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Abstract

In this study, the lubrication theory is used to model flow in geological frac-
tures and analyse the compound effect of medium heterogeneity and com-
plex fluid rheology. Such studies are warranted as the Newtonian rheology
is adopted in most numerical models because of its ease of use, despite non-
Newtonian fluids being ubiquitous in subsurface applications. Past studies on
Newtonian and non-Newtonian flow in single rock fractures are summarized
in Chapter 1. Chapter 2 presents analytical and semi-analytical conceptual
models for flow of a shear-thinning fluid in rock fractures having a simpli-
fied geometry, providing a first insight on their permeability. in Chapter 3,
a lubrication-based 2-D numerical model is first implemented to solve flow
of an Ellis fluid in rough fractures; the finite-volumes model developed is
more computationally effective than conducting full 3-D simulations, and in-
troduces an acceptable approximation as long as the flow is laminar and the
fracture walls relatively smooth. The compound effect of shear-thinning fluid
nature and fracture heterogeneity promotes flow localization, which in turn
affects the performance of industrial activities and remediation techniques. In
Chapter 4, a Monte Carlo framework is adopted to produce multiple realiza-
tions of synthetic fractures, and analyze their ensemble statistics pertaining
flow for a variety of real non-Newtonian fluids; the Newtonian case is used
as a benchmark. In Chapter 5 and Chapter 6, a conceptual model of the
hydro-mechanical aspects of backflow occurring in the last phase of hydraulic
fracturing is proposed and experimentally validated, quantifying the effects
of the relaxation induced by the flow.
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1 Introduction

In nature and in many industrial applications fluids have a peculiar rheol-
ogy resulting from their complex microstructure. These fluids, called non-
Newtonian, exhibit a relationship between shear stress and shear rate that
does not respect Newton’s law of viscosity, as their apparent viscosity is de-
pendent on shear rate, and in some cases on shear rate history as well .
Typical fluids used in reservoir engineering, drilling operations and hydraulic
fracturing show such characteristics. Principal among those fluids are drilling
muds, aqueous suspensions, and stimulating fluids such as slurries and foams.
In the oil industry, drilling muds provide cooling and lubrication to the drill
bit, and hydrostatic containment of formations. Mixtures of water (possibly
emulsified with oil), weighting material and clays, as well as small quantities
of salts and polymeric fluid additives are frequently used in mining engineer-
ing; such physical make-up inevitably leads to complex rheology (Frigaard,
Howison & Sobey, 1994); in particular, fluid/solid mixtures often present an
inelastic non-Newtonian behaviour because clay particles tend to cross-link
chemically, forming bonds between particles . In nature, it was observed that
even lava presents a yield stress because of its typical multiphase and chemi-
cally heterogeneous structure (Walker, 1967; Robson, 1967).

Reservoir engineering activities, e.g. oil and gas extraction, often take
place in fractured media and involve the use of complex fluids under consid-
erable pressure in order to obtain a desired objective, typically enlargement
of existing apertures or the creation of new fractures (Detournay, 2016). It is
important to notice that all these industrial applications may cause environ-
mental contamination, which in turn produces additional motivation towards
the study of flow of complex fluids through fractures: see Birdsell, Rajaram &
Viswanathan (2015) for a comprehensive review of pollution issues connected
to hydraulic fracturing.

The flow of rheologically complex fluids in naturally and/or artificially
fractured media arises in all the aforementioned applications. A parallel with
porous media flow of non-Newtonian fluids (see the review on single-phase
flow by Sochi (2010)) suggests the existence of specific challenges and com-
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2 CHAPTER 1. INTRODUCTION

pound effects arising from the interaction between the non-linearity of the
flow and the inherent multi scale heterogeneity characterizing the fractured
medium. To capture such interactions, it becomes even more important to
accurately describe the fluid on one hand, and the geometry of individual
fractures or fracture networks on the other. At the single fracture scale, the
simple parallel plate model was used to represent the geometry (Bear, 1972;
Snow, 1970), but experimental evidence showed that the fracture aperture
is characterized by a strong degree of variability (Gale, 1982); in particular,
the existence of rock joints (Engelder & Scholz, 1981) favours the creation
of tortuous flow paths across the fracture (Hakami & Larsson, 1996). Field
observations in crystalline rocks support these findings and confirm the pres-
ence of preferential flow paths (Neretnieks, 1985). Brittle fractures are often
generated by shearing, which can be taken into account by defining a shear
slip between the fracture walls; the slip was proven to control correlations be-
tween the topographies of facing fracture surfaces. Natural fractures present
a roughness that can be represented by a self-affine scale invariance. Sup-
ported by experimental evidence (Schmittbuhl, Gentier & Roux, 1993), the
fractal characterization of fracture walls has gained prominence (Berkowitz,
2002) and nowadays researchers mainly reproduce the spatial aperture varia-
tion starting from the generation of realistic topographies for fracture walls,
or equivalent techniques. There exist several algorithms that permit to gen-
erate fractures as fractional Brownian motion (fBm): the random midpoint
displacement method (RMD), introduced by Fournier, Fussell & Carpenter
(1982); the successive random addition, proposed by Voss (1988) to overcome
the shortcomings of the RMD; the Fourier filtering method, a very time-
efficient technique described in Saupe (1988). The surfaces composing real
fracture are then mated or correlated with each other at long wave lengths;
however they remain uncorrelated at smaller wavelengths, which is observed
in real geological fractures (Brown, 1995; Méheust & Schmittbuhl, 2003) due
to mechanical wear and chemical weathering.

The effects of this fracture aperture variability on single-phase Newtonian
flow has been analysed in detail since the 80s (Brown, 1989; Sahimi, 1993;
Tsang & Tsang, 1987; Durham & Bonner, 1995; Glover, Matsuki, Hikima &
Hayashi, 1998). The need to safeguard the environment from leaks occur-
ring in radioactive and/or toxic waste repositories has encouraged the study
of the influence of fracture roughness on the hydro-mechanical behaviour of
rock joints (Li, Jiang, Koyama, Jing & Tanabashi, 2008), and on transport
properties (Plouraboué, Kurowski, Boffa, Hulin & Roux, 2000). The tradi-
tional approach, dating back to the 80s, is to describe the fracture aperture
as a random field, characterized by an aperture density distribution function,
with or without spatial correlation. This approach was used to study lami-
nar flow in one-dimensional channels (Neuzil & Tracy, 1981; Tsang & Tsang,
1987; Tsang, Tsang, Neretnieks & Moreno, 1988), and extended to two di-
mensions (Tsang & Tsang, 1989; Moreno, Tsang, Tsang, Hale & Neretnieks,
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1988). Later, the growing knowledge of fracture topography characteristics
has allowed reproducing the complexity of real aperture variations, driving
an evolution of models from the simpler series of parallel-plate channels to
synthetically-generated 2-D aperture fields that resemble closely those of more
closely real fractures (Brown, 1987; Méheust & Schmittbuhl, 2000, 2003).
Newtonian flow has been studies extensively in such geometries. The afore-
mentioned tortuous flow paths have been shown to exist due to long range
correlations in the aperture field allowing large scale correlated channels of
large apertures to connect the inlet and outlet (Méheust & Schmittbuhl, 2001).

Geophysicists and hydrogeologists have recently focused their attention
on non-Newtonian fluids to investigate new techniques for soil remediation
and enhanced oil recovery. Initially, non-Newtonian modelling was mostly
investigated in relation to porous media flow (Barenblatt, Entov & Ryzhik,
1990), while fractured media received little attention. Then, the existing
Newtonian background favoured the first attempts to investigate the flow of
non-Newtonian fluids through a single fracture, adopting the traditional ap-
proaches but with different fluid constitutive laws. The appeal of analytical
models led several authors to follow the traditional approach of proposing
equivalent aperture formulations also for non-Newtonian fluids. An expres-
sion has been proposed by Di Federico (1998) for a power-law fluid, following
the work of Silliman (1989), who derived an equivalent aperture for Newtonian
fluid in a fracture whose aperture field is along the two in-plane directions.

Despite the geometric oversimplification of the parallel plate model, the
latter represents an extremely easily-handled model which often leads to an
explicit relationship between the flow rate and the imposed pressure gradi-
ents, even considering non-Newtonian fluids (e.g. power-law, Ellis, Prandlt-
Eyring). A more sophisticated approach, either including aperture variability
and maintaining an analytical or semi-analytical expression, is represented by
models where aperture varies along an in-plane direction with flow occurring
parallel or orthogonal to it. In a first proposal for Newtonian fluids from
(Neuzil & Tracy, 1981), the aperture variability was characterized solely by
a probability density function, without information about spatial correlations
in the apertures, to simplify computation and show model features. These
conceptual models constitute a valid tool to comprehend the role of hetero-
geneity and rheology, providing a rough estimate of order of magnitudes and
trends of the possible quantities of interest.

Recently, we adopted this approach to analyse the effect on flow in frac-
tures due to the different features of the constitutive law. In Lenci & Chi-
apponi (2020), a power-law fluid, the simplest shear-thinning model, is con-
sidered and results are validated with an ad hoc experimental apparatus and
a 1-D finite difference scheme; subsequently, in Lenci & Federico (2019), we
adopted the Prandlt-Eyring rheology, a smooth shear-thinning model that
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exhibits a single low shear-rate plateau. Eventually, we analysed a bi-viscous
model to estimate the influence of an yield-stress on flow (Lenci & Di Federico,
2020). However, shear-thinning fluids adopted in the subsurface present both
a low and a high shear rate plateau which is typically well represented by the
Carreau model. This model lacks an explicit expression of the flow rate as a
function of the pressure gradient but can be approximated with a truncated
power law (TPL). In (Felisa, Lenci, Lauriola, Longo & Di Federico, 2018)
(see chapter 2), the TPL model is considered to characterize the two extreme
flow scenarios: the cases of maximum and minimum conductance, where flow
occurs orthogonal and parallel to aperture variability, respectively.

The study of non-Newtonian flows in realistic geological fractures is still in
its infancy. In order to study the effects of fracture and fluid properties, Lavrov
(013a) estimated the equivalent aperture by performing numerical simulations
of power-law fluid flow in rough fractures using a lubrication-based approach.
Morris, Chochua & Bogdan (2015) proposed a variable aperture flow simu-
lator for Bingham, Herschel-Bulkley and power-law fluids, which iteratively
solves a linearised formulation of the flow problem. Numerical studies showed
that the lubrication theory constitutes a major approximation when studying
the flow in rough fractures (Koyama, Neretnieks & Jing, 2008; Hron, Malek
& Turek, 2000), a finding supported by the experiments of Yalamanchili, Siri-
vat & Rajagopal (1995). Secondary flow (recirculations) may occur between
asperities, leading to a systematic error of 5 − 10% in the flow estimation
(Koyama et al., 2008). As long as the regime is that of Stokes flow (Reynolds
number much smaller than 1) and the aperture field is sufficiently smooth
(limited aperture gradients), the lubrication approximation can be adopted
to simulate the flow in geological fractures. This approach can be preferred to
full 3-D CFD simulation because it results in much more efficient and compu-
tationally less intense simulations, with also the possibility to generate much
larger meshes. In Lenci, Méheust, Putti & Di Federico (2022a) (see chapter
3), a lubrication-base code is proposed to solve the flow of an Ellis fluid in
realistic rough fracture geometries. This efficient and robust tool generates
aperture fields with an FFT-based algorithm and is able to solve the flow even
for small fluid indices (i.e., exponents defining the power law regime of the
rheology) and large applied macroscopic pressure gradients, via an inexact
Newton-Krylov method.

A Monte Carlo analysis must be performed to obtain generic characteri-
zation of phenomena involving stochastic processes, such as the generation of
aperture fields for geological fractures. A stochastic analysis of non-Newtonian
flow through rough fractures is presented in Lenci, Putti, Méheust & Di Fed-
erico (2022b) (see chapter 4), where we presented the probability density
functions of the local flux magnitude and its components. Moreover, we anal-
ysed the autocorrelation functions to evaluate the presence of a flow field
correlation length.
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The characterization of the flow in the subsurface is of uttermost impor-
tance to comprehend natural phenomena, optimize industrial activities and
minimize the anthropogenic impact on the environment. In unconventional
reservoirs, where the solid matrix typically exhibits low porosity and low per-
meability, the flow occurs in fracture networks, where the hydraulic and the
mechanical problem are typically coupled. The by-products of hydraulic frac-
turing for oil and gas extraction in unconventional reservoirs include fluid
wastes that can be recovered for disposal and re-use. During the last phase
of the hydraulic fracturing, the flow reverses and a relaxation processes takes
place. The fracture closes as the pressure is gradually reduced as a result
of the flowback to the extraction well. This flowback reduces wastewater
threat on environment. Recently, interest for this topic arose in the scientific
community, with authors proposing theoretical models (Dana, Zheng, Peng,
Stone, Huppert & Ramon, 2018; Chiapponi, Ciriello, Longo & Di Federico,
2019). In Ciriello, Lenci, Longo & Di Federico (2021) (see Chapter 4) and
Lenci, Chiapponi, Longo & Di Federico (2021) (see Chapter 5), a concep-
tual backflow model for Ellis and power-law fluids is proposed, respectively;
the latter present a validation with laboratory experiments for both New-
tonian and non-Newtonian fluids, higlighting the importance of rheology on
relaxation-induced flow.
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2 Flow of truncated power-law fluid in fracture
channels of variable aperture

2.1 Abstract

A conceptual model is presented for non-Newtonian fluid flow in a rough
channel representing a single fracture. The fluid rheology is described via
a truncated power-law (TPL) model approximating the Carreau constitu-
tive equation, while the aperture variation along the channel is modeled via
a stochastic distribution of assigned mean and variance; the lognormal and
gamma distributions are considered, together with a deterministic variation of
sinusoidal behavior. The flowrate in a fracture subject to an external pressure
gradient is derived under the lubrication approximation for the two limiting
cases of a pressure gradient which is i) perpendicular and ii) parallel to aper-
ture variation; these parallel and serial arrangements (PA or SA) provide
an upper and lower bound to the fracture conductance. Different combina-
tions of the parameters describing the fluid rheology and the variability of
the aperture field are considered for a sensitivity analysis. Results are also
compared with those valid for a pure power-law (PL) fluid which provides a
relevant benchmark. The channel flowrate shows a direct/inverse dependency
upon aperture variability for PA/SA. The difference in flowrate between the
PL and TPL models is positively affected by aperture variability and pressure
gradient, negatively affected by flow behaviour index, while its sign is positive
or negative depending on PA/SA. The influence of the specific pdf adopted for
the aperture field is moderate, an increasing function of aperture variability
and depends on the third and fourth moment of the distribution. The con-
ductance for a deterministic aperture variation exhibits the same trends as a
stochastic variation, with differences from the latter depending on aperture
variability and flow arrangement.

2.2 Introduction

Hydraulic fracturing is largely used for optimal exploitation of oil, gas and
thermal reservoirs. Non-Newtonian fluids are most frequently used in this
type of operations (Linkov, 2014; Boronin, Osiptsov & Descroches, 2015); the
challenge of modeling flow of these rheologically complex fluids is compounded
by the possible interaction of multiple non-Newtonian fluids (Morris et al.,

7
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2015). Complex fluids interact with pre-existing rock fractures also during
drilling operations (Ozdemirtas, Kuru & Babadagli, 2010; Huang, Griffiths
& Wong, 2011), enhanced oil recovery (Auradou, Boschan, Chertcoff, Gab-
banelli, Hulin & Ippolito, 2008), and environmental remediation, and other
natural phenomena such as magma intrusions, sand intrusions, and mud vol-
canoes (see Medina et al., 2015 (Medina, Elkhoury, Morris, Prioul, Desroches
& Detwiler, 2015) and references therein). Hence, it is important to model
non-Newtonian flow in fractured media. A first step in this process is a de-
tailed understanding of flow in a single fracture, as the space between fracture
walls (termed fracture aperture) is typically spatially variable (Adler, Thovert
& Mourzenko, 2002).

A large bibliography exists on Newtonian flow in single, variable aperture
fractures. Neuzil and Tracy (Neuzil & Tracy, 1981) and Tsang (Tsang &
Tsang, 1987) adopted a one-dimensional channel model, with channels de-
scribed by an aperture density distribution and a spatial correlation length.
Other authors (Tsang, 1984; Moreno et al., 1988; Tsang et al., 1988; Tsang
& Tsang, 1989) extended the model to two-dimensional spatial variability of
assigned correlation function, while other studies (Brown, 1987; Mourzenko,
Thovert & Adler, 2001; Yan & Koplik, 2008; Talon, Auradou & Hansen, 2010)
simulated the fracture surface roughness using fractal models of surface to-
pography. Comprehensive reviews on flow in a single fracture were provided
in (Zimmerman & Bodvarsson, 1996; Adler & Thovert, 1999; Berkowitz, 2002;
Sahimi, 2011).

Ultimately, stochastic modeling of aperture variability at the single frac-
ture scale leads to determination of the flowrate under a given pressure gradi-
ent as a function of the parameters describing the variability of the aperture
field and the fluid rheological behaviour. From the flowrate, a flow, or ‘hy-
draulic’ aperture can then be derived (Silliman, 1989); a second equivalent
aperture can be defined for transport, and usually differs from the ‘hydraulic’
aperture (Tsang, 1992).

The equivalent flow aperture for flow of non-Newtonian fluids of power-
law nature in single, variable aperture fractures has been obtained with an
heuristic approach by Di Federico for a stochastic variation of assigned distri-
bution (Di Federico, 1998) and for deterministic variations (Di Federico, 1997,
2001). Detailed numerical modeling of flow of a power-law fluid in a variable
aperture fracture was performed by Lavrov (Lavrov, 013b, 2014), whose work
demonstrated that pronounced channelization effects are associated to a non-
linear fluid rheology; a further study by Lavrov (Lavrov, 013a) validated the
simplified model of (Di Federico, 1997). The availability of an equivalent flow
aperture as a function of the parameters describing the fluid rheology and
the aperture variability is enticing, as it allows taking their interaction into
account when modeling flow in fracture networks at a larger scale (Neuman,
2005). Bingham fluid flow in a variable aperture channel was studied ana-
lytically and numerically by Roustaei et al. (Roustaei, Chevalier, Talon &
Frigaard, 2016), highlightning the progressive departure from the lubrication
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approximation with increasing heterogeneity, the onset of fouling layers, and
the existence of a limiting pressure gradient.

Another relevant issue in non-Newtonian fracture flow is the rheologi-
cal nature of the fluid. The constitutive model routinely used for hydro-
fracturing modeling is the simple, two-parameter power-law (Perkowska, Wro-
bel & Mishuris, 2016). Yet this model does not characterize real fluids at low
and high shear rates, as it implies, for shear-thinning fluids, an apparent vis-
cosity which becomes unbounded for zero shear rate and tends to zero for
infinite shear rate. On the contrary, the four-parameter Carreau constitutive
equation includes asymptotic values of the apparent viscosity at those lim-
its. Lavrov (Lavrov, 2015) showed the Carreau rheological equation is well
approximated by the truncated power-law model, and suggested to adopt the
latter model for numerical modeling of flow in variable aperture fractures.
To this end, he derived the expressions for flow of a truncated power-law
fluid between parallel walls under a constant pressure gradient. A method to
predict the flow of yield stress fluids described by a Herschel-Bulkley model
and of shear thinning fluids without yield stress described by Carreau model
through rough fractures was recently proposed and experimentally validated
(Rodŕıguez de Castro & Radilla, 2016, 2017).

This paper extends the adoption of the truncated power-law model to
fractures of variable aperture, in a stochastic or deterministic fashion, with
the aim of understanding the joint influence of rheology and aperture spatial
variability in a simplified geometrical setup where the variability is confined
to one-direction, looking at the two limit cases where the aperture variabil-
ity is either parallel or perpendicular to the flow direction. This assumption,
which admittedly simplifies the real flow field, aims at providing reference
benchmarks to be compared with more complex simulations. Section 2 sum-
marizes results on flow of a truncated power-law fluid between parallel walls;
Section 3 presents the general expressions of the flowrate for flow perpen-
dicular and parallel to aperture variation; Section 4 deals with a stochastic
aperture variation, and illustrates results stemming from the adoption of two
different pdfs for the aperture distribution (lognormal and gamma). Section 6
applies the same simplified methodology to a deterministic aperture variation
of sinusoidal behaviour. Then results obtained for the truncated model are
compared with those earlier obtained for pure power-law fluids. Section 7
reports some conclusions.

2.3 Flow of truncated power-law fluid flow in a constant
aperture fracture

Consider the flow of a shear-thinning non-Newtonian fluid in a fracture of
length L, width W and constant aperture b; the coordinate system is shown in
Figures 2.1(a)-(b); the fracture walls are at z = +b/2 and z = −b/2. Suppose
a uniform, positive pressure gradient px = [p(0) − p(L)]/L is applied in the
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x direction. Assuming that b � W , the velocity components in the y and z
directions are zero, and the only nonzero velocity component, vx, is solely a
function of z. The fluid is described by the rheological truncated power-law
model, reading, in the simple shear situation described above, τ = µaγ̇, with
τ shear stress, and γ̇ shear rate. The apparent viscosity µa is given by

µa = µ0 for γ̇ 6 γ̇1;

µa = mγ̇n−1 for γ̇1 < γ̇ < γ̇2;

µa = µ∞ for γ̇ > γ̇2;

(2.1)

In Eq.(2.1), depicted in Figure 2.1c, µ0 is the viscosity at zero shear rate,
µ∞ is the limiting viscosity for γ̇ → ∞, n and m are the rheological and
consistency index, respectively, γ̇1 = (m/µ0)1/(1−n) is the lower shear rate
at which the high viscosity cutoff µ0 is introduced, and γ̇2 = (m/µ∞)1/(1−n)

is the higher shear rate at which the low viscosity cutoff µ∞ is introduced.
The above four-parameter model is identical to the pure power-law model
of parameters n and m in the intermediate shear stress range γ̇1 < γ̇ < γ̇2,
and overcomes the limitation of having µa → ∞ for γ̇ → 0 and µa → 0
for γ̇ → ∞. Lavrov (Lavrov, 2015) showed that the truncated power-law
model is practically indistinguishable, for practical purposes, from the Carreau
model. He also derived the velocity field vx(z) and the flowrate per unit width
qx = Qx/W under a constant pressure gradient px. Depending on the aperture
value, the flowrate can take three different expressions, namely

qxI(b) =
b3px
12µ0

for b < b1 =
2µ0γ̇1

px
; (2.2a)

qxII(b) =
2(1− n)m3/(1−n)

3(2n+ 1)µ
(2n+1)/(1−n)
0 p2

x

+
nb(2n+1)/n

2n+ 1

(
px

2n+1m

)1/n

for b1 < b < b2;

(2.2b)

qxIII(b) =
b3px

12µ∞
− 2(1− n)m3/(1−n)

3(2n+ 1)p2
x

(
1

µ
(2n+1)/(1−n)
∞

− 1

µ
(2n+1)/(1−n)
0

)
for b > b2 =

2mγ̇n2
px

;

(2.2c)

According to Eqs. (2.2a)-(2.2b)-(2.2c), three flow regimes (I = low shear rate
regime, II = intermediate shear rate regime, and III = high shear rate regime)
are possible within the fracture, depending on the relationship between its
aperture b and the two threshold apertures b1 and b2.

2.4 Flow in a variable aperture channel

In single fracture flow modeling, the fracture aperture b(x, y) is usually taken
to vary as a two-dimensional, spatially homogeneous and correlated random
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Figure 2.1: Configuration of the fractures and rheological approximation. a)
Fracture sketch with applied pressure gradient; b) fracture profile in the x direction;
c) apparent viscosity µa as a function of shear rate for the two models: truncated
and pure power-law, respectively.
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field, characterized by a probability density function f(b) of given mean 〈b〉
and variance σ2

b , and possibly spatial correlation described by an aperture
autocovariance function of given integral scale I or integral scales Ix and
Iy in the anisotropic case (alternatively a fractal distribution of given Hurst
coefficient H and correlated at all scales is adopted).

If an anisotropic aperture field of anisotropy ratio e = Iy/Ix is considered,
the two limiting cases e = 0 and e =∞ give rise to a purely one-dimensional
aperture variation; consequently, flow under an external pressure gradient can
be considered to take place either transverse (case 1, Figure 2.2a) or parallel
to aperture variability (case 2, Figure 2.2b). This approach was used for New-
tonian flow by Silliman (Silliman, 1989) to infer estimates of 2-D hydraulic
and transport apertures, by Zimmerman (Zimmerman, Kumar & Bodvars-
son, 1991) to determine the hydraulic aperture under deterministic sinusoidal
variations, and by Di Federico (Di Federico, 1997, 1998) to derive estimates of
hydraulic aperture for non-Newtonian power-law flow under both determin-
istic and stochastic aperture variations, respectively. Lavrov (Lavrov, 013a)
validated the approach with two-dimensional numerical simulations conducted
for a deterministic, sinusoidal aperture profile in both directions. Comparison
of his results with the geometric average of flowrates for one-dimensional sinu-
soidal variations only along and only across the flow (cases 1 and 2 respectively
but with a sinusoidal variation, see Section 5) showed a relative discrepancy
in terms of equivalent aperture equal to less than 10% for δ < 0.4, δ being
the non-dimensional amplitude of the aperture variation. In the sequel, we
consider first case 1, then case 2.

2.4.1 Flow parallel to constant aperture channels

Consider a fracture of dimensions L and W in the x and y direction, respec-
tively, and aperture varying only in the y direction. Consider flow in the direc-
tion x parallel to constant aperture channels, i.e., transverse to aperture varia-
tion (case 1, Figure 2.2a); the applied pressure gradient is px = [p(0)−p(L)]/L;
the volumetric flux is obtained through the following procedure. The fracture
model is discretized into N neighboring parallel channels, each having equal
width ∆y = W/N , length L and constant aperture bi. Depending on the local
aperture value, in each channel the flow regime is either I, or II, or III, and
the corresponding flowrate per unit width is given either by (2.2a), (2.2b), or
(2.2c). The number of channels in each regime is NI , NII , NIII , respectively,
and the total width of the channels in each regime is WI , WII , WIII with
N = NI +NII +NIII and W = WI +WII +WIII ; the i-th channel in each
regime j (j = I, II, III) has width Wji = Wj/Nj . Assuming that the shear
between neighboring channels and the drag against the connecting walls may
be neglected, the total flowrate in the x direction is

Qx =

NI∑
i=1

qI(bi)WIi +

NII∑
i=1

qII(bi)WIIi +

NIII∑
i=1

qIII(bi)WIIIi. (2.3)
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Figure 2.2: Configuration of the fracture. a) Case 1: flow perpendicular to aper-
ture variation described by the aperture density function f(b); b) case 2: flow parallel
to aperture variation described by the aperture density function f(b).

This assumption is acceptable for channels with a smooth variation of the
aperture, i.e. with a smooth variation of the flowrate along the y direction,
otherwise a linear momentum sharing between the neighbouring channels due
to tangential stress in the x−z plane is expected. Taking the limit as Nj →∞,
the width of each channel tends to zero and the discrete aperture variation
to a continuous one; then under ergodicity, and exploiting the previous re-
lationships, (2.3) gives for the flowrate per unit width in the x direction the
expression

qx =
Qx
W

=

= II
px

12µ0
+

[
PII

2(1− n)m3/(1−n)

3(2n+ 1)µ
(2n+1)/(1−n)
0 p2

x

+
n

2n+ 1
III

(
px

2n+1m

)1/n]
+

+

[
IIII

px
12µ∞

− PIII
2(1− n)m3/(1−n)

3(2n+ 1)p2
x

(
1

µ
(2n+1)/(1−n)
∞

− 1

µ
(2n+1)/(1−n)
0

)]
,

(2.4)

where

II =

∫ b1

0

b3f(b)db; III =

∫ b2

b1

b(2n+1)/nf(b)db; IIII =

∫ ∞
b2

b3f(b)db;

(2.5)
PII = F (b2)− F (b1); PIII = 1− F (b2), (2.6)

in which f(b) and F (b) are the pdf and cumulative distribution function of
the aperture field, respectively.

2.4.2 Flow perpendicular to constant aperture channels

Consider now flow in the y direction perpendicular to constant aperture chan-
nels, i.e. parallel to aperture variation (case 2, Figure 2.2b); the fracture
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length is W and the applied pressure gradient is py = [p(0)−p(W )]/W , while
L is the fracture width perpendicular to gradient. Discretizing the fracture
model into N cells of equal length ∆y = W/N in series, each cell has width
L and constant aperture bi. By virtue of mass conservation, volumetric flux
Qy through each cell is the same; depending on the local aperture value, in
each channel the flow regime is either I, or II, or III, and the corresponding
flowrate per unit width qy = Qy/L is given, respectively, by the counterparts
of Eqs. (2.2a), (2.2b), or (2.2c) upon substitution of the subscript x with the
subscript y; this is so neglecting the pressure losses due to the succession of
constrictions and enlargements. The number of cells in each regime is NI ,
NII , NIII , respectively, and the total length of the cells in each regime is WI ,
WII , WIII , with N = NI + NII + NIII and W = WI + WII + WIII ; the
i-th cell in each regime j (j = I, II, III) has length Wji = Wj/Nj . The total
pressure loss along the fracture, ∆py, can be expressed as the sum of pressure

losses in each cell, ∆pyi, as ∆py = [p(0)− p(W )] =
∑N
i=1 ∆pyi. This in turn

yields the mean pressure gradient py as

py =

NI∑
i=1

pyIi
WIi

W
+

NII∑
i=1

pyIIi
WIIi

W
+

NIII∑
i=1

pyIIIi
WIIIi

W
, (2.7)

where pyji is the pressure gradient in the i-th cell under flow regime j (j =
I, II, III). Taking the limit as Nj →∞, the length of each cell tends to zero
and the discrete aperture variation to a continuous one; then under ergodicity,
and exploiting the previous relationships, Equation (2.7) gives for the mean
pressure gradient in the y direction the expression

py =

∫ b1

0

pyIf(b)db+

∫ b2

b1

pyIIf(b)db+

∫ ∞
b2

pyIIIf(b)db, (2.8)

where the pressure gradient for each infinitesimal cell of constant aperture,
i.e. pyj = pyj(qy, f(b), b1, b2, µ0,m, n, µ∞), can be expressed as a function of
the unknown flowrate per unit width qyI = qyII = qyIII = qy, and the param-
eters describing the fracture geometry and the fluid rheology, upon inverting
Equations (2.2a), (2.2b), or (2.2c), written replacing the subscript x with the
subscript y. This allows deriving, albeit numerically, the flowrate per unit
width as a function of the applied pressure gradient and problem parame-
ters as done in (2.4) for channels in parallel. An alternative formulation of
the problem, using the same formalism adopted for flow parallel to constant
aperture channel, is presented in Appendix A and leads to the same results.

2.5 Estimate of flowrate and discussion

Different distributions are adopted for the aperture field, consistently with
earlier work on flow and transport in variable aperture fractures (Moreno
et al., 1988; Tsang et al., 1988). In the following, i) lognormal, and ii) gamma
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distribution are considered, the latter covering for values of the parameter
d > 3− 4 also the normal case.

2.5.1 Lognormal distribution

Lognormal distributions for the aperture field were adopted by (Moreno et al.,
1988) and (Tsang et al., 1988). Its probability distribution function is given
by

f(b) =
1

bσ
√

2π
exp

[
− (ln b− ln bg)

2

2σ2

]
, (2.9)

where bg = 〈b〉 exp(−σ2/2) is the geometric mean, 〈b〉 the arithmetic mean,
and σ2 the variance of ln b. Utilizing Eqs. (2.4)-(2.5) with Equation (2.6)
gives for the factors Ij(j = I, II, III) and Pj (j = II, III) the following
expressions:

II =
〈b〉3

2
exp(3σ2)

[
1 + erf

(
1√
2σ

(
ln
b1
〈b〉
− 5σ2

2

))]
;

III =
〈b〉(2n+1)/n

2
exp

(
(2n+ 1)(n+ 1)

2n2
σ2

)
×

×
[
erf

(
1√
2σ

(
ln
b2
〈b〉
− (3n+ 2)σ2

2n

))
− erf

(
1√
2σ

(
ln
b1
〈b〉
− (3n+ 2)σ2

2n

))]
;

IIII =
〈b〉3

2
exp(3σ2)

[
1− erf

(
1√
2σ

(
ln
b2
〈b〉
− 5σ2

2

))]
,

(2.10)

PII =
1

2

[
erf

(
1√
2σ

(
ln
b2
〈b〉

+
σ2

2

))
− erf

(
1√
2σ

(
ln
b1
〈b〉

+
σ2

2

))]
;

PIII =
1

2

[
1− erf

(
1√
2σ

(
ln
b2
〈b〉

+
σ2

2

))]
,

(2.11)

where erf(. . .) is the error function.
The Eqs. (2.4-2.8) of the flow rate are compared with that of a pure

power-law fluid (qpl), derived by (Di Federico, 1998), of parameters m and n
i.e. for case 1

qx,pl =
n

2n+ 1

(
px

2n+1m

)1/n

〈b〉(2n+1)/n exp

(
(2n+ 1)(n+ 1)σ2

2n2

)
, (2.12)

and for case 2

qy,pl =
n

2n+ 1

(
py

2n+1m

)1/n

〈b〉(2n+1)/n exp

(
− (2n+ 1)(n+ 1)σ2

n

)
. (2.13)

In Figure 2.3, flowrate and apparent viscosity versus the pressure gradient
are depicted, for lognormal aperture distribution and flow perpendicular to
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Figure 2.3: Flowrate and apparent viscosity for case 1 (flow perpendicular to
aperture variation) and lognormal aperture distribution. The thick red continuous
curve refers to the flowrate (left axis), with the three contributions: the low-shear
rate regime qxI (continuous green curve), the mid-shear rate regime qxII (dashed
orange curve), the high-shear rate regime qxIII (dashdot black curve). The blue
continuous curve refers to the apparent viscosity (right axis) and the dashed lines
refer to the power-law fluid. The parameters are n = 0.3, σ = 0.3,〈b〉 = 0.001 m,
µ0 = 0.5 Pa s, µ∞ = 0.001 Pa s, m = 0.005 Pa sn.
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aperture variation (case 1). The contribution of each single flow regime is
also represented, in order to quantify their influence on the total flowrate.
The presence of three possible flow regime, i.e. (i) low-shear-rate, (II) mid-
shear-rate and (III) high-shear-rate allows us to understand why for a certain
value of pressure gradient the two models sensibly differ. Clearly, qx → qx,pl
for µ0 → ∞ and µ∞ → 0. A similar behavior occurs for different aperture
distibutions and direction of flowrate (case 2).

The different trends between qx and qx,pl are showed in Figures 2.4a - 2.4f,
for lognormal distribution and case 1, with n = 0.3, 0.5, 0.6, µ0 = 0.5 Pa s,
µ∞ = 0.001 Pa s, and m = 0.005 Pa sn. Figures 2.4a, 2.4b, and 2.4c depict
qx and qx,pl versus px for fixed σ = 0.3; Figures 2.4d, 2.4e, 2.4f do so versus
σ for fixed px = 50 Pa m−1. It is seen that the flowrate for the truncated
model is always decidedly smaller than that associated with the pure power-
law, except at very low gradient pressure, where the opposite is true. The
difference between the two increases as the external pressure gradient and
aperture variability become larger or sufficiently small. Increasing the rheo-
logical parameter n, the difference between the truncated power law and pure
power law model reduces.

In Figure 2.4a, the truncated power law model, compared with the pure
power law model for a fluid with n = 0.3, exhibits all flow regimes. Here, it is
possible to observe a very small low-shear-rate regime for lower values of pres-
sure gradient, a mid-shear-rate where the two models perfectly match, and
a high-shear-rate regime with a lower slope than the pure power law model.
Figures 2.4b and 2.4c depict the same behavior for different fluids, respec-
tively with n = 0.5, 0.6. In these configurations, the low-shear-rate regime is
not present, while the high-shear-rate regime is reached for higher values of
pressure gradient and the difference between the models is less marked.

Figures 2.4d, 2.4e, and 2.4f show how aperture variability σ influences
the flow rate for a given pressure gradient px and different fluids. For both
models, the flowrate increases with σ, as the parallel arrangement emphasizes
the importance of large-aperture channels asssociated with a larger variability;
the truncated model has decidedly smaller flow rates than the pure power-
law. The difference between the two models decreases as n increases, until
for n = 0.6 the difference is very small, and the two models provide identical
results in a large range of aperture variability.

Figure 2.5 shows instead the variation of flowrate with respect to pressure
gradient, for case 2 (serial arrangement) and both the truncated and pure
power-law models. Figure 2.5a highlights the behavior of flowrate versus
pressure gradient, for n = 0.3, 0.5, 0.6, and fixed σ = 0.5. Here, a monotonic
increasing behavior occurs, with a perfect match between truncated and pure
power-law model for low values of pressure gradient. For higher values of the
gradient, the truncated model presents a lower slope with respect to the pure
power law, but this difference is less marked as n increases; in particular, the
truncated model assumes almost the same values, irrespective of the type of
fluid. For high gradient values, the truncated model has a lower flowrate than
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the pure power-law, like in case 1. Overall, the difference between the two
models strongly depends on the type of fluid, as noted for case 1.

Figure 2.5b depicts the influence of aperture variability for σ = 0.1 to
0.5 and fixed n = 0.3. For lower values of pressure gradient, the truncated
and pure power-law model perfectly match, in particular for small values of
aperture variability. For higher values of pressure gradient, the slope for the
truncated model is still lower than the pure power-law, as in case 1. For
both truncated and pure power-law, the flowrate decreases with increasing
aperture variability as the serial arrangement emphasizes the importance of
small apertures.

2.5.2 Gamma distribution

A gamma distribution was adopted by Moreno et al. (Moreno et al., 1988)
to reproduce the migration of contaminated water in fractured rock in the
context of a capillary tube model, and by Tsang et al. (Tsang et al., 1988)
for one-dimensional channels. Its probability distribution function is given by

f(b) =
1

Γ(d)

bd−1

bdg
exp

(
− b

bg

)
, (2.14)

with the two parameters bg (geometric mean) and d. For larger values of d, the
gamma distribution tends to the normal one. The arithmetic mean and the
variance of b are given by 〈b〉 = bgd; σ2

b = b2gd = 〈b〉2/d. Utilizing Eqs. (2.4)-
(2.5) with Equation(2.6) gives for the factors PII , PIII and Ij (j = I, II, III)
the following expressions:

II =
〈b〉3

Γ(d)d3
γ

(
d+ 3,

db1
〈b〉

)
;

III =
〈b〉(2n+1)/n

Γ(d)d(2n+1)/n

[
Γ

(
d+

2n+ 1

n
,
db1
〈b〉

)
− Γ

(
d+

2n+ 1

n
,
db2
〈b〉

)]
;

IIII =
〈b〉3

Γ(d)d3
Γ

(
d+ 3,

db2
〈b〉

)
,

(2.15)

PII =
1

Γ(d)

[
Γ

(
d,
db1
〈b〉

)
− Γ

(
d,
db2
〈b〉

)]
;

PIII =
1

Γ(d)
Γ

(
d,
db2
〈b〉

)
,

(2.16)

where Γ(z) =
∫∞

0
e−ttz−1dt is the gamma function, γ(α, x) =

∫ x
0
e−ttα−1dt =

Γ(x)−Γ(α, x) the lower incomplete gamma function, and Γ(α, x) =
∫∞
x
e−ttα−1dt

the upper incomplete gamma function. The expression of the flowrate given
by Equation (2.4) with Eqs. (2.12) and (2.13) is compared with that of a pure
power-law (qpl) fluid of parameters m and n (Di Federico, 1998), i.e. for case
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Figure 2.4: Flowrate for case 1 (flow perpendicular to aperture variation) and
lognormal aperture distribution. a-b-c) Flowrate vs pressure gradient for n =
0.3, 0.5, 0.6, σ = 0.3; d-e-f ) flowrate vs σ for n = 0.3, 0.5, 0.6, px = 50 Pa m−1.
The other parameters are 〈b〉 = 0.001 m, µ0 = 0.5 Pa s, µ∞ = 0.001 Pa s,
m = 0.005 Pa sn. The dashed lines refer to the power-law relationships, the contin-
uous lines refer to the truncated power-law relationship.
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Figure 2.5: Flowrate for case 2 (flow parallel to aperture variation), lognormal
distribution. a) Flowrate vs pressure gradient for n = 0.3, 0.5, 0.6, σ = 0.5; b)
flowrate vs pressure gradient for σ = 0.1(0.1)0.5, n = 0.3. The other parameters
are 〈b〉 = 0.001 m, µ0 = 0.5 Pa s, µ∞ = 0.001 Pa s, m = 0.005 Pa sn. The dashed
lines refer to the power-law relationships, the continuous lines refer to the truncated
power-law relationship.

1:

qx,pl =
n

2n+ 1

(
px

2n+1m

)1/n( 〈b〉
d

)(2n+1)/nΓ

(
d+

2n+ 1

n

)
Γ(d)

, (2.17)

while for case 2

qy,pl =
n

2n+ 1

(
py

2n+1m

)1/n( 〈b〉
d

)(2n+1)/n[
Γ(d)

Γ(d− 2n− 1)

]1/n

. (2.18)

The latter expression is valid only for d > 2n+ 1. Figures 2.6 and 2.7 depict
the comparison between the truncated and pure power-law models, drawn for
both lognormal and gamma distributions, for case 1 and case 2, respectively.
Here, the two distributions are characterized by the same first two moments.
In particular, the parameter d of the gamma distribution is derived by the
variance of ln b, σ, previously converted in σb, i.e. (Tsang et al., 1988)

σ2
b = 〈b〉2[exp(ln 10σ)2 − 1]. (2.19)

The two distributions differ only by the third and fourth moment. For σ = 0.1,
the skewness is 0.47 for gamma distribution and 0.30 for lognormal, while
kurtosis is 3.32 for gamma and 3.16 for lognormal distribution; for σ = 0.2,
the skewness is 0.97 for gamma distribution and 0.61 for lognormal, while
kurtosis is 4.42 for gamma and 3.68 for lognormal distribution.
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Figure 2.6: Flowrate for case 1 (flow perpendicular to aperture variation), compar-
ison between lognormal and gamma distributions. a) Flowrate vs pressure gradient
for σ = 0.1 (lognormal) and d = 18.37 (gamma); b) flowrate vs pressure gradient
for σ = 0.2 and d = 4.23. The other parameters are n = 0.3, 〈b〉 = 0.001 m,
µ0 = 0.5 Pa s, µ∞ = 0.001 Pa s, m = 0.005 Pa sn. The dashed lines refer to the
power-law relationships, the continuous lines refer to the truncated power-law rela-
tionship.

Figure 2.6, drawn for the parallel arrangement, shows that the models with
the two different distributions and with TPL have a similar trend. The slope
of the qx − px relationship for the truncated model for both distributions is
lower compared with the pure power-law, for high and low values of pressure
gradient. The lognormal distribution consistently shows a lower flowrate than
the gamma distribution for the same pressure gradient and aperture variabil-
ity, due to the differences in the distribution shape; the difference in flowrate
between distributions increases with increasing aperture variability.

Figure 2.7, drawn for the serial arrangement, shows that for the same val-
ues of pressure gradient, the pure power law model for lognormal distribution
has a higher flowrate than the gamma distribution, both for σ = 0.1 and
σ = 0.2. For intermediate pressure gradient, all distributions show a good
agreement of the flowrate for the truncated power law and for the pure power
law model. Again, the differences between the power law and the truncated
power law models become evident whenever the flowrate is in the regime con-
trolled by the high and the low shear rate plateaus.
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Figure 2.7: Flowrate for case 2 (flow parallel to aperture variation), comparison
between lognormal and gamma distributions. For caption see Figure 2.6.

2.6 Deterministic aperture variation

We consider a constant aperture with a sinusoidal perturbation as “rough-
walled” fracture (Zimmerman et al., 1991; Di Federico, 1997), as depicted in
Figure 2.8:

b(y) = 〈b〉[1 + δ sin(2πy/λ)] (2.20)

where 〈b〉 is the mean aperture, δ is the magnitude of the “roughness”, and λ
is the wavelength of the aperture oscillations. Upon comparing the limiting
aperture values b1, b2 for a given pressure gradient separating the different
flow regimes for the truncated power-law model, and the minimum, mean and
maximum aperture values bmin = 〈b〉(1 − δ), 〈b〉, and bmax = 〈b〉(1 + δ), it
is seen that ten possible combinations arise, as reported in Table 2.1. The
standard deviation of the aperture distribution σb is related to the parameter
δ by

σb =
δ〈b〉√

2
. (2.21)

In the following we compare the behavior, in terms of flowrate for a given
value of the pressure gradient, of a deterministic and stochastic aperture vari-
ation, both for flow parallel to constant aperture channels (case 1), and flow
perpendicular to constant aperture channels (case 2). The lognormal distri-
bution is adopted for the stochastic variation, hence the quantities II , III ,
and IIII and PII , and PIII are those reported in Eqs. (2.10) and (2.11). The
same quantities, evaluated for the deterministic variation, are listed in Tables
2.2 and 2.3 of Appendix B for all the possible combinations presented in Table
2.1. In Figure 2.9a for case 1, a fluid with rheology index n = 0.5 is considered,
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Figure 2.8: Rough-walled fracture profile adopted for the deterministic formula-
tion.

Figure 2.9: Comparison of deterministic (red dots) and stochastic approach (blue
line), for case 1 (flow perpendicular to aperture variation). a) Flowrate versus
pressure gradient, for δ = 0.2, and n = 0.5; b) flowrate versus standard deviation
for px = 30 Pa m−1, and n = 0.5. The other parameters are 〈b〉 = 0.001 m, µ0 =
0.5 Pa s, µ∞ = 0.001 Pa s, m = 0.005 Pa sn.

the roughness is taken to be δ = 0.2, and the same variance is considered for
both types of variation. The flowrate increases with the pressure gradient,
and the agreement between deterministic and stochastic model is good. The
comparison between the two models, for case 1, is also shown as a function of
σ in Figure 2.9b, for n = 0.5, and px = 30 Pa m−1. Here, the deterministic
model tends to predict higher values of the flowrate qx than the stochastic
approach for increasing values of log aperture standard deviation. Figure
2.10a depicts the comparison between deterministic and stochastic aperture
variation for case 2, with n = 0.3, and δ = 0.2. It is seen that the stochastic
variation tends to overestimate the flowrate for increasing pressure gradient,
while for lower values of px, the agreement between the two models is quite
good. This trend in confirmed by Figure 2.10b, drawn for px = 0.5 Pa m−1,
where the deterministic model returns flowrates increasingly lower than the
stochastic as σ increases.
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Figure 2.10: Comparison of deterministic (red dots) and stochastic approach (blue
line), for case 2 (flow parallel to aperture variation). a) Flowrate versus pressure
gradient, for δ = 0.2 and n = 0.3; b) flowrate versus standard deviation for px =
0.5 Pa m−1, and n = 0.3. The other parameters are 〈b〉 = 0.001 m, µ0 = 0.5 Pa s,
µ∞ = 0.001 Pa s, m = 0.005 Pa sn.

Combinations

1 b1 < b2 < bmin < bmax

2 b1 < bmin < b2 < bmax, 〈b〉 > b2

3 b1 < bmin < b2 < bmax, 〈b〉 < b2

4 b1 < bmin < bmax < b2

5 bmin < b1 < bmax < b2, 〈b〉 < b1

6 bmin < b1 < bmax < b2, 〈b〉 > b1

7 bmin < bmax < b1 < b2

8 bmin < b1 < b2 < bmax, 〈b〉 < b1 < b2

9 bmin < b1 < b2 < bmax, b1 < 〈b〉 < b2

10 bmin < b1 < b2 < bmax, b1 < b2 < 〈b〉

Table 2.1: Combinations of deterministic aperture variations.
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2.7 Discussion and conclusions

We derived analytical models for flow of non-Newtonian fluids in uneven chan-
nels simulating natural or artificial rock fractures. Our approach couples a
four-parameter rheological model, the truncated power-law (TPL), with a
stochastic variation of the aperture field along a 1-D channel according to a
generic probability distribution function (pdf); three different cases are con-
sidered including a deterministic variation of sinusoidal shape.

Starting from the solution valid for TPL parallel plate flow, which incor-
porates three possible flow regimes, the conductance of the channel is deter-
mined as a function of rheological fluid parameters, geometry, and the pdf
of the aperture distribution. Two limit cases providing an upper and lower
bound to the flowrate under an assigned pressure gradient are considered, the
parallel (PA) and serial (SA) arrangements, corresponding respectively to an
external pressure gradient perpendicular or parallel to aperture variation.

Results for the simpler, two-parameter power-law (PL) rheological model
provide the benchmark to discern the impact of the adoption of a more re-
alistic rheological model on the conductance. On one hand, the parallel ar-
rangement emphasizes the importance of large-aperture channels; here the
TPL has a smaller conductance than the PL, the difference increasing with
aperture variability and pressure gradient and decreasing with flow behavior
index. On the other hand, small apertures along the channels play a crucial
role in the serial arrangement; here results for the TPL and PL agree for in-
termediate gradients and differ for larger/smaller ones, when the conductance
of the TPL is lower/higher than the PL. The differences between TPL and
PL again increase with aperture variability and decrease with flow behavior
index.

The impact of the specific pdf adopted for the aperture variation is mod-
erate, with the first two moments being equal. The difference in conductance
is an increasing function of aperture variability and depends on the third and
fourth moment of the distribution. Specifically, higher values of skewness and
kurtosis imply a smaller conductance for the parallel and a larger conductance
for the serial arrangement. When a deterministic sinusoidal aperture variation
is considered, all trends valid for stochastic variations are confirmed. Differ-
ences in conductance with stochastic aperture variation increase with pressure
gradient and aperture variability, and are of opposite sign depending on the
aperture arrangement.

Our model reveals the coupled effect of aperture heterogeneity and a re-
alistic rheological equation for non-Newtonian fluid flow in rock fractures, a
topic of interest in hydraulic fracturing, drilling, EOR, and environmental
modelling and remediation. The relevance of rheological properties of real
fluids and of the stochastic nature of the fractures suggest a more in depth
analysis of the coupling effects. Polymer flooding is often used for EOR since
the addition of polymers to the injected brine favors an improved sweep, a re-
duction of fingering with a more stable displacement. Whilst EOR polymers in
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a rheometer display Newtonian and shear thinning behaviour, approximated
by a TPL relationship, in the field polymers show a quite complex behavior
partially captured in the present model, dictated by the flow geometry driven
by fractures networks. Recovery mechanism in fractured reservoirs (carbon-
ate reservoirs usually are extensively fractured but show a low porosity) is
strongly influenced by the fractures, which show a well different transmissiv-
ity than the matrix and carry most of the flow limiting a large differential
pressure and the efficiency of recovery. The nature of the fluid and the char-
acteristics of the fractures counteract this negative aspect. As a matter of
evidence, the TPL fluids show a reduction (increment) of flowrate at high
(low) shear rates for a given pressure gradient with respect to the PL fluids.
The relevance of this reduction/increment and its onset are controlled by the
Newtonian plateaus and by the fractures parameters, mainly the average and
the variance of the aperture of the fractures.

Results suggest to investigate further this coupling expanding the inves-
tigation to two-dimensional modeling of the aperture variation, inclusion of
local pressure losses, and adoption of yield-stress rheological models or more
complex models. A further element adding complexity to the model is shear-
thickening behaviour due to elongation of the polymer molecules, typical of
flow in capillary tubes with a sharp contraction (Nguyen & Kausch, 1992).
At large flowrates, depending on the fractures characteristics, an elongational
contribution adds up to the total pressure drop, showing a shear-thickening
effect which can be included in the present model.

2.8 Appendix A - Alternative formulation for serial con-
figuration

The pressure gradient can be estimated as the inverse of Eqs.(2.2–2.2c). We
notice that while for a given pressure gradient the condition b < b1 (and
b1 < b < b2, b > b2) must be satisfied in order to guarantee a low-shear,
γ̇ ≤ γ̇1 (intermediate -γ̇1 ≤ γ̇ ≤ γ̇2 and high-shear - γ̇ ≥ γ̇2) regime, for a
given inflow rate qy the new conditions are

pyI(b) = q−1
yI ≡

12µ0qy
b3

for b > b′1 ≡
√

6qy
γ̇1

; (2.22a)

pyII(b) = q−1
yII for b′2 < b < b′1; (2.22b)

pyIII(b) = q−1
yIII for b < b′2 ≡

√√√√ qy
mγ̇n2
6µ∞

− a

4m2γ̇2n
2

,

a =
2(1− n)m3/(1−n)

3(2n+ 1)

(
1

µ
(2n+1)/(1−n)
∞

− 1

µ
(2n+1)/(1−n)
0

)
,

(2.22c)
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with b′2 < b′1. The inverse functions for the low-shear regime, pyI = q−1
yI ,

and the high-shear regime, pyIII = q−1
yIII , can be found analytically. At

intermediate regime the inverse function pyII = q−1
yII can be found analytically

only for n = 1/2, 1/4, 1/6, while in general a numerical inversion is requested.
We notice that for n = 1/2 the inverse function has two real-valued positive
branches. This mathematical aspect could bring to hysteretic behaviour of
the flow in the fracture, with different paths in the space py − qy according
to the initial state: (i) a low pressure gradient regime and (ii) a high pressure
gradient regime for the same flow rate. However, upon introduction of further
dissipative effects, mainly due to expansion of the troughs, the hysteresis
should be mitigated and eventually cancelled. We will not pursue this aspect,
which requires an experimental validation, and we choose the branch of the
inverse function corresponding to the high pressure gradient regime. Taking
the limit as Nj → ∞, the length of each cell tends to zero and the discrete
aperture variation to a continuous one; then under ergodicity, and exploiting
the previous relationships, Equation (2.7) gives for the mean pressure gradient
in the y direction the expression

py =

∫ ∞
b′1

pyIf(b)db+

∫ b′1

b′2

pyIIf(b)db+

∫ b′2

0

pyIIIf(b)db. (2.23)

2.9 Appendix B - Quantities of interest for deterministic
aperture variation

For the deterministic, sinusoidal aperture variation of Section 5, Table 2.2
reports the integrals II , III , IIII , while Table 2.3 shows PII , PIII for the dif-
ferent combinations reported in Table 2.1. In both tables, consider θi =

arcsin

[
1
δ

(
bi
〈b〉 − 1

)]
.
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Combinations PII PIII

1 0 1

2
∣∣∣π − 2θ2

2π

∣∣∣ 1−
∣∣∣π − 2θ2

2π

∣∣∣
3

∣∣∣π − 2θ2

2π

∣∣∣ 1−
∣∣∣π − 2θ2

2π

∣∣∣
4 1 0

5
∣∣∣π − 2θ1

2π

∣∣∣ 0

6
∣∣∣π − 2θ1

2π

∣∣∣ 0

7 0 0

8
∣∣∣π − 2θ2

2π

∣∣∣ 1−
2∑
k=1

∣∣∣π − 2θk
2π

∣∣∣
9

∣∣∣π − 2θ2

2π

∣∣∣ 1−
2∑
k=1

∣∣∣π − 2θk
2π

∣∣∣
10

∣∣∣π − 2θ2

2π

∣∣∣ 1−
2∑
k=1

∣∣∣π − 2θk
2π

∣∣∣
Table 2.3: PII , and PIII for the deterministic case.
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3 A Lubrication-based Solver for Shear-thinning
Flow in Rough Fractures

3.1 Abstract

The lubrication theory, a depth-averaged (2-D) approach, is often adopted
to simulate Newtonian flow in rough fractures. Such simulations are com-
putationally much less expensive than those based on 3-D CFD solvers, and
thus allow addressing large ensembles of stochastic fracture realizations. For
creeping flow, the degree of approximation introduced is limited, as long as the
apertures vary relatively smoothly. We extend this approach to address the
flow of fluids whose rheology, described by the Ellis model, is shear-thinning
(ST) above a crossover shear stress, and Newtonian (of viscosity µ0) below.
We obtain a nonlinear relation between the depth-integrated velocity and
the 2-D pressure gradient, leading to a novel non-linear Reynolds equation
for pressures. We solve it for a vast range of realistic rheological parameter
values (in particular, the ST power law exponent) using a novel finite vol-
ume method. The symmetry of the Newton Jacobian allows for an inexact
conjugate gradient-based Newton-Krylov strategy, which is combined with
parameter continuation to enlarge Newton’s basin of attraction and increase
code robustness. Using the code to investigate realistic synthetic rough frac-
ture geometries, which exhibit both self-affinity and a correlation length, we
show that the ST rheology mitigates the effects of aperture heterogeneities, in-
creasing fracture transmissivity by several orders of magnitudes as compared
to the Newtonian flow of viscosity µ0 if the imposed macroscopic gradient is
sufficiently large, and even rendering the rough fracture up to 10 times more
permeable than a smooth fracture of identical mean aperture.

3.2 Introduction

The comprehension of the hydraulic, mechanical and chemical behaviours of
fluids in geological formations is fundamental to the success of subsurface tech-
niques aimed at a variety of applications: resources recovery (Suleimanov, Is-
mailov & Veliyev, 2011; Ciriello et al., 2021), geothermal exploitation (Sanner,
Karytsas, Mendrinos & Rybach, 2003), carbon sequestration (Leung, Cara-
manna & Maroto-Valer, 2014) and soil reclamation (Mulligan, Yong & Gibbs,
2001). The decreasing prospects of new oil reservoir discoveries is stimulat-

31
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ing companies to invest in unconventional reservoir exploitation (Sheng, Su
& Wang, 2019) and enhanced oil recovery (EOR), to maximize the recov-
ery factor of mature oilfields (Muggeridge, Cockin, Webb, Frampton, Collins,
Moulds & Salino, 2014). Reservoir stimulation via hydraulic fracturing is a
well-established approach to increase formation permeability, allowing to ex-
tend existing reserves. In unconventional reservoirs, where the pore space is
poorly-connected, induced stimulation permits the production of oil and gas
from formations of low-permeability (e.g., shale) (Curtis, 2002), reactivating
natural fractures (Gale, Laubach, Olson, Eichhuble & Fall, 2014), and gener-
ating new ones (Cipolla, Lolon, Erdle & Rubin, 2010). Induced stimulation
is also utilized in enhanced geothermal systems (EGS), which constitute an
innovative power system (Lu, 2018): they involve the injection of fluids in
artificially fractured hot rocks to exploit an abundant renewable heat source.
CO2-based EGS (Aminu, Nabavi, Rochelle & Manovic, 2017) or CO2-EOR
(Dowell, Fennell, Shah & Maitland, 2017) in fractured geological formations
have also been proposed to offset the costs of the subsurface storage of CO2,
which is currently considered a viable approach to reduce anthropogenic CO2

emissions, responsible for two thirds of the increased greenhouse effects (Leung
et al., 2014).

These applications have led in the last ten years to renewed scientific in-
terest for flow in subsurface porous media, in particular, fractured porous
media. In igneous rocks in particular, and more generally in low permeability
formations, fractures provide preferential pathways of high conductance with
respect to the almost impervious rock matrix. The fractures are organized in
connected networks (Bonnet, Bour, Odling, Davy, Main, Cowie & Berkowitz,
2001), and the overall hydraulic behaviour of the medium subjected to New-
tonian flow is mainly governed by their connectivity (Bour & Davy, 1998)
and by the distribution of fracture permeabilities throughout the network (de
Dreuzy, Davy & Bour, 2002). In discrete fracture networks (DFN), the par-
allel plate conceptualization has traditionally been used to model Newtonian
flow in a single fracture from the simplified geometry of two planar and paral-
lel fracture walls, leading to a fracture permeability proportional to the square
of its aperture. However, fracture wall topographies are in fact rough as a re-
sult of the fracturing process, and exhibit self-affine and long-range correlated
topographies (Brown & Scholz, 1985; Brown, 1987; Schmittbuhl, Schmitt &
Scholz, 1995b; Schmittbuhl, Vilotte & Roux, 1995a). This geometric prop-
erty is transferred to the aperture field at scales smaller than the correlation
length between the two fracture walls (Brown, 1995). The resulting spatial
variability of the aperture controls the heterogeneity of Newtonian flow, all
the more as the fracture is more closed (i.e., as aperture fluctuations relative
to the mean aperture are larger) (Brown, 1987; Glover et al., 1998; Méheust
& Schmittbuhl, 2000, 2001), while the ratio of the correlation length to the
fracture size controls the impact of the flow heterogeneity on the fracture’s
hydraulic behavior (Méheust & Schmittbuhl, 2003). Moreover, flow hetero-
geneity below the fracture plane can in some cases modify the (Newtonian)
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flow connectivity at the network scale, thus strongly impacting the perme-
ability of the fractured formation (de Dreuzy, Méheust & Pichot, 2012).

Consequently, Newtonian flow in a single rough fracture has been the topic
of many past studies, some of which are cited above. And though simple de-
terministic wall geometries (Elsworth & Goodman, 1986; Zimmerman & Bod-
varsson, 1996; Di Federico, 1997) or an aperture probability density function
without spatial correlations (Lenci & Di Federico, 2020; Felisa et al., 2018)
allow for analytical or semi-analytical investigation of the flow, the study of
the aforementioned realistic geometries must rely on numerical modeling. A
vast number of studies, including the seminal work of Brown (1987), have
relied on solving the Reynolds equation. It states that the local flux, defined
as the integral of the fluid velocity over the local fracture aperture, and is
thus conservative, can be expressed in terms of the local in-plane pressure
gradient according to a local cubic law, i.e., a Darcy law where the local frac-
ture transmissivity is proportional to the cube of the local aperture (Brown,
1987; Zimmerman & Bodvarsson, 1996). Other studies, following the recent
increases in computational power, have simulated Newtonian flow in the 3-D
space between the fracture walls (among the first such studies see Mourzenko,
Thovert & Adler (1995); Brush & Thomson (2003)), by means of commercial
or open source software, either able to numerically solve the Navier-Stokes
equation in 3-D flow domains or adopting Lattice Boltzmann method (LBM)
(Wang, Chen, Ma, Zhou & Zhou, 2016a) to obtain the velocity field. They
have rightfully pointed to the moderate underestimation, by the Reynolds
equation, of the fracture transmissivity’s deviation from that of a smooth
fracture of identical mean aperture; this underestimation results from the in-
ability to model out-of-plane flow tortuosity. However, such 3-D simulations
are computationally expensive, limiting applications to the study of a few
fracture realizations, and making a full stochastic analysis impossible. The
lubrication theory, which reduces the flow problem to two dimensions, allows
for very efficient numerical solvers, and is thus useful for stochastic analyses.
This approximation can be assumed to be valid as long as the variation of
the aperture field w is sufficiently smooth (∇w � 1) and the fluid can be
considered in creeping motion (Re� 1).

In this paper the fluids of interest are those used in the aforementioned
applications; they are water-based but contain surfactants or macropolymers
(e.g., xanthan gum) that boost fluid viscosity and lower surface tension. Var-
ious additives can be introduced depending on the application and the geo-
logical formation: i) crosslinkers, to increase molecular weight and proppant-
carrying capacity; ii) friction reducers, to increase pump efficiency and keep
proppant particles evenly-distributed in the suspension; iii) breakers, to pro-
vide rheoreversibility, favouring flowback or fluid-disposal process; iv) bio-
cides, to kill bacteria; v) gellants, to adjust the viscosity and form a gel
(Barati & Liang, 2014). A vast range of fluids have been adopted in the
various steps of the hydraulic fracturing process: natural polysaccharides,
synthetic polymer solutions, organic or chemical gels, emulsions, muds, micel-
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lar surfactant solutions and aqueous physical (Barbati, Desroches, Robisson
& McKinley, 2016). The complex micro-structure of these fluids inevitably
induces a non-Newtonian mechanical behaviour. Solid particles such as prop-
pants will typically lead to jamming effects and thus to shear-thickening of
the flow, while most additives will provide the fluid with a soft matter-type
microstructure (colloids, polymers, droplets, bubbles, micelles) resulting in
a shear-thinning behavior (hereinafter ST). This behaviour is by far preva-
lent in fluids engineered for subsurface applications (Economides, 2000; Bar-
bati et al., 2016). Recently, non-toxic inexpensive CO2-based alternatives to
conventional fluids have been considered because of their high viscosity and
rheoreversibility; these fluids show the desirable ST behaviour without incor-
porating toxic chemical agents (Jung et al.,, 2015; Li, Huang, Sun, Gao, Zeng,
Tontiwachwuthikul & Liang, 2017; Chen et al.,, 2016).

Hence, better understanding the flow of ST fluids in rough fractures is cru-
cial to predicting the outcome of various subsurface operations. The coupling
of ST rheology and domain heterogeneity is known to produce higher flow lo-
calization and channeling in porous media (Sullivan, Gladden & Johns, 2006;
Zami-Pierre, de Loubens, Quintard & Davit, 2016) as compared to Newtonian
flow in the same geometry. But the topic of ST fluid flow in rough fracture ge-
ometries has been little addressed in the literature. Morris et al. (2015) have
proposed a lubrication-based model for the flow of Herschel-Bulkley fluids
in simple deterministic geometries, while Lavrov (013a, 013b) used a similar
model to study the flow of power law fluids in relatively small (33x33) size
realizations of self-affine rough fractures (without a correlation length), and
provided considerations on the impact of the power law exponent on the flow
geometry. Zhang, Prodanović, Mirabolghasemi & Zhao (2019) performed 3-D
CFD simulations of ST laminar flow, focusing on the impact of the fluid rheol-
ogy on inertia effects and the transition to a Forchheimer-like regime. To the
best of our knowledge, the flow of ST fluids featuring a rheological transition
from a Newtonian plateau at low shear rates to a power law ST behaviour
at high shear rates in large scale and realistic fracture geometries (featuring
a correlation length) has never been addressed in the literature, and no code
implementation allowing to easily perform Monte Carlo simulations over a
large number of aperture fields has been proposed.

In this study, we propose a model for simulating the flow of a ST fluid in a
variable aperture fracture based on the depth-averaged lubrication theory and
considering a three-parameter Ellis constitutive model for the fluids’ rheology.
The latter accounts for both low shear rate quasi-Newtonian and high shear
rate ST behaviors. This approach yields a quasilinear partial differential equa-
tion (PDE) that is the sum of a linear heterogeneous diffusion term and a non-
linear generalized (heterogeneous) p-Laplace operator. The latter is a math-
ematically well-studied prototype of nonlinear partial differential equation
and is at the heart of many models of nonlinear diffusion (Philip, 1961), in-
cluding non-Newtonian flows, turbulent filtration and reactive-diffusion (Diaz
& De Thelin, 1994), and nonlinear Darcy flows (Firdaouss, Guermond &
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Le Quéré, 1997). The reader is referred to Benedikt, Girg, Kotrla & Takac
(2018) for a historical perspective. Recently, the interest on p-Laplacian oper-
ators has increased, resulting in significant developments of efficient numerical
solvers (Loisel, 2020; Facca, Cardin & Putti, 2021). Taking into consideration
the aim of running Monte-Carlo simulations, we propose an efficient Finite
Volume (FV) discretization for the nonlinear PDE based on the adaptation
of the generalized graph p-Laplacians to a uniform square mesh. The pro-
posed scheme turns out to be a slight variant of the lowest order method of
the family of schemes analyzed in Andreianov, Boyer & Hubert (2004). The
developed approach has the advantage that it leads to a symmetric Jacobian,
thus enabling the implementation of a very efficient Newton-Krylov iteration
for the solution of the ensuing nonlinear system employing the preconditioned
conjugate gradient linear solver. A parameter continuation method is added
to increase robustness for wider ranges of p. This allows to address a vast
range of geometrical and rheological parameters of practical interest, in par-
ticular, small rheological indices (i.e., ST exponents) of order 0.1, without
resorting to more sophisticated and computationally expensive methods such
as those proposed in Facca et al. (2021). The ensuing solver achieves a fa-
vorable compromise between accuracy and computational cost that enables
us to address the study of the flow behavior in the fracture within a Monte-
Carlo framework, i.e., considering a significant ensemble of different fracture
realizations for a given set of statistical geometric parameters (ratio of mean
aperture to length, ratio of apertures’ standard deviation of mean aperture,
ratio of correlation length to length). The impact of the ST rheology on
the spatial distribution of the velocity field in the fracture plane and on the
resulting fracture scale hydraulic behavior can then be investigated.

Based on these premises, the organization of the paper follows naturally:
Section 3.3 describes the geometric properties of fracture apertures and how
realistic synthetic aperture fields can be generated; Section 3.4 provides the
derivation of the generalized Reynolds equation for an Ellis fluid in a variable
aperture fracture; Section 3.5 presents the implementation of this theoretical
model into a novel numerical code, while section 3.6 reports on numerical
results regarding the impact of the fluid rheology on fracture flow and the
fracture’s hydraulic aperture; section 3.7 lists our conclusions and prospects
for future work.

3.3 Synthetic aperture fields

As depicted in Figure 3.1, the aperture field w(x) of a fracture is typically
estimated as the distance between the two rough fracture walls, whose mean
planes are parallel. Denoting 〈w〉 the mean aperture of the fracture, and zu(x)
and zl(x), respectively, the upper and lower topographies of the walls with
respect to their mean planes (x = (x1, x2)> being the position vector in the
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Figure 3.1: Geometry of a fracture profile (i.e., the cut of a 3D fracture by a vertical
plane). The separation between the walls’ mean planes is the mean aperture 〈w〉,
while zu(x) and zl(x) described the topographies of the rough walls with respect to
their mean planes.

.

fracture plane), w(x) is simply

w(x) = zu(x)− zl(x) + 〈w〉 . (3.1)

Typically, the walls of a fracture surface can be described as isotropic
self-affine topographies, exhibiting long-range correlations up to their linear
size (Schmittbuhl et al., 1995a; Bouchaud, 1997) characterized by an expo-
nent H (the so-called Hurst exponent). For a fresh fracture, the two wall
topographies are identical, so the fracture aperture depends on the shear slip
history of the walls. Shear slip induces an anisotropic decorrelation of the
two topographies along the shear direction and at scales smaller than the
slip distance (Plouraboué, Kurowski, Hulin, Roux & Schmittbuhl, 1995). In
geological fractures, however, the aperture field is usually measured to be
isotropic, but also with a decorrelation between the wall topographies at a
scale smaller than a correlation length Lc (Brown, 1995). Above that scale,
the walls can be considered to be matched, but below it, the aperture field,
being a linear combination of two independent self-affine topographies, is also
self-affine. In the Fourier space this translates into a power spectral density
in the form of a power law of exponent −2(H + 1) at scales smaller than Lc,
and flat above that length (see Fig. 3.2(a)). Note that the Hurst exponent H
has been measured to a quasi-universal value of around 0.8 over a wide range
of scales and materials, including ceramics, metals, and rocks such as granite
and basalt (Bouchaud, Lapasset & Planès, 1990), with a few exceptions such
as sandstones (H ∼ 0.45, see Boffa, Allain & Hulin (2000)). This property of
the fracturing process in sandstones has been attributed to its intergranular
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nature.
Recursive algorithms can be implemented to generate rough surfaces with

spatial correlations (by successive random addition (Liu, Bodvarsson, Lu &
Molz, 2004)), but the generation of large fractures with these algorithms
is inefficient. Alternatively, we adopt a method proposed by Méheust &
Schmittbuhl (2003) and relying on the Fourier spectrum’s properties (see also
Barnsley, Devaney, Mandelbrot, Peitgen, Saupe & Voss (1988)). Generating
a random Fourier transform of the aperture field with the spatial correlation
properties described above, allows us to obtain an appropriate synthetic aper-
ture field without the need to generate the two wall topographies (Méheust
& Schmittbuhl, 2003). The procedure is very fast as it relies on the fast
Fourier transform. We start with a spatially-uncorrelated white noise and
multiply the modulus of its Fourier transform by the modulus of the wave
number |k| =

√
k2
x1

+ k2
x2

raised to the power −(H + 1) (Figure 3.2c). The
resulting aperture field can then be scaled and translated so as to tune its
mean value and standard deviation, with consequent negative values set to 0,
corresponding to an assumption of perfect plastic closure. Fig. 3.2(b) shows
two representations of the aperture field of the same fracture at two different
degrees of closure, or coefficients of variations, σw/〈w〉.

Algorithm 1: Fracture aperture field generator pseudocode.

[kx1 , kx2 ]=Grid(M );
k =

√
k2
x1

+ k2
x2

;
k(k < kc) = kc;
z =invFFT(FFT(Rand(M ))× k−(1+H));
z = (z − Mean(z))/Std(z);
w = z × σw + 〈w〉;
w(w < w0) = w0;

The aperture field generation is implemented according to Algorithm 1,
where the parameters are 〈w〉 and σw, which are respectively the desired
distance between the walls’ mean planes and the standard deviation of the
aperture field prior to implementing the perfect plastic closure; H, which is
the Hurst exponent controlling the self-affinity; and kc, which is the crossover
wave number related to the correlation length through kc = 2π/Lc. The
following functions are adopted:

1. Grid returns a 2M × 2M square grid of coordinates kx1 and kx2 ;

2. Rand generates a 2M × 2M square matrix of random numbers extracted
from a uniform distribution;

3. FFT computes the 2-D Fast Fourier Transform and rearranges by shifting
the zero-frequency components to the center of the array;

4. invFFT computes the inverse 2-D Fast Fourier Transform.
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Figure 3.2: (a) Mean radial profile (obtained by angular integration) of the 2-D
Fourier transform of a fracture’s aperture field, displaying a low-frequency cut-off for
wave numbers smaller than kc = 2π/Lc, and a power-law trend of negative exponent
−2(1 + H) for higher frequencies; (b) Aperture field representations for different
values of the closure: 0.5 (upper panel), and 1 (bottom panel); (c) Representation
of the wave number to the power −(1 + H). The set of parameter adopted for the
generations is: L = 80 cm, Lc = 10 cm, 〈w〉 = 1 mm, H = 0.8.
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5. Mean computes the average value.

6. Std computes the standard deviation.

In the pseudocode, the parameter w0 is a non-zero lower cut-off imposed to the
aperture field in fractures with closed regions. This regularization parameter is
introduced to ensure well-posedness of the flow PDE and guarantee solvability
in the numerical solver also in the presence of contact points (zero aperture).
Typically, w0 is chosen to be sufficiently small so as not to affect the accuracy
of the solution. In our experiments we employed w0 = 10−8 m.

3.4 Generalized Reynolds equation

Engineered fluids used in subsurface operations typically display an overall
sheer-thinning (ST) behaviour, wherein the apparent viscosity µ of the fluid
is a decreasing function of shear rate (γ̇), i.e. the fluid thins with increasing
deformation. More specifically, the typical flow curve µ = µ(γ̇) for a ST
fluid exhibits two Newtonian plateaus, one of high viscosity at low shear
rates, the other one of low viscosity at high shear rates. These plateaus are
separated by a shear-thinning regime starting for shear rates higher than a
critical threshold value γ̇c. The Carreau-Yasuda (CY) five-parameter model
(Yasuda, Armstrong & Cohen, 1981) and its original four-parameter version,
the Carreau model (see Appendix B for both), exhibit both plateaus and
are the most common constitutive laws able to fully capture such a rheology.
On the other hand, the power-law (PL) two-parameter model represents the
simplest non-Newtonian constitutive equation, but is able to reproduce only
the ST behaviour typical of the intermediate range of shear rates in a Carreau-
Yasuda or Carreau fluid (Escudier, Gouldson, Pereira, Pinho & Poole, 2001).
The CY model is commonly used in CFD applications, but is difficult to
handle analytically. Conversely, the more tractable PL model oversimplifies
the constitutive law because of its unrealistic apparent viscosity, which is
unbounded as the shear rate approaches zero and tends to zero at high shear
rates. When dealing with creeping flow in rough fractures, the velocities are
usually sufficiently low for high shear rates, corresponding to the low viscosity
plateau of the rheological curve, to be rare. In other words, the apparent
viscosity attains the low viscosity plateau value in a limited number of spatial
locations, so that a rheological model only accounting for the low shear rate
plateau and the power law decrease at higher shear rates is an acceptable
simplification in practical cases. Such a model is perfectly described by the
three-parameter Ellis constitutive law, first introduced by Bird (1987), where,
in variance with most generalized Newtonian fluids, the apparent viscosity
depends on the local shear stress τ according to

µ =
µ0

1 +

(
τ

τ1/2

) 1
n−1

. (3.2)
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n−1= −0.90

−0.28

−0.60 −0.49

Figure 3.3: Dependence of the dimensionless apparent viscosity µ/µ0 on the shear
rate γ̇, for the four Ellis fluids listed in Table 3.1: F1 (yellow solid line), F2 (orange
solid line), F3 (red solid line), and F4 (purple solid line). The parameters of these
fluids are deduced from data originally interpreted with the Carreau-Yasuda model
(see Appendix B); the original Carreau model and its low shear rate approximation
are reported as dashed and dotted lines, respectively. The high-shear rate power-law
exponents for all solid curves are n− 1.

As shown in Figure 3.4, µ0 is the plateau viscosity (having the same dimen-
sions as the dynamic viscosity of a Newtonian fluid), n defines the power law
exponent (n − 1) of the shear-thinning regime, and the characteristic τ1/2,
defined by µ(τ1/2) = µ0/2, shapes the transition between the two tendencies.
The Ellis rheologic parameters depicted in Figure 3.4 and listed in Table 3.1,
are those of four real ST fluids taken from the literature that will be used in
the following to demonstrate the code.

To derive the flow rate of an Ellis fluid between parallel plates, one of the
main building block of the code, we recall the equations governing isothermal
flow of an incompressible fluid of density ρ, i.e. the momentum and continuity
equations, reading:

ρg + ∇ ·T = ρ

(
∂u

∂t
+ (u ·∇)u

)
,

∇ · u = 0 ,

(3.3)

where u is the velocity, g is the body force vector and T is the stress
tensor. For a generalized Newtonian fluid, the latter can be written as
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Fluid ID Solution µ0 τ1/2 n
(Pa · s) (Pa) (−)

F1 CMC at 0.3 wt% 0.0510 4.07 0.72
F2 CMC at 0.5 wt% 0.2203 2.50 0.51
F3 CMC at 1.0 wt% 2.9899 5.14 0.40
F4 VES 49 1.07 0.10

Table 3.1: Rheologic parameters µ0, n and τ1/2 related to the four shear-thinning
fluids interpreted with the Ellis models. The fluids considered are: three different
Carboxymethylcellulose (CMC) water-based solutions from Sousa et al. (2005), and
a visco-elastic surfactant (VES) from Moukhtari & Lecampion (2018). Experimental
data have been originally fitted with CY model (parameters listed in table 3.5), and
interpreted with the Ellis model as described in Appendix B.

T = −p′I + 2µD, where p′ is the pressure, I is the identity tensor, D is
the rate of deformation tensor, and µ is the apparent viscosity, which de-
pends on the shear rate tensor D according to γ̇ =

√
2D : D, where : stands

for the tensor double-dot product.
In the following we consider Stokes flow, that is, we assume that the

Reynolds number is much smaller than 1 and thus that the non-linear term
in the right-hand side of Equation (3.4a) can be neglected. For steady flow
between smooth parallel plates of aperture w, the momentum conservation
(3.4a) then reduces to

µ∇2u = ∇P , (3.4)

where P = p′ + ρgz is the reduced pressure.
Taking for simplicity the reduced pressure gradient to be aligned along the

x1 direction, e.g. ∇P ≡ (∂P/∂x1, 0, 0), and after integrating once over the
height z, the one-dimensional formulation of (3.4) becomes

du1(z)

dz
=
∂P/∂x1

µ
z . (3.5)

Inserting (3.2) into (3.5) and integrating over z provides the velocity profile
as a function of z:

u1(z) = −
{

1

8µ0

[
w2 −

(
z

2

)2]
+

n

n+ 1

(
1

2n+1µn0 τ
1−n
1/2

) 1
n

×

×
[
w

1
n+1

(
z

2

) 1
n+1]∣∣∣∣ ∂P∂x1

∣∣∣∣ 1n−1}
∂P

∂x1
,

(3.6)

and averaging over the z-direction leads to a mean velocity in the form

u1 = −
[
w2

12µ0
+

n

2n+ 1

(
1

2n+1µn0 τ
1−n
1/2

) 1
n

w
1+n
n

∣∣∣∣ ∂P∂x1

∣∣∣∣ 1n−1]
∂P

∂x1
. (3.7)
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The counterpart to (3.7) for a macroscopic reduced pressure gradient in the
x2 direction can be obtained by replacing x1 with x2, and u1 with u2, in
Eq. (3.7).

Under the lubrication theory, (3.7) and its counterpart in the x2 direction
are assumed to hold locally in a fracture of variable aperture w(x1, x2). Oron
& Berkowitz (1998) demonstrated the validity of this approximation for the
Stokes flow of a Newtonian fluid, as long as ∇w � 1, with a depth-averaged
velocity u(x1, x2) = [u1(x1, x2), u2(x1, x2)]ᵀ that depends on both x1 and x2.
These equations satisfy the momentum conservation, however the velocity and
the pressure fields are both unknown and another equation is required.

It turns out that the local flux q = w(x1, x2) u, which is the integral of
the fluid velocity along z and over the local fracture aperture, is conservative
(Zimmerman & Bodvarsson, 1996):

∇ · q = 0 . (3.8)

Introducing the local flux, expressed as a function of the reduced pressure P
through Eq. (3.7), into the mass conservation (3.8) leads to the non-linear
lubrication equation:

∇·
[(

w(x1, x2)3

12µ0
+

n

2n+ 1

(
1

2n+1µn0 τ
1−n
1/2

) 1
n

w(x1, x2)
2n+1
n |∇P | 1n−1

)
∇P

]
= 0 ,

(3.9)
which reduces to the classical, linear, Reynolds equation for a Newtonian fluid
(n = 1), with the solution depending only on fracture aperture in that case.
For n < 1, conversely, the non-Newtonian pressure field also depends on the
fluid’s rheology, which renders the problem non-linear.

The fraction of the fracture plane that is concerned by the nonlinear rhe-
ology, and to which extent it is, can be visualized from maps of the local
depth-averaged apparent viscosity, which must be estimated a posteriori (i.e.,
once the flow velocity field has been computed):

µ(x) =
µ0

w

∫ w/2

−w/2

[
1 +

(
‖∇P‖z
τ1/2

) 1
n−1]−1

dz . (3.10)

This 2D viscosity field allows introducing the Reynolds number for a gener-
alized Newtonian fluid (ReG), as

ReG =
ρ〈u〉〈w〉

2〈µ〉
. (3.11)

where ρ is the fluid density (in the following it will be assumed equal to the
water density 103 kg/m3) and 〈µ〉 is the average over the fracture plane of
the depth-averaged apparent viscosity (or, equivalently, the average of the 3D
velocity over the entire fracture volume); similarly, 〈u〉 is the mean velocity
computed over the fracture volume. That definition of the Reynolds number
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allows us to verify a posteriori that the Stokes flow assumption is still verified
in the computed ST flow, a condition that is requested for the lubrication
approach to be valid.

Note that an estimate of the critical macroscopic pressure gradient ∇P =
‖∇P‖ above which non-Newtonian effects begin to appear in the flow, which
we denote ∇P c, can be obtained by considering the aperture in the parallel
plate configuration equal to the rough fracture’s mean aperture. From the
rheological law (3.2), it is seen that the viscosity begins to deviate from the
Newtonian plateau viscosity µ0 when the largest shear stress locally occurring
in the fracture, τmax, is on the same order as the crossover shear stress τc in
the Carreau-Yasuda rheological law relating the apparent viscosity to the
shear rate (see Eq. (3.39)). The crossover shear stress τc can be estimated
numerically from the transition shear stress τ1/2 and plateau viscosity µ0 of
the Ellis model Eq. (3.2) (see Appendix B).

Given the 1-D momentum conservation (3.5), the largest shear stress oc-
curs at the walls for any fluid and is equal to τmax = 〈w〉∇P/2. Hence the
condition τmax ' τc provides the following crossover value for the applied
macroscropic pressure gradient:

∇P c =
2τc
〈w〉

. (3.12)

If the imposed ∇P is much smaller than ∇P c, the flow is expected to be
Newtonian, whereas if it is much larger than the crossover pressure gradient
the flow can be expected to be strongly shear-thinning.

3.5 Numerical modeling

3.5.1 Finite volume scheme formulation

We consider a ST fluid flowing through a fracture whose projection on its
mean plane is square (Ω = (0, L)× (0, L)), as depicted in Fig. 3.1. The flow in
the fracture is driven from left to right by an externally-applied pressure drop
∆P corresponding to an average pressure gradient ∇P = ∆P/L. Without
loss of generality, we assume the following Dirichlet boundary conditions:
for 0 < x2 < L, the pressure is taken to be zero at the downstream end
(P (L, x2) = 0), while upstream P (0, x2) = ∇P L is assumed. The upper and
lower sides of the domain are both assumed impervious, imposing Neumann
boundary conditions such that: ∂2P (x1, 0) = ∂2P (x1, L) = 0, for 0 < x1 < L.

The generalized Reynolds equation (3.9) results in a quasilinear PDE prob-
lem of the second order written as:

−∇ ·
[(
a(x) + b(x)‖∇P‖ 1

n−1
)
∇P

]
= 0 x ∈ Ω

P = P0 x ∈ ∂ΩD

∇P · ν = 0 x ∈ ∂ΩN

(3.13)
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Figure 3.4: (a) Fracture plane representation with boundary conditions. (b) Finite
volume method: five-point stencil. Pressures are defined at the centre of each cell,
while the fracture’s local apertures are defined on the edges.

where x is the position vector, ν is the outward unit normal vector defined
on the boundary, and the coefficients a(x) and b(x) are defined as

a(x) =
w(x)3

12µ0
(3.14)

and b(x) =
n

2n+ 1

(
1

21+nµn0 τ
1−n
1/2

) 1
n

w(x)
2n+1
n . (3.15)

The latter equation is the sum of two terms, the first one involving a linear
heterogeneous Laplacian differential operator and the second one involving a
nonlinear heterogeneous p-Laplacian operator, with p = 1/n + 1. To ensure
well-posedness of problem (3.13), the two coefficients a and b must be strictly
positive and the shear-thinning index must remain in the range 0 < n <
+∞ corresponding to 1 < p < ∞. The physical range of n, [0, 1], is thus
contained in the well-posedness region. Hence the only condition that needs
to be imposed for well-posedness is that the aperture cannot be zero. This is
the reason for the introduction of a non-zero aperture w0 threshold enforced in
the contact zones between the two fracture walls in Algorithm 1 of section 3.4.

Equation (3.13) is discretized by means of the following Finite Volume
(FV) scheme. In the first step, the fracture domain Ω is partitioned into a
set Q of 4M non overlapping square control volumes K (i.e., ∀j Kj ⊂ Ω and⋃
j Kj = Ω). Let xj be the center of the Kj control volume, and Ki the set

of adjacent control volumes such that i ∈ σ(j), with σ(j) = {E,W,N, S} the
set of neighboring control volumes. The edge between two cells is defined as:

Ki
⋂
Kj =

{
eij if i ∈ σ(j)

∅ otherwise .
(3.16)
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Note that |eij | = h is the length of a side of the square control volume.
Eq. (3.13) can be integrated over any of the cells Kj to obtain, up to an
irrelevant plus or minus sign:

∀j
∫
Kj
∇·
[(
a(x) + b(x)‖∇P‖ 1

n−1
)
∇P

]
dx = 0 (3.17)

Applying the divergence theorem in each finite volume Kj leads to∫
∂Kj

(
a(x) + b(x)‖∇P‖ 1

n−1
)
∇P · ν ds = 0, j = 1, . . . , 4M , (3.18)

where ν is now the outward unit normal vector on the finite volume edge ∂Kj ,
which expresses that the integral of the flux q =

(
a(x) + b(x)‖∇P‖ 1

n−1
)
∇P

over Kj is zero:∫
∂Kj

q · ν ds =

4∑
i=1

∫
eij

q · ν ds = 0, j = 1, . . . , 4M . (3.19)

Numerical integration by means of the mid-point quadrature rule over eij
leads to a second-order approximation of the flux through each finite volume
edge:

4∑
i=1

∫
eij

q
(j)
i · νi ds ∼= +h

4∑
i=1

q
(j)
i · νi = 0 j = 1, . . . , 4M , (3.20)

where the edge fluxes are defined as q
(j)
i ·νi =

(
a

(j)
i + b

(j)
i ‖∇P

(j)
i ‖

1
n−1

)
∇P

(j)
i ·

νi. We then consider a numerical approximation to the pressure gradient’s
normal component on the edge, defined as

|∇P
(j)
i · ν(j)

i | =
∣∣∣∣Pi − Pjh

∣∣∣∣ , (3.21)

and use this approximation for the Euclidean norm of the gradient evalu-
ated at edge eij . This scheme results in a consistent approximation of the
p-Laplacian in (3.13) as long as we maintain our discretization on a square
mesh. Indeed, the approximation (3.21) is exact for affine functions on K
(Andreianov et al., 2004) and the gradient approximation based on graph-
Laplacians converges to the continuous counterpart for both the heteroge-
neous linear Laplace equation (Singer, 2006) and the nonlinear p-Laplace
equation (Calder, 2018). Since the convergence rate is in any case only first

order, the aperture in both the expressions for coefficients a
(j)
i and b

(j)
i is

estimated considering the arithmetic mean

w
(j)
i =

wi + wj
2

. (3.22)



46 CHAPTER 3. NUMERICAL MODELING

Note that the use of the harmonic mean would preserve the energy of the
scheme. In spite of this, we opted for the arithmetic mean because it is
less affected by the ill-conditioning induced by the aperture field’s variability,
which may span several orders of magnitude (Mazzia, Manzini & Putti, 2011).

3.5.2 Model implementation

In this section we describe the implementation details of our FV formulation
of the non-linear lubrication equation (3.13). For each cell Kj we have:(

a
(j)
E + b

(j)
E

∣∣∣∣PE − Pjh

∣∣∣∣ 1n−1)
(PE − Pj) +

(
a

(j)
W + b

(j)
W

∣∣∣∣PW − Pjh

∣∣∣∣ 1n−1)
(PW − Pj)+

+

(
a

(j)
N + b

(j)
N

∣∣∣∣PN − Pjh

∣∣∣∣ 1n−1)
(PN − Pj) +

(
a

(j)
S + b

(j)
S

∣∣∣∣PS − Pjh

∣∣∣∣ 1n−1)
(PS − Pj) = 0,

(3.23)

valid for j = 1, . . . , 4M . After all the terms have been put together, the
following system of non-linear equations is obtained:

F (p) = A(p)p− f = 0 , (3.24)

where p is the unknown pressure vector, and, for any given p, the matrix
A(p) is symmetric positive definite and pentadiagonal, with coefficients Aij
given by

Aij =


−
∑
k∈σ(j)

(
a

(j)
k + b

(j)
k

∣∣∣∣Pk − Pjh

∣∣∣∣ 1n−1)
if i = j;

a
(j)
i + b

(j)
i

∣∣∣∣Pi − Pjh

∣∣∣∣ 1n−1

if i ∈ σ(j);

0 otherwise ,

. (3.25)

The components fj of the right-hand-side vector f are given by

fj =

−
(
a

(j)
W + b

(j)
W

∣∣∣∣PW −∇PLh

∣∣∣∣ 1n−1

∇PL
)

if j = k(t− 2) for k = 1, ..., t− 2,

0 otherwise.

(3.26)
The system of nonlinear algebraic equations (3.24) is solved by the Newton
method, starting with an initial guess p0 that is the pressure field correspond-
ing to Newtonian flow (exponent n = 1). Denoting k the Newton iteration
number and J(p) the Jacobian matrix, the Newton scheme takes on the form:{

J(pk)sk = −Fk(pk);

pk+1 = pk + sk.
(3.27)
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Maximum number of PCG iterations (kmax) 103

Drop tolerance (ε) 10−4

Diagonal shift compensation coefficient (δ) 10−3

PCG tollerance upper limit (ηlin
max) 0.99

PCG tolerance scaling factor (η0) 0.90

Table 3.2: Parameters for numerical integration.

where for the k-th Newton iteration the Jacobian matrix is formally defined
as

J(p) = F(p)′ = A(p) +A(p)′p , (3.28)

where the A′ symbol denotes the derivative of matrix A with respect to the
pressures at each mesh node.

The calculation of the elements of the Jacobian matrix is provided in
Appendix A with its generic ij-th element reported here:

Jij(p) =



∑
s∈σ(i)

(
a

(i)
s +

1

n
b
(i)
s

∣∣∣∣Ps − Pih

∣∣∣∣ 1n−1)
if i = j;

−a(j)
i −

1

n
b
(j)
i

∣∣∣∣Pi − Pjh

∣∣∣∣ 1n−1

if i ∈ σ(j);

0 otherwise .

(3.29)

The resulting J(p), at any given p is a symmetric, pentadiagonal, and posi-
tive definite matrix. We would like to remark here that the symmetry of J(p)
is a consequence of our specific choice of discretization method. Indeed, the
symmetry of J(p) arises from the symmetry of the particular operation of
differentiation of the absolute value function. This symmetry allows the use
of the Preconditioned Conjugate Gradient (PCG) method for the solution of
the Newton linear system (3.27), with obvious improvements in computational
performance. Row equilibration of the Jacobian matrix is achieved via diag-
onal scaling to improve the problem conditioning. This means that the left
and right hand-side terms of Eq. (3.27) are both left-multiplied by D(p)−1/2,
D = diag(J) being a matrix consisting solely of the Jacobian’s main diagonal.
Applying the scaling transformation results in a more accurate solution and
reduces computational time. We obtain

D(p)−1/2J(p)D(p)−1/2D(p)1/2s = −D(p)−1/2F(p), (3.30)

The preconditioner of choice is a variable-fill-in incomplete Cholesky fac-
torization.This preconditioning constitutes a problem transformation, which
results in a smaller condition number, and consequently, improving the rate
of convergence of PCG. The entire procedure detailed above is encapsulated
within an inexact Newton-Krylov framework (Kelley, 1987). To avoid over-
solving, the PCG exit tolerance is decreased as iterations progress using the
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following rule:

ηlin
k =


ηlin

max if k = 0;

min

{
ηlin

max, η0 ×
(
||F(pk)||2
||F(pk−1)||2

)2}
otherwise,

(3.31)

where the choice of ηlin
max = 0.99 and η0 = 0.9 allows extracting most of the

information from the inner iteration and guarantees an upper limit to the

sequence {ηlin
k }. Table 3.2 summarizes these choices with the related values

of the parameters.

When the exponent of the Ellis rheological model (n) is sufficiently small,
and/or the applied macroscopic pressure gradient (∇P ) is too large, the pres-
sure field of the solution for the Newtonian rheology (n = 1) may not fall
within the Newton basin of attraction of the PCG-based INK scheme, i.e.,
convergence may not be possible with that initial guess. A parameter contin-
uation strategy has thus been implemented for such strongly non-linear cases.
A sequence {nd} converging to the desired fluid ST index/exponent nD can
be constructed to approach the basin of attraction. The solution for the case
nd−1 is used as initial guess for solving the case nd. The sequence {nd} is
obtained by subdividing the interval from 1 to nD, according to the following
rule:

nd =


1 if d = 0;

n1

(
nD
n1

) d
D

for d = 1, ..., D
(3.32)

where d indicates the parameter continuation iteration, while n1 and nD are
the second and final ST indices of the sequence. In general, the index n1 = 1
(Newtonian case) represents a valid candidate, but for strongly non-linear
cases, indicatively when n < 0.5, the initial ST index can be imposed to 0.5
to reduce the computational time needed to achieve overall convergence.

Algorithm 2: Parameter continuation strategy pseudo-code.

p(0) = A\f ;
for d = to D do

for k = 1 to kmax do
J ← DiagonalScaling;
J ← Reordering;
C=Michol(J ,ε,δ);

s =PCG(J ,F ,C, ηlin
k );

if ||s|| ≤ ηnl
d then

p(d+1) = p(d) + s;
break
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The overall algorithm is summarized in Algorithm 2, with the functions
having the following meaning:

1. DiagonalScaling implements equation (3.30);

2. Reordering applies the reverse Cuthill-McKee ordering;

3. Michol generates the PCG preconditioner C via incomplete Cholesky
factorization;

4. PCG solves the linear system of equation (3.28) via PCG, adopting C as

a preconditioner and ηlin
d as a tolerance stopping criterion.

The parameter continuation strategy estimates p(d) following the sequence

of shear thinning indices {nD} and uses ηlin and ηnl as tolerances for the
linear and nonlinear iterations, respectively. The tolerance adopted for the
continuation strategy is also reduced while approaching the final ST index
nD, such that

ηnl
d = ηnl

max

(
ηnl
D

ηnl
max

) d
D

for d = 1, ..., D , (3.33)

with ηnl
max = 10−3 and ηnl

D = 10−8. This strategy allows achieving convergence
in a limited number of steps even for strongly non-linear cases (e.g. n ' 0.1),
covering essentially all fluids of practical interest.

3.6 Results

3.6.1 Experimental convergence of the proposed method

We first examine the experimental convergence of the proposed solver in prac-
tical applications. The test considers the domain described at the beginning
of Section 3.5.1. A 2 × 2 aperture field (mesh level 0) is generated and kept
constant as the mesh is refined, resulting in an aperture field of only four
different values. A sequence of 8 mesh refinements (labeled level 1 to level
8) is then obtained by uniform subdivision while maintaining the original
four-values aperture field for all the refined meshes originating from the same
level-0 mesh. Since, as mentioned before, the scheme is consistent, the so-
lution at mesh level 8 is considered as a “proxy” analytical solution against
which we can calculate the error at different mesh levels. At each level M the
L2 error norm is evaluated as

‖eM‖ =

√
∆x2

∑
j

(PM,j − P9,j)2 ≈

√∫
Ω

(PM − P9)2 . (3.34)

Convergence of this sequence of errors together with the scheme consistency
implies convergence to the true solution of the overall solver. We repeat these
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Figure 3.5: Logarithmic plot of ‖eM‖, the L2 norm of the solution error calculated
with respect to the finest mesh solution P8 (mesh level 8), plotted as a function of
the mesh level M (i.e., the 2-logarithmic mesh size). The different mesh levels are
uniform refinements of a 2× 2 initial aperture field. Different curves are related to
the different fluids listed in table 3.1: F1 (yellow line), F2 (orange line), F3 (red
line), and F4 (purple line). The superimposed lines show the first-order accuracy of
the proposed solver.

simulations for all fluid types listed in Table 3.1. The results are shown in
Figure 3.5, which shows the log-log plot of the error vs. the mesh level as
identified by the value of M .

We now investigate the nonlinear convergence of the solver. Recall that,
to minimize nonlinear iterations, the general strategy is to reduce the pre-
asymptotic phase of the Newton method as much as possible, thus engaging
efficient quadratic convergence as quickly as possible. For fluids characterized
by n values in the range 0.5 ≤ n ≤ 1 Newton quadratic convergence is always
observed (see fluids F1-F3 in table 3.3). Conversely, in the most difficult
situations, i.e., for strongly ST fluids characterized approximately by the n-
range 0.1 ≤ n < 0.5, we resort to parameter continuation. As depicted
in Figure 3.6 and reported in Table 3.3 for the fluid F4, the convergence
speed of this latter strategy controls the computational efficiency for these
difficult cases. The convergence is shown in Figure 3.6, where the L2 norms of

the difference between two consecutive iterations (s
(d)
p ) and of the nonlinear

residual (F(d)) are plotted against the parameter continuation step. These
norms are scaled by a factor 1/2M to remove the dependency on mesh size.
The results show an initial linear convergence often followed by superlinear
convergence. This behavior can be intuitively expected as a consequence
of the adopted scaled tolerance proposed in equation (3.31). In Table 3.3,
the performance of the numerical scheme is reported in terms of the non-
linear residual and difference between the two last iterations vs. normalized
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Figure 3.6: Continuation parameter convergence towards the solution for the most
strongly ST fluid, F4 (n = 0.1). Panels (a) and (b) show the residual and the
absolute error scaled norms at each continuation parameter step, respectively (see
table 3.3). The aperture field (mesh size 2M = 210) adopted for this simulation
has been generated with Lc = 0.1 m, 〈w〉 = 10−3 m, H = 0.8, σw/〈w〉 = 1,
∇P/∇Pc = 4.81, and L/Lc = 8. Results refer to simulations reported in Table 3.3:
blue (Sim 1), green (Sim 2), red (Sim 3), yellow (Sim 4), and purple (Sim 5). The

dotted line in panel (a) represents the tolerance ηnl
max.

computational time. Different parameter continuation strategies are adopted
for fluid F4, showing higher accuracy in the solution for a larger number of
continuation iterations and the possibility to reduce computational time by
considering a different value of n1 in rule (3.32) for strongly ST fluids.

3.6.2 Impact of the rheology on the velocity field, ap-
parent viscosity, and fracture transmissivity

The simulated flow field is on average co-current along the direction of ∇P ,
as an obvious consequence of the imposed boundary conditions, which force
the flow from the left-hand to the right-hand side of Ω. However, aperture
field heterogeneity results in channeling of the flow in the fracture plane along
paths of less resistance. This phenomenon, and how it is impacted by frac-
ture closure, has been studied for Newtonian flow for decades (Brown, 1987;
Méheust & Schmittbuhl, 2001). The fracture closure σ ' 〈w〉 and the ratio
Lc/L both control the aperture heterogeneity. The former quantifies aper-
ture fluctuations with respect to the mean fracture aperture, as well as the
amount of contact (if the closure is sufficiently large), while the correlation
length defines the size of regions of correlated large apertures (or, equivalently,
of correlated small apertures), which essentially controls the spatial patterns
of flow channeling (Méheust & Schmittbuhl, 2003). In particular, correlated
large aperture channels can form if L ∼ Lc; if such a channel is aligned
with the imposed macroscopic pressure gradient, the resulting permeability is
larger than that of the smooth fracture of identical mean aperture (Méheust
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Figure 3.7: Maps of velocity magnitude u/〈u〉 (left column) and depth-averaged
apparent viscosity µ/µc (right column) for different fluids. Each row is associated
with a fluid listed in Table 3.1, with the fluid rheological index n decreasing from
top to bottom. Streamlines (white continuous lines) are shown superimposed to the
velocity maps, in the left column. In the viscosity maps (right column), the quasi-
Newtonian areas (µ ≥ µc) are colored in yellow. The aperture field is generated
adopting the following parameters: M = 10, H = 0.8, L/Lc = 4, 〈w〉 = 1 mm,
σw/〈w〉 = 1, L = 0.4 m, and ∇P/∇Pc = 20 (fluids F1 to F3) or ∇P/∇Pc = 2 (fluid
F4).
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Sim. Fluid ||F(D)||/2M ||s(D)||/2M t/t0 Parameter Continuation
ID ID (m2/s) (Pa/m) (-) N. Iterations (initial ST index)
Sim 1 F4 1.80× 10−8 9.10× 10−9 1021 5 (n1 = 1)
Sim 2 F4 3.44× 10−9 2.58× 10−9 1662 10 (n1 = 1)
Sim 3 F4 7.75× 10−9 4.08× 10−9 1095 10 (n1 = 0.5)
Sim 4 F4 1.15× 10−10 9.56× 10−11 2041 20 (n1 = 0.5)
Sim 5 F4 2.00× 10−12 6.11× 10−9 5960 50 (n1 = 0.5)
Sim 6 F1 4.97× 10−16 2.82× 10−10 617 -
Sim 7 F2 1.03× 10−14 4.01× 10−11 678 -
Sim 8 F3 1.94× 10−14 1.45× 10−9 527 -

Table 3.3: Performance of the parameter continuation strategy for different num-
bers of iterations and initial ST index n0. The algorithm performance is measured
in terms of residual and absolute error scaled norms at the final continuation step.
The normalized computational time is obtained by dividing the computational time
(t) by the one of the Newtonian solver (t0 = 0.13 s). The aperture field is generated
with L = 0.4 m, 〈w〉 = 10−3 m, H = 0.8, σw/〈w〉 = 1, and L/Lc = 8, considering a
dimensionless pressure gradient of ∇P/∇Pc = 4.81.

& Schmittbuhl, 2000). Note however that such configurations are not favored
statistically, (Méheust & Schmittbuhl, 2001), so, on average, heterogeneity
induces higher energy losses across the fracture, which inevitably results in a
lower transmissivity as compared to the parallel plate model. If the closure
is sufficiently high, contact areas tend to exacerbate the behavior observed at
closures that do not allow for fracture wall contact. Fractures where Lc ∼ L
present few large contact zones, while for Lc � L contacts are sparser across
Ω and the fracture resembles a quasi-2D porous medium. In summary, flow
localization is increased by increased fracture closure.

When a non-Newtonian, shear-thinning rheology is involved, all these ef-
fects are relevant, but additionally they are impacted by the fluid’s rheology.
Figure 3.7 illustrates the compound effect on flow localization of the ST fluid
nature and of fracture heterogeneity. For each fluid listed in Table 3.1, the left-
hand column shows maps of the ratio of the velocity magnitude u = ‖u(x)‖
to the average velocity 〈u〉, while the right-hand column shows the ratio of the
depth-averaged apparent viscosity µ(x) to the crossover viscosity µc = µ(τc)
(see definition of τc in Appendix B).

Figures 3.7a-c-e-g show that the flow localization increases for decreasing
values of n (i.e. increasing fluid ST property). High velocities concentrate
in areas of higher conductance, and low velocities in the proximity of contact
zones, which typically exhibit higher resistance to flow due to aperture het-
erogeneity. This is similar to what is observed with Newtonian flow, but, in
addition, figures 3.7b-d-f-h show that the high velocity regions coincide with
low apparent viscosity values, as expected due to the shear-thinning nature
of the fluid. Hence the flow of the shear-thinning fluid tends to be even more
localized than that of the corresponding Newtonian flow.

Let us first discuss weakly ST cases. In these cases, it is seen that both ve-
locity and apparent viscosity maps show a relatively slight dispersion around
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Figure 3.8: Transition from the quasi-Newtonian to the ST behaviour: ratio of the
actual transmissivity T to the transmissivity T0 for a Newtonian fluid of viscosity µ0

as a function of the dimensionless pressure gradient ∇P/∇Pc, evaluated for fluids
F1-F4 in Table 3.1. Simulations have been conducted considering an aperture field
generated with parameters: M = 10, H = 0.8, 〈w〉 = σw = 10−3 m, and L/Lc = 4.
The color code for the fluids is the following: yellow line for F1, orange line for F2,
red line for F3, and purple line for F4.
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Figure 3.9: Dependence on the closure σw/〈w〉 of the ratio of the actual transmis-
sivity T to the Ellis parallel-plate model transmissivity Tpp , plotted in colors for
fluids F1-F3 with ∇P/∇P c = 10 and for fluid F4 with ∇P/∇P c = 3. Confidence
intervals are estimated over 200 simulations. Fracture realizations are generated
with: M = 10, H = 0.8, 〈w〉 = 10−3 m, L/Lc = 4 and L = 0.4 m. Panels (a) to
(d) correspond to the different fluids reported in Table 3.1: (a) F1 in yellow, (b)
F2 in orange, (c) F3 in red, (d) F4 in purple. The data plotted in grey shows the
Newtonian behavior (which is identical for the four panels). The disks linked by
a continuous line represent the median behavior, while the dashed lines show the
confidence interval (25th and 75th percentile).
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their ensemble average value. Small velocities are located in a limited portion
of the fracture near the obstructions, where the apparent viscosity is close to
µ0, implying a quasi-Newtonian behaviour. On the other hand, low values
of apparent viscosity are visible in small spots between contact zones, where
the fluid is forced to flow under high shear rate conditions. Strongly ST cases
exhibit a different behaviour, with a higher dispersion around ensemble aver-
ages for both velocity and apparent viscosity. The areas with lower apparent
viscosity cover a larger percentage of the fracture plane and appear more elon-
gated, with a more channel-like shape, as the exponent n is closer to its lowest
investigated value, 0.1.

Next, we consider the fracture’s global transmissivity defined as

T =
Qµ0

∇P
. (3.35)

Figure 3.8 depicts the transition from a quasi-Darcian flow (T ∝ ∇P ) to a

non-linear regime (T ∝ ∇P
1
n ) for increasing dimensionless pressure gradients

∇P/∇Pc. As expected, the crossover occurs at the characteristic pressure
gradient defined in equation (3.12). The Newtonian transmissivity T0 is ob-
tained from solving the flow for a ST index n = 1 and dynamic viscosity
µ0. The flow regime tends to the quasi-Newtonian behaviour at low imposed

macroscopic pressure gradients ∇P , and diverges from it as T ∝ ∇P
1
n when

a pressure gradient higher than ∇Pc is imposed.
Figure 3.9 illustrates how the fracture transmissivity T , normalized by the

transmissivity Tpp of the equivalent parallel plate fracture (i.e., of aperture
equal to the rough fracture’s mechanical aperture), evolves as a function of the
fracture closure, again for the fluids F1-F4 listed in Table 3.1. The behavior of
the Newtonian case corresponding to a constant µ0 viscosity, T0/T0,pp, is also
shown for comparison. Note that, for a fracture subjected to shear-thinning
fluid flow, whether the walls are rough or not, T is not an intrinsic property
of the fracture, it also depends on the imposed macroscopic pressure gradient
∇P due to the non-linearity of the hydraulic response; on the contrary, T0 is
independent of ∇P . Here, the results for fluids F1-F3 refer to a dimensionless
pressure gradient ∇P/∇P c = 10, while for F4 it is ∇P/∇P c = 3, as setting
it to 10 would have brought the Reynolds number ReG above the 1 upper
limit for creeping flow. The results are shown for 200 fracture realizations
generated with the same set of parameters (see caption of Figure 3.9). The
curves go to 1 at small fractures closures, as expected. The ST property of the
shear-thinning fluids increases continuously from (a) to (d), and indeed, the
deviation of the ST fluid’s behavior from that of Newtonian flow, increases all
the more as the fracture closure is larger. Furthermore, this deviation is always
positive, and can be so large at sufficiently large closures and for a sufficiently
strong ST property (see e.g. the figure 3.9(c-d)), that the median behavior of
a rough fracture becomes much more permeable than that of the equivalent
parallel plate, by a factor which reaches an order of magnitude. Indeed, as
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Fluid ID F1 F2 F3 F4
∇P/∇P c 10 10 10 3
Tpp/T0,pp 2.72 5.34 12.15 972.81

Table 3.4: Parallel-plate transmissivitiy ratios between the Ellis fluids listed in
Table 3.1 (Tpp) and the corresponding Newtonian fluid (T0,pp), of dynamic viscosity
µ0. A constant separation 〈w〉 = 10−3 m is considered between the plates.

the flow becomes more localized in channels of low apparent viscosity and
high velocity, conveying most of the volumetric flow rate of the fracture, the
viscous dissipation within the fluid becomes less than what it would be in
the homogeneous flow of the equivalent parallel plate configuration. In other
words, the ST rheology contrasts the median tendency of transmissivity to
decrease due to increasing aperture heterogeneity, and even reverts it in a
spectular manner.

In addition, the dispersion over the statistics of the ratio T/Tpp also in-
creases much more dramatically with fracture closure for ST flow than for
Newtonian flow. This reflects the impact of the spatial arrangement of con-
tact zones and of large permeability regions on the variability of the flow
among the individual fracture realizations.

Note also that T0/T0,pp, the ratio of the parallel plate transmissivity for
the ST fluid to that for Newtonian flow, is also strongly dependent on the
exponent n of the ST rheological law. Its values for the four fluids F1-4
are shown in Table 3.4. They vary from less than 3 to nearly 1000 as the
ST exponent n varies from 0.72 down to 0.1. Finally, note that for all the
fracture flow configurations addressed here, the generalized Reynolds number
ReG remains smaller than 1.

3.7 Discussion and Conclusions

This paper studies the combined effects of a nonlinear shear-thinning (ST)
rheology and aperture variability on low Reynolds number flow in a single
fracture. A Fourier transform based method is used to generate realistic
synthetic aperture fields of geological fractures. A novel flow solver is derived
to simulate the behavior of a ST fluid, whose rheology is modeled with an
Ellis constitutive law, featuring an apparent viscosity with a low shear rate
Newtonian plateau and a ST behavior of index n at larger shear rates.

The computational cost often associated with the solution of the non-linear
system of equations has been optimized by the developed finite volume based
solver, which yields a symmetric Jacobian that allows the implementation of
a PCG-based inexact Newton-Krylov (INK) algorithm, to avoid over-solving.
Furthermore, a continuation parameter strategy is used to handle strongly
nonlinear cases with low n values.
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The resulting code is robust for a wide range of ST index values (from 0.1
to 1), even in strongly heterogeneous cases implying a significant percentage
of closed areas (e.g. σw/〈w〉 = 1), and for pressure gradients typical of forced
flow in subsurface industrial applications (e.g. ∇P = 105 Pa/m), much higher
than typical groundwater natural gradients. Computational efficiency is max-
imized by ensuring that convergence is always achieved. Linear convergence is
typically displayed only during the initial Newton iterations and continuation
parameters steps, while quadratic asymptotic convergence is always observed.

Concerning the physical effects jointly controlled by fluid rheology and het-
erogeneity, both the ST behaviour and aperture variability both contribute
to flow localization. Elongated zones of high velocity and low apparent vis-
cosity tend to form in a continuous pattern from the inlet to the outlet of the
fracture for low ST index n and high coefficient of variation of the aperture
field. Streamlines are affected by an increasing ST behaviour of the fluid, with
the appearance of stronger localization patterns and zones where the flow is
almost stagnant.

A sufficiently high externally-imposed macroscopic pressure gradient in-
duces a non-Darcian flow regime leading to a non-Newtonian transmissivity
that is higher than its Newtonian counterpart, possibly by several orders of
magnitude. Such a strong non-linear tendency is mainly due to the bulk of
the flow being conveyed in marked preferential channels, typically along the
path of lowest resistance, where the velocity is high and the apparent viscosity
is low. The transition from a (quasi-)Darcian to a non-linear regime occurs
when the magnitude of the average shear stress is larger than a characteris-
tic value, itself a function of fluid and fracture properties. Equivalently, this
transition occurs close to a characteristic value of the applied macroscopic
pressure gradient which is related analytically to the aforementioned charac-
teristic shear stress. Both quantities can be defined analytically from the Ellis
constitutive law.

When multiple realizations are examined, an interesting observation be-
comes evident. The median fracture transmissivity decreases with increasing
aperture heterogeneity (and thus closure) as expected (and well-known for
Newtonian flow), but the fluid ST behaviour tends to mitigate this effect
as a result of the aforementioned enhanced flow channeling. Thus, an in-
crease in non-Newtonian behaviour contrasts the tendency of transmissivity
to decrease due to increasing aperture heterogeneity. So much so that for suf-
ficiently large fracture closures and ST properties, the transmissivity is seen
to increase again with fracture closure, and to exceed by up to one order of
magnitude the Newtonian transmissivity.

The performance achieved with this numerical scheme allows overcoming
the limits of the current numerical alternatives. Future prospects include a
systematic stochastic analysis of ST flow in geological fractures, considering
numerous realizations for the same set of statistical geometric parameters,
as well as the impact of the combined effect of fracture heterogeneity and
complex rheology on anomalous transport.
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3.8 Appendix A - Jacobian analytical formulation

The present Appendix provides details on the analytical evaluation of the
Jacobian matrix. The relationship between the Jacobian matrix J(p) and the
matrix A is given in equation (3.28). In terms of components, we can write
the the Jacobian matrix as:

Jij = Aij+
4M∑
u=1

∂Aiu
∂Pj

Pu =


Aij +

∂Aij
∂Pj

Pj +
∂Aii
∂Pj

Pi if i ∈ σ(j)

Aii +
∂Aii
∂Pi

Pi +
∑
k∈σ(i)

∂Aik
∂Pi

Pk if i = j

0 otherwise .

(3.36)
The Jacobian has the same sparsity pattern as A, resulting in a pentadiagonal
matrix. The non-zero components in Eq. (3.36) can be derived from those of
A as follows:

∂Aiu
∂Pj

=

(
1

n
−1

)



−
∑
k∈σ(u) b

(u)
k

∣∣∣∣Pk − Puh

∣∣∣∣ 1n−1
1

Pk − Pu
if u = i = j;

+b
(j)
i

∣∣∣∣Pi − Pjh

∣∣∣∣ 1n−1
1

Pi − Pj
if u = j and i ∈ σ(j);

−b(j)i

∣∣∣∣Pi − Pjh

∣∣∣∣ 1n−1
1

Pi − Pj
if i = u 6= j;

+b
(j)
u

∣∣∣∣Pu − Pjh

∣∣∣∣ 1n−1
1

Pu − Pj
if i = j 6= u;

0 otherwise,

(3.37)
which defines the matrix A′ mentioned in section 3.5.2. Substituting the
expression of the components of Eq. (3.37) in Eq. (3.36) leads to the following
formulation for the Jacobian

Jij =


−a(j)

i −
1

n
b
(j)
i

∣∣∣∣Pi − Pjh

∣∣∣∣ 1n−1

if i 6= j

∑
k∈σ(j)

(
a

(j)
k +

1

n
b
(j)
k

∣∣∣∣Pk − Pjh

∣∣∣∣ 1n−1)
if i = j

0 otherwise,

(3.38)

where it can be noted that the Jacobian is symmetric (i.e., Jij = Jji), since

a
(j)
i = a

(i)
j and b

(j)
i = b

(i)
j .

3.9 Appendix B - Estimation of the parameters of the
Ellis model from the Carreau-Yasuda model

This Appendix illustrates how the parameters of the fluids used in the main
body of the paper were derived. In general, simple non-Newtonian rheological
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Fluid ID Solution µ′0 µ′∞ n′ γ̇c a′

(Pa · s) (Pa · s) (−) (s−1) (−)
F1 CMC at 0.3 wt% 0.0510 0.001 0.72 17.67 0.71
F2 CMC at 0.5 wt% 0.2203 0.001 0.51 15.85 0.565
F3 CMC at 1.0 wt% 2.9899 0.001 0.40 2.74 0.668
F4 VES 49 0.0003 0.10 0.10 2.00

Table 3.5: Rheologic parameters related to the four fluids: experimental data are
fitted with the Carreau-Yasuda models. Parameters for the Carboxymethylcellulose
(CMC) solutions are provided in Sousa et al. (2005), while those for the visco-elastic
surfactant (VES) are taken from (Moukhtari & Lecampion, 2018). Corresponding
Ellis rheological parameters are listed in Table 3.1.

models such as the Ellis constitutive law (Eq. (3.2)) are empirical nonlinear
relationship between stress and strain rate that can be adopted to model
shear-thinning rheology.

When two different models are fitted to experimental data, rheological
parameters are estimated by best fitting and no given correspondence between
the two sets of parameters exists. Here, due to the scarcity of Ellis model
parameters fitted on rheological data in the literature, and in the interest of
comparison and simplification, we inferred the Ellis parameters from existing
data hitherto interpreted with the Carreau-Yasuda model. The latter is a
five-parameter model, frequently adopted because it typically reproduces the
rheology of shear-thinning fluids well; its apparent viscosity is expressed as a
function of the shear rate γ̇ as

µ = µ′∞ +
µ′0 − µ′∞

[1 + (γ̇/γ̇c)a
′ ]

1−n′
a′

, (3.39)

where µ′0 and µ′∞ are respectively the low and high shear rate apparent vis-
cosity plateaus, γ̇c is the characteristic shear rate separating the low-shear,
pseudo-Newtonian regime from the intermediate power-law regime, a′ is an
index that influences the shape of the transition between the intermediate
power-law behaviour and the high shear rate plateau µ∞, and n′ is a shear-
thinning index. Fixing the value of a′ to 2 results in a four-parameter model,
termed the Carreau model.

In low Reynolds number applications, the high shear rate plateau can be
neglected (µ′∞ ≈ 0) and a low shear rate approximation of Eq. (3.39) is
obtained as

µ =
µ0

[1 + (γ̇/γ̇c)a
′ ]

1−n′
a′

. (3.40)

We consider a given Yasuda-Carreau flow curve and proceed to analytically
find the Ellis model (Eq. (3.4)) that best fits the corresponding flow curve
µ(γ̇). This implies that the low-shear rate viscosity plateaus be identical, and
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the power law regimes as well. The former constraint immediately implies
that µ0 = µ′0, while the latter implies that the Carreau-Yasuda power law
trend, which for γ̇ � γ̇c can be simplified to

µ = µ′0

(
γ̇c

γ̇

)1−n′

, (3.41)

be identical to that of the Ellis model, which for τ � τ1/2 can be approximated
to

µ = µ0

(
τ1/2

τ

) 1−n
n

. (3.42)

Substituting the constitutive equation τ = µγ̇ in Eq. (3.42) and recalling that
µ0 = µ′0 yields

µ = µ′0
n
(
τ1/2

γ̇

)1−n

, (3.43)

which can now be identified to Eq. (3.41). We thus immediately obtain n = n′

and
τ1/2 = µ′0γ̇c . (3.44)

Conversely, when determining the crossover pressure gradient ∇P c from
Eq. (3.12), the crossover shear stress τc to be considered is that corresponding
to the crossover shear rate γ̇c of the Carreau-Yasuda model. It can thus be
estimated from the Ellis model parameters by solving the following implicit
equation numerically:

τc
τ1/2

=

[
1 +

(
τc
τ1/2

) 1
n−1]−1

. (3.45)
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4 Monte Carlo Simulations of Shear-thinning Flow
in Geological Fractures

4.1 Abstract

The hydraulic behaviour of fractured rocks under non-Newtonian flow con-
ditions is a challenging topic of interest in several fields, related either to
environmental remediation or to natural resources recovery. Indeed, many
fluids involved in such subsurface operations are non-Newtonian, and the com-
pound effects of fluid rheology and medium heterogeneity strongly affect flow
and transport in fractured geological formations. In this work, a stochastic
analysis has been conducted via direct numerical Monte Carlo simulations
to investigate the behaviour of shear-thinning fluids in fractures subjected
to both natural and forced flow (low and high pressure drops respectively),
considering different fracture dimensions, for a spatial correlation of the frac-
ture that is an intrinsic parameter of the formation and thus independent of
the fracture size. Considering the lubrication approximation, a generalized
Reynolds equation for shear-thinning fluids is solved using an ad hoc, finite
volume-based, numerical scheme. The influence of the rheology and aper-
ture field heterogeneity on ensemble statistics of the velocity components and
magnitude, as well as apparent fracture-scale transmissivity, is quantified over
103 fracture realizations. The probability density functions (PDFs) obtained
by averaging over the set of realizations and the relative confidence intervals
are analysed to comprehend the apparent transmissivity transition from New-
tonian to shear-thinning regime. Moreover, the autocorrelation functions of
velocity components are computed to understand the impact of rheology on
spatial correlations of the flow. Velocity components exhibit narrow PDFs
with nearly exponential decay. Under forced flow, elevated pressure gradi-
ents emphasize the shear-thinning behaviour, inducing a more marked flow
localization for the shear-thinning rheology than for Newtonian flow, under
otherwise identical conditions. This translates at the scale of the fracture into
a much larger apparent transmissivity, by orders of magnitude.

4.2 Introduction

Flow modelling of complex fluids in geological formations is of interest in
numerous industrial applications. Among them are enhanced oil recovery
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(Hirasaki, Miller & Puerto, 2011; Leung et al., 2014), geothermal circulations
in fractured reservoirs (Bächler, Kohl & Rybach, 2003; Magzoub, Salehi, Li,
Fan & Teodoriu, 2021) and fluid losses during drilling operations (Feng &
Gray, 2017), where foams, muds, emulsions, colloidal or non-colloidal sus-
pensions are commonly involved. The use of high-viscosity gels in hydraulic
fracturing improves the proppant carrying capacity and favours the generation
of wider fracture in comparison to the use of slickwater (Pahari, Bhandakkar,
Akbulut & Kwon, 2021). Drilling muds provide cooling and lubrication to
drill bit and are employed as mechanical stabilizers in the construction of the
wellbore to pressurize the borehole against collapse. The constitutive law of
these fluids does not respect Newton’s law of viscosity, because their micro-
structure induces a shear-thinning rheology at the continuum scale (Barati &
Liang, 2014; Ansari, Turney, Morris & Banerjee, 2021). The non-Newtonian
behaviour of these fluids lies in their physical make-up and the ability of
mesoscopic components to cross-link chemically (e.g. polymer solutions, see
(Wang, Tang, Guo & Wang, 2016b)) or interact electrostatically (e.g. col-
loidal suspensions, see (Parmar, Méheust & Fossum, 2008; Méheust, Parmar,
Schjelderupsen & Fossum, 2011)).

Subsurface geological formations (e.g. crustal rocks) are discontinuous me-
dia, consisting in matrix blocks of low permeability separated by fractures,
which provide major conduits for flow. The connectivity among fractures and
their hydraulic behaviour are the features that control the entire formation
permeability (Berkowitz, 1994). The simplest model to study the hydraulic
behaviour of a fracture is the parallel plate model or cubic law. This model
has been largely used for its simplicity, although it oversimplifies wall to-
pography. Different approaches have been proposed also to represent rough
fractures: deterministic saw tooth (Wilson & Witherspoon, 1974), sinusoidal
profiles (Elsworth & Goodman, 1986), or profiles with an assigned aperture
probability distribution (Neuzil & Tracy, 1981; Felisa et al., 2018; Lenci & Di
Federico, 2020). In minerals and rocks, however, field and laboratory mea-
surements on fracture walls highlight the stochastic self-affine nature of the
surface morphology, for both natural (Brown & Scholz, 1985; Schmittbuhl
et al., 1993; Cox & Wang, 1993) and fresh artificial fractures (Schmittbuhl
et al., 1993; Bouchaud, 1997). Several algorithms are able to reproduce this
kind of rough surfaces, which are more consistent with the experimental evi-
dence: diamond-square algorithm (Fournier et al., 1982), successive random
addition (Lu, Molz & Liu, 2003), and the FFT-based algorithm proposed by
(Méheust & Schmittbuhl, 2003), which is far quicker.

Predictions of fracture transmissivities based on the parallel plate model
significantly deviate from measurements, especially under elevated normal
(Gale, 1990) or cyclic shear stresses (Makurat, 1985), limiting its use to suffi-
ciently smooth fractures. Traditional computational fluid dynamics (Starchenko,
Marra & Ladd, 2016), lattice gas (Gutfraind, Ippolito & Hansen, 1995; Stock-
man, 1997) and lattice Boltzmann methods (Meakin & Tartakovsky, 2009;
Tian & Wang, 2017) have been adopted to capture the impact of the complex
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geometry of fractures on Newtonian flow, and thus to accurately predict flow
and transport attributes, although the simulations are computationally inten-
sive. Alternative numerical methods, based on lubrication theory and compu-
tationally more convenient, have been proposed to solve Newtonian creeping
flow in rough fractures: standard matrix inversion techniques (Brown, 1987)
or pseudospectral methods (Plouraboué, Hulin, Roux & Koplik, 1998). Esti-
mation of the mean hydraulic aperture of a large number of independent frac-
tures show a difference of up to 2 per cent (Mourzenko et al., 1995) between
a lubrication-based solver and CFD simulations. Furthermore, due to the
stochastic nature of the geometry of geological fractures, fractures described
by the same statistical geometrical parameters can display a wide range of
hydraulic behaviors (Méheust & Schmittbuhl, 2001, 2003), including behav-
ior that are more permeable than the parallel plate of identical mean aperture
(Méheust & Schmittbuhl, 2000), and thus the typical hydraulic behavior of
a geological fracture should be understood as the average over a representa-
tive statistics, and the dispersion of the behaviors among the statistics should
also be investigated. To our knowledge, (Méheust & Schmittbuhl, 2001) per-
formed the first such Monte Carlo simulations of Newtonian creeping flow in
geological fractures with realistic geometries.

Monte Carlo simulations have been adopted for decades to simulate dif-
ferent processes in a variety of geologic media: a limited number of realiza-
tions of 1-D variable aperture fractures were produced by (Tsang & Tsang,
1987) to investigate flow in fracture channels; the same approach was then
generalized to 2-D fractures, although with spatial distributions of apertures
that are more relevant to 2-D aquifer permeability fields than to geological
fractures (Moreno et al., 1988). The pioneering work of Bellin, Salandin &
Rinaldo (1992) investigated the conditions for the validity of first-order flow
and transport theories in random porous media; Berkowitz & Scher (1998)
adopted a Monte Carlo approach to determine velocity distributions in frac-
ture networks, as a function of the fracture orientations, to study anomalous
transport at the network scale; Gómez-Hernández & Wen (1998) analysed
the applicability of multi-gaussian random function models in hydrogeology.
More recently this methodology has been applied to study transient sequen-
tially coupled radionuclide transport (Hayek, RamaRao & Lavenue, 2020), to
investigate flow in two dimensional conductivity field to derive a large-scale
transport model (Comolli, Hakoun & Dentz, 2019), to simulate CO2 plume
migration (Zhong, Sun & Jeong, 2019), and to perform uncertainty quantifi-
cation (Yang, Boso, Tchelepi & Tartakovsky, 2020).

Notwithstanding the ubiquitous use of complex fluids in the subsurface,
their behaviour is often reduced to the Newtonian rheology, with a limited
number of studies having focused on non-Newtonian fluid flow. Several analyt-
ical expressions have been proposed to comprehend the flow features in simple
geometries (Larson, 1992), or to qualitatively asses the effect of fluid rheol-
ogy on flow in a variable aperture field of a given distribution (Di Federico,
1997). Different numerical strategies have been adopted to handle problem
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non-linearity when dealing with a complex rheology in a variable aperture
field: Picard’s method (Morris et al., 2015), and sequential sweeping (Lavrov,
013a). A few studies have also addressed non-Newtonian flow in fractures
with self-affine geometries (Auradou et al., 2008; Perkowska et al., 2016; Lenci
et al., 2022a). Recently, advances in computational power have allowed the in-
vestigation of complex processes, such as: multiphase flow (Katiyar, Agrawal,
Ouchi, Seleson, Foster & Sharma, 2020), transport in fracture of permeable
walls (Dejam, 2019), and hydro-mechanical coupling (Moukhtari & Lecam-
pion, 2018; Wrobel, Mishuris & Papanastasiou, 2021; Chiapponi et al., 2019;
Ciriello et al., 2021). Despite this wealth of contributions using different con-
stitutive models and hypotheses, to date Monte Carlo simulations have never
been applied to investigate shear-thinning hydrodynamics in rough fractures
under natural and artificial flow conditions. Here, we extend the state of art
by exploring non-Newtonian fracture hydraulic behaviour, understanding the
intertwined role of shear-thinning rheology and fracture heterogeneity.

Recently, (Lenci et al., 2022a) proposed a novel numerical scheme that
allows efficiently solving a generalized lubrication equation for the flow of
fluids with a markedly shear-thinning (ST) rheology, thus making possible a
stochastic analysis of ST flow in rough fractures that does not require excessive
computational time. The numerical finite volume scheme is solved with an
inexact Newton-Krylov algorithm, yielding results that are sufficiently robust
for most fluid cases of practical interest.

The article is organized as follows: section 4.3 presents the non-linear lu-
brication equation for a non-Newtonian Ellis fluid, the generation process of
discrete fractures, and describes the implementation of the lubrication-based
numerical code; in section 4.4, the adopted stochastic approach is described;
section 4.5 presents the results of the Monte Carlo simulations performed, em-
phasizing the ensemble statistics obtained: these include the apparent trans-
missivity, the vertical and longitudinal velocity components, and the velocity
modulus; the covariance of the latter is also analyzed. Conclusions and per-
spectives for future work are formulated in section 4.6.

4.3 Modeling framework

4.3.1 Generation of synthetic fractures

A geological fracture is composed of two rough walls, whose parallel mean
planes are separated by 〈w〉, defined as the mechanical aperture. The to-
pographies of the upper (zu) and lower wall (zl), assumed of mean 0, fluctu-
ate with respect to their mean planes, and local apertures can be defined as
the distance between them; at positions where the two walls interpenetrate,
a zero aperture is imposed.

w(x, y) = max(0, zu(x, y)− zl(x, y) + 〈w〉) . (4.1)
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Figure 4.1: (a) Map of the power density spectrum of a synthetic fracture surface
distribution: Fourier modes kx and ky are in linear scales; the isotropic spectrum
is stochastic and exhibits the typical radial power law decay ∝ (k2x + k2y)−(1+H);
(b) radial averaging power density spectrum of a rough fracture’s aperture field; it
displays the above-mentioned self-affine behaviour for wave numbers larger than kc,
and is constant otherwise for k ≤ kc. (a) and (b) are both generated considering: a
Hurst exponent H = 0.8, a closure of σw/〈w〉 = 0.8, a correlation ratio L/Lc = 0.8,
a mean aperture 〈w〉 = 10−3 m, and a fracture length L = 1.6 m.

Fracture surfaces exhibit long-range spatial correlation (Candela, Renard,
Bouchon, Brouste, Marsan, Schmittbuhl & Voisin, 2009; Schmittbuhl et al.,
1995a). Therefore, the topography of a geological fractures’s rough wall to-
pography is an isotropic self-affine surface, with the probability distribution
function (PDF) f(∆z,∆r) scaling as:

∀λ f(∆z,∆r) = λHf(λH∆z,∆r), (4.2)

where ∆h is the height difference between two points separated by an in-plane
segment of length ∆r, H is the Hurst exponent, and λ is a scaling factor. Note
that fracture surfaces in crystalline rocks consistently show a Hurst exponent
of 0.8 (Méheust & Schmittbuhl, 2000), and this value has been proposed as
universal by Bouchaud et al. (1990). However, exceptions exist, such as sand-
stones, in which the grain-induced roughness regime, for high frequencies in
the power spectrum, may present values close to 0.5 (Boffa, Allain, Chertcoff,
Hulin, Plouraboué & Roux, 1999; Nigon, Englert, Pascal & Saintot, 2017).
One consequence of the scaling property of the PDF in Eq. (4.14) is that the
two-dimensional power density spectrum of wall topography scales as a power
law of the wave number in the form S(k) ∝ k−2(1+H), where the wave number
k is the norm of the wave vector, i.e., k = (k2

x + k2
y)1/2, kx and ky being the

components of the wave vector.
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The two walls of a geological fracture are matched at large length scales
but differ at scales smaller than a crossover scale, which we shall denote
the correlation length Lc (Brown, 1995). This is due to mechanical wear and
chemical weathering over long times. It follows that the aperture field exhibits
the same self-affinity as the walls at scales smaller than Lc, and, thus, that the
aperture field’s Fourier spectrum exhibits the characteristic self-affine power-
law scaling at these small scales, and an almost flat behaviour due to the
matching of the two walls at scales larger than Lc. Consequently, the spectral
power density of the aperture field exhibits the above-mentioned power-law
radial decay, of negative exponent −2(H + 1) for wave numbers higher than
kc, the characteristic wave number corresponding to scale Lc (Schmittbuhl
et al., 1995b), and is wave numbers smaller than kc.

This property can be used to generate realistic synthetic aperture fields
from a two-dimensional white noise, maintaining its random phase and intro-
ducing the spatial correlations by multiplying the Fourier modes correspond-
ing to scales smaller than Lc by the power-law behavior k−(H+1) (Méheust
& Schmittbuhl, 2003). Applying an inverse Fourier transform then yields
an aperture field with the appropriate geometry, which can then be scaled
and translated vertically so as to impose the desired mean aperture and stan-
dard deviation of aperture fluctuations. Fig. 4.1a depicts the two-dimensional
Fourier spectrum of such a synthetic aperture field, while Fig. 4.1b presents
its average radial profile, with the scaling properties discussed above. Fig. 4.2
shows the comparison between two different aperture fields having the same
correlation length but different fracture sizes, and thus a markedly different
size-to-correlation-length ratio. The latter parameter will be later seen to
affect the flow behaviour quite significantly.

4.3.2 Generalized Reynolds Equation

We consider the steady-state, isothermal Stokes flow of an incompressible fluid
between two smooth parallel straight walls separated by a uniform distance w.
Under the action of a a flow-inducing, externally-applied, pressure gradient
∇P = [∂xP, ∂yP ]>, the flow is parallel (in particular, its vertical component
is 0) and the momentum conservation can be written as:

∂

∂z

(
µ
∂u

∂z

)
= ∇P, (4.3)

where u = [ux, uy]> is the velocity vector, and µ is the dynamic viscosity
or the apparent viscosity if the fluid is Newtonian or non-Newtonian, respec-
tively. After integrating over the z-direction, the momentum conservation
becomes

µ
∂u

∂z
= ∇P z, (4.4)

which can be re-written using the definition of shear stress as τ = ∇P · z.
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Figure 4.2: Comparison between aperture fields for different values of L/Lc; the
colorbar reports the aperture magnitude in meters for both representations. The two
realizations are generated with: a Hurst exponent H = 0.8, a closure σw/〈w〉 = 0.8,
a correlation length of Lc = 10−1 m, and a mean aperture of 〈w〉 = 10−3 m. The
red frames illustrate the size ratio between the two fractures, which is 16.

For a generalized Newtonian model, the apparent viscosity can be ex-
pressed in terms of shear stress or shear rate. In particular, the Ellis fluid
rheology is a three-parameter model:

µ = µ0

[
1 +

(
τ

τ1/2

) 1
n−1]−1

, (4.5)

where µ0 is the dynamic viscosity at low shear rates, n is the shear-thinning
index that defines the power-law trend at high-shear stress, and τ1/2 is a
characteristic shear stress such that µ(τ1/2) = µ0/2. This model reduces to
the Newtonian rheology for n = 1 or τ1/2 →∞. In Figure 4.3, the dependence
of the apparent viscosity on the shear rate is represented in colors for two
examples of Ellis fluids, showing the low shear-rate quasi-Newtonian plateau
and the high shear rate shear-thinning power-law trend.

If the fluid is Newtonian, the relationship between the volumetric flow rate
Q and ∇P is given by the Hagen-Poiseuille law, which effectively expresses
Darcy’s law with an intrinsic permeability w2/12. Similarly, for the Ellis
model it is possible to analytically derive the velocity profile by introducing
Eq. (4.10) in Eq. (4.9) and integrating over the z-direction:

u(z) = −
{

1

8µ0

[
w2 −

(
z

2

)2]
+

n

n+ 1

(
1

2n+1µn0 τ
1−n
1/2

) 1
n

×

×
[
w

1
n+1 +

(
z

2

) 1
n+1]

||∇P || 1n−1

}
∇P,

(4.6)
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Figure 4.3: Dependence of the apparent viscosity µ on the shear rate γ̇. The
constitutive equation is represented for two Ellis fluids of different shear-thinning
behaviour: a xanthan gum, the yellow-solid line, and a silicon oil, the orange-solid
solid lines. Both fluids show a low-shear rate Newtonian plateau (µ → µ0), while
black-dashed lines report the relative original Carreau model. The black dashed
lines are similar curves obtained for two Carreau fluids with the same low-shear
plateaus and power law behaviors as each of the two Ellis fluids, respectively, and a
high shear asymptotic viscosity of 10−3 Pa · s for one of them (the other one’s high
shear plateau is not visible).
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which returns the Newtonian velocity profile for n = 1 (or τ1/2 → 0), and
leads to a generalized Hagen-Poiseuille law after integration over the aperture
and the along the y direction.

The generalized Hagen-Poiseuille law can be assumed to hold locally also
in a variable aperture field w = w(x), if the lubrication approximation can be
made, i.e., if the aperture field does not fluctuate too abruptly (‖∇w‖ � 1)
(Brown, 1987). In that case q is oriented parallel to the mean fracture plane
and may vary both in direction and intensity along that plane; it can be
rigorously defined as the integral of the three-dimensional fluid velocities over
the local fracture aperture w(x) (i.e., along the direction transverse to the
mean fracture plane) (Méheust & Schmittbuhl, 2001). Here it is related to
the pressure gradient according to

q = −
[
w(x)3

12µ0
+

n

2n+ 1

(
1

21+nµn0 τ1/2
1−n

) 1
n

w(x)
2n+1
n ‖∇P‖ 1

n−1

]
∇P . (4.7)

It follows from the definition of q, from the mass conservation for the in-
compressible fluid (continuity equation, ∇ · u = 0), and from the nullity of
fluid velocities at the fracture’s walls, that q is conservative (∇ · q = 0). In-
troducing Eq. (4.5) in the conservation of q yields the generalized Reynolds
equation:

∇ ·
[
w(x)3

12µ0
+

n

(2n+ 1)

(
1

21+nµn0 τ
1−n
1/2

) 1
n

w(x)
2n+1
n ‖∇P‖ 1

n−1

]
∇P = 0 , (4.8)

which for n = 1 (Newtonian fluid) reduces to the classical Reynolds equation
(Brown, 1987).

In the literature, the four-parameter Carreau model (Carreau, 1972) is
commonly adopted to fit rheological data for shear-thinning fluids, with the
apparent viscosity expressed as a function of the shear rate as follows:

µ = µ′∞ +
µ′0 − µ′∞[

1 +

(
γ̇
γ̇c

)2] 1−n′
2

. (4.9)

This model features a high viscosity (µ ' µ′0) plateau and a low viscosity
(µ ' µ′∞) plateau at low and high shear rates, respectively. These plateaus are
separated by a power law shear-thinning trend of exponent, or shear-thinning
index, n′ (see black dashed lines in Fig. 4.3)); γ̇c is a characteristic shear rate
that regulates the transition from the low-shear rate viscosity plateau to the
shear-thinning behavior.

For the parallel plate scheme, the Carreau constitutive equation does not
allow deriving an explicit analytical expression of the flow rate as a func-
tion of the imposed pressure gradient. Alternatively, the Ellis model exhibits
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the high-viscosity low-shear rate plateau, but lacks the high-shear rate low-
viscosity additional cut-off, typical of the Carreau model. Due to the mod-
est influence of the latter low-viscosity cut-off except at exceptionally high
imposed macroscopic pressure gradient, the Ellis model represents a valid al-
ternative to the Carreau model to simulate creeping flow of a shear-thinning
fluid in variable aperture fractures. In this work, parameters for the Ellis
model are inferred from the Carreau parameters fitted to experimental data
of real fluids by Uddin, Marston & Thoroddsen (2012). These parameters
are obtained assuming the same low-shear rate viscosity plateau (µ0 = µ′0), a
negligible low shear viscosity plateau (µ′∞ ∼ 0), and the same large shear rate
behavior. The latter conditions imposes both n = n′ and the value for the
characteristic shear stress τ1/2. In particular, for γ̇ � γ̇c, the Carreau can be
re-written as

µ ∼
γ̇�γ̇c

µ′0

(
γ̇c

γ̇

)1−n′

, (4.10)

while similarly, for τ � τ1/2, the Ellis model becomes

µ ∼
τ�τc

µ0

(
τ1/2

τ

) 1−n
n

= µ0

(
τ1/2

µγ̇

) 1−n
n

. (4.11)

Equations (4.10) and (4.11) thus provide a simple expression of τ1/2 in terms
of the Carreau parameters:

τ1/2 = µ0γ̇c . (4.12)

To quantify the transition from the quasi-Newtonian to the ST behaviour,
a critical macroscopic pressure gradient ∇P c can be analytically derived to
evaluate the ∇P above which the non-linear rheology starts to manifest itself
in the flow. Considering the parallel plate configuration of aperture equal to
the rough fracture’s mean aperture, when the maximum shear rate occurring
in the flow (τmax) is higher than the critical shear rate τc = τ(γ̇c), the viscosity
starts to deviate from the Newtonian plateau viscosity µ0. Given equation
(4.4), the critical pressure gradient can be estimated as

∇Pc =
2τc
〈w〉

, (4.13)

where the critical shear stress τc can be numerically evaluated from

τc = µ0

[
1 +

(
τc
τ1/2

) 1
n−1]−1

γ̇c (4.14)

Moreover, a characteristic mean flow velocity uc for which transition is ex-
pected to occur from Newtonian to shear-thinning rheology can be defined
as:

uc = γ̇c

√
k0 , (4.15)

where k0 is the Newtonian permeability.
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Figure 4.4: (a) Fracture representation with boundary conditions and flow rate
direction. (b) Finite volume five-point stencil: the pressure is defined at the centre
of the finite volumes (indicated by the blue nodes), the aperture at the center of the
edges (indicated by the yellow nodes) via arithmetic mean.

4.3.3 Flow Solver

A lubrication-based numerical code has been implemented to solve the flow of
an (shear-thinning) Ellis fluid in a single fracture (Lenci et al., 2022a), whose
aperture geometry is generated by means of the synthetic fracture generator
described in section 4.3.1. A fracture of dimensions L×L along its mean plane
is discretized on a N × N regular grid, the flow resulting from an imposed
pressure drop P0−P1 between the inlet (left-hand boundary) and outlet (right-
hand boundary) of the fracture, along the x-direction. The corresponding
macroscopic pressure gradient is ∇P = (P0 − P1)/L. No-flow conditions are
imposed along the two transverse boundaries of the flow domain.

A finite volume scheme has been adopted to solve the flow (see Fig. 4.4).
The pressure P (x, y) and aperture w(x, y) are defined at different locations,
on a staggered grid. The pressure is defined at the centre of each finite volume,
the aperture on the boundary between neighbouring cells via arithmetic mean

(e.g., w
(j)
i = (wj + wi)/2). The discrete formulation of equation (4.8) can be

written for node i as∑
i∈σ(j)

[
w

(j)
i

3

12µ0
+

n

2n+ 1

(
1

2n+1µn0 τ
1−n
1/2

) 1
n

w
(j)
i

2n+1
n

∣∣∣∣Pi − Pj∆

∣∣∣∣ 1n−1](
Pi − Pj

∆

)
= 0 ,

(4.16)
where σ(j) = {N,S,E,W} is the set of neighbouring cells of the j-th finite
volume, and ∆ = L/N is the mesh size.

The resulting non-linear system of equations is solved with an inexact
Newton-Krylov method, wherein the linearised symmetric system of equa-
tions is solved via variable-fill-in incomplete Cholesky preconditioned conju-
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Fluid (ID) Carreau Model Ellis Model
n′ µ′0 µ′∞ γ̇c n µ0 τ1/2

(−) (Pa s) (Pa s) (s−1) (−) (Pa s) (Pa)
Silicon oil (SO) 0.61 9.75 0 0.045 0.61 9.75 0.20
Xanthan gum (XG) 0.36 4.42 10−3 0.869 0.36 4.42 8.48

Table 4.1: Fluid rheologic parameters for the two considered fluids: a silicon oil
(Uddin et al., 2012) and a Xanthan gum produced in the laboratory. Experimental
data are originally fitted with Carreau model, while Ellis parameters are inferred
from the Carreau parameters.

gate gradient (ICPCG) and a parameter continuation strategy is adopted for
configurations with strong non-linearities (i.e., small values of the exponent
n).

The numerical code is introduced in a parallel computing framework and
outputs are saved and stored using a high-performance hierarchical data for-
mat (Koranne, 2010) to reduce the computational time required by the MC
simulations and the post-processing.

4.4 Stochastic analysis

4.4.1 Application scenarios

In this study, we consider the Ellis model for two shear-thinning fluids which
have been selected such that the power-law exponents n differ sensibly be-
tween them and the viscosity cut-offs µ0 are similar, while no particular re-
quirements are imposed to τ1/2. The Carreau parameters of a silicon oil fluid
are taken from (Uddin et al., 2012), while the other fluid is an ad hoc xanthan
gum fluid produced in the laboratory. Table 4.4.1 lists the properties of theses
two non-Newtonian fluids adopted, while figure 4.3 depicts the corresponding
constitutive laws in an apparent viscosity versus shear rate plot. In the fol-
lowing, the flow of the two shear-thinning fluids will be compared to that of
Newtonian fluid of dynamic viscosity equal to µ0.

The analysis is conducted for different imposed macroscopic pressure gra-
dients ∇P and fracture lengths L. The former ranges from 102 to 103 Pa/m,
which corresponds to typical orders of magnitude of groundwater natural po-
tential gradients (Zimmerman & Bodvarsson, 1996), to 104 Pa/m, that can
be associated with artificially-induced flow in hydraulic fracturing operations
(Jung, 1989). Assuming a constant correlation length Lc = 0.1 m, a fracture
lenght L = 0.1 m and larger L = 1.6 m are considered to study flow features
in smaller. Indeed, if one considers that the correlation length is a property
of the formation, resulting from tectonic constrains and chemical weathering
posterior to fracturing, then we can assume it to be independent of the frac-
ture’s length (de Dreuzy et al., 2012); hence L/Lc decreases as the fracture
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Correlation Length Lc (m) 10−1

Mean Aperture 〈w〉 (m) 10−3

Aperture Coefficient of Variation σw/〈w〉 (-) 0.8
Hurst Exponent H (-) 0.8
Mesh size N ×N (-) 210 × 210

Table 4.2: List of the fracture generator’s inputs that are common to all MC
simulations and realizations.

length increases. Regarding the mean aperture, in situ measurements of frac-
ture apertures are challenging (Barbati et al., 2016), thus mean apertures are
typically obtained from rough wall measurements on laboratory sample. Typ-
ical values of mean fracture aperture ranges from 0.1 mm to 10 mm (Cipolla,
Warpinski, Mayerhofer, Lolon & Vincent, 2008). However, values close to
1 mm are more frequent (Yeo, de Freitas & Zimmerman, 1998; Nowamooz,
Radilla, Fourar & Berkowitz, 2013).

4.4.2 Monte Carlo simulations

The characteristics of the performed Monte Carlo (MC) simulations are listed
in Table 4.3. For each MC set, NMC = 103 fracture realizations have been
generated, changing the seed of the Mersenne Twister random number gener-
ator (RNG) (Matsumoto & Nishimura, 1998). For each set, the table reports
the parameters µ0, n and τ1/2 describing the fluid, the correlation length to
length ratio, and the pressure gradient. In total, twelve Monte Carlo sets
of simulations have been performed for each combination reported in table
4.3, with the geometric parameters listed in table 4.2. The numerical code
provides the following quantities of interest (QoI) for each process realization:
the pressure field (P ), the longitudinal velocity component (ux), the transver-
sal velocity component (uy), the velocity magnitude, and the transmissivity
(T ), as defined by Eq. (4.16).

The post-processing phase elaborates the outputs and produces PDFs of
the dimensionless QoIs, for each realization; then, it computes the PDF en-
semble average with the relative confidence interval, estimated considering a
range of one standard deviation around the mean. In the following section, re-
sults concerning the non-Newtonian hydraulic behaviour of variable aperture
fractures are discussed with a probabilistic approach; to this end, the veloc-
ity components are normalized with respect to the mean velocity magnitude
(〈||u||〉). The transmissivity for non-Newtonian flow in fractures is defined as:

T (〈||u||〉) =
Qµ0

∇P
, (4.17)

where Q is the volumetric flow rate. Note that for a shear-thinning rheology
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MC set µ0 τ1/2 n L/Lc ∇P ∇P/∇Pc

(Pa · s) (Pa) (-) (-) (Pa ·m−1) (-)

MC1 4.42 8.48 0.36 1 102 2.0× 10−1

MC2 4.42 8.48 0.36 1 103 2.2× 100

MC3 4.42 8.48 0.36 1 104 2.2× 101

MC4 4.42 8.48 0.36 16 102 2.0× 10−1

MC5 4.42 8.48 0.36 16 103 2.2× 100

MC6 4.42 8.48 0.36 16 104 2.2× 101

MC7 9.75 0.20 0.61 1 102 6.5× 10−4

MC8 9.75 0.20 0.61 1 103 6.5× 10−3

MC9 9.75 0.20 0.61 1 104 6.5× 10−2

MC10 9.75 0.20 0.61 16 102 6.5× 10−4

MC11 9.75 0.20 0.61 16 103 6.5× 10−3

MC12 9.75 0.20 0.61 16 104 6.5× 10−2

Table 4.3: Monte Carlo set ID-numbers and related parameters: fluid rheology (µ0,
τ1/2, n), ratio of aperture correlation to fracture size L/Lc, and pressure gradient
∇P . The ratio ∇P/∇Pc is reported to quantify the significance of non-linear effects.
Other parameters common to all simulations are listed in Table 4.4.1.

this transmissivity will depend on the mean velocity, or, equivalently, on the
imposed macroscopic pressure gradient. As n goes to 1, T reduces to T0,
which does not depends on the velocity magnitude but only on the fracture’s
geometry, for a Newtonian fluid.

4.5 Results

4.5.1 Probability density functions of vertically-averaged
velocities

A thorough analysis adopting the Monte Carlo framework discussed in the pre-
vious section has been conducted to characterize the flow of steady isothermal
Stokes flow of shear-thinning fluids in rough fractures. The stochastic velocity
dynamics is analysed by means of the ensemble average PDFs of the longi-
tudinal and transversal velocity components, and of the velocity magnitude.
Moreover, the confidence interval is provided for each PDF to measure the
dispersion of the results around the mean behavior.

The ensemble average PDFs of the longitudinal component of the velocity
are depicted in Fig. 4.5 for all parameter combinations listed in Table 4.3. The
flow is mainly cocurrent, but local backward flow (i.e. negative ux/〈||u||〉 val-
ues) may occur due to contrasting adjacent aperture values near the fracture
contact zones; these, in turn, occupy a good percentage of the fracture total
surface (about 30%), for the selected coefficient of variation of the aperture
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Figure 4.5: Probability density functions of the dimensionless longitudinal velocity
component ux/〈||u||〉 for small (left column) and large (right column) fractures, and
for small (top row), intermediate (middle row) and high (bottom row) macroscopic
pressure gradients ∇P ; solid lines represent the mean ensemble PDFs, while dashed
lines define the confidence interval, with the range estimated considering the stan-
dard deviation. Black lines refers to the Newtonian case (n = 1), orange and yellow
lines to the silicon oil (n = 0.61) and xanthan gum (n = 0.36), respectively.
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field, which is σw/〈w〉 = 0.8. The PDFs of the longitudinal velocity com-
ponent are distinctly narrow, with the positive cocurrent part exhibiting a
decays which approaches an exponential decay for L/Lc = 16, and a streched
exponential for L/Lc = 1. A similar behaviour was observed in two and three
dimensional porous media flows, for Newtonian (Siena, Riva, Hyman, Winter
& Guadagnini, 2014) and non-Newtonian fluids (Zami-Pierre et al., 2016),
which is not surprising since the rough fractures behave all the more as a
two-dimensional porous medium as the correlation length is smaller, because
a smaller correlation length means that spatial correlations in the apertures
(which is essentially what distinguishes a fracture geometry from a uncorre-
lated 2D porous medium) are restricted to a narrower range of scales, at small
scales. Under strongly forced flow conditions, i.e. the highest values of the
pressure gradient, the strongly shear thinning fluid (n = 0.36) exhibits wider
cocurrent and thinner countercurrent tails with respect to the less shear thin-
ning fluid (n = 0.61), and even more so when compared to the Newtonian case
in the same conditions. On the other hand, under lower pressure gradients
the PDFs for Newtonian and non-Newtonian fluids almost overlap, clearly
indicating that the fracture heterogeneity governs the flow and the nonlinear
effects associated to rheology are quite modest. Results for small fractures
(i.e. L/Lc = 1) are almost independent of the rheology and flow regime, with
a very modest increase/decrease of the cocurrent/countercurrent tail only for
the most shear-thinning fluid and the highest pressure gradient. In this type
of geometry the strong channeling resulting from the aperture field hetero-
geneity, which is correlated up to the fracture size, dominates over the effect
of rheology. Although the shear-thinning flow is faster than Newtonian flow
under identical conditions, the PDF of the longitudinal velocity component
normalized by the average velocity is little impacted by the rheology. For large
fractures (L/Lc = 16) the effect is reversed but remains extremely modest for
this low ∇P .

Figure 4.6 depicts the ensemble average PDFs of the transversal velocity
components: these are nearly symmetric around zero as expected. Results for
small fractures (i.e. L/Lc = 1) are invariant with respect to the rheology and
flow regime, with no significant differences for any combination of parameters.
Again this behavior results from the strong geometry-mediated channeling.
On the other hand, large fractures (L/Lc = 16) under high pressure gradient
show wider tails, especially for the most shear thinning fluid.

The PDFs of the transverse velocity components suggest, similarly to the
longitudinal case, that under low pressure gradients the flow pattern is mainly
dominated by fracture heterogeneity, with contributions due to non-linear
rheology that arise only for strongly shear-thinning fluids, especially in large
fractures. A Newtonian fluid tends to spread more across the open portion
of the fracture as compared to a shear-thinning fluid. In fact, the shear-
tinning behaviour induces a more marked flow localization, with the fluid
being conveyed in a smaller portion of the fractures and presenting more
extreme values of velocities under the same flow conditions.
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Figure 4.6: Probability density functions of the dimensionless transversal velocity
component uy/〈||u||〉 for small (left column) and large (right column) fractures,
and for small (top row), intermediate (middle row) and high (bottom row) pressure
gradients ∇P ; solid lines represent the mean ensemble PDFs, while dashed lines
define the confidence interval, with the range estimated considering the standard
deviation. Black lines refers to the Newtonian case (n = 1), orange and yellow lines
to the silicon oil (n = 0.61) and xanthan gum (n = 0.36), respectively.
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The PDF of the velocity magnitude (i.e. the norm of the Eulerian veloc-
ity) is related to a typical transport attribute, the spatial-Lagrangian PDF,
through flux-weighting (Dentz, Kang, Comolli, Borgne & Lester, 2016). Sev-
eral studies have aimed at relating the Eulerian velocity PDF to porous
medium’s geometrical properties (de Anna, Quaife, Biros & Juanes, 2017;
Hakoun, Comolli & Dentz, 2019; Puyguiraud, Gouze & Dentz, 2019a; Velásquez-
Parra, Aquino, Willmann, Méheust, Le Borgne & Jiménez-Mart́ınez, 2021),
and from there, anomalous transport to the Eulerian velocity PDF (Puyguiraud,
Gouze & Dentz, 2019b; Velásquez-Parra et al., 2021). In Fig. 4.7, the di-
mensionless PDF of velocity magnitude is depicted to show the influence of
rheology and heterogeneity on the distribution of both high and low veloc-
ities. The dimensionless PDFs for the less shear-thinning fluid (n = 0.61)
overlap with those for the Newtonian fluid for all the combinations consid-
ered, meaning that the fluid rheology does not affect the shape of the PDF
but only its magnitude. Conversely, the less shear-thinning fluid (n = 0.36)
shows more extreme values of the velocity magnitude under high pressure
gradients, which corresponds physically to a higher localization of flow under
a shear-thinning rheology than under the Newtonian rheology, as discussed
above. The differences between the two non-Newtonian fluids for intermediate
and high pressure gradients increase when a small fractures (i.e. L/Lc = 1)
is considered, which is expected, since flow channeling at the fracture scale is
much stronger in that case, even for Newtonian flow.

4.5.2 Autocorrelation function of the velocity compo-
nents

In Fig. 4.8, the autocorrelation functions of the velocity components are
depicted for the case L/Lc = 1. The autocorrelation coefficients ρxx =
Cov(ux, ux)/σ2

ux and ρyy = Cov(uy, uy)/σ2
uy are evaluated along their re-

spective directions, i.e. the x-direction and y-direction respectively. The
autocorrelation functions of the velocity components provide a metric of dis-
order (Rozenbaum & du Roscoat, 2014), which can be influenced by the the
fluid’s rheological behaviour. These functions show a more rapid decay for
strongly non-Newtonian fluids under elevate pressure gradient and in small
fractures (L/Lc = 1), while larger fractures are not affected at all. All plots
show a hole type covariance with zero integral scale: velocity fluctuations are
positively correlated at short distances and negatively correlated at longer
distances, and tend to zero exponentially from below. A similar structure has
been obtained by Bellin et al. (1992) for 2-D porous media. The influence
of rheology and of the external pressure gradient on the autocorrelation co-
efficients is almost imperceptible in the flow direction, while the transverse
component is to some extent affected, showing a faster short-scale correlation
decay as the fluid becomes more shear-thinning.

Figure 4.9 depicts the autocorrelation coefficients for the case L/Lc = 16.
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Figure 4.7: Probability density functions of the dimensionless velocity magnitude
||u||/〈||u||〉; for small (left column) and large (right column) fractures, and for small
(top row), intermediate (middle row) and high (bottom row) pressure gradients
∇P ; solid lines represent the mean ensemble PDFs, while dashed lines define the
confidence interval, with the range estimated considering the standard deviation.
Black lines refers to the Newtonian case (n = 1), orange and yellow lines to the
silicon oil (n = 0.61) and xanthan gum (n = 0.36), respectively.



82 CHAPTER 4. STOCHASTIC ANALYSIS

Figure 4.8: Autocorrelation functions of the velocity components (longitudinal
ρxx and transversal ρyy) as a function of the dimensionless lag (l/∆), for L/Lc = 1.
The functions have been averaged over the MC simulations. The dimensionless lag
is the ratio of the the distance l to the mesh size ∆. The black solid line represents
the Newtonian case, the orange solid line the less shear-thinning fluid (n = 0.61),
the yellow solid line the strongly shear-thinning fluid (n = 0.36).
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Figure 4.9: Autocorrelation functions of the velocity components (longitudinal ρxx
and transversal ρyy) as a function of the dimensionless lag (l/∆), for L/Lc = 16.
The functions have been averaged over the MC simulations. The dimensionless lag
is the ratio of the the distance l to the mesh size ∆. The black solid line represents
the Newtonian case, the orange solid line the less shear-thinning fluid (n = 0.61),
the yellow solid line the strongly shear-thinning fluid (n = 0.36).

All combinations of parameters result in the same hole covariances behaviour
for ρxx and ρyy: a narrow short-scale positive correlation, with a fast short-
scale exponential decay, and a long-scale negative correlation, slowly tending
to zero from below.

4.5.3 Fracture-scale hydraulic behavior

Considering now the integral flow behaviour, i.e., the hydraulic behavior at the
fracture scale, it is seen that the shear-thinning rheology enhances the frac-
ture’s apparent transmissivity: this effect becomes relevant under the action of
a sufficiently large macroscopic pressure gradient (i.e. sufficiently large aver-
age velocity). Fig. 4.10 depicts the dependence of the apparent transmissivity
T , normalized with its Newtonian counterpart T0, on the velocity normalized
by the characteristic velocity uc, for each realization; the average value for
each Monte Carlo simulation is also shown. When the normalized velocity is
smaller than 1, T/T0 goes to 1, which is characteristic of the Darcian regime.
When T/T0 is sufficiently larger than 1, it is related to the normalized velocity
through a non-linear relation in the form 〈||u||〉n ∝ ||∇〈P 〉||, characteristic of
the shear-thining (power law) behavior. A similar macroscale transition be-
tween two such regimes has been observed for two-dimensional porous media
by (Zami-Pierre et al., 2016). Apparent transmissivity values obtained for
small fractures (L/Lc = 1) are more disperse around their ensemble average
as compared to their larger counterpart (L/Lc = 16), which better satisfies
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Figure 4.10: Dependence of the dimensionless transmissivity T/T0 on the dimen-
sionless velocity 〈||u||〉/uc, for all realisations and the ensemble average of each
Monte Carlo simulation: (a) L/Lc = 1, (b) L/Lc = 16. Simulation results for the
silicon oil and xanthan gum are in orange and yellow, respectively; the darker the
color, the higher the imposed global pressure gradient is. Lines are a guide to the
eyes.

the ergodic condition, so that values for an individual realisation are almost
superimposed with their ensemble average. In other words, since no spatial
correlations exist in the aperture field at scales larger than L/16, that field is
mostly random and all realization of it behave in the same way (see (Méheust
& Schmittbuhl, 2003) for a similar result for Newtonian flow). However, com-
paring results for the two fractures shows that ensemble averages are almost
insensitive to the fracture size, or, equivalently, to the ratio L/Lc. In other
words, the fluid’s rheology dominates by far over aperture heterogeneities in
controlling the hydraulic behavior for such strongly shear-thinning fluids.

4.6 Conclusions

We conducted a comprehensive stochastic analysis aimed at elucidating how
the effects of non-Newtonian rheology and aperture heterogeneity impact the
flow in realistic synthetic geological fractures. The shear-thinning behaviour of
the fluid, modeled by means of the three-parameter Ellis rheology, is particu-
larly relevant when the fracture is subjected to a sufficiently high macroscopic
pressure gradient (typical of forced regimes). A transition from the Darcian
regime 〈||u||〉 ∝ ||∇P || to the non-linear regime 〈||u||〉n ∝ ||∇P || occurs
when increasing the imposed macroscopic pressure gradient. Under the same
conditions, the ensemble statistics of the velocity components differ the most
from the Newtonian case for the more shear-thinning fluids. In particular,
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the average PDFs of the normalised velocity components show thicker tails
for shear-thinning rheologies, indicating a higher frequency of velocities much
larger than the mean value. The average PDFs of the velocity magnitude also
display a higher dispersion of the velocity around the mean values. These
results can be explained by the fact that for strongly shear-thinning fluids the
flow localization along correlated large aperture channels is more intense for
shear-thinning fluids than for Newtonian flow. This stronger flow localization
is consistent with results obtained on two-dimensional porous media in earlier
studies. In rough fractures, however, long range spatial correlations create
channeling at the scale of the correlation length, which is then the longitu-
dinal scale at which flow localization occurs; this is an ingredient that is not
present in uncorrelated 2D porous media.

In sum, the flow pattern is mostly governed by aperture heterogeneities,
while the impact of the fluid rheology on the probability density function of
velocity component, once normalized by the mean velocity, is relatively lim-
ited, except for very shear-thinning fluids. The overall hydraulic behaviour,
on the other hand, is strongly affected by the fluid rheology: the ratio of ap-
parent non-Newtonian transmissivities to that of Newtonian fluids increases
with the fracture heterogeneity, reaching values much larger than unity. En-
semble averages of the overall hydraulic transmissivity are almost independent
of the fracture size (or, equivalently, to the ratio L/Lc), but small fractures,
which are more affected by disorder due to flow channeling up to the fracture
scale (as for Newtonian flow), show a larger apparent transmissivity around
the mean.

Eventually, the analysis of the velocity statistics proposed in this work,
as well as fracture and fluid properties, can be adopted to predict transport
features that can be implemented in the numerical code and in subsequently
introduced in a similar Monte Carlo framework to characterize solute trans-
port (e.g., through spatial dispersion or breakthrough curves).
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5 Experimental investigation on backflow of
power-law fluids in planar fractures

5.1 Abstract

In hydrofracturing, we model backflow of a non-Newtonian fluid in a single
flat-walled fracture of planar geometry and support our conceptualization with
laboratory experiments. We consider a power-law fluid, a spatially homoge-
neous fracture aperture, and its variation in time depending on the internal
fluid pressure and the elastic relaxation of the walls. The relationship be-
tween the latter quantities may be linear, akin to a Winkler soil, or nonlinear,
due to the progressive softening or stiffening of the boundary associated with
the properties of the surrounding rock. The result is an integro-differential
problem that generally admits a closed-form solution, albeit implicit for some
quantities. In particular, a comparison is conducted between the drainage
time in the present configuration and point drainage in radial geometry. The
approach is generalized by introducing leak-off, i.e. a loss of fluid at the frac-
ture boundaries that accelerates the fracture closure, when compared to the
no leak-off case. To validate the theoretical results, 14 experiments are con-
ducted with an ad-hoc replica of a rectangular fracture of aspect ratio 2.5-2.7,
with a maximum height of ≈ 2 mm; the elastic reaction of the walls is due to
o-rings, also sealing the fracture without adding friction disturbances. Fluids
with different rheology, both Newtonian and shear-thinning, are associated
with different boundary conditions of external pressure and overload. The
match between theory and experiments is fairly good, with discrepancies of
a few percent essentially due to the approximations of the theoretical model,
and, for shear-thinning fluids, to the simplified constitutive equation.

5.2 Introduction

Backflow is a term used in the hydrofracturing jargon to represent the third
phase of the process following the injection of i) the fracturing fluid and ii) of
the proppant (see Sahai and Moghanloo (Sahai & Moghanloo, 2019) and bib-
liography therein for a recent review). The first phase opens up new fractures,
cracks and preferential pathways in the rock mass with a process that initiates
at the main well, or borehole, typically located at 1-2 km below ground and
having a sub-horizontal orientation; the second phase props them open. At

87
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the beginning of the third phase, the injection ceases and the downstream
pressure gradient attenuates and then reverses its direction; this causes part
of the fracturing fluid to flow back sequentially from matrix to fractures,
fractures to well bore, and finally from well bore to surface, where the fluid
is treated and re-used; the phenomenon is commonly described as backflow.
The unrecovered portion of hydrofracturing fluid lost as formation leak off
represents an economic loss (Economides, Mikhailov & Nikolaevskiy, 2007) as
well as a source of environmental pollution: the latter key aspect is clearly
summarized by Birdsell et al.(Birdsell et al., 2015). During the fourth and fi-
nal phase, the product of the reservoir under exploitation, typically oil, gas or
heat for the deepest reservoirs (Hofmann, Weides, Babadagli, Zimmermann,
Moeck, Majorowicz & Unsworth, 2014), follows the backflow and invades the
fracture network, eventually reaching the borehole and initiating the produc-
tive stage. Any residual fracturing fluid retained in the fracture network or in
the formation pore space, as well as the presence of proppant within the frac-
tures (Bolintineanu, Rao, Lechman, Romero, Jove-Colon, Quintana, Bauer &
Ingraham, 2017), brings about a reduction of the fracture conductivity, im-
pairing productivity and favouring the stagnation of the fracturing fluid in
the subsurface.

While a variety of models examine with varying realism and at various
scales (for a review see Britt (Britt, 2012) and Detournay(Detournay, 2016))
the first phase of the hydrofracturing process, the details of backflow were
investigated to a lesser degree of attention. In essence, it is seen that typi-
cally the reverse flow causes a pressure reduction within the formation and
the fracture network upstream of the borehole; this in turn produces the re-
laxation of the walls, further squeezing the fracture and driving the fluid out.
This phenomenon can be captured by numerical models based on a detailed
knowledge of the fracture network (Clarkson, Haghshenas, Ghanizadeh, Qan-
bari, Williams-Kovacs, Riazi, Debuhr & Deglint, 2016), possibly based on
AI techniques (see Agwu et al.(Agwu, Akpabio, Alabi & Dosunmu, 2018)
for a review concerning similar fluids); or represented by models of reduced
complexity, characterized by a relatively low number of parameters. This sec-
ond category includes the model of Lai et al.(Lai, Zheng, Dressaire, Ramon,
Huppert & Stone, 2016) for radial crack propagation and resulting backflow,
the seminal work of Dana et al.(Dana et al., 2018), describing the same phe-
nomena in a fracture network built as a succession of plane branches of in-
creasing order, where at each order i two fractures branch out from an order
i− 1 fracture, reminiscent of river networks (Kobchenko, Hafver, Jettestuen,
Galland, Renard, Meakin, Jamtveit & Dysthe, 2013), and blood vessels or
other biological systems (see Abugattas et al. (Abugattas, Aguirre, Castillo
& Cruchaga, 2020) and references therein). The model was later extended to
include variability in the branching parameters at each order (Dana, Peng,
Stone, Huppert & Ramon, 2019). The effect of a bifurcation on single and
two-phase flow in a fracture surrounded by a porous medium was investigated
by Zhu et al. (Zhu, Liu, Liu, Wu & Song, 2021). Quite surprisingly, relatively
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few scientific works include non-Newtonian effects, despite the fact that hy-
drofracturing fluids are rheologically complex by definition. In the first place,
they are often engineered so that their viscosity varies over time, typically
due to carefully planned chemical reactions within the fluid and/or with the
rock matrix (Barbati et al., 2016). This peculiar characteristic permits the
optimization of hydrofracturing operations: during the injection phase, a high
viscosity allows formation of a clearly defined network of cracks without too
much loss of fluid in the surrounding matrix, while in the backflow phase a
low viscosity is desirable to minimize pressure losses and maximize the fluid
recovery. In principle, this does not necessarily imply a non-Newtonian be-
haviour, characterized by a viscosity dependent on the velocity vector, or
equivalently, by a nonlinear relationship between the stress and the velocity
deformation tensors. In practice, however, the rheology of fracturing fluids
is mostly non-Newtonian, as explained in detail e.g. by Osiptov (Osiptov,
2017): this is linked to the desirable characteristics of non-Newtonian fluids,
whose richness of descriptive parameters allows achieving several engineering
objectives at the same time (Lester, Yacob, Morrissey & Linden, 2014).

The adoption of complex constitutive models more apt to represent the
rheology of the fracturing fluid has become common (Linkov, 2014) in mod-
elling all phases of the hydrofracturing process. At the scale of an entire for-
mation, or of a domain including several formations, the approach is mostly
numerical and includes a detailed description of the newly formed fracture
network (Yao, Jiang & Shao, 2015), interacting with the surrounding rock
matrix and the fractures possibly already existing in the formation (Rahman
& Rahman, 2013). The rheological model adopted is usually power-law, the
least detailed model incorporating a nonlinear relationship between stress and
strain (Bird, Stewart & Lightfoot, 2002). More detailed formulations, often
based on an analytical or semi-analytical approach, focus on a single phase
of the hydrofracturing process. In the injection phase, the formation of a
plane-strain fracture driven by a power-law fluid is described by Adachi and
Detournay (Adachi & Detournay, 2008) and Garagash (Garagash, 2006), and
by Mikhailov et al. (Mikhailov, Economides & Nikolaevskiy, 2011) with the
inclusion of leakoff; anisotropy in the rock matrix was then incorporated in the
solution by Dontsov (Dontsov, 2019), while Lakhtychkin et al. (Lakhtychkin,
Eskin & Vinogradov, 2012) modelled the fracture expansion under the action
of two proppant-laden immiscible power-law fluids. An alternative, numerical
approach for the propagation phase was adopted by Perkowska (Perkowska
et al., 2016). More realistic, and complex rheological models, such as trun-
cated power-law and Carreau, were only recently applied to single fracture
propagation (Wrobel, 2020; Wrobel et al., 2021; Pereira & Lecampion, 2021).
Much less developed are models for non-Newtonian backflow. To our knowl-
edge, the first was presented by Chiapponi et al. (Chiapponi et al., 2019), who
modelled radially converging backflow of a non-Newtonian power-law fluid
towards a borehole in a single disk-shaped fracture, checking their theoreti-
cal findings against laboratory experiments with satisfactory results. Later,
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Ciriello et al. (Ciriello et al., 2021) developed a similar analysis for plane
flow of a non-Newtonian fluid described by the Ellis three-parameter model
(Medina, Detwiler, Prioul, Xu & Elkhoury, 2019; Ali, Abbasi & Ahmad,
2021). Here, we consider the same plane geometry and develop novel closed-
form expressions for a power-law fluid, widely applied in porous and fractured
media flow (Longo, Di Federico & Chiapponi, 2015) with satisfactory results
when the rheological parameters in the measuring device are estimated at the
same shear rate range of the real phenomenon. We then verify our theoretical
result by means of two ad hoc built experimental devices, describing its struc-
ture and calibration, exploring different types of wall reaction, and finding a
good agreement between experiments and theory.

The manuscript is structured as follows. Section 2 includes the formulation
of the problem and the derivation of i) the pressure field in the space/time and
ii) the closure pattern of the fracture over time. Section 3 illustrates the ex-
perimental set-up, the measurement techniques for the rheological behaviour
of the investigated fluids, interpreted with the Newtonian and power-law con-
stitutive equations, and the experimental results with associated uncertainty.
Section 4 illustrates a generalization of the problem, including the effects of
leak-off from the fracture. Section 5 presents our conclusions and perspectives
for future work. Appendices A-C provide additional details on the problem
investigated.

5.3 Power-law fluid flow

5.3.1 Formulation

A fluid-filled, rigid rock fracture of length L, width W , time variable aperture
h(t) of starting value h0, and elastic walls is initially (t = 0) subject to a
no-flow condition at its end x = L and to uniform initial pressure pe imposed
by the value at its outlet x = 0, connected with the main well or borehole (see
Figure 5.1). The backflow towards the borehole causes a pressure reduction
within the fracture that in turn produces the relaxation of the walls, further
squeezing the fracture. For a given time, the pressure is p(x, t), while the
fracture volume and the outflowing discharge per unit width are Vf = Lh and
q = −dVf/dt = −L dh/dt. Hereinafter, the pressure within the fracture is
taken to include gravity effects (reduced or generalized pressure) caused by
the inclination α of the fracture with respect to the horizontal plane. Note
that this assumption can be adopted also for the radial geometry, adding
generality to the results of Chiapponi et al. (Chiapponi et al., 2019) without
the need for neglecting gravity effects.

The fracture aspect ratios are ε1 = L/W � 1 and ε2 = h/L� 1, and the
lubrication approximation holds. Hence, the flow is one-dimensional in the
x direction; this allows concentrating the relaxation of the fracture entirely
in one of the two walls, taken to be the upper one for pure convenience.
We further assume that the plane fracture under consideration belongs to a
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Figure 5.1: Sketch of a smooth fracture with uniform aperture varying over time
and elastic wall behaving as a linear/nonlinear (λ = 1/ 6= 1) foundation of as-
signed coefficient of subgrade reaction Ê of dimensions [ML−1−λT−2], reverting to
a Winkler coefficient Ẽ of dimensions [ML−2T−2] for λ = 1.

series of evenly distributed fractures of spacing l with respect to a horizontal
borehole or main well, as it is most often the case in hydraulic fracturing (see
Figure 5.2).

To represent in a general form the reaction of the wall we adopt the formu-
lation of Ciriello et al. (Ciriello et al., 2021), allowing for generality the Young
modulus E of the rock wall to be a function of the strain rate, according to
the power-law relationship

E = E0

(
h

l

)λ−1

, (5.1)

where E0 is a reference value of the Young modulus of dimensions [ML−1T−2]
and λ a non-negative constant governing the type of wall reaction: linear for
λ = 1, sub-linear or supra-linear for 0 < λ < 1 or λ > 1 respectively. It
is worth noting that λ 6= 1 also represents possible experimental constraints.
Under a Winkler conceptualization of subgrade springs illustrated in Figure
5.1, the rigid wall reacts to the upward fluid pressure with a downward pres-
sure proportional to the aperture given by r(t) = Ẽh where Ẽ is the coefficient
of subgrade reaction of dimensions [ML−2T−2]. For a thin elastic layer, this
coefficient is given by the ratio between the Young modulus of the layer’s
material E [ML−1T−2] and its thickness l (Kerr, 1964), i.e.

Ẽ = E/l, (5.2)

where l in this context is identified with the fracture spacing (Chiapponi et al.,
2019). The actual validity, albeit approximate, of eq. (5.2) is conditioned on
l/L < 1, a requirement often respected in artificial fracture networks produced
by fracking (see Ciriello et al. (Ciriello et al., 2021) and references therein).

The wall equilibrium, written per unit width, then requires∫ L

0

p(x, t) dx = r(t)L = ẼLh(t), (5.3)
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Figure 5.2: Bi-wing planar and symmetric fractures of dimensions L, W and h and
equal spacing l originating from a horizontal borehole; here α = 90◦ as the fractures
lie in the vertical plane.
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or equivalently using eqs. (5.1)-(5.2)∫ L

0

p(x, t) dx = ÊLhλ(t), (5.4)

where Ê = E0l
−λ of dimensions [ML−1−λT−2] is a coefficient of subgrade

reaction under the assumption of nonlinear wall reaction and evenly spaced
fractures, and reverts to the physical meaning and dimensions of a Winkler
subgrade coefficient if λ = 1. Note that eq. (5.4) stands by itself in the case of
a single fracture when the spacing l is not defined and there is no need of eqs.
(5.1), (5.2) and (5.3). The wall equilibrium is further generalized by adding a
constant force per unit width, defined as overload f0, on the right-hand side
of (5.4), typically opposing the fracture aperture and associated for instance
to a residual state of stress within the rock wall generated by its load history.
Eq. (5.4) then becomes,∫ L

0

p(x, t) dx = ÊLhλ(t) + f0, (5.5)

completing the schematization of the fluid-wall interaction.
Turning now our attention to the flow, inertial effects are negligible, the

regime is viscous, and the fluid has a power-law rheology, described in simple
shear flow by the constitutive equation

τzx = −µ̃|∂u/∂z|n−1∂u/∂z, (5.6)

with τzx shear stress, u velocity, µ̃ consistency index and n flow behaviour
index; for n = 1 the fluid is Newtonian, for n < 1 shear-thinning, for n > 1
shear-thickening. Under the previous assumptions, the pressure distribution
is hydrostatic and the velocity profile at any cross-section x is

u(x, z, t) = − n

2(n+1)/n(n+ 1)

1

µ̃1/n

∣∣∣∣∂p∂x
∣∣∣∣1/n−1

× ∂p

∂x

(
h(1+n)/n − |2z − h|(1+n)/n

)
. (5.7)

Shear-thinning fluids (n < 1) are most common in practical applications
and will be considered henceforth. The wall velocity ww perpendicular to the
wall itself is initially zero at the start of the relaxation phenomenon, i.e.

ww(0) = 0, (5.8)

and is given at the generic time t by

ww(h) =
∂h

∂t
=

dh(t)

dt
, (5.9)
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the last equality holding as the wall is rigid. Further, ww is related to the
fluid velocity u in the x direction by the principle of continuity

∂ww
∂z

+
∂u

∂x
= 0. (5.10)

Substituting eqs. (5.7) and (5.9) in eq. (5.10) and integrating perpendicular to
the wall between z = 0 and z = h(t) with the boundary conditions (5.8)-(5.9)
yields

dh(t)

dt
=

1

2(1+n)/n(2n+ 1)µ̃1/n
h(t)(2n+1)/n

×
∣∣∣∣∂p(x, t)∂x

∣∣∣∣1/n−1
∂2p(x, t)

∂x2
. (5.11)

Referring now again to the geometry described by Figure 5.2, showing
several bi-wing planar fractures (the schemes for single or multiple fractures
do not differ except for the quantities depending on the spacing l), it is noted
that consistently with the assumption L�W the flow is uniform along most
of the fracture half-length L and may be approximately described as planar
except in the vicinity the well. Neglecting the convergence of flow lines therein
allows simplifying the boundary condition at the fracture outflow, so that the
initial and boundary conditions to eqs. (5.5) and (5.11) read

h(0, t) = h0, p(0, t) = pe,
∂p(x, t)

∂x
(L, t) = 0, (5.12)

where i) h0 is the initial fracture aperture; ii) pe is the pressure at the fracture
outflow, taken to be equal to borehole pressure along the entire fracture height
W ; iii) the condition at the fracture inflow, representing the upstream network
of fractures created by the injection process, is identified as a zero pressure
gradient, the least impacting condition on the pressure within the fracture.

5.3.2 Solution

The governing equations (5.5) and (5.11), and the initial and boundary con-
ditions (5.12) can be written in dimensionless form respectively as

1

H(T )(2n+1)/n

dH(T )

dT
=

∣∣∣∣∂P (X,T )

∂X

∣∣∣∣(1−n)/n
∂2P (X,T )

∂X2
, (5.13)

∫ 1

0

P (X,T )dX = Hλ(T )− Pe + F0, (5.14)

H(X, 0) = 1, P (0, T ) = 0,
∂P (X,T )

∂X
(1, T ) = 0, (5.15)
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by using the dimensionless quantities

X = x/L, H = h/h0, T = t/tc, P = (p− pe)/pc,
Pe = pe/pc, F0 = f0/(Lpc), Q = (qtc)/(Lh0). (5.16)

In eq. (5.16), the time and pressure scales tc and pc are defined as

tc =

(
µ̃

Ê

)1/n
(2L)(n+1)/n(2n+ 1)

h
(n+λ+1)/n
0

, pc = Êhλ0 . (5.17)

To solve the problem an auxiliary function is defined as

G(T ) =
1

H(T )(2n+1)/n

dH(T )

dT
. (5.18)

Together with the assumption of backflow, implying ∂P/∂x > 0, eq. (5.18)
allows integrating eq. (5.13) with the boundary conditions in eq. (5.15),
obtaining the pressure field

P (X,T ) =
[−G(T )]n

nn(n+ 1)

[
1− (1−X)n+1

]
. (5.19)

Substituting eqs. (5.18) and (5.19) into eq. (5.14) gives

dH

dT
+ n(n+ 2)1/nH(2n+1)/n

(
Hλ − Pe + F0

)1/n
= 0, (5.20)

subject to the initial condition in eq. (5.15).
For Pe − F0 = 0 eq. (5.20) admits the following closed-form solution

H(T ) =
[
1 + (1 + n+ λ)(n+ 2)1/nT

]−n/(1+n+λ)

, (5.21)

and consequently the pressure is given by

P (X,H(T )) =
n+ 2

n+ 1
Hλ(T )

[
1− (1−X)n+1

]
. (5.22)

For n = 1 and λ = 1, equations (5.21) and (5.22) reduce to the expres-
sions derived by Dana et al. (Dana et al., 2018) for a Newtonian fluid and
λ = 1 (a linearly elastic wall). Appendix A reports their late-time (T � 1)
approximations. The dimensionless fracture aperture is shown versus time in
Figure 5.3, showing the late-time T−n/(n+λ+1) scaling; the smaller the flow
behaviour index n, the larger the dimensionless aperture. For smaller λ values,
the fracture aperture decreases faster with time as the wall reacts less.

For Pe − F0 ≥ 0, the function H(T ) is obtained implicitly as

T =
1

(n+ 2)
1
n (1 + n+ λ)

[
1

ζ(1+n+λ)/n

× 2F1

(
1

n
,

1 + n+ λ

nλ
;

(1 + λ)(n+ 1)

nλ
;
Pe − F0

ζλ

)]∣∣∣∣H
1

, (5.23)
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Figure 5.3: Dimensionless fracture aperture versus dimensionless time for Pe−F0 =
0, and n = 1, 0.7, 0.4, 0.3. The cases λ = 0.8, 1, 1.2 are represented by dashed,
continuous and dotted lines for n = 0.7 and n = 0.3 to illustrate the dependence
upon λ.

where ζ is a dummy variable, 2F1 (a, b; c; ζ) is the hypergeometric function of
parameters a, b, c and argument ζ and the linear transformation (9.132.2) in
Gradshteyn and Ryzhik (Gradshteyn & Ryzhik, 2014) has been used. Early-
and late-time approximation of the general equation (5.23) are reported in
Appendix B. For the special case Pe − F0 = 0, eq. (5.23) becomes eq. (5.21);
for n = 1 and λ = 1, it reduces to equation (2.18) in Dana et al. (Dana et al.,
2018) via the identity in Appendix C. When a linear wall reaction (λ = 1) is
coupled with a shear-thinning fluid (n < 1), eqs. (5.21) and (5.23) reduce to

H(T ) =
[
1 + (n+ 2)(n+1)/nT

]−n/(n+2)

, (5.24)

T =
1

(n+ 2)
n+1
n

×
[

1

ζ(n+2)/n 2F1

(
1

n
,
n+ 2

n
;

2(n+ 1)

n
;
Pe − F0

ζ

)]∣∣∣∣H
1

. (5.25)

The behaviour of the aperture-time function is depicted in Figure 5.4 for
different values of n and λ and the case Pe−F0 = 0.1. The aperture tends for
large times to (Pe − F0)1/λ, and reaches this asymptote later for as the fluid
becomes more shear-thinning; the asymptote value is larger when the wall is
more rigid (larger λ).

The pressure field for the general case Pe − F0 > 0 is

P (X,H(T )) =
n+ 2

n+ 1
Hλ(T )

[
1− Pe − F0

Hλ(T )

] [
1− (1−X)n+1

]
. (5.26)
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Figure 5.4: Dimensionless fracture aperture versus dimensionless time for Pe−F0 =
0.1 and n = 1, 0.7, 0.4, 0.3. The cases λ = 0.8, 1, 1.2 are represented by dashed,
continuous and dotted lines for n = 0.7 and n = 0.3 to illustrate the dependence
upon λ.

Upon plotting the spatial trend of dimensionless pressure within the frac-
ture at different times (Figure 5.5), it is observed that the pressure increases
along the fracture and decreases over time; this decrease markedly depends
on the value of n and is slower for shear-thinning fluids, more so at late times,
while at early times the pressure difference among different fluids is modest.

5.3.3 Drainage analysis

A comparison between the efficiency of the linear and point drainage mech-
anisms (Holditch, 2007), corresponding to the plane or radial geometry, may
be readily obtained by confronting the corresponding solutions for zero outlet
pressure and overload, the present eq. (5.21) and eq. (17) of Chiapponi et al.
(Chiapponi et al., 2019). These two have the general format

H(T ) =
1

[1 + δ(n, λ)T ]
n/(1+n+λ)

, (5.27)

where the dependence on the drainage mechanism can be encapsulated in a
decay coefficient δ(n, λ) for the fracture aperture, with 1/δ akin to a dimen-
sionless timescale of decay. In dimensionless terms, a larger decay coefficient
implies a smaller aperture and residual pressure at any given time and lo-
cation, hence a more efficient drainage mechanism. Figure 5.6 depicts the
behaviour of δ(n, λ), showing that the decay rate: (i) decreases for increasing
n, as the fluid behaviour approaches the Newtonian one, (ii) increases for in-
creasing λ, as the fracture wall reacts more to any given pressure within the



98 CHAPTER 5. BACKFLOW EXPERIMENTAL MODELING

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

X

P
X

,T
(

)

0.0

0.5

1.0

1.5

P
X

,T
(

)

0.0

0.5

1.0

1.5

P
X

,T
(

)

T = 10

T = 100

n = 1, 0.7, 0.4, 0.3

P F T
e

= 0.1, = 1- 0

Figure 5.5: Pressure field for Pe − F0 = 0.1, n = 1, 0.7, 0.4, 0.3 and λ = 1.
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Figure 5.6: Decay ratio for linear and point drainage within a planar fracture
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fracture, (iii) is more sensitive to the values of n and λ for small values of
these two parameters, and (iv) is smaller for point than for linear drainage for
shear-thinning fluids with n < n0 / 0.63. These results indicate that, above
this threshold, the point drainage is less effective than the linear drainage.
This is readily explained, as the average shear stress is homogeneous for the
planar geometry with linear drainage, while it increases towards the origin for
the radial geometry plate with point drainage. As the draining fluid becomes
more shear-thinning, this effect is less pronounced than for Newtonian fluids,
and eventually disappears for very shear-thinning fluids. It must be stressed
that these conclusions refer exclusively to dimensionless results.

The outflowing discharge can be derived in dimensionless form and in
analogy to Chiapponi et al. (Chiapponi et al., 2019) as

Q = n(n+ 2)
1
nH

2n+1
n

(
Hλ − Pe + F0

) 1
n . (5.28)

Analogously, the drainage time TY required to drain Y% of the total frac-
ture volume (0− 100% in dimensionless form) is equal to

TY =
1

(1 + n+ λ)(n+ 2)1/n

[(
100

100− Y

)(1+n+λ)/n

− 1

]
, (5.29)

for Pe − F0 = 0, while for Pe − F0 ≥ 0 it is given by

TY =
1

(1 + n+ λ)(n+ 2)1/n

[
1

ζ(1+n+λ)/n

× 2F1

(
1

n
,

1 + n+ λ

nλ
;

(1 + λ)(n+ 1)

nλ
;
Pe − F0

ζλ

)]∣∣∣∣b
1

, (5.30)
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with

b = (Pe − F0)1/λ +
100− Y

100

[
1− (Pe − F0)1/λ

]
. (5.31)

Figure 5.7a shows the dimensionless discharge out of the fracture for dif-
ferent values of n, zero outlet pressure Pe and overload F0. The curves almost
collapse, and according to eq. (5.28) exhibit an asymptotic scaling with time
of exponent −(2n+λ+1)/(n+λ+1); special values are −2(n+1)/(n+2) for
λ = 1, −(3 +λ)/(2 +λ) for n = 1, and −4/3 for n = 1 and λ = 1. Figure 5.7b
depicts T50 and T90, the times required to drain 50% and 90% of the total
fracture volume, for different values of n and Pe with F0 = 0. Results are
extremely sensitive to the values of Pe and n; the time needed to achieve a
certain recovery decreases as the shear-thinning fluid approaches Newtonian
behaviour and drops by orders of magnitude as Pe increases. This may seem
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counterintuitive (the fracture drains against a non-zero outer pressure) but it
happens as for Pe > 0 the fracture does not shut down completely, as opposed
to the case Pe = 0. Note that in log-linear scale, the curves are practically
indistinguishable for a 50% recovery, differ conspicuously for a 90% recovery,
and even more so for a 99% recovery (not shown). For a softening model
of the Winckler soil (λ < 1) there is a reduction of the drainage time with
respect to the values computed for λ = 1, and the differences are greater the
more the fluid is shear-thinning; the opposite is true for a stiffening model
(not shown).

5.4 Experiments

The theory was validated via a set of experiments run in the Hydraulics Lab-
oratory of Parma University. The experimental setup is described in section
3.1, uncertainty quantification in 3.2, and the actual experimental results in
3.3.

5.4.1 Experimental setup

In order to verify the theoretical model and to highlight the possible limita-
tions of the scheme, two experimental devices were built (hereinafter small and
large apparata), both consisting of a rigid rectangular flat slat of aluminium
alloy, which moves vertically in a sealed cylinder of the same material. The
parts were manufactured via a numerically controlled machine (CNC) to guar-
antee the flatness of the surfaces and therefore the uniformity of the thickness
of the rectangular gap.

The seal is created using a neoprene o-ring with a diameter of 6-8 mm,
with seats that allow the elastic deformation of the o-ring in a range generally
less than 2 mm. The elastic reaction of the fracture wall, a Winkler soil
for λ = 1, is represented by the elastic reaction of the o-ring. The elastic
reaction function is taken to be a power-law according to eq. (5.1), and is
experimentally evaluated by injecting pressurized air, with pressure measured
by a Druck calibrator DPI601 20 kPa full-scale, and by measuring the vertical
position of the piston with 3 dial gauges with a resolution of 1/100 mm: for
different values of the air pressure, different vertical positions of the piston
were measured. The general interpolating function is p = pt + Êhλ, where pt
is a threshold pressure due to pre- compression of the o-rings. The effect of
this threshold pressure is equivalent to an overweight f0.

The small apparatus shown in figure 5.8 has an internal length of about
2L = 45 cm and a width of about B = 9 cm. In order to ensure uniformity of
the gap during testing, the outlet is in the middle of the cylinder, with the two
draining trunks of about L = 20 cm length discharging symmetrically. Two
neoprene o-rings are installed, one between the upper surface of the piston
and the closing frame of the cylinder, the other between the lower surface of
the piston and the cylinder (bottom neoprene o-ring), with elastic reactions
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Figure 5.8: Small experimental apparatus. a) Top view, b) cross view, and c) a
photo of the apparatus during tests. The bottom neoprene o-ring is missing in the
large experimental apparatus.

of the o-rings in opposition. The weight of the piston is 20.20 N. A pressure
tap at the bottom of the cylinder allows measurement of the initial pressure.

The large experimental apparatus, shown in figure 5.9, is missing the bot-
tom neoprene o-ring, has an internal length of about 2L = 80 cm and a width
of about B = 15 cm. For this device, too, the outlet is in the centreline. In
this apparatus, the o-ring is installed between the top surface of the piston
and a closing frame of the cylinder (in the same configuration adopted for the
first experimental device), with a free gap between the side walls of the piston
and the cylinder of about 7/10 mm. The weight of the piston is 78.35 N. This
large device has been realized both to check the existence of scale effects and
to check the effects of the gap between the lateral surfaces of the piston and
the cylinder; this gap could to some extent distort the main flow and could
facilitate fluid drainage.

Prior to testing, the elastic reaction of the o-ring was calibrated, with a
typical result shown in figure 5.10ab; the single o-ring in the large experimental
apparatus shows a stiffening response, while the double o-ring in the small
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Figure 5.10: Typical experimental elastic response of the system. a) Single neo-
prene o-ring (large experimental apparatus), and b) double o-ring in opposition
(small experimental apparatus).

experimental apparatus exhibits an almost linear response.
To start an experiment, the inlet pipe was connected to a tank filled with

the fluid and positioned at a variable height with respect to the bottom of the
cylinder. The purge valves were initially opened to eliminate air bubbles in
the fracture and in the hydraulic circuit. Then the valves were closed, and the
piston slowly began to move upwards. After reaching the desired position of
the piston, the inlet pipe was closed and the outlet pipe was opened rapidly
to simulate backflow, with the piston moving downwards. The position in
time of the piston was recorded with a video camera at 25 frames per second.
The video frames were post-processed to extract the reading of the three dial
gauges. For experiments where the external pressure was non-zero, the tank
was quickly lowered.

The Newtonian fluids adopted in the experiments were obtained by mixing
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glycerol and water in different proportions to obtain different viscosities; the
shear-thinning non-Newtonian fluids were obtained by adding Xanthan Gum
to the above mixture. The rheological parameters were obtained via a parallel-
plate rheometer by Anton Paar (dynamic shear rheometer Physica MCR 101),
kept at the same temperature of the experiments. Fluid density was measured
with a pycnometer.

5.4.2 Uncertainty quantification

The uncertainties of the experiments derive from the measurement procedures
and from the parameters’ estimation. The dials indicators have an absolute
uncertainty assumed equal to the resolution of 1/100 mm; the absolute un-
certainty in time measuring equals half the time step between two subsequent
frames, 1/50 s. On the basis of the characteristics of the rheometer and
of rheometric data dispersion, we assume a relative uncertainty in fluid be-
haviour index ∆n/n ≤ 4% and in consistency index ∆ µ̃/µ̃ ≤ 6%. These
uncertainties have been minimized by interpolating experimental rheometric
data within the same range of shear rate of the experiments, see Longo et al.
(Longo et al., 2015), yet are larger than the discrepancies typically associated
to the adoption of a plate-plate geometry in lieu of a cone-plate geometry.
The range of shear rate is computed considering that the maximum value at
the wall is

γ̇w =

(
h

2µ̃

)1/n(
dp

dx

)1/n

. (5.32)

The gap-averaged value is < γ̇ >= γ̇w[n/(n+1)], decays in time and decreases
with the distance from the outlet section. Figure 5.11 shows the typical rheo-
metric data for the shear-thinning fluid adopted in the present experiments,
with two interpolating functions for two different ranges of the shear rate, and
figure 5.12 shows the gap-average shear rate during Exp. 11.

The uncertainty in mass density measurement equals 1 g cm−3, with ∆ ρ/ρ ≤
0.1%. The elastic response of the neoprene o-ring is affected by partial
hysteresis, which represents the most relevant source of uncertainty, with
∆Ê/Ê ≤ 5.8% and ∆λ/λ ≤ 5.5%. Other sources of uncertainty are related
to the accuracy of CNC machines and are difficult to quantify.

5.4.3 Comparison with model prediction

Fourteen tests were conducted, ten with a Newtonian and four with a shear-
thinning fluid, with an initial fracture aperture ranging from 1.47 to 0.73 mm;
four test had a non-zero external pressure. Table 5.1 lists the main parameters
of the tests. The rheological parameters were obtained by interpolating the
rheometrical data in the shear rate range of the experiments. With a similar
approach, the elastic parameters Ê and λ were obtained by interpolating a
power-function in the range of fracture aperture during the tests. We note
that the reaction of the wall was always supra-linear, with λ in the range
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Expt. n µ̃ (Pa s
n
) Θ ( ◦C) ρ (g cm−3) h0 (mm) pe (Pa) λ Ê (MPa m−λ) pt (Pa) f0 (N) Apparatus

1 1 0.24 23.0 1.240 0.97 0 1.36 45.5 1200 78.35 L
2 1 0.24 23.0 1.240 0.73 0 1.36 45.5 1200 78.35 L
3 1 0.50 23.0 1.250 1.21 0 1.43 63.7 950 78.35 L
4 1 1.36 20.0 1.257 1.10 0 1.31 32.5 800 78.35 L
5 1 1.11 19.0 1.257 1.11 0 1.45 88.2 250 78.35 L
6 1 1.06 19.5 1.256 1.46 0 1.60 244.9 450 0.00 L
7 1 0.59 22.6 1.256 1.06 0 1.65 477.5 900 20.20 L
8 1 0.38 23.5 1.256 0.75 0 1.10 29.6 1000 20.20 S
9 1 0.51 22.0 1.250 0.98 2600 1.30 25.3 0 78.35 L
10 1 1.36 20.0 1.257 0.93 1200 1.15 10.9 0 78.35 L

11 0.42 1.52 26.3 1.175 0.98 0 0.69 1.3 0 20.20 S
12 0.46 1.56 27.0 1.175 1.26 11 400 0.80 2.6 0 20.20 S
13 0.46 1.52 27.0 1.175 0.97 6700 0.80 2.6 0 20.20 S
14 0.6 1.90 27.0 1046 0.80 0 0.6 0.4 0 20.20 S

Table 5.1: Parameters adopted for the tests in planar geometry. n and µ̃ are
the fluid behaviour and consistency indexes, Θ is the temperature during the test,
ρ is the fluid density, h0 is the initial fracture height, pe is the external pressure
during backflow, λ, Ê and pt are the exponent characterizing the nonlinearity of the
elastic response, the Winkler subgrade coefficient and the threshold pressure, with
p = pt+Êh

λ, where the threshold pressure is the minimum value of pressure required
to lift the piston and is due to pre- compression of the o-rings; f0 is the external
load, positive if it favours the fracture closure. In the last column, the symbol “L”
and “S” indicates that the large/small experimental apparatus was used.

1.10 ÷ 1.65, for the ten tests with Newtonian fluids, and always sublinear,
with λ in the range 0.60÷ 0.80, for the four tests with shear-thinning fluids.
On the contrary, performing experiments in radial flow, the wall reaction
was always linear (Chiapponi et al., 2019). This behaviour is dictated by
the different geometry of the o-ring seat, with respect to the piston in radial
geometry, while in the case of the small apparatus the presence of two o-
rings in opposition reduces the value of λ. Exception is made for Exp. 8 for
which also in the small apparatus only the upper o-ring was installed. An
overload was always present, except for Exp. 6, since for this experiment the
piston weight was balanced. Many different values of the Winkler subgrade
coefficient Ê were employed, spanning more than three orders of magnitude.
The large apparatus was always used with Newtonian fluids except for one
case, while the small one was coupled with shear-thinning fluids in all cases.
Using two apparata allowed us to verify the lack of scale effects, and to test
two different sealing techniques, associated with different elastic responses.

The repeatability of the experiments turned out to be fairly good, as shown
by the near overlap of the time series of the fracture aperture for Exp. 1 and
2 conducted under the same conditions except for h0.

Figure 5.13 compares theoretical predictions and experimental results for
the relationship between aperture and time; the two latter quantities are
normalized. The experimental apertures match well their theoretical coun-
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terparts, capturing the decrease of the aperture versus time towards the re-
spective asymptote; for some experiments there is a slight overestimation, for
other experiments the opposite is true with no clear tendency. The same com-
parison is proposed in Figure 5.14 for shear-thinning fluids; again, the match
between theory and experiments is fairly good, with no appreciable differences
in accuracy between different experiments. Similarly, no clear trend towards
under- or over-estimation is evident, with perhaps a tendency of the residual
aperture to exceed the theoretical prediction.

5.5 The effects of leak-off

A further refinement to the conceptual scheme is considering the additional ef-
fect of leak-off, with the fluid infiltrating the matrix surrounding the fractures,
see Longo and Di Federico (Longo & Di Federico, 2015). This loss of fluid
potentially occurs throughout both: i) the border of the fracture, through a
surface area of length Ll and height equal to the actual aperture h(t), and ii)
the two walls through a surface area Al. As a simplification, we assume that
the details of the fluid flow in the surrounding matrix can be neglected and
that the pressure gradient controlling the leak-off is of order (p − p0)/l0, l0
being a characteristic length of the process and p0 a reference pressure within
the matrix. The leak-off fluid velocity is assumed equal to

u =

(
k

µeff

)1/n
(p− p0)1/n

l
1/n
0

, (5.33)

where k is the permeability of the matrix and µeff is the effective viscosity,
with (Ciriello, Longo, Chiapponi & Di Federico, 2016)

k

µeff
≡ Λk(1+n)/2,

Λ =
1

2Ct

(
50

3

)(n+1)/2(
n

3n+ 1

)n
φ(n−1)/2

µ̃
, (5.34)

where Ct is the tortuosity equal to(Pascal, 1983) Ct = (25/12)(n+1)/2. Leak-
off can occur along the fracture edge of height h(t), or diffusely through the
fracture walls as a consequence, e.g., of pre-existing fractures.

When modified by adding sink terms, eq. (5.11) becomes

dh(t)

dt
=

1

2(1+n)/n(2n+ 1)µ̃1/n
h(t)(2n+1)/n

∣∣∣∣∂p(x, t)∂x

∣∣∣∣1/n−1

× ∂2p(x, t)

∂x2
− χ1h(t)(p− p0)1/n − χ2(p− p0)1/n, (5.35)
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where χ1 = [M−1/nL1/nT 2/n−1] is

χ1 =
Ll
L

(
k

l0µeff

)1/n

, (5.36)

and χ2 = [M−1/nL1+1/nT 2/n−1] is

χ2 =
Al
L

(
k

l0µeff

)1/n

. (5.37)

Assuming that the reference pressure within the matrix is the well bore pres-
sure, i.e. p0 = pe, eq. (5.35) becomes in dimensionless form

dH(T )

dT
= H(T )(2n+1)/n

∣∣∣∣∂P (X,T )

∂X

∣∣∣∣(1−n)/n
∂2P (X,T )

∂X2

− χ̃1H(T )P (X,T )1/n − χ̃2P (X,T )1/n, (5.38)

where χ̃1 = χ1tcp
1/n
c and χ̃2 = χ2h

−1
0 tcp

1/n
c are dimensionless coefficients.

The integral equation (5.14) and the boundary and initial conditions (5.15)
still hold. We notice that in order to guarantee that ∂P (1, T )/∂X = 0 we
assume that no leak-off from the border of the fracture occurs at X = 1.

The numerical solution is obtained with a code written in Mathematica,
with a parametric solver for P (X,T ) as a function of χ̃1 of χ̃2, n, Hi+1, Hi,
∆t, where Hi is the value of H at time i∆t. At each time step, only Hi+1 is
free, all the other parameters are known. Hence, at each step:

• the pressure P (X)i+1 is estimated by solving eq.(5.38) in parametric
form and approximating the time derivative with Ḣ ≈ (Hi+1−Hi)/∆t,
with P (0)i+1 = 0 and P ′(1)i+1 = 0; Hi+1 is the free parameter and
H0 = 1. Note that the algorithm guarantees a correct treatment of the
boundary conditions on the pressure at the inlet and on the pressure
gradient at the outlet, which would otherwise appear as hill-posed and
requiring for shooting method after converting the problem to an initial
value problem.

• The pressure field is numerically integrated in parametric form in the
space domain [0, 1]; the free parameter is Hi+1.

• The parametric integral is used in eq.(5.14) and the equality is forced
with a Newton method to estimate Hi+1.

• The procedure is repeated at the next time step.

An example code in Wolfram Mathematica 11 is available in
https://github.com/sandrolongo2/sandrocodes. A fully explicit advancement
in time with an adapted time step guarantees an adequate reproduction of
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Figure 5.15: Dimensionless fracture aperture versus time for Pe = 0, F0 = 0,
n = 1, λ = 1.37 and different combinations of χ̃1 and χ̃2. The asymptotic decay for
χ̃1 6= 0 and χ̃2 = 0 is exponential.

the analytic solution for χ̃ = χ̃2 = 0, see figure 5.15 showing the results
for different combinations of the two parameters controlling leak-off. The
dotted green curve and the thick red curve are the analytical solution and
the numerical computation, respectively, for the case without leak-off. The
remaining curves, associated with either non-zero χ̃1 or non-zero χ̃2, show
the late-time decay is strongly influenced by the leakage effects, with a faster
closure of the fracture with respect to the absence of leakage. The effect of the
two different leak-off modes is very similar, although the first mode reduces its
effect more rapidly due to both the reduction in pressure in the fracture and
the progressive closure of the fracture itself; in the second mode it is assumed
that the leakage area is invariant and therefore the decay of the effect is due
only to the drop in pressure over time.

5.6 Conclusions

Our study tackles the quantitative characterization of the flow back phe-
nomenon of a power-law non-Newtonian fluid taking place in a plane, smooth
rock fracture characterized by closing walls associated with various degrees of
elasticity. The Newtonian fluid is included as a special case. Closed-from ex-
pressions for the fracture aperture, pressure field, discharge rate and drainage
time are made available for rigid walls as functions of outlet pressure, over-
load and recovery rate, and rheological parameters. Our result belong to the
category of simplified models and may be used to infer key tendencies and
inform upscaling approaches.

Two specific laboratory apparata were built, and an experimental cam-
paign was devised to reproduce the theoretical hypotheses as closely as pos-
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sible, overcoming the difficulties inherent in the control of the elastic reaction
and with an adequate seal, reducing friction to a minimum, carefully checking
that there was adequate air venting during the filling phase to avoid trapped
air bubbles. The accuracy of the piston and cylinder geometry is a key ele-
ment of the experimental work, since the dependence of the flow rate on the
third power of the fracture opening (for a Newtonian fluid) amplifies the un-
certainties by a factor of 3: the uncertainty in the value of h is tripled when
calculating the uncertainty in the value of the flow rate. Special care was also
taken with the test fluid, both when creating the mixture and when measur-
ing the rheological parameters, by carefully choosing the interpolation range
of the power-law model based on the expected range of shear rate. This is a
consequence of the fact that the power-law model, like other rheological laws,
is an approximation of the real constitutive equation of non-Newtonian fluids
and yields different values of the consistency index and of the flow behaviour
index when the model is fitted to different ranges of shear rate. Theoretical
results were confirmed by our experiments, generally with a good match and
minor under- or over-estimation in the order of a few percent.

Further particular conclusions may be drawn from our work:

• The special case of zero outlet pressure and overload has a simple, ex-
plicit closed-form solution tending asymptotically to total closure and
zero discharge; its late-time behaviour shows a scaling t−n/(n+λ+1) for
the aperture and −(2n + λ + 1)/(n + λ + 1) for the discharge. These
exponents clearly elucidate the dependency from flow behaviour index
n and exponent λ modulating the wall reaction: very shear-thinning flu-
ids (smaller n) and reactive walls (larger λ) are associated with a more
gradual closure.

• The solution for the general case of non-zero outlet pressure pe and
overload f0 tends asymptotically to a constant value proportional to
(pe − f0)1/λ.

• The dimensionless drainage time TY required to recover Y% of the fluid
initially residing in the system decreases with increasing n and Pe and
decreases with λ, and the differences are greater the more the fluid
is shear-thinning. For recovery values close to 100%, TY is extremely
sensitive to variations of model parameters.

• Experiments can also be conducted on a small geometric scale, but with
adequate control of all test steps to limit disturbances and reduce the
uncertainty of the results.

• The use of two different apparata allowed exploring both sub- and supra-
linear wall reactions and showed the lack of scale effects.

The body of experimental and theoretical work on Newtonian and non-
Newtonian power-law backflow from a fracture with relaxing walls towards a
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central well or borehole in the two limit flow configurations (plane and ra-
dial) allows to describe the phenomenon in a quite comprehensive way within
the framework of the single fracture conceptualization. Problem variables
are described as functions of system parameters in dimensionless form with-
out the need of specifying any dimensionless number for a Newtonian fluid
(Dana et al., 2018), and quantifying the only flow behaviour index n for
power-law fluids, having a two-parameter constitutive equation (Chiapponi
et al. (Chiapponi et al., 2019) and this paper); when a three-parameter
rheology such as the Ellis model is adopted the need for an additional di-
mensionless quantity, namely the ratio between the characteristic shear stress
of the Ellis fluid τ0 and the rock modulus of elasticity E, arises (Ciriello
et al., 2021). Similarly, the incorporation of slip effects, relatively common
in non-Newtonian flows, would give rise to one or more dimensionless num-
bers. Another intriguing option is to optimize system performance in terms
of geometry and/or rheology using specific metrics , or model inertial flow
(Valdés-Parada & Lasseux, 2021). Finally, the need for incorporating uncer-
tainty into modelling of fracking phenomena has recently been brought to
attention in the literature (Quosay, Knez & Ziaja, 2020).

5.7 Appendix A - Late-time approximations for Pe−F0 =
0

For late time (T � 1), equations (5.21) and (5.22) simplify to

H(T ) ≈ (n+ 2)−1/(1+n+λ)(1 + n+ λ)−n/(1+n+λ)T−n/(1+n+λ), (5.39)

P (X,T ) ≈ (n+ 2)
(n+1)/(1+n+λ)

(1 + n+ λ)−λn/(1+n+λ)

n+ 1

× T−λn/(1+n+λ) ×
[
1− (1−X)n+1

]
. (5.40)

5.8 Appendix B - Early- and late-time approximations
for Pe − F0 > 0

For early time (T � 1) eq. (5.23) reduces to

T ≈ 1

(n+ 2)
1
n (1 + n+ λ)

×
[

1

H
1+n+λ
n

(
1 +

1 + n+ λ

n(1 + n)(1 + λ)

Pe − F0

Hλ

)]∣∣∣∣H
1

. (5.41)
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For late time (T � 1) the approximation of eq. (5.23) is

T ≈ H−(1+n+λ)/n

(n+ 2)1/nλ(1− n)

(
1− Pe − F0

Hλ

)1−1/n

+
H−(1+n+λ)/n

(n+ 2)1/n(1 + n+ λ)

Γ(1− 1/n)Γ((λ+ 1)(n+ 1)/(nλ))

Γ(1 + (1 + n)/(nλ))
, (5.42)

which is singular for n = 1. The symbol Γ(·) is the Gamma function.

5.9 Appendix C - Identity for specific value of the hy-
pergeometric function 2F1

The following identity holds for any positive z (Wolfram, 2020)

2F1 (1, 3; 4; z) = − 3

2z3
[z(z + 2) + 2 ln(1− z)] . (5.43)
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6 Relaxation-induced flow in a smooth fracture for
Ellis rheology

6.1 Abstract

Hydraulic fracturing is a process aimed at improving the productivity of oil,
gas or geothermal reservoirs. During hydrofracturing, backflow follows injec-
tion and represents the second phase of the process, when part of the fractur-
ing fluid returns from fractures to well, and from well to surface. A conceptual
model is presented to grasp the essential features of the phenomenon, conceiv-
ing the draining subsurface domain as a planar and rigid fracture. Backflow
against an outlet pressure in the injection well is induced by the relaxation
of the fracture wall, exerting a force on the fluid proportional to hλ, with h
the time-variable aperture and λ a non-negative exponent; an overload on the
fracture may contribute to slowing or accelerating the closure process. The
fluid rheology is described by the three-parameter Ellis constitutive equation,
well representing the shear-thinning rheology typical of hydrofracturing fluids
and coupling Newtonian and power-law behaviour. The interplay between
these tendencies is modulated by a dimensionless number N encapsulating
most problem parameters; the range of variation of N is discussed and found
to vary around unity. The time-variable aperture and discharge rate, the
space-time variable pressure field, and the time to drain a specified fraction
of the fracture volume are derived as functions of geometry (length and ini-
tial aperture), wall elastic parameters, fluid properties, outlet pressure pe and
overload f0. The late-time behaviour of the system is practically indepen-
dent from rheology as the Newtonian nature of the fluid prevails at low shear
stress. In particular, aperture and discharge scale asymptotically with time as
t−1/(λ+2) and t−1/(λ+3) for pe−f0 = 0; else, the aperture tends to a constant,
residual value proportional to (pe − f0)λ. A case study with equally spaced
fractures adopting realistic geometric, mechanical and rheological parameters
is examined: two fluids normally used in fracking technology show completely
different behaviours, with backflow dynamics and drainage times initially not
dissimilar, later varying by orders of magnitude.

115
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6.2 Introduction

Hydraulic fracturing is a process aimed at improving the productivity of oil,
gas or geothermal reservoirs. Analysis of the different phases of hydraulic
fracturing is of particular modeling and experimental interest.

An understanding of fractured media flow induced by the relaxation of
elastic fracture walls is crucial in modeling fracturing fluid backflow, a com-
plicated phenomenon involving hydrodynamic, mechanical and chemical pro-
cesses. Backflow is typically the final phase of the hydraulic fracturing pro-
cess: in the first one, fracturing fluid is injected at high pressure in a rock
mass, forming new fractures and enlarging existing ones; in the second phase,
proppant is introduced in the subsurface environment to prop fractures open;
then when the injection ceases, the pressure drops, existing and new fractures
tend to close, and a portion of the injected fracturing fluid, often mixed with
proppant (Ezulike, Dehghanpour, Virues, Hawkes & Jones, 2016), flows back
towards the injection well and interact with the relaxing walls of the frac-
tures. As the retention of fracturing fluid in the fracture network impairs the
fracture conductivity reducing the wellbore productivity (Balhoff & Miller,
2005), and favours migration in the subsurface environment along different
pathways (Birdsell et al., 2015), it is of utmost interest to optimize the amount
of fluid recovered, irrespective of the reservoir product, be it oil (Zanganeh,
Ahmadi, Hanks & Awoleke, 2015), gas (Ghanbari & Dehghanpour, 2016) or
heat (McLennan, Walton, Moore, Brinton & Lund, 2015).

The scientific literature offers two main approaches to modeling back-
flow: (i) detailed numerical simulations involving single fractures (Zeng, Li &
Zhang, 2016), fracture networks (Hyman et al.,, 2016) or dual or triple poros-
ity models (Wang, Pan, Zhang & Zhang, 2018b), or (ii) conceptual models
capturing the main features of the interaction between fracture flow and wall
relaxation (Huang, Hu, Zeng & Zhang, 2019), including the effects of branch-
ing networks described at different degrees of complexity (Dana et al., 2018,
2019). A recent addition to the modeling effort is the influence of fluid rhe-
ology, following the notion that the backflow fluid is non-Newtonian in the
widest sense (Barbati et al., 2016), as not only the relationship between shear
stress and shear rate is nonlinear, but also exhibits normal stress and tempera-
ture dependency, as well as viscoelasticity, thixotropy, and nonzero yield stress
(Hormozi & Frigaard, 2017). At the same time, non-Newtonian fluids allow
achieving several engineering objectives, such as (i) minimize the pressure-
drop in the entire process; (ii) carry suspended proppant; (iii) minimize the
leak-off within the formation; (iv) adapt their characteristics to different envi-
ronments in terms of temperature and chemical composition; and (v) flow back
easily towards the wellbore. Given their versatility and economic value, these
fluids are typically treated for reuse once recovered, removing contaminants
they may have transported to the surface (Lester et al., 2014). The recovery
ratios of backflow fluid vary between 2% and 48% according to Ipatova and
Chuprakov (Ipatova & Chuprakov, 2020), with considerable economic value.
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Modeling non Newtonian backflow is in its early stage, in variance with
the injection and fracture formation stage, for which several conceptualiza-
tions and models are available: see Detournay (Detournay, 2016) for a review
and the recent work by Wrobel (Wrobel, 2020) comparing different rheological
models for fracturing fluids. To the best of our knowledge, only Chiapponi et
al. (Chiapponi et al., 2019) considered non-Newtonian fluids in the context of
backflow modeling: these authors examined flow of a power-law fluid towards
a wellbore in a single fracture of annular geometry, supporting their theo-
retical findings with laboratory experiments. The present paper develops the
analysis of non-Newtonian backflow for a smooth fracture, common in field ap-
plications (Osiptov, 2017), and adds realism by employing a three-parameter
Ellis model, that well represents the rheology of hydrofracturing (Moukhtari
& Lecampion, 2018) and drilling fluids (Shah, Shanker & Ogugbue, 2010).
The Ellis model tends to Newtonian for low shear rates, to power-law for high
shear rates and allows avoiding the unphysical effect of infinite apparent vis-
cosity at zero shear rate that is typical of the power-law model (Myers, 2005).
We note in passing that our results are of a general nature for Newtonian
pressurized flow in ducts of variable width and may be of interest for, and
be applied also to, deformable microfluidic (Anand, David & Christov, 2019)
and biological (Ali, Hussain, Ullah & Anwar Beg, 2019) systems.

The plan of the paper is as follows. Section 2 formulates the problem of
relaxation-induced backflow of an Ellis fluid in a fracture with nonlinear wall
reaction and subject to overload. Numerical results obtained are presented
and discussed in Section 3 as a function of dimensionless groups character-
izing the system: the indicial exponent α quantifying the degree of shear-
thinning behaviour of the Ellis fluid, the non-negative exponent λ modulating
the fracture wall reaction, and a further group N encapsulating most prob-
lem parameters. Section 4 illustrates an hypothetical case study adopting
realistic geometric and mechanical parameters and two real hydrofracturing
fluids decribed by the Ellis model. Section 5 reports the main conclusions and
perspectives for future work. In Appendix A the special case of a Newtonian
fluid is examined, obtaining results that generalize those of Dana et al. (Dana
et al., 2018) to a nonlinear wall reaction, while Appendix B presents an alter-
native expression for the dimensionless number N , shown to be a combination
of well-known dimensionless groups in fluid mechanics.

6.3 Material and methods

6.3.1 Problem statement

A rock fracture produced by hydrofracturing, though of irregular geometry,
is often conceptualized for modeling purposes as a 3-D space of length L,
width W , and aperture h between two parallel walls (Balhoff & Thompson,
2006); the Cartesian coordinate system x, y, z is illustrated in Figure 6.1 and
the fracture is subject to a pressure gradient ∇p′ ≡ (∂p′/∂x, 0, 0) in the x
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Figure 6.1: Layout of a plane fracture of variable uniform aperture h(t).

direction. In horizontal fractures, the additional gravity-induced pressure
gradient is perpendicular the flow plane and has no effect on the flow field. If
the (x, y) plane is not horizontal, the z direction perpendicular to the walls is
not vertical and gravity effects can be included in a reduced pressure term p,
thus leading to a mathematical treatment with no gravity term to consider.
For instance, for the Figure 6.3 below representing multiple vertical fractures
backflowing to an horizontal well, the reduced pressure p is equal to p =
p′ + ρgy.

The walls are taken to be rigid, so that the aperture h(t) is solely a function
of time, and the deformation is concentrated for mathematical convenience
in the upper wall, that behaves as a nonlinear elastic foundation exerting a
reaction on the fluid. At t = 0 the relaxation of the wall induces a backflow
in the negative x direction, and the fracture begins to drain subject to a
constant outlet pressure pe at x = 0 and to a no-flow boundary condition
at the upstream end x = L. Three further hypotheses are adopted: i) the
flow is quasi-steady, allowing to neglect the time derivative of the velocity
in the momentum equation; ii) the fracture aspect ratio is small, h0/L � 1,
warranting the lubrication approximation, and iii) the flow is essentially one-
dimensional along x, L�W . The latter conceptualization is usually adopted
in hydrogeology also when the two dimensions are comparable, as it is often
the case for rock fractures (Wang et al., 2018b).

The flowback fluid is taken to be incompressible of density ρ, non-Newtonian
shear-thinning (Barbati et al., 2016) and described by the Ellis three-parameter
model (Skelland, 1967). Under the above assumptions, the fluid undergoes
simple shear flow in the x direction, and the Ellis rheology is described by the
following relationship between shear stress τzx (hereinafter τ) and shear rate
γ̇zx (hereinafter simply γ̇)

τ =
µ0

1 + (τ/τ0)α−1
γ̇; γ̇ =

∂u

∂z
, (6.1)

where u is the velocity in the x direction. The rheological law (6.1) features a
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Figure 6.2: Apparent viscosity for three rheological models: Ellis (blue solid line) of
parameters µ0, τ0, α; Newtonian (red dashed line) of viscosity µ0; power-law (black
dot-dashed line) of consistency index m and rheological index n. The comparison
with the latter is drawn assuming: α = 1/n and τ0 = (m/µn0 )n/(1−n).
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viscosity parameter µ0, a constant τ0 defined as the shear stress corresponding
to apparent viscosity µ0/2, and an indicial parameter α, typically larger than
one as the fluid is shear-thinning. For α = 1, a pseudo-Newtonian behaviour
with dynamic viscosity µ0/2 is recovered, see Figure 6.2 showing the apparent
viscosity µapp = τ/γ̇ for the Ellis model compared to Newtonian and power-
law models. Newtonian behaviour in the form of a plateau for low shear rates
is also observed for γ → 0. For high shear rates the behaviour is power-law,
and its two parameters can be determined from the Ellis model parameters,
see Appendix A in Balhoff and Thompson (Balhoff & Thompson, 2006); in
particular, the rheological index is n = 1/α (Al-Behadili, Sellier, Hewett,
Nokes & Moyers-Gonzalez, 2019). Note that when curve fitting is performed
on real data, n and 1/α may significantly differ (Moukhtari & Lecampion,
2018), as two different models are fitted to the same data set. It is also seen
that the Ellis model allows avoiding the unphysical effect of infinite apparent
viscosity at zero shear rate that is typical of power-law fluids (Myers, 2005).
In the following, we will consider α > 1, dealing with the case α = 1 in the
Appendix, and the parameters µ0 and τ0 to be finite and positive. Couette-
Poiseuille slit flow of an Ellis fluid under a constant pressure gradient was
studied extensively by Steller (Steller, 2001), listing all combinations of pa-
rameters leading to Newtonian or pseudo-Newtonian behaviour. In particular,
the negative velocity u(z) under a positive reduced pressure gradient ∂p/∂ in
the x direction is

u(z, t) = − 1

8µ0

[
h2 − (2z − h)2

]
∂p

∂x
+

− 1

(α+ 1)2α+1µ0τ
α−1
0

[
hα+1 − |2z − h|α+1

]
∂p

∂x

∣∣∣∣∂p∂x
∣∣∣∣α−1

.

(6.2)

The corresponding average velocity u and flow per unit width qx in the x
direction are

u = − h2

12µ0

∂p

∂x
− hα+1

2α+1(α+ 2)µ0τ
α−1
0

∂p

∂x

∣∣∣∣∂p∂x
∣∣∣∣α−1

; qx = uh. (6.3)

For the Newtonian case (α = 1) the latter equation reduces to the clas-
sical “cubic law” (Zimmerman & Bodvarsson, 1996) written for a fluid with
viscosity µ0/2. The continuity equation reads (Dana et al., 2018)

dh

dt
+ h(t)

∂u

∂x
= 0, (6.4)

and substituting eq. (6.3) in eq. (6.4) gives

dh

dt
=

h3

12µ0

∂2p

∂x2
+

αhα+2

2α+1(α+ 2)µ0τ
α−1
0

∣∣∣∣∂p∂x
∣∣∣∣α−1

∂2p

∂x2
. (6.5)
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The problem formulation is completed by the force balance, expressed per
unit width of fracture, among the fluid pressure and the elastic reaction of
the upper wall, taken to be proportional to aperture h; an overload at the
upper wall f0 (a force per unit width) is included in the balance for generality
(Chiapponi et al., 2019); the overload represents an additional force exerted
by the walls and usually opposing the fracture opening due, e.g., to a residual
stress state generated by the load history of the rocks. It is assumed constant
and independent from the fracture aperture. The balance reads∫ L

0

p(x, t) dx = ẼLh(t) + f0, (6.6)

where the constant of proportionality Ẽ has dimensions [ML−2T−2]; for a
linear elastic foundation, called a Winkler soil in geotechnical applications, Ẽ
is equal, for a thin elastic layer of thickness l, to the ratio between the Young
modulus of the layer’s material E [ML−1T−2] and l, Ẽ = E/l. In the context
of hydraulic fracturing, l may be identified with the fracture spacing (Dana
et al., 2018; Chiapponi et al., 2019), a design parameter that depends, among
others, on the type of rock; in hydraulically fractured shales, values of l/L
equal to 0.057, 0.28, and 0.029 are reported, respectively, by Ghanbari and
Dehghanpour (Ghanbari & Dehghanpour, 2016), Wang et al. (Wang et al.,
2018b), and Wang et al. (Wang, Elsworth & Denison, 2018a). In the case
of vertical/sub-vertical fractures perpendicular to a horizontal/sub-horizontal
well or borehole, the geometry of the idealized system is described by Figure
6.3, showing the two wings of equally spaced planar fractures of half-length
L, width W , aperture h and spacing l. Albeit the flow very close to the
well is radial, the influence of the boundary condition at the well decreases
rapidly with distance, and flow in most of the fracture half-length L is uni-
form, consistently with the assumption L�W . Hence, as an approximation
the boundary condition of assigned pressure pe at the well is extended to a
segment of height W . In the case of planar vertical fractures parallel to, and
propagating from, a vertical well, the geometry of the flow is plane without
using this approximation.

A further issue deserving investigation is the linearity of the relationship
between the wall reaction and the fracture aperture. In fact, a nonlinear
elastic behaviour can be the result of the pervasive damage of rocks by micro-
cracks and voids, which determines nonlinearity even for infinitesimal strain,
also with an incremental jump in the elastic modulus from tension to com-
pression (Budiansky & O’Connell, 1976; Lyakhovsky, Reches, Weinberger &
Scott, 1997). In this case the Young modulus of the material is a function
of the strain rate, E = E0(h/l), and assuming that the latter dependence is
expressed with a power-law function one has

E = E0

(
h

l

)λ−1

, (6.7)
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Figure 6.3: Typical scheme for bi-wing planar fractures around a horizontal bore-
hole; L, W and h are the fracture length, width and aperture, l is the fracture
spacing.

where λ is a non-negative exponent modulating the nature of the reaction: for
λ = 1 a constant Young modulus is recovered, while 0 < λ < 1 is associated to
a softening behaviour, and λ > 1 to a stiffening one. The assumption results
in

Ẽ =
E0

l

(
h

l

)λ−1

≡ Êhλ−1, (6.8)

and eq. (6.6) is modified as∫ L

0

p(x, t) dx = ÊLhλ(t) + f0, (6.9)

with Ê = E0l
−λ of dimensions [ML−1−λT−2].

Equations (6.5) and (6.9) are subject to the following initial and boundary
conditions

h(0) = h0,
∂p(x, t)

∂x
(L, t) = 0, p(0, t) = pe, (6.10)

h0 being the initial fracture aperture, and pe the exit pressure at the well.
The solution to the above problem yields two relevant quantities expressed

per unit width, the flowrate exiting the fracture at the well, q(t), and the
residual volume of the fracture at a given time, v(t); these are easily derivable
as

q(t) = L
dh(t)

dt
, v(t) = Lh(t). (6.11)

6.3.2 Dimensionless form

Dimensionless quantities are defined as

X = x/L, H = h/h0, T = t/tc, P = (p− pe)/pc, Pe = pe/pc,

Q = qtc/(h0L) = q/(u0h0), V = v/(h0L),
(6.12)
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where the scales for pressure and time are

pc = Êhλ0 , tc =
(2 + α)

α

(
2L

h0

)1+α
1

hαλ0

µ0τ
α−1
0

Êα
, (6.13)

and u0 = L/tc is a velocity scale. This leads to the dimensionless counterpart
of eq. (6.5)

dH

dT
= NH3 ∂

2P

∂X2
+Hα+2

(
∂P

∂X

)α−1
∂2P

∂X2
, (6.14)

where the pure number

N =
2 + α

3α

(
2τ0L

Êh0
λ+1

)α−1

=
2 + α

3α

[
2τ0

pc(h0/L)

]α−1

(6.15)

modulates the relative importance of the Newtonian behaviour of the Ellis
fluid at low shear rate, expressed by the first term on the r.h.s. of eq. (6.14),
with respect to the second term, the power-law behaviour at high shear rate.
For a Newtonian fluid (α = 1) N reduces to unity; for a shear-thinning fluid
(α > 1), N is zero for τ0 = 0 and/or a rigid wall (Ê = E0/l

λ →∞), but the
latter case renders the scales (6.13) meaningless. In eq. (6.15) defining N ,
the quantity within brackets represents the ratio between the characteristic
shear stress τ0 of the Ellis fluid and the pressure scale pc = Êh0

λ associated
with the elastic reaction of the fracture wall; the ratio is in turn corrected by
the initial aspect ratio of the fracture h0/L. This formulation of N includes
only parameters defined at the single fracture scale. Note that if the scheme
of multiple fractures with spacing l depicted in Figure 6.3 is considered, eq.
(6.15) may be rewritten as

N =
2 + α

3α


2

(
τ0
E0

)(
l

L

)
(
h0

L

)2

(
l

L

)λ−1

(
h0

L

)λ−1


α−1

, (6.16)

where τ0/E0 is the ratio between the representative shear stress of the fluid
and the Young modulus of the host rock, and l/L is the dimensionless fracture
spacing. The terms to the power (λ−1) represent the contribution due to non-
linear elastic behaviour of the walls, and disappear for λ = 1. An alternative
formulation of N as a function of Cauchy, Reynolds, and Ellis dimensionless
groups is reported in 6.8. To grasp the order of magnitude of N , we recall
that l/L may be taken to vary between 0.03 and 0.3 (with l/L ≈ 0.1 being
appropriate for an order of magnitude analysis), while the initial fracture
aspect ratio h0/L, a number much smaller than 1, may be considered of order
10−3 − 10−5 (Ghanbari & Dehghanpour, 2016; Wang et al., 2018b, 2018a).
The latter reference also reports E0 = 2.5·1010 Pa for the rock elastic modulus
in fractured shales; quite close values, E0 = 3 · 1010 Pa and E0 = 2.76 · 1010
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Pa are reported in (Detournay, 2016) and (Fisher & Warpinski, 2012), hence
reference values E0 = 2.5− 3.0 · 1010 Pa are considered.

Actual values of rheological parameters for Ellis fluids are quite scarce in
the literature. A reference specific to fracking is (Moukhtari & Lecampion,
2018), where the Ellis parameters are reported for two fracturing fluids, HPG
(Hydroxypropylguar) and VES (viscoelastic surfactant). For the first, µ0 =
0.44 Pa · s, τ0 = 2.01 Pa, and α = 1.22; for the second, µ0 = 49 Pa · s,
τ0 = 8.836 Pa, and α = 12. Adopting as reference geometrical parameters
l/L = 0.1 and h0/L = 10−4, and a young modulus of E0 = 2.75 · 1010 Pa
for the host rock, one obtains N = 0.209 for HPG and N ' 0 for VES,
indicating that for the latter fluid the Newtonian component of rheological
behaviour is negligible. A further consideration is that VES is very strongly
shear-thinning (α � 1), therefore the value of N is extremely sensitive to
variations in parameters: adopting for example l/L = 0.125, h0/L = 10−5,
and E0 = 2.5 · 1010 Pa, again realistic values, one obtains N = 0.100 for
VES and N = 0.618 for HPG. This second set of parameters is adopted for
later reference in Section 6.5 describing a case study and is shown there in
dimensional form (see Table 6.1). Trying further combinations of realistic
values for fluid and rock properties, it is seen that N may take values smaller
or larger than unity, the former case being more frequent. This indicates a
certain prevalence of the power-law component of rheology over the Newtonian
one, although the asymptotic system behaviour is dominated by the latter,
as will be shown in the next section. We bear in mind that a large variety
of combinations is possible for the two parameters N and α depending on
geometry and properties of fluid and rock, but with the constraint from the
definition (6.15) that for α = 1 it must be N = 1.

The dynamic boundary condition (6.9) and the boundary conditions (6.10)
transform as ∫ 1

0

P (X,T ) dX = Hλ − Pe + F0, (6.17)

H(0) = 1,
∂P

∂X
(1, T ) = 0, P (0, T ) = 0. (6.18)

6.3.3 Solution

A solution to eq. (6.14) is sought by integrating in two steps the pressure of
the fluid and the fracture aperture. Posing

U(X,T ) =
∂P

∂X
, Ḣ =

dH

dT
, (6.19)

eq. (6.14) can be written as

B
(
1 +AUα−1

) ∂U
∂X

= Ḣ (6.20)
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where

A = A(T ) =
(H)α−1

N
, B = B(T ) = NH3, (6.21)

while the second boundary condition in eq. (6.18) becomes

U(1, T ) = 0. (6.22)

Separating variables in eq. (6.20), and integrating with the boundary condi-
tion (6.22) leads to

BU
(
AUα−1 + α

)
α

= −Ḣ(1−X). (6.23)

Eq. (6.23) can be rewritten as

Uα + CU +D(1−X) = 0 (6.24)

where

C = C(T ) =
αN

Hα−1
, D = D(T ) =

αḢ

H2+α
. (6.25)

Eq. (6.25) is algebraic in U and admits an analytical solution for α = 1, 2, 3
and for α = 1/2, 1/3 in the form of a combination of functions of H and Ḣ.
This solution can be integrated once in space, with the boundary condition
P (0, T ) = 0, obtaining the pressure field. The pressure field is finally inte-
grated in X ∈ [0, 1] and the integral in eq. (6.17) is computed as a function
of H and Ḣ. Then eq. (6.17) is transformed in a nonlinear ODE which is
numerically integrated with the initial condition H(0) = 1.

These solutions are analytical in the x coordinate and numerical in the
time domain and seem quite cumbersome, while their accuracy is comparable
to that of a fully numerical solution in space and time; the latter also has the
advantage of a free selection of the indicial parameter α. Among the many
possible numerical schemes, we adopt a finite difference in time and an implicit
resolver in space, with a step size reduction to track solution accurately.

The code is written in Mathematica, introducing a parametric solver for
the function U(X,T ) as a function of N,α,Hi+1, Hi,∆ t, where Hi+1 and Hi

are the values at time (i+1)∆ t and i∆ t, respectively; the only free parameter
is Hi+1, all the other parameters are given.

Each time iteration includes the following steps:

• The function U(X)i+1 is estimated by solving eq. (6.20) in parametric
form, with Ḣ ≈ (Hi+1 − Hi)/∆t, with the term H taken to be the
average between Hi+1 and Hi and with the b.c. U(1)i+1 = 0, where
Hi+1 is the free parameter; H0 = 1 is assumed at the first step.

• The space values of U , known in parametric form, are used to solve
the differential problem ∂P (X)i+1/∂X = U(X)i+1, with P (0)i+1 = 0,
obtaining the pressure P (X)i+1.
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• The pressure field is numerically integrated (in parametric form) in the
domain [0, 1].

• The parametric integral is inserted in eq. (6.17), and the equality is
forced with a Newton method for finding the value of the parameter
Hi+1.

• The procedure is repeated for the next time step, shifting the values
Hi+1.

Once the pressure P (X,T ) and aperture H(T ) fields are known, the di-
mensionless flowrate and fracture volume are given by

Q(T ) =
dH(T )

dT
= Ḣ, V (T ) = H(T ). (6.26)

Hence at late-time the fracture volume and flowrate behave like the aperture
and its time derivative, respectively; for zero borehole pressure and overload
the corresponding time scalings are T−1/(λ+2) and T−1/(λ+3).

6.4 Results and discussion

Figure 6.4 shows the results of the numerical computation for the fracture
aperture and different α values, with the analytical solution H = (1+9T )−1/3

valid for the Newtonian case and a linearly elastic fracture (Dana et al., 2018),
corresponding to α = 1, N = 1, and λ = 1. Note that the values α =
1, N = 1 imply Newtonian behaviour but with a viscosity equal to µ0/2, thus
halving the time scale tc in eq. (6.13); this requires doubling the dimensionless
time T in eq. (6.12) to compare results of equations having a different time
scale. The time integration was performed with a time step ∆ t = 0.01.
Since the results of the numerical integration using this fully explicit scheme
fit exceedingly well the analytical solution, it was not necessary to adopt
higher order schemes, even considering that the solution has no singularity
and behaves rather smoothly.

The asymptotic behaviour of the solution H(T ) is dictated by the interplay
between the two terms on the r.h.s. of eq. (6.14): the second term scales
with the gradient pressure (decaying in time) and with a power of H always
larger than 3, since α > 1, whereas the first term scales with the third power
of H and has N as a coefficient. Since H ≤ 1 and the gradient pressure
quickly decays to values less than unity, the dominant term is the first one,
which entails the asymptotic behaviour H ∼ T−1/(2+λ), see Figure 6.5 where
different values of α, for N = 1 and Pe = 0, produce almost parallel curves
for large T . Figure 6.5 also shows how variations in λ significantly affect the
late-time behaviour for fixed α: a stiffening (λ > 1)/softening (λ < 1) elastic
reaction of the walls delays/facilitates the drainage. It is also seen that the
parameter α mainly controls the early stage, the parameter λ the late stage
of the backflow process. Figure 6.6 shows results for a fixed α = 2, λ = 1, and
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Figure 6.4: Time variation of the fracture aperture H for N = 0, λ = 1, Pe−F0 = 0
and different α values. The black dotted curve refers to the analytical solution for a
Newtonian fluid, H = (1 + 9T )−1/3. Due to the different time scales adopted for a
Newtonian fluid and for the present model, comparison is feasible if the dimensionless
time T in the solution for the Newtonian fluid is doubled.

Figure 6.5: Time variation of the fracture aperture H for N = 1, λ = 1 and
different α values. For one case (α = 1) the effects of a softening/stiffening wall is
explored, see the dashed and dash-dotted thin curves for λ = 0.5− 1.5, respectively.
The asymptotic behaviour is H ∼ T−1/(2+λ), independent on α.
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Figure 6.6: Time variation of the fracture aperture H for α = 2, λ = 1 and
different N .

different N values; the asymptote is reached much faster for larger N . In sum,
the early time behaviour for zero external pressure at the well is in general
dominated by the second term in eq. (6.14) unless the coefficient N � 1; in
the latter case both terms substantially contribute to the time evolution of
H.

In presence of a non-zero external pressure (Pe > 0) or a negative overload
F0 (an additional force per unit of wall surface acting in the same direction
of the internal pressure), the asymptotic residual aperture is equal to (Pe −
F0)1/λ, see Figure 6.7 where both effects are included. The curves coalesce
to the asymptote faster for larger N values, implying a dominance of the
Newtonian behaviour, while for small N the power-law behaviour prevails
and the asymptote is reached for larger dimensionless times. Upon plotting
results for α = 3 (not shown) the main curves for λ = 1 and the secondary
curves for λ 6= 1 are very similar to those for α = 2.

Figure 6.8 shows the pressure distribution for two different combinations of
the parameters and a shear-thinning fluid with α = 2. Results for other combi-
nations are similar (and thus not shown), with a pressure decay in space/time
quicker or slower depending on the parameter values; at all times the residual
pressure within the fracture increases with smaller N values, implying a be-
haviour closer to Newtonian, and with smaller λ values, i.e. a softening wall;
however when the fluid is closer to Newtonian the effect of a λ variation is
irrelevant.

An important quantity characterizing the performance of the backflow
process is the time required to recover the fluid injected in the fracture network
and not lost in the form of leakoff. Here the network is conceptualized as a
single fracture and fluid losses are not explicitly represented (they are assumed
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Figure 6.7: Time variation of the fracture aperture H for α = 2 and different N
values, with given difference between external pressure and overload Pe − F0 = 0.2.
For one case (N = 5) the effects of a stiffening/softening elastic reaction of the
walls is explored, see the dashed and dash-dotted thin curves for λ = 0.5 − 1.5,
respectively.

Figure 6.8: Pressure along the fracture at different times for Pe − F0 = 0.2 and a
shear-thinning fluid with α = 2. Results for a) N = 0.1 and λ = 1; b) N = 5 and
λ = 1; c) N = 0.1 and λ = 0.5; d) N = 5, λ = 0.5.



130 CHAPTER 6. RELAXATION-INDUCED FLOW

Figure 6.9: Time to recover 90% of the fluid as a function of α and N , with λ = 1
and Pe − F0 = 0.

Figure 6.10: Time to recover 90% of the fluid as a function of α and N , with
λ = 0.5 and Pe − F0 = 0.



6.5. A CASE STUDY 131

Figure 6.11: Time to recover 90% of the fluid as a function of α and N , with
λ = 1.5 and Pe − F0 = 0.

to take place in the upstream network), however the time TY needed to recover
Y% of the fracture volume provides an indication of how rapid the recovery
is. Contour maps in the (α,N) space of the dimensionless time T90 needed to
recover 90% of the fluid are depicted in Figure 6.9 for a linear wall reaction
(λ = 1). As the degree of shear-thinning behaviour rises with α for constant
N , there is a sharp increase in dimensionless TY for N < 0.5, while TY is
almost independent on α for N > 2. Conversely, TY for costant α decreases
with larger N values, i.e. as the fluid behaviour is closer to Newtonian; this
effect is more evident for larger α. Highest values of TY are attained for large
α and low N , lowest values for small α and large N , the two combinations
farthest and closest to Newtonian behaviour. The effect of a sublinear wall
reaction (λ = 0.5) is depicted in Figure 6.10, that of a supralinear wall reaction
in Figure 6.11. The dimensionless time to recover the bulk of the stored fluid
is decidedly faster or slower with a softening or stiffening wall, demonstrating
once again the decisive influence of the parameter λ modulating the wall
reaction at late time.

A word of caution is needed when drawing comparisons between non-
Newtonian fluids with different rheology as the models are semi-empirical
and the time scale used for the dimensionless formulation depends upon the
rheological parameters of the Ellis model and is particularly sensitive to the
value of the indicial exponent α. Hence model outputs are best compared in
dimensional coordinates when quantitative results are needed.

6.5 A case study

A case study is illustrated by comparing the performance of two real hy-
drofracturing fluids (Moukhtari & Lecampion, 2018), HPG (Hydroxypropyl-
guar) and VES (viscoelastic surfactant) in a realistic setting. The rheological



132 CHAPTER 6. RELAXATION-INDUCED FLOW

Fluid µ0 τ0 α L l h0 E λ N
(Pa s) (Pa) (m) (m) (mm) (Pa)

HPG 0.44 2.01 1.22 100 12.5 1.00 2.5 · 1010 1.00 0.618
VES 49.00 8.836 12.00 100 12.5 1.00 2.5 · 1010 1.00 0.100

Table 6.1: Reference parameters for case study: µ0, τ0 and α are the reference
viscosity, shear stress and indicial exponent of the Ellis fluid, L is the fracture length,
l is the fracture spacing, h0 is the fracture initial height, E is the rock modulus
of elasticity, λ is the exponent of the rock wall reaction, N is the dimensionless
number governing the interplay between Newtonian and power-law behaviour in an
Ellis fluid.

Figure 6.12: Time variation of the fracture aperture h for the HPG (thin line)
and VES (thick line) fluids.

parameters according with the Ellis model are reported for both fluids in Ta-
ble 6.1, together with realistic geometric and mechanical parameters within
plausible ranges deduced from the literature, see the earlier discussion in Sec-
tion 6.3.2. It is seen that HPG is relatively close to Newtonian in behaviour,
while VES is extremely shear-thinning, with an equivalent rheological index
n less than 0.1 when expressed according to the power-law model.

Figure 6.12 shows the relaxation of the fracture aperture for the two fluids:
the aperture for the HPG is only initially slightly larger than for the VES,
but then closes more rapidly, reaching one tenth of the initial value at a time
around 500 hours. The closure is much more gradual for the VES, requiring
about a year to reach the same stage. The difference between corresponding
pressure profiles, illustrated in Figure 6.13, shows a decidedly sharper pressure
decrease for HPG than for VES in the initial stage.
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Figure 6.13: Pressure distribution at different time a) for HPG fluid, and b) for
VES.

Figure 6.14: Time to recover the fracture volume Y% for the HPG (thin line) and
VES (thick line) fluids.
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Figure 6.14 shows the time to recover the volume stored in the fracture
for the two fluids. Following the same trend manifested for the evolution of
fracture opening, VES demonstrates a higher drainage capacity than HPG in
the very early phase, for Y < 15%; subsequently it is much less efficient, and
requires an extra time at least three orders of magnitude larger to drain the
same percentage of fluid than HPG. Overall the large difference in rheology,
mainly encapsulated in the α value, translates into corresponding wide differ-
ences in terms of aperture, pressure, and drainage time. This is so because
the value of the dimensionless group N is very low for VES, thus allowing the
fluid to manifest its essentially power-law nature. We tried a number of other
combinations of parameters and found that for very shear thinning fluids like
VES the results are very sensitive to relatively small changes in parameters:
slightly increasing the modulus of elasticity E to 3 · 1010 and increasing the
spacing to 20 m, leaving the other parameters in Table 6.1 unchanged, leads
to N(HPG) = 0.659 and N(V ES) = 2.360. While the change in the N
value associated to HPG is modest (6.6%) and implies the system behaviour
is essentially unchanged with respecto to the reference case, the increase in N
for the VES is dramatic (2260%) and entails a fluid behaviour closer to New-
tonian despite the exceedingly high value of α. Upon plotting the aperture
variation over time for this case (not shown) the two fluids exhibit a similar
behaviour, with only modest differences (less than 10%) in the fracture aper-
ture at early times and an almost identical behaviour later on. The pressure
profiles do not show any significant differences.

6.6 Conclusions

A conceptual model for backflow of non-Newtonian fluid from a closing rock
fracture was presented in this paper. Under the assumption of Ellis rheol-
ogy and elastic, but non-deformable wall, the problem in plane geometry is
tractable in semi-analytical form to yield the time-variable fracture aperture
h(t), pressure field p(x, t) and discharge rate q(t), as well as the drainage time
tY for a specified recovery rate Y , outlet pressure pe and overload f0.

Our results lead to the following specific conclusions:

• The Ellis model adopted herein to describe shear-thinning rheology cou-
ples Newtonian and power-law behaviour. When an Ellis fluid backflows
from a relaxating fracture the interplay between the two natures is mod-
ulated by a dimensionless group N encapsulating the main problem pa-
rameters. N can be expressed in terms of i) the indicial exponent α
of the Ellis rheology, ii) the parameter λ governing the wall relaxation
process, iii) the ratio between the characteristic shear stress of the Ellis
fluid τ0 and the rock modulus of elasticity E, iv) two geometric ratios,
the fracture initial aspect ratio h0/L and dimensionless spacing l/L. An
alternative format of N is a modified ratio between the Cauchy number
and the product of Reynolds and Ellis numbers.
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• The factors N and α mostly influence the early and intermediate time
evolution of the system: when N < 1 the power-law behaviour prevails;
for N = 1 the pure Newtonian case is recovered (α = 1 entails N = 1),
while for N � 1 the behaviour is mixed.

• For late-time the system behaviour tends to Newtonian, is independent
of N and is governed by the wall relaxation parameter λ: aperture and
discharge scale asymptotically with time as t−1/(λ+2) and t−1/(λ+3) for
pe − f0 = 0; else, the aperture tends asymptotically to a constant value
proportional to (pe − f0)1/λ.

• Very shear-thinning fluids (larger α) and reactive walls (larger λ) are
associated with a more gradual closure of the aperture.

• The residual pressure within the fracture increases with smaller N values
and with a softening wall (λ < 1); when the fluid is close to Newtonian
the effect of a λ variation is almost irrelevant.

• The dimensionless drainage time TY attains the largest values for large
α and low N , the lowest values for small α and large N , the two com-
binations farthest and closest to Newtonian behaviour. A non-linear
reaction of the walls result in a faster/slower recovery for λ < 1 (soft-
ening) and λ > 1 (stiffening). For recovery values close to 100%, TY is
very sensitive to variations of model parameters.

• Results are discussed in dimensional form for a case study to reinforce
the notion that dimensionless results need to be compared with caution
as scales include fluid rheological parameters. Realistic geometric and
mechanical parameters are adopted for a system of equally spaced frac-
tures, and results are compared for two fluids, HPG and VES, normally
used in fracking technology. The time evolution of the aperture and the
dependence of the drainage time upon the recovery ratio are similar at
early times, then differ by orders of magnitude at intermediate and late
times.

The developments presented, together with earlier results (Dana et al.,
2018; Chiapponi et al., 2019), provide an overview of the backflow phe-
nomenon in the two basic geometric configurations for a single fracture, plane
and radial, and for three rheological models of increasing complexity: Newto-
nian, power-law, and Ellis. Further improvements of the model remain open
in several directions, e.g.: i) a more complex geometry, considering nonplanar
fractures with non-negligible curvature; ii) the combination of non-Newtonian
rheology with multiple fracture systems, adopting the asymptotic viewpoint
of Dana et al. (Dana et al., 2019); iii) the incorporation of particle transport
to simulate the settling of solid proppant.
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6.7 Appendix A - The Newtonian case (n = 1)

For α = 1 and N = 1 eq. (6.25) reduces to

C = 1, D =
Ḣ

H3
, (6.27)

and integrating eq. (6.24) using these expressions yields

P (X,T ) =
Ḣ

4H3
[(X − 1)2 − 1]. (6.28)

Substituting in eq. (6.17) and integrating P (X,T ) over X gives

− Ḣ

3H3
= Hλ − Pe + F0, (6.29)

generalizing eq. (2.14) of Dana et al. (Dana et al., 2018), where λ = 1 and
F0 = 0, to nonlinear wall reaction and non-zero overload. Now define an
effective pressure P̃e = Pe − F0 at the fracture outflow: this symbol will be
used for brevity in the sequel. Consider first the case P̃e = 0. Integration of
eq. (6.29) over time T yields, with the first b.c. in eq. (6.18),

H(T ) = [1 + 3(2 + λ)T ]
− 1

2+λ , (6.30)

that for λ = 1 gives back eq. (2.15) of (Dana et al., 2018).
Consider now the case P̃e > 0. Integration with the help of Mathematica

and using transformation formulae for the analytic continuation of hyper-
geometric functions (Gradshteyn & Ryzhik, 2014) yields for generic λ the
following implicit equation

T =
1

3(λ+ 2)

[
1

Hλ+2 2
F1

(
1,
λ+ 2

λ
;

2(λ+ 1)

λ
;
P̃e
Hλ

)
+

−2 F1

(
1,
λ+ 2

λ
;

2(λ+ 1)

λ
; P̃e

)]
, (6.31)

where 2F1(α, β; γ; z) is the hypergeometric function of parameters α, β, γ,
and argument z. Specific results for λ = 1/2, λ = 1, λ = 2, i.e. a sublinear,
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linear or supralinear wall reaction, can be obtained as

T =
1

18P̃e
5

[
12 ln

(
H1/2(1− P̃e)
H − P̃e

)
− 12P̃e
H1/2

− 6P̃e
2

H
− 4P̃e

3

H3/2
− 3P̃e

4

H2
+

+ 12P̃e + 6P̃e
2

+ 4P̃e
3

+ 3P̃e
4
]
, (6.32)

T =
1

6P̃e
3

[
2 ln

(
H(1− P̃e)
H − P̃e

)
− 2P̃e

H
− P̃e

2

H2
+ 2P̃e + P̃e

2
]
, (6.33)

T =
1

6P̃e
2

[
ln

(
H2(1− P̃e)
H2 − P̃e

)
− P̃e
H2

+ P̃e

]
, (6.34)

either by direct integration of eq. (6.31) or using transformations involving
the hypergeometric functions (Gradshteyn & Ryzhik, 2014). Eq. (6.33) valid
for λ = 1 is identical to Eq. (2.18) of Dana et al. (Dana et al., 2018). Other
results in terms of trascendental and algebraic functions can be obtained for
other special values of λ ∈ N or 1/λ ∈ N but are too cumbersome to report
and/or of little technical interest.

Expressions (6.31)-(6.34), when evaluated for for given P̃e, allow deriving
H(T ) and the drainage time TY needed to drain Y% of the fracture volume.
As the latter quantity is given in dimensionless form by H according to (6.26),
to derive TY it is sufficient to evaluate (6.31) and its special cases (6.15)-(6.34)
for H = (100− Y )/100.

Finally, it is wortwhile to derive the asymptotic behaviour of the general
equation (6.31) for the limit case λ→ 0. According to eq. (5.3), λ = 0 implies
a wall reaction constant over time rather than dependent from the fracture
aperture. Integrating (6.29) for Hλ = 1 gives

H =
1

[1 + 6(1− P̃e)T ]1/2
, (6.35)

a result that can be simplified for large time to H = 1/[6(1 − P̃e)T ]1/2 and
further for P̃e = 0 to H = 1/(6T )1/2. Equation (6.35) can be also obtained
directly from eq. (6.31) for λ→ 0 on the basis of eq. (9.121.1) in (Gradshteyn
& Ryzhik, 2014). The late-time scaling for a Newtonian fluid and a wall with
constant reaction (λ = 0) is therefore H ∝ T−1/2, a result coinciding with
the scaling H ∝ T−1/(2+λ) implied by Figure 6.5 for a Newtonian fluid with
N = 1, α = 1.

6.8 Appendix B - The dimensionless group N

The pure number N may be expressed as a function of well-known dimension-
less groups in fluid mechanics (e.g. Massey (1971)). Multiplying and dividing
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eq. (6.16) by ρµ0h0u
3
0, where u0 is the reference velocity defined in (6.12),

yields

N = K

(
Ca

Re · El

)α−1

; Ca =
ρu2

0

E
; Re =

2ρu0h0

µ0
; El =

µ0u0

τ0h0
, (6.36)

K = K (α, λ, l/L, h0/L) =
2 + α

3α


4

(
l

L

)λ
(
h0

L

)λ+1


α−1

(6.37)

where Ca, Re, and El are the Cauchy, Reynolds, and Ellis numbers, and K
a geometric factor correcting the ratio Ca/(Re · El). In turn, Ca is the ratio
between inertial forces and elastic forces transmitted by solid walls, Re is the
ratio between inertial and viscous forces, while El is the ratio between the
viscous stress associated with the low shear rate Newtonian behaviour and
the shear stress τ0 associated with high shear rate non-Newtonian (power-
law) behaviour.



7 Conclusions and Future Perspectives

In this thesis, analytical, numerical and experimental approaches have been
adopted to comprehend and characterize the flow of non-Newtonian fluids
involved in fractured rocks. In these media, the flow mainly occurs in fracture
networks, where either fractures permeability and connectivity govern the
flow. In fractured aquifer or unconventional reservoirs, the characterization
of flow is of uttermost importance to quantify oil and gas reservoir storage and
the effectiveness of industrial operations, as well as reclamation techniques.

The complex rheology of real fluids and the strong heterogeneity of frac-
tures contribute to the mathematical complexity of the flow problem, intro-
ducing non-linearities that may be challenging to treat both analytically and
numerically. The use of conceptual analytical models constitute an easily-
handled tool to comprehend non-Newtonian fluid flows in a rock fracture.
In Felisa et al. (2018) (Chapter 2), a four-parameter truncated power law
model has been adopted to model non-Newtonian flow in simplified geome-
tries, each fracture being represented by a series of cylindrical channels of
different apertures to reproduce 1-D variability. The flow may occur parallel
or orthogonal to the direction of variability, representing the extreme cases
of maximum and minimum conductance, respectively. Despite the simplified
geometry, this model allows discerning the impact of large and small aper-
tures on permeability, considering a constitutive law that accounts both for
the high and low shear rate viscosity plateaus and for the shear-thinning tran-
sition between them. For a power-law fluid, this model has been validated via
laboratory experiments and with numerical simulations, in (Lenci & Chiap-
poni, 2020). The impact of other fluid features has been studied in Lenci &
Federico (2019) and in Lenci & Di Federico (2020): in the former, the presence
of a yield stress has been analysed by adopting a bi-viscous model, while in
the latter the Prandlt-Eyring model has been introduced to comprehend the
shear-thinning behaviour for low-shear rates regime, reducing the number of
rheological parameters by dropping out the high shear rate viscosity plateau,
which rarely plays a role in fracture laminar flow. These models provide an
upper and a lower bound to fracture permeability and information on order
of magnitudes and trends without resorting to numerical techniques.

A more realistic 3D synthetic fracture geometry can be generated, where
the flow problem can be solved numerically. In Lenci et al. (2022a) (Chap-
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ter3), a FFT-based fracture generator reproduces synthetic isotropic self-affine
rough walls, while the flow is solved adopting a lubrication-based approach
using a finite volume scheme. The lubrication theory allows reducing the
problem to a 2-D depth-averaged formulation, which results in a less time
consuming and computationally intensive simulation. This approximation is
valid as long as the fracture walls are sufficiently smooth and the flow laminar.
2-D modeling allows better characterizing the flow, which present preferential
flow paths and stagnation zones of almost zero velocity, . Such features are
also present in Newtonian flow in the same geometries, but the flow localiza-
tion is more marked with a shear-thinning fluid. The high efficiency achieved
by the numerical code has allowed us to produce a stochastic analysis via
brute force Monte Carlo. This would be prohibitive with actual commercial
or freeware CFD softwares, which solve the (Navier-)Stokes equation in the 3D
fracture domain. Furthermore, the homemade code provides a higher control
over the algorithm in respect to software which are often closed to users. In
the framework of the stochastic analysis, different flow regimes (natural and
forced flow), fluid-shear thinning indices, and fracture scales, have been con-
sidered. The probability density function and autocorrelation function of the
velocity magnitude and its components have been computed to quantify the
statistical moments and analyse the tails of the distribution. Moreover, the
impact of the shear-thinning index on fracture transmissivity has been quan-
tified to estimate how flow localization impacts the fracture scale hydraulic
behavior. Despite the strong channeling phenomena that may develop, with
flow occurring in a limited portion of the fracture, the shear-thinning nature
of the fluid enhances transmissivity as a results of the lower apparent viscosity
of the fluid along the preferential flow channels.

Despite the importance of understanding the motion of a fluid in a hetero-
geneous fracture, the comprehension of the hydro-mechanical problem which
arises from the interaction between a flowing fluid and the fracture walls is
of interest. In hydraulic fracturing, after the fracture phase the flow is re-
versed to recover wastewater so that it can be treated and reused. In (Ciriello
et al., 2021) (Chapter 5), a conceptual model to estimate the relaxation in-
duced by this flow back has been proposed considering an Ellis fluid, assuming
smooth-walled fracture. The model has been validated experimentally with a
power-law fluid in Lenci & Di Federico (2020); good agreement was observed
between the laboratory experiments and model prediction.

Our future prospects consist in comparing the outputs of the 2-D lubrication-
based numerical code in realistic rough fracture geometries with 3-D CFD sim-
ulations to quantify the estimation error resulting from the depth-averaged
approach, and define the limits of the lubrication theory considering shear-
thinning fluids. For a Newtonian fluid, this analysis has been conducted by
Koyama et al. (2008) using COMSOL multiphisics, and they showed a con-
sistent difference between the prediction of the Stokes equation and of the
Reynolds equation . Increased aperture field gradient will lead to larger dis-
crepancies between the results from the two approaches.
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Méheust Y., Schmittbuhl J., 2000, Flow enhancement of a rough fracture,
Geophys. Res. Lett., 27, 2989
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