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Abstract

The idea behind the project is to develop a methodology for analyzing and developing

techniques for the diagnosis and the prediction of the state of charge and health of lithium-

ion batteries for automotive applications. For lithium-ion batteries, residual functionality is

measured in terms of state of health; however, this value cannot be directly associated with

a measurable value, so it must be estimated. The development of the algorithms is based

on the identification of the causes of battery degradation, in order to model and predict the

trend. Therefore, models have been developed that are able to predict the electrical, thermal

and aging behavior. In addition to the model, it was necessary to develop algorithms capable

of monitoring the state of the battery, online and offline. This was possible with the use of

algorithms based on Kalman filters, which allow the estimation of the system status in real

time. Through machine learning algorithms, which allow offline analysis of battery deterio-

ration using a statistical approach, it is possible to analyze information from the entire fleet of

vehicles. Both systems work in synergy in order to achieve the best performance. Validation

was performed with laboratory tests on different batteries and under different conditions. The

development of the model allowed to reduce the time of the experimental tests. Some specific

phenomena were tested in the laboratory, and the other cases were artificially generated.
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Introduction

Motivation

One of the causes of climate change is certainly to be found in mobility. An alternative

to traditional diesel and gasoline engines is certainly the use of other fuels such as LPG

and methane, which allow to reduce CO2 emissions; however, currently the only way to

bring to zero such emissions is represented by electric mobility. The electric car market is

increasing year after year, with record sales all over the world, thanks to the awareness of

the various aspects of environmental protection and thanks to an aggressive campaign of

incentives.

Today we are witnessing a global diffusion of applications based on the use of Li-Ion

batteries; for many of them the life cycle of the device is limited by the life of the battery,

as we can see in portable devices such as cell phones or computers. In the case of electric

vehicles, reaching 80% of nominal capacity is to be considered the end of battery life,

however the battery can still be used on stationary applications where such high energy

density is not required. For this reason, it is important to have a Battery Management

System (BMS) that can monitor the battery, to extend its life as much as possible, and that

can estimate its status accurately, so that it can be reused in other applications.

An electric vehicle usually has an installed energy of tens of kWh (they can also reach

hundreds of kWh), to reach such high energy values while maintaining the weight and

volume contained, the current technology is based on lithium. Currently the cell format

that guarantees the highest value of energy density is the cylindrical format. The most

common formats are, 18650, (18 mm radius) and (65 mm height), and 21700, (21 mm

xi



radius) and (70 mm height), the latter being the most recent format that in the next years.

Cylindrical cells, despite reaching energy densities of 250 Wh/kg, have low energy

values per cell, around 12 Wh for 18650 and 18 Wh for 21700.

This immediately highlights the problem: the number of cells required by a battery

pack exceeds thousands. The Tesla model S 75kWh, for example, has approximately

7000 cells. An aspect to be taken into consideration is certainly related to the safety of

these vehicles, it is especially due to the great reactivity of lithium.

There is a Safety Operation Area (SOA), defined by the manufacturer, within which

the battery pack must work. If the battery works out of this area of operation, irreversible

processes of degradation are triggered, leading to a decrease in reliability and power avail-

ability; in the worst cases, fires or even explosions can occur. The BMS is a system present

in every battery pack composed of lithium cells and is responsible for monitoring the bat-

tery to ensure proper operation and prevent possible malfunctions. The BMS, therefore,

plays a key role in ensuring a good level of safety, also allowing to maximize battery

performance.

Original Contribute

Considering the aspects reported above, the purpose of this work is to develop a BMS

functionality capable of monitoring the battery working zone, to keep it in the SOA. At

the same time, the BMS will evaluate the state of the battery in terms of State of Charge

(SOC), State of Health (SOH), etc.

The existing literature provides important results regarding the estimation of battery

states, however most of them regard SOC. In contrast, for SOH there is little information

about it and, currently, there is no single definition. The objective of this work is to analyze

different algorithms to estimate SOH, based on the internal resistance of the cell. SOH is

among the most important parameters to monitor in lithium-ion batteries (LIBs) because

it serves to know their residual functionality of the battery.

In addition to the state estimation, another fundamental aspect to ensure the maximiza-

tion of a battery performance is related to the modelling; being able to have an accurate

xii



model of the battery, in fact, allows to analyze its behavior in every possible operating

condition, challenging it to the limit of its potentiality.

The Equivalent Electrical Circuit Model (ECM) allows to obtain excellent performance

while maintaining reduced complexity with concentrated parameters. The thesis will il-

lustrate the most popular models in the literature, aiming to analyze the methods to obtain

the parameters starting from experimental tests, also using ad hoc tests developed over the

years. The models developed will be compared with data from laboratory tests to verify

the validity in various configurations.

Thesis Outline

Chapter 1 contains a general introduction on the state of the art, starting with a quick

description of the context in which this work is inserted and briefly describing the issue

of electric mobility. In the following paragraphs, LIBs and the differences between the

various batteries on the market will be introduced, and finally the BMS will be analyzed,

describing its main functions. Subsequently, the topic of battery modelling will be intro-

duced, leaving to the next chapter a more detailed discussion and the description of the

models most used in the literature. In the last two paragraphs, the possible states that can

be identified for a battery will be described, presenting the most common methodologies

for their determination.

Chapter 2 will go into the details of battery modelling, starting with a description of

the test system that has been used for the realization of laboratory tests. The second para-

graph will explain in detail how it is possible to derive the parameters of the equivalent

electrical model starting from the laboratory tests. These same parameters will then be

used in the following paragraphs for the realization of the battery model. In this chapter,

three possible implementations will be presented that have been realized for three dis-

similar purposes, in three different programming environments. The results obtained in

comparison with real tests will then be examined.

Chapter 3 will describe the methods investigated over the years for parameter esti-

mation. An introduction of the theory behind each method will be made, and then the

xiii



application to the battery world will be shown.

Finally, the results of the comparison between the tests and the model analyzed in the

previous chapter will be presented. In this chapter a lot of space will be dedicated to the

estimation methods based on Kalman Filters, as they have shown excellent effectiveness

in estimating the state of the battery, therefore being recognized in the literature as the

state of the art for the SOC estimation.
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1 | State of The Art

1.1 Electric Mobility

Climate change is a central topic nowadays and among the points of the 2030 agenda of

the European Commission there is the fight against climate change. The transition to more

sustainable technologies can not only help to solve the problem of climate change, but also

allow to reduce polluting emissions and thus improve the quality of life of people already

in the short term. In this ambitious program, mobility plays a fundamental role; in fact, a

large part of pollution is caused by the transport of goods and people. In Emilia-Romagna

41% of CO2 emissions are produced by road transport.

Thanks to recent regulations, registered thermal vehicles must comply with increas-

ingly stringent constraints on pollutant emissions. The transition to zero-emission vehicles

can also take place using vehicles powered by fuels with a lower environmental impact,

such as LPG and methane gas, although, due to their very nature, emissions can never be

equal to 0. For this reason, the transition to electric vehicles is currently the only solution.

Market forecasts indicate that electric vehicles are becoming more and more widespread;

it is estimated that they could cover 30% of the car market in 2030 [16].

Electric mobility uses one or more electric motors for propulsion, energy is stored

on board in a variety of ways, the most common being: Hydrogen tanks, the hydrogen

being then converted through fuel-cells into electricity, and batteries, which store chemical

energy, which is converted back into electricity through chemical reactions and then used

by the engines. Currently, electric mobility is spreading across all sectors [2]. Starting

with micro-mobility, i.e., those low-weight vehicles used for small trips such as bicycles,
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(a) (b)

Figure 1.1: Emission values imposed by regulations depending on the "Euro" class of

registration, gasoline (a), diesel (b)

Figure 1.2: Citymood 12e Electric bus, developed by Industria italiana autobus, presented

on November 29

scooters, and electric scooters. In private mobility, electric cars are becoming increasingly

popular with a massive increase in recent years, also thanks to incentives proposed by the

state and regions.

The focus has also been on sustainable public transport, where, for example, the Emilia

Romagna region has recently presented the new "Citymood 12e electric bus Fig. 1.2", [5].

Electric motors can be coupled to traditional internal combustion engines, where it is not

possible to support the demand for power and energy as in the case of agriculture [6].

The choice to use electric mobility is linked to the best use of energy, considering that

in traditional internal combustion vehicle, 84% of the energy used is dispersed in the form
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(a)

(b)

(c)

Figure 1.3: Comparison of the efficiency of various vehicles, (a) internal combustion en-

gine (ICE), (b) hybrid electric vehicle (HEV), (c) battery electric vehicle (BEV)

of heat, consequently only 16% is used to propel the vehicle. For electric vehicles the

efficiency is much higher and 83% of the energy is converted into motion. In Fig. 1.3, the

waste contributions broken down by vehicle type are shown.

The high efficiency of electric vehicles can be attributed to the absence of an internal

combustion engine, which by its very nature has a very low efficiency, but is also linked to

the possibility of recovering energy when braking and to the practically zero consumption

in stationary phases of driving, such as, for example, at traffic lights.

Despite the advantages of the transition to electric vehicles, this transition it is not

taking place rapidly, the cause of which is to be found in various factors that limit its
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Figure 1.5: Comparison of CO2 emissions by vehicle type, with reference to mass

diffusion.

Electric vehicles, unlike traditional vehicles, can store less energy on board, due to

their low energy density; in fact, the energy density of gasoline is ten times greater than

that of batteries, and this has repercussions on a shorter range. Recharging times are also

different: to fill the tank of a thermal vehicle can take approximately 5 minutes, to recharge

a battery vehicle can take more than 2 h.

For this reason, the transition must also take place through a change in the mentality

of users, and this must affect the use of vehicles that require a smaller amount of energy

to move.

Figure 1.4: SUV Market share

The market, however, shows an opposite trend,

with an inincreasing diffusion of "SUVs", the vehi-

cles with a high mass. The graph in Fig. 1.4 shows

that the number of these vehicles has tripled, from

10% in 2010 to 35% in 2019. The increase in the

mass of these vehicles increases consumption and

consequently has a huge impact on the increase in

emissions. In Fig. 1.5 you can see as the increase of vehicle mass affects CO2 emissions.

It can also be seen that this trend is less pronounced for electric vehicles, which, thanks

4



1.1. Electric Mobility

Figure 1.6: Trend of energy production from renewable resources in Italy, trend of corre-

sponding CO2 emissions

to recovery during braking, are able to disperse less energy. A further aspect related to the

high consumption by vehicles is to be attributed to the speed: in fact reducing speed from

130 Kph to 120 kph leads to 14% consumption reduction. What has been said shows how

the transition towards BEVs or PHEVs can only take place with a change in the mentality

of users. The last aspect that limits the diffusion of electric vehicles is their high cost if

compared to the cost of traditional vehicles.

Figure 1.7: Bike lanes in the city of

Bologna

Talking about electric mobility it is necessary to

analyze the way in which the energy that is used in

vehicles is produced. Europe is still a long way from

achieving climate neutrality Fig. 1.8, [4]. In Italy,

the production of energy from renewable sources is

growing and currently stands at around 35%. How-

ever, in Italy a lot of energy is generated using natu-

ral gas, which produces high values of CO2. More-

over, due to the nature of renewable sources, they

are not constant over time, and therefore energy storage systems are necessary, in order to

meet the energy needs when renewable sources are not sufficient.

The investments being made to combat climate change are having enormous results.
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Figure 1.8: CO2 emissions by used energy, divided by states, [4]

In the city of Bologna, 500 km of cycle paths have already been created to encourage the

use of more sustainable vehicles such as bicycles and scooters.

The recharging infrastructure is expanding enormously, and more and more parking

spaces are being reserved for recharging electric cars.

Finally, more and more is going to be invested in research on higher performance bat-

teries, given the great demand for electric vehicles and their greater autonomy. Currently,

batteries with an energy density of 280 Wh/kg can be found at a price that is more and

more decreasing.
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1.2 Lithium Ion Battery

In this section will analyze some of the main characteristics of the batteries that are com-

monly used. The first part will introduce the principle of operation of the battery in general,

the second will discuss the formats in which batteries can be found, and in the last part

will be shown a comparison between the various types of lithium-based chemicals in the

market.

1.2.1 History of Battery

Research in lithium batteries began in 1912 under G.N. Lewis, but the breakthrough came

in 1958 when Harris noticed the stability of Li-metal in several non-aqueous electrolytes

such as fused salts. The formation of a passivation layer that prevents the direct chemical

reaction between lithium metal and the electrolyte but still allows for ionic transport is at

the origin of the stability of lithium batteries [38].

This type of batteries uses electrode materials intercalation which allow to accumulate

and release lithium ions, in a reversible process. This phenomenon is defined as host-

guest, the electrode structures accepting lithium ions inside and then releasing them at the

next cycle to the other electrode. The components of the electrodes must be good electrical

conductors, and good ionic conductors.

Although initially batteries were produced with cathodes composed of an acceptor ma-

terial of Li ions and an anode of lithium metal, the use of the latter was later abandoned,

as the high reactivity of Lithium provoked very intense corrosive phenomena at the inter-

face causing both the degradation of the device and safety problems, up to extreme cases

of self-combustion of batteries. For this reason, lithium-ion batteries were introduced to

overcome the safety issues carried by lithium metal batteries.

The major components of LIBs are the negative and positive electrodes, electrolyte,

and separator Fig. 1.9. The negative and positive electrodes correspond to the anode and

cathode, respectively, during discharge, and vice-versa in charge phase.

To avoid contact between the electrodes, which could produce very violent reactions,

a membrane is interposed to act as a separator. The separator allows the passage of ions
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Figure 1.9: Major components and operating mechanism of LiBs

but prevents electrical contact.

The cathodes are typically oxides of Mn, Ni and Co, thanks to the crystalline structure

make easily insert the lithium ions. For the anode is widely used graphite together with

lithium titanates deposited on copper foil. The layered structure of graphite is composed

of strongly bound atoms and arranged in hexagonal structures with the various planes held

together by weaker bonds.

For safety reason, aqueous electrolytes are not usable, so organic solvent are used.

Due to a high potentials stability the battery can operate in high voltage ranges During

the first charge, the electrolyte decomposes, a passivation film is so created in the anode-

electrolyte interface. This thin layer is insulating for electrons but very conductive for

ions. This layer is called Solid Electrolyte Interface (SEI). The SEI prevents the formation

of the dendrites structure, which would lead to damage of the separator, and subsequently

make short circuit between the electrodes.

During discharge when the battery is connected to a load, as shown in Fig. 1.9, lithium
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ions are deintercalated from the negative electrode, flowing into the electrolyte through

a separator due to the diffusion and migration processes. Finally intercalated into the

positive electrode. The process is reversed during charging [39].

The materials used for electrodes are typically:

• materials with a lamellar structure;

• materials with interstitial sites, where the ions can stay;

• amorphous materials.

1.2.2 Type of battery

Figure 1.10: Comparison between different type of cell

Lithium-ion cells are available in 3 formats, prismatic, cylindrical and pouch Fig. 1.10,

each format has its pros and cons. The cylindrical format reduces the expansion effects due

to chemical reactions, but the integration process is complicated. The prismatic format, on

the other hand, makes the integration process much easier, but it is the format that presents

the lowest energy density for the same chemistry. There are many parameters to consider
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when choosing the chemistry of a cell. The following are the characteristics of the most

common cells, with a brief description of each.

Prismatic The prismatic format Fig. 1.10(a) allows for easy integration and optimal use

of space. Also, for this type of cell there is a vent valve for the gases produced inside.

There are multiple sizes of these cells, to be used in different applications a big ad-

vantage for this format is the presence of the screw connectors for the poles, which make

integration much easier. However also because of the external housing these cells have a

low specific density. However, they are also used in electric vehicles as they have higher

capacities and nominal energies than the cylindrical format.

Cylindrical Is the most widely used format Fig. 1.10(b). The cylindrical design has

advantages from a constructional point of view as it is easy to manufacture and has me-

chanical stability, since the cylindrical shape can withstand high pressure. However, due

to its nature, there is a loss of space in the integration and consequently battery packs

composed of these cells have a large volumetric footprint. A further disadvantage of this

format is due to the low capacity of the cell, and consequently the number of elements to

be integrated is much higher than with other types.

Many cylindrical cells have a device that can release the pressure generated inside, so

as not to trigger explosions.

Cylindrical cells are mainly used for power tools, electric bicycles. This format is

used by Tesla for some of its vehicles. The most common format is 18650, but currently

other formats such as 21700 are gaining ground, thanks to a higher energy rating. Tesla

currently plans to produce its own cylindrical format 46800, with the aim of reducing the

cost of production and integration.

Pouch These cells Fig. 1.10(c) are made with conductive layers to which electrodes

are soldered. The integration of these cells is a middle ground between prismatic and

cylindrical formats, in fact they have nominal energies like cylindrical cells, and require

a soldering process, but they can be stacked without loss of space like prismatic cells,

also they need to be kept under pressure to avoid swelling during use. This type of cell
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together with the cylindrical cell are the ones with the highest specific energy density, and

the highest specific power density. On the other hand, these cells have a strong swelling

effect mainly during the recharge phases, due to the gas that is produced inside the cell,

which can cause a delamination of the layers and therefore a loss of capacity. A further

disadvantage is the low mechanical stiffness, so the design of the external case must be

more robust than other formats.

As for the prismatic cells the format is not standard, but it is made to measure of the

application. Typically, these cells are used in model aircraft or drones due to their high

power density, and high currents they can deliver. This type of cell is also used in electric

vehicles, especially in hybrid vehicles where the currents are high.

1.2.3 Battery Chemistry

Table 1.1: Comparative table of different types of lithium batteries

Name
Positive Negative Nominal Energy density

Cycle
Thermal Thermal

eletrcode eletrcode voltage Gravimetric Volumetric stability runaway

[V] [Wh/kg] [Wh/l] [°C]

ICR-LCO LiCoO2 Grafite 3,7 150-200 420 500-1000 Low 150

IMR-LMO LiMn2O4 Grafite 3,9 100-150 350 300-700 Good 265

INR-NMC LiNiMnCo2O2 Grafite 3,6 205-250 580 500-2000 Good 210

NCA LiNiCoAlO2 Grafite 3,6 220-260 600 500 Good 160

IFR-LFP LiFePO4 Grafite 3,2 90-130 330 1000-2000 Excellent 310

LTO LiMn2O4-LiNiCoAlO2 Li2TiO3 2.4 50-80 180 3000-7000 Excellent

LCO Lithium-Cobalt

Their high specific energy makes them the most common choice for consumer electron-

ics. The disadvantage of this type is a relatively short lifetime, low thermal stability, and

limited load capacity (low specific power). LCO’s, due to poor thermal stability, are not

to perform charge-discharge cycles at currents higher than their C-rating.
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Figure 1.11: Battery Chemistry Comparison

IMR-LMO Lithium-Manganese

The architecture forms a structure called "three-dimensional spinel structure" which al-

lows to improve the ionic flux on the electrode. This leads to lower internal resistance

and to easier thermal management. The structure offers high thermal stability and there-

fore a greater safety, allowing to perform charge and discharge cycles with high C-rates

while maintaining low temperatures. The disadvantages of this type of cells are a reduced

number of cycle and a low specific energy value.

INR-NMC Lithium-Nickel-Manganese-Cobalt

One of the most successful lithium-ion systems is the cathodic combination of nickel man-

ganese and cobalt. Like LMOs, this cell type can be used as either a "High Energy" and

"High Power" cells. The combination of these elements, produces the strength of LCO

and LMO; in fact, nickel is known for its high specific energy density but has poor ther-

mal stability, while manganese has the advantage of having a structure with low internal

resistance but a low specific energy. The cathode combination is typically one-third nickel,
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a third manganese and a third cobalt. Since the three elements are easily combined these

batteries can be adapted to a wide range of automotive and energy storage applications

that require a high number of cycles.

NCA Lithium-Nickel-Aluminium-Cobalt

This cell type shares similarities with NCM but without the benefit of manganese. They

tend to withstand lower discharge currents but compensate by offering high specific en-

ergy and reasonably good power. The addition of aluminum gives the chemistry greater

stability. The disadvantages are certainly a high cost and a poor safety.

LFP Lithium-Iron-Phosphate

Lithium phosphate offers good electrochemical performance with low resistance, allow-

ing high currents and a very high number of cycles, good thermal stability, and therefore

greater safety. As a compromise, it has a lower nominal voltage compared to other chem-

istry, lower specific energy compared to LCOs, and present a higher self-discharge rate

which causes equalization problems.

LTO - Lithium Titanate

The lithium titanate anode replaces the graphite anode of a typical lithium-ion cell. The

cathode can be either LMO or NCM type. LTO cells have a nominal voltage of about of 2.4

V, can be charged quickly and provide a high discharge current over a wide temperature

range. This type of cells has excellent characteristics of durability, safety, and power.

However, they are very expensive and have a low specific energy density.

1.2.4 Ageing Phenomena

Aging in a battery is a physical-chemical decay involving the different components of

the cell: electrodes, electrolyte, collectors, additives. This leads to a decrease in battery

capacity and maximum available power. The main degradation mechanisms involve the

electrodes and are different from each other over time. Aging leads to a change in struc-
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tural properties, a change in available active material caused by dissolution of the material

in the electrolyte. Most negative electrodes use graphite, carbon, or titanate. Graphite

is the most widely used because of its better characteristics, particularly about safety, as

shown in Tab. 1.1. The main mechanism to consider is related to the formation of Solid

Electrolyte Interface (SEI) on the graphite negative electrode [53]. This solid interface is

formed when the battery is first charged, and its purpose is to protect the electrode from

possible corrosive effects and to avoid electrolyte reduction. This phenomenon occurs

mainly at the beginning of the cycle and changes with time, causing a continuous loss of

lithium ions and a decomposition of the electrolyte. In the short term this does not lead

to a large loss of capacity, but over time it leads to a decrease in the active time and to a

decrease of active surface, increasing the electrode impedance. The positive electrode is

subject to low alterations in time, leading to the formation of SEI, which is more difficult

to detect given the high voltages present on this electrode.

Figure 1.12: Illustration of ageing ef-

fects on battery negative electrode:

the capacity fade and the SEI growth

[53]

These phenomena occur both with the battery

in use and with the battery at rest and there is an

influence of the state of charge. In fact, a high

SOC (>80%) can cause an acceleration of this phe-

nomenon given the high potential difference be-

tween the electrode surface and the electrolyte. In

addition, other factors such as high temperatures,

overcharging or short circuits aggravate the pro-

cess. At high temperatures the SEI can dissolve

and create less permeable lithium ions by increas-

ing the impedance of the negative electrode. Con-

versely, low temperatures lead to a decrease in

lithium diffusion between SEI and graphite, which

can lead to the formation of lithium plaques, caus-

ing a loss of battery capacity. In the worst cases the SEI can perforate the insulation

between the two electrodes creating an internal short circuit, which inevitably leads to cell

rupture. The consequences of aging can be identified in loss of capacity and increase of
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internal impedance. Both phenomena have chemical causes but with different origins.

The consequences of these mechanisms in lithium-ion cells are:

• The decrease in available lithium over the various cycles increases the cell imbal-

ance, and this occurs on both electrodes due to the formation of SEI by the decom-

position of the electrolyte;

• The loss of active material on the electrode resulting in delamination;

• Increased cell resistance due to the formation of passive films on the active surface.

Battery aging can be divided into two processes: one type of deterioration by calendar

and one due to duty cycles. The former corresponds to a situation in which the battery

is in a state of storage without being used, while the latter describes the consequences of

several charge and discharge cycles [47].

Calendar aging

Thus, calendar aging results in a loss of capacity that can be rapid depending on the con-

ditions under which the battery is being stored. The main cause of an accelerated self-

discharge is the temperature at which the battery operates. In fact, at high temperatures

secondary phenomena such as internal corrosion or loss of active lithium are facilitated.

It is necessary, however, a compromise from the point of view of temperatures since

even too low temperatures limit the diffusion. The other aspect affecting calendar aging

occurs in the case of several cells connected in series, in case of different SOC between

the various cells, even at moderate temperatures different aging phenomena occur.

The SOC represents the proportion of ions present on the electrodes. This means

that for high levels of SOC there will be a large potential imbalance at the electrode-

electrolyte interface. Most studies on the calendar life of batteries see SOC as dependent

on the temperatures during storage. These quantities result in a nonlinear alteration of the

capacity and resistance
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Working cycle aging

Cycle aging happens when the battery is being charged or discharged. Temperature and

current at which battery are used play a central role in this type of aging.

In addition to these factors, the ∆SOC, which represents the change in discharge during

the cycle is also critical and influences the health of the battery. Studies conducted by

Bloom et. al. [76] show a loss of deliverable energy from the battery for high ∆SOC

levels.

This phenomenon is mainly caused by degradation at the positive electrode and SEI

formation enhanced by discharges and charges. Another factor that affects aging is the

voltage range at which the cell is operated. Exceeding the range declared by the manu-

facturer causes a greater deterioration of the cell; for example, discharging a battery at a

voltage of 0.1 V lower than that provided by the manufacturer, halves the life of the cell.

This phenomenon greatly affects the life of the cell, is bringing much more critical aging

than an increase in operating temperature of 15◦C [53].
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1.3 BMS

In industrial applications, a single cell cannot provide adequate power for the application.

Therefore, it is necessary to connect several cells in series and parallel to each other to

create a battery that is industrially useful. However, the realization of a battery composed

of many elements, usually in the order of thousands for electric vehicles, brings with it

many critical issues. Consequently, it is necessary to use a device that monitors the various

elements to ensure proper operation, this type of device is called battery management

system (BMS) [40]. Currently, there is still no unanimous consensus on the final definition

of BMS and what BMS does. According to [8], the BMS is the device that takes care and

manages the battery.

The BMS is composed of mechanical and electronic components and can be either

software or hardware, while the battery can be a single cell, a battery module or a battery

pack [55].

The BMS has the task of monitoring parameters such as voltage, current and temper-

ature of the individual cells and ensure that they remain within the range provided by the

manufacturer.

For electric vehicles the cost of the battery contributes about 50% of the vehicle, for

this reason, to lower costs typically BMS systems are made with cheap microprocessors

and limited computational power. This therefore reduces the possibility of using powerful

algorithms on the vehicle, but sometime the calculations are decentralized on the cloud,

with edge computing architectures based.

1.3.1 BMS architecture

Usually BMS systems are very complex, and are replaced by many subsystems that coop-

erate with each other. The architecture of the BMS can be of different types: a concen-

trated architecture with a single BMS that controls the entire battery pack, or a distributed

one, with more elements that take the name of slave, and only one master. The single-

element architecture is popular for low-power applications, or in general where the number

of cells in series is small. The Master-Slave architecture is the one used in vehicles.
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Figure 1.13: Basic framework of software and hardware of BMS in vehicle [55]

In the Master-Slave architecture, each slave is responsible for acquiring information

only related to a subset of cells that takes the name of the module, then communicates

it to the Master. The single slave is responsible for the equalization of its cells. The

Master on the other hand collects all information received from the Slaves and takes care

of the actual management of the battery pack and then communicates to each slave the

information related to equalization. An example of this architecture is shown in Fig. 1.14.

When the number of integrated cells and modules grows, it may be appropriate to

create multiple layers. This has been done within the LIBER project. In the LIBER

battery pack Fig. 1.15, there are several "Bricks" composed by a fixed number of cells,

and they are monitored by a BMS that is called "BMS-Brick".

The Brick are then connected in series between them to form a module. The "BMS-

Module" is responsible for receiving information from the Brick and monitor all the el-

ements in the module. Modules are connected to form a package, the "BMS-Pack", in-

terfaces only with the "BMS-Module", and manage it as if they were individual cells

connected in series.
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Figure 1.14: Structure of a two-level conventional BMS [20]

1.3.2 Data I/O

The BMS has inputs, which can be either analog or digital signals. Analog such as: cur-

rent, voltage and temperature. Current sensor to measure the current of the battery pack,

voltage sensor to measure the voltage of the cells connected in series, temperature sensors

to measure the temperature of the cells, the ambient temperature, and if liquid cooling is

installed, also the temperature of the liquid at the inlet and outlet of the pack.

Digital sensors such as sensors for power relay status, equalization status, or charging

status. It is necessary to measure the voltage of each element connected in series, while

for current, unless there are more modules connected in parallel, only one measurement is

needed. For the temperature measurement there are more methodologies that are currently

adopted, the most widely used is the spot measurement, which consists of measuring the

temperature in particular areas of the battery pack, typically the most critical ones. In these

years it is being developed a project within the LEMAD laboratory, in which the tempera-

ture is measured in each element, which constitutes the battery pack, and is measured the
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Figure 1.15: LiBER BMS, Multiple modules battery pack configuration

temperature on both poles.

Depending on the measured quantity, the sampling frequency is different so as not to

over-sample variables that vary at a low frequency such as temperature, leading to a waste

of BMS resources. Voltage and current are sampled with high frequencies, in range of

kHz, while temperature can be sampled with frequencies in range of Hz.

The accuracy of the voltage measurement must be as high as possible, typically around

mV, which is achieved with the use of low-cost sensors available on the market. The

temperature measurement is easy, and a high accuracy is not always a requirement: typical

value is around 1◦C. The current measurement is more complicated, for BEV applications,

where the current is more than hundreds of Amperes, the task is more difficult, and hall

effect sensors are used. Sometimes more than one current sensor can be used at the same

time, with different full scales so it is possible to decide which one to use depending on

the current value.

The BMS can have digital or PWM output: digital type, such as the command to close

or open the power relay, or the equalization control, while the PWM outputs, can be used

for thermal management to heat or cool the battery, or to give visual indications to the

user, such as charging indication.

Usually, the BMS is also equipped with a real time clock.
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1.3.3 BMS Functionality

Battery Protection

The protection functions are used to ensure that the limits provided by the manufacturer

are respected. The limits provided by the manufacturer specify a work area within which

the battery must work, it is defined as Safety Operation Area (SOA). The BMS therefore

compares the values set with those measured, and if the SOA is exited, the BMS must

warn the user to re-enter the safety zone. Typically, CAN-Bus protocol is the used protocol

between the BMS and the battery user.

State estimation

This includes State of Charge (SOC) or Depth of Discharge (DOD), State of Health (SOH),

etc.. For the definition of these state indicators, refer to chapter 1.5.

Battery Control Charge

The battery charger controller is the part of the BMS software in charge to manage the

charging phase, this process is very delicate and allows to optimize the charging process.

The most common method is called Constant Current Constant Voltage (CC-CV) shown

in Fig. 1.16, which allows to reduce recharge times, remaining within the SOA. This

charging process is divided into two areas, the first at constant current, in which the voltage

of the pack increases, while in the second at constant voltage, the current is decreased to

keep the voltage constant so as not to exceed the battery limit values.

Battery Equalization

Since the cells are not all identical, there can be differences that cause different voltages

during use.

This phenomenon leads to a non-optimal use of the battery. In the charging phase, the

cell with the higher voltage will stop charging, and consequently the battery can no longer

store the maximum energy. In the discharge phase, the cell with the lower voltage causes
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Figure 1.16: Typical charging curve

the interruption of the discharge, and consequently all the energy stored inside the battery

cannot be used.

To bring the cells back to the same voltage the battery must be equalized. There are

two different categories of equalization, active and passive equalization.

Passive equalization, Fig. 1.17(a) consists in discharging the most charged cell, through

an external circuit, on a resistance. The discharge will be faster the lower the resistance

value will be. This type is the most used thanks to its simplicity of integration, however it

is a process that wastes energy in the battery.

Active equalization, Fig. 1.17(b) on the other hand, allows energy to be transferred

from the most charged cells to the most discharged cells, so there is no energy loss. How-

ever, this type is the one that presents a greater complexity, and consequently is rarely

used. Passive equalization, by its nature is activated only during the charging process. The

BMS activates the equalization command, going to close a switch to insert in parallel to the

cell the equalization resistance Req. The equalization resistor cannot be as low as desired

because the currents that would be flowing would grow enormously, and consequently the

power to be dissipated, would be too high.
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(a) Passive equalization scheme (b) Active equalization scheme

Figure 1.17: Comparison between active and passive equalization strategy

On-board diagnostics (OBD)

According to Wikipedia [9], On-board diagnostics (OBD) is an automotive term that refers

to the self-diagnostic and reporting capability of a vehicle. OBD systems give the vehicle

owner or repair technician access to the status of various vehicle subsystems. Modern

OBD implementations use a standardized digital communication port to provide real-time

data in addition to a standardized set of diagnostic trouble codes, or DTCs, that allow a

person to quickly identify and remedy vehicle malfunctions. Some of the faults that can

affect batteries are: sensor faults, grid fault, overvoltage (overload), undervoltage (overdis-

charge), overcurrent in charge or discharge direction, high temperature, low temperature,

insulation fault.
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1.4 Battery model description

Nowadays, lithium-ion batteries are widely used, for example in mobile devices such as

smartphones and smartwatches, but also in traction applications where electric cars are

becoming popular.

In the process of designing a battery-powered system, it is critical to use a model

that can simulate behavior of the battery with high accuracy. The models can be used

for several purposes such as battery characterization and comparisons, state of charge

estimation and health conditions, optimization, and design of BMS. For these reasons and

many more, there is not just one method of modeling a battery but many, so you can choose

the best method each time as needed.

In literature it is possible to find three main model typologies, the electrochemical

model, the equivalent circuit model and the Data driven or empirical model.

in any case the accuracy of the model is strongly influenced by the quality of the tests

used for the realization of the model.

The Electrochemical It is called electrochemical model because it considers electro-

chemical kinetics and the charge transfer process, and therefore describes the inner reac-

tions inside the battery. Electrochemical models are based on a number of physical laws,

such as the coupling of conservation of mass, charge, and energy, as well as electrochem-

ical kinetics [29]. The models are composed of nonlinear Partial Differential Equations

(PDEs), and can only be solved by numerical methods such as the integral approxima-

tion, the Pade approximation, the Ritz method, the finite element method, and the finite

difference method [25]. Due to the complexity of these models and the deep chemical

representation, these models cannot be generalized.

Regarding the cylindrical cell it is possible to consider another method to modelized

the behavior. It’s possible to simplify the model going from 3D to 2d model under two

assumptions: first, insulated conditions for the energy flux are prescribed at the top and

bottom surface of the battery, and second as a first approximation, it is assumed that the

air temperature is constant around the battery, whence the temperature difference [60].
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Equivalent circuit model (ECM) It is called equivalent circuit model because repre-

sents the behavior of the cell through electric equivalent circuit components such as re-

sistance and capacitance, [30, 64, 67]. It is therefore not related to the electrochemical

processes that take place inside the cell.

The advantage of these models is that since they consist of circuit components, it is

possible to treat the battery as an electrical circuit and therefore use all the tools applicable

to circuits. Using this approach is also possible to represent the thermal behavior of the

battery. This model allows to represent with a good approximation the behavior of the

cell. Compared to other methods it shows a lower accuracy in describing the phenomena,

because it is not based on the physics of the process, on the other hand it has a lower

computational cost.

Data Driven It is called data drive because is based on big data. Completely independent

of the phenomena happening in the battery and based on available data. These models can

improve their accuracy in real time. On the other hand, the amount of data needed to

develop an accurate model is high, and therefore the main problem is the poor amount

of data. It is possible therefore to combine the use of the ECM with the Data Driven

method, to generate the artificial data to train the neural network in case the number of

tests available turns out insufficient.

In this chapter the equivalent electrical models will be proposed, starting from the sim-

plest to the most complex ones. To build a model needs starting from the observation of

phenomena and describing them using equivalent electrical elements. it is possible to add

complexity depending on the error you wish to obtain. The error can be reduced at will,

until the results do not meet expectations. Battery equivalent models have been studied

especially for the purpose of vehicle power management control and battery management

system development [48]. Several models have been introduced in literature, but the most

common ones will be highlighted. All the models’ equations are presented in both contin-

uous and discrete time.

25



State of The Art

1.4.1 Open Circuit Voltage model

Figure 1.18: Open circuit model

The fundamental behavior of the battery is the open

circuit voltage, in fact if you measure the voltage of

a cell this value is different from zero. The model

use an ideal voltage generator Fig. 1.18, to represent

the open circuit voltage phenomena. Obviously this

model is static and does not consider current depen-

dence, but it is a good starting point.

v(t) = E0 (1.1)

1.4.2 State of Charge dependence

The open-circuit voltage of a charged and an empty battery are different. It is possible to

improve to the model to consider this phenomenon. To do this, it is necessary to introduce

the concept of SOC for a battery. It is defined that SOC 1 or 100% is equivalent to fully

charged, and SOC 0 or 0% is equivalent to fully discharged.

The state of charge (1.2) represents the capacity still present in the battery, as a per-

centage of the total charge, this value is also called nominal capacity Cnom. The SOC

equation is based on the generator convention, where the current supply by the battery is

considered positive, while the current flowing in the battery is negative.

SOC(t) = SOC(t0)−
∫ t

t0

iB(t)
Cnom

dt (1.2)

The SOC equation can be written also in discrete time domain, in this domain the

sampling time is defined as ∆t, that is the time lapse to measure. Using this definition

t0 = k∆t and t = (k+1)∆t. The equation (1.2) becomes (1.3), and the DODk = 1−SOCk.

SOCk+1 = SOCk−
iBk×∆t

Cnom
(1.3)

Back to the model, different battery chemistries present different open circuit voltage

as function of the SOC, in Fig. 1.19 is possible to see a comparison between five different
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Figure 1.19: Different chemistry OCV comparison

type of battery chemistry.

1.4.3 Equivalent Series resistance

Figure 1.20: ESR model

Until now the model is not function of the load, but in

the real battery there is a voltage drop, when the current

starts flowing form the battery, below the open-circuit

voltage, and the terminal voltage rises above the open-

circuit voltage when the battery is being charged. To

represent this phenomena the equivalent series resistance

model (ESR) is introduced, consisting of a voltage gen-

erator with a resistance in series Fig. 1.20. In literature it is possible to find this model also

under the name of Thevenin’s model, this because it refers to the Thevenin’s equivalent

circuit.

The voltage at the poles of the battery vB can be written as a function of SOC and iB,

in the eq. (1.4).

VB(t) = OCV (SOC)−R0(SOC)× iB(t) (1.4)

By introducing a resistor in the battery model, the concept of Joule losses is auto-
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matically introduced. These losses in fact represent the heat that is generated inside the

battery.

Ploss(t) = R0× i2B(t) (1.5)

All the equations written before can be rewritten in discrete time, so the equation (1.4)

and (1.5), and the state of charge (1.2) become.

VBk = OCV (SOC)−R0(SOC)× iBk (1.6)

Plossk = R0× i2Bk
(1.7)

SOCk+1 = SOCk−
iBk×∆t

Cnom
(1.8)

1.4.4 Single polarization model

Until now the battery voltage is not directly affected by the battery history, it is only

partially affected if one considers the dependence of the open circuit voltage on the SOC.

But when analyzing the real battery behavior, it is possible to realize that the voltage is

a function of the past, in fact if the current is 0 the voltage presents a transient until the

open circuit voltage is reached. By analyzing the electrochemical behavior it’s possible

to associate this effect to the diffusion voltage. To model this aspect a resistance R1 that

model the charge transfer and the double layer capacitance C1, then the circuit becomes

Fig. 1.21.

Figure 1.21: Single polarization model

the equation that describes the circuit can be

written as follow:

VB(t) = OCV (SOC)−R0(SOC)× iB(t)−V1(t)

(1.9)

dV1(t)
dt

=
iB(t)
C1
− V1(t)

τ1
(1.10)

Where τ1 = R1×C1. By introducing a com-

ponent with memory, the system is no longer
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Figure 1.23: LiFePo4 hysteresis characteristic

linear but must be described by differential equations. A possible solution of this circuit

can be found by solving the differential equation, after knowing the initial conditions.

V1(t) =V1(t0)× (e−(t/τ1))+R1× iB(t)× (1− e−(t/τ1)) (1.11)

The power losses for this model can be easily calculated as Ploss = R0× i2B +
V 2

1
R1

.

The solution of the differential equation (1.11) can be rewritten in discrete form as

follow:

V1k+1 =V1k× (e−(∆t/τ1))+R1× iBk× (1− e−(∆t/τ1)) (1.12)

1.4.5 Hysteresis voltage

Figure 1.22: LiFePo4 hysteresis model

For some battery types such as lifepo4, [52] the

OVC− SOC characteristic is flat, so to model

it, a very accurate measurements must be done.

Another fundamental aspect that should also be

considered is the hysteresis effect on the open

circuit voltage, in fact the open circuit voltage

is not only a function of the state of charge, but

also the direction of the current.

The OCV obtained during a pulsed discharge is different from OCV obtained from a
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pulsed recharge test. Furthermore, if the discharges are not complete, minor loops are

obtained. The minor loops curves are “attracted” towards the bounds set by the major

discharge/charge loop, but the attraction is completed only after a sort of “delay” in charge,

after which the OCV values are almost indistinguishable from experiment to experiment.

In other words, the upper and lower bounds are reached only with a “charge delay” after

the point in which the charge or discharge process is inverted. The way to model this

phenomenon is the same as that used to model the OCV − SOC relationship, namely by

means of an equation of state.

Vb(t) = OCV (SOC)+VH−R0(SOC)× iB(t)−V1(t) (1.13)

1.4.6 Firs-order RC model

Figure 1.24: First-order RC model

A model widely used in the literature [58, 27],

is the first-order RC model, or even where it is

necessary to model the hysteresis in the OCV ,

the firs-order RC model with one state hystere-

sis. these models are accurate and have a re-

duced degree of complexity. For these mod-

els the resistance is a function of the current,

to model this behavior two ideal diodes are in-

serted (voltage drop equal to 0) to allow the current to flow only in one direction. These

two values of internal resistance must be modeled individually, making a pulsed discharge

for the parameter R0dsch a pulsed recharge for the parameter R0chg .

Vb(t) = OCV (SOC)−R0(SOC, iB)× iB(t)−V1(t) (1.14)

1.4.7 Dual polarization model

Going deeper into the chemical behavior of the cell it is possible to find that there are two

phenomena that influence the voltage trend at its poles.
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Figure 1.25: Dual polarization model

It is possible to identify the contribution due

to the migration voltage, caused by the rapid

discharge of the double layer capacitance when

the ions move away from the electrode surface,

and the diffusion voltage caused by the circula-

tion of the redistribution of the ions inside the

electrolyte.

Therefore, it is logical to imagine an equivalent model that has two-time constants

representing these two phenomena. So was born the model called dual polarization, shown

in Fig. 1.25.

The equation for this circuit is very similar to that seen for the single polarization

model with the only difference that an additional differential equation is added, due to the

presence of two-time constants.

Vb(t) = OCV (SOC)−R0(SOC)× iB(t)−V1(t)−V2(t) (1.15)

dV1(t)
dt

=
iB(t)
C1
− V1(t)

τ1
(1.16)

dV2(t)
dt

=
iB(t)
C2
− V2(t)

τ2
(1.17)

Where τ1 = R1×C1, and τ2 = R2×C2. The accuracy that can be achieved with this

circuit is very high, however this circuit is less used than others because the complexity of

the system is high too.

All the equation written before can be rewritten in discrete time, so the equation be-

comes.

VBk = OCV (SOC)−R0(SOC)× iBk−V1k+1−V2k+1 (1.18)

V1k+1−V1k

∆t
=

iBk

C1
−

V1k

τ1
(1.19)

V2k+1−V2k

∆t
=

iBk

C2
−

V2k

τ2
(1.20)
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1.5 Battery state

A battery is a very complex system in which chemical reactions, voltage and current,

and heat coexist. Consequently, the battery management system must be able to monitor

all the phenomena that occur in a battery. An advanced BMS system must not only be

able to monitor the fundamental parameters but must also give indications on the state

of the battery. For this reason, multiple battery status indicators have been defined in

the literature. Fig. 1.26 shows the possible states that can be used. They are: State of

Charge (SOC),State of Energy (SOE), State of Health (SOH), State of Power (SOP),State

of Temperature (SOT ), and State of Safety (SOS).

Some of these such as SOC, SOE, SOP change very rapidly over time, and must be

calculated very quickly while others such as the SOH, vary slowly over time. This chapter

will analyze in detail the various definitions of these parameters that can be found in the

literature.

Figure 1.26: Battery state and model architecture [18]

1.5.1 State of Charge

The state of charge represents the residual capacity for a given battery, it is usually ex-

pressed as a percentage. It is possible to make an analogy with a car tank, the SOC repre-

sents how much fuel is still present in the tank compared to how much fuel can be in all the
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tank. Is the first indicator that is considered and implemented, the meaning is intuitively

recognized. In any electronic device powered by batteries, there is always an indication

of the SOC, its precision depending on the application, sometimes it is indicated by LEDs

that turn off as the SOC decreases. Other times the battery voltage is indicated, which in a

very approximate way gives information about the SOC.

The most used definition is the ratio between the available capacity and the nominal

capacity of the battery expressed as a percentage. The battery is considered as a generator,

the positive current is delivered from the battery while it is negative when recharging the

battery.

It is possible to write this definition, in form of equation as:

SOC(t) = SOC(t0)−
∫ t

t0

iB
Cnom

dt (1.21)

Where SOC(t), SOC(t0) represent the SOC at the time t and at initial time t0 respec-

tively. To calculate the SOC an integration of the current is made, for this reason if there

are errors in the current measurement there is an integration of the error too, for this reason

the current measurement must be very precise. In some applications, such as BEVs, where

currents have a very large range, two sensors with different ranges can be used, to have a

good accuracy for both low and high current values.

Besides, from the perspective of battery electrochemistry, SOC refers to the charge

contained in both anode and cathode electrode particles. Specifically, the SOC variation

reflects the distribution of lithium concentration in the electrode particles. Because the

amount of available charge is highly dependent on the amount of lithium stored in the

electrodes, SOC can be directly calculated in terms of mean lithium concentration C̄s [18].

SOC(t) =
C̄s(t)−Cs,min

Cs,max−Cs,min
(1.22)

where Cs,max and Cs,min represent the surface lithium-ion concentration when the battery

is fully charged and fully discharged. However, this method is not very practical, and it is

very complicated to use in real applications, so when refers to the SOC, is always used the

first definition.

Another indicator for the SOC it’s called Depth of Discharge (DOD), which indicates
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how much the battery has been discharged compared to the maximum charge. It is the

complementary of the SOC.

DOD = 1−SOC (1.23)

It’s always possible to complicate the SOC model, adding non-idealises to take into

account various aspects. The first that is introduced is related to the non-ideality of the

chemical reactions, which is called Coulombic efficiency [46]. Coulombic efficiency ηC

in a typical lithium-ion cell is around 99 % or higher and is equal to Qdischarge/Qcharge.

Qdsc

Qchg
×100 =

ηcchg

ηcdsc

, ηC (1.24)

By definition is considered the discharge efficiency ηcdsc = 1 and the charge efficiency

ηcchg < 1

Figure 1.27: Battery state model

Can be calculated as ratio between the capacity

[Ah] provided to the accumulator during a charge and

the capacity drained from it during the “adjacent” dis-

charge. To correctly model the charge state, the self-

recharge phenomenon must be considered, i.e., after

long periods of inactivity of the battery, the SOC is

lower than when it was left. This phenomenon a self

discharge resistance is defined RS.

Another aspect to consider is related to the loss of

capacity due to aging, for this reason the normalization should not be done for the nominal

capacity but for the residual capacity. Referring to a fuel tank, it is as if the tank of the car

reduces its volume over the years, and therefore can hold less fuel.

In Fig. 1.27 is shown the equivalent electric model representing the charge state

SOC(t) = SOC(t0)−
∫ t

t0

ηciB +
OCV (SOC)

Rs

Cres(SOH)
dt (1.25)
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1.5.2 State of Energy

Most battery chemistries characterize a pronounced voltage decline during the discharge

process, an equal charge throughput at different SOC levels provides discrepant energy

amounts, especially when approaching both end regions of voltage as shown in Fig. 1.28.

High discharge rates may lead to significant internal energy losses in comparison to negli-

gible capacity shrinks.

The generic index of SOC can only represent the residual capacity in therms of Amper

hour rather than the available energetic reserve in watt hour. Therefore, in some appli-

cations it could be convenient to provide the SOE instead of the generic SOC index that

represents only the residual capacity [Ah], which gives information about the residual

energy [Wh].

(a) OCV for NMC cell (b) OCV for LFP cell

Figure 1.28: State of energy comparison between two different chemistries

SOE(t) = SOE(t0)−
∫ t

t0

ηePB

Enom
dt (1.26)

Where SOE(t), SOE(t0) represent the SOE at the time t and at initial time t0 respectively.

PB is the battery power calculated as vB× iB. As with the SOC, current integration is

performed, so the measurement must have a high accuracy. Energy efficiency ηe is closer

to 95 % and is equal to Edischarge/Echarge. Energy is lost in resistive heating on both charge

and discharge.
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In Fig. 1.28 it is possible to see how different chemistries present more or less marked

differences between SOE and SOC. For example for cells at LFP, with the same ∆SOC =

10% E1 ≈ E2, while for the NMC cell the E2 >> E1. This means that for the NMC when

the battery is discharged at low SOC value, the energy available will be much lower than

when the battery is charged, at the same ∆SOC.

Edischarge

Echarge
×100 =

ηechg

ηedsc
, ηe (1.27)

By definition the discharge efficiency is considered ηedsc = 1 and the charge efficiency

ηechg < 1

The energy available in a battery is related to many factors, and not all the stored

energy is usable. In fact, it possible to identify two different contributions that reduce the

available energy. The first contribution is related to losses, while the second contribution

is the energy that is not usable, due to the internal voltage drop. All the energy stored in

the cell is easily calculated as:

∫
(OCV )dAh (1.28)

while the energy delivered net of losses is:∫
(VB)dAh (1.29)

the difference between these two curves represents the battery losses∫
(OCV − vB)dAh (1.30)

The unreachable energy is caused by the internal voltage drop, which causes the end

of discharge, due to reaching the cut-off voltage before the cell is discharged. For these

two reasons on the market there are two types of cells, the high energy Fig. 1.29(a) and

the High power Fig. 1.29(b). The first has a higher energy density, while the second has

a lower internal resistance. For applications where the currents involved are low < 2C, it

may make sense to focus more on the installed energy density such as BEVs. While in

applications where the current delivered is high > 2C it is preferable to penalize the energy

in favor of a reduction of losses and a greater use of energy, for example HEV.
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(a) Energy on High Energy Cell (b) Energy on High Power Cell

Figure 1.29: Energy efficiency comparison between two different cell chemistries

In Fig. 1.29 it is possible to see a comparison between two cells, the first with a

nominal energy of 18 Wh and the second with a nominal energy of 15.1 Wh. The figure

shows a comparison made with the same C-rate, the losses for the High energy cell are

almost 3 times greater, and the energy not reachable is twice as high. Overall then the cells

can deliver almost the same energy.

1.5.3 State of Health

Electrochemical batteries inevitably experience gradual performance degradation during

their service life, owing to side reactions. This leads to the so-called aging phenomenon

that causes losses of lithium inventory and active materials [18].

currently there are two ways to represent in a mathematical way the battery ageing

[23], the first one is related to the capacity fade and the second one is related to the internal

resistance [62, 23].

SOH(t) =
Cres

Crated
×100 (1.31)

SOH(t) =
Ract−Rnew

Rnew
×100 (1.32)

Where the Cres and Crated denote the residual and rated capacity values, respectively

and Ract and Rnew denote the actual and the new internal resistance respectively.

Usually a capacity fade of 20% is considered as End-of-Life (EOL). As far as the
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internal resistance is concerned, currently there is not only one way to define the EOL, but

this parameter depends also on the application in which the battery is being used. Some

authors propose an increment of 33% but commonly it is considered end-of-life when the

internal resistance becomes twice the initial value [17, 18].

Unlike the state of charge, at the moment there aren’t sensors that can that can measure

the state of health, given the complexity in defining the problem and because it is not

represented by a measurable quantity.

1.5.4 State of Power

The Power status (SOP) is another key parameter that the BMS must be able to provide,

commonly referred to as the availability of power that the battery is capable of deliver-

ing The prediction of the maximum power that the battery can supply in discharging or

charging phase is a challenging tasks of battery management systems. In large lithium-ion

battery packs due to many factors, such as temperature distribution, cell-to-cell deviations

regarding the actual battery impedance or capacity either in initial or aged state, the use of

efficient and reliable methods for battery state estimation is required.

The power state can be seen as the product between the actual voltage, and maximum

positive or negative current for discharge or charge phase. Mathematically it can be de-

scribed as (1.33).

SOPcharge = min(|Pcharge
max |, |v× icharge

max |)

SOPdischarge = min(Pdischarge
max ,v× idischarge

max ) (1.33)

The power that the battery can deliver is a function of the state of charge, in fact if

the battery is charged (SOC high) the charging current will be limited due to the voltage,

similarly if the battery is discharged (SOC low) the discharge current will be limited by the

voltage. In Fig. 1.30 it is possible to see the trend of voltage and current in four different

conditions. [37]

• Fig. 1.30(a) applying constant charge current (Icharge < Imax) while battery voltage

is the limiting factor (high SOC);
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Figure 1.30: Illustration of four cases for limiting available battery power in charging or

discharging conditions

• Fig. 1.30(b) applying constant charge current (Icharge = Imax) while current is the

limiting factor;

• Fig. 1.30(c) applying constant discharge current (Idischarge > Imin) while battery

voltage is the limiting factor (low SOC);

• Fig. 1.30(d) applying constant discharge current (Idischarge = Imin) while current

is the limiting factor.

The temperature is a crucial aspect to consider when talking about power output, since the

battery works on the basis of electrochemical reactions, at lower temperatures they occur

more slowly and for this reason at lower temperatures the performance is lower.

The power that can be delivered by the battery is conditioned by the state of charge.

Consequently, the regeneration phase will not be allowed when the cell is fully charged,

and the traction phase will be limited when the cell is discharged. Due to thermal prob-

lems, aging also causes variations in the power output. In fact the more the SOH decreases

the more the internal resistance increases and consequently also the losses that it generates,
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Figure 1.31: Power capability for a LFP lithium ion battery, in charge and discharge con-

ditions vs temperature

Figure 1.32: Power capability for a LTO lithium ion battery pack in BEV, in charge and

discharge in different ageing conditions
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and therefore the cooling system is no longer able to dissipate the heat. For this reason,

as the battery ages, the power that it can deliver decreases, Fig. 1.32 shows an example of

power derating for an LTO cell for BEV application.

1.5.5 State of Temperature

Thermal dynamics of a battery are manifested macroscopically by temperature distribu-

tion, which arises from heat generation and dissipation inside a battery cell during normal

operations. The heat dissipation is composed of heat conduction, convection, and radia-

tion, the temperature distribution can be represented by Fourier equation.

ρCp
dT
dt

= Q̇+hA(T∞−T ) (1.34)

where ρ , Cp, h are the density and specific heat capacity and heat convective coeffi-

cient, T∞,T are ambient temperature and cell temperature, A is the surface area, and Q is

the total heat generation rate. For batteries composed of many cells there are often large

thermal gradients, and the determination of temperature on each element is very complex

and requires three-dimensional models that need a lot of computational power.

For instance, the thermal dynamics of a battery are represented by its bulk temperature

in a lumped-mass model.

CsṪs = Q̇+
Ts−Tc

Rc
(1.35)

Fourier equation can be represented using an equivalent electrical circuit, where ca-

pacitors and resistors are used as thermal storage and heat transfer, respectively. while a

current generator is used to represent the heat source. To represent the thermal behavior

of a battery, several equivalent electrical circuits can be chosen, with various levels of

complexity [65]. Considering only the effect of heat transferred from the radial surface

the simpler model shown by Fig. 1.33(b) can be used, while to represent also the heat re-

moved from the poles the more complex model of Fig. 1.33(a) should be used. Regarding

the heat transfer the three modes coexist (conduction, convection, and radiation) so they

can be represented with different resistances in parallel.
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(a) (b)

Figure 1.33: Lumped models (a) complete model and (b) radial model [65]

1.5.6 State of Safety

The state of safety represents how safe a battery is, and is represented with a number

ranging from 0 to 1, where 0 means not safe at all, while 1 means safe[18]. Currently, it is

not yet unambiguously defined how to define SOS, so there are multiple ways to indicate

the safety of a battery. The most common way is based on the concept of hazard risk, the

lower the risk the safer the battery is. The hazard risk was defined as product of the hazard

severity times the likelihood.

Hr = Hs×Hl (1.36)

Another way to define the SOS can be as the reciprocal of a probability function for

possible abuses, including voltage, temperature, charging and discharging currents, inter-

nal impedance, battery expansion, and battery deformation.

fSOS(x) =
1

fabuse(x)
(1.37)

where the fSOS(x) and fabuse(x) are the safety functions and the abuse functions respec-
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tively, and x is the state of the system in terms of Voltage, Current, Temperature etc.

It is possible to define a safety operation area (SOA) inside which the battery can

operate with a very low risk. The zone is identified by voltage and temperature. In Fig.

1.34 is shown an example, and it shows which are the hazard risks based on the point

outside the SOA [55].

SOS is influenced by multiple factors,

• Temperature: If surface or internal temperature exceed an upper value, the SEI

layer and the active material will start decomposing, resulting in exothermic reac-

tions and possibility of thermal runaway;

• Current: Is associated with Joule heat generation, that causes the battery to overheat

triggering thermal issues;

• Voltage: Over-voltage results in decomposition of the positive electrode and the

electrolyte. Under-voltage results on a dissolution of the copper current collector;

• State of charge: The higher the energy that could be released as heat or fire during

a catastrophic event, the higher the hazard severity in case of event;

• State of health: An aged battery may already contain damage on the electrodes, the

separator;

• Internal impedance: A larger impedance in the negative electrode typically indi-

cates growth of the SEI layer;

• Mechanical: Deformation of the battery with respect to the initial dimensions. due

to aging or gas formation.
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Figure 1.34: Safety operation area for lithium ion battery [55]
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1.6 State Estimation Methods

Battery state estimation is a challenging task for the BMS, moreover an accurate estima-

tion can ensure the safe and reliable operation of the battery. The battery state cannot be

directly obtained from measurable variables such as voltage and current, but it is also re-

lated to other factors such as operating conditions and usage time. In this chapter the main

techniques that are used for SOC and SOH estimation will be presented and some of them

will be analyzed for online estimation. The literature review presented here is mostly char-

acterized by an explanation and comparison of the strengths and weaknesses of different

online state estimation applications for applications such as PHEVs and BEVs.

Even if the requirements are the same, monitoring algorithms can be designed with

different tasks, which are shown in Fig. 1.35. In fact, in the Battery Management System

(BMS) several monitor algorithms are co-working since they must estimate different vari-

ables and states. Some of them might be necessarily checked online in real time, while

others might be offline and checked less often.

Moreover, in PHEVs and BEVs issues related to safety, usage and performance are

becoming more and more important. Therefore, a system able to monitor and to act against

them is needed. When an abnormal condition is detected by the measurement sensors,

battery management system (BMS) must be notified to execute preventive actions.

Figure 1.35: State estimation task subdivision
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1.6.1 State of Charge

As seen before the state of charge is defined as the remaining capacity of a battery. A

correct estimation of the SOC plays a fundamental role in the energy management of a

vehicle, as an incorrect incorrect estimation of the SOC could lead to under-discharge or

over-discharge phenomena, which in the long run lead to a greater deterioration of the

battery, and therefore to a decrease of its useful life.

Therefore, it is quite difficult to accurately estimate the SOC as it is a hidden state. The

battery SOC estimation methods could be divided into three categories and are presented

in Fig. 1.36.

Figure 1.36: SOC estimation methods

Direct calculation approach

This category is made up of those methods that are based on the use of data and parameter

characteristics that have been obtained offline and then through the calculation of these

parameters online can be traced back to the state of charge. The application of this method

is strongly influenced by the stability of the relationship between the parameters and the
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SOC.

The most common of these methods, is based on the definition of state of charge, is

limited to integrate the current in time, going to normalize this value for the capacity of

the battery at that time. Although this is the most common method, it carries out some

critical issues. Even though the ampere-hour integral method is classical and widely used

method for SOC estimation, it has the following three major defects.

• The method requires accurate current measurement. However, the accuracy is usu-

ally affected by noise, temperature drift;

• In integral calculation, the random noise is accumulated;

• The deterioration of the battery affects the SOC estimation accuracy due to the ca-

pacity reduction.

For each type of battery and therefore of chemistry the OCV − SOC relationship is

well known and fixed, and for this reason the state of charge can be obtained directly from

the open circuit voltage. Typically, this method is used in combination with Coulomb

Counting to compensate to current integration error. This procedure is not always trivial:

• For some chemistry such as "LFP" or "LTO" the OCV −SOC curve is very flat and

therefore it is necessary to measure the voltage very precisely;

• The method requires accurate voltage measurement. However the accuracy can be

affected by voltage drops on electrical connections and also due to the residual in-

ductance;

• It cannot be used alone due to the electrical transients, so the open circuit voltage

measurement can be done only after a long inactivity period.

The remaining capacity can be obtained in test experiment through a constant current

discharge; however, it is difficult to determine the available capacity with this specific test

during actual driving.

The method based on the spectroscopy, to measure the electrochemical impedance

needs a very complex methodology to obtain a map between SOC and parameters in func-

tion of frequency, therefore it is difficult to get online the impedance values.
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Model based

Figure 1.37: Filter-based algo-

rithm flowchart

This method is based on using an equivalent model to

determine the state of charge. Therefore, the key point

of this method is to build an accurate and reliable model.

The ECM based, is the easiest to implement and the one

that requires the least computational effort; however, the

parameters are affected by many external factors such

as SOC temperature and SOH. The methods based on

the filters, such as Kalman Filter (KF) [49, 51] are based

on the execution in sequence of the steps shown in the

flowchart of Fig. 1.37

1. Based on the previous state and the input value,

the current state is estimated;

2. With the current state and input value, through the

use of the model, the output is estimated;

3. By measuring the actual output and comparing it

with the estimated one, the difference can be ob-

tained;

4. The current state can be estimated again using gain

to compensate for the error.

Data driven

Is based on the availability of a large amount of data, which is used to train a model,

through a process called training. Once the model has been trained, it is tested with a

portion of the data that was not used in the first phase. In this way the accuracy of the

model is verified and the last phase consists in testing the model in a new situation not

present in the initial dataset. If the model not reach the expected accuracy the whole

process is repeated.
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1.6.2 State of Health

The definition of SOH is based on the residual capacitance or internal resistance, which

indicate the energy capacity and power capacity, respectively. SOH estimation methods

can be grouped into three categories: direct calculation approach, model-based methods

and data driven. A schematic representation of most of the possible method to estimate

the state of health is shown in Fig. 1.38.

Figure 1.38: SOH estimation methods

Direct calculation approach

The most used method to evaluate the age of a specific battery is based on a simple counter

that considers the number of cycles that the battery does in its life. This method is the

easiest to implement, however it has a very low accuracy compared to the other methods,

as it does not take into account the type and conditions of use.

Capacity and energy testing is based on an estimate of the remaining capacity or en-

ergy: for example, by monitoring the remaining capacity it is possible to estimate the

remaining life of the battery

Physics-based models use partial differential equations to describe the dynamics of

chemical reactions. These models are very accurate, and can be used to estimate collateral

reactions, through which battery aging can be assessed.
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Model based method

Model-based methods can in turn be divided into two main categories: indirect analysis

and adaptive algorithms.

The indirect analysis is divided into two steps, it does not directly calculate the internal

capacitance or resistance but goes back to the SOH by measuring some parameters that

are affected by the change in internal resistance or capacitance.

The incremental capacitance (IC) or differential voltage (DV) curve method analyzes

the battery aging process using the IC curve and the DV curve. The IC and DV curves

can be obtained from constant current charge-discharge data. The IC curve describes the

relationship between dQ/dV and voltage. DV curve describes the relationship between

dV/dQ and Q [17]. Recently, incremental capacity analysis (IC) emerges as an effective

tool for SOH estimation.

Based on ECM, the adaptive algorithms generally identify the model parameters to es-

timate the SOH. These methods are based on closed-loop control or feedback loop, which

can adaptively estimate the state based on voltage measurement. Adaptive algorithms

include joint estimation method and co-estimation method.

The joint estimation method estimates the model parameters and SOC simultaneously,

for which two or more filters/observers are used. The model parameters to be identified

mainly include internal resistance or impedance As the battery SOC is closely related to

its capacity, the battery capacity can be determined after the relatively accurate SOC value

is obtained.

The co-estimation method realizes the simultaneous online estimation of model pa-

rameters and SOC. Compared to the joint estimation method, the capacity is listed as an

additional item of model parameters.

Data-driven

Empirical models are based on the collection of experimental data, to understand the per-

formance of the battery under operating conditions. They typically have a high compu-

tational efficiency, and have a good accuracy, if the operating conditions are like the test
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conditions. However, obtaining the empirical models requires numerous aging tests that

are often time consuming and lab intensive.

Another approach is based on the use of optimization algorithms, which allow to de-

termine the global minimum of a given problem. It is possible, to apply these types of

algorithms to determine the SOH of a given battery by approaching the problem as if it

were an optimization problem.

Also, for SOH, data-driven methods such as artificial neural networks are processed

due to their model-free features. Specialized battery tests in which SOH change are re-

quired and must be conducted to train the model. incorporating all SOH influencing factors

are first conducted. However, the cons of these methods are always the small amount of

data available, and the derived model is also often computationally heavy.
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2.1 Test Equipment

A test platform has been developed for battery testing. The test platform can perform

tests on single cells and low-voltage battery packs with a maximum voltage of 60 V and a

maximum power of ± 20 kW. Through the experimental tests, and through the processing

of collected data, it is possible to obtain the parameters necessary for the battery modeling

or to perform comparative tests between batteries of different manufacturers.

The main requirements for the test bench are:

• capability to either charge and discharge the storage system under test;

• capability to control the test temperature;

• capability to measure and store several quantities (voltages, current and some tem-

peratures) and store all the data for post-processing.

An additional aspect to be considered is related to the duration of the test, which may

last from a couple of hours up to tens days or even months for aging tests, and therefore

it is necessary to create an autonomous system that runs on a real-time basis. The test

bench has been equipped with a PC that allows, through an user interface, to visualize the

progress of the test and the measured quantities.

The scheme of the hardware architecture of the test bench is shown in the Fig. 2.1.

The Tab. 2.1 shows all the specifications of the components used. The image of the test

bench is shown in Fig. 2.9
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Figure 2.1: Test bench hardware scheme

Table 2.1: Test banach equipment specifications

Power Supply TDK-Lambda GEN60-40

Electronic Load BK Precision 8514

Wattmeter Yokogawa WT310EH

Cryostat Jeio Tech RW3-0525P

Controller NI cRIO-9066
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Testing battery The test bench can perform tests on individual cells or battery packs.

For single cell testing a holder is used, which allows for four-wire voltage sensing. For

battery pack tests the voltage is measured by the BMS and is transmitted to the test bench

through the CAN-Bus communication protocol.

To test the models, a prototype battery pack with an included BMS was built for the test

purpose. The battery is composed of Panasonic 18650GA cells, in 10p12S configuration.

with a current sensor and two temperature sensors, while the equalization is passive and

managed by the BMS.

(a) Cell holder (b) Battery prototype

Figure 2.2: Testing battery

Electronic Load The electronic load, shown in Fig. 2.3 is a BK PRECISION 8514.

This device is equipped with two terminals to which the power source is connected, which

in this case is the battery to test. This device allows to simulate different discharge profile

from the battery and is capable to drain programmable currents values, which can be set

either through the keys or through commands sent via RS-232 protocol.

Power Supply The power supply shown in Fig. 2.4, is a TDK lambda Genesys GEN60-

40, that supplies current to the battery and allows allows to simulate the battery charger.

The charging current is sent via an Ethernet cable from the controller.

Power-meter The power-meter used is a Yokogawa WT310EH Power Analyzer, shown

in Fig. 2.5 is an instrument that allows measurement of quantities in a single phase system.
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Figure 2.3: Electronic load

Figure 2.4: Power supply

Its task in the test bench is to measure the voltage and current of the battery under test.

The power-meter guarantee that all the measurements are certified.

Figure 2.5: Power-meter

Cryostat Refrigerating & Heating Bath Circulator, shown in Fig. 2.6, is capable to

control the temperature of a fluid, which in turn is used to set the battery temperature,

in particular there are two pipes one for the outflow and one for the inflow of the liquid

and a reserve tank. A support has been created for testing cylindrical cells that is able to

maintain the cell at the desired temperature. This device, is able to heat or cool the liquid,
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and consequently it is possible to make tests both at higher and lower temperature than the

environment.

Figure 2.6: Refrigerating & heating bath circulator

Figure 2.7: Riello UPS (uninterruptible power supply)

UPS An UPS Fig. 2.8 has been added to guarantee the continuation of the tests in case

of momentary interruption of the power supply. The UPS is capable of supplying a power
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of 3 kVA at 230 V, and can communicate with the measurement system through the RS232

protocol.

Controller The CompactRIO 9066, shown in Fig. 2.8, is a platform developed by NA-

TIONAL INSTRUMENTST M that allows the easy creation of real-time control pro-

grams, which can be developed using the LABVIEWT M programming language. This

device is also equipped with an FPGA.

This device manages all the elements of the test bench and handles all the tests. The

controller is connected:

• to the switch through an Ethernet port to communicate with the power supply and

power-meter;

• to the electronic load through RS232 serial port;

• to the PC through the USB port.

The log files containing the data of the tests carried out are automatically saved in a USB

flash drive on site, so as to facilitate the management of the tests. USB flash drive on site,

in order to facilitate the use in case a PC is not available nearby once the available in the

vicinity once the tests have been completed.

Figure 2.8: CompactRIO

It is possible to enable up to four temperature sensors for each type of test. Setting a

safety temperature threshold it is possible to automatically stop the test if the temperature
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limit is reached. For each type of test there is a time limit, at the end of which the test is

interrupted regardless of whether or not the other end-of-test conditions have been reached.

The tests executable from the test bench, implemented in the software are:

• CHARGE CC/VEOC : constant current charge until the user-selected voltage is

reached. Voltage is set by the user during the configuration phase;

• CHARGE CC-CV : constant current charge until a chosen voltage value is reached,

followed by a constant voltage phase with decreasing current up to a minimum cur-

rent threshold. Both current and voltage thresholds are user-defined during configu-

ration;

• DISCHARGE CC/VEOD : Discharge at constant current until the voltage thresh-

old is reached;

• DISCHARGE CP/VEOD : constant power discharge until a minimum voltage

threshold value selected by the user is reached;

• ARBITRARY : a current profile is followed, with either positive or negative instan-

taneous values, so that the cell supplies or absorbs current according to the assigned

values. The current profile is defined through a .txt file with two columns, showing

respectively the current value and the relative time;

• REST PERIOD : a rest period with no charge / discharge current, while voltage

and temperature values are sampled anyway, in order to monitor the cell during the

rest period.
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Figure 2.9: Test bench
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2.2 Parameters identifications

In this section will discuss the procedure for obtaining the parameters of the battery model.

This procedure is widely used in the literature and has been dealt with in detail [14, 70],

all the steps will be shown for the determination of the parameters of the SP model. The

process to determine the parameters starts from a pulsed discharge test Fig. 2.11, with

alternated periods of discharge with a predetermined current, and pause periods in which

the current is 0. In the discharge periods the battery is discharged, while in the pause

periods the transients on the battery voltage are observed; in this phase the time constants

of the circuit can be identified.

The realization and description of the model will consider the most common type of

chemistry, the NMC, which in the coming years is expected to cover 70% of batteries on

the market [12]. All equations and tests done maintain their validity even for different

types, however the trend of the parameters may be different.

LiB Carthode 2017 

275 MTons

14%

6%

33%

9%

38%

LiB Carthode 2025 

875 MTons

6%1%

70%

8%

15%

LCO

LMO

NMC

NCA

LFP

Figure 2.10: Battery market share comparison [12]

2.2.1 SOC-dependent parameters

To perform the pulsed test, the current, the discharge time and the pause time must be

chosen. The current depends on the test that is being performed, while the times are

crucial for the result of the parameter estimation, so let’s explore the effects of the two
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intervals. For each discharge period, it is possible to associate a SOC value, and then a

OCV value, R0, etc, associated to that SOC value. Consequently, the shorter the discharges,

the more SOC-parameter points can be obtained in a complete battery discharge. The

relaxation transient on the contrary should be, if possible, to wait for the extinction of all

transients. In the literature [68, 54, 43] there are no standards for defining timing, a good

trade-off is Ton = 120s, To f f = 600s, i.e. one sample every 3.3% of SOC; considering 1C

discharge rate during Ton, with these timings the test takes six hours. Noting the trend of

the parameters it is possible to optimize the pulsed discharge profile to reduce the test time,

but at the same time to improve the accuracy of the test in areas where the parameters vary

more. The profile of Fig. 2.11 developed specifically for batteries with NMC chemistry,

has a To f f = 900s, and a variable discharge time, so as to obtain samples referenced to

SOC = [100, 96, 92, 88, 84, 80, 70, 55, 40, 25, 20, 16, 12, 8, 4, 0]. In this way it is

possible to get a higher number of points for high and low SOC, and make less pauses in

the middle zone, thus reducing the test time. with this profile the total time is only four

hours.

In this curve five points can be identified, which are used for the determination of

the model parameters, shown in Fig. 2.12. "I" the beginning of the discharge, "II" the

sample following point "I" which is considered for the calculation of the series resistance

R0, in which the effect of the transients is still considered negligible. "III" the end of the

discharge "IV" the sample following "III" in which the effect of the relaxation transients

is considered negligible. "V" corresponds to point "I" of the next discharge.

Open Circuit Voltage

The open-circuit voltage is the battery terminal voltage when no current flows and the

transients are expired. To obtain the open-circuit voltage it is sufficient to measure the cell

voltage in stationary conditions, in the pulsed test these conditions occur at point "I". By

collecting all the no-load voltage values at point, "I" of each discharge, it is possible to

create a OCV vector as a function of SOC. An example of a curve is shown Fig. 2.13, in

which the points obtained from the "×" test were interpolated.
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Figure 2.11: Pulse discharge test. Current and typical voltage profile for a 21700 NMC

high power Li-Ion cell.
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Figure 2.12: Pulse discharge test, interesting points

63



Battery Modeling

020406080100

SOC [%]

3

3.2

3.4

3.6

3.8

4

4.2
O

C
V

 [
V

]

Figure 2.13: Open circuit voltage

Series Resistance

The internal resistance is used to model the voltage drop from no-load to on-load, this

parameter can therefore be derived from both the transition from no-load to load and vice

versa.

The system can be described by two equations, one for point "I" and one for point "II".

 I, iB = 0, vB(I) = OCV

II, iB = 0, vB(II) = OCV −VR0

(2.1)

Where VR0 is the voltage drop across the series resistor R0, the value of which is to be

calculated .

 I, iB = 0, vB(I) = OCV

II, iB = 0, vB(II) = OCV −R0× iB
(2.2)

By subtracting member by member the two equations vB(I)−VB(II) one can obtain
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Figure 2.14: Series resistance R0

the (2.3)

vB(I)− vB(II) = OCV (I)−OCV (II)−R0× iB (2.3)

Supposing that between point "I" and point "II" the SOC has varied slightly, so it can

be neglected, it can be assumed that OCV (I) = OCV (II).

R0 =
vB(I)− vB(II)

iB
(2.4)

Similarly, it is possible to repeat the same logic for the relaxation transient where there

is a change from load to no load, thus making it possible to obtain two sets of values for

R0, which will be called R0Disch , R0Relax respectively.

R0Disch =
vB(I)−vB(II)

iB

R0Relax =
vB(IV )−vB(III)

iB

(2.5)

Due to the nature of the test, the resistance R0Disch calculated between points "I" and
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"II" corresponds to a certain value of SOC, while the R0Relax calculated between points "III"

and IV corresponds to a lower value of SOC. For this reason the resistance value for SOC

100% will be available only in terms of R0Disch , and the resistance value for SOC 0% will

be available only in terms of R0Relax . For the central points, an average is made between

the two values with the same SOC. The final result is as shown in Fig. 2.14

Time Constant

The time constant represents how long it takes the battery to quench its transient, and thus

return to the OCV . For the description of the model, the time constant only is not enough,

but it is necessary to estimate also the value of the resistor R1. Similarly to what was said

for the series resistance, this value can be obtained from both the discharge and relaxation

transients.

It is possible to analyze both transients separately. Starting from the discharge, the

equation ruling this phase is.

vB(t) = OCV −R0× IB−R1× IB(1− e−
t

τ1 ) (2.6)

To obtain the branch parameters R1 and C1, let’s move the curve back to the origin of

the axes, vB(t)−OCV +R0× IB.

Using the MATLABr "lsqnonlin" tool, to fit the voltage curve with the (2.7) in order

to determine the parameters.

vB(t) = R1× IB(e
− t

τ1 −1) (2.7)

In the discharge transient, however, the SOC value changes over the time, and conse-

quently the variation of the parameter due to SOC should be taken into account, which is

neglected in this discussion. A further problem on the use of the discharge transient for

the determination of the parameters is related to the short observation window, due to the

reasons previously analyzed.

For these reasons, the relaxation transient, which will be presented now, is used to

determine the parameters. The reference equation in this case is (2.8).

vB(t) = OCV −VR1(t0)(e
− t

τ1 −1) (2.8)
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Figure 2.15: Time constant R1,τ1

Similarly to what has been done for the discharge phase, the curve is plotted at the

origin of the axes vB(t)−OCV .

vB(t) =VR1(t0)(1− e−
t

τ1 ) (2.9)

VR1(t0) = R1× iB(1− e−
t∗
τ1 ) (2.10)

where t∗ corresponds to the discharge time

By substituting the equation (2.10) into (2.9) it is possible to derive the equation to be

used to interpolate the voltage trend into the relaxation curve. In this way the parameters

obtained are not a function of the SOC, moreover the time constants for the batteries typi-

cally go from tens of seconds to a couple of minutes, and in the type of test the relaxation

time is 15 minutes, sufficient for the extinction of transients.

VR1(t0) = R1× iB(1− e−
t∗
τ1 )× (1− e−

t
τ1 ) (2.11)
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Figure 2.16: Discharge battery voltage, with different temperature

2.2.2 Ageing-dependent parameters

In Fig. 2.16 it is shown the voltage trend with different ageing, and it is possible to see that

the voltage drop is greater when the SOH is lower, for this reason it is possible to model

this effect with a reduction of internal resistance, and the decrease in capacity due to aging

phenomena

Capacity of a battery is defined as the amount of charge it can store in fully charged

condition, due to the ageing mechanisms the capacity decreases over the time. It can be

calculated by integrating the current drawn from the battery over time from fully charged

to fully discharged condition.

Q =
∫ tdsc

tchg

iBdt (2.12)

Where Q is the cell capacity, tchg and tdsc are the time at the fully charged and discharged

condition respectively, and iB is the battery current. As seen above, the battery is at the

end of its life when the remaining capacity is less than 80% of its rated value. This chapter

will analyze how it is possible to derive a trend between capacity and number of cycles.
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The aging model aims to create a dependency between the capacity of the battery and the

number of cycles without considering the phenomena that occur inside.

The electrolytic resistance, the charge transfer resistance, and the double layer capac-

itance C of the battery increase gradually due to repeated cycling. To consider these as-

pects, it is necessary to introduce in the models the dependence of the parameters R0,R1,C1

on the number of cycles. Thanks to the tests carried out in the laboratory it was possible

to notice a reduced variation of R1 and C1 from SOH, for this reason these parameters are

considered constant throughout the life of the battery, consequently in this chapter will be

describe only the dependence of R0 from SOH.

In order to obtain the parameters as a function of aging, a test procedure was carried

out, shown in flowchart form in Fig. 2.17. Tests were performed on an LG brand 21700

cylindrical cell with an NMC chemistry that has a rated capacity of 4.85 Ah. For the

determination of the parameters the pulsed test, explained above, is used. For aging the

test can be of any type, and is alternated by discharge and charge tests, the number of

iterations is increased by 1 at each charge. After every 50 cycles a pulsed test is carried

out through which it is possible to obtain the parameters of the model. The most common

way to cycle cells is by constant current charging and discharging. For the test, the battery

is charged with constant current at 0.7 C (3.39 A) up to 4.2 V and then with constant

voltage at 4.2 V till charge current decreases to 0.04 C (0.2 A) followed by discharge

current of 1.5 C (7.27 A). Aging and pulse discharge tests are performed at constant room

temperature (25◦C), in order to consider only the effect of ageing.

Capacity

To ensure that the cell capacity is obtained by the pulse discharge test is not affected by

the ageing test, the charge before the pulsed discharge is done with a constant current at

0.3 C (1.45 A) to 4.2 V and then with constant voltage at 4.2 V till a cutoff current of 0.01

C (0.05 A) is reached. The cell capacity value Cres is obtained with the integration of the

current during the pulsed test as shown in (2.12)

Once obtained the values every 50 cycles, the trend of capacity fade can be observed,

and it is then possible to interpolate these data as a function of the number of cycles, as
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Figure 2.17: Flowchart of the procedure for ageing test
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Figure 2.18: Capacity fade in 300 cycle

shown in Fig. 2.18. The ”◦ ” indicates the sample point got from the pulse discharge test

and the dashed line the interpolation of the point.

The trend in capacitance as a function of the number of cycles is linear, and the inter-

polating equation (2.13), where C f adert is how fast the cell decreases its capacity, and the

Cnew is the value at Begin of Life (BoL).

Cres =C f adert ×Ncycle +Cnew (2.13)

Usually, SOH is 100% when the battery is new and 0% when the residual capacity

Cres of the battery decreases under the 20% of the nominal capacity Cnew meaning that the

battery is at the end of its lifetime. So the state of health can be defined as (2.14) [22]

SOHc = (1−Cnew−Cres

0.2×Cnew
)×100 (2.14)

Resistance

The series resistance is strongly non linear, but for central SOC value it can be considered

constant, for this reason it is possible to use an average value in this interval, to evaluate

the trend of the resistance in function of the number of cycles.

71



Battery Modeling

0 50 100 150 200 250 300

Cycle Num

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3
R

e
s
is

ta
n
c
e
 [
p
u
]

0.4

0.6

0.8

1

S
ta

te
 O

f 
H

e
a
lt
h
 [
%

]

95% Prediction Interval

Fitting Line

Data Points

Figure 2.19: Resistance growth in 300 Cycle

Since capacity varies during aging the SOC calculation is done using the residual ca-

pacity and not the nominal capacity. Each test is normalized on the basis of the current

capacity, and therefore the resistance is defined for each SOC value from 100% to 0%.

Ract =
1
N

80%

∑
SOC=20%

R0(SOC) (2.15)

Once obtained the values every 50 cycles you can see what the trend of resistance

growth, and it is then possible to interpolate these data as a function of the number of

cycles, as shown in Fig. 2.19. The ” ◦ ” indicates the sample point get from the pulse

discharge test, and the dashed line the interpolation of the point.

As for the capacitance loss, the increase of internal resistance presents a linear trend,

therefore a linear equation is used in (2.16), where Rgrrt is how fast the internal resistance

increases, and the Rnew is the value at BoL.

Ract = Rgrrt ×Ncycle +Rnew (2.16)

It is possible to define a different method to calculate the SOH based on the internal
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resistance.

SOHR =
Reol−Ract

Reol−Rnew
×100 (2.17)

Where Ract is the current average internal resistance mentioned in (2.15), Reol is the in-

ternal resistance at the end of the lifetime SOH = 0%, Rnew is the internal resistance at

the start of the lifetime SOH = 100%. As a result, if Ract , Rnew and Reol can be estimated

accurately, the SOHR can be determined with enough accuracy using the definition.

2.2.3 Temperature-dependent parameters

In a battery the operating temperature is a fundamental quantity to be monitored because

chemical reactions are strongly influenced by temperature. The higher the temperature

of the battery, the faster the reactions, however the temperature cannot increase above

certain values as because the reactions may become unstable, leading to thermal runaway

phenomena. For this reason the electrical model of the cell must be able to model also this

behavior too[75].

In Fig. 2.20 the voltage trend with different temperatures is shown and it is possible

to see that the voltage drop is greater when the temperature is lower; for this reason it is

possible to model this effect with an increase of internal resistance.

Similarly to what has been done for aging, a pulsed discharge is performed for each

temperature, from which the model parameters will be extracted.

The series resistance is strongly non linear, but for central SOC value it can be con-

sidered constant, for this reason it is possible to use an average value in this interval, to

evaluate the trend of the resistance in function of the temperature.

Ract(T ) =
1
N

80%

∑
SOC=20%

R0(SOC) (2.18)

In the case of temperature, the resistance trend is non-linear, so a 4-degree polynomial

function is used to represent this behavior.
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Figure 2.21: Resistance downturn versus temperature
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Figure 2.22: Self-discharge rates of Ni-MH and Ni-Cd vs SOC

2.2.4 Self discharge resistance

In chapter 1.5.1 is shown how self-discharge, discharges the battery when it is not con-

nected to the load. The self-discharge rate of a lithium-ion battery is difficult and time-

consuming to measure accurately because it is generally very low, C/50,000 or less (10−5

% per day), other battery types such as Ni-Cd and Ni-MH have higher self-discharge rates,

as shown in Fig. 2.22. Lithium-ion cells have self-discharge rates that are also dependent

on temperature, prior cycling history, time, and state-of-charge. [74]

Numerous methods for determining the self-discharge value have been presented in

the literature, such as direct measure of the capacity loss or measure of the open circuit

voltage and some other.

The first method is based on the difference between the charged and discharged ca-

pacitance. This method assumes that the Coulombic efficiency is 1. The cell is fully

discharged and then recharged to a given SOC, and the capacity is measured. Then it is

disconnected and kept at a controlled temperature for a fixed period, afterwards the bat-
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tery is discharged, and the capacity is measured; the difference between these two values

represents the capacity lose due to self-discharge.

The measurement is more accurate for higher values of the storage SOC, this is because

the value of charged and discharged capacity is higher.

The second method is based on the OCV −SOC relationship. In this case the assump-

tion is that OCV trend doesn’t change over time, and the voltage is measured with high

accuracy. The voltage of the battery is measured 1 hour after the charging is finished, and

after the storage period, the OCV is measured again, to obtain the SOC before and after the

period. Once the ∆SOC is known, the capacity lost in the given period can be calculated.

Due to non-linearity of the OCV , when the SOC is high or low using the OCV − SOC

relationship can cause errors.

At the end, with both methods, you can calculate the self-discharge resistance as the

ratio between the battery voltage and the capacity lost over time.

Rs =
mean(VB(k),VB(k+1))

Clost/∆t
(2.19)

Where VB(k) and VB(k+1) are the voltage at the end of the charge and after the storage

period, respectively, while ∆T , is the elapsed time between the two measurements. A

common value for Rs ranges from 30kΩ to 150kΩ

2.2.5 Coulomb Efficiency

The life cycle of a Li-ion cell is not infinite because small fractions of cell components

are consumed by parasitic reactions during each cycle possibly creating capacity fade,

electrolyte oxidation, and so on [66]. Coulombic Efficiency (CE) can be a parameter to

monitor the magnitude of side reactions. This value is very close to 1.

ηc =
Qd

Qc
=

ChargeOut

ChargeIn
(2.20)

For this reason, in order to correctly evaluate CE, very precise and accurate current

measurements are required. The result is also influenced by the temperature at which the
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Figure 2.23: Capacity derating over number of cycle, charge and discharge
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Figure 2.24: Coulombic efficiency over number of cycle
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test is performed. In addition, the previous discharge can also influence the capacity value

of the recharge.

It is also possible to investigate CE with respect to the degradation of battery capacity.

CE of a cell at cycle k is defined as the ratio of the delivered capacity during discharge at

cycle k, to the stored capacity during charge at the same cycle [28], the trend is shown in

Fig. 2.24.

ηc(k) =
Cdsc

Cchg
=

∫ tdsc,k
0 iBdt∫ tchg,k
0 iBdt

(2.21)

2.2.6 Energy Efficiency
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Figure 2.25: Energy efficiency derating over number of cycle, charge and discharge

Energy Efficiency (EE) represents the amount of chemical energy the battery can con-

vert into electrical energy, i.e., it gives an indication of how much thermal energy is pro-

duced in the process. This aspect is fundamental to consider because the heat produced in

the process must be dissipated.
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Figure 2.26: Energy efficiency over number of cycle

Through the modeling process the losses have been defined as the Joule losses pro-

duced by the cell, while the efficiency is defined as the ratio between the energy discharged

and recharged.

Similarly to what has been done for the coulombic efficiency, it is possible to calculate

the value of the energy efficiency as a function of the number of cycles.

ηe(k) =
Edsc

Echg
=

∫ tdsc,k
0 vB× iBdt∫ tchg,k
0 vB× iBdt

(2.22)

Due to the ageing the EE worsens, this means that in an old battery, applying the same

cycle profile, the losses are higher, which will then be managed by the cooling system.

2.2.7 Ageing Model

Observing the chart in Fig. 2.27, it is possible to see how different types of use cause

different ageing with the same number of Ah given by the battery. To realize a model that

can calculate the state of health of the battery it is necessary to consider different factors,
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Figure 2.27: Capacity dreading vs battery usage

and their effect. To do this, the principle of superposition of effects is considered valid,

so that each contribution can be considered separately. Three aspects that affect aging are

considered in this analysis, the charge current, charge temperature, and SOC range of the

cell. Three coefficients are therefore created, which are used to model these aspects, and

their trends are shown below.

Figure 2.28: w1 coefficient

trend

SOC dependency A linear stroke function is defined for

the charge state, which considers reduced aging in the mid-

dle phase of the SOC, between 20% and 80%, and increased

aging for the remaining values. It is made as an assumption

that for a full charge the aging produced is equal to one by

definition.

∫ 100%

0%
w1dSOC , 1 (2.23)

Temperature dependency To consider the effects of temperature on aging, the refer-

ence aging is considered to be at 25◦C. If the temperature is higher or lower than this

value there is a greater deterioration of the battery. Therefore by definition the tempera-

80



2.2. Parameters identifications

ture coefficient is considered to be equal to 1 at a temperature of 25◦C, and this point is

also the minimum for the aging function.

Figure 2.29: w2 coefficient

trend

w2(25◦C), 1

ẇ2(25◦C), 0
(2.24)

Figure 2.30: w3 coefficient

trend

Current dependency For SOH estimation, only the nega-

tive current, charging current, is considered. Moreover, it is

assumed that below the value of 0.5C, the same effect on the

battery is always produced, while above this values the aging

has a polynomial trend as a function of current. Furthermore,

charging at constant current equal to 0.5 C produces an aging

equal to one.



w3(−0.5C), 1 f or iB <−0.5C

ẇ3(−0.5C), 1 f or iB <−0.5C

w3 , 0 f or iB > 0

w3 ,−1 f or −0.5 > iB > 0

(2.25)

The equation to calculate the value of SOH, given the values of voltage, temperature,

SOC and current is as follows. Where the value of Ctot represents the total capacitance

value discharged from the cell under standard test conditions, full cycles at constant current

0.5C at a temperature of 25◦C, until 80% of the rated capacity is reached.

SOHt = SOHt0−
∫ t

t0

iBkW1(SOC)W2(T )W3(iB)
Ctot

dt (2.26)

In discrete time

SOHk+1 = SOHk−∆t×
iBkW1(SOC)W2(T )W3(iB)

Ctot
(2.27)
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2.2.8 Thermal Model Parameters

The values of R1 and C1 can be obtained from literature, or through experimental tests and

depend on the type of cell and its internal composition, while the value of R3 is related

to the processes of conduction, convection, and irradiation, so it must be determined on

the experimental conditions. In this chapter it will be explained how to obtain the thermal

parameters of the cell through an experimental test.

The process of parameters determination can be divided into two steps, first the cell is

heated to a certain temperature, and is constant so that the internal temperature is equal to

the external one, then it is put at room temperature in free air. In this way it is possible to

measure the temperature during the cooling process, and then observe the trend.

Using the equation (2.45), and because there is no current flowing in the cell, there are

no losses Qcell = 0. Furthermore, when the test starts, the internal temperature is equal to

the temperature measured on the surface Tint = Tsur f .

The cooling transient equation is described by:

QR1(t) =
Tsur f (t0)−Tamb(t0)

R1 +R3
e−

t
τ1

The surface temperature is:

Tsur f (t) = Tamb +QR1(t)×R3

= Tamb +

(
Tsur f (t0)−Tamb(t0)

A

)
e−

t
B

(2.28)

where A = R1/R3 +1, and B = τ1.

Once the values of A and B are determined, and on the bases of the test conditions the

value of R3 is fixed, it is possible to obtain the values of R1 and C1 as follow.

R1 = (A−1)×R3

C1 =
B

A×R3

(2.29)
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Figure 2.31: Thermal model parameters validations
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2.3 Model Description

The proposed model is composed of a thermal electrical and state model. To represent

the electrical behavior the single polarization (SP) is chosen, because it allows to reach a

good accuracy on the voltage estimation and also to keep low the number of parameters to

estimate, in according with [71, 61, 56]. For the Thermal model the radial representation

[65] is used, this model cannot consider the power dissipation due to the pole of the cell,

but this contribute is not so relevant for our porpoises. The state model is combined from

two part the SOC, that is a standard coulomb counting SOC estimation and a SOH. The

SOH method is a new field to investigate and this chapter shows a new methodology to

calculate it.

2.3.1 State Model

The state model is used to estimate the states of the battery, two states have been defined,

the SOC and the SOH. For the SOC calculation the Coulomb Counting [63] is used, for

the health state a similar counting is done that takes into account the charge as a function

of time, in this way the number of cycles is defined. the value Cres represents the cell

capacitance value for a given SOH value, it allows to consider the decrease of the cell

capacitance during aging. The Coulombic efficiency is represented by the term ηc while

the ratio Rs
OCV is used to represent the self-discharge current. Coulombic efficiency in a

typical lithium-ion cell is around 99%, but this value can be different for different cell

chemistry [38].

SOCk+1 = SOCk−∆t
ηciBk +

Rs
OCV

Cres(SOHk−1)
(2.30)

In (2.31) the proposed SOH estimation method is shown, the three weight W1, W2 e

W3, allow to consider three main aspects that can affect the ageing of the cell, the SOC,

temperature and current. CAv is the maximum cell capacity until the cell reaches SOH =

0%. This value is the sum of all discharged capacities in constant current discharge in
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standard conditions where T = 25◦C in a full discharge test (100%−0%) form a new cell

until it reach 80% of the nominal capacity.

SOHk+1 = SOHk−∆t×
iBkW1(SOC)W2(T )W3(IB)

CAv
(2.31)

It is possible to represent the state model as an electric circuit as shown in Fig. 1.27.

2.3.2 Cell Voltage

The electrical model is the Single Polarization (SP) Fig. 1.10, this model represents the

right compromise between complexity and accuracy. In fact it allows to model fast tran-

sients, and also relaxation phases.

The poles voltage is described in (2.32)

vBk = OCV (SOCk)−V1K −R0(SOCk,T,SOHk)× iBk

= OCV (SOCk)−V1K −R0(SOCk)×R0(T )×R0(SOHk)× iBk

(2.32)

The voltage V1 on the capacitor can be obtained with the equation (1.12) written in

discrete form. However, to keep down the complexity of the model, in order to have the

possibility to deploy the model on a BMS, it is simplified using the first order Taylor

approximation, in this way the (2.33) becomes (2.34).

V1K+1 =V1K × (e
− ∆t

τ1(SOCk) )+R1(SOCk,Tk)× iBk× (1− e
− ∆t

τ1(SOCk) ) (2.33)

V1K+1 =V1K(1−
∆t

τ1(SOCk)
)+R1(SOCk,T )× iBk×

∆t
τ1(SOCk)

(2.34)

.

To evaluate the battery losses in literature they are often calculated as Ploss = iB×(VB−

OCV ) [7] ; however, this equation is true only in average value, while the instantaneous

value does not take into account the power exchanged on the capacitor.
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The instantaneous value of the losses is therefore calculated as the sum of two contri-

butions, the first related to R0 and the second to R1.

Ploss = R0× i2B +
V 2

1
R1

(2.35)

The parameters OCV , R0, R1, τ1, Vc of the SP model Fig. 1.10 have been calculated as

a function of SOC with a pulse discharge test following the procedure described in chapter

2.2. In order to characterize the cell as a function of temperature and state of health,

tests have been carried out at different temperatures (0◦C to 70◦C with ∆T = 5◦C), and

at different number of cycles (0-300). The number of cycles at the end of life has been

chosen to be 300, in accordance with the manufacturer’s declaration; moreover, once 300

cycles have been reached, the residual capacity is less than 80 %, therefore SOH can be

considered = 0%

SOC dependency

The parameters of the SP model, calculated using experimental test data, are stored in

look-up tables as functions of the SOC, and subsequently, more useful interpolation func-

tions are determined.

The OCV curve has been represented using the very reliable function proposed by [72].

OCV (SOC) =a+bSOC+ cSOC2 +
d

SOC
+

+ e ln(SOC)+ f ln(1−SOC)

(2.36)

The resistances, R0 are represented with the following algebraic functions:

R0(SOC) =x1SOCx2 + x3logSOC+ x4SOC3+

+ x5SOC2 + x6SOC+ x7

(2.37)

The resistances, R1 are represented with the following polynomial functions:

R1(SOC) =x1SOCx2 + x3logSOC+ x4SOC3+

+ x5SOC2 + x6SOC+ x7

(2.38)
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The time constant can be represented as a constant.

τ1(SOC) = x1 (2.39)

The proposed model is intended to represent the behavior of the battery under load,

and therefore the self-discharge phenomenon is not very influential, moreover for lithium

batteries the value of self-discharge resistance is very high. Consequently for these two

reasons, the contribution is negligible, i.e. the value of R can be set to infinity.

Rs(SOC) = in f (2.40)

Ageing dependency

The major effect caused by aging is the decrease of the available capacity of the cell and a

growing of the internal resistance, as seen in the previous chapters, it is possible to math-

ematically describe those as a function of SOH using a polynomial equation. Depending

on cell type this trend can be linear or non linear.

Cp(SOH) = y1SOH2 + y2SOH (2.41)

The ageing also cause an increment of the resistance in particular the series resistance this

phenomenon is model by a coefficient that will be multiplied by the value of the resistance

R0, this value is always greater than 1.

R0(SOH) = y1SOH2 + y2SOH (2.42)

Thermal dependency

The temperature of the battery affects the parameters of the electrical model, to consider

this effect, coefficients are introduced for the two resistance values. The coefficients are

obtained as functions of the four degrees and will then be multiplied by the resistance
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value obtained from the previous calculation. All other parameters are not affected by

temperature, these values are always greater than 1.

R0(T ) = z1T 4 + z2T 3 + z3T 2 + z4T + z5 (2.43)

R1(T ) = z1T 4 + z2T 3 + z3T 2 + z4T + z5 (2.44)

2.3.3 Thermal model

Thermal modeling is particularly complicated because there are hundreds of layers of

different materials with different thermal conductivity inside the cell, and heat is created in

each inner layer. An example of an accurate thermal model can be found at [33], however,

the complexity involved is very high. For simplicity therefore, the thermal model used to

represent the cell behavior is the radial model, proposed by [65]. This model considers

the power exchanged by the cell in the radial direction only, neglecting the contributions

given by the poles. A further simplification is to consider concentrated losses assuming

that the whole power is generated at the center of the cell.

Starting from (1.35) it is possible to build the lumped thermal parameter model of the

cell.

In Fig. 2.32 the thermal equivalent circuit of the cell is shown. Where the resistance

R1 represents the thermal conduction between the cell core and the surface, while R3

represents the conductance towards the environment. C1 models the thermal capacity of

the cell. Using the equation (2.45), it is possible to calculate the heat transferred from the

cell to the environment.

C1 ˙Tint = Qcell +
Tamb−Tint

R1 +R3

QR1 =
Tint−Tamb

R1 +R3

It is possible to get Tint
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Figure 2.32: Equivalent radial thermal model

Tint = (R1 +R3)QR1 +Tamb

Deriving the equation

˙Tint = (R1 +R3)
dQR1

dt

replacing

C1(R1 +R3)
dQR1

dt
= Qcell−QR1

t, where τ1 is the thermal time constant and is defined as:

τ1 =C1× (R1 +R3)

obtaining the differential equation related to the power transferred from the cell to the

environment

dQR1

dt
+

QR1

τ1
=

Qcell

τ1

The solution of the differential equation is:

QR1(t) = QR1(t0)e
− t

τ1 +Qcell(1− e−
t

τ1 ) (2.45)

finally, the result using discrete-time notation is:

QR1(k) = QR1(k−1)e−
∆t
τ1 +Qcell(k)(1− e−

∆t
τ1 ) (2.46)
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To keep the complexity of the system low, it is used the first order Taylor approxima-

tion on the equation (2.46), so the heat transferred from the cell to the environment of the

thermal model in the Fig. 2.32 is expressed by:

QR1(k) = QR1(k−1)(1− ∆t
τ1
)+Qcell(k)

∆t
τ1

(2.47)

Once obtained the equation (2.47) it is possible to calculate the temperature inside and

on the surface of the cell as:

{
Tsur f = Tamb +R3×QRk+1

Tint = Tamb +(R1 +R3)×QRk+1

(2.48)
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2.4 Implementation

In this thesis three implementations of the battery model are presented, realized with three

different purposes. The model was first developed using MATLABr , which allows a

fast-prototyping approach, aiming to validate the model comparing it with experimental

data. Subsequently, the model has been rewritten in SIMULINKr , that is user friendly and

allows to integrate the battery with other components such as an engine, or vehicle model.

Moreover, using the tool "Embedded Coder", it is possible to generate the C code starting

from the scheme, loading the battery model directly on the BMS. In this way the BMS can

perform predictive control strategy based on the model. In the last phase the model was

brought on PYTHONT M to generate a large amount of data, to be used in conjunction with

data from laboratory tests for neural networks training.

2.4.1 Matlab environment

Figure 2.33: Flowchart of MATLABr

model

The programming language Matlab is an excel-

lent development environment, which allows to

import the results of experimental tests, and

perform complex data processing, and also cre-

ate comparative figure quickly.

The model is represented as a graph in Fig.

2.33, in which all the steps that make up the

algorithm are reported.

During the initialization phase, the vector

with the reference current and the temperature

at which the test was performed on the real cell

is loaded by the program, moreover the initial

conditions for SOC, SOH initial cell tempera-

ture, and cell voltage are assigned.

Once the initialization is performed the model is composed of four main models, esti-

mation of SOC, SOH, Vb, Tcel which are calculated successively until the file is terminated,
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i.e. until the end of the current vector.

When the file is terminated, the comparison of the values measured in the real battery

against the values estimated by the model is shown.

As for the four models, they have been realized by Matlab functions, while for all

parameters data by Matlab "function handle" have been used, so to represent functions.

By this way at each interaction it is possible to calculate the value of the parameters as a

function of the other values.

2.4.2 Simulink Environment

In Simulink the four main functions, also seen in the Matlab environment are imple-

mented; moreover a BMS has been implemented to monitor the key aspects of the sim-

ulation, to emulate the real system. The BMS model verifies that the battery reflects the

constraints provided by the manufacturer in terms of temperatures, voltages, and currents.

To facilitate the use of the model it has been associated an image characterizing each

function..

Input Output The subsystem has a summary interface that shows the most important

characteristics of the chosen model, the inputs are the current and the ambient temperature,

if the simulation describes only electrical behavior the battery temperature is also required.

The outputs are voltage and temperature of the battery, state of charge and health, and

the battery losses.

A mask has been created for easy access to the main aspects of the battery to be em-

ulated directly from a graphical interface. The GUI is composed of two pages, in the first

page there are all the aspects related to the configuration of the battery Fig. 2.36(a), in the

second there are the aspects related to the thermal model Fig. 2.36(b).

Pack Parameters In the first page it is possible to establish the pack configuration,

choosing the number of cells in series and number of cells in parallel, it is possible to

choose the cell state, in terms of SOC, and SOH, and the cell efficiency can be set in terms

of coulombic efficiency. Also, the type of cell used can be set on the base of a dataset of
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tested cells.

Thermal Parameters In the second page it is possible to choose the type of model

used among radial model, radial model with plastic, or keep the temperature constant.

In the future it is expected the possibility to also implement the complete model. The

temperature of the battery can be given as a constant, or as a vector. On the last part of the

mask the parameters of the thermal model can be set, this part of the mask will be different

depending on the previously chosen model.

2.4.3 Python Environment

The Python programming language is ideal for developing algorithms based on machine

learning, it is also more efficient than Matlab, for these reasons, the model was also ported

on this programming environment.

In this model there is a further step forward, compared to the two previous models, a

battery charger which allows to recharge the battery when the SOC is below settled value,

so the model can simulate battery ageing cycle.

Each simulation step takes in input a current, the room temperature. The model inputs

current and temperature are generated using the random walk algorithm [15], by this way

it is possible to emulate the battery behavior under real use conditions. All the output

generated data are stored as a ".csv" file to be used later.
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Figure 2.34: Simulink model scheme
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Figure 2.35: Simulink Model Scheme

(a) Page1 (b) Page2

Figure 2.36: Comparison between two different chemistry
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Figure 2.37: Flowchart of python model
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2.5 Model Results

In this section, an example of implementation in a Simulink environment will be shown.

The model will then be compared with laboratory tests to evaluate its performance.

The test is carried out on a Molicel INR21700P42A, this cell is a high-power cell with

4.2Ah. This cell has a low internal resistance, and it’s rated for more than 1C current.

To compare the results the mean error (2.49) and maximum error (2.50) are calculated

between the measured voltage and the real voltage.

VMean =
1
n ∑(vBreal − v̂BEKF )

vnom
(2.49)

VMax =
MAX |vBreal − v̂BEKF |

vnom
(2.50)

To evaluate the performance of the model, two series of tests were carried out. In the

first series, the tests were conducted keeping the temperature of the cell constant, so it was

possible to decouple the thermal model from the electrical one. The second series of tests

were carried out in free air, to evaluate the performance of the thermal model, by following

the temperature of the cell.

out of the total of eight tests performed, four were done on a new cell and four were

done on a cell with a 10% SOH. Two tests for each cell were done at constant temperature

of 25◦C and 50◦C and the rest were done in free air. All tests were carried out with the

same current profile starting from a fully charge cell until the cut-off voltage. The free air

tests reached the maximum allowed temperature, and consequently a pause was made to

allow the cell to cool down.

The implementation was done in Simulink environment, a Matlab tool which allows

to create and test models In Fig. 2.34 the implementation scheme is shown.

To validate the model, the measurement of current and temperature during the labora-

tory tests were used, as inputs for the Simulink model. Then the outputs of the Simulink

model were compared, with voltage, temperature, and SOC measured in the test phase. As
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Table 2.2: Test performance comparison

Temp. ◦ C
SOH = 100 % SOH = 10 %

Test ME (2.49) MAE (2.50) Test ME(2.49) MAE(2.50)

Const: 25 1 -0.23 % 2.51 % 2 -0.67 % 2.06 %

Const: 50 3 -0.11 % 3.14 % 4 0.98 % 4.85 %

Environment 25 5 -0.94 % 2.12 % 6 0.21 % 2.67 %

Environment 25 7 -0.37 % 2.31 % 8 0.10 % 2.46 %

for the SOC, calculations were carried out using the integration of the current and normal-

izing for the value of capacity obtained in the test, because the cell has always reached

the cut-off voltage and consequently the capacity extracted in each test is always the one

available in that condition.

(a) Test 1 (b) Test 2 (c) Test 3 (d) Test 4

(e) Test 5 (f) Test 6 (g) Test 7 (h) Test 8

Figure 2.38: Tests results, voltage comparison
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(a) Test 1 (b) Test 2 (c) Test 3 (d) Test 4

(e) Test 5 (f) Test 6 (g) Test 7 (h) Test 8

Figure 2.39: Tests results, temperature comparison

(a) Test 1 (b) Test 2 (c) Test 3 (d) Test 4

(e) Test 5 (f) Test 6 (g) Test 7 (h) Test 8

Figure 2.40: Tests results, SOC comparison
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From the tests performed at constant temperature it is possible to evaluate the accuracy

of the electrical model of the cell, and the results show that the model can follow very well

the voltage measured in the laboratory tests. Tests made in free air are used to evaluate the

interaction between the electrical model and the thermal model, and how the parameters

are mutually influenced; for this test too, it is seen that the model always reaches very

good results on the estimation of the battery voltage. The temperature trend on the cell

surface is in line with that predicted by the model, and this is due to a correct estimation of

the internal losses of the cell, which is a fundamental information when sizing a cooling

system. Aged cell tests show how the variation of parameters due to aging in the real cell

is also traced by the model, showing only a slight difference about the state of charge that

however is also found in the new cell test, and is not entirely attributable to the model

but also to its definition. In all tests the open circuit voltage is overlapping with the open

circuit voltage measured on the real cell, confirming that the final SOC of the model and

the real cell are the same. The error obtained on the voltage estimation is less than 1% for

all tests performed, which is very promising also in comparison with the literature on the

subject.
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Filter Methods The Kalman Filter (KF), in all its forms, is an excellent method for

determining the states of systems, and even of batteries. This method has good accuracy

and reliability, even compared to other methods [35], such as the Particle Filter [50]. For

this reason, in literature there are many examples of application of KF algorithms for SOC

estimation [1, 32, 45, 59].

The SOH cannot be directly estimated by using the KF, but it can be derived from the

precise estimation of the batteries parameters, such as the internal resistance and capaci-

tance [3, 24, 62].

In the literature more filters are often used simultaneously, the most popular method

is that explained by [35], which uses the Dual Extended Kalman Filter. A variation of

this method is presented in [3], their proposed method is called Dual Fractional Order

Extended Kalman Filter. Other authors propose different filters used together as [34],

combining the use of the H-Infinite Filter for the estimation of SOC and the UKF for the

estimation of cell parameters.

Table 3.1: Filter based method comparison

State estimator Model Type
Parameters Computational

Distribution Cost

Kalman Filter KF Linear Gaussian Low

Extended Kalman Filter EKF Locally Linear Gaussian Low Medium

Dual Extended Kalman Filter DEKF Locally Linear Gaussian Medium

Unscented Kalman Filter UKF Non Linear Gaussian Medium

Particle Filter PF Non Linear Non Gaussian High
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Long Short Therm Memory The strength of these methods is the ability to solve

strongly non-linear problems, the computing power required once the model has been

trained is much lower than that required in model based methods [21]. On the other hand

the great quantity of data necessary for the training makes very difficult its use in the real

applications.

As all the neural network algorithms, they can provide high computational speed, but

it is not clear yet how to train them effectively. Moreover, a common issue is again the

fact that only the internal resistance R0 can be estimated, with the strong approximation to

keep the other parameters constant. Hypothesis that might be not acceptable to evaluate

the SOH during real usage of the battery.
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3.1 Long short therm memory for SOC estimation

In this section, a methodology for determining SOC based on neural networks will be

presented. The technique used is based on recurrent neural networks (RNNs). To perform

the neural network training, two datasets were used, that will be presented later.

RNNs are a type of neural networks that store informations over time. RNNs have

connections within the layers that form cyclic directed graphs. This allows the neural

networks to have a memory, represented in form of the state. Information from the pre-

vious state can be used as input for the next state, this allows the network to consider the

relationship between current and past information.

This type of neural network is very well suited for battery state estimation, an example

of the architecture of a RNN for SOC estimation is shown in Fig. 3.2. The input vector at

time t contains the measurable values of the battery such as voltage, current, and temper-

ature, and is denoted as Inputt , ht represents the variable stored at time t while the SOC

value represents the output.

3.1.1 Used dataset

The two datasets are briefly introduced in this section. The first is a database that has been

created over these last years and has been made public available with the the publication

of the related article [10], while the second is a public database that has been conducted

on LG 18650 cells.

UNIBO Powertools dataset

The UNIBO Powertools dataset was created in collaboration with a local company that

produces battery powered equipment. The tests that have been conducted are standard life

tests, to compare cells from different manufacturers. The dataset consists of 27 different

cells, and is summarized in Tab. 3.2.

The dataset is mixed and contains cells from different manufacturers, different nominal

cell capacities, and all cycles end at the end of cell life. Therefore, it is possible to test the
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network for different SOH, as well as validate the SOC estimation method for capacities

other than nominal capacities. All the tests are conducted at room temperature, and they

were conducted using the procedure shown in Fig. 3.1.

The ageing procedure consists of a charge with a Constant Current-Constant Voltage

(CC-CV) at 1.8 A and 4.2V (100 mA cut-off), and a discharge with a Constant Current

until cut-off voltage (2.5 V). The sampling time in this procedure is 10 seconds.

After every 100 cycles, the capacity is measured by a standard test, CC-CV 1 A 4.2 V

(100 mA cut-off) and discharge CC 0.1 A 2.5 V, and thanks to this test it is also possible

to determine the parameters of the model.

Three types of tests have been conducted:

1. The standard test, where the battery was discharged at 5 A current in main cycles;

2. The high current test, where the battery was discharged at 8 A current in main

cycles;

3. The preconditioned test, where the battery cells are stored at 45◦C environment for

90 days before conducting the test.

Table 3.2: UNIBO Powertools dataset summary

Test type Nominal capacity Cell amount

Standard 4.0Ah 2

3.0Ah 4

2.85Ah 4

2.0Ah 6

High current 3.0Ah 3

2.85Ah 2

Preconditioned 3.0Ah 5

LG 18650HG2 Li-ion Battery Data

The public LG 18650HG2 Li-ion Battery dataset, published by [11], was obtained from

Mendeley data. In the dataset, a series of tests were performed under six different temper-
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Figure 3.1: Flowchart of the procedure for ageing test for unibo powertools dataset

atures. The battery was charged at 1 C rate to 4.2 V (50 mA cut-off) before each discharge

test. The values were measured in the discharge cycles with a sampling rate of 10 Hz.

Different drive cycles such as UDDS, LA92, and US06, as well as mixes of them, were

applied in the discharge tests. The discharge cycles with temperature of 0◦C, 10◦C and

25◦C were used for training and testing the proposed model.
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3.1.2 Theory

Fig. 3.2 shows a common approach for time-series called many-to-many, where multi-

ple input steps feed the network with one prediction made at each step. There are other

approaches such as the many-to-one and one-to-many, where in the first case multiple

time-steps are fed with one output produced, and in the second case one input is used

to produce multiple time-steps. As the two battery datasets have very different sampling

frequencies, two approaches are used: the many-to-many approach for the first model

(low-frequency sampling) while in the second one (high-frequency sampling) are used the

many-to-one approach.

Figure 3.2: RNN architecture for SOC estimation unfolded in time

The long short-term memory is a type of RNN which is widely used to learn long-term

dependencies without experiencing the exploding and vanishing gradient problems.

Two approaches that are based on lstm are presented below, one for each dataset,

because of the huge difference in their sampling time. Scaled exponential linear units

(SELU) [31] activation function is used in all the LSTM cells and hidden dense layers. In

the output layer, the linear activation function is applied to produce the final SOC value.

The first approach is used for the UNIBO dataset. It is a deep neural network with

three LSTM layers followed by two dense layers to map the learned states to desired

SOC output. The number of cells of each LSTM layer is 256, 256, and 128 respectively.

Fig. 3.3 illustrates the system architecture. The first layer is the input layer with battery

parameters including voltage Vb, current iB, and temperature T at each time step t. Since
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it is a deep LSTM network, each LSTM layer returns a sequence which means that each

step is propagated to the next layer. The many-to-many approach is used, and the SOC

value is then estimated at each step.

The input time series feeding the deep LSTM network is defined as [Inputt0 , Inputt1 ,

..., Inputtn], where n is the number of steps in the entire discharge cycle, and Input =

[VBt , iBt ,Tt ] represents voltage, current and temperature at each time step respectively. Al-

though the entire discharge cycle feeds the network, only the part that precedes the step

under examination is available as input for SOC estimation, i.e., the hidden state from

previous steps t−1 and the current input at step t are used to estimate the output at step t.

Figure 3.3: Architecture of the first model

The second model is used for the LG 18650HG2 Li-ion battery dataset. The model is

composed of two LSTM layers followed by three dense layers. The number of cells of both

LSTM layers is 256. Fig. 3.4 shows the architecture of the second proposed model. Since

the second dataset contains more steps in one discharge cycle due to its higher sampling

rate (100 ms), the many-to-one approach is more appropriate. In this case, for each n step

as input, one output is returned. In the implementation, 300, 500, and 700 are used as the

number of steps. For example, given input steps [Inputt0 , Inputt1 , ..., Inputt500], the model

should estimate the SOC value at step 500.

The proposed models are implemented by using the Keras library [41]. The Adam

algorithm [44] is chosen as the optimizer to update the network weights and biases with the

learning rate configured as 0.00001. All proposed models are trained for 1000 epochs, but
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Figure 3.4: Architecture of the second model

the training process would stop earlier if there were no further improvement of validation

loss within 50 epochs. The Huber loss [78] is used as the loss function. Its peculiarity is

that it can be quadratic or linear depending on the error value.
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3.1.3 Experimental Results

The proposed deep LSTM models are trained and tested using the two datasets. The

model performance against each dataset is discussed in this section. Root Mean Square

Error (RMSE) and mean absolute error (MAE) are used to evaluate the proposed models.

The Mean Square Error (MSE) is the sum of squared distances between the target and

predicted variables divided by the number of samples. The RMSE is the square root of

the MSE which scales the output value to the same scale as MAE. It is more sensitive

to outliers as it penalizes the model by squaring the error. The MAE on the other hand

is more robust to outliers as the error is not squared. MAE is an L1 loss function that

calculates the sum of the absolute difference between the target and predicted variables.

The MAE is more suitable for problems where the training data present outliers.

SOCmean =
1
n ∑ |SOC− ˆSOCLST M| (3.1)

SOCRMS =
2

√
1
n ∑(SOC− ˆSOCLST M)2 (3.2)

UNIBO Powertools dataset In tests performed on the "UNIBO Powertools" dataset, the

performance of the method is evaluated on constant current discharge. It was trained on

a total of 7738 discharge cycles. One cell per test type (standard, high current, precondi-

tioned) and per cell capacity was extracted from the training data for use in testing. The

overall MAE and RMSE on all test data are 0.69% and 1.34%, respectively.

The evaluation of the standard test type with rated capacity of 4.0Ah and the high

current test type with rated capacity of 2.85Ah has the worst performance, due to the

small amount of this test data in the dataset, specifically only two cell tests of the type, so

only one cell was used for training and one for testing. Whereas, in the other types of tests

with sufficient data the method can obtain accurate results with RMSE less than 1%.

In Fig. 3.5, Fig. 3.6, Fig. 3.7, the results obtained for this dataset are shown, tests were

done at the beginning of life and at the end of life to verify the accuracy with different

SOH.
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The results were obtained always starting from fully charged cell, up to the cut-off.

Where the SOC is charted against the discharge time in second. The black line is the SOC

value obtained with the coulomb counting during the discharge and the red line is the SOC

value estimated by LSTM.

The SOC in the first and last cycle is estimated accurately, which suggests that the

estimation method can predict the SOC with different SOH. Moreover, very good perfor-

mance is also obtained in the case of preconditioned cells, which shows that storage does

not affect the estimation accuracy.

Table 3.3: UNIBO dataset tests performance

Test type Nominal capacity MAE RMSE

Standard

4.0Ah 2.68% 3.42%

3.0Ah 0.52% 0.73%

2.85Ah 0.31% 0.39%

2.0Ah 0.59% 0.80%

High Current
3.0Ah 0.46% 0.61%

2.85Ah 2.13% 3.24%

Preconditioned 3.0Ah 0.47% 0.66%
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Figure 3.5: UNIBO dataset SOC estimation results (standard), (a, b, c, d) are all tested

with SOH = 100%, (e, f, g, h) are all tested with SOH = 0%, (a,e) cell capacity = 2.0 Ah,

(b,f) cell capacity = 2.85 Ah,(c, g) cell capacity = 3 Ah and (d, h) cell capacity = 4.0 Ah
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Figure 3.6: UNIBO dataset SOC estimation results (high current), (a, b) are all tested with

SOH = 100%, (c, d) are all tested with SOH = 0%, (a,c) cell capacity = 2.85 Ah, (b, d)

cell capacity = 3 Ah
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Figure 3.7: UNIBO dataset SOC estimation results (preconditioned), (a) is tested with

SOH = 100%, (b) is tested with SOH = 0%, both cell have the same capacity of 3.0 Ah
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LG 18650HG2 dataset In the LG 18650HG2 Li-ion battery dataset, the performance

of the method under dynamic discharge current is evaluated. Six mixed driving cycles for

three different temperatures 0◦C, 10◦C and 25◦C were used as training set. Three different

time series lengths were tested, with a number of steps of 300, 500, and 700, which are

approximately equal to 30 seconds, 50 seconds, and 70 seconds depth in time respectively.

The test set was composed of a UDDS, an LA92, and a US06 driving cycle plus one mixed

driving cycle for each of the three different temperatures available in the dataset.

Table 3.4: LG 18650HG2 data tests performance

Temp. (°C)
300 Steps 500 Steps 700 Steps

MAE RMSE MAE RMSE MAE RMSE

0 1.69% 2.27% 1.47% 2.23% 1.65% 2.60%

10 1.61% 2.12% 1.57% 2.12% 2.22% 2.89%

25 1.17% 1.57% 1.59% 2.02% 1.92% 2.64%

As shown in Tab. 3.4 the MAE and RMSE achieved by the 300 steps model are 1.47%

and 1.99%. The 500 steps one reached a MAE and RMSE of 1.54% and 2.12%. The 700

steps model achieved 1.94% MAE and 2.72% RMSE. The model performance under each

temperature with different input lengths is listed in Tab. 3.4. Among all the configurations,

the best performance is achieved from testing data below 25◦C temperature with 300 steps

in input, which demonstrates that the battery operates most stably under room temperature.

The model is able to learn the battery behavior at room temperature through the provided

driving cycles without the need for a long history. Whereas, at 10◦C and 0◦C temperatures,

better performance is obtained by the 500 input model. This indicates that increasing input

steps could help to improve the estimation result at temperatures that are lower than room

temperature. However, the worst results come from the 700 input steps which suggests

that the increment of input steps must be selected carefully for the many-to-one approach

as an inappropriate increment of input steps could result in performance degradation. The

SOC estimation results on the mixed driving cycles at 0◦C, 10◦C and 25◦C temperatures

are displayed in Fig. 3.8. The estimation results at the three temperatures are competitive

and without significant errors. Still, errors can be seen from the ending steps in mixed
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cycles at 0◦C temperature due to their more dynamic discharge pattern.
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Figure 3.8: LG 18650HG data SOC estimation results (mixed cycles),
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3.2 Extended Kalman Filter

The Kalman filter was originally introduced by R.E. Kalman (1930-2016) in 1960 in the

article “A New Approach to Linear Filtering and Prediction Problems” [79]. This theory,

extended for non-linear systems, was later applied to the batteries by Plett [71], for SOC

estimation, and more recently it has been extended to the estimation of the cell parameters

[72].

3.2.1 Theory

Kalman filters theory is based on the input-state-output system representations

A system is an object, device or phenomenon that interacts with the environment,

this interaction is manifested through the variation of measurable quantities or variables,

which can be quantified. The iterations between the system and the environment happen

following the principle of causality.

The inputs are the independent variables, which describe the action of the surrounding

environment on the system, while the outputs are dependent variables, which describe the

response of the system to the inputs. The systems can be subdivided according to their

characteristics, so it’s possible to identify algebraic systems or dynamic systems, linear

or non-linear systems, stationary or non-stationary systems and finally continuous time or

discrete time systems.

• Algebraic systems: the outputs of the system at a certain time instant depend only

on the values of the inputs at the same time instant. Dynamic systems: in these

systems the outputs also depend on the past values of the inputs. These models

therefore have a memory (ability to accumulate energy) and are described by differ-

ential equations, harmonic response functions, etc.;

• Linear systems: systems where the principle of superposition of effects is appli-

cable. The effect of a sum of inputs is equal to the sum of the effects produced by

each individual input. Non-linear systems: the principle of superposition of effects

is not valid;
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• Stationary systems: the systems for which the property of translation in time of

input and output is valid: that is if applying to the system the input u(t) the response

is y(t) then, to parity of initial conditions, to the input translated in the time u(t-t0)

the system responds with the output y(t-t0). Non stationary systems: the principle

of translation in time does not apply, an input u(t) produces a response if it is applied

to the system at the time u(t-t0);

• Continuous time systems: the system assumes a value at every instant of time,

Discrete time system: the system assumes a value only for some instants of time

called sampling instants.

In the representation of input-state-output type systems there are new variables that

are neither input nor output, and they take the name of state variables. The state variable

describes the internal behaviour of the system, and are tied up to its history, for this reason

they can be considered as a memory of the system. It is possible to describe a system by

means of two matrix equations, process equation

dx(t)
dt

= f(x(t),u(t), t) (3.3)

Measurement equation

y(t) = h(x(t),u(t), t) (3.4)

x(t) is the state vector, u(t) is the input vector and y(t) is the output vector. While the

function f e h are the state transition function and the output function respectively. Where

x(t) ∈ Rn, y(t) ∈ Rm, u(t) ∈ Rl

The process equation is a differential equation of n-order , composed of n first-order

differential equations, which relates the input variables to the state variables (n is the order

of the model). The measurement equation is an algebraic equation that allows to determine

the output at a certain instant of time from the knowledge of the state ( and the input at the

same instant of time.

For linear systems it is possible to rewrite the functions f e g as linear compositions of

the matrices F e B, e H e D respectively. Where F(n×n), B(n× l), A(n×n), H(m×n),
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B(m×n), A(m× l)

ẋ(t) = Fx(t)+Bu(t) (3.5)

Measurement equation

y(t) = Hx(t)+Du(t) (3.6)

For discrete time systems, the input-state-output representation can be used, however,

the equations must be discretized. Through the discretization process, the differential

equations become difference equations, and the time is expressible as k natural number

multiplied by Tc representing the sampling time.

xk+1 = f(xk,uk,kTc) (3.7)

yk+1 = h(xk,uk,kTc) (3.8)

In the case that the discrete system is also linear it is possible to rewrite the equations

as follows:

xk+1 = Fxk +Buk (3.9)

yk = Hxk +Duk (3.10)

Kalman Filter

The Kalman Filter (KF) [77] recursively calculates an estimated state of a linear dynamic

system as the weighted average between the predicted state and the measured state de-

termined from the available measurements. The weighting is based on bases on the co-

variance, allowing to estimate a state with uncertainty lower than uncertainty of both the

predicted and measured state. This iterative process minimizes the use of resources be-

cause requires measuring the current input and output quantities and storing only data

related to the last estimated state. KF relies on the state-space formulation of linear dy-

namic systems in discrete time domain represented in Fig. 3.9. Assuming discrete time
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Figure 3.9: Schematic state-space representation of the linear dynamic system in discrete

time at the basis of Kalman filter formulation [71]

sample k, the state vector xk contains the minimal data set required to predict the future

k+1 behavior of the system by using data taken from the past step k. Referring to state-

space linear system representation, the transition matrix Fk, brings the state from instant k

to the future state k+1, matrix Bk represents the effect of a set of input variables uk to the

future state xk+1. Assuming the vector yk as the set of output measurable quantities, the

measurement matrix Hk determines the output from the states. The straightforward matrix

Dk directly influences the output yk with the input variables uk.

Two additional uncorrelated variables, the process noise wk and the measurement error

(or noise) vk are added to the system. Both noises are Gaussian distributed white noise,

have zero mean value and must be non-correlated to each other [77] . The covariance for

wk and vk are respectively Qk and Rk:

E= [wnwk
T ] =

Qk n = k

0 n 6= k
(3.11)

E= [vnvk
T ] =

Rk n = k

0 n 6= k
(3.12)

Assuming the following domains:

xk ∈ Rn,yk ∈ Rm,uk ∈ Rl,

Fk ∈ Rn×n,Bk ∈ Rn×l,Hk ∈ Rm×n,Dk ∈ Rm×l
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The two resulting fundamental equations are: the process equation (3.13) and the mea-

surement equation (3.14)

xk+1 = Fkxk +Bkuk +wk (3.13)

yk = Hkxk +Dkuk + vk (3.14)

Using the linear system representation of Fig. 3.9 and Eq. (3.13) and (3.14), the KF

algorithm splits the estimation process, computed at the time interval k, in two consecutive

steps: the prediction step and the update step.

In the prediction step, the Kalman filter:

1. estimates the current state x̂−k with Eq. (3.15) using the estimated state at the previ-

ous step x̂−k−1 and the observed quantity at the previous step uk−1

x̂−k = Fk−1x̂−k−1 +Bk−1uk−1 (3.15)

2. calculates the uncertainty of the state estimation x̂−k , in terms of predicted covariance

Pk
− with Eq. (3.16), by processing the previous predicted covariance Pk−1 and the

process noise covariance Qk−1.

P−k = Fk−1Pk−1FT
k−1 +Qk−1 (3.16)

Both estimations of the prediction step, , x̂−k and Pk
−, do not use any measurements

taken at the current time;

3. calculates the Kalman gain matrix GK using Eq. (3.17) from the previously esti-

mated covariance Pk
− and the covariance matrix of the observed quantities Rk. In

this way estimated state x̂k will be updated by giving more weight to the estimates

with higher accuracy.

Gk = P−k HT
k [HkP−k HT

k +Rk]
−1 (3.17)

In the update step, the Kalman filter:
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1. calculates the estimated output quantity ŷk by applying the estimated states ŷ−k to the

measured input quantities uK

ŷk = Hkx̂−k +Dkuk (3.18)

2. updates with Eq. (3.19) the estimated state at the new corrected values x̂k, by ap-

plying the Kalman gain matrix GK to the (yk− ŷk) difference. In Eq. (3.18) the

measured output quantity yk necessarily includes some amount of the measurement

noise (or error) vk. Fig. Fig. 3.10 gives a schematic overview of the update function

applied to a system state estimation.

x̂k = x̂−k +Gk[yk− ŷk] (3.19)

3. updates the covariance Pk of the corrected estimated state x̂k

Pk = (I−GkHk)P−k (3.20)

Both updated state x̂k and updated covariance Pk will be used at the following time

interval k+1 in the prediction step. Fig. 3.11 represents the described steps for states

prediction and update. In this scheme it is also represented the initialization step at time

k = 0 for setting both the state x0 and covariance matrix P0. Proper selection of these

coefficients impacts on the estimation performances, mainly in terms of accuracy in the

state estimation.

Summarizing, the KF can be used on linear systems only, where the model is perfectly

known, noises are unrelated and the covariances of the noises can be calculated. Unfor-

tunately, in many cases, as when dealing with Ion-Li cells, the model is both uncertain

and non-linear, and the noise covariances are hard to calculate. Even under these condi-

tions, the basic KF equations and the prediction-update process are used to derive more

advanced estimators. These KF variants and, in particular, the so-called Extended Kalman

Filter (EKF) [77], are now widely proposed as effective battery parameters estimators.

Extended Kalman Filter

If the system is non-linear, it is possible to extend the use of Kalman filtering through a

linearization procedure. The resulting filter is referred to as the Extended Kalman Filter
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Figure 3.10: Schematic representation of the application of the Kalman gain to the mea-

sured and estimated outputs

Figure 3.11: Sequence of the prediction and update steps in the Kalman filter estimation

process[36]
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(EKF) [71]. The non-linear system is still described by the state-space model represen-

tation, following the KF basic description. In EKF, f(xk,uk) and h(xk,uk) represent the

non-linear transition matrix and the non-linear measurement matrix, respectively. The re-

sulting fundamental KF Eq. (3.13) and (3.14) become the new process and measurement

equations:

xk+1 = f(xk,uk)+wk (3.21)

yk+1 = h(xk,uk)+ vk (3.22)

As in KF, wk and vk are independent zero-mean white Gaussian noise processes with

covariance matrices Qk and Rk respectively. Common assumption, introduced by many

authors [36, 71] is that: if the system remains in the same external conditions, and the

sensors used to make the measurements stay the same, the elements of the covariance

matrices Q, R can be kept constant. The basic idea of the Extended Kalman Filter is to

linearize the system equations at each time instant around the most recent estimated state.

If the functions f and h are changing slowly with time, they can be approximated with first

order Taylor series. With this approximation, the Kalman Filter is then applied as in the

linear case. The linearization process requires to calculate the partial derivatives of the

two functions f and g with respect to each estimated states x̂k and x̂−k , for obtaining the

new transition matrix Fk and the new measurement matrix Hk:

Fk =
∂ f(xk,uk)

∂x

∣∣∣∣
x=x̂k

(3.23)

Hk =
∂h(xk,uk)

∂x

∣∣∣∣
x=x̂−k

(3.24)

The two non-linear functions (3.21) and (3.22) are then approximated using the two

Taylor expansions:

f(xk,uk)≈ f(x̂k,uk)+Fk(xk− x̂k) (3.25)
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h(xk,uk)≈ h(x̂−k ,uk)+Hk(xk− x̂k) (3.26)

So the new process equation and the new measurement equation are obtained:

xk+1 = Fkxk + f(x̂k,uk)−Fkx̂k +wk (3.27)

yk = Hkxk +h(x̂k,uk)−Hkx̂k + vk (3.28)

Comparing (3.27) and (3.28) with (3.13) and (3.14), respectively, both terms witch are

not function of xk can be defined as follows:

[f(x̂k,uk)−Fkx̂k] = Bkuk (3.29)

[h(x̂k,uk)−Hkx̂k] = Dkuk (3.30)

Given the linearized state space model, represented by the two linearized equations:

xk+1 = Fkxk +Bkuk +w (3.31)

yk = Hkxk +Dkuk + v (3.32)

The Kalman filter theory can be applied following the same sequence of the linear case

represented in Fig. 3.11, briefly described as follows.

In the prediction step, the EKF:

1. estimates the current state x̂−k with eq. (3.33), using the estimated state at the previ-

ous step x̂−k−1 and the observed quantity at the previous step uk−1

x̂−k = f(xk−1,uk−1) (3.33)
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2. calculates the uncertainty of the state estimation x̂−k , in terms of predicted covariance

Pk
− with eq. (3.34), by processing the previous predicted covariance Pk−1. The

process noise covariance Q and the estimate the transition matrix Fk−1 (3.23), using

the estimated state at the previous step x̂−k−1.

P−k = Fk−1Pk−1FT
k−1 +Q (3.34)

Both prediction step, x̂−k and Pk
−, do not use any measurements taken at the current

time.

3. calculates the Kalman gain matrix GK with (3.35) from the previously estimated

covariance P−k and the covariance matrix of the observed quantities R . In this way

estimated state x̂k will be updated by giving more weight to the estimations with

higher accuracy.

Gk = P−k HT
k [HkP−k HT

k +Rk]
−1 (3.35)

In the update step, the EKF:

1. estimates with (3.36) the output vector ŷk by applying the available estimated states

x̂−k to the measurement matrix Hk calculated with Eq. (3.24), and the actual inputs

uk:

ŷk = h(xk,uk) (3.36)

2. updates with (3.37) the estimated state at the new corrected values x̂k, by applying

the Kalman gain matrix GK to the (yk− ŷk) difference.

x̂k = x̂−k +Gk[yk− ŷk] (3.37)

3. updates the covariance Pk of the corrected estimated state x̂k

Pk = (I−GkHk)P−k (3.38)

Both updated state x̂k and updated covariance Pk will be used at the following time

interval k+1 in the prediction step, as represented in the flowchart of Fig. 3.11.
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3.2.2 Battery applications

In this section two implementations of the EKF will be proposed, with the aim of deter-

mining the SOC, and the parameter R0, in both cases the single polarization model shown

in section 1.4.4 will be used as a reference model whose scheme and equations.

Figure 3.12: Single polarization model

VBk = OCV (SOCk)−R0(SOCk)× iBk−V1k

V1k+1 =V1k× (e
− ∆t

τ1(SOCk) )+R1(SOCK)× iBk× (1− e
− ∆t

τ1(SOCk) )

SOCk+1 = SOCk−
iBk×∆t
Cnom

(3.39)

SOC estimation

For the determination of the state of charge by means of Kalman Filter is followed the

procedure described by [69]. The voltage at the ends of the capacitor V1, and the SOC

are chosen as state variables, these variables in fact represent a memory of the system

and for this reason they can be used in the input state output representation. The input

variable is the current, while the temperature is not taken into account, and is considered

as a disturbance of the system. The measurable output is the voltage at the ends of the

battery.

By summarizing, the state variable vector x is defined as:
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x =

 V1

SOC

 (3.40)

The input variable vector u is defined by the cell current iB only:

u = u = [iB] (3.41)

and the output variable vector y is defined by the cell voltage vB only:

y = y = [vB] (3.42)

The EKF estimator is implemented by using the notation and procedure introduced in

Section 3.2.1 and the discretization time interval ∆t.

f(xk,uk) =

[
V1k × (e−

∆t
τ1 )+R1× iBk × (1− e−

∆t
τ1 )

SOCk−
iBk×∆t
Cnom

]
(3.43)

h(xk,uk) = [OCVk−Vck−R0iBk ] (3.44)

The open circuit voltage OCV of the battery is considered a function of the SOC only.

To implement the EKF, it is necessary to make explicit the function OCV − SOC, for

calculating its derivative at the considered point. The equation used is the one presented

in the modeling chapter, eq: (2.36), given below.

OCV (SOC) =a+bSOC+ cSOC2 +
d

SOC
+

+ e ln(SOC)+ f ln(1−SOC)

(3.45)

The model parameters, R0, R1, τ1 are recalculated at each iteration through their func-

tion seen above, so the value is updated with the current SOC.

Fk =
∂ f(xk,uk)

∂x
=

 ∂V1(xk,uk)
∂Vc

∂V1(xk,uk)
∂SOC

∂SOC(xk,uk)
∂Vc

∂SOC(xk,uk)
∂SOC

=

e−
∆t
τ1 0

0 1

 (3.46)

Hk =
∂h(xk,uk)

∂x
=
[

∂VB(xk,uk)
∂V1

∂VB(xk,uk)
∂SOC

]
=
[
−1 ∂OCV (SOC)

∂SOC

]
(3.47)
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R0 estimation

The estimation of the internal parameters, is fundamental in order to determine the SOH

of the battery, the model used is always the SP model shown in Fig. 3.12, and is used as a

reference for the implementation at [19].

The voltage of the RC branch V1, the DC resistance R0, the resistance of the RC branch

R1, the time constant of the RC branch τ1 = R1C1, the parameters R0, R1, τ1 can be chosen

as state variables, since they have a variation in time that can be traced back due to the SOC

and SOH dynamic, in both charge and discharge direction, and these parameters change

over the life of the battery.

Summarizing, the state variable vector x is defined as:

x =


V1

R0

R1

τ1

 (3.48)

The input variable vector u is defined by the cell current iB only

u = u = [iB] (3.49)

and output variable vector y is defined by the cell voltage vB only

y = y = [vB] (3.50)

The EKF estimator is implemented by using the notation and procedure introduced in

Section 3.2.1 and the discretization time interval ∆t. From the SP circuit of Fig. 3.12, the

discretized state variable x = f(xk,uk) is expressed by (3.51).

f(xk,uk) =


V1k(1−

∆t
τ1k

)+ ∆t
τ1k

R1k iBk

R0k

R1k−1

τ1k

 (3.51)

The discretized output variable yk = h(xk,uk) is derived by the SP circuit as:
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h(xk,uk) = [OCVk−Vck−R0k iBk ] (3.52)

Where VOCk is the Open Circuit Voltage. The open circuit voltage OCV of the battery

is considered a function of the SOC only. In order to implement the EKF, it is necessary to

make explicit the function OCV−SOC, in order to calculate its derivative at the considered

point. The equation used is the one presented in the modeling chapter, eq: (2.36), given

below.

OCV (SOC) =a+bSOC+ cSOC2 +
d

SOC
+

+ e ln(SOC)+ f ln(1−SOC)

(3.53)

With the aim of reducing the complexity of the system and therefore the complexity of

the linearization process the eq: (3.39), has been approximated using the first order Taylor

approximation.

Fk =
∂ f(xk,uk)

∂x
=

=



∂V1(xk,uk)
∂V1

∂V1(xk,uk)
∂R0

∂V1(xk,uk)
∂R1

∂V1(xk,uk)
∂τ1

∂R0(xk,uk)
∂V1

∂R0(xk,uk)
∂R0

∂R0(xk,uk)
∂R1

∂R0(xk,uk)
∂τ1

∂R1(xk,uk)
∂V1

∂R1(xk,uk)
∂R0

∂R1(xk,uk)
∂R1

∂R1(xk,uk)
∂τ1

∂τ1(xk,uk)
∂V1

∂τ1(xk,uk)
∂R0

∂τ1(xk,uk)
∂τ1

∂R1(xk,uk)
∂τ1

=

=



(1− ∆t
τ1k−1

) 0 ∆t
τ1k−1
× iBk−1 V1k−1

∆t
τ2

1k−1

− ∆t
τ2

1k−1

R1k−1 iBk−1

0 1 0 0

0 0 1 0

0 0 0 1



(3.54)

Hk =
∂h(xk,uk)

∂x
=

=
[

∂VB(xk,uk)
∂V1

∂VB(xk,uk)
∂R0

∂VB(xk,uk)
∂R1

∂VB(xk,uk)
∂τ1

]
=

=
[
−1 −iBk 0 0

] (3.55)
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3.2.3 Experimental Results

To test the Extended Kalman Filter, a power profile was used. The used profile is obtained

from a standardized driving cycle for passenger cars (WLTC). As the driving cycle is

defined as a speed profile, the reference power was calculated by introducing the vehicle

model [42]. In other words, the cycle represents the hypothetical operation of the cell

in an automotive application. The reference power profile has been applied to the real

cell and the voltage and current were measured throughout the test. The tests begins with

fully charged cells, and stops when the discharge cut-off voltage is reached. Three power

profiles were used, so that the performance of the filter could be evaluated under different

conditions.

Once the actual cell usage profiles were obtained, they were imported into Matlab

environment, where the EKF algorithms were implemented. The input and output vectors

used in the filter are real data, so that also the non-ideality of the measuring instruments,

as well as the variation of cell temperature, are considered.

Tests were conducted on cells from different manufacturers. Two cells are considered

high energy and one high power. The cells used are LG M50T, Samsung S50E and Molicel

P42A, their specifications have been summarized in the table 3.5. In addition, the cells

have different SOHvalues, to verify that the estimate of SOC, and especially of R0 is

accurate for different aging values.

(a) Cycle A (b) Cycle B (c) Cycle C

Figure 3.13: Three used profile, (a) Cycle A: Energy = 0.951 [Wh], Max power = 42.351

[W], Mean Power = 2.853 [W]; (b) Cycle B: Energy = 0.593 [Wh], Max power = 15.847

[W], Mean Power = 1.780 [W]; (c) Cycle C: Energy = 0.869 [Wh], Max power = 17.327

[W], Mean Power = 2.607 [W]
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Figure 3.14: Cells examined from left to right: LG M50T, Samsung 50E, Molicel P42A

Table 3.5: Nominal data of the cells selected for the experimental tests
Manufacturer LG SAMSUNG MOLICEL

Model
INR21700 INR21700 INR21700

50T 50E P42A

Chemistry NMC NMC NMC

Capacity [Ah] 5 4.9 4.2

Energy [Wh] 18.15 17.6 15.1

Weight [g] 70 70 70

SOC

The voltage error is calculated between the real voltage and the filter estimated one, the

value is normalized by the nominal voltage of each cell, as in (3.57) and (3.56), (3.59) and

(3.58).

The state of charge is not directly measurable. The capacity measured by the wattmeter

was used to determine the SOC value, and normalized for the value at the end of discharge.

Since all tests end when the voltage cut-off is reached, the cell is considered to have

reached SOC = 0.

The MAE and RMS values were calculated for each test, all results are reported in Tab.

3.6, Tab. 3.7, Tab. 3.8. The trend of the two values of the SOCwith the relative error were

reported below.

VMean =
1
n ∑ |vBreal − v̂BEKF |

vnom
. (3.56)
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VRMS =

2
√

1
n ∑(vBreal − v̂BEKF )

2

vnom

(3.57)

SOCMean =
1
n ∑ |SOCmodel− ˆSOCEKF |. (3.58)

SOCRMS =
2

√
1
n ∑(SOCmodel− ˆSOCEKF)2 (3.59)

Table 3.6: LG - M50T EKF-SOCestimation performance

Test type SOH
Voltage SOC

MAE RMSE MAE RMSE

A

100 % 44.40 ppm 0.03 ppm 2.11 % 0.62 %

50 % 42.35 ppm -0.27 ppm 1.70 % -0.87 %

0 % 43.13 ppm -0.38 ppm 1.44 % -0.42 %

B 100 % 40.55 ppm -0.02 ppm 1.94 % 0.36 %

C 100 % 38.85 ppm -0.20 ppm 1.91 % -0.30 %

Table 3.7: Samsung - S50E EKF-SOC estimation performance

Test type SOH
Voltage SOC

MAE RMSE MAE RMSE

A

100 % 16.49 ppm -0.62 ppm 0.63 % -0.28 %

50 % 20.03 ppm -0.84 ppm 2.62 % 2.28 %

0 % 15.06 ppm 0.05 ppm 4.95 % 4.37 %

B 0 % 15.52 ppm 0.04 ppm 3.92 % 3.33 %

C 0 % 22.27 ppm -0.99 ppm 4.07 % 3.52 %

Table 3.8: Molicel - P42A EKF-SOC estimation performance

Test type SOH
Voltage SOC

MAE RMSE MAE RMSE

A 100 % 7.52 ppm 0.13 ppm 2.17 % -1.50 %

B 100 % 22.52 ppm -0.13 ppm 2.52 % -1.92 %

C 100 % 102.16 ppm 0.40 ppm 1.72 % -0.89 %
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(e) SOH 100% Cycle C

Figure 3.15: Tests results, LG - M50T EKF-SOC estimation performance

R0

The voltage error is calculated between the real voltage and the filter estimated one, the

value is normalized by the nominal voltage of each cell, as in (3.61) and (3.60), (3.63) and

(3.62).

To compare the estimated value of the internal resistance R0, the cell model described

in the previous chapter was used. The model is used as a reference to estimate the value of

R0 is considered reliable, and has already been validated previously. The current measured

in the laboratory test was used as input in order to obtain the resistance trend in time as a

function of SOC, for that specific SOHvalue. The interaction between the various systems

is shown in Fig. 3.18.

The MAE and RMS values were calculated for each test, all results are reported in Tab.

3.6, Tab. 3.7, Tab. 3.8. The trends of the two values of the R0 with the relative error were
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Figure 3.16: Tests results, Samsung - S50E EKF-SOC estimation performance

0

20

40

60

80

100

S
O

C
  
[%

]

Ref Model

EKF

0 50 100 150 200 250 300

Time [m]

0

5

10

15

20

S
O

C
 [
%

]

(a) SOH 100% Cycle A

0

20

40

60

80

100

S
O

C
  
[%

]

Ref Model

EKF

0 50 100 150 200 250 300

Time [m]

0

5

10

15

20

S
O

C
 [
%

]

(b) SOH 100% Cycle B

0

20

40

60

80

100

S
O

C
  
[%

]

Ref Model

EKF

0 50 100 150 200 250

Time [m]

0

5

10

15

20

S
O

C
 [
%

]

(c) SOH 100% Cycle C

Figure 3.17: Tests results, Molicel - P42A EKF-SOC estimation performance

reported below.

VMean =
1
n ∑ |vBreal − v̂BEKF |

vnom
. (3.60)
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3.2. Extended Kalman Filter

Figure 3.18: Block diagram of the EKF validation procedure

VRMS =

2
√

1
n ∑(vBreal − v̂BEKF )

2

vnom

(3.61)

RMean =
1
n ∑ |R0model − R̂0EKF |

R0model |SOC=50%
(3.62)

RRMS =

2
√

1
n ∑(R0model − R̂0EKF )

2

R0model |SOC=50%

(3.63)

Table 3.9: LG - M50T EKF-R0 estimation performance

Test type SOH
Voltage Resistance

MAE RMSE MAE RMSE

A

100 % 3.52 ppm 80.41 ppm 1.80 % 4.80 %

50 % -3.86 ppm 65.15 ppm 1.62 % 2.83 %

0 % -4.33 ppm 61.49 ppm -0.91 % 3.60 %

B 100 % 1.94 ppm 65.17 ppm 1.84 % 5.61 %

C 100 % 0.77 ppm 78.53 ppm 3.17 % 21.28 %
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Table 3.10: Samsung - S50E EKF-R0 estimation performance

Test type SOH
Voltage Resistance

MAE RMSE MAE RMSE

A

100 % -3.30 ppm 57.72 ppm 2.18 % 4.14 %

50 % -5.23 ppm 62.89 ppm 1.16 % 3.31 %

0 % -2.61 ppm 60.29 ppm 1.95 % 5.41 %

B 0 % -1.79 ppm 58.83 ppm 4.20 % 5.32 %

C 0 % -2.84 ppm 56.94 ppm 2.63 % 3.50 %

Table 3.11: Molicel - P42A EKF-R0 estimation performance

Test type SOH
Voltage Resistance

MAE RMSE MAE RMSE

A 100 % 1.14 ppm 12.90 ppm 1.62 % 16.07 %

B 100 % 0.49 ppm 13.34 ppm 0.70 % 11.15 %

C 100 % 0.93 ppm 12.76 ppm 7.52 % 14.53 %
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Figure 3.19: tests results, LG - M50T EKF-R0 estimation performance
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Figure 3.20: Tests results, Samsung - S50E EKF-R0 estimation performance
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Figure 3.21: Tests results, Molicel - P42A EKF-R0 estimation performance
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The results obtained using of the Extended Kalman Filter show excellent results both

for the estimation of the SOC and for the estimation of the internal resistance R0. The error

reached on the estimate of the SOC, is consistent with what is present in the literature, with

average errors around 2% with the only exception of the tests conducted on the Samsung

S550E cell, where the error is around 4%, for the aged cell, which however remains an

acceptable value.

This method can achieve a good accuracy on the internal resistance R0 estimation. The

maximum error is high due to the initial value of R0, but the filter quickly converges to the

true value. With such a low error value, it is interesting to estimate the internal resistance

in order to evaluate the SOH of the cell, which would not be possible with higher errors.

In this case the value of the internal resistance R0 increases by 20% after 200 cycles for

the LG sample and 40% after 500 cycles for the Samsung sample. The biggest errors on

the estimate of the internal resistance are seen in the final part of the discharge, where the

value of R0 increases a lot compared to the value in the central area of the discharge, so

the estimate in this area is not considered reliable.

The very high error values for the estimate of the internal resistance in the P42A sample

are due to the low value of internal resistance of the cell, for this reason an error on the

estimate of some mΩ leads to a much higher percentage error for this cell, but nevertheless

remains acceptable for the methodology used.
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3.3. Dual Extended Kalman Filter

3.3 Dual Extended Kalman Filter

3.3.1 Theory

An evolution of the EKF is represented by the Dual Extended Kalman Filter (DEKF).

The estimation of the SOC with a Kalman filter depends strongly on the accuracy of the

electric model parameters R0, R1,K τ1. If the parameters are not correct or vary over time

the estimation error increases. DEKF can compensate this type of problem by updating

the ECM parameters over time[73]. Simultaneously updating the parameters and SOC

allows a more detailed assessment of battery aging, and consequently provides a better

estimate of SOH. Dual estimation emphasizes the interdependent link between SOC and

SOH under different battery working conditions [13, 26, 57].

Figure 3.22: Graphic representation of the Dual Extended Kalman Filter [57]

The DEKF consist of two separate EKF used to estimate both state, and parameter val-

ues simultaneously [77]. Estimation is done on two separate filters to simplify operations

between matrices. Considering then that we want to find both the states xk and the param-

eters θk of a nonlinear time-discrete dynamical system, we use a first filter EKFx that will

estimate the state (fast-varying state xk), and a second filter EKFθ that will estimate the

parameters (slow-varying state θθθ k).
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State estimations The equations for implementing EKFx are given below.

xk+1 = f(x̂xxk,uuuk,θθθ k)+qx
k

yk = h(x̂xxk,uuuk,θθθ k)+ rx
k

(3.64)

x(t) is the state vector, θθθ(t) is the parameters vector, u(t) is the input vector and y(t)

is the output vector. While the functions f and h are the state transition function and the

output function respectively. Where x(t) ∈ Rn, y(t) ∈ Rm, u(t) ∈ Rl . The term qx
k zero

means stochastic type noise that considers disturbances on the system states, while the

term rx
k represents noise caused by the measurement on the output yk. Both are zero mean

stochastic disturbances with covariance matrices Qx and Px.

E= [qnqk
T ] =

Qk n = k

0 n 6= k
(3.65)

E= [rnrk
T ] =

Rk n = k

0 n 6= k
(3.66)

Assuming the following domains:

xk ∈ Rn,yk ∈ Rm,uk ∈ Rl,θk ∈ Ri

Also for the dual filter, it is necessary to perform a first-order Taylor linearization that

approximates at each step the nonlinear system with a linear time-varying system at the

considered point.

Fk =
∂ f(xxxk,uuuk,θθθ k)

∂x

∣∣∣∣
x=x̂k

(3.67)

Hk =
∂h(xxxk,uuuk,θθθ k)

∂x

∣∣∣∣
x=x̂−k

(3.68)

The two non-linear functions (3.21) and (3.22) are then approximated using the two

Taylor expansions:
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f(xxxk,uuuk,θθθ k)≈ f(x̂xxk,uuuk,θθθ k)+Fk(xk− x̂k) (3.69)

h(xxxk,uuuk,θθθ k)≈ h(x̂xxk,uuuk,θθθ k)+Hk(xk− x̂k) (3.70)

For obtaining the new process equation, and the new measurement equation:

xk+1 = Fkxk + f(x̂xxk,uuuk,θθθ k)−Fkx̂k +qk (3.71)

yk = Hkxk +h(x̂xxk,uuuk,θθθ k)−Hkx̂k + rk (3.72)

Parameters estimations The equations for implementing EKFθ are given below.

θθθ k+1 = θθθ k +qqqθ
k (3.73)

dddk = hhh(xxxk,uuuk,θθθ k)+ rrrθ
k (3.74)

The modeled parameters in (3.73) and (3.74) show variation caused by zero mean

Gaussian white noise, both described by the QQQ and RRR covariance matrices, respectively.

Errors that come from noise generated by the measurement sensors and the model.

In (3.73) the parameters are estimated as constants with small perturbations in addiction,

while (3.74) expresses the output of the system and after being linearized will take the

following form:

dk = HHHθ
k xk +hhh(x̂xxk,uuuk,θθθ k)−HHHθ

k x̂k + rrrθ
k (3.75)

Where the term Hθ
k is a matrix that will represent the output updates based on the

variation of the parameters.
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Hθ
k =

∂h(x̂xx−k+1,uuuk+1,θθθ k)

∂θθθ

∣∣∣∣
θθθ=θ̂θθ

−
k+1

(3.76)

Being a matrix that expresses the dynamics of the parameters it will also be influenced

by the previous states of the system x̂xx+k and x̂xx−k+1. It is then necessary to perform a total

derivative, which involves three recursively computed derivatives, initialized to zero and

then updated at each step.

Ĥθ
k =

∂h(x̂xx−k+1,uuuk+1,θθθ k)

∂θθθ

∣∣∣∣
θθθ=θ̂θθ

−
k+1

=
∂hhh(x̂xx−k+1,uuuk+1,θθθ k)

∂θθθ
+

∂hhh(x̂xx−k+1,uuuk+1,θθθ k)

∂ x̂xx−k+1

dx̂xx−k+1

dθθθ

dx̂xx−k+1

dθθθ
=

∂ fff (x̂xx+k ,uuuk,θθθ k)

∂θθθ
+

∂ fff (x̂xx+k ,uuuk,θθθ k)

∂ x̂xx+k

dx̂xx+k
dθθθ

dx̂xx+k
dθθθ

=
dx̂xx−k
dθθθ
−GGGx

k
dhhh(x̂xx−k ,uuuk,θθθ k)

dθθθ

(3.77)

At initial step k = 0, the terms are initialized to 0.

Algorithm The Dual Extended Kalman Filter theory can be applied following the same

sequence of the linear case represented in Fig. 3.23, briefly described as follows.

1. Initialization: The initialization is done for both EKF, and the state and parameter

values are chosen as close as possible to the expected value.

x̂xx+0 = E[xxx0]

P+
k,0 = E[(xxx0− x̂xx+0 )(xxx0− x̂xx+0 )

T ]
(3.78)

θ̂θθ
+
0 = E[xxx0]

S+k,0 = E[(xxx0− x̂xx+0 )(xxx0− x̂xx+0 )
T ]

(3.79)

2. Prediction: The prediction step allows through the state transaction function to

estimate the current value of the state and parameters, using the information of the

previous cycle. The uncertainty on the estimate of the state and parameters is also

calculated through the covariance matrices.

xxx−k = fff (x̂xx+k−1,uuuk,θθθ
−
k )

PPP−x,k = FFFk−1PPP+
x,k−1FFFT

k−1 +QQQx
(3.80)
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Figure 3.23: Sequence of the prediction and update steps in the DEKF estimation process

[36]

θ̂θθ
−
k = θ̂θθ

−
k−1

SSS−
θ ,k = SSS+

θ ,k−1 +QQQθ
(3.81)

3. Correction Gain: The value of both the Kalman gain are calculated based on the

values of the covariance matrices just estimated

GGGx
k = PPP−x,k(HHH

x
k)

T [HHHx
kPPP−x,k(HHH

x
k)

T +RRRx
k]
−1 (3.82)

GGGθ
k = SSS−

θ ,k(HHH
θ
k )

T [HHHθ
k SSS−

θ ,k(HHH
θ
k )

T +RRRθ
k ]
−1 (3.83)

4. Correction: It is possible to estimate the output using the output function, using the

values estimated during the prediction phase, then through the output measurement
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and the newly calculated gain it is possible to correct the state and the estimated

parameters.

ŷk = h(x̂xxk,uuuk, θ̂θθ k)+ rx
k (3.84)

Status update:

x̂xx+k = x̂xx−k +GGGx
k[yyyk− ŷk]

Px,k = (I−Gx
kHx

k)P
−
x,k

(3.85)

Parameters update:

θ̂θθ
+
k = θ̂θθ

−
k +GGGθ

k [yyyk− ŷk]

Sθ ,k = (I−Gθ
k Hθ

k )S
−
θ ,k

(3.86)

Both updated state x̂xx+k and updated parameters θ̂θθ
+
k will be used at the following time

interval k+1 in the prediction step, as represented in the flowchart of Fig. 3.23
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3.3. Dual Extended Kalman Filter

3.3.2 Battery applications

This section will show the results obtained using DEKF for the determination of SOC and

R0, The model that is used for comparison is the single polarization model, shown in the

section 1.4.4 whose scheme and equations it are given below.

Figure 3.24: Single polarization model

VBk = OCV (SOCk)−R0(SOCk)× iBk−V1k

V1k+1 =V1k× (e
− ∆t

τ1(SOCk) )+R1(SOCK)× iBk× (1− e
− ∆t

τ1(SOCk) )

SOCk+1 = SOCk−
iBk×∆t
Cnom

(3.87)

The voltage on the capacitor V1, and the SOC are chosen as state variables, these

variables in fact represent a memory of the system and for this reason they can be used

in the input state output representation. The battery parameters R0, R1, τ1 are chosen as

parameters. The input variable is the battery current iB, while the temperature is not taken

into account, and is considered as a disturbance of the system. The measurable output is

the battery voltage VB.

By summarizing, the state variable vector x is defined as:

x =

 V1

SOC

 (3.88)

The parameters vector θθθ is defined as:
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θθθ =


R0

R1

τ1

 (3.89)

The input variable vector u is defined by the cell current iB only:

u = u = [iB] (3.90)

And the output variable vector y is defined by the cell voltage vB only:

y = y = [vB] (3.91)

The EKF estimator is implemented by using the notation and procedure introduced in

Section 3.3.1 and the discretization time interval ∆t. From the SP circuit of Fig. 3.24, the

discretized state variable x = f(xk,uk,θθθ k) is expressed by (3.92). With the aim of reducing

the complexity of the system and therefore the complexity of the linearization process the

eq: (3.87), has been approximated using the first order Taylor approximation.

fff (xxxk,uk,θθθk) =

[
V1k(1−

∆t
τ1k

)+ ∆t
τ1k

R1k iBk

SOCk−
iBk×∆t
Cnom

]
(3.92)

The discretized output variable yk = h(xk,uk,θθθ k) is derived by the SP circuit as:

hhh(xxxk,uk,θθθ k) = [OCVk−V1k−R0k iBk ] (3.93)

The open circuit voltage OCV of the battery is considered a function of the SOC only.

In order to implement the DEKF, it is necessary to make explicit the function OCV −SOC,

in order to then calculate its derivative at the considered point. The equation used is the

one presented in the modeling chapter, eq: (2.36), given below.

OCV (SOC) =a+bSOC+ cSOC2 +
d

SOC
+

+ e ln(SOC)+ f ln(1−SOC)

(3.94)
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3.3. Dual Extended Kalman Filter

Fk =
∂ fff (xxxk,uk,θθθ k)

∂x
=

 ∂V1(xxxk,uk,θθθ k)
∂V1

∂V1(xxxk,uk,θθθ k)
∂SOC

∂SOC(xxxk,uk,θθθ k)
∂V1

∂SOC(xxxk,uk,θθθ k)
∂SOC

=

(1− ∆t
τ1k−1

) 0

0 1

 (3.95)

Hx
k =

∂h(xxxk,uk,θθθ k)

∂x
=
[

∂VB(xxxk,uk,θθθ k)
∂V1

∂VB(xxxk,uk,θθθ k)
∂SOC

]
=
[
−1 ∂OCV (SOC)

∂SOC

]
(3.96)

HHHθ
k =

∂h(x̂xx−k+1,uuuk+1,θθθ k)

∂θθθ

∣∣∣∣
θθθ=θ̂θθ

−
k+1

=
∂hhh(x̂xx−k+1,uuuk+1,θθθ k)

∂θθθ
+

∂hhh(x̂xx−k+1,uuuk+1,θθθ k)

∂ x̂xx−k+1

dx̂xx−k+1

dθθθ
(3.97)

To calculate this term, it is necessary to evaluate the three differential equations sepa-

rately.

The partial derivative of the output over the parameters is:

∂hhh(x̂−k+1,uk+1,θθθ)

∂θθθ

∣∣∣∣
θθθ=θ̂θθ

−
k+1

=
[

∂Vb
∂R0

∂Vb
∂R1

∂Vb
∂τ1

]
=
[
−ib 0 0

]
(3.98)

The partial derivative of the output over the parameters states is:

∂ f(x̂xx−k+1,uk+1,θθθ)

∂ x̂xx−k+1

∣∣∣∣
θθθ=θ̂θθ

−
k+1

=
[

∂Vb
∂v1

∂Vb
∂SOC

]
=
[
−1 ∂OCV (SOC)

∂SOC

]
(3.99)

dx̂xx−k+1

dθθθ
=

∂ fff (x̂xx+k ,uk,θθθ k)

∂θθθ
+

∂ fff (x̂xx+k ,uk,θθθ k)

∂ x̂xx+k

dx̂xx+k
dθθθ

(3.100)

The eq. (3.100) is divided in two contributes. The derivative of the states over the

parameters is:

∂ f(x̂xx+k+1,uk+1,θθθ k)

∂θθθ

∣∣∣∣
θθθ=θ̂θθ

−
k+1

=

 ∂V1
∂R0

∂V1
∂R1

∂V1
∂τ1

∂SOC
∂R0

∂SOC
∂R1

∂SOC
∂τ1

=

0 iB∆t
τ1

V1∆t
τ2

1
− iB∆tR1

τ2
1

0 0 0


(3.101)

The derivative of the states over the states is:

∂ fff (x̂xx+k ,uk,θθθ k)

∂ x̂xx+k

∣∣∣∣
θθθ=θ̂θθ

−
k+1

=

 ∂V1
∂V1

∂V1
∂SOC

∂SOC
∂V1

∂SOC
∂SOC

=

1− ∆t
τ1

0

0 1

 (3.102)
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3.3.3 Experimental Results

To test the Dual Extended Kalman Filter, a power profile was used. The used profile is

obtained from a standardized driving cycle for passenger cars (WLTC). As the driving

cycle is defined as a speed profile, the reference power was calculated by introducing the

vehicle model [42]. In other words, the cycle represents the hypothetical operation of the

cell in an automotive application. The reference power profile has been applied to the real

cell and the voltage and current were measured throughout the test. The tests begins with

fully charged cells, and stops when the discharge cut-off voltage is reached. The three

power profiles used are the same as those used to test the EKF, in order to compare the

results obtained.

Once the actual cell usage profiles were obtained, they were imported into Matlab en-

vironment, where the DEKF algorithms were implemented. The input and output vectors

used in the filter are real data, so that also the non-ideality of the measuring instruments,

as well as the variation of cell temperature, are considered.

Tests were conducted on cells from different manufacturers. Two cells are considered

high energy and one high power. The cells used are LG M50T, Samsung S50E and Molicel

P42A, their specifications have been summarized in the table 3.12. In addition, the cells

have different SOH values, to verify that the estimate of SOC, and especially of R0 is

accurate for different aging values.

(a) Cycle A (b) Cycle B (c) Cycle C

Figure 3.25: Three used profile, (a) Cycle A: Energy = 0.951 [Wh], Max power = 42.351

[W], Mean Power = 2.853 [W]; (b) Cycle B: Energy = 0.593 [Wh], Max power = 15.847

[W], Mean Power = 1.780 [W]; (c) Cycle C: Energy = 0.869 [Wh], Max power = 17.327

[W], Mean Power = 2.607 [W]
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Figure 3.26: Cells examined from left to right: LG M50T, Samsung 50E, Molicel P42A

Table 3.12: Nominal data of the cells selected for the experimental tests
Manufacturer LG SAMSUNG MOLICEL

Model
INR21700 INR21700 INR21700

50T 50E P42A

Chemistry NMC NMC NMC

Capacity [Ah] 5 4.9 4.2

Energy [Wh] 18.15 17.6 15.1

Weight [g] 70 70 70

R0 - SOC

The voltage error is calculated between the real voltage and the filter estimated one, the

value is normalized by the nominal voltage of each cell, as in (3.103) and (3.104), (3.105),

(3.105), (3.107) and (3.108).

The SOC is not directly measurable. The capacity value measured by the wattmeter

was used to determine the SOC value, and normalized for the value at the end of discharge.

Since all tests end when the voltage cut-off is reached, the cell is considered to have

reached SOC = 0.

To compare the estimated value of the internal resistance R0, the cell model described

in the previous chapter was used. The model used as a reference to estimate the value of

R0 is considered reliable, and has already been validated previously. The current measured

in the laboratory test was used as input in order to obtain the resistance trend in time as a

function of SOC, for that specific SOH value. The interaction between the various systems

is shown in Fig. 3.27.
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The MAE and RMSE values were calculated for each test for both SOC and R0, and

all results are reported in Tab. 3.13, Tab. 3.14, Tab. 3.15. All trends of SOC, and R0 with

their respective errors are reported below as a function of time.

Figure 3.27: Block diagram of the DEKF validation procedure

VMean =
1
n ∑ |vBreal − v̂BDEKF |

vnom
. (3.103)

VRMS =

2
√

1
n ∑(vBreal − v̂BDEKF )

2

vnom

(3.104)

SOCMean =
1
n ∑ |SOCmodel− ˆSOCDEKF |. (3.105)

SOCRMS =
2

√
1
n ∑(SOCmodel− ˆSOCDEKF)2 (3.106)

RMean =
1
n ∑ |R0model − R̂0DEKF |

R0model |SOC=50%
(3.107)

RRMS =

2
√

1
n ∑(R0model − R̂0DEKF )

2

R0model |SOC=50%

(3.108)
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Table 3.13: LG - M50T DEKF SOC and R0 estimation performance

Test type SOH
Voltage SOC R0

MAE RMSE MAE RMSE MAE RMSE

A

100 % 17.12 ppm 156.32 ppm 0.64 % 0.81 % 6.35 % 10.27 %

50 % 7.85 ppm 64.88 ppm 0.62 % 0.82 % 9.90 % 11.52 %

0 % 12.35 ppm 114.80 ppm 1.10 % 1.25 % 8.62 % 11.23 %

B 100 % -5.98 ppm 431.73 ppm 1.04 % 1.26 % 7.06 % 10.78 %

C 100 % 0.64 ppm 341.44 ppm 0.66 % 0.78 % 5.29 % 11.34 %

Table 3.14: Samsung - S50E DEKF SOC and R0 estimation performance

Test type SOH
Voltage SOC R0

MAE RMSE MAE RMSE MAE RMSE

A

100 % -8.99 ppm 232.00 ppm 0.23 % 0.27 % 5.29 % 10.20 %

50 % 5.56 ppm 334.21 ppm 0.26 % 0.28 % 8.05 % 15.88 %

0 % 23.95 ppm 200.32 ppm 0.18 % 0.19 % 16.04 % 17.06 %

B 0 % 9.54 ppm 138.20 ppm 0.08 % 0.09 % 20.80 % 21.57 %

C 0 % -2.40 ppm 200.74 ppm 0.14 % 0.19 % 19.64 % 20.72 %

Table 3.15: Molicel - P42A DEKF SOC and R0 estimation performance

Test type SOH
Voltage SOC R0

MAE RMSE MAE RMSE MAE RMSE

A 100 % -21.05 ppm 562.92 ppm 0.88 % 1.14 % 10.69 % 24.22 %

B 100 % -20.54 ppm 298.62 ppm 0.94 % 1.15 % 13.13 % 22.00 %

C 100 % -13.47 ppm 355.48 ppm 0.54 % 0.65 % 12.62 % 21.80 %
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Figure 3.28: tests results, LG - M50T DEKF-SOC estimation performance
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Figure 3.29: Tests results, Samsung - S50E DEKF-SOC estimation performance
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Figure 3.30: Tests results, Molicel - P42A DEKF-SOC estimation performance
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Figure 3.31: tests results, LG - M50T DEKF-R0 estimation performance
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Figure 3.32: Tests results, Samsung - S50E DEKF-R0 estimation performance
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Figure 3.33: Tests results, Molicel - P42A DEKF-R0 estimation performance
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The Dual Extended Kalman Filter shows very good results on voltage estimation, and

on SOC estimation, however, the error on R0 estimation is higher than that obtained with

the Extended Kalman Filter.

The accuracy on the SOC estimation shows the potential of the DEKF, obtaining an

error on the estimate always lower than 1%. Given the result obtained it is natural to think

of using this method to indirectly estimate the battery capacity and consequently the SOH

using the definition based on the residual capacity.

On the other hand this method presents an inadequate accuracy on the estimation of

the internal resistance R0.Such a high error on parameter estimation may be due to the

sub-optimal choice of values to be included in the covariance matrices, which with more

precise tuning could have a higher accuracy.
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Conclusions

This project develops the methodologies for the realization of a battery model and the

bases for the estimation of its state.

The first part traces overview of the world of batteries introducing the types and the

problems that concern them. An overview of the control system was given by presenting

what are the main functions of the BMS. The concept of equivalent electric circuit has

been taken into account, describing the most common models in literature. And finally,

it has been introduced the problem of battery state determination, defining the possible

states reported by in literature.

After a first introductory part, it has been presented one of the two parts of which the

project is composed. The realization of a model that has affected a large part of these last

years has been essential to understand the phenomena that occur inside the cells, and to

to test the various mechanisms of deterioration that occur in batteries. An accurate model

was essential to be able to simulate and test the algorithms before using them on the real

system. Having developed a battery model has made it possible to generate a large amount

of data that will be used to create increasingly accurate machine learning models without

requiring hours and hours of real testing.

State estimation is the second topic dealt with end a particular emphasis has been

placed on the estimation of the state of charge and on the estimation of the state of health.

The state of charge was analysed as a starting point to set targets in line with the litera-

ture, as this topic is now well established. Subsequently a lot of time has been spent on

the development of algorithms capable of determining the state of health. The methods

performing best in terms of accuracy were those based on Kalman filters in this disserta-

tion the results of EKF and DEKF have been shown. The DEKF, has a higher complexity
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than the EKF, for this reason the field of application is more oriented to the implemen-

tation in the cloud for later processing of data while, on the other hand, the EKF can be

implemented on a microcontroller and can be used in real-time.

The possibility of analysing some methods based on particle filters is not excluded.

In addition, using the model in combination with data obtained from laboratory tests, the

possibility of using algorithms based on neural networks is increasingly feasible.
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