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Abstract

This thesis explores the climate mean state and climate variability repro-
duced by atmosphere-ocean coupled configurations of the Planet Simulator
(PlaSim), an Earth-system Model of Intermediate Complexity (EMIC). In
particular, the sensitivity to variations in oceanic parameters is explored in
three atmosphere-ocean coupled configurations: using a simple mixed-layer
(ML) ocean at two horizontal resolutions (T21 - 600 km and T42 - 300 km)
or a more complex dynamical ocean, the Large Scale Geostrophic (LSG)
ocean, at T21 atmospheric horizontal resolution. Sensitivity experiments
allow to identify a reference oceanic diffusion coefficient in the ML ocean and
a vertical oceanic diffusion profile in LSG, which ensure a simulated climate
in good agreement with the present climate. For each model configuration,
the Equilibrium Climate Sensitivity (ECS) is estimated from simulations
with an increased CO2 concentration compared to pre-industrial simulations.
The resulting ECS values are higher than values estimated in other EMICs
or models of the Coupled Intercomparison Project Phase 5 (CMIP5) and
Phase 6 (CMIP6), especially in the PlaSim-ML configurations. An important
role is found to be played by the sea ice area in pre-industrial and future
simulations but also by the details of oceanic heat transport parameterization.
The climate variability of the model is then explored on different timescales,
from the centennial to the interannual one. In the first case, the mechanism
that in PlaSim-LSG generates regular oscillations of the Atlantic Meridional
Overturning Circulation (AMOC), which have a multicentennial period and
represent one of the three regimes that can be assumed by the AMOC in
the model, is investigated. Analysis of the oscillations has suggested that
the mechanism is based on a feedback due to changes in Arctic sea ice cover
and consequent changes in salinity in that area, which after some decades
spread in the North Atlantic and affect the AMOC. Interannual variability is
explored instead by analysing the extra-tropical atmospheric response, with
a focus on the North Atlantic sector, to symmetric sea surface temperature
forcings simulating strong El Niño and La Niña events. While the response to
La Niña is very weak and not statistically significant, the model realistically
reproduces the pattern of sea level pressure and geopotential height charac-
teristic of El Niño, although with weaker amplitude than other more complex
models. The PlaSim EMIC, although it has some limitations associated
with the simplicity of some of its parameterizations, has the great advantage
of reduced computational times and necessary resources with respect to
Global Climate Models (GCMs) and Earth System Models (ESMs). By
showing the capability of the model to represent a realistic climate mean
state with appropriately tuned oceanic parameters and by contributing to
our understanding of the mechanisms affecting its climate sensitivity and



its variability at different timescales, this study provides a basis for using
this model in a wide range of climate study applications, in the spirit of the
EMICs.
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Introduction

The climate system responds to natural and anthropogenic forcing in a
complex way, because the different components of the climate system interact
with each other in a non-linear way and through feedback mechanisms. The
natural and anthropogenic forcing is responsible for climate variability, which
consists of variations in the mean state and other statistics of the climate on
spatial and temporal scales beyond that of weather events. When changes
persist for an extended period, typically decades or longer, the phenomenon
of climate change is considered. The importance of climate change has
increased with the realization that human activities can change the climate
and they are in turn affected by it. The Fifth Assessment Report (AR5)
of Intergovernmental Panel on Climate Change (IPCC, 2013) asserts that
the warming of the climate system is unequivocal: the atmosphere and
ocean have warmed, the amounts of snow and ice have diminished, the
sea level has risen, the concentration of greenhouse gases have increased.
Furthermore, a large fraction of anthropogenic climate change resulting from
CO2 emissions is irreversible on long timescales. The rate and magnitude
of global climate change are investigated by examining the Earth’s energy
budget, temperature change and climate feedbacks. The planetary energy
budget is fundamental to understand changes of the climate system, because
natural and anthropogenic substances and processes that alter the energy
budget are drivers of climate change. The variation in energy fluxes is defined
as radiative forcing: it indicates an uptake of energy by the climate system in
the last centuries, mainly due to an increase of the atmospheric concentration
of CO2. On the other hand, one of the main measures of temperature change
is the equilibrium climate sensitivity (ECS), defined as the change in global
mean surface temperature at equilibrium that is caused by a doubling of
the atmospheric CO2 concentration. Despite not directly predicting actual
warming because the climate system has not reached an equilibrium state,
ECS has become a fundamental number for quantifying global warming.

Understanding the physical laws and processes governing the climate
system and climate change results from combining observations and model
simulations. Numerical global climate models differ in the number of spatial
dimensions, in the level of explicit representation of physical, chemical
and biological processes and in the number of empirical parameterizations,
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constituting a hierarchy of models. Climate research has led to a notable
improvement of numerical models, that now reproduce observed temperature
patterns and trends, including the rapid warming since the mid-20th century
(IPCC, 2013). In the middle of this hierarchy, we find Earth-system Models
of Intermediate Complexity (EMICs), which are global models including most
of the components and processes of the Earth system, in a simplified and
parameterized form. The main advantages of these models with respect to
the more complex Global Climate Models (GCMs) and Earth System Models
(ESMs) are a low computational time due to the relatively coarse resolution
and simpler parameterizations, allowing sometimes a better understanding
of the mechanisms at work.

The Planet Simulator (PlaSim) is an EMIC developed at the University
of Hamburg (Lunkeit et al., 2011; Fraedrich et al., 2005) which had several
applications in the study of the climate system in the last decades. For
example, it has been used to explore past conditions of the Earth such as
the snowball Earth (Micheels and Montenari, 2008) or the Permian climate
(Roscher et al., 2011), to analyse specific processes of the climate system
using an Aquaplanet configuration (Dahms et al., 2011; Hertwig et al., 2015),
to investigate the Earth’s global energy budget (Fraedrich and Lunkeit, 2008)
or exoplanets (Kilic et al., 2017). The oceanic component of the model can be
represented by a simple mixed-layer (ML) model (Lunkeit et al., 2011) or by a
more complex, fully 3D dynamical oceanic model, the Large Scale Geostrophic
(LSG) model (Maier-Reimer et al., 1993). The PlaSim-LSG coupled model
has mainly been used in Aquaplanet or paleoclimatic configurations (Dahms
et al., 2012; Hertwig et al., 2015; Andres and Tarasov, 2019). PlaSim has been
developed to be run mainly at two different horizontal spectral resolutions,
T21 and T42, corresponding to about 600 km and 300 km. Despite several
applications, the guidelines currently available in the literature regarding
the use of some PlaSim configurations are incomplete. A tuning exercise
for the atmospheric component has been recently performed (Lyu et al.,
2018), but some studies involving the tuning of oceanic parameters, the
assessment of the model climatology and energy balance, and the estimate of
its equilibrium climate sensitivity (ECS) are still missing and they could be of
considerable importance for future applications in the framework of climate
variability and climate change. For example, the model in the configuration
with the ML ocean allows to activate, as an alternative to the well-explored
flux correction, a horizontal diffusion in the ocean, which determines the heat
transport from the equator to the poles. However, the default value for this
parameter is not appropriate to ensure a correct temperature distribution
in the model, and therefore a tuning of this oceanic parameter that can
be a reference for future developments has been performed in this thesis.
Also the PlaSim-LSG configuration has been little explored in the literature
and the default value for vertical oceanic diffusion coefficient leads to a
collapse of the Atlantic Meridional Overturning Circulation (AMOC) after
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about 150 years of simulation. Again, I have analysed the role of this
oceanic parameter and determined an optimal value to obtain a realistic
climate. All these observations indicate the need to document the role of
some model parameters and to highlight its strengths and weaknesses, which
is an essential information for anyone who plans to use PlaSim as a research
tool.

The aim of this PhD thesis is to provide an overall view of the character-
istics of the Planet Simulator in three different configurations, PlaSim-ML
T21, PlaSim-ML T42 and PlaSim-LSG T21, to give a solid basis for further
developments of the model and its future applications in the study of the
Earth’s climate system. This PhD thesis profits from the results which I ob-
tained during my Master’s thesis, in which I performed a preliminary model
tuning and partially explored its ECS. This thesis is organized as follows.
Chapter 1 introduces EMICs within the models spectrum and illustrates
their numerous applications. Chapter 2 describes the different components
of PlaSim, the characteristics of the two oceanic models and their coupling
with the atmospheric component. Chapter 3 presents the tuning of oceanic
parameters in the three model configurations explored. Furthermore, it
discusses the role of some atmospheric features, such as albedo, ozone con-
centration and cloud cover. In Chapter 4 the simulated climate is evaluated,
including an assessment of the energy balance of the model. After setting the
oceanic parameters based on tuning, in Chapter 5 the model configurations
are analysed from the point of view of the ECS, which is a measure of the
model’s response to an increase in anthropogenic forcing. The technique used
here is the same as that applied to compute the ECS in models belonging to
the Coupled Models Intercomparison Project (CMIP), the Gregory method
(Gregory et al., 2004). The tuning of PlaSim-LSG T21 has revealed three
different regimes of the AMOC. In particular, the regime characterized by an
intermediate intensity presents multicentennial fluctuations of AMOC. These
oscillations, which resemble Dansgaard-Oescher events (although they show
a different period; Dansgaard et al. (1993)), have been recently observed in
other climate models (Peltier and Vettoretti, 2014; Jiang et al., 2021; Döscher
et al., 2021) and are still under investigation. Chapter 6 analyses the AMOC
oscillations in PlaSim and explores possible underlying mechanisms, high-
lighting similarities and differences with other AMOC fluctuations discussed
in the literature. Finally, Chapter 7 has been developed in the framework of
a collaboration with the Group of Meteorology at Universitat de Barcelona,
where I carried out a period abroad required in my PhD programme. This
chapter explores the extra-tropical response to ENSO teleconnection in Atmo-
spheric Model Intercomparison Project (AMIP) experiments performed with
PlaSim. The aim of this chapter is to present one of the several applications
of the model and to determine its ability to reproduce a phenomenon which
is generally explored in more complex climate models. One of the main
advantages of PlaSim that I have experienced during the development of
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this thesis work is its low computational cost: using the lower resolution
(T21), the model is able to simulate one year in two and a half minutes
on a single computing core. Thanks to this short computational time, it
has been possible to carry out numerous simulations with PlaSim, most of
them lasting hundreds or thousands of years, with the aim of investigating
in detail as many model aspects as possible. This has allowed to simulate
about 235000 model years during my PhD, with peaks corresponding to the
tuning and the ECS experiments, as shown in Fig. 1. I also have contributed
to some technical changes in the model code, aimed at improving several
aspects related for example to the use of the namelists and the storage of
outputs.

Figure 1: Histogram of the number of simulated years with PlaSim during the
PhD period.
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Chapter 1

Earth-system Models of
Intermediate Complexity

The elements of the geosphere and biosphere have been first modelled sepa-
rately and only later have been put together to form the first comprehensive
coupled models, which include a description of the atmosphere and ocean,
as well as biological and geochemical processes. The main limitations of
these Earth System Models (ESMs) are the high computational cost and
their complexity. On the other hand, the simplified conceptual models can
be applied to a large number of climate studies and do not have the limit of
computational cost, but they do not contain many processes and feedbacks
that play a fundamental role in the climate system (Claussen et al., 2000). To
bridge the gap between these two types of climate models, the first prototypes
of Earth-system Models of Intermediate Complexity (EMICs) have been
developed since the 1980s.

Figure 1.1: Definition of the models spectrum in terms of a 3-dimensional space:
integration, i.e. number of components of the Earth system explicitly
described in the model, number of processes explicitly described, and
detail of description of processes (Claussen et al., 2002).
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They describe the components of the Earth system and their interactions
but in a reduced form compared to comprehensive models. The relative
simplicity and the high number of parameterizations in the EMICs allow to
simulate tens of thousands of years with low computational costs and with
more realistic results than the conceptual models. But the computational
advantage is not the only reason to use EMICs. Our knowledge of the
climate system is still incomplete and often its description with mathematical
equations is imperfect. In some fields of climate research, information about
the components or processes under investigation may not be detailed enough
to use a GCM. For example, paleoclimatic studies are often characterized by
inadequate knowledge of the land-ice distribution and therefore the represen-
tation of associated feedbacks in a climate model is complicated. In these
cases, the choice to use an EMIC, which allows a simplified representation of
what we do not understand in detail, may be more appropriate than using
a GCM. In addition, the removal of some of the ‘unnecessary’ complexities
makes it possible to focus attention on the main mechanisms and understand
them more easily, even at the cost of having a wrong representation of some
feedbacks (Mcguffie and Henderson-Sellers, 2014). However, EMICs cannot
be used as a substitute for comprehensive or conceptual models but rather
to complement them, allowing to broaden the spectrum of climate system
models, in which the different types of models are adapted to different aspects
of the Earth system and together provide a complete view of it. Figure
1.1 from Claussen et al. (2002) shows the position of these three classes of
models in a three-dimensional space consisting of the number of interact-
ing components explicitly described (integration), the number of processes
explicitly simulated and the detail of the description.

The development of an EMIC can originate from very different approaches,
resulting in a great heterogeneity in terms of structure. All EMICs include
an atmospheric module and an oceanic module, which includes a represen-
tation of sea ice. These components can be of different types and levels of
complexity. Among the representations of the atmospheric component, we
find statistical dynamical models, models based on the quasi-geostrophic
approximation and models based on full primitive equations. The latter can
be considered as coarse-resolution Global Climate Models (GCMs) (Weber,
2010). Oceanic modules can be fully three-dimensional oceanic circulation
models or variations of the zonally-averaged formulation (Claussen et al.,
2002). Sea ice modules are generally thermodynamic models, but may also
include ice dynamics and advection. Some EMICs may also contain a mod-
ule for vegetation dynamics, a module for inland ice sheets describing ice
flow dynamics, or include marine and terrestial carbon dynamics as well as
atmospheric and oceanic chemistry. Their computational speed allows to
analyse long-term feedbacks associated with some components of the climate
system such as ice sheets and biogeochemical cycles.
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The complexity of the EMICs is represented in Fig. 1.2 from Claussen
et al. (2000), which presents an example of the structure of these models.
Figure 1.3 shows the main features of EMICs assessed in the Fifth Assessment
Report (AR5) of Intergovernmental Panel on Climate Change (IPCC, 2013),
where the increasing complexity is indicated by colour shading (light to dark).

Figure 1.2: Structure of an EMIC (Claussen et al., 2000).

Figure 1.3: Main features of the EMICs assessed in the IPCC AR5 (IPCC, 2013),
including components and complexity of the models (higher complexity
is indicated by darker colour shading).
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EMICs have been developed because of the need to explore climatic vari-
ations on very different timescales, from those characterizing rapid events to
the scales of glacial cycles and Milankovitch (hundreds of thousands of years).
Over the years they have been applied to a wide range of climate analyses,
such as the study of feedbacks in past, present and future scenarios (Eby
et al., 2013), the understanding of the large-scale thermohaline circulation
(Rahmstorf et al., 2005) or the future climate change due to the increased
concentration of greenhouse gases (IPCC, 2013). Furthermore, EMICs are a
fundamental tool for the analysis of tipping points, critical levels referred to
a component or process of the Earth system and associated to abrupt and
irreversible climate changes (Lenton et al., 2009). More recently, EMICs have
been adapted to perform simulation of Martian (Segschneider et al., 2005)
or exoplanetary atmospheres (Murante et al., 2020). Another advantage of
these models is the possibility to perform large-ensemble simulations that
are not feasible with more complex models, with the aim of examining the
role of uncertainties in experiments (Weber, 2010). Intermediate complexity
models can also be used to explore phase space or climate history in order to
identify aspects of particular interest and provide guidance for more detailed
analysis to be performed with more complex models. These include so-called
“slice” simulations, in which generally the climate system is unrealistically
assumed to be in equilibrium with external forcing (Claussen et al., 2002).
Furthermore, some subcomponents are often developed and tested in the
form of an EMIC and later included in a coupled GCM.

Some aspects of the EMICs have been explored and the results have been
compared with historical data and other models within an intercomparison
project undertaken in support of the IPCC AR5 (IPCC, 2013; Zickfeld et al.,
2013; Eby et al., 2013). In general, although with some defects, the EMICs
in this intercomparison well simulate the characteristics of the Earth system
and the climate projections to 2300 are consistent with the results of GCMs.
Figure 1.4 shows the ability of EMICs to simulate the global mean surface
air temperature anomaly as a response to the 20th century forcings (IPCC,
2013). In addition, EMIC results for the equilibrium and transient response
to CO2 doubling are generally within the range of the corresponding results
for model belonging to Phase 3 and Phase 5 of the CMIP. These analyses
confirm that EMICs are well suited to play a complementary role to that
of the other models in the spectrum, as they are very efficient in terms of
running time and show a good qualitative and quantitative agreement with
observations and other models. However, the large model spread suggests that
continuous efforts are needed to improve the performance of these models,
keeping in mind that the definition of intermediate complexity models will
be continuously evolving due to fast increase in computer power.
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Figure 1.4: Time series of the anomalies in annual and global mean surface tem-
perature for different observations (thick black lines), single EMIC
simulations (thin lines) and multi-model mean (thick red line). All
anomalies are differences from the 1961–1990 (yellow shading) time-
mean of each individual time series (IPCC, 2013).
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Chapter 2

The Planet Simulator EMIC

The assessment and the development of the PlaSim climate model is at the
basis of this thesis work. In this chapter, the main characteristics of the
model and its explored configurations are described.

2.1 The Planet Simulator model with a mixed-layer
ocean

The dynamical core of PlaSim (Lunkeit et al., 2011; Fraedrich, 2012) is a
simplified GCM, the Portable University Model of Atmosphere (PUMA),
based on the moist primitive equations representing the conservation of
momentum, mass and energy (Fraedrich et al., 2005) and using spectral
methods to numerically solve them (Orszag, 1970; Eliasen et al., 1970). In
the vertical, a σ-coordinate system and a finite-difference method to solve
equations are used. The equations are time integrated with a leap-frog
semi-implicit time stepping scheme with time filter (Hoskins and Simmons,
1975; Simmons et al., 1978; Robert, 1981; Asselin, 1972).

All subgrid unresolved processes, and their effects, are included by means
of parameterizations: surface fluxes (Roeckner et al., 1992), oceanic vertical
and horizontal diffusion (Roeckner et al., 1992), shortwave (Lacis and Hansen,
1974; Stephens, 1984) and longwave radiations (Sasamori, 1968; Stephens
et al., 1984), moist processes (Kuo, 1974), clouds (Slingo and Slingo, 1991),
dry convection are among the parameterized processes in this model.

The computation of physical processes is done on 5.6◦ and 2.8◦ longitude-
latitude reduced Gaussian grids, corresponding to the two horizontal spectral
resolution, T21 and T42. The model, as used in this thesis, has typically 10
atmospheric layers in the vertical up to 40 hPa and appropriate computational
time steps are 45 minutes for T21 and 30 minutes for T42. Surface boundary
condition data are provided from four different sources: the U.S. Geological
Survey Land Surface Parameter dataset (Hagemann et al., 1999) and the
GTOPO30 dataset (Tibaldi and Geleyn, 1981), MODIS satellite data (Rechid
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et al., 2009) and the AMIP-II sea ice cover and sea surface temperature
dataset (Taylor et al., 2000) for present day simulations of climate.

Sea surface temperatures can be simulated using a mixed-layer (ML)
ocean model (Lunkeit et al., 2011) with constant thickness (the default
value is 50 m). This ocean model consists of a prognostic equation for the
oceanic temperature at each ocean grid point, which depends on the net
atmospheric heat flux into the ocean. Ocean transport can be represented
by the heat convergence at the base of the ML (a so-called Q-flux or flux
correction) derived from climatology, but since the Q-flux approach may
not be suitable for climate studies under conditions far from present day,
I have not focused on this configuration in this thesis. Instead oceanic
transports are parameterized by the addition of a horizontal diffusion term
to the temperature equation:

∂TML

∂t
= Fa +Kh∇2TML (2.1)

where TML is the mixed-layer temperature, Fa describes the net energy
exchanges with the atmosphere and Kh is a horizontal temperature diffusion
coefficient (with a low starting default value of 1000 m2s−1, but I have tuned
this value in my experiments).

The sea ice distribution can either be prescribed by climatology or simu-
lated by a thermodynamic sea ice model based on the zero layer model by
Semtner (1976), which computes the thickness of sea ice from the thermo-
dynamic balance at the top and at the bottom of the sea ice layer. This
model assumes a linear temperature gradient in the ice and prevents ice
from storing heat. Sea ice is formed if the ocean temperature drops below
the freezing point (set to 271.25 K) and is melted if the ocean temperature
exceeds that value (Lunkeit et al., 2011).

2.2 The Large Scale Geostrophic ocean circulation
model

The Large Scale Geostrophic (LSG) ocean circulation model (Maier-Reimer
et al., 1993; Drijfhout et al., 1996) is based on the primitive equations in a
three-dimensional system, including the momentum equation, the continuity
equation describing conservation of water and salinity, the thermodynamic
equation with salinity. Please see the Large Scale Geostrophic Model report,
Maier-Reimer and Mikolajewicz (1992), for details. The model is based on
the observation that, since for a large scale ocean circulation model developed
for climate studies the characteristic spatial scales are large compared with
the internal Rossby radius of deformation and the characteristic temporal
scales are large compared with the periods of gravity modes and barotropic
Rossby wave modes (Hasselmann, 1982), the nonlinear terms in the Navier-
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Stokes equations can be neglected. Furthermore the vertical friction is
neglected and the hydrostatic and the Boussinesq approximations are applied
(Maier-Reimer and Mikolajewicz, 1992).

Turbulent motions are parameterized by means of a vertical oceanic
diffusion coefficient, Av, which is a rather simple function of the vertical
coordinate, z (Bryan and Lewis, 1979):

Av (z) = a∗ + arange arctan [λ (z − z∗)] (2.2)

where a∗ is the vertical diffusion coefficient at a reference depth z∗, arange

defines the considered depth range from the surface to the bottom, and λ is
the rate at which the vertical diffusion coefficient varies with depth near z∗.

A long time step of 10 days is permitted by the implicit time integration
scheme. The model has two staggered 5◦ x 5◦ horizontal grids (yelding an
effective grid resolution of 3.5◦), so that the variables of the model are defined
on a semi-staggered E-type grid (Arakawa and Lamb, 1977). The components
of horizontal velocity and the wind stress are defined on “vector points”,
while potential temperature, salinity, heat and freshwater fluxes, sea-surface
height, pressure and vertical velocity are defined on “scalar points”. The
depth of the scalar points is usually defined as the maximum depth of the
four surrounding vector points. The w-points (for the vertical component of
the velocity) are vertically located between scalar points (Maier-Reimer and
Mikolajewicz, 1992). By default, the number of oceanic vertical layers is 22,
extending from the surface down to an oceanic depth of 6000 m. The Levitus-
98 dataset (https://www.esrl.noaa.gov/psd/data/gridded/data.nodc.
woa98.html) provides temperature and salinity initial conditions.

2.3 Coupling the PlaSim model with LSG

PlaSim and LSG are coupled through the surface fluxes of momentum, heat
and fresh water. The atmospheric and oceanic grid interpolation ensures
global conservation of energy and water (Fraedrich, 2012; Lorenz, 2006).

The uppermost layer of the ocean regulates heat fluxes. The ML depth

of PlaSim ∆z
(Pl)
ML and the upper-layer thickness of LSG ∆z

(LSG)
ul are fixed

to 50 m. Since the LSG free surface elevation (ζ) is only 1% of the LSG
upper-layer thickness (50 m), ζ can be neglected.

At the beginning of each LSG time step ∆t(LSG) (10 days), the average
over ∆t(LSG) of the PlaSim ML temperature is imposed as the temperature

of the ocean upper layer T
(LSG)
ul ,

T
(LSG)
ul = T

(Pl)
ML =

(
∆t(LSG)

)−1
∫

∆t(LSG)
T

(Pl)
ML dt

(Pl) (2.3)

A full ocean step is performed in which LSG calculates the ocean heat flux
due to advective (advection, horizontal diffusion) and convective (vertical
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transport, vertical diffusion, convective adjustments) processes. The resulting
distribution of the upper layer temperature after ∆t(LSG) determines the
ocean heat flux, which is then given back to PlaSim. Equation. 2.3 is further
modified to take into account small differences in the ML depth used by
PlaSim and the upper layer of LSG and to correctly close the energy balance
(see Lorenz (2006) for details).

Sea ice in LSG is prescribed as calculated in the ML module of PlaSim.
When calculating over hundreds of years, sea ice grows unconstrained in some
isolated grid-points in the Antarctic ocean. In order to avoid the consequent
increase of salinity of open water in the upper layer of LSG, sea ice thickness
is forced not to exceed 9 m.

Furthermore, the atmospheric wind stress and the freshwater flux (with a
constant annual mean flux correction) are averaged over the coupling interval
before they are transferred to the ocean.
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Chapter 3

Tuning of oceanic parameters

In climate models, small-scale processes are introduced by means of parame-
terizations, which constitute an idealized and approximated representation
of real processes. Each parameterization introduces equations and parame-
ters, whose values are not always constrained by observations. The process
by which these parameters are estimated with the aim of reducing the dif-
ferences between the real world and the simulated world is called tuning.
Tuning is often not properly documented when analysing the abilities of a
climate model, because it is considered not interesting or a poorly justified
error-compensation technique. However, it represents a fundamental part in
climate modelling, as it consists of an optimization process that follows a
scientific approach and can provide useful information on climate processes
and model uncertainties. For example, if the value obtained by tuning for
a given parameter is outside the acceptable range, model developers may
consider changing the parameterization or developing a new one. One of the
most comprehensive definitions of climate model tuning is that provided by
Hourdin et al. (2017): “Once a model configuration is fixed, tuning consists of
choosing parameter values in such a way that a certain measure of the devia-
tion of the model output from selected observations or theory is minimized or
reduced to an acceptable range”. Generally, the tuning process involves the
parameterization of clouds, terrestrial albedo, ocean mixing, soil properties
and vegetation. The tuning of these parameters is performed by choosing one
or more model control variables, such as the global mean temperature or the
net radiation balance at the top-of-atmosphere (TOA), and minimizing their
difference with respect to observations. In addition to these trial-and-error
approaches, which focus on few parameters at a time, there are more complex
objective methods for tuning. Among these, the optimization of a cost func-
tion, which minimizes the difference between simulations and observations,
or the use of a Bayesian approach, which explicitly quantifies the sources of
uncertainty (Hourdin et al., 2017). The only currently available extensive
tuning effort of PlaSim is represented by the article by Lyu et al. (2018),
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who applied the adjoint method to calibrate the atmospheric component
of the model in the configuration with prescribed sea surface temperatures
(SSTs). Instead, in this thesis I have used two PlaSim configurations that
contain a dynamic ocean, PlaSim-ML and PlaSim-LSG. As shown in the
following paragraphs, the default values for some ocean parameters are not
optimized to reproduce a realistic climate, and in the PlaSim-LSG model the
AMOC collapses and climate at high latitudes is extremely cold. Therefore,
a preliminary tuning of two oceanic parameters (one in the ML ocean and
one in the LSG ocean), which I have found to be fundamental in reproducing
the observed reference climate, has been performed. The tuning method
used for PlaSim is quite simple and described below. I have performed a
series of perennial simulations (with fixed atmospheric CO2 concentration),
which differ only in the value of the oceanic parameter under investigation,
varied in an arbitrary range. The model takes some time to respond to the
climate forcing with a change in temperature, until it reaches an equilibrium
state. For each simulation, the zonal mean of near-surface air temperature
at equilibrium has been compared with the same variable obtained from
ERA-Interim reanalysis (Dee et al., 2011). Then the parameter value that
minimizes the difference between the simulated and observed temperatures
has been chosen. The choice of the CO2 level to be used for the simulations
has been based on the time period covered by the reanalysis dataset, which is
2005-2015. The CO2 concentration measured in 2010 (central year) is about
389 ppm. The Earth’s climate is however in a transient state, where the CO2

concentration is constantly increasing and the net imbalance at surface and
at TOA is about 0.5 Wm−2. If CO2 concentration stopped increasing, the
planet would warm up further, the emitted infrared radiation would increase
and the net balance at TOA and surface would tend towards equilibrium, i.e.
zero. Therefore, if we used the CO2 value of 2010 for perennial simulations,
the final global average temperature would be higher than that measured in
that year. To compensate for this effect, I decided to use a lower CO2 level
which can be obtained from the following equation, linking the radiative
forcing to the carbon dioxide concentration (see e.g. Myhre et al. (1998))

∆F = 5.35ln

(
C

C0

)
(3.1)

where ∆F is the radiative forcing change, C0 is the carbon dioxide
concentration in the reference year and C is the new concentration to be
used for perennial climate simulations. The resulting value is about 354
ppm, which is fixed in the simulations. The tuning work of PlaSim-ML (at
both resolutions) was carried out during my Master’s thesis (Angeloni, 2018)
and the main results are summarized in Section 3.1. Instead, the tuning of
PlaSim-LSG T21 in the version presented in this thesis was entirely carried
out during my PhD.
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3.1 Mixed-layer ocean horizontal diffusion

As described in Chapter 2, in the ML ocean it is possible to activate the
horizontal oceanic diffusion and to modify the coefficient Kh (see Eq. 2.1) that
parameterizes the oceanic motions. Using both resolutions, I have performed
a 60 year long run with Plasim-ML, dynamic sea ice and horizontal oceanic
diffusion, with the aim of testing the default value for the coefficient Kh, i.e.
1000 m2s−1 (Lunkeit et al., 2011). The model in this configuration reaches
an equilibrium state after about 30 years of simulation. Figure 3.1 compares
the zonal mean of near-surface air temperature for these two simulations
(red lines) with the ERA-Interim reanalysis (dashed black line), showing that
the simulated temperature is too cold (up to 20 K at high latitudes) and the
climate of the model is unrealistic.

Figure 3.1: Zonal mean of near-surface air temperature which is obtained using
the default (red lines) and the tuned (black lines) horizontal diffusion
coefficients in the ML ocean, with the T21 (left) and T42 resolution
(right). The ERA-Interim values are the black dashed lines. Anomalies
with respect to ERA-Interim are shown in the inner boxes

In order to obtain a more realistic near-surface air temperature, I have
performed several simulations (at both resolutions) each having a differ-
ent horizontal diffusion coefficient Kh which was varied in the range from
103 m2s−1 to 106 m2s−1 (not shown). Choosing a single value of Kh for the
entire globe leads to either a cold bias in the Northern Hemisphere (NH) or
a warm bias in the Southern Hemisphere (SH). This suggested the use of two
different diffusion coefficients, to be separately applied in the NH and SH:
Kh = 105 m2s−1 in the NH and Kh = 104 m2s−1 in the SH when using T21;
Kh = 105 m2s−1 in the NH and Kh = 3 · 104 m2s−1 in the SH when using
T42. This choice can be, to some extent, justified physically by the observed
differences in meridional heat transport between the two hemispheres, par-
ticularly the strong North-South asymmetry observed in the Atlantic basin).
Black solid lines in Fig. 3.1 show the results of these simulations, giving rise
to a simulated zonally-averaged near-surface air temperature in very good
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agreement with the reanalysis. The maximum difference between the model
results and the ERA-Interim values is about 3 K.

3.2 Large Scale Geostrophic ocean vertical diffu-
sion

The vertical oceanic diffusion coefficient in LSG ocean (see Eq. 2.2) is a
parameterization of turbulent motions. In order to explore the role of this
parameter, I have performed a series of 2000 year long runs with PlaSim-LSG
T21, using dynamic sea ice and a fixed atmospheric CO2 concentration. The
model in this configuration reaches an equilibrium state after about 1000
years of simulation. The original version of PlaSim-LSG has by default a
vertical diffusion profile with a surface value of Av = 0.3 · 10−4 m2s−1 and
a bottom value of Av = 2.6 · 10−4 m2s−1 (see Table 3.1, run 1), which in
my experiments leads to a complete shut-down of the maximum Atlantic
Meridional Overturning Circulation (AMOC) (North Atlantic Deep Water)
computed between 46-66◦N and below 700 m (see red lines in top panels of
Fig. 3.2). Using the default Av, the simulated near-surface air temperature
is too cold in the NH and too warm in the SH, with evident consequences
on simulated sea ice cover (red lines in bottom panels of Fig. 3.2). I have
explored other values suggested in the literature by performing other two
simulations, each having a different vertical diffusion profile. For run 2, I have
used the vertical diffusion coefficient profile suggested by Bryan and Lewis
(1979) with a surface value of Av = 0.3 · 10−4 m2s−1 and a bottom value of
Av = 1.3 · 10−4 m2s−1 (see Table 3.1 and yellow lines in Fig. 3.2). For run
3, I have used modified parameters which were found by Sciascia (2008) in
ocean-only tuning experiments, with a surface value of Av = 0.8 · 10−4 m2s−1

and a bottom value of Av = 1.3 · 10−4 m2s−1 (Table 3.1 and green lines in
Fig. 3.2).

Table 3.1: Vertical diffusion parameters used in PlaSim-LSG simulations. Each row
indicates parameters which describe a different Av profile, corresponding
respectively to the red, yellow, green and black lines shown in Fig. 3.2.

Av a∗[m2s−1] arange[m
2s−1] z∗[m] λ[m−1]

1) default 1.44 · 10−4 0.78 · 10−4 2800 3.6 · 10−3

2) Bryan and Lewis (1979) 0.7958 · 10−4 0.3345 · 10−4 2500 4.5 · 10−3

3) Sciascia (2008) 1.0479 · 10−4 0.1673 · 10−4 2500 4.5 · 10−3

4) tuned 0.8714 · 10−4 0.2843 · 10−4 2500 4.5 · 10−3
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Figure 3.2: Vertical diffusion profiles in PlaSim-LSG and maximum of the AMOC
between 46-66◦N and below 700 m (top). Zonal mean of near-surface
air temperature and sea ice cover (anomalies with respect to ERA-
Interim reanalysis and HadISST observations are in the inner boxes)
for different vertical diffusion profiles in the LSG ocean. Reanalysis
and observations are represented by black dashed lines.

Also in this case I have extracted from the model outputs the time
series of the maximum AMOC between 46-66◦N and below 700 m. The
thermohaline circulation collapses after about 300 years using the Av profile
2 (Bryan and Lewis, 1979), while it is active using profile 3 (Sciascia, 2008),
with values fluctuating from 17 to 27 Sv (these AMOC regimes will be
discussed in Chapter 6). The corresponding zonal means of near-surface air
temperature and sea ice cover (bottom panels in Fig. 3.2) show that the
outputs of the model are not in good agreement with the ERA-Interim and
HadISST datasets (black dashed line) using these two coefficients. In the
NH, the simulated temperature is negatively biased with the profile 2 (yellow
lines) due to the AMOC collapse, while using the profile 3 (green lines) the
PlaSim-LSG model maintains the oceanic circulation but overestimates (up
to 12 K) near-surface air temperatures from 40◦ to 90◦ in the SH.

In order to explore the contribution of the vertical diffusion at different
depths and to find a better profile, I have performed simulations changing the
surface and/or the bottom value of Av (not shown). This analysis has revealed
that the value of Av in the first 2000 m of the ocean plays an important role,
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while its variation below 2000 m has no significant impact. Based on these
results, I have chosen a vertical diffusion profile (run 4) with a surface value
of Av = 0.45 · 10−4 m2s−1 and a bottom value of Av = 1.3 · 10−4 m2s−1 (see
Table 3.1 and solid black lines in Fig. 3.2), which is the best compromise
between active AMOC (about 19 Sv) and lower temperature in the SH
in order to have as much as possible sea ice. In this configuration, the
zonally-averaged maximum warm bias in the Southern Ocean is 8 K.

In the attempt to reduce this bias, I have modified other parameters
(within physically acceptable limits), such as the cloud albedo, the oceanic
albedo and horizontal diffusion, the ozone concentration in the atmosphere,
but with a negligible improvement of the resulting climate, as described in
the following paragraph. Based on these results, I have concluded that the
simulation with profile 4 (black lines in Fig. 3.2) best reproduces temperature
estimates from reanalysis and I have chosen it for the following PlaSim-LSG
runs.

3.3 Exploration of atmospheric and oceanic param-
eters to reduce the Southern Ocean bias

As described in Section 3.2, temperatures simulated by the PlaSim-LSG
model have a good agreement with the observed values almost everywhere
but not in the latitudinal band between 40◦ and 90◦S, where temperatures
are overestimated and sea ice is highly underestimated. In the PlaSim
configuration with ML ocean, the ocean dynamics is parameterized in a
simple way by the horizontal diffusion coefficient Kh. Different values in
the two terrestrial hemispheres can be chosen for this coefficient, in order to
transport the heat amount needed to obtain realistic temperatures. In the
PlaSim configuration with ocean LSG, the dynamics is instead completely
described by the equations and it is difficult to make changes that affect
only a particular region of the Earth, in this case the one characterized by
the warm bias. However, some components of the Earth system or parts of
them are present only in some regions, and by changing the values of some
parameters associated with these components would allow to change the
climatic features mainly in that area. Therefore, I have explored the role
of some atmospheric and oceanic model parameters that have a particular
importance in the Southern Ocean, modifying the default value to reduce
the temperature bias. Since this analysis was carried out at the same time
as the tuning of the vertical oceanic diffusion coefficient Av (see Section 3.2)
and an optimal value had not yet been defined, all the studies presented in
this section have been made starting from the model configuration with Av

suggested by Sciascia (2008).

32



3.3.1 Oceanic horizontal diffusion coefficient

Oceans are not equally distributed in the two hemispheres of the Earth: in
the NH oceans cover about 60% of the surface area, while about 80% of the
SH is covered by oceans (Vallis, 2011). For this reason, I have explored other
oceanic parameters in addition to the vertical diffusion coefficient, in order
to find a parameter with a larger impact in the SH than in the NH. The first
parameter I have analysed is the horizontal diffusion coefficient Ah in LSG.
Following Bryan and Lewis (1979), the depth dependence of Ah is taken to
reflect the ocean’s tendency to diffuse more rapidly at the surface than at
the depth:

Ah (z) = (Ab − S) + (As −Ab) e
−0.002z (3.2)

where As and Ab are the surface and bottom values of Ah. I have
introduced the parameter S to shift the Ah coefficient towards lower values
while keeping the shape of the profile. The default values for these three
model parameters are As = 1000 m2s−1, Ab = 500 m2s−1, S = 0 m2s−1, as
shown in Table 3.2 (coefficient 2).

Table 3.2: Horizontal diffusion parameters used in PlaSim-LSG simulations. Each
row indicates parameters which describe a different Ah profile, corre-
sponding respectively to the blue, black, red, yellow, purple and green
lines shown in Fig. 3.3.

Ah As[m
2s−1] Ab[m

2s−1] S[m2s−1]

1 600 500 0
2 (default) 1000 500 0
3 5000 500 0
4 1000 500 250
5 1000 500 400
6 500 500 400

The black line in Fig. 3.3 shows the results of the simulation performed
with Plasim-LSG T21 keeping the default value for the horizontal diffusion
coefficient. For the sake of completeness, I want to specify that the differences
with respect to the green line in Fig. 3.2 are due to a different value of
the cloud albedo parameter (tswr1) discussed in Subsection 3.3.3. In order
to assess the impact of horizontal oceanic diffusion on the warm bias in
the SH, I have performed five 2000 year long runs modifying the Ah profile
(see Table 3.2 and Fig. 3.3): the coefficient sets 1 and 3 have the same
value at the ocean bottom and are respectively lower and higher than the
default coefficient at the surface; coefficient sets 4 and 5 have the same
shape as the default coefficient but are shifted towards lower values, in an
attempt to transport less heat towards the South Pole; finally, coefficient
set 6 has the same small value over the whole water column. Coefficient
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set 3 cannot be chosen as optimal parameter because it is associated to an
AMOC that is too intense compared to literature estimates (Srokosz et al.,
2012) and consequently the temperatures are higher than those obtained
with the default coefficient in both hemispheres. Coefficient set 6, on the
other hand, is too low and prevents the model from reaching equilibrium,
as I have verified by extending the simulation by 2000 years (not shown).
Due to the impossibility of determining the years at equilibrium, I have
not represented the zonal mean of near-surface air temperatures and sea ice
cover for coefficient set 6. Coefficient sets 1, 4 and 5 give similar results
to those of the simulation with default coefficients: although the AMOC is
more irregular and with larger oscillations, the zonal means are equal, with
an almost total absence of sea ice in the SH. The range of values I have
explored for the horizontal oceanic diffusion coefficient Ah is rather wide and
this analysis shows that it does not significantly affect the temperature, so
it cannot be modified to effectively reduce the warm bias in the Southern
Ocean. Therefore, I have kept the default profile for Ah.

Figure 3.3: Horizontal diffusion profiles in PlaSim-LSG and maximum of the
AMOC between 46-66◦N and below 700 m (top). Zonal mean of
near-surface air temperature and sea ice cover (anomalies with respect
to ERA-Interim reanalysis and HadISST observations are in the inner
boxes) for different horizontal diffusion profiles in the LSG ocean.
Reanalysis and observations are represented by black dashed lines.
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3.3.2 Sea ice albedo parameter

To explore the reason of high temperatures in the SH simulated in PlaSim-
LSG, I have computed the anomalies at the surface of shortwave and longwave
radiative components with respect to the observational dataset CERES EBAF
(Loeb et al., 2018). Figure 3.4 shows a strong anomaly in the Southern Ocean
in most panels: the shortwave radiation reflected at the surface is too low
and the longwave radiation emitted by the surface is too high. These issues
can be respectively attributed to the lack of sea ice (whose albedo is higher
than ocean albedo) and to the high temperature in that region. However,
other components can play an important role in determining radiative fluxes,
such as the albedo of the ocean, which is ice-free in the Southern Ocean, or
cloud albedo.

Figure 3.4: Anomalies of shortwave (top) and longwave (bottom) components of
radiative flux at the surface, computed with respect to the CERES
EBAF dataset.

Albedo for the free ocean in PlaSim is represented by the parameter albsea,
whose default value is 0.069 (black marker and line in Fig. 3.5). To identify
the relationship between the global near-surface air temperature T and
albsea, I have performed other two 2000 year long runs using albsea = 0.059
and albsea = 0.079 respectively. Figure 3.5 shows the near-surface air
temperature as a function of the ocean albedo.

35



Figure 3.5: Relationship between global mean of near-surface air temperature and
albsea (albedo for free ocean) in PlaSim-LSG (left). Zonal mean of
near-surface air temperature for different values of albsea.

From the linear regression I have obtained the following relationship:

T = −10 albsea+ 289.39 (3.3)

According to this equation, the ocean albedo in PlaSim-LSG should
be increased to 0.171 to have the same global mean temperature as the
ERA-Interim reanalysis. This value is too high compared to the range of
ocean albedo indicated in the literature. Furthermore the zonal mean of
near-surface air temperature in Fig. 3.5 shows that changing the ocean
albedo does not correspond to a significant difference in the Southern Ocean.
Therefore also this parameter has to be discarded in this study to reduce the
warm bias in PlaSim-LSG.

3.3.3 Cloud albedo parameter

In PlaSim, the effect of clouds on shortwave radiative fluxes can be imple-
mented using the parameterization following Stephens (1984) or prescribed
cloud properties (Lunkeit et al., 2011). In the parameterization of Stephens
(1984), which is the default setup, there is only cloud scattering in the spectral
range of visible and ultraviolet (range 1), while in the near infrared (range
2) both cloud scattering and absorption are parameterized. The backscatter
coefficient in range 1 depends on the parameter tswr1, which allows a tuning
of cloud albedo and by default is 0.077. As cloud albedo increases, a bigger
amount of shortwave radiation is reflected and less radiation reaches the sur-
face, whose warming is smaller. In order to explore the role of the parameter
tswr1 in the model, I have performed two 2000 year long runs increasing
tswr1 to 0.08 and 0.085 respectively, and identified the relationship between
near-surface air temperatures and tswr1 (see Fig. 3.6):

T = −102.04 tswr1 + 296.60 (3.4)
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From this equation can be derived tswr1 = 0.087, needed to obtain the
global mean temperature of ERA-Interim. Therefore I have performed a
new simulation with this value and represented the zonal mean of near-
surface air temperatures in Fig. 3.6. The parameter tswr1 is not suitable for
reducing the warm bias in the Southern Ocean: its change has decreased the
global mean temperature uniformly at all latitudes, decreasing the warm bias
between 40 and 90◦S but introducing a new bias, of opposite sign, between
the Tropics and at the North Pole. This is due to the fact that tswr1 acts
on model clouds in all atmospheric levels, while it may be more interesting
to isolate the effect of clouds in the warm bias region.

Figure 3.6: Relationship between global mean of near-surface air temperature and
tswr1 (tuning of cloud albedo in spectral range 1) in PlaSim-LSG
(left). Zonal mean of near-surface air temperature for different values
of tswr1.

PlaSim has low clouds in vertical levels 7-10, medium clouds in levels 5-6
and high clouds in levels 1-4, which are distributed on Earth as shown in
Fig. 3.7. The latitudinal band between 40 and 90◦S mainly includes medium
clouds and (to a lesser extent) low clouds. I have made two simulations
increasing the parameter tswr1 by 25% in levels 5-6 (medium clouds) and
7-10 (low clouds), respectively. Also with this method the impact on the
Southern Ocean temperatures is negligible (not shown): modifying the albedo
of medium clouds, for example, the near-surface air temperature decreases
only by 0.5 K in the SH but 2 K in the NH. Therefore, if tswr1 were further
increased it would lead to lower temperatures outside the Southern Ocean.
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Figure 3.7: Distribution of low (levels 7-10), medium (levels 5-6) and high (levels
1-4) clouds in PlaSim-LSG.

3.3.4 Prescribed cloud properties

The other parameterization for the effect of clouds on shortwave radiation is
represented by prescribed cloud properties, which in the simple parameteriza-
tion used in PlaSim provide fixed values for albedo and absorption coefficient
in each spectral range and depending on the atmospheric level. Figure 3.8
shows the difference in the zonal means of near-surface air temperatures
between the parameterization of Stephens (1984) with tswr1 = 0.087 (see
Subsection 3.3.3) and the prescribed cloud properties. The two different im-
plementations generate small temperature deviations from the ERA-Interim
reanalysis at all latitudes except in the Southern Ocean. Although prescribed
cloud properties seem to work better in the tropical zone, the differences are
small enough to maintain the default parameterization, following Stephens
(1984).

Figure 3.8: Zonal mean of near-surface air temperature for different parameteriza-
tion of the effect of clouds on shortwave radiation.
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3.4 Concluding remarks

The preliminary tuning has allowed to determine the optimal values for the
horizontal diffusion coefficient in PlaSim-ML and for the vertical diffusion
coefficient in PlaSim-LSG, which in the default version do not allow to
obtain realistic zonally-averaged near-surface temperature profiles. The main
problem that remains unresolved concerns the overestimation of temper-
atures in the latitudinal band between 40 and 90◦S in PlaSim-LSG. The
methods tested so far to reduce temperature bias in the ocean near the
South Pole have led to poor results, because in PlaSim-LSG the sensitivity
of temperature to the explored parameters is very weak. Similar issues
have also been found in some more complex global climate models (Schnei-
der and Reusch, 2016) and solutions are still under investigation. Recent
studies show that improvements in the representation of cloud microphysics
and aerosol-cloud feedbacks are required to tackle this bias (Hyder et al.,
2018). In PlaSim techniques involving parameterizations of atmospheric
aerosol cannot be applied as it does not contain an explicit representation of
them. There are also complicated indirect feedback associated with clouds
that are not included even in more complex models. Another possibility
to reduce the Southern Ocean bias may be related to the modification of
ozone concentration, which in PlaSim is prescribed using an annual cycle
with latitudinal dependence which is based on the ozone distribution by
Green (1964). However, some preliminary experiments have shown that the
model has a very small sensitivity to large variations of ozone (not shown).
More unrealistic methods could be tested, such as modifying the albedo of
all the clouds (not only medium or low) present in the critical latitudinal
band. However, in this PhD thesis I have not explored further possibilities
of temperature bias correction. The reference configuration of PlaSim-LSG,
which I have used for studies presented in the next chapters, includes only
one fundamental difference compared to the default version of the model:
the vertical oceanic diffusion coefficient Av (between 0.45 · 10−4 m2s−1 at the
surface and 1.3 · 10−4 m2s−1 at the bottom of the ocean). It is important to
keep in mind that the tuning of this model configuration still provides an
unresolved problem, which causes too warm temperatures and absence of
sea ice in the latitudinal band between 40 and 90◦S.
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Chapter 4

Model climate

The preliminary analysis of oceanic parameters described in Chapter 3
has allowed to define and tune three configurations of the model. The
first configuration consists of PlaSim coupled with the ML ocean, run at
T21 spatial resolution and with two different horizontal oceanic diffusion
coefficients, for the NH (Kh = 105 m2s−1) and for the SH (Kh = 104 m2s−1).
The second configuration is similar to the first one but the spatial resolution is
finer (T42) and with a different horizontal diffusion oceanic coefficient in the
SH (Kh = 3 · 104 m2s−1). In the third model set-up PlaSim is dynamically
coupled with LSG and the vertical diffusion coefficient Av in the ocean is
described by the function plotted in the first panel of Fig. 3.2 (black line)
and spans from 1.3 · 10−4 m2s−1 at the ocean bottom to 0.45 · 10−4 m2s−1

at the ocean surface. The characteristics of the mean climate under these
configurations have been explored and are presented in this chapter.

4.1 Poleward heat transport

The choice of oceanic parameters can be further justified by comparing,
in terms of poleward heat transport, the tuned configurations defined in
Chapter 3 with their respective reference configurations (available in the
current version of the model or suggested by literature). The reference
configurations of PlaSim-ML use a default value of horizontal diffusion in
the ML ocean (Kh = 103 m2s−1, see Chapter 3 Section 3.1) for NH and
SH. The reference configuration of PlaSim-LSG uses the vertical diffusion
profile in LSG suggested in literature by Bryan and Lewis (1979), which
describe an arctan-shaped profile ranging from 0.3 · 10−4 m2s−1 at the top
to 1.3 · 10−4 m2s−1 at the bottom of the ocean (see Chapter 3 Section 3.2).
Figure 4.1 shows the oceanic and atmospheric heat transport for all these
configurations. For comparison, an oceanic heat transport estimate using the
ERA-Interim reanalysis dataset is also included. Simulations performed using
tuned oceanic parameters (solid lines) reproduce the oceanic heat transport
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from reanalysis (black line) better than simulations with default parameters
(dashed lines). In particular, a remarkable improvement is observed in
PlaSim-ML, suggesting that the default horizontal diffusion coefficient is
too small to represent oceanic transport correctly. Using the new vertical
diffusion profile, the simulated transport in PlaSim-LSG is more similar to
the ERA-Interim transport in the NH and the difference compared to the
Bryan and Lewis (1979) profile can be attributed to the heat transported
by the AMOC (see Chapter 3 Section 3.2). The largest differences between
the model and the reanalysis occur in the SH, in particular between 30 and
50◦S. The atmospheric transport simulated using reference configurations
is bigger, therefore in a better agreement with the reanalysis, because it
balances the insufficient oceanic transport (which is almost absent in PlaSim-
ML). Instead new configurations simulate an atmospheric heat transport in
general too small. However, even when using default oceanic parameters,
the atmospheric transport is not perfectly reproduced in the NH, where it is
too high between 0 and 40◦N.

Figure 4.1: Zonally-averaged annual mean oceanic and atmospheric heat transport
as a function of latitude for reference (dashed lines) and tuned (colored
solid lines) coupled configurations of PlaSim. The reference configu-
ration of PlaSim-ML is the original version with default horizontal
diffusion coefficient, the reference configuration of PlaSim-LSG has
the vertical diffusion profile suggested by Bryan and Lewis (1979).
The ERA-Interim values are the black lines.

4.2 Simulated climate

Figure 4.2 compares near-surface air temperature, sea surface temperature,
sea ice cover, precipitation and TOA net radiation anomalies of PlaSim-
ML and PlaSim-LSG against satellite observations and the ERA-Interim
reanalysis dataset, as summarized in Table 4.1. In particular the average
over the last 30 years of the perennial simulation for PlaSim-ML and over
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the last 1000 years for PlaSim-LSG was compared with the average over the
period 2005-2015 for the observational and reanalysis datasets.

Table 4.1: Observational and reanalysis datasets used in this paper.

Variable Dataset Period Horizontal resolution [◦]

Near-surface air temperature ERA-Interim (Dee et al., 2011) 2005-2015 0.75
Sea surface temperature HadISST (Rayner et al., 2003) 2005-2015 1
Sea ice cover HadISST (Rayner et al., 2003) 2005-2015 1
Precipitation GPCP (Adler et al., 2003) 2005-2015 2.5
Radiation ERA-Interim (Dee et al., 2011) 2005-2015 0.75
AMOC Literature - -

In general, simulated near-surface air temperatures are warm biased
over the land pixels and cold biased over the ocean pixels. Near-surface
air temperatures simulated with PlaSim-ML at T21 are warm biased in
Canada and Greenland and cold biased in the Barents Sea, while Antarctica
shows both cold and warm anomalies. These anomalies are smaller using the
T42 resolution. With PlaSim-LSG the cold anomaly over the Barents Sea
increases and a large warm bias (up to 20 K in some pixels) over the Southern
Ocean is a very clear feature in this simulation. A similar pattern is observed
in sea surface temperature anomalies, which show too warm temperatures on
the western coast of America and Africa. Temperature anomalies in the polar
regions are consistent with the simulated sea ice cover. Using PlaSim-ML at
T21, the model simulates too little sea ice over the Arctic Ocean and too
much sea ice over most of the Southern Ocean. With PlaSim-ML at T42
sea ice is underestimated in both hemispheres but it is overestimated in the
Barents Sea. Finally, PlaSim-LSG leads to a strong negative sea ice anomaly
in the Southern Ocean, where sea ice is almost completely absent due to the
warm bias. The simulated precipitation has a relatively good agreement with
the observational data, except for the positive anomaly (about 10 mm/day)
in the equatorial region using the model with the ML ocean. PlaSim-LSG
better correlates with the observed precipitation than PlaSim-ML. Finally,
TOA net fluxes show a negative anomaly in the tropics and subtropics,
where the upward radiation is overestimated, and a positive anomaly in the
mid-latitude and polar zones, where the upward radiation is underestimated.
Furthermore, a positive anomaly of net radiation is observed on the western
coast of America and Africa, consistently with the warm biased near-surface
air temperatures.
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Figure 4.2: Difference between simulated and observed near-surface air tempera-
ture, sea surface temperature, sea ice cover, precipitation and TOA net
radiation for the three selected configurations of the model: PlaSim
with the ML ocean and T21 (left), PlaSim with the ML ocean and
T42 (middle), PlaSim with the LSG ocean and T21 (right).
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4.3 Energy balance

For any coupled climate model to reach a stationary stable state, the TOA
and the surface energy balances should be close to zero (neglecting geothermal
heating) since the model should present no significant internal energy sources
or sinks. Table 4.2 compares the global energy balance resulting from our
simulations (performed using new oceanic parameters defined in Chapter 3)
with estimates from Stephens et al. (2012). While the former are the results
of perennial model simulations with PlaSim, the latter refers to an observed
climatology calculated over the time period 2000-2010 during a period of
climate change, so it presents positive TOA and surface radiative net fluxes.

Table 4.2: TOA and surface energy fluxes in Wm−2. Latent heat flux also includes
the snow contribution. Precipitation-evaporation (P-E) imbalance is
reported as latent heat.

PlaSim-ML T21 PlaSim-ML T42 PlaSim-LSG T21 Stephens et al. (2012)

TOA net shortwave 231.5 235.8 232.8 240.2
TOA net longwave -232.3 -236.0 -232.9 -239.7
TOA energy budget -0.76 -0.11 -0.14 0.6
Surface net shortwave 163.2 169.4 164.1 165
Surface net longwave -62.8 -62.4 -63.0 -52.4
Sensible heat flux -18.9 -20.8 -18.3 -24
Latent heat flux -82.0 -86.5 -82.7 -88
Surface energy budget -0.52 -0.23 0.06 0.6
TOA-surface net -0.24 0.12 -0.20 0
P-E imbalance -2.6·10−3 -2.3·10−3 -1.9·10−3 -

The second-to-last row of Table 4.2 shows the difference between the
TOA and the surface net fluxes (which should be zero on average), indicating
that none of the three PlaSim configurations conserves energy perfectly in
the atmosphere. PlaSim-ML (with T21 resolution) and PlaSim-LSG config-
urations provide a negative balance indicating that the model atmosphere
presents an internal energy source corresponding to 0.24 and 0.20 Wm−2,
respectively. The PlaSim-ML (T42) configuration, on the other hand, gives
rise to a positive balance (there is a consumption of energy, corresponding to
0.12 Wm−2, in the model atmosphere). We tested if this imbalance is caused
by a missing conservation of water mass in the model atmosphere (possibly
to transport errors), but the absolute value of the global average freshwater
flux P-E is smaller than 10−4 mm/day, equivalent to a very small latent
heat flux smaller than 2.6 · 10−3 Wm−2 for all tested PlaSim configurations,
indicating that water is well conserved in the PlaSim atmosphere. Also, all
ML simulations present a negative net energy flux at the surface, suggesting
some non-conservation of energy (equivalent to an energy production) in
the ML ocean. Both the TOA-surface imbalance and the net surface flux
bias are reduced in the T42 ML simulation, suggesting that these biases
may be resolution-dependent. Overall these energy imbalances are small
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compared to those reported for CMIP5 and CMIP3 models (which could
exceed 1 W/m2 in magnitude at TOA (Mauritsen et al., 2012)).

4.4 Historical runs and future projections

After examining some characteristics of the simulated present climate and
verified that most variables are well reproduced, the three PlaSim configu-
rations have been used to perform transient simulations from 1850 to 2100,
consistently with similar studies on the CMIP5 models and EMICs that are
presented in the AR5 of IPCC (2013), with the aim of assessing the ability
of the model to reproduce the past and future climate. In these experiments,
the CO2 forcing is prescribed as a time series of global mean concentration.
This CO2 concentration is based on measured values for past years and on
several Representative Concentration Pathways (RCPs) for future projec-
tions, i.e. possible trajectories of carbon dioxide which have been used for
climate modeling and research in the IPCC AR5. Left panel in Fig. 4.3
shows the global mean of near-surface air temperatures anomaly (computed
with respect to 1961-1990), which is obtained with the three configurations of
PlaSim using for the future two scenarios related to an increase in radiative
forcing of 4.5 Wm−2 (RCP 4.5) and 8.5 Wm−2 (RCP 8.5). Temperatures
simulated by PlaSim from 1850 to the present-day have been compared with
the HadCRUT observational dataset (Morice et al., 2012), whose values
are represented by the black line. The configurations with the ML ocean
start from lower pre-industrial temperatures and have a larger tempera-
ture increase than those observed in the HadCRUT dataset or simulated
with PlaSim-LSG. This last configuration is the one that best reproduces
temperature anomalies, despite being characterized by an overestimation of
temperatures in the SH, as described in this chapter. Future projections can
instead be compared with temperature anomalies (relative to the same period
1961-1990) which are obtained from experiments with CMIP5 models for
four possible CO2 concentration scenarios, including 4.5 and 8.5 (right panel
in Fig. 4.3). Also in this case, the PlaSim-LSG configuration provides more
compatible results with other climate simulations than the configurations
of PlaSim with the ML ocean, which give too fast temperature increase for
both scenarios, with anomalies almost double with respect to those of CMIP5
models at the end of this century. In the PlaSim-ML configurations, the
ocean is represented by a shallow layer with a small heat capacity: for this
reason, the mixed-layer ocean reacts more quickly to changes in boundary
conditions (such as increased CO2) than a deep ocean like LSG or the real
ocean. In this way, the system rapidly reaches an equilibrium state, con-
tributing to the fast temperature increase that characterizes the PlaSim-ML
configurations. Furthermore, the fast warming of a shallow ocean has an
impact on the sea-ice feedback, which is amplified and further contributes to
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the temperature increase.

Figure 4.3: Near-surface air temperature anomalies relative to the 1961-1990
mean, obtained using for each of the three PlaSim configurations
two different Representative Concentration Pathways, RCP 4.5 (solid
line) and RCP 8.5 (dotted line). The black line represents the Had-
CRUT observational dataset (left). Global mean annual temper-
ature anomalies computed with respect to the period 1961-1990,
obtained from experiments using CMIP5 models for four different
possible CO2 concentration scenarios, including RCP 4.5 and RCP
8.5 (right; image processed by Ed Hawkins, University of Reading,
https://www.climate-lab-book.ac.uk.)

The amount of global surface warming that occurs in response to an
increase of atmospheric CO2 concentration is linked to the notion of climate
sensitivity. In the study of climate models, there are several methods for
estimating their climate sensitivity. The main measures of how the system
responds to a specific forcing change are the equilibrium climate sensitivity
(ECS), the amount of warming that follows an abrupt CO2 doubling, and
the transient climate response (TCR), the amount of warming that occur
when the CO2 is gradually doubled with an increase of 1% each year. In
the following chapter, the PlaSim response to an increase in CO2 forcing is
estimated using the definition of ECS.

The results of this section are in line with those obtained and analysed
in Chapter 5, which demonstrates that the ECS value in the PlaSim-ML
configurations is higher than the value estimated in PlaSim-LSG. These
considerations should be taken into account when using PlaSim for future
climate simulations, especially in the study of exoplanetary climates for
which the ML ocean can only be used because the LSG ocean is specific for
the representation of the terrestrial dynamics.
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Chapter 5

Equilibrium climate
sensitivity

5.1 The Gregory method

Equilibrium climate sensitivity (ECS) is defined as the equilibrium change
in global mean surface air temperature after an instantaneous doubling of
atmospheric CO2 relative to pre-industrial levels (IPCC, 2013). Climate sen-
sitivity can be diagnosed following the approach by Gregory et al. (2004) and
here I have applied this method to PlaSim-ML and PlaSim-LSG simulations.
When a radiative forcing R (Wm−2) is applied to the model, the model
responds with a change in the net TOA radiative flux ∆F (Wm−2) and, in
order to restore the radiative equilibrium, the global mean near-surface air
temperature, ∆T , changes, until ∆F is returned to zero. R, ∆F and ∆T
are related by the following equation:

∆F = R− λ∆T (5.1)

where λ (Wm−2K−1) is referred to as climate feedback parameter. If
∆F is assumed to be a linear function of ∆T , both the radiative forcing
and the feedback parameter can be diagnosed by linear regression: R is the
intercept at ∆T = 0 and λ is the slope (multiplied by -1). The equilibrium
temperature change can be estimated extrapolating the heat balance to
equilibrium, that is ∆F = 0 and ∆T eq = R/λ. If the forcing is a doubling of
CO2, ∆T eq is the equilibrium climate sensitivity by definition.

I have performed a first set of simulations using dynamic sea ice (subscript
d in subsequent text): the first part of each simulation is a perennial run
with pre-industrial boundary conditions, so the CO2 concentration in the
atmosphere is set to 285 ppm (1xCO2); the second part is a perennial run in
which the CO2 concentration is instantaneously increased at 1.5, 2, 3 or 4
times the value of the pre-industrial simulation. These simulations were made
with the three tuned configurations of PlaSim (whose oceanic parameters
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are defined in Chapter 3). Each half-simulation is 100 years long when using
PlaSim-ML and 2000 years long when using PlaSim-LSG. The yellow and
the red lines in Fig. 5.1 show the change in net TOA radiative flux versus
the change in global mean near-surface air temperature for each dynamic-ice
simulation with doubled (2xCO2) and quadrupled (4xCO2) atmospheric CO2.
Changes are computed with respect to the corresponding 1xCO2 part of the
simulation.

Figure 5.1: Relationships between ∆F , the change in net TOA radiative flux, and
∆T , the change in global mean near-surface air temperature, after an
instantaneous doubling and quadrupling of CO2, using dynamic or
prescribed sea ice. Data points are global and annual means simulated
with PlaSim-ML T21, PlaSim-ML T42 and PlaSim-LSG T21. Lines
represent ordinary least squares regression fits.

Table 5.1: Key values derived from simulations performed using the tuned con-
figurations of PlaSim (defined in Chapter 3) and four different CO2

level increase factor: climate feedback parameter λd, radiative forcing
Rd, equilibrium temperature ∆T eq

d , pre-industrial (IPI
d ) and final (Id)

sea ice area at equilibrium for the dynamic-ice simulations; climate
feedback parameter λp, radiative forcing Rp, equilibrium temperature
∆T eq

p and sea ice area for the prescribed-ice simulations; sea ice feed-
back parameter λi, computed as the difference between λd and λp. The
reported uncertainties are standard deviations.

PlaSim CO2 λd Rd ∆T eq
d IPI

d Id λp Rp ∆T eq
p Ip λi = λd − λp

config. factor [Wm−2K−1] [Wm−2] [K] [1012m2] [1012m2] [Wm−2K−1] [Wm−2] [K] [1012m2] [Wm−2K−1]

ML T21

1.5 0.58 ± 0.16 2.10 ± 0.55 3.64 ± 0.20 29.81 15.64 1.08 ± 0.62 2.22 ± 0.85 2.05 ± 0.40 29.65 -0.50 ± 0.64
2 0.61 ± 0.10 3.82 ± 0.56 6.23 ± 0.19 29.81 8.40 1.22 ± 0.36 4.22 ± 0.89 3.46 ± 0.32 29.65 -0.60 ± 0.38
3 0.71 ± 0.07 6.47 ± 0.59 9.16 ± 0.16 29.81 3.24 1.20 ± 0.22 6.87 ± 0.91 5.73 ± 0.33 29.65 -0.49 ± 0.23
4 0.84 ± 0.06 8.91 ± 0.64 10.65 ± 0.13 29.81 1.99 1.18 ± 0.17 8.62 ± 0.90 7.31 ± 0.33 29.65 -0.34 ± 0.19

ML T42

1.5 0.79 ± 0.19 2.55 ± 0.59 3.23 ± 0.13 18.15 8.61 1.18 ± 0.56 2.55 ± 0.83 2.16 ± 0.32 18.06 -0.39 ± 0.59
2 0.81 ± 0.11 4.39 ± 0.60 5.45 ± 0.13 18.15 4.12 1.18 ± 0.33 4.34 ± 0.85 3.69 ± 0.34 18.06 -0.37 ± 0.35
3 0.81 ± 0.07 6.90 ± 0.61 8.51 ± 0.13 18.15 0.80 1.17 ± 0.21 7.13 ± 0.87 6.08 ± 0.34 18.06 -0.36 ± 0.22
4 0.86 ± 0.06 8.83 ± 0.62 10.26 ± 0.12 18.15 0.39 1.29 ± 0.18 9.22 ± 0.90 7.17 ± 0.30 18.06 -0.43 ± 0.19

LSG T21

1.5 0.59 ± 0.07 1.58 ± 0.16 2.68 ± 0.06 11.42 6.92 0.49 ± 0.11 1.32 ± 0.15 2.71 ± 0.28 11.44 0.10 ± 0.13
2 0.65 ± 0.05 2.78 ± 0.17 4.26 ± 0.06 11.42 5.86 0.64 ± 0.11 2.68 ± 0.27 4.19 ± 0.31 11.44 0.02 ± 0.12
3 0.70 ± 0.03 4.96 ± 0.19 7.07 ± 0.06 11.42 3.55 0.77 ± 0.09 4.91 ± 0.36 6.35 ± 0.27 11.44 -0.07 ± 0.10
4 0.75 ± 0.03 6.64 ± 0.20 8.88 ± 0.06 11.42 1.58 0.84 ± 0.07 6.70 ± 0.39 7.97 ± 0.25 11.44 -0.09 ± 0.08
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I have derived the estimates of Rd (intercept) and λd (slope multiplied by
-1) through ordinary least squares regression and I have computed ∆T eq

d =
Rd/λd for all the PlaSim configurations (Table 5.1). The confidence intervals
are obtained as standard deviation on the parameter estimates and error
propagation. The resulting ECS for dynamic sea ice is 6.23 K using PlaSim-
ML T21, 5.45 K using PlaSim-ML T42 and 4.26 K using PlaSim-LSG T21,
using the results from the CO2 doubling experiments. In Fig. 5.2 these
results are compared with values from other models. In particular, the grey
boxplots give an indication of the distribution of CMIP5 values (the whiskers
extend to the highest and lowest data) discussed in Andrews et al. (2012).
Radiative forcing and climate feedback values of PlaSim are within the
range estimated for CMIP5 models, but only the PlaSim-LSG coupled model
gives an equilibrium climate sensitivity within the CMIP5 range (2.1-4.7 K),
though close to the upper limit. The orange boxplot represents the ECS
values found in other EMICs (Pfister and Stocker, 2017), which are in good
agreement with CMIP5 models but have a wider range of values (1.5-5.5 K).
Finally, the blue boxplot shows the most recent range of ECS for CMIP6
models (1.8-5.6 K) (Zelinka et al., 2020).

Figure 5.2: Radiative forcing R, climate feedback λ and equilibrium climate sen-
sitivity ECS (in Wm−2, Wm−2K−1 and K, respectively) values for
PlaSim-ML (T21 and T42) and for PlaSim-LSG (T21). Boxplots show
the corresponding ranges of values found in CMIP5 models (Andrews
et al., 2012) and estimates of ECS values from EMICs (Pfister and
Stocker, 2017) and CMIP6 models (Zelinka et al., 2020).

With respect to CMIP5, some components of CMIP6 models have been
improved, for example low clouds and shallow convection are better repre-
sented (Voldoire et al., 2019) or a more advanced treatment of aerosol is
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included (Wyser et al., 2020), and stronger positive cloud feedbacks from
decreasing extra-tropical low cloud coverage and albedo have contributed
to increased ECS in some of them (Zelinka et al., 2020; Meehl et al., 2020).
Since PlaSim does not include such a level of accuracy (for example, it has
no parameterization for aerosol-cloud feedbacks as seen in Chapter 3 Section
3.3), its high climate sensitivity cannot be related to these processes. These
results can also be compared with an ECS estimate for a modified PlaSim-ML
configuration at T21 in Ragone et al. (2016), where the very high value of 8.1
K was reported and attributed to the removal of the diurnal and seasonal
cycles in the model. Please notice also that, while EMIC ECS values reported
in Fig. 5.2 were obtained, like for PlaSim, from CO2 doubling experiments,
the reported CMIP5 and CMIP6 results were obtained dividing by two the
results from 4xCO2 experiments. As shown in Table 5.1 for PlaSim and
as also reported in Pfister and Stocker (2017) for other EMICS, the ECS
values obtained from quadrupling experiments may be lower than those
obtained from doubling experiments, although often used without distinction
as estimates of ECS in the literature.

The difference between the two PlaSim-ML configurations and the PlaSim-
LSG configuration can partly be explained by features of the ocean circulation.
Using PlaSim-LSG, the AMOC is active (about 20 Sv) in the pre-industrial
and 1.5xCO2 runs, but it collapses (less than 5 Sv) in the 2xCO2, 3xCO2

and 4xCO2 simulations. As shown in Fig. 3.2, global average temperatures
are affected significantly by the state of AMOC, with a cooling of up to 1
K in runs with a shutdown of AMOC. As a consequence, the equilibrium
climate sensitivity in such runs is smaller than it would be if the AMOC had
remained active. Unlike PlaSim-LSG and CMIP models, the PlaSim-ML
configurations does not include an AMOC representation, so it cannot weaken
and this could contribute to the reported higher ECS.

5.2 The role of sea ice and ocean heat transport

The relatively high values of ECS found for PlaSim are related to low
values of the feedback parameter λd. I have determined that an important
contribution can be traced also to elevated values in magnitude of the ice-
feedback parameter, as I have assessed following the approach of Caldeira
and Cvijanovic (2014). To this end, I have performed a second set of
simulations, similar to the first one but with prescribed sea ice (subscript p):
twelve climatological monthly ice extents were derived from the pre-industrial
dynamic-ice simulation and were prescribed in the model. The cyan and
the blue lines in Fig. 5.1 show the change in net TOA radiative flux versus
the change in global mean near-surface air temperature for each prescribed-
ice simulation with doubled and quadrupled CO2 concentration. Using
prescribed sea ice, the change in TOA radiative flux at equilibrium is not
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zero (see Fig. 5.1) because some energy has to be removed from or added to
the system in order to maintain the climatological sea ice thickness (Caldeira
and Cvijanovic, 2014). Also in this case, I have computed λp (slope multiplied
by -1) through ordinary linear least squares regression for all the PlaSim
configurations (Table 5.1). The sea ice feedback parameter λi (last column of
Table 5.1) is negative in my sign convention and is obtained subtracting the
feedback parameter of dynamic-ice simulations from that of prescribed-ice
simulations. These results can be compared with the slab-ocean experiments
performed by Caldeira and Cvijanovic (2014) with the National Center for
Atmospheric Research’s Community Earth System Model (CESM): they
report a λi of -0.21 ± 0.19 Wm−2K−1 in the doubling CO2 experiments and
-0.30 ± 0.06 Wm−2K−1 in the quadrupling CO2 experiments. The feedback
parameter of sea ice in the PlaSim-ML configurations is significantly higher
in absolute value than in CESM, suggesting that sea ice plays an important
role in determining the ECS of the model. However, this contribution also
depends on the extent of sea ice either in the pre-industrial climate (see IPI

d

in Table 5.1) or in the future climates (see Id). Indeed, the sea ice area is
very different in the three configurations of PlaSim. For example, in the
PlaSim-ML model at T42 the pre-industrial sea ice area is less extended
than in the PlaSim-ML model at T21, so the sea ice contribution to ECS is
smaller. Furthermore, I recall that sea ice is almost completely absent in the
Southern Ocean using PlaSim-LSG, therefore the sea ice contribution to ECS
is reduced compared to the configurations with the ML ocean. A factor which
also contributes to the low values of λi in the PlaSim-LSG configuration is
the fact that, in the pre-industrial simulation with prescribed sea ice, the
AMOC in the LSG ocean model collapses to very low values after about
1000 years, while using the dynamic sea ice treatment the AMOC is strong
in the pre-industrial climate. The AMOC collapse in the prescribed-ice
simulation makes the pre-industrial global temperature lower (as reported
above), the slope λp smaller and the difference λi closer to zero than it
would be with an active AMOC. Therefore in the PlaSim-LSG model the
feedback parameter λi, obtained subtracting dynamic-ice from prescribed-ice
simulations, includes not only the sea ice contribution but also the AMOC
effect, which is positive in this sign convention.

The high impact of sea ice related feedbacks in the model cannot be linked
to a too high sea ice albedo in PlaSim: in fact I have compared the average
sea ice albedo of PlaSim and that of EC-Earth, a global state-of-the-art
climate model with higher complexity and spatial resolution (Hazeleger et al.,
2012; Döscher et al., 2021), which has an ECS of 4.3 K in the newer model
version (Wyser et al., 2020). The average sea ice albedo of PlaSim-ML T21
is 0.58 for pixels with more than 99% area coverage, lower than the average
sea ice albedo of EC-Earth (0.80). Since a smaller sea ice albedo weakens the
ice-albedo feedback, I can conclude that the strong impact of dynamic sea ice
in PlaSim is not likely due to the ice albedo parameterization employed in
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the model. In fact, I have performed a series of climate sensitivity runs with
PlaSim (not shown) in which I have modified maximum sea ice albedo and
its dependence on temperature, without finding significantly lower values of
the ECS.

A confusing factor between the different model configurations is the fact
that they are all characterized by different average sea ice extents in the
starting pre-industrial experiments. To better compare the impact of the
sea ice feedback, I have used the same approach as Caldeira and Cvijanovic
(2014), comparing the dynamic-ice and prescribed-ice simulations, to define
a measure of the radiative forcing associated with changes in sea ice area.
An equivalent formulation with new symbols is:

∆Fice = λp
(
∆T eq

d −∆T eq
p

)
(5.2)

which represents a measure of the radiative forcing that should be provided
to prescribed-ice experiments in order to undergo the same global mean near-
surface air temperature change as in dynamic-ice experiments. Figure 5.3
shows the sea ice radiative forcing versus the relative sea ice area (computed
as the difference between Ip and Id, see Table 5.1): the coupled configurations
of PlaSim with tuned oceanic parameters (blue, red and green lines) are
compared with CESM, used in Caldeira and Cvijanovic (2014) (black dashed
line).

Figure 5.3: Sea ice radiative forcing (see Eq. 5.2) as a function of the relative sea
ice area (prescribed-ice area minus dynamic-ice area, see Table 5.1).
Values are obtained by estimating the radiative forcing that should be
provided to prescribed-ice experiments in order to undergo the same
global mean near-surface air temperature change as in dynamic-ice
experiments.
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The configurations of PlaSim with the ML ocean, in which the oceanic
transport is parameterized by a horizontal diffusion term, show a radiative
forcing associated with changes in sea ice area which is significantly higher
than CESM, consistent with the higher absolute value of λi which I have
reported above. One important difference between PlaSim experimental
results and the CESM results is that the latter experiments used a ML ocean
with a prescribed ocean heat flux (Q-flux). In order to verify the role played
by the specific parameterization of oceanic transport, I have also performed
a series of CO2 increase experiments with dynamical and prescribed ice,
using PlaSim-ML T21 with a Q-flux correction instead of horizontal diffusion
in the ML ocean. The Q-flux was derived by the model from present-day
Atmospheric Model Intercomparison Project (AMIP) experiment forced with
observed sea surface temperatures. The ECS of this configuration is 3.62 K,
which is similar to the value of CESM (3.42 K) and smaller than the ECS of
PlaSim-ML T21 with horizontal diffusion (6.23 K) and the ECS of PlaSim-
LSG (4.26 K). These results are consistent with Danabasoglu and Gent (2009),
who found that the ECS of the Community Climate System Model version
3 (CCSM3) using the full-depth ocean model is slightly higher than using
the mixed-layer ocean model with a monthly varying heat flux transport,
constructed to produce a realistic sea surface temperature. Also Danabasoglu
and Gent (2009), however, highlight that the reduction in sea ice resulting
from increased CO2 is important in determining the mixed-layer ocean and
full-depth ocean estimates of ECS. Figure 5.3 shows that the configuration
of PlaSim-ML T21 with the flux correction (black solid line) gives similar
results to CESM in terms of ice forcing, suggesting that the specific choice of
parameterization of oceanic heat transport affects the sea ice radiative forcing
and as a consequence the ECS of the model. To further explore this point,
Fig. 5.3 also shows three additional simulations which use a single horizontal
diffusion coefficient for both the hemispheres, Kh = 105 m2s−1 (yellow line),
Kh = 104 m2s−1 (cyan line) and Kh = 103 m2s−1 (magenta line). The first
and the second coefficient are those used for the NH and the SH in the
PlaSim-ML (T21) tuned configuration (see Chapter 3 Section 3.2). We can
notice that PlaSim-LSG and PlaSim-ML with the lowest diffusion coefficient
(Kh = 103 m2s−1) have a slope similar to CESM, while using a higher ocean
diffusion, the effective changes in radiative forcing associated with changes
in sea ice area increase for increasing horizontal oceanic diffusion. Therefore
ultimately the equilibrium climate sensitivity of the PlaSim-ML model using
a diffusive term to represent heat transport, depends crucially also on the
choice of Kh.
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5.3 Concluding remarks

Climate sensitivity experiments with PlaSim have revealed that details of the
oceanic heat transport play a fundamental role in determining the ECS of the
model. The first important factor is that the configuration of PlaSim with
the ML does not include an AMOC parameterization, so it cannot weaken
or collapse with a cooling effect. Furthermore, when using a diffusive term
in the ML with values of the horizontal diffusion parameter which allow for
a realistic meridional temperature distribution in present-day experiments,
changes in average sea ice area have a much stronger radiative impact
compared to very low values of the diffusion coefficient or to using a Q-flux
approach to represent transport. This fact reveals that sea ice feedbacks
may be overestimated in the configurations using a ML with a diffusive
transport parameterization. Since using a diffusive term may be preferable
to a fixed flux correction in some cases for studying climate responses far
from present-day conditions (such as paleoclimatic or exoplanetary studies),
this impact may have to be taken carefully into account.
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Chapter 6

Atlantic MOC variability

The Atlantic Meridional Overturning Circulation (AMOC) is one of the major
ocean currents in the Atlantic Ocean. It transports warm and salty water
from the tropics northward in the upper layers, balanced by a southward
transport of cooler and deep water. Paleoclimate data and model simulations
show that AMOC is continuously evolving and its regime transitions have
a significant impact on the European and global climate. Recently, there
has been an increasing interest in the study of the AMOC following the
hypothesis that it has slowed down in the last century, a theory supported
by paleoclimatic reconstructions (Rahmstorf et al., 2015) and recent direct
observations (Robson et al., 2014). Therefore, climate research is currently
focusing on the future behaviour of the AMOC and on the existence of
associated tipping points, whose crossing could lead to abrupt and irreversible
climate change. In some regions, particularly Europe, the impacts of AMOC
decline have been recently analysed in a simulation ensemble from CMIP5
and CMIP6 and discussed in (Bellomo et al., 2021), a study in which I
participated during my PhD period. In Section 3.2 I have explored some
values of the oceanic vertical diffusion coefficient in PlaSim-LSG and showed
how the model AMOC assumes different regimes depending on the chosen
value (see Fig. 3.2). The model constitutes a simplified version of the real
world, in which ocean phenomena such as thermohaline circulation and
turbulent motions are represented by parameterizations. However, although
the behaviour of the AMOC is determined by much more complex mechanisms
in the real world, it may be useful for their understanding to identify the
mechanisms linking the regimes of this part of the ocean circulation with
other model variables.

6.1 AMOC regimes in PlaSim-LSG

To extend the results obtained in Section 3.2, I have explored the dependence
of AMOC regimes on two parameters of PlaSim-LSG, the vertical oceanic
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diffusion coefficient Av and the atmospheric CO2 concentration, analysing
two sets of 2000-year simulations (Fig. 6.1): in the first set the atmospheric
CO2 is fixed to 285 ppm (pre-industrial level) and each run has a different
Av, which is varied only at the surface in the range from 0.1 · 10−4 m2s−1 to
1.3 · 10−4 m2s−1 (it is fixed to 1.3 · 10−4 m2s−1 at the ocean bottom). In the
second set the surface diffusion coefficient is fixed to Av = 0.8 · 10−4 m2s−1

while the CO2 concentration changes in the range from 114 ppm (0.4xCO2)
to 1140 ppm (4xCO2). Different AMOC regimes for the same Av or CO2

value have been obtained starting from different initial conditions.

Figure 6.1: Different AMOC regimes in the PlaSim-LSG configuration as a function
of the vertical oceanic diffusion coefficient Av and of the atmospheric
CO2 concentration. Filled circles indicate the presence of AMOC
oscillations.

Both sets of simulations show three different branches that correspond to
very different AMOC regimes: a “weak” and flat branch lower than 5 Sv, an
intermediate branch between 15 and 25 Sv, characterized by oscillations up
to 10 Sv of amplitude and a multicentennial period, and a “strong” branch
without oscillations, with values higher than 30 Sv. Among these three
regimes, the intermediate one is certainly the most interesting because it
recalls AMOC oscillations that have emerged from paleoclimatic studies and
climatic simulations performed with other models. Therefore in Section 6.3 I
have explored the AMOC oscillations in PlaSim-LSG in order to identify the
mechanism from which they originate.

6.2 AMOC oscillations in paleoclimate data and
model simulations

Mechanisms driving the low-frequency AMOC oscillations are of great scien-
tific interest for our understanding of past and future climate. Paleoclimate
records reveals phenomena of AMOC oscillations mainly associated to cli-
mate fluctuations that occurred during the Last Glacial Period and named
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Dansgaard-Oescher events (Dansgaard et al., 1993), which represent one of
the most enigmatic examples of abrupt climate change. These events were
characterized by rapid warming and more gradual cooling, with recurrence
on a millennial scale. Given the lack of direct observations of AMOC over
long timescales, its variability at climate timescales has been explored in
several climate models. Models of various degrees of complexity, from simple
box models to GCMs, simulate multiple timescale AMOC fluctuations, which
can be generated spontaneously or driven with forcing fields. Mikolajew-
icz and Maier-Reimer (1990) found a 320-year timescale variability in the
Large Scale Geostrophic (LSG) Ocean GCM in response to a freshwater
forcing, with the strongest effect located around Antarctica. Broecker et al.
(1990) introduced the salt oscillator hypothesis to explain the paleoclimatic
Dansgaard-Oescher events, proposing that the periodic shift between a strong
and a weak thermohaline circulation in the Atlantic Ocean is controlled by
the salt budget. Furthermore Birchfield and Broecker (1990) suggested that
the proximity of melt water production to the North Atlantic Deep Water
(NADW) region plays an important role in the salt oscillator. The mecha-
nism observed in Mikolajewicz and Maier-Reimer (1990) was reconsidered in
Winton and Sarachik (1993), who introduced the term loop oscillator and
proposed that centennial oscillations are due to the interaction between the
overturning circulation and the salinity boundary conditions. Pierce et al.
(1995) used the same configuration of LSG described in Mikolajewicz and
Maier-Reimer (1990) and found that a similar fluctuation in the Southern
Ocean can be observed when random fluctuations are added to the fresh-
water flux that forces the model, but even with no imposed noise. More
recently, Peltier and Vettoretti (2014) explored asymmetric oscillations of
the AMOC which occur in the Community Earth System Model version 1
(CESM1; Gent et al. (2011)) under glacial climate conditions. The authors
explained the Dansgaard-Oescher events with the kicked salt oscillator, in
which a Heinrich event (natural phenomenon in which groups of icebergs
break off from glaciers, traverse the North Atlantic (NA) and melt, altering
the thermohaline circulation) is seen as providing the “kick” which induces
the oscillatory behaviour. The proposed mechanism is of relaxation oscillator
form, where the fast rise of AMOC is followed by a slow relaxation back
toward glacial conditions, based on changes of the meridional salinity gradient
between the subtropical gyre of the NA and the region beneath the sea ice lid.
This mechanism was further explored in Vettoretti and Peltier (2018), who
demonstrated that the Dansgaard-Oescher events involve a displacement of
sea ice from the Arctic and the associated freshwater input as it reaches the
NA. Although it is clear that salinity transport plays a crucial role in gener-
ating AMOC oscillations, geographical regions involved in salinity exchanges
remain uncertain. Some studies argued that salinity anomalies are produced
in the subtropical zone (Vellinga and Wu, 2004; Peltier and Vettoretti, 2014)
or suggested a connection between NA and Southern Ocean (Park and Latif,
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2008; Delworth and Zeng, 2012). Other papers demonstrated that salinity
anomalies are originated in the Arctic Ocean and then advected to the NA
(Jungclaus et al., 2005; Jiang et al., 2021). In particular, Jiang et al. (2021)
investigated centennial AMOC variability emerging in the Institute Pierre
Simon Laplace (IPSL; Boucher et al. (2020)) atmosphere-ocean model and
showed that oscillations are driven by sea ice transport from the Arctic
to the NADW region, where it melts. Similar oscillations are observed in
pre-industrial simulations in the Earth-system model EC-Earth 3 (Döscher
et al., 2021), which has the same oceanic component (Nucleus for European
Modelling of the Ocean, NEMO; Madec and Team (2012)) as IPSL. Given
the great interest in AMOC oscillations, it is useful to explore them also in
Plasim-LSG to clarify the mechanisms involved, bearing in mind that they
may be specific for this model.

6.3 AMOC oscillations in PlaSim-LSG

The AMOC oscillations have been explored in a 4000 year long run with
PlaSim-LSG T21, using dynamic sea ice and the vertical diffusion coeffi-
cient profile suggested by Sciascia (2008), with a surface value of Av =
0.8 · 10−4 m2s−1 and a bottom value of Av = 1.3 · 10−4 m2s−1 (for reference,
see Table 3.1 and green lines in Fig. 3.2). A pre-industrial atmospheric
CO2 concentration has been fixed (this is the only difference from the run 3
described in Section 3.2). Figure 6.2 shows the time series of the maximum
AMOC computed between 46-66◦N and below 700 m for this simulation,
where the black line represents a moving mean calculated over a sliding win-
dow of length 31 years and superimposed to the original output in grey. After
about 1000 years, the model presents AMOC oscillations, rather symmetric
and regular, with a mean amplitude of 2.3 Sv and a mean period of 265
years.

Figure 6.2: AMOC oscillations obtained with the PlaSim-LSG model under a
certain range of parameters.
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In order to investigate the geographic area where oscillations are generated,
I have also analysed the maximum of thermohaline circulation in the SH
(30◦S), respectively in the Atlantic and Pacific basin (not shown). In the
Atlantic Ocean oscillations are still present but with a small amplitude,
while in the Pacific Ocean this AMOC multicentennial variability is absent,
confirming that the observed phenomenon is mainly located in the NA. This
result will be confirmed by the following analyses and allows to neglect the
role of the Southern Hemisphere and Antarctic sea ice in the description of
the oscillation, as well as the concept of bipolar seesaw. This mechanism is the
most likely hypothesis regarding the Dansgaard-Oescher events and consists
of an anti-phase relationship between the Greenland and the Antarctic
temperatures (Knutti et al., 2004). Figure 6.3 compares the near-surface air
temperature in the Arctic and Antarctic regions and confirms that there is no
correlation (ρ = 0.24) between the two time series, thus excluding a typical
Dansgaard-Oescher mechanism. Bearing in mind the results of Chapter 4 on
the PlaSim-LSG configuration, maybe a bipolar seesaw in this model cannot
take place due to incorrect representation of temperature and sea ice in the
SH.

Figure 6.3: Time series of near-surface air temperature in the Arctic (60-90◦N) and
Antarctic (60-90◦S) regions. The black lines represent a moving mean
calculated over a sliding window of length 31 years and superimposed
to the original output in grey.

The following analyses have been carried out on the ten complete os-
cillations between years 1250-3971 and for each oscillation four phases of
arbitrary length of 11 years have been identified: the minimum of AMOC
(phase 1), the phase of increase in which the AMOC assumes an intermediate
value between the previous minimum and the following maximum (phase
2), the maximum of AMOC (phase 3) and the phase of decrease, computed
as the average value of the AMOC between the previous maximum and the
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following minimum (phase 4). To understand the mechanism associated with
AMOC oscillations, I have started from the analysis of salinity, which in
previous studies has been shown to be directly involved in the variability
of the NA. Following Peltier and Vettoretti (2014), Fig. 6.4 shows for each
phase sections of composite zonally-averaged salinity anomalies, computed
with respect to the mean over the whole simulation (ten oscillations) and
averaged over all the years belonging to the specific phase. Anomalies have
been computed by selecting the Atlantic and Arctic oceanic basins and the
salinity climatology has been superimposed on the anomalies. The stippling
indicates areas where more than 80% of the oscillations agree on the sign of
the change, following the IPCC Technical Summary (Solomon et al., 2007)
method with a lower percentage due to the small number of members. During
phase 1, most of the ocean at high latitudes is characterized by a negative
salinity anomaly, with the lowest values located at the surface between 55
and 65◦N. During phase 2, the Arctic basin is characterized by a positive
salinity anomaly that is distributed rather uniformly at all depths. In phase
3 and phase 4 the anomalies are reversed with respect to phase 1 and phase
2, respectively. The uniform vertical distribution of anomalies can be at-
tributed to the very high vertical diffusion coefficient when compared to
that suggested by Bryan and Lewis (1979). Another important aspect that
emerges from this figure is the role of bathymetry, which between 60 and
70◦N is an obstacle for the diffusion of salinity in the deeper layers.

Figure 6.4: Zonally-averaged salinity anomalies (in psu) of the Atlantic and Arctic
basin for different phases of AMOC oscillations, computed as the
deviation from the time mean between years 1250 and 3971 of the
simulation. The stippling indicates areas where more than 80% of the
oscillations agree on the sign of the change.
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Additional information on the horizontal distribution of the anomalies
can be obtained from Fig. 6.5, which shows the climatology of surface salinity,
sea ice cover and evaporation and the respective anomalies associated with
the four phases of the oscillations. When AMOC is at minimum (phase 1),
the NA and the Arctic have a lower than average salinity, with the minimum
located south of Greenland, the sea ice cover is high and the evaporation is
reduced especially in the Labrador Sea (where the model never forms sea
ice, as observed from the climatology) and south of Greenland. The reduced
evaporation is associated with a negative temperature anomaly in that area
due to weak AMOC bringing less heat from the equator towards the pole.
When the AMOC is increasing (phase 2), some areas are still characterized
by anomalies similar to those in phase 1, while other areas already show
anomalies of opposite sign. In particular, in the Labrador Sea and south of
Greenland, salinity and evaporation are increasing (although still below the
average) and therefore are in phase opposition with AMOC. On the contrary,
in the region between Iceland, United Kingdom and Scandinavian Peninsula,
salinity and evaporation anomalies are at maximum, and therefore not in
phase with AMOC. This region is located at the edge of sea ice, whose extent
is reduced from phase 1 to phase 2: a portion of the ocean previously covered
by ice remains uncovered, therefore the evaporation increases. As a result,
salinity increases and spreads rapidly to surrounding areas, especially in
the Arctic Sea. When AMOC is maximum (phase 3), all variables show
a pattern of anomalies similar to that of phase 1 but with opposite sign:
salinity is maximum especially south of Greenland, both for local effects
associated with AMOC and for diffusion from high latitudes, while west of
the Scandinavian Peninsula the salinity has started to decrease again due to
the increase of ice inhibiting evaporation. During the weakening of AMOC
(phase 4), the sea ice cover west of the Scandinavian Peninsula reaches its
peak, evaporation is hindered by the presence of ice and therefore a region
of freshwater is formed, which spreads rapidly throughout the Arctic.

The most curious feature that emerges from this figure is the phase
opposition between salinity and sea ice cover. The model seems not to respect
the relationship between these two variables related to brine rejection, the
process that occurs when salt is expelled as a result of sea ice formation,
making the underlying water saltier. This phenomenon plays a fundamental
role in the oscillations of AMOC in IPSL (Jiang et al., 2021), where salinity
anomalies instead have the same sign as sea ice anomalies. The current version
of PlaSim-LSG contains a parameterization for brine rejection that is not
used by default. By adding the brine rejection to the model (not shown) the
oscillations have a smaller amplitude but the mechanism described in Fig. 6.5,
in which sea ice formation prevents evaporation and thus salinity decreases,
still prevails. This may indicate an incorrect or insufficient description of
brine rejection in PlaSim-LSG.
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Figure 6.5: Surface salinity (in psu), sea ice cover and evaporation (in mm/day)
climatology and anomalies for different phases of AMOC oscillations.
The stippling indicates areas where more than 80% of the oscillations
agree on the sign of the change.
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To investigate variations in time, I have analysed Hovmöller diagrams
for sea ice cover, salinity and potential temperature anomalies as functions
of time and latitude averaged over the longitudinal band of the Atlantic
Ocean and over the first 1000 m of depth (Fig. 6.6). All the variables show
an oscillatory pattern where positive and negative anomalies alternate with
the same period of AMOC, as already observed in Fig. 6.5, although the
Hovmöller diagrams do not allow to highlight the anomalies of opposite sign
that coexist between 50 and 70◦N in phases 2 and 4 because they include
zonal averages. Fig. 6.6 provides further evidence that the Tropics are not
significantly involved in this mechanism because anomalies between 50 and
90◦N are stronger than those at low latitudes. The fundamental role of the
Arctic Ocean is clearly revealed by the shift of salinity anomalies from high
to mid-latitudes in a few decades (from phase 2 to phase 3 and from phase 4
to phase 1), indicating a transport of more or less salty water from north to
south. The Hovmöller diagram of potential temperature has a less regular
pattern of anomalies than sea ice cover and salinity.

Figure 6.6: Maximum AMOC computed between 46-66◦N and below 700 m (grey
line) and moving average of AMOC over a sliding window of 31 years
(black line). Time versus latitude Hovmöller diagram of sea ice cover,
salinity (in psu) and potential temperature anomaly (in K), averaged
over the longitudinal band corresponding to the Atlantic Ocean and
over the first 1000 m of depth.
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The fundamental role of the Arctic Ocean in the mechanism that generates
the AMOC oscillations can be better understood in Fig. 6.7, which shows
the lagged regression maps on AMOC (for some representative lags) of
surface salinity, sea ice volume (computed as the product of sea ice cover
and thickness), sea ice cover, evaporation and near-surface air temperature.
Please notice that the polar projection provides a more complete spatial
representation of the Arctic than Fig. 6.5 and 6.6, where anomalies are
represented up to 90◦N only in the longitudinal band of the Atlantic Ocean.
Maximum of AMOC occurs at lag 0 years, while minima at about lag -
130 and +130 years. As noted above, the variables in the region south of
Greenland are perfectly in phase with AMOC: at lag 0 years we observe a
maximum of surface salinity, evaporation and temperature and a minimum
of sea ice. The signs are opposite in correspondence of the AMOC minima.
In the Arctic basin and in the region between Iceland and Scandinavian
Peninsula, however, the salinity maximum and the sea ice minimum occur
at about lag -30 years, anticipating the maximum of AMOC by about 30
years. This means that when AMOC is still increasing between lag -30 and
lag 0, the salinity at high latitudes already starts to decrease and the sea
ice starts to increase. The regression maps also clearly show the movement
of salinity anomalies already described in the previous figures: at lag -120
the positive salinity anomaly occupies only the portion of the Arctic Ocean
between Europe and Greenland, in the following lags this salt water spreads
throughout the Arctic and south of Greenland, superimposing to the local
formation.

Based on these figures and on the previous observations, it is possible to
make an hypothesis on the mechanism generating the oscillations in PlaSim-
LSG. Please consider the situation of phase 3 (see Fig. 6.4 and 6.5) and lag
0 years (see Fig. 6.7). This phase corresponds to a maximum of AMOC, so
the heat transport from the equator to the poles is very intense, therefore
the temperatures in the NA and in the Arctic Ocean are high and the sea ice
cover is below the average value. At this point, the classical self-regulation
mechanism of AMOC is triggered: the pole-to-equator temperature gradient
is low and therefore the AMOC starts to weaken. It is important to notice
that the sea ice in the Arctic basin does not reach the minimum when the
AMOC is at maximum (lag 0 years) but at previous lags (at about lag -30
years): when the AMOC reaches the maximum, sea ice has already started
to increase again. Although the sign of the anomaly is still negative, from lag
-30 to lag 0 years sea ice increases, covering an increasingly larger area of the
oceanic region between Russia, Norway and Greenland. The presence of sea
ice prevents evaporation, which decreases especially between Iceland and the
Scandinavian Peninsula. Consequently, the reduction of evaporation causes
an increase in freshwater, which is observed east of Greenland from lag -30
to lag 0 years. At following lags, this salinity anomaly begins to spread in
the surrounding areas, superimposing to local effects. When the freshwater
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surface salinity sea ice volume sea ice cover evaporation temperature

Figure 6.7: Regression on AMOC of surface salinity anomaly (in psu), sea ice
volume (in m) and cover, evaporation (in mm/day) and near-surface
air temperature (K). The lag is positive when the AMOC leads.
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anomaly reaches the region of NADW formation south of Greenland, it
provides an additional ”kick” to the AMOC that was already decreasing by
self-regulation. Therefore the AMOC exceeds the equilibrium state (where it
would stop if the feedback associated to temperature gradient was the only
mechanism involved) and reaches the minimum (phase 1 in Fig. 6.4 and
6.5, lag +130 years in Fig. 6.7). At this point the mechanism is repeated
with opposite sign: the high pole-to-equator temperature gradient leads to a
strengthening of AMOC, increased temperatures and sea ice melting. The
reduction of sea ice facilitates evaporation and a positive salinity anomaly is
formed in the Arctic Ocean. The salinity anomaly reaches the NADW region
after a few decades and leads to a further strengthening of the AMOC, which
overcomes its equilibrium state and reaches the maximum.

6.4 Concluding remarks

The AMOC oscillations in PlaSim-LSG presented in this chapter show
very different characteristics compared to those in the IPSL model recently
analysed in Jiang et al. (2021). The first fundamental difference in the two
models is the relationship between sea ice and salinity in the Arctic basin, as
described in Section 6.3: in IPSL the respective anomalies have the same sign
because they are linked by the process of brine rejection, while in PlaSim
the mechanism involves evaporation, which determines a phase opposition
between sea ice and salinity. As a consequence, an important aspect that
differentiates the two models is the phase relationship between salinity and
AMOC: in IPSL, when AMOC reaches its maximum, the Arctic sea ice area
and salinity are at a minimum while salinity around Greenland has just
started to decrease (see Fig. 6.8 from Jiang et al. (2021)); in PlaSim-LSG,
the maximum of AMOC corresponds to a maximum of salinity south of
Greenland while in the Arctic salinity has already started to decrease and
the sea ice to increase. These observations are sufficient to understand that
the mechanisms governing AMOC oscillations in IPSL and PlaSim-LSG are
deeply different, although with some similarities such as the fundamental
role of the freshwater holding capacity of the Arctic basin (the ability to
maintain the salinity anomaly instead of dispersing it) and delayed exchanges
with the NA. However, even in this aspect there seems to be a fundamental
difference: while in IPSL salinity anomalies propagate from the Arctic to the
NA through transport of sea ice, which melts and releases freshwater when
moving towards lower latitudes, in PlaSim-LSG a direct advection of salt from
the Arctic to the NADW formation region occurs (the default version of the
model does not contain sea ice motion). More work is still needed to further
investigate the formation of salinity anomalies and their transport from high
to middle latitudes in PlaSim-LSG, for example by means of salinity budgets
in some oceanic regions. The period of oscillation is determined by the time
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required for exchanges between the Arctic basin and the NA: in IPSL, the
first 1000 years show a variability with a period of about 200 years and
the last 1000 years have a less regular variability, while in PlaSim-LSG the
oscillations are regular with an average period of 265 years. This chapter has
revealed that the formation and melting of Arctic sea ice play a fundamental
role in the oscillatory phenomenon simulated by the model. This result is
confirmed by simulations with a fixed sea ice cover that have been described
in Chapter 5. In fact, when Arctic sea ice is prescribed and therefore it
does not depend on temperature changes, the AMOC of the model does not
exhibit oscillations. Based on this idea, several simulations can be performed
by turning off a component or a process, in order to study its contribution
to the mechanism of the oscillations. Intermediate complexity models like
PlaSim are an ideal tool for performing this type of experiments, because
they involve a simplified parameterization of the climate system and allow to
separate the role of the different components in a simpler way than GCMs.
In the study of AMOC oscillations it is important to be cautious and consider
that they may be specific mechanisms of some climate models, which may
not be reflected in reality. In the case of PlaSim-LSG, the over-simplistic
bathymetry must be taken into account: due to the coarse resolution, for
example, the Canadian Arctic Archipelago is represented by a continuous
strip of land connecting Canada with Greenland, therefore the Arctic and
Atlantic Oceans only communicate east of Greenland. Furthermore, as we
have seen at the beginning of this chapter, the oscillations in PlaSim-LSG
occur only for a certain range of parameters that often, as in the case of
the vertical oceanic diffusion coefficient, are very simplified representations
of the real physical phenomenon. However, it is important to explore and
document this mechanism which, although occurring in an EMIC such as
PlaSim-LSG, has several aspects in common with similar studies involving
more complex climate models and types of variability that have characterized
past climate.
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Figure 6.8: Regression on AMOC low frequency first component of the top 150 m
salinity (colors, in psu) at lag 0 and lagged regression of Arctic sea ice
area and volume in IPSL (Jiang et al., 2021).
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Chapter 7

The ENSO teleconnection to
the North Atlantic

In Chapter 6 I have explored the centennial-scale variability that emerges
for a certain range of parameters in the PlaSim-LSG model and that mainly
affects the North Atlantic (NA) region. This chapter instead presents a study
of the variability on a shorter (interannual) timescale: the extra-tropical
response to El Niño-Southern Oscillation (ENSO) in PlaSim, also in this
case with a focus on the NA region. Observational datasets show that the
strongest extra-tropical signal related to ENSO has been detected in the
North Pacific, however in the NA a modest ENSO signal in late winter
(January, February, March - JFM) has been found (Brönnimann, 2007).
Since the sea level pressure (SLP) pattern generated by the NA response
to ENSO is similar to that associated with the North Atlantic Oscillation
(NAO), the two variability patterns could be associated. However, Mezzina
et al. (2020) have shown that the atmospheric response to ENSO in the
NA region and the NAO originate from different dynamics and they are not
physically connected. For completeness of information, before presenting
the study carried out with PlaSim to explore the extra-tropical response to
ENSO, I have decided to include a section presenting the signal related to
the NAO in the model.

7.1 The leading mode of variability in the North
Atlantic: the NAO

The North Atlantic Oscillation is the most evident and recurrent pattern of
atmospheric variability in the middle and high latitudes of the NH, especially
during the boreal winter. It consists of an atmospheric mass exchange between
the Icelandic Low and Azores High, where large variations in wind speed
and direction, heat and humidity transport occur (Hurrell et al., 2003). The
NAO is mainly an internal mode of atmospheric variability, as demonstrated
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by climate simulations that do not include variations in SST, sea ice or land
surface. Among several ways to define and calculate the NAO, the most used
is the empirical orthogonal functions (EOFs) technique. Using this approach,
the NAO is defined as the leading eigenvector of the autocovariance matrix
of SLP.

Figure 7.1: Maps in JFM using ERA-20CR (1900-2010): sea level pressure clima-
tology and standard deviation (in hPa), sea level pressure regressed
onto the NAO index (in hPa).

The first two panels in Fig. 7.1 show the climatology and the standard
deviation of SLP computed for late winter (JFM) from the ERA-20CR
reanalysis dataset (Poli et al., 2016). The choice of the months has been
based on the purpose of this section of the thesis, that is to show and compare
the main pattern of variability in the NA with the response to ENSO, which
is particularly robust in late winter over this region (Brönnimann, 2007).
The climatology shows the mean state of SLP which allows to identify the
semi-permanent pressure systems at high and middle latitudes of the NH: the
Siberian and Azores high-pressure centres, the Auletian and Icelandic low-
pressure centres. In the NA sector, the counterclockwise air flows associated
with the low-pressure system and the clockwise air flows associated with the
high-pressure system are linked to the position of the “jet stream”. The
middle panel of Fig. 7.1 shows zones of high variability, among which three
maxima can be identified near the Aleutian Low, the Icelandic Low and north
of Siberia. The NAO spatial signature is obtained by computing the linear
regression of SLP onto the NAO index. The NAO index is defined as the
first principal component (PC) of SLP calculated over the sector 20◦-90◦N /
90◦W-40◦E (gray lines in Fig. 7.1) and it is shown here for the negative phase
of the NAO. This reanalysis dataset shows that the NAO contributes for 48%
to the total variability of SLP in the NA. The NAO is characterized by a
dipole of SLP anomalies in the north-south direction: in the negative phase,
the combination of a positive anomaly in the Arctic region and a negative
anomaly south of 50◦N is related to a decrease in the meridional pressure
gradient and consequently a weakening of surface westerlies. The positive
phase of the NAO, on the contrary, strengthens the semi-permanent pressure
systems in the NA, generating stronger surface westerlies at mid-latitudes.
Spectral analysis studies have shown that NAO variability is observed over a
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wide range of timescales.
The representation of the NAO in PlaSim has been analysed using two

simulations that have been originally performed for the study of the ENSO
teleconnection and therefore will be presented also in the next Section (7.2).
They consist of two 505 year-long atmosphere-only simulations performed
with the two horizontal resolutions of the model (T21 and T42), in which the
boundary conditions have been defined by prescribing a climatology of SSTs
and sea ice cover relative to the period 1981-2010 (HadISST2.2; Titchner
and Rayner (2014)). The atmospheric CO2 level has been fixed at the 1990
value, as described above for model tuning experiments. The top panels
of Fig. 7.2 show the SLP climatology averaged over the last 500 years of
each simulation (the first 5 years were not considered to ensure the removal
of spin-up), while the bottom panels show the differences in SLP between
PlaSim and the reanalysis, which was shown in the first panel of Fig. 7.1.

Figure 7.2: Sea level pressure climatology (in hPa) in JFM using T21 and T42
resolution, respectively (top panels). Sea level pressure difference
in JFM with respect to ERA-20CR (1900-2010) (bottom panels).
Stippling indicate statistically significant areas at 95% confidence
level.
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From the comparison between the first panel of Fig. 7.1 and Fig. 7.2 we
can notice that in general the SLP climatology is better reproduced using
the resolution T21, both in terms of intensity and location of the pressure
centres. In particular, T42 tends to amplify the maxima and minima of
SLP. Maps of SLP differences (Fig. 7.2, bottom) show overall more cyclonic
circulation at high latitudes, especially over Alaska and west of Canada,
and more anticyclonic circulation at mid-latitudes, particularly in PlaSim
T42. In this model configuration, the low-pressure system in the Pacific
Ocean is located further north than the Aleutian Low in the reanalysis, while
around 40◦N there is a high-pressure center almost as strong as the Siberian
high-pressure system, much less developed in reanalysis and in PlaSim T21.
In the Atlantic Ocean, the meridional pressure gradient is more intense in
PlaSim (especially at T42 resolution) and therefore the surface westerlies are
expected to be more intense than the observed ones. In addition to the SLP
pattern, the climatology of the two resolutions of the model presents other
important differences that are presented and discussed in Section 7.4. The
differences in SLP at high latitudes are consistent with the strength of zonal
winds (shown in Fig. 7.7) because due to geostrophic balance the westerlies
are more intense where the meridional pressure gradient is larger, as in the
T42 resolution.

Figure 7.3: Sea level pressure standard deviation (in hPa) in JFM using T21
and T42 resolution, respectively (top panels). Difference of sea level
pressure standard deviation in JFM with respect to ERA-20CR (1900-
2010) (bottom panels). Stippling indicate statistically significant areas
at 95% confidence level.
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Figure 7.3 shows the standard deviation of SLP in PlaSim T21 and T42
(top panels) and their differences with respect to ERA-20CR (bottom panels).
Comparing the Fig. 7.3 with the central panel of Fig. 7.1, it shows that
the SLP variability in the model is almost everywhere smaller than the
observed one, especially over the oceans, except at mid-latitudes over the
Asian continent and the Bering Strait (only in PlaSim T21).

Finally, I have computed and represented in Fig. 7.4 the NAO pattern
in PlaSim T21 and T42, using the same method as described above for the
representation of the NAO in Fig. 7.1. The first fundamental information
that emerges from the comparison between the model and the reanalysis
is the difference in terms of variability associated with the NAO. In fact,
not only the model has a very different percentage of variance explained
by the NAO with respect to reanalysis, but it also shows a large difference
between T21 resolution (60%) and T42 resolution (34%). In terms of intensity,
the SLP anomalies corresponding to the negative phase of the NAO are
similar to reanalysis in PlaSim T21, while in Plasim T42 the signal is weaker.
Comparing instead the location of the characteristic dipole of the NAO, we
can observe that the minimum corresponding to the negative pole is located
further east (closer the continent) than in the reanalysis, in both model
resolutions. Instead, the location of the maximum properly corresponds to
that of the observed pattern, but the positive anomaly in PlaSim T42 is
limited to the portion of the Arctic between 60 and 150◦W while in PlaSim
T21 and ERA-20CR it is zonally distributed in a more uniform way.

Figure 7.4: Sea level pressure regressed onto the NAO index (in hPa) in JFM in
PlaSim T21 and PlaSim T42.

Therefore, in general the model is able to reproduce both the SLP field
and the NAO pattern over the NA sector, although the comparison highlights
some important differences between PlaSim T21 and T42, and also with
respect to the observations. This analysis also provides further evidence that
the existence of the NAO is independent on the atmosphere-ocean interaction,
since its pattern of variability is observable even in simulations involving
only the atmospheric module of PlaSim.
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7.2 The leading mode of variability of the tropi-
cal ocean-atmosphere system: the ENSO phe-
nomenon

El Niño-Southern Oscillation (ENSO) is a variability mode of the tropical
ocean-atmosphere system in the Pacific Ocean and coupled to the global
circulation (Hartmann, 2016). The term “El Niño” refers to the ENSO phase
characterized by positive SST anomalies, which have been first recorded at
irregular intervals on the west coast of South America during the Christmas
period by fishermen, starting from the seventeenth century. Consequently, the
opposite ENSO phase, characterized by negative SST anomalies in the same
region, is conventionally called “La Niña”. The term “Southern Oscillation”
refers instead to the atmospheric component of ENSO, characterized by
a see-saw of SLP between the tropical central Pacific and the Indonesian
Archipelago. Due to the strong interaction between the ocean and the
atmosphere in the tropics, El Niño/La Niña and the Southern Oscillation
are strongly coupled.

Under normal conditions, the coupled atmosphere-ocean system in the
tropical Pacific Ocean is described by the middle panel of Fig. 7.5 from
Hartmann (2016). The depth of the thermocline is higher in the west, where
the mixed layer is warmer, and lower in the east, where the thin mixed layer
is colder due to the upwelling that carries cold water to the surface. This
zonal difference is mainly maintained by easterly winds in the equatorial
Pacific, which are supported by upward convective motions over Indonesia
and downward motions around 60◦W. The atmospheric circulation is then
closed by an eastward atmospheric flow in the upper troposphere and the
resulting zonal circulation is called “Walker circulation”. This circulation is
characterized by irregular SLP fluctuations between the western and eastern
tropical Pacific.

Figure 7.5: Schematic diagram showing the atmospheric and oceanic conditions
along the equator in (a) La Niña, (b) normal, and (c) El Niño conditions
(Hartmann, 2016).
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The so-called La Niña phase (represented in the first panel of Fig. 7.5)
consists of an intensification of the normal conditions described above: the
slope of the thermocline in the equatorial Pacific is higher, the zone of strong
convection and the maximum of SSTs are located more to the west while
temperatures in the eastern Pacific are lower. On the contrary, the El Niño
phase (last panel in Fig. 7.5) is characterized by a flatter thermocline and
a smaller zonal gradient of SSTs: positive anomalies in central and eastern
Pacific can reach up to 5◦C locally, the convection zone is shifted further
east and easterly winds are weaker than normal conditions. In this phase, a
positive feedback first described by Bjerknes plays a fundamental role: when
warm water flows towards the eastern Pacific and consequently the zonal
gradient of SSTs is reduced, for example due to a decrease in the slope of
the thermocline, the easterly winds weaken and further amplify the initial
perturbation. Anomalies continue to increase until a negative feedback, such
as that related to the thermocline depth adjustment, overwhelms the positive
feedback. These negative feedbacks have a delayed response with respect
to the initial perturbation related to SSTs and wind, and this allows the
development of irregular oscillations characterizing the phenomenon (Goosse
et al., 2010). The main consequences of El Niño events include droughts in
Indonesia and Australia and increased rainfall in the central Pacific, the Gulf
of Mexico and the equatorial coast of South America between November
and March, while from May to September there is a reduction in summer
monsoons in India. The opposite impacts are typically observed during La
Niña events. Generally, the periodicity of ENSO is estimated by analysing
the power spectrum of the so-called Niño-3 index, computed as the average
of the SST anomalies over the region 5◦S-5◦N / 90◦-150◦W. From the power
spectrum it emerges that the dominant range for the ENSO period is around
3 to 5 years, but significant variability extends from 2 to 20 years.

7.3 The impact of ENSO on the Northern Hemi-
sphere

The ENSO effects are transmitted to other regions of the world through large-
scale atmospheric circulation changes, with significant impacts on climate
and ecosystems (Deser et al., 2017). The dynamical processes governing the
extra-tropical response to ENSO have been and are still under investigation
because its predictability has important environmental, economic and social
consequences. The main difficulties in studying this response are due to the
presence of an unpredictable internal atmospheric variability, which exists
even in absence of ENSO and generates large differences in pattern and
amplitude between individual ENSO events. However, it has been shown
that if the number of analysed ENSO events is sufficiently large, the noise
associated with this internal variability can be minimized, the interevent
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variability decreases and the forcing associated with ENSO emerges (Deser
et al., 2017). The ENSO teleconnection can be simply explained as follows:
SST anomalies in the tropical Pacific are associated with anomalous diabatic
heating in deep convection, which is reflected in a divergence anomaly in the
upper troposphere. This represents a forcing of Rossby waves that propagate
towards the pole and are influenced by interaction with the mean flow, which
determines their path. In addition, coupling between the troposphere and
the stratosphere can also play a role. The ENSO-driven circulation pattern
modifies the atmospheric fields (e.g. temperature, humidity, distribution of
clouds) even far from the equatorial Pacific, which in turn have an effect
on the ocean (e.g. temperature, salinity, mixed-layer depth) (Deser et al.,
2010). The extra-tropical response to ENSO in the NH consists of an
anomalous regional pattern over the North Pacific-America that extends into
the North Atlantic-Europe, including changes in the location and amplitude
of subtropical and mid-latitude jet streams. During El Niño events, a similar
(but not identical) pattern to that of the negative phase of the NAO develops
in the NA, with a positive anomaly of high pressure at high latitudes and a
negative anomaly of low pressure at mid-latitudes, as well as a shift of the
storm track. However, it is incorrect to identify the extra-tropical response to
ENSO with the NAO, as demonstrated by Mezzina et al. (2020). As reported
by Brönnimann (2007), the literature suggests that the most appropriate
period to study the NA and European response to ENSO is between January
and March (JFM, late winter). The “canonical” El Niño late-winter signal
in Europe is represented in Fig. 7.6 by means of composite anomaly maps
of SLP, temperature and precipitation for strong El Niño events. The main
features of this canonical signal are (top panel) positive SLP anomalies from
Iceland to Scandinavia and negative SLP anomalies over central and western
Europe, (middle panel) lower temperatures in northern Europe, (bottom
panel) increased precipitation over part of the Mediterranean and decreased
precipitation over Iceland and Scandinavia. The canonical ENSO signal is
not unanimously identified and accepted by all authors. The first reason for
this disagreement is the use of different statistical technique, ENSO indices
and datasets. In addition, nonlinearity plays an important role, since La
Niña effects can be non-symmetric with respect to El Niño effects, which
furthermore can lead to important differences between one and another event.
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Figure 7.6: Composite anomaly maps of (top) surface pressure, (middle) tempera-
ture, and (bottom) rainfall based on station data for twenty-six ENSO
warm events from 1880 to 1988 (Brönnimann, 2007).

79



7.4 Late-winter North Atlantic response to ENSO
in PlaSim

The aim of this section is to investigate the extra-tropical response, with a
focus on the NA sector, to El Niño and La Niña in an intermediate com-
plexity model such as PlaSim, to make a comparison with observations
and the response simulated by more complex, state-of-the-art models. The
main advantage of using a climate model of intermediate complexity is the
possibility to perform unprecedentedly long simulations with very short
computational time, in order to reduce the noise associated with internal
atmospheric variability and highlight the extra-tropical response to ENSO
(Deser et al., 2017). Therefore, the experimental set-up presented in this
section has been first tested by performing “short” 55 year long simulations
(50 years after removing the spin-up), which have been subsequently inte-
grated up to 505 years (500 after removing the spin-up) only for the most
interesting experiments (“long” simulations).

Before exploring the ability of the model to simulate the ENSO telecon-
nection, it is useful to analyse the model climatology under normal conditions
(see middle panel of 7.5) starting from two control simulations (mentioned in
Section 7.1). In the control simulations (CTL) the atmospheric CO2 level
has been kept fixed to the 1990 value and the climatology of SSTs and sea
ice cover of the period 1981-2010 has been used as boundary conditions for
the atmospheric module of PlaSim. Figure 7.7 presents the ensemble mean
of the 500 late winter (JFM) from the two “long” CTL simulations, which
differ only in resolution (T21 and T42), and their difference.

Figure 7.7: Results of CTL simulations with PlaSim. Maps of zonal wind (in ms−1)
at 200 hPa in JFM using T21 and T42 resolutions and the difference
between them (top panels). Velocity potential (in 106 m2s−1) and
divergent wind (in ms−1) at 200 hPa (middle panels). Precipitation (in
mm day−1; bottom panels). Stippling indicate statistically significant
areas at 95% confidence level.
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All the analyses presented in this section have been carried out on
the late-winter season (JFM), which is the most appropriate for studying
the extra-tropical response to ENSO, as suggested by Brönnimann (2007).
The diagnostics shown in Fig. 7.7 have been chosen to represent the key
variables illustrating the development of ENSO teleconnection (see Section
7.3): precipitation (bottom panels) as a proxy for deep convection, velocity
potential and wind divergent at 200 hPa (middle panels), showing the
divergence and convergence in the upper troposphere, and zonal wind at 200
hPa (top panels), determining the pathway followed by Rossby waves.

The two model resolutions show clear differences in all variables. The
maximum of precipitation (and, therefore, of deep convection) in the equato-
rial Pacific is located east of Indonesia in T21, similarly to what observational
datasets show, while in T42 it is shifted north of the equator and has a larger
longitudinal extension. The Walker cell, delimited in the upper troposphere
(200 hPa) by the zone of maximum divergence (minimum velocity potential)
in the west and maximum convergence (maximum velocity potential) in the
east, is located further west in T42 compared to T21, as can be seen by
noting the position of the grid points with zero velocity potential. Finally,
also the mean flow has important differences between the two resolutions
especially at mid-latitudes: the jet stream, a westerly flow that forms at
the boundary between the low-pressure system at high latitudes and the
high-pressure system at subtropical latitudes, is more tilted northward, and
therefore more realistic, in the simulation with T42 resolution. These impor-
tant differences in climatology, which depend on resolution, can be attributed
to several factors, including a more realistic representation of the orography
using T42. In addition, the model code includes some differences depending
on the resolution, as a result from the atmospheric tuning of PlaSim. For
example, a tuning parameter for evaporation of precipitation employs two
different values using T21 or T42. Since the aim of this chapter is to study
the response to ENSO I have not explored further the differences between
the two resolutions in CTL and their origin. However, it is important to
keep them in mind for later considerations.

Figure 7.8: SST anomalies in JFM prescribed in EN and LN simulations with
PlaSim.
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El Niño and La Niña simulations have been performed following the
experimental set-up described in Mezzina et al. (2021) using both PlaSim
resolutions, T21 and T42. The El Niño simulations (EN) have been performed
by superimposing a positive anomaly of SSTs, which reproduces a strong
El Niño event in the tropical Pacific, to the climatology used for CTL (top
panels of Fig. 7.8). These monthly SST anomalies have been obtained from a
linear regression of detrended monthly SST anomalies onto the DJF Niño-3.4
index (area-averaged SST anomalies over 5◦S-5◦N / 170◦-120◦W) in late
winter (JFM) with the same climatological period (1981-2010). Then SST
anomalies have been restricted to the region between 20◦S and 20◦N and
increased to reach a maximum of 2.4◦C in JFM to realistically reproduce
strong El Niño events. For La Niña simulations (LN) the same method
has been applied, changing the sign of the SST anomalies with respect to
those used for EN (bottom panels of Fig. 7.8). Also in this case the level of
atmospheric CO2 has been kept fixed to the 1990 value and the simulations
have been initially integrated for 50 years after the first 5 years of spin-up.

As described in Section 7.3, the first direct consequence of the SST
anomalies, which characterize El Niño and La Niña events in the tropical
Pacific, is an anomalous diabatic heating associated with deep convection
in this region. What determines the development of tropical convection (i.e.
precipitation in Fig. 7.9 as a proxy) is the amount of heat supplied to the
system: a temperature of at least 27◦C (indicated by the yellow line in Fig.
7.9) is representative to have deep convection (Mezzina et al., 2021).

Figure 7.9: Ensemble-mean precipitation (shading) and SST at 27°C (yellow line)
for CTL (top), EN (middle) and LN (bottom) experiments using T21
and T42 resolutions.
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This condition occurs in CTL mainly in the western part of the ocean
basin for both resolutions, albeit with some differences already highlighted in
Fig. 7.7. The effect of ENSO in PlaSim is as described in Section 7.2: in EN,
the threshold of 27◦C is reached all over the tropical Pacific and the maximum
of precipitation is shifted eastward, while in LN the convection zone and
the maximum of precipitation are located westward with respect to normal
conditions. This figure thus shows a first model response to the typical El
Niño and La Niña forcing: although the SST anomalies are symmetric, the
convection is weaker in LN than in EN.

The extra-tropical propagation of the Rossby wave train forced by El
Niño and La Niña is conventionally represented with the geopotential height
at 200 hPa (Z200). The upper panels of Fig. 7.10 and 7.11 show the
Z200 response to EN and LN with respect to CTL (“short” simulations) for
T21 and T42 resolutions, respectively. In the tropical Pacific, the model
realistically simulates the Gill-type response, the classical response of the
tropical atmosphere to diabatic heating (Gill, 1980). It is more intense in EN
than in LN, in agreement with the amplitude of convection explored above,
and shows a westward shift in T42 compared to T21, reflecting the differences
in the position of the Walker cell between the two resolutions. In EN, the
sequence of Z200 minima and maxima that constitute the wave train clearly
emerges: the first centre of action in the North Pacific, which corresponds
to the (reinforced) Aleutian Low at the surface, the second centre of action
located over Canada and the third over the eastern coast of North America.

Figure 7.10: Z200 anomalies (in m, contour lines) in EN simulations with respect
to CTL simulations for different values of SST anomalies (in K,
shading). The interval of contours is 20 m and non-significant values
are plotted with grey contours.
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Figure 7.11: Z200 anomalies (in m, contour lines) in LN simulations with respect
to CTL simulations for different values of SST anomalies (in K,
shading). The interval of contours is 20 m and non-significant values
are plotted with grey contours.

Also in terms of the extra-tropical response to El Niño the model presents
important differences between the two resolutions: the signal is more intense
and statistically significant around the Aleutian Low using T21, while anti-
cyclonic circulation at high latitudes is stronger in T42. Other remarkable
differences are the shape of the centres of action, which are more elongated
in T42, and the presence of a maximum and a minimum respectively over
Iceland and the Mediterranean Sea only in T21. In LN, the extra-tropical
response is very weak and not statistically significant, so it shows a large
asymmetry compared to EN.

Top panels of Fig. 7.10 and 7.11 can be compared with Fig. 7.12 from
Mezzina et al. (2021). The authors have performed idealized experiments
similar to those described above using three state-of-the-art models. In Fig.
7.12 the contours show the Z200 response to EN and LN with respect to CTL
(all their simulations have 50 ensemble members) in the EC-Earth3.2 model,
with horizontal resolution T255 (about 80 km) and 91 vertical levels (Davini
et al., 2017; Haarsma et al., 2020). The comparison between PlaSim and
EC-Earth shows that the former, being an intermediate complexity model,
is able to reproduce in a realistic way the tropical and extra-tropical pattern
associated with El Niño, albeit with weaker amplitude. Unlike EC-Earth,
however, the model is unable to reproduce the extra-tropical response to La
Niña. This can be attributed to a weaker tropical response of the model and
consequently to a lower amount of energy propagating from the tropics to
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the extra-tropics. This model issue emerges especially in LN, which is itself
associated with a weaker response, as it is observed also in Fig. 7.12.

Figure 7.12: Ensemble-mean 200-hPa Tropical Rossby Wave Source (shading),
divergent wind (arrows) and Z200 (contours; interval = 30 m) anoma-
lies for EN and LN in JFM in the EC-Earth climate model (Mezzina
et al., 2021).

In order to verify that the dynamics involved in the ENSO teleconnection
in PlaSim is realistic and the differences with respect to observations and
more complex climate models are due to differences in sensitivity, I have
analysed the response associated with an arbitrary and absolutely unrealistic
increase in the forcing. For each resolution, I have performed four new
“short” simulations (two EN, shown in Fig. 7.10, and two LN, in Fig. 7.11) in
which the SST anomalies were multiplied by 1.5 and 2, before superimposing
them to the climatology. Z200 anomalies indicate that PlaSim responds to
increased surface energy in the tropics with a larger amplitude in the upper
troposphere, including the extra-tropics, again with a strong asymmetry
between EN and LN. In addition, the model with T42 resolution has a
very weak and not statistically significant extra-tropical response even in
simulations with increased forcing, while using T21 a higher sensitivity
emerges. To obtain a signal in the North Pacific as strong as that of EC-
Earth in EN simulations, it is necessary to at least double the forcing and thus
to impose temperature anomalies in the equatorial Pacific with a maximum
of almost 5◦C, which are unrealistic.

Following these considerations, I have decided to focus on the response
in the NA sector only to El Niño events. I have performed two EN “long”
simulations, one for each resolution, integrated for 500 years after the spin-up.
Figure 7.13 shows EN anomalies with respect to CTL in JFM in terms of SST
(the forcing imposed as boundary condition), SLP, precipitation and Z200.
The larger number of ensemble members allows to minimize the internal
atmospheric variability and increase the statistical significance of the El Niño
response, as suggested by Deser et al. (2017). The centres of action in the
upper troposphere, already identified in Fig. 7.10 and previously described,
are associated with SLP anomalies located further east. This westward tilt
with height is an intrinsic feature of the Rossby waves and constitutes a
fundamental difference from the signal related to the NAO, in which the
anomalies are essentially barotropic (Mezzina et al., 2021). The NA sector is
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affected at the surface, showing two centres of action: a positive SLP anomaly
centered over Iceland, more intense at T42, and a negative SLP anomaly
centered over the ocean at mid-latitudes, further west at T21. Note that this
is the canonical late-winter signature of ENSO. In the upper troposphere, the
anticyclonic circulation at high latitudes has two well-separated centres of
action with T21, one located between Iceland and Greenland, while with T42
there is mainly one centered over Canada. Also the cyclonic circulation over
the Atlantic Ocean is located further west in T21 than in T42, in agreement
with the surface signal.

Figure 7.13: Anomalies for EN simulations with respect to CTL simulations.
(Top panels) SST (in K, shading) and SLP (in hPa, contours with
interval of 0.5 hPa) anomalies in JFM for T21 (left) and T42 (right)
resolution. (Bottom panels) precipitation (in mm day−1, shading)
and geopotential height at 200 hPa (in m, contours with interval of 20
m. Stippling indicate statistically significant areas at 95% confidence
level for shading, non-significant values for contours are plotted in
grey.

Another fundamental factor that determines the ability of a model to
reproduce the atmospheric circulation associated with ENSO is its interannyal
variability, i.e. how much the system oscillates around its mean value.
The model range of variability constitutes a limit to the amplitude of the
characteristic ENSO signature in the extra-tropics. Figure 7.14 compares
the standard deviation of SLP computed in PlaSim T21 and T42 with values
obtained from four reanalysis datasets, NOAA-20CR (1900-2010; Compo et al.
(2006)), ERA-20CR (1900-2010; Poli et al. (2016)), ERA-Interim (1979-2019;
Dee et al. (2011)), NCEP/NCAR (1948-2019; Kalnay et al. (1996)). The
variability has been studied at the main semi-permanent pressure systems,
the Aleutian Low in the Pacific Ocean, the Azores High and the Icelandic
Low in the Atlantic Ocean. This analysis shows that the model variability
at both resolutions is lower than observed. Therefore, the amplitude of the
extra-tropical response to ENSO in PlaSim is expected to be weaker than
observed or simulated by state-of-the-art models (see Fig 7.12) because of
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the smaller variability of the model.

Figure 7.14: Standard deviation of SLP in JFM computed over three different re-
gions corresponding to Aleutian Low, Azores High and Icelandic Low.
PlaSim CTL simulations (T21 and T42 resolution) are compared
with reanalysis datasets: NOAA-20CR, ERA-20CR, ERA-Interim,
NCEP/NCAR.

7.5 Concluding remarks

El Niño-Southern Oscillation affects global climate and the occurrence of
climate extremes via atmospheric or oceanic teleconnections. Due to the
impact of the ENSO teleconnection on ecosystems and human societies, the
comprehension of involved processes and effects is an important challenge in
climate research. A hierarchy of climate models, spanning from conceptual to
high-resolution Earth-system models, has enhanced the understanding of the
main mechanisms generating ENSO. In this chapter, the representation of
the ENSO teleconnection in the NA sector has been assessed for the first time
from the perspective of an EMIC. The tropical and extra-tropical response
associated with ENSO in PlaSim is similar in terms of pattern to that
simulated by other more complex models: PlaSim realistically reproduces
both the Gill-type response in the tropical region and the sequence of Z200
maxima and minima that constitute the Rossby wave train in the extra-
tropical region up to the NA sector, although with some differences depending
on the model resolution. However, the signal associated with ENSO in
PlaSim is weak, and to obtain an amplitude comparable to that simulated
in other models it is necessary to have an unrealistic forcing in the tropical
Pacific. This problem can be attributed both to a weak tropical response
and to a small range of extra-tropical variability in the model. The main
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advantage of using an EMIC such as PlaSim to study the ENSO response
is the possibility to perform unprecedentedly long simulations due to the
reduced computational time with respect to more complex climate models.
In this way, the unpredictable internal atmospheric variability is minimized
and the signal associated with ENSO emerges, as shown by the comparison
between significant values for Z200 in Fig. 7.10 (top panels) and Fig. 7.13
(bottom panels).
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Conclusions

Earth-system Models of Intermediate Complexity (EMICs), which are pre-
sented in Chapter 1 of this PhD thesis, are in the middle of the spectrum of
numerical models for climate simulation, between conceptual models, which
contain a simple approximation of the Earth system, and comprehensive
models, which include all components and processes and provide a detailed
representation of them. EMICs also contain a rather complete description of
the climate system but with simpler parameterizations compared to more
complex models. The low resolution and the high number of parameterized
processes included in EMICs makes them ideal for performing very long
simulations and large ensembles, since the computational times are short and
the required resources are limited. Therefore these models are often used
as a laboratory to separately explore processes and feedbacks, to perform
sensitivity experiments and to understand in which direction to address
similar studies in more complex models, which require considerably greater
resources. In this thesis, different configurations of the Planet Simulator
(PlaSim) EMIC have been initially explored to evaluate its ability to simulate
past, present and future climate. The model has been then used to investigate
climate variability on different timescales. The main features of PlaSim are
presented in Chapter 2. PlaSim consists of the Portable University Model
of Atmosphere (PUMA) atmospheric module, which can be forced with a
climatology of sea surface temperatures (SSTs) or coupled to an ocean mod-
ule. This thesis, configurations of PlaSim coupled with a simple mixed-layer
(ML) ocean or with a global model of ocean circulation, the Large Scale
Geostrophic (LSG) ocean have been explored. Sea ice can be prescribed by a
climatology or simulated by a thermodynamic sea ice model. There are also
other components that can be implemented, such as the SimBA vegetation
module, but they have not been used in this thesis. The use of this model has
required an initial tuning of some oceanic parameters presented in Chapter
3, since the chosen configurations of PlaSim have been poorly explored and
documented in the literature and the currently available version of the model
presents several problems related to the values of these parameters. The
chosen configurations are PlaSim-ML T21, with mixed-layer ocean and coarse
resolution (about 600 km), PlaSim-ML T42, equal to the first configuration
but with finer resolution (about 300 km), and PlaSim-LSG T21, in which
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the atmospheric model is coupled to the more complex ocean model and the
resolution is the coarser one. All configurations use dynamic sea ice. In order
to parameterize the ocean transport in the ML ocean, horizontal diffusion
has been activated, which controlled by the horizontal diffusion coefficient
Kh. This choice is due to the fact that the alternative to horizontal diffusion,
i.e. the flux correction that is the most used parameterization when coupling
the model with the ML ocean, is specific for present climate and may not
be suitable for climate studies under conditions very far from the present
one. Therefore it may be useful to explore an alternative parameterization
of ocean transport to flux correction. A preliminary analysis with the aim of
obtaining a realistic zonally-averaged near-surface air temperatures profiles
has suggested the use of two different values for Kh, one in the NH and
another in the SH. In particular, in the PlaSim-ML T21 configuration the
optimal coefficients are Kh = 105 m2s−1 in the NH and Kh = 104 m2s−1 in
the SH. In the PlaSim-ML T42 configuration the optimal coefficients are
Kh = 105 m2s−1 in the NH and Kh = 3 · 104 m2s−1 in the SH. The use
of these values represents a significant improvement with respect to the
default value for both terrestrial hemispheres, Kh = 103 m2s−1, which is not
appropriate to give a realistic representation of the temperature distribution.
In the PlaSim-LSG T21 configuration, several sets of parameters constituting
the the vertical oceanic diffusion profile Av, which is a parameterization
of turbulent motions, have been explored. In fact, both the default set
of parameters in the model and those suggested in the literature (Bryan
and Lewis, 1979) cause a collapse of the Atlantic Meridional Overturning
Circulation (AMOC) and consequently the NH is too cold. A compromise
between a robust AMOC and the presence of sea ice in the SH has led
to an optimal profile of Av ranging from 0.45 · 10−4 m2s−1 at the top to
0.8 · 10−4 m2s−1 at the bottom of the ocean. Since the model in this con-
figuration has a warm bias in the Southern Ocean, some model parameters
have been explored in an attempt to reduce it. Although these analyses
have not allowed to identify a method to reduce the warm bias, they have
made it possible to exclude some hypotheses and explore some aspects of
the model. The latest evidence reveals that in more complex models the
warm bias in the Southern Ocean can be reduced by including the cloud
micro-physics or by the vertical mixing of ocean temperatures in that region.
These possibilities could also be explored in PlaSim in the future. The
choice of these oceanic parameters has been further investigated in Chapter
4, which presents a comparison between some surface variables simulated
in the model and several observational and reanalysis datasets. The values
obtained from the model tuning can also be justified by the fact that for
all configurations the simulated ocean transport is in better agreement with
the reanalysis than the transport obtained with the default values of the
model. Most of the climate variables are well simulated but the model does
not provide a perfect energy balance in any of the explored configurations.
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Some problems can be attributed to the coarse resolution of the model, in
fact using the finer T42 resolution some anomalies computed with respect
to observations are reduced and a smaller imbalance is obtained. These
imbalances are small compared to those reported in the literature for other
climate models. However, as demonstrated in the following analysis on the
interannual variability, the finer resolution does not always correspond to
climatic variables more similar to those observed. The model evaluation
has been finally extended to the representation of past and future climate
in the model by performing transient simulations from 1850 to 2100. The
CO2 concentration has been varied in the model according to the historical
evolution from the pre-industrial to the present condition and then according
to two different scenarios, one of emission stabilization and another one of
high emissions, for the future. The simulated time series of temperature has
been compared with the observed values for the past years and with the
results of models belonging to CMIP5 for future projection. It emerges that
the PlaSim-LSG T21 configuration is the one that best reproduces both the
historical series and the future evolution of climate. Another possibility to
explore the ability of a model in simulating climate change in the future is
the estimation of its Equilibrium Climate Sensitivity (ECS), defined as the
equilibrium change in global mean surface air temperature after an instan-
taneous doubling of atmospheric CO2 relative to pre-industrial levels. The
ECS of the three configurations of PlaSim has been computed by applying
the Gregory method (Gregory et al., 2004) and is presented in Chapter 5.
The ECS of the model is particularly high in configurations with ML ocean,
with 6.23 K using PlaSim-ML T21 and 5.45 K using PlaSim-LSG T42, when
compared to 4.26 K using PlaSim-LSG. These values have been then com-
pared with the values obtained for other state-of-the-art EMICs, CMIP5 and
CMIP6 models. Only the ECS of PlaSim-LSG is within the CMIP5 range,
although close to the upper limit. The EMICs and CMIP6 models have a
wider range of ECS and therefore also the PlaSim-ML T42 configuration is
within these values, even if close to the upper limit also in this case. An
important factor contributing to the higher ECS in PlaSim-ML compared to
PlaSim-LSG is the lack of AMOC in the simple mixed-layer ocean, which
therefore cannot weaken or collapse with a cooling effect on global mean
temperatures. The high ECS in PlaSim-ML is also related to elevated values
in magnitude of the sea ice feedback parameter, which has been obtained
by comparing simulations with prescribed sea ice and dynamic sea ice. The
ECS experiments have revealed that the details of oceanic heat transport
play an important role in determining the sea ice feedback parameter and
consequently the ECS model. When using the horizontal diffusion in the
ML ocean with Kh values that provide a realistic distribution of present-day
temperatures, changes in sea ice area have a much stronger radiative impact
than using low Kh values or a flux-correction approach. Another relevant
factor in determining the model ECS is the sea ice extent in pre-industrial
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and future conditions: since the sea ice feedback has a significant impact,
the almost total absence of sea ice in the SH in PlaSim-LSG contributes to
the low ECS of this configuration compared to PlaSim-ML configurations.
These results are presented in the paper Angeloni et al. (2020), currently
available on GMDD. During the study of the vertical oceanic diffusion coeffi-
cient in PlaSim-LSG, it was found that the model shows different AMOC
regimes, including one characterized by regular multicentennial oscillations
with an amplitude of several Sverdrups. Currently there is a lot of interest
in the use of PlaSim for paleoclimatic studies because it allows to simulate
tens of thousands of years in a short time thanks to the reduced computa-
tional times. For this reason, a study that clarifies the stability conditions
of the model and explores the oscillation mechanisms of AMOC may be
of interest to understand possible future uses of the model in this setting.
Further, there is significant interest for the study of tipping points in the
climate system and for the stability of AMOC. Chapter 6 therefore explores
the dependence of AMOC regimes on two model parameters, the vertical
diffusion coefficient Av and the atmospheric CO2 concentration, and then
investigates the mechanism generating the oscillations. The analyses have
revealed that a fundamental role is played by the formation and melting of
Arctic sea ice and by the accumulation of surface salinity anomalies at high
latitudes, which takes several decades to reach the North Atlantic Deep Water
(NADW) formation region and to strengthen the AMOC trend. In fact, when
AMOC is in a phase of increase due to the high pole-equator temperature
gradient, sea ice begins to melt due to rising temperatures at high latitudes.
This melting leaves a larger part of the ocean uncovered so evaporation is
enabled, resulting in increased salinity in the Arctic basin. This salinity
anomaly reaches the sinking zone with a certain delay, with the effect of
further intensifying the AMOC, which therefore never reaches the equilibrium
state. When the AMOC is maximum and the pole-equator gradient very
low, the self-regulating mechanism is triggered so that the AMOC begins
to weaken, the sea ice cover increases and the process repeats with opposite
signs, until the minimum of oscillation is reached. The mechanism associated
to AMOC oscillations, although with global impacts, therefore originates
from salinity or freshwater exchanges between the Arctic basin and the
North Atlantic. This work is converging in a paper in preparation, Angeloni
et al. (2022). The impacts of AMOC decline in CMIP5 and CMIP6 4xCO2

experiments has been explored in the paper Bellomo et al. (2021), to which
I have participated. Finally, Chapter 7 presents a study of the variability of
the model on shorter, interannual timescales, also in this case with a focus
on the North Atlantic sector. After presenting the signal associated with
the North Atlantic Oscillation (NAO) in the model, sensitivity experiments
performed with PlaSim with a prescribed SST forcing mimicking El Niño
(EN) or La Niña (LN) events have been analysed, with the aim of studying
the extra-tropical atmospheric response and comparing it with the results
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of the global state-of-the-art model EC-Earth. The advantage of using an
EMIC such as PlaSim in a study of this type is the possibility to simulate a
large ensemble of typical El Niño-Southern Oscillation (ENSO) events, which
allows to reduce the atmospheric variability not associated with the ENSO
response and to bring out the signal of interest. Although the forcing is
symmetric for EN and LN experiments, the model shows a strong asymmetry
in the extra-tropical atmospheric response. The variability pattern associated
with EN is realistically reproduced in PlaSim, albeit with lower intensity
than EC-Earth. On the contrary, the extra-tropical response associated
with LN is very weak and not statistically significant. Some analyses with
and increased forcing have shown that, in order to obtain an extra-tropical
signal comparable in terms of intensity with that simulated in EC-Earth, it
is necessary to increase the SST anomalies to values that have never been
observed in the real world for EN and LN events. These results show that
the dynamics involved in the ENSO teleconnection is correctly described
in PlaSim, but the atmospheric response is weak and therefore there is not
enough energy transfer from the tropics to the extra-tropics. Moreover, the
variability of PlaSim is small compared to the variability computed from
some reanalysis datasets, thus representing a limit for the amplitude of the
ENSO signature in the extra-tropics. In addition, a strong dependence on
the resolution of model has been shown, which can be traced to differences
at several levels (characteristics and position of deep convection, divergence
in upper troposphere and mean flow) that are also found in control runs
where there is no signal associated with ENSO.

The studies presented in this thesis fill some gaps in the available literature
on the PlaSim EMIC. In fact, so far no work has been documented that
explores in detail the configuration of PlaSim coupled with a mixed-layer
ocean with horizontal diffusion and the configuration of PlaSim coupled
to the LSG ocean. This thesis provides reference values for some oceanic
parameters that are not properly calibrated in the default version and that
can be used as a starting point for future studies with this model. In addition
to the presentation of average climatology, the response of PlaSim has been
also shown in terms of ECS, in terms of variability at a centennial timescale,
which gives rise to AMOC oscillations, or at interannual timescale, such
as that characterizing the extra-tropical response to ENSO. This study
demonstrates that despite its simplicity and limitations, a model such as
PlaSim does not contain a trivial dynamic and is flexible enough to answer
interesting scientific questions. Therefore, it can be used as a complementary
tool to simpler and more complex models, to maximize the possibilities that
the broad spectrum of climate models can provide.
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