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ALMA MATER STUDIORUM UNIVERSITÀ DI BOLOGNA 

Ph.D. in Biotechnological, Biocomputational, Pharmaceutical and Pharmacological 
Sciences 

 
ABSTRACT 

 

APPLICATIONS OF NETWORK-BASED APPROACHES IN DRUG 
RESEARCH 

 
 

CHIARA CABRELLE 
 
 
Recent research trends in computer-aided drug design have shown an increasing interest 

towards the implementation of advanced cross-field approaches able to deal with large 

amount of data as network-based and machine learning methods. This demand arose from 

the awareness of the complexity of biological systems and from the availability of data 

provided by high-throughput technologies. As a consequence, drug research has embraced 

this paradigm shift that has occurred with systems pharmacology which exploits approaches 

such as that based on networks. From this concept, this thesis is built around the application 

of network-based approaches in drug research.  

Indeed, the process of drug discovery can benefit from the implementation of network-based 

approaches at different steps from target identification to drug repurposing. From this broad 

range of opportunities, this thesis is focused on the following three main topics:  

• Chemical space networks (CSNs), which are generally designed to represent and 

characterize bioactive compound data sets; CSNs have been used for SAR 

visualization and analysis;  

• Drug-target interactions (DTIs) prediction through a network-based algorithm for 

predicting missing links; this method found application in drug repurposing as well 

as target identification;  

• COVID-19 drug research, which was explored implementing COVIDrugNet, a 

network-based tool for COVID-19 related drugs, realized by our computational 

medicinal chemistry group, to contribute to tackle an actual health problem.  

The main highlight emerged from this thesis is that network-based approaches can be 

considered useful methodologies to tackle different issues in drug research. In detail, CSNs 

are valuable coordinate-free, graphically accessible representations of the structure-activity 

relationships of bioactive compounds data sets especially for medium-large libraries of 

molecules. DTIs prediction through the random walk with restart algorithm on 
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heterogeneous networks can be a helpful method for target identification. COVIDrugNet 

highlights the potential of network-based approaches for studying drugs related to a specific 

condition, i.e., COVID-19, and the same ‘systems-based’ approaches can be used for other 

diseases.  

To conclude, network-based tools are proving to be suitable in many applications in drug 

research and provide the opportunity to model and analyze diverse drug-related data sets, 

even large ones, also integrating different multi-domain information. 
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Background 

1 TOWARDS A NEW PARADIGM FOR DRUG DISCOVERY 

In the last decades, drug discovery has seen important changes in its grounds. Among the 

reasons that led to them, it must be included the attrition rate in the late stage of clinical trials 

and the consequent drop in pharmaceutical R&D productivity [1], [2]. It has been suggested 

that this failure can be partly due to the classic paradigm of drug discovery according to 

which the best drug candidate is that with a high selectivity and potency toward the desired 

target hypothesized to cause the disease. However, the one gene, one drug, one disease 

paradigm was challenged by the evidence gained through systems biology and by omics 

disciplines (genomics, transcriptomics, metabolomics and proteomics) [1]. Systems biology 

studies the interactions between biological entities at different levels (organism, cells, 

tissues, regulatory networks and molecular pathways) to understand the complex biology 

underlying physiological and pathological states. The advances in this discipline were made 

possible by the innovative technologies that provide the starting material for the omics 

sciences and the development of mathematical and computational models to analyze these 

large-scale data [3]. Such a progress set out the basis for the corresponding developments in 

drug discovery: systems pharmacology.  

From a broad perspective, the improved understanding about the complexity of biological 

systems need to be reflected in drug discovery, hence the emergence of systems 

pharmacology. In fact, (quantitative) systems pharmacology aims at identifying and 

validating targets as well as at elucidating therapeutic and toxic effects of drugs on cellular 

networks, through computational models that integrate multiple entities (biomolecules, cells, 

etc.) interacting at several temporal and spatial scales [4].  

Indeed, it has been demonstrated that complex diseases, i.e., cancer and central nervous 

system diseases, are caused by a deregulated network of proteins, not only a single target. 

The increasing interest in the design of drug candidates that interact with multiple targets, 

known as polypharmacology [5], is one of the applications driven by this new thinking on 

drug discovery, that complements the more traditional paradigm of target-based drug design. 

Hopkins defined network pharmacology as “the next paradigm in drug discovery” [1]. 
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2 NETWORK SCIENCE  

The essential intuition underlying a network is that of elements interconnected by links that 

can represent different relationships among the elements. When representing a real system 

through a network, it is crucial to find the best representation to model our data that allows 

addressing the goal of the study. In other words, network science provides a useful 

framework to represent interrelations. However, it is fundamental to know the basis of 

network theory to choose the network model that best fits the data. An introduction to 

network science is provided in the following paragraphs, since a general background helps 

understanding the state of the art of network-based applications in drug research.  

The terminology about networks derives from graph theory, a branch of mathematics. 

Therefore, network and graph are often used as synonyms, even though imprecisely because 

with graph we are referring to the mathematical model under the network itself. The 

foundation of graph theory can be dated back to 1741 with the Leonhard Euler’s problem of 

the seven bridges of Königsberg. He modeled a real problem, that is if it is possible to walk 

through the city of Königsberg crossing each bridge only once, through a network approach 

[6]. Since then, network science has seen a rapid expansion in different fields from 

mathematics, physics and computer science to biology, sociology, finance, etc. 

Why are networks everywhere? Networks are a versatile and powerful tool for modeling 

interactions; for this reason, they are so widely employed that they pervade our everyday 

life. Networks have these extensive applications across disciplines because they are a useful 

tool to model, analyze and visualize real world systems which are intrinsically complex. 

2.1 Network applications in drug discovery  

Focusing on networks in pharmacology, a list of different applications over the entire drug 

design process can be drawn up. Indeed, network can be applied for target identification, 

drug repurposing, drug combinations and drug adverse effects predictions. Drug-target 

networks (DTNs) and drug-target interactions (DTIs) prediction through network-based 

approaches are useful for target identification and drug repurposing studies, whereas for lead 

search and optimization, chemical space networks (CSNs) can be explored for structure-

activity relationship (SAR) visualization and analysis.  

2.2 Basic concepts of networks 

Hereafter, an overview of the most relevant concepts in network theory is reported. In 

particular, different types of networks, the underlying data formats as well as important 
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features and properties of networks are defined in order to set the ground for the drug 

research-related applications in the subsequent chapters of this thesis. 

 

2.2.1 Definition of network and network types 

A network (or graph) G is a set V of elements, known as nodes or vertices, together with a 

set E of connections between pairs of nodes, defined as edges or links representing the 

interactions among them. Therefore, a network is formally expressed as: 

 ! = ($, &) (1) 

In graph theory, all nodes adjacent to node i are its neighbors, that constitute the neighbor 

set.  

Focusing on the pair of nodes i and j, they are called adjacent nodes if joined by an edge: 

 ( ∈ &, ( = 	 {,, -}	 

/,0ℎ	,, -	 ∈ $. 
(2) 

A network is characterized by some properties as its number of nodes N that defines the size 

of the network, and the total number of edges L.  

According to this description, two nodes i and j could be joined by multiple edges forming 

a set of edges linking i and j. Networks in which there are no multiple edges (or multi-edges) 

– more than one link between a pair of nodes – or self-loops – edges connecting a node to 

itself – are termed simple networks. If each node is connected to all the other nodes, the 

network is a complete graph. 

Based on the type of links, it is possible to describe different classes of networks. In a 

network, links can be undirected or directed defining undirected or directed networks, 

respectively. 

A network G = (V, E), in which an edge ( = 	 {,, -} is defined by an unordered pair of vertices, 

is termed as undirected network. In this case, links are bi-directional, and the order of the 

nodes in the pair is irrelevant.  

In a directed network or digraph, a link is defined by an ordered pair of nodes and it goes 

from the source node i to the target node j reflecting its direction that is graphically 

represented by an arrow pointing to the target node. Directed graphs are commonly used to 

represent systems involving sequential interactions between the elements, like gene 

regulatory networks in systems biology. 

To model the intensity of interactions, it can be useful to attribute weights to links. Therefore, 

the link joining nodes i and j is described as (i, j, wij) in which wij is a real number expressing 

its weight. This type of network is defined as weighted network. A weighted network can be 
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undirected or directed. When displaying a weighted network, the links are generally 

represented as lines of different width as in Figure 1.  

Networks might have two different types of nodes in a way that the set of nodes V is 

partitioned into two subsets V1 and V2, such that each edge connects only nodes of different 

type. Networks of this class are termed bipartite networks and are widely used in drug 

discovery. The analysis of bipartite networks is so complex that it is common practice to 

compress their information, by projecting it in the corresponding two monopartite networks, 

despite the possible loss of information. A projection contains only one type of node, and 

those nodes are connected only if they share at least one common neighbor in the bipartite 

network. An example of a bipartite network is a drug-target network in which drugs and 

targets represent the two distinct sets of nodes. 

Indeed, bipartite networks can be considered a subtype of another network type: multipartite 

networks. A multipartite network is characterized by multiple types of nodes.  

For the sake of completeness, multilayer networks must be mentioned. Multilayer networks 

have different types of nodes and links distributed through interconnected layers. However, 

if each layer contains the same nodes, the multilayer network is called a multiplex network. 

Exemplary networks of different types are shown in Figure 1.  

 

 

Figure 1. Network types and their adjacency matrices. A. an undirected network with its symmetric binary adjacency 

matrix; b. a weighted undirected network in which the width of the edges represents weights; c. a directed network with 

non-symmetric edges; d. a bipartite network in which nodes belonging to two different sets are illustrated with different 

colors and e. the corresponding two projections.  
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2.2.2 Data structures 

Beneath the graphical representation of network, different types of data structure are used to 

store the information about nodes, connections and relative attributes in a computer readable 

format. Especially for large networks, the choice of data structure is strategic because it has 

to retain the network data preferably without needlessly consuming storage space.  

Among the well-known data structures, it is impossible not to mention the adjacency matrix. 

The adjacency matrix A for a simple undirected network G is a symmetric matrix with N 

rows and N columns. The presence of a link connecting nodes i and j is recorded with 1, 

denoted as 2[,, -] = 1, and 2[,, -] 	= 	2[-, ,] since it is symmetric, otherwise 2[,, -] 	= 	0 and 

2[,, ,] 	= 	0 since no self-loops exists. By definition, in a directed network the ordered pair 

of nodes describes the link	2[,, -] 	≠ 	2[-, ,], while in a weighted network the weight wij for 

the link between i and j can assume any real values, not only 1 or 0.  

The adjacency matrix of a bipartite network is a N x M adjacency matrix in which N is 

number of nodes belonging to one group of nodes and M is the number of nodes of the 

others. 

The adjacency matrix is not always the best choice to store a network particularly in case of 

very sparse and large networks. In fact, in their adjacency matrix there will be plenty of 

zeros, thus occupying storage space inefficiently. An alternative data structure is the edge 

list, so intuitively, a two-columns table that keeps in each row the nodes connected by a link. 

For weighted networks, a third column contains the weights. 

Finally, the adjacency list is another common format in which each row records the neighbor 

set of a node.  

The last two data structures are more compact representations for large sparse networks due 

to the fact that only existing links are kept, ignoring the zero of non-linked nodes that are 

usually stored in the adjacency matrix.  

Figure 1 shows the adjacency matrices underlying the graphical representation of different 

types of networks. 

2.2.3 Network analysis 

Network theory provides a variety of network properties useful to describe networks and 

tools that enable to analyze their features. Properties can refer either to the whole network, 

e.g., the total number of nodes and links and the edge density, or to single nodes, e.g., node 

degree and centrality measures. Hereafter, the properties relevant for this thesis are defined, 

however this is not to be considered an exhaustive list.  
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2.2.3.1 Density and sparsity 

Taking into consideration global network properties, one of the most fundamental concepts 

is density/sparsity. The density of a network is the fraction of links that actually exist. The 

complete graph has the maximum number of links, so it has the maximum density that equals 

one.  

Density 8 is described by the following formula: 

 8 = L L!"#⁄  (3) 

where L is the number of links and L!"#	is the maximum number of links.  

In undirected networks, L!"# is given by the following formula: 

 L!"# = N(N − 1) 2⁄  (4) 

where N corresponds to the number of distinct nodes, hence the density 8 become 

 8 = 2L N(N − 1)⁄ . (5) 

In a directed network, L!"# corresponds to 

 L!"# = 	N(N − 1) (6) 

and its density 8 are calculated as 

 8 = L N(N − 1)⁄ .	 (7) 

Overall, real world networks are usually sparse which means that the density is much smaller 

than 1 since the number of existing links can be order of magnitude smaller than L!"#. 

2.2.3.2 Degree and degree distribution 

One of the first properties to calculate when analyzing a network is the degree. The degree 

ki of the node i is the number of edges connecting it to its neighbors.  

In an undirected network G = (V, E), the degree ki of the node i is the sum of the values in 

its row or column i of the adjacency matrix A:  

 
?$ =@ 2[,, -].

%

&'(
 (8) 

Instead, in directed networks, the incoming and the outcoming links of the node i must be 

considered, hence its out-degree kiout is the number of edges leaving it and its in-degree kiin 

is the number of edges reaching it. Thus, for the node i, the out-degree is the sum of the 

values in the ith row:  

 
?$
)*+ =@ 2[,, -],

%

&'(
 (9) 

where the link is directed from i to j, while the in-degree is the sum of the values in the ith 

column:  
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?$
$, =@ 2[,, -].

%

$'(
 (10) 

 

Finally, in a weighted network, the degree of a node can be measured considering the weights 

or not.  

Evaluating node degrees is essential in network analysis because it provides a way to identify 

hubs, i.e., nodes with high degree that assume a pivotal role, and the removal of which 

disaggregates the network.  

Considering the degrees of all nodes in the network, the node degree distribution describes 

the fraction of nodes with degree k, stating the probability that a randomly chosen node has 

degree k.  

Figure 2 illustrates degree and degree distribution for an exemplary network. 

  

 

Figure 2. Degree and degree distribution. The figure shows the degree for each node – reported as degree sequence – and 

the degree distribution for the exemplary network with its adjacency matrix.  

 

2.2.3.3 Degree assortativity 

In a network, it is possible that nodes linked among each other tend to have similar features. 

This is an important property, named assortativity. Moreover, assortativity can be due to 

homophily, the tendency of similar nodes to be connected.  

Degree assortativity is referred to the property of node degree and it is a measure of how 

much high-degree nodes tend to be connected to other nodes with high degree, while low-

degree nodes tend to be connected to other nodes with low degree.  

Networks in which this correlation is verified are called assortative. Assortative networks 

display a core-periphery structure. Disassortative networks are instead characterized by 

high-degree nodes connected to low-degree nodes.  

The assortativity coefficient measures the degree assortativity as the Pearson correlation 

among degrees of adjacent nodes. The assortativity coefficient values are in the range [-1,1] 

with 0 meaning no correlation. Thus, the network is assortative if the assortativity coefficient 
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is positive, while it is disassortative if the assortativity coefficient is negative. Figure 3 shows 

exemplary assortative and disassortative networks. 

 

 

 

Figure 3. Degree assortativity. The figure shows exemplary a. assortative network and b. disassortative network.  

 

2.2.3.4 Subnetworks 

Sometimes, it can be convenient to focus on a subset of a network: a subnetwork. Basically, 

a subnetwork contains a subset of the nodes of the network as well as all the links connecting 

these nodes in the initial network. Moreover, if the subnetwork includes all possible edges, 

such that it is completely connected, it is named clique. Examples of subnetwork and clique 

are shown in Figure 4. The abundance of certain subnetworks is important to characterize 

real networks.  

 

 

Figure 4. Subnetworks. The figure shows a. an exemplary network, b. a subnetwork example and c. a clique, with their 

respective adjacency matrix.  
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2.2.3.5 Paths 

Considering a network as a map, it is possible to study the routes that connect a source node 

to a target node by traversing links. Therefore, a path is defined as the sequence of links to 

cross in order to connect two nodes in a network. The path length corresponds to the number 

of links forming the path. As a result, multiple paths with different path lengths can be traced 

between two nodes. To study the distance among nodes, it is common to refer to the shortest 

path that has the minimum length, by definition, the shortest path length. It is possible to 

find more than one shortest path between two nodes. 

Other distance measures are referred to the whole network. Indeed, the diameter of the 

network is the length of the longest shortest path, whereas the average path length is the 

average of the shortest path lengths between all pairs of nodes. Figure 5 depicts the shortest 

path in different networks. 

 

 

Figure 5. Shortest paths depicted as a sequence of red links among the nodes circled in red in a. undirected, b. unweighted 

(undirected) and c. directed networks.  

 

2.2.3.6 Connectivity and components 

The connectivity of a network relates its structure to its function. In a connected network, 

each node can be reached from any other nodes crossing the network through paths. Instead, 

a network is disconnected if it is composed by more than one connected component. 

Therefore, a component is a subnetwork in which there is a path connecting any pair of its 

nodes, but it does not exist a path that connects them to other components. Isolated nodes, 

named singletons, belong to their own components. In real networks, the largest component 

generally contains most nodes and is called the giant component.  

2.2.3.7 Clustering coefficient 

Concerning the local structure of a network, it is important to consider the connectivity 

among the neighbors of a node. The clustering coefficient of a node accounts for how tightly 

connected the nodes are and it is expressed as the fraction of pairs of neighbors of the node 
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i that are connected to each other. Moreover, the clustering coefficient for the nodes i is 

formally defined as:  

 
A(,) =

2B(,)

?$(?$ − 1)
 (11) 

in which	B(,)	is the number of triangles containing i and	?$ 	is its degree. 	

The clustering coefficient ranges in the interval	0 < A(,) < 1,	and it is equal to 1 in the case 

of clique. 

In addition, the clustering coefficient for the whole network is measured by averaging the 

clustering coefficient across the nodes as defined by the following formula: 

 A =
∑ .($)!:#!$%

1#$%
. (12) 

For instance, a network in which many triangles are present has a high clustering coefficient.  

2.2.4 Network layouts 

Network appearances are generated through layout algorithms that return coordinates for 

each node of the network. In general, these algorithms attempt to position nodes in order to 

uniform edge length and minimize edge crossing. Most visualization software and tools (e.g. 

Cytoscape [7], Gephi [8], Pajek [9], igraph [10], etc.) provide automatic layout algorithms 

including force-directed algorithms.  

Fruchterman-Reingold [11] layout is a popular force-directed layout method which models 

the network as a physical system of steel rings and springs and applies spring forces on the 

rings leading the system to a minimal energy state. It calculates repulsive forces between 

every pair of nodes and attractive forces only between adjacent nodes [11]. Thus, the 

algorithm aggregates densely connected nodes in subset and separates different subsets from 

each other iterating the simulation until the positions are close to an equilibrium.  

By the way, Fruchterman-Reingold layout has been used in this thesis by means of Python 

package NetworkX [12] for setting up node coordinates. The implementation provides an 

option to use edge attributes to weight the edges so that higher values mean stronger forces 

of attraction. 

3 THE ANTIPROLIFERATIVE COMPOUND SET  

In this research, 220 compounds were collected from previously published analog series that 

were designed, synthetized and tested in vitro with the aim to study potential anticancer 

agents in an effort involving laboratories of the Department of Pharmacy and Biotechnology, 

University of Bologna as well as the University of Ferrara and Palermo, mainly. 



 11 

This compound collection is composed of retinoids analogs [13]–[15], stilbene derivatives 

[16]–[19], thiazolobenzimidazole derivatives [20], chemically modified tetracyclines [21], 

combretastatin analogues [22], biphenyl-based hybrid molecules (with spirocyclic ketones) 

[23], 2-{[(2E)-3-phenylprop-2-enoyl]amino}benzamides [24], chimeric molecules (stilbene 

or terphenyl derivatives with SAHA fragment) [25], iodoacetamido benzoheterocyclic 

derivatives [26], pimozide derivatives [27], [28]. Figure S1 shows the molecular structures 

of all 220 compounds.  

Most of these compounds have been studied for their biological activity as modulators of 

cell growth and differentiation. For example, retinoids, i.e. vitamin A and its biologically 

active, natural or synthetic derivatives, have been demonstrated to regulate the growth and 

differentiation of different cell types and they have been evaluated as chemoprevention 

agents [29]. Thus, all-trans-retinoic acid has been found to be active in patients with acute 

promyelocytic leukemia [29]. Retinoids exert their activities by binding to two receptor 

subfamilies: retinoic acid receptors (RARs) a, b and g, and retinoid X receptors (RXRs) a, 

b and g. Even if the therapeutic efficacy of retinoids has been thought to be related to both 

the differentiation activity and the activation of apoptotic processes, the molecular 

mechanisms underlying apoptosis-inducing activity still remain unclear [14].  

Hence, these compounds were tested in vitro for their antiproliferative activity into two 

widely used cellular models of leukemia subtypes, namely the K562 and HL60 cells, which 

are representative cell lineages of CML and AML, respectively. 

4 TARGETING SIGNALING PATHWAYS IN LEUKEMIA 

Leukemia is a broad term that encompasses multiple hematological malignancies with an 

abnormal proliferation of hematopoietic stem cells and a clinical picture related to 

cytopenias. The World Health Organization (WHO) publishes and periodically updates the 

classification of leukemias [30], considering clinical, prognostic, morphologic, phenotypic 

and genetic features. However, the four main groups of leukemia are acute lymphoblastic 

(ALL), acute myelogenous (AML), chronic lymphocytic (CLL) and chronic myelogenous 

(CML) according to a classification based on cell type and rate of growth.  

According to the American Cancer Society, AML is the second most common leukemia 

among adults (31%) [31]. However, 5-year survival rate among adults ages 20 and older is 

27% for AML [31]. A critical issue is the biological complexity of AML since it 

comprehends phenotypically and genetically heterogeneous disorders. Thus, the research 

has been focused on the investigation of AML molecular pathways involved in cell 

proliferation and survival to develop novel specific treatments. 
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Different factors are implicated in AML like genetic and environmental conditions or 

patients’ clinical history of hematologic disorder. As regards the pathogenesis of AML, it 

has been hypothesized that it depends on two cooperating processes: the uncontrolled cell 

proliferation due to class I mutations (FMS-like tyrosine kinase 3 (FLT3), NRAS, c-KIT) and 

the blocked myeloid differentiation related to class II mutations (RUNX1-RUNX1T1, 

CEBPA, TP53). Moreover, genetic mutations reveal distinct AML subgroups (mutations 

such as NPM1, FLT3, isocitrate dehydrogenase 1 (IDH1), IDH2 and TP53) [32]. 

Furthermore, chemotherapy resistance and disease relapse have been related to self-

renewing leukemia stem cells (LSCs) that are characterized by a CD34+, CD38− and 

CD123+ immunophenotype [33]. Apoptosis, receptor tyrosine kinase (RTK) signaling, 

Hedgehog (HH) pathway, mitochondrial function, DNA repair, and c-Myc signaling have 

been reported as targetable signaling pathways for novel therapies [34]. In the past, the AML 

standard drug therapy consisted of the combination of daunorubicin, a DNA intercalating 

agent and topoisomerase II inhibitor, and cytarabine, an antimetabolite. Hypomethylating 

agents as azacitidine and decitabine have been used in combination with venetoclax, an 

inhibitor of the antiapoptotic protein Bcl-2. A sticking point is the myelosuppression, caused 

by traditional antineoplastic agents, which hinders the development of effective drugs. 

Fortunately, targeted therapies for AML were introduced with the approval of midostaurin 

and gilteritinib (FLT3 inhibitors), gemtuzumab and ozogamicin (antibody–drug conjugates), 

enasidenib and ivosidenib (IDH1 and IDH2 inhibitors), glasdegib (Hedgehog receptor 

inhibitors) and CPX-351 (liposomal formulation of cytarabine and daunorubicin) [34].  

CML accounts for about 15% of leukemia in adults with an incidence of 1-2 cases per 

100000. Compared to AML, CML has a higher 5-year survival rate (70%) in adults ages 20 

and older [31]. CML is characterized by the t(9;22)(q34;q11) reciprocal chromosomal 

translocation which results in the Philadelphia (Ph) chromosome. The BCR-ABL fusion gene 

encodes for Bcr-Abl1 protein with a constitutively tyrosine kinase activity. Abl1, a non-

receptor tyrosine-protein kinase, forms dimers or tetramers, then autophosphorylates, 

resulting in an uncontrolled signaling to multiple downstream proteins: for instance, the 

perturbation of the Ras–mitogen-activated protein kinase (MAPK) leading to increased 

proliferation, of the Janus-activated kinase (JAK)–Signal Transducer and Activator of 

Transcription (STAT) pathway leading to impaired transcriptional activity, and of the 

phosphoinositide 3-kinase (PI3K)–Akt pathway resulting in increased apoptosis. Given the 

importance of aberrant Abl1 signaling in causing CML, research was focused on potential 

drugs targeting this pathway. 
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Tyrosine Kinase Inhibitors (TKIs) impairs Bcr-Abl1, blocking the ATP binding pocket, thus 

inhibiting phosphorylation and leading to cell death. Imatinib (Gleevec) is the first-in-class 

treatments of TKIs for CML treatment, but unfortunately disorder relapses are caused by 

resistance to imatinib by point mutations. Other TKIs have been therefore developed to 

overcome this issue, i.e., dasatinib, nilotinib and bosutinib with different efficacy to mutants. 

5 AIM OF THE STUDY 

The leitmotiv of this thesis concerns the application of network-based approaches in drug 

research. Moreover, the focus has been to explore the opportunities and challenges of 

network science in a real case scenario consisting of a set of antiproliferative compounds.  

The first chapter of this thesis is devoted to the investigation of the bioactive set through 

chemical space networks (CSNs). Therefore, a brief introduction to cheminformatics, as the 

framework in which chemical space exploration is placed in, is given. Then, the concept of 

chemical space is presented, and CSNs, in contrast to coordinate-based representations, are 

explained. After that, the methods to design, analyze and graphically explore CSNs are 

presented with a focus on SAR analysis. Finally, the networks of the antiproliferative 

compounds under investigation are discussed. To conclude, pros and cons of this network-

based approach in this cheminformatic application are outlined. 

The second chapter is focused on the prediction of putative targets of these molecules by 

means of network-based approaches that integrate chemical and biological data. So, drug-

target networks (DTNs) are presented as tools to explore the complexity of drug actions in 

the framework of systems pharmacology. Consequently, the concept of drug-target 

interactions (DTIs) prediction is introduced and the methods, from the collection of drug and 

target information to the link prediction algorithm, are reported. Then, the predicted targets 

are examined in the attempt to shed light on the potential pathways in which they are 

involved that might clarify the experimental activities of these compounds and help 

understanding their mechanisms of action. Finally, the highlights and drawbacks of the 

considered network-based prediction method are summarized. 

The third chapter concerns the application of network-based approaches on the study of 

drugs currently in clinical trials for COVID-19. The COVID-19 Drugs Networker 

(COVIDrugNet) web tool is briefly explained. Finally, an application of COVIDrugNet for 

studying pharmacological options to treat COVID-19, in light of the biological evidence 

elucidating virus infection mechanisms, is proposed to prove that network-based tools can 

provide effective strategies in drug research context.  
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Chapter 1. Chemical Space Networks 

6 INTRODUCTION 

At the foundation of the emergence of computer science in life science disciplines there has 

been the urge to design, manipulate and store data. Precisely, the exponential growth of the 

amount of data being generated thanks to high-throughput screening and combinatorial 

chemistry together with the increase of computer power formed the basis for the 

development of computational methodologies in drug design and discovery. 

This premise leads us into the realm of cheminformatics. In particular, to deal with the large 

volume of chemical information, network-based approaches were also implemented in 

cheminformatics. Rather, network theory is at the ground of cheminformatics since 

molecules are usually computationally represented as molecular graphs as described below. 

6.1 Cheminformatics 

Cheminformatics denotes the computational approaches employed to address chemical 

problems. Although it is difficult to trace exactly when cheminformatics was founded, it was 

defined as following: 

“The mixing of information resources to transform data into information, and information 

into knowledge, for the intended purpose of making better decisions faster in the arena of 

drug lead identification and optimisation.” [35];  

“Chem(o)informatics is a generic term that encompasses the design, creation, organisation, 

management, retrieval, analysis, dissemination, visualisation and use of chemical 

information.” [36], [37].  

In broad terms, cheminformatics deals with datasets of small molecules. It embraces several 

aspects like the computational representation of chemical structures, similarity searching as 

well as the calculation of molecular descriptors and molecular similarity. These issues are at 

the basis of different applications in drug discovery as Quantitative Structure-Activity 

Relationships (QSAR) study, virtual screening and chemical space description which is the 

focus of this part of the thesis. 
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6.1.1 Representation of molecular structures 

One of the most important aspects of cheminformatics is the digitalization of chemical 

structures. They are commonly represented as molecular graphs, where nodes correspond to 

the atoms and edges to bonds, and to which properties, i.e., atomic numbers and bond orders 

can be associated as attributes. Two exemplary data structures to store molecular graphs in 

digital format are connection tables and line notations. The essential blocks of a connection 

table are the list of atoms – one line for each atom describing x, y, z coordinates – and the 

list of bonds – one line for each bond describing the first and the second atoms and the bond 

type. This is the core structure of chemical table files as, e.g., molfiles and SDF (Structure 

Data File). As regards line notation, the Simplified Molecular Input Line Entry Specification 

(SMILES) is likely to be the most used chemical line notation language so that a SMILES 

is a string written in ASCII code. The SMILES system has its encoding rules [38]; basically, 

atoms are represented by their atomic symbols (upper case if aliphatic atoms, lower if 

aromatic) and single, double, and triple bonds are –, =, # respectively, but single bonds are 

usually omitted as well as hydrogen atoms. Branches are specified between round 

parenthesis and cyclic structures are represented by breaking a bond and specifying the same 

digit after the atomic symbols of the two atoms involved in the broken bond. By following 

these rules, different valid SMILES can be written for the same molecule. Therefore, to 

generate canonical SMILES, i.e. unique SMILES for a specific chemical structure, a 

canonicalization algorithm exists. Moreover, additional SMILES rules are optionally used 

to specify chirality, configuration of double bounds and isotopism. The SMILES strings 

generated by these rules are referred as isomeric SMILES.  

SMILES files and SDF are the starting material of this research - containing the molecular 

information of the dataset - from which molecular fingerprints have been computed.  

6.1.2 Molecular fingerprints 

Molecular descriptors are used in cheminformatics for several applications from database 

handling with full or substructure searching to similarity searching. Different types of 2D 

fingerprints exist and they are classified in two families: structural keys and hashed 

fingerprints. The former employs boolean array or, more precisely, bitmap that encodes the 

presence (1) or absence (0) of specific structural features, i.e., fragments, in a binary string. 

In general, the computation of structural keys is time consuming, and further, the search 

speed is strongly affected by the choice of structural features. Structural keys lack of 

generality since the optimum fragment dictionary is often dataset dependent. However, 

structural features allow a straightforward interpretation since each bit corresponds to a 
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fragment. By contrast, hashed fingerprints are still bitmaps, but each bit is not assigned to a 

specific chemical feature. Precisely, the hashed fingerprints do not depend on a predefined 

fragment dictionary, thus, in principle, being appropriate for any type of molecular structure 

so that any of its fragment will be encoded. Nevertheless, for this reason, fingerprints suffer 

from the lack of interpretability since it is not possible to recall the substructural fragment 

from the bit position of the fingerprint. Despite this, fingerprints can be rapidly calculated 

and provide fast screening. 

The Extended-Connectivity Fingerprints (ECFPs) [39] are circular topological fingerprints 

that offer various advantages over other types of fingerprints, like simplicity and flexibility, 

since the method can be customized and readily computed. The ECFPs are based on the 

Morgan algorithm which implements two essential steps: 

1. Assigning atom numbering to all atoms iterating this procedure: 

a. A random atom is selected and enumerated as 1; 

b. Its neighbors are numerated in random order; 

c. The neighbors of the atoms, labeled in sequential order on the previous step, 

are, in turn, numbered. 

This step is repeated for every atom, yielding a set of atom assignments; 

2. The algorithm iteratively eliminates assignments until one remains. 

In the procedure, each atom is assigned an initial connectivity value, i.e., the number of 

heavy atoms attached to it. Subsequent iterations update the connectivity values with the 

sum of neighbor connectivity values until the number of unique connectivity values 

decreases; the connectivity values in the last iteration are used to allocate the unique atom 

assignments for that molecule.  

In ECFPs, each atom in a molecule is seen as the center of a circle with a predefined radius. 

The ECFPs algorithm differs from the Morgan for two aspects: the intermediate atom 

identifiers are retained, and it does not require a unique set of atom identifiers.  

ECFPs with bond diameter 4 (ECFP4) were computed for our bioactive compound dataset 

to assess the similarity among the molecules.  

6.1.3 Similarity measures 

One important task in a wide range of cheminformatics applications is to determine how 

similar a molecule is to another, regardless to the presence of a specific substructure. In order 

to quantify the similarity, methods require numerical descriptors for comparing molecules 

and a similarity coefficient that measures the extent of similarity based on the descriptors. It 

is important to note that similarity measures are independent of the molecular descriptor 
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used. Therefore, similarity methods are characterized by different molecular descriptors and 

similarity coefficients.  

In particular, similarity coefficients can be calculated over 2D fingerprints since they are 

useful descriptors encoding the presence/absence of patterns in the compound structure. 

Among similarity metrics, Tanimoto coefficient is one of the early and most frequently used 

measures of similarity. The Tanimoto coefficient (Tc) measures the number of fragments in 

common between two molecules over the number of total fragments, hence the ratio of 

intersection over union: 

 D2 =
E

F + H − E
 

0 ≤ D2 ≤ 1 
(13) 

where F is the count of bits set to 1 in the fingerprint of the molecule A, H the count of bits 

set to 1 in the fingerprint of the molecule B and c is the number of bits 1 in common to both 

A and B. The Tc values range from 0 to 1, where 0 indicates that the two molecules have no 

bits in common and 1 indicates the maximum similarity denoting that the two molecules 

have an identical fingerprint. However, identical fingerprints do not imply that the two 

molecules are identical.  

In this thesis, the Tc was considered to assess the pairwise similarities within our 

antiproliferative molecule set with the aim of designing the chemical space networks.  

6.2 Chemical space 

Chemical space is one of the pillars of cheminformatics. The theoretical concept of chemical 

space relies on the idea of a chemical universe populated by all possible compounds. It was 

estimated that the chemical space of small organic molecules – i.e. compounds with a 

maximum number of 30 C, N, O and S atoms – is so huge to encompass about 1060 

compounds [40], however very different estimates were proposed about how big is the 

chemical space [41]. Beyond the concept of chemical space for which different definitions 

have been proposed, it has served various purposes in cheminformatics and computational 

medicinal chemistry. Several applications have been reported in [41] and, to briefly mention 

the most relevant in drug discovery, chemical spaces are considered in the context of 

chemical library design, ligand-based virtual screening, diversity assessment, compound 

selection and, primarily, in the visualization and analysis of structure-property and structure-

activity relationships (SPR, SAR).  

In the last decade, indeed, there has been growing interest in the design, characterization and 

representation of chemical spaces populated by compounds with biological activities that 

have been referred to as biologically relevant chemical spaces [42]. 



 19 

6.2.1 Coordinate-based vs coordinate free representations 

Conventionally, chemical space is envisioned as multi-dimensional space defined by the 

choice of chemical descriptors [42]. In this reference space, each dimension represents a 

descriptor, whereas compounds are represented as feature vectors and assigned coordinates 

(Figure 6a). However, this representation suffers from some drawbacks in describing 

chemical space, e.g. (i) the multi-dimensional space is continuous, whereas the number of 

compounds, however large it is, is discrete, (ii) chemical space strongly depends on the 

choice of molecular representations used to encode compounds, (iii) computed chemical 

space is generally a high dimensional space, hence dimensionality reduction is required for 

its interpretation leading to a loss of information, (iv) vector components, being continuous, 

have different units requiring to be scaled, and (v) if vector components have categorical 

values (molecular fingerprints) must be converted to coordinate systems of lower dimension 

with a consequent loss of information [43]. To overcome these limitations, coordinate-free 

representation (Figure 6b) of chemical spaces was then proposed by contrast to coordinate-

based representation (Figure 6a) described above. 

 

 

Figure 6. Chemical spaces. a. Exemplary coordinate-based representation: a schematic illustration of a multi-dimensional 

chemical space in which the axis are molecular descriptors. b. Prototypical coordinate-free similarity network in which 

edges are similarity relationships. In both panels the compounds are represented as circles. 

 

The coordinate-free chemical space is based on pairwise compound similarities between 

molecules which replace feature vectors [44]. To graphically represent coordinate-free 

chemical space, chemical space networks (CSNs) were introduced. The representation of 

chemical space through CSN provides many advantages compared to coordinate-based 
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representations: (i) it captures the inherently discrete nature of chemical space, (ii) it is not 

affected by the issues related to high-dimensional spaces, and, in general, (iii) it allows an 

easy to interpret graphical representation. However, CSNs are influenced by the choice of 

the molecular representation, like multi-dimensional spaces. This remains a drawback, as 

well as the choice of the similarity coefficient that affects the design and analysis of CSNs. 

This dependence has been described as the lack of invariance of the chemical space 

representation, in general. Moreover, designing chemical spaces as networks provides the 

possibility to characterize chemical spaces through statistical properties offered by network 

science [43].  

6.2.2 Chemical space networks 

In CSNs compounds are represented as nodes and edges are pairwise similarity relationships. 

As mentioned before, the main advantage of CSNs is that they can be visualized and, 

consequently, easily interpreted compared to multi-dimensional space. However, this is true 

for compound sets of hundreds to thousands compounds since much larger sets threaten their 

interpretability. Even though large sets make the visual interpretation less effective, network 

analysis provides efficient tools to characterize large networks. 

Concerning characterization of CSNs, network measures and properties can help revealing 

latent characteristics of chemical spaces. Latent characteristics are defined as those 

properties associated with nodes that are not considered for network design. Originating 

from social networks, the principle of homophily describes the tendency of nodes with 

similar latent characteristics to be connected to each other rather than to other nodes. 

Homophily principle finds a translation into chemical space when considering biological 

activities as an emergent property of CSN [44]. However, nodes with similar biological 

activities to be highly connected need to be similar according to the definition of similarity-

based molecular networks (i.e., CSNs). This is exactly what states the similarity properties 

principle in cheminformatics establishing that structurally similar compounds tend to have 

similar properties, in this case, biological activities [44].  

In the last decades, the increased interest in network as attractive tool for the exploration of 

chemical spaces paved the way to different studies focused on the design of CSNs. To trace 

the efforts in this topic from the beginning, it has to be said that the main variable in CSN 

design consists in the estimation of molecular similarity relationships [44].  

At first, CSNs were designed as threshold chemical space networks (THR-CSNs) [45]. In 

this case, molecular fingerprints are primarily calculated as molecular descriptors and then 

the Tanimoto coefficient (Tc) is used as similarity function. To generate a CSN based on 

numerical continuous Tc values, a threshold value must be set as a criterion to choose how 
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many edges to display. Briefly, changing the threshold led to a series of THR-CSNs with 

different topologies, hence network analysis is strongly affected by this choice. 

To introduce an alternative to THR-CSN, CSNs based upon matched molecular pairs 

(MMPs) were designed [46]. The MMP is a substructure-based similarity measure and it 

encodes a pair of compounds that differ only by a structural change at a single site. MMPs 

differ from continuous Tc values since MMP is a binary value, hence this results in a single 

CSN in which similarity relationships cannot be adjusted. It has been shown that MMP-CSN 

and the THR-CSN at same edge density share similar topologies, but local similarity 

relationships often differ.  

Another example of CSN is MCS-CSNs [47] that were implemented by calculating the 

similarity measure as a variant of Tc upon maximum common substructure (MCS) between 

pairs of compounds. MSC-CSNs were found to improve cluster structures for data sets rich 

in structurally similar compounds.  

To complete the list of CSN types reported in literature, TV-CSNs [48] are based on 

normalized Tversky similarity values; Tversky coefficient (Tv) is an asymmetric index 

calculated through a formula in which the parameters a and b determine the relative weights 

on two compounds being compared. In TV-CSNs, edges represent only asymmetric 

similarity relationships and with respect to a threshold value. A summary of CSN types and 

their similarity measure is proposed in Table 1. 

 

CSN types Similarity methods (incl. molecular representation - similarity 

function) 

THR-CSN [45] 2D fingerprints - Tanimoto similarity upon threshold values 

MMP-CSN [46] Matched Molecular pairs 

MCS-CSN [47] Maximum Common Substructure - Tanimoto similarity variant 

TV-CSN [48] 2D fingerprints - Tversky similarity 

Table 1. Types of chemical space network and their relative similarity methods. 

 

The design of CSNs relative to biological relevant compound data sets are often aimed at 

SAR studies [49]. In fact, one of the primary strengths of CSNs is that they can be annotated 

with compound biological activities. More importantly, from CSNs, specific compound 

clusters can be selected to study SAR information. Indeed, at low edge density, CSNs show 

well-defined communities that encode different local SARs [44], [50].  
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7 METHODS 

7.1 Design of THR-CSNs 

7.1.1 Curation of data 

The core data set under study here was compiled from previously published studies whose 

common goal was to design, synthetize and biologically assay molecules endowed with 

antiproliferative potential (described in paragraph The Antiproliferative Compound Set).  

To prepare the data, the compound structures were checked to identify and correct any 

structural errors. Then, duplicate analysis was performed to find potential duplicates and to 

remove them. The curated data set consists of 220 compounds; their structures and reference 

papers are reported in Figure S1.  

Moreover, the small library was assembled taking care of collecting compounds whose 

differentiating, cytotoxicity and apoptotic activities showed low experimental variability. 

Indeed, these small molecules were tested in vitro for their antiproliferative activity by the 

same laboratory. The biological assays were conducted into two widely used cellular models 

of leukemia subtypes, namely the K562 and HL60 cells. In particular, for 140 out of 220 

compounds the antiproliferative activities have been recorded as IC50 (concentration able to 

inhibit cell growth by 50%) in K562 cells, whereas for 139 out of 220 IC50 were measured 

in HL60 cells. The IC50 values were converted in logarithmic scale: the obtained pIC50 K562 

values ranges from 4.000 to 7.699, while the pIC50 HL60 values ranges from 4.000 to 7.523, 

as listed in Figure S1. This procedure of data curation was mainly performed using the 

Maestro [51] software.  

7.1.2 Similarity assessment 

As introduced above, THR-CSNs were based on similarity values that were generally 

calculated from 2D fingerprints. For this purpose, the extended connectivity fingerprint with 

bond diameter 4 (ECFP4) is commonly used as molecular descriptor to represent bioactive 

compound datasets, as reported in [44], [45], then it can be considered a standard for THR-

CSN generation. In particular, ECFP4 is a topological atom environment feature set 

fingerprint of compound-specific size with higher structural resolution than, i.e., MACCS 

thus ECFP4 is more appropriate to represent bioactive compounds. In this case, the Morgan 

fingerprint with radius 2 – similar to ECFP4 – was calculated for each compound by the 

open-source cheminformatics software RDKit [52] in a Conda environment with Python 3.8.  

Then, the Tc was considered to measure the structural overlap for each pair of compounds 

according to conventional protocol for THR-CSNs.   
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7.1.3 THR-CSN construction 

Herein, the mathematical formalism under network construction is explained in more details. 

Algorithmically, it is similar to the pipeline previously reported in [45]. 

According to graph theory, threshold networks can be defined as G = (N, E) in which N is 

the set of nodes representing the compound set of n distinct molecules and E is the set of 

edges representing similarity relationships, so that m is the number of edges. Since each edge 

is described as unordered pair of nodes ($& =	 {,	, -}, the threshold network is undirected. The 

network is also simple as loops are not allowed. 

Mathematically, Tc similarity values for each pair are usually assembled into a square n x n 

symmetric similarity matrix:  

 

J =

⎝

⎜
⎛

N(( ⋯ N(& ⋯ N(,
⋮ ⋱ ⋮ ⋱ ⋮
N$( ⋯ N$& ⋯ N$,
⋮ ⋱ ⋮ ⋱ ⋮
N,( ⋯ N,& ⋯ N,,⎠

⎟
⎞

 (14) 

in which N$& is the similarity value between i and j and since in threshold networks N$& is a 

Tc value, it ranges in the interval 0 £	N$& £ 1. In the leading diagonal, N$$ is the self-similarity 

thus it has the maximum value. If two non-identical molecules have the same molecular 

fingerprints, N$& = 1 even if i ¹ j so the presence of off-diagonal ones. Being a symmetric 

matrix, the upper or lower triangular matrix completely defines all pairs of similarity values.  

From the similarity matrix S, varying the threshold value t results in a sequence of threshold 

networks H:  

 !+ , 0 ≤ 0 ≤ 1 

U = {!3, … , !(}. 
(15) 

Each threshold network has the same set of nodes N, but different set of edges Et depending 

on the threshold value t so that a threshold network can be represented formally by the 

following symmetric adjacency matrix: 

 

W4 =

⎝

⎜
⎛

F(((0) ⋯ F(&(0) ⋯ F(,(0)
⋮ ⋱ ⋮ ⋱ ⋮

F$((0) ⋯ F$&(0) ⋯ F$,(0)
⋮ ⋱ ⋮ ⋱ ⋮

F,((0) ⋯ F,&(0) ⋯ F,,(0)⎠

⎟
⎞

 (16) 

in which  

 
F$& =	 X

N$& 								if	, ≠ -	and	N$&³	0
	

0								otherwhise										
 (17) 

and given that F$& = N$& for N$&³	0, the edge linking i and j is represented by 
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 ($& =	 e,	, -, N$&f (18) 

representing how similar two compounds are according to the Tc value, resulting in a 

weighted network.  

Within the sequence of threshold networks, G0 is the complete network - maximum number 

of edges, g3 = n(n − 1) 2⁄  - when t = 0, whereas sparser networks are obtained by 

increasing t. Indeed, as the threshold value t increases, the number of edges mt decreases as 

well as the network density since the number of nodes n is fixed. This is due to the fact that 

Gt’ is a subnetwork of Gt for t’ > t with a set of edges &+5 	⊆ 	&+. Finally, when threshold 

value t assumes the maximum value, t = 1, the resulting network G1 contains only 

disconnected cliques derived from molecules with identical fingerprints.  

7.1.4 Characterization of THR-CSNs 

7.1.4.1 Network density 

The definition of network density was given in the paragraph 2.2.3.1 above. However, for 

each threshold network Gt belonging to the same sequence as described below edge density 

can be written as: 

 i(!+) = 2g+ j(j − 1)⁄  (19) 

in which n is the number of nodes common to every network of the series and g+ is the 

number of edges for Gt. As mentioned before, increasing t leads to sparser networks, i.e., the 

edge density decreases reaching its minimum i6$,(!() for t = 1, while i(!3) = 1 for t = 0. 

Since i(!+) is a monotonic function in t, it is possible to calculate the threshold value from 

a given edge density i̅ through the inverse function: 

 0(i̅) = gFl{0|i(!+) ≥ 	 i̅} (20) 

Pragmatically, the similarity threshold can be adjusted to obtain a given network density 

(Equation 20), and vice versa the edge density can be measured for the threshold network at 

a chosen t (Equation 19).  

Network topology is affected by edge density: to compare networks of diverse data sets 

through their topological properties, it is required to set the same network density, not the 

threshold value.  

7.1.4.2 Global network properties 

With the aim to perform a network-based analysis on threshold network exploiting the 

potential of network-based approaches derived from having represented the chemical space 

as THR-CSN, different network properties depicting global features were calculated by 

means of package NetworkX [12] in Python 3.8. The network properties measured for each 
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threshold value are the following: (i) number of edges, (ii) edge density, (iii) number of 

connected components (CC), (iv) maximum degree, (v) degree assortativity and degree 

distribution, (vi) clustering coefficient, (vii) average path length.  

8 RESULTS AND DISCUSSION 

8.1 Design of CSNs 

Using the whole dataset, the 220 antiproliferative compounds under study, a sequence of 

threshold networks was built from the similarity matrix by varying the similarity threshold 

value. Figure 7 illustrates four threshold networks of this sequence in which the nodes 

represent the molecules, and the edges are displayed if their pairwise similarity values 

exceed or equal the threshold value (t). Intuitively, high threshold values lead to a network 

in which almost all compounds are singletons as depicted in Figure 7d when t = 1 and the 

network density reaches the minimum. 

 

 

Figure 7. Threshold networks for antiproliferative molecules. Node positions were set for the complete graph only and 

then kept fixed for all the other threshold networks to help understanding the disaggregation of nodes. Node positions were 
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assigned through Fruchterman-Reingold force-directed layout considering the pairwise similarity values, i.e., edge 

attributes, in a way that larger values mean stronger attractive forces. The networks were produced by means of the Python 

package NetworkX [12].  

 

At t = 1, the network contains only edges linking compounds with identical fingerprints 

which are not necessarily identical molecules since 2D fingerprints algorithm is not able to 

encode completely structural information. Actually, our dataset contains cis- and trans- 

isomers for which the similarity values correspond to unit. Furthermore, Figure 7a at t = 0 

displays a single component in which all nodes are connected to each other, and the links 

are 24090 reaching the maximum. This shows how too high or too low threshold values lead 

to threshold networks that are not really informative. By contrast, intermediate threshold 

values (Figure 7b and 7c) result in networks in which clusters appear. Therefore, increasing 

the threshold value leads to decreasing edge density, thus allowing the network topology to 

emerge. Network properties are strongly influenced by the distribution of the similarity 

values, so that tweaking the threshold value affects the analysis of the network and, 

consequently, of the underlying molecules set.  

8.2 Characterization of THR-CSNs 

The properties of the THR-CSNs at different threshold values varying from 0 to 1 by 0.1 

were computed and analyzed. Table 2 reports the properties including among others, edge 

density, degree assortativity, clustering coefficient and average path length for each CSN at 

a given threshold.   

As explained before, network density ranges from 0 to 1; therefore, it reaches the maximum 

for the complete network that displays a fully connected component, to decrease at 

increasing values of t providing networks that become more and more sparse. In fact, the 

fewer the edges on a network, the sparser it is, resulting in a network density much smaller 

than unit. This behavior for edge density in relation to threshold value is reported in literature 

for different set of target-specific compound activity classes retrieved from ChEMBL and 

for randomly selected compounds from ZINC [45]. To sum up, changing threshold values 

results in variation of the edge density making possible to modulate network topology as 

shown by Figure 7 and Figure 8a.  

From the data reported in Table 2, we also see how threshold variation, and, in turn, edge 

density affects other features of CSNs, like number of connected components (CC) and 

nodes in the largest connected component. At increasing threshold values, networks become 
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more and more disconnected, so that the number of CCs grows up as long as the number of 

nodes in the largest component drops.  

Furthermore, it is worth to observe the degree assortativity (Figure 8b) that, except for 

extreme similarity threshold values, results in assortative networks, in which hubs are 

connected to each other and low-degree nodes to other low-degree nodes, resulting in a core-

periphery structure. Then, high assortativity values might be indicative of the presence of 

series of analogs in the bioactive compound set that form tightly connected clusters.  

In addition, clustering coefficient (see Table 2) rapidly increases at low edge densities then 

small changes in edge density result in large variation of the tendency of neighbors’ nodes 

to form clusters. 

In our case, clustering coefficient (Figure 8a) and degree assortativity (Figure 8b) shows 

different curves compared with what reported in literature for randomly selected ZINC 

compounds (Figure 4 in [45]) and this might be due to the nature of the dataset. In fact, as 

the authors described by comparing random selected and bioactive compounds from 

ChEMBL database at constant edge density, bioactive compound datasets differ from 

random compound samples for the presence of structural scaffolds that are responsible of 

the biological activities resulting in higher clustering coefficient and assortativity. This is 

confirmed by the authors in [44]. 

Our analysis suggests that the THR-CSN at an edge density of 0.05 is characterized by high 

assortativity and clustering coefficient as well as a number of connected components and 

nodes in the largest components that indicate the network is not disaggregated. In our 

opinion, this edge density results in an interpretable threshold network for our 

antiproliferative compound dataset.  

 

Figure 8. Global properties of threshold networks for our bioactive compound data set of interest. a shows the curves of 

similarity threshold and clustering coefficient versus edge density; b illustrates degree assortativity values at varying edge 

density.  
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Threshold N. edges Edge density Max degree N. of CC N. nodes  

in the largest CC 

Degree 

assortativity 

Clustering 

coefficient 

Average 

path length 

(SPLaverage) 

Average of 

SPLaverage 

0 24090 1 219 1 220 N.D. 1 1.0 1 

0.1 16296 0.6765 210 1 220 0.0439 0.7917 1.3235 1.3235 

0.2 4825 0.2003 95 1 220 0.4511 0.7628 2.2944 2.2944 

0.3 2874 0.1193 61 8 130 0.6737 0.8547 2.3024 0.9199 

0.4 1977 0.0821 45 10 116 0.5873 0.833 3.0229 0.9628 

0.5 1298 0.0539 32 11 114 0.6102 0.7529 4.5513 1.2344 

0.6 626 0.026 20 29 36 0.5763 0.5359 2.4952 1.0534 

0.7 240 0.01 12 88 23 0.601 0.3177 1.9091 0.6774 

0.8 65 0.0027 4 159 11 0.5206 0.0318 2.8545 0.3219 

0.9 37 0.0015 2 183 3 -0.0278 0 1.3333 0.1985 

1 30 0.0012 1 190 2 N.D. 0 1.0 0.1579 

Table 2. Network properties for THR-CSNs at different threshold value for our set of 220 molecules. The number of edges, edge density, maximum degree, number of connected components, number of 

nodes in the largest connected component, degree assortativity, clustering coefficient, average path length in the largest connected component and average of the average path length over all components 

are reported for each CSN at a given threshold. 
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8.3 Comparison of THR-CSNs 

As explained above, variation of the similarity threshold value leads to different network 

topology and by consequence it strongly affects edge density and network properties. 

However, similarity value distribution depends on compound class, thus the CSNs of two 

different compound data sets at the same similarity threshold might result in non-

interpretable networks. This is a critical aspect to consider when comparing biologically 

relevant chemical spaces of different sets by means of CSNs. However, since edge density 

can be interpreted as the probability of the presence of a link between two compounds, 

networks with the same edge density can be compared.  

For this reason, given that it is possible to choose the threshold parameter after setting the 

density at a desired value, CSNs have been compared at constant edge density. As a result, 

topological properties of CSNs can be compared even if they are generated from compound 

collections characterized by different size and similarity distribution. 

This concept turns out to be useful to study our collection of 220 compounds, since for 139 

compounds out of 220 the antiproliferative activity was measured in HL60 cell lines, 

whereas for 140 out of 220 the antiproliferative activity was measured in K562 cell lineage; 

thus, for 59 compounds the activity was tested in both cell lines. This means that the chemical 

space networks of K562- and HL60- tested compounds can be compared by means of 

network analysis at a constant edge density. Therefore, sequence of threshold networks for 

both HL60 and K562 cell-tested molecules were designed separately and then their CSNs 

were compared at a predefined edge density value of 0.05.  

Table 3 reports network properties for both HL60- and K562- cell-tested molecules 

networks. Both networks have high degree assortativity and clustering coefficient as well as 

similar maximum node degree. Moreover, similar distributions have been found for node 

degrees as shown in Figure 9. The threshold values corresponding to the predefined edge 

density of 0.05 differ only slightly, being 0.559 and 0.577 for HL60- and K562- cell-tested 

compounds, respectively. 

 

Network features HL60 cell-tested  
molecules network 

K562 cell-tested 
molecules network 

Threshold 0.559 0.577 
Number of nodes 139 140 
Number of edges 488 492 
Edge density 0.05 0.05 
Max degree 23 22 
Number of CC 14 18 



 30 

Number of nodes  
in the largest CC 

93 26 

Degree assortativity 0.5522 0.635477059 
Clustering coefficient 0.6583 0.562402912 

Table 3. Network properties of the HL60- and K562- cell-tested compounds network at constant edge density 0.05. 

 

 

Figure 9. Degree distribution plots for THR-CSNs at edge density 0.05 of a. HL60 cell-tested molecules and b. K562 cell-

tested molecules. 

 

8.4 Exploration of SARs through CSNs visualization 

The primary goal under the investigation of biologically relevant chemical spaces by means 

of network-based strategies is probably the SAR analysis. In detail, the main strength of 

chemical space networks is the opportunity to study the SAR through an interactive graphical 

exploration by taking advantage of the network topology which, in turn, relies on the 

structure similarity relationships. In addition, CSN visualization allows to identify clusters 

and to investigate their associated SAR information. Interestingly, clusters might represent 

local regions of continuous or discontinuous SARs that coexist in essentially all compound 

activity classes [50]. 

Therefore, for the purpose of studying the potential of CSNs as network-based approach for 

SAR analysis, THR-CSNs have been generated for both HL60 and K562 cell-tested 

molecules separately, as mentioned above. 

Figure 10 shows the threshold network for the HL60 cell-tested molecules in our 

antiproliferative compound collection. The network is generated by setting the edge density 

to 0.05 that corresponds to a 0.559 similarity threshold value. The network consists of 139 

nodes, that represent the compounds with a measured antiproliferative activity in HL60 cell 
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line, and of 488 edges representing pairwise compound similarities equal or higher than the 

threshold. To display the compound activities, nodes are colored from red to green according 

to the range of pIC50 of 4.0-7.52. 

 

 

Figure 10. THR-CSN of HL60 cell-tested molecules at edge density 0.05 resulting on similarity threshold value 0.559. 

Nodes represent compounds and are colored according to antiproliferative activities from red (lowest potency) over yellow 

to green (highest potency). Isolated nodes are not shown. Edges represent pairwise similarity value over the threshold value. 

The network was rendered through Cytoscape [7] and the molecule structures depicted inside nodes by means of chemViz2 

plugin [53] for Cytoscape app. 

 

Similarly, Figure 11 illustrates the THR-CSN for the K562 cell-tested molecules included in 

the antiproliferative set. Also in this case, edge density is set at 0.05 that corresponds instead 

to a 0.577 similarity threshold value. 



 32 

It is interesting to notice that molecules with different scaffolds are pretty confined in 

different clusters, thus the network structure reflects the different series of analogs in an 

efficient way.  

Interestingly, Figure 10 and Figure 11 show that CSNs allow to identify continuous and 

discontinuous SAR regions that correspond to clusters in which the biological activities have 

homogeneous or heterogeneous values, respectively. 

 

 

Figure 11. THR-CSN of K562 cell-tested molecules at edge density 0.05 resulting on similarity threshold value 0.577. 

Nodes represent compounds and are colored according to antiproliferative activities from red (lowest potency) over yellow 

to green (highest potency). Isolated nodes are not shown. Edge thickness represents pairwise similarity values over the 

threshold value. The network was rendered through Cytoscape [7] and the molecule structures depicted inside nodes by 

means of chemViz2 plugin [53] for Cytoscape app.  
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Figure 12. The largest connected component containing activity cliffs from HL60 cell-tested threshold network at edge 

density 0.05 and similarity threshold 0.559. Nodes represent compounds and are colored according to antiproliferative 

activities from red (lowest potency) over yellow to green (highest potency). Edge thickness represents pairwise similarity 

values over the threshold value. The network was rendered through Cytoscape [7] and the molecule structures by means of 

chemViz2 plugin [53] for Cytoscape app. 

 

Furthermore, even if it is well accepted that similar compounds should share similar 

biological activities, it is also possible that pairs of structurally similar compounds display 

large differences in potency, i.e., activity cliffs [54]. Activity cliffs are considered SAR-

informative indicators. Thus, CSNs can be transformed in activity cliff networks in which 

only the edges connecting compound pairs having at least a 100-fold difference in potency 

are shown. 

The threshold network of HL60 cell-tested molecules was then analyzed looking for activity 

cliffs. Figure 12 shows the largest connected component containing activity cliffs. Thus, it 

includes the pairs of compounds characterized by a 100-fold difference in antiproliferative 

activities measured as the concentration able to inhibit cell growth by 50%, so IC50 values. 

In detail, similar compounds display large differences in potency (pIC50 values are reported 
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in Supplementary Figure S1), for, e.g., compound 2006a_6b with pIC50=6.82 and compound 

2003a_12a with pIC50= 4.456 show a pairwise similarity value of 0.74. Structurally, 

2003a_12a is the trans isomer and contains the hydroxyl group in para position of the phenyl 

ring, while 2006a_6b presents the methoxy group in para and a cis configuration of the 

double bond. However, they show experimentally a more than 100-fold difference in 

potency. In turn, 2003a_12a is connected to the node 2003a_11d, but the latter has high 

potency (pIC50 =7.301) compared to the first.  

To conclude, this is an example of how CSNs give the opportunity to highlight the 

relationship between compound chemical structures and biological activities for biologically 

relevant compound data sets. 

9 CONCLUSIONS 

With the aim to exploit the potential of network-based approaches in the framework of 

chemical spaces focusing on a real case scenario, CSNs of our antiproliferative compound 

set were designed and built as threshold networks. Briefly, the decision to design THR-CSNs 

was driven by the following considerations: 

• THR-CSNs are based on continuous similarity values. In fact, the Tc is a numerical 

value that ranges from 0 to 1, in contrast to, e.g., MMPs which are binary values and 

are used to build MMP-CSNs. Moreover, the Tanimoto similarity in our THR-CSNs 

is calculated from 2D fingerprints that do not rely on predefined fragment dictionary, 

since Morgan fingerprints employed in this thesis are not based merely on the 

presence/absence of structural keys.  

• THR-CSNs give the chance to modify the Tc threshold value. This constitutes, at the 

same time, an advantage and a drawback of the method, since on one hand the choice 

of the threshold value must be carefully evaluated to make the network interpretable, 

but on the other hand the possibility to adjust the threshold confers flexibility to the 

methods. 

• Threshold networks enable the comparison of chemical spaces originating from 

different biologically relevant compound data sets. For this purpose, their respective 

CSNs are evaluated by setting a predefined edge density and not a similarity 

threshold value. 

Starting from these considerations, the influence of similarity threshold on the chemical 

space of our small library of antiproliferative compounds was studied taking into account 

the network density and other network properties. This step is essential considering that the 

choice of the threshold value is dataset-dependent since molecular representation and 
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similarity measure affect network structure. Then, the network analysis helps to identify the 

similarity threshold and, by consequence, the edge density that results into an informative 

CSN for the bioactive compound data set of interest. This CSN is characterized by an 

interpretable network topology with defined communities.  

Finally, with the dual purposes of proving the relevance of CSNs in drug research, more 

specifically, in SAR analysis and to propose a simple SAR study for our antiproliferative 

molecules, K562 and HL60 cell-tested compounds, CSNs at constant edge density were 

examined investigating in vitro activities and structure similarity relationships by exploiting 

the network formalism. In conclusion, THR-CSNs have been proven to be a powerful tool 

among SAR visualization and analysis methodologies. 
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Chapter 2. Drug-target Interactions 

10 INTRODUCTION 

As seen before, network-based approaches help to understand the chemical information and 

to relate it to the biological activities for SAR analysis. However, network methods also 

enable the integration of different levels of information and pave the way for different 

opportunities in drug research in the context of systems pharmacology. For instance, 

network-based approaches allow to integrate the chemical and the biological spaces into a 

wide system. Thus, network science provides a framework to explore the system as a whole, 

revealing its peculiar features, that is the emergent properties derived from its inherent 

complexity, and not from its single entities.  

10.1 Drug-target networks 

Unveiling the molecular mechanisms through which drugs exert their therapeutic effects is 

a key issue in drug design and discovery. In this context, the cornerstone of the drug 

discovery paradigm is the process of DTI.  

In the past decade, DTNs have been proposed as bipartite graphs that model drug-target 

associations retrieved from databases of experimental information on drugs, like, e.g., 

DrugBank [55]. By means of network visualization and analysis, inductive studies on the 

drug landscape can be conducted gaining different insights on the pharmacological space. 

To facilitate network analysis, the DTN can be projected into the target and the drug 

networks, in which only target nodes or drug nodes are represented and connected to each 

other if they share at least one drug or one target in the DTN, respectively. DTN analysis 

can reveal, e.g., trends in drug discovery and how they change, since DTN is like a 

screenshot of the molecular drug-target space, which necessarily reflects the advances of 

drug knowledge. Furthermore, the set of protein targets in DTN, representing the druggable 

genome, can be compared with the protein-protein network representing the interactome as 

reported in [56]. DTNs can be employed in the fields of drug combinations, drug 

repurposing, or adverse effects evaluation.  
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As an example, Figure 13 shows a DTN of approved drugs (small molecules) and human 

protein targets. The network contains 3627 nodes, 1636 of which represents drugs, and the 

remaining being targets so that links represents 7521 DTIs illustrating a global picture of the 

DTN extracted from DrugBank v. 5.1.5 [55]. The DTN is composed of a giant component, 

the largest connected component of 3368 nodes, 1510 of which are drugs. It is easy to notice 

that most drugs have at least one target in common. Moreover, coloring the drugs according 

to the first level of the anatomical therapeutic chemical (ATC) code highlights the presence 

of targets linking drugs of different therapeutic groups, and the tight clustering of 

neurological (light pink), cardiovascular (brown), and respiratory system (aquamarine) 

drugs.  

 

 

Figure 13. Drug-target network from DrugBank [55]. Approved small molecules drugs are represented as circle and human 

protein targets as white diamonds. The legend shows the color code for drug nodes accounting for the first level of the ATC 

code as reported in DrugBank. The nodes size displays increasing node degree. Network rendering was realized through 

Cytoscape version 3.7.2 [7]. Figure extracted from [57]. 
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10.2 DTIs predictions 

Identification of DTIs is a crucial step in drug discovery to detect novel targets for existing 

drugs or to discover candidate drugs for targets associated with diseases. Unfortunately, even 

though experimental methods for inferring DTIs exist, they are particularly costly and time-

consuming. Computational approaches, in contrast, have been proved to efficiently predict 

DTIs, thus they can reduce the efforts for DTIs identification, providing a guide for wet-lab 

experimental validation.  

Currently, in silico methods that deal with the study of DTIs are structure-based and ligand-

based approaches as well as chemogenomic approaches [58].  

Structure-based strategies such as molecular docking and molecular dynamics simulations 

are widely used to investigate DTIs when the 3D structure of the target protein is available.  

Ligand-based methods rely on the principle that similar molecules tend to have similar 

properties and thus bind similar proteins. 3D structure-activity relationships (3D QSAR) and 

pharmacophore modeling are useful to model the interactions between ligand molecules and 

the protein target of interest, for which the 3D structures is not known. However, ligand-

based approaches lead to inaccurate predictions when the number of known binding ligands 

is low.  

Instead, chemogenomic methods are based on large datasets of chemical structures and 

sequences for drugs and targets, respectively. The idea behind machine learning and 

network-based approaches which belong to this class of DTIs prediction strategies is that if 

drug d interacts with target t, then drugs similar to d are likely to interact with t; proteins 

similar to t are likely to interact with drug d and drug similar to d are likely to interact with 

targets similar to t [59]. Chemogenomic methods can be classified into five types of models: 

neighborhood, bipartite local, matrix factorization, feature-based classification and network 

diffusion models [58].  

Referring to network-based models, DTIs prediction can be seen as a link prediction 

problem. Among the most popular network-based prediction methods, we may mention the 

similarity-based algorithms based on either recommendation [60] or network propagation 

[61] approaches.  

The first ones, i.e., network recommendation algorithms, exploit similarity scores to predict 

a node’s preferences for unconnected nodes. To this class of methods belongs the network-

based inference (NBI) algorithm implemented by Cheng et al. [62] to predict DTIs from a 

bipartite DTN built from the adjacency matrix containing known DTIs. NBI was further 

improved by Alaimo et al. [63] integrating into the model chemical and target similarity 

measures, thus incorporating domain-dependent biological knowledge.  
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The latter ones, i.e., network propagation algorithms, simulate the spread of information 

across the network. As an example, the well-known Google’s PageRank algorithm [64] is 

based on random walk in the network of web pages that ranks web pages simulating a web 

surfer who randomly clicks hyperlinks. Most notably, Random Walk with Restart (RWR) 

algorithm has been successfully applied to DTNs with the aim of predicting DTIs. As a 

result, it estimates the relevance of each node with respect to the source node (or set of 

nodes), computing probability scores representing proximity measures between drugs and 

targets, thus being relevant for drug-target association prediction. Chen et al. [65] described 

a Network-based RWR method on Heterogeneous network (NRWRH) that was further 

optimized by Seal et al. [66]. It is important to note that this network-based approach is not 

based on the 3D structures of protein targets. This represents an advantage of NRWRH 

compared to, e.g., structure-based approaches since NRWRH can be applied when the 3D 

protein structures are not available. Another important aspect is that it overcomes the issue 

of selecting negative samples that affects the prediction accuracy of supervised machine 

learning methods in which unknown DTIs are considered as negative samples.  

Leveraging these strengths, NRWRH was chosen as network-based link prediction method 

with the goal of predicting compound-target interactions for our collection of 

antiproliferative compounds. 

10.3 Databases 

Since chemogenomic approaches are based on large datasets, drug-related databases are the 

starting materials for any DTIs prediction task. Databases can be classified according to the 

type of knowledge they collect, e.g., DTIs (ChEMBL, DrugBank, KEGG, STITCH, 

SuperTarget), drug data (DrugCentral, PubChem) or target data (BRENDA, Pharos), drug–

target binding affinity data (BindingDB) and so on [59]. However, in this thesis, two 

comprehensive databases, i.e., DrugBank [55] and KEGG [67], [68], are used and, therefore, 

introduced below in greater detail. 

10.3.1 DrugBank 

DrugBank [55] is a highly reliable and freely available drug database that includes primarily 

drugs and drug targets information. Precisely, DrugBank was originally conceived as an 

extensive and curated resource of cheminformatics and bioinformatics data [69]. With this 

dual-purpose, it was considered as an integrative collection of data about drugs - i.e., 

chemical structures and physical properties, mechanisms of action and pharmacological 

profiles - and drug targets - i.e. sequences, structures and mechanistic data - as reported for 

its first release in 2006 [69]. From then on, it was significantly improved to follow the great 
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advances in drug development and to meet the needs of its user base, since it has been 

accessed by pharmacists, pharmacologists, chemists and physicians other than 

pharmaceutical researchers. The later versions have been enhanced both in terms of 

expansion of data size and coverage and in terms of the information quality and reliability. 

As regards the data coverage, the database counts 215 data fields on the last version 

(DrugBank 5.0) [55]. To briefly sum up the growth in data content among versions, 

pharmacological information, ADMET (Absorption, Distribution, Metabolism, Excretion, 

and Toxicity) and QSAR (Quantitative Structure-Activity Relationship) parameters, drug 

and drug-food interactions as well as pharmacogenomic, pharmacometabolomic, 

pharmacotranscriptomic and pharmacoproteomic data were integrated into the database. 

Concerning data size, DrugBank 5.0 contains 2358 approved drugs including both small 

molecules and biotech drugs. Moreover, DrugBank collects different categories other than 

approved drugs, i.e., investigational, experimental, nutraceutical, withdrawn and illicit 

drugs.   

Regarding drug targets, DrugBank 5.0 counts 4563 unique drug targets (including proteins, 

RNA, DNA, etc.) and 2242 compounds with drug-target binding constant data. According 

to DrugBank, by definition, a target is the biological entity to which a drug binds or interacts 

with, altering its function and producing intended therapeutic effects or unwanted adverse 

effects. Therefore, drug targets account for on- and off- targets, recording both the positive 

and negative effects of drug actions. However, since ver. 3.0 [70] on, drug targets have been 

classified into targets that have been found to exert the desired pharmacological effects and 

targets with unknown/unwanted effects. Furthermore, proteins that are involved in the 

delivery, transport and metabolism of drugs are separated from targets implicated in drug 

action, and collected into the carrier, transporter, and metabolizing enzyme classes, 

respectively. Nowadays, thanks to its breadth and reliability, it is widely used for in silico 

drug discovery, drug screening, drug target prediction, drug metabolism prediction, drug 

interaction prediction and -omics applications.  

In view of the high-quality of data and its nature as integrated drug and drug target database, 

DrugBank was selected as source database for this research aimed at target identification. 

10.3.2 KEGG 

KEGG (Kyoto Encyclopedia of Genes and Genomes) [67], [68] is an integrative resource 

originally designed to support the interpretation of biological systems from genome 

sequence data by assigning higher-level functions. KEGG consists of sixteen databases (as 

listed in Table 4) classified in four categories: 

• systems information including PATHWAY, BRITE, MODULE databases, 
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• genomic information including KEGG ORTHOLOGY (KO), GENES and GENOMES 

databases, 

• chemical information including COMPOUND, GLYCAN, REACTION/RCLASS and 

ENZYME databases, 

• health information covering KEGG NETWORK, VARIANT, DISEASE, DRUG 

/DGROUP databases, 

modeling the biological systems into an informatic representation.  

Each database includes entries called KEGG objects, whose identifiers are composed of a 

database-dependent prefix and a five-digit number. For instance, D08389, in which “D” 

stands for KEGG DRUG, identifies pirenzepine. 

 

KEGG Database Content KEGG prefix 

System information 

PATHWAY Pathway maps map  

BRITE Functional hierarchies and tables br  

MODULE KEGG modules and reaction modules M  

Genomic information 

ORTHOLOGY (KO) Functional orthologs K 

GENES Genes and proteins locus_tag/GeneID 

GENOME Organisms and viruses organism code/ T number 

Chemical information 

COMPOUND Metabolites and small molecules C 

ENZYME Enzyme nomenclature EC 

GLYCAN Glycans G 

REACTION 

RCLASS 

Biochemical reactions 

Reaction classes 

R 

RC 

Health information 

NETWORK 

VARIANT 

Disease-related network variations 

Human gene variants 

N / nt 

GeneID+variant number 

DISEASE Human diseases H  

DRUG  

DGROUP 

Drugs 

Drug groups 

D 

DG 

Table 4. Architecture of the KEGG database. 
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The most peculiar feature of KEGG pertains to system information; it consists of manually 

processed experimental knowledge about the systemic functions of biological systems -

intended as cell or organism - built upon networks of molecular interactions, reactions and 

relations in the shape of KEGG pathway maps, BRITE hierarchies and KEGG modules.  

In contrast to other categories, health information was made up of human-specific data with 

the aim of providing a translational bioinformatics resource both for practical applications 

and to shed light on the molecular mechanisms of diseases and on drug actions. From the 

point of view of KEGG architecture, diseases are considered as perturbed states of molecular 

networks caused by genetic and environmental factors and drugs are view as perturbagens.  

The most used databases in this research are KEGG DRUG, KEGG GENES and KEGG 

BRITE. Herein, a more detailed description of these reference resources is given.  

KEGG DRUG is devoted to approved drugs in Japan, USA and Europe. As reported in Table 

4, each drug entry is recorded with a D identifier and is annotated for therapeutic targets, 

drug metabolism and molecular interaction network data. At the time of writing 

(29/12/2021), KEGG DRUG includes 11802 entries, 6300 of which with reported targets 

(5095 with human gene targets) for a total of 1106 unique human genes (hsa IDs).  

KEGG also provides additional drug classifications, for instance well-established ATC 

classification for prescription drugs as well as those based on drug targets, drug group and 

other features. This introduces the usefulness of KEGG BRITE, the collection of functional 

hierarchies of biological entities. It contains hierarchical text/table files for the classification 

of KEGG objects bridging genes, proteins, drug, diseases, etc.  

KEGG GENES comprehends KEGG organism category that contains sequenced genomes 

derived from RefSeq, Genbank. The organism is codified by a three/four letter, e.g. hsa for 

Homo sapiens and each identifier is ‘org:gene’ where org is the organism and gene 

represents the gene identifier, e.g. the GeneID for genes in complete eukaryotic genomes.  

11 METHODS 

11.1 Data collection 

11.1.1 Data collection from DrugBank 

DrugBank [55] provides free access to drug-related information through the website, but 

also it allows its users to download the entire database in xml format. Thus, DrugBank 

(version 5.1.9 released on January 04, 2022) was parsed in R through dbparser package [71]. 

First of all, each class of proteins involved in drug actions (targets, enzyme, transporters and 

carriers), was filtered by organism to retain only human proteins. Then, only drugs classified 
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as approved, i.e., authorized for commercialization in at least one jurisdiction at a given time, 

were considered. Moreover, drugs were filtered to retain only small molecule drugs, 

discarding biotech ones. So, protein classes were further filtered to keep only proteins 

interacting with small molecule approved drugs. In this way, a drug-target edge list was 

acquired for each protein class. Henceforth, UniProt IDs are used as protein identifiers, and 

DrugBank IDs for drugs.  

Afterward, to build the similarities matrices for amino acid sequences and drugs, protein 

sequence FASTA file as well as SDF for approved drugs were retrieved from DrugBank too.  

11.1.2 Data collection from KEGG 

The KEGG BRITE hierarchical table br08310 (last updated: April 24, 2021) containing the 

target-based classification of drug was used as DTIs resource. The file contains drugs 

catalogued according to different levels of target information. The first and most general 

level is represented by the following classes kept separated for DTIs prediction: G protein-

coupled receptors, ion channels, nuclear receptors, protein kinases, cytokines and receptors, 

cell surface molecules and ligands, transporters, enzymes, nucleic acids and not elsewhere 

classified. Nucleic acids class was not considered since it contains a microRNAs target with 

two drugs only. The second and third levels correspond to families and subfamilies, 

respectively. The latter contains grouped KEGG gene IDs for which their drugs are listed.  

This reference was used to generate a drug-target edge list for each target class. Then, the 

amino acid sequence was retrieved for each target of the drug-target edge lists by means of 

KEGGREST package [72] in order to obtain the FASTA file for each target class.  

In the same way, KEGG DRUG was filtered keeping only the drugs in the drug-target list 

for which the database records a MOL file. In this case, for each KEGG DRUG ID, the 

corresponding MOL file was imported via URL in R and concatenated into an SDFset 

container. The ChemmineR package [73] was used to perform this task. As a result, the SDF 

was generated for each target class, to compute pairwise structure similarities later. 

11.2 Data preparation 

11.2.1 Target sequence similarity matrix 

The sequence similarity scores for all pairs of amino acid sequences were calculated using 

the Smith-Waterman algorithm [74] for local sequence alignment. To compute the pairwise 

sequence alignments the BLOSUM62 was used as substitution matrix with default values 

for gap opening and gap extension costs. This task was performed with the R Biostrings 
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package [75] as reported in [66]. Thus, the normalized Smith-Waterman score between 

proteins ! and " was computed as following: 

	
$!
"[!, "] =

$)(!, ")

,$)(!, !),$)(", ")
 (21) 

in which $)(−;−) is the original Smith-Waterman score according to the pipeline in [76]. 

In this way, the sequence similarity matrix denoted as $!
" was generated for each protein 

target class.  

11.2.2 Compound structure similarity matrix 

The SDF of our antiproliferative compound set was merged to the ones containing drugs of 

each protein target classes. Hence, the compound similarity matrix denoted as $#
$ was built 

for the drugs of each target class by computing the Tc for all pairs of compounds upon the 

Morgan fingerprints with radius 2. Thus, $#
$[!, "] contains the similarity value between 

compounds i and j. This task was realized using the package RDKit [52] in Python 3.8 within 

a Conda environment.  

11.2.3 Adjacency matrix 

The adjacency matrices of the different target classes were built by considering the 

compounds in $#
$ and the targets in $!

". In the adjacency matrix, A[i, j] will be 1 if drug j is 

reported to target the protein i, otherwise it will be 0, according to the presence/absence of 

the drug-target interaction in the edge list created before. 

11.2.4 Additional similarities matrices 

The main advantage of NRWRH with respect to classic RWR is that it integrates the 

similarity metrics derived from the biological and chemical knowledge domains with the 

similarity based on network information which derives from having shared targets for drugs 

and shared drugs for targets.  

Thus, network-based similarity matrices for drugs and targets were generated from the 

adjacency matrix to exploit the information about known drug-target interactions. 

Therefore, $#
% is the drug-drug similarity matrix in which $#

%[!, "]	is the number of shared 

targets between drugs i and j and $!
% is the target-target similarity matrix in which $!

%[!, "] is 

the number of shared drugs between targets i and j. Hence, the similarity between i and j is 

measured by the Jaccard coefficient [66]. 

Then, the similarities based on chemical structure and based on network are integrated by 

the linear combination into $# as following: 

 $# = /#$#
$ + (1 − /#)$#

% (22) 
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and the same for target similarities according to which the integrated target-target similarities 

$! is formulated as: 

 $! = /!$!
" + (1 − /!)$!

% (23) 

where /# and /! represent the weights of the chemical or the sequence similarities, 

respectively, in the integrated similarity matrices.   

This step is directly computed by the Netpredictor RWR function on bipartite networks. 

11.3 RWR algorithm on heterogeneous network 

Network-based random walk with restart on heterogeneous network (NRWRH) proposed by 

Chen et al. [65] to predict potential drug-target associations is reported below. First, the 

heterogeneous network is built by connecting the above-described drug and target networks 

through the DTN: these networks are defined by their respective integrated similarity 

matrices $# and $! and the adjacency matrix. 

The method simulates a walker that, after starting from given source nodes, randomly walks 

from its current node to neighbors. However, with a probability r, the walk restarts from the 

source node. Thus, the initial probability matrix 2& is defined as follows: 

 
2& = 3

(1 − 4)5&
46&											

7 (24) 

where 6& is the initial probability of drug network in which 1 is assigned to source nodes 

and 0 to the others; 5& is the initial probability of target network in which the target nodes 

connected to drug source nodes are considered, in turn, source nodes in the target network 

with an equal probability value, the sum of which is 1; 4 sets the importance of drug and 

target network and its value is between 0 and 1.  

Furthermore, the resource diffuses to neighbors according to a probability matrix, namely 

the transition matrix; if the current node is connected to a neighbor of the other type, the 

transition to the latter is allowed according to probability l, while with probability 1-l it 

walks to a neighbor of the same type.  

The transition matrix of the heterogeneous network denoted as )is defined as: 

 
) = 3

)'' )'(
)(' )((

7 (25) 

where )'' and )(( denote the transition matrices which specify the probability the random 

walker jumps within the target network and drug network respectively, while )(' 	is the 

transition matrix from drug to target and )'( the vice versa. 

The transition probability within the target network from target j to target i is 

 )''(!, ") = 2(8)|8*) (26) 
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=

⎩
⎨

⎧ $!(!, ") = $!(!, ")
)

						> !?	= @(!, ") = 0
)

(1 − B) $!(!, ") = $!(!, ")
)

						C8ℎEFG!HE>
 

The transition probability within the drug network from drug j to drug i is 

 )(((!, ") = 2(I)|I*) 

=

⎩
⎨

⎧$#(!, ") = $#(!, ")
)

						> !?	= @(", !) = 0
)

(1 − B) I(!, ") = $#(!, ")
)

						C8ℎEFG!HE>
 

(27) 

The transition probability from drug j to target i is 

 )'((!, ") = 2(I)|8*) 

= J
B@(!, ") = @(!, ")

)
						> !?	= @(!, ") ≠ 0

)
0																																																					C8ℎEFG!HE

 
(28) 

The transition probability from drug i to target j is 

 )('(!, ") = 2(8)|I*) 

= J
B@(", !) = @(", !)

)
						> !?	= @(", !) ≠ 0

)
0																																																					C8ℎEFG!HE

 
(29) 

Thus, the probability of finding the walker at node i at step t is defined by the i-th element 

of probability vector 2!. Therefore, to compute the probability, the NRWRH equation is 

implemented as follows: 

 2!+, = (1 − F))'2! + F2&. (30) 

The probability 2- indicates the steady probability defined as: 

 
2- = 3

(1 − 4)5-
46-											

7 (31) 

achieved iterating the NRWRH algorithm until the change between 2! and 2!+,, measured 

by the Frobenius norm, is less than 10-10.  

Finally, targets are ranked based on 5- or, more pragmatically, the probability for the i-th 

element in 2- represents the proximity score between node i and the source node. 

In this work, the implementation of NRWRH in Netpredictor R package [77] as proposed 

by Chen et al. [65] was applied to each of the different target classes of both KEGG and 

DrugBank databases, separately. The parameters are set to default values. 

11.4 Over-representation analysis 

The pool of predicted protein targets for the antiproliferative compounds only was converted 

to the corresponding coding genes and then evaluated to find a significant enrichment in 
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annotated biological pathways and curated gene sets through Over-Representation Analysis 

(ORA). Given that a gene set is an unordered collection of functionally related genes, a 

pathway can be interpreted as a gene set without considering functional relationship between 

them. The over-representation analysis was carried out by means of enrichr package [78]. 

Enrichr contains a huge collection of gene sets (about 400000) and gene-set libraries (about 

300). The latter are classified into six categories: transcriptional, pathways, ontologies, 

diseases/drugs, cell types and miscellaneous.  

The functional enrichment of pathways was conducted using the following gene-set libraries: 

KEGG_2021_Human, WikiPathway_2021_Human and Reactome_2016. For cell type 

enrichment ARCHS4_Cell-lines and Azimuth_Cell_Types_2021 were used, whereas for 

diseases/drugs enrichment MSigDB_Hallmark_2020, OMIM_Disease.  

Pathways were considered statistically significative if the p-values adjusted by the false 

discovery rates (FDR) was lower than 0.05. Pathways were prioritized according to the 

combined score which is defined by enrichr [79] as: 

 M = log(2) ∗ R (32) 

where c is the combined score, p the p-value calculated through the Fisher exact test and z 

is the z-score computed by evaluating the deviation from the expected rank.  

Through ClusterProfiler R package [80], GO analysis for biological processes, cellular 

components and molecular functions were performed. 

12 RESULTS AND DISCUSSION 

Known DTIs for different pharmaceutically relevant classes of drug targets were retrieved 

both from KEGG according to its target-based classification of drugs, and from DrugBank.  

RWR is based on the assumption that similar drugs target similar proteins [65]. The 

prediction algorithm is implemented on a heterogeneous network, which is composed of the 

drug and target networks connected by the DTN. 

Actually, Chen et al. [65] used four pharmaceutically useful drug target classes as gold 

standard, namely, enzymes, ion channels, GPCRs (G protein-coupled receptors) and nuclear 

receptors that had been compiled before by Yamanishi et al. [76]. Chen et al. also provides 

examples of the similarity nature of DTIs (similar drugs that target similar target proteins 

into heterogeneous networks) within the four classes of data.  

Similarly, the predictions of DTIs for our compounds of interest were performed for each 

target classes separately, as described in Methods. Hereafter, the prediction performance of 

the NRWRH is assessed and the results for each database are illustrated and discussed 

separately. 
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12.1 Evaluating the performance of the algorithm in predicting missing links 

The prediction performance of the NRWRH was evaluated on the KEGG and DrugBank 

datasets by using the statistical analysis proposed in Netpredictor R package [77]. The 

performance test randomly removes known DTIs from the dataset and assesses the ability of 

the algorithm to predict them. The DTIs removal takes into account the frequency of the 

DTIs so that the test datasets are built by removing only drug-target relationships for drugs 

with more than one target.  

For evaluating prediction performances, AUAC (Area Under the Accumulation Curve), 

AUC (Area Under the Curve), AUC Top 10% (AUC up to the first 10% of the false 

positives), BEDROC (Boltzmann-Enhanced Discrimination of Receiver Operating 

Characteristic curve) [81] and Enrichment Factor (EF) metrics were calculated. AUC ranges 

from 0 to 1 with a value of 0.5 corresponding to random performance. Although, AUC metric 

was assessed for the performance evaluation of RWR algorithms [65], other metrics are more 

appropriate when the aim is to assess the ability in ranking target candidates early in an 

ordered list (namely, early recognition problem) [81]. Indeed, EF measures the enrichment 

of annotated associations in the top-ranking list: the higher the EF is, the better the prediction 

performance of the algorithm in detecting true positives at the top of the ordered list 

compared to random selection. Similarly, BEDROC is useful since the metric can be applied 

for early recognition problem [81].  

The performance test was executed for each dataset randomly removing 20% of the DTIs 

and computing the means of the performance metrics over 50 repeats.  

The results of the performance evaluation are reported in Table 5, which shows good 

performances for each dataset both for KEGG and DrugBank databases. Overall, the 

resulting performances of the RWR algorithm implemented in Netpredictor [77] in the 

datasets generated before, suggest it is a reliable network-based DTI prediction method. 
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Datasets AUAC AUC AUCTOP BEDROC EF 

KEGG 

Cell surface molecules and ligands  0.838 0.609 0.551 0.479 7.073 

Cytokines and receptors  0.690 0.943 0.369 0.348 4.809 

Enzymes 0.944 0.907 0.845 0.747 9.223 

GPCRs 0.940 0.903 0.707 0.585 9.260 

Ion channels  0.928 0.968 0.402 0.364 6.784 

Not elsewhere classified  0.927 0.855 0.398 0.334 9.748 

Nuclear receptors  0.779 0.747 0.361 0.215 5.052 

Protein kinases  0.923 0.926 0.630 0.527 8.628 

Transporters 0.886 0.917 0.578 0.436 8.267 

DRUGBANK 

Carriers  0.798 0.835 0.526 0.490 6.236 

Enzymes 0.915 0.962 0.645 0.554 8.608 

Targets 0.854 0.919 0.601 0.562 7.212 

Transporters 0.921 0.958 0.610 0.528 8.698 

Table 5. Performance test. AUAC; AUC, AUC Top 10%, BEDROC and EF are reported for each KEGG and DrugBank 

databases. 

 

12.2 Prediction from KEGG database 

To first characterize the DTNs, the number of DTIs, targets and drugs for each target classes 

of KEGG were considered and reported in Table 6. To make a comparison, the DTNs 

proposed in [76] account for a number of known DTIs of 2926, 1476, 635 and 90 for 

enzymes, ion channels, GPCRs and nuclear receptors, respectively, while in our case the 

number of DTIs are 2317, 3615, 3292, 604, respectively. Although in our case only KEGG 

database was considered as source, while KEGG BRITE, BRENDA, SuperTarget and 

DrugBank were used by Yamanishi et al. [76], the number of DTIs in our survey is higher, 

except for enzyme class. It is very likely that the continuous updating of drug-related 

databases on the basis of the evolving knowledge in drug research is the reason of the 

reported differences.  

Nevertheless, a small number of DTIs for cell surface molecules and ligands, and cytokines 

and receptors classes were retrieved.  
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Therefore, a critical issue for DTIs prediction in some of the datasets is the small number of 

drugs with known targets. Indeed, considering the total number of drugs which includes the 

220 antiproliferative compounds with unknown recognized targets, the percentages of drugs 

having at least one target are 12% (Cell surface molecules and ligands), 21.4% (Cytokines 

and receptors), 81.7% (Enzymes), 87.7% (GPCRs), 67.2% (Ion channels), 32.9% (Not 

elsewhere classified), 67.7% (Nuclear receptors), 58% (Protein kinases), 56.9% 

(Transporters) for the target classes.  

 

Target classes Number of 

 targets 

Number of  

drugs  

Number of DTIs 

Cell surface molecules and ligands  101 30 53 

Cytokines and receptors  123 60 76 

Enzymes 315 985 2317 

GPCRs 122 1562 3292 

Ion channels  129 450 3615 

Not elsewhere classified  103 108 499 

Nuclear receptors  20 462 604 

Protein kinases  111 306 739 

Transporters 42 291 464 

Table 6. Collected data from KEGG database.  

 

Despite these considerations, the RWR was applied through Netpredictor R package [77] on 

each dataset using the following set of predefined parameters: the restart probability r = 0.8, 

the jumping probability l = 0.2, wd = 0.5, wt = 0.5 and h = 0.01. Actually, this set of 

parameters was previously tested in [66] to achieve the best prediction rate.  

As reported in the Methods section, the probability vector 5- for each compound resulting 

from RWR makes up its target profile such that the relevance of a target i for the given drug 

is the i-th element of the vector. Unfortunately, using the KEGG database to build the 

networks lead to poor prediction results for some target classes. Indeed, NRWRH did not 

predict any targets for our antiproliferative compounds in enzymes, GPCRs, ion channels, 

nuclear receptors and transporters classes. It is interesting to note that these classes are those 

with the greatest number of known DTIs. On the other hand, the predicted compound-target 

interactions for cell surface molecules and ligands, cytokines and receptors, not elsewhere 

classified and protein kinases are 1056, 659, 780, 134, respectively. Figure 14 illustrates the 
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network of predicted compound-target interactions for cytokines and receptors, while Figure 

S2, S3, S4 shows the networks for the other classes.  

 

 

Figure 14. Predicted compound-target interaction network for cytokines and receptors class. Nodes representing the 

antiproliferative compounds are colored in blue, whereas predicted protein targets in red. Node size represents the node 

degree. Links represent the predicted compound-target associations. The image was rendered through Cytoscape 3.8.2 [7].  

 

The compound-target network for cytokines and receptors in Figure 14 has a central hub, 

namely hsa:3552 (IL1A) with a degree of 216, and other predicted target nodes as hsa:3567 

(IL5) whose node degree is 97, hsa:3440 (IFNA2) and hsa:3441 (IFNA4) both with a node 

degree equal to 48. According to KEGG, IL1A (interleukin 1 alpha) is involved in MAPK 

signaling pathway as well as hematopoietic cell lineage; IL5 (interleukin 5) has been 

annotated for JAK-STAT signaling pathway and pathways in cancer as well as for network 

of CML (nt06276). Among the pathways annotated in KEGG for IFNA2 and IFNA4 
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(interferon alfa 2 and 4, respectively), it is worth to mention PI3K-Akt and JAK-STAT 

signaling pathways. 

Additionally, among the predicted targets for cell surface molecules and ligands depicted in 

Figure S2, hsa:3383 (ICAM1), hsa:3123 (HLA-DRB1), hsa:933 (CD22 antigen) and 

hsa:3134 (HLA-F) are targeted by most compounds of the antiproliferative set. Indeed, they 

are characterized by high node degree of 220, 210, 189, 179, respectively. Notably, 

intercellular adhesion molecule 1 (ICAM1) is involved in TNF and NF-kappa B signaling 

pathways and natural killer cell mediated cytotoxicity, according to KEGG pathways. 

Moreover, HLA-DRB1 (Major Histocompatibility Complex, class II, DR Beta 1) is involved 

in hematopoietic cell lineage pathway, Th1 and Th2 cell differentiation and Th17 cell 

differentiation. Furthermore, CD22 antigen is also annotated for hematopoietic cell lineage 

and B cell receptor signaling pathways, while HLA-F (an MHC class I antigen) is involved 

in cellular senescence.  

As regards protein kinases, the network shown in Figure S3 is a star network in which the 

central hub is the only predicted target, namely hsa:93 (ACVR2B). Activin receptor type-

2B is a serine/threonine kinase annotated for TGF-beta signaling pathway and signaling 

pathways regulating pluripotency of stem cells.  

At a first glance, it appears clear that predicted targets mainly belong to cytokines and 

receptors, cell surface molecules and ligands and protein kinases, which are consistently 

altered in leukemia. In fact, mutations and chromosomal translocations in leukemic cells 

result in elevated expression or constitutive activation of several growth factor receptors and 

downstream kinases [82], and also dysregulation of the complex interactions between pro- 

inflammatory cytokines, such as IL-1β, TNF-α and IL-6 and anti-inflammatory mediators 

like TGF-β and IL-10, which collectively govern the AML aggressiveness and progression 

[83]. 

These mutated genes affect diverse signaling cascades. The PI3K-Akt pathway is an 

intracellular pathway involved in cell growth and survival both in physiological as well as 

in pathological conditions. Indeed, it is a key regulator of survival in cellular stress which is, 

in turn, a frequent factor in malignant cells. In hematological disorders, PI3K-Akt pathway 

was reported to be abnormally upregulated and constitutive PI3K activation is detectable in 

50% of AML samples.  

Thus, targeting this pathway with effective inhibitors is a strategic pharmacological option 

to suppress leukemic cell proliferation [82], [84], [85]. However, the heterogeneity of 

intracellular signaling regulating cell growth frequently impairs the efficacy of treatments 

targeting just a single signaling pathway. In fact, leukemia cells might show alterations in 
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other survival pathways, as it happens, e.g., for the JAK-STAT pathway, that is also 

constitutively activated in hematological malignancies, often as a result of mutations in 

upstream genes [82], [86]. Moreover, the MAPK pathway is at the crossroads of signal 

transduction cascades integrating multiple extracellular stimuli to proliferation, 

differentiation, and survival [87]. The MAPK/ERK pathway (Ras-Raf-MEK-ERK pathway) 

is involved in sensitivity and resistance to leukemia treatments [88]. The pharmacological 

modulation of the components of these pathways has been explored to improve leukemia 

therapy effectiveness and achieve a better clinical course of the disease.  

After that, an over-representation analysis was conducted to evaluate the pool of target as a 

whole. By joining all target classes, the predicted targets account for 98 genes. The goal of 

ORA is to determine whether the inferred targets show a significant enrichment of functional 

terms correlated to antiproliferative or other antitumoral pathways, that might be also 

relevant to target signaling pathways of leukemia. This should help to identify putative 

molecular functions or biological processes that could provide hints for the interpretation of 

the mechanism of action of our molecules of interest. Figure 15a shows the functional 

enrichment in predicted targets for the gene-set library MSigDB_Hallmark_2020. It is 

interesting to notice that different biological states and pathways involved in leukemia were 

included among the significant (defined by the * as p-value £ 0.05) enriched terms, namely 

IL-6/JAK/STAT3 and IL-2/STAT5 signaling, hence the JAK-STAT pathway mentioned 

above, as well as apoptosis and TNF-alpha signaling via NF-kB which are involved in many 

tumoral pathways. NF-kB (nuclear factor kappa B) regulates the expression of different 

genes implicated in cell proliferation and antiapoptotic signaling and its constitutive 

activation in AML leads to resistance to apoptosis hence the need of drugs that inhibit NF-

kB activity [89]. Moreover, Figure 15b shows top ten GO biological processes enriched in 

our predicted targets; they recall the previously reported signaling involving JAK-STAT 

pathways as well as multiple pathways relative to the regulation of cell proliferation or 

differentiation consistent with the antiproliferative activities observed through biological 

assays. To conclude, it is worth to mention the enrichment in proteins interacting with the 

hub protein ERBB2 found in the Hub Proteins in Protein-Protein Interaction database, as 

shown in Figure 15c. As described in literature, this receptor tyrosine kinases, when 

activated, leads to an increased RAS/MAPK, PI3K/AKT and JAK/STAT downstream 

signaling [90]. Additionally, SYK (spleen tyrosine kinase) was reported to be a critical 

regulator of FLT3 in AML since it is transactivated by SYK by direct binding [91].  

 



 55 

 



 56 

Figure 15. Functional enrichment plots. The ten pathways with highest combined score are shown for a. Molecular 

Signature Database Hallmark gene-set library and c. Hub Proteins in Protein-Protein Interaction Data. These bar plots were 

realized by means of enrichr R package [78]. The dot plot for Gene Ontology (GO) biological processes is shown in b. in 

which enriched terms are ranked in function of the number of genes entering a given pathway (Gene Ratio). The size of the 

dot is proportional to the size of the enrichment and are color coded on the basis of the adjusted p-value. The enrichment 

for GO biological processes was computed through ClusterProfiler R package [80] and plotted by means of enrichplot 

[92].  

12.3 Prediction from DrugBank database  

The analysis of the predicted compound-target interactions through RWR in DrugBank was 

focused on the target class since, by definition, it contains targets that have been found to 

exert the desired pharmacological effects and targets with unknown/unwanted effects, 

whereas the other classes include proteins involved in the delivery, transport and metabolism 

of drugs and not implicated in drug molecular mechanism of action. However, the numbers 

of DTIs, targets and drugs for each class of DrugBank were considered and reported in Table 

7. 

 

Target classes Number of 

 targets 

Number of  

drugs  

Number of DTIs 

Carriers  75 482 709 

Enzymes 388 1281 4506 

Targets 2794 1648 7133 

Transporters 257 867 2807 

Table 7. Collected data from DrugBank database. 

 

After incorporating the antiproliferative compounds, the percentages of drugs having at least 

one target are 68.7% (Carriers), 85.2% (Enzymes), 88.2% (Targets), 79.7% (Transporters) 

for the target classes.  

Also in this case, the RWR on bipartite network was applied through Netpredictor R package 

on each dataset using the predefined parameters.  

Therefore, the target profile for each compound resulting from RWR was computed by 

ranking the predicted targets according to their steady-state probabilities, i.e., proximity 

scores. Indeed, NRWRH predicts a total of compound-target interactions for enzymes, 

targets and transporters are 220, 426372, 36, respectively, whereas no target predictions are 

obtained for carriers. Hence, the top ten predicted targets per antiproliferative compounds 
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were considered representative of their target profile. Figure 16 illustrates the network 

containing the top ten predicted targets per compound for DrugBank targets.  

 

 

Figure 16. Top ten predicted targets per compound network for DrugBank targets. Nodes representing the antiproliferative 

compounds are colored in blue, whereas predicted protein targets in red. Node size represents the node degree. Links 

represent the predicted compound-target associations. The image was rendered through Cytoscape 3.8.2 [7].  

 

What emerges from the network topology (Figure 16) is that some targets have been 

predicted for many compounds: SLC5A5 or NIS (Q92911), ABCC5 or MRD5 (O15440), 

EPAS1 (Q99814) proteins have highest node degree, i.e. 41, 41, 34, 33, 32. Interestingly, 

the ATP-binding cassette (ABC) transporters are transmembrane proteins implicated in 

multidrug resistance (MDR) against anticancer drugs acting as efflux pumps for xenobiotics, 

including chemotherapeutic agents, whereas solute carrier (SLC) transporters are considered 

gatekeepers of the cellular milieu implicated in changes in cell homeostasis thus in MDR 

too. It was previously reported that multidrug resistance proteins (MRPs) MRP1, MRP2, 

MRP3, MRP5 and P-glycoprotein (P-gp) contribute to a net resultant pump function in AML 
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and P-gp and MRPs activities were correlated with the maturation stage as defined by 

immune phenotype [93]. 

Even if ABC and SLC transporters are involved in cancer drug resistance, it has been 

challenging to find direct evidence of NIS and ABCC5 involvement on leukemogenesis, 

thus these compound-target interaction predictions are likely to be relevant not for the 

desired pharmacological effects, but for plausible unwanted effects. Moreover, 

polymorphism of ABCC5 was found to influence doxorubicin metabolism and functional 

pathways involved in anthracycline-induced cardiotoxicity in pediatric patient with ALL 

[94].  

Furthermore, hypoxia has been shown to impact on cell proliferation, differentiation and 

resistance to chemotherapeutic agents not only in solid tumors, but also in leukemia, 

regulating the hematopoietic stem cell (HSC) niche and thus affecting the growth of LSCs 

that arise from HSCs and are involved in the relapse of AML. There has been a great interest 

in clarifying the role of hypoxia-inducible factors (HIFs) implicated in hypoxic signaling to 

advance therapeutic strategies targeting this process. HIFs are indeed the master regulators 

of cell response to hypoxia. Actually, HIF1A, HIF2A (alias EPAS1, endothelial PAS 

domain-containing protein 1) and HIF3A are three oxygen-regulated HIF-alpha subunits 

forming the heterodimer complexes and HIF-beta subunit. HIFs are regulated either by 

oxygen-dependent and oxygen-independent mechanisms. Tumor suppressor genes, i.e. p53, 

or GSK3 might cause HIFs downregulation, whereas PI3K/AKT or mTORC1 might cause 

its upregulation [95]. 

Then, the pool of targets was studied by means of the over-representation analysis. The 

predicted targets account for 1949 target genes.  

Figure 17a displays the functional enrichment in predicted targets for the gene-set library 

MSigDB_Hallmark_2020 highlighting significant biological pathways that could be related 

to leukemia according to our literature search. For instance, oxidative phosphorylation, fatty 

acids metabolism, glycolysis and peroxisome as well as mTOR signaling and apoptosis are 

enriched terms that can be easily reconducted to the metabolic impairments that were 

previously described for different hematological malignancies, comprising myeloid 

disorders [96]. Similarly, Figure 17b displays significant biological processes related to 

metabolic pathways as annotated by Gene Ontology.  

Importantly, metabolic adaptation is a hallmark of cancer cells. The metabolic rewiring of 

leukemic cells not only affects the initiation, but also the disease progression involving 

cellular factors, i.e. oncogenic mutations, and microenvironmental factors, i.e. hypoxia, as 

mentioned before; these factors affect the suppression of immune responses against 
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leukemia. However, targeting bioenergetic pathways that differs between normal 

hematopoietic and leukemic cells, offers a therapeutic window to treat especially non 

responsive patients affected by leukemia disorders [96].  

Considering the hub proteins related with our gene set, (Figure 17c) multiple enriched terms 

deal with protein kinases, namely PRKACA (protein kinase cAMP-activated catalytic 

subunit A), PRKCA and PRKCE (protein kinase C alfa and epsilon respectively), SRC 

(tyrosine protein kinase SRC), RP66KA3 (ribosomal protein S6 kinase A3) of the RSK 

family of serine/threonine kinases that phosphorylates members of the MAPK pathway, 

EGFR (epidermal growth factor receptor) and GRB2 (growth factor receptor bound protein 

2) that binds EGFR. Among the other genes related to leukemia according to literature, 

STAT3 is included in the JAK/STAT signaling cascade.  

Additionally, Figure S5 shows the functional enrichment in predicted targets for the gene-

set library NCI-Nature_2016. Multiple pathways involved in leukemia were included among 

the significant (defined by the * as p-value £ 0.05) enriched terms such as pathways of RXR 

and RAR, VEGFR1 and VEGFR2, ERBB1 (EGFR) and PDGFR-beta and osteopontin. 
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Figure 17. Functional enrichment plots. The ten pathways with highest combined score are shown for a. Molecular 

Signature Database Hallmark gene-set library and c. Hub Proteins in Protein-Protein Interaction Data. These bar plots were 

realized by means of enrichr R package [78]. The dot plot for Gene Ontology (GO) biological processes is shown in b. in 

which enriched terms are ranked in function of the number of genes entering a given pathway (Gene Ratio). The size of the 

dot is proportional to the size of the enrichment and are color coded on the basis of the adjusted p-value. The enrichment 

for GO biological processes was computed through ClusterProfiler R package [80] and plotted by means of enrichplot 

[92].  

All the above considered, it appears that the analysis of compound-target interaction 

predictions through KEGG and DrugBank databases leads to coherent and complementary 

results as suggested also by over-representation analyses. These show enriched pathways 

that can be reconducted to leukemias as expected for our compounds that were tested on 

K562 and/or HL60 cell lines for their antiproliferative activities.  

Another aspect that further supports our compound-target predictions is that these 

compounds were specifically designed and synthetized with the purpose of inhibiting targets 

involved in many types of cancer, including CML. For instance, the pimozide derivatives in 

[27], [28] and the iodoacetamido benzoheterocyclic derivatives in [26] were originally 

designed as STAT5 inhibitors, since STAT5 is a transcription factor of the STAT family 

constitutively activated in BCR-ABL positive CML and the inhibition of STAT5 

phosphorylation induces apoptosis in CML cells. Additionally, retinoid analogues with 

apoptotic activity were proposed in [15] since retinoids are a class of vitamin A analogues 

structurally related to all-trans-retinoic acid involved in the growth and differentiation in 

both normal and malignant cell types. Indeed, retinoids were found to inhibit cell 

proliferation and to induce differentiation and apoptosis at the cellular level; moreover, they 

act by binding to specific nuclear retinoic acid receptors (RARs) and retinoid X receptors 

(RXRs). Therefore, it is important to note how previous literature about these 

antiproliferative compounds is coherent with what emerges from our analyses. Indeed, 

according to the over-representation analyses, predicted targets are involved in biological 

pathways like apoptosis, cell proliferation and differentiation as well as oxidative 

phosphorylation and pathways related with STAT family, RXR and RAR receptors.  

Finally, on one hand, this work confirms that RWR is a valuable network-based approach 

for compound-target interactions prediction, and, on the other hand, it enables to hypothesize 

possible molecular mechanisms that might enlighten the antiproliferative activities of our 

compound collection in view of further experimental validation.  
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13 CONCLUSIONS 

Here, a network-based link prediction method that has been previously validated and 

exploited to predict DTIs with the aim of identifying potential targets for existing drugs was 

applied to infer potential targets for antiproliferative compounds, whose mechanisms of 

action are not yet clarified. With the aim of investigating the molecular basis of their 

biological activities without reducing the complexity of compounds action, a network-based 

approach was applied.  

In summary, this work is an attempt to predict potential targets also for compounds having 

no known targets using the RWR approach. The great strength of RWR is that it exploits 

network structure information to infer missing links and indeed DTIs prediction can be seen 

as a problem of link prediction in complex networks. In effect, network-based prediction for 

a drug/compound by means of the RWR approach allows to take into account not only the 

closeness of molecules to the potential targets, but also the multiple paths connecting the 

former to the latter. From this point of view, RWR is capable of predicting potential targets 

even if the drug has no known target.  

Thus, the target profile of each antiproliferative compound was investigated considering 

compound-target interaction networks. In broad terms, some targets were found to be 

predicted for many compounds. This behavior is coherent with the fact that a certain degree 

of similarity is present within the compound dataset.  

Additionally, the predicted targets were further investigated with the aim of advancing some 

hypotheses that might shed light on the mechanisms of action underlying their 

antiproliferative activities.  

In conclusion, this network-based approach is a valuable method to make a hypothesis about 

the mechanisms of action of these antiproliferative compounds, setting the stage for further 

experimental studies aimed at validating them.
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Chapter 3. Network-based approaches for COVID-19 drug research 

14 INTRODUCTION 

The outbreak of the COVID-19 pandemic prompted the scientific community to join the 

efforts for fighting the public health emergency.  

In this context, to contribute to facilitate the exploration of the knowledge about the 

continuously evolving scenario of the ongoing drug clinical trials, as a research group, we 

developed a web tool, namely COVID-19 Drugs Networker, for COVID-19 related drugs 

now available online at http://compmedchem.unibo.it/covidrugnet and published in [97]. 

15 COVID-19 DRUGS NETWORKER 

COVID-19 Drugs Networker (COVIDrugNet) was designed to keep the user up to date on 

the progresses of drug development to contain the SARS-CoV-2 infection.  

The web application provides a network-based approach to study drugs repurposed for 

COVID-19 listed on DrugBank database. COVIDrugNet supports the graphical exploration 

of the interactive networks and their analysis.  

The COVIDrugNet core is the interactive bipartite drug-target network (DTN shown in 

Figure 18a) which contains drug and target nodes whose additional features are reported in 

the Node Info box providing drug and target data. The DTN (Figure 18a) is indeed built 

connecting drugs currently in clinical trials present in the COVID-19 Dashboard of 

DrugBank [55] and their retrieved targets. Currently, the DTN is composed by 292 drugs 

and 1193 targets with a giant component including 211 drugs 1040 targets. Since bipartite 

networks are usually analyzed by means of the two monopartite networks called projections, 

COVIDrugNet offers the interactive Drug and Target Networks (DN and TN, as depicted in 

Figure 18b and c, respectively).  

To further expand the potential of network exploration, different information related to 

therapeutic, biological, and network features has been annotated for nodes, so that the user 

has multiple node coloring options to render the networks being assisted in network analysis. 

Among coloring options, network properties as degree, centrality measures or node grouping 

are available. In addition, Figure 18b illustrates how therapeutic information could be 
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examined at a glance by coloring the DN according to ATC code, whereas Figure 18c 

displays the TN in which nodes are color coded based on the protein class. In addition, 

COVIDrugNet offers other coloring option according to protein family or cellular location.  

Furthermore, the main section of COVIDrugNet contains (i) the Charts and Plots in which 

pie or bar charts are updated on the basis of the displayed network properties allowing the 

user to capture the relative proportions among variables of that property as well as the degree 

distribution plot, and (ii) the Graph Properties reporting centrality measures accounting for 

network topology.  
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Figure 18. COVIDrugNet networks provided by the web tool updated on 31st January 2022. The figure shows the drug-

target bipartite network (a) in which red and cyan nodes represent drugs and targets, respectively; the drug network (b) 

which contains only drug nodes colored according to the first level ATC codes reported in DrugBank; the target network 

(c) that includes only targets. In the latter, the nodes are color coded according to their protein class collected from ChEMBL 

[98]. 
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Moreover, the web tool gives the opportunity to perform network analysis through advanced 

tools. The drop-down Advanced Tools section contains Clustering, Advanced Degree 

Distribution and Current Virus–Host–Drug Interactome. Clustering is designed for 

grouping analysis that might reveal possible trends in repurposed drugs. The networks 

partitioning algorithms implemented are spectral analysis combined with K-means 

clustering [99], Girvan–Newman [100] and greedy modularity community detection [101] 

methods. Advanced Degree Distribution contains the degree distribution interactive chart 

with different distribution fittings compared to those of an Erdős–Rényi equivalent graph. 

 

 

Figure 19. Virus-Host-Drug network adapted from [97]. The network is based on the virus-host interactome of Gordon et 

al. [102] and Chen et al. [103] from which the virus proteins shown as red nodes and the human proteins were retrieved 

from. The human proteins are represented as blue nodes if not targeted by any repurposed drugs and as yellow nodes if 

targeted by drug according to the TN; the human proteins linking two viral proteins, thus acting as bridge, are distinguished 

by a pink border. Drugs are depicted as square green nodes. The network was rendered by means of Cytoscape 3.8.2 [7]. 
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Thanks to COVIDrugNet, we carried out a dual perspective analysis joining the data on 

repurposed drugs from COVIDrugNet itself and the molecular experimental data on SARS-

CoV-2. The latter were retrieved from the works of Gordon et al. [102] and Chen et al. [104] 

which published virus-host interactomes. Merging their data, 732 human proteins that bound 

directly to the viral proteome were extracted. This list was compared with that of the human 

targets of the COVIDrugNet TN and, as a result, only 45 out of 732 proteins matched. Figure 

19 shows the virus-host-drug network highlighting the 45 proteins in common which are 

depicted as yellow nodes. From the drug-target network emerges that these human proteins 

are targeted by 29 repurposed drugs (represented by square green nodes in Figure 19). The 

virus-host-drug network also shows 20 human proteins that act as bridges between two viral 

proteins appearing to be potential targets to disrupt the network of host-virus PPIs. The 

Current Virus–Host–Drug Interactome is displayed in the last section of COVIDrugNet.  

In an effort to provide current information, we are updating COVIDrugNet every two weeks. 

We observe that there have not been changes since last 31st January 2022. 

16 CONCLUSIONS 

Novel coronavirus is still hampering the healthcare system and the worldwide socio-

economic condition. Since COVID-19 emerged in December 2019, huge steps forward have 

been made on the understanding of SARS-CoV-2 viral infection and replication 

mechanisms, epidemiology and clinical manifestation. Concurrently, COVID-19 vaccines 

and pharmacological treatments have been developed and received approval for emergency 

use.  

In this context, however, we noticed an unmet need of depicting the continuous evolving 

scenario of the ongoing drug clinical trials. Hence, we developed COVIDrugNet, as a freely 

accessible online tool that helps to monitor drug research progresses about COVID-19 

repurposed drugs.  

Here, a brief description of how COVIDrugNet features could be employed to have a global 

insight into the molecular networks of drugs in clinical trials and their targets was proposed. 

Then, it was suggested that COVIDrugNet might be useful to probe the consistency of actual 

treatments with the biological evidence on virus infection. The target network has been 

overlapped with the host–virus interactome to offer new perspectives on drugs to be 

proposed for clinical investigation. For instance, human proteins linking two viral proteins 

might be promising targets for anti-COVID-19 drugs.  
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Finally, network-based approach to drug-related data as COVIDrugNet might help to 

understand the molecular implications of several COVID-19 pharmacological interventions 

that are still lacking a solid pharmacological rationale [105]. 

In conclusion, COVIDrugNet was designed to keep the user up to date on the advances of 

drug repurposing to contrast SARS-CoV-2 infection. 
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SUPPLEMENTARY MATERIALS 

Supplementary Materials 

Supplementary Figure S1. The collection of 220 antiproliferative compounds. Their 

chemical structures are shown, and their antiproliferative activities are reported as pIC50 

values.  

Supplementary Figure S2. Predicted compound-target interaction network for cell surface 

molecules and ligands class.  

Supplementary Figure S3. Predicted compound-target interaction network for protein 

kinases class. 

Supplementary Figure S4. Predicted compound-target interaction network for not 

elsewhere classified targets class.  

Supplementary Figure S5. Functional enrichment bar plot for DrugBank target class for 

NCI-Nature pathways gene-set library. 
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Supplementary Figure 1. The collection of 220 antiproliferative compounds. Their chemical structures are shown, and 

their antiproliferative activities are reported as pIC50 values.  

Reference articles according to molecules’ titles: 1999a [13], 2000a [14], 2001a [21], 2001b [20], 2001c [15], 2003a [16], 

2005a [22], 2006a [18], 2006b [17], 2008a [19], 2009a [23], 2011a [24], 2014a [27], 2015a [25], 2016a [26], 2017a [28].  
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Supplementary Figure S2. Predicted compound-target interaction network for cell surface molecules and ligands class. 

Nodes representing the antiproliferative compounds are colored in blue, whereas predicted protein targets in red. Node size 

represents the node degree. Links represent the predicted compound-target associations. The image was rendered through 

Cytoscape 3.8.2 [7].  
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Supplementary Figure S3. Predicted compound-target interaction network for protein kinases class. Nodes representing 

the antiproliferative compounds are colored in blue, whereas predicted protein targets in red. Node size represents the node 

degree. Links represent the predicted compound-target associations. The image was rendered through Cytoscape 3.8.2 [7].  
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Supplementary Figure S4. Predicted compound-target interaction network for not elsewhere classified class. Nodes 

representing the antiproliferative compounds are colored in blue, whereas predicted protein targets in red. Node size 

represents the node degree. Links represent the predicted compound-target associations. The image was rendered through 

Cytoscape 3.8.2 [7].  
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Supplementary Figure S5. Functional enrichment bar plot for DrugBank target class. The ten pathways with highest 

combined score are shown for NCI-Nature pathway gene-set library. The analysis was performed by means of enrichr R 

package [78]. 

 


