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Abstract

A densely built environment is a complex system of structures, infrastruc-

ture, nature, and people closely interconnected and interacting. Vehicles, public

transport, weather action, and sports activities constitute a manifold set of

excitation and degradation sources for civil structures. In this context, opera-

tors should consider different factors in a holistic approach for assessing the

structural health state. Vibration-based Structural Health Monitoring (SHM)

has demonstrated great potential as a decision-supporting tool to schedule

maintenance interventions or manage emergencies. However, the mentioned

excitation sources are considered an issue for most practical SHM applications

since traditional methods are typically based on strict assumptions on input sta-

tionarity. Last-generation low-cost sensors present several limitations related to

a modest sensitivity and high noise floor compared to traditional and expensive

instrumentation. If these devices are used for SHM in common urban scenarios,

short vibration recordings collected during high-intensity events and vehicle

passage may be the only available datasets with a sufficient signal-to-noise

ratio. While researchers have spent considerable efforts to mitigate the effects

of short-term phenomena in vibration-based SHM, the ultimate goal of this

thesis is to exploit them and obtain valuable information on the structural

health state. First, this thesis proposes strategies and algorithms for smart

sensors operating individually or in a distributed computing framework to

identify damage-sensitive features based on instantaneous modal parameters

and influence lines of instrumented structures. Ordinary traffic and people

activities become essential sources of excitation, while human-powered vehicles,

instrumented with smartphones, take the role of roving sensors in crowd-

sourced monitoring strategies. In this context, the technical and computational

apparatus is optimized using in-memory computing technologies. Moreover,

identifying additional local features can be particularly useful to support the

damage assessment of complex structures. Thereby, smart coatings are also

studied in this thesis to enable the self-sensing properties of ordinary structural

elements. In this context, a machine-learning-aided tomography method is

proposed to interpret the data provided by a nanocomposite paint interrogated

electrically.
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Civil structures vibrate when subject to phenomena such as traffic,

human activities, and weather actions. Based on the assumption that

dynamic structural properties reflect their mechanical characteris-

tics, the analysis of micro-vibration induced by these phenomena

may provide valuable information on the structural properties.

Vibration-based Structural Health Monitoring (SHM) is a tool to

assess the state of a structure based on information retrieved from its

vibration response. Specifically, structural parameters are identified

using structural identification techniques and employed to define a

Damage-Sensitive Feature (DSF). These features are then monitored

over time to identify changes in the structural behavior, which are

possibly connected with ongoing damage.

However, micro-vibration can only be collected using specific –

and often expensive – sensing instruments, especially when the struc-

ture is not artificially excited. Indeed, devices with high-sensitivity

and low-noise floor, such as particular accelerometers, are needed

to collect low-amplitude structural vibration. This is why SHM is

generally perceived as expensive, if not directly related to the benefit

it brings in terms of decision support, for instance for emergency

management or maintenance planning.

Structural vibration is a superposition of the effects of several

phenomena merged without any straightforward way to separate

them. These phenomena include multiple exciting factors, inherent

structural nonlinearities, and environmental influences (such as

temperature and humidity). Besides, the measurements are affected

by instrumentation inaccuracies. This last aspect gains particular

relevance with the use of recent low-cost sensing devices based on
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Micro-ElectroMechanical System (MEMS) coupled with wireless

transmission technologies. Given the complexity of the structural

identification problem, the first studies in this field were based on

strict assumptions on the nature of excitation. Indeed, well-known

algorithms used to identify structural parameters from vibration

responses assume stationary input excitation (with a wide frequency

range) and linear structural behavior, as it will be discussed in Chap-

ter 2. Some solutions were also proposed to process the unavoidable

nonidealities of collected data (such as short-term nonstationarities

due to varying excitation) simply by considering a sufficiently long

dataset to minimize the contribution of these flaws to the outcome.

For decades, SHM applications were devised to compare two

"static" conditions of the structure, namely, a baseline condition and

a "possibly damaged" condition, having plenty of time to record

and process the data in the two situations separately. However,

traditional identification methods may be improper in particularly

complex scenarios, such as the urban environment, where human

activity is intense and traffic is a continuously varying excitation

source. Also, in the aftermath of an earthquake, having a timely and

complete picture of the structural state is of fundamental importance

to promptly take decisions for emergency management. Besides, in

these cases, accurate analysis of what happens during the seismic

motion can help understand the state of health of a structure and

schedule targeted inspections.

External phenomena that may lead to nonstationary and short-

term excitation to the structural system were traditionally considered

detrimental and represented limitations in practical applications.

Thereby, research efforts were spent to mitigate their effects.

Unlike traditional approaches, this thesis studies strategies, al-

gorithms, and technologies to take advantage of those scenarios

where the structural response considerably deviates from the sim-

plified assumptions of linear time-invariant systems, highlighting

the structural characteristics under particular loading conditions.

Thus, this thesis aims to provide efficient tools to enable low-cost

SHM of minor structures and infrastructure in the challenging

scenarios of the urban and extra-urban environment. The main

focus is on exploiting conditions that are typically overlooked in
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traditional approaches for identifying DSFs from vibration mea-

surements. Moreover, a new device is proposed to determine the

strain distribution of specific structural elements, which becomes

particularly useful to support damage identification when structural

systems are particularly complex, or the vibration level is too low

for low-cost sensing instruments.

1.1 Novel contributions

This thesis aims to build on the rich body of work in SHM and

propose original strategies, algorithms, and technologies to obtain

information about structural damage from vibration data and "en-

hanced" structural components. Specifically, the main novelties of

this study are listed below:

I A new method is proposed to identify modal parameters in

the presence of nonstationary excitation, vanishing compo-

nents, and narrowband disturbances, typical of the urban

environment, where the primary excitation sources are traffic,

means of transport, and people activities. Identified modal

parameters are instantaneous and can describe variations of

the dynamic behavior for time-varying structures. Moreover,

the definition of instantaneous nonlinear normal modes allows

analyzing nonlinear systems and identifying particular dam-

age conditions, such as breathing cracks, hardly identifiable

using other algorithms in the current state of the art.

I In addition to modal parameters, the curvature influence line

of bridges is identified using acceleration data collected under

moving loads. Curvature is a well-established DSF, and the

main advantage of the method proposed in this thesis is that

dense curvature estimates can be obtained simply by filtering

the structural response, without introducing computational

errors due to common techniques to obtain curvature from

sparse measurements (e.g., modal amplitudes). Moreover, a

novel damage index based on this feature can be used for

damage quantification. Unlike other methods employed for

damage quantification, the knowledge of structural masses is

unnecessary in the proposed algorithm.
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I A new strategy is proposed to identify dense modal parameters

by fusing the data collected by smartphones deployed on

moving light vehicles, such as bicycles and kick scooters. To

the author’s knowledge, these vehicles were never used for

SHM, and this thesis includes a proof of concept carried out

using a real case study. The strategy is promising and low-

cost, as no sensors are needed on the structure, thus being

particularly suitable for minor infrastructure and footbridges.

I Analog in-memory computing is first exploited for SHM, allow-

ing the application of the algorithms presented in this thesis

in a computationally efficient way. This aspect is fundamental

when dealing with low-cost wireless sensing devices, as it

enables efficient edge computing and data compression, thus

reducing transmission, which is the most power-consuming

part of a wireless sensor network. Compared to other technolo-

gies based on microcontrollers, the devices proposed in this

study can calculate vector-matrix multiplications in one clock

cycle and do not need extensive reading/writing processes

that increase runtime and power consumption.

I A new device for local strain mapping is presented, based

on a nanocomposite paint that can be easily spayed on a

structural element and interrogated electrically to provide a

tomographic image representative of the health state of the

substrate. Compared to other devices traditionally used to

monitor the strain distribution, this solution is easily scalable

and provides dense measurements with a single interrogation

process.

1.2 Thesis overview

This study investigates common scenarios in the built environment

where monitoring could be challenging due to several aspects, in-

cluding particular excitation sources, the effects generated by moving

vehicles, and the limited economic availability for monitoring minor

infrastructure. In particular, three main scenarios are considered:

Scenario 1: Civil structures instrumented with dense low-cost

sensor networks subjected to nonstationary excitation
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induced by nearby traffic, earthquakes, and weather-

related sources.

Scenario 2: Bridges instrumented with sparse sensor networks

subjected to direct vehicular traffic.

Scenario 3: Light bridges and footbridges, without any specific

monitoring instrumentation, crossed by micromobility

vehicles, such as bicycles, instrumented with smart-

phones that operate as moving sensors.

These scenarios are closely interconnected and, therefore, they will

not be investigated separately. Instead, the thesis is organized as

follows:

Chapter 2, State of the art, describes the context of SHM in challeng-

ing scenarios, highlighting the major issues related to the analysis

of short and nonstationary signals collected during high-intensity

vibration events. This section also surveys the latest technologies and

algorithms to enable edge computing and exploit the capabilities of

low-cost smart sensing systems. Moreover, the last developments in

self-sensing structural elements are reported.

Chapter 3, Filtering vibration, provides an idea of how structural

features and, in particular, modal parameters can be identified in

multivariate acceleration recordings and extracted using mainly

filtering operations. In this chapter, structural vibration response is

studied to extract instantaneous modal parameters. To this aim, a

new Time-Frequency Representation (TFR) for multivariate signals

is proposed based on the Modal Assurance Criterion (MAC), called

"Modal Assurance Distribution" (MAD). This TFR provides an intu-

itive representation of the modal features of multivariate signals in

the time-frequency plane. Moreover, the method proposed provides

a TFR that is not directly dependent on the amplitude of signal com-

ponents, making it particularly suitable for nonstationary signals,

even with vanishing components. Based on this TFR, an original

signal decomposition algorithm is proposed to extract decoupled

modal contributions, which can thus be employed to identify modal

parameters. The modal identification algorithm is also applied to

nonlinear dynamic responses, considering the Rosenberg definition

of Nonlinear Normal Mode (NNM). The instantaneous identification

of NNMs allows calculating structural features before, during, and
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after strong seismic motions to understand if particular damage

conditions are only visible during high-amplitude excitation, e.g.,
breathing cracks. Two original decentralized procedures are also

presented for distributed implementation of the modal identification

algorithm, one for star-topology sensor networks (easily applicable

to tree topologies by organizing the network in separate clusters)

and one for line-topology dense sensor networks. In the second

procedure, a novel data compression strategy is proposed to enable

the real-time identification of natural frequencies and mode shapes

of the structure while minimizing transmitted data. In this case, the

power consumption and the computational effort that compete with

each node of the sensing system are unrelated to the network size,

making the proposed scheme easily scalable. Application examples

are presented to show the potential of the proposed identification

algorithm to calculate the modal parameters of time-varying systems

subjected to nonstationary input excitation, such as those in Scenario

1, even with nonlinear structural behavior. Identified parameters

are also employed for damage identification, showing that near

real-time damage identification is pursuable even using wireless

sensor networks.

Chapter 4, Exploiting traffic, based on the concept of filtering, in-

vestigates the low-frequency (i.e., quasi-static) effects of moving loads

on bridges and viaducts. First, an original algorithm is proposed in

this context to identify influence lines using sparse instrumentation,

simply by filtering the recorded acceleration during the passage of a

vehicle through a particular low-pass filter. In contrast to traditional

identification strategies relying on multiple sensors, in this case,

spatial information is acquired by considering a moving load that ex-

cites all the structural points in time. Identified quasi-static structural

features are then employed for damage localization and quantifi-

cation: due to the physical meaning of the extracted quasi-static

feature, a curvature-based DSF is proposed, removing the complex

procedures (and thus approximations) which are generally neces-

sary for traditional methods to calculate curvature from identified

mode shapes. This novel approach brings considerable advantages,

as it enables accurate localization of structural anomalies using lim-

ited (and thus low-cost) instrumentation, suitable for widespread

monitoring, and removes the need for data synchronization. Unlike



1.2 Thesis overview 7

most literature methods [1, 2], damage entities can be quantified

without any knowledge of the structural masses and avoid using

finite element models. Data extracted from numerical and real case

studies representative of Scenario 2 are used to support the find-

ings of this chapter. Second, the applicability of the MAD is tested

for civil infrastructures subjected to moving loads. Although the

MAD-based identification algorithm has several benefits over other

literature methods in many application scenarios, moving loads and

short datasets pose a further challenge. A unified and automatic

identification strategy usable for Scenarios 1 and 2 is thus proposed

for estimating both dense quasi-static structural features and modal

parameters using sparse sensor networks (consisting of down to

just one sensing device). The procedure relies only on acceleration

recordings, without additional devices to track the vehicle location.

Moreover, the algorithm proposed for automatically selecting and

processing signal windows related to the vehicle passage makes this

method particularly suitable for crowdsourced cloud computing

applications. Third, this chapter extends the available knowledge

on Indirect Structural Health Monitoring (ISHM), exploring the

possibility of using unconventional vehicles, i.e., Human-Powered

Vehicle (HPV)s, for infrastructure monitoring (Scenario 3). Specifi-

cally, the feasibility of using bicycles to extract modal or operational

parameters commonly employed by vibration-based SHM meth-

ods, i.e., natural frequencies mode shapes or operating deflection

shapes, is demonstrated. This research lays the foundations for a

human-centered monitoring approach of urban bridges based on

shared micromobility vehicles and smartphones. In this scenario,

citizens acquire a crucial role in structural health monitoring, be-

coming a part of the sensing network themselves. It is shown that

dense estimates of the fundamental mode shapes can be identi-

fied by fusing the data collected by the accelerometer, gyroscope,

magnetometer, and Global Positioning System (GPS) embedded in

common smartphones. These features can be further employed for

damage assessment. Applications to a real case study show that the

identified estimates acquire robustness when different users collect

multiple recordings in a crowdsensing monitoring strategy.

Chapter 5, Improving efficiency, focuses on new technologies to

improve the efficiency of the proposed monitoring solutions in
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real-world implementation. Filtering is the main computing core of

the procedures investigated in Chapter 3 and Chapter 4. Therefore,

in this thesis, new solutions are studied to reduce computational

time and enable edge computing, i.e., performing filtering tasks

directly onboard the sensing devices. Phase Change Memory (PCM)

allows performing vector-matrix multiplication (and thus filtering)

in a single clock cycle, saving both time and energy. The benefits of

PCM technology have never been employed for signal filtering or

SHM purposes. Although this tool may be highly convenient, issues

related to the accuracy of computations are topical in related research.

In this study, the workflow of the structural identification algorithm

developed for Scenarios 1 and 2 is adapted for efficient distributed

implementation using PCMs. The proposed identification method

is mainly based on signal filtering and allows the extraction of

both dynamic and quasi-static structural parameters, namely, mode

shapes and curvature influence lines of the instrumented structure

employing sparse sensor networks. Specifically, an iterative version

of the algorithm makes filtering particularly suitable for practical

implementation in PCM-based smart nodes for civil infrastructure

monitoring under traffic loads. Real acceleration data, processed

using a laboratory prototype of PCM show promising results for

field applications.

Chapter 6, Integrating information, deals with situations where

vibration-based SHM is not sufficient for simplifying the decision-

making process or when Signal-to-Noise Ratio (SNR) of collected

vibration is not high enough to allow identifying accurate struc-

tural features, such as at the base of bridge piles. In this chapter,

a non-invasive static monitoring technique based on self-sensing

structural components is investigated. Since introducing self-sensing

elements in existing structures is not straightforward, smart paints

were considered. Specifically, two sprayable conductive paints based

on graphene nanosheets and carbon nanotubes are studied. The

smart paint can be sprayed on structural elements and interrogated

to provide an estimate of the strain state and health condition of the

substrate, or evaluate the presence of dangerous chemical agents

that may accelerate material degradation. The use of smart coat-

ings on regular structural elements enables self-sensing properties,

which provide valuable information to identify the causes of iden-
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tified anomalies and better understand how to schedule targeted

interventions. Electrical Impedance Tomography is employed in

this study to obtain dense information on the inspected elements

simply by (remotely) interrogating the boundaries of self-sensing

components with electrical pulses. Supervised Machine Learning

(ML) is exploited to simplify the complex inverse EIT problem and

enable edge computing. Since the construction of a reliable training

dataset is fundamental for supervised applications, this thesis also

proposes a new strategy to generate a potentially unlimited dataset

for end-to-end machine learning tools that enables high-resolution

crack localization. Besides, a method to assess the suitability of

the training set for the desired application is proposed, based on

self-organizing maps, an unsupervised ML tool generally employed

for data visualization.

Chapter 7, Conclusions and future research, reports the concluding

remarks and future developments of the studies included in this

thesis.
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This chapter provides a general idea of the common issues of

vibration-based SHM and the most relevant contributions in this field.

Particular attention is posed to the challenges that characterize the

built environment, considering nonstationary input excitation, traffic

load, and human activities that represent the dynamic society of

nowadays. Technical aspects and the latest trends adopted for sensing

are also mentioned since they have a crucial role in developing

monitoring systems.

2.1 Common issues in monitoring the built
environment

Dynamic identification of vibrating systems is a fundamental aspect

in different engineering areas, such as civil [3–5], mechanical [6,

7], and aerospace [8, 9], as it enables assessing the structural state

of health even for structures that do not show an evident state of

degradation[10].

In the last decades, an increasing number of techniques have

been proposed for dynamic identification, attempting to broaden

the field of applicability and release the assumptions that may limit

practical applications. Some types of structures are time-varying,

and traditional identification algorithms based on the assumption

of stationarity may be unsuitable. This is generally the case for

bridges with vehicular traffic [11], time-periodic systems [12], and
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robotic or aerospace structures with time-varying geometry [13, 14],

to name a few. Besides, some research [15–17] has been recently

conducted on methods that refer to short-term recordings obtained

during strong events (e.g., seismic events) to study the short-term

variation of structural parameters due to nonlinearities. In these cases,

identifying instantaneous parameters is of the utmost importance.

Indeed, features identified on long time intervals result from an

average process that accounts for all the short-term phenomena

included in the analyzed time window. Therefore, short-term effects

observable during high-amplitude vibration (e.g., due to breathing

cracks or other structural nonlinearities) and moving loads (e.g., due

to the quasi-static displacements of a bridge deck under passing

vehicles) would be lost using long-term features.

Dynamic identification with nonstationary excitation

Several methods have been proposed for the modeling and anal-

ysis of nonstationary signals, which can be classified into para-

metric and non-parametric methods. The first group is mainly

based on parametrized time series representations, namely, the

time-dependent extensions of autoregressive moving average [11,

18, 19]. On the other hand, the majority of non-parametric meth-

ods are based upon TFRs of the vibration energy and allow more

intuitive extraction of modal parameters (i.e., natural frequencies,

mode shapes, and damping ratios), which are the most used for

damage identification of civil structures due to their explicit physical

interpretation [3]. Herein, a brief survey of the most used TFRs

for dynamic identification of time-varying systems subjected to

nonstationary excitation is reported.

Due to the interconnections born in the last few decades between

the fields of linear algebra and subband coding [20], a considerable

number of transforms leading to different TFRs were proposed.

The Short-Time Fourier Transform (STFT) [21] and the Wavelet

Transform (WT) [22] are among the most used linear transforms;

the first employs a fixed complex exponential windowing function

for the analysis, while the second relies on a family of more flexible

functions. More recently, the S-transform [23] has received extensive

interest due to its versatility since its windowing function is a
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Gaussian-windowed complex exponential, the dimensions of which

scale as a function of frequency, resulting in a frequency-dependent

resolution analysis.

The Wigner-Ville Decomposition (WVD) [24, 25] was also widely

studied because of its paramount importance in TFR theory since

it does not use any other windowing function except for the signal

itself (autocorrelated in the transform definition). On the other hand,

practical applications on multicomponent signals are challenging

for this transform because of its bilinear structure that creates cross-

terms that undermine the distribution readability.

Most identification methods based on the analysis of TFRs may

suffer from problems related to closely-spaced, vanishing, and

crossing modes. Furthermore, energy concentrations in the time-

frequency (or time-scale) plane could also be due to narrow-band

disturbances in the excitation, which would be identified, in most

cases, as structural modes.

Two classes of methods for improving the readability of TFRs are

the reassignment (or reallocation) and synchrosqueezing, shown to

be the second a special case of the first [26]. Highly localized TFRs

have been derived from STFT and WT by using these post-processing

techniques. In particular, the SynchroSqueezed Transform (SST) was

formalized as the application of synchrosqueezing on scalograms

obtained through continuous wavelet transform. This method re-

ceived significant interest as an alternative to the Empirical Mode

Decomposition (EMD) [27], which is a different technique used to

extract signal components associated with different frequencies, i.e.,
Intrinsic Mode Function (IMF), without relying on any basis function

[28]. EMD is mainly used together with the Hilbert Transform (HT),

resulting in the Hilbert-Huang Transform (HHT). However, in its

original form, this method is affected by several problems, including

mode mixing, one of the most important issues for applications

aimed at SHM [29]. For this reason, several variants have been

proposed. One of the most used is the Ensemble Empirical Mode

Decomposition (EEMD), which consists of sifting an ensemble of

signals obtained by adding different white noise sequences to the

original data and computing the final result as the mean of IMFs
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obtained [30]. This method still presents issues related to crossing

and vanishing modes.

Recently, the concept of modulated multivariate oscillations

was introduced [31, 32], together with analysis methods capable

of extracting TFRs from multichannel signals, exploiting the inter-

channel dependencies of multivariate data. Namely, extensions to

the WVD [33], SST [34], and EMD [35] were proposed.

In particular, the purpose of Multivariate Empirical Mode De-

composition (MEMD) is to extract common IMFs from all data sets

by analyzing different projections of the multivariate signal to cal-

culate its envelopes and local mean. Furthermore, some techniques

merge noise-assisted and multivariate approaches into increasingly

complex methods [36]. The main disadvantage of these techniques

is the high computational burden, given by the high number of

ensembles necessary to remove the traces of noise introduced in the

noise-assisted methods and the number of projections considered

in the case of multivariate analysis using MEMD [37].

Except for EMD and its extensions that directly provide IMFs

from raw data, non-parametric methods require post-processing

procedures to extract the modal parameters from TFRs, generally

involving the preliminary decomposition into different modal re-

sponses [38, 39]. To this aim, in several applications, a ridge extraction

is directly performed on the TFR by finding the local maxima of the

distribution over time [40, 41]. However, this procedure may suffer

from problems related to components with nonstationary ampli-

tudes and noisy signals [42]. Wang et al. [43] proposed a dynamic

optimization method by introducing a penalty function for noisy

signals. Other authors investigated the use of Singular Value De-

composition (SVD) for ridge detection [44, 45]. Ditommaso et al. [15]

proposed an algorithm based on the manual selection of the areas of

the TFR associated with the modal response of interest, facilitated

by the good readability obtained through the S-transform.

After detecting and extracting the ridges, modal parameters

can be estimated from the skeleton of the TFR (i.e., the sequence

of transform coefficients associated with the ridge) [39]. However,

the mere extraction of coefficients associated with the frequency

peaks may lead to problems related to the complete reconstruction
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of decoupled modal responses. In order to limit these issues, more

sophisticated techniques based on image processing applied to TFRs

are taking a step into system identification. Some researchers first

employed image processing to de-noise TFRs [46] and attenuate

cross-terms of WVD [47]. Successively, they used image processing

to separate modal components. In [48], the regions of the time-

frequency plane associated with the energy peaks of different modes

are extracted by means of the watershed transform, which is a

morphological-based segmentation algorithm [49] previously used

by Roueff et al. [50] on scalograms to separate seismic waves. Zhuang

et al. [51] used a simpler 4-connected-component labeling algorithm

to decompose the signal in the time-frequency domain [52]. One

of the major problems related to these procedures concerns the

difficulty of effectively separating closely-spaced modes. Indeed,

close resonant frequencies may be merged into the same region of

the time-frequency distribution by the pre-processing mathematical

morphology operations performed to obtain a proper segmentation

(e.g., dilation and closing) [53]. Other issues may arise in the case

of noisy signals, for which the energy is spread throughout the

time-frequency plane, and spurious peaks may be detected.

Dynamic identification of structures with nonlinear behavior

An element that introduces further difficulties in identifying modal

parameters is structural nonlinearity. In nature, the dynamic be-

havior of structures generally follows nonlinear laws [54]. In civil

engineering, there are several sources of nonlinearity, mostly related

to material behavior (i.e., constitutive laws), geometry (whenever

the magnitude of the displacements affects the structural response),

and boundary conditions [55, 56]. Several studies also show how

nonlinearities usually increase in damaged structures, for which

cracks and loosening of connections may occur [56, 57].

In the context of vibration-based SHM, linearity is a necessary

assumption for using classical modal analysis methods. Thus, nonlin-

earities are usually overlooked during the application of Operational

Modal Analysis (OMA), relating to the fact that ambient vibration is

modest, and the effects of nonlinearities are noticeable only under

high-energy excitation [58].
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One of the latest trends in SHM is known as "Seismic Structural

Health Monitoring" S
2
HM [59], for which recordings obtained dur-

ing seismic events are used for dynamic identification and model

updating. This approach allows assessing damage in the aftermath

of an earthquake, using short datasets collected immediately before,

during, and after the seismic event. In this way, the effects of tem-

perature or variable environmental conditions which may alter the

parameters identified in the long term are avoided [16].

Improvements in the hardware apparatus of sensor networks,

which lead to increased energy efficiency and the possibility of

collecting high-fidelity data, have recently enabled the development

of event-triggered sensing systems [60]. These systems are designed

to collect data (usually consisting of acceleration recordings) only

when a certain amplitude threshold is exceeded. The transmission

of a short dataset to the monitoring station is far more efficient

than continuous transmission during the monitoring process. Fur-

thermore, recordings obtained during strong events usually have

a high SNR, allowing structural characterization even with short

data series. However, in the case of strong events, many systems,

such as Reinforced Concrete (RC) structures, may manifest strong

nonlinearities that can no longer be assimilated to a linear behavior.

In fact, according to current codes, civil structures are designed with

specific ductility requirements to take advantage of the excursion in

the nonlinear field during earthquakes [56].

Since nonlinear structural elements are increasingly used in engi-

neering applications, several studies have been conducted recently

on modeling and identifying nonlinear structures [61]. The basic

principles usually assumed for modal identification of linear sys-

tems (such as the superposition principle) may be no longer usable

in the presence of nonlinearities. In this case, modal responses

cannot be studied by separating space and time information, and

the traditional concept of vibration modes is no longer applicable.

Rosenberg [62] first extended this concept by defining a Nonlinear

Normal Mode (NNM) of an undamped system as a synchronous

(vibration in-unison) periodic oscillation where all material points

of the system reach their extreme values and pass through zero

simultaneously. This definition is also usable in the case of weakly
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damped systems and enables the description of nonlinear structures

employing a (nonlinear) modal curve in the configuration space

[56].

Several identification algorithms for nonlinear systems operating

in time [63, 64], frequency [57], and time-frequency [65] domain

were proposed in the last decades. Also, model-based [66, 67] and

black-box [68] techniques are taking steps into SHM applications

based upon finite element model updating and artificial neural

networks.

Recursive approaches for estimating time-varying structural

features were largely investigated in the time domain. Loh and Lin

[69] identified time-varying natural frequencies and damping ratios

employing single-input and single-output pairs consisting of the

ground excitation and the structural response, respectively. More

recently, Bhowmik et al. [70] used the recursive canonical correlation

analysis to implement a reference-free damage identification method

for online applications. However, recursive approaches generally

need a convergence interval, making them unsuitable for short-term

event-triggered applications.

The HHT [28] is currently one of the most largely used time-

domain techniques for nonlinear systems, as it allows the instan-

taneous description of structural resonant frequencies and modal

amplitudes [63, 64, 71]. The WT also found application in studies con-

cerning nonlinear dynamic systems [65], as well as the S-transform.

In particular, Ditommaso et al. [15] analyzed the dynamic behavior

of structures under seismic excitation, considering the mode shape

related to the minimum frequency recorded during the maximum

excursion in the plastic field as a DSF. Other developments of this

method gave rise to reliable damage localization algorithms [17].

2.2 Smart sensors

Some SHM applications may involve limited space for sensor instal-

lation, obstacles that may hinder cable deployment, and continuous

movement of the workforce, which could damage parts of the moni-

toring system. Wireless transmission technologies are preferable in
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these cases, and when the deployment of long cables may increase

the overall costs considerably [72]. However, continuous high-rate

data streaming is impractical through wireless systems, especially

for dense sensor networks.

Recently, technologically innovative wireless sensing systems

have been introduced [73–75] with new MEMS sensors connected to

microcontrollers capable of performing simple onboard operations.

Their limited computational capacity can be exploited for edge

computing, which has recently proven to be an attractive solution

in the SHM field [76–78]. Lately, several researchers focused on the

development of decentralized algorithms [79] in which part of the

signal processing procedures (e.g., filtering and downsampling) is

performed at the node level. In this way, the data transferred to

the monitoring station is lighter, and the computational burden

is significantly reduced, making possible an online monitoring

process.

Battery life is one of the most critical issues for wireless mon-

itoring systems, especially when continuous onboard procedures

are implemented. Nevertheless, processing and transmissions can

be optimized [80], considering an acceptable latency in parameter

identification and gaining in network efficiency. To this aim, new

algorithms and technologies have been proposed recently.

Latest trends in algorithm development

In the last decades, several studies have been conducted to adapt tra-

ditional identification techniques in distributed computing schemes

(e.g., the frequency domain decomposition [81], the natural excitation

technique [79], and the random decrement method [82]), involving

smart sensors organized in tree-type computational models. Besides,

Long and Büyüköztürk [78] proposed a novel implementation of

the frequency domain decomposition, together with an optimal task

allocation algorithm to maximize the efficiency of wireless sensor

networks.

More recently, tailored identification algorithms were proposed

to exploit the potential of edge computing. Yun et al. [83] imple-

mented a new method suitable for wireless smart sensor nodes
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employing wavelet entropy analysis. In this study, the excitation has

been assumed as band-limited white noise. Sadhu and Narasimhan

[84] proposed a static filtering method based on the Stationary

Wavelet Packet Transform (SWPT) for signal decomposition and

Fourier transform to identify modal parameters. Other authors

presented methods based on the HHT that, however, is not suit-

able for online applications in the traditional form because of its

global rather than local nature [85]. Wang and Chen [86] proposed

a method for online identification of time-varying properties of

structures employing a recursive HHT-based procedure. Bao et al.

[87] applied the HHT on cross-correlated data windows to improve

the robustness to noise contamination. To avoid the difficulties re-

lated to the Hilbert transform, such as the computation of analytical

signals during online applications, some authors experimented with

other techniques to extract instantaneous parameters. Ghazali et al.

[88] presented a comparative study illustrating the performance of

Hilbert transform and other methods, namely, cepstrum analysis,

direct quadrature, and Teager Energy Operator (TEO), showing how

the last one is simple and suitable for online applications but very

sensitive to noise. Moreover, this method can only be applied to

mono-component signals and requires prior decomposition.

Goulet and Smith established that largely redundant instrumen-

tation can hinder the ability to interpret data [89]. Indeed, several

authors investigated optimal sensor placement to limit instrumented

locations and find a compromise between monitoring costs and

expected identification performance. For example, Zhou et al. [90]

proposed a tool to find the optimal sensor placement using genetic

algorithms. On the other hand, due to the accessible cost of the

components employed in Wireless Sensor Network (WSN) s and the

development of power-optimized systems [78] and advanced syn-

chronization strategies [91, 92], dense distributions of smart nodes

are increasingly used for SHM applications [93]. Jang et al. [94]

developed an event-triggered system using 70 sensor nodes and two

base stations. Real-time implementation has generally demonstrated

unfeasible at this scale, making the use of a proprietary wireless

network protocol necessary. Whelan et al. [95] developed a network

with 40 nodes using a proprietary protocol that supports high-rate

acquisition with minimal data loss for real-time applications.
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A recent branch of research is oriented towards applying SHM

algorithms to large structures and infrastructures using wireless

sensing systems, facing the issues that may arise when dealing with

complex network topologies [93, 94, 96]. While the tree topology

is the most used for practical use, the line topology is particularly

suitable for densely distributed structures having a one-dimensional

development [97]. However, in traditional applications, the weight

of the data packets increases along the transmission path, becoming

demanding in the final portion of the network, where the nodes

consume a significant amount of energy in forwarding all the data

packets collected throughout the sensing system.

Decentralized sensor networks are still rarely implemented for

real-time monitoring. However, distributed solutions supported

by efficient algorithms for data management may have a key role

when online decision making must be achieved for densely instru-

mented structures, such as for civil buildings and infrastructures in

emergency situations.

Latest trends in technology development

One of the most well-known hardware solutions employed to build

smart sensing nodes in scientific literature is the Single-Board Com-

puter (SBC). The Imote2 platform, developed by Intel Research,

was largely used for laboratory tests and then employed for bridge

monitoring [94, 98, 99]. In order to make this system suitable for

SHM applications of civil infrastructure and accessible to users

without expertise on TinyOS, several sensor boards were designed

and a simplified software framework was developed afterwards.

In particular, Rice and Spencer [100] proposed the SHM-A sensor

board, which was employed in the monitoring campaign of the

2nd Jindo Bridge [94], while Jo et al. [79] proposed the SHM-H

board with a high-sensitivity accelerometer used to perform the

decentralized stochastic modal identification of a steel truss. More-

over, a service-oriented toolsuite was developed to allow researchers

and engineers to easily implement SHM applications [98]. More

recently, the Xnode has been presented by Spencer et al. [101], which

uses a Real-Time Operating System (RTOS) and a high-resolution
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Analog-to-Digital Converter (ADC) to address some of the limita-

tions of the Imote2 devices emerged from the long-term monitoring

experience of the 2nd Jindo Bridge. Furthermore, Sabato et al. [102]

developed the Acceleration Evaluator, a wireless sensor prototype

able to detect microvibrations thanks to the implementation of a

voltage-to-frequency converter instead of conventional ADC.

Different computing solutions able to generate a higher through-

put were also explored to facilitate high-frequency and real-time

applications. Liu and Yuan [103] proposed a dual-controller based ar-

chitecture that comprises a Field Programmable Gate Array (FPGA)

supporting a much higher sampling rate compared to traditional

SBC-based solutions. Cigada et al. [104] used an FPGA to perform

filtering and downsampling operations in a system used for moni-

toring the San Siro Meazza Stadium in Milan, Italy. This solution

guaranteed durability and the possibility of using high-resolution

ADC modules. On the other hand, Varadan [105] proposed to use an

Application-Specific Integrated Circuit (ASIC) to further increase

durability and processing speed, while reducing size.

Whereas several algorithms have low computational complexity,

their implementation in digital systems (i.e., microcontrollers, SBCs,

and FPGAs) typically employs many computing steps and extensive

memory units to store intermediate results in signal processing op-

erations, thus considerably affecting the overall energy performance.

Furthermore, ASICs do not offer versatility since they should be

programmed for each specific application.

Phase Change Memory (PCM) has recently emerged as an at-

tractive tool for in-memory computing, which overcomes the con-

ventional computation model by performing operations directly

in a memory device [106]. Concerning industrial and commercial

applications, PCMs are manufactured only for digital storage at the

date [107]. However, recent results highlight their potential for edge

computing applications [108], as their features allow accelerating the

computation of basic operations, thus reducing power consumption

and latency [109, 110]. Specifically, the PCM technology has been

successfully employed for image recognition implementing machine

learning tools [111–113], and it demonstrated particularly performant

for the development of low-power computing architectures [114],
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as well as hardware accelerators for data-centric frameworks [115].

Nevertheless, PCM was never employed for smart sensors and edge

computing applications in SHM.

2.3 The role of traffic

Failure in road infrastructure leads to immediate direct losses due

to the costs of repair or demolition/reconstruction, as well as long-

term indirect effects, involving the costs of temporary measures

for emergency management, traffic delays, deviations, and acci-

dents, which may also entail longer journeys for emergency vehicles.

Economic losses on industry and local business, together with the

consequent decrease of demand for work, complete the framework

of a catastrophic event, which can also involve the most severe loss

concerning human life. Due to the aging of bridges and viaducts and

the evolution of traffic demand, structural degradation is becoming

a serious concern. Due to the general lack of resources, the recent

trend is to migrate from the traditional planned maintenance to

condition-based maintenance, performed when certain indicators

show signs of decreasing performance or upcoming failure. In this

way, the uneconomical "fail and fix" approach would be replaced by

a more efficient "prevent and predict" strategy. In the last decades,

SHM systems have proven to provide a valuable tool to decision-

makers in order to optimize maintenance or interrupt the ordinary

use of crumbling infrastructure. Although "information never hurts"

[116], the high cost of traditional monitoring systems makes the

infrastructure owners skeptical about the investment [117]. Indeed,

the age of most civil infrastructure would require the widespread

deployment of monitoring systems to manage interventions at a

territorial scale, thus involving considerable expenses, which are

generally unjustified for minor infrastructures.

Vehicular traffic is an essential source of excitation that allows

collecting recordings with a high SNR ratio compared to ambient

vibration. However, as aforementioned, the time-variability of the

load may not comply with the assumption of stationary vibration at

the base of most operational modal analysis OMA [58]. The passage

of loads may also modify the short-time behavior of the structure,
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opening breathing cracks in RC elements and producing dynamic

effects when vehicles hit the expansion joints. Thereby, recordings

containing such effects are generally discarded in OMA procedures.

However, the spatial information inherent in the structural response

collected under moving loads may disclose valuable structural

features for SHM purposes.

Aloisio et al. [118] recently studied RC viaducts using signals

collected under moving loads to identify their elastic moduli. Khan

et al. [119] recently used traffic-induced vibration to identify scour in

a decentralized fashion. Besides, recent studies have been devoted to

identifying dense structural features (i.e., describing the structural

behavior at many locations) by analyzing the quasi-static effects

of moving loads. He et al. [51] proposed a damage identification

approach that can quantify damage using displacement data col-

lected by a sensor moving at low speed, thus only collecting the

quasi-static response of the specimen. Cavedas et al. [120] assessed

the performances of moving Principal Component Analysis (PCA)

and Robust Regression Analysis (RRA) for this purpose using both

displacement and rotation measurements. Other techniques attempt

to obtain similar results by analyzing recordings collected by sensors

deployed on the bridge rather than on moving vehicles, which are

generally less sensitive to vehicle-bridge interaction effects. Frøseth

et al. [121] proposed an efficient formulation to calculate the dis-

placement influence line of the structure through deconvolution in

the frequency domain. However, in this technique, loads must be

known in advance. In the time domain, Zheng et al. [122] presented

an efficient regularized least-squares-based method for identifying

influence lines using multi-axle vehicle excitation. A review of the

most recent methods employing both frequency and time-based

models, together with an in-depth comparison, is presented in [123].

Hester et al. [124] employed the rotation measurements collected at

the extrema of a beam to identify and localize damage accurately.

Besides rotations and displacement, strain measurements have

also been largely employed [125–127]. However, accelerometers,

which are still the most widely used sensors in SHM, have rarely

been used to identify quasi-static structural features due to problems

related to the recording of low-frequency components. Nevertheless,
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recent MEMS technologies and more conventional FBA enable the

acquisition of low-frequency vibration down to DC and can thus be

exploited to investigate the quasi-static structural behavior.

2.4 The role of citizens

The main drawbacks of traditional SHM systems relate to their

installation cost, which is strongly influenced by the typology and

number of the sensors employed. Moreover, an accessible power

source must be available in the proximity of the monitored structure,

and the different components require continuous maintenance,

involving additional costs during the lifecycle of the SHM system.

Besides, SHM systems are not widespread due to the difficulty of

estimating their economic benefit over the initial investment [117,

128].

Recent studies conducted on vibration-based Indirect Structural

Health Monitoring (ISHM) exploit the dynamic response of instru-

mented vehicles to identify structural parameters. In principle, the

use of passing vehicles simplifies the monitoring process and cuts

the cost associated with the installation of SHM systems. The idea

of using sensors installed on moving vehicles was initially explored

theoretically by Yang et al. [129] in 2004. Specifically, the authors

proposed using an instrumented vehicle both as an exciter and a

receiver of the structural response. Lin and Yang [130] subsequently

demonstrated the possibility of applying this approach in practice.

The authors used a tractor-trailer system to identify the first natural

frequency of the Da-Wu-Lun Bridge, a prestressed concrete girder

bridge in Taiwan. The tractor consisted of a four-wheel commer-

cial light truck, and the trailer was a two-wheel cart. The tractor

acted as an exciter while the accelerometers applied to the cart

served as receivers. Kim and Kawatani [131] extended this concept

to identify structural damage in bridges, introducing the "drive-by

bridge inspection". In their work, the authors identified the change

in fundamental frequencies due to structural damage in a scaled

laboratory model. González et al. [132] managed to identify the

damping ratio using a similar approach. A few years later, Cerda et

al. [133] called this concept "indirect SHM", in contrast to the "direct
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SHM", where measurements are collected directly on the structure.

After that, a growing number of scientific papers have proposed

several ISHM approaches in terms of different exciter-receiver config-

urations. For instance, other measuring devices, e.g., video cameras

[134] and weigh-in-motion systems [135] were considered to infer

information about the moving loads, and advanced SHM strategies

exploiting sensors placed both on the structure and on the moving

vehicles have been developed to better describe the vehicle-bridge

interaction [136]. Kim et al. [137] also suggested using a tractor and

two identical instrumented trailers to improve the estimation of the

dynamic properties of the bridge. Li et al. [138] developed an ISHM

strategy based on two instrumented vehicles in which the first is

used as a fixed reference sensor while the other is a moving sensor.

Kim et al. [139] proposed a two-stage wireless monitoring strategy

relying on vibrational data provided by sensors installed both on a

passing vehicle and on the bridge. Matarazzo et al. [140] suggested

using crowdsourced data collected by automobiles as the nodes of

large-scale sensor networks for bridge monitoring.

In the last fifteen years, several ISHM methods for bridges based

on vibration signals were formulated theoretically and tested on

numerical models [132, 141, 142] and laboratory-scale experiments

[143–145]. Several studies validated ISHM techniques on real struc-

tures, such as cable-stayed [146], continuous steel box girder [139],

simply-supported box girder [147], simply-supported steel truss

[148], and prestressed concrete girder [130, 149] bridges. These stud-

ies employed a variety of vehicles for in-situ SHM applications,

such as cars [150], vans [147], trucks [139], tractor-trailer systems

[130], busses [151], and even hand-drawn carts [146]. References

[152–154] provide comprehensive reviews on ISHM methods for

bridges. Specifically, Zhu and Law [154] reviewed SHM methods

based on vehicle-bridge interaction. Malekjafarian et al. [152] fo-

cused on modal identification, observing that mode shapes are

the most complex features to identify. Also, they concluded that

the main challenges for indirect bridge monitoring are related to

the road profile, the limited recording time, and the presence of

environmental effects. Shokravi et al. [153] presented a review that

includes vision-based, weigh-in-motion, bridge weigh-in-motion,

drive-by, and vehicle bridge interaction-based methods.
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Very recently, low-cost ISHM strategies based on data collected

by smartphones were proposed. Feng et al. [155] investigated the

reliability of smartphone accelerometers for vibration-based direct

SHM, while, a few years later, McGetrick et al. [156] explored drive-

by monitoring systems incorporating smartphones. Both the studies

have shown promising results for drive-by and, in general, SHM

applications. To address the issue of the low sensitivity and high

noise floor of smartphone sensors, Elhattab et al. [157] proposed

a stochastic resonance filter that enables identifying the resonant

frequencies of weak signals. Their study successfully identified

the first four natural frequencies of a bridge using a smartphone.

Ozer et al. [158] proposed an approach to extract modal parameters

in a similar noisy environment, dealing with synchronous and

sampling-deficient measurements.

Recent smartphones include high-performance batteries and have

advanced cellular transmission modules that keep them constantly

connected to the Internet, generating continuous transmission traffic.

The ubiquity of these devices has provided an opportunity to

implement crowdsensing strategies [159, 160]. Ozer et al. [161] have

shown the possibility of identifying structural modal properties with

high accuracy using measurements collected by citizens without

expertise. Ozer and Feng [162] explored the potential of using

vibration data measured by pedestrians to identify modal parameters

of bridges. A few years later, the same authors [163] experimented

with a finite element model updating strategy using vibration data

obtained from smartphones. Matarazzo et al. [164] gathered data

from UBER riders crossing the Golden Gate Bridge in San Francisco,

California, to retrieve the main modal parameters of the structure,

which in turn can provide valuable information concerning the

health state of the structure. Due to the short duration of typical tests

conducted in most of the mentioned studies, accurate vehicle-bridge

interaction with road roughness modeling is generally necessary

to obtain significant results from the collected measurements. This

is one of the most critical limitations of heavy vehicles that also

affect the structural dynamics and generate nonstationary excitation,

which is typically incompliant with the underlying assumptions of

traditional SHM algorithms.
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Smartphones have several built-in sensors, generally including an

Inertial Measurement Unit (IMU) and a Global Positioning System

(GPS) module. Some authors proposed approaches for identifying

bridges through heterogeneous data fusion [165, 166]. Ozer et al.

[167] presented a method to keep track of the orientation changes of

the sensor by integrating different measurements collected through

gyroscope, accelerometer, and magnetometer.

Applications using data collected by smartphones are not limited

to drive-by monitoring of road bridges. For instance, Feng et al.

[155] proposed a smartphone-based crowdsensing network for rapid

and low-cost post-earthquake damage assessment of structures and

infrastructure at a city-scale, while Seraj et al. [168] and Chuang

et al. [169] developed methodologies to evaluate the state or road

pavements. Other recent applications fused the data collected by

other smart wearable devices to estimate crowd flow and load on

pedestrian bridges [170].

Bicycles and kick scooters, cathegorized as Human-Powered

Vehicle (HPV), has never been considered in the relevant litera-

ture for ISHM. The main advantages of these vehicles are their

low cost, high sustainability [171], and the environmental benefits

they provide in urban areas reducing traffic congestion [172]. Also,

light vehicles generally have low speed and negligible mass com-

pared to monitored structures. Thereby, HPVs do not affect the

structural dynamic behavior noticeably. Moreover, these vehicles

allow monitoring structures not accessible by cars and trucks, such

as footbridges. Nevertheless, noise effects introduced by the driver,

vehicle dynamics, and inaccurate smartphone built-in sensors may

affect the data recorded onboard HPVs. However, the availability of

crowdsourcing data could considerably improve the overall quality

of the obtained ISHM results, especially if all the users employ stan-

dard vehicle types, i.e., if the vehicle properties are known. Shared

micromobility vehicles, such as bike and scooter sharing services,

could be particularly useful to this purpose since sharing companies

generally provide very few vehicle types in a certain urban area.
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2.5 When vibration is not enough

Vibration-based SHM techniques provide global structural features

and, therefore, global damage indicators, which are affected by

several factors, such as variations in stiffness, mass, and boundary

conditions. Nowadays, only a minor subset of damage identification

techniques can localize or quantify the damage. These methods

generally employ dense and expensive sensor networks. However,

in the perspective of monitoring complex structures in a territo-

rial scale, e.g., in a urban environment, detailed information on

the identified structural anomalies is fundamental to target visual

inspections and operator interventions. Moreover, understanding

the causes of structural damage and correlating this information

for neighboring or similar structures in a given area could guide

higher-level maintenance or reparation intervention. In other words,

in an informed decision-making and smart maintenance perspective,

vibration data could not be enough.

As an alternative or support to sensor-based solutions, self-

sensing materials have recently gained enormous interest in different

engineering areas, especially in the civil field, due to the local nature –

and thus, spatially accurate – of the related features. These materials,

forming "smart" structural elements or integrating the ordinary

ones to enable the self-sensing capability, can provide information

on cracks, strain states, and the presence of chemical elements

that may accelerate material degradation. Therefore, fusing these

pieces of information with the damage-sensitive features retrieved

by vibration-based methods could help identify the cause of damage

and schedule targeted interventions.

Some studies were recently conducted on the sensitivity of

nanocomposite materials to chlorides [173] and moisture [174]. Be-

sides, several authors [175–178] investigated the influence of cracks

and micro-cracks on the electrical response of piezoresistive Engi-

neered Cementitious Composite (ECC) under direct tension, finding

that the variability of their mechanical properties is well reflected

in the electrical properties of the structural element. For instance,

Ranade et al. [178] found that crack patterns significantly affect

the composite electrical behaviors of ECCs obtained with different
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mixtures. Baoguo et al. [176] and Rana et al. [177] presented reviews

on intrinsic self-sensing materials employed for structural health

monitoring. The authors highlighted three general issues in the cur-

rent state of the art of self-sensing materials: the typically high cost

of conductive fillers, the challenge in applying smart material-based

monitoring to existing structures and large-scale components, and

the difficulty of identifying the damage location. A considerable

piece of research has been conducted in the last years to further

investigate these topics. D’Alessandro et al. [179] tested different fabri-

cation procedures for electrically conductive cement-based materials

to investigate the applicability for large-scale self-sensing structural

components. Gupta et al. [175] altered the cement-aggregate interface

using conductive nano-engineered coatings that reduce the amount

– and cost – of dispersed conductive additives, yielding low-cost

concrete specimens with electrical properties that varied in response

to physical damage. Moreover, in this last study, the authors em-

ployed Electrical Impedance Tomography (EIT) to interrogate the

self-sensing element and localize concentrated anomalies.

EIT is a well-established imaging technology broadly applied in

the medical field and recently employed for anomaly detection in

engineering problems [180]. This non-invasive technology uses elec-

trical excitations and measurements on the boundary of a conductive

body to estimate its electrical properties, which can be reconducted

to its mechanical characteristics. The first use of EIT for SHM was

presented by Hou et al. [181]: the authors fabricated a multifunctional

Carbon NanoTube (CNT) thin film to localize mechanical and chemi-

cal changes by mapping the conductivity distribution in the material.

EIT coupled with sensing skins was also employed by Loh et al.

[182] for strain monitoring and defect identification in aluminum

plates. The sensing material was fabricated in the mentioned study

through the layer-by-layer deposition of CNTpolymer thin films.

More recently, Loyola et al. [183] applied strain-sensitive CNT-based

thin films over Glass FiberReinforced Polymer (GFRP) composites

to identify subsurface damage.

In most RC and steel structures, the damage is generally related

to superficial cracking. However, cracked elements are typically

inaccessible and hardly inspectable. In this case, the application of
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smart coatings and thin films on structural components has proven

as a valid technique to convert regular structural elements into smart

components. Hallaji et al. [184] employed EIT for crack detection

in RC beams using a conductive silver coating. Gupta et al. [185]

designed a patterned nanocomposite sensing mesh to identify strain

in different directions employing EIT. The presented device was

effectively employed to localize a cracked region at the base of a

reinforced concrete column.

Due to the numerical issues related to the resolution of the

inverse EIT problem, which involves the reconstruction of the dense

conductivity distribution of the interrogated body from sparse

voltage measurements taken on its boundary, most studies employ

regularization-based approaches [173, 184, 186, 187]. Although the

application of these approaches is generally robust to small variations

of the interrogation setup, conductivity images reconstructed using

traditional algorithms typically have a low resolution that hardly

allows estimating the position and extension of the cracked region.

Very recently, Machine Learning (ML))-based techniques have

been applied to solve the strongly nonlinear inverse EIT problem in

several application fields. Lin et al. [188] compared two approaches,

consisting of an end-to-end Artificial Neural Network (ANN) and

a supervised descent method that employs an ANN to calculate

the partial results of a traditional iterative procedure. The end-

to-end ANN approach was faster and generally provided more

accurate results; however, the hybrid procedure showed more robust

generalization capability when dealing with different setups. Chen et

al. [189] used a Convolutional Neural Network (CNN) to reconstruct

the absolute conductivity distribution in the interrogated body

from voltage measurements. The authors also employed group

sparsity regularization to identify different conductivity levels. Other

applications employed ML algorithms to improve the resolution

of conductivity distributions obtained using traditional algorithms

[190, 191].

One of the main challenges of using supervised machine learning

tools is constructing a realistic training dataset suitable for real appli-

cations of the trained neural network. However, it is difficult to find
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a literature procedure to verify that synthetic data is representative

of real measurements.
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The Modal Assurance Criterion (MAC) is one of the most used indi-

cators to check the similarity between two different mode shapes.

It was largely employed for identification purposes, in order to

compare the results obtained through different techniques [192], to

guide the stabilization of stochastic methods [193], and to merge

signal components related to the same mode, as in the Enhanced

Frequency Domain Decomposition (EFDD) [194]. While in the first

examples it was applied to identified mode shapes, in the last case,

it was employed to compare the Operating Deflection Shapes (ODS)

associated with consecutive frequency values to identify resonant

peaks in the frequency spectrum of the structural response. Since

EFDD is an identification method in the frequency domain, it does

not allow the identification of non-time-varying systems. However,

the concept of ODS comparison and clustering is extended in this

study taking into account the time dependence of modal features,

giving rise to the Modal Assurance Distribution (MAD). This TFR

of the structural response allows decoupling modal contributions

and identifying instantaneous modal parameters that can be em-
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ployed for real-time damage identification. This chapter presents the

theoretical framework of MAD after explaining what is meant by

"instantaneous ODS". Then, an identification algorithm and related

variants are proposed based on distributed computing to identify

the parameters of time-varying and nonlinear structures subject to

non-stationary excitation.

3.1 Instantaneous operating deflection
shapes

The displacement response D(I, C) of a linear structure with dis-

tributed mass and elasticity at time C and location I, excited by a

generic forcing function, can be represented in general as [195]:

D (I, C) =
∞∑
9=1

) 9 (I) @ 9(C) (3.1)

with ) 9 (I) the continuous 9-th mode shape and @ 9(C) a function of

time with narrow (in general, depending on damping) frequency

band, the center of which is the damped frequency $3,9 .

Considering a structure with slowly varying features (i.e., with

masses and stiffness which are assumable as piece-wise constant),

the discrete signal recorded at a given position 8 by means of a

uni-axial accelerometric sensor can be modeled as

G8[C] =
∞∑
9=1

)(C)
8 , 9
¥@ 9[C] + E8[C] (3.2)

where )(C)
8 , 9

is the piece-wise constant element of the 9-th mode shape,

¥@ 9 [C] is the double derivative in time of @ 9 [C], and E8[C] represents a

white noise function relevant to the 8-th sensor. Applying a band-

pass filter with impulse response 1:[�] to the recorded signal G8[C],
the filtered structural response can be computed as

(G8 ∗ 1:) [C] =
∞∑
9=1

)(C)
8 , 9

(
¥@ 9 ∗ 1:

)
[C] + (E8 ∗ 1:) [C] (3.3)
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because of the linearity of the convolution operator (here indicated

as ∗). It is highlighted that, in this thesis, the tap index of the filter

impulse responses is indicated as �, to differentiate it from the time

variable C of the signal.

Since @ 9[C] has a narrow band in the frequency domain, the terms

of summation which give a result with non-negligible amplitude are

only those with $3,9 close to the frequency band of 1:[�]. In other

words, considering a noise threshold given by the amplitude of

E8 ,
(
¥@ 9 ∗ 1:

)
[C] is higher than this threshold only if & 9 ($) �: ($) >

+8($) for some value of $, where& 9($), �:($), and+8($)denote the

Fourier transforms of ¥@ 9[C], 1:[�], and E8[C] respectively. Indicating

with @: [C] the time function with central frequency $3,: included

within the cutoff frequency values of 1:[�] and neglecting the

contributions of neighboring modes, the filtered response can be

rewritten as

G8 ,: [C] � )(C)
8 ,:

(
¥@: ∗ 1:

)
[C] + E8,:[C] (3.4)

with G8 ,: [C] = (G8 ∗ 1:) [C] and E8 ,: [C] = (E8 ∗ 1:) [C]. Moreover, con-

sidering the signal GA [C] collected at a reference instrumented loca-

tion A, the instantaneous ratio between G8 ,: [C] and GA,: [C], obtained

as indicated in Equation (3.4) through the same filter 1:[�], is

G8 ,:[C]
GA,:[C]

�
)(C)
8 ,:

(
¥@: ∗ 1:

)
[C] + E8 ,:[C]

)(C)
A,:

(
¥@: ∗ 1:

)
[C] + EA,:[C]

(3.5)

If the filtered vibration mode is sufficiently excited, the noise terms

become negligible, and an estimate of the 8-th element of the instan-

taneous mode shape can be calculated as

)8 ,: [C] � �(C)
:

G8 ,: [C]
GA,: [C]

(3.6)

with �(C)
:

= )(C)
A,:

representing an instantaneous normalization factor.

Considering a multivariate signal consisting of the accelerations

collected at different sensor locations, the instantaneous mode shapes

can be obtained by normalizing all the estimated values with respect

to the same location.



36 3 Filtering vibration

Considering a filter with impulse response 1 :̄[�] such that none

of the natural frequencies are included between its cutoff frequencies,

all the terms in the summation of Equation (3.3) are close to zero

and may thus be neglected, with the filtered signal becoming

G8 ,:̄ [C] � E8,:̄[C] (3.7)

and consisting of a filtered noise component. Therefore, the ratio

between G8 ,:̄ [C] and GA,:̄ [C] continuously varies over time without

reflecting the structural behavior.

ODSs have been traditionally defined as the deflection of a

structure at a particular frequency of excitation [58]. Information

related to both the forcing input and the resonant structural compo-

nents is generally fused into ODSs, while mode shapes are inherent

properties of the structure. However, it can be assumed that near

to the resonance peak of the frequency response spectrum, ODSs

are dominated by structural modes. In modal identification, ODSs

evaluated at resonant frequencies are, therefore, assumed as fair

approximations of the mode shapes. In this thesis, this difference is

highlighted using the symbols > and 5 to indicate ODSs and mode

shapes, respectively.

Wavelets and filter banks

A filter bank is an array of bandpass filters that separates the

input signal into multiple components, each one carrying a single

frequency sub-band of the original signal [196].

There are different ways to build bandpass filters. Wavelet

transform is a widely used instrument in the field of signal

processing, as an alternative to the Fourier transform, especially

when dealing with non-stationary signals, since it can capture

time and frequency information [197–201].

One of the most used versions of WT is the "non-redundant"

Discrete Wavelet Transform (DWT), which entails the recursive

application of a basic filter bank, consisting of a low-pass and

a high-pass filter [202]. For each subsequent transformation

level, only the approximations (obtained from low-pass filtering)
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are further filtered. Although this transform is characterized

by a low computational effort, it does not possess the time-

invariance property and is unsuitable for real-time processing

of non-stationary signals [203]. Another widely used version of

Wavelet Transform is the Wavelet Packet Transform (WPT), in

which both the details and the approximations are decomposed

at each level. If the WPT coefficients are not decimated after each

filter bank application, the transform is known as Stationary

Wavelet Packet Transform (SWPT). In this version, the analyzed

signal is transformed into a series of components characterized

by a narrow frequency band, each with the same number of

samples of the original signal. Given the redundancy, SWPT is

characterized by the shift-invariance property, which makes it

ideal for estimating dynamic parameters in real time [204].

The recursive implementation of the basic wavelet filter banks

can also be represented as an equivalent filter bank with a number

of arrays equal to 2
=
, where = is the number of iterations in the

recursive process, i.e., the transform level.

Wavelet filter banks can be built both to decompose (analysis

filters) and reconstruct (synthesis filters) the signal [20]. In order

to build such filters, three fundamental parameters have to be

determined: the type of function, the order of the associated filter,

and the transform level. The first parameter consists of the choice

of the function by which the basis of transformation is generated

[20]. The second parameter is related to the number of vanishing

moments: the higher the number of vanishing moments of the

wavelet function, the more the associated wavelet filter is close to

an ideal one (with an increase of the support size, i.e., filter length)

[205]. The third parameter, as already mentioned, specifies how

many times the transform is performed.

In the field of structural health monitoring, several authors

use Daubechies [205, 206], Symlet [207], and Meyer [208] functions,

selecting the wavelets and their orders to be effective with the

implemented algorithms. In Figure 3.1, six different choices of

decomposition parameters are compared as an example (the

decomposition level is fixed to 4 for each graph). In particular,
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the diagrams in the first column show the comparison between

the Fejér-Korovkin function of order 14 (fk14) and the Daubechies
function of order 7 (db7), which have the same filter length. The

gray area represents the filter overlap, corresponding to unde-

sired frequency bands included in the designed bandpass filters.

The larger this area, the higher is the eventuality of obtaining

multi-component responses as an output of the decomposition

procedure (i.e., representing more than one modal response). As

reported in [209, 210], filter length being equal, the Fejér-Korovkin
filter is the closest to an ideal sinc (i.e., cardinal sine) bandpass

filter. It can also be noted from Figure 3.1 that, even doubling the

filter length (see Appendix B for more details on the filter length),

Daubechies and Symlet functions (db14 and sym14) are still char-

acterized by higher error when compared to the Fejér-Korovkin
function.

Once the decomposition filter bank is built, a convolution

of the signal for each generated filter has to be carried out to

perform the transform. At the last level (=) of the transform, 2
=

series of coefficients are generated by the WPT (or SWPT). The

higher the transform level, the narrower is the frequency content

for each wavelet component. Given a signal with a sampling

frequency �B , each outcome of the WPT has a principal frequency

range of �B/2=+1
. Moreover, the higher the order of the wavelet

function, the more condensed is the energy in the frequency

domain.

The energy computed from the output of the transform can be

represented on a time-component plane, the first dependent on

the time sample of the input signal and the second represented

by the array index : of the filter bank. This representation

is known as scalogram [211]. It is also called Time-Frequency

Representation, considering implicitly a conversion from the

index : to the central frequency of the related bandpass filter.

It is also possible to reconstruct the original signal from

the set of wavelet coefficients by performing the sum of con-

volutions computed between each wavelet component and the

corresponding synthesis filter [20].
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Figure 3.1: Wavelet decomposition filter banks in the frequency domain (decomposition level 4)

3.2 Modal assurance distribution

In the original formulation, the MAC is defined as a normalized

scalar product of two vectors >0 and >1 representing two complex

mode shapes or ODS:

"��0,1 =

��>)
0>
∗
1

��2(
>)
0>
∗
0

) (
>)
1
>∗
1

) (3.8)

where >∗ and >)
represent the complex conjugate and the transpose

of >, respectively. In this study, the concept of modal assurance is

applied to instantaneous estimates of the ODSs, calculated using

narrow-frequency components of the signals collected at different

locations, obtained by means of the WPT, as schematized in Figure

3.2. Considering a complete decomposition tree, in a recursive

implementation, wavelet packet coefficients 3
(?+1)
8 ,2:
[C] and 3

(?+1)
8,2:+1

[C]
can be obtained by decomposing the coefficients 3

(?)
:

at the level ?



40 3 Filtering vibration

Figure 3.2: Procedure to

generate the modal assur-

ance distribution
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using the Mallat algorithm [211] as follows:

3
(?+1)
8 ,2:
[C] = 3

(?)
:
∗ ℎ̄[2C] (3.9a)

3
(?+1)
8 ,2:+1

[C] = 3
(?)
:
∗ 6̄[2C] (3.9b)

where : = 0, . . . , 2? indicates the subband of the obtained co-

efficients, ∗ denotes the convolution operator, and ℎ [�] = ℎ̄[−�]
and 6 [�] = 6̄[−�] are the impulse responses of the low-pass and

high-pass filters associated with the selected wavelet function, re-

spectively. Considering the discrete signal G8[C] collected at location

8, the root of the tree 3
(0)
0
[C] can be assumed coincident with G8[C] if

the sampling frequency of the collected signal is sufficiently high,

committing however a "wavelet crime" [212]. It should be noted that

the wavelet decomposition can also be implemented as a filtering

procedure using a filter bank the elements of which are 2
=

equivalent

filters that produce the coefficients of Equations (3.9a) and (3.9b) at

the final transformation level, say = [20]. It should be noted that, at

a given transform level, a higher sampling frequency determines

filters with wider passband range. It is therefore essential, in the case

of high sampling frequencies, to select transforms with higher level

to obtain a good frequency discretization of the signal. However, the

maximum selectable level depends on the length of the signal and

on the filter order. In particular, it is equal to the integer number
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=<0G ≤ log
2
(#/# 5 ), where # and # 5 are the length of the signal

and the selected order of the wavelet filter, respectively.

The terms of vector >:[C], representing the real normalized

instantaneous ODSs associated with a given subband : of the level

= can thus be computed through the ratio

!8,:[C] =
3
(=)
8,:
[C]

3
(=)
A,:
[C]

(3.10)

with 3
(=)
8 ,:
[C] denoting the C-th sample of the wavelet component

related to the subband : obtained by decomposing the signal col-

lected at the location 8, and A indicating a reference location. Using

these instantaneous estimates, the MAD is defined as the matrix

M = [m[0],m[1], . . . ,m[)]] ∈ ℝ(2=−1×))
consisting of the m[C] vec-

tors, related to time instants C, containing the elements

<:[C] =
��>T

:
[C]>:+1[C]

��2(
>T

:
[C]>:[C]

) (
>T

:+1
[C]>:+1[C]

) (3.11)

with : = 1, . . . , 2
= − 1 and ) denoting the length of 3

(?)
8 ,:

. Each

element of M is between 0 and 1 and represents the instantaneous

similarity of ODSs related to neighboring components : and : + 1.

The ability to represent the time-varying modal features of the

analyzed signal is due to the fact that damped modes have val-

ues in the frequency spectrum which are spread around the peak

represented by the damped frequency. The spreading is generally

dependent on both damping and natural frequency of the selected

mode. If a sufficiently high decomposition level = is selected to

analyze the response of a damped structure, the part of spectrum

related to each mode is divided into a set of narrow-frequency

band components. Each of these components is however part of

the same mode and, therefore, have similar ODSs (calculated by

considering the same components of signals collected at different

instrumented locations). This fact leads to high MAD values in the

regions of the time-component plane where subbands relevant to

the same mode are present. On the other hand, the signal filtered

through cutoff frequencies selected far from the damped frequency
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values consists of a filtered noise component, as reported in Equation

(3.7), thus not characterized by physically meaning features. These

components, instead of generating persistently high MAD values in

the time-component plane, produce spurious peaks due to random

similarities between the "shapes" of filtered noise components.

Readability improvement

As mentioned, far from natural frequencies, high MAD values

may be generated by random similarities between neighboring

filtered noise components. This phenomenon may compromise

the readability of the distribution and prevent a correct applica-

tion of further procedures for the extraction of modal responses,

e.g., ridge extraction. In order to reduce this risk, two techniques

are proposed herein to improve the readability of MAD.

The first involves the selection of a forgetting factor 
, used

to compute the C-th element of a weighted distribution that also

takes into account the previous estimates. In particular, each

element of the weighted distribution <̄: [C] can be computed as

<: [C] = (1 − 
)<: [C] + 
<: [C − 1] (3.12)

The higher is 
 and the more the distribution appears smooth in

the time direction, resulting however in a slower updating and a

lower sensitivity to sudden variations. This method is particularly

effective to remove noise-generated random similarities, which

are generally characterized by sharp peaks with short duration.

The second criterion consists of a noise-assisted approach

which, similar to the concept used in the EEMD, involves the

computation of the final MAD as the mean of an ensemble

of ! matrices, each consisting of the MAD evaluated on the

multivariate signal plus an uncorrelated finite-amplitude white

noise matrix. Operating this way, only persistently high values

over the ensemble of trials will form the high-similarity areas

of the final MAD, canceling out spurious peaks due to noise

components which are different for each trial. The ensemble
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MAD is computed as

<̃: [C] =
1

!

!∑
�=1

<
(�)
:
[C] (3.13)

where <
(�)
:
[C] is the MAD value obtained using the �-th noise-

added trial x [C] + v�[C], with x[C] = [G1[C], G2[C], . . . , GA[C]]T be-

ing the collected signal and v�[C] = [E�,1[C], E�,2[C], . . . , E�,A[C]]T

is a vector of uncorrelated white noise sequences. In order to

prevent the added noise from covering the signal parts with low

amplitude, the sequences E�,: [C] can be chosen as non-stationary,

having an amplitude dependent on the analyzed signal

E�,: [C] = � BC3 {G: [C − �, C + �]} B�,:[C] (3.14)

with BC3 {G: [C − �, C + �]} denoting the standard deviation of G:

in the interval from C−� to C+�, B�,:[C] is a sequence of zero-mean

white noise with standard deviation 1, and �, � are user-defined

parameters that control the amplitude and adaptivity of the

added noise, respectively. Considering the wavelet filters as ideal

bandpass filters, if � is higher than the standard deviation of the

recording noise and the ensemble is formed by a high number

of trials, the mean of MAD values in noise-only areas can be

estimated as 1/A, where A is the number of sensors. Indeed,

the expected value of the normalized dot product between two

vectors a, b ∈ ℝ#
, the elements of which are random variables

independently distributed in a given interval, is

�

[
|ab|2

|a|2 |b|2

]
=

1

#
(3.15)

Since wavelet filters with limited order cannot be considered as

ideal bandpass filters, the filtered noise components cannot be

assumed as independent. Especially for high transform levels,

the expectation of MAC tends, in fact, to a value higher than 1/A.
This value becomes the minimum of MAD, canceling out the

effects of recording noise.
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3.3 Modal identification of time-varying
systems

The MAD can be used as a TFR for visualizing the distribution

of modal features through the time-component plane (from now

on, referred to as time-frequency plane). Moreover, it can also be

exploited for separating modal responses. Indeed, it is possible to

define a set of adaptive bandpass filters with cutoff frequencies

defined by low-valued MAD areas, as explained in the following.

In this section, watershed segmentation and MAC-based cluster

analysis are used to automatize the recognition of different modal

contributions in the MAD, which is interpreted as a grey-scale

image obtained by assigning the color white to 1 and black to

0 values (and different shades of gray in between). A mask Z ∈
ℝ(2

=−1×))
is created to select the MAD values above a user-defined

threshold �. Specifically, the elements of Z ∈ ℝ(2=−1×))
, �: [C], are

zeros where <:[C] < � and ones where <:[C] ≥ �. Opening and

filling morphological operations are applied to Z ∈ ℝ(2
=−1×))

to

remove spurious white areas and black regions generated by noise.

Then, the mask is applied to M, generating M̂ = Z •M, with •
denoting the point-wise multiplication.

A Gaussian filter with low standard deviation is then applied to

the masked matrix to further smoothen the distribution. The local

maxima can thus be identified. Finally, the watershed transform is

applied to segment the masked distribution into different areas, each

containing a single identified maximum, which are then converted

into different matrices Z0 ∈ ℝ(2
=−1×))

, each with the same size as M̂,

consisting of ones in the identified region and zeros elsewhere.

For each identified area, the 0-th signal (localized both in fre-

quency and time) can be extracted by means of a reconstruction

matrix R0 ∈ ℝ(2
=×))

, the elements of which are obtained as

�0,: [C] =
{

1

0

8 5 �0,: [C] = 1

∨
�0,:−1 [C] = 1

otherwise

(3.16)

where �0,: [C] are the elements of Z0 . The partial multivariate signal

component w0[C] extracted by R0 can thus be computed as the
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inverse Inverse Wavelet Packet Transform (IWPT) applied to the

masked wavelet coefficients A
(=)
8 ,:
[C] = 3

(=)
8 ,:
[C]�0,:[C]. By means of

the Mallat algorithm [211], the coefficients A
(?)
8 ,:
[C] at level ? can be

calculated recursively as

A
(?)
8 ,:
[C] = Ǎ

(
?+1

)
8 ,2:

∗ ℎ [C] + Ǎ
(
?+1

)
8 ,2:+1

∗ 6 [C] (3.17)

where Ǎ[C] indicates the sequence obtained by inserting a zero

between each sample of A[C]. Therefore, F8 ,0 [C] = A
(0)
8 ,0
[C] represents

the 8-th element of w0[C] (i.e., referring to the 8-th sensor location).

After reconstructing the partial components, each of them can

be associated with a vibration mode by performing a MAC-based

clustering procedure. The average mode shape of the 0-th partial

component can be computed as

>0 =
1

B

B∑
C=1

w0[C]
F1,0[C]

(3.18)

with B denoting the number of non-zero time samples in F1,0[C].
Then, the clustering can be performed with the following rule:

>0 ,>1 ∈ �; ⇔ "��0,1 ≥ 1 − � (3.19)

where �; represents the ;-th cluster (related to the ;-th identified

mode), "��0,1 is the modal assurance between the shapes )0 and

)1 , obtained using two partial components F0 and F1 , respectively,

while � is a user-defined sensitivity parameter. The complete de-

coupled modal responses can thus be obtained by merging (i.e.,
summing up) all the partial components classified within the same

cluster. Moreover, instantaneous modal parameters can be identified

from the extracted mono-component responses using, for example,

the HT or the TEO, as it will be shown later. It should be noted that,

while modal amplitudes obtained at different instrumented locations

need to be combined to obtain mode shapes, natural frequencies

can be identified using a single recording channel. The responses

extracted in locations far from the nodes of the mode shapes should

be used to retrieve instantaneous frequencies in order to limit the

influence of noise.



46 3 Filtering vibration

Parameter selection and residual analysis

The selection of different values for � and � may lead to different

decompositions. In particular, � is responsible for signal segmen-

tation: the higher this threshold, the smaller the masked areas,

which could be eroded during the morphological operations,

reducing however the noise included in the reconstructed partial

components. On the other hand, � concerns the final clustering

procedure: high values of this parameter lead to more clusters,

which could nevertheless belong to the same mode if slight

variations affect the mode shapes over time (e.g., due to ongoing

damage).

A method for verifying the proper selection of the first param-

eter consists of the residual analysis. The residual of the DAMA

can be obtained as

�[C] = x[C] −
∑
0

w0[C] (3.20)

The variance of this sequence should be similar to the variance

of the recording noise, therefore, low compared to the variance

of the original signal. It is worth noting that, even by applying

the noise-assisted method, the signal is not affected by added

noise since it is only used to select the masking matrix, which is

then applied to the decomposed original signal.

A criterion for selecting the optimal value of � in offline

implementations is applying the DAMA with multiple thresholds,

and selecting the parameter after observing the curve of residual

variance as a function of �. As the threshold increases, the

variance of the residual should increase steeply for low and high

values of �, presenting a lower slope in the central part. The

first interval with a high slope is due to the overcoming of the

recording noise, while the second part represents the inclusion

of significant signal components into residuals. Therefore, the

optimal value of � should be selected in the part contained

between these two high-slope intervals, for example immediately

after the first one or where the slope of the curve is minimum.

The � parameter should be selected in order to obtain a small
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number of clusters that generate mono-component decoupled

responses, i.e., containing information related to a single modal

response. A Principal Component Analysis (PCA) can thus be

performed on the modal responses extracted at different sensor

locations to evaluate the variance explained by each Principal

Component (PC). In order to be mono-component, the percentage

of variance explained by the first PC should be much higher

than the variance explained by the others [213]. High variance

explained in the other principal directions may denote multi-

component responses or high noise in the recordings. The first

involves errors in the estimation of modal parameters for all

sensor locations, except for those near to a node of the mode

shape of the disturbing mode. On the other hand, if only a subset

of recordings has a low SNR (due for example to the deployment

of sensors close to nodes of the mode shapes), only the responses

extracted at those locations will provide noisy parameters. If

multi-component responses are identified, the analysis should

be repeated upon increasing the � parameter.

It is worth underlining that the Decomposition Algorithm based

on Modal Assurance (DAMA) proposed in this section is equivalent

to a band-variable filter bank the parameters of which are signal-

adaptive and estimated upon the MAD. This generalized filter bank

with a variable number of components and cutoff frequencies enables

the automatic extraction of modal responses even at the occurrence

of strong variations in the dynamic behavior of the monitored system

and in presence of vanishing components. Some practical examples

of using the MAD and the DAMA will be illustrated in the following

sections, considering numerical and real case studies.

Modal identification of a linear time-varying beam

The first case study is a numerical model of a simply-supported

RC beam with a rectangular section (40 cm wide and 85 cm high)

and a length of 10 m. The simulated instrumentation consists of

four uni-axial accelerometers deployed in the vertical direction,

as represented in Figure 3.3. Damping with a ratio of 0.02 was

selected for each mode to solve the equation of motion and obtain
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the structural response through the Newmark method. In order to

simulate localized time-varying damage, a segment of the structure

is modeled with varying Young modulus, as reported in Figure 3.4.

In particular, the damage is modeled as slowly increasing up to

1400 s, when an instantaneous retrofit is simulated.

The acceleration dataset consists of a multivariate signal of 2000 s,

obtained by collecting acceleration at the instrumented locations

shown in Figure 3.3 with a sampling frequency of 250 Hz. The input

excitation used to compute the structural response is a synthetic

acceleration obtained by adding a white noise sequence with a stan-

dard deviation of 1 m/s2
to a harmonic component with amplitude

0.3 m/s2
and frequency of 50 Hz, which simulates a narrow-band

disturbance, as reported in Figure 3.5. The exciting input was ap-

plied to 11 nodes, equally spaced of 1 m, in the vertical direction.

Before using the signals, each collected acceleration sequence was

corrupted by introducing a zero-mean white noise component with

a standard deviation of 10% with respect to that of the original

response, to simulate instumentation noise.

Figure 3.6 plots the power spectrum of the signal collected at

sensor location S3 computed through the STFT. The narrow-band

disturbance generates a high-amplitude component that intersects

the modal responses in the time-frequency plane. Using most tradi-

tional structural identification procedures, this persistent peak in

Figure 3.3: Scheme of the

simply-supported beam
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the frequency spectrum could be interpreted as a modal component.

Moreover, it could induce mode-mixing issues related to crossing

modes if processed using the HHT.

The MAD was calculated using the Fejér-Korovkin 22 wavelet

function with a decomposition level 8 and represented in Figure

3.7a. In this case, the decomposition bank consists of 256 filters with

a passband range of 0.49 Hz. It is possible to observe that regions

in the time-frequency plane with high values (in white) are present

along the entire distribution, following the trend of damage and

also reflecting the abrupt variation that occurs at 1400 s. However,

the disturbance component is completely overlooked, resulting in

low MAD values around 50 Hz, since the ODSs associated with

neighboring subbands are different.

Due to the random similarities in noise-generated ODSs, there is

a considerable number of spurious peaks which could undermine
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the application of DAMA or any other ridge extraction procedure. To

smoothen the distribution before further analyses, a forgetting factor

of 0.9 is adopted (see Equation (3.12)), which leaves the frequency

resolution unchanged but removes abrupt variations on the time

axis, introducing a slight delay in the updating of the equivalent

band-variable filters (Figure 3.7b). Afterward, a mask is applied to

the distribution selecting the areas with MAD value higher than

� = 0.50. In (Figure 3.8), the variance of residual is reported in

logarithmic scale as a function of �. It is possible to notice that the

first interval with a high slope is for � values between 0.10-0.30,

while other steep increments are observable around 0.70 and 0.85.

The optimal value was chosen between these two intervals, where

the slope of the average curve is minimum.

In order to apply the watershed segmentation, a Gaussian filter

with standard deviation 1 is used before extracting the local max-

ima and obtaining the areas reported in Figure 3.7c. MAC-based

clustering with sensitivity � = 0.05 is then applied to associate the

components obtained by reconstructing the partial signals related to

each area to a different vibration mode. In this way, the areas shown

in Figure 3.7d are obtained. In this experiment, a total number of 6

vibration modes is identified, one of which consisting of the orange

area located around 1400 s, which should be a part of the fourth

mode. The missing association with the appropriate cluster is due

to the substantial change in the mode shape of mode 4 caused by

the highly damaged state at the time interval close to 1400 s. In the

clustering process, the mode shape of that region is recognized as

considerably different from that of mode 4.

Figure 3.9 shows the frequency spectrum of the original signal

collected at S4 compared with that of the sum of identified modal

contributions at the same location and with the spectrum of the

DAMA residual (computed using Equation (3.20)). It is possible

to observe that the spectrum of the residual is very similar to that

of the input (Figure 3.5), i.e., the residual is almost white, except

for the narrowband disturbance at 50 Hz. On the other hand, the

spectrum of the reconstructed signal approximates well the spectrum

of the original structural response, confirming the fact that all the

significant information is extracted through the DAMA.
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The instantaneous frequencies identified by applying the HT to

the decoupled modal responses extracted by means of the DAMA

to the signal collected in location S4 are reported in Figure 3.10,

superimposed to the theoretical values and to the disturbance

component. A median filter with a window size of 1000 samples
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Figure 3.10: Theoretical

(solid lines) and esti-

mated (dots) instanta-

neous natural frequencies

of the numerical model

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Time [s]

0

Fr
eq

ue
nc

y 
[H

z]

Mode 1
Mode 2
Mode 3
Mode 4
Mode 5
Unknown
Disturbance

20

40

60

80

100

120

was applied to the time sequence of identified frequencies before

plotting, in order to improve the readability of the figure.

The estimated values for the first two modes are almost coincident

with the theoretical curves. The third natural frequency is well-

identified except for the time interval in which the disturbance

intersects the natural frequency curve. On the other hand, the fourth

frequency is not influenced by the disturbance, presenting however

a slight underestimation for higher frequencies. The fifth mode

is vanishing, since it is only visible in the interval between 700 s

and 1400 s due to the selected sampling frequency. However, a

good estimation for the instantaneous frequency values is achieved,

without leading to mode-mixing issues.

The EMD and its multivariate extension, the MEMD, were con-

sidered to compare the obtained results with well-known literature

methods for adaptive signal decomposition. In particular, the EMD

was applied to the time history collected at location S4 (see Figure

3.3), while the MEMD was used to decompose the multivariate signal

into four sets of IMFs (one for each sensor location). The instanta-

neous frequencies obtained by applying the HT on the IMFs related

to location S4 obtained by means of traditional and multivariate

EMD are reported in Figure 3.11. Here, the same median filter used

to obtain the identified values reported in Figure 3.10 is employed.

It is possible to notice that the IMFs extracted by EMD are saturated

with noise, showing scattered frequencies with a slightly variable
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Figure 3.11: Instan-

taneous frequencies

estimated through the

EMD and its multivariate

variant

mean trend, which are however not able to follow the theoretical

curves. On the other hand, MEMD shows to be less sensitive to noise,

exhibiting however strong mode-mixing issues. It is indeed clearly

noticeable that the instantaneous frequencies of all IMFs jump to

the upper mode at 700 s and back to the lower at 1400 s.

The modal amplitudes obtained as simple ratios between the

modal responses extracted through the DAMA are reported in

Figure 3.12 (the same median filter used for natural frequencies was

employed on instantaneous ratios). Here, the normalization was

performed selecting the modal responses of sensor S1 as a reference.

In this plot, the set of modal amplitudes in a given time instant

is an instantaneous mode shape. It is possible to notice that the

third mode, which already showed slightly corrupted frequency

values close to the intersection with the narrowband disturbance

(Figure 3.10), is also influenced in the mode shape, which exhibits

an oscillation across the theoretical curve around 700 s. Moreover,

the fifth mode shows reliable estimates only around 800 s, with an

underestimation of the ratio elsewhere. A slight underestimation is

also noticeable for mode 4. However, the general and constant shift

in the values identified at locations S2, S3, and S4 suggests that the

error is only related to the curve of sensor S1. Therefore, a different

normalization would shown more accurate results. On the other

hand, modes 1 and 2 are identified almost perfectly, regardless of

the noise and narrowband disturbance.
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Figure 3.12: Theoreti-

cal (solid lines) and es-

timated (dots) instan-

taneous amplitudes of

mode shapes (normal-

ized over the amplitude

of S1)
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Modal identification of a time-varying RC building

The second case study is a slice of a full-scale 7-story RC building

with cantilever structural walls acting as a lateral force resisting

system (Figure 3.13). The structure is 20 m high and consists of two

perpendicular walls in elevation (i.e., web and flange walls) with

a horizontal RC slab at each level. In addition, an auxiliary post-

tensioned column provides torsional stability and 4 gravity columns

support the slabs, as schematized in Figure 3.13a. The test structure

was tested on a shaking table at the University of California, San
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Diego, through the George E. Brown Jr. Network for Earthquake

Engineering Simulation program [214–216] under seismic and white

noise base-impressed excitation, the second with 0.03 g Root Mean

Square (RMS) amplitude, as well as under ambient vibration (i.e.,
with the shaking table locked).

The forced vibration tests were designed to progressively damage

the building through the simulation of four historical earthquakes

of increasing intensity recorded in Southern California. Before and

after each test with seismic excitation, the building was subjected

to intervals of white noise excitation and ambient vibration. In this

application, only the acceleration collected during the "inspection"

intervals after the application of each seismic motion were used. In

particular, for the "undamaged" (U) and for each damaged condition

(A, B, C, and D), 480 s of white noise excitation and 120 s of ambient

vibration data are considered and merged together in a single

set of data with a total duration of 3000 s (as shown in Figure 3.14).

Therefore, the first 600 s of the data set refer to the reference condition

U, after which the first seismic excitation (EQ1) of low intensity

was applied, consisting of the longitudinal component recorded

from the Van Nuys station during the San Fernando earthquake of

1971. Afterward, another inspection interval of 600 s is considered,

referring to the damaged condition A. The third interval (B) is

collected after applying the first medium-intensity seismic excitation

EQ2, selected as the transverse component recorded during the San
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Figure 3.13: Scheme of the RC building: plan view (a) and vertical section (b)
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Fernando earthquake from the Van Nuys station in 1971. Interval C

was recorded after the second medium-intensity earthquake (EQ3),

taken as the longitudinal component of the Northridge earthquake

recorded from the Woodland Hills Oxnard Boulevard station in 1994.

The last inspection interval (D) was recorded after a high-intensity

360° excitation (EQ4) recorded from the Sylmar Olive View Med

during the Northridge earthquake of 1994.

The structure was instrumented with a dense network of sensors

with a total of 45 channels: 29 longitudinal (three on each floor slab,

one on the web wall at mid-height of each level, and one on the

pedestal base), 14 transversal (2 on each floor slab), and 2 vertical (at

the base, on the pedestal). The original data is sampled at 240 Hz.

More details about the geometry and the instrumentation used can

be found in [214–216]. Moreover, the data is freely available online

at [217].

In [215], the results of modal identification obtained by means

of different input-output and output-only methods are reported.

Here, considering the white noise base excitation, in the undamaged

condition, three lateral modes are identified with natural frequencies

1.72 Hz, 11.88 Hz, and 24.64 Hz, respectively. One torsional and

one coupled lateral-torsional modes are also identified by some

techniques and only during particular damage conditions. Moreover,

the MAC values calculated between mode shapes identified through

different techniques for these two modes are rather low, showing

high level of uncertainties. As shown in [215], indeed, the first lateral

mode has a strongly predominant contribution to the total response,

making the identification of the torsional mode difficult as it may be

covered by the former. In this work, 4 acceleration channels at the

locations indicated in Figure 3.13 were used (i.e., only longitudinal,

at the levels 1, 3, 5, and 7), resampled at 100 Hz, with the intent of

identifying the first lateral modes (in the east-west direction) using

limited instrumentation.

The Fejér-Korovkin 22 wavelet function with a level 8 was em-

ployed for decomposition, generating 256 components with the

same frequency range, as the previous case study. In this section,

the instantaneous natural frequencies and modal responses are

estimated by using the output of DAMA and compared with the
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RC building

results reported in [215] regarding the EFDD method, assumed as

reference values.

In Figure 3.15a, the MAD obtained from the acceleration record-

ings collected at the four instrumented locations is reported. Here, a

forgetting factor 0.9 is used to improve the readability. It is possible

to notice that high-valued areas are widespread throughout the

distribution, making it difficult to recognize different modal re-

sponses. Thereby, the noise-assisted variant presented in Section 3.2

considering 100 trials in the ensemble of noise-added signals (Figure

3.15b) was applied. In this analysis, a set of signal-adaptive Gaussian

white noise sequences with standard deviation factor � = 0.3 was

used, with reference to Equation (3.14). Figure 3.16 shows the resid-

ual variance as a function of the threshold � both for the original

formulation (dashed lines) and for the noise-assisted variant (solid

lines). It is observable that the first interval characterized by a high

slope is more prominent in the result of the noise-assisted procedure,

related to the fact that the lower value of MAD for noise-only areas

has shifted around 0.25 (according to Equation (3.15)). It is also

noticeable that in the averaged MAD (Figure 3.15b), the areas associ-

ated with the first three modal responses are more easily detectable

than in the original distribution. Moreover, especially for conditions

U and A, high values of the MAD are obtained also for the signal

parts recorded under low-amplitude ambient vibration, allowing

the extraction of modal responses even when the signal amplitude

is very low since MAD is not based on the energy distribution in the

time-frequency plane, in contrast with traditional TFRs. Concerning

the ambient vibration parts of the signal recorded in conditions B, C,

and D, narrower white areas are detected. Nevertheless, extracting

high-valued areas in the MAD allows identifying modal responses
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regardless of the signal amplitude, making the method suitable also

for non-stationary recordings.

The red areas shown in Figure 3.15c represent the result of

watershed segmentation applied to the masked MAD distribution,

obtained by setting a threshold � = 0.5. After applying the MAC-

based clustering with � = 0.05 on the partial reconstructed signals,

the red areas are partitioned into different modes. The resulting

decomposition, consisting of three separate modal contributions) is

represented in Figure 3.15d.

After extracting the decoupled modal responses, the instanta-

neous frequencies are calculated using the modal contributions

obtained at sensor S4 by means of the HT. In Figure 3.17, identified

instantaneous values are superimposed on the reference estimates

Figure 3.15: Smoothed

MAD (a), noise-assisted

MAD (b), watershed seg-

mentation (c), and DAMA

application (d)
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obtained in [215] through EFDD, represented as constant frequencies

over each condition. Due to system non-linearities, a significant shift

in natural frequency is observable within the same condition when

passing from a higher-amplitude white noise excitation to ambient

vibration. While the instantaneous frequency of mode 1 is almost

perfectly reconstructed, also tracking the shifts due to non-linearity,

a slightly higher variability in identified values is notable for the

higher modes. This fact may be due to the presence of a combined

lateral-torsional mode in the frequency band between 7 Hz and

12 Hz [215], the shape of which is classified as "similar" to the shapes

of the identified translational modes since only four acceleration

channels are considered in this study to evaluate the MAC. This

phenomenon can be observed for mode 2 in condition B, where two

neighboring high-valued areas in the MAD are assigned to the same

mode during the clustering process (Figure 3.15d), although they

are well separated in the time-frequency distribution.

The uncertainties related to the second mode are also visible in

the instantaneous estimate of the relevant mode shape (Figure 3.18),

which is generally more dispersed with respect to those of modes

1 and 3. On the right side of Figure 3.18, the average mode shapes

evaluated over each damage condition are reported, with the color

changing from green to red as the damage increases. For modes

1 and 3, an increment in the displacement of the first level with

damage is noticeable. As regards mode 2, the parameters estimated

by sensor 1 are unstable, indicating that the instantaneous ratio

between the modal responses obtained by sensor 4 and sensor 1

varies considerably over time. This phenomenon could be due both to

noisy measurements and multicomponent responses. To confirm this

fact, a PCA is conducted considering the modal responses extracted
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Figure 3.17: Theoretical

(solid lines) and esti-

mated (dots) instanta-

neous natural frequencies

of the RC building
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at all sensor locations in each damage scenario, the results of which

are reported in Figure 3.19. In the lower-right part of each diagram,

the variance explained by each PC is reported for each mode. High

values in the first PC and low values for the other PCs denote

mono-component and low-noise responses, meaning that MAD

areas are properly clustered into separate modal responses. On the

other hand, low values in the first PC represent noisy recordings or

signals containing the information of two or more modal responses.

Observing the parameters reported in Figure 3.19, the large variance

obtained for modes 1 and 3 in the first PC denotes a good accuracy

in the extraction of the first modal response. However, considering

the values calculated for mode 2, especially for conditions U, A,

and B, the extracted modal response seems to be multi-component.

This property also appears in the diagram of component scores

(represented as points in Figure 3.19), which are sparse in the plane

of the first two principal components for mode 2, especially for

condition B.

However, observing the principal directions, represented as lines

starting from the origin in Figure 3.19, it is possible to notice that their

projections on the PC 1 axis (interpretable as an estimate of mode

shapes) are generally stable, i.e., they change slightly as damage

increases, except for the direction of sensor S1 for mode 2 which

varies considerably in each diagram.
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neous amplitudes (nor-

malized over the ampli-

tude of S4) of the iden-

tified mode shapes (left)

and average values for

each damage scenario
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Since a high variability in both instantaneous amplitude and

principal direction is observed in conditions U, A, and B only for

mode 2 at sensor location S1, the estimation error seems to be

related to a low SNR in the frequency band of the second mode

for the recording collected at the first level. In condition D, since

considerable damage was experienced [215], the amplitude of the

second mode at the location of sensor S1 increased, thus reducing the

issues due to the low SNR. According to [215], the higher estimation

error of the second lateral mode may also be due to the proximity

of its natural frequency to the frequency of the oil column of the

vibration table.

It is also observable that the instantaneous estimates of mode

shapes are corrupted when passing from a damage scenario to

another, as well as when the input excitation changes. This fact may

be due to two phenomena. The first regards the delay in the masking
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Figure 3.19: Principal di-

rections and scores (rep-

resented as the first

two PCs) of modal re-

sponses extracted from

white noise recordings

for each condition; the

numbers on the lower-

right part of each diagram

represent the percentage

of variance explained by

each PC
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Mode 3: 0.9788 0.0129 0.0047 0.0036
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matrix due to the forgetting factor adopted to improve the MAD

readability. The reconstructed signal is indeed obtained through

a bandpass filter which is adapted to the signal with a delay. The

second reason is related to the assumption of slowly varying features,

which is violated when a sudden change in the dynamics occurs,

i.e., when passing through recordings collected during different

inspection intervals.

For comparison, the instantaneous natural frequencies were also

extracted by using the HT on the IMFs obtained through the EMD,

EEMD, and MEMD. In Figure 3.20, the estimated frequencies are

represented superimposed to the reference values. In particular the

EMD and EEMD were applied to the signal collected by sensor S4,
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Figure 3.20: Instanta-

neous frequencies esti-

mated through EMD and

its variants

while the MEMD was applied by considered the four channels used

in the previous analyses. It is possible to observe that, although

the same median filter used to obtain the values reported in Figure

3.17 is employed, the identified values are considerably noisier in

this case. Moreover, a high number of IMFs is generally extracted,

not reflecting the real modal responses and showing mode mixing

problems.

Damage identification of an RC bridge

The third case study is the S101 Bridge. The data used in this thesis

were collected during an experimental campaign conducted by the

Vienna Consulting Engineers (VCE) and the University of Tokyo in

2008 [218–220]. In this campaign, acceleration time histories under

ambient vibration and different structural health conditions.

The case study, represented in Figure 3.21 and Figure 3.22, is

a three-span post-tensioned concrete bridge built in the 1960s and

demolished in 2008 due to the need for an additional lane underneath.

The bridge slab was continuous, supported by two pairs of piers.

The central and side spans were respectively 32 m and 12 m long.

The cross section was 7.2 m wide, formed of beams with variable
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Figure 3.21: View of the

S101 Bridge [218]

height along the longitudinal direction, equal to 0.9 m in the middle

of the central span, up to 1.7 m at the piers.

Before the demolition, a three-day experimental campaign was

carried out, aimed at identifying the structural damage under pro-

gressive artificially induced damage scenarios, consisting of north-

western pier settlements and loss of post-tension forces. In this

application, only the conditions referred to the pier settlement are

considered (summarized in Figure 3.23 and Table 3.1). After un-

loading the pier by means of a hydraulic jack, it was cut at the base

(scenario A) and a slice 10 cm thick was extracted (Figure 3.24). Then,

the jack was lowered in three progressive steps, each by 1 cm (sce-

narios B, C, and D). At the end of the third step the final measured

settlement was 2.7 cm and the column was completely suspended.

Afterward, some compensating plates were inserted at the bottom

of the pier (scenario E).

South North

600 600 640 320 320 320 320 320 320 320 320 300 300 600

1 2 3 4 5 6 7 8 9 10 11 12 13 14

15

1200 12003200

Damaged pier

Sensor no:

Sensor

Figure 3.22: Configuration of the case study and sensor layout [218]; dimensions are indicated in centimeters
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Scenario U Scenario A Scenario EScenarios B, C, D

Supporting
steel column

Hydraulic
jack

Cut Lowering Plates

Figure 3.23: Schematic of progressively induced damage scenarios

The acceleration structural response was collected by using a

dense BRIMOS [220] sensor grid consisting of 15 three-directional

FBA-23 force balance accelerometers from Kinemetrics, with a sen-

sitivity of 2.5 V/g under full-scale range of 1 g, and a resolution of

1 × 10
−6

g. Raw signals were logged by means of a 16-bit ADC. The

sensors were arranged on the structure as shown in Figure 3.22: 14

of them were positioned along the west side and 1 along the east

side in order to also identify torsional modes. The original data were

collected with a sampling frequency of 500 Hz. More details about

the geometry and the instrumentation used can be found in [218,

221]. In Table 3.2 the results of identification procedures shown in

[218] for the scenarios from U to E are reported. The percentage

variation of natural frequencies with respect to the undamaged

condition have also been computed and noted in Table 3.3. The

Damage scenario Description

U Undamaged structure

A Cut of the north-western column

B First step of lowering 1 cm

C Second step of lowering 2 cm

D Third step of lowering

E Insertion of compensating plates

Table 3.1: Summary of

progressively induced

damage scenarios

Figure 3.24: Photo-

graphic documentation

of the pier settlement

process [218]



66 3 Filtering vibration

reference frequencies shown in Table 3.2 were calculated by the

VCE using the BRIMOS software, which extracts the peaks of an

averaged normalized power spectral density (ANPSD) obtained

from windowed data [221].

In this application, five data sequences of 330 s collected in

different damage conditions are analyzed, organized as a single

sequence with a total duration of 1650 s. The first part of this signal

refers to the condition U, collected before lowering the column, and

is used to evaluate the parameters of the baseline configuration. The

following conditions are A, B, C, and D.

Each signal was downsampled at 50 Hz and the Fejér-Korovkin 22
wavelet function was used to obtain the preliminary TFR for each

recording channel, with a decomposition level 8, thus generating

256 subbands. The MAD was then evaluated considering all the

15 recording channels. A noise-assisted procedure was applied

considering an ensemble of 10 trials with noise components having a

standard deviation of 30% with respect to that of the collected signal

(see Section 3.2). A masking procedure is then performed, selecting

the elements with MAD values higher than � = 0.5. In Figure

3.25, all the elements selected are represented in a time-frequency

plane.

The ODSs associated with each point of the distribution were

Table 3.2: Natural frequencies identified during the experimental campaign conducted in 2008, reported in [218]

Mode

Damage scenario

U A B C D E

1 4.05 Hz 3.95 Hz 3.96 Hz 3.92 Hz 3.62 Hz 3.98 Hz

2 6.30 Hz 6.08 Hz 6.01 Hz 5.88 Hz 5.39 Hz 5.91 Hz

3 9.69 Hz 9.44 Hz 9.44 Hz 9.28 Hz 8.22 Hz 9.34 Hz

4 13.29 Hz 12.15 Hz 11.65 Hz 10.79 Hz 10.06 Hz 10.92 Hz

Table 3.3: Percentage

variation of natural fre-

quencies with respect to

the undamaged condi-

tion (with reference to

data reported in Table

3.2)

Mode

Damage scenario

A B C D E

1 -2.47% -2.22% -3.21% -10.62% -1.73%

2 -3.49% -4.60% -6.67% -14.44% -6.19%

3 -2.58% -2.58% -4.23% -15.17% -3.61%

4 -8.58% -12.34% -18.81% -24.30% -17.83%
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instantaneous ODSs

then normalized to have a unitary norm and the Debsity-Based

Spatial Clustering of Applications with Noise (DBSCAN) algorithm

[222] was applied for clustering, in order to group together all the

the ODSs having Euclidean distance less than 0.1 between each

other. Moreover, only clusters containing more than 10 points were

considered for further analyses. Colors in Figure 3.25 represent

different clusters, while grey points are classified as outliers since

they do not comply with the aforementioned conditions.

A separate signal component for each cluster is therefore recon-

structed through the application of the IWPT to the related subset

of wavelet coefficients. The Hilbert transform is thus employed to

evaluate the instantaneous frequency of each component extracted.

In Figure 3.26, the identified values are reported and compared with

the results of the HHT, evaluated for the signal collected by sensor

6, employing the EEMD algorithm for the extraction of the IMFs.

Here, a considerable advantage in using the procedure proposed is

noticeable since a clear mode mixing problem is observable in the

results of the HHT. According to the results reported in [218], the

MAD-based algorithm is able to correctly identify the frequencies

of the first two modes (first flexural and first torsional, i.e., violet

and blue lines in Figure 3.26, respectively) for all the damage con-

ditions. On the other hand, the instantaneous frequencies of IMFs

are strongly variable (gray lines in Figure 3.26), and a single IMF is

extracted in the frequency range between 4 Hz and 6 Hz, showing

clear mode mixing issues.

The instantaneous amplitudes of the modal components recon-

structed using the IWPT with the coefficients contained in the first

two clusters are then evaluated Figure 3.27. A baseline configura-
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Figure 3.26: Instanta-

neous frequencies identi-

fied using the procedure

proposed and the EEMD
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neous modal amplitudes

of the first two clusters
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tion (U) and four inspection instants (A, B, C, and D) are selected,

one within each damage scenario, to simulate a periodic evalu-

ation of the structural integrity. These instants are chosen when

modal parameters are available for both the identified modes, to

conduct a flexibility-based procedure employing the first two modal

responses.
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Flexibility-based damage identification

The instantaneous modal parameter identified through the

DAMA can be employed for real-time damage identification.

In particular, the variation in curvature or displacement of the

Uniform Load Line (ULL), i.e., the deflection shape under a

unitary load vector) can be employed as a damage index. An

instantaneous approximation of the structural flexibility matrix

can be evaluated as

F[C] =
?∑
9=1

1

$2

9

5 9[C]5)
9 [C] (3.21)

where 5 9[C] is the instantaneous mode shape evaluated using

the set of components associated with the 9-th cluster (or mode).

It is highlighted that, in order to obtain a realistic estimate of the

flexibility matrix, mass-normalized modal vectors should be used

in Equation (3.21). However, assuming a uniform distribution

of masses along with the axis of the structure, a proportional

approximation of the flexibility matrix can be calculated [223].

Assuming that a unit load vector p is applied to the structure,

the corresponding instantaneous displacement vector (i.e., de-

pending on the instantaneous flexibility) can be calculated as

u[C] = F[C]p (3.22)

The vector u[C], or its variation with respect to a baseline

condition evaluated at the beginning of the monitoring process,

can be monitored in time, generating an instantaneous damage

index for each instrumented location. Considerable deviations

from the baseline condition noticed for one or more instrumented

locations may be indicative of ongoing damage.

Visualization of modal features

Although "automatization" is an attractive trend in recent SHM

applications, human intervention is still essential both in the

preliminary phase, when the monitoring process is designed

and the operative algorithms are selected, and during decision
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making.

Each point of the MAD is associated with an instantaneous

vector 5:[C]which can be interpreted as an instantaneous ODS.

This information can be exploited to obtain an intuitive color

distribution in the time-frequency plane representative of the

different modal responses forming the multivariate signal. A

criterion to obtain such a representation may involve the selec-

tion of three recording channels, say the A-th, 6-th, and 1-th,

and associating the amplitude of the wavelet coefficients 38 ,:[C],
8 = A, 6, 1, to color layers red, green, and blue to generate a

color figure. Another approach, more suitable for densely instru-

mented structures, involves the sum of amplitudes at multiple

locations in the determination of a single color layer.

For the baseline and each inspection instant, the instantaneous

modal amplitudes were used to build an instantaneous mode shape

vector which was then employed to estimate a proportional flexibility

matrix. The ULL is therefore evaluated and the percentage variation

in the displacement calculated for each instrumented location with

respect to the baseline condition U is reported in Figure 3.28.

An outlier in the displacement of sensor 11 (close to the settled

pier) is already noticeable from condition A, where the column was

cut. However, other values with comparable percentage variation

are registered around sensors 1, 2, and 14 during the first inspection.

As the lowering of the column increases (i.e., in conditions B, C,

and D), the damage index becomes sharper around the settled

pier, demonstrating to be particularly effective in localizing the

anomaly.

Figure 3.28: Damage lo-

calization in the inspec-

tion configurations
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As a final analysis of this application, a comparison between

the novel TFR proposed in this section and different spectrograms

is shown in Figure 3.29. Let D8 ∈ ℝ2
=×)

be the matrix of wavelet

coefficients obtained through the WPT at each instrumented location

8. Due to the downsampling process of the WPT, ) = )/2= , with

) representing the total length of the original signal. The vector

>:[C] ∈ ℝA×1
formed of the elements of the TFR �8 corresponding

to the time instant C and frequency subband : for all the recording

locations 8 = 1, . . . , A can be interpreted as an instantaneous ODS of

the analyzed structure.

The wavelet coefficients calculated through the WPT of each

recording channel were masked through the approach presented in

Section 3.3, thus generating 15 matrices D8 .

A color distribution is then generated, as shown in Figure 3.29a.

Three color layers, corresponding to red, green, and blue, were

defined as R = |D15 |, G =
��∑14

8=8
D8

��
, and B =

��∑7

8=1
D8

��
, respectively,

and then normalized to generate a standard RGB model.

On the other hand, the spectrograms reported in Figure 3.29b-d

are generated using the data collected by sensors 3, 6, and 15, indi-

vidually. It can be noted that each spectrogram provides different

information based on the location where data is collected. Moreover,

the energy distributions of Figure 3.29b-d do not enable the users

to recognize different modal responses or notice if the dynamic

behavior is changing. Conversely, the color coding of the multivari-

ate dataset shown in Figure 3.29a allows discriminating between

different modal responses since they are characterized by different

colors. Moreover, an evolution of damage can be noticed around

660 s when the white area between 10 Hz and 15 Hz becomes green,

highlighting the reduction of energy in this frequency range for

the signal collected by sensor 15, which is confirmed in the related

spectrogram.
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Figure 3.29: Visualiza-

tion of natural frequen-

cies in the time-frequency

plain: masked wavelet co-

efficients (a), spectrogram

of sensor 3 (b), spectro-

gram of sensor 6 (c), spec-

trogram of sensor 15 (d)
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3.4 Edge computing in wireless sensor
networks

An identification procedure is suitable for Wireless Smart Sensor

Network (WSSN)-based systems if the algorithm is designed in order

to allow each node to perform part of the processing operations

independently, without knowing the information collected by the

other nodes. Moreover, in order to perform the identification proce-

dure in near real time, onboard operations must be simple and fast

since the computational footprint of smart nodes is usually low.

In this context, a two-step identification method is proposed in

this section, schematized in Figure 3.30. This algorithm is a variant
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of the DAMA suitable for distributed sensing. The first step (i.e.,
initialization step) of the algorithm consists of the construction of

a Clustered Filter Bank (CFB), based on an initial dataset collected

and processed in a centralized fashion. The second step involves

distributed computing: each smart node, based on the information

obtained in the first step, processes the collected vibration response

individually, in real time. In particular, the microcontrollers em-

bedded in each smart sensing node can collect, downsample, and

transfer modal responses to the central monitoring station. Here,

the data can be analyzed as responses of Single Degree Of Freedom

(SDOF) structures through a TEO-based procedure and fused to

obtain instantaneous modal parameters. Due to the filtering process,

the noise sensitivity of the TEO is mitigated.

Step 1 is only applied at the beginning of the process. Then, Step

2 is performed recursively during the monitoring phase. However,

since the modal parameters may vary consistently if damage or

strong variations in environmental conditions occur, periodically

updating the CFB could be necessary.

As aforementioned, in order to implement the =-level wavelet

transform of a signal, the input can be convoluted with the equiva-

lent filters obtained by cascading the lowpass and highpass filters

associated with the selected wavelet, up to level =. The transform
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is therefore conducted through the application of a filter bank of

equivalent filters [20].

In this section, in order to decompose a signal G[C] into a finite

set of components H:[C] characterized by different frequency bands,

the linear combination of which lead to the original signal, SWPT

decomposition and reconstruction equivalent filters are applied in

series, exploiting the perfect reconstruction property of wavelet filter

banks [20]. Since the convolution operator (∗) is linear and time-

invariant [224], a sequence of filtering operations can be performed

in any order without changing the output result. It follows that

the convolution of the original signal with a decomposition filter

and then with a reconstruction filter gives the same output of a

convolution between the original signal and the convolution of

decomposition and reconstruction filters. Consider the signal and

filters as discrete sequences in the time domain

H:[C] = ((G ∗ 3:) ∗ A:) [C] = (G ∗ 1:)[C] (3.23)

where H:[C] is the :-th component of the original signal G[C], 3:[�]
and A:[�] are respectively the impulse responses of the :-th equiva-

lent decomposition and reconstruction filters corresponding to the

selected level of the transform, and 1:[�] is the impulse response of

the resulting filter obtained by the convolution between 3:[�] and

A:[�].

Since convolution is distributive over addition, a filtered version

of the signal including < frequency bands of the SWPT (e.g., from

the :1-th to :<-th), can be computed as

H:1 ,:< [C] =
1

<

:<∑
:=:1

(G ∗ 1:) [C] =
1

<

(
G ∗ 1:1 ,:<

)
[C] (3.24)

where 1(:1 , :<)[�] is a filter obtained by summing the filters 1:[�]
associated with the considered< components. Assuming the system

as linear, time-invariant and causal, the C-th sample of the filtered

signal can be represented as

H:1 ,:< [C] =
1

<

#−1∑
ℎ=0

G[C − �]1:1 ,:< [�] (3.25)
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where # − 1 is the filter order, # = 2# − 1 is the length of 1:[�],
and # is the number of taps (i.e., the length) of 3:[�] and A:[�].
Therefore, the filtering procedure can be carried out in real time by

using only a subset of past samples of the input signal. However,

this process introduces a delay in the output signal, which depends

on the choice of parameters used to build the filter bank.

If the frequency bands :1 , . . . , :< are properly selected, the

component H:1 ,:< [C] could represent one of the structural modal

contributions, which are linearly combined in the collected signal

G[C]. Step 1 of the procedure proposed in this section is indeed an

initialization step aimed at selecting the frequency range associated

with the different modal components.

Step 1: Initialization

In a pre-processing stage, each sensor collects an acceleration time

history (of user-defined duration) which is directly transmitted to

the central monitoring station. Here, the signal collected at each

node is decomposed using the SWPT, i.e., through the convolution

with a decomposition filter bank, generating 2
=

wavelet components

at the transform level =. Each component is related to a different

frequency band, the energy of which is represented by the amplitude

of the obtained wavelet coefficients.

Selecting a master sensor position (e.g., the first sensor), it is

possible to evaluate the operating deflection shapes by computing

the mean over time of ratios between the :-th wavelet components

of the master time history and other collected signals. In this way,

2
=

ODSs can be computed as

!8 ,: =
1

B

B∑
C=1

F8 ,:[C]
F1,:[C]

(3.26)

where !8 ,: is the 8-th element of the :-th ODS >: , F8,:[C] is the

C-th sample of the :-th wavelet component, computed on the signal

collected by the 8-th sensor, and B is the number of samples for each

signal (i.e., the length of the initialization signal window). For more

robust results, the average can also be performed after excluding

outliers. Using the concept of ODS similarity presented in Section
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3.2, the MAC for each couple of neighboring shapes can be evaluated

using Equation (3.11).

The process described above is similar to that of building a MAD.

However, in this case, the time information of the TFR is lost since,

instead of calculating the MAC between instantaneous ODSs, in

this case, the MAC is evaluated on average ODSs calculated over

a time interval of length B. Thereby, the output of this process is

a vector (instead of a matrix, as it happens for the MAD), with

values between 0 and 1 of size 2
= − 1, which represents the similarity

between consecutive average ODSs.

A clustering procedure is then performed by partitioning only

the consecutive bandpass filters 1:[�], the decomposition parts of

which (3:[�]) generate wavelet components with similar deflection

shapes (i.e., producing high MAC values).

The bandpass filters contained in each selected cluster can thus

be summed as shown in (3.24), in order to obtain equivalent filters,

following the rule:

1:1
, 1:2
∈ � 9 ⇔ "��:1 ,:2

≥ 1 − � (3.27)

where "��:1 ,:2
is the MAC calculated between the :1-th and :2-

th average ODSs, � 9 is a generic cluster, and � is a user-defined

threshold (with the same meaning as in Section 3.2). Furthermore,

an energy-based selection procedure can be performed to discard

the clusters the corresponding global energy � 9 of which is lower

than a chosen threshold Θ:

� 9 ∈ Γ⇔ � 9 ≥ Θ (3.28)

where Γ is the set of selected high-energy clusters. In this study, the

global energy associated with the 9-th cluster, which groups the

wavelet components from the :1-th to the :<-th, was computed as:

� 9 =
A∑
8=1

:<∑
:=:1

√
1

B

B∑
C=1

F2

8 ,:
[C] (3.29)

The set of equivalent filter obtained this way forms a CFB .

Therefore, the CFB consists of bandpass filters by which high-energy
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signal components associated with different deflection shapes (i.e.,
decoupled modal responses) can be extracted.

At the end of the initialization phase, the monitoring station

transmits the CFB to each node of the WSSN . At the node level,

the collected signal can be decomposed directly by calculating

the convolutions with the different arrays of the filter bank. It

should be noted that, after the construction of the CFB , small

variations in frequency and even important variation in mode shapes

can be registered since the decomposition is performed by using

larger band-pass filters with respect to those associated with single

wavelet components. This allows taking into account the changes

in modal parameters associated with environmental variations or

damage. On the other hand, because of relations (3.28) and (3.29),

a signal component must exhibit a persistently high energy in the

interval analyzed during Step 1 in order to imply the inclusion

of the corresponding frequency band in the final filter bank. For

this reason, high-energy peaks generated by transient features of

nonstationary exciting input are generally neglected. The quality

of extracted modal responses could also be further evaluated for

example by observing their probabilistic features (e.g., kurtosis [225])

in order to discard spurious modes generated by persistent harmonic

components in the excitation.

The total complexity of Step 1, as reported in detail in Chapter A,

is mainly due to the SWPT and is relatively high compared with that

of the rest of the algorithm. However, although low-cost systems

could take some seconds to perform the necessary initialization

procedures, Step 1 only takes place when particular conditions occur

and, once finished, gives way to Step 2 that consists of real-time

analysis.

Step 2: Real-time analysis

Once the initialization phase is completed, each node has the same

CFB which allows for the real-time decomposition of collected signals

into decoupled modal responses, independently from other nodes.

Therefore, in each node, the input signal is processed by convolution,

as shown in Equation (3.25), with each array of the CFB generated in
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Step 1. In particular, to calculate a new sample of the filtered signal

H[C], a window of new-coming data from G[C − # + 1] to G[C]with

the same length as the filter must be considered. After filtering, each

component could also be downsampled (up to the Nyquist rate),

in order to reduce the weight of data and easily transmit it to the

monitoring station.

After obtaining the decoupled modal responses, thay can be

analyzed as responses of SDOF structures to identify instantaneous

natural frequencies and modal amplitudes. A nonlinear energy

operator-based local method was used in this work, which allows

online computing. In particular, the Discrete-time Energy Separation

Algorithm (DESA)-1, which involves computing the TEO, was chosen.

In the case of discrete signal analysis, the TEO is defined as [226]:

Ψ
[
H[C]

]
= H2[C] − H[C − 1]H[C + 1] (3.30)

where H[C] is the C-th sample of a generic modal contribution.

Several methods were implemented for the extraction of frequency

and amplitude characteristics of non-stationary signals by using this

operator. In particular, in DESA -1 [227], the instantaneous digital

frequency Ω can be estimated as

Ω[C] ≈ arccos

(
1 − Ψ[I[C]] +Ψ[I[C + 1]]

4Ψ[H[C]]

)
(3.31)

where Ω is the digital frequency, $ = Ω�B is the circular natural

frequency, �B is the sampling frequency, and I[C] = H[C] − H[C − 1].
Since in this application the frequency is estimated online (i.e., as

new data is available), at the instant C, the values of H[C̄]with C̄ > C

must be unknown. For this reason, in (3.30) and (3.31), H[C + 2]must

be intended as the last available value obtained from the convolution.

In other words, an additional delay of 2 samples is introduced by

using this algorithm for the estimation of instantaneous frequencies.

The mathematical description of the total identification delay is

reported in Chapter A.

It is possible to extract an instantaneous trend of the natural

frequency from each modal response, through (3.31). It is possible

to consider the modal responses extracted at only one instrumented

location or, alternatively, to evaluate the multivariate instantaneous
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frequency as an amplitude-based weighted average of the instanta-

neous frequencies obtained in each location [34], in order to avoid

inaccurate estimates due to noisy recordings collected at the nodes

of mode shapes. Using the TEO, it is possible, indeed, to capture

also the instantaneous amplitude of the analyzed signal [227] as:

�[C] ≈
√√√√ Ψ[H[C]]

1 −
(
1 − Ψ[I[C]]+Ψ[I[C+1]]

4Ψ[H[C]]

)
2

(3.32)

However, the estimates of instantaneous frequency and amplitude

are highly sensitive to noise, as the algorithm uses only a few input

samples in the calculation. In order to mitigate the presence of

spurious spikes in identified frequencies, a median filter can be

applied on a window of the last � + 1 estimated values, obtaining

the denoised frequency Ω[C] as

Ω[C] = <43[Ω[C − �],Ω[C − � + 1], . . . ,Ω[C]] (3.33)

Moreover, an estimation of the 8-th element of the 9-th instan-

taneous mode shape ) 9[C] can be simply computed as the ratio

between the components H8 , 9[C] and HA, 9[C] obtained by the convolu-

tion of signals registered at different positions (i.e., G8[C] and GC[C],
with A denoting a reference location) with the same filter 1 9[�] (see

Equation (3.5)).

In this study, the identification of damping was not considered,

for which, to date, robust identification methods are still lacking [228].

Furthermore, damping is not yet clearly correlated with damage and

environmental conditions; therefore, further studies that go beyond

the purposes of this thesis need to be conducted.

As demonstrated in Chapter A, Step 2 implies a computational

burden in the order of $(#) per input sample onboard each node.

This makes it possible to obtain near-real-time estimates of in-

stantaneous modal parameters even using low-cost systems. Most

traditional identification techniques used in a decentralized fashion

for the identification of instantaneous modal parameters require a

higher computational burden and are often related to other disadvan-

tages. In particular, processing a signal window of length # through
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the STFT would imply a computational complexity in the order of

$(# log#) per sample, using the Fast Fourier Transform (FFT) [20].

Moreover, it would also be necessary to extract the instantaneous

trend of natural frequencies and mode shapes for each identified

mode through a further ridge-extraction procedure, thus increasing

the overall complexity. On the other hand, considering the HHT,

such as in the algorithm used by [87], which does not require any

ridge extraction, the computational burden can be considered as

proportional to that of the FFT [229], but the results obtained are

often affected by problems such as mode-mixing. Furthermore, in a

decentralized topology, the IMFs computed by analyzing the signals

collected in different instrumented locations may have different

frequencies (and then be associated with different vibration modes),

leading to a misleading identification of mode shapes.

Moreover, the computational cost of Step 2 for the monitoring

station is particularly low compared to other recent centralized algo-

rithms. For instance, considering the method based on Recursive

Canonical Correlation Analysis presented in [70], the most demand-

ing part related to the eigenspace update has a complexity in the

order of $(<3) per input sample, with < denoting the number of

eigenvectors of the block covariance matrix of structural responses,

which depends on the number of data channels and is generally

higher than the number of identified modes ? which governs the

computational complexity of the presented algorithm without con-

sidering any post-processing operations (see Chapter A). Similarly,

the Equivalent Adaptive Separation Algorithm (EASI) algorithm

used in [230] has a complexity in the order of $(@3)where @ is the

number of data channels [231]. Also, it should be noted that the

decentralized implementation of the proposed algorithm enables

a suitable downsampling of the data before transmission, which

makes it appropriate for wireless systems. On the other hand, the

algorithms presented in [70] and [230] require the data from all

sensors available in the monitoring station in order to update the

time-varying models.

It should also be noted that the method presented is designed for

the online identification of modal parameters, but it could also be

used for periodic inspections. In this case, after the initialization, the
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sensing nodes could be periodically switched on for collecting signal

in a given time interval, which is decomposed and downsampled

onboard each node, and then transmitted to the monitoring station.

In the case of damage diagnosis for civil structures, it is also

important to consider the long-term variability of identified param-

eters [232, 233]. The knowledge of their variation under different

environmental conditions allows the construction of a model that

may be used to limit the possibility of false alarms [234, 235]. This

may be done, for example, by correlating the variation of estimated

parameters with measured environmental conditions (such as tem-

perature and humidity) and anthropic sources (such as the intensity

of vehicular traffic) [236–238]. Besides, in order to restrain the

fluctuation of identified parameters due to continuously changing

operational phenomena (e.g., moving cars on a bridge), suitable

post-processing is necessary, e.g., using a wide window for median

filtering, as shown in Equation (3.33). In this case, the robustness of

the algorithm to operational uncertainties increases, as the latency

of resulting identified quantities, as shown in Chapter A.

Refreshing the CFB

A periodic refreshing procedure can be applied by updating the

filter bank at user-defined intervals or at the occurrence of particular

conditions (e.g., upon reaching a user-defined variance value in the

modal parameters estimation), as shown in Figure 3.31.

The updating procedure consists of a repetition of Step 1 at

determined time intervals, at the occurrence of situations in which

it may be convenient to update the filter bank (e.g., when the signal

amplitude is high, SNR increases and the effects of noise affect

the procedure less), or when significant changes are noticed in the

evaluated instantaneous frequencies. The updating procedure also

reduces the risk of carrying out an incorrect identification based on

a filter bank generated in the presence of narrow-band excitation.

If one of the conditions selected to start the updating procedure

arises, the sensing nodes collect and transmit a limited signal window

to the monitoring station, as it occurs during the initialization phase.

Then, the procedures illustrated in this section are repeated and the
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Figure 3.31: Workflow of the periodic CFB refreshing procedure

updated CBF is finally transmitted to each node, where real-time

analyses start again using the new filters until the next update. The

recursive clustering procedure to determine the updated filter bank

can be performed by taking into account not only the parameters

evaluated within the new signal window but also those computed

at previous steps, by performing a weighted average, as shown in

Figure 3.31. The updating criterion used in this application is the

following:

"��
;

:1 ,:2

=
"��0

:1 ,:2

2
;

+
;∑

�=1

"���
:1 ,:2

2
;−�+1

(3.34)

where "��0

:1 ,:2

is the value computed during the first initializa-

tion procedure and "���
:1 ,:2

are the values calculated during the

subsequent updates, up to the ;-th. At each iteration, the new part

gains the same weight of the whole set of previous values, the older

of which become negligible after a few updates.

If low-cost hardware with limited computational capacity is

employed, it may be necessary to interrupt the real-time analysis

during the filter updates, since clustering is an energy-consuming

centralized operation (see Chapter A). To limit this issue and optimize

resources, the CFB update procedure should be shortened as much

as possible. For this purpose, a limited number of instrumented
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locations can be selected as a reference and used to calculate the

parameters on which the cluster procedure is based. Therefore, the

MAC coefficients can be evaluated considering only the signals

collected at the selected reference locations. If only two reference

locations are considered, the average ratio between the filtered

components shown in Equation (3.26) can be directly employed as a

clustering variable. In this case, the condition (3.27) becomes

1:1
, 1:2
∈ C9 ⇔

1

B

B∑
C=1

(
FA1 ,:1

[C]
FA2 ,:1

[C] −
FA1 ,:2

[C]
FA2 ,:2

[C]

)
≤ � (3.35)

with A1 and A2 being the selected reference instrumented locations.

Using a small number of signals for clustering leads to a consistent

reduction in the computational burden of the updating procedure.

This can be seen in detail in Chapter A, since the value of A reported

in Table A.1 decreases accordingly. However, this simplified method

may lead to the construction of a less accurate filter bank, depending

on the choice of reference locations. In order to make the optimal

selection, the locations have to be chosen at the points where maxi-

mum amplitudes of first modal shapes occur, avoiding the nodes,

where the recorded accelerations are low and inaccurate.

Both for the original approach and for the simplified method,

the computational complexity of the identification procedure, as

well as the accuracy and delay of identified quantities, depend

on the choice of setup parameters, as shown in Chapter A. In

particular, the parameters concerning the wavelet transform (i.e., the

type of function, its order, and the transform level), the length of

post-processing window, the MAC threshold used for filter bank

construction, and its updating rate play a central role. The criterion

for choosing these parameters may however vary according to

the specific case study. For structures with quite distant vibration

modes (in terms of natural frequency) and low-noise recordings, it

is advisable to build a small filter bank in order to obtain modal

parameters with little delay; on the other hand, in the case of noisy

recordings and closely-spaced vibration modes, filter order and

transform level must be increased, also increasing the delay. In this

case, a more frequent filter update may also be necessary. Thus,

high transformation levels and wavelet orders lead to more precise

filtering, with the disadvantage of higher computational effort and
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long delays due to demanding convolution procedures. Regarding

the MAC threshold �, the selection of a low value generally leads

to filters with a wider band, which may result in the extraction

of modal responses with low SNR or multi-component signals (in

the case of consecutive modes with similar shapes). On the other

hand, if the decomposition level is high and the signal analyzed is

noisy or the window selected for the initialization phase is short,

a low threshold could help in merging components of the same

vibration mode, the shapes of which are slightly different due to

estimation errors. A large value of the threshold however leads to

narrow-band filters which must be frequently updated if estimated

modal parameters fluctuate either for physical reasons or estimation

uncertainties.

Damage identification of an RC bridge using wireless
sensors

In this section, a practical application of the CFB -based decompo-

sition is shown. The case study described in the third application

of Section 3.3 is considered, assuming a distributed computational

scheme. Specifically, the data was analyzed a posteriori, with the

complete data set available. However, the analysis is conducted

by considering only few samples at a time, simulating a real-time

monitoring process.

Only the data recorded in the vertical direction was used, down-

sampled at 100 Hz. In order to set up the two-step procedure, a 100 s

signal window for damage scenario U, recorded at each sensor posi-

tion, was used in the initialization phase (Step 1). These signals were

decomposed through a decomposition filter bank built by choosing

the 14-th order Fejér-Korovkin wavelet (fk14) and decomposition level

6.

Afterward, the operating deflection shapes associated with each

component and their MAC coefficients were computed as shown in

Section 3.4. Then, a clustering procedure was performed in order to

group the components characterized by high MAC value and similar

frequency contents. To this aim, a threshold � = 0.2 was chosen for
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MAC-based clustering, and only consecutive components compliant

with condition (3.27) were assigned to the same cluster.

Consequently, an energy-based selection procedure was applied

to the obtained clusters to select only the high-energy components.

In Figure 3.32, the bandpass filters associated with the MAC-based

clusters are represented in the frequency domain, together with

their RMS energy values (represented as circles). In this phase, being

interested in the identification of the first modes, only the frequency

range between 0 Hz and 15 Hz was analyzed. In order to select the

Θ parameter, in this application, the HPV energy of the signal in

all the frequency ranges related to the different arrays of the CFB

were calculated. Then, the final threshold Θ was considered as the

mean of these RMS energy values. Therefore, only the clusters with

energy higher than average (represented as a dashed line in Figure

3.32) were selected to form the final CFB , which is then transmitted

to the sensor nodes.

Different selections for the parameter � lead to different filters

in the CFB . In Figure 3.33, the filter banks obtained by selecting

different values of � are reported as rectangles with a variable width,

which represent the frequency range of each filter. As explained in

Section 3.4, higher values lead to narrow-band filters, which may

be unsuitable for noisy data. Moreover, although the criterion to

select Θ is the same described above, the RMS energy threshold for
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selecting high-energy components changes slightly for each case.

The gray rectangles represent filters with high-energy components

in the signal interval analyzed in Step 1. Specifically, the energy-

based selection process results in a larger number of high-energy

components for low values of �. In Figure 3.33, the pink lines

superimposed to the filter banks show how the equivalent filters of

the CFB are divided as the MAC threshold � increases.

Once completed the initialization phase, each node has the

same CFB that allows for real-time decomposition. In Step 2, a

signal obtained by merging 6 recordings related to different damage

scenarios was analyzed in order to simulate modal identification

under structural time-variant behavior. In particular, 15 acceleration

time histories (i.e., one for each instrumented location) of 1980 s

were generated by merging the 330 s recordings related to scenarios

U, A, B, C, D, and E, with reference to Table 3.1. Each signal was

decomposed individually, simulating the operations performed

onboard the sensor nodes (i.e., convolution with the CFB ).

While the decomposition is in progress, each sample obtained

by convolution (or a subset of them if downsampling is performed)

can be transmitted to the monitoring station, which carries out the

real-time modal identification. In this application, all the modal

responses were downsampled by a factor 3 (with a final sampling
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period of 0.03 s). Natural frequencies and mode shapes where then

estimated through the TEO, as shown in Section 3.4. In order to obtain

more accurate results, a median filter was applied using a window

of 300 samples (i.e., each sample of the resulting instantaneous

parameters was computed as the median of the last 300 instantaneous

values). Instantaneous frequencies, computed considering the signal

collected by sensor 9, are reported in Figure 3.34, where the results

obtained from the mere application of the two-step algorithm (blue

lines) are also compared with the reference values of Table 3.2 (cyan

dashed lines), with the natural frequencies obtained by performing a

Frequency Domain Decomposition (FDD) over each damage scenario

(orange dashed lines), and with the results obtained by periodically

updating the CFB in the proposed identification process. This last

case will be analyzed later in detail. In Figure 3.34, the frequency

plots are also superimposed to the spectrogram obtained by means

of the STFT, applied to the unfiltered signal collected in the same

instrumented location.

In Figure 3.34, the vertical black dashed lines represent the entry

into a different damage condition. In this figure, the identification

latency due to convolution, DESA -1 algorithm, and median filtering

is not represented. It can be computed as shown in Chapter A,

resulting respectively in 8.76 s, 0.06 s, and 4.50 s (i.e., 876 samples

under the original sampling frequency, and 152 samples after down-
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sampling by a factor 3), for a total of 13.32 s. This latency would

involve a uniform translation of the diagrams in Figure 3.34 to the

right.

In Figure 3.35, the identified mode shapes are represented over

time: the plotted mesh interpolates the values estimated by sensors

1-14, while the black line plotted on the time-amplitude plane repre-

sents the component relevant to sensor 15, deployed on the opposite

side of the deck.

Figure 3.36 shows the MAC coefficients computed by using the

mode shapes identified through the two-step method and those

reported in [218]. In particular, each MAC coefficient was computed

considering the mode shape identified by means of the algorithm

proposed, averaged over the entire duration of the considered

damage scenario, and the corresponding reference mode shape (i.e.,
related to the same mode and damage scenario) reported in [218].

The results show that the first mode was successfully identified

for all the damage scenarios both in terms of frequencies and mode

shapes, since the variation in frequencies is modest compared to the

baseline U (see Table 3.3). Concerning the second mode, the two-step

CFB decomposition is efficient for all the damage scenarios except

for condition D, in which the percentage variation of frequency

from the baseline is about 15%. The fourth mode is characterized

by frequency variations higher than 10% already for condition B

and, therefore, the identification results are poorly accurate for the

following scenarios.

While for the monitoring station Step 2 is much less demanding

than Step 1 in terms of computational complexity, considering also

that the monitoring station generally is a wired system with a

larger computing footprint, the computational cost of Step 2 is of

fundamental importance for sensing nodes. As shown in Chapter A,

the computational complexity of Step 2 for sensing nodes depends on

the number of filters (i.e., the number of modes identified) and their

length. In this application, considering 4 modes extracted by filters

of 1753 taps each (see Chapter A for more details), a total amount of

7012 multiply-accumulate operations is performed for decomposing

each new sample of data by convolution. In particular, the Signed

Long Multiply with Accumulate (SMLAL) instruction is considered,
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Figure 3.35: Mesh interpolation of the instantaneous mode shapes identified by the two-step method

Figure 3.36: MAC coeffi-

cients computed by us-

ing the averaged mode

shapes identified through

the two-step method and

those reported in [218]

which is more suitable for high-accuracy signal processing (e.g.,
when operating with 16-bit or 24-bit ADC data) [239]. Considering,

for example, the low-power X-scale PXA271processor (i.e., the same

implemented on the Imote2, an advanced platform largely used for

SHM purposes [74, 79, 94], working at 13 MHz, and assuming an
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average value of 4 cycles per instruction for the SMLAL [240, 241],

each new sample of data requires an execution time of about 2.15 ms

to be decomposed into four separate double-precision samples of

modal responses. The reason why an average value is selected for

the number of cycles is that it depends on the early termination

of registers. However, the selected value is precautionary, as it

is exceeded only in the event of an overflow [239–241]. It is also

possible to optimize the convolution procedure using the integrated

performance primitives [241], achieving even better performances.

Simulating the extraction of four modal responses from a signal of

2048 samples by means of the method proposed, about 57.442× 10
6

clock cycles are overall necessary, regardless of the nature of the

signal analyzed. The HHT is one of the most used methods for

the identification of instantaneous frequencies and amplitudes in

different fields of engineering. In particular, recent implementations

in the civil field were proposed [75], together with online variants

[229] which enable the real-time extraction of modal responses [86,

87]. Implementing onboard each node the empirical mode decom-

position, which is the first step of the HHT, in which the signal is

decomposed into IMFs, the computational cost would be strongly

related to the signal features [242] and could be different for each

node. Wang et al. [242] measured on average 22.528 × 10
6

clock

cycles per extracted IMF on an ElectroCardioGraphy (ECG) signal of

2048 samples processed through a Nios II processor and using the

stopping criterion proposed in [243]. However, a simulation of the

most time-consuming condition, analyzed in the same work, lead to

1.380 × 10
6

clock cycles per sifting iteration, which is more than 10

times higher than the initial test with the ECG signal. Considering

the computational complexity estimated by [229] in the worst case,

instead, the total number of cycles involved in the decomposition of

a 2048-sample sliding window with extra 256 samples overlap (in

both sides, for a total of 2560 samples) for the extraction of 11 IMFs

(assuming EMD as a dyadic filter bank) is 55.757 × 10
6
, which is

comparable with the effort of the presented algorithm. In this evalu-

ation, 10 sifting iterations were assumed per IMF; moreover, 3 clock

cycles were considered for simple multiplications, 1 for additions,

1 for comparisons, and 50 for divisions, which can generally take

between 20 and 100 cycles [240]. However, IMFs do not have pre-
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determined frequency values and it is difficult to discern between

physical and noise-generated components onboard the microcon-

troller, requiring the transmission of all identified IMFs with no

possibility for downsampling. This issue makes online implemen-

tations on WSSN s unfeasible. Comparing the method proposed

with another wavelet-based approach for online identification of

modal parameters presented in [244], the computational complexity

of the signal decomposition part is exactly the same since it involves

a filtering process through an adaptive wavelet filter bank. However,

the wavelet function selected in [244] is complex, increasing the

necessary number of cycles per operation, and the online recursive

least squares algorithm for the identification of modal parameters

is not suitable for onboard processing and filter updating since

it requires matrix multiplications at each collected data sample.

Moreover, centralized identification of modal parameters with in-

stantaneous feedback updating of the filter bank would involve high

wireless transmission rates, making the algorithm unsuitable for

implementation on WSSN s.

In order to mitigate the problems associated with a static defini-

tion of the CFB , the refreshing procedure presented in this section

was applied. Specifically, the identification process was performed

by considering the first CFB as the one already used in the pre-

vious analyses, followed by 5 updating steps (one every 330 s, at

the beginning of the signal segments related to different damage

conditions). For each step, a signal decomposition was carried out

by considering a time window of 30 s, and the matrix of MAC coef-

ficients was computed by using the operating deflection shapes of

each signal component. With the aim of speeding up the procedure,

the decomposition can be carried out by considering a reduced

frequency band: in this work, only the interval between 0 Hz and

15 Hz was considered. The MAC matrices related to each updating

step are reported in Figure 3.37 (first row). In order to avoid the

inaccurate estimation of modal parameters due to the inefficient

choice of the signal windows necessary to build the filter banks,

the average procedure described in Equation (3.34) was applied the

MAC matrices. For each step, the new filter bank is then evaluated

by using the related averaged MAC matrix, reported in the second

row of Figure 3.37 for each update.
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Figure 3.37: MAC matrices computed for each step (first row) and related average matrices used for updating the

CFB (second row)

It is observable that high values in the MAC matrices related to

the condition A are quite widespread (not only close to the diagonal),

but the matrices used to build the filter banks are less sensitive to this

fact due to the performed average procedure. In Figure 3.34, Figure

3.38, and Figure 3.39 the instantaneous modal parameters identified

using the refreshed CFB are shown, together with the related MAC

coefficients, computed by using the mode shapes reported in [220]

as references.

It is worth noting that, in Figure 3.34, considering the adaptive

procedure, the delay in estimated modal parameters seems to in-

crease when important variations in frequency occur and the filter

bank is updated. This is due to the fact that signal windows of 30 s

at the beginning of each damage scenario (i.e., the interval between

the black and green vertical dashed lines) are processed through the

filter bank of the previous scenario while a new window of data is

recorded to perform the updating procedure. The parameters iden-

tified in these intervals are generally characterized by higher error

with respect to the values identified after the updating. However, the

identification latency is the same as the two-step implementation.

Considering also filter updates, which nevertheless take place only

at the occurrence of specific conditions, the maximum latency in

the estimation of modal parameters through the updated filters

is 43.27 s in this application. Considering the frequency values re-

ported in Figure 3.34, it can be noted that, except for the fourth mode
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Figure 3.38: Mesh interpolation of the instantaneous mode shapes identified by the adaptive method

Figure 3.39: MAC coeffi-

cients computed by us-

ing the averaged mode

shapes identified through

the adaptive method and

those reported in [218]

in conditions U and A, the parameters estimated by the updated

CFB -based procedure approximate the reference ones even under

substantial variations, with a certain latency due to filter updating.

It is also possible to observe that the identified instantaneous natural

frequencies correspond to the ridges of the spectrogram obtained
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by means of the STFT, also reported in Figure 3.34.

Both instantaneous frequency estimates obtained through the

proposed method processed through a median filter with the same

window of 300 samples in order to make the plots more readable

since DESA -1 produces results very sensitive to noise. However,

in Figure 3.34, it can be observed that the adaptive method gener-

ally produces smoother trends. In fact, by applying the adaptive

procedure, although structural characteristics vary over time, each

filter is always centered on the maximum frequency peak of the

identified mode and, through the refreshing process, the noise is

minimized by eliminating the frequency components associated

with different ODSs. Conversely, if natural frequencies vary and the

filters are static, the noise components gradually gain in importance,

making identification results noisier. Considerable improvement

can be noticed observing the MAC coefficients of Figure 3.36 and

Figure 3.39, especially for damage scenario D. In particular, the first

three modes are characterized by MAC values higher than 0.93 for

all the damage scenarios, except D, which has a value of 0.85 for

the third mode. The fourth mode has gained an average accuracy

improvement of 0.21, mainly due to the MAC values related to

scenarios C and E.

As aforementioned, a simplified clustering method that does not

involve the calculation of the whole set of operating deflection shapes

can also be performed, especially when the length of filters and the

decomposition level are high, involving a high computational effort.

In a further analysis, considering the fk22 function (see Figure 3.1

for the frequency domain representation of the filter bank) and a

decomposition level 7, the ratios between the wavelet components

were directly considered as clustering variables. In particular, two

different cases were analyzed: the first involved sensor locations

4 and 6 as references, while the second is referred to locations 4

and 15. In Figure 3.40, the results of the clustering procedure for

the two mentioned cases is reported. Small circles represent the

signal ratios calculated between the components associated with

each bandpass filter recorded at the considered reference locations.

Specifically, filled circles refer to case 1, while empty circles refer

to case 2. Moreover, gray circles represent low-energy components,
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Figure 3.40: Simplified clustering procedure

while the black ones represent high-energy components. The high-

energy components were partitioned in clusters, represented by

larger circles (solid borders for case 1 and dashed for case 2), with a

radius proportional to the energy of each cluster.

As concerns the first case (reference sensors 4 and 6), it can be

noted that the first two modes are difficult to identify as different

clusters since the ratios between the filtered components are very

similar, especially for the undamaged condition. On the other hand,

as regards the second case (reference sensors 4 and 15), the first

modes can be clearly separated since the signal ratios have opposite

sign. Indeed, sensor 15 is arranged on the opposite side of the deck

with respect to sensor 4 and allows identifying torsional modes.

However, for the third and fourth modes, the signal ratios are poorly

accurate in this second case since sensor 15 is close to the nodes

of the higher mode shapes. It should be noted that the clustering

procedure can be also carried out by simultaneously observing both
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the considered cases. However, using the full MAC-based method,

the risk of incurring errors that could affect the evaluation of modal

parameters is minimized.

As an example of using the modal parameters identified in this

application, a flexibility-based damage identification procedure is

applied, using the displacement variation of the ULL [245] as a DSF

(similarly to Section 3.2. Here, the natural frequencies of the first

three modes, identified through the refreshed CBF-based algorithm,

were considered. Besides, only the instrumented locations from 1

to 14 (representing the behavior of the west side of the bridge deck)

were taken into account.

Knowing ? natural frequencies and modal vectors, it is possible to

estimate the flexibility matrix of the structure, as shown in Equation

(3.21). Since the mass matrix of the structure is unknown, the modal

matrix cannot be mass-normalized. However, if masses are equally

distributed along the structure, the mass matrix could be assumed

as diagonal, such that M = �I, where � is a constant value, equal

to the mass associated with each Degree Of Freedom (DOF) of

the structure, and I is the identity matrix. In this application, the

mass matrix was assumed as the identity matrix, since masses are

not significantly variable along the longitudinal axis of the bridge.

Therefore, a proportional flexibility matrix is employed to calculate

the ULL .

In Figure 3.41a, the instantaneous ULL is represented over time,

while Figure 3.41b shows the average lines obtained for each damage

scenario. Since the flexibility matrix is not mass-normalized, the

displacements are not representative of real physical quantities.

In order to perform the damage identification, the absolute

variation in terms of displacements (here denoted as Δ) with respect

to the values of the undamaged condition was considered as a

damage-sensitive feature. Here, the presence of damage is detected

if outliers are identified in the set of computed variations, while

damage localization is accomplished by seeking the outlier location.

Figure 3.42a represents the real-time damage identification process:

the instantaneous Δ values are represented, computed by using

the ULL estimated during the first initialization procedure (as a

baseline) and the instantaneous ULL s reported in Figure 3.41a.
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Figure 3.41: Mesh interpolation of the instantaneous uniform load lines (a) and averaged lines over time for each

damage scenario (b)

Also, in Figure 3.42b, the percentage variations computed by using

the ULL s of Figure 3.41b are plotted versus sensor locations (the

origin of the position axis is assumed on the south border). For

both the instantaneous and averaged analyses, clear outliers were

evaluated in the damage index. Specifically, the outliers are defined

as the terms higher than two standard deviations from the mean

of the damage index. In the first case, the outliers were computed

for each time instant, with the instantaneous mean calculated over

the sensor locations. In the second case, the analysis was performed

on the static values represented in Figure 3.42b, for each damage

scenario.

For the instantaneous analysis, even by using few modes (i.e.,
the first three modes in this application), the damage identification

was successfully achieved for each damage scenario from A to E,

since a persistent outlier in damage features occurs close to sensor

11 (i.e., at the damaged pier location). On the other hand, the static

evaluation leads to an uncertain scenario for conditions A and B,

where the maximum value of the damage index is close to sensor

1. The analysis of instantaneous variation allows considering the

persistence of the identified damage as a further tool to determine if

the damage is real or generated by short-term effects.
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Figure 3.42: Instantaneous damage identification (a) and averaged results (b)

3.5 Seismic structural health monitoring

This section aims at applying the MAD to structures with nonlinear

behavior. Also, a variant of the DAMA suitable for nonlinear systems

and short recordings is presented.

A particular dynamic feature of nonlinear systems consists of

the frequency-energy dependency of their oscillations that involves

variations in the Frequency Response Function (FRF) depending

on the level of excitation [54]. Thus, frequencies and amplitudes

of NNM are typically time-varying and energy-dependent [62].

Considering a structure with nonlinear displacement-dependent

stiffness, excited by a generic forcing function, assume the discrete-

time acceleration response collected by an accelerometer deployed

at the 8-th material point as the combination of p dominant resonant

components ¥@ 9[C]:

¥G8[C] =
?∑
9=1

)8 , 9[C] ¥@ 9[C] + E8[C] (3.36)

where )8 , 9[C] is the 8-th element of a time-varying and energy-

dependent 9-th mode shape, @ 9[C] is a monocomponent function of

time with a narrow frequency band (generally, depending on the
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damping) centered around the time-varying and energy-dependent

damped frequency $3,9[C], ¥@ 9[C] is its double time derivative, and

E8[C] is the recording noise, modeled here as a Gaussian white

noise component. In general, ? can be considered as the number

of dominant resonant components in the structural response that

exceed the noise threshold given by the E8[C] term. Each term of

the summation in Equation (3.36) is called here Nonlinear Modal

Response (NMR) and represents the time-domain description of a

single NNM during the application of a given excitation.

In general, assuming )8 , 9[C] as a non-zero-mean function, its

Fourier transform Φ8 , 9[$] evaluated in $ = 0 is Φ8 , 9[0] ≠ 0. More-

over, other peaks in the spectrum of Φ8 , 9[$] appear centered at

frequencies $:̄ which depend on the nature of non-linearity and on

the instantaneous frequencies of the system (which, in turn, depend

on the energy of excitation). Also, assume that Φ8, 9[0] � Φ8 , 9[$:̄],
i.e., the fluctuations in time of the elements of instantaneous mode

shapes around their mean values have modest amplitude compared

to their mean values. This assumption should be verified by observ-

ing the final results of the identification procedure. However, in

general, the nonlinear excursion slightly affects the mode shapes.

Moreover, the frequency spectrum of the noise component +8[$] is
constant and can be considered negligible compared to the ampli-

tude of the NMR s if high-performance accelerometers are employed

(i.e., having high resolution and sensitivity, and low noise floor, such

as the specific instrumentation typically used for SHM applications

[58]).

For a given mode ẑ, according to the convolution theorem, the

product between )8 , 9̂ and ¥@ ẑ in time domain is equivalent to a

convolution between their Fourier spectra in the frequency do-

main (indicated as Φ8 , ẑ[$] and & ẑ[$], respectively). Through the

assumptions made above, considering a time-windowed slice of

the structural response such that the frequency spectrum has clear

peaks at the instantaneous natural frequency values, the following

relation is admissible if modes are well-distanced:(
Φ8 , ẑ ∗& ẑ

) [
$ ẑ

]
≈

?∑
9=1

(
Φ8 , 9 ∗& 9

) [
$ ẑ

]
(3.37)
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with ∗ denoting the convolution operator and $ ẑ the frequency

value where Φ8 , ẑ ∗& ẑ)[$ ẑ] is maximum. Thus, considering a narrow

bandpass filter centered in $ ẑ with impulse response described by

1 ẑ[C], (
1 ẑ ∗ ¥G8

)
[C](

1 ẑ ∗ ¥GA
)
[C]
≈

)8 , ẑ[C]
)A, ẑ[C]

(3.38)

where A indicates a reference location. Assuming the Rosenberg

definition of NNM [62], the ratio on the right-hand side of Equation

(3.38) represents a point in the two-dimensional projection of the

configuration space onto the directions of 8 and A. Indeed, different

points in the configuration space can be evaluated considering

specific time instants of the narrow frequency subband of the multi-

component signal that instantaneously isolates a single NMR .

Considering a generic frequency value $: , Equation (3.37) is

no more valid for frequencies far from $ ẑ . Moreover, +8[$:] may

be non-negligible compared to

∑?

9=1

(
Φ8 , 9 ∗& 9

)
[$:]. In particu-

lar, considering a narrow bandpass filter with central frequency

$: ≠ $ ẑ , the noise component is likely to prevail, leading to

(1: ∗ ¥G8) [C] ≈ (1: ∗ E8) [C]. On the other hand, in $: = $ ẑ , the fre-

quency component generated by the variability of )8, 9[C]may lead to

spurious peaks in the frequency spectrum of ¥G8[C]. However, consid-

ering the assumptions made, such peaks have modest amplitudes,

proportional to the fluctuations of the elements of mode shapes.

In general, the 8-th element of the ODS associated with the :-th

subband can be computed as:

!8 ,:[C] = �(C)
:

(1: ∗ ¥G8) [C]
(1: ∗ ¥GA) [C]

(3.39)

However, calculating !8 ,:[C] for different values of : = 1, . . . , 2=

for the evaluation of the MAD, the following three different situations

can occur:

1. Using 1: with central frequency $: = $ 9 (i.e., coinciding with

an instantaneous natural frequency of the system), !8,:[C]
represents an element of the 9-th instantaneous mode shape

and Equation (3.39) becomes equivalent to Equation (3.38);
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2. Using 1: with central frequency $: = $
:̂

(i.e., coinciding with

a signal component generated by the fluctuations of mode

shapes), !8 ,:[C] depends on the nature of nonlinearity;

3. Using 1: with central frequency $: different from the previous

conditions, !8 ,:[C] varies over time without reflecting the

structural behavior (i.e., is the ratio between filtered noise

components).

The MAD can thus be computed even in the case of nonlinear

structural responses using the ODS obtained as shown in Equation

(3.39). In this case, however, the spurious similarity of neighboring

ODSs generated by time-varying modal amplitudes must be taken

into account. In particular, if the inequality Φ8, 9[0] � Φ8 , 9[$:̄] is not

verified, the readability of the MAD may be affected, making the

identification of NNMs challenging.

Different from other TFRs that represent the energy of the signal

in a time-scale or time-frequency plane, the MAD only relies on the

"similarity" between ODSs. In other words, the magnitude of the

wavelet components and, therefore, the level of excitation in a given

frequency range, has not a fundamental role in MAD formation,

which only depends on the ratios between wavelet components

generated at different locations. Thus, the only requirement for the

application of the proposed method is that the level of excitation

in the entire frequency range of acquisition generates a structural

response which exceeds the noise floor of the instrumentation. This

requirement is generally satisfied in all SHM applications and is

much less demanding than the typical assumption involving white

noise excitation.

Similar to the theoretical part of Section 3.4, in this section, a

filter bank formed of the bandpass filters 1: = 3: ∗ A: is considered,

with 3: and A: denoting the :-th equivalent decomposition and

reconstruction filters associated with an =-th level SWPT.

Based on the idea that signal subbands forming similar instanta-

neous ODSs are likely to belong to the same modal component, a new

algorithm for the decomposition of nonlinear structural response

into decoupled NMR s is proposed in this section. In this context,

the MAD is used as the starting point of the algorithm, necessary

to select the wavelet components corresponding to physical modes
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over those describing noise. The use of a forgetting factor is not

indicated to improve the readability of the MAD when dealing with

short and strongly non-stationary recordings. Although the noise-

assisted approach can still be pursued, the final distribution may

be noisy and not suitable for the application of image processing

techniques, such as the watershed transform for the extraction of

decoupled NMR s (see Section 3.2). Moreover, due to the strong

non-stationarity of seismic events, clear ridges in the MAD may not

be visible and disconnected areas may belong to the same NMR

. For these reasons, a clustering procedure is applied to partition

the instantaneous ODSs into sets referring to separate modes. Upon

reconstructing the signal of each identified cluster, the instantaneous

parameters of decoupled structural responses can be exploited for

damage identification. The procedure proposed in this work for the

extraction of decoupled modal responses is illustrated in Figure 3.43

and explained in detail below.

First, the instantaneous ODSs obtained in Equation (3.39) from

the filtered components of the multivariate signal are used to evaluate

a MAD, as shown in Equation (3.11). A decomposition matrix M,

having the same size as the MAD is then generated using the

following rule:

�:[C] =
{

1 if <:[C] ≥ �

0 if <:[C] < �
(3.40)

where �:[C] is a generic element of M (: denotes the row index

and C is the column index) and � is a user-defined threshold. The

optimal value of � can be determined by analyzing the residuals

Multivariate signal Filtering ODSs Decoupled
structural responses

0

0.5
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1x
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t t
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Figure 3.43: Workflow of the variant proposed for the identification of nonlinear system
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of the decomposition algorithm. However, � = 0.5 can be generally

adopted and a lower value may be considered depending on the

number of instrumented locations if the noise-assisted procedure is

carried out, as shown in Section 3.2.

The M matrix represents a "mask" of 1 and 0 values that selects

high-valued areas in the MAD. Morphological operations, such as

erosion, can be applied to M if a high transformation level is selected

for signal decomposition since filter overlaps may origin spurious

ODS similarities. In a morphological operation, each element �:[C]
is interpreted as a pixel in the time-frequency distribution and is

adjusted based on the value of neighboring pixels [246]. Erosion, in

particular, replaces each value with the local minimum of its neigh-

borhood and can be used to remove spurious elements. Considering

the matrix M̃, obtained using morphological operations on M, the

set ( of ODSs representing physical modes is generated by selecting,

among the elements !8 ,:[C] identified using Equation (3.39), only the

ODSs which are similar to each other in the neighboring subbands,

i.e., generating high MAD values and, hence, 1 values in the M̃. This

selection procedure can therefore be written as:

>:[C],>:+1[C] ∈ (⇔ �̃:[C] = 1 (3.41)

where !:[C] = [!1,:[C], . . . , !A,:[C]]) and �̃:[C] is a generic element

of M̃.

The k-means algorithm [247] is thus applied to partition the set

of selected instantaneous ODSs into different clusters referring to

separate modes. However, the number of clusters is a parameter

required to initialize the k-means algorithm and, especially when

dealing with high-dimensional data, its determination is not straight-

forward. For this reason, in this study, a self-organizing map (SOM)

[248] is employed to help the user in the selection of the optimal

number of clusters.

The SOM is a type of unsupervised neural network that generates

a low-dimensional (generally two-dimensional) representation of

the input space (the dimension of which is equal to the number A of

channels that form the multivariate signal) approximating the data

distribution through a user-defined number of neurons [248]. These
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neurons, upon training the neural network, can be represented on a

regular grid with hexagonal or rectangular mesh to visualize the

obtained low-dimensional approximation of the input data. This

process is possible since the trained map preserves the topological

properties of the input space. Thus, the visualization of the U-matrix,

i.e., the map of Euclidean distances between the weight vectors of

a SOM (that are the coordinates of each neuron in the input space)

may be useful for the selection of the number of clusters. Upon

training the SOM, the input data (that in this application consist

of the A-dimensional ODSs), can indeed be represented on a plane,

where the number of clusters can be visually (or automatically, using

suitable algorithms) inferred.

It is worthy to note that the step involving SOMs is not strictly

necessary for the aim of this procedure, however, it may facilitate

the selection of the number of clusters. Moreover, due to the variabil-

ity over time of ODSs during the nonlinear excursion, non-convex

clusters may be generated in the original ODS space. However, the

approximation generated by the SOM generally mitigates this phe-

nomenon. Therefore, applying the k-means algorithm to the weights

of the neurons of the trained SOM may improve the performance of

the decomposition technique. In this case, however, a further step is

required to generate the final sets of ODSs associated with different

modes. The clusters of weight vectors should indeed be converted

into sets of original ODSs by selecting the elements of the original

space classified by each neuron in the obtained clusters.

In this work, the k-means algorithm is applied to the weight

vectors obtained upon training the SOM using the input ODSs.

After using the k-means method, in order to retrieve the clusters

in the input space, the ODSs are associated with the cluster � 9 of

the neuron which classifies them. Once the clustering process is

completed, a reconstruction mask R9 is built for each cluster � 9 ,

selecting the elements of the filtered signals previously used to

generate the clustered ODSs. The elements � 9 ,:[C] of R9 can thus be

defined as:

� 9 ,:[C] =
{

1 if >:[C] ∈ � 9
0 otherwise

(3.42)
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Due to the perfect reconstruction property of the selected filter

bank, the decoupled 9-th NMR H8 , 9[C] associated with the location

8 can be directly retrieved by summing the filtered components

associated with the same cluster for each time sample:

H8 , 9[C] =
2
=∑

:=1

� 9 ,:[C] (1: ∗ ¥G8) [C] (3.43)

As already mentioned in the previous sections, it is worthy to

note that the process described above can be seen as the construction

of a signal-adaptive filter bank with band-variable filters capable

of extracting decoupled modal responses through cutoff frequen-

cies selected based on the clustering process. This process can be

therefore intended as an adaptive generalization of the CFB -based

identification algorithm.

Upon reconstruction, each monocomponent NMR can be pro-

cessed through the HT to evaluate its instantaneous frequency, which

is interpreted here as one of the time-varying natural frequencies

of the nonlinear structure. Moreover, the 9-th time-varying mode

shape ) 9[C] can be evaluated considering the vector H 9[C] of NMR s

normalized over a reference value HA, 9[C]:

5 9[C] =
y9[C]
HA, 9[C]

(3.44)

Damage identification of a nonlinear system

In this section, the MAD is evaluated for two nonlinear case studies.

The NMR s are extracted through the presented procedure and

instantaneous modal parameters are identified, enabling the ap-

plication of a flexibility-based method for damage identification.

It is shown that the dynamic behavior of the structure during the

maximum excursion in the nonlinear field can be related to the

structural damage, revealing effects that cannot be identified us-

ing low-amplitude ambient vibration. In particular, the localized

increase in curvature in flexural-type structures or anomalous inter-

story displacements in shear-type frames can be detected using the

instantaneous flexibility matrix built from the modal parameters
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identified during the seismic event. If these effects vanish or are

attenuated in the short term, they may indicate the presence of

breathing cracks.

The first case study considered in this section is a two-dimensional,

4-DOF , shear-type frame with masses equal to <=8 × 10
4

kg, damp-

ing coefficients equal to 2=5 × 10
5

Ns/m, and stiffness consisting of

a linear part equal to :;=2 × 10
8

N/m plus a nonlinear part which

is a function of the displacement, modeled to simulate a softening

behavior, typical of RC frame structures. In particular, the equation

of motion of the 8-th level of the system can be written as:

< ¥G8 + 2
A∑
9=1

?8 , 9 ¤G 9 +
A∑
9=1

?8 , 9

(
:;G 9 + :3G

3

9 + :5G
5

9

)
= −< ¥B (3.45)

where G 9 is the relative displacement of the 9-th DOF with respect

to the ground, the nonlinear stiffness coefficients are assumed as

:3=−3 × 10
11

N/m3
and :5=1.8 × 10

14
N/m5

, ¥B is the acceleration of

the seismic motion applied at the base of the structure, and ?8, 9 are the

elements of a tridiagonal matrix with ?8 ,8 = 2 on the main diagonal,

except for ?A,A = 1 (i.e., at the top level of the frame), and ?8 , 9 = −1

in the other non-zero elements. The nonlinear stiffness coefficients

were selected to simulate strong softening nonlinear effects in the

displacement range of the structural response, keeping the overall

instantaneous stiffness always positive. In linear conditions, i.e.,
only considering the linear stiffness :; , the natural frequencies

of the numerical benchmark are 2.76 Hz, 7.96 Hz, 12.19 Hz, and

14.96 Hz.

At each level, a simulated uniaxial sensing device was considered,

recording the absolute acceleration of the system in the direction of

the seismic motion. A scheme of the case study with the deployment

of simulated sensors (indicated as S#) is reported in Figure 3.44.

In this test, the seismic motion recorded by the station located in

Mirandola (Italy) during the Emilia earthquake of May 20th, 2012

was used. The acceleration time histories collected by each simulated

sensor with a sampling frequency of 50 Hz, together with the input

excitation, are reported in Figure 3.45a. Here, PGA indicates the

peak ground acceleration, while PRA indicates the peak response

acceleration at the top level. The total duration of the recording
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is 40.96 s. In order to simulate the instrumentation noise, a white

Gaussian noise component with a standard deviation of 0.02 m/s2

(i.e., the 1.11% of the standard deviation of the response collected at

the top of the building, or the 0.13% of the peak response collected at

the same point) was included in the analyzed response. The Fourier

spectrum of the input excitation is reported in Figure 3.45b, where

the natural frequencies 59 of the benchmark are also indicated. In this

figure, it is possible to notice that the first mode is the most stimulated

by the Emilia earthquake, while the others are less excited.

Between time instants 10.70 s and 11.60 s, a uniform decrease (fol-

lowing a linear function) of :; in time was induced at the base level to
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simulate progressive damage, passing from the "undamaged" State 1

to a "damaged" State 2 with a final linear stiffness of 1.8 × 10
8

N/m. A

representation of the force-displacement and stiffness-displacement

diagrams obtained during the dynamic tests are reported in Figure

3.46 for each level. Moreover, the instantaneous stiffness of each

level in time is represented in Figure 3.47. From this last graph, it is

possible to notice that the excursion in the non-linear field leads to

much lower instantaneous stiffness values than the residual stiffness

of the damaged condition, for all the levels.

Using the multivariate signal consisting of the four accelera-

tion channels collected by sensors S1, S2, S3, and S4, a MAD was

computed following the noise-assisted approach. In particular, an

ensemble of 100 different white Gaussian noise sets with a stan-

dard deviation of 0.05 m/s2
were added to the collected structural

responses to obtain the average distribution reported in Figure 3.48.
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Here, MAD values are represented in a time-component plane where

the component axis represents the : index used in Equation (3.39)

indicating the frequency bands. In this figure, orange areas indicate

<:[C] values close to 1, while blue areas indicate values close to 0. A

mask matrix was then built, as described in Equation (3.40), to select

the ODSs that generated MAD values over a threshold � = 0.5.

In order to apply the k-means algorithm, the number of clusters

was determined by analyzing the U-matrix of a SOM trained with

the selected set of ODSs that generated MAD values over the selected

threshold. The map is sized considering that the SOM is a quantizing

method and, to have a satisfactory resolution to visualize the data

distribution, at least 50 items (on average) should be classified by

each node, otherwise the resolution of the outcome will be limited

by the sparsity of data. Moreover, the array of neurons should

have horizontal and vertical dimensions complying with the largest

principal components of the input data [248]. Therefore, in this

study, the number of neurons is selected as a number close to

#/100, with # denoting the number of observations (i.e., the 26091

selected ODSs), forming a square array. Indeed, since the input

vectors are normalized ODSs, i.e., vectors lying on the surface of

an A-dimensional hypersphere, the variance explained by their first

two principal components is likely to be the same. In particular, a

15 × 15 map with a hexagonal grid consisting of 225 neurons was

employed.

The training process was performed over 200 epochs, in which

all the selected ODSs are used to update the weights of neurons

in batch mode (i.e., at the end of each epoch). In Figure 3.49, two

representations of the trained SOM are reported. Figure 3.49a shows

a two-dimensional projection of the neurons (orange dots) and the

connections of the SOM (blue lines) onto the first two weights,
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i.e., the DOF s of the structure corresponding to levels 1 and 2.

Here, the light blue points are the vectors of the input space. On

the other hand, Figure 3.49b shows the U-matrix of the SOM, i.e.,
a low-dimensional representation of the selected ODSs. In this

figure, the neurons are depicted as orange hexagons, while the

color of their connections depends on their Euclidean distance. In

particular, light blue connections denote close neurons, while dark

blue connections denote larger distances. Moreover, the size of the

hexagons of Figure 3.49b is proportional to the number of ODSs

classified by each cluster. From a visual analysis of the U-matrix,

it is easier to identify a reasonable number of clusters, i.e., dense

areas in the low-dimensional distribution. These areas are light blue

regions populated by large orange hexagons, delimited by dark

blue boundaries. In this study, 4 clusters can be clearly identified,

the first in the left-lower region, the second from the central part

to the right-lower corner, the third in the right-upper region, and

the fourth in the left-upper part. Although in this work a manual

selection of the number of clusters is performed, image processing

techniques can be applied to the U-matrix to automatically identify

the most likely number of clusters [249].

The k-means algorithm was then applied to the weight vectors of

the neurons, partitioning the set of selected ODSs into 4 clusters. An

illustration of the clustered ODSs is reported in Figure 3.50a, where

the instantaneous wavelet components associated with the selected

Figure 3.49: Self-

organizing map (a) and

corresponding U-matrix

(b)
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ODSs are represented as points in the time-component plane, with

a color depending on the belonging cluster. In Figure 3.50b, the

ODSs associated with each point of Figure 3.50a are illustrated in

the space domain, along with the height of the structure. Moreover,

the average trend of each cluster is indicated as an orange dashed

line. It is possible to observe how the shapes belonging to the same

cluster are similar between each other and the average curves may

be interpreted as an estimate of the mode shapes of the structure.

However, in this phase, it is not possible to distinguish between

ODSs before and after the seismic event, i.e., possibly referring to

an "undamaged" and a "damaged" condition since, in this case, the

differences are minimal compared to the variability of the ODSs in a

given cluster. More sophisticated clustering methods not requiring

the knowledge of the number of clusters may also be applied, such as

the DBSCAN [222] (as in Section 3.3), which is however very sensitive

to the distance thresholds, that is another parameter required in the

mentioned procedure. On the other hand, the SOM-based criterion is

not very sensitive to the number of neurons forming the map, which

is the only parameter needed for the realization of the U-matrix.

The NMR of each identified node was then reconstructed by

summing the wavelet components used to obtain the ODSs referring

to a given cluster (i.e., to a single modal component). The instanta-
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neous resonant frequencies were thus identified using the HT. In

this study, the HHT is also considered to have a comparison with

one of the most used techniques for the instantaneous identification

of nonlinear systems in the time domain [71]. In particular, the fast

and adaptive variant presented by Thirumalaisamy and Ansell [37]

of the MEMD algorithm proposed by Rehman and Mandic [35] was

employed to extract the IMFs from the input multivariate dataset,

and the HT was used to obtain the reference parameters for com-

parison, i.e., instantaneous frequencies and amplitudes. The MEMD

was applied to the set of 4 structural responses collected during the

seismic excitation at the different levels of the numerical benchmark,

aiming to identify a maximum of 10 IMFs. The IMFs were extracted

considering a sifting tolerance of 0.01 (i.e., the sifting procedure is

stopped when the mean-squared error between the IMFs obtained

in current and in the previous iteration is lower than 0.01). It was

also noted that by further decreasing the tolerance, the results did

not vary and thus the outcomes of this application do not depend

on the selected parameters. In the algorithm by Thirumalaisamy

and Ansell [37], two order-statistic filters are applied to calculate the

envelopes for sifting, avoiding spline interpolation, which may be-

come burdensome in multivariate applications. Another parameter

of the algorithm is thus the window size for order-statistic filters,

which is determined, for each iteration, as the median of distances

between consecutive local extrema of the signal (minima or maxima)

in this application.

In Figure 3.51, both the instantaneous frequencies obtained

through the procedure presented in this application and those ob-

tained using the HHT are reported, superimposed on the theoretical

values of the instantaneous frequencies obtained using the numeri-

cal model shown above. In particular, the instantaneous frequencies

of the numerical benchmark during the seismic event are reported

in blue (from light to dark blue referring to modes from 1 to 4,

respectively) over time. Solid lines indicate the theoretical values,

calculated by resolving the eigenproblem of the system at each time

instant, considering varying stiffness. On the other hand, dashed

lines with the same color of theoretical curves represent the instan-

taneous identified values. Due to the application of a noise-assisted

procedure which involves the introduction of stationary noise com-
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ponents, the NMR s extracted through clustering, and thus the

dashed lines illustrated in Figure 3.51, have a length limited to the

regions where the signal has high amplitudes. However, these results

are enough for S
2
HM if the DSF is evaluated in the instant of the

maximum nonlinear excursion. Orange lines in Figure 3.51, indicate

the instantaneous frequencies of the IMFs identified by applying

the MEMD to the multivariate structural response. To improve the

readability of the diagrams, a median filter over 101 samples was

used on all the identified parameters, i.e., at each time instant, the

instantaneous frequency estimate is assumed as the median value

computed on a window of 101 samples centered in the considered

instant. In the figure, a good agreement of the parameters identi-

fied through the proposed procedure with the theoretical curves

is observable (blue lines) for the first three modes. In particular, in

the instant of maximum excursion in the nonlinear field, indicated

as condition B using a vertical dashed line, an accurate estimate of

natural frequency is achieved for all modes. On the other hand, the

instantaneous frequencies obtained through the HHT (orange lines)

follow the theoretical curves only for the first two modes, showing

to have no physical meaning at lower frequencies.

Figure Figure 3.52a shows the instantaneous amplitude of the first

two modes, computed through the HT of the reconstructed NMR

s. The shapes formed of these amplitudes are referred to as "mode

shapes" since they are ODSs evaluated at the resonant frequencies

and are, therefore, an estimate of the instantaneous mode shapes

of the structure. Moreover, in Figure 3.52b three instantaneous

conditions, namely A, B, and C, corresponding to the instants prior,

during (i.e., at the instant of peak response acceleration) and after the
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seismic strong motion, are analyzed in detail. It should be noted that,

as supposed in the theoretical description of the presented approach,

in this case, the fluctuations of mode shapes due to nonlinearities

are generally modest compared to their mean values. Therefore, the

spurious components due to nonlinearities do not affect the accuracy

of the method. Indeed, the identified instantaneous mode shapes

well approximate the theoretical values, especially in condition B.

The instantaneous estimates of natural frequencies and mode

shapes identified in conditions A, B, and C were used to generate the

ULL corresponding to each condition (see Equation (3.22)). In Figure

3.53, the ULL and the Inter-Story Drift (ISD) estimates obtained

from this analysis are reported. As expected, the ISD in condition B

is generally higher, especially for the base level. On the other hand,

keeping in mind the curves of Figure 6, conditions A and C should

have similar ISD s for all the levels except for the first, where a

residual stiffness loss of 10% was simulated.
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Damage identification of an RC building

The second case study considered in this section is a five-story RC

building tested on a shaking table at the University of California,

San Diego, through the George E. Brown Jr. Network for Earthquake

Engineering Simulation program (NEES-UCSD) between May 2011

and May 2012. The plan dimensions were 6.60 m×11.00 m and the

total height was 21.34 m, with a floor-to-floor distance of 4.27 m. The

shaking was impressed in the longitudinal (east-west) direction, in

which the building had two RC frames as a lateral-load resisting sys-

tem. The beams had a cross-section of 0.30 m×0.71 m, with varying

connection details, and the floor system consisted of a 0.20 m thick

concrete slab on all levels. More details about the specimen can be

found in technical reports [250–253] and a schematic representation

of the geometry is reported in Figure 3.54.

Dense sensor equipment was originally deployed on the structure.

In this study, only five acceleration channels were considered (S1-S5),

positioned in the northern-eastern quadrant of the plant, at the floor

level, in the direction of the seismic motion, as illustrated in Figure

3.54. Moreover, displacement measurements collected through linear

(N1-N3) and string (B1-B2) potentiometers are used as reference for

damage identification in this study. Detailed information on the

sensor setup can be found in technical reports [250–253]. In particular,
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the linear potentiometers measure the diagonal elongation of three

beam-column nodes, while the string devices are used to estimate

of the rotation at the base of the eastern column, calculated as

' =
Δ�1 − Δ�2

3
(3.46)

where Δ�1 and Δ�2 are the displacements collected by the two

sensors, while 3 is the distance between them.

In the original testing campaign, the structure was first subjected

to seven seismic motions with functioning base isolator devices and

then tested with six seismic motions with increasing intensity with

the basement of the building fixed to the shaking table. The acceler-

ation time histories used in this study (Figure 3.55) were collected

during the fourth test performed using the 2007 Pisco earthquake

(Ica station, Peru) as input excitation with fixed-base configuration.

The original sampling frequency was of 200 Hz, downsampled at

50 Hz in this study. The total duration of the recording is 327.68 s.

As described in the reports of the experimental campaign [250],

the building was designed to reach its performance targets during

the fifth seismic motion with the fixed-base configuration. Indeed,

minimal damage was observed following the first two motions, with

the structure remaining serviceable. Limited structural cracking
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was also observed following the application of the fourth motion,

especially at the bases of the first-floor columns and in the slab of

the first level.

The multivariate signal collected from sensors S1-S5 was used to

generate the MAD through a noise-assisted procedure similar to that

applied in the first case study (Figure 3.56a), using a threshold value

of � = 0.5. The MAD was thus employed to extract the ODSs which

are then clustered through SOM and k-means. As in the previous

analysis, four clusters were selected, obtaining the distribution

illustrated in Figure 3.56b.

The instantaneous natural frequencies identified through the

procedure proposed in this section and those obtained by means

of the HHT are shown in Figure 3.57a, superimposed on the spec-

trogram evaluated through the STFT of the structural responses

collected by sensor S5. The implementation features of the HHT

and the approach for selecting the window size of order-statistic
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features are the same used for Case study 1. A median filter of

501 samples was used to improve the readability of the figure. It is

possible to notice that the instantaneous frequencies obtained by the

method proposed better approximate the ridges of the spectrogram,

especially for the first three modes. Although the performances of

HHT are higher than in the previous analysis, non-physical IMFs

are extracted at low frequencies.

Observing the reference measurements obtained from poten-

tiometers (Figure 3.56b), it is possible to notice that local minima in

the identified frequencies are close to the point where maximum di-

agonal elongation is recorded at the nodes. In this instant, nonlinear

effects can be observed since a residual displacement is present in

sensor N1.

The inspection instants A, B, and C indicated in Figure 3.57

were considered to evaluate the first four mode shapes and the

corresponding ULL s before, during, and after the seismic strong

motion. In particular, condition B was selected at the instant of

peak response acceleration, which is in the proximity of a local

minimum of the instantaneous natural frequencies. Observing the
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Figure 3.58: First four instantaneous mode shapes at the inspection samples

modal amplitudes of these three conditions in Figure 3.58 it is

possible to notice a slight variation, which confirms the applicability

of the method since the oscillation due to nonlinearities is generally

modest compared to the average value. Nevertheless, the accurate

estimation of such small variations enables the application of a

flexibility-based method for damage detection and localization.

In Figure 3.59, the ULL s of the building corresponding to the

inspection time instants A, B, and C are shown. Since information

about the structural masses is missing, mode shapes were normalized

to an identity matrix, assuming a uniform distribution along with

the height of the building. Moreover, since the structural behavior

may be far from the shear-type approximation, the curvature of

ULL is used as a DSF in this case. A general increment in curvature

is registered for each level in condition B, while after the seismic

motion, only the first level has a residual difference in curvature, in

agreement with the damage observed during the visual inspections

[251]. Although the deformation of beam-column nodes is not the

only effect that may affect the curvature of the ULL , this result is

also confirmed by the recording of sensor N1 (Figure 3.57b), where

clear residual elongation can be noticed.

Moreover, the rotation at the base of the structure in condition B

is visibly higher than pre– and after–earthquake conditions, high-
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lighting the presence of breathing cracks at the base of the first level

columns, also confirmed by the visual inspections. Considerable

rotation at the base of the building is also recorded by the reference

potentiometers B1-B2, as shown in Figure 3.57b.

3.6 Data transmission in dense sensor
networks

A large number of civil structures and infrastructures built in the

last century are now close to, or even beyond, the end of their rated

life cycle. Several types of SHM systems have been deployed to

assess their integrity, initially consisting of wired solutions and more

recently based on wireless sensing systems. For both these types of

networks, dealing with large infrastructures is generally challenging

since long cables should be deployed or high transmission ranges

should be covered. In the case of WSN s, multihop transmissions

have been largely employed to limit the coverage issue. Section 3.4

presented a decentralized algorithm for modal identification suitable

for star or tree-topology sensor networks. Sometimes, especially

for large bridges or viaducts, the star topology is unsuitable. On

the other hand, due to the geometry of typical infrastructures or

tall buildings, the line topology (i.e., a chain of devices formed of
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two-way links between one node and the next one) may be more

appropriate. However, sensing nodes involved in transmitting their

own collected data in addition to passing data acquired by other

devices typically saturate the transmission band and rapidly drain

batteries.

In this section, a decentralized procedure is proposed for line-

topology networks which involve the updating of the truncated SVD

of the collected signal (i.e., the input matrix) onboard each node,

before transmitting the data to the next one. Each updating involves

low computational effort, being suitable for microcontrollers with a

small computational footprint. Moreover, the weight of transmission

packages is considerably reduced, and a user-selected upper limit

can be fixed regardless of the network size. This allows the complete

reconstruction of all the collected channels by a coordinator device

at the end of the line-topology network without involving the

transmission of all the collected samples. Besides, if the MAD is only

required for visualization purposes, without the need of extracting

the decoupled modal responses of the system, a more economic

transmission is necessary.

The instantaneous ODSs vectors used in Equation (3.11) can be

expressed as

>: = 7)
:
X (3.47)

where 7: is the impulse response of the equivalent wavelet filter

associated with the :-th frequency band and X is the input matrix,

i.e., a matrix formed of column vectors containing the structural

responses collected by different acquisition channels. In this section,

the time dependence of X and 7: will not be specified for simplicity.

Moreover, in this algorithm the WPT is used as a filtering operator

which decomposes each channel into different wavelet components,

each associated with a different frequency band. In the classical

WPT algorithm, the wavelet components are downsampled by a

factor 2
=

after being calculated using the equivalent wavelet filter

bank. The output is indeed critically sampled. For simplicity of

notations, in this section, the time instant at which the parameters

of the algorithm are calculated (after downsampling) is indicated as

�. Therefore, 7: is the ODS evaluated at the �-th time instant, using

the input matrix X = [x1[C −# + 1, C], . . . , xA[C −# + 1, C]]) ∈ ℝ#×A
,
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where x8[C1 , C2] is a vector containing the samples of the collected

sequence x8[C] in the time interval between C1 and C2, A is the number

of instrumented locations, # = �(2= − 1) − = + 1 is the length of

the equivalent wavelet filter at the transform level =, and � is the

length of the wavelet lowpass and highpass filters associated with

the selected wavelet function [254]. Substituting Equation (3.47) into

(3.11), the instantaneous MAD values can be expressed as

<: =

��7)
:
XX)7:+1

��2
7)
:
XX)7:7)

:+1
XX)7:+1

(3.48)

Moreover, considering the SVD of the input matrix X = U�V)
,

an approximation of X can be expressed as a function of its most

relevant singular vectors (and values) considering a truncated SVD

X ≈ Û�̂V̂)
(3.49)

where the columns of matrices Û and V̂ contain the first B left and

right singular vectors of X, respectively, while �̂ is a diagonal matrix

containing the first B SV. In order to have a good approximation of

X in Equation (3.49), the B parameter can be selected according to

the criterion proposed by Gavish and Donoho [255], which allows

determining the optimal rank of Û and V̂ to reconstruct signals

containing either a known or unknown noise level. In the mentioned

approach, the threshold to select the most relevant SVs is calculated

as a function of the aspect ratio A/# of the input matrix and the

median of its SVs.

In the numerator of Equation (3.48), the correlation matrix of

the input can thus be expressed as XX) ≈ Û�Û)
. Also, assuming

$)
:
= 7)

:
Û, an estimate of the instantaneous MAD values is given

by

<: ≈
��$)
:
�2$:+1

��2
$)
:
�2$:$):+1

�2$:+1

(3.50)

In some applications, it may be convenient to build the input

matrix by progressively increasing the number of columns of X,

i.e., appending single columns to the input matrix, leaving the

remaining part unchanged. In this case, the SVD of X can be first
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calculated using only a subset of its columns (i.e., only a subset of

recording channels) and then updated through rank-1 perturbations,

as shown by Brand [256], to include the information contained in

the remaining columns.

Let U�V)
be the SVD of X2 , which is the matrix formed of the

first 2 columns of X. The decomposition of X2+1 can be written in

the form U�
[
V)0

]
+ ab) , where a ∈ ℝ#

contains the elements

of G2+1[C − # + 1, C], b = [0, 0, . . . , 1]) ∈ ℝ2+1
, and 0 is a zero-

valued column vector. The updated matrices of the decomposition

Ũ�̃Ṽ) = U�
[
V)0

]
+ ab) can be calculated through the following

steps [256]:

1. Calculate the vector

" = a −UU)a (3.51)

and its norm | |" | |;
2. Compute the SVD of the matrix

K =

[
Σ U)a
0 ‖"‖

]
(3.52)

obtaining K = YHZ) ;

3. Update the SVD matrices as

Ũ←
[

U "
]

Ŷ (3.53)

Ṽ←
[

V4 b
]

Ẑ (3.54)

�̃← H (3.55)

where " = "/‖"‖, V4 = [V)0]) , and Ŷ, Ẑ are the truncated

versions of Y, Z, i.e., containing their first 2 columns.

Steps 1-3 should be repeated to include all the columns of the input

matrix.

A scheme of the data management approach proposed in this

section is reported in Figure 3.60. All the nodes of the network,
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Figure 3.60: Outline of the proposed procedure for data acquisition using line-topoloty sensor networks

synchronized to the same time reference, form an array of the

sampled signal, e.g., the acceleration response of a physical point of

the structure, of length # . The first node of the network initializes

the data management procedure by transmitting the collected array

to the second node. Up to the B-th node, each device appends

the collected array to the received matrix and proceed with the

transmission. In this phase, the weight of transmitted packets grows

linearly with the number of nodes. Onboard the B-th node, upon

appending the collected array, an SVD of the matrix of collected

signals XB is performed to obtain the matrices U, V, and �, such

that XB = U�V)
. This process is performed in the "economy" mode,

which removes zero rows in the � matrix. The decomposition

matrices are then transmitted to the next node. This step involves the

transmission of B(# + B + 1) elements since � is a diagonal matrix.

From the B-th to the A-th node, which is the last sensing node of

the network, the array of the collected signal is used as an updating

a vector, as shown in Equations (3.51)–(3.55). In particular, Ũ, Ṽ, and

�̃ are obtained by updating the received decomposition matrices

and truncated to a rank equal to B, generating matrices Û, V̂, and

�̂, respectively. The obtained matrices are thus transmitted to the

next node. In this phase, the number of elements transmitted from

a node 8 to the next one is B(# + 8 + 1). It is worthy to note that,

in the case of a traditional append-and-transmit procedure in a

line-topology network, the weight of transmitted packets would

be #8, with 8 = 1, . . . , A. For large networks, B is generally much

lower than A and the convenience of using the procedure proposed is

evident. Indeed, the power consumption of wireless sensing systems
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typically entails the most demanding part of node operations, espe-

cially for long-distance transmission [257]. The maximum weight of

transmitted packets can be fixed by selecting a suitable B parameter.

This selection can be made by following the criterion proposed by

Gavish and Donoho [255], applied to a complete input matrix col-

lected before implementing the decentralized procedure. Moreover,

the computational complexity to perform the update onboard each

node is in the order of $(#B + B3) [256].

At the end of the network, a coordinator device is generally

installed to gather the transmitted datasets and make it available

to the user. It usually has a microcontroller or microprocessor with

a larger computational footprint with respect to the other sensing

nodes since filtering or other signal processing operations may be

performed at this point to reduce the data weight before cloud

uploading or local storing. Here, an estimate of the complete set of

collected signals can be reconstructed as shown in Equation (3.49).

This set forms a multivariate signal which can be employed to obtain

the decoupled modal responses through the method proposed in

Section 3.3.

It should be noted that, according to Equation (3.50), if only the

MAD should be calculated in the monitoring process, the V matrix is

not necessary and can thus not be updated and transmitted, reducing

both the computational effort and the packet weights; indeed, in this

case, the transmitted element would be B(# + 1) for nodes 8 > B.

At the end of the data collection process, an approximation of the

acquired signal in the interval [C−#+1, C] can be reconstructed using

Equation (3.49). A set of instantaneous deflection shapes referred

to the �-th instant can then be calculated through Equation (3.47)

and the MAD at the same instant can be obtained using Equation

(3.11) or (3.50). At this point, the proposed identification procedure

involves the selection of ODSs that generate high MAD values using

a threshold �, as shown in Figure 3.61 (see also Section 3.2 for more

details on the threshold). In order to identify the instantaneous mode

shapes of the system, the set of selected ODSs are partitioned into ?

clusters using the k-means algorithm. The average curve obtained

for each cluster is then assumed as an identified mode shape.

It is worthy to note that the traditional k-means algorithm is
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unable to discard outliers from noisy distributions. The thresholding

operation performed using the MAD is thus necessary to obtain

robust identification outcomes. Moreover, the application of the k-

means algorithm needs the number of clusters as a setup parameter.

However, in modal identification problems, this parameter (here

denoting the number of identified modes) is not known a priori.

Several methods have been proposed in the literature to identify

the optimal number of clusters. In this study, the silhouette-based

approach is used [258], where silhouette values (i.e., a measure

of how similar an object is to its own cluster compared to other

clusters, ranging from -1 to 1) are calculated for different setups, i.e.,
different values of ?. The setup where a maximum silhouette value

is reached is selected as the optimal setup. This procedure requires

to apply the k-means algorithm multiple times. However, upon the

selection of the optimal ? parameter, this value can be employed for

the long-term identification procedure, as it will be shown in the

application section.

In real-time applications, variants of the k-means algorithm or

other clustering algorithms able to handle streaming data should be

employed. In this work, an online variant of the k-means algorithm

is used, consisting of the following steps:

1. Apply the traditional k-means algorithm to the set of >:[�]
with : = 1, . . . , 2= and evaluate the ? centroids having coordi-

Clustering

m
[t

]
k

1-θ

1

0
k

i

φ [ξ]k φ [ξ]j

k

Figure 3.61: MAD-based procedure for modal identification
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nates described by vectors -9[�].
2. At time instant � + 1, calculate the distance between each

vector >:[� + 1] and each centroid coordinate vector -9[�],
and assign each vector >:[� + 1] to the cluster with the closer

centroid.

3. Update the centroid coordinates as

-9[� + 1] = 
-9[�] + (1 − 
)> 9[� + 1] (3.56)

where > 9[�+1] = 1

;

∑= 9

:=1
>:[�+1] is the mean of the >:[�+1]

vectors assigned to the 9-th cluster, while 
 is a user-defined

"forgetting factor".

Following the application of the k-means algorithm, the wavelet

components that generate the vectors >: associated with each cluster

may be used to reconstruct decoupled modal responses through the

IWPT. Since these responses are mono-component, i.e., they have a

single dominant frequency, the Hilbert transform can be employed

to identify the instantaneous natural frequencies of the system.

Due to noise, which can generate random similarities between

consecutive ODSs (i.e., >: and >:+1, spurious elements can be

included in the clustering procedure, affecting the accuracy of the

identified instantaneous modal parameters. The robustness of the

method may be improved by calculating averaged modal parameters

using different � instants or applying filtering techniques to the

identification outcomes. The method proposed here can be applied

to identify modal parameters either in a continuous fashion or in

periodic inspection intervals.

Damage identification of a densely instrumented RC
building

The benchmark studied in this section is the same as Section 3.3,

where a centralized identification algorithm was employed for modal

identification using 4 sensing nodes. Conversely, in this section, the

data is processed simulating the use of a line-topology smart WSN

consisting of 15 sensors (see Figure 3.62), where the signal collected at

different instrumented locations is used to update the identification
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Figure 3.62: Scheme of the case study and sensor layout: (a) plan view and (b) lateral view; adapted from [216]

results through rank-1 perturbations onboard the sensing nodes,

employing the framework of the algorithm presented in the previous

sections.

This section aims to show that the denser distribution of sensor

leads to more accurate identification results. Besides, no relevant

information is lost by applying the presented strategy for data

compression, while the volume of the transmitted data can be

considerably reduced compared to a traditional implementation.

The suitability of the procedure for early damage localization is

shown by studying the structural conditions related to different

low-damage scenarios.

The inspection time series collected during white noise excitation

relevant to conditions U, A, and B are used in this application (see

Section 3.2 for more details). In this application, each time history

has a duration of 458 s and a sampling frequency of 60 Hz. A unique

signal, with a total duration of 1374 s, generated by appending

the mentioned time series one at the end of the previous one, is

employed in this study to simulate ongoing damage. Low-pass filter

and downsampling of factor 4 were applied to the original signal,

sampled at 240 Hz, before using the data.

During the two seismic tests considered in this work, "slightly"

and "moderate" nonlinear responses were registered. During the

first test, limited yielding occurred at the base of the web wall,
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generating cracks up to the fourth floor and a maximum roof drift

ratio (defined as the ratio between the maximum lateral displacement

at the uppermost level and the distance of this level to the base of the

wall) equal to 0.28%. During the second seismic test, the maximum

roof drift ratio was equal to 0.75%. More details about the original

testing setup and structural behavior can be found in [214, 215].

Before applying the modal identification algorithm, a study is

conducted on the relevance of singular components (i.e., values and

vectors) of the collected structural responses. In Figure 3.63, the

15 SVs obtained through the SVD of the original input matrix are

reported on a logarithmic scale. A threshold for the selection of

the most relevant components is calculated employing the method

proposed by Gavish and Donoho [255] for signals with an unknown

noise level. In this case, the first 5 SVs are above the selected

threshold and can be used to obtain a good approximation of the

input matrix.

Simulating the use of a line-topology network, in a traditional

data acquisition process, the weight of the transmitted packets

would increase linearly with the number of sensors. This trend is

represented in Figure 3.64 and compared with the packet weight

referred to the proposed decentralized approach. In this figure, the

packet weight is expressed as the number of floating-point data

values (with the single or double precision format, depending on

the specific applications) that are transmitted from a node to the

next one in the path to reach the end of the network. As explained

before, the maximum packet weight can be adjusted by the user

by selecting a suitable number of SVs in the approximation of

the input matrix. In this study, the 5 SVs lying over the selected

threshold are employed, resulting in a considerable decrement of
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total transmission weight. In particular, the weight of the last packet

transmitted to the coordinator would be 13155 for the transmission

of the original input matrix, while only 4465 for the transmission of

the approximated one. Power consumption concerning transmission

is approximately proportional to the packet weight; therefore, the

proposed method entails a considerable power saving, especially for

the last nodes. Specifically, in the considered case study, the last node

undergoes a reduction of 66% in power consumption related to data

transmission. This allows optimizing maintenance interventions for

battery replacement since the power consumption tends to be more

uniform throughout the network.

Upon selecting the number of most relevant SVs, the most suit-

able number of clusters for applying the proposed identification

procedures is sought using the silhouette-based method. In this anal-

ysis, both the original input matrix and the approximation obtained

using the first 5 singular components were used for comparison. The

silhouette-based approach is applied to the ODSs obtained using the

input matrices relevant to a set of different "testing" time samples.

The most recurrent result over the testing samples is then assumed

as the optimal ? parameter. In particular, 123 testing input matrices

X =

[
x1[C − # + 1, C], . . . , xA[C − # + 1, C]

] )
were selected consid-

ering different time samples C equally distributed in the complete

structural response (formed of U, A, and B recordings, with 41 testing

samples in each of them). In Figure 3.65a-b, the results of this analy-

sis are reported, referred to the case of a complete input matrix and

approximated version, respectively. Each thin brown line reported in

this figure is relevant to the set of ODSs computed from a given input

matrix. In particular, each point of these lines indicates the average

silhouette width obtained by applying the k-means algorithm with a

different value of ?, which is reported on the abscissa of the diagram.
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Figure 3.65: Selection of the most suitable number of clusters using (a) original input matrices and (b) approximations

of the input matrices

These lines have three different colors (from dark brown to light

brown) corresponding to the test input matrices selected in different

structural conditions (i.e., U, A, and B, respectively). For each line, the

global maximum is highlighted through a circle that indicates the

optimal number of clusters resulting from the analysis of the specific

input matrix. The cumulative number of optimal results obtained

for each ? value is then calculated to improve the robustness of the

selection approach. Three thick lines, referring to the cumulative

number of optimal results for each ? value obtained in the three

structural conditions (i.e., calculated using 41 test instants each) are

also reported in Figure 3.65. It is possible to notice that the maxima

of these lines, i.e., the most suitable ? value for clustering, are at

? = 4 for each structural condition and both considering the original

and the approximated input matrices. This result indicates that the

selection of the ? parameter can generally be done in the initial

phase of the procedure and then employed during the long-term

identification process. Moreover, the optimal number of clusters is

the same using the two versions of the input matrix, denoting that

no useful information is lost during the approximation process

The multivariate signal consisting of the 15 collected time histories

in the three structural conditions was employed to obtain the MAD

reported in Figure 3.66a. Here, high values (close to 1) are depicted

in yellow, while low values (close to 0) are represented in blue.

Low-valued horizontal bands can be clearly noticed in the time-

component plane around the 5th and the 35th components. In this

plot, the component indicated on the vertical axis represents the :

index used in Equation (3.11). The MAD is used to select the wavelet
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components which generate similar ODSs (using a threshold level

� = 0.1), hence discarding the components related to noise. The

ODSs generated by the selected components are then partitioned

using the k-means algorithms into 4 clusters, which is the optimal

? parameter obtained in the previous analysis. A forgetting factor


 = 0.99 was selected to perform the online clustering procedure. A

representation of the clustered components in the time-component

plane is reported in Figure 3.66b. Here, each vector >:[�] is depicted

in the time-component plane (indicated through the � and : indices,

respectively) as a point having a color that depends on the assigned

cluster.

The decoupled modal responses associated with each cluster are

thus calculated using the IWPT and the instantaneous frequencies

are identified by applying the HT on the obtained monocomponent

responses. Figure 3.66c shows the identified instantaneous frequen-

cies for all the identified modes. A median filter is applied to the

obtained results to improve the readability of the plot, replacing

each instantaneous frequency entry with the median of 1000 neigh-

boring entries (i.e., using a kernel of 16.67 s). In this figure, a slight

decrement of the natural frequencies can be noticed when passing

from condition A to B, especially for modes 1 and 4.

In Figure 3.66c the results obtained through the original DAMA

are also reported in gray, as well as the reference values identified

using the FDD [259]. It is possible to notice that all the results are

in good agreement, especially for the first mode. However, the use

of 15 sensing nodes has allowed the successful identification of 4

modes in the range between 0 Hz and 30 Hz, compared to the 3

modes identified using the DAMA with 4 sensors.

The reconstructed decoupled modal responses are then em-

ployed to evaluate the instantaneous mode shapes of the structure

by calculating the ratio of Equation (3.6). Before applying this proce-

dure, the responses obtained at the base level (using sensor S1) are

subtracted from the responses of the upper levels in order to convert

the absolute horizontal acceleration measurements to relative accel-

erations. This step is suggested in the literature [215] to improve the

results of modal identification when dealing with white noise base

excitation tests. Figure 3.67 shows the instantaneous amplitudes of
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the shapes identified through the procedure proposed in this work.

Slight variations can be observed when passing from condition U

to A in modes 1 and 4, while moderate differences for all modes

are noticeable when passing from A to B. In particular, the shape

of mode 3 in the third structural condition is considerably different

from the previous conditions. This is also observable in the average

shapes in right-hand side of Figure 3.67, where the reference shapes

of the undamaged condition identified using the DAMA (employing

4 sensors) and the FDD (employing 15 sensors) are also reported. It

should be noted that the second shape is not reported for the DAMA

since it was not identified using the limited sensor configuration. In

both the instantaneous and average representations of Figure 3.67,

the shapes are normalized to have a unitary norm.

The identified instantaneous natural frequencies and mode

shapes can be employed in SHM applications for damage iden-

tification, relying on different methods based on modal parameters.

The displacement and curvature have been largely used as flexibility-
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based indices [260, 261], while the interpolation method has shown

superior performance when the errors in the computation of the

curvature may affect the results [262]. In this study, a flexibility-

based approach is addressed for this purpose to provide an example

of using identified parameters in SHM applications. The adopted

approach consists of evaluating the Uniform Load Surface (ULS) of

the structure (which degenerates into a line – ULL – for structures

with one-dimensional development).

In this study, the curvature of the ULL , evaluated through the

central difference method, is employed as a DSF. Specifically, the

damage index is calculated as

�9[C] =
"� , 9[C] − "̄�,9

std

(
"�,9

) (3.57)

where "� , 9[C] is the curvature at the 9-th node in the inspection

instant, "̄�,9 is the mean of the curvature values at the same node

in a baseline interval, and std

(
"�,9

)
is the standard deviation in

the considered baseline interval. Assuming a normal distribution

for the DSF, a threshold for damage localization can be selected as

� = 3 in order to minimize the occurrence of false positives to less

than 0.1% [263]. Therefore, if �9[C] > �, the 9-th location is likely

to be damaged at the C-th instant. Assuming also that real damage

is persistent in time, �9[C] values over the threshold for a limited

time interval where the general trend is below the threshold can

be considered as false positives. On the other hand, spurious �9[C]
values below the threshold where the general trend exceeds it, can

be considered as false negatives.

Figure 3.68 shows the instantaneous ULL and the curvature-

based damage index calculated as shown above. In particular, in

Figure 3.68a, both the instantaneous estimates and the averaged

curves representing the ULL are reported. A clear variation is

noticeable when passing through different structural conditions. In

Figure 3.68b, the values below the threshold are depicted in gray.

For the condition U, some false positives are registered at the lower

levels in short time intervals. On the other hand, for conditions

A and B, a generally positive trend is registered at the base of

the structure. Moreover, the damage index grows in condition B
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and other damaged locations are identified at the mid-height of

each story throughout the structure. This information corresponds

to the description of the structural state, observed through the

visual inspections conducted during the experimental campaign

[214, 215].
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Traffic is undoubtedly the most important and prominent excitation

source for civil bridges and viaducts. As shown in Chapter 1, several

researchers attempted to mitigate the complex phenomena that

this kind of excitation could induce in the short term or to exploit

the quasi-static part of the structural response to identify dense

DSFs. Besides excitation, vehicles are also (and primarily) a means

of transport. Nowadays, it is unthinkable that a vehicle, either an

ordinary car or a micromobility vehicle, such as a bicycle or kick

scooter, does not carry any sensing device. Indeed, smartphones

are advanced sensing devices in all respects, which can record

acceleration, position, and other dynamic and static measurements

and upload them to the Internet.

This chapter studies how traffic can be exploited for SHM on two

fronts. First, heavy vehicles are considered as a form of excitation

for bridges. In this case, vehicle dynamics and vehicle-bridge inter-

action (VBI) would strongly affect recordings on board the vehicles.

Therefore, a direct form of SHM is studied in this chapter for this

kind of vehicle, involving sparse sensor networks deployed on the

bridge. Second, light micromobility vehicles, which are stiff and

light compared to bridges and footbridges, are exploited in an ISHM

strategy to identify modal parameters from drive-by recordings

collected by smartphones.

Therefore, this chapter has two main objectives:
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1. Propose a unified and automatic identification strategy for

estimating both dense quasi-static structural features and

modal parameters using sparse sensor networks (consisting of

down to just one sensing device). The procedure is based only

on acceleration recordings collected on the bridge, without

the need for additional devices to track the vehicle location.

Section 4.1 shows how acceleration recordings can be used to

obtain curvature, one of the most used DSFs in SHM, removing

the complex procedures (and thus approximations) which are

generally necessary for traditional methods to calculate it from

identified mode shapes. Then, Section 4.2 presents the unified

identification algorithm. In this context, a strategy proposed

for automatic selection and processing of signal windows

related to the vehicle passage makes the method particularly

suitable for crowdsourced cloud computing applications. This

original approach brings considerable advantages, as it enables

accurate localization of structural anomalies using limited

(and thus low-cost) instrumentation, suitable for widespread

monitoring, and removes the need for data synchronization.

Moreover, differently from most literature methods [1, 2], the

damage entity can be quantified without any knowledge on

the structural masses and avoiding the use of finite element

models.

2. Identify the modal parameters of footbridges using multiple

types of data collected by smartphones installed on passing

micromobility vehicles. The procedure proposed in this study

fuses the datasets obtained by accelerometer, gyroscope, mag-

netometer, and GPS using a Kalman filter. Multiple datasets

collected in crowdsourced applications mitigate the effects of

noise and allow identifying a dense DSF for SHM purposes.

The study related to the first objective is supported by the results

obtained using the acceleration data collected on three viaducts of

the Italian A24 motorway, analyzed in several works by Aloisio et al.

[118, 149, 264, 265]. Moreover, the results obtained for a numerical

case study in different damage scenarios are reported to show

the potentialities of the proposed method for damage detection,

localization, and quantification. The study related to the second

objective is supported by the results collected during an experimental
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campaign conducted on a footbridge in Bologna (Italy).

4.1 From acceleration to curvature

Isostatic schemes, such as simply supported beams, are typically

considered for the design of RC bridges and viaducts due to their

capacity to accommodate the expansion (or contraction) effects of

environmental loads, such as temperature, that would instead gen-

erate unwanted stress states in hyperstatic structures. In this study,

the simply supported beam will be considered as representative of

a span of common RC viaducts.

Literature in the field of SHM reports several cases where the

effectiveness of dynamic identification methods is affected by struc-

tural nonlinearities [266]. Moreover, in civil structures, damage is

often related to an increment in the degree of nonlinearity [56].

However, material and geometrical nonlinearities, as well as those

related to the boundary conditions, are generally activated by signif-

icant displacements. Since the method proposed in this section is

conceived for ordinary traffic loads, it is assumed that the structure

is subjected to small displacements and thus behaves linearly.

In general, the equation of motion of a linear simply supported

beam with uniform cross-section subjected to a generic load func-

tion acting orthogonally to the axis of the structure ?(I, C) can be

represented as

�
%2D(I, C)

%C2
+ 3 %D(I, C)

%C
+ �� %

4D(I, C)
%I4

= ?(I, C) (4.1)

where� is the mass per unit length, 3 is a damping coefficient, and��

is the flexural stiffness, given by the elastic modulus of the material �

and the inertia of the section �. In Equation (4.1), D(I, C) is a function

in space (I) and time (C) that indicates the structural displacement

response in the direction of the load, while the %3 5 /%G3 operator

indicates the 3-th derivative of the function 5 with respect to G.

Using the superposition principle, the structural response can be
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written as a linear combination of modal responses:

D(I, C) =
∞∑
<=1

)<(I)@<(C) (4.2)

where )<(I) is the <-th mode shape of the structure and @<(C) is
a function of time that presents a peak in the frequency domain

around the damped <-th circular frequency $3,< which, in the

case of low damping, can be assumed as the <-th natural (circular)

frequency of the structure

$< =
<2�2

;2

√
��

�
(4.3)

where ; is the length of the beam. In free vibration conditions, i.e.,
?(I, C) = 0, if damping is small, the structural response can be

approximated as

D(I, C) =
∞∑
<=1

2< sin

(
<�I
;

)
4−�$< C sin ($<C) (4.4)

with 2< representing a constant depending on the initial conditions

and � denoting the modal damping ratio, here assumed as equal for

all the vibration modes.

Typically, in SHM applications, accelerometers are employed to

collect the structural responses. The collected acceleration, in the

case of free vibration, can be described using the following equation:

%2D(I, C)
%C2

=

∞∑
<=1

2< sin

(
<�I
;

)
¥@<(C) (4.5)

where

¥@<(C) = $2

<4
−�$< C

[ (
�2 − 1

)
sin ($<C) − 2� cos ($<C)

]
(4.6)

The Fourier transform of the acceleration can thus be calculated

as

�0(I, 5 ) = F

[
%2D(I, C)

%C2

]
=

∞∑
<=1

2< sin

(
<�I
;

)
&<( 5 ) (4.7)
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with&<( 5 ) representing a normalized transfer function of the SDOF

system associated with the <-th mode:

&<( 5 ) =
$3

<

(
1 + �2

)
+ 49��$2

< 5

$2

< +
(
�$< + 29� 5

)
2

(4.8)

Considering now a single moving load with magnitude %, a con-

stant speed E and negligible mass, the load function can be written

as ?(I, C) = %�(I − EC) and, if damping is small, the displacement

response of the structure becomes [267]:

D(I, C) = %;3

48��

∞∑
<=1

1

<2 (<2 − 
2) sin

(
<�I
;

)
[
�<(C) −



<
4−�$< C sin ($<C)

] (4.9)

with


 =
E;

�

√
�

��
(4.10)

�<(C) = sin

(
<�EC
;

)
Π

(
EC

;
− 1

2

)
(4.11)

where Π(C) is a rectangular function used to limit the support of

�<(C) to the interval C ∈ [0, ;/E], i.e., when the load is on the beam,

and � denotes the Dirac delta function. The acceleration response,

obtained by double derivative thus reads:

%2D(I, C)
%C2

= − %;
3

48��

∞∑
<=1

1

<2 (<2 − 
2) sin

(
<�I
;

)
{ (
<�E
;

)
2

�<(C) +


<
¥@<(C)

} (4.12)

and its Fourier transform is

�E(I, 5 ) = F

[
%2D(I, C)

%C2

]
=

= − %;
3

48��

∞∑
<=1

1

<2 (<2 − 
2) sin

(
<�I
;

) [
!<( 5 ) −



<
&<( 5 )

] (4.13)

where !<( 5 ) is a function depending on the quasi-static effects of
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the moving load and has the following expression:

!<( 5 ) =
�E<3

2;
(
;2 5 2

E2
− <2

4

) 4 9�( <−1

2
− ; 5E

)
sin

(
�; 5

E
− <�

2

)
(4.14)

Comparing Equations (4.7) and (4.13), it is possible to notice that,

except for the constants, the second equation has an additional

term represented by Equation (4.14). The expression of !<( 5 ) can be

obtained by applying the modulation theorem to a sinc function, as

shown in Chapter B. The resulting function presents a sharp peak

at a frequency value that grows with <, assuming however lower

magnitude. Also, !<( 5 ) decreases with 5 2
. It can be therefore be

assumed that the term !<( 5 ) has a non-negligible contribution in

the structural response only in the low-frequency range. On the

other hand, the function &<( 5 ) carries information about the <-th

vibration mode of the structure, and thus it generally governs the

medium-high-frequency content of the response spectrum.

Vehicular traffic, though as an ensemble of moving loads, induce

manifold effects in the structural vibration response, namely (1) quasi-

static effects due to the deflection of the structure under the weight

of the passing vehicles, (2) dynamic effects due to instantaneous

equilibrium between inertial, elastic, and dissipative forces, and

(3) short-term effects, here addressed as "noise", mainly given by

the interaction between the vehicle wheels and the uneven road

surface. The first phenomenon, described in Equation (4.14), is closely

related to the instantaneous vehicle location and mainly affects the

lowest (typically sub-hertz) frequency range in the spectrum of the

structural response. The second family of effects can be modeled as

the superposition of a set of structural vibration modes, described in

Equation (4.8), the first of which generally populate the frequency

range between few hertz and few dozen hertz for the most common

RC viaducts. Finally, noise affects the entire spectrum, with the

majority of its energy concentrated at the higher frequencies.

Due to the particular structure of the response spectrum, differ-

ent structural features can be analyzed by individually processing

different frequency bands. In this study, the attention is posed on

the low-frequency range, with the aim of extracting quasi-static

damage-sensitive features which depend on the location of the vehi-
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cle (i.e., the influence line), as well as modal parameters (i.e., natural

frequencies and sparse estimates of the mode shapes) of the first

dominating dynamic contributions.

As shown in Section 3.2, the MAD can be used to build adaptive

filter banks able to extract decoupled modal contributions from the

structural response collected at different instrumented locations. In

the mentioned study, critically sampled signal components were

extracted using wavelet filter banks, with the aim of reducing the

weight of identified parameters. Besides, if the structure can be

modeled as a linear time-invariant system, static filter banks can be

employed, improving the efficiency of the identification procedure.

In this section, the aforementioned concepts are employed in the

structural identification of civil infrastructures under the following

assumptions:

1. A vehicle is modeled as a single constant load, regardless of

the spacing between the wheel axles;

2. Only one vehicle at a time passes through the bridge with a

constant velocity;

3. The vehicle-bridge coupling effects are neglected.

The first two assumptions allow considering the loading function as

?(G, C) = %�(G−EC). If multiple axles are present, the suppression of

certain frequency values in the response spectrum should be taken

into account. However, in the following sections, it is shown that the

first assumption can generally be legitimately considered. Moreover,

due to the modest length of single spans in RC infrastructures, the

second hypothesis can be generally assumed in the case of fluid

traffic. Finally, concerning the third point, RC infrastructures are

typically massive with respect to ordinary cars.

In the following parts, two identification approaches, based on the

low-frequency and (medium-)high-frequency effects, respectively,

are proposed to obtain different structural features which may be of

particular interest for the assessment of the structural integrity.
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Low-frequency effects

Applying a sub-hertz lowpass filter to the structural acceleration

response collected at location distant �; (with � < 1) from the first

support during the passage of a vehicle with constant velocity E, in

the interval C ∈ [0, ;/E], from Equation (4.12), it is possible to define

ℎ(�)[C] =
(
%2D(I, C)

%C2

����
I=�;

∗ 1̄0

)
[C] ≈

≈ − %;
3

48��

�∑
<=1

�2E2
sin(<��)

;2 (<2 − 
2) sin

(
<�EC
;

) (4.15)

where ∗ is the convolution operator, 1̄0[C] is the impulse response of

the lowpass filter, and � indicates a small number of contributions

with the majority of their frequency content in the sub-hertz interval.

Assuming the distance traveled by the vehicle as I = EC, it is possible

to obtain a function of space which represents the double derivative

of the displacement influence line of the structure with respect to

space as:

ℎ(�)[I] =
�∑

<=1

ℎ
(�)
< [I] ≈

≈
�∑

<=1

− %;
3

48��

�2E2
sin(<��)

;2 (<2 − 
2) sin

(
<�I
;

) (4.16)

The function ℎ(�)[I] is thus the influence line of the curvature

of the beam in the normalized location � and is therefore also

proportional to the influence line of the bending moment. Due

to the Maxwell-Betti reciprocal work theorem, Equation (4.16) can

also be interpreted as the curvature of the deflection shape of the

beam subjected to a force % statically applied at the instrumented

location.

It should be noted that ℎ(�)[I] can be identified using a sin-

gle sensing device deployed on the structure, offering however

a dense description of the structural behavior, depending on the

sampling frequency of the collected data. Moreover, curvature is

a well-established DSF that is typically obtained through double
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derivation upon identifying mode shapes through a set of limited

sensors. The traditional approach generally involves the introduction

of computational errors (e.g., due to the central difference method),

which may affect the robustness of the outcomes in the presence of

noisy identified parameters. Besides, the curvature is typically esti-

mated only at the instrumented locations. Conversely, the proposed

method exploits the collected acceleration to infer information about

curvature in potentially continuous locations, without performing

any approximations in the derivation process.

It is worth noting that the second hypothesis reported in Section

4.1 related to the constant vehicle speed is here fundamental to

consider the double derivative in time (i.e., bridge acceleration) as a

double derivative in space (i.e., bridge curvature). Indeed, passing

from one quantity to another, a multiplication factor depending

on the change of variable is involved. This factor can be calculated

based on the vehicle speed. However, a varying speed would lead

to a non-constant factor that affects the estimated curvature. Further

studies on removing this dependence based on information on the

instantaneous vehicle velocity (or an estimate based on data collected

from cameras or optical sensors) must be conducted.

Considering loads consisting of two axles, an equivalent function

in space can be obtained by calculating ℎ(�)[I]∗&F[I], where &F[I] =
�[I] + �[I + F], F is the distance between the wheel axles and �[I]
is a discrete Dirac delta function, thus obtaining

ℎ(�)[I] ∗ �F[I] = ℎ(�)[I] + ℎ(�)[I + F] (4.17)

Physically, this function represents the influence line of the

curvature of the beam when the first load is at location I and the

second is at location I+F. In the frequency domain, the spectrum of

Equation (4.17) can be obtained as a simple point-by-point product,

i.e.,�(�)[ 5 ]�F[ 5 ], where�(�)[ 5 ] and �F[ 5 ] are the spectra of ℎ(�)[I]
and &F[I], respectively, reported in Figure 4.1. Considering the

frequency values 5
(1)
B and 5̄B , defined as

5
(1)
B =

(
B + 1

2

)
E

;
(4.18)
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5̄B =

(
B − 1

2

)
E

F
(4.19)

representing the B-th zeros of�
(�)
1
[ 5 ] (i.e., the frequency spectrum of

ℎ1[I]) and �F[ 5 ], respectively, it is possible to assume that�(�)[ 5 ] ≈
�(�)[ 5 ]�F[ 5 ] if 5 (1)

1
� 5̄B , i.e., if F � ;. In particular, assuming the

limit

5
(1)
B

5̄B
= 3

F

;
≤ 1

3

(4.20)

will guarantee that the double load affects �(�) of up to 13%. As a

geometrical limit, it can thus be posed that ; ≥ 10F. This condition

can be generally assumed in the case of large civil infrastructures.

However, the effect of multiple loads generally produces a smoother

influence line. In the specific case of two axles, this can be ob-

served analytically since the effect of �F[ 5 ] is of reducing the higher

perceptible contributions (with an < index close to �) of ℎ(�)[I].
Since higher-frequency contributions are attenuated, the resulting

function in space is smoother.

In addition to the aforementioned geometrical constraints, the

sampling frequency of the accelerometers should be selected based

on the required resolution of the influence line. In particular, consid-

ering the vehicle velocity E and the required spatial resolution A, the

minimum sampling frequency can be obtained as 5B = E/A [268].

This study only considers individual vehicles traveling the bridge

deck. This is an admissible assumption for minor bridges in regular

traffic conditions. Indeed, considering the safety distance while

driving, which is typically determined using the "two-second rule

of thumb", vehicles driving at 50 km/h should have an in-between

distance of about 30 m. However, multiple vehicles could be on the

same bridge span in busy traffic conditions. Moreover, there may

be vehicles in opposite directions. Knowing the loading pattern is

essential to estimating the influence lines in these cases. In such

situations, deconvolution strategy could be used to decouple the

effects of multiple loads (under the assumption of linear-elastic

structural behavior) [121]. The decoupled time histories can thus be

employed for influence line identification. This aspect needs further

investigation.
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Figure 4.1: Quasi-static components of the structural response in space (a) and frequency domain (b); two-axle

excitation in space (c) and frequency domain (d)

High-frequency effects

The high-frequency range of the response spectrum of the structure

under a single moving load is analogous to the response spectrum

obtained in free vibration condition, reported in Equation (4.7).

Here, each term of the summation is related to a different resonant

frequency of the structure and presents a peak in the frequency

domain around the frequency$< . Assuming that the signal collected

by the 8-th accelerometer deployed on the structure is formed of a

part representing the structural response and an instrumentation

noise term �8[C], as shown in Figure 4.2, Equation (4.5) can be

rewritten as

G8[C] =
∞∑
<=1

)8 ,< ¥@<[C] + �8[C] (4.21)

where G8[C] is the acceleration collected by the 8-th sensor and )8 ,<
is the 8-th element of the <-th mode shape. Assuming the noise

term as white Gaussian, i.e., having an ideally flat spectrum, each

modal contribution in the summation of Equation (4.21) has a limited

range in frequency where the structural response is higher than the

instrumentation noise. Therefore, modal responses can be extracted

using suitable bandpass filters with impulse responses 1̄< centered
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at the natural frequencies of the systems $< and having a width

equal to the frequency band that exceeds the noise threshold.

Section 3.3 showed how these filters can be simultaneously gener-

ated and applied to the collected data to extract modal contributions

adaptively through the MAD. In this chapter, a filter bank suitable

for the extraction of modal contributions in civil infrastructures

under moving loads is generated based on this technique. It is also

shown how modal parameters, i.e., natural frequencies and mode

shapes, can be identified from decoupled modal responses.

Consideration on multiple moving loads

Although the application of the MAD-based decomposition

algorithm in the case of a single moving load is similar to

the case of impulsive load or broadband noise excitation, the

presence of multiple loads theoretically affects the outcome of

the procedure. In particular, considering a vehicle having two

wheel axles, the frequencies close to 5̄A are suppressed in the

structural response due to the particular spectrum of the load

function shown in Figure 4.1d. Nevertheless, in real applications,

vibration transmitted by the adjacent spans – due to the passage
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Figure 4.2: Modal components of the structural response in time (a) and frequency domain (b); bandpass filters in

time (c) and frequency domain (d)
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of other vehicles – and other loads, such as wind, will form a

more complex loading function, which can be represented in the

form:

?(I, C) = �(I, C) + %[�(G − EC) + �(G − F − EC)] (4.22)

where �(I, C) is an additional distributed noise function due to

ambient and operational vibration. Considering the structure as

a linear system, the structural response will include the effects of

both moving loads and environmental phenomena. While the

first are likely to prevail, the other effects produce contributions of

the structural response that populate the spectral ranges close to

5̄A . The similarity of the ODSs that generate high-valued regions

in the MAD is intended in a vectorial sense (cosine similarity),

i.e., ODSs which have similar ratios between their elements will

generate MAD values close to 1, regardless of the amplitude of

each specific element of >:[C]. Therefore, the MAD does not

depend directly on the amplitude of the signal components. For

this reason, if the term �(I, C) generates a structural response

that exceeds the noise floor level of the accelerometers in all

the frequency spectrum, the MAD will be robust to suppressed

frequency bands due to multiple loads.

4.2 A unified identification framework

In Section 4.1, a method for estimating dense quasi-static features of

a structure modeled as a simply supported beam using potentially a

single sensor is shown. In particular, a lowpass filter is employed to

extract the curvature influence line of the structure from acceleration

data. However, curvature influence lines obtained in this way are

sensitive to noise and dynamic effects. On the other hand, modal

parameters are only defined at the instrumented locations but

are generally more robust to noise. Thereby, a combination of the

information obtained through the two aforementioned features may

provide insights about the presence, approximate location, and

entity of structural damage. In the following, a novel strategy for

SHM of civil infrastructures is presented based on these concepts.

Specifically, a filter bank that includes the filters able to extract
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both quasi-static and dynamic features is first presented. Then,

an approach for damage identification is proposed based on the

identified features.

Considering a set of column vectors b(C)
9

containing the coeffi-

cients of the impulse responses 1̄
(C)
9
[�]with � = 1, . . . , # , where #

is the filter length, a filter bank matrix at the C-th time instant can be

represented as follows:

BC =
[
b0 , b

(C)
1
, . . . , b(C)?

]
(4.23)

Here, the term b0 contains the coefficients of the lowpass filter 1̄
(C)
9
[�]

used in Section 4.1 to extract the quasi-static structural features. In this

study, it is assumed that b0 does not depend on the time instant, i.e.,
the lowpass filter does not evolve over time, and therefore the apex

(C) is dropped. On the other hand, the terms b(C)
9

with 9 = 1, . . . , ?

indicate the adaptive time-dependent bandpass filters.

Considering a matrix XC with the form

XC = [xC ,1 , xC ,2 , . . . , xC ,A] (4.24)

where xC ,8 are column vectors containing the samples of the ac-

celeration signal G8[C] in the interval [C − #/2, C + #/2], a set of

decomposed signals can be computed as:

YC = XT

C BC =


H1,0[C] H1,1[C] · · · H1,?[C]
H2,0[C] H2,1[C] · · · H2,?[C]
...

...
. . .

...

HA,0[C] HA,1[C] · · · HA,?[C]


(4.25)

It should be noted that the elements H8 ,0[C], upon changing

the variable in I = EC, represent the estimates of curvature at

the 8-th location, when the load is applied in I. Conversely, due

to the Maxwell-Betti reciprocal work theorem, H8,0[C] can also be

interpreted as the structural curvature in I generated by a static

load applied at the 8-th instrumented location. On the other hand,

the terms H8 ,<[C] with < = 1, . . . , ? are the C-th samples of the <-th

modal responses collected at the 8-th location.
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When moving loads enter and leave the monitored bridge span, a

peak in acceleration is typically registered due to the dynamic effect

of the load passing on the bridge joint. These peaks can be used in

an automated procedure to trigger the calculation of quasi-static

and dynamic structural features. The parameters identified in these

time intervals can thus be averaged by considering different passing

vehicles to improve the robustness of the estimate. In particular, the

curvature influence line in position �; (which is the 8-th instrumented

location) can be computed as

ℎ(�)[I]
��
I=EC

= H8 ,0[C] (4.26)

with C = 0 the instant when the load enters the bridge span and

C = ;/E the instant when the load leaves the bridge span. An

average influence line ℎ̄(�)[I] can be computed upon normalization

(e.g., to the maximum value in the considered interval) to remove

the dependence on the vehicle weight. Considering baseline and

inspection estimates of the average influence lines identified in

two different time instants, the (spatial) point-by-point difference

between them can be employed as a dense feature for damage

identification. It should be noted that the spatial resolution of

this feature depends only on the sampling frequency of H8 ,0[C].
A schematic workflow of the procedure proposed is illustrated in

Figure 4.3: (1) upon collecting the signals and building the filter banks

through the MAD, which can be updated at given time intervals,

(2) analysis windows are selected as the intervals between the

entering and leaving of a vehicle in the bridge span. The acceleration

signals are then (3) filtered and (4) normalized to obtain sparse

estimates of the modal parameters at the instrumented locations

and dense curvature influence lines. Modal parameters, intended as

frequencies and amplitudes of HA,?[C], can be easily extracted either

in the time (e.g., using the Hilbert transform [269] or non-linear

energy operators [226]) or frequency domain (e.g., peak picking).

Both dense and sparse identified parameters can then be employed

for damage identification.

In the common practice, structural damage is assessed by com-

paring two states of the monitored system, namely, a baseline (here

addressed as "undamaged") condition and an inspection (possibly
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damaged) condition. In this study, the structural curvature is used

as a DSF. In particular, we assume that an increment in curvature

is representative of damage, modeled as a local stiffness loss. This

way, the difference in the curvature estimate, obtained either from

influence lines or modal parameters, calculated between the inspec-

tion and the baseline condition is assumed here as a damage index.

Therefore, prominent peaks in the function of the damage index

indicate damaged areas.

The magnitude of the difference of curvature (here called "differ-

ence function" for simplicity), under certain assumptions, can also

be representative of the damage entity. In the following, these as-

sumptions and the method proposed to quantify structural damage

using the identified influence lines are described in detail.

As aforementioned, for a simply supported beam, according

to the Maxwell-Betti theorem, the influence line calculated in a

given location using a moving load has the same profile of the

beam deflection shape when it is subjected to a load applied at the

instrumented location. In isostatic structures, the bending moment

distribution "[I] due to an unknown concentrated load applied at

a certain location I = �; does not depend on the structural stiffness
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Figure 4.3: Workflow of the procedure proposed for feature extraction
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��[I] and has a triangular shape with a maximum "� = "[�;]. In

this case, the difference between the normalized curvatures ℎ̄
(�)
D [I]

and ℎ̄
(�)
3
[I] identified in a baseline and inspection time intervals,

respectively, can be written as

Δ"(I) = ℎ̄
(�)
3
[I] − ℎ̄(�)D [I] =

"[I]
�3��3[I]

− "[I]
�D��D[I]

(4.27)

where the normalization factors �D and �3 are

�D = max

(
"[I]
��D[I]

)
; �3 = max

(
"[I]
��3[I]

)
(4.28)

Let ��D[I] = ��D be constant with I in the undamaged condition

and consider the damage as a localized stiffness reduction at the

location Ī with the following constraint on the damage entity:

��3[Ī] ≥
"[Ī]
"�

��D (4.29)

This condition is assumed to have the normalization factors both

equal to

�D = �3 =
"�

��D
(4.30)

In this case, Equation (4.27) in the damaged location becomes

Δ"[Ī] = "[Ī]
"�

(
��D

��3[Ī]
− 1

)
(4.31)

The local stiffness of the damaged beam can thus be identified

as:

��3[Ī] = �[Ī]��D (4.32)

with

�[Ī] =
(
"�

"[Ī]Δ"[Ī] + 1

) −1

(4.33)

It should be noted that the ratio "�/"[Ī] can be easily determined

upon localizing the damage (i.e., localizing a peak in the difference

function) and does not depend on the load magnitude but only

on its position (i.e., the instrumented location). Moreover, due to

the assumption of Equation (4.29), a reliable value of � can be
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effectively determined only far from the instrumented location. On

the other hand, close to the instrumented location, a local maximum

in the curvature function still describes the damage location, but its

amplitude is not representative of the damage entity.

It should also be observed that, for a given cutoff frequency 5; of

the lowpass filter used to identify the influence line, the accuracy of

� depends on the speed of the vehicle E and the spatial extension of

the damage. Specifically, the frequency of the filtered signal should

be high enough to describe the localized irregularity of the curvature

properly, i.e., the period of the filtered signal should be at most half

the time it takes for the vehicle to overcome the damaged part.

In other words, the minimum spatial extension of the damage to

properly identify its entity is

�<8= =
E

2 5;
(4.34)

Identification of influence lines of an RC viaduct
using sparse sensors

In this section, the data collected by the University of L’Aquila during

an experimental campaign conducted between February and June

2019 on the viaducts of the A24 motorway will be used to test the

proposed methods. The Italian A24 motorway connects Rome to

the Adriatic Sea and has a considerable number of viaducts, given

the complex orography of the territory. Many viaducts consist of

single-span post-tensioned prestressed beams in a simply-supported

isostatic configuration (Figure 4.4). The trapezoidal cross-section,

shown in Figure 4.5, is 2.30 m high and has two 3.85 m-wide can-

tilevered wings. The bridge spans are supported by pairs of piers

with a hollow cross-section placed at a center distance of about

40 m.

Ten biaxial FBAs were used to record the deck response to traffic

excitation, deployed as shown in Figure 4.5. The accelerometers were

organized in two measurement chains, each guided by the main

recording unit connected to a Wi-Fi access point and synchronized

by GPS. The data was originally sampled at a frequency of 200 Hz,

and an anti-aliasing filter with a cutoff frequency of 40 Hz was
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(a) (b)

Figure 4.4: Detail of the

supports (a) and side

view of an A24 viaduct

(b) [118]

used. In this thesis, three viaducts are studied, namely, Cerchiara,

Temperino, and Biselli. Acceleration time histories of 1500 s collected

in the vertical direction and downsampled at 50 Hz are employed

for structural identification. In these time intervals, a car with a

mass of 1750 kg and wheel axles distant 2.50 m, as shown in Figure

4.5c, excited the bridge by moving back and forth (in this section

addressed as Direction 1 and Direction 2) multiple times, at a speed

of between 30 km/h and 60 km/h.

The accelerometers S1, S5, S6, and S10 are located near the

expansion joints. The recordings of these devices are used to select

the signal intervals recorded during the passage of the car, as
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Figure 4.5: Plan (a) and section (b) views of the bridge spans, adapted from [118], and car scheme (c); dimensions in

cm
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shown in Figure 4.6, where the acceleration signals collected on

the Cerchiara viaduct are shown. In particular, considering the

speed and the geometry of the car, two close acceleration peaks

(i.e., distant in time between 0.2 s–0.4 s, generated by the wheels

passing on the expansion joints) are used as a triggering sequence

to identify the passing car. Specifically, a triggering sequence in

sensor S1 followed by a triggering sequence in S5 within 6 s indicates

a car driving in Direction 1. Conversely, a triggering sequence in

sensor S5 followed by a triggering sequence in S1 within the same

time interval indicates a car driving in Direction 2. In this study,

individual moving cars were considered. The identified intervals

will be used in the evaluation of quasi-static and dynamic structural

features.

In order to build a filter bank capable of extracting the modal

responses of the structure, the MAD was applied to the multivariate

signal consisting of all the 10 recording channels. The SWPT was

used to obtain the preliminary signal decomposition, employing the

fk22 wavelet function. A DBSCAN procedure was then applied to

the relevant ODSs, identifying four different vibration modes (for

all the three viaducts), represented in Figure 4.7 on a time-frequency

plane. In the application of the DBSCAN algorithm, a neighborhood

search radius of 0.1 was used, employing the Euclidean distance as

a distance metric. In Figure 4.6, the MAD obtained for the Cerchiara

viaduct is represented in the time-frequency plane. White regions in

Figure 4.7 indicate MAD values close to 0, while the elements that

exceed the 1 − � threshold (here selected as 0.5) are partitioned into

four clusters indicated by different colors. A zoom view is reported

in the upper-right part of the figure to better show the components

Figure 4.6: Collected ac-

celeration and identifica-

tion of passing vehicles

(Cerchiara viaduct)
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related to the higher modes, which are generally more difficult to

identify.

The equivalent bandpass filters which can be used to extract the

identified modes are calculated as shown in Section 3.4, considering

a wireless sensing system. It should be noted that, in this study, the

time dependence of the cutoff frequencies is neglected since the

structural behavior in the short term does not present varying modal

features. In the lower-left part of Figure 4.7, the four frequency bands

analyzed to extract the modal contributions are highlighted.

For each time interval identified during the car passage, here

addressed as "sample interval" or simply "sample", the modal pa-

rameters are estimated by applying the Hilbert transform to the

decoupled modal contributions. The mean of the instantaneous

frequencies calculated through the Hilbert transform is reported

in Figure 4.8 for each sample. It is possible to observe that slight

variations may manifest in identified frequencies. The robustness of

the identification can be improved by considering average estimates

computed over a large set of samples. The average values of modal

frequencies are reported in Figure 4.9, together with the average

amplitudes of the mode shapes. It should be noted that, due to the

comparable geometry of the viaducts, the modal parameters of the

different case studies are similar. Moreover, the mode shapes are in

good agreement with the estimates obtained through the FDD [259],
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applied in this study to the entire set of signals with a duration of

1500 s.

In this case study, the elements of the lowpass filter b0 used for

the extraction of the quasi-static features was selected considering a

clustered filter consisting of the first two wavelet filters, i.e.,

10[�] = (31 ∗ A1)[�] + (32 ∗ A2)[�] (4.35)

where 3:[�] and A:[�] are the impulse responses of the equivalent

decomposition and reconstruction filters, respectively, associated

with the :-th outcome of the SWPT.

In Figure 4.10, the lowpass filtered signal H8 ,0[C] obtained for

the Cerchiara viaduct is reported for sensors S2, S3, and S4. The

highlighted intervals are the identified samples related to passing

cars. In the zoom view, it is possible to observe that the maxima of

the filtered signals are consistent with the locations where they are

collected. Specifically, the signal related to S2 has a maximum in the

left part of the sample interval when the car moves in Direction 1,

while the signal collected in S4 has a maximum in the right part of the

identified interval. Conversely, the order of the peaks is exchanged

in the interval related to Direction 2. Moreover, the signal of sensor

S3 has a maximum between the other two in both configurations.

Different estimates of the curvature influence lines are extracted

from the sample intervals and the estimates related to Direction 2 are

switched before changing the time variable C into the spatial variable

I = EC. Then, the extracted curves were interpolated to have the same

number of points (in this case, 100 points), representing a regular

set of equally-spaced locations. In Figure 4.11, all the estimates of

the influence line are shown in gray for each case study and sensor
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location. In particular, each gray line represents the mean between

the influence lines calculated in a given sample interval by the two

sensors at the opposite sides of the deck (indicated in the lower-

right corner of each plot). The average of the identified influence

lines is also reported in magenta and compared with the curvature

of the structural deflection calculated using the flexibility matrix

(only at the three instrumented locations) as shown in Equation

(3.22), represented in blue. The flexibility-based curvature was

evaluated using the set of identified modal parameters, as indicated

in Equation (3.21), and the results shown in Figure 4.11 are obtained

as the mean of the lines evaluated at the two sides of the deck.
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Figure 4.11: Identified curvature influence lines: Cerchiara (a), Temperino (b), and Biselli (c)

In general, the curvature (or bending moment) influence line of a

simply-supported beam should have two linear segments, with a

maximum in the point where the influence line is evaluated (in this

case, the instrumented location, highlighted by a vertical dashed

line in Figure 4.11). However, due to the lowpass filter applied to

the acceleration time history in the proposed method, the higher

frequency components that contribute to sharpening the influence

line are dropped. Therefore, the influence line results smoother than

the theoretical result. It should also be noted that only three points

of curvature can be calculated using the flexibility-based method

using the sensor layout of this application due to the limitations

of the central difference method. The results obtained through the

flexibility-based procedure are slightly different from the theoretical

result, but they are in good agreement with the dense feature

obtained through the proposed method. Despite the differences

between the estimated values and the theoretical shape of the

influence line, the results shown can be effectively used to localize

structural anomalies in an SHM procedure. This aspect is shown in

the numerical case study presented in the next section.
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Damage identification of a numerical model using
sparse sensors

The second case study analyzed in this chapter is a numerical

model of a simply-supported beam with structural characteristics

similar to the viaducts analyzed in the previous section. Specifically,

the length of the beam is 40 m and the cross-section is modeled

as shown in Figure 4.5b, with an overall flexural stiffness �� =

105.96 × 10
6

kNm
2
. Modal damping of 5% was assumed for all the

vibration modes. Three uniaxial accelerometers were simulated,

collecting the acceleration in the vertical direction at the locations

indicated in Figure 4.12. A single row of sensors was used in this case

study since the beam was modeled as a unidimensional structure.

In order to simulate the application of the damage identification

procedure proposed in this chapter, four damage locations were

considered, resulting in the seven damage conditions summarized

in Table 4.1. Specifically, individual or multiple localized damages

(modeling the impacts generated by vehicles underneath the bridge

or cracked regions) were simulated in the segments L1, L2, and

L3. On the other hand, location D simulated a diffuse stiffness

reduction (e.g., due to spalling), and was used to generate three

damage conditions of different entity. In this case study, the moving

load was modeled as a single force %, passing over the structure

(from left to right, as shown in Figure 4.12) with a constant speed.

In a first analysis, the influence lines were determined by pro-

cessing the clean acceleration signal, sampled at 100 Hz, collected in

a single interval representing the passage of a moving load on the

beam. Specifically, Figure 4.13 shows the curvature influence lines

(normalized to the maximum value) obtained through a lowpass

filter consisting of the first two components of a WPT of level 7

1000 1000 1000 1000

4000

L1 L2 L3

S1 S2 S3

Pz 1100200 200 200 200 200

D

Figure 4.12: Scheme of

the numerical bench-

mark; dimensions in cm
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Table 4.1: Description of

the damage conditions
Damage condition Stiffness reduction

DC1 30% in L1

DC2 30% in L2

DC3 30% in L3

DC4 5% in D

DC5 10% in D

DC6 15% in D

DC7 10% in L1 and 30% in L3

(with a resulting cutoff frequency of 0.78 Hz) generated using the fk8
function. The results obtained for each sensing location (indicated

in the lower-right corner of each plot) and damage condition are

plotted in solid lines, while the differences between the normalized

influence lines calculated in the undamaged and each damaged

scenario are reported as dotted lines. In this study, different vehicle

speeds were considered. In particular, Figure 4.13a and Figure 4.13b

were obtained simulating the passage of a vehicle with a speed

of 15 m/s. In this case, the location was discretized in 264 points.

On the other hand, Figure 4.13c shows the results obtained using a

speed of 3 m/s, and the location was discretized in 1332 points. It

should be noted that each result was obtained considering only one

sensor.

In the cases of localized damage, clear local maxima of the differ-

ence functions (highlighted by a circle) are close to the real damaged

areas, independently of the vehicle speed. However, sharper peaks

can be identified using the slow vehicle. In this situation, it is also

possible to identify the presence of multiple damages (condition

DC7). Similarly, high values in the difference function were always

identified in the proximity of the diffuse damage, and, in the case

of a slow vehicle, the damage index was less affected by dynamic

effects, resulting in a more accurate damage localization.

Upon identifying the location of the damaged areas, the stiffness

loss can be quantified using Equation (4.33). The results of damage

quantification using the values identified by sensor S1 (explicitly

written in Figure 4.13) are reported in Figure 4.14 in the form

(1−�)×100%. It should be noted that, according to (4.34), for a vehicle

moving at 15 m/s, the smaller damage that can be correctly quantified

has an extension�<8= of 9.6 m (considering the lowpass frequency of
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Figure 4.13: Influence lines identified in the numerical benchmark and difference functions for different damage

entity and vehicle speed: (a) Local damage, 15 m/s; (b) Diffuse damage, 15 m/s; (c) Mixed damage, 3 m/s

0.78 Hz corresponding to the first two wavelet components). Indeed,

the identified values reported in Figure 4.14a underestimated the

damage entity since the damaged interval (2 m) was much lower

than �<8= . On the other hand, for the same vehicle speed, the entity

values related to the diffuse damage reported in Figure 4.14b are

more accurate, especially for low damage levels. Finally, considering

the vehicle speed as 3 m/s (for which �<8= is 1.9 m), the damage

entity can be correctly identified also for the localized damage

conditions.

While specific inspection vehicles traveling at 3 m/s can be used

in a controlled environment (i.e., constant speed and exact path)

with high-sensitivity accelerometers, faster vehicles are more rep-

resentative of ordinary traffic conditions, where noise sources are

generally non-negligible. Therefore, in further analysis, the recorded

time histories were polluted by introducing a considerable Gaussian
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Figure 4.14: Identified damage entity for different vehicle speed: (a) Local damage, 15 m/s; (b) Diffuse damage,

15 m/s; (c) Mixed damage, 3 m/s

white noise component with a standard deviation equal to the 50% of

the standard deviation of the collected acceleration. The significant

noise level represents different phenomena, including instrumenta-

tion noise, slightly non-constant vehicle velocity, and non-straight

path. In this case, 100 sample intervals for the undamaged and each

damage condition from DC1 to DC6 were considered to calculate an

average influence line from the normalized sample estimates, which

was then used to compute the damage index (i.e., the difference

function). The results of this analysis are reported in Figure 4.15.

Specifically, this figure shows the influence line obtained for each

sample (thin lines), together with their average curves (thick lines),

as well as the difference functions (dotted lines) for each sensor

location (S1, S2, and S3) and damage conditions (from DC1 to DC6).

In this case, the difference functions are corrupted by noise, and

localizing damage becomes challenging. However, by combining the

difference functions, i.e., by summing them for each spatial location,

the damage localization can be improved, as shown in Figure 4.16.

In a particularly noisy environment, peaks in the difference

function can also be generated by dynamic effects. Although modal

parameters cannot identify the exact location of damage, they can

be employed to identify the damaged regions where the difference

function peaks are likely related to actual damage. Figure 4.17

shows the difference function obtained from the average curvature

(computed on 100 noisy samples) obtained using the modal flexibility

approach. Three structural deflections were calculated considering

a load vector u with the nonzero load element at location S1, S2,

and S3, respectively (see the lower-right part of each plot). High

values in the difference function were obtained between sensors S2
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Figure 4.15: Influence lines identified in the simulated noisy environment (solid lines) and corresponding difference

functions (dotted lined): (a) Local damage; (b) Diffuse damage
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Figure 4.16: Cumulative difference function obtained in the simulated noisy environment: (a) Local damage; (b)

Diffuse damage

and S3. Thereby, the local peaks in the difference functions obtained

from the influence lines between locations 0 and 66 (Figure 4.16a)

are probably generated by dynamic effects and are not related to an

actual stiffness loss. The results obtained for damage quantification

in the noisy environment using sensor S1 are reported in Figure

4.18. As expected, the local damage conditions were not correctly

quantified. Moreover, the diffuse damage conditions show results

less accurate than those reported in Figure 4.14. However, Figure

4.18a still shows similar identified values for all the local damage

conditions, and Figure 4.18b correctly reports an increasing trend

due to the growing damage entity.
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4.3 Crowd participation

In general, using a smart monitoring system involves a migration

from the traditional planned maintenance, which may involve un-

necessary expenses, to condition-based maintenance, performed

when certain indicators show signs of decreasing performance or

impending failure. While the common practice in SHM is to pe-

riodically measure the structural response (e.g., displacements or

accelerations) using dedicated sensors, new crowdsourcing strate-

gies based on smartphone data can be highly convenient, especially

for applications at a territorial scale. Smartphones are now essential

elements even while driving or walking around cities, as they offer

turn-by-turn navigation information, travel times, and route details.

Besides, in the context of an SHM strategy, built-in GPS and IMU

sensors can provide helpful information on the precise position of

the vehicle, its velocity, and vibration data.

An ever-increasing number of social networks and "community-

driven" GPS navigation services have shown that a human-centered

system can actively contribute to the crowdsourcing of valuable

data to improve or provide accurate information on the environ-

ment around us [270]. The significant diffusion of smartphones

enabled citizens to become the carriers of distributed sensing de-

vices, being themselves the smart sensors of cities and transportation

infrastructure.

The sector of shared micromobility (i.e., bike sharing and scooter

sharing services) is incredibly expanding in several areas of the world

[271]. Combined with the enormous potentialities of smartphones as

sensing devices, this phenomenon opens up new avenues for ISHM,

especially considering that, in this case, sensing devices are free

for the infrastructure owner. This economic saving can be devolved

to motivate the users to use shared vehicles and thus provide

monitoring data through rewards and discounts. A "gamification"

of the monitoring process has already shown particularly effective

in this context [272]. Moreover, from a social viewpoint, this strategy

would create a human-centered monitoring paradigm to promote

the civil sense and raise the awareness and protection of the built

inheritance, fostering a sustainable approach for managing the urban
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environment based on maintenance.

Regarding the technical aspect, smartphones already have ded-

icated applications that enable users to unlock and use shared

vehicles. Integrating these applications with recording, process-

ing, and transmission tools is straightforward since most health

and navigation apps already collect data in full respect of privacy.

In the framework of the envisioned application, the mobile app

should autonomously interact with a cloud-based backend solution

in charge of carrying out the analyses required and provide feedback

to involved stakeholders.

The monitoring strategy proposed in this section aims at achiev-

ing both the optimization of maintenance operations, resulting in

minor management costs and safer roads and infrastructures: the

installation of sensors on civil infrastructures that becomes particu-

larly expensive when their number is large in a densely built area,

is avoided, also cutting the costs related to their maintenance and

management. Moreover, information on the state of health of urban

bridges can help to identify anomalies and adopt an "on-demand"

maintenance policy, thus resulting in generally safer infrastructures

and more effective maintenance procedures. This strategy also pro-

motes the shared micromobility as an alternative and sustainable

transport system within cities. In principle, smartphones installed on

shared vehicles could be used for various monitoring applications in

the built environment, including assessing the health of road bridges,

footbridges, and the state of road pavements [169]. This study fo-

cuses on identifying dynamic parameters of urban infrastructures

(bridges and footbridges) that can be employed to automatically

detect structural anomalies that may undermine the functionality of

these key elements of the city traffic network. Although the practical

development of a mobile application with a cloud-based backend

solution is beyond the scope of this work, this section shows the

theoretical framework and the experimental results that demonstrate

the applicability of the proposed monitoring strategy.

In this section, a procedure to estimate dense (i.e., with high

spatial resolution) dynamic structural features from the set of data

collected using smartphones is proposed. The procedure processes

the data collected by several smartphones, each fixed on a vehicle
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moving on the bridge, continuously acquiring data during the

passage on the bridge.

Most smartphones in commerce have built-in GPS and IMU

sensors, such as MEMS accelerometers, gyroscopes, and magne-

tometers. Several mobile applications use the data measured by

such sensors to provide the users with route indications and other

interactive functions. Since strict synchronization of different data

types is unnecessary for most traditional applications, the data is

typically collected asynchronously. Moreover, GPS measurements

are generally less frequent than IMU recordings to optimize the

power management of mobile devices.

Considering the time interval delimited by the instants C0 and C)

when the vehicle enters and leaves the bridge, respectively, assume

that a mobile application installed on a smartphone generates a

vector z: as soon as a measurement is collected (say, at the :-th

instant). The vector z: can contain information about the acceleration

and the angular velocity collected along three orthogonal axes, three

magnetic field measurements, and three position logs, including

latitude, longitude, and altitude. Since data is generally measured

asynchronously, the vector z: has a varying size in time. Specifically,

z: ∈ ℝ"
, where " is the variable number of measurements.

To analyze smartphone measurements collected on the bridge,

the time interval [C0 , C)], during which the vehicle is physically on

the bridge, should be first identified. Most civil infrastructures have

statically determined schemes guaranteed by expansion joints that

accommodate sliding movements of the restraints. A smartphone

deployed on a moving vehicle that crosses a bridge will likely

experience vertical acceleration peaks at the vehicle passage through

expansion joints. These peak accelerations in the neighborhood of

the ends of the bridge (which are easily accessible through built-in

GPS sensors) make it possible to identify time instants C0 and C)

accurately. This procedure exploits a simple yet effective approach

to extract precisely the time histories of GPS and IMU recordings

corresponding to the bridge crossing. However, if the bridge has no

expansion joints, the GPS data can be used to select an approximate

interval of the measurement time histories included between two

geographical points identified as the bridge ends.
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The data measured by each smartphone during its travel on the

bridge in the interval [C0 , C)] (that vary for each vehicle), is stored in a

cloud database and processed according to the procedure illustrated

on the right-hand side of Figure 4.19. Since smartphones are generally

connected to the Internet, this procedure is particularly suitable for

crowdsourced cloud computing applications. Specifically, it includes

the following operations:

1. Identification of the sensor location: the GPS and all the IMU

measurements, except the vertical accelerations, are used to

estimate the vehicle (and sensor) location with a high spatial

resolution;

2. Identification of the bridge dynamic features: the vertical

accelerations are used to retrieve the features (in terms of

resonant frequencies and modal amplitudes) of the dynamic

response of the bridge;

3. Estimation of the average modal amplitude components: the

dynamic features, identified at positions that depend on the

specific path of the vehicle, are realigned at the locations

identified at point (1); this way, the modal amplitudes identified

by different vehicles can be averaged.

Specifically, IMU and GPS data are fused through an extended

Kalman filter to obtain the vehicle position along the axis of the

bridge. Simultaneously, a bandpass filter is used on the vertical

Data storage

Modal
components

Reconstructed
position

Modal
amplitudes

Position along
the axis

Dense mode
shape or ODS

Bandpass filter

Hilbert transform

Kalman Filter

PCA

Interpolation

Vertical
acceleration

Other IMU
+ GPS measures

Figure 4.19: Scheme of the proposed crowdsourcing strategy
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acceleration data to obtain the instantaneous dominant frequency

and the amplitude (here addressed to as "modal amplitude") of the

structural response in a user-determined frequency range of interest

(RoI). The RoI is determined before the crowdsourcing application

commences, based, e.g., on previous monitoring data or an available

finite element model of the monitored structure, and its boundaries

are selected to include the resonant frequency of a vibration mode

of interest. The proposed procedure calculates the amplitudes of the

modal or ODSs with high spatial resolution and can provide a more

accurate estimate of the dominant resonant frequency within the

RoI.

It should be noted that, since the measured datasets (here called

"samples") are relevant to different vehicles, both the length of the

time histories and the positions where the data are measured change

with the speed of the vehicle and its specific path. A realignment

procedure of dynamic features is proposed herein to interpolate this

data to a user-defined spatial grid along the bridge axis. Thanks

to the distributed data collection through crowdsensing, several

data samples are available and provide a large set of identified

modal amplitudes. The averaging of these estimates can improve

their robustness by mitigating the unavoidable noise component

contained in each of them. The steps of the proposed method are

described in detail in the following subsections.

Identification of the sensor location

The Extended Kalman Filter is a widely used iterative tool for

combining uncertain measurements to obtain accurate information

about nonlinear dynamic systems [273]. In particular, the nonlinear

equations that describe the evolution of the state of the system (state

transition model) and its relationship with the measurements (obser-

vation or measurement model) are linearized locally by computing

their Jacobians. If the measurements collected to update the state of

the EFK are acquired asynchronously and with a varying sampling

frequency, as it usually happens in smartphones, a continuous-

discrete version of the EFK (CD-EKF) can be employed. In this case,

the evolution of the state is described as a continuous function (in

particular, a stochastic differential equation) and is updated as soon
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as a new measurement is collected [274]. In this section, the symbol

x(C) denotes a vector dependent on continuous time, while x: is the

discrete value of x at time C: , i.e., the instant when measurements

are taken. It is highlighted that round brackets are herein employed

to indicate a continuous function, in contrast with square brackets

used in previous chapters, used to indicate discrete sequences. In

this section, square brackets are replaced by the subscript notation

mentioned above to simplify notations.

The system and measurement models of the CD-EFK assumed

in this study are described, respectively, by the following equations:

¤x(C) = 6(x(C)) +w(C)
z: = ℎ (x:) + v:

(4.36)

where z: is the vector containing the discrete measurements; x(C)
and its discrete version x: = x(C:) are vectors containing the state

variables; w(C) ∼ N(0,Q(C)) and v: ∼ N(0,R:) are the process

and observation noise, respectively, both assumed as zero-mean

multivariate Gaussian noise processes with covariance matrices Q(C)
and R: . The differentiable nonlinear functions 6(x) and ℎ(x) are the

state transition and the observation function, respectively.

In this study, a 28-element state vector is employed to track

the orientation (expressed as the four elements of an orientation

quaternion), the velocity, the position, the Magnetic, Angular Rate,

Gravity sensor biases, and the geomagnetic vector. Moreover, the

initial state x(C0) and the noise vectors w(C) and v: at each time C are

assumed as mutually independent. Chapter C of this thesis shows

the structure of the state vector, the state transition function, and the

observation functions.

In the EFK procedure, two steps, namely the prediction and

update steps, alternate, with the prediction continuously advancing

the state until the next measurement becomes available. From a

practical point of view, although the state transition model assumed

in the CD-EFK is continuous, prediction steps are carried out at

discrete (yet arbitrary distanced) time instants. In this study, a

constant frequency 5B equal to the sampling frequency of the vertical

acceleration is selected for this purpose. This is meant to estimate the
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state parameters at the time instants when the vertical acceleration

is measured.

In the update step, the a priori prediction of the current state

is combined with the measurement collected at time C: to refine

its estimate. It should be noted that, while 6(x) has a fixed size,

depending on the structure of x, the observation function ℎ(x) has

a size that depends on the variable structure of z: . In Appendix A,

the different structures for the function <0Cℎ1 5 ℎ(G) are reported

for each possible measurement. Also, more details on the EFK

implementation for the application described in this section are

provided in Chapter C.

Upon calculating the estimated state vector in the interval [C0 , C)]
with a sampling frequency 5B , here indicated as x̂, the estimated

position information ŷ contained in x̂ is organized in a reconstructed

position matrix Y = [ŷ0 , . . . , x̂)]) ∈ ℝ#×3
where # indicates the

number of instants in the interval between C0 and C) . In particular,

the vector ŷ consists of the position of the smartphone obtained by

converting into local coordinates the position in geodetic coordinates

(i.e., latitude, longitude, and altitude) contained in the state vector.

Specifically, the geodetic coordinates are the elements from 14-th to

16-th of the state vector reported in Chapter C. The origin of the local

coordinates system (defined in north-east-down format) is assumed

at the midspan of the bridge.

For the purposes of the presented algorithm, it is convenient to

express the location information along the bridge axis. If the structure

analyzed has a straight axis, the position data can be efficiently

projected onto it by extracting the first principal component from

the dataset Y. Specifically, let the SVD of Y be

U�V) = Y (4.37)

where U ∈ ℝ#×#
and V ∈ ℝ3×3

are the matrices containing the left

singular vectors and right singular vectors of Y, while � ∈ ℝ#×3
is

the diagonal matrix of singular values. It should be noted that, since

Y is formed of three column vectors representing the position in

the local coordinate system, the projection of the three-dimensional

position data onto the principal direction, that is, the direction in
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which the position data explains the higher variance (i.e., the axis of

the bridge), can be calculated as

y = U�s (4.38)

where the vector s = [1, 0, 0]) simply extracts the first principal

component (i.e., the first column vector) from the matrix U�. This

way, the vector y = [H0 , . . . , H)]) contains the dense estimates of the

position of the sensor for the entire time interval when the vehicle

crosses the bridge.

Identification of bridge dynamic features

This section describes the identification of the dynamic structural

parameters (i.e., natural frequencies and modal amplitudes) from

the vertical acceleration recorded by a single smartphone.

Let the structural response collected on the moving vehicle in

terms of vertical acceleration ¥D be

¥D(H, C) =
∞∑
8=1

)8(H) ¥@8(C) (4.39)

where )8(H) is a component of the 8-th mode shape function at

location H and ¥@8(C) is the double derivative of the 8-th modal

contribution to the structural displacement.

Let 1?(�) be the impulse response of a bandpass filter having

low and high cutoff frequencies equal to 5; = 5? − & and 5ℎ = 5? + &,

respectively, where 5? is the central frequency of the selected interval

(i.e., the frequency RoI) and & is a small number. Consider a slow

vehicle (compared to the oscillating velocity of the structure) and

well-distanced vibration modes. If 5? coincides with the ?-th resonant

frequency of the structure, applying the filter 1?(�) to the acceleration

response, the modal contributions with 8 ≠ ? are canceled, as shown

in the previous chapter, and a narrow-band signal, with frequency

content close to the ?-th mode is obtained:

(
¥D ∗ 1?

)
(H, C) =

∞∑
8=1

)8(H)
(
¥@8 ∗ 1?

)
(C) � )?(H) ¥@?(C) (4.40)
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The amplitude 0?(H, C) of the structural response can be calcu-

lated as the absolute value of the analytic signal obtained from

Equation (4.40) using the Hilbert transform [275]. Assuming the

excitation of the bridge as a stationary and uncorrelated white noise

process, different vehicles crossing the bridge at different times are

all subject to different vibration amplitudes at a given location H:

(and corresponding time C:). While the term )?(H:) is the same in

all the cases, the input excitation and, consequently, ¥@?(C:) varies

randomly. Therefore, averaging the amplitude of the filtered signals

extracted from different samples (measured by different vehicles

passing on the bridge), it is possible to obtain the ?-th mode shape

)?(H), except for a normalization factor. It is observed that the

location of the vehicle is a function of its velocity and time. Then,

to correctly average the modal amplitudes, the measurements of

different vehicles must be defined at the points of a unique spatial

grid. It is also noted that the Hilbert transform provides the absolute

value of the instantaneous amplitude. Thereby, the absolute values

of the mode shapes are identified in this procedure.

If the central frequency 5? of the filter is not coincident with a

resonant frequency of the structure or closely spaced modal contri-

butions are included in the RoI [ 5; , 5ℎ], )?(H) represents the average

of the ODSs included in [ 5; , 5ℎ]. Nevertheless, in the proximity of

one or more resonant frequency peaks, the ODS can also be used as

a damage-sensitive feature for SHM purposes [262, 276].

The proposed method provides a more accurate estimate of the

dominant frequency within the RoI through a simple peak-picking

procedure on the frequency spectrum of the vertical acceleration data,

carried out, e.g., considering the maximum spectral amplitude within

the RoI. An instantaneous estimate of the resonant frequency within

the RoI can also be identified from the filtered acceleration data

using the Hilbert transform [275]. The time-dependent frequency

obtained in this way can be averaged over time to obtain a single

value of the dominant resonant frequency. If the structure is formed

by independent spans, this procedure can be applied separately to

each of them, extracting the frequency values from signals recorded

on spatial subdomains corresponding to the different structural

elements. The cutoff frequencies of the bandpass filter 1?(�) - i.e., the
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boundaries of the RoI - should enclose a range of frequencies large

enough to accommodate the variation of the resonant frequency

due, for example, to varying environmental conditions. Indeed, the

proposed method is able to operate with frequency shift within the

frequency RoI. Nevertheless, higher frequency variations would be

identified by the disappearance of the peak.

Multiple RoIs can be employed to identify different modes.

However, the structure should be sufficiently excited in all the

frequency RoIs to allow a reliable identification using the relatively

low-performance sensors embedded into smartphones.

Identification of the average modal amplitude components

In general, different vehicle speeds and changes of speed of a given

vehicle lead to a variable spatial resolution of the identified modal

amplitudes between different samples and to a non-uniform spatial

resolution for the same sample. This hampers their direct averaging.

In order to compute the amplitudes 0?(H, C) at the same points

of a fixed spatial grid that is unique for all the vehicles, a linear

interpolation of the shapes is carried out at equally spaced locations

along the longitudinal axis of the bridge.

Let a? = [0?(H0 , C0), . . . , 0?(H) , C))] be a set of acceleration am-

plitudes measured by a moving vehicle at the instants C: in the

interval [C0 , C)]with a constant sampling frequency 5B , where H0 and

H) are the start and end locations of the measurement. Moreover,

consider the vector y = [H0 , . . . , H)]) of sensor location identified

in the same interval. Each couple of elements (H: , 0?(H: , C:)) relates

a physical location on the bridge H: with the amplitude value 0?

measured at that location at a time C: . These couples are used to

interpolate the data collected during the recording interval [C0 , C)],
at equally spaced physical locations H̄: chosen within the spatial

interval [H0 , H)].

This procedure allows estimating the amplitudes 0B?(H̄:) for each

sample B = 1, . . . , (, that is, for each measurement collected by a

smartphone, at the same points H̄: and to obtain the average values
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of the shapes at locations H̄: :��)? ( H̄: ) ��� � 1

(

(∑
B=1

0B?
(
H̄:
)

(4.41)

where � is a scale factor constant over H. It should be noted that the

accuracy of the estimate increases with (; thereby, the crowdsourcing

nature of the proposed approach acquires fundamental importance.

Local variations of such average amplitudes can be used to identify

anomalies in the modal profile (e.g., damage due to local stiffness

reduction) through one of the several methods proposed in the

literature based on mode shapes or ODSs [3, 276, 277].

Modal identification of a footbridge using
crowdsensing

The methodology presented to obtain the main dynamic features of

a bridge using crowdsourced data is applied in this section to a real

case study to demonstrate its feasibility. Specifically, a smartphone

fixed on a common city bicycle crossing a lively footbridge is used to

collect multiple data types in different data acquisition scenarios that

can occur in practice. A single bicycle model was employed during

the tests to simulate the use of a standard shared vehicle, which is the

same for all the users. The dynamic response of this type of structure

under operational loads is generally high enough to overcome the

high noise floor of standard smartphone sensors. Crowdsourcing

data is obtained by repeating the analysis several times. The results

of the analysis (modal amplitudes and the first natural frequency) are

compared to those obtained by other researchers during a vibration

test using a traditional technique

The investigated case study is a footbridge for both pedestrians

and cyclists, which crosses the A13 motorway between Bologna-

Padova (Italy) in the proximity of the entrance to the Bologna ring

road (see Figure 4.20). Detailed information on this structure can be

found in [278].

The overall free span of the footbridge is about 90 m (Figure

4.21a). The primary structural system is a three-hinged tied arch
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Figure 4.20: A13 foot-

bridge: aerial view

formed by two A-shaped steel frames contrasting at the center of

the footbridge (Figure 4.21b). The arch rise is 20 m at midspan, and

the minimum distance between the deck and the motorway level

is 6 m. The width of the deck varies between 10 m at the two ends

and 2.5 m at the midspan. The A-shaped frames present a tubular

cross-section with variable dimensions obtained by welding different

S355 steel plate elements. The bridge deck balances the horizontal

thrust generated by the arch. A fan-shaped cable-stayed system

converging to the center of the arch supports the deck (Figure 4.21c).

A system of stabilizing ropes contributes to enhancing the structural

behavior for gravitational loads and wind-related effects along the

deck. The deck is supported at its ends by two reinforced concrete

abutments. As for the external anchoring system, the four supports

of the A-shaped steel frames prevent vertical displacements and

rotations along the longitudinal axis of the deck. Moreover, two

transversal restrains located on the abutments along the longitudinal

axis of the footbridge prevent the transversal displacements. Four

visco-elastic damper actuators (Domain-Jarret type), which only

allow slow displacements, control the structural displacements in

the longitudinal direction due to thermal action, and prevent large

displacements due, for instance, to earthquakes or wind. Drilled

piles make the foundation system. The road surface of the footbridge

is made of a plastic material (Figure 3b) and therefore is relatively

smooth

In the past, vibration tests were carried out on the footbridge

to estimate the main mode shapes and frequencies. The results are
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Figure 4.21: A13 foot-

bridge: (a) Lateral view

(Northside), (b) A-shaped

frame and detail of the

deck pavement, (c) Cable-

stayed system

presented in [279] and reported in Figure 4.22. Two closely spaced

bending modes were identified: the first presents a symmetrical

mode shape, whereas the second shows an anti-symmetric mode

shape.

Experimental tests were performed using a common city bicycle

(Figure 4.23a), a smartphone, and support (Figure 4.23b) to fix the

device to the vehicle (Figure 4.23c). During the tests, the pressure

in the inner tube of the bicycle wheels was about 203 kPa (2 atm).

The temperature measured at the test location was between 15 °C

Mode 1: f = 2.523 Hz Mode 2: f = 2.562 Hz 

Figure 4.22: A13 footbridge: Results of the dynamic tests (adapted from [279])
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Figure 4.23: Instru-

mented bicycle: (a) Side

view, (b) Smartphone

support, (c) Detail of the

smartphone position

and 21 °C. However, further tests conducted with −2 °C have shown

that the environmental effects did not perceptibly affect resonant fre-

quencies of the bridge. The following measurements were acquired

and used in this study: triaxial acceleration, triaxial angular veloc-

ity, triaxial magnetic field, position in terms of latitude, longitude,

altitude, together with the horizontal GPS accuracy, employed to

determine the variance of the GPS measurements. A time stamp in

the reference time of the mobile device is collected along with each

measured quantity and employed in the KF to perform data fusion.

A "calibration" sample, measured by the smartphone mounted on

the bicycle standing, not in movement, was used to compute the

error variances of the other measurement. The relevant values are

reported in Table 4.2. The sampling frequency is 100 Hz for IMU

data and 1 Hz for GPS data. The smartphone used during the tests is

an iPhone SE (second generation, 2020) connected to the Internet. It

includes a 16-bit 6-axis Bosch Sensortec IMU module with a typical

accelerometer sensitivity of 16 384 LSB/g at a recording range of

±2 g [280]. The results reported in the section were obtained using

measurements recorded by a single phone. In a preliminary phase

of the investigation test, different smartphones were used to assess

the correct functioning of the GPS and IMU modules.
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The measurements were acquired using the MATLAB Mobile

app, which allows recording data from the different sensors of the

smartphone and transmitting them directly to the MathWorks Cloud.

This way, the data is directly transmitted to a personal computer,

where the algorithm operates.

Four types of tests were carried out. Each test aims at simulating

a distinct cyclist’s behavior and, in turn, a data acquisition scenario

that could occur in practical applications. The tests differ in terms of

smartphone location, bicycle use, and recording length. Precisely:

I Test type 1: 36 data samples (18 in each direction) were collected

riding back and forth the bicycle across the footbridge with

the smartphone fixed to the top tube, as shown in Figure 4.23c.

The duration of each sample ranges between 45 s and 70 s

(depending on the user’s velocity). This test type simulates

the typical situation in which a cyclist crosses the footbridge.

I Test type 2: 4 data samples (2 in each direction) were collected

walking the bicycle back and forth across the footbridge with

the smartphone fixed to the top tube, as shown in Figure 4.23c.

The approximate duration of each sample is 100 s. This test

type simulates the behavior of a cyclist who crosses the bridge

walking instead of riding (for instance, due to the difficulty of

overcoming the deck slope by riding the bicycle).

I Test type 3: 1 data sample collected while the bicycle was

standing on the footbridge with the smartphone fixed to the

top tube, as shown in Figure 4.23c. The recording time is 300 s.

This test type simulates the behavior of a cyclist who stops

on the footbridge (for instance, to start a conversation with

somebody) while recording data.

I Test type 4: 1 reference data sample with the smartphone

placed directly on the bridge (at 1/4 of the bridge span from

the eastern support). The recording time is 300 s.

Measurement Variance

Acceleration 0.01 m
2/s4

Angular velocity 0.001 rad
2/s2

Magnetic field 50 µT
2

Position (average) 25 m
2

Table 4.2: Reading error

variance
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Table 4.3: Reading error

variance
Test

type

Smartphone

location

Movement

Recording

lenght

Number of

samples

1 Bicycle Riding 45-70 s 36

2 Bicycle Walking 90-110 s 4

3 Bicycle Standing 300 s 1

4 Footbridge No movement 300 s 1

The main characteristics of the different tests are reported in Table

4.3. During all the tests, the bridge was quite lively: all tests were

carried out in operational conditions, with at least one pedestrian or

a runner crossing the bridge. Vibration generated by moving people

and vehicular traffic in the motorway underneath the footbridge

contributed to exciting the structure during the tests.

It is highlighted that this proof-of-concept study is conducted

under the following assumptions:

I All the recording samples are collected throughout the bridge

without interrupting, stopping, and/or going back. Although

the KF allows realigning the data to the physical location where

it was collected, more complex actions, such as stopping and

returning, may increase the noise level in the recorded dataset.

However, in a long-term crowdsourced application, the effects

of these types of anomalies would be mitigated. Also, some

rules (in terms of time to cross the bridge and/or speed

variability) could be included to discard particular recordings.

I The bridge is lively and constantly excited by pedestrians,

traffic underneath, and/or wind. As in the previous case,

some rules could select only the samples where the recorded

vibration in the RoI exceeds a given threshold.

I One single vehicle and one single user are involved in the

experimental campaign. Although different bicycles and body

properties can potentially vary the identified parameters, in

the case of shared vehicles, they are likely to have almost

uniform properties.

I No vehicle-bridge interaction or roughness effects are consid-

ered.

Moreover, it is assumed that the shift in resonant frequencies due

to environmental variation and early damage are always included
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within the selected RoI. For urban bridges, a polymeric or wooden

pavement is much less sensitive to temperature variations compared

to asphalt, which is one of the the most well-known sources of varia-

tion in modal parameters for regular bridges [281]. Nevertheless, in

general, environmental variations affect natural frequencies less than

10% for these types of structures [68]. Thereby, a sufficiently wide

RoI (i.e., the natural frequency estimated in a previous identification

process ±10-20%) should be sufficient to avoid issues related to

the frequency shifts that the structure could undergo during the

monitoring process.

The time series of the vertical accelerations recorded during all

the tests are used to retrieve the main modal parameters of the

structure. The identification of the modal amplitudes is carried

out using multiple sensor data (i.e., acceleration, angular velocity,

magnetic field, and position) recorded according to the test type 1

and processed using the procedure described in Section 4.1.

Figure 4.24a displays the power spectra of the 42 vertical accel-

eration time series collected during all the tests described in Table

4.3. Test type 4 is not affected by human action (riding or walking),

bicycle dynamics (vehicle-bridge interaction), or road roughness and

is used as a reference recording. As shown in the figure, riding and

walking test types have a higher level of noise with respect to the

other tests due to the moving vehicle and the user action. However,

an accurate estimate of the resonant frequency can be calculated for

all the test types by extracting the maxima of the frequency spectra

of vertical acceleration in an RoI between 2.2 Hz and 2.8 Hz (selected

as 2.5 ± 0.3 Hz, based on the reference frequencies identified in a

previous study [279] and reported in Figure 4.22). The frequencies

identified in this study are reported in Figure 4.24b as orange cir-

cles. All the frequencies identified using measurements of both the

moving and the static sensors are in agreement with the reference

values. This shows that the human biomechanics and the pavement

roughness do not significantly affect the identification results in this

application. In fact, the pavement of pedestrian bridges is typically

smooth, and the speed of bicycles is generally low, thus reducing the

effects of the road surface profile on the recorded response [130, 152].

As already mentioned, the dynamic parameters identified by the
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view (b), and statistical distribution of the identified results (c)

procedure proposed in this section are average values over a given

frequency range. Thereby closely spaced modes, in general, cannot

be distinguished. Figure 4.24c shows the statistical distribution of

the resonant frequencies identified using test types 1 and 2. The

mean of this distribution is 2.533 Hz, and its standard deviation is

0.035 Hz.

The vertical acceleration data of test type 1 is also employed to

identify modal amplitudes. As mentioned in the previous section,

closely spaced modes cannot be distinguished by the proposed

procedure and the shape identified in each frequency range is a

combination of the ODSs in that range. Further to this the proposed

procedure allows identifying the absolute values of the operational

shapes amplitudes but not their signs; thereby, a symmetric and

anti-symmetric mode, such as those in Figure 4.22, cannot be dis-

tinguished. However, it must be noted that the final goal of the

procedure proposed herein is to use the information extracted from

the measurements to identify the onset of possible damage. Local

damage affects all the operational and mode shapes at the damage

location, except those with a node at that location. This means that

the shape identified using the procedure proposed herein, which is
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a combination of ODSs, is affected by damage and can be used for

its identification. In the case of the considered bridge, the similarity

of the two mode shapes (Figure 4.22) makes the procedure more

robust since their absolute values are very close, almost coincident.

Thereby, the effect of possible damage will be reflected in both of

them.

In this study, the amplitude information corresponding to the first

two modes of the bridge is extracted by filtering the acceleration time

history through a narrow bandpass filter with lower and upper cutoff

frequencies equal to 2.2 Hz and 2.8 Hz, respectively. The amplitude

is then extracted through the Hilbert transform and converted from

time to space domain. To this aim, the CD-EFK illustrated in Section

4.3 is employed to estimate, with a high spatial resolution, the

path of the moving bicycle. The path is sampled at 100 Hz, as the

vertical acceleration measurements. In the initialization step, the

initial quaternion orientation, position, and magnetic field values

of the state vector are set to the values obtained from a reference

direction, while other quantities are set to 0. The reference direction

was calculated a priori, simply connecting the two ends of the bridge.

This way, assuming that the bicycle is aligned with the bridge axis

when it enters and leaves the structure, the EFK converges rapidly

due to fewer uncertainties on the initial parameters. Moreover,

since the magnetic field recording was very noisy, the initial values

of additive noise were set relatively high. However, in practical

applications, the data collection would start a while before entering

the bridge. Therefore, there would be enough time for the initial

parameters and corresponding noise values to be well-calibrated.

Table 4.4 shows the additive noise values used in this application

for each state element. The initial state covariance was assumed as a

diagonal matrix with nonzero elements equal to 10
−3

.

The initial and final instants of the measurements used in this

procedure were selected by observing the vertical acceleration time

history. Figure 4.25 shows that prominent peaks occur when passing

over the expansion joints at the ends of the bridge. However, the

entry peak also affects the collected data since a transient vibration

component due to the bicycle dynamics is generated. This component

generally vanishes within about 3 s in this case study.
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Table 4.4: Reading error

variance
State element Noise variance

Quaternion 1 × 10
−1

Acceleration 5 × 10
−3

m
2/s4

Angular velocity 3 × 10
−6

rad
2/s2

Magnetic field 1 × 10
−1 µT

2

Position 1 × 10
−6

m
2

Accelerometer bias 3 × 10
−1

m
2/s4

Gyroscope bias 3 × 10
−3

rad
2/s2

Magnetometer bias 20 µT
2

Figure 4.26 shows the densely reconstructed positions (namely,

"sample paths") obtained through the EFK. In this figure, the ref-

erence line represents the longitudinal axis of the bridge, and the

time-varying instantaneous vehicle speed is represented using the

colormap reported on the right-hand side. It is possible to observe

a spatial scattering due to inaccuracies of the reconstruction, espe-

cially in the central part, where the footbridge becomes narrower.

Moreover, due to the less frequent sampling of GPS location, some

paths have small jumps in their shape. It should be noted that

these jumps are mainly in the direction orthogonal to the reference

line. Therefore, they slightly affect the principal paths along the

longitudinal bridge axis obtained through PCA.

The main steps of the procedure proposed in this study for

reconstructing the ODS associated with the selected frequency RoI

are shown in Figure 4.27. First, the vertical acceleration data (Figure

4.27a) is filtered (Figure 4.27b), and its amplitude is calculated as

the absolute value of the related analytic signal (Figure 4.27c). Then,

interpolating the modal amplitudes of each sample along with the

related principal paths projected on the bridge axis leads to a time-

to-space conversion (Figure 4.27d), as explained in Section 4.3. All

the irregularities of the reconstructed profile are due to recording

Figure 4.25: Selection of

the interval of interest

based on vertical acceler-

ation peaks

0 10 20 30 40 50
Time [s]

0

10

20

A
cc

el
er

at
io

n 
[m

/s
2 ] Entry Exit



4.3 Crowd participation 187

noise, as well as to the disturbance generated by the operational

conditions (i.e., runners’ excitation), cyclist movements, and road

surface variability. However, as demonstrated by Champoux et al.

[282], the resonant frequencies of an average bicycle are mostly

over 20 Hz and thus very different from those of typical bridges.

Therefore, the vehicle characteristics are effectively removed from

the recorded response by means of the filtering procedure [146].

Walking typically generates a narrow-band excitation that varies

with walking/running speed [167]. If pedestrian force excites the

structure in the frequency RoI, the structure is likely to resonate, thus

producing a high vibration response that is beneficial to structural

identification. In crowdsourcing applications, pedestrians are likely

to walk at variable speeds, and walking excitation is generally

mixed with other sources, such as traffic and wind. The availability

of large sets of modal parameters, identified from crowdsourced

responses, enables averaging out the effect of the variability in the

source of vibration and obtaining an accurate estimate of the modal

parameters.

The sample shape reported in Figure 4.27c-d shows the dynamic

effect on the collected acceleration measurement due to the first

expansion joint. It is possible to observe that in the left part of

the figure, between 0 sand 2.5 s (Figure 4.27c), a steeply decreasing

acceleration amplitude is recorded due to the free vibration response

of the bicycle system following the impulsive excitation generated

while overcoming the joint.
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All the sample shape amplitudes are finally superimposed, as

shown in Figure 4.28, and the average can be calculated at a user-

selected spatial grid through interpolation. In this study, 100 equally

spaced amplitude values projected on the bridge longitudinal axis

were computed, as reported in Figure 4.28 in dark blue. This result

represents the average ODS computed in the frequency RoI obtained

from the 36 samples of test 1. Therefore, it represents the absolute

values of the modal shape amplitudes of the first two closely spaced

modes. The identified profile is in good accordance with the reference

first mode shape, especially for the central part, as represented in

Figure 4.28. It is indeed possible to notice a slight asymmetry in the

shape that presents higher amplitudes on the left-hand side. The

terminal portions of the identified profile (i.e., below –45 m and over

+45 m) are not reported in the figure since they are affected by the free

vibration of the bicycle generated by the passage on the expansion

joints. As noted by Siringoringo and Fujino, vehicle bounce and pitch

motions could hide the bridge response [150]; thereby, it is generally

recommended to discard the signal collected close to expansion

joints. It should be noted that since bicycles are generally slower

than regular vehicles, these intervals are relatively short and do

not significantly reduce the inspection range. On the other hand,

the considerable reduction of the inspection range due to vehicle

dynamics is a well-known issue for cars and trucks [156]. Also, due

to slight inaccuracies in the acquisition process, some sample shapes

are slightly shorter than others. The average shape was computed

only at the points all the 36 sample shapes are available.

Due to the relatively low performances of smartphone sensors

and on the variable nature of operation conditions and vehicle

effects on the collected measures, individual samples do not provide

reliable results if used for structural identification. Moreover, due to

technical issues, data collection could be discontinuous, especially for

older smartphone models. However, in a crowdsensing application,

the high number of identified features reduces the uncertainty

of the identified values. In this study, a preliminary feasibility

analysis was conducted considering only 36 samples; however,

through hundreds of datasets collected by different users in a

crowdsourcing strategy, the identified features are likely to improve

further. Moreover, a simple procedure can be designed to facilitate
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the automatic acquisition of the samples based on the identification

of the vertical acceleration peaks at the ends of the bridge. This
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way, the data could be processed in a cloud-based, fully automatic

framework. The periodic inspection of the average profile shown in

Figure 10 may enable the detection of localized changes, possibly

related to structural damage, that can motivate the owners of the

infrastructure to arrange further inspections. The reader can refer

to exhaustive literature [3, 262, 277, 283] for the employment of the

identified damage-sensitive features for damage identification.
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Smart devices for structural health monitoring provide edge com-

puting capabilities to reduce wireless transmission and, thus, power

consumption. Although effective algorithms have been proposed

in the last few decades, traditional microcontrollers require heavy

data flow between the memory and the central processing unit that

involves a considerable fraction of the total energy consumption.

Phase Change Memory (PCM) has recently emerged as an attractive

solution in the field of resistive non-volatile memory for analog in-

memory computing, which is a valid approach to avoid data being

conveyed among distinct elaboration units. However, it has never

been envisaged in SHM applications. As this technology is still in

an embryonic state, several challenges related to nonlinearities and

non-idealities of the memory elements and the energy expenditure

related to the memory reprogramming process may undermine

its usage. In this chapter, the application of a novel identification

approach for civil infrastructures is investigated using phase change

memories. The main computational core of the presented algorithm,

consisting of 1-dimensional convolutions, is particularly suitable

for implementations involving analog in-memory computing, thus

showing the great potential of this technology for structural health

monitoring applications. The test unit is an embedded phase change

memory provided by STMicroelectronics and designed in 90-nm

smart power Bipolar-CMOS-DMOS technology with a Ge-rich Ge-Sb-

Te alloy for automotive applications. Experimental results obtained

for a viaduct of an Italian motorway support the efficacy of the

method. Moreover, the influence of non-idealities on the outcomes

of damage identification based on both dynamic and quasi-static
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structural parameters is examined.

5.1 Behind filtering

Consider the impulse responses 1<[�], with � = 1, . . . , # , of one

low-pass (< = 0) and ? bandpass (< = 1, . . . , ?) filters such that

the central frequencies of the bandpass filters coincide with the first

? resonant frequencies of a vibrating structure and their frequency

bandwidth is small compared to the distance between consecutive

modal frequencies. Let the coefficients of these filters be organized

in column vectors b< ∈ ℝ#
. A filter bank matrix can be defined as

follows:

B =
[
b0 , b1 , . . . , b?

]
(5.1)

Here, the term b0 encloses the coefficients of the low-pass filter that

can be employed to extract quasi-static structural features. On the

other hand, the terms b< indicate the bandpass filters used to extract

different modal contributions from the acceleration time response.

Specifically, considering a matrix XC such that

X = [xC ,1 , xC ,2 , . . . , xC ,A] (5.2)

where xC ,8 are column vectors collecting the samples of the accelera-

tion signal G8[C] recorded at the instrumented locations 8 = 1, . . . , A

in the time interval [C , C + #], a set of decomposed signals can be

calculated as

YC = XT

C B =


H1,0[C] H1,1[C] · · · H1,?[C]
H2,0[C] H2,1[C] · · · H2,?[C]
...

...
. . .

...

HA,0[C] HA,1[C] · · · HA,?[C]


(5.3)

The elements H8 ,0[C], upon changing the time variable into space

(i.e., I = EC), represent the samples of the curvature influence

line of the beam at the 8-th location. Due to the Maxwell-Betti

reciprocal work theorem, H8 ,0[I] is also the structural curvature of

the beam generated by a static load applied at the 8-th instrumented

location. Moreover, the terms H8 ,<[C] with < = 1, . . . , ? are the C-th
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samples of the <-th decoupled modal contributions collected at

the 8-th location. Therefore, the <-th column vector of YC , except

when < = 0, is an instantaneous (the <-th) mode shape of the

instrumented structure.

Based on these concepts, the following identification algorithm

is proposed:

1. Collect the structural acceleration response at A instrumented

locations when a vehicle is passing on the bridge.

2. Filter each response into ? + 1 signal components using Equa-

tion (5.3).

3. For each sensor location, consider H8 ,0[C] for C = 1, . . . , ),

where ) is the time interval referred to the passage of a single

vehicle on the bridge, and normalize this sequence with respect

to its maximum value, obtaining

ℎ(8)[I]
��
I=EC

=
H8 ,0[C]

maxC∈[1,)](H8 ,0[C])
(5.4)

Equation (5.4) represents the (normalized) dense influence

line of the curvature of the bridge at the 8-th instrumented

location.

4. Consider H8 ,<[C] (< = 1, . . . , ?) for C = 1, . . . , ) and calculate

the mean of the absolute value of the <-th modal amplitude

at the 8-th location as

)8 ,< =
1

)

)∑
C=1

��H8 ,<[C]�� (5.5)

The vector 5< collecting all the )8 ,< for 8 = 1, . . . , A is an

estimate of the <-th mode shape of the structure, in absolute

value.

This procedure is schematized in Figure 5.1. It should be noted that

the acquisition interval can be triggered to select only the structural

response referred to the vehicle passage automatically, e.g., using

the signal collected at the bridge expansion joints (see also Chapter

4). The identified parameters can be stored in each sensing node

and averaged to the new incomes to improve the robustness to

recording noise. Then, the averaged parameters can be transferred
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Figure 5.1: Scheme of the unified algorithm

to a central unit or directly uploaded in a cloud-based platform at

user-defined intervals. Since phase information is neglected (i.e., the

sign of the elements of the identified shapes), strict synchronization

is not necessary between the sensing nodes. Moreover, each node

can operate individually.

The filters 1<[�] should be highly selective in frequency to avoid

the mixing of different contributions that would affect the accuracy

of the identified structural parameters. In this paper, wavelet filters

are employed. The procedure to generate suitable filters for the

monitored structure is described herein.

The WPT can be implemented using low-pass and high-pass

wavelet filters applied recursively n times to the input signal, where

= is the selected maximum level of the wavelet transform. This imple-

mentation is known as Mallat algorithm or Fast Wavelet Transform

(FWT) [211]. Specifically, considering a complete decomposition

tree, the output coefficients of the wavelet packet transform 3
(;)
8 ,2:
[C]

and 3
(;)
8 ,2:+1
[C] obtained by decomposing the coefficients 3

(;−1)
:

at the

previous level ; − 1 can be calculated as

3
(;)
8 ,2:
[C] = 3

(;−1)
:
[C] ∗ 6̄0[2�] (5.6)

3
(;)
8 ,2:+1
[C] = 3

(;−1)
:
[C] ∗ 6̄1[2�] (5.7)
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where ∗ denotes the convolution operator, : = 0, . . . , 2;−1
indicates

the subband index of the obtained coefficients, and 60[�] = 6̄0[−�]
and 61[�] = 6̄1[−�] are the impulse responses of the low-pass

and high-pass filters associated with a selected wavelet function,

respectively. The root of the tree 3
(0)
0
[C] can be assumed coincident

with the discrete signal G8[C] collected at location 8 if the sampling

frequency of the collected signal is sufficiently high – this is known

as the wavelet crime [212]. Due to the linearity property of the

convolution operator, the decomposition of the signal shown in

Equations (5.6) and (5.7) can also be implemented as a one-step (or

batch) filtering procedure using 2
=

equivalent filters that produce

the coefficients at the final transformation level =. These filters can

be obtained by cascading (i.e., performing recursive convolution

upon upsampling the filter at each iteration) 60[�] and 61[�] = times

in a particular order [20]. For simplicity, let �0(I) and �1(I) be

60[�] and 61[�] in the z-transform domain, respectively. Due to the

convolution theorem, the frequency representation of an equivalent

bandpass filter 1<[�] corresponding to the subband : = < at the

transform level = can be obtained as

�<(I) =
=−1∏
;=0

�;∗
(
I2

;
)

(5.8)

where �;∗(I) can be either �0(I) or �1(I) depending on the level ;

and on the desired equivalent filter. For instance, �;∗(I) = �0(I)∀;
to generate the low-pass filter 10[�]. In Equation (5.8), I: represents

an upsampling in the time domain by a factor :, i.e., the upsampled

filter 6;∗[�] at level ; can be obtained as

6;∗[�] =
{
6∗

[
�
2
;

]
if � = �2

; , � ∈ ℤ
0 otherwise

(5.9)

where 6∗[�] is either 60[�] or 61[�] depending on the level ; and on

the desired equivalent filter, and � is an integer value. Consequently,

the number of null coefficients of 6;∗[�] increases with ;, while the

number of non-zero coefficients is constant.

Each filter obtained through this procedure at level = has a

bandpass range width of �B/2=+1
, where �B is the sampling frequency

of the collected signal.
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In Section Section 3.2, the equivalent decomposition filters were

obtained by cascading Fejér-Korovkin 22 wavelet filters. These fil-

ters have a relatively high number of taps (i.e., 22), which generate

equivalent filters that may be particularly challenging for implemen-

tations in smart sensing nodes. For instance, considering the wavelet

transform level 6, each equivalent filter has 1326 taps.

In this paper, the reverse biorthogonal wavelet function with three

vanishing moments is used for signal decomposition. Specifically, the

low-pass and high-pass analysis filters have 4 taps, are symmetrical

(anti-symmetrical for the high-pass filter), and are formed of only two

coefficients, the higher of which is three times the lower, as shown in

Figure 5.2. Although most equivalent filters obtained through this

wavelet function are scarcely selective, the low-pass filter, as well as

some bandpass filters, are acceptable for identification purposes, as

it will be shown later. In particular, ordering the equivalent filters

obtained by cascading the wavelet filters in all the possible orders

with an increasing central frequency, the (2=−; + 1)-th filters are

sufficiently selective, especially for low ; values (with ; = 1, . . . , =).

These filters have a center frequency equal to

�; =
�B

2
;−1

(5.10)

Sampling the structural response (i.e., selecting �B) such that

the structural resonant modes have a natural frequency close to

the �; values allows the extraction of the corresponding modal

contributions.

Figure 5.2: Reverse bior-

togonal 3.1 wavelet de-

composition filters

1 2 3 4
Tap

-1

0

1

C
oe

ff
ic

ie
nt

Lowpass

Highpass

0.1768 0.5303

0.3536

1.0607



5.2 Memories and convolutions 197

5.2 Memories and convolutions

Conventional computing systems employ separate processing and

memory units, involving a considerable motion of data, which is

expensive in terms of time and energy. This has become a central

issue due to the recent growth of highly data-centric applications. In-

memory computing overcomes traditional computer architectures,

enabling the possibility to perform some tasks in the memory

itself and, consequently, avoiding the need to move data between

separated processing units [284]. Exploiting the physical attributes

of dedicated memory arrays, computational tasks are performed

within its confines and peripheral circuitry without deciphering the

content of the individual memory elements.

PCMs rely on the reversible transition of a chalcogenide material

between its crystalline (or SET) and amorphous (or RESET) state.

The amorphous phase tends to have low electrical conductance,

which reaches values that are several orders of magnitude higher

in the crystalline phase. The transition between SET and RESET

state is achieved with the application of a corresponding current

pulse, which properly modifies the memory cells lattice structure;

the SET pulse is a trapezoidal current pulse, which initially melts

and then gradually crystalizes the cell phase, producing a cell

in a high-conductance state. The SET pulse can be modulated in

amplitude, width of the flat portion, and decaying slope. On the

opposite, the RESET pulse consists in a higher current flow and it is

applied in order to melt the central portion of the cell; the molten

material quenches into the amorphous phase, producing a cell in

the low-conductance state. The RESET pulse can be modulated in

amplitude and width. The order of magnitude of both current pulses

amplitude is hundreds of microampere, while their duration could

range between tens and hundreds of nanoseconds. Thus, PCMs are

already an effective alternative to conventional binary non-volatile

memories (NVMs), as in the actual development state, their cells can

effectively store digital "0" or "1" values [285, 286]. These two states

correspond to a deep-RESET and a deep-SET state, respectively, and

they are achieved through the application of high-amplitude RESET

or SET pulse sequences. Furthermore, due to their considerable

conductance contrast, the change in read current is quite large,
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opening up the opportunity for multilevel cell (MLC) operations

[287] due to the intrinsic capability of a memory cell to encode

more than one bit of digital data per cell. In other words, PCM cells

are able to store a range of intermediate states between the deep-

RESET and the deep-SET states. This can be addressed exploting

appropriate pulse sequences, called programming sequence, where

the combination of different RESET and SET pulses allows the cells

to reach a predefined intermediate conductance.

In this context, PCM devices lay among the most appetible

enabling technologies for analog in-memory computing. Their mul-

tilevel storage capability becomes crucial, as it allows the execution

of analog multiplications simply exploiting Ohm’s and Kirchhoff’s

laws [288, 289]. Given a cell with conductance 1, a single multipli-

cation is achieved by applying a voltage G to the cell, and thus the

readout current � satisfies � = 1G. If # voltage values are applied to

different parallel cells, the sum of their currents H is

H =

#∑
�=1

�� =

#∑
�=1

1�G� (5.11)

From this result, it is possible to conceive the whole memory as a

conductance matrix B with dimensions " × # . Then, applying a

voltage vector x to each row, it is possible to obtain a Matrix-Vector

Multiplication (MVM) as


H1

...

H"

 =

111 · · · 11#

...
. . .

...

1"1 · · · 1"#



G1

...

G#

 (5.12)

In this study, the elements of B, which are in the range bwtween

10 mS and 100 mS together with the null value, are proportional to

the coefficients of the reverse biorthogonal low-pass and high-pass

wavelet filters, whereas the voltage vector x contains the sampled

input signal, and the current readout y represent a sample of the fil-

tered components. Thus, Equation (5.12) can be seen as the operation

to obtain the 8-th row of YC in Equation (5.3), i.e., if B is the filter bank

matrix, the current readout is the decomposed signal obtained using

the PCM-based node deployed at a given instrumented location.
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A simplified schematic of the PCM is reported in Figure 5.3,

where the notations used for the conductance values, input voltage,

and current readout are expressed in the signal processing format

employed in the previous sections. In this representation, the mem-

ory array consists of memory cells connected between each other

through BitLine (BL), i.e., the vertical connections, and WordLine

(WL), i.e., the horizontal connections. Each interval xC ,8 of the input

signal is given as an input to a BL in the form of a voltage G[C + �].
Therefore, each memory cell connected to a given BL receive the

same input voltage. On the other hand, the memory cells connected

to a given WL contain the different coefficients of a filter impulse

response 1�[�]. The sum of output currents of the memory cells

connected to a given WL (i.e., H�[C]) constitutes the result of the

convolution between the input signal and the filter stored in the �-th

WL. Filters that share the same input data can be implemented in

the same BLs and different WLs. It should be noted that the power

consumption of a MVM operation is directly proportional to the

values of both x and B, as the total current required to calculate the

single elements of y is given by Equation (5.11).

From a practical viewpoint, several challenges characterize the

behavior of PCM cells. First of all, low-frequency (flicker) noise

affects the values of B, as random electron traps are located in the

cell lattice. Moreover, cell conductance tends to decrease due to the

amorphization and relaxation phenomena of the crystal lattice. Also,

different cells respond differently to the same programming pulses,

and the response of the same cell to subsequent programming cycles

shows a large variability. These phenomena lead to dispersion and

y [t]1

y [t]2

y [t]M

...x[t]

x[t+1]

x[t+N]

...

1b [1]

1b [2]

1b [N]

2b [1]

2b [2]

2b [N]

Mb [1]

Mb [2]

Mb [N]

Wordline

Bitline

Figure 5.3: Schematics of

the PCM array
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inaccuracy of the conductance levels (i.e., to the elements of the B
matrix) and thus of the MVM operation. Several solutions to mitigate

such undesired phenomena have been proposed, mainly focused on

material technology [290], post-processing compensations [112, 291],

or dedicated programming algorithms [287, 292–294].

In this work, the programming algorithm proposed in [292]

was exploited to store the filter coefficients in an embedded PCM

(ePCM) test chip designed and manufactured by STMicroelectron-

ics [295]. The test chip is manufactured in 90-nm smart power

Bipolar-CMOS-DMOS technology featuring a specifically optimized

Ge-rich Ge-Sb-Te (GST) alloy and was originally intended for digital

storage in automotive applications. An evaluation board was also

employed and customized in this study, as shown in Figure 5.4. This

board allows the configuration of current pulses applied to cells,

exploiting the voltage and current regulators integrated on the test

chip. The operations performed on the memory array were imple-

mented through a dedicated guided user interface (GUI) available

on a personal computer. To access the PCM array a high-precision

Source Meter Unit (SMU) was employed, together with a low-drop

power supply.

Upon defining a conductance target interval by specifying its

mean value and relative tolerance, each cell is first stimulated with

a start SET and a start RESET pulse [292, 296], as they grant better

temporal drift retention [292, 297]. Then, for each cell, a partial (�)

sequence begins with a minimum SET amplitude �"�# , with the

aim of gradually increase its conductance. After a predefined time

),��) , the cell conductance is measured. If it falls within the target

interval, the sequence is terminated, otherwise, if the conductance

is lower than the required limit, the cell is stimulated with a new

(�) pulse increasing its amplitude by a user-defined interval Δ�. If,

instead, the conductance is above the upper limit, the whole process

is restarted from the initial (�) and '�(�) pulses.

In this study, 48 memory cells of a PCM test chip provided by

STMicroelectronics were programmed in a laboratory environment

to store 24 low and 24 high rbio3.1 decomposition filter coefficients.

The following parameters were used in the described programming

algorithm: �"�# = 150 µA, ),��) = 1 ms, and Δ� = 10 µA. The
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PCM array

SMU
Evaluation boardPower supply

GUI

Figure 5.4: Laboratory

setup for PCM testing

coefficients of each filter were converted in conductance values 1�[�],
which were then stored into specific memory cells. In particular,

low filter coefficients were converted into 18 µS, while high filter

coefficients were converted into 54 µS, considering that a scale factor

of 2 relates the coefficients of the high-pass and low-pass filter (see

Figure 5.2). The initial conductance value of every filter coefficient

was memorized with a maximum tolerable error of ±5%, and the

mean number of intermediate steps required to program memory

cells was 9.

An effective method for evaluating the above-mentioned long-

term effects on PCM cells is to bake the memory array in a thermal

chamber for some dozens of hours in order to accelerate the amor-

phization phenomena of the crystal lattice [298]. Recent studies have

represented the behavior of PCM cells in time as a power model

with the form [288].

The conductance of the PCM cells was observed using a current

SMU in the laboratory following the time schedule reported in Figure

5.5. The filter coefficients are collected with a sampling period of

6000 s in low sampling frequency (LF) observation intervals, while
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Figure 5.5: Observation

schedule of programmed

filters
Programming LF1 HF1 LF3HF2LF2 Bake Wait

1 week 10 min 1 week 48 h 10 min 40 days 3 days

every 0.02 s in high sampling frequency (HF) intervals. Between LF2

and HF2, the memory array was baked for 48 hours at 150 °C to

evaluate the effects of time-related non-idealities at an ideal infinite

time after programming.

Figure 5.6 shows the conductance in time of all the monitored

cells. Thin lines represent the behavior of individual cells, while the

reference power law [288], fitted to the first two drift intervals, is

represented as a thick line for high and low coefficients. According to

the power law, the coefficients recorded during the interval LF3 (i.e.,
after bake and additional 40 days at room temperature) correspond

to an equivalent observation time in the order of tens of years since

programming. It is therefore assumed that short-term drift effects

have completely vanished.

The coefficients observed in the two HF intervals are used to

build the 6 low-pass (one for each transformation level) and 4 high-

pass (only used in the first four transformation levels) wavelet filters

employed in this study to filter the structural vibration response.

Each filter is time-dependent due to a noise-related variability,

as the stored coefficients are affected by the aforementioned non-

idealities.

As explained, the signal can be decomposed into different wavelet

components either using a set of equivalent filters corresponding to

a given transformation level (i.e., batch approach) or performing a

Figure 5.6: Drift of the

programmed PCM cells
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Current to voltage conversion
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Figure 5.7: Filtering

through the batch (a)

and recursive (c) modes,

and their respective

implementation in a

PCM-based architec-

ture (b,d); in (d) the

architecture of the

dashed portion of (c) is

represented

recursive procedure. The batch approach is represented schemati-

cally in Figure 5.7a-b, and compared to the recursive procedure in

Figure 5.7c-d (the last figure shows only the first two levels of the

transform). In this paper, the recursive implementation of the signal

decomposition task on the PCM-based architecture is proposed and

compared with a batch implementation in terms of power consump-

tion and accuracy of the results. Both algorithms are implemented

using real observation of the filter coefficients in PCMs, collected as

described in the PCM programming section, in the laboratory. The

structures of the filtering algorithms were simulated in this study

using the MATLAB environment. The input signal, consisting of

pre-collected structural vibration data, is sampled and filtered using

low-pass and high-pass wavelet filters in a fast wavelet transform

implementation – see Equations (5.6) and (5.7) – to retrieve the signal

components associated to a wavelet decomposition level equal to

= (in this case, = = 6). If a batch procedure is adopted, the input

samples are decomposed by < (in this case, < = 4) equivalent filters



204 5 Improving efficiency

whose impulse response is the inverse z-transform of �<(I) in Equa-

tion (5.8). In this case, the filter bank consists of #� = 4 filters, each

with #) = 190 taps. The implementation of this strategy is shown

in Figure 5.7b, where 4 WLs and 190 BLs are required. On the other

hand, the recursive implementation is represented in Figure 5.7c.

The filter bank consists of 6 layers, each of them having a different

number of filters#� , ranging from 2 to 4, with an increasing number

of taps #) , ranging from 4 to 97, with an increasing number of null

values (Figure 5.7d). As illustrated in Figure 5.7d, the coefficients

of each filter are implemented in a single WL and different BLs, as

every tap must be multiplied with a different value of the input

signal. If two or more filters share the same input values (i.e., filters

1 and 2 in this case), they are programmed in different WLs, sharing

however the same BLs. Thereby, their outputs are available at the

same time and can be cast to the next filters. Between the two filter

layers, a current-to-voltage conversion is processed.

In Table 5.1, the features of batch and recursive approaches are

summarized, together with the number of non-zero coefficients per

filter #$# .

The recursive procedure has two principal advantages with

respect to the memorization of equivalent filters: (1) it drastically

reduces the power consumption of the sensing device, and (2) it

reduces the noise effects of non-ideal PCM elements.

The performances in terms of power consumption of batch and

recursive implementations were compared considering the energy

required to entirely process a single input sample in both cases,

neglecting the cost of current-to-voltage conversion steps. Assuming

that the energy is given by � =
∫ )

0

G(�3C, where G( is the supplied

Table 5.1: Parameters of

the batch and iterative fil-

ter banks

Filter bank Layer #) #� #$#

Batch I 190 4 190

Iterative

I 4 2 4

II 7 3 4

III 13 4 4

IV 25 4 4

V 49 4 4

VI 97 4 4
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voltage, � is a current and ) is the operating time interval, the energy

per input sample �′ is

�′ =

∫ )

0

G(�3C = G( ȳ� (5.13)

where  is the total number of taps to fully process the sample, ȳ

is the mean cell current, and � is the time required by the PCM

array to compute a single product. As G( and � are equal in both

implementations, the product  ȳ is the actual energy benchmark.

In the batch implementation,  =
∑
#�#) = 760 and ȳ = 10.6 µA,

whereas in the recursive procedure,  = 1245 and ȳ = 0.61 mA, thus,

the power required by the iterative strategy is only 9.43% of the power

required by batch filtering, neglecting, in a first approximation, the

contribution of current to voltage conversion circuits. In fact, even

if the iterative implementation involves more taps than the batch

procedure, the total required current is much lower as, according to

Equations (5.8) and (5.9), and Table 5.1, a large number of coefficients

are null, thus involving no current consumption.

In order to compare the performance of batch and recursive

implementation, 15 samples of the 4 equivalent filters used in this

study were stored in PCM elements and observed after a 48 h baking.

Figure 5.8 compares the observed interval (between tap 50 and 65) of

the equivalent filter directly memorized in PCM elements (i.e., using

a batch approach, see Figure 5.7a) with the equivalent filter obtained

by convolving the low-pass and high-pass coefficients observed

in the interval HF2 according to Figure 5.7c. Specifically, both for

the recursive and batch implementation, the filter observed at 100

different time samples collected every 0.02 s is reported (light green

and magenta spreads), together with their average (solid green and

magenta lines). It is possible to observe that the coefficients of the

filter obtained through recursive implementation are closer to the

reference values (i.e., the ideal filter that does not account for the PCM

non-idealities), although the spread – which represent the short-

term noise – is generally higher. The selective performance of the

four filters is observable in the frequency domain: Figure 5.9 shows

the equivalent filters obtained through a recursive implementation

before and after baking. As in the previous representation, the filter

coefficients observed at 100 different time samples are reported
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Figure 5.8: Noise effects

on the equivalent filter for

a level 6 transform
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Figure 5.9: Selected filters

in the frequency domain:

pre-bake (a) and post-

bake (b) environment
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as spread and average lines. Although the spread increases after

baking, the selective performance of the filters is comparable.

Identification of structural parameters using a PCM
prototype

This section presents the identification results obtained using the

proposed algorithm on the experimental data collected on a viaduct

of the Italian A24 motorway. Specifically, dynamic and quasi-static

identification results are obtained using filters programmed and
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observed in the test PCM unit. These results are obtained using

the memory cells in freshly programmed and long-term conditions,

represented by pre-and post-bake environments (i.e., the observation

intervals HF1 and HF2, respectively).

The viaduct, called Temperino [118, 149, 264, 265], consists of a

series of single-span post-tensioned prestressed beams in a simply-

supported isostatic configuration. The case study is described in the

application part of Section 4.2. In this paper, individual moving cars

were considered.

Since this study is aimed at investigating the usability of PCMs

in structural identification applications, the modal parameters iden-

tified using the proposed algorithm and implementation technology

will be compared to reference parameters identified using a widely

used algorithm for structural identification, namely, the FDD [259].

Precisely, a traditional centralized application of the FDD is em-

ployed using 10 acceleration time histories of 1500 s collected at all

the locations shown in Figure 4.5a-b, subsampled at 50 Hz. This

method allows the identification of four vibration modes with natu-

ral frequencies �̄< equal to 2.48 Hz, 5.06 Hz, 7.56 Hz, and 9.01 Hz.

In order to identify the mode shapes of the first, second, and

fourth modes using the proposed method, the signal is resampled at

a frequency of 41.5 Hz. This way, since �̄1 ≈ �3 and 4�1 ≈ 2�̄2 ≈ �̄4,

the filters corresponding to a decomposition level 6, with central

frequencies �3 = 2.59 Hz, �2 = 5.19 Hz, and �1 = 10.38 Hz, can be

effectively employed to extract the modal contributions associated

with the modes 1, 2, and 4, respectively. It should be noted that,

in this study, it is assumed that the resonant frequencies of the

structure (of a rough estimate of them) are already known, e.g., from

previous monitoring campaigns, in order to design the filters for

identification. This is a reasonable assumption since preliminary

tests are usually performed before designing a monitoring system. A

low-pass filter obtained for a decomposition level 5 is also employed

to extract the quasi-static response component with a frequency

lower than �B/26
= 0.64 Hz.

Figure 5.10 shows time windows of the filtered signals obtained

using the filters observed in the intervals HF1 and HF2 (i.e., in the pre-

and post-baking environment), compared to the reference filtered
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Figure 5.10: Filtered sig-

nals in pre-bake (a) and

post-bake (b) environ-

ment; filter 0 indicates the

low-pass filter, while fil-

ters 1, 2, and 3, are band-

pass filters with central

frequencies F1, F2, and F3,

respectively
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signals obtained using ideal filters that do not include the noise

generated by PCM cells. Moreover, Figure 5.11 shows the error of

the filtered signal for each filter. Specifically, nRMSE represents the

normalized RMS error. The normalization is obtained by dividing

both the reference and the filtered signals by their standard deviation.

It is possible to observe that the low-pass filter is generally affected

by a higher noise level and, as expected, the noise increases in the

post-bake environment. Moreover, the nRMSE of filter 1 is generally

the lowest, denoting a good quality of the extracted first modal

contribution.

Figure 5.11: Normalized

root mean square error of

the filtered signals in pre-

bake (a) and post-bake (b)

environment
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Although the error in the filtered signal is non-negligible, the

mode shapes reconstructed using the extracted modal contributions

(Figure 5.12) are very close to the reference ones – obtained using

the traditional FDD – both for the pre- and post-bake environments.

In Figure 5.12, the sign of mode shapes is determined using the sign

identified through the preliminary FDD-based identification. The

high accuracy is confirmed using the MAC [58, 192]. Figure 5.13

shows that values close to 1 are obtained comparing the reference

and identified shapes, especially for the first two modes. Since the

identification method proposed in this paper provides absolute

values of the modal amplitudes, their sign is determined based on

the reference identified values.

It should also be noted that, although the central frequencies

of the filters do not correspond exactly to the resonant frequencies

of the structure, the identification results are in good agreement

with the reference parameters. The method is therefore also robust

to slight variations of the resonant frequencies, e.g., due to varying

temperature conditions.

Figure 5.14 shows the influence lines identified in pre- and post-

bake environments. In particular, the average results are obtained

considering 24 individual estimates computed during as many

vehicle crossings. Although the estimates are visibly affected by noise

compared to the reference estimates, the maxima of the influence

lines are in the right location (i.e., with reference to Figure 4.5a, at the

instrumented location, indicated in the top-left corner of each plot).

Also, the results obtained in the pre- and post- bake environments

are very similar to each other, denoting a good performance of the

algorithm for long-term applications. The literature has already

shown that, although the noise level can be high in quasi-static

parameters, they are generally very sensitive to structural damage.

Moreover, considering a larger set of individual estimates, the noise

level would decrease.
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Figure 5.12: Reference

and identified mode

shapes; from top to

bottom, output of filters
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Information on the presence and location of cracks in concrete and

steel structures can be extremely valuable to support operators in

decision-making related to structural management and scheduling

informed maintenance, especially when the SNR of structural vibra-

tion response is too low. Moreover, understanding the strain state

of critical portions in the monitored structural element is critical

supporting information to form a complete picture of the structural

behavior.

This chapter investigates machine learning tools to solve the

Human-Powered Vehicle inverse problem to reconstruct the con-

ductivity distribution of a piezoresistive sensing film consisting of

a smart conductive paint applied to structural components. Con-

ductivity reductions identified during long-term monitoring can

provide helpful information about the presence of cracks, the strain

state of the structural substrate, and the presence of humidity that

may accelerate material degradation. Two Machine Learning tools

are studied in this chapter to reconstruct a dense conductivity

distribution within the painted area by using only voltage mea-

surements collected at sparse boundary locations. Since one of the

most challenging aspects of using supervised learning tools for

real applications is generating a representative training dataset, this

paper presents a new approach to test the suitability of synthetic

datasets built using a finite element model of the sensing surface.

Results are reported for four sensing specimens fabricated with

two different techniques (using carbon nanotubes and graphene
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nanosheets, respectively).

6.1 Electrical impedance tomography

EIT is a soft-field imaging method that uses applied electrical

excitations and measurements obtained along the boundaries of a

conductive body to estimate its distribution of electrical properties.

In short, EIT consists of the forward and inverse problems. The

former involves calculating the voltage distribution on the boundary

of the interrogated body when the boundary electrical excitation and

the spatial conductivity properties of the body itself are known a

priori. On the other hand, the inverse problem consists of estimating

the conductivity distribution using boundary current excitations

and voltage measurements. The EIT inverse problem can be solved

when an alternating current excitation is applied and both voltage

magnitudes and phases are recorded. In the case of a direct current

(DC) excitation, the EIT problem specializes to become Electrical

Resistance Tomography (ERT).

ERT forward problem

Let Ω be a conductive body with conductivity distribution � and

boundary Γ. Considering a given number of electrodes deployed

along Γ, if DC is injected using at least two of them (a source and a

sink), the electric flow in Ω can be described using Kirchoff’s law,

which correlates � with the electric potential distribution ) in the

absence of any current source or sink inside of Ω:

∇ · �∇) = 0 (6.1)

Let n be an outward unit vector normal to Γ, and 9 = �∇) · n be the

current density in Ω. Given �, the knowledge of ) on the boundary

)
��
Γ
(known as Dirichlet boundary condition) is sufficient to uniquely

determine ). Similarly, knowing 9 (known as Neumann boundary

condition) allows determining ) up to an additive constant. An

operator that relates Dirichlet and Neumann data can be defined as

Λ� : )
��
Γ
→ 9, which is known as the Dirichlet to Neumann (DtN)
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map. This operator – or its inverse Λ−1

� , the Neumann to Dirichlet

(NtD) map – represents the response of the system that is electrically

interrogated at its boundary.

In this study, electrical current and voltage were applied and

measured, respectively, at discrete electrodes, using a finite element

(FE) model. In a FE formulation, the region in which the problem is

solved is segmented into a finite number of elements. A collection

of these elements is herein called "mesh", and this work employed

linear triangular elements. In the FE solution, a weak formulation of

the differential Equation (6.1) was solved at the mesh nodes using

the Complete Electrode Model (CEM) [180]. Let a current �@ be

applied to the conductive body using & electrodes having areas

�@ , with @ = 1, . . . , &. If the region of the boundary covered by the

electrodes is called Γ1 and the remaining part of the boundary is

denoted as Γ2, the boundary conditions necessary to solve the ERT

forward problem can be posed using the CEM as follows:∫
�@
9 = �@ on Γ1

9 = 0 on Γ2

(6.2)

A further condition can be imposed to model the contact impedance

I@ between the @-th electrode and the body:

) + I@ 9 = +@ (6.3)

where +@ is the voltage measured at the @-th electrode, with respect

to some arbitrary reference. The solution was thus interpolated over

each element using shape functions along the edges of the elements.

For more details about the FE implementation, the reader can refer

to [175, 180].

The solution was thus interpolated over each element using

shape functions along the edges of the elements. For more details

about the FE implementation, the reader can refer to [175, 180].

ERT inverse problem

The inverse problem, as formulated by Calderón [299], consists of

recovering � from Λ� by injecting currents in a subset of electrodes
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and measuring the voltage using all the others. Arranging these

quantities in vectors (i@ ∈ ℝ&
and v@ ∈ ℝ&

, respectively), a discrete

equivalent DtN map can be represented in matrix form as:

i@ = Yv@ (6.4)

where Y represents the transfer admittance matrix (which has real

elements in the case of direct current). Different measurement

protocols can be applied using predefined interrogation patterns

(i.e., given sets of i@ vectors) that allow building a basis for the space

of Y. The set of i@ and v@ vectors obtained through interrogation can

be employed to reconstruct Y by inverting Equation (6.4). Therefore,

the inverse problem in the discrete case becomes recovering a vector

2 ∈ ℝ"
containing the conductivity values of all the " elements

of the FE mesh from Y. Alternatively, the inverse problem can be

defined in terms of the transfer impedance Z = Y−1
, which is the

discrete counterpart of an inverse operator Λ−1

� : 9 → ) |Γ. Also, the

inverse problem can be defined for difference imaging, where the

variation of conductivity between two different time instances or

states (generally, a baseline and an inspection instant) is recovered

from a variation in the NtD map. In all these cases, the inverse

problem is ill-posed and ill-conditioned [180], which also becomes

extremely unstable in the presence of noise.

Several methods have been proposed to solve the inverse problem

using a priori information, which mainly consist of regularization

criteria [180] that constrain the solution to rule out the variations that

cause instability. These methods generally require the calculation

and inversion of a sensitivity matrix that represents the derivative of

the voltage measurements with respect to a conductivity parameter.

However, complex inversion operations may hinder portable appli-

cations where the computational footprint of processing devices is

generally limited.

6.2 Regularization approaches

Given a current interrogation pattern, consider the matrix of mea-

sured boundary voltages V = ZI, where V = [v1 , . . . , v&] and
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I = [i1 , . . . , i&], with the column vectors v@ and i@ defined above.

For simplicity of notation, let v be a vector containing all the elements

of V arranged in a single column.

Considering difference imaging, the voltage measurement used

as an input to the inverse EIT problem can be defined as �v =

v(2) − v(0), where v(0) and v(2) are the voltage vectors measured

in two different states. A similar difference can be defined in the

forward problem, as:

�vf = f (2 + �2) − f (2) (6.5)

where f (©) is the output of the forward problem evaluated at the

conductivity in its argument, and �2 is the conductivity change

between the two considered states. Truncating the Taylor series

expansion of f (2 + �2) to the first term and defining the sensitivity

matrix as the Jacobian J = % f (2)/%2, an estimate �2̂ of the difference

in the conductivity distribution can be calculated by minimizing the

difference between �v and �v f ≈ J�2, as follows:

�2̂ = arg min

�2

(
‖J�2 − �v‖2 + 
‖R(�2)‖2

)
(6.6)

Here, the symbol | | © || denotes the vector norm of its argument,

R(�2) is a regularization matrix, and the scalar parameter 
 controls

its relative contribution. Common regularization approaches are

summarized in the referenced work [300]. In this study, the Total

Variation (TV) approach is employed, according to which

R(�2) =
∫
Ω

∇�2dΩ (6.7)

and can be practically implemented in an iterative procedure [180].

6.3 Machine-learning-aided tomography

In this section, two alternative ML techniques, namely, an artificial

Deep Neural Network (DNN) and a Radial Basis Function Network

(RBFN), were employed to solve the inverse problem. Since super-

vised learning algorithms were used, specific considerations were
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necessary for the construction of a training dataset. Herein, the

architecture of the ML tools is described, as well as their training

process.

Preparation of the training set

DNNs and RBFNs have gained considerable interest in the last

decades and are currently some of the most popular supervised

ML tools used for regression due to their effectiveness in solving

nonlinear problems. A training dataset representing examples of

input-output pairs must be used to train the ML tools in the pre-

liminary training phase. Then, in the application phase, the trained

network can generate an output based only on input data, following

the structure learned from the training set.

Let v(2) and 2(2) be the voltage measurements collected in the

selected interrogation pattern and the conductivity distribution

of a given (2-th) condition of the inspected body, respectively. A

normalized difference of voltage measurement and conductivity

distribution in configuration 2 can be defined as:

�v(2) =
v(2) − v(0)

Ê
=

[
E
(2)
1
, . . . , E

(2)
 

] )
−
[
E
(0)
1
, . . . , E

(0)
 

] )
Ê

�2(2) = 2(2) − 2(0) =
[
�(2)

1
, . . . , �(2)

 

] )
−
[
�(0)

1
, . . . , �(0)

 

] ) (6.8)

where v(0) and 2(0) represent the boundary voltage at the electrode

locations and the conductivity values of the mesh elements, respec-

tively, corresponding to the baseline configuration, while Ê is the

absolute value maximum of the elements in v(0). A training set

can be defined as T= {�V, ��} with �V =

[
�v(1) , . . . , �v(2)

]
and

�� =
[
�2(1) , . . . , �2(2)

]
being the input and output matrix of the

ML tool, respectively. The set T contains � instances and can be

built by solving only the forward problem. By assuming a given

conductivity distribution 2(0), the voltage at the boundary v(0) can

be calculated using Equation (6.1). The entire training set can be

generated by simulating a number (�) of different configurations of

the body (e.g., random conductivity distributions) and then solving

the forward problem for each of them.
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In this work, two training datasets were assembled, the first

by simulating random polygonal areas with reduced conductivity,

and the second by simulating cracks (i.e., narrow areas with zero

conductivity. The first dataset was generated through the following

algorithm:

1. Select a random number of polygons between 0 and %

2. Select a random location on the sensing surface for the center

of each ?-th polygon

3. Select a random radius size of a circumference circumscribed

to each polygon between 0 and '?

4. Select a random number of edges for each polygon between 0

and  ?

5. Select  ? random points on each circumference and draw the

polygons using the selected points as vertices

6. Reduce the conductivity of each polygonal region of a random

value between 0% and 100% and collect the final conductivity

values in a vector 2(0)

7. Solve the forward problem using& different current injections

according to a given interrogation pattern and collect the

results in a vector v(0)

8. Calculate �v(2) and �2(2) using Equation (6.8) and build the

entire training set

On the other hand, the algorithm to generate cracks was defined as

follows:

1. Select a random number of cracks between 0 and %

2. Select a random location on the sensing surface as the starting

point of each ?-th crack

3. Select a random total crack length between 0 and '?

4. Select a random number of portions to subdivide the total

crack length between 0 and  ?

5. Select  ? random values for the length and inclination of each

portion

6. Draw a broken line that represents the resulting crack on the

FE mesh

7. Set the conductivity of all the FE elements that contain the

crack line as 0 S/m and collect the final conductivity values in

a vector 2(0)
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8. Solve the forward problem using& different current injections

according to a given interrogation pattern and collect the

results in a vector v(0)

9. Calculate �v(2) and �2(2) using Equation (6.8) and build the

entire training set

The simulated data included in the training set can be differ-

ent from real-world data, which generally includes noise due to

measurement errors and imperfections in the sensing surface or

the electrodes. Two strategies to improve the quality of the recon-

structed conductivity were adopted in this study. The first concerns

the normalization shown in Equation (6.8), which is aimed at mak-

ing the experimental and simulated data comparable in terms of

their voltage magnitude. This way, the normalized voltage is still

representative of the relative conductivity variation (i.e., minor volt-

age differences should represent modest conductivity variations).

On the other hand, jitter was included in the training set to aid

generalization and noise tolerance [301]. Here, jitter indicates the

addition of noise in the input of the training set (hence, on v(2)).
Indeed, it was demonstrated that training with noise is equivalent

to a form of regularization in which an extra term is added to the

error function [302], following the same idea behind Equation (6.6).

Therefore, this method can lead to considerable improvements in

network generalization while also reducing the risk of overfitting

the generally limited training set [303]. Thus, noise was added to

the input voltage measurements. The training set that includes jitter

was obtained as T̃= {T1 , . . . ,T(}, where

TB =
{
�ṼB , ��

}
(6.9)

with �ṼB =

[
�v(B,1) + 9B,1 , . . . , �v(B,�) + 9B,�

]
and 9B,2 is a different

Gaussian-distributed random vector for each value of B = 1, . . . , (

and 2 = 1, . . . , � such that

9B,2 ∼N

(
0, � std

(
v(0)

Ê

) )
(6.10)

where � is a user-determined parameter, and BC3(©) denotes the

standard deviation of the elements in its argument. In Equations

(6.9) and (6.10), ( is the number of times the original training set T
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is repeated with noise in T̃. Therefore, the number of instances of T̃

is (�.

Quality assessment of the training set

Consider real voltage measurements �V
∗
=

[
�v(1) , . . . , �v(�A )

]
orga-

nized the same way as �V, formed of �A columns, with �A � �. This

matrix can be easily built by interrogating a real body in different

conditions. It should be noted that only voltage measurements are

needed to build �V
∗
; therefore, the damage pattern must not be nec-

essarily known. This test can either be conducted in the preliminary

monitoring campaign that is generally carried out before deploying

the sensing device on real structures or directly on the data collected

while monitoring a real structure, for which the eventual damage

state is unknown.

In this application, the voltage space – also addressed to as

"input space" hereafter – is  -dimensional, i.e., each dimension is

represented by a voltage measurement. The objective of this section

is to define a simple procedure to understand if �V
∗

has the same

structure as �V, i.e., if the sample vectors of �V
∗

and �V populate

the same regions of the  -dimensional space. Here "structure" is

intended on both population density and location in space. If the

structure of the two sets is similar, it is possible to assume that the

synthetic dataset is representative of real situations. On the other

hand, if the two sets �V
∗

and �V form two clusters, i.e., the samples

of the two sets are well-separated in the voltage measurement space,

it is impossible to correctly reconstruct the conductivity distribution

associated with real measurements using a neural network trained

using synthetic data.

Due to the high-dimensionality of the problem, it is complicated

to study the voltage space structure simply by observing the data.

The Self-Organizing Map (SOM) [248] provides a low-dimensional

representation of the original input space so that the user can

observe a detailed distribution of the input samples. In this section,

a correlation coefficient that expresses the similarity between the

real and synthetic datasets �V
∗

and �V is presented to assess the

quality of synthetic data generated through FE simulations.
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SOMs are unsupervised learning tools that operate through two

steps, consisting of (1) training the network and (2) mapping input

data in a low-dimensional space. In the first step, a set of training

instances is used to generate a network of neurons that approximates

the input space. In this phase, competitive learning is employed,

a variant of Hebbian learning, particularly suitable for finding the

intrinsic structure of unlabeled datasets [304].

Let �V
+

be the union of the real and synthetic datasets, such

that �V
+
= [�V, �V

∗]. In this application, a SOM is trained using

the � + �A instances contained in �V
+

as input samples. No labels

or conductivity distributions need to be associated with the voltage

dataset since the SOM is an unsupervised learning tool. Without loss

of generality, consider a competitive layer formed of a square grid (or

map) of neurons with a size of % × %. Each neuron associated with

a weight vector w? = [F?1 , . . . , F? ]) ∈ ℝ 
, with ? = 1, . . . , %2

,

in which w? represents the coordinates of the nth neuron in the

 -dimensional input space.

During the training phase of the SOM, for each column vector

�v(2) in the input space �V
+
, the grid node w? whose weights best

describe the position of �v(2) in the  -dimensional space is sought

(i.e., the node closest to �v(2)). The selected node ŵ(2) is identified

as the "best matching unit" (BMU) [305]. To measure the distance

between vectors, the Euclidean distance is typically employed, which

is computed between the input and each weight vector as [305–307]

3?2 =




�v(2) −w?




 = √
 ∑
:=1

(
�Ē(2)

:
− F?:

)
2

(6.11)

where �Ē(2)
:

represents the :-th element of �v(2). In the traditional

algorithm, also called "online" or "sequential" [305], following the

determination of each BMU, the weights of the winning and adjacent

neurons are updated according to the equation

w(2)? = w(2−1)
? + ℎ?(2)

[
�v(2) −w(2−1)

?

]
(6.12)

where w(2)? denotes the weight of the =-th neuron following the BMU

determination for the 2-th input sample. In Equation (6.12), ℎ?(2)
is the neighborhood function, which acts as a smoothing kernel
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defined over the neuron locations and is generally maximum at the

BMU location. It is usually written in terms of a Gaussian function

[308, 309] as follows:

ℎ?(2) = 
(2) exp

©­­«
−



ŵ(2) −w(2)?




2

2�(2)
ª®®¬ (6.13)

where w(2)? and ŵ(2) represent the coordinates of the ?-th node and

of the BMU, respectively, while 
(2) and �(2) denote the learning

factor and a user-selected neighbor radius [309], respectively. Gen-

erally, both 
(2) and �(2) tend to decrease as the iteration index c

increases.

In this work, the batch learning algorithm [305] is used to train

the SOM. The update of the weights is thus postponed to the end of

each training period. This variant can only be applied if the entire

set of input data is available during the training phase.

The output space obtained using SOMs (i.e., the locations of

the map nodes) can be represented in a low-dimensional fashion

(usually two-dimensional). One of the most used approaches consists

of representing the neurons on a regular grid with hexagonal or

rectangular mesh [308], in which each has a color proportional to

the Euclidean distance between two map nodes. This method can,

indeed, be used to visualize multidimensional spaces more easily.

Once the training process is concluded, consider a new voltage

sample. It is possible to define a classification process consisting of

associating to the considered sample the closest – in the Euclidean

sense – neuron of the SOM. In other words, the BMU of the con-

sidered sample is the outcome of the classification process. It is

also possible to build a "topological matrix" or "sample hit matrix"

Y ∈ ℤ%×%
that indicates how many samples in a testing set are

assigned (i.e., classified into) each neuron of the network.

Let y∗ ∈ ℤ%2

and y ∈ ℤ%2

be the elements of the topological

matrices obtained by classifying the subsets �V
∗
and �V, respectively,

arranged in column vectors. A sample correlation coefficient between
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the sample hits in y∗ and y can be calculated as

� =

∑%2

?=1

(
H∗? − H̄∗

) (
H? − H̄

)√∑%2

?=1

(
H∗? − H̄∗

)
2 ∑%2

?=1

(
H? − H̄

)
2

(6.14)

where H∗? and H? indicate the elements of y∗ and y, respectively, and

H̄∗ and H̄ denote their mean values.

Considering a space described by all the elements from the

synthetic and real datasets, the coefficient � describes how the two

datasets are reciprocally distributed in that space. Specifically, if � is

close to 1, the samples of the real dataset populate the same regions

as the samples of the synthetic dataset and are similarly distributed

in them. On the other hand, if � is close to 0, the two datasets

form two different clusters, and a DNN trained using the synthetic

dataset would not learn much about the regions of the input space

populated by real data, being ineffective in the prediction of the

conductivity distribution.

Deep neural network

In this study, the Sheffield measurement protocol [183] was em-

ployed, which is also known as the adjacent interrogation pattern

and generates & − 3 voltage measurements for each current interro-

gation. Specifically, the data acquisition process consists of injecting

direct current to adjacent pairs of electrodes. For each pair, the

resulting boundary voltages across all the other pairs of adjacent

electrodes (except those that include the electrodes used for current

injection) were recorded simultaneously. This process was repeated

until DC was injected into all unique adjacent pairs of boundary

electrodes. Thereby, the entire voltage dataset contains &(& − 3)
voltage measurements, which are employed to build the V matrix.

The first ML tool employed in this work consists of a DNN with

three hidden layers, each containing N neurons, in addition to the

input and output layers (having &(& − 3) and " neurons, respec-

tively). After the input layer, batch normalization was performed,

followed by the fully connected hidden layers that implement an
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exponential linear unit activation function. At the end of the net-

work, one last fully connected layer operated as the output layer for

regression, without any activation function.

The forward propagation of the network in the central hidden

layers can be written as

x; = elu (W;x;−1 + b;) (6.15)

where x; ∈ ℝ#
and b; ∈ ℝ#

are the output and the bias vectors of

the ;-th layer, respectively, while 4;D(©) represents the exponential

linear unit activation function. W; ∈ ℝ#×#
is the matrix of the

weights of the ;-th layer (i.e., containing the weights associated with

the connections between the neurons of the (; − 1)-th and the ;-th

layer). It should be noted that, since the input and output layers

have different numbers of neurons, the size of x; , b; , and W; vary

accordingly between ;=1 and ;=4. Let D be the entire set of DNN

parameters, defined as D = {W1 , . . . ,W; , b1 , . . . , b;}. The training

procedure is conducted to determine the elements of D using the

samples of the training dataset TB as follows:

D = arg min

D

(
‖�� − x(D, �Ṽ)‖2

)
(6.16)

where x(©) is the output of the neural network.

Radial basis function network

RBFN is a feedforward neural network with a single hidden layer,

which uses a Radial Basis Function (RBF) as a nonlinear activation

function for each neuron. In this work, an RBFN with the number

of neurons smaller than the space of the output (# < ") was used

to approximate the output conductivity distribution. In particular,

a Gaussian function )= was employed as the RBF for each =-th

neuron, which is defined as follows:

)= = exp

(
− ‖�ṽ − c= ‖2

212

)
(6.17)

where �ṽ is a generic difference voltage measurement, and the

centers c= of the RBFs were selected as the centroids of the clusters
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obtained using the k-means clustering algorithm on the set of

training inputs. Moreover, given a vector d containing the Euclidean

distances ‖�ṽ − c= ‖ between all the possible combinations of indices

2, the spread parameter 1 is selected as:

1 = 3̂ + BC3(d) (6.18)

where 3̂ is the mean of the elements in d and is the same for all the

RBFs. The results obtained by testing different RBFNs with different

spread factors using a simulated validation dataset show that the

parameter defined as in Equation (6.18) generally provides the best

approximation of the reference conductivity distribution in this

study. Given the RBFs, the output x of the RBFN was calculated

using:

x =

#∑
==1

w=)= (6.19)

where w= contains the weights associated with the connections

between the neurons in the output layer and the =-th neuron in the

hidden layer. The weight vectors w= were determined upon defining

the parameters of the RBFs (i.e., c= and 1) by carrying out a training

procedure of the network using the training dataset T̃. Specifically,

the following least-squares problem was solved:

W = ���† (6.20)

where W = [w1 , . . . ,w# ] ∈ ℝ"×#
is the complete weight matrix,

and � ∈ ℝ#×(�
is the matrix of )= for each instance �ṽ(B,2), while

©† means the Moore-Penrose pseudoinverse of its argument.

Crack identification

This section presents the results obtained using the proposed ma-

chine learning framework to solve the inverse ERT problem in four

specimens fabricated with two different techniques, the first based on

Multi-Walled Carbon NanoTube and the second based on Graphene

NanoSheet (GNS). The sensing layers were fabricated by depositing

piezoresistive (i.e., MWCNT or GNS-based) thin films on substrates

consisting of PolyEthylene Terephthalate (PET) sheets.
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The procedure to fabricate the MWCNT thin film consists of mix-

ing 0.339 g of MWCNT with an outer diameter of 8 nm (NanoIntegris)

and 0.806 g of N-Methyl-2-Pyrrolidinone (NMP) (Sigma-Aldrich)

with 33.855 g of 2 wt.% Poly-(Sodium 4-Styrenesulfonate) (PSS) solu-

tion, obtained by dissolving the PSS (Sigma-Aldrich) into deionized

water. The mixture was then immersed in an ice bath and subjected

to high-energy tip ultrasonication (5 s on and 5 s off; 6.35 mm tip;

30 min at 30% amplitude) for 1 h to disperse the MWCNT. Lastly, an

appropriate amount of latex solution (Kynar Aquatec) and DI water

were added to the MWCNT dispersion to generate sprayable ink.

This MWCNT ink fabrication process is described in detail by Wang

and Loh [310].

The GNS-based ink was fabricated according to the process

described by Lin et al. [311] and briefly reported herein. GNS, synthe-

sized using water-assisted liquid-phase exfoliation [312], is added

to ethyl cellulose (EC) solution and subjected to bath sonication to

disperse the GNS properly. Then the mixer was heated to 60 °C and

stirred for 12 min to make a sprayable ink.

The MWCNT-latex ink and GNS-EC ink were manually sprayed

onto four 108×132 mm
2

PET substrates (two for each sensing ma-

terial) using a Paasche airbrush. Each specimen was air-dried at

room temperature for at least 12 h before use. After the thin film was

completely dry, electrodes were attached along the boundaries of the

specimen using copper tape strips. Colloidal silver paste (Ted Pella)

was applied over copper tapes to reduce the contact impedance. 18

electrodes arranged in a 4×5 pattern were deployed. The fabrication

procedure of the specimens is schematized in Figure 6.1.

Since PET sheets are flexible, the specimen and the electrodes

were fixed on the table using electrical insulating tape. A razor blade

was used to cut the specimen to simulate cracking of the substrate

(representing a structural component coated by the sensing film).

For each specimen, a baseline voltage measurement v(0) was

taken before inducing the damage, when the specimen was intact.

After each damage, a new voltage dataset v(2) was then recorded

and employed to calculate �v(2) according to Equation (6.8). ERT

measurements were collected using a customized Data AcQuisition

(DAQ) system consisting of a Keithley 6221 AC/DC generator (for
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Figure 6.1: Fabrication process of the specimens: MWCNT-based (a) and GNS-based sensing surfaces (b)

boundary current excitations) and a Keysight 34980A multifunc-

tional switch with an embedded digital multimeter (for switching

and boundary voltage measurement). MATLAB was used to control

the DAQ system using the adjacent interrogation pattern [183].

Following the procedure explained, two different synthetic

datasets were generated to train the DNN employed for solving the

inverse ERT problem in a defined region of interest of the interro-

gated body. Specifically, the first dataset was built by considering

single and multiple polygonal areas, with random shape and po-

sition in the region of interest, where conductivity was reduced

of a random factor. On the other hand, the second dataset was

generated considering randomly-distributed line-shaped areas with

zero conductivity in the sensing surface. These areas with reduced

conductivity represent local defects in the monitored region. Two

examples taken from these two datasets are reported in Figure

6.1, where the input (boundary voltage measurement) and output

(related conductivity distribution in the region of interest) of the

inverse problem are represented.

In an experimental campaign conducted using the four specimens

described in Section 4.1, 16 difference voltage datasets were collected

under different damage conditions, organized in column vectors

�v(2) that constitute a real dataset �V
∗
. Two complete datasets �V

+
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Figure 6.2: Two examples from the synthetic datasets built for training, consisting of pairs of conductivity distribution

and related voltage measurement: polygonal defect (a) and crack-like defect (b)

were generated, the first including a synthetic dataset �V containing

10000 instances representing polygonal defects, and the second

including 10000 instances relevant to crack-like defects, in addition

to the mentioned real dataset �V
∗
.

In order to understand which synthetic training dataset is the

most appropriate for the application presented in this work, two

sets of 100 SOMs were trained using the two complete datasets.

More than a single SOM is considered in this study since training

starts with a random selection of weights and may lead to slightly

different results. Two examples of SOMs trained using the two

complete datasets are reported in Figure 6.3a-b. The grey hexagons

represent the neurons of the SOM, and the colors of the map are

representative of the Euclidean distance between couples of neurons.

Specifically, yellow indicates close neurons, while dark red denotes

large inter-neuron distances. Thereby, yellow areas denote dense

regions in the  -dimensional voltage space, while red areas signify

remote regions. The black full hexagons in the gray grid represent

the sample hits of the synthetic (top figures) and real (bottom figures)

datasets obtained for the SOMs by classifying the synthetic and real



230 6 Integrating information

portion of the complete training datasets, respectively. Since the

real dataset is much smaller than the synthetic one for lack of real

recordings, some neurons are empty in the bottom figures, i.e., they

do not classify any real measurement. It should be noted that the real

instances are the same for the two cases reported in Figure 6.3a-b.

However, a different structure of the SOM can lead to a different

sample hit map.

The sample hit distributions of the synthetic and real datasets,

normalized with respect to their maximum values, can be compared

by calculating the correlation coefficient reported in Equation (6.14).

As aforementioned, the correlation coefficient measures the similar-

ity between the synthetic and real space structure and is indicative

of the suitability of a synthetic dataset to train a supervised ma-

chine learning tool able to predict the real instances. The average

correlation coefficients � calculated on 100 training procedures (i.e.,
generating 100 different SOMs) are 0.7871 and 0.9245 for the datasets

obtained for polygon and crack-like defects, respectively. These re-

sults indicate that the structure of the synthetic dataset representing

(a) (b) (c)

Complete dataset

Real dataset

Complete dataset

Real dataset

Complete dataset

Real dataset

Figure 6.3: SOMs obtained for polygonal defects with normalized voltage data (a), crack-like defects with normalized

voltage data (b), and crack-like defects with non-normalized voltage data (c); the size of full black hexagons is

proportional to the sample hits of synthetic (top figures) and real (bottom figures) voltage data
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crack-like defects is more similar to that of the collected voltage

measurements.

It is worthy to note that the normalization performed in Equation

(6.8) is of fundamental importance since training the SOM with

non-normalized data would lead to the result reported in Figure

6.3c, where synthetic and real data populate different regions of the

voltage space. Indeed, two remote spots in the SOM are clearly visible,

which only include real instances. In the case of non-normalized

data, the average correlation coefficient calculated on 100 training

procedures would be only 0.1943, representing a training dataset

that is poorly effective in predicting the real instances.

The normalized synthetic dataset representing crack-shaped

defects is thus used to train a DNN employed to reconstruct the

conductivity distributions associated with the real voltage measure-

ments collected from the four specimens described above. Figure 6.4

and Figure 6.5 show the reconstructed conductivity distributions

corresponding to the damage states induced by cutting the two

MWCNT-based sensing specimens using the razor blade in the

highlighted locations (red dashed lines). Specifically, Figure 6.4a and

Figure 6.5a plot the results obtained using the presented ML-aided

method. Here, the values in the color bar (0-100) are representa-

tive of a dimensionless conductivity reduction associated with the

normalized voltage measurement. For comparison purpose, Figure

6.4b and Figure 6.5b show the results obtained with the TV method,

using a weight 
 equal to 10
−6

for the regularization matrix (see

Equation (6.6)).

These two figures show that small cracks are generally correctly

identified in both specimens. Concerning the ML-aided approach,

as the crack size increases, a higher noise amount populates the

reconstructed distribution. Also, the shape of multiple cracks can-

not be properly recognized since the defect is reconstructed as a

single connected region with low conductivity. Nevertheless, an

approximate estimate of crack extension and location can always

be identified. Besides, the magnitude of identified conductivity

reduction is almost constant for the different damage cases, allowing

easy identification of small defects. On the other hand, the shape of

the damaged regions identified using the TV method is very similar
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Figure 6.4: Conductivity distribution reconstructed for Specimen #1 through the TV method (a) and the ML-aided

approach (b); reference cracks are reported as red dashed lines
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between the different damage cases of the same specimen, changing

in magnitude. This result makes understanding how damage is

evolving particularly challenging.

As in the previous cases, Figure 6.6 and Figure 6.7 show the

reconstructed conductivity distributions obtained using GNS-based

specimens. In general, a less detailed reconstruction of the conduc-

tivity distribution is identified in this case. Considering Specimen

#3, small defects are well localized and quantified (in terms of size)

using the ML-aided approach. Besides, although the direction of the

reconstructed crack is slightly different from that of the reference

damage, the crack extension and location are well approximated. On

the other hand, the results obtained using the TV method represent
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approach (b); reference cracks are reported as red dashed lines

the damage magnitude but do not provide accurate conductivity

reconstruction. Considering Specimen #4, the small crack in the

first damage state is not identified by any of the two methods. This

result may be due to the selected interrogation pattern. Indeed, it

is well known that the Sheffield measurement protocol is generally

more sensitive to conductivity variations close to the boundary of

the interrogated specimen [180]. On the other hand, an "opposite"

[312] interrogation pattern would be more sensitive to conductivity

variations in the central sensing region as the current travels more

uniformly through the imaged body and is less sensitive close to the

boundary [180]. The use of different interrogation patterns will be in-

vestigated in further research. Using the TV method, the second and

third crack evolution in Specimen #4 are identified as a conductivity

reduction that increases in magnitude as the crack size grows. The

conductivity distribution reconstructed using the ML-based method

in the last two scenarios also presents a wider low-conductivity

region in the middle of the sensing area; however, the two cracks of

the last damage case are not clearly distinguishable.

Strain sensing

This section reports the results obtained for strain sensing with

the MWCNT-based paint in two different applications. First, the

smart paint was applied to an elastic foam and the strain state

was impressed by loading the specimen perpendicularly to the
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sensing film. In this case, out-of-plane loads induced in-plane Poisson

expansion of the coated sensing material. Second, the smart paint

was spray-coated onto a patterned substrate to form a sensing mesh

for distributed strain monitoring. In this case, the substrate is a

plastic support subjected to three-point bending tests.

In the first application, the MWCNT-latex ink was manually

spray-coated onto 214×230 mm
2

Smartfoam specimens (15DC-3G)

produced by Nano Composite Products (NCP, Orem, UT) using a

Paasche airbrush. Each specimen was then air-dried at room temper-

ature for at least 12 h before use. After the thin film was completely

dry, multi-strand wires were deployed along the boundaries of the

specimen using copper tape and silver epoxy (provided by MG

Chemicals) to form the electrodes. A total of 26 electrodes arranged

in a 6 × 7 pattern was prepared as shown in Figure 6.8a. Since

the foam was flexible and soft, the specimen was fixed to a rigid

3D-printed PLA support.

Prior to the start of any test, baseline ERT measurements of

the unstrained nanocomposite-enhanced foam were obtained. ERT

measurements were collected using a customized DAQ system con-

sisting of a Keithley 6221 AC/DC generator (for boundary current

excitations) coupled with a Keysight 34980A multifunctional switch

with an embedded digital multimeter (for switching and boundary

voltage measurement). MATLAB was used to control the DAQ sys-

tem using the adjacent interrogation pattern. It should be mentioned
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Figure 6.8: Schematic of the sensing specimen and ERT boundary electrodes (a); test setup for applying pressure

hotspots (b); 3D-printed shapes to control contact area (c); and location of hotspots and coordinates of their centers

(d). All dimensions are shown in millimeters

that DC was injected across a pair of boundary electrodes, while

voltage magnitudes across all other adjacent pairs were recorded.

Two sets of pressure sensing tests were performed, both using the

setup illustrated in Figure 6.8b. Test #1 was aimed at investigating

whether the proposed sensing solution could accurately determine

the location of pressure hotspots. In order to keep the contact area as

constant as possible throughout the test, the S1 3D-printed PolyActic

Acid (PLA) disc represented in Figure 6.8c with a diameter of 10 mm

was inserted between a weight and the sensing specimen. A mass

of 200 g was placed at 16 different positions on the nanocomposite-

enhanced foam as shown in Figure 6.8d, and ERT measurements

were obtained for each position. Test #2 aimed to characterize the

accuracy of identifying different pressure shapes. In this case, three

3D-printed PLA shapes (i.e., S2, S3, and S4 shown in Figure 6.8c)

were placed at different positions on the sensing surface. Specifically,
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a mass of 500 g was used for shape S2, 1 kg for shape S3, and 4 kg

for shape S4. Similar to Test #1, ERT measurements were recorded

after each pressure hotspot was introduced.

The nanocomposite-enhanced foam was modeled according to

Figure 6.9a, with 9716 elements for the FE model and electrodes

modeled as void areas. CEM conditions were imposed at the bound-

ary of each electrode (i.e., at the interface between the sensing film

and the silver epoxy) as shown in Figure 6.9a. The experimental test

setup is shown in Figure 6.9b, and the specimen resembles the FE

model.

A training dataset was built following the algorithm by nu-

merically solving the forward problem for polygonal conductivity

variations shown in the previous sections. This dataset was then

used to train a DNN and a RBFN. A set of � = 15000 random

polygons within a rectangular region of interest of 3690 elements

(see Figure 6.9a) were generated using the following parameters:

% = 4, '?=70 mm, and  ? = 5. The conductivity within the resulting

area was reduced by a random value between 0% and 100% for each

case. In order to improve the robustness of the training process, jitter

was included in the training dataset with � = 0.01 and ( = 5.

The DNN used to solve the ERT inverse problem was designed

as follows. After the input layer, which contains 598 neurons (i.e.,
the size of voltage measurements for each inspection), four hidden

fully-connected layers, each containing 2048 neurons and followed

by exponential linear unit activation functions, were employed. At

(a) (b)

Electrodes

Region of interest

Figure 6.9: FE model of the specimen (a) and experimental setup (b)
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the end of the network, a fully connected layer with 3690 neurons

without activation functions was used, which has a size equal to the

number of elements that constitute the region of interest in the FE

mesh. The network was trained using the extended training set (i.e.,
including jitter) that contains 75000 different cases, employing 30

epochs of the Adam optimization algorithm [313], with an initial

learning rate equal to 0.001, which decreases every 10 epochs with a

drop factor of 0.1. The denominator offset is 10
−8

, and the decay rate

of the gradient moving average is 0.9, while the batch size is 128.

On the other hand, the RBF network consists of a single fully

connected layer containing 100 neurons activated by Gaussian RBFs.

The centers of the kernel functions were selected as the centers of

100 clusters determined using the k-means algorithm on the jittered

training dataset, while the spread parameter 1 was determined as

explained in (6.18). The RBF network was trained by solving the

least-squares problem of (6.20) while considering the full dataset

containing 75000 cases.

First, Test #1 was performed, and the datasets were used for

solving the ERT inverse problem using difference imaging and the

TV method. Figure 6.10 plots the conductivity distribution changes

between each applied pressure hotspot with respect to the baseline.

Specifically, an 
 factor equal to 10
−6

and a single iteration of the TV

method were employed to generate these results. The location of the

largest conductivity variation was, in general, correctly identified,

as can be seen in Figure 6.10 (the reference locations of applied

loads are represented as dashed red circles). However, the shape

and size of the pressure hotspot (i.e., using the S1 baseplate shown

in Figure 6.8c) are not clearly visible due to the several artifacts

present in the reconstructed change in conductivity distributions.

It should also be noted that the magnitude of the conductivity

changes (here expressed in S/m) were also inconsistent despite the

applied pressure being the same. In fact, conductivity change is

generally higher when the load was applied closer to the electrodes,

which is consistent with previous reports of nonuniform sensitivity

between the center and boundary regions [314]. Overall, the average

computing time to solve the ERT inverse problem using the TV

method was 0.65 s using MATLAB (R2020b version) running on
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Figure 6.10: Conductivity distributions obtained using the TV method for Test #1

an Intel®Core
TM

i7-8700 6@3.20 GHz-processor CPU with 2GB

NVIDIA Quadro P620 GPU, 32GB RAM, and Windows 10 operating

system.

On the other hand, Figure 6.11 and Figure 6.12 show the results

for Test #1 when the ERT datasets were processed using the DNN

and the RBFN methods, respectively. Specifically, the elements in the

output vector generated by the ML algorithms are represented on a

2D map corresponding to the respective mesh elements. Compared

to the results of Figure 6.10, the DNN-based method provides a

much higher resolution of detecting pressure hotspots, where the

actual size and location of the footprint are generally accurately

identified, while noise artifacts are minimized (Figure 6.11). The

reconstruction process takes on average 0.005 s using the trained

DNN running on the same hardware system (i.e., less than two orders

of magnitude as compared to the TV method). This considerable
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Figure 6.11: Conductivity distributions obtained using the DNN-based method for Test #1

improvement in computing performance is due to the nature of the

feedforward process employed by DNN to solve the ERT inverse

problem, which does not require performing demanding matrix

inversion operations.

The results obtained using RBFN in Figure 6.12 have a visibly

lower resolution as compared to DNN (Figure 6.11). Although

hotspot location in each image is generally well estimated, noise

artifacts are more regular as compared to the results of the TV

method (Figure 6.10). The main advantage of the RBFN-based

method is its computational time, which was significantly lower and

was on average 0.003 s for each reconstruction. Moreover, due to

the limited number of neurons employed in the network, the RBFN

has 100 weights for each output value or 369000 weights in total. In

contrast, DNN uses over 21 million weights and is difficult to track,

especially when these algorithms are implemented and executed
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Figure 6.12: Conductivity distributions obtained using the RBFN-based method for Test #1

using portable computing nodes such as microcontrollers.

Overall, both ML methods provided conductivity reduction

magnitudes that are almost proportional to those obtained by the TV

method, which confirmed the efficacy of the adopted normalization

process. However, the estimated magnitude was not only dependent

on the load but also on the location on the sensing surface. This

result could be due to the uneven thickness (and hence resistance) of

the sensing specimen or local phenomena that affected areas close

to the electrodes.

Second, the results for Test #2 are shown in Figure 6.13, where

Test #2 corresponded to the case when different footprints or contact

pressure patterns were applied to the nanocomposite-enhanced

foam. Different weights were placed onto rectangular, triangular,

and figure-eight baseplates and on the sensing specimens. Figure
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Figure 6.13: Conductivity distributions obtained for Test #2

6.13 shows that, although DNN generally provides a more accurate

localization and shape reconstruction for small pressure hotspots, it

behaves worse for distributed loads, as is visible from the results for

the figure-eight baseplate. On the other hand, RBFN is more robust,

although it did not accurately reconstruct the contact pressure

shapes.

In the second strain sensing application, the nanocomposite

paint was spray-coated onto the rough side of a thermoplastic

polyurethane (TPU) sheet substrate, acquired from Wiman Corpo-

ration, using a Paasche airbrush. The substrate was then laser cut

(using the Silhouette Cameo 3) into a grid-like pattern and applied

to a PolyVinyl Chloride (PVC) support using epoxy. The total size of

the sensing grid was 111×59 cm, with the geometric details shown in

Figure 6.14. Ten electrodes were applied on the outer boundary of

the sensing mesh at all the boundary intersections between vertical

and horizontal sensing stripes.

The support was subjected to three-point bending tests, position-

ing the specimen in the test machine with the sensing mesh on the

lower face, i.e., the part subjected to tensile strain. Three increasing
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Figure 6.14: Geometry of

the sensing mesh

59

Electrodes

MWCNT-Latex mesh

3

11
1

displacement levels (1 mm,2 mm, and 3 mm) were induced at the

load locations shown in Figure 6.15. The two contrasts at the extrema

of the support make it behave as a simply-supported beam, as shown

in Figure 6.16. In test #1 and test #2, the supports are perpendicular

to the support axis. On the other hand, in test #3, the support is

rotated, as shown in Figure 6.15 and Figure 6.16.

Before applying the load to the specimen, baseline voltage record-

ings are collected for each test. Then, a new voltage measurement is

collected for each step of the increasing displacement.

Figure 6.15: Schemes of

the bending tests Test #1 Test #2 Test #3

SupportsLoad
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Figure 6.16: Experimen-

tal setups of the bending

tests

An FE model was employed to generate a training dataset. The

vertical and horizontal stripes of the mesh and their intersections

were modeled using only two triangular elements each, thus con-

siderably reducing the complexity of the model and limiting the

degrees of freedom of the conductivity distribution. The training

dataset consisted of 10000 instances, generated by assigning random

conductivity variations to each stripe.

The RBFN described in the previous sections was employed to

identify the strain distribution from collected voltage measurements.

It should be noted that, since the model complexity is very low (each

stripe can have just one conductivity value), the network layout

can be simplified considerably compared to the other applications.

Indeed, a RBFN with 10 nodes was employed, with centers and

spread parameter determined in the same way as the previous

application.

Figure 6.15 shows the results obtained for the three bending

tests illustrated in Figure 6.14b. The longitudinal elements (repre-

sented with a vertical orientation in the reported schemes) present a

conductivity reduction proportional to the strain state of the lower

face fibers of the deflected specimen. On the other hand, due to the

Poisson effect, the horizontal elements present a slight increment in

the conductivity distribution. As in the last cases, the colormap is

not representative of real measure units due to the normalization

process.
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Figure 6.17: Conductiv-

ity distribution of the

sensing mesh identified

for different displace-

ment levels in the three

bending tests
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The built environment is a complex system of structures, people, and

nature, closely interconnected and interacting. This is the main rea-

son why vibration-based structural health monitoring is particularly

challenging in dense urban environments. Here, civil structures are

not individual entities, and operators should consider several factors

to assess their health state from a holistic perspective. Moreover,

people make this picture even more complicated with their daily

activities: vehicles induce quasi-static displacements on bridges,

while individual or group activities, such as running and walking,

can induce vibration with a narrow frequency band to urban in-

frastructure. Together with the phenomena related to natural and

meteorological actions, such as earthquakes and wind, all these

factors constitute a large and manifold set of excitation sources

with particular properties rarely considered in traditional SHM

methods.

It is also true that the structural vibration response induced by

these effects contains valuable information which may help decision-

makers in scheduling maintenance or managing emergencies.

Thanks to the recent advent of low-cost sensing systems, vibration-

based SHM is increasingly used for minor structures and infrastruc-

ture. Moreover, smartphones are sensing devices widespread and

always connected to the Internet, ready to transmit collected data.

This thesis mainly investigated three monitoring scenarios:
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Scenario 1: Civil structures instrumented with dense low-cost

sensor networks subjected to nonstationary excitation

induced by nearby traffic, earthquakes, and weather-

related sources.

Scenario 2: Bridges instrumented with sparse sensor networks

subjected to direct vehicular traffic.

Scenario 3: Light bridges and footbridges, without any specific

monitoring instrumentation, crossed by micromobility

vehicles, such as bicycles, instrumented with smart-

phones that operate as moving sensors.

Although these scenarios consider everyday situations in the

urban and extra-urban environment, several challenges still hamper

vibration-based SHM methods due to particular phenomena related

to excitation or data management. Besides, in some cases, vibration

measurements are not enough to assess the structural state of health

due to the complexity of the built environment.

This thesis presented original monitoring strategies, proposed

novel signal processing algorithms, and tested innovative technolo-

gies to exploit the specific properties of the vibration response in

the considered scenarios.

This final chapter reports the conclusions and open topics of this

study.

7.1 Multivariate data and their inner
relations

This thesis presented an original algorithm for the identification of

instantaneous modal parameters suitable for time-varying linear

and nonlinear systems. This method mainly consists of filtering

and the filter construction is based on the inner relations between

different recording channels.

In particular, the Modal Assurance Distribution was presented,

a novel time-frequency representation for multivariate signals. In

contrast to other signal processing methods, this distribution does

not represent the energy density of the signal in the time-frequency
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plane. On the other hand, it represents the similarity between in-

stantaneous Operating Deflection Shapes computed for neighboring

narrow-frequency band components. In the proposed algorithm, the

decomposition into signal subbands is performed using the discrete

wavelet packet transform (or its stationary variant), implemented

into efficient algorithms for near-real-time applications. Two criteria

are also presented to improve the readability of the MAD, which

generally presents random similarities in non-modal ODSs. The first

involves using a forgetting factor, while the second consists of a

noise-assisted procedure, which does not corrupt the final results, as

it happens instead in the ensemble empirical mode decomposition

if the number of trials is low. Indeed, in the presented algorithm,

noise is only used to create a mask to select signal components.

Moreover, an original decomposition algorithm based on De-

composition Algorithm based on Modal Assurance was presented

to extract decoupled modal responses by applying a MAD-driven

watershed segmentation and a clustering process. The MAD has

shown to be particularly suitable for watershed segmentation, as

the areas associated with different modes are well-separated by

low values in the time-frequency distribution. However, using a

forgetting factor may lead to local inaccuracies, which are limited

to the intervals where structural dynamics vary abruptly. The two

main hyperparameters of the DAMA were discussed, also proposing

a selection criterion based upon the analyzed signal.

The analyses conducted on a first simulated case study demon-

strate the potential of the method, showing low sensitivity to narrow-

band disturbances and performing well with vanishing modes and

considerable variations of the dynamic features. Besides, the results

of the second case study show the applicability of the identification

method to signals collected on real structures, even under varying

excitation with non-stationary amplitude. Accurate results are ob-

tained, especially for the lower modes, both in instantaneous natural

frequencies and mode shapes. The results obtained for the first case

studies were compared to those obtained using the EMD and its

multivariate variant, two of the most used algorithms to process

nonstationary signals. These results showed clear mode mixing

issues and the inability to identify vanishing modes.
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An intuitive visualization criterion of multivariate datasets was

also outlined, showing superior performances over well-known

traditional time-frequency representations since it also enables the

users to discern between different modal components and damage

conditions using a particular color coding.

Clustered Filter Banks were also presented in this thesis as a vari-

ant of the MAD for distributed computing applications in wireless

smart sensor networks. A new decentralized algorithm for online

signal decomposition was proposed in this context. The algorithm

consists of two steps: (1) initialization, in which a CFB is built based

on a window of collected data, and (2) real-time analysis, in which

the sensing nodes process the recorded signals and the monitoring

station performs the instantaneous modal identification and post-

processing operations. The study showed that a periodic refreshing

of the CFB may be necessary to minimize errors and identify consid-

erable variations in modal parameters. The Fejér-Korovkin wavelet

function has shown particularly suitable for implementation in this

algorithm since it allows the construction of perfect reconstruction

filter banks of modest length, compared to other wavelet functions.

The Teager energy operator was used in the decentralized al-

gorithm to identify natural frequencies, showing particularly fast

and sufficiently accurate after applying a median filter. However,

it involves an increase in the identification delay. In a "static" CFB

implementation (i.e., without refreshing), instantaneous natural

frequencies and mode shapes of a full-scale bridge tested under

ambient vibration were accurately estimated in early damage con-

figurations. Specifically, modal parameters were correctly identified

for the damage configurations that induced a percentage varia-

tion of the structural frequencies up to 10% with respect to the

baseline condition (used to build the CFB ). Refreshing the CFB ,

the accuracy increases considerably for all the considered damage

configurations.

A simplified process to build the CFB considers only a few

reference sensors. The results obtained from the case study showed

that the efficacy of this method strongly depends on the choice of

reference locations. However, good results with less computational



7.1 Multivariate data and their inner relations 249

burden can be obtained by selecting the reference sensors not too

close to the nodes of the main mode shapes.

An example of real-time damage identification was also studied

using the deflection shape obtained by estimating the flexibility

matrix as a damage-sensitive feature. For this purpose, the instan-

taneous uniform load lines were computed over time, and the

percentage displacement variation was considered a damage index.

Outlier analysis allowed detecting and locating the damage.

A variant to the DAMA was also proposed to identify the nonlin-

ear normal modes of nonlinear structures during seismic excitation.

In particular, the MAD was used to extract signal features, processed

using a self-organizing map, and clustered through the k-means

algorithm. The dimensionality reduction allows the user to select

the number of clusters and automates the identification process. In

this implementation, using the stationary wavelet packet transform

to build the filter banks used for signal decomposition enables the

application of the algorithm to short and strongly non-stationary

recordings. Therefore, the procedure is suitable for seismic structural

health monitoring applications. Indeed, accurate estimates of the

instantaneous modal parameters are identified for numerical and

real case studies. Nevertheless, the main advantages over literature

techniques lie in the immunity to mode mixing issues (in contrast

to EMD-based algorithms) and the ability to identify vanishing

components prevalent during earthquakes. Moreover, compared

to the traditional time-frequency representations, the MAD is not

directly dependent on the amplitude of wavelet components, thus

resulting in a distribution that is not generally dependent on the

nature of the excitation. This aspect is of the utmost importance

when dealing with seismic excitation.

The method proposed can be applied to identify instantaneous

structural parameters during seismic events and investigate the

condition of maximum excursion in the nonlinear field, which

may provide valuable information about ongoing damage, such as

disclosing the presence of breathing cracks.

For the considered case studies, the inter-story drifts and the

curvature of the uniform load lines were analyzed to detect and
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localize the damage, showing good agreement with the theoretical

results, visual inspections, and displacement recordings.

As a further aspect of this study, a novel strategy is also proposed

to compress collected data and update identified parameters online

and efficiently. This process is particularly advantageous for dense

or large line-topology sensor networks, very suitable for bridges.

This study showed that no relevant information is lost due to data

compression while reducing the weight of transmitted data consid-

erably. The procedure is thus particularly promising for applications

involving wireless technologies.

The proposed method was tested on a real case study, simulating

a dense wireless sensor network in line topology. The results showed

a considerable reduction in data weight by properly selecting the

number of singular components used to factorize the collected data

matrix. Moreover, power consumption is homogenized throughout

the network, in the perspective of optimizing maintenance inter-

ventions. Moreover, the approximated data matrix reconstructed

at the end of the linear network (i.e., onboard a coordinator node

or through cloud computing) is usable to identify accurate modal

parameters, which are also sensitive to early damage.

The idea of measuring the similarity in neighboring ODSs, ob-

tained through multivariate data, was already successfully used in

the well-known enhanced frequency domain decomposition algo-

rithm to identify modal parameters in the frequency domain. This

concept was extended in this study to operate in the time-frequency

domain, giving rise to a set of new signal processing algorithms with

limited assumptions suitable for SHM applications in the complex

built environment.

In all the proposed algorithms, the inner relations between differ-

ent recording channels were exploited to mitigate the dependency

on the input excitation and identify the modal parameters of the

structure, avoiding common disturbances in the recorded signals.

Further studies need to be conducted to understand the applica-

bility of the methods in other scenarios, such as railway bridges and

bell towers, for which the excitation is periodic. Indeed, in the first

case, the wheels of trains hit the rail joints at time intervals given by
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the train speed and its geometry. On the other hand, bells induce

low-frequency harmonic excitation to the towers.

7.2 Accelerometers measuring curvature

The second chapter of this thesis presented a novel approach for

structural health monitoring of simply-supported RC viaducts, capa-

ble of identifying dynamic and quasi-static parameters in a simple

and integrated fashion. The MAD was also shown to be suitable

to extract sparse estimates of modal parameters from structures

subjected to traffic excitation using clustered wavelet bandpass fil-

ters. Besides, quasi-static features enable a dense description of the

structural behavior using few accelerometers. Relying on the relation

between the recording time of the accelerometers and the space

traveled by a moving vehicle with constant speed, it was demon-

strated that the low-frequency component of acceleration is a direct

representation of the curvature of the bridge subjected to a vertical

force applied at the instrumented location. Therefore, accelerometers

directly measure curvature in this application, which is one of the

most used DSFs in SHM, removing the complex procedures (and

thus approximations) which are generally necessary for traditional

methods to calculate curvature from identified mode shapes. The

curvature influence line can thus be obtained from low-frequency

signal components through an additional lowpass wavelet filter

compared to the modal identification algorithm presented before.

A damage index defined as the difference of the curvature influ-

ence lines showed the ability to localize damage with good accuracy

using a sparse sensor network of accelerometers. Furthermore, the

proposed index represents the damaged entity and does not require

any knowledge about structural masses or the use of finite element

models.

The results obtained from a numerical case study showed that

damage can be detected, localized, and also quantified using a single

acceleration recording in optimal conditions. However, there is a

minimum spatial extension of the identifiable damaged portion that

depends on the sampling frequency of the collected signal and the
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vehicle speed. For local stiffness reductions with an extension shorter

than the threshold, damage can still be detected and approximately

localized. However, the information about damage magnitude is

lost. In the real environment, noise could affect the outcome of the

identification procedure, especially when using extremely sparse

sensor networks. However, the cumulative difference function ob-

tained by subtracting the inspection influence line from the baseline

in multiple sensing locations considerably improves the accuracy of

damage localization. Moreover, information obtained from modal

features can help discard peaks of the damage index generated by

dynamic effects and thus not related to actual damage. The proposed

procedure provided promising results, proving particularly appeal-

ing for applications employing low-cost sparse sensing solutions for

structural health monitoring at a territorial level.

More investigations need to be conducted to consider the dy-

namic vehicle-bridge interaction and road roughness in the problem

formulation. Besides, the method needs to be tested on real datasets

collected for case studies with induced damage conditions to assess

the effectiveness of the damage identification algorithm.

7.3 Smart citizens and smart sensors

This thesis presented a pilot study to demonstrate the practicability

of using drive-in smartphone data collected by citizens who drive

micromobility light vehicles (e.g., bicycles and kick scooters) to extract

dynamic features of urban bridges, such as natural frequencies

and modal amplitudes. Human-powered vehicles have never been

considered for the health assessment of civil structures. This work

constitutes a first step toward adopting light vehicles in indirect

structural health monitoring applications. The main advantages of

shared bicycles over other types of vehicles include the following

aspects:

1. Relatively low speed of the micromobility vehicles allows

the acquisition of longer datasets, minimizing vehicle vibra-

tion close to the expansion joints and reducing the effects of

pavement roughness on the collected response.
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2. High resonant frequencies of the bicycles (due to their low

mass and high stiffness) are generally distant from the first

fundamental frequencies of the inspected bridges, making

the filtering procedure particularly effective for removing the

vehicle dynamic effects from the collected response.

3. Shared bicycles, differently from private cars, are generally

all identical. The effect of their dynamic characteristics on

the response recorded by the smartphone can be studied and

removed from the signal if needed.

4. Bicycles can access almost all the urban bridges, even those

that are not accessible by cars.

This study proposed a novel automatic strategy based on the

GPS and IMU measurements collected by regular smartphones. An

extended Kalman filter and a simple band-pass filtering procedure

are the only tools employed in the proposed strategy, making it

particularly suitable for cloud processing.

The results obtained for a real footbridge situated in Bologna

(Italy) show that, although single datasets collected by each vehicle

can be particularly noisy, a crowdsensing-based strategy may provide

features that can be potentially employed for monitoring urban

infrastructures at a territorial scale. Data collected during different

activities, such as standing, walking, and riding on the bridge, have

shown the possibility of clearly identifying the first natural frequency

of the bridge. Moreover, using the retrieved frequency value to design

a suitable band-pass filter enables the identification of the absolute

value of the modal amplitudes, enclosing information of the first two

closely spaced modes. The results are in good accordance with the

profile identified in previous studies. Since the presented method

provides modal or operational shapes, all the damage detection

techniques based on these parameters or their derivatives can be

applied.

The proposed strategy can be particularly convenient for mon-

itoring infrastructure in large areas since it does not require any

deployments of traditional sensing systems and motivates citizens

to take care of the urban environment, opening incredible possibil-

ities for planning gamification and reward-based strategies in the

monitoring process. However, further studies must be conducted



254 7 Conclusions

considering other vehicles, users, and pavements, simulating a

robust crowdsensing application.

Dense estimates of mode shapes are helpful for identifying early

civil infrastructure damage. However, dense sensor networks have

relevant data management issues. The solutions presented in the

second chapter exploit traffic to retrieve spatial information while

using sparse sensor networks or individual sensing devices. Traffic is

seen both as a source of excitation and a means for moving sensors.

7.4 A good trade-off between accuracy and
complexity

PCM is a novel technology that has recently stepped into practical

digital storage applications. However, the potential of this tool for

signal processing makes it attractive for edge computing in structural

health monitoring. The unified algorithm for identifying modal and

quasi-static parameters presented in this thesis was adapted for

implementation on PCM-based devices, which are thus proposed

for the first time in the civil field.

This study shows that a recursive implementation of simple

high-pass and low-pass filters on PCM-based nodes leads to a signal

decomposition accuracy similar to that of the standard procedure

based on ideal filters, reducing energy consumption and computa-

tional runtime. The challenges related to time-dependent nonide-

alities of PCMs, which could affect memory arrays programmed

a long time before signal processing, are investigated. Structural

parameters identified in two environments, one representative of

a short-term implementation right after programming and one

representative of a long-term PCM usage, resulted in comparable

accuracy. In particular, the fundamental mode shape of a real case

study is identified with excellent accuracy in both cases. This result

demonstrates that the PCM does not necessarily need to be freshly

programmed for SHM applications. Therefore, energy-consuming

periodic reprogramming can be avoided.
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The results reported in this study are affected by both identi-

fication uncertainties (mainly due to recording noise) and PCM

nonidealities. This last effect, in particular, slightly affects identified

parameters if the filter bank is implemented iteratively. Moreover,

given the remarkable power saving of over 90% obtained in a first

evaluation, the proposed procedure proves to be particularly conve-

nient and worthy of future developments.

Further studies need to be conducted to optimize the current-to-

voltage conversion between the different array layers representing

different iterations of the recursive filtering. Besides, energy harvest-

ing solutions should be coupled with the computing core to exploit

vibrational energy and form fully self-powered devices.

7.5 Towards smart maintenance

This thesis presented the results obtained using two machine learn-

ing tools, namely a DNN and a RBFN, to solve the ERT inverse

problem for crack identification and strain monitoring applications,

employing two smart thin films fabricated using different formu-

lations. The application of these coatings to ordinary structural

elements enables self-sensing properties. Interrogating the smart

paint through electrical pulses, the voltage measurements recorded

on the boundary can be interpreted to reconstruct the electrical

and mechanical properties of the structural substrate, this revealing

cracks, the strain state, and the presence of dangerous chemical

substances that may accelerate material degradation.

First, a deep neural network was trained using a synthetic dataset

generated by solving the forward problem through a finite element

mesh model. The suitability of the training set for practical applica-

tions involving real voltage measurements was proved using a novel

procedure proposed in this work. In particular, a correlation coef-

ficient that measures the similarity between the high-dimensional

voltage space populated by real measurements and that populated

by the generated synthetic data is calculated. Comparing this co-

efficient obtained by different synthetic training datasets allows

deciding which one is more representative of the specific application
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in which real data is collected. This coefficient is easy to calculate and

does not necessitate any prior information on the damage location.

Therefore, it can be calculated after collecting voltage measurements

directly taken from the experimental campaign. Moreover, it enables

a conscious evaluation of the suitability of the generated training

dataset, which is generally a challenging aspect when applying

supervised machine learning tools for real applications.

After training the network with the most suitable dataset, the

conductivity distribution was reconstructed for different crack con-

ditions induced in four rectangular sensing specimens tested in

the laboratory environment. The results showed that, in general,

early damage (consisting of small cracks) is accurately identified,

both in terms of size and location. As the crack size increases, the

reconstruction becomes noisier, still showing an approximate loca-

tion and entity of the cracked area. Tests conducted on the carbon

nanotubes-based specimen generally provide more accurate results

than those based on graphene nanosheets. Moreover, damage condi-

tions involving the boundary region are identified more accurately

compared to those investing the central area of the sensing specimen,

probably depending on the current injection pattern employed for

interrogation.

The ability to reconstruct the strain state of the interrogated body

was studied with two applications. First, pressure mapping was

demonstrated using a nanocomposite-enhanced soft foam and the

use of both the DNN and RBFN. The RBFN-based method provided

accurate results for identifying small hotspots while also allowing

precise shape reconstruction of the shape of the baseplate used

to apply the load. Larger and more complex pressure regions are

localized but without accurate shape information, confirming the

results obtained for crack identification. On the other hand, although

the RBFN did not accurately localize small pressure hotspots, it was

more robust for identifying larger applied pressure regions. Both

machine learning techniques performed better than the traditional

total variation method, especially for computational efficiency, with

a runtime two orders of magnitude lower than the traditional

method. The RBFN required a much smaller physical memory and

computational footprint than the RBFN since network weights are
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58 times fewer. These results make RBFNs more suitable for portable

applications and edge computing.

The RBFN proved to be particularly effective also for the second

strain sensing application, employing a sensing mesh for distributed

strain sensing in two orthogonal directions. In this case, due to the

constraints introduced in the conductivity distribution of the sensing

film, an RBFN with only 10 nodes demonstrated to be enough to

reconstruct the strain state of a specimen subjected to a three-point

bending test.

Further studies should be conducted to evaluate the efficacy of

smart paint applied to real steel and reinforced concrete structural

components. In the former case, however, particular attention should

be paid to the interface between the metallic element and sensing skin

since the 2D approach used in this study only assumes an electric

flow through the sensing surface without considering any internal

electric source or sink. Further investigations must be conducted

considering a 3D propagation of the electrons within the body and

effective insolation substrates.

Also, the techniques proposed in this thesis should be tested to

detect the presence of humidity and dangerous chemical agents in

the structural substrate. Indeed, information on this aspect is funda-

mental to understanding the sources of structural anomalies, e.g.,
identified using vibration-based approaches and schedule targeted

interventions in a smart maintenance perspective.
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Decentralized identification
algorithm A

In this Appendix, the technical aspects of the decentralized

identification algorithm presented in Section Section 3.4.

A.1 Computational complexity

Since the algorithm is organized in two individual steps, the com-

plexity is estimated for the two steps separately.

Step 1

Since SWPT is performed through convolutions between a priori

known sequences, the considered complexity is that of the fast convo-

lution algorithm, which allows the computation of each convolution

as:

H:[�] = ���)"{��)"{G[�]}��)"{3:[�]}} (A.1)

where ��)"{©} and ���)"{©} denote the discrete Fourier

transform of length " and its inverse, respectively. In relation (A.1),

in order to allow simple multiplications between the terms of DFTs,

they have to be of the same length. To this aim, it is possible to extend

G[�] and 3:[�] through zero-padding, in order to have a common

length of " = B + # − 1. Since the length of the analyzed signal

is user-defined, it is also possible to choose s such that B ≥ # and

" = 2
@
, with @ ∈ ℤ+. In this case, the DFTs in Equation (A.1) can be

computed through radix-2 FFT and the computational complexity

of the SWPT can be expressed as reported in Table A.1, together

with the complexity and storage space required by each process

of Step 1. Here, the storage space is intended as the number of

elements stored in memory for each process. Moreover, the values

in (©)033, (©)<D; , (©)38E , (©)2>< , and (©)B@AC denote the number
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of additions/subtractions, multiplications, divisions, comparisons,

and root square operations, respectively, A is the number of sensors,

while 2 is the number of clusters identified before the energy-based

selection.

In order to reduce the computational burden of Step 1, it is

possible to limit the analysis to a selected frequency range, computing

only a subset of the 2
=

wavelet components, and therefore generating

a CFB able to identify the vibration modes whose frequencies

are contained in the considered range. Therefore, in Table A.1,

, ≥ 2
=

denotes the number of wavelet components considered in

the initialization step.

In this evaluation, only the strictly necessary operations have

been counted. In fact, the coefficients of a complete MAC matrix

would be,2
but, in this case, since only consecutive components

can be grouped in the same cluster, the MAC coefficients necessary

to verify the condition (3.27)of Section 3.4 are, − 1, corresponding

to the elements next to the main diagonal of the complete MAC

matrix (i.e., "��:,:+1, with : = 1, . . . ,, − 1). At the end of Step 1,

the CFB has to be built by summing the bandpass filters associated

to the decomposition filters contained in each cluster. Therefore,

if the 1: bandpass filters are already stored in the device memory

(using,# storage space), up to (,# −#)033 additional operations

are necessary to obtain the CFB .

Table A.1: Computational complexity of each process of Step 1

Process Complexity Storage space

SWPT 3,A
[ (
" log

2
"
)
033
+
(
"
2

log
2
" − "

6

)
<D;

]
,[# + A"]

ODS ,(A − 1) [(B − 1)033 + (B)<D; + (1)38E] ,A
MAC (, − 1) [3(A − 1)033 + (3A + 2)<D; + (1)38E] , − 1

Clustering (, − 1)2>< —

RMS energy ,A
[
(B + A − 1)033 + (B)<D; + (1)38E + (1)B@AC

]
− (2)033 ,A

Energy-based

selection

(2)2>< —
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Step 2

Following the centralized initialization step, the monitoring system

enters a decentralized processing phase. This section describes the

computational complexity of the activities performed to obtain each

instantaneous parameter, calculated as new data is recorded.

Assuming # the length of the generic filter 1:1 ,:< in the relation

(3.25) of Section 3.4, the computational complexity of convolution

for ? identified modes is given by:

C2 = [(#)<D; + (# − 1)033]? (A.2)

per input sample. This procedure needs#(?+1)+? elements stored

in memory (i.e., ?# elements for the filter bank, # elements for

the sliding window of collected data, and ? output values). Since

convolution is aimed at bandpass filtering, the rate at which it

is performed can be reduced according to the frequency band of

each filter [20], providing a smaller quantity of new samples for

low-frequency components. In this way, the number of operations

per second is reduced, making the procedure more efficient and

reducing also the number of output values, that can be transferred

to the monitoring station with a transfer rate which may even be

lower than that of the simple transmission of the unfiltered signal.

Each new value obtained through convolution is then sent to the

monitoring station, temporarily stored, and used to compute the

instantaneous natural frequencies and modal shapes. In Table A.2,

the computational complexity of DESA -1 is analyzed, indicating

the number of mathematical operations needed to obtain each

element of relations (3.30) and (3.31) of Section 3.4 for a given

identified mode, computed by using the data collected at a given

sensor position. Here, the value in (©)02>B denotes the number

of arcocosines calculated. Since some values are used to compute

the instantaneous frequency at different consecutive instants, the

reported number of mathematical operations considers only the

elements evaluated for each new sample of data, assuming that the

previous values are stored rather than calculated each time. Also,

the number of elements stored in memory is shown in Table A.2.
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Table A.2: Computational complexity of each process of Step 1

Element

Usable from

previous iterations

Computed for

each new sample

Storage

space

Complexity

H
H[� − 2], H[� − 1],
H[�], H[� + 1] H[� + 2] 5 —

I
I[� − 1], I[�],
I[� + 1] I[� + 2] 4 (1)033

Ψ Ψ[I[�]] Ψ[H[�]],
Ψ[I[� + 1]] 3 (1)033 + (1)<D;

Ω — Ω[�] 1

(2)033 + (1)<D;
+(1)38E + (1)02>B

The computational complexity of the instantaneous frequency

calculation does not depend on the filter length, but only depends

on the number of identified modes ?. It can be expressed as:

C5 = [(5)033 + (5)<D; + (1)38E + (1)02>B]? (A.3)

per input sample. The computational complexity of instantaneous

shapes depends instead on the number of identified modes and on

the number of sensors A:

CB = [(A − 1)38E]? (A.4)

In this last computation, no additional memory is needed, except for

the (A−1)? output elements, since the latest values obtained through

convolution are directly used, as shown in Section 3.4. Consider-

ing also median filtering for denoising purposes, the complexity

increases of:

C< = [(� − 1)2><?]? (A.5)

per input sample, for each quantity to which the filter is applied. It

is observable that, in the decentralized configuration, a consistent

part of the computational burden (
�2 per second) is carried out

onboard each node, while 
(C5 + CB + 2C<) per second lies with

the monitoring station, considering the median filter applied to

both natural frequencies and modal shapes, where 
 is a coefficient

that takes into account any downsampling (
 ≤ �B , with �B the

sampling frequency of the original signal). Considering ? and A

modest with respect to# and�, the computational complexity of the
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instantaneous filtering process can be expressed in the order of$(#)
per input sample, while that related to the activities of the monitoring

station is not dependent on # , and therefore assumable in the

order of $(�). On the other hand, using the proposed algorithm

in a centralized topology would imply a computational burden of


(AC2+ C5 + CB+2C<) per second on the monitoring station, which

can be expressed in the order of $(#) per input sample, assuming

that # is proportional to �.

A.2 Identification delay

Both due to the convolution and the application of DESA -1, a delay

is introduced in the estimated modal parameters. In addition, by

applying further post-processing operations to restrain the fluctua-

tions of modal parameters, the delay increases further. In particular,

for the proposed algorithm, the total delay � is given by the sum of

three contributions:

� = �2 + �3 + �< (A.6)

where �2 is due to the convolution procedure (�2 = (# − 1)/2) [224],

�3 is associated with the DESA -1 (�3 = 2), and �< is related to the

smoothing technique: in case of median filtering, �< = �/2, with

the notations used in Equation (3.33) of Section 3.4.

Since the filter bank related to the SWPT is generated through

convolutions between dyadic upsampled filters [202], the length of

the obtained analysis and synthesis filters increases with the order

of the wavelet function and with the level of decomposition. In

particular, considering a wavelet with filters length �, the length of

the filters contained in the decomposition (or reconstruction) filter

bank related to the =-th level is:

# = �(2= − 1) − = + 1 (A.7)

The length of the final filters used for online signal analysis is thus

# = 2# − 1, because of Equation (3.23) of Section 3.4. In Table A.3,

the length of the decomposition and reconstruction filters associated

with the wavelets already analyzed in Figure 3.1 are reported for

different levels.
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Table A.3: Length of the

decomposition and recon-

struction filters related to

the wavelets fk14, db14,

sym14, db7, fk22, and db22,

at different decomposi-

tion levels

Level fk14 and db7 db14 and sym14 fk22 db22

4 207 417 327 657

5 430 864 678 1360

6 877 1759 1381 2767

7 1722 3550 2788 5582

In general, filters with high order are suitable for applications in

the civil field, where closely-spaced modes and high noise compo-

nents are present. On the other hand, short filters are preferable for

real-time identifications in other engineering fields (e.g., flutter tests

[244]).



Quasi-static contribution of
the structural response B

In this Appendix, the Fourier transform of the quasi-static struc-

tural response defined in Equation (4.14) is demonstrated.

Substituting ) = 2;/E in (4.10), it is possible to write ;<(C) as

;<(C) = sin

(
<�EC
;

)
Π

(
C − )/4
)/2

)
(B.1)

where ) is the period of the sine function in the above equation

when< = 1, i.e., twice the time a passing car with a velocity equal to

E takes to enter and leave the bridge span. Thanks to the frequency

shift property, the Fourier transform of ;<(C) can be written as

!<( 5 ) = F[;<(C)] = F[;′<(C)] 4−9
�;
E 5 (B.2)

where the shifted function ;′<(C) reads:

;′<(C) = cos

(
<�E
;
C + < − 1

2

�

)
Π

(
C

)/2

)
(B.3)

The modulation theorem of Fourier transform can thus be employed,

obtaining:

F[;′<(C)] =

=
;4 9

<−1

2
�

2E
sinc

(
;

E
5 − <

2

)
+ ;4

−9 <−1

2
�

2E
sinc

(
;

E
5 + <

2

)
=

=
;

2E

[
4 9

<−1

2
�

sin

(
�;
E 5 − <�

2

)
�;
E 5 − <�

2

+ 4−9 <−1

2 �
sin

(
�;
E 5 + <�

2

)
�;
E 5 + <�

2

] (B.4)
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It should be noted that:

4 9
<−1

2
�

sin

(
�;
E
5 − <�

2

)
+ 4−9 <−1

2
�

sin

(
�;
E
5 + <�

2

)
= 0 ∀<

4 9
<−1

2
�

sin

(
�;
E
5 − <�

2

)
− 4−9 <−1

2
�

sin

(
�;
E
5 + <�

2

)
=

= 24 9
<−1

2
�

sin

(
�;
E
5 − <�

2

)
∀<

(B.5)

Therefore, Equation (B.4) simplifies in:

F[;′<(C)] =
;4 9

<−1

2
�

E
(
�2 ;2

E2
5 2 − <2�2

4

) sin

(
�;
E
5 − <�

2

)
(B.6)

The result shown in Equation (4.14) can thus be obtained by substi-

tuting Equation (B.6) into (B.2).



Data fusion using
smartphones C

In this Appendix, the structure and the implementation of an

extended Kalman filter is described to fuse asynchronous data

collected by multiple sensors on a smartphone.

C.1 Structure of the extended Kalman filter

The state vector x ∈ ℝ28
and the state transition function 6(x) of the

CD-EFK described in Section 4.3 have the following structure that

depends on the geometrical and the physical relations between the

measured variables [315]:

x =



�0

�1

...

�2 �1

�3 �2


1 �3


2 E1


3 E2

�1 E3

�2 
̄1

�3 
̄2

�1 
̄3

�2 �̄1

�3 �̄2

... �̄3

�̄1

�̄2

�̄3



, 6(x) =



− �1�1+�2�2+�3�3

2

− �0�1+�3�2+�1�3

2

...

− �3�1+�0�2+�1�3

2
E1

− �1�1+�2�2+�0�3

2
E2

0 E3

0 
1

0 
2

0 
3

0 0

0 0

0 0

0 0

0 0

... 0

0

0

0



(C.1)

The meaning of the symbols used in these expressions is reported
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Table C.1: Measurement

symbols
Measurement Symbol

Quaternion �0, �1, �2, �3

Acceleration (IMU) 
1, 
2, 
3

Angular velocity (IMU) �1, �2, �3

Magnetic field (IMU) �1, �2, �3

Position (GPS) �1, �2, �3

Velocity (GPS) �1, �2, �3

Accelerometer bias 
̄1, 
̄2, 
̄3

Gyroscope bias �̄1, �̄2, �̄3

Magnetometer bias �̄1, �̄2, �̄3

in Table C.1, and the directions of measurement are illustrated in

Figure C.1.

The function 6(x) describes the evolution of the state vector in

time and computes, therefore, its derivative. It is noted that, in the

model used in this study, the IMU measurements are expected to

be constant while the vehicle moves. Therefore, the elements from

the 5-th to the 13-th of the state transition function are taken as zero.

Similarly, the model assumes all the biases constant over time, with a

null derivative. On the other hand, the derivative of the GPS position

is modeled as the measured GPS velocity, the derivative of which,

in turn, is the acceleration measured by the MEMS accelerometer.

The observation function has a structure that depends on the

quantities included in the measurement vector z: . Specifically, if a

Figure C.1: Directions of

measurement
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new acceleration measurement is available (z: = [
1 , 
2 , 
3])), the

observation function has the following form:

ℎ
(x) =




̄1 − (
1 − 
A,1)
(
@2

0
+ @2

1
− @2

2
− @2

3

)
− 2 (
2 − 
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(
@0@3 + @1@2

)
+ 2 (
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A,3)

(
@0@2 − @1@3

)

̄2 − (
2 − 
A,2)

(
@2

0
− @2

1
+ @2

2
− @2

3

)
+ 2 (
1 − 
A,1)

(
@0@3 − @1@2

)
− 2 (
3 − 
A,3)

(
@0@1 + @2@3

)

̄3 − (
3 − 
A,3)

(
@2

0
− @2

1
− @2

2
+ @2

3

)
− 2 (
1 − 
A,1)

(
@0@2 + @1@3

)
+ 2 (
2 − 
A,2)

(
@0@1 − @2@3

)



(C.2)

with 
A,1 being a reference acceleration measured by the mobile

application at the beginning of the measurement process. Con-

versely, for angular velocity measurements (z: = [�1 , �2 , �3])), the

observation function becomes:

ℎ�(x) =

�̄1 + �1

�̄2 + �2

�̄3 + �3

 (C.3)

while for magnetic field measurements (z: = [�1 , �2 , �3])):

ℎ�(x) =


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2
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3
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(
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)
+ 2�3

(
@0@1 + @2@3
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(
@2

0
− @2

1
− @2

2
+ @2

3

)
+ 2�1
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@0@2 + @1@3

)
− 2�2

(
@0@1 − @2@3

)



(C.4)
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It should be noted that in the cases of acceleration and magnetic

field, the measured components are projected onto the vehicle orien-

tation. Besides, a bias is added to all the measurements. Concerning

the GPS position data (z: = [�1 , �2 , �3])), the observation function

simply takes the measurement information:

ℎ�(x) =

�1

�2

�3

 (C.5)

C.2 Implementation with smartphone data

Let x̂= |< and P= |< represent the estimate of x and of the state

covariance matrix P at time C= , respectively, given the observations up

to the instant C< . In general, the selection of x̂
0|0 and P

0|0, that denote

the initialization state and covariance, can be performed randomly

or considering a priori information about the characteristics of the

system at the instant C0. In this study, the state vector elements are set

as the measurements collected by the smartphone when the vehicle

passes on the first expansion joint, i.e., when it enters the bridge.

The prediction step consists of solving{
¤̂x(C) = 6(x̂(C))

¤P(C) = G(C)P(C) + P(C)G(C)) +Q(C) (C.6)

where
¤̂x(C) and ¤P(C) indicate the time derivatives of the estimated

state vector and state covariance matrix, respectively, and the state

transition function is linearized as the Jacobian

G(C) =
%6

%x

����̂
x(C)

(C.7)

Equation (C.6) is solved considering the initial conditions x̂ (C:−1) =
x:−1|:−1

and P (C:−1) = P:−1|:−1
evaluated at the time instant of the

last measurement C:−1, until the next measurement (at time C:) is

available. At this instant, the a priori estimate (i.e., not including yet

measurement information at time C) of the current state x̂: |:−1
and
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covariance P: |:−1
are defined as{

x̂: |:−1
= x(C:)

P: |:−1
= P(C:)

(C.8)

As mentioned in Section 4.3, a constant frequency 5B , equal to

the sampling frequency of the vertical acceleration, is selected to

calculate the prediction step.

In the update step, the a priori prediction of the current state is

combined with the measurement collected at time C: to refine its

estimate. This step consists of evaluating the near-optimal Kalman

gain K: , which is employed in calculating the updated (a posteriori)

state x̂: |: and covariance P: |: estimates, as follows:

K: = P: |:−1
H)
:

(
H:P: |:−1

H)
:
+ R:

) −1

(C.9)

x̂: |: = x̂: |:−1
+K:

(
z: − ℎ

(
x̂: |:−1

) )
(C.10)

P: |: = (I −K:H:)P: |:−1
(C.11)

where I indicates an identity matrix. In this case, the observation

matrix H: is defined as the Jacobian

H: =
%ℎ

%x

����
x̂: |:−1

(C.12)
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