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Casadio; Dr. Roberta Maestro 
 

The world of Computational Biology and Bioinformatics presently integrates many different 

expertise, including computer science and electronic engineering. A major aim in Data Science 

is the development and tuning of specific computational approaches to interpret the complexity 

of Biology. Molecular biologists and medical doctors heavily rely on an interdisciplinary expert 

capable of understanding the biological background to apply algorithms for finding optimal 

solutions to their problems. With this problem-solving orientation, I was involved in two basic 

research fields: Cancer Genomics and Enzyme Proteomics.  

As to Cancer Genomics, I strictly collaborate with medical doctors and researchers, within the 

group of Dr. Roberta Maestro at the CRO Aviano National Cancer Institute. As to Functional 

Proteomics, I collaborate with the Biocomputing group of the University of Bologna (UNIBO) 

(tutor: Prof. Rita Casadio, www.biocomp.unibo.it). My financial support was indeed due to a 

framework-collaboration between CRO and UNIBO. 

For this reason, what I developed and implemented can be considered a general effort to help 

data analysis both in Cancer Genomics and in Enzyme Proteomics, focusing on enzymes which 

catalyse all the biochemical reactions in cells.  

Specifically, as to Cancer Genomics I contributed to the characterization of intratumoral 

immune microenvironment in gastrointestinal stromal tumours (GISTs) correlating immune 

cell population levels with tumour subtypes. I was involved in the setup of strategies for the 

evaluation and standardization of different approaches for fusion transcript detection in 

sarcomas that can be applied in routine diagnostic. This was part of a coordinated effort of the 

Sarcoma working group of ACC (Alleanza Contro il Cancro; 

https://www.alleanzacontroilcancro.it/en/). Finally, I developed an internal application to 

perform standardized bioinformatics analysis with a user-friendly interface for biologist 

(unpublished). This application is tailored to cope with an internal database of biosamples and 

data from NGS technologies that I created on purpose. 

As to Enzyme Proteomics, I generated a derived database collecting all the human proteins and 

enzymes which are known to be associated to genetic disease. I curated the data search in freely 

available databases such as PDB (https://www.rcsb.org/), UniProt (https://www.uniprot.org/), 



Humsavar (https://www.uniprot.org/docs/humsavar), Clinvar 

(https://www.ncbi.nlm.nih.gov/clinvar/) and I was responsible of searching, updating, and 

handling  the information content, and computing statistics .  I also developed a web server, 

BENZ, which allows researchers to annotate an enzyme sequence with the corresponding 

Enzyme Commission number (EC number), the important feature fully describing the catalysed 

reaction (see 2.1). More to this, I greatly contributed to the characterization of the enzyme-

genetic disease association, for a better classification of the metabolic genetic diseases. The 

papers I contributed and the work I presented to national and international meetings (see LAA) 

fully describe all the different approaches I developed and that I extensively describe in the 

Result section. 
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1) Data Science and Computation 
 

1.1) Big Data in Life Sciences 
In Life Science, Big Data deserve a special attention. The usual question is: Do we have Big 

Data in Life Sciences? (See for example: https://towardsdatascience.com/do-we-have-big-

data-in-life-sciences-c6c4e9f8645c). Indeed, the problem of data-driven sciences, as presently 

molecular biology and medicine, is to collect as much data as possible to cover all the different 

aspects of the many different phenomena under investigation. Often, the amount of data is still 

a bottleneck for reaching conclusions at a global level.  

Over the last two decades, digitization and datafication in biology have become prominent 

through sequencing and bioinformatics. While many scientific disciplines such as particle 

physics have been long producing Big Data, only recently research data in medical and biolog-

ical sciences achieved Big Data properties. Major events that led to the emergence of Big Data 

in life science include: 1) Technological revolution for data generation; 2) Development of 

dedicated tools for analysing data in Bioinformatics; 3) Conceptual changes in science practice 

towards open data [1].  

Regarding data volume and rate of generation, Genomics is the leader field in life sciences 

thanks to next-generation sequencing (NGS) technologies; however, other bioanalytical plat-

forms, such as mass spectrometry and imaging, are catching up, drastically increasing the quan-

tity and quality of protein and metabolite characterization and quantification [2]. The emer-

gence of high-throughput technologies promoted the development of dedicated workflows and 

bioinformatics tools tailored for Big Data analysis. Such tools and workflows are characterized 

by structured and scalable approaches, enabling researchers to study and integrate data from 

several heterogeneous sources. Nowadays, more and more publications use datasets from more 

than one life science areas such as genomics, proteomics, metabolomics, interactomics and 

other at organism- or cell-dimension data, overall defined multi-omics studies [3]. The ability 

to analyse and integrate data from multiple sources led to the need to share primary datasets 

and to the advent of open data and public repositories. This goal finally disclosed the true po-

tential of Big Data which holds the promises for new model generation and hidden pattern 

discovery, opening new frontiers for research in Life Sciences. 

Bioanalytical data management is a core element of the Big Data ecosystem. During the last 

years, many efforts have been spent to establish good management practices. Those efforts 
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stirred the concept of FAIR data as a prerequisite to perform continuous big data-driven re-

search. FAIR stands for Findable, Accessible, Interoperable, and Reusable data [4]. In Life 

Sciences, multiple data-hosting platforms exist, tailored to cope with Big Data (see for example 

ELIXIR, the European effort for sharing Data and analytical tools in Life Science, https://elixir-

europe.org/).   

Databases provide a centralized location for specific data types such as those obtained from 

experiments in different omics contexts. For example, the GDC Data Portal is a data-drive 

platform for querying and downloading high-quality cancer-related data, mainly from The Can-

cer Genome Atlas (TCGA) research program (https://www.cancer.gov/tcga). TCGA project is 

a joint effort between NCI and the National Human Genome Research Institute whose goal is 

the molecular characterization of different cancer types, providing an exhaustive dataset to the 

scientific community. Similarly, freely accessible samples can be collected from the Sequence 

Read Archive (SRA; https://www.ncbi.nlm.nih.gov/sra) [5]. The SRA is a public repository for 

high throughput sequencing data maintained by the International Nucleotide Sequence Data-

base Collaboration (INSDC) [6]. Records in the SRA are operated by the National Center for 

Biotechnology Information (NCBI) [7], the European Bioinformatics Institute (EBI) [8] and 

the DNA Data Bank of Japan (DDBJ) [9].  

In proteomics, many wide data collections exist. The UniProt KwoledgeBase 

(https://www.uniprot.org/) is the largest collection of protein sequences and it includes two 

distinct sections: a manually annotated and reviewed part called Swiss-Prot, and an automati-

cally annotated and unreviewed part called TrEMBL. In the current UniProt release (2021_03 

of 02 June 2021) Swiss-Prot contains 565,254 sequences from 14,085 different species while 

TrEMBL collects 219,174,961 chains from 1,255,356 organisms. Only 28.9% of the protein 

sequences contained in Swiss-Prot have got evidence at the protein or transcript level; this 

percentage drops to 0.70% when considering the TrEMBL section where most of the sequences 

are inferred from homology and predicted. Another database collecting more than thousands 

of records is KEGG (https://www.genome.jp/kegg/) [10]. KEGG allows the inspection of high-

level functions and interactions in biological systems of multiple species, from the cell per-

spective up to the organism level. The latest release (v.99.1) of August 2021, collects data for 

36,751,502 genes from 7,454 different organisms out of which 635 are eukaryotes, 6,466 bac-

teria and 353 archaea, respectively. Moreover, KEGG collects 11,605 different biochemical 

reactions (KEGG REACTION) from 3,175 reaction classes and 825,459 pathways (KEGG 
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PATHWAY), summarized by 547 reference pathways. Similarly, REACTOME collects infor-

mation from all the billions of biochemical reactions up to the complex protein interactions 

supporting physiology at a molecular level (https://reactome.org/).  

The data ecosystem here described allows integrative analysis that were not possible in the 

recent past. The decentralized and standardized data-sharing procedures developed in the last 

years paved the foundations for increasing our knowledge in many aspects of biological pro-

cesses for many different species, including homo sapiens and all the different pathologies 

affecting individuals. In Life Sciences, data science proved to be a key element to extract 

knowledge and insights from complicated and noisy sets of data. Multiple processes, methods 

and algorithms are nowadays available to cluster, filter, aggregate, manipulate and analyse the 

ever-growing amount of biological data. 

 

1.2) Artificial Intelligence, Machine Learning and Neural Networks in Bio-

informatics 
Both inside and outside the academic environment, Big Data are quite popular in numerous 

distinct fields. Similarly, technologies based on Artificial Intelligence (AI) are becoming more 

embedded in our daily lives and consequently, nowadays companies, as well as researchers, 

are more heavily relying on learning algorithms than ever. Solutions to problems are “learned” 

from examples: the higher is the number of examples, the better the algorithm will learn pos-

sible rules of association among input and output data, and it will help in inference problems 

with high reliability. The underlying technologies are based on different types of machine 

learning procedures, including the most recent deep learning [11]. 

We can think of machine learning implementations like Russian nesting dolls, where each ap-

proach is a component of the previous one. Indeed, machine learning is a subfield of artificial 

intelligence, and deep learning algorithms are built on top of neural networks which have been 

the main development in the field. Machine learning includes all the algorithms designed to 

optimize a performance criterion, such as the value of a fitness function or the accuracy of a 

predictive model, using training data and/or experience. It follows that machine learning ap-

proaches are characterized by optimization problems, finding optimal solutions in the space of 

multiple possible ones [12].  

Optimization algorithms are classified as exact and approximate. An exact method solves the 

problem to optimality [13], while an approximate method generates a candidate solution but 
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not necessarily the perfect one [14]. Approximate methods can be additionally divided in de-

terministic, stochastic, and heuristic approaches [15]. Well-established optimization methods 

include Tabu Search [16], Monte Carlo optimization [17], Genetic Algorithms [18], Greedy 

Algorithms [19], and simulated annealing [20]. Furthermore, computational problems tackled 

by machine learning approaches comprise classification problems, clustering problems and 

probabilistic graphical model generation.  

When coping with large collections of biosequences, many problems require classification and 

clustering to reduce the dimensionality of the data. 

In classification problems, elements belonging to a data set are classified according to a set of 

features and a set of classification rules. Widely used classifiers are Bayesian methods [21], 

logistic regression approaches [22], classification trees [23], discriminant analysis [24] and 

nearest neighbour approaches [25]. The most sophisticated tools to solve a classification prob-

lem are neural networks [26] and support vector machines [27].  

Clustering problems consist in partitioning a set of samples into subsets with defined differ-

ences between them. Clustering problems can be solved by different approaches including par-

tition clustering, hierarchical clustering, or mixture models. Partition clustering approaches fo-

cus on obtaining a partition of the dataset given a fixed number of expected clusters, although 

some methods automatically identify the most appropriate number of clusters. Vector quanti-

zation [28] and K-means algorithm [29] are two of the most popular clustering methods. Al-

ternatively, hierarchical methods tackle the clustering problem summarizing data structures as 

a nested set of partitions described by a dendrogram or tree diagram. The hierarchical data 

structures may be defined with an agglomerative (create clusters by merging records or groups 

of them) or divisive approach (create clusters by splitting groups of records of a higher order) 

[30]. Lastly, clustering problems can be solved also by the mixture methods in which each 

group of records is considered as described by a different probability distribution. Overall da-

taset probability distribution is then considered as the result of the superimposition of the single 

cluster distributions, and clustering is performed based on each sample likelihood being in a 

specific cluster [31].  

Machine learning approaches are adopted to deal with probabilistic graphical models, which 

support discovering structures in complex data distribution. Probabilistic graphical models de-

scribe the multivariate joint probability densities employing the product of terms involving a 

discrete number of variables [32]. Among probabilistic models, Hidden Markov Models are a 
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very famous paradigm in Bioinformatics, widely used for data analysis [33]. Probabilistic mod-

els also include Bayesian networks [34], characterized by discrete random variables, and 

Gaussian networks [35], determined by continuous variables, following a gaussian distribution. 

Machine learning methods are applied in several biological contexts to extract knowledge from 

the increasing amount of heterogeneous data. One of the most important domains is Genomics. 

Next-Generation Sequencing technologies (NGS technologies) raised exponentially the 

amount of data generated and deserving analysis. Machine learning tackled this urgency being 

able to address various problems such as the extraction of genes structure and location [36-37], 

the identification of regulatory elements [38] and non-coding RNA genes [39].  

While genes are comparable to vectors of information, proteins can be considered the labourers 

that convert that information into life.  In proteomics, computational methods based on machine 

learning are adopted to solve problems such as 3D protein structure prediction [40]. Recently 

a very complex architecture of deep neural networks, called AlphaFold (https://al-

phafold.ebi.ac.uk/) was able to partially solve the famous problem known as the “protein fold-

ing problem” (how a protein sequence can fold in the three-dimensional space of the solvent).  

Neural networks can also be adopted for predicting functional annotation [41]. Another field 

in which machine learning and biology cooperate is System Biology, whose aim is to model 

processes that take place in the cell. Such processes display an incredible level of complexity 

that requires computational approaches to describe all the biological networks [42]. Also, Evo-

lution and Phylogenetics took advantage of many computational approaches to uncover 

knowledge hidden in the differences among genomes belonging to related or unrelated species 

[43].  

Consequently, the application of computational methods to process the broad flow of data dras-

tically increased, as documented by the increase in the number of publications [44]. Text min-

ing was a side effect due to the necessity of extracting specific knowledge from a huge amount 

of valuable information [45]. 

In conclusion, new experimental technologies capable of producing large amounts of data 

raised the challenge of converting the volume of data into useful knowledge. In the biological 

context, machine learning approaches and, more specifically, neural network-based methods, 

tackled this problem setting themselves up as a trustworthy solution. 
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2) Specific problems in different omic contexts 
 

In the following, I will focus on two specific biological problems that had been the subjects of 

my thesis work, done at the CRO Aviano National Cancer Institute (https://www.cro.it/it), and 

within the Biocomputing Group of the Bologna University (www.biocomp.unibo.it), according 

to my study plan.  
 

2.1) Subtypes characterization of Soft Tissue Sarcomas 
Sarcomas represent a heterogeneous group of rare malignancies of mesenchymal nature. The 

overall incidence of sarcomas is five people per 100,000 per year and are therefore considered 

rare cancers (rare cancer definition: less than 6 cases per 100,000 per year). Sarcomas account 

for less than 1% of all adult malignancies and about 20% of paediatric cancers. In 2021, the 

American Cancer Society estimated more than 13,000 people in the United States diagnosed 

with sarcoma and more than 5,300 deaths due to this diagnosis. Incidence tends to vary accord-

ingly to age ranging from 15-20 cases per 100,000 per year in the age range 0-20, to 1-2 cases 

per 100,000 per year in the elderly population [1]. Sarcomas can occur at any anatomic location 

and are broadly classified as bone and soft-tissue sarcomas [2]. Sarcomas are aggressive neo-

plasms characterized by local destructive growth, recurrence and distant metastases that usually 

arise in lungs, liver, bones and brain. Lymph node metastases may be observed, although the 

hematogenous spread is far more common. Roughly, 30% to 50% of cases metastasize, 

whereas 20% to 30% of the cases show local recurrence. On average, the overall five years 

survival rate range between 55% and 65% regardless of stage and histology of the tumours [3]. 

According to the fifth edition of the World Health Organization (WHO) released in 2020, there 

are more than 100 different histologic subtypes of sarcomas. WHO classification merges all 

the major advances generated in the past 20 years and classifies different sarcoma entities based 

on histomorphology including all the available immunophenotypic and genetic data. WHO di-

vides soft tissue tumours into 11 different macro classes (Adipocytic tumours, Fibroblastic and 

myofibroblastic tumours, So-called fibrohistiocytic tumours, Vascular tumours, Pericytic tu-

mours, smooth muscle tumours, Skeletal muscle tumours, gastrointestinal stromal tumours, 

Chondro-osseous tumours, Peripheral nerve sheath tumours and Tumours of uncertain differ-

entiation) and bone tumours in 8 macro classes (Chondrogenic tumours, Osteogenic tumours, 
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Fibrogenic tumours, Vascular tumours of bone, Osteoclastic giant cell-rich tumours, Noto-

chordal tumours, Other mesenchymal tumours of bone and Haematopoietic neoplasms of bone) 

[4]. 

GIST represents one of the most common types of soft tissue sarcomas [5]. GIST is a distinctive 

mesenchymal neoplasm with variable behaviour but characterized by an absolute tropism for 

the gastrointestinal tract. They are thought to originate from the interstitial cells of Cajal. Be-

tween 50% and 60% of all GISTs arise in the stomach, some 30% of the cases occur in the 

small intestine, 5% of GISTs arise in the large intestine and about 1% occur in the oesophagus. 

Rarely, GISTs can occur also in the appendix. Extragastrointestinal GISTs exists too, and they 

occur predominantly in retroperitoneum, omentum and mesentery, although in most cases they 

represent metastasis from an unrecognized primary mass [6]. Population-based studies indicate 

an incidence of 1.1-1.5 cases per 100,000 person-year [7]. However, sub-centimetre GISTs 

(also called microGISTs) are far more common and are detected in over 20% of elderly indi-

viduals [8]. From the molecular point of view, GISTs represent a relatively homogeneous class 

of lesions characterized by constitutive activation of KIT or PDGFRA tyrosine receptors in 

over 80% of cases. This activation is caused by Gain of Function (GOF) mutations that affect 

specific protein domains. Around 70% of GISTs cases involve oncogenic mutations affecting 

exon 11 of the KIT gene while exon 9 is affected in less than 10% of the cases. Mutations in 

exons 8, 13 and 17 were observed but in a small subset of cases. Approximately 10% of GISTs 

harbour PDGFRA mutations mainly in exon 18 even if exons 12 and 14 were observed being 

involved in cancer onset too. Between 10% and 15% of GIST cases are wild type (WT) for 

both KIT and PDGFRA instead. These cases are a family of tumours characterized by distinc-

tive molecular pathogenesis and classified nowadays in 1) SDH-deficient GIST; 2) NF1-related 

GIST and 3) Others. Specifically, gastric WT-GISTs are mainly marked by alterations involv-

ing the succinate dehydrogenase (SDH) complex (about half of the cases). About one-

third/one-half WT-GISTs carry NF1 gene mutations that lead to the activation of the RAS 

pathway. Other WT-GISTs were reported to have mutations of BRAF or, more rarely, HRAS, 

NRAS or PIK3 [9]. Finally, the use of NGS approaches has allowed us to identify rare cases 

driven by oncogenic fusion proteins such as ETV6-NTRK3 gene fusion [10].  

WT-GISTs are currently orphans of effective therapies. Particularly for this kind of malignan-

cies, new therapeutic vulnerabilities can be disclosed thanks to molecular profiling approaches 

such as NGS mutations and transcriptional analysis, and data analysis with machine learning 

approaches. 
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2.2) Functional Analysis of Enzyme Biosequences 
Proteins are molecules that convert information contained in genomes to support all the reac-

tions necessary for cell life. Proteins that act as biological catalysts (also known as biocata-

lysts), regulating the rate at which biochemical reactions proceed in living organisms, are de-

fined enzymes [11]. The first usage of the term “enzyme” dates back to 1878 when the German 

physiologist Wilhelm Kühne described how yeast produces alcohol from sugars. The word 

‘enzyme’ derives from the Greek words en (meaning ‘within’) and zume (meaning ‘yeast’) 

[12]. The role of proteins as direct effectors of biochemical reactions or simple carriers of those 

effectors remained a matter of discussion until 1926 when James. B. Sumner successfully crys-

tallized urease, demonstrating that catalytic activity is associated with protein molecules [13-

14]. Hence, enzymes can catalyse the conversion of substrates into products.  

The catalytic potential of an enzyme can be expressed by a catalytic constant (kcat) also called 

turnover rate. This constant represents the numbers of substrate molecules that are converted 

to product per unit time. The speed at which an enzyme catalyses the conversion of substrates 

to products and the factors that affect it determines the enzyme kinetics. The kinetics of mon-

omeric enzymes is described by the Michaelis-Menten equation, modelling the speed of the 

reaction as a function of the substrate concentration [15]. Alternatively, the functional behav-

iour of multimeric enzymes, like hemoglobin, fits the Hill equation, which models a sigmoidal 

dependence of the reaction velocity as a function of the substrate concentration [16].  

Enzymes possess common names which refers to the substrate and the reaction, they catalyse. 

During the years, the discovery of new enzymes led to a growing complexity and inconsistency 

of the enzyme naming system. Starting from 1961, The International Union of Biochemistry 

and Molecular Biology (IUBMB; https://iubmb.org/) addressed this problem providing a sys-

tematic approach to the naming of enzymes and performing a simple but still effective data-

standardization. The nomenclature is based on a numerical classification of enzymes based on 

the reaction they catalyse. Enzymes are described by terms consisting of four digits separated 

by points, called Enzyme Commission (EC) numbers [17]. Each number represent a progres-

sively more detailed description of the reaction catalysed by the enzyme. This nomenclature 

distributes enzymes into seven functional classes: Oxidoreductases (EC 1), Transferases (EC 

2), Hydrolases (EC 3), Lyases (EC 4), Isomerases (EC 5), Ligases (EC 6) and Translocases 

(EC 7). The first number of the EC nomenclature defines the enzymatic class, and the fourth 

one describes the exact substrate of a catalysed reaction; intermediate numbers have a different 

meaning depending on the functional class. The oxidoreductases class includes those enzymes 
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that catalyse an oxidation and/or reduction reactions transferring hydrogen (H) atoms, oxygen 

(O) atoms or electrons (e-) from one molecule to another. The second figure in the code number 

indicates the group in the donor that undergoes oxidation (-CHOH- group; -CHO group; etc.) 

while the third number indicates the type of involved acceptor (NAD(P)+; cytochrome, etc.). 

Transferases includes enzymes that transfer a functional group between two molecules. In the 

classification schema, the second level of the EC number defines the group transferred (methyl-

; acyl-; amino- or phosphate group) while the third number provides further information about 

the group itself (i.e., EC 2.1.1 indicates methyltransferases and EC 2.1.2 indicates hydroxyme-

thyl-transferases).  

The third functional class includes enzymes that generate two products from a substrate by 

hydrolysis. The number in position two determines the nature of the hydrolysed bond (EC 3.1 

are esterases while EC 3.2 are glycosylases) and the number in position three specify the nature 

of the substrate (EC 3.1.1 are carboxylic esterases while EC 3.1.2 are thiolesterases). Carrying 

on, the lyases class includes enzymes that cleave bonds by elimination or by addition of groups 

to double bonds. The second figure in the EC code indicates the broken bond such as a carbon-

carbon bond (EC 4.1) or a carbon-oxygen bond (EC 4.2) while the third figure provides further 

information about the eliminated group (i.e., CO2 in EC 4.1.1 and H2O in EC 4.2.1).  

Isomerases (EC 5) are enzymes that cause intramolecular rearrangement like geometric or 

structural changes of the substrate organization. In this class, the second digit of the EC number 

indicates the type of isomerism (racemases, epimerases, cis-trans-isomerases, etc.) while the 

third one specifies the type of substrate.  

The sixth enzymatic class includes enzymes that join two molecules by synthesizing a new 

bond (ATP is a cofactor). The second number of the classification schema indicate the type of 

bond formed and the third provide further specificity about the bond (it is mainly used for the 

sub-class EC 6.3 (forming carbon-nitrogen bonds).  

The seventh class of translocases, recently introduced in 2018 [18], includes enzymes that cat-

alyse the movement of ions or molecules across membranes or their separation within them. 

Inside this class, the subclass defined by the second term designates the types of molecules or 

ion translocated by the enzyme while the third number provides information about the driving 

force for the translocation. 

One major problem in protein analysis is functional annotation: how to endow with functional 

and structural features a protein. If the protein is an enzyme, the problem is its classification 

into one of the seven enzymatic classes. This allows to determine the biochemical reaction it 

catalyses.  
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Protein structure and function are related, given that structure determines function. For en-

zymes, this concept is even more important, due to the relevance of the active and binding sites 

for catalysis. Each active site is unique in determining the specificity of the reaction and its 

architecture has been preserved through evolution [11]. 

In the past, before the advent of structural bioinformatics, protein structure was routinely de-

termined after the functional role of the molecule had already been elucidated. Therefore, struc-

ture was used as a molecular framework to explain functional properties of the protein. This 

approach led to the idea that predicting protein structure from sequence would almost provide 

automatically functional information [19]. Today, in the post genomic era, the annotation of 

protein sequences with functional and structural features is a fundamental task to close the gap 

among hundreds of millions of chains made available by NGS technologies and the much 

smaller number of proteins with an experimentally characterized biochemical function and 3D 

structure. Function predictors try to find relations between proteins that allow the transfer of 

functional information from one to another. Given this task, two important challenges arise: 1) 

defining the connection between the functional relatedness and the similarities detected and 2), 

set statistical thresholds for similarity levels. Several experiments demonstrated that function 

strictly relates to structure while, due to evolution, different sequences adopt the same structure 

in different organisms [20]. “Orthologous” proteins are indeed likely to have the same or a 

similar function in different species, while “paralogues” proteins, even though they can possi-

bly maintain a certain level of sequence similarity, may catalyse different biochemical reac-

tions. It is known that similarity between structures can be described as a monotonic function 

of their sequence similarity [21]. Moreover, from the observation of the space of proteins, we 

know that sequences of 250 residues or more, who share a sequence similarity of at least 30%, 

share structural similarities [22]. Hence, knowing that structure is more conserved than se-

quence in the evolutionary landscape, function predictions based on structural similarity are 

more reliable than those based on sequence comparison. Given this context, the scientific com-

munity developed, in recent years, different algorithms, tools and systems for protein function 

predictions taking advantage of advanced computer technologies. Available predictors in the 

field are based on detecting homologies among protein sequences [23-26] and protein struc-

tures [27-28], on recognizing similarities among protein-protein interaction (PPI) networks 

[29-30] and other features [31-32]. 
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3) Objectives and Main Results 
 

The world of Computational Biology and Bioinformatics presently integrates many different 

expertise, including computer science and electronic engineering. A major aim in Data Science 

is the development and tuning of specific computational approaches to interpret the complexity 

of Biology. Molecular biologists and medical doctors heavily rely on an interdisciplinary ex-

pert capable of understanding the biological background to apply algorithms for finding opti-

mal solutions to their problems. With this problem-solving orientation, I was involved in two 

basic research fields: Cancer Genomics and Enzyme Proteomics.  

As to Cancer Genomics, I strictly collaborated with medical doctors and researchers, within 

the group of Dr. Roberta Maestro at the CRO Aviano National Cancer Institute. As to Func-

tional Proteomics, I collaborated with the Biocomputing group of the University of Bologna 

(UNIBO) (tutor: Prof. Rita Casadio, www.biocomp.unibo.it). My financial support was indeed 

due to a framework-collaboration between CRO and UNIBO. 

For this reason, what I developed and implemented can be considered a general effort to help 

data analysis both in Cancer Genomics and in Enzyme Proteomics, focusing on enzymes which 

catalyse all the biochemical reactions in cells.  

Specifically, as to Cancer Genomics I contributed to the characterization of intratumoral im-

mune microenvironment in gastrointestinal stromal tumours (GISTs) correlating immune cell 

population levels with tumour subtypes. I was involved in the setup of strategies for the evalu-

ation and standardization of different approaches for fusion transcript detection in sarcomas 

that can be applied in routine diagnostic. This was part of a coordinated effort of the Sarcoma 

working group of ACC (Alleanza Contro il Cancro; https://www.alleanzacontroilcancro.it/en/). 

Finally, I developed an internal application to perform standardized bioinformatics analysis 

with a user-friendly interface for biologist (unpublished). This application is tailored to cope 

with an internal database of biosamples and data from NGS technologies that I created on pur-

pose. 

As to Enzyme Proteomics, I generated a derived database collecting all the human proteins and 

enzymes which are known to be associated to genetic disease. I curated the data search in freely 

available databases such as PDB (https://www.rcsb.org/), UniProt (https://www.uniprot.org/), 

Humsavar (https://www.uniprot.org/docs/humsavar), Clinvar 

(https://www.ncbi.nlm.nih.gov/clinvar/) and I was responsible of searching, updating, and han-

dling  the information content, and computing statistics .  I also developed a web server, BENZ, 
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which allows researchers to annotate an enzyme sequence with the corresponding Enzyme 

Commission number (EC number), the important feature fully describing the catalysed reaction 

(see 2.1). More to this, I greatly contributed to the characterization of the enzyme-genetic dis-

ease association, for a better classification of the metabolic genetic diseases. The papers I con-

tributed and the work I presented to national and international meetings (see LAA) fully de-

scribe all the different approaches I developed and that I extensively describe in the Result 

section. 
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4) Materials and Methods 
 

4.1) Genomic and Transcriptomic data 
a) In-house sarcoma samples were molecularly profiled by using Target-seq and RNA-

seq approaches as detailed in published articles (see Ref 1 and 3, LAA). Briefly, for 

target analysis samples were first profiled for KIT and PDGFRA mutations by Sanger 

sequencing. Sample scoring negative were further profiled by using a targeted NGS 

panel that covered the sequence of the following genes: KIT, PDGFRA, BRAF, NF1, 

SDH A-D, H/K/N RAS. For RNA-sequencing analysis, more than 60 million of reads 

per sample (paired-ends) were generated on Illumina HiSeq 1500 platform. Besides in 

house-sequenced samples collected from available biobanks, publicly available data 

from high throughput technologies were collected from different sources. Controlled 

access samples, namely those samples for which a special permission must be granted 

prior downloading, were retrieved from the National Cancer Institute (NCI) Genomic 

Data Commons (GDC) Data Portal (https://portal.gdc.cancer.gov/). Freely accessible 

samples were downloaded from the Sequence Read Archive (SRA; 

https://www.ncbi.nlm.nih.gov/sra) [1] and the European Nucleotide Archive (ENA; 

https://www.ebi.ac.uk/ena/browser/home). Human reference genome (build 38, patch 

13; GRCh38.p13; https://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.39) 

adopted for analysis was downloaded from the Ensembl database (https://www.en-

sembl.org/index.html) [2].  

b) Gene annotations were collected from the GENCODE consortium (v.33; 

https://www.gencodegenes.org/human/) [3] and from the GeneCards portal 

(https://www.genecards.org/) [4]. 

 

4.2) Proteomic Databases 
a) Protein sequences, functional annotations, and positions in the sequence of relevant 

sites (namely active sites, ligand binding sites and metal binding sites) were collected 

from the UniProt KnowledgeBase (https://www.uniprot.org/) [5], the largest collection 

of sequences from organisms in Life Science. BRENDA (https://www.brenda-en-

zymes.org/) and ENZYME (https://enzyme.expasy.org/) [6-7] were used as sources to 

further characterize the biochemical reactions catalysed by the enzymes collected from 

UniProt. Structural information of proteins, together with spatial coordinates of 3D 
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structures, were retrieved from the Protein Data Bank (PDB; https://www.rcsb.org/) 

[8]. Protein family models and conserved structural domains mapped along protein se-

quences were collected from the Protein Family (Pfam; http://pfam.xfam.org/) database 

[9], collecting HMM models of protein domains. Further, additional information for 

protein families were downloaded from the InterPro database 

(https://www.ebi.ac.uk/interpro/) [10].  

b) Sequence annotations of biological processes, molecular functions and metabolic path-

ways were collected from KEGG (https://www.genome.jp/kegg/) [11], REACTOME 

(https://reactome.org) [12] and Gene Ontology (GO) (http://geneontology.org/) [13]. 

Due to limitations in the download of the mapping between EC numbers and KEGG 

pathways, this information was collected by the means of web scraping techniques im-

plemented in python using the dedicated library BeautifoulSoup [14].  

c) Disease names associated to human enzymes were fetched from eDGAR (http://ed-

gar.biocomp.unibo.it/gene_disease_db/) [15] and further characterized with terms from 

the Online Mendelian Inheritance in Man (OMIM; https://www.omim.org) and the 

Mondo Disease Ontology (http://obofoundry.org/ontology/mondo.html) [16], with the 

EMBL-EBI Ontology Lookup Service (OLS; https://www.ebi.ac.uk/ols/index). Ge-

netic variations reported to associate enzymes to diseases were downloaded from 

Humsavar (https://www.uniprot.org/docs/humsavar), ClinVar 

(https://www.ncbi.nlm.nih.gov/clinvar/) [17], and curated DisGeNet (https://www.dis-

genet.org/) [18].  

d) Interatomic data, such as protein-protein interactions, genetic interactions and chemical 

interactions were fetched from IntAct (https://www.ebi.ac.uk/intact/) [19] and BioGrid 

(https://thebiogrid.org/) [20], major resources for interactomic data. 

 

4.3) Tools for Genomic and Transcriptomic Analysis 
a) RNA-sequencing data quality was assessed with FastQC v.0.11.8 [21] and its output 

was further organized by means of MultiQC v.1.7 [22]. Sample sequences were pre-

processed with Trimmomatic v.0.38 [23] and then aligned with the Spliced Transcripts 

Alignment to a Reference (STAR) software, v.2.7.0e [24]. Aligned sequences were 

merged and filtered using Samtools v.1.9 [25], and then visualized with the Integrative 

Genome Viewer (IGV) [26]. Gene expression levels were calculated by means of Cuf-

flinks v.2.2.1 [27], HTSeq v.0.13.5 [28] and Salmon v.1.4.0 [29]. Transcript counts 
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(detecting transcript concentrations), generated by Salmon, were reduced to the gene 

level by means of the tximport package [30] in R (https://www.r-project.org/), based 

on the GENCODE annotation v.33. Differential expression analysis over the generated 

gene counts were performed using the DeSEQ2 package v.3.3 [31] in R.  

b) Functional annotation upon identification of differentially expressed genes were exe-

cuted by means of Gene Set Enrichment Analysis [32] and Ingenuity Pathway Analysis 

(IPA; QIAGEN Inc., https://www.qiagenbioinformatics.com/products/ingenuity- path-

way-analysis). Abundance of tumour-infiltrating immune cells was computed by a Sin-

gle Sample Gene Set Enrichment Analysis (ssGSEA) [32] implement in R package gsva 

[33], given the prognostic signature for the tumour immune microenvironment from 

Şenbabaoğlu et al. [34]. The Immune Infiltration Score (IIS) was computed as the mean 

of the standardized values for all the immune cell types while the T-Cells Immune Score 

(TIS) was defined over a limited subset of cell types including: CD8 T, T helper, T, T 

central and effector memory, Th1, Th2, Th17, and Treg cells. Additionally, enrichment 

scores were also computed for Interferon gamma (IFN-γ) [35]. Immune cell populations 

presence was estimated by deconvolutional approaches [36] such as CIBERSORT [37] 

and MCP-counter [38]. Patient specific Human Leukocyte antigens (HLA) class I al-

leles were predicted by PHLAT v.1.0 [39]. Then, NetMHCpan v4.0 [40] was applied 

to predict the binding specificity of peptides, resulting from mutated oncogenes, on the 

patient-matched Major Histocompatibility Complex (MHC) of class I.  

c) Correlations between gene expression levels and immune population levels were cal-

culated by the means of the Spearman’s rank method [41] while differences among the 

groups of Gastrointestinal Stromal Tumours (GISTs) based on their immune context 

were assessed via a Mann-Whitney U rank-sum test [42]. Evaluation of potential sus-

ceptibility of GISTs to immunomodulatory-based treatments were also investigated 

computing the Immunophenoscore (IPS) [43] and the cytolitic score (CYT) [44] per 

sample. Principal Component analysis (PCA) [45] and unsupervised hierarchical clus-

tering [46] were used to evaluate differences between transcriptional profiles of sam-

ples.  

d) Fusion transcripts in samples were predicted by means of Arriba v.2.0.0 [47], Pizzly 

[48], which heavily relies on Kallisto v.0.46.1 [49], STAR-fusion v.1.9.1 [50] and Fu-

sionCatcher v.1.33 [51].  
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4.4) Tools for Proteomic Analysis 
a) Multiple sequence alignment (MSA) of clusters of proteins was performed by means 

of Clustal Omega v.1.2.4 [52].  

b) HMMER suite v.3.3.2 [53] was used to generate predictive Hidden Markov Models 

(HMMs) from the results of MSA. An intensive pairwise comparison of protein se-

quences was also computed with the Basic Local Alignment Searching Tool (BLAST) 

v.2.11.0 [54].  

c) To the aim of functionally characterize proteins starting from their sequence, multiple 

tools were applied such as ECPred [55], DEEPre [56] and EFICAz2.5 [57], for predict-

ing the EC number.   

d) ISPRED4 (Interaction Site PREDictions v.4) [58] was applied to predict putative inter-

action sites on protein surfaces while solvent accessibility was evaluated with the DSSP 

program (https://swift.cmbi.umcn.nl/gv/dssp/DSSP_3.html).   

e) INPS (Impact of non-synonymous variations on Protein Stability) [59] and its variant 

INPS-MD [60] were used to predict the thermodynamic free energy change of single 

point variations over solvent accessible residues. To explore the effect of variants on 

protein stability, a consensus method involving the computation of the Gibbs free en-

ergy change (ΔΔG) by means of three different tools was applied. Tools concurring in 

the consensus method were: INPS-MD [60], PopMuSiC2 [61] and FoldX [62]. Despite 

all these methods perform the same task, they adopt different approaches. In fact, INPS-

MD is based on a machine learning approach while FoldX is based on statistical poten-

tials and PopMuSiC2 on a combination of both approaches. For the consensus, we con-

sidered as destabilizing the variations for which at least two methods predicted a ΔΔG 

lower or equal to -1 kcal/mol. To assess differences of data distributions against back-

ground one, an FDR-corrected Chi-square test was applied. Furthermore, log-odds 

scores were calculated to easily compare and visualize these differences. The Mann-

Whitney U test [42] was used to test for differences between datasets. 

 

4.5) New tools developed for Genomic and Transcriptomic Analysis 
a) I organized the tools discussed above (4.3) in a user-friendly pipeline that wraps phase 

specific bash scripts (i.e., quality check phase, pre-processing phase, alignment phase, 

etc.) in a class data object structured in a python script. By means of the python library 

tkinter [63], I also developed a graphical user interface (GUI) for an easy interaction 
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with the pipeline. The pipeline automatically interacts with an internal database that 

collects in-house sequenced samples and results derived from data analysis.  

b) The internal database was developed combining scripts written in the JavaScript lan-

guage [64] and records stored in json [65] format due to technical limitations. After 

each run, the pipeline automatically updates the internal database with the newly gen-

erated results. The pipeline is designed to perform also variants calling by implement-

ing the Genome Analysis Toolkit (GATK) suite [66]. 

 

4.6) New tools developed for Proteomic Analysis 
a) In the proteomics context, I developed the Bologna ENZyme (BENZ) Web Server 

(https://benzdb.biocomp.unibo.it/; see Ref 4, LAA).  

b) First, enzymes were clustered starting from a graph building procedure standing out 

from Profiti et al. [67]. Starting from the entire UniProtKB, sequences from Swiss-Prot 

and TrEMBL were respectively compared by means of BLAST v.2.11.0 [68] to search 

for proteins pairs sharing a sequence identity (SI) greater or equal to 40% on an align-

ment coverage of at least 90%. A graph is built connecting pairs that fulfil both the 

coverage, and the identity constrains. Then clusters are defined isolating the connected 

component of the graph. From this background, only clusters containing sequences as-

sociated to complete EC numbers were retained.  

c) Then, for each cluster a representative model was generated after multiple sequence 

alignment. For technical reasons, cluster HMMs with a length higher than 5000 residues 

were discarded. Models of the clusters defined as described above (4.4) were then col-

lected into a single database-like structure using the HMMER suite tool hmmpress.  

d) Enzymes in clusters were further sub-clustered based on the biochemical reaction they 

catalyse (namely the annotated EC number/s) and of the architecture they display 

(namely the ordered set of Pfam domains mapped along the sequence). Thus, per cluster 

a reference protein was selected. Among proteins belonging to a cluster, reference se-

quence was selected based on the following criteria: 1) 3D structure available in PDB 

(mandatory for TrEMBL enzymes); 2) Highest annotation score in UniProt; 3) Com-

plete EC number and functional annotation; 4) Available Pfam architecture. In such 

way, clusters were linked to EC numbers via protein architectures resulting in clusters 

univocally associated to a reference sequence and clusters associated to two or more 
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reference sequences (respectively defined as “Gold Clusters” and “Blue Clusters” in 

BENZ).  

e) BENZ is built on top of a PostgreSQL v.12.8 (https://www.postgresql.org) database 

hosted on an in-house server located in Bologna. The functional prediction algorithm 

was implemented in python and the webserver is freely accessible to users thanks to a 

front end developed through the use of HTML, CSS and JavaScript languages. BENZ 

is optimized to work with common web browsers and its functionality was fully tested 

in Chrome 88.0, Firefox 83.0, Edge 88.0 and Safari 14.0. 
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5) Results and Discussions 

 
In the following section, the main results of my thesis work are discussed with reference to the 

main topics I dealt with: Cancer Genomics and Enzyme Proteomics. The section primary focus 

on the data that were object of scientific publications. The list of published papers is in LAA, 

and the papers are collected in the Appendix for references and further reading.  

 

5.1) Cancer Genomics 
5.1.1) Characterization of the immune microenvironment in GISTs  

The presence of immune infiltrate in tumours has recently been gained attention due to the 

efficacy demonstrated by therapies targeting immune checkpoint modules and effector [1]. The 

entity and type of immune infiltrate in GIST, and in wild type-GIST that are currently orphan 

of targeted therapies, was poorly defined. To shed light on this issue, as a Bioinformatician in 

the unit of Oncogenetics and Functional Oncogenomics at the “CRO Aviano”, I collaborated 

in the exploration of transcriptomic data to decipher the intra-tumoral immune infiltrate in 

GISTs (see Ref 3, LAA).  

To this end, 82 primary untreated gastrointestinal stromal tumours (GISTs) were retrieved from 

pathological files of collaboration centres (Table 5.1 from Ref 3, LAA).  

 

Table 5.1. GITS Cohorts 

 IHC cohort (38 cases) RNA-seq cohort (77 cases) 
 No. (%) No. (%) 
Sex   
   Male 18 (47%) 40 (52%) 
   Female 20 (53%) 37 (48%) 
Location   
   Stomach 18 (47%) 43 (56%) 
   Small Intestine 19 (50%) 34 (44%) 
   Esophagus 1 (3%) 0 
Type   
   miniGIST 3 (8%) 15 (19%) 
   GIST 35 (92%) 62 (81%) 
Mutations   
   KIT 26 (69%) 47 (61%) 
   PDGFRA  5 (13%) 15 (20%) 
   BRAF 3 (8%) 3 (4%) 
   NF1 4 (10%) 7 (9%) 
   Unknown 0 5 (6%) 

 

 

 

Detailed characterization of the analysed GIST cohorts (Ref 3, LAA). 
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Expert pathologists provided sample diagnosis based on tumour morphology. Samples were 

divided on the basis of size, mitotic index (MI: the ratio between the proportion of cells under-

going mitosis over the total number of cells) and driver mutations (KIT, PDGFRA, NF1, BRAF 

and unknown). 57 GISTs (diameter greater or equal than 2 cm and MI > than 5 mitoses in 5 

mm2) and 25 miniGISTs were profiled.  

DNA and RNA were extracted from the tumour biosamples that were selected on the basis of 

tumour cellularity (> 70%). Oncogenic driver mutations were identified by either Sanger se-

quencing or NGS targeted sequencing. Transcriptome analysis was performed on a subset of 

77 tumour samples; 47 KIT mutated, 15 PDGFRA mutated and the remaining 15 wild type for 

KIT and PDGFRA (3 BRAF mutated, 7 NF1 mutated and 5 whose driver mutation was un-

known). 

Functional annotation of the expressed genes was done to identify biological processed and 

molecular signature enriched in the different GIST subsets known to have clinical impact (in-

testinal vs gastric; overt vs mini GISTs, K/P-mutated vs wild type GISTs; KIT vs PDGFRA 

mutated GISTs in stomach and K-mutated vs K-wild type GISTs in intestine). Gene Set En-

richment Analysis (GSEA; see materials and methods par. 4.3 sect. b) and Ingenuity Pathway 

Analysis (IPA; see materials and methods par. 4.3 sect. b) revealed that immune system signa-

tures (Lymphocyte stimulation, IFN-γ-mediated signalling and T-cell selection) were signifi-

cantly enriched in K/P-mutated tumours with respect to K/P-wild type ones, a phenomenon 

particularly evident in the intestinal subset whether wild type GIST are more represented. Also, 

PDGFRA mutated GIST were more infiltrated compared to KIT mutated tumours of the same 

location (gastric tumours). Finally, overt GIST featured a greater degree of immune infiltration 

compared to the benign counterpart (miniGIST). To gain insights into the specific characteris-

tics of tumour immune microenvironment, single sample Gene Set Enrichment Analysis 

(ssGSEA; see materials and methods par. 4.3 sect. b) was employed to characterize immune 

cell infiltrate, specifically the representation of 24 immune cell populations as well as an overall 

estimate of immune infiltration (IIS and TIS, computed as detailed in par. 4.3 sect. b) were 

determined by using the method developed by Şenbabaoğlu et al [2] (detail in par. 4.3 sect. b). 

Mann-Whitney U test (see par. 4.3 sect. c) revealed that the distributions of IIS, TIS as well as 

a measure of immune T cell activation , i.e. the cytolitic score (CYT; geometric mean of two 

immune effector molecules: granzyme A and perforin) [3] were significantly different (p-value 

< 0.05) in the above mentioned GIST categories (K/P-mutated vs K/P-wild type, intestinal K-

mutated vs K-wild type and gastric K-mutated vs P-mutated). Particularly striking the differ-

ence between K/P-mutated and K/P-wild type GISTs (see Figure 5.1). 
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Figure 5.1. (A) Unsupervised clustering analysis of the whole GIST series (n = 77) based on ssGSEA scores of 

24 immune cell types. Hierarchical clustering identifies 3 major groups with different extent of immune infiltra-

tion. IIS, TIS, CYT, IFN-γ, and APM scores are reported as quartiles. (B) ssGSEA in intestinal (n = 34) and gastric 

(n = 43) sites analysed separately highlights the impact of driver gene and malignant potential in immune infiltra-

tion. Samples are ordered according to increasing IIS. UNK, driver mutation unknown; ssGSEA, single-sample 

gene set enrichment analysis; IIS, immune infiltration score; TIS, T cell infiltration score; CYT, cytolytic activity 

score; APM, antigen-presenting machinery (Ref 3, LAA) 
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These results were corroborated by in situ analysis. A subset of 38 samples, representative of 

the different categories, were immunostained with a set of immune-specific cell markers (CD3, 

CD4, CD8, CD20, CD68 and FOXp3). Also, IHC indicated that wild type GIST featured an 

immune cold phenotype and that in immune infiltrated tumours T-lymphocytes and macro-

phages were the most represented immune cell populations. The overrepresentation of these 

two cell types was indicated also by the interrogation of the transcriptome with a deconvolution 

approach (CIBERSORT, see par 4.3 sect. b)  

Overall, the consistency between IHC and in-silico analysis validates the results obtained from 

transcriptomics data and corroborates the hypothesis that tumour genotype, location, and ma-

lignant potential actively influence the tumour immune microenvironment.  

Knowing that a substantial level of immune infiltrate exists in GISTs [4], the positive correla-

tion of IIS with the Antigen Presenting Machinery (APM) enrichments scores and the cytolitic 

score (respectively, r = 0.63; r = 0.62; p-value < 1 x 10-6) implies that an antigen-specific im-

munity may exists in a relevant fraction of tumours.  

In the light of the observed effect of genotype on tumor immunophenotype, we sought to ad-

dress the theoretical neoantigenic capacity of epitopes generated by the mutated driver gene by 

using the NetMHCpan neoantigen prediction algorithm [5]. Although this analysis indicated 

that almost all mutations yielded at least one peptide capable of binding, with different 

strengths, a cognate HLA allele, no clear cur explanation of the immune cold phenotype of 

wild type GIST was obtained. 

To gain further insights into the mechanisms implicated in the poor GIST immunogenicity of 

this subset of tumors, we interrogated transcriptome data with signatures known to be involved 

in immune exclusion/suppression phenomena. The Hedgehog (HH) pathway [6] and WNT/β-

catenin signaling (WNT/β-cat) [7], known drivers of immune suppression, emerged as enriched 

in poorly infiltrated wild type GIST (see Figure 5.2, A and B).  

Intriguingly, both pathways appear to be positively regulated by the RAS/RAF/MAPK path-

way, which is activated in GIST, particularly in wild type GIST [8-10] and activation of the 

RAS pathway has also been associated with immune suppression [11-12]. Thus, RAS, HH, and 

WNT/ β-cat might cooperate to dampen the immunogenicity of K/P WT intestinal GISTs. 

Thus, although out study indicates that wild type GIST currently orphan or targeted therapies 

are per se unlikely to respond to immune-based therapies due to their low degree of immune 

infiltration, the identification of Hedgehog and WNT/β-catenin pathways as possible responsi-

ble for immune suppression discloses a potential therapeutic vulnerability, as the targeting of 
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these pathways might prove effective by both inhibiting pro-oncogenic signals and fostering 

antitumor immune responses. 

 

 

 

Figure 5.2. (A) GSEA analyses indicating the enrichment of HH and WNT/β-catenin signatures in immune cold 

GIST (low IIS), compared with immune hot GIST (high IIS) in the whole series (top) and in the intestinal subset 

(bottom). (B) Anticorrelation of IIS with HH and WNT/β-catenin activation scores in intestinal GIST. Color-

coded score values are displayed. Site, type, mitotic index, and driver gene are as per indicated color-coded labels. 

UNK, driver mutation unknown; GSEA, gene set enrichment analysis; HH, Hedgehog; IIS, immune infiltration 

score (Ref 3, LAA) 

 

 

 
5.1.2) Assessment of the reliability of NGS RNA-based approaches for the detection of 

fusion transcripts 

As second project that I have contributed to as a bioinformaticians, I dealt with the detection 

of fusion transcripts in sarcomas. About 1/3 of sarcomas carry chromosome rearrangements 

that result in the generation of fusion genes. The detection of these fusion genes and corre-

sponding fusion transcripts is often pathognomonic, i.e., they represent a distinctive feature of 

a specific tumour subtype and therefore are helpful in differential diagnosis. Traditionally, in 

routine molecular diagnostics, fusion events are detected by FISH at the genomic level or by 

RT-PCR at the transcriptional level. These approaches are useful but are considered reflex 

testing, in other word they are applied when a diagnostic hypothesis has been made and needs 
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to be verified. The advent of omics approaches such as NGS has disclosed the possibility of 

interrogation of a tumour transcriptome in an agnostic manner. Nevertheless, whole transcrip-

tome sequencing and fusion transcript detection is far too complex to be applied in a diagnostic 

setting. Several targeted RNA-seq assays have been developed to specifically tackle the issue 

of diagnostic fusion transcript. As the coordinator of the Italian Sarcoma working group of 

ACC (Alleanza Contro il Cancro; https://www.alleanzacontroilcancro.it/en/), the laboratory of 

Oncogenetics and Oncogenomics at the CRO in Aviano sought to compare 3 different com-

mercially available kits and dedicated bioinformatics tools for NGS-based fusion transcript 

detection and assess their sensitivity, specificity and applicability to the routine diagnostics.  

26 samples were tested with a hybrid capture-based panel (HC) (Illumina TS-Fusion). Nineteen 

of these samples plus an additional one constituted a dataset of 20 samples tested with an am-

plicon-based anchored multiplex PCR panel (Archer AMP-FPS). In addition, 9 samples were 

profiled with a more comprehensive HC panel (Illumina TS-PanCancer). TS-Fusion and TS-

PanCancer panels data were analysed with BaseSpace (https://basespace.illumina.com) while 

the AMP-FPS panel with the Archer Analysis Platform (https://analysis.archerdx.com) (see 

Figure 5.3). 

The result of this effort, which included the molecular profiling of over 100 sarcomas and is 

reported in the paper (see Ref. 1, LAA), allowed the identification of a combo kit/bioinformat-

ics tool with feature of sensitivity, specificity and easiness of use compatible with the use in 

the diagnostic setting. I specifically contributed to the re-evaluation of NGS data in those cases 

where, although molecular diagnostics with either RT-PCR or FISH indicated the presence of 

a fusion event, the tested combo kit/dedicated algorithm failed in fusion detection. To this end 

I analysed target RNA-seq raw data with 3 different algorithms used in the identification of 

fusion events in whole RNA-seq, namely Arriba [13], STAR-fusion [14] and Pizzly [15], tools 

reported to have high fusion detection rates. Except for one single case, for which no algorithm 

scored positive in the detection of fusion event involving a gene apparently rearranged accord-

ing to FISH, at least one fusion caller could detect a fusion transcript involving the gene sug-

gested by molecular diagnostics (FISH or RT-PCR), thus emphasizing the importance of soft-

ware sensitivity in data analysis. 

AMP-FPS panel stood out as the best one, given its detection capability, easy-of-use and re-

quired time for library preparation, even if it is less comprehensive that the others. This result 

was also achieved by more recent assessments of commercially available assays [16]. The 

AMP-FPS panel was further tested on 123 additional (see Table 2, Ref 1, LAA). Out of 81 
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cases whose genetic abnormality was pre-detected, AMP-FPS assay correctly detected the fu-

sion events in 71 of them. 

 

Figure 5.3. Representative graphical output of Archer Analysis (top) and Illumina BaseSpace RNA-Seq Align-

ment (bottom) tools. The detection of EWSR1-FLI1 fusion in an Ewing Sarcoma sample by both AMP-FPS and 

HC panels is shown (Ref 1, LAA) 

 

 

 

5.2) Enzyme Proteomics 
5.2.1) Characterizing disease-related enzymes 

Recent advancements in cell physiology support the notion that enzymes, performing their spe-

cific molecular functions in a concerted manner, catalyse all the different biological processes 

occurring in a cell [17]. Consequently, the most popular model of active enzymes in the cell 

context is a graph, where hubs are enzyme molecules and edges are all the possible interactions, 

documented in specific data bases such as STRING (https://string-db.org/), IntAct 

(https://www.ebi.ac.uk/intact/home) and BioGRID (https://thebiogrid.org/). Due to experi-

mental techniques interactomic data refer to static interpretation in the interacting network. The 

scientific community is debating whether enzymes transiently aggregate in the cell to generate 

the proper concerted actions [18]. As a member of the Bologna Biocomputing Group 

(http://www.biocomp.unibo.it), I collaborated in highlighting enzymes that are active in differ-

ent metabolic pathways and that, at the same time, stand out as hubs in protein-protein interac-

tion networks. We further linked these enzymes to diseases by characterizing their variants 
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with mutated residues, often associated to possible molecular mechanisms at the basis of their 

association with diseases (see Ref 5 and 6, LAA). 

In this context, the approach is first to download from database, available data, to analyse se-

quences/structures with available methods (basically developed and available as web servers 

at the Bologna Biocomputing group, http://www.biocomp.unibo.it/predictors.html) and com-

ment on what computation can infer for a possible behaviour of the molecule. I took care of 

data base selection, annotation, and tool applications for addressing different types of problems 

as described in the following. More recently I am implementing a data base of disease related 

enzymes which will be released soon. 

 

A) Human Enzymes Active in Different Metabolic Pathways and Diseases 

In this research we try to characterize the dimensionality of the networks of the human enzymes 

which are also disease related and define important features for their characterization. 

Information was derived from Swiss-Prot (release 04_2019) that contains 20,365 human pro-

teins out of which 3,428 are annotated with a complete EC number. We collect 770 human 

enzymes that are disease related and linked to at least one pathway in KEGG [19] for a total 

90 different KEGG pathways and 930 unique biochemical reactions represented by EC num-

bers. By associating catalysed reactions to pathways through human enzymes, we discovered 

that five EC number are linked to 11 KEGG pathways: 1) EC 1.2.1.3, Aldehyde dehydrogenase 

(NAD+); 2) EC 1.14.14.1, Unspecific monooxygenase; 3) EC 2.3.1.9, Acetyl-CoA C-acetyl-

transferase; 4) EC 2.6.1.1, Aspartate transaminase; 5) EC 4.2.1.17, Enoyl-CoA hydratase.  

In this scenario, 12 enzymes emerged as associated to 10 or more pathways in KEGG, repre-

senting four of the reactions more present in different pathways (EC 1.2.1.3; EC 2.3.1.9; EC 

2.6.1.1 and EC 4.2.1.17).  We explored their interactions and compared them with those of 

enzymes present only in one pathway. Consistently, we observed that enzymes participating in 

multiple pathways are endowed with a significant higher number of interactors (Mann-Whitney 

U test, p-value < 0.001) than those associated to only one pathway. 

As second and more important step was to test the capability of our predictor of protein-protein 

interactions (ISPRED4 [20]). An interesting finding is that our predictor of protein-protein in-

teractions can eventually predict several interaction sites on the proteins participating in inter-

action networks which well correlates with the number of associated pathways. Enzymatic pro-

teins linked to at least 10 KEGG pathways turned out to have a higher number of interaction 

sites if compared to the enzymes acting on only one pathway (Mann-Whitney U test, p-value 

< 0.05, Figure 5.4).  
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Figure 5.4. Statistical characterization of the number of interaction sites predicted with ISPRED4 in EC proteins 

associated with only one or at least 10 metabolic pathways. For each set, the boxes represent the first and third 

quartiles; yellow and black lines represent mean and median values, respectively. Significance of the reported 

difference on median values has been validated using the Mann–Whitney U test obtaining p-value = 0.04. 

# Number of. (Ref 2, LAA)  

 

 

 

Test cases  

We then focused on two highly connected enzymes to explore at the structural level protein-

protein interaction sites. Furthermore, we inspected proteins that carry disease related varia-

tions to determine first the location of these residues, and then to which extent a disease related 

variants being in an interacting site, may hamper protein-protein interaction. A second related 

property to the effect of variations is the putative effect on protein stability that we can compute 

with a suited predictor developed in house (INPS-MD, https://inpsmd.biocomp.unibo.it/wel-

come/default/index). We selected as a test case the human alpha-aminoadipic semialdehyde 

(AASA), also known as antiquitin (Gene: ALDH7A1, UniProt: P49419, PDB: 4ZUL). AASA 

is a multifunctional enzyme mediating important protective effects. The protein protects cells 

from oxidative stress by metabolizing lipid peroxidation-derived aldehydes (EC 1.2.1.3), and 

it is involved in lysine catabolism (EC 1.2.1.31). It also metabolizes betaine aldehyde to betaine 

(EC 1.2.1.8), an important cellular osmolyte and methyl donor. The protein is associated to 232 
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variations out of which 27% of them affect protein stability being in the interfaces of the bio-

logical assembly or in the protein area exposed to the solvent (see Figure 5.5). We predicted 

21 residues likely to act as interaction sites in the solvent exposed surface of the protein and 11 

are disease-related variations sites (4 of them associated with the AASA related disease pyri-

doxine-dependent epilepsy (PDE)) [21]. This suggests that the variations occurring on the pro-

tein surfaces may affect protein activity in multiple pathways where the enzyme is active by 

influencing interactions with other proteins but not altering the protein stability.  

Similarly, we explored the putative interaction sites on the protein surface and the annotated 

variations of the human Acetyl-CoA C-Acetyltransferase (Gene: ACAT2/ACAT1, UniProt: 

Q9BWD1/P24752, PDB: 1WL4/2IBY, localization: cytosolic/mitochondrial). Both the cyto-

solic and the mitochondrial enzymes are linked to the same disease (alpha-methylacetoacetic 

aciduria) that arise because of their deficiency. We found that, in the mitochondrial protein, 8 

variations match with putative interaction sites on protein surface. Moreover, 5 variations occur 

in a 33 residue-long mitochondrial target peptides suggesting that the disease may also be 

caused by an inefficient translocation of the protein to the mitochondria (see Figure 5.6). In the 

cytosolic protein, the only variations linked to alpha-methylacetoacetic aciduria (E176K) was 

observed on protein surface and we predicted it as a putative interaction site strengthening our 

conclusions about the relation of disease onset and restriction in the protein-protein interactions 

event due to specific variations (see Figure 5.7). 

  



42 
 

 

Figure 5.5. Monomeric subunit of human ALDH7A1 protein (PDB code: 4ZUL.A). Interaction surface in the 

tetramer as derived from the crystallographic coordinates is in orange. Interaction sites out the tetrameric interface, 

as predicted with ISPRED4, are in green. Positions in these regions carrying disease related variations are high-

lighted with small spheres. Big spheres highlight positions in the protein carrying disease related variations and 

promoting a large variance of folding free energy, as predicted with INPS. Grey colour: the background protein 

backbone (Ref 2, LAA) 

 

Figure 5.6. Monomeric subunit of human ACAT1 protein (PDB code: 2IBY.A). Interaction surface in the te-

tramer as derived from the crystallographic coordinates is in orange. Interaction sites out the tetrameric interface, 

as predicted with ISPRED4 are in green. Positions in these regions carrying disease related variations are high-

lighted with small spheres. Big spheres highlight positions in the protein carrying disease related variations and 

promoting a large variance of folding free energy, as predicted with INPS. Grey colour: the background protein 

backbone (Ref 2, LAA). 
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Figure 5.7. Monomeric subunit of human ACAT2 protein (PDB code: 1WL4.A). Interaction surface in the te-

tramer as derived from the crystallographic coordinates is in orange. Interaction sites out the tetrameric interface, 

as predicted with ISPRED4 are in green. Positions in these regions carrying disease related variations are high-

lighted with small spheres. Big spheres highlight positions in the protein carrying disease related variations and 

promoting a large variance of folding free energy, as predicted with INPS. Grey colour: the background protein 

backbone (Ref 2, LAA). 

 

 

B) The relations between disease-related variation types, maladies, and structural con-

served domains. 

An important yet poorly explored topic is the search for specific features of disease related 

variations, which would allow also possible functional annotations. One major problem is the 

association disease-variation which is gene dependent.  

To explore this context, we downloaded from Humsavar (https://www.uni-

prot.org/docs/humsavar) and ClinVar (https://www.ncbi.nlm.nih.gov/clinvar/), 75,145 varia-

tions, including 43,917 pathogenic ones, and carried by 3,605 unique genes. Pathogenic varia-

tions can be linked to 5,223 diseases represented by Mondo ID codes (https://mondo.monarchi-

nitiative.org/).  

We investigated the association gene-disease/s and we found out that Fibrillin, (Gene: FBN1, 

UniProt: P35555), GTPase KRas (Gene: KRAS, UniProt: P01116), the Cellular tumour antigen 

p53 (Gene: TP53, UniProt: P04637), Collagen alpha-1(II) chain (Gene: COL2A1, UniProt: 

P02458) and Prelamin-A/C (Gene: LMNA, UniProt: P02545) are associated to the highest 

number of diseases (at least 21). Then, we grouped variations into physicochemical classes, 
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corresponding to what we call the variation type. We converted the disease related variations 

into variation types (apolar (G, A, V, I, L, P, M); polar (S, T, C, N, Q, H); aromatic (F, W, Y); 

charged (D, E, K, R), giving rise to 16 possible variation types. 

We then compared the distribution of pathogenic variation types with that of benign ones. In 

line with previous studies from our group [22], we observed differences in the distribution of 

variation types, discovering that nonpolar into nonpolar, polar, and charged, and charged into 

polar ones, are the most abundant type among pathogenic variations (see Figure 5.8).  

 

 

Figure 5.8. Frequency of variation types of the Union variations. Blue bars: Likely Pathogenic/Pathogenic (LP/P) 

variations; Red bars: Likely Benign/Benign (LB/B) variations. Labels are as follows: a, nonpolar; r, aromatic; p, 

polar; and c, charged. (Ref 6, LAA) 

 

Disease related variation types are specifically and significantly linked to different Mondo cat-

egories. Making a step forward, we investigated how disease variation types map in protein 

structural domains as represented by Pfam and InterPro models. In Figure 5.9 we focus on the 

20 most represented Pfam domains in our dataset, covering 557 genes and 6,729 pathogenic 

variations. It appears that Pfam domains have distinctive variational patterns (for statistical 

validation Ref.5, LAA).  

Taking advantage of Pfam and IntePro mapping, we could establish a relation among domains 

containing disease related variation types and diseases, which for sake of simplicity, are 

grouped into anatomical system Mondo categories. Summing up, our results indicate that by 

mapping variation types into PFAM and InterPro gene domains, a link can be established 

among variations and diseases (see Figure 5.10). 



45 
 

 
Figure 5.9. Log-odd scores of variation types for the first 20 InterPro entries (out of 5,357, Table 2), sorted by 

number of genes covered and not including Pfam signatures. Log-odds are computed with respect to the whole 

dataset background of pathogenic variations. Numbers in parentheses report, for each InterPro, the number of 

genes, of single residue variations and of diseases, respectively (Ref 6, LAA) 
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Figure 5.10. Log-odd scores for disease categories associated to different Pfam domains. Log-odds are calculated 

with respect to the whole-dataset background of disease categories. For each Pfam the corresponding InterPro 

accession is indicated. Numbers in parentheses report the number of genes, of SRVs, the median number of SRVs 

per gene and the number of diseases. Mondo “Disease by Anatomical System” categories as follows: A-respiratory 

system disease, B-auditory system disease, C-immune system disease, D-digestive system disease, E-disease of 

the genitourinary system, F-hematologic disease, G- endocrine system disease, H-urinary system disease, I-integ-

umentary system disease, J- cardiovascular disease, K-musculoskeletal system disease, L-disease of the visual 

system, M- nervous system disorder, N-mediastinal disease. (Ref 6, LAA) 
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C) Human MTHFR deficiency. 

As an additional effort, we investigated the relationship between structural and functional fea-

ture of the human enzyme methylenetetrahydrofolate reductase (Gene:  MTHFR, UniProt: 

P42898) deficiency (see Ref. 6, LAA). We correctly predicted the interface region of the ho-

modimeric structure of MTHFR (PDB: 6FCX) with ISPRED4 (https://ispred4.biocomp.un-

ibo.it/welcome/default/index). Three residues belonging to the interface region are annotated 

as sites linked to MTHFR deficiency, suggesting that these variations may hamper protein-

protein interaction and promote the disease.  

The protein is endowed with two structural domains, one catalytic and one regulatory, respec-

tively. The two domains contain most of the disease related variations, in agreement with our 

previous observations (Figure 5.11). 

We calculated the Gibbs free energy change (ΔΔG; as described in par 4.4. section e) associated 

with all the disease related variations of the enzyme with INPS (https://inpsmd.biocomp.un-

ibo.it/welcome/default/index), and observed that 22 out of 42 disease related variations in the 

catalytic domain and 20 out of 30 variations in the regulatory domain of the protein appear to 

affect protein stability, suggesting that one of the major causes of disease can be protein insta-

bility promoted by the substitutions of the lateral side chains.  

 

 

 

 

Figure 5.11. The heatmap reporting the frequency of each variation type as observed within the catalytic and the 

regulatory domains. The background distribution has been computed considering 22,763 pathogenic variations 

from Humsavar in 2,513 proteins. In variation types, labels are as follows: a, apolar; c, charged; p, polar; and r, 

aromatic (Ref 5, LAA) 
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D) A curated Database of Disease-related Enzymes 

We are developing a database of human genetic disease-associated enzymes that will help in 

dissecting the complexity of the relationships among genes and diseases. The database includes 

1,230 human enzymes. Their pathogenic variations are derived from Humsavar and ClinVar 

and link 1,926 different diseases represented by Mondo IDs. Enzymes participate into one or 

more metabolic pathways, as modelled in Reactome (https://reactome.org/).  The project aims 

to establish to what extent the different Reactome pathways are affected by the different en-

zymes. Particularly interesting will be to explore the level of integration of the different path-

ways when enzymes are active in more than one biological process, in relation to the associated 

diseases. The aims to generate a database that will contain the results of the analysis. 

 

5.2.2) BENZ WS: The Bologna ENZyme Web Server 
I devoted my efforts in developing the Bologna ENZyme (BENZ) Web Server 

(https://benzdb.biocomp.unibo.it/; see Ref 4, LAA). BENZ closes the gap among the huge 

number of newly deposited protein sequences from massive application of NGS technologies, 

and the limited number of proteins whose biochemical function has been fully characterized.  

BENZ performs functional annotation taking advantage of a curated database of functional and 

structural protein information and of a sets of machine learning based predictive models (see 

Figure 5.12). The method is also described under Material and Methods (4.6), where the work-

flow is detailed.  

The latest BENZ release contains 16,593 reference sequences, out of which 2,023 are poly-

functional enzymes (https://benzdb.biocomp.unibo.it/statistics.html). 6,798 reference se-

quences have got a structure in the PDB and 618 of them are also polyfunctional. 891 different 

organisms are represented in the database (Archaea: 24; Bacteria: 261; Eukaryota: 391; Vi-

ruses: 213; Unknown: 2). BENZ can predict 5,136 different EC numbers distributed in the 

seven functional classes thanks to 12,612 HMM models out of which 10,547 are labelled as 

“Gold” and 2,065 as “Blue”. Reference sequences in BENZ represents 4,158 unique conserved 

structural domains from Pfam (http://pfam.xfam.org/) [23].  
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Figure 5.12. Graphical representation of BENZ WS infrastructure. When a target sequence enters the server, it is 

filtered by two different sets of predictive models (PFAMs and Cluster HMMs). When the target is retained with-

ing a given significance threshold and a set of conditions are met, it is endowed with four-level EC number/s (Ref 

4, LAA). 

 

A) BENZ Core Architecture 

BENZ comprises two sets of HMM predictive models. One set is derived from Pfam (v.33.1) 

while the second set was generated in-house as described in par 4.6 (Materials and Methods). 

Proteins from UniProt are first clustered connecting sequence pairs that share a sequence iden-

tity greater or equal to 40% on an alignment coverage of at least 90%. Protein clusters were 

defined isolating the connected components and only clusters containing proteins annotated 

with at least one EC number in UniProt were retained.  

Each cluster is represented by computing an HMM model. Enzymes in clusters were annotated 

with their EC number and their architecture, according to Pfam models. For each cluster refer-

ence proteins are identified provided that: 1) 3D structure is available in PDB (mandatory for 

TrEMBL enzymes); 2) the level of annotation score in UniProt; 3) Complete EC number and 

functional annotation; 4) Available Pfam architecture.  Clusters were then grouped into “Gold 

Clusters” when univocally associated to a reference sequence, and “Blue Clusters” when asso-

ciated to two or more reference sequences. Gold and Blue clusters were finally collected in a 

database-like structure of predictive models that constitute the core of BENZ together with the 

set of Pfam predictive HMM models (Figure 5.13).  
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Figure 5.13. Workflow of BENZ WS. For a query sequence, in FASTA format, the annotation procedure starts 

with HMM filtering. If the retaining HMM is plurivocally associated to different references sequences (blue star), 

a dendrogram is generated to find among the reference sequences the most similar one to the target. Otherwise 

(yellow star), the target is associated to the only reference. The EC number-query sequence association is then 

made after evaluating if the reference protein architecture (Ref Seq Arch) is contained (⊆) in that of the predicted 

target Pfam architecture (Query Pred Arch), focusing on Pfams carrying relevant sites. Pfams in our system are 

annotated, when possible, with the positions of the active site, ligand binding site and metal binding site (relevant 

sites). A sequence feature viewer allows the user to verify whether the query sequence conserves the residues 

relevant to the protein catalysis for validating the transfer of annotation from the reference sequence. Links to the 

reference sequence UniProt/SwissProt file, structure PDB file and Pfam entries, together with KEGG identifiers 

and pathways are also present in the output (see HELP, https://benzdb.biocomp.unibo.it/help). 
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B) BENZ at work 

When a sequence is pasted into the Web page, the user activates the system (Figure 5.14). 

In BENZ, the collection of predictive models is organized alongside the Pfam models from 

Pfam v.33.1 (http://pfam.xfam.org). When a user submits a query sequence to BENZ, it is fil-

tered by two different sets of models (Figure 5.13)  

The target sequence finds a matching reference template when retained with a given threshold 

(E-value ≤ 10−5) by one of the in-house generated HMM. At the same time, within the Pfam 

models, when retained with a given threshold (E-value ≤ 10−4), the submitted sequence gains 

its architecture. Inclusion thresholds were chosen after a self-consistency test.  

If the target is retained by a cluster HMM that is plurivocally associated to more than one 

reference sequence (Blue Cluster in Figure 5.13), BENZ runs Clustal Omega to find the most 

similar reference sequence, as depicted by the dendrogram generated by the multiple sequence 

alignment procedure (see Figure 5.13).  

The predicted Pfam architecture of the target sequence is compared to that of the reference. If 

the target Pfam architecture matches or includes that of the template the target protein is en-

dowed with the four-level EC number of the reference sequence. If not, the four-level EC num-

ber can be attributed based on the sharing of a common Pfam which contains relevant sites. 

(Ref 4, LAA). 

A typical BENZ output is shown in Figure 5.15. The target sequence is endowed with the four-

digit EC number when all the constraints are met. Furthermore, the user can retrieve the refer-

ence enzyme, its structure when available, the retaining HMM and the predicted target archi-

tecture. 
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Figure 5.14. BENZ WS homepage. Freely accessible at: https://benzdb.biocomp.unibo.it 

 

 

Figure 5.15. Web page screenshots from BENZ output page. BENZ returns a predicted four-level EC number 

and the predicted architecture of the submitted target sequence together with the reference sequence/s and their 

architecture/s. User may also inspect the retaining HMM together with the reference sequence. BENZ also allows 

to graphically inspect the predicted architecture and evaluate the conservation of relevant site/s annotated with the 

reference sequence.   
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C) Benchmarking BENZ 

The web-server performances were assessed against four different datasets: 1) a positive da-

taset containing complete Swiss-Prot sequences without a PDB counterpart and annotated with 

only four-level EC numbers; 2) a negative dataset including complete sequences from Swiss-

Prot with a PDB counterpart but without EC codes; 3) a dataset of polyfunctional enzymes 

comprising complete Swiss-Prot sequences annotated with at least two four-level EC numbers; 

4) a dataset of complete human TrEMBL sequences annotated with four-level EC numbers. 

BENZ revealed outstanding performances displaying an accuracy level over 90% for all the 

tested dataset and a false negative rate equal to 5.6% in the worst case (see Table 5.2). BENZ 

performances are scored with other tools: ECPred [24], EFICAz2.5 [25] and DEEPre [26]. The 

benchmark dataset included 366 enzyme sequences and 1,013 non-enzymes ones as negative 

examples, not included in BENZ. Its performance is quite satisfactory both in terms of false 

positive rate, equal to 3%, and true positive rate, around 75% when four level EC number is 

predicted (see Table 5.3).  

 

Table 5.2. BENZ benchmark 

Dataset Sequences (#) Acc^ (%) FNR§ (%) FPR° (%) 

Positive+ 197,880 92.4 3.9 - 

Negative £ 12,315 95.1 - 4.9 

Polyfunctional # 10,764 93.7 5.0 - 

TrEMBL-human $ 10,024 93.4 5.6 - 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+Positive: the positive set contains complete SwissProt sequences without any PDB counterpart and annotated 

with only four-level EC number. 

£Negative: the negative set comprises complete SwissProt sequence with a PDB counterpart, without EC 

codes.  

#Polyfunctional: the set includes complete SwissProt sequence that are annotated with two or more four-level 

EC numbers. 

$TrEMBL-human: the set contains complete TrEMBL sequences from Homo Sapiens annotated with a four-

level EC number. 

^ Acc (Accuracy) measures the number of proteins correctly assigned. For sets containing positive examples, 

it corresponds to the True Positive Rate as evaluated at the level of four- EC annotation. For the negative set, 

it corresponds to the True Negative Rate.  

§ FNR (False Negative Rate) measures the percentage of enzymes predicted as non-enzymes. 

° FPR (False Positive Rate) measures the percentage of non-enzymes predicted as enzymes. 
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Table 5.3. BENZ comparison with other tooles 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To promote BENZ at the last ISMB Virtual Conference (https://www.iscb.org/ismbeccb2021), 

I tested its performance against the Human Reference Proteome (HRP; Proteome ID: 

UP000005640; www.uniprot.org/proteomes/UP000005640). The HRP is based on Genome as-

sembly and annotation GCA_000001405.27 from Ensembl. The proteome presently contains 

77,027 protein sequences. After discharging sequences with residue length <50, we retained 

71,639 proteins out of which 20,302 belonging to Swiss-Prot and 51,337 to TrEMBL. Se-

quences are associated to different levels of EC number for a total of 7,446 enzymes present in 

the database, including 702 polyfunctional enzymes (see Table 5.4). 

 

 

 

 

n Data set TPR (%) 

1st level 

TPR (%) 

2nd level 

TPR (%) 

3rd level 

TPR (%) 

4th level 

FNR 

(%) 

FPR 

(%) 

BENZ WS +  full 87.5 87.5 87.5 85.0 12.2 3.0 

BENZ WS + reduced 79.2 79.2 79.2 75.1 20.2 3.0 

ECPred $  reduced 43.7 34.7 23.8 13.1 45.6 12.2 

DEEPre # reduced 38.8 35.2 27.9 20.8 51.1 2.4 

EFICAz2.5.1 & reduced 33.6 33.1 31.1 16.7 63.7 1.6 
 

The full dataset includes 607 proteins that have gained EC annotation (7 EC classes); the reduced dataset includes 

a subset of 366 enzyme sequences without EC codes of the seventh Both datasets comprise 1013 non-enzyme 

sequences as negative examples.  

+ A BENZ WS version including only sequences and annotations available in the SwissProt release 2019_11 

has been used for this test.  

$ ECPred has been downloaded from https://github.com/cansyl/ECPred and run in-house; it does not provide 

multiclass predictions and the best match between the output and the list of EC numbers has been considered for 

multiclass enzymes. It does not include enzymes of for EC class 7. 

# DEEPre predictions have been run on the webserver http://www.cbrc.kaust.edu.sa/DEEPre/ in modality “I’m 

not sure the sequence is an enzyme”; it does not provide multiclass predictions and the best match between the 

output and the list of EC numbers has been considered for multiclass enzymes. It does not include enzymes of 

the EC class 7.  

& EFICAz2.5.1 has been downloaded from https://sites.gatech.edu/cssb/eficaz2-5/ and run in-house; it does not 

include enzymes of EC class 7. 
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Table 5.4. The Benchmark Dataset. 

 

 

 

 

 

 

Of the 64,193 proteins included in the HRP without an annotated EC number, BENZ correctly 

predicts as non-enzyme 56,872 sequences, leading to 7,321 false positive predictions.  

To mitigate the rate of false positives I developed the following strategy. For each sequence 

which was wrongly annotated, I asked the question whether it is or not associated to a catalytic 

GO term, as derived from the UniProt file. If so, I retrieved an EC number with the EC2GO 

(www.ebi.ac.uk/GOA/EC2GO) mapping and compared it with the prediction. Matching turned 

the false positive into correct prediction.  When a GO catalytic term was not present, the target 

Pfam architecture was adopted to map to InterPro (https://www.ebi.ac.uk/interpro/), which al-

lows to retrieve the associated EC numbers. Even in this case, matching validates the predicted 

EC (see Figure 5.16). 

This external validation retrieved 5,741 proteins from the false positive predictions, increasing 

the number of enzymes in the data set. In the end, BENZ scores with 96.84% of accuracy with 

a false negative rate equal to 3.57% and a false positive rate of 2.69% (see Table 5.5).  

BENZ annotates four level EC numbers, but it can also reliably annotate polyfunctional en-

zymes and completes annotations of partial EC numbers. BENZ can also be applied to success-

fully annotated sequences as enzymes, increasing the number of enzymes in the human refer-

ence proteome. 

 

 

  

 Sequences w/ EC 4th w/ EC 3rd w/ EC 2nd w/ EC 1st w/o EC 
Swiss-Prot 20,302 3,498 (579)* 727 (14) 123 (0) 59 (2) 15,895 
TrEMBL 51,337 2,680 (106) 292 (1) 38 (0) 29 (0) 48,298 
TOTAL 71,639 6,178 (685) 1,019 (15) 161 (0) 88 (2) 64,193 

 

w/: with EC (Enzyme Commission number); w/o: without EC. 

EC 4th, EC 3rd, EC 2nd, EC 1st: four, three, two and one level/s of EC  

(www.qmul.ac.uk/sbcs/iubmb/enzyme/rules.html). 

*Among brackets, the number of sequences endowed with more than one EC number (polyfunctional en-

zymes). 
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Figure 5.16. Graphical representation of the validating criteria for the re-evaluation of False Positive Predictions. 

 

 

 Table 5.5. BENZ overall performances 

 

  

 Sequences Rate 

Correct Predictions 69,380 (Sw: 19531; Tr: 49677) 96.84 % 

Wrong Predictions 205 (Sw: 150; Tr: 55) 2.06 % 

Unpredicted (False Negative) 474 (Sw: 317; Tr: 157) 3.57 % 

False Positive 1,580 (Sw: 304; Tr: 1276) 2.69 % 

TOTAL 71,639 (Sw: 20302; Tr: 51337)  
 

BENZ overall performances against the Human Reference Proteome (HRP; Proteome ID: UP000005640; www.uni-

prot.org/proteomes/UP000005640) 
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D) The WEB Server 

Query sequences submitted to BENZ are processed asynchronously thanks to an internal queu-

ing service based on Sun Grid Engine [27]. The tool hmmscan from HMMER v.3.3.2 is used 

to align submitted sequences against predictive models and Pfam model and the user is pro-

vided with a temporary link that keeps track of the job progression and auto update every 30 

seconds. On average, a job in BENZ takes within 1 minute but for sequences with a length 

greater than 3000 residues longer times may be required. BENZ returns to the users the pre-

dicted architecture for the submitted sequence and the EC annotation derived from the best 

matched reference sequence. In the output page, detailed information about the matched mod-

els and the predicted architectures can be found in the “Data” section. Tabular data are repre-

sented taking advantage of the library DataTables (https://datatables.net) while links are re-

solved with the Identifiers.org [28] services to improve interoperability. When the best retain-

ing model is associated to more than one reference sequence, a dendrogram in Newick format 

is computed by the means of Clustal Omega and visualized with the Bio.Phylo module of Bi-

opython [29]. Predicted architecture of the submitted sequences and the conservation of rele-

vant site are displayed thanks to the Pviz.js library [30]. The web server is freely accessible 

without registration at https://benzdb.biocomp.unibo.it (see Figure 5.14). 
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6) Conclusions and Perspectives 

 

In my thesis, I present results from different research projects. My PhD fellowship was granted 

by a joint effort between the University of Bologna and the Oncology Reference  Center “CRO 

di Aviano”. During my PhD career I had the chance to greatly improve my knowledge and 

expertises in two research areas: Cancer Genomics and Enzyme Proteomics.  

Currently, I’m the reference Bioinformatician of the department of Functional Oncogenetics 

and Oncogenomics at the Oncology Reference Center “CRO di Aviano” IRCCS. In the cancer 

genomics context, my efforts focused on understanding differences in the immune microenvi-

ronment of different types of GISTs and on assessing the ability to reliably detect fusion tran-

scripts events of three commercially available assays.  

As detailed in paragraph 5.1, we highlighted significant differences in the immune population 

levels of GISTs stratified accordingly to their oncogenic driver mutations. It was also demon-

strated that poorly infiltrated tumours can be associated with antigen-specific immunity and 

oncogenes expression levels. Our results open new possibilities for patient specific immuno-

therapies in the field of personalized medicine. Many aspects of tumours onset and progression 

must still be investigated, especially for rare malignancies such as sarcomas. To this aim, we 

are currently expanding our in-House cohort of GISTs with some 100 new cases looking for 

rare and poorly characterized GIST phenotypes to increase the knowledge of this type of ma-

lignancies. Together with the ACC Sarcoma working group, I demonstrated that the Anchored 

Multiplex PCR panel FusionPlex Sarcoma (AMP-FPS) from ArcherDX 

(https://archerdx.com/) is the most suited for routinely diagnostic analysis requiring the detec-

tion of fusion events. I believe that the ACC consortium goal of transferring the technological 

innovation to clinical practice is fundamental to enable better and more sustainable care for 

cancer patients. 

As previously stated, I also did research in the field of Enzyme proteomics. My research activ-

ities mainly focused on two connected topics: protein enzyme function prediction starting from 

sequences and the characterization of the enzyme-genetic disease association. 

Inspecting the complex relation between enzymes and genetic diseases, we demonstrated that 

enzymes participating in multiple metabolic pathways are also hubs of the protein-protein in-

teraction network. Results detailed in paragraph 5.2.1 highlight that genetic variations of hub 

proteins that occur in the solvent exposed surface of the protein are likely to affect enzyme 
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activity by influencing the ability to interact with other proteins and that this feature not nec-

essarily affect thermodynamic stability.   

One important step forward in the research area is that we established a statistically validated 

association between location of pathogenic variation types and structural Pfam and Interpro 

domains. It will be further exploited how this mapping can lead us to dissect the complexity of 

the relationship among disease related enzymes and Reactome pathways.  

What is available online thanks to my efforts in collaboration with the Bologna Biocomputing 

group (http://www.biocomp.unibo.it) is BENZ WS The Bologna ENZyme Web Server (freely 

accessible at: https://benzdb.biocomp.unibo.it/).  BENZ is first predictor of four-digit EC num-

bers, which for a given enzyme sequence, fully characterize its function. Noticeably, BENZ 

can predict polyfunctional enzymes and EC numbers belonging to the recently introduced func-

tional class of translocases (7th class). My plans are to keep BENZ updated with respect to 

UniProt releases and refine the system to increase its accuracy. Additionally, I am planning to 

add disease-related information to BENZ reference sequences. The aim is to provide insights 

when the submitted target proteins are variants, not conserving important catalytic residues. 

Currently, I am also testing a new set of predictive criteria that will further improve the predic-

tive power of BENZ. Overall, my work is presently described in six publications, and it has 

been presented in three international and national conferences (see LAA).  
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This work describes the set-up of a shared platform among the laboratories of the

Alleanza Contro il Cancro (ACC) Italian Research Network for the identification of

fusion transcripts in sarcomas by using Next Generation Sequencing (NGS). Different

NGS approaches, including anchored multiplex PCR and hybrid capture-based panels,

were employed to profile a large set of sarcomas of different histotypes. The analysis

confirmed the reliability of NGS RNA-based approaches in detecting sarcoma-specific

rearrangements. Overall, the anchored multiplex PCR assay proved to be a fast and

easy-to-analyze approach for routine diagnostics laboratories.

Keywords: sarcoma, molecular diagnosis, fusion transcripts, NGS, anchoredmultiplex PCR, hybrid capture-based
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INTRODUCTION

The term “sarcoma” identifies a heterogeneous group of rare tumors comprising over 60
different histologic variants (1). Due to their rarity and heterogeneity, the accuracy of sarcoma
diagnosis remains challenging. In the diagnosis of sarcomas, tumor cell morphology (shape,
pattern of growth, microenvironment contexture) and the expression of differentiation markers
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represent the most important factors, but molecular
investigations are increasingly employed to complement these
pathological assessments. Indeed, the identification of histotype-
specific (pathognomonic) gene alterations is of paramount
importance in the differential diagnosis among sarcoma variants,
between malignant and benign mimics, as well as between
sarcoma and other tumor types (1–3). In particular, about one
third of all sarcomas presents pathognomonic chromosome
rearrangements (translocations, deletions, insertions) that
result in fusion genes and corresponding expression of fusion
transcripts (4). Beside diagnostic relevance, the expression
of fusion transcripts may have prognostic and/or predictive
implications. For example, certain rearrangements, such as
those involving ALK in inflammatory myofibroblastic tumors
or COL1A1-PDGFB in dermatofibrosarcoma protuberans, are
predictive of the response to tyrosine kinase inhibitors (5, 6).
Moreover, the detection of NTRK fusions in a broad range of
malignancies, including sarcomas, has gaining much attention
due to the recent demonstration of therapeutic efficacy of a
new class of tyrosine kinase inhibitors in NTRK rearranged
tumors (7–9).

Commonly, FISH or RT-PCR are used to detect fusion
events at the genomic or transcriptional level, respectively.
However, both methods present limitations. In particular, since
they are suited to investigate a specific pre-defined abnormality,
they inevitably rely on a prior diagnostic hypothesis (reflex
testing). The advent of technologies such as next generation
sequencing (NGS), aka massive parallel sequencing, has laid
down the bases to overcome this limitation. By allowing the
simultaneous analysis of a large set of targets (from few genes
to the whole transcriptome/genome) NGS has disclosed the
possibility not only to reveal diagnostic/prognostic/predictive
genetic abnormalities in the absence of a prior hypothesis but also
to identify new aberrations (10–12).

Here we wanted to assess feasibility, reliability, and
applicability of NGS-based methods for the detection of
sarcoma-associated fusion transcripts in a routine diagnostic
setting. Our multicentric analysis confirms the sensitivity of
anchored-based NGS profiling approaches and corroborates
the suitability of these investigations in the diagnostic setting
of sarcomas.

MATERIALS AND METHODS

Case Selection
The study was conducted on a series of 150 sarcoma
samples, representative of different sarcoma histotypes, retrieved
from the pathological files of the participating institutions
(Alleanza Contro il Cancro, ACC, Italian Research Network).
Either Formalin-Fixed Paraffin-Embedded (FFPE) or frozen
samples were analyzed. All sarcomas included in the study

Abbreviations: NGS, next generation sequencing; FFPE, Formalin-Fixed
Paraffin-Embedded; FISH, fluorescence in situ hybridization; RT-PCR, reverse
transcriptase-PCR; RT-qPCR, reverse transcriptase-quantitative PCR; IHC,
immunohistochemistry; HC, hybrid capture-based panel; AMP-FPS, Anchored
Multiplex PCR FusionPlex Sarcoma panel; TS-Fusion, TruSight RNA Fusion
panel; TS-PanCancer, TruSight RNA PanCancer panel

were histopathologically re-evaluated on hematoxylin-eosin
stained slides, and representative areas were selected for
molecular analyses.

NGS-based Fusion Transcript Identification
RNA was extracted from 5 to 10 µm-FFPE tissue sections using
the Qiagen miRNeasy FFPE kit (Qiagen, Valencia, CA, USA)
or the Invitrogen RecoverAll Total Nucleic Acid Isolation kit
(Thermo Fisher Scientific, Waltham, MA, USA). For frozen
samples the TRIzol reagent (Life Technologies Italia, Monza,
Italy) followed by the RNeasy MinElute cleanup (Qiagen,
Valencia, CA, USA) was used. Total RNA was quantified by
using a Qubit fluorometer (Thermo Fisher Scientific, Waltham,
MA, USA). Quality was checked with the RNA 6000 Nano
Kit on a 2100 Bioanalyzer (Agilent Technologies, Santa Clara,
CA, USA), or by using the Archer PreSeqTM RNA QC qPCR
Assay (ArcherDX, Boulder, CO, USA) and a threshold of DV200

>30 or PreSeq Cq <31 was used to identify high quality
RNA, respectively.

FISH, RT-PCR, RT-qPCR, and IHC, used as primary detection
approaches for the detection of possible fusion events, were
performed during routine diagnostic procedures according to
laboratory standard guidelines and validated reagents.

Three different commercially available NGS-based fusion
panels were selected based on their capacity to cover most
genes known to be involved in sarcoma-relevant fusions:
an anchored multiplex PCR-based assay, namely the Archer
FusionPlex Sarcoma kit (AMP-FPS)(ArcherDX, Boulder, CO,
USA), covering 26 genes involved in sarcoma-associated fusions;
two hybrid capture-based (HC) assays, namely the TruSight
RNA Fusion Panel (TS-Fusion) (Illumina Inc., San Diego, CA,
USA) and the TruSight RNA PanCancer Panel (TS-PanCancer)
(Illumina Inc., San Diego, CA, USA) covering 507 and 1,385
genes commonly involved in cancer, respectively. Both HC assays
included the 26 genes covered by the AMP-FPS kit. In a subset
of samples, a customized version of the AMP-FPS panel was
used to detect PAX3 fusion transcripts. Specifically, the assay
was integrated with PAX3-specific primers (exons 6, 7 and 8)
designed by using the Archer Assay Designer tool (ArcherDX,
Boulder, CO, USA).

Libraries for all three panels were prepared and checked for
quality according to the manufacturer’s instructions, starting
from 100 to 250 ng of RNA as input.

AMP-FPS libraries were run on either Illumina (MiSeq or
NextSeq 500 Illumina Inc., San Diego, CA, USA) or Thermo (Ion
S5 Thermo Fisher Scientific, Waltham, MA, USA) sequencing
platforms, according to the manufacturer’s instructions. HC-
based libraries were sequenced on Illumina MiSeq instruments.
Illumina TS-Fusion and TS-PanCancer sequencing data were
analyzed by using the dedicated Illumina BaseSpace RNA-Seq
Alignment tool (v.s.2.0.2), which relies on STAR and Manta
algorithms (13, 14). PAR-masked/(RefSeq)hg19 was used as
reference genome. A minimum of 3 million reads was obtained
per sample (range 3007307–6284475). The mean percentage of
reads aligned to the human genome was 98.9% (range 96.4–
99.7%); the mean proportion of reads aligned to ribosomal RNA
was below 2% (range 0.2–6.1%) and mean insert size was 134 bp
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(range 107–155 bp), in line with literature data (15). Only high-
confidence fusions that passed default thresholds of the RNA-Seq
Alignment tool (PASS) were recorded.

The Archer Analysis suite (v 5.1 or v 6.0) was exploited for
the analysis of AMP-FPS panel results, using default settings.
Default parameters (QC PASS) that, according to the Archer
user manual, allow to achieve up to 95% of sensitivity in fusion
detection, were employed to assess data quality. Samples included
in the study met the quality cutoffs set by the Archer Analysis
platform but in a few cases that, although not fulfilling all default
criteria, nevertheless yielded high confidence fusion calls (cases
#9, 31, 37, 47, 57, 60, 80, 126). Fusions were recorded as “high
confidence calls”(strong = true in output table) if they passed
all “strong evidence” default filters as described in the Archer
analysis user manual (briefly: breakpoint spanning reads that
support the candidate ≥ 5; “fusion_percent_of_GSP2_reads”,
i.e., proportion of breakpoint spanning reads that support the
candidate relative to the total number of reads spanning the
breakpoint ≥10%; “min_unique_start_sites_for_strong_fusion”
≥3; fusion recorded in the Quiver database or not fulfilling the
“negative evidence criteria”).

Of 48 cases (12 of the first set and 36 of the second set)
where a fusion was detected by NGS but the partner genes
had not been previously determined by the primary detection
method, material was available for orthogonal validations (RT-
PCR) in 39 cases, confirming NGS results. The involvement
of SSX4 (SS18-SSX4), called sometime by the AMP-FPS assay
in synovial sarcoma samples, was checked by nested RT-PCR
(primers: Fw-SS18 GGACCACCACAGCCACCCCA, Rev-SSX
ATGTTTCCCCCTTTTGGGTC; Rev-SSX4 GTCTTGTTAATC
TTCTCCAAGG) and Sanger sequencing on a single index case.

For second level bioinformatic analyses of HC library raw
data, Arriba, STAR-Fusion and Pizzly (16–18), administered
through a command line interface, were employed for fusion
calling using default settings.

RESULTS

NGS-based Identification of Fusion
Transcripts: Panel Comparison
As a first step toward the assessment of suitability of
NGS-based approaches for the detection of pathognomonic
fusions in sarcomas, performance and ease-of-use (library
preparation complexity, hands-on time, user-friendly dedicated
bioinformatic analysis tool) of three different NGS fusion
panels were evaluated on a set of sarcoma samples previously
characterized by either FISH or RT-qPCR for gene fusions
(Table 1). Twenty-six samples were analyzed with a hybrid
capture-based panel (HC) (Illumina TS-Fusion). Twenty samples
were analyzed with an anchored multiplex PCR panel (Archer
AMP-FPS), 19 of which investigated also with the Illumina
TS-Fusion. In addition, 9 samples were profiled with a more
comprehensive HC panel (Illumina TS-PanCancer).

All three targeted RNA-sequencing panels permit the
identification of common and known fusions involved in
sarcomas, but also the discovery of novel fusions. The AMP-FPS
panel targets a limited set of genes (26 target genes) that are

commonly involved in sarcoma-associated fusions. This AMP-
FPS panel employs unidirectional gene-specific primers to detect
fusion transcripts involving target genes. In addition, molecular
barcodes are included to enable single molecule counting, de-
duplication and error correction, thus allowing quantitative
analysis and confident mutation calling.

In HC-based panels the transcripts of interest are enriched by
hybridization and capture with biotinylated probes (507 genes in
TS-Fusion, 1385 genes in TS-PanCancer, in both cases including
the 26 genes targeted by the AMP-FPS panel).

Raw data obtained with the different panels were then
analyzed using the dedicated bioinformatic suite (BaseSpace
RNA-Seq Alignment for Illumina HC panels, Archer Analysis
platform for the AMP-FPS panel). The AMP-FPS assay correctly
identified the pathognomonic fusion in all samples analyzed
(20/20), irrespective of the sequencing platform used (Thermo
and/or Illumina), demonstrating an excellent sensitivity. The
pathognomonic fusion was correctly called in 22/26 samples
analyzed with the TS-Fusion HC assay. Of the 9 cases analyzed
with the TS-PanCancer HC panel, the dedicated bioinformatic
tool identified the diagnostic fusion in 7 cases, in one of these
as a reciprocal fusion. To further explore the performance of
HC panels, data generated with TS-Fusion and TS-PanCancer
panels were re-evaluated with additional algorithms, namely
Arriba, STAR-Fusion and Pizzly (16–18). Although impractical
in a routine diagnostic setting, as they rely on a command line
interface, these tools are reported to have high fusion detection
rates (16–18). With the exception of case #27, for which no
algorithm detected, as high confidence calls, fusions involving
the CIC gene, apparently rearranged according to FISH, at least
one fusion caller was capable of detecting, among others, a
fusion transcript involving the target gene in cases previously
scored negative with the BaseSpace RNA-Seq Alignment tool,
emphasizing the importance of software sensitivity in data
analysis (Supplemental Tables 1–3).

Additional passing filters fusions (in frame and out of frame)
were occasionally called beside the pathognomonic one, but the
actual biological significance of these alterations is unclear. For
instance, beside the canonical fusion involving SS18 and SSX1
or SSX2, additional fusions involving SSX4 were called in 5/6
synovial sarcomas analyzed with the AMP-FPS panel. It should
be pointed out that the AMP-FPS approach relies on relatively
small amplicons. Thus, in the presence of highly homologous
genes (e.g., SSX1, SSX2, SSX4), this techniquemay fail to properly
distinguish the target (19). Indeed, a deeper analysis of an index
case confirmed the expression of SS18-SSX1, suggesting that the
alleged SS18-SSX4 fusion was likely an alignment artifact.

Overall, both AMP-FPS and HC assays demonstrated a good
detection capability. The HC assays were definitively more
comprehensive and suitable for a research environment. In
contrast, the AMP-FPS panel was limited in breath (only 26
target genes), and hence with reduced capacity of discovering
new fusions, but definitively provided for a better ease-of-
use. In particular, the hands-on-time for library preparation
was reduced. Moreover, compared to the BaseSpace RNA-Seq
Alignment, the AMP-FPS dedicated bioinformatic analysis
tool (Archer Analysis platform) featured a more user-friendly
graphical interface with detailed and straightforward information
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TABLE 1 | NGS fusion profiling: panel comparison.

Nr Diagnosis Pre-detected

genetic

abnormality

Primary detection

method

Histotype-specific fusion detected by the indicated

NGS approach

Other passing filters

fusions

(assay detecting the

additional fusion)

AMP-FPS TS-Fusion TS-PanCancer

1 Dermatofibrosarcoma

Protuberans

PDGFB FISH COL1A1-

PDGFBIL

COL1A1-

PDGFB

COL1A1-

PDGFB

NFD

2 Ewing Sarcoma EWSR1 FISH EWSR1-FLI1IL EWSR1-FLI1 EWSR1-FLI1 NFD

3 Infantile

Fibrosarcoma

ETV6 FISH ETV6-NTRK3IL ETV6-NTRK3 ETV6-NTRK3 NFD

4 Synovial Sarcoma SS18-SSX1 RT-qPCR SS18-SSX1IL SS18-SSX1 SS18-SSX1 SS18-SSX4 (AMP-FPSIL)

5 Synovial Sarcoma SS18 FISH SS18-SSX2IL SS18-SSX2 SS18-SSX2 SS18-SSX4 (AMP-FPSIL)

6 Myoepithelioma

(soft tissue)

EWSR1 FISH EWSR1-ATF1IL EWSR1-ATF1 NFD ATF1-EWSR1 (TS-

Fusion,TS-PanCancer)

7 Extraskeletal

Myxoid

Chondrosarcoma

EWSR1-NR4A3 RT-qPCR EWSR1-

NR4A3IL
NFD NFD NFD

8 Clear Cell sarcoma EWSR1 FISH EWSR1-ATF1T ,IL NFD nd NFD

9 Ewing Sarcoma EWSR1-FLI1 RT-qPCR EWSR1-FLI1T ,IL EWSR1-FLI1 nd NFD

10 Ewing Sarcoma EWSR1-FLI1 RT-qPCR EWSR1-FLI1T ,IL EWSR1-FLI1 nd NFD

11 Ewing Sarcoma EWSR1-ERG RT-qPCR EWSR1-ERGT ,IL EWSR1-ERG nd EWSR1-ERG-EWSR1

(AMP-FPSIL)

12 Extraskeletal

Myxoid

Chondrosarcoma

EWSR1-NR4A3 RT-qPCR EWSR1-NR4A3T EWSR1-NR4A3 nd NFD

13 Myxoid

Liposarcoma

FUS-DDIT3 RT-qPCR FUS-DDIT3IL FUS-DDIT3 nd NFD

14 Myxoid

Liposarcoma

FUS-DDIT3 RT-qPCR FUS-DDIT3T ,IL FUS-DDIT3 nd DDIT3-FUS (TS-Fusion)

15 Myxoid

Liposarcoma

FUS-DDIT3 RT-qPCR FUS-DDIT3T ,IL FUS-DDIT3 nd FUS-DDIT3-DLG2

(AMP-FPSIL)

16 Synovial Sarcoma SS18-SSX1 RT-qPCR SS18-SSX1IL SS18-SSX1 nd SS18-SSX4-SS18;

SS18-SSX4 (AMP-FPSIL)

17 Synovial Sarcoma SS18 FISH SS18-SSX1IL SS18-SSX1 nd NFD

18 Synovial Sarcoma SS18-SSX1 RT-qPCR SS18-SSX1IL SS18-SSX1 nd SS18-SSX4 (AMP-FPSIL)

19 Synovial Sarcoma SS18-SSX1 RT-qPCR SS18-SSX1T ,IL SS18-SSX1 nd SS18-SSX1/4-SS18;

SS18-SSX4 (AMP-FPSIL)

20 Myxoid

Liposarcoma

DDIT3 FISH FUS-DDIT3IL nd FUS-DDIT3 DDIT3-FUS

(TS-PanCancer)

21 Myxoid

Liposarcoma

DDIT3 FISH nd FUS-DDIT3 NFD NFD

22 Synovial Sarcoma SS18 FISH nd SS18-SSX1 nd NFD

23 Synovial Sarcoma SS18 FISH nd SS18-SSX1 nd NFD

24 Myxoid

Fibrosarcoma

FUS FISH nd FUS-CREB3L2 nd NFD

25 Myxoid

Liposarcoma

FUS-DDIT3 RT-qPCR nd FUS-DDIT3 nd DDIT3-FUS (TS-Fusion)

26 Myxoid

Liposarcoma

DDIT3 FISH nd NFD nd NFD

27 Undifferentiated

Round Cell,

Ewing-Like

Sarcoma

CIC FISH nd NFD nd NFD

NFD, no histotype-specific fusion detected; nd, not done; FISH, fluorescent in situ hybridization; RT-qPCR, reverse transcriptase- quantitative PCR; Sequencing platform used: T, Thermo

platform; IL, Illumina platform.

Frontiers in Oncology | www.frontiersin.org 4 April 2020 | Volume 10 | Article 489



Racanelli et al. NGS-Fusion Panels for Sarcoma Diagnosis

FIGURE 1 | Representative graphical output of Archer Analysis (top) and Illumina BaseSpace RNA-Seq Alignment (bottom) tools. The EWSR1-FLI1 fusion detected in

sample #2 by both AMP-FPS and HC panels is shown.

about the fusion (exons involved, in frame/out of frame,
confidence of the call) (Figure 1).

On the whole, we considered the AMP-FPS assay more
suitable for routine diagnostics.

Validation on a Larger Set of Cases of the
AMP-FPS Fusion Transcript Assay
Based on these results, with a view to translating NGS-based
fusion identification in a routine diagnostic setting, we sought
to extend the evaluation of the AMP-FPS panel (on either a
Thermo or an Illumina sequencing platform) to 123 additional
cases (Table 2).

Overall, the AMP-FPS panel confirmed the good performance.
Of 81 cases with a pre-detected genetic abnormality suggestive
of a fusion event, this NGS assay proved effective in 71,
with orthogonal validations (RT-PCR) confirming the NGS
result where appropriate (see Material and Methods). In the
remaining 10 cases, a gene rearrangement was suggested by
FISH. Nevertheless, although samples passed quality filters,
the AMP-FPS assay failed to detect a fusion transcript. There
are several possible explanations for this discrepancy including
inadequate tumor cell fraction or low expression levels of the
fusion transcript, chromosome rearrangements not yielding a
fusion transcript, unusual breakpoints not covered by the assay
or lack of primers covering the target gene. For instance, in
two tumors (one endometrial stromal sarcoma and one sarcoma
NOS) FISH indicated a rearrangement of the BCOR gene with
an unknown partner. It is worth noting that the commercial
AMP-FPS panel used in this study does not include primers for
BCOR. Moreover, beside the common CCNB3 partner (covered
by the panel), BCOR has been reported to fuse with other genes
which are also not targeted by the AMP-FPS assay (e.g., ZC3H7B,
MAML3, CIITA) (20–23). Thus, in the absence of probes for

BCOR and potential partner genes, the failure of the assay in the 2
BCOR rearranged tumors of our series is not surprising. The same
holds true for rearrangements involving NR4A3 in extraskeletal
myxoid chondrosarcomas: while the AMP-FPS assay covers the
most NR4A3 common partners (EWSR1, TAF15, TCF12, TFG) it
lacks probes for both NR4A3 and uncommon partners (24), thus
scoring negative in the presence of alternative fusions.

The AMP-FPS assay failed to detect any fusion also in 3
cases of biphenotypic sinonasal sarcoma. Although in these cases
no prior investigation (FISH or RT-PCR) was performed, this
tumor is known to be typified by gene fusions involving the
PAX3 gene (25). Since the PAX3 gene is not covered by the
commercial AMP-FPS panel, we commissioned a customization
of the assay by spiking-in primers to cover PAX3 fusions. By using
this customized AMP-FPS assay we were able to demonstrate
and validate that all 3 cases expressed a PAX3-MAML3 chimeric
transcript (Figure 2).

Interestingly, a rare EWSR1-PATZ1 fusion was detected by
AMP-FPS in one EWSR1 FISH-positive Ewing sarcoma (case
#34). This fusion had been previously described in rare cases of
spindled or small round cell sarcomas and it is considered to
identify a distinct, Ewing-like entity (26). Moreover, the NGS
profiling allowed the detection of disease-associated fusion
transcripts also in a set of cases for which no prior molecular
data was available or scored negative for FISH. These included
one dermatofibrosarcoma protuberans (COL1A1-PDGFB),
one endometrial stromal sarcoma (YWHAE-NUTM2B, aka
YWHAE-FAM22B), one gastrointestinal neuroectodermal
tumor (EWSR1-CREB1), one inflammatory myofibroblastic
sarcoma (TPM4-ALK), one inflammatory myofibroblastic tumor
(TFG-ROS1), 2 myoepitheliomas (one FUS-NFATC2 and one
TRPS1-PLAG1), 2 sclerosing epithelioid fibrosarcomas (one
EWSR1-CREB3L2 and one FUS-CREB3L2) and one solitary
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TABLE 2 | Validation of the AMP-FPS fusion transcript assay.

Nr Diagnosis Pre-detected genetic

abnormality

Primary detection

method

Sequencing

platfom

Histotype-specific

fusion detected

Other passing filters fusions

28 Askin Tumor EWSR1-ERG RT-qPCR Illumina EWSR1-ERG EWSR1-unl-ERG

29 Congenital Fibrosarcoma ETV6-NTRK3 RT-qPCR Illumina ETV6-NTRK3 NFD

30 Dermatofibrosarcoma

Protuberans

COL1A1-PDGFB FISH Thermo COL1A1-PDGFB NFD

31 Dermatofibrosarcoma

Protuberans

COL1A1-PDGFB RT-qPCR Illumina COL1A1-PDGFB NFD

32 Ewing Sarcoma EWSR1 FISH Thermo EWSR-FLI1 NFD

33 Ewing Sarcoma EWSR1 FISH Thermo EWSR-FLI1 NFD

34 Ewing Sarcoma EWSR1 FISH Thermo EWSR1-PATZ1 NFD

35 Ewing Sarcoma EWSR1 FISH Thermo EWSR-FLI1 NFD

36 Ewing Sarcoma EWSR1 FISH Thermo EWSR-FLI1 NFD

37 Ewing Sarcoma EWSR1-FLI1 RT-qPCR Illumina EWSR1-FLI1 FXR2-CAMTA1

38 Ewing Sarcoma EWSR1-FLI1 RT-qPCR Illumina EWSR1-FLI1 NFD

39 Ewing Sarcoma EWSR1-FLI1 RT-qPCR Illumina EWSR1-FLI1 NFD

40 Ewing Sarcoma EWSR1-ERG RT-qPCR Illumina EWSR1-ERG EWSR1-unl-EWSR1-ERG;

FUS-ERG; EWSR1-ERG-EWSR1;

41 Ewing Sarcoma EWSR1-FLI1 FISH Illumina EWSR1-FLI1 EWSR1-FLI1-EWSR1

42 Ewing Sarcoma EWSR1 FISH Thermo EWSR1-FLI1 NFD

43 Ewing Sarcoma EWSR1-FLI1 RT-qPCR Thermo EWSR1-FLI1 NFD

44 Ewing Sarcoma EWSR1-FLI1 RT-qPCR Thermo EWSR1-FLI1 NFD

45 Ewing Sarcoma EWSR1-FLI1 RT-qPCR Thermo EWSR1-FLI1 NFD

46 Ewing Sarcoma EWSR1-FLI1 RT-qPCR Thermo EWSR1-FLI1 NFD

47 Ewing Sarcoma EWSR1-FLI1 RT-qPCR Thermo EWSR1-FLI1 NFD

48 Ewing Sarcoma EWSR1-FLI1 RT-qPCR Thermo EWSR1-FLI1 NFD

49 Ewing Sarcoma EWSR1-FLI1 RT-qPCR Thermo EWSR1-FLI1 NFD

50 Ewing Sarcoma EWSR1-FLI1 RT-qPCR Illumina EWSR1-FLI1 NFD

51 Ewing Sarcoma EWSR1 FISH Illumina EWSR1-FLI1 NFD

52 Ewing Sarcoma FUS FISH Thermo FUS-ERG NFD

53 Ewing-like Sarcoma BCOR-CCNB3 RT-qPCR Illumina BCOR-CCNB3 NFD

54 Ewing-like Sarcoma CIC-DUX4 RT-qPCR Illumina CIC-DUX4 NFD

55 Extraskeletal Myxoid

Chondrosarcoma

NR4A3 FISH Illumina EWSR1-NR4A3 NFD

56 Extraskeletal Myxoid

Chondrosarcoma

EWSR1 FISH Illumina EWSR1-NR4A3 NFD

57 Extraskeletal Myxoid

Chondrosarcoma

EWSR1-NR4A3 RT-qPCR Illumina EWSR1-NR4A3 NFD

58 Extraskeletal Myxoid

Chondrosarcoma

TAF15-NR4A3 RT-qPCR Illumina TAF15-NR4A3 NFD

59 Extraskeletal Myxoid

Chondrosarcoma

EWSR1-NR4A3 RT-qPCR Illumina EWSR1-NR4A3 NFD

60 Extraskeletal Myxoid

Chondrosarcoma

EWSR1-NR4A3 RT-qPCR Illumina EWSR1-NR4A3 NFD

61 Extraskeletal Myxoid

Chondrosarcoma

EWSR1-NR4A3 RT-qPCR Illumina EWSR1-NR4A3 NFD

62 Extraskeletal Myxoid

Chondrosarcoma

EWSR1-NR4A3 RT-qPCR Illumina EWSR1-NR4A3 NFD

63 Extraskeletal Myxoid

Chondrosarcoma

EWSR1-NR4A3 RT-qPCR Illumina EWSR1-NR4A3 NFD

64 Extraskeletal Myxoid

Chondrosarcoma

NR4A3 FISH Illumina EWSR1-NR4A3 NFD

65 Extraskeletal Myxoid

Chondrosarcoma

EWSR1-NR4A3 RT-qPCR Illumina EWSR1-NR4A3 NFD

(Continued)

Frontiers in Oncology | www.frontiersin.org 6 April 2020 | Volume 10 | Article 489



Racanelli et al. NGS-Fusion Panels for Sarcoma Diagnosis

TABLE 2 | Continued

Nr Diagnosis Pre-detected genetic

abnormality

Primary detection

method

Sequencing

platfom

Histotype-specific

fusion detected

Other passing filters fusions

66 Myoepitelial carcinoma (soft

tissue)

EWSR1 FISH Illumina EWSR1-ATF1 NFD

67 Myoepithelioma (soft tissue) EWSR1 FISH Illumina EWSR1-ATF1 NFD

68 Myxoid Liposarcoma FUS-DDIT3 RT-PCR Thermo FUS-DDIT3 NFD

69 Myxoid Liposarcoma FUS-DDIT3 RT-qPCR Illumina FUS-DDIT3 NFD

70 Myxoid Liposarcoma FUS-DDIT3 FISH Thermo FUS-DDIT3 NFD

71 Myxoid Liposarcoma FUS-DDIT3 FISH Illumina FUS-DDIT3 NFD

72 Myxoid Liposarcoma FUS-DDIT3 FISH Illumina FUS-DDIT3 NFD

73 Nodular Fascitis USP6 FISH Thermo MYH9-USP6 NFD

74 Rhabdomyosarcoma,

alveolar

PAX3-FOXO1 RT-PCR Thermo PAX3-FOXO1 NFD

75 Rhabdomyosarcoma,

alveolar

PAX3-FOXO1 RT-PCR Thermo PAX3-FOXO1 NFD

76 Rhabdomyosarcoma,

alveolar

PAX3-FOXO1 RT-PCR Thermo PAX3-FOXO1 NFD

77 Rhabdomyosarcoma,

alveolar

PAX3-FOXO1 RT-qPCR Illumina PAX3-FOXO1 NFD

78 Rhabdomyosarcoma,

alveolar

PAX3-FOXO1 RT-qPCR Illumina PAX3-FOXO1 NFD

79 Rhabdomyosarcoma,

alveolar

PAX3-FOXO1 RT-qPCR Illumina PAX3-FOXO1 NFD

80 Rhabdomyosarcoma,

alveolar

PAX3-FOXO1 RT-qPCR Illumina PAX3-FOXO1 NFD

81 Rhabdomyosarcoma,

alveolar

PAX3-FOXO1 RT-qPCR Illumina PAX3 - FOXO1 FOXO1-PAX3

82 Rhabdomyosarcoma,

alveolar

PAX3-FOXO1 RT-qPCR Illumina PAX3-FOXO1 NFD

83 Rhabdomyosarcoma,

splindle cell

SRF-NCOA2 RT-qPCR Illumina SRF- NCOA2 NFD

84 Sarcoma NOS EWSR1 FISH Illumina EWSR1-FLI1 NFD

85 Solitary Fibrous Tumor STAT6 IHC Thermo NAB2-STAT6 NFD

86 Synovial Sarcoma SS18-SSX2 RT-qPCR Illumina SS18-SSX2 SS18-SSX4;SS18-SSX1;

complex SS18-SSX2 fusions

87 Synovial Sarcoma SS18 FISH Illumina SS18-SSX1 SS18-SSX4; SS18-SSX4-SS18

88 Synovial Sarcoma SS18 FISH Thermo SS18-SSX1 NFD

89 Synovial Sarcoma SS18-SSX1 RT-qPCR Illumina SS18-SSX1 NFD

90 Synovial Sarcoma SS18-SSX1 RT-qPCR Thermo SS18-SSX1 NFD

91 Synovial Sarcoma SS18-SSX1 RT-qPCR Thermo SS18-SSX1 SS18-SSX2

92 Synovial Sarcoma SS18-SSX1 RT-qPCR Thermo SS18-SSX1 SS18-SSX4

93 Synovial Sarcoma SS18-SSX1 RT-qPCR Thermo SS18-SSX1 SS18-SSX4

94 Synovial Sarcoma SS18 FISH Illumina SS18-SSX1 SS18-SSX4-SS18

95 Synovial Sarcoma SS18-SSX2 RT-qPCR Illumina SS18-SSX2 NFD

96 Synovial Sarcoma SS18 FISH Illumina SS18-SSX1 SS18-SSX4

97 Synovial Sarcoma SS18-SSX1 RT-qPCR Thermo SS18-SSX1 SS18-SSX4

98 Clear Cell Sarcoma EWSR1 FISH Thermo EWSR1-CREB1 NFD

99 Endometrial Stromal

Sarcoma

BCOR FISH Thermo NFD NFD

100 Extraskeletal Myxoid

Chondrosarcoma

NR4A3 FISH Illumina NFD NFD

101 Myoepithelioma

(soft tissue)

EWSR1 FISH Illumina NFD NFD

102 Myxoid Fibrosarcoma FUS FISH Illumina NFD NFD

(Continued)
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TABLE 2 | Continued

Nr Diagnosis Pre-detected genetic

abnormality

Primary detection

method

Sequencing

platfom

Histotype-specific

fusion detected

Other passing filters fusions

103 Myxoid Liposarcoma DDIT3 FISH Illumina NFD NFD

104 Nodular Fasciitis USP6 FISH Thermo NFD NFD

105 Rhabdomyosarcoma,

alveolar

FOXO1 FISH Thermo NFD NFD

106 Sarcoma NOS BCOR FISH Thermo NFD NFD

107 Solitary Fibrous Tumor EWSR1 FISH Illumina NFD NFD

108 Undifferentiated round cell,

Ewing-Like Sarcoma

CIC FISH Illumina NFD NFD

109 Lipoblastoma PLAG1 neg FISH Illumina NFD NFD

110 Myxoid Fibrosarcoma EWSR1, FUS neg FISH Thermo NFD NFD

111 Myxoid Fibrosarcoma EWSR1, FUS neg FISH Thermo NFD NFD

112 Myxoid Fibrosarcoma 12q13-15 amp FISH Thermo NFD NFD

113 Rhabdomyosarcoma,

alveolar

FOXO1 neg FISH Thermo NFD NFD

114 Rhabdomyosarcoma,

embryonal

FOXO1 neg FISH Illumina NFD NFD

115 Rhabdomyosarcoma,

embryonal

FOXO1 neg FISH Illumina NFD NFD

116 Rhabdomyosarcoma,

embryonal

FOXO1 neg FISH Illumina NFD NFD

117 Sarcoma NOS EWSR1 neg FISH Illumina CIC-DUX4 NFD

118 Small Round Cell Tumor EWSR1, BCOR, FUS,

CIC neg

FISH Thermo NFD NFD

119 Undifferentiated Sarcoma EWSR1 neg FISH Illumina CIC-DUX4 NFD

120 Undifferentiated Sarcoma 12q13-15 amp FISH Thermo NFD NFD

121 Undifferentiated Sarcoma 12q13-15 amp FISH Thermo NFD HMGA2-LGR5

122 Biphenotypic Sinonasal

Sarcoma

nd nd Thermo PAX3-MAML3§ NFD

123 Biphenotypic Sinonasal

Sarcoma

nd nd Thermo PAX3-MAML3§ NFD

124 Biphenotypic Sinonasal

Sarcoma

nd nd Thermo PAX3-MAML3§ NFD

125 Dermatofibrosarcoma

Protuberans

nd nd Thermo COL1A1-PDGFB NFD

126 Endometrial Stromal

Sarcoma

nd nd Thermo YWHAE-NUTM2B NFD

127 Gastrointestinal

Neuroectodermal Tumor

nd nd Thermo EWSR1-CREB1 SS18-PTRF

128 Inflammatory

Myofibroblastic Sarcoma

nd nd Illumina TPM4-ALK NFD

129 Inflammatory

Myofibroblastic Tumor

nd nd Thermo TFG-ROS1 NFD

130 Myoepithelioma (bone) nd nd Illumina FUS-NFATC2 NFD

131 Myoepithelioma (soft tissue) nd nd Illumina TRPS1-PLAG1 NFD

132 Sclerosing Epitheliodid

Fibrosarcoma

nd nd Illumina EWSR1-CREB3L2 NFD

133 Sclerosing epitheliodid

fibrosarcoma (soft tissue)

nd nd Illumina FUS-CREB3L2 NFD

134 Solitary Fibrous Tumor nd nd Thermo NAB2-STAT6 NFD

135 Chondrosarcoma nd nd Thermo NFD NFD

136 Endometrial Stromal

Sarcoma

nd nd Thermo NFD NFD

137 Epithelioid Angiosarcoma nd nd Illumina NFD NFD

(Continued)
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TABLE 2 | Continued

Nr Diagnosis Pre-detected genetic

abnormality

Primary detection

method

Sequencing

platfom

Histotype-specific

fusion detected

Other passing filters fusions

138 Follicular Dendritic Cell

Sarcoma

nd nd Thermo NFD NFD

139 Leiomyosarcoma nd nd Illumina NFD NFD

140 Leiomyosarcoma nd nd Thermo NFD NFD

141 Myoepithelioma (bone) nd nd Illumina NFD NFD

142 Myxoid Fibrosarcoma nd nd Thermo NFD NFD

143 Myxoinflammatory

Fibroblastic Sarcoma

nd nd Illumina NFD NFD

144 Osteosarcoma nd nd Illumina NFD NFD

145 Osteosarcoma nd nd Illumina NFD NFD

146 Pleomophic Sarcoma nd nd Thermo NFD NFD

147 Pleomophic Sarcoma nd nd Thermo NFD NFD

148 Pleomophic Sarcoma nd nd Thermo NFD NFD

149 Sarcoma NOS HG Myxoid nd FISH Thermo NFD NFD

150 Undifferentiated Sarcoma nd nd Illumina NFD NFD

NFD, no histotype-specific fusion detected; nd, not done; amp, amplification; neg, negative; RT-PCR, reverse transcriptase-PCR; FISH, fluorescent in situ hybridization; RT-qPCR,

reverse transcriptase-quantitative PCR; IHC, immunohistochemistry; unl, unaligned sequence. PAX3-MAML3§: fusion detected with a PAX3-customized AMP-FPS Panel. This sample

scored negative with the standard AMP-FPS Panel.

FIGURE 2 | PAX3-MAML3 fusion detected by the customized AMP-FPS panel in a representative case of biphenotypic sinonasal sarcoma (sample #123). The top

panel shows the output of the Archer Analysis tool. The bottom panel shows the validation of the fusion by RT-PCR sequencing.

fibrous tumor (NAB2-STAT6). In addition, 2/5 tumors negative
for EWSR1 rearrangements according to FISH, turned out
to express a CIC-DUX4 fusion, leading to the diagnosis of
CIC-DUX4 fusion-positive undifferentiated round cell sarcoma
(27). In all these cases the identified fusions were confirmed
by RT-PCR.

Finally, the series analyzed included also sarcoma
variants typically devoid of pathognomonic fusions
(e.g., leiomyosarcoma, osteosarcoma). Thus, the
negative result of the NGS profiling in these
cases may be considered compatible with the
pathological diagnosis.
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DISCUSSION

The expression of fusion transcripts characterizes over a third
of sarcomas where it may provide diagnostic, prognostic and
predictive information. The cooperative effort described in
this work was aimed at assessing feasibility, reliability, and
applicability of NGS-based approaches for the detection of
pathognomonic fusion transcripts in a routine diagnostic setting.

In line with recent reports (12, 19), our study corroborates the
robustness of NGS, and in particular of AMP-FPS profiling, for
the detection of clinically relevant fusions in sarcomas. On one
hand, our analysis emphasizes the worth of implementing this
type of approach in routine diagnostics. On the other hand, it
underlines the importance of being aware of the actual detection
capability of the panel used (genes covered by the assay) in
relation to the specific tumor variant under investigation.

Our study demonstrates also the versatility of certain NGS
fusion commercial panels to respond to specific diagnostic needs.
In fact, the possibility of further implementing commercially
available panels by spiking-in probes for genetic targets not
included in the standard version of the assay allows to expand
its detection capability. Indeed, beside PAX3, due to the recent
therapeutic successes of NTRK fusions targeting drugs in solid
tumors (7, 8), we are in the process of customizing the AMP-FPS
panel by including primers for NTRK1 and NTRK2 (currently
only NTRK3 is covered by the AMP-FPS assay).

Importantly, in the presence of a negative result, a re-
evaluation of RNA and library quality is mandatory as highly
degraded RNA and poor quality libraries may affect the
sensitivity of the assay. Nonetheless, we found that apparently
low quality samples may still be effective for fusion detection.
Indeed, a few cases included in this study (cases #9, 31, 37,
47, 57, 60, 80, 126), although not fulfilling all quality criteria,
nevertheless yielded a correct fusion call. This indicates that this
type of assay may work even in suboptimal conditions.

Finally, when reporting the result of this type of NGS analysis,
especially if negative, a statement specifying the characteristics
and the limits of the assay employed (type of NGS panel, number
of target genes, website of the provider for the list of targeted
fusions) and the actual performance of the test according to
the manufacturer’s standards (fulfillment of quality parameters)
should always be included in the pathology report. It is worth
reaffirming that the AMP-FPS assay is designed to target the most
common breakpoint regions of the genes covered by the assay.
Thus, unusual breakpoints may be source of “false negative”
results. Moreover, when dealing with sarcoma variants expressing
uncommon fusions, the presence of primers for the target genes
should be verified prior to setting up the profiling because the
lack of appropriate primers will yield a false negative result. The
negativity in the AMP-FPS assay of the two BCOR rearranged
tumors, included in this series, is instructive in this regard.

In the case of a positive result, beside the genes involved in the
fusion, the inclusion in the pathology report of details about the
fusion variant detected, including reading frame of the chimeric
transcript (in frame/out of frame) and exons involved might be
useful. This is of particular importance if the fusion protein is
potentially actionable and the retention of specific domains in the
chimeric protein is crucial for drug sensitivity, as in the case of
NTRK fusions (7–9).
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Abstract: Enzymes are key proteins performing the basic functional activities in cells. In humans,
enzymes can be also responsible for diseases, and the molecular mechanisms underlying the genotype
to phenotype relationship are under investigation for diagnosis and medical care. Here, we focus on
highlighting enzymes that are active in di↵erent metabolic pathways and become relevant hubs in
protein interaction networks. We perform a statistics to derive our present knowledge on human
metabolic pathways (the Kyoto Encyclopaedia of Genes and Genomes (KEGG)), and we found
that activity aldehyde dehydrogenase (NAD(+)), described by Enzyme Commission number EC
1.2.1.3, and activity acetyl-CoA C-acetyltransferase (EC 2.3.1.9) are the ones most frequently involved.
By associating functional activities (EC numbers) to enzyme proteins, we found the proteins most
frequently involved in metabolic pathways. With our analysis, we found that these proteins are
endowed with the highest numbers of interaction partners when compared to all the enzymes in the
pathways and with the highest numbers of predicted interaction sites. As specific enzyme protein test
cases, we focus on Alpha-Aminoadipic Semialdehyde Dehydrogenase (ALDH7A1, EC 2.3.1.9) and
Acetyl-CoA acetyltransferase, cytosolic and mitochondrial (gene products of ACAT2 and ACAT1,
respectively; EC 2.3.1.9). With computational approaches we show that it is possible, by starting from
the enzyme structure, to highlight clues of their multiple roles in di↵erent pathways and of putative
mechanisms promoting the association of genes to disease.

Keywords: enzymes; KEGG pathways KEGG metabolic pathways; protein-protein interaction;
protein variation; protein stability

1. Introduction

It is common knowledge that enzymes are proteins characterized by specific molecular functions
that, when performed in a concerted manner, give rise to the richness of biological processes at the basis
of the cell complex physiology [1]. It is still a matter of debate whether di↵erent enzyme molecules
tend to transiently aggregate in the cell environment, for generating the proper concerted action [2],
and references therein. In the case of enzymes, any concerted biological process is modelled by
a metabolic network/pathway that describes the biochemical sequential interactions and/or cycles
at the basis of the cell metabolism [3]. Information on which models of metabolic pathways and
reactions are known in a specific organism is also available through curated databases, such as
the Kyoto Encyclopaedia of Genes and Genomes (KEGG) and REACTOME [4,5]. Each enzyme is
a protein molecule endowed with a specific four-digit EC number [6], which fully describes the
catalyzed biochemical reaction, and possibly with an atomic solved structure, routinely available
in the Protein Data Bank (PDB), [7]. This allows for an understanding of the relationship between
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sequence, structure, and function at the basis of the catalytic mechanisms at the active site/s and the
role of possible e↵ectors at the binding site/s. UniProt/SwissProt [8] is the reference database for
sequences, and PDB for three dimensional (3D) structures. Many enzymes are known to be involved
in genetic diseases, as reported in OMIM (Online Mendelian Inheritance in Man) [9], as well as
somatic diseases, including cancers (BioMuta [10], DisGenNet [11], Clinvar [12], MalaCards [13], etc.).
This makes it possible to derive information on specific molecular mechanisms when non-synonymous
mutations have been associated to specific pathologies. Thanks to massive proteomic experiments,
we also know partners of interactions in the cell milieu stored in databases such as IntAct [14] and
BioGRID [15]. Several databases are presently available for enzyme complete functional annotation,
including BRENDA [16], Enzyme Portal (EBI) [17], and M-CSA (EBI) [18]. Furthermore, among other
information, available data on the extent of expression of the enzymes in the di↵erent human tissues
can be found in GeneCards [19].

The more data accumulated, the more we need linking di↵erent databases in order to derive
general rules of molecular functioning, which reconcile molecular mechanisms to physiological
models related to specific phenotypes. A recently released version of Manet (Molecular Ancestry
Network, Manet 3.0, [20,21]) groups enzymatic activities into a hierarchical system of subnetworks
and mesonetworks matching KEGG classification and including structural data.

Focusing on humans, here, we ask the question of how many human enzymes are common to
di↵erent metabolic pathways. The aim is highlighting the complex networks of networks where some
of the proteins are involved simultaneously in di↵erent biological processes and providing evidence of
possible associations to protein-protein interaction data and molecular clues.

By referring to the human KEGG metabolic maps, we provide a list of these enzymes, and their
relation to maladies, when known. We find an interesting correspondence among most frequent
enzymes in KEGG metabolic maps, number of interactors in the cell environment and number of
predicted interaction sites.

We then investigate, at a molecular level, one of these enzymes, ALDH7A1, a member of subfamily
7 in the aldehyde dehydrogenase gene family (EC 1.2.1.3). The enzymes are described to play a major role
in the detoxification of aldehydes generated by alcohol metabolism and lipid peroxidation. The protein,
characterized by at least three di↵erent isoforms, is present in the cytosol, the mitochondrion, and
the nucleus, and it is associated with di↵erent biological functions. By means of computational tools,
we investigate which structural properties of the enzyme can be indicative of its important role and
highlight possible mechanisms of its failure, associated mainly with pyridoxine-dependent epilepsy
(PDE). Similarly, we describe molecular experimental and predicted details of ACAT1 and ACAT2,
performing in humans Acetyl-CoA C-acetyltransferases activity, respectively in the cytosol and in
mitochondria (EC 2. 3.1.9).

2. Experimental Section

2.1. Materials

For our analysis, we derived information from SwissProt/UniProt. Presently, SwissProt (release
04_2019) lists 20,365 human proteins, among which 3428 are enzymes specified with a complete
enzyme commission number (EC with four digits, describing the biochemical reaction as to substrate
and product) [6]. In the following, we will refer to enzyme proteins as EC proteins. We associate
7316 proteins with genetic diseases through our database eDGAR (adopting OMIM, HUMSAVAR,
CLINVAR, and curated DisGeNet as primary sources of information) [22,23]. We find that 1699 proteins
are EC proteins with associations to disease (Table 1).

For KEGG pathway annotation, we adopted the April 2020 KEGG release [4], with the distinction
among KEGG pathways and KEGG metabolic pathways and with reference to human genes.
Protein–protein interactions are retrieved from IntAct ([14], release June 2020) and BioGRID ([15],
release 3.5.185).
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Table 1. Disease-related human proteins with enzyme commission (EC) number.

Set # Human Proteins

In SwissProt/UniProt 20365
Proteins with four-digit EC (EC proteins) 3428 (1411 EC) *
Proteins associated with genetic diseases 7316 (5788 diseases)

EC proteins with genetic disease associations 1669 (955 EC and 1900 diseases)

* Number of four-digit EC numbers.

2.2. Computational Methods

The likelihood of a protein lateral side chain to interact with other proteins is computed
with ISPRED4 (Interaction Site PREDictions, version 4) [24,25], a machine-learning-based predictor
performing at the state of the art. It predicts the interaction sites from protein structure with an
accuracy as high as 85% and with a very low rate of false positive prediction (3%). When a structure
is not available, an in-house version of ISPRED4 considering only sequence information is adopted.
For computing the e↵ect on protein stability of missense variations, we adopted INPS (Impact of Non
synonymous variations on Protein Stability) [26,27]. Starting from information extracted from protein
structure or sequence, INPS performs a non-linear regression based on machine learning approaches
and reaches a Pearson’s correlation coe�cient as high as 0.76 (0.71 when a structure is not available).
The computed DDG values have an associated standard error of about 1 kcal/mol.

3. Results

3.1. EC Proteins and KEGG Metabolic Pathways

In order to cope with the complexity of the network of human biochemical reactions, we focused
on the analysis of all the possible relationships among biological functions as described by EC numbers
and KEGG pathways. The Kyoto Encyclopaedia of Genes and Genomes (KEGG), [4], includes 320
biological pathways, 90 of which are specifically termed metabolic pathways. We annotated EC human
proteins with KEGG terms for pathways (Table 2). Having as a reference the human protein section of
SwissProt, we find that 6904 proteins are associated with 320 KEGG pathways. When focusing on
proteins associated with metabolic KEGG pathways, 1642 EC proteins participate into 90 metabolic
pathways. Restricting to proteins that are enzymes and disease-related, we obtained 770 EC proteins
associated with 90 metabolic pathways. The 770 proteins are associated with 930 EC numbers.

Table 2. EC human protein in Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathways.

Set
Human Proteins with KEGG Pathways Human Proteins with KEGG Metabolic Pathways

#Proteins #Pathways #Proteins #Pathways

In SwissProt 6904 320 1642 90
EC proteins 2258 317 1375 90

Proteins associated to
genetic diseases 3391 320 895 90

EC proteins associated to
genetic diseases 1255 314 770 90

# Number of.

Not all the EC proteins in SwissProt are associated with KEGG metabolic pathways (883 from
Table 2). The whole network model is therefore complicated [20,21], and here, we focus only on KEGG
networks that describe metabolic pathways.

In Figure 1, we show the distribution of EC numbers (which we consider here the complete
description of the protein molecular activity) in the KEGG metabolic pathways. We find that five EC
numbers are involved in at least 11 metabolic pathways—EC 1.2.1.3, Aldehyde dehydrogenase (NAD+);
EC 1.14.14.1, Unspecific monooxygenase; EC 2.3.1.9, Acetyl-CoA C-acetyltransferase; EC 2.6.1.1,
Aspartate transaminase; EC 4.2.1.17, Enoyl-CoA hydratase.
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Figure 1. Distribution of functional activities (four-digit EC numbers) as a function of KEGG
metabolic pathways.

The correspondence among EC numbers and proteins is plurivalent (an EC may be associated
with di↵erent proteins and a protein with di↵erent ECs). The EC proteins to KEGG metabolic pathways
association is shown in Figure 2.
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Figure 2. Distribution of EC proteins as a function of KEGG metabolic pathways.

The distribution of the EC proteins in the di↵erent KEGG metabolic pathways indicates that
only 12 EC proteins are associated with 10 or more KEGG metabolic pathways (Table 3). The most
frequent activities associated with the most frequent EC proteins are one oxidoreductase: EC 1.2.1.3
(aldehyde dehydrogenase (NAD+); two transferases: EC 2.3.1.9 (Acetyl-CoA C-acetyltransferase),
EC 2.6.1.1 (Aspartate transaminase); and one lyase: EC 4.2.1.17 (enoyl-CoA hydratase). For details on
the specific biochemical reactions including the description of substrates and products, refer to the
Rhea database [28].
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Table 3. EC proteins involved in at least 10 KEGG metabolic pathways, and physical and predicted
number of interactions.

EC
Number 1 KEGG 2 UniProt 3 PDB 4 IntAct 5 BioGRID 6 Int. Sites 7 Other

EC 8

1.2.1.3

13:
hsa00010
hsa00053
hsa00071
hsa00260
hsa00280
hsa00310
hsa00330
hsa00340
hsa00380
hsa00410
hsa00561
hsa00620
hsa01100

P49419 (13)
4ZUL
(homo
4-mer)

23 62 78/235; 34/83
(21/132; 7/34)

1.2.1.8
(1)

1.2.1.31
(1)

P49189 (12)
-hsa00260

6QAP
(homo
4-mer)

10 38 48/223; 0/2
(10/139; none)

1.2.1.19
(0)

1.2.1.47
(1)

P05091 (12)
-hsa00260

1O02
(homo
4-mer)

45 75 88/223; 16/41
(19/133; 4/25) �

P51648 (12)
-hsa00260

4QGK
(homo
2-mer)

91 107 82/238; 19/54
(20/139; 4/32)

1.2.1.94
(0)

P30837
(12)-hsa00260 - 41 93 111/517; 1/1 �

2.3.1.9

13:
hsa00071
hsa00072
hsa00280
hsa00310
hsa00380
hsa00620
hsa00630
hsa00640
hsa00650
hsa00900
hsa01100
hsa01200
hsa01212

Q9BWD1 (13)
1WL4
(homo
4-mer)

20 46
94/175; 20/37
(66/113; 9/16) �

P24752 (13)
2IBY

(homo
4-mer)

32 108 117/185; 35/59
(65/121;17/37) �

2.6.1.1
11:

hsa00220
hsa00250
hsa00270
hsa00330
hsa00350
hsa00360
hsa00400
hsa01100
hsa01200
hsa01210
hsa01230

P00505 (11)
5AX8
(homo
2-mer)

37 42 38/192; 5/32
(4/126; 0/21) 2.6.1.7 (0)

P17174 (11) 6DND
(1-mer) 12 73 46/200; 10/42 2.6.1.3 (0)

4.2.1.17
11:

hsa00062
hsa00071
hsa00280
hsa00310
hsa00380
hsa00410
hsa00640
hsa00650
hsa01100
hsa01200
hsa01212

P40939 (11)
6DV2

(hetero
4-mer)

116 254 24/375; 6/65
(23/337; 5/57) 1.1.1.211 (2)

P30084 (11)
2HW5
(homo
6-mer)

65 112
45/163; 9/37
(2/68; 2/16) �

Q08426 (10) -
hsa00062 � 123 109 234/723; 53/150 5.3.3.8 (1) 1.1.1.35 (8)

Hyphens in table cells refer to lack of information. 1 The list of functional activity names corresponding to EC numbers is
available in Table S1A. 2 Number of metabolic KEGG associated to the EC number and list of corresponding IDs; the list
of names of KEGG pathways is available in Table S1B. 3 Human protein codes included in UniProt (SwissProt section).
Among brackets, number of KEGG pathways listed in the second column where the protein is active. 4 Representative
PDB code and corresponding global stoichiometry. 5 Number of interacting partners in IntAct. 6 Number of interacting
partners in BioGRID. 7 Number of residues predicted with ISPRED to be involved in interactions with other proteins
over the total number of residues on the protein solvent accessible surface. After the semicolon, we report the number
of disease related positions matching the predicted interactions sites over the number of disease related positions on the
protein solvent accessible surface. Within brackets, the same numbers are restricted to the residues not involved in the
PDB global stoichiometry (biological unit). When structure is not available, the number of residues in the sequence is
indicated instead of the number of surface residues. 8 Other EC numbers associated with the protein. Within brackets,
the number of metabolic KEGG pathways, where the specific activity is present.
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3.2. EC Proteins and Their Interactions

A network of networks can model all the interactions that each protein can have. To exploit
this possibility in the light of the available results, we focused on the EC proteins that are associated
with 10 or more KEGG metabolic pathways to highlight the number of their possible interactors
(Figure 3). Experimental and physical interactions are retrieved from IntAct [14] and BioGRID [15].
When restricting to interactions among human proteins, IntAct reports 337,389 interactions among
36,815 proteins (including isoforms) and BioGRID reports 471,774 interactions involving 25,420 proteins.
The average number of interactors per protein is therefore equal to 18 and 37 in IntAct and BioGRID,
respectively. In Figure 3, the characteristic values (average, median, first and third quartiles) of the
distribution of the number of interactors reported in IntAct and BioGRID are compared among the
following classes—(i) proteins involved in only one metabolic KEGG, (ii) proteins involved in at least
ten metabolic KEGG pathways, and (iii) all EC proteins. EC proteins involved in a high number of
KEGG metabolic pathways have also a high number of interactors, when compared to those less
frequently involved.

 
Figure 3. Statistical characterization of the number of interactors in EC proteins associated with human
metabolic pathways. For each set, the boxes represent the first and third quartiles; yellow and black
lines represent mean and median values, respectively. (A) and (B): from IntAct [14] and BioGRID [15],
respectively. Significance of the reported di↵erences on median values has been validated with the
Mann–Whitney U test, obtaining p-value < 0.0001 when comparing the EC proteins with at least 10
interactors with the other two classes, for both IntAct and BioGRID databases. # Number of.

In Figure 4, we show that on average EC proteins that are present in at least 10 KEGG metabolic
pathways, and have the highest number of interacting partners, are also endowed with the highest
number of interacting sites in the solvent accessible area. This finding supports the notion that the
association of experimental and theoretical data is consistent and makes it feasible to identify possible
hubs in metabolic pathways.

For the human EC proteins that most frequently (�10 times) participate in KEGG metabolic
pathways, Table 3 lists details including the most representative PDB structure (highest coverage to the
protein sequence (�70%) and highest atomic resolution). For each EC protein, we also indicate the
putative number of predicted interaction sites (computed with ISPRED [24,25]), with the distinction
among interaction sites at the protein solvent accessible surface or at the interface in the protein global
stoichiometry, as reported in the PDB. We also show, for each EC protein, the total number of disease
related variations and the number of disease related variations matching interactions sites.
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Figure 4. Statistical characterization of the number of interaction sites predicted with ISPRED4 in EC
proteins associated with only one or at least 10 metabolic pathways. For each set, the boxes represent
the first and third quartiles; yellow and black lines represent mean and median values, respectively.
Significance of the reported di↵erence on median values has been validated using the Mann–Whitney
U test obtaining p-value = 0.04. # Number of.

3.3. The Case Study of Alpha-Aminoadipic Semialdehyde Dehydrogenase

The human protein alpha-aminoadipic semialdehyde (AASA) dehydrogenase, also known
as antiquitin (P49419), coded by the gene ALDH7A1, is a multifunctional enzyme mediating
important protective e↵ects. The protein protects cells from oxidative stress by metabolizing lipid
peroxidation-derived aldehydes (EC 1.2.1.3), and it is involved in lysine catabolism (EC 1.2.1.31). It also
metabolizes betaine aldehyde to betaine (EC 1.2.1.8), an important cellular osmolyte and methyl donor.
It is present with three di↵erent isoforms, one of which is only mitochondrial [19]. In human phenotype
ontology [29], as reported in GeneCards, [19], the gene is associated to 59 human phenotypes and eight
di↵erent REACTOME [5] and 13 KEGG [4] metabolic pathways (Table 3). In Gene Cards, expression
data suggest that the protein is present in many tissues. GeneORGANizer [30] lists brain, cranial
nerve, eye, head, liver, lung, peripheral nervous system, and peripheral nerve as confident expression
organs. In the Human Protein Atlas [31], ALDH7A1 is associated with 34 reactions in 17 di↵erent
subsystems—cytosol, endoplasmic reticulum, lysosome, mitochondria, and peroxisome. Given its
relevance for the biology of the cell, it has been the subject of more than 100 publications (they can be
reached via GeneCards [19]). The protein is present in the cytoplasm, in the mitochondrion, and in the
nucleus [18] and interacts with other proteins (23 interactors in IntAct [14] and 62 in BioGRID [15]).
It has been crystallized 15 times [7]. Here we focus on a complete form of the biological unit (PDB
code: 4ZUL), a homotetramer solved with a resolution of 0.170 nm and with the maximal coverage
with the sequence P49419, without the mitochondrial target peptide [32]. Recently, important variants
of the protein, associated with PDE and hampering its activity, have been also solved with atomic
resolution [33]. Finally, the protein, as a major feature, according to the MobiDB database [34], does not
have intrinsically disordered regions (IDPs). We are interested in highlighting at a molecular level
some of the protein properties, which are related to its involvement in di↵erent metabolic pathways
and diseases.

A whole list of all the variations available from di↵erent databases is listed in Table S2. The protein
sequence P49419 (comprising 539 residue) is endowed with 232 variations from di↵erent data bases
(Table S2); 195 variations associated to 160 positions are disease related (Table S2), and 117 disease
related variations are associated to PDE.

In Figure 5, we show one of the four subunits of the homotetrameric protein (4ZUL, chain A) and
highlight the interface region (in orange) in the global stoichiometric unit. This allows distinguishing
between the region at the interface and the region exposed to the solvent. We map (in green) variations
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predicted as possible interaction sites with ISPRED4 [24]. These sites, located in the protein-exposed
region, are likely to mediate interactions with other proteins. We also map disease related residues at
the interface and in the protein (small spheres).

 

Figure 5. Monomeric subunit of human ALDH7A1 protein (PDB code: 4ZUL.A). Interaction surface
in the tetramer as derived from the crystallographic coordinates is in orange. Interaction sites out
the tetrameric interface, as predicted with ISPRED4, are in green. Positions in these regions carrying
disease related variations (Table S2) are highlighted with small spheres. Big spheres highlight positions
in the protein carrying disease related variations (Table S2, for details) and promoting a large variance
of folding free energy, as predicted with INPS [26]. Grey color: the background protein backbone.

For the sake of completeness, we computed the likelihood of all the protein variations to a↵ect
protein stability (Table S2) and found as expected [2] that variations that are not always disease-related
are perturbing the protein folding.

In Figure 5, big spheres highlight those variations that most a↵ect protein stability (|DDG|�1
kcal/mol). Interestingly, we found that PDE related variations V278L, Q281H, M285V, and K375R
occur at the solvent accessible protein surface and match predicted interaction sites without a↵ecting
protein stability.

Table S2 provides a complete list of the properties for all the protein variations present in di↵erent
databases, associated with specific diseases. For each variation, Table S2 lists its location in the protein
reference sequence P49419, its location in the protein three-dimensional structure (4ZUL, chain A)
and the predicted e↵ect on the protein stability (DDG), computed with INPS, [26]. It also indicates if
the disease-associated residue occurs in the target peptide, in the tetrameric interface, in the active
sites, and regions annotated in the corresponding UniProt file (P49419). The ISPRED predictions are
shown when present. Interestingly, many variations occur in the transit peptide (26 residue long,
UniProt, P49419, [8]), a specific N-terminal peptide in the protein sequence mediating the mitochondrial
import. This suggests that disease may be also due to an unpaired translocation of the protein to
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the mitochondrial compartment. For the sake of comparison, in Table S2 (Supplementary Materials),
we label, in red, some PDE disease-related variations, known to occur in the aldehyde substrate binding
site (N195S, P197S, A199V, G202V, W203G) and recently detailed with atomic resolution on their e↵ect
on the protein structure and function [33]. INPS predicts P197S, G202V, W203G as perturbing the
protein stability (Table S2).

3.4. The Case Study of Acetyl-CoA C-Acetyltransferase

In Table 3, the enzyme proteins listed for the activity EC 2.3.1.9 are Acetyl-CoA C-acetyltransferases
(ACAT2, cytosolic and ACAT1 mitochondrial), which catalyze the condensation of an acetyl-CoA and
an acyl-CoA (often another acetyl-CoA), leading to the synthesis of an acyl-CoA with a longer fatty
acid chain [35,36]. The two enzymes are encoded by two di↵erent genes and their residue chains
share 39% sequence identity. The cytosolic enzyme (UniProt Q9BWD1) is encoded by ACAT2 and the
mitochondrial one by ACAT1 (UniProt P24752). The 3D structure of both proteins has been resolved at
the atomic resolution. Two representative structures (2IBY:A and 1WL4:A for ACAT1 and ACAT2,
respectively) structurally superimpose with a root mean square deviation as low as 0.09 nm and
therefore show a high structural similarity. Moreover, they conserve the two cysteine residues that
form the active site.

In humans, ACAT1 is one of the enzymes that catalyzes the last step of the mitochondrial
beta-oxidation pathway, an aerobic process breaking down fatty acids into acetyl-CoA, and it plays
a major role in the metabolism of ketone bodies. ACAT2 is important in the pathway of fatty acid
metabolism, and in the biosynthetic pathway of cholesterol. ACAT1 and ACAT2 are both associated
with the same disease—alpha-methylacetoacetic aciduria (OMIM 203,750) or deficiency of acetyl-CoA
acetyltransferase, an inborn error of isoleucine catabolism. They share 13 metabolic pathways (Table 3).

In human phenotype ontology [29], as reported in GeneCards, [19], ACAT1 is associated with 118
human phenotypes, while ACAT2 is associated with 23 human phenotypes.

GeneORGANizer [30] reports that brain and head are confident expression organs for both ACAT1
and ACAT2. ACAT1 is also expressed in liver, oesophagus, and stomach. In the Human Protein
Atlas [31], ACAT1 is associated with two reactions in cytosol, mitochondria, and peroxisome. Given
its relevance for the biology of the cell, the two proteins are subject of many publications that can be
reached via GeneCards [19]. ACAT1 protein has 32 interactors in IntAct [14] and 108 in BioGRID [15],
while ACAT2 has 20 interactors in IntAct [14] and 46 in BioGRID [15] (Table 3). Particularly for ACAT1,
these numbers are significantly larger than the number of interactions per protein in the whole dataset.
Finally, according to the MobiDB database [34], none of the proteins have intrinsically disordered
regions (IDPs).

First, we focus on a complete form of the ACAT1 biological unit (PDB code: 2IBY), a homotetramer
solved with a resolution of 0.185 nm. The monomeric chain covers all the mature form of P24752,
depleted of the target peptide [35]. We are interested in highlighting at a molecular level some of the
protein properties, which are related to its involvement in di↵erent metabolic pathways and diseases.
A whole list of all the variations available from di↵erent databases is reported in Table S3.

In Figure 6, we show the subunit A of the homotetrameric protein, and we color the interface
region in the global stoichiometric unit in orange and the residues predicted with ISPRED4 as possible
interaction sites in green. As in Figure 5, we represent disease-related residues at the interface and in
the protein with small spheres, while big spheres highlight variations that most a↵ect protein stability
(|DDG|�1 kcal/mol). Table S3 provides a complete list of the properties for all the protein variations
present in di↵erent databases, associated with specific diseases and mapped on the protein reference
sequence (P24752) and three-dimensional structure (2IBY, chain A) on the protein.
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Figure 6. Monomeric subunit of human ACAT1 protein (PDB code: 2IBY.A). Interaction surface in
the tetramer as derived from the crystallographic coordinates is in orange. Interaction sites out the
tetrameric interface, as predicted with ISPRED4 are in green. Positions in these regions carrying disease
related variations (Table S3) are highlighted with small spheres. Big spheres highlight positions in the
protein carrying disease related variations (Table S3, for details) and promoting a large variance of
folding free energy, as predicted with INPS [26]. Grey color: the background protein backbone.

As in the case of ALDH71, we found that variations in putative interaction sites are often conducive
to the impairment of protein function. This is the case of eight variations related to Deficiency of
acetyl-CoA acetyltransferase (Q73P, N158S, N158D, R208Q, R208G, T241A, R258C, T285I). Interestingly,
five variations occur in the 33 residue-long mitochondrial target peptides, suggesting that disease may
be also due to an unpaired translocation of the protein to the mitochondrial compartment.

For the ACAT2 protein, we adopted the PDB entry 1WL4 to represent the interaction regions and
map the variations. The entry contains a homotetrameric form solved with a resolution of 0.155 nm.
Each chain covers the whole sequence (Q9BWD1) [36].

In Figure 7, we show the ACAT2 subunit chain A and represent tetrameric interaction regions,
predicted interaction residues and positions carrying disease related variations with the same
representation as in Figures 5 and 6. Table S4 (Supplementary Materials) provides a complete
list of the properties for all the protein variations present in di↵erent databases. Reinforcing the
previous observations on the relevance of interaction regions, the only reported variation of ACAT2
associated with the Deficiency of acetyl-CoA acetyltransferase (E176K) occurs at the solvent accessible
protein surface and it is predicted with ISPRED4 as interaction site. Moreover, this variation has a
small e↵ect on the protein stability (DDG) (�0.12 kcal/mol, see Table S4), reinforcing the concept that
variations which are interaction sites can lead to disease by hampering protein-protein interactions
without a↵ecting protein stability.
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Figure 7. Monomeric subunit of human ACAT2 protein (PDB code: 1WL4.A). Interaction surface
in the tetramer as derived from the crystallographic coordinates is in orange. Interaction sites out
the tetrameric interface, as predicted with ISPRED4 are in green. Positions in these regions carrying
disease related variations (Table S4 (Supplementary Materials)) are highlighted with small spheres.
Big spheres highlight positions in the protein carrying disease related variations (Table S4, for details)
and promoting a large variance of folding free energy, as predicted with INPS [26]. Grey color: the
background protein backbone.

4. Conclusions

One of the goals of system biology is to produce a three-dimensional model of the cell metabolism.
As a preliminary step, nowadays, we cope with the problem of generating links among di↵erent
databases that are dissecting the cell complexity into useful and important sets of data, addressing
cell components from di↵erent perspectives and with di↵erent approaches. Here, we explore the
problem of relating KEGG metabolic pathways to the network of protein–protein interactions (PPI)
by restricting our study to human enzymes and their relation to KEGG metabolic pathways and PPI
interaction maps. We found that, when enzymes are hubs in metabolic pathways, they are on average
interacting with a high number of proteins as detected with di↵erent experimental methods and are
also endowed with a high number of predicted interacting sites (Figures 3 and 4).

Our results suggest that enzymatic metabolic hubs are hubs in networks of protein–protein
interaction. Consistently, hubs are on average endowed with the highest numbers of predicted
interaction sites when compared to the other EC proteins in the networks.

Protein variants can be associated with diseases. Possible indications on the e↵ect of disease-related
variations are investigated by predicting whether the variation is located at a putative interaction site
and/or whether it a↵ects the protein stability. As a test case, we focused on the ALDH7A1 gene, which
according to our data is one of the most frequent gene in KEGG metabolic pathways. The protein is
associated with 232 variations in di↵erent databases (Table S2 (Supplementary Materials)). We localize
the disease-related variations in the protein structure and find that 27% of them a↵ect the protein
stability, rather independently of their location in active sites, in interfaces of the biological assembly or
in the protein solvent exposed area (Table S2). The protein also interacts physically with 23–62 di↵erent
interactors as documented in Intact and BioGrid (Table 3). We predict that 21 residues are likely to
act as interaction sites in the solvent exposed protein surface (Table S2). Among these, seven are
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disease-related, and four are associated with PDE. This suggests that each disease-related variation
occurring in the external surface can a↵ect the e�ciency of the protein in each of the di↵erent metabolic
pathways where it is active, by a↵ecting the interplay with all the di↵erent partners and without
a↵ecting protein stability. Similar conclusions stand also for the analysis of ACAT1 and ACAT2 gene
products, representative of the second EC number of the list shown in Table 3. Again, by entering into
the details of the molecular properties, we find a supportive example of the relevance of variations at
the protein solvent accessible interface as conducive to disorders.

Summing up, a conclusion from our analysis is that, with the data presently available and with
computational tools, it is possible to highlight enzyme proteins that are central to biochemical pathways
and to identify possible molecular mechanisms at the basis of their association with specific diseases.

Supplementary Materials: The following are available online at http://www.mdpi.com/2227-9059/8/8/250/s1.
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Introduction
Gastrointestinal stromal tumors (GISTs) are the most common sarcomas of  the gastrointestinal tract (1, 2). 
The majority of  GISTs (~85%) are driven by activating mutations in the gene encoding the receptor tyrosine 
kinase KIT (65%–80%) or PDGFRA (15%–20%). The remaining fraction of  tumors, overall referred to as 
KIT/PDGFRA WT GISTs (K/P WT), may rely on different oncogenic events: activation of  the RAS/RAF/
MAPK pathway, caused most frequently by NF1 or BRAF mutations (about 10% of  the cases); defects in 
components of  the succinate dehydrogenase mitochondrial complex II (SDH) in syndromic gastric GISTs 
(<5%); and rare (<1%) oncogenic gene fusions (1–6).

Although localized GISTs are potentially curable by surgery alone, a significant fraction of  tumors 
relapses after this treatment. Adjuvant therapy with imatinib targeting activated KIT/PDGFRA pro-
teins proved to be significantly beneficial in the prevention of  recurrence and in prolonging the survival 
of  patients with advanced/metastatic disease (1, 7). Yet, some patients are ab initio poorly responsive 
to this tyrosine kinase inhibitor due to the expression of  imatinib-refractory mutations (e.g., PDGFRA 
D842V) or independency of  KIT/PDGFRA signaling (K/P WT tumors). Moreover, even in responsive 
patients, imatinib is rarely curative as secondary resistance mutations frequently occur. In these settings, 

Intratumoral immune infiltrate was recently reported in gastrointestinal stromal tumors (GISTs). 
However, the tumor-intrinsic factors that dictate GIST immunogenicity are still largely undefined. 
To shed light on this issue, a large cohort (82 samples) of primary untreated GISTs, representative 
of major clinicopathological variables, was investigated by an integrated immunohistochemical, 
transcriptomic, and computational approach. Our results indicate that tumor genotype, location, 
and malignant potential concur to shape the immunogenicity of primary naive GISTs. Immune 
infiltration was greater in overt GISTs compared with that in lesions with limited malignant 
potential (miniGISTs), in KIT/PDGFRA-mutated tumors compared with that in KIT/PDGFRA WT 
tumors, and in PDGFRA-mutated compared with KIT-mutated GISTs. Within the KIT-mutated 
subset, a higher degree of immune colonization was detected in the intestine. Immune hot tumors 
showed expression patterns compatible with a potentially proficient but curbed antigen-specific 
immunity, hinting at sensitivity to immunomodulatory treatments. Poorly infiltrated GISTs, 
primarily KIT/PDGFRA WT intestinal tumors, showed activation of Hedgehog and WNT/ȕ-catenin 
immune excluding pathways. This finding discloses a potential therapeutic vulnerability, as the 
targeting of these pathways might prove e!ective by both inhibiting pro-oncogenic signals and 
fostering antitumor immune responses. Finally, an intriguing anticorrelation between immune 
infiltration and ANO1/DOG1 expression was observed, suggesting an immunomodulatory activity 
for anoctamin-1.
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switching to other tyrosine kinase inhibitors, such as sunitinib or regorafenib, has demonstrated clinical 
benefit (1, 7). Recently, the portfolio of  effective drugs used to treat GIST has expanded to also include 
avapritinib (8) and ripretinib (9).

Mounting evidence indicates that tumor immune microenvironment plays a key role in tumor incep-
tion, progression, and response to therapy. In this regard, recent works documented the presence of  intratu-
mor immune cell infiltration in GISTs and its effect on imatinib efficacy (10–14). Imatinib has been shown 
to amplify a preexisting cytotoxic antitumor response by inhibiting tumor cell production of  the immune 
inhibitory enzyme indoleamine 2,3-dioxygenase. In addition, a potentiated effect of  imatinib when com-
bined with checkpoint inhibitors (anti-PD1, anti-CTLA-4, or anti-CD40) has been demonstrated in preclin-
ical models (15–17). Based on these preliminary results and on the success of  immunomodulatory treat-
ments in other tumor types, several clinical trials aiming at assessing the efficacy of  immune checkpoint 
inhibitors in GISTs are being conducted (NCT01643278, NCT01738139, NCT02500797, NCT02834013, 
NCT02880020, and NCT03291054) (18–20).

The disclosure of  new therapeutic vulnerabilities in GIST is particularly relevant for that fraction of  
tumors, namely, K/P WT GISTs, that are currently orphan of  effective therapies. With this in mind, we 
investigated the immune infiltrate by an integrated immunohistochemical, transcriptomic, and computa-
tion approach in what we believe is one of  the largest cohorts of  primary untreated GISTs analyzed by 
RNA sequencing to date. Immune contexture was examined in relation to driver gene (KIT, PDGFRA, K/P 
WT), tumor location (gastric and intestinal), and malignant potential (miniGIST and overt GIST).

Results
In situ evaluation of  immune contexture. As a first step to elucidate the role of  immune contexture in GISTs, 
an explorative cohort of  38 primary untreated GISTs was investigated by IHC. Clinicopathological charac-
teristics of  this series are reported in Table 1.

In line with previous studies (12–14), T lymphocytes and macrophages were the most abundant 
tumor-infiltrating immune cells, in both intestinal and gastric GISTs. CD3+ cells ranged between 1 and 117 
(median 27.5) per HPF and were distributed as follows (median): CD4+ = 4.5, CD8+ = 15.0, Foxp3+ = 2.0. 
The number of  CD68+ cells ranged between 17.0 and 170 (median 53.5). Few CD20+ B cells (range 0–19, 
median 0) and occasional reactivity for PD1 or PDL1 were detected (Supplemental Table 1; supplemental 
material available online with this article; https://doi.org/10.1172/jci.insight.142560DS1).

When the series was analyzed as a whole, no significant correlation among immune cell types, mitotic 
index, or tumor site was found. Nevertheless, differences emerged when tumors were compared according 
to genotype. In particular, the median number of  T cells (CD3+, CD4+, and CD8+) was tendentially high-
er in K/P-mutated GISTs than K/P WT GISTs (Figure 1 and Figure 2). This difference was particularly 
evident for the tumors located in the intestine, where it reached statistical significance. Moreover, KIT-mu-
tated gastric GISTs featured an inferior degree of  infiltration both when compared with PDGFRA-mutated 
gastric tumors and when compared with the KIT-mutated counterpart of  the intestine (Figure 1).

Transcriptional assessment of  immune infiltration. To extend this initial observation, we interrogated the 
transcriptional profile of  a cohort of  77 GISTs that were representative of  different driver mutations, loca-
tions, and malignant potential (Table 1). This series included 33 of  38 cases analyzed by IHC and comprised 
62 K/P-mutated tumors and 15 K/P WT tumors (3 BRAF, 7 NF1-mutated, and 5 WT for all the aforemen-
tioned genes as well as for SDH A-D genes, and hence defined “driver mutation unknown”) (Table 1).

After the samples were dichotomized into contrast groups according to tumor site (stomach, intestine), 
malignant potential (miniGIST, overt GIST), and oncogenic driver (KIT, PDGFRA, K/P WT), the transcrip-
tome was interrogated for immune signatures by gene set enrichment analysis (GSEA), Ingenuity Pathway 
Analysis (IPA), and Reactome analyses. Pathways associated with the immune system emerged as signifi-
cantly enriched in the contrast K/P-mutated versus K/P WT, particularly in the intestinal subset. A trend for 
enrichment of  immunity-related genes also emerged when contrasting PDGFRA versus KIT gastric tumors 
and overt GISTs versus miniGISTs (Figure 3 and Supplemental Table 2). Finally, focusing on KIT-mutated 
GISTs, immunity-related terms were slightly more represented in intestinal tumors than gastric tumors.

These enrichments were paralleled by the differential expression of  several immune cell–attracting/
activating cytokines, inflammatory interleukins, and related molecules (Supplemental Table 3).

To gain better insights into the extent and nature of  immune infiltration, several computational 
methods (single-sample GSEA [ssGSEA], CIBERSORT, and MCP-counter) were exploited to infer 
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the presence of  specific immune cell types from bulk transcriptomic data. In particular, ssGSEA was 
applied to estimate the distribution of  24 immune cell types as well as a cumulative immune infiltration 
score (IIS) and T cell–specific infiltration score (TIS) per tumor (21). Unsupervised clustering analysis, 
based on the scores of  the 24 immune cell types, identified 3 major groups (Figure 4): the first cluster 
essentially comprised cold tumors (16 samples) with low IIS and TIS; the second cluster comprised 
tumors with an “intermediate” degree of  infiltration (27 samples); and the third cluster mostly com-
prised highly infiltrated, “hot” tumors (34 samples).

IIS and TIS were significantly correlated (Spearman’s correlation: r = 0.94; P = 2 × 10–7). Tumors with 
high IIS were by and large overt GISTs, whereas miniGISTs tended to be cold. A heatmap of  the samples 
ranked according to IIS is provided in Supplemental Figure 1A.

IIS/TIS displayed a positive correlation with the scores for IFN-Ȗ signature (22) (r = 0.82, P < 1 × 
10–6) and antigen-presenting machinery (APM) (r = 0.63, P < 1 × 10–6), a proxy for the expression of  anti-
gen-processing and presentation molecules. Moreover, IIS, IFN-Ȗ, and APM correlated with the cytolytic 
activity score (CYT) (23), a surrogate estimate of  cytotoxic lymphocyte activation based on the expression 
of  granzyme A and perforin (r = 0.62, r = 0.83, r = 0.82, all P < 1 × 10–6) (Figure 4A). Overall, these data 
were suggestive of  a potentially proficient antigen-specific immunity in a significant fraction of  GISTs.

Table 1. GIST cohorts

IHC cohort (38 cases) RNA-sequencing cohort (77 cases)
No. (%) No. (%)

Sex
 Male 18 (47%) 40 (52%)
 Female 20 (53%) 37 (48%)
Location
 Stomach 18 (47%) 43 (56%)
 Small intestine 19 (50%) 34 (44%)
 Esophagus 1 (3%)
Tumor size
 <2 cm 3 (8%) 25 (32%)
 ≥2≤5 cm 17 (45%) 23 (10%)
 >5≤10 cm 13 (34%) 22 (29%)
 >10 cm 5 (13%) 7 (9%)
MI
 ≤5 19 (50%) 53 (69%)
 >5 19 (50%) 24 (31%)
Type
 miniGIST (size <2cm, MI ≤5) 3 (8%) 15 (19%)
 Overt GIST (size ≥2 cm, any MI) 35 (92%) 62 (81%)
Mutations
 KIT exon 9 2 (5%) 4 (5%)
 KIT exon 11 23 (61%) 41 (53%)
 KIT exon 13 1 (3%) 2 (3%)
 PDGFRA exon 12 0 1 (1%)
 PDGFRA exon 14 1 (3%) 3 (4%)
 PDGFRA exon 18 4 (10%) 11 (14%)
 PDGFRA D842V 2 cases 6 cases
 BRAF 3 (8%) 3 (4%)
 NF1 4 (10%) 7 (9%)
 Unknown 0 5 (6%)
Risk of relapse
 Very low 5 (13%) 27 (35%)
 Low 7 (18%) 13 (17%)
 Intermediate 6 (16%) 9 (13%)
 High 20 (53%) 28 (35%)

GIST, gastrointestinal stromal tumors; MI, mitotic index.
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In line with IHC results on the explorative cohort, ssGSEA indicated that the relative degree of  immune 
infiltration was influenced by tumor genotype. In particular, K/P-mutated GISTs featured higher “immu-
noscores” than K/P WT tumors (Mann-Whitney U test: IIS, P = 0.021; TIS, P = 0.006; CYT, P = < 0.001) 
(Supplemental Table 4). Given the intrinsic difference in the biology of  gastric and intestinal GISTs (24), 

Figure 1. In situ evaluation of 
immune infiltration in GISTs 
by IHC analysis. Staining for 
immune cell markers in the 
series analyzed as a whole (n = 
38 cases), and in intestinal (n 
= 19) and gastric (n = 18) GISTs 
analyzed separately. Cases 
are grouped according to the 
genotype (K/P, KIT-mutated or 
PDGFRA-mutated; WT, WT for 
KIT and PDGFRA; K, KIT-mu-
tated; P, PDGFRA-mutated). 
The last series of plots shows 
the positivity for immune cell 
markers in the cohort of KIT-mu-
tated tumors, grouped according 
to location (IN, intestine; ST, 
stomach). The ordinate indicates 
median number of positive cells 
per high-powered field. The bar 
indicates the median value. The 
Mann-Whitney U test was used 
to compare groups and the P 
value is indicated. GISTs, gastro-
intestinal stromal tumors.
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we then investigated the immune infiltration correlates for the 2 locations separately (Figure 4B). In the 
intestine, a higher degree of  infiltration was observed in KIT-mutated tumors versus KIT WT tumors (IIS, P 
= 0.008; TIS, P = 0.006; CYT, P = 0.001). The same held true for PDGFRA-mutated GISTs versus KIT-mu-
tated GISTs in the stomach (IIS, P = 0.005; TIS, P = 0.041; CYT, P = 0.004). In both instances, immune 
infiltration was significantly associated with a greater number of  cytotoxic, Th1, TȖį, and activated dendritic 
cells as well as higher APM and IFN-Ȗ scores (Supplemental Table 4).

The interrogation of  the transcriptome with deconvolution approaches (CIBERSORT and 
MCP-counter) yielded results coherent with ssGSEA. The cumulative scores obtained with CIBER-
SORT and MCP-counter showed a trend of  colinearity with IIS, TIS, and CYT: all algorithms indicated 
that K/P WT tumors were colder in general compared with K/P-mutated GISTs as they were mini-
GISTs compared with overt GISTs (Figure 5A). Moreover, in line with IHC data, an analysis focused 
on KIT-mutated genotypes highlighted the influence of  tumor location on susceptibility to immune 
infiltration: intestinal KIT-mutated tumors featured higher infiltration scores compared with the gastric 
KIT-mutated counterpart (Supplemental Figure 1B and Supplemental Table 4). These patterns were 
observed in both the whole tumor series, including 64 archival FFPE and 13 frozen specimens, and the 
sole FFPE subset of  samples (64 of  77), indicating that the type of  processing did not bias the outcome 
of  these analyses (compare Figure 5A and Supplemental Figure 2). Finally, CIBERSORT, which also 
estimates the relative proportion of  the different immune types within each sample, indicated that M2 
macrophages and T cells (particularly CD8 and CD4 memory resting) were the most abundant immune 
populations, irrespective of  tumor site or mutation status (Figure 5B).

Overall, the consistency of  RNA-sequencing–based analyses with IHC data supported the robustness 
of  transcriptome-based assessment of  immune infiltration and corroborated the notion that tumor geno-
type, malignant potential, and location impinge upon the GIST immunophenotype.

To address the potential susceptibility to immunomodulatory-based treatments of  the different geno-
types, we took advantage of  immunophenoscore (IPS) (25), a machine learning–based classifier based on 
the expression of  HLA genes, immunomodulators, and effector and suppressor cells. This scoring algorithm 
has proved to be effective in predicting the relative sensitivity to immune checkpoint inhibitors in diverse 
tumor contexts (25). After having grouped GISTs according to the driver gene, a gradient in IPS scores was 
observed, with K/P WT tumors featuring the lowest IPS values and PDGFRA-mutated tumors the highest 

Figure 2. Representative CD3 T cells immunostainings. Location and genotypes are indicated (original magnification, ×20).
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IPS values (Figure 5C). These trends were supported by a differential expression in HLA and immune 
checkpoint molecules (Figure 5D). Thus, among GISTs, K/P WT tumors would be less likely to benefit 
from immune checkpoint blockade approaches.

Role of  driver mutations as neoantigens. Given the observed effect of  genotype on tumor immuno-
phenotype, we sought to address the theoretical neoantigenic capacity of  epitopes generated by the 
mutated driver gene. Neoantigen prediction algorithms, although far from being precise, may provide 
hints on the potential binding to patient-matched HLA allelotype of  peptide sequences spanning the 
corresponding driver mutation. In this context, NetMHCpan (26) is the one of  the most widely used 
tools. NetMHCpan predicted that almost all mutations yielded at least one peptide capable of  binding, 
with different strengths, a cognate HLA allele (Supplemental Table 5).

Figure 3. Transcriptional assessment of immune infiltration. The tumor series (n = 77 cases) was dichotomized into contrast groups as indicated and the 
di"erentially expressed genes were interrogated for immune signatures by using GSEA and IPA. The panels on the left show representative GSEA outputs 
(GO biological process) with associated ESs. The histograms on the right show the top 8 most significant IPA canonical pathways and associated z scores. 
Pathways strictly related to immunity are indicated by an asterisk. White bars indicate negative z scores. GSEA, gene set enrichment analysis; IPA, Inge-
nuity Pathway Analysis; ESs, enrichment scores.
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Figure 4. ssGSEA highlights a heterogeneous pattern of immune infiltration in GIST. (A) Unsupervised clustering analysis of the whole GIST series (n = 77) 
based on ssGSEA scores of 24 immune cell types. Hierarchical clustering identifies 3 major groups with di"erent extent of immune infiltration. IIS, TIS, CYT, 
IFN-Ȗ, and APM scores are reported as quartiles. (B) ssGSEA in intestinal (n = 34) and gastric (n = 43) sites analyzed separately highlights the impact of driver 
gene and malignant potential in immune infiltration. Samples are ordered according to increasing IIS. UNK, driver mutation unknown; ssGSEA, single-sample 
gene set enrichment analysis; IIS, immune infiltration score; TIS, T cell infiltration score; CYT, cytolytic activity score; APM, antigen-presenting machinery.
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Because the immunogenic efficacy of  a neoantigen is also affected by the extent of  expression 
of  the mutated peptide, we compared the expression levels of  the driver genes. Whereas KIT and 
PDGFRA transcripts were robustly expressed (median TPM: KIT, 3239; PDGFRA, 2097), BRAF was 
expressed at lower levels (median TPM: 89), which probably influenced its immunogenic power (Sup-
plemental Table 5). Regarding NF1, not only was this gene moderately expressed (median TPM 75) 
but also its alterations were typically frameshift or nonsense mutations that elicited nonsense-mediated 
mRNA decay. Accordingly, neurofibromin is barely detectable/absent in NF1-mutated GISTs (27). 
Thus, NF1 mutations are unlikely to yield immunogenic peptides.

Figure 5. Dissection of geno-
type, location, and malignant 
potential in GIST immuno-
genicity. (A) Heatmap of the 
immune infiltration scores 
calculated with the indicated 
algorithms. Color-coded z 
scores for IIS, TIS (ssGSEA), 
CYT, CIBERSORT absolute 
(abs), and MCP-counter cumu-
lative scores are shown. Sam-
ples are grouped according to 
tumor location, genotype, and 
malignant potential (miniGIST 
and overt GIST). (B) Relative 
proportion of the di"erent 
immune cell types in intes-
tinal (left) and gastric GIST 
(right) calculated by CIBER-
SORT. Mean proportion values 
(%) of the di"erent cell types 
were calculated per each gen-
otype (red line, KIT-mutated 
GIST; black line, PDGFRA-mu-
tated GIST; blue line, K/P WT 
GIST) and reported in a radar 
plot. Dotted and dashed lines 
mark 1% and 10%, respec-
tively. Macrophages M2 and T 
CD4 memory resting are the 
most represented immune cell 
types in both sites. (C) Violin 
plot showing the immuno-
phenoscore of intestinal 
and gastric GISTs arranged 
according to genotype. The 
solid line indicates the median 
value; dashed lines indicate 
upper and lower quartiles. (D) 
Heatmap of APM genes and 
immune modulators in intes-
tinal and gastric GIST. Data 
are presented as color-cod-
ed z scores calculated on 
log2TPM of the whole series 
(for color coding scale, see A). 
IIS, immune infiltration score; 
TIS, T cell infiltration score; 
ssGSEA, single-sample gene 
set enrichment analysis; CYT, 
cytolytic activity score; APM, 
antigen-presenting machinery.
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Pathways involved in differential immune colonization. To gain further insights into the mechanisms impli-
cated in shaping GIST immunogenicity, we compared highly and poorly infiltrated tumors by performing 
GSEA with the MSigDB Hallmark pathway collection. As expected, signaling cascades related to immuni-
ty were markedly enriched in high IIS tumors, whereas low IIS tumors featured a trend of  enrichment for 
the Hedgehog (HH) pathway (enrichment score [ES] = 0.52, P = 0.05) (Figure 6A and Supplemental Table 
6). The enrichment of  the HH pathway was particularly evident in poorly infiltrated GISTs located in the 
intestine (ES = 0.59, P = 0.01), where the WNT/ȕ-catenin signaling (WNT/ȕ-cat) also tended to be more 
represented, although not reaching statistical significance (ES = 0.53; P = 0.24) (Figure 6A).

As a complementary approach to address the potential involvement of  these pathways in scarcely infil-
trated intestinal GISTs, HH and WNT/ȕ-cat pathway activation scores were calculated using both the 
MSigDB gene sets and 2 other, nonoverlapping HH (28) and WNT/ȕ-cat (29) minimal activation signa-
tures. In both instances, the degree of  immune infiltration (IIS) inversely correlated with HH and WNT/ȕ-
cat pathway activation scores (HH MSigDB, r = –0.53, P = 0.02; HH minimal signature, r = –0.49, P = 
0.003; WNT/ȕ-cat MSigDB, r = –0.43, P = 0.01; WNT/ȕ-cat minimal signature, r = –0.36, P = 0.038) 
(Figure 6B and Supplemental Figure 3A).

Furthermore, an RNA-editing event affecting GLI1, a major HH downstream target, was detected 
in a poorly infiltrated K/P WT GIST. This rare RNA-editing phenomenon, consisting in an RNA-only 
nucleotide variation that determines Arg to Gly amino acid change, is known to induce constitutive HH 
pathway activation (30), thus adding further support to the implication of  HH in immune cold GISTs 
(Supplemental Figure 3B).

HH and WNT/ȕ-cat are highly intertwined signaling routes that have been reported to be associated 
with phenomena of  tumor immune exclusion (31–33). Therefore, the activation of  HH and WNT/ȕ-cat 
pathways might impair GIST immune cell colonization by eliciting immune evasion. Intriguingly, both 
pathways appear to be positively regulated by the RAS/RAF/MAPK pathway (34–36) and activation of  
the RAS pathway has also been associated with immune suppression (37, 38). Thus, RAS, HH, and WNT/
ȕ-cat might cooperate to dampen the immunogenicity of  K/P WT intestinal GISTs.

Finally, we were intrigued by the increased expression of  ANO1 (also known as DOG1 or TMEM16A) 
in poorly infiltrated GISTs (log2FC 0.5; FDR < 0.01). ANO1, commonly used as a GIST marker (39, 40), 
encodes anoctamin-1, an anion exchange molecule that has been recently implicated in chemokine/cyto-
kine secretion (41, 42). We found that ANO1 inversely correlated with the extent of  immune infiltration, 
an anticorrelation that was particularly evident in the tumors of  gastric location (ANO1/IIS, whole series: 
r = –0.58, P = 3.4 × 10–8; stomach: r = –0.73, P = 2.0 × 10–7; intestine: r = –0.36, P = 0.04) (Figure 6, C 
and D, and Supplemental Figure 4). The negative correlation between ANO1 and immune infiltration in 
GISTs was also confirmed in an independent, publicly available gastric GIST cohort (43) (E-MTAB-373: 
ANO1/IIS, r = –0.46, P = 0.003).

To gain further insights on the role of  ANO1 in GIST immune colonization, we interrogated the list of  
genes described as differentially expressed following ANO1 silencing in GIST-T1 cells (44). Although the 
limited size of  this data set prevents definitive conclusions, overrepresentation analysis indicated enrich-
ment for immune-related signatures (Figure 6E). Overall, these data point to a possible role for anoct-
amin-1 in modulating tumor immune infiltration.

Discussion
Recent evidence indicates that tumor-infiltrating immune cells populate the microenvironment of  GISTs. A 
number of  IHC studies demonstrated the presence of  lymphocytes and macrophages, with some evidence 
of  correlation with disease progression and response to tyrosine kinase inhibitors (10, 11, 13, 14). A broader 
approach was undertaken by Vitiello and coworkers (12), who combined transcriptional profiling, IHC, and 
flow cytometry to investigate in deeper detail the immune microenvironment of  a large GIST cohort (75 sam-
ples). Compared with KIT-mutated tumors, PDGFRA mutant GISTs were found to feature a greater extent of  
immune infiltration and cytolytic activity, which were associated with increased levels of  chemokines and a 
greater number of  mutation-derived high-affinity neoepitopes. This study primarily focused on gastric tumors, 
and it included a limited number of  small intestinal GISTs (6 of  75) as well as rare genotypes (NF1 and 
BRAF). Moreover, the series analyzed included both primary and metastatic lesions, naive and treated tumors. 
Thus, the innate propensity of  GISTs to immune infiltration and what tumor-specific factors affect this phe-
nomenon, particularly in uncommon entities such as K/P WT tumors, remain to be fully clarified.
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Bearing this in mind, we sought to specifically address GIST-intrinsic immunogenicity by focusing on 
primary imatinib-naive tumors. Our cohort was assembled in a way that the major clinical-pathological and 
molecular variables affecting GIST biology were well represented. This allowed us to unveil that genotype, 
location, and malignant potential concur to shape GIST immune contexture.

The presence of  intratumor immune infiltrate was demonstrated by integrating immunohistochemical, 
transcriptomic, and computational approaches. Macrophages and T lymphocytes appeared as the most 
common infiltrating elements, in line with other studies (11–14, 45).

Figure 6. Pathways involved 
in poorly infiltrated GISTs. 
(A) GSEA analyses indicat-
ing the enrichment of HH 
and WNT/ȕ-catenin MSigDB 
hallmark signatures in immune 
cold GIST (low IIS), compared 
with immune hot GIST (high 
IIS) in the whole series (top) 
and in the intestinal subset 
(bottom). (B) Anticorrelation 
of IIS with HH and WNT/ȕ-cat-
enin activation scores (MSigDB 
Hallmark) in intestinal GIST. 
Color-coded z score values are 
displayed. (C and D) Negative 
correlation between ANO1 
gene expression and immune 
infiltration scores in the whole 
series of 77 cases (C) and in 
intestinal and gastric GIST, 
separately (D). Site, type, 
mitotic index, and driver gene 
are as per indicated color-cod-
ed labels. z Score scale is as 
in B. (E) Reactome pathway 
analysis of the genes di"er-
entially expressed following 
ANO1 silencing in GIST-T1 cells. 
The top most statistically 
significant pathways (–log P 
value, hypergeometric test) 
are shown. Immune-related 
pathways are indicated by an 
asterisk. The input gene list 
was from ref. 44. UNK, driver 
mutation unknown; GSEA, 
gene set enrichment analysis; 
HH, Hedgehog; IIS, immune 
infiltration score.
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GISTs with limited malignant potential (miniGISTs) tended to be less infiltrated compared with overt 
GISTs. This suggests that, in the early phases of  development, despite the gain of  oncogenic KIT or PDG-
FRA mutations, GISTs are relatively immunogenically “silent” and colonization by immune cells somehow 
accompanies malignant progression.

The role of  tumor genotype clearly emerged in both in situ and omics analyses. Specifically, K/P WT 
GISTs turned out to be less infiltrated than K/P-mutated tumors.

Several factors probably contribute to the reduced infiltration observed in K/P WT tumors. These were 
primarily intestinal GISTs carrying BRAF and NF1 mutations, and in silico predictions indicated that these 
mutations were likely had a more limited, if  any (see NF1-inactivating mutations), neoantigenic potential 
compared with KIT/PDGFRA mutations. In addition, the major dependency of  these genotypes on the 
RAS pathway may play a role in lowering immune colonization. In fact, RAS/RAF/MAPK is the main 
signaling route in BRAF and NF1-mutated tumors, whereas in K/P-mutated GISTs the activated kinase 
signals, with variable intensities, through multiple pathways (PI3K/AKT/mTOR, STAT, RAS/RAF/
MAPK) (1). The activation of  the RAS pathway has been shown to correlate with inhibition of  IFNȖ and 
HLA gene expression, thus lessening lymphocyte infiltration and promoting immune evasion (37, 38, 46).

More interestingly, we found that poorly infiltrated intestinal GISTs featured a peculiar activation of  
HH and WNT/ȕ-cat pathways. These are 2 highly interconnected and reciprocally regulated pathways. 
Both intersect the RAS/RAF/MAPK pathway (34, 47) and have been implicated in the pathogenesis of  
RAS-driven tumors (47–50), including GISTs (51–53). Intriguingly, HH and WNT/ȕ-cat pathways are 
known to induce immune exclusion: HH suppresses T cell recruitment by inhibiting CXCL9 and CXCL10 
production (CXCL10 was indeed significantly downregulated in K/P WT intestinal tumors), and WNT/ȕ-
cat activation has been correlated with refractoriness to immune checkpoint blockers (31–33, 54–56).

Taken together, these findings suggest that RAS, HH, and WNT/ȕ-cat likely concur to induce an 
immune silent phenotype to K/P intestinal WT tumors.

In the gastric GIST subset, immune infiltration tended to be greater in PDGFRA-mutated tumors com-
pared with KIT-mutated tumors, in line with previous findings (12). Higher levels of expression of a set of cyto-
kines that can contribute to the recruitment and activation of immune cells were observed in PDGFRA-mutated 
GISTs. In particular, as reported by Vitiello and coworkers (12), these tumors featured elevated expression levels 
of CXCL14, a cytokine that promotes immune surveillance through recruitment of DC, NK, and CD8 T cells 
and upregulates HLA expression (57). In addition, we observed higher levels of immune-attractant CCL2 and 
CCL4. CCL2 has a major role in the recruitment of myeloid cells to tumor site and it has been recently implicat-
ed in GIST macrophage infiltration (58). Interestingly, PDGFR pathway activation has been shown to induce 
CCL2 upregulation in different settings (59–61). The activation of the PDGF pathway has also been shown to 
induce IL33 via SOX7 (62). Accordingly, SOX7 was overexpressed in PDGFRA-mutated versus KIT-mutated gas-
tric GISTs, together with IL33 and IL15. Both IL33 and IL15 can potentiate innate or adaptive immune respons-
es by recruiting and stimulating T or NK cells, respectively (63). Thus, the higher level of immune colonization 
observed in PDGFRA-mutated GISTs seem to relate to the activation of the PDGF pathway.

Besides being less infiltrated than the PDGFRA-mutated counterpart, KIT-mutated gastric GISTs also 
featured a lower extent of  immune infiltration and reduced expression of  immunomodulatory cytokines 
when compared with intestinal GISTs with the same genetic background (KIT mutation). This may be due 
to the specific anatomic microenvironment, but it is also possible that cell-intrinsic factors may be implicat-
ed in the differential immune colonization observed in gastric versus intestinal KIT-mutated GISTs. In this 
regard, interstitial cells of  Cajal, considered the bona fide cell of  origin of  GISTs, show distinctive features 
depending on location, including the expression of  cytokines (64).

Finally, an unprecedented finding was the inverse correlation observed between immune infil-
tration and ANO1 expression, particularly in the tumors of  gastric location. ANO1-encoded protein, 
anoctamin-1, is typically expressed by GISTs, with a diffuse staining pattern generally stronger in 
KIT-mutated and NF1-mutated tumors (39, 40). Anoctamin-1 is a calcium-activated anion channel 
whose chemical inhibition affects GIST cell proliferation and viability (65). Recent evidence also 
implicates this molecule in chemokine signaling (41). In particular, anoctamin-1 has been shown to 
suppress the release of  proinflammatory cytokines, thus hindering the innate immune response (66, 
67). Accordingly, preliminary data suggest that ANO1 silencing in GIST cells alters the expression of  
genes involved in immune-related pathways. Overall these data support the notion that anoctamin-1 
may play a role in tuning GIST immunogenicity, particularly in the gastric subset.



1 2insight.jci.org   https://doi.org/10.1172/jci.insight.142560

R E S E A R C H  A R T I C L E

What are the clinical implications of  this study? Although imatinib and other tyrosine kinase inhibi-
tors are active in controlling tumor recurrence and progression in patients with advanced disease, still 
these treatments are hardly curative. Moreover, K/P WT tumors currently lack targeted therapies. Our 
results suggest that a significant fraction of  K/P-mutated GISTs might benefit from immune-based 
approaches. Specifically, the evidence of  immune colonization by cytotoxic cells and a proficient APM 
together with the expression of  molecules with immune-suppressive functions suggest that immune 
checkpoint-based therapies may unleash an intrinsic antitumor response in these tumors.

In contrast, K/P WT GISTs, in particular BRAF and NF1-mutated GISTs, were found to be essen-
tially immune silent and hence less likely to benefit from immune checkpoint blockade approaches. The 
major dependency of  these tumors on the RAS pathway may represent a therapeutic opportunity, even in 
an immunomodulatory perspective. Indeed, the combination of  MEK and immune checkpoint inhibitors 
proved to enhance antitumor immune response in mouse models of  RAS-driven cancers (38, 68), and 
promising results are being achieved in clinical trials with analogous combinations (38).

More interestingly, our study unveiled a therapeutic vulnerability, namely, the implication of  HH and 
WNT/ȕ-cat immune-excluding pathways. In mouse models, chemical inhibition of  the HH signaling has 
been shown to increase the recruitment of  cytotoxic cells into tumor and dampen immune-suppressive 
innate and adaptive response (32). Moreover, combinatorial treatments of  immune checkpoint inhibitors 
with either HH or WNT/ȕ-cat signaling blockade have demonstrated synergistic effects in diverse tumor 
settings (32, 69–72). Thus, the targeting of  HH or WNT/ȕ-cat pathways in poorly infiltrated GISTs, in par-
ticular K/P WT GISTs, may represent a treatment avenue by both inhibiting intrinsic protumor oncogenic 
signals and alleviating immune suppression, harnessing the immune system to an antitumor attack.

Finally, the intriguing correlation between ANO1 expression and degree of  immune infiltration points 
to an additional possible element of  vulnerability. Several compounds have demonstrated inhibitory activity 
toward anoctamin-1, including FDA-approved drugs (65, 73, 74), and chemical inhibition of  anoctamin-1 
has been shown to affect GIST cell proliferation and survival (65). It would be interesting to evaluate the 
effect of  these compounds on cytokine secretion. Definitively, the implication of  ANO1 in tempering GIST 
immunogenicity is unprecedented and deserves further investigations.

Methods
Samples. Eighty-two adult cases of  primary untreated GISTs were retrieved from the pathology files of  the 
authors’ institutions and reviewed by 3 sarcoma expert pathologists. GIST diagnosis was based on mor-
phology, IHC for CD117 (KIT) and ANO1 (aka DOG1 or TMEM16A), and exclusion of  other entities 
within the differential diagnosis. The series included 57 overt GISTs (≥2 cm; any mitotic index) and 25 
miniGISTs, i.e., very low-risk tumors with low mitotic index (≤5 mitoses in 5 mm2) and small size (<2 cm). 
Risk of  relapse was calculated according the revised version of  Joensuu risk classification (75).

Mutation analysis. DNA extraction and mutation analysis were essentially as previously described 
(4). Briefly, DNA was extracted from tissue sections with a tumor cellularity greater than 70%. Samples 
were first profiled for KIT (exons 9, 11, 13, and 17) and PDGFRA (exons 12, 14, and 18) mutations by 
Sanger sequencing. Samples scoring negative in this analysis were further profiled by using a targeted 
NGS panel that covered the whole coding sequence of  KIT, PDGFRA, BRAF, NF1, SDH A-D, H/K/N 
RAS. The allele frequency of  the mutation was greater than or equal to 30%. SDH deficiency was also 
assessed by SDHB immunostaining.

IHC analysis of  immune infiltrate. Thirty-eight samples were evaluated for evidence of  immune cell infil-
tration. To this end, samples were stained for CD3, CD4, CD8, FOXp3 (T cells), CD20 (B cells), CD68 
(macrophages), and immune checkpoint molecules PD1/PDCD1 and PDL1/CD274. The number of  pos-
itive cells was determined by counting 15 random high-power fields (HPFs) (×400) in a double-blinded 
fashion and expressed as median value per HPF. Further details are provided in Supplemental Methods.

Transcriptome analysis of  immune infiltration. Transcriptional profiling was performed on a series of 77 
GISTs, including 64 FFPE and 13 fresh-frozen samples. RNA purification, library preparation, and bioin-
formatic data analysis are described in detail in Supplemental Methods. Briefly, reads were first checked for 
quality using FastQC and MultiQC (v1.7) (76). Adapter removal and clipping was done with Trimmomatic 
(v0.38) (77). Samples reads were aligned against Homo sapiens genome assembly GRCh38 (hg38) with STAR 
(v2.7.0e) (78). SAMtools (v1.9) (79) was used for merging aligned files. Gene counts were obtained with Cuf-
flinks (v2.2.1) (80). DEseq2 (v3.3) (81) was used for the identification of differentially expressed genes (DEGs).
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Pathway analyses were performed on DEGs using IPA (QIAGEN; www.qiagenbioinformatics.com/
products/ingenuity-pathway-analysis/) and Reactome (82). GSEA (83) was run on either normalized 
counts or TPM using Gene Ontology (c5.bp.v7.0) and the MSigDB Hallmark collection of  molecular 
signatures (h.all.v7.0).

The estimate of  immune cell infiltration from transcriptome data was performed by using diverse com-
putational methods including ssGSEA (21) and deconvolution approaches, namely, CIBERSORT (84) and 
MCP-counter (85). IPS (25) and CYT (23) were calculated as previously described.

NetMHCpan (v4.0) (26) was used to predict the binding of  KIT, PDGFRA, BRAF, and NF1 mutant 
peptides to the patient-matched HLA class I alleles. PHLAT (v1.0) (86) was employed for determining 
patient-matched HLA alleles. The most common HLA alleles in the Italian population (87) were used in 4 
cases in which PHLAT typing failed.

HH and WNT/ȕ-cat pathway activation scores were calculated by averaging (geometric mean) 
log2-transformed TPM values of  the genes composing the corresponding MSigDB hallmark signatures 
(h.all.v7.0) as well as by using 5-gene HH minimal signature reported by Shou et al. (28) and the 16-gene 
WNT/ȕ-cat signature reported by Chang et al. (29). See Supplemental Methods for further details.

Data availability. Raw RNA-sequencing data are accessible at the NCBI-SRA database (https://www.
ncbi.nlm.nih.gov/sra, accession PRJNA637476).

Statistics. Statistical analyses were performed by SigmaPlot 12.0 (SYSTAT). Correlation coefficients 
(r) were calculated using the Spearman’s rank method. The Mann-Whitney U rank-sum test was used to 
compare groups. Statistical threshold was set at P values less than or equal to 0.05.

Study approval. The study was performed in compliance with relevant laws and institutional guidelines 
and was approved by the CRO institutional review board (IRB-04-2017) and by the Marca Ethical Commit-
tee (N. 456/CE). Written informed consent was obtained from all patients.
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ABSTRACT

The Bologna ENZyme Web Server (BENZ WS) anno-
tates four-level Enzyme Commission numbers (EC
numbers) as defined by the International Union of
Biochemistry and Molecular Biology (IUBMB). BENZ
WS filters a target sequence with a combined sys-
tem of Hidden Markov Models, modelling protein se-
quences annotated with the same molecular func-
tion, and Pfams, carrying along conserved protein
domains. BENZ returns, when successful, for any
enzyme target sequence an associated four-level EC
number. Our system can annotate both monofunc-
tional and polyfunctional enzymes, and it can be a
valuable resource for sequence functional annota-
tion.

GRAPHICAL ABSTRACT

INTRODUCTION

In the post genomic era, annotating protein sequences with
functional and structural features is a basic operation for
bridging the gap among the hundred millions chains from
different organisms, made available by deep sequencing and
proteomic projects, and the much smaller number of pro-
teins known with atomic details and with an experimentally
characterised biochemical function (1, 2). The problem of
functional annotation is therefore one of outmost relevance
for the correct assignment of newly generated sequences to
their structural and functional protein family or clan, from
where they can gain some structural and functional char-
acteristics. Indeed, the experiment Critical Assessment of
Functional Annotation (CAFA) (3), since 2010, provides
a large-scale assessment of computational methods devel-
oped to predict protein function as described with Gene On-
tology (GO) terms, according to the three main categories,
Molecular Function, Biological Process and Cellular Com-
ponent (4). Yet, CAFA has no speci!c section on the En-
zyme Commission number (EC number) prediction.

For protein enzymes, the EC number is a traditional
code of the catalysed biochemical reactions, describing
the relationship among the protein activity, substrates,
and products. Presently, ENZYME (5) is the reposi-
tory of information relative to the nomenclature of en-
zymes, based on the recommendations of the Nomencla-
ture Committee of the International Union of Biochemistry
and Molecular Biology (https://web.expasy.org/docs/swiss-
prot guideline.html). Rhea (6), in turn, is the expert-curated
knowledgebase of chemical and transport reactions of bio-
logical interest, based on the chemical dictionary ChEBI,
which describes reaction participants and their transfor-
mations (https://www.rhea-db.org/). In Rhea, reactions are
extensively curated with links to supporting literature and
are mapped to other resources, including the UniProt !le
of each protein enzyme. Presently, the EC code includes
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seven major classes: (i) oxidoreductases, (ii) transferases,
(iii) hydrolases, (iv) lyases, (v) isomerases, (vi) ligases, (vii)
translocases. The EC code may range from one to four
!gures, when the protein catalytic activity is characterised
with atomic resolution. In this case, when possible, the ar-
chitecture of the catalytic site is derived from the protein
structure and archived in speci!c databases, like M-CSA
(https://www.ebi.ac.uk/thornton-srv/m-csa) (7), which also
includes ligands.

In the UniProt reference database for protein sequences,
the annotation of a protein as an enzyme is carried out
whenever the automated work"ow highlights speci!c fea-
tures according to given rules (https://www.uniprot.org/
help/biocuration). The system implements motifs derived
from HAMAP (High-quality Automated and Manual An-
notation of Proteins, https://hamap.expasy.org/), (8) and/or
PROSITE, (a database of protein domains, families and
functional sites, https://prosite.expasy.org/), (9). Feature
discovering includes also the presence of motifs described in
InterPro (10), which provides functional analysis of proteins
by classifying them into families and by predicting domains
and important sites (https://www.ebi.ac.uk/interpro/), and
in Pfam (11), which models protein families with Hidden
Markov Models (HMMs) after multiple sequence align-
ment (https://pfam.xfam.org/). Via transfer of knowledge
and association rules, the enzyme gains an EC number.
Eventually, manual curation allows the enzyme sequence
to move from the TrEMBL to the SwissProt section of
UniProt (https://www.uniprot.org/). EC number annota-
tion in UniProt can include from one to four numbers, rou-
tinely depending on the annotation level of the target pro-
tein.

Other databases, by integrating different sources of in-
formation, comprising UniProt and PDB, offer a complete
annotation for enzymes, such as BRENDA, (12), (https://
www.brenda-enzymes.org/index.php) and CATH (https://
http://www.cathdb.info/) (13). BRENDA, established in
1987, has evolved into a main collection of curated func-
tional enzyme and metabolism data, supported by links to
literature and continuously updating (12). CATH, in turn,
is a free, publicly available online resource that provides in-
formation on the evolutionary relationships of protein do-
mains. Created in the mid-1990s, it is also continuously up-
dated. In its section FunFams, it allows the search of a target
sequence and returns a functional annotation with EC num-
ber, after protein domain annotation modelled by a system
of HMM hierarchical architectures. CATH is also part of
InterPro and contributes therefore to the main annotation
system of UniProt (https://www.ebi.ac.uk/interpro/).

As an alternative to transfer of knowledge, ab-
initio computational approaches can give direct
prediction/annotation of an EC number for a given
input sequence or structure. This approach requires ex-
ploring the complex rules of associations among enzyme
sequential and structural features and the EC codes.
Methods, mainly based on different types of statistical and
machine learning methods, adopt different input features,
and predict EC numbers ranging from one to four levels,
although with an ef!ciency decreasing at increasing number
of levels (for an extensive review, see (14)). More recently,
ECPred (15) implements an ensemble of machine learning

methods based on EC nomenclature and outperforms
DEEPre, based in turn on an end-to-end feature selection
and a classi!cation model training approach (16). Both
methods declare a decrease in ef!ciency when predicting
four-level EC numbers.

A major problem in annotating EC codes remains their
speci!city (four-level EC codes) and the EC assignment to
polyfunctional enzymes. Here, to address this problem, we
develop BENZ, a system including two main sets of HMMs.
One set is meant to detect sequence conservation of the tar-
get towards functional families, and the other conservation
of structural architectures and family domains as described
by Pfam models. The information derived from the inter-
play of the two different types of HMMs allows, in our case,
a direct prediction of a four-level EC code for monofunc-
tional enzymes. The system can also associate four-level EC
codes to polyfunctional enzymes.

MATERIALS AND METHODS

Databases

BENZ is presently updated with UniProt/SwissProt re-
lease 2021 01. A previous version of BENZ, based on
UniProt/SwissProt release 2019 11 was used in order to
generate a system for CAFA-like validations. Links to
Pfam (11) and KEGG (17) databases are derived from the
UniProt releases. Fragments and sequences shorter than 50
residues are not considered. Annotations of active, metal,
ligand-binding sites (when available) are also derived from
UniProt and mapped into the Pfam architecture of the en-
zyme proteins.

Graph building, clustering and cluster HMM generation

The procedure stands out from a previously implemented
work"ow, which we adopted to generate and update
our BAR 3.0 (Bologna Annotation Resource, https://bar.
biocomp.unibo.it/bar3/), a protein functional and struc-
tural annotation resource (18). Brie"y, all the UniProt
sequences of a speci!c release (in this case, UniProtKB
2019 01) are compared with BLAST (https://www.ncbi.
nlm.nih.gov/), and then clustered by constraining sequence
identity (SI) and alignment coverage (COV, the ratio be-
tween the number of overlapping positions and the align-
ment length). A graph is built by connecting sequence pairs
that ful!l both identity and coverage constraints. Here, we
adopt (SI) ≥50% on an alignment coverage (COV) ≥90%.
Clusters are obtained by isolating the connected compo-
nents of the graph. For updating, we use UniRef90 clusters
(https://www.uniprot.org/help/uniref) which are mapped to
BAR clusters, following the procedure outlined before (18).
This allows the inclusion of the remaining TrEMBL se-
quences, and the AlignBucket algorithm (20) speeds up
the alignment procedure, exploiting the constraint on COV.
Each sequence in the cluster retains the annotation present
in the UniProt !le (PDB with the highest coverage and res-
olution when available, Pfam/s, KEGG links and four-level
EC codes, when present). Our system allows updating (18),
by adding new sequences and by reshaping clusters accord-
ingly, with the inclusion of new annotations from UniProt.

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/article/49/W

1/W
60/6272415 by guest on 24 August 2021



W62 Nucleic Acids Research, 2021, Vol. 49, Web Server issue

From this background architecture, we retain only clus-
ters containing sequences associated to four-level EC codes,
particularly clusters containing SwissProt manually curated
sequences, and TrEMBL sequences with an associated PDB
!le. For each cluster, we then trained a cluster HMM, with
HMMER 3.3.2 (http://hmmer.org/, (20)), on the cluster spe-
ci!c multiple sequence alignment, as computed with Clustal
Omega (21). The present version of BENZ WS, for technical
reasons includes Cluster HMMs with average lengths rang-
ing from 50 to 5000 residues, and this sets the limit of the
query sequence to about 5000 residues.

Reference sequence selection and cluster HMM coloring
scheme

For each cluster HMM, we select the best annotated
sequence/s to be reference sequence for the cluster HMM-
EC number/s association with the following constraints:
for SwissProt sequences, chains with the highest annota-
tion score; for TrEMBL sequences, only those with a four-
level EC number and a PDB association. Each reference
sequence is then associated to its speci!c Pfam architec-
ture, and eventually relevant sites (including active, ligand
and metal binding sites) are mapped into the correspond-
ing Pfam/s. Cluster HMM are then grouped into two cate-
gories. GOLD cluster HMMs are univocally associated to
one reference sequence, and BLUE cluster HMMs are as-
sociated to more than one reference sequence.

BENZ implementation

BENZ includes cluster HMMs and Pfam models (Pfam ver-
sion 33.1). When a target sequence enters the server, it is !l-
tered by the two different sets of models. Within the cluster
HMMs, when retained (threshold for inclusion is E-value
≤ 10−5), the sequence !nds a reference template; within
the Pfam models, when retained (threshold for inclusion is
E-value≤10−4), it gains an architecture. The inclusion E-
values were chosen after a self-consistency test (the predic-
tion of the whole set of reference sequences).

This architecture is then compared to that of the refer-
ence and the target is endowed with the four-level reference
EC number only when its architecture is at least equal to
that of the template. If not, the four-level EC number is at-
tributed on the basis of a common Pfam, containing rele-
vant sites (active, metal binding, ligand binding sites). The
general scheme of BENZ annotation system is depicted in
Figure 1. When the retaining cluster HMM is plurivocally
associated to more than one reference sequence, a dendro-
gram is generated after multiple sequence alignment with
Clustal Omega (21), including the query sequence, which is
associated with the EC code/s of the most similar among
the references.

Web server

The BENZ web server interface is optimized to work with
common web browsers, including Chrome 88.0, Firefox
83.0, Edge 88.0 and Safari 14.0. Upon submission, jobs
are processed asynchronously adopting an internal queuing
service based on Sun Grid Engine. Submitted sequences are

Figure 1. Work"ow of BENZ WS. For a query sequence, in FASTA for-
mat, the annotation procedure starts with HMM !ltering. If the retain-
ing HMM is plurivocally associated to different references sequences (blue
star), a dendrogram is generated to !nd among the reference sequences
the most similar one to the target. Otherwise (yellow star), the target is
associated to the only reference. The EC number-query sequence associa-
tion is then made after evaluating if the reference protein architecture (Ref
Seq Arch) is contained (⊆) in that of the predicted target Pfam architecture
(Query Pred Arch), focusing on Pfams carrying relevant sites. Pfams in our
system are annotated when possible, with the positions of the active site,
ligand binding site and metal binding site (relevant sites). A sequence fea-
ture viewer allows the user to verify whether the query sequence conserves
the residues relevant to the protein catalysis for validating the transfer of
annotation from the reference sequence. Links to the reference sequence
UniProt/SwissProt !le, structure PDB !le and Pfam entries, together with
KEGG identi!ers and pathways are also present in the output (see HELP,
https://benzdb.biocomp.unibo.it/help).

aligned against the cluster HMMs and Pfam libraries with
HMMer 3.3.2 (20). User is provided with a link to a static
web page that will display results upon job completion. The
page is updated every 30 s. Results are routinely returned
within 1 minute since the submission. Longer times may be
needed for sequences longer than 3000 residues.

When criteria described in Figure 1 are ful!lled, the re-
sult page returns the EC annotation as derived from the
best matched reference sequence. The ‘Best match’ section
also reports the PDB structure of the reference (when avail-
able), the Pfam architectures of both query and reference se-
quences and the type of HMM-reference association, either
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univocal (GOLD star) or plurivocal (BLUE star). More de-
tails are provided in the ‘Data’ section, including the list of
cluster HMMs scoring with E-value ≤10−5, the associated
reference sequences and the links to IntEnz (https://www.
ebi.ac.uk/intenz/), UniProt, PDB, Pfam and KEGG. Tabu-
lar data are represented with DataTables (https://datatables.
net/), allowing to sort rows with respect to any column key
and to search for text occurrences in the table. Links are
resolved with the Identi!ers.org service (22) to improve in-
teroperability.

For plurivocal clusters, the dendrogram, in Newick for-
mat, representing the distances among the query and the
reference sequences is computed with Clustal Omega (21)
and visualized with the Bio.Phylo module of Biopython
(23). The Pfam domains mapped on the query sequence
are listed in the ‘Predicted Target Architecture’ table and
graphically represented with tracks displayed by means of
the Pviz.js library (24). Graphic view also enables to inves-
tigate the conservation of active, metal-binding, and ligand-
binding sites between the query and the reference sequences.
The web server is freely accessible without registration at
https://benzdb.biocomp.unibo.it.

RESULTS

BENZ statistics

In the present version, our annotation system comprises 16
593 reference sequences (93.6% from SwissProt), from 891
organisms, included in 12 612 cluster HMMs (Table 1). Our
system can annotate 5136 four-level EC numbers by means
of a target-reference sequence association (Figure 1). This
can be found by !ltering the target with cluster HMMs and
by associating the predicted target architecture to that of
the reference sequence (Figure 1). When more than one ref-
erence is present in the retaining cluster HMM, a dendro-
gram, including the target and the cluster HMM references,
allows !nding the closest reference to the target. The !nal
comparison among the predicted target architecture and the
reference selected one, allows or not the association of the
target with the EC number of the reference. In BENZ, 16%
of the clusters HMMs (BLUE) are endowed with more than
one reference sequence, including 6798 reference sequences
(36% of the references, Table 1).

The reference sequence architectures comprise 4158 Pfam
models, 1758 of which map relevant sites (active, ligand and
metal binding) for testing the target vs reference conserva-
tion of the functional activity. 7601 reference sequences are
linked to 9382 KEGG pathways.

BENZ comprises also 2023 polyfunctional reference se-
quences (96% from SwissProt), for a total of 1589 four-level
EC numbers, included in 1485 cluster HMMs (907 GOLD
and 578 BLUE). The distribution of the polyfunctional ref-
erence sequences (Supplementary Table S1S and Supple-
mentary Figure S1S) indicates that the number of EC codes
per sequence ranges from 2 to 9, following the UniProt an-
notation. Their associated architecture includes from one
to 26 Pfam models, for a total of 1156 Pfam entries. Poly-
functional reference enzymes have relevant sites mapped
into 725 Pfam entries and 1082 polyfunctional reference se-
quences link 2627 KEGG pathways.

BENZ at work

BENZ is tested against different protein sets (Table 2).
Firstly, we run two different sets of proteins not included
in our reference sequences: a positive (sequences annotated
in SwissProt with a four-level EC code) and negative (se-
quences annotated in SwissProt without a four-level EC
code). Results indicate that the system has a good ef!ciency
in assigning four-level EC codes (92.4%) and in rejecting
non-enzyme proteins (95.1%). A similar good ef!ciency is
detected when testing two other sets, one comprising poly-
functional enzymes from SwissProt and the other including
human sequences endowed with EC numbers downloaded
from TrEMBL.

CAFA-like validation

The performance assessment of our method was carried out
running an in-house CAFA-like benchmark. To this aim,
we simulated a time-challenge experiment by computing EC
annotation acquired in the time elapsed between two distant
releases of SwissProt. As reference sets, we used SwissProt
releases 2019 11 (t0: 11 December, 2019) and 2020 03 (t1:
17 June 2020). A BENZ test version was implemented us-
ing only sequences and annotations of the former release.
Positive and negative benchmark datasets were compiled
by comparing the functional annotations available in the
two releases. The positive dataset consists of proteins non-
annotated for EC at t0 but endowed with a four-level EC
annotation at t1. Fragments were excluded. The full positive
dataset therefore consists of 607 proteins not included in the
ground-truth dataset of the BENZ-WS test version and en-
dowed with a four-level EC number out of the seven main
EC classes. For sake of comparison with methods not han-
dling the EC 7 class (translocases), we considered a reduced
dataset comprising 366 enzyme sequences labelled with EC
codes from classes 1 to 6.

The negative dataset contains 1034 non-fragment pro-
teins that, from t0 to t1, acquired a Gene Ontology (GO)
annotation for Molecular Function (MF) different from
GO:0003824 (catalytic activity) and its descendants, and
that are not endowed with an EC number at any level.

We then assessed the performance of the BENZ testing
version (built only on sequences and annotations available
at t0) in discriminating enzymes from other proteins and in
assigning the EC annotation. We computed different scor-
ing measures, including the True Positive Rate (TPR), eval-
uating the fraction of correct predictions at different EC lev-
els, the False Negative Rate (FNR) scoring the number of
enzymes in the positive dataset predicted as non-enzymes
and the False Positive Rate (FPR) scoring the number of
negative proteins predicted with an EC number (Table 3).

On the full dataset (Table 3, !rst row), BENZ reaches
FNR and FPR values of 12.2% and 3%, respectively, indi-
cating a good ability in discriminating enzymes from other
proteins. The correct EC number assignment (TPR) is equal
to 85% on four-level annotations, and slightly higher when
less detailed levels of annotation are considered. When the
seventh Enzyme class is !ltered out in the reduced data set
(about 40% of the proteins), BENZ WS is still scoring with
good values of FNR and FPR (second row in Table 3), high-
lighting the robustness of the method.
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Table 1. BENZ statistics

EC 1 EC 2 EC 3 EC 4 EC 5 EC 6 EC 7 Total

EC numbersa 1437 1550 1034 595 254 189 77 5136
Cluster HMM 1758 5116 3755 1006 637 636 288 12 612
Cluster HMM GOLD 1326 4315 3190 800 497 496 218 10 547
Cluster HMM BLUE 432 801 565 206 140 140 70 2065
Ref Seqb 2752 (390) 6455 (990) 4582 (729) 1348 (324) 842 (145) 883 (105) 405 (14) 16 593 (2023)
Ref Strb 1230 (152) 2252 (253) 2100 (213) 625 (110) 333 (41) 287 (22) 149 (5) 6798 (618)
Pfamc 682 (429) 1923 (769) 1672 (711) 463 (321) 294 (190) 276 (133) 143 (50) 4158 (1758)
KEGG IDd 2390 5908 3770 1185 799 894 343 14 745
KEGG Pathwayd 2758 4812 2628 1972 952 1266 317 9382
Organismse 15 158 200 13 20 187 232 1 193 15 165 208 1 135 13 125 141 4 16 109 83 6 18 119 53 12 7 57 47 24 261 391 2 213

Arc Bac Euk
Vir

Arc Bac Euk
Unk Vir

Arc Bac Euk
Unk Vir

Arc Bac Euk
Vir

Arc Bac Euk
Vir

Arc Bac Euk
Vir

Arc Bac Euk Arc Bac Euk Unk
Vir

aFour-level EC numbers are distributed according to the 7 EC classes: EC1-Oxidoreductases, EC2-Transferases, EC3-Hydrolases, EC4-Lyases,EC5-Isomerases, EC6-Ligases, EC7-
Translocases.
bRef Seq and Ref Str: number of reference sequences, and reference sequence with structure, respectively; number of polyfunctional enzymes are within brackets.
cPfam: models from Pfam (https://pfam.xfam.org); within brackets Pfams, where relevant sites (active, metal, ligand binding site) are annotated.
dKEGG ID: from UniProt annotation; KEGG pathway: from https://www.genome.jp/kegg/.
enumber of organisms detailed for each kingdom. Arc: Archaea; Bac: Bacteria; Euk: Eukaryota; Oth: Others; Vir: Viruses. Unk: unknown. Annotation source: UniProt. Grand Total: 891.

Table 2. BENZ at work

Dataset Sequences (#) Acce (%) FNRf (%) FPRg (%)

Positivea 197 880 92.4 3.9 -
Negativeb 12 315 95.1 - 4.9
Polyfunctionalc 10 764 93.7 5.0 -
TrEMBL-humand 10 024 93.4 5.6 -

aPositive: the positive set contains complete SwissProt sequences without
any PDB counterpart and annotated with only four-level EC number.
bNegative: the negative set comprises complete SwissProt sequence with a
PDB counterpart, without EC codes.
cPolyfunctional: the set includes complete SwissProt sequence that are an-
notated with two or more four-level EC numbers.
dTrEMBL-human: the set contains complete TrEMBL sequences from
Homo sapiens annotated with a four-level EC number.
e Acc (Accuracy) measures the number of proteins correctly assigned. For
sets containing positive examples, it corresponds to the True Positive Rate
as evaluated at the level of four: EC annotation. For the negative set, it
corresponds to the True Negative Rate.
fFNR (False Negative Rate) measures the percentage of enzymes predicted
as non-enzymes.
gFPR (False Positive Rate) measures the percentage of non-enzymes pre-
dicted as enzymes.

We then compared BENZ with three state-of-the-art
tools: ECPred (15), DEEPre (16) and EFICAz2.5 (25). Only
the reduced positive dataset was adopted since the selected
methods do not consider the seventh EC class. Results indi-
cate that BENZ outperforms the other tools in this bench-
mark (Table 3). TPR values of BENZ WS range from two-
fold up to four-fold those obtained by the other predictors,
increasing at increasing levels of EC. Concomitantly, BENZ
WS FNR values overpass other predictors values by at least
two or three times those of the other predictors (Table 3,
FNR column).

In the reduced set, BENZ achieves a better discrimina-
tion than the other methods (FNR) and a better EC as-
signment sensitivity, with a TPR value ranging from 79.2%
to 75% at increasing level of predicted EC (Table 3, TPR
columns), and it signi!cantly overpasses the second best-
scoring method (DEEPre, 16). As to the correct recogni-
tion of non-enzymes (column FPR, Table 3), DEEPre and
EFICAz2.5.1 show a better performance, which in turn

is counter-balanced by a low ability to recognise enzymes
(TPR values).

DISCUSSION

A major problem in addressing EC code annotation is due
to the different levels of speci!city that the code carries.
Only the complete four-level annotation fully characterises
the protein biochemical activity. However, due to evolution,
different active site architectures can catalyse the same bio-
chemical activity and/or the same active site can bind dif-
ferent substrates (26). These dif!culties may hamper the EC
direct association to the protein sequence and rather suggest
a direct prediction of GO terms, like in the CAFA experi-
ments (3).

Here, we tackled the problem of the association of pro-
tein sequence with four-level EC code/s taking advantage
of two different types of HMMs. One, the cluster HMM
derives from a hierarchical clustering procedure that we
adopted before for generating a system (BAR 3.0) suited to
a general-purpose protein annotation and based on a rigor-
ous and statistically validated transfer of annotation. Clus-
ter HMMs model sequences, which have been clustered af-
ter constraining their identity (≥50%) over 90% of the align-
ment length. By this, cluster HMMs retain sequences that
pairwise share a high level of similarity over a large portion
of the alignment length, although belonging to different or-
ganisms. Furthermore, they may conserve relevant sites in
speci!c Pfam domains. Among the cluster-sequences, we se-
lect one reference sequence (the one with the highest score
of annotation) and de!ne its architecture by mapping Pfam
domains to the chain. When present, all the relevant sites
(active, ligand and metal binding) are also mapped to the
corresponding Pfam domain/s. Finally, we associate each
representative, its architecture and EC code/s to a more
general representation, casted into the cluster HMM. In-
deed, structural matching for gaining the EC code of the
representative reference is checked by comparing the target
predicted architecture and the reference one.

Testing BENZ on selected sets of proteins (Table 2) in-
dicates that the system correctly rejects (97%) non enzymes
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Table 3. BENZ benchmarking

Method Data seta TPRf (%) 1 level TPRf (%) 2 level TPRf (%) 3 level TPRf (%) 4 level FNRg (%) FPRh (%)

BENZ WSb Full 87.5 87.5 87.5 85.0 12.2 3.0
BENZ WSb Reduced 79.2 79.2 79.2 75.1 20.2 3.0
ECPredc Reduced 43.7 34.7 23.8 13.1 45.6 12.2
DEEPred Reduced 38.8 35.2 27.9 20.8 51.1 2.4
EFICAz2.5.1e Reduced 33.6 33.1 31.1 16.7 63.7 1.6

aBenchmark datasets are extracted by comparing SwissProt releases 2020 3 and 2019 11. The full dataset includes 607 proteins that have gained EC
annotation (7 EC classes); the reduced dataset includes a subset of 366 enzyme sequences without EC codes of the seventh class for comparing with the
other predictors. Both datasets comprise 1013 non-enzyme sequences as negative examples.
bA BENZ WS version including only sequences and annotations available in the SwissProt release 2019 11 has been used for this test.
cECPred (15) has been downloaded from https://github.com/cansyl/ECPred and run in-house; it does not provide multiclass predictions and the best match
between the output and the list of EC numbers has been considered for multiclass enzymes. It does not include enzymes of for EC class 7.
dDEEPre (16) predictions have been run on the webserver http://www.cbrc.kaust.edu.sa/DEEPre/ in modality ‘I’m not sure the sequence is an enzyme’; it
does not provide multiclass predictions and the best match between the output and the list of EC numbers has been considered for multiclass enzymes. It
does not include enzymes of the EC class 7.
eEFICAz2.5.1 (25) has been downloaded from https://sites.gatech.edu/cssb/e!caz2-5/ and run in-house; it does not include enzymes of EC class 7.
fTPR (True Positive Rate) measures the number of enzymes assigned to the correct EC class. TPRs have been evaluated at the level of four-level EC
annotation.
gFNR (False Negative Rate) measures the percentage of enzymes predicted as non-enzymes.
hFPR (False Positive Rate) measures the percentage of non-enzymes predicted as enzymes.

and that it is ef!cient in retaining never seen before enzyme
sequences (Table 3). BENZ will eventually assign only EC
codes present in the system as speci!c four-level EC-Cluster
HMM-reference sequence association. This will be taken
care of with new BENZ releases, following new UniProt re-
leases.

When BENZ is benchmarked with other EC predictors,
based on !rst structural principles or machine and deep
learning methods, it is superior (Table 3). Predictors, which
we found available, are based on different methods and
not directly comparable. However, their poor performance
on the speci!c task of EC code prediction, including poly-
functional enzymes, suggests that !ne-tuning of the protein
functional family representation is necessary and that ma-
chine learning, including end-to-end models, poorly cap-
tures it.

We introduce BENZ as a reliable method for transfer of
knowledge after generalisation over subsets of proteins be-
longing to speci!c functional and structural families.

DATA AVAILABILITY

BENZ WS is freely available as a web server at the following
URL: https://benzdb.biocomp.unibo.it/.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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Abstract: MTHFR deficiency still deserves an investigation to associate the phenotype to protein
structure variations. To this aim, considering the MTHFR wild type protein structure, with a catalytic
and a regulatory domain and taking advantage of state-of-the-art computational tools, we explore
the properties of 72 missense variations known to be disease associated. By computing the thermody-
namic DDG change according to a consensus method that we recently introduced, we find that 61% of
the disease-related variations destabilize the protein, are present both in the catalytic and regulatory
domain and correspond to known biochemical deficiencies. The propensity of solvent accessible
residues to be involved in protein-protein interaction sites indicates that most of the interacting
residues are located in the regulatory domain, and that only three of them, located at the interface of
the functional protein homodimer, are both disease-related and destabilizing. Finally, we compute
the protein architecture with Hidden Markov Models, one from Pfam for the catalytic domain and the
second computed in house for the regulatory domain. We show that patterns of disease-associated,
physicochemical variation types, both in the catalytic and regulatory domains, are unique for the
MTHFR deficiency when mapped into the protein architecture.

Keywords: MTHFR deficiency; MTHFR variants; functional annotation; structural annotation; dis-
ease related variations; solvent accessibility; DDG predictions; consensus method; protein-protein
interactions; disease HMM models

1. Introduction

The one-carbon metabolism cycle, including the folate and methionine cycles, is a criti-
cal pathway for cell survival. The human enzyme methylenetetrahydrofolate reductase (en-
coded by the gene MTHFR, UniProt code: P42898)) exchanges one-carbon unit from the fo-
late to methionine cycle. This is exclusively used for methionine and S-adenosylmethionine
(SAM) synthesis, and MTHFR is the rate-limiting enzyme in the methyl cycle, undergoing
allosteric inhibition by its end product SAM (S-Adenosil-Methionine) [1–4]. The protein is
functional in its homodimeric form [5].

MTHFR catalyzes the conversion of 5,10-methylenetetrahydrofolate to 5-methyltetrahy-
drofolate, a co-substrate for homocysteine re-methylation to methionine (EC number:
1.5.1.20). The recent release of its structure (PDB code: 6FCX, 0.25 nm resolution) high-
lights the organization of the protein into two flexible domains, one catalytic and one
regulatory, with a connecting linker allowing domain-domain interactions, possibly due
to a phosphorylation cascade. The structure clarifies the molecular mechanism of the
reaction, which requires FAD as a cofactor, NAD(P)H to provide reducing equivalents and
homodimerisation for allosteric regulation upon SAM binding at the regulatory domain [6].
The 36-residue N-terminal portion is not resolved in the available PDB file and MobiDB
predicts only here a flexible region (https://mobidb.bio.unipd.it/P42898 accessed on 10
October 2021). The PDB contains the homodimeric protein organization.

Int. J. Mol. Sci. 2022, 23, 167. https://doi.org/10.3390/ijms23010167 https://www.mdpi.com/journal/ijms
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MTHFR deficiency and upregulation result in various disease states, which have
been extensively described in relation to a number of variants characterized in many
studies. 109 MTHFR mutations have been reported in 171 families, including 70 missense
mutations, 17 that primarily affect splicing, 11 nonsense mutations, seven small deletions,
two no-stop mutations, one small duplication, and one large duplication [7]. Two other
variants, A222V and E429A, distributed worldwide in the population, are characterized by
a reduced enzymatic activity, and are associated to different risk factors [8,9]. Variations,
reducing the MTHFR activity to different extents, result in hyperhomocysteinemia and
varying severities of disease, including ischemic stroke, folate sensitive neural tube defects
and schizophrenia [1]. Evidently, the protein is also an attractive drug target [10]. All
known missense variations are distributed in the three-dimensionally resolved catalytic
and regulatory domains.

In this study, we are interested in exploiting with computational tools the structural
properties of the protein missense variations associated to the disease to highlight possible
mechanisms of protein destabilization due to residue change. To this aim we first map
disease variations on the protein structure in relation to their solvent accessibility and
compute for the accessible variations their likelihood of being involved in protein-protein
interactions. We also compute the Gibbs free energy change (DDG) for each variation with
a consensus method and find that positions 387 (G387D), 506 (Y506D) and 628 (L628T) of
the protein homodimeric interface at the level of the two regulatory domains, besides being
correctly predicted as interaction sites, are also destabilizing the protein homodimer. This
corroborates the relevance of the interaction of the two regulatory domains for the stability
of the functional protein. We then grouped all the disease-related variations according
to their physicochemical types and mapped them into the computed HMM modelled
architecture of the protein. By this we establish a link among protein domains and variation
types, which is a unique marker of the MTHFR deficiency.

2. Results

Application of state-of-the art tools for functional annotation of a protein is common
routine in the field of computational biology. Here, having the solved structure of the
MTHRF gene, we aim at highlighting possible structural properties of the missense vari-
ations associated to the deficiency, and most cases associated to a decreased biochemical
efficiency. Our goal is to relate computational properties, such as solvent exposure, being
an interaction site and promote protein instability, to their annotation of being disease-
associated. This highlights some interesting properties of the disease related variations and
in turn benchmarks tools in the difficult task of their prediction.

2.1. MTHFR and Protein-Protein Interactions

Large scale experiments of interactomics indicate that human MTHFR interacts with
many specific partners. BioGRID (https://thebiogrid.org/ accessed on 10 October 2021),
the Database of Protein, Genetic and Chemical Interactions, lists 33 physical interactors,
22 of which are also present in IntAct (https://www.ebi.ac.uk/intact/ accessed on 10
October 2021), the other molecular data base collecting data from large scale experiments.
It is worth noticing that none of the enzymes involved in the folate and methionine cycles
are present among the physical interactors, and that many membrane and nuclear proteins
are in the interacting protein pool. Why this is so perhaps deserves more experiments, and
it can be interpreted considering the presence of MTHFR in different cell compartments,
including its putative interaction with mitochondria, endoplasmic reticulum, and the
nucleus [1]. For the time being, we can compute the likelihood of solvent-exposed residues
to be in contact with a putative partner. We adopt our ISPRED4 predictor [11], which
is based on machine learning, and it is specifically suited to compute the likelihood of
an exposed residue to be involved in a protein contact. We compute 44 interacting sites
in the protein structure (see Supplementary Material Table S1 for details), 17 of which
are at the interface between the two regulatory domains of the homodimer. Many of the
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interactions reported in the databases are likely to be non-obligate and therefore different
interactions can involve the same sites, in different compartments and phases of the cell
lifespan. This can be considered the reason why the number of interaction sites as derived
from a structure rarely coincides with the number of interactors as derived from large scale
experiments. In the following, our interest is on disease-related variations which are in
interaction sites and whose functional annotations are already documented (Table 1).

In Figure 1, predicted contacts are represented with hard spheres centered on the
C-alpha atom of the specific residue. The color code follows the organization of the protein
in the catalytic (yellow) and regulatory (pale blue) domain, inclusive of the linker region [6].
The bound FAD and SAH molecules, present in the protein crystal (6FCX), are also shown
for clarity, and their binding sites are relevant for protein catalytic activity.

Figure 1. Protein-protein interaction sites predicted with ISPRED4 [10] on the MTHFR PDB 6FXC.
The catalytic and regulatory domains are depicted in yellow and pale blue, respectively. Interaction
sites are represented with hard spheres centered on the C-alpha atom of the specific residue. Grey
spheres are residues in the homodimeric interface, correctly predicted as interaction sites.

Interestingly enough, we correctly predict the interface region of the homodimer (hard
spheres in grey). Other predicted PPI sites are distributed in different regions of the protein
surface. These residues are candidates for taking part in the interaction with the 33 proteins
reported in the IntAct and BioGRID databases. Only in position 387 (G387D), 506 (Y506D)
and 628 (L628T) of the homodimeric interface at the level of the regulatory domain do the
predicted interaction sites coincide with missense variations associated with the MTHFR
disease. These variations are also predicted as destabilizing (see below). This observation
finally highlights the role of the regulatory domain interactions not only in being part of
the protein functional stability, but also in playing a role in the disease [5].

2.2. MTHFR and Protein Stability

We can investigate whether disease-related missense variations are related to protein
instability. To this aim, we adopt a consensus method, computing (with three state-of-the-
art methods) the Gibbs free energy change (DDG) associated with a specific variation in the
protein. We select a consensus method, given the variability of the different methods in
predicting the DDG values [12], and adopt three of the art methods: INPS-MD [13] is based



Int. J. Mol. Sci. 2022, 23, 167 4 of 9

on machine learning, FoldX [14] on statistical potentials, and PoPMuSiC2 [15] on statistical
potentials and machine learning.

Table 1. MDHFR deficiency-related variations.

DDG (kcal/mol)

Variation Effects INPS3D FoldX PoPMuSiC2 ISPRED4 RSA (%)

Catalytic Domain

R46Q No effect on NAD(P) affinity �0.76 �0.26 �1.05 N 29
R46W No effect on NAD(P) affinity �0.5 �1.04 �0.35 N 29
R51P �1.24 �1.13 �1.47 N 49

R52Q Reduced affinity for NAD(P) �1.06 0.08 �0.77 N 23
W59C �1.59 �3.58 �2.52 N 2

W59S �2.67 �3.92 �3.3 N 2

P66L NAD(P) binding site �0.46 �4.09 �0.01 N 20

R68G Reduced affinity for NAD(P)
NAD(P) binding site �0.92 �0.40 �0.59 N 96

R82W No effect on NAD(P) affinity �0.66 0.2 �0.81 N 44
A113T No effect NADPH �1.17 �1.44 �1.71 N 0

A116T �0.65 �2.29 �1.95 N 0

H127Y FAD binding site �0.18 1.37 �0.33 N 5

T129N
Reduced affinity for NAD(P)

FAD binding site
�1.17 �1.37 �0.81 N 7

C130R No effect on NAD(P) affinity �1.99 �16.08 �1.34 N 1

T139M �0.34 0.83 0.29 N 18
Q147P �0.46 �2.95 �0.91 N 73
G149V �1.02 �13.0 �3.26 N 2

I153M No effect on NAD(P) affinity �1.56 0.18 �1.71 N 1

R157Q No effect on NAD(P) affinity
FAD binding site �1.31 �0.72 �0.57 N 25

A175T Reduced affinity for NAD(P)
FAD binding site �1.13 �0.73 �0.54 N 8

H181D �1.79 �2.23 �1.5 N 10

R183Q No effect on NAD(P) affinity �1.48 �3.34 �0.82 N 16

C193Y �1.19 �10.91 �0.03 N 17

A195V Reduced affinity for NAD(P)
FAD binding site �0.43 0.39 0 N 11

G196D Reduced affinity for NAD(P) �1.08 �3.26 �1.18 N 2

P202T FAD binding site �0.73 �1.57 �0.16 N 68
V218L Decreased affinity for FAD �1.00 �0.42 �0.42 N 12

A222V * Decreased affinity for FAD �0.71 �1.08 �0.09 N 11
I225L No effect on NAD(P) affinity �1.32 �0.57 �1.17 N 0

T227M �1.58 �2.9 �0.14 N 1

P251L �0.56 0.62 �0.68 N 38
V253F Reduced affinity for NAD(P) �0.82 �1.26 �1 N 0

P254S No effect on NAD(P) affinity �1.22 �3.7 �0.86 N 0

G255V �0.55 �2.81 0.33 N 1
I256N �3.24 �3.27 �2.47 N 1

F257V �1.34 �1.61 �1.83 N 11

L323P
Substrate binding site

NAD(P) binding site
�2.19 �4.95 �1.94 N 32

N324S �0.77 �3.52 �1.92 N 8

R325C Substrate binding site �0.78 0.41 �0.34 N 43
L333P �3.39 �6.05 �3.62 N 0

R335C �0.67 �1.14 �0.86 N 60
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Table 1. Cont.

DDG (kcal/mol)

Variation Effects INPS3D FoldX PoPMuSiC2 ISPRED4 RSA (%)

Regulatory Domain

M338T �1.58 �3.74 �1.21 N 18

W339G �2.78 �4.46 �2.55 N 20

R345C �0.67 �1.31 �0.23 N 43

P348S
Reduced affinity for NAD(P)

SAH binding site
�1.19 �3.53 �1.16 N 26

H354Y Reduced affinity for NAD(P) �0.24 �0.2 �0.67 N 18
R357C �1.32 �2.3 �1.54 N 5

R357H �1.28 �1.09 �0.29 N 5

R363H Reduced affinity for NAD(P) �1.39 �1.34 �0.83 N 6

K372E Reduced affinity for NAD(P) �0.46 0.99 �0.31 N 52
R377C Reduced affinity for NAD(P) �1.17 �3.99 �1.4 N 0

R377H Reduced affinity for NAD(P) �1.2 �4.59 �0.68 N 0

W381R �1.83 �2.29 �1.95 N 14

G387D Reduced affinity for NAD(P) �0.82 �3.35 �1.31 I 33

G390D �0.88 �2.23 0.13 N 64
W421S Reduced affinity for NAD(P) �3.07 �6.97 �4 N 1

E429A * �0.13 �0.79 0.2 N 50
F435S �3.45 �5.56 �2.94 N 1

S440L 0.03 2.15 �0.55 N 25
Y506D Reduced affinity for NAD(P) �1.77 �5.1 �3.16 I 61

Y512C �1.94 �4.31 �2.18 N 2

R535Q �0.79 �1.61 �0.77 N 25
R535W 0.07 �1.39 �0.26 N 25
V536F Reduced affinity for NAD(P) �1.38 �3.21 �0.6 N 1

P572L Reduced affinity for NAD(P) �0.43 �7.32 �0.09 N 0
V574G Reduced affinity for NAD(P) �3.32 �4.13 �3.47 N 1

V575G Reduced affinity for NAD(P) �3.64 �4.06 �3.07 N 8

E586K �0.8 �5.23 �0.99 N 1
L598P Reduced affinity for NAD(P) �2.49 �7.34 �2.68 N 22

S603C �1.03 �1.81 �0.7 N 15

L628P Reduced affinity for NAD(P) �0.83 �4.47 �2.25 I 57

M338T �1.58 �3.74 �1.21 N 18

The table lists 72 variations associated to the MTHFR deficiency, as reported in the MTHRF UniProt file MTHFR,
UniProt code: P42898 and in [7]. * Variations are described in [8] (A222V) and [9] (E229), respectively. Effects of the
variations on the MTHFR enzymatic activity are listed when reported. Bold style indicates variations for which
at least two of the three methods adopted for computing DDG (INPS3D, [13]; FoldX [14]; and PoPMuSiC2 [15],
compute negative results, lower than �1 kcal/mol, indicating protein destabilization (for details see text). For
completeness, we include results (I, Interaction; N, No Interaction) of the Interaction site prediction method
(ISPRED4) [11] and values of the relative solvent accessibility (RSA%) (see Materials and Methods for details)
(second to last column and right-most column, respectively).

We select as a threshold value |1 kcal/mol|, which takes into account the variability
of the experimental thermodynamic data on protein stability adopted for training the
predictors. In Table 1, we list the 42 disease-related variations in the catalytic domain and
the 30 disease related variations in the regulatory domain. Alongside this, we indicate the
corresponding effects on the protein function, the computed DDG according to the three
predictors, the prediction of the wild-type residue to be in contact or not and the computed
relative solvent accessibility [16]. It appears that 22 variations in the catalytic domain and
20 variations in the regulatory domain decrease protein stability, according to at least two
of the three predictors. Among the remaining ones, seven are in the NAD(P)H binding site,
and the other seven are in the FAD binding site, respectively. These variations, as reported
in Table 1, decrease the binding affinity without perturbing the protein stability, including
A222V and E429A. In any case, the available structure 6FCX contains an A in position 429
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instead of E, and in this case, we compute DDG of the reverse variation [12]. R325C, in the
substrate-binding site, decreases substrate affinity without affecting protein stability.

In the protein catalytic domain, we map 41 disease related variations, 14 of which
are exposed and not in interaction sites, 20 are destabilizing and mostly (90%) buried. In
the protein regulatory domain, we map the remaining 31 disease related variations, 12 of
which are exposed, 21 are destabilizing and 15 of these are buried. Interestingly, positions
387 (G387D), 506 (Y506D) and 628 (L628T) at the protein homodimeric interface, correctly
predicted as interaction sites (see above), promote also protein destabilization, support-
ing a role of the regulatory domain interactions in the stability of the functional protein
homodimeric complex. Overall, 61% of the disease related variations are affecting the
protein stability and most of them have been experimentally found to promote instability
of cofactor binding.

Out of the pool of the MDRFH deficiency variations listed in Table 1, UniProt in the
protein file P42898 lists eight other variations with a dbSNP code (https://www.ncbi.nlm.n
ih.gov/snp/ accessed on 10 October 2021) not yet associated to disease (likely benign?).
Six of these maps into the protein structure and two of them, (G422R, exposed, and G566E,
at the homodimer interface) destabilize the protein structure according to our criterion.
Results are in line with previous observations highlighting how protein instability is not a
necessary condition for being disease-related [17,18], although in this specific case many of
the variations are indeed destabilizing the protein organization (Table 1).

2.3. MTHFR Deficiency and Its Structural Model

Recently we introduced the concept of mapping disease variation types into associated
Pfam structural protein models (https://pfam.xfam.org accessed on 10 October 2021),
finding that by this it is possible to establish a relation among genes and maladies [18,19].
Indeed, mapping of variation types into Pfam is unique for a given disease. Here we exploit
our strategy with MTHFR, considering Pfam 02219 for the catalytic domain. This Pfam
is shared by similar proteins in Eukarya, Bacteria and Archaea. The regulatory domain
does not have a Pfam model and is present only in Eukarya. We build a model for the
regulatory domain aiming for a structural representation of the complete protein. The
model is an HMM of the profile of a multiple alignment of some 50 sequences from Eukarya
with a length similar to that of MTHFR. The model includes the linker, and it spans from
residue 336 to residue 566 (see Supplementary Material, where the Pfam-like model of
the regulatory domain is reported). We then converted the disease related variations of
Table 1 into variation types (apolar (G, A, V, I, L, P, M); polar (S, T, C, N, Q, H); aromatic
(F, W, Y); charged (D, E, K, R) giving rise to 16 possible variation types. We associated
MTHFR related variation types to the protein architecture, as represented by P02219 and
our Pfam-like model of the regulatory domain. The frequency of the variation types in each
domain is represented in Figure 2.

It appears that the variational pattern is different in the two domains and different
from the background variational pattern, obtained considering the pathogenic variations
from Humsavar (https://www.uniprot.org/docs/humsavar accessed on 10 October 2021),
in 2513 human proteins (22,763 disease related variations).
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Figure 2. The heatmap reporting the frequency of each variation type as observed within the catalytic
and the regulatory domains. The background distribution has been computed considering 22,763
pathogenic variations from Humsavar in 2513 proteins. In variation types, labels are as follows: a,
apolar; c, charged; p, polar; and r, aromatic (for details see text). Differences between Catalytic and
Regulatory sites are significant at 10% when a Chi-square test is applied after adding pseudocounts
(with value 0.5) for regularization.

3. Materials and Methods

3.1. Characterization of Protein Surface and Annotation of Protein-Protein Interaction Sites

The solvent accessibility of residues of PDB entry 6FCX, chain A, [6] was computed
with the DSSP program (https://swift.cmbi.umcn.nl/gv/dssp/DSSP_3.html accessed on
10 October 2021) and normalized with respect to the residue-specific maximal accessibility
values as previously described [16]. Residues interacting in the homodimer interface are
those undergoing a decrease of the absolute solvent accessibility (ASA) � 1 Å2 in the
complex with respect to the isolated monomer.

Protein-protein interaction sites were predicted with ISPRED4 [11], a tool based on
support vector machines and grammatical restrained hidden conditional random fields that
integrate 46 different features extracted from the monomer sequence, its multiple sequence
alignment against the UniProt database and its 3D structure. ISPRED4 has been trained and
cross-validated on 151 protein complexes and reaches a per-residue Matthews correlation
coefficient of 0.48 and an overall accuracy of 0.85. Similar values are obtained on blind
test sets, and therefore ISPRED4 is one of the top-performing tools for the computational
annotation of protein-protein interaction sites.

3.2. Prediction of DDG Changes upon Single Residue Variation

The possible effect on protein stability induced by single residue variation starting from
protein structure has been predicted with three state-of-the-art methods: (i) INPS3D [13], a
tool based on a machine-learning approach; (ii) FoldX [14], that estimated energy changes
on the basis of a knowledge-based potential; and (iii) PoPMuSic2 [15], a method implement-
ing a combination of statistical potentials optimized with a neural network. The following
convention has been adopted for the definition of the DDG sign:

DDG = (DGwt � DGmut) (1)

where DGwt and DGmut are the folding free energy of the wild-type and mutated proteins,
respectively. Negative values of DDG mean that the mutated form is less stable than the
wild-type. We considered as destabilizing the variations for which at least two methods
predict DDG  �1 kcal/mol.

Since the structure 6FCX carries the mutant allele (A) in position 429, the thermody-
namic effect of variation E429A was estimated by computing the DDG of variation A429E
on the crystal and applying the antisymmetric principle.
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3.3. Pfam-Like Model of the Regulatory Domain

From the UniRef50 cluster UniRef50_P42898 (https://www.uniprot.org/uniref/Uni
Ref50_P42898 accessed on 10 October 2021), we collected 150 complete protein sequences
from Eukarya and with length ranging between 640 and 670 residues. These sequences
cover both domains of human MTHFR protein and share more than 50% sequence identity
with it. We aligned the sequences with ClustalOmega (https://www.ebi.ac.uk/Tools/msa/
clustalo/ accessed on 10 October 2021) and extracted the multiple sequence alignment of
the regulatory domain, spanning from position 336 to 566 in the human sequence. We then
trained a HMM, with HMMER 3.3.2 (http://hmmer.org/ accessed on 10 October 2021).
The trained model is available in the Supplementary Materials.

4. Conclusions

In this paper we exploit different computational methods for refining the annotation of
the disease related variants of MTHFR, promoting MTHFR deficiency. Due to the numerous
biological processes in which the protein is directly and/or indirectly involved, MTHFR is
of particular interest, since its partial or total disfunction may have a range of effects on
human health, spanning from mild to lethal ones. Among the known 72 disease related
variations, we characterize those that are at the protein surface, participate into protein-
protein contacts and are at the homodimer interface which involves the protein regulatory
domain. We also highlight other properties of the protein, like the exposed residues that
eventually participate in the protein-protein interaction (Table S1). Furthermore, we show
that 61% of the disease related variants are destabilizing the protein, highlighting a possible
source of structural destabilization causing the decreased binding affinity of the protein
cofactors when documented. Noteworthy is that positions 387 (G387D), 506 (Y506D), and
628 (L628T) in the interface of the two regulatory domains of the homodimeric protein,
besides being disease associated, are correctly predicted as interaction sites, and predicted
also as destabilizing. This confirms the role of the regulatory domains interaction in
supporting the homodimeric functional unit [5].

Finally, we propose a structural variational model for MTHFR deficiency by associating
variation types to the protein architecture, as modelled with HMMs representing the
catalytic and regulatory domain, respectively.
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Abstract  
We previously introduced the concept of disease-related variation type by grouping variations 
according to their physicochemical properties. Here, by using a large data set of proteins with 
disease related and benign variations, as derived by merging Humsavar and ClinVar data, we 
investigate to which extent our physicochemical grouping procedure can help in determining 
whether patterns of variation types are related to specific groups of diseases and whether 
they occur in Pfam and/or InterPro gene domains. 
We download 75,145 germline disease-related and benign variations of 3,605 genes, group 
them according to physicochemical categories and map them into Pfam and InterPro gene 
domains. 
Statistically validated analysis indicates that each cluster of genes associated to Mondo 
anatomical system categorizations is characterized by a specific variation pattern. Patterns 
identify specific Pfam and InterPro domain–Mondo category associations. Our data suggest 
that the association of variation patterns to Mondo categories is unique and may help in 
associating gene variants to genetic diseases. 
 
Keywords: Disease Associated Variant; Variation physicochemical type; Pfam domain; 
Interpro Domain; Mondo anatomical system categories. 
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Background 
 
Modern sequencing technologies and intensive research on the molecular origins of humans 
are increasing exponentially the number of missense single-nucleotide mutations leading to 
observable changes in protein sequences, and evidently, in their function. For many of these 
single residue variations (SRVs), links to disease are reported in public databases such as 
Humsavar (The UniProt Consortium 2021, https://www.uniprot.org/docs/humsavar), the 
UniProt dataset of human missense variants, and ClinVar (Landrum MJ et al 2018, 
https://www.ncbi.nlm.nih.gov/clinvar), the NCBI resource of relationships among human 
variations and disease phenotypes.  
In this scenario, harmonisation of disease definition is an issue for a better association of 
molecular events to phenotypes (McInnes et al 2021). Recently the Mondo Disease Ontology, 
in its semi-automatic version that includes also manual curation (Mungall CJ et al 2017, 
https://mondo.monarchinitiative.org/), integrates multiple disease resources to yield a 
coherent merged ontology. Furthermore, thanks to the interoperability provided by the 
Ontology Lookup Service (part of the ELIXIR infrastructure, https://elixir-europe.org/), it is 
now available for browsing (https://www.ebi.ac.uk/ols/ontologies/mondo), making it 
feasible to merge data from different databases for a larger inclusion of variations when 
characterising variant disease-association. Indeed, the relationship between sequence 
variation and disease predisposition can identify processes that are responsible of 
pathogenesis and can help in highlighting new treatments (McCarthy et al 2017; Claussnitzer 
et al 2020, Sheils et al 2021).  
More to this, genome-wide association studies (GWAS) have identified thousands of 
noncoding loci that are associated with human diseases and complex traits, each of which 
could reveal insights into the mechanisms of disease. Particularly interesting is the network 
of genome-wide enhancers, which links variations to target disease genes recently described 
(Nasser et al 2021, and references therein). This stands from the estimation of which 
enhancers regulate which genes in the genome and the enhancer-promoter contact 
frequency from epigenomic datasets, supporting the general notion that variations and gene-
mediated disease associations are a very complex phenomenon, which occurs at the cell level 
(Nasser et al 2021, https://www.engreitzlab.org/resources/).  
On the other hand, computational methods try to establish rules of associations between 
variations and diseases with the purpose of helping the annotation process of the newly 
sequenced variants, exomes, and genomes (for recent implementations see Pei and Grishin 
2021, Woodard J et al 2021, and references therein). Methods rely on inference processes 
standing upon the knowledge present in databases and require validated sets of variation-
disease associations (Glusman et al, 2017, Peng et al 2019, Sakar et al 2020, Vihinen 2021). 
With the increasing amount of available data, we are now interested in understanding to 
which extent gene structural and functional features may help in relating variations to 
diseases. For this, we decided to focus on structural and functional mapping genes and their 
variants with Pfam and InterPro domains  (Mistry et al, 2021, https://pfam.xfam.org/ and 
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https://www.ebi.ac.uk/interpro/about/interpro, respectively). We found that in human 
proteins pathogenic variations group into variational patterns that differ depending on the 
Pfam domain and the group of diseases they link (Savojardo et al 2019, Savojardo et al 2021 
a and b).  Here, we extend the analysis to a much larger data set of germline variations 
generated by the union of Humsavar and ClinVar. Besides Pfam, we include functional 
features as described by InterPro domains and find that Pfam and InterPro regions, covering 
most of the union data set, specifically link variations to associated diseases. Furthermore we 
show that different Mondo categories link different Pfam and InterPro regions in a significant 
manner, supporting the notion that a specific disease may link the gene variant  knowing the 
location of the corresponding variations in specific structural or functional domains.  
 
 
Materials and methods  
 
Data collection 

Variations were collected from Humsavar (UniProt Consortium 2021, 
https://www.uniprot.org/docs/humsavar) and ClinVar (Landrum MJ et al 201, 
https://www.ncbi.nlm.nih.gov/clinvar/) along with the annotation of their effect on human 
health following the classification scheme of the American College of Medical Genetics and 
Genomics/Association for Molecular Pathology terminology (Richards et al. 2015). In this 
work, we focus on germline variations, and we identify genes with the corresponding UniProt 
reference protein. ClinVar adopts a more detailed labelling than Humsavar. For sake of 
simplicity, ClinVar variations labelled as Likely Pathogenic or Pathogenic (LP/P), Pathogenic 
(P) and Likely Pathogenic (LP) where merged into a unique LP/P class, like in Humsavar. 
Similarly Likely Benign or Benign (LB/B), Likely Begnin (LB) and Begnin (B) where grouped in 
the class LB/B, following Humsavar. Furthermore, LB/B variations were collected only when 
associated to genes with disease-related variations. Variations of Uncertain Significance were 
discarded from both databases. 

We collected our data set, adopting the following procedure.  

i) From Humsavar (release: 8/04/2021) we collected 30,415 unique single residue 
variations annotated as LP/P in 3,043 genes and their included LB/B variations; 
from ClinVar (release: 29/03/2021) we extracted 38,415 missense variations 
annotated as pathogenic, likely pathogenic or pathogenic/likely pathogenic in 
3,842 genes and their included LB, B and LB/B variations.  
With this, we consider only LB/B variations in disease associated genes. 

ii) Gene variations were mapped on the corresponding UniProt canonical protein 
sequences by means of the RefSeq transcript (NM) and protein (NP and WP) 
accessions. We found that 93% of the whole variation set mapped to the UniProt 
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canonical sequence. We checked the consistency between the protein sequence 
and the wild type residue of the reported missense variation.  

iii) Somatic variations and variations with contrasting effect in the two databases 
were discarded. 

iv) Associations of gene variations to specific diseases were retrieved by means of the 
OMIM disease codes (Amberger et al 2019) in Humsavar and of the OMIM, 
Orphanet, HPO, MeSH, and Mondo codes in ClinVar.  

v) Associated diseases were annotated with the “disease or disorder” branch in the 
Mondo ontology (Mungall CJ et al 2017, 
https://www.ebi.ac.uk/ols/ontologies/mondo), apart from 71 OMIM diseases 
without any IDs in Mondo. All the variations associated to diseases without an 
OMIM and/or a Mondo ID were discharged. 

 
Disease classification 
 
We classify diseases following the Mondo “Disease by Anatomical System” categorization, as 
reported by EMBL-EBI Ontology Lookup Service (https://www.ebi.ac.uk/ols/index). According 
to this Mondo categorisation (http://obofoundry.org/ontology/mondo.html), diseases group 
in relation to their effects on the functioning of an organ system. For sake of brevity, when 
necessary, we arbitrary label the 14  Mondo “Disease by Anatomical System” categories as 
follows: A-respiratory system disease, B-auditory system disease, C-immune system disease, 
D-digestive system disease, E-disease of the genitourinary system, F-hematologic disease, G-
endocrine system disease, H-urinary system disease, I-integumentary system disease, J-
cardiovascular disease, K-musculoskeletal system disease, L-disease of the visual system, M-
nervous system disorder, N-mediastinal disease.  
5,223 Mondo IDs are classified in 13 of the 14 Mondo anatomical system categories, except 
for the “mediastinal disease” anatomical category, which includes only one variation, and it 
has been therefore excluded from the analysis. 
 
Pfam and InterPro annotation 
 
Pfam annotations (version 33.1) were downloaded for the human proteome from the Pfam 
FTP server (ftp.ebi.ac.uk/pub/databases/Pfam/releases/Pfam33.1/proteomes/9606.tsv.gz). 
Annotations were filtered to retain only those occurring in genes included in our dataset and 
covering at least one pathogenic SRV. 
Analogously, InterPro annotations including all signatures for human genes were extracted 
from the complete UniProt protein annotation file available in the InterPro website 
(ftp.ebi.ac.uk/pub/databases/interpro/protein2ipr.dat.gz). We retained only InterPro 
signatures mapping on genes in our set and covering pathogenic SRVs. 
 
Statistical validation 
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The significance of the observed difference between Pfam/InterPro-specific distributions of 
variation types and Mondo anatomical system categories against respective background 
distributions has been assessed using an FDR-corrected Chi-squared test. Given a domain-
specific observed counts !! = (!!",⋯ , #!") for & possible events (either counting SRV types or 
Mondo categories) and a corresponding background distribution '# = ('#",⋯ , $#

"), we 
compute the Chi-squared test statistics as:  

*$ = ∑ (&!"'(#")!)$
(#")!

+
,-"       (1). 

 
Where ,! =	∑ !!,+

,-"  is the total number of observations. 
P-values are then computed using a *$ distribution with & − 1 degrees of freedom, where & 
is the number of events. False-discovery rate (FDR) correction is also applied to correct p-
values for multiple testing. We computed statistical validation for classes with at least 20 
observations. 
 
Computation of log-odds 
Given a domain-specific (either Pfam or InterPro) observed frequencies '! (either the 
frequency of SRV types or Mondo categories) and a corresponding background distribution 
'#, we compute log-odd scores as follows: 

0123 = log (!(#      (2). 

For avoiding numerical errors in the computation of the logarithm, we introduced 
pseudocounts when computing '!. 
When appropriate, we report the median value of variations per protein, grouped according to the 
Pfam/InterPro domains, to highlight the central value of the distribution, independently of outliers.  
 
Results 
 
The Union data set 
Our dataset is described in Table 1. When the union between Humsavar and ClinVar is 
considered (Union), it includes 75,145 variations (43,917 of which are pathogenic) in 3,605 
genes. Pathogenic variations (LP/P) are linked to 5,223 diseases. Humsavar and ClinVar 
differently contribute to the Union data set; interestingly ClinVar contributes with a larger 
LB/B number of variations and a larger number of diseases to Union (Table 1, between 
brackets). When LP/P variations are annotated with OMIM or Mondo codes in both datasets, 
the overlap between the lists of associated diseases is 82.4%. Considering the 2,576 shared 
genes, the overlap of the associated diseases between ClinVar and Humsavar is 74.2%. 
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Table 1. General description of the Union dataset 
 

  Humsavar 
# 

ClinVar 
# 

°Intersection 
# 

°Union 
# 

Disease-associated 
genes  

2,984 
(408)* 

3,197 
(621)* 

2,576 3,605 

Variations in disease-
associated genes 

41,693 
(25,035)* 

50,110 
(33,452)* 

16,658 75,145 
 

-        Pathogenic 29,579 
(17,371)* 

26,546 
(14,338)* 

12,208 43,917 

-        Benign 12,114 
(7,664)* 

23,564 
(19,114)* 

4,450 31,228 

Associated diseases^ 3,898 
(593)* 

 

4,629 
(1,324)* 

3,305 5,223 

 
° Intersection, ° Union: Intersection and Union of Humsavar and ClinVar, respectively.   
^Mondo IDs (5152) and OMIM (71)   
* Between brackets: Exclusive items for each database, included in Union. 
 
 
Union genes and their disease association  
 
The molecular function of the 3,605 genes in the Union dataset has been derived from the 
UniProt entries of their encoded proteins. We considered the annotation in terms of 30 high-
level terms of the Molecular Function branch of the Gene Ontology (GO-MF; Gene Ontology 
Consortium 2021, http://geneontology.org/) and of the Enzyme Commission numbers (EC; 
Pundir et al., 2017).  Some 38% of the dataset consist of enzymes: 1230 proteins are endowed 
with one or more EC number (Supplementary Table 1). Some 136 are annotated with a 
catalytic activity (GO:000382) and 15 are annotated as ATPases (GO:0016887) without EC 
number. 
The other high-level GO-MF terms significantly over-represented in our dataset are 
GO:0140110 (transcription regulator activity, 277 genes), GO:0005198 (transporter activity, 
239 genes), GO:0005198 (structural molecule activity, 159 genes), GO:0098772 (molecular 
function regulator activity, 135 genes), GO:0060089 (molecular transducer activity, 119 
genes). GO:0005488 (binding) annotates 598 genes and the remaining high-level GO classes 
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for MF account for a total of 76 proteins. Multiple high-level GO-MF terms are annotated for 
308 genes and 313 genes lack GO-MF annotation.   
 
 

 
Fig. 1 Distribution of Union genes as a function of the number of associated diseases (5,223 
diseases) (Table 1).  
 
Union genes are associated to diseases (Fig.1) and 59% of the genes are associated to one 
disease. 41% of the Union genes are associated to more than one disease. Genes associated 
with the highest numbers of diseases are Fibrillin, (FBN1, UniProt code: P35555), the GTPase 
KRas (KRAS, UniProt code: P01116), the Cellular tumor antigen p53 (TP53, UniProt code: 
P04637) and the Collagen alpha-1(II) chain (COL2A1, UniProt code: P02458), with 21 disease-
associations. Prelamin-A/C (LMNA, UniProt code: P02545) is associated with 25 diseases. 
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Fig. 2 Distribution of the 43,917 LP/P variations in the Union data set as a function of the 
number of associated diseases (5,223).  
 
Union variations are listed as a function of the number of associated diseases, as represented 
by Mondo IDs and 71 OMIM codes (Fig.2). 88% of the variations have only one disease-
association. The variation associated with more diseases (14 in Fig.2) is P250R on FGFR3, the 
Fibroblast growth factor receptor 3 (UniProt code: P22607). Its variation is associated to the 
Muenke syndrome (MNKS), a condition characterized by coronal craniosynostosis, which 
affects the shape of the head and face, often with a decrease in the depth of the orbits and 
hypoplasia of the maxillae. Therefore, the variation, linked to 14 Mondo IDs, maps to 5 Mondo 
anatomical system categories (E, H, I, K, L; see Disease classification in Materials and 
Methods).  

For finding distinguished features among genes, variations, and diseases, we first grouped the 
disease related variations by variation types. To this aim, we firstly grouped residues 
according to their physicochemical properties, obtaining four major groups: nonpolar 
(GAVPLIM), aromatic (FWY), polar (STCNQH) and charged (DEKR) residues. We define a 
variation type in relation to the conservation or substitution of nonpolar (a), polar (p), 
aromatic (r) and charged (c) residues (Savojardo et al 2019). Variations are then grouped into 
the 16 possible variation types, which allows to distinguish between residue substitutions 
which may affect protein stability and function based on the notion of being conservative or 
not, respectively. Results are in Fig.3, show the different distribution of pathogenic versus 
benign variations in the different types. 
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Fig. 3 Frequency of variation types of the Union variations. Blue bars: LP/P variations; Red 
bars: LB/B variations.  Labels are as follows: a, nonpolar; r, aromatic; p, polar; and c, charged.  

Disease related and benign variations have a different distribution and from now on we will 
focus on disease related variations, being our goal to explore gene-disease association. The 
most abundant types of disease related variations are nonpolar into nonpolar, polar, and 
charged, respectively, and charged into polar. These results agree with the more frequent 
variation types that we described as disease associated in a much smaller data set (Savojardo 
et al 2019). 

The relationship among pathogenic variations associated to Mondo IDs and Mondo 
anatomical system categories is shown in the heat map of Fig. 4. Here we list as a function of 
the variation type, all the variations which are associated to the different Mondo anatomical 
system categories. For sake of clarity, we include the number of diseases in the set, the genes 
(italic) and the number of disease-related variations. The color-coded heat map indicates that 
for each category, the pattern of disease related variation types is different. A statistical 
validation of our findings is in Supplementary Table 2. To better highlight over/under-
representation, we show log-odds between each disease-type distribution and the 
background frequency of LP/P variations in the whole dataset (Supplementary Fig. 1). 
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Fig. 4 Log-odd scores of variation types associated to the different Mondo anatomical system 
categories. The heatmap shows the log-odd score of each variation type with respect to the 
corresponding LP/P background (shown in Supplementary Fig.1).  For each Mondo category, 
we show the number of diseases, genes (italic) and disease related variations. In variation 
types, labels are as follows: a, nonpolar; r, aromatic; p, polar; and c, charged. Statistical 
validation is reported in Supplementary Table2. 

Pfam and InterPro coverage 
 
In the following we take advantage of Pfam and InterPro coverage of each single gene to 
locate disease related variation types into structural and functional regions (Table 2). Pfam 
entries cover at least one pathogenic variant in 2,987 genes (83% of the 3,605 Union disease 
related genes, Table 1). Overall, 1,949 Pfam entries are identified in Union genes, including 
32,575 pathogenic variations (74%). 1685 Pfams are endowed with an associated PDB 
structural domain. This analysis complements and confirm previous observation in a smaller 
data set (Savojardo et al. 2019, Savojardo et al. 2021 a and b). 
InterPro (https://www.ebi.ac.uk/interpro/), which integrates Pfam annotations with 
signatures taken from other member databases such as PROSITE, PRINTS and PANTHER 
provide a larger number of functional regions. Indeed, with InterPro mapping we further 
enlarge the coverage at both gene and variation levels and can include some more 8,515 
pathogenic variations in 459 genes (Table 2).  
156 disease genes (4% of the total) do not have Pfam and/or InterPro domains including their 
pathogenic SRV positions. Finally, three SwissProt disease genes (Dentin sialophosphoprotein 
(UniProt: Q9NZW4), Uncharacterized protein FAM120AOS (UniProt: Q5T036) and Ribitol-5-

0
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phosphate xylosyltransferase 1 (UniProt: Q9Y2B1) do not have Pfam and/or InterPro 
signatures.   
  
Table 2. Pfam and InterPro coverage statistics 

  Pfam 
# 

InterPro 
# 

Union genes with at least one pathogenic variant in a 
Pfam and/or InterPro region 

2,987 (83%) a 3,446 (96%) a 

Domains covering pathogenic variants  1,949 5,357 

Pathogenic variants in Pfam and/or InterPro regions 32,575 (74%) b 41,090 (94%) b 

Benign variants in Pfam and/or InterPro regions 13,195 (42%) c 24,461 (78%) c 

a Percentages computed with respect to the total number of diseases associated Union genes 
(3,605, Table 1). 
b Percentages computed with respect to the total number of pathogenic variants (43,917, 
Table 1) 
c Percentages computed with respect to the total number of benign variants (31,228, Table 1) 
 
A complete list of the Pfam and InterPro regions, detailed for each gene, is reported in 
Supplementary Table 1. For each gene, we report the accession, the name, the functional 
annotation (EC, GO MF), the list of Pfam and InterPro domains, the numbers of pathogenic 
variations and associated disease, the disease name and the associated Mondo disease 
anatomical system categories. Results highlight that the Pfam domain covering the highest 
number of disease related genes (62) is Pkinase (PF00069) while the domain mostly enriched 
in pathogenic variations (1,566) is Ion_trans (PF00520). Supplementary Table 1 lists also the 
results obtained with the InterPro coverage. Among the most abundant InterPro entries we 
found many conserved, binding, and active sites (as expected, being these important sites 
driving the gene/protein function). Some of them are within Pfam domains: e.g., the 
Homeobox_CS (IPR017970), included in the Homeodomain (PF00046) domain. This finding 
provides an additional specification of the most critical regions containing pathogenic 
variations. 
 
Distinctive patterns of pathogenic variation types within Pfam and InterPro regions 
 
After structural and functional Pfam and IterPro gene mapping, we can analyze the 
relationship among variation type and diseases (grouped by Mondo anatomical system 
categories). With the concept of variation types (Fig.3), the 16 different SRV types can be 
associated to individual Pfam and InterPro (complete results are provided in Supplementary 
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Table 3, which for Pfam and InterPro entry, include the number of genes, the number of LP/P 
variations, the frequencies of the variation type, the statistical validation and log-odds scores 
between domain-specific distributions and LP/P background frequency). 
In Fig.5 we show the log-odd scores of pathogenic variation types for the 20 most populated 
Pfam domains (Fig. 5). Pfams are sorted by the number of genes covered. For each domain, 
we report its Pfam accession and name with the number of genes and pathogenic SRVs 
covered, respectively (within parentheses). Overall, the 20 Pfams shown in Fig. 5 cover 557 
genes and 6,729 pathogenic SRVs, corresponding to 19% and 21% of the total number of 
Pfam-covered genes and SRVs, respectively (Table 2).  In particular, genes covered by 6 out of 
20 Pfams (p450, Pkinase, Ras, Trypsin, Helicase_C and PK_Tyr_Ser-Thr) are mainly associated 
with enzymatic activities, 2 (Homeodomain and zf-C2H2) occur in proteins performing 
transcription regulation activities (GO:0140110), 2 (Filament and Collagen) cover structural 
proteins (GO:0005488), 2 (Mito_carr and Ion_trans) are in transporters (GO:0005215), 1 
(7tm_1) cover transducers (GO:0060089), 1 (Hormone_recep) is associated with proteins 
performing either transduction or transcription regulation activities, 1 (Neur_Chan_memb) is 
found in proteins associated to transport or transduction. The remaining 4 domains (fn3, 
EGF_CA, I-set, and Cadherin) have multiple associated functions and mainly act as mediators 
of interactions in proteins associated with a diverse range of functional activities.     
Noticeably, the different Pfam domains show a distinctive variational pattern with significant 
deviations from the background distribution. Overall, our results confirm over a larger 
dataset, previous observations (Savojardo et al., 2021 b). Statistical validation and resulting 
FDR-corrected p-values for each Pfam entry are also reported in Supplementary Table 3.  
A similar analysis is performed for those InterPro regions that do not include Pfam domains 
(Fig. 6 and Supplementary Table 3). The 20 InterPro entries in Fig. 6 cover 836 genes and 9,208 
pathogenic SRVs, corresponding to 24% and 22% of total number of InterPro-covered genes 
and SRVs, respectively (Table 2). Among the 20 InterPros, 9 cover proteins that are clearly 
associated to specific functions: 6 InterPros (Kinase-like_dom_sf, Znf_RING/FYVE/PHD, 
Protein_kinase_ATP_BS, Tyr_kinase_cat_dom, P-loop_NTPase and NAD(P)-bd_dom_sf) cover 
enzymes while 3 entries (Homeobox-like_sf, Homebox_CS and Znf_C2H2_sf) are associated 
to transcription factors. The other 11 InterPros are predominantly (not univocally) associated 
with proteins having different functions, including binding activities 
(Growth_fact_rcpt_cys_sf, WD40/YVTN_repeat-like_dom_sf, WD40_repeat_dom, 
LRR_dom_sf, Ig-like_dom_sf and WD40_repeat_dom_sf), molecular transducer activities (Ig-
like_fold, FN3_sf) and 2 to enzymes (Ig_sub, TPR-like_helical_dom_sf).  
Also in this case, different variational patterns can be observed for different InterPro entries.  
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Fig. 5 Log-odd scores of variation types in Pfam entries sorted by number of genes covered 
(the first 20, out of 1,940 Pfams, Supplementary Table 3). Log-odds are computed with 
respect to the whole dataset LP/P background (Fig. 3).  For each Pfam, the corresponding 
InterPro accession is also included. Numbers within parentheses report the number of genes,  
variations, and diseases, respectively.  Statistical validation and resulting FDR-corrected p-
values for each Pfam entry are reported in Supplementary Table 3. 
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Fig.6 Log-odd scores of variation types for the first 20 InterPro entries (out of 5,357, Table 2), 
sorted by number of genes covered and not including Pfam signatures. Log-odds are 
computed with respect to the whole dataset LP/P background (Fig. 3). Numbers in 
parentheses report, for each InterPro, the number of genes, of SRVs and of diseases, 
respectively. Statistical validation and resulting FDR-corrected p-values for each InterPro 
entry are reported in Supplementary Table 3. 
 

Linking Pfam/InterPro to Mondo anatomical system categories 
 
In Fig 4, we established a relation between Mondo anatomical system categories and 
pathogenic variation types. In Fig. 5-6, we detailed the association among variation types and 
Pfam/InterPro regions in the different genes. For sake of generalization, an important 
question to answer is then to which extent Pfam and/or InterPro domains can be directly 
related to diseases grouped according to Mondo categories.  
Fig. 7 shows log-odd scores for the disease Mondo categories associated to the 20 most 
populated Pfams (the full association with the 1949 Pfam domains covering our Union set are 
listed in Supplementary Table 4, also including the background distribution frequency of 
disease categories in the entire set and the statistical validation results).  
Pfams are associated to multiple disease categories, as visible by comparing with the 
background signal. However, it is evident (Fig. 7) that there is often one or more prevalent 
category/ies with an evident and significantly high log-odd score. For instance, in the case of 
Trypsin domain (PF00089), about 63% of the pathogenic variations link to Hematologic 
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diseases (F), a percentage significantly higher than the background frequency of this type of 
disease in the whole set (4%). Remarkably, these SRVs come from different genes (the median 
number of SRVs per gene for the Trypsin domain is 8). Similar conclusions can be drawn for 
other domains, like Ion_trans (PF00520) particularly enriched in neurological diseases (M). 
Finally, similar conclusions are obtained, when a similar heat map is generated considering 
the relationship among Mondo anatomical system categories and InterPro regions not 
included in Pfam (Fig. 8, reporting log-odd scores).  
 

 
Fig. 7 Log-odd scores for disease categories associated to different Pfam domains. Log-odds 
are calculated with respect to the whole-dataset background of disease categories 
(Supplementary Table 4).  For each Pfam the corresponding InterPro accession is indicated. 
Numbers in parentheses report the number of genes, of SRVs, the median number of SRVs 
per gene and the number of diseases (for statistical validation see Supplementary Table 4). 
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Fig. 8 Log-odd scores for disease categories associated to different InterPro domains. Log-
odds are calculated with respect to the whole-dataset background of disease categories 
(Supplementary Table 4).  Numbers in parentheses report the number of genes, of SRVs, the 
median number of SRVs per gene and the number of diseases (for statistical validation see 
Supplementary Table 4). 
 
Conclusions and perspectives 
 
We investigate the association between variants and disease with the aim of finding possible 
descriptors for the association of genes carrying pathological variations and the 
corresponding diseases. To this aim we generated a data set of variants with pathological and 
benign variations, union of the last releases of Humsavar and Clinvar (Table 1). Our focus are 
germline variations excluding somatic ones, whose associations to different types of cancers 
may require different ontologies.  
We represent variations with variation types, which refer to their physicochemical properties. 
The distribution of disease related and benign variation types of the union set is different 
(Fig.3). We therefore focused on the pathological variations, the carrying genes and the 
associated diseases, grouped into the corresponding Mondo anatomical system categories. 
We recognise that disease related variation types are specifically and significantly linked to 
different Mondo categories (Fig.4) and detailed the specificity by mapping variations into 
Pfam and InterPro regions.  We find that these regions include most of the pathological 
variants (Table 2) and that the Pfam and InterPro mapping (Fig. 7 and 8) significantly 
correlates to Mondo disease categories. 
To our knowledge, this type of analysis is new and provide insights into the complex 
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relationship among genes, variants, and associated diseases. Our final goal is to provide a 
mapping of the complex space relating variations, genes, and disease by means of gene 
structural and functional features. This can be useful for future algorithmic developments 
focusing on variant annotation. Possibly, new incoming data will be framed into our basic 
representation and will allow a better understanding of the mechanisms eliciting specific 
phenotypes linked to germline variations. 
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