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Abstract

In recent years, radars have been used in many applications such as precision agriculture and
advanced driver assistant systems. Optimal techniques for the estimation of the overall number of
targets and of their spatial coordinates cannot be employed in real world radars, since they require
solving complicated multidimensional optimization problems and, consequently, entail a huge
computational effort, even in the presence of a small number of targets. This has motivated the
development of various sub-optimal estimation techniques able to achieve good estimation accuracy
at a manageable computational cost. Another fundamental technical issue in radar systems for
advanced driver assistant systems is the tracking of multiple targets. Even if various filtering
techniques have been developed to solve this problem in the past, new computationally efficient
and robust algorithms for target tracking can be devised by exploiting a recent probabilistic
approach, based on the use of the factor graph and the sum-product algorithm.

The two key contributions provided by this dissertation are the investigation of the filtering and
smoothing problems from a factor graph perspective and the development of efficient algorithms
for two-dimensional and three-dimensional radar imaging. As far as the first contribution is
concerned, a new factor graph for the filtering problem is derived and the sum-product rule
is applied to this graphical model; this allows to interpret known algorithms and to develop
new filtering techniques. Then, a general method, based on graphical modelling, is proposed to
derive filtering algorithms that involve a network of interconnected Bayesian filters; moreover,
this method is exemplified by devising a new filtering method. Finally, the proposed graphical
approach is exploited to devise a new smoothing algorithm. Numerical results for specific dynamic
systems evidence that our algorithms can achieve a better complexity-accuracy tradeoff and
tracking capability than other filtering and smoothing techniques appeared in the literature.
Regarding radar imaging, various algorithms are developed for frequency modulated continuous
wave radars; all these algorithms rely on novel and efficient methods for the detection of multiple
superimposed tones in noise and the estimation of their parameters. The accuracy achieved by
these algorithms in the presence of multiple closely spaced targets is assessed on the basis of both
synthetically generated data and of the measurements acquired through two different commercial
multiple-input multiple-output radars.
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Sommario

Negli ultimi anni, i radar sono stati utilizzati in molte applicazioni come l’agricoltura di precisione
e i sistemi avanzati di sistemi di assistenza alla guida (advanced driver assistant systems). Tecniche
ottimali per la stima del numero complessivo di bersagli e delle loro coordinate spaziali non
possono essere impiegate nei sistemi radar reali, poiché richiedono la risoluzione di complicati
problemi di ottimizzazione multidimensionale e, di conseguenza, comportano un enorme sforzo
computazionale, anche in presenza di un piccolo numero di bersagli. Questo ha motivato lo
sviluppo di varie tecniche di stima sub-ottima in grado di ottenere una buona precisione di stima
ad un costo computazionale gestibile. Un’altra questione tecnica fondamentale nei sistemi radar
per sistemi avanzati di assistenza alla guida è l’inseguimento di bersagli multipli. Nonostante
varie tecniche di filtraggio siano state sviluppate per risolvere questo problema in passato, nuovi
algoritmi computazionalmente efficienti e robusti per l’inseguimento dei bersagli possono essere
sviluppati sfruttando un recente approccio probabilistico basato sull’uso dei grafi di fattore e
sull’algoritmo somma-prodotto (sum-product algorithm).

I due contributi chiave forniti da questa dissertazione sono l’indagine dei problemi di filtraggio
e smoothing utilizzando i grafi di fattore e lo sviluppo di algoritmi efficienti per la generazione di
immagini radar bidimensionali e tridimensionali. Per quanto riguarda il primo contributo, un
nuovo grafo di fattori è stato derivato per il problema del filtraggio e la regola del sum-product
è stata applicata a questo modello grafico; questo permette di interpretare algoritmi noti e di
sviluppare nuove tecniche di filtraggio. In aggiunta, viene proposto un metodo generale, basato
sulla modellazione grafica, per derivare algoritmi di filtraggio che coinvolgono una rete di filtri
Bayesiani interconnessi; inoltre, questo metodo è esemplificato dall’ideazione di un nuovo metodo
di filtraggio. Infine, l’approccio grafico proposto viene sfruttato per ideare un nuovo algoritmo di
smoothing. I risultati numerici per specifici sistemi dinamici dimostrano che i nostri algoritmi
possono raggiungere un migliore compromesso complessità-precisione e capacità di tracciamento
rispetto ad altre tecniche di filtraggio e smoothing apparse in letteratura. Per quanto riguarda
l’imaging radar, vari algoritmi sono stati sviluppati per i radar a onda continua modulati in
frequenza (frequency modulated continuous wave radars); tutti questi algoritmi si basano su
metodi nuovi ed efficienti per il rilevamento di toni multipli sovrapposti al rumore e la stima dei
loro parametri. La precisione raggiunta da questi algoritmi in presenza di più bersagli ravvicinati
è valutata sulla base sia di dati generati sinteticamente che delle misure acquisite attraverso due
diversi radar commerciali a ingresso e uscita multipli.
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Introduction

In this chapter, the reference scenario which my PhD work refers to is defined first. Then, the
scope of this dissertation is illustrated and an outline of its contents is provided. Finally, some
notations employed throughout this document are defined.

Reference Scenario

The research work illustrated in this thesis concerns the development of various algorithms that
can be employed in modern systems for radio detection and ranging (briefly, radar systems).
Since its invention, radar has found a number of applications, in both civilian and military fields.
The first experimental work on radars, mainly focused on military applications, dates back to
the 1930s, although the basic principles can be traced back to experiments on electromagnetic
radiation conducted by the German physicist Heinrich Hertz in the 1880s. In 1904, the principles
demonstrated by Hertz were put into practice by Christian Huelsmeyer in the realization of an
anticollision naval system that was patented in the same year [1]; however, this invention had little
interest because of its limitations on the maximum achievable range. Since the 1930s, however,
due to the increasing interest in military applications, different countries, including the United
States and most of the European countries, began testing radar systems that operated in the very
high frequency (VHF) band. The experiments carried out by the Radiation Laboratory of the
Massachusetts Institute of Technology (MIT) on the magnetron paved the way to the use of radar
systems operating in the S-band (2–4 GHz) during World War II. In the years following the end
of that war, the advances in electronic technology and signal processing led to the development of
pulse Doppler radar, monopulse radar, phased array radar and synthetic aperture radar (SAR). In
the last decades of the 1900s, major efforts have been made to achieve significant advancements
in civilian applications (e.g., SAR and weather surveillance radars for ground and meteorological
observations).

In the last years, radar systems have been used in different fields [2], including civilian aviation,
navigation, Earth observation, meteorology, medicine, precision agriculture and advanced driver
assistant systems (ADAS). In particular, as far as the last two fields are concerned, such systems
can substantially benefit from the availability of the antenna arrays, i.e. of the so called multiple-
input multiple-output (MIMO) technology, whose commercial use is now possible thanks to the
recent advances in millimeter-wave semiconductor technology and to the development of novel
signal processing techniques [3]. Radar systems equipped with antenna arrays can be divided in
statistical MIMO radars [4, 5] and colocated MIMO radars [6] on the basis of the distance between
their transmit and receive arrays; in the first case, transmit and receive antennas are widely
separated, whereas, in the second one, they are closely spaced and, in particular, they are usually
placed on the same shield. In this dissertation, we focus on colocated MIMO radars operating
at mmWave; such systems play an important role in a number of applications, because of their
limited cost, their small size and their ability to detect the presence of multiple targets. However,
it is important to keep in mind that the performance achieved by any colocated MIMO radar
system depends not only on some important characteristics of its hardware (e.g., the operating
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frequency, the number of transmit and receive antennas, the configuration of the transmit and
receive arrays, etc.), but also on the techniques that are employed in the generation of its radiated
waveforms and in the processing of the measurements acquired through its receive array.

As far as the last issue is concerned, substantial research efforts have been devoted to the
investigation of signal processing methods that, based on the measurements acquired from
the whole array in a single snapshot (briefly, acquired in a single frame), can estimate the
overall number of targets and their spatial coordinates. Unluckily, optimal (i.e., maximum
likelihood, ML) techniques cannot be employed in this case, since they require solving complicated
multidimensional optimization problems and, consequently, entail a huge computational effort,
even in the presence of a small number of targets [2]. This has motivated the development
of various sub-optimal estimation techniques able to achieve good estimation accuracy at a
manageable computational cost. For instance, a well known sub-optimal technique that can be
employed in real world radar systems is the one described in ref. [7] for frequency modulated
continuous wave (FMCW) radar systems. It requires: a) the computation of a multidimensional
Fast Fourier Transform (FFT) of the matrix collecting the time-domain samples of the signals
acquired through the receive array of the employed radar device; b) the search for the peaks
of the resulting amplitude spectrum over a range-azimuth-elevation domain or a range-azimuth
domain in three-dimensional (3D) and two-dimensional (2D) imaging, respectively. Despite the
practical importance of this technique, the computational effort it requires is still significant, since
it involves multidimensional spectral analysis of the acquired signals. Moreover, it suffers from the
following relevant drawback: it can miss targets whose electromagnetic echoes are weaker than
those generated by other spatially close targets; this is due to the fact the spectral contribution
due to weak echoes is usually hidden by the leakage originating from stronger echoes. This
drawback may substantially affect the overall quality of radar imaging in the presence of extended
targets, since such targets can be usually modelled as a cluster of point targets characterized by
different radar cross sections [8].

When multiple frames are available, the information extracted from each of them are merged
to estimate the trajectory of the detected targets. Information fusion can be accomplished through
a proper filtering technique if online processing of the available data is required to achieve target
tracking [9, 10]. However, more accurate results can be obtained if data are processed offline; in this
case, a smoothing technique can be employed [11]. In the past, substantial research efforts have been
devoted to the use of filtering methods for multi target tracking (MTT). Common approaches to
MTT include a) the multiple hypothesis tracking (MHT) or the joint probabilistic data association
(JPDA) methods (e.g., see [12, Section II] and [13], respectively); b) the exploitation of factor
graphs (FGs) and the sum-of-products (SPA) algorithm [14]. In most cases, a point target model
has been assumed in the development of such methods. More recently, various researchers have
focused on the problem of tracking objects whose physical extent is significantly larger than the
resolution of the employed radar sensor; such targets may lead to the generation of multiple
measurements [15]. The algorithms available in the technical literature for extended object tracking
(EOT) are based on:

a) Adaptations of the JPDA or the MHT methods (e.g., see [16] and [12], respectively).

b) Random finite set approaches such as the probability hypothesis density (PHD) (e.g., see [17]).

c) The adoption of different models for the representation of extended objects; these models
include simple geometrical shapes (e.g. circle, rectangle, or ellipse) [18], more flexible
representations known as random hyper-surface models (RHM) for star-convex objects [19]
and point cloud representations [20].

d) The exploitation of factor graph and the SPA [21, 22].

Although the available methods can be employed in real world applications, they may fail in
complicated environments (e.g., in the presence of weak targets in crowded scenarios). In such
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cases, provided that an estimation delay is tolerable, more accurate results can be obtained by
replacing filtering with smoothing. Various technical solutions are available in the literature; for
instance, the use of the Rauch–Tung–Striebel (RTS) smoother in conjunction with the MHT has
been proposed in ref. [23]. However, such solutions are computationally demanding, especially in
the presence of a significant number of targets [24].

Thesis Scope and Outline

My PhD studies have focused on the following two research problems:

1. The development of detection/estimation algorithms for 2D and 3D radar imaging. These
algorithms should be able to detect multiple targets and estimate theirs parameters (namely,
their range, azimuth and elevation) at the price of a limited computational cost.

2. The exploitation of a FG approach to derive filtering and smoothing techniques that involve
a network of interconnected Bayesian filters.

The solutions devised for these problems are new and appealing from a computational
perspective. Unluckily, because of time limitations, the application of the developed filtering
and smoothing techniques to the MTT problem mentioned in the previous section has not been
investigated.

This dissertation is organized as follows. In Part I, a factor graph approach to Bayesian filtering
and smoothing is illustrated. In particular, in Chapter 1, this approach is employed to tackle the
Bayesian filtering problem for conditionally linear Gaussian state-space models; more specifically,
it is shown that: a) marginalized particle filtering can be interpreted as a form of forward only
message passing over the devised graph; b) novel filtering methods can be easily developed by
exploiting the graph structure and/or simplifying probabilistic messages. Then, in Chapter 2, a
general method for deriving filtering algorithms that involve a network of interconnected Bayesian
filters is proposed and new filtering techniques, based on this method, are devised. Moreover, it is
shown that these algorithms can achieve a better complexity-accuracy tradeoff than marginalized
particle filtering and multiple particle filtering. Finally, in Chapter 3, the conceptual approach
proposed in Chapter 2 is exploited to devise new Bayesian smoothing algorithms that can achieve
a better complexity-accuracy tradeoff and tracking capability than other related algorithms
recently appeared in the literature.

In Part II, instead, novel algorithms for 2D and 3D radar imaging are derived. In particular,
in Chapter 4, novel methods for the detection of multiple superimposed tones in noise and the
estimation of their parameters are derived; these methods can achieve a substantially better
complexity-accuracy tradeoff than various related techniques in the presence of multiple closely
spaced tones. Finally, in Chapter 5, the problem of detecting multiple targets and estimating
their spatial coordinates in a colocated MIMO radar system is investigated. Various solutions are
developed for frequency modulated continuous wave (FMCW) radars and the accuracy achieved by
these algorithms in the presence of multiple targets is assessed on the basis of both synthetically
generated data and of the measurements acquired through two commercial MIMO radars.

In both parts, different appendices containing additional results and proofs are provided. Some
conclusions and suggestions for future research are given in Chapter 6.

Notations

In Part I the following notations are adopted: a) the probability density function (pdf) of a
random vector R evaluated at point r is denoted f(r); b) N (r; ηr,Cr) represents the pdf of a
Gaussian random vector R characterized by the mean ηr and covariance matrix Cr evaluated at
point r; c) the precision (or weight) matrix associated with the covariance matrix Cr is denoted
Wr, whereas the transformed mean vector Wrηr is denoted wr.
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Part I

A Factor Graph approach to Filtering and
Smoothing

1





One

Marginalized Particle Filtering and Related Filtering
Techniques as Message Passing

In this chapter a factor graph approach is employed to investigate the recursive filtering problem
for conditionally linear Gaussian state-space models. First, we derive a new factor graph for the
considered filtering problem; then, we show that applying the sum-product rule to our graphical
model results in both known and novel filtering techniques. In particular, we prove that: a)
marginalized particle filtering can be interpreted as a form of forward only message passing over
the devised graph; b) novel filtering methods can be easily developed by exploiting the graph
structure and/or simplifying probabilistic messages.

Part of this Chapter has been published in [1].

1.1 Introduction

The nonlinear filtering problem consists in inferring the posterior distribution of the hidden state of
a nonlinear dynamic system from a set of past and present measurements [2]. It is well known that,
if a nonlinear dynamic system can be described by a state-space model (SSM), a general sequential
procedure, based on the Bayes’ rule and known as Bayesian filtering, can be easily derived
for recursively computing the above mentioned posterior distribution [2]. Unluckily, the general
formulas describing the Bayesian filtering recursion admit closed form solutions for linear Gaussian
and linear Gaussian mixture SSMs only [3]. On the contrary, approximate solutions are available
for general nonlinear models; these are based on sequential Monte Carlo (SMC) techniques (also
known as particle filtering methods) which represent a powerful tool for numerical approximations
(e.g. see [4]–[5] and references therein). While SMC filtering methods can be directly applied to an
arbitrary nonlinear SSM, it has been recognized that their estimation accuracy can be improved
in the case of conditionally linear Gaussian (CLG) SSMs [6], [7]. In fact, the linear substructure
of such models can be marginalised, so reducing the dimension of their sample space [6], [8].
This idea has led to the development of the so called Rao-Blackwellized particle filtering (also
dubbed marginalized particle filtering, MPF) [6], [9] and other filtering methods originating from
it [10]–[11]. These methods play a fundamental role, since CLG models are suitable to represent
the behavior of dynamic systems in a number of fields, including econometrics [12], positioning
and navigation [13], magnetic resonance imaging [14], human motion tracking [15] and acoustic
source localization [16].

Recently, it has been shown that the linear/nonlinear filtering problem and the related
linear/nonlinear smoothing problems can be revisited from a factor graph (FG) perspective. More
specifically, on the one hand, it has been proved that Kalman filtering and PF can be interpreted
as specific instances of the so called sum-product algorithm (SPA) [17], [18] over graphical models
(see [17], [19] and [20], [21], respectively) and, consequently, as message passing procedures on
FGs. On the other hand, it has been shown that the FG approach represents a powerful tool to
develop new Rao-Blackwellized algorithms for filtering [22] and smoothing [23].

The content of this chapter is based on our recent work [22], and aims at providing a FG
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perspective on MPF and related filtering methods. In the technical literature the derivation of
MPF always relies on the factorization of a specific posterior pdf (e.g., [6, see eq. (7)]). In this
chapter, instead, after developing a novel FG representation of the filtering problem for a CLG
SSM, we prove that MPF can be seen as an application of the SPA to this graphical model. This
approach not only sheds new light on a known filtering algorithm, but allows to analyse the
problems of developing new filtering algorithms based on the same graphical model as MPF from
a message passing perspective. In particular, as far as the last issue is concerned, we focus on
the problems of: a) developing a new filtering method, called dual MPF (DMPF); b) deriving
simplified versions of MPF/DMPF. We believe that these contributions can be of great interest
for all the readers interested in the applications of FGs to statistical signal processing and, more
specifically, in Rao-Blackwellized filtering techniques.

The remaining part of this chapter is organized as follows. A mathematical description of the
considered SSMs is illustrated in Section 1.2, whereas a FG-based representation of the related
filtering problem is provided in Section 1.3. Then, in Section 1.4, it is shown that applying the
SPA and proper message scheduling to a portion of the FG developed for a CLG SSM leads
to MPF. The development of the DMPF technique and the problem of simplifying MPF are
illustrated in Sections 1.5 and 1.6, respectively. The filtering methods analysed in this chapter are
compared, in terms of accuracy and computational effort, in Section 1.7. Finally, some conclusions
are offered in Section 1.8.

1.2 Model Description

In this chapter we focus on a discrete-time SSM whose D-dimensional hidden state in the k-th
interval is denoted xk ≜ [x1,k, x1,k, ..., xD,k]

T , and whose state update and measurement models
are expressed by

xk+1 = fk
(
xk
)
+wk (1.1)

and

yk ≜ [y1,k, y1,k, ..., yP,k]
T

= hk
(
xk
)
+ ek (1.2)

respectively. Here, fk
(
xk
)

(hk
(
xk
)
) is a time-varying D-dimensional (P -dimensional) real function

and wk (ek) is the k-th element of the process (measurement) noise sequence
{
wk

}
(
{
ek
}
); this

sequence consists of D-dimensional (P -dimensional) independent and identically distributed (iid)
Gaussian noise vectors, each characterized by a zero mean and a covariance matrix Cw (Ce).
Moreover, statistical independence between

{
ek
}

and {wk} is also assumed.
The general models (1.1)-(1.2) can be rewritten in a different way if the considered SSM

is CLG [6], [7], [23], [24]. In fact, under this assumption, the state vector in the k-th interval
can be partitioned as xk = [(x

(L)
k )T , (x

(N)
k )T ]T , where, x(L)

k ≜ [x
(L)
1,k , x(L)2,k , ..., x

(L)
DL,k

]T (x(N)
k ≜

[x
(N)
1,k , x

(N)
2,k , ..., x

(N)
DN ,k

]T ) is the so called linear (nonlinear) component of xk, with DL < D

(DN = D −DL). Moreover, the models1 (e.g., see [23, Sec. II] and [24, Sec. 2])

x
(Z)
k+1 = A

(Z)
k

(
x
(N)
k

)
x
(L)
k + f

(Z)
k

(
x
(N)
k

)
+w

(Z)
k (1.3)

and
yk = gk

(
x
(N)
k

)
+Bk

(
x
(N)
k

)
x
(L)
k + ek (1.4)

can be adopted for the update of the linear (Z = L) and nonlinear (Z = N) components, and for
the measurement vector, respectively. In the state update model (1.3), f (Z)k (x

(N)
k ) (A(Z)

k (x
(N)
k ))

1Note that, unlike [6] and [7], the dependence of the noise terms on the nonlinear state component is not accounted for
in the following models for simplicity. However, including this dependence does not substantially modify the derivation of
the message passing algorithms illustrated in Sections 1.4–1.6, since, as it will become clearer later, this simply implies that
the covariance matrices associated with noise terms depend on the particle representing the nonlinear state component.
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is a time-varying DZ-dimensional real function (DZ ×DL real matrix) and w
(Z)
k consists of the

first DL (last DN ) elements of wk if Z = L (Z = N); independence between {w(L)
k } and {w(N)

k }
is also assumed for simplicity and the covariance matrix w

(L)
k (w(N)

k ) is denoted C
(L)
w (C(N)

w ). In
the measurement model (1.4), instead, gk(x

(N)
k ) (Bk(x

(N)
k )) is a time-varying P -dimensional real

function (P ×DL real matrix).
In the following Section we tackle the so-called filtering problem, that concerns the evaluation

of the posterior pdf f(xt|y1:t) at an instant t > 1, given a) the initial pdf f(x1) and b) the
t · P -dimensional measurement vector

y1:t =
[
yT1 ,y

T
2 , ...,y

T
t

]T
. (1.5)

1.3 Representation of the Filtering Problem via Factor Graphs

From a statistical viewpoint, a complete description of the SSM described by Eqs. (1.1)–(1.2) is
provided by the Markov model f(xk+1|xk) and the observation model f(yk|xk) for any k. If the
pdf f(x1) is known, the computation of the posterior (i.e., filtered) pdf f(xt|y1:t) for t ≥ 1 can
be accomplished by means of an exact Bayesian recursive procedure, consisting of a measurement
update (MU) step followed by a time update (TU) step. Following [17, Sec. II, p. 1297] and [23, Sec.
III], the k-th recursion of this procedure (with k = 1, 2, ..., t) is formulated with reference to the
joint pdf f(xt,y1:t) (in place of the associated a posteriori pdf f(xt|y1:t)), since this leads more
easily to its representation as a message passing algorithm over a proper Forney-style FG [21]. In
practice, in the MU of the k-th recursion, the joint pdf (providing a statistical description of the
forward estimate of xk)

f
(
xk,y1:k

)
= f

(
xk,y1:k−1

)
f
(
yk
∣∣xk), (1.6)

is computed on the basis of pdf f(xk,y1:k−1) (evaluated in the TU of the previous recursion) and
the present measurement vector yk. Then, in the TU of the same recursion, f(xk,y1:k) (1.6) is
exploited to compute the pdf

f
(
xk+1,y1:k

)
=

∫
f
(
xk+1

∣∣xk)f(xk,y1:k

)
dxk, (1.7)

which represents a one-step forward prediction about the future state xk+1. Since Eqs. (1.6)
and (1.7) involve only products of pdfs and a sum (i.e., integration) of products, their evaluation
can be represented as a forward only message passing over the cycle free FG shown in Fig.
1.1-a) (all the rules adopted in the development of this and in the following graphical models
are illustrated in Appendix A, where the SPA is also described). In fact, if the input message2

m⃗fp

(
xk
)
= f(xk,y1:k−1) enters this FG, the message going out of the equality node is given by

m⃗fe

(
xk
)
= m⃗fp

(
xk
)
f
(
yk
∣∣xk), so that m⃗fe

(
xk
)
= f(xk,y1:k) (see Eq. (1.6)); then, the message

emerging from the function node referring to the pdf f(xk+1|xk) is expressed by

m⃗fp

(
xk+1

)
=

∫
f
(
xk+1

∣∣xk)m⃗fe

(
xk
)
dxk, (1.8)

so that m⃗fp

(
xk+1

)
= f(xk+1,y1:k) (see Eq. (1.7)).

In [23, Sec. III] it has been shown that the FG shown in Fig. 1.1-a) can be used to devise
a new graphical model for the CLG SSM described by Eqs. (1.3)–(1.4). The development of
this model can be summarized as follows. If the nonlinear portion x

(N)
k is known for any k, the

computation of the filtered pdf f(x(L)
k |y1:k) for the linear state component can benefit not only

from the knowledge of yk (1.4), but also from that of the quantity (see Eq. (1.3) with Z = N)

z
(L)
k ≜ x

(N)
k+1 − f

(N)
k

(
x
(N)
k

)
= A

(N)
k

(
x
(N)
k

)
x
(L)
k +w

(N)
k , (1.9)

2In the following the acronyms fp and fe are employed in the subscripts of various messages, so that readers can easily
understand their meaning; in fact, the messages these acronyms refer to represent a form of forward prediction and forward
estimation, respectively.
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Figure 1.1: Factor graphs representing: a) the k-th recursion of Bayesian filtering for an SSM described
by the Markov model f(xk+1|xk) and the observation model f(yk|xk); b) the k-th recursion of Bayesian
filtering for the linear state component of a CLG SSM. In both graphical models, the SPA message flow is
indicated by green arrows.

which can be interpreted as a pseudo-measurement (PM) [6], since it does not originate from
real measurements, but from the constraints expressed by the state equation (1.3). Then, the
k-th recursion of Bayesian filtering for the linear state component, given x

(N)
k and x

(N)
k+1, can be

represented through a graphical model similar to that shown in Fig. 1.1-a). In fact, if the state
xk, the Markov model f

(
xk+1

∣∣xk) and the measurement model f
(
yk
∣∣xk) appearing in that FG

are replaced by their counterparts x(L)
k , f(x(L)

k+1|x
(L)
k ,x

(N)
k ) and f(yk|x

(L)
k ,x

(N)
k ), respectively, and

the contribution due to the PM model f(z(L)k |x(L)
k ,x

(N)
k ) is kept into account, the FG shown in

Fig. 1.1-b) is obtained. It is important to point out that: 1) the new graph contains a node which
does not refer to a density factorization (this peculiarity is also evidenced by the presence of an
arrow on all the edges connected to such a node), but represents the transformation from the
couple (x

(N)
k ,x

(N)
k+1) to z

(L)
k (see Eq. (1.9)); 2) the input and output messages appearing in this

FG (denoted m⃗fp(x
(L)
k ) and m⃗fp(x

(L)
k+1), respectively) and the forward estimate message m⃗fe(x

(L)
k )

refer to the linear state component only.
Actually, following the line of reasoning illustrated above for the linear state component, a

dual graphical model can be devised to represent the evaluation of the filtered pdf f(x(N)
k |y1:k)

for the nonlinear state component, provided that the linear component x
(L)
k is known for any k.

In fact, in this case, the PM (see Eq. (1.3) with Z = L)

z
(N)
k ≜ x

(L)
k+1 −A

(L)
k

(
x
(N)
k

)
x
(L)
k = f

(L)
k

(
x
(N)
k

)
+w

(L)
k , (1.10)

described by the pdf f(z(N)
k |x(N)

k ), becomes available. Consequently, a FG similar to the one
shown in Fig. 1.1-b) can be obtained by simply replacing x

(L)
k , x(L)

k+1, f(x
(L)
k+1|x

(L)
k ,x

(N)
k ) and

f(z
(L)
k |x(L)

k ,x
(N)
k ) with x

(N)
k , x(N)

k+1, f(x
(N)
k+1|x

(N)
k ,x

(L)
k ) and f(z(N)

k |x(L)
k ), respectively. Then, the
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Figure 1.2: Overall factor graph resulting from the merge of two sub-graphs, one referring to filtering
for x

(L)
k (in blue), the other one to that for x

(N)
k (in red). The equality constraint nodes introduced to

connect these subgraphs are identified by black lines. The flow of the messages along the half edges x
(L)
k

and x
(N)
k (input) and that of the messages along the half edges x

(L)
k+1 and x

(N)
k+1 (output) are indicated by

green arrows.

FGs developed for x
(L)
k and x

(N)
k can be merged by simply adding some equality constraint nodes

for the shared variables (namely, x(L)
k , x(N)

k , x(L)
k+1 and x

(N)
k+1), as shown in Fig. 1.2. This merge,

proposed for the first time in [22], can be intepreted as an instance of the more general concept
of concatenation (and, more specifically, of parallel concatenation [25]) of graphical models. Note
that this concept has been widely exploited in the field of channel coding and channel estimation
(e.g., see [18], [26], [27] and references therein). However, as far as we know, the graphical model
shown in Fig. 1.2 represents its first application to the field of filtering techniques; moreover, as
shown in the next Sections, it can provide new insights into Bayesian filtering for CLG SSMs.
Unluckily, the new FG, unlike the FGs represented in Fig. 1.1, is not cycle-free; this property
can be related to the fact that, generally speaking, filtering for x

(N)
k is not decouplable from

that for x
(L)
k . Given the FG of Fig. 1.2 and its input messages m⃗fp(x

(L)
k ) = f(x

(L)
k , y1:k−1) and

m⃗fp(x
(N)
k ) = f(x

(N)
k ,y1:k−1) (entering the FG along the half edges associated with x

(L)
k and x

(N)
k ,

respectively), we would like to derive a forward only message passing algorithm similar to the
one illustrated in Fig. 1.1-a) and generating the output messages m⃗fp(x

(L)
k+1) = f(x

(L)
k+1,y1:k) and

m⃗fp(x
(N)
k+1) = f(x

(N)
k+1,y1:k) (emerging from the FG along the half edges associated with x

(L)
k+1

and x
(N)
k+1, respectively). The computation of m⃗fp(x

(L)
k+1) and m⃗fp(x

(N)
k+1) on the basis of m⃗fp(x

(L)
k )

and m⃗fp(x
(N)
k ) and of the pdfs appearing in Fig. 1.2 requires marginalization with respect to xk.

This can still be done, even if in an approximate fashion, by applying the SPA to the FG of Fig.
1.2, provided that a proper scheduling strategy is adopted in passing the involved probabilistic
messages along the considered FG [18]. In the following Section, we show that following this
approach leads to MPF.
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1. Marginalized Particle Filtering as Message Passing

1.4 Message Passing in Marginalized Particle Filtering

In this Section we prove that the MPF technique can be interpreted as a forward only message
passing algorithm over the FG shown in Fig. 1.2 and that the equations describing its k-th
recursion result from the application of the SPA to that FG. To begin, we note that MPF
processing does not involve the full structure of our graphical model, since it does not exploit the
PM z

(N)
k (1.10). For this reason, in the following we refer to the simplified FG shown in Fig. 1.3,

which has been obtained from the one illustrated in Fig. 1.2 by removing the block representing
the transformation from (x

(L)
k ,x

(L)
k+1) to z

(N)
k and all the edges referring to the evaluation of the

last vector. As far as the input and the output messages of this FG are concerned, we assume
that the a priori information available about x

(N)
k at the beginning of the k-th recursion are

represented by the set S(N)
fp,k = {x(N)

fp,k,j , j = 1, 2, ..., Np}, collecting Np predicted particles, and
by their (uniform) weights {wfp,k,j = 1/Np, j = 1, 2..., Np}. Therefore, at the beginning of the
considered recursion, our knowledge about x

(N)
k is condensed in the particle-dependent message

m⃗fp,j

(
x
(N)
k

)
= δ
(
x
(N)
k − x

(N)
fp,k,j

)
, (1.11)

with j = 1, 2, ..., Np. The a priori information available about x
(L)
k , instead, is represented by a

set of Np Gaussian pdfs; the j-th Gaussian pdf is conveyed by the particle-dependent message

m⃗fp,j

(
x
(L)
k

)
= N

(
x
(L)
k ; η

(L)
fp,k,j ,C

(L)
fp,k,j

)
, (1.12)

providing a statistical description of x(L)
k conditioned on x

(N)
k = x

(N)
fp,k,j . From the statistical

representation of the state components illustrated above it can be easily inferred that, in developing
a message passing algorithm over the considered FG, we can focus on: a) a single particle and,
in particular, on the j-th particle x

(N)
fp,k,j ; b) on the Gaussian pdf m⃗fp,j(x

(L)
k ) associated with

that particle. Moreover, this algorithm must generate the output messages m⃗fp,j(x
(N)
k+1) and

m⃗fp,j(x
(L)
k+1), which are required to have the same functional form as m⃗fp,j(x

(N)
k ) (1.11) and

m⃗fp,j(x
(L)
k ) (1.12), respectively. As far as message scheduling is concerned, our choice is based

on the description of the MPF technique summarized in algorithm 1 of [6, Sec. II] and is
represented in Fig. 1.3, where: a) Gaussian messages (non Gaussian messages) are associated
with blue (red) arrows; b) the notation nL (nL′), nN (nN ′), FPL (FPL′), FPN (FPN ′) and
ZL is employed to represent the messages m⃗n,j(x

(L)
k ) (m⃗n,j(x

(L)
k+1)), m⃗n,j(x

(N)
k ) (m⃗n,j(x

(N)
k+1)),

m⃗fp,j(x
(L)
k ) (m⃗fp,j(x

(L)
k+1)), m⃗fp,j(x

(N)
k ) (m⃗fp,j(x

(N)
k+1)) and m⃗z,j(z

(L)
k ), respectively, passed along

the considered FG. In practice, the computation of the passed messages is accomplished in five
consecutive steps, according to the following order: 1) m⃗1,j(x

(N)
k ), m⃗2,j(x

(N)
k ); 2) m⃗1,j(x

(L)
k ),

m⃗2,j(x
(L)
k ); 3) m⃗3,j(x

(N)
k+1), m⃗fp,j(x

(N)
k+1); 4) m⃗j(z

(L)
k ), m⃗3,j(x

(L)
k ), m⃗4,j(x

(L)
k ); 5) m⃗fp,j(x

(L)
k+1). In

the following, we illustrate the aim of each step and provide the expressions of the evaluated
messages (additional mathematical details can be found in Appendix B).

1) MU for x
(N)
k - In this step, the weight of the j-th particle x

(N)
fp,k,j is updated on the basis of

yk. This requires computing

m⃗1,j

(
x
(N)
k

)
= N

(
yk; η

(N)
1,k,j

(
x
(N)
k

)
,C

(N)
1,k,j

(
x
(N)
k

))
, (1.13)

where η(N)
1,k,j(x

(N)
k ) ≜ Bk(x

(N)
k ), η

(L)
fp,k,j + hk(x

(N)
k ) and C

(N)
1,k,j(x

(N)
k ) ≜ Bk(x

(N)
k )C

(L)
fp,k,j B

T
k (x

(N)
k ) +

Ce and

m⃗2,j

(
x
(N)
k

)
= m⃗fp,j

(
x
(N)
k

)
m⃗1,j

(
x
(N)
k

)
(1.14)

= wfe,k,j δ
(
x
(N)
k − x

(N)
fp,k,j

)
; (1.15)
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Figure 1.3: Overall factor graph for the representation of the k-th recursion of MPF. The message flow
referring to the j-th particle is shown. Gaussian messages (non Gaussian) messages computed in the
considered recursion are associated with blue (red) arrows, whereas input and output messages with green
arrows; the integers 1− 10 are used to specify the adopted message scheduling.

in the last equation, the quantity3

wfe,k,j ≜ N
(
yk; η

(N)
1,k,j ,C

(N)
1,k,j

)
(1.16)

represents the new particle weight combining the a priori information about x
(N)
k with the

information provided by the new measurement; moreover,

η
(N)
1,k,j ≜ η

(N)
1,k,j

(
x
(N)
fp,k,j

)
= Bk,j η

(L)
fp,k,j + hk,j (1.17)

and
C

(N)
1,k,j ≜ C

(N)
1,k,j

(
x
(N)
fp,k,j

)
= Bk,j C

(L)
fp,k,j B

T
k,j +Ce, (1.18)

with hk,j ≜ hk(x
(N)
fp,k,j) and Bk,j ≜ Bk(x

(N)
fp,k,j). The Np particle weights {wfe,k,j} undergo normal-

ization; this produces the new weight

Wfe,k,j ≜ wfe,k,j/Λ
(w)
k (1.19)

with j = 1, 2, ..., Np, where Λ
(w)
k ≜

Np∑
j=1

wfe,k,j . Then, particle resampling with replacement is

accomplished over the set S(N)
fp,k on the basis of the weights {Wfe,k,j}. Note that, even if resampling

does not emerge from the application of SPA to the considered graph, its use, as it will become
clearer at the end of this Section, plays an important role in the generation of the new particles for
x
(N)
k+1. Moreover, it can be easily incorporated in our message passing; in fact, resampling simply

entails that the Np particles {x(N)
fp,k,j} and their associated weights {Wfe,k,j} are replaced by the

new particles {x(N)
fe,k,j} (forming the new set S(N)

fe,k ) and their uniform weights {W̃fe,k,j = 1/Np},

3In evaluating this weight, the factor [det(C
(N)
1,k,j)]

−P/2 appearing in the expression of the involved Gaussian pdf is
usually neglected, since this entails a negligible loss in estimation accuracy.
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1. Marginalized Particle Filtering as Message Passing

respectively. Consequently, after resampling, m⃗2(x
(N)
k ) (1.15) is replaced by

m⃗2,j

(
x
(N)
k

)
= δ
(
x
(N)
k − x

(N)
fe,k,j

)
. (1.20)

and the set of Gaussian messages {m⃗fp,j(x
(L)
k )} (see (1.12)) is properly reordered; this ensures

that, after reordering, the message m⃗fp,j(x
(L)
k ) is associated with x

(N)
fe,k,j , and that the messages

belonging to that set and referring to all the discarded particles are not propagated to the next
steps.

2) First MU for x
(L)
k - In this step our statistical knowlege about x

(L)
k is updated on the basis

of yk; this requires the computation of the messages

m⃗1,j

(
x
(L)
k

)
= N

(
x
(L)
k ; η

(L)
1,k,j ,C

(L)
1,k,j

)
(1.21)

and

m⃗2,j

(
x
(L)
k

)
= m⃗fp,j(x

(L)
k ) m⃗1,j(x

(L)
k ) (1.22)

= N
(
x
(L)
k ; η

(L)
2,k,j ,C

(L)
2,k,j

)
. (1.23)

The covariance matrix C
(L)
p,k,j and the mean vector η(L)p,k,j (with p = 1 and 2) are evaluated on the

basis of the associated precision matrices

W
(L)
1,k,j ≜

(
C

(L)
1,k,j

)−1
= BT

k,j WeBk,j (1.24)

and
W

(L)
2,k,j ≜

(
C

(L)
2,k,j

)−1
= W

(L)
fp,k,j +W

(L)
1,k,j , (1.25)

and of the associated transformed mean vectors

w
(L)
1,k,j ≜ W

(L)
1,k,j η

(L)
1,k,j = BT

k,j We

(
yk − hk,j

)
(1.26)

and
w

(L)
2,k,j ≜ W

(L)
2,k,j η

(L)
2,k,j = w

(L)
fp,k,j +w

(L)
1,k,j , (1.27)

respectively; here, We ≜ C−1
e , W(L)

fp,k,j ≜ (C
(L)
fp,k,j)

−1 and w
(L)
fp,k,j ≜ W

(L)
fp,k,jη

(L)
fp,k,j .

3) TU for x
(N)
k - This step aims at generating the j-th particle for x

(N)
k+1 and its associated

weight; both these information are conveyed by the message (see Fig. 1.3)

m⃗3,j

(
x
(N)
k+1

)
=

∫ ∫
f
(
x
(N)
k+1

∣∣x(L)
k ,x

(N)
k

)
· m⃗2,j

(
x
(L)
k

)
m⃗2,j

(
x
(N)
k

)
dx

(L)
k dx

(N)
k (1.28)

= N
(
x
(N)
k+1; η

(N)
3,k,j ,C

(N)
3,k,j

)
, (1.29)

where
η
(N)
3,k,j ≜ A

(N)
k,j η

(L)
2,k,j + f

(N)
k,j , (1.30)

C
(N)
3,k,j ≜ C(N)

w +A
(N)
k,j C

(L)
2,k,j

(
A

(N)
k,j

)T
, (1.31)

A
(N)
k,j ≜ A

(N)
k (x

(N)
fe,k,j) and f

(N)
k,j ≜ f

(N)
k (x

(N)
fe,k,j). Note that, in principle, we should set m⃗fp,j(x

(N)
k+1) =

m⃗3,j(x
(N)
k+1) (see Fig. 1.3). However, as already mentioned above, the output message m⃗fp,j(x

(N)
k+1)

is required to have the same functional form as m⃗fp,j(x
(N)
k ) (1.11). This result can be achieved

by a) sampling4 the Gaussian function N (x
(N)
k+1; η

(N)
3,k,j ,C

(N)
3,k,j) (see Eq. (1.29)), that is drawing a

sample x
(N)
fp,k+1,j from it and b) assigning to the new particle x

(N)
fp,k+1,j a probability wfp,k+1,j equal

4Artificial noise can be introduced in the generation of this particle in order to mitigate the so called degeneracy problem
[2, 28].
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1.4. Message Passing in Marginalized Particle Filtering

to the weight W̃fe,k,j = 1/Np (originating from resampling). Note that repeating this procedure
for any j generates the new set S(N)

fp,k+1 = {x(N)
fp,k+1,j}; the j-th particle of this set is conveyed by

the message
m⃗fp,j

(
x
(N)
k+1

)
= δ
(
x
(N)
k+1 − x

(N)
fp,k+1,j

)
. (1.32)

This message is also used in the TU for x
(L)
k , as illustrated in the next step.

4) Second MU for x
(L)
k - This step aims at accomplishing an additional MU for x

(L)
k (on the

basis of the PM z
(L)
k (1.9)) and, then, at generating the output message m⃗fp,j(x

(L)
k+1). In this step,

the messages
m⃗j

(
z
(L)
k

)
= f

(
z
(L)
k

∣∣x(N)
fe,k,j ,x

(N)
fp,k+1,j

)
= δ
(
z
(L)
k − z

(L)
k,j

)
, (1.33)

with z
(L)
k,j ≜ x

(N)
fp,k+1,j − f

(N)
k,j ,

m⃗3,j

(
x
(L)
k

)
= N

(
x
(L)
k ; η

(L)
3,k,j ,C

(L)
3,k,j

)
, (1.34)

and

m⃗4,j

(
x
(L)
k

)
= m⃗2,j(x

(L)
k )m⃗3,j(x

(L)
k ) (1.35)

= N
(
x
(L)
k ; η

(L)
4,k,j ,C

(L)
4,k,j

)
, (1.36)

are generated. The covariance matrix C
(L)
p,k,j and the mean vector η(L)p,k,j (with p = 3 and 4) are

evaluated on the basis of the associated precision matrices W
(L)
3,k,j = (A

(N)
k,j )

TW
(N)
w A

(N)
k,j and

W
(L)
4,k,j ≜

(
C

(L)
4,k,j

)−1
= W

(L)
2,k,j +

(
A

(N)
k,j

)T
W(N)

w A
(N)
k,j , (1.37)

and the associated transformed mean vectors w
(L)
3,k,j = (A

(N)
k,j )

T W
(N)
w z

(L)
k,j and

w
(L)
4,k,j ≜ W

(L)
4,k,j η

(L)
4,k,j = w

(L)
2,k,j +

(
A

(N)
k,j

)T
W(N)

w z
(L)
k,j , (1.38)

respectively; here, W(N)
w ≜ [C

(N)
w ]−1.

5) TU for x
(L)
k - In this step, the message

m⃗fp,j

(
x
(L)
k+1

)
=

∫ ∫
f
(
x
(L)
k+1

∣∣x(L)
k ,x

(N)
k

)
· m⃗2,j(x

(N)
k ) m⃗4,j

(
x
(L)
k

)
dx

(L)
k dx

(N)
k (1.39)

= N
(
x
(L)
k+1; η

(L)
fp,k+1,j ,C

(L)
fp,k+1,j

)
, (1.40)

is computed; here,
η
(L)
fp,k+1,j ≜ A

(L)
k,j η

(L)
4,k,j + f

(L)
k,j , (1.41)

C
(L)
fp,k+1,j ≜ C(L)

w +A
(L)
k,j C

(L)
4,k,j

(
A

(L)
k,j

)T
, (1.42)

f
(L)
k,j ≜ f

(L)
k (x

(N)
fe,k,j) and A

(L)
k,j ≜ A

(L)
k (x

(N)
fe,k,j). Since the message m⃗fp,j(x

(L)
k+1) (1.40) is Gaussian and

the weight associated with it is W̃fe,k,j = 1/Np, the statistical representation generated by the SPA
for x

(L)
k+1 is a Np-component Gaussian mixture (GM); note that all its components have the same

weight, since resampling is always used in step 1). In fact, if resampling was not accomplished in
the k-th recursion, the weight of the j-th component of this GM would be proportional to Wfe,k,j

(1.16) (i.e., to the weight assigned to the j-th particle before resampling); this would unavoidably
raise the problem of sampling a GM with unequally weighted components in generating the
particle set S(N)

fp,k+1 and that of properly handling the resulting PMs {z(L)k,j }. These considerations
motivate the use of resampling in each recursion, independently of the effective sample size [2]
characterizing the particle set S(N)

fp,k .
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1. Marginalized Particle Filtering as Message Passing

Step 5) concludes the message passing accomplished within the k-th recursion. Note that
this procedure needs a proper initialization. In practice, before starting the first recursion
(corresponding to k = 1), the set S(N)

fp,1 is generated for x
(N)
1 sampling the pdf f(x(N)

1 ) =∫
f(x1)dx

(L)
1 and the same weight wfp,1 = 1/Np and Gaussian model N (x

(L)
1 ; η

(L)
fp,1,C

(L)
fp,1) for x(L)

1

are assigned to each particle.
The processing tasks accomplished in the message passing procedure derived above are

summarized in Algorithm 1 (where T denotes the overall duration of the observation interval).
Note that our FG-based formulation of MPF, unlike the one appearing in [6, Par. II-D], is mainly
expressed in terms of precision matrices and transformed mean vectors; we believe that this makes
it more compact and easier to interpret.

Algorithm 1: Marginalized particle filtering

1 Initialisation: For j = 1 to Np: sample the pdf f(x(N)
1 ) to generate the particle x

(N)
fp,1,j , and assign

the weight wfp,1 = 1/Np and the Gaussian N (x
(L)
1 ; η

(L)
fp,1,C

(L)
fp,1) to it (the generated particles are

collected in the set S(N)
fp,1).

2 Filtering: For k = 1 to T :
a- MU for x

(N)
k : For j = 1 to Np: compute η(N)

1,k,j (1.17) and C
(N)
1,k,j (1.18), and the weight wfe,k,j

(1.16).
b- Normalization of particle weights: For j = 1 to Np: compute the normalised particle weights
{Wfe,k,j} according to (1.19).

c- Resampling with replacement : For j = 1 to Np: generate the new particle x
(N)
fe,k,j by resampling

with replacement over the particle set S(N)
fp,k and assign the new weight W̃fe,k,j = 1/Np to it. Then,

reorder the associated set of Gaussian models for the linear state component accordingly.
d- First MU for x

(L)
k : For j = 1 to Np: compute W

(L)
1,k,j (1.24) and w

(L)
1,k,j (1.26) ; then, compute

W
(L)
2,k,j (1.25), w(L)

2,k,j (1.27), C(L)
2,k,j = [W

(L)
2,k,j ]

−1 and η(L)2,k,j = C
(L)
2,k,jw

(L)
2,k,j .

e- TU for x
(N)
k - For j = 1 to Np: compute η(N)

3,k,j (1.30) and C
(N)
3,k,j (1.31); then, sample the pdf

N (x
(N)
k ; η

(N)
3,k,j ,C

(N)
3,l,j) to generate the new particle x

(N)
fp,k+1,j and assign the weight

wfp,k+1,j = 1/Np to it.
f- Second MU for x

(L)
k - For j = 1 to Np: compute z

(L)
k,j (1.33), W(L)

4,k,j (1.37) and w
(L)
4,k,j (1.38) ;

g- TU for x
(L)
k - For j = 1 to Np: compute η(L)fp,k+1,j (1.41) and C

(L)
fp,k+1,j (1.42).

Finally, it is worth mentioning that: 1) the forward estimate of xk is expressed by the pdf

f̃(xk|y1:k) ≜
Np∑
j=1

W̃fe,k,j δ
(
x
(N)
k − x

(N)
fe,k,j

)
m⃗4,j

(
x
(L)
k

)
, (1.43)

that represents an approximation of the filtered pdf f(xk|y1:k); in the k-th recursion, estimates
of x(N)

k and x
(L)
k can be evaluated as x̂

(N)
k =

∑Np

j=1Wfe,k,j x
(N)
fp,k,j (see Eqs. (1.15) and (1.19)) and

as x̂
(L)
k =

∑Np

j=1 W̃fe,k,jη
(L)
4,k,j , respectively.

1.5 Message Passing in Dual Marginalized Particle Filtering

In MPF the estimation of the linear state component can benefit from the availability of PMs in
particle form; the estimation of the nonlinear state component, instead, relies on real measurements
only. However, thanks to the symmetric structure of the FG illustrated in Fig. 1.2, a different
solution, based on the dual graphical model shown in Fig. 1.4, can be developed for the considered
filtering problem. Readers can easily verify that:

1) In the new graphical model, PMs can be evaluated for the nonlinear state component only;
on the contrary, a single MU can be accomplished for the linear state component.
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Figure 1.4: Overall factor graph for the representation of the k-th recursion of DMPF. The message flow
referring to the j-th particle is shown. Gaussian messages (non Gaussian) messages computed in the
considered recursion are associated with blue (red) arrows, whereas input and output messages with green
arrows; the integers 1 − 9 are used to specify the message scheduling adopted in the derivation of the
algorithm.

2) In extracting the FG of Fig. 1.4 from that shown in Fig. 1.2, the position of the equality
constraint nodes to which the function node f(yk|x

(N)
k , x

(L)
k ) is connected has been exchanged

with that of the equality constraint nodes appearing on their left; this modification is mainly
motivated by the way the forward predictions m⃗fp,j(x

(L)
k ) and m⃗fp,j(x

(N)
k ), and the measurement

yk are employed in evaluation of the PM z
(N)
k (1.10).

Based on the FG shown in Fig. 1.4, a new filtering algorithm dubbed dual MPF (DMPF),
can be developed by following the same approach as MPF. The message scheduling adopted in
DMPF for the computation of the output messages m⃗fp,j(x

(N)
k+1) and m⃗fp,j(x

(L)
k+1) is illustrated

in Fig. 1.4 (the notation employed for most of the involved messages is the same as Fig. 1.3;
the only new acronym is ZN , representing the message m⃗z,j(z

(N)
k )). In practice, the ordered

SPA-based computation of the passed messages can be organized according to the following five
steps: 1) m⃗1,j(x

(L)
k ), m⃗2,j(x

(L)
k ); 2) m⃗1,j(x

(N)
k ), m⃗2,j(x

(N)
k ); 3) m⃗3,j(x

(L)
k+1); 4) m⃗j(z

(N)
k ), m⃗3,j(x

(N)
k ),

m⃗4,j(x
(N)
k ), m⃗fp,j(x

(L)
k+1); 5) m⃗5,j(x

(N)
k+1), m⃗fp,j(x

(N)
k+1). In the following, we illustrate the meaning

of each step and provide the expressions of the computed messages; various mathematical details
about the derivation of these expressions can be found in Appendix B.

1) MU for x(L)
k - This step is the same as step 2) of MPF, and involves the computation of the

messages m⃗1,j(x
(L)
k ) and m⃗2,j(x

(L)
k ); these messages are still expressed by Eqs. (1.21) and (1.23),

respectively.
2) First MU for x

(N)
k - This step is the same as step 1) of MPF, and involves the computation

of the messages m⃗1,j(x
(N)
k ) and m⃗2,j(x

(N)
k ), which are still expressed by Eqs. (1.13) and (1.14),

respectively.
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1. Marginalized Particle Filtering as Message Passing

3) TU for x
(L)
k - This step aims at generating the message (see Fig. 1.4)

m⃗3,j

(
x
(L)
k+1

)
=

∫
f
(
x
(L)
k+1

∣∣x(L)
k ,x

(N)
k

)
· m⃗fp,j

(
x
(N)
k

)
m⃗2,j

(
x
(L)
k

)
dx

(L)
k dx

(N)
k (1.44)

= N
(
x
(L)
k+1; η

(L)
3,k,j ,C

(L)
3,k,j

)
, (1.45)

conveying a new prediction for x
(L)
k ; here,

η
(L)
3,k,j ≜ Ā

(L)
k,j η

(L)
2,k,j + f̄

(L)
k,j , (1.46)

C
(L)
3,k,j ≜ C(L)

w + Ā
(L)
k,j C

(L)
2,k,j

(
Ā

(L)
k,j

)T
, (1.47)

f̄
(L)
k,j ≜ f

(L)
k (x

(N)
fp,k,j) and Ā

(L)
k,j ≜ A

(L)
k (x

(N)
fp,k,j).

4) Second MU for x
(N)
k - In this step a new weight, denoted Pfe,k,j , is evaluated for the j-th

particle x
(N)
fp,k,j ; then, particle resampling with replacement is accomplished over the set S(N)

fp,k

on the basis of the weights {Pfe,k,j}. In terms of message passing, this requires computing the
messages m⃗j(z

(N)
k ), m⃗3,j(x

(N)
k ) and m⃗4,j(x

(N)
k ). The message m⃗j(z

(N)
k ) conveys the statistical

information about the PM z
(N)
k and is given by

m⃗j

(
z
(N)
k

)
= N

(
z
(N)
k ; η

(N)
z,k,j ,C

(N)
z,k,j

)
, (1.48)

where
η
(N)
z,k,j = f̄

(L)
k,j + Ā

(L)
k,j

(
η
(L)
2,k,j − η

(L)
fp,k,j

)
, (1.49)

and
C

(N)
z,k,j = C(L)

w + Ā
(L)
k,j

[
C

(L)
2,k,j −C

(L)
fp,k,j

](
Ā

(L)
k,j

)T
. (1.50)

The message m⃗3,j(x
(N)
k ) is evaluated as5 (see Fig. 1.4)

m⃗3,j

(
x
(N)
k

)
=

∫ ∫
m⃗j

(
z
(N)
k

)
· m⃗fp,j

(
x
(N)
k

)
f
(
z
(N)
k

∣∣x(N)
k

)
dz

(N)
k dx

(N)
k (1.51)

= D
(N)
1,k,j · exp

[1
2

((
η
(N)
1,k,j

)T
w

(N)
1,k,j −

(
η
(N)
z,k,j

)T
w

(N)
z,k,j −

(
f̄
(L)
k,j

)T
W(L)

w f̄
(L)
k,j

)]
≜ pfe,k,j(1.52)

and conveys the unnormalized weight pfe,k,j for the j-th particle x
(N)
fp,k,j ; here,

w
(N)
1,k,j ≜ W

(N)
1,k,jη

(N)
1,k,j = w

(N)
z,k,j +W(L)

w f̄
(L)
k,j , (1.53)

W
(N)
1,k,j ≜

(
C

(N)
1,k,j

)−1
= W

(N)
z,k,j +W(L)

w , (1.54)

w
(N)
z,k,j ≜ W

(N)
z,k,jη

(N)
z,k,j , W

(N)
z,k,j ≜ (C

(N)
z,k,j)

−1, W(L)
w ≜ [C

(L)
w ]−1, D(N)

1,k,j ≜ [det(C̃
(N)
k,j )]

−DL/2 and

C̃
(N)
k,j ≜ C

(N)
z,k,j +C

(L)
w . Note that the weight pfe,k,j (1.52) represents the correlation between the

pdf m⃗j(z
(N)
k ) evaluated on the basis of the definition of z(N)

k (1.10) and the pdf originating from
the fact that this quantity is expected to equal the random vector f̄

(L)
k,j +w

(L)
k ; for this reason, it

expresses the degree of similarity between these two pfds.
Finally, the message m⃗4,j(x

(N)
k ) is computed as

m⃗4,j

(
x
(N)
k

)
= m⃗2,j

(
x
(N)
k

)
m⃗3,j

(
x
(N)
k

)
= p̃fe,k,j δ

(
x
(N)
k − x

(N)
fp,k,j

)
, (1.55)

5In our computer simulations the factor D(N)
1,k,j appearing in the following formula has been always neglected, since it

negligibly influences estimation accuracy.
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where (see Eqs. (1.15) and (1.52))

p̃fe,k,j = pfe,k,j · wfe,k,j . (1.56)

The particle weights {p̃fe,k,j} undergo normalization; this produces the weight

Pfe,k,j ≜ p̃fe,k,j/Λ
(p)
k , (1.57)

with j = 1, 2, ..., Np, where Λ
(p)
k ≜

∑Np

j=1 pfe,k,j . Particle resampling with replacement is accom-

plished now over the particle set S(N)
fp,k = {x(N)

fp,k,j} on the basis of the particle weights {Pfe,k,j}, so
that the Np predicted particles and their associated weights are replaced by the new particles
{x(N)

fe,k,j} and their weights {P̃fe,k,j = 1/Np}, respectively. After resampling m⃗4(x
(N)
k ) (1.55) is

replaced by
m⃗4,j

(
x
(N)
k

)
= δ
(
x
(N)
k − x

(N)
fe,k,j

)
(1.58)

and the set of messages {m⃗3,j(x
(L)
k+1)} (see Eq. (1.45)) is reordered accordingly, so providing the

set of output messages {m⃗fp,j(x
(L)
k+1)}.

5) TU for x
(N)
k - This step aims at generating the j-th particle for x

(N)
k+1 and its associated

weight. These information are conveyed by the message

m⃗5,j

(
x
(N)
k+1

)
=

∫ ∫
f
(
x
(N)
k+1

∣∣x(L)
k ,x

(N)
k

)
· m⃗2,j

(
x
(N)
k

)
m⃗2,j

(
x
(L)
k

)
dx

(L)
k dx

(N)
k (1.59)

= N
(
x
(N)
k+1; η

(N)
5,k,j ,C

(N)
5,k,j

)
(1.60)

in Gaussian form and by the message m⃗fp,j(x
(N)
k+1) in particle form; here,

η
(N)
5,k,j ≜ A

(N)
k,j η

(L)
2,k,j + f

(N)
k,j , (1.61)

C
(N)
5,k,j ≜ C(N)

w +A
(N)
k,j C

(L)
2,k,j

(
A

(N)
k,j

)T
, (1.62)

A
(N)
k,j ≜ A

(N)
k (x

(N)
fe,k,j) and f

(N)
k,j ≜ f

(N)
k (x

(N)
fe,k,j). Given the Gaussian function N (x

(N)
k+1; η

(N)
5,k,j ,C

(N)
5,k,j)

(1.60), the new particle x
(N)
fp,k+1,j is generated by sampling it and the weight wfp,k+1,j = 1/Np is

assigned to this particle. Then, the message m⃗fp,j(x
(N)
k+1) is computed as

m⃗fp,j(x
(N)
k+1) = δ

(
x
(N)
k+1 − x

(N)
fp,k+1,j

)
. (1.63)

This concludes the k-th recusion of DMPF. As far as its initialization is concerned, it can be
accomplished exactly in the same way as in MPF.

The scheduling illustrated in the derivation of the DMPF algorithm mimicks the one adopted
in MPF; however, it can be modified for the following reasons. From Eqs. (1.49)–(1.50) it is
easily inferred that the computation of the message m⃗j(z

(N)
k ) (1.48) (and, consequently, of the

messages m⃗3,j(x
(N)
k ) (1.52) and m⃗4,j(x

(N)
k ) (1.55)) can be accomplished as soon as the message

m⃗2,j(x
(L)
k ) becomes available (i.e., as soon as step 1) is over). For this reason, in implementing

the k-th recursion of DMPF, the involved messages can be computed according to following
(alternative) order (different from the one indicated in Fig. 1.4): 1) m⃗1,j(x

(L)
k ), m⃗2,j(x

(L)
k );

2) m⃗1,j(x
(N)
k ), m⃗2,j(x

(N)
k ); 3) m⃗j(z

(N)
k ), m⃗3,j(x

(N)
k ), m⃗4,j(x

(N)
k ); 4) m⃗3,j(x

(L)
k+1), m⃗fp,j(x

(L)
k+1); 5)

m⃗5,j(x
(N)
k+1), m⃗fp,j(x

(N)
k+1). Note also that, if this scheduling is adopted, the particle x(N)

fp,k,j is replaced

by its counterpart x(N)
fe,k,j (available after particle resampling) in the evaluation of η(L)3,k,j (1.46) and

C
(L)
3,k,j (1.47). The DMPF technique based on the last scheduling is summarized in Algorithm 2.
Finally, it is interesting to point out that DMPF, unlike MPF, may not achieve accurate

state estimation in the special case of CLG SSM investigated in [6, Par. III.B], i.e. when the
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1. Marginalized Particle Filtering as Message Passing

Algorithm 2: Dual marginalized particle filtering
1 Initialisation: same as step 1 of MPF.
2 Filtering: For k = 1 to T :

a- MU for x
(L)
k : same as step 2d of Alg. 1.

b- First MU for x
(N)
k : same as step 2a of Alg. 1.

c- Second MU for x
(N)
k : For j = 1 to Np: compute η(N)

z,k,j (1.49) and C
(N)
z,k,j (1.50), the weight p̃fe,k,j

(1.52) and the overall particle weight pfe,k,j (1.56).
d- Normalization of particle weights: For j = 1 to Np: compute the normalised particle weights
{Pfe,k,j} according to (1.57).

e- Particle resampling : For j = 1 to Np: generate the new particle x
(N)
fe,k,j by resampling with

replacement over the particle set S(N)
fp,k on the basis of the weights {Pfe,k,j} and assign the new

weight wfe,k,j = 1/Np to it. Then, reorder the message set {m⃗2,j(x
(L)
k )} accordingly.

f- TU for x
(L)
k : For j = 1 to Np: compute η(L)3,k,j (1.46) and C

(L)
3,k,j (1.47) (in doing so, replace f̄

(L)
k,j

and Ā
(L)
k,j with f

(L)
k,j ≜ f

(L)
k (x

(N)
fe,k,j) and A

(L)
k,j ≜ A

(L)
k (x

(N)
fe,k,j), respectively); then, set

η
(L)
fp,k+1,j = η

(L)
3,k,j and C

(L)
fp,k+1,j = C

(L)
3,k,j .

g- TU for x
(N)
k : For j = 1 to Np: compute η(N)

5,k,j (1.61) and C
(N)
5,k,j (1.62); then, sample the pdf

N (x
(L)
k ; η

(N)
5,k,j ,C

(N)
5,k,j) to generate the new particle x

(N)
fp,k+1,j and assign the weight

wfp,k+1,j = 1/Np to it.

measurement equation (1.4) depends on the nonlinear state component only (in other words,
when Bk(x

(N)
k ) = 0P,DL

in Eq. (1.4)); in fact, in this case, new information about the linear state
component can be acquired through the PM z

(L)
k (1.9) only and such a PM is unavailable in

DMPF. Dually, MPF, unlike DMPF, may suffer from the same problem when the measurement
equation depends on the linear state component only (i.e., when hk(x

(N)
k ) = 0P in Eq. (1.4)), so

that the edge connecting f(yk|x
(N)
k , x

(L)
k ) to x

(N)
k in Fig. 1.4 is missing (since f(yk|x

(N)
k , x

(L)
k ) =

f(yk|x
(L)
k )). Note also that, in the last case, the first MU for x

(N)
k (i.e., step 2b of Algorithm 2)

is not accomplished in DMPF; in practice, this means that m⃗1,j(x
(N)
k ) is not computed and that

m⃗2,j(x
(N)
k ) = m⃗fp,j(x

(N)
k ).

1.6 Simplifying Message Passing in Filtering Algorithms

The message passing procedures illustrated in the previous two Sections show the inner structure
of the processing accomplished by MPF and DMPF within each recursion. Therefore, they pave
the way for the development of new filtering algorithms based on them. In this Section we first
formulate some simple rules for simplifying the computation of messages in MPF and DMPF;
then, we discuss where these rules can be employed. It is worth stressing that some methods
for reducing MPF computational complexity [29] have been already proposed in the technical
literature [10], [30], [11]. More specifically, the method proposed in [10] and [30] is based on
representing the particle set for x

(N)
k as a single particle (that corresponds to the center of mass

of the set itself), so that a single Kalman filter can be employed for the linear state component.
Unluckily, this simplified MPF algorithm works only if the posterior distribution of x

(N)
k is

unimodal. Its generalization to the case in which the posterior distribution of x(N)
k is multimodal

has been illustrated in [11]. The proposed technique is based on: a) partitioning the particles
available in the k-th recursion into Gk groups or clusters (the parameter Gk is required to equal
the number of modes of the posterior density of x(N)

k ); b) representing each group through a
single particle that corresponds to the center of mass of the group itself. This allows to reduce the
overall number of Kalman filters from Np to Gk. However, the implementation of this technique
requires solving the following two specific problems: a) identifying the number of modes of the
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1.6. Simplifying Message Passing in Filtering Algorithms

posterior distribution of x(N)
k ; b) partitioning the particles into clusters according to a grouping

method in each recursion. Unluckily, solutions to these problems have not been proposed in [11].
We believe that, generally speaking, the following three simple rules can be exploited to

simplify message passing in MPF and DMPF:
R1 - A set of Np equal weight particles {x(N)

j ; j = 0, 1, ..., Np− 1} can be represented through

its center of mass x̄(N) ≜
∑Np−1

j=0 x
(N)
j /Np (this rule is also adopted in [30] and [11]).

R2 - A GM fGM
(
x(L)

)
having Np equal weight components {N (x(L); η

(L)
j ,C

(L)
j )} and repre-

senting the statistical model for the linear state component can be approximated through its
projection onto the (single) Gaussian pdf fG

(
x(L)

)
= N

(
x(L); ηG,CG

)
, where6 (e.g., see [31, Sec.

IV])

ηG ≜
Np−1∑
j=0

η
(L)
j /Np (1.64)

and
CG = CA − ηG

(
ηG
)T

+Ση (1.65)

with Ση ≜ (1/Np)
∑Np−1

j=0 η
(L)
j

(
η
(L)
j

)T and

CA =

Np−1∑
j=0

C
(L)
j /Np. (1.66)

R3 - The GM fGM
(
x(L)

)
defined in R2 can be also approximated through a Np-component

GM, whose Gaussian components have the same means as those of fGM
(
x(L)

)
, but a common

covariance matrix, expressed by CA (1.66).
In practice, rule R1 can be employed in the MPF/DMPF formulas involving functions (f (L)k (·)

, f (N)
k (·) or hk(·)) and/or matrices (A(L)

k (·), A(N)
k (·) or Bk(·)) depending on x

(N)
k , in order to

make the contribution of such terms particle-independent. From a message passing viewpoint,
this corresponds to replacing the set of equal weight messages {m⃗j(x

(N)) = δ(x(N) − x
(N)
j )} (e.g.,

see m⃗fp,j(x
(N)
k ) (1.11)) with the single particle-independent message m⃗(x(N)) = δ(x(N) − x̄(N)).

Rules R2 and R3, instead, can be exploited to simplify the processing tasks involving x
(L)
k , which

is represented, in any step of MPF/DMPF, through a Np- component GM. From a message
passing viewpoint, R2 (R3) corresponds to replacing a set of Gaussian messages {m⃗j(x

(L)) =

N (x(L); η
(L)
j ,C

(L)
j )} (associated with particles having the same weights; e.g., see m⃗fp,j(x

(L)
k )

(1.12)) with the (particle-independent) message m⃗(x(L)) = N (x(L); ηG,CG) (with the structurally
simpler set {m⃗j(x

(L)) = N (x(L); η
(L)
j ,CA)}). Note also that, generally speaking, R2 should not

be used if the pdf of x(L) is multimodal.
In principle, a substantially complexity reduction can be achieved by reducing the overall

number of Cholesky decompositions and matrix inversions required by MPF/DMPF in their
k-recursion. Note that, on the one hand, the former are computed by MPF and DMPF in the
generation of the new particle set S(N)

fp,k+1 (and involve the Np matrices {C(L)
3,k,j} (1.31) and {C(L)

5,k,j}
(1.62), respectively). On the other hand, the latter are needed to compute: a) the Np matrices
{W(N)

1,k,j} (employed in step 2-a of Alg. 1 and step 2-b of Alg. 2 for the computation of particle

weights; see Eq. (1.16)); b) the Np matrices {W(L)
fp,k,j} (employed in step 2-d of Alg. 1 and step

2-a of Alg. 2; see Eqs. (1.25) and (1.27)); c) the Np matrices {C(L)
2,k,j} (employed in step 2-e of

Alg. 1 and step 2-f of Alg. 2; see Eqs. (1.31) and (1.47), respectively); d) the Np matrices {C(L)
4,k,j}

employed in step 2-g of Alg. 1 (see Eq. (1.42)); e) the Np matrices {C(L)
4,k,j} employed in step 2-g

6Note that the pdf transformations based on rules R2 and R3 preserve both the mean and the covariance of the
considered GM.
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1. Marginalized Particle Filtering as Message Passing

of Alg. 1 (see Eq. (1.42)); f) the Np matrices W
(N)
z,k,j and C

(N)
1,k,j required in the computation of

the PM-based particle weights in step 2-c of Alg. 2 (see Eqs. (1.50), (1.54) and (1.52)).
Unluckily, no mathematical method is available in the technical literature for a priori assessing

the impact of any simplification on estimation accuracy, because of the highly nonlinear behavior
of the two considered algorithms; for this reason, for any SSM, the loss in estimation accuracy due
to simplifications based on the rules R1-R3 can be assessed only via computer simulations. As a
matter of fact, our simulation simulation results have evidenced that the performance degradation
originating from the adoption of the three rules illustrated above is highly dependent on the
structure of the considered SSM.

1.7 Numerical Results

In this Section, we first compare, in terms of accuracy and computational load, MPF, DMPF
and simplified versions of both algorithms for a specific unimodal CLG SSM. Then, we consider a
simple SSM characterized by a bimodal distribution of system state and analyse the impact of
specific simplifications adopted in MPF/DMPF processing.

1.7.1 Unimodal state space model

The CLG SSM considered in this Section (and denoted SSM#1 in the following) refers to an
agent moving on a plane and whose state xk in the k-th observation interval is defined as
xk ≜ [pTk ,v

T
k ]
T , where pk ≜ [px,k, py,k]

T and vk ≜ [vx,k, vy,k]
T represent the agent position and

its velocity, respectively (their components are expressed in m and in m/s, respectively). As far
as the state update equations are concerned, we assume that the agent velocity is approximately
constant within each sampling interval and the model describing its time evolution is obtained by
including the contribution of a position- and velocity-dependent force in a first-order autoregressive
model (characterized by the forgetting factor ρ, with 0 < ρ < 1); therefore, the dynamic model

vk+1 = ρvk +
(
1− ρ

)
nv,k + Ts a

(
pk
)
, (1.67)

is used for velocity; here, {nv,k} is an additive white Gaussian noise (AWGN) process (whose
elements are characterized by the covariance matrix I2), a

(
pk
)

is the acceleration resulting from
the applied force and T is the sampling interval. Consequently, the dynamic model

pk+1 = pk + vk · Ts +
1

2
T 2
s a
(
pk
)
+ np,k (1.68)

can be employed for the position of the considered agent; here, {np,k} is an AWGN process (whose
elements are characterized by the covariance matrix σ2pI2), that accounts for model inaccuracy.
We also assume that the position-dependent component of the force acting on the agent points
towards the origin, whereas its velocity-dependent component represents a resistance to the
motion of the agent; therefore, the resulting acceleration is expressed as

a
(
pk
)
= −a0up,k fp

(∥∥pk∥∥)− ã0uv,k fv
(∥∥vk∥∥), (1.69)

where a0 and ã0 are scale factors (in m/s2), up,k ≜ pk/
∥∥pk∥∥ (uv,k ≜ vk/

∥∥vk∥∥) is the versor
associated with pk (vk) and fp

(
p
)

( fv
(
v
)
) is a dimensionless function expressing the dependence

of the given acceleration on the distance of the agent from the origin (on the intensity of its
velocity). Moreover, the models fp(x) = x/d0 and fv(x) = (x/v0)

3 are adopted, where d0 (v0) is
a reference distance (reference velocity); note that such models are continuous and differentiable,
and contain a single parameter.

In our model, noisy and unbiased measurements are available for position only; therefore, the
measurement vector yk is expressed as

yk = pk + ek, (1.70)
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where {ek} is an AWGN process, whose elements are characterized by the covariance matrix
σ2eI2. Then, it is easy to show that, if we set x

(L)
k = pk and x

(N)
k = vk, the state equation (1.67)

((1.68)) and the measurement equation (1.70) can been interpreted as instances of (1.3) with
Z = N ((1.3) with Z = L) and (1.4), respectively.

For SSM#1, we have run four filtering algorithms, namely MPF, a simplified version of MPF
(called SMPF), DMPF and a simplified version of DMPF (called SDMPF). Both simplified
algorithms are based on the approach illustrated in [30]; in other words, SMPF (SDMPF) results
from the application of rule R1 only (see Section 1.6) to steps 2-d, 2-f and 2-g of Algorithm
1 (steps 2-a and 2-f of Algorithm 2). This means that the two MUs and the TU (the MU and
the TU) referring to the linear state component are accomplished for a single particle in MPF
(DMPF); in the k-th interval, this particle is evaluated as

x̄
(N)
fx,k =

Np−1∑
j=0

x
(N)
fx,k,j/Np (1.71)

and represents the center of mass the particle set {x(N)
fx,k,j} (with x = p or e); consequently, the

particle dependent quantities Bk,j , hk,j , f
(N)
k,j , A(N)

k,j , A(L)
k,j and f

(L)
k,j appearing in the formulas of

both MPF and DMPF are all evaluated for x
(N)
k = x̄

(N)
fx,k only.

In our computer simulations, the estimation accuracy of the considered filtering methods
has been assessed by evaluating the root mean square error (RMSE) of state estimates. More
specifically, two RMSEs, namely RMSEL(alg) and RMSEN (alg) have been computed for any
filtering technique (here, ‘alg’ denotes the algorithm these parameters refer to); in practice,
RMSEL(alg) (RMSEN (alg)) represents the square root of the average mean square error (MSE)
evaluated for the two elements of the linear (nonlinear) state component; this distinction is
important since, as evidenced by our simulation results, the values taken on by these two RMSEs
for a given SSM can be quite different. Our assessment of computational requirements is based,
instead, on assessing the average execution time required over an observation interval lasting
T = 300 Ts s (this quantity is denoted ET(alg) in the following).

In our computer simulations, the following values have been selected for the parameters of the
considered SSM: ρ = 0.99, Ts = 0.1 s, σp = 1 · 10−3 m, σe = 5 · 10−2 m, a0 = 1.5 m/s2, d0 = 0.5
m, ã0 = 0.05 m/s2 and v0 = 1 m/s. Moreover, the initial position p0 ≜ [px,0, py,0]

T and the initial
velocity v0 ≜ [vx,0, vy,0]

T have been set to [5 m, 8 m]T and [4 m/s,4 m/s]T .
Some numerical results showing the dependence of RMSEL and RMSEN on the number of

particles (Np) for MPF, SMPF, DMPF and SDMPF are illustrated in Fig. 1.5 (simulation results
are indicated by markers, whereas continuous lines are drawn to fit them, so facilitating the
interpretation of the available data). These results show that:

a) RMSEL is significantly smaller than RMSEN ; this is mainly due to the fact that yk (1.70)
depends on x

(L)
k only.

b) No significant improvement in RMSEN is achieved for Np ≳ 100; on the contrary, the
dependence of RMSEL on Np is really weak.

c) MPF is slightly outperformed by DMPF for Np < 100.
d) On the one hand, SMPF is outperformed by MPF; on the other hand, surprisingly, SDMPF

performs slightly better than the other three filtering algorithms.
Some numerical results showing the dependence of the ET on Np for all the considered filtering

algorithms are illustrated in Fig. 1.6. These results show that:
a) DMPF is slightly faster than MPF;
b) The simplifications adopted in both MPF and SMPF entail a substantial reduction of the

computational effort; more specifically, ET(SMPF) (ET(SDMPF)) is about 68% (35%) smaller
than ET(MPF) (ET(DMPF)).
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Figure 1.5: RMSE performance versus Np for the linear component (RMSEL) and the nonlinear component
(RMSEN ) of system state; the CLG SSM described by eqs. (1.67)–(1.69) and four filtering techniques
(MPF, SMPF, DMPF and SDMPF) are considered.
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Figure 1.6: ET versus Np for the MPF, SMPF, DMPF and SDMPF; the CLG SSM described by eqs.
(1.67)–(1.69) is considered.

Therefore, from the results shown in Figs. 1.5 and 1.6 it is easily inferred that, in the considered
scenario, the SDMPF algorithm achieves the best complexity-accuracy tradeoff.

1.7.2 Bimodal state space model

In this Paragraph a simple bimodal SSM (denoted SSM#2 in the following) inspired by [11] and
described by the first-order autoregressive model

xk+1 = ρxxk + u fu(xk) +
(
1− ρx

)
nx,k (1.72)

is considered; here, xk ≜ [x
(L)
1,k , x

(N)
1,k ]

T , ρx is a forgetting factor (with 0 < ρx < 1) and {nx,k} is
an AWGN) process (whose elements are characterized by the covariance matrix I2), u = [1 0]T

and fu(xk) = A · sin(x(N)
1,k ). The measurement model is expressed by (see [11, Sec. 3, eqs. (2)-(3)])

y1,k =
(
x
(N)
1,k

)2
+ 2x

(L)
1,k + e1,k, (1.73)

y2,k =
(
x
(N)
1,k

)2 − x
(L)
1,k + e2,k; (1.74)

the observation noise {ek} (with ek ≜ [e1,k, e2,k]
T ) is modelled as an AWGN process having the

same properties as its counterpart in Eq. (1.70).
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Figure 1.7: RMSE performance versus Np for the linear component (RMSEL) and the nonlinear component
(RMSEN ) of system state; the CLG SSM described by eqs. (1.72)–(1.74) and four filtering techniques
(MPF, SMPF, DMPF and SDMPF) are considered.

In the case of SSM#2, the SMPF and SDMPF algorithms described in the previous Paragraph
and based on R1 only do not work, since the center of mass of any particle set provides a poor
representation of the nonlinear state component [11]. However, in this new case, rule R3 (see
Section 1.6) can be employed to develop new simplified versions of MPF and DMPF (dubbed
again SMPF and SDMPF, respectively). More specifically, our simplified algorithms are based on
the following two simplifications:

1. In step 2-a (2-b) of Algorithm 1 (Algorithm 2), the covariance matrices {C(N)
1,k,j} (see Eq.

(1.18)) have been merged into a single matrix C
(N)
1,k on the basis of Eq. (1.66) when computing

the particle weights {wfe,k,j} (see Eq. (1.16)); consequently, a single matrix inversion is required
in this task.

2. In step 2-e of Algorithm 1 the covariance matrices {C(N)
3,k,j} (see Eq. (1.31)) have been

merged into a single matrix C
(N)
3,k according to Eq. (1.66) when computing the new particle set

{x(N)
fp,k+1,j}; consequently, a single Cholesky decomposition is accomplished in the generation of

new particles. The same has been done in step 2-g of Algorithm 2, where the covariance matrices
{C(N)

5,k,j} (see Eq. (1.62)) have been merged into a single matrix C
(N)
5,k .

In our computer simulations, the following values have been selected for the parameters of the
considered SSM: ρx = 0.99, A = 5 and σe = 5 · 10−2. Moreover, the initial state x0 has been set
to [2, 0.5]T and filtering algorithms have been run over 300 observation intervals. Some numerical
results showing the dependence of RMSEL and RMSEN (referring to the estimation error on
|x(N)

1,k |) on the number of particles (Np) for MPF, SMPF, DMPF and SDMPF are illustrated in
Fig. 1.7. From these results it is easily inferred that:

a) The performance gap between MPF/DMPF and their simplified counterparts is negligible.

b) The DMPF (SDMPF) is outperformed by MPF (SMPF); for instance, RMSEL(DMPF) and
RMSEN (DMPF) are roughly 1.08 and 1.03 times larger than RMSEL(MPF) and RMSEN (MPF),
respectively, for Np = 100.

As far the computational effort is concerned, the shorter execution time is provided by
SDMPF (in particular, ET(SDMPF) ∼= 1.78 s for Np = 100). The other algorithms are more
computationally intensive, even if the computational gap between them is limited. In fact, in
the considered case, ET(MPF), ET(DMPF) and ET(SMPF) are roughly 1.14, 1.15, 1.04 times
larger than ET(SDMPF), respectively. Therefore, these results lead to the conclusion that, in the
considered scenario, the SMPF technique achieves the best complexity-accuracy tradeoff.
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1.8 Conclusions

In this chapter a FG approach has been employed to analyse the filtering problem for CLG SSMs.
This has allowed us to: a) derive a new graphical model for representing the filtering problem
as message passing; b) provide a new interpretation of MPF as a forward only message passing
algorithm over the devised FG; c) develop a new filtering algorithm, called dual MPF (DMPF).
Moreover, some rules for simplifying the computation of the passed messages in MPF and DMPF
have been briefly illustrated. All the considered filtering techniques have been compared in
terms of both accuracy and computational requirements for specific CLG SSMs. Our ongoing
research activities in this area concern further applications of graphical models to the filtering
and smoothing problems.
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Two

Multiple Bayesian Filtering as Message Passing

In this chapter, a general method for deriving filtering algorithms that involve a network of
interconnected Bayesian filters is proposed. This method is based on the idea that the processing
accomplished inside each of the Bayesian filters and the interactions between them can be
represented as message passing algorithms over a proper graphical model. The usefulness of our
method is exemplified by developing new filtering techniques, based on the interconnection of a
particle filter and an extended Kalman filter, for conditionally linear Gaussian systems. Numerical
results for two specific dynamic systems evidence that the devised algorithms can achieve a better
complexity-accuracy tradeoff than marginalized particle filtering and multiple particle filtering.

Part of this Chapter has been published in [32].

2.1 Introduction

It is well known that Bayesian filtering represents a general recursive solution to the nonlinear
filtering problem (e.g., see [2, Sect. II, eqs. (3)–(5)]), that is to the problem of inferring the
posterior distribution of the hidden state of a nonlinear state-space model (SSM). Unfortunately,
this solution can be put in closed form only in a few cases [3]. For this reason, various filtering
methods generating a functional approximation of the desired posterior pdf have been developed;
these can be divided into local and global methods on the basis of the way the posterior probability
density function (pdf) is approximated [10, 33, 34]. On the one hand, local techniques, like
extended Kalman filtering (EKF) [3], are computationally efficient, but may suffer from error
accumulation over time; on the other hand, global techniques, like particle filtering (PF) [4, 9],
may achieve high accuracy at the price, however, of unacceptable complexity and numerical
problems when the dimension of the state space becomes large [35–37]. These considerations
have motivated the investigation of various methods able to achieve high accuracy under given
computational constraints. Some of such solutions are based on the idea of combining local and
global methods; relevant examples of this approach are represented by: 1) Rao-Blackwellized
particle filtering (RBPF; also known as marginalized particle filtering) [6] and other techniques
related to it (e.g., see [10]); 2) cascaded architectures based on the joint use of EKF and PF
(e.g., see [38]). Note that, in the first case, the state vector is split into two disjoint components,
namely, a linear state component and a nonlinear state component ; moreover, these are estimated
by a bank of Kalman filters and by a particle filter, respectively. In the second case, instead, an
extended Kalman filter and a particle filter are run over partially overlapped state vectors. In
both cases, however, two heterogeneous filtering methods are combined in a way that the resulting
overall algorithm is forward only and, within each of its recursions, both methods are executed
only once. Another class of solutions, known as multiple particle filtering (MPF), is based on the
idea of partitioning the state vector into multiple substates and running multiple particle filters
in parallel, one on each subspace [37, 39, 40]. The resulting network of particle filters requires the
mutual exchange of statistical information (in the form of estimates/predictions of the tracked
substates or parametric distributions), so that, within each filter, the unknown portion of the
state vector can be integrated out in both weight computation and particle propagation. In
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2. Multiple Bayesian Filtering as Message Passing

principle, the substates estimated by the particle filters forming the network are required to be
separable in the state equation; however, recently, approximate MPF techniques have been also
developed for the more general case of a non-separable state transition pdf [40]. Moreover, the
technical literature about MPF has raised three interesting technical issues that have received
limited attention until now. The first issue refers to the possibility of coupling an extended
Kalman filter with each particle filter of the network; the former filter should provide the latter
one with the statistical information required for integrating out the unknown portion of the state
vector (see [41, Par. 3.2]). The second one concerns the use of filters having partially overlapped
substates (see [42, Sec.1]). The third (and final) issue, instead, concerns the iterative exchange
of statistical information among the interconnected filters of the network. Some work related to
the first issue can be found in [43], [44] and [45]. In this case, however, the proposed solution is
based on Rao-Blackwellisation; for this reason, each particle filter of the network is not coupled
with a single extended Kalman filter, but with a bank of Kalman filters. The second issue has
not been investigated at all, whereas limited attention has been paid to the third one; in fact,
the last problem has been investigated only in [39], where a specific iterative method based on
game theory has been developed. The need of employing iterative methods in MPF has been also
explicitly recognized in [40], but no solution has been developed to meet it.

In this chapter, we first focus on the general problem of developing filtering algorithms
that involve multiple interconnected Bayesian filters; these filters are run over distinct (but not
necessarily disjoint) subspaces and can exploit iterative methods in their exchange of statistical
information. The solution devised for this problem (and called multiple Bayesian filtering, MBF,
since it represents a generalisation of the MPF approach) is based on previous work on the
application of factor graph theory to the filtering and smoothing problems [1, 17]. More specifically,
we show that: a) a graphical model can be developed for a network of Bayesian filters by combining
multiple factor graphs, each referring to one of the involved filters; b) the pdfs computed by all
these filters can be represented as messages passed on such a graphical model. This approach offers
various important advantages. In fact, all the expressions of the passed messages can be derived
by applying the same rule, namely the so called sum-product algorithm (SPA; also known as belief
propagation) [17], [18], to the graphical model devised for the whole network. Moreover, iterative
algorithms can be developed in a natural fashion once the cycles contained in this graphical
model have been identified and the order according to which messages are passed on them (i.e.,
the message scheduling) has been established. The usefulness of our approach is exemplified by
mainly illustrating its application to a network made of two Bayesian filters. More specifically, we
investigate the interconnection of an extended Kalman filter with a particle filter, and develop
two new filtering algorithms under the assumption that the considered SSM is conditionally linear
Gaussian (CLG). Simulation results for two specific SSMs evidence that the devised algorithms
perform similarly or better than RBPF and MPF, but require a smaller computational effort.

The remaining parts of this chapter are organized as follows. In Section 2.2, the filtering
problem is analysed from a factor graph perspective for a network of multiple interconnected
Bayesian filters. In Section 2.3, the tools illustrated in the previous section are applied to a
network consisting of an extended Kalman filter interconnected with a particle filter, two new MBF
algorithms are derived and their computational complexity is analysed in detail. The developed
MBF algorithms are compared with EKF and RBPF, in terms of accuracy and execution time,
in Section 2.4. Finally, some conclusions are offered in Section 2.5.

2.2 Graphical Modelling for Multiple Bayesian Filtering

In this paragraph, we illustrate some basic concepts about factor graphs and the computation of
the messages passed over them. Then, we derive a graphical model for representing the overall
processing accomplished by multiple interconnected Bayesian filters as a message passing on such
a model.
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2.2. Graphical Modelling for Multiple Bayesian Filtering

2.2.1 Graphical Modelling for a Network of Bayesian Filters and Message Passing
on it

In this chapter, we consider a discrete-time SSM whose D−dimensional hidden state at the k-th
instant is denoted xk ≜ [x0,k, x1,k, ..., xD−1,k]

T , and whose state update and measurement models
are expressed by

xk+1 = fk (xk) +wk (2.1)

and

yk ≜ [y0,k, y1,k, ..., yP−1,k]
T

= hk (xk) + ek, (2.2)

respectively. Here, fk (xk) (hk (xk)) is a time-varying D−dimensional (P−dimensional) real
function and wk (ek) is the k-th element of the process (measurement) noise sequence {wk}
({ek}); this sequence consists of D−dimensional (P−dimensional) independent and identically
distributed (i.i.d.) Gaussian noise vectors, each characterized by a zero mean and a covariance
matrix Cw (Ce). Moreover, statistical independence between {ek} and {wk} is assumed for
simplicity. Note that, from a statistical viewpoint, the SSM described by Eqs. (2.1)–(2.2) is
characterized by the Markov model f(xk+1|xk) and the observation model f(yk|xk) for any k.

In the following sections, we focus on the so-called filtering problem, which concerns the
evaluation of the posterior pdf f(xt|y1:t) at an instant t ≥ 1, given a) the initial pdf f(x1) and b)
the t · P -dimensional measurement vector y1:t =

[
yT1 ,y

T
2 , ...,y

T
t

]T . It is well known that, if the
pdf f(x1) referring to the first observation instant is known, the computation of the posterior (i.e.,
filtered) pdf f(xt|y1:t) for t ≥ 1 can be accomplished by means of an exact Bayesian recursive
procedure, consisting of a measurement update step followed by a time update step. In [1, Sec.
III], it is shown that, if this procedure is formulated with reference to the joint pdf f(xt,y1:t) (in
place of the associated a posteriori pdf f(xt|y1:t)), its k-th recursion (with k = 1, 2, ..., t) can be
represented as a forward only message passing algorithm over the cycle free factor graph shown
in Fig. 2.1. In the measurement update, the message m⃗fe(xk) going out of the equality node is
computed as1 (see Eq. (A.7))

m⃗fe(xk) = m⃗fp (xk) m⃗ms (xk)

= f(xk,y1:k), (2.3)

where
m⃗fp(xk) ≜ f(xk,y1:k−1) (2.4)

is the message feeding the considered graph and

m⃗ms(xk) ≜ f (yk |xk ) (2.5)

Note that the messages m⃗fp(xk) (2.4) and m⃗fe(xk) (2.3) convey the predicted pdf (i.e., the forward
prediction) of xk computed in the previous (i.e., in the (k − 1)-th) recursion and the filtered pdf
(i.e., the forward estimate) of xk computed in the considered recursion, respectively, whereas the
message m⃗ms(xk) (2.5) conveys the statistical information provided by the measurement yk (2.2).
In the time update, instead, the message that emerges from the function node referring to the pdf
f(xk+1|xk) is evaluated as (see Eq. (A.8))∫

f (xk+1 |xk ) m⃗fe(xk) dxk = f(xk+1,y1:k); (2.6)

such a message is equal to m⃗fp(xk+1) (see Eq. (2.4)).
1In the following, the acronyms fp, fe, ms and pm are employed in the subscripts of various messages, so that readers

can easily understand their meaning; in fact, the messages these acronyms refer to convey a forward prediction, a forward
estimate, measurement information and pseudo-measurement information, respectively.
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2. Multiple Bayesian Filtering as Message Passing

Let us take into consideration now a network of NF interconnected Bayesian filters. In the
following, we assume that:

a) All the filters of the network are fed by the same measurement vector (namely, yk (2.2)),
work in parallel and cooperate in order to estimate the state vector xk; in doing so, they can
fully share their statistical information.

b) The i-th filter of the network (with i = 1, 2, ..., NF ), denoted Fi, works on a lower
dimensional space and, in particular, estimates the portion x

(i)
k (having size Di, with Di ≤ D) of

the state vector xk; therefore, the substate x̄
(i)
k , representing the portion of xk not included in

x
(i)
k , can be considered as a nuisance vector for Fi.

c) The set {x(i)
k }, collecting the substates estimated by all the filters of the network, covers

xk, but does not necessarily represent a partition of it. In other words, some overlapping between
the substates estimated by different filters is admitted. This means that the filtering algorithm
running on the whole network may contain a form of redundancy, since one or more elements of
the state vector can be independently estimated by different Bayesian filters.

We are interested in developing recursive filtering algorithms for the whole network of Bayesian
filters. The approach we propose to solve this problem consists of the following three steps: S1)
building NF distinct factor graphs that allow us to represent the measurement and time updates
accomplished by each filter of the network and its interactions with the other filters as message
passing algorithms on them; S2) interconnecting the NF factor graphs devised in the first step in
order to generate a graphical model for the whole network; S3) deriving new filtering methods as
message passing algorithms over the whole graphical model obtained in the second step.

Let us focus, now, on step S1. In developing a graphical model for filter Fi, the following
considerations must be taken into account:

1) Since the portion x̄
(i)
k of xk is unknown to Fi (and, consequently, represents a nuisance state),

an estimate of its pdf fk(x̄
(i)
k ) must be provided by the other filters of the network; this allows

Fi to integrate out the dependence of its Markov model f(x(i)
k+1|x

(i)
k , x̄

(i)
k ) and of its observation

model f(yk|x
(i)
k , x̄

(i)
k ) on x̄

(i)
k .

2) Filter Fi can benefit from the pseudo-measurements computed on the basis of the statistical
information provided by the other filters of the network.

As far as the last point is concerned, it is worth pointing out that, in this chapter, any
pseudo-measurement represents a fictitious measurement computed on the basis of the statistical
information provided by a filtering algorithm different from the one benefiting from it; despite
this, it can be processed as if it was a real measurement, provided that its statistical model is
known. In practice, a pseudo-measurement z

(i)
k made available to the filter Fi is a Pi–dimensional

random vector that, similarly as the real measurement yk (2.2), can be modelled as2

z
(i)
k = h̃k

(
x
(i)
k

)
+ ẽ

(i)
k , (2.7)

where h̃k (xk) is a time-varying Pi–dimensional function and ẽ
(i)
k is a zero mean Pi−dimensional

noise vector; if this notation is adopted, the pseudo-measurement information passed to the
filter Fi is represented by pdf of z(i)k conditioned on x

(i)
k . It is also worth mentioning that the

evaluation of pseudo-measurements is often based on the mathematical constraints established
by the Markov model of the considered SSM, as shown in the following section, where a specific
network of filters is considered.

Based on the considerations illustrated above, the equations describing the measurement/time
updates accomplished by Fi in the k-th recursion of the network can be formulated as follows. At
the beginning of this recursion, Fi is fed by the forward prediction

m⃗fp

(
x
(i)
k

)
= f(x

(i)
k ,y1:k−1), (2.8)

2The possible dependence of the pseudo-measurement z
(i)
k (2.7) on the substate x̄

(i)
k is ignored here, for simplicity.
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2.2. Graphical Modelling for Multiple Bayesian Filtering

originating from the previous recursion. In its first step (i.e., in its measurement update), it
computes two filtered pdfs (i.e., two forward estimates), the first one based on the measurement
yk (2.2), the second one on the pseudo-measurement z

(i)
k (2.7). The first filtered pdf is evaluated

as (see Eq. (2.3))
m⃗fe1

(
x
(i)
k

)
= m⃗fp

(
x
(i)
k

)
m⃗ms

(
x
(i)
k

)
, (2.9)

where
mms

(
x
(i)
k

)
≜
∫
f
(
yk|x

(i)
k , x̄

(i)
k

)
mmg1

(
x̄
(i)
k

)
dx̄

(i)
k (2.10)

and mmg1(x̄
(i)
k ) are the messages conveying measurement information and a filtered (or predicted)

pdf of x̄(i)
k provided by the other filters, respectively. Similarly, the second filtered pdf is evaluated

as (see Eq. (2.3))
m⃗fe2

(
x
(i)
k

)
= m⃗fe1

(
x
(i)
k

)
m⃗pm

(
x
(i)
k

)
, (2.11)

where3

mpm

(
x
(i)
k

)
≜ f

(
z
(i)
k |x(i)

k

)
(2.12)

is the message conveying pseudo-measurement information. Then, in its second step (i.e., in its
time update), Fi computes the new forward prediction (see Eq. (2.6))

m⃗fp

(
x
(i)
k+1

)
=

∫ ∫
f
(
x
(i)
k+1|x

(i)
k , x̄

(i)
k

)
m⃗fe2

(
x
(i)
k

)
mmg2

(
x̄
(i)
k

)
dxk dx̄

(i)
k , (2.13)

where mmg2(x̄
(i)
k ) has the same meaning as mmg1(x̄

(i)
k ) (see Eq. (2.10)), but is not necessarily

equal to it (since more refined information about x̄(i)
k could be made available by the other filters

of the network after that the message mms(x
(i)
k ) (2.10) has been computed).

Formulas (2.9)–(2.11) and (2.13) involve only products of pdfs and integrations of products;
for this reason, their evaluation can be represented as a forward only message passing over the
cycle free factor graph shown in Fig. 2.2. Note that, if this graph is compared with the one shown
in Fig. 2.1, the following additional elements (identified by blue lines) are found:

1) Five equality nodes - Four of them allow to generate copies of the messages m⃗fp(x
(i)
k ),

m⃗fe1(x
(i)
k ), m⃗fe2(x

(i)
k ) and m⃗fp(x

(i)
k+1), to be shared with the other filters of the network, whereas

the remaining one is involved in the second measurement update of Fi.
2) A block in which the predicted/filtered pdfs {m⃗fp(x

(l)
k ), m⃗fp(x

(l)
k+1), m⃗feq(x

(l)
k ); q = 1, 2 and

l ̸= i} provided by the other filters of the network are processed - In this block, the messages
mmgq(x̄

(i)
k ) (with q = 1 and 2) and mpm(x

(i)
k ) are computed (see Eqs. (2.10), (2.12) and (2.13));

this block is connected to oriented edges only, that is to edges on which the flow of messages is
unidirectional.

Given the graphical model represented in Fig. 2.2, step S2 can be accomplished by adopting
the same conceptual approach as [1, Sec. III], where the factor graph on which RBPF and dual
RBPF are based is devised by merging two sub-graphs, that refer to distinct substates. For this
reason, a graphical model for the whole network of NF Bayesian filters can be developed by
interconnecting NF distinct factor graphs, each structured like the one shown in that figure. For
instance, if NF = 2 is assumed for simplicity, this procedure results in the graphical model shown
in Fig. 2.3. It is important to note that, in this case, if the substates x

(1)
k and x

(2)
k estimated by

F1 and F2, respectively, do not form a partition of the state vector xk, they share a portion of
it; this consists of Nd ≜ D1 +D2 −D state variables, that are separately estimated by the two
Bayesian filters. The parameter Nd can be considered as the degree of redundancy characterizing
the considered network of filters. The presence of redundancy in a filtering algorithm may result
in an improvement of estimation accuracy and/or tracking capability; however, this is obtained

3If the pseudo-measurement z
(i)
k (2.7) depends also on x̄

(i)
k , marginalization with respect to this substate is required in

the computation of the following message.
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Figure 2.1: Message passing over the factor graph representing the k-th recursion of Bayesian filtering. An
SSM characterized by the Markov model f(xk+1|xk) and the observation model f(yk|xk) is considered.

at the price of an increased complexity with respect to the case in which F1 and F2 are run on
disjoint substates.

Once the graphical model for the whole network has been developed, step S3 can be easily
accomplished. In fact, recursive filtering algorithms for the considered network can be derived by
systematically applying the SPA to its graphical model after that a proper scheduling has been
established for the exchange of messages among its NF Bayesian filters. Moreover, in developing
a specific filtering algorithm to be run on a network of Bayesian filters, we must always keep in
mind that:

1) Its k-th recursion is fed by the set of forward predictions {m⃗fp(x
(i)
k ), i = 1, 2, ..., NF }, and

generates NF couples of filtered densities {(m⃗fe1(x
(i)
k ), m⃗fe2(x

(i)
k )), i = 1, 2, ..., NF } and NF new

forward predictions {m⃗fp(x
(i)
k+1), i = 1, 2, ..., NF }. Moreover, similarly as MPF, a joint filtered

density for the whole state xk is unavailable (unless the substate of one or more of the employed
Bayesian filters coincides with xk) and multiple filtered/predicted pdfs are available for any
substate shared by distinct filters.

2) Specific algorithms are needed to compute the pseudo-measurement and the nuisance
substate pdfs in the {Fl, l ̸= i}→Fi block appearing in Fig. 2.3. These algorithms depend on the
considered SSM and on the selected message scheduling; for this reason, a general description of
their structure cannot be provided.

3) The graphical model shown in Fig. 2.3, unlike the one illustrated in Fig. 2.1, is not cycle
free; the presence of cycles is highlighted in the considered figure by showing the flow of messages
along one of them. The presence of cycles raises the problems of a) identifying all the messages
that can be iteratively refined and b) establishing the order according to which they are computed.
Generally speaking, iterative message passing on the graphical model referring to a network
of filters involves both the measurement updates and the time update accomplished by all
the interconnected filters within each recursion of the network itself. In fact, this should allow
each Bayesian filter to a) progressively refine the nuisance substate density employed in its
measurement/time updates, and b) improve the quality of the pseudo-measurements exploited in
its second measurement update. For this reason, if ni iterations are run within each recursion of
the whole network, the overall computational complexity associated with it is multiplied by ni.

In the following section, a specific application of the general principles illustrated in this
paragraph is analysed.

2.3 Filtering Algorithms Based on the Interconnection of an Extended
Kalman Filter with a Particle Filter

In this section we focus on the development of two new filtering algorithms based on the
interconnection of an extended Kalman filter with a particle filter. We first describe the graphical
models on which these algorithms are based. Then, we provide a detailed description of the
computed messages and their scheduling in a specific case. Finally, we provide a detailed analysis
of the computational complexity of the devised algorithms.
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Figure 2.2: Message passing over the factor graph representing the couple of measurement updates and
the time update accomplished by the i-th Bayesian filter in the k-th recursion of the network it belongs to.
The messages m⃗fp(x

(i)
k ), m⃗fp(x

(i)
k+1), m⃗ms(x

(i)
k ), m⃗mgp(x̄

(i)
k ) (with p = 1 and 2), m⃗pm(x

(i)
k ) and m⃗feq(x

(i)
k )

(with q = 1 and 2) are denoted FPi, FPi′, MSi, MGpi, PMi and FEqi, respectively, to ease reading.
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Figure 2.3: Graphical model based on the factor graph shown in Fig. 2.2 and referring to the interconnection
of two Bayesian filters; the presence of a closed path (cycle) on which messages can be passed multiple
times is highlighted by brown arrows.
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2.3.1 Graphical Modelling

In this section, we develop new filtering algorithms for the class of CLG SSMs [6], [23], [1];
this allows us to partition the state vector at the k-th instant as xk = [(x

(L)
k )T , (x

(N)
k )T ]T ,

where x
(L)
k ≜ [x

(L)
0,k , x(L)1,k , ..., x

(L)
DL−1,k]

T (x(N)
k ≜ [x

(N)
0,k , x

(N)
1,k , ..., x

(N)
DN−1,k]

T ) is its linear (nonlinear)
component (with DN +DL = D). The devised algorithms rely on the following assumptions:

1) They involve two interconnected Bayesian filters, denoted F1 and F2.
2) Filter F2 is a particle filter4 employing Np weighted particles and estimating the nonlinear

state component only (so that x
(2)
k = x

(N)
k and x̄

(2)
k = x

(L)
k ).

3) Filter F1 is an extended Kalman filter and works on the whole system state or on the linear
state component only. Consequently, in the first case (denoted C.1 in the following), x(1)

k = xk

and x̄
(1)
k is empty, and both the interconnected filters estimate the nonlinear state component (for

this reason, the corresponding degree of redundancy is Nd = DN ). In the second case (denoted
C.2 in the following), instead, x(1)

k = x
(L)
k and x̄

(1)
k = x

(N)
k , and the two filters estimate disjoint

substates (consequently, Nd = 0).
This network configuration has been mainly inspired by RBPF. In fact, similarly as RBPF,

the filtering techniques we develop are based on the idea of concatenating a local filtering method
(EKF) with a global method (PF). However, unlike RBPF, a single extended Kalman filter is
employed in place of a bank of Kalman filters. It is also worth remembering that, on the one hand,
the use of a particle filter interconnected with an extended Kalman filter for tracking disjoint
substates has been suggested in [41, Par. 3.2], where, however, no filtering algorithm based on
this idea has been derived. On the other hand, a filtering scheme based on the interconnection of
the same filters, but working on partially overlapped substates, has been derived in [46], where
it has also been successfully applied to inertial navigation. Note also that, in the proposed
filtering scheme, the two filters are aiding each other through the mutual exchange of statistical
information. In fact, on the one hand, the particle filter helps the extended Kalman filter in its
most difficult task, namely in the estimation of the nonlinear state component. On the other hand,
the extended Kalman filter helps the particle filter by providing statistical information about the
linear state component (required for marginalization) and a set of pseudo-measurements.

Based on the graphical model shown in Fig. 2.3, the factor graph illustrated in Fig. 2.4 can be
drawn for case C.1. It is important to point out that:

1) Filter F1 is based on linearised (and, consequently, approximate) Markov/measurement
models of the considered SSM, whereas filter F2 relies on exact models, as explained in more
detail below.

2) Since the nuisance substate x̄
(1)
k is empty, no marginalization is required in F1; for this

reason, the messages {m⃗mgq(x̄
(1)
k ); q = 1, 2} (i.e., MG11 and MG21) visible in Fig. 2.3 do not

appear in Fig. 2.4.
3) The new predicted pdf m⃗fp(x

(2)
k+1) = m⃗fp(x

(N)
k+1) and the second filtered pdf m⃗fe2(x

(2)
k ) =

m⃗fe2(x
(N)
k ) computed by F2 (i.e., the messages FP2′ and FE22, respectively) feed the F2→F1

block, where they are jointly processed to generate the pseudo-measurement message m⃗pm(x
(1)
k ) =

m⃗pm(xk) (PM1) made available to F1. Similarly, as shown below, the computation of the pseudo-
measurement message exploited by F2 (i.e., of the message m⃗pm(x

(2)
k ) = m⃗pm(x

(N)
k ), PM2)

requires the knowledge of a new predicted pdf that refers, however, to the linear state component
only. In our graphical model, the computation of this prediction is accomplished by the F1→F2

block; this explains why the new predicted pdf m⃗fp(x
(1)
k+1) = m⃗fp(xk+1) (FP1′) evaluated by F1

and referring to the whole state of the considered SSM, does not feed the F1→F2 block.
4) Particle resampling with replacement has been included in the portion of the graphical model

referring to filter F2. This important task, accomplished after the second measurement update of
this filter, does not emerge from the application of the SPA to our graphical model and ensures

4In particular, a sequential importance resampling filter is employed [2].
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Figure 2.4: Graphical model based on the factor graph shown in Fig. 2.3 and referring to the interconnection
of an extended Kalman filter (F1) with a particle filter (F2).

that the particles emerging from it are all equally likely. Note also that, because of the presence
of particle resampling, two versions of the second filtered pdf m⃗fe2(x

(2)
k ) = m⃗fe2(x

(N)
k ) (FE22)

become available, one before resampling, the other one after it. As shown in the next paragraph,
the second version of this message is exploited in the computation of the pseudo-measurement
message m⃗pm(x

(1)
k ) = m⃗pm(xk) (PM1).

In the remaining part of this paragraph, we first provide various details about the filters F1

and F2, and the way pseudo-measurements are computed for each of them; then, we comment on
how the factor graph shown in Fig. 2.4 should be modified if case C.2 is considered.

Filter F1 - Filter F1 is based on the linearised versions of Eqs. (2.1) and (2.2), that is on the
models (e.g., see [3, pp. 194–195])

xk+1 = Fk xk + uk +wk (2.14)

and
yk = HT

k xk + vk + ek, (2.15)

respectively; here, Fk ≜ [∂fk (x) /∂x]x=xfe,k
, uk ≜ fk (xfe,k)−Fk xfe,k, HT

k ≜ [∂hk (x) /∂x]x=xfp,k
,

vk ≜ hk (xfp,k) − HT
k xfp,k and xfp,k (xfe,k) is the forward prediction (forward estimate) of xk

computed by F1 in its (k − 1)-th (k-th) recursion. Consequently, the approximate models

f̃ (xk+1 |xk ) = N (xk;Fk xk + uk,Cw) (2.16)

and
f̃ (yk |xk ) = N

(
xk;H

T
k xk + vk,Ce

)
(2.17)

appear in the graphical model shown in Fig. 2.4.
Filter F2 - In developing filter F2, we assume that the portion of Eq. (2.1) referring to the

nonlinear state component (i.e., the last DN lines of the considered Markov model) and that the
observation model (2.2) can be put in the form (e.g., see [1, eqs. (3)–(4)])

x
(N)
k+1 = A

(N)
k

(
x
(N)
k

)
x
(L)
k + f

(N)
k

(
x
(N)
k

)
+w

(N)
k (2.18)

and
yk = gk

(
x
(N)
k

)
+Bk

(
x
(N)
k

)
x
(L)
k + ek, (2.19)
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respectively. In Eq. (2.18), f (N)
k (·) (A(N)

k (·)) is a time-varying DN−dimensional real function
(DN ×DL real matrix) and w

(N)
k consists of the last DN elements of the noise term wk appearing

in Eq. (2.1) (the covariance matrix of w(N)
k is denoted C

(N)
w ); moreover, in Eq. (2.19), gk(·)

(Bk(·)) is a time-varying P−dimensional real function (P ×DL real matrix). This explains why
filter F2 is based on the exact pdfs

f
(
x
(N)
k+1|x

(N)
k ,x

(L)
k

)
= N

(
x
(N)
k ;A

(N)
k

(
x
(N)
k

)
x
(L)
k + f

(N)
k

(
x
(N)
k

)
,C(N)

w

)
(2.20)

and
f
(
yk|x

(N)
k ,x

(L)
k

)
= N

(
xk;gk

(
x
(N)
k

)
+Bk

(
x
(N)
k

)
x
(L)
k ,Ce

)
, (2.21)

that appear in the graphical model shown in Fig. 2.4.
Computation of the pseudo-measurements for filter F1 - Filter F1 is fed by pseudo-measurement

information about the whole state xk, that is about both the substates x
(L)
k and x

(N)
k . On the

one hand, Np pseudo-measurements about the nonlinear state component are provided by the Np

particles contributing to the filtered pdf m⃗fe2(x
(N)
k ) (FE22) available after particle resampling.

On the other hand, Np pseudo-measurements about the linear state component are evaluated by
means of the same method employed by RBPF for this task. This method is based on the idea
that the random vector (see [6, Par. II.D, p. 2283, eq. (24a)] and [1, Sec. III, p. 1524, eq. (9)])

z
(L)
k ≜ x

(N)
k+1 − f

(N)
k

(
x
(N)
k

)
, (2.22)

depending on the nonlinear state component only, must equal the sum (see Eq. (2.18))

A
(N)
k

(
x
(N)
k

)
x
(L)
k +w

(N)
k , (2.23)

that depends on the linear state component. For this reason, Np realizations of z(L)k (2.22) are
computed in the F2→F1 block on the basis of the messages m⃗fe2(x

(N)
k ) (FE22) and m⃗fp(x

(N)
k+1)

(FP2′) and are treated as measurements about x
(L)
k .

Computation of the pseudo-measurements for filter F2 - The messages feeding F1→F2 block
are employed for: a) generating a pdf of x

(L)
k , so that the dependence of the state update

and measurement models (i.e., of the densities f(x(N)
k+1|x

(N)
k , x(L)

k ) (2.20) and f(yk|x
(N)
k ,x

(L)
k )

(2.21), respectively) on this substate can be integrated out; b) computing pseudo-measurement
information about x

(N)
k . As far as the last point is concerned, the approach we adopt is the same

as that developed for dual RBPF in [1, Sec. V, pp. 1528–1529]. Such an approach relies on the
Markov model

x
(L)
k+1 = A

(L)
k

(
x
(N)
k

)
x
(L)
k + f

(L)
k

(
x
(N)
k

)
+w

(L)
k , (2.24)

referring to the linear state component [23], [1]; in the last expression, f (L)k (x
(N)
k ) (A(L)

k (x
(N)
k )) is

a time-varying DL−dimensional real function (DL ×DL real matrix), and w
(N)
k consists of the

first DL elements of the noise term wk appearing in Eq. (2.1) (the covariance matrix of w(L)
k is

denoted C
(L)
w , and independence between {w(L)

k } and {w(N)
k } is assumed for simplicity). From

Eq. (2.24) it is easily inferred that the random vector

z
(N)
k ≜ x

(L)
k+1 −A

(L)
k

(
x
(N)
k

)
x
(L)
k , (2.25)

equals the sum
f
(L)
k

(
x
(N)
k

)
+w

(L)
k , (2.26)

that depends on x
(N)
k only ; for this reason, z(N)

k (2.25) can be interpreted as a pseudo-measurement
about x(N)

k . In this case, the generation of pseudo-measurement information can be summarized as
follows. First, Np pdfs, one for each of the particles conveyed by the message m⃗fe2(x

(N)
k ) (FE22),
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are computed for the random vector z
(N)
k (2.25) by exploiting the statistical information about

the linear state component made available by F1. Then, each of these pdfs is correlated with
the pdf obtained for z

(N)
k under the assumption that this vector is expressed by Eq. (2.26); this

procedure results in a set of Np particle weights, different from those computed on the basis of
yk (2.19) in the first measurement update of F2.

A graphical model similar to the one shown in Fig. 2.4 can be easily derived from the general
model appearing in Fig. 2.3 for case C.2 too. The relevant differences with respect to case C.1
can be summarized as follows:

1) Filters F1 and F2 estimate x
(1)
k = x

(L)
k and x

(2)
k = x

(N)
k , respectively; consequently, their

nuisance substates are x̄
(1)
k = x

(N)
k and x̄

(2)
k = x

(L)
k , respectively.

2) The F2→F1 block is fed by the predicted/filtered pdfs computed by F2; such pdfs are
employed for: a) for providing F1 with a pdf for x

(N)
k , so that dependence of the Markov model

(see Eq. (2.24))

f
(
x
(L)
k+1|x

(N)
k ,x

(L)
k

)
= N

(
x
(L)
k ;A

(L)
k

(
x
(N)
k

)
x
(L)
k + f

(L)
k

(
x
(N)
k

)
,C(L)

w

)
(2.27)

and of the measurement model f(yk|x
(N)
k ,x

(L)
k ) (2.21) on this substate can be integrated out; b)

generating pseudo-measurement information about the substate x
(L)
k only. As far as point a) is

concerned, it is also important to point out that the approximate model f̃(yk|x
(L)
k ) (f̃(x(L)

k+1|x
(L)
k ))

on which F1 is based can be derived from Eq. (2.21) (Eq. (2.27)) after setting x
(N)
k = x

(N)
fp,k

(x(N)
k = x

(N)
fe,k ); here, x(N)

fp,k (x(N)
fe,k ) denote the prediction (the estimate) of x(N)

k evaluated on the

basis of the message m⃗fp(x
(N)
k ) (m⃗fe2(x

(N)
k )) computed by F2. Moreover, since Eqs. (2.19) and

(2.24) exhibit a linear dependence on x
(L)
k , F1 becomes a standard Kalman filter.

The derivation of a specific filtering algorithm based on the graphical models described in
this paragraph requires defining the scheduling of the messages passed on them and deriving
mathematical expressions for such messages. These issues are investigated in detail in the following
paragraph.

2.3.2 Message Scheduling and Computation

In this paragraph, a recursive filtering technique, called double Bayesian filtering (DBF) and
based on the graphical model illustrated in Fig. 2.4, is developed. In each recursion of the DBF
technique, F1 is run before F2; moreover, the presence of cycles in the graph on which it is based
is accounted for by including a procedure for the iterative computation of the messages passed
on them. Our description of the selected scheduling relies on Fig. 2.5, that refers to the k-th
recursion and to the n-th iteration accomplished within this recursion (with n = 1, 2, ..., ni, where
ni represents the overall number of iterations). It is important to point out that the following
changes have been made in Fig. 2.5 with respect to Fig. 2.4:

1) A simpler notation has been adopted for the messages to ease reading. In particular, the
symbols FP2(n), FP2

′(n), q (q(n)), qL (qL(n)) and qN (qN (n)) represent the messages m⃗(n)
fp (x

(N)
k ),

m⃗
(n)
fp (x

(N)
k+1), m⃗q(xk) (m⃗(n)

q (xk)), m⃗q(x
(L)
k ) (m⃗(n)

q (x
(L)
k )) and m⃗q(x

(N)
k ) (m⃗(n)

q (x
(N)
k )), respectively;

moreover, the integer parameter n appearing in the superscript of some of them represents the
iteration index.

2) Blue (red) arrows have been employed to identify Gaussian messages (messages in other
forms).

3) The F1→F2 block is fed by the two filtered pdfs of xk computed by F1 (i.e., by the messages
m⃗2(xk) and m⃗(n)

3 (xk)), but not by the predicted pdf m⃗fp(xk), since the last message is useless.
3) The forward prediction m⃗(n)

fp (x
(N)
k ) feeding F2 is involved in the proposed iterative procedure

and may change from iteration to iteration because of resampling (in fact, this may lead to
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discarding a portion of the particles conveyed by this message); for this reason, its dependence on
the iteration index n has been explicitly indicated.

4) The same message (namely, m⃗(n)
1 (x

(L)
k )) is employed in F2 for integrating out the dependence

of the Markov model f(x(N)
k+1|x

(N)
k ,x

(L)
k ) (2.20) and of the measurement model f(yk|x

(N)
k ,x

(L)
k )

(2.21) on the linear component x
(L)
k .

5) A memory cell (identified by the label ‘D’) has been added to store the last message
evaluated in each iteration (i.e., the pseudo-measurement message m(n)

4 (xk)), so that it can be
made available to F1 at the beginning of the next iteration.

The DBF technique, at the beginning of its k-th recursion, is fed by the message

m⃗fp (xk) = N (xk; ηfp,k,Cfp,k) (2.28)

and

m⃗fp

(
x
(N)
k

)
=

Np∑
j=1

m⃗fp,j

(
x
(N)
k

)
, (2.29)

that corresponds to FP2(1) in Fig. 2.5; here,

m⃗fp,j

(
x
(N)
k

)
= wp δ

(
x
(N)
k − x

(N)
k,j

)
(2.30)

is the j-th component of m⃗fp(x
(N)
k ), x(N)

k,j is the j-th particle predicted in the previous (i.e., in the
(k−1)-th) recursion and wp ≜ 1/Np is its weight. The DBF processes the messages m⃗fp(xk) (2.28)
and m⃗fp(x

(N)
k ) (2.29), and the new measurement yk (2.19), and generates: a) a couple of filtered

densities for both xk and x
(N)
k ; b) the output messages m⃗fp(xk+1) and m⃗fp(x

(N)
k+1), having the

same functional form as m⃗fp(xk) (2.28) and m⃗fp(x
(N)
k ) (2.29), respectively. The message passing

accomplished to achieve these results can be divided in the three consecutive phases listed below.
I - In the first phase, filter F1 accomplishes its first measurement update on the basis of

the forward prediction m⃗fp (xk) and of the new measurement yk. This leads to the ordered
computation of the messages m⃗1(xk) and m⃗2(xk).

II - In the second phase, an iterative procedure involving the first measurement update and
the time update of F2, and the computation of pseudo-measurements and their exploitation in the
second measurement update of each filter is carried out. The n-th iteration of this procedure can be
divided into six consecutive steps and leads to the ordered computation of the following messages:
1) m⃗(n)

3 (xk), m⃗
(n)
1 (x

(L)
k ); 2) m⃗(n)

fp (x
(N)
k ), m⃗(n)

1 (x
(N)
k ), m⃗(n)

2 (x
(N)
k ); 3) m⃗(n)

3 (x
(N)
k ); 4) m⃗(n)

4 (x
(N)
k ); 5)

m⃗
(n)
fp (x

(N)
k+1); 6) m⃗(n)

4 (xk).

III - In the third phase, the new predictions m⃗fp (xk+1) and m⃗fp(x
(N)
k+1) are generated by F1

and F2, respectively. This involves the ordered computation of the following messages: m⃗fp(x
(N)
k+1),

m⃗
(ni+1)
3 (xk) and m⃗fp(xk+1).
In the remaining part of this paragraph, the expressions of all the messages computed in each

of the three phases described above are provided; the derivation of these expressions is sketched
in Appendix C.

Phase I - In this phase, the forward prediction m⃗fp(xk) (2.28) feeding filter F1 is merged with
the message

m⃗1 (xk) = N (xk; η1,k,C1,k) , (2.31)

conveying measurement information; the covariance matrix C1,k and the mean vector η1,k of the
last message are evaluated on the basis of the associated precision matrix

W1,k ≜ (C1,k)
−1 = HkWeH

T
k , (2.32)

and of the associated transformed mean vector

w1,k ≜ W1,k η1,k = HkWe (yk − vk) , (2.33)
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Figure 2.5: Message scheduling adopted in the k-th recursion of the DBF technique. The circled integers
1–9 specify the order according to which nine distinct messages are computed in the n-th iteration of
phase II.

respectively, with We ≜ C−1
e . This results in the first filtered pdf (see Fig. 2.5)

m⃗2 (xk) = m⃗fp(xk) m⃗1 (xk) (2.34)
= N (xk; η2,k,C2,k) (2.35)

computed by filter F1; here, the covariance matrix C2,k and the mean vector η2,k are evaluated
on the basis of the associated precision matrix

W2,k ≜ (C2,k)
−1 = Wfp,k +W1,k, (2.36)

and of the associated transformed mean vector

w2,k ≜ W2,k η2,k = wfp,k +w1,k, (2.37)

respectively, Wfp,k ≜ (Cfp,k)
−1 and wfp,k ≜ Wfp,k ηfp,k.

Phase II - A short description of the six steps accomplished in the n-th iteration of this phase
is provided in the following. As shown below, the elements of the particle set processed by F2 can
change from iteration to iteration, even if its cardinality remains the same. In the following, the
particle set available at the beginning of the n-th iteration is denoted Sk[n] = {x(N)

k,j [n]; j = 1, 2,

..., Np}; note that the initial particle set is Sk[1] ≜ {x(N)
k,j , j = 1, 2, ..., Np} (i.e., x(N)

k,j [1] = x
(N)
k,j

for any j) and collects the Np predicted particles conveyed by the message m⃗fp(x
(N)
k ) (2.29).

1) Second measurement update in F1 - The second filtered pdf (see Fig. 2.5)

m⃗
(n)
3 (xk) = m⃗2 (xk) m⃗

(n−1)
4 (xk) (2.38)

= N
(
xk; η

(n)
3,k ,C

(n)
3,k

)
(2.39)

is computed by F1 in order to exploit the pseudo-measurement message m⃗(n−1)
4 (xk) (evaluated

in the previous iteration); since m⃗(n−1)
4 (xk) = 1 for n = 1 (note that F1 cannot benefit from
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pseudo-measurement information at the beginning of the first iteration) and m⃗
(n−1)
4 (xk) =

N (xk; η
(n−1)
4,k ,C

(n−1)
4,k ) for n > 1 (see Eq. (2.67)), it easy to show that

C
(n)
3,k = C2,k (2.40)

and
η
(n)
3,k = η2,k (2.41)

for n = 1, whereas
C

(n)
3,k = W

(n−1)
k C

(n−1)
4,k , (2.42)

and
η
(n)
3,k = W

(n−1)
k

[
C

(n−1)
4,k w2,k + η

(n−1)
4,k

]
(2.43)

for n > 1; here, W(n−1)
k ≜ [C

(n−1)
4,k W2,k+ID]

−1. Then, the message m⃗(n)
3 (xk) (2.39) is marginalized

with respect to x
(N)
k in the F1→F2 block; this results in the message

m⃗
(n)
1

(
x
(L)
k

)
≜
∫
m⃗

(n)
3 (xk) dx

(N)
k

= N (x
(L)
k ; η̃

(n)
1,k , C̃

(n)
1,k), (2.44)

where C̃
(n)
1,k and η̃(n)1,k are easily extracted from C

(n)
3,k (2.42) and η(n)3,k (2.43) for n > 1 (C(n)

3,k (2.40)

and η(n)3,k (2.41) for n = 1), respectively, since x
(L)
k consists of the first DL elements of xk.

2) First measurement update in F2 - This step concerns the computation of the message (see
Fig. 2.5)

m⃗
(n)
2

(
x
(N)
k

)
= m⃗

(n)
fp

(
x
(N)
k

)
m⃗

(n)
1

(
x
(N)
k

)
, (2.45)

that represents the first filtered pdf computed by F2. The message m⃗(n)
fp (x

(N)
k ) conveys a set of

predicted particles; its j-th component is given by

m⃗
(n)
fp,j

(
x
(N)
k

)
= wp δ

(
x
(N)
k − x

(N)
k,j [n]

)
(2.46)

and, consequently, coincides with m⃗fp,j(x
(N)
k ) (2.30) for n = 1 only; note also that the same weight

is assigned to all the messages {m⃗(n)
fp,j(x

(N)
k )} for any n, since particle resampling is employed in

each iteration of this phase (see step 4)). The message (see Fig. 2.5)

m⃗
(n)
1 (x

(N)
k ) =

∫
f(yk|x

(N)
k , x

(L)
k ) m⃗

(n)
1 (x

(L)
k ) dx

(L)
k , (2.47)

instead, conveys measurement information, that is the information about x
(N)
k provided by yk

(2.19). In particular, the value

w
(n)
1,k,j = N

(
yk; η̃

(n)
1,k,j , C̃

(n)
1,k,j

)
(2.48)

taken on by the message m⃗(n)
1 (x

(N)
k ) (2.47) for x

(N)
k = x

(N)
k,j [n] represents the measurement-based

weight assigned to the j-th particle x
(N)
k,j [n]; here,

η̃
(n)
1,k,j = Bk,j [n] η̃

(n)
1,k + gk,j [n], (2.49)

C̃
(n)
1,k,j = Bk,j [n] C̃

(n)
1,k (Bk,j [n])

T +Ce, (2.50)

gk,j [n] ≜ gk(x
(N)
k,j [n]) and Bk,j [n] ≜ Bk(x

(N)
k,j [n]). From (2.45), (2.46) and (2.48) it is easily inferred

that m⃗(n)
2 (x

(N)
k ) (2.45) conveys the same set of particles as m⃗(n)

fp (x
(N)
k ) and that its j-th component

is
m⃗

(n)
2,j

(
x
(N)
k

)
= wpw

(n)
1,k,j δ

(
x
(N)
k − x

(N)
k,j [n]

)
. (2.51)
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3) Computation of the pseudo-measurements for F2 - This step is accomplished in the F1→F2

block and aims at computing the message m⃗(n)
3 (x

(N)
k ); this conveys the statistical information

about x
(N)
k that originates from the pseudo-measurement z

(N)
k (2.25) (further details about this

message and its meaning are provided in Appendix C). Actually, what is really required in the
next step is the value taken on by this message for x(N)

k = x
(N)
k,j [n] (with j = 1, 2, ..., Np), because

of the Dirac delta function conveyed by the message m⃗(n)
2,j (x

(N)
k ) (2.51) and appearing in the

right-hand side (RHS) of Eq. (2.58); such a value is

w
(n)
3,k,j = D̆

(n)
k,j ·exp

[
1

2

((
η̌
(n)
3,k,j

)T
W̌

(n)
3,k,j η̌

(n)
3,k,j −

(
η̌
(n)
z,k,j

)T · W̌(n)
z,k,j η̌

(n)
z,k,j −

(
f
(L)
k,j [n]

)T
W(L)

w f
(L)
k,j [n]

)]
,

(2.52)
and represents a new weight to be assigned to x

(N)
k,j [n], that is to the j-th particle of the set Sk[n];

here,
W̌

(n)
3,k,j ≜

(
Č

(n)
3,k,j

)−1
= W̌

(n)
z,k,j +W(L)

w , (2.53)

w̌
(n)
3,k,j ≜ W̌

(n)
3,k,j η̌

(n)
3,k,j = w̌

(n)
z,k,j +W(L)

w f
(L)
k,j [n], (2.54)

W
(L)
w ≜ [C

(L)
w ]−1, f (L)k,j [n] ≜ f

(L)
k (x

(N)
k,j [n]), W̌

(n)
z,k,j ≜ (Č

(n)
z,k,j)

−1, w̌(n)
z,k,j ≜ W̌

(n)
z,k,j η̌

(n)
z,k,j ,

Č
(n)
z,k,j = C(L)

w +A
(L)
k,j [n]

[
C̃

(n)
3,k − C̃2,k

] (
A

(L)
k,j [n]

)T
, (2.55)

η̌
(n)
z,k,j = A

(L)
k,j [n]

[
η̃
(n)
3,k − η̃2,k

]
+ f

(L)
k,j [n], (2.56)

A
(L)
k,j [n] ≜ A

(L)
k (x

(N)
k,j [n]), D̆

(n)
k,j ≜ [det(C̆

(n)
k,j )]

−1/2, C̆(n)
k,j ≜ Č

(n)
z,k,j +C

(L)
w , and η̃2,k and C̃2,k (η̃(n)3,k

and C̃
(n)
3,k) are extracted from η2,k and C2,k (η(n)3,k and C

(n)
3,k), respectively (see Eqs. (2.35) and

(2.39)), since they refer to the first DL elements of xk.
4) Second measurement update in F2 - In this step, the weights of the particles forming the

set Sk[n] are updated on the basis of the weights {w(n)
3,k,j} computed in the previous step (see Eq.

(2.52)). The new weight for the j-th particle x
(N)
k,j [n] is computed as

w
(n)
4,k,j ≜ wp · w(n)

1,k,j · w
(n)
3,k,j (2.57)

and combines the initial weight wp (originating from m⃗
(n)
fp,j(x

(N)
k ) (2.46)) with the weights w(n)

1,k,j

(2.48) and w(n)
3,k,j (2.52) related to the measurement yk (2.19) and the pseudo-measurement z

(N)
k

(2.25), respectively. Note also that the weight w(n)
4,k,j (2.57) is conveyed by the message (see Fig.

2.5)

m⃗
(n)
4,j

(
x
(N)
k

)
= m⃗

(n)
2,j

(
x
(N)
k

)
m⃗

(n)
3

(
x
(N)
k

)
(2.58)

= w
(n)
4,k,j δ

(
x
(N)
k − x

(N)
k,j [n]

)
, (2.59)

that represents the j-th component of the message m⃗(n)
4 (x

(N)
k ) (with j = 1, 2, ..., Np).

Once all the weights {w(n)
4,k,j} are available, their normalization is accomplished; this produces

the normalized weights
W

(n)
4,k,j ≜ C

(n)
k w

(n)
4,k,j , (2.60)

where C(n)
k ≜ 1/

∑Np

j=1w
(n)
4,k,j . The particles {x(N)

k,j [n]} and their weights {W (n)
4,k,j} represent the

second filtered pdf of x(N)
k computed by F2 in the n-th iteration of the considered recursion;

consequently, the final filtered pdf evaluated by F2 is represented by the particles {x(N)
k,j [ni]} and

their weights {W (ni)
4,k,j} computed in the last iteration.
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2. Multiple Bayesian Filtering as Message Passing

Resampling with replacement is now accomplished for the particle set Sk[n] on the basis
of the new weights {W (n)

4,k,j} (see Eq. (2.60)). This entails that the Np particles {x(N)
k,j [n]} and

their associated weights {W (n)
4,k,j} are replaced by the new particles {x(N)

k,j [n+ 1]}, forming the
set Sk[n+ 1] and having identical weights (all equal to wp ≜ 1/Np). Consequently, the effect of
resampling can be represented as turning the message m⃗(n)

4,j (x
(N)
k ) (2.59) into the message

m⃗
(n)
4,j

(
x
(N)
k

)
= wp δ

(
x
(N)
k − x

(N)
k,j [n+ 1]

)
, (2.61)

with j = 1, 2, .., Np.
5) Time update in F2 - In this step, the message m⃗(n)

fp (x
(N)
k+1), conveying the predicted pdf

of x(N)
k+1, is computed using the same method as RBPF (e.g., see [1, Sec. IV, p. 1526]). For this

reason, for any j, the pdf (see Fig. 2.5)∫ ∫
f
(
x
(N)
k+1|x

(L)
k ,x

(N)
k

)
· m⃗(n)

4,j

(
x
(N)
k

)
m⃗

(n)
1

(
x
(L)
k

)
dx

(L)
k dx

(N)
k (2.62)

= N
(
x
(N)
k+1; η

(N)
3,k,j ,C

(N)
3,k,j

)
, (2.63)

representing a prediction of x(N)
k+1 conditioned on x

(N)
k = x

(N)
k,j [n+ 1] is computed first; here,

η
(N)
3,k,j ≜ A

(N)
k,j [n+ 1] η̃

(n)
1,k + f

(N)
k,j [n+ 1] , (2.64)

C
(N)
3,k,j ≜ A

(N)
k,j [n+ 1] C̃

(n)
1,k

(
A

(N)
k,j [n+ 1]

)T
+C(N)

w , (2.65)

A
(N)
k,j [n+1] ≜ A

(N)
k (x

(N)
k,j [n+1]) and f

(N)
k,j [n+1] ≜ f

(N)
k (x

(N)
k,j [n+1]). Then, the sample x̄(N)

k+1,j [n+ 1]
is drawn from the Gaussian function (2.63) and the weight wp is assigned to it; these information
are conveyed by the j-th component

m⃗
(n)
fp,j

(
x
(N)
k+1

)
= wp δ

(
x
(N)
k+1 − x̄

(N)
k+1,j [n+ 1]

)
, (2.66)

of the message m⃗(n)
fp (x

(N)
k+1).

6) Computation of the pseudo-measurements for F1 - This step is accomplished in the F2→F1

block and aims at generating the message (see Fig. 2.5)

m⃗
(n)
4 (xk) = N

(
xk; η

(n)
4,k ,C

(n)
4,k

)
, (2.67)

that conveys the pseudo-measurement information exploited by F1 in its second measurement
update of the next iteration. The mean vector η(n)4,k is evaluated as

η
(n)
4,k =

[(
η̃
(n)
4,k

)T
,
(
η̌
(n)
4,k

)T ]T
, (2.68)

where

η̃
(n)
4,k ≜

1

Np

Np∑
j=1

η̃
(n)
4,k,j (2.69)

and

η̌
(n)
4,k ≜

1

Np

Np∑
j=1

x
(N)
k,j [n] (2.70)

are a DL−dimensional mean vector and a DN−dimensional mean vector, respectively. The
covariance matrix C

(n)
4,k , instead, is computed as

C
(n)
4,k =

[
C̃

(n)
4,k Ċ

(n)
4,k(

Ċ
(n)
4,k

)T
Č

(n)
4,k

]
, (2.71)
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where

C̃
(n)
4,k ≜

1

Np

Np∑
j=1

r̃
(n)
4,k,j − η̃

(n)
4,k

(
η̃
(n)
4,k

)T
, (2.72)

is a DL ×DL covariance matrix,

Č
(n)
4,k ≜

1

Np

Np∑
j=1

ř
(n)
4,k,j − η̌

(n)
4,k

(
η̌
(n)
4,k

)T
, (2.73)

is a DN ×DN covariance matrix and

Ċ
(n)
4,k ≜

1

Np

Np∑
j=1

ṙ
(n)
4,k,j − η̃

(n)
4,k

(
η̌
(n)
4,k

)T
, (2.74)

is DL ×DN cross-covariance matrix. Moreover, r̃(n)4,k,j ≜ C̃
(n)
4,k,j + η̃

(n)
4,k,j(η̃

(n)
4,k,j)

T , ř(n)4,k,j ≜ x
(N)
k,j [n+

1](x
(N)
k,j [n+ 1])T ṙ

(n)
4,k,j ≜ η̃

(n)
4,k,j(x

(N)
k,j [n+ 1])T , the covariance matrix C̃

(n)
4,k,j and the mean vector

η̃
(n)
4,k,j are computed on the basis of the associated precision matrix

W̃
(n)
4,k,j ≜

(
C̃

(n)
4,k,j

)−1
=
(
A

(N)
k,j [n+ 1]

)T
W(N)

w A
(N)
k,j [n+ 1] (2.75)

and of the associated transformed mean vector

w̃
(n)
4,k,j ≜ W̃

(n)
4,k,j η̃

(n)
4,k,j =

(
A

(N)
k,j [n+ 1]

)T
W(N)

w z
(L)
k,j [n+ 1] , (2.76)

respectively, and
z
(L)
k,j [n+ 1] ≜ x̄

(N)
k+1,j [n+ 1]− f

(N)
k,j [n+ 1]. (2.77)

The computation of m⃗(n)
4 (xk) (2.67) concludes step 6) and, consequently, the n-th iteration

of phase II. Then, if the iteration index n is less than ni, it is increased by one, so that a new
iteration can be started by going back to step 1); otherwise, phase III is accomplished.

Phase III - In this phase, the message (see Fig. 2.5)

m⃗
(ni+1)
3 (xk) = N

(
xk; η

(ni+1)
3,k ,C

(ni+1)
3,k

)
, (2.78)

conveying the final filtered pdf provided by F1, is computed on the basis of Eqs. (2.38)–(2.43)
as if a new iteration (corresponding to n = ni + 1) was started. Then, if k < t, the output
messages m⃗fp(x

(N)
k+1) and m⃗fp (xk+1) (i.e., the new predicted densities) are computed; otherwise,

DBF processing is over, since the final measurement has been processed. In the first case, the
j-th component of m⃗fp(x

(N)
k+1) is generated by F1 as (see Fig. 2.3)

m⃗fp,j

(
x
(N)
k+1

)
= m⃗

(ni)
fp,j

(
x
(N)
k+1

)
(2.79)

for j = 1, ..., Np (see Eq. (2.46)); this means that the particle set Sk+1[1] available at the
beginning of the next recursion consists of the particles {x(N)

k+1,j = x̄
(N)
k+1,j [ni + 1]; j = 1, 2, ...,

Np}. Then, the predicted pdf m⃗fp (xk+1) is computed by F1 as (see Fig. 2.5)

m⃗fp (xk+1) =

∫
f̃ (xk+1 |xk ) m⃗

(ni+1)
3 (xk) dxk (2.80)

= N (xk+1; ηfp,k+1,Cfp,k+1) , (2.81)

where
ηfp,k+1 ≜ Fk η

(ni+1)
3,k + uk, (2.82)

and
Cfp,k+1 ≜ Cw + FkC

(ni+1)
3,k FTk . (2.83)
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This concludes the k-th recursion of the DBF technique.
The algorithm described above needs a proper initialization. In our work, a (known) Gaussian

pdf f(x1) = N (x1; η1,C1) is assumed for the initial x1; for this reason, DBF is initialized
by setting m⃗fp (x1) = f(x1) for F1 and by sampling the pdf f(x(N)

1 ) (that results from the
marginalization of f(x1) with respect to x

(L)
1 ) Np times in order to generate the initial particle

set S1[1] = {x(N)
1,j , j = 1, ..., Np}; then, the same weight (wp = 1/Np) is assigned to each particle.

All the processing tasks accomplished by the DBF technique are summarized in Algorithm
1. Note also that, at the end of the k-th recursion, estimates x̂

(N)
fe,k and x̂

(L)
fe,k of x(N)

k and x
(L)
k ,

respectively, can be evaluated as: a) x̂
(N)
fe,k =

∑Np

j=1W
(ni)
4,k,j x

(N)
k,j [ni] (see our comments following

Eq. (2.60)) or x̂
(N)
fe,k = η̄

(ni+1)
3,k , where η̄(ni+1)

3,k consists of the last DN elements of η(ni+1)
3,k (see Eq.

(2.78)); b) x̂
(L)
fe,k = η̃

(ni+1)
3,k , where η̃(ni+1)

3,k consists of the first DL elements of η(ni+1)
3,k .

Algorithm 3: Double Bayesian Filtering

1 Initialisation: For j = 1 to Np: sample the pdf f(x(N)
1 ) to generate the particles x

(N)
1,j (forming

the set S1[1]), and assign the weight wp = 1Np to each of them. Set Wfp,1 = W1 = [C1]
−1,

wfp,1 = W1η1.
2 Filtering: For k = 1 to t:

a- First measurement update in F1: Compute W2,k (2.36) and w2,k (2.37), C2,k = [W2,k]
−1 and

η2,k = C2,kw2,k. Then, extract η̃2,k and C̃2,k from η2,k and C2,k, respectively, and set
W

(0)
4,k = 0D,D and w

(0)
4,k = 0D.

for n = 1 to ni do
b- Second measurement update in F1: Compute C

(n)
3,k and η(n)3,k (see Eqs. (2.40)–(2.43); then,

extract η̃(n)1,k and C̃
(n)
1,k from η

(n)
3,k and C

(n)
3,k , respectively.

c- Measurement updates in F2:
for j = 1 to Np do

c1- First measurement update: compute η̃(n)1,k,j (2.49), C̃(n)
1,k,j (2.50) and w(n)

1,k,j (2.48).

c2- Computation of the pseudo-measurements for F2: compute Č
(n)
z,k,j (2.55), η̌(n)z,k,j (2.56),

W̌
(n)
z,k,j = [Č

(n)
z,k,j ]

−1 and w̌
(n)
z,k,j = W̌

(n)
z,k,j η̌

(n)
z,k,j . Then, compute W̌

(n)
3,k,j (2.53), w̌(n)

3,k,j

(2.54), Č(n)
3,k,j = [W̌

(n)
3,k,j ]

−1 and η̌(n)3,k,j = Č
(n)
3,k,jw̌

(n)
3,k,j . Finally, compute w(n)

3,k,j (2.52).

c3- Second measurement update: compute w(n)
4,k,j (2.57).

end
d- Normalization of particle weights: compute the normalized weights {W (n)

4,k,j} according to
Eq. (2.60).

e- Resampling with replacement : generate the new particle set Sk[n+ 1] = {x(N)
k,j [n+ 1]} by

resampling Sk[n] on the basis of the weights {W (n)
4,k,j}.

f- Time update in F2: For j = 1 to Np: Compute η(N)
3,k,j (2.64) and C

(N)
3,k,j (2.65), and sample

the pdf N (x
(N)
k+1; η

(N)
3,k,j ,C

(N)
3,k,j) to generate the new particle x

(N)
k+1,j [n+ 1].

g- Computation of the pseudo-measurements for F1: For j = 1 to Np: Compute z
(L)
k,j [n+ 1]

(2.77), W̃(n)
4,k,j (2.75) and w̃

(n)
4,k,j (2.76), C̃(n)

4,k,j = [W̃
(n)
4,k,j ]

−1 and η̃(n)4,k,j = C̃
(n)
4,k,jw̃

(n)
4,k,j . Finally,

compute η(n)4,k (2.68) and C
(n)
4,k (2.71) (according to Eqs. (2.69)–(2.70) and (2.72)–(2.74),

respectively).
end
h- Compute forward predictions (if k < t): For j = 1 to Np: set x

(N)
k+1,j = x̄

(N)
k+1,j [ni] (these particles

form the set Sk+1[1]). Then, compute C
(ni+1)
3,k (2.42) and η(ni+1)

3,k (2.43). Finally, compute ηfp,k+1

(2.82), Cfp,k+1 (2.83), Wfp,k+1 = [Cfp,k+1]
−1 and wfp,k+1 = Wfp,k+1ηfp,k+1.

Following the same line of reasoning, a filtering method similar to DBF can be developed for
case C.2, that is for the second case considered in the previous paragraph. Details are omitted
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for space limitations; however, the relevant differences between this method (called simplified
DBF, SDBF, in the following) and the DBF technique can be summarized as follows:

1) In phase I, x(N)
k = x̂

(N)
fp,k is assumed in computing the first filtered pdf of of x(L)

k , where x̂
(N)
fp,k

denotes the prediction of x(N)
k evaluated on the basis of the message m⃗fp(x

(N)
k ) (2.29) provided

by F2.
2) In phase II, the message m⃗(n)

4 (xk) (2.67) is replaced by

m⃗
(n)
4

(
x
(L)
k

)
= N

(
x
(L)
k ; η̃

(n)
4,k , C̃

(n)
4,k

)
, (2.84)

since the pseudo-measurements computed in the F2→F1 block refer to the linear state component
only; here, η̃(n)4,k and C̃

(n)
4,k are given by Eqs. (2.69) and (2.72), respectively.

3) In phase III, x(N)
k = x̂

(N)
fe,k is assumed in computing the prediction of x(L)

k+1, where x̂
(N)
fe,k

denotes the estimate of x(N)
k evaluated on the basis of the final filtered pdf computed by F2.

2.3.3 Computational complexity

The computational cost of the DBF and SDBF techniques has been carefully assessed in terms
of number of floating operations (flops) to be executed in each of their recursions. The general
criteria adopted in estimating the computational cost of an algorithm are the same as those
illustrated in [40, App. A, p. 5420] and are not repeated here for space limitations. A detailed
analysis of the cost required by each task accomplished by the DBF and the SDBF techniques is
provided in Appendix E.1. Our analysis leads to the conclusion that the overall computational cost
of the DBF and of the SDBF are approximately of order O(NDBF) and O(NSDBF), respectively,
with

NDBF = 2PD2 + 4P 2D + 16D3/3 + 14niD
3/3

+ni ·Np(2PD
2
L + 2P 2DL + 2P 3/3

+6D3
L + 6DLD

2
N + 4D2

LDN +D3
N/3) (2.85)

and

NSDBF = 2PD2
L + 4P 2DL + 16D3

L/3 + 14niD
3
L/3

+ni ·Np(2PD
2
L + 2P 2DL + 2P 3/3

+6D3
L + 6DLD

2
N + 4D2

LDN +D3
N/3). (2.86)

Each of the last two expressions has been derived as follows. First, the costs of all the tasks
identified in Appendix E.1 for both the interconnected filters have been summed (see Eqs. (E.1)–
(E.8)); then, the resulting expression has been simplified, keeping only the dominant contributions
due to matrix inversions, matrix products and Cholesky decompositions and discarding all the
contributions that originate from the evaluation of the matrices A

(Z)
k (x

(N)
k ) (with Z = L and

N), Fk, Hk and Bk and the functions f
(Z)
k (x

(N)
k ) (with Z = L and N), fk(xk) and gk(x

(N)
k ).

Moreover, the complexity of particle resampling has been ignored. A similar approach has been
followed for EKF, for RBPF and for the MPF technique described in [37]; their complexities are
approximately of order O(NEKF), O(NRBBF) and O(NMPF), respectively, with

NEKF = 2PD2 + 2P 2D + 2P 3/3 + 6D3, (2.87)

NRBPF = Np(4PD
2
L + 6P 2DL + 2P 3/3 + 6D3

L

+4D2
LDN + 6DLD

2
N +D3

N/3) (2.88)

and
NMPF = n(2M Ld3y/3 +M d3x,i/3); (2.89)
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note that the symbols appearing in the last formula are the same as those defined in ref. [37].
It is important to keep in mind that a comparison among the computational costs listed

above does not fully account for the gap that can be observed in the execution speed of the
corresponding algorithms. In fact, distinct filtering techniques may have substantially smaller
memory requirements and, as evidenced by our numerical results, this may influence their overall
execution speed. For instance, the DBF/SDBF techniques need to store the state estimates and
predictions generated by a single extended Kalman filter, whereas RBPF needs to memorise those
computed by a bank of Np Kalman filters running in parallel. Finally, it is worth stressing that
NDBF (2.85) and NSDBF (2.86) exhibit a linear dependence on the parameter ni. Actually, in our
computer simulations, ni = 1 has been always selected, since marginal improvements have been
obtained by increasing ni beyond unity.

2.4 Numerical Results

In this section we first compare, in terms of accuracy and execution time, the DBF and SDBF
techniques with an extended Kalman filter (corresponding to F1 of the DBF technique) and the
RBPF technique (corresponding to the combination of F2 of the DBF technique with a bank of Np

Kalman filters) for a specific CLG SSM, denoted SSM #1. This SSM is very similar to the dynamic
model described in [1, Par. VII-A, p. 1531], and refers to an agent moving on a plane and whose
state is defined as xk ≜ [pTk ,v

T
k ]
T ; here, vk ≜ [vx,k, vy,k]

T and pk ≜ [px,k, py,k]
T (corresponding

to x
(N)
k and x

(L)
k , respectively) represent the agent velocity and its position, respectively (their

components are expressed in m/s and in m, respectively). The dynamic models (see [1, eqs.
(67)–(68), p. 1531])

vk+1 = ρvk + (1− ρ) nv,k + a (pk,vk) Ts, (2.90)

and
pk+1 = pk + vkTs +

1

2
a (pk,vk) T

2
s + np,k (2.91)

are adopted for the agent velocity and position, respectively; here, ρ is a forgetting factor
(0 < ρ < 1), Ts is the sampling interval, {nv,k} and {np,k} are mutually independent additive
white Gaussian noise (AWGN) processes (whose elements are characterized by the covariance
matrices I2 and σ2p I2, respectively),

a (pk,vk) = −(a0/d0)pk − ã0 fv (∥vk∥) uv,k. (2.92)

is the acceleration associated with position/velocity-dependent forces, a0 and ã0 are scale factors
(both expressed in m/s2), d0 is a reference distance, uv,k ≜ vk/ ∥vk∥ is the versor (i.e., the
vector of unit norm) associated with vk and fv (x) = (x/v0)

3 is a continuous, differentiable
and dimensionless function (the parameter v0 represents a reference velocity). Moreover, the
measurement model

yk = [pTk ∥vk∥]T + ek, (2.93)

is adopted; here, {ek} is an AWGN process, whose elements are characterized by the covariance
matrix Ce = diag(σ2e,p, σ

2
e,p, σ

2
e,v).

In our computer simulations, the estimation accuracy of the considered filtering techniques
for SSM#1 has been assessed by evaluating two root mean square errors (RMSEs), one for the
linear state component, the other for the nonlinear one, over an observation interval lasting
T = 300 Ts; these are denoted RMSEL(alg) (m) and RMSEN (alg) (m/s) respectively, where ‘alg’
denotes the algorithm these parameters refer to (note also that RMSEN (DBF) is computed on
the basis of the estimate of vk generated by F2, since this was found to be slightly more accurate
than that evaluated by F1). Our assessment of computational requirements is based, instead, on
comparing NDBF (2.85), NSDBF (2.86), NEKF (2.87) and NRBPF (2.88), and on assessing the
average execution time required by each algorithm over the whole observation interval. Moreover,
the following values have been selected for the parameters of SSM#1: ρ = 0.99, Ts = 0.1 s, σp

42



2.4. Numerical Results

2x10
-2

3

4

5

6

7

8

R
M

SE
 (

m
, m

/s
)

14012010080604020
Number of particles, Np

RMSEL (m/s)

  EKF
 RBPF
 DBF
 SDBF

RMSEN (m)

Figure 2.6: RMSE performance versus Np for the linear component (RMSEL; blue curves) and the
nonlinear component (RMSEN ; red curves) of system state (SSM#1); EKF, RBPF, DBF and SDBF are
considered.

= 0.01 m, σe,p = 5 · 10−2 m, σe,v = 5 · 10−2 m/s, a0 = 1.5 m/s2, d0 = 0.5 m, ã0 = 0.05 m/s2

and v0 = 1 m/s (the initial position p0 ≜ [px,0, py,0]
T and the initial velocity v0 ≜ [vx,0, vy,0]

T

have been set to [5 m, 8 m]T and [4 m/s, 4 m/s]T , respectively). These values ensure that: a)
the two components of the position vector are represented by fast and damped oscillations in
the observation interval; b) the time variations of the state vector can be accurately tracked by
RBPF.

Some numerical results showing the dependence of RMSEL and RMSEN on the number of
particles (Np) for RBPF, EKF, DBF and SDBF are illustrated in Fig. 2.6 (simulation results
are indicated by markers, whereas continuous lines are drawn to fit them, so facilitating the
interpretation of the available data); in this case, ni = 1 has been selected for DBF/SDBF and
the range [10, 150] has been considered for Np. These results show that:

1) The EKF technique is outperformed by the other three filtering algorithms in terms of both
RMSEL and RMSEN for any value of Np; for instance, RMSEL(EKF) (RMSEN (EKF)) is about
1.65 (1.80) times larger than RMSEL(DBF) (RMSEN (DBF)) for Np = 100.

2) DBF/SDBF perform slightly worse than RBPF for the same value of Np (for instance,
RMSEL(DBF) and RMSEN (DBF) are about 5% larger than the corresponding quantities evalu-
ated for RBPF).

3) No real improvement in terms of RMSEL and RMSEN is found for Np ≳ 100, if RBPF,
DBF or SDBF are employed.

4) The SDBF performs very similarly as DBF; for this reason, in this specific case, the presence
of redundancy in the DBF does not allow to achieve a better estimation accuracy.

Despite their similar accuracies, RBPF, DBF and SDBF are characterized by different compu-
tational complexities and execution times. This is evidenced by the numerical results appearing
in Fig. 2.7 and showing the dependence of the execution time and the computational complexity
on Np for the considered filtering algorithms. For instance, from these results it is easily inferred
that the DBF complexity is about 39% smaller that of RBPF for Np = 100; however, the gap in
terms of execution time is even larger mainly for the reasons illustrated at the end of Paragraph
2.3.3 (in particular, the execution time for the DBF is approximately 0.61 times smaller than that
required by RBPF). Moreover, the results shown in Figs. 2.6–2.7 lead to the conclusion that, in
the considered scenario, DBF/SDBF achieve a better accuracy-complexity tradeoff than RBPF.

The second SSM considered in this work has been inspired by refs. [39] and [41]. In fact, it
refers to a sensor network employing P sensors placed on the vertices of a square grid (partitioning
a square area having side equal to l m) and receiving the reference signals radiated, at the same
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Figure 2.7: Execution time (black curves and markers) and computational complexity (blue curves) versus
Np for EKF, RBPF, DBF and SDBF; SSM#1 is considered.

power level and at the same frequency, by N independent targets moving on a plane. Each target
evolves according to the motion model described by

vk+1 = vk + nv,k (2.94)

and Eq. (2.91) with a (pk,vk) = 0 for any k. In this case, the considered SSM (denoted SSM#2
in the following) refers to the whole set of targets and its state vector xk results from the ordered
concatenation of the vectors {x(i)

k ; i = 1, 2, ..., N}, where x
(i)
k ≜ [(v

(i)
k )T , (p

(i)
k )T ]T , and v

(i)
k

and p
(i)
k represent the i-th target velocity and the position, respectively. Moreover, the following

additional assumptions have been made about this SSM: 1) the process noises n
(i)
p,k and n

(i)
v,k,

affecting the i-th target position and velocity, respectively, are given by n
(i)
p,k = (T 2

s /2)n
(i)
a,k and

n
(i)
v,k = Ts n

(i)
a,k, where {n(i)

a,k} is two-dimensional AWGN, representing a random acceleration and
having covariance matrix σ2a I2 (with i = 1, 2, ..., N); 2) the measurement acquired by the q-th
sensor (with q = 1, 2, ..., P ) in the k-th observation instant is given by

yq,k = 10 log10

(
Ψ

N∑
i=1

d20 ∥sq − p
(i)
k ∥−2

)
+ ek, (2.95)

where the measurement noise {ek} is AWGN having zero mean and variance σ2e , Ψ denotes the
normalized power received by each sensor from any target at a distance d0 from the sensor itself
and sq is the position of the considered sensor; 3) the overall measurement vector yk results
from the ordered concatenation of the measurements {yq,k; q = 1, 2, ..., P} and, consequently,
provides information about the position only; 4) the initial position p

(i)
0 ≜ [p

(i)
x,0, p

(i)
y,0]

T and the

initial velocity v
(i)
0 ≜ [v

(i)
x,0, v

(i)
y,0]

T of the i-th target have been randomly selected (with i = 1, 2,
..., N). As far as the last point is concerned, it is important to mention that, in our computer
simulations, the region covered by the sensors has been partitioned into a number of squares (the
overall number of squares is not smaller than N) and distinct targets have been placed in different
squares in a random fashion; moreover, the initial velocity of each target has been randomly
selected within the interval (vmin, vmax) in order to ensure that the trajectories of distinct targets
do not cross each other in the observation interval. The following values have been selected for
the parameters of SSM#2: P = 25, l = 103 m, Ts = 1 s, σ2a = 0.1 m/s2, σ2e = −35 dB, Ψ = 1,
d0 = 1 m, vmin = 0 m/s and vmin = 0.1 m/s. Moreover, a number N of targets ranging from 1 to
5 has been observed for T = 120 Ts s.

Our computer simulations for SSM#2 have aimed at evaluating: a) the accuracy achieved by
different filtering algorithms in tracking the position of N targets; b) the probability that each
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filtering algorithm diverges in the considered observation interval (this parameter is denoted PFD
in the following). In practice, the accuracy achieved in position tracking has been assessed by
estimating the RMSE characterizing the whole set {p(i)

k ; i = 1, 2, ..., N} over each instant of
the considered observation interval; note that, if the i-th target is considered, its position p

(i)
k

represents the nonlinear component of the associated substate x
(i)
k , because of the nonlinear

dependence of yk on it (see Eq. (2.95)). On the other hand, the probability PFD has been assessed
by carefully identifying all the simulation runs in which the tracking of at least one of the N targets
fails. Moreover, the tracking accuracy and the probability of divergence have been evaluated
for the following six filtering techniques: 1) EKF; 2) RBPF; 3) the MPF technique developed
in [37] and based on the interconnection of N identical particle filters (one for each target); 4)
DBF; 5) SDBF; 6) a novel filtering algorithm based on the interconnection of NF = N + 1 filters
and dubbed MBF algorithm (MBFA). The last algorithm involves the interconnection of an
extended Kalman filter with N particle filters, each representing the filtered/predicted pdfs of a
two-dimensional vector through Ñp weighted particles. More specifically, the i-th particle filter
estimates the position p

(i)
k of the i-th target (with i = 1, 2, ..., N); consequently, the degree

of redundancy of the MBFA is Nd = 2N , that is the same as DBF. The computation of the
messages passed in the k-th recursion of the MFBA is based on the same equations as those
derived for DBF; the only modifications are due to the fact that:

1) The measurement update accomplished by the i-th particle filter of the MBFA requires
integrating out the dependence of the measurement vector yk on the (N − 1) positions {p(j)

k ;
j ̸= i}. This marginalization is accomplished by exploiting the pdfs of the positions {p(j)

k ; j ̸= i}
predicted by the other (N − 1) particle filters. Moreover, the computation of particle weights
requires drawing L particles from the predicted pdfs of the other filters (see [37, eq. (7), p. 354]).

2) The computation of the pseudo-measurements for the extended Kalman filter requires a
particle representation for the whole vector pk, that results from the ordered concatenation of the
vectors {p(i)

k ; i = 1, 2, ..., N}. In the MBFA, the j-th particle for pk is generated by: a) taking
the j-th element of the particle set made available, after resampling, by each of the N particle
filters (with j = 1, 2, ..., Ñp); b) concatenating the N particles obtained in this way.

In our computer simulations, Np = 500 has been selected for RBPF, DBF and SDBF. Moreover,
in the MPF technique and in the MBFA, each of N particle filters makes use of Ñp = ⌊Np/N⌋
particles, where Np = 500. Note also that: a) the parameter Ñp corresponds to the parameter M
of [37, Sec. III], since J = 1 is set in MPF (where J denotes the number of children generated
in the time update step); b) in our simulations, the ratio L/Ñp is always close to 1/3 for both
the MPF technique and the MBFA. The choices illustrated above ensure that all the algorithms
involving PF have comparable execution times; for instance, the execution time of RBPF, MPF
and DBF is approximately 21.4%, 3.4% and 0.9% larger, respectively, than that of the MBFA for
N = 5 targets. Despite this, these techniques exhibit different behaviours. In fact, our computer
simulations have evidenced that, on the one hand, EKF and SDBF quickly diverge after their
initialization and, therefore, are useless in the considered scenario. On the other hand, the RBPF,
the MPF and the DBF techniques, and the MBFA achieve similar accuracies in tracking conditions,
but are characterized by different probabilities of divergence. This is evidenced by Fig. 2.8, that
shows the dependence of the probability PFD on the overall number of targets. From these results
it is easily inferred that, as the number of target increases, the RBPF and the MPF techniques
are substantially outperformed by the DBF technique and the MBFA. These results lead to the
conclusion that the property of redundancy can play a key role in some applications, since it can
substantially reduce the probability of divergence of a filtering algorithm.

2.5 Conclusions

In this chapter, the problem of developing filtering algorithms that involve multiple interconnected
Bayesian filters running in parallel has been investigated. The devised solution, called multiple
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Figure 2.8: Probability of divergence versus N for the RBPF, the MPF and the DBF techniques, and the
MBFA.

Bayesian filtering, is based on the factor graph representation of Bayesian filtering. The application
of our graphical approach to a network consisting of two Bayesian filters has been illustrated.
Moreover, a specific instance of the proposed approach has been analyzed in detail for the case in
which the considered SSM is CLG, and the interconnected filters are an extended Kalman filter
and a particle filter. Simulation results for two specific SSMs evidence that the devised filtering
techniques perform closely to other well known filtering methods, but are appreciably faster or
offer a better tracking capability.
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Three

Double Bayesian Smoothing as Message Passing

Recently, a novel method for developing filtering algorithms, based on the interconnection of
two Bayesian filters and called double Bayesian filtering, has been proposed. In this chapter we
show that the same conceptual approach can be exploited to devise a new smoothing method,
called double Bayesian smoothing. A double Bayesian smoother combines a double Bayesian filter,
employed in its forward pass, with the interconnection of two backward information filters used
in its backward pass. As a specific application of our general method, a detailed derivation of
double Bayesian smoothing algorithms for conditionally linear Gaussian systems is illustrated.
Numerical results for two specific dynamic systems evidence that these algorithms can achieve
a better complexity-accuracy tradeoff and tracking capability than other smoothing techniques
recently appeared in the literature.

Part of this Chapter has been published in [47].

3.1 Introduction

The problem of Bayesian smoothing for a state space model (SSM) concerns the development
of recursive algorithms able to estimate the probability density function (pdf) of the model
state on a given observation interval, given a batch of noisy measurements acquired over it
[3], [48]; the estimated pdf is known as a smoothed or smoothing pdf. Two general methods
are available in the literature for recursively calculating smoothing densities; they are known
as the forward filtering-backward smoothing recursion (e.g., see [49] and [50]) and the method
based on the two-filter smoothing formula (e.g., see [51] and [52]). Both methods are based
on the idea that the smoothing densities can be computed by combining the predicted and/or
filtered densities generated by a Bayesian filtering method with the statistical information
produced in the backward pass by a different filtering method; the latter method is paired
with the first one and, in the case of the two-filter smoothing formula, is known as backward
information filtering (BIF). Unluckily, closed form solutions for Bayesian smoothing are available
for linear Gaussian and linear Gaussian mixture models only [3, 48, 53]. This has motivated
the development of various methods based on approximating smoothing densities in different
ways. For instance, the use of Gaussian approximations for the smoothing densities and of sigma
points techniques for solving moment matching integrals has been investigated in [54–56]. Another
class of methods (usually known as particle smoothers) is based on the exploitation of sequential
Monte Carlo techniques, i.e. on approximating smoothing densities through a set of weighted
particles (e.g., see [49, 51, 57–60] and references therein). Recently, substantial attention has
been also paid to the development of smoothing algorithms for the class of conditionally linear
Gaussian SSMs [7, 23, 24, 61, 62]. In this case, the above mentioned approximate methods can
benefit from the so called Rao-Blackwellization technique, i.e. from the marginalisation of the
linear substructure of any conditionally linear Gaussian model; this can significantly reduce the
overall computational complexity of both sigma-point based Gaussian smoothing [24] and particle
smoothing [7, 23, 61, 62] (that is usually known as Rao-Blackwellized particle smoothing, RBPS,
in this case).
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In this chapter, we propose a novel general method for the development of computationally
efficient particle smoothers. Our method exploits the same conceptual approach illustrated in
Chapter 2 (see [32]) in the context of Bayesian filtering and dubbed multiple Bayesian filtering.
That approach is based on the idea of developing new filtering algorithms by: a) interconnecting
multiple heterogeneous Bayesian filters; b) representing the processing accomplished by each
Bayesian filter and the exchange of statistical information among distinct filters as a message
passing over a proper factor graph. In [32] the exploitation of this approach has been investigated
in detail for the case in which two Bayesian filters are interconnected, i.e. dual Bayesian filtering
(DBF) is employed. Moreover, it has been shown that accurate and computationally efficient
DBF algorithms can be devised if the considered SSM is conditionally linear Gaussian. In this
chapter, we show that, if DBF is employed in the forward pass of a smoothing method, a BIF
method, paired with DBF and based on the interconnection of two backward information filters
can be devised by following some simple rules. Similarly as DBF, our derivation of such a BIF
method, called double backward information filtering (DBIF), is based on a graphical model. Such
a graphical model allows us to show that: a) the pdfs computed in DBIF can be represented as
messages passed on it; b) all the expressions of the passed messages can be derived by applying
the same rule, namely the so called sum-product algorithm (SPA) [17], [18], to it; c) iterative
algorithms can be developed in a natural fashion once the cycles it contains have been identified
and the order according to which messages are passed on them (i.e., the message scheduling) has
been established; d) the statistical information generated by a DBIF algorithm in the backward
pass can be easily merged with those produced by its paired DBF technique in the forward pass
in order to evaluate the required smoothed pdfs. To exemplify the usefulness of the resulting
smoothing method, based on the combination of DBF and DBIF, and called double Bayesian
smoothing (DBS), the two DBF algorithms proposed in [32] for the class of conditionally linear
Gaussian SSMs are taken into consideration, and the BIF algorithm paired with each of them and
a simplified version of it are derived. This leads to the development of four new DBS algorithms,
two generating an estimate of the joint smoothing density over the whole observation interval, the
other two an estimate of the marginal smoothing densities over the same interval. Our computer
simulations for two specific conditionally linear Gaussian SSMs evidence that, in the first case,
the derived DBS algorithms perform very closely to the RBPS technique proposed in [7] and to
the particle smoothers devised in [23], but at lower computational cost and time. In the second
case, instead, two of the devised DBS techniques represent the only technically useful options,
thanks to their good tracking capability. In fact, such techniques are able to operate reliably even
when their competitors diverge in the forward pass.
It is worth stressing that the technical contribution provided by this chapter represents a significant
advancement with respect to the application of factor graph theory to particle smoothing illustrated
in [23]. In fact, in that manuscript, we also focus on conditionally linear Gaussian models, but
assume that the forward pass is accomplished by marginalized particle filtering (MPF; also
known as Rao-Blackwellized particle filtering); in other words, Bayesian filtering is based on
the interconnection of a particle filter with a bank of Kalman filters. In this chapter, instead,
the general method we propose applies to a couple of arbitrary interconnected Bayesian filters.
Moreover, the specific smoothing algorithms we derive assume that the forward pass is carried
out by a filtering algorithm based on the interconnection of a particle filter with a single extended
Kalman filter.

The remaining part of this chapter is organized as follows. In Section 3.2, a general graphical
model, on which the processing accomplished in DBF, DBIF, and DBS is based, is illustrated.
In Section 3.3, a specific instance of the graphical model illustrated in the previous section is
developed under the assumptions that the filters employed in the forward pass are an extended
Kalman filter and a particle filter, and that the considered SSM is conditionally linear Gaussian.
Then, the scheduling and the computation of the messages passed over this model are analysed
in detail and new DBS algorithms are devised. The differences and similarities between these
algorithms and other known smoothing techniques are analysed in Section 3.4. A comparison,
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in terms of accuracy, computational complexity, and execution time, between the proposed
techniques and three smoothers recently appeared in the literature, is provided in Section 3.5 for
two conditionally linear Gaussian SSMs. Finally, some conclusions are offered in Section 3.6.

3.2 Graphical Model for a Couple of Interconnected Bayesian Information
Filters and Message Passing on it

In this chapter, we consider a discrete-time SSM whose D−dimensional hidden state in the k−th
interval is denoted xk ≜ [x0,k, x1,k, ..., xD−1,k]

T , and whose state update and measurement models
are expressed by

xk+1 = fk
(
xk
)
+wk (3.1)

and

yk ≜ [y0,k, y1,k, ..., yP−1,k]
T

= hk
(
xk
)
+ ek, (3.2)

respectively, with k = 1, 2, ..., T . Here, fk
(
xk
)

(hk
(
xk
)
) is a time-varying D−dimensional

(P−dimensional) real function, T is the duration of the observation interval and wk (ek) is the
k−th element of the process (measurement) noise sequence

{
wk

}
(
{
ek
}
); this sequence consists

of D−dimensional (P−dimensional) independent and identically distributed (iid) Gaussian noise
vectors, each characterized by a zero mean and a covariance matrix Cw (Ce). Moreover, statistical
independence between

{
ek
}

and {wk} is assumed.
From a statistical viewpoint, a complete statistical description of the considered SSM is

provided by the pdf f(x1) of its initial state, its Markov model f(xk+1|xk) and its observation
model f(yk|xk) for any k; the first pdf is assumed to be known, whereas the last two pdfs can be
easily derived from Eq. (3.1) and Eq. (3.2), respectively.

In the following, we focus on the problem of developing novel smoothing algorithms and, in
particular, algorithms for the estimation of the joint smoothed pdf f(x1:T |y1:T ) (problem P.1)
and the sequence of marginal smoothed pdfs {f(xk|y1:T ), k = 1, 2, ..., T} (problem P.2); here,
y1:T ≜

[
yT1 ,y

T
2 , ...,y

T
T

]T is a P · T−dimensional vector. Note that, in principle, once problem P.1
is solved, problem P.2 can be easily tackled; in fact, if the joint pdf f(x1:T |y1:T ) is known, all
the posterior pdfs {f(xk|y1:T )} can be evaluated by marginalization.

The development of our smoothing algorithms is mainly based on the graphical approach
illustrated in our previous manuscripts [23, Sec. III], [32, Sec. II] and [1, Sec. III] for Bayesian
filtering and smoothing. This approach consists in the following steps:

1. The state vector xk is partitioned in two substates, denoted x
(1)
k and x

(2)
k and having sizes

D1 and D2 = D−D1, respectively. Note that, if x̄(i)
k represents the portion of xk not included in

x
(i)
k (with i = 1 and 2), our assumptions entail that x̄

(1)
k = x

(2)
k and x̄

(2)
k = x

(1)
k .

2. A sub-graph that allows to represent both Bayesian filtering and BIF for the substate x
(i)
k

(with i = 1 and 2) as message passing algorithms on it is developed, under the assumption that
the complementary substate x̄

(i)
k is statistically known. This means that filtered and predicted

densities of x(i)
k are represented as messages passed on the edges of this sub-graph and the rules

for computing them result from the application of the SPA to it.
3. The two sub-graphs devised in the previous step (one referring to x

(1)
k , the other one to x

(2)
k )

are interconnected, so that a single graphical model referring to the whole state xk is obtained.
4. Algorithms for Bayesian filtering and BIF for the whole state xk are derived by applying

the SPA to the graphical model obtained in the previous step.
Let us analyse now the steps 2.-4. in more detail. As far as step 2. is concerned, the sub-graph

devised for the substate x
(i)
k is based on the same principles illustrated in our manuscripts

cited above (in particular, ref. [32]) and is illustrated in Fig. 3.1. The k−th recursion (with
k = 1, 2, ..., T ) of Bayesian filtering for the sub-state x

(i)
k is represented as a forward message
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3. Double Bayesian Smoothing as Message Passing

passing on this factor graph, that involves the Markov model f(x(i)
k+1|x

(i)
k , x̄

(i)
k ) and the observation

model f(yk|x
(i)
k , x̄

(i)
k ). This allows to compute the messages m⃗fe1(x

(i)
k ), m⃗fe2(x

(i)
k ) and m⃗fp(x

(i)
k+1),

that convey the first filtered pdf of x(i)
k , the second filtered pdf of x(i)

k and the predicted pdf
of x

(i)
k+1, respectively, on the basis of the messages m⃗fp(x

(i)
k ), mms(x

(i)
k ) and mpm(x

(i)
k ); the

last three messages represent the predicted pdf of x(i)
k evaluated in the previous (i.e., in the

(k − 1)−th) recursion of Bayesian filtering, and the messages conveying the measurement and
the pseudo-measurement information, respectively, available in the k−recursion. The considered
filtering algorithm requires the availability of the messages mpm(x

(i)
k ), mmg1(x̄

(i)
k ), mmg2(x̄

(i)
k ),

that are computed on the basis of external statistical information. The presence of the messages
mmg1(x̄

(i)
k ) and mmg2(x̄

(i)
k ) is due the fact that the substate x̄

(i)
k represents a nuisance state for

the considered filtering algorithm; in fact, these messages convey filtered (or predicted) pdfs of x̄(i)
k

and are employed to integrate out the dependence of the pdfs f(yk|x
(i)
k , x̄

(i)
k ) and f(x(i)

k+1|x
(i)
k , x̄

(i)
k ),

respectively, on x̄
(i)
k . Note also that these two messages are not necessarily equal, since more

refined information about x̄
(i)
k could become available after that the message mms(x

(i)
k ) has been

computed. On the other hand, the message mpm(x
(i)
k ) conveys the statistical information provided

by a pseudo-measurement1 about x
(i)
k . In Fig. 3.1, following [32, Sec. II], it is assumed that the

pseudo-measurement z
(i)
k is available in the estimation of x(i)

k and that mpm(x
(i)
k ) represents the

pdf of z(i)k conditioned on x
(i)
k , that is

mpm

(
x
(i)
k

)
≜ f

(
z
(i)
k

∣∣x(i)
k

)
. (3.3)

The computation of the messages m⃗fe1(x
(i)
k ), m⃗fe2(x

(i)
k ) and m⃗fp(x

(i)
k+1) on the basis of the

messages m⃗fp(x
(i)
k ), mms(x

(i)
k ), mpm(x

(i)
k ), mmg1(x̄

(i)
k ) and mmg2(x̄

(i)
k ) is based on the two simple

rules illustrated in [1, Figs. 8-a) and 8-b), p. 1535] and can be summarized as follows. The first
and second filtered pdfs (i.e., the first and the second forward estimates) of x(i)

k are evaluated as

m⃗fe1

(
x
(i)
k

)
= m⃗fp

(
x
(i)
k

)
mms

(
x
(i)
k

)
, (3.4)

and
m⃗fe2

(
x
(i)
k

)
= m⃗fe1

(
x
(i)
k

)
mpm

(
x
(i)
k

)
, (3.5)

respectively, where

mms

(
x
(i)
k

)
≜
∫
f
(
yk
∣∣x(i)
k , x̄

(i)
k

)
mmg1

(
x̄
(i)
k

)
dx̄

(i)
k (3.6)

and mpm(x
(i)
k ) is defined in Eq. (3.3). Equations (3.4)-(3.6) describe the processing accomplished

in the measurement update of the considered recursion. This is followed by the time update, in
which the new predicted pdf (i.e., the new forward prediction)

m⃗fp

(
x
(i)
k+1

)
=

∫ ∫
f
(
x
(i)
k+1

∣∣x(i)
k , x̄

(i)
k

)
m⃗fe2

(
x
(i)
k

)
mmg2

(
x̄
(i)
k

)
dxk dx̄

(i)
k , (3.7)

is computed. The message passing procedure described above is initialised by setting m⃗fp(x
(i)
1 ) =

f(x
(i)
1 ) (where f(x(i)

1 ) is the pdf resulting from the marginalization of f(x1) with respect to x̄
(i)
1 )

in the first recursion and is run for k = 1, 2, ..., T . Once this procedure is over, BIF is executed
for the substate x

(i)
k ; its (T − k)−th recursion (with k = T − 1, T − 2, ..., 1) can be represented as

a backward message passing on the factor graph shown in Fig. 3.1. In this case, the messages
⃗mbp(x

(i)
k ), ⃗mbe1(x

(i)
k ), ⃗mbe2(x

(i)
k ) = ⃗mbe(x

(i)
k ), that convey the backward predicted pdf of x(i)

k , the
1Generally speaking, a pseudo-measurement is a fictitious measurement that is computed on the basis of statistical

information provided by a filtering algorithm different from the one benefiting from it.

50



3.2. Graphical Model for a Couple of Interconnected BIF and Message Passing on it
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Figure 3.1: Factor graph involved in the k−th ((T − k)−th) recursion of Bayesian filtering (BIF) for the
substate x(i)

k and forward (backward) message passing on it. The flow of messages in the forward (backward)
pass are indicated by red (blue) arrows, respectively; the brown vertical lines cutting each graph identify
the partitioning associated with formulas (3.10) (left cut), (3.11) (central cut) and (3.12) (right cut). The
messages m⃗fp(x

(i)
k ), ⃗mbp(x

(i)
k ), m⃗fp(x

(i)
k+1), ⃗mbe(x

(i)
k+1), mms(x

(i)
k ), mmgl(x̄

(i)
k ), mpm(x

(i)
k ), m⃗fel(x

(i)
k ) and

⃗mbel(x
(i)
k ) are denoted FPi, BPi, FPi

′
, BEi

′
, MSi, MGli, PMi, FEli and BEli respectively, to ease

reading.

first backward filtered pdf of x(i)
k and the second backward filtered pdf of x(i)

k , respectively, are
evaluated on the basis of the messages ⃗mbe(x

(i)
k+1), mpm(x

(i)
k ) and mms(x

(i)
k ), respectively; note

that ⃗mbe(x
(i)
k+1) represents the backward filtered pdf of x(i)

k computed in the previous (i.e., in the
(T − (k + 1))−th) recursion of BIF. Moreover, the first and second backward filtered pdfs of x(i)

k

are evaluated as (see Fig. 3.1)

⃗mbe1

(
x
(i)
k

)
= ⃗mbp

(
x
(i)
k

)
mpm

(
x
(i)
k

)
, (3.8)

and
⃗mbe2

(
x
(i)
k

)
= ⃗mbe

(
x
(i)
k

)
= ⃗mbe1

(
x
(i)
k

)
mms

(
x
(i)
k

)
, (3.9)

respectively, where mpm(x
(i)
k ) and mms(x

(i)
k ) are still expressed by Eq. (3.3) and Eq. (3.6),

respectively. The BIF message passing is initialised by setting ⃗mbe(x
(i)
T ) = mfe(x

(i)
T ) in its first

recursion and is run for k = T−1, T−2, ..., 1. Once the backward pass is over, a solution to problem
P.2 becomes available for the substate x

(i)
k , since the marginal smoothed pdf f(x(i)

k ,y1:T , z
(i)
1:T )

(where z
(i)
1:T is the P · T−dimensional vector resulting from the ordered concatenation of the all

the observed pseudo-measurements {z(i)k }) can be evaluated as2

f
(
x
(i)
k ,y1:T , z

(i)
1:T

)
= m⃗fp

(
x
(i)
k

)
⃗mbe2

(
x
(i)
k

)
(3.10)

= m⃗fe1

(
x
(i)
k

)
⃗mbe1

(
x
(i)
k

)
(3.11)

= m⃗fe2

(
x
(i)
k

)
⃗mbp

(
x
(i)
k

)
, (3.12)

with k = 1, 2, ..., T . Note that, from a graphical viewpoint, formulas (3.10)-(3.12) can be related
with the three different partitionings of the graph shown in Fig. 3.1 (where a specific partitioning
is identified by a brown dashed vertical line cutting the graph in two parts).

Given the graphical model represented in Fig. 3.1, step 3. can be accomplished by adopting
the same conceptual approach as [23, Sec. III] and [32, Par. II-B], where the factor graphs on
which smoothing and filtering, respectively, are based are obtained by merging two sub-graphs,
each referring to a distinct substate. For this reason, in this case, the graphical model for the
whole state xk is obtained by interconnecting two distinct factor graphs, each structured like the
one shown in Fig. 3.1. In [32, Par. II-B], message passing on the resulting graph is described in
detail for the case of Bayesian filtering. In this chapter, instead, our analysis of message passing
concerns BIF and smoothing only. The devised graph and the messages passed on it are shown in

2Note that, similarly as refs. [23] and [1], a joint smoothed pdf is considered here in place of the corresponding posterior
pdf.
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Figure 3.2: Graphical model based on the sub-graph shown in Fig. 3.1 and referring to the interconnection
of two backward information filters. The message computed in the backward (forward) pass are identified
by blue (black) arrows. The message msm(x

(i)
k ) is denoted SMi to ease reading.

Fig. 3.2. Note that, in developing our graphical model, it has been assumed that the smoothed
pdf referring to x

(i)
k (and conveyed by the message msm(x

(i)
k )) is computed on the basis of Eq.

(3.10), i.e. by merging the messages m⃗fp(x
(i)
k ) and ⃗mbe(x

(i)
k ) = ⃗mbe2(x

(i)
k ). Moreover, the following

elements (identified by brown lines) have been added to its i−th sub-graph (with i = 1 and
2): a) two equality nodes; b) the block BIFi→BIFj for extracting useful information from the
messages computed on the i−th sub-graph and delivered to the j−th one. The former elements
allow the i−th backward information filter to generate copies of the messages ⃗mbe(x

(i)
k+1) and

msm(x
(i)
k ), that are made available to the other sub-graphs. In the latter element, instead, the

messages mpm(x
(i)
k ) (see Eq. (3.3)) and mmgq(x̄

(i)
k ) (with q = 1 and 2; see Eqs. (3.6) and (3.7))

are computed; note that this block is connected to oriented edges only, i.e. to edges on which the
flow of messages is unidirectional.

Given the graphical model represented in Fig. 3.2, step 4. can be easily accomplished. In fact,
recursive BIF and smoothing algorithms can be derived by systematically applying the SPA to it
after that a proper scheduling has been established for message passing. In doing so, we must
always keep in mind that:
1) Message passing on the i−th subgraph represents BIF/smoothing for the substate x

(i)
k ; the

exchange of messages between the sub-graphs, instead, allows us to represent the interaction of
two interconnected BIF/smoothing algorithms in a effective and rigorous way.
2) Different approximations can be used for the predicted/filtered/smoothed pdfs computed in the
message passing on each of the two sub-graphs and for the involved Markov/observation models.
For this reason, generally speaking, the two interconnected filtering/BIF/smoothing algorithms
are not required to be of the same type.
3) The k−th recursion of the overall BIF algorithm is fed by the backward estimates ⃗mbe(x

(1)
k+1)

(BE1′) and ⃗mbe(x
(2)
k+1) (BE2′), and generates the new backward predictions ⃗mbp(x

(1)
k ) (BP1)

and ⃗mbp(x
(2)
k ) (BP2), and the two couples of filtered densities {( ⃗mbe1(x

(i)
k ), ⃗mbe2(x

(i)
k )), i = 1,

2} ({BE1i, BE2i, i = 1, 2}). Moreover, merging the predicted densities computed in the forward
pass (i.e., the messages {FPi}) with the second backward filtered densities (i.e., the messages
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3.3. Double BIF and Smoothing Algorithms for CLG SSMs

{BE2i = BEi}) allows us to generate the smoothed pdfs for each substate according to Eq.
(3.10). However, a joint filtered/smoothed density for the whole state xk is unavailable.
4) Specific algorithms are employed to compute the pseudo-measurement and the nuisance
substate pdfs in the BIFi→BIFj blocks appearing in Fig. 3.2. These algorithms depend on the
considered SSM and on the selected message scheduling; for this reason, a general description of
their structure cannot be provided.
5) The graphical model shown in Fig. 3.2, unlike the one illustrated in Fig. 3.1, is not cycle
free. The presence of cycles raises the problems of identifying all the messages that can be
iteratively refined and establishing the order according to which they are computed. Generally
speaking, iterative message passing on the devised graphical model involves both the couple of
measurement updates and the backward prediction accomplished in each of the interconnected
backward information filters. In fact, this should allow each filter to progressively refine the
nuisance substate density employed in its second measurement update and backward prediction,
and improve the quality of the pseudo-measurements exploited in its first measurement update.
For this reason, if ni iterations are run, the overall computational complexity of each recursion is
multiplied by ni.
The final important issue about the graphical model devised for both Bayesian filtering and
BIF concerns the possible presence of redundancy. In all the considerations illustrated above,
disjoint substates x

(1)
k and x

(2)
k have been assumed. Actually, in ref. [32], it has been shown

that our graphical approach can be also employed if the substates x
(1)
k and x

(2)
k cover xk, but

do not necessarily form a partition of it. In other words, some overlapping between these two
substates is admitted. When this occurs, the forward/backward filtering algorithm run over the
whole graphical model contains a form of redundancy, since Nd ≜ D1 +D2 −D elements of the
state vector xk are independently estimated by the interconnected forward/backward filters. The
parameter Nd can be considered as the degree of redundancy characterizing the filtering/smoothing
algorithm. Moreover, in ref. [32], it has been shown that the presence of redundancy in a Bayesian
filtering algorithm can significantly enhance its tracking capability (i.e., reduce its probability of
divergence); however, this result is obtained at the price of an increased complexity with respect
to the case in which the interconnected filters are run over disjoint substates.

3.3 Double Backward Information Filtering and Smoothing Algorithms for
Conditionally Linear Gaussian State Space Models

In this section we focus on the development of two new DBS algorithms for conditionally linear
Gaussian models. We first describe the graphical models on which these algorithms are based;
then, we provide a detailed description of the computed messages and their scheduling in a specific
case.

3.3.1 Graphical Modelling

In this paragraph, we focus on a specific instance of the graphical model illustrated in Fig. 3.2,
since we make the same specific choices as ref. [32] for both the considered SSM and the two
Bayesian filters employed in the forward pass. For this reason, we assume that: a) the SSM
described by eqs. (3.1)–(3.2) is conditionally linear Gaussian [7], [1], [6], so that its state vector
xk can be partitioned into its linear component x

(L)
k and its nonlinear component x

(N)
k (having

sizes DL and DN , respectively, with DN +DL = D); b) the dual Bayesian filter employed in the
forward pass results from the interconnection of an extended Kalman filter with a particle filter3

(these filters are denoted F1 and F2, respectively), as described in detail in ref. [32]. As far as
the last point is concerned, it is also worth mentioning that, on the one hand, filter F2 estimates
the nonlinear state component only (so that x

(2)
k = x

(N)
k and x̄

(2)
k = x

(L)
k ) and approximates the

3In particular, a sequential importance resampling filter is employed [2].
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3. Double Bayesian Smoothing as Message Passing

predicted/filtered densities of this component through a set of Np weighted particles. On the
other hand, filter F1 employs a Gaussian approximation of all its predicted/filtered densities, and
works on the whole system state or on the linear state component. In the first case (denoted C.1
in the following), we have that x

(1)
k = xk and x̄

(1)
k is empty, so that both F1 and F2 estimate

the nonlinear state component (for this reason, the corresponding degree of redundancy in the
developed smoothing algorithm is Nd = DN ); in the second case (denoted C.2 in the following),
instead, x

(1)
k = x

(L)
k and x̄

(1)
k = x

(N)
k , so that filters F1 and F2 estimate disjoint substates

(consequently, Nd = 0).
Our selection of the forward filtering scheme has the following implications on the developed

DBIF scheme. The first backward information filter (denoted BIF1) is the backward filter
associated with an extended Kalman filter operating over on the whole system state (case C.1) or
on the linear state component (case C.2). The second backward filter (denoted BIF2), instead, is
a backward filter associated with a particle filter operating on the nonlinear state component only.
In practice, following [7, 23, 62], BIF2 is employed to update the weights of all the elements of the
particle set generated by filter F2 in the forward pass. Then, based on the graphical model shown
in Fig. 3.2, the factor graph illustrated in Fig. 3.3 can be drawn for case C.1. It is important to
point out that:

1) The first backward information filter (BIF1) is based on linearised (and, consequently,
approximate) Markov/measurement models, whereas the second one (BIF2) relies on exact models,
as explained in more detail below. These models are the same as those employed in ref. [32].

2) Since the nuisance substate x̄
(1)
k is empty, no marginalization is required in BIF1; for this

reason, the messages {mmgq(x̄
(1)
k ); q = 1, 2} (i.e., MG11 and MG21) visible in Fig. 3.2 do not

appear in Fig. 3.3. Moreover, the message msm(x
(1)
k ) = msm(xk) is generated on the basis of Eq.

(3.11), instead of Eq. (3.10).
3) The backward filtered pdf ⃗mbe(x

(2)
k+1) = ⃗mbe(x

(N)
k+1) and the smoothed pdf msm(x

(2)
k ) =

msm(x
(N)
k ) (i.e., the messages BE2

′ and SM2, respectively) feed the BIF2→BIF1 block, where
they are processed jointly to generate the pseudo-measurement message mpm(x

(1)
k ) = mpm(xk)

(PM1) feeding filter F1. Similarly, the backward filtered pdf ⃗mbe(x
(1)
k+1) = ⃗mbe(xk+1) (BE1′)

and the smoothed pdf msm(x
(1)
k ) = msm(xk) (SM1) feed the BIF1→BIF2 block, where the

pseudo-measurement message mpm(x
(2)
k ) = mpm(x

(N)
k ) (PM2) and the messages {mmgq(x̄

(2)
k ) =

mmgq(x
(L)
k ); q = 1, 2} (i.e., MG12 and MG22) are evaluated.

In the remaining part of this paragraph, we first provide various details about the backward
filters BIF1 and BIF2, and the way pseudo-measurements are computed for each of them; then, we
comment on how the factor graph shown in Fig. 3.3 should be modified if case C.2 is considered.

BIF1 - This backward filter is based on the linearized versions of Eqs. (3.1) and (3.2), i.e. on
the models (e.g., see [3, pp. 194-195] and [32, Par. III-A])

xk+1 = Fk xk + uk +wk (3.13)

and
yk = HT

k xk + vk + ek, (3.14)

respectively; here, Fk ≜ [∂fk
(
x
)
/∂x]x=xfe,k

, uk ≜ fk
(
xfe,k

)
− Fk xfe,k, HT

k ≜ [∂hk
(
x
)
/∂x]x=xfp,k

,
vk ≜ hk

(
xfp,k

)
− HT

k xfp,k and xfp,k (xfe,k) is the forward prediction (forward estimate) of xk
computed by F1 in its (k − 1)−th (k−th) recursion. Consequently, the approximate models

f̃
(
xk+1

∣∣xk) = N
(
xk;Fk xk + uk,Cw

)
(3.15)

and
f̃
(
yk
∣∣xk) = N

(
xk;H

T
k xk + vk,Ce

)
(3.16)

appear in the graphical model shown in Fig. 3.3.
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BIF2 - In developing this backward filter, the state vector xk is represented as the ordered
concatenation of its linear component x(L)

k ≜ [x
(L)
0,k , x(L)1,k , ..., x

(L)
DL−1,k]

T and its nonlinear component

x
(N)
k ≜ [x

(N)
0,k , x

(N)
1,k , ..., x

(N)
DN−1,k]

T . Based on [1, eq. (3)], the Markov model

x
(N)
k+1 = A

(N)
k

(
x
(N)
k

)
x
(L)
k + f

(N)
k

(
x
(N)
k

)
+w

(N)
k (3.17)

is adopted for the nonlinear state component (this model corresponds to the last DN lines of Eq.
(3.1)); here, f (N)

k (x
(N)
k ) (A(N)

k (x
(N)
k )) is a time-varying DN−dimensional real function (DN ×DL

real matrix) and w
(N)
k consists of the last DN elements of the noise term wk appearing in Eq. (3.1)

(the covariance matrix of w(N)
k is denoted C

(N)
w ). Moreover, it is assumed that the observation

model (3.2) can be put in the form (see [32, eq. (31)] or [1, eq. (4)])

yk = gk
(
x
(N)
k

)
+Bk

(
x
(N)
k

)
x
(L)
k + ek, (3.18)

where gk(x
(N)
k ) (Bk(x

(N)
k )) is a time-varying P−dimensional real function (P ×DL real matrix).

Consequently, the considered backward filter is based on the exact pdfs

f
(
x
(N)
k+1

∣∣x(N)
k ,x

(L)
k

)
= N

(
x
(N)
k ;A

(N)
k

(
x
(N)
k

)
x
(L)
k + f

(N)
k

(
x
(N)
k

)
,C(N)

w

)
(3.19)

and
f
(
yk
∣∣x(N)
k ,x

(L)
k

)
= N

(
xk;gk

(
x
(N)
k

)
+Bk

(
x
(N)
k

)
x
(L)
k ,Ce

)
, (3.20)

both appearing in the graphical model drawn in Fig. 3.3.
Computation of the pseudo-measurements for the first backward filter - Filter BIF1 is fed by

pseudo-measurement information about the whole state xk. The method for computing these
information is similar to the one illustrated in ref. [23, Sects. III-IV] and can be summarised
as follows. The pseudo-measurements about the nonlinear state component are represented by
the Np particles conveyed by the smoothed pdf msm(x

(N)
k ) (SM2). On the other hand, Np

pseudo-measurements about the linear state component are evaluated by means of the same
method employed by marginalized particle filtering (MPF) for this task. This method is based on
the idea that the random vector (see Eq. (3.17))

z
(L)
k ≜ x

(N)
k+1 − f

(N)
k

(
x
(N)
k

)
, (3.21)

depending on the nonlinear state component only, must equal the sum

A
(N)
k

(
x
(N)
k

)
x
(L)
k +w

(N)
k , (3.22)

that depends on the linear state component. For this reason, Np realizations of z(L)k (3.21) are
computed in the BIF2→BIF1 block on the basis of the messages ⃗mbe(x

(N)
k+1) (BE2

′) andmsm(x
(N)
k ),

and are treated as measurements about x
(L)
k .

Computation of the pseudo-measurements for the second backward filter - The messages
⃗mbe(xk+1) (BE1′) and msm(xk) (SM1) feeding the BIF1→BIF2 block are employed for: a)

generating the messages {mmgq(x
(L)
k ); q = 1, 2} required to integrate out the dependence of

the state update and measurement models (i.e., of the densities f(x(N)
k+1|x

(N)
k , x(L)

k ) (3.19) and
f(yk|x

(N)
k ,x

(L)
k ) (3.20), respectively) on the substate x

(L)
k ; b) generating pseudo-measurement

information about x
(N)
k . As far as the last point is concerned, the approach we adopt is the same

as that developed for dual marginalized particle filtering (dual MPF) in ref. [1, Sec. V] and also
adopted in particle smoothing [23, Sects. III-IV]. The approach relies on the Markov model

x
(L)
k+1 = A

(L)
k

(
x
(N)
k

)
x
(L)
k + f

(L)
k

(
x
(N)
k

)
+w

(L)
k , (3.23)

referring to the linear state component (see [23, eq. (1)] or [1, eq. (3)]); in the last expression,
f
(L)
k (x

(N)
k ) (A(L)

k (x
(N)
k )) is a time-varying DL−dimensional real function (DL ×DL real matrix),

55



3. Double Bayesian Smoothing as Message Passing

and w
(L)
k consists of the first DL elements of the noise term wk appearing in (3.1) (the covariance

matrix of w(L)
k is denoted C

(L)
w , and independence between {w(L)

k } and {w(N)
k } is assumed for

simplicity). From Eq. (3.23) it is easily inferred that the random vector

z
(N)
k ≜ x

(L)
k+1 −A

(L)
k

(
x
(N)
k

)
x
(L)
k , (3.24)

must equal the sum
f
(L)
k

(
x
(N)
k

)
+w

(L)
k , (3.25)

that depends on x
(N)
k only ; for this reason, z(N)

k (3.24) can be interpreted as a pseudo-measurement
about x

(N)
k . In this case, the pseudo-measurement information is conveyed by the message

mpm(x
(N)
k ) (PM2) that expresses the correlation between the pdf of the random vector z

(N)
k

(3.24) (computed on the basis of the statistical information about the linear state component
made available by BIF1) and the pdf obtained for z

(N)
k under the assumption that this vector is

expressed by Eq. (3.25). The message mpm(x
(N)
k ) is evaluated for each of the particles representing

x
(N)
k in BIF2; this results in a set of Np particle weights employed in the first measurement update

of BIF2 and different from those computed on the basis of yk (3.18) in its second measurement
update.

A graphical model similar to the one shown in Fig. 3.3 can be easily derived from the general
model appearing in Fig. 3.2 for case C.2 too. The relevant differences with respect to case C.1
can be summarized as follows:

1) The backward filters BIF1 and BIF2 estimate x
(1)
k = x

(L)
k and x

(2)
k = x

(N)
k , respectively;

consequently, their nuisance substates are x̄
(1)
k = x

(N)
k and x̄

(2)
k = x

(L)
k , respectively.

2) The BIF2→BIF1 block is fed by the backward predicted/smoothed pdfs computed by BIF2;
such pdfs are employed for: a) generating the messages mmg1(x

(N)
k ) (MG11) and mmg2(x

(N)
k )

(MG21) required to integrate out the dependence of the Markov model (see Eq. (3.23))

f
(
x
(L)
k+1

∣∣x(N)
k ,x

(L)
k

)
= N

(
x
(L)
k ;A

(L)
k

(
x
(N)
k

)
x
(L)
k + f

(L)
k

(
x
(N)
k

)
,C(L)

w

)
(3.26)

and of the measurement model f(yk|x
(N)
k ,x

(L)
k ) (3.20), respectively, on x

(N)
k ; b) generating

pseudo-measurement information about the substate x
(L)
k only. As far as point a) is concerned,

it is also important to point out that the model f(yk|x
(N)
k ,x

(L)
k ) (f(x(L)

k+1|x
(N)
k ,x

(L)
k )) on which

BIF1 is based can be derived from Eq. (3.20) (Eq. (3.26)) after setting x
(N)
k = x

(N)
fp,k (x(N)

k = x
(N)
fe,k );

here, x(N)
fp,k (x(N)

fe,k ) denotes the prediction (the estimate) of x(N)
k evaluated by the filter F2 in the

forward pass (further details about this can be found in ref. [32, Par. III-A])
The derivation of specific DBS algorithms based on the graphical model illustrated in Fig.

3.3 requires defining the scheduling of the messages passed on it and deriving mathematical
expressions for such messages. These issues are investigated in detail in the following paragraph.

3.3.2 Message Scheduling and Computation

In this paragraph, the scheduling of a new recursive smoothing algorithm, called double Bayesian
smoothing algorithm (DBSA) and based on the graphical model illustrated in Fig. 3.3, and a
simplified version of it are described. Moreover, the expression of the messages computed by the
DBSA are illustrated.

The scheduling adopted in the DBSA mimics the one employed in ref. [23] (which, in turn, has
been inspired by [62] and [7]). Moreover, in devising it, the presence of cycles in the underlying
graphical model has been accounted for by allowing multiple passes of messages over the edges
which such cycles consist of; this explains why an iterative procedure is embedded in each recursion
of the DBSA. Our description of the devised scheduling is based on Fig. 3.4, that refers to the
(T − k)−th recursion of the backward pass of the DBSA (with k = T − 1, T − 2, ..., 1) and to
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Figure 3.3: Graphical model referring to the interconnection of two backward information filters, one
paired with an extended Kalman filter, the other one with a particle filter.

the n−th iteration accomplished within this recursion (with n = 1, 2, ..., ni, where ni represents
the overall number of iterations). Note that, in this figure, a simpler notation is adopted for most
of the considered messages to ease reading; in particular, the symbols q , q(n), qL, qL(n), qN and
qN (n) are employed to represent the messages mq(xk), m

(n)
q (xk), mq(x

(L)
k ), m(n)

q (x
(L)
k ), mq(x

(N)
k ),

m
(n)
q (x

(N)
k ), respectively (independently of the presence of an arrow and of its direction in the

considered message), and the presence of the superscript (n) in a given message means that such
a message is computed in the n-th iteration. Moreover, each of the passed messages conveys a
Gaussian pdf or a pdf in particle form. In the first case, the pdf of a state/substate x is conveyed
by the message

mG

(
x
)
= N (x; η,C), (3.27)

where η and C denote the mean and the covariance of x, respectively. In the second case, instead,
its pdf is conveyed by the message

mP

(
x
)
=

Np∑
j=1

mP,j

(
x
)
, (3.28)

where
mP,j

(
x
)
≜ wj δ

(
x− xj

)
(3.29)

is its j−th component ; this represents the contribution of the j−th particle xj and its weight wj
to mP (x) (3.28). The nature of each message can be easily inferred from Fig. 3.4, since Gaussian
messages and messages in particle form are identified by blue and red arrows, respectively.

Before analysing the adopted scheduling, we need to define the input messages feeding the
considered recursion of the DBSA and the outputs that such a recursion produces. In the
considered recursion, the DBSA input messages originate from:

1) The k-th recursion of the forward pass. These messages have been generated by the DBF
technique paired with the considered BIF scheme and, in particular, by the DBF algorithm
derived in ref. [32, Par. III-B], and have been stored (so that they are made available to the
backward pass).

2) The previous recursion (i.e., the (T − k − 1)−th recursion) of the DBSA itself.
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3. Double Bayesian Smoothing as Message Passing

As far as the input messages computed in the forward pass are concerned, BIF1 is fed by the
Gaussian messages (see Fig. 3.4)

m⃗fp

(
xk
)
≜ N

(
xk; ηfp,k,Cfp,k

)
. (3.30)

and
m⃗fe1

(
xk
)
≜ N

(
xk; ηfe1,k,Cfe1,k

)
, (3.31)

that convey the predicted pdf and the first filtered pdf, respectively, computed by F1 (in its
(k − 1)−th and in its k−th recursion, respectively). The covariance matrix Cfe1,k and the mean
vector ηfe1,k are evaluated on the basis of the associated precision matrix (see [23, Eqs. (14)-(17)])

Wfe1,k = HkWeH
T
k +Wfp,k (3.32)

and of the associated transformed mean vector

wfe1,k = HkWe

(
yk − vk

)
+wfp,k, (3.33)

respectively; here, We ≜ C−1
e , Wfp,k ≜ (Cfp,k)

−1 and wfp,k ≜ Wfp,k ηfp,k.
The backward filter BIF2, instead, is fed by the forward messages m⃗fp(x

(N)
k ) and m⃗fe1(x

(N)
k ),

both in particle form (see Fig. 3.4); their j−th components are represented by

m⃗fp,j

(
x
(N)
k

)
≜ wp δ

(
x
(N)
k − x

(N)
k,j

)
, (3.34)

and
m⃗fe1,j

(
x
(N)
k

)
≜ wfe,k,j δ

(
x
(N)
k − x

(N)
k,j

)
, (3.35)

respectively, with j = 1, 2, ..., Np; here, x(N)
k,j is the j−th particle predicted by F2 in the (k− 1)-th

recursion of the forward pass (i.e., the j−th element of the particle set Sk ≜ {x(N)
k,1 , x(N)

k,2 , ...,

x
(N)
k,Np

}), whereas wp ≜ 1/Np and wfe,k,j represent the (normalised) weights assigned to this

particle in the messages m⃗fp(x
(N)
k ) and m⃗fe1(x

(N)
k ), respectively.

On the other hand, the input messages originating from the previous recursion of the backward
pass are the backward filtered Gaussian pdf

⃗mbe

(
xk+1

)
≜ N

(
xk+1; ηbe,k+1,Cbe,k+1

)
(3.36)

and the backward pdf
⃗mbe

(
x
(N)
k+1

)
≜ δ
(
x
(N)
k+1 − x

(N)
be,k+1

)
, (3.37)

that represents x
(N)
k+1 through a single particle having unit weight; these are computed by BIF1

and BIF2, respectively. Consequently, in the considered recursion of the backward pass, all the
forward/backward input messages described above are processed to compute: 1) the new backward
pdfs ⃗mbe(xk) and ⃗mbe(x

(N)
k ); 2) the smoothed statistical information about xk (x(N)

k ) by properly
merging forward and backward messages generated by F1 and BIF1 (F2 and BIF2). As far as the
last point is concerned, the evaluation of smoothed information is based on the same conceptual
approach as [7, 23, 62]. In fact, in our work, the joint smoothing pdf f(x1:T |y1:T ) is estimated by
providing multiple (say, M) realizations of it. A single realization (i.e., a single smoothed state
trajectory) is computed in each backward pass; consequently, generating the whole output of the
DBSA requires running a single forward pass and M distinct backward passes. Moreover, the
evaluation of the smoothed information is based on the factorisation (3.10) or (3.11). In fact,
these formulas are exploited to merge the statistical information emerging from the forward pass
with that computed in any of the M backward passes.

The message passing on which the DBSA is based can be divided in the three consecutive
phases listed below.
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Figure 3.4: Representation of the message scheduling accomplished within the (T − k)−th recursion of the
backward pass of the DBSA; the circled integers 1− 10 specify the order according to which the passed
messages are computed in the n−th iteration embedded in the considered recursion. Blue and red arrows
are employed to identify Gaussian messages and messages in particle form, respectively.

Phase I - In the first phase, the backward predicted pdf ⃗m1(xk) (1) is computed on the basis
of the backward filtered pdf ⃗mbe(xk+1) (BE1

′).
Phase II - In this phase, an iterative procedure for computing and progressively refining the

first backward filtered and the smoothed pdfs of the whole state (BIF1), and the second filtered
and the smoothed pdfs of the nonlinear state component (BIF2) is carried out. More specifically,
in the n-th iteration of this procedure (with n = 1, 2, ..., ni), the ordered computation of the
following messages is accomplished in eight consecutive steps (see Fig. 3.4): 1) m(n)

2 (xk) (2(n); pdf
conveying pseudo-measurement information about xk); 2) ⃗m

(n)
3 (xk) (3(n); first backward filtered

pdf of xk); 3) m(n)
4 (xk) (4(n); smoothed pdf of xk); 4) m(n)

1 (x
(L)
k ) (1L(n); pdf for integrating out

the dependence of f(x(N)
k+1|x

(N)
k ,x

(L)
k ) and f(yk|x

(N)
k ,x

(L)
k ) on x

(L)
k ), ⃗m

(n)
3 (x

(N)
k ) (3N (n); backward

predicted pdf of x
(N)
k ); 5) m(n)

2 (x
(N)
k ) (2N (n); pdf conveying pseudo-measurement information

about x
(N)
k ); 6) m(n)

4 (x
(N)
k ) (4N (n); first backward filtered pdf of x

(N)
k ); 7) m(n)

5 (x
(N)
k ) (5N (n);

message conveying measurement-based information about x
(N)
k ); 8) m(n)

6 (x
(N)
k ) (6N (n); second

backward filtered pdf of x
(N)
k ), m(n)

1 (x
(N)
k ) (1N (n); smoothed pdf of x

(N)
k ). Note that the message

m
(n)
1 (x

(N)
k ) computed in the last step of the n-th iteration is stored in a memory cell (identified

by the label ‘D’), so that it becomes available at the beginning of the next iteration.
Phase III - In the third phase, the final smoothed pdf m(ni)

1 (x
(N)
k ) is exploited to compute:

a) the final backward pdf (i.e., the output message of BIF2) ⃗mbe(x
(N)
k ); b) the new pseudo-

measurement message m(ni+1)
2 (xk), the final backward filtered pdf ⃗m

(ni+1)
3 (xk), the final smoothed

pdf m(ni+1)
4 (xk) of xk and, finally, the final backward pdf (i.e., the output message of BIF1)

mbe(xk).

3.3.3 Message Computation

The expressions of all the messages evaluated by the DBSA, with the exception of the messages
emerging from the BIF1→BIF2 block and the BIF2→BIF1 block, can be easily derived by applying
the few mathematical rules listed in Tables A.1–A.3; all such rules result from the application
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of the SPA to equality nodes or nodes representing Gaussian functions. The derivation of the
algorithms for computing the pseudo-measurement messages m(n)

2 (xk) (2(n)) and m
(n)
2 (x

(N)
k )

(2N (n)) emerging from the BIF2→BIF1 block and the BIF1→BIF2 block, respectively, is based
on the same approach illustrated in refs. [23, Par. IV-B] and [1, Sects. IV-V]. On the other hand,
the message m(n)

1 (x
(L)
k ) (1L(n)) originating from the BIF1→BIF2 block results from marginalizing

m
(n)
4 (xk) (4(n)) with respect to x

(N)
k .

In the remaining part of this paragraph, the expressions of all the messages computed in each
of the three phases described above are provided for the (T − k)−th recursion of the backward
pass; the derivation of these expressions is sketched in Appendix D and is omitted here for space
limitations.

Phase I - The computation of the backward predicted pdf

⃗m1

(
xk
)
≜ N

(
xk; η1,k,C1,k

)
(3.38)

of xk involves ⃗mbe(xk+1) (3.36) and the pdf f̃(xk+1|xk) (3.15). Its parameters η1,k and C1,k are
evaluated on the basis of the associated precision matrix

W1,k ≜
(
C1,k

)−1
= FTk Pk+1Wbe,k+1Fk (3.39)

and of the associated transformed mean vector

w1,k ≜ W1,kη1,k = FTk [Pk+1wbe,k+1 −Wbe,k+1Qk+1Ww uk], (3.40)

respectively; here, Wbe,k+1 ≜ (Cbe,k+1)
−1, Pk+1 ≜ ID − Wbe,k+1Qk+1, Qk+1 ≜ (Ww +

Wbe,k+1)
−1, Ww ≜ (Cw)

−1 and wbe,k+1 ≜ Wbe,k+1 ηbe,k+1.
Phase II - In the n−th iteration of this phase, the eight consecutive steps listed below are

carried out; for each step, all the computed messages are described.
Step 1) - In this step, the message

m
(n−1)
1

(
x
(N)
k

)
=

Np∑
j=1

W
(n−1)
1,k,j δ

(
x
(N)
k − x

(N)
k,j

)
, (3.41)

computed in the previous iteration and conveying the smoothed pdf of x(N)
k generated by F2

and BIF2 (see step 8)) is processed jointly with ⃗mbe(x
(N)
k+1) (3.37) in the BIF2→BIF1 block to

generate the message
m

(n)
2

(
xk
)
= N

(
xk; η

(n)
2,k ,C

(n)
2,k

)
, (3.42)

that conveys the pseudo-measurement information provided to BIF1. The mean vector η(n)2,k and

the covariance matrix C
(n)
2,k are evaluated as

η
(n)
2,k =

[(
η
(n)
L,k

)T
,
(
η
(n)
N,k

)T ]T (3.43)

and

C
(n)
2,k =

[ C
(n)
LL,k C

(n)
LN,k(

C
(n)
LN,k

)T
C

(n)
NN,k

]
, (3.44)

respectively, where

η
(n)
X,k ≜

Np∑
j=1

W
(n−1)
1,k,j ηX,k,j (3.45)

is a DX -dimensional mean vector (with X = L and N),

C
(n)
XY,k ≜

Np∑
j=1

W
(n−1)
1,k,j rXY,k,j − ηX,k

(
ηY,k

)T (3.46)
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is a DX×DY covariance (or cross-covariance) matrix (with XY = LL, NN and LN), ηL,k,j = η̃k,j ,
ηN,k,j = x

(N)
k,j , rLL,k,j ≜ C̃k,j + η̃k,j(η̃k,j)

T , rNN,k,j ≜ x
(N)
k,j (x

(N)
k,j )

T and rLN,k,j ≜ η̃k,j(x
(N)
k,j )

T . The
covariance matrix C̃k,j and the mean vector η̃k,j are computed on the basis of the associated
precision matrix

W̃k,j ≜
(
C̃k,j

)−1
=
(
A

(N)
k,j

)T
W(N)

w A
(N)
k,j (3.47)

and of the associated transformed mean vector

w̃k,j ≜ W̃k,j η̃k,j =
(
A

(N)
k,j

)T
W(N)

w z
(L)
k,j , (3.48)

respectively; here, A(N)
k,j ≜ A

(N)
k (x

(N)
k,j ),

z
(L)
k,j ≜ x

(N)
be,k+1 − f

(N)
k,j (3.49)

is an iteration-independent pseudo-measurement (see Eq. (3.21)) and f
(N)
k,j ≜ f

(N)
k (x

(N)
k,j ). Note

that, in the first iteration,
W

(n−1)
1,k,j =W

(0)
1,k,j = wfe,k,j , (3.50)

for any j, i.e. m(0)
1 (x

(N)
k ) = m⃗fe1(x

(N)
k ) (see Eq. (3.35)) since the initial information available

about the particle set are those originating from the forward pass. For this reason, the particles
{x(N)

k,j } and their weights {wfe,k,j} are stored in the memory cell at the beginning of the first
iteration.

Step 2) - In this step, the first backward filtered pdf ⃗m
(n)
3 (xk) of xk is computed as (see Fig.

3.4)

⃗m
(n)
3

(
xk
)
= ⃗m1(xk)m

(n)
2 (xk) (3.51)

= N
(
xk; η

(n)
3,k ,C

(n)
3,k

)
, (3.52)

where the messages ⃗m1(xk) and m
(n)
2 (xk) are given by Eq. (3.38) and Eq. (3.42), respectively.

The covariance matrix C
(n)
3,k and the mean vector η(n)3,k are computed on the basis of the associated

precision matrix
W

(n)
3,k ≜ (C

(n)
3,k)

−1 = W1,k +W
(n)
2,k (3.53)

and the associated transformed mean vector

w
(n)
3,k ≜ W

(n)
3,k η

(n)
3,k = w1,k +w

(n)
2,k , (3.54)

respectively; here, W(n)
2,k ≜ (C

(n)
2,k)

−1, w(n)
2,k ≜ W

(n)
2,k η

(n)
2,k , and W1,k and w1,k are given by Eqs.

(3.39) and (3.40), respectively. From Eqs. (3.53)-(3.54) the expressions

C
(n)
3,k = W

(n)
k C

(n)
2,k (3.55)

and
η
(n)
3,k = W

(n)
k

[
C

(n)
2,k w1,k + η

(n)
2,k

]
(3.56)

can be easily inferred; here, W(n)
k ≜ [C

(n)
2,kW1,k + ID]

−1.

Step 3) - In this step, the smoothed pdf m(n)
4 (xk) of xk is evaluated as (see Fig. 3.4)

m
(n)
4

(
xk
)
= m⃗fe1

(
xk
)
⃗m
(n)
3

(
xk
)

(3.57)

= N
(
xk; η

(n)
4,k ,C

(n)
4,k

)
, (3.58)

where the messages m⃗fe1

(
xk
)

and ⃗m
(n)
3

(
xk
)

are given by Eqs. (3.31) and (3.52), respectively. The
covariance matrix C

(n)
4,k and the mean vector η(n)4,k are computed on the basis of the associated

precision matrix
W

(n)
4,k = Wfe1,k +W

(n)
3,k (3.59)
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and of the associated transformed mean vector

w
(n)
4,k = wfe1,k +w

(n)
3,k , (3.60)

respectively. Note that Eq. (3.57) represents an instance of Eq. (3.11), since m⃗fe1

(
xk
)

and ⃗m
(n)
3

(
xk
)

correspond to m⃗fe1(x
(i)
k ) and ⃗mbe1(x

(i)
k ), respectively (x(i)

k = x
(N)
k in this case).

Step 4) - In this step, the message

m
(n)
1

(
x
(L)
k

)
≜
∫
m

(n)
4

(
xk
)
dx

(N)
k = N (x

(L)
k ; η̃

(n)
1,k , C̃

(n)
1,k), (3.61)

is computed in the BIF1→BIF2 block. In practice, the mean η̃(n)1,k and the covariance matrix C̃
(n)
1,k

are extracted from the mean η(n)4,k and the covariance matrix C
(n)
4,k of m(n)

4 (xk) (3.58), respectively,

since x
(L)
k consists of the first DL elements of xk.

Then, the backward predicted pdf ⃗m
(n)
3 (x

(N)
k ) is evaluated as (see Fig. 3.4)

⃗m
(n)
3

(
x
(N)
k

)
=

∫ ∫
f(x

(N)
k+1|x

(N)
k ,x

(L)
k ) ⃗mbe

(
x
(N)
k+1

)
m

(n)
1

(
x
(L)
k

)
dx

(N)
k dx

(N)
k+1. (3.62)

Actually, what is really needed in our computations is the value taken on by this message (and
also by messages m(n)

2 (x
(N)
k ) and m(n)

5 (x
(N)
k ) evaluated in step 5) and in step 7), respectively) for

x
(N)
k = x

(N)
k,j (see Eqs. (3.75), (3.87) and (3.92)); such a value, denoted w(n)

3,k,j , is computed as

w
(n)
3,k,j = D

(n)
3,k,j exp

(
−1

2
Z

(n)
3,k,j

)
, (3.63)

where
D

(n)
3,k,j = (2π)−DN/2(det(C

(N)
3,k,j [n]))

−1/2, (3.64)

Z
(n)
3,k,j ≜

∥∥x(N)
be,k+1 − η

(N)
3,k,j [n]

∥∥2
W

(N)
3,k,j [n]

, (3.65)∥∥x∥∥2
W

≜ xTWx denotes the square of the norm of the vector x with respect to the positive
definite matrix W,

η
(N)
3,k,j [n] ≜ A

(N)
k,j η̃

(n)
1,k + f

(N)
k,j , (3.66)

W
(N)
3,k,j [n] ≜ (C

(N)
3,k,j [n])

−1 and

C
(N)
3,k,j [n] ≜ A

(N)
k,j C̃

(n)
1,k

(
A

(N)
k,j

)T
+C(N)

w . (3.67)

Step 5) - In this step, the message m(n)
2 (x

(N)
k ), conveying pseudo-measurement information

about the nonlinear state component, is computed in the BIF1→BIF2 block. The value w(n)
2,k,j

taken on by this message for x
(N)
k = x

(N)
k,j is evaluated as

w
(n)
2,k,j = D

(n)
2,k,j exp

(
−1

2
Z

(n)
2,k,j

)
(3.68)

for any j; here,
Z

(n)
2,k,j ≜

∥∥η̌(n)z,k,j

∥∥2
W̌

(n)
z,k,j

−
∥∥f (L)k,j

∥∥2
W

(L)
w

−
∥∥η̌(n)2,k,j

∥∥2
W̌

(n)
2,k,j

, (3.69)

W
(L)
w ≜ [C

(L)
w ]−1, f (L)k,j ≜ f

(L)
k (x

(N)
k,j ), W̌

(n)
z,k,j ≜ (Č

(n)
z,k,j)

−1, w̌(n)
z,k,j ≜ W̌

(n)
z,k,j η̌

(n)
z,k,j ,

η̌
(n)
z,k,j = η̃be,k+1 −A

(L)
k,j η̃

(n)
1,k , (3.70)

Č
(n)
z,k,j = C̃be,k+1 −A

(L)
k,j C̃

(n)
1,k

(
A

(L)
k,j

)T
, (3.71)
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W̌
(n)
2,k,j ≜

(
Č

(n)
2,k,j

)−1
= W̌

(n)
z,k,j +W(L)

w , (3.72)

D
(n)
2,k,j ≜ (2π)−DL/2[det(Č

(n)
k,j )]

−1/2 (3.73)

Č
(n)
k,j ≜ Č

(n)
z,k,j + C

(L)
w , A

(L)
k,j ≜ A

(L)
k (x

(N)
k,j ), η̌

(n)
2,k,j is evaluated on the basis of the associated

transformed mean vector

w̌
(n)
2,k,j ≜ W̌

(n)
2,k,j η̌

(n)
2,k,j = w̌

(n)
z,k,j +W(L)

w f
(L)
k,j , (3.74)

and the mean η̃be,k+1 and the covariance matrix C̃be,k+1 are extracted from the mean ηbe,k+1

and the covariance matrix Cbe,k+1 of ⃗mbe(xk+1) (3.36), since they refer to x
(L)
k only.

Step 6) - In this step, the message m(n)
4 (x

(N)
k ), conveying the first backward filtered pdf of

x
(N)
k , is computed as (see Fig. 3.4)

⃗m
(n)
4 (x

(N)
k ) = ⃗m

(n)
3 (x

(N)
k )m

(n)
2 (x

(N)
k ). (3.75)

The value w(n)
4,k,j taken on by this message for x

(N)
k = x

(N)
k,j is given by (see Eqs. (3.63) and (3.68))

w
(n)
4,k,j ≜ w

(n)
2,k,j w

(n)
3,k,j (3.76)

for any j.
Step 7) - In this step, the message conveying measurement-based information about x

(N)
k is

computed as (see Fig. 3.4)

m
(n)
5 (x

(N)
k ) =

∫
f(yk|x

(N)
k , x

(L)
k )m

(n)
1 (x

(L)
k ) dx

(L)
k (3.77)

= N
(
yl; η̄

(n)
5,k

(
x
(N)
k

)
, C̄

(n)
5,k

(
x
(N)
k

))
(3.78)

where
η̄
(n)
5,k

(
x
(N)
k

)
≜ Bk

(
x
(N)
k

)
η̃
(n)
1,k + gk

(
x
(N)
k

)
(3.79)

and
C̄

(n)
5,k

(
x
(N)
k

)
≜ Bk

(
x
(N)
k

)
C̃

(n)
1,k BT

k

(
x
(N)
k

)
+Ce. (3.80)

Consequently, the value taken on by m(n)
5 (x

(N)
k ) for x

(N)
k = x

(N)
k,j is

w
(n)
5,k,j = N

(
yk; η̄

(n)
5,k,j , C̄

(n)
5,k,j

)
(3.81)

= D
(n)
5,k,j exp

(
−1

2
Z

(n)
5,k,j

)
, (3.82)

where
η̄
(n)
5,k,j

(
x
(N)
k

)
≜ η̄

(n)
5,k

(
x
(N)
k,j

)
= Bk,j η̃

(n)
1,k + gk,j , (3.83)

C̄
(n)
5,k,j ≜ C̄

(n)
5,k

(
x
(N)
k,j

)
= Bk,j C̃

(n)
1,k B

T
k,j +Ce, (3.84)

Bk,j ≜ Bk(x
(N)
k,j ), gk,j ≜ gl(x

(N)
k,j ),

D
(n)
5,k,j ≜ (2π)−P/2[det(C̄

(n)
5,k,j)]

−1/2 (3.85)

Z
(n)
5,k,j ≜

∥∥yk − η̄
(n)
5,k,j

∥∥2
W̄

(n)
5,k,j

(3.86)

and W̄
(n)
5,k,j ≜ (C̄

(n)
5,k,j)

−1. Then, the message ⃗m
(n)
6 (x

(N)
k ) is evaluated as (see Fig. 3.4)

⃗m
(n)
6

(
x
(N)
k

)
= ⃗m

(n)
4

(
x
(N)
k

)
m

(n)
5

(
x
(N)
k

)
. (3.87)
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Its value for x
(N)
k = x

(N)
k,j is given by (see Eqs. (3.63), (3.68) and (3.82))

w
(n)
6,k,j = w

(n)
4,k,jw

(n)
5,k,j = w

(n)
2,k,j w

(n)
3,k,jw

(n)
5,k,j (3.88)

= D
(n)
6,k,j exp

(
−1

2
Z

(n)
6,k,j

)
(3.89)

where
D

(n)
6,k,j ≜ D

(n)
2,k,j D

(n)
3,k,j D

(n)
5,k,j (3.90)

and
Z

(n)
6,k,j ≜ Z

(n)
2,k,j + Z

(n)
3,k,j + Z

(n)
5,k,j . (3.91)

Note that the weight w(n)
6,k,j conveys the information provided by the backward state transition

(w(n)
3,k,j), the pseudo-measurements (w(n)

2,k,j) and the measurements (w(n)
5,k,j).

Step 8) - In this step, the message m(n)
1 (x

(N)
k ), conveying the smoothed pdf of x(N)

k evaluated
in the n-th iteration, is computed as (see Fig. 3.4)

m
(n)
1

(
x
(N)
k

)
= m⃗fp

(
x
(N)
k

)
⃗m
(n)
6

(
x
(N)
k

)
; (3.92)

this formula represents an instance of Eq. (3.10), since m⃗fp1(x
(N)
k ) and ⃗m

(n)
6 (x

(N)
k ) correspond

to m⃗fp(x
(i)
k ) and ⃗mbe2(x

(i)
k ), respectively (x(i)

k = x
(N)
k in this case). The j−th component of

m
(n)
1 (x

(N)
k ) is evaluated as (see Eqs. (3.34) and (3.88))

m
(n)
1,j

(
x
(N)
k

)
= m⃗fp,j

(
x
(N)
k

)
w

(n)
6,k,j (3.93)

= w
(n)
1,k,j δ

(
x
(N)
k − x

(N)
k,j

)
, (3.94)

where
w

(n)
1,k,j ≜ wpw

(n)
6,k,j . (3.95)

Then, the weights {w(n)
1,k,j} are normalized; the j-th normalised weight is computed as

W
(n)
1,k,j ≜ C

(n)
k w

(n)
1,k,j , (3.96)

with j = 1, 2, ..., Np, where C(n)
k ≜ 1/

Np−1∑
j=0

w
(n)
1,k,j . Moreover, the weights {W (n)

1,k,j} are stored for

the next iteration. This concludes the n−th iteration. Then, the index n is increased by one, and
a new iteration is started by going back to step 1) if n < ni + 1; otherwise (i.e., if n = ni + 1), we
proceed with the next phase.

Phase III - In this phase, ⃗mbe(x
(N)
k ) (i.e., the BIF2 output message) is computed first; then,

steps 1) and 2) of phase II are accomplished in order to compute all the statistical information
required for the evaluation of the backward estimate ⃗mbe

(
xk
)

(i.e., the BIF1 output message).
More specifically, we first sample the set Sk once on the basis of the particle weights {W (ni)

1,k,j}
computed in the last iteration; if the jk-th particle (i.e., x(N)

k,jk
) is selected, we set

x
(N)
be,k = x

(N)
k,jk

, (3.97)

so that the message (see Eq. (3.37))

⃗mbe

(
x
(N)
k

)
≜ δ
(
x
(N)
k − x

(N)
be,k

)
, (3.98)

can be made available at the output of BIF2. On the other hand, the evaluation of the message
⃗mbe

(
xk
)

is accomplished as follows. The messages m(ni+1)
2 (xk) and ⃗m

(ni+1)
3

(
xk
)

are computed
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first (see Eqs. (3.42)–(3.49) and Eqs. (3.51)–(3.54), respectively). Then, the message ⃗mbe

(
xk
)

is
computed as (see Fig. 3.4)

⃗mbe

(
xk
)
= ⃗mbe2

(
xk
)
= ⃗m

(ni+1)
be1

(
xk
)
mms

(
xk
)

(3.99)
= N

(
xk; ηbe2,k,Cbe2,k

)
, (3.100)

where
mms

(
xk
)
= N

(
xk; ηms,k,Cms,k

)
(3.101)

is the message conveying measurement information.
Moreover, the covariance matrices Cms,k and Cbe2,k, and the mean vectors ηms,k and ηbe2,k

are evaluated on the basis of the associated precision matrices

Wms,k ≜ (Cms,k)
−1 = HkWeH

T
k , (3.102)

Wbe2,k ≜ (Cbe2,k)
−1 = Wms,k +W

(ni+1)
be1,k , (3.103)

and of the transformed mean vectors

wms,k ≜ Wms,k ηms,k = HkWe

(
yk − vk

)
, (3.104)

wbe2,k ≜ Wbe2,k ηbe2,k = wms,k +w
(ni+1)
be1,k , (3.105)

respectively. The k-th recursion is now over.
In the DBSA, the first recursion of the backward pass (corresponding to k = T − 1) requires

the knowledge of the input messages ⃗mbe(xT ) and ⃗mbe(x
(N)
T ). Similarly as any BIF algorithm,

the evaluation of these messages in DBIF is based on the statistical information generated in the
last recursion of the forward pass. In particular, the above mentioned messages are still expressed
by Eqs. (3.36) and (3.37) (with k = T − 1 in both formulas), respectively. However, the vector
x
(N)
be,T is generated by sampling the particle set ST on the basis of the forward weights {wfe,T,j},

since backward predictions are unavailable at the final instant k = T . Therefore, if the jT -th
particle of ST is selected, we set

x
(N)
be,T = x

(N)
fe,T,jT

(3.106)

in the message ⃗mbe(x
(N)
T ) entering the BIF2 in the first recursion (see Eq. (3.37)). As far as BIF1

is concerned, following [23], we choose

Wbe,T = Wfe1,T (3.107)

and
wbe,T = wfe1,T (3.108)

for the message ⃗mbe(xT ).
The DBSA is summarized in Algorithm 1. It generates all the statistical information required to

solve problems P.1 and P.2. Let us now discuss how this can be done in detail. As far as problem
P.1 is concerned, it is useful to point out that the DBSA produces a trajectory {x(N)

be,k, k = 1,
2, ..., T} for the nonlinear component (see Eq. (3.97)). Another trajectory, representing the
time evolution of the linear state component only and denoted {x(L)

be,k, k = 1, 2, ..., T}, can be

evaluated by sampling the message m(ni)
1 (x

(L)
k ) (see Eq. (3.61)) or by simply setting x

(L)
be,k = η̃

(ni)
1,k

(this task can be accomplished in phase III, after sampling the particle set Sk; see also the task g-
in phase III of Algorithm 1.

Since the DBSA solves problem P.1, it also solves problem P.2; in fact, once it has been
run, an approximation of the marginal smoothed pdf at any instant can be simply obtained by
marginalization. Unluckily, the last result is achieved at the price of a significant computational
cost, since M backward passes are required. However, if we are interested in solving problem
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Algorithm 4: Double Bayesian Smoothing
1 Forward filtering: For k = 1 to T : Run the DBF, and store Wfe1,k (3.32), wfe1,k (3.33),

Sk = {x(N)
k,j } and {wfe,k,j}

Np

j=1.

2 Initialisation of backward filtering: compute x
(N)
be,T (3.106), Wbe,T (3.107) and wbe,T (3.108);

then, compute Cbe,T = (Wbe,T )
−1, ηbe,T = Cbe,Twbe,T .

3 Backward filtering and smoothing:
for k = T − 1 to 1 do

a- Phase I:
- Backward prediction in BIF1: compute W1,k (3.39) and w1,k (3.40).
- Computation of iteration-independent information required in task b:For j = 1 to Np:
compute z

(L)
k,j (3.49), W̃k,j (3.47), w̃k,j (3.48), C̃k,j = (W̃k,j)

−1 and η̃k,j = C̃k,jw̃k,j .

- Initialisation of particle weights: Set W (0)
1,k,j = wfe,k,j .

Phase II:
for n = 1 to ni do

b- Compute η(n)2,k (3.43) and C
(n)
2,k (3.44).

c- Compute C
(n)
3,k (3.55), η(n)3,k (3.56), W(n)

3,k = (C
(n)
3,k)

−1, w(n)
3,k = W

(n)
3,kη

(n)
3,k , W(n)

4,k (3.59),

w
(n)
4,k (3.60), C(n)

4,k = (W
(n)
4,k )

−1 and η(n)4,k = C
(n)
4,kw

(n)
4,k . Then, extract η̃(n)1,k (C̃(n)

1,k) from η
(n)
4,k

(C(n)
4,k).

d- For j = 1 to Np: compute η(N)
3,k,j [n] (3.66) and C

(N)
3,k,j [n] (3.67). Then, compute D(n)

3,k,j

(3.64) and Z(n)
3,k,j (3.65).

e- For j = 1 to Np: compute η̌(n)z,k,j (3.70), Č(n)
z,k,j (3.71), W̌(n)

z,k,j = (Č
(n)
z,k,j)

−1,

w̌
(n)
z,k,j = W̌

(n)
z,k,j η̌

(n)
z,k,j , W̌

(n)
2,k,j (3.72), w̌(n)

2,k,j (3.74). Then, compute D(n)
2,k,j (3.73) and Z(n)

2,k,j

(3.69).
f- For j = 1 to Np: Compute η̄(n)5,k,j (3.83), C̄(n)

5,k,j (3.84), W̄(n)
5,k,j = (C̄

(n)
5,k,j)

−1, D(n)
5,k,j (3.85)

and Z(n)
5,k,j (3.86). Then, compute D(n)

6,k,j (3.90), Z(n)
6,k,j (3.91), w(n)

6,k,j (3.89), w(n)
1,k,j (3.95)

and W (n)
1,k,j (3.96). Store the weights {W (n)

1,k,j} for the next iteration.
end
g- Phase III - BIF2: Select the jk-th particle x

(N)
k,jk

by sampling the set Sk on the basis of the

weights {W (ni)
1,k,j}, set x

(N)
be,k = x

(N)
k,jk

and store x
(N)
be,k for the next recursion.

h- Phase III - BIF1: Compute η(ni+1)
2,k , C(ni+1)

2,k , W(ni+1)
3,k and w

(ni+1)
3,k (see steps 1) and 2)).

Then, compute Wms,k (3.102), wms,k (3.104), Wbe2,k (3.103), wbe2,k (3.105),
Cbe,k = (Wbe2,k)

−1 and ηbe,k = Cbe,kwbe2,k, and store Cbe,k and ηbe,k for the next recursion.
end

P.2 only, a simpler particle smoother can be developed following the approach illustrated in ref.
[23], so that a single backward pass has to be run. In this pass, the evaluation of the message
⃗mbe(x

(N)
k ) (i.e., of the particle x

(N)
be,k) involves the whole particle set Sk and their weights {W (ni)

1,k,j}
(see Eq. (3.96)) evaluated in the last phase of the (T − k)−th recursion. More specifically, a new
smoother is obtained by employing a different method for evaluating x

(N)
be,k (see phase III-BIF2);

it consists in computing the smoothed estimate

x
(N)
sm,k =

Np∑
j=1

W
(ni)
1,k,j x

(N)
k,j (3.109)

of x(N)
k and, then, setting

x
(N)
be,k = x

(N)
sm,k. (3.110)

The resulting smoother is called simplified DBSA (SDBSA) in the following.
The computational complexity of the DBSA and the SDBSA can be reduced by reusing the

forward weights {wfe,k,j} in all the iterations of phase II, so that step 7) can be skipped; this
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means that, for any n, we set w(n)
5,k,j = wfe,k,j in the evaluation of the j−th particle weight w(n)

6,k,j

according to Eq. (3.88) in step 8) of phase II. Our simulation results have evidenced that, at least
for the SSMs considered in Section 3.5, this modification does not affect the estimation accuracy
of the derived algorithms; for this reason, it is always employed in our simulations.

The DBSA and the SDBSA refer to case C.1, i.e. to the case in which the substates estimated
by the interconnected forward/backward filters share the substate x

(N)
k . Let us focus now on case

C.2, i.e. on the case on which the filters are run on disjoint substates. A filtering technique, called
simplified DBF (SDBF), and based on the interconnection of a particle filter (F2) with a single
Kalman filter (F1), is developed for this case in ref. [32, Par. III-B]. The BIF algorithm paired
with it can be easily derived following the approach illustrated above for the DBSA; the resulting
smoothing algorithm is dubbed disjoint DBSA (DDBSA) in the following. It is important to
mention that, in deriving the DBSA, the following relevant changes are made with respect to the
DBSA (see Fig. 3.2):

1) The iterative procedure embedded in the (T −k)−th recursion of the backward pass involves
both the computation of the backward predicted pdf (BP1) and of the message MS1 in BIF1; for
this reason, it requires marginalizing the pdfs f(x(N)

k+1|x
(N)
k ,x

(L)
k ) and f(yk|x

(N)
k ,x

(L)
k ), respectively,

with respect to x
(L)
k . This result is achieved in the first iteration by setting x

(N)
k = x

(N)
fe,k in both

these pdfs, where x
(N)
fe,k denotes the estimate of x(N)

k computed by F2 in the forward pass. In the

following iterations, we set x
(N)
k = x

(N)
sm,k, where x

(N)
sm,k represents the estimate of x(N)

k evaluated
on the basis of the statistical information provided by BIF2 (through the message SM2).

2) The pseudo-measurement message PM1 (corresponding to m(n)
2 (xk) (3.42) in the DBSA)

conveys information about x
(L)
k only. Moreover, it is a Gaussian message, and its mean and

covariance matrix are given by η(n)L,k and C
(n)
LL,k (see Eqs. (3.45) and (3.46), respectively).

Finally, it is worth mentioning that a simplified version of the DDBSA (called SDDBSA) can
be easily developed by making the same modifications as those adopted in deriving the SDBSA
from the DBSA.

3.4 Comparison of the Developed Double Smoothing Algorithms with
Related Techniques

The DBSA and the DDBSA developed in the previous Section are conceptually related to the
Rao-Blackwellised particle smoothers proposed by Fong et al. [62] and by Lindsten et al. [7] (these
algorithms are denoted Alg-F and Alg-L respectively, in the following) and to the RBSS algorithm
devised by Vitetta et al. in ref. [23]. In fact, all these techniques share with the DBSA and the
DDBSA the following important features: 1) all of them estimate the joint smoothing density
over the whole observation interval by generating multiple realizations from it; 2) they accomplish
a single forward pass and as many backward passes as the overall number of realizations; 3) they
combine Kalman filtering with particle filtering. However, Alg-F, Alg-L and the RBSS algorithm
employ, in both their forward and backward passes, as many Kalman filters as the number of
particles (Np) to generate a particle-dependent estimate of the linear state component only. On
the contrary, the DBSA (DDBSA) employs a single extended Kalman filter (a single Kalman
filter), that estimates the whole system state (the linear state component only); this substantially
reduces the memory requirements of particle smoothing and, consequently, the overall number of
memory accesses accomplished on the hardware platform on which smoothing is run. As far as
the last point is concerned, the memory requirements of a smoothing algorithm can be roughly
assessed by estimating the overall number of real quantities that need to be stored in both its
forward pass and its backward pass. It can be shown that overall number of real quantities to be
stored by MPF, DBF and SDBF in the forward pass of the considered smoothing algorithms is of
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order O(MMPF), O(MDBF), and O(MSDBF), respectively, with4

MMPF = NpT (2D2
L + 2DL +DN + 1), (3.111)

MDBF = T (2D2 + 2D +NpDN +Np) (3.112)

and
MSDBF = T (2D2

L + 2DL +NpDN +Np ). (3.113)

Moreover, the overall number of real quantities to be stored by Alg-L, RBSS, the DBSA and
the DDBSA is approximately of order O(MAlg−L), O(MRBSS), O(MDBSA) and O(MDDBSA),
respectively, with

MAlg−L =MMPF +D2
L +D, (3.114)

MRBSS =MMPF +D2
L +D, (3.115)

MDBSA =MDBF +Np +D2 +D +DN (3.116)

and
MDDBSA =MSDBF +Np +D2

L +D. (3.117)

The memory requirements of the SDBSA and the SDDBSA (the SPS algorithm) are the same
as those of the DBSA and the DDBSA (the RBSS algorithm), respectively. Note also that the
quantities MDBSA (3.116) and MDDBSA (3.117) are smaller than MAlg−L (3.114) and MRBSS

(3.115), since MMPF is larger than MDBF and MSDBF because of its dependence on Np.
The differences in the overall execution time measured for the simulated smoothing algorithms

are related not only to their requirements in terms of memory resources, but also to their
computational complexity. In our work, the computational cost of the smoothing algorithms
derived in the previous section has been carefully assessed in terms of number of floating point
operations (flops) to be executed over the whole observation interval. The general criteria adopted
in estimating the computational cost of an algorithm are the same as those illustrated in [40, App.
A, p. 5420] and are not repeated here for space limitations. A detailed analysis of the cost required
by each of the tasks accomplished by our smoothing algorithms is provided in Appendix E.5.
Our analysis leads to the conclusion that the overall computational cost of the DBSA and of the
DDBSA is approximately of order O(NDBSA) and O(NDDBSA), respectively, with

NDBSA = T
{
NDBF + M

[
38D3/3 + 20D3

N/3+

niNp(2D
2
LDN + 2DLD

2
N

+D3
N/3 + 5D3

L) + 6niD
3
]}
, (3.118)

and

NDDBSA = T
{
NSDBF +M

[
38D3

L/3 + 20D3
N/3

+niNp(2D
2
LDN + 2DLD

2
N

+D3
N/3 + 5D3

L) + 6niD
3
L

]}
; (3.119)

here, NDBF and NSDBF represent the computational complexity of a single recursion of the DBF
and SDBF, respectively (see [32, Eqs. (97) and (98)]). Each of the expressions (3.118)–(3.119)
has been derived as follows. First, the costs of all the tasks identified in Appendix E.5 have
been summed; then, the resulting expression has been simplified, keeping only the dominant
contributions due to matrix inversions, matrix products and Cholesky decompositions, and
discarding all the contributions that originate from the evaluation of the matrices A

(Z)
k (x

(N)
k )

(with Z = L and N), Fk, Hk and Bk and the functions f
(Z)
k (x

(N)
k ) (with Z = L and N), fk(xk)

4Note that the expressions (3.111)–(3.113) also account for the contributions due to measurement-based information (see
Eqs. (3.102) and (3.104)).
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and gk(x
(N)
k ). Moreover, the sampling of the particle set in each recursion of the backward pass

has been ignored.
From Eqs. (3.118)–(3.119) it is easily inferred that the computational complexities of the

DBSA and the DDBSA are approximately of order O(niM NpD
3
LT ). A similar approach can be

followed for Alg-L and the RBSS algorithm; this leads to the conclusion that their complexities
are approximately of order O(M NpD

3
LT ), i.e. of the same order of the complexities of the DBSA

and of the DDBSA if ni = 1 is assumed.
On the other hand, the SDBSA and the SDDBSA are conceptually related to the SPS algorithm

devised by Vitetta et al. in ref. [23]. In fact, all these algorithms aim at solving problem P.2 only
(consequently, they are unable to generate the joint smoothed pdf f(x1:T |y1:T )) and carry out a
single backward pass. This property makes them much faster than Alg-L, the RBSS algorithm,
the DBSA and the DDBSA in the computation of marginal smoothed densities. Finally, note
that, similarly as the DBSA and the DDBSA techniques, the use of the SDBSA and the SDDBSA
requires a substantially smaller number of memory accesses than the SPS algorithm, since the
last algorithm employs MPF in its forward pass. Moreover, the computational cost of the SDBSA
and the SDDBSA is approximately of order O(niNpD

3
LT ), whereas that of the SPS algorithm

is approximately of order O(NpD
3
LT ); consequently, they are all of the same order if ni = 1 is

assumed.

3.5 Numerical Results

In this section we first compare, in terms of accuracy and execution time, the DBSA, the SDBSA,
the DDBSA and the SDDBSA with Alg-L, the RBSS algorithm, and the SPS algorithm for a
specific conditionally linear Gaussian SSM. The considered SSM is the same as the SSM#2 defined
in [23] and describes the bidimensional motion of an agent. Its state vector in the k-th observation
interval is defined as xk ≜ [vTk ,p

T
k ]
T , where vk ≜ [vx,k, vy,k]

T and pk ≜ [px,k, py,k]
T (corresponding

to x
(L)
k and x

(N)
k , respectively) represent the agent velocity and position, respectively (their

components are expressed in m/s and in m, respectively). The state update equations are

vk+1 = ρvk + Ts ak(pk) +
(
1− ρ

)
nv,k (3.120)

and
pk+1 = pk + Ts vk + (T 2

s /2) ak(pk) + np,k, (3.121)

where ρ is a forgetting factor (with 0 < ρ < 1), Ts is the sampling interval, nv,k is an additive
Gaussian noise (AGN) vector characterized by the covariance matrix I2,

ak
(
pk
)
= −a0

pk∥∥pk∥∥ 1

1 +
(∥∥pk∥∥/d0)2 (3.122)

is the acceleration due to a force applied to the agent (and pointing towards the origin of our
reference system), a0 is a scale factor (expressed in m/s2), d0 is a reference distance (expressed in
m), and np,k is an AGN vector characterized by the covariance matrix σ2p I2 and accounting for
model inaccuracy. The measurement vector available in the k-th interval for state estimation is

yk = xk + ek, (3.123)

where ek ≜ [eTv,k, e
T
p,k]

T and ev,k (ep,k) is an AGN vector characterized by the covariance matrix
σ2ev I2 (σ2ep I2).

In our computer simulations, following [23] and [1], the estimation accuracy of the considered
smoothing techniques has been assessed by evaluating two root mean square errors (RMSEs),
one for the linear state component, the other for the nonlinear one, over an observation interval
lasting T = 200 Ts; these are denoted RMSEL(alg) and RMSEN (alg), respectively, where ‘alg’ is
the acronym of the algorithm these parameters refer to. Our assessment of the computational
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requirements is based, instead, on evaluating the average computation time required for processing
a single block of measurements (this quantity is denoted CTB(alg) in the following). Moreover,
the following values have been selected for the parameters of the considered SSM: ρ = 0.995,
Ts = 0.01 s, σp = 5 · 10−3 m, σe,p = 2 · 10−2 m, σe,v = 2 · 10−2 m/s, a0 = 0.5 m/s2, d0 = 5 · 10−3

m and v0 = 1 m/s (the initial position p0 ≜ [px,0, py,0]
T and the initial velocity v0 ≜ [vx,0, vy,0]

T

have been set to [0.01 m, 0.01 m]T and [0.01 m/s, 0.01 m/s]T , respectively).
Some numerical results showing the dependence of RMSEL and RMSEN on the number of

particles (Np) for some of the considered smoothing algorithms are illustrated in Figs. 3.5 and
3.6, respectively (simulation results are indicated by markers, whereas continuous lines are drawn
to fit them, so facilitating the interpretation of the available data). In this case, ni = 1 has been
selected for all the derived particle smoothers, M = Np has been chosen for all the smoothing
algorithms generating multiple trajectories and the range [10, 150] has been considered for Np

(since no real improvement is found for Np ≳ 150). Moreover, RMSEL and RMSEN results are
also provided for MPF and DBF, since these filtering techniques are employed in the forward
pass of Alg-L, the RBSS algorithm and the SPS algorithm, and the DBSA and the SDBSA,
respectively; this allows us to assess the improvement in estimation accuracy provided by the
backward pass with respect to the forward pass for each smoothing algorithm. These results show
that:

1) The DBSA, the SDBSA, Alg-L and the RBSS algorithm achieve similar accuracies in the
estimation of both the linear and nonlinear state components.

2) The SPS algorithm is slightly outperformed by the other smoothing algorithms in terms of
RMSEN only; for instance, RMSEN (SPS) is about 1.11 times larger than RMSEN (SDBSA) for
Np = 100.

3) Even if the RBSS algorithm and the DBSA provide by far richer statistical information
than their simplified counterparts (i.e., than the SPS algorithm and the SDBSA, respectively),
they do not provide a significant improvement in the accuracy of state estimation; for in-
stance, RMSEN (SPS) (RMSEN (SDBSA)) is about 1.12 (1.03) time larger than RMSEN (RBSS)
(RMSEN (DBSA)) for Np = 100.

4) The accuracy improvement in terms of RMSEL (RMSEN ) provided by all the smoothing
algorithms except the SPS (by Alg-L, the RBSS algorithm, the DBSA and the SDBSA) is
about 24% (about 23%) with respect to MPF and DBF, for Np = 100. Moreover, the accuracy
improvement in terms of RMSEL (RMSEN ) achieved by the SPS algorithm is about 24% (about
14%) with respect to the MPF for Np = 100.

5) In the considered scenario, DBF is slightly outperformed by (perform similarly as) MPF in
the estimation of the linear (nonlinear) state component; a similar result is reported in [32] for
a different SSM. Our simulations have also evidenced that the DBSA and the SDBSA perform
similarly as the DDBSA and the SDDBSA; for this reason, RSME results referring to the last
two algorithms are not shown in Figs. 3.5 and 3.6. This leads to the conclusion that, in the
considered scenario, the presence of redundancy in double Bayesian smoothing does not provide
any improvement with respect to the case in which the two interconnected filters operate on
disjoint substates in the forward and in the backward passes. Note that the same conclusion had
been reached in ref. [32, Sec. IV] for DBF only. Despite their similar accuracies, the considered
smoothing algorithms require different computational efforts; this is easily inferred from the
numerical results appearing in Fig. 3.7 and illustrating the dependence of the CTB on Np for
all the above mentioned filtering and smoothing algorithms. In fact, these results show that
CTB(DBSA) is approximately 0.85 (0.48) times smaller than CTB(Alg-L) (CTB(RBSS)); this
is in agreement with the mathematical results illustrated in Section 3.4 about the complexity
of Alg-L, the RBSS algorithms and the DBSA, i.e. with the fact the complexities of all these
smoothers are approximately of order O(M NpD

3
LT ) (provided that ni = 1 is selected for the

DBSA). Moreover, we have found that a 5.5% reduction in CTB is obtained if the DDBSA is
employed in place of the DBSA (i.e., if double Bayesian smoothing is not redundant). Similar
considerations hold for the SDBSA, the SDDBSA and the SPS algorithm. In fact, CTB(SDBSA)
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Figure 3.5: RMSE performance versus Np for the nonlinear component (RMSEN ) of the state of SSM #1;
five smoothing algorithms (Alg-L, the DBSA, the SDBSA, the RBSS algorithm and the SPS algorithm)
and two filtering techniques (MPF and DBF) are considered.
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Figure 3.6: RMSE performance versus Np for the linear component (RMSEL ) of the state of SSM #1;
five smoothing algorithms (Alg-L, the DBSA, the SDBSA, the RBSS algorithm and the SPS algorithm)
and two filtering techniques (MPF and DBF) are considered.

is approximately 0.57 times smaller than CTB(SPS); moreover, the CTB is reduced by 6.8% if
the SDDBSA is employed in place of the SDBSA. It is also interesting to note that CTB(DBF) is
approximately 0.55 times smaller than CTB(MPF) for the same value of Np; once again, this
result is in agreement with the results shown in [32] for a different SSM. All the numerical
results illustrated above lead to the conclusion that, in the considered scenario, the DDBSA
and the SDDBSA achieve the best accuracy-complexity tradeoff in their categories of smoothing
techniques. The second SSM we considered is the same as the second SSM illustrated in [32, Sec.
IV] and refers to a sensor network employing P sensors placed on the vertices of a square grid
(partitioning a square area having side equal to l m); these sensors receive the reference signals
radiated, at the same power level and at the same frequency, by N independent targets moving
on a plane. Each target evolves according to the motion model described by Eqs. (3.120)–(3.121)
with ak(pk) = 0 for any k. In this case, the considered SSM (denoted SSM#2 in the following)
refers to the whole set of targets and its state vector xk results from the ordered concatenation of
the vectors {x(i)

k ; i = 1, 2, ..., N}, where x
(i)
k ≜ [(v

(i)
k )T , (p

(i)
k )T ]T , and v

(i)
k and p

(i)
k represent the
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Figure 3.7: CTB versus Np for five smoothing algorithms (Alg-L, DBSA, SDBSA, the RBSS algorithm
and the SPS algorithm) and two filtering techniques (MPF and DBF); SSM #1 is considered.

i−th target velocity and the position, respectively. Moreover, the following additional assumptions
have been made about this SSM: 1) the process noises n

(i)
p,k and n

(i)
v,k, affecting the i−th target

position and velocity, respectively, are given by n
(i)
p,k = (T 2

s /2)n
(i)
a,k and n

(i)
v,k = Ts n

(i)
a,k, where

{n(i)
a,k} is two-dimensional AWGN, representing a random acceleration and having covariance

matrix σ2a I2 (with i = 1, 2, ..., N); 2) the measurement acquired by the q−th sensor (with q = 1,
2, ..., P ) in the k-th observation interval is given by

yq,k = 10 log10

(
Ψ

N∑
i=1

d20∣∣∣∣sq − p
(i)
k

∣∣∣∣2
)

+ ek, (3.124)

where the measurement noise {ek} is AWGN with variance σ2e , Ψ denotes the normalised
power received by each sensor from any target at a distance d0 from the sensor itself and sq
is the position of the considered sensor; 3) the overall measurement vector yk results from the
ordered concatenation of the measurements {yq,k; q = 1, 2, ..., P} and, consequently, provides
information about the position only; 4) the initial position p

(i)
0 ≜ [p

(i)
x,0, p

(i)
y,0]

T and the initial

velocity v
(i)
0 ≜ [v

(i)
x,0, v

(i)
y,0]

T of the i−th target are randomly selected (with i = 1, 2, ..., N). As
far as the last point is concerned, it is important to mention that, in our computer simulations,
distinct targets are placed in different squares of the partitioned area in a random fashion;
moreover, the initial velocity of each target is randomly selected within the interval (vmin, vmax) in
order to ensure that the trajectories of distinct targets do not cross each other in the observation
interval. The following values have been selected for the parameters of SSM#2: P = 25, l = 103

m, Ts = 1 s, ρ = 1, σ2a = 0.1 m/s2, σ2e = −35 dB, Ψ = 1, d0 = 1 m, vmin = 0 m/s and vmin = 0.1
m/s. Moreover, N = 3 targets have been observed over a time interval lasting T = 60 Ts s.
Our computer simulations have aimed at evaluating the accuracy achieved by the considered
smoothing algorithms in tracking the position of all the targets. In practice, such an accuracy
has been assessed by estimating the average RMSE referring to the estimates of the whole set
{p(i)

k ; i = 1, 2, 3}; note that, if the i−th target is considered, its position p
(i)
k represents the

nonlinear component of the associated substate x
(i)
k , because of the nonlinear dependence of yk

on it (see Eq. (3.124)). Our computer simulations have evidenced that, in the considered scenario,
the MPF and the SDBF techniques diverge frequently in the observation interval (some numerical
results about the probability of divergence area available in [32, Sec. IV]); unluckily, when this
occurs, all the smoothing algorithms that employ these techniques in their forward pass (namely,
Alg-L, the RBSS algorithm, the SPS algorithm, the DDBSA and the SDDBSA) are unable to
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Figure 3.8: RMSE performance versus Np for the nonlinear component (RMSEN ) of the state of SSM #2;
two smoothing algorithms (the DBSA and the SDBSA) and one filtering technique (DBF) are considered.

recover from this event and, consequently, are useless. The DBF technique, instead, thanks to its
inner redundancy, is still able to track all the targets. Moreover, the two smoothing algorithms
employing this technique in their forward pass (namely, the DBSA and the SDBSA), are able
to improve the accuracy of position estimates in their backward pass; this is evidenced by Fig.
3.8, that shows the dependence of RMSEN on the overall number of particles (Np) for the DBF
technique, the DBSA and the SDBSA (the range [300, 600] is considered for Np). Note that the
SDBSA is outperformed by the DBSA in terms of RMSEN ; for instance, RMSEN (SDBSA) is
about 1.31 times larger than RMSEN (DBSA) for Np = 500. However, this result is achieved at
the price of a significantly higher complexity; in fact, CTB(SDBSA) is approximately equal to
2 · 10−3·CTB(DBSA).

3.6 Conclusions

In this chapter, factor graph methods have been exploited to develop new smoothing algorithms
based on the interconnection of two Bayesian filters in the forward pass and of two backward
information filters in the backward pass. This has allowed us to develop a new approximate method
for Bayesian smoothing, called double Bayesian smoothing. Four double Bayesian smoothers have
been derived for the class of conditionally linear Gaussian systems and have been compared, in
terms of both accuracy and execution time, with other smoothing algorithms for two specific
dynamic models. Our simulation results lead to the conclusion that the devised algorithms
can achieve a better complexity-accuracy tradeoff and a better tracking capability than other
smoothing techniques recently appeared in the literature.
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A

Factor Graphs and the Sum-Product Algorithm

A factor graph is a graphical model representing the factorization of any function f(·) expressible
as a product of factors {fi(·)}, each depending on a set of variables {xl}. In this thesis, Forney-
style factor graphs are considered [17]. This means that the factor graph associated with the
function f(·) consists of nodes, edges (connecting distinct nodes) and half-edges (connected to a
single node only). Moreover, the following rules are employed for its construction: a) every factor
is represented by a single node (a rectangle in our pictures); b) every variable is represented by a
unique edge or half edge; c) the node representing a factor fi(·) is connected with the edge (or
half-edge) representing the variable xl if and only if such a factor depends on xl; d) an equality
constraint node (represented by a rectangle labelled by “=”) is used as a branching point when
more than two factors are required to share the same variable1. For instance, the factorization of
the function

f (x1, x2, x3, x4) = f1 (x1) f2 (x1, x2) f3 (x1, x3) f4 (x3, x4) (A.1)

can be represented through the factor graph shown in Fig. A.1.
Throughout this dissertation, factorizable functions represent joint pdfs. It is well known that

the marginalization of f(·) with respect to one or more of its variables can be usually split into a
sequence of simpler marginalizations if the factor graph representing f(·) is cycle free, that is
it does not contain closed paths (known as cycles). Our interest in the graph representing f(·)
is motivated by the fact that the function resulting from each of these marginalizations can be
represented as a message (conveying a joint pdf of the variables it depends on) passed along
an edge of the graph itself. For this reason, the overall procedure for marginalizing f(·) with
respect to each of its variables can be seen as a step-by-step message passing over a graph. For
instance, let us assume that we are interested in the marginal f (x3) originating from the joint
pdf f (x1, x2, x3, x4) (A.1). In this case, it in not difficult to prove that the required marginal can
be evaluated as

f (x3) = m⃗4 (x3) ⃗m5 (x3) , (A.2)

where m⃗4(x3) and ⃗m5 (x3) are messages referring to the same edge, but coming from opposite
directions; moreover, the evaluation of the last two messages is based on the ordered computation
of the messages

m⃗2 (x1) =

∫
f2 (x1, x2) m⃗0 (x2) dx2, (A.3)

m⃗3 (x1) = m⃗1 (x1) m⃗2 (x1) , (A.4)

m⃗4 (x3) =

∫
f3 (x1, x3) m⃗3 (x1) dx1 (A.5)

and
⃗m5 (x3) =

∫
f4 (x3, x4) ⃗m6 (x4) dx4, (A.6)

1In the following, degree−3 equality constraint nodes will be always employed in our graphical models for the sake of
clarity. Note that, generally speaking, an equality node of degree d can be represented by a tree with (d− 2) equality nodes
of degree 3.
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Figure A.1: Factor graph representing the structure of the function f(x1, x2, x3, x4) (A.1) and message
passing on it for the evaluation of the marginal f(x3).

where m⃗1 (x1) ≜ f1 (x1), m⃗0 (x2) ≜ 1 and ⃗m6 (x4) ≜ 1. Eqs. (A.3)–(A.6) represent specific
instances of a general rule, known as SPA and that can be formulated as follows (e.g., see [17, Sec.
IV]): the message emerging from a node, representing a factor fi(·), along the edge associated
with a variable xl is expressed by the product of fi(·) and the messages along all the incoming
edges (except that associated with xl), integrated over all the involved variables except xl. Note
that, in the following, a straightforward generalization of this rule will be employed any time the
joint pdf of a vector x1 is evaluated by marginalizing a factorizable pdf that refers to the disjoint
random vectors x1 and x2.

Two simple applications of the SPA are illustrated in Fig. A.2-a) and in Fig. A.2-b), that refer
to an equality constraint node and to a function node, respectively (note that, generally speaking,
these nodes are connected to edges representing vectors of variables instead of single variables).
On the one hand, the message m⃗out(x) emerging from the equality node shown in Fig. A.2-a) is
evaluated as2

m⃗out (x) = m⃗in,1 (x) m⃗in,2 (x) , (A.7)

where m⃗in,1 (x) and m⃗in,2 (x) are the two messages entering the node itself3 and x is the vector of
variables all these message refer to. On the other hand, the message m⃗out (x2) emerging from the
function node shown Fig. A.2-b), that refers to the function f (x1,x2) depending on the vectors
of variables x1 and x2, is given by

m⃗out (x2) =

∫
m⃗in (x1) f (x1,x2) dx1, (A.8)

where m⃗in (x1) denotes the message entering it. Note that Eq. (A.2), and Eqs. (A.3), (A.5) and
(A.6) result from the application of Eq. (A.7) and Eq. (A.8), respectively. Moreover, it is worth
mentioning that the following two rules have been also exploited in applying the SPA to the factor
graph shown in Fig. A.1: a) the marginal pdf f (xl), referring to the variable xl only, is expressed
by the product of two messages associated with the edge xl, but coming from opposite directions
(see Eq. (A.2)); b) the half-edge associated with a variable xl may be thought as carrying a
constant message of unit value as incoming message (e.g., see the messages m⃗0 (x2) and ⃗m6(x4)).

The result expressed by Eq. (A.2) is exact since the graph representing the joint pdf
f (x1, x2, x3, x4) (A.1) is cycle free. In principle, since the SPA is a ‘local’ rule, it can be also
applied to factor graphs with cycles (e.g., see [17, Par. III.A] and [18, Sec. V]), but usually
produces approximate results. Moreover, in this case, the messages passed on a cycle are usually
recomputed4 according to some schedule until a certain stopping criterion is satisfied; this un-
avoidably leads to the development of iterative message passing algorithms. Despite this, it is
widely accepted that the most important applications of the SPA refer to graphs with cycles [18].

The last important issue related to the application of the SPA is the availability of closed-form
expressions for the passed messages when, like in the filtering problem investigated in this thesis,
the involved variables are continuous. In the following, the pdfs of all the considered random

2Note that, if the messages m⃗in,1 (x) and m⃗in,2 (x) represent pdfs, their product does not usually satisfy the normalization
condition, so that resulting pdf is known up to a scale factor.

3If a single message m⃗ (x) enters an equality node, it is conventionally assumed that the two messages emerging from are
copies of it.

4Note that the messages passed over a cycle need to be properly rescaled in order to ensure convergence (this prevents
them from tending to zero or infinity).
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Figure A.2: Representation of the graphical models which Eqs. (A.7) (diagram a)) and (A.8) (diagram b))
refer to.
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Figure A.3: Ordered representation of the graphs which the message passing formulas listed in Table A.1,
Table A.2 and Table A.3, respectively, refer to.

vectors are Gaussian or are approximated through a set of Np weighted particles. In the first case,
the pdf of a random vector x is conveyed by the message

m⃗G (x) = N (x; η,C), (A.9)

where η and C denote the mean vector and the covariance matrix of x, respectively. In the second
case, instead, its pdf is conveyed by the message

m⃗P (x) =

Np∑
j=1

m⃗P,j (x) , (A.10)

where
m⃗P,j (x) ≜ wj δ (x− xj) (A.11)

represents the j-th component of the message m⃗P (x) (A.10), that is the contribution of the j-th
particle xj and its weight wj to such a message. Luckily, various closed-form results are available
for these two types of messages; the few mathematical rules required in the computation of all
the messages appearing in the algorithms described in Chapter 1, 2 and 3 are summarised in
Tables A.1, A.2 and A.3, which refer to the FGs illustrated in Fig. A.3-(a), Fig. A.3-(b) and Fig.
A.3-(c), respectively (note that in these Tables a denotes a constant vector); these results are
provided by [17, Table 2, p. 1303] or based on standard mathematical results about Gaussian
random variables (e.g., see [63, Par. 2.3.3]).
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A. Factor Graphs and the Sum-Product Algorithm

Table A.1: Mathematical rules for the evaluation of the message mout(x), emerging from the equality node
shown in Fig. A.3-(a), on the basis of the given input messages min,1(x) and min,2(x).

Formula no. min,1(x) min,2(x) mout(x)

1 δ
(
x− a

)
f(x) f(a) δ

(
x− a

)
2 N

(
x; η1,C1

)
N
(
x; η2,C2

) N
(
x; η,C

)
,w = w1 +w2,

W = W1 +W2

Table A.2: Mathematical rules for the evaluation of the message mout(x2), emerging from the function
node shown in Fig. A.3-(b), on the basis of the given input messages min,1(x1) and the function f(x1,x2).

Formula no. min(x1) f(x1,x2) mout(x2)

1 N
(
x1; η1,C1

)
N
(
x2;Ax1 + g,C2

)
N
(
x2;Aη1 + g,AC1A

T
l +C2

)
2 δ

(
x1 − a

)
N
(
x2;Ax1 + g,C2

)
N
(
x2;Aa+ g,C2

)
3 δ

(
x1 − a

)
N
(
x1;Ax2,C2

)
N
(
a;Ax2,C2

)
4 N

(
x1; η1,C1

)
N
(
x1; η2,C2

) exp
{

1
2

[
ηTWη − ηT

1 W1η1 − ηT
2 W2η2

]}
W = W1 +W2,w = W1η1 +W2η2

Table A.3: Mathematical rule for the evaluation of the message mout(x3), emerging from the function node
shown in Fig. A.3-(c), on the basis of the input messages min,1(x1) and min,2(x2), and of the function
f(x1,x2,x3).

Formula no. min,1(x1) min,2(x2) f(x1,x2,x3) mout(x3)

1 δ
(
x1 − a

)
N
(
x2; η2,C2

)
N
(
x3;g(x1) +A(x1)x2,C3

) N
(
x3;g(a) +A(a)η2,

C3 +A(a)C2

(
A(a)

)T )
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B

Message computation for Marginalized Particle Filtering
and Dual Marginalized Particle Filtering

In this Appendix the derivation of the expressions of various messages evaluated by the MPF
and the DMPF algorithms is sketched.

B.1 Marginalized Particle Filtering

Step 1) - The message m⃗1,j(x
(N)
k ) emerges from the function node representing f(yk|x

(N)
k , x

(L)
k ) =

N (yk; Bk(x
(N)
k )x

(L)
k + hk(x

(N)
k ),Ce) and fed by m⃗fp,j(x

(L)
k ) (1.12) (see Fig. 1.3); for this reason,

the derivation of Eq. (1.13) is based on formula no. 1 of Table A.2. Eq. (1.15), instead, is obtained
by first substituting Eqs. (1.11) and (1.13) in the right-hand side (RHS) of (1.14) and, then,
applying formula no. 1 of Table A.1.
Step 2) - The message m⃗1,j(x

(L)
k ) emerges from the function node representing f(yk|x

(N)
k , x

(L)
k )

and fed by m⃗fp,j(x
(N)
k ) (1.11) (see Fig. 1.3); for this reason, based on Eq. (1.11) and formula no.

2 of Table A.2, it is easy to show that

m⃗1,j

(
x
(L)
k

)
= N

(
yk;Bk,j x

(L)
k + hk,j ,Ce

)
; (B.1)

putting this message in an equivalent Gaussian form referring to x
(L)
k results in Eq. (1.21). Eq.

(1.23), instead, results from substituting Eqs. (1.12) and (1.21) in the RHS of Eq. (1.22) and,
then, applying formula no. 2 of Table A.1.
Step 3) - The message m⃗3,j(x

(N)
k+1) emerges from the function node representing f(x(N)

k+1|x
(N)
k ,x

(L)
k ) =

N (x
(N)
k+1; f

(N)
k (x

(N)
k )+A

(N)
k (x

(N)
k )x

(L)
k ,C

(N)
w ), and fed by the messages m⃗2,j(x

(N)
k ) and m⃗2,j(x

(L)
k )

(see Fig. 1.3). Therefore, substituting Eqs. (1.20) and (1.23) in the RHS of Eq. (1.28) and applying
formula no. 1 of Table A.3 produces Eq. (1.29).
Step 4) - The message m⃗j(z

(L)
k ) is given by (see Fig. 1.3)

m⃗j

(
z
(L)
k

)
=

∫ ∫
f
(
z
(L)
k

∣∣x(N)
k ,x

(N)
k+1

)
· f
(
x
(N)
k+1

∣∣x(N)
k

)
f
(
x
(N)
k

)
dx

(N)
k dx

(N)
k+1. (B.2)

Since, in this case, f(z(L)k |x(L)
k ,x

(N)
k ) = N (z

(L)
k ; A(N)

k (x
(N)
k ) x

(L)
k ,C

(N)
w ), f(x(N)

k ) = δ(x
(N)
k −

x
(N)
fe,k,j), f(x

(N)
k+1|x

(N)
fp,k,j) = δ(x

(N+1)
k − x

(N)
fp,k+1,j) (see Eq. (1.20) and Eq. (1.32), respectively), Eq.

(B.2) leads easily to Eq. (1.33). The message m⃗3,j(x
(L)
k ) flows out of the node representing the

function f(z
(L)
k |x(L)

k ,x
(N)
k ) = N (z

(L)
k ;A(N)

k (x
(N)
k )x

(L)
k ,C

(N)
w ) and fed by the messages m⃗j(z

(L)
k )

and m⃗2,j(x
(N)
k ) (see Fig. 1.3); consequently, based on Eq. (1.33), formulas no. 2 and 3 of Table

A.2, it is easy to prove that

m⃗3,j

(
x
(L)
k

)
= N

(
z
(L)
k,j ;A

(N)
k,j x

(L)
k ,C(N)

w

)
; (B.3)

this message can be easily put in the equivalent Gaussian form expressed by Eq. (1.34). Eq. (1.36),
instead, is obtained by first substituting Eqs. (1.23) and (1.34) in the RHS of Eq. (1.35) and, then,
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B. Message computation for MPF and DMPF

by applying formula no. 2 of Table A.1. Finally, the output message m⃗fp,j(x
(L)
k+1) emerges from the

node representing the function f(x(L)
k+1|x

(L)
k ,x

(N)
k ) = N (x

(N)
k+1; f

(L)
k (x

(N)
k ) +A

(L)
k (x

(N)
k ) x

(L)
k ,C

(L)
w )

and fed by the messages m⃗2,j(x
(N)
k ) and m⃗4,j(x

(L)
k ). Therefore, substituting Eqs. (1.20) and (1.36)

in the RHS of Eq. (1.39) and applying formula no. 1 of Table A.3 yields Eq. (1.40).

B.2 Dual Marginalized Particle Filtering

Step 3) - The message m⃗3,j(x
(L)
k+1) emerges from the function node representing f(x(L)

k+1|x
(N)
k , x

(L)
k ) =

N (x
(L)
k+1; A

(L)
k (x

(N)
k ) x

(L)
k + f

(L)
k (x

(N)
k ),C

(L)
w ) and fed by m⃗fp,j(x

(L)
k ) (1.12) and m⃗2,j(x

(L)
k ) (1.23)

(see Fig. 1.4); for this reason, the derivation of Eq. (1.45) is based on the application of formula
no. 1 of Table A.3 to Eq. (1.44).
Step 4) The message mj(z

(N)
k ) can be put in a particle-dependent Gaussian form since x

(L)
k+1 and

x
(L)
k , conditioned on x

(N)
k = x

(N)
fp,k,j , are modelled as jointly Gaussian random vectors. In fact,

if x(N)
k = x

(N)
fp,k,j , the random vector z

(N)
k (1.10) should equal x(N)

k+1 − f
(N)
k (x

(N)
fp,k,j); consequently,

adopting the particle-dependent Gaussian model (1.60) for x
(N)
k+1 results in a particle-dependent

Gaussian model for z
(N)
k too. Moreover, since, as shown in Fig. 1.4, the statistical representations

of x(L)
k and x

(L)
k+1 employed in the computation of mj(z

(N)
k ) are conveyed by messages m⃗fp,j(x

(L)
k )

(1.12) and m⃗3,j(x
(L)
k+1) (1.45), respectively, the mean and covariance of z(N)

k (1.10) can be evaluated
as

η
(N)
z,k,j = η

(L)
3,k,j − Ā

(L)
k,j η

(L)
fp,k,j (B.4)

and
C

(N)
z,k,j = C

(L)
3,k,j + Ā

(L)
k,j C

(L)
fp,k,j

(
Ā

(L)
k,j

)T − Ā
(L)
k,j C

(L)
x,k,j −

(
C

(L)
x,k,j

)T (
Ā

(L)
k,j

)T
, (B.5)

respectively; here, C(L)
x,k,j denotes the cross covariance matrix for the vectors x

(L)
k and x

(L)
k+1

(conditioned on x
(N)
k = x

(N)
fp,k,j) and Ā

(L)
k,j ≜ A

(L)
k (x

(N)
fp,k,j). Given m⃗fp,j(x

(L)
k ) (1.12) and the

conditional pdf f(x(L)
k+1|x

(L)
k ,x

(N)
fp,k,j) = N (x

(L)
k+1; f̄

(L)
k,j +Ā

(L)
k,j x

(L)
k ,C

(L)
w ) (where f̄ (N)

k,j ≜ f
(N)
k (x

(N)
fp,k,j)),

it is easy to show that C
(L)
x,k,j = C

(L)
2,k,j(Ā

(L)
k,j )

T (e.g., see [63, Par. 2.3.3, eq. (2.104)]); consequently,
Eq. (B.5) can be rewritten as

C
(N)
z,k,j = C

(L)
3,k,j − Ā

(L)
k,j C

(L)
fp,k,j

(
Ā

(L)
k,j

)T
. (B.6)

Then, substituting Eqs. (1.46) and (1.47) in Eqs. (B.4) and (B.6), respectively, produces Eqs. (1.49)
and (1.50), respectively. The message m⃗3,j(x

(N)
k ) emerges from the function node referring to the

pdf f(z(N)
k |x(N)

k ) = N (z
(N)
k ; f

(L)
k (x

(N)
k ),C

(L)
w ) and fed by the messages m⃗j(z

(N)
k ) and m⃗fp,j(x

(N)
k )

(see Fig. 1.4); therefore, substituting Eqs. (1.11) and (1.48) in the RHS of Eq. (1.51) and applying
formulas no. 2 and 4 of Table A.2 produces Eq. (1.52).
Step 5) The message m⃗5,j(x

(N)
k+1) emerges from the function node representing f(x(N)

k+1|x
(N)
k ,x

(L)
k ) =

N (x
(N)
k+1; f

(N)
k (x

(N)
k )+A

(N)
k (x

(N)
l ) x

(L)
k , C(N)

w ) and fed by the messages m⃗2,j(x
(L)
k ) and m⃗4,j(x

(N)
k );

therefore, substituting Eqs. (1.23) and (1.58) in the RHS of Eq. (1.59) and applying formula no.
1 of Table A.3 yields Eq. (1.60).
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C

Message computation for Double Bayesian Filtering

In this Appendix, the derivation of the expressions of various messages evaluated in each of the
three phases which the DBF technique consists of is sketched. Our derivations are mainly based
on various formulas listed in the tables of refs. [17] and Appendix A, and resulting from the
application of the SPA to specific function nodes/messages.

Phase I - Message m⃗1 (xk) (2.31) conveys the pdf f̃(yk|xk) (2.17); therefore, it can be expressed
as m⃗1 (xk) = N

(
yk;H

T
k xk + vk,Ce

)
. The last formula can be easily put in the equivalent form

(2.31) (see [17, Table 3, p. 1304, Eqs. (III.5) and (III.6)]). Then, substituting eqs. (2.28) and
(2.31) in the RHS of Eq. (2.34) and applying formula no. 2 of Table A.1 yields Eqs. (2.35)–(2.37).

Phase II - Step 1) The derivation of the formulas (2.39), (2.42) and (2.43) referring to the
message m⃗(n)

3 (xk) can be considered as a straightforward application of formula no. 2 of Table A.1,
since Eq. (2.38) has exactly the same structure as Eq. (A.7), and both m⃗2(xk) and m⃗

(n−1)
4 (xk)

are Gaussian messages.
Step 2) - The expression (2.48) of the weight w(n)

1,k,j can be derived as follows. We first substitute

Eq. (2.21) (conditioned on x
(N)
k = x

(N)
k,j [n]) and Eq. (2.44) in the RHS of Eq. (2.47); then, the

resulting integral is solved by applying formula no. 1 of Table A.2.
Step 3) - The derivation of the expression (2.52) for the weight w(n)

3,k,j is similar to that
illustrated for the particle weights originating from the pseudo-measurements in dual RBPF
and can be summarized as follows (additional mathematical details can be found in [1, Sec.
V, pp. 1528–1529]). Two different Gaussian densities are derived for the random vector z

(N)
k

(2.25), conditioned on x
(N)
k . The expression of the first density originates from the definition

(2.25) and from the knowledge of the joint pdf of x(L)
k and x

(L)
k+1; this joint density is obtained

from: a) the statistical information provided by the messages m⃗2(x
(L)
k ) = N (x

(L)
k ; η̃2,k, C̃2,k)

and m⃗
(n)
3 (x

(L)
k ) = N (x

(L)
k ; η̃

(n)
3,k , C̃

(n)
3,k), resulting from the marginalization of m⃗2(xk) (2.35) and

m⃗
(n)
3 (xk) (2.39), respectively, with respect to x

(N)
k ; b) the Markov model f(x(L)

k+1|x
(N)
k ,x

(L)
k )

(2.27). This leads to the pdf

f
(n)
1

(
z
(N)
k |x(N)

k

)
= N

(
z
(N)
k ; η̌

(n)
z,k

(
x
(N)
k

)
, Č

(n)
z,k

(
x
(N)
k

))
, (C.1)

where
η̌
(n)
z,k

(
x
(N)
k

)
= A

(L)
k

(
x
(N)
k

) [
η̃
(n)
3,k − η̃2,k

]
+ f

(L)
k

(
x
(N)
k

)
, (C.2)

and

Č
(n)
z,k

(
x
(N)
k

)
= C(L)

w +A
(L)
k

(
x
(N)
k

) [
C̃

(n)
3,k − C̃2,k

]
·
(
A

(L)
k

(
x
(N)
k

))T
. (C.3)

The second pdf of z(N)
k , instead, results from the fact that this vector z

(N)
k must equal the sum

(2.26); consequently, it is given by

f2
(
z
(N)
k |x(N)

k

)
= N

(
z
(N)
k ; f

(L)
k

(
x
(N)
k

)
,C(N)

w

)
. (C.4)
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C. Message computation for DBF

Given the pdfs (C.1) and (C.4), the message m⃗(n)
3 (x

(N)
k ) is expressed by their correlation, since it

is computed as

m⃗
(n)
3 (x

(N)
k ) =

∫
f
(n)
1

(
z
(N)
k |x(N)

k

)
· f2
(
z
(N)
k |x(N)

k

)
dz

(N)
k . (C.5)

Substituting (C.1) and (C.4) in the RHS of the last expression, setting x
(N)
k = x

(N)
k,j [n] and

applying formula no. 4 of Table A.2 to the evaluation of the resulting integral yields Eq. (2.52);
note that η̌(n)z,k,j (2.56) and Č

(n)
z,k,j (2.55) represent the values taken on by η̌(n)z,k (x

(N)
k ) (C.2) and

Č
(n)
z,k(x

(N)
k ) (C.3), respectively, for x

(N)
k = x

(N)
k,j [n].

Step 4) - Formula (2.59), that refers to the message m⃗(n)
4,j (x

(N)
k ), is obtained by substituting

m⃗2,j(x
(N)
k ) (2.51) in the RHS of Eq. (2.58) and observing that w(n)

3,k,j (2.52) represents the value

taken on by the message m⃗(n)
3 (x

(N)
k ) for x

(N)
k = x

(N)
k,j [n].

Step 5) Eq. (2.63) is results from substituting Eqs. (2.44) and (C.5) in Eq. (2.62) and, then,
applying formula no. 1 of Table A.3 to evaluate the resulting integral.

Step 6) - The message m⃗(n)
4 (xk) (2.67) results from merging, in the F2→F1 block, the statistical

information about the nonlinear state component conveyed by the message m⃗(n)
4 (x

(N)
k ) (and,

consequently, by its components {m⃗(n)
4,j (x

(N)
k )}; see Eq. (2.61)) with those provided by the pseudo-

measurement z
(L)
k (2.22) about the linear state component. The method employed for processing

this pseudo-measurement is the same as that developed for RBPF and can be summarized as
follows (additional mathematical details can be found in [1, Sec. IV, p. 1527]):

a) The particles x
(N)
k,j [n+ 1] and x̄

(N)
k+1,j [n+ 1], conveyed by the messages m⃗(n)

4,j (x
(N)
k ) (2.61)

and m⃗
(n)
fp,j(x

(N)
k+1) (2.66), respectively, are employed to compute the j-th realization z

(L)
k,j [n+ 1]

(2.77) of the vector z
(L)
k (2.22) according to Eq. (2.77).

b) The pseudo-measurement z(L)k,j [n+ 1] (2.77) is exploited to generate the (particle-dependent)
message

m⃗
(n)
4,j

(
x
(L)
k

)
= N

(
x
(L)
k ; η̃

(n)
4,k,j , C̃

(n)
4,k,j

)
, (C.6)

that conveys pseudo-measurement information about x
(L)
k ; the covariance matrix C̃

(n)
4,k,j and the

mean vector η̃(n)4,k,j of this message are computed on the basis of the precision matrix W̃
(n)
4,k,j (2.75)

and the transformed mean vector w̃(n)
4,k,j (2.76), respectively. Finally, the message m⃗(n)

4 (xk) (2.67)

results from merging the message m⃗(n)
4 (x

(N)
k ) (its j-th component is expressed by Eq. (2.61)) with

the pdfs {m⃗(n)
4,j (x

(L)
k )} (see Eq. (C.6)); the adopted approach is based on the fact that: a) as it

can be easily inferred from our previous derivations, the Gaussian message m⃗(n)
4,j (x

(L)
k ) (C.6) is

evaluated under the condition that x(N)
k = x

(N)
k,j [n+1]; b) the messages m⃗(n)

4,j (x
(N)
k ) and m⃗(n)

4,j (x
(L)
k )

provide complementary information, because they refer to the two different components of the
overall state xk. Consequently, the statistical information conveyed by the sets {m⃗(n)

4,j (x
(N)
k )} and

{m⃗(n)
4,j (x

(L)
k )} can be merged in the joint pdf

f (k)
(
x
(L)
k ,x

(N)
k

)
≜ wp

Np∑
j=1

m⃗
(n)
4,j

(
x
(N)
k

)
m⃗

(n)
4,k

(
x
(L)
k

)
. (C.7)

referring to xk. Then, the message m⃗(n)
4 (xk) (2.67) is evaluated by projecting the pdf f (k)(x(L)

k ,x
(N)
k )

(C.7) onto a single Gaussian pdf having the same mean vector and covariance matrix. It is worth
noting that, unlike all the other messages considered above and below, the computation of the
last message is not based on the SPA.
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Phase III - The message m⃗fp (xk+1) (2.81) is computed as follows. Substituting the expressions
(2.16) of f̃ (xk+1 |xk ) and (2.78) of m⃗(ni+1)

3 (xk) in the RHS of Eq. (2.80) and applying formula
no. 1 of Table A.2 to the evaluation of the resulting integral produces Eqs. (2.81)–(2.83).
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D

Message computation for Double Bayesian Smoothing
Algorithm

In this Appendix, the derivation of the expressions of various messages evaluated in each of the
three phases the DBSA consists of is sketched.

Phase I - Formulas (3.39) and (3.40), referring to the message ⃗m1(xk) (3.38), can be easily
computed by applying eqs. (IV.6)-(IV.8) of ref. [17, Table 4, p.1304] in their backward form
(with A→ID, X→Fkxk, Z→xk+1 and Y→uk +wk) and, then, eqs. (III.5)–(III.6) of [17, Table 3,
p.1304] (with A →Fk, X→xk and Y →Fkxk).

Phase II -Step 1) The message m(n)
2 (xk) (3.42) results from merging, in the BIF2→BIF1

block, the statistical information about the nonlinear state component conveyed by the message
m

(n−1)
1 (x

(N)
k ) (3.41) (and, consequently, by its Np components {m(n−1)

1,j (x
(N)
k ) =W

(n−1)
1,k,j δ(x

(N)
k −

x
(N)
k,j )}) with those provided by the pseudo-measurement z

(L)
k (3.21) about the linear state

component. The method employed for processing this pseudo-measurement is the same as that
developed for MPF and can be summarised as follows (additional mathematical details can be
found in [1, Sec. IV, p. 1527]):

1) The particles x(N)
k,j and x

(N)
be,k+1, conveyed by the messagesm(n−1)

1 (x
(N)
k ) (3.41) and ⃗mbe(x

(N)
k+1)

(3.37), respectively, are employed to compute the j−th realization z
(L)
k,j (3.49) of z(L)k for j = 1, 2,

..., Np.
2) The pseudo-measurement z

(L)
k,j (3.49) is exploited to generate the (particle-dependent) pdf

f
(n)
j

(
x
(L)
k

)
= N

(
x
(L)
k ; η̃k,j , C̃k,j

)
, (D.1)

that conveys pseudo-measurement information about x
(L)
k for any j; the covariance matrix C̃k,j

and the mean vector η̃k,j of this message are computed on the basis of the precision matrix W̃k,j

(3.47) and the transformed mean vector w̃k,j (3.48), respectively.
3) The messages {m(n−1)

1,j (x
(N)
k )} are merged with the pdfs {f (n)j (x

(L)
k )} to generate the message

m
(n)
2 (xk) (3.42). The approach we adopt to achieve this result is based on the fact that the

message m(n−1)
1,j (x

(N)
k ) and the pdf f (n)j (x

(L)
k ) refer to the same particle (i.e., to the j−th particle

x
(N)
k,j , but provide complementary information (since they refer to the two different components

of the overall state xk). This allows us to condense the statistical information conveyed by the
sets {m(n−1)

1,j (x
(N)
k )} and {f (n)j (x

(L)
k )} in the joint pdf

f (n)(x
(L)
k ,x

(N)
k ) ≜ wp

Np∑
j=1

m
(n−1)
1,j

(
x
(N)
k

)
f
(n)
j

(
x
(L)
k

)
. (D.2)

referring to the whole state xk. Then, the message m(n)
2 (xk) (3.42) is computed by projecting the

pdf f (k)(x(L)
k ,x

(N)
k ) (D.2) onto a single Gaussian pdf having the same mean and covariance.
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D. Message computation for DBSA

Steps 2 and 3) The expression (3.52) of ⃗m
(n)
3

(
xk
)

represents a straightforward application of
formula no. 2 of Table A.1 (with W1→W1,k, W2→W

(n)
2,k , w1→w1,k and w2→w

(n)
2,k ). The same

considerations apply to the derivation of the expression (3.58) of m(n)
4

(
xk
)
.

Step 4) The expression (3.63) of the weight w(n)
3,k,j is derived as follows. First, we substitute

the expression (3.19) of f(x(N)
k+1|x

(N)
k ,x

(L)
k ), and the expressions of the messages ⃗mbe(x

(N)
k+1) (3.37)

and m(n)
1 (x

(L)
k ) (3.61) in the right-hand side (RHS) of Eq. (3.62). Then, the resulting integral is

solved by applying formula no. 1 of Table A.2 in the integration with respect to x
(L)
k and the

sifting property of the Dirac delta function in the integration with respect to x
(N)
k+1.

Step 5) - The derivation of the expression (3.68) of the weight w(n)
2,k,j is similar to that illustrated

for the particle weights originating from the pseudo-measurements in dual MPF and can be
summarised as follows (additional mathematical details can be found in ref. [1, Sec. V, pp. 1528-
1529]). Two different Gaussian densities are derived for the random vector z(N)

k (3.24), conditioned
on x

(N)
k . The expression of the first density originates from the definition (3.24) and from the

knowledge of the joint pdf of x(L)
k and x

(L)
k+1; this joint density is obtained from: a) the statistical

information provided by the message m(n)
1 (x

(L)
k ) (3.61) and the pdf N (x

(L)
k+1, η̃be,k+1C̃be,k+1)

(resulting from integrating out the dependence of ⃗mbe(xk+1) (3.36) on x
(N)
k ); b) the Markov

model f(x(L)
k+1|x

(N)
k ,x

(L)
k ) (3.26). This leads to the pdf

f
(n)
1

(
z
(N)
k

∣∣x(N)
k

)
= N

(
z
(N)
k ; η̌

(n)
z,k

(
x
(N)
k

)
, Č

(n)
z,k

(
x
(N)
k

))
, (D.3)

where
η̌
(n)
z,k

(
x
(N)
k

)
= η̃be,k+1 −A

(L)
k

(
x
(N)
k

)
η̃
(n)
1,k (D.4)

and
Č

(n)
z,k

(
x
(N)
k

)
= C̃be,k+1 −A

(L)
k

(
x
(N)
k

)
C̃

(n)
1,k

(
A

(L)
k

(
x
(N)
k

))T
. (D.5)

The second pdf of z(N)
k , instead, results from the fact that this vector z

(N)
k must equal the sum

(3.25); consequently, it is given by

f2
(
z
(N)
k

∣∣x(N)
k

)
= N

(
z
(N)
k ; f

(L)
k

(
x
(N)
k

)
,C(N)

w

)
. (D.6)

Given the pdfs (D.3) and (D.6), the message m⃗(n)
3 (x

(N)
k ) is expressed by their correlation, i.e. it

is computed as

m⃗
(n)
3 (x

(N)
k ) =

∫
f
(n)
1

(
z
(N)
k

∣∣x(N)
k

)
· f2
(
z
(N)
k

∣∣x(N)
k

)
dz

(N)
k . (D.7)

Substituting Eqs. (D.3) and (D.6) in the RHS of the last expression, setting x
(N)
k = x

(N)
k,j and

applying formula no. 4 of Table A.2 to the evaluation of the resulting integral yields Eq. (3.68);
note that η̌

(n)
z,k,j (3.70) and Č

(n)
z,k,j (3.71) represent the values taken on by η̌(n)z,k (x

(N)
k ) (D.4) and

Č
(n)
z,k(x

(N)
k ) (D.5), respectively, for x

(N)
k = x

(N)
k,j .

Step 7) The expression (3.82) of the weight w(n)
5,k,j is derived as follows. First, we substitute

the expressions (3.61) and (3.20) of m(n)
1 (x

(L)
k ) and f(yk|x

(N)
k , x

(L)
k ), respectively, in the RHS

of Eq. (3.77). Then, solving the resulting integral (see formula no. 1 of Table A.2) produces Eq.
(3.78). Finally, setting x

(N)
k = x

(N)
k,j in Eq. (3.78) yields Eq. (3.82).

Phase III - The expression (3.100) of the message ⃗mbe

(
xk
)

results from the application of
formula no. 2 of Table A.1 to Eq. (3.99).
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E

Computational complexity of various techniques

In this chapter, the computational complexity of various techniques employed in this work is
evaluated in terms of flops.

E.1 Computational complexity of the DBF and SDBF techniques

In this appendix, the computational complexity of the tasks accomplished in a single recursion of
the DBF technique is assessed in terms of flops. Moreover, we comment on how the illustrated
results can be also exploited to assess the computational complexity of a single recursion of the
SDBF technique. In the following, CH, CB, CF, CA(L) and CA(N) , and Cg, Cf (L) , Cf (N) and Cfkdenote
the cost due to the evaluation of the matrices Hk, Bk, Fk, A

(L)
k (x

(N)
k ) and A

(N)
k (x

(N)
k ), and of the

functions gk(x
(N)
k ), f (L)k (x

(N)
k ), f (N)

k (x
(N)
k ) and fk(xk), respectively. Moreover, similarly as [40],

it is assumed that the computation of the inverse of any covariance matrix involves a Cholesky
decomposition of the matrix itself and the inversion of a lower or upper triangular matrix.

1. Filter F1, first measurement update - The overall computational cost of this task is (see
Eqs. (2.32)–(2.33) and (2.36)–(2.37))

C(1)
MU1 = CW2,k

+ Cw2,k
+ CC2,k

+ Cη2,k (E.1)

Moreover, we have that: 1) the cost CW2,k
is equal to CH +2PD2 +2P 2D−PD flops; 2) the cost

Cw2,k
is equal to CB + Cg + 2P 2D+ 5PDL + 3PDN − P flops (Hk has been already computed at

point 1); 3) the cost CC2,k
is equal to 2D3/3 + 3D2/2 + 5D/6 flops; 4) the cost Cη2,k is equal to

D(2D− 1) flops. The expressions listed at points 1)-4) can be exploited for the SDBF too; in the
last case, however, DN = 0 and D = DL must be assumed.

2. Filter F1, second measurement update - The overall computational cost of this task is (see
Eqs. (2.42)–(2.43))

C(1)
MU2 = ni

(
C
C

(n)
3,k

+ C
η
(n)
3,k

)
, (E.2)

where the costs C
C

(n)
3,k

and C
η
(n)
3,k

are equal to D2(2D − 1) flops and 4D2 −D flops, respectively; if

the SDBF is considered, we have that D = DL in the last two expressions.
3. Filter F2, first measurement update - The overall computational cost of this task is (see

Eqs. (2.48)–(2.50))
C(2)
MU1 = niNp

(
C
η̃
(n)
1,k,j

+ C
C̃

(n)
1,k,j

+ C
w

(n)
1,k,j

)
. (E.3)

Moreover, we have that: 1) the cost C
η̃
(n)
1,k,j

is equal to CB + Cg + 2PDL flops; 2) the cost C
C̃

(n)
1,k,j

is

equal to 2PD2
L +2P 2DL−PDL flops (the cost for computing CB has been already accounted for

at point 1)); 3) the cost C
w

(n)
1,k,j

is equal to (4P 3 + 21P 2 + 17P + 6)/6 flops.

4. Filter F2, second measurement update - The overall computational cost of this task is (see
Eqs. (2.57) and (2.60))

C(2)
MU2 = C

w
(n)
4,k,j

+ C
W

(n)
4,k,j

+ ni CR(Np), (E.4)
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E. Computational complexity of various techniques

where the costs C
w

(n)
4,k,j

and C
W

(n)
4,k,j

are equal to niNp flops and 2Np − 1 flops, respectively, and

CR(Np) denotes the total cost of the resampling step (that involves a particle set of size Np).
5. Computation of the pseudo-measurements for filter F2 - The overall computational cost of

this task is (see Eqs. (2.52)–(2.56))

C1→2 = niNp

(
C
η̌
(n)
z,k

+ C
Č

(n)
z,k

+ C
W̌

(n)
z,k

+ C
w̌

(n)
z,k

+

C
W̌

(n)
3,k,j

+ C
w̌

(n)
3,k,j

+ C
Č

(n)
3,k,j

+ C
η
(n)
3,k,j

+ C
w

(n)
3,k,j

)
. (E.5)

Moreover, we have that: 1) the cost C
η̌
(n)
z,k

is equal to CA(L) + Cf (L) + 2D2
L +DL flops; 2) the cost

C
Č

(n)
z,k

is equal 4D3
L flops (since the cost for computing CA(L) has been already accounted for at

point 1); 3) the cost C
W̌

(n)
z,k

is equal to 2D3
L/3 + 3D2

L/2 + 5DL/6 flops; 4) the cost C
w̌

(n)
z,k

is equal

to DL(2DL − 1) flops; 5) the cost C
W̌

(n)
3,k,j

is equal to D2
L flops; 6) the cost C

w̌
(n)
3,k,j

is equal to 2D2
L

flops (the cost for computing Cf (L) has been already accounted for at point 1); 7) the cost C
Č

(n)
3,k,j

is equal to 2D3
L/3 + 3D2

L/2 + 5DL/6 flops; 8) the cost C
η
(n)
3,k,j

is equal to DL(2DL − 1) flops; 9)

the cost C
w

(n)
3,k,j

is equal to 6D2
L + 3DL + 1 flops (the cost for computing Cf (L) has been already

accounted for at point 1)).
6. Computation of the pseudo-measurements for filter F1 - The overall computational cost of

this task is (see Eqs. (2.69)–(2.77))

C2→1 = niNp

(
C
z
(L)
k,j

+ C
W̃

(n)
4,k,j

+ C
w̃

(n)
4,k,j

+ C
C̃

(n)
4,k,j

+ C
η̃
(n)
4,k,j

)
+ C

C
(n)
4,k

+ C
η
(n)
4,k

+ C
W

(n)
k

. (E.6)

Moreover, we have that: 1) the cost C
z
(L)
k,j

is equal to DN flops (the cost for computing Cf (N)

has been already accounted for in the time update of filter F2); 2) the cost C
W̃

(n)
4,k,j

is equal to

DDL(2DN − 1) flops (the cost for computing CA(N) has been already accounted for in the time
update of filter F2); 3) the cost C

w̃
(n)
4,k,j

is equal to DL(2D
2
N +DN −1) flops (the cost for computing

CA(N) has been already accounted for in the time update of filter F2); 4) the cost C
C̃

(n)
4,k,j

is equal

to 2D3
L/3 + 3D2

L/2 + 5DL/6 flops; 5) the cost C
η̃
(n)
4,k,j

is equal to DL(2DL − 1) flops; 6) the cost

C
C

(n)
4,k

is equal to ni(2NpD
2
L +NpD

2
N + 2D2

L + 2D2
N +NpDLDN + 2DLDN + 3Np) flops; 7) the

cost C
η
(n)
4,k

is equal to ni(D(Np − 1) + 1) flops; 8) the cost C
W

(n)
k

is ni(16D3 + 9D2 + 5D)/6 flops.

If the SDBF is considered, the total costs 1)-5) remain unchanged, whereas DN = 0 and
D = DL in the costs C

η
(n)
4,k

and C
W

(n)
k

(see points 7) and 8)); moreover, the cost C
C

(n)
4,k

becomes

ni(2NpD
2
L + 2D2

L +Np) flops (see point 6)).
7. Filter F1, time update - The overall computational cost of this task is (see Eqs. (2.82)–(2.83))

C(1)
TU = Cηfp,k+1

+ CCfp,k+1
+ CWfp,k+1

+ Cwfp,k+1
, (E.7)

since C
C

(ni+1)

3,k

and C
η
(ni+1)

3,k

have been already computed in the previous time update of filter F2.

Moreover, we have that:
1) Cηfp,k+1

is equal to Cfk flops; 2) CCfp,k+1
is equal to CF +D2(4D − 1) flops; 3) CWfp,k+1

is
equal to 2D3/3 + 3D2/2 + 5D/6 flops; 4) Cwfp,k+1

is equal to D(2D − 1) flops. If the SDBF is
considered, D = DL is set in the expressions of the costs listed at points 1)-4).

8. Filter F2, time update - The overall computational cost of this task is (see Eqs. (2.64)–(2.66))

C(2)
TU = niNp

(
C
η
(N)
3,k,j

+ C
C

(N)
3,k,j

+ C
x
(N)
k+1,j

)
. (E.8)
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E.2. Computational complexity of the EKF technique

Moreover, we have that: 1) the cost C
η
(N)
3,k,j

is equal to CA(N) + Cf (N) + 2DLDN flops; 2) the cost

C
C

(N)
3,k,j

is equal to DLDN (2D − 1) flops (CA(N) has been already accounted for at point 1)); 3)

the cost C
x
(N)
k+1,j

is equal to D3
N/3 + 3D2

N + 5DN/3 flops.

Based on the results illustrated above, it can be proved that the overall computational cost of
the DBF/SDBF techniques is approximately of order O(Nalg), where the parameter alg is equal
to DBF or SDBF (see Eqs. (2.85) and (2.86), respectively). Moreover, in both cases, Nalg can be
put in the form

Nalg = N
(1)
alg + niNp (N

(2)
alg +N

(1→2)
alg +N

(2→1)
alg ), (E.9)

where N (1)
alg , N (2)

alg , N (1→2)
alg and N (2→1)

alg denote the contributions to Nalg originating from filter F1,
from filter F2, from the F1 →F2 block and from the F2 →F1 block, respectively. The expressions
of these contributions are

N
(1)
DBF = 2 (niD

3 + PD2 + 2P 2D + 8D3/3), (E.10)

N
(2)
DBF = 2 (PD2

L + P 2DL + P 3/3 +DDLDN +D3
N/6), (E.11)

N
(1→2)
DBF = 16D3

L/3 (E.12)

and

N
(2→1)
DBF = 2 (DDLDN +DLD

2
N +D3

L/3 + 4D3/(3Np)) (E.13)

for the DBF technique. On the other hand, if the SDBF technique is considered, we have that
N

(2)
SDBF = N

(2)
DBF and N

(1→2)
SDBF = N

(1→2)
DBF (see Eqs. (E.11) and (E.12), respectively); moreover,

N
(2→1)
SDBF = 2 (DDLDN + DLD

2
N + D3

L/3 + 4D3
L/(3Np)), whereas the expression of N (1)

SDBF is
easily obtained setting D = DL in the RHS of Eq. (E.10).

E.2 Computational complexity of the EKF technique

In this appendix analysis of EKF complexity is illustrated; the notation is the same as [3, pp.
194-195]. In the following, CH and CF, Chk

and Cfk denote the cost due to the evaluation of the
matrices Hk and Fk, and of the functions hk(xk) and fk(xk), respectively. Moreover, similarly
as [40], it is assumed that the computation of the inverse of any covariance matrix involves a
Cholesky decomposition of the matrix itself and the inversion of a lower or upper triangular
matrix.

1. Measurement update
The overall computational cost of this task is

CMU = CΩk
+ CLk

+ Cηk|k + CCk|k . (E.14)

Moreover, we have that: 1) the cost CΩk
is equal to CH + 2P 2D + 2PD2 − PD flops; 2) CLk

is
equal to 2P 3/3+3P 2/2+5P/6+2PD2+2P 2D− 2PD flops; 3) Cηk|k is equal to Chk

+2PD+P

flops; 4) CCk|k is equal 2D3 + 2PD2 −D2 flops.
2. Time update
The overall computational cost of this task is

CTU = Cηk+1|k + CCk+1|k , (E.15)

where the costs Cηk+1|k and CCk+1|k are equal to Cfk flops and CF + 4D3 −D2 flops, respectively.
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E. Computational complexity of various techniques

E.3 Computational complexity of the RBPF technique

In this appendix a detailed analysis of the RBPF complexity is provided; the adopted notation
is the same as [1]. In the following, CB, CA(L) and CA(N) , and Cg, Cf (L) and Cf (N) denote the
cost due to the evaluation of the matrices Bk, A

(L)
k (x

(N)
k ) and A

(N)
k (x

(N)
k ), and of the functions

gk(x
(N)
k ), f (L)k (x

(N)
k ) and f

(N)
k (x

(N)
k ), respectively. Moreover, similarly as [40], it is assumed that

the computation of the inverse of any covariance matrix involves a Cholesky decomposition of
the matrix itself and the inversion of a lower or upper triangular matrix.

1. Measurement update nonlinear part
The overall computational cost of this task is

C(N)
MU = Np

(
C
η
(N)
1,k,j

+ C
C

(N)
1,k,j

+ Cwfe,k,j

)
+ CWfe,k,j

+ CR(Np). (E.16)

Moreover, we have that: 1) the cost C
η
(N)
1,k,j

is equal to CB + Cg + 2PDL flops; 2) C
C

(N)
1,k,j

is equal to

2PD2
L + 2P 2DL − PDL flops (CB has been already accounted for at point 1)); 3) Cwfe,k,j

is equal
to (4P 3 + 21P 2 + 17P + 6)/6 flops; 4) CWfe,k,j

is equal to 2Np − 1 flops; 5) CR(Np) denotes the
total cost of the resampling step (that involves a particle set of size Np).

2. First measurement update linear part
The overall computational cost of this task is

C(L)
MU1 = Np

(
C
w

(L)
1,k,j

+ C
W

(L)
1,k,j

+ C
C

(L)
2,k,j

+ C
η
(L)
2,k,j

)
. (E.17)

Moreover, we have that: 1) the cost C
w

(L)
1,k,j

is equal to CB+Cg+2P 2DL+2PDL−PDL−DL+P flops;

2) C
W

(L)
1,k,j

is equal to 2PD2
L+2P 2DL−D2

L−PDL flops; 3) C
C

(L)
2,k,j

is equal to 4D3
L/3+4D2

L+5DL/3

flops; 4) C
η
(L)
2,k,j

is equal to DL(4DL − 1) flops.

3. Second measurement update linear part
The overall computational cost of this task is

C(L)
MU2 = Np

(
C
z
(L)
k,j

+ C
C

(L)
4,k,j

+ C
η
(L)
4,k,j

)
. (E.18)

Moreover, we have that: 1) the cost C
z
(L)
k,j

is equal to Cf (N) + DN flops; 2) C
C

(L)
4,k,j

is equal to

CA(N) + 2D3
L/3 + 2D2

LDN + 2DLD
2
N + 3D2

L/2 − DLDN + 5DL/6 flops; 3) C
η
(L)
4,k,j

is equal to

2DLD
2
N + 2D2

L +DLDN − 2DL +DN flops.
4. Time update nonlinear part
The overall computational cost of this task is

C(N)
TU = Np

(
C
η
(N)
3,k,j

+ C
C

(N)
3,k,j

+ C
x
(N)
fp,k+1,j

)
. (E.19)

Moreover, we have that: 1) the cost C
η
(N)
3,k,j

is equal to CA(N) + Cf (N) + 2DLDN flops; 2) C
C

(N)
3,k,j

is

equal to DLDN (2D − 1) flops (CA(N) has been already accounted for at point 1)); 3) C
x
(N)
fp,k+1,j

is

equal to D3
N/3 + 3D2

N + 5DN/3 flops.
5. Time update linear part
The overall computational cost of this task is

C(L)
TU = Np

(
C
η
(L)
fp,k+1,j

+ C
C

(L)
fp,k+1,j

)
. (E.20)

where the costs Cηfp,k+1
and C

C
(L)
fp,k+1,j

are equal to CA(L) + Cf (L) + 2D2
L flops and D2

L(4DL − 1)

flops, respectively.
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E.4 Computational complexity of the MPF technique developed in ref. [37]

In this appendix a detailed analysis of the MPF complexity is illustrated. The notation is
the same as [37]. In the following, Cfx and Cfy denote the cost due to the evaluation of the
functions fx(xt−1, ut) and fy(xt, vt), respectively. Moreover, similarly as [40], it is assumed that
the computation of the inverse of any covariance matrix involves a Cholesky decomposition of
the matrix itself and the inversion of a lower or upper triangular matrix.

1. Measurement update
The overall computational cost of this task is

CMU = n

(
C
x
(m)
i,t−1

+ C
w

(m)
i,t

+ C
x
(m)
i,t

+ CR(M)

)
. (E.21)

Moreover, we have that: 1) C
x
(m)
i,t−1

is equal ML(Nf − 1) flops; 2) C
w

(m)
i,t

is equal to ML(6Cfy +

4d3y + 21d2y + 17dy)/6 + 2ML+ 2M − 1 flops; 3) C
x
(m)
i,t

is equal to dx,i(2M − 1) flops; 4) CR(M)

denotes the total cost of the resampling step (that involves a particle set of size M).
2. Time update
The overall computational cost of this task is

CTU = nC
x
(m)
i,t

, (E.22)

where the cost C
x
(m)
i,t

is equal to M(3Cfx + d3x,i + 9d2x,i + 5dx,i)/3 flops.

E.5 Computational complexity of the DBSA and DDBSA

In this appendix, the computational complexity of the tasks accomplished in a single recursion of
backward filtering and smoothing of the DBSA is assessed in terms of flops. Moreover, we comment
on how the illustrated results can be also exploited to assess the computational complexity of
a single recursion of the DDBSA. In the following, CH, CB, CF, CA(L) and CA(N) , and Cg, Cf (L) ,
Cf (N) and Cfkdenote the cost due to the evaluation of the matrices Hk, Bk, Fk, A

(L)
k (x

(N)
k )

and A
(N)
k (x

(N)
k ), and of the functions gk(x

(N)
k ), f (L)k (x

(N)
k ), f (N)

k (x
(N)
k ) and fk(xk), respectively.

Moreover, similarly as [40], it is assumed that the computation of the inverse of any covariance
matrix involves a Cholesky decomposition of the matrix itself and the inversion of a lower or
upper triangular matrix. Finally, it is assumed that the computation of the determinant of any
matrix involves a Cholesky decomposition of the matrix itself and the product of the diagonal
entries of a triangular matrix.

Phase I - The overall computational cost of this task is evaluated as (see Eqs. (3.39)–(3.40)
and (3.47)–(3.49))

C1 = CW1,k
+ Cw1,k

+Np

(
C
z
(L)
k,j

+ CW̃k,j

+Cw̃k,j
+ CC̃k,j

+ Cη̃k,j
)
≜ C(1)

bp . (E.23)

Moreover, we have that: 1) the cost CW1,k
is equal to CF + 26D3/3 − D2/2 + 5D/6 flops; 2)

the cost Cw1,k
is equal to 4D3 + 4D2 − 2D flops (the cost for computing CF has been already

accounted for at point 1)); 3) the cost C
z
(L)
k,j

is equal to Cf (N) + DN flops; 4) the cost CW̃k,j
is

equal to CA(N) + 4D3
N − 2D2

N flops; 5) the cost Cw̃k,j
is equal to 2D3

N +D2
N −DN flops (the cost

for computing CA(N) has been already accounted for at point 4)); 6) the cost CC̃k,j
is equal to

2D3
N/3 + 3D2

N/2 + 5DN/6 flops; 7) the cost Cη̃k,j is equal to 2D2
N −DN flops. The expressions

listed at points 1)-2) can be exploited for the DDBSA too; in the last case, however, DN = 0 and
D = DL must be assumed.
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Phase II - The overall computational cost of this task is evaluated as

C2 = ni
(
Cpm(1) + Cbe1(1) + Csm(1) + Cbp(2)+

Cpm(2) + Cms(2) + Cbe2(2) + Csm(2)

)
. (E.24)

The terms appearing in the RHS of the last equation can be computed as follows. First of all, we
have that

Cpm(1) = C
η
(n)
2,k

+ C
C

(n)
2,k

, (E.25)

where (see Eqs. (3.43)-(3.44)): 1) the cost C
η
(n)
2,k

is equal to 2NpD −D flops; 2) the cost C
C

(n)
2,k

is

equal to 5NpD
2
L + 4NpD

2
N + 4NpDLDN +D2

L +D2
N +DLDN flops. The expressions listed at

points 1)-2) can be exploited for the DDBSA too; in the last case, however, DN = 0 and D = DL

must be assumed.
The second term appearing in the RHS of Eq. (E.24) is evaluated as

Cbe1(1) = C
C

(n)
3,k

+ C
η
(n)
3,k

+ C
W

(n)
3,k

+ C
w

(n)
3,k

, (E.26)

where (see Eqs. (3.55)-(3.56)): 1) the cost C
C

(n)
3,k

is equal to 14D3/3 +D2/2 + 5D/6 flops; 2) the

cost C
η
(n)
3,k

is equal to 4D2 −D flops (the cost for computing C
W

(n)
k

has been already accounted

for at point 1)); 3) the cost C
W

(n)
3,k

is equal to 2D3/3 + 3D2/2 + 5D/6 flops; 4) the cost C
w

(n)
3,k

is

equal to 2D2 −D flops. The expressions listed at points 1)-4) can be exploited for the DDBSA
too; in the last case, however, DN = 0 and D = DL must be assumed.

The third term appearing in the RHS of Eq. (E.24) is computed as

Csm(1) = C
W

(n)
4,k

+ C
w

(n)
4,k

+ C
C

(n)
4,k

+ C
η
(n)
4,k

, (E.27)

where (see Eqs. (3.59)-(3.60)): 1) the cost C
W

(n)
4,k

is equal to D2 flops; 2) the cost C
w

(n)
4,k

is equal to

D flops; 3) the cost C
C

(n)
4,k

is equal to 2D3/3 + 3D2/2 + 5D/6 flops; 4) the cost C
η
(n)
4,k

is equal to

2D2 −D flops. The expressions listed at points 1)-4) can be exploited for the DDBSA too; in the
last case, however, DN = 0 and D = DL must be assumed.

The fourth term appearing in the RHS of Eq. (E.24) is given by

Cbp(2) = Np

(
C
η
(N)
3,k,j

+ C
C

(N)
3,k,j

+ C
D

(n)
3,k,j

+ C
Z

(n)
3,k,j

)
, (E.28)

where (see Eqs. (3.66)-(3.67) and (3.64)-(3.65)): 1) the cost C
η
(N)
3,k,j

is equal to CA(N)+Cf (N)+2DLDN

flops; 2) the cost C
C

(N)
3,k,j

is equal to 2D2
LDN + 2DLD

2
N −DLDN flops (the cost for computing

CA(N) and Cf (N) has been already accounted for at point 1)); 3) the cost C
D

(n)
3,k,j

is equal to

D3
N/3 +D2

N + 5DN/3 + 2 flops; 4) the cost C
Z

(n)
3,k,j

is equal to 2D2
N + 2DN − 1 flops.

The fifth term appearing in the RHS of Eq. (E.24) is evaluated as

Cpm(2) = Np

(
C
η̌
(n)
z,k,j

+ C
Č

(n)
z,k,j

+ C
W̌

(n)
2,k,j

+ C
w̌

(n)
2,k,j

+ C
D

(n)
2,k,j

+ C
Z

(n)
2,k,j

)
, (E.29)

where (see Eqs. (3.69)-(3.74)): 1) the cost C
η̌
(n)
z,k,j

is equal to CA(L) + 2D2
L flops; 2) the cost C

Č
(n)
z,k,j

is equal to 4D3
L −D2

L flops (the cost for computing CA(L) has been already accounted for at point
1)); 3) the cost C

W̌
(n)
2,k,j

is equal to 2D3
L/3 + 5D2

L/2 + 5DL/6 flops; 4) the cost C
w̌

(n)
2,k,j

is equal to

Cf (L) + 4D2
L −DL flops; 5) the cost C

D
(n)
2,k,j

is equal to D3
L/3 + 2D2

L + 5DL/3 + 2 flops; 6) the cost

C
Z

(n)
2,k,j

is equal to 6D2
L + 3DL − 1 flops.
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The sixth term appearing in the RHS of Eq. (E.24) is computed as

Cms(2) = Np

(
C
η̄
(n)
5,k,j

+ C
C̄

(n)
5,k,j

+ C
D

(n)
5,k,j

+ C
Z

(n)
5,k,j

)
, (E.30)

where (see Eqs. (3.83)-(3.86)): 1) the cost C
η̄
(n)
5,k,j

is equal to CB + Cg + 2PDL flops; 2) the cost

C
C̄

(n)
5,k,j

is equal to 2PD2
L + 2P 2DL − PDL flops (the cost for computing CB has been already

accounted for at point 1)); 3) the cost C
D

(n)
5,k,j

is equal to D3
L/3+D

2
L+5DL/3+2 flops; 4) the cost

C
Z

(n)
5,k,j

is equal to 2P 3/3 + 7P 2/2 + 17P/6− 1 flops. It is important to note that, if the forward

weights {wfe,k,j} are reused, the cost Cms(2) appearing in Eq. (E.30) is equal to zero.
The seventh term appearing in the RHS of Eq. (E.24) is given by

Cbe2(2) = Np

(
C
D

(n)
6,k,j

+ C
Z

(n)
6,k,j

+ C
w

(n)
6,k,j

)
, (E.31)

where the costs C
D

(n)
6,k,j

and C
Z

(n)
6,k,j

are equal to 2 flops, and the cost C
w

(n)
6,k,j

is equal to 3 flops (see

Eqs. (3.89)-(3.91)). If the forward weights {wfe,k,j} are reused, the costs C
D

(n)
6,k,j

and C
Z

(n)
6,k,j

are

equal to 1 flops, whereas the cost C
w

(n)
6,k,j

remains unchanged.

The last term appearing in the RHS of Eq. (E.24) is evaluated as

Csm(2) = C
w

(n)
1,k,j

+ C
W

(n)
1,k,j

, (E.32)

where the costs C
w

(n)
1,k,j

and C
W

(n)
1,k,j

are equal to Np and 2Np − 1 flops, respectively (see Eqs.

(3.95)-(3.96)).
Phase III - The overall computational cost of this task is evaluated as

C3 = Cbe(2) + Cpm(1) + Cbe1(1) + Cbe(1) . (E.33)

Here, the cost Cbe(2) is equal to CS(Np), that represents the total cost of a sampling step that
involves a particle set of size Np; moreover, the costs Cpm(1) and Cbe1(1) are the same as those
appearing in the RHS of Eq. (E.24), and Cbe(1) is computed as (see Eqs. (3.102)–(3.105))

Cbe(1) = CWms,k
+ Cwms,k

+ CWbe2,k
+ Cwbe2,k

+ CCbe
+ Cηbe . (E.34)

Moreover, we have that: 1) the cost CWms,k
is equal to CH + 2P 2D + 2PD2 −D2 − PD flops; 2)

the cost Cwms,k
is equal to CB+ Cg +2P 2D+3PD+2PDL−P −D flops (the cost for computing

CH has been already accounted for at point 1)); 3) the cost CWbe2,k
is equal to D2 flops; 4) the

cost Cwbe2,k
is equal to D flops; 5) the cost CCbe

is equal to 2D3/3 + 3D2/2 + 5D/6 flops; 6) the
cost Cηbe is equal to 2D2 −D flops. The expressions listed at points 1)-6) can be exploited for
the DDBSA too; in the last case, however, DN = 0 and D = DL must be assumed. Note that the
costs CWms,k

and Cwms,k
(see points 1) and 2)) are ignored if the precision matrix Wms,k and the

transformed mean vector wms,k are stored in the forward pass (so that they do not need to be
recomputed in the backward pass). Moreover, if the SDBSA or the SDDBSA is used, the cost
Cbe(2) in the RHS of Eq. (E.33) becomes DN (2Np − 1) flops.

Finally, it is worth stressing that, if the DBSA or the DDBSA (the SDBSA or the SDDBSA)
is employed, the overall computational complexity is obtained by multiplying the computational
cost assessed for a single recursion by M T (by T ), where M and T denote the overall number of
accomplished backward passes and the duration of the observation interval, respectively.
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Four

Novel Methods for Approximate Maximum Likelihood
Estimation of Multiple Superimposed Undamped Tones

In this chapter, novel methods for the detection of multiple superimposed tones in noise and the
estimation of their parameters are derived. These methods are based on a maximum likelihood
approach and combine an innovative single tone estimator with a serial cancellation procedure.
Our numerical results lead to the conclusion that these methods can achieve a substantially better
accuracy-complexity tradeoff than various related techniques in the presence of multiple closely
spaced tones.

Part of this Chapter has been published in [1] and is patent pending.

4.1 Introduction

The problem of estimating the amplitude, phase and frequency of multiple (say, L) tones in
additive white Gaussian noise (AWGN) has received significant attention for a number of years
because of its relevance in various fields, including radar systems [2] and wireless communications;
in particular, in the last field, it plays a fundamental role in frequency synchronization [3], and
in the estimation of mobile channels [4–6] and of the direction of arrival (DOA) in massive
multiple-input multiple-output (MIMO) systems employing uniform linear arrays (ULAs) in their
base stations [7].

It is well known that the maximum-likelihood (ML) approach to this problem leads to a
complicated nonlinear optimization problem. Substantial simplifications can be made when the
L tone frequencies are sufficiently well separated and the number N of available signal samples
is large enough [8–10]. In fact, under these assumptions, each tone has a limited influence on
the estimation of the others, so that approximate ML estimation can be achieved through
a conceptually simple sequential procedure, that consists in iteratively executing two steps
[9]. In the first step of this procedure, the parameters of the dominant tone (i.e., of the tone
associated with the largest peak in the periodogram of the observed signal) are estimated in
a ML fashion. In its second step, instead, the estimated tone is subtracted from the available
signal samples and a new periodogram is computed for the resulting residual. These steps are
repeated until all the detectable tones are estimated. The technical relevance of this procedure is
motivated by the following relevant advantages [11]: 1. It turns a complicated multidimensional
problem (whose dimensionality is usually unknown a priori) into a sequence of lower dimensional
subproblems. Consequently, its overall complexity is proportional to that required to solve each
of such subproblems and is usually much lower than that of parametric estimation methods (e.g.,
the MUSIC [12] and the ESPRIT [13]) and non parametric spectral estimators (e.g., the Capon
method [14], the APES [15] and the IAA-APES [16]). 2. It performs better than independently
estimating the tones associated with the largest peaks of the original periodogram. In fact, it
allows to identify peaks that are initially masked by the leakage due to nearby stronger tones. 3.
It is able to estimate an unknown L in a simple fashion. In fact, this result can be achieved setting
the initial value of this parameter to zero and applying a suitable test to establish whether, at

101



4. Approximate ML Estimation of Multiple Superimposed Undamped Tones

each repetition of its first step, the largest peak detected in the periodogram of the last residual
is significant [8] or whether, at each repetition of its second step, the energy of the new residual
is large enough [17]. If one of these conditions is satisfied, the estimate of L is incremented by
one and the next step is carried out; otherwise, the estimation process is terminated. It is worth
stressing that various estimation methods (e.g., the MUSIC and the ESPRIT) require prior
knowledge of L and that, in these cases, the use of some methods, like the generalized Akaike
information criterion [18] or the minimum description length [19] is commonly proposed for the
estimation of this parameter; however, the computational effort they require is not negligible.

The two-step procedure described above, despite its advantages, suffers from the following two
shortcomings: 1. Any inaccuracy in the estimation of each single tone accomplished in its first step
results in an imperfect cancellation of the tone itself and, consequently, in error accumulation;
the intensity of this phenomenon increases with iterations, so affecting the estimation accuracy
of the weakest tones. 2. The estimate of each tone is potentially biased, because of the presence
of other tones [10]. Biases are influenced by the relative phase, frequency and amplitude of the
superimposed tones and are expected to be more relevant in the first estimated frequencies, since
these suffer from stronger interference from other tones. For this reason, the overall accuracy of
this procedure depends on that of the employed single tone estimator and can be improved by
adopting specific methods for mitigating the estimation bias. As far as the first issue is concerned,
it is important to point out that optimal (i.e., ML) estimation of a single tone in AWGN is
a computationally hard task. This is mainly due to the fact that the ML metric is an highly
nonlinear function, that does not lend itself to easy maximisation (e.g., see [20]). In practice,
the most accurate ML-based single tone estimators available in the technical literature achieve
approximate maximisation of this metric through a two-step procedure; the first step consists
in a coarse search of tone frequency, whereas the second one in a fine estimation generating an
estimate of the so called frequency residual (i.e., of the difference between the real frequency and
its coarse estimate). Coarse estimation is always based on the maximization of the periodogram
of the observed signal, whereas fine estimation can be accomplished in an open loop fashion or
through an iterative procedure. On the one hand, all the open loop estimators exploit spectral
interpolation to infer the frequency residual from the analysis of the fast Fourier transform
(FFT) coefficients at the maxima of the associated periodogram and at frequencies adjacent to
it [11, 21–30]. Unfortunately, unlike iterative estimators, the accuracy they achieve is frequency
dependent and gets smaller when the signal frequency approaches the center of one of the FFT
bins. On the other hand, the iterative estimation techniques available in the technical literature
are based on various methods, namely on: a) standard numerical methods for locating the global
maximum of a function (e.g., the secan method [31] or the Newton’s method [32]); b) an iterative
method for binary search, known as the dichotomous search of the periodogram peak [33, 34];
c) interpolation methods amenable to iterative implementation [35–40]; d) the combination
of the above mentioned dichotomous search with various interpolation techniques [41]; e) the
computation of the first derivative of the spectrum [42].

The use of some of these algorithms in multiple tone estimators based on the above mentioned
serial cancellation approach has been investigated in refs. [11, 17, 18] and [43–46]. More specifically,
on the one hand, the periodogram-based (coarse) estimation method has been employed in the
CLEAN algorithm [47–49], in the more CLEAN (MCLEAN) [17] and in the RELAX algorithm
[18]. Note that, since a fine estimation step is missing in all these algorithms, achieving high
accuracy requires the use of zero padding and of a large FFT order. On the other hand, the
exploitation of more refined single tone estimators has been investigated in refs. [11] and [43–45].
In particular, the use of open-loop interpolation methods exploiting three or five adjacent spectral
coefficients (including the one associated with the coarse frequency estimate) has been studied in
ref. [11], whereas that of the iterative methods developed in refs. [35] and [50] has been analysed
in refs. [43], [44] and [45], respectively.

As far as the second technical issue (i.e., estimation bias) is concerned, it is worth mentioning
that the most straightforward methods for bias mitigation rely on the use of a) zero-padding for
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enhancing periodogram spectral resolution and b) window functions [10, 20, 51–54]; the price to
be paid for these choices is an increase in the overall computational cost and in the variance of
computed estimates, respectively. More refined methods are represented by interpolators with
intrinsic leakage rejection [11] and nonlinear optimization methods. The last class of methods
includes the expectation maximization (EM) algorithm [55], the space-alternating generalized EM
(SAGE) algorithm [4, 56], the Newton’s method [32, 57] and different optimization algorithms
that employ cyclic cancellation procedures [17, 18, 45, 57]. In the last case, tone re-estimation is
accomplished after removing the interference of both stronger and weaker tones as the iterations of
the serial cancellation procedure evolve [17, 18] or after detecting and estimating the parameters
of all tones [45]; the most refined version of the first method is described in ref. [18], where tone
re-estimation is iterated after the estimation of each new tone, in order to generate excellent
initial estimates for the next step (i.e., for the estimation of the next tone). Tone re-estimation
reduces error accumulation and leads to convergence to the ML solution in the absence of noise if
the frequency spacing of the detected tones is large enough; however, this result is achieved at
the price of an increase of the overall computational cost and latency [17].

This chapter aims at providing various new results about the estimation of multiple superim-
posed tones. Its contribution is threefold. First, a novel ML-based iterative estimator of a single
complex tone is developed. The derivation of this estimator is based on: a) expressing the depen-
dence of the ML metric on the frequency residual in an approximate polynomial form through
standard approximations of trigonometric functions; b) exploiting the alternating minimization
technique for the maximization of this metric (e.g., see [58, Par. IV-A]). Moreover, its most
relevant feature is represented by the fact that it requires the evaluation of spectral coefficients
that are not exploited by all the other related estimation methods available in the technical
literature. Secondly, it is shown how serial cancellation in the frequency domain can be combined
with our iterative estimator to detect multiple tones and estimate their parameters. Thirdly, the
accuracy of our single and multiple estimators is assessed by extensive computer simulations. Our
results lead to the conclusion that our estimators outperform all the other related estimators in
terms of probability of convergence and accuracy in the presence of arbitrary frequency residuals.

The remaining part of this chapter is organised as follows. In Section 4.2, the employed
signal model is defined and its relevance in a number of applications is briefly discussed. Section
4.3 is devoted to the derivation of our single tone and multiple tone estimation algorithms,
to the assessment of their computational complexity, and to the analysis of their similarities
and differences with related estimators available in the technical literature. In Section 4.4, the
performance of our estimation algorithms is assessed and compared with that achieved by other
estimators. Finally, some conclusions are offered in Section 4.5.

4.2 Signal Model

In this chapter, we focus on the problem of estimating all the parameters of the complex sequence

xc,n =
L−1∑
l=0

Al exp (j2πnFl) + wc,n, (4.1)

and its real counterpart

xr,n =
L−1∑
l=0

ℜ{Al exp (j2πnFl)}+ wr,n

=

L−1∑
l=0

al cos (2πnFl + ψl) + wr,n, (4.2)

with n = 0, 1, ..., N−1; here, Al and Fl ∈ [0, 1) denote the complex amplitude and the normalised
frequency, respectively, of the l-th complex tone appearing in the right-hand side (RHS) of eq.
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(4.1), al ≜ |Al|, ψl ≜ ∠(Al), wc,n is the n-th sample of an additive white Gaussian noise (AWGN)
sequence (whose elements have zero mean and variance 2σ2), wr,n ≜ ℜ{wc,n}, N is the overall
number of samples, and ℜ{x} and ∠(x) denote the real part and the phase, respectively, of the
complex quantity x. It is useful to point out that the signal model (4.2) can be rewritten as

xr,n =
L−1∑
l=0

[Cl exp (j2πnFl) + C∗
l exp (−j2πnFl)] + wr,n, (4.3)

where
Cl ≜

1

2
al exp (jψl) =

1

2
Al (4.4)

represents the complex amplitude of the real tone appearing in the RHS of eq. (4.2).
The signal model (4.1) appears in a number of problems concerning biomedical applications,

wireless communications and radar systems. Our interest in the considered estimation problem
has been motivated by its relevance in the last field and, in particular, in colocated MIMO
FMCW radar systems operating at mmWave [1, 2]. In this work, we always refer to the radar
system model illustrated in [59, Fig. 2] and assume that: a) this system is equipped with NT

transmit (TX) and NR receive (RX) antenna elements placed at different positions of the same
planar shield; b) it operates in time division multiplexing (TDM) mode. Then, if the frequency
modulated waveform radiated by the radar transmitter is reflected by L static point targets, and
its receiver extracts both the in-phase and quadrature components of the received signal, the
n-th received signal sample acquired through the v-th virtual antenna element can be expressed
as (e.g., see [60, Par. 4.6, eq. (4.27)] or [59, Par. II-C])

x(v)n =

L−1∑
l=0

A
(v)
l exp

(
j2πnF

(v)
l

)
+ w(v)

n (4.5)

=
L−1∑
l=0

al exp
(
j
(
2πnF

(v)
l + ψ

(v)
l

))
+ w(v)

n , (4.6)

with n = 0, 1, ..., N − 1 and v = 0, 1, ..., NV R − 1. Here,

A
(v)
l ≜ al exp

(
jψ

(v)
l

)
(4.7)

for any v and l, al is the amplitude1 of the l-th useful component of the received signal,

F
(v)
l ≜ f

(v)
l Ts (4.8)

is the normalised version of the frequency

f
(v)
l ≜ µ τ

(v)
l , (4.9)

characterizing the l-th target detected on the v-th virtual RX antenna,

τ
(v)
l ≜

2

c
[Rl + xv cos (ϕl) sin (θl) + yv sin (ϕl)] (4.10)

is the delay of the echo generated by the l-th target and observed on the v-th virtual channel, xv
and yv are the abscissa and the ordinate2, respectively, of the v-th virtual antenna element, Rl,
θl and ϕl denote the range, the azimuth and the elevation, respectively, of the l-th target,

ψ
(v)
l

∼= 2πf0τ
(v)
l (4.11)

1This amplitude quantifies the radar cross section (RCS) of the l-th target. It depends on both the range and the
reflectivity of this target and is assumed to be independent of the virtual antenna index (i.e., of v), for simplicity.

2A reference system lying on the physical antenna array is adopted in the evaluation of these coordinates.

104



4.2. Signal Model

is the phase of the complex gain A(v)
l (4.7), w(v)

n is a complex Gaussian random variable having
zero mean and variance 2σ2 (assumed to be independent of v), N is the overall number of samples
acquired over a chirp period and NV R ≜ NT · NR represents the overall number of available
virtual antennas associated with the given physical array. Moreover, Ts is the sampling period
adopted in the analog-to-digital conversion accomplished at the receive side,

µ ≜ B/T (4.12)

is the chirp rate (i.e., the steepness of the generated frequency chirp), T and B are the chirp
interval and the bandwidth, respectively, of the transmitted signal and c is the speed of light.

As it can be easily inferred from (4.5)–(4.9), in the considered radar system, the problem of
target detection and range estimation on the v-th virtual channel is equivalent to the problem of
detecting multiple overlapped complex tones in the presence of complex AWGN and estimating
their frequencies. In fact, if the l-th tone is found at the frequency f̂ (v)l , the presence of a target
at the range (see (4.9) and (4.10))

R̂
(v)
l =

c

2µ
f̂
(v)
l (4.13)

is detected. Information about the angular coordinates (namely, the azimuth and the elevation)
of this target, instead, can be acquired through the estimation of the set of NV R phases {ψ(v)

l ;
v = 0, 1, ..., NV R − 1} observed over the available virtual antennas. In fact, since (see (4.10) and
(4.11))

ψ
(v)
l

∼=
4π

λ
[Rl + xv cos (ϕl) sin (θl) + yv sin (ϕl)] , (4.14)

where
λ ≜ c/f0 (4.15)

is the wavelength associated with the start frequency f0 of the generated frequency chirp, the
sequence {ψ(v)

l ; v = 0, 1, ..., NV R−1} exhibits a periodic behavior characterized by the normalised
horizontal spatial frequency

FH,l ≜ 2
dH
λ

cos (ϕl) sin (θl) , (4.16)

if the considered virtual elements form an horizontal uniform linear array (ULA), whose adjacent
elements are spaced dH m apart. Dually, if a virtual vertical ULA is assumed, the periodic
variations observed in the same sequence of phases are characterized by the normalised vertical
spatial frequency

FV,l ≜ 2
dV
λ

sin (ϕl) , (4.17)

where dV denotes the distance between adjacent elements of the virtual array itself.
From the considerations illustrated above, the following conclusions can be easily inferred: a)

on the one hand, achieving precise estimation of the range of a given target requires the availability
of an accurate estimate of the normalised frequency of the complex tone associated with the
target itself over at least one RX antenna; b) on the other hand, the quality of the estimate of
the direction of arrival (DOA) characterizing the radar echo generated by a given target depends
on the accuracy of the phase estimated over multiple virtual channels. The last consideration
motivates the importance of accurately estimating this parameter over multiple antennas. It is
worth stressing that limited attention is often paid to this technical issue in most of the technical
literature dealing with the estimation of the parameters of a single tone or multiple superimposed
tones; in fact, a lot of emphasis is usually put on the accuracy of frequency estimation, but the
quality of phase estimates is neglected (e.g., see [11, 17, 35, 43–45]). Finally, in analysing the
suitability of multiple tone estimators to colocated MIMO radar systems operating at millimetre
waves, the following additional technical issues need to be taken carefully into account:

1) These radar systems often operate at short ranges and in the presence of extended targets.
Each of resulting radar images is a cloud of point targets whose mutual spacing can be very
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small. For this reason, the accuracy of these images depends on the frequency resolution achieved
on each virtual antenna. In fact, this makes the radar receiver able to separate point targets
characterized by similar ranges.

2) Information about the RCS of each point targets can be exploited in the classification of
extended targets; for this reason, the availability of an accurate estimate of the amplitude of each
radar echo can be very useful in a number of applications (e.g., in SAR imaging [15, 18]).

3) Distinct radar echoes can be characterized by substantially different signal-to-noise ratios
(SNRs).

4) The number N of samples acquired over each virtual channel usually ranges from few
hundreds to few thousands.

The last two issues explain why significant attention must be paid to the accuracy achieved
by the adopted estimation algorithms at low SNRs and/or for relatively small values of N , since
this can appreciably influence the quality of the generated radar image.

4.3 Approximate Maximum Likelihood Estimation of Single and Multiple
Tones

In this section, we first derive a new method for estimating the parameters of a complex tone
and we show how the same approach can be exploited to derive a method for estimating the
parameters of a real tone. Then, we illustrate how these methods can be exploited to detect
multiple superimposed tones and estimate their parameters through a deterministic procedure
based on successive cancellation. Finally, we analyse the computational complexity of the developed
estimation methods and compare them with some related techniques available in the technical
literature.

4.3.1 Estimation of a single complex tone

Let us focus on the problem of estimating the parameters (namely, the frequency and complex
amplitude) of a single tone contained in the complex sequence {xc,n; n = 0, 1, ..., N − 1}, whose
n-th sample is expressed by eq. (4.1) with L = 1, i.e. as

xc,n = A exp (j2πnF ) + wc,n, (4.18)

with n = 0, 1, ..., N − 1 where A and F are the complex amplitude and the normalised frequency,
respectively, of the tone itself. It is well known that the ML estimates FML and AML of the
parameters F and A, respectively, represent the solution of the least square problem (e.g., see
[31, eq. (22)])

(FML, AML) ≜ argmin
F̃ ,Ã

ε(F̃ , Ã), (4.19)

where F̃ and Ã represent trial values of F and A, respectively,

ε(F̃ , Ã) ≜
1

N

N−1∑
n=0

εn(F̃ , Ã) (4.20)

is the mean square error (MSE) evaluated over the whole observation interval,

εn(F̃ , Ã) ≜
∣∣∣xc,n − sn(F̃ , Ã)

∣∣∣2 (4.21)

is the square error between the noisy sample xc,n (4.18) and its useful component

sn(F̃ , Ã) ≜ Ã exp
(
j2πnF̃

)
, (4.22)

evaluated under the assumption that F = F̃ and A = Ã. Substituting the RHS of the last
equation in that of eq. (4.21) yields

εn(F̃ , Ã) = Ã2
R+ Ã2

I −2(x(R)
c,n ÃR+x(I)c,nÃI) cos(ϕ̃n)−2(x(I)c,nÃR−x(R)

c,n ÃI) sin(ϕ̃n)+ |xc,n|2, (4.23)
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where ÃR ≜ ℜ{Ã}, ÃI ≜ ℑ{Ã}, x(R)
c,n ≜ ℜ{xc,n}, x(I)c,n ≜ ℑ{xc,n} and

ϕ̃n ≜ 2πnF̃ . (4.24)

Then, substituting the RHS of eq. (4.23) in that of eq. (4.20) yields, after some manipulation,

ε(F̃ , Ã) = εx + Ã2
R + Ã2

I − 2ÃR X̄R(F̃ )− 2ÃI X̄I(F̃ ), (4.25)

where

εx ≜
1

N

N−1∑
n=0

|xc,n|2 , (4.26)

ℜ{x} (ℑ{x}) denotes the real (imaginary) part of the complex variable x and

X̄(F̃ ) ≜
1

N

N−1∑
n=0

xc,n exp
(
−j2πnF̃

)
, (4.27)

is, up to the scale factor 1/N , the Fourier transform of the sequence {xc,n}. Based on eq. (4.25),
it is not difficult to show that the optimization problem expressed by eq. (4.19) does not admit a
closed form solution because of the nonlinear dependence of the function ε(F̃ , Ã) on its variable
F̃ . However, an approximate solution to this problem can be derived by

a) Exploiting an iterative method, known as alternating minimization (AM) (e.g. see [58]). This
allows us to transform the two-dimensional (2D) optimization problem expressed by eq. (4.19)
into a couple of interconnected one-dimensional (1D) problems, one involving the variable F̃ only
(conditioned on the knowledge of Ã), the other one involving the variable Ã only (conditioned on
the knowledge of F̃ ).

b) Expressing the dependence of the function ε(F̃ , Ã) on the variable F̃ through the couple
(Fc , δ̃) such that

F̃ = Fc + δ̃ FDFT, (4.28)

where Fc is a given coarse estimate of F , δ̃ is a real variable called residual,

FDFT = 1/N0 (4.29)

is the normalized fundamental frequency associated with theN0-th order discrete Fourier transform
(DFT)

X0 = [X0,0, X0,1, ..., X0,N0−1]
T (4.30)

of the zero padded version

x0,ZP =
[
xT0 0T(M−1)N

]T
, (4.31)

of the vector
x0 ≜ [xc,0, xc,1, ..., xc,N−1]

T (4.32)

collecting all the elements of the sequence {xc,n}, M is a positive integer (dubbed oversampling
factor), 0D is a D−dimensional (column) null vector and N0 ≜M ·N .

c) Expressing the dependence of the function ε(F̃ , Ã) (4.25) on the variable δ̃ through its
powers {δ̃l; 0 ≤ l ≤ 3}; this result is achieved by approximating various trigonometric functions
appearing in the expression of ε(F̃ , Ã) with their Taylor expansions truncated to a proper order.

Let us show now how these principles can be put into practice. First of all, the exploitation
of the above mentioned AM approach requires solving the following two sub-problems: P1)
minimizing the cost function ε(F̃ , Ã) (4.25) with respect to Ã, given F̃ = F̂ ; P2) minimizing the
same function with respect to F̃ , given Ã = Â. Sub-problem P1 can be easily solved thanks to
the polynomial dependence of the cost function ε(F̂ , Ã) on the variable Ã. In fact, the function
ε(F̂ , Ã) (4.25) is minimised with respect to Ã selecting3

Ã = Â = X̄(F̂ ), (4.33)
3This is a well known result (e.g., see [31, Sec. IV]).
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where X̄(F̂ ) can be computed exactly through its expression (4.27) or, in an approximate fashion,
through a computationally efficient procedure based on the fact that the vector

X̄s ≜M X0 (4.34)

collects N0 uniformly spaced samples of the function X̄(F ). In fact, the k-th element

X̄0,k ≜
1

N0

N−1∑
n=0

xc,n exp

(
−j 2πnk

N0

)
, (4.35)

of the vector X0 (4.30) can be expressed as

X̄0,k =
N

N0
X̄ (Fk) =

1

M
X̄ (Fk) , (4.36)

where Fk ≜ k FDFT, with k = 0, 1, ..., N0 − 1. For this reason, an approximate evaluation of the
quantity X̄(F̂ ) at a normalised frequency F̂ different from any multiple of FDFT (4.29) can be
accomplished by interpolating the elements of the vector X̄s (4.34); the last vector, in turn, can
be easily computed after evaluating the N0-th fast Fourier transform (FFT) of x0,ZP (4.31), i.e.
the vector X0 (4.30).

Let us take into consideration now sub-problem P2. Unluckily, this sub-problem, unlike the
previous one, does not admit a closed form solution. For this reason, an approximate solution
is developed below. Such a solution is based on representing the normalized frequency F in the
same form as F̃ (see eq. (4.28)), i.e. as F = Fc+ δ FDFT and on a novel method for estimating the
real residual δ, i.e. for accomplishing the fine estimation of F . This method is derived as follows.
Representing the trial normalized frequency F̃ according to eq. (4.28) allows us to express the
variable ϕ̃n (4.24) as

ϕ̃n = θ̂n + n∆̃, (4.37)

where
∆̃ ≜ 2πδ̃ FDFT (4.38)

is a new variable and θ̂n ≜ 2πnFc. Then, substituting the RHS of eq. (4.37) in that of eq. (4.23)
(with Ã = Â) yields

εn(F̃ , Ã) = |xc,n|2 + Ã2
R + Ã2

I − 2(x(R)
c,n ÃR + x(I)c,nÃI) ·

[
cos(θ̂n) cos(n∆̃)− sin(θ̂n) sin(n∆̃)

]
− 2(x(I)c,nÃR − x(R)

c,n ÃI)
[
sin(θ̂n) cos(n∆̃) + cos(θ̂n) sin(n∆̃)

]
. (4.39)

If the normalized frequency FDFT (4.29) is small enough (i.e., if the FFT order N0 is large
enough), the trigonometric functions cos(n∆̃) and sin(n∆̃) appearing in the RHS of the last
equation can be approximated as (F.3) and (F.4), respectively. Then, substituting the RHS of
these approximations in that of eq. (4.39) produces, after some manipulation, the approximate
expression

εCSFE

(
∆̃, Â

)
≜ εx + Â2

R + Â2
I +

1

3
∆̃3
(
ÂR X̄

(I)
3,ρ − ÂI X̄

(R)
3,ρ

)
+ ∆̃2

(
ÂR X̄

(R)
2,ρ + ÂI X̄

(I)
2,ρ

)
+ 2∆̃

(
ÂI X̄

(R)
1,ρ − ÂR X̄

(I)
1,ρ

)
− 2

(
ÂR X̄

(R)
0,ρ + ÂI X̄

(I)
0,ρ

)
(4.40)

for the function ε(F̃ , Â) (4.25) (see Appendix F); here,

ρ ≜ Fc/FDFT, (4.41)

X
(R)
k,ρ ≜ ℜ{Xk,ρ}, X

(I)
k,ρ ≜ ℑ{Xk,ρ} for any k,

X̄k,ρ ≜
1

N0

N−1∑
n=0

xk,n exp

(
−j 2πnρ

N0

)
, (4.42)
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for any ρ and k = 1, 2, 3 and xk,n ≜ nk · xc,n, with n = 0, 1, ..., N − 1.
It is important to point out that: a) if ρ is an integer, the quantity X̄k,ρ (4.42) (with k = 1, 2

and 3) represents the ρ-th element of the vector

Xk = [Xk,0, Xk,1, ..., Xk,N0−1]
T (4.43)

generated by the N0-th order DFT of the zero padded version

xk,ZP =
[
xTk 0T(M−1)N

]T
, (4.44)

of the vector
xk ≜ [xk,0, xk,1, ..., xk,N−1]

T ; (4.45)

b) if ρ is not an integer, the quantity X̄k,ρ can be evaluated exactly on the basis of eq. (4.42) or,
in an approximate fashion, by interpolating I adjacent elements of the N0-dimensional vectors
Xk (4.43), where I denotes the selected interpolation order; c) the evaluation of the vectors {Xk;
k = 1, 2, 3} requires three additional FFTs.

Since the function εCSFE(∆̃, Â) (4.40) is a polynomial of degree three in the variable ∆̃, an
estimate ∆̂ of ∆ and, consequently, an estimate (see eq. (4.38))

δ̂ = ∆̂/(2πFDFT) (4.46)

of δ, can be obtained by computing the derivative of this function with respect to ∆̃, setting it to
zero and solving the resulting quadratic equation

a (ρ) ∆̃2 + b (ρ) ∆̃ + c (ρ) = 0, (4.47)

in the variable ∆̃; here,
a (ρ) ≜ ℑ

{
Â∗X̄3,ρ

}
/2, (4.48)

b (ρ) ≜ ℜ{Â∗X̄2,ρ}, (4.49)

and
c (ρ) ≜ −ℑ{Â∗X̄1,ρ}. (4.50)

Note that only one of the two solutions of eq. (4.47), namely

∆̂ = −
b (ρ) +

√
(b (ρ))2 − 4a (ρ) c (ρ)

2a (ρ)
(4.51)

has to be employed. A simpler estimate of ∆ is obtained neglecting the contribution of the first
term in the left-hand side of eq. (4.47), i.e. setting a (ρ) = 0. This leads to a first-degree equation,
whose solution is

∆̂ = −c (ρ) /b (ρ) . (4.52)

Given an estimate ∆̂ of ∆ (and, consequently, and estimate δ̂ of δ; see eq. (4.46)), the fine estimate

F̂ = Fc + δ̂ FDFT = Fc + ∆̂/ (2π) (4.53)

of F can be evaluated on the basis of eq. (4.28).
The mathematical results derived above allow us to derive a novel estimation algorithm, called

complex single frequency estimator (CSFE), for iteratively estimating the normalised frequency F
and the complex amplitude A. This algorithm is initialised by: 1) Evaluating: a) the vector X0

(4.30); b) the initial coarse estimate F̂ (0)
c of F as

F̂ (0)
c = α̂ FDFT, (4.54)
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where the integer α̂ is computed by means of the well known periodogram method (e.g., see
[31, Sec. IV] or [35, Sec. I]), i.e. as

α̂ = arg max
α̃∈{0,1,...,N0−1}

∣∣X̄0,α̃

∣∣ ; (4.55)

c) the quantity (see eq. (4.41))
ρ̂(0) ≜ F̂ (0)

c /FDFT = α̂; (4.56)

d) the initial estimate Â(0) of A on the basis of eq. (4.33) with F̂ = F̂
(0)
c ; e) the spectral coefficients

X̄1,α̂, X̄2,α̂ and X̄3,α̂ on the basis of eq. (4.42); f) the coefficients {a(α̂), b(α̂), c(α̂)} ({b(α̂), c(α̂)}
according to eqs. (4.48)–(4.50) and the first estimate ∆̂(0) of ∆ on the basis of eq. (4.51) (eq.
(4.52)); g) the first fine estimate F̂ (0) of F on the basis of eqs. (4.28) and (4.46), i.e. as

F̂ (0) = F̂ (0)
c + ∆̂(0)/ (2π) (4.57)

2) Setting its iteration index i to 1.
Then, an iterative procedure is started. The i-th iteration is fed by the estimates F̂ (i−1)

and Â(i−1) of F and A, respectively, and produces the new estimates F̂ (i) and Â(i) of the same
quantities (with i = 1, 2, ..., NCSFE, where NCSFE is the overall number of iterations); the
procedure employed for the evaluation of F̂ (i) and Â(i) consists of the two steps described below
(the p-th step is denoted CSFE-Sp).

CSFE-S1 - The new estimate ∆̂(i) of ∆ is computed through eq. (4.51) (eq. (4.52)); in the
evaluation of the coefficients {a (ρ), b (ρ), c (ρ)} ({b (ρ), c (ρ)}) appearing in the RHS of these
equations, Â = Â(i−1) and

ρ = ρ̂(i−1) ≜ F̂ (i−1)/FDFT (4.58)

are assumed. Then,
F̂ (i) = F̂ (i−1) + ∆̂(i)/ (2π) (4.59)

is evaluated.
CSFE-S2 - The new estimate Â(i) of Â is evaluated through eq. (4.33); F̂ = F̂ (i) is assumed

in this case. Moreover, the index i is incremented by one before starting the next iteration.
At the end of the last (i.e., of the NCSFE-th) iteration, the fine estimates F̂ = F̂ (NCSFE) and

Â = Â(NCSFE) of F and A, respectively, become available.
The CSFE is summarized in Algorithm 5. It is important to point out that:
a) The estimate δ̂(i) of the residual δ computed by the CSFE in its i-th iteration is expected

to become smaller as i increases, since F̂ (i) should progressively approach F if our algorithm
converges.

b) The estimate ∆̂(i) evaluated according to eq. (4.52) is expected to be less accurate than
that computed on the basis of eq. (4.51). However, our numerical results have evidenced that
both solutions achieve similar accuracy. Despite this, eq. (4.51) is adopted in Algorithm 5 for
generality.

c) The CSFE can be employed even if the single tone appearing in the RHS of eq. (4.18) is
replaced by the superposition of L distinct tones (see eq. (4.1)). In this case, the strongest (i.e.,
the dominant) tone is usually detected through the periodogram method (see eq. (4.55)) and the
parameters of this tone are estimated in the presence of both Gaussian noise and the interference
due to the remaining tones. Therefore, the estimation accuracy of the CSFE is affected by both
the amplitudes and the frequencies of the other (L− 1) tones.

d) A stopping criterion, based on the trend of the sequence {∆̂(i); i = 1, 2, ...}, can be easily
formulated for the CSFE. For instance, the execution of its two steps can be stopped if, at the end
of the i-th iteration, the condition |∆̂(i)| < ε∆ is satisfied; here, ε∆ represents a proper threshold.

e) The estimates generated by the CSFE algorithm are unbiased, provided the overall number
of iterations it accomplishes is large enough; a proof of this statement is provided in Appendix H.
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Algorithm 5: Complex single frequency estimation
1 Initialisation:

a- Evaluate X0 (4.30) and α̂ on the basis of eq. (4.55); then, compute the initial estimate Â(0) of
A according to eq. (4.33) and set ρ̂(0) = α̂ (see eq. (4.56)).
b- Evaluate X̄1,α̂, X̄2,α̂ and X̄3,α̂ according to eq. (4.42); then compute {a(α̂), b(α̂), c(α̂)}
according to eqs. (4.48)–(4.50). Finally compute ∆̂(0) and F̂ (0) according to eqs. (4.51) and (4.53),
respectively.

2 Refinement: for i = 1 to NCSFE do
c- Estimation of A:
Set F̂ = F̂ (i−1); then, evaluate X̄(F̂ ) according to eq. (4.27) or by interpolating a few adjacent
elements of X̄s (4.34). Finally, compute Â(i) and ρ̂(i−1) according to eqs. (4.33) and (4.58),
respectively.
d- Estimation of F :
Set Â = Â(i); then compute X̄k,ρ̂(i−1) according to eq. (4.42) or or by interpolating a few
adjacent elements of X̄k (4.43). Finally, compute {a(ρ̂(i−1)), b(ρ̂(i−1)), c(ρ̂(i−1))} according to
eqs. (4.48)–(4.50), and ∆̂(i) and F̂ (i) according to eqs. (4.51) and (4.59), respectively.

end

4.3.2 Estimation of a single real tone

All the results developed in the previous paragraph refer to the complex sequence {xc,n}, whose
n-th element is expressed by eq. (4.1). However, a similar estimation method (dubbed single
frequency estimator, SFE) can be developed for the real counterpart, i.e. for a real sequence {xr,n;
n = 0, 1, ..., N − 1}, whose n-th sample is expressed by eq. (4.2) with L = 1, i.e. as

xr,n = a cos (2πnF + ψ) + wr,n (4.60)

or, equivalently, as (see eq. (4.3))

xr,n = C exp (j2πnF ) + C∗ exp (−j2πnF ) + wr,n, (4.61)

where (see eq. (4.4))

C ≜
A

2
=
a

2
exp (jψ) (4.62)

In this case, ML estimation of the parameters F and C can be formulated in a similar way as eq.
(4.19), the only difference being represented by the fact that: a) the parameter A is replaced by
C; b) the term εn(F̃ , Ã) appearing in the RHS of eq. (4.20) is replaced by

εn(F̃ , C̃) ≜
[
xr,n − sn(F̃ , C̃)

]2
. (4.63)

where
sn(F̃ , C̃) ≜ C̃ exp

(
j2πnF̃

)
+ C̃∗ exp

(
−j2πnF̃

)
, (4.64)

represents the useful component of {xr,n} (4.60) evaluated under the assumption that F = F̃ and
C = C̃. Substituting the RHS of eq. (4.64) in that of eq. (4.63) produces, after some manipulation,

εn(F̃ , C̃) = x2r,n + 2
[
C̃2
R + C̃2

I

]
− 4xr,n

[
C̃R cos(ϕ̃n)− C̃I sin(ϕ̃n)

]
+ 2

[(
C̃2
R − C̃2

I

)
cos(2ϕ̃n)− 2C̃R C̃I sin(2ϕ̃n)

]
. (4.65)

Then, substituting the RHS of eq. (4.65) in that of eq. (4.20) yields

ε(F̃ , C̃) = εx + 2
[(
C̃2
R − C̃2

I

)
gR(F̃ ) + 2C̃R C̃I gI(F̃ )

]
+2
[
C̃2
R + C̃2

I

]
− 4

[
C̃R X̄R(F̃ ) + C̃I X̄I(F̃ )

]
, (4.66)

111



4. Approximate ML Estimation of Multiple Superimposed Undamped Tones

where

εx ≜
1

N

N−1∑
n=0

x2r,n, (4.67)

gR(F̃ ) ≜ ℜ{g(F̃ )}, gI(F̃ ) ≜ ℑ{g(F̃ )} and

g(F̃ ) ≜
1

N

N−1∑
n=0

exp
(
−j2ϕ̃n

)
=

1

N

N−1∑
n=0

exp
(
−j4πnF̃

)
. (4.68)

The procedure adopted to minimise the function (4.66) with respect to F̃ and C̃ is similar to
that illustrated in the previous paragraph for the CSFE. For this reason, in the following we limit
to show essential mathematical results only. First of all, given F̃ = F̂ , the function ε(F̃ , C̃) (4.66)
is minimised with respect to C̃ by solving the equations

C̃R − X̄R(F̂ ) + C̃R gR(F̂ ) + C̃I gI(F̂ ) = 0 (4.69)

and
C̃I − X̄I(F̂ )− C̃I gR(F̂ ) + C̃R gI(F̂ ) = 0, (4.70)

that result from computing the partial derivative of the RHS of eq. (4.66) with respect to C̃R
and C̃I , respectively. Solving the linear system of equations (4.69)–(4.70) in the unknowns C̃R
and C̃I produces the optimal values

ĈR =
X̄R(F̂ )

[
1− gR(F̂ )

]
− X̄I(F̂ ) gI(F̂ )

1−
∣∣∣g(F̂ )∣∣∣2 (4.71)

and

ĈI =
−X̄R(F̂ )gI(F̂ ) + X̄I(F̂ )

[
1 + gR(F̂ )

]
1−

∣∣∣g(F̂ )∣∣∣2 . (4.72)

of C̃R and C̃I , respectively. Putting together the last two formulas yields

Ĉ = ĈR + jĈI =
X̄(F̂ )− X̄∗(F̂ )g(F̂ )

1−
∣∣∣g(F̂ )∣∣∣2 = C̄(F̂ ). (4.73)

Therefore, given F̃ = F̂ , the optimal value Ĉ of the variable C̃ can be computed exactly through
the last equation; this requires the evaluation of X̄(F̂ ) and g(F̂ ) (see eqs. (4.27) and (4.68),
respectively). Note that, on the one hand, g(F̂ ) can be easily evaluated through its exact expression

g(F̂ ) =
1

N

exp(−j4πNF̂ )− 1

exp(−j4πF̂ )− 1
, (4.74)

which is easily derived from its definition (4.68). On the other hand, X̄(F̂ ) can be computed
exactly through its expression (4.27) or, in an approximate fashion, by interpolating the elements
of the vector X̄s (4.34) following the same mathematical approach as that illustrated in the
previous paragraph for the CSFE; note that, in this case, the complex sequence {xc,n} appearing
in the RHS of (4.35) is substituted with the real sequence {xr,n} (see eq. (4.60)). The result given
by eq. (4.73) is exact. On the contrary, given C̃ = Ĉ, a closed form solution for the value of F̃
minimising the function ε(F̃ , C̃) cannot be derived because of the nonlinear dependence of this
function on F̃ . However, following the same mathematical approach as that illustrated for the
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CSFE, the approximate expression

εSFE(∆̃, Ĉ) ≜ εx + 2
[
Ĉ2
R + Ĉ2

I

]
− 2ĈR

[
2X

(R)
0,ρ + 2∆̃X

(I)
1,ρ − ∆̃2X

(R)
2,ρ

]
−2ĈI

[
2X

(I)
0,ρ − 2∆̃X

(R)
1,ρ − ∆̃2X

(I)
2,ρ

]
+ 2

(
Ĉ2
R − Ĉ2

I

)
·[

K
(R)
0 (2ρ) + 2∆̃K

(I)
1 (2ρ)− 2∆̃2K

(R)
2 (2ρ)+

−4

3
∆̃3K

(I)
3 (2ρ)

]
− 4ĈR ĈI

[
−K(I)

0 (2ρ) + 2∆̃K
(R)
1 (2ρ)+

+2∆̃2K
(I)
2 (2ρ)− 4

3
∆̃3K

(R)
3 (2ρ)

]
(4.75)

can be obtained for the function ε(F̃ , Ĉ) (4.66) (see Appendix F); here, Xk,ρ is still defined by eq.
(4.42), K(R)

p (x) ≜ ℜ{Kp (x)}, K(I)
p (x) ≜ ℑ{Kp (x)} for any k, p and x ≥ 0,

Kp (x) ≜
1

N

N−1∑
n=0

gp [n] exp

(
−j 2πnx

N0

)
, (4.76)

gp[n] ≜ np for p = 1, 2 and 3, g0[n] ≜ 1 and

xk,n ≜ nk · xr,n (4.77)

with n = 0, 1, ..., N − 1. It is worth stressing that:
a) The considerations expressed about the evaluation of the quantities {Xk,ρ} in our derivation

of the CSFE apply to the SFE too. However, in this case, the additional coefficients {Km;m =
0, 1, 2}, need to be computed.

b) The initial estimate ρ̂(0) = α̂ of ρ is evaluated in a similar way as the CSFE (see eq. (4.55)),
i.e., as

α̂ = arg max
α̃∈{0,1,...,N0/2}

∣∣X̄0,α̃

∣∣ . (4.78)

The minimization of the function εSFE(∆̃, Ĉ) (4.75) with respect to ∆̃ is achieved by taking
its partial derivative with respect to this variable and setting it to zero; this results again in the
quadratic equation (4.47), whose coefficients are

a (ρ) ≜ 2ℑ
{(

Ĉ∗
)2

K3 (2ρ)

}
, (4.79)

b (ρ) ≜ −ℜ
{
Ĉ∗X̄2,ρ

}
+ 2ℜ

{(
Ĉ∗
)2
K2 (2ρ)

}
(4.80)

and
c (ρ) ≜ ℑ

{
Ĉ∗X̄1,ρ

}
−ℑ

{(
Ĉ∗
)2
K1 (2ρ)

}
. (4.81)

Following the approach adopted in the development of the CSFE and exploiting the math-
ematical results expressed by eq. (4.73) and by eqs. (4.79)–(4.81) allow us to easily derive the
SFE; this algorithm is summarized in Algorithm 6. Finally, it is important to point out that the
coefficients {Kp(2ρ); p = 1, 2, 3} can be computed exactly on the basis of eq. (4.76). However,
since the definition (4.76) can be put in the equivalent form

Kp (x) ≜
1

N

N−1∑
n=0

np (q(x))n , (4.82)

where
q(x) ≜ exp

(
−j 2πx

N0

)
, (4.83)
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the identities

(q − 1)2
N−1∑
n=0

n qn = (N − 1)qN+1 −NqN + q, (4.84)

(q − 1)3
N−1∑
n=0

n2qn = (N − 1)2qN+2 +
(
−2N2 + 2N + 1

)
qN+1

+N2qN − q2 − q (4.85)

and

(q − 1)4
N−1∑
n=0

n3qn = q + 4q2 + q3 −N3qN

+
(
3N3 − 3N2 − 3N − 1

)
qN+1

+
(
−3N3 + 6N2 − 4

)
qN+2 + (N − 1)3qN+3 (4.86)

holding for any q ∈ C, can be exploited for the efficient computation of Kp(2ρ) for any p and ρ.

Algorithm 6: Single frequency estimation
1 Initialisation:

a- Evaluate X0 (4.30) and α̂ on the basis of eq. (4.78); then, compute the initial estimate Ĉ(0) of
C on the basis of eqs. (4.73) and set ρ̂(0) = α̂ (see eq. (4.56)).

b- Evaluate the quantities {Kp(2α̂); p = 1, 2, 3} according to eq. (4.76), and X̄1,α̂ and X̄2,α̂

according to eq. (4.42); then, compute {a(α̂), b(α̂), c(α̂)} according to eqs. (4.79)–(4.81). Finally
compute ∆̂(0) and F̂ (0) according to eqs. (4.51) and eq. (4.53), respectively.

2 Refinement: for i = 1 to NSFE do
c- Estimation of C:
Set F̂ = F̂ (i−1); then, evaluate g(F̂ ) on the basis of eq. (4.74), and X̄(F̂ ) according to eq.
(4.27) or by interpolating a few adjacent elements of X̄s (4.34). Finally, compute ρ̂(i−1) and
Ĉ(i) according to eqs. (4.58) and (4.73), respectively.
d- Estimation of F :
Set Ĉ = Ĉ(i); then, compute Kp(2ρ̂

(i−1)) by means of eqs. (4.84)–(4.86), and X̄k,ρ̂(i−1)

according to eq. (4.42) or or by interpolating a few adjacent elements of X̄k (4.43); then,
compute {a(ρ̂(i−1)), b(ρ̂(i−1)), c(ρ̂(i−1))} on the basis of eqs. (4.79)–(4.81). Finally, compute
∆̂(i) and F̂ (i) according to eqs. (4.51) and (4.59), respectively.

end

4.3.3 Estimation of multiple tones

Let us analyse now in detail how the techniques derived in the previous paragraphs can be
exploited to estimate the multiple tones that form the useful component of the complex (real)
sequence {xc,n} ({xr,n}), when its n-th sample is expressed by eq. (4.1) (eq. (4.2)) with L > 1.
The recursive method we develop to achieve this target is based on the following basic principles:

1) Tones are sequentially detected and estimated.
2) The detection of a new tone and the estimation of its parameters are based on the procedure

developed for the CSFE (SFE) in the previous paragraph; in addition, a cancellation algorithm is
incorporated in this method to remove the contribution of previously detected tones from all the
spectral information (namely, the spectrum X̄(F ) (4.27), the vector X0 (4.30) and the coefficients
{X̄k,ρ} (4.42)), that are processed to detect and estimate the new tone.

3) After detecting a new tone and estimating its parameters, a re-estimation technique is
executed to improve the accuracy of both this tone and the previously estimated tones; the
proposed technique is inspired by the related methods described in refs. [11], [17] and [18].
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4) A proper criterion is adopted to stop recursions. This allows to estimate the (unknown)
number of targets, that is the value of the parameter L.

The recursive method relying on these principles is called complex single frequency estimation
and cancellation (CSFEC) or single frequency estimation and cancellation (SFEC), depending on
the fact that the input sequence is complex or real, respectively. In the following, we focus only
on the CSFEC method only; however, readers should keep in mind that the differences between
this method and the SFEC are similar to those illustrated in our description of the single tone
estimation algorithms on which they are based. The CSFEC algorithm is initialised by:

1) Executing the CSFE, fed by the complex sequence {xc,n}, to generate, through NCSFE

iterations, the initial estimates F̂0 [0] and Â0 [0] of the normalized frequency and the complex
amplitude, respectively, of the first detected tone.

2) Setting the recursion index r to 1.
Then, a recursive procedure is started. The r-th recursion is fed by the vectors

F̂ [r − 1] =
[
F̂0 [r − 1] , F̂1 [r − 1] , ..., F̂r−1 [r − 1]

]T
, (4.87)

and
Â [r − 1] =

[
Â0 [r − 1] , Â1 [r − 1] , ..., Âr−1 [r − 1]

]T
, (4.88)

collecting the frequencies and the associated complex amplitudes characterizing the r tones
detected and estimated in the previous (r − 1) recursions, and generates the new vectors

F̂ [r] =
[
F̂0 [r] , F̂1 [r] , ..., F̂r [r]

]T
(4.89)

and
Â [r] =

[
Â0 [r] , Â1 [r] , ..., Âr [r]

]T
(4.90)

after: a) estimating the frequency F̂r [r] and the associated complex amplitude Âr [r] of a new
(i.e., of the r-th) tone (if any); b) refining the estimates of the r tones available at the beginning
of the considered recursion. The procedure employed for accomplishing all this consists of the
three steps described below (the p-th step is denoted CSFEC-Sp).

CSFEC-S1 (CSFE initialisation with cancellation) - In this step, the following quantities are
evaluated (see the initialisation part of Algorithm 5):

a) The residual spectrum

X0 [r] = [X0,0 [r] , X0,1 [r] , ..., X0,N0−1 [r]]
T ≜ X0 −C0

(
Â [r − 1] , F̂ [r − 1] , r

)
, (4.91)

where X0 is the N0-th order DFT of the zero padded version x0,ZP of the vector x0 collecting all
the elements of the sequence {xc,n} (see eqs. (4.31)–(4.32)) and the N0-dimensional vector

C0

(
Â [r − 1] , F̂ [r − 1] , r

)
≜

r−1∑
l=0

C̄0

(
Âl [r − 1] , F̂l [r − 1]

)
, (4.92)

represents the contribution given by all the estimated tones to X0 (in particular, C̄0(Âl[r −
1], F̂l[r − 1]) is the contribution provided by l-th tone to the vector X0 (the expression of this
vector can be found in Appendix G). If the overall energy

E0[r] ≜ |X0 [r]|2 (4.93)

satisfies the inequality E0[r] < TCSFEC, where TCSFEC is a proper threshold, the algorithm stops
and the estimate L̂ = r of L is generated.

b) The integer (see eq. (4.55))

α̂ [r] = arg max
α̃∈{0,1,...,N0−1}

|X0,α̃ [r]| , (4.94)
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that represents the index of the element of X0 [r] (4.91) having the largest absolute value.
c) The preliminary estimate (see eq. (4.33))

Ār [r] = X̄(F̂c,r [r])− X̄lk,0

(
Â [r − 1] , F̂ [r − 1] , F̂c,r [r]

)
(4.95)

of the complex amplitude of the new tone; here, F̂c,r[r] = α̂[r]FDFT and

X̄lk,0

(
Â [r − 1] , F̂ [r − 1] , F̂c,r [r]

)
≜

r−1∑
l=0

X̄0

(
Âl [r − 1] , F̂l [r − 1] , F̂c,r [r]

)
(4.96)

represent the coarse estimate of the frequency of the new tone (see eq. (4.54)) and the contribution
given to X̄(F ) by all the estimated tones (i.e., the leakage) at the frequency F = F̂c,r[r] (in
particular, X̄0(Âl[r − 1], F̂l[r − 1], F̂c,r[r]) is the leakage due to the l-th tone; the expression of
the function X̄lk,k(Â, F̂ , F̄ ) is provided in Appendix G).

d) The spectral coefficient

X̄k,ρ[r] [r] = X̄k,ρ[r] − X̂lk,k

(
Â [r − 1] , F̂ [r − 1] , F̂c,r [r]

)
(4.97)

for k = 1, 2 and 3; here, we have that (see eq. (4.56))

ρ [r] = F̂c,r[r]/FDFT = α̂[r] (4.98)

and

X̂lk,k

(
Â [r − 1] , F̂ [r − 1] , F̂c,r [r]

)
≜

r−1∑
l=0

X̄lk,k

(
Âl [r − 1] , F̂l [r − 1] , F̂c,r [r]

)
(4.99)

is the contribution given to X̄k,ρ[r] [r] by all the estimated tones (i.e., the leakage) at the frequency
F̂c,r [r] (in particular, X̄lk,k(Âl[r − 1], F̂l[r − 1], F̂c,r[r]) represents the leakage due to the l-th
estimated tone).

e) The coefficients a (α̂ [r]), b (α̂ [r]) and c (α̂ [r]), the residual ∆̂(0) [r] and the normalized
frequency

F̂ (0)
r = F̂c,r[r] + ∆̂(0) [r]/(2π) (4.100)

on the basis of eqs. (4.48)–(4.50), eq. (4.51) (or eq. (4.52)), and eqs. (4.54) and (4.57). Note that
F̂

(0)
r represents the initial fine estimate of the normalized frequency of the new tone.

The evaluation of the frequency F̂ (0)
r (4.100) concludes the initialization of the modified CSFE

executed for the detection and the estimation of the new tone.
CSFEC-S2 (CSFE refinement with cancellation) - After carrying out the first step, NCSFE

iterations4 are executed to refine the estimate of the parameters of the new tone. The processing
accomplished in this step follows closely that described in the refinement part of Algorithm 5.
For this reason, in each iteration, a new estimate of the complex amplitude and of the residual
of frequency of the r-th tone are computed. This requires re-using eqs. (4.95)–(4.96) and (4.97),
respectively, in order to remove the leakage in the spectrum X̄(F ) and in the coefficients X̄k,ρ

(see steps c and d, respectively, of Algorithm 5). At the end of the last iteration, the frequency
F̂CSFE,r [r] and the associated complex amplitude ÂCSFE,r [r] of the new tone are available; these
represent F̂r [r] and Âr [r], respectively, if the following re-estimation step is not accomplished.

CSFEC-S3 (re-estimation) - This step is fed by the (r + 1) normalized frequencies {F̂0 [r − 1] ,
F̂1 [r − 1] , ..., F̂r−1 [r − 1] , F̂CSFE,r [r]} and their complex amplitudes {Â0 [r − 1] , Â1 [r − 1] , ...,

Âr−1 [r − 1] , ÂCSFE,r [r]}. It consists in repeating the previous step for each of the detected tones,
starting from the first tone and ending with (r + 1)-th one. This means that, when re-estimating
the l-th tone, the leakage due to the tones whose index belong to set {0, 1, .., l − 1, l + 1, ..., r}

4The potential dependence of the parameter NCSFE on the recursion index r is ignored here for simplicity.
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has to be removed by exploiting equations similar to (4.95) and (4.97)–(4.99), with l = 0, 1, ..., r.
This allows us to progressively refine the amplitude and the frequency of each tone, so generating
the final frequencies {F̂0 [r], F̂1 [r], ..., F̂r [r]} and their complex amplitudes {Â0 [r], Â1 [r], ...,
Âr [r]}. Note that, in principle, the re-estimation can be accomplished multiple (say, NRES) times.

Our simulation results have evidenced that, unluckily, the estimates generated by the CSFEC
algorithm are biased if the values selected for the parameters NCSFE and NRES are not large
enough. In principle, this bias can be arbitrarily reduced by increasing the values of these
parameters. However, we found out that a computationally efficient alternative to this approach
is represented by running an additional (i.e., a fourth) step once that the CSFEC algorithm has
been executed. In this final step, the estimation algorithm developed by Ye and Aboutanios in ref.
[43, 44] is carried out after initializing it with the estimates {F̂0[L̂], F̂1[L̂], ..., F̂L̂−1[L̂]} and their
complex amplitudes {Â0[L̂], Â1[L̂], ..., ÂL̂−1[L̂]} generated by the CSFEC. The hybrid technique
resulting from interconnecting the CSFEC algorithm with the above mentioned algorithm is
dubbed hybrid CSFEC (HCSFEC). Finally, it is worth pointing out that:

a) The oversampling factor M adopted in the computation of the vectors {X(l)
k } and the

stopping criterion employed by the CSFE need to be carefully adjusted in order to achieve a good
accuracy in the estimation of the parameters of each new tone.

b) Poor estimation of the normalised frequency Fl and/or of the complex amplitude Al may
lead to significant error accumulation if CSFEC-S3 is removed; readers should also keep in mind
that a fundamental role in accurate cancellation is played by the accuracy of the estimated
frequency residual.

c) The threshold TCSFEC needs to be properly adjusted in order to ensure that the probability
that L̂ equals to L is close to unity. On the one hand, a large value of TCSFEC may lead to miss
weaker tones; on the other hand, a small value of this parameter may lead to the identification of
nonexistent tones.

4.3.4 Comparison with other estimation methods

The CSFEC technique developed in the Paragraphs 4.3.1–4.3.3 is conceptually related to the
multiple tone estimators developed by Gough [17], Li and Stoica [18], Macleod [11], Ye and
Aboutanios [43, 44], Serbes and Qaraqe [45], and Serbes [46] (these algorithms are denoted
CLEAN, RELAX, Alg-M, Alg-YA, CFH and Alg-S, respectively, in the following). In fact, all
these algorithms are recursive and rely on a serial cancellation procedure since, within each
recursion, they detect a single tone, estimate its parameters and subtract its contribution from
the residual signal emerging from the previous iteration. Despite their similar structure, they
exhibit various differences, that concern the three specific issues listed below.

Single frequency estimator - The main difference is represented by the algorithm they employ
in the estimation of a single tone. In fact, on the one hand, the CLEAN and RELAX algorithms
rely on the coarse estimate generated by the periodogram method for each detected tone and,
eventually, exploit zero-padding to improve spectral resolution. On the other hand, the Alg-M, the
Alg-YA, the Alg-S and the CFH algorithm compute the frequency residual by means of open-loop
interpolation or iterative methods; the last methods refine the estimate of the frequency residual
through multiple iterations. All the single tone estimators employed in these algorithms differ
from the one used in the CSFEC and its hybrid version.

Use of a re-estimation procedure - In the CLEAN and RELAX algorithms and in Alg-M, once
a new tone has been estimated, all the previously computed tones are re-estimated by subtracting
the contribution of all the other tones; tone cancellation is accomplished in the time domain in the
CLEAN and RELAX algorithms, whereas is carried out in the frequency domain in the Alg-M.
The last approach is also adopted in our estimation algorithms. Finally, the CFH algorithm,
the Alg-S and the Alg-YA accomplish re-estimation after computing a coarse estimate of all the
parameters of the detected tones. However, the CFH algorithm executes this only once, whereas
the Alg-S and the Alg-YA repeat it a given number of times.
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Use of oversampling - The use of oversampling is proposed for the CLEAN, the RELAX, the
Alg-S, and the CSFEC and the HCSFEC algorithms only.

4.3.5 Computational complexity

The complexity of the estimation algorithms developed in Paragraphs 4.3.1–4.3.2 has been
carefully assessed in terms of number of floating operations (flops) to be executed in the detection
of L targets. The general criteria adopted in estimating the overall computational cost of the
CSFE and the SFE algorithms are summarised in Appendix I, where a detailed analysis of the
contributions due to the different tasks accomplished by each of them is also provided. Our
analysis leads to the conclusion that these costs are approximately of order O(MCSFE) and
O(MSFE), respectively, with

MCSFE = N0 log2N0 +KCSFENCSFE I
2; (4.101)

MSFE = N0 log2N0 +KSFENSFE I
2; (4.102)

here, NCSFE (NSFE) represents the overall number iterations accomplished by the CSFE (SFE),
KCSFE = 1/2 and KSFE = 2/3. Our computer simulations have evidenced that, in the scenarios
we considered, a small value of I is required if the so called barycentric interpolation is employed
(see ref. [61]). For this reason, the contribution of the second term appearing in the RHS of eq.
(4.101) can be neglected, so that the order of the overall computational cost is well approximated
by the first term, i.e. from the term that originates from FFT processing. Moreover, based on the
last result, it is not difficult to show that the computational cost of the CSFEC is approximately
of order O(MCSFEC) and O(MSFEC), with

MCSFEC = N0 log2(N0) +KCSFE LNCSFE I
2, (4.103)

MSFEC = N0 log2(N0) +KSFE LNSFE I
2, (4.104)

if no re-estimation is accomplished (see CSFEC-S3 in the description of the CSFEC algorithm)
and the algorithm stop after detecting the last tone. Note that the first term appearing in the
RHS of eq. (4.103) accounts for the initialization (and, in particular, for the computation of the
vectors X0 (4.30) and {Xk} (4.43)), whereas the second term for the fact that, in the CSFEC
(SFEC), the CSFE (SFE) is executed L times. It is also worth noting that the computational costs
due to the evaluation of the estimated tones detected after the first one and to their frequency
domain cancellation do not play an important role in this case. However, if re-estimation is
accomplished, the parameter L appearing in the RHS of (4.103) is replaced by L2, since this task
involves all the estimated tones. Despite this, the increase in the overall computational cost of
the CSFEC with respect to the CSFE is limited since, as evidenced by our simulation results, the
use of re-estimation allows these algorithms to achieve convergence with a smaller value of the
parameter NCSFE.

Finally, it is important to compare the computational cost of the CSFEC algorithm with
that of the CLEAN, RELAX, Alg-M, Alg-YA, CFH and Alg-S techniques considered in the
previous paragraph. Their order of complexity is listed in Table 4.1, from which the following
considerations can be easily inferred:

1) The CLEAN and the RELAX algorithm are characterized by the same order, expressed by
the complexity of a zero-padded FFT multiplied by L2; the last factor is due to the fact that
tone re-estimation is employed in both algorithms.

2) The Alg-M is characterized by the lowest computational cost; in fact, since it performs the
cancellation of the detected tones directly in the frequency domain, tone estimation does not
require the computation of additional FFTs. Moreover, since tone re-estimation is employed, the
cost for the estimation of a single tone (i.e., the parameter KM ) is multiplied by L2.

3) The order of complexity of the Alg-YA and the Alg-S, and that of the CFH algorithm
depend on the fact that a FFT is computed for each tone; morover, an additional term equal to
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Table 4.1: Order of the computational complexity of various estimation algorithms.

Algorithm CLEAN / RELAX Alg-M Alg-YA / Alg-S CFH

O(·) L2N0 log2(N0) N0 log2(N0) + L2KM LN log2(N) + LQN LN log2(N)

LQN is included in the order of the Alg-YA and the Alg-S, since these estimate all the tones Q
times.

4) The order of the cost of the CSFEC algorithm is similar to that of the Alg-M; however, in
this case, four FFTs are computed in the initialization phase and the cost for the estimation of
each tone is multiplied by NCSFE since tone refinement is performed within each recursion.

4.4 Numerical Results

In this section, the accuracy and robustness of the proposed algorithms is assessed on the basis of
both synthetically generated data and experimental data acquired through an FMCW colocated
MIMO radar.

4.4.1 Numerical results based on synthetically generated measurements

In this section, we compare, in terms of accuracy, convergence rate and failure probability, our
single frequency estimator (CSFE) with the A&M [35], the QSE and HAQSE algorithms [50], and
our multiple tone estimators (i.e., the CSFEC and HCSFEC algorithms) with the CFH algorithm
[45], the Alg-YA [43, 44], the Alg-S [46] and the Alg-DP [62]. As far as the A&M algorithm is
concerned, two versions of it are considered; such versions are denoted A&M#1 and A&M#2 in
the following and correspond to the Alg-1 and Alg-2, respectively, described in [35].

Five different scenarios have been considered in our computer simulations. In all of them,
N = 512 and fs = N Hz have been selected for the overall number of samples of the sequence
{xn} and the sampling frequency, respectively; moreover, for any L, the phases of the L tones
have been randomly selected over the interval [0, 2π], each independently of all the other ones.
The specific features of the simulated scenarios can be summarised as follows:

Scenario #1 (S1) - This is characterized by L = 1, i.e. by a single tone, having amplitude equal
to one and whose normalised frequency is uniformly distributed over the interval [8/N, 28/N ].

Scenario #2 (S2) - This is characterized by L = 2, i.e. by a couple of tones, both having
amplitude equal to one. Moreover, the normalised frequency F0 of the first tone is uniformly
distributed over the interval [8/N, 28/N ], whereas that of the second one is F1 = F0 + 1.1/N .

Scenario #3 (S3) - This is characterized by L = 2, i.e. by a couple of tones, both having
amplitude equal to one. Moreover, the normalised frequency F0 of the first tone is uniformly
distributed over the interval [8/N, 28/N ], whereas that of the second one is F1 = F0 +∆Fd; here,
∆Fd ≜ (1 + 0.05 d)/N represents the normalised frequency spacing between the two tones and is
controlled through the non negative parameter d (d = 0, 1, ..., 10 is assumed in the following).

Scenario #4 (S4) - This is characterized by L ∈ {2, 3,..., 10}, i.e. by a varying number of
tones. For any L, the amplitude and the frequency of the k-th tone are given by

ak ≜ 10−k∆a/10 (4.105)

and Fk ≜ F0+1.8 k/N , respectively, with k = 0, 1, ..., L−1; here, ∆a = 2.5/3 and F0 is uniformly
distributed over the interval [8/N, 28/N ].

Scenario #5 (S5) - This is characterized by L = 10 tones, whose amplitudes follow the law
expressed by (4.105). Moreover, the normalised frequency of the k-th tone is Fk,m ≜ F0 + k∆Fm,
with F0 = 8.3/N and k = 0, 1, ..., 9; here, ∆Fm = (1.5 + 0.2m)/N represents the normalised
frequency spacing between adjacent tones and is controlled through the non negative parameter
m (m = 0, 1, ..., 5 is assumed in the following).
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It important to point out that: a) the interest in S1 has been uniquely motivated by the need
of comparing the performance of the CSFE with that achieved by the other single frequency
estimators; b) the study of S2 and S3 has allowed us to assess how the considered multiple
tone estimators perform in the presence of two close tones whose spacing is fixed and variable,
respectively, whereas that of S4 how their performance changes when L increases; c) the fifth
scenario refers to the case in which the observed signal contains many closely spaced tones having
different strengths, so that multiple tone estimators may fail detecting all of them and/or the
quality of the the estimates of their parameters may turn out to be quite poor.

In our computer simulations, the following performance indices have been assessed for each of
the analysed algorithms:

1. The probability of failure (Pf ), i.e. the probability that the considered algorithm does not
converge. In our simulation, a failure event is detected whenever the absolute value of the
normalised frequency error characterizing the final frequency estimate exceeds the threshold
∆εF ≜ 1/(2N0), i.e. it is greater than half the size of the frequency bin characterizing FFT
processing.

2. The root mean square error (RMSE) for the estimates of the normalised frequency, of the
amplitude and of the phase of one or multiple tones; these are denoted RMSEf , RMSEA
and RMSEp, respectively.

It is important to stress that the first parameter has been never assessed in the technical
literature and that its value depends on the intensity of both the additive noise and the interference
experienced by each newly detected tone (and due to uncancelled tones). Our interest in it can be
motivated as follows. Each of the considered frequency estimation algorithms is highly nonlinear;
for this reason, its behavior is characterized by a threshold, whose value depends on the specific
scenario in which it is employed. In practice, if a frequency estimation algorithm operates above
its threshold, failures are very rare events; consequently, the assessed root mean square errors
are negligibly influenced by them, i.e., they account for the intensity of the errors observed after
the convergence of the algorithm itself. On the contrary, if the algorithm operates below its
threshold, a portion of its estimation errors (but not all of them) refers to situations in which
it has not converged; when this happens, large frequency estimation errors (i.e., outliers) may
be observed. In the last case, root mean square errors are not so meaningful since they account
for two heterogeneous contributions. The significance of these considerations and our interest
in the probability of failure can be fully understood by analyzing the simulation results shown
in Figs. 4.1a and 4.1b, that refer to the A&M#1 algorithm operating in S1. In particular, the
dependence of RMSEf and Pf on the SNR for this algorithm is illustrated in Fig. 4.1a (where the
Cramer-Rao lower bound, CRLB, is also shown for comparison), whereas a sample of the absolute
value of the normalised frequency errors observed over 20000 consecutive runs at an SNR = −10
dB is represented in Fig. 4.1b; in this case, the overall number of iterations NA&M = 2 has been
adopted for the considered algorithm and 107 simulation runs have been executed to generate
the numerical results appearing in the first figure. As it can be easily inferred from Fig. 4.1a,
the A&M#1 attains the CLRB above its threshold, which, in S1, is found at an SNR ∼= −8
dB and corresponds to a Pf approximately equal to 10−6; below this SNR (that, in the case
of a single tone, uniquely identifies the threshold of the algorithm), the estimated RMSEf is
significantly influenced by the presence of outliers, some of which are clearly visible in Fig. 4.1b.
Our simulations have also evidenced that, if the all the failure events are ignored in the evaluation
of the root mean square errors, the (negligible) gap between the RMSEf of the A&M#1 and the
CLRB does not change if the SNR drops below its threshold. Based on these considerations we
have decided to:

a) Assess the probability of failure in all the considered scenarios.

b) Ignore the failure events in the evaluation of all the RMSEs.
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Figure 4.1: Some numerical results referring to the A&M#1 algorithm (first scenario).

On the one hand, the first choice has allowed us to assess, in all the above mentioned scenarios,
if each of the considered estimation algorithms is really operating above its threshold or below it;
in doing so, we have always assumed that the threshold is conventionally identified by Pf = 10−6,
i.e. by one failure over 106 simulation runs on the average. On the other hand, the second choice
has been made to verify if its accuracy is close to the CLRB when its failures are ignored. In the
following, various simulation results are illustrated for the five scenarios described above; in all
cases, each value of the considered performance indices have been evaluated by executing 106

runs.
The performance of six single tone estimators, namely the Alg-DP, the CSFE, and the A&M#1,

A&M#2, QSE and HAQSE algorithms, has been assessed in S1. The following parameters have
been selected for them: a) overall number of iterations NCSFE = 25 and interpolation order5

I = 7 for the CSFE; b) overall number of iterations NA&M = 2 for the two A&M algorithms;
c) NQSE = 3 for the QSE algorithm; d) NHAQSE = 2 for the HAQSE algorithm; e) frequency
displacement fd = 1/(10N) for the Alg-DP. In addition, the parameter q of the QSE and HAQSE
algorithms has been evaluated on the basis of [50, eq. (39)] and the oversampling factor M = 1
has been selected for all the considered algorithms. Some numerical results referring to S1 are
illustrated in Figs. 4.2a and 4.2b (in these figures and all the following ones, numerical results
are represented by markers, whereas lines are drawn to ease reading; moreover, the abbreviation
‘Th.’ is employed for the threshold, whose position is always indicated by a black arrow). More
specifically, the dependence of RMSEf , and RMSEA and RMSEp on the SNR is represented in
Figs. 4.2a and 4.2b, respectively, for all the considered algorithms. In both figures, the dependence
of the probability of failure on the SNR (which is approximately the same for all the considered
algorithms) is also shown and the SNR range [−15, 20] dB is considered. From these results it
is easily inferred that: 1) all the considered algorithms exhibit a similar dependence of RMSEf ,
RMSEA and RMSEp on the

SNR ≜ 1/σ2 (4.106)

and their accuracy approaches the CLRB [63] in frequency, amplitude and phase estimation for
SNR∈[−8, 20] dB; 2) they are characterized by a similar probability of failure and, therefore, by
a similar SNR threshold; 3) they attain the CRLB in the estimation of frequency, amplitude and
phase even below their threshold if failure events are ignored. Our simulation results have also
evidenced that the CSFE is characterized by a lower convergence rate than the other algorithms.
As far as the last point is concerned, it is worth mentioning that: 1) the A&M#1, A&M#2, QSE
and HAQSE algorithms usually require 2-4 iterations to achieve convergence, whereas the overall
number of iterations required by the CSFE is 3-4 times larger; 2) the Alg-DP, A&M#1, A&M#2,
QSE and HAQSE algorithms are characterised by similar computation times, whereas the CSFE
is about 10 times slower.

5In all our simulations, the barycentric interpolation described in [61] has been always used.
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Figure 4.2: Root mean square error performance versus SNR (first scenario). The Alg-DP and the CSFE,
HAQSE, QSE, A&M#1 and A&M#2 algorithms are considered. The CRLB is also shown for comparison.

Some numerical results referring to S2 are illustrated in Figs. 4.3, 4.4a and 4.4b. More
specifically, the dependence of Pf on the SNR is illustrated in Fig. 4.3, whereas the dependence of
RMSEf , and of RMSEA and RMSEp on the SNR6 is represented in Figs. 4.4a and 4.4b, respectively,
for all the considered algorithms; once again, the SNR range [−15, 20] dB is considered. The
accuracy of six multiple tone estimators, namely the Alg-YA, the Alg-S, the Alg-DP, and the
CSFEC, HCSFEC and CFH algorithms has been assessed in this case; moreover, the following
parameters have been selected for these algorithms in S2 and in the remaining three scenarios: a)
overall number of iterations NCSFE = 15, number of re-estimations NRES = 5 and interpolation
order I = 7 for the CSFEC; b) NCSFE = 5, NRES = 1, I = 7 and number of Alg-YA iterations
NYA = 5 for the HCSFEC algorithm; c) the same parameters as the HAQSE and Alg-DP in S1
for the CFH algorithm and the Alg-DP, respectively; d) overall number of iterations Q = 2 for
the Alg-YA. Moreover, the number of re-estimations carried out by the Alg-S has been evaluated
on the basis of [46, eq. (33)]. Our results show that: 1) the CSFEC and HCSFEC techniques are
more robust than all the other estimators, since they achieve a substantially lower probability
of failure for an SNR > −10 dB; 2) the thresholds of the CSFEC and HCSFEC algorithms are
about −3 dB and are substantially lower than that of Alg-YA, which is found at about 3 dB; 3)
the CFH, the Alg-S and the Alg-DP exhibit a Pf > 10−2 for all the values of SNR (therefore,
their RMSE performance is ignored in the following); 4) the Alg-YA is always outperformed by
the CSFEC and HCSFEC algorithms both in frequency, amplitude and phase estimation; 5) the
trend in the accuracy of the CSFEC and HCSFEC algorithms diverges from that of the CRLB
for an SNR > −6 dB because of the small bias introduced by the serial cancellation procedure
on which they are based; 6) the CSFEC algorithm is slightly outperformed by the HCSFEC
algorithm for an SNR > −6 dB; 7) the trend in the accuracy of the Alg-YA below its threshold
diverges from that of the CRLB in frequency, amplitude and phase estimation for all the SNR
values, whereas that that of the CSFEC and HCSFEC algorithms is only 1 dB far from the
corresponding CRLB. It is also worth mentioning that the CFH algorithm, the Alg-YA and the
Alg-DP require similar computation times, whereas the HCSFEC algorithm and the Alg-S (the
CSFEC algorithm) are about 2 (16) times slower.

Let us focus now on S3. In this scenario, all the performance indices have been evaluated for
different values of the normalised tone spacing (∆F · N). Some numerical results referring to
this scenario are illustrated in Figs. 4.5, 4.6a and 4.6b. More specifically, the dependence of Pf
on the tone spacing is illustrated in Fig. 4.5, whereas the dependence of RMSEf , and RMSEA
and RMSEp on the tone spacing is represented in Figs. 4.6a and 4.6b, respectively, for all the
considered algorithms; an SNR = 10 dB is assumed. From our results it can be inferred that: 1)
the CSFEC and HCSFEC algorithms are substantially more robust than all the other estimators,

6Since the amplitudes of both tones are equal to one, the SNR is still computed on the basis of (4.106).
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Figure 4.3: Probability of failure versus SNR (second scenario). The Alg-S, the Alg-YA, the Alg-DP, and
the CSFEC, HCSFEC and CFH algorithms are considered.
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Figure 4.4: Root mean square error performance versus SNR (second scenario). The Alg-YA, and the
CSFEC and HCSFEC algorithms are considered. The CRLB is also shown for comparison.

since no failure event has been detected for the considered tone spacings over all the simulation
runs; 2) the CFH algorithm exhibits a Pf < 10−6 for a tone spacing greater than 1.2, whereas
the Alg-YA a Pf > 10−6 for values of tone spacing between 1.2 and 1.4; 3) the Alg-S and the
Alg-DP are characterized by a Pf > 10−6 for any value of tone spacing (for this reason, they are
ignored in the following); 5) the Alg-YA and the CFH algorithm are outperformed by the CSFEC
and HCSFEC algorithms, for all the considered tone spacings, in frequency, amplitude and phase
estimation; 6) the CSFEC algorithm is slightly outperformed by the HCSFEC algorithm in
frequency, amplitude and phase estimation; 7) the CSFEC and HCSFEC algorithms attain the
CRLB for frequency and phase (amplitude) estimation for a tone spacing equal to 1.5 (greater
than 1.3).

As already mentioned above, our simulations for S4 have allowed us to assess how the
performance of the considered algorithms is influenced by the overall number of tones. Some
results referring to this scenario are shown in Fig. 4.7, which shows the dependence of Pf on L;
M = 1 and an SNR = 10 dB for the strongest tone have been assumed. From this figure it is
easily inferred that: 1) the Alg-DP (Alg-S) exhibits a Pf > 10−2 for L ≥ 3 (L ≥ 4); 2) the CFH
algorithm (Alg-YA) exhibits a Pf > 10−4 (Pf > 10−3) for L ≥ 5; 3) the CSFEC and HCSFEC
algorithms are substantially more robust than all the other algorithms since are characterized
by a Pf < 10−6 for L ≤ 8; 4) the HCSFEC is slightly outperformed by the CSFEC for L = 10.
Once again, the price to be paid for a lower probability of failure is represented by a larger
computational effort. For instance, if L = 6, the computation time required by the CSFEC
(HCSFEC) algorithm is about 50 (4) times larger than that characterizing the CFH algorithm.
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Figure 4.5: Probability of failure versus normalised tone spacing (third scenario). The Alg-S, the Alg-YA,
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Figure 4.6: Root mean square error performance versus tone separation (third scenario). The Alg-YA, and
the CSFEC, HCSFEC and CFH algorithms are considered. The CRLB is also shown for comparison.
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4.4. Numerical Results

Table 4.2: Signal-to-noise ratio characterizing each tone in the fifth scenario and corresponding CRLB
evaluated for the estimation of its frequency.

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

SNR (dB) 10 8.3 6.7 5 3.3 1.7 0 -1.7 -3.3 -5
CRLB (dB) -49.7 -48.9 -48 -47.2 -46.4 -45.6 -44.7 -43.9 -43 -42.2
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Figure 4.8: Root mean square error performance achieved in frequency estimation versus tone separation
(fifth scenario). The CSFEC (blue curves) and HCSFEC (red curves) algorithms are considered. Different
tones are identified by distinct markers and numbers.

Finally, let us focus on S5. In this case, the performance index RMSEf has been evaluated
for the normalised frequencies of all the tones; moreover, six different values of the tone spacing
(∆F · N) have been considered. Our numerical results refer to the CSFEC and the HCSFEC
algorithms only since we found that these are the only algorithms operating above their thresholds
for spacings greater than 2/N . The CFH algorithm, the Alg-S, the Alg-YA and the Alg-DP,
instead, are characterized by an high probability of failure (more specifically, Pf > 10−2 in all
the conditions) and, as a matter of fact, are unable to detect all the tones and/or to accurately
estimate their parameters. The dependence of RMSEf , obtained under the assumption that
SNR = 10 dB for the strongest tone (i.e., for the tone having the smallest frequency; see (4.105)),
on (∆F ·N) is illustrated in Fig. 4.8, whereas the values of the SNR and the CRLB referring to
each of the ten tones are listed in Table 4.2. Our results lead easily to the following conclusions:
1) the RMSEf characterizing the HCSFEC algorithm is lower than that achieved by the CSFEC
algorithm for each tone and for all the values of tone spacing, since the last algorithm suffers
from a larger (even if really limited) bias; 2) weaker tones are characterized by a larger RMSEf
(but also by a larger value of the CRLB, since their SNR is lower) for any ∆F ; 3) the RMSEf
characterizing each tone reaches a floor for ∆F > 2/N ; 4) the floor appearing in the frequency
estimation accuracy of each tone is very close to the CLRB evaluated for that tone.

4.4.2 Numerical results based on experimental measurements

The accuracy of the proposed CSFEC and HCSFEC algorithms has been also assessed on the
basis of a real dataset acquired through a commercial MIMO radar. In particular, a measurement
campaign has been accomplished in the building of our institution to acquire a data set through
a colocated FMCW MIMO radar operating in the E-band. The employed device is the TIDEP-
01012 cascade mmWave radar; it is manufactured by Texas Instrument Inc. [64] and classified
as a long range radar (LLR). Its main parameters are: a) chirp rate µ = 6.5 · 1013 Hz/s; b)
bandwidth B = 4.1 GHz; c) central frequency f0 = 77 GHz; d) sampling frequency fs = 8 MHz;
e) number of samples per chirp N = 512. Moreover, it is endowed with a planar array made
of NT = 12 TX antennas and NR = 16 RX antennas; each of its antennas consists of an array
of four patch antennas. In principle, 12 · 16 = 192 virtual antennas are available in this case;
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C1 C2 C3

Figure 4.9: Experimental set-up developed for our acquisitions. The employed radar device is mounted on
a wooden bar; the targets are small coins placed on a polystyrene plate.

however, only 86 horizontal-aligned and equally-spaced virtual antennas, forming a virtual ULA
with dH = λ/4, have been exploited in our work. This choice allows us to achieve the range
resolution ∆R = c/(2B) = 3.6 cm and the azimuthal resolution ∆θ = 1.35◦.

All the measurements have been acquired in a large empty room (whose width, depth and
height are 10 m, 8 m and 2.5 m, respectively). The radar device has been mounted on an horizontal
wooden bar and has been lifted by a tripod at an height of roughly 1.60 m from ground (see Fig.
4.9).

In our experimental set-up, a pico-flexx camera manufactured by PMD Technologies Inc.
[65] has been employed as a reference sensor ; this device is based on a near-infrared vertical
cavity surface emitting laser (VCSEL), and is able to provide a depth map or, equivalently, a
three-dimensional point-cloud of a small region of the observed environment (its maximum depth
is equal to 4 m, whereas its field of view is 62◦ × 45◦).

As far as the acquired measurements are concerned, it is important to point out that: a) all
the target ranges have been estimated with respect to the central virtual channel of the ULA; b)
the exact target positions have been acquired with respect to the centre of the pico-flexx camera.
Therefore, in comparing these positions with their estimates computed on the basis of the radar
measurements, the distance ∆FP = 33 cm between the FMCW radar and the camera was always
kept into account; c) all our measurements have been processed in the MATLAB environment
(running on a desktop computer equipped with an i7 processor).

The numerical results illustrated in this paragraph refer to two static scenarios. The first
scenario is denoted S6 and is characterized by the presence of an overall number of targets ranging
from 1 to 9 (so that 1 ≤ L ≤ 9). As shown in Fig. 4.9, the targets, placed on a polystyrene plate,
are represented by small coins, each having a diameter equal to 2 cm (note that such coins are
grouped in three different clusters, called C1, C2 and C3); their exact positions are listed in Table
4.3 (the data referring to the i-th target are collected in the column identified by Ti, with i = 1,
2, ..., 9). In the second scenario (denoted S7), instead, five distinct experiments, characterized by
a different number of targets, have been conducted. The results obtained in this scenario have
allowed us to assess how the performance of our estimation algorithms is influenced by the overall
number of targets (i.e., by L).

In processing all the acquired measurements, prior knowledge of L has been always assumed
and an oversampling factor M equal to 1 has been adopted for all the algorithms (namely, the
CSFEC, HCSFEC and CFH algorithms and the Alg-YA, the Alg-S and the Alg-DP); moreover,
M = 4 has been also considered for the CSFEC and HCSFEC algorithms. The values of all the
other parameters characterizing the considered estimation algorithms have been selected in the
same way as the scenarios S2, S3, S4 and S5 described in the previous paragraphs.

In analysing the data acquired in S6 and S7, the accuracy of the range estimates evaluated
for multiple targets has been assessed by evaluating the RMSE

ε̄R ≜

√√√√ 1

Nm

Nm−1∑
l=0

[
Rl − R̂l

]2
(4.107)
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Figure 4.10: Unwrapped phase of the complex gain associated with a given target versus the index of the
virtual channel of the employed ULA; scenario S6 is considered.

and the peak error

ε̂R ≜ max
l

∣∣∣Rl − R̂l

∣∣∣ , (4.108)

where Nm represents the overall number of available measurements. As far as the estimation of
the complex amplitude characterizing the echo of a given target on a specific virtual channel is
concerned, it is important to point out that the RCS of the targets detected in our experiment
was unknown. For this reason, our analysis of the complex gains estimated over the 86 channels of
the available virtual ULA and associated with each target has concerned only their (unwrapped)
phase. The phases estimated by the CSFEC algorithm over the above mentioned ULA and
associated with the nine targets of S6 are shown in Fig. 4.10. Since the distance dH between
adjacent virtual channels is constant, the estimated phases exhibit a linear dependence on the
index of the virtual channel (see (4.10) and (4.11)). Moreover, if a linear fitting is drawn for these
data, it should be expected that the slope of the resulting lines is proportional to sin(θ), where
θ is the azimuth of the considered target (see (4.16)); this is confirmed by the results shown in
Fig. 4.10, where the three (six) lines associated with the targets T1–T3 (T4–T9) have a negative
(positive) slope7, as should be expected on the basis of Table 4.3. To assess the quality of the
estimated phases, their RMSE ε̄ψ has been evaluated on the basis of a formula similar to (4.107)
(in this case, Nm represents the overall number of virtual channels for which the estimates of the
phases associated with a given target have been computed); in doing so, the linear fitting of the
phases estimated over the whole ULA has been taken as a reference with respect to which phase
errors have been computed.

The estimates of the target range generated by the all the considered estimation algorithms
for each of the targets of S6 are listed in Table 4.3; in the same table, the value of the phase
RMSE ε̄ψ computed for each target is also provided. The numerical results collected in this table
have been also processed to compute: a) the errors ε̄R (4.107) and ε̂R (4.108); b) the average
errors ε̄m,R and ε̂m,R (these represent the average of ε̄R and ε̂R, respectively, over the whole
virtual ULA8); c) the average of ε̄ψ, denoted ε̄m,ψ (this represents the average of the Nm values
available for ε̄ψ); d) the computation time (CT). The values of all these performance indices are
summarized in Table 4.4 for the six considered estimation algorithms.

From the last results and those listed in Table 4.3 the following conclusions can be drawn:

1. Both the CSFEC and HCSFEC algorithms are able to generate accurate estimates of the
range and the amplitude of all the given targets for both the considered values of the
oversampling factor M .

7The phase trajectories shown in Fig. 4.10 refer to a small portion of the available virtual ULA for better readability.
8In this case, the range estimate R̂l appearing in (4.107) and (4.108) is computed for each channel of the given virtual

ULA, while the true value Rl is kept constant along this array.
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Table 4.3: Exact position (range and azimuth) of each of the nine targets characterizing the sixth scenario.
The range estimates computed by the Alg-YA, the Alg-S, the Alg-DP, and the CFSEC, HCSFEC and
CFH algorithms are listed. Moreover, the phase RMSE computed for each target is provided.

Method T1 T2 T3 T4 T5 T6 T7 T8 T9

Exact
R (m) 1.755 1.780 1.816 1.950 2.010 2.057 2.195 2.254 2.280

θ (◦) -5.5 -4.1 -2.7 3.1 4.6 6.0 9.1 10.3 11.5

CSFEC
R̂ (m) 1.801 1.834 1.853 2.013 2.064 2.094 2.193 2.248 2.299

(M = 4) ε̄ψ (rad) 1.228 1.310 2.161 3.066 1.836 3.019 3.863 2.026 4.329

HCSFEC
R (m) 1.801 1.833 1.853 2.012 2.062 2.094 2.193 2.250 2.290

(M = 4) ε̄ψ (rad) 1.162 1.336 2.064 3.027 1.836 3.021 3.873 2.053 3.262

CSFEC R̂ (m) 1.809 1.840 1.861 2.007 2.053 2.094 2.196 2.249 2.298

(M = 1) ε̄ψ (rad) 1.879 2.649 2.856 2.456 2.131 4.362 3.444 3.472 3.496

HCSFEC R (m) 1.808 1.839 1.860 2.006 2.058 2.093 2.193 2.249 2.301

(M = 1) ε̄ψ (rad) 2.960 2.710 1.795 1.864 3.070 4.299 4.430 1.976 4.234

CFH
R̂ (m) 1.795 1.825 1.854 1.875 2.008 2.055 2.092 2.250 2.301

ε̄ψ (rad) 1.413 1.293 2.126 2.849 2.555 2.015 3.991 3.321 2.119

Alg-YA
R̂ (m) 1.787 1.854 1.875 1.875 2.012 2.067 2.090 2.190 2.289

ε̄ψ (rad) 1.294 4.020 2.891 2.364 2.123 4.243 3.930 2.152 2.485

Alg-S
R̂ (m) 1.809 1.809 1.809 1.809 1.809 1.809 1.822 1.837 2.204

ε̄ψ (rad) 0.965 1.311 2.097 2.966 2.428 3.088 4.037 4.193 3.200

Alg-DP
R̂ (m) 1.843 1.854 1.855 1.856 1.856 1.857 1.865 1.867 2.204

ε̄ψ (rad) 3.161 2.635 3.360 3.260 4.691 3.243 5.572 3.207 6.316

Table 4.4: Range RMSE ε̄R (and its average ε̄m,R), phase RMSE ε̄m,ψ, range peak error ε̂R (and its average
ε̂m,R) and CT evaluated for all the considered estimation algorithms; the sixth scenario is considered.

Method ε̄R ε̄m,R ε̂R ε̂m,R ε̄m,ψ CT
(m) (m) (m) (m) (rad) (sec)

CSFEC (M = 4) 0.04 0.05 0.06 0.11 2.80 0.030

HCSFEC (M = 4) 0.04 0.05 0.06 0.11 2.80 0.030

CSFEC (M = 1) 0.04 0.05 0.06 0.12 2.90 0.020

HCSFEC (M = 1) 0.04 0.05 0.06 0.12 3.0 0.020

CFH 0.05 0.07 0.10 0.12 2.60 0.010

Alg-YA 0.06 0.07 0.10 0.14 2.60 0.040

Alg-S 0.30 0.11 0.40 0.19 3.50 0.050

Alg-DP 0.20 0.15 0.40 0.61 2.90 0.005
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Figure 4.11: Representation of the initial amplitude spectrum of the signal observed on the central virtual
channel (blue line) and of the final residual amplitude spectrum generated by the CFSEC algorithm (red
line). The range and the amplitude characterizing the nine targets of the sixth scenario and estimated by
the CSFEC (HCSFEC) algorithm are indicated by black crosses (circles); M = 4 is assumed.

2. The values of range RMSE ε̄R and peak error ε̂R characterizing the CSFEC and HCSFEC
algorithms are lower than those provided by all the other algorithms. In particular, even if
the values of the range RMSE obtained by the CFH and Alg-YA are quite close to those of
the CSFEC and HCSFEC algorithms, the peak errors of the first two algorithms are higher
than the minimum range resolution allowed by the employed radar device and are two times
larger than those characterizing the last two algorithms. Moreover, the range RMSE and
peak errors of the CSFEC and HCSFEC algorithms are much lower those of the Alg-S and
the Alg-DP. This result is due to the fact that the ranges estimated by the Alg-S and the
Alg-DP are far from their true values, as it can be easily inferred from Table 4.3.

3. The values of the range average errors ε̄m,R and ε̂m,R exhibit the same trend as ε̄R and
ε̂R, respectively, but are higher than the range RMSE and range peak error, respectively,
obtained for the central channel of our virtual ULA. Note also that the large values of ε̂m,R
and ε̂m,R found for Alg-S and Alg-DP are due to the fact these algorithms does not converge
in the considered scenario.

4. The values of the phase average RMSE ε̄m,ψ evaluated for the CSFEC and HCSFEC
algorithms are comparable with (much lower that) those obtained for the CFH and the
Alg-YA (the Alg-S and the Alg-DP).

5. The CTs are in the order of few milliseconds for all the algorithms; the best trade-off between
accuracy and CT is achieved by the CSFEC and HCSFEC algorithms with an oversampling
factor equal to 1. Note also that the fastest algorithm is represented by the Alg-DP, but its
estimation accuracy is significantly worse than that provided by the CSFEC and HCSFEC
algorithms.

It is also important to point out that the robustness of the CSFEC and HCSFEC algorithms
is related to the accuracy of the estimation and cancellation procedure they accomplish. This
is exemplified by Fig. 4.11, where the initial amplitude spectrum of the signal received on the
central virtual channel in the sixth scenario and its residual, resulting from the cancellation of the
spectral contributions due to the nine targets, are shown. Moreover, the range and the amplitude
estimated by the CSFEC and HCSFEC algorithms for each target are shown (M = 4 is assumed).

Let us focus on S7 now. The exact positions of the targets characterizing our five experiments
are listed in Table 4.5. In this case, L ranges from five to ten; note also that Tl denotes the l-th
target (with l = 1, 2, ..., 10).

The values of the range RMSE ε̄R and peak error ε̂R obtained for all the considered estimation
algorithms are listed in table 4.6 and table 4.7, respectively. The values of the range average
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Table 4.5: Exact positions of the targets characterizing the seventh scenario; five different experiments are
considered.

Exp. Exact #1 Exact #2 Exact #3 Exact #4 Exact #5
(m) (m) (m) (m) (m)

T1 1.775 1.832 1.798 1.755 1.755

T2 1.876 1.920 1.832 1.780 1.780

T3 2.003 1.930 1.920 1.816 1.816

T4 2.145 1.981 1.930 1.950 1.950

T5 2.228 2.055 1.981 2.010 2.010

T6 2.100 2.055 2.057 2.057

T7 2.220 2.100 2.195 2.195

T8 2.220 2.254 2.254

T9 2.280 2.280

T10 2.310

errors ε̄m,R and ε̂m,R evaluated by averaging the RMSE ε̄R and the peak error ε̂R obtained for
the central channel in all our experiments, and the average CT are listed in Table 4.8. From these
results it is easily inferred that:

1. The ability of the CSFEC and HCSFEC algorithms in estimating the range of multiple
targets becomes evident when the overall number of targets L increases. In fact, as evidenced
by the numerical results collected in Tables 4.6 and 4.7, the CSFEC and HCSFEC algorithms
achieve the lowest RMSE and peak errors in all the experiments for both values of M .

2. All the considered algorithms achieve comparable accuracies in the first experiment, i.e. when
L = 5. In the experiments characterized by L > 5, the CSFEC and HCSFEC algorithms
achieve the lowest peak errors for both values of M . Moreover, the errors significantly
increase for Alg-S and Alg-DP when L > 8 (i.e. in the experiments 4 and 5).

3. The average CT achieved by the CSFEC and HCSFEC algorithms is comparable with
those of the other algorithms (for example, the average CT of the CSFEC and HCSFEC
algorithms for M = 1 is equal to that of the CFH algorithm); however, the estimation
accuracy they achieve is higher.

4.5 Conclusions

In this chapter, a novel algorithm for detecting and estimating a single tone has been derived;
moreover, its has been shown how it can be exploited to estimate multiple tones through a serial
cancellation procedure. The accuracy and robustness of the devised single tone and multiple
tone estimators have been assessed by means of extensive computer simulations involving both
synthetically generated data and the measurements acquired through a commercial colocated
MIMO FMCW radar. Our results have evidenced that our multiple tone estimators outperform
all the other related estimators available in the technical literature in terms of probability of
convergence and accuracy when they operate in the presence of multiple closely-spaced tones. For
this reason, if they are employed in FMCW radar systems, they allow to achieve excellent range
resolution and to acquire DOA information from the phase estimates computed on an antenna
array. Future work concerns the application of the developed algorithms to various fields.
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Table 4.6: Range RMSE ε̄R evaluated for all our experiments; the seventh scenario is considered.

Method Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5
(m) (m) (m) (m) (m)

CSFEC (M = 4) 0.06 0.03 0.04 0.04 0.06

HCSFEC (M = 4) 0.06 0.03 0.04 0.04 0.06

CSFEC (M = 1) 0.06 0.05 0.04 0.04 0.06

HCSFEC (M = 1) 0.06 0.05 0.04 0.04 0.06

CFH 0.06 0.05 0.04 0.05 0.07

Alg-YA 0.07 0.05 0.04 0.06 0.08

Alg-S 0.07 0.07 0.07 0.30 0.14

Alg-DP 0.07 0.12 0.07 0.20 0.22

Table 4.7: Range peak error ε̂R evaluated for all our experiments; the seventh scenario is considered.

Method Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5
(m) (m) (m) (m) (m)

CSFEC (M = 4) 0.12 0.06 0.06 0.06 0.13

HCSFEC (M = 4) 0.12 0.06 0.06 0.06 0.13

CSFEC (M = 1) 0.12 0.10 0.05 0.06 0.13

HCSFEC (M = 1) 0.12 0.10 0.05 0.06 0.13

CFH 0.12 0.13 0.08 0.10 0.15

Alg-YA 0.12 0.15 0.05 0.10 0.21

Alg-S 0.12 0.13 0.14 0.40 0.24

Alg-DP 0.12 0.24 0.10 0.40 0.37

Table 4.8: Average RMSE ε̄m,R, peak error ε̂m,R, and CT evaluated in the seventh scenario.

Method ε̄m,R ε̂m,R CT
(m) (m) (sec)

CSFEC (M = 4) 0.04 0.08 0.020

HCSFEC (M = 4) 0.04 0.08 0.020

CSFEC (M = 1) 0.05 0.09 0.010

HCSFEC (M = 1) 0.05 0.09 0.010

CFH 0.06 0.11 0.010

Alg-YA 0.06 0.13 0.060

Alg-S 0.13 0.21 0.060

Alg-DP 0.14 0.24 0.005

131





Five

Novel Deterministic Detection and Estimation Algorithms
for Colocated Multiple-Input Multiple-Output Radars

In this chapter, the problem of detecting multiple targets and estimating their spatial coordi-
nates (namely, their range and the direction of arrival of their electromagnetic echoes) in a
colocated multiple-input multiple-output radar system operating in a static or slowly changing
two-dimensional or three-dimensional propagation scenario is investigated. Various solutions,
collectively called range & angle serial cancellation algorithms, are developed for both frequency
modulated continuous wave radars and stepped frequency continuous wave radars. Moreover,
specific technical problems experienced in their implementation are discussed. Finally, the ac-
curacy achieved by these algorithms in the presence of multiple targets is assessed on the basis
of both synthetically generated data and of the measurements acquired through three different
multiple-input multiple-output radars and is compared with that provided by other methods
based on multidimensional Fourier analysis and multiple signal classification.

Part of this Chapter has been published in [66] and is patent pending.

5.1 Introduction

In the last years, the advances in millimeter-wave semiconductor technology and the development
of novel signal processing techniques have lead the way to the exploitation of multiple-input
multiple-output (MIMO) radar systems in a number of fields. These systems can be divided in
statistical MIMO radars [67, 68] and colocated MIMO radars [69] on the basis of the distance
between their transmit array and their receive array; in the first case, transmit and receive
antennas are widely separated, whereas, in the second one, they are closely spaced and, in
particular, they are usually placed on the same shield. In this chapter, we focus on colocated
MIMO radars only; such systems play an important role in a number of applications, because
of their limited cost, their small size and their ability to detect the presence of multiple targets.
The performance achieved by any colocated MIMO radar system depends not only on some
important characteristics of its hardware (e.g., the operating frequency, the number of transmit
and receive antennas, the configuration of the transmit and receive arrays, etc.), but also on
the techniques employed in the generation of its radiated waveforms and in the processing of
the measurements acquired through its receive array. As far as the last issue is concerned, it
is worth stressing that optimal (i.e., maximum likelihood, ML) techniques for the estimation of
the overall number of targets and of their spatial coordinates cannot be employed in practice,
since they require solving complicated multidimensional optimization problems and, consequently,
entail a huge computational effort, even in the presence of a small number of targets [2]. This has
motivated the development of various sub-optimal estimation techniques able to achieve good
estimation accuracy at a manageable computational cost. A well known sub-optimal technique
employed in real world radar systems is the one described in ref. [70] for frequency modulated
continuous wave (FMCW) radar systems; this requires: a) the computation of a multidimensional
Fast Fourier Transform (FFT) of the matrix collecting the time-domain samples of the signals
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acquired through the receive array of the employed radar device; b) the search for the peaks
of the resulting amplitude spectrum over a range-azimuth-elevation domain or a range-azimuth
domain in three-dimensional (3D) and two-dimensional (2D) imaging, respectively. Despite the
practical importance of this technique, the computational effort it requires is still significant, since
it involves multidimensional spectral analysis of the acquired signals. Moreover, it suffers from the
following relevant drawback: it can miss targets whose electromagnetic echoes are weaker than
those generated by other spatially close targets; this is due to the fact the spectral contribution
due to weak echoes is usually hidden by the leakage originating from stronger echoes. This
drawback may substantially affect the overall quality of radar imaging in the presence of extended
targets, since such targets can be usually modelled as a cluster of point targets characterized by
different radar cross sections [71].

Alternative sub-optimal techniques available in the technical literature are based on the idea
of turning a complicated multidimensional optimization problem into a series of simpler and
interconnected optimization sub-problems, each of which involves a search for the local maxima of
a specific cost function over a limited one-dimensional (1D) or 2D parameter space. Examples of
this approach are offered by [72] and [73], and by [74], where range-azimuth estimators for FMCW
MIMO radars and for stepped frequency continuous wave (SFCW) MIMO radars, respectively,
are derived. More specifically, on the one hand, target delays are first estimated by applying the
multiple signal classification (MUSIC) algorithm to a temporal auto-correlation matrix or by
identifying the beat frequencies in the downconverted received signal through spectral analysis
(in particular, through the FFT algorithm) in [72] and in [73], respectively; then, the acquired
information are exploited to estimate the direction of arrival (DOA) of the echoes originating
from detected targets. On the other hand, a different approach is proposed in [74], where various
iterative deterministic methods applicable to a 2D propagation scenario are derived. These methods
have the following relevant features: 1) they process a single snapshot of the received signal
(acquired over the whole antenna array); 2) they estimate a new target in each iteration; 3)
they do not require prior knowledge of the overall number of targets; 4) they involve 1D or 2D
maximizations only; 5) they achieve a good accuracy at a reasonable computational cost; 6) the
computational effort they require can be easily controlled by setting a threshold on the maximum
number of targets to be detected.

In this chapter, four new detection and estimation algorithms for 2D and 3D radar imaging
are developed. They represent different versions of the same algorithm, called range & angle serial
cancellation algorithm (RASCA), and can be interpreted as embodiments of a general approach
to target detection and estimation. In addition, they share some important features with the
detection and estimation techniques developed in [73] and [74]. In fact, similarly as the techniques
illustrated in [74], they are deterministic, process a single snapshot, operate in an iterative fashion
and are computationally efficient; the last feature can be related to the fact they require the
evaluation of 1D FFTs only and the search for the global maximum of proper cost functions
over 1D (frequency, azimuth or elevation) domains. Moreover, similarly as [73], they first extract
the range of each detected target from the spectra of the received signals and, then, fuse the
information originating from such spectra to extract DOA information. In addition, they exploit
the iterative estimation techniques developed in [1] and based on a serial cancellation approach
for evaluating the parameters of multiple overlapped sinusoids or multiple overlapped complex
exponentials in the presence of additive noise. The devised algorithms are able to accurately
detect and estimate multiple close targets, and to solve the problem of merged measurements or
unresolved measurements [75–78], in the sense that targets generating merged measurements in
the range domain are resolved in the estimation of their angular coordinates.

The remaining part of this chapter is organized as follows. In Section 5.2, the architecture
of colocated FMCW MIMO radars and the models adopted in our work for representing their
received signals are analysed. The general approach to target detection and estimation on which
our algorithms are based is illustrated in Section 5.3, whereas the algorithms themselves are
described in Sections 5.4. Various important details about these algorithms are provided in
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Figure 5.2: Representation of the instantaneous frequency of the RF signal generated by the VCO in a
FMCW radar system.

Section 5.5, whereas some technical limitations encountered in their implementation in real world
radar systems are discussed in Section 5.6. A description of other FFT-based and MUSIC-based
detection and estimation algorithms with which our algorithms are compared is provided in
Section 5.7. The computational cost of all the considered algorithms is illustrated in Section 5.8,
whereas their performance is analysed in Section 5.9, where various numerical results, based on
both synthetically generated data and experimental measurements, are illustrated. Finally, some
conclusions are offered in Section 5.10.

5.2 Signal and System Models

This section is devoted to: a) describing the architecture of colocated and bistatic MIMO radar
systems operating in time division multiplexing (TDM) [2] and at millimeter waves; b) analysing
the model of their received signals in the case of FMCW transmission. The considered radar
system have the following important characteristics:

1. It is equipped with a transmit (TX) and a receive (RX) antenna array, consisting of NT

and NR elements, respectively.

2. These arrays allow to radiate orthogonal waveforms from different antennas and to receive
distinct replicas of the electromagnetic echoes generated by multiple targets; moreover, the
orthogonality of the transmitted waveforms is achieved by radiating them through distinct
TX antennas over disjoint time intervals.

3. Their TX and RX arrays are made of distinct antenna elements, placed at different positions.
However, TX antennas are close to the RX ones and, in particular, are usually placed on
the same shield.

The architecture of the FMCW radar system which we always refer to in our work is illustrated
in Fig. 5.1. In this case, the radar transmitter consists of a waveform generator feeding a
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voltage controlled oscillator (VCO), whose output signal is radiated by the TX array after
power amplification. The radiated signal is reflected by multiple targets, whose echoes contribute
to the signals acquired through the RX array; each received signal feeds a low noise amplifier
(LNA), whose output undergoes downconversion, filtering and analog-to-digital conversion. Finally,
the resulting stream of signal samples (i.e., of raw data) is processed for target detection and
estimation.

Our derivation of the received signal model for the radar system shown in Fig. 5.1 relies on
the following assumptions:

a) The radar operates in a static or slowly time varying propagation environment.

b) The signal radiated by the radar transmitter is reflected by L static point targets, so that
the useful part of the received signal consists of the superposition of L components, each
originating from a distinct target.

c) All the TX and RX antennas belong to the same planar shield, so that a two-dimensional
reference system lying on the physical antenna array can be defined.

d) Any couple of physical TX and RX antennas of the considered bistatic radar is replaced by a
single virtual antenna of an equivalent monostatic radar. The abscissa xv and the ordinate
yv of the v-th virtual antenna (VA) element associated with the p-th TX antenna and the
q-th RX antenna (briefly, the (p, q) VA) are computed as1

xv =
xp + xq

2
(5.1)

and
yv =

yp + yq
2

, (5.2)

respectively, with p = 0, 1, ..., NT − 1, q = 0, 1, ..., NR − 1 and v = 0, 1, ..., NVR − 1; here,
(xp, yp) ((xq, yq)) are the coordinates of the p-th TX (q-th RX) antenna and NVR ≜ NT ·NR

represents the overall number of available VAs.

5.2.1 MIMO FMCW radar system

Let us focus now on the FMCW radar shown in Fig. 5.1. Its waveform generator produces a
periodic sawtooth signal, so that the instantaneous frequency of the chirp frequency modulated
signal available at the output of its VCO evolves periodically, as illustrated in Fig. 5.2. In this
figure, the parameters T , TR and T0 represent the chirp interval, the reset time and the pulse
period (or pulse repetition interval), respectively [2], whereas the parameters f0 and B are the
start frequency and the bandwidth, respectively, of the transmitted signal. Note that, if all the
available TX diversity is exploited and a time slot of T0 s is assigned to each TX antenna, a single
transmission frame, over which the transmission from the whole TX array is accomplished, lasts
TF ≜ NTT0 s; in this interval, a single snapshot is acquired at the receive side. Let us focus now
on a single chirp interval and, in particular, on the time interval (0, T ), and assume that, in that
interval, the p-th TX antenna is employed by the considered radar system (with p ∈ {0, 1, . . . ,
NT − 1}); the signal radiated by that antenna can be expressed as

sRF (t) = ARF ℜ{s (t)} , (5.3)

where ARF is its amplitude,
s (t) ≜ exp (jθ (t)) , (5.4)

1Note that this is not the only rule adopted in the technical literature to compute the coordinates of the (p, q) VA. For
instance, in [79, Par. 4.3.1, pp. 159-161], the abscissa (ordinate) of this element is evaluated as 2xv (2yv), where xv and
yv are expressed by (5.1) and (5.2), respectively. Keep in mind, however, that if the last rule is adopted, all the following
formulas involving such coordinates must be changed accordingly.
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θ (t) ≜ 2π
(
f0t+

µ

2
t2
)

(5.5)

and µ ≜ B/T is the chirp rate (i.e., the steepness of the generated frequency chirp). It can be
proved that, under the assumptions listed above, the n-th received signal sample acquired through
the v-th VA element (with v = 0, 1, ..., NVR − 1) in the considered chirp interval is given by (e.g.,
see [60, Par. 4.6, eq. (4.27)])

x(v)r,n =

L−1∑
l=0

al cos
(
2πnF

(v)
l + ψ

(v)
l

)
+ w(v)

r,n

=

L−1∑
l=0

[
C

(v)
l exp

(
j2πnF

(v)
l

)
+ (C

(v)
l )∗ exp

(
−j2πnF (v)

l

)]
+ w(v)

r,n, (5.6)

with n = 0, 1, ..., N − 1; here, N is the overall number of samples acquired over each chirp period,
al is the amplitude2 of the l-th component of the useful signal,

C
(v)
l ≜

1

2
al exp

(
jψ

(v)
l

)
(5.7)

represents the complex amplitude of the real tone appearing in the right hand side (RHS) of (5.6),

F
(v)
l ≜ f

(v)
l Ts = f

(v)
l /fs (5.8)

is the normalised version of the frequency

f
(v)
l ≜ µ τ

(v)
l , (5.9)

characterizing the l-th target detected on the v-th virtual RX antenna, Ts (fs) denotes the
sampling period (frequency) of the employed analog-to-digital converters (ADCs),

τ
(v)
l ≜

2

c
[Rl + xv cos (ϕl) sin (θl) + yv sin (ϕl)] (5.10)

is the delay of the echo generated by the l-th target and observed on the v-th virtual channel, Rl,
θl and ϕl denote the range of the l-th target, its azimuth and its elevation (all measured with
respect to the center of the receive array), respectively,

ψ
(v)
l

∼= 2πf0τ
(v)
l (5.11)

and w(v)
r,n is the n-th sample of the AWGN sequence affecting the received signal (this sample is

modelled as a real Gaussian random variable having zero mean and variance σ2 for any v). It
is important to point out that: a) the real signal model (5.6) can be adopted in all the FMCW
radar systems acquiring only the in-phase component of the signal captured by each RX antenna;
b) some commercial MIMO radar devices provide both the in-phase and quadrature components
of the received RF signals (e.g., see [69, Par 2.1 eq. (2.2)]). In the last case, the complex model

x(v)c,n =

L−1∑
l=0

A
(v)
l exp

(
j2πnF

(v)
l

)
+ w(v)

c,n, (5.12)

must be adopted in place of its real counterpart (5.6) for any n; here,

A
(v)
l ≜ al exp

(
jψ

(v)
l

)
(5.13)

for any v and l, and w(v)
c,n is the n-th sample of the AWGN sequence affecting the received signal

(this sample is modelled as a complex Gaussian random variable having zero mean and variance
σ2 for any v).

2This amplitude quantifies the radar cross section (RCS) of the l-th target. It depends on both the range of this target
and its reflectivity. Moreover, in this work, it is assumed to be independent of the virtual antenna index (i.e., of v), for
simplicity.
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5.2.2 Target detection and estimation

In the considered FMCW radar system, the useful component of the received signal observed
on each virtual channel can be represented as a superposition of L real or complex oscillations;
moreover, the value of the parameter L has to be considered unknown. In the following derivations,
the real samples {x(v)r,n; n = 0, 1, ..., N − 1} or their complex counterpart {x(v)c,n; n = 0, 1, ...,
N − 1} acquired on the v-th virtual channel are collected in the N -dimensional vector

x(v)
z ≜

[
x
(v)
z,0, x

(v)
z,1, ..., x

(v)
z,N−1

]T
, (5.14)

with3 z = r or c. This vector is processed by the next stages of the radar receiver for target
detection and estimation. As it can be easily inferred from (5.6)–(5.9) ((5.12)–(5.13)), in the
considered radar system, the problem of target detection and range estimation on the v-th virtual
channel is equivalent to the classic problem of detecting multiple overlapped sinusoids (multiple
overlapped complex exponentials) in the presence of AWGN and estimating their frequencies [80].
In fact, if, in a FMCW radar system, the l-th tone is found at the frequency f̂ (v)l , the presence of
a target at the range (see (5.9) and (5.10))

R̂v,l =
1

2

c

µ
f̂
(v)
l (5.15)

is detected. Information about the angular coordinates (namely, the azimuth and the elevation)
of this target, instead, can be acquired through the estimation of the set of NVR phases {ψ(v)

l ;
v = 0, 1, ..., NVR − 1} observed over the available virtual antennas. In fact, since (see (5.10) and
(5.11))

ψ
(v)
l

∼=
4π

λ
[Rl + xv cos (ϕl) sin (θl) + yv sin (ϕl)] , (5.16)

where
λ ≜

c

f0
(5.17)

is the wavelength associated with the frequency f0, the sequence {ψ(v)
l ; v = 0, 1, ..., NVR − 1}

exhibits a periodic behavior characterized by the normalised horizontal spatial frequency

FH,l ≜ 2
dH
λ

cos (ϕl) sin (θl) , (5.18)

if the considered virtual elements form an horizontal uniform linear array (ULA), whose adjacent
elements are spaced dH m apart. Dually, if a virtual vertical ULA is assumed, the periodic
variations observed in the same sequence of phases are characterized by the normalised vertical
spatial frequency

FV,l ≜ 2
dV
λ

sin (ϕl) , (5.19)

where dV denotes the distance between adjacent elements of the virtual array itself. Consequently,
angle finding can be easily accomplished by digital beamforming, i.e. by performing a FFT on the
estimated phases taken across multiple elements of the virtual array in a single frame interval
[81, 82].

Finally, it is important to note that, in the development of detection and estimation algorithms
for colocated MIMO radar systems operating at millimeter waves, the following technical issues
need to be taken carefully into account:

1. These radar systems often operate at short ranges and in the presence of extended targets.
Each radar image is a cloud of point targets whose mutual spacing can be very small [71].

3In the following, when the letter z will be used in a subscript, it will be implicitly assumed, unless differently stated,
that it can be equal to r or c.

138
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FFT 
Processing

SPE

RPE

TRP

It
<latexit sha1_base64="wVBNP6Ki7iuiEwi7nzDL0mCoTVk=">AAACA3icbVC7TsNAEDyHVwiPGChpTkRIVJGNIkEZiQa6IJGHlFjW+rIJp5wfulsjRVZKvoIWKjpEy4dQ8C/YIQUkTDWa2dXOTpAoachxPq3S2vrG5lZ5u7Kzu7dftQ8OOyZOtcC2iFWsewEYVDLCNklS2Es0Qhgo7AaTq8LvPqA2Mo7uaJqgF8I4kiMpgHLJt6uDEOhegMpuZn5GM9+uOXVnDr5K3AWpsQVavv01GMYiDTEiocCYvusk5GWgSQqFs8ogNZiAmMAY+zmNIETjZfPgM36aGqCYJ6i5VHwu4u+NDEJjpmGQTxYxzbJXiP95/ZRGl14moyQljERxiKTC+SEjtMwbQT6UGomgSI5cRlyABiLUkoMQuZjmFVXyPtzl71dJ57zu5vy2UWs2Fs2U2TE7YWfMZResya5Zi7WZYCl7Ys/sxXq0Xq036/1ntGQtdo7YH1gf3zIbl/o=</latexit><latexit sha1_base64="wVBNP6Ki7iuiEwi7nzDL0mCoTVk=">AAACA3icbVC7TsNAEDyHVwiPGChpTkRIVJGNIkEZiQa6IJGHlFjW+rIJp5wfulsjRVZKvoIWKjpEy4dQ8C/YIQUkTDWa2dXOTpAoachxPq3S2vrG5lZ5u7Kzu7dftQ8OOyZOtcC2iFWsewEYVDLCNklS2Es0Qhgo7AaTq8LvPqA2Mo7uaJqgF8I4kiMpgHLJt6uDEOhegMpuZn5GM9+uOXVnDr5K3AWpsQVavv01GMYiDTEiocCYvusk5GWgSQqFs8ogNZiAmMAY+zmNIETjZfPgM36aGqCYJ6i5VHwu4u+NDEJjpmGQTxYxzbJXiP95/ZRGl14moyQljERxiKTC+SEjtMwbQT6UGomgSI5cRlyABiLUkoMQuZjmFVXyPtzl71dJ57zu5vy2UWs2Fs2U2TE7YWfMZResya5Zi7WZYCl7Ys/sxXq0Xq036/1ntGQtdo7YH1gf3zIbl/o=</latexit><latexit sha1_base64="wVBNP6Ki7iuiEwi7nzDL0mCoTVk=">AAACA3icbVC7TsNAEDyHVwiPGChpTkRIVJGNIkEZiQa6IJGHlFjW+rIJp5wfulsjRVZKvoIWKjpEy4dQ8C/YIQUkTDWa2dXOTpAoachxPq3S2vrG5lZ5u7Kzu7dftQ8OOyZOtcC2iFWsewEYVDLCNklS2Es0Qhgo7AaTq8LvPqA2Mo7uaJqgF8I4kiMpgHLJt6uDEOhegMpuZn5GM9+uOXVnDr5K3AWpsQVavv01GMYiDTEiocCYvusk5GWgSQqFs8ogNZiAmMAY+zmNIETjZfPgM36aGqCYJ6i5VHwu4u+NDEJjpmGQTxYxzbJXiP95/ZRGl14moyQljERxiKTC+SEjtMwbQT6UGomgSI5cRlyABiLUkoMQuZjmFVXyPtzl71dJ57zu5vy2UWs2Fs2U2TE7YWfMZResya5Zi7WZYCl7Ys/sxXq0Xq036/1ntGQtdo7YH1gf3zIbl/o=</latexit><latexit sha1_base64="wVBNP6Ki7iuiEwi7nzDL0mCoTVk=">AAACA3icbVC7TsNAEDyHVwiPGChpTkRIVJGNIkEZiQa6IJGHlFjW+rIJp5wfulsjRVZKvoIWKjpEy4dQ8C/YIQUkTDWa2dXOTpAoachxPq3S2vrG5lZ5u7Kzu7dftQ8OOyZOtcC2iFWsewEYVDLCNklS2Es0Qhgo7AaTq8LvPqA2Mo7uaJqgF8I4kiMpgHLJt6uDEOhegMpuZn5GM9+uOXVnDr5K3AWpsQVavv01GMYiDTEiocCYvusk5GWgSQqFs8ogNZiAmMAY+zmNIETjZfPgM36aGqCYJ6i5VHwu4u+NDEJjpmGQTxYxzbJXiP95/ZRGl14moyQljERxiKTC+SEjtMwbQT6UGomgSI5cRlyABiLUkoMQuZjmFVXyPtzl71dJ57zu5vy2UWs2Fs2U2TE7YWfMZResya5Zi7WZYCl7Ys/sxXq0Xq036/1ntGQtdo7YH1gf3zIbl/o=</latexit>

{x(v)
z }

<latexit sha1_base64="slQnll3PBOewuOFCEObdBmemGpw=">AAACDHicbVC7TsNAEDyHVwivAA0SzYkIKTSRjSJBGYmGMkjkIcXGOl824ZTzQ3friGCZT+AraKGiQ7T8AwX/gh1SQMJUo5ld7ex4kRQaTfPTKCwtr6yuFddLG5tb2zvl3b22DmPFocVDGaquxzRIEUALBUroRgqY70noeKOL3O+MQWkRBtc4icDx2TAQA8EZZpJbPrAT22d46w2Su9RN7tObpDo+Se3ULVfMmjkFXSTWjFTIDE23/GX3Qx77ECCXTOueZUboJEyh4BLSkh1riBgfsSH0MhowH7STTD9I6XGsGYY0AkWFpFMRfm8kzNd64nvZZJ5Wz3u5+J/Xi3Fw7iQiiGKEgOeHUEiYHtJciawaoH2hAJHlyYGKgHKmGCIoQRnnmRhnXZWyPqz57xdJ+7RmZfyqXmnUZ80UySE5IlVikTPSIJekSVqEkwfyRJ7Ji/FovBpvxvvPaMGY7eyTPzA+vgFmzZvu</latexit><latexit sha1_base64="slQnll3PBOewuOFCEObdBmemGpw=">AAACDHicbVC7TsNAEDyHVwivAA0SzYkIKTSRjSJBGYmGMkjkIcXGOl824ZTzQ3friGCZT+AraKGiQ7T8AwX/gh1SQMJUo5ld7ex4kRQaTfPTKCwtr6yuFddLG5tb2zvl3b22DmPFocVDGaquxzRIEUALBUroRgqY70noeKOL3O+MQWkRBtc4icDx2TAQA8EZZpJbPrAT22d46w2Su9RN7tObpDo+Se3ULVfMmjkFXSTWjFTIDE23/GX3Qx77ECCXTOueZUboJEyh4BLSkh1riBgfsSH0MhowH7STTD9I6XGsGYY0AkWFpFMRfm8kzNd64nvZZJ5Wz3u5+J/Xi3Fw7iQiiGKEgOeHUEiYHtJciawaoH2hAJHlyYGKgHKmGCIoQRnnmRhnXZWyPqz57xdJ+7RmZfyqXmnUZ80UySE5IlVikTPSIJekSVqEkwfyRJ7Ji/FovBpvxvvPaMGY7eyTPzA+vgFmzZvu</latexit><latexit sha1_base64="slQnll3PBOewuOFCEObdBmemGpw=">AAACDHicbVC7TsNAEDyHVwivAA0SzYkIKTSRjSJBGYmGMkjkIcXGOl824ZTzQ3friGCZT+AraKGiQ7T8AwX/gh1SQMJUo5ld7ex4kRQaTfPTKCwtr6yuFddLG5tb2zvl3b22DmPFocVDGaquxzRIEUALBUroRgqY70noeKOL3O+MQWkRBtc4icDx2TAQA8EZZpJbPrAT22d46w2Su9RN7tObpDo+Se3ULVfMmjkFXSTWjFTIDE23/GX3Qx77ECCXTOueZUboJEyh4BLSkh1riBgfsSH0MhowH7STTD9I6XGsGYY0AkWFpFMRfm8kzNd64nvZZJ5Wz3u5+J/Xi3Fw7iQiiGKEgOeHUEiYHtJciawaoH2hAJHlyYGKgHKmGCIoQRnnmRhnXZWyPqz57xdJ+7RmZfyqXmnUZ80UySE5IlVikTPSIJekSVqEkwfyRJ7Ji/FovBpvxvvPaMGY7eyTPzA+vgFmzZvu</latexit><latexit sha1_base64="slQnll3PBOewuOFCEObdBmemGpw=">AAACDHicbVC7TsNAEDyHVwivAA0SzYkIKTSRjSJBGYmGMkjkIcXGOl824ZTzQ3friGCZT+AraKGiQ7T8AwX/gh1SQMJUo5ld7ex4kRQaTfPTKCwtr6yuFddLG5tb2zvl3b22DmPFocVDGaquxzRIEUALBUroRgqY70noeKOL3O+MQWkRBtc4icDx2TAQA8EZZpJbPrAT22d46w2Su9RN7tObpDo+Se3ULVfMmjkFXSTWjFTIDE23/GX3Qx77ECCXTOueZUboJEyh4BLSkh1riBgfsSH0MhowH7STTD9I6XGsGYY0AkWFpFMRfm8kzNd64nvZZJ5Wz3u5+J/Xi3Fw7iQiiGKEgOeHUEiYHtJciawaoH2hAJHlyYGKgHKmGCIoQRnnmRhnXZWyPqz57xdJ+7RmZfyqXmnUZ80UySE5IlVikTPSIJekSVqEkwfyRJ7Ji/FovBpvxvvPaMGY7eyTPzA+vgFmzZvu</latexit>

Figure 5.3: Block diagram describing the general approach to target detection and estimation adopted in
our work.

For this reason, the accuracy of these images depends, first of all, on the frequency resolution
achieved by the detection and estimation algorithm employed on each virtual antenna in a
FMCW radar system. In fact, this makes the radar receiver able to separate point targets
characterized by similar ranges.

2. Distinct radar echoes can be characterized by substantially different signal-to-noise ratios
(SNRs), because of relevant differences among the amplitudes of the L overlapped oscillations
forming the useful component of the received signal (see (5.6) and (5.12)).

3. The number N of samples acquired over each virtual channel usually ranges from few
hundreds to few thousands.

The last two issues explain why significant attention must be paid to the accuracy achieved by
the adopted detection and estimation algorithms at low SNRs and/or for relatively small values
of N , since this can appreciably influence the quality of the generated radar image.

5.3 Description of the proposed approach to the detection and estimation of
multiple targets

All the algorithms developed in the following section can be considered as specific instances of
a general approach to target detection and estimation; this approach is described by the block
diagram shown in Fig. 5.3. The processing accomplished by the blocks which this diagram consists
of can be summarized as follows. Each vector of the set {x(v)

z }, collecting NVR vectors (see (5.14)),
undergoes FFT processing, so that, in a FMCW radar system, the analysis of the acquired
measurements is moved from the time-domain to the frequency-domain. The output of the FFT
block is processed by the range profile estimator (RPE), that generates the so called target range
profile (TRP), i.e. a collection of: a) the ranges at which the relevant echoes are detected; b) the
associated energies. Note that the last quantities allow us to rank each range on the basis of its
perceptual importance. The output of the FFT processing block and the target range profile are
processed by the spatial estimator (SPE). This block detects all the targets associated with each
range appearing in the TRP and estimates their angular parameters; moreover, it may generate a
finer estimate of their range. The SPE output is represented by the set

It ≜
{(
R̂l, θ̂l, ϕ̂l,

∣∣∣Ĉl∣∣∣) ; l = 0, 1, . . . , L̂− 1
}

(5.20)

or the set
It ≜

{(
R̂l, θ̂l,

∣∣∣Ĉl∣∣∣) ; l = 0, 1, . . . , L̂− 1
}

(5.21)

in the case of 3D and 2D imaging, respectively; here, L̂ represents an estimate of the parameter
L (i.e., of the overall number of point targets), whereas R̂l, θ̂l, ϕ̂l and |Ĉl| represent an estimate
of the range Rl, azimuth θl, elevation ϕl and amplitude |Cl|, respectively, of the l-th target (with
l = 0, 1, ..., L̂− 1).

It is important to point out that:
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1. If this approach is adopted, range estimation is decoupled from angular estimation, so that
a 3D (2D) detection and estimation problem is turned into a) a 1D detection/estimation
problem involving the detection of multiple targets and the estimation of their ranges only
plus b) a 2D (1D) estimation problem concerning the targets detected at the same range
and the estimation of their azimuth and elevation (azimuth only). Consequently, the overall
problem of detecting multiple targets and estimating their range and angles is turned into a
couple of simpler detection and estimation problems.

2. The SPE exploits the range information generated by the RPE in order to concentrate its
computational effort on a set of well defined ranges ; this allows to reduce the size of the search
space involved in spatial estimation. This explains also why the processing accomplished by
the SPE cannot start before that at a least a portion of the range/energy information (i.e.,
a portion of the TRP) generated by the RPE becomes available.

3. Various techniques can be exploited in the RPE and in the SPE to develop computationally
efficient embodiments of the proposed approach.

As far as the last point is concerned, the following techniques can be adopted by the RPE to
mitigate its complexity:

a) Antenna selection – This consists in feeding the RPE with a subset of the outputs of the
FFT processing block; such outputs are generated on the basis of NA of the NVR VAs. Note
that, on the one hand, a larger NA allows to compute a more accurate TRP; on the other
hand, selecting a smaller NA results in a reduction of the overall effort required for the
computation of the TRP.

b) Antenna-by-antenna processing – The measurements acquired through the selected NA VAs
can be efficiently processed by adopting a two-step procedure. In the first step, target
range estimation is accomplished on each VA independently of all the other VAs, i.e. the
acquired measurements are processed on an antenna-by-antenna basis; this is beneficial
when parallel computing hardware is employed in the execution of the first step. In the
second step, instead, the target range information extracted from each of the selected NA

VAs are fused to generate the TRP.

c) Serial target cancellation in the range domain – Target detection and range estimation on
each VA represent a multidimensional problem since they aim at detecting multiple targets
and estimating their ranges. In our method, this multidimensional problem is turned into
a sequence of 2D estimation problems by adopting a serial interference cancellation (SIC)
approach (e.g., see [74]). This means that the noisy signal observed on each VA is processed
in an iterative fashion. In each iteration, a single (and, in particular, the strongest) target is
detected, and its range and complex amplitude are estimated. Then, the contribution of
this target to the received signal is estimated and subtracted from the signal itself (i.e., the
detected target is treated as a form of interference to be cancelled), so generating a residual
signal. The last signal represents the input of the next iteration. This procedure is repeated
until the overall energy of the residual drops below a given threshold. Note also that the use
of this SIC-based approach allows us to mitigate the impact of the spectral leakage due to
strong targets, that can potentially hide weak targets having similar ranges.

d) Alternating maximization – The estimation of the normalised frequency and the complex
amplitude of a detected target requires searching for the maximum (or the minimum) of a
proper cost function over a 2D domain. In our method, the alternating maximization (AM)
technique is exploited to develop iterative algorithms that alternate the estimation of the
normalised frequency of a given target with that of its complex amplitude; for this reason, a
2D optimization problem is turned into a couple of interacting 1D optimization problems
(e.g., see [58, Par. IV-A]).
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In the SPE block, instead, the following techniques can be employed to reduce its overall
computational complexity:

a) Alternating maximization – The AM technique is exploited to develop iterative algorithms
that alternate the estimation of the elevation of a given target with that of its azimuth. This
allows us to decouple the estimation of target elevation from that of its azimuth.

b) Serial target cancellation in the angular domain – Each of the ranges collected in the TRP is
associated with an unknown number of targets; for this reason, the processing accomplished
by the SPE aims at resolving all the targets associated with a given range and estimating
their angular coordinates. In the technical literature about radar systems, the detection
of an unknown number of targets characterized by the same range (or by ranges whose
mutual differences are below the range resolution of the employed radar system) and
the estimation of their angular parameters is known to be a difficult multidimensional
problem (e.g., see [72, Par. III-C]). In our method, a SIC approach is exploited to turn
this multidimensional problem into a sequence of 2D (1D) estimation problems in 3D (2D)
imaging (see [74] and references therein). This means that the noisy data referring to a
specific range and acquired on all the VAs are iteratively processed to detect a single (and,
in particular, the strongest) target, and to estimate its angular coordinates and complex
amplitude. Then, the contribution of this target to the outputs of the FFT processing
block is estimated and subtracted from them, so generating a set of residual data. This
detection/estimation/cancellation procedure is iteratively applied to the residual data until
their overall energy drops below a given threshold. Moreover, in a 3D propagation scenario,
this procedure is combined with the AM approach described in the previous point; this
allows to detect and estimate the angular parameters of a single target (i.e., to solve a 2D
optimization problem) by means of an iterative procedure alternating the estimation of its
elevation with that of its azimuth (i.e., by means of an algorithm solving a couple of 1D
optimization problems). Note also that, once again, the use of a serial cancellation approach
allows us to mitigate the impact of the spectral leakage due to strong targets, that can
potentially hide weak targets having similar spatial coordinates.

c) Parallel processing of the data associated with different ranges – The detection and the
estimation of the targets associated with distinct ranges of the TRP can be accomplished in
a parallel fashion or in a sequential fashion. The first approach is more efficient than the
second one if spatial estimation is executed on parallel computing hardware. In fact, in this
case, multiple spatial estimation algorithms can be run in parallel, one for each of the ranges
appearing in the TRP. Note, however, that the price to be paid for this is represented by the
fact that the target information generated by all the parallel procedures need to be fused
when they end. In fact, the analysis of the measurements referring to close ranges appearing
in the TRP may lead to detecting the same target more than one time.

Based on the general approach outlined above and on the techniques listed for the RPE and
the SPE, four specific algorithms, called range & angle serial cancellation algorithms (RASCAs)
are developed in the following. The algorithms are called RASCA-FR2 (RASCA-FC2) and
RASCA-FR3 (RASCA-FC3), since they generate 2D and 3D radar images, respectively, on the
basis of real (complex) measurements. In the description of these algorithms we assume, without
loosing generality, that the available measurements are acquired through the NVH ×NVV virtual
uniform rectangular array (URA) represented in Fig. 5.4 in the case of 3D imaging and through
an horizontal ULA (HULA), consisting of NVH virtual antennas, in the case of 2D imaging. In
the first case, the horizontal (vertical) spacing between adjacent antennas is denoted dVH (dVV),
whereas, in the second one, is denoted dVH. Moreover, in our considerations, we assume that
a reference VA, identified by (p, q) = (pR, qR) (p = pR) in the 3D (2D) case, is selected in the
virtual array, as exemplified by Fig. 5.4.
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<latexit sha1_base64="6K8DfedvXq/CH5fM6JLQCm99JCw=">AAAB93icbVC7TsNAEDyHVwivACXNiQiJKrJRJCgj0VAGhJNIiRWdL5twyvl8ulsjRVa+gRYqOkTL51DwL9jGBSRMNZrZ1c5OqKWw6LqfTmVtfWNzq7pd29nd2z+oHx51bZwYDj6PZWz6IbMghQIfBUroawMsCiX0wtl17vcewVgRq3ucawgiNlViIjjDTPL1KL1bjOoNt+kWoKvEK0mDlOiM6l/DccyTCBRyyawdeK7GIGUGBZewqA0TC5rxGZvCIKOKRWCDtAi7oGeJZRhTDYYKSQsRfm+kLLJ2HoXZZMTwwS57ufifN0hwchWkQukEQfH8EAoJxSHLjchaADoWBhBZnhyoUJQzwxDBCMo4z8Qkq6WW9eEtf79KuhdNL+O3rUa7VTZTJSfklJwTj1ySNrkhHeITTgR5Is/kxZk7r86b8/4zWnHKnWPyB87HN6Rekzw=</latexit><latexit sha1_base64="6K8DfedvXq/CH5fM6JLQCm99JCw=">AAAB93icbVC7TsNAEDyHVwivACXNiQiJKrJRJCgj0VAGhJNIiRWdL5twyvl8ulsjRVa+gRYqOkTL51DwL9jGBSRMNZrZ1c5OqKWw6LqfTmVtfWNzq7pd29nd2z+oHx51bZwYDj6PZWz6IbMghQIfBUroawMsCiX0wtl17vcewVgRq3ucawgiNlViIjjDTPL1KL1bjOoNt+kWoKvEK0mDlOiM6l/DccyTCBRyyawdeK7GIGUGBZewqA0TC5rxGZvCIKOKRWCDtAi7oGeJZRhTDYYKSQsRfm+kLLJ2HoXZZMTwwS57ufifN0hwchWkQukEQfH8EAoJxSHLjchaADoWBhBZnhyoUJQzwxDBCMo4z8Qkq6WW9eEtf79KuhdNL+O3rUa7VTZTJSfklJwTj1ySNrkhHeITTgR5Is/kxZk7r86b8/4zWnHKnWPyB87HN6Rekzw=</latexit><latexit sha1_base64="6K8DfedvXq/CH5fM6JLQCm99JCw=">AAAB93icbVC7TsNAEDyHVwivACXNiQiJKrJRJCgj0VAGhJNIiRWdL5twyvl8ulsjRVa+gRYqOkTL51DwL9jGBSRMNZrZ1c5OqKWw6LqfTmVtfWNzq7pd29nd2z+oHx51bZwYDj6PZWz6IbMghQIfBUroawMsCiX0wtl17vcewVgRq3ucawgiNlViIjjDTPL1KL1bjOoNt+kWoKvEK0mDlOiM6l/DccyTCBRyyawdeK7GIGUGBZewqA0TC5rxGZvCIKOKRWCDtAi7oGeJZRhTDYYKSQsRfm+kLLJ2HoXZZMTwwS57ufifN0hwchWkQukEQfH8EAoJxSHLjchaADoWBhBZnhyoUJQzwxDBCMo4z8Qkq6WW9eEtf79KuhdNL+O3rUa7VTZTJSfklJwTj1ySNrkhHeITTgR5Is/kxZk7r86b8/4zWnHKnWPyB87HN6Rekzw=</latexit><latexit sha1_base64="6K8DfedvXq/CH5fM6JLQCm99JCw=">AAAB93icbVC7TsNAEDyHVwivACXNiQiJKrJRJCgj0VAGhJNIiRWdL5twyvl8ulsjRVa+gRYqOkTL51DwL9jGBSRMNZrZ1c5OqKWw6LqfTmVtfWNzq7pd29nd2z+oHx51bZwYDj6PZWz6IbMghQIfBUroawMsCiX0wtl17vcewVgRq3ucawgiNlViIjjDTPL1KL1bjOoNt+kWoKvEK0mDlOiM6l/DccyTCBRyyawdeK7GIGUGBZewqA0TC5rxGZvCIKOKRWCDtAi7oGeJZRhTDYYKSQsRfm+kLLJ2HoXZZMTwwS57ufifN0hwchWkQukEQfH8EAoJxSHLjchaADoWBhBZnhyoUJQzwxDBCMo4z8Qkq6WW9eEtf79KuhdNL+O3rUa7VTZTJSfklJwTj1ySNrkhHeITTgR5Is/kxZk7r86b8/4zWnHKnWPyB87HN6Rekzw=</latexit>

NVH � 1
<latexit sha1_base64="HZuTXJHLXBHZACfcsRroZHfqhzg=">AAACBXicbVC7TsNAEDzzDOHlQElzIkKiIbJRJCgj0aRCQSIPKbGs82UTTjk/dLcGRZZrvoIWKjpEy3dQ8C/YxgUkTDWa2dXOjhdJodGyPo2V1bX1jc3KVnV7Z3dv36wd9HQYKw5dHspQDTymQYoAuihQwiBSwHxPQt+bXeV+/x6UFmFwi/MIHJ9NAzERnGEmuWbt2k1GPsM75Se9dpqe2a5ZtxpWAbpM7JLUSYmOa36NxiGPfQiQS6b10LYidBKmUHAJaXUUa4gYn7EpDDMaMB+0kxTRU3oSa4YhjUBRIWkhwu+NhPlaz30vm8xT6kUvF//zhjFOLp1EBFGMEPD8EAoJxSHNlcg6AToWChBZnhyoCChniiGCEpRxnolxVlI168Ne/H6Z9M4bdsZvmvVWs2ymQo7IMTklNrkgLdImHdIlnDyQJ/JMXoxH49V4M95/RleMcueQ/IHx8Q3lsphK</latexit><latexit sha1_base64="HZuTXJHLXBHZACfcsRroZHfqhzg=">AAACBXicbVC7TsNAEDzzDOHlQElzIkKiIbJRJCgj0aRCQSIPKbGs82UTTjk/dLcGRZZrvoIWKjpEy3dQ8C/YxgUkTDWa2dXOjhdJodGyPo2V1bX1jc3KVnV7Z3dv36wd9HQYKw5dHspQDTymQYoAuihQwiBSwHxPQt+bXeV+/x6UFmFwi/MIHJ9NAzERnGEmuWbt2k1GPsM75Se9dpqe2a5ZtxpWAbpM7JLUSYmOa36NxiGPfQiQS6b10LYidBKmUHAJaXUUa4gYn7EpDDMaMB+0kxTRU3oSa4YhjUBRIWkhwu+NhPlaz30vm8xT6kUvF//zhjFOLp1EBFGMEPD8EAoJxSHNlcg6AToWChBZnhyoCChniiGCEpRxnolxVlI168Ne/H6Z9M4bdsZvmvVWs2ymQo7IMTklNrkgLdImHdIlnDyQJ/JMXoxH49V4M95/RleMcueQ/IHx8Q3lsphK</latexit><latexit sha1_base64="HZuTXJHLXBHZACfcsRroZHfqhzg=">AAACBXicbVC7TsNAEDzzDOHlQElzIkKiIbJRJCgj0aRCQSIPKbGs82UTTjk/dLcGRZZrvoIWKjpEy3dQ8C/YxgUkTDWa2dXOjhdJodGyPo2V1bX1jc3KVnV7Z3dv36wd9HQYKw5dHspQDTymQYoAuihQwiBSwHxPQt+bXeV+/x6UFmFwi/MIHJ9NAzERnGEmuWbt2k1GPsM75Se9dpqe2a5ZtxpWAbpM7JLUSYmOa36NxiGPfQiQS6b10LYidBKmUHAJaXUUa4gYn7EpDDMaMB+0kxTRU3oSa4YhjUBRIWkhwu+NhPlaz30vm8xT6kUvF//zhjFOLp1EBFGMEPD8EAoJxSHNlcg6AToWChBZnhyoCChniiGCEpRxnolxVlI168Ne/H6Z9M4bdsZvmvVWs2ymQo7IMTklNrkgLdImHdIlnDyQJ/JMXoxH49V4M95/RleMcueQ/IHx8Q3lsphK</latexit><latexit sha1_base64="HZuTXJHLXBHZACfcsRroZHfqhzg=">AAACBXicbVC7TsNAEDzzDOHlQElzIkKiIbJRJCgj0aRCQSIPKbGs82UTTjk/dLcGRZZrvoIWKjpEy3dQ8C/YxgUkTDWa2dXOjhdJodGyPo2V1bX1jc3KVnV7Z3dv36wd9HQYKw5dHspQDTymQYoAuihQwiBSwHxPQt+bXeV+/x6UFmFwi/MIHJ9NAzERnGEmuWbt2k1GPsM75Se9dpqe2a5ZtxpWAbpM7JLUSYmOa36NxiGPfQiQS6b10LYidBKmUHAJaXUUa4gYn7EpDDMaMB+0kxTRU3oSa4YhjUBRIWkhwu+NhPlaz30vm8xT6kUvF//zhjFOLp1EBFGMEPD8EAoJxSHNlcg6AToWChBZnhyoCChniiGCEpRxnolxVlI168Ne/H6Z9M4bdsZvmvVWs2ymQo7IMTklNrkgLdImHdIlnDyQJ/JMXoxH49V4M95/RleMcueQ/IHx8Q3lsphK</latexit>

q
<latexit sha1_base64="16pQWzTlMOESzzBU0Brn0u79QwI=">AAAB83icbVC7SgNBFJ31GeMramkzGASrsCuCKQM2lgmYByRLmJ3cxCGzs+vMHSEs+QJbrezE1g+y8F+cXVNo4qkO59zLPfdEqRQGff/TW1vf2NzaLu2Ud/f2Dw4rR8cdk1jNoc0TmehexAxIoaCNAiX0Ug0sjiR0o+lN7ncfQRuRqDucpRDGbKLEWHCGTmo9DCtVv+YXoKskWJAqWaA5rHwNRgm3MSjkkhnTD/wUw4xpFFzCvDywBlLGp2wCfUcVi8GEWRF0Ts+tYZjQFDQVkhYi/N7IWGzMLI7cZMzw3ix7ufif17c4roeZUKlFUDw/hEJCcchwLVwDQEdCAyLLkwMVinKmGSJoQRnnTrSukrLrI1j+fpV0LmuB462raqO+aKZETskZuSABuSYNckuapE04AfJEnsmLZ71X7817/xld8xY7J+QPvI9veKCRcA==</latexit><latexit sha1_base64="16pQWzTlMOESzzBU0Brn0u79QwI=">AAAB83icbVC7SgNBFJ31GeMramkzGASrsCuCKQM2lgmYByRLmJ3cxCGzs+vMHSEs+QJbrezE1g+y8F+cXVNo4qkO59zLPfdEqRQGff/TW1vf2NzaLu2Ud/f2Dw4rR8cdk1jNoc0TmehexAxIoaCNAiX0Ug0sjiR0o+lN7ncfQRuRqDucpRDGbKLEWHCGTmo9DCtVv+YXoKskWJAqWaA5rHwNRgm3MSjkkhnTD/wUw4xpFFzCvDywBlLGp2wCfUcVi8GEWRF0Ts+tYZjQFDQVkhYi/N7IWGzMLI7cZMzw3ix7ufif17c4roeZUKlFUDw/hEJCcchwLVwDQEdCAyLLkwMVinKmGSJoQRnnTrSukrLrI1j+fpV0LmuB462raqO+aKZETskZuSABuSYNckuapE04AfJEnsmLZ71X7817/xld8xY7J+QPvI9veKCRcA==</latexit><latexit sha1_base64="16pQWzTlMOESzzBU0Brn0u79QwI=">AAAB83icbVC7SgNBFJ31GeMramkzGASrsCuCKQM2lgmYByRLmJ3cxCGzs+vMHSEs+QJbrezE1g+y8F+cXVNo4qkO59zLPfdEqRQGff/TW1vf2NzaLu2Ud/f2Dw4rR8cdk1jNoc0TmehexAxIoaCNAiX0Ug0sjiR0o+lN7ncfQRuRqDucpRDGbKLEWHCGTmo9DCtVv+YXoKskWJAqWaA5rHwNRgm3MSjkkhnTD/wUw4xpFFzCvDywBlLGp2wCfUcVi8GEWRF0Ts+tYZjQFDQVkhYi/N7IWGzMLI7cZMzw3ix7ufif17c4roeZUKlFUDw/hEJCcchwLVwDQEdCAyLLkwMVinKmGSJoQRnnTrSukrLrI1j+fpV0LmuB462raqO+aKZETskZuSABuSYNckuapE04AfJEnsmLZ71X7817/xld8xY7J+QPvI9veKCRcA==</latexit><latexit sha1_base64="16pQWzTlMOESzzBU0Brn0u79QwI=">AAAB83icbVC7SgNBFJ31GeMramkzGASrsCuCKQM2lgmYByRLmJ3cxCGzs+vMHSEs+QJbrezE1g+y8F+cXVNo4qkO59zLPfdEqRQGff/TW1vf2NzaLu2Ud/f2Dw4rR8cdk1jNoc0TmehexAxIoaCNAiX0Ug0sjiR0o+lN7ncfQRuRqDucpRDGbKLEWHCGTmo9DCtVv+YXoKskWJAqWaA5rHwNRgm3MSjkkhnTD/wUw4xpFFzCvDywBlLGp2wCfUcVi8GEWRF0Ts+tYZjQFDQVkhYi/N7IWGzMLI7cZMzw3ix7ufif17c4roeZUKlFUDw/hEJCcchwLVwDQEdCAyLLkwMVinKmGSJoQRnnTrSukrLrI1j+fpV0LmuB462raqO+aKZETskZuSABuSYNckuapE04AfJEnsmLZ71X7817/xld8xY7J+QPvI9veKCRcA==</latexit>

0
<latexit sha1_base64="2Oa6kk2XoRI3K2+yVPA6lLKH7vA=">AAAB83icbVC7SgNBFJ2NrxhfUUubwSBYhV0JaBmwsUzAPCBZwuzkJg6ZnV1m7ghhyRfYamUntn6Qhf/ibNxCE091OOde7rknSqUw6PufXmljc2t7p7xb2ds/ODyqHp90TWI1hw5PZKL7ETMghYIOCpTQTzWwOJLQi2a3ud97BG1Eou5xnkIYs6kSE8EZOqntj6o1v+4vQddJUJAaKdAaVb+G44TbGBRyyYwZBH6KYcY0Ci5hURlaAynjMzaFgaOKxWDCbBl0QS+sYZjQFDQVki5F+L2RsdiYeRy5yZjhg1n1cvE/b2BxchNmQqUWQfH8EAoJy0OGa+EaADoWGhBZnhyoUJQzzRBBC8o4d6J1lVRcH8Hq9+uke1UPHG83as1G0UyZnJFzckkCck2a5I60SIdwAuSJPJMXz3qv3pv3/jNa8oqdU/IH3sc3Eh2RKw==</latexit><latexit sha1_base64="2Oa6kk2XoRI3K2+yVPA6lLKH7vA=">AAAB83icbVC7SgNBFJ2NrxhfUUubwSBYhV0JaBmwsUzAPCBZwuzkJg6ZnV1m7ghhyRfYamUntn6Qhf/ibNxCE091OOde7rknSqUw6PufXmljc2t7p7xb2ds/ODyqHp90TWI1hw5PZKL7ETMghYIOCpTQTzWwOJLQi2a3ud97BG1Eou5xnkIYs6kSE8EZOqntj6o1v+4vQddJUJAaKdAaVb+G44TbGBRyyYwZBH6KYcY0Ci5hURlaAynjMzaFgaOKxWDCbBl0QS+sYZjQFDQVki5F+L2RsdiYeRy5yZjhg1n1cvE/b2BxchNmQqUWQfH8EAoJy0OGa+EaADoWGhBZnhyoUJQzzRBBC8o4d6J1lVRcH8Hq9+uke1UPHG83as1G0UyZnJFzckkCck2a5I60SIdwAuSJPJMXz3qv3pv3/jNa8oqdU/IH3sc3Eh2RKw==</latexit><latexit sha1_base64="2Oa6kk2XoRI3K2+yVPA6lLKH7vA=">AAAB83icbVC7SgNBFJ2NrxhfUUubwSBYhV0JaBmwsUzAPCBZwuzkJg6ZnV1m7ghhyRfYamUntn6Qhf/ibNxCE091OOde7rknSqUw6PufXmljc2t7p7xb2ds/ODyqHp90TWI1hw5PZKL7ETMghYIOCpTQTzWwOJLQi2a3ud97BG1Eou5xnkIYs6kSE8EZOqntj6o1v+4vQddJUJAaKdAaVb+G44TbGBRyyYwZBH6KYcY0Ci5hURlaAynjMzaFgaOKxWDCbBl0QS+sYZjQFDQVki5F+L2RsdiYeRy5yZjhg1n1cvE/b2BxchNmQqUWQfH8EAoJy0OGa+EaADoWGhBZnhyoUJQzzRBBC8o4d6J1lVRcH8Hq9+uke1UPHG83as1G0UyZnJFzckkCck2a5I60SIdwAuSJPJMXz3qv3pv3/jNa8oqdU/IH3sc3Eh2RKw==</latexit><latexit sha1_base64="2Oa6kk2XoRI3K2+yVPA6lLKH7vA=">AAAB83icbVC7SgNBFJ2NrxhfUUubwSBYhV0JaBmwsUzAPCBZwuzkJg6ZnV1m7ghhyRfYamUntn6Qhf/ibNxCE091OOde7rknSqUw6PufXmljc2t7p7xb2ds/ODyqHp90TWI1hw5PZKL7ETMghYIOCpTQTzWwOJLQi2a3ud97BG1Eou5xnkIYs6kSE8EZOqntj6o1v+4vQddJUJAaKdAaVb+G44TbGBRyyYwZBH6KYcY0Ci5hURlaAynjMzaFgaOKxWDCbBl0QS+sYZjQFDQVki5F+L2RsdiYeRy5yZjhg1n1cvE/b2BxchNmQqUWQfH8EAoJy0OGa+EaADoWGhBZnhyoUJQzzRBBC8o4d6J1lVRcH8Hq9+uke1UPHG83as1G0UyZnJFzckkCck2a5I60SIdwAuSJPJMXz3qv3pv3/jNa8oqdU/IH3sc3Eh2RKw==</latexit>

NVV � 1
<latexit sha1_base64="dlSGA7hD98PmzQ0oKnOMC8Vit0U=">AAACBXicbVC7TsNAEDyHVwivBEqaExESDZGNIkEZiYYKBYk4kRLLOl824ZTzQ3drUGS55itooaJDtHwHBf+CbVxAwlSjmV3t7HiRFBpN89OorKyurW9UN2tb2zu7e/XGvq3DWHHo8VCGauAxDVIE0EOBEgaRAuZ7Evre7DL3+/egtAiDW5xH4PhsGoiJ4Awzya03rt1k5DO8U35i22l6arn1ptkyC9BlYpWkSUp03frXaBzy2IcAuWRaDy0zQidhCgWXkNZGsYaI8RmbwjCjAfNBO0kRPaXHsWYY0ggUFZIWIvzeSJiv9dz3ssk8pV70cvE/bxjj5MJJRBDFCAHPD6GQUBzSXImsE6BjoQCR5cmBioByphgiKEEZ55kYZyXVsj6sxe+XiX3WsjJ+02522mUzVXJIjsgJscg56ZAr0iU9wskDeSLP5MV4NF6NN+P9Z7RilDsH5A+Mj2/7vJhY</latexit><latexit sha1_base64="dlSGA7hD98PmzQ0oKnOMC8Vit0U=">AAACBXicbVC7TsNAEDyHVwivBEqaExESDZGNIkEZiYYKBYk4kRLLOl824ZTzQ3drUGS55itooaJDtHwHBf+CbVxAwlSjmV3t7HiRFBpN89OorKyurW9UN2tb2zu7e/XGvq3DWHHo8VCGauAxDVIE0EOBEgaRAuZ7Evre7DL3+/egtAiDW5xH4PhsGoiJ4Awzya03rt1k5DO8U35i22l6arn1ptkyC9BlYpWkSUp03frXaBzy2IcAuWRaDy0zQidhCgWXkNZGsYaI8RmbwjCjAfNBO0kRPaXHsWYY0ggUFZIWIvzeSJiv9dz3ssk8pV70cvE/bxjj5MJJRBDFCAHPD6GQUBzSXImsE6BjoQCR5cmBioByphgiKEEZ55kYZyXVsj6sxe+XiX3WsjJ+02522mUzVXJIjsgJscg56ZAr0iU9wskDeSLP5MV4NF6NN+P9Z7RilDsH5A+Mj2/7vJhY</latexit><latexit sha1_base64="dlSGA7hD98PmzQ0oKnOMC8Vit0U=">AAACBXicbVC7TsNAEDyHVwivBEqaExESDZGNIkEZiYYKBYk4kRLLOl824ZTzQ3drUGS55itooaJDtHwHBf+CbVxAwlSjmV3t7HiRFBpN89OorKyurW9UN2tb2zu7e/XGvq3DWHHo8VCGauAxDVIE0EOBEgaRAuZ7Evre7DL3+/egtAiDW5xH4PhsGoiJ4Awzya03rt1k5DO8U35i22l6arn1ptkyC9BlYpWkSUp03frXaBzy2IcAuWRaDy0zQidhCgWXkNZGsYaI8RmbwjCjAfNBO0kRPaXHsWYY0ggUFZIWIvzeSJiv9dz3ssk8pV70cvE/bxjj5MJJRBDFCAHPD6GQUBzSXImsE6BjoQCR5cmBioByphgiKEEZ55kYZyXVsj6sxe+XiX3WsjJ+02522mUzVXJIjsgJscg56ZAr0iU9wskDeSLP5MV4NF6NN+P9Z7RilDsH5A+Mj2/7vJhY</latexit><latexit sha1_base64="dlSGA7hD98PmzQ0oKnOMC8Vit0U=">AAACBXicbVC7TsNAEDyHVwivBEqaExESDZGNIkEZiYYKBYk4kRLLOl824ZTzQ3drUGS55itooaJDtHwHBf+CbVxAwlSjmV3t7HiRFBpN89OorKyurW9UN2tb2zu7e/XGvq3DWHHo8VCGauAxDVIE0EOBEgaRAuZ7Evre7DL3+/egtAiDW5xH4PhsGoiJ4Awzya03rt1k5DO8U35i22l6arn1ptkyC9BlYpWkSUp03frXaBzy2IcAuWRaDy0zQidhCgWXkNZGsYaI8RmbwjCjAfNBO0kRPaXHsWYY0ggUFZIWIvzeSJiv9dz3ssk8pV70cvE/bxjj5MJJRBDFCAHPD6GQUBzSXImsE6BjoQCR5cmBioByphgiKEEZ55kYZyXVsj6sxe+XiX3WsjJ+02522mUzVXJIjsgJscg56ZAr0iU9wskDeSLP5MV4NF6NN+P9Z7RilDsH5A+Mj2/7vJhY</latexit>

qR
<latexit sha1_base64="5leajQ2JQ+A1GEc/PTpZCA0BvD0=">AAAB93icbVC7TsNAEDyHVwivACXNiQiJKrIREpSRaCgDwkmkxIrOl0045Xw2d2ukyMo30EJFh2j5HAr+hbNxAQlTjWZ2tbMTJlIYdN1Pp7Kyura+Ud2sbW3v7O7V9w86Jk41B5/HMta9kBmQQoGPAiX0Eg0sCiV0w+lV7ncfQRsRqzucJRBEbKLEWHCGVvIfhtntfFhvuE23AF0mXkkapER7WP8ajGKeRqCQS2ZM33MTDDKmUXAJ89ogNZAwPmUT6FuqWAQmyIqwc3qSGoYxTUBTIWkhwu+NjEXGzKLQTkYM782il4v/ef0Ux5dBJlSSIiieH0IhoThkuBa2BaAjoQGR5cmBCkU50wwRtKCMcyumtpaa7cNb/H6ZdM6anuU3543WedlMlRyRY3JKPHJBWuSatIlPOBHkiTyTF2fmvDpvzvvPaMUpdw7JHzgf36Xxkz0=</latexit><latexit sha1_base64="5leajQ2JQ+A1GEc/PTpZCA0BvD0=">AAAB93icbVC7TsNAEDyHVwivACXNiQiJKrIREpSRaCgDwkmkxIrOl0045Xw2d2ukyMo30EJFh2j5HAr+hbNxAQlTjWZ2tbMTJlIYdN1Pp7Kyura+Ud2sbW3v7O7V9w86Jk41B5/HMta9kBmQQoGPAiX0Eg0sCiV0w+lV7ncfQRsRqzucJRBEbKLEWHCGVvIfhtntfFhvuE23AF0mXkkapER7WP8ajGKeRqCQS2ZM33MTDDKmUXAJ89ogNZAwPmUT6FuqWAQmyIqwc3qSGoYxTUBTIWkhwu+NjEXGzKLQTkYM782il4v/ef0Ux5dBJlSSIiieH0IhoThkuBa2BaAjoQGR5cmBCkU50wwRtKCMcyumtpaa7cNb/H6ZdM6anuU3543WedlMlRyRY3JKPHJBWuSatIlPOBHkiTyTF2fmvDpvzvvPaMUpdw7JHzgf36Xxkz0=</latexit><latexit sha1_base64="5leajQ2JQ+A1GEc/PTpZCA0BvD0=">AAAB93icbVC7TsNAEDyHVwivACXNiQiJKrIREpSRaCgDwkmkxIrOl0045Xw2d2ukyMo30EJFh2j5HAr+hbNxAQlTjWZ2tbMTJlIYdN1Pp7Kyura+Ud2sbW3v7O7V9w86Jk41B5/HMta9kBmQQoGPAiX0Eg0sCiV0w+lV7ncfQRsRqzucJRBEbKLEWHCGVvIfhtntfFhvuE23AF0mXkkapER7WP8ajGKeRqCQS2ZM33MTDDKmUXAJ89ogNZAwPmUT6FuqWAQmyIqwc3qSGoYxTUBTIWkhwu+NjEXGzKLQTkYM782il4v/ef0Ux5dBJlSSIiieH0IhoThkuBa2BaAjoQGR5cmBCkU50wwRtKCMcyumtpaa7cNb/H6ZdM6anuU3543WedlMlRyRY3JKPHJBWuSatIlPOBHkiTyTF2fmvDpvzvvPaMUpdw7JHzgf36Xxkz0=</latexit><latexit sha1_base64="5leajQ2JQ+A1GEc/PTpZCA0BvD0=">AAAB93icbVC7TsNAEDyHVwivACXNiQiJKrIREpSRaCgDwkmkxIrOl0045Xw2d2ukyMo30EJFh2j5HAr+hbNxAQlTjWZ2tbMTJlIYdN1Pp7Kyura+Ud2sbW3v7O7V9w86Jk41B5/HMta9kBmQQoGPAiX0Eg0sCiV0w+lV7ncfQRsRqzucJRBEbKLEWHCGVvIfhtntfFhvuE23AF0mXkkapER7WP8ajGKeRqCQS2ZM33MTDDKmUXAJ89ogNZAwPmUT6FuqWAQmyIqwc3qSGoYxTUBTIWkhwu+NjEXGzKLQTkYM782il4v/ef0Ux5dBJlSSIiieH0IhoThkuBa2BaAjoQGR5cmBCkU50wwRtKCMcyumtpaa7cNb/H6ZdM6anuU3543WedlMlRyRY3JKPHJBWuSatIlPOBHkiTyTF2fmvDpvzvvPaMUpdw7JHzgf36Xxkz0=</latexit>
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Figure 5.4: Virtual antenna array considered in the description of our detection and estimation algorithms.
The reference VA selected in this case is identified by a yellow circle.

In the following sections, all the RASCAs are described. In Section 5.4 we first focus on
the RASCA-FR3 and RASCA-FC3, i.e. on the algorithms to be employed in a MIMO FMCW
radar system equipped with a 2D antenna array (in particular, with the URA shown in Fig. 5.4).
Then, we show how to adapt these algorithms to the case in which this radar system is equipped
with a 1D antenna array (in particular, with an ULA); this leads to the RASCA-FR2 and the
RASCA-FC2.

5.4 Range & angle serial cancellation algorithms for a frequency modulated
continuous wave radar system

In this paragraph, we provide a short description of the architecture of the RASCAs for FMCW
radar systems and comment on the method we developed for target detection and cancellation in
the angular domain. Then, we illustrate RASCA-FR3 and RASCA-FC3 in detail. Finally, we
show how to derive the RASCA-FR2 and RASCA-FC2 from them.

5.4.1 Architecture of the range & angle serial cancellation algorithms for a
frequency modulated continuous wave radar system

The inner structure of the RASCAs for an FMCW radar system is described by the block
diagram shown in Fig. 5.5, whereas the meaning of the most relevant parameters, sets, vectors
and matrices appearing in the description of this algorithm is summarised in Table 5.1. . The
processing accomplished inside the blocks appearing in that figure can be summarized as follows.
The FFT processing block turns the time domain information provided by the set of NVR vectors
{x(v)

z } into the frequency domain information feeding both the RPE and the SPE blocks. This
transformation requires the evaluation of 3NVR FFTs, all of order N0. In fact, it consists in the
evaluation of the triad (X

(v)
0 , X(v)

1 , X(v)
2 ), collecting three N0-dimensional vectors, on the basis of

x
(v)
z , for v = 0, 1, ..., NVR − 1. For this reason, the output of the considered block is represented

by the set
SFFT ≜

{(
X

(v)
0 ,X

(v)
1 ,X

(v)
2

)
; v = 0, 1, ..., NVR − 1

}
, (5.22)

consisting of 3 ·NVR N0-dimensional vectors. Note that, however, a portion of this set is discarded
by the RPE, since this block processes the information originating from NA distinct VAs only.
The triads selected by the RPE form the subset

S̄FFT ≜
{(

X
(v)
0 ,X

(v)
1 ,X

(v)
2

)
; v ∈ SA

}
, (5.23)

of SFFT (5.22); here,
SA ≜ {v0, v1, ..., vNA−1} , (5.24)

represents the set of the values of the VA index v identifying the elements of SFFT that belong to
S̄FFT. Each of the triads of S̄FFT is processed, independently of all the other ones, by a novel
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Table 5.1: Most relevant parameters, sets, vectors and matrices appearing in our description of RASCA-FC3.

Parameter Description

x
(v)
0,ZP Zero-padded version of the vector {x(v)

z }.
x
(v)
m,ZP Zero-padded version of the vector {x(v)

m } (with m = 1 and 2).
X

(v)
m DFT of the vector x

(v)
m,ZP (with m = 0, 1 and 2).

SFFT Set collecting the NVR triads (X
(v)
0 ,X

(v)
1 ,X

(v)
2 ) such that v = 0, 1, . . . , NVR − 1.

NA Number of virtual antennas exploited by the RPE.
SA Set collecting the NA indices of the virtual antennas exploited by the RPE.
S̄FFT Set collecting the NA triads (X

(v)
0 ,X

(v)
1 ,X

(v)
2 ) such that v ∈ SA.

TSTDREC Threshold set in the STDREC algorithm to limit its overall number of iterations.

X
(vk)
m [i]

Residual spectrum available for the vk-th antenna at the end of the (i−1)-th iteration
of the STDREC algorithm.

E
(vk)
i

Energy associated with the residual spectrum X
(vk)
m [i] and computed by the STDREC

algorithm for the vk-th antenna at the end of its (i− 1)-th iteration.

Ĉ
(vk)
i

Estimate of the complex amplitude C(vk)
i computed for the vk-th antenna in the i-th

iteration of the STDREC algorithm.

F̂
(vk)
i

Estimate of the normalised frequency F (vk)
i computed for the vk-th antenna in the

i-th iteration of the STDREC algorithm.

C
(vk)
Xm

[i]
Estimate of the contribution given by the i-th target detected on the vk-th antenna
to the vector X

(vk)
m [i] (with m = 0, 1 and 2).

SRPE Set collecting the information generated by the RPE and feeding to the SPE.
TSTDAEC Threshold set in the STDAEC algorithm to limit its overall number of recursions.

X(i)[l]
Matrix representing the spectral contribution given by the l-th frequency bin and
available at the beginning of the i-th iteration of the STDAEC algorithm.

E(i)[l]
Energy associated with the residual spectrum X(i)[l] made available by the STDAEC
algorithm for the l-th frequency bin at the end of its (i− 1)-th iteration.

s
(i)
VULA,k[l]

k - th vector collecting the spectral information computed for the reference VULA
and the l-th frequency bin in the i-th iteration of the STDAEC algorithm (with
k = 0, 1 and 2).

ĈV,i[l]
Estimate of the complex amplitude CV,i[l] computed for the target detected in the
l-th frequency bin within the i-th iteration of the STDAEC algorithm.

F̂V,i[l]
Estimate of the normalised vertical spatial frequency FV,i[l] computed for the target
detected in the l-th frequency bin within the i-th iteration of the STDAEC algorithm.

R
(VF)
i [l, q]

Phase rotation factor computed for the q-th VULA and the l-th frequency bin within
the i-th iteration of the STDAEC algorithm (vertical folding).

X
(VF)
i [l]

Vertically folded spectrum computed for the l-th frequency bin within the i-th
iteration of the STDAEC algorithm.

ĈH,i[l]
Estimate of the complex amplitude CH,i[l] computed on the basis of a vertically
folded spectrum within the i-th iteration of the STDAEC algorithm for the l-th
frequency bin.

F̂H,i[l]
Estimate of the normalised horizontal spatial frequency FH,i[l] computed on the basis
of a vertically folded spectrum within the i-th iteration of the STDAEC algorithm.

R
(HF)
i [l, p]

Phase rotation factor computed for the p-th HULA and the l-th frequency bin within
the i-th iteration of the STDAEC algorithm (horizontal folding).

R
(HV)
i [l, p, q]

Phase rotation factor computed for the (p, q) VA and the l-th frequency bin within
the i-th iteration of the STDAEC algorithm (overall folding).

{X(i)
m,OF[l]}

Overall folded spectrum computed for the l-th frequency bin within the i-th iteration
of the STDAEC algorithm.

Ĉi[l]
Estimate of the complex amplitude Ci[l] computed on the basis of a overall folded
spectrum within the i-th iteration of the STDAEC algorithm.

F̂i[l]
Estimate of the normalised frequency Fi[l] computed on the basis of a overall folded
spectrum within the i-th iteration of the STDAEC algorithm.

C
(i)
X0

[l]
Estimate of the contribution, given by the target detected within i-th iteration of
the STDAEC algorithm, to the vector X(i)[l].

R̂i[l], θ̂i[l], ϕ̂i[l]
Estimates of the range, azimuth and elevation made available by the SPE for the
i-th target detected in the l-th frequency bin.
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iterative estimation algorithm called single target detection, range estimation and cancellation
(STDREC). This algorithm detects the most relevant targets on the selected antenna and estimates
their ranges (i.e., the frequencies associated with these ranges; see (5.9) and (5.15)) and their
complex amplitudes (see (5.11) and (5.13)). The name of this algorithm originates from the fact
that, in each of its iterations, it detects a single target (namely, the strongest target), estimates
its parameters (and, in particular, the frequency characterizing it, i.e. its range) and cancels the
target contribution to the received signal; the residual signal resulting from target cancellation
represents the input of the next iteration. The output of the STDREC algorithm that processes
the raw data originating from the vk-th VA is represented by the set4

Svk ≜
{(
α̂
(vk)
i , Ĉ

(vk)
i

)
, i = 0, 1, . . . , Lk − 1

}
, (5.25)

with k = 0, 1, ..., NA− 1; here, Lk is the overall number of targets detected on the considered VA,
whereas Ĉ(vk)

i and α̂(vk)
i represent the estimate of the complex amplitude of the i-th target and

the index of the frequency bin5 in which this target has been detected. Finally, the information
provided by the NA sets {Svk} are merged to generate the single set

SRPE ≜ {(α̂l, Eb,l) , l = 0, 1, . . . , Lb − 1} , (5.26)

where Lb is the overall number of targets detected on all the selected VAs, α̂l is the index of the
frequency bin in which the l-th target has been detected and Eb,l is the average energy estimated
for it. Note that:

a) The cardinality Lb of the set SRPE represents a preliminary estimate of the overall number of
targets; in fact, multiple targets having the same range or ranges whose mutual differences
are below the resolution of the employed radar system are detected as a single target and
no effort is made at this stage to separate their contributions.

b) The energies {Eb,l} represent the perceptual importance of the identified frequency bins, in
the sense that a larger energy is associated with a more important frequency bin.

Both the sets SFFT (5.22) and SRPE (5.26) feed the SPE. The aim of this block is to analyse
the spectral information associated with the ranges (i.e., with the frequency bins) identified by
the RPE in order to: a) estimate the angular coordinates (i.e., azimuth and elevation) of the
targets contributing to each frequency bin; b) detect additional targets associated with adjacent
frequency bins and potentially hidden by the spectral leakage due to stronger targets; c) estimate
the angular coordinates (i.e., azimuth and elevation) of such additional targets and compute a
finer estimate of their range.

The first stage of the processing accomplished by the SPE involves the whole set SFFT

(5.22) and is executed on a bin-by-bin basis, since it aims at: a) detecting all the targets that
contribute to the energy of each frequency bin contained in the TRP and b) estimating their
angular coordinates. For this reason, this stage consists of Lb estimators running in parallel ;
each estimator focuses on one of the Lb frequency bins (i.e., ranges) appearing in the TRP (see
Fig. 5.5). Moreover, each estimator executes a novel iterative estimation algorithm, called single
target detection, angular estimation and cancellation (STDAEC). The l-th STDAEC algorithm
processes the spectral information available on the whole virtual receive array and referring to
the α̂l-th frequency bin only (with l = 0, 1, ..., Lb − 1), detects L[l] targets contributing to it
and, for each detected target, computes: a) an estimate of its complex amplitude; b) an estimate
of its angular coordinates (i.e., its azimuth and its elevation); c) a refined estimate of its range

4Note that the complex amplitude Ĉ(vk)
i appearing in the following equations is replaced by Â

(vk)
i if the received

sequence is complex (see eqs. (5.7) and (5.13)). This consideration holds for various equations appearing in the remaining
part of this chapter.

5Generally speaking, the evaluation of an FFT of order N0 leads to partitioning the normalised frequency interval [0,
1/2) in N0 frequency bins.
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Figure 5.5: Block diagram describing the inner structure of the RASCAs for an FMCW radar system.

(do not forget that the preliminary estimate of this range is provided by the bin index α̂l). If D[l]
iterations are accomplished by the l-th STDAEC algorithm, D[l] distinct targets are detected in
the α̂l-th frequency bin, provided that none of them is classified as a false (i.e., ghost) target. In
addition, all the estimates generated by this algorithm are collected in the set

Tl ≜
{(
Ĉi [l] , F̂i [l] , α̂i [l] , F̂V,i[l], F̂H,i[l]

)
; i = 0, 1, . . . , D[l]− 1

}
, (5.27)

or in the set
Tl ≜

{(
Ĉi [l] , F̂i [l] , α̂i [l] , F̂H,i[l]

)
; i = 0, 1, . . . , D[l]− 1

}
, (5.28)

with l = 0, 1, . . . , Lb − 1, in the case of 3D and 2D radar imaging, respectively; here, Ĉi [l],
F̂i [l] and α̂i [l] denote the estimates of the complex amplitude Ci [l], of the normalised frequency
Fi [l] and of the frequency bin αi [l], respectively, characterizing the i-th target detected on the
reference VA and in the l-th frequency bin, whereas F̂H,i[l] and F̂V,i[l] represent the estimates of
the normalised horizontal spatial frequency FH,i[l] and of the normalised vertical spatial frequency
FV,i[l], respectively, referring to the above mentioned target.

Finally, in the second (and last) stage of the SPE, the spatial coordinates of all the detected
targets are computed on the basis of the spatial information collected in the Lb sets {Tl} and an
overall image of the propagation scenario is generated in the form of a point cloud.

5.4.2 Some considerations on target detection and cancellation in the angular
domain

It is worth pointing out that the STDAEC algorithm represents the most complicated part
of the processing accomplished by all the blocks appearing in Fig. 5.5. The derivation of this
algorithm relies on the fact that: a) each target provides an additive contribution to the spectra
evaluated on all the VAs; b) periodic variations are observed in the phase of this contribution if
we move horizontally or vertically along the considered virtual array (see Fig. 5.4). In fact, if we
assume that the intensity of the echo received by each VA from the i-th target detected in the
l-th frequency bin does not change from antenna to antenna, the complex amplitude Ci[p, q, l]
observed on the (p, q) VA can be expressed as (see (5.9) and (5.10))

Ci[p, q, l] = Ci[l] exp

[
j
4π

λ

[
dVH (p− pR) cos(ϕi[l]) sin(θi[l]) + dVV (q − qR) sin(ϕi[l])

]]
; (5.29)

here, λ = c/f0 is the wavelength associated with the start frequency, (pR, qR) is the couple of
integers identifying the selected reference VA, θi[l], ϕi[l] and Ri[l] are the azimuth, the elevation
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and the range, respectively, characterizing the considered target, and Ci[l] is its complex amplitude
observed on the reference antenna. If (5.29) holds, the rate of the phase variations observed in
the complex amplitudes {Ci[p, q, l]} for a given l is proportional to (see (5.18) and (5.19))

FH,i[l] ≜
2dVH

λ
cos(ϕi[l]) sin(θi[l]) (5.30)

and
FV,i[l] ≜

2dVV

λ
sin(ϕi[l]), (5.31)

if we move along an HULA and a vertical ULA (VULA), respectively. In fact, the quantity FH,i[l]
(FV,i[l]) represents the normalised horizontal (vertical) spatial frequency characterizing the i-th
target detected in the l-th frequency bin; if both these frequencies are known, the elevation and
the azimuth of this target can be evaluated as

ϕi[l] = arcsin

(
λ

2dVV
FV,i[l]

)
(5.32)

and
θi[l] = arcsin

(
λ

2dVH cos(ϕi[l])
FH,i[l]

)
, (5.33)

respectively.
Moreover, in the derivation of the STDAEC algorithm, the following two techniques have been

exploited:
Serial cancellation of targets – This technique is conceptually similar to the cancellation

strategy exploited by the STDREC algorithm and allows us to detect multiple targets in the
same frequency bin and, in particular, to identify targets having similar spatial coordinates.
It is important to keep in mind that the frequencies associated with distinct targets detected
in the same frequency bin do not necessarily belongs to that bin; in fact, they can belong to
adjacent bins, so that the tails (not the peak) of their spectra are really observed in the considered
frequency bin. This problem originates from the fact that, generally speaking, the contribution of
a point target to the spectrum computed on each VA is not a line, unless the associated normalised
frequency is exactly a multiple of the fundamental frequency

FFFT = 1/N0, (5.34)

consequently, such a contribution is spread over multiple adjacent frequency bins (i.e., spectral
leakage is observed)

Spatial folding – As already stated above, the frequency associated with a target detected in
the l-th frequency bin does not necessarily fall exactly in that bin. The technique dubbed spatial
folding has been devised to: a) evaluate a more accurate estimate of the frequency associated
with a target detected in a given bin; b) discriminate real targets from ghost targets. Spatial
folding is based on the following idea. Once the horizontal and the vertical spatial frequencies
associated with a target detected in a given frequency bin have been estimated (see (5.30) and
(5.31)), the spectra computed on multiple VAs can be combined in a constructive fashion by

1) taking a reference VA (identified by (p, q) = (pR, qR); see Fig. 5.4), and compensating for the
phase differences, estimated for that target, between the reference VA and the other VAs of
the whole array, or

2) taking a reference ULA and compensating for the phase differences, estimated for that target,
between the reference ULA and other ULAs parallel to it.

In case 1), folding generates a single spectrum, dubbed folded spectrum, and has the beneficial
effects of a) averaging out the effects of the noise that affects the VAs and b) combining, in a
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constructive fashion, the contributions of all the targets different from the one which the employed
spatial frequencies refer to. For this reason, in analysing the amplitude of the folded spectrum, a
well defined peak in its amplitude is expected in the l-th frequency bin or in a bin close to it.
When this peak is detected, a refined estimate of the frequency (and, consequently, of the range)
and the complex amplitude characterizing the target for which folding has been accomplished can
be computed by identifying its position. On the contrary, if no peak is found, the detected target
is actually a ghost target. In case 2), folding generates as many folded spectra as the number of
antennas of the reference ULA and offers the same advantages as case 1).

In the remaining part of this chapter, when folding is employed, the following terminology is
adopted:

Vertical folding – This refers to the case in which folding involves a reference HULA on which
other HULAs are folded.

Overall folding – This refers to the case in which folding involves all the spectra, i.e. the overall
virtual URA; a single folded spectrum is computed in this case.

Note that, in any case, folding may involve the whole virtual receive array or a portion of
it. The exploitation of a subset of the available VAs is motivated by the fact that, in practice,
in computing a folded spectrum that refers to the l-th frequency bin, the estimates F̂H,i[l] and
F̂V,i[l] of the frequencies FH,i[l] and FV,i[l], respectively, are employed, so that the quality of
the phase compensation factors computed for the antennas that are farther from the reference
antenna or the reference HULA may be affected by significant estimation errors.

All the mathematical details about vertical and overall folding can be found in the next
paragraph.

5.4.3 Detailed description of the range & angle serial cancellation algorithms for a
frequency modulated continuous wave radar system endowed with a
two-dimensional antenna array

In the following, the RASCA-FR3 is described first; then, the (minor) modifications required to
obtain the RASCA-FC3 from it are illustrated. The RASCA-FR3 processing is divided in three
tasks, each associated with one of the blocks appearing in Fig. 5.5 (the i-th task is denoted Ti); a
description of each task is provided below. Various details about the techniques employed in these
tasks, omitted here to ease the understanding of the overall flow of the algorithm, are provided in
Section 5.5.

T1 – FFT processing

The processing accomplished within this task can be summarized as follows. Given the vector
x
(v)
z , the N -dimensional vectors

x
(v)
1 ≜

[
x
(v)
1,0, x

(v)
1,1, . . . , x

(v)
1,N−1

]T
(5.35)

and
x
(v)
2 ≜

[
x
(v)
2,0, x

(v)
2,1, . . . , x

(v)
2,N−1

]T
(5.36)

are evaluated for v = 0, 1, ..., NVR − 1; here,

x(v)m,n ≜ nm x(v)z,n (5.37)

with n = 0, 1, ..., N − 1 and m = 1, 2. Then, the vectors x
(v)
z , x(v)

1 and x
(v)
2 undergo zero padding

(ZP) for any v; this produces the N0-dimensional vectors

x
(v)
0,ZP =

[
(x(v)
z )T 0T(M−1)N

]T
, (5.38)

x
(v)
1,ZP =

[
(x

(v)
1 )T 0T(M−1)N

]T
(5.39)
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and
x
(v)
2,ZP =

[
(x

(v)
2 )T 0T(M−1)N

]T
, (5.40)

respectively; here, M is a positive integer (dubbed oversampling factor), 0D is a D-dimensional
(column) null vector and

N0 ≜M N. (5.41)

Finally, the N0-dimensional vectors

X(v)
m =

[
X

(v)
m,0, X

(v)
m,1, ..., X

(v)
m,N0−1

]T
= Xm [p, q]

=
[
Xm,0 [p, q] , Xm,1 [p, q] , ..., Xm,N0−1 [p, q]

]T
≜DFTN0

[
x
(v)
m,ZP

]
, (5.42)

with m = 0, 1, 2, are computed for any v (i.e., for any p and q) by executing a N0 order FFT
for each of them; here, DFTN0 [x] denotes, up to a scale factor, the N0 order discrete Fourier
transform (DFT) of the N0-dimensional vector x. More specifically, we assume that

X
(v)
m,k ≜

1

N

N−1∑
n=0

nm x(v)z,n exp

(
−j 2πnk

N0

)
, (5.43)

with k = 0, 1, ..., N0 − 1 and m = 0, 1, 2.

T2 – RPE

The processing accomplished within this task consists of the three consecutive steps listed below
(the i-th step is denoted T2-Si in the following); each step is associated with one of the blocks
included in the RPE, as shown in Fig. 5.5.

T2-S1) VA selection – In this step, the set S̄FFT (5.23) is built. This requires generating
the set SA (5.24), i.e. a set of NA integers that identifies the selected VAs. In our computer
simulations, the elements of SA have been generated by randomly extracting NA distinct integers
from the set {0, 1, ..., NVR − 1}.

T2-S2) Target detection and range estimation – The processing carried out within this step is
executed by the STDREC algorithm; this operates on an antenna-by-antenna basis. The STDREC
processing for the vk-th VA (with k = 0, 1, ..., NA − 1) can be summarized as follows. A simple
initialization is accomplished first by setting

X(vk)
m [0] ≜ X(vk)

m , (5.44)

with m = 0, 1, 2, and the iteration index i to 0. Then, the STDREC iterations are started; in
the i-th iteration, the three steps described below are accomplished to detect a new target and
cancel its contribution to the triad (X

(vk)
0 [i], X(vk)

1 [i], X(vk)
2 [i]) (the p-th step of each is denoted

STDREC-Sp in the following).
STDREC-S1) Detection of a new target and estimation of its parameters – The triad (X

(vk)
0 [i],

X
(vk)
1 [i], X(vk)

2 [i]) is processed to detect a new (i.e., the i-th) target, and to estimate the normalised
frequency F (vk)

i and the complex amplitude C(vk)
i associated with it. Note that, generally speaking,

the normalised frequency F (vk)
i is not a multiple of the fundamental frequency FFFT (5.34), that

characterizes the FFT processing executed in T1; for this reason, it can be expressed as

F
(vk)
i = F

(vk)
c,i + δ

(vk)
i FDFT, (5.45)

where F (vk)
c,i represents a coarse estimate of F (vk)

i and δ
(vk)
i is a real parameter called residual.

This step consists in executing an algorithm, dubbed single frequency estimator6 (SFE) and whose
6Note that our general description of the SFE includes the computation of three DFTs, that, in this case, are already

evaluated in T1.
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detailed description is provided in Paragraph 5.5.1. In short, the SFE computes the estimates
Ĉ

(vk)
i , F̂ (vk)

c,i , δ̂(vk)i ,

α̂
(vk)
i =

⌊
F̂

(vk)
c,i /FDFT

⌋
(5.46)

and
F̂

(vk)
i = F̂

(vk)
c,i + δ̂

(vk)
i FDFT (5.47)

of the parameters C(vk)
i , F (vk)

c,i , δ(vk)i , α(vk)
i and F

(vk)
i , respectively, on the basis of the triad

(X
(vk)
0 [i], X(vk)

1 [i], X(vk)
2 [i]); here, α̂(vk)

i represents the index of the frequency bin in which the
i-th target is detected on the vk-th antenna. Note that the parameter F̂ (vk)

i , even if useless in the
construction of the set Svk (5.25), is exploited in the next step.

STDREC-S2) Cancellation of the new target – The contribution (C
(vk)
X0

[i], C(vk)
X1

[i], C(vk)
X2

[i]),

given by the i-th (i.e., by the last) target detected on the vk-th VA, to the triad (X
(vk)
0 [i],X

(vk)
1 [i],

X
(vk)
2 [i]) is computed on the basis of (5.110)–(5.112) (see Paragraph 5.5.3) and cancelled from

the triad itself. Cancellation consists in the computation of the new residual triad

X(vk)
m [i+ 1] =

[
X

(vk)
m,0 [i+ 1], ..., X

(vk)
m,N0−1[i+ 1]

]T
≜X(vk)

m [i]−C
(vk)
Xm

[i], (5.48)

with m = 0, 1, 2.
STDREC-S3) Computation of the residual energy in the frequency domain – The energy

E
(vk)
i+1 ≜

∥∥∥X(vk)
0 [i+ 1]

∥∥∥2 = N0−1∑
p=0

∣∣∣X(vk)
0,p [i+ 1]

∣∣∣2 (5.49)

characterizing the residual spectrum vector X
(vk)
0 [i+ 1] (5.48) is computed and compared with

the positive threshold TSTDREC (which may depend on range, i.e. on the detected frequency). If
this energy is below the threshold, the STDREC algorithm stops and Lk = i relevant targets
are detected on the vk-th VA; otherwise, the recursion index i is increased by one and a new
recursion is started by going back to STDREC-S1.

T2-S3) Fusion of range information – This step aims at merging the information provided by
the NA sets {Svk} (5.25) evaluated in the previous step. Its output is represented by the set SRPE

(5.26), whose elements (i.e., the Lb couples {(α̂l, Eb,l)}) are evaluated as follows. If we define the
set

A(vk)
b ≜ {α̂(vk)

i ; i = 0, 1, . . . , Lk − 1}, (5.50)

identifying all the bins in which at least one target has been detected on the vk-th VA (with
k = 0, 1, ..., NA − 1), the set

Ab ≜ {α̂l; l = 0, 1, . . . , Lb − 1} (5.51)

is generated by putting together all the distinct integers that appear at least once in the NA sets
{A(vk)

b ; k = 0, 1, ..., NA − 1}. Then, the average energy Eb,l associated with the α̂l-th bin (with
l = 0, 1, . . . , Lb − 1 ) is computed as

Eb,l =
1

Nb,l

NA−1∑
k=0

Lk−1∑
i=0

∣∣∣Ĉ(vk)
i

∣∣∣2δ [α̂(vk)
i − α̂l

]
, (5.52)

where

Nb,l =

NA−1∑
k=0

Lk−1∑
i=0

δ
[
α̂
(vk)
i − α̂l

]
(5.53)

represents the overall number of antennas that contribute to this energy (here, δ[z] = 1 if z = 0
and δ[z] = 0 if z ̸= 0)
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T3 – SPE

The processing accomplished within this task consists of the two consecutive steps listed below
(the i-th step is denoted T3-Si in the following); each step is associated with one of the blocks
contained in the SPE represented in Fig. 5.5.

T3-S1) Bin analysis – Within this step, Lb STDAEC algorithms are run in parallel, one for
each of the Lb ranges (i.e., frequency bins) appearing in the TRP. A schematic description of l-th
STDAEC algorithm is provided below (with l = 0, 1, ..., Lb − 1). This algorithm consists of three
steps (its r-th step is denoted STDAEC-Sr in the following) and is initialised by

1. Setting its iteration index i to 0.

2. Setting
X(0) [l] ≜ X [l] , (5.54)

where
X [l] ≜ [X0,α̂l

[p, q]] , (5.55)

is a NVH ×NVV matrix collecting the spectral information available on the whole virtual
receive array and referring to the α̂l-th frequency bin only.

Then, the STDAEC algorithm starts executing its iterations. Within its i-th iteration, it
accomplishes the three steps described below.

STDAEC-S1) Detection of a new target and estimation of its angular parameters – In this
step, the NVH ×NVV matrix

X(i) [l] ≜
[
X

(i)
l [p, q]

]
, (5.56)

is processed to detect the strongest target contributing to it, and to compute the estimates
θ̂i[l], ϕ̂i[l] and Ĉi[l] of θi[l], ϕi[l]) and Ci[l], respectively (note that this target represents the i-th
one detected in the considered frequency bin, since (i − 1) targets have been detected in the
previous recursions). This result is achieved by executing a novel iterative detection and estimation
algorithm called single target detection and angular estimation (STDAE), whose description is
provided after illustrating the overall structure of the RASCA-FR3 to ease reading.

STDAEC-S2) Target cancellation – The contribution C
(i)
X0

[l], given by the i-th target detected
in the l-th frequency bin, to the vector X(i) [l] (5.56) is computed on the basis of (5.124)–(5.125)
(see Paragraph 5.5.3) and is cancelled. Cancellation consists in the computation of the new
residual vector

X(i+1) [l] ≜ X(i) [l]−C
(i)
X0

[l] . (5.57)

STDAEC-S3) Residual energy test – The energy

E(i+1) [l] ≜
∥∥∥X(i+1) [l]

∥∥∥2 = NVH−1∑
p=0

NVV−1∑
q=0

∣∣∣X(i+1)
l [p, q]

∣∣∣2 (5.58)

of the residual spectrum vector X(i+1) [l] (5.57) is compared with the positive threshold TSTDAEC

(which may depend on angular coordinates). If this energy is below the threshold, the STDAEC
algorithm stops; otherwise, the recursion index i is increased by one and a new iteration is started
by going back to STDAEC-S1. If D[l] iterations are accomplished by the STDAEC algorithm
operating on the α̂l-th frequency bin, no more than D[l] distinct targets are identified in that bin
(D[l] targets are found if none of them is deemed to be a ghost target). All the targets information
acquired from the α̂l-th frequency bin are collected in the set Tl (5.27).

T3-S2) Evaluation of the target spatial coordinates and generation of the overall image – In
this step, the estimates of the range, of the elevation and of the azimuth of the i-th target detected
in the α̂l-th frequency bin are computed as (see (5.15), (5.32) and (5.33))

R̂i[l] =
c

2µ
f̂i [l] , (5.59)
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dVH
<latexit sha1_base64="rqrkFvwTIKTAwctS3bktGx5UbfI=">AAACA3icbVC7TsNAEDyHVwiPBChpTkRIVJEdIUEZiSZlkMhDSizrfNmEU84P3e0hRZZLvoIWKjpEy4dQ8C/YxgUkTDWa2dXOjh9LodG2P63KxubW9k51t7a3f3BYbxwdD3RkFIc+j2SkRj7TIEUIfRQoYRQrYIEvYegvbnJ/+ABKiyi8w2UMbsDmoZgJzjCTvEZ96iWTgOG9CpJBN029RtNu2QXoOnFK0iQlel7jazKNuAkgRC6Z1mPHjtFNmELBJaS1idEQM75gcxhnNGQBaDcpgqf03GiGEY1BUSFpIcLvjYQFWi8DP5vMM+pVLxf/88YGZ9duIsLYIIQ8P4RCQnFIcyWyRoBOhQJElicHKkLKmWKIoARlnGeiySqqZX04q9+vk0G75WT89rLZaZfNVMkpOSMXxCFXpEO6pEf6hBNDnsgzebEerVfrzXr/Ga1Y5c4J+QPr4xsfUZfs</latexit><latexit sha1_base64="rqrkFvwTIKTAwctS3bktGx5UbfI=">AAACA3icbVC7TsNAEDyHVwiPBChpTkRIVJEdIUEZiSZlkMhDSizrfNmEU84P3e0hRZZLvoIWKjpEy4dQ8C/YxgUkTDWa2dXOjh9LodG2P63KxubW9k51t7a3f3BYbxwdD3RkFIc+j2SkRj7TIEUIfRQoYRQrYIEvYegvbnJ/+ABKiyi8w2UMbsDmoZgJzjCTvEZ96iWTgOG9CpJBN029RtNu2QXoOnFK0iQlel7jazKNuAkgRC6Z1mPHjtFNmELBJaS1idEQM75gcxhnNGQBaDcpgqf03GiGEY1BUSFpIcLvjYQFWi8DP5vMM+pVLxf/88YGZ9duIsLYIIQ8P4RCQnFIcyWyRoBOhQJElicHKkLKmWKIoARlnGeiySqqZX04q9+vk0G75WT89rLZaZfNVMkpOSMXxCFXpEO6pEf6hBNDnsgzebEerVfrzXr/Ga1Y5c4J+QPr4xsfUZfs</latexit><latexit sha1_base64="rqrkFvwTIKTAwctS3bktGx5UbfI=">AAACA3icbVC7TsNAEDyHVwiPBChpTkRIVJEdIUEZiSZlkMhDSizrfNmEU84P3e0hRZZLvoIWKjpEy4dQ8C/YxgUkTDWa2dXOjh9LodG2P63KxubW9k51t7a3f3BYbxwdD3RkFIc+j2SkRj7TIEUIfRQoYRQrYIEvYegvbnJ/+ABKiyi8w2UMbsDmoZgJzjCTvEZ96iWTgOG9CpJBN029RtNu2QXoOnFK0iQlel7jazKNuAkgRC6Z1mPHjtFNmELBJaS1idEQM75gcxhnNGQBaDcpgqf03GiGEY1BUSFpIcLvjYQFWi8DP5vMM+pVLxf/88YGZ9duIsLYIIQ8P4RCQnFIcyWyRoBOhQJElicHKkLKmWKIoARlnGeiySqqZX04q9+vk0G75WT89rLZaZfNVMkpOSMXxCFXpEO6pEf6hBNDnsgzebEerVfrzXr/Ga1Y5c4J+QPr4xsfUZfs</latexit><latexit sha1_base64="rqrkFvwTIKTAwctS3bktGx5UbfI=">AAACA3icbVC7TsNAEDyHVwiPBChpTkRIVJEdIUEZiSZlkMhDSizrfNmEU84P3e0hRZZLvoIWKjpEy4dQ8C/YxgUkTDWa2dXOjh9LodG2P63KxubW9k51t7a3f3BYbxwdD3RkFIc+j2SkRj7TIEUIfRQoYRQrYIEvYegvbnJ/+ABKiyi8w2UMbsDmoZgJzjCTvEZ96iWTgOG9CpJBN029RtNu2QXoOnFK0iQlel7jazKNuAkgRC6Z1mPHjtFNmELBJaS1idEQM75gcxhnNGQBaDcpgqf03GiGEY1BUSFpIcLvjYQFWi8DP5vMM+pVLxf/88YGZ9duIsLYIIQ8P4RCQnFIcyWyRoBOhQJElicHKkLKmWKIoARlnGeiySqqZX04q9+vk0G75WT89rLZaZfNVMkpOSMXxCFXpEO6pEf6hBNDnsgzebEerVfrzXr/Ga1Y5c4J+QPr4xsfUZfs</latexit>

q
<latexit sha1_base64="16pQWzTlMOESzzBU0Brn0u79QwI=">AAAB83icbVC7SgNBFJ31GeMramkzGASrsCuCKQM2lgmYByRLmJ3cxCGzs+vMHSEs+QJbrezE1g+y8F+cXVNo4qkO59zLPfdEqRQGff/TW1vf2NzaLu2Ud/f2Dw4rR8cdk1jNoc0TmehexAxIoaCNAiX0Ug0sjiR0o+lN7ncfQRuRqDucpRDGbKLEWHCGTmo9DCtVv+YXoKskWJAqWaA5rHwNRgm3MSjkkhnTD/wUw4xpFFzCvDywBlLGp2wCfUcVi8GEWRF0Ts+tYZjQFDQVkhYi/N7IWGzMLI7cZMzw3ix7ufif17c4roeZUKlFUDw/hEJCcchwLVwDQEdCAyLLkwMVinKmGSJoQRnnTrSukrLrI1j+fpV0LmuB462raqO+aKZETskZuSABuSYNckuapE04AfJEnsmLZ71X7817/xld8xY7J+QPvI9veKCRcA==</latexit><latexit sha1_base64="16pQWzTlMOESzzBU0Brn0u79QwI=">AAAB83icbVC7SgNBFJ31GeMramkzGASrsCuCKQM2lgmYByRLmJ3cxCGzs+vMHSEs+QJbrezE1g+y8F+cXVNo4qkO59zLPfdEqRQGff/TW1vf2NzaLu2Ud/f2Dw4rR8cdk1jNoc0TmehexAxIoaCNAiX0Ug0sjiR0o+lN7ncfQRuRqDucpRDGbKLEWHCGTmo9DCtVv+YXoKskWJAqWaA5rHwNRgm3MSjkkhnTD/wUw4xpFFzCvDywBlLGp2wCfUcVi8GEWRF0Ts+tYZjQFDQVkhYi/N7IWGzMLI7cZMzw3ix7ufif17c4roeZUKlFUDw/hEJCcchwLVwDQEdCAyLLkwMVinKmGSJoQRnnTrSukrLrI1j+fpV0LmuB462raqO+aKZETskZuSABuSYNckuapE04AfJEnsmLZ71X7817/xld8xY7J+QPvI9veKCRcA==</latexit><latexit sha1_base64="16pQWzTlMOESzzBU0Brn0u79QwI=">AAAB83icbVC7SgNBFJ31GeMramkzGASrsCuCKQM2lgmYByRLmJ3cxCGzs+vMHSEs+QJbrezE1g+y8F+cXVNo4qkO59zLPfdEqRQGff/TW1vf2NzaLu2Ud/f2Dw4rR8cdk1jNoc0TmehexAxIoaCNAiX0Ug0sjiR0o+lN7ncfQRuRqDucpRDGbKLEWHCGTmo9DCtVv+YXoKskWJAqWaA5rHwNRgm3MSjkkhnTD/wUw4xpFFzCvDywBlLGp2wCfUcVi8GEWRF0Ts+tYZjQFDQVkhYi/N7IWGzMLI7cZMzw3ix7ufif17c4roeZUKlFUDw/hEJCcchwLVwDQEdCAyLLkwMVinKmGSJoQRnnTrSukrLrI1j+fpV0LmuB462raqO+aKZETskZuSABuSYNckuapE04AfJEnsmLZ71X7817/xld8xY7J+QPvI9veKCRcA==</latexit><latexit sha1_base64="16pQWzTlMOESzzBU0Brn0u79QwI=">AAAB83icbVC7SgNBFJ31GeMramkzGASrsCuCKQM2lgmYByRLmJ3cxCGzs+vMHSEs+QJbrezE1g+y8F+cXVNo4qkO59zLPfdEqRQGff/TW1vf2NzaLu2Ud/f2Dw4rR8cdk1jNoc0TmehexAxIoaCNAiX0Ug0sjiR0o+lN7ncfQRuRqDucpRDGbKLEWHCGTmo9DCtVv+YXoKskWJAqWaA5rHwNRgm3MSjkkhnTD/wUw4xpFFzCvDywBlLGp2wCfUcVi8GEWRF0Ts+tYZjQFDQVkhYi/N7IWGzMLI7cZMzw3ix7ufif17c4roeZUKlFUDw/hEJCcchwLVwDQEdCAyLLkwMVinKmGSJoQRnnTrSukrLrI1j+fpV0LmuB462raqO+aKZETskZuSABuSYNckuapE04AfJEnsmLZ71X7817/xld8xY7J+QPvI9veKCRcA==</latexit>

p
<latexit sha1_base64="Fmlbyo5TWPCYV43QC0TKfXUrLPo=">AAAB83icbVC7SgNBFJ2NrxhfUUubwSBYhV0RTBmwsUzAPCBZwuzkJg6ZnV1m7ghhyRfYamUntn6Qhf/i7JpCE091OOde7rknSqUw6PufXmljc2t7p7xb2ds/ODyqHp90TWI1hw5PZKL7ETMghYIOCpTQTzWwOJLQi2a3ud97BG1Eou5xnkIYs6kSE8EZOqmdjqo1v+4XoOskWJIaWaI1qn4Nxwm3MSjkkhkzCPwUw4xpFFzCojK0BlLGZ2wKA0cVi8GEWRF0QS+sYZjQFDQVkhYi/N7IWGzMPI7cZMzwwax6ufifN7A4aYSZUKlFUDw/hEJCcchwLVwDQMdCAyLLkwMVinKmGSJoQRnnTrSukorrI1j9fp10r+qB4+3rWrOxbKZMzsg5uSQBuSFNckdapEM4AfJEnsmLZ71X7817/xktecudU/IH3sc3dxGRbw==</latexit><latexit sha1_base64="Fmlbyo5TWPCYV43QC0TKfXUrLPo=">AAAB83icbVC7SgNBFJ2NrxhfUUubwSBYhV0RTBmwsUzAPCBZwuzkJg6ZnV1m7ghhyRfYamUntn6Qhf/i7JpCE091OOde7rknSqUw6PufXmljc2t7p7xb2ds/ODyqHp90TWI1hw5PZKL7ETMghYIOCpTQTzWwOJLQi2a3ud97BG1Eou5xnkIYs6kSE8EZOqmdjqo1v+4XoOskWJIaWaI1qn4Nxwm3MSjkkhkzCPwUw4xpFFzCojK0BlLGZ2wKA0cVi8GEWRF0QS+sYZjQFDQVkhYi/N7IWGzMPI7cZMzwwax6ufifN7A4aYSZUKlFUDw/hEJCcchwLVwDQMdCAyLLkwMVinKmGSJoQRnnTrSukorrI1j9fp10r+qB4+3rWrOxbKZMzsg5uSQBuSFNckdapEM4AfJEnsmLZ71X7817/xktecudU/IH3sc3dxGRbw==</latexit><latexit sha1_base64="Fmlbyo5TWPCYV43QC0TKfXUrLPo=">AAAB83icbVC7SgNBFJ2NrxhfUUubwSBYhV0RTBmwsUzAPCBZwuzkJg6ZnV1m7ghhyRfYamUntn6Qhf/i7JpCE091OOde7rknSqUw6PufXmljc2t7p7xb2ds/ODyqHp90TWI1hw5PZKL7ETMghYIOCpTQTzWwOJLQi2a3ud97BG1Eou5xnkIYs6kSE8EZOqmdjqo1v+4XoOskWJIaWaI1qn4Nxwm3MSjkkhkzCPwUw4xpFFzCojK0BlLGZ2wKA0cVi8GEWRF0QS+sYZjQFDQVkhYi/N7IWGzMPI7cZMzwwax6ufifN7A4aYSZUKlFUDw/hEJCcchwLVwDQMdCAyLLkwMVinKmGSJoQRnnTrSukorrI1j9fp10r+qB4+3rWrOxbKZMzsg5uSQBuSFNckdapEM4AfJEnsmLZ71X7817/xktecudU/IH3sc3dxGRbw==</latexit><latexit sha1_base64="Fmlbyo5TWPCYV43QC0TKfXUrLPo=">AAAB83icbVC7SgNBFJ2NrxhfUUubwSBYhV0RTBmwsUzAPCBZwuzkJg6ZnV1m7ghhyRfYamUntn6Qhf/i7JpCE091OOde7rknSqUw6PufXmljc2t7p7xb2ds/ODyqHp90TWI1hw5PZKL7ETMghYIOCpTQTzWwOJLQi2a3ud97BG1Eou5xnkIYs6kSE8EZOqmdjqo1v+4XoOskWJIaWaI1qn4Nxwm3MSjkkhkzCPwUw4xpFFzCojK0BlLGZ2wKA0cVi8GEWRF0QS+sYZjQFDQVkhYi/N7IWGzMPI7cZMzwwax6ufifN7A4aYSZUKlFUDw/hEJCcchwLVwDQMdCAyLLkwMVinKmGSJoQRnnTrSukorrI1j9fp10r+qB4+3rWrOxbKZMzsg5uSQBuSFNckdapEM4AfJEnsmLZ71X7817/xktecudU/IH3sc3dxGRbw==</latexit>

0
<latexit sha1_base64="2Oa6kk2XoRI3K2+yVPA6lLKH7vA=">AAAB83icbVC7SgNBFJ2NrxhfUUubwSBYhV0JaBmwsUzAPCBZwuzkJg6ZnV1m7ghhyRfYamUntn6Qhf/ibNxCE091OOde7rknSqUw6PufXmljc2t7p7xb2ds/ODyqHp90TWI1hw5PZKL7ETMghYIOCpTQTzWwOJLQi2a3ud97BG1Eou5xnkIYs6kSE8EZOqntj6o1v+4vQddJUJAaKdAaVb+G44TbGBRyyYwZBH6KYcY0Ci5hURlaAynjMzaFgaOKxWDCbBl0QS+sYZjQFDQVki5F+L2RsdiYeRy5yZjhg1n1cvE/b2BxchNmQqUWQfH8EAoJy0OGa+EaADoWGhBZnhyoUJQzzRBBC8o4d6J1lVRcH8Hq9+uke1UPHG83as1G0UyZnJFzckkCck2a5I60SIdwAuSJPJMXz3qv3pv3/jNa8oqdU/IH3sc3Eh2RKw==</latexit><latexit sha1_base64="2Oa6kk2XoRI3K2+yVPA6lLKH7vA=">AAAB83icbVC7SgNBFJ2NrxhfUUubwSBYhV0JaBmwsUzAPCBZwuzkJg6ZnV1m7ghhyRfYamUntn6Qhf/ibNxCE091OOde7rknSqUw6PufXmljc2t7p7xb2ds/ODyqHp90TWI1hw5PZKL7ETMghYIOCpTQTzWwOJLQi2a3ud97BG1Eou5xnkIYs6kSE8EZOqntj6o1v+4vQddJUJAaKdAaVb+G44TbGBRyyYwZBH6KYcY0Ci5hURlaAynjMzaFgaOKxWDCbBl0QS+sYZjQFDQVki5F+L2RsdiYeRy5yZjhg1n1cvE/b2BxchNmQqUWQfH8EAoJy0OGa+EaADoWGhBZnhyoUJQzzRBBC8o4d6J1lVRcH8Hq9+uke1UPHG83as1G0UyZnJFzckkCck2a5I60SIdwAuSJPJMXz3qv3pv3/jNa8oqdU/IH3sc3Eh2RKw==</latexit><latexit sha1_base64="2Oa6kk2XoRI3K2+yVPA6lLKH7vA=">AAAB83icbVC7SgNBFJ2NrxhfUUubwSBYhV0JaBmwsUzAPCBZwuzkJg6ZnV1m7ghhyRfYamUntn6Qhf/ibNxCE091OOde7rknSqUw6PufXmljc2t7p7xb2ds/ODyqHp90TWI1hw5PZKL7ETMghYIOCpTQTzWwOJLQi2a3ud97BG1Eou5xnkIYs6kSE8EZOqntj6o1v+4vQddJUJAaKdAaVb+G44TbGBRyyYwZBH6KYcY0Ci5hURlaAynjMzaFgaOKxWDCbBl0QS+sYZjQFDQVki5F+L2RsdiYeRy5yZjhg1n1cvE/b2BxchNmQqUWQfH8EAoJy0OGa+EaADoWGhBZnhyoUJQzzRBBC8o4d6J1lVRcH8Hq9+uke1UPHG83as1G0UyZnJFzckkCck2a5I60SIdwAuSJPJMXz3qv3pv3/jNa8oqdU/IH3sc3Eh2RKw==</latexit><latexit sha1_base64="2Oa6kk2XoRI3K2+yVPA6lLKH7vA=">AAAB83icbVC7SgNBFJ2NrxhfUUubwSBYhV0JaBmwsUzAPCBZwuzkJg6ZnV1m7ghhyRfYamUntn6Qhf/ibNxCE091OOde7rknSqUw6PufXmljc2t7p7xb2ds/ODyqHp90TWI1hw5PZKL7ETMghYIOCpTQTzWwOJLQi2a3ud97BG1Eou5xnkIYs6kSE8EZOqntj6o1v+4vQddJUJAaKdAaVb+G44TbGBRyyYwZBH6KYcY0Ci5hURlaAynjMzaFgaOKxWDCbBl0QS+sYZjQFDQVki5F+L2RsdiYeRy5yZjhg1n1cvE/b2BxchNmQqUWQfH8EAoJy0OGa+EaADoWGhBZnhyoUJQzzRBBC8o4d6J1lVRcH8Hq9+uke1UPHG83as1G0UyZnJFzckkCck2a5I60SIdwAuSJPJMXz3qv3pv3/jNa8oqdU/IH3sc3Eh2RKw==</latexit>

0
<latexit sha1_base64="2Oa6kk2XoRI3K2+yVPA6lLKH7vA=">AAAB83icbVC7SgNBFJ2NrxhfUUubwSBYhV0JaBmwsUzAPCBZwuzkJg6ZnV1m7ghhyRfYamUntn6Qhf/ibNxCE091OOde7rknSqUw6PufXmljc2t7p7xb2ds/ODyqHp90TWI1hw5PZKL7ETMghYIOCpTQTzWwOJLQi2a3ud97BG1Eou5xnkIYs6kSE8EZOqntj6o1v+4vQddJUJAaKdAaVb+G44TbGBRyyYwZBH6KYcY0Ci5hURlaAynjMzaFgaOKxWDCbBl0QS+sYZjQFDQVki5F+L2RsdiYeRy5yZjhg1n1cvE/b2BxchNmQqUWQfH8EAoJy0OGa+EaADoWGhBZnhyoUJQzzRBBC8o4d6J1lVRcH8Hq9+uke1UPHG83as1G0UyZnJFzckkCck2a5I60SIdwAuSJPJMXz3qv3pv3/jNa8oqdU/IH3sc3Eh2RKw==</latexit><latexit sha1_base64="2Oa6kk2XoRI3K2+yVPA6lLKH7vA=">AAAB83icbVC7SgNBFJ2NrxhfUUubwSBYhV0JaBmwsUzAPCBZwuzkJg6ZnV1m7ghhyRfYamUntn6Qhf/ibNxCE091OOde7rknSqUw6PufXmljc2t7p7xb2ds/ODyqHp90TWI1hw5PZKL7ETMghYIOCpTQTzWwOJLQi2a3ud97BG1Eou5xnkIYs6kSE8EZOqntj6o1v+4vQddJUJAaKdAaVb+G44TbGBRyyYwZBH6KYcY0Ci5hURlaAynjMzaFgaOKxWDCbBl0QS+sYZjQFDQVki5F+L2RsdiYeRy5yZjhg1n1cvE/b2BxchNmQqUWQfH8EAoJy0OGa+EaADoWGhBZnhyoUJQzzRBBC8o4d6J1lVRcH8Hq9+uke1UPHG83as1G0UyZnJFzckkCck2a5I60SIdwAuSJPJMXz3qv3pv3/jNa8oqdU/IH3sc3Eh2RKw==</latexit><latexit sha1_base64="2Oa6kk2XoRI3K2+yVPA6lLKH7vA=">AAAB83icbVC7SgNBFJ2NrxhfUUubwSBYhV0JaBmwsUzAPCBZwuzkJg6ZnV1m7ghhyRfYamUntn6Qhf/ibNxCE091OOde7rknSqUw6PufXmljc2t7p7xb2ds/ODyqHp90TWI1hw5PZKL7ETMghYIOCpTQTzWwOJLQi2a3ud97BG1Eou5xnkIYs6kSE8EZOqntj6o1v+4vQddJUJAaKdAaVb+G44TbGBRyyYwZBH6KYcY0Ci5hURlaAynjMzaFgaOKxWDCbBl0QS+sYZjQFDQVki5F+L2RsdiYeRy5yZjhg1n1cvE/b2BxchNmQqUWQfH8EAoJy0OGa+EaADoWGhBZnhyoUJQzzRBBC8o4d6J1lVRcH8Hq9+uke1UPHG83as1G0UyZnJFzckkCck2a5I60SIdwAuSJPJMXz3qv3pv3/jNa8oqdU/IH3sc3Eh2RKw==</latexit><latexit sha1_base64="2Oa6kk2XoRI3K2+yVPA6lLKH7vA=">AAAB83icbVC7SgNBFJ2NrxhfUUubwSBYhV0JaBmwsUzAPCBZwuzkJg6ZnV1m7ghhyRfYamUntn6Qhf/ibNxCE091OOde7rknSqUw6PufXmljc2t7p7xb2ds/ODyqHp90TWI1hw5PZKL7ETMghYIOCpTQTzWwOJLQi2a3ud97BG1Eou5xnkIYs6kSE8EZOqntj6o1v+4vQddJUJAaKdAaVb+G44TbGBRyyYwZBH6KYcY0Ci5hURlaAynjMzaFgaOKxWDCbBl0QS+sYZjQFDQVki5F+L2RsdiYeRy5yZjhg1n1cvE/b2BxchNmQqUWQfH8EAoJy0OGa+EaADoWGhBZnhyoUJQzzRBBC8o4d6J1lVRcH8Hq9+uke1UPHG83as1G0UyZnJFzckkCck2a5I60SIdwAuSJPJMXz3qv3pv3/jNa8oqdU/IH3sc3Eh2RKw==</latexit>

pI
<latexit sha1_base64="P2hcOjZr30W0L+dmAIvg4lGyXHU=">AAAB93icbVBNS8NAFNzUr1q/qh69LBbBU0mkoMeCF71VMG2hDWWzfa1LN5tl90Uoob/Bq568iVd/jgf/i0nMQVvnNMy8x5s3oZbCout+OpW19Y3Nrep2bWd3b/+gfnjUtXFiOPg8lrHph8yCFAp8FCihrw2wKJTQC2fXud97BGNFrO5xriGI2FSJieAMM8nXo/R2Mao33KZbgK4SryQNUqIzqn8NxzFPIlDIJbN24Lkag5QZFFzCojZMLGjGZ2wKg4wqFoEN0iLsgp4llmFMNRgqJC1E+L2RssjaeRRmkxHDB7vs5eJ/3iDByVWQCqUTBMXzQygkFIcsNyJrAehYGEBkeXKgQlHODEMEIyjjPBOTrJZa1oe3/P0q6V40vYzftRrtVtlMlZyQU3JOPHJJ2uSGdIhPOBHkiTyTF2fuvDpvzvvPaMUpd47JHzgf35ZOkzM=</latexit><latexit sha1_base64="P2hcOjZr30W0L+dmAIvg4lGyXHU=">AAAB93icbVBNS8NAFNzUr1q/qh69LBbBU0mkoMeCF71VMG2hDWWzfa1LN5tl90Uoob/Bq568iVd/jgf/i0nMQVvnNMy8x5s3oZbCout+OpW19Y3Nrep2bWd3b/+gfnjUtXFiOPg8lrHph8yCFAp8FCihrw2wKJTQC2fXud97BGNFrO5xriGI2FSJieAMM8nXo/R2Mao33KZbgK4SryQNUqIzqn8NxzFPIlDIJbN24Lkag5QZFFzCojZMLGjGZ2wKg4wqFoEN0iLsgp4llmFMNRgqJC1E+L2RssjaeRRmkxHDB7vs5eJ/3iDByVWQCqUTBMXzQygkFIcsNyJrAehYGEBkeXKgQlHODEMEIyjjPBOTrJZa1oe3/P0q6V40vYzftRrtVtlMlZyQU3JOPHJJ2uSGdIhPOBHkiTyTF2fuvDpvzvvPaMUpd47JHzgf35ZOkzM=</latexit><latexit sha1_base64="P2hcOjZr30W0L+dmAIvg4lGyXHU=">AAAB93icbVBNS8NAFNzUr1q/qh69LBbBU0mkoMeCF71VMG2hDWWzfa1LN5tl90Uoob/Bq568iVd/jgf/i0nMQVvnNMy8x5s3oZbCout+OpW19Y3Nrep2bWd3b/+gfnjUtXFiOPg8lrHph8yCFAp8FCihrw2wKJTQC2fXud97BGNFrO5xriGI2FSJieAMM8nXo/R2Mao33KZbgK4SryQNUqIzqn8NxzFPIlDIJbN24Lkag5QZFFzCojZMLGjGZ2wKg4wqFoEN0iLsgp4llmFMNRgqJC1E+L2RssjaeRRmkxHDB7vs5eJ/3iDByVWQCqUTBMXzQygkFIcsNyJrAehYGEBkeXKgQlHODEMEIyjjPBOTrJZa1oe3/P0q6V40vYzftRrtVtlMlZyQU3JOPHJJ2uSGdIhPOBHkiTyTF2fuvDpvzvvPaMUpd47JHzgf35ZOkzM=</latexit><latexit sha1_base64="JsY2M/+G/6hlSBrAiTTvRkpSb8w=">AAAB5HicbZA7SwNBFIXvxldco8baZjAIVmHXRkvBxjKCeUBcwt3JTRwy+2DmrhBC/oCtlZ34ryz8L86uKTTxVB/nzHDvPXGuleUg+PRqW9s7u3v1ff+g4R8eHTcbPZsVRlJXZjozgxgtaZVSlxVrGuSGMIk19ePZbZn3n8lYlaUPPM8pSnCaqomSyM7qjJqtoB1UEpsQrqAFK42aX4/jTBYJpSw1WjsMg5yjBRpWUtPSfyws5ShnOKWhwxQTstGiWnMpzguLnImcjFBaVCb9/rHAxNp5EruXCfKTXc9K879sWPDkOlqoNC+YUlkOYqWpGmSlUe5+EmNliBnLzUmoVEg0yExGCZTSmYUrxHd1hOvHb0Lvsh06vg+gDqdwBhcQwhXcwB10oAsSxvACr5713rz3n9pq3qq/E/gj7+MbljKOsg==</latexit><latexit sha1_base64="irzSWxa5T97lhZobt989+v7RaAw=">AAAB7HicbZA/TwJBEMXn8B8iKtrabCQmVuTORksTG+0w8YAECNlbBtywd7fZnTMhFz6DrVZ2xq9k4Xdx76RQ8FUv7+1mZn6RVtKS7396lY3Nre2d6m5tr75/cNg4qndsmhmBoUhVanoRt6hkgiFJUtjTBnkcKexGs5ui7z6hsTJNHmiucRjzaSInUnByUahH+d1i1Gj6Lb8UWzfB0jRhqfao8TUYpyKLMSGhuLX9wNc0zLkhKRQuaoPMouZixqfYdzbhMdphXi67YGeZ5ZQyjYZJxcoQf//IeWztPI7cy5jTo13tivC/rp/R5GqYy0RnhIkoBpFUWA6ywkhHAdlYGiTixebIZMIEN5wIjWRcCBdmDkvN8QhWr183nYtW4Py9D1U4gVM4hwAu4RpuoQ0hCJDwDC/w6s29N+/9h1zFWyI8hj/yPr4BQg2R3w==</latexit><latexit sha1_base64="irzSWxa5T97lhZobt989+v7RaAw=">AAAB7HicbZA/TwJBEMXn8B8iKtrabCQmVuTORksTG+0w8YAECNlbBtywd7fZnTMhFz6DrVZ2xq9k4Xdx76RQ8FUv7+1mZn6RVtKS7396lY3Nre2d6m5tr75/cNg4qndsmhmBoUhVanoRt6hkgiFJUtjTBnkcKexGs5ui7z6hsTJNHmiucRjzaSInUnByUahH+d1i1Gj6Lb8UWzfB0jRhqfao8TUYpyKLMSGhuLX9wNc0zLkhKRQuaoPMouZixqfYdzbhMdphXi67YGeZ5ZQyjYZJxcoQf//IeWztPI7cy5jTo13tivC/rp/R5GqYy0RnhIkoBpFUWA6ywkhHAdlYGiTixebIZMIEN5wIjWRcCBdmDkvN8QhWr183nYtW4Py9D1U4gVM4hwAu4RpuoQ0hCJDwDC/w6s29N+/9h1zFWyI8hj/yPr4BQg2R3w==</latexit><latexit sha1_base64="G3giy2qd1ID+lqvobpEGJSb/2Ao=">AAAB93icbVA9SwNBFNzzM8avqKXNYhCswp0IWgZstIvgJYHkCHubl7hkb2/ZfSeEI7/BVis7sfXnWPhf3JxXaOJUw8x7vHkTayks+v6nt7K6tr6xWdmqbu/s7u3XDg7bNs0Mh5CnMjXdmFmQQkGIAiV0tQGWxBI68eR67ncewViRqnucaogSNlZiJDhDJ4V6kN/OBrW63/AL0GUSlKROSrQGta/+MOVZAgq5ZNb2Al9jlDODgkuYVfuZBc34hI2h56hiCdgoL8LO6GlmGaZUg6FC0kKE3xs5S6ydJrGbTBg+2EVvLv7n9TIcXUW5UDpDUHx+CIWE4pDlRrgWgA6FAUQ2Tw5UKMqZYYhgBGWcOzFztVRdH8Hi98ukfd4IHL/z682LspkKOSYn5IwE5JI0yQ1pkZBwIsgTeSYv3tR79d6895/RFa/cOSJ/4H18A5UOky8=</latexit><latexit sha1_base64="P2hcOjZr30W0L+dmAIvg4lGyXHU=">AAAB93icbVBNS8NAFNzUr1q/qh69LBbBU0mkoMeCF71VMG2hDWWzfa1LN5tl90Uoob/Bq568iVd/jgf/i0nMQVvnNMy8x5s3oZbCout+OpW19Y3Nrep2bWd3b/+gfnjUtXFiOPg8lrHph8yCFAp8FCihrw2wKJTQC2fXud97BGNFrO5xriGI2FSJieAMM8nXo/R2Mao33KZbgK4SryQNUqIzqn8NxzFPIlDIJbN24Lkag5QZFFzCojZMLGjGZ2wKg4wqFoEN0iLsgp4llmFMNRgqJC1E+L2RssjaeRRmkxHDB7vs5eJ/3iDByVWQCqUTBMXzQygkFIcsNyJrAehYGEBkeXKgQlHODEMEIyjjPBOTrJZa1oe3/P0q6V40vYzftRrtVtlMlZyQU3JOPHJJ2uSGdIhPOBHkiTyTF2fuvDpvzvvPaMUpd47JHzgf35ZOkzM=</latexit><latexit sha1_base64="P2hcOjZr30W0L+dmAIvg4lGyXHU=">AAAB93icbVBNS8NAFNzUr1q/qh69LBbBU0mkoMeCF71VMG2hDWWzfa1LN5tl90Uoob/Bq568iVd/jgf/i0nMQVvnNMy8x5s3oZbCout+OpW19Y3Nrep2bWd3b/+gfnjUtXFiOPg8lrHph8yCFAp8FCihrw2wKJTQC2fXud97BGNFrO5xriGI2FSJieAMM8nXo/R2Mao33KZbgK4SryQNUqIzqn8NxzFPIlDIJbN24Lkag5QZFFzCojZMLGjGZ2wKg4wqFoEN0iLsgp4llmFMNRgqJC1E+L2RssjaeRRmkxHDB7vs5eJ/3iDByVWQCqUTBMXzQygkFIcsNyJrAehYGEBkeXKgQlHODEMEIyjjPBOTrJZa1oe3/P0q6V40vYzftRrtVtlMlZyQU3JOPHJJ2uSGdIhPOBHkiTyTF2fuvDpvzvvPaMUpd47JHzgf35ZOkzM=</latexit><latexit sha1_base64="P2hcOjZr30W0L+dmAIvg4lGyXHU=">AAAB93icbVBNS8NAFNzUr1q/qh69LBbBU0mkoMeCF71VMG2hDWWzfa1LN5tl90Uoob/Bq568iVd/jgf/i0nMQVvnNMy8x5s3oZbCout+OpW19Y3Nrep2bWd3b/+gfnjUtXFiOPg8lrHph8yCFAp8FCihrw2wKJTQC2fXud97BGNFrO5xriGI2FSJieAMM8nXo/R2Mao33KZbgK4SryQNUqIzqn8NxzFPIlDIJbN24Lkag5QZFFzCojZMLGjGZ2wKg4wqFoEN0iLsgp4llmFMNRgqJC1E+L2RssjaeRRmkxHDB7vs5eJ/3iDByVWQCqUTBMXzQygkFIcsNyJrAehYGEBkeXKgQlHODEMEIyjjPBOTrJZa1oe3/P0q6V40vYzftRrtVtlMlZyQU3JOPHJJ2uSGdIhPOBHkiTyTF2fuvDpvzvvPaMUpd47JHzgf35ZOkzM=</latexit><latexit sha1_base64="P2hcOjZr30W0L+dmAIvg4lGyXHU=">AAAB93icbVBNS8NAFNzUr1q/qh69LBbBU0mkoMeCF71VMG2hDWWzfa1LN5tl90Uoob/Bq568iVd/jgf/i0nMQVvnNMy8x5s3oZbCout+OpW19Y3Nrep2bWd3b/+gfnjUtXFiOPg8lrHph8yCFAp8FCihrw2wKJTQC2fXud97BGNFrO5xriGI2FSJieAMM8nXo/R2Mao33KZbgK4SryQNUqIzqn8NxzFPIlDIJbN24Lkag5QZFFzCojZMLGjGZ2wKg4wqFoEN0iLsgp4llmFMNRgqJC1E+L2RssjaeRRmkxHDB7vs5eJ/3iDByVWQCqUTBMXzQygkFIcsNyJrAehYGEBkeXKgQlHODEMEIyjjPBOTrJZa1oe3/P0q6V40vYzftRrtVtlMlZyQU3JOPHJJ2uSGdIhPOBHkiTyTF2fuvDpvzvvPaMUpd47JHzgf35ZOkzM=</latexit><latexit sha1_base64="P2hcOjZr30W0L+dmAIvg4lGyXHU=">AAAB93icbVBNS8NAFNzUr1q/qh69LBbBU0mkoMeCF71VMG2hDWWzfa1LN5tl90Uoob/Bq568iVd/jgf/i0nMQVvnNMy8x5s3oZbCout+OpW19Y3Nrep2bWd3b/+gfnjUtXFiOPg8lrHph8yCFAp8FCihrw2wKJTQC2fXud97BGNFrO5xriGI2FSJieAMM8nXo/R2Mao33KZbgK4SryQNUqIzqn8NxzFPIlDIJbN24Lkag5QZFFzCojZMLGjGZ2wKg4wqFoEN0iLsgp4llmFMNRgqJC1E+L2RssjaeRRmkxHDB7vs5eJ/3iDByVWQCqUTBMXzQygkFIcsNyJrAehYGEBkeXKgQlHODEMEIyjjPBOTrJZa1oe3/P0q6V40vYzftRrtVtlMlZyQU3JOPHJJ2uSGdIhPOBHkiTyTF2fuvDpvzvvPaMUpd47JHzgf35ZOkzM=</latexit><latexit sha1_base64="P2hcOjZr30W0L+dmAIvg4lGyXHU=">AAAB93icbVBNS8NAFNzUr1q/qh69LBbBU0mkoMeCF71VMG2hDWWzfa1LN5tl90Uoob/Bq568iVd/jgf/i0nMQVvnNMy8x5s3oZbCout+OpW19Y3Nrep2bWd3b/+gfnjUtXFiOPg8lrHph8yCFAp8FCihrw2wKJTQC2fXud97BGNFrO5xriGI2FSJieAMM8nXo/R2Mao33KZbgK4SryQNUqIzqn8NxzFPIlDIJbN24Lkag5QZFFzCojZMLGjGZ2wKg4wqFoEN0iLsgp4llmFMNRgqJC1E+L2RssjaeRRmkxHDB7vs5eJ/3iDByVWQCqUTBMXzQygkFIcsNyJrAehYGEBkeXKgQlHODEMEIyjjPBOTrJZa1oe3/P0q6V40vYzftRrtVtlMlZyQU3JOPHJJ2uSGdIhPOBHkiTyTF2fuvDpvzvvPaMUpd47JHzgf35ZOkzM=</latexit>

pR
<latexit sha1_base64="6K8DfedvXq/CH5fM6JLQCm99JCw=">AAAB93icbVC7TsNAEDyHVwivACXNiQiJKrJRJCgj0VAGhJNIiRWdL5twyvl8ulsjRVa+gRYqOkTL51DwL9jGBSRMNZrZ1c5OqKWw6LqfTmVtfWNzq7pd29nd2z+oHx51bZwYDj6PZWz6IbMghQIfBUroawMsCiX0wtl17vcewVgRq3ucawgiNlViIjjDTPL1KL1bjOoNt+kWoKvEK0mDlOiM6l/DccyTCBRyyawdeK7GIGUGBZewqA0TC5rxGZvCIKOKRWCDtAi7oGeJZRhTDYYKSQsRfm+kLLJ2HoXZZMTwwS57ufifN0hwchWkQukEQfH8EAoJxSHLjchaADoWBhBZnhyoUJQzwxDBCMo4z8Qkq6WW9eEtf79KuhdNL+O3rUa7VTZTJSfklJwTj1ySNrkhHeITTgR5Is/kxZk7r86b8/4zWnHKnWPyB87HN6Rekzw=</latexit><latexit sha1_base64="6K8DfedvXq/CH5fM6JLQCm99JCw=">AAAB93icbVC7TsNAEDyHVwivACXNiQiJKrJRJCgj0VAGhJNIiRWdL5twyvl8ulsjRVa+gRYqOkTL51DwL9jGBSRMNZrZ1c5OqKWw6LqfTmVtfWNzq7pd29nd2z+oHx51bZwYDj6PZWz6IbMghQIfBUroawMsCiX0wtl17vcewVgRq3ucawgiNlViIjjDTPL1KL1bjOoNt+kWoKvEK0mDlOiM6l/DccyTCBRyyawdeK7GIGUGBZewqA0TC5rxGZvCIKOKRWCDtAi7oGeJZRhTDYYKSQsRfm+kLLJ2HoXZZMTwwS57ufifN0hwchWkQukEQfH8EAoJxSHLjchaADoWBhBZnhyoUJQzwxDBCMo4z8Qkq6WW9eEtf79KuhdNL+O3rUa7VTZTJSfklJwTj1ySNrkhHeITTgR5Is/kxZk7r86b8/4zWnHKnWPyB87HN6Rekzw=</latexit><latexit sha1_base64="6K8DfedvXq/CH5fM6JLQCm99JCw=">AAAB93icbVC7TsNAEDyHVwivACXNiQiJKrJRJCgj0VAGhJNIiRWdL5twyvl8ulsjRVa+gRYqOkTL51DwL9jGBSRMNZrZ1c5OqKWw6LqfTmVtfWNzq7pd29nd2z+oHx51bZwYDj6PZWz6IbMghQIfBUroawMsCiX0wtl17vcewVgRq3ucawgiNlViIjjDTPL1KL1bjOoNt+kWoKvEK0mDlOiM6l/DccyTCBRyyawdeK7GIGUGBZewqA0TC5rxGZvCIKOKRWCDtAi7oGeJZRhTDYYKSQsRfm+kLLJ2HoXZZMTwwS57ufifN0hwchWkQukEQfH8EAoJxSHLjchaADoWBhBZnhyoUJQzwxDBCMo4z8Qkq6WW9eEtf79KuhdNL+O3rUa7VTZTJSfklJwTj1ySNrkhHeITTgR5Is/kxZk7r86b8/4zWnHKnWPyB87HN6Rekzw=</latexit><latexit sha1_base64="6K8DfedvXq/CH5fM6JLQCm99JCw=">AAAB93icbVC7TsNAEDyHVwivACXNiQiJKrJRJCgj0VAGhJNIiRWdL5twyvl8ulsjRVa+gRYqOkTL51DwL9jGBSRMNZrZ1c5OqKWw6LqfTmVtfWNzq7pd29nd2z+oHx51bZwYDj6PZWz6IbMghQIfBUroawMsCiX0wtl17vcewVgRq3ucawgiNlViIjjDTPL1KL1bjOoNt+kWoKvEK0mDlOiM6l/DccyTCBRyyawdeK7GIGUGBZewqA0TC5rxGZvCIKOKRWCDtAi7oGeJZRhTDYYKSQsRfm+kLLJ2HoXZZMTwwS57ufifN0hwchWkQukEQfH8EAoJxSHLjchaADoWBhBZnhyoUJQzwxDBCMo4z8Qkq6WW9eEtf79KuhdNL+O3rUa7VTZTJSfklJwTj1ySNrkhHeITTgR5Is/kxZk7r86b8/4zWnHKnWPyB87HN6Rekzw=</latexit>

pF
<latexit sha1_base64="xbUB5YbcvYrs6VbM8fztZ4o/q3U=">AAAB93icbVBNS8NAFNzUr1q/qh69LBbBU0mkoMeCIB4rmLbQhrLZvtalm82y+yKU0N/gVU/exKs/x4P/xSTmoK1zGmbe482bUEth0XU/ncra+sbmVnW7trO7t39QPzzq2jgxHHwey9j0Q2ZBCgU+CpTQ1wZYFErohbPr3O89grEiVvc41xBEbKrERHCGmeTrUXqzGNUbbtMtQFeJV5IGKdEZ1b+G45gnESjkklk78FyNQcoMCi5hURsmFjTjMzaFQUYVi8AGaRF2Qc8SyzCmGgwVkhYi/N5IWWTtPAqzyYjhg132cvE/b5Dg5CpIhdIJguL5IRQSikOWG5G1AHQsDCCyPDlQoShnhiGCEZRxnolJVkst68Nb/n6VdC+aXsbvWo12q2ymSk7IKTknHrkkbXJLOsQnnAjyRJ7JizN3Xp035/1ntOKUO8fkD5yPb5GekzA=</latexit><latexit sha1_base64="xbUB5YbcvYrs6VbM8fztZ4o/q3U=">AAAB93icbVBNS8NAFNzUr1q/qh69LBbBU0mkoMeCIB4rmLbQhrLZvtalm82y+yKU0N/gVU/exKs/x4P/xSTmoK1zGmbe482bUEth0XU/ncra+sbmVnW7trO7t39QPzzq2jgxHHwey9j0Q2ZBCgU+CpTQ1wZYFErohbPr3O89grEiVvc41xBEbKrERHCGmeTrUXqzGNUbbtMtQFeJV5IGKdEZ1b+G45gnESjkklk78FyNQcoMCi5hURsmFjTjMzaFQUYVi8AGaRF2Qc8SyzCmGgwVkhYi/N5IWWTtPAqzyYjhg132cvE/b5Dg5CpIhdIJguL5IRQSikOWG5G1AHQsDCCyPDlQoShnhiGCEZRxnolJVkst68Nb/n6VdC+aXsbvWo12q2ymSk7IKTknHrkkbXJLOsQnnAjyRJ7JizN3Xp035/1ntOKUO8fkD5yPb5GekzA=</latexit><latexit sha1_base64="xbUB5YbcvYrs6VbM8fztZ4o/q3U=">AAAB93icbVBNS8NAFNzUr1q/qh69LBbBU0mkoMeCIB4rmLbQhrLZvtalm82y+yKU0N/gVU/exKs/x4P/xSTmoK1zGmbe482bUEth0XU/ncra+sbmVnW7trO7t39QPzzq2jgxHHwey9j0Q2ZBCgU+CpTQ1wZYFErohbPr3O89grEiVvc41xBEbKrERHCGmeTrUXqzGNUbbtMtQFeJV5IGKdEZ1b+G45gnESjkklk78FyNQcoMCi5hURsmFjTjMzaFQUYVi8AGaRF2Qc8SyzCmGgwVkhYi/N5IWWTtPAqzyYjhg132cvE/b5Dg5CpIhdIJguL5IRQSikOWG5G1AHQsDCCyPDlQoShnhiGCEZRxnolJVkst68Nb/n6VdC+aXsbvWo12q2ymSk7IKTknHrkkbXJLOsQnnAjyRJ7JizN3Xp035/1ntOKUO8fkD5yPb5GekzA=</latexit><latexit sha1_base64="xbUB5YbcvYrs6VbM8fztZ4o/q3U=">AAAB93icbVBNS8NAFNzUr1q/qh69LBbBU0mkoMeCIB4rmLbQhrLZvtalm82y+yKU0N/gVU/exKs/x4P/xSTmoK1zGmbe482bUEth0XU/ncra+sbmVnW7trO7t39QPzzq2jgxHHwey9j0Q2ZBCgU+CpTQ1wZYFErohbPr3O89grEiVvc41xBEbKrERHCGmeTrUXqzGNUbbtMtQFeJV5IGKdEZ1b+G45gnESjkklk78FyNQcoMCi5hURsmFjTjMzaFQUYVi8AGaRF2Qc8SyzCmGgwVkhYi/N5IWWTtPAqzyYjhg132cvE/b5Dg5CpIhdIJguL5IRQSikOWG5G1AHQsDCCyPDlQoShnhiGCEZRxnolJVkst68Nb/n6VdC+aXsbvWo12q2ymSk7IKTknHrkkbXJLOsQnnAjyRJ7JizN3Xp035/1ntOKUO8fkD5yPb5GekzA=</latexit>

NVH � 1
<latexit sha1_base64="HZuTXJHLXBHZACfcsRroZHfqhzg=">AAACBXicbVC7TsNAEDzzDOHlQElzIkKiIbJRJCgj0aRCQSIPKbGs82UTTjk/dLcGRZZrvoIWKjpEy3dQ8C/YxgUkTDWa2dXOjhdJodGyPo2V1bX1jc3KVnV7Z3dv36wd9HQYKw5dHspQDTymQYoAuihQwiBSwHxPQt+bXeV+/x6UFmFwi/MIHJ9NAzERnGEmuWbt2k1GPsM75Se9dpqe2a5ZtxpWAbpM7JLUSYmOa36NxiGPfQiQS6b10LYidBKmUHAJaXUUa4gYn7EpDDMaMB+0kxTRU3oSa4YhjUBRIWkhwu+NhPlaz30vm8xT6kUvF//zhjFOLp1EBFGMEPD8EAoJxSHNlcg6AToWChBZnhyoCChniiGCEpRxnolxVlI168Ne/H6Z9M4bdsZvmvVWs2ymQo7IMTklNrkgLdImHdIlnDyQJ/JMXoxH49V4M95/RleMcueQ/IHx8Q3lsphK</latexit><latexit sha1_base64="HZuTXJHLXBHZACfcsRroZHfqhzg=">AAACBXicbVC7TsNAEDzzDOHlQElzIkKiIbJRJCgj0aRCQSIPKbGs82UTTjk/dLcGRZZrvoIWKjpEy3dQ8C/YxgUkTDWa2dXOjhdJodGyPo2V1bX1jc3KVnV7Z3dv36wd9HQYKw5dHspQDTymQYoAuihQwiBSwHxPQt+bXeV+/x6UFmFwi/MIHJ9NAzERnGEmuWbt2k1GPsM75Se9dpqe2a5ZtxpWAbpM7JLUSYmOa36NxiGPfQiQS6b10LYidBKmUHAJaXUUa4gYn7EpDDMaMB+0kxTRU3oSa4YhjUBRIWkhwu+NhPlaz30vm8xT6kUvF//zhjFOLp1EBFGMEPD8EAoJxSHNlcg6AToWChBZnhyoCChniiGCEpRxnolxVlI168Ne/H6Z9M4bdsZvmvVWs2ymQo7IMTklNrkgLdImHdIlnDyQJ/JMXoxH49V4M95/RleMcueQ/IHx8Q3lsphK</latexit><latexit sha1_base64="HZuTXJHLXBHZACfcsRroZHfqhzg=">AAACBXicbVC7TsNAEDzzDOHlQElzIkKiIbJRJCgj0aRCQSIPKbGs82UTTjk/dLcGRZZrvoIWKjpEy3dQ8C/YxgUkTDWa2dXOjhdJodGyPo2V1bX1jc3KVnV7Z3dv36wd9HQYKw5dHspQDTymQYoAuihQwiBSwHxPQt+bXeV+/x6UFmFwi/MIHJ9NAzERnGEmuWbt2k1GPsM75Se9dpqe2a5ZtxpWAbpM7JLUSYmOa36NxiGPfQiQS6b10LYidBKmUHAJaXUUa4gYn7EpDDMaMB+0kxTRU3oSa4YhjUBRIWkhwu+NhPlaz30vm8xT6kUvF//zhjFOLp1EBFGMEPD8EAoJxSHNlcg6AToWChBZnhyoCChniiGCEpRxnolxVlI168Ne/H6Z9M4bdsZvmvVWs2ymQo7IMTklNrkgLdImHdIlnDyQJ/JMXoxH49V4M95/RleMcueQ/IHx8Q3lsphK</latexit><latexit sha1_base64="HZuTXJHLXBHZACfcsRroZHfqhzg=">AAACBXicbVC7TsNAEDzzDOHlQElzIkKiIbJRJCgj0aRCQSIPKbGs82UTTjk/dLcGRZZrvoIWKjpEy3dQ8C/YxgUkTDWa2dXOjhdJodGyPo2V1bX1jc3KVnV7Z3dv36wd9HQYKw5dHspQDTymQYoAuihQwiBSwHxPQt+bXeV+/x6UFmFwi/MIHJ9NAzERnGEmuWbt2k1GPsM75Se9dpqe2a5ZtxpWAbpM7JLUSYmOa36NxiGPfQiQS6b10LYidBKmUHAJaXUUa4gYn7EpDDMaMB+0kxTRU3oSa4YhjUBRIWkhwu+NhPlaz30vm8xT6kUvF//zhjFOLp1EBFGMEPD8EAoJxSHNlcg6AToWChBZnhyoCChniiGCEpRxnolxVlI168Ne/H6Z9M4bdsZvmvVWs2ymQo7IMTklNrkgLdImHdIlnDyQJ/JMXoxH49V4M95/RleMcueQ/IHx8Q3lsphK</latexit>

NVV � 1
<latexit sha1_base64="dlSGA7hD98PmzQ0oKnOMC8Vit0U=">AAACBXicbVC7TsNAEDyHVwivBEqaExESDZGNIkEZiYYKBYk4kRLLOl824ZTzQ3drUGS55itooaJDtHwHBf+CbVxAwlSjmV3t7HiRFBpN89OorKyurW9UN2tb2zu7e/XGvq3DWHHo8VCGauAxDVIE0EOBEgaRAuZ7Evre7DL3+/egtAiDW5xH4PhsGoiJ4Awzya03rt1k5DO8U35i22l6arn1ptkyC9BlYpWkSUp03frXaBzy2IcAuWRaDy0zQidhCgWXkNZGsYaI8RmbwjCjAfNBO0kRPaXHsWYY0ggUFZIWIvzeSJiv9dz3ssk8pV70cvE/bxjj5MJJRBDFCAHPD6GQUBzSXImsE6BjoQCR5cmBioByphgiKEEZ55kYZyXVsj6sxe+XiX3WsjJ+02522mUzVXJIjsgJscg56ZAr0iU9wskDeSLP5MV4NF6NN+P9Z7RilDsH5A+Mj2/7vJhY</latexit><latexit sha1_base64="dlSGA7hD98PmzQ0oKnOMC8Vit0U=">AAACBXicbVC7TsNAEDyHVwivBEqaExESDZGNIkEZiYYKBYk4kRLLOl824ZTzQ3drUGS55itooaJDtHwHBf+CbVxAwlSjmV3t7HiRFBpN89OorKyurW9UN2tb2zu7e/XGvq3DWHHo8VCGauAxDVIE0EOBEgaRAuZ7Evre7DL3+/egtAiDW5xH4PhsGoiJ4Awzya03rt1k5DO8U35i22l6arn1ptkyC9BlYpWkSUp03frXaBzy2IcAuWRaDy0zQidhCgWXkNZGsYaI8RmbwjCjAfNBO0kRPaXHsWYY0ggUFZIWIvzeSJiv9dz3ssk8pV70cvE/bxjj5MJJRBDFCAHPD6GQUBzSXImsE6BjoQCR5cmBioByphgiKEEZ55kYZyXVsj6sxe+XiX3WsjJ+02522mUzVXJIjsgJscg56ZAr0iU9wskDeSLP5MV4NF6NN+P9Z7RilDsH5A+Mj2/7vJhY</latexit><latexit sha1_base64="dlSGA7hD98PmzQ0oKnOMC8Vit0U=">AAACBXicbVC7TsNAEDyHVwivBEqaExESDZGNIkEZiYYKBYk4kRLLOl824ZTzQ3drUGS55itooaJDtHwHBf+CbVxAwlSjmV3t7HiRFBpN89OorKyurW9UN2tb2zu7e/XGvq3DWHHo8VCGauAxDVIE0EOBEgaRAuZ7Evre7DL3+/egtAiDW5xH4PhsGoiJ4Awzya03rt1k5DO8U35i22l6arn1ptkyC9BlYpWkSUp03frXaBzy2IcAuWRaDy0zQidhCgWXkNZGsYaI8RmbwjCjAfNBO0kRPaXHsWYY0ggUFZIWIvzeSJiv9dz3ssk8pV70cvE/bxjj5MJJRBDFCAHPD6GQUBzSXImsE6BjoQCR5cmBioByphgiKEEZ55kYZyXVsj6sxe+XiX3WsjJ+02522mUzVXJIjsgJscg56ZAr0iU9wskDeSLP5MV4NF6NN+P9Z7RilDsH5A+Mj2/7vJhY</latexit><latexit sha1_base64="dlSGA7hD98PmzQ0oKnOMC8Vit0U=">AAACBXicbVC7TsNAEDyHVwivBEqaExESDZGNIkEZiYYKBYk4kRLLOl824ZTzQ3drUGS55itooaJDtHwHBf+CbVxAwlSjmV3t7HiRFBpN89OorKyurW9UN2tb2zu7e/XGvq3DWHHo8VCGauAxDVIE0EOBEgaRAuZ7Evre7DL3+/egtAiDW5xH4PhsGoiJ4Awzya03rt1k5DO8U35i22l6arn1ptkyC9BlYpWkSUp03frXaBzy2IcAuWRaDy0zQidhCgWXkNZGsYaI8RmbwjCjAfNBO0kRPaXHsWYY0ggUFZIWIvzeSJiv9dz3ssk8pV70cvE/bxjj5MJJRBDFCAHPD6GQUBzSXImsE6BjoQCR5cmBioByphgiKEEZ55kYZyXVsj6sxe+XiX3WsjJ+02522mUzVXJIjsgJscg56ZAr0iU9wskDeSLP5MV4NF6NN+P9Z7RilDsH5A+Mj2/7vJhY</latexit>

qI
<latexit sha1_base64="u2sTwbExFsqoNiT2GlCgl9+jxeg=">AAAB93icbVC7TsNAEDyHVwivACXNiQiJKrIREpSRaKALEk4iJVZ0vmzCKeezuVsjRVa+gRYqOkTL51DwL5yNC0iYajSzq52dMJHCoOt+OpWV1bX1jepmbWt7Z3evvn/QMXGqOfg8lrHuhcyAFAp8FCihl2hgUSihG06vcr/7CNqIWN3hLIEgYhMlxoIztJL/MMxu5sN6w226Begy8UrSICXaw/rXYBTzNAKFXDJj+p6bYJAxjYJLmNcGqYGE8SmbQN9SxSIwQVaEndOT1DCMaQKaCkkLEX5vZCwyZhaFdjJieG8WvVz8z+unOL4MMqGSFEHx/BAKCcUhw7WwLQAdCQ2ILE8OVCjKmWaIoAVlnFsxtbXUbB/e4vfLpHPW9Cy/PW+0zstmquSIHJNT4pEL0iLXpE18wokgT+SZvDgz59V5c95/RitOuXNI/sD5+AaX4ZM0</latexit><latexit sha1_base64="u2sTwbExFsqoNiT2GlCgl9+jxeg=">AAAB93icbVC7TsNAEDyHVwivACXNiQiJKrIREpSRaKALEk4iJVZ0vmzCKeezuVsjRVa+gRYqOkTL51DwL5yNC0iYajSzq52dMJHCoOt+OpWV1bX1jepmbWt7Z3evvn/QMXGqOfg8lrHuhcyAFAp8FCihl2hgUSihG06vcr/7CNqIWN3hLIEgYhMlxoIztJL/MMxu5sN6w226Begy8UrSICXaw/rXYBTzNAKFXDJj+p6bYJAxjYJLmNcGqYGE8SmbQN9SxSIwQVaEndOT1DCMaQKaCkkLEX5vZCwyZhaFdjJieG8WvVz8z+unOL4MMqGSFEHx/BAKCcUhw7WwLQAdCQ2ILE8OVCjKmWaIoAVlnFsxtbXUbB/e4vfLpHPW9Cy/PW+0zstmquSIHJNT4pEL0iLXpE18wokgT+SZvDgz59V5c95/RitOuXNI/sD5+AaX4ZM0</latexit><latexit sha1_base64="u2sTwbExFsqoNiT2GlCgl9+jxeg=">AAAB93icbVC7TsNAEDyHVwivACXNiQiJKrIREpSRaKALEk4iJVZ0vmzCKeezuVsjRVa+gRYqOkTL51DwL5yNC0iYajSzq52dMJHCoOt+OpWV1bX1jepmbWt7Z3evvn/QMXGqOfg8lrHuhcyAFAp8FCihl2hgUSihG06vcr/7CNqIWN3hLIEgYhMlxoIztJL/MMxu5sN6w226Begy8UrSICXaw/rXYBTzNAKFXDJj+p6bYJAxjYJLmNcGqYGE8SmbQN9SxSIwQVaEndOT1DCMaQKaCkkLEX5vZCwyZhaFdjJieG8WvVz8z+unOL4MMqGSFEHx/BAKCcUhw7WwLQAdCQ2ILE8OVCjKmWaIoAVlnFsxtbXUbB/e4vfLpHPW9Cy/PW+0zstmquSIHJNT4pEL0iLXpE18wokgT+SZvDgz59V5c95/RitOuXNI/sD5+AaX4ZM0</latexit><latexit sha1_base64="u2sTwbExFsqoNiT2GlCgl9+jxeg=">AAAB93icbVC7TsNAEDyHVwivACXNiQiJKrIREpSRaKALEk4iJVZ0vmzCKeezuVsjRVa+gRYqOkTL51DwL5yNC0iYajSzq52dMJHCoOt+OpWV1bX1jepmbWt7Z3evvn/QMXGqOfg8lrHuhcyAFAp8FCihl2hgUSihG06vcr/7CNqIWN3hLIEgYhMlxoIztJL/MMxu5sN6w226Begy8UrSICXaw/rXYBTzNAKFXDJj+p6bYJAxjYJLmNcGqYGE8SmbQN9SxSIwQVaEndOT1DCMaQKaCkkLEX5vZCwyZhaFdjJieG8WvVz8z+unOL4MMqGSFEHx/BAKCcUhw7WwLQAdCQ2ILE8OVCjKmWaIoAVlnFsxtbXUbB/e4vfLpHPW9Cy/PW+0zstmquSIHJNT4pEL0iLXpE18wokgT+SZvDgz59V5c95/RitOuXNI/sD5+AaX4ZM0</latexit>

qR
<latexit sha1_base64="5leajQ2JQ+A1GEc/PTpZCA0BvD0=">AAAB93icbVC7TsNAEDyHVwivACXNiQiJKrIREpSRaCgDwkmkxIrOl0045Xw2d2ukyMo30EJFh2j5HAr+hbNxAQlTjWZ2tbMTJlIYdN1Pp7Kyura+Ud2sbW3v7O7V9w86Jk41B5/HMta9kBmQQoGPAiX0Eg0sCiV0w+lV7ncfQRsRqzucJRBEbKLEWHCGVvIfhtntfFhvuE23AF0mXkkapER7WP8ajGKeRqCQS2ZM33MTDDKmUXAJ89ogNZAwPmUT6FuqWAQmyIqwc3qSGoYxTUBTIWkhwu+NjEXGzKLQTkYM782il4v/ef0Ux5dBJlSSIiieH0IhoThkuBa2BaAjoQGR5cmBCkU50wwRtKCMcyumtpaa7cNb/H6ZdM6anuU3543WedlMlRyRY3JKPHJBWuSatIlPOBHkiTyTF2fmvDpvzvvPaMUpdw7JHzgf36Xxkz0=</latexit><latexit sha1_base64="5leajQ2JQ+A1GEc/PTpZCA0BvD0=">AAAB93icbVC7TsNAEDyHVwivACXNiQiJKrIREpSRaCgDwkmkxIrOl0045Xw2d2ukyMo30EJFh2j5HAr+hbNxAQlTjWZ2tbMTJlIYdN1Pp7Kyura+Ud2sbW3v7O7V9w86Jk41B5/HMta9kBmQQoGPAiX0Eg0sCiV0w+lV7ncfQRsRqzucJRBEbKLEWHCGVvIfhtntfFhvuE23AF0mXkkapER7WP8ajGKeRqCQS2ZM33MTDDKmUXAJ89ogNZAwPmUT6FuqWAQmyIqwc3qSGoYxTUBTIWkhwu+NjEXGzKLQTkYM782il4v/ef0Ux5dBJlSSIiieH0IhoThkuBa2BaAjoQGR5cmBCkU50wwRtKCMcyumtpaa7cNb/H6ZdM6anuU3543WedlMlRyRY3JKPHJBWuSatIlPOBHkiTyTF2fmvDpvzvvPaMUpdw7JHzgf36Xxkz0=</latexit><latexit sha1_base64="5leajQ2JQ+A1GEc/PTpZCA0BvD0=">AAAB93icbVC7TsNAEDyHVwivACXNiQiJKrIREpSRaCgDwkmkxIrOl0045Xw2d2ukyMo30EJFh2j5HAr+hbNxAQlTjWZ2tbMTJlIYdN1Pp7Kyura+Ud2sbW3v7O7V9w86Jk41B5/HMta9kBmQQoGPAiX0Eg0sCiV0w+lV7ncfQRsRqzucJRBEbKLEWHCGVvIfhtntfFhvuE23AF0mXkkapER7WP8ajGKeRqCQS2ZM33MTDDKmUXAJ89ogNZAwPmUT6FuqWAQmyIqwc3qSGoYxTUBTIWkhwu+NjEXGzKLQTkYM782il4v/ef0Ux5dBJlSSIiieH0IhoThkuBa2BaAjoQGR5cmBCkU50wwRtKCMcyumtpaa7cNb/H6ZdM6anuU3543WedlMlRyRY3JKPHJBWuSatIlPOBHkiTyTF2fmvDpvzvvPaMUpdw7JHzgf36Xxkz0=</latexit><latexit sha1_base64="5leajQ2JQ+A1GEc/PTpZCA0BvD0=">AAAB93icbVC7TsNAEDyHVwivACXNiQiJKrIREpSRaCgDwkmkxIrOl0045Xw2d2ukyMo30EJFh2j5HAr+hbNxAQlTjWZ2tbMTJlIYdN1Pp7Kyura+Ud2sbW3v7O7V9w86Jk41B5/HMta9kBmQQoGPAiX0Eg0sCiV0w+lV7ncfQRsRqzucJRBEbKLEWHCGVvIfhtntfFhvuE23AF0mXkkapER7WP8ajGKeRqCQS2ZM33MTDDKmUXAJ89ogNZAwPmUT6FuqWAQmyIqwc3qSGoYxTUBTIWkhwu+NjEXGzKLQTkYM782il4v/ef0Ux5dBJlSSIiieH0IhoThkuBa2BaAjoQGR5cmBCkU50wwRtKCMcyumtpaa7cNb/H6ZdM6anuU3543WedlMlRyRY3JKPHJBWuSatIlPOBHkiTyTF2fmvDpvzvvPaMUpdw7JHzgf36Xxkz0=</latexit>

qF
<latexit sha1_base64="HrMAoxvKbO5DkrDc2Gsqgsbl31w=">AAAB93icbVBNS8NAFNzUr1q/qh69LBbBU0lE0GNBEI8VTFtoQ9lsX+vSzSbuvggl9Dd41ZM38erP8eB/cRNz0NY5DTPv8eZNmEhh0HU/ncrK6tr6RnWztrW9s7tX3z/omDjVHHwey1j3QmZACgU+CpTQSzSwKJTQDadXud99BG1ErO5wlkAQsYkSY8EZWsl/GGbX82G94TbdAnSZeCVpkBLtYf1rMIp5GoFCLpkxfc9NMMiYRsElzGuD1EDC+JRNoG+pYhGYICvCzulJahjGNAFNhaSFCL83MhYZM4tCOxkxvDeLXi7+5/VTHF8GmVBJiqB4fgiFhOKQ4VrYFoCOhAZElicHKhTlTDNE0IIyzq2Y2lpqtg9v8ftl0jlrepbfnjda52UzVXJEjskp8cgFaZEb0iY+4USQJ/JMXpyZ8+q8Oe8/oxWn3Dkkf+B8fAOTMZMx</latexit><latexit sha1_base64="HrMAoxvKbO5DkrDc2Gsqgsbl31w=">AAAB93icbVBNS8NAFNzUr1q/qh69LBbBU0lE0GNBEI8VTFtoQ9lsX+vSzSbuvggl9Dd41ZM38erP8eB/cRNz0NY5DTPv8eZNmEhh0HU/ncrK6tr6RnWztrW9s7tX3z/omDjVHHwey1j3QmZACgU+CpTQSzSwKJTQDadXud99BG1ErO5wlkAQsYkSY8EZWsl/GGbX82G94TbdAnSZeCVpkBLtYf1rMIp5GoFCLpkxfc9NMMiYRsElzGuD1EDC+JRNoG+pYhGYICvCzulJahjGNAFNhaSFCL83MhYZM4tCOxkxvDeLXi7+5/VTHF8GmVBJiqB4fgiFhOKQ4VrYFoCOhAZElicHKhTlTDNE0IIyzq2Y2lpqtg9v8ftl0jlrepbfnjda52UzVXJEjskp8cgFaZEb0iY+4USQJ/JMXpyZ8+q8Oe8/oxWn3Dkkf+B8fAOTMZMx</latexit><latexit sha1_base64="HrMAoxvKbO5DkrDc2Gsqgsbl31w=">AAAB93icbVBNS8NAFNzUr1q/qh69LBbBU0lE0GNBEI8VTFtoQ9lsX+vSzSbuvggl9Dd41ZM38erP8eB/cRNz0NY5DTPv8eZNmEhh0HU/ncrK6tr6RnWztrW9s7tX3z/omDjVHHwey1j3QmZACgU+CpTQSzSwKJTQDadXud99BG1ErO5wlkAQsYkSY8EZWsl/GGbX82G94TbdAnSZeCVpkBLtYf1rMIp5GoFCLpkxfc9NMMiYRsElzGuD1EDC+JRNoG+pYhGYICvCzulJahjGNAFNhaSFCL83MhYZM4tCOxkxvDeLXi7+5/VTHF8GmVBJiqB4fgiFhOKQ4VrYFoCOhAZElicHKhTlTDNE0IIyzq2Y2lpqtg9v8ftl0jlrepbfnjda52UzVXJEjskp8cgFaZEb0iY+4USQJ/JMXpyZ8+q8Oe8/oxWn3Dkkf+B8fAOTMZMx</latexit><latexit sha1_base64="HrMAoxvKbO5DkrDc2Gsqgsbl31w=">AAAB93icbVBNS8NAFNzUr1q/qh69LBbBU0lE0GNBEI8VTFtoQ9lsX+vSzSbuvggl9Dd41ZM38erP8eB/cRNz0NY5DTPv8eZNmEhh0HU/ncrK6tr6RnWztrW9s7tX3z/omDjVHHwey1j3QmZACgU+CpTQSzSwKJTQDadXud99BG1ErO5wlkAQsYkSY8EZWsl/GGbX82G94TbdAnSZeCVpkBLtYf1rMIp5GoFCLpkxfc9NMMiYRsElzGuD1EDC+JRNoG+pYhGYICvCzulJahjGNAFNhaSFCL83MhYZM4tCOxkxvDeLXi7+5/VTHF8GmVBJiqB4fgiFhOKQ4VrYFoCOhAZElicHKhTlTDNE0IIyzq2Y2lpqtg9v8ftl0jlrepbfnjda52UzVXJEjskp8cgFaZEb0iY+4USQJ/JMXpyZ8+q8Oe8/oxWn3Dkkf+B8fAOTMZMx</latexit>

(a)
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HULA

Vertically
Folded
HULAs

antennas

HULAs
N (VF)

HULA
<latexit sha1_base64="+WCyMoGA989y9PRLvV9HTaJpTOM=">AAACFXicbVC7SgNBFJ2NrxhfUUub0SDEJuwGQcuIIClEIrhJIFnD7OQmDpl9MHNXCMvWfoJfYauVndhaW/gv7sYIGj3V4Zx7ueceN5RCo2m+G7m5+YXFpfxyYWV1bX2juLnV1EGkONg8kIFqu0yDFD7YKFBCO1TAPFdCyx2dZn7rFpQWgX+F4xAcjw19MRCcYSr1irsXvbjrMbxRXly3z0+S5DoufwvNs+Qg6RVLZsWcgP4l1pSUyBSNXvGj2w945IGPXDKtO5YZohMzhYJLSArdSEPI+IgNoZNSn3mgnXjySkL3I80woCEoKiSdiPBzI2ae1mPPTSezkHrWy8T/vE6Eg2MnFn4YIfg8O4RCwuSQ5kqkHQHtCwWILEsOVPiUM8UQQQnKOE/FKC2tkPZhzX7/lzSrFSvll4elWnXaTJ7skD1SJhY5IjVSJw1iE07uyAN5JE/GvfFsvBivX6M5Y7qzTX7BePsEpPGfNg==</latexit><latexit sha1_base64="+WCyMoGA989y9PRLvV9HTaJpTOM=">AAACFXicbVC7SgNBFJ2NrxhfUUub0SDEJuwGQcuIIClEIrhJIFnD7OQmDpl9MHNXCMvWfoJfYauVndhaW/gv7sYIGj3V4Zx7ueceN5RCo2m+G7m5+YXFpfxyYWV1bX2juLnV1EGkONg8kIFqu0yDFD7YKFBCO1TAPFdCyx2dZn7rFpQWgX+F4xAcjw19MRCcYSr1irsXvbjrMbxRXly3z0+S5DoufwvNs+Qg6RVLZsWcgP4l1pSUyBSNXvGj2w945IGPXDKtO5YZohMzhYJLSArdSEPI+IgNoZNSn3mgnXjySkL3I80woCEoKiSdiPBzI2ae1mPPTSezkHrWy8T/vE6Eg2MnFn4YIfg8O4RCwuSQ5kqkHQHtCwWILEsOVPiUM8UQQQnKOE/FKC2tkPZhzX7/lzSrFSvll4elWnXaTJ7skD1SJhY5IjVSJw1iE07uyAN5JE/GvfFsvBivX6M5Y7qzTX7BePsEpPGfNg==</latexit><latexit sha1_base64="+WCyMoGA989y9PRLvV9HTaJpTOM=">AAACFXicbVC7SgNBFJ2NrxhfUUub0SDEJuwGQcuIIClEIrhJIFnD7OQmDpl9MHNXCMvWfoJfYauVndhaW/gv7sYIGj3V4Zx7ueceN5RCo2m+G7m5+YXFpfxyYWV1bX2juLnV1EGkONg8kIFqu0yDFD7YKFBCO1TAPFdCyx2dZn7rFpQWgX+F4xAcjw19MRCcYSr1irsXvbjrMbxRXly3z0+S5DoufwvNs+Qg6RVLZsWcgP4l1pSUyBSNXvGj2w945IGPXDKtO5YZohMzhYJLSArdSEPI+IgNoZNSn3mgnXjySkL3I80woCEoKiSdiPBzI2ae1mPPTSezkHrWy8T/vE6Eg2MnFn4YIfg8O4RCwuSQ5kqkHQHtCwWILEsOVPiUM8UQQQnKOE/FKC2tkPZhzX7/lzSrFSvll4elWnXaTJ7skD1SJhY5IjVSJw1iE07uyAN5JE/GvfFsvBivX6M5Y7qzTX7BePsEpPGfNg==</latexit><latexit sha1_base64="+WCyMoGA989y9PRLvV9HTaJpTOM=">AAACFXicbVC7SgNBFJ2NrxhfUUub0SDEJuwGQcuIIClEIrhJIFnD7OQmDpl9MHNXCMvWfoJfYauVndhaW/gv7sYIGj3V4Zx7ueceN5RCo2m+G7m5+YXFpfxyYWV1bX2juLnV1EGkONg8kIFqu0yDFD7YKFBCO1TAPFdCyx2dZn7rFpQWgX+F4xAcjw19MRCcYSr1irsXvbjrMbxRXly3z0+S5DoufwvNs+Qg6RVLZsWcgP4l1pSUyBSNXvGj2w945IGPXDKtO5YZohMzhYJLSArdSEPI+IgNoZNSn3mgnXjySkL3I80woCEoKiSdiPBzI2ae1mPPTSezkHrWy8T/vE6Eg2MnFn4YIfg8O4RCwuSQ5kqkHQHtCwWILEsOVPiUM8UQQQnKOE/FKC2tkPZhzX7/lzSrFSvll4elWnXaTJ7skD1SJhY5IjVSJw1iE07uyAN5JE/GvfFsvBivX6M5Y7qzTX7BePsEpPGfNg==</latexit>

p
<latexit sha1_base64="Fmlbyo5TWPCYV43QC0TKfXUrLPo=">AAAB83icbVC7SgNBFJ2NrxhfUUubwSBYhV0RTBmwsUzAPCBZwuzkJg6ZnV1m7ghhyRfYamUntn6Qhf/i7JpCE091OOde7rknSqUw6PufXmljc2t7p7xb2ds/ODyqHp90TWI1hw5PZKL7ETMghYIOCpTQTzWwOJLQi2a3ud97BG1Eou5xnkIYs6kSE8EZOqmdjqo1v+4XoOskWJIaWaI1qn4Nxwm3MSjkkhkzCPwUw4xpFFzCojK0BlLGZ2wKA0cVi8GEWRF0QS+sYZjQFDQVkhYi/N7IWGzMPI7cZMzwwax6ufifN7A4aYSZUKlFUDw/hEJCcchwLVwDQMdCAyLLkwMVinKmGSJoQRnnTrSukorrI1j9fp10r+qB4+3rWrOxbKZMzsg5uSQBuSFNckdapEM4AfJEnsmLZ71X7817/xktecudU/IH3sc3dxGRbw==</latexit><latexit sha1_base64="Fmlbyo5TWPCYV43QC0TKfXUrLPo=">AAAB83icbVC7SgNBFJ2NrxhfUUubwSBYhV0RTBmwsUzAPCBZwuzkJg6ZnV1m7ghhyRfYamUntn6Qhf/i7JpCE091OOde7rknSqUw6PufXmljc2t7p7xb2ds/ODyqHp90TWI1hw5PZKL7ETMghYIOCpTQTzWwOJLQi2a3ud97BG1Eou5xnkIYs6kSE8EZOqmdjqo1v+4XoOskWJIaWaI1qn4Nxwm3MSjkkhkzCPwUw4xpFFzCojK0BlLGZ2wKA0cVi8GEWRF0QS+sYZjQFDQVkhYi/N7IWGzMPI7cZMzwwax6ufifN7A4aYSZUKlFUDw/hEJCcchwLVwDQMdCAyLLkwMVinKmGSJoQRnnTrSukorrI1j9fp10r+qB4+3rWrOxbKZMzsg5uSQBuSFNckdapEM4AfJEnsmLZ71X7817/xktecudU/IH3sc3dxGRbw==</latexit><latexit sha1_base64="Fmlbyo5TWPCYV43QC0TKfXUrLPo=">AAAB83icbVC7SgNBFJ2NrxhfUUubwSBYhV0RTBmwsUzAPCBZwuzkJg6ZnV1m7ghhyRfYamUntn6Qhf/i7JpCE091OOde7rknSqUw6PufXmljc2t7p7xb2ds/ODyqHp90TWI1hw5PZKL7ETMghYIOCpTQTzWwOJLQi2a3ud97BG1Eou5xnkIYs6kSE8EZOqmdjqo1v+4XoOskWJIaWaI1qn4Nxwm3MSjkkhkzCPwUw4xpFFzCojK0BlLGZ2wKA0cVi8GEWRF0QS+sYZjQFDQVkhYi/N7IWGzMPI7cZMzwwax6ufifN7A4aYSZUKlFUDw/hEJCcchwLVwDQMdCAyLLkwMVinKmGSJoQRnnTrSukorrI1j9fp10r+qB4+3rWrOxbKZMzsg5uSQBuSFNckdapEM4AfJEnsmLZ71X7817/xktecudU/IH3sc3dxGRbw==</latexit><latexit sha1_base64="Fmlbyo5TWPCYV43QC0TKfXUrLPo=">AAAB83icbVC7SgNBFJ2NrxhfUUubwSBYhV0RTBmwsUzAPCBZwuzkJg6ZnV1m7ghhyRfYamUntn6Qhf/i7JpCE091OOde7rknSqUw6PufXmljc2t7p7xb2ds/ODyqHp90TWI1hw5PZKL7ETMghYIOCpTQTzWwOJLQi2a3ud97BG1Eou5xnkIYs6kSE8EZOqmdjqo1v+4XoOskWJIaWaI1qn4Nxwm3MSjkkhkzCPwUw4xpFFzCojK0BlLGZ2wKA0cVi8GEWRF0QS+sYZjQFDQVkhYi/N7IWGzMPI7cZMzwwax6ufifN7A4aYSZUKlFUDw/hEJCcchwLVwDQMdCAyLLkwMVinKmGSJoQRnnTrSukorrI1j9fp10r+qB4+3rWrOxbKZMzsg5uSQBuSFNckdapEM4AfJEnsmLZ71X7817/xktecudU/IH3sc3dxGRbw==</latexit>

0
<latexit sha1_base64="2Oa6kk2XoRI3K2+yVPA6lLKH7vA=">AAAB83icbVC7SgNBFJ2NrxhfUUubwSBYhV0JaBmwsUzAPCBZwuzkJg6ZnV1m7ghhyRfYamUntn6Qhf/ibNxCE091OOde7rknSqUw6PufXmljc2t7p7xb2ds/ODyqHp90TWI1hw5PZKL7ETMghYIOCpTQTzWwOJLQi2a3ud97BG1Eou5xnkIYs6kSE8EZOqntj6o1v+4vQddJUJAaKdAaVb+G44TbGBRyyYwZBH6KYcY0Ci5hURlaAynjMzaFgaOKxWDCbBl0QS+sYZjQFDQVki5F+L2RsdiYeRy5yZjhg1n1cvE/b2BxchNmQqUWQfH8EAoJy0OGa+EaADoWGhBZnhyoUJQzzRBBC8o4d6J1lVRcH8Hq9+uke1UPHG83as1G0UyZnJFzckkCck2a5I60SIdwAuSJPJMXz3qv3pv3/jNa8oqdU/IH3sc3Eh2RKw==</latexit><latexit sha1_base64="2Oa6kk2XoRI3K2+yVPA6lLKH7vA=">AAAB83icbVC7SgNBFJ2NrxhfUUubwSBYhV0JaBmwsUzAPCBZwuzkJg6ZnV1m7ghhyRfYamUntn6Qhf/ibNxCE091OOde7rknSqUw6PufXmljc2t7p7xb2ds/ODyqHp90TWI1hw5PZKL7ETMghYIOCpTQTzWwOJLQi2a3ud97BG1Eou5xnkIYs6kSE8EZOqntj6o1v+4vQddJUJAaKdAaVb+G44TbGBRyyYwZBH6KYcY0Ci5hURlaAynjMzaFgaOKxWDCbBl0QS+sYZjQFDQVki5F+L2RsdiYeRy5yZjhg1n1cvE/b2BxchNmQqUWQfH8EAoJy0OGa+EaADoWGhBZnhyoUJQzzRBBC8o4d6J1lVRcH8Hq9+uke1UPHG83as1G0UyZnJFzckkCck2a5I60SIdwAuSJPJMXz3qv3pv3/jNa8oqdU/IH3sc3Eh2RKw==</latexit><latexit sha1_base64="2Oa6kk2XoRI3K2+yVPA6lLKH7vA=">AAAB83icbVC7SgNBFJ2NrxhfUUubwSBYhV0JaBmwsUzAPCBZwuzkJg6ZnV1m7ghhyRfYamUntn6Qhf/ibNxCE091OOde7rknSqUw6PufXmljc2t7p7xb2ds/ODyqHp90TWI1hw5PZKL7ETMghYIOCpTQTzWwOJLQi2a3ud97BG1Eou5xnkIYs6kSE8EZOqntj6o1v+4vQddJUJAaKdAaVb+G44TbGBRyyYwZBH6KYcY0Ci5hURlaAynjMzaFgaOKxWDCbBl0QS+sYZjQFDQVki5F+L2RsdiYeRy5yZjhg1n1cvE/b2BxchNmQqUWQfH8EAoJy0OGa+EaADoWGhBZnhyoUJQzzRBBC8o4d6J1lVRcH8Hq9+uke1UPHG83as1G0UyZnJFzckkCck2a5I60SIdwAuSJPJMXz3qv3pv3/jNa8oqdU/IH3sc3Eh2RKw==</latexit><latexit sha1_base64="2Oa6kk2XoRI3K2+yVPA6lLKH7vA=">AAAB83icbVC7SgNBFJ2NrxhfUUubwSBYhV0JaBmwsUzAPCBZwuzkJg6ZnV1m7ghhyRfYamUntn6Qhf/ibNxCE091OOde7rknSqUw6PufXmljc2t7p7xb2ds/ODyqHp90TWI1hw5PZKL7ETMghYIOCpTQTzWwOJLQi2a3ud97BG1Eou5xnkIYs6kSE8EZOqntj6o1v+4vQddJUJAaKdAaVb+G44TbGBRyyYwZBH6KYcY0Ci5hURlaAynjMzaFgaOKxWDCbBl0QS+sYZjQFDQVki5F+L2RsdiYeRy5yZjhg1n1cvE/b2BxchNmQqUWQfH8EAoJy0OGa+EaADoWGhBZnhyoUJQzzRBBC8o4d6J1lVRcH8Hq9+uke1UPHG83as1G0UyZnJFzckkCck2a5I60SIdwAuSJPJMXz3qv3pv3/jNa8oqdU/IH3sc3Eh2RKw==</latexit>

pI
<latexit sha1_base64="P2hcOjZr30W0L+dmAIvg4lGyXHU=">AAAB93icbVBNS8NAFNzUr1q/qh69LBbBU0mkoMeCF71VMG2hDWWzfa1LN5tl90Uoob/Bq568iVd/jgf/i0nMQVvnNMy8x5s3oZbCout+OpW19Y3Nrep2bWd3b/+gfnjUtXFiOPg8lrHph8yCFAp8FCihrw2wKJTQC2fXud97BGNFrO5xriGI2FSJieAMM8nXo/R2Mao33KZbgK4SryQNUqIzqn8NxzFPIlDIJbN24Lkag5QZFFzCojZMLGjGZ2wKg4wqFoEN0iLsgp4llmFMNRgqJC1E+L2RssjaeRRmkxHDB7vs5eJ/3iDByVWQCqUTBMXzQygkFIcsNyJrAehYGEBkeXKgQlHODEMEIyjjPBOTrJZa1oe3/P0q6V40vYzftRrtVtlMlZyQU3JOPHJJ2uSGdIhPOBHkiTyTF2fuvDpvzvvPaMUpd47JHzgf35ZOkzM=</latexit><latexit sha1_base64="P2hcOjZr30W0L+dmAIvg4lGyXHU=">AAAB93icbVBNS8NAFNzUr1q/qh69LBbBU0mkoMeCF71VMG2hDWWzfa1LN5tl90Uoob/Bq568iVd/jgf/i0nMQVvnNMy8x5s3oZbCout+OpW19Y3Nrep2bWd3b/+gfnjUtXFiOPg8lrHph8yCFAp8FCihrw2wKJTQC2fXud97BGNFrO5xriGI2FSJieAMM8nXo/R2Mao33KZbgK4SryQNUqIzqn8NxzFPIlDIJbN24Lkag5QZFFzCojZMLGjGZ2wKg4wqFoEN0iLsgp4llmFMNRgqJC1E+L2RssjaeRRmkxHDB7vs5eJ/3iDByVWQCqUTBMXzQygkFIcsNyJrAehYGEBkeXKgQlHODEMEIyjjPBOTrJZa1oe3/P0q6V40vYzftRrtVtlMlZyQU3JOPHJJ2uSGdIhPOBHkiTyTF2fuvDpvzvvPaMUpd47JHzgf35ZOkzM=</latexit><latexit sha1_base64="P2hcOjZr30W0L+dmAIvg4lGyXHU=">AAAB93icbVBNS8NAFNzUr1q/qh69LBbBU0mkoMeCF71VMG2hDWWzfa1LN5tl90Uoob/Bq568iVd/jgf/i0nMQVvnNMy8x5s3oZbCout+OpW19Y3Nrep2bWd3b/+gfnjUtXFiOPg8lrHph8yCFAp8FCihrw2wKJTQC2fXud97BGNFrO5xriGI2FSJieAMM8nXo/R2Mao33KZbgK4SryQNUqIzqn8NxzFPIlDIJbN24Lkag5QZFFzCojZMLGjGZ2wKg4wqFoEN0iLsgp4llmFMNRgqJC1E+L2RssjaeRRmkxHDB7vs5eJ/3iDByVWQCqUTBMXzQygkFIcsNyJrAehYGEBkeXKgQlHODEMEIyjjPBOTrJZa1oe3/P0q6V40vYzftRrtVtlMlZyQU3JOPHJJ2uSGdIhPOBHkiTyTF2fuvDpvzvvPaMUpd47JHzgf35ZOkzM=</latexit><latexit sha1_base64="JsY2M/+G/6hlSBrAiTTvRkpSb8w=">AAAB5HicbZA7SwNBFIXvxldco8baZjAIVmHXRkvBxjKCeUBcwt3JTRwy+2DmrhBC/oCtlZ34ryz8L86uKTTxVB/nzHDvPXGuleUg+PRqW9s7u3v1ff+g4R8eHTcbPZsVRlJXZjozgxgtaZVSlxVrGuSGMIk19ePZbZn3n8lYlaUPPM8pSnCaqomSyM7qjJqtoB1UEpsQrqAFK42aX4/jTBYJpSw1WjsMg5yjBRpWUtPSfyws5ShnOKWhwxQTstGiWnMpzguLnImcjFBaVCb9/rHAxNp5EruXCfKTXc9K879sWPDkOlqoNC+YUlkOYqWpGmSlUe5+EmNliBnLzUmoVEg0yExGCZTSmYUrxHd1hOvHb0Lvsh06vg+gDqdwBhcQwhXcwB10oAsSxvACr5713rz3n9pq3qq/E/gj7+MbljKOsg==</latexit><latexit sha1_base64="irzSWxa5T97lhZobt989+v7RaAw=">AAAB7HicbZA/TwJBEMXn8B8iKtrabCQmVuTORksTG+0w8YAECNlbBtywd7fZnTMhFz6DrVZ2xq9k4Xdx76RQ8FUv7+1mZn6RVtKS7396lY3Nre2d6m5tr75/cNg4qndsmhmBoUhVanoRt6hkgiFJUtjTBnkcKexGs5ui7z6hsTJNHmiucRjzaSInUnByUahH+d1i1Gj6Lb8UWzfB0jRhqfao8TUYpyKLMSGhuLX9wNc0zLkhKRQuaoPMouZixqfYdzbhMdphXi67YGeZ5ZQyjYZJxcoQf//IeWztPI7cy5jTo13tivC/rp/R5GqYy0RnhIkoBpFUWA6ywkhHAdlYGiTixebIZMIEN5wIjWRcCBdmDkvN8QhWr183nYtW4Py9D1U4gVM4hwAu4RpuoQ0hCJDwDC/w6s29N+/9h1zFWyI8hj/yPr4BQg2R3w==</latexit><latexit sha1_base64="irzSWxa5T97lhZobt989+v7RaAw=">AAAB7HicbZA/TwJBEMXn8B8iKtrabCQmVuTORksTG+0w8YAECNlbBtywd7fZnTMhFz6DrVZ2xq9k4Xdx76RQ8FUv7+1mZn6RVtKS7396lY3Nre2d6m5tr75/cNg4qndsmhmBoUhVanoRt6hkgiFJUtjTBnkcKexGs5ui7z6hsTJNHmiucRjzaSInUnByUahH+d1i1Gj6Lb8UWzfB0jRhqfao8TUYpyKLMSGhuLX9wNc0zLkhKRQuaoPMouZixqfYdzbhMdphXi67YGeZ5ZQyjYZJxcoQf//IeWztPI7cy5jTo13tivC/rp/R5GqYy0RnhIkoBpFUWA6ywkhHAdlYGiTixebIZMIEN5wIjWRcCBdmDkvN8QhWr183nYtW4Py9D1U4gVM4hwAu4RpuoQ0hCJDwDC/w6s29N+/9h1zFWyI8hj/yPr4BQg2R3w==</latexit><latexit sha1_base64="G3giy2qd1ID+lqvobpEGJSb/2Ao=">AAAB93icbVA9SwNBFNzzM8avqKXNYhCswp0IWgZstIvgJYHkCHubl7hkb2/ZfSeEI7/BVis7sfXnWPhf3JxXaOJUw8x7vHkTayks+v6nt7K6tr6xWdmqbu/s7u3XDg7bNs0Mh5CnMjXdmFmQQkGIAiV0tQGWxBI68eR67ncewViRqnucaogSNlZiJDhDJ4V6kN/OBrW63/AL0GUSlKROSrQGta/+MOVZAgq5ZNb2Al9jlDODgkuYVfuZBc34hI2h56hiCdgoL8LO6GlmGaZUg6FC0kKE3xs5S6ydJrGbTBg+2EVvLv7n9TIcXUW5UDpDUHx+CIWE4pDlRrgWgA6FAUQ2Tw5UKMqZYYhgBGWcOzFztVRdH8Hi98ukfd4IHL/z682LspkKOSYn5IwE5JI0yQ1pkZBwIsgTeSYv3tR79d6895/RFa/cOSJ/4H18A5UOky8=</latexit><latexit sha1_base64="P2hcOjZr30W0L+dmAIvg4lGyXHU=">AAAB93icbVBNS8NAFNzUr1q/qh69LBbBU0mkoMeCF71VMG2hDWWzfa1LN5tl90Uoob/Bq568iVd/jgf/i0nMQVvnNMy8x5s3oZbCout+OpW19Y3Nrep2bWd3b/+gfnjUtXFiOPg8lrHph8yCFAp8FCihrw2wKJTQC2fXud97BGNFrO5xriGI2FSJieAMM8nXo/R2Mao33KZbgK4SryQNUqIzqn8NxzFPIlDIJbN24Lkag5QZFFzCojZMLGjGZ2wKg4wqFoEN0iLsgp4llmFMNRgqJC1E+L2RssjaeRRmkxHDB7vs5eJ/3iDByVWQCqUTBMXzQygkFIcsNyJrAehYGEBkeXKgQlHODEMEIyjjPBOTrJZa1oe3/P0q6V40vYzftRrtVtlMlZyQU3JOPHJJ2uSGdIhPOBHkiTyTF2fuvDpvzvvPaMUpd47JHzgf35ZOkzM=</latexit><latexit sha1_base64="P2hcOjZr30W0L+dmAIvg4lGyXHU=">AAAB93icbVBNS8NAFNzUr1q/qh69LBbBU0mkoMeCF71VMG2hDWWzfa1LN5tl90Uoob/Bq568iVd/jgf/i0nMQVvnNMy8x5s3oZbCout+OpW19Y3Nrep2bWd3b/+gfnjUtXFiOPg8lrHph8yCFAp8FCihrw2wKJTQC2fXud97BGNFrO5xriGI2FSJieAMM8nXo/R2Mao33KZbgK4SryQNUqIzqn8NxzFPIlDIJbN24Lkag5QZFFzCojZMLGjGZ2wKg4wqFoEN0iLsgp4llmFMNRgqJC1E+L2RssjaeRRmkxHDB7vs5eJ/3iDByVWQCqUTBMXzQygkFIcsNyJrAehYGEBkeXKgQlHODEMEIyjjPBOTrJZa1oe3/P0q6V40vYzftRrtVtlMlZyQU3JOPHJJ2uSGdIhPOBHkiTyTF2fuvDpvzvvPaMUpd47JHzgf35ZOkzM=</latexit><latexit sha1_base64="P2hcOjZr30W0L+dmAIvg4lGyXHU=">AAAB93icbVBNS8NAFNzUr1q/qh69LBbBU0mkoMeCF71VMG2hDWWzfa1LN5tl90Uoob/Bq568iVd/jgf/i0nMQVvnNMy8x5s3oZbCout+OpW19Y3Nrep2bWd3b/+gfnjUtXFiOPg8lrHph8yCFAp8FCihrw2wKJTQC2fXud97BGNFrO5xriGI2FSJieAMM8nXo/R2Mao33KZbgK4SryQNUqIzqn8NxzFPIlDIJbN24Lkag5QZFFzCojZMLGjGZ2wKg4wqFoEN0iLsgp4llmFMNRgqJC1E+L2RssjaeRRmkxHDB7vs5eJ/3iDByVWQCqUTBMXzQygkFIcsNyJrAehYGEBkeXKgQlHODEMEIyjjPBOTrJZa1oe3/P0q6V40vYzftRrtVtlMlZyQU3JOPHJJ2uSGdIhPOBHkiTyTF2fuvDpvzvvPaMUpd47JHzgf35ZOkzM=</latexit><latexit sha1_base64="P2hcOjZr30W0L+dmAIvg4lGyXHU=">AAAB93icbVBNS8NAFNzUr1q/qh69LBbBU0mkoMeCF71VMG2hDWWzfa1LN5tl90Uoob/Bq568iVd/jgf/i0nMQVvnNMy8x5s3oZbCout+OpW19Y3Nrep2bWd3b/+gfnjUtXFiOPg8lrHph8yCFAp8FCihrw2wKJTQC2fXud97BGNFrO5xriGI2FSJieAMM8nXo/R2Mao33KZbgK4SryQNUqIzqn8NxzFPIlDIJbN24Lkag5QZFFzCojZMLGjGZ2wKg4wqFoEN0iLsgp4llmFMNRgqJC1E+L2RssjaeRRmkxHDB7vs5eJ/3iDByVWQCqUTBMXzQygkFIcsNyJrAehYGEBkeXKgQlHODEMEIyjjPBOTrJZa1oe3/P0q6V40vYzftRrtVtlMlZyQU3JOPHJJ2uSGdIhPOBHkiTyTF2fuvDpvzvvPaMUpd47JHzgf35ZOkzM=</latexit><latexit sha1_base64="P2hcOjZr30W0L+dmAIvg4lGyXHU=">AAAB93icbVBNS8NAFNzUr1q/qh69LBbBU0mkoMeCF71VMG2hDWWzfa1LN5tl90Uoob/Bq568iVd/jgf/i0nMQVvnNMy8x5s3oZbCout+OpW19Y3Nrep2bWd3b/+gfnjUtXFiOPg8lrHph8yCFAp8FCihrw2wKJTQC2fXud97BGNFrO5xriGI2FSJieAMM8nXo/R2Mao33KZbgK4SryQNUqIzqn8NxzFPIlDIJbN24Lkag5QZFFzCojZMLGjGZ2wKg4wqFoEN0iLsgp4llmFMNRgqJC1E+L2RssjaeRRmkxHDB7vs5eJ/3iDByVWQCqUTBMXzQygkFIcsNyJrAehYGEBkeXKgQlHODEMEIyjjPBOTrJZa1oe3/P0q6V40vYzftRrtVtlMlZyQU3JOPHJJ2uSGdIhPOBHkiTyTF2fuvDpvzvvPaMUpd47JHzgf35ZOkzM=</latexit><latexit sha1_base64="P2hcOjZr30W0L+dmAIvg4lGyXHU=">AAAB93icbVBNS8NAFNzUr1q/qh69LBbBU0mkoMeCF71VMG2hDWWzfa1LN5tl90Uoob/Bq568iVd/jgf/i0nMQVvnNMy8x5s3oZbCout+OpW19Y3Nrep2bWd3b/+gfnjUtXFiOPg8lrHph8yCFAp8FCihrw2wKJTQC2fXud97BGNFrO5xriGI2FSJieAMM8nXo/R2Mao33KZbgK4SryQNUqIzqn8NxzFPIlDIJbN24Lkag5QZFFzCojZMLGjGZ2wKg4wqFoEN0iLsgp4llmFMNRgqJC1E+L2RssjaeRRmkxHDB7vs5eJ/3iDByVWQCqUTBMXzQygkFIcsNyJrAehYGEBkeXKgQlHODEMEIyjjPBOTrJZa1oe3/P0q6V40vYzftRrtVtlMlZyQU3JOPHJJ2uSGdIhPOBHkiTyTF2fuvDpvzvvPaMUpd47JHzgf35ZOkzM=</latexit>

pR
<latexit sha1_base64="6K8DfedvXq/CH5fM6JLQCm99JCw=">AAAB93icbVC7TsNAEDyHVwivACXNiQiJKrJRJCgj0VAGhJNIiRWdL5twyvl8ulsjRVa+gRYqOkTL51DwL9jGBSRMNZrZ1c5OqKWw6LqfTmVtfWNzq7pd29nd2z+oHx51bZwYDj6PZWz6IbMghQIfBUroawMsCiX0wtl17vcewVgRq3ucawgiNlViIjjDTPL1KL1bjOoNt+kWoKvEK0mDlOiM6l/DccyTCBRyyawdeK7GIGUGBZewqA0TC5rxGZvCIKOKRWCDtAi7oGeJZRhTDYYKSQsRfm+kLLJ2HoXZZMTwwS57ufifN0hwchWkQukEQfH8EAoJxSHLjchaADoWBhBZnhyoUJQzwxDBCMo4z8Qkq6WW9eEtf79KuhdNL+O3rUa7VTZTJSfklJwTj1ySNrkhHeITTgR5Is/kxZk7r86b8/4zWnHKnWPyB87HN6Rekzw=</latexit><latexit sha1_base64="6K8DfedvXq/CH5fM6JLQCm99JCw=">AAAB93icbVC7TsNAEDyHVwivACXNiQiJKrJRJCgj0VAGhJNIiRWdL5twyvl8ulsjRVa+gRYqOkTL51DwL9jGBSRMNZrZ1c5OqKWw6LqfTmVtfWNzq7pd29nd2z+oHx51bZwYDj6PZWz6IbMghQIfBUroawMsCiX0wtl17vcewVgRq3ucawgiNlViIjjDTPL1KL1bjOoNt+kWoKvEK0mDlOiM6l/DccyTCBRyyawdeK7GIGUGBZewqA0TC5rxGZvCIKOKRWCDtAi7oGeJZRhTDYYKSQsRfm+kLLJ2HoXZZMTwwS57ufifN0hwchWkQukEQfH8EAoJxSHLjchaADoWBhBZnhyoUJQzwxDBCMo4z8Qkq6WW9eEtf79KuhdNL+O3rUa7VTZTJSfklJwTj1ySNrkhHeITTgR5Is/kxZk7r86b8/4zWnHKnWPyB87HN6Rekzw=</latexit><latexit sha1_base64="6K8DfedvXq/CH5fM6JLQCm99JCw=">AAAB93icbVC7TsNAEDyHVwivACXNiQiJKrJRJCgj0VAGhJNIiRWdL5twyvl8ulsjRVa+gRYqOkTL51DwL9jGBSRMNZrZ1c5OqKWw6LqfTmVtfWNzq7pd29nd2z+oHx51bZwYDj6PZWz6IbMghQIfBUroawMsCiX0wtl17vcewVgRq3ucawgiNlViIjjDTPL1KL1bjOoNt+kWoKvEK0mDlOiM6l/DccyTCBRyyawdeK7GIGUGBZewqA0TC5rxGZvCIKOKRWCDtAi7oGeJZRhTDYYKSQsRfm+kLLJ2HoXZZMTwwS57ufifN0hwchWkQukEQfH8EAoJxSHLjchaADoWBhBZnhyoUJQzwxDBCMo4z8Qkq6WW9eEtf79KuhdNL+O3rUa7VTZTJSfklJwTj1ySNrkhHeITTgR5Is/kxZk7r86b8/4zWnHKnWPyB87HN6Rekzw=</latexit><latexit sha1_base64="6K8DfedvXq/CH5fM6JLQCm99JCw=">AAAB93icbVC7TsNAEDyHVwivACXNiQiJKrJRJCgj0VAGhJNIiRWdL5twyvl8ulsjRVa+gRYqOkTL51DwL9jGBSRMNZrZ1c5OqKWw6LqfTmVtfWNzq7pd29nd2z+oHx51bZwYDj6PZWz6IbMghQIfBUroawMsCiX0wtl17vcewVgRq3ucawgiNlViIjjDTPL1KL1bjOoNt+kWoKvEK0mDlOiM6l/DccyTCBRyyawdeK7GIGUGBZewqA0TC5rxGZvCIKOKRWCDtAi7oGeJZRhTDYYKSQsRfm+kLLJ2HoXZZMTwwS57ufifN0hwchWkQukEQfH8EAoJxSHLjchaADoWBhBZnhyoUJQzwxDBCMo4z8Qkq6WW9eEtf79KuhdNL+O3rUa7VTZTJSfklJwTj1ySNrkhHeITTgR5Is/kxZk7r86b8/4zWnHKnWPyB87HN6Rekzw=</latexit>

pF
<latexit sha1_base64="xbUB5YbcvYrs6VbM8fztZ4o/q3U=">AAAB93icbVBNS8NAFNzUr1q/qh69LBbBU0mkoMeCIB4rmLbQhrLZvtalm82y+yKU0N/gVU/exKs/x4P/xSTmoK1zGmbe482bUEth0XU/ncra+sbmVnW7trO7t39QPzzq2jgxHHwey9j0Q2ZBCgU+CpTQ1wZYFErohbPr3O89grEiVvc41xBEbKrERHCGmeTrUXqzGNUbbtMtQFeJV5IGKdEZ1b+G45gnESjkklk78FyNQcoMCi5hURsmFjTjMzaFQUYVi8AGaRF2Qc8SyzCmGgwVkhYi/N5IWWTtPAqzyYjhg132cvE/b5Dg5CpIhdIJguL5IRQSikOWG5G1AHQsDCCyPDlQoShnhiGCEZRxnolJVkst68Nb/n6VdC+aXsbvWo12q2ymSk7IKTknHrkkbXJLOsQnnAjyRJ7JizN3Xp035/1ntOKUO8fkD5yPb5GekzA=</latexit><latexit sha1_base64="xbUB5YbcvYrs6VbM8fztZ4o/q3U=">AAAB93icbVBNS8NAFNzUr1q/qh69LBbBU0mkoMeCIB4rmLbQhrLZvtalm82y+yKU0N/gVU/exKs/x4P/xSTmoK1zGmbe482bUEth0XU/ncra+sbmVnW7trO7t39QPzzq2jgxHHwey9j0Q2ZBCgU+CpTQ1wZYFErohbPr3O89grEiVvc41xBEbKrERHCGmeTrUXqzGNUbbtMtQFeJV5IGKdEZ1b+G45gnESjkklk78FyNQcoMCi5hURsmFjTjMzaFQUYVi8AGaRF2Qc8SyzCmGgwVkhYi/N5IWWTtPAqzyYjhg132cvE/b5Dg5CpIhdIJguL5IRQSikOWG5G1AHQsDCCyPDlQoShnhiGCEZRxnolJVkst68Nb/n6VdC+aXsbvWo12q2ymSk7IKTknHrkkbXJLOsQnnAjyRJ7JizN3Xp035/1ntOKUO8fkD5yPb5GekzA=</latexit><latexit sha1_base64="xbUB5YbcvYrs6VbM8fztZ4o/q3U=">AAAB93icbVBNS8NAFNzUr1q/qh69LBbBU0mkoMeCIB4rmLbQhrLZvtalm82y+yKU0N/gVU/exKs/x4P/xSTmoK1zGmbe482bUEth0XU/ncra+sbmVnW7trO7t39QPzzq2jgxHHwey9j0Q2ZBCgU+CpTQ1wZYFErohbPr3O89grEiVvc41xBEbKrERHCGmeTrUXqzGNUbbtMtQFeJV5IGKdEZ1b+G45gnESjkklk78FyNQcoMCi5hURsmFjTjMzaFQUYVi8AGaRF2Qc8SyzCmGgwVkhYi/N5IWWTtPAqzyYjhg132cvE/b5Dg5CpIhdIJguL5IRQSikOWG5G1AHQsDCCyPDlQoShnhiGCEZRxnolJVkst68Nb/n6VdC+aXsbvWo12q2ymSk7IKTknHrkkbXJLOsQnnAjyRJ7JizN3Xp035/1ntOKUO8fkD5yPb5GekzA=</latexit><latexit sha1_base64="xbUB5YbcvYrs6VbM8fztZ4o/q3U=">AAAB93icbVBNS8NAFNzUr1q/qh69LBbBU0mkoMeCIB4rmLbQhrLZvtalm82y+yKU0N/gVU/exKs/x4P/xSTmoK1zGmbe482bUEth0XU/ncra+sbmVnW7trO7t39QPzzq2jgxHHwey9j0Q2ZBCgU+CpTQ1wZYFErohbPr3O89grEiVvc41xBEbKrERHCGmeTrUXqzGNUbbtMtQFeJV5IGKdEZ1b+G45gnESjkklk78FyNQcoMCi5hURsmFjTjMzaFQUYVi8AGaRF2Qc8SyzCmGgwVkhYi/N5IWWTtPAqzyYjhg132cvE/b5Dg5CpIhdIJguL5IRQSikOWG5G1AHQsDCCyPDlQoShnhiGCEZRxnolJVkst68Nb/n6VdC+aXsbvWo12q2ymSk7IKTknHrkkbXJLOsQnnAjyRJ7JizN3Xp035/1ntOKUO8fkD5yPb5GekzA=</latexit>

NVH � 1
<latexit sha1_base64="HZuTXJHLXBHZACfcsRroZHfqhzg=">AAACBXicbVC7TsNAEDzzDOHlQElzIkKiIbJRJCgj0aRCQSIPKbGs82UTTjk/dLcGRZZrvoIWKjpEy3dQ8C/YxgUkTDWa2dXOjhdJodGyPo2V1bX1jc3KVnV7Z3dv36wd9HQYKw5dHspQDTymQYoAuihQwiBSwHxPQt+bXeV+/x6UFmFwi/MIHJ9NAzERnGEmuWbt2k1GPsM75Se9dpqe2a5ZtxpWAbpM7JLUSYmOa36NxiGPfQiQS6b10LYidBKmUHAJaXUUa4gYn7EpDDMaMB+0kxTRU3oSa4YhjUBRIWkhwu+NhPlaz30vm8xT6kUvF//zhjFOLp1EBFGMEPD8EAoJxSHNlcg6AToWChBZnhyoCChniiGCEpRxnolxVlI168Ne/H6Z9M4bdsZvmvVWs2ymQo7IMTklNrkgLdImHdIlnDyQJ/JMXoxH49V4M95/RleMcueQ/IHx8Q3lsphK</latexit><latexit sha1_base64="HZuTXJHLXBHZACfcsRroZHfqhzg=">AAACBXicbVC7TsNAEDzzDOHlQElzIkKiIbJRJCgj0aRCQSIPKbGs82UTTjk/dLcGRZZrvoIWKjpEy3dQ8C/YxgUkTDWa2dXOjhdJodGyPo2V1bX1jc3KVnV7Z3dv36wd9HQYKw5dHspQDTymQYoAuihQwiBSwHxPQt+bXeV+/x6UFmFwi/MIHJ9NAzERnGEmuWbt2k1GPsM75Se9dpqe2a5ZtxpWAbpM7JLUSYmOa36NxiGPfQiQS6b10LYidBKmUHAJaXUUa4gYn7EpDDMaMB+0kxTRU3oSa4YhjUBRIWkhwu+NhPlaz30vm8xT6kUvF//zhjFOLp1EBFGMEPD8EAoJxSHNlcg6AToWChBZnhyoCChniiGCEpRxnolxVlI168Ne/H6Z9M4bdsZvmvVWs2ymQo7IMTklNrkgLdImHdIlnDyQJ/JMXoxH49V4M95/RleMcueQ/IHx8Q3lsphK</latexit><latexit sha1_base64="HZuTXJHLXBHZACfcsRroZHfqhzg=">AAACBXicbVC7TsNAEDzzDOHlQElzIkKiIbJRJCgj0aRCQSIPKbGs82UTTjk/dLcGRZZrvoIWKjpEy3dQ8C/YxgUkTDWa2dXOjhdJodGyPo2V1bX1jc3KVnV7Z3dv36wd9HQYKw5dHspQDTymQYoAuihQwiBSwHxPQt+bXeV+/x6UFmFwi/MIHJ9NAzERnGEmuWbt2k1GPsM75Se9dpqe2a5ZtxpWAbpM7JLUSYmOa36NxiGPfQiQS6b10LYidBKmUHAJaXUUa4gYn7EpDDMaMB+0kxTRU3oSa4YhjUBRIWkhwu+NhPlaz30vm8xT6kUvF//zhjFOLp1EBFGMEPD8EAoJxSHNlcg6AToWChBZnhyoCChniiGCEpRxnolxVlI168Ne/H6Z9M4bdsZvmvVWs2ymQo7IMTklNrkgLdImHdIlnDyQJ/JMXoxH49V4M95/RleMcueQ/IHx8Q3lsphK</latexit><latexit sha1_base64="HZuTXJHLXBHZACfcsRroZHfqhzg=">AAACBXicbVC7TsNAEDzzDOHlQElzIkKiIbJRJCgj0aRCQSIPKbGs82UTTjk/dLcGRZZrvoIWKjpEy3dQ8C/YxgUkTDWa2dXOjhdJodGyPo2V1bX1jc3KVnV7Z3dv36wd9HQYKw5dHspQDTymQYoAuihQwiBSwHxPQt+bXeV+/x6UFmFwi/MIHJ9NAzERnGEmuWbt2k1GPsM75Se9dpqe2a5ZtxpWAbpM7JLUSYmOa36NxiGPfQiQS6b10LYidBKmUHAJaXUUa4gYn7EpDDMaMB+0kxTRU3oSa4YhjUBRIWkhwu+NhPlaz30vm8xT6kUvF//zhjFOLp1EBFGMEPD8EAoJxSHNlcg6AToWChBZnhyoCChniiGCEpRxnolxVlI168Ne/H6Z9M4bdsZvmvVWs2ymQo7IMTklNrkgLdImHdIlnDyQJ/JMXoxH49V4M95/RleMcueQ/IHx8Q3lsphK</latexit>

dVV
<latexit sha1_base64="y3suXksykirk6I9AoZONlbbNYIE=">AAACA3icbVC7TsNAEDyHVwiPGChpTkRIVJEdIUEZiYYySMRBSizrfNmEU85n626NFFkp+QpaqOgQLR9Cwb9gGxeQMNVoZlc7O2EihUHH+bRqa+sbm1v17cbO7t5+0z449Eycag59HstY34XMgBQK+ihQwl2igUWhhEE4uyr8wQNoI2J1i/ME/IhNlZgIzjCXArs5DrJRxPBeR5nnLRaB3XLaTgm6StyKtEiFXmB/jcYxTyNQyCUzZug6CfoZ0yi4hEVjlBpIGJ+xKQxzqlgExs/K4At6mhqGMU1AUyFpKcLvjYxFxsyjMJ8sMpplrxD/84YpTi79TKgkRVC8OIRCQnnIcC3yRoCOhQZEViQHKhTlTDNE0IIyznMxzStq5H24y9+vEq/TdnN+c97qdqpm6uSYnJAz4pIL0iXXpEf6hJOUPJFn8mI9Wq/Wm/X+M1qzqp0j8gfWxzc1P5f6</latexit><latexit sha1_base64="y3suXksykirk6I9AoZONlbbNYIE=">AAACA3icbVC7TsNAEDyHVwiPGChpTkRIVJEdIUEZiYYySMRBSizrfNmEU85n626NFFkp+QpaqOgQLR9Cwb9gGxeQMNVoZlc7O2EihUHH+bRqa+sbm1v17cbO7t5+0z449Eycag59HstY34XMgBQK+ihQwl2igUWhhEE4uyr8wQNoI2J1i/ME/IhNlZgIzjCXArs5DrJRxPBeR5nnLRaB3XLaTgm6StyKtEiFXmB/jcYxTyNQyCUzZug6CfoZ0yi4hEVjlBpIGJ+xKQxzqlgExs/K4At6mhqGMU1AUyFpKcLvjYxFxsyjMJ8sMpplrxD/84YpTi79TKgkRVC8OIRCQnnIcC3yRoCOhQZEViQHKhTlTDNE0IIyznMxzStq5H24y9+vEq/TdnN+c97qdqpm6uSYnJAz4pIL0iXXpEf6hJOUPJFn8mI9Wq/Wm/X+M1qzqp0j8gfWxzc1P5f6</latexit><latexit sha1_base64="y3suXksykirk6I9AoZONlbbNYIE=">AAACA3icbVC7TsNAEDyHVwiPGChpTkRIVJEdIUEZiYYySMRBSizrfNmEU85n626NFFkp+QpaqOgQLR9Cwb9gGxeQMNVoZlc7O2EihUHH+bRqa+sbm1v17cbO7t5+0z449Eycag59HstY34XMgBQK+ihQwl2igUWhhEE4uyr8wQNoI2J1i/ME/IhNlZgIzjCXArs5DrJRxPBeR5nnLRaB3XLaTgm6StyKtEiFXmB/jcYxTyNQyCUzZug6CfoZ0yi4hEVjlBpIGJ+xKQxzqlgExs/K4At6mhqGMU1AUyFpKcLvjYxFxsyjMJ8sMpplrxD/84YpTi79TKgkRVC8OIRCQnnIcC3yRoCOhQZEViQHKhTlTDNE0IIyznMxzStq5H24y9+vEq/TdnN+c97qdqpm6uSYnJAz4pIL0iXXpEf6hJOUPJFn8mI9Wq/Wm/X+M1qzqp0j8gfWxzc1P5f6</latexit><latexit sha1_base64="y3suXksykirk6I9AoZONlbbNYIE=">AAACA3icbVC7TsNAEDyHVwiPGChpTkRIVJEdIUEZiYYySMRBSizrfNmEU85n626NFFkp+QpaqOgQLR9Cwb9gGxeQMNVoZlc7O2EihUHH+bRqa+sbm1v17cbO7t5+0z449Eycag59HstY34XMgBQK+ihQwl2igUWhhEE4uyr8wQNoI2J1i/ME/IhNlZgIzjCXArs5DrJRxPBeR5nnLRaB3XLaTgm6StyKtEiFXmB/jcYxTyNQyCUzZug6CfoZ0yi4hEVjlBpIGJ+xKQxzqlgExs/K4At6mhqGMU1AUyFpKcLvjYxFxsyjMJ8sMpplrxD/84YpTi79TKgkRVC8OIRCQnnIcC3yRoCOhQZEViQHKhTlTDNE0IIyznMxzStq5H24y9+vEq/TdnN+c97qdqpm6uSYnJAz4pIL0iXXpEf6hJOUPJFn8mI9Wq/Wm/X+M1qzqp0j8gfWxzc1P5f6</latexit>

dVH
<latexit sha1_base64="rqrkFvwTIKTAwctS3bktGx5UbfI=">AAACA3icbVC7TsNAEDyHVwiPBChpTkRIVJEdIUEZiSZlkMhDSizrfNmEU84P3e0hRZZLvoIWKjpEy4dQ8C/YxgUkTDWa2dXOjh9LodG2P63KxubW9k51t7a3f3BYbxwdD3RkFIc+j2SkRj7TIEUIfRQoYRQrYIEvYegvbnJ/+ABKiyi8w2UMbsDmoZgJzjCTvEZ96iWTgOG9CpJBN029RtNu2QXoOnFK0iQlel7jazKNuAkgRC6Z1mPHjtFNmELBJaS1idEQM75gcxhnNGQBaDcpgqf03GiGEY1BUSFpIcLvjYQFWi8DP5vMM+pVLxf/88YGZ9duIsLYIIQ8P4RCQnFIcyWyRoBOhQJElicHKkLKmWKIoARlnGeiySqqZX04q9+vk0G75WT89rLZaZfNVMkpOSMXxCFXpEO6pEf6hBNDnsgzebEerVfrzXr/Ga1Y5c4J+QPr4xsfUZfs</latexit><latexit sha1_base64="rqrkFvwTIKTAwctS3bktGx5UbfI=">AAACA3icbVC7TsNAEDyHVwiPBChpTkRIVJEdIUEZiSZlkMhDSizrfNmEU84P3e0hRZZLvoIWKjpEy4dQ8C/YxgUkTDWa2dXOjh9LodG2P63KxubW9k51t7a3f3BYbxwdD3RkFIc+j2SkRj7TIEUIfRQoYRQrYIEvYegvbnJ/+ABKiyi8w2UMbsDmoZgJzjCTvEZ96iWTgOG9CpJBN029RtNu2QXoOnFK0iQlel7jazKNuAkgRC6Z1mPHjtFNmELBJaS1idEQM75gcxhnNGQBaDcpgqf03GiGEY1BUSFpIcLvjYQFWi8DP5vMM+pVLxf/88YGZ9duIsLYIIQ8P4RCQnFIcyWyRoBOhQJElicHKkLKmWKIoARlnGeiySqqZX04q9+vk0G75WT89rLZaZfNVMkpOSMXxCFXpEO6pEf6hBNDnsgzebEerVfrzXr/Ga1Y5c4J+QPr4xsfUZfs</latexit><latexit sha1_base64="rqrkFvwTIKTAwctS3bktGx5UbfI=">AAACA3icbVC7TsNAEDyHVwiPBChpTkRIVJEdIUEZiSZlkMhDSizrfNmEU84P3e0hRZZLvoIWKjpEy4dQ8C/YxgUkTDWa2dXOjh9LodG2P63KxubW9k51t7a3f3BYbxwdD3RkFIc+j2SkRj7TIEUIfRQoYRQrYIEvYegvbnJ/+ABKiyi8w2UMbsDmoZgJzjCTvEZ96iWTgOG9CpJBN029RtNu2QXoOnFK0iQlel7jazKNuAkgRC6Z1mPHjtFNmELBJaS1idEQM75gcxhnNGQBaDcpgqf03GiGEY1BUSFpIcLvjYQFWi8DP5vMM+pVLxf/88YGZ9duIsLYIIQ8P4RCQnFIcyWyRoBOhQJElicHKkLKmWKIoARlnGeiySqqZX04q9+vk0G75WT89rLZaZfNVMkpOSMXxCFXpEO6pEf6hBNDnsgzebEerVfrzXr/Ga1Y5c4J+QPr4xsfUZfs</latexit><latexit sha1_base64="rqrkFvwTIKTAwctS3bktGx5UbfI=">AAACA3icbVC7TsNAEDyHVwiPBChpTkRIVJEdIUEZiSZlkMhDSizrfNmEU84P3e0hRZZLvoIWKjpEy4dQ8C/YxgUkTDWa2dXOjh9LodG2P63KxubW9k51t7a3f3BYbxwdD3RkFIc+j2SkRj7TIEUIfRQoYRQrYIEvYegvbnJ/+ABKiyi8w2UMbsDmoZgJzjCTvEZ96iWTgOG9CpJBN029RtNu2QXoOnFK0iQlel7jazKNuAkgRC6Z1mPHjtFNmELBJaS1idEQM75gcxhnNGQBaDcpgqf03GiGEY1BUSFpIcLvjYQFWi8DP5vMM+pVLxf/88YGZ9duIsLYIIQ8P4RCQnFIcyWyRoBOhQJElicHKkLKmWKIoARlnGeiySqqZX04q9+vk0G75WT89rLZaZfNVMkpOSMXxCFXpEO6pEf6hBNDnsgzebEerVfrzXr/Ga1Y5c4J+QPr4xsfUZfs</latexit>

q
<latexit sha1_base64="16pQWzTlMOESzzBU0Brn0u79QwI=">AAAB83icbVC7SgNBFJ31GeMramkzGASrsCuCKQM2lgmYByRLmJ3cxCGzs+vMHSEs+QJbrezE1g+y8F+cXVNo4qkO59zLPfdEqRQGff/TW1vf2NzaLu2Ud/f2Dw4rR8cdk1jNoc0TmehexAxIoaCNAiX0Ug0sjiR0o+lN7ncfQRuRqDucpRDGbKLEWHCGTmo9DCtVv+YXoKskWJAqWaA5rHwNRgm3MSjkkhnTD/wUw4xpFFzCvDywBlLGp2wCfUcVi8GEWRF0Ts+tYZjQFDQVkhYi/N7IWGzMLI7cZMzw3ix7ufif17c4roeZUKlFUDw/hEJCcchwLVwDQEdCAyLLkwMVinKmGSJoQRnnTrSukrLrI1j+fpV0LmuB462raqO+aKZETskZuSABuSYNckuapE04AfJEnsmLZ71X7817/xld8xY7J+QPvI9veKCRcA==</latexit><latexit sha1_base64="16pQWzTlMOESzzBU0Brn0u79QwI=">AAAB83icbVC7SgNBFJ31GeMramkzGASrsCuCKQM2lgmYByRLmJ3cxCGzs+vMHSEs+QJbrezE1g+y8F+cXVNo4qkO59zLPfdEqRQGff/TW1vf2NzaLu2Ud/f2Dw4rR8cdk1jNoc0TmehexAxIoaCNAiX0Ug0sjiR0o+lN7ncfQRuRqDucpRDGbKLEWHCGTmo9DCtVv+YXoKskWJAqWaA5rHwNRgm3MSjkkhnTD/wUw4xpFFzCvDywBlLGp2wCfUcVi8GEWRF0Ts+tYZjQFDQVkhYi/N7IWGzMLI7cZMzw3ix7ufif17c4roeZUKlFUDw/hEJCcchwLVwDQEdCAyLLkwMVinKmGSJoQRnnTrSukrLrI1j+fpV0LmuB462raqO+aKZETskZuSABuSYNckuapE04AfJEnsmLZ71X7817/xld8xY7J+QPvI9veKCRcA==</latexit><latexit sha1_base64="16pQWzTlMOESzzBU0Brn0u79QwI=">AAAB83icbVC7SgNBFJ31GeMramkzGASrsCuCKQM2lgmYByRLmJ3cxCGzs+vMHSEs+QJbrezE1g+y8F+cXVNo4qkO59zLPfdEqRQGff/TW1vf2NzaLu2Ud/f2Dw4rR8cdk1jNoc0TmehexAxIoaCNAiX0Ug0sjiR0o+lN7ncfQRuRqDucpRDGbKLEWHCGTmo9DCtVv+YXoKskWJAqWaA5rHwNRgm3MSjkkhnTD/wUw4xpFFzCvDywBlLGp2wCfUcVi8GEWRF0Ts+tYZjQFDQVkhYi/N7IWGzMLI7cZMzw3ix7ufif17c4roeZUKlFUDw/hEJCcchwLVwDQEdCAyLLkwMVinKmGSJoQRnnTrSukrLrI1j+fpV0LmuB462raqO+aKZETskZuSABuSYNckuapE04AfJEnsmLZ71X7817/xld8xY7J+QPvI9veKCRcA==</latexit><latexit sha1_base64="16pQWzTlMOESzzBU0Brn0u79QwI=">AAAB83icbVC7SgNBFJ31GeMramkzGASrsCuCKQM2lgmYByRLmJ3cxCGzs+vMHSEs+QJbrezE1g+y8F+cXVNo4qkO59zLPfdEqRQGff/TW1vf2NzaLu2Ud/f2Dw4rR8cdk1jNoc0TmehexAxIoaCNAiX0Ug0sjiR0o+lN7ncfQRuRqDucpRDGbKLEWHCGTmo9DCtVv+YXoKskWJAqWaA5rHwNRgm3MSjkkhnTD/wUw4xpFFzCvDywBlLGp2wCfUcVi8GEWRF0Ts+tYZjQFDQVkhYi/N7IWGzMLI7cZMzw3ix7ufif17c4roeZUKlFUDw/hEJCcchwLVwDQEdCAyLLkwMVinKmGSJoQRnnTrSukrLrI1j+fpV0LmuB462raqO+aKZETskZuSABuSYNckuapE04AfJEnsmLZ71X7817/xld8xY7J+QPvI9veKCRcA==</latexit>

NVV � 1
<latexit sha1_base64="dlSGA7hD98PmzQ0oKnOMC8Vit0U=">AAACBXicbVC7TsNAEDyHVwivBEqaExESDZGNIkEZiYYKBYk4kRLLOl824ZTzQ3drUGS55itooaJDtHwHBf+CbVxAwlSjmV3t7HiRFBpN89OorKyurW9UN2tb2zu7e/XGvq3DWHHo8VCGauAxDVIE0EOBEgaRAuZ7Evre7DL3+/egtAiDW5xH4PhsGoiJ4Awzya03rt1k5DO8U35i22l6arn1ptkyC9BlYpWkSUp03frXaBzy2IcAuWRaDy0zQidhCgWXkNZGsYaI8RmbwjCjAfNBO0kRPaXHsWYY0ggUFZIWIvzeSJiv9dz3ssk8pV70cvE/bxjj5MJJRBDFCAHPD6GQUBzSXImsE6BjoQCR5cmBioByphgiKEEZ55kYZyXVsj6sxe+XiX3WsjJ+02522mUzVXJIjsgJscg56ZAr0iU9wskDeSLP5MV4NF6NN+P9Z7RilDsH5A+Mj2/7vJhY</latexit><latexit sha1_base64="dlSGA7hD98PmzQ0oKnOMC8Vit0U=">AAACBXicbVC7TsNAEDyHVwivBEqaExESDZGNIkEZiYYKBYk4kRLLOl824ZTzQ3drUGS55itooaJDtHwHBf+CbVxAwlSjmV3t7HiRFBpN89OorKyurW9UN2tb2zu7e/XGvq3DWHHo8VCGauAxDVIE0EOBEgaRAuZ7Evre7DL3+/egtAiDW5xH4PhsGoiJ4Awzya03rt1k5DO8U35i22l6arn1ptkyC9BlYpWkSUp03frXaBzy2IcAuWRaDy0zQidhCgWXkNZGsYaI8RmbwjCjAfNBO0kRPaXHsWYY0ggUFZIWIvzeSJiv9dz3ssk8pV70cvE/bxjj5MJJRBDFCAHPD6GQUBzSXImsE6BjoQCR5cmBioByphgiKEEZ55kYZyXVsj6sxe+XiX3WsjJ+02522mUzVXJIjsgJscg56ZAr0iU9wskDeSLP5MV4NF6NN+P9Z7RilDsH5A+Mj2/7vJhY</latexit><latexit sha1_base64="dlSGA7hD98PmzQ0oKnOMC8Vit0U=">AAACBXicbVC7TsNAEDyHVwivBEqaExESDZGNIkEZiYYKBYk4kRLLOl824ZTzQ3drUGS55itooaJDtHwHBf+CbVxAwlSjmV3t7HiRFBpN89OorKyurW9UN2tb2zu7e/XGvq3DWHHo8VCGauAxDVIE0EOBEgaRAuZ7Evre7DL3+/egtAiDW5xH4PhsGoiJ4Awzya03rt1k5DO8U35i22l6arn1ptkyC9BlYpWkSUp03frXaBzy2IcAuWRaDy0zQidhCgWXkNZGsYaI8RmbwjCjAfNBO0kRPaXHsWYY0ggUFZIWIvzeSJiv9dz3ssk8pV70cvE/bxjj5MJJRBDFCAHPD6GQUBzSXImsE6BjoQCR5cmBioByphgiKEEZ55kYZyXVsj6sxe+XiX3WsjJ+02522mUzVXJIjsgJscg56ZAr0iU9wskDeSLP5MV4NF6NN+P9Z7RilDsH5A+Mj2/7vJhY</latexit><latexit sha1_base64="dlSGA7hD98PmzQ0oKnOMC8Vit0U=">AAACBXicbVC7TsNAEDyHVwivBEqaExESDZGNIkEZiYYKBYk4kRLLOl824ZTzQ3drUGS55itooaJDtHwHBf+CbVxAwlSjmV3t7HiRFBpN89OorKyurW9UN2tb2zu7e/XGvq3DWHHo8VCGauAxDVIE0EOBEgaRAuZ7Evre7DL3+/egtAiDW5xH4PhsGoiJ4Awzya03rt1k5DO8U35i22l6arn1ptkyC9BlYpWkSUp03frXaBzy2IcAuWRaDy0zQidhCgWXkNZGsYaI8RmbwjCjAfNBO0kRPaXHsWYY0ggUFZIWIvzeSJiv9dz3ssk8pV70cvE/bxjj5MJJRBDFCAHPD6GQUBzSXImsE6BjoQCR5cmBioByphgiKEEZ55kYZyXVsj6sxe+XiX3WsjJ+02522mUzVXJIjsgJscg56ZAr0iU9wskDeSLP5MV4NF6NN+P9Z7RilDsH5A+Mj2/7vJhY</latexit>

0
<latexit sha1_base64="2Oa6kk2XoRI3K2+yVPA6lLKH7vA=">AAAB83icbVC7SgNBFJ2NrxhfUUubwSBYhV0JaBmwsUzAPCBZwuzkJg6ZnV1m7ghhyRfYamUntn6Qhf/ibNxCE091OOde7rknSqUw6PufXmljc2t7p7xb2ds/ODyqHp90TWI1hw5PZKL7ETMghYIOCpTQTzWwOJLQi2a3ud97BG1Eou5xnkIYs6kSE8EZOqntj6o1v+4vQddJUJAaKdAaVb+G44TbGBRyyYwZBH6KYcY0Ci5hURlaAynjMzaFgaOKxWDCbBl0QS+sYZjQFDQVki5F+L2RsdiYeRy5yZjhg1n1cvE/b2BxchNmQqUWQfH8EAoJy0OGa+EaADoWGhBZnhyoUJQzzRBBC8o4d6J1lVRcH8Hq9+uke1UPHG83as1G0UyZnJFzckkCck2a5I60SIdwAuSJPJMXz3qv3pv3/jNa8oqdU/IH3sc3Eh2RKw==</latexit><latexit sha1_base64="2Oa6kk2XoRI3K2+yVPA6lLKH7vA=">AAAB83icbVC7SgNBFJ2NrxhfUUubwSBYhV0JaBmwsUzAPCBZwuzkJg6ZnV1m7ghhyRfYamUntn6Qhf/ibNxCE091OOde7rknSqUw6PufXmljc2t7p7xb2ds/ODyqHp90TWI1hw5PZKL7ETMghYIOCpTQTzWwOJLQi2a3ud97BG1Eou5xnkIYs6kSE8EZOqntj6o1v+4vQddJUJAaKdAaVb+G44TbGBRyyYwZBH6KYcY0Ci5hURlaAynjMzaFgaOKxWDCbBl0QS+sYZjQFDQVki5F+L2RsdiYeRy5yZjhg1n1cvE/b2BxchNmQqUWQfH8EAoJy0OGa+EaADoWGhBZnhyoUJQzzRBBC8o4d6J1lVRcH8Hq9+uke1UPHG83as1G0UyZnJFzckkCck2a5I60SIdwAuSJPJMXz3qv3pv3/jNa8oqdU/IH3sc3Eh2RKw==</latexit><latexit sha1_base64="2Oa6kk2XoRI3K2+yVPA6lLKH7vA=">AAAB83icbVC7SgNBFJ2NrxhfUUubwSBYhV0JaBmwsUzAPCBZwuzkJg6ZnV1m7ghhyRfYamUntn6Qhf/ibNxCE091OOde7rknSqUw6PufXmljc2t7p7xb2ds/ODyqHp90TWI1hw5PZKL7ETMghYIOCpTQTzWwOJLQi2a3ud97BG1Eou5xnkIYs6kSE8EZOqntj6o1v+4vQddJUJAaKdAaVb+G44TbGBRyyYwZBH6KYcY0Ci5hURlaAynjMzaFgaOKxWDCbBl0QS+sYZjQFDQVki5F+L2RsdiYeRy5yZjhg1n1cvE/b2BxchNmQqUWQfH8EAoJy0OGa+EaADoWGhBZnhyoUJQzzRBBC8o4d6J1lVRcH8Hq9+uke1UPHG83as1G0UyZnJFzckkCck2a5I60SIdwAuSJPJMXz3qv3pv3/jNa8oqdU/IH3sc3Eh2RKw==</latexit><latexit sha1_base64="2Oa6kk2XoRI3K2+yVPA6lLKH7vA=">AAAB83icbVC7SgNBFJ2NrxhfUUubwSBYhV0JaBmwsUzAPCBZwuzkJg6ZnV1m7ghhyRfYamUntn6Qhf/ibNxCE091OOde7rknSqUw6PufXmljc2t7p7xb2ds/ODyqHp90TWI1hw5PZKL7ETMghYIOCpTQTzWwOJLQi2a3ud97BG1Eou5xnkIYs6kSE8EZOqntj6o1v+4vQddJUJAaKdAaVb+G44TbGBRyyYwZBH6KYcY0Ci5hURlaAynjMzaFgaOKxWDCbBl0QS+sYZjQFDQVki5F+L2RsdiYeRy5yZjhg1n1cvE/b2BxchNmQqUWQfH8EAoJy0OGa+EaADoWGhBZnhyoUJQzzRBBC8o4d6J1lVRcH8Hq9+uke1UPHG83as1G0UyZnJFzckkCck2a5I60SIdwAuSJPJMXz3qv3pv3/jNa8oqdU/IH3sc3Eh2RKw==</latexit>

qR
<latexit sha1_base64="5leajQ2JQ+A1GEc/PTpZCA0BvD0=">AAAB93icbVC7TsNAEDyHVwivACXNiQiJKrIREpSRaCgDwkmkxIrOl0045Xw2d2ukyMo30EJFh2j5HAr+hbNxAQlTjWZ2tbMTJlIYdN1Pp7Kyura+Ud2sbW3v7O7V9w86Jk41B5/HMta9kBmQQoGPAiX0Eg0sCiV0w+lV7ncfQRsRqzucJRBEbKLEWHCGVvIfhtntfFhvuE23AF0mXkkapER7WP8ajGKeRqCQS2ZM33MTDDKmUXAJ89ogNZAwPmUT6FuqWAQmyIqwc3qSGoYxTUBTIWkhwu+NjEXGzKLQTkYM782il4v/ef0Ux5dBJlSSIiieH0IhoThkuBa2BaAjoQGR5cmBCkU50wwRtKCMcyumtpaa7cNb/H6ZdM6anuU3543WedlMlRyRY3JKPHJBWuSatIlPOBHkiTyTF2fmvDpvzvvPaMUpdw7JHzgf36Xxkz0=</latexit><latexit sha1_base64="5leajQ2JQ+A1GEc/PTpZCA0BvD0=">AAAB93icbVC7TsNAEDyHVwivACXNiQiJKrIREpSRaCgDwkmkxIrOl0045Xw2d2ukyMo30EJFh2j5HAr+hbNxAQlTjWZ2tbMTJlIYdN1Pp7Kyura+Ud2sbW3v7O7V9w86Jk41B5/HMta9kBmQQoGPAiX0Eg0sCiV0w+lV7ncfQRsRqzucJRBEbKLEWHCGVvIfhtntfFhvuE23AF0mXkkapER7WP8ajGKeRqCQS2ZM33MTDDKmUXAJ89ogNZAwPmUT6FuqWAQmyIqwc3qSGoYxTUBTIWkhwu+NjEXGzKLQTkYM782il4v/ef0Ux5dBJlSSIiieH0IhoThkuBa2BaAjoQGR5cmBCkU50wwRtKCMcyumtpaa7cNb/H6ZdM6anuU3543WedlMlRyRY3JKPHJBWuSatIlPOBHkiTyTF2fmvDpvzvvPaMUpdw7JHzgf36Xxkz0=</latexit><latexit sha1_base64="5leajQ2JQ+A1GEc/PTpZCA0BvD0=">AAAB93icbVC7TsNAEDyHVwivACXNiQiJKrIREpSRaCgDwkmkxIrOl0045Xw2d2ukyMo30EJFh2j5HAr+hbNxAQlTjWZ2tbMTJlIYdN1Pp7Kyura+Ud2sbW3v7O7V9w86Jk41B5/HMta9kBmQQoGPAiX0Eg0sCiV0w+lV7ncfQRsRqzucJRBEbKLEWHCGVvIfhtntfFhvuE23AF0mXkkapER7WP8ajGKeRqCQS2ZM33MTDDKmUXAJ89ogNZAwPmUT6FuqWAQmyIqwc3qSGoYxTUBTIWkhwu+NjEXGzKLQTkYM782il4v/ef0Ux5dBJlSSIiieH0IhoThkuBa2BaAjoQGR5cmBCkU50wwRtKCMcyumtpaa7cNb/H6ZdM6anuU3543WedlMlRyRY3JKPHJBWuSatIlPOBHkiTyTF2fmvDpvzvvPaMUpdw7JHzgf36Xxkz0=</latexit><latexit sha1_base64="5leajQ2JQ+A1GEc/PTpZCA0BvD0=">AAAB93icbVC7TsNAEDyHVwivACXNiQiJKrIREpSRaCgDwkmkxIrOl0045Xw2d2ukyMo30EJFh2j5HAr+hbNxAQlTjWZ2tbMTJlIYdN1Pp7Kyura+Ud2sbW3v7O7V9w86Jk41B5/HMta9kBmQQoGPAiX0Eg0sCiV0w+lV7ncfQRsRqzucJRBEbKLEWHCGVvIfhtntfFhvuE23AF0mXkkapER7WP8ajGKeRqCQS2ZM33MTDDKmUXAJ89ogNZAwPmUT6FuqWAQmyIqwc3qSGoYxTUBTIWkhwu+NjEXGzKLQTkYM782il4v/ef0Ux5dBJlSSIiieH0IhoThkuBa2BaAjoQGR5cmBCkU50wwRtKCMcyumtpaa7cNb/H6ZdM6anuU3543WedlMlRyRY3JKPHJBWuSatIlPOBHkiTyTF2fmvDpvzvvPaMUpdw7JHzgf36Xxkz0=</latexit>

q(VF)
I

<latexit sha1_base64="fXlGeyX8L6fqcFpE3FQagHAe3LM=">AAACCXicbVDLSsNAFJ3UV62vqLhyM1iEuimJFHRZEER3FewD2hgm09s6dPJw5kYoIV/gV7jVlTtx61e48F9MYhdaPavDOfdyzz1eJIVGy/owSguLS8sr5dXK2vrG5pa5vdPRYaw4tHkoQ9XzmAYpAmijQAm9SAHzPQldb3KW+917UFqEwTVOI3B8Ng7ESHCGmeSae3ducpneJLWBz/BW+UnnPD1KXbNq1a0C9C+xZ6RKZmi55udgGPLYhwC5ZFr3bStCJ2EKBZeQVgaxhojxCRtDP6MB80E7SRE/pYexZhjSCBQVkhYi/NxImK/11PeyyTyknvdy8T+vH+Po1ElEEMUIAc8PoZBQHNJciawXoEOhAJHlyYGKgHKmGCIoQRnnmRhnRVWyPuz57/+SznHdzvhVo9pszJopk31yQGrEJiekSS5Ii7QJJwl5JE/k2XgwXoxX4+17tGTMdnbJLxjvXz15miU=</latexit><latexit sha1_base64="fXlGeyX8L6fqcFpE3FQagHAe3LM=">AAACCXicbVDLSsNAFJ3UV62vqLhyM1iEuimJFHRZEER3FewD2hgm09s6dPJw5kYoIV/gV7jVlTtx61e48F9MYhdaPavDOfdyzz1eJIVGy/owSguLS8sr5dXK2vrG5pa5vdPRYaw4tHkoQ9XzmAYpAmijQAm9SAHzPQldb3KW+917UFqEwTVOI3B8Ng7ESHCGmeSae3ducpneJLWBz/BW+UnnPD1KXbNq1a0C9C+xZ6RKZmi55udgGPLYhwC5ZFr3bStCJ2EKBZeQVgaxhojxCRtDP6MB80E7SRE/pYexZhjSCBQVkhYi/NxImK/11PeyyTyknvdy8T+vH+Po1ElEEMUIAc8PoZBQHNJciawXoEOhAJHlyYGKgHKmGCIoQRnnmRhnRVWyPuz57/+SznHdzvhVo9pszJopk31yQGrEJiekSS5Ii7QJJwl5JE/k2XgwXoxX4+17tGTMdnbJLxjvXz15miU=</latexit><latexit sha1_base64="fXlGeyX8L6fqcFpE3FQagHAe3LM=">AAACCXicbVDLSsNAFJ3UV62vqLhyM1iEuimJFHRZEER3FewD2hgm09s6dPJw5kYoIV/gV7jVlTtx61e48F9MYhdaPavDOfdyzz1eJIVGy/owSguLS8sr5dXK2vrG5pa5vdPRYaw4tHkoQ9XzmAYpAmijQAm9SAHzPQldb3KW+917UFqEwTVOI3B8Ng7ESHCGmeSae3ducpneJLWBz/BW+UnnPD1KXbNq1a0C9C+xZ6RKZmi55udgGPLYhwC5ZFr3bStCJ2EKBZeQVgaxhojxCRtDP6MB80E7SRE/pYexZhjSCBQVkhYi/NxImK/11PeyyTyknvdy8T+vH+Po1ElEEMUIAc8PoZBQHNJciawXoEOhAJHlyYGKgHKmGCIoQRnnmRhnRVWyPuz57/+SznHdzvhVo9pszJopk31yQGrEJiekSS5Ii7QJJwl5JE/k2XgwXoxX4+17tGTMdnbJLxjvXz15miU=</latexit><latexit sha1_base64="fXlGeyX8L6fqcFpE3FQagHAe3LM=">AAACCXicbVDLSsNAFJ3UV62vqLhyM1iEuimJFHRZEER3FewD2hgm09s6dPJw5kYoIV/gV7jVlTtx61e48F9MYhdaPavDOfdyzz1eJIVGy/owSguLS8sr5dXK2vrG5pa5vdPRYaw4tHkoQ9XzmAYpAmijQAm9SAHzPQldb3KW+917UFqEwTVOI3B8Ng7ESHCGmeSae3ducpneJLWBz/BW+UnnPD1KXbNq1a0C9C+xZ6RKZmi55udgGPLYhwC5ZFr3bStCJ2EKBZeQVgaxhojxCRtDP6MB80E7SRE/pYexZhjSCBQVkhYi/NxImK/11PeyyTyknvdy8T+vH+Po1ElEEMUIAc8PoZBQHNJciawXoEOhAJHlyYGKgHKmGCIoQRnnmRhnRVWyPuz57/+SznHdzvhVo9pszJopk31yQGrEJiekSS5Ii7QJJwl5JE/k2XgwXoxX4+17tGTMdnbJLxjvXz15miU=</latexit>

q(VF)
F

<latexit sha1_base64="aPXZOR2njG1qikADtPwmkATGEw0=">AAACCXicbVDLSsNAFJ34rPUVFVduBotQNyWRgi4LQnFZwT6gjWEyva1DJw9nboQS8gV+hVtduRO3foUL/8UkdqGtZ3U4517uuceLpNBoWZ/G0vLK6tp6aaO8ubW9s2vu7Xd0GCsObR7KUPU8pkGKANooUEIvUsB8T0LXm1zmfvcBlBZhcIPTCByfjQMxEpxhJrnm4b2bNNPbpDrwGd4pP+k009PUNStWzSpAF4k9IxUyQ8s1vwbDkMc+BMgl07pvWxE6CVMouIS0PIg1RIxP2Bj6GQ2YD9pJivgpPYk1w5BGoKiQtBDh90bCfK2nvpdN5iH1vJeL/3n9GEcXTiKCKEYIeH4IhYTikOZKZL0AHQoFiCxPDlQElDPFEEEJyjjPxDgrqpz1Yc9/v0g6ZzU749f1SqM+a6ZEjsgxqRKbnJMGuSIt0iacJOSJPJMX49F4Nd6M95/RJWO2c0D+wPj4BjiZmiI=</latexit><latexit sha1_base64="aPXZOR2njG1qikADtPwmkATGEw0=">AAACCXicbVDLSsNAFJ34rPUVFVduBotQNyWRgi4LQnFZwT6gjWEyva1DJw9nboQS8gV+hVtduRO3foUL/8UkdqGtZ3U4517uuceLpNBoWZ/G0vLK6tp6aaO8ubW9s2vu7Xd0GCsObR7KUPU8pkGKANooUEIvUsB8T0LXm1zmfvcBlBZhcIPTCByfjQMxEpxhJrnm4b2bNNPbpDrwGd4pP+k009PUNStWzSpAF4k9IxUyQ8s1vwbDkMc+BMgl07pvWxE6CVMouIS0PIg1RIxP2Bj6GQ2YD9pJivgpPYk1w5BGoKiQtBDh90bCfK2nvpdN5iH1vJeL/3n9GEcXTiKCKEYIeH4IhYTikOZKZL0AHQoFiCxPDlQElDPFEEEJyjjPxDgrqpz1Yc9/v0g6ZzU749f1SqM+a6ZEjsgxqRKbnJMGuSIt0iacJOSJPJMX49F4Nd6M95/RJWO2c0D+wPj4BjiZmiI=</latexit><latexit sha1_base64="aPXZOR2njG1qikADtPwmkATGEw0=">AAACCXicbVDLSsNAFJ34rPUVFVduBotQNyWRgi4LQnFZwT6gjWEyva1DJw9nboQS8gV+hVtduRO3foUL/8UkdqGtZ3U4517uuceLpNBoWZ/G0vLK6tp6aaO8ubW9s2vu7Xd0GCsObR7KUPU8pkGKANooUEIvUsB8T0LXm1zmfvcBlBZhcIPTCByfjQMxEpxhJrnm4b2bNNPbpDrwGd4pP+k009PUNStWzSpAF4k9IxUyQ8s1vwbDkMc+BMgl07pvWxE6CVMouIS0PIg1RIxP2Bj6GQ2YD9pJivgpPYk1w5BGoKiQtBDh90bCfK2nvpdN5iH1vJeL/3n9GEcXTiKCKEYIeH4IhYTikOZKZL0AHQoFiCxPDlQElDPFEEEJyjjPxDgrqpz1Yc9/v0g6ZzU749f1SqM+a6ZEjsgxqRKbnJMGuSIt0iacJOSJPJMX49F4Nd6M95/RJWO2c0D+wPj4BjiZmiI=</latexit><latexit sha1_base64="aPXZOR2njG1qikADtPwmkATGEw0=">AAACCXicbVDLSsNAFJ34rPUVFVduBotQNyWRgi4LQnFZwT6gjWEyva1DJw9nboQS8gV+hVtduRO3foUL/8UkdqGtZ3U4517uuceLpNBoWZ/G0vLK6tp6aaO8ubW9s2vu7Xd0GCsObR7KUPU8pkGKANooUEIvUsB8T0LXm1zmfvcBlBZhcIPTCByfjQMxEpxhJrnm4b2bNNPbpDrwGd4pP+k009PUNStWzSpAF4k9IxUyQ8s1vwbDkMc+BMgl07pvWxE6CVMouIS0PIg1RIxP2Bj6GQ2YD9pJivgpPYk1w5BGoKiQtBDh90bCfK2nvpdN5iH1vJeL/3n9GEcXTiKCKEYIeH4IhYTikOZKZL0AHQoFiCxPDlQElDPFEEEJyjjPxDgrqpz1Yc9/v0g6ZzU749f1SqM+a6ZEjsgxqRKbnJMGuSIt0iacJOSJPJMX49F4Nd6M95/RJWO2c0D+wPj4BjiZmiI=</latexit>
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(b)

Figure 5.6: Example of reference VULA and reference HULA including the reference antenna (a) and
representation of a set of vertically folded HULAs (b).

ϕ̂i[l] = arcsin

(
λ

2dVV
F̂V,i[l]

)
(5.60)

and

θ̂i[l] = arcsin

(
λ

2dVH cos(ϕ̂i[l])
F̂H,i[l]

)
, (5.61)

respectively; here, f̂i [l] = Fi[l] fs (see (5.8)). Finally, these information are fused to generate the
overall set It (5.20), describing the generated radar image; in general, this image is a cloud of L̂
points. The set It (5.20) results from the union of all the sets {I(l)

t }, where

I(l)
t ≜

{(
R̂i[l], θ̂i[l], ϕ̂i[l],

∣∣Ĉi[l]∣∣); i = 0, 1, . . . , D[l]− 1
}
, (5.62)

with l = 0, 1, . . . , Lb − 1.
This concludes our description of the RASCA-FR3.
Let us focus now on the most complicated part of the STDAEC algorithm, i.e. on the STDAE

algorithm. This algorithm makes use of the so called spatial folding (see the previous paragraph).
The exploitation of this procedure in the STDAE algorithm requires:

1. Selecting a reference VULA, that consists of NVULA adjacent and vertically aligned VAs
(with NVULA ≤ NVV), within the virtual array; in the following, we assume, without any
loss of generality, that the reference VULA includes the reference antenna and, consequently,
is identified by p = pR and q = qI , qI + 1, ..., qF (with qI ≤ qR ≤ qF ), so that NVULA =
qF − qI + 1 (see Fig. 5.6a).

2. Selecting a reference HULA, that consists of NHULA adjacent and horizontally aligned VAs;
in the following, we assume, without any loss of generality, that the reference HULA is the
horizontal ULA containing the reference antenna and, consequently, is identified by p = pI ,
pI +1, ..., pF (with pI ≤ pR ≤ pF ) and q = qR, so that NHULA = pF − pI +1 (see Fig. 5.6a).
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3. Selecting a set of HULAs, different from the reference HULA and having the same size of it
(i.e., the same number of VAs); in the following, we assume, without any loss of generality,
that these HULAs, called vertically folded HULAs, correspond to q = q

(VF)
I , q(VF)

I + 1, ...,
qR − 1, qR + 1 , ..., q(VF)

F , with q(VF)
I < qR < q

(VF)
F , as illustrated in Fig. 5.6b; note that the

overall number of involved HULAs is N (VF)
HULA = q

(VF)
F − q

(VF)
I + 1.

The STDAE algorithm consists in the four steps described below (its r-th step is denoted
STDAE-Sr in the following).

STDAE-S1) FFT processing on the reference VULA and vertical frequency estimation – The
portion of the initial spectral information referring to the reference VULA is extracted from the
matrix X(i) [l] and stored in the NVULA-dimensional vector

S
(i)
VULA,0 [l] =

[
S
(i)
0,0 [l] , S

(i)
0,1 [l] , ..., S

(i)
0,NVULA−1 [l]

]T
≜
[
X

(i)
l [pR, qI ] , ..., X

(i)
l [pR, qF ]

]T
, (5.63)

that is processed by the complex single frequency estimator7 (CSFE). This algorithm detects the
i-th (strongest target) appearing in α̂l-th frequency bin and computes the estimates ĈV,i [l] and
F̂V,i[l] of the parameters Ci[l] and FV,i[l] (see (5.31)), respectively. Note that the quantity ĈV,i [l]
is not exploited in the following since, it represents a preliminary estimate of Ci[l].

It is worth pointing out that the execution of the CSFE entails:
a) The evaluation of the NVULA-dimensional vector

S
(i)
VULA,k [l] ≜

[
S
(i)
k,0 [l] , S

(i)
k,1 [l] , ..., S

(i)
k,NVULA−1 [l]

]T
, (5.64)

with k = 1 and 2; here,

S
(i)
k,p [l] ≜ pk X

(i)
VULA,p [l] = pk X

(i)
l [pR, qI + p] (5.65)

with p = 0, 1, ..., NVULA − 1.
b) The computation of an N̄0 order FFT of the vector S̄

(i)
VULA,k [l], that represents a zero

padded version of the vector S
(i)
VULA,k [l] (with k = 0, 1 and 2); here,

N̄0 ≜ M̄ ·NVULA (5.66)

and M̄ represents the adopted oversampling factor. This produces the vector

s
(i)
VULA,k [l] =

[
s
(i)
k,0 [l] , s

(i)
k,1 [l] , ..., s

(i)

k,N̄0−1
[l]
]T

≜DFTN̄0

[
S̄
(i)
VULA,k [l]

]
, (5.67)

with k = 0, 1 and 2. Note that the m-th element of the vector s
(i)
VULA,k [l] can be expressed as

s
(i)
k,m [l] ≜

1

NVULA

NVULA−1∑
p=0

S
(i)
k,p [l] exp

(
−j 2πpm

N̄0

)
, (5.68)

with m = 0, 1, ..., N̄0 − 1.
STDAE-S2) Vertical folding – The estimate F̂V,i[l] of the normalised vertical frequency

FV,i[l] (5.31) is employed to compensate for the phase difference between each of the HULAs
selected for vertical folding and the reference HULA (i.e., for the phase differences along the

7A detailed description of this estimator is provided in Paragraph 5.5.2. Note that this algorithm represents the complex
counterpart of the SFE, in the sense that the former is fed by a complex sequence, whereas the latter by a real one.
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vertical direction), so that the spectral information associated with all these HULAs can be
combined (i.e., summed) in a constructive fashion. To this aim, the phase rotation factor

R
(VF)
i [l, q] ≜

[
exp

(
−j∆ψ(VF)

i [l]
)]q−qR

, (5.69)

with
∆ψ

(VF)
i [l] ≜ 2πF̂V,i[l], (5.70)

is computed for the q-th HULA, with q = q
(VF)
I , q(VF)

I + 1, ..., qR − 1, qR + 1, ..., q(VF)
F . Then,

vertical folding is accomplished by computing the NHULA-dimensional vector

X
(VF)
i [l] = X(i) [l, qR] +

q
(VF)
F∑

q=q
(VF)
I

q ̸=qR

X(i) [l, q] R
(VF)
i [l, q] , (5.71)

that collects the values taken on by the NHULA vertically folded spectra referring to the α̂l-th
frequency bin; here,

X(i) [l, q] ≜
[
X

(i)
l [pI , q] , X

(i)
l [pI + 1, q] , ..., X

(i)
l [pF , q]

]T
, (5.72)

is a NHULA-dimensional row vector extracted from the q-th row of the matrix X(i) [l] (5.56).
STDAE-S3) FFT processing and horizontal frequency estimation – The processing accom-

plished in this step is very similar to that carried out in STDAE-S1. In fact, the only difference
is represented by the fact that the NVULA-dimensional vector S

(i)
VULA,0[l] (5.63) is replaced by

the NHULA-dimensional vector X
(VF)
i [l] (5.71) generated in the previous step. Therefore, in this

case, the CSFE algorithm is exploited to compute the estimate F̂H,i[l] of the horizontal frequency
FH,i[l] (5.30) and a new estimate, denoted ĈH,i[l], of the complex amplitude Ci[l] associated with
the i-th target. Note that: a) in general, an order different from N̄0 (5.66) can be selected for the
three DFTs computed by the CSFE algorithm in this step; b) the quantity ĈH,i[l] is not exploited
in the following since, it represents a preliminary estimate of Ci[l]; c) the estimates ĈV,i[l] and
ĈH,i[l] can be significantly different if multiple targets having similar horizontal frequencies or
similar vertical frequencies contribute to the considered frequency bin.

STDAE-S4) Overall folding and frequency/amplitude estimation – In this step, the angular
information i.e., the frequencies F̂V,i[l] and F̂H,i[l] computed in STDAE-S2 and STDAE-S3,
respectively, are exploited to accomplish overall folding8; this step involves the whole spectrum
computed on the selected VAs. If the whole receive antenna array is exploited, overall folding
consists in computing the N0-dimensional vector

X0,OF [l] ≜
NVH−1∑
p=0

NVV−1∑
q=0

X0 [p, q] R
(HV)
i [l, p, q] , (5.73)

where
R

(HV)
i [l, p, q] ≜ R

(VF)
i [l, q] R

(HF)
i [l, p] (5.74)

is a phase rotation factor, R(VF)
i [l, q] is expressed by (5.69),

R
(HF)
i [l, p] ≜

[
exp

(
−j∆ψ(HF)

i [l]
)]p−pR

(5.75)

and
∆ψ

(HF)
i [l] ≜ 2πF̂H,i[l]; (5.76)

8As already mentioned above, a portion of the whole virtual array can be exploited to mitigate the impact of the
estimation errors affecting these spatial frequencies.
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note that R(HV)
i [l, p, q] = 1 if p = pR and q = qR. Given X0,OF[l] (5.73), the sequence of the

absolute values of its elements is analysed to verify the presence of a peak in the α̂l-th frequency
bin or in a bin close to it. To this aim, after evaluating

α̂OF ≜ arg max
ã∈{0,1,...,N0−1}

|X0,OF[ã]| , (5.77)

the quantity dα̂[l] ≜ |α̂OF − α̂l| is compared with the positive threshold TOF. If dα̂[l] exceeds TOF,
the presence of a ghost target is detected; otherwise, the N0-dimensional vector

Xm,OF [l] ≜
NVH−1∑
p=0

NVV−1∑
q=0

Xm [p, q] R
(HV)
i [l, p, q] , (5.78)

is computed for m = 1 and 2, and the CSFE algorithm9 is run to estimate, on the basis of the
triad (X0,OF[l], X1,OF[l], X2,OF[l]), the final estimates F̂i[l] and Ĉi[l] of the parameters Fi[l] and
Ci[l], respectively; these parameters characterize the i-th target detected in the α̂l-th frequency
bin. Note that the integer part (see (5.46))

α̂i [l] ≜
⌊
F̂i[l]/FDFT

⌋
(5.79)

of F̂i[l] does not necessarily coincide with α̂l but, if it differs, it is certainly close to α̂l. If α̂i[l] is
different from α̂l and appears in one of the couples forming the set SRPE (5.26), it is discarded,
because the corresponding frequency bin is already being analysed by one of the other STDAEC
algorithms. Otherwise, the new couple

(α̂i [l] , Eb,Lb
) , (5.80)

where Eb,Lb
≜ |Ĉi[l]|

2
, is added to the set SRPE and the number of its elements (i.e., Lb) is

increased by one. This means that an additional STDAEC algorithm is run on the (new) α̂i[l]-th
bin.

This concludes our description of the STDAE algorithm and, consequently, of the RASCA-FR3,
whose overall structure is summarised in Algorithm 7.

The RASCA-FC3 can be easily obtained from RASCA-FR3 by: a) replacing C(vk)
i and Ĉ(vk)

i

with A(vk)
i and Â(vk)

i , respectively (see STDREC-S1); b) replacing the SFE with the CSFE in
STDREC-S1; c) computing the vectors of the triad (C

(vk)
X0

[i], C(vk)
X1

[i], C(vk)
X2

[i]) on the basis of
(5.120)–(5.122) (see Paragraph 5.5.3) in STDREC-S2; d) replacing Ci[l] and Ĉi[l] with Âi[l] and
Ai[l], respectively (see STDAEC-S1); e) replacing ĈV,i [l] and ĈH,i[l] with ÂV,i [l] and ÂH,i [l],
respectively (see STDAE-S1 and STDAE-S3).

Additional comments

The structure of the RASCA-FR3 (RASCA-FC3) deserves a number of comments, that are listed
below for the different tasks and the steps they consist of.

T1 – In this task, each of the vectors {X(v)
0 , X(v)

1 , X(v)
2 } is computed by executing a N0 order

FFT. The vector X
(v)
0 collects N0 equally spaced samples of the spectrum of the sequence {x(v)z,n}

acquired on the v-th VA (see (5.37), (5.42) and (5.14)). The vectors X
(v)
1 and X

(v)
2 , instead,

consist of, up to a scale factor, N0 equally spaced samples of the first and the second derivatives,
respectively, of the same spectrum.

T2-S1 – The exploitation of a subset of the available antennas is motivated by the need
of reducing the computational effort required by T2 as much as possible. The adoption of a
deterministic method for the selection of NA antennas (with NA < NVR) is not recommended.

9Note that our general description of the CSFE includes the computation of three order N0 DFTs, that, in this case, are
already available, being represented by {Xm,OF [l]; m = 0, 1, 2}.
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Algorithm 7: Range & angle serial cancellation algorithm for an FMCW radar system (real
case)
1 T1 – FFT Processing:

Compute the vectors x
(v)
0,ZP, x(v)

1,ZP and x
(v)
2,ZP according to (5.38)–(5.40); then, compute the triad

{X(v)
0 ,X

(v)
1 ,X

(v)
2 } according to (5.42).

2 T2 – RPE:
S1) Extract NA VAs from all the available VAs; then, build the set S̄FFT (5.23).
for k = 0 to NA − 1 do

S2) Set X
(vk)
m [0] ≜ X

(vk)
m for m = 0, 1, 2 (see (5.44)); then, set the iteration index i = 0 and

compute the initial energy E(vk)
0 according to (5.49).

while E(vk)
i > TSTDREC do

STDREC-S1) Compute the couple (Ĉ
(vk)
i , F̂ (vk)

i ) running the SFE algorithm on the triad
(X

(vk)
0 [i], X(vk)

1 [i], X(vk)
2 [i]).

STDREC-S2) Compute the vectors (C
(vk)
X0

[i],C
(vk)
X1

[i],C
(vk)
X2

[i]) according to
(5.110)–(5.112); then, compute the new residual triad (X

(vk)
0 [i+ 1], X(vk)

1 [i+ 1],
X

(vk)
2 [i+ 1]) according to (5.48).

STDREC-S3) Compute the residual energy E(vk)
i+1 according to (5.49).

end
end
S3) Build the set SRPE (5.26) (see (5.51) and (5.53)).

3 T3 – SPE:
S1) Set the iteration index i = 0 and set the initial vector X(0)[l] according to (5.54); then,
compute the initial energy E(0)[l] according to (5.58).
Parallel For l = 0 to l = Lb − 1 do

while E(i)[l] > TSTDAEC do
STDAEC-S1) Compute the couple (ĈV,i[l], F̂V,i[l]) running the CSFE algorithm fed by
the vector S

(i)
VULA,0[l] evaluated according to (5.63). Then, compute the phase rotation

factor R(VF)
i [l, q] and the matrix X

(VF)
i [l] according to (5.69) and (5.71), respectively. Then,

run the CSFE algorithm to compute the couple (ĈH,i[l], F̂H,i[l]) and compute the phase
rotation factor R(HF)

i [l, p] according to (5.75). Finally, compute the vectors
{Xm,OF[l];m = 0, 1, 2} according to (5.73) and (5.78) and run the CSFE algorithm fed by
the set {Xm,OF[l];m = 0, 1, 2} to evaluate the couple (Ĉi[l], F̂i[l]).
STDAEC-S2) Compute the vector C

(i)
X0

[l] according to (5.124)–(5.125); then compute the
new residual vector X(i+1)[l] according to (5.57).
STDAEC-S3) Compute the residual energy E(i+1)[l] according to (5.58).

end
S2) Compute R̂i[l], ϕ̂i[l], θ̂i[l] according to (5.59)–(5.61).

end
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a)

���X(vk)
0,l

���
<latexit sha1_base64="jIh5akkyPC5QHgFRZfexx35vzDc=">AAACEHicbVC7SgNBFJ2NrxhfUUstBoMQQcJuELQM2FhGMA/Irsvs5CYZMvtg5m4gbNL4CX6FrVZ2YusfWPgvbtYUmniqwzn3cu85XiSFRtP8NHIrq2vrG/nNwtb2zu5ecf+gqcNYcWjwUIaq7TENUgTQQIES2pEC5nsSWt7weua3RqC0CIM7HEfg+KwfiJ7gDFPJLR7bEno4abuJeS6n90l55A7PprYS/QFO3GLJrJgZ6DKx5qRE5qi7xS+7G/LYhwC5ZFp3LDNCJ2EKBZcwLdixhojxIetDJ6UB80E7SZZiSk9jzTCkESgqJM1E+L2RMF/rse+lkz7DgV70ZuJ/XifG3pWTiCCKEQI+O4RCQnZIcyXSeoB2hQJENvscqAgoZ4ohghKUcZ6KcdpXIe3DWky/TJrVipXy24tSrTpvJk+OyAkpE4tckhq5IXXSIJw8kCfyTF6MR+PVeDPef0ZzxnznkPyB8fENn+idDw==</latexit><latexit sha1_base64="jIh5akkyPC5QHgFRZfexx35vzDc=">AAACEHicbVC7SgNBFJ2NrxhfUUstBoMQQcJuELQM2FhGMA/Irsvs5CYZMvtg5m4gbNL4CX6FrVZ2YusfWPgvbtYUmniqwzn3cu85XiSFRtP8NHIrq2vrG/nNwtb2zu5ecf+gqcNYcWjwUIaq7TENUgTQQIES2pEC5nsSWt7weua3RqC0CIM7HEfg+KwfiJ7gDFPJLR7bEno4abuJeS6n90l55A7PprYS/QFO3GLJrJgZ6DKx5qRE5qi7xS+7G/LYhwC5ZFp3LDNCJ2EKBZcwLdixhojxIetDJ6UB80E7SZZiSk9jzTCkESgqJM1E+L2RMF/rse+lkz7DgV70ZuJ/XifG3pWTiCCKEQI+O4RCQnZIcyXSeoB2hQJENvscqAgoZ4ohghKUcZ6KcdpXIe3DWky/TJrVipXy24tSrTpvJk+OyAkpE4tckhq5IXXSIJw8kCfyTF6MR+PVeDPef0ZzxnznkPyB8fENn+idDw==</latexit><latexit sha1_base64="jIh5akkyPC5QHgFRZfexx35vzDc=">AAACEHicbVC7SgNBFJ2NrxhfUUstBoMQQcJuELQM2FhGMA/Irsvs5CYZMvtg5m4gbNL4CX6FrVZ2YusfWPgvbtYUmniqwzn3cu85XiSFRtP8NHIrq2vrG/nNwtb2zu5ecf+gqcNYcWjwUIaq7TENUgTQQIES2pEC5nsSWt7weua3RqC0CIM7HEfg+KwfiJ7gDFPJLR7bEno4abuJeS6n90l55A7PprYS/QFO3GLJrJgZ6DKx5qRE5qi7xS+7G/LYhwC5ZFp3LDNCJ2EKBZcwLdixhojxIetDJ6UB80E7SZZiSk9jzTCkESgqJM1E+L2RMF/rse+lkz7DgV70ZuJ/XifG3pWTiCCKEQI+O4RCQnZIcyXSeoB2hQJENvscqAgoZ4ohghKUcZ6KcdpXIe3DWky/TJrVipXy24tSrTpvJk+OyAkpE4tckhq5IXXSIJw8kCfyTF6MR+PVeDPef0ZzxnznkPyB8fENn+idDw==</latexit><latexit sha1_base64="jIh5akkyPC5QHgFRZfexx35vzDc=">AAACEHicbVC7SgNBFJ2NrxhfUUstBoMQQcJuELQM2FhGMA/Irsvs5CYZMvtg5m4gbNL4CX6FrVZ2YusfWPgvbtYUmniqwzn3cu85XiSFRtP8NHIrq2vrG/nNwtb2zu5ecf+gqcNYcWjwUIaq7TENUgTQQIES2pEC5nsSWt7weua3RqC0CIM7HEfg+KwfiJ7gDFPJLR7bEno4abuJeS6n90l55A7PprYS/QFO3GLJrJgZ6DKx5qRE5qi7xS+7G/LYhwC5ZFp3LDNCJ2EKBZcwLdixhojxIetDJ6UB80E7SZZiSk9jzTCkESgqJM1E+L2RMF/rse+lkz7DgV70ZuJ/XifG3pWTiCCKEQI+O4RCQnZIcyXSeoB2hQJENvscqAgoZ4ohghKUcZ6KcdpXIe3DWky/TJrVipXy24tSrTpvJk+OyAkpE4tckhq5IXXSIJw8kCfyTF6MR+PVeDPef0ZzxnznkPyB8fENn+idDw==</latexit>

���Ĉ(vk)
i

���
<latexit sha1_base64="reuGAflK8vBoI89I8AVGH6hhKZc=">AAACFHicbVA9TwJBEN3zE/ELtbTZSEywIXfEREsSG0tNBE04vMwtA2zY+8juHAk5rvUn+CtstbIztvYW/hcPpFDwVS/vzWTmPT9W0pBtf1pLyyura+uFjeLm1vbObmlvv2miRAtsiEhF+s4Hg0qG2CBJCu9ijRD4Cm/9wcXEvx2iNjIKb2gUYzuAXii7UgDlklfirsIujd0+UHqReanM7tPK0BucZK6WvT6NvVLZrtpT8EXizEiZzXDllb7cTiSSAEMSCoxpOXZM7RQ0SaEwK7qJwRjEAHrYymkIAZp2Ok2S8ePEAEU8Rs2l4lMRf2+kEBgzCvx8MgDqm3lvIv7ntRLqnrdTGcYJYSgmh0gqnB4yQsu8IuQdqZEIJp8jlyEXoIEIteQgRC4meWfFvA9nPv0iadaqTs6vT8v12qyZAjtkR6zCHHbG6uySXbEGE+yBPbFn9mI9Wq/Wm/X+M7pkzXYO2B9YH9+5HJ9U</latexit><latexit sha1_base64="reuGAflK8vBoI89I8AVGH6hhKZc=">AAACFHicbVA9TwJBEN3zE/ELtbTZSEywIXfEREsSG0tNBE04vMwtA2zY+8juHAk5rvUn+CtstbIztvYW/hcPpFDwVS/vzWTmPT9W0pBtf1pLyyura+uFjeLm1vbObmlvv2miRAtsiEhF+s4Hg0qG2CBJCu9ijRD4Cm/9wcXEvx2iNjIKb2gUYzuAXii7UgDlklfirsIujd0+UHqReanM7tPK0BucZK6WvT6NvVLZrtpT8EXizEiZzXDllb7cTiSSAEMSCoxpOXZM7RQ0SaEwK7qJwRjEAHrYymkIAZp2Ok2S8ePEAEU8Rs2l4lMRf2+kEBgzCvx8MgDqm3lvIv7ntRLqnrdTGcYJYSgmh0gqnB4yQsu8IuQdqZEIJp8jlyEXoIEIteQgRC4meWfFvA9nPv0iadaqTs6vT8v12qyZAjtkR6zCHHbG6uySXbEGE+yBPbFn9mI9Wq/Wm/X+M7pkzXYO2B9YH9+5HJ9U</latexit><latexit sha1_base64="reuGAflK8vBoI89I8AVGH6hhKZc=">AAACFHicbVA9TwJBEN3zE/ELtbTZSEywIXfEREsSG0tNBE04vMwtA2zY+8juHAk5rvUn+CtstbIztvYW/hcPpFDwVS/vzWTmPT9W0pBtf1pLyyura+uFjeLm1vbObmlvv2miRAtsiEhF+s4Hg0qG2CBJCu9ijRD4Cm/9wcXEvx2iNjIKb2gUYzuAXii7UgDlklfirsIujd0+UHqReanM7tPK0BucZK6WvT6NvVLZrtpT8EXizEiZzXDllb7cTiSSAEMSCoxpOXZM7RQ0SaEwK7qJwRjEAHrYymkIAZp2Ok2S8ePEAEU8Rs2l4lMRf2+kEBgzCvx8MgDqm3lvIv7ntRLqnrdTGcYJYSgmh0gqnB4yQsu8IuQdqZEIJp8jlyEXoIEIteQgRC4meWfFvA9nPv0iadaqTs6vT8v12qyZAjtkR6zCHHbG6uySXbEGE+yBPbFn9mI9Wq/Wm/X+M7pkzXYO2B9YH9+5HJ9U</latexit><latexit sha1_base64="reuGAflK8vBoI89I8AVGH6hhKZc=">AAACFHicbVA9TwJBEN3zE/ELtbTZSEywIXfEREsSG0tNBE04vMwtA2zY+8juHAk5rvUn+CtstbIztvYW/hcPpFDwVS/vzWTmPT9W0pBtf1pLyyura+uFjeLm1vbObmlvv2miRAtsiEhF+s4Hg0qG2CBJCu9ijRD4Cm/9wcXEvx2iNjIKb2gUYzuAXii7UgDlklfirsIujd0+UHqReanM7tPK0BucZK6WvT6NvVLZrtpT8EXizEiZzXDllb7cTiSSAEMSCoxpOXZM7RQ0SaEwK7qJwRjEAHrYymkIAZp2Ok2S8ePEAEU8Rs2l4lMRf2+kEBgzCvx8MgDqm3lvIv7ntRLqnrdTGcYJYSgmh0gqnB4yQsu8IuQdqZEIJp8jlyEXoIEIteQgRC4meWfFvA9nPv0iadaqTs6vT8v12qyZAjtkR6zCHHbG6uySXbEGE+yBPbFn9mI9Wq/Wm/X+M7pkzXYO2B9YH9+5HJ9U</latexit>

���Ĉ(vk)
1

���
<latexit sha1_base64="0vv/mZ7673X6MnB/TyTgRfbMZLE=">AAACFHicbVA9TwJBEN3zE/ELtbTZSEywIXfEREsSG0tNBE04vMwtA2zY+8juHAk5rvUn+CtstbIztvYW/hcPpFDwVS/vzWTmPT9W0pBtf1pLyyura+uFjeLm1vbObmlvv2miRAtsiEhF+s4Hg0qG2CBJCu9ijRD4Cm/9wcXEvx2iNjIKb2gUYzuAXii7UgDlklfirsIujd0+UHqReamT3aeVoTc4yVwte30ae6WyXbWn4IvEmZEym+HKK325nUgkAYYkFBjTcuyY2ilokkJhVnQTgzGIAfSwldMQAjTtdJok48eJAYp4jJpLxaci/t5IITBmFPj5ZADUN/PeRPzPayXUPW+nMowTwlBMDpFUOD1khJZ5Rcg7UiMRTD5HLkMuQAMRaslBiFxM8s6KeR/OfPpF0qxVnZxfn5brtVkzBXbIjliFOeyM1dklu2INJtgDe2LP7MV6tF6tN+v9Z3TJmu0csD+wPr4BXlSfHA==</latexit><latexit sha1_base64="0vv/mZ7673X6MnB/TyTgRfbMZLE=">AAACFHicbVA9TwJBEN3zE/ELtbTZSEywIXfEREsSG0tNBE04vMwtA2zY+8juHAk5rvUn+CtstbIztvYW/hcPpFDwVS/vzWTmPT9W0pBtf1pLyyura+uFjeLm1vbObmlvv2miRAtsiEhF+s4Hg0qG2CBJCu9ijRD4Cm/9wcXEvx2iNjIKb2gUYzuAXii7UgDlklfirsIujd0+UHqReamT3aeVoTc4yVwte30ae6WyXbWn4IvEmZEym+HKK325nUgkAYYkFBjTcuyY2ilokkJhVnQTgzGIAfSwldMQAjTtdJok48eJAYp4jJpLxaci/t5IITBmFPj5ZADUN/PeRPzPayXUPW+nMowTwlBMDpFUOD1khJZ5Rcg7UiMRTD5HLkMuQAMRaslBiFxM8s6KeR/OfPpF0qxVnZxfn5brtVkzBXbIjliFOeyM1dklu2INJtgDe2LP7MV6tF6tN+v9Z3TJmu0csD+wPr4BXlSfHA==</latexit><latexit sha1_base64="0vv/mZ7673X6MnB/TyTgRfbMZLE=">AAACFHicbVA9TwJBEN3zE/ELtbTZSEywIXfEREsSG0tNBE04vMwtA2zY+8juHAk5rvUn+CtstbIztvYW/hcPpFDwVS/vzWTmPT9W0pBtf1pLyyura+uFjeLm1vbObmlvv2miRAtsiEhF+s4Hg0qG2CBJCu9ijRD4Cm/9wcXEvx2iNjIKb2gUYzuAXii7UgDlklfirsIujd0+UHqReamT3aeVoTc4yVwte30ae6WyXbWn4IvEmZEym+HKK325nUgkAYYkFBjTcuyY2ilokkJhVnQTgzGIAfSwldMQAjTtdJok48eJAYp4jJpLxaci/t5IITBmFPj5ZADUN/PeRPzPayXUPW+nMowTwlBMDpFUOD1khJZ5Rcg7UiMRTD5HLkMuQAMRaslBiFxM8s6KeR/OfPpF0qxVnZxfn5brtVkzBXbIjliFOeyM1dklu2INJtgDe2LP7MV6tF6tN+v9Z3TJmu0csD+wPr4BXlSfHA==</latexit><latexit sha1_base64="0vv/mZ7673X6MnB/TyTgRfbMZLE=">AAACFHicbVA9TwJBEN3zE/ELtbTZSEywIXfEREsSG0tNBE04vMwtA2zY+8juHAk5rvUn+CtstbIztvYW/hcPpFDwVS/vzWTmPT9W0pBtf1pLyyura+uFjeLm1vbObmlvv2miRAtsiEhF+s4Hg0qG2CBJCu9ijRD4Cm/9wcXEvx2iNjIKb2gUYzuAXii7UgDlklfirsIujd0+UHqReamT3aeVoTc4yVwte30ae6WyXbWn4IvEmZEym+HKK325nUgkAYYkFBjTcuyY2ilokkJhVnQTgzGIAfSwldMQAjTtdJok48eJAYp4jJpLxaci/t5IITBmFPj5ZADUN/PeRPzPayXUPW+nMowTwlBMDpFUOD1khJZ5Rcg7UiMRTD5HLkMuQAMRaslBiFxM8s6KeR/OfPpF0qxVnZxfn5brtVkzBXbIjliFOeyM1dklu2INJtgDe2LP7MV6tF6tN+v9Z3TJmu0csD+wPr4BXlSfHA==</latexit>

���Ĉ(vk)
0

���
<latexit sha1_base64="9whDHAH/aYHbFSfT+VrR0c5p5To=">AAACFHicbVA9TwJBEN3zE/ELtbTZSEywIXfEREsSG0tNBE04vMwtA2zY+8juHAk5rvUn+CtstbIztvYW/hcPpFDwVS/vzWTmPT9W0pBtf1pLyyura+uFjeLm1vbObmlvv2miRAtsiEhF+s4Hg0qG2CBJCu9ijRD4Cm/9wcXEvx2iNjIKb2gUYzuAXii7UgDlklfirsIujd0+UHqReamd3aeVoTc4yVwte30ae6WyXbWn4IvEmZEym+HKK325nUgkAYYkFBjTcuyY2ilokkJhVnQTgzGIAfSwldMQAjTtdJok48eJAYp4jJpLxaci/t5IITBmFPj5ZADUN/PeRPzPayXUPW+nMowTwlBMDpFUOD1khJZ5Rcg7UiMRTD5HLkMuQAMRaslBiFxM8s6KeR/OfPpF0qxVnZxfn5brtVkzBXbIjliFOeyM1dklu2INJtgDe2LP7MV6tF6tN+v9Z3TJmu0csD+wPr4BXLWfGw==</latexit><latexit sha1_base64="9whDHAH/aYHbFSfT+VrR0c5p5To=">AAACFHicbVA9TwJBEN3zE/ELtbTZSEywIXfEREsSG0tNBE04vMwtA2zY+8juHAk5rvUn+CtstbIztvYW/hcPpFDwVS/vzWTmPT9W0pBtf1pLyyura+uFjeLm1vbObmlvv2miRAtsiEhF+s4Hg0qG2CBJCu9ijRD4Cm/9wcXEvx2iNjIKb2gUYzuAXii7UgDlklfirsIujd0+UHqReamd3aeVoTc4yVwte30ae6WyXbWn4IvEmZEym+HKK325nUgkAYYkFBjTcuyY2ilokkJhVnQTgzGIAfSwldMQAjTtdJok48eJAYp4jJpLxaci/t5IITBmFPj5ZADUN/PeRPzPayXUPW+nMowTwlBMDpFUOD1khJZ5Rcg7UiMRTD5HLkMuQAMRaslBiFxM8s6KeR/OfPpF0qxVnZxfn5brtVkzBXbIjliFOeyM1dklu2INJtgDe2LP7MV6tF6tN+v9Z3TJmu0csD+wPr4BXLWfGw==</latexit><latexit sha1_base64="9whDHAH/aYHbFSfT+VrR0c5p5To=">AAACFHicbVA9TwJBEN3zE/ELtbTZSEywIXfEREsSG0tNBE04vMwtA2zY+8juHAk5rvUn+CtstbIztvYW/hcPpFDwVS/vzWTmPT9W0pBtf1pLyyura+uFjeLm1vbObmlvv2miRAtsiEhF+s4Hg0qG2CBJCu9ijRD4Cm/9wcXEvx2iNjIKb2gUYzuAXii7UgDlklfirsIujd0+UHqReamd3aeVoTc4yVwte30ae6WyXbWn4IvEmZEym+HKK325nUgkAYYkFBjTcuyY2ilokkJhVnQTgzGIAfSwldMQAjTtdJok48eJAYp4jJpLxaci/t5IITBmFPj5ZADUN/PeRPzPayXUPW+nMowTwlBMDpFUOD1khJZ5Rcg7UiMRTD5HLkMuQAMRaslBiFxM8s6KeR/OfPpF0qxVnZxfn5brtVkzBXbIjliFOeyM1dklu2INJtgDe2LP7MV6tF6tN+v9Z3TJmu0csD+wPr4BXLWfGw==</latexit><latexit sha1_base64="9whDHAH/aYHbFSfT+VrR0c5p5To=">AAACFHicbVA9TwJBEN3zE/ELtbTZSEywIXfEREsSG0tNBE04vMwtA2zY+8juHAk5rvUn+CtstbIztvYW/hcPpFDwVS/vzWTmPT9W0pBtf1pLyyura+uFjeLm1vbObmlvv2miRAtsiEhF+s4Hg0qG2CBJCu9ijRD4Cm/9wcXEvx2iNjIKb2gUYzuAXii7UgDlklfirsIujd0+UHqReamd3aeVoTc4yVwte30ae6WyXbWn4IvEmZEym+HKK325nUgkAYYkFBjTcuyY2ilokkJhVnQTgzGIAfSwldMQAjTtdJok48eJAYp4jJpLxaci/t5IITBmFPj5ZADUN/PeRPzPayXUPW+nMowTwlBMDpFUOD1khJZ5Rcg7UiMRTD5HLkMuQAMRaslBiFxM8s6KeR/OfPpF0qxVnZxfn5brtVkzBXbIjliFOeyM1dklu2INJtgDe2LP7MV6tF6tN+v9Z3TJmu0csD+wPr4BXLWfGw==</latexit>

���Ĉ(vk)
Lk�1

���
<latexit sha1_base64="Jqcxl4F8Gm0+EJONLwHX8NxlpwE=">AAACGHicbVC7TsNAEDyHd3gFKGlOBCQoiOwICcpIaSgoQCIBKQ7W+rJJTjk/dLeOhIx/gE/gK2ihokO0dBT8C05IAYGpRjO72p3xYyUN2faHVZiZnZtfWFwqLq+srq2XNjabJkq0wIaIVKSvfTCoZIgNkqTwOtYIga/wyh/UR/7VELWRUXhJtzG2A+iFsisFUC55pV1XYZfu3D5QWs+89MwbHDrZTbo/9AYHmatlr093XqlsV+wx+F/iTEiZTXDulT7dTiSSAEMSCoxpOXZM7RQ0SaEwK7qJwRjEAHrYymkIAZp2Ok6T8b3EAEU8Rs2l4mMRf26kEBhzG/j5ZADUN9PeSPzPayXUPWmnMowTwlCMDpFUOD5khJZ5Tcg7UiMRjD5HLkMuQAMRaslBiFxM8t6KeR/OdPq/pFmtODm/OCrXqpNmFtk222H7zGHHrMZO2TlrMMHu2SN7Ys/Wg/VivVpv36MFa7KzxX7Bev8CG26ghw==</latexit><latexit sha1_base64="Jqcxl4F8Gm0+EJONLwHX8NxlpwE=">AAACGHicbVC7TsNAEDyHd3gFKGlOBCQoiOwICcpIaSgoQCIBKQ7W+rJJTjk/dLeOhIx/gE/gK2ihokO0dBT8C05IAYGpRjO72p3xYyUN2faHVZiZnZtfWFwqLq+srq2XNjabJkq0wIaIVKSvfTCoZIgNkqTwOtYIga/wyh/UR/7VELWRUXhJtzG2A+iFsisFUC55pV1XYZfu3D5QWs+89MwbHDrZTbo/9AYHmatlr093XqlsV+wx+F/iTEiZTXDulT7dTiSSAEMSCoxpOXZM7RQ0SaEwK7qJwRjEAHrYymkIAZp2Ok6T8b3EAEU8Rs2l4mMRf26kEBhzG/j5ZADUN9PeSPzPayXUPWmnMowTwlCMDpFUOD5khJZ5Tcg7UiMRjD5HLkMuQAMRaslBiFxM8t6KeR/OdPq/pFmtODm/OCrXqpNmFtk222H7zGHHrMZO2TlrMMHu2SN7Ys/Wg/VivVpv36MFa7KzxX7Bev8CG26ghw==</latexit><latexit sha1_base64="Jqcxl4F8Gm0+EJONLwHX8NxlpwE=">AAACGHicbVC7TsNAEDyHd3gFKGlOBCQoiOwICcpIaSgoQCIBKQ7W+rJJTjk/dLeOhIx/gE/gK2ihokO0dBT8C05IAYGpRjO72p3xYyUN2faHVZiZnZtfWFwqLq+srq2XNjabJkq0wIaIVKSvfTCoZIgNkqTwOtYIga/wyh/UR/7VELWRUXhJtzG2A+iFsisFUC55pV1XYZfu3D5QWs+89MwbHDrZTbo/9AYHmatlr093XqlsV+wx+F/iTEiZTXDulT7dTiSSAEMSCoxpOXZM7RQ0SaEwK7qJwRjEAHrYymkIAZp2Ok6T8b3EAEU8Rs2l4mMRf26kEBhzG/j5ZADUN9PeSPzPayXUPWmnMowTwlCMDpFUOD5khJZ5Tcg7UiMRjD5HLkMuQAMRaslBiFxM8t6KeR/OdPq/pFmtODm/OCrXqpNmFtk222H7zGHHrMZO2TlrMMHu2SN7Ys/Wg/VivVpv36MFa7KzxX7Bev8CG26ghw==</latexit><latexit sha1_base64="Jqcxl4F8Gm0+EJONLwHX8NxlpwE=">AAACGHicbVC7TsNAEDyHd3gFKGlOBCQoiOwICcpIaSgoQCIBKQ7W+rJJTjk/dLeOhIx/gE/gK2ihokO0dBT8C05IAYGpRjO72p3xYyUN2faHVZiZnZtfWFwqLq+srq2XNjabJkq0wIaIVKSvfTCoZIgNkqTwOtYIga/wyh/UR/7VELWRUXhJtzG2A+iFsisFUC55pV1XYZfu3D5QWs+89MwbHDrZTbo/9AYHmatlr093XqlsV+wx+F/iTEiZTXDulT7dTiSSAEMSCoxpOXZM7RQ0SaEwK7qJwRjEAHrYymkIAZp2Ok6T8b3EAEU8Rs2l4mMRf26kEBhzG/j5ZADUN9PeSPzPayXUPWmnMowTwlCMDpFUOD5khJZ5Tcg7UiMRjD5HLkMuQAMRaslBiFxM8t6KeR/OdPq/pFmtODm/OCrXqpNmFtk222H7zGHHrMZO2TlrMMHu2SN7Ys/Wg/VivVpv36MFa7KzxX7Bev8CG26ghw==</latexit>

l
<latexit sha1_base64="EUJzZR3JZUqjGDW6Z7IdRHk48yY=">AAAB83icbVC7SgNBFJ2NrxhfUUubwSBYhd0gaBmwsUzAPCBZwuzkJg6ZnV1m7ghhyRfYamUntn6Qhf/ibNxCE091OOde7rknSqUw6PufXmljc2t7p7xb2ds/ODyqHp90TWI1hw5PZKL7ETMghYIOCpTQTzWwOJLQi2a3ud97BG1Eou5xnkIYs6kSE8EZOqktR9WaX/eXoOskKEiNFGiNql/DccJtDAq5ZMYMAj/FMGMaBZewqAytgZTxGZvCwFHFYjBhtgy6oBfWMExoCpoKSZci/N7IWGzMPI7cZMzwwax6ufifN7A4uQkzoVKLoHh+CIWE5SHDtXANAB0LDYgsTw5UKMqZZoigBWWcO9G6Siquj2D1+3XSbdQDx9tXtWajaKZMzsg5uSQBuSZNckdapEM4AfJEnsmLZ71X7817/xktecXOKfkD7+MbbweRZQ==</latexit><latexit sha1_base64="EUJzZR3JZUqjGDW6Z7IdRHk48yY=">AAAB83icbVC7SgNBFJ2NrxhfUUubwSBYhd0gaBmwsUzAPCBZwuzkJg6ZnV1m7ghhyRfYamUntn6Qhf/ibNxCE091OOde7rknSqUw6PufXmljc2t7p7xb2ds/ODyqHp90TWI1hw5PZKL7ETMghYIOCpTQTzWwOJLQi2a3ud97BG1Eou5xnkIYs6kSE8EZOqktR9WaX/eXoOskKEiNFGiNql/DccJtDAq5ZMYMAj/FMGMaBZewqAytgZTxGZvCwFHFYjBhtgy6oBfWMExoCpoKSZci/N7IWGzMPI7cZMzwwax6ufifN7A4uQkzoVKLoHh+CIWE5SHDtXANAB0LDYgsTw5UKMqZZoigBWWcO9G6Siquj2D1+3XSbdQDx9tXtWajaKZMzsg5uSQBuSZNckdapEM4AfJEnsmLZ71X7817/xktecXOKfkD7+MbbweRZQ==</latexit><latexit sha1_base64="EUJzZR3JZUqjGDW6Z7IdRHk48yY=">AAAB83icbVC7SgNBFJ2NrxhfUUubwSBYhd0gaBmwsUzAPCBZwuzkJg6ZnV1m7ghhyRfYamUntn6Qhf/ibNxCE091OOde7rknSqUw6PufXmljc2t7p7xb2ds/ODyqHp90TWI1hw5PZKL7ETMghYIOCpTQTzWwOJLQi2a3ud97BG1Eou5xnkIYs6kSE8EZOqktR9WaX/eXoOskKEiNFGiNql/DccJtDAq5ZMYMAj/FMGMaBZewqAytgZTxGZvCwFHFYjBhtgy6oBfWMExoCpoKSZci/N7IWGzMPI7cZMzwwax6ufifN7A4uQkzoVKLoHh+CIWE5SHDtXANAB0LDYgsTw5UKMqZZoigBWWcO9G6Siquj2D1+3XSbdQDx9tXtWajaKZMzsg5uSQBuSZNckdapEM4AfJEnsmLZ71X7817/xktecXOKfkD7+MbbweRZQ==</latexit><latexit sha1_base64="EUJzZR3JZUqjGDW6Z7IdRHk48yY=">AAAB83icbVC7SgNBFJ2NrxhfUUubwSBYhd0gaBmwsUzAPCBZwuzkJg6ZnV1m7ghhyRfYamUntn6Qhf/ibNxCE091OOde7rknSqUw6PufXmljc2t7p7xb2ds/ODyqHp90TWI1hw5PZKL7ETMghYIOCpTQTzWwOJLQi2a3ud97BG1Eou5xnkIYs6kSE8EZOqktR9WaX/eXoOskKEiNFGiNql/DccJtDAq5ZMYMAj/FMGMaBZewqAytgZTxGZvCwFHFYjBhtgy6oBfWMExoCpoKSZci/N7IWGzMPI7cZMzwwax6ufifN7A4uQkzoVKLoHh+CIWE5SHDtXANAB0LDYgsTw5UKMqZZoigBWWcO9G6Siquj2D1+3XSbdQDx9tXtWajaKZMzsg5uSQBuSZNckdapEM4AfJEnsmLZ71X7817/xktecXOKfkD7+MbbweRZQ==</latexit>

i
<latexit sha1_base64="B9NHOP/dpVuLTvlisg2Iu9RZx4Y=">AAAB83icbVC7SgNBFJ2NrxhfUUubwSBYhd0gaBmwsUzAPCBZwuzkJg6ZnV1m7ghhyRfYamUntn6Qhf/ibNxCE091OOde7rknSqUw6PufXmljc2t7p7xb2ds/ODyqHp90TWI1hw5PZKL7ETMghYIOCpTQTzWwOJLQi2a3ud97BG1Eou5xnkIYs6kSE8EZOqktRtWaX/eXoOskKEiNFGiNql/DccJtDAq5ZMYMAj/FMGMaBZewqAytgZTxGZvCwFHFYjBhtgy6oBfWMExoCpoKSZci/N7IWGzMPI7cZMzwwax6ufifN7A4uQkzoVKLoHh+CIWE5SHDtXANAB0LDYgsTw5UKMqZZoigBWWcO9G6Siquj2D1+3XSbdQDx9tXtWajaKZMzsg5uSQBuSZNckdapEM4AfJEnsmLZ71X7817/xktecXOKfkD7+MbalqRYg==</latexit><latexit sha1_base64="B9NHOP/dpVuLTvlisg2Iu9RZx4Y=">AAAB83icbVC7SgNBFJ2NrxhfUUubwSBYhd0gaBmwsUzAPCBZwuzkJg6ZnV1m7ghhyRfYamUntn6Qhf/ibNxCE091OOde7rknSqUw6PufXmljc2t7p7xb2ds/ODyqHp90TWI1hw5PZKL7ETMghYIOCpTQTzWwOJLQi2a3ud97BG1Eou5xnkIYs6kSE8EZOqktRtWaX/eXoOskKEiNFGiNql/DccJtDAq5ZMYMAj/FMGMaBZewqAytgZTxGZvCwFHFYjBhtgy6oBfWMExoCpoKSZci/N7IWGzMPI7cZMzwwax6ufifN7A4uQkzoVKLoHh+CIWE5SHDtXANAB0LDYgsTw5UKMqZZoigBWWcO9G6Siquj2D1+3XSbdQDx9tXtWajaKZMzsg5uSQBuSZNckdapEM4AfJEnsmLZ71X7817/xktecXOKfkD7+MbalqRYg==</latexit><latexit sha1_base64="B9NHOP/dpVuLTvlisg2Iu9RZx4Y=">AAAB83icbVC7SgNBFJ2NrxhfUUubwSBYhd0gaBmwsUzAPCBZwuzkJg6ZnV1m7ghhyRfYamUntn6Qhf/ibNxCE091OOde7rknSqUw6PufXmljc2t7p7xb2ds/ODyqHp90TWI1hw5PZKL7ETMghYIOCpTQTzWwOJLQi2a3ud97BG1Eou5xnkIYs6kSE8EZOqktRtWaX/eXoOskKEiNFGiNql/DccJtDAq5ZMYMAj/FMGMaBZewqAytgZTxGZvCwFHFYjBhtgy6oBfWMExoCpoKSZci/N7IWGzMPI7cZMzwwax6ufifN7A4uQkzoVKLoHh+CIWE5SHDtXANAB0LDYgsTw5UKMqZZoigBWWcO9G6Siquj2D1+3XSbdQDx9tXtWajaKZMzsg5uSQBuSZNckdapEM4AfJEnsmLZ71X7817/xktecXOKfkD7+MbalqRYg==</latexit><latexit sha1_base64="B9NHOP/dpVuLTvlisg2Iu9RZx4Y=">AAAB83icbVC7SgNBFJ2NrxhfUUubwSBYhd0gaBmwsUzAPCBZwuzkJg6ZnV1m7ghhyRfYamUntn6Qhf/ibNxCE091OOde7rknSqUw6PufXmljc2t7p7xb2ds/ODyqHp90TWI1hw5PZKL7ETMghYIOCpTQTzWwOJLQi2a3ud97BG1Eou5xnkIYs6kSE8EZOqktRtWaX/eXoOskKEiNFGiNql/DccJtDAq5ZMYMAj/FMGMaBZewqAytgZTxGZvCwFHFYjBhtgy6oBfWMExoCpoKSZci/N7IWGzMPI7cZMzwwax6ufifN7A4uQkzoVKLoHh+CIWE5SHDtXANAB0LDYgsTw5UKMqZZoigBWWcO9G6Siquj2D1+3XSbdQDx9tXtWajaKZMzsg5uSQBuSZNckdapEM4AfJEnsmLZ71X7817/xktecXOKfkD7+MbalqRYg==</latexit>↵̂(vk)

1<latexit sha1_base64="pHZs5Gy8wbr1BbknBcYXTyxbZXs=">AAACDnicbVDLSgNBEJyNrxhfUW96GQxCvIRdEfQY8OIxgnlAEpfeSScZMvtgpjcQlgU/wa/wqidv4tVf8OC/uIk5aGKdiqpuuqu8SElDtv1p5VZW19Y38puFre2d3b3i/kHDhLEWWBehCnXLA4NKBlgnSQpbkUbwPYVNb3Q99Ztj1EaGwR1NIuz6MAhkXwqgTHKLR50hUNIBFQ0hdRMnvU/KYzcZpWepWyzZFXsGvkycOSmxOWpu8avTC0XsY0BCgTFtx46om4AmKRSmhU5sMAIxggG2MxqAj6abzDKk/DQ2QCGPUHOp+EzE3xsJ+MZMfC+b9IGGZtGbiv957Zj6V91EBlFMGIjpIZIKZ4eM0DIrB3lPaiSC6efIZcAFaCBCLTkIkYlx1lYh68NZTL9MGucVJ+O3F6WqPW8mz47ZCSszh12yKrthNVZngj2wJ/bMXqxH69V6s95/RnPWfOeQ/YH18Q2ETJx8</latexit><latexit sha1_base64="pHZs5Gy8wbr1BbknBcYXTyxbZXs=">AAACDnicbVDLSgNBEJyNrxhfUW96GQxCvIRdEfQY8OIxgnlAEpfeSScZMvtgpjcQlgU/wa/wqidv4tVf8OC/uIk5aGKdiqpuuqu8SElDtv1p5VZW19Y38puFre2d3b3i/kHDhLEWWBehCnXLA4NKBlgnSQpbkUbwPYVNb3Q99Ztj1EaGwR1NIuz6MAhkXwqgTHKLR50hUNIBFQ0hdRMnvU/KYzcZpWepWyzZFXsGvkycOSmxOWpu8avTC0XsY0BCgTFtx46om4AmKRSmhU5sMAIxggG2MxqAj6abzDKk/DQ2QCGPUHOp+EzE3xsJ+MZMfC+b9IGGZtGbiv957Zj6V91EBlFMGIjpIZIKZ4eM0DIrB3lPaiSC6efIZcAFaCBCLTkIkYlx1lYh68NZTL9MGucVJ+O3F6WqPW8mz47ZCSszh12yKrthNVZngj2wJ/bMXqxH69V6s95/RnPWfOeQ/YH18Q2ETJx8</latexit><latexit sha1_base64="pHZs5Gy8wbr1BbknBcYXTyxbZXs=">AAACDnicbVDLSgNBEJyNrxhfUW96GQxCvIRdEfQY8OIxgnlAEpfeSScZMvtgpjcQlgU/wa/wqidv4tVf8OC/uIk5aGKdiqpuuqu8SElDtv1p5VZW19Y38puFre2d3b3i/kHDhLEWWBehCnXLA4NKBlgnSQpbkUbwPYVNb3Q99Ztj1EaGwR1NIuz6MAhkXwqgTHKLR50hUNIBFQ0hdRMnvU/KYzcZpWepWyzZFXsGvkycOSmxOWpu8avTC0XsY0BCgTFtx46om4AmKRSmhU5sMAIxggG2MxqAj6abzDKk/DQ2QCGPUHOp+EzE3xsJ+MZMfC+b9IGGZtGbiv957Zj6V91EBlFMGIjpIZIKZ4eM0DIrB3lPaiSC6efIZcAFaCBCLTkIkYlx1lYh68NZTL9MGucVJ+O3F6WqPW8mz47ZCSszh12yKrthNVZngj2wJ/bMXqxH69V6s95/RnPWfOeQ/YH18Q2ETJx8</latexit><latexit sha1_base64="pHZs5Gy8wbr1BbknBcYXTyxbZXs=">AAACDnicbVDLSgNBEJyNrxhfUW96GQxCvIRdEfQY8OIxgnlAEpfeSScZMvtgpjcQlgU/wa/wqidv4tVf8OC/uIk5aGKdiqpuuqu8SElDtv1p5VZW19Y38puFre2d3b3i/kHDhLEWWBehCnXLA4NKBlgnSQpbkUbwPYVNb3Q99Ztj1EaGwR1NIuz6MAhkXwqgTHKLR50hUNIBFQ0hdRMnvU/KYzcZpWepWyzZFXsGvkycOSmxOWpu8avTC0XsY0BCgTFtx46om4AmKRSmhU5sMAIxggG2MxqAj6abzDKk/DQ2QCGPUHOp+EzE3xsJ+MZMfC+b9IGGZtGbiv957Zj6V91EBlFMGIjpIZIKZ4eM0DIrB3lPaiSC6efIZcAFaCBCLTkIkYlx1lYh68NZTL9MGucVJ+O3F6WqPW8mz47ZCSszh12yKrthNVZngj2wJ/bMXqxH69V6s95/RnPWfOeQ/YH18Q2ETJx8</latexit>

↵̂(vk)
0

<latexit sha1_base64="b7cjt/3mTriaDts8ctdP1yIYc7c=">AAACDnicbVDLSgNBEJyNrxhfUW96GQxCvIRdEfQY8OIxgnlAEpfeSScZMvtgpjcQlgU/wa/wqidv4tVf8OC/uIk5aGKdiqpuuqu8SElDtv1p5VZW19Y38puFre2d3b3i/kHDhLEWWBehCnXLA4NKBlgnSQpbkUbwPYVNb3Q99Ztj1EaGwR1NIuz6MAhkXwqgTHKLR50hUNIBFQ0hdRM7vU/KYzcZpWepWyzZFXsGvkycOSmxOWpu8avTC0XsY0BCgTFtx46om4AmKRSmhU5sMAIxggG2MxqAj6abzDKk/DQ2QCGPUHOp+EzE3xsJ+MZMfC+b9IGGZtGbiv957Zj6V91EBlFMGIjpIZIKZ4eM0DIrB3lPaiSC6efIZcAFaCBCLTkIkYlx1lYh68NZTL9MGucVJ+O3F6WqPW8mz47ZCSszh12yKrthNVZngj2wJ/bMXqxH69V6s95/RnPWfOeQ/YH18Q2Cspx7</latexit><latexit sha1_base64="b7cjt/3mTriaDts8ctdP1yIYc7c=">AAACDnicbVDLSgNBEJyNrxhfUW96GQxCvIRdEfQY8OIxgnlAEpfeSScZMvtgpjcQlgU/wa/wqidv4tVf8OC/uIk5aGKdiqpuuqu8SElDtv1p5VZW19Y38puFre2d3b3i/kHDhLEWWBehCnXLA4NKBlgnSQpbkUbwPYVNb3Q99Ztj1EaGwR1NIuz6MAhkXwqgTHKLR50hUNIBFQ0hdRM7vU/KYzcZpWepWyzZFXsGvkycOSmxOWpu8avTC0XsY0BCgTFtx46om4AmKRSmhU5sMAIxggG2MxqAj6abzDKk/DQ2QCGPUHOp+EzE3xsJ+MZMfC+b9IGGZtGbiv957Zj6V91EBlFMGIjpIZIKZ4eM0DIrB3lPaiSC6efIZcAFaCBCLTkIkYlx1lYh68NZTL9MGucVJ+O3F6WqPW8mz47ZCSszh12yKrthNVZngj2wJ/bMXqxH69V6s95/RnPWfOeQ/YH18Q2Cspx7</latexit><latexit sha1_base64="b7cjt/3mTriaDts8ctdP1yIYc7c=">AAACDnicbVDLSgNBEJyNrxhfUW96GQxCvIRdEfQY8OIxgnlAEpfeSScZMvtgpjcQlgU/wa/wqidv4tVf8OC/uIk5aGKdiqpuuqu8SElDtv1p5VZW19Y38puFre2d3b3i/kHDhLEWWBehCnXLA4NKBlgnSQpbkUbwPYVNb3Q99Ztj1EaGwR1NIuz6MAhkXwqgTHKLR50hUNIBFQ0hdRM7vU/KYzcZpWepWyzZFXsGvkycOSmxOWpu8avTC0XsY0BCgTFtx46om4AmKRSmhU5sMAIxggG2MxqAj6abzDKk/DQ2QCGPUHOp+EzE3xsJ+MZMfC+b9IGGZtGbiv957Zj6V91EBlFMGIjpIZIKZ4eM0DIrB3lPaiSC6efIZcAFaCBCLTkIkYlx1lYh68NZTL9MGucVJ+O3F6WqPW8mz47ZCSszh12yKrthNVZngj2wJ/bMXqxH69V6s95/RnPWfOeQ/YH18Q2Cspx7</latexit><latexit sha1_base64="b7cjt/3mTriaDts8ctdP1yIYc7c=">AAACDnicbVDLSgNBEJyNrxhfUW96GQxCvIRdEfQY8OIxgnlAEpfeSScZMvtgpjcQlgU/wa/wqidv4tVf8OC/uIk5aGKdiqpuuqu8SElDtv1p5VZW19Y38puFre2d3b3i/kHDhLEWWBehCnXLA4NKBlgnSQpbkUbwPYVNb3Q99Ztj1EaGwR1NIuz6MAhkXwqgTHKLR50hUNIBFQ0hdRM7vU/KYzcZpWepWyzZFXsGvkycOSmxOWpu8avTC0XsY0BCgTFtx46om4AmKRSmhU5sMAIxggG2MxqAj6abzDKk/DQ2QCGPUHOp+EzE3xsJ+MZMfC+b9IGGZtGbiv957Zj6V91EBlFMGIjpIZIKZ4eM0DIrB3lPaiSC6efIZcAFaCBCLTkIkYlx1lYh68NZTL9MGucVJ+O3F6WqPW8mz47ZCSszh12yKrthNVZngj2wJ/bMXqxH69V6s95/RnPWfOeQ/YH18Q2Cspx7</latexit>

↵̂(vk)
Lk�1

<latexit sha1_base64="cIqI17TcBU7/YbSGJEMeJSRvFng=">AAACFHicbZC7TsNAEEXXPEN4GShpVkRIoQDZCAlKJBoKiiCRh5QYa7wMZJX1Q7vjSMhyyyfwFbRQ0SFaegr+BTukgISpju6d0czcIFHSkON8WjOzc/MLi5Wl6vLK6tq6vbHZMnGqBTZFrGLdCcCgkhE2SZLCTqIRwkBhOxiclX57iNrIOLqi+wS9EO4ieSsFUCH5Nu/1gbIeqKQPuZ9d+Nkg33fz66w+LHEv9+2ac+CMik+DO4YaG1fDt796N7FIQ4xIKDCm6zoJeRlokkJhXu2lBhMQA7jDboERhGi8bPRJzndTAxTzBDWXio9E/D2RQWjMfRgUnSFQ30x6pfif103p9sTLZJSkhJEoF5FUOFpkhJZFRMhvpEYiKC9HLiMuQAMRaslBiEJMi8yqRR7u5PfT0Do8cAu+PKqdOuNkKmyb7bA6c9kxO2XnrMGaTLAH9sSe2Yv1aL1ab9b7T+uMNZ7ZYn/K+vgGIXie8w==</latexit><latexit sha1_base64="cIqI17TcBU7/YbSGJEMeJSRvFng=">AAACFHicbZC7TsNAEEXXPEN4GShpVkRIoQDZCAlKJBoKiiCRh5QYa7wMZJX1Q7vjSMhyyyfwFbRQ0SFaegr+BTukgISpju6d0czcIFHSkON8WjOzc/MLi5Wl6vLK6tq6vbHZMnGqBTZFrGLdCcCgkhE2SZLCTqIRwkBhOxiclX57iNrIOLqi+wS9EO4ieSsFUCH5Nu/1gbIeqKQPuZ9d+Nkg33fz66w+LHEv9+2ac+CMik+DO4YaG1fDt796N7FIQ4xIKDCm6zoJeRlokkJhXu2lBhMQA7jDboERhGi8bPRJzndTAxTzBDWXio9E/D2RQWjMfRgUnSFQ30x6pfif103p9sTLZJSkhJEoF5FUOFpkhJZFRMhvpEYiKC9HLiMuQAMRaslBiEJMi8yqRR7u5PfT0Do8cAu+PKqdOuNkKmyb7bA6c9kxO2XnrMGaTLAH9sSe2Yv1aL1ab9b7T+uMNZ7ZYn/K+vgGIXie8w==</latexit><latexit sha1_base64="cIqI17TcBU7/YbSGJEMeJSRvFng=">AAACFHicbZC7TsNAEEXXPEN4GShpVkRIoQDZCAlKJBoKiiCRh5QYa7wMZJX1Q7vjSMhyyyfwFbRQ0SFaegr+BTukgISpju6d0czcIFHSkON8WjOzc/MLi5Wl6vLK6tq6vbHZMnGqBTZFrGLdCcCgkhE2SZLCTqIRwkBhOxiclX57iNrIOLqi+wS9EO4ieSsFUCH5Nu/1gbIeqKQPuZ9d+Nkg33fz66w+LHEv9+2ac+CMik+DO4YaG1fDt796N7FIQ4xIKDCm6zoJeRlokkJhXu2lBhMQA7jDboERhGi8bPRJzndTAxTzBDWXio9E/D2RQWjMfRgUnSFQ30x6pfif103p9sTLZJSkhJEoF5FUOFpkhJZFRMhvpEYiKC9HLiMuQAMRaslBiEJMi8yqRR7u5PfT0Do8cAu+PKqdOuNkKmyb7bA6c9kxO2XnrMGaTLAH9sSe2Yv1aL1ab9b7T+uMNZ7ZYn/K+vgGIXie8w==</latexit><latexit sha1_base64="cIqI17TcBU7/YbSGJEMeJSRvFng=">AAACFHicbZC7TsNAEEXXPEN4GShpVkRIoQDZCAlKJBoKiiCRh5QYa7wMZJX1Q7vjSMhyyyfwFbRQ0SFaegr+BTukgISpju6d0czcIFHSkON8WjOzc/MLi5Wl6vLK6tq6vbHZMnGqBTZFrGLdCcCgkhE2SZLCTqIRwkBhOxiclX57iNrIOLqi+wS9EO4ieSsFUCH5Nu/1gbIeqKQPuZ9d+Nkg33fz66w+LHEv9+2ac+CMik+DO4YaG1fDt796N7FIQ4xIKDCm6zoJeRlokkJhXu2lBhMQA7jDboERhGi8bPRJzndTAxTzBDWXio9E/D2RQWjMfRgUnSFQ30x6pfif103p9sTLZJSkhJEoF5FUOFpkhJZFRMhvpEYiKC9HLiMuQAMRaslBiEJMi8yqRR7u5PfT0Do8cAu+PKqdOuNkKmyb7bA6c9kxO2XnrMGaTLAH9sSe2Yv1aL1ab9b7T+uMNZ7ZYn/K+vgGIXie8w==</latexit>

N0 � 1
<latexit sha1_base64="m+jdZDC0QqQutrxPaqjA1SNXQKw=">AAAB93icbVBNS8NAFNzUr1q/qh69LBbBiyURQY8FL56kgmkLbSib7WtdutmE3RehhP4Gr3ryJl79OR78L25iDto6p2HmPd68CRMpDLrup1NZWV1b36hu1ra2d3b36vsHHROnmoPPYxnrXsgMSKHAR4ESeokGFoUSuuH0Ove7j6CNiNU9zhIIIjZRYiw4Qyv5t0P3zBvWG27TLUCXiVeSBinRHta/BqOYpxEo5JIZ0/fcBIOMaRRcwrw2SA0kjE/ZBPqWKhaBCbIi7JyepIZhTBPQVEhaiPB7I2ORMbMotJMRwwez6OXif14/xfFVkAmVpAiK54dQSCgOGa6FbQHoSGhAZHlyoEJRzjRDBC0o49yKqa2lZvvwFr9fJp3zpmf53UWj5ZbNVMkROSanxCOXpEVuSJv4hBNBnsgzeXFmzqvz5rz/jFaccueQ/IHz8Q1H1pJa</latexit><latexit sha1_base64="m+jdZDC0QqQutrxPaqjA1SNXQKw=">AAAB93icbVBNS8NAFNzUr1q/qh69LBbBiyURQY8FL56kgmkLbSib7WtdutmE3RehhP4Gr3ryJl79OR78L25iDto6p2HmPd68CRMpDLrup1NZWV1b36hu1ra2d3b36vsHHROnmoPPYxnrXsgMSKHAR4ESeokGFoUSuuH0Ove7j6CNiNU9zhIIIjZRYiw4Qyv5t0P3zBvWG27TLUCXiVeSBinRHta/BqOYpxEo5JIZ0/fcBIOMaRRcwrw2SA0kjE/ZBPqWKhaBCbIi7JyepIZhTBPQVEhaiPB7I2ORMbMotJMRwwez6OXif14/xfFVkAmVpAiK54dQSCgOGa6FbQHoSGhAZHlyoEJRzjRDBC0o49yKqa2lZvvwFr9fJp3zpmf53UWj5ZbNVMkROSanxCOXpEVuSJv4hBNBnsgzeXFmzqvz5rz/jFaccueQ/IHz8Q1H1pJa</latexit><latexit sha1_base64="m+jdZDC0QqQutrxPaqjA1SNXQKw=">AAAB93icbVBNS8NAFNzUr1q/qh69LBbBiyURQY8FL56kgmkLbSib7WtdutmE3RehhP4Gr3ryJl79OR78L25iDto6p2HmPd68CRMpDLrup1NZWV1b36hu1ra2d3b36vsHHROnmoPPYxnrXsgMSKHAR4ESeokGFoUSuuH0Ove7j6CNiNU9zhIIIjZRYiw4Qyv5t0P3zBvWG27TLUCXiVeSBinRHta/BqOYpxEo5JIZ0/fcBIOMaRRcwrw2SA0kjE/ZBPqWKhaBCbIi7JyepIZhTBPQVEhaiPB7I2ORMbMotJMRwwez6OXif14/xfFVkAmVpAiK54dQSCgOGa6FbQHoSGhAZHlyoEJRzjRDBC0o49yKqa2lZvvwFr9fJp3zpmf53UWj5ZbNVMkROSanxCOXpEVuSJv4hBNBnsgzeXFmzqvz5rz/jFaccueQ/IHz8Q1H1pJa</latexit><latexit sha1_base64="m+jdZDC0QqQutrxPaqjA1SNXQKw=">AAAB93icbVBNS8NAFNzUr1q/qh69LBbBiyURQY8FL56kgmkLbSib7WtdutmE3RehhP4Gr3ryJl79OR78L25iDto6p2HmPd68CRMpDLrup1NZWV1b36hu1ra2d3b36vsHHROnmoPPYxnrXsgMSKHAR4ESeokGFoUSuuH0Ove7j6CNiNU9zhIIIjZRYiw4Qyv5t0P3zBvWG27TLUCXiVeSBinRHta/BqOYpxEo5JIZ0/fcBIOMaRRcwrw2SA0kjE/ZBPqWKhaBCbIi7JyepIZhTBPQVEhaiPB7I2ORMbMotJMRwwez6OXif14/xfFVkAmVpAiK54dQSCgOGa6FbQHoSGhAZHlyoEJRzjRDBC0o49yKqa2lZvvwFr9fJp3zpmf53UWj5ZbNVMkROSanxCOXpEVuSJv4hBNBnsgzeXFmzqvz5rz/jFaccueQ/IHz8Q1H1pJa</latexit>
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b)

Figure 5.7: Representation of: a) the absolute value of the elements of the vector X(vk)
0 ; b) the corresponding

discrete amplitude-range profile generated by the STDREC algorithm (the RASCA-FC3 is considered).

In fact, when multiple consecutive snapshots are processed to generate independent images,
randomly changing the subset of NA antennas from snapshot to snapshot allows the considered
radar system to benefit from antenna diversity.

T2-S2 – The STDREC algorithm deserves the following comments:

a) The availability of accurate estimates of the normalised frequency F (vk)
i and of the complex

amplitude C(vk)
i (A(vk)

i ) (see (5.7) and (5.13)) plays an important role in this step, since
these parameters are exploited in the serial cancellation procedure based on (5.48). In
particular, ignoring the frequency residual δ(vk)i of the normalised frequency F

(vk)
i (5.45)

in this procedure (i.e., assuming that F̂ (vk)
i = α̂

(vk)
i ; see (5.46)) may result in a significant

error accumulation.

b) A threshold on the maximum computational effort required by the STDREC algorithm can be
set by requiring that the recursion index i never exceeds a fixed threshold; this is equivalent
to limit the overall number of targets that can be detected on each VA.

c) The STDREC algorithm generates NA different data sets; the k-th data set consists of the
triads {(α̂(vk)

i , F̂ (vk)
i , Ĉ(vk)

i ); i = 0, 1, . . . , Lk − 1} ({(α̂(vk)
i , F̂ (vk)

i , Â(vk)
i ); i = 0, 1, . . . ,

Lk − 1}), characterizing the Lk targets detected on the vk-th antenna (with k = 0, 1, ...,
NA − 1). Note that the overall number of targets may change from antenna to antenna,
especially in the presence of extended targets; this is due to the fact that the signals acquired
on different VAs can exhibit significant differences in their spectral content.

d) The following important interpretation of the processing accomplished by the STDREC
algorithm on the vk-th VA can be given. The vector X(vk)

0 can be seen as a collection of noisy
spectral information referring to N0 distinct frequency bins (i.e., to N0 distinct range bins)
and is usually dense in the presence of multiple extended targets, as illustrated in Fig. 5.7-a)
(where the absolute value of its elements is represented). The STDREC allows to extract a
discrete frequency (i.e., range) profile from the vector X

(vk)
0 , as illustrated in Fig. 5.7-b). In

various real world scenarios, this profile turns out to be sparse, even in the presence of a
dense vector X

(vk)
0 ; this is beneficial, since allows to concentrate the RPE computational

effort on a set of specific ranges (i.e., frequency bins). The range profile characterizing the
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vk-th VA is described by the set of Lk couples Svk = {(α̂(vk)
i , Ĉ(vk)

i ); i = 0, 1, . . . , Lk − 1}
(Svk = {(α̂(vk)

i , Â(vk)
i ); i = 0, 1, . . . , Lk − 1}), with k = 0, 1, ... , NA − 1; the parameter

α̂
(vk)
i identifies the frequency bin associated with the i-th target detected on the considered

VA, whereas the absolute value of Ĉ(vk)
i (Â(vk)

i ) represents an estimate of the strength of the
echo associated with it.

e) The STDREC algorithm can be used for detecting multiple targets and accurately estimating
their range in a monostatic radar.

f) The STDREC algorithm can be easily extended in a way that multiple targets are detected
and estimated in parallel in each of its iterations. If we focus on its i-iteration and the
vk-th VA, this result is achieved by running multiple (say, m(vk)

i ) instances of the SFE
(CSFE) algorithm in parallel. Each of these instances is initialised with the frequency
corresponding to the absolute maximum or a relative maximum detected in the sequence
of the absolute values of the elements of the vector X

(vk)
0 [i] (see (5.42)). In this case,

a constraint is set on the minimum spacing between the m(vk)
i detected frequencies in

order to minimize the interference between the instances running in parallel. Moreover,
after identifying the absolute maximum in the above mentioned sequence, a threshold,
proportional to such a maximum, is set on the minimum value of the acceptable relative
maximum/maxima, so that unrelevant frequencies are discarded. It is also worth stressing
that, if a cluster of m(vk)

i distinct frequencies is estimated, each of the components of the
triad (C

(vk)
X0

[i],C
(vk)
X1

[i],C
(vk)
X2

[i]) appearing in the RHS of (5.48) consists of the sum of m(vk)
i

terms, each associated with one of these frequencies.

g) The STDREC algorithm employed in the RASCA-FR3 (RASCA-FC3) represents an instance
of the single frequency estimation and cancellation (complex single frequency estimation and
cancellation) algorithm derived in [1] for the estimation of multiple overlapped real (complex )
tones. For this reason, in the case of complex received signals, it can be replaced by one of
the multiple tone estimators available in the technical literature, like the CFH algorithm
[45], the algorithm developed by Ye and Aboutanios in [43, 44] and the algorithm derived
by Serbes in [46] (the last two algorithms are denoted Alg-YA and Alg-S, respectively, in
the following). In fact, all these algorithms are recursive and rely on a serial cancellation
procedure since, within each recursion, they detect a single tone, estimate its parameters
and subtract its contribution from the residual signal emerging from the previous iteration.

h) The estimates generated by the STDREC algorithm are potentially biased if the parameters
of the SFE (CSFE) executed in its first step are not properly selected (see [1]). In principle,
this bias can be arbitrarily reduced by increasing the overall number of iterations and/or
re-estimations accomplished by the SFE (CSFE). However, we found out that, in the
case of complex received signal, a computationally efficient alternative to this approach
is represented by running an additional step (i.e., STDREC-S4) after that the first three
steps of the STDREC algorithm has been carried out. In this final step, the Alg-YA is
run after initializing it with the estimates of the normalised frequencies and the associated
complex amplitudes generated by the STDREC. The hybrid technique that results from
interconnecting the STDREC algorithm with the above mentioned algorithm is dubbed
hybrid STDREC (HSTDREC) in the following; note that this algorithm represents an
instance of the hybrid CSFE proposed in [1].

T3-S1 – This step is the most complicated of the whole algorithm and deserves the following
comments:

a) In principle, the horizontal and vertical spatial frequencies (see (5.30) and (5.31)) of multiple
targets contributing to the α̂l-th frequency bin can be detected by first computing a 2D
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DFT of the matrix X [l] (5.55) and, then, by looking for local maxima over the absolute
values of the elements of the resulting 2D matrix; note that the matrix X [l] can be also
zero-padded before computing its 2D FFT to improve the resulting spectral resolution. This
procedure may require a significant computational effort and its accuracy is affected by the
spectral leakage due to any potential strong target. In the STDAEC algorithm, instead, 2D
processing is avoided by alternating vertical and horizontal 1D FFTs. Consequently, relevant
spatial frequencies are estimated by searching for the peaks of 1D amplitude spectra (i.e.,
in the absolute values of the elements of the vectors S

(i)
VULA,0[l] and X

(VF)
i [l]); in other

words, an AM approach is adopted. Note that this approach allow us to mitigate the overall
computational complexity and to detect weak targets hidden by close strong targets through
successive cancellations.

b) In STDAE-S1, each of the three vectors {s(i)VULA,k [l]; k = 0, 1, 2} is computed by executing

a N̄0 order FFT (see (5.67)). Note that, on the one hand, the vector s
(i)
VULA,0 [l] collects N̄0

equally spaced samples of the spectrum of the sequence {X(i)
VULA,p; p = 0, 1, ..., NVULA − 1}

(see (5.65)). On the other hand, the k-th vector s(i)VULA,k [l] (with k = 1 and 2) collects, up to
a scale factor, N0 equally spaced samples of the k-th order derivative of the same spectrum.

c) The processing accomplished in STDAE-S3 is very similar to that carried out in STDAE-S1.
In fact, the only difference is represented by the fact that the NVULA-dimensional vector
S
(i)
VULA,0 [l] (5.63) is replaced by the NHULA-dimensional vector X

(VF)
i [l] (5.71) generated

in STDAE-S2. Therefore, in this case, the CSFE is exploited to estimate the horizontal
frequency FH,i[l] and, again, the complex amplitude Ci[l] (Ai[l]) associated with the i-th
target.

d) Similarly as the STDREC algorithm, the STDAEC algorithm can also be considered as an
instance of the CSFEC algorithm mentioned at point g) of T2-S2. Therefore, in principle, it
can be replaced by the CFH algorithm [45], the Alg-YA [43, 44] or the Alg-S [46]. Moreover,
a further (and final) step, based the Alg-YA can be added to the STDAEC algorithm to
mitigate its estimation bias.

e) As already suggested for the STDREC algorithm, the STDAEC algorithm can be employed
to detect and estimate multiple angles in parallel; this requires running multiple instances
of the CSFE algorithm in parallel.

Our final comments concern the use of RASCA-FR3 and RASCA-FC3 in FMCW radar systems
whose virtual antenna array is not an URA; for instance, in our experimental work (see Section
5.9), a colocated MIMO FMCW radar equipped with the virtual receive array shown in Fig. 5.8
has been employed. Note that the first two processing tasks of the RASCAs are carried out on
an antenna-by-antenna basis; therefore, they are not influenced by the shape of the considered
virtual array. However, this shape influences the way spatial folding is accomplished in T3. More
specifically, as far as the last point is concerned, the following considerations can be made:

1) The array structure represented in Fig. 5.8 can be treated as an URA if its gaps are
zero-padded.

2) The reference VULA should be selected in a way to maximize the number of non-zero
vertically aligned VAs and, consequently, the number of VAs contributing to the estimation of
the elevation angle, as illustrated in Fig. 5.8.

3) The reference HULA should be selected in the middle of the antenna array; this mitigates the
effects of the errors affecting the estimate of normalised vertical frequency in the vertical folding
procedure (do not forget that such errors may have a significant impact on the contributions of
the HULAs that are farther from the reference HULA; see (5.69)).

158



5.5. Description of Various Algorithms Employed in the Proposed Embodiments

Reference
HULA

Reference
VULA

Figure 5.8: Virtual array considered in our experimental work.

4) The vertical folding accomplished by the STDAE algorithm involves VULAs of different sizes.
More specifically, in the i-th iteration of the STDAEC algorithm, vertical folding is accomplished
by computing the NHULA-dimensional vector (see (5.56) and STDAE-S2)

X
(VF)
i [l] =

[
X

(VF)
i [pI , l] , X

(i)
l [pI + 1, l] , ..., X

(i)
l [pF , l]

]T
(5.81)

where

X
(VF)
i [p, l] =

1

NV [p]

qF [p]∑
q=qI [p]
q ̸=qR

X
(i)
l [p, q] R

(VF)
i [l, q] +

X
(i)
l [p, qR]

NV [p]
, (5.82)

with p = pI , pI + 1, ..., pF ; here, R(VF)
i [l, q] is expressed by (5.69), qI [p] (qF [p]) is the index

identifying the first (last) antenna of the p-th VULA and NV[p] is the overall number of VAs
which that VULA consists of.

5.4.4 Range & angle serial cancellation algorithms for a radar system endowed
with a one-dimensional antenna array

The algorithms described in the previous paragraph can be easily adapted to the case in which
the considered colocated MIMO radar system is equipped with a single ULA and, consequently,
can be exploited for 2D imaging only; this leads to RASCA-FR2 and RASCA-FC2. The changes
made in RASCA-FR3 and RASCA-FC3 to obtain RASCA-FR2 and RASCA-FC2, respectively,
concern only the SPE and can be summarized as follows:

1. The first three steps of the STDAE in T3-S1 are not performed; therefore, the fourth step
of that algorithm is the first one to be executed. Moreover, the matrix X(i) [l] (5.56) is
replaced by the NVH-dimensional vector

X(i) [l] ≜
[
X

(i)
l [p]

]
, (5.83)

collecting the spectral information available on the whole virtual receive array and referring
to the α̂l-th frequency bin only.

2. The spatial frequency F̂V,i[l] is unavailable and, therefore, it is not included in the set Tl
(5.27); note that the elevation angle ϕ̂i[l] (5.60) is not estimated in this case.

5.5 Description of Various Algorithms Employed in the Proposed
Embodiments

In this section, various mathematical details about the techniques employed in the RASCAs are
provided.
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Since the processing accomplished in T1 of the RASCAs has been fully analysed in the
previous section, in this paragraph we provide a detailed description of: a) the SFE (see T2-S2);
b) the CSFE (see T2-S2 and T3-S1); c) the target cancellation procedures employed in T2-S3
and T3-S1.

5.5.1 Single frequency estimator

In this Paragraph, the SFE derived in [1] is summarized. This algorithm processes the samples of
the real sequence {xr,n; n = 0, 1, ..., N − 1}, whose n-th element is

xr,n = a cos (2πnF + ψ) + wr,n

= C exp (j2πnF ) + C∗ exp (−j2πnF ) + wr,n, (5.84)

with n = 0, 1, ..., N − 1, and generates an estimate of the normalised frequency F and of the
complex amplitude

C ≜
1

2
a exp (jψ) (5.85)

of the real tone appearing in the RHS of (5.84); here, N is the overall number of elements of the
sequence {xr,n}, a and ψ are the tone amplitude and phase, respectively, and {wr,n; n = 0, 1, ...,
N − 1} is a real AWGN sequence. This algorithm is initialised by

1) Evaluating: a) the vector

X0 =
[
X0,0, X

(v)
0,1 , ..., X

(v)
0,N0−1

]T
≜ DFTN0

[
x
(v)
0,ZP

]
, (5.86)

where the DFT order N0 is defined by (5.41),

x0,ZP ≜
[
(x0)

T 0T(M−1)N

]T
, (5.87)

M is the oversampling factor and

x0 ≜ [xr,0, xr,1, ..., xr,N−1]
T ; (5.88)

b) the initial coarse estimate F̂ (0)
c of F as

F̂ (0)
c = α̂ FDFT, (5.89)

where the integer α̂ is computed as

α̂ = arg max
α̃∈{0,1,...,N0/2−1}

∣∣X̄0,α̃

∣∣ ; (5.90)

c) the quantity

ρ̂(0) ≜
F̂

(0)
c

FDFT
= α̂; (5.91)

d) the initial estimate Ĉ(0) of C as
Ĉ(0) = G

(
F̂ (0)
c

)
(5.92)

where

G
(
F̃
)
≜
X̄(F̃ )− X̄∗(F̃ )g(F̃ )

1−
∣∣∣g(F̃ )∣∣∣2 , (5.93)

X̄(F̃ ) ≜
1

N

N−1∑
n=0

xr,n exp
(
−j2πnF̃

)
(5.94)
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and

g(F̃ ) ≜
1

N

N−1∑
n=0

exp
(
−j4πnF̃

)
; (5.95)

e) the spectral coefficients X̄1,α̂ and X̄2,α̂, and the coefficients {Kp(2α̂); p = 1, 2} and {b(α̂),
c(α̂)} on the basis of the definitions

X̄k,ρ ≜
1

N

N−1∑
n=0

xk,n exp

(
−j 2πnρ

N0

)
, (5.96)

Kp (x) ≜
1

N

N−1∑
n=0

gp [n] exp

(
−j 2πnx

N0

)
, (5.97)

b (ρ) ≜ −ℜ
{
Ĉ∗X̄2,ρ

}
+ 2ℜ

{(
Ĉ∗
)2
K2 (2ρ)

}
(5.98)

and
c (ρ) ≜ ℑ

{
Ĉ∗X̄1,ρ

}
−ℑ

{(
Ĉ∗
)2
K1 (2ρ)

}
, (5.99)

respectively; f) the initial estimate ∆̂(0) of ∆ as

∆̂(0) = P
(
ρ̂(0)
)
, (5.100)

where
P (ρ̃) ≜ −c (ρ̃) /b (ρ̃) ; (5.101)

g) the first fine estimate F̂ (0) of F as

F̂ (0) = F̂ (0)
c +

∆̂(0)

2π
(5.102)

2) Setting its iteration index i to 1.
Then, an iterative procedure is started. The i-th iteration is fed by the estimates F̂ (i−1)

and Ĉ(i−1) of F and C, respectively, and produces the new estimates F̂ (i) and Ĉ(i) of the same
quantities (with i = 1, 2, ..., NSFE, where NSFE represents the overall number of iterations); the
procedure employed for the evaluation of F̂ (i) and Ĉ(i) consists of the two steps described below
(the p-th step is denoted SFE-Sp).

SFE-S1) - The new estimate ∆̂(i) of ∆ is computed as10 (see (5.100)–(5.101))

∆̂(i) = P (ρ̂(i−1)) = −c
(
ρ̂(i−1)

)/
b
(
ρ̂(i−1)

)
; (5.103)

in the evaluation of the coefficients {b(ρ), c(ρ)} appearing in the RHS of (5.101), Ĉ = Ĉ(i−1) and

ρ = ρ̂(i−1) ≜ F̂ (i−1)/FDFT (5.104)

are assumed. Then,
F̂ (i) = F̂ (i−1) + ∆̂(i)/(2π) (5.105)

is evaluated.
SFE-S2) - The new estimate Ĉ(i) of Ĉ is evaluated as Ĉ(i) = G(F̂ (i)) (see (5.92)–(5.93)).

Moreover, the index i is incremented by one before starting the next iteration.
At the end of the last (i.e., of the NSFE-th) iteration, the fine estimates F̂ = F̂ (NSFE) and

Ĉ = Ĉ(NSFE) of F and C, respectively, become available.
10The quantities {X̄k,ρ; k = 1, 2} required in the computation of the coefficients b(ρ) and c(ρ) can be also evaluated by

means of the interpolation-based method illustrated in [1, Sect. III, p. 12]. In our work, barycentric interpolation has been
always used [61]; in the following, the parameter I represents the interpolation order. These considerations hold also for the
CSFE described below.
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5.5.2 Complex single frequency estimator

All the results illustrated in the previous paragraph refer to the real sequence {xr,n}, whose
n-th element is expressed by (5.84). However, a similar estimation method (namely, the CSFE)
has been developed for the complex counterpart, i.e. for a complex sequence {xc,n; n = 0, 1, ...,
N − 1}, whose n-th element is

xc,n = A exp (j2πnF ) + wc,n, (5.106)

with n = 0, 1, ..., N − 1. Here, A is the complex amplitude of the single tone appearing in the
RHS of the last equation, {wc,n; n = 0, 1, ..., N − 1} is a complex AWGN sequence and all the
parameters have exactly the same meaning as that illustrated for (5.84). The description of the
CSFE is similar to that illustrated for the SFE in the previous paragraph, the only differences
being represented by the fact that: a) the parameter C (5.85) is replaced by A; b) (5.92) is
replaced by

Ã = Â = X̄(F̂ ), (5.107)

where X̄(F̂ ) is computed according to (5.94) (in which xr,n is replaced by xc,n (5.106)); c) (5.98)
and (5.99) are replaced by

b (ρ) ≜ ℜ{Â∗X̄2,ρ} (5.108)

and
c (ρ) ≜ −ℑ{Â∗X̄1,ρ}, (5.109)

respectively.

5.5.3 Target cancellation procedures employed in FMCW radar systems

In T2 of the RASCA-FR2 and RASCA-FR3 (and, in particular, in STDREC-S2; see (5.48)), a
target cancellation procedure is used in combination with the SFE. This procedure requires the
evaluation of the triad (C

(v)
X0

[i], C
(v)
X1

[i], C
(v)
X2

[i]), that represents the contribution given by the

i-th (i.e., by the last) point target detected on the v-th VA. If F̂ (v)
i and Ĉ(v)

i denote the estimates
of the normalised frequency and the complex amplitude, respectively, characterizing this target,
the expressions

C
(v)
X0

[i] = Ĉ
(v)
i W̄

(v)
0 [i] +

(
Ĉ

(v)
i

)∗ (
W̄

(v)
0,c [i]

)
, (5.110)

C
(v)
X1

[i] = Ĉ
(v)
i W̄

(v)
1 [i] +

(
Ĉ

(v)
i

)∗ (
W̄

(v)
1,c [i]

)
(5.111)

and
C

(v)
X2

[i] = Ĉ
(v)
i W̄

(v)
2 [i] +

(
Ĉ

(v)
i

)∗ (
W̄

(v)
2,c [i]

)
(5.112)

are employed; here, W̄(v)
k [i] denotes the N0 order DFT of the vector

w̄
(v)
k [i] ≜

[
0, 1k · w̄(v)

i , 2k ·
(
w̄

(v)
i

)2
, . . . , (N − 1)k ·

(
w̄

(v)
i

)N−1
, 0, . . . , 0

]T
, (5.113)

with k = 0, 1 and 2, W̄(v)
k,c [i] the N0 order DFT of the vector (w̄

(v)
k [i])∗,

w̄
(v)
i ≜ exp(j2πF̄

(v)
i ) (5.114)

and
F̄

(v)
i ≜ f̂

(v)
i Ts (5.115)

is the normalised frequency associated with the frequency f̂ (i)v . It is important to point out that
an efficient method can be used for the computation of the vectors W̄(v)

k [i] and W̄
(v)
k,c [i] appearing

in the RHS of (5.110)–(5.112) (with k = 0, 1 and 2); note that, for any k, these vectors represent
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the N0 order DFTs of the sequences {nk (w̄
(v)
i )n; n = 0, 1, ..., N − 1} and {nk ((w̄

(v)
i )∗)n; n = 0,

1, ..., N − 1}, respectively. In fact, the l-th element of the vectors W̄(v)
k [i] and W̄

(v)
k,c [i] is given by

W̄
(v)
k [i, l] =

1

N

N−1∑
n=0

nk
(
w̄

(v)
i

)n
exp

(
−j 2πl

N0
n

)

=
1

N

N−1∑
n=0

nk(q [l])n (5.116)

and

W̄
(v)
k,c [i, l] =

1

N

N−1∑
n=0

nk
((
w̄

(v)
i

)∗)n
exp

(
−j 2πl

N0
n

)

=
1

N

N−1∑
n=0

nk(qc [l])
n, (5.117)

respectively, where

q [l] ≜ exp

(
j2π

(
F̄

(v)
i − l

N0

))
(5.118)

and

qc [l] ≜ exp

(
j2π

(
−F̄ (v)

i − l

N0

))
. (5.119)

Therefore, the identities listed in [1, eqs. (84)-(85) and (145)] can be exploited for an efficient
computation of the RHSs of (5.116) and (5.117).

A target cancellation procedure is also employed in T2 of the RASCA-FC2 and RASCA-FC3;
however, in this case, the CSFE is adopted in place of the SFE, and the vectors C

(v)
X0

[i], C(v)
X1

[i]

and C
(v)
X2

[i] are evaluated as

C
(v)
X0

[i] = Â
(v)
i W̄

(v)
0 [i], (5.120)

C
(v)
X1

[i] = Â
(v)
i W̄

(v)
1 [i] (5.121)

and
C

(v)
X2

[i] = Â
(v)
i W̄

(v)
2 [i]; (5.122)

respectively; here, W̄(v)
k [i] denotes the N0 order DFT of the vector

w̄
(v)
k [i] ≜

[
0, 1k · w̄(v)

i , 2k ·
(
w̄

(v)
i

)2
, . . . , (N − 1)k ·

(
w̄

(v)
i

)N−1
, 0, . . . , 0

]T
, (5.123)

with k = 0, 1 and 2, and w̄
(v)
i is still expressed by (5.114). The vector W̄

(v)
k [i] appearing in

(5.110)–(5.112) (with k = 0, 1 and 2) can be efficiently computed following the same approach
illustrated above for the SFE.

The CSFE is also employed in T3-S1 and, in particular, in STDAEC-S2 of the RASCA-FR2,
RASCA-FR3, RASCA-FC2 and RASCA-FC3. In this case, the cancellation procedure requires
the evaluation of the contribution

C
(i)
X0

[l] =
[
C

(i)
X0

[p, q, l]
]

(5.124)

given by the i-th (i.e., by the last) target detected in the l-th frequency bin to the whole array
(see (5.57)). Here, we focus on the target cancellation procedure employed in the above mentioned
RASCAs. In this case, if Âi[l], F̂V,i[l] and F̂H,i[l] denote the estimates of the complex amplitude, the
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normalised vertical spatial frequency and the normalised horizontal spatial frequency, respectively,
characterizing the i-th target, the expression

C
(i)
X0

[p, q, l] = Âi[l] exp
{
j2π

[
(p− pR)F̂H,i[l] + (q − qR)F̂V,i[l]

]}
, (5.125)

is employed for any VA (i.e., for any p and q).
Finally, it is important to mention that the cancellation procedure adopted in STDREC

algorithm aims at removing the contribution of a single target in each of its iterations. If a cluster
of m(v)

i distinct frequencies is estimated by the SFE (CSFE) in the i-th iteration of the above
mentioned algorithm, each of the components of the triad (C

(v)
X0

[i], C(v)
X1

[i], C(v)
X2

[i]) consists of the

sum of m(v)
i terms and each term is evaluated on the basis of (5.110)–(5.112) ((5.120)–(5.122)).

5.6 Limitations

In this section, some technical limitations that have emerged in the implementation of our
algorithms on commercial radar devices are illustrated and the solutions we have devised to
mitigate their impact are described.

5.6.1 Unequal response of virtual antennas

The derivation of the RASCAs for FMCW radar systems relies on the assumption that the real
(complex) sample sequence made available by the v-th VA is expressed by (5.6) ((5.12)). The
adopted signal models hold if the amplitudes of the L overlapped oscillations contributing to the
useful component of the received signal do not change from antenna to antenna. However, our
experiments accomplished on commercial colocated radar devices have evidenced that: a) these
amplitudes are not constant across the whole virtual array; b) their differences are influenced
by the azimuth and the elevation of each target. We believe that all this is due to the different
behavior of the multiple receive chains employed in each MIMO device and to the mismatches in
the receive antenna patterns. It can be mitigated by enriching the physical array with a set of
surrounding passive antennas; in this case, the array is artificially extended with new antennas
along all its sides, so that the behavior of all its active antennas becomes more uniform.

It important to point out that, in principle, the presence of this phenomenon can be accounted
for in the development of target detection and estimation algorithms by including its effects in
the received signal model. For instance, (5.6) can be generalised as

x(v)r,n =

L−1∑
l=0

αv (θl, ϕl) al cos
(
2πnF

(v)
l + ψ

(v)
l

)
+ w(v)

r,n, (5.126)

where αv(θl, ϕl) represents an attenuation factor depending on the angular coordinates of the
l-th target and v is the VA index. Consequently, the complex amplitude associated with the l-th
target detectable on the considered VA becomes (see (5.7))

C
(v)
l (θl, ϕl) ≜

1

2
al αv (θl, ϕl) exp

(
j ψ

(v)
l

)
. (5.127)

Neglecting the presence of the factor αv (θl, ϕl) in the development of our algorithms has the
following implication: an error is introduced by the STDAEC algorithm in its cancellation
procedure (see STDAEC-S2 in Paragraph 5.5). Note, in particular, that the estimate Ĉi[l] of the
complex amplitude characterizing to the i-th target detected in the α̂l-th bin is computed after
the overall spatial folding (i.e., after STDAE-S5); consequently, its absolute value represents a
sort of spatial average computed over all the involved VAs. Moreover, only the phase variations of
this complex gain are accounted for in the computation of the contribution C

(i)
X0

[l] of this target
to the matrix X(i)[l] (see (5.124)–(5.125)). Note that, if the functions {αv(θl, ϕl)} were known
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for all the VAs, their effect could be compensated for after evaluating the estimates (θ̂i, ϕ̂i) of
the angular coordinates of the i-th target; in fact, this result could be achieved by replacing the
estimate Ĉi[l] of the complex gain Ci[l] with

Ĉi[v, l] ≜ Ĉi[l] αv(θ̂i, ϕ̂i). (5.128)

in the evaluation of the term C
(i)
X0

[l] appearing in (5.124)–(5.125). Estimating the function
αv(θ, ϕ), however, is a time consuming task, since it requires a proper measurement setup and
an anechoic chamber. We believe that this problem can be circumvented by: a) exploiting deep
learning techniques [83] in the SPE; b) adopting a data-driven approach [84], [85]. This solution
is motivated by the fact that:

a) Deep learning techniques can be employed to approximate complicated functions, that
do not lend themselves to a simple parametric representation and without requiring particular
expertise in data pre-processing.

b) A data-driven approach allows to train different models on the basis of data collected in
a real scenario or synthetically generated data, without prior knowledge about the parametric
representation of the considered problem. Note that a fundamental role is played by the adopted
training procedure since it makes the involved network able to generate correct predictions on
the basis of never seen data available at its input.

In practice, the adoption of the proposed approach requires modifying the STDAEC technique
employed in the RASCAs (see Fig. 5.5) and, in particular, embedding a deep neural network in
it. This network is employed to estimate the distorted amplitudes of all the targets detected in
the l-th frequency bin (with l = 0, 1, . . . , Lb − 1), so that accurate cancellation becomes possible.

The use of this solution in our radar systems is not investigated in the following, since it is
out of the scope of this work.

5.6.2 Antenna coupling

In our description of the SFE and the CSFE (see Section 5.5), it has been implicitly assumed
that the minimum frequency of the useful component contained in the observed data sequence
can be arbitrarily small. Unluckily, this is not always true. For instance, in commercial colocated
FMCW MIMO radar systems, a strong interference is observed in the lower portion of the
spectrum evaluated on all the receive antennas. This phenomenon, known as mutual coupling [86],
is due to the electromagnetic coupling that originates from the small distance between adjacent
transmit and receive antennas [82]. Its impact can be mitigated resorting to various methods
based on calibration measurements [87]. Because of mutual coupling, any target whose range is
below a certain threshold cannot be detected by our algorithms in a reliable fashion.

5.7 Other target detection and estimation techniques

The detection and estimation algorithms described above have been compared, in terms of
accuracy and complexity, with two different types of algorithms that, similarly as the RASCAs,
are able to generate radar images in the form of point clouds. The algorithms of the first type are
called FFT-based algorithms (FFT-BAs), since they rely on multidimensional FFT processing for
the evaluation of all the spatial coordinates of targets (i.e., their range and DOA); such algorithms
have been inspired by the FFT-based algorithm proposed by Texas Instrument in [70]. The
algorithms of the second type, instead, are called MUSIC-based algorithms (MUSIC-BAs); these
make use of the same method as the first type for range estimation, but the MUSIC algorithm
for DOA estimation [12]. In the remaining part of this section, a brief description is provided for
both types.

The inner structure of both types of algorithms is described by the block diagram shown in
Fig. 5.9. The processing accomplished by the blocks this diagram consists of, can be summarized
as follows. Each vector of the set {x(v)

z }, collecting NVR vectors (see (5.14)), undergoes, after ZP,
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FFT-Based or

MUSIC-Based

DOA Estimation

FFT 

Processing

Radar

Image

Generation

Power 

Spectrum

Computation

Target DOA info

Target detection and range estimation

CFAR-CASO

Figure 5.9: Block diagram describing the overall structure of the FFT-BAs and the MUSIC-BAs.

a N0 order FFT; this produces a set of N0-dimensional vectors {X(v)
0 } (see (5.38), (5.42) and

(5.43)). Based on this set of vectors, the N0-dimensional power spectrum

P0 = [P0,0, P0,1, ..., P0,N0−1]
T (5.129)

is computed; here,

P0,i ≜
1

NVR

NVR−1∑
v=0

(
X

(v)
0,i

)2
(5.130)

with i = 0, 1, ..., N0 − 1. The vector P0 (5.129) feeds the cell-averaging smallest of - constant
false alarm rate (CFAR-CASO) algorithm developed in [88]. Based on this algorithm, a target is
detected in the i-th frequency bin if

P0,i > TCFAR, (5.131)

where i ∈ {im, im + 1, ..., iM}. Here,

TCFAR = K0min
(
P̄l , P̄u

)
(5.132)

represents a decision threshold, K0 is a real parameter whose value is selected on the basis of the
required false alarm rate, and

P̄l =
1

Cs

i−(Gs+1)∑
k=i−(Gs+Cs)

P0,k (5.133)

and

P̄u =
1

Cs

i+Gs+Cs∑
k=i+Gs+1

P0,k (5.134)

represent the average of the power spectrum computed over Cs adjacent bins positioned on the left
and on the right, respectively, with respect to the i-th frequency bin. Moreover, Gs and Cs are two
integer parameters defining the size and the position (with respect to the i-th bin), respectively,
of the set of frequency bins involved in the computation of P̄l (5.133) and P̄u (5.134), whereas im
and iM are two non negative integers such that im ≥ (Gs + Cs) and iM ≤ N0 − 1− (Gs + Cs).

In our work, the inequality
P0,i > Pl,u (5.135)

is also required to be satisfied together with the condition (5.131), where Pl,u represents the
largest element of the set {P0,i+l; l = −(Gs + Cs), −(Gs + Cs) + 1, −Gs − 1, Gs + 1, Gs + Cs}.
This allows us to reduce the overall number of detected targets, so reducing the density of the
generated point cloud.

The CFAR-CASO algorithm generates the vector

ACF = [α̂0, α̂1, ..., α̂Lb−1]
T (5.136)
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where α̂l represents the index of the frequency bin in which the l-th target has been detected (with
l = 0, 1, . . . , Lb − 1) and Lb is the overall number of detected targets. This vector is processed
for DOA estimation. The two options (associated with the above mentioned types of algorithms)
are considered for this task and are described in the remaining part of this paragraph.

FFT-based DOA estimation – Let us focus first on the case in which a virtual HULA, consisting
of NVH virtual elements, is employed for resolving the targets associated with a given frequency
bin and estimating their azimuth. In this case, azimuth estimation consists of the following two
steps:

1) The NVH-dimensional column vector (see (5.83))

X [l] ≜
[
X

(0)
0,α̂l

, X
(1)
0,α̂l

, ..., X
(NVH−1)
0,α̂l

]T
, (5.137)

collecting the spectral information available on the whole array and referring to the α̂l-th frequency
bin (with l = 0, 1, ..., Lb − 1) is applied to an N̄0 order FFT algorithm; let s[l] = [s0[l], s1[l], ...,
sN̄0−1[l]]

T denote the N̄0-dimensional FFT output.
2) The dominant peaks11 in the sequence {|sk[l]|; k = 0, 1, ..., N̄0 − 1} are identified; each

peak corresponds to a distinct target. If ki[l] denotes the index of i-th peak (with i = 0, 1, ...,
Lh[l]− 1, where Lh[l] is the overall number of targets detected in the considered frequency bin),
the estimate of the azimuth of the i-th target is evaluated as

θ̂i [l] = arcsin
(
hN̄0

[ki [l]]
)

(5.138)

where
hN̄0

[x] ≜ 2
(
x− N̄0/2

) /
N̄0 . (5.139)

Let us now consider the case in which the URA represented in Fig. 5.4 is employed for resolving
the targets associated with each frequency bin, and estimating their azimuth and elevation. The
algorithm employed in this case involves the NVH × NVV matrix X[l] ≜ [X0,α̂l

[p, q]] (5.55),
collecting the spectral information available on the whole array for the α̂l-th frequency bin. This
algorithm consists of the following four steps:

1) The pR-th row of the matrix X[l] is processed to generate the N̄0-dimensional column
vector sVULA,0[l] = [s0,0 [l] , s0,1 [l] , ..., s0,N̄0−1 [l]]

T on the basis of (5.63); here, pR represents the
column index of the reference antenna in the considered URA (see Fig. 5.4).

2) The dominant peaks of the sequence {[|s0,r [l] |; r = 0, 1, ..., N̄0 − 1} are identified. If ri[l]
denotes the index of i-th peak (with i = 0, 1, ..., Lv[l] − 1, where Lv[l] is the overall number
of targets detected in the considered frequency bin), the estimate of the elevation ϕ̂i[l] of the
associated target is evaluated as

ϕ̂i [l] = arcsin
(
hN̄0

[ri [l]]
)
. (5.140)

3) The 2D FFT of the matrix X[l] is computed; this produces the N̄0×N̄0 matrix S̄[l] = [S̄k,r[l]],
such that

S̄k,r [l] ≜
1

NVR

NVV−1∑
q=0

NVH−1∑
p=0

X0,α̂l
[p, q] · exp

(
−j 2π

λ
ψr,k

)
, (5.141)

where
ψr,k ≜ q hN̄0

[r] dVV + p hN̄0
[k] dVH. (5.142)

4) The dominant peaks of the sequence {[|S̄k,ri[l][l]|; k = 0, 1, ..., N̄0 − 1} are identified (with
i = 0, 1, ..., Lv[l] − 1); let Lh[i, l] denote their overall number. If the m-th peak is found for

11It is important to distinguish peaks associated with different targets from side-lobes; in our simulations, a candidate
peak is classified as a side-lobe (and, consequently, ignored) if its amplitude differs by more than 1 dB from that of a close
dominant peak, as suggested in [70].

167



5. Deterministic Detection and Estimation Algorithms for Colocated MIMO Radars

k = km,i[l] (with m = 0, 1, ..., Lh[i, l] − 1), the azimuth θ̂i,ri[l][l] of the associated target is
evaluated as

θ̂i,ri[l] [l] = arcsin

(
hN̄0

[km,i[l]]

cos
(
ϕ̂i [l]

) ) , (5.143)

where ϕ̂i [l] is expressed by (5.140); consequently, the angular coordinates of the i-th target
detected in the α̂l-th frequency bin are (θ̂i,ri[l] [l], ϕ̂i [l]), whereas its range is computed on the
basis of α̂l.

The last step concludes our description of the FFT-BAs. Note that the overall number of
detected targets is given by

L̂ =

Lb−1∑
l=0

Lv [l]−1∑
i=0

Lh [i, l] . (5.144)

MUSIC-based DOA estimation – Similarly as our description of the FFT-BAs, we first focus on
the case in which a virtual HULA, consisting of NVH virtual elements, is employed for resolving
the targets associated with a given frequency bin and estimating their azimuth. In this case, the
algorithm considered for DOA estimation consists of the following three steps:

1) The NVH ×NVH autocorrelation matrix

RX [l] = X [l] X[l]H (5.145)

is computed; here, X [l] is defined by (5.137).
2) The N̄0-dimensional pseudo-spectrum P

(l)
MU is evaluated; its k-th element is given by

P(l)
MU[k] =

1

aH [k] QNVR
QH
NVR

a [k]
(5.146)

with k = 0, 1, ..., N̄0−1; here, (·)H denotes the conjugate and transpose operator, QNVH
is a matrix

having size NVH × (NVH−1) and whose columns are the (NVH−1) noise eigenvectors (associated
with the (NVH−1) smallest eigenvalues) of RX [l] (5.145) and a[k] is a NVH-dimensional steering
vector, whose n-th element an[k] is given by

an[k] = exp
(
jπnhN̄0

[k]
)
, (5.147)

with n = 0, 1, ..., NVH − 1.
3) The dominant peaks appearing in the sequence {P(l)

MU[k]; k = 0, 1, ..., N̄0 − 1}, consisting
of the ordered elements of P(l)

MU, are identified; let Lh[l] denote their overall number. If the i-th
peak is found for k = ki[l] (with i = 0, 1, ..., Lh[l]− 1), the azimuth θ̂i[l] of the associated target
is evaluated on the basis of (5.138)–(5.139).

Let us consider now the case in which the uniform rectangular array shown in Fig. 5.4 is
employed for resolving the targets associated with each frequency bin, and estimating their
azimuth and elevation. In this case, the adopted procedure involves the NVH × NVV matrix
X[l] ≜ [X0,α̂l

[p, q]] (5.55) for any α̂l and consists of the following four steps:
1) The pseudo-spectrum referring to the reference VULA (that consists of NVULA virtual

elements) is evaluated. In this step, we assume that the pR-th row of X[l] is employed for
the evaluation of the autocorrelation matrix RX [l] (5.145) and that the N̄0-dimensional vector
P

(VULA)
MU [l] is computed on the basis of (5.146)–(5.147) (note that NVR and δ[k] are replaced by

NVULA and δ[r], respectively).
2) The dominant peaks appearing in the sequence of the ordered elements of P(VULA)

MU [l] are
identified; let Lv[l] denote their overall number. If the i-th peak is found for r = ri[l] (with i = 0,
1, ..., Lv[l]− 1), the elevation ϕ̂i[l] of the associated target is evaluated on the basis of (5.140).

3) The pseudo-spectrum P
(HULA)
MU [l, i] associated with the i-th estimated elevation is evaluated

for the whole virtual array. In this step, if we assume that the autocorrelation matrix RX is
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Table 5.2: Acronyms adopted for the FFT-based and MUSIC-based algorithms.

Alg.
Radar Complex FMCW Real FMCW

FFT-BA (2D) FFT-FC2 FFT-FR2
MUSIC-BA (2D) MUSIC-FC2 MUSIC-FR2
FFT-BA (3D) FFT-FC3 FFT-FR3
MUSIC-BA (3D) MUSIC-FC3 MUSIC-FR3

computed according to (5.145) (where, however, X [l] is the NVH ×NVV matrix defined above),
the N̄0-dimensional vector P (HULA)

MU [l, i] is generated on the basis of (5.146). Note that, in this
case, NVR is replaced by NHULA and that the n-th element an[k] of the NHULA-dimensional
steering vector a[k] is

an[k] = exp
(
jπnhN̄0

[k] cos
(
ϕ̂i[l]

))
(5.148)

with n = 0, 1, ..., NHULA.
4) The dominant peaks appearing in the sequence of the ordered elements of P(HULA)

MU [l] are
identified; let Lh[i, l] denote their overall number. If the m-th peak is found for k = km,i[l] (with
m = 0, 1, ..., Lh[i, l]− 1), the azimuth θ̂i,ri[l][l] of the associated target is evaluated as

θ̂i,ri[l] [l] = arcsin
(
hN̄0

[km,i[l]]
)
. (5.149)

Consequently, the angular coordinates of this target are (θ̂i,ri[l][l], ϕ̂i [l]), whereas its range
is computed on the basis of its bin index α̂l. The last step concludes our description of the
MUSIC-BAs. Finally it is important to point out that:

a) The overall number of targets detected by these algorithms is still expressed by (5.144).

b) The order adopted in the computation of the pseudo-spectra (first the vertical pseudo
spectrum P

(VULA)
MU [l], then the horizontal pseudo-spectra {P(HULA)

MU [l, i]}) is dictated by the
fact P

(HULA)
MU [l, i] depends on the elevation estimate ϕ̂i[l] for any i.

The performance of the FFT-BAs and the MUSIC-BAs has been assessed for both 2D and 3D
propagation scenarios. The acronyms adopted in the following for these types of algorithms are
summarized in Table 5.2.

5.8 Computational complexity

The computational cost of the algorithms described in Sections 5.4 and 5.7 has been carefully
assessed in terms of floating point operations (flops) to be executed in the detection of L targets12.
Various details about the method we adopted for the evaluation of the computational cost of
each algorithm are provided in Appendix J for the RASCA-FC3 only. Our analysis leads to the
conclusion that the overall cost of this algorithm and RASCA-FC2 is approximately of order
O(MR−FC3) and O(MR−FC2), respectively, where (see (J.5))

MR−FC3 = 24NVRN0 log2 (N0) + 26NAKT2 N0

+ LbKT3

(
18NVHNVVN0 + 16N̄0 log2

(
N̄0

))
(5.150)

and

MR−FC2 =24NVHN0 log2(N0) + 26NAKT2N0

+ LbKT3

(
18NVHN0 + 8N̄0 log2(N̄0)

)
; (5.151)

12In the remaining part of this section, the overall number of estimated targets (L̂) is assumed to be equal to L, for
simplicity.
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here,KT2 (KT3) represents the overall number of iterations carried out by the STDREC (STDAEC)
algorithm.

In evaluating the cost of the FFT-based and MUSIC-based algorithms described in Section 5.7,
we have assumed that: a) the cost due to the computation of the eigenvalue decomposition of a d×d
matrix is O(d3); b) the computational effort required to find the dominant peaks in a sequence is
negligible. Based on these assumptions, it can be shown that the computational complexity of
the FFT-FC3, FFT-FC2, MUSIC-FC3 and MUSIC-FC2 algorithms are approximately of order
O(MF−FC3), O(MF−FC2), O(MM−FC3) and O(MM−FC2), respectively, where

MF−FC3 =8NVRN0 log2(N0)

+ 8Lb
(
N̄2

0 log2(N̄
2
0 ) + N̄0 log2(N̄0)

)
, (5.152)

MF−FC2 = 8
(
NVHN0 log2(N0) + LbN̄0 log2(N̄0)

)
, (5.153)

MM−FC3 =8NVRN0 log2(N0) + LbN̄0(N
3
VV +N3

VH)

+ 16LbN̄0(N
2
VV +N2

VH) (5.154)

and
MM−FC2 = 8NVHN0 log2(N0) + LbN̄0(N

3
VH + 16N2

VH). (5.155)

It is important to keep in mind that a comparison among the computational costs listed above
does not fully account for the gap that can be observed in the execution speed of the corresponding
algorithms. In fact, in practice, a portion of the computation time is absorbed by the procedure
employed to find the dominant peaks of real sequences in both the FFT-BAs and the MUSIC-BAs.
Moreover, the vector ACF (5.136), collecting the indices of the frequency bins in which at least one
target has been detected, may include ghost targets; as evidenced by our computer simulations,
the impact of this phenomenon on the overall computation time may not be negligible. Despite
this, some interesting insights on how the complexity is influenced by the overall number of targets
can be obtained by comparing the computational costs (5.150), (5.152) and (5.154) ((5.151),
(5.153) and (5.155)) in two specific scenarios. The first scenario we take into consideration refers
to the case in which the mutual distance between the targets is above the range resolution of
the employed radar system, so that KT2 = L, KT3 = 1 and Lb = L can be assumed in the
RHS of (5.150)–(5.155). In our second scenario, instead, the targets form clusters, each of which
consists of four targets having the same range, but different angular coordinates; for this reason,
KT2 = L/4, KT3 = 4 and Lb = L/4 can be assumed in the RHS of (5.150)–(5.155). Moreover,
the following parameters have been chosen for both scenarios: a) NVR = 256; b) N0 = 1024; c)
NA = 10 d) NVV = 16; e) NVH = 16; f) N̄0 = 32. The dependence of the complexity Malg on
L is represented in Fig. 5.10a (Fig. 5.10b) for the first (second) scenario; here, alg denotes the
algorithm which this complexity refers to. From these figures it is easily inferred that:

a) The RASCAs require the largest computational effort in both the considered scenarios for
any value of L; for instance, MRASCA−FC3 is approximately 4.1 (4.6) times greater than
MMUSIC−FC3 in the first (second) scenario for L = 8.

b) The ratio between MRASCA−FC2 and MMUSIC−FC2 is approximately 2.4 for any value of L in
the first scenario, but it increases with L in the second scenario; for instance, MRASCA−FC2

is 3.9 (4.6) times greater than MMUSIC−FC2 for L = 12 (L = 36).

c) The computational cost estimated for the MUSIC-BAs in the first scenario is larger than that
referring to the second scenario for L ≥ 4; for instance, if L = 20, the value of MMUSIC−FC3

(MMUSIC−FC2) evaluated in first scenario is 1.33 (2.5) times larger than that found in the
second scenario .

Finally, it is important to stress that:
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Figure 5.10: Computational cost versus overall number of targets for: a) the first scenario; b) the second
scenario. The RASCA-FC3, RASCA-FC2, FFT-FC3, FFT-FC2, MUSIC-FC3 and MUSIC-FC2 are
considered.

a) in real world scenarios, the overall number of targets detected by the FFT-BAs and the
MUSIC-BAs may be greater than the true number of targets, since some targets are detected
multiple times; this may have a significant impact on the overall computational effort
required by these algorithms.

b) The computational complexity of the RASCA-FR3 (RASCA-FR2), the FFT-FR3 (FFT-FR2),
and the MUSIC-FR3 (MUSIC-FR2) is of the same order as the RASCA-FC3 (RASCA-FC2),
the FFT-FC3 (FFT-FC2) and the MUSIC-FC3 (MUSIC-FC2), respectively.

5.9 Numerical results

In this section, the accuracy of the RASCAs is assessed on the basis of both synthetically
generated and experimental data, and is compared with that provided by various FFT-BAs and
MUSIC-BAs.

5.9.1 Numerical results based on synthetically generated measurements

In this paragraph, the accuracy achieved by the RASCA-FC3, the FFT-FC3 and the MUSIC-FC3
in the generation of 3D radar images is assessed. The performance of these algorithms has been
evaluated in a colocated MIMO FMCW radar system providing both the in-phase and quadrature
components of all its received signals, and equipped with an URA consisting of NT = 16 TX and
NR = 16 RX antennas; therefore, the available virtual array is made of 16 · 16 = 256 VAs with
inter-antenna spacing dVV = dVH = λ/4. The other relevant parameters of the considered radar
system are: a) chirp slope µ = 4 · 1013 Hz/s; b) bandwidth B = 2.5 GHz; c) central frequency
f0 = 77 GHz; d) sampling frequency fs = 8 MHz; e) number of samples per chirp N = 512. Note
that, in principle, the available antenna array allows us to achieve the range resolution

∆R =
c

2B
∼= 6 cm, (5.156)

the azimuthal resolution
∆θ =

λ

2dVH(NHULA − 1)
∼= 7.45◦ (5.157)

and the elevation resolution

∆ϕ =
λ

2dVV(NVULA − 1)
∼= 7.45◦. (5.158)
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Table 5.3: Root mean square error ε̄X , peak error ε̂X and detection rate RD evaluated in the two simulation
scenarios defined in Paragraph 5.9.1. Target range, azimuth and elevation are taken into consideration.

ε̄X ε̂X

Scenario Algorithm R (m) θ (◦) ϕ (◦) R (m) θ (◦) ϕ (◦) RD (%)

S1
RASCA-FC3 0.01 1.56 0.79 0.02 9.86 2.64 100

FFT-FC3 0.02 2.07 1.05 0.04 14.34 3.06 71
MUSIC-FC3 0.02 1.74 0.83 0.04 34.03 13.48 70

S2
RASCA-FC3 0.01 1.54 0.79 0.02 8.01 2.31 100

FFT-FC3 0.02 2.05 1.05 0.04 14.78 2.95 70
MUSIC-FC3 0.02 1.53 0.81 0.04 7.56 2.03 0.72

The considered radar system is assumed to operate in the presence of L = 10 targets, whose echoes
have unit amplitude. The range, the azimuth and the elevation of each target are sequentially
generated at the beginning of each run. Moreover, the range Rk, the azimuth θk and the elevation
ϕk of the k-th target (with k = 1, 2, ..., 10) have been randomly evaluated in a way that: a)
they belong to the intervals [1, 10] m, [−π/3, π/3] rad and [−π/3, π/3] rad, respectively; b)
the minimum spacing between the k-th target and the previously generated (k − 1) targets is
not smaller than ∆R (5.156), ∆θ (5.157) and ∆ϕ (5.158) in the range, azimuth and elevation
dimensions, respectively (scenario S1) or is not smaller than ∆R (5.156) in the range domain,
but can be arbitrarily small in the azimuth and elevation dimensions (this scenario is denoted
S2). In our computer simulations, the following values have been selected for the parameters of
the RASCA-FC3:

a) FFT Processing: M = 2;

b) RPE: NA = 10, NCSFE = 10, I = 7 andTSTDREC = 0.001 · E(vk)
0 (see (5.49));

c) SPE: M̄ = 2, NCSFE = 10, I = 7 andTSTDAEC = 0.001 · E(0)[l] (see (5.58)), TOF = 0.

In addition, the following values have been selected for the parameters of the FFT-FC3 and
the MUSIC-FC3: Cs = 3, Gs = 2 and K0 = 1.5. The SNR ≜ 1/σ2 has been assumed to be equal
to 10 dB and the following performance indices have been evaluated to assess estimation accuracy:
a) The detection rate (RD) defined as the percentage of simulation runs in which the considered
algorithm detects all the targets; b) the root mean square error (RMSE)

ε̄X ≜

√√√√N−1
m

Nm−1∑
k=0

[
Xk − X̂k

]2
; (5.159)

c) the peak error
ε̂X ≜ max

k

∣∣∣Xk − X̂k

∣∣∣ ; (5.160)

here, Xi and X̂i represent the exact value of a parameter X and its corresponding estimate,
whereas Nm represents the overall number of synthetically generated values of X; note that, if all
the targets are detected by the considered algorithm in each run,

Nm ≜ Nr L (5.161)

where Nr is the overall number of simulation runs. In our work, the performance of the above
mentioned algorithms has been assessed by: a) evaluating the detection rate for both the considered
scenarios; b) ignoring the failure events (i.e., the events in which not all the targets have been
detected) in the evaluation of all the RMSEs. The three performance indices defined above have
been assessed on the basis of the estimates generated by executing Nr = 500 runs; the resulting
values are summarised in Table 5.3. From these results it is easily inferred that:
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a) The RASCA-FC3 achieves the lowest RMSEs in range, azimuth and elevation (range, elevation)
estimation in the first (second) scenario; for instance, the RMSE ε̄θ characterising the
RASCA-FC3 is about 1.3 (1.3) times smaller than the corresponding RMSE obtained for
the FFT-FC3 in the first (second) scenario.

b) The RASCA-FC3 exhibits the lowest peak errors in range, azimuth and elevation (range)
in the first (second) scenario; for instance, its peak error ε̂R is 2 times smaller than the
corresponding RMSE obtained for the FFT-FC3 and the MUSIC-FC3 in both scenarios.

c) All the considered algorithms achieve an excellent accuracy in both scenarios, since the RMSEs
evaluated for range, azimuth and elevation are smaller than the corresponding resolutions
given above.

d) The FFT-FC3 and the MUSIC-FC3 are outperformed by the RASCA-FC3 in terms of detection
rate; in fact, the value of this parameter is about 70 % for the first two algorithms, but is
equal to 100 % for the RASCA-FC3, since the last algorithm has been able to detect all the
targets in every simulation run in both scenarios.

5.9.2 Numerical results based on experimental measurements

In this paragraph, we first describe the radar devices employed in our measurement campaigns
and the adopted experimental setup. Then, we analyse: 1) the accuracy achieved by our RPE (and,
in particular, by the STDREC algorithm) in range and phase estimation on multiple antennas of
the same array in the presence of a single target and of multiple targets; 2) the accuracy of the
2D (3D) images generated by RASCA-FR2 (RASCA-FR3) and RASCA-FC2 (RASCA-FC3) in
the presence of multiple targets.

Employed radar devices and adopted experimental setup

A measurement campaign has been accomplished to acquire a data set through two FMCW MIMO
radars, all operating in the E-band. The first FMCW device, dubbed TI FMCW radar in the
following, is the TIDEP-01012 Cascade mmWave radar (see Fig. 5.11-a)). It is manufactured by
Texas Instrument Inc. [64], classified as a long range radar (LLR) and provides both the in-phase
and quadrature components of received signals (i.e., complex measurements). Its main parameters
are: a) chirp slope µ = 4 · 1013 Hz/s; b) bandwidth B1 = 2.5 GHz; c) central frequency fc = 77
GHz; d) sampling frequency fs = 8 MHz; e) number of samples per chirp N = 512. Moreover, it
is endowed with a planar array made of NT = 12 TX and NR = 16 RX antennas (each consisting
of an array of four patch elements), as shown in Fig. 5.11-a). The corresponding virtual array
consists of 12 · 16 = 192 VAs; however, only 134 of them are available, since the remaining 58
VAs overlap with the other elements of the virtual array. As shown in Fig. 5.11-b) (where each
VA is represented by a small blue circle), the virtual array has the following characteristics:

1. the non-overlapped VAs form an horizontal ULA (HULA1), consisting of NHULA1 = 86 VAs
and three smaller HULAs, each made of 16 equally-spaced VAs;

2. the inter-antenna spacing of all the HULAs is dVH = λ/4;

3. the vertical spacing of the three smaller HULAs is not uniform, since dVV1 = λ/4, dVV2 = λ
and dVV3 = 3λ/2 (see Fig. 5.11-b)).

This virtual antenna array allows us to achieve a range, azimuth and elevation resolution
equal to ∆R1 = 5.8 cm (see (5.156)), ∆θ1 = 1.35◦ (see (5.157)), and ∆ϕ1 = 16.4◦ (see (5.158)),
respectively; note that the elevation resolution is coarser than the azimuth one since NVV = 7
equally aligned antennas (dVV = dVV1 = λ/4) are assumed along the vertical direction (this is
equivalent to considering an elevation aperture Dy = 3λ along the vertical direction; see [82]). In
our work, on the one hand, a central portion of the first HULA (contained inside the red rectangle
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appearing in Fig. 5.11-b)), consisting of NVV = 16 antennas, has been exploited for 2D imaging,
in order to guarantee a fair comparison with the other two radar devices. On the other hand, the
whole array have been employed for 3D imaging.

1HULA

2HULA

3HULA

4HULA

1VVd

2VVd

3VVd

b)

a)TX antennas

RX antennas

Figure 5.11: Representation of: a) the TI FMCW radar (the physical TX/RX antennas are contained
inside the three rounded rectangles); b) the corresponding virtual array (the lower rounded rectangle
contains the portion of HULA1 employed for 2D imaging, whereas the green one the vertical array chosen
as a reference for 3D imaging).

The second FMCW device, dubbed Inras FMCW radar in the following (see Fig. 5.12-a)),
is a modular system manufactured by Inras GmbH [89] and consisting of: a) the so called Radar
Log board; b) an RF front-end including multiple TX/RX antennas and monolithic microwave
integrated circuits (MMIC) operating at 77 GHz. This system is classified as a LLR and its main
parameters are: a) chirp slope µ = 9.7656 · 1012 Hz/s; b) bandwidth B2 = 2.5 GHz; c) central
frequency fc = 77 GHz; d) sampling frequency fs = 8 MHz; e) number of samples per chirp
N = 2048. Unlike the TI FMCW radar, this device provides only the in-phase component of the
RF received signals and, consequently, real measurements. Moreover, it is endowed with a custom
designed planar array made of NT = 16 TX antennas and NR = 16 RX antennas, each consisting
of an array of six patch elements, as shown in Fig. 5.12-a). The resulting virtual array, consisting
of NVR = 16 · 16 = 256 VAs is shown in Fig. 5.12-b). As it can be inferred from the last figure,
the virtual array has the following characteristics:

1. It consists of 16 HULAs, each of which is made of 16 antennas with inter-antenna spacing
dVH = λ/4.

2. The vertical distance between each couple of its adjacent HULAs is dVV = λ/2; this entailes
the unambiguous elevation range [−45◦, 45◦].

3. Its shape is not rectangular (the horizontal shift of adjacent HULAs is equal to λ/4).
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This virtual array allows us to achieve the same range resolution as the TI FMCW radar,
and azimuth and elevation resolutions equal to ∆θ2 = 7.6◦ and ∆ϕ2 = 3.8◦, respectively (see
(5.157)–(5.158)). In our work, the HULA contained inside the red rectangle appearing in Fig.
5.12-b) (the whole array) has been exploited for 2D (3D) imaging.

a) b)

q

p0

0

VVd

VHd

VH 1N −

VV 1N −

Figure 5.12: Representation of: a) the physical array of the Inras FMCW radar; b) the corresponding
virtual array (the red rounded rectangle contains the HULA employed for 2D imaging, whereas the green
one the vertical array chosen as a reference for 3D imaging).

Our measurement campaigns have been conducted in a large empty room (whose width, depth
and height are 10 m, 8 m and 2.5 m, respectively). Each of the employed radar devices has been
mounted on an horizontal wooden bar together with a pico-flexx camera manufactured by PMD
Technologies Inc. [65] and has been lifted by a tripod at an height of roughly 1.60 m from ground,
as shown in Fig. 5.13. The employed camera is based on a near-infrared vertical cavity surface
emitting laser, and is able to provide a depth map or, equivalently, a 3D point-cloud of a small
region of the observed environment (its maximum depth is equal to 4 m, whereas its field of view
is 62◦ × 45◦).

In each measurement campaign, the experiments have been repeated for all the radar devices
exactly in the same conditions.

It is important to point out that:

a) in all the radar systems, the target ranges have been estimated with respect to the central
virtual channel of the employed ULA;

b) the exact target positions have been acquired with respect to the centre of the pico-flexx
camera;

c) the data processing has been accomplished in the MATLAB environment;

d) all our detection and estimation algorithms have been run on a desktop computer equipped
with a single i7 processor.

Range and amplitude estimation

In this paragraph, the accuracy of the STDREC algorithm employed by the RPE is analysed
for two specific static scenarios. The first scenario is characterized by a single detectable target
(a small metal disk13 having a diameter equal to 5.5 cm) placed in ten different positions. The
target range R and azimuth θ have been selected in the interval [1.0, 3.0] m, with a step of 0.5 m
and [−40◦, 40◦]. The range and azimuth of the considered targets are listed in Table 5.4 for all
the employed radar devices (the data referring to the i-th position are collected in the column
identified by Ti, with i = 1, 2, ..., 10). The second scenario, instead, is characterized by the

13Each target is hung from the ceiling: a nylon thread has been used for suspending it.
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Inras Radar Picoflexx

𝑇1

𝑇5𝑇4
𝑇3

𝑇2

Figure 5.13: Experimental set-up developed for our measurement campaigns. The radar device (the Inras
FMCW radar in this case) and a reference sensor (pico-flexx) are mounted on a wooden bar. A group of
metal targets, placed at the same height as our sensors, is also visible.

presence of an overall number of targets ranging from 1 to 9 (so that 1 ≤ L ≤ 9). The targets
are represented by small coins with a diameter of 2 cm; the range and azimuth characterizing
their exact positions are listed in Table 5.5 (the data referring to the i-th target are collected
in the column identified by Ti, with i = 1, 2, ..., 9). Each target has been sequentially added in
our scenario; this has allowed us to assess how the performance of the STDREC algorithm is
influenced by the value of the parameter L in the presence of closely spaced targets.

Prior knowledge of L has been assumed during the processing; moreover, the following values
have been selected for the parameters of the STDREC algorithm14:

TI FMCW radar - N = 512, M = 4, N0 = N ·M = 2048, NCSFE = 5 and I = 7.
Inras FMCW radar - N = 2048, M = 1, N0 = N ·M = 2048, NSFE = 5 and and I = 7.
Note that: a) the value of the oversampling factor (M) has been selected in way to guarantee

approximately the same value of N0 in all cases, i.e. roughly the same resolution in the spectral
analysis of radar signals; b) the values of the parameters NSFE and NCSFE are all equal and large
enough so that accurate range estimation is achieved by the STDREC algorithm.

The accuracy of range estimates has been assessed by evaluating the RMSE ε̄R and the peak
error ε̂R, expressed by (5.159)–(5.160) with X = R, Xi = Ri and X̂i. Since the RCS of the
considered targets was unknown, our analysis of the complex gains available over the 16 channels
of the considered virtual ULA and associated with the same target has concerned only their
(unwrapped) phase. The phases {ψ(v); v = 1, 2, ..., 16} estimated by the STDREC algorithm over
the considered reference HULA (consisting of 16 VAs; see the red rounded rectangles appearing
in Figs. 5.11-b) and 5.12-b) and associated with a target placed at approximately15 the same
azimuth angle with respect to the centre of the radars is shown in Fig. 5.14. Since the distance
dVH between adjacent virtual channels is constant, the (unwrapped) estimated phases exhibit
a linear dependence on the index of the virtual channel, as illustrated in Section 5.2 (see, in
particular, (5.10) and (5.11)). Moreover, if a linear fitting is drawn for these data, it should be
expected that the slope of the resulting straight line is proportional to sin(θ) (see (5.18) with
ϕ = 0); this is confirmed by the results shown in Fig. 5.14. To assess the quality of the estimated
phases, their RMSE ε̄ψ has been evaluated in all the scenarios; in doing so, the linear fitting of
the 16 phases {ψ(v)} has been taken as a reference with respect to which the error of each of
them has been computed.

The estimate of the target range generated by the STDREC algorithm for each of the Nm = 10
distinct positions considered in the first scenario are listed in Table 5.4; in the same table, the
value of ε̄ψ computed for each position is also given. The target ranges and their estimates listed
in Table 5.4 are also represented in Fig. 5.15. The errors ε̄R and ε̂R, the mean of ε̄ψ (denoted

14Note that in this case the stopping criterion based on eq. (5.49) has not be employed, since the overall number of targets
is known.

15The exact range of this target can be found in the T7 (T3) column for the TI FMCW radar (Inras FMCW radar) in
Table 5.4.
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Table 5.4: Exact positions (range and azimuth) of the considered target, estimated ranges and RMSEs
evaluated for the phase fitting over the considered sixteen virtual channels of each device (first experimental
scenario). All our radar devices are taken into consideration.

Method T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

Exact (TI FMCW)
R (m) 1.2 1.25 1.5 1.6 2.16 2.23 2.85 2.55 2.96 3.25

θ (◦) -25 40 -10 30 -18 24 -14 21 -18 25

STDREC
R̂ (m) 1.166 1.219 1.523 1.643 2.184 2.278 2.885 2.582 2.932 3.267

ε̄ψ (rad) 0.8 0.597 0.592 0.5 0.521 0.524 0.576 0.574 0.513 0.506

Exact (Inras FMCW)
R (m) 1.35 1.3 1.73 1.72 2.2 2.1 2.71 2.67 3.2 3.2

θ (◦) -25 35 -13 30 -5 15 -10 26 -9 20

STDREC
R̂ (m) 1.38 1.32 1.74 1.74 2.25 2.14 2.76 2.7 3.24 3.24

ε̄ψ (rad) 0.18 0.18 0.2 0.22 0.67 0.79 0.16 0.21 0.16 0.3
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Figure 5.14: Unwrapped phase of the complex gain versus the index of the virtual channel of the reference
HULA; a single target is assumed (first experimental scenario). The phase estimates generated by the
STDREC algorithm in our three radar systems are identified by red, blue and green circles, whereas
straight lines represent their linear fitting.

Table 5.5: Exact ranges of the nine coins characterizing our second experimental scenario. The range
estimates evaluated by the Alg-YA, the Alg-S and the STDREC, the HSTDREC and the CFH algorithm
are also provided.

Method T1 T2 T3 T4 T5 T6 T7 T8 T9

(m) (m) (m) (m) (m) (m) (m) (m) (m)

Exact 1.860 1.900 1.980 2.110 2.190 2.220 2.370 2.410 2.460

STDREC (TI FMCW) 1.900 1.966 2.015 2.113 2.158 2.242 2.377 2.441 2.516

HSTDREC (TI FMCW) 1.906 1.971 2.016 2.118 2.158 2.238 2.378 2.444 2.514

STDREC (Inras FMCW) 1.920 1.980 2.040 2.100 2.220 2.280 2.460 2.520 2.580

CFH (TI FMCW) 1.947 2.017 2.077 2.161 2.241 2.338 2.374 2.435 2.518

Alg-YA (TI FMCW) 2.022 2.054 2.161 2.257 2.294 2.339 2.416 2.447 2.514

Alg-S (TI FMCW) 2.020 2.142 2.142 2.142 2.153 2.236 2.383 2.433 2.522
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Figure 5.15: Representation of the ranges estimated by the STDREC algorithm (first experimental
scenario). All our radar devices are considered.

Table 5.6: Root mean square error ε̄R, peak error ε̂R, mean error ε̄m,ψ and CT evaluated for the STDREC
algorithm in our first experimental scenario.

Method ε̄R ε̂R ε̄m,ψ CT
(m) (m) (rad) (msec)

TI FMCW 0.033 0.048 0.570 0.3

INRAS FMCW 0.035 0.050 0.30 0.4

ε̄m,ψ and generated by taking the average of the Nm values available for ε̄ψ) and the average
computation time (CT) evaluated on the basis of these results are listed in Table 5.6.

The results referring to the first scenario lead us to the following conclusions:

1. In all the considered cases, the STDREC is able to accurately estimate the range and the
phase characterizing each target.

2. All the values of ε̄R and ε̂R are comparable, reasonably low and in the order of the resolution
of our devices.

3. The Inras FMCW radar achieves the lowest ε̄m,ψ.

4. The CTs are always in the order of few milliseconds.

Let us focus on the second scenario. In this case, our range estimates have been generated
by: a) the STDREC algorithm for all the radar devices; b) the HSTDREC algorithm for the
TI FMCW; c) the Alg-YA, the Alg-S and the CFH algorithm for the TI FMCW. The obtained
results are listed in Table 5.5. The errors ε̄R and ε̂R, and the CT obtained in this case are listed
in Table 5.7. From these results it can be inferred that:

1. In the case of the TI FMCW radar, all the considered algorithms achieve comparable accuracy.
However, the STDREC and the HSTDREC algorithms, unlike all the other algorithms,
achieve the lowest RMSE and peak error.

2. The HSTDREC algorithm is not more accurate than the STDREC algorithm; moreover,
these algorithms are characterized by similar CTs.

3. The estimated RMSEs and peak errors are in the order of the resolution of our radar devices,
but a little bit higher in the Inras FMCW radar systems. This is mainly due to the poorer
estimates evaluated for the targets T8 and T9, since, in our specific experiment, the energy
received from these targets has been found to be lower than that coming from the others.
This problem is not so evident in the case of the TI FMCW radar, whose RMSE and peak
errors are very low.
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5.9. Numerical results

Table 5.7: Root mean square error ε̄R, peak error ε̂R and computation time (CT) evaluated in our second
experimental scenario.

Method ε̄R ε̂R CT
(m) (m) (msec)

STDREC (TI FMCW) 0.03 0.07 20

HSTDREC (TI FMCW) 0.03 0.07 20

STDREC (Inras FMCW) 0.07 0.10 40

CFH (TI FMCW) 0.07 0.12 15

Alg-YA (TI FMCW) 0.11 0.18 40

Alg-S (TI FMCW) 0.08 0.24 45
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Figure 5.16: Representation of the initial amplitude spectrum of the signal observed on the central virtual
channel (blue line) and of the final residual amplitude spectrum generated by the STDREC algorithm
(red line). The TI FMCW radar operating in our second experimental scenario is considered; moreover,
the target positions estimated by STDREC (HSTDREC) are represented by red circles (green crosses).

Finally, we would like to stress that the accuracy of STDREC and HSTDREC algorithms can
be related to the accuracy of the estimation and cancellation procedure they accomplish. This
is exemplified by Fig. 5.16, where the initial amplitude spectrum of the signal received on the
central virtual channel of the TI FMCW radar in the second scenario and its (weak) residual,
resulting from the cancellation of the spectral contributions due to the detected targets, are
shown. Here, the range and amplitude of the targets estimated by the STDREC (HSTDREC)
are also represented by red circles (green crosses).

Two-dimensional and three-dimensional imaging

In this paragraph, the accuracy of the 2D and 3D images generated by the RASCAs is assessed.
Two different groups of experiments have been carried out. The first (second) group of experiments
has allowed us to assess the performance achieved by the above mentioned algorithm in 2D (3D)
imaging. In both cases, the measurements have been acquired in the presence of an increasing
number of targets for all our radar devices. In the first group of experiments, the following choices
have been made:

1. The targets have been placed at the same height. Their range and azimuth belong to the
intervals [2.2, 2.7] m and [−15 ◦, 30◦] , respectively (see Table 5.8).

2. The measurements have been acquired through a virtual ULA, consisting of 16 VAs, in all
the considered radar systems.

As far as the second group of experiments is concerned, the following choices have been made:
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1. The range, azimuth and elevation of the targets have been selected in the intervals [1.9, 2.8]
m, [−30◦, 35◦] and [−10◦, 10◦], respectively (see Table 5.11).

2. The measurements have been acquired through the whole virtual array of each of our radar
devices.

The following values have been selected for the parameters of the RASCAs: a) NA = 16
(NA = 10) in the RPE employed in 2D (3D) imaging; b) NCSFE = NSFE = 5 in both the STDREC
and the STDAEC algorithms; c) the threshold TOF = 0 has been selected in the STDAE-S4
algorithm; d) the values of the parameters N0 and M are equal to those employed for the STDREC
in the previous paragraph; e) the oversampling factor is M̄ = 16 (M̄ = 7) for Inras FMCW radar
(for the TI FMCW), so that the FFT order is N̄0 = 256 (N̄0 = 602). Moreover, the following
values have been selected for the parameters16 of the FFT-BAs and the MUSIC-BAs: Cs = 6,
Gs = 6 and K0 = 2. Prior knowledge of L has been assumed and the threshold TSTDAEC has
been selected in the range [0.01, 0.9] ·E(0)[l] (5.58) (the value of this threshold has been adjusted
on the basis of the SNR characterizing the received signal and the overall number of detectable
targets).

The estimates of range and azimuth generated by the RASCAs on the basis of the measurements
acquired in our first group of experiments are listed in Table 5.8, whereas the values of RMSE,
peak error and CT computed by averaging the RMSEs, peak errors and CTs evaluated in each
single experiment are listed in Table 5.9. In the last table, the values of RMSE, peak error and
CT for the employed FFT-BAs and MUSIC-BAs are also provided. These results lead to the
following conclusions:

1. All the range and azimuth errors are comparable with the resolution of our devices.

2. The RASCAs always outperform the other algorithms and require a lower CT.

3. The highest range (azimuth) peak errors and RMSEs are found in the case of the Inras
FMCW radar; the TI FMCW radar, instead, achieves the lowest range and azimuth errors.
This is mainly due to the differences in the SNR available at the receive side of distinct
radar devices is different.

The good accuracy achieved by the RASCAs is also evidenced by Fig. 5.17, where a range-
azimuth map [81], generated though standard 2D FFT processing of the measurements acquired
through the Inras FMWC radar, is represented as a contour plot17; in the same figure, the
exact position of the five targets employed in our first group of experiments and their estimates
evaluated by all the considered algorithms are shown.

Let us consider now on the results obtained for our second group of experiments. The estimates
of range, azimuth and elevation generated by the RASCAs are listed in Table 5.11, whereas the
values of RMSE, peak error and CT evaluated on the basis of this table are listed in Table 5.10.
In the last table, the errors characterizing the FFT-based and MUSIC-based algorithm for 3D
imaging are also provided. From these results it can be inferred that:

1. The RMSEs and the peak errors evaluated for target range, azimuth and elevation are
reasonably low and comparable with those obtained in the case of 2D imaging. Moreover,
these errors are smaller than the ones characterizing the FFT-based and MUSIC-based
algorithms.

2. The azimuth and elevation estimates computed on the basis of the measurements acquired
through the TI and Inras FMCW radars are reasonably good.

16Our simulations have evidenced that small changes in the value of these parameters do not significantly influence the
detection probability and the estimation accuracy of the considered algorithms.

17Note that x− y coordinates are employed in this case, in place of range and azimuth; the position of the radar system
corresponds to the origin of our reference system.
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Table 5.8: Exact range and azimuth of the five targets considered in our first group of experiments and
corresponding estimates generated by the RASCAs.

Exp. Method Params. T1 T2 T3 T4 T5

Exact R (m) 2.26 2.51 2.44 2.68 2.21
θ (◦) -12.7 -4.5 10.6 18.0 28.3

1)

RASCA-FC2 R (m) 2.52
θ (◦) -5.1

RASCA-FR2 R (m) 2.6
θ (◦) -3.9

2)

RASCA-FC2 R (m) 2.53 2.40
θ (◦) -5.2 8.1

RASCA-FR2 R (m) 2.6 2.55
θ (◦) -4.3 11.3

3)

RASCA-FC2 R (m) 2.27 2.53 2.41
θ (◦) -14.0 -5.2 9.8

RASCA-FR2 R (m) 2.63 2.55 2.33
θ (◦) -4.3 11.3 28.2

4)

RASCA-FC2 R (m) 2.32 2.53 2.42 2.26
θ (◦) -13.7 -5.2 11.2 29.4

RASCA-FR2 R (m) 2.30 2.64 2.42 2.22
θ (◦) -12.5 -4.1 11.9 31.2

5)

RASCA-FC2 R (m) 2.31 2.53 2.42 2.56 2.27
θ (◦) -12.4 -5.2 11.2 17.0 26.3

RASCA-FR2 R (m) 2.34 2.47 2.39 2.66 2.36
θ (◦) -17.3 -6.7 8.1 16.4 29.5

Table 5.9: Root mean square error ε̄X , peak error ε̂X , and computation time (CT) evaluated on the basis
of our first group of measurements. Target range and azimuth are taken into consideration.

Method ε̄ ε̂ CT

R (m) θ (◦) R (m) θ (◦) (sec)

RASCA-FC2 0.04 1.2 0.05 1.5 0.3

FFT-FC2 0.06 1.6 0.11 2.8 0.4

MUSIC-FC2 0.05 1.4 0.09 2.4 0.5

RASCA-FR2 0.09 1.1 0.12 1.8 0.4

FFT-FR2 0.13 1.8 0.16 2.65 0.45

MUSIC-FR2 0.13 1.6 0.16 2.49 0.45
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Figure 5.17: Representation of the range-azimuth map (in x− y coordinates) computed on the basis of
the measurements acquired through the Inras FMCW radar in the presence of five targets. The exact
position of each target and its estimate obtained through the RASCAs (shown in Table 5.8) and the other
algorithms are also shown. The rectangles allow to delimit the region in which the position of each target
and its estimates are located.

Table 5.10: Root mean square error ε̄X , peak error ε̂X and computation time (CT) evaluated on the basis
of our second group of measurements. Target range, azimuth and elevation are taken into consideration.

Method ε̄ ε̂ CT

R (m) θ (◦) ϕ (◦) R (m) θ (◦) ϕ (◦) (sec)

RASCA-FC3 0.05 2.8 1.9 0.07 3.9 2.5 2.0

FFT-FC3 0.07 3.0 1.5 0.08 4.2 2.1 1.5

MUSIC-FC3 0.07 3.9 3.2 0.08 6.4 3.8 1.6

RASCA-FR3 0.06 2.0 2.3 0.08 3.0 3.0 2.6

FFT-FR3 0.1 1.0 2.1 0.17 1.5 3.2 1.1

MUSIC-FR3 0.1 1.0 2.2 0.15 1.5 3.3 1.3

3. The average CT is in the order of few seconds for all the proposed algorithms; the lowest
(highest) average CT is found in the case of the TI FMCW radars (Inras FMCW radar).
This is mainly due to the fact that the STDREC algorithm employed in the case of the Inras
FMCW requires an higher computational effort with respect to its counterpart employed
with the TI FMCW radar.

4. In general, the CT of RASCAs is higher than that required by the proposed FFT-based or
MUSIC-based methods. This is mainly due to the recursive cancellation procedure that is not
employed by the other two methods. However, we believe that this cancellation procedure
plays a fundamental role in the detection of weak targets and allows to achieve a good
estimation accuracy.

The good accuracy and resolution provided by the RASCAs are highlighted by Fig. 5.18,
where the exact positions of the five targets employed in our second group of experiments and
their estimates produced by all the considered algorithms are shown; note that, unlike FFT-based
and MUSIC-based algorithms, the RASCAs achieve good accuracy even in the presence of closely
spaced targets, like T4 and T5.
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5.9. Numerical results

Table 5.11: Exact range, azimuth and elevation of the five targets considered in our second group of
experiments and corresponding estimates generated by the RASCAs.

Exp. Method Params. T1 T2 T3 T4 T5

Exact R (m) 1.94 2.34 2.75 2.49 2.08
θ (◦) -27.8 -9.9 0 14.0 35.2
ϕ (◦) -6.0 2.0 -2.1 -7.0 -2.0

1)

RASCA-FC3 R (m) 1.89
θ (◦) -25.8
ϕ (◦) -4.0

RASCA-FR3 R (m) 2.04
θ (◦) -29.3
ϕ (◦) -7.5

2)

RASCA-FC3 R (m) 1.89 2.12
θ (◦) -25.2 37.8
ϕ (◦) -3.4 -2.3

RASCA-FR3 R (m) 2.0 2.1
θ (◦) -27.0 34.2
ϕ (◦) -8.0 -2.5

3)

RASCA-FC3 R (m) 1.89 2.43 2.12
θ (◦) -25.2 -8.6 37.8
ϕ (◦) -3.4 1.1 -3.4

RASCA-FR3 R (m) 2.0 2.45 2.1
θ (◦) -29 -10 31.5
ϕ (◦) -4.0 5.0 -3.0

4)

RASCA-FC3 R (m) 1.89 2.44 2.48 2.12
θ (◦) -25.2 -8.6 20.1 37.3
ϕ (◦) -3.2 -0.6 -6.9 -2.9

RASCA-FR3 R (m) 2.0 2.4 2.45 2.1
θ (◦) -29.5 -12.0 18.3 33.5
ϕ (◦) -4.0 5.0 5.0 -3.0

5)

RASCA-FC3 R (m) 1.89 2.44 2.83 2.48 2.12
θ (◦) -25.2 -8.6 3.2 20.1 37.3
ϕ (◦) -3.2 -0.6 -2.87 -6.9 -2.9

RASCA-FR3 R (m) 1.98 2.4 2.65 2.4 2.13
θ (◦) -27.6 -15.0 0.4 18.3 37.3
ϕ (◦) -5.8 5 -1.1 -3 -6.2
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Figure 5.18: Representation of a 3D scenario characterized by five targets. The exact position of each
target and the corresponding estimates evaluated by all the considered algorithms are shown (all our
radar systems are considered).

5.10 Conclusions

In this chapter, four novel algorithms, dubbed range & angle serial cancellation algorithms
(RASCAs), have been developed for the detection and the estimation of multiple targets in
colocated MIMO radar systems. All these algorithms can be seen as instances of a general
approach to target detection and estimation, and exploit new methods for the estimation of
multiple overlapped real and complex tones. As evidenced by our computer simulations run on
both synthetically generated data and measurements acquired through commercial devices, the
devised algorithms are able to generate accurate 2D and 3D radar images in the presence of
multiple closely spaced targets and outperform other algorithms based on the computation of
multiple FFTs or on the MUSIC for DOA estimation.
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F

Approximate expressions for the cost functions of the
CSFE and the SFE

In this appendix, the derivation of the approximate MSEs εCSFE(∆̃, Â) (4.40) and εSFE(∆̃, Ĉ)
(4.75) is sketched.

F.1 Complex Single Frequency Estimator

To begin, we rewrite eq. (4.23) as

εn(F̃ , Ã) = Ã2
R + Ã2

I − 2(x(R)
c,n ÃR + x(I)c,nÃI) cos(ϕ̃n)

− 2(x(I)c,nÃR − x(R)
c,n ÃI) sin(ϕ̃n) + |xc,n|2, (F.1)

where ÃR ≜ ℜ{Ã}, ÃI ≜ ℑ{Ã}, x(R)
c,n ≜ ℜ{xc,n}, x(I)c,n ≜ ℑ{xc,n} and ϕ̃n is defined by eq. (4.37)

(see also eq. (4.38)). Substituting the RHS of eq. (4.37) in that of eq. (F.1) produces, after some
manipulation,

εn(F̃ , Ã) = |xc,n|2 + Ã2
R + Ã2

I

−2(x(R)
c,n ÃR + x(I)c,nÃI) ·

[
cos(θ̂n) cos(n∆̃)− sin(θ̂n) sin(n∆̃)

]
−2(x(I)c,nÃR − x(R)

c,n ÃI) ·
[
sin(θ̂n) cos(n∆̃) + cos(θ̂n) sin(n∆̃)

]
. (F.2)

Finally, substituting the approximations

cos
(
n∆̃
)
≃ 1− 1

2
n2∆̃2, (F.3)

and

sin
(
n∆̃
)
≃ n∆̃− n3

∆̃3

6
(F.4)

in the RHS of eq. (F.2) and, then, the resulting expression in the RHS of eq. (4.20) produces eq.
(4.40).

F.2 Single Frequency Estimator

A similar procedure is followed in the derivation of eq. (4.75). First of all, we rewrite eq. (4.75) as

εn(F̃ , Ĉ) = x2r,n + 2
[
Ĉ2
R + Ĉ2

I

]
−4ĈR

[
xr,n cos(θ̂n) cos(n∆̃)− xr,n sin(θ̂n) sin(n∆̃)

]
+4ĈI

[
xr,n sin(θ̂n) cos(n∆̃) + xr,n cos(θ̂n) sin(n∆̃)

]
+2
(
Ĉ2
R − Ĉ2

I

) [
cos(2θ̂n) cos(2n∆̃)− sin(2θ̂n) sin(2n∆̃)

]
−4ĈRĈI

[
sin(2θ̂n) cos(2n∆̃) + cos(2θ̂n) sin(2n∆̃)

]
(F.5)
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using standard trigonometric formulas. If the normalized frequency FDFT (4.29) is small enough
(i.e., if the FFT order N0 is large enough), the trigonometric functions cos(kn∆̃) and sin(kn∆̃)
appearing in the RHS of eq. (F.5) (with k = 1 and 2) can be approximated as1

sin
(
n∆̃
)
≃ n∆̃, (F.6)

cos
(
n∆̃
)
≃ 1− 1

2
n2∆̃2, (F.7)

sin
(
2n∆̃

)
≃ 2n∆̃− 4

3
n3∆̃3 (F.8)

and
cos
(
2n∆̃

)
≃ 1− 2n2∆̃2. (F.9)

Substituting the RHSs of eqs. (F.6)–(F.9) in that of eq. (F.5) and, then, substituting the resulting
approximate expression in the RHS of eq. (4.20) yields eq. (4.75).

1Note that the approximation adopted for sin(2n∆̃) (cos(2n∆̃)) is more accurate than the one used for sin(n∆̃) (cos(n∆̃)),
since the width of the interval of its argument is twice that of the last function.
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G

Cancellation Procedures employed in the CSFE/CSFEC
and the SFE/SFEC

G.1 Spectrum cancellation employed in CSFE and SFE

In this paragraph, the expression of the vector C̄0(Âl[r − 1], F̂l[r − 1]) appearing in the RHS of
eq. (4.92) is derived. First of all, let us take into consideration the CSFE; in this case, C̄0(·, ·) is
computed to cancel the contribution of the sequence (see eq. (4.22))

sn
(
F̄l, Āl

)
≜ Āl exp

(
j2πnF̄l

)
= Āl w̄

n
l (G.1)

to the vector X0 (4.30); here,
w̄l ≜ exp(j2πF̄l). (G.2)

Since X0 is the N0-th order DFT of the zero-padded vector x0,ZP (4.31) (where the vector x0

collects the elements of the complex sequence {xc,n; n = 0, 1, ..., N − 1}), it is easy to prove that

C̄0(Âl[r − 1], F̂l[r − 1]) = Āl W̄
(l)
0 , (G.3)

where W̄
(l)
0 denote the N0-th order DFT of the vector

w̄
(l)
0 ≜

[
1, w̄l, w̄

2
l , ..., w̄

N−1
l , 0, ..., 0

]T
. (G.4)

Then, the m-th element of the vector W̄
(l)
0 is given by

W̄
(l)
0 [m] =

1

N

N−1∑
n=0

w̄nl exp

(
−j 2πm

N0
n

)

=
1

N

N−1∑
n=0

(q [m])n , (G.5)

where
q [m] ≜ exp

(
j2π

(
F̂ − m

N0

))
. (G.6)

Therefore, the identity
N−1∑
n=0

qn =
qN − 1

q − 1
, (G.7)

holding for any q ∈ C, can be exploited for an efficient computation of all the elements of the
vector W̄

(l)
0 .

Similar considerations can be formulated for the SFE. However, in this case, eq. (G.1) is
replaced by (see eq. (4.64))

sn
(
F̄l, C̄l

)
≜ C̄l exp

(
j2πnF̄l

)
+ C̄∗

l exp
(
−j2πnF̄l

)
= C̄l (w̄l)

n + C̄∗
l (w̄

∗
l )
n , (G.8)
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where w̄l is still defined by eq. (G.2). Consequently, eq. (G.3) is replaced by

C̄0(Âl[r − 1], F̂l[r − 1]) = C̄l W̄
(l)
0 + C̄∗

l W̄
(l)
0,c, (G.9)

where W̄
(l)
0 is the N0-dimensional vector defined above and W̄

(l)
0,c denote the N0-th order DFT of

the vector (w̄
(l)
0 )∗. Therefore, the m-th element of the vector W̄

(l)
0,c is given by

W̄
(l)
0,c [m] =

1

N

N−1∑
n=0

(w̄∗
l )
n exp

(
−j 2πm

N0
n

)

=
1

N

N−1∑
n=0

(qc [m])n , (G.10)

where
qc [m] ≜ exp

(
j2π

(
−F̂ − m

N0

))
. (G.11)

Again, the identity (G.7) can be exploited for an efficient computation of all the elements of both
the vectors W̄

(l)
0 and W̄

(l)
0,c.

G.2 Leakage cancellation employed in CSFEC and SFEC

In this paragraph, the expression of the quantity X̄lk,k(Âl [r − 1] , F̂l [r − 1] , F̂c,r [r]) appearing in
the RHS of eqs. (4.96) and (4.99) is derived for the CSFEC and the SFEC algorithms. In the first
case, this quantity is computed to cancel the contribution of the sequence {sn(F̄l, Āl)} (G.1) to
X̄k,ρ[r] for k = 0, 1, 2 and 3. Since X̄k,ρ[r] is defined by eq. (4.42), it is not difficult to show that

X̄lk,k

(
Âl [r − 1] , F̂l [r − 1] , F̂c,r [r]

)
= Āl W̄

(l)
k (F̂c,r [r]), (G.12)

where

W̄
(l)
k (F̂c,r [r]) =

1

N

N−1∑
n=0

nk w̄nl exp
(
−j2πnF̂c,r [r]

)
=

1

N

N−1∑
n=0

nk (q̄[r])n (G.13)

and
q̄[r] ≜ exp

(
j2π

(
F̄l − F̂c,r [r]

))
. (G.14)

Therefore, the identities (G.7) and (4.84)–(4.85) can be exploited for an efficient computation of
all the terms appearing in the RHS of eqs. (4.96) and (4.99) for k = 0, 1, 2 and 3.

In the second case, the only modification with respect to the first one consists in adding the
term C̄∗

l W̄
(l)
k,c(F̂c,r[r]) to the RHS of eq. (G.12). Note that

W̄
(l)
k,c(F̂c,r [r]) =

1

N

N−1∑
n=0

nk (w̄∗
l )
n exp

(
−j2πnF̂c,r [r]

)
=

1

N

N−1∑
n=0

nk (q̄c[r])
n (G.15)

where
q̄c[r] ≜ exp

(
−j2π

(
F̄l + F̂c,r [r]

)
.
)

(G.16)

Therefore, the identities (G.7) and (4.84)–(4.85) can be exploited for an efficient computation of
all the terms appearing in the RHS of eqs. (4.96) and (4.99) even if the SFEC algorithm is used.
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H

Derivation of the bias of the CSFE

In this Appendix, the bias of the CSFE algorithm is analysed in the case in which the parameter
∆ is computed on the basis of eq. (4.52). To begin, let us assume that: a) the complex sequence
{xc,n} is not affected by noise, so that (see eqs. (4.18) and (4.28))

xc,n = A exp (j2πnF ) = A exp (j2πn (Fc + δ FDFT)) ; (H.1)

b) α̂ = α (see eqs. (4.54) and (4.55)). Then, it is easy to show that (see eq. (4.42))

X̄1,ρ(i−1) =
A

N0

N−1∑
n=0

n exp (j2πnϑ) (H.2)

and

X̄2,ρ(i−1) =
A

N0

N−1∑
n=0

n2 exp (j2πnϑ) (H.3)

where ϑi ≜ (δ − δ̂i)FDFT and δ̂i ≜ (F̂ (i) − F̂
(0)
c )/FDFT. The identities (4.84) and (4.85) allow us

to rewrite eqs. (H.2) and (H.3) as

X̄1,ρ(i−1) =
1

N0
A
(N − 1)qN+1

i −NqNi + qi
(qi − 1)2

(H.4)

and

X̄2,ρ(i−1) =
1

N0
A
(N − 1)2qN+2

i +
(
−2N2 + 2N + 1

)
qN+1
i +N2qNi − q2i − qi

(qi − 1)3
(H.5)

respectively, where qi ≜ exp (j2πϑi). If the normalised frequency FDFT (4.29) is small enough
(i.e., if the FFT order N0 is large enough), the quantity qi can be approximated through its
truncated Taylor series 1 + j2πϑi − 2π2ϑ2i − j4π3ϑ3i /3. Then, substituting this approximation in
the RHS of eqs. (H.4) and (H.5) and, then, the resulting expressions in the RHSs of eqs. (4.49)
and (4.50) yields, after some manipulation,

b
(
ρ(i−1)

)
≜ ℜ{Â∗X̄2,ρ(i−1)} = FDFT

|A|2

6
(2N − 1)N(N − 1). (H.6)

and
c
(
ρ(i−1)

)
≜ −ℑ{Â∗X̄1,ρ(i−1)} = −FDFT|A|2

π

3

(2N − 1)N(N − 1)ϑi
1 + 4π2ϑ2i

, (H.7)

respectively. Then, substituting the RHSs of the last two equations in that of eq. (4.52) gives

∆̂(i) =
2πϑi

1 + 4π2ϑ2i
. (H.8)

Note that ϑi gets smaller as i increases if the CSFE converges; therefore, the last expression can
be approximated as

∆̂(i) ≃ 2πϑi = 2π
(
δ − δ̂i

)
FDFT = ∆− ∆̂i (H.9)

where ∆̂i ≜ 2πδ̂iFDFT. This proves that the CSFE is unbiased.
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I

Computational complexity of single tone estimators

In this Appendix, the computational complexity, in terms of flops, is assessed for the CSFE and
the SFE developed in Paragraphs 4.3.1–4.3.2.

I.1 Complex Single Frequency Estimator

The overall computational cost of each this algorithm can be expressed as

CCSFE = Ci,CSFE +NCSFE Cr,CSFE, (I.1)

where Ci,CSFE, Cr,CSFE and NCSFE represent the cost of its initialization, that of each of its
iterations and the overall number of iterations, respectively. The general criteria adopted in
estimating the computational cost of both Ci,CSFE and Cr,CSFE are the same as those illustrated
in [90] and can be summarised as follows:

• 4d − 2 flops are required to compute the inner product uTc v of a d × 1 complex column
vector and a d× 1 real column vector;

• 6d+ 2(d− 1) flops are required to compute the inner product uTc vc of two d× 1 complex
vectors;

• d flops are required to find the maximum element of a vector v ∈ R1×d;

• 4d2 + 14d − 8 flops are required to compute an interpolation based on the elements of a
complex vector v ∈ C1×d;

The cost Ci,CSFE is evaluated as

Ci,CSFE ≜ CX0 + Cα̂ + CXk,α̂
+ C∆̂, (I.2)

where: a) CX0 = 8N0 log2N0 is the contribution due to the computation of the vector X0 (4.30);
b) Cα̂ = 4N0 is the contribution due to the computation of α̂ on the basis of eq. (4.55); c)
CXk,α̂

= 33N + 15 is the contribution due to computation of X̄k,α̂ on the basis of eq. (4.42); d)
C∆̂ = 29 is the contribution due to the computation of the coefficients of the quadratic equation
(4.47) and to the evaluation of its solution ∆̂. The cost Cr,CSFE, instead, is evaluated as

Cr,CSFE ≜ CX̄ + Cρ̂ + CÂ + CXk,ρ̂
+ C∆̂ (I.3)

where: a) CX̄ = 6N + 4 is the contribution due to the computation of X̄(F̂ ) on the basis of eq.
(4.27); b) Cρ̂ = 1 is due to the evaluation of ρ̂(i−1) on the basis of eq. (4.58); c) CÂ = 6N + 2 is
the contribution due to the evaluation of Â on the basis of eq. (4.33); d) CXk,ρ̂

= 33N + 15 is
the contribution due to the evaluation of the quantities {X̄k,ρ̂(i−1)} on the basis of eq. (4.42); e)
C∆̂ = 29 is the contribution due to the computation of the coefficients of the quadratic equation
(4.47) and to the evaluation of its solution ∆̂. An interpolation technique can be employed
to compute the quantities X̄(F̂ ) and {X̄k,ρ̂(i−1)}. In this case, CX̄ = 4I2 + 14I − 8 flops and
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CXk,ρ̂
= 3(4I2 +14I − 8) flops are needed for the computation of X̄(F̂ ) and X̄k,ρ̂(i−1) , respectively,

if a barycentric interpolation technique is used. Substituting the terms appearing in the RHSs of
eqs. (I.2) and (I.3) with their expressions and, then, the resulting expressions in the RHS of eq.
(I.1) gives

CCSFE = 4N0 + 8N0 log2N0 + 33N + 44

+NCSFE(39N + 49). (I.4)

From the last expression, eq. (4.101) can be easily inferred.

I.2 Single Frequency Estimator

The overall computational cost of each this algorithm can be expressed as

CSFE = Ci,SFE +NSFE Cr,SFE, (I.5)

where Ci,SFE, Cr,SFE and NSFE represent the cost of its initialization, that of each of its iterations
and the overall number of iterations, respectively. The general criteria adopted in estimating the
computational cost of both Ci,SFE and Cr,SFE are the same as those illustrated in the previous
section. The cost Ci,SFE is evaluated as

Ci,SFE ≜ CX0 + Cα̂ + CKp + CXk,α̂
+ C∆̂, (I.6)

where: a) CX0 = 8N0 log2N0 is the contribution due to the computation of the vector X0 (4.30);
b) Cα̂ = 4N0 is the contribution due to the computation of α̂ on the basis of eq. (4.78); c)
CKp = 6 log2N +151 is the contribution due to the evaluation of the quantities {K1 (2α̂), K2 (2α̂),
K3 (2α̂)} on the basis of eq. (4.76); d) CXk,α̂

= 14N + 10 is the contribution due to computation
of X̄k,α̂ on the basis of eq. (4.42); e) C∆̂ = 65 is the contribution due to the computation of the
coefficients of the quadratic equation (4.47) and to the evaluation of its solution ∆̂. The cost
Cr,SFE, instead, is evaluated as

Cr,SFE ≜ Cg + CX̄ + Cρ̂ + CĈ + CXk,ρ̂
+ CKp + C∆̂ (I.7)

where: a) Cg = 15 is the contribution due to the computation of g(F̂ ) on the basis of eq. (4.74);
b) CX̄ = 6N + 4 is the contribution due to the computation of X̄(F̂ ) on the basis of eq. (4.27); c)
Cρ̂ = 1 is due to the evaluation of ρ̂(i−1) on the basis of eq. (4.58); d) CĈ = 17 is the contribution
due to the evaluation of the complex amplitude Ĉ on the basis of eq. (4.73); e) CXk,ρ̂

= 14N + 10
is the contribution due to the evaluation of the quantities {X̄k,ρ̂(i−1)} on the basis of eq. (4.42);
f) the cost CKp = 6 log2N + 151 is the contribution due to the evaluation of the quantities
{Kp(2ρ̂

(i−1))} on the basis of eq. (4.76) g) C∆̂ = 65 is the contribution due to the computation
of the coefficients of the quadratic equation (4.47) and to the evaluation of its solution ∆̂. It
is worth mentioning that, as explained in Paragraph 4.3.2, an interpolation technique can be
used to compute the quantities X̄(F̂ ) and {X̄k,ρ̂(i−1)}. In this case, CX̄ = 4I2 + 14I − 8 flops
and CXk,ρ̂

= 3(4I2 + 14I − 8) flops are needed for the computation of X̄(F̂ ) and {X̄k,ρ̂(i−1)},
respectively, if a barycentric interpolation technique is used [61]. Substituting the terms appearing
in the RHSs of eqs. (I.6) and (I.7) with their expressions and, then, the resulting expressions in
the RHS of eq. (I.5) yields

CSFE = 4N0 + 14N + 8N0 log2N0 + 6 log2N + 226

+NSFE(20N + 6 log2N + 269). (I.8)

From the last expression, eq. (4.102) can be easily inferred.
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Computational complexity of the RASCA-FC3

In this Appendix, the computational complexity, in terms of flops, is assessed for the RASCA-FC3
developed in Paragraph 5.4. The overall computational cost of this algorithm can be expressed as

CFC3 = NVR CT1 +NAKT2 CT2 + LbKT2 CT3 + CTsc , (J.1)

where CT1 is the contribution due to the first task of the the RASCA-FC3, KT2 (KT3) represents
the overall number of iterations carried out by the STDREC (STDAEC) algorithm, CT2 (CT3)
is the contribution due to a single iteration of the STDREC (STDAEC) executed on a single
VA (on the whole virtual array for a given frequency bin) and CTsc is the contribution due to
the computation of the spatial coordinates of the overall image. The general criteria adopted in
estimating the computational costs appearing in the RHS of (J.1) are illustrated in [90] and can
be summarised as follows:

• 4d− 2 flops are required to compute the inner product uTc v of the d-dimensional complex
column vector uc and the d-dimensional real column vector v;

• 6d+ 2(d− 1) flops are required to compute the inner product uTc vc of the d-dimensional
complex vectors uc and vc;

• d flops are required to find the largest element of d-dimensional real vector v;

• 4d2 + 14d− 8 flops are required to compute an interpolation based on the elements of the
d-dimensional complex vector v.

• 8d log2(d) flops are required to compute the FFT of the d-dimensional complex vector v.

The expressions of the computational costs associated with each of the three tasks of the
RASCA-FC3 are illustrated below.

T1 - The cost CT1 can be expressed as

CT1 ≜ Cxk,ZP
+ CXk

, (J.2)

where: a) CxZP = 4N is the contribution due to the computation of the vectors {x(v)
k,ZP; k = 0, 1, 2}

(see (5.38)–(5.40)); b) CX = 24N0 log2N0 is the contribution due to the computation of the vectors
{X(v)

k ; k = 0, 1, 2} (see (5.42)).
T2 - The computational cost of this task is mainly due to its main algorithm, i.e., to the

STDREC algorithm. The cost CT2 can be expressed as

CT2 ≜ CCSFE + CCXk
+ CE , (J.3)

where: a) CCSFE = 4NCSFEI
2 is the cost originating from the CSFE1 employed in STDREC-S1; b)

CCXk
= 18N0 is the contribution due to the computation of the vectors (C(vk)

X0
[i],C

(vk)
X1

[i],C
(vk)
X2

[i])

1Note that, in this case, the cost of the CSFE does not account for the evaluation of three DFTs, since these have been
already evaluated in T1.
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(see (5.120)–(5.122)); c) CE = 8N0 − 2 is the contribution due to the computation of the residual
energy (see (5.49)).

T3 - The cost CT3 can be expressed as

CT3 ≜ CCSFEV
+ CX(VF) + CCSFEH

+ CXOF
+ CCSFEOF

+ CE , (J.4)

where: a) CCSFEV
= 8N̄0 log2(N̄0) + 4NCSFEI

2 is the cost originating from the CSFE employed in
STDAE-S1; b) CX(VF) = 6NVVNVH + 2NVV is the contribution due to the computation of the
vertically folded spectrum X

(VF)
i [l] (5.71) in STDAE-S2; c) CCSFEH

= 8N̄0 log2(N̄0) + 4NCSFEI
2

is the cost originating from the CSFE employed in STDAE-S3; d) CXOF
= 6NVVNVH +

18NVVNVHN0 is the contribution due to the computation of the overall folded spectrum
{Xm,OF[l];m = 0, 1, 2} (see (5.73) and (5.78)); e) CCSFEOF

= 4NCSFEI
2 is the cost due to

the CSFE2 in STDAE-S4; f) CE = 6NVVNVH is the contribution due to the computation of the
residual energy in STDAEC-S3 (see (5.58)).

Finally, the cost CTsc = 5L is required to generate the overall point cloud.
Based on the results illustrated above, (J.1) can be rewritten as

CFC3 =NVR(4N + 24N0 log2(N0))

+NT2(4NCSFEI
2 + 26N0 − 2)

+NT3(12NCSFEI
2 + 2NVV + 18NVHNVV

+ 18NVHNVVN0 + 16N̄0 log2(N̄0) + 5L, (J.5)

where NT2 ≜ NAKT2 and NT3 ≜ LbKT2 .

2Note that, in this case, the cost of the CSFE does not account for the evaluation of three DFTs, since these are made
available by overall folding.
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Six

Conclusions and Future Research Activities

In this chapter, some conclusions and suggestions for future research activities are illustrated.

Conclusions

In this dissertation, two lines of research have been presented. First, a FG approach has been
adopted to develop new solutions to the filtering and smoothing problems. First, this approach
has allowed us to provide a new perspective on the filtering problem for CLG SSMs; this has
led to a new interpretation of marginalized particle filter (MPF) as a forward only message
passing algorithm over a proper FG and to the derivation of a new filtering algorithm, called dual
MPF (DMPF). Then, it has been exploited to devise a family of filtering algorithms, collectively
dubbed multiple Bayesian filtering, that involve multiple interconnected Bayesian filters running
in parallel. An example of this family, based on the interconnection of an extended Kalman
filter with a particle filter, has been derived for CLG SSMs. Finally, the conceptual approach
proposed for filtering has been exploited to develop new smoothing algorithms based on the
interconnection of two Bayesian filters in the forward pass and of two backward information filters
in the backward pass. This has allowed us to derive a new approximate method for Bayesian
smoothing, called double Bayesian smoothing. All the obtained results have confirmed that FGs
represent a powerful tool to: a) describe and interpret known algorithms as message passing; b)
derive novel iterative algorithms in cases in which the graphical model underlying the considered
problem is not cycle-free. Simulation results obatined for specific SSMs have evidenced that the
developed filtering techniques perform closely to other well known filtering methods, but are
appreciably faster or offer a better tracking capability. As far as the new smoothers are concerned,
they have been compared, in terms of both accuracy and execution time, with other smoothing
algorithms for specific dynamic models; our simulation results have evidenced that the devised
algorithms can achieve a better complexity-accuracy tradeoff and a better tracking capability.

Secondly, novel methods for 2D and 3D radar imaging have been developed. These methods
rely on two new algorithms, dubbed single frequency estimator (SFE) and complex SFE (CSFE),
for detecting and estimating a single real or complex tone. Such methods can be exploited to
estimate multiple tones through a serial cancellation procedure. The accuracy and robustness of
the devised single tone and multiple tone estimators have been assessed by means of extensive
computer simulations. In particular, our numerical results have evidenced that these estimators
outperform all the other related estimators available in the technical literature in terms of
probability of convergence and accuracy, in the presence of multiple tones. The application of
these methods to a colocated MIMO FMCW radar system has led to the development of four novel
algorithms, dubbed range & angle serial cancellation algorithms (RASCAs), for the detection
and the estimation of multiple targets in colocated MIMO FMCW radar systems. All these
algorithms can be seen as instances of a general approach to target detection and estimation.
Our computer simulations, run on both synthetically generated data and measurements acquired
through commercial devices, have evidenced that the RASCAs are able to generate accurate 2D
and 3D radar images in the presence of multiple closely spaced targets.
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Future research activities

Future research activities in line with the work illustrated in this thesis include:

a) The application of multiple Bayesian filtering to multiple target tracking in MIMO radar
systems – Recently, factor graphs and the SPA have been exploited to solve the problem of
multi target tracking in the cases of both point targets and extended targets [1, 2]. Even
though the computational complexity of this methods is lower than that of other methods
appeared in the literature, it is still high. Multiple Bayesian filtering might represent a useful
tool to develop simpler filtering methods having a scalable and parallelizable structure.

b) The development of 2D and 3D radar imaging for dynamic propagation scenarios – The
algorithms for 2D and 3D radar imaging (namely, the RASCAs) have been developed under
the assumption of a static or slowly changing propagation scenario. The same conceptual
approach as that employed in the development of the SFE and the CSFE could be be
exploited to devise algorithms for the detection of multiple point targets, and the estimation
of both their spatial coordinates and radial velocity. Multi target tracking algorithms, in
turn, can leverage on speed information to improve their accuracy.

c) The development of 2D and 3D radar imaging for MIMO OFDM and OTFS radars – Re-
cently, substantial attention has been paid to the possibility of combining sensing and
communications in vehicular applications. In ref. [3], a joint radar parameter estimation
based on the orthogonal time frequency space (OTFS) modulation has been developed; the
numerical results shown in that manuscript lead to the conclusion that radars employing
that modulation format should achieve an estimation accuracy similar to that provided by
state-of-the art FMCW radars. Future efforts should be devoted to the development of novel
algorithms, based on the approach illustrated in the derivation of the SFE and the CSFE,
for the detection of multiple targets and the estimation of their parameters in OTFS-based
radar systems.
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