) systems
are unknown but an initial stabilizing controller is assumed to be available for each
system(Modares et al., 2016); cooperative output regulation designs with asymptotic
(Wang and Huang, 2019) or exponential (Wang and Huang, 2019) leader estimation,
with known follower systems dynamics; and adaptive designs where the dynamics
of the follower systems are unknown but with unitary relative degree and strongly
minimum phase properties (Su and Huang, 2013).

The main contribution of this chapter is to show that, for Single-Input Single-
Output (SISO) linear time-invariant systems, the cooperative tracking problem can
be solved without any a priori knowledge about both the exosystem and system dy-
namics. In addition, the system dynamics are allowed to be non-minimum phase.
Our approach is an adaptive methodology consisting of three steps. The first step
involves an on-line fully-distributed estimation of the unknown exosystem frequen-
cies. The second step involves the on-line estimation of the unknown parameters
of a minimum state-space realization, considered without loss of generality, of the
systems in the network. Finally, in the third step, all the estimated parameters are
used on-line to solve a set of regulator equations, i.e. the resulting controller is an
adaptive version of the so-called feedforward approach to distributed tracking (Su
and Huang, 2012b; Lv et al., 2016).

The novelty of this work is to show analytically that the distributed exosystem
(leader) estimator can work in synergy with local estimators, that estimate in real
time the unknown parameters of the (follower) systems. Even though the method-
ology is developed for SISO systems by using a rich library of tools from (Ioannou
and Sun, 2012), it is a starting point for extending the approach to more general
MIMO systems.

3.2 Notation and Basic Concepts of Graph Theory

The transpose of a matrix or of a vector is indicated with XT and xT respectively. The
q�th element of a vector v is indicated by vq. The n⇥ n identity matrix is denoted
by In. If A 2 Rm⇥n and B 2 Rp⇥q, then their Kronecker product is the mp⇥ nq block
matrix

A⌦ B =

2

64
a11B · · · a1nB

... . . . ...
am1B · · · amnB

3

75
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where aij are the entries of matrix A. A diagonal matrix D = diag(d1, d2, . . . , dn)
is denoted as diag(dk) �n ; a block-diagonal matrix is denoted as D = bdiag(Dk) �n .
A matrix M 2 Rn⇥n is said to be negative definite if, for every non-zero vector
x 2 Rn, it results xT Mx < 0. A vector signal x(·) is said to belong to L2 (x 2 L2)
if
R •

0 kx(t)k
2 dt < •. A vector signal x(·) is said to belong to L• (x 2 L•) if

max
t�0
kx(t)k < •.

We consider networks of dynamical systems (also referred to as nodes), which
are linked to each other via a communication graph, that describes the allowed infor-
mation flow. In other words, we say that system i has a directed connection to system
j if the second can receive information from the first. When the information can
flow in both directions, the connection is said to be undirected. In a communication
graph, a special role is played by the leader node, which is a system (typically indi-
cated as system 0) that does not receive information from any other system in the
network. The communication graph describing the allowed information flow be-
tween all the systems, leader excluded, is completely defined by the pair G = (V , E),
where V = {1, . . . , N} is a finite nonempty set of nodes, and E ✓ V ⇥ V is a set of
pairs of nodes, called edges. To include the presence of the leader in the network
we define Ḡ = {V , E , T }, where T ✓ V is the set of those nodes, called target nodes,
which receive information from the leader. Figure 3.1 provides a simple example of
how V , E , and T can be defined. Two square matrices are instrumental to find many

0

1

2

3

4
FIGURE 3.1: Example of communication graph.

useful properties of a communication graph: the adjacency matrix A = [aij] 2 RN⇥N

and the Laplacian matrix L = [lij] 2 RN⇥N . Specifically, the adjacency matrix of an
undirected communication graph is defined as aii = 0 and aij = aji = 1 if (i, j) 2 E ,
where i 6= j; the Laplacian matrix is defined as lii = Âj aij and lij = �aij, if i 6= j. The
adjacency and Laplacian matrices corresponding to the example in Figure 3.1 are

A =

2

664

0 1 1 0
1 0 1 0
1 1 0 1
0 0 1 0

3

775 , L =

2

664

2 �1 �1 0
�1 2 �1 0
�1 �1 3 �1

0 0 �1 1

3

775 .

In addition, we use a square diagonal matrix, the target matrix M = [mij] 2 RN⇥N , to
describe the directed communication of the leader with the target nodes. The target
matrix is defined as mii = 1 if i 2 T and mii = 0 otherwise. In the example of Figure
3.1, we have M = diag(1,0,0,0). An undirected graph G is said to be connected if,
taken any arbitrary pair of nodes (i, j) where i, j 2 V , there is a path that leads from
i to j (the graph G in Figure 3.1 is undirected and connected). Finally, let us define
the leader-follower topology matrix as B = L+M. When L is the Laplacian matrix of
an undirected and connected graph, B is positive definite by construction.
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3.3 Problem formulation

The following network of N heterogeneous uncertain SISO systems is considered

yi =
bi,1sni�1 + . . . + bi,ni�1s + bi,ni

sni + ai,1sni�1 + . . . + ai,ni�1s + ai,ni

ui

i 2 V = {1, 2, . . . , N}

(3.1)

whose minimal state-space realization in the observable form is given, without loss
of generality, as:

ẋi =

2

64
�ai,1

...
Ini�1

�ai,ni 0 · · · 0

3

75

| {z }
Ai

xi +

2

64
bi,1

...
bi,ni

3

75

| {z }
bi

ui

yi = [1 0 · · · 0]| {z }
cT

i

xi , i 2 V

(3.2)

where xi 2 Rni , ui 2 R, yi 2 R are the state, the control input, and the output
of the i-th system, respectively. The coefficients of the numerator and denominator
polynomials in (3.1) which appear as entries of Ai 2 Rni⇥ni and bi 2 Rni , are unknown
constants.

The control objective is to design, for every system (3.2), a distributed control
strategy for ui, that makes each yi track the output of an exosystem, or leader sys-
tem. The exosystem is a multi-dimensional harmonic oscillator described by the
following equations

v̇ = bdiag
✓

0 wk
�wk 0

�◆

 �
q/2| {z }

S

v , v(0) =

2

64
v1(0)

...
vq(0)

3

75

r = [

q/2 timesz}|{
0 1 0 1 · · · 0 1 ]| {z }

cT
0

v

ei = yi � r = cT
i xi � cT

0 v

(3.3)

where wk > 0, k = 1, . . . , q/2, are the frequencies of the leader system, which are
distinct and assumed to be unknown to all systems in the network. The exosystem is
marginally stable, because the frequencies wk are assumed to be distinct. Each pair k
of initial conditions [v2k�1(0) v2k(0)]T, k = 1, . . . , q/2, in (3.3) should be nonzero (in
order to generate harmonics with nonzero amplitude). In (3.3), v 2 Rq is the leader
state, r 2 R is the reference signal to be tracked, and ei 2 R is the tracking error
to be driven to zero. It is worth remarking that, when the state of the exosystem
is fully measurable and available to the target nodes, the structure of the exosys-
tem is in practice completely determined by the user (Su and Huang, 2012a; Su and
Huang, 2012b; Lv et al., 2016). In this work we consider the exosystem structure (3.3)
(generator of harmonics), with unknown parameters.

A scalar integrator v̇q+1 = 0, vq+1(0) 6= 0, cT
0 q+1 = 1, can be added to the blocks

of (3.3) to generate as output r a sum of harmonics with nonzero offset. In such
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case the results of this chapter follow accordingly with minor modifications since no
additional unknown parameters need to be estimated.

The following standard assumptions are made.

Assumption 3.1. The pairs (Ai, bi) are controllable, the pairs (ci, Ai) are observable, and
ni is known, 8 i 2 V .

Assumption 3.2. The zeros of (3.1) do not coincide with the eigenvalues of S.

Assumption 3.3. The order q of the exosystem is known and satisfies q
2 � n̄ = maxi ni.

Assumption 3.4. The graph G of the leaderless network is undirected and connected, and
the leader interacts with at least one system (T 6= ∆).

Remark 3.1. Assumption 2 is sufficient to guarantee the existence of solution pairs (Xi, pi),
8 i 2 V to the linear regulator equations (Francis, 1977)

XiS = AiXi + bi pT
i

0 = cT
i Xi � cT

0 .
(3.4)

Equations (3.4), whose solutions are used to solve the tracking problem, can be expressed in
the compact form

Qixi = bi (3.5)

where
xi =~2

✓
Xi
pT

i

�◆
, bi =~2

✓
0
�cT

0

�◆
, (3.6)

Qi = ST
⌦


Ini 0
0 0

�
� Iq ⌦


Ai bi
cT

i 0

�
. (3.7)

Assumption 3 guarantees the correct identification of all parameters in (3.1) and, as later
explained in Remark 5, provides a less restrictive external probing as compared to existing
approaches (Modares et al., 2016).

We are now ready to give the problem formulation.

Problem 3.1. Under Assumptions 1-4, given the network of uncertain systems (3.2) with
uncertain exosystem (3.3), design distributed adaptive control laws ui such that the signals
of the closed-loop network system are bounded, and the tracking errors ei satisfy

lim
t!•

ei(t) = 0, 8 i 2 V .

Remark 3.2. Solving Problem 3.1 in a distributed way presents at least three challenges:
(a) the exosystem frequencies are unknown to all systems; (b) the parameters in (3.2) are
unknown; (c) the solutions to the regulator equations (3.4) are unknown as they depend on
unknown parameters. In our approach to be presented in the subsequent sections we use
on-line parameter estimators and adaptive control techniques (Ioannou and Sun, 2012) to
deal with the unknown parameters.

3.4 Distributed exosystem estimator

The first step for solving Problem 3.1 is the design of a distributed exosystem esti-
mator. The task of such estimator, as sketched in Figure 3.2, is to estimate S for all
systems, and to reconstruct the state v for the non-target nodes (the exosystem state v
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Exosystem 𝑣 𝜂1
𝜂2 Exosystem

Estimator 2
ሶ𝑣 = 𝑆𝑣

መ𝑆1

System 2

Controller 2

መ𝑆2

Exosystem
Estimator 1

System 1

Controller 1

FIGURE 3.2: To reconstruct the exosystem state, non-target nodes ex-
change auxiliary variables according to the communication graph.

is available only to the target nodes through mii). In the following, time dependence
is omitted whenever obvious.

Let us start by defining the local observation error for system i:

ei =
N

Â
j=1

aij(hi � hj) + mii(hi � v), (3.8)

where aij and mii come from the adjacency and the target matrices, and hi represents
the locally reconstructed exosystem state for system i. Note that the error in (3.8)
represents a consensus error over the variable of interest v; in other words, ei !

0 8i 2 V implies the local reconstruction of the exosystem state, hi ! v 8i 2 V .
To represent the variables for the overall network in a compact form, we use

the Kronecker product. After defining h = [hT
1 , hT

2 , . . . , hT
N ]

T
2 RNq and vm =

[vT, vT, . . . , vT]T 2 RNq, it is easy to write the overall observation error e = [eT
1 , eT

2 , . . . , eT
N ]

T,
stemming from (3.8), as

e = (L⌦ Iq)h + (M⌦ Iq)(h � vm).

Exploiting the fact that (L⌦ Iq)vm = 0 (Gibson, 2016), we can write

e = (B ⌦ Iq)(h � vm).

The design of the distributed exosystem estimator is provided by the following the-
orem.

Theorem 3.1. Under Assumption 4, consider the following distributed dynamics for hi

ḣi = Ŝihi + (Am � Ŝi)ei (3.9)

with the following Hurwitz diagonal matrix Am 2 Rq⇥q

Am = � bdiag (ak · I2) �q/2 , ak > 0, k = 1, . . . , q/2. (3.10)

Furthermore, let us write hi and ei component-wise as

hi =

2

64
hi,1

...
hi,q

3

75 , ei =

2

64
ei,1

...
ei,q

3

75 , (3.11)
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and let Ŝi in (3.9) be

Ŝi = bdiag
✓

0 (ŵk)i
�(ŵk)i 0

�◆

 �
q/2

(3.12)

with (ŵk)i being the estimate of wk for system i, generated by

( ˙̂wk)i =kk(hi,(2k�1)ei,(2k) � hi,(2k)ei,(2k�1)), (3.13)

with initial conditions (ŵk)i(0) and where kk > 0 is a constant design gain.
Then, the adaptation laws (3.13) guarantee that hi ! v and Ŝi ! S as t! •, 8i 2 V .

Proof. The dynamics (3.9) can be equivalently written as a function of the local error
(3.8) and of the estimation error S̃i = Ŝi � S

ḣi = Shi + (Am � S)ei + S̃i(hi � ei). (3.14)

Moreover, by defining

S̃d(t) = diag(S̃1(t), S̃2(t), . . . , S̃N(t))

we can write (3.14) for the overall network as

ḣ = (IN ⌦ S)h + [IN ⌦ (Am � S)]e + S̃d(h � e). (3.15)

Let us write the overall error dynamics, using (3.8) and (3.15) as

ė =(B ⌦ Iq)(IN ⌦ S)(h � vm)

+ (B ⌦ Iq)[IN ⌦ (Am � S)]e + (B ⌦ Iq)S̃d(h � e)

= [(IN ⌦ S) + (B ⌦ (Am � S))] e + (B ⌦ Iq)S̃d(h � e).

(3.16)

Positive-definiteness of B leads to the existence of a unitary matrix U 2 RN⇥N such
that U

T
B
�1
U = diag(d1, d2, . . . , dN) , D, where di, i = 1, . . . , N, are the eigen-

values of B. This can be used to define the transformation e = (U ⌦ In)ē with
ē = [ēT

1 , ēT
2 , . . . , ēT

N ]
T (Li et al., 2010). Consider the positive definite Lyapunov func-

tion candidate

V =
1
2

eT(B�1
⌦ Iq)e +

1
2

N

Â
i=1

q/2

Â
k=1

(w̃k)2
i

kk
(3.17)
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where (w̃k)i = (ŵk)i �wk is the estimation error on the k-th harmonic frequency for
system i. Using (3.13), we have

V̇ =eT(B�1
⌦ Iq) [(IN ⌦ S) + (B ⌦ (Am � S))] e

+ eT(B�1
⌦ Iq)(B ⌦ Iq)S̃d(h � e) +

N

Â
i=1

q/2

Â
k=1

(w̃k)i
kk

( ˙̃wk)i

=eT
h
(B�1

⌦ S) + (IN ⌦ (Am � S))
i

e + eTS̃d(h � e)

+
N

Â
i=1

q/2

Â
k=1

(w̃k)i
kk

( ˙̃wk)i

=
N

Â
i=1

ēT
i (diS + Am � S)ēi +

N

Â
i=1

eT
i S̃i(hi � ei)

+
N

Â
i=1

q/2

Â
k=1

(w̃k)i(hi,(2k�1)ei,(2k) � hi,(2k)ei,(2k�1)).

(3.18)

Considering the first summation in the last equation of (3.18), we have that each
matrix diS � S + Am is always negative definite for each i, since, for any non-zero
vector s 2 Rq we obtain

⇥
s1 ... sq

⇤
bdiag

✓
�ak wk(di � 1)

�wk(di � 1) �ak

�◆

 �
q/2

2

64
s1
...

sq

3

75

= �
(q/2)�1

Â
j=0

q/2

Â
k=1

ak

⇣
s2

2j+1 + s2
2j+2

⌘
.

(3.19)

Considering now the second summation in the last equation of (3.18), we can write
for system i

⇥
ei,1 ... ei,q

⇤
bdiag

✓
0 (w̃k)i

�(w̃k)i 0

�◆

 �
q/2

2

64
hi,1 � ei,1

...
hi,q � ei,q

3

75

=
N

Â
i=1

q/2

Â
k=1

(w̃k)i(hi,(2k�1)ei,(2k) � hi,(2k)ei,(2k�1)).

Therefore, we have

V̇ =
N

Â
i=1

ēT
i (diS + Am � S)ēi (3.20)

which is negative semi-definite in view of (3.19). Since V > 0 and V̇  0, V(t) is
non-increasing and bounded from below by zero, which implies the existence of a
limit

lim
t!•

V(e(t), W̃(t)) = V• < • (3.21)

where W̃ = [(w̃1)1...(w̃q/2)1...(w̃1)N ...(w̃q/2)N ] collects all the parametric errors. Bound-
edness of V(t) implies that the error e and the estimates W̃k are bounded functions
of time. Furthermore, we derive that V̇(t) is a uniformly continuous function of time
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because V̈(t) is a uniformly bounded function of time. In fact

V̈ = 2
N

Â
i=1

ēT
i (diS + Am � S) ˙̄ei (3.22)

where boundedness of ˙̄ei follows by using (3.16), after noticing that: the homoge-
neous part of (3.16) leads to an exponentially stable system; the input term in (3.16) is
a bounded function of time because e and W̃k are bounded. From Barbalat’s lemma
(Ioannou and Sun, 2012, Lemma 3.2.6), we conclude that V̇ ! 0 as t! • and hence
e! 0. Therefore hi ! v is derived, 8i 2 V .

The fact that Ŝi converges to S is derived as follows. Since v is the state of a
harmonic oscillator with distinct frequencies, it is persistently exciting, i.e. it satisfies
the property Z t+T0

t
v(t)vT(t)dt � a0T0 I

for some T0, a0 > 0 and for all t > 0 (Ljung, 1999, Definition 13.1),(Wang and Huang,
2019, Lemma 3). By considering (3.16) and applying convergence properties of adap-
tive systems (Jenkins et al., 2018, Theorem 4), that (ŵk)i ! wk, i.e. Ŝi ! S (see
also (Yuan, De Schutter, and Baldi, 2017, Theorem 2) and (Wang and Huang, 2019,
Lemma 3) for analogous convergence properties). This concludes the proof.

Remark 3.3. It is interesting to notice that the term Ŝiei in (3.9) could be in principle
omitted due to the fact that xTSx = 0 for any vector x and matrix S with structure as in
(3.3). This would make the proposed Theorem 3.1 consistent with Lemma 1 in (Wang and
Huang, 2019), albeit obtained using a different Lyapunov function. The result in (Wang and
Huang, 2019) was extended in (Wang and Huang, 2019) to show exponential convergence to
the true exosystem parameters. However, compared to these works, two observations follow.
The first one is that, making the distributed exosystem estimator work in sinergy with local
estimators (so as to consider also unknown parameters for the systems in (3.1)) is an open
problem in (Wang and Huang, 2019; Wang and Huang, 2019) which is solved in this chapter
as described by Theorem 3.2 below. The second observation is that the observer structure
(3.9), is consistent with the standard full-state measurement adaptive Luenberger observer in
(Ioannou and Sun, 2012, Sect. 5.2.2). This structure can be applied even if skew-symmetry
in (3.3) is lost. For instance, consider

v̇ = bdiag
✓

0 w̄k
�wk 0

�◆

 �
q/2| {z }

S

v (3.23)

with w̄k, wk > 0, which is also able to generate distinct harmonics provided that the prod-
ucts wkw̄k are distinct for all k. Note that xTSx = 0 does not hold anymore for (3.23).
Nevertheless, using (3.9), the following estimators can be derived in place of (3.13):

( ˙̄̂wk)i =kkei,(2k)(hi,(2k�1) � ei,(2k�1))

( ˙̂wk)i =kkei,(2k�1)(hi,(2k) � ei,(2k))

(derived along similar lines as the proof of Theorem 3.1). In this case, in place of (3.19) we
have

�

(q/2)�1

Â
j=0

q/2

Â
k=1

ak

⇣
s2

2j+1 + s2
2j+2

⌘
+ (w̄k �wk)(di � 1)s2j+1s2j+2
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which, using the necessary and sufficient Sylvester criterion, is negative definite if and only
if 4a2

k � (w̄k �wk)2(di � 1)2 > 0, i.e. for an ak large enough (call it a⇤k ). To retain the fully
distributed nature of Theorem 3.1 (convergence not requiring the knowledge of structural
parameters of the communication graph), each system can adapt its own gain ak in (3.10)
(call such gain (âk)i) according to the monotonically increasing law

( ˙̂ak)i = k̄keT
i ei

where k̄k > 0: convergence of hi to v can be proven via the Lyapunov function candidate

V =
1
2

eT(B�1
⌦ Iq)e +

1
2

N

Â
i=1

q/2

Â
k=1

✓
(w̃k)2

i
kk

+
( ˜̄wk)2

i
kk

+
(ãk)2

i
k̄k

◆

where (w̃k)i = (ŵk)i�wk, ( ˜̄wk)i = ( ˆ̄wk)i� w̄k, and (ãk)i = (âk)i� a⇤k . The details follow
according to the proof of Theorem 3.1.

3.5 Adaptive observer and regulator equations

Since the states xi are not measurable and the parameters in (3.2) are unknown, it is
necessary to estimate them on-line simultaneously using an adaptive observer. We
adopt a Luenberger observer where Ai, bi are replaced with their estimates Âi and
b̂i, that is

˙̂xi =

2

64
�âi,1

...
Ini�1

�âi,ni 0 · · · 0

3

75

| {z }
Âi

x̂i +

2

64
b̂i,1

...
b̂i,ni

3

75

| {z }
b̂i

ui + li(yi � ŷi)

ŷi = [1 0 · · · 0]| {z }
cT

i

x̂i

(3.24)

where x̂i is the observed state and the time-varying observer gain li(t) is

li(t) =

2

64
a⇤i,1 � âi,1(t)

...
a⇤i,ni
� âi,ni(t)

3

75

and a⇤i,1, . . . , a⇤i,ni
are chosen as the coefficients of a stable polynomial. Several meth-

ods can be used to generate the parameter estimates âi,1, . . . , âi,ni and b̂i,1, . . . , b̂i,ni at
each time t. The methods rely on expressing the system equation (3.1) in the form of
a linear-in-the-parameter model (Ioannou and Sun, 2012, Sect. 2.4.1)

zi = q⇤Ti fi (3.25)
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where zi and fi are measurable from (filtered) input/output data as

zi =
sni

Li(s)
yi = yi + lT

i f2i

fi =
h

aT
ni�1(s)
Li(s)

ui,�
aT

ni�1(s)
Li(s)

yi

iT
=
⇥
fT

1i
, fT

2i

⇤T

Li(s) = sni + lT
i ani�1(s)

li = [lni�1 lni�2 . . . l1 l0]
T

ani�1(s) = [sni�1 sni�2 . . . s 1]T

and the unknown coefficients of (3.1) are in the unknown vector

q⇤i = [bi,1 . . . bi,ni ai,1 . . . ai,ni ]
T

with Li(s) a Hurwitz polynomial of degree ni chosen by the designer. In view of
(3.25), a possible adaptive law to estimate on-line q⇤i is a gradient algorithm based
on integral cost (Ioannou and Sun, 2012, Chap. 4.3.5)

q̇i = �Gi(Yiqi + ri)

Ẏi = �giYi +
fif

T
i

m2
i

, Yi(0) = 0

ṙi = �giri �
zif

T
i

m2
i

, ri(0) = 0

(3.26)

with the following choices for the design parameters: m2
i = 1 + n2

si
, with nsi chosen

so that fi/mi 2 L• (e.g., n2
si
= aif

T
i fi, ai > 0); gi > 0; Gi = GT

i > 0. The following
convergence properties apply to (3.26).

Lemma 3.1. (Ioannou and Sun, 2012, Theorem 4.3.3) The adaptive observer formed by
combining the observer equation (3.24) and the adaptive law (3.26) based on the parametric
model (3.25) guarantees that:

(i) all signals are uniformly bounded;

(ii) q̇i 2 L2 \ L• and qi 2 L•;

(iii) the output observation error ỹi = yi � ŷi converges to zero as t! •;

(iv) if ui is sufficiently rich of order 2ni, then the state observation error x̃i = xi � x̂i and
the parameter error q̃i = qi� q⇤i converge to zero with exponential rate of convergence.

In the following we show how to solve the regulator equations (3.4) on-line. Let
us replace xi and Qi in (3.6) and (3.7) with

x̂i(t) = vec
✓

X̂i(t)
p̂T

i (t)

�◆
,

Q̂i(t) = ŜT
i (t)⌦


Ini 0
0 0

�
� Iq ⌦


Âi(t) b̂i(t)

cT
i 0

�

where Ŝi is provided by (3.13), Âi, b̂i are provided by (3.26), and x̂i(t) collects the
estimates (X̂i, p̂i) of the solution to the regulator equations. Based on these estimates,
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the regulator equations can be solved on-line via the systems of linear equations

Q̂i x̂i = bi, 8i 2 V . (3.27)

The system of linear equations (3.27) can be regarded as a pointwise solution to the
regulator equations. As known in indirect adaptive control literature (Ioannou and
Sun, 2012, Chap. 7), from the properties of systems of linear equations we have that
if Âi, b̂i converge to Ai, bi, then X̂i, p̂i converge to the actual solutions Xi, pi, respec-
tively. The existence and uniqueness of a solution to (3.27) is guaranteed provided
that the estimates are controllable and observable, having zeros that do not coincide
with the eigenvalues of S. As later explained in Remark 6, Assumption 3 guarantees
that the estimates converge exponentially fast to a set in which the solution exists
and is unique (which is in line with (Ioannou and Sun, 2012, Thm. 7.4.2, Sect. 7.6)).

Remark 3.4. On-line solutions to the regulator equations are also proposed in (Cai et al.,
2017; Wang and Huang, 2019) using estimates of the exosystem dynamics. The on-line
solution (3.27) presented in this work involves the estimated dynamics of both the exosystem
and the follower systems. The benefits of coping with such uncertainties are demonstrated by
the simulations of Section VII.

3.6 Main result

The solution to Problem 3.1 is obtained by combining the distributed exosystem es-
timators of Theorem 3.1 with the adaptive observers and the on-line solution to the
regulator equations.

Theorem 3.2. The control law composed of: the distributed exosystem estimators (3.9) with
adaptive laws (3.13), the adaptive observers (3.26), the adaptive solutions of the regulator
equations (3.27), and the output-feedback control input

ui(t) = �kT
i (t)x̂i(t) + f T

i (t)hi(t) (3.28)

where
f T
i (t) = p̂T

i (t) + kT
i (t)X̂i(t) (3.29)

solves Problem 3.1 provided that the gains ki, li are chosen such that

Âi(t)� b̂i(t)kT
i (t), Âi(t)� li(t)cT

i (t) (3.30)

are Hurwitz1.

Proof. First, we will prove persistency of excitation of the control input (3.28), that
can be rewritten as

ui(t) = �kT
i (t)(x̂i(t)� X̂ihi) + p̂T

i hi. (3.31)

Let us write the dynamics of x̂i � X̂ihi

˙̂xi �
˙̂Xihi � X̂iḣi =(Âi � b̂ikT

i )(x̂i � X̂ihi) + licT
i (xi � x̂i)

�
˙̂Xihi � X̂i(Am � Ŝi)ei,

(3.32)

1Two strategies for choosing ki, li are possible: (i) the eigenvalues in (3.30) are placed at fixed loca-
tions, in line with adaptive pole placement (Ioannou and Sun, 2012, Chap. 7); (ii) non-fixed locations
are allowed, provided that the eigenvalues in (3.30) are slowly time-varying (i.e. their time variation is
in L2 (Ioannou and Sun, 2012, Thm. 3.4.11)).
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where we have substituted the regulator equation X̂iŜi = ÂiX̂i + b̂i p̂T
i . By observing

the terms on the right-hand side in (3.32), we have that cT
i (xi� x̂i)! 0, ei ! 0 (from

Lemma 3.1 and Theorem 3.1, respectively). In addition, since ˙̂Ai, ˙̂bi 2 L2 \ L• from
the properties of the estimator, the system of linear equations (3.27) allows us to con-
clude that ˙̂Xi 2 L2 \ L•. Therefore, with Âi � b̂ikT

i Hurwitz at every time instant
and eventually slowly time-varying, using notions of input/output stability (Ioan-
nou and Sun, 2012, Lemma 3.3.3), we obtain that x̂i � X̂ihi 2 L2 \ L•. Therefore,
using standard properties of persistently exciting signals (Ioannou and Sun, 2012,
Lemma 4.8.3), we have that ui is sufficiently rich of order 2n̄.

Now, define c̃i = xi � Xiv, ũi = ui � pT
i v, h̃i = hi � v, f ⇤Ti = pT

i + kT
i Xi, f̃i =

fi � f ⇤Ti , and z̃i = x̂i � Xiv. By making use of the regulator equations, we obtain the
closed-loop system

˙̃ci = Aic̃i + biũi

˙̃zi = Âi z̃i + b̂iũi + licT
i (c̃i � z̃i) + ÃiXiv + b̃i pT

i v

ei = cT
i c̃i

ũi = kT
i (c̃i � z̃i)� kT

i c̃i + f̃ T
i v + f T

i h̃i

(3.33)

which leads to the dynamics
"

˙̃ci
˙̃ci �

˙̃zi

#
=


Âi � b̂ikT

i bikT
i

0 Âi � licT
i

� 
c̃i

c̃i � z̃i

�

+


�(Ãi � b̃ikT

i )c̃i + bi f̃ T
i v + bi f T

i h̃i
�Ãixi � b̃iui

�
.

(3.34)

Since the control input ui is sufficiently rich of order 2n̄, we can conclude that the
terms Ãi and b̃i in (3.34) converge to zero exponentially fast. Moreover, from The-
orem 3.1 we know that h̃i ! 0 and Ŝi ! S also exponentially fast. Now, we can
conclude X̂i ! Xi and p̂i ! pi, which imply that f̃i ! 0. Then, the Hurwitz and
slowly time-varying properties of Âi � b̂ikT

i and Âi � licT
i (that converge to Ai � bikT

i
and Ai � licT

i , respectively) guarantee that z̃i ! c̃i ! 0 exponentially, from which
we obtain convergence of ei to zero. This concludes the proof.

The following remarks apply to Theorem 3.2.

Remark 3.5. In contrast to past approaches based on fixed-gain robust control (Wu et al.,
2017), in Theorem 3.2 no assumption is made on the size of the parameter uncertainty set.
Also, differently from the learning-based approach of (Modares et al., 2016), no initially sta-
bilizing feedback is required. Note that learning-based solutions require injecting an external
probing signal in the input to induce persistency of excitation (an input sufficiently rich of
order n̄(n̄+1)

2 + n̄ + 1 is required in (Modares et al., 2016) to estimate both the Lyapunov
function and the control gains). In our case, the adaptive closed loop (3.34) reduces the
requirements on the sufficiently richness of the input, which is only of order 2n̄.

Remark 3.6. Theorem 3.2 requires the estimated pairs (Âi, b̂i), (ci, Âi) to be controllable
and observable at every time instant (necessary and sufficient to have Âi � b̂i f T

i and Âi �

licT
i Hurwitz). Similarly, the zeros of the estimated system should not coincide with the

eigenvalues of the estimated exosystem, which would guarantee Assumption 1 and 2 to be
satisfied (and (3.27) to be solvable) for the estimated dynamics. This is in line with the
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well-known ‘loss-of-controllability/observability’ situation of indirect pole-placement adap-
tive control (Ioannou and Sun, 2012, Chap. 7), where the calculation of the controller pa-
rameters is performed based on estimated dynamics that must be controllable/observable at
every time instant. In our case, a sufficiently rich input of order 2n̄ guarantees exponential
convergence of the estimated parameters to their true values. Since the true parameters cor-
respond to a controllable and observable system, it is implied by continuity that the estimated
dynamics will enter in finite time a set where (3.27) is solvable (Ioannou and Sun, 2012; El-
liott, Cristi, and Das, 1985; Bai and Sastry, 1987). If (3.27) is not solvable at a given time,
it suffices to freeze the controller parameters to their previous values; then, exponential con-
vergence guarantees that any loss-of-controllability/observability issue is removed in finite
time.

3.7 Simulations

Four systems connected as in the communication graph of Figure 3.1 are used as nu-
merical validation of the proposed approach. The exosystem, represented as system
0, is given by (3.3) with w1 = 3 and w2 = 2. The heterogeneous followers are given
by (3.2) with:

A1 =


�10.1 1
�24.1 0

�
, b1 =


2.1
3.1

�
, A2 =


�12.1 1
�11.1 0

�
, b2 =


2.1
1.1

�
,

A3 =


3.1 1
�1.1 0

�
, b3 =


1.1
1.1

�
, A4 =


2.1 1
�2.1 0

�
, b4 =


3.1
1.1

�
.

(3.35)

As in practice there is always some degree of uncertainty in the knowledge of the
actual matrices (3.35), let us consider a case with good a priori knowledge, i.e. the
initial estimates for the parameters of the systems are close to the actual parameters:

Â1 =


�10 1
�24 0

�
, b̂1 =


2
3

�
, Â2 =


�12 1
�11 0

�
, b̂2 =


2
1

�
,

Â3 =


3 1
�1 0

�
, b̂3 =


1
1

�
, Â4 =


2 1
�2 0

�
, b̂4 =


3
1

�
.

(3.36)

Let us now consider three different settings of uncertainty:

• Experiment 1. The exosystem is perfectly known to system 1, and the a priori
knowledge of the dynamics of the systems is given by (3.36). This corresponds
to the setting in (Cai et al., 2017), after adding some small uncertainty to the
dynamics of the systems;

• Experiment 2. The a priori knowledge of the dynamics of the systems is given
by (3.36), and the exosystem frequencies are unknown to all systems, including
system 1. No a priori knowledge of the frequencies is considered, i.e. the initial
estimates are set to zero. This setting will be handled by the proposed method;

• Experiment 3. No a priori knowledge is available both for the exosystem (whose
estimated frequencies are initialized to zero) and for the systems (whose esti-
mated parameters are initialized to some quite arbitrary values). This large
uncertainty setting will also be handled by the proposed method.

In all experiments, the initial state of the exosystem is v(0) = [1, 0.2, 0.5, 1]T and the
states of the systems are initialized to zero.
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For Experiment 1, we use the algorithm in (Cai et al., 2017) with gains µ1 = µ2 =
10 (gains for consensus over S and v) and µ3 = 40 (gain for the on-line solution to the
regulator equations). The tracking errors are shown in Figure 3.3 and the consensus
over S is shown in Figure 3.4. It can be noted that the algorithm in (Cai et al., 2017)
contains a feedforward term which relies on the perfect knowledge of the dynamics
of the systems. It is well known that, whenever a possibly small uncertainty in
such dynamics is present as in the case of this experiment, asymptotic tracking will
inevitably be lost (due to lack of robustness of the feedforward (Isidori, Marconi,
and Serrani, 2012, Sect. 1.4),(Huang, 2004, Sect. 1.3)).

For Experiment 2, the matrices in (3.36) are used as initial conditions for the es-
timators (3.26). For the estimators made of (3.24) and (3.26), we choose the param-
eters ai = 0.1, gi = 0.1, Gi = 180I4, a⇤ =

⇥
15 56

⇤T and Li(s) = s2 + 2s + 1.
In addition, the proposed distributed exosystem estimator (3.9) has Am = �15I4,
k1 = k2 = 60, and zero initial conditions for (3.13). Because the regulator equations
(3.27) are solved on-line using the estimates of the parameters of the systems, the
robustness issue highlighted in (Isidori, Marconi, and Serrani, 2012, Sect. 1.4) can
be overcome, and the tracking errors in Figure 3.5 exhibit asymptotic convergence.
Also, a transient comparable to that of Figure 3.3 can be noted. This can be explained
by the fact, well known in adaptive control, that good initial estimates positively af-
fect the transient performance. The estimates of the parameters of the systems start
so close to their actual values that no plot is shown for compactness. It is also of
interest to see the estimates of the exosystem in Figure 3.6, which show a different
transient as compared to Figure 3.4: this is because the systems are not allowed to
use an extra communication channel to do consensus over their estimates of S, but
they can perform the estimation only by communicating hi.
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FIGURE 3.3: Experiment 1: tracking errors using the algorithm in (Cai
et al., 2017).

Finally, for Experiment 3, the estimators (3.26) are initialized to qi(0) = [1, 1, 1, 1]T,
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FIGURE 3.4: Experiment 1: estimates of the entries of the exosystem
using the algorithm in (Cai et al., 2017).

8i 2 V to represent poor a priori knowledge. This naturally results in a longer
transient for the tracking errors in Figure 3.7, as compared to the one of Figure 3.5.
On the other hand, the estimation of S is identical to Figure 3.6, and therefore not
shown for compactness. Rather, in Figure 3.8 we show, for system 1, the convergence
of the estimates Â1, b̂1 to the actual A1, b1.

3.8 Conclusions

This chapter considers the problem of cooperative tracking in networks of linear
SISO systems with unknown parameters, where the reference signal is generated by
a linear exosystem with unknown harmonic frequencies. A stable fully-distributed
indirect adaptive methodology consisting of three steps has been proposed, com-
prising: (i) distributed adaptation for estimating the exosystem dynamics; (ii) adap-
tive estimation of the parameters of each SISO system; (iii) on-line solution of the
regulator equations using all the estimates.
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FIGURE 3.5: Experiment 2: tracking errors using the proposed ap-
proach.

FIGURE 3.6: Experiment 2: estimates of the entries of the exosystem
using the proposed approach.
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FIGURE 3.7: Experiment 3: tracking errors using the proposed ap-
proach.
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FIGURE 3.8: Experiment 3: estimates of A1 and b1 using the proposed
approach.
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Chapter 4

Adaptive Hybrid Control for
Robust Global Phase
Synchronization of Kuramoto
Oscillators

In this chapter, a distributed controller is designed for robust global phase synchro-
nization of a network of uncertain second-order Kuramoto oscillators with a leader
system, modeled as a nonlinear autonomous exosystem. The phase angles being
elements of the unit circle, we propose an adaptive hybrid strategy based on a hys-
teresis mechanism to obtain global results despite the well-known topological ob-
structions. Only an upper bound on the unknown parameters of the oscillators is
required to keep the adaptive estimates in a compact set. Since the reference sig-
nal is not available to each network node, we design a distributed observer of the
leader exosystem. Leveraging the results of hybrid systems theory, including reduc-
tion theorems, Lyapunov techniques, and properties of w-limit sets, we prove robust
global asymptotic stability of the closed-loop dynamics, despite the presence of an
adaptive control law.

4.1 Introduction

Synchronization and coordination phenomena are ubiquitous in several application
domains, including physics, engineering, biology, and social sciences. Particularly
studied, in this context, are the dynamical behaviors arising from networks of in-
teracting oscillators. To describe these behaviors, the Kuramoto model (Kuramoto,
1984) is certainly the most popular model due to its ability to capture complex non-
linear phenomena with appealing mathematical simplicity. The study of power net-
works (Guo et al., 2021; Dorfler and Bullo, 2012) or of connectivity patterns in the
human brain (Menara et al., 2019; Qin et al., 2021) are just some examples where
Kuramoto oscillators have been adopted.

In general, synchronization of Kuramoto oscillators may occur with or without
a control input affecting the network. Concerning the uncontrolled scenario, sig-
nificant efforts have been dedicated to studying the impact of couplings (either the
network topology or the intensity of connections) on the synchronization properties
of the trajectories (Ha, Ha, and Kim, 2010; Zhang and Xiao, 2014; Schmidt et al.,
2012; Zhang and Zhu, 2019; Chopra and Spong, 2009; Dörfler and Bullo, 2011). In
the controlled scenario, the emphasis is on finding an appropriate input to achieve
synchronization (Moreira and Aguiar, 2019; Zhu and Hill, 2020). In this context, the
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objective of leader-follower synchronization, also known as pacemaker-based syn-
chronization (Wang and Doyle, 2013), becomes particularly relevant. The typical
challenge in achieving leader-follower synchronization is that the controller of each
node should employ only locally available quantities and variables shared according
to a communication topology.

This work considers a second-order version of the original first-order Kuramoto
model, where each oscillator has its own inertia (Dorfler and Bullo, 2012; Choi, Ha,
and Yun, 2011) and is characterized by a phase angle and an angular frequency. We
remark that further extensions have been recently proposed, including the third-
order Kuramoto model (Wu and Chen, 2020), inspired by the transient behavior of
power networks, or the generalization of the phase state space given by the Ku-
ramoto model on Stiefel manifolds (Ha, Kang, and Kim, 2021), capable of including
in a unified framework both the classical model and more complex structures such
as the Lohe model (Markdahl, Proverbio, and Goncalves, 2020).

The focus of this work is to achieve global leader-follower phase synchronization
in a network of second-order Kuramoto oscillators, without precise information of
the model parameters. In the following, we review some representative results in
the field, which clarify the motivations for our study.

4.1.1 Related works

It has been well recognized in the literature that the non-Euclidean nature of the state
space of a Kuramoto model is the main obstruction for achieving global asymptotic
convergence to the leader’s phase reference. Several strategies have been proposed
to deal with this obstruction. For example, a natural approach is to represent the
phase of each oscillator as an element of the unit circle. It follows that the ensemble
of the phase angles is an element of the N-torus (Scardovi, Sarlette, and Sepulchre,
2007).

One of the main advantages of employing the unit circle formalism is that phase
synchronization can be reformulated as the attractivity of a compact set. Although
this property is beneficial for control design, the N-torus is a non-Euclidean set,
meaning that synchronization cannot be handled with the same tools used in linear
consensus. In particular, the topological properties of a non-contractible space (i.e.,
not diffeomorphic to any Euclidean space) pose significant obstacles to global sta-
bilization through continuous feedback. For instance, the continuous-time algorithms
in (Scardovi, Sarlette, and Sepulchre, 2007) (and their corresponding discrete-time
versions) lead to multiple equilibria in the state space, where only one of them cor-
responds to the desired configuration. The same issue is shared by several applica-
tions involving rotations. In the context of rigid body dynamics, only almost global
results can be achieved with continuous laws for control (De Marco et al., 2016) and
observation (Mahony, Hamel, and Pflimlin, 2008).

In recent years, it has been shown that robust global stabilization can be achieved
on non-contractible spaces through dynamic hybrid (instead of continuous) feedback
(Mayhew, Sanfelice, and Teel, 2011). Meaningful results have been proposed, e.g.,
for unit quaternions (Mayhew, Sanfelice, and Teel, 2011) through hysteresis-based
techniques and for the N-sphere (Casau et al., 2019) via synergistic potential func-
tions. Some efforts have also been dedicated to the unit circle (Mayhew and Teel,
2010). However, all of the above solutions have been developed in a single-agent
scenario and in the absence of uncertain dynamics. One of the first attempts to
present hybrid feedback in a multi-agent setting can be found in (Mayhew et al.,
2011), for the special case of acyclic communication graphs.
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Despite the progress in the field, some additional vital elements are needed for
achieving global leader-follower synchronization of uncertain Kuramoto oscillators.
Since no specific communication topology is imposed for the network, while the
reference is not assumed to be globally available, it is necessary to ensure that each
node reconstructs the leader signals. Additionally, the above-cited works have been
developed under the assumption of complete knowledge of the parameters. The
presence of model uncertainties complicates the asymptotic synchronization goal.
Therefore, specific control solutions are needed to ensure robust asymptotic stability
of the synchronization set.

4.1.2 Main contribution of this work

Motivated by the previous overview, we propose here a distributed scheme that
solves the leader-follower problem by combining three components: (i) a distributed
observer, used to reconstruct the reference in the nodes not directly connected to
the leader; (ii) a hybrid stabilizer used to track the locally estimated reference and
ensure, under parametric uncertainties, phase synchronization in a global sense; (iii)
an adaptive mechanism to suitably handle the parametric uncertainties. Besides the
technological interest of the synchronization problem at stake, for each one of the
above components, we provide a solution of independent interest, whose novelty is
highlighted next.

(i) About the distributed observer, we follow the idea that the unit circle, used
to represent the phase angles, can be naturally embedded in R2. With this embed-
ding, since the estimates are designed without being constrained on the unit circle,
consensus techniques for Euclidean spaces can be employed to achieve global esti-
mation of the leader signals. As compared with other solutions in the literature that
follow the embedding approach (Cai and Huang, 2016; Gui and Ruiter, 2018), here
we allow for more general structures of the exosystem: in particular, we consider
exosystems admitting a feedback interconnection between the phase and frequency
subsystems, whereas the literature in this field only handles cascaded interconnec-
tions. Exploiting input-to-state stability (ISS) and small-gain arguments, we prove
global asymptotic reconstruction of the reference for a fairly general class of exosys-
tems, which is a contribution of independent interest.

(ii) About the hybrid stabilizers at each node, to ensure compatibility with the
adaptive mechanism, we revisit and extend the hysteresis-based hybrid solution
originally proposed in (Mayhew, Sanfelice, and Teel, 2011) to deal with the topologi-
cal obstructions associated with the unit circle. In particular, we augment the hybrid
feedback with a first-order filter, so that the stabilizing input does not change across
jumps, a key property for interlacing the hybrid stabilizer with the continuous-time
adaptation commented below. Due to the simplicity of the condition on the filter
time constant under which we prove stability, this dynamic extension is of indepen-
dent interest and can be exploited in future works.

(iii) Finally, about our hybrid adaptation mechanism, we show that, with an ap-
propriate robust modification of the adaptive law, it is possible to ensure the exis-
tence of a robustly globally asymptotically stable attractor for the tracking error system,
without requiring any persistency of excitation. This result, which may sound atypi-
cal as compared to standard results in the adaptive control literature, represents a no-
table by-product of this work. Specifically, the powerful characterization of w-limit
sets of well-posed hybrid systems given in the hybrid systems formalism (Goebel,
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Sanfelice, and Teel, 2012), together with a simple dead-zone-based projection mech-
anism for keeping the parameter estimates in a compact set, enables proving the
existence of such a compact globally asymptotically stable attractor.

To conclude, we emphasize that the closed-loop asymptotic stability of the over-
all control scheme is analyzed through reduction theorems for hybrid systems. In
particular, we prove that global phase synchronization is well represented as robust
global asymptotic stabilization of a suitable compact set. We remark that the robust-
ness of asymptotic stability is guaranteed in this context by the regularity properties
of the feedback law and compactness of the characterized attractor. With respect
to this point, let us comment on the interesting distributed quaternion synchroniza-
tion in (Gui and Ruiter, 2018), achieved by combining a sliding-mode distributed
observer and a hybrid stabilizer. In that work, unfortunately, the presence of static
discontinuities makes it impossible to ensure the robustness properties established
in this work.

A preliminary version of this study is given by (Bosso et al., 2021a). In this chap-
ter we improve the work (Bosso et al., 2021a) in several directions. First of all, (Bosso
et al., 2021a) considers the simplified case of known parameters of the Kuramoto
oscillators. Therefore, several challenges related to including adaptation laws in a
hybrid setting are addressed and solved here for the first time. Moreover, (Bosso
et al., 2021a) only considers a simplified cascaded exosystem structure as in (Cai and
Huang, 2016; Gui and Ruiter, 2018), whereas in this chapter we address nontrivial
challenges emerging from feedback interconnections, requiring suitable small-gain
approaches not present in (Bosso et al., 2021a). For example, the results of (Bosso
et al., 2021a) cannot be applied to our simulation example.

4.2 Notation

R and Z denote the sets of real and integer numbers, while R�0 := [0, •). The
transpose of real-valued vectors and matrices is denoted with (·)>, while⌦ indicates
the Kronecker matrix product. For any integer n � 1, In is the identity matrix of
dimension n and 1n 2 Rn is the vector of all ones. With column vectors v and w, the
notation (v, w) indicates the concatenated vector [v> w>]>. Finally, diag(a1, . . . , an)
denotes the block-diagonal matrix with diagonal elements ai, i 2 {1, . . . , n}.

Graph Theory

An undirected graph of order N is defined as G := {V , E}, where V := {1, . . . , N} is
a finite non-empty set of nodes and E ✓ V ⇥V is a set of non-ordered pairs of nodes,
called edges. For each i 2 V , Ni := {j 2 V : (i, j) 2 E} is the set of neighbors of i. An
undirected graph G is connected if, taken any arbitrary pair of nodes (i, j), i, j 2 V ,
there is a path from i to j. Given a leader node not included in V , we denote with
T ✓ V the set of target nodes, i.e., the set of nodes that receive information from
the leader. For an undirected graph G with target nodes T , the adjacency matrix
A = [aij] 2 RN⇥N is defined as aij = aji = 1 if (i, j) 2 E , i 6= j, and aij = 0 otherwise;
the Laplacian matrix L = [lij] 2 RN⇥N is defined as lii = Âj aij and lij = �aij if i 6= j,
while the target matrix T = [tij] 2 RN⇥N is a diagonal matrix such that tii = 1 if
i 2 T and tii = 0 otherwise. Finally, the matrix B := L+T is denoted leader-follower
matrix. For an undirected and connected graph G with T 6= 0 (equivalently, such
that T 6= 0), B is positive definite (Zhang and Lewis, 2012).
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Hybrid Dynamical Systems

A hybrid dynamical system can be compactly described as (Goebel, Sanfelice, and
Teel, 2012):

H :

(
ẋ 2 F(x), x 2 C

x+2G(x), x 2 D
(4.1)

where x 2 Rn is the state, C ⇢ Rn is the flow set, F : Rn ◆ Rn is the flow map,
D ⇢ Rn is the jump set, and G : Rn ◆ Rn is the jump map. A solution of (4.1) can
either flow according to the differential inclusion ẋ 2 F(x) when x 2 C, or jump
according to the difference inclusion x+ 2 G(x) when x 2 D. We refer to (Goebel,
Sanfelice, and Teel, 2012; Goebel, Sanfelice, and Teel, 2009) for the main definitions
and tools for the analysis of hybrid systems.

4.3 Model description

4.3.1 Second-Order Kuramoto Network

In this chapter, we consider a generalization of the celebrated Kuramoto model (Ku-
ramoto, 1984), based on the swing equations described in (Dorfler and Bullo, 2012).
More specifically, the second-order Kuramoto network is a system of N nonlinear oscil-
lators, coupled through an undirected and connected graph G = {V , E}:

q̇i = wi, i 2 V

miẇi =�diwi + wni + ui �Â
j2Ni

kij sin(qi�qj� jij), (4.2)

where, for each i 2 V , qi 2 R and wi 2 R are the phase and the frequency, respec-
tively, ui is the control input, mi > 0 is the oscillator’s inertia, di > 0 is a damping
constant, and wni is the oscillator’s natural frequency. In addition, kij = kji > 0 and
jij = jji 2 [0, 2p) are, respectively, the coupling weight and the phase shift between
oscillators i and j. Suppose that the graph G, associated with the physical couplings
in (4.2), also defines the communication topology among the nodes.

Define q :=
⇥
q1 . . . qN

⇤>
2 RN and w :=

⇥
w1 . . . wN

⇤>
2 RN , then denote

by (q(·), w(·)) : R�0 ! R2N a solution of system (4.2), for some input signals ui(·),
i 2 V , and with initial conditions (q(0), w(0)). We say that (q(·), w(·)) achieves phase
synchronization if

lim
t!+•

qi(t)�qj(t) 2
�

q̃ : q̃ = 2kp, k 2 Z
 

, 8i, j 2 V . (4.3)

Similarly, the solution (q(·), w(·)) is said to achieve frequency synchronization if

lim
t!+•

wi(t)�wj(t) = 0, 8i, j 2 V . (4.4)

For the network (4.2), our objective is to design a distributed strategy that ensures
robust global phase synchronization to a reference trajectory. Namely, our aim is to
define feedback laws for the inputs ui based only on local information and network
communication such that, for any initialization of system (4.2), the corresponding
solution (q(·), w(·)) robustly achieves phase synchronization and convergence to
the reference. When we refer to robust synchronization, we mean that (4.3) is ob-
tained through asymptotic stability of a compact set, with appropriate robustness
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to perturbations of the closed-loop dynamics. A precise definition of this concept is
presented in Section 4.4.

Because we do not assume exact knowledge of the local parameters mi, di, wni,
kij, and jij, we design adaptive controllers that ensure asymptotic convergence in
the presence of parametric uncertainties. At the same time, it is well known that the
sensitivity of adaptive techniques to non-parametric (unmodeled) perturbations of
the dynamics calls for a robust design of the adaptive law and some known bounds
of the parametric uncertainty (see, e.g., (Ioannou and Sun, 2012, Chapters 8 and 9)).
Accordingly, we impose the following assumption.

Assumption 4.1. There exists a scalar r > 0, known to each node i 2 V , such that:

mi  r, di  r, |wni|  r, 8i 2 V ,
kij  r, 8i 2 V , 8j 2 Ni,

(4.5)

where the bound r is taken to be the same for all parameters for simplicity of notation.

4.3.2 Quaternion-Inspired Representation

For control design, we propose to rewrite system (4.2) in a more convenient form.
Motivated by the equivalence modulo 2p of the phases qi, also reflected in the
phase synchronization condition (4.3), we choose to represent qi on the unit circle
S1 :=

n⇥
a b

⇤>
2 R2 : a2 + b2 = 1

o
. Recall that the compact set S1 has Lie group

structure that is isomorphic to the group of planar rotations SO(2) := {R 2 R2⇥2 :
R>R = I2, det(R) = 1}. In view of such an isomorphism, we define the function
R : S1

! SO(2), which maps any
⇥
a b

⇤>
2 S1 into the corresponding rotation

matrix:
R

✓
a
b

�◆
:=


a �b
b a

�
. (4.6)

Function R(·) is useful to define the group multiplication between any x, x̂ 2 S1 as
R(x)x̂ = R(x̂)x (note that S1 is Abelian, i.e., the group operation is commutative),
where the identity element is given by

e :=
⇥
1 0

⇤> . (4.7)

From the above definitions, we introduce the following representation for qi:

zi :=
⇥
hi ei

⇤> :=
⇥
cos(qi/2) sin(qi/2)

⇤>
2 S1, (4.8)

corresponding to a unit quaternion for planar rotations (cf. (Mayhew, Sanfelice, and
Teel, 2011) for the parameterization adopted for 3D rotations). We refer to (Bosso et
al., 2021a) for a detailed discussion on representation (4.8) and its relation with the
choices in (Bosso, Azzollini, and Baldi, 2019) and (Goebel, Sanfelice, and Teel, 2009,
Example 34). Using (4.6) and (4.8), the phase dynamics on SO(2) and S1 is obtained
as

d
dt
R(zi) =

1
2

wi JR(zi), żi =
1
2

wi Jzi, i 2 V , (4.9)
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where J :=
⇥

0 �1
1 0

⇤
2 SO(2). Let TN := ’N

i=1 S1 denote the N-torus. The network
dynamics (4.2) can be conveniently rewritten on TN

⇥RN as follows:

żi =
1
2

wi Jzi

miẇi =� diwi + wni + ui �Â
j2Ni

kijf(zi)
> Jf(z j)cos(jij)

+Â
j2Ni

kijf(zi)
>f(z j) sin(jij), i 2 V ,

(4.10)

where f : S1
! S1 is defined as

f(zi) := R(zi)zi =


h2

i � e2
i

2hiei

�
, zi :=


hi
ei

�
(4.11)

and corresponds to the double angle formula from zi := [cos(qi/2) sin(qi/2)]> to
[cos(qi) sin(qi)]>. Note that, with the proposed representation (4.8), the condition
(4.3) corresponding to phase synchronization coincides with

lim
t!+•

R(zi(t))>z j(t) 2 {�e, e}, 8i, j 2 V . (4.12)

Remark 4.1. In some applications, such as those involving rotary encoders, qi is provided
by sensors that “wrap” the angles in [0, 2p) (equivalently, in [�p, p)). In this scenario, if
(4.8) is used to compute zi from the available sensor measurement, call it qs

i , special care must
be taken to ensure that a continuous trajectory of the vector [cos(qs

i ) sin(qs
i )]
> (uniquely

corresponding to any qs
i 2 [0, 2p)) be mapped into a continuous trajectory of zi. More

specifically, for any qs
i 2 [0, 2p), there are two possible values of zi, expressed through the

half-angle formula:

zi 2 {�z⇤i , z⇤i }, z⇤i :=

2

4

q
1+cos(qs

i )
2q

1�cos(qs
i )

2

3

5 . (4.13)

The same issue arises for unit quaternions. In that context, a path-lifting mechanism has
been proposed in (Mayhew, Sanfelice, and Teel, 2012) to ensure that a continuous selection
of the two quaternions is obtained for a “measured” rotation matrix. For simplicity, we avoid
embedding a similar mechanism as (Mayhew, Sanfelice, and Teel, 2012) by considering zi
available for measurement. Including the path-lifting mechanism does not affect the results
of this chapter.

4.4 Problem statement

4.4.1 Leader Exosystem

Since our objective involves the synchronization of the network to a reference sig-
nal, we consider a formulation of the tracking problem based on a pacemaker (see,
e.g., (Wang and Doyle, 2013; Bosso, Azzollini, and Baldi, 2019)). Specifically, the
graph G is augmented with an additional node, named leader system, which deliv-
ers to the network some reference signals. The references are generated through an
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FIGURE 4.1: Interaction and communication scheme. The same graph
will be employed for the numerical example in Section 4.8.

autonomous exosystem of the form

ż? =
1
2

c>w? Jz?

ẇ? = s(z?, w?)

9
=

; (z?, w?) 2 K
?
⇢ S1

⇥Rn, (4.14)

where z? 2 S1 is the phase reference, w?
2 Rn, n 2 Z�1, is a state such that the

frequency reference is given by c>w?
2 R, while c 2 Rn is a constant vector and

s(·) : S1
⇥ Rn

! Rn is a nonlinear function. Furthermore, K? is a compact set of
admissible initial conditions (z?(0), w?(0)).

The feedback structure in (4.14) suggests that, different from the solutions us-
ing unit quaternions (such as (Gui and Ruiter, 2018; Cai and Huang, 2016)), we do
not restrict the structure of exosystem (4.14) to a cascade between the w?-subsystem
and the z?-subsystem. The following assumption describes the properties related to
(4.14).

Assumption 4.2. For system (4.14), it holds that:

1. the compact set K? is forward invariant;

2. the map s(·) is globally Lipschitz, with Lipschitz constant `s � 0;

3. c and s(·) are known to each node i 2 V .

The global Lipschitz condition in Assumption 4.2 is instrumental in achieving
global asymptotic stability, cf. (Isidori, Marconi, and Casadei, 2014). As we shall see
in Section 4.5, this Lipschitz continuity property allows designing the controllers for
each node i 2 V without the explicit knowledge of the compact set K?, even though
the knowledge of `s is required for tuning the controller gains.

As a final requirement for our design, we impose a standard assumption describ-
ing the communication topology among the leader (4.14) and the network (4.10).

Assumption 4.3. System (4.14) interacts, by communicating the reference (z?, w?), with at
least one node of graph G, which defines both the physical couplings and the communication
topology. More specifically, it holds that T 6= ∆ (equivalently, T 6= 0).

Remark 4.2. Since G is undirected and connected, Assumption 4.3 implies that the leader-
follower matrix B := L + T is positive definite.
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Figure 4.1 shows a scheme of the interaction and communication pattern under-
lying our distributed architecture.

The control problem of this work, stated in the following, aims at ensuring global
asymptotic stability of a compact set corresponding to phase synchronization as in
(4.12) and convergence to z?, i.e.:

lim
t!+•

R(zi(t))>z? 2 {�e, e}, 8i 2 V . (4.15)

In particular, we seek for a hybrid adaptive controller whose data satisfy the so-
called hybrid basic conditions of (Goebel, Sanfelice, and Teel, 2012, Assumption 6.5).
As a consequence, global asymptotic stability of a compact set is equivalent to the
existence of a uniform class KL bound (Goebel, Sanfelice, and Teel, 2012, Theorem
7.12). Following the robustness results in (Goebel, Sanfelice, and Teel, 2012, Section
7.3), this also implies robust KL asymptotic stability in the presence of fairly general
perturbations of the dynamics.

Problem 4.1. Under Assumptions 4.1, 4.2, and 4.3, consider the following synchronization
set to the reference z?:

As := {(z?, w?), (zi, wi), i 2 V :

R(zi)
>z? 2 {�e, e}, wi = c>w?

o
,

(4.16)

where e is defined in (4.7), and note that As is compact because (4.14) evolves in the compact
set K?. Then, design a distributed adaptive strategy, only based on the local measurements
(zi, wi) and the information exchange according to graph G, such that the second-order
Kuramoto network (4.10) achieves robust global phase synchronization to the reference z?.
Namely, the closed-loop dynamics is such that there exists a robustly globally KL asymp-
totically stable compact set (in the sense of (Goebel, Sanfelice, and Teel, 2012, Definition
7.18)), whose projection in the plant-exosystem direction coincides with the compact set As
in (4.16).

4.4.2 Control Architecture

Through the parametrization (4.8), (4.10), (4.11), Problem 4.1 addresses the synchro-
nization goal in (4.3), (4.4), in a convenient scenario wherein the set to be stabi-
lized is compact. Topological obstructions associated to the non-Euclidean nature
of the phase dynamics make Problem 4.1 challenging. In fact, the N-torus is non-
contractible, i.e., it is not diffeomorphic to any Euclidean space, and convergence to
(4.16) requires convergence to a disconnected set of points. Two main issues arise in
this context.

• If the control laws ui are designed to stabilize only one of the points of (4.16),
the trajectories in the coordinates qi display the so-called unwinding phenomenon
(Mayhew, Sanfelice, and Teel, 2012), which causes unnecessary motion in cases
where the system is initialized close to synchronization.

• If a static discontinuous feedback is employed, it is not possible to ensure ro-
bust KL asymptotic stability because the closed-loop system does not satisfy
the hybrid basic assumptions. This fact, in practice, translates into chattering
and high disturbance sensitivity (Mayhew, Sanfelice, and Teel, 2011).

In view of these considerations, we employ a hybrid dynamic feedback to robustly
globally asymptotically stabilize a compact set comprising As in (4.16). As discussed
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in the introduction, the proposed control strategy is built upon the interconnection
of a distributed observer for exosystem (4.14), a hybrid stabilizer for globally track-
ing the observer estimates, and an adaptive law to handle parametric uncertainties
under Assumption 4.1. More specifically, our design is based on the following steps.

• A distributed observer is designed so that certain local estimates (ẑi, ŵi) of
(z?, w?) 2 K

? are defined as elements of R2+n. The ensuing estimation error
dynamics is described by two feedback-interconnected subsystems, associated
with the phase and the frequency estimation errors, respectively. These subsys-
tems are proven to be ISS and then combined through small-gain arguments.
The design and the stability analysis of the observer are discussed in Section
4.5.

• For each agent i, we implement an adaptive hybrid mechanism to ensure R(zi)> ẑi !

{�e, e}, wi ! c>ŵi, for all i 2 V . The design is first performed assum-
ing global knowledge of the leader signals (Section 4.6). Supposing that wi
can be assigned as a virtual input wvi, a hysteresis-based controller is used to
show global phase synchronization while ensuring that wvi is constant across
jumps. Then, a backstepping-based adaptive controller is designed to guaran-
tee wi ! wvi. Finally, exploiting the cascade structure between the estimation
error subsystem and the tracking subsystem, the effectiveness of the overall
control solution is proven through reduction theorems (Section 4.7).

4.5 Distributed observer

In order to solve Problem 4.1, we propose the following distributed observer:

˙̂zi =
1
2

c>ŵi Jẑi � kzez i

˙̂wi = s(ẑi, ŵi)� kwewi

i 2 V , (4.17)

where ẑi 2 R2, ŵi 2 Rn are the local estimates of (z?, w?) (4.14) at node i, kz and
kw 2 R are gains to be designed, while

ez i := Â
j2Ni

aij(ẑi � ẑ j) + tii(ẑi � z?)

ewi := Â
j2Ni

aij(ŵi � ŵj) + tii(ŵi � w?)
i 2 V , (4.18)

are the local estimation errors, in which aij and tii are the entries of the adjacency
matrix A and the target matrix T, respectively.

Observer (4.17) is distributed as it is only driven by locally available quantities
(4.18). To represent the variables for the overall network in a compact form, it is
convenient to use the Kronecker product. In particular, define the overall states
ẑ := [ẑ>1 . . . ẑ>N ]

>
2 R2N and ŵ := [ŵ>1 . . . ŵ>N ]

>
2 RNn, so that the overall esti-

mation errors are z̃ := ẑ � 1N ⌦ z? and w̃ := ŵ � 1N ⌦ w?. Furthermore, define
ez := [e>z1

. . . e>zN
]> 2 R2N and ew := [e>w1

. . . e>wN
]> 2 RNn, which from (4.18) can be

written as (Azzollini et al., 2020):

ez = (B⌦ I2)z̃, ew = (B⌦ In)w̃, (4.19)
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where B := L + T is the leader-follower matrix, which satisfies B = B> > 0 as dis-
cussed in Remark 4.2. In the following, denote with s(B) > 0 the smallest singular
value of B.

4.5.1 Phase Subnetwork

We start by analyzing the (z?, ẑ)-subsystem (referred to as phase subnetwork) and
the phase estimation error z̃. From (4.14), (4.17), the phase subnetwork obeys dy-
namics

ż? =
1
2

c>w? Jz?

˙̂zi =
1
2

c>w? Jẑi +
1
2

c>w̃i Jẑi � kzez i, i 2 V .
(4.20)

For notational convenience, define

W := diag(c>w̃1, . . . , c>w̃N) = diag((IN ⌦ c>)w̃), (4.21)

which allows writing the dynamics of ẑ in compact form as follows

˙̂z =
1
2

⇣
c>w?(IN ⌦ J) + (W⌦ J)

⌘
ẑ � kzez . (4.22)

As a consequence, the dynamics of the phase estimation error z̃ := ẑ � 1N ⌦ z?, can
be computed from (4.19), (4.20), and (4.22) as:

˙̃z =

✓
1
2

c>w?(IN ⌦ J)� kz(B⌦ I2) +
1
2
(W⌦ J)

◆
z̃

+
1
2
(W⌦ J)(1N ⌦ z?),

(4.23)

with inputs given by z?, w?, and w̃ (through W̃ in (4.21)). The next proposition
provides an ISS characterization for system (4.23).

Proposition 4.1. For any scalar gain kz > 0, system (4.23) is finite-gain exponentially
input-to-state stable with respect to the input w̃, uniformly in the inputs (z?, w?). Namely,
for any solution (z?(·), w?(·)) of the exosystem (4.14) and any w̃(·) 2 L•, the solutions of
(4.23) satisfy, for all t � 0:

|z̃(t)|  max
⇢

e�
1
2 s(B)kz t

|z̃(0)|,
|c|kw̃(·)k•

s(B)kz

�
. (4.24)

Proof. For any solution (z?(·), w?(·)) of the exosystem (4.14), system (4.23) can be
regarded as a time-varying system with input w̃. It is convenient to rewrite the last
term of (4.23) as

(W⌦ J)(1N ⌦ z?) = W1N ⌦ Jz?

= diag((IN ⌦ c>)w̃)1N ⌦ Jz?

= diag(1N)(IN ⌦ c>)w̃⌦ Jz?

= (IN ⌦ Jz?c>)| {z }
:=Z?

w̃ = Z?w̃,

(4.25)
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where we used the identity ((IN ⌦ c>)w)⌦ v = (IN ⌦ vc>)w, which holds for any
vectors c>, w, v, of compatible dimensions. Consider the Lyapunov function candi-
date

Vz :=
1
2
|z̃|2 (4.26)

whose derivative along the system trajectories results in

V̇z = � kz z̃>(B⌦ I2)z̃ +
1
2

z̃>Z?w̃

+
1
2

z̃>
⇣

c>w?(IN ⌦ J) + (W⌦ J)
⌘

z̃,

= � kz z̃>(B⌦ I2)z̃ +
1
2

z̃>Z?w̃,

(4.27)

where we employed the fact that IN⌦ J and W⌦ J are skew symmetric. Since kz > 0,
we obtain

V̇z  �s(B)kz |z̃|
2 +

1
2
|Z?

||z̃||w̃|. (4.28)

The following computations yield |Z?
| = |c|:

|Z?
| = |IN ||Jz?c>| = |Jz?c>|

= |Jz?c>|F =
q

Tr(cz?> J> Jz?c>)

=
q

Tr(cc>) = |c|,

(4.29)

where |Jz?c>| = |Jz?c>|F since the rank of Jz?c> is 1 by construction. Applying
(4.28) and (4.29) yields

|z̃| �
|c|

s(B)kz
|w̃| =) V̇z  �

s(B)kz

2
|z̃|2, (4.30)

which leads to (4.24) via standard ISS calculations (Isidori, 1999, Theorem 10.4.1).

4.5.2 Frequency Subnetwork

Starting again from (4.14), (4.17), the frequency subnetwork obeys dynamics

ẇ? = s(z?, w?)

˙̂wi = s(ẑi, ŵi)� kwewi , i 2 V .
(4.31)

We can then write the dynamics of ŵ as

˙̂w = S(ẑ, ŵ)� kwew, (4.32)

where

S(ẑ, ŵ) :=

2

64
s(ẑ1, ŵ1)

...
s(ẑN , ŵN)

3

75 . (4.33)



4.5. Distributed observer 73

Therefore, using (4.19), the dynamics of the frequency estimation error w̃ := ŵ �
(1N ⌦ w?) is given by

˙̃w = S(ẑ, ŵ)� 1N ⌦ s(z?, w?)� kw(B⌦ In)w̃, (4.34)

which, in view of ẑ = z̃ + 1N ⌦ z?, ŵ = w̃ + 1N ⌦ w?, is a non-autonomous system
with inputs given by z?, w?, and z̃. In the following, we present a result that follows
the same structure as Proposition 4.1, now applied to the frequency subnetwork.

Proposition 4.2. For any scalar gain kw > `s/s(B), system (4.34) is finite-gain expo-
nentially input-to-state stable with respect to the input z̃, uniformly in the inputs (z?, w?).
Namely, for any solution (z?(·), w?(·)) of the exosystem (4.14) and any z̃(·) 2 L•, the
solutions of system (4.34) satisfy, for all t � 0:

|w̃(t)|  max
⇢

e�
1
2 (s(B)kw�`s)t|w̃(0)|,

2`skz̃(·)k•

s(B)kw � `s

�
. (4.35)

Proof. For any solution (z?(·), w?(·)) of the exosystem (4.14), system (4.34) can be
regarded as a time-varying system with input z̃. Consider the Lyapunov function
candidate

Vw :=
1
2
|w̃|

2, (4.36)

whose derivative along (4.34) is

V̇w = �kww̃>(B⌦ In)w̃ + w̃>
�
S(ẑ, ŵ)� 1N ⌦ s(z?, w?)

�

= �kww̃>(B⌦ In)w̃ +
N

Â
i=1

w̃>i
�
s(ẑi, ŵi)� s(z?, w?)

�
.

(4.37)

By Assumption 4.2, it holds that

|s(ẑi, ŵi)� s(z?, w?)|  `s(|z̃i|+ |w̃i|), (4.38)

therefore we conclude that

V̇w  �s(B)kw|w̃|
2 + `s

N

Â
i=1

�
|w̃i|

2 + |w̃i||z̃i|
�

 � (s(B)kw � `s) |w̃|
2 + `s|w̃||z̃|.

(4.39)

Finally, from (4.39) we obtain the following ISS characterization:

|w̃| �
2`s

s(B)kw � `s
|z̃| =) V̇w �

s(B)kw � `s

2
|w̃|

2, (4.40)

which proves the finite-gain exponential ISS bound (4.35) through (Isidori, 1999,
Theorem 10.4.1).

4.5.3 Overall Observer Analysis

We conclude the section with a stability result for the feedback interconnection be-
tween the phase estimation error dynamics (4.23) and the frequency estimation error
dynamics (4.34).
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Theorem 4.1. For any choice of the scalar gains kz and kw such that

kz > 0, kw > `s/s(B),
kzs(B)(kws(B)� `s)� 2`s|c| > 0,

(4.41)

the zero-equilibrium (z̃, w̃) = 0 of the overall estimation error system (4.23), (4.34) is glob-
ally exponentially stable.

Proof. From Proposition 4.1, which holds for kz > 0, and Proposition 4.2, valid for
kws(B) > `s, we obtain that both (4.23) and (4.34) are finite-gain exponentially ISS.
Therefore, global exponential stability is ensured from (4.24), (4.35), and (Isidori,
1999, Theorem 10.6.1), through the following small-gain condition:

2`s|c|
kzs(B)(kws(B)� `s)

< 1, (4.42)

which is ensured by (4.41).

Remark 4.3. In the special case where exosystem (4.14) is a cascade, i.e., s = s(w?), condi-
tions (4.41) collapse to kz > 0, kw > `s/s(B). Additionally, if s(w?) = Sww?, where Sw
is a Poisson stable matrix as in (Gui and Ruiter, 2018; Bosso et al., 2021a; Cai and Huang,
2016), (4.37) becomes V̇w = �kww̃>(B⌦ In)w̃, therefore conditions (4.41) become kz > 0,
kw > 0.

4.6 Synchronization with global knowledge of the leader sig-
nals

In this section, we design a tracking controller for the simplified setup where the
observer estimation errors are zero. This approach will be motivated in Section 4.7
by the reduction arguments of the stability analysis.

Firstly, we compute the local tracking error dynamics. Define the phase and
frequency tracking errors as

z̄i :=
⇥
h̄i ēi

⇤> := R(zi)
> ẑi 2 R2

w̄i := c>ŵi �wi 2 R
i 2 V . (4.43)

In these coordinates, the control objective in Problem 4.1 corresponds to imposing
ēi ! 0, for all i 2 V . From (4.10), (4.17), and R(zi)> J = JR(zi)>, we can compute
the phase error dynamics as

˙̄zi =
d
dt

⇣
R(zi)

>

⌘
ẑi +R(zi)

> ˙̂zi

= �R(zi)
>

dR(zi)
dt

R(zi)
> ẑi +R(zi)

> ˙̂zi

=
1
2

w̄i Jz̄i � kzR(zi)
>ez i.

i 2 V (4.44)

Similarly, the dynamics of the frequency error w̄i is computed from (4.10), (4.14), and
(4.17) as

mi ˙̄wi = yi � ui �mikwc>ewi , i 2 V , (4.45)
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where we defined

yi := mic>s(ẑi, ŵi) + diwi �wni

+ Â
j2Ni

kijf(zi)
> Jf(z j) cos(jij)

� Â
j2Ni

kijf(zi)
>f(z j) sin(jij).

(4.46)

Observe that, with ẑi = z? and ŵi = w? (i.e., z̃ = 0, w̃ = 0, equivalently, ez = 0,
ew = 0), the quantities in (4.43) become z̄i = R(zi)>z? 2 S1 and w̄i = c>w?

�

wi 2 R. In view of this reduction argument, we begin the design by assuming
that the exosystem signals (z?, w?) are globally known for feedback. This scenario
corresponds to the requirement T = V , which will be removed in Section 4.7.

4.6.1 Phase Synchronization

Assume initially that wi can be arbitrarily assigned by the feedback controller as a
virtual input wvi. With ez = 0, the dynamics (4.44) thus reduces to

˙̄zi =
1
2
(c>ŵi �wvi)Jz̄i, i 2 V , (4.47)

where wvi is the virtual input that should ensure ēi ! 0. We refer to this objective as
phase synchronization with the reference z?.

Define Q := {�1, 1} and choose any gain k > 0 and a hysteresis margin d 2
(0, 1). For each i 2 V , a hysteresis-based hybrid dynamic controller that achieves
global phase synchronization is given by

⇢
q̇i = 0, (z̄i, qi) 2 Ck

q+i = �qi, (z̄i, qi) 2 Dk

wvi = c>ŵi + kqi ēi,
i 2 V (4.48)

where qi 2 Q is the controller state and

Ck := {(z̄i, qi) 2 S1
⇥Q : h̄iqi � �d}

Dk := {(z̄i, qi) 2 S1
⇥Q : h̄iqi  �d}.

(4.49)

The closed-loop error dynamics then corresponds to
8
<

:

˙̄zi = �
1
2

kqi ēi Jz̄i

q̇i = 0,


z̄i
qi

�
2 Ck,

(
z̄+i = z̄i

q+i = �qi,


z̄i
qi

�
2 Dk, (4.50)

which provides an autonomous hybrid dynamics having state (z̄i, qi) = ((h̄i, ēi), qi) 2
S1
⇥Q and such that qih̄i = �1 is not included in the flow set Ck (because d < 1).

The next lemma is a straightforward generalization of (Mayhew, Sanfelice, and Teel,
2011).

Lemma 4.1. The attractor Ak := {(z, q) 2 S1
⇥ Q : z = qe} is uniformly globally

asymptotically stable for (4.50).

Proof. Choose the Lyapunov function

Vk(z̄i, qi) := 2(1� qih̄i), (4.51)
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which is positive definite and radially unbounded with respect to Ak. Denoting
V̇k =

D
rVk, [ ˙̄zi q̇i]>

E
and DVk = Vk(z̄

+
i , q+i )�Vk(z̄i, qi), straightforward calculations

yield

V̇k = �kē2
i < 0, 8(z̄i, qi) 2 Ck\Ak

DVk = 4qih̄i  �4d < 0, 8(z̄i, qi) 2 Dk,
(4.52)

implying UGAS from standard hybrid Lyapunov theory.

For a convenient design of the backstepping-based adaptive controller defined in
the next subsection, we propose now a dynamically extended version of (4.48) to en-
sure that wvi remains constant across jumps. Specifically, we augment the controller
with a first-order filter of the feedback kqi ēi:

⇢
q̇i = 0
l̇i = �h(li � kqi ēi)

(z̄i, qi, li) 2 Cl

⇢
q+ = �qi
l+

i = li
(z̄i, qi, li) 2 Dl

i 2 V , (4.53)

where h is a positive gain and the sets Cl, Dl are defined as the next generalization
of (4.49):

Cl :=
⇢
(z̄i, qi, li) 2 S1

⇥Q⇥R :
✓

h̄i +
li ēi

k

◆
qi � �d

�

Dl :=
⇢
(z̄i, qi, li) 2 S1

⇥Q⇥R :
✓

h̄i +
li ēi

k

◆
qi  �d

�
.

(4.54)

We can then replace by li the term kqi ēi in the selection of wvi of (4.48), namely we
choose:

wvi = c>ŵi + li, i 2 V , (4.55)

which remains constant across jumps. The closed-loop error dynamics for each node
i, obtained from the interconnection of (4.47), (4.53), and (4.55), is described by:

8
>>><

>>>:

˙̄zi = �
1
2

li Jz̄i

q̇i = 0

l̇i = �h(li � kqi ēi)

2

4
z̄i
qi
li

3

52 Cl,

8
><

>:

z̄+i = z̄i

q+i = �qi

l+
i = li

2

4
z̄i
qi
li

3

52 Dl. (4.56)

The next result generalizes the argument of Lemma 4.1.

Proposition 4.3. For any h > k, the attractor Al := {(z, q, l) 2 S1
⇥Q ⇥ R : z =

qe, l = 0} is uniformly globally asymptotically stable for the hybrid system (4.56).

Proof. Define l̃i := li � kqi ēi, then consider the Lyapunov function

Vl(z̄i, qi, li) := 2k2(1� qih̄i) + l̃2
i . (4.57)
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Note that Vl is positive definite with respect to Al and radially unbounded relative
to S1

⇥Q⇥R. Denote V̇l =
D
rVl, [ ˙̄zi q̇i l̇i]>

E
. For all (z̄i, qi, li) 2 Cl, it holds that

V̇l = �k2qili ēi + l̃i(�2hl̃i + kqilih̄i)

= �k3ē2
i + k2l̃i ēi(h̄i � qi)� (2h� kqih̄i)l̃

2
i

 �


|ēi|

|l̃i|

�>  k3
�k2

�k2 2h� k

� 
|ēi|

|l̃i|

�
.

(4.58)

From d < 1, for any point in Cl we have that l̃i = 0 and ēi = 0 implies that
(z̄i, qi, li) 2 A (in particular, the point with li = 0 and qi = �h̄i does not belong to
Cl), then V̇l < 0, for all (z̄i, qi, li) 2 Cl\Al, if k3(2h� k)� k4 = 2k3(h� k) > 0, i.e.,
h > k. On the other hand, denote DVl = Vl(z̄

+
i , q+i , l+

i )� Vk(z̄i, qi, li), then for all
(z̄i, qi, li) 2 Dl we have:

DVl = 4k2qih̄i + (l̃i + 2kqi ēi)
2
� l̃2

i

= 4k2qi

✓
h̄i +

li ēi
k

◆
 �4k2d < 0,

(4.59)

thus concluding UGAS for the attractor Al.

4.6.2 Global Adaptive Synchronization

Taking advantage of the hybrid system defined in (4.53), we propose to achieve
global synchronization to the reference z? using an adaptive backstepping controller
where, in place of the feedback wvi = c>ŵi + li in (4.55), we ensure wi ! wvi by
design of the control input ui.

In place of the frequency tracking error w̄i in (4.43), consider the error variable

zi := c>ŵi + li �wi = w̄i + li 2 R, i 2 V . (4.60)

We can rewrite the error dynamics (4.44) and (4.45) using variables zi as follows:

˙̄zi =
1
2
(zi � li)Jz̄i � kzR(zi)

>ez i

miżi = yi � ui �mi

⇣
kwc>ewi + h(li � kqi ēi)

⌘ i 2 V . (4.61)

Using (4.46), the second equation can also be rewritten as follows

miżi = Y>i pi � ui �mikwc>ewi , i 2 V , (4.62)
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with regressor Yi and parameter vector pi 2 R3+2|Ni | given by:

Yi :=

2

6666666666666664

c>s(ẑi, ŵi)�h(li�kqi ēi)
wi
1

f(zi)> Jf(z j1)
...

f(zi)> Jf(z j|Ni |
)

f(zi)>f(z j1)
...

f(zi)>f(z j|Ni |
)

3

7777777777777775

, pi :=

2

6666666666666664

mi
di
�wni

kij1 cos(jij1)
...

kijNi
cos(jij|Ni |

)

�kij1 sin(jij1)
...

�kijNi
sin(jij|Ni |

)

3

7777777777777775

(4.63)

where we denoted Ni = {j1, . . . , j|Ni |
}. By Assumption 4.1, it follows that

|pi|• = max{|pi1|, . . . , |pi(3+2|Ni |)|}  r. (4.64)

The control of system (4.61) is based on the augmentation of control law (4.53)
with the following adaptive state-input selections:

ui = Y>i p̂i + kzzi
˙̂pi = gYizi � gn dz( p̂i)

p̂+i = p̂i,
i 2 V , (4.65)

where kz, g, and n are positive gains, while dz : R3+2|Ni | ! R3+2|Ni | is a decen-
tralized dead-zone function defined as (Isidori, Marconi, and Serrani, 2012, Section
3.4):

dz(x) :=

2

6664

x1 � rsat
⇣

x1
r

⌘

...
x3+2|Ni |

� rsat
⇣

x3+2|Ni |
r

⌘

3

7775
, (4.66)

where sat(y) := max{�1, min{1, y}}. Exploiting (4.64), it can be verified that, for all
pi and all x 2 R3+2|Ni |:

(x � pi)
> dz(x) � 0. (4.67)

Moreover, there exist positive scalars r and µ such that, for all pi and all x 2 R3+2|Ni |:

|x| � r =) (x � pi)
> dz(x) � µ|x|2. (4.68)

In view of our reduction arguments (ezi = 0 and ewi = 0 in (4.61)), the closed-loop
dynamics obtained from the interconnection of (4.61), (4.62), (4.53), and (4.65), hav-
ing state xi := (z̄i, qi, li, zi, p̂i), is expressed, for each i 2 V , as follows:

8
>>>>>>>><

>>>>>>>>:

˙̄zi =
1
2
(zi � li)Jz̄i

q̇i = 0

l̇i = �h(li � kqi ēi)

miżi = �kzzi �Y>i ( p̂i � pi)
˙̂pi = gYizi � gn dz( p̂i)

xi 2 Ci,

8
>>>>>><

>>>>>>:

z̄+i = z̄i

q+i = �qi

l+
i = li

z+i = zi

p̂+i = p̂i

xi 2 Di, (4.69)
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where Ci := Cl ⇥R4+2|Ni | and Di := Cz ⇥R4+2|Ni |. In the following, we focus on the
stability properties of the closed-loop system obtained through the interconnection
of the exosystem (4.14) and the local error dynamics (4.69). For this interconnec-
tion, we are going to show that there exists a globally asymptotically stable compact
attractor wherein all oscillators are synchronized with the reference z?. More specifi-
cally, this compact attractor, named A0, is a set wherein z̄i = qie, zi = 0, for all i 2 V ,
and satisfying A0 ⇢ K0, with K0 compact, defined as:

K0:={(z?, w?, x1, . . . , xN)2K
?
⇥’

i2V
(S1
⇥Q⇥R5+2|Ni |):

z̄i = qie, li = 0, zi = 0, | p̂i|  r, 8i 2 V},
(4.70)

where r > 0 as per (4.68). In the sequel, we call K0 synchronization set.

Remark 4.4. The set K0 is compact. Indeed, (z?, w?) 2 K
? is in a compact by assumption,

while the only components of xi := (z̄i, qi, li, zi, p̂i) that are possibly unbounded are li, zi,
and p̂i. Therefore, from the conditions in (4.70), compactness follows immediately.

Remark 4.5. Since no persistency of excitation is necessarily satisfied by the regressor Yi
in (4.63), it might be surprising that a globally asymptotically stable attractor can be found
with the considered adaptive controller. This result is possible because we make use of the
analysis tools in (Goebel, Sanfelice, and Teel, 2012, Chapter 6.10) instead of the standard
tools for adaptive control (see, e.g., (Khalil, 2002, Section 8.3)). In particular, we leverage
the result (Goebel, Sanfelice, and Teel, 2012, Corollary 7.7), which states that, under some
regularity properties including-well posedness, the w-limit set from a compact set of initial
conditions is locally asymptotically stable.

Theorem 4.2. For any selection of the tuning parameters k > 0, d 2 (0, 1), h > k, kz > 0,
g > 0, and n > 0, there exists a compact set A0, contained in the synchronization set K0 of
(4.70), that is robustly globally KL asymptotically stable in the sense of (Goebel, Sanfelice,
and Teel, 2012, Definition 7.18) for the interconnection among (4.14) and (4.69).

Robustness of our stability result follows from compactness of A0 and well posed-
ness of the considered hybrid dynamics.

Proof. First, we prove that the closed-loop solutions are bounded and forward com-
plete. The state (z?, w?) of the exosystem (4.14) evolves in the bounded forward
invariant set K

?, thus it is bounded. Moreover, qi is bounded by construction.
In the scenario with known leader signals considered in this section, it holds that
z̄i := R(zi)> ẑi = R(zi)>zi 2 S1, thus z̄i is bounded. Since |kqi ēi|  k we obtain, for
|li| � k:

d
dt
|li| = �h

li
|li|

(li � kqi ēi)

 �h(|li|� k)  0,
8i 2 V (4.71)

therefore li is bounded. Boundedness of (zi, p̂i) is established by using the following
Lyapunov function

Vi(zi, p̂i) :=
1
2

miz2
i +

1
2g

| p̂i � pi|
2, 8i 2 V . (4.72)
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Along the closed-loop solutions, we obtain from (4.69),

V̇i = �kzz2
i � ziY>i ( p̂i � pi) + ( p̂i � pi)

> [Yizi � n dz( p̂i)]

= �kzz2
i � n( p̂i � pi)

> dz( p̂i), 8i 2 V
(4.73)

Therefore, using (4.68) and the properties of the dead-zone function, we obtain, for
all i 2 V ,

V̇i  �kzz2
i  0, if | p̂i|  r,

V̇i  �kzz2
i � nµ| p̂i|

2 < 0, if | p̂i| � r. (4.74)

Property (4.74) shows forward invariance of the sublevel sets of Vi, i 2 V , thus
(zi, p̂i) is contained in a compact set, for all i 2 V . Exploiting boundedness of the
components of xi, i 2 V , established above, we also conclude by (Goebel, Sanfelice,
and Teel, 2012, Proposition 6.10) that solutions are forward complete, thus they are
precompact.

From (4.72)–(4.74) and using the fact that zi and p̂i do not change across jumps,
we can apply (Goebel, Sanfelice, and Teel, 2012, Corollary 8.4) to obtain that all so-
lutions approach the largest weakly invariant subset of the set

U := {(z?, w?, x1, . . . , xN) 2 K
?
⇥’

i2V
(S1
⇥Q⇥R5+2|Ni |):

zi = 0, | p̂i|  r, 8i 2 V}.
(4.75)

The closed-loop dynamics restricted to the set U in (4.75) is given, for all i 2 V , by
zi = 0, ˙̂pi = 0, and (4.56). In view of Proposition 4.3, the solutions globally approach
K0 ⇢ U as per (4.70) and (4.75).

For a set of initial conditions of the form K# := K0 + #B, where # > 0 is arbitrary,
it holds that A0 := W(K#) ⇢ K0 ⇢ Int(K#), where W(K#) denotes the w-limit set
of K#. By (Goebel, Sanfelice, and Teel, 2012, Corollary 7.7), A0 is asymptotically
stable (therefore Lyapunov stable) with basin of attraction containing K#. From the
previous arguments, A0 is globally attractive, which, together with its Lyapunov
stability, gives GAS. Since the hybrid dynamics satisfies the hybrid basic conditions
of (Goebel, Sanfelice, and Teel, 2012, Assumption 6.5) and A0 is compact, then GAS
of A0 implies robust global KL asymptotic stability from (Goebel, Sanfelice, and
Teel, 2012, Theorem 7.21).

As customary in adaptive control, convergence of the estimated parameters p̂i
to the true parameters pi cannot be guaranteed. This in turn makes it difficult, if at
all possible, to give an explicit representation of the attractor A0. Even without its
explicit representation, the mere existence of A0 is sufficient to complete the design
through reduction theorems in the next section.

4.7 Main Result

We finally present the complete hybrid observer-based controller for each node i,
obtained by combining the distributed observer (4.17) and the local hysteresis-based
controller (4.53), and the local adaptive controller (4.65). Note that, in this context,
we no longer assume z̃ = 0, w̃ = 0 (equivalently, ez = 0, ew = 0), thus the dynamics
of the tracking errors (z̄i, zi) in (4.61) is not simplified as in the scenario with known
leader signals. The robustness property established in Theorem 4.2 is naturally in-
herited here due to well posedness of the hybrid dynamics.
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Reduction Theorem

(⇣?, w?
)

FIGURE 4.2: Sketch of the closed-loop error subsystems, with their
interconnections and the related stability results.

Define the overall state at node i as

ci := (ẑi, ŵi, z̄i, qi, li, zi, p̂i| {z }
xi

) 2 Rn+4
⇥Q⇥R5+2|Ni |, (4.76)

then the local controllers that solve Problem 4.1 are given as follows, for each i 2 V :
8
>>>>>>>><

>>>>>>>>:

˙̂zi =
1
2

c>ŵi Jẑi � kzez i

˙̂wi = s(ẑi, ŵi)�kwewi

q̇i = 0

l̇i = �h(li � kqi ēi)
˙̂pi = gYizi � gn dz( p̂i)

ci 2 Cci,

8
>>>>>><

>>>>>>:

ẑ+i = ẑi

ŵ+
i = ŵi

q+i = �qi

l+
i = li

p̂+i = p̂i

ci 2Dci,

with: Cci :=
n

ci 2 Rn+4
⇥Q⇥R5+2|Ni | :
✓

h̄i +
li ēi

k

◆
qi � �d

�
,

Dci :=
n

ci 2 Rn+4
⇥Q⇥R5+2|Ni | :
✓

h̄i +
li ēi

k

◆
qi  �d

�
,

and: ui = Y>i p̂i + kzzi,

(4.77)

where ez i, ewi are given in (4.19), h̄i, ēi are defined in (4.43), zi is defined in (4.60), Yi
is given in (4.63), dz is given in (4.66), while the tuning parameters are the stabilizer
gains k, h, kz, g, n, the observer gains kz , kw, and the hysteresis margin d.

The closed-loop system is given by the interconnection of the second-order Ku-
ramoto network (4.10), the exosytem (4.14), and the local controllers (4.77). For such
system, we exploit reduction theorems to show that there exists a compact attractor
A that is robustly globally KL asymptotically stable. As for Theorem 4.2, we show
that A is a subset of a compact set K that we may call again synchronization set, with
a slight abuse of notation, because its elements enjoy phase synchronization to the
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reference z?:

K:= {(z?, w?, c1, . . . , cN)2K
?
⇥’

i2V
(Rn+4

⇥Q⇥R5+2|Ni |):

ẑi = z?, ŵi = w?, z̄i = qie, li = zi = 0, | p̂i|  r, 8i 2 V}.
(4.78)

Note that the projection of K in the direction of (z?, w?, x1, . . . , xN) corresponds to
K0 in (4.70).

The main result of this work is given by the following statement, which provides
formal guarantees for the effectiveness of the controllers (4.77).

Theorem 4.3. For any selection of the tuning parameters k > 0, d 2 (0, 1), h > k, kz > 0,
g > 0, n > 0 and kz , kw satisfying (4.41), there exists a compact set A, contained in K

of (4.78), that is robustly globally KL asymptotically stable for the interconnection among
(4.10), (4.14), and (4.77).

Proof. We begin by highlighting the cascade-structure of the closed-loop error dy-
namics. As shown in Section 4.5, the distributed observer dynamics is collected
in the estimation error subsystems (4.23) and (4.34). We can establish a cascade
interconnection between the system (4.23), (4.34), (4.14), with output (z?, w?, z̃, w̃),
and the tracking error dynamics (4.69). We highlight that whenever (z̃, w̃) = 0 the
closed-loop system is described by the dynamics with known leader signals (4.14),
(4.69). The overall interconnection of these subsystems is shown in Figure 4.2.

Asymptotic stability of the attractor A is proven through reduction theorems. By
Theorem 4.1, we showed that the closed (but not compact) attractor

Â:={(z?, w?, c1, . . . , cN)2 K
?
⇥’

i2V
(Rn+4

⇥Q⇥R5+2|Ni |):

ẑi = z?, ŵi = w?, 8i 2 V},

corresponding to the scenario with known leader signals, is UGAS. On the set Â,
we recover the dynamics (4.69), thus by Theorem 4.2 there exists an attractor A ⇢ K

that is UGAS relative to Â. By (Maggiore, Sassano, and Zaccarian, 2018, Corollary
4.8), A is uniformly asymptotically stable for the overall closed-loop system, with
basin of attraction given by all the initial conditions generating bounded solutions.

We conclude the proof by showing that all solutions of the closed-loop system
are bounded, which then implies UGAS and then robust global KL asymptotic sta-
bility from (Goebel, Sanfelice, and Teel, 2012, Theorem 7.21). First note that the state
(z?, w?) of the exosystem (4.14) evolves in the bounded forward invariant set K?,
thus it is bounded. Similarly, qi is bounded by construction. Due to Theorem 4.1,
(z̃, w̃) converge to zero, therefore (ẑi, ŵi) are bounded for all i 2 V . It remains to
show that z̄i, li, zi, and p̂i are bounded, for all i 2 V . Concerning z̄i, recall that
z̄i := R(zi)> ẑi, where zi 2 S1, therefore z̄i is bounded because |z̄i|  |ẑi|. Since z̄i
is bounded, so is kqi ēi. Indicate with k̄i the upper bound of kqi ēi, for a given set of
initial conditions, and boundedness of li is proven by parallel derivations to (4.71).
To analyze (zi, p̂i), as in the proof of Theorem 4.2, consider the Lyapunov function

Vi(zi, p̂i) :=
1
2

miz2
i +

1
2g

| p̂i � pi|
2, i 2 V . (4.79)
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From (4.67) and (4.68), respectively for each i 2 V , similar steps to those in (4.73),
(4.74) yield:

V̇i = �kzz2
i � n( p̂i � pi)

> dz( p̂i)�mikwzic>ewi

 �
kz

2
z2

i +
1

2kz
|mikwc>ewi |

2,

| p̂i| � r =) V̇i  �
kz

2
z2

i � nµ| p̂i|
2 +

1
2kz

|mikwc>ewi |
2.

(4.80)

These two bounds provide, respectively,

|zi| >
mikw|c|

kz
|ewi | =) V̇i(zi, p̂i) < 0,

| p̂i| > max

(
r,

mikw|c|p
2kznµ

|ewi |

)
=) V̇i(zi, p̂i) < 0.

(4.81)

The two implications above prove that neither zi nor p̂i can grow unbounded be-
cause ew = (B ⌦ In)w̃ is bounded. Therefore, we conclude global boundedness of
solutions.

4.8 Numerical example

For the numerical analysis, we consider a Kuramoto model composed of six oscilla-
tors, whose parameters and initial conditions are reported in Table 4.1. In particular,
the graph of the network is depicted in Figure 4.1, where the coupling parameters
have been assigned as k12 = 0.5, k13 = 3, k14 = 1, k16 = 1.5, k34 = 2, k45 = 2.5,
k56 = 2, j12 = p/2, j13 = p/3, j14 = p/4, j16 = p/3, j34 = p/5, j45 = p/4,
j56 = p/2. We suppose to have a rough knowledge of the parameter bounds by
letting r = 25 in (4.5). It follows that Assumptions 4.1 and 4.3 hold. The leader
exosystem (4.14) has been chosen as

d
dt


z?1
z?2

�
=

1
2
(w?

1 + w?
3)J


z?1
z?2

�

d
dt

2

4
w?

1
w?

2
w?

3

3

5 =

2

4
0

w?
3

�w?
2 +

�
1� 1

2 |w
?
3 |
�

tanh(w?
3) +

3
2 z?2

3

5 ,
(4.82)

with initial conditions z?(0) = [1 0]> and w?(0) = [2 0 0]>. For completeness,
we briefly prove that Assumption 4.2 is satisfied. The existence of K? is guaranteed
by proving boundedness of solutions of (4.82). Note that (z?1 , z?2 , w?

1) are bounded
by construction. On the other hand, boundedness of (w?

2, w?
3) is proven by direct

application of (Arcak and Teel, 2002, Theorem 2). We remark that, from the chosen
initial conditions, the solution converges to a periodic orbit as depicted in Figures
4.3, 4.4. It can be easily shown that s(ẑ?, w?) is globally Lipschitz, since the derivative
of the nonlinear term is bounded for all w?

3. From the numerical evaluation of the
differential of s over the values of (z?, w?), we established a Lipschitz constant `s =
2.129.

The Kuramoto model has been implemented according to (4.2), with the angles
qi wrapped between �2p and 2p in order to ensure boundedness of the simulation
variables. Then, for the computation of the feedback laws, the variables zi have been
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FIGURE 4.3: Response of exosystem (4.82) initialized in z?(0) =
[1 0]>, w?(0) = [2 0 0]>.
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FIGURE 4.4: Response of exosystem (4.82) (in blue) and correspond-
ing asymptotic behavior (in violet).

computed according to (4.8). The tuning parameters have been selected as kz = 50,
kw = 50, d = 0.5, k = 1, kz = 5, h = 2, g = 1, n = 1. Note that (4.41) is verified
since s(B) = 0.1136. The initial conditions for controller (4.77) have been randomly
chosen, where in particular the logic variables qi have been initialized in the set
Q := {�1, 1}.

In Figures 4.5, 4.6 we report the results of a simulation run. Figure 4.5 shows
the behavior of the distributed observer, which rapidly converges to the exosystem
signals. On the other hand, Figure 4.6 depicts the tracking performance. In Figure
4.6-(e), we also report the evolution of p̂1, showing that the parameters of the adap-
tive controllers converge to constant values. Finally, we employ wrapped angles to
depict the phase tracking performance in Figures 4.6-(f), 4.6-(g). In particular, we
define

J? := 2atan2 (z?2 , z?1) ,
Ji := mod (qi + p, 2p)� p, i 2 V ,

(4.83)
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TABLE 4.1: Parameters and initial conditions of the oscillators

mi di wni qi(0) wi(0)
oscillator #1 1.1 0.1 5 �p 2
oscillator #2 1.3 0.15 10 p 0.5
oscillator #3 1.2 0.2 15 p/2 1
oscillator #4 1.6 0.21 20 �p/2 0.3
oscillator #5 1.4 0.18 8 p/3 1.5
oscillator #6 1.5 0.13 18 �p/3 0.8
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FIGURE 4.5: Closed-loop simulation results. (a): distributed observer
phase estimation (reference in blue); (b): distributed observer fre-

quency estimation (reference in blue).

where J? is the angular reference corresponding to z?, while Ji is qi wrapped in the
interval [�p, p).

4.9 Conclusions

We introduced an adaptive hybrid control strategy for the robust global phase syn-
chronization of second-order Kuramoto oscillators. The objective of phase synchro-
nization was cast into a leader-follower tracking problem, where the leader system
is modeled as an autonomous nonlinear exosystem. Under fairly mild assumptions
on the network topology and the exosystem dynamics, we proved that our design,
which comprises a distributed observer and an adaptive hybrid stabilizer, ensures
robust global stability of a compact synchronization set. In particular, robust adap-
tive stabilization was ensured without requiring persistency of excitation conditions.
Future efforts will be dedicated to relaxing the information requirements (e.g., by
removing the frequency measurements) and the connectivity properties of the net-
work. Furthermore, it will be worth generalizing the approach to a broader class of
nonlinear oscillators.
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FIGURE 4.6: Closed-loop simulation results. (a): phase tracking er-
rors; (b): phase tracking errors, zoomed in [0, 0.8]s to highlight the
jumps during the initial transient; (c): filtered inputs li; (d): fre-
quency tracking errors zi; (e): evolution of p̂1; (f): arc distance be-
tween qi and J?; (g): phase angles, wrapped in the interval [�p, p)

(reference in blue).
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Part III

Robust Estimation for Mobile
Robotics Applications
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Chapter 5

An Adaptive Observer approach to
Slip Estimation for Agricultural
Tracked Vehicles

The chapter deals with autonomous Unmanned Ground Vehicles developed for pre-
cision agriculture contexts. The focus of this work is on the design of an adaptive
observer for slip estimation ensuring exponential convergence to the real slip co-
efficients. Uniform global exponential stability of the origin of the error system is
shown via Lyapunov analysis and persistency of excitation arguments. Further-
more, robustness to additive perturbations is shown in terms of Input-to-State Sta-
bility. Experimental results validate the effectiveness of the proposed estimator even
in presence of noisy measurements.

5.1 Introduction

Mobile robotics in outdoor applications is already widespread in several fields (Delmerico
et al., 2019; Azzollini, Mimmo, and Marconi, 2020; Chun and Papanikolopoulos,
2016; Yoshida, 2009). Recently, also agriculture, namely Precision Agriculture (PA),
is merging farming techniques with data science and robotics to optimize farm-
ing processes (Haverkort, A.J. Ancha Srinivasan (ed), 2007; Slaughter, Giles, and
Downey, 2008) and to support farmer decisions.

Currently, PA autonomous platforms are mostly deployed in open-field farming,
while for Orchard PA (OPA) they are still at research level. The main difference be-
tween the two lies in the navigation. In open field, GPS data are enough to reliably
navigate, while trees canopy and orchard structure can obstruct GPS signals requir-
ing GPS-free navigation strategies. This work frames within the latter scenario and,
in line with (Bergerman et al., 2015; Costley and Christensen, 2020; Mengoli, Tazzari,
and Marconi, 2020), robot localization is achieved by leveraging odometry, LiDAR,
and Inertia Measurement Unit (IMU).

Caterpillars feature a wider contact surface with the ground if compared to wheels,
with a higher level of traction and stability. Therefore, they are the ideal choice for
Unmanned Ground Vehicle (UGV) designed for rough terrains (Wong and Huang,
2006).

The main drawback of this locomotion system lies in the turning mechanism. In
fact, the two tracks are actuated with different velocities causing the robot to skid
over the ground - from here the name Skid-Steering Vehicles (SSVs) - shearing the
terrain as in Figure 5.1. This slip reduces the reliability of odometry, making slip es-
timation even more relevant for localization and navigation purposes. Accurate slip
estimation is also relevant for OPA tasks, as a good estimate of the vehicle velocity
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FIGURE 5.1: Terrain shearing during turning maneuvers.

and position increases the capability of keeping a constant working speed, which is
a key requirement in most of orchard operations, e.g. spraying.

Ideally, a SSV should behave as a Differential Wheeled Robot (DWR) but the
presence of slip creates a mismatch between the two systems. This difference makes
the problem of path following for tracked vehicles more complex and motivated
several research activities aiming to design algorithms for estimating/compensating
this effect. In particular, the kinematic slip has been modeled as a constant plus an
additive zero-mean stochastic process and then estimated using Kalman filters as in
(Zhou, Peng, and Han, 2007; Dar and Longoria, 2010; Rogers-Marcovitz, Seegmiller,
and Kelly, 2012; Sebastian and Ben-Tzvi, 2019) or adaptively (Burke, 2012). On the
other hand, (Nagatani, Endo, and Yoshida, 2007; Endo et al., 2007) studied the re-
lation between the slip and track speeds, remarking the dependence of the slip on
track velocities, turning radius and soil properties. However, these relations work
only when the turning radius is kept small enough. Differently from all the other ap-
proaches, (Moosavian and Kalantari, 2008), (Rajagopalan, Meriçli, and Kelly, 2016)
were driven by data fitting, leading to the definition of ad hoc slip models tailored
for the specific platform-terrain combination considered.

Focusing on adaptive approaches, (Burke, 2012) models the slip as a random
walk, estimating it through a recursive least squares and then using it to adapt the
control action considering a DWR-based reference model, following a direct model
reference adaptive control approach. Instead, (Yi et al., 2007) designs an adaptive
feedback linearization control for the dynamic model of a wheeled SSV. We observe
that, in line with classic adaptive control literature, both (Burke, 2012) and (Yi et al.,
2007) share the need of Persistency of Excitation (PE) conditions in order to have
convergence of the slip estimates to the true slip coefficients, without discussing in
details what this would mean in terms of mobile robot trajectories.

In this chapter, we propose an adaptive observer which robustly estimates the
slip coefficients with an exponential convergence rate, assuming the UGV moves
at constant linear and angular velocities. This assumption is in line with the typi-
cal navigation trajectories required to be performed by an orchard agriculture robot.
In particular, we design our estimator by mixing an identity observer with classic
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adaptive laws, the latter found via a Lyapunov analysis. The design choice is conve-
nient to bring the error system in a standard form (Panteley, Loria, and Teel, 2001).
Moreover, in contrast to existing adaptive approaches (Burke, 2012; Yi et al., 2007),
we formally prove how the considered trajectories are persistently exciting for our
estimator, resulting in a globally uniformly exponentially stable origin for the esti-
mation error system.

5.2 Notation

We denote by R the set of real numbers and we define R�0 := [0, •). |·| denotes the
Euclidian norm of vectors and induced norm of matrices, while |·|p, with p 2 [1, •],
indicates the Lp norm of time signals. In particular, for a measurable function f :
R�0 ! Rn, |f|p := (

R •
t0

|f(t)|p dt)1/p for p 2 [1, •), and |f|• := ess supt�t0
|f(t)|.

For cr > 0, Bcr denotes the open ball Bcr := {x 2 Rn : |x| < cr}. A function
g : R�0 ! R�0 belongs to class-K (g 2 K) if it is continuous, strictly increasing
and g(0) = 0. Moreover, if in addition g(s) !s!• •, g is said to belong to class-
K• (g 2 K•). A solution to the differential equation ẋ = f (t, x) at time t with
initial conditions (t0, x0) 2 R�0 ⇥Rn is denoted as (x(t, t0, x0)), or simply x(t). For
the function V : R�0 ⇥Rn

! R, we define V̇(#)(t, x) := (∂V/∂t) + (∂V/∂x) f (t, x)
where (#) denotes the equation number that labels equation ẋ = f (t, x).

5.3 Models

SSV kinematic model

Under the main assumption of planar motion, we consider the following kinematic
model, described with respect to an inertial reference frame Fi(Oi, x, y, z), as

ẋ = VG cos q

ẏ = VG sin q

q̇ = Wz

(5.1)

where VG is the linear velocity of the Center of Gravity (CoG) in body coordinates,
Fb(Ob, xb, yb, zb), and Wz represents the angular velocity of the vehicle around the
axis normal to the motion plane. The main quantities of interest are also presented
in Figure 5.2. Both SSVs and DWRs kinematics can be described using (5.1), due to
their nonholonomic nature. The main difference lies in the expressions of VG and
Wz. In fact, for DWRs they can be computed as

VG =
vR + vL

2
=

r
2
(wR + wL)

Wz =
vR � vL

2d
=

r
2d

(wR �wL)

(5.2)
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FIGURE 5.2: Planar motion of a tracked vehicle.

while for SSVs the same quantities are expressed as

VG =
vR(1� iR(t)) + vL(1� iL(t))

2
=

r
2
(wR(1� iR(t)) + wL(1� iL(t)))

Wz =
vR(1� iR(t))� vL(1� iL(t))

2d
=

r
2d

(wR(1� iR(t))�wL(1� iL(t))).

(5.3)

The quantities wR, wL are the right and left angular motor speeds, respectively, and
similarly, vR, vL represent the linear velocities of the right and left wheel (or track).
The quantity r is the wheel (or track sprocket) radius, while d is half the distance
between the center lines passing through the two wheels (or tracks), also shown
in Figure 5.2. The difference between (5.2) and (5.3) is given by the presence of
iR(t), iL(t) 2 (�1, 1) that are the time-varying slip coefficients associated with the
right and left track, respectively. Notice that in (5.3), the real inputs driving the
system are (1� iR)vR and (1� iL)vL, resulting in a variation of the efficiency of the
control inputs vL, vR. By letting

(
hR := 1� iR, 0 < hR < 2
hL := 1� iL, 0 < hL < 2

(5.4)
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the overall kinematic model (5.1) is rewritten as

ẋ =
hR cos q

2
vR +

hL cos q

2
vL

ẏ =
hR sin q

2
vR +

hL sin q

2
vL

q̇ =
hR

2d
vR �

hL

2d
vL ,

(5.5)

which is a system with control inputs vR, vL, and exogenous (uncontrollable) inputs
hR, hL.

Slip coefficients model

While it is a well-known fact (Bekker, 1960; Wong, 2008; Nagatani, Endo, and Yoshida,
2007; Endo et al., 2007) that iR, iL depend on the soil type as well as on the track ve-
locities (both absolute and relative to each other), to the best of authors’ knowledge,
a mathematical model capturing the underlying complex relation is not available in
literature. In (Nagatani, Endo, and Yoshida, 2007) and (Endo et al., 2007), it is ob-
served that there is a nonlinear relation between the ratio iR(t)/iL(t) and vR, vL but
this result is limited to small turning radii, and a complete relation also including
soil dependency is still missing.

In general, track slip coefficients are expressed as

i = 1�
Vt

vi
= 1�

Vt

wr
(5.6)

where i is the slip coefficient of a track, vi is the ideal velocity of the track given
by the product of the driving sprocket rotational speed w and its radius r, and Vt
is the actual speed of the track-ground contact point (which is hardly measurable).
Equation (5.6) shows the relation between the value of the slip coefficient and the
track velocity, but it does not show any dependency on soil-related parameters.

On the other hand, (Bekker, 1960) and (Wong, 2008) report a relation between
slip coefficients and the traction force of the track to the ground, which depends on
the physical properties of the terrain according to

F = Fmax


1�

K
il

⇣
1� e�

il
K

⌘�
(5.7)

where l is the length of the contact surface between the track and the ground, K
represents the soil shear deformation modulus and Fmax is the maximum traction
force developed by a track. The latter can be expressed as

Fmax = Sctmax = Sc (c + p tan j) = Scc +
W
2

tan j

in which Sc is the track-ground contact surface, tmax the maximum shear strength
of the terrain, c the apparent cohesion of the terrain and j the angle of internal
shearing resistance of the soil, p is the normal pressure acting on the track and W
the total weight of the vehicle. Inverting (5.7) it is then possible to retrieve the slip
coefficient of the track, given soil parameters and the traction forces applied by each
of them, as done in (Zou, Angeles, and Hassani, 2018). Once again, the relation
found is incomplete, as it does not relate both track velocities and soil features in a
single equation.
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In conclusion, both (5.6) and (5.7) are incomplete and therefore there is no ad-
vantage in considering the dynamic model over the kinematic one for problems of
slip estimation.

5.4 Problem statement

The following general problem is considered.

Problem 5.1. Considering system (5.5), the problem at hand is to design a dynamical sys-
tem with inputs x, y, q, vR, vL, producing as output the estimates ĥR, ĥL asymptotically
converging to the true coefficients hR and hL, respectively.

As emphasized previously, the general problem is hard to be solved as it would
require a model relating the intrinsically time-varying slip coefficients to the sys-
tem states and inputs, as well as to the time-varying (and practically impossible to
be modeled or measured) terrain parameters. The application framework given by
OPA leads to simplifying assumptions making the problem more tractable, as most
of the farming tasks require to navigate the orchard at a constant speed.

Orchard works feature a repetitive pattern in which one has to travel along the
field lane, then switch to the following one, and so on. Therefore, it is possible to
define two different navigation scenarios:

• Straight motion - navigating the current orchard row at a constant speed;

• Turning motion - switching from the current row to the next one at constant
speed and turning radius.

While for straight motion constant speed is required by the tasks themselves (e.g to
uniformly spray pesticides), for turning motion it is simply the most efficient trajec-
tory for SSVs. In (Bergerman et al., 2015), where car-like vehicles are considered, it
is shown that particular techniques have to be adopted for lane-switching manoeu-
vres, being turning radii bounded by their steering capabilities. Differently, SSVs
allow one to perform turning manoeuvres with small turning radius (even zero).

Notice that each scenario requires the robot to move at a constant VG and WZ,
which are obtained, according to (5.2), from constant values of vR, vL. From (5.6), it
is possible to claim that when vi is constant, i is constant as well. On the other hand,
provided that constant track velocities are given by constant track forces, (5.7) re-
quires the terrain to be homogeneous in order to obtain constant coefficients, which
is a reasonable assumption in OPA. Then, this application framework allows one to
rewrite the coefficients iR(t) and iL(t) as constants, namely iR(t) = iR and iL(t) = iL.
We want to comment already at this point that these considerations are validated by
all the experimental results we performed on the field (as described in Section 5.6).
Formally, the problem is considered under the following assumption.

Assumption 5.1. The linear velocities vR, vL in (5.5) are constant and positive. Moreover,
the soil is homogeneous, therefore also iR, iL are constant.
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5.5 Main result

Assuming that x, y, q, vR, vL can be measured, the proposed estimator is the adaptive
identity observer:
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(5.8)

where the state
⇥
x̂ ŷ q̂ ĥR ĥL

⇤>
2 R5 contains the estimates of x, y, q, hR, hL in

(5.5), the output-injection matrix L 2 R3⇥3 and the adaptive-gain matrix L 2 R2⇥2

are design parameters to be chosen, and we define the observation error

e =

2

4
ex
ey
eq

3

5 =

2

4
x� x̂
y� ŷ
q � q̂

3

5 . (5.9)

The properties of the estimator are presented in the following theorem, which rep-
resents the main result of this work.

Theorem 5.1. Under Assumption 5.1, the problem of slip coefficients estimation is solved
by the adaptive observer (5.8) with arbitrary initial conditions, and with L and L positive
definite. In particular, the estimator guarantees uniform exponential convergence of the esti-
mates to the true slip coefficients as time goes to infinity: ĥR ! hR, ĥL ! hL.

Proof. We change coordinates by considering the observation error, (5.9), along with
the estimation error

h̃ =


h̃R
h̃L

�
=


ĥR � hR
ĥL � hL

�
.

Thus, system (5.8) in the new error coordinates becomes

#̇ =


ė
˙̃h

�
=


�L F>(t)

�LF(t) 0

� 
e
h̃

�
= A(t, #) (5.10)

where, we call regressor the matrix

F(t) =

2

64
�

cos q(t)
2

vR �
sin q(t)

2
vR �

1
2d

vR

�
cos q(t)

2
vL �

sin q(t)
2

vL
1

2d
vL

3

75 . (5.11)

System (5.10) is almost standard in adaptive control literature, with the peculiarity
of having a matrix regressor, instead of just a vector.

Solving our problem is equivalent to conclude uniform global asymptotic stabil-
ity of the origin for the error system (error system 0-UGAS). To treat our problem we
rely on Corollary 1 and Theorem 2 of (Panteley, Loria, and Teel, 2001). These results
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require two assumptions (A1, A2) to hold, as well as requiring the pair (F, A) to be
uniformly persistently exciting (u-PE).

A1 (Panteley, Loria, and Teel, 2001) There exist g1 2 K•, a locally bounded function
g2 : R�0 ! R�0 and a positive definite continuous function g3 : R�0 ! R�0, such that
for all (t0, #0), all corresponding solutions of (5.10) satisfy

|#|•  g1(|#0|)

|g3(|e|)|1  g2(|#0|).
(5.12)

From (Panteley, Loria, and Teel, 2001, Remark 4) we know that A1 is satisfied if, for
instance, there exist a locally Lipschitz function V and two functions a, a 2 K• such
that

a(|#|)  V(t, #)  a(|#|)

V̇(5.10)(t, #)  �g3(|e|).

To prove this, we consider the Lyapunov function candidate

V(#) =
1
2

⇣
e>L�1e + h̃>L�1h̃

⌘

which is a valid candidate by choosing l1 > 0, l2 > 0, l3 > 0, l1 > 0, l2 > 0, as
stated in Theorem 5.1. Now, its time derivative along the error system trajectories is

V̇(5.10)(#) = �e>e + e>F>h̃ � h̃>Fe

= � |e(t)|2 = �g3(|e|)
(5.13)

which is negative semidefinite. In addition, each entry of the regressor F(t) is
bounded and globally Lipschitz. Therefore, by La Salle/Yoshizawa (Khalil, 2002,
Theorem 8.4), system (5.10) is 0-UGS and

lim
t!•

|e(t)|2 = 0

resulting in e(t)! 0, satisfying A1. In fact, we can introduce cm, cM > 0 such that

a(|#|) = c2
m |#|2  V(#)  c2

M |#|2 = a(|#|).

Moreover, being V(#) a positive nonincreasing function bounded from below by 0,
we conclude that it has a limit

lim
t!•

V(t) = V•.

Integrating (5.13) from t0 to •, it results
Z •

t0

|e(t)|2 dt = �
Z •

t0

V̇(t) dt = V(#0)�V•

and we have
V(#0)�V•  V(#0)  c2

M |#0|
2 = g2(|#0|).

Also,
c2

m |#|2•  c2
m |#(t)|2  V(#(t))  V(#0)  c2

M |#0|
2
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from which |#|•  (cM/cm) |#0|. Thus (5.12) holds with g1(s) = (cM/cm)s, g2(s) =
c2

Ms2 and g3(s) = s2.
A2 (Panteley, Loria, and Teel, 2001) Each entry of F is locally Lipschitz, and there

exist nondecreasing functions ri : R�0 ! R�0, (i = 1, 2, 3) such that, for almost all
(t, #) 2 R�0 ⇥R5

max{|Le| , |LFe|}  r1(|#|) |e|
|F|  r2(|#|)����

∂F
∂t

����  r3(|#|).

Being the entries of our regressor bounded and globally Lipschitz, A2 trivially holds
with some constants r1, r2, r3.

Definition: u-PE (Panteley, Loria, and Teel, 2001) The pair (F, A) is called uni-
formly persistently exciting (u-PE) if, for each cr > 0, there exist µ, T > 0, such that, for all
(t0, #0) 2 R�0 ⇥ Bcr , all corresponding solutions satisfy

Z t+T

t
F(t)F>(t) dt � µI 8t � t0. (5.14)

In general it is difficult to check the u-PE condition since it must be valid for all
possible solutions, clearly impossible to be known a priori. However, the proposed
design leads to
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which is positive definite for any positive vR, vL. In particular, it is even constant
and positive definite under Assumption 5.1, and, as a consequence, (5.14) is directly
satisfied in both scenarios. Under A1, A2 and having u-PE, we conclude that the
error system (5.10) is 0-UGAS (Panteley, Loria, and Teel, 2001, Corollary 1).

Moreover, by Panteley, Loria, and Teel, 2001, Theorem 2 we conclude 0-UGES as:
(i) F(t) is independent of #; (ii) g1(s), g2(s), g3(s) are proportional to s, s2, and s2,
respectively, for all s.

Remark 5.1. The extra requirement given by the u-PE property does not only guarantee
convergence to the true parameters, but it also guarantees robustness for the error system
(5.10) with respect to additive perturbations (i.e. considering #̇ = A(t, #) + d(t)). In par-
ticular, when the u-PE contributes to conclude uniform global asymptotic stability, the error
system is “totally stable”, which means it is robust against “small” nonvanishing perturba-
tions (Panteley, Loria, and Teel, 2001, Equation (13)). In our case, u-PE induces uniform
global exponential stability, so the error system is robust with respect to arbitrarily large non-
vanishing perturbations as the system is globally input-to-state stable (Khalil, 2002, Lemma
4.6). This property derives from a converse Lyapunov theorem (Khalil, 2002, Theorem 4.14).
Robustness of the proposed adaptive observer is shown in Section 5.6 as we have real noisy
measurements.
The vast majority of other designs present in the literature, explicitly or implicitly assume
the slip coefficients to be constant (resulting in a zero-error result) or slowly time-varying
(resulting in a small-error “practical” result). Our work is perfectly in line with these results
and, in addition: (i) we discuss how only with constant track velocities and homogeneous soil
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it makes sense to consider constant slip coefficients; (ii) we formally prove that for any pos-
itive constant track velocities we have u-PE and related robustness. Notice that with other
design choices the straight motion could result to be not u-PE (Burke, 2012).

Remark 5.2. Oftentimes, adaptive approaches are not appealing for robotics applications
as, in order to have robustness (which is induced by the u-PE property), the robot needs to
perform some kind of oscillatory trajectories in order to obtain sufficiently rich signals. In
contrast to this, with our design we have u-PE even for constant inputs vR, vL, resulting in
smooth trajectories, which makes the designed estimator appealing for OPA applications.

Remark 5.3. The design of an identity observer on top of the adaptive laws may seem redun-
dant as we are measuring the whole state. The intuition behind the proposed design comes
from noticing that (5.5) is linear in the parameters to be found:

⇥
ẋ ẏ q̇

⇤>
= �F>

⇥
hR hL

⇤>

where, as already emphasized by Assumption 5.1, the unknown parameters hR, hL are con-
stant. This is a desirable scenario for designing adaptive laws. However, as we do not have
direct measurements of ẋ, ẏ, q̇, we cannot design estimation laws for the unknown param-
eters without designing any extra dynamical system. This reasoning is what justified our
choice to design an identity observer to be combined with the estimation laws. This choice
resulted to be very convenient both in order to bring the error system in the standard form
(5.10), and in terms of u-PE requirement.

5.6 Experimental results

Experimental tests were performed using the agricultural tracked UGV described
in details in (Mengoli, Tazzari, and Marconi, 2020) and (Tazzari, Mengoli, and Mar-
coni, 2020). In particular, the state measurements were provided by the onboard
sensor suite. Namely, we measured x, y, q using a high precision GNSS sensor with
an embedded compass. Notice that we used raw-data measurements, without any
filtering, to highlight robustness of the proposed design.

To compare the estimates of slip coefficients coming from (5.8) with ground truth
values, we used (5.6) as follows:

iR = 1�
Vt,R

vR
= 1�

VG,m + dWz,m

vR,m

iL = 1�
Vt,L

vL
= 1�

VG,m � dWz,m

vL,m

(5.15)

in which, Vt,R, Vt,L are the right and left track true velocities, respectively. The sub-
script m identifies the measured quantities: VG,m from the GNSS, Wz,m from IMU
data (gyroscope) and vR,m, vR,m collected from motor encoders. For ground truth
sake, we performed the experiments in open-field and not inside orchard rows, in
order to obtain more accurate and reliable GNSS data.

To test the performance of (5.8) in both the navigation scenarios described above,
we carried out experiments in which the robot negotiated: (i) a circular trajectory, as
shown in Figure 5.3.a with constant turning radius and angular velocity, in fact,
Figure 5.3.b shows noisy but constant values of vL, vR; (ii) a straight linear trajectory,
as shown in Figure 5.3.c, with constant linear body velocity, indeed, Figure 5.3.d
shows constant values of the two tracks velocities, highlighting the noisy nature of
measurements collected.
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FIGURE 5.3: Circular and straight motion experiments. (a),(c):
Measured (continuous) and estimated position (dashed) trajectories.

(b),(d): Corresponding track velocities.
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FIGURE 5.4: Observation error (5.9): (a) circular and (b) straight mo-
tion.
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While Figure 5.3.a and Figure 5.3.c qualitatively show how the observed trajec-
tory and the real ones tend to overlap, Figure 5.4.a and Figure 5.4.b give proper val-
ues of the observation errors ex, ey, eq , respectively for circular and straight motion
tests.

As expected from Remark 5.1, Figure 5.5 shows the robust convergence of the
estimated slip coefficients ĥL, ĥR, to the real ones, hL, hR, approximated using (5.4)
and (5.15).
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FIGURE 5.5: Slip estimation: (a),(b) circular and (c),(d) straight mo-
tion.

It is also important to mention that the good performance obtained during ex-
perimental tests are not given by specifically-tuned observer parameters, but rather
by the structural properties described and proved in Sec. 5.5. In fact, both L, L have
been considered as identity matrices (this also explains the convergence time), since
the focus of this chapter is to show the effectiveness of the proposed approach rather
than fine tuning parameters for a particular application. In the end, Figure 5.6 and
Figure 5.7 point out what said in Remark 5.2, in noise-free cases. The convergence
of the slip coefficients to real values is asymptotic and not just practical as before, re-
marking once again u-PE of the trajectories. To show this, we fed the observer with
mean values obtained by the tests shown in the cases above, achieving asymptotic
convergence both in turning and straight motion scenarios.

5.7 Conclusions

In this work, we presented an adaptive observer for slip estimation for tracked skid-
steering vehicles. We formally proved uniform global exponential stability of the
error system, resulting in robustness with respect to additive perturbations in terms
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FIGURE 5.6: Results of the numerical simulation for turning motion.
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FIGURE 5.7: Results of the numerical simulation for straight motion.

of input-to-state stability. Through two different experimental tests, straight and
turning motion, we validated the claims obtained via analytical methods, showing
the good performance of the proposed approach. Future work will be devoted to use
this estimator in synergy with a controller in an indirect adaptive control fashion. The
main challenge will reside in having an overall controller guaranteeing slowly time-
varying track velocities, to which correspond slowly time-varying slip coefficients,
in order to preserve all the considerations we made in this work. In this direction,
the reference trajectories required for OPA application, together with the robustness
of the proposed estimator, are really promising.
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Chapter 6

UAV-Based Search and Rescue in
Avalanches using ARVA: An
Extremum Seeking Approach

This work deals with the problem of localizing a victim buried by an avalanche
by means of a drone equipped with an ARVA (Appareil de Recherche de Victimes
d’Avalanche) sensor. The proposed control solution is based on a “model-free” ex-
tremum seeking strategy which is shown to succeed in steering the drone in a neigh-
borhood of the victim position. The effectiveness and robustness of the proposed al-
gorithm is tested in Gazebo simulation environment, where a new flight mode and
a new controller module have been implemented as an extension of the well-known
PX4 open source flight stack. Finally, to test usability, we present hardware-in-the-
loop simulations on a Pixhawk 2 Cube board.

6.1 Introduction

6.1.1 The Search & Rescue avalanche application context

Nowadays, disasters due to avalanches are even more frequent because of the chang-
ing environmental conditions and the even more marked attitude of people to live
extreme mountain experiences, often without the appropriate experience and prepa-
ration. Even focusing only on rescuing operations on the Italian and Swiss side of
the Alps, 2988 people were rescued in alpine accidents due to avalanches in the last
15 years with 883 fatalities (source AINEVA and SLF).

Rescue missions in avalanches are characterized by specific peculiarities that
make them quite demanding. One of the challenging aspects is the tight constraint
imposed on the rescue time. In fact, survival chances of people buried under the
snow decreases rapidly with burial time due to hypothermia. Furthermore, the res-
cue scenes are typically quite harsh because of irregular and unstable snow blocks,
typically on steep slopes, which make the human intervention complicated, slow
and, very often, risky. In fact, it is not rare that the rescuers may trigger a second
avalanche event during the S&R mission. A further critical element is represented
by the limited range of sensors that can be used to localize a person buried under me-
ters of snow (Ferrara, 2015). One of the most common equipments used in avalanche
setting is represented by the ARVA system.

The ARVA equipment has two easily switchable operating modes, which are the
transmitter and the receiver mode. Before starting their activities, experienced skiers
switch the worn sensor to the transmitter mode, thus emitting an electromagnetic
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signal. In case of an accident, companions not buried by the avalanche, or res-
cuers who reach the disaster area, switch their devices to the receiver mode and start
searching the victim by following well-established ARVA-based search strategy (Az-
zollini, Mimmo, and Marconi, 2020). The receiver provides information about the
electromagnetic field generated by the transmitter sensed at the receiver location.
The rescuers are trained to interpret these data to move towards the victim.

The aforementioned tight requirements of the mission, naturally lead to imag-
ine the development of an aerial robotic platform carrying the ARVA receiver and
accomplishing the localization of the ARVA transmitter autonomously. Drones, in
fact, represent a valid support for humans since they can fly autonomously above
the snow to find the transmitter location, thus resulting in a faster and safer search.

The specific application of S&R in avalanche settings already attracted the in-
terest of the scientific community. Activities were conducted in the context of the
European project SHERPA (Marconi, 2012) where the development of specific robotic
technologies to support professional alpine rescue teams in avalanche scenarios were
proposed, and now with the H2020 European project AirBorne (AerIal RoBotic tech-
nologies for professiOnal seaRch aNd rescuE, https://www.airborne-project.eu 2018), moti-
vating the present work, whose objective is to develop (at TRL8) a drone equipped
with sensor technologies typically used for quick localization of victims. In this con-
text, the works (Cacace et al., 2016; Cacace, Finzi, and Lippiello, 2016; Bevacqua et
al., 2015) already showed how S&R operations can greatly benefit from the use of
UAVs to survey the environment and collect evidences about the position of people
buried under the snow.

6.1.2 State-of-the-art in source seeking algorithms

The applicative scenario illustrated before frames in a broader research area that is
the one referred to as source seeking control. In the framework of source seeking, a
robotic agent (or a fleet of agents) is able to sense the signal emitted by an omni-
directional source located at an unknown position, with the signal strength having
an extremum at the source location. The control problem then consists of process-
ing the signal field measurements, possibly using a model of it, to steer the agent (or
agents) towards the source. In source seeking the vector field underlying the signal
strength is dealt with as the “map” to be optimized. Several approaches have been
proposed in literature to solve this class of control problems. Among the existing
ones, a central role for this chapter is played by Extremum Seeking (ES). ES is a real-
time model-free optimization approach, which can be used to optimize input-output
maps having a global extremum (either a minimum or a maximum). It is referred to as
model free as no explicit knowledge about this map is required (Ariyur and Krstic,
2003). ES could be dated back to 1922 (Tan et al., 2010) but it has seen a renewed
growth in the control community during the last two decades, starting with the
proof of local stability in (Krstic and Wang, 2000) and the extension to semiglobal
stability in (Tan, Nešić, and Mareels, 2006). ES schemes are intrinsically robust and
thus appealing for several applications. In particular, talking about control of mo-
bile robots, ES has been used extensively over the last decade for solving source
seeking problems where the model of the source vector field is not available: the robot
has to autonomously find the unknown position of the source, without having any
explicit mathematical knowledge of its vector field, therefore by only sensing the
source power at the current robot location (Zhang et al., 2007).

Because ES can deal with unknown systems by design, it has been proven to
be a powerful tool for steering mobile robots towards a source even in GPS-denied
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environments (Cochran et al., 2009; Cochran and Krstic, 2009). Recently, in (Poveda
et al., 2021), a class of novel hybrid model-free controllers achieving robust source
seeking and obstacle avoidance has been proposed, also in a multi-vehicle scenario.
In fact, even with a single agent trying to locate a source, smooth time-invariant
feedback controllers based on navigation or barrier functions have been shown to
be highly susceptible to arbitrarily small jamming signals that can induce instability
in the closed-loop system. Moreover, the problem is not trivial mainly because of
the topological obstructions induced by the obstacle.

Besides ES, all the other existing approaches still rely on the intuition that a
source localization problem can be formulated as an optimization problem. Inspired
by ES, (Ghadiri-Modarres, Mojiri, and Zangeneh, 2017) shows how the motion lim-
itations arising from using a high-frequency dither signal can be overcome when
the typical sinusoidal functions usually employed in ES, already exist in the plant
model. In particular, considering a unicycle, they show how ES-like controllers can
be developed without adding any external excitation signals, because of the trigono-
metric nonlinearities of the unicycle model.

Another family of interesting approaches are the line minimization-based algo-
rithms (Mayhew, Sanfelice, and Teel, 2008). In these approaches the receiver finds,
on a search line, the location of minimum/maximum signal strength. Then, the re-
ceiver changes its search path (which belongs to a set of directions that span the
whole search space) and iterates the procedure to find the transmitter.

On the other hand, if the radiation pattern is known, the source location could be
also obtained via state observers (Salaris et al., 2019). Here the main challenge is that
of designing sufficiently exciting but also feasible receiver trajectories which ensure
the stability of the estimator.

A problem related to the source seeking is the boundary tracking problem (Menon
et al., 2014). In this context it is assumed that the signal iso-strength lines enclose
a region of the search domain which contains the source. Then, the receiver may
locate the transmitter by exploiting the geometry of these boundary lines.

Finally, (Jiang et al., 2020) and references therein, deal with bio-inspired opti-
mization techniques. In particular, (Jiang et al., 2020) presents a planner able to
drive an underactuated robot towards the odor source, whose control law is inspired
by two prominent behaviors widely observed in biology, namely, chemotaxis and
anemotaxis.

6.1.3 Contributions of the work

In this work, we develop an innovative ES-based control solution able to steer an
autonomous ARVA-equipped UAV, as close as possible to the victim position. By
leveraging on the main properties of ES, the proposed algorithm is not relying on an
exact knowledge of the ARVA signal, which is quite uncertain and noisy, but rather
on the main features of the ARVA signal in terms of convexity and existence of a
unique maximum. In particular, among all the existing ES algorithms, we rely on
(Scheinker and Krstić, 2014), which is an optimal choice for this application.

The presented control framework is general for solving source seeking problems
by means of mobile robots, where ES control can be chosen as reference position gen-
erator. In particular, it is shown how the proposed ES scheme can be easily tuned
so as to produce smooth position reference signals to be tracked by the robot, taking
into account the maximum allowed robot speed and acceleration. Then, we discuss
how to guarantee the needed time scale separation between the reference genera-
tor and the low-level controller, so as to have the two units working in synergy in
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a stable way. The proposed low-level controller leverages on the fact that typically,
in many ES control schemes like the one we propose, the needed excitation/explo-
ration is provided by having sinusoidal signals to be followed. Thus, we propose an
internal model-based controller, leveraging on the fact that the model of the refer-
ence signals to be tracked is known.

The specific choices of both the ES algorithm and the low-level controller, are
driven by the need of having a complete control scheme which is efficient in terms
of computational resources used. In this direction, in order to prove its effective-
ness and robustness, the proposed control algorithm has been extensively tested
and evaluated through realistic Software-In-The-Loop (SITL) Gazebo simulations.
Then, prototyping of the code with Hardware-In-The-Loop (HITL) simulations on
a resource constrained microcontroller was performed. In particular, the proposed
control algorithm has been implemented as an extension of the open source PX4
flight stack and tested on a Pixhawk 2 Cube board.

Our previous work (Azzollini, Mimmo, and Marconi, 2020) was a proof of con-
cept presentation, where we showed how ES could be the tool of choice to solve
the ARVA-based S&R problem after conditioning the ARVA map. Unlike (Azzollini,
Mimmo, and Marconi, 2020), here: (i) we choose the most convenient ES algorithm
for searching on a 2D plane with smooth trajectories that could be easily followed
by the drone; (ii) we do not assume that the search plane is simply at a certain height
with respect to the inertial frame, but rather we take into account the mountain
slope; (iii) we develop an internal model-based controller, working in synergy with
the ES unit; (iv) we discuss how to add a low-pass filter and tune the parameters
so as to guarantee a dynamically feasible trajectory, given the maximum allowed
speed and acceleration of the robot; (v) we perform simulations using a realistic
drone model and simulation environment, and we also test the code/algorithm per-
formance on a low-cost microcontroller.

6.2 Notation

In 2 Rn⇥n is used to denote the n-dimensional identity matrix, while 0n⇥m denotes
a n⇥ m matrix of zeros. With SO(3) it is denoted the special orthogonal group of 3D
rotation matrices, i.e. SO(3) = {R 2 R3⇥3 : R>R = RR> = I3, detR = 1}, while

SE(3) = {H 2 R4⇥4 : H =


R o

01⇥3 1

�
, s.t. R 2 SO(3), o 2 R3

}. For a differentiable

function g, its gradient is denoted by rg.
In this chapter, four Cartesian coordinate frames are defined (see Figure 6.1):

Fi = (Oi, xi, yi, zi) denotes the right-handed static inertial frame, with origin Oi,
with the axis xi oriented toward geographic north, zi oriented opposite to the local
gravity vector and yi oriented to create a right-handed frame (i.e. North-East-Down,
or simply NED), while Ft = (Ot, xt, yt, zt) and Fr = (Or, xr, yr, zr) are the right-
handed frames associated to the static transmitter worn by the victim and to the re-
ceiver installed on the moving drone, respectively. Moreover, Fp =

�
Op, xp, yp, zp

�

defines the reference frame for the search plane description. In more details, zp is
orthogonal to the search plane whereas Op lives on the search plane. For the sake
of simplicity we assume that the body frame, attached to the centre of gravity of the
drone, coincides with Fr. The positions of Or and Ot relative to Op are indicated
by the vectors pr 2 R3 and pt 2 R3, respectively. Given that Ot and Op are static
reference frames, pt is a constant. The position of Or relative to Ot is indicated by
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the vector p 2 R3, with p = pr � pt. Throughout the chapter, we shall use the su-
perscripts i, p, t and r on the left of the vectors p, pt, pr to denote the representation
of the previous vectors in the reference frames Fi, Fp, Ft and Fr, respectively (for
instance, p p denotes a representation of p in Fp). Finally e3 = [0 0 1]> and S(x), with
x = [x1 x2 x3]> 2 R3, denotes the skew-symmetric matrix

S(x) =

2

4
0 �x3 x2
x3 0 �x1
�x2 x1 0

3

5 .

Considering a static reference frame and a moving frame attached to a body, in-
trinsic rotations are elementary rotations that occur about the axes of the coordinate
system attached to a moving body, which changes its orientation after each elemen-
tal rotation. The orientation of the moving frame F# with respect to the inertial frame
Fi can be expressed by means of the sequence of intrinsic elementary rotations de-
noted by yaw y# (about the z-axis), pitch q# (about the y-axis), and roll f# (about
the x-axis). In particular, starting from the inertial frame, we perform an elementary
rotation about the z-axis (which is zi) of an angle y#. This rotation brings us to the
first intermediate frame we call F1, and can be represented by means of the rotation
matrix 1Ri (from the i-frame to the 1-frame). For instance, considering the relative
position p we have

1 p =

2

4
cos y# sin y# 0
� sin y# cos y# 0

0 0 1

3

5

| {z }
1Ri

i p. (6.1)

Now, starting from the frame F1 we perform a rotation about the current y-axis
(which is y1) of an angle q#, which brings us to a second intermediate frame that
we call F2. The rotation matrix associated to this transformation is

2 p =

2

4
cos q# 0 � sin q#

0 1 0
sin q# 0 cos q#

3

5

| {z }
2R1

1 p. (6.2)

The last rotation starting from the frame F2, has to be performed about the current
x-axis (which is x2) of an angle f#. This rotation brings us from the frame F2 to the
final moving frame F#, with the associated rotation matrix given by

# p =

2

4
1 0 0
0 cos f# sin f#
0 � sin f# cos f#

3

5

| {z }
#R2

2 p. (6.3)

The overall rotation matrix #Ri 2 SO(3) (from the inertial frame to the #-frame)
is given by

#Ri =
#R2

2R1
1Ri = Rx(f#)Ry(q#)Rz(y#) (6.4)

and, as a consequence, the overall rotation matrix from the moving #-frame to the
inertial frame is given by

iR#(y#, q#, f#) = R>z (y#)R>y (q#)R>x (f#). (6.5)
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FIGURE 6.1: Reference frames: one to identify the inertial space, one
to describe the search plane, and two to denote the transmitter and

the receiver pose, respectively.

Note that the resulting rotation matrix (6.5) is the same as in (Siciliano et al., 2010,
Section 2.4.2). In fact, the ordered sequence of rotations ZYX about axes of the cur-
rent frame (intrinsic), which we just considered, is equivalent to the sequence XYZ
about axes of the fixed frame (extrinsic).

6.3 The ARVA system

In this section, we first go through the main physical principles of the ARVA system
with the final goal to derive a model of the signal vector field. Then, we present the
related search strategy and we describe the problem we want to solve.

6.3.1 Modeling

The transceivers commercially available have two operating modes, namely they
can work as receivers or as transmitters, with a manual switch used to commute
between the two. In transmission mode the ARVA generates a magnetic field that is
modeled as a dipole aligned with the xt axis of Ft. The electromagnetic vector field,
described in Fp, is indicated by ph 2 R3. By letting p p = p pr �

p pt = [x y z]>, it
turns out that a mathematical model of the magnetic vector field is given by (Piniés
and Tardós, 2006)

ph(p p, pRt) =
1

4pk p pk5 A(p p) pRte1 (6.6)
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where

A(p p) :=

2

4
2x2
� y2

� z2 3xy 3xz
3xy 2y2

� x2
� z2 3yz

3xz 3yz 2z2
� x2

� y2

3

5

and e1 = [1 0 0]>. The flux lines described by the previous model are symmetric
with respect to the transmitter xt axis. The intensity of the magnetic field can be
then obtained by the previous relation as (see (Piniés and Tardós, 2006))

k
phk =

1
4pk p pk3

s

1 + 3
p p>M p p
k p pk2 (6.7)

where M = tR>p e1e>1
tRp � 0 with minimum and maximum singular values given by

s(M) = 0 and s(M) = 1, respectively. It turns out that k phk is radially unbounded
with 1/kp pk, namely the intensity of the magnetic field is infinity when pr = pt.
Furthermore, (6.7) can be exploited to compute the iso-power lines, that are also
symmetric with respect to the transmitter xt axis.

In the context of this S&R application, what is relevant is the projection of the flux
and iso-power fields onto the so-called search plane, conveniently identified as the
xpyp-plane, (see Figure 6.1). The search plane is the plane on which the drone is re-
quired to operate, and it is chosen to be parallel to the snow surface, at a safe distance
from the ground. This distance should be kept as small as possible, with a minimum
imposed by the irregularities of the terrain and the presence of possible rescuers on
the avalanche scene. The overall distance between the victim-transmitter and the
chosen search plane is denoted by dt. Therefore, we can simply write the position
of the transmitter with respect to the search plane frame Fp, as p pt = [tx ty dt]>.
Ideally, we would like to drive the drone on the geometric projection of Ot on the
search plane, that is simply given by p pt/proj = [tx ty 0]>, as this is clearly the closest
admissible position to the transmitter location.

However, the projection of the iso-power field onto the search plane is affected by
the distance dt and by the rotation matrix pRt, parameterizing the orientation of the
transmitter with respect to the search plane frame. In fact, the optimal position p?,
corresponding to the maximum intensity of the magnetic field that we can sense on
the plane, usually differs from pt/proj. As a first example, in Figure 6.1, the distance
dt is indicated by the dashed line, the geometric projection position pt/proj is given
by the red dot, while the optimal position p? is indicated with the blue dot.

In order to further understand this aspect, we can look at the EM field restricted
to the search plane in Figure 6.2. In particular, both the flux lines (in red) and the iso-
power lines (in black) are depicted for different instances of dt and pRt, assuming
for simplicity that the transmitter location is p pt = [0 0 dt]>. As a matter of fact,
p p? = p pt/proj only in the (unlikely to happen) scenarios in which either dt = 0 or
pRt = I3. In all the other cases, p? will only be in a neighborhood of pt/proj.

The ARVA signal is received through three antennas directed along the receiver
frame axes xr, yr and zr, namely along the longitudinal, lateral and vertical direction
of the sensor case. The magnetic field sensed at the receiver location, denoted by
phm, is given by

phm(
p p, pRt, w) = ph(p p, pRt) +

pw(t) (6.8)

where pw : R 7! R3 indicates the ElectroMagnetic Interferences (EMI) expressed
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FIGURE 6.2: ARVA flux lines (in red), EM vector field (arrows), and
iso-power lines (in black). The transmitter is located at p pt = [0 0 dt]>,
its geometric projection onto the search plane is the red dot p pt/proj =

[0 0 0]>, while the ARVA EM field maximizer p? is the blue dot.

in the search plane frame. There are two sources of EMI, the drone and the en-
vironment. Small drones are commonly actuated through electromagnetic brush-
less motors governed by logic units constituted by switches powered by LiPo bat-
teries. The whole electrical power distribution chain is prone to the emission of
EM noises which are sensed by the ARVA receiver. Fortunately, since these in-
terferences can be investigated in dedicated EM testing facilities, the drones un-
der development in (AerIal RoBotic technologies for professiOnal seaRch aNd rescuE,
https://www.airborne-project.eu 2018) will be equipped with special shields that min-
imise the on-board generated EMI. On the contrary, the environment clearly cannot
be modified to reduce the EM noise. Usually, the environmental electromagnetic
field is affected by the presence of power lines, funicular railways, etc. These effects
are suitably modeled through signals, namely pw(t), whose amplitude is bounded
and quasi-constant on the avalanche search area, i.e. there exists w > 0 such that
k

pw(t)k•  w. Finally, it is interesting to notice that the power density of the ideal
dipole goes to infinity at the transmitter location and is a strictly decreasing function
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FIGURE 6.3: Rescue scene: area of interest and search phases.

of k p pk. This, beside the boundedness of pw, leads to

lim
k p pk!•

k
phmk• = w̄, lim

k p pk!0
k

phmk• = • (6.9)

which will be exploited in Section 6.4.1.

6.3.2 Existing search strategies and problem description

The ARVA-based search strategy is graphically sketched in Figure 6.3. After the
definition of the so-called area of interest, which is a triangular area starting from the
last known victim position and including the avalanche front, the search is divided
in three subsequent phases. Starting from the bottom of the area of interest, the
first search phase consists in following straight parallel lines with an offset of 15-20
meters, with the goal of finding a valid ARVA signal. When sufficiently close to the
transmitter (typically around 50 meters), a valid ARVA signal is measured, and the
second search phase starts. The ARVA receiver displays the EM vector field in terms
of magnitude and direction, which actually corresponds to the tangent to the EM
field flux line at the operator location. The rescuers are trained to follow the flux line
to approach the victim. The third search phase begins when the sensed EM field is
sufficiently strong, namely the ARVA receiver is sufficiently close to the victim and
automatically changes its output modality, providing only the modulus of the EM
field at the operator location. The automatic change of modality is thought to inform
the rescuers that the flux line approach is no more efficient, and therefore they start
searching by iteratively applying a two-step gradient search strategy (which consists
in finding maximum EM intensity along orthogonal directions).

Since the first phase does not hide any particular control challenges (it consists
of controlling the drone along pre-established trajectories), we mainly focus on the
second and the third phases by assuming the availability of a valid ARVA signal.
In fact, we merge the second and third search phases in a single one based on the
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FIGURE 6.4: Overall control scheme.

processing of the ARVA EM intensity and ignoring the geometry of the flux lines
typically considered in the second search phase. The flux line following strategy, in
fact, has several drawbacks, which could be better understood by looking at Figure
6.2: (i) the search path can be unpredictably long as it depends on the initial position
of the receiver with respect to the transmitter; (ii) the search path depends on the
initial receiver attitude with respect to the transmitter (the rescuers could follow
the flux lines counterclockwise or clockwise thus leading to different search paths);
(iii) because of the EMI noise, the measure of the EM directions can be particularly
deteriorated.

The envisaged scenario is thus the following. First of all, the area of interest as
well as the drone search plane are defined by the rescue team (see Figure 6.1 and
Figure 6.3), based on the last known victim position, and the slope of the terrain
with respect to the inertial frame. The drone will then take off and reach the search
plane, and will start autonomously performing the first search phase to find a valid
ARVA signal. At this point, the valid signal indicates that the victim is located at
approximately a 50 meters distance from the current position of the drone. Now,
in a practice-inspired design philosophy, a search strategy based on a gradient-like
policy could lead to the unique extremum on the chosen search plane. Thus, this
work aims at designing an automatic control law based on ES, only driven by the
intensity of the ARVA EM field, which steers the drone as close as possible to the
victim location.

6.4 An Extremum Seeking-based solution

The overall control scheme is sketched in Figure 6.4, where we can distinguish three
main units, which are the measurement conditioning unit, the ES-based reference gen-
erator unit and the low-level control unit. As already mentioned, we want the ARVA
receiver to have only one output modality, that is, to directly provide the intensity of
the EM field at the operator location. Therefore, given as inputs the drone-receiver
position p pr, the victim-transmitter position p pt, and the transmitter orientation pRt,
the ARVA map block gives as output khmk, which is the intensity of the measurement
(6.8).
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6.4.1 Measurement conditioning unit

Being the maximum intensity of (6.8) equal to infinity, any gradient-based algorithm
would face with issues in the proximity of the victim. This criticism motivates the
following manipulation. The measurement conditioning unit statically processes
the ARVA intensity measurement khmk to create a new intensity map, denoted by
yt, that is continuous and bounded for any p p 2 R3, and has a global minimum
equal to zero. Specifically, the conditioned measurement yt is generated as

yt(
p p, pRt, pw) :=

1
3
p
khmk

. (6.10)

Simple computations show that yt can be approximated by yt =
phn + nt in which

phn(
p p, pRt) :=

(4p)1/3
k

p pk

6

s

1 + 3
p p>M p p
k p pk2

(6.11)

is the nominal conditioned intensity and

nt(
p p, pRt, t) = XA(

p p, pRt)k
p pk3 pw(t) (6.12)

is the equivalent additive noise in which XA(p p, pRt) 2 R3 is a bounded function.
The new output map (6.10) shows some key properties. First, it is well defined

because for any p p 2 R3

0 
p p>M p p
k p pk2  1. (6.13)

In addition, for any fixed pRt 2 SO(3) the functions phn( · , pRt), nt( · , pRt, t) both
have a global minimum at p p = 0 and are strictly increasing. Furthermore, let the
Noise-to-Signal Ratio (NSR) to be defined as

NSR(p p, pRt) :=
kyt(p p, pRt, t)k• � |

phn(p p, pRt)|

kyt(p p, pRt, t)k•
. (6.14)

This modified ratio belongs to the compact domain [0, 1] and, in particular, for any
pRt 2 SO(3)

lim
p p!0

NSR(p p, pRt) = 0, lim
p p!•

NSR(p p, pRt) = 1 (6.15)

meaning that at the origin p p = 0 the output is not affected by noise whereas for
p p! • the nominal signal is annihilated by the noise.

In conclusion, the conditioned map (6.10) can be optimized by means of any
(approximate) gradient-based optimization technique. Because of the presence of
the noise and the model uncertainty, we do not want to rely on an exact knowledge
of the model of yt, but rather on its convexity property and existence of a minimum.
For this reasons, ES is chosen, resulting in a robust and practically implementable
control algorithm.

6.4.2 ES-based reference generator unit

The conditioned output map yt, constrained on the search plane, has a unique ex-
tremum (which is a minimum). The optimal position corresponding to the mini-
mum of yt, clearly coincides with the position relative to the maximum intensity of
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the ARVA map without conditioning. Therefore the goal is still that of driving the
receiver to the optimal point p p?. In fact, p p? now corresponds to the minimum of
yt restricted to the search plane, and is still the blue dot we saw as an example in
Figures 6.1 and 6.2

The reference generator unit and the low-level control unit need to work (and to
be designed) in synergy. The ES-based unit processes the conditioned ARVA map
yt, and its role is ideally that of performing a real-time optimization on the search
plane, thus driving the drone-receiver position p pr towards the optimal point on the
search plane p p?. As we do not have direct control on the optimization variable
p pr, ES here plays the role of a reference position generator for the drone. A (low-
level) reference tracking controller needs to be designed so as to drive the drone
position to the generated reference position p pr,ref, that will be the output of the ES.
In this scenario, in order to guarantee proper functioning of the proposed scheme,
the controlled plant needs to work on a faster time scale with respect to the ES unit
(Ariyur and Krstic, 2003; Tan et al., 2010; Krstic and Wang, 2000). In fact, we do not
have a static input-output map to be optimized, but rather the steady-state input-
output map of a dynamical system, with input p pr,ref and output yt. Requiring the
controlled plant to be way faster than the reference generator, the ES design can be
made by considering the controlled plant as if it was a static map, so assuming to
have direct control on p pr.

Now, let us define the components of p p? and p pr,ref as p p? = [px? py? 0]> and
p pr,ref = [pxr,ref

pyr,ref
pzr,ref]>. The following proposition, adapted from (Scheinker

and Krstić, 2014), presents the chosen 2-dimensional ES algorithm.

Proposition 6.1. For any d > 0, by a sufficiently large choice of ka, the point (px?, py?)
is (1/w)-Semiglobally Practically Uniformly Ultimately Bounded with ultimate bound d,
relative to the system (pxr,ref(t), pyr,ref(t)):

p ẋr,ref =
p

aw cos(wt + kyt)
pxr,ref(0) = pxr(0)

pẏr,ref =
p

aw sin(wt + kyt)
pyr,ref(0) = pyr(0).

(6.16)

The reference signal p pr,ref is obviously completed with pzr,ref = 0, as we want
the drone-receiver to always move on the search plane.

This ES unit processes the conditioned ARVA intensity yt and generates the ref-
erence signals for the drone, expressed in the search plane frame Fp. In particu-
lar, (6.16) achieves ES in a practical way, meaning that (pxr,ref, pyr,ref) converge to a
neighborhood of (px?, py?), which can be made arbitrarily small by properly choos-
ing the design parameters w, k, and a. Moreover, this result is semiglobal as there
exists a certain domain of attraction around (px?, py?), such that, if we start inside
this region we can solve the problem. This domain of attraction can be arbitrarily en-
larged by properly choosing the design parameters, at the expense of slowing down
the convergence speed.

The presented ES scheme works as follows. System (6.16) is evolving in circular
trajectories on the xpyp-plane, where the parameter w plays the role of the oscillation
frequency. In particular, at steady-state the system geometric path is given by a
circumference of radius

p
aw around the optimum (px?, py?), parameterized in time

with the frequency w. In fact, it can be proven (Scheinker and Krstić, 2014) that the
trajectories of (6.16) uniformly converge to the trajectories (px̄, pȳ) of the so-called
“average” system

p ˙̄x
p ˙̄y

�
= �

ka

2
(ryt(

px̄, pȳ))>,
px̄(0)

pȳ(0)

�
=

pxr,ref(0)
pyr,ref(0)

�
, (6.17)
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which exhibits a stable gradient-flow dynamics, with adaptation gain ka. Therefore,
for any ultimate bound d > 0, by choosing arbitrarily large values of ka we may
ultimately bound (px̄, pȳ) within a d neighborhood of (px?, py?).

Averaging technique (Khalil, 2002, Section 10.4) is always used to analyze ES
schemes and shows how the system is evolving, on average, in the gradient-descent
direction to seek the minimizer. In particular, in the original coordinates, it is the
centre of the circular trajectory which is approaching (px?, py?) in an approximate
gradient-descent fashion. The centre of the circular trajectory can be therefore re-
garded as the current estimate of the optimum. By moving in circular trajectories,
we are basically exploring a neighborhood of the current position (i.e. the parameter
estimate), to check in which direction the sensed function value is decreasing.

Among all the existing algorithms, this one was chosen for three main reasons.
First of all, the generated reference trajectory is guaranteed to be smooth enough to
be followed by our UAV. Moreover, this algorithm is called “bounded update rates”
ES, as the magnitude of the velocity (which corresponds to the update rate of the
estimate) can be a priori chosen as kvrk =

p
aw. Finally, this algorithm is easy to be

discretized and implemented, and it is also light to be executed on a microcontroller.
The parameters to be tuned are the positive scalars a, w, and k. By looking at

Proposition 1, they are not difficult to be tuned in general, when we simply have a
static map to be optimized. However, in our specific application, we have to consider
the noise and the drone. In particular, being the ARVA map noisy, we want to choose
k small. In fact, the reference signal could be significantly deteriorated by kyt in
(6.16). As a consequence, in order to have the learning rate ka sufficiently large
(as required by Proposition 1), we have to take a large a. Now, a tradeoff needs
to be considered, as we would also like to take w big, following the fact that 1/w
plays the role of e in the (e, d)-SPUUB stability result of Proposition 1 (Scheinker
and Krstić, 2014). On the other hand,

p
aw corresponds to the maximum speed of

the drone, as well as to the radius of the circumference which the drone describes
on the search plane. In practice, we will see that a good choice is that of taking a
very large and w quite small such that the maximum allowed speed is respected.
In this way, being the frequency of oscillations not very high, while having a big
circumference radius, the reference signal will be gentle enough to be followed by
the drone in near-hovering condition at all times.

Moreover, we introduce the low-pass filter

ȧ = �
1
l

a +
1
l

amax a(0) = 0 (6.18)

resulting in a in (6.16) that approaches the chosen amax in an arbitrary amount of
time (starting from zero). This gives us full authority to impose also the preferred
maximum acceleration, so as to ensure a dynamically feasible trajectory. In conclu-
sion, given a maximum velocity and a maximum acceleration, a dynamically feasible
reference trajectory can always be guaranteed for our UAV, by an appropriate choice
of the parameters in (6.16), (6.18).

As a final part of this unit, we define the homogeneous transformation matrix
i Hp such that 2

664

ixr,ref
iyr,ref
izr,ref

1

3

775 = i Hp

2

664

pxr,ref
pyr,ref

0
1

3

775 . (6.19)
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so as to design a low-level controller for the UAV in the more convenient inertial
frame Fi.

6.4.3 Low-level Control Unit

The low-level controller aims at driving the drone position to the generated refer-
ence position as fast as possible, so as to ensure the time scale separation needed for
the proper functioning of the ES unit. A model-based approach based on lineariza-
tion is followed in the design of the controller as presented next. It must be stressed,
though, that any favorite reference tracking controller for UAV can be taken, pro-
vided that the time scale separation requirement is fulfilled. However, we choose
to develop linearization-based controllers as we only have a reference position to
track, without any specific reference for the attitude. This means we can operate
the UAV in near-hovering conditions at all times, without requiring a more compli-
cated and computationally heavier controller. This intuition will be supported by
the experimental results, where good tracking performance will be achieved, even
in hardware-in-the-loop simulations while using a low-cost microcontroller.

As the references are generated by the designed ES optimizer, their model is
perfectly known. In particular, we know that at steady-state the drone-receiver will
be asked to track a biased sinusoidal signal of known frequency w for each of the
position components ixr, iyr, and izr. This follows by the fact that we are generating
a circumference as the geometric path reference on the 2D search plane, which is
mapped to an ellipse in the 3D space.

We start by considering the nonlinear dynamical model of vertical take-off and
landing aerial vehicles by means of the well-known Newton-Euler rigid body equa-
tions (Hua et al., 2013)

M i p̈r = �T iRre3 + Mge3 (6.20a)
i Ṙr =

iRrS(rwr) (6.20b)
J rẇr = �S(rwr)J rwr + t (6.20c)

in which M > 0 2 R and J = diag(Jx, Jy, Jz) 2 R3⇥3 are the UAV mass and inertia
matrix, respectively, i pr = [ixr

iyr
izr]> denotes the position of the centre of gravity

of the system expressed in the inertial frame, rwr = [rwx, rwy, rwz]> 2 R3 is the
angular speed expressed in the drone-receiver frame, iRr(yr, qr, fr) 2 SO(3) is the
rotation matrix from the drone-receiver frame to the inertial frame, while T > 0 2 R

and t = [tx ty tz]> 2 R3 are the thrust force and vector of torques, respectively.
Finally, recall the definitions of e3 and the skew-symmetric matrix S(rwr) from the
Notation, as well as the fact that also the zr axis of the drone-receiver frame points
downwards.

The system (6.20) is then linearized around the hovering equilibrium point, namely
8
>>>><

>>>>:

i p?r = i phov
r

i ṗ?r = 03⇥1
iR?

r = I3
rw?

r = 03⇥1

(
T? = Mg
t? = 03⇥1

(6.21)

where i phov
r is any arbitrary hovering position. In a gain scheduling fashion, we lin-

earize online taking i phov
r = i pr,ref. It is well-known that the linearized system results
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in four independent systems, namely the roll, the pitch, the yaw, and the vertical dy-
namics. On the four subsystems, the corresponding four inputs are then designed
as indicated in the following.

Yaw dynamics and control: The yaw dynamics results in


ẏr
ÿr

�
=


0 1
0 0

� 
yr
ẏr

�

|{z}
Xy

+

2

4
0
1
Jz

3

5 tz (6.22)

and we simply choose to stabilize it with a state-feedback controller of the form
tz = �KyXy, with Ky 2 R1⇥2 to be designed such that the resulting closed-loop
system is Hurwitz. This choice corresponds to asking the controller to keep the yaw
angle to zero (we assume that the yaw is equal to zero when starting the search).
As already mentioned, this simple control choice can be made as we do not need to
point the receiver towards the transmitter (or in general, towards the direction we
are going), but we only need to move the receiver on the search plane, regardless of
the “heading” angle.

Roll dynamics and control: We start by defining the error iey := iyr �
iyr,ref. The

roll dynamics result in

2

664

i ẏr
i v̇y
ḟr
f̈r

3

775 =

2

664

0 1 0 0
0 0 g 0
0 0 0 1
0 0 0 0

3

775

2

664

iey
ivy
fr
ḟr

3

775

| {z }
Xr

+

2

66664

0
0
0
1
Jx

3

77775
tx. (6.23)

The goal of the control loop is to let the lateral drone position iyr tracking the
reference iyr,ref computed by the ES-based reference generator system. As previously
discussed this reference signal (as well as ixr,ref and izr,ref) is a biased sinusoidal
signal of unknown amplitude but known frequency w, coming from (6.16). Thus, in
order to drive the regulation error iey to zero, we consider an internal model-based
regulator (see (Isidori, 2017, Chapter 4)) of the form

ḣr =

2

4
0 1 0
0 0 1
0 �w2 0

3

5

| {z }
F

hr +

2

4
0
0
1

3

5

|{z}
G

iey

tx = �KrXr � Khr hr

(6.24)

with Kr and Khr to be designed such that the resulting closed-loop system is Hurwitz.
Pitch dynamics and control: As before, define the error iex := ixr �

ixr,ref. The pitch
dynamics are given by

2

664

i ẋr
i v̇x
q̇r
q̈r

3

775 =
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0 0 0 1
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ty. (6.25)
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Analogously as before, the internal model-based regulator is

ḣp = Fhp + G iex

ty = �KpXp � Khp hp
(6.26)

with Kp and Khp to be designed such that the resulting closed-loop system is Hur-
witz.

Vertical dynamics and control: Define the error iez := izr �
izr,ref. The vertical dy-

namics are given by

 i żr
i v̇z

�
=


0 1
0 0

�  iez
ivz

�

| {z }
Xv

+

"
0

�
1
M

#
(T � T?) (6.27)

The internal model-based regulator is given by

ḣv = Fhv + G iez

T = �KvXv � Khv hv
(6.28)

with Kv and Khv to be designed such that the resulting closed-loop system is Hur-
witz.

6.5 Implementation and Results

In order to promote flexibility and encourage usage as well as further improvements,
the presented algorithm has been implemented as an extension of the open-source
PX4 flight software (Meier, Honegger, and Pollefeys, 2015). Simulations are carried
out exploiting the Gazebo-based simulation environment RotorS (Furrer et al., 2016)
along with the provided model of the 3DR Iris quadrotor, properly modified to carry
the latest available ARVA receiver plugin (Cacace, Mimmo, and Marconi, 2021). The
adopted Iris model is also equipped with an essential sensor suite composed of an
Inertial Measurement Unit (IMU) and a GPS. Exploiting the PX4 firmware modu-
lar structure, we implemented our algorithm combining a new “extremum seeking”
PX4 module jointly with a new flight mode called “search”, so that we could easily
switch to this mode when a first ARVA signal is found and the developed algo-
rithm will autonomously start working. Moreover, slight modifications to the cur-
rent multicopter control loop have been implemented to admit the new regulator.
The already provided PX4 Extended Kalman Filter (EKF) module has been used.

To evaluate the performances of the proposed algorithm, we present two differ-
ent simulation scenarios that comprise Software-In-The-Loop (SITL) and Hardware-
In-The-Loop (HITL) simulations. In order to make the two presented simulation
results comparable, the same set-up is used. In particular, the drone-receiver is ini-
tially located at i pr(0) = [ixr = 0, iyr = 0, izr = �6]>, corresponding to the position
in space where the first ARVA signal has been detected after the first search phase.
For simplicity, we also take this starting point as coincident with the origin of the
search plane frame.

In order to be compliant with the maximum range of action of commercial ARVA
sensors, the victim location has been randomly chosen to be initially approximately
50 meters far from the initial receiver position. We have a distance between the
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victim-transmitter and the search plane equal to dt = 15 m. Moreover, the trans-
mitter orientation with respect to the search plane frame pRt has been numerically
computed to obtain the worst case scenario in terms of distance between the optimal
position on the search plane p?, and the geometric projection of the victim position
on the search plane pt/proj. Therefore we are in a case similar to that of Figure 6.2d.
This scenario is of great practical importance because, as victims are usually buried
at a distance between 0.5 and 10 meters from the snow plane, the performed simu-
lations really represent a worst case scenario. In fact, the rescuers in charge of the
last part of the rescue operations involving digging and finding the victim, are well
trained and able to quickly save the victim if they are given an estimate p? which is
located in a 10 meters radius from the unknown pt/proj (they perform the digging on
the orthogonal direction with respect to the search plane, and thus with respect to
the snow plane).

To get closer to real use cases, the Gazebo simulation environment has been
shaped to mimic an avalanche scenario, where the drone cannot flight at a fixed
altitude with respect to the inertial frame due to the mountain slope, unlike our pre-
vious work (Azzollini, Mimmo, and Marconi, 2020). Let the search plane be defined,
in inertial coordinates, as:

izp = qp + mp
ix + np

iy,

with qp, mp, np 2 R. Then, the homogeneous transformation between the search
plane and the inertial reference frame i Hp (from search plane to inertial) is defined
as:

i Hp =

 iRp
iOp

0 1

�
.

In the aforementioned relation, the quantities iOp and iRp are strongly related to the
plane parameters qp, mp and np. In particular, iOp ⌘ (0, 0, qp)T, while iRp takes the
form

iRp :=

2

4
cos(qp) cos(yp) � sin(yp) sin(qp) cos(yp)
cos(qp) sin(yp) cos(yp) sin(qp) sin(yp)
� sin(qp) 0 cos(qp)

3

5 ,

TABLE 6.1: Simulation parameters.

Victim x-position in inertial coordinates 24.0866

Victim y-position in inertial coordinates 34.0866

Victim z-position in inertial coordinates �16.8773

Roll angle (transmitter to inertial) ft 0

Pitch angle (transmitter to inertial) qt 0.1745

Yaw angle (transmitter to inertial) yt 2.7052
iOp [0 0 � 6.1268]>

Roll angle (transmitter to search plane) fp 0

Pitch angle (transmitter to search plane) qp 0.6162

Yaw angle (transmitter to search plane) yp 0.7854
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(A) Drone trajectory: 3D view.
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FIGURE 6.5: Results of the SITL simulation.
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The chosen simulation parameters are summarized in Table 6.1
The proposed algorithm was discretized as follows. The discrete-time low-level

controller was obtained by: (i) using the zero-order-hold for discretizing the four
plants; (ii) the Tustin’s method for discretizing the internal model units; (iii) discrete-
time Linear Quadratic Regulation theory to obtain the control gains, so as to force
the drone to be in near hovering conditions at all times. The ES algorithm was dis-
cretized by means of the simple forward Euler method, while the a-filter was dis-
cretized using Tustin’s method once again. The low-level controller is designed to
work at a fixed frequency of 250 Hz, the ES algorithm runs at 10 Hz while the fre-
quency of the ARVA signals is the lowest, being 1 Hz.

The ES parameters have been carefully designed following the rationale pre-
sented at the end of Section 6.4.2, taking into consideration a maximum feasible
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(A) Drone trajectory: 3D view.
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FIGURE 6.6: Results of the HITL simulation.

velocity of 4 m/s as platform architectural limit. In particular, the best results have
been obtained setting a = 20, k = 0.07 and w = 0.65, that correspond to a steady-
state radius of 3.6 meters and a maximum drone velocity (on the search plane) of
3.6 m/s. Moreover, a low-pass filter has been implemented in order to damp the
noise affecting the ARVA signal.

6.5.1 SITL Simulations

SITL simulations have been performed on a PC running Ubuntu 18.04.3 LTS with
Intel(R) Core i7-3770K@3.60 GHz CPU and 32 GB RAM. The main results are re-
ported in Figure 6.5. In particular, Figure 6.5c and Figure 6.5f compare the drone
trajectories on the search plane (blue line), with both the trajectory of the circum-
ference centre (yellow line) and the position of the ARVA minimizer on the search
plane (red line). The dark blue shaded area in Figure 6.5c and Figure 6.5f represents
a bounding box of dimensions 1⇥ 1 meters around the optimum position, such in-
terval has been chosen as the interval of practical convergence. On the other hand,
the light blue shaded area draws a bounding box of dimension 5⇥ 5 meters around
the optimum, this interval represents the minimum distance required from experi-
enced rescues in order to find a buried victim. From these figures, it is clear that
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the practical convergence to the optimum is obtained in approximately 300 seconds,
with the loitering circumference centre entering inside the bigger bounding box be-
fore 150 seconds. In Figure 6.5a is reported the 3-dimensional drone trajectory (dark
blue) on the search plane (light blue) and the iso-power lines of the ARVA function
along the search plane (in gray), while in Figure 6.5d and Figure 6.5g the same quan-
tities are projected on the xiyi-plane and on the search plane, respectively, for better
visualization. From the aforementioned figures it is possible to see how the ES algo-
rithm steers the drone-receiver towards the optimum by performing, as expected, a
circlular trajectory whose centre follows an approximate gradient descent direction.
This behavior is particularly visible in Figure 6.5d and Figure 6.5g, where the yellow
line represents the trajectory of the loitering circumference centre. Recall that the
sought minimum does not coincide with the projection on the search plane of the
victim position. This is visible in Figure 6.5a, Figure 6.5d, and Figure 6.5g, where the
red dot represents the victim position projected on the search plane pt/proj, while the
blue one is the optimal position (ARVA minimizer) on the same plane p?. Finally,
Figure 6.5i shows the behavior of the ARVA signal, while Figure 6.5b, Figure 6.5e,
and Figure 6.5h report the true drone-receiver inertial positions versus the requested
ones. Note that, the non-negligible motion of the circles centre, during the transient,
causes a mismatch between the adopted internal model and the model of the refer-
ence trajectory, leading inevitably to non-zero tracking errors. However, notice that
the low-level controller manages to keep the tracking errors very small at all times,
thus ensuring the needed time scale separation. Moreover, at steady-state, when
the reference signals truly become simply biased sinusoids, the tracking errors are
practically zero, thus resulting in a better estimate of the optimum.

6.5.2 HITL Simulations

In order to verify the usability on real applications, the proposed solution has been
tested on a low-cost microcontroller with limited capabilities. In particular, HITL
simulations have been performed on the Pixhawk 2 Cube board, endowed of a STM32F427
Cortex-M4F(R)@168 MHz (252 MIPS) core, with FPU and 256 KB RAM. The obtained
results are reported in Figure 6.6, which presents the same images configuration pro-
posed in Figure 6.5, so as to facilitate the comparison. Notice that despite some nu-
merical errors, which induce a degradation of the tracking performance, the practical
convergence to the bounding box of 1⇥ 1 meters, is still obtained in approximately
390 seconds, while the larger bound is broken after only 180 seconds. Thanks to
its lightweight, the developed algorithm is still able to run at a fixed frequency of
250 Hz jointly with the ES module, running at 10 Hz. The source code can be found
at https://github.com/casy-lab/PX4_Firmware.

6.6 Conclusions

In this work, we presented a complete control architecture for a UAV which, being
equipped with an ARVA receiver, is able to autonomously explore the area of interest
and converge as close as possible to the victim-ARVA transmitter.

The scheme presented in Figure 6.4 is general, in the sense that it could be used
for any source seeking control problem where a mobile robot needs to be driven
towards a source. The particular choice of an ES control algorithm, and of a low-
level controller, depends both on the specific application and on the technology at

https://github.com/casy-lab/PX4_Firmware
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our disposal. In general, ES should generate a reference trajectory that is dynami-
cally feasible for the specific mobile robot, while the low-level controller should be
designed considering both the specific robot and the chosen ES algorithm.

Finally, we extended the well-known PX4 flight stack by creating a new flight
mode where our ES reference generator as well as our low-level controller are used.
The proposed algorithm performs well even in HITL simulations, converging in a
reasonably good amount of time, proving robustness with respect to noise, and pro-
viding a very good estimate of the projection of the victim position on the search
plane, and thus also on the snow/terrain plane (which is the optimal point from
which digging should be performed). The code is available open source to encour-
age usage as well as possible external contributions.
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Concluding Remarks

Several adaptive estimation and control algorithms were presented in this thesis.
What all the presented identifiers have in common is that they are robust in an ISS
sense, with the trivial exception of the extremum seeking algorithm as it cannot lead
to exact convergence, even without disturbances. Anyhow, we could divide the
presented works into 2 categories:

• Chapters 3, 5 and 6, in which we develop our algorithms relying on well-
known adaptive control tools, thus obtaining “classic” results. By classic we
mean that in order to have a robust solution, not surprisingly we had to be able
to ensure, or assume, persistency of excitation;

• In Chapters 1, 2, and 4, persistency of excitation would still be related with a
correct estimation of the true parameters. Nevertheless, with the proposed
designs we formally prove the existence and stability of an optimal steady
state (where a cost function - being a function of the estimation or tracking
error - is minimized), and robustness with respect to the disturbances in form
of input-to-state and input-output stability relative to the unperturbed steady-
state trajectories.

In particular, in Chapter 3 PE is simply assumed in Assumption 3.3, and robust-
ness then comes from global exponential stability (which is for free when we have
PE and we deal with LTI systems). On the other hand, in Chapter 5 we were able
to guarantee PE for the specific trajectories involved in our application, by means of
our design choices. We also noticed in Remark 5.1 that this fact should not be taken
for granted and does not only depend on the application. In fact, the same straight
trajectory that guarantees PE with our design, was not PE for other designs dealing
with the same problem. Finally, extremum seeking is a kind of adaptive algorithm
which could be easily also seen as an optimization or learning algorithm (are these
three worlds so different after all?). In fact, as discussed in Chapter 6, ES algorithm
consists in moving in circular trajectories, so as to explore a neighborhood of the
current position (or estimate), to check in which direction the sensed function value
is decreasing. It is then not surprising that it is a robust estimation algorithm, as
it has been proved in the important ES works we mentioned in Section 6.1.2. As a
matter of fact, this circular trajectory is nothing but an injection of a sinusoidal sig-
nal in the system, which is a PE signal when we have to estimate two parameters (a
sinusoid is sufficiently rich of order two, see Chapter 3, where we used this property
of sinusoidal signals).

Now, moving to Chapters 1, 2, and 4, it is interesting to notice what they have in
common, so as to try to understand whether there could be some underlying prin-
ciple related to robustness of adaptive systems when PE is not necessarily present
(which we formally proved for our specific applications). First of all, in all the afore-
mentioned works we know where to search for the unknown parameters. Accord-
ingly, we define saturation functions in Chapters 1 and 2, while we define a dead-
zone-based projection mechanism in Chapter 4, for keeping the parameter estimates
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in the desired set. Moreover, the identifiers in Chapters 1 and 2 are stable, in fact
the optimal steady state trajectories (related with correct parameter estimation) are
proved to be asymptotically stable. On the other hand, the adaptive algorithm in
Chapter 4 is given by the union of “classic” adaptive laws (not robust, given by
a pure integrator), and the already mentioned dead-zone modification which is a
well-known robustification solution. The RLS algorithms are intrinsically robust,
while the dead-zone modification guarantees that the estimator in Chapter 6 does
not drift by acting only when necessary. In the RLS-based algorithms, in absence
of PE, we need a nonzero regularization matrix R (Remark 1.1 and Section 2.5.2).
This results in a practical stability result as, what is always guaranteed, is optimality
with respect to the chosen cost function1. This means that the optimal parameters
do not exactly correspond to the true parameters anymore. Anyway, there are sev-
eral control applications in which we are not interested in exact convergence of the
parameters, but in obtaining any asymptotic combination of the parameters such
that the estimation error (see Figure 1.5) or tracking error (Chapter 6) are driven as
close as possible to zero. In these contexts, robustness of the identifier is much more
important than exact convergence to the true parameters as it enables the use of
canonical nonlinear control techniques such as small-gain methods, which are key
in order to interconnect ISS systems.

We conjecture then that if we choose a stable identifier, and we know a set in
which the unknown parameter lies, we could saturate the produced estimates on
the desired set and obtain a robust (at least practical) stability result in terms of ISS.
The “classic” adaptive control results, relying on PE to achieve robustness, neither
consider stable identifiers (in the classic formulation we obtain pure integrators as
identifiers), nor they assume that a set in which we are sure to find the parameters is
known. In this sense, this is an additional assumption we are requiring with respect
to classic approaches (nothing comes for free).

1Notice that also in classic adaptive control, resulting in the standard “pure integrator” identifier,
there is always an underlying cost criterion (Ioannou and Sun, 2012, Section 4.2.1)
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