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Introduction

This thesis encompasses three works that analyze climate change risk implications in

financial instruments.

Specifically, we analyze how climate risk impacts economic players and its conse-

quences on the financial markets. Essentially, literature unravels two main channels

through which climate change poses risks to the status quo, namely physical and

transitional risk, that we cover in three works.

Firstly, the call for a global shift to a net-zero economy, implicitly devalues assets

contributing to global warming that regulators are forcing to dismiss.

On the other hand, abnormal changes in the temperatures as well as weather-related

events challenge the environmental equilibrium and could directly affect firms’ oper-

ations as well as profitability.

We start the analysis with the physical component, by presenting a statistical measure

that generally represents shocks to the distribution of temperature anomalies. We

oppose this statistic to classical physical measures and assess that it is the driver of

the electricity consumption, in the weather derivatives market, and the cross-section

of equity returns. We find two transmission channels, namely investor attention, and

firm operations.

We then analyze the transition risk component, by associating a regulatory horizon

characterization to fixed income valuation. We disentangle a risk driver for corporate

bond overperformance that is tight to change in credit riskiness, and, after applying

a statistical learning model to forecast excess returns, we include carbon emission

metrics without clear evidence of its importance. Finally, we analyze the effect of
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change in carbon emissions on a regulated market such as the EU Emission Trading

Scheme (ETS) by selecting utility sector corporate bonds and, after controlling for

possible risk factors, we document how a firm’s carbon profile differently affects the

term structure of credit riskiness.

The Thesis is composed of four parts.

The first chapter represents an introduction to climate change and the interplay with

economic activities. We analyze the statistical properties of climate change and the

related literature, which constitutes the baseline for the research questions, elicited

in the last section of the chapter.

The second chapter represents the first working paper which deals with physical risk.

We develop a statistical measure to generally represent extremes in the distribution

of temperature anomalies that describes weather exposure and we contrast it to the

most employed by researchers to assess its consequences on financial markets.

The third chapter is constituted by a work in which we disentangle a market invariant

for corporate bond excess returns and, through a statistical learning model, we assess

the projection at the horizon to forecast bond overperformance. In addition, we test

whether transition risk variables are a driving component.

Finally, the last chapter analyses the transition risk horizon in the utility corporate

bond market, revealing the component that drives this kind of risk.
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Chapter 1

Literature on Climate Change Risk

and Finance

1.1 Phisics of Climate change

The analysis regarding the effects climate change can pose to the various economic

players should originate from the analysis of how climate change arises, from a cli-

matological perspective. When considering financial instruments, it is possible to

disentangle and price its future dynamic just when linked to a specific risk factor.

This is an essential point because in this thesis we crosscut different sciences, namely

statistics, economics, and climatology.

The first work involving the interaction of climate and economics is dated back to

1977 by Nordhaus (Nordhaus (1977)).

It is important to tackle the problem firstly by the physical side, that is the under-

lying component of climatic models, to have a better clue, in the proceedings of this

work, on the assumptions and the terminology employed. Hsiang and Kopp (2018)

assess that physical sciences are a minor in economic research, which results in lower

interest for a crucial risk driver for the models that are being developed.

When analyzing the temperature equilibrium level the planet has reached in this era,

we start by considering the energy the planet incorporates that is determined by two
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main factors:

• Sunlight Energy: energy coming in the visible and ultraviolet space

• Earth Radiation: energy in the infrared space that is backed by the earth to

the space.

So, if one of these two components changes, the equilibrium temperature changes as

well. In addition, it is necessary to express the two components as a function of many

other factors. The sunlight energy depends, among other determinants, on the Sun’s

temperature, the distance Sun-Earth and Earth’s reflectivity, a phenomenon known

as albedo. It is sufficient that one of these variables slightly changes to experience an

increase or decrease in the world equilibrium temperature. The most cited example

to this point considers the albedo, which is determined by particular clouds that pre-

vent 30% of the Sun’s energy from even reaching the Earth. This value can increase

with sulfurs emitted by volcanoes: around 536B.C. the average temperatures in the

Nordic hemisphere declined by 1.5/2.5°C caused by the eruption of an Iceland’s vol-

cano (Toohey et al. (2019)).

On the other side, the earth radiates back to space some heat, represented by the

amount of energy the Earth can eject back. The light space of the incoming radiation

is different from the outgoing ones: incoming light is in the visible and ultraviolet

region whereas outgoing is placed in the infrared. At this stage, it is possible to face

greenhouse gases (not limited only to CO2 ) they do not interact with ultraviolet sun-

light but they do with infrared, absorbing a percentage of outgoing radiation that is

sent back to the earth. However they are not only a negative component considering

that, without this interaction, the equilibrium temperature at the earth level would

also be around -18°C, solely determined by the sunlight energy.

The amount of greenhouse gases in the atmosphere determines the height from which

infrared light can effectively escape Earth. It is possible to locate this height consid-

ering where the temperature is at -18°C, which in recent history has reached equilib-

rium at 5500m. As well explained (Hsiang and Kopp (2018), Hansen et al. (1981)),
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a marginal increase in greenhouse gasses in the atmosphere produces a direct and

an indirect effect. The direct effect is represented by the increase in the effective

radiating level derived from the decrease in the total energy that can escape the at-

mosphere. The indirect effect instead is derived by the composition of the triggered

effects the increase of temperature brings, with the most important being the water

vapor, which is more present in the context of a warmer climate and absorbs the

infrared radiation, thus amplifying the greenhouse direct effect.

For example (Hansen et al. (1981)), doubling CO2 concentration theoretically would

increase the average surface temperature by 1.2°C, but taking into consideration all

the effects, the equilibrium point could vary between 2.0°C and 4.5°C. This result

pushes us to consider two elements.

Firstly, the difficulty that climate models still face in generating baseline climate

projection: even accessing high computational power, it is difficult to generate ac-

curate predictive scenarios, given the enormous amount of interconnections between

variables. The result is then a series of plausible scenarios analyzing a subfield of

the parameter space, that is released by the Intergovernal Panel for Climate Change

(IPCC).

Secondly, there is high uncertainty around the effect greenhouse gases produces. An

example is extreme events, in which the number is increasing (Cai et al. (2014)) but

there is no consensus around how to forecast their future occurrence given by global

warming.

1.2 Statistical properties of climate and weather

We tackle the modeling framework of climate and weather from a statistical point

of view, following the conjecture by Hsiang (2016) where the determinants of the

climate conditions can be thought of as a random vector determined both in time, t,

and space, s:
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ws,t = [temperatures,t, precipitations,t, humiditys,t, winds,t, ...] (1.1)

Two important considerations arise. The first one is related to the fact that these

variables influence not only the atmosphere but also related factors, like oceans,

rivers, the glacier that can trigger important consequences.

The second analysis is related to the impact these variables have on socio-economic

activities. Climate change is a threat just when it affects socially or economically

the population. One can argue that this is myopic, but if an event, through the

concatenation effect, doesn’t impact in any way the socio-economic activities, either

in the long or in the short run, then it is not a risk factor(Diaz and Moore (2017)).

The next step is to understand the fundamental difference between climate and

weather, and, following the notation by Hsiang (2016), we employ a statistical ap-

proach.

Considering an open time interval τ = [t, t+ δ), the random vector representing the

weather conditions comes from the probability distribution ψ(Ciτ):

wst ∈ ψ(Ciτ), ∀t ∈ τ (1.2)

with Csτ being a vector representing the fundamental parameters of the family dis-

tribution ψ which results in the weather outcomes wit. Weather conditions represent

the random variables to observe and measure, a realization of the hidden true popu-

lation, climate. The weather thus is the realization through which we can assess the

changing behavior of the unknown process.

Finally, an important component is the data collection technique that arises in the

context of meteorological data, often not considered in financial literature. It is pos-

sible to characterize meteorological data as continuous stochastic processes defined

over a three-dimensional space (temperature, for example, can be measured either

at land-level or at a certain constant height from sea-level) and then they need to
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be transformed in a discrete space as well in the time. Weather data are primarily

recorded from meteorological stations, a process that presents a main drawback when

there are no stations for a particular area. To circumvent this problem, it is possible

to infer measurements from spotted recordings to obtain a dataset also for geograph-

ical points not covered by stations. For the sake of the research, we employed both

approaches and, we address the main concern regarding temperature data, namely

Gap Filling, Value and Jump detection, following Jewson and Brix (2005). When

dealing with Gap filling at hourly data, it is possible to compute daily maximum,

minimum, or Diurnal Temperature Range (DTR, maximum minus minimum) even

with a missing value. When a daily temperature data is missing it is possible to

retrieve through the average of the previous and the following day1.

Td =
Td−1 + Td+1

2
(1.3)

In the case there are nearby stations available, however, the preferred method is a

spatial interpolation procedure, by averaging data from different stations. Analyz-

ing neighboring stations allows detecting abnormal values when temperatures differ

considerably and appropriately adjusting the anomalous one. Finally, we take into ac-

count also jump detection. The main source of jumps in the time series is equipment

replacement that are however easy to identify. More challenging is the variation

in the surrounding area of the station, which causes changes in the measurement,

such as urbanization, which is the main source of misleading information. Evidences

(Karl et al. (1988), Ren et al. (2008)) suggest that urbanized area face an higher

increase in temperature mean levels compared to rural area. A slow-moving increase

of recorded temperature in a certain meteorological station can thus derive from its

citified surrounding area rather than climate change.

1Alternative approaches, such as estimation of AR(p) / ARMA(p,q) models and then forward
fill the missing value, are suggested by literature (Boissonnade et al. (2002)). The different dataset
we employ presents minor missing data, in the order of a couple in fifty years.

7



1.3 Temperature and Weather Derivatives

The core component of the random vector representing climate – as defined in Equa-

tion (1.1)– is the temperature variable and was the first one incorporated in the

literature following the introduction of a derivative market for weather-related vari-

able employed as a hedging factor.

The documented repercussion of temperatures on electricity consumption (Bentzen

and Engsted (1993)) and agricultural output (Adams et al. (1990)), boosted the at-

tention to the possibility to set up a market where the participant could settle their

relative position on climatic variables.

Weather derivatives were introduced by Chicago Mercantile Exchange(CME) in 1996

as futures and options contracts, written on a variety of weather events such as tem-

peratures, wind, or rain. For example, through a temperature derivative, energy

companies were able to transfer volumetric risk caused by unfavorable weather con-

ditions from electricity price to weather variables(Jewson and Brix (2005)).

We analyze in more detail temperature-related derivatives, with the two main em-

ployed being the ones written on the indexes

• Heating Degree Days(HDD), in which the holder of the contract receives

a payoff according to an index x that accounts for the days and the extent at

which the temperatures negatively exceed a certain threshold in a fixed number

of days (Nd, usually a calendar month), according to the following formula:

xHDD =

Nd∑
i=1

max(T0 − Ti, 0) (1.4)

where Ti is the average temperature for the day i

• Cooling Degree Days(CDD) works in the same way with the exception that

the payoff is referred to the exceeding temperatures:

xCDD =

Nd∑
i=1

max(Ti − T0, 0) (1.5)
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For CME contract, T0 is set at 65°F that corresponds to 18°C. Given that CDD and

HDD indexes are mutually exclusive, it follows that in the northern hemisphere dur-

ing atmospheric summer months, the HDD index doesn’t have a positive value. The

same applies in the winter months for the CDD index.

With the first contract being exchanged at the CME, different players entered the

market contributing to its improvement and the research quest arise in the modeling

of the asset underlying (temperature, wind, or rain) and the pricing of such deriva-

tives.

The quest for modeling and correctly pricing such contracts experienced all the steps

already encountered in the financial sector. The peculiarity of such contracts is that

the underlying is a nontradable asset thus hindering the hedging portfolio approach

proposed by Black and Scholes (1973). The only available procedure is the direct

modeling of the underlying temperature, and literature built upon this.

We start by analysing the pioneer work related to the stochastic modelling of temper-

atures, following the works by Dornier and Queruel (2000), Benth and Šaltytė-Benth

(2005) and Benth and Benth (2007).

We consider a complete probability space defined by the Wiener triplet (Ω,F , P ) with

filtration {Ft}t ≥ 0, and a Brownian motion Bt. The baseline model well employed in

finance is the mean reverting Ornstein-Uhlenbeck(OU) process that characterizes the

evolution of a certain variable, x, through the Stochastic Differential Equation(SDE):

dxt = θ(µ− xt)dt+ σdBt (1.6)

that is characterized by the stationary long term equilibrium level µ.

In the case of temperature, Tt, the underlying process display a trend and a season-

ality component in the level, that depends on the geographical position. The natural

expansion for OU process (1.6) proposed by Benth and Šaltytė-Benth (2005)) inves-

tigates the seasonal component:

dTt = ds(t)− k(T (t)− s(t))dt+ σdB(t) (1.7)
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where st is a function that accounts for both trend and seasonality. Among the

several ways in which it is possible to extract this two components(Jewson and Brix

(2005)), the choice by Benth and Šaltytė-Benth (2005) is the Truncated Fourier Series,

and thus s(t) can be expressed as:

s(t) = a+ bt+

I1∑
i=1

aisin(2iπ(t− fi)/365) +

J1∑
j=1

bjcos(2jπ(t− gj)/365) (1.8)

This characterization has been documented as highly accurate in describing the

salient stylized characteristic of the temperature levels across a year.

The conditional variance implied by the model is however constant along the different

months, divergent from the empirical evidence by Campbell and Diebold (2005) of

a higher volatility in the winter months. For this reason, Benth and Benth (2007)

updated model (1.7) by considering a time-varying volatility coefficient for Tt. Again,

the choice for the modelling of this component is a Truncated Fourier series of the

following form:

σ2(t) = c+
I∑
i=1

cjsin(2iπt/365) +
J∑
j=1

djcos(2jπt/365) (1.9)

The fact that they analyze and model σ2 instead of directly σ derives from the

options pricing formula, where the former is met more often, and thus it simplifies

pricing equations.

It is important to note that, as opposed to the model that governs the trend and

seasonality for the mean, in the equation for the variance it is not present any term

that governs the changing behavior. It is then assumed that the variance is stable

over time and that climate change doesn’t affect at all this measure.

A second alternative compared to a stochastic process, Campbell and Diebold

(2005) propose a simple time-series approach with conditional mean and variance, to

allow more simplicity in the derivation of derivatives pricing. Their proposed model
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is:

Tt = Trendt + Seasonalt +
l∑
l=1

ρt−lTt−l + σtεr (1.10)

where the seasonal volatility is modeled through a generalized autoregressive con-

ditional heteroskedasticity process (GARCH, Bollerslev (1986)). In these settings,

however, there is a miss-match between the left-hand and the right-hand side of the

equation. The deseasonalized temperatures are run with respect to the temperature

level, since the seasonal function acts as a mere component, without affecting the

regression estimation.

1.4 Physical Risk

In the previous section, we discuss how to model temperatures, without considering

the damage effects they produce. Temperature is not the only consequence of global

warming nor the only driver of climate consequences, however it is a good proxy

for major economic impacts. A popular way to translate climate change into eco-

nomic damage is through Integrated Assessment Models (IAM) by Nordhaus (1977).

Evolving from the first work, three main IAM models have been developed, namely

the Dynamic Integrated model of Climate and the Economy (DICE, Nordhaus and

Sztorc (2013)), the Climate Framework for Uncertainty, Negotiation and Distribu-

tion (FUND, Tol and Anthoff (2014) ), and the Policy Analysis of Greenhouse Effect

(PAGE, Hope (2011)). To seek simplicity, we focus on the different damage functions

that the three models employ, that derives from the change in the average tempera-

ture with respect a pre-warming period, ∆T .

The DICE model exhibits a quadratic damage function that can be expressed through

the equation:

D = δa∆T + δb∆T
2 (1.11)

The damage function of FUND model presents two innovations. Firstly, the impact is

produced by a function of temperature anomalies, g(∆T x) that can take into account

non-linearity in the case x > 1. Secondly, it embraces the elasticity, ε, of change in

11



income due to climate change:

D = g(∆T x) +
Yt
Y0

−ε
(1.12)

Finally, the PAGE model takes into account adaptation that acts in a twofold direc-

tion. It acts negatively as a cost (Cadp) that allows to obtain a positive effected by

decreasing the total variability of temperature that produce a damage, Tadp.

D = δ∆(T − Tadp)x + Cadp (1.13)

The differences in the damage functions regard mainly the components that deter-

mine the negative effectd. While DICE model takes into account just effects related

to changes in temperatures, FUND relates the temperature damage to the income in

a particular region and PAGE takes into account also the adaptation. The assump-

tion on the temperature is however identical. The driver is represented by shifts in

average temperatures, ∆T , that can be amplified by a certain power effect.

IAM models present undoubted advantages, as the possibility to directly assess future

economics consequences of climate change at the level of interest. (see eg. Calvin et

al. (2013), Bansal et al. (2017), Hassler and Krusell (2012)) The high complexity of

such models however comes at a certain cost (Diaz and Moore (2017)). In this brief

review, we focus on the assumptions that the damage functions, D, are not fully able

to capture. Regarding the economic damage, the models produce a shock that affects

either total factor productivity (TFP) or the whole economic output. However, in

the standard definition as in the DICE models, the economic growth is exogenous

and then, damage at time t does not affect growth at time t + 1(Dietz and Stern

(2015)).In contrast, empirical evidence suggests that also growth rate are affected by

weather realization, especially in poor countries (Dell et al. (2012)).

Another critique of the damage functions regards the lack of capturing the para-

metric uncertainty around the temperature drivers. In this light, just PAGE and

FUND models account for uncertainty, through Monte Carlo simulations. As well
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documented (Neumann and Strzepek (2014), Cai et al. (2015)) IAM models fail to

consider adequately the cost associated with tipping point or the event on extreme

realizations. Related to these two points, the damage functions employed lack a solid

empirical background (Moore and Diaz (2015)).

To empirically assess how weather-related risk – temperature fluctuations or rainfall

events – impacts on the economics, it is possible to consider macro indicators such

as gross domestic product growth(GDP), Total Factor Productivity (TFP) as well as

micro indicators such as labor supply or productivity. At the micro-level, extremely

hot temperatures reduce the number of working hours especially for those sectors

that are human capital intensive and display a lower level of adaptation (Graff Zivin

and Neidell (2014)). In addition, evidence suggests that the response to temperature

anomalies exhibits a non-linear response: an increase of 1 degree produces a more

severe outcome as higher is the starting point (Burke et al. (2015)). Rich countries

are less exposed to climate change given a quicker adaptation process (Fankhauser

and McDermott (2014)), but the non-linear effects reported by Burke affect them as

well. When aggregating at the macro level, results are less evident. While no damage

is found at the macroeconomic output by Burke et al. (2015), output levels, as well

as growth rates, are affected especially when considering poor countries (Dell et al.

(2012)).

Climate change in addition produces winners and losers. Looking at the agricultural

sector, Hong et al. (2012) find that a long-short strategy based on firm location and

a drought index, finds positive alpha, meaning that places with a higher drought risk

are more exposed. When the analysis spans the entire U.S., Deschênes and Green-

stone (2007) find that climate change increases annual profit by 2/4%. The drivers

are the beneficial effects coming from the warming process that outrun negative ones.

Finally, given the non-linearity in the response, analysis of the U.K. economy from

the pre-industrial era by Donadelli et al. (2019) highlights that years characterized

by higher temperature volatility are associated with a shock in the TFP. In this light,

volatility impacts also as a welfare cost, defined as compensation to households for
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not bearing the risk. From a different angle, Kotz et al. (2021) builds from the ac-

knowledgment that annual average temperature doesn’t capture the full spectrum of

the temperatures distribution. They show that a nominal increase in temperature

variability affects especially regions at mid-latitudes or the coastal ones.

Finally, looking at the channel from the micro to the macro level, Benson and Clay

(2004) find the destruction of capital stock as a possible driver. In this context,

the dissection of players that drive economic output should emphasize the empirical

observed effect, which is represented by firms. The research around physical impli-

cations focuses on the association between firm exposure to extreme values and the

subsequent financial implications. Addoum et al. (2020) find a bi-directional move-

ments in earning for firms experiencing extreme temperatures, that means extremes

temperatures don’t represent a negative shock for all sectors. These extremes can be

represented either by heatwaves, measured as amount of time spent above a certain

temperature threshold, or by cold snaps, measured as the amount of time experienced

below a critical temperature level. This is a crucial point linked to the non-linearity

effect found in the macro-economic works: the threshold of temperature anomalies

is a key component to determine the occurrence of extremes. Following a similar

approach, Pankratz and Schiller (2021) documents the repercussion such events pro-

duce in the supply chain. Extreme weather conditions not only affect the exposed

entity but also its customers. As a reaction, the customer is more likely to change its

supplier after an extreme weather event. From a slightly different perspective, Kumar

et al. (2019) computes the return sensitivity of stock to abnormal temperatures and

assesses that the highest exposed exhibits lower returns.

1.5 Transition Risk

Transition risk arise as the push to diminish possible future physical damages. The

transition to a net-zero economy implies dismissing certain productivity elements –

such as coal or oil – that become stranded assets. As in the physical dimension, lit-

erature undergo two different methodological analysis. The first stream analyses the
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cost of emitting additional CO2 in the atmosphere. Alternatively, one can address

whether the employment of polluting technologies by firm, is priced in the entity

dynamics, either as loss in income or a liability burden.

When looking at the first approach, carbon should be priced as the polluting compo-

nents that cause global warming. In this regard, the Social Cost of Carbon (SCC, Tol

(1999)), is the discounted price of a marginal damage derived by the marginal GhG

emission. In order to correctly estimate this value, IAM models are usually employed

given the long term projection characteristics they exhibits. Different estimation have

been made, starting from Nordhaus (2014) that employs the DICE model (1.11) to

determine a price of $18.6.

1.6 Open Questions

We conclude this first chapter by highlighting what we consider to be relevant open

questions that we develop in the following works.

Regarding physical risk, to understand and describe events that directly affect pro-

ductive sectors, the attention is on temperature extreme events. This definition

implies the computation of time spent above certain thresholds, that can be fixed or

time-varying. Literature focusing solely on the drift of temperature anomalies is not

able to capture effective damages brought by a multifaceted type of risk. We question

whether it is possible to derive a broader statistical measure related to temperature

anomalies that can capture in an easier and more general way the multiple effects

linked to weather risk. In addition, the transmission channel that enables a weather-

related event to affect a firm’s productivity or customer behavior is to be directly

assessed. Regarding transition risk, our question regards its implication in credit risk

that affects institutional portfolios, by analyzing fixed income instruments. Firstly,

we need to isolate a risk driver for corporate bond overperformance, that is solely

able to explain future excess return. Then we ask whether classical transition risk

approaches can forecast changes in credit riskiness.

Finally, we ask whether it is possible to associate the transition risk profile with the
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term structure of credit riskiness. Transition risk could arise as a regulatory risk

and, according to the definition, the associated exposure could differ according to the

instrument payoff.
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Chapter 2

Nailing down temperature

volatility: analizying their impact

on asset prices

Work in collaboration with Atreya Dey 1 and Luca Taschini 2

2.1 Introduction

Financial markets respond to temperature extremes, but not all shocks are equal.

The equilibrium price of an asset can be affected by changes in temperature due

to an adjustment in investors’ beliefs (Choi et al. (2020)) or directly through firm-

level exposure to temperature (Addoum et al. (2021)). Others find a tenuous rela-

tionship between temperature fluctuations and financial outcomes (Addoum et al.

(2020)). According to the scientific evidence, the probability distribution of temper-

ature anomalies has increased by more than one standard deviation due to climate

change since the 1950s (Hansen et al. (2012)). Additionally, the distribution has

broadened, leading to a higher number of temperature extremes experienced glob-

1University of Edinburgh Business School, atreya.dey@ed.ac.uk
2Grantham Research Institute and ESRC Centre for Climate Change Economics and Policy

London School of Economics, l.taschini1@lse.ac.uk
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ally. Identifying a relevant representation of changes in temperature distributions is

thus an important aspect of fully understanding changes in temperature extremes,

and their associated impacts on financial and economic outcomes.

To characterize extremes in temperature, we create a spatially dependent statis-

tic that reflects deviations in temperature variability from its historical mean, on a

rolling basis. The measure, TD-V AR, describes the unconditional distribution of

temperature, which allows for the general description of spatial changes in temper-

ature extremes over time. The generality in characterizing extremes with TD-V AR

means that we are able to treat cold spells as equally harmful to economic activity

as heatwaves. Additionally, we incorporate large fluctuations in day-to-day temper-

ature volatility with the same reasoning. Crucially, through a battery of validation

exercises and asset pricing tests, we assert that changes to historical temperature

variability is a primary driver of financial markets. We continue our analysis by

explicitly disentangling how TD-V AR affects markets by investigating whether the

shock directly impacts investors’ concerns about climate change or firms.

Throughout the chapter, we contrast our methodology with existing literature

that highlights abnormal temperatures (Addoum et al. (2020)), defined as the num-

ber of days in which temperatures exceed a threshold, sustained over a certain time

period, causing an extreme temperature event. We define this broadly as a tempera-

ture anomaly or TD. Addoum et al. (2020), Pankratz and Schiller (2021), and Choi

et al. (2020) focus on one side of temperature anomalies – heatwaves – and are reliant

on thresholds to define salient extremes. Others, such as Addoum et al. (2021), ac-

count for both cold and warm anomalies, yet still use a form of a priori thresholding.

We construct TD-V AR to reflect the volatility or variability in temperatures, which

is known to affect crop yields (Wheeler et al. (2000), Ceglar et al. (2016)), human

health and mortality (Zanobetti et al. (2011)), economic growth (Donadelli et al.

(2017), Kotz et al. (2021)), and asset prices (Makridis (2018)).

We construct T̃D, the realized monthly anomaly, to serve as a counterpoint to
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TD-V AR. To build both metrics, we utilize multiple geospatial temperature data

sets. The first covers city-level temperature data from the U.S. National Oceanic

and Atmosphere Administration. The second is a gridded 1-degree latitude by 1-

degree longitude daily temperature data set from Berkeley Earth Surface Tempera-

tures (BEST). After aggregating the data to the U.S. state and country levels, we

illustrate the differences between TD and TD-V AR with a set of realistic theoretical

examples at the monthly and daily frequency. The two measures are then compared

and contrasted in each step of our validation and asset pricing exercises, gradually

leading to the conclusion that TD-V AR is the salient measure.

Our validation exercises begin by confirming that deviations in temperature vari-

ability are a primary driver of energy consumption and prices in weather derivatives.

Following the logic that energy consumption is sensitive to deviations in temperature

variability, we perform time-series analysis connecting the seasonality of energy de-

mand to the two metrics. The analysis produces positive significant coefficients for

TD-V AR on aggregate energy demand, especially in the residential and industrial

sectors. In contrast, temperature anomalies only result in a significant positive coef-

ficient for the commercial sector – attributable to the sector’s steady energy demand.

We continue to substantiate our claims by testing the relationship of the two statistics

to the Chicago Mercantile Exchange (CME) weather futures market, which is intrin-

sically connected to energy consumption. The combined evidence strongly suggests

that fluctuations in temperature variability from its historical mean is a first-order

factor in the highly related energy and weather futures market.

Next, we test whether the differential exposure of firms to temperature shocks

affects the valuation of their stock price. The primary source of variation in our two

asset pricing tests are TD and TD-V AR for a firm headquartered in a U.S. state.

Our first set of tests includes monthly cross-sectional return regressions to test the

materiality of both temperature factors on Russell 3000 firms. The results indicate

that both metrics are insignificant when considering firms in aggregate, corroborating

the findings of Addoum et al. (2020). However, we find a positive significant coefficient
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for TD-V AR in the energy, utilities, consumer staples, and consumer discretionary

sectors. The energy and utility sectors are again affected by temperature variability,

reinforcing our validation exercises. A simple explanation for the consumer-related

sectors is that shopping is difficult during cold spells or heatwaves, consistent with

consumer demand and labor productivity channels (Starr (2000) and Griffin et al.

(2017)) and documented in Donadelli et al. (2020), Colacito et al. (2019), Pankratz

and Schiller (2021), and Addoum et al. (2021). Average monthly anomalies, on the

other hand, are only economically consequential for the utilities sector. The return

patterns are robust when we adjust the sample size to various sub-periods.

We continue to test whether investors are pricing deviations in temperature vari-

ability by implementing a dynamic investing strategy which goes long on firms head-

quartered in states that are least affected, and going short on those headquartered

in the most-affected states. We build monthly quintile portfolios by ranking states

on their exposure to the temperature metrics and place Russell 3000 firms in the dif-

ferentially exposed portfolios based on their headquarter location. We rebalance the

portfolios monthly, depending on the states’ exposure to a temperature statistic. The

methodology retrieves a time series of portfolio returns which we market-adjust with

the Fama-French three factors and an additional momentum factor akin to Barber

and Odean (2008). This strategy results in a 50% market-adjusted return over the

14-year sample period when using TD-V AR, compared to a negligible 8% (equivalent

to 0.05% monthly) for temperature anomalies when considering all firms. Sectorally,

the returns are markedly more for the energy and utilities sectors and are minor

for the consumer sectors when using deviations in temperature variability. The re-

sults remain robust when we remove firms in states that are continually exposed to

temperature shocks. The findings suggest that investors do account for temperature

extremes by dynamically hedging the risks.

The aggregate results point to the fact that TD-V AR is a salient physical risk

for financial markets; however, the evidence we present is the combined effect of

the material impact on firm operations and investor attention to climate change or
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temperature. Temperature shocks have an impact on the attention of investors (Choi

et al. (2020); Alekseev et al. (2021); Pastor et al. (2021)) and a corporation’s earning

processes (Addoum et al. (2021)), which together affect the equilibrium price of an

asset. We attempt to explicitly disentangle the two effects by first associating the

temperature metrics to innovations in attention indices, and second by extracting

the true physical exposure of the firm, divorced from investor attention.

We investigate the attention channel at the U.S. country– and state level after

aggregating the temperature metrics to the respective granularity. We adopt the

innovations of The Wall Street Journal (WSJ) news index from Engle et al. (2020),

which captures media coverage of climate change tailored to investors. This index

only captures investor attention indirectly, as investors may not necessarily read the

news, but we expect that temperature shocks would alert the media and investors to

the negative implications of climate change. Additionally, we acquire the innovations

of Google Search Volume Index (SVI) data at the state level for the topics “Climate

Change” and “Temperature”. Using this data, we explore whether retail investors

react to localized temperature shocks (Alekseev et al. (2021)). Our U.S.-level results

show a moderately significant relationship between TD-V AR and unexpected news

in the WSJ index. Similarly, there is a strongly significant relationship between our

metric and both search topics. The only discernible relationship for temperature

anomalies in both exercises is a positive significant relationship to searches for “Tem-

perature”. Collectively, the results suggest that shocks to temperature variability act

as a “wake-up call” for investors.

The final exercise is to measure the attention-adjusted firm-level impact of tem-

perature shocks. Due to data constraints and for reasons of simplicity, we assume

that a firm’s operations will be affected in the same state as their headquarters. If a

temperature shock is truly salient to the processes of a firm, analysts will raise the

issue of physical risk during earnings conference calls. We obtain a measure of firm-

level exposure to physical risks from Sautner et al. (2020) who capture the pertinent

discussion from earnings calls. Their measure, however, is influenced by attention to
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climate change as seen by their positive association with the WSJ index. To disen-

tangle this effect, we obtain residuals from a regression of expected and unexpected

news from the WSJ on their physical exposure series. The residuals, which we call

NetExposure, can be considered the ‘true’ impact of physical risks on a firm. We

find that elevated TD-V AR is significantly positively associated with an increase in

NetExposure of a firm in comparison with T̃D. Additionally, we find much larger

effect sizes for the utilities and energy sector with our metric. Similar to our prior

exercises, we find a muted effect on consumer sectors. In total, the results contex-

tualize the price reaction by showing that TD-V AR is salient for investors and firm

operations.

Our primary contribution is to the nascent research on the financial consequences

of temperature. Most work on climate shocks and financial markets defines abnor-

mal temperatures as temperature extremes, i.e. temperatures being above a certain

threshold, and investigates its effects on the international food industry (Hong et al.

(2020)), firm earnings or profits (Pankratz and Schiller (2021); Addoum et al. (2020)),

futures markets (Schlenker and Taylor (2021)), or asset prices in general (Bansal et

al. (2017)). Addoum et al. (2021) incorporates the effects of both cold spells and

heatwaves on industry earnings. One more relevant paper is that of Donadelli et al.

(2017) who primarily investigate the effect of temperature volatility on macroeco-

nomic outcomes and also find that shocks diminish U.K. and European equity prices

in the cross-section.

We extend this literature in a number of ways. Our metric describes changes in the

distribution of temperature anomalies, which reflects extremes more comprehensively

than thresholds do. We document that deviations in temperature variability can

represent extreme temperatures in a way that is salient for both weather futures

and stock markets. While Addoum et al. (2021) focus on earnings, our results are

in line with their findings that markets react both to extremely hot and extremely

cold days. Furthermore, we find that day-to-day swings in temperature are similarly
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consequential for the same markets. Our study also expands the equity pricing tests

of anomalies in temperature volatility of Donadelli et al. (2017) in concrete manners:

(1) by directly validating the importance of deviations in temperature variability

in the energy consumption and weather futures market; (2) performing an asset

pricing factor analysis to examine the relationship between deviations in temperature

variability and U.S. stock returns; and (3) developing a long–short strategy to explore

investor reactions to sub-national heterogeneity in temperature in the U.S. equity

market.

Another contribution is to the body of research that studies the impact of tem-

perature extremes on investor reactions and attention. Engle et al. (2020) builds

the WSJ climate news series to hedge against long-term climate risks. Choi et al.

(2020) finds that local temperature shocks can heighten investors’ attention, which in

turn differentially affects returns on a cross-section of stocks. Alekseev et al. (2021),

with a similar argument, investigates the effects of local temperature shocks, finding

that mutual funds respond by shifting their portfolio allocation, irrespective to the

intensity of the heat shocks. We complement the majority of these findings, similarly

concluding that investors do react to temperature swings. Specifically, deviations in

temperature variability lead either to direct attention to a local shock, as in Choi et

al. (2020) and Alekseev et al. (2021), or to indirect investor attention to increased

news coverage distributed more broadly. Critically, however, we discover that the

pricing reaction only occurs in response to a specific type of temperature shock. Fur-

thermore, we go a step further by disentangling attention from firm-level exposure to

the risk.

This chapter is organized as follows. Section 2.2 describes the data and explains

our data set construction procedure. Section 2.3 describes how we expand upon prior

temperature statistics and derive TD-V AR, the deviation in temperature variability.

This section also illustrates that TD-V AR comprehensively quantifies the extremes

in the distribution of temperature. Section 2.4 validates TD-V AR using electric-

ity consumption and weather derivatives. The investigation into the relationships
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between TD-V AR and the U.S. equity market follows in Section 2.5. Section 2.6 dis-

entangles the effect of TD-V AR on investors’ attention and isolates its direct impact

on firms. Section 2.7 concludes.

2.2 Data

In this work, we consider data from a variety of sources. We start with geospatial

temperature data that have a temporal characteristic. We link the spatial feature

to financial variables by extrapolating their location. Finally, attention indexes are

aggregated at national and sub-national levels.

2.2.1 Temperature data

Our analysis is based on the conjecture that deviations in temperature variability are

more likely to affect the profitability of the U.S. corporate sector than are changes in

mean temperature. The effects associated with deviations in temperature variability

are likely to vary substantially across time and location.

Table 2.1. Specification of city dataset

City GHCND Code State Weather Derivative Mean Std

Atlanta GHCND:USW00013874 Georgia X 72.0 15.3
Boston GHCND:USW00014739 Massachusetts 59.3 18.4
Baltimore Washington GHCND:USW00093721 Maryland 65.6 18.6
Cincinnati GHCND:USW00093814 Ohio X 63.8 19.7
Chicago GHCND:USW00094846 Illinois X 59.0 21.5
Dallas Forth Woot GHCND:USW00093904 Texas 79.6 16.1
Des Moines GHCND:USW00014933 Iowa 60.2 22.7
Detroit GHCND:USW00014822 Michigan 58.7 20.7
Las Vegas GHCND:USW00023169 Nevada X 80.2 18.5
Minneapolis GHCND:USW00014922 Minnesota X 54.9 24.1
New York La Guardia GHCND:USW00014732 New York X 62.3 18.4
Portland GHCND:USW00024229 Oregon X 63.0 14.5
Philadelpia GHCND:USW00013739 Pennsylvania 64.4 18.8
Salt Lake City GHCND:USW00024127 Utah 64.3 21.2
Tucson GHCND:USW00023160 Arizona 83.2 14.9

Table(2.1). Present the characteristics of the city for which we obtain GHNC daily data from
NOAA. The stations coincide with the city airport. The columns weather derivatives indicates the
stations for which a Cooling Degree Days (CDD) or Heating Degrees Day (HDD) weather derivative
is traded at CME.
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We collect data to test the relationship between deviations in temperature vari-

ability and weather derivatives. In particular, we obtain city-level temperature data

for 13 U.S. cities3 using the U.S. National Oceanic and Atmosphere Administration

(NOAA) repository. Specifically, we use the NOAA Global Historical Climatology

Network daily (GHNCd), an integrated database of climate summaries from land sur-

face stations across the globe. For each city, we select the station corresponding to the

closest city airport and retrieve the daily maximum temperature from the GHNCd.4

The temperature data cover the period from 1 January 1950 to 31 December 2021.

We pre-process the data by filling in missing values with the average of the maximum

temperature recorded on the days either side. Table 2.1 reports the cities in our data

set, the GHNCd code, the mean daily temperature, and the corresponding standard

deviation.

The majority of our empirical analysis requires a spatially uniform, rather than

city-specific, estimate of temperature. To measure location-specific exposure, we ob-

tain spatially homogeneous daily temperature from the BEST database.5 The BEST

data are in the form of gridded 1-degree latitude by 1-degree longitude reconstruction

of daily temperatures. BEST spatial interpolation provides extensive spatial coverage

from 1950 to the present. BEST utilizes data from significantly more land stations

(over 40,000) than the 10,000 used by alternative data sets, improving the assessment

of record-setting daily U.S. temperatures. The data is then used to compute state-

level and U.S.-wide daily temperatures, the details of which are presented in Section

2.3.4 and Appendix A.1.

3These are: Atlanta, ATL; Boston, BOS; Baltimore Washington, BWI; Chicago, ORD; Cincin-
nati, CVG; Dallas Fort Worth, DFW; Des Moines, DSM; Detroit, DTW; Las Vegas, LAS; Min-
neapolis St Paul, MSP; New York, LGA; Portland, PDX; Philadelphia, PHL; Salt Lake City, SLC,
and Tucson, TUS. This same data was used in Diebold and Rudebusch (2022).

4Later in the analysis, we consider temperature-related weather derivative instruments. These
contracts are city-specific and are settled based on the temperature readings of a specific weather
station near the contract city.

5The application of homogenization techniques to daily temperature data is important in order
to accurately understand the evolution of temperature extremes over the past century. The BEST
daily temperature data use of a novel homogenized gridded approach to improve the assessment of
record-setting daily U.S. temperatures. We refer to Rohde et al. (2013) and Rohde and Hausfather
(2020) for a technical discussion.
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2.2.2 Financial and economics data

We collect data on returns for the Russell 3000, an index tracking the performance of

the 3,000 largest U.S. companies, representing approximately 97% of the investable

U.S. equity market. Data on Russell 3000 constituents, their firm fundamentals and

headquarter locations are drawn from Refinitiv, and they are classified into their

respective sectors using the Global Industry Classification Standard (GICS).

Table 2.2. Summary Statistics, Russel 3000

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

LOGSIZE 9.18 9.21 9.08 8.97 9.10 9.17 9.18 9.28 9.34 9.34 9.32 9.40 9.43 9.42 9.40
B/M 12.88 14.38 15.03 13.69 13.99 14.55 14.45 14.99 15.69 16.11 15.69 15.91 16.75 17.14 17.82
ROE 11.25 9.04 -1.38 3.05 7.17 7.79 7.77 8.22 6.87 3.48 3.60 5.14 3.96 0.92 -4.59
INESTA 20.15 20.31 21.01 23.03 22.07 21.66 22.62 23.63 23.12 24.31 25.48 25.60 25.32 25.51 24.85
DEBTA 23.92 24.10 24.92 27.34 25.76 25.06 26.18 27.04 26.17 27.22 28.34 28.80 28.31 28.37 27.72
INVEST/A 5.92 5.64 4.86 3.45 4.13 4.99 4.92 4.77 4.74 4.42 4.08 4.10 4.24 4.02 3.02
LOGPPE 8.19 8.22 8.25 8.26 8.25 8.26 8.26 8.26 8.24 8.24 8.25 8.26 8.27 8.28 8.39
MOM 1.26 0.23 -3.78 3.57 2.09 0.58 1.48 3.03 0.89 0.45 1.16 1.68 0.27 1.03 1.94

Table(2.2). The table presents summary statistics for the control variables of the Russell 3000
index component. We print the average of each indicator by equi-weighting the single components
each year. LOGSIZE is the natural logarithm of the market capitalization; B/M is firm’s book value
divided by its yearly market cap; ROE is the ratio of firm’s net yearly income divided by the value of
its equity; LEVERAGE is the ratio of debt to book value of assets; capital expenditures INVEST/A,
is the firm’s yearly capital expenditures divided by the book value of its assets; LOGPPE, is the
natural logarithm of the firm’s property, plant, and equipment; MOM is the average of returns on
stock, for the 12 months’ up to and including month t 1

In Table 2.2 we report summary statistics on stock returns and several control

variables used in our subsequent tests. The dependent variable, ri,t,s, in our cross-

sectional return regressions is the monthly return of an individual firm i in month

t, headquartered in state s. We use the following control variables in our cross-

sectional regressions: LOGSIZEi,q, given by the natural logarithm of firm i’s market

capitalization (price times shares outstanding) at the end of each quarter q; B/Mi,t,

which is firm i’s book value divided by its yearly market cap; ROEi,t, which is

given by the ratio of firm i’s net yearly income divided by the value of its equity;

LEV ERAGE, which is the ratio of debt to book value of assets; capital expenditures

INV EST/A, measured as the firm’s yearly capital expenditures divided by the book

value of its assets; LOGPPE, which is given by the natural logarithm of the firm’s
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property, plant, and equipment at the end of year t; MOMi,t, which in turn is given

by the average of returns on stock i, for the 12 months up to and including month

t− 1.

To assess portfolio exposure to the classical three Fama-French factors, we down-

load the factors from Kenneth French’s data repository (French (2020)) for the U.S.

equity market. These factors are related to the Russell data set we employ for the

financial analysis. Table 2.3 provides summary statistics on the three factor6 charac-

teristics: market return minus risk-free rate (Mkt-RF), small minus big (SMB) and

high minus low (HML).

We collect data covering September 1990 to December 2020 on electricity consump-

tion and weather futures prices to validate the materiality of our metric. We ob-

tain time-series data on energy demand for 50 U.S. states at the monthly frequency

from the U.S. Energy Information Administration. The U.S. classification considers

four end-use sectors: residential (homes and apartments), commercial (offices, malls,

stores, schools, hospitals, hotels, warehouses, and public assembly), industrial (facil-

ities and equipment used for manufacturing, agriculture, mining, and construction),

and transport.

Weather futures contracts are traded on the CME, and a majority of weather

contracts are based on temperature. Temperature-related contracts insure the buy-

6For a comprehensive description, refer to Fama and Kenneth (1993)

Table 2.3. Summary Statistics, Fama French 3 Factors

2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021

Mkt-RF 0.28 0.83 0.12 -3.68 2.28 1.49 0.14 1.31 2.57 0.96 0.08 1.09 1.63 -0.49 2.13 2.07 2.69
SMB -0.02 0.18 -0.64 0.53 0.67 1.02 -0.37 0.01 0.48 -0.56 -0.48 0.73 -0.41 -0.39 -0.36 0.51 1.84
HML 0.73 0.86 -1.41 0.17 -0.23 -0.30 -0.70 0.71 0.18 -0.13 -0.84 1.62 -0.96 -0.87 -0.68 -2.92 4.15
RF 0.25 0.39 0.38 0.13 0.01 0.01 0.00 0.01 0.00 0.00 0.00 0.02 0.07 0.15 0.18 0.04 0.00

Table(2.3). The table shows the yearly average for the three Fama-French Factors. Source: Fama
French repository (French (2020)). From the top to the bottom, the first, Market minus Risk
Free(Mkt-RF). is the market excess return over the risk free. Small Minus Big (SMB) is the riturn
of the least capitalized over the most capitalized. High minus low (HML) represent the spread
between value and growth stocks. Risk Free(RF) is the US risk free rate.
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ers against either excessive heat or excessive cold during a specified period of time.

The two main temperature instruments are Heating Degree Day (HDD) contracts and

Cooling Degree Day (CDD) contracts. The buyer of an HDD contract receives pay-

ments for cold days, defined as days with average temperature below 65°F; conversely,

the buyer of a CDD contract receives payments for hot days, defined as days with

average temperature exceeding 65°F. Contracts are available for eight geographically

distributed cities across the U.S. These contracts are written on the observed tem-

perature at a specific weather station near the contract city for a specific period. We

select the same cities considered in Diebold and Rudebusch (2022) and Schlenker and

Taylor (2021): Atlanta, ATL; Chicago, ORD; Cincinnati, CVG; Dallas Fort Worth,

DFW; Las Vegas, LAS; Minneapolis St Paul, MSP; New York, LGA; and Portland,

PDX.7 Daily futures prices (end of day) for HDD and CDD contracts were obtained

from Bloomberg, covering 2005 to 2020.

2.2.3 News and attention index

Concerning news indices, we employ data from several sources. From Google Trends

we retrieve the Google Search Volume Index (SVI) from 2004 for a particular topic

at the U.S. country and sub-national level.8 The retrieved monthly index, Gs,t,

represents the intensity of the topic search, on a scale from 0 and 100, in a certain

region, s, from 2004 to the present. For each state, 0 represents a month with no

searches on the topic whereas 100 is the month with the most searches in its history.

Two states may peak at the same time; however,because the scale only compares

time periods within a state, two states may have the same index value at the same

time, without having the same actual search volumes. We download the Google SVI

for the 50 states based on ”climate change” and ”temperature” search terms. Figure

(2.1) shows the difference between the indices averaged at the U.S. level. We note

7Table 2.1 indicates which of the cities in our larger city sample have temperature derivatives
available.

8Google makes the Search Volume Index (SVI) of search terms public via the product Google
Trends (www.google.com/trends). Weekly SVI for a search term is the number of searches for that
term scaled by its time-series average.
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that searches for ”temperature” display a clear seasonal pattern, which we de-trend

using the methodology outlined in Choi et al. (2020).

Figure 2.1. Google Search Volume Index (SVI) - U.S. average

Figure 2.1 shows the monthly U.S. average of 3 Google Trends indexes, respectively ”Climate
Change”, ”temperature” and ”Global Warming”. Each month, the U.S. index is computed as

USm =
1

50

∑50
i Gi,m. Given that in each state the index assume values between 0 and 100, the US

index is the simple average of the relative search in each month. This is just for illustration purpose
given that in the analysis we employ state specific indexes.

We also use the WSJ news index created by Engle et al. (2020), which captures

both physical and transition risks. The series they build is based on the assumption

that any news about climate change is bad news. The news index is broken down by

month, covering July 2008 through June 2017. When using this index, our sample is

truncated to reflect this shortened time period.
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2.2.4 Other data

In order to aggregate the state temperature index at the country level, we employ

a population and gross domestic product (GDP) weighting method. We obtain the

population and GDP series from the Federal Reserve Economic Database released

by the Federal Reserve Bank of St. Louis. Population is available at the state level

through the code ’POP’, with a starting date of 1950. To match the monthly temper-

ature and financial data sets, we interpolate the yearly frequency of the population

data to obtain monthly or daily series. GDP is available through the code ’RQGSP’,

which returns quarterly real gross product for each state. We perform a similar

interpolation method to obtain a monthly or daily series.

We examine firm-level exposure to temperatures by adopting data developed by

Sautner et al. (2020). Their physical exposure measure consists of the proportion of

time an earnings conference call centers around physical climate shocks. The data

is available at a quarterly frequency and runs from 2000 to 2020. When using this

measure, we average our temperature and attention data to the quarterly frequency.

2.3 On the evolution of excess temperature dynamics

Our aim is to represent the spatio-temporal variation in the distribution of temper-

ature anomalies and, in particular, extreme temperatures, in a way which is more

salient for financial markets. To do so, we expand upon prior temperature statistics to

incorporate a more complete representation of abnormal temperatures by gradually

building a statistic of temperature variability, named TD-V AR,. With concrete and

theoretical examples, we illustrate why our statistic is comprehensive in quantifying

the extremes in the distribution of temperature. We end the section by describing

our aggregation methodology used for our empirical analysis.
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2.3.1 TD–VAR derivation

In the spirit of Donadelli et al. (2019) and Kotz et al. (2021), for a given location,

we compute the variability in temperature deviation and subtract this value from its

historical mean. This metric effectively captures changes in temperature extremes

by means of shifts in temperature variability across time. It has been shown that a

high degree of variability in temperature anomalies tends to be associated with more

frequent extreme temperature events (Hansen et al. (2012)). Considering that the lit-

erature confirms that abnormal temperature anomalies cause economic and financial

disruptions, we argue that deviations in temperature variability are a primary driver

of market reactions, and this statistic improves upon alternative statistics used in

the recent literature, such as changes in mean temperature and abnormal or extreme

temperatures (Addoum et al. (2020), Addoum et al. (2021), Pankratz and Schiller

(2021)).

To that end, we construct a set of location-specific temperature statistics. First,

similar to Kotz et al. (2021), we define the daily change in mean temperature as:

TDs,d = (Ts,d − T s,d), (2.1)

where Ts,d indicates the maximum temperature observed in location s on a certain

day d in the year; and T s,d represents the historical average temperature in the same

location s and on the same day d over the period 1960–2005. A smoothing window

of 5 days is used to calculate the historical average daily temperature.

Then, we define the monthly temperature anomaly, T̃Ds,m, as the average of the

temperature anomalies relative to the daily mean temperature within a given month.

Analytically, this corresponds to:

T̃Ds,m =
1

Dm

Dm∑
d=1

TDs,d, (2.2)

where Dm is the number of days within month m.
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Next, we calculate the monthly standard deviation in temperature anomalies in

month m:

σ(TDs,m) =
1

Dm

√√√√Dm∑
d=1

(TDs,d − T̃Ds,m)2. (2.3)

Lastly, we calculate the deviation in temperature variability from its historical

mean and obtain the deviation in temperature variability:

TD-V ARs,m = σ(TDs,m)− σ(TDs,m), (2.4)

where σ(TDs,m) represents the historical average temperature variability recorded

in location s at month m.9 This second term distinguishes us from Donadelli et al.

(2019), as their measure captures the dispersion of temperature variability against a

historical level observed over the industrial revolution era, i.e. 1659–1759.

We emphasize that TD-V AR can assume both negative and positive values. A

negative value of TD-V AR corresponds to a tighter distribution of temperature

anomalies compared to historical realizations. Consequently, the likelihood of a large

anomaly decreases. A positive value of TD-V AR corresponds to wider variability of

temperature anomalies and, by construction, an increase in the unconditional prob-

ability of large swings. A positive TD-V AR can be the result of two distinct and

non-concomitant patterns. First, where the temperature deviates strongly in one

direction during elongated cold spells or heatwaves. Second, when day-to-day tem-

peratures swing frequently between hotter– or colder-than-normal periods. In the

next sections we describe where we observe these patterns in the data. Crucially,

statistics that rely on shifts in mean temperature, T̃D, and abnormal temperature

are insufficient for describing changes in the unconditional probability of temperature.

9It is possible to compute an equivalent daily TD-V AR over a rolling window l. First, we
compute the standard deviation in temperature anomalies in location s at day d observed over

the past l days: σ(TD)s,d,l =
1

l

√∑l
i=1 TD

2
s,d−i. Then, we compute the σ(TDs,d,l), the historical

average temperature variability recorded in location s at day d with lag l. We then obtain the daily
TD-V AR defined as TD-V ARs,d,l = σ(TDs,d,l)− σ(TDs,d,l)
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2.3.2 Intuition on TD-VAR

Now that we have formally derived TD-V AR, we illustrate its ability to describe

temperature extremes more comprehensively in comparison to using thresholds. Also,

we discuss its advantages and various properties in the context of prior literature.

Schlenker and Taylor (2021) and Addoum et al. (2020) use a form of TD by defining

extreme temperatures as the number of days in a month where the temperature

exceeds a given heat threshold. However, both heatwaves and cold spells can cause

severe issues. For example, in early 2021, a winter storm hit Texas causing power

cuts and, as lamented by the Financial Times, provoking disruptions to the global

supply chain for chemical raw materials.10 Addoum et al. (2021) correct this by

accounting for both warmer and cooler temperatures, yet still use a form of a priori

thresholding. When calculating temperature anomalies, thresholds are likely to vary

substantially across time and location. TD-V AR presents the most salient spatio-

temporal information, providing a sufficient characterization of the distribution of

temperature and concisely describing temperature extremes.

The primary benefit of using our metric versus other temperature measures such

as TD, is its ability to capture temperature extremes without introducing idiosyn-

cratic thresholds. Building on the literature that confirms the relationship between

temperature anomalies and economic and financial disruptions, we claim that our

measure TD-V AR improves upon T̃D in representing noticeable characteristics of

temperature anomalies and their economic and financial impacts. We show, through

a set of exercises, the relative importance of TD-V AR over T̃D in representing ex-

tremes in the temperature distribution.

We begin with a real-world example of occurrences of extreme temperatures and

the average value of monthly temperature anomalies, T̃D. Figure 2.2 represents the

temperature conditions in Boston during the year 2020. The red bars represent the

number of days that Boston experienced an ‘extreme’ temperature – defined as a

10The Financial Times, March 24th, 2021 - ”Global supply chains face months of disruption from
Texas storm”
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temperature that exceeds 1.5 times the historical standard deviation. The blue line

is the average monthly temperature anomaly, T̃D. In January, the average tem-

perature anomaly is substantial, but the frequency of extremes is low. The average

temperature anomaly over December and April is modest but there is a high num-

ber of extreme days. In aggregate, the results show that a measure based on average

anomalies does not adequately reflect the frequency with which a location experiences

extreme temperatures.

We now turn to a theoretical example to illustrate why thresholds fail to represent

temperature extremes. We consider a continuous response variable x characterized by

a probability density function ψ(x). The probability of experiencing an extreme value,

XTD is computed using the area above or below the thresholds kmax and kmin, which

represent the values associated with the definition of an extreme.11 Analytically, XTD

can be expressed as:

XTD =

∫ ∞
kmax

ψ(x)dx+

∫ kmin

−∞
ψ(x)dx, (2.5)

where ψ(x) is the probability density function of TD.

The two components we define, T̃D and TD-V AR, characterize shifts in the

distribution parameters of TD. In the absence of climate change, T̃D is equal to 0,

as is TD-V AR. Changes in T̃D represent the differences in the average realization of

the temperature distribution; however, a positive T̃D does not imply an increase in

the occurrence of extremes. In contrast, changes to TD-V AR modify the entire shape

of the distribution of TD, explicitly increasing the variability and the probability of

extreme temperatures.

Simply put, changes in T̃D characterize shifts in the mean of TD while TD-V AR

accounts for a change in the variance of TD.

To continue our theoretical example, we present conceptual arbitrary thresholds

typically used to represent temperature extremes. We assume that TD exhibits a

11This definition of temperature extremes is closely related to Pankratz and Schiller (2021), Ad-
doum et al. (2020), and Addoum et al. (2021).
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Figure 2.2. Extremes realization and TD average value

Figure (2.2): shows the historical evidence of extreme realizations and monthly average temperature
deviation for the city of Boston in 2020. Red bars shows the number of day within a month the
temperature experienced a an ”extreme value”, when the absolute value of temperature deviation
higher than 2 standard deviations of historical distribution. The blue line shows the monthly average
temperature deviation realization, Fahrenheit degrees.
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normal distribution characterized by the parameters µ, which is set to zero, and σ2 is

set to the historical unconditional variance of TD.12 Further, σ2 is fixed to 25 which

is in line with the unconditional historical temperature data. Finally, we set kmax

to 10°F and kmin to -10°F. In this baseline scenario, the amount of time a location

experiences an ”extreme” temperature is 4.6%, or 1 day in a month.

As there is no closed formula to formally calculate the amount of time spent above

or below each threshold, we present a simulation that describes the interactions be-

tween the values of T̃D and TD-V AR.

Figure (2.3) shows the extreme probability, represented by the red shaded area for

differing values of TD-V AR and T̃D. The central reference graph represents the

historical distribution of temperature anomalies characterized by mean zero and the

historical average volatility level. The historical average volatility level also implies

that TD-V AR is zero. Moving horizontally or vertically from the central plot repre-

sents nominal changes in T̃D and TD-V AR, respectively. The right column, where

the temperature anomaly has a positive value, is associated with an increase in the

occurrence of extremes only when TD-V AR is non-negative. In contrast, positive

values of TD-V AR – in the first row – are always associated with a larger shaded

area, even in the case of negative values of T̃D. These instances illustrate the draw-

backs of solely using T̃D rather than TD-V AR. In sum, using only the average of

TD fails to consider potentially salient temperature realizations which TD-V AR can

better capture.

In the prior examples, we assumed TD-V AR and T̃D to be independent when

assessing TD-V AR’s relative importance from various theoretical perspectives. Here,

we demonstrate how TD-V AR correlates with other temperature measures. Table

2.4 shows the long-term relationship of TD-V AR with other temperature factors,

such as levels, deviation and variability. As already presented, there is no linear

relationship between temperature anomalies and temperature levels. Deviation vari-

ability, however, shows a negative correlation coefficient of -0.8 due to the fact that

12µ equal to zero is a case where there is no global warming.
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Figure 2.3. Effects on extreme, increase in TD and TDVAR

Figure (2.3): The table presents the interplay between increase in temperature deviation, TD, and
deviation in variability, TDVAR. The columns entries present in the center, the historical level of TD
that is equal to 0. The left-hand side column present a situation in which the average of TD = +2.
The column on the left shows the situation in which the average of TD = −2. The entries on
the rows show the comparable situation for TDVAR. The central rows, ”Historical”, present the
situation associated with the historical variability level, TDV AR = 0. The Positive and Negative
rows present respectively TDV AR = 1, TDV AR = −1. Red shaded area represent the probability
of extreme, with threshold set at +10 and -10 Fahrenheit degrees.
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variability is higher in winter and lower in summer, a fact well documented in the

literature. When we turn our attention to TD-V AR, we note the negligible positive

relationship with these other variables. We highlight that TD-V AR does not display

a seasonal pattern as the variability, and the relationship with variability, is absent.

Fundamentally, our examples highlight that temperature extremes can be bet-

ter characterized using deviations in temperature variability. A key aspect of this

argument is that it obviates the need for thresholds. We extend our theoretical

explanation of the advantage of TD-V AR over TD with realistic examples in the

following sections.

2.3.3 City-level evidence

In this section, we supplement the prior theoretical examples with real-world, city-

level records of TD-V AR and T̃D. We compute each value for 13 U.S. cities to further

demonstrate the key differences between the two measures, analogous to Diebold and

Rudebusch (2022). We select periods of time in these cities to graphically represent

the temperature and temporal dynamics of its derivations. Furthermore, we highlight

important differences after aggregating temperature data to the state level.

We obtain daily maximum temperature data from NOAA as our basis for our

various offshoot measures. This data, from 1950 onward, are recorded at the airport

stations of the 13 cities.13 From the daily maximum level, we extract temperature,

T , temperature anomalies, TD, temperature variability, σ(TD), and deviation in

temperature variability, TD − V AR. The former two metrics are defined at a daily

frequency while the latter two are computed on a 30-day rolling window. Figure

2.4 displays the plots of these four statistics for the city of Atlanta between 2016

and 2018. Unsurprisingly, temperature T is characterized by seasonal changes, as

illustrated in the top left diagram.

The random variable TD, shown in the top right panel, is generated after adjusting

13These temperature stations are the same as those used to compute the value of the temperature
derivative contracts in Section 2.4.
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Figure 2.4. TDVAR derivation for Atlanta

Figure (2.4) represents the steps embraced to extract from the temperature level the various com-
ponent analyzed in the work. The top left figure shows in green the Temperature level, T , as well
as the historical average of the Temperature level, T . These components characterize the right
hand side in equation (2.1). The top right panel displays daily Temperature Deviation in blue, TD,
that is the left hand side of equation(2.1). The bottom left figure shows in green the volatility of
temperature deviation, σ(TD), defined by equation (2.3) and in blue its historical level, σ(TD).
These two components represent the right-hand side of equation (2.4), whose outcome, TD-V AR,
is shown in the bottom right figure, in blue.
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temperature for seasonality.14 This component exhibits a slow-moving long-term

trend, shown in red, which represents the average warming due to carbon emissions.

During the winter months, temperature anomalies are highly volatile compared to

the summer months. The seasonality of TD volatility is made clear in the bottom

left plot by calculating σ(TD) using Equation 2.3. Lastly, deviations in temperature

variability are derived in the bottom right diagram after removing the long-term

seasonality/variability component. TD-V AR improves upon TD by removing the

sluggish rise in temperatures and the seasonality component.

To further contextualize the plots in Figure 2.4, we explore the difference between

TD-V AR and TD by highlighting one particular city location: Boston. We perform a

rolling computation of TD−V AR and TD at the daily level for a time window of 2015

through 2018, shown in Figure 2.5. The top and bottom panels of the figure contain

the realizations of TD and TD-V AR, respectively. We exemplify a few moments in

time to more realistically describe a link between TD and TD−V AR. There are three

particular peaks in TD − V AR for the city of Boston: June–July 2015, February–

April 2016, March–April 2017. For the first peak, we note that TD is persistently

high, portraying a heatwave, in comparison with the historical average – shown in

red – during these months. The second peak of TD-V AR is related to large swings

of temperature anomalies in both directions. The final high variability temperature

event, beginning in March 2017, exhibits both persistently higher deviations and

fluctuations around the historical average value. Combined, these instances show no

direct link between the two measures at the daily level, which is corroborated by

Table 2.4, as the correlation coefficient between TD − V AR and TD is 0.12. To

clarify the true disconnect between the two measures, we aggregate the values to the

state level.

Figure 2.6 highlights the differences between the two temperature measures after

deriving the monthly TD − V AR and T̃D – Equation(2.2, 2.4) – for the state of

14Here, TD is comparable to measures in Pankratz and Schiller (2021), Addoum et al. (2020),
and Schlenker and Taylor (2021). A caveat is that Pankratz and Schiller (2021) and Addoum et al.
(2020) only use heatwaves.
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Figure 2.5. TD and TDVAR characteristics

Figure (2.5) shows temperature characteristics for Boston in year 2015, 2016, 2017. The top figures
shows the daily temperature deviation, TD, defined in equation (2.1). The red line presents the
average TD over the period, that equals +1.8°F. The bottom figure present the daily TDVAR
computed on a monthly rolling window following equation(2.4).
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Texas. In the right panel of Figure 2.6, we plot monthly anomalies relative to his-

torical temperatures, T̃D, whereas the left panel illustrates the monthly deviation

in temperature variability, TD-V AR. In May through June of 2018, there are high

values of TD− V AR in comparison to T̃D, which is reversed in the months between

October and December of 2019. This selected example illustrates that higher levels

of TD are not tied to higher levels of TD-V AR, as the two metrics capture different

aspects of the temperature distribution.

2.3.4 State and country aggregation

For our empirical analysis in the next sections, we use aggregated measures of TD-

V AR and T̃D to represent the spatio-temporal heterogeneity of temperature. Our

underlying assumption is that firms and investors react to temperature shocks which

are inherently local. We first aggregate gridded temperature anomalies to the state

level because there is prior evidence that investors react to local weather shocks (Choi

et al. (2020)). Additionally, due to data constraints and for reasons of simplicity, we

assume that a firm’s operational footprint is primarily located in the same state as

its headquarters. To match country-level indices for our empirical analysis, we also

combine the state-level aggregations.

We begin by computing state-aggregated temperature. We collect grid-level data

from the BEST, which assigns a temperature field at a 1-degree resolution within U.S.

land borders. The aggregation method can be formally defined by the temperature

T of state s on day d as follows:

Ts,d =
Ns∑
i=1

wi ∗ Ti,d, (2.6)

where Ts,d is a weighted average of the temperature assigned to each grid cell i =

1, . . . , Ns, and Ns is the number of parcel grids cells. We equally weight the cells

by setting the weights wi equal to 1/Ns, which allows for a consistent measurement

of average maximum temperatures at the state level. This methodology allows us
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Figure 2.6. Monthly temperature characteristics, T̃D and TD-V AR

Figure (2.6): shows on the left panel monthly average temperature deviaton(TD 2.1) and on the
right panel the monthly deviation in temperature variability (TDV AR, 2.4) for Texas between 2018
and 2020.

to derive T̃D and TD-V AR of state s as described in expressions (2.1), (2.3), and

(2.4). Our process of obtaining sub-national temperature data is similar to other

papers such as Burke and Tanutama (2019). In Appendix A.1 we discuss alternative

aggregation methods.

To derive U.S.-wide temperature factors, we aggregate each temperate volatility

measure from its state counterpart. Aggregating data to the country level subsumes

the rich sub-national heterogeneity of temperature data but allows us to match it

to other country indices and data sources. We strictly define U.S.-wide T̃D and

TD-V AR as follows:

UST̃D,m =
Ns∑
i=1

wiTDi,m, (2.7)

USTD−V AR,m =
Ns∑
i=1

wiTD-V ARi,m. (2.8)

While there are multiple ways to aggregate temperature data, we consider each state
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to be its own grid cell.15 The measure for each state is then equally weighted by setting

wi = 1/50. In Appendix A.1 we discuss possible alternatives, such as weighting for

the resident population or the GDP of a specific state.

2.4 Validation using electricity consumption and weather

derivatives

Our prior examples reveal that the TD-V AR measure compares favorably to TD

in capturing the incidence of temperature extremes. Next, we test the salience and

validity of our measure, TD-V AR, by investigating whether deviations in tempera-

ture variability are a relevant driver of energy consumption and prices in the weather

derivatives market. This follows prior research by Campbell and Diebold (2005), who

document that unexpected weather fluctuations can cause substantial pricing effects

on the weather derivatives market and its players, such as energy producers and

consumers. Given that TD-V AR captures extreme fluctuations in temperature, we

expect TD-V AR to perform better than TD at accounting for variations in energy

consumption and weather derivative prices.

We begin by examining the effect of T̃D and TD-V AR for energy consumption.

We obtain time-series data on energy demand at the monthly frequency from the U.S.

Energy Information Administration for all states. Energy consumption is classified by

15Expressions (A.1) and (A.2) in Appendix A.1 describe alternative methods.

Table 2.4. Pearson Correlation Coefficient, Temperature drivers

T TD σ(TD) TD-V AR

T 1
TD 0.32 1
σ(TD) -0.8 -0.11 1
TD-V AR -0.2 -0.12 0.17 1

Table (2.4). Sample period: 2005-2020. It is computed the Pearson correlation coefficient on the
level of the variables. The entries represent Temperature level, temperature deviation (TD, 2.1),
temperature variability (2.3), deviation in temperature variability (TDVAR, 2.4).
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sector: residential, commercial, industry and transportation. Since energy consump-

tion displays strong seasonal patterns, our analysis focuses on modeling short-run

temperature shocks not captured by long-term trend analysis (Son and Kim (2017)).

We link the observed seasonality of monthly demand (Bigerna (2018)) to the two

components of temperature: anomalies and deviation in variability. We first run an

ARMA (J,P) for each state s following Bigerna (2018):

Qs,t =
J∑
j=1

ajQt−j +
P∑
p=1

bpεt−p + εs,t (2.9)

where Qs,t represents the electricity consumption in state s at time t, J is the au-

toregression order and P is the moving average order. We then check the significance

on the residual against TD-V AR and TD respectively, and estimate a fixed effects

model:

εt = βv ∗ TD-V AR + βt ∗ T̃D + γt + ηn + ε. (2.10)

Table (2.5) shows the resulting coefficients. We observe a positive and statistically

significant β coefficient for the deviation in temperature variability, TD-V AR, in

residential and industrial sectors and in the aggregate. A positive coefficient implies

that, in a month characterized by high variability, the forecast value of electricity

consumption exhibits a larger error relative to the best-fit value estimated through

Equation (2.9). This error is inherently determined by the extent of the variability.

The non-significant coefficient for TD-V AR in the commercial sector suggests that

the elasticity of electricity consumption is different for the residential and commercial

sectors. This conclusion is supported by Zachariadis and Pashourtidou (2007) who

find that the residential sector is highly reactive to weather conditions, as demand in

the short term is inelastic to price. Taken together, our results confirm prior evidence

of energy consumption being highly affected by weather conditions (Quayle and Diaz

(1980)) and sensitive to large shifts in temperature variation. (Chang et al. (2016)).
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Table 2.5. Estimation Results for energy consumption

Residential Commercial Industrial Total

TD-V AR 0.0054*** 0.0006 0.0020** 0.0025***
(0.0011) (0.0006) (0.0009) (0.0005)

T̃D -0.0011 0.0013** 0.0004 0.0002
(0.0008) (0.0006) (0.0004) (0.0006)

Firm fixed effects Yes Yes Yes Yes
Year fixed effects Yes Yes Yes Yes
No. Observations 9000 9000 9000 9000
Cov. Est. Clustered Clustered Clustered Clustered
R-squared 0.0038 0.0034 0.0010 0.0027

Standard errors reported in parentheses

***1% significance,**5% significance, *10% significance,

Table (2.5) The sample period is 2005-2020. The Table present the estimated coefficient for equation
εt = βv ∗TDV AR+βt ∗TD+γt +ηn +ε in the different sectors, Residential, Commercial, Industrial
and the aggregated. Estimation is run trough a PanelOLS employing fixed effect for entities and
time. Standard errors are clustered both at entity and time levels. The sample period is 2005-
2020 for the 50 US state. T̃D and TD-V AR are the state level temperature measure as defined in
equation (A.2, A.1)

The relevant impact of weather on electricity demand has facilitated the creation

of a market for weather derivatives. This market enables utility firms to hedge vol-

umetric risk by trading the underlying risk driver – temperature – rather than the

price of electricity (Jewson and Brix (2005)). We further validate our temperature

measures by testing their association with city-level temperature derivatives prices.

We hypothesize that, if traders account for deviations in temperature volatility,

TD-V AR should capture more variation in weather derivatives prices than TD. To

verify that our measure is relevant for weather derivative markets, akin to Diebold and

Rudebusch (2022), we analyze futures contracts offered by the CME. The key benefit

of this approach is that Schlenker and Taylor (2021) find that market participants

accurately incorporate temperature anomalies through climate model projections. We

extend this line of thought to confirm whether TD-V AR is a driver of these contract

prices. The first contract follows HDDs, which reflects the amount of heating required

during cold days in winter. The second tracks CDDs that measure the necessary

cooling required during hot days in summer. Therefore, CDDs have effective values
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in summer and HDDs in winter. We strictly define CDDs and HDDs where T0 is set

at 65°F for a contract traded at the CME:

CDDi,m =
∑Dm

d=1(Td − T0)+

HDDi,m =
∑Dm

d=1(T0 − Td)+.

(2.11)

We use ordinal least square (OLS) regression analysis to investigate whether

monthly average prices for CDDs and HDDs are affected by temperature – mea-

sured as temperature deviation and deviation in temperature variability. We estimate

CDDs and HDDs separately with the following equations:16

CDDs,m = βtTm + βeT̃Dt + βvTD-V AR + βvσ(TD) + γm + ηs + ε

HDDs,m = α + βtTm + βeT̃Dt + βvTD-V AR + βvσ(TD) + γm + ηs + ε,

(2.12)

where Tm is the average daily temperature level minus 65°F degrees and T̃D, σ(TD),

and TD-V AR are defined in Section (2.3.1). For month and state fixed effects, we

include γm and ηs, respectively. We only consider the constant term in winter given

that the contract is not written on the maximum temperature of 65°F. We split the

contract data into winter (October to March, inclusive) and summer months (April

to September, inclusive).

16We use the derivatives defined in Section 2.3.3, and only consider the seven cities for which the
derivatives are still traded.
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Table 2.6. Estimation of Weather Derivates price driver

CDD HDD
(1) (2) (1) (2)

Tm 22.262*** 25.516*** -25.980*** -26.018***
(1.7786) (2.1067) (0.8380) (0.9349)

TD-V AR 4.0458** 3.5812***
(1.9917) (0.8282)

T̃D -11.082*** 5.4309***
(1.6592) (0.6308)

σ(TD) 2.0248 19.595**
(6.0450) (9.2184)

α 326.87*** 140.60*
(11.508) (79.420)

Estimator PanelOLS PanelOLS PanelOLS PanelOLS
No. Observations 438 438 542 542
Cov. Est. Clustered Clustered Clustered Clustered
R-squared 0.8807 0.9188 0.9501 0.9630

Standard errors reported in parentheses
***1% significance,**5% significance, *10% significance,

Table (2.6). Sample period is 2015-2020. Estimation of model 2.12 for different specification. The
dependent variabile is CDD and HDD respectively and the main independent variable is Tm that
represent the maximum temperature minus 65°F, threshold level for futures contract traded at
CME. Model (1) considers only Tm as regressor, that represent the underlying. (2) considers all
the regresses.Estimation is run trough a PanelOLS employing fixed effect for entities and time.
Standard errors are clustered both at entity and time levels

Table 2.6 shows the results for the two contracts using various temperature drivers.

The first column of each panel includes the underlying temperature on which the

contract is written, while the second column includes the other volatility measures.

We show that Tm alone is able to explain 90% of monthly average price variance for

CDDs in summer and 95% for HDDs in winter. An increase in temperature results

in a decline in the price of CDDs, and vice versa for HDDs. Unsurprisingly, the

magnitude of the coefficients is similar and of opposite sign, given that the derivative

is dependent on the deviation from the 65°F threshold.

We then consider the remaining statistics: TD-V AR, T̃D, and σ(TD). We doc-
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ument that historical variability, σ(TD), has a large significant coefficient during the

winter but no effect in summer. The result supports the findings in prior literature

that temperature volatility is greater during these months.17 The coefficients for TD-

V AR are comparable across winter and summer, which is intuitive when recalling the

option price effect of the volatility on the underlying asset. Higher deviations in tem-

perature variability from the historical mean increase the probability of experiencing

extreme temperatures and, consequently, increase the probability of exercising the op-

tion, thereby increasing the value of the weather derivative contract. This indicates

that two cities with comparable average temperatures may face diverging weather

derivatives prices when one city is characterized by higher temperature variability.

Finally, we compare the coefficients of TD which have signs in the opposite direc-

tion to Tm. This suggests that traders assume temperatures will revert back to their

historical levels when a city experiences higher temperature deviations. Collectively,

we find that traders react negatively to increasing TD-V AR by establishing a higher

price for the apparent risk, whereas an increase in TD implies a reversion to the mean

for the market.

Our validation exercises strongly suggest that shifts in temperature variability,

TD-V AR, are primary drivers of electricity consumption and the weather futures

market. The results are consistent with Diebold and Rudebusch (2022) in demon-

strating that refined measurements of temperature extremes can be consequential for

financial asset prices. This confirmatory evidence also suggests that we are better

able to characterize the reactions of market participants using deviations in temper-

ature variability than by referring to temperature deviations alone. We continue this

line of reasoning by asking whether this market response to TD-V AR has further

implications for the stock market.

17Examining the seasonal component of temperature volatility, Campbell and Diebold (2005) and
Benth and Benth (2007) document the higher values of temperature volatility during winter times.
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2.5 Empirical analysis

2.5.1 Estimating temperature exposure

We analyze the effect of temperature deviation T̃D and deviations in temperature

variability TD-V AR on firm stock prices. Specifically, we are interested in exam-

ining whether the differential exposure of firms to deviations in temperature and

temperature variability affect their stock price. Our expectation is that TD-V AR

will be associated with a collective reaction from investors as well as material shocks

to a firm’s performance, resulting in an aggregate decline in a firm’s stock price. To

empirically test this we use the Russell 3000, a broad index covering 3,000 major

U.S. firms, and collect data on firm stock returns and headquarter locations. This

framework benefits from the panel data characteristics of our sample, which is rich

in both the cross-section and time-series dimensions. Moreover, it is possible to in-

vestigate the temperature dynamics at the industry level and include time– and firm

fixed effects. We do not employ geography fixed effects since geographical differences

are captured by the state-level temperature.

Table (2.2) in Section 2 provides summary statistics on stock returns and several

control variables used in our analysis. The dependent variable, ri,t,s, in our cross-

sectional return regressions is the monthly return of an individual firm i in month

t and headquartered in state s. We use the following control variables in our cross-

sectional regressions: LOGSIZEi,q, given by the natural logarithm of firm i’s market

capitalization (price times shares outstanding) at the end of each quarter q; B/Mi,t,

which is firm i’s book value divided by its yearly market cap; ROEi,t, which is

given by the ratio of firm i’s net yearly income divided by the value of its equity;

LEV ERAGE, which is the ratio of debt to book value of assets; capital expenditures

INV EST/A, measured as the firm’s yearly capital expenditures divided by the book

value of its assets; LOGPPE, which is given by the natural logarithm of the firm’s

property, plant, and equipment at the end of year t; MOMi,t, which in turn is given

by the average of returns on stock i, for the 12 months up to and including month
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t − 1. To allow for systematic differences in correlations across firms and over time,

we include firms fixed effects ηt and year–month fixed effects φt. In this regard, our

identification comes from states’ variation in a given month.

In turn, we consider the effect of abnormal temperature, measured as the average

daily temperature deviation within a month (T̃D), and the effect of abnormal tem-

perature variability, measured as the deviation in temperature variability from its

historical mean in the same month (TD-V AR). This regression captures the impact

of temperature on stock returns at the state level. Taking both abnormal temperature

and abnormal temperature variability into account, we believe this measure provides

a rough proxy for the climate change risk that a firm is exposed to at a given point

in time.

Specifically, we estimate the following model:

ri,t,s = α + βT ∗ Tt,s + β1Ci,t−1 + φt + ηi + εi,t (2.13)

where ri,t,s measures the stock return of firm i in month t and headquartered

in state s. T is a generic term that can stand in for either the deviation of daily

temperature from its historical mean within a month (T̃D), or the deviation of daily

temperature variability from its historical mean in the same month (TD-V AR). The

vector of firm-level controls C includes the firm-specific variables described earlier.

We estimate these two cross-sectional regressions using panel OLS. In both model

specifications, we cluster standard errors at the firm and year levels, which allows

us to account for any serial correlation in the residuals and to capture the fact that

some control variables are measured at an annual frequency.

We begin our analysis by asking whether temperature exposure affects the stock

returns of Russell 3000 firms. Table 2.7 presents distinct estimates of the effect

of abnormal temperature, Panel A, and abnormal temperature variability, Panel B.

Specifically, once we control for firm and time period, as well as a battery of firm

characteristics, the estimated effect of temperature deviation T̃D is economically
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small and statistically insignificant when considering all firms (first column of Panel

A). Nor do we find evidence of a significant relationship between an average firm’s

exposure to deviations in temperature variability, TD-V AR, and its stock returns

(first column of Panel B).

Our empirical tests thus far indicate that exposure to temperature deviation and

deviations in temperature variability has a minimal effect on stock returns for the

average firm in the Russell 3000. To this point, our findings substantiate the results of

Addoum et al. (2020), who document that temperature exposure is not an important

driver of establishment-level sales growth. These findings are consistent with those

of Dell et al. (2012), who show that the negative effects of temperature on aggregate

economic growth are concentrated among developing countries, but tenuous in richer

economies.

While there is some evidence that extreme temperatures have no effect (Addoum

et al. (2020)), certain sectors of the economy may still exhibit sensitivity to abnor-

mal temperatures. As such, we continue our analysis to examine whether firms in

certain economic sectors are particularly sensitive. We use GICS codes to organize

Russell 3000 firms into 10 sectors. In Table 2.7 Panel A, we rerun our yearly stock

return regression for each sector. For all sectors except utilities (electric utilities;

gas utilities; and multi-utilities), we continue to find economically and statistically

insignificant estimates associated with exposure to temperature deviations. Months

that are warmer or colder than expected are equally good and bad for all these in-

dustries. Utilities are a special case though, because they are tasked with providing

enough energy over time as well as meeting instantaneous electricity demand, while

juggling the costs associated with grid balancing and a continuous expansion of non-

dispatchable renewable generation. As such, deviations in average daily temperature

require utilities to invest more in emergency measures, such as increasing capacity

and expanding demand–response investments to mitigate the effects of unexpected

changes in daily temperatures. Accordingly, our analysis reflects that the effect of

abnormal temperatures on utilities is economically important. The estimate indicates
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that deviations of the daily temperature from the historical mean are associated with

a 10.04 percentage-point decrease in utilities’ stock returns, and that this effect is

statistically significant.

In Panel B, we examine the effect of changes in the distribution of temperature

by considering a deviation of daily temperature variability from its historical mean in

a given month. As will become clear later, isolating the effect of changes in temper-

ature distribution is decisive for understanding the temperature–stock relationship,

and for qualifying some of the findings in previous studies that explicitly consider tem-

perature extremes. Crucially, and in contrast to our estimates for the deviations in

(average) temperature, we find that deviations in temperature variability significantly

affect energy (oil, gas and consumable fuels; energy equipment), utilities, consumer

staples (beverages, food products and tobacco; food and staples retailing; household

and personal products) and consumer discretionary services (leisure products; tex-

tiles, apparel and luxury goods; hotels and restaurants; beverages; automobiles; and

specialty retail).

Several channels may be at work to explain the negative impact of deviations in

temperature variability on temperature-sensitive industries (Graff Zivin and Neidell

(2014), Addoum et al. (2020), Addoum et al. (2021)).18 Our findings are consistent

with the consumer demand and labor productivity channels ( Starr (2000); Graff Zivin

and Neidell (2014)). Recall that TD-V AR offers a general characterization of the

unconditional probability of temperature extremes and, crucially, allows us to (i)

simultaneously treat cold snaps and heatwaves as equally detrimental to economic

activity, and (ii) capture day-to-day temperature swings between hot and cold. Us-

ing this measure, then, we find that many consumer-related sectors, including energy,

are affected by changes in temperature variability. For example, large temperature

swings can make shopping more or less difficult. Cold snaps and heatwaves can shift

consumer demand patterns and may adversely impact what Starr (2000) calls ”house-

18These papers examine various channels through which temperature affects economic output:
manufacturing and labor productivity are sensitive to high temperatures, destruction of capital
may occur at extreme temperatures, and consumer demand tends to drop, coupled with a decreased
total labor supply.
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holds’ shopping productivity”. Starr-McCluer provides empirical evidence consistent

with these ideas using sector-level output data. This is also observable when consid-

ering macroeconomic output: Colacito et al. (2019) document that extreme heat in

summer and autumn months affect U.S. GDP growth rates.
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Table 2.7. Estimation for TD(A) and TD-V AR(B) on stock return

Panel A: Deviation of temperature
Dep. Variable: r All Ind Energy Health IT Utilities Staple C. Disc Mat Fin Comm

T̃D 0.0197 0.0510 0.1452 0.0852 -0.0076 -0.1004** -0.0036 -0.0268 -0.0780 0.0119 -0.0101
(0.9529) (1.1508) (0.9032) (0.8592) (-0.1381) (-2.5604) (-0.0500) (-0.5041) (-1.0290) (0.3195) (-0.1021)

LOGSIZE -4.0221*** -4.3981*** -2.7935*** -4.0251*** -4.5562*** -3.1566*** -4.6041*** -5.1566*** -5.7560*** -2.8803*** -4.4655***
(-27.758) (-11.816) (-5.6288) (-8.2804) (-9.5827) (-7.0067) (-8.3714) (-14.519) (-12.504) (-11.977) (-7.3882)

B/M 0.0028 0.0042 -0.0456* -0.0224 0.0447* 0.0349 0.0355 0.0269 0.1293*** -0.0177* 0.0552**
(0.4185) (0.2098) (-1.9141) (-1.1148) (1.7702) (1.5437) (1.5955) (1.1453) (4.6954) (-1.7409) (2.0166)

ROE 0.0421*** 0.0360*** 0.0181 0.0351*** 0.0517*** 0.0619*** 0.0486*** 0.0516*** 0.0706*** 0.0795*** 0.0345***
(12.679) (4.1566) (1.1995) (4.4550) (6.9696) (2.8095) (3.2003) (8.2675) (6.9395) (6.4879) (3.5929)

LEVERAGE -6.228e-05 0.0014 -0.0255 -0.0001 0.0361*** -0.0033 0.0180 -0.0420*** 0.0152 -0.0213** 0.0223
(-0.1042) (0.1429) (-1.2480) (-0.2092) (2.6880) (-0.1727) (1.2436) (-2.8260) (0.9949) (-2.2622) (1.0244)

INVEST/A 0.0563** 0.0501* 0.0913 0.0618 0.0439 0.0126 0.1058* -0.0246 0.0025 -0.1464* -0.0403
(1.9619) (1.6797) (1.5282) (1.1325) (0.6122) (0.3603) (1.9201) (-0.8990) (0.0481) (-1.8887) (-0.6033)

LOGPPE 0.3849*** 0.9937*** 1.7880* -0.3065 -0.0303 0.1252** 0.9673*** 0.8023*** 0.7069* 0.4224** 0.9395**
(3.7273) (3.7276) (1.8732) (-0.8975) (-0.0955) (2.3325) (3.7254) (2.6222) (1.7622) (2.2345) (2.4444)

MOM -0.0431** 0.0235 -0.1375 -0.0134 -0.0499 -0.0545 0.0437 -0.0692* 0.0504 -0.2512*** -0.1031
(-2.3345) (0.5090) (-1.2486) (-0.2569) (-1.1200) (-0.5840) (0.6600) (-1.6582) (0.8254) (-5.3834) (-1.2196)

Year fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Firm fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
No. Observations 141827 26670 6731 17509 18058 6321 7441 18543 8911 22365 5380
Cov. Est. Clustered Clustered Clustered Clustered Clustered Clustered Clustered Clustered Clustered Clustered Clustered
R-squared 0.0220 0.0237 0.0239 0.0138 0.0294 0.0210 0.0278 0.0355 0.0406 0.0279 0.0314

Panel B: Deviation of temperature variability
Dep. Variable: r All Ind Energy Health IT Utilities Staple C. Disc Mat Fin Comm

TD-VAR -0.0984 -0.2476 -0.9477** 0.4770 0.2354 0.3552** -0.9432*** -0.6084*** 0.0163 -0.0670 0.5953
(0.0759) (0.1541) (0.4652) (0.3478) (0.2283) (0.1538) (0.2646) (0.2236) (0.2770) (0.1357) (0.4177)

LOGSIZE -4.0223*** -4.3964*** -2.7972*** -4.0210*** -4.5571*** -3.1496*** -4.6158*** -5.1595*** -5.7561*** -2.8808*** -4.4402***
(0.1449) (0.3723) (0.4961) (0.4868) (0.4755) (0.4501) (0.5489) (0.3551) (0.4605) (0.2404) (0.6057)

B/M 0.0029 0.0042 -0.0459* -0.0232 0.0451* 0.0360 0.0353 0.0278 0.1289*** -0.0177* 0.0536*
(0.0067) (0.0200) (0.0238) (0.0201) (0.0253) (0.0226) (0.0222) (0.0235) (0.0275) (0.0102) (0.0275)

ROE 0.0421*** 0.0359*** 0.0179 0.0350*** 0.0518*** 0.0616*** 0.0486*** 0.0516*** 0.0705*** 0.0794*** 0.0347***
(0.0033) (0.0087) (0.0150) (0.0079) (0.0074) (0.0220) (0.0152) (0.0062) (0.0102) (0.0123) (0.0096)

LEVERAGE -6.133e-05 0.0012 -0.0261 -0.0001 0.0362*** -0.0043 0.0179 -0.0417*** 0.0148 -0.0213** 0.0221
(0.0006) (0.0097) (0.0204) (0.0006) (0.0134) (0.0189) (0.0145) (0.0149) (0.0153) (0.0094) (0.0218)

INVEST/A 0.0564** 0.0502* 0.0922 0.0575 0.0441 0.0134 0.1048* -0.0245 0.0032 -0.1464* -0.0430
(0.0287) (0.0298) (0.0596) (0.0547) (0.0717) (0.0351) (0.0550) (0.0273) (0.0515) (0.0776) (0.0668)

LOGPPE 0.3850*** 0.9949*** 1.8210* -0.3006 -0.0319 0.1170** 0.9734*** 0.7981*** 0.7175* 0.4214** 0.9523**
(0.1033) (0.2666) (0.9533) (0.3400) (0.3172) (0.0536) (0.2603) (0.3062) (0.4015) (0.1890) (0.3845)

MOM -0.0430** 0.0237 -0.1369 -0.0135 -0.0502 -0.0561 0.0468 -0.0698* 0.0516 -0.2513*** -0.1056
(0.0185) (0.0460) (0.1104) (0.0521) (0.0446) (0.0932) (0.0662) (0.0417) (0.0611) (0.0467) (0.0843)

Year fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Firm fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
No. Observations 141827 26670 6731 17509 18058 6321 7441 18543 8911 22365 5380
Cov. Est. Clustered Clustered Clustered Clustered Clustered Clustered Clustered Clustered Clustered Clustered Clustered
R-squared 0.0220 0.0237 0.0243 0.0139 0.0295 0.0209 0.0295 0.0359 0.0405 0.0279 0.0317

Standard errors reported in parentheses
***1% significance,**5% significance, *10% significance,

Table (2.7). The sample period is 2005-2020. All variables are defined in Tables (2.2) in the
Data section. The independent variables include the deviation of daily temperature from its his-
torical mean within a month (Panel A) or the deviation of daily temperature variability from its
historical mean in the a month (Panel B). We use the Global Industry Classification Standard
to identify a firm’s sectoral affiliation. We consider the following sectors: Information Technol-
ogy (IT), Health Care (Health), Financials (Fin), Consumer Discretionary (C. Disc), Communi-
cation Services (Comm), Industrials (Ind), Consumer Staples (Staple), Energy, Utilities, Real Es-
tate (RE), and Materials (Mat). We refer to this document for an overview of the classification:
http://www.msci.com/our-solutions/indexes/gics. We report the results of the panel regres-
sion with standard errors clustered at the firm and year levels. All regressions include month fixed
effects and firm fixed effects.

The results in Panels A and B demonstrate the relevance of the temperature

variability effect over and above the temperature deviation effect. This divergence
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highlights the link between temperature and stock markets by documenting the ac-

tual impact of temperature variability on firms’ operations. Deviation in temperature

variability represents a more general depiction of temperature extremes than temper-

ature deviation alone. Our measure is therefore a meaningful indicator of physical

risk, which has material consequences for the stock price of firms.

In Table 2.8 we rerun the yearly stock return regression by splitting our sample

into three time periods, illustrating the robustness of our findings across the following

sub-periods: 2005–2009, 2010–2014, 2015–2020. We focus on a small group of sectors

that display some interesting patterns: energy, consumer staples, and health care.

The first two have significant exposure to TD-V AR over the sample period 2005–

2020, see Table 2.7 Panel B. Table 2.8 provides the estimates for T̃D and TD-V AR

for these three sectors. We report the results for all other control variables in the

Appendix (A.1). Notably, the effect of T̃D remains insignificant in each sub-period,

confirming the findings over the longer sample period in Table 2.7. Over time, the

estimates of the effect of TD-V AR on the energy sector decrease and then increase,

and the estimates are virtually identical for consumer staples. There is no effect of

TD-V AR on the health care sector. These results confirm that exposure to temper-

ature varies over time as the distribution of temperature and temperature variability

changes over time (Lewis and King (2017), Alessandri and Mumtaz (2021)).
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Table 2.8. Estimation for T̃D and TD-V AR, three sector, different periods

Energy Staple Health
Dep. Variable: r 2006-2010 2011-2015 2016-2020 2006-2010 2011-2015 2016-2020 2006-2010 2011-2015 2016-2020

T̃D 0.267 0.1491 0.180 -0.324 -0.0739 0.3745 0.4770 0.1546 0.1036
(0.4652) (0.5246) (0.7636) (0.2646) (0.2898) (0.4061) (0.3478) (0.3990) (0.5384)

TD-V AR -0.4975* -0.0863 -2.4626*** -1.0146*** -0.9042*** -0.8223*** 0.4770 0.3278 0.5901
(0.3652) (0.5246) (0.7636) (0.2646) (0.2898) (0.4061) (0.3478) (0.3990) (0.5384)

Firm fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes
Time fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes
No. Observations 6731 5171 3067 7441 5523 3252 17509 13700 9017
Cov. Est. Clustered Clustered Clustered Clustered Clustered Clustered Clustered Clustered Clustered
R-squared 0.0243 0.0386 0.0621 0.0295 0.0260 0.0478 0.0139 0.0127 0.0161

Standard errors reported in parentheses
***1% significance,**5% significance, *10% significance,

Table(2.8). The sample period 2005-2020 is divided into three equal sub-periods. The independent
variables include in turn the deviation of daily temperature from its historical mean within a month
(first row) or the deviation of daily temperature variability from its historical mean in the a month
(second row). We report the results of the panel regression with standard errors clustered at the
firm and year levels. All regressions include month fixed effects and firm fixed effects

Given our initial sector-level evidence for the greater relevance of changes in

temperature variability over temperature deviations, a natural follow-up question is

whether financial market participants efficiently account for information on temper-

ature deviation T̃D and deviations in temperature variability TD-V AR. To answer

this question, we shift our focus to markets’ reactions to both temperature deviation

T̃D and deviations in temperature variability TD-V AR.

2.5.2 Reactions to local temperature information

In the previous section we perform an asset pricing factor analysis and examine

the significance of the two temperature metrics. We continue our investigation into

the relationships between these temperature metrics and expected stock returns by

examining investors’ reactions to state-level heterogeneity in temperature metrics.

Specifically, we examine whether investors could reduce their exposure to tempera-

ture by focusing on local temperature information. To hedge against temperature,

investors would buy (short-sell) stocks in states characterized by higher (lower) T̃D

and TD-V AR, thus increasing (reducing) the prices of these stocks and reducing

(increasing) their return.
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Table 2.9. Quintile Transition Matrices: TD-VAR (A) TD (B)

Panel A

Rebalanced Quintile
1 2 3 4 5

Quintile 1 52.29 24.82 14.10 5.54 3.25
Quintile 2 24.40 31.39 22.77 14.88 6.57
Quintile 3 12.41 24.28 28.98 22.95 11.39
Quintile 4 7.65 13.61 23.67 31.81 23.25
Quintile 5 3.25 5.90 10.48 24.82 55.54
Total 100 100 100 100 100

Panel B

Rebalanced Quintile
1 2 3 4 5

Quintile 1 22.47 22.23 17.95 17.53 19.82
Quintile 2 20.48 20.78 21.08 19.34 18.31
Quintile 3 18.49 19.82 22.29 21.39 18.01
Quintile 4 19.52 20.36 20.72 20.90 18.49
Quintile 5 19.04 16.81 17.95 20.84 25.36
Total 100 100 100 100 100

Table(2.9). The sample period is 2006–2020. This table illustrates the frequency of states moving
to another quintile of exposure. Panel A represents the transition matrix of the portfolio strategy
when using TD − V AR and Panel B represents TD. The left-most column of each panel is the
beginning exposure quintile of the state. The other columns represents the exposure quintile of
the state in the next month. Each number represents the percent of times a state moves from one
quintile to another.

First, we sort states into quintiles based on their T̃D and TD-V AR exposure,

and sort stocks depending on companies’ headquarter locations. Then, we form long–

short spread portfolios: going long in the portfolio that includes states with the least

exposure to T̃D and TD-V AR, and going short in the portfolio that includes states

with the highest exposure to TD and TD-V AR. We examine whether the spread

portfolios yield a statistically significant abnormal performance. If they do, this

would suggest that investors do react to temperature information and, specifically,

that they are pricing in the risk of temperature deviation, TD, and/or the risk of
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deviations in temperature variability, TD-V AR,.

Table 2.10. Frequency of Rebalancing: TD-VAR (A) TD (B)

Panel A

Country Trans. Rank

FLORIDA 113 1
VIRGINIA 112 2
KENTUCKY 112 3
WISCONSIN 111 4
LOUISIANA 111 5
TENNESSEE 109 6
COLORADO 109 7
INDIANA 107 8
OHIO 107 9
NORTHCAROLINA 106 10

...
...

ARKANSAS 94 40
IDAHO 94 41
MISSISSIPPI 92 42
OKLAHOMA 92 43
CALIFORNIA 91 44
KANSAS 91 45
MONTANA 87 46
OREGON 85 47
NORTHDAKOTA 82 48
SOUTHDAKOTA 80 49
ALASKA 79 50

Panel B

Country Trans. Rank

MAINE 142 1
DELAWARE 139 2
PENNSYLVANIA 138 3
OHIO 138 4
MISSISSIPPI 137 5
WISCONSIN 137 6
NEWHAMPSHIRE 137 7
ILLINOIS 136 8
NEWYORK 136 9
CALIFORNIA 135 10

...
...

KANSAS 123 40
TENNESSEE 122 41
LOUISIANA 122 42
CONNECTICUT 121 43
TEXAS 121 44
NORTHDAKOTA 121 45
FLORIDA 121 46
SOUTHCAROLINA 119 47
WASHINGTON 118 48
WYOMING 118 49
IDAHO 115 50

Table (2.10). The sample period is 2006–2020. These tables show the frequency of states

transitioning from one quintile to another for the portfolio strategy using TD − V AR. The

first ten rows of the table show states that are often being rebalanced from one quintile to

another while the second ten show states that remain in a quintile. The transition corresponds

to the number of times a state rebalanced. The rank column denotes ranking of the number

of times a state is rebalanced among the 50 states.

Our portfolio-sorting approach allows us to capture the heterogeneity in temper-

ature across the U.S., similarly to Barber et al. (2001) and Hong et al. (2020). The

trading strategy is constructed as follows. At the end of each month t, we rank states

according to the specific realization of TD and TD-V AR in month t. Separately, we
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rank states based their T̃D and TD-V AR, and sort them into quintiles; we form T̃D

and TD-V AR quintiles separately. Each firm headquartered in a particular state

is placed in one of the five quintiles for T̃D and then for TD-V AR. The first T̃D

quintile portfolio, for example, consists of firms in those states with the lowest values

for temperature deviation. We consider these firms to have the lowest exposure to

temperature deviation. For each quintile, we compute the portfolio’s post-ranking

value-weighted monthly return. Next, we compute the long–short spread portfolio’s

monthly return. We repeat the process until we exhaust our sample period. This

yields a time series of 167 spread portfolio monthly returns.
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Table 2.11. Frequency of State in Quintile TD-VAR: 5th (A) 1st (B)

Panel A

Freq. Pct Cum.

ALASKA 94 5.63 5.63
CALIFORNIA 74 4.43 10.06
OREGON 64 3.83 13.89
KANSAS 62 3.71 17.60
IDAHO 61 3.65 21.26
NEVADA 61 3.65 24.91
UTAH 56 3.35 28.26
MICHIGAN 50 2.99 31.26
TEXAS 49 2.93 34.19
ARIZONA 48 2.87 37.07

...
...

...
FLORIDA 19 1.14 92.63
OHIO 18 1.08 93.71
NORTHDAKOTA 16 0.96 94.67
VIRGINIA 16 0.96 95.63
ALABAMA 15 0.90 96.53
MAINE 15 0.90 97.43
GEORGIA 12 0.72 98.14
SOUTHCAROLINA 12 0.72 98.86
HAWAII 11 0.66 99.52
MARYLAND 8 0.48 100
Total 1670 100

Panel B

Freq. Pct Cum.

NORTHDAKOTA 94 5.63 5.63
SOUTHDAKOTA 94 5.63 11.26
MONTANA 65 3.89 15.15
NEBRASKA 57 3.41 18.56
OKLAHOMA 52 3.11 21.68
MAINE 51 3.05 24.73
WASHINGTON 50 2.99 27.72
MINNESOTA 48 2.87 30.60
IOWA 47 2.81 33.41
ALABAMA 46 2.75 36.17

...
...

...
RHODEISLAND 20 1.20 91.98
ARIZONA 19 1.14 93.11
CALIFORNIA 19 1.14 94.25
PENNSYLVANIA 19 1.14 95.39
NEWJERSEY 17 1.02 96.41
UTAH 16 0.96 97.37
VIRGINIA 16 0.96 98.32
ALASKA 10 0.60 98.92
WESTVIRGINIA 10 0.60 99.52
KENTUCKY 8 0.48 100
Total 1670 100

Table (2.11). The sample period is 2006–2020. These tables show the frequency of states staying in

a certain quintile. Panel A represents the 5th quintile when applying the portfolio strategy using

TD−V AR and Panel B denotes the same strategy using the 1st quintile. The first ten rows of each

panel are the states that most consistently stay in either the 5th (A) or 1st quintile (B). The second

ten rows of each panel are the states that least appear in either the 5th (A) or 1st quintile (B)

portfolios. The frequency columns correspond to the number of times a state is found in a quintile

portfolio. The percent column denotes percent of times the state is in the quintile portfolio out of

all other states.
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Table 2.12. Frequency of State in Quintile TD: 5th (A) 1st (B)

Panel A

Freq. Pct Cum.

KANSAS 52 3.11 3.11
MONTANA 50 2.99 6.11
NORTHDAKOTA 49 2.93 9.04
NEVADA 48 2.87 11.92
IDAHO 47 2.81 14.73
OREGON 47 2.81 17.54
WYOMING 47 2.81 20.36
OKLAHOMA 46 2.75 23.11
CALIFORNIA 45 2.69 25.81
NEBRASKA 45 2.69 28.50

...
...

...
NORTHCAROLINA 23 1.38 90.12
RHODEISLAND 21 1.26 91.38
VIRGINIA 21 1.26 92.63
PENNSYLVANIA 20 1.20 93.83
DELAWARE 18 1.08 94.91
HAWAII 18 1.08 95.99
LOUISIANA 18 1.08 97.07
MARYLAND 18 1.08 98.14
CONNECTICUT 17 1.02 99.16
NEWJERSEY 14 0.84 100
Total 1670 100

Panel B

Freq. Pct Cum.

IDAHO 58 3.47 3.47
MONTANA 56 3.35 6.83
WASHINGTON 54 3.23 10.06
NORTHDAKOTA 53 3.17 13.23
NEBRASKA 51 3.05 16.29
OREGON 50 2.99 19.28
SOUTHDAKOTA 50 2.99 22.28
NEVADA 48 2.87 25.15
WYOMING 48 2.87 28.02
KANSAS 46 2.75 30.78

...
...

...
TENNESSEE 22 1.32 90.66
NEWJERSEY 21 1.26 91.92
DELAWARE 20 1.20 93.11
GEORGIA 19 1.14 94.25
CONNECTICUT 18 1.08 95.33
MARYLAND 18 1.08 96.41
LOUISIANA 17 1.02 97.43
RHODEISLAND 16 0.96 98.38
MISSISSIPPI 15 0.90 99.28
ALABAMA 12 0.72 100
Total 1670 100

Table (2.12). The sample period is 2006–2020. These tables show the frequency of states staying in

a certain quintile. Panel A represents the 5th quintile when applying the portfolio strategy using

TD and Panel B denotes the same strategy using the 1st quintile. The first ten rows of each panel

are the states that most consistently stay in either the 5th (A) or 1st quintile (B). The second ten

rows of each panel are the states that least appear in either the 5th (A) or 1st quintile (B) portfolios.

The frequency columns correspond to the number of times a state is found in a quintile portfolio.

The percent column denotes percent of times the state is in the quintile portfolio out of all other

states.

To fix ideas, at time t, the value-weighted return, R, of a quintile portfolio p =

{1, 2, 3, 4, 5} is:

Rpt =

npt−1∑
i=1

xit−1rit. (2.14)

where rit is the stock return of firm i-th at month t, and npt−1 representing the
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number of firms in the quintile portfolio p at month t−1. xit−1 represents the market

capitalization of firm i divided by the total market capitalization of portfolio p at

month t− 1.

Table 2.13. Returns to Portfolios Sorted on TD-V AR excluding four states

Excess Return 3-factor 4-factor

Quintile 1 0.992∗∗∗ 0.275∗∗ 0.282∗∗

(2.913) (2.275) (2.379)
Quintiles 2–4 0.656∗∗ 0.001 0.001

(2.117) (0.023) (0.013)
Quintile 5 0.56 -0.195 -0.190

(1.545) (-1.409) (-1.382)
(1–5) 0.432 0.4703 0.395

(x.xx) (x.xx) (x.xx)

t-stats reported in parentheses
***1% significance,**5% significance, *10% significance,

Table (2.13). The sample period is from 2006 to 2020 These tables report the alpha (in percentage)
to quintile portfolios sorted on TD-V AR. At the end of each month t, we sort states – excluding
Alaska, California, North Dakota, and South Dakota – into quintile portfolios based on their TD-
V AR, separately, using data up to month t. Returns for each quintile portfolio is the value-weighted
returns of the firms headquartered in each state. Quintile 1 are those U.S. states with the lowest
values of temperature variability TD-V AR. Quintile 5 are those countries with the highest values of
temperature variability TD-V AR. We group the middle three quintile portfolios together by equal-
weighting their respective returns and denote it as “Quintiles 2–4”. We report the mean excess
returns, alphas based on CAPM, three-factor model, and four-factor model. “(1–5)” reports the
return spread between the top and bottom quintiles.

Table 2.14 reports the mean excess returns net of the U.S. risk-free rate. We also

report portfolio alphas adjusted using the Fama-French three-factor model (Fama

and Kenneth (1993)), which controls for the market factor as well as size and book-

to-market factors; and the Fama-French-Carhart (Carhart (1997)) four-factor model,

which includes Carhart’s momentum factor. The middle three quintiles are grouped

together by equal-weighting their respective returns.
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Table 2.14. Portfolio Returns based on sorting metrics

Panel A: Returns to Portfolios Sorted on TD
Excess Return 3-factor 4-factor

Quintile 1 0.878∗∗ 0.168∗∗ 0.166
(2.585) (1.670) (-1.65)

Quintiles 2–4 0.697 -0.004 -0.003
(2.182) (-0.061) (-0.052)

Quintile 5 0.813∗∗ 0.115 0.117
(2.404) (1.023) (-0.001)

(1–5) 0.065 0.053 0.049

Panel B: Returns to Portfolios Sorted on TD-V AR
Excess Return 3-factor 4-factor

Quintile 1 1.013∗∗∗ 0.293∗∗ 0.299∗∗

(3.001) (2.467) (-2.55)
Quintiles 2–4 0.6812∗∗ 0.009 0.008

(2.191) (0.180) (0.153)
Quintile 5 0.737∗∗ -0.003 0.00

(2.195) (-0.652) (-0.001)
(1–5) 0.272 0.296 0.299

t-stats reported in parentheses
***1% significance,**5% significance, *10% significance,

Table (2.14). The sample period is from 2006 to 2020. It reports the alpha (in percentage) to quintile
portfolios sorted on TD (Panel A) and TD-V AR (Panel B). At the end of each month t, we sort
states into quintile portfolios based on their TD and TD-V AR, separately, using data up to month
t. Returns for each quintile portfolio is the value-weighted returns of the firms headquartered in each
state. Quintile 1 are those U.S. states with the lowest values of temperature deviations TD (Panel
A); and lowest value of deviation of temperature variability TD-V AR (Panel B). Quintile 5 are
those countries with the highest values of temperature deviations TD (Panel A); and lowest value
of deviation of temperature variability TD-V AR (Panel B). We group the middle three quintile
portfolios together by equal-weighting their respective returns and denote it as “Quintiles 2–4”. We
report the mean excess returns, alphas based on CAPM, three-factor model, and four-factor model.
“(1–5)” reports the return spread between the top and bottom quintiles.

In the first column of both panel A and B in Table 2.14, the mean excess returns

are largest in the first quintile portfolio, decline for portfolios 2-4, and increase slightly

in the 5th quintile. The mean excess return for states in the bottom quintile portfolio

of T̃D and TD-V AR is 0.81% per month and 0.74% per month, respectively; for states

in the top quintile, the mean excess return is 0.88% and 0.07%, respectively. The

difference between quintile 1 (least exposed firms) and quintile 5 (most exposed firms)
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is 0.07% per month in excess returns for T̃D and 0.28% per month in excess returns

for TD-V AR. This is a respectable 47% return over the 14-year sample period. In

columns (2) and (3), we report the portfolio alphas adjusted using the three-factor

and the four-factor models, respectively. Notably, results are statistically significant

only for TD-V AR when including all four factors. These results suggest that markets

hedge the risk from deviations in temperature variability TD-V AR, rather than the

risk from temperature deviation T̃D.

To the extent that local temperature anomalies might be concentrated in certain

states, the significant return spread of our long–short portfolio could reflect compen-

sation for exposure to a specific location or state risk. This is a plausible alternative

as some states might be systematically exposed to continual increases or decreases in

temperature deviation, or to deviations in temperature variability. Chronic exposure

to abnormal temperatures would result in lower returns across the board for firms

headquartered in these states. These firms could conceivably be less productive if

the state in which they are headquartered is subjected to a barrage of temperature

shocks. To explicitly control for location or state risk, we follow Barber et al. (2001),

and construct two 5 X 5 transition matrices that illustrate the percent of times a

state shifts to a different quintile of TD and TD-V AR, respectively, at month t+ 1.

Table 2.9 reproduces the two 5 X 5 transition matrices. The starting quintile of the

state is shown in the left-most column, while its quintiles at time t + 1 are shown

as the remaining columns. To shed more light on the influence of each temperature

metric on the construction of the two portfolio strategies, we examine the frequency

of states appearing in the first (least exposed) and fifth (most exposed) quintiles for

both TD and TD − V AR during our sample period. These figures are reported in

Table 2.10.
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Table 2.15. Returns to Portfolio Sorted on TD-V AR, sector specification

Panel A: Energy, Utilities, Consumer Staples, Consumer Discretionary
Excess Return 3-factor 4-factor

Quintile 1 1.114∗∗∗ 0.435∗∗∗ 0.439∗∗∗

(3.172) (2.415) (2.388)
Quintiles 2–4 0.7253∗∗∗ 0.162 0.16

(2.833) (1.473) (1.446)
Quintile 5 0.678∗∗ 0.055 0.05

(2.191) (0.333) (0.308)
(1–5) 0.436 0.38 0.389

Panel B: Energy, Consumer Staples, Consumer Discretionary
Excess Return 3-factor 4-factor

Quintile 1 1.314∗∗∗ 0.599∗∗ 0.679∗∗

(3.048) (2.234) (2.386)
Quintiles 2–4 0.734∗∗∗ 0.141 0.156

(2.657) (1.182) (1.166)
Quintile 5 0.649∗ -0.009 -0.19

(1.9409) (-0.048) (-0.063)
(1–5) 0.665 0.608 0.869

Panel C: Consumer Staples, Consumer Discretionary
Excess Return 3-factor 4-factor

Quintile 1 1.083∗∗ 0.367 0.392
(2.475) (1.337) (-1.456)

Quintiles 2–4 0.810∗∗∗ 0.229 0.227
(2.916) (1.646) (1.622)

Quintile 5 0.766 0.100 0.106
(2.104) (0.443) (-0.473)

(1–5) 0.317 0.267 0.286

t-stats reported in parentheses

***1% significance,**5% significance, *10% significance,

Table (2.15). The sample period is from 2006 to 2020. It reports the alpha (in percentage) to
quintile portfolios sorted on TD-V AR. At the end of each month t, we sort states into quintile
portfolios based on their TD-V AR using data up to month t. Returns for each quintile portfolio
is the value-weighted returns of the firms headquartered in each state. We consider exclusively
Energy, Utilities, Consumer Staples, Consumer Discretionary (Panel A); Energy, Consumer Staples,
Consumer Discretionary (Panel B); Energy, Consumer Staples, Consumer Discretionary (Panel C).
There are 57 energy companies headquartered in Texas, constituting approximately 45% of the
Energy sector. These companies are excluded from the analysis. Quintile 1 are those U.S. states
with the lowest values of temperature variability TD-V AR. Quintile 5 are those countries with the
highest values of temperature variability TD-V AR. We group the middle three quintile portfolios
together by equal-weighting their respective returns and denote it as “Quintiles 2–4”. We report the
mean excess returns, alphas based on CAPM, three-factor model, and four-factor model. “(1–5)”
reports the return spread between the top and bottom quintiles.
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The diagonal of the transition matrix in Panel B of Table 2.9 reveals that exposure

to TD − V AR is fairly persistent as some states do not move out of their initial

quintile. The top left value in Panel B reports that a firm beginning in quintile 1 has

a 52.29% chance of remaining in the first quintile. The values decline as we move into

the middle quintiles, which suggests that exposure to TD−V AR is persistent. Some

states are either extremely exposed to deviations in temperature variability or not at

all, and tend to stay near their quintile of exposure. Thus, exposure to TD − V AR

is dependent on the state. In contrast, exposure to temperature deviations (Panel

A) is more erratic and less state-dependent. Fewer states are consistently exposed

to extreme temperature deviations. For example, states in the fifth quintile are

less likely to stay in this quintile, as the largest value in Panel A of Table 2.9 is

25.36% compared to its TD − V AR counterpart of 55.54%. Results reported in

Panel A of Table 2.9 therefore suggest that exposure to temperature deviation is less

concentrated, or, equivalently, that most states are equally exposed to temperature

deviations. This phenomenon is further illustrated in Table 2.10, which shows how

often a state transitions from one quintile portfolio to another. Generally, changes in

states’ sorting order occurs 25%–40% more frequently when the ranking is based on

their T̃D rather than their TD-V AR. The persistence of states’ exposure to TD-V AR

tells us that large changes in temperature variability are more concentrated vis-à-vis

large changes in temperature. Temperature deviations occur uniformly across the

U.S., with few states systematically subjected to large deviations in temperature.

In contrast, a few states are continually unaffected by deviations in temperature

variability.

These results highlights a significant difference between TD−V AR and T̃D. The

idiosyncratic persistence of TD − V AR, particularly in the first and fifth quintiles,

could influence the construction of our portfolio strategy. In fact, the tops and

bottom of our TD − V AR rankings are dominated by two states each: the Dakotas

are consistently in the least exposed portfolio, Panel A in Table 2.11 for over half the

sample period; Alaska and California are consistently in the most exposed portfolio,
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Panel B in Table 2.11. Crucially, these four states are continually exposed to low and

high values, respectively, for deviations in temperature variability. State rankings in

the middle quintiles tend to vary more frequently across quintiles and are less bound

to their original exposure. Table 2.12 displays the TD equivalent. One peculiarity is

that North Dakota, Montana, Idaho, Kansas, Nevada and Wyoming occur in both the

first and fifth quantiles of T̃D. Crucially, this indicates large swings in temperature

deviations in these states; this is aptly captured by our TD-V AR measure, with

some of these states appearing in the most exposed quintile in Panel B of Table 2.11.

An issue with the infrequent rebalancing of states such as Alaska, California and the

Dakotas is that the results of the portfolio strategy may be dominated by the firms in

these states. This clustering in the first and last quintiles may drive the results and

invalidate sorting based on temperature. To check the robustness of our results, we

therefore focus our attention on TD-V AR and perform the same portfolio strategy

a second time, excluding Alaska, California, North Dakota and South Dakota. We

believe that the removal of these four states is sufficient because the frequency of the

remaining states in the first and fifth quintiles is comparable to their counterparts in

2.12. Results are reported in Table 2.13. When we calculate the total market-adjusted

return over the 14-year sample period, the strategy produces a 66% net return – an

increase of 16% compared to the previous long–short strategy. This result is driven

by the smaller negative coefficient of -0.1094 in the fifth quintile. In contrast, the

returns to portfolios sorted on temperature deviations T̃D are insignificant.19

To further explore investors’ reactions to state-level heterogeneity in tempera-

ture metrics, we examine whether long–short portfolio strategies that only consider

the temperature-sensitive sectors identified in the previous section exhibit monthly

returns that differ from the all-industries average. We form long–short spread portfo-

lios considering energy, utilities, consumer staples and consumer discretionary sectors

(Panel A in Table 2.15). We then remove the utilities sector (Panel B) since electric

and gas utilities tend to operate in the same state in which they are headquar-

19Results are not tabulated but are available from the authors upon request.
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tered. For utilities, operational processes and consumer demand effects are relevant

location-specific risks. By the same token, we remove the energy sector (Panel C).

Furthermore, there are 57 energy companies headquartered in Texas, constituting

approximately 45% of the energy sector. These companies are excluded from the

analysis in order to reduce potential bias in those strategies where Texas appears

in the first or last quintile. Panel A in Table 2.15 reports monthly returns of the

long–short spread portfolios considering all four temperature-sensitive sectors. The

strategy earns a remarkable 0.389% per month in excess returns adjusted for TD-

V AR, and a negative 0.65% per month in excess returns adjusted for T̃D (Panel A2

in Table 2.16). We are, however, modest about our excess predictability results since

our portfolios are poorly diversified across industries.
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Table 2.16. Returns to Portfolio Sorted on TD, sector specification

Panel A2: Energy, Utilities, Consumer Staples, Consumer Discretionary
Excess Return 3-factor 4-factor

Quintile 1 0.881∗∗ 0.213 0.214
(2.518) (1.200) (1.201)

Quintiles 2–4 0.755∗∗∗ 0.185 0.182
(2.888) (1.611) (1.586)

Quintile 5 0.946∗∗ 0.293 0.298
(2.782) (1.569) (1.601)

(1–5) -0.058 -0.08 -0.084

Panel B2: Energy, Consumer Staples, Consumer Discretionary
Excess Return 3-factor 4-factor

Quintile 1 0.881∗∗∗ 0.241 0.239
(2.711) (1.508) (1.499)

Quintiles 2–4 0.775∗∗∗ 0.178 0.177
(2.769) (1.467) (1.452)

Quintile 5 0.923∗∗∗ 0.301∗ 0.304∗

(2.882) (1.683) (1.700)
(1–5) 0.665 -0.059 -0.065

Panel C2: Consumer Staples, Consumer Discretionary
Excess Return 3-factor 4-factor

Quintile 1 0.946∗∗∗ 0.281 0.282
(2.676) (1.376) (1.374)

Quintiles 2–4 0.822∗∗∗ 0.232 0.235
(2.901) (1.623) (1.641)

Quintile 5 0.886∗∗ 0.226 0.227
(2.411) (1.067) (1.101)

(1–5) 0.06 0.055 0.054

t-stats reported in parentheses

***1% significance,**5% significance, *10% significance,

Table (2.16). The sample period is from 2006 to 2020. It reports the alpha (in percentage) to
quintile portfolios sorted on TD-V AR. At the end of each month t, we sort states into quintile
portfolios based on their TD-V AR using data up to month t. Returns for each quintile portfolio
is the value-weighted returns of the firms headquartered in each state. We consider exclusively
Energy, Utilities, Consumer Staples, Consumer Discretionary (Panel A); Energy, Consumer Staples,
Consumer Discretionary (Panel B); Energy, Consumer Staples, Consumer Discretionary (Panel C).
There are 57 energy companies headquartered in Texas, constituting approximately 45% of the
Energy sector. These companies are excluded from the analysis. Quintile 1 are those U.S. states
with the lowest values of temperature variability TD-V AR. Quintile 5 are those countries with the
highest values of temperature variability TD-V AR. We group the middle three quintile portfolios
together by equal-weighting their respective returns and denote it as “Quintiles 2–4”. We report the
mean excess returns, alphas based on CAPM, three-factor model, and four-factor model. “(1–5)”
reports the return spread between the top and bottom quintiles.
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The returns from the long–short strategy increase substantially when removing

the utilities sector, Panel B in Table 2.15. The monthly excess adjusted return

moves to 0.869% for TD-V AR and -0.065% for T̃D in Panel B2 of Table 2.16).

When removing both energy and utilities, the long–short strategy for TD − V AR

generates an unremarkable adjusted excess return of 0.286% for TD-V AR, compared

to the equivalent T̃D portfolio of 0.054% . Collectively, the large differential in the

monthly gross excess returns between T̃D and TD-V AR present strong evidence

that investors hedge deviations in temperature variability rather than deviations in

temperature. These results underscore a considerably larger reaction to deviations

in temperature variability than deviations in temperature. Moreover, combined with

the findings in Section 2.5.1, our results support the hypothesis that operating costs

are a significant driver of state-specific temperature effects among energy and utilities

sectors. For the consumer sectors, our results suggest that location-specific variability

in temperature deviations has a lesser effect. The profitability effects among these

industries tend to be driven by revenues rather than operating costs (Addoum et

al. (2020)). Furthermore, the firms in these sectors have numerous brick-and-mortar

stores spread across the U.S., which our aggregation method may fail to fully capture.

Overall, the results from our asset pricing tests show that TD-V AR is a significant

factor for firm stock prices when the shock occurs at a firm’s headquarters, especially

for the utilities and energy sectors. We expect our methodology to underestimate

the true stock price reaction from temperature shocks due to data limitations. Using

granular data on exact firm operations spatially overlaid with TD-V AR would likely

lead to even larger coefficients in our cross-sectional analysis, and greater adjusted

returns using our trading strategy.
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2.6 Identifying channels of price reaction

Our prior analysis strongly suggests that exposure to TD-V AR has serious implica-

tions for firm stock prices and investors; however, we are agnostic as to the exact

mechanism that dictates the price. Theoretically, there are two vectors at play. The

first channel is investors’ beliefs about companies that are exposed to temperature

volatility. Heightened temperature variability acts as a ”wake-up call” for investors,

drawing attention to the risks of climate change, changing demand and simultane-

ously moving the equilibrium stock price of the exposed firm. The second, more

direct channel, is the tangible, physical realization of the temperature shock on the

firm’s financial performance (Pankratz and Schiller (2021)).20 The shock may lead

to declines in revenues and profits, which are incorporated into the stock price.

2.6.1 U.S. country– and state-level attention

To test the first channel, we estimate the relationship between innovations in attention

news indices and TD-V AR and T̃D. Innovations in attention are crucial, as expected

news regarding climate change should not move the equilibrium prices of assets.21

Investors should only react abnormally to unexpected news, thus we use the residuals

from an autoregressive model with lag one for both country– and state-level indices.

Investors should react to unexpected temperature swings by selling the exposed firm

accordingly.

To test the relationship between unexpected changes in climate change attention

and temperature volatility, we regress innovations indices on TD-V AR and T̃D along

with various fixed effects:

εAttentionIndex,s,t = α + βT ∗ TD-V ARs,t + βD ∗ T̃Ds,t + ρt + γs + εs,t. (2.15)

20For a deeper discussion on the exact channels of exposure, see Section 5.
21An investor’s trading actions are ‘conditioned’ on their expectations of future climate shocks.

However, unexpected shocks that are observed by investors may lead them to update their invest-
ments.
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where the dependent variable is the AR(1) innovations in a particular country or

state, s, index, ρt represents the time fixed effect and γs is the state fixed effects,

when needed.

Aggregate attention is known to be a driver of asset prices. We adopt the inno-

vations of the WSJ climate news index as our aggregate climate attention measure,

as developed by Engle et al. (2020). Their research has sparked a growing literature

on climate attention and the subsequent pricing of climate risks due to heightened

attention. Engle et al. (2020) build the index from WSJ news articles that contain

a discussion on climate change. Specifically, their measure captures the intersection

between the news article text on climate change and the primary governmental or

research source on which the article is based. Their assertion is that news articles

on climate change are published more frequently when there climate concerns are

apparent. Their narrative index connects an increase in news coverage of climate

change with a heightened awareness of climate risks among investors. Direct investor

attention toward a company, however, is difficult to capture and empiricists chiefly

use indirect proxies (Da et al. (2011)). The WSJ index is an example of such an

indirect proxy.

Table 2.17. Engle Index AR(1) Residuals

1 2 3 4 5 6

TD-V AR 0.00140∗ 0.00134∗ 0.000568 0.000511
(1.82) (1.73) (0.60) (0.52)

T̃D -0.000154 -0.000134 -0.0000907 -0.0000801
(-0.91) (-0.75) (-0.47) (-0.40)

Month Fixed Effects Yes Yes Yes Yes Yes Yes
Year Fixed Effects No No No Yes Yes Yes
No Observation 148 148 148 148 148 148
R-squared 0.11 0.09 0.12 0.17 0.17 0.17

t-stats reported in parentheses
***1% significance,**5% significance, *10% significance,

Table(2.17) The table shows the estimation for Equation 2.15 for the sample period 2005-2017.
Here, the dependent variable for all columns is the innovations on the WSJ index. The estimation
is conducted through panel OLS with fixed effects at the month and year level. Models (1) and (4)

considers only TD-V AR as the regressor, while models (2) and (5) use (̃TD). Models (3) and (4)
consider both TD-V AR and TD as regressors.
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The results of the U.S. country-level regressions are found in Table 2.17. Here, we

find evidence of investor reaction to TD− V AR rather than to T̃D. The coefficients

of TD-V AR in columns 1 and 3 are significant at the 10% level. When TD-V AR

increases by one standard deviation, there is an associated increase in εAttentionIndex,s,t

by (0.2482 x 0.00140 =) 0.00035 or 58% of the mean of the innovations index. Adding

both year and month fixed effects, however, cuts the coefficient by half, likely due to

the variation captured by additional fixed effects. The coefficients on TD are non-

significant and therefore indistinguishable from zero. The results indicate that TD-

V AR has a moderate relationship with the publication of climate-related news across

the U.S. This association suggests that considerable unexpected temperature swings

act as ”wake-up calls” and grab the attention of news agencies and, subsequently,

investors across the nation. The weaker relationship between TD-V AR and the

WSJ index is likely due to the spatial aspect of the shock. Realistically, shocks to

TD-V AR do not occur simultaneously throughout the U.S. but are instead highly

localized. These attention-grabbing events will theoretically have a more substantial

impact at the state level, which is represented in our state-level analysis.

Our results suggest that the number of unplanned articles written about climate

change are positively and contemporaneously correlated with TD-V AR. However,

we are agnostic as to the type of investor, as well as to whether investors do in fact

read the articles that are published, as attention is a scarce resource. Nevertheless,

the results thus far imply that investors are affected by elevated news coverage of

climate risks, which lead to the pricing effects in Section 5.
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Table 2.18. State specific Google SVI AR(1) residual

Climate Change: Panel (A) Temperature: Panel (B)
1 2 3 1 2 3

TD-V AR 0.77*** 0.76*** 0.73*** 0.76***
(0.24) (0.25) (0.17) (0.16)

T̃D -0.05 -0.04 0.12** 0.13***
(0.05) (0.05) (0.05) (0.05)

Firm fixed effects Yes Yes Yes Yes Yes Yes
Time fixed effects Yes Yes Yes Yes Yes Yes
No. Observations 8850 8850 8850 8850 8850 8850
Cov. Est Clustered Clustered Clustered Clustered Clustered Clustered
R-squared 0.01 0.001 0.01 0.02 0.01 0.04

Standard errors reported in parentheses

***1% significance,**5% significance, *10% significance,

Table (2.18). The sample period 2005-2020. Shows the estimation for Equation 2.15, on the sample
period 2005-2020. SVI index is considered for the quotes ”Climate change”, Panel (A), and ”Tem-
perature”, Panel(B). Estimation is run trough Panel OLS with fixed effects for entities. Standard
errors clustered at the entity levels. Model (1) considers just TD-V AR as regressor, model (2)

employs (̃TD) and model (3) is run considering both TD-V AR and TD.

Continuing our investigation of the first channel, we expect that less granular

measures of investor attention, such as Engle et al. (2020), may not capture the rich

geographic heterogeneity of TD-V AR and T̃D, as climate shocks are inherently re-

gional (Alekseev et al. (2021)). Choi et al. (2020), for example, find that deviations

in temperature only shift investor attention when they are substantial. To better

capture the spatio-temporal distribution of temperature volatility, we associate tem-

perature volatility shocks with local attention indices. We gather state-level Google

SVI data on ”Climate Change” and ”Temperature”, which should encompass reac-

tions from retail investors and, to a lesser extent, from institutional investors (Da et

al. (2011)). Specifically, we regress unexpected state-level SVI for each topic on the

temperature volatility measures; the result is shown in Table (2.18).

The results of the state-level regressions show a positive and strongly significant

relationship between TD-V AR and index innovations. The coefficients for TD-V AR

are always significant at the 1% level and hover around 0.76 for both risk topics. TD is

insignificant in the first panel, suggesting that deviations in temperature alone do not
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raise attention. The TD coefficient, however, becomes highly significant in the second

panel which is likely due to the higher relevance of the temperature topic to TD. A one

standard deviation increase in TD-V AR and T̃D leads to an increase in innovations

by 35 and 25, respectively. The larger effect size of TD-V AR substantiates our claim

that this is the more salient metric. The results largely support our rationale that

high intensity deviations from expected weather events affect investor attention.

We present U.S. country– and state-level evidence that temperature variability

shocks, indicated by TD-V AR, are linked to investor attention. Our results are

consistent with the interpretation that elevated TD-V AR should ”wake up” local

investors and prompt an interest in climate risks, which then leads to a greater volume

of searches in an exposed state. In comparison to the WSJ index, SVI is a revealed

measure of attention as it implies that investors are directly paying attention to the

topic (Da et al. (2011). The strong significance of the coefficients also strengthens the

argument that attention is spatially dependent. In aggregate, the attention results

show that TD-V AR is a driver of unexpected attention toward climate change. This

attention channel is one explanation of why investors reallocate their portfolios.

76



Table 2.19. Firm-Level Exposure to Temperature Shocks

(1) (2) (3) (4)
All Industires Ex Util/Energy Util/Energy Cons Disc/Staples

TD-V AR 0.038∗∗∗ 0.032∗∗ 0.102∗∗ 0.020
(0.014) (0.015) (0.050) (0.019)

T̃D -0.006∗ -0.005 -0.014 -0.004
(0.003) (0.003) (0.013) (0.005)

Firm Fixed Effects Yes Yes Yes Yes
Sector Fixed Effects Yes Yes Yes Yes
No. Observations 65341 60589 4752 12046
R-squared 0.000 0.000 0.001 0.000

Standard errors reported in parentheses

***1% significance,**5% significance, *10% significance,

Table (2.19) shows the estimation for equation 2.17, on the sample period 2005-2019. The primary
dependent variable is εNetExposure,i,t which is obtained from equation 2.16. All four columns include

both TD-V AR and (̃TD) as well as firm and sector fixed effects. Each column includes a different
set of industries as the sample: (1) includes all industries, (2) excludes the utilities and energy sector,
(3) only views the utilities and energy sectors, and (4) includes only the consumer discretionary and
consumer staples sectors.

2.6.2 Firm-level impact beyond attention

We investigate the second vector by distilling the realized impact of temperature

shocks from firm-level earnings gleaned from conference call transcripts. We adopt a

physical climate exposure measure by Sautner et al. (2020) who use these earnings call

transcripts to develop a time-varying measure of firm-level exposure to physical cli-

mate change risks.22 Earnings calls can be considered a more reliable gauge of climate

exposure than management statements, such as annual reports, because the discourse

includes both management and analysts. We argue that there is considerable overlap

between attention and climate discourse as both investors and management may raise

the issue during periods of global attentiveness. The results of Sautner et al. (2020)

confirm this view, finding a positive relationship between the WSJ index developed

by Engle et al. (2020) and their physical climate measure. To disentangle the material

22We limit ourselves to physical climate exposure because temperature shocks are a realized form
of a physical climate shock.
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impact of the temperature shock from the effects of attention, we obtain residuals

from a regression of expected and unexpected attention on physical climate exposure

created by Sautner et al. (2020).23 Formally, we define this as:

PhysCCExposurei,t = α+β1∗AttentionIndext+β2∗εAttentionIndex,t+γi+εNetExposure,i,t.

(2.16)

Here we obtain εNetExposure,i,t as the remaining residual, which we argue contains

the concrete impact of physical climate change exposure PhysCCExposure, beyond

attention, for firm i at time t. We then regress our temperature shocks on this residual

value to identify whether the shock had a tangible impact on firm-level operations.

We formally define this by including the s subscript, which represents the state in

which the firm is headquartered:

εNetExposure,i,t = α + βT ∗ TD-V ARs,t + βD ∗ T̃Ds,t + γi + εi,s,t. (2.17)

The main variation occurs at the state-quarter level, as this is where firms are

exposed to time-varying temperature shocks. Our assumption here, similar to Section

5.2, is that the operational footprint of the firm is located in the headquartered state.

While some literature, such as Pankratz and Schiller (2021) and Addoum et al. (2020),

has granular data on firm establishments, we believe this generalization is still useful

in capturing the spatial effects of the shock.

The results of Equation 2.17 with various sector samples are shown in Table 2.19.

The first column of the table shows a positive, significant association with TD-V AR

and NetExposure for all firms in this sample. We interpret these results as TD-

V AR being associated with an increase in the proportion of an earnings call that

discusses physical climate change exposure. Here, the conversation is not associated

with broad climate attention, but rather with the realized physical exposure of the

23We only use the WSJ news index as it is the only attention measure used in Sautner et al.
(2020). We adapt the WSJ index by taking the average over a quarter and finding the series’ AR(1)
residuals.
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firm. When we exclude the utilities and energy sectors in column 2, the coefficient

decreases slightly but retains its significance. The third column, which includes both

the utilities and energy sectors, also displays a large positive coefficient between TD-

V AR and NetExposure. The utilities and energy sectors’ high degree of sensitivity to

TD-V AR is consistent with prior evidence Section 5. In column 4, there is a positive,

insignificant relationship between temperature shocks for the consumer discretionary

and consumer staples sectors. The results are coherent with our Section 5 results,

which suggested that the state-headquarter level inadequately represents the physical

risk profile of consumer sector firms.

2.7 Conclusion

Extreme temperatures have been found to modulate financial markets. Furthermore,

climate scientists have found that the distribution of temperature anomalies is be-

coming broader with an asymmetric lengthening of its tails (Hansen et al. (2012)).

Using these facts as our motivation, we derive a metric, TD-V AR which represents

the deviation of the unconditional volatility from its historical level. We confirm the

saliency of the metric on financial markets by using its monthly and annual realiza-

tions. At all stages, we compare our statistic to a widely accepted form of extreme

temperature realizations: temperature anomalies or TD.

Through a set of empirical exercises, we demonstrate that shifts in TD-V AR

are primary drivers of: (1) energy consumption, (2) weather futures, and (3) U.S.

stock markets. When we execute a hedging strategy by incorporating differential

firm exposure, we find substantial market-adjusted returns suggesting excess return

predictability. Finally, we investigate the underlying mechanisms and show that the

observed pricing effects occur due to a combination of investor attention and firm-

level repercussions as a result of changes to TD-V AR rather than TD.

Our results have considerable implications for the energy and utilities sectors

which are sensitive to day-to-day temperature variability as well as heat and cold
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waves. While we find a moderated effect on consumer sectors, we believe that a

larger effect size would be found with the inclusion of more granular footprint data

to better identify firm exposure. We leave this for future research.
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Chapter 3

Exploiting a risk driver of

corporate bond overperformance:

a statistical learning approach

3.1 Introduction

Understanding and forecasting future bond performances is a task usually underesti-

mated in favor of stock forecasting. The main limitation arises from the lack of robust

historical data that causes popular equity algorithms 1 to be less effective(He et al.

(2021)). In addition, the variable researchers project poses additional challenges.

The usual approach is to consider either total or excess return(see eg. Israel et al.

(2017), Campbell and Taksler (2003), Lin et al. (2011)) or a derivation from the bond

log price that takes into account the discount factor(Bianchi et al. (2021)). These

procedures are not able to seize the underlying market invariant (Meucci (2005))

that drives bond performances. In this work, we firstly unravel a risk driver for bond

excess return, for which we provide a coherent definition with the asset allocation pro-

cess. Then we combine different statistical learning algorithms on a heterogeneous

set of predictors to address future over-performances to overcome the unbalanced

1see eg. French et al. (1987); Scheinkman and LeBaron (1989); Fama (1990); Titman et al. (2004)
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panel data framework. We analyze a corporate bond index, Bank of America Merrill

Lynch Euro Corporate Investment Grade (BofA ML Euro IG, EG00), that is widely

employed as a benchmark in asset allocation. Our approach starts by considering

two sets of predictors, one at the bond instrument level and the second at the issuer

level. The two collections are analyzed in a multivariate setting from a statistical

learning algorithm that optimizes the right shape to match the target variable.

Our first contribution is the development of a risk driver for bond excess returns,

defined as the bond performance above its duration-matched benchmark. Bond per-

formances are driven by many factors such as yield, risk-free rate, credit spread,

and bond duration, which are usually considered as explanatory variables(Bianchi

et al. (2021), Hong et al. (2012)). In the process of asset allocation within asset

management companies, corporate bond selection constitutes a downstream process,

that usually follows indications coming from the Strategic Asset Allocation and the

Tactical Asset Allocation division. The focus then should not be to forecast bond

total return, given that macro factors and short-term movements are already taken

into consideration at a higher level and a specific indication for the sector or dura-

tion bucket in which to invest is given. It is then crucial to assess which bond will

perform better within a certain duration bucket and for such a reason, we define the

bond excess return as the total return net of the average total return of the bonds

in the same duration bucket. To disentangle the risk driver for the excess return

we build up the decentralized return attribution (Carr and Wu (2019)) and we dub

the Idiosyncratic change in Asset Swap spread (ASW), a measure tightened to the

change in firm credit riskiness. We demonstrate that Idiosyncratic change in ASW

is a market invariant(Meucci (2005)) and that it correctly models excess returns.

Our second contribution regards the adoption of a multivariate time series framework,

that takes into account different bond characteristics to evaluate future performances.

Following works by He et al. (2021), Bianchi et al. (2021) and Lin et al. (2018) we an-

alyze a multivariate framework to project the risk driver and then extrapolate bond

excess returns from which we can compose portfolios. In this framework, we com-
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pare the performances at the portfolio level as well as the capability of the statistical

learning algorithm to address the entire return distribution.

Our third contribution regards the number of entities an algorithm can analyze.

Large data sets present the drawback of missing values, that prevent the analysis of

the entire universe. Adding an explanatory variable with missing values for certain

instruments forces us to discard these instruments even if this is the only missing

value. Starting from the simple mean combination approach(MC) proposed by Stock

and Watson (1998), large attention has been paid to combining the forecast of differ-

ent models up to an iterative procedure ( Lin et al. (2018)). We take advantage of

these procedures to overcome missing data, by aggregating just the available measure

and thus be able to enlarge the share of issues forecasted.

The last analysis we employ regards climatic variables, considering the transition risk

component. Transition risk variables concern the risk of a shift in consumer prefer-

ences or regulatory tightening that could affect polluting firms. Carbon emissions

are the primary driver for transition risk, especially when considering their variation

(Bolton and Kacperczyk (2020)). Analysis on the bond universe find lower return

for polluting firm (Duan et al. (2020)) or a green bond premium (Zerbib (2017),

Reboredo and Ugolini (2020)) when examining green bond. We start by considering

a change in CO2 Emission that is employed as the only factor for transition risk.

From a physical side, just weather-related events have been partially linked to yield

spread(Zhang and Zhu (2021)). Another source of climate risk steams from the cli-

mate news index literature (see eg. Engle et al. (2020), Faccini et al. (2021), Ardia

et al. (2020)) with preliminary work concerning the bond market (Huynh and Xia

(2021)) that however needs a time series approach for a proper application .

3.2 Exploiting Excess Return

The first objective of this work is the exploitation of a risk driver for bond returns

overperformance, that we define as the return of a bond over its benchmark. The

usual approach in literature is to consider the return over a risk free rate (Cochrane
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and Piazzesi (2005); Ilmanen (1995)). We deal with the typical procedure within an

asset management company that faces an investing problem with a defined exposure

to a certain asset, in this case corporate bond, and thus has already settled a risk

profile over the risk free rate. In addition, we allow to split the asset class universe in

Nk duration buckets k, that are associated with different risk profiles. Each duration

bucket comprises all the bonds Bi characterized by a Duration DB that is between

the duration bucket limits, minimum, mink, and a maximum, maxk.

We derive the excess return, erB, for a bond in a duration bucket k, by subtracting

from the total return, rBi,k the average total return of the bonds in the same duration

bucket k. It is formally defined as:

erB,k = rB,k − rk (3.1)

where rk =

∑
j rBj

J
is the average return of bonds in the same duration bucket.

In order to disentangle the driver for bond overperformance we start from the bond

decentralized return attribution investigated by Carr and Wu (2019), that decompose

the bond’s total return.

We start the derivation recalling that considering a bond characterized by a pre-

defined stream of payments Π quoted on the market with a price Bt, it is possible to

derive the Yield To Maturity (y) by solving the equation:

Bt =
I∑
j=1

exp(−ytτt)Πj (3.2)

where Πj is the of payment at time j.

We then consider the instantaneous percentage return, dB/B, that represents the

change in bond market price, as a function of its own Yield To Maturity as,

dBt

Bt

=
∂Bt

Bt∂t
dt+

∂Bt

Bt∂y
dy +

1

2

∂2Bt

Bt∂y2
dy2 + o(dt) (3.3)
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where o(dt) represents sensitivities of higher order that are negligible in this con-

text. Combining Equation (3.3) and (3.2), allows to derive analytically the three

classical sensitivities of bond prices.

∂Bt

Bt∂t
= yt, − ∂Bt

Bt∂yt
=

N∑
j=1

wjτj = D,
∂2Bt

Bt∂y2
=

N∑
j=1

wjτ
2
j = C (3.4)

where wj represent the weight associated with the cash flow at time j. 2

As emphasized by Carr and Wu (2019), assuming diffusive yield movement, it’s

possible to derive the bond annualized instantaneous return as

dBt

Btdt
= yt −D

dy

dt
+

1

2
C
dy2

dt
(3.5)

and, considering the flow of time, also the composite return over the period of

interest dt, expressed as fraction of a year.

dBt

Bt

= ytdt−D ∗ dy +
1

2
C ∗ dy2 (3.6)

Finally, the expected value in the real-world probability space, P , it is possible to

obtain

EP
t

[ dBt

Btdt

]
= yt −D ∗∆t +

1

2
C ∗ σ2

t (3.7)

where the second component, ∆t = EP
t [dyt/dt], represents the expected change on

the yield to maturity, whereas σt = EP
t [(dy)2/dt] is the conditional variance of the

yield process. If the expected variation in the yield to maturity, dy, is null, implying

no shift in the yield curve, the only gain the bondholder receives is linked to the carry

component, y, standing for the stream of payment expected3.

Now we move on from decentralized return attribution and consider change in yield

2The derivation of the sensitivities implies that the weights are the present value of the specific

stream with respect to the bond present value: wj =
exp(−ytτt)Πt

Bt
3In the case the bond is at par, it’s equal to the coupon, otherwise it encompass also the put to

the par effect
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to maturity component, dy. The Yield to Maturity is composed by two part, a Risk

Free component and a Credit Risk one. Trough the Asset Swap Spread(ASW) it is

possible to decompose the Yield to Maturity and its variation as this two components,

yt = rft + ASWt

dyt = drft + dASWt

(3.8)

and then, employing the linearity property of the expectation, we decompose the

expected change in dy as

EP
t [dyt/dt] = ∆rf t + ∆ASW,t (3.9)

that is possible to plug in Equation (3.7). Recalling that rBi,k coincides with the

definition in Equation (3.7), we merge Equation (3.1) and (3.7) to obtain

erBi,K = yi,t −Di∆i +
1

2
Ciσ

2
i −

1

J

J∑
j=1

(yj,t −Dj∆j +
1

2
Cjσ

2
j ) (3.10)

In addition, from Equation (3.8) it is possible to substitute ∆ with ∆rf + ∆ASW
4

in Equation (3.10), and, by properly modelling the terms, we rewrite (3.10) as follow

erBi,K = (yi,t −
1

J

∑J
j=1 yj,t)+

−(Di ∗∆rfi −
1

J

∑J
j=1 Dj ∗∆rfj)+

−(Di∆ASWi
− 1

J

∑J
j=1 Dj∆ASWj

)+

+
1

2
(Ciσ

2
i −

1

J

∑J
j=1Cjσ

2
i )

(3.11)

It is possible to extrapolate four main components from the previous equation:

• Excess Yield to Maturity: eyi = yi,t−
1

J

∑J
j=1 yj,t, is the excess return that the

bond would gain if all others components don’t change in the period of analysis.

In this context, this is deterministic.

• Relative change in risk free: Di ∗ ∆rfi −
1

J

∑J
j=1Dj ∗ ∆rfj is the difference

4where rf is the risk free rate interpolated at the precise bond duration.
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between the change in the risk free associated with the bond duration and the

average change in the risk free component of the bonds in the same duration

bucket. In this case we won’t lose any important information by setting this

element to 0 because all the bonds in the sample refer to the same risk free rate

(Euro area) and the duration bucket are small enough to prevent big differences

between Di and D = 1/J
∑

J Dj.

• Convexity:
1

2
(Ciσ

2
i −

1

J

∑J
j=1Cjσ

2
j ) there are no missing information by setting

to 0 the difference between two small quantities.

• Relative Asset Swap Change: Di∆ASWi
− 1

J

∑J
j=1 Dj∆ASWj

when we consider

small duration buckets, Di and Dj don’t amplify differences coming from dif-

ferent change in ASW. if the two were identical, we would end up without loss

of information with e∆ASW = ∆ASW − ∆ASW . Again, it is possible to apply

this adjustment given by the small bucket section we study.

It’s then possible to rewrite the excess return Equation (3.11) as

erBi,K ≈ ey,i,t −Di ∗ e∆ASWi
+ o() (3.12)

This means that is it possible to express the bond excess return with respect to

its duration bucket benchmark by subtracting from the excess yield to maturity the

idiosyncratic change in ASW, e∆ASW multiplied by the duration.

The former element, excess yield to maturity ey,i,t, is straightforward to understand:

a bond with a larger carry compared to the benchmark, has an advantage when

riskiness doesn’t vary.

The latter element is trickier: a positive e∆ASW,i implies that change in bond i ASW,

∆ASW,i, is higher then the average change in ASW of bonds in the same duration

bucket, ∆ASW :

e∆ASW,i > 0 → ∆ASW,i > ∆ASW,b
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the bond is becoming relative riskier compared to its benchmark. Given the

minus sign before the duration component in Equation (3.12), a positive e∆ASW

affects negatively the bond excess return. A positive e∆ASW,i could result also in a

situation in which ∆ASW,i < 0 and this means that the bond is reducing its risk profile

less then the average bond. The opposite case arises when e∆ASW,i < 0, that implies

that the bond’s risk profile diminishes more compared to the benchmark. From an

information perspective, if erB,i,K,t is the random variable of interest, defined on the

classical probability triple (Ω, F, P ), the first part, eyi,tdt is defined by the filtration

at time t, and hence known.

The definition of e∆ASW moreover is consistent with the definition of market invariant

proposed by Meucci (2005) for the fixed income market. A sufficient theoretical

condition is that e∆ASW can be defined as a function of total return, that we showed

in Equation (3.2). Regarding the necessary condition that requires the risk driver’s

scatter-plot against its lagged time series to resemble a circular cloud, we show in

section (3.5.1) its practical relevance. In section 3.5.1 we test whether Equation(3.12)

is correctly specified to derive excess returns.

3.3 Forecasting Procedure

We now turn the attention to handling the projection of the risk driver, to correctly

specify bond excess total return. The forecasting procedure we employ stems from

the result in the previous section and rather than a time series analysis, this exercise is

configured in a panel cross-sectional style. The purpose of the forecasting procedure

is to derive a link between bond and equity-specific characteristics available at the

time of the choice with future excess change in ASW. The problem can be express as

follow

e∆ASWi
= E[e∆ASWi

] + ε

E[e∆ASWi
] = f(Xi,t−1)

(3.13)

where Xi,t−1 represents the set of features employed.
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The corporate bond market is characterized by a complex non-linear structure(Hong

et al. (2012)) and, to maximize the explainability, we aim to consider for f(Xi)

an algorithm that can extract the non-linearity, subspace characteristics, and the

peculiarity among the different sub-samples available. For such a purpose, among

statistical learning techniques, Random Forest is the one that fits this problem. We

start by analyzing random forest5 that are extension of Regression Trees. A Regres-

sion Tree represents a simple regression technique that splits the parameter space in

M sub-spaces R1, R2, ...RM and associates each region a response to match the de-

pendent variable. The sub-regions are chosen by minimizing a certain loss function.

The mapping function of a single regression tree, T , can be expressed as

T (x; Θt) =
M∑
m=1

cmI(x ∈ Rm|Θt) (3.14)

where Θt represents the set of hyper-parameters characterizing the tree’s prop-

erties, namely the sequence of splitting variables, cut-points at each node, and the

number of nodes. For each sub-region Rm defined by the algorithm, cm is computed

by taking the mean of all samples in that sub-region. Each sub-space is computed

sequentially choosing a splitting variable, j, and the splitting point by minimizing

a loss function or an impurity coefficient, such as the Gini Index. The resulting

performance is highly affected by the sequential choice of j, given that it is not com-

putationally feasible to search at each step the best split over all the variables.

The main drawback of single trees is that they are extremely noisy and there are two

natural ensemble method expansions to address it, namely bagging and boosting.

The former steam from bootstrap aggregation, a technique that is capable of reduc-

ing variance and is suited for low-bias high-variance frameworks, exactly as trees, and

its upgrade proposed by Breiman (2001) that derives the response by averaging out

B de-correlated trees. The resulting predictor, following Friedman (2017) notation,

5see eg. Brieman et al. (1984) Breiman (2001), Liaw et al. (2002)
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has the following form

f̂Brf (x) =
1

B

B∑
b=1

T (x; Θb) (3.15)

where T (x; Θb) represents the single regression tree. The de-correlation is achieved

by choosing for each tree in the forest a sub-set of variables to analyze and by changing

the order of the splitting sequence. The final step is to optimize hyper-parameters,

Θt, by minimizing the Root Mean Square Error (RMSE) function.

The following step is to set the features to employ in the random forest algorithm.

Various characteristics have been found to directly impact corporate bond returns.

Regarding issuer’s characteristics such as credit riskiness (Greenwood and Hanson

(2013)) or exposure to factor models (Israel et al. (2017)) are a first driver. Moreover,

frictions in the financial market prevent the news to spread quickly and it is possible

to observe an asynchronous relationship between stock and bond returns (Cao et

al. (2017), Tsai (2014)) as well as in the volatility (Campbell and Taksler (2003)).

Liquidity is also regarded as primary factor (Lin et al. (2011)) considering that it is

embedded in the credit spread component (Dick-Nielsen et al. (2012)). Given that

each attribute analyzed in the literature contributes to the final forecast, we aim to

employ both stock information at the issuer level and bond features. We pull together

data from the issuer and past data for a bond, and for such a reason, each bond could

face three different scenarios:

• No bond Characteristics data: at time t, a bond issued at time t − h1 won’t

have characteristic computed from time t − h2, with h2 > h1. Note that,

∀h2, ∃h1 s.t. h1 < h2 that implies the natural presence of a fraction of bond

without historical data. The larger h2, (the more backward information we

retrieve), the greater this percentage.

• No data from Issuer. If an issuer is not publicly listed, there is no measure

related to the equity side.
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• No measure for bond or issuer. This happens for bonds recently issued from an

issuer not listed.

The usual approach is to pool together the data and then either one tries to

retrieve missing data employing available ones (Gleason and Staelin (1975), Dixon

(1979)) or dismiss the observation with missing values Rubin (1976). In this case,

both approaches would present a severe drawback. Filling missing values with avail-

able ones would end up averaging out the missing value to the existing one, and

would be a mere guess. Deleting all missing values would reduce the size of the bond

we would be able to analyze, thus diminishing the possibility to find the bond that

outperforms the benchmark. The solution we configure is in the spirit of aggregating

multiple forecasters based on different sets of predictors, an extension of the proce-

dure proposed by Rapach et al. (2010) or Lin et al. (2018). In this setting, we build

two forecasters:

fx : e∆ASW,i,t = rg(Xi, t, 1)

fy : e∆ASW,i,t = rg(Yi, t, 1)

where the difference between the two forecasters is the set of predictors employed.

In particular, we establish one model with bond characteristics forecaster, fb and the

other with equity characteristics measures, fe. The quest is then to aggregate the

two models for the items that present at least one forecast available. Regarding the

last case, among the several approaches faced, we select three main possibilities:

• Mean combination forecast (MC): the outcome is the simple average of the two

predictors. This is usually a naive benchmark

E∆ASW,i,t =
fe + fb

2
(3.16)

• Bayesian style harmonization (Bates and Granger (1969)): we weight the fore-

cast of each regressor by its confidence, namely the standard deviation of the
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forecaster that is easily available from the regressors employed.

E∆ASW,i,t =
fe/σb + fb/σe

(σe + σb)
(3.17)

• Second optimization framework: we post process fe and fb according to macroe-

conomics variable to gain improvement on the model.

Finally, we take into account the situations in which just one measure is available, ei-

ther because the bond has been recently issued or the issuer is not publicly listed. We

address those cases by employing the available indicator, with the possible extension

to consider a penalization term steaming from the only forecaster.

3.4 Data

3.4.1 Financial Data

We arrange the data employed into three main categories, namely bond, equity, and

macroeconomic. We obtain from ICE the monthly components of BoFA EG00 index

starting in 2010 and retrieve daily data for the bonds. Index components are updated

at the beginning of each month. We compute monthly total return for each bond

with the standard definition:

tr =
Pt + Acc Intt + Ct

t−1

Pt−1 + Acc Intt−1

(3.18)

where P is the clean price, Acc Int is the accrued interest and C is the stream

of payments received by bondholders between t− 1 and t. We consider t− 1 as the

last day of the previous month if the instrument was already in the index, or the

first day of the current month if the bond was just included. In such a way, we don’t

lose information discarding one trading day in each month and the accrued interest

chunk, nor do we discard bonds that just entered the index. We then accurately

reproduce index performances on a semester basis, that is the ultimate outlook of

our research. The database is composed of bonds that have the average rating with
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an Investment grade level (BBB- or higher) and we select only bonds that are senior6.

The resulting database is composed of 5675 unique emissions over 10 years of history

(20 semesters) and the total observation amount at 39660.

Table 3.1 shows bonds return distribution characteristics over time. It is possible

to appreciate the stylized facts of bond returns, namely the positive skewness asso-

ciated with positive period and increased dispersion. Observing the distribution of

total returns in negative periods (eg: June 2015) it’s possible to note that even choos-

ing the bonds in the 90th percentile gives as result a mere 1.5% excess performance

compared to the median bond. In a positive period, eg. Jun 19, the bonds in the

same position returns a 5% excess return. An effective strategy is then to minimize

losses in the negative period to maximize gains in positive ones.

Each semester, we split the bonds universe into 7 duration buckets, according to

the bond duration at the beginning of the semester. Table 3.2 shows the duration

bucket characteristics as well as the mean performance of each bucket in the various

semesters. There are essentially 3 structures in the returns distribution. The first

one is pictured by long-duration bonds as best performer, the second in which mid-

duration buckets overperform, and the third in which the best performers are at short

duration horizon. These differences are linked to the movements of the curve and the

amplification mechanism from duration.

From the EG00 database, we extract quantitative and qualitative bond characteristics

implemented as features. We shortly describe some of the main data we employ and

their transformation procedure.

From price elaboration, we extract past returns over different periods as well as risky

characteristics, namely standard deviation and downside deviation,

We employ also duration characteristics that indicate to the algorithm the location of

the bond in the curve, credit risk component of bond such as ASW, that is the driver

6And thus don’t display equity style characteristics.
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Table 3.1. Universe Statistics and summary

Index Return Stats Return Quantiles
count mean std min max 5% 10% 25% 50% 75% 90% 95%

Jun-10 1425 4.3% 3.2% -10.0% 23.7% -0.2% 1.3% 2.7% 4.3% 5.9% 7.6% 9.1%
Dec-10 1591 1.4% 3.7% -30.5% 29.4% -2.3% -1.0% 0.2% 1.0% 1.9% 3.8% 6.9%
Jun-11 1607 1.3% 2.4% -16.6% 16.4% -0.8% -0.2% 0.2% 0.8% 1.9% 3.8% 5.2%
Dec-11 1655 0.4% 7.3% -38.4% 17.5% -15.2% -8.6% -0.8% 2.3% 4.4% 6.4% 7.6%
Jun-12 1588 5.5% 4.7% -11.7% 35.3% 0.4% 1.5% 2.7% 4.8% 7.6% 11.0% 13.6%
Dec-12 1571 6.9% 6.0% 0.6% 50.1% 1.3% 1.6% 2.9% 5.1% 8.5% 14.6% 19.8%
Jun-13 1552 0.6% 2.0% -6.0% 31.7% -1.5% -0.9% -0.2% 0.4% 1.0% 2.1% 3.2%
Dec-13 1593 2.2% 2.2% -5.3% 17.9% 0.3% 0.5% 0.9% 1.5% 2.8% 5.0% 6.8%
Jun-14 1635 5.0% 3.2% -1.0% 22.5% 0.9% 1.1% 2.2% 4.7% 7.2% 9.2% 10.6%
Dec-14 1750 3.2% 3.5% -24.2% 17.1% 0.5% 0.7% 1.2% 2.5% 4.8% 7.4% 8.9%
Jun-15 1761 -1.0% 2.0% -14.4% 5.8% -4.5% -3.5% -2.0% -0.4% 0.2% 0.6% 1.0%
Dec-15 1981 1.0% 3.3% -33.8% 8.8% -1.8% 0.0% 0.5% 1.2% 2.2% 3.4% 4.1%
Jun-16 1989 4.1% 4.0% -4.6% 34.1% 0.3% 0.6% 1.3% 3.1% 5.8% 8.5% 11.0%
Dec-16 2172 0.6% 2.1% -8.8% 17.0% -2.1% -1.2% -0.2% 0.2% 1.1% 2.7% 4.4%
Jun-17 2265 0.7% 1.9% -5.2% 13.6% -0.8% -0.5% -0.2% 0.2% 0.9% 2.7% 4.9%
Dec-17 2443 1.8% 1.6% -3.6% 14.5% 0.2% 0.3% 0.7% 1.4% 2.3% 3.7% 5.1%
Jun-18 2538 -0.4% 1.6% -10.4% 9.7% -3.7% -2.1% -0.6% 0.0% 0.3% 0.7% 1.0%
Dec-18 2668 -0.6% 1.6% -17.1% 3.9% -3.0% -2.0% -0.9% -0.2% 0.1% 0.5% 0.9%
Jun-19 2777 5.1% 3.9% -1.0% 22.8% 0.4% 0.7% 1.9% 4.3% 7.5% 10.5% 12.6%
Dec-19 2935 0.5% 1.4% -5.0% 11.0% -0.7% -0.5% -0.2% 0.1% 0.9% 2.0% 3.0%
Jun-20 3098 -1.5% 2.2% -23.4% 10.1% -5.5% -4.0% -2.2% -1.0% -0.3% 0.2% 0.7%
Dec-20 2858 3.8% 3.1% -5.4% 21.2% 0.6% 0.8% 1.5% 2.9% 5.2% 7.8% 10.1%

Table (3.1) shows the main properties for the Index considered, BofA ML Euro Corporate IG,
ER00. Considered bond are those with seniority higher then ”Subordinated”. Each rows refers to
the semester ending in the last day of the month indicated, hence Jun 2013 is the period from 1
Jan 2013 until 30 Jun 2013. The mean and std(Standard Deviation) value are computed equally
weighting the issues in the portfolio. The quintiles columns show the distribution for total returns
each semester.
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Table 3.2. Universe performance for duration buckets

Duration Bucket (Y)
0-1 1-2 2-3 3-5 5-7 7-10 10+

Jun-12 3.40% 3.76% 5.18% 6.46% 7.19% 7.15% 9.46%
Dec-12 2.84% 3.86% 6.96% 8.10% 8.15% 7.05% 14.25%
Jun-13 1.00% 0.85% 0.56% -0.10% -0.26% -0.05% 3.95%
Dec-13 1.10% 1.78% 2.33% 2.14% 2.08% 1.22% 0.88%
Jun-14 1.13% 1.70% 3.39% 5.77% 7.37% 6.09% 11.69%
Dec-14 0.70% 1.01% 1.64% 3.38% 5.10% 6.07% 10.48%
Jun-15 0.33% 0.30% -0.10% -1.16% -2.27% -2.44% -3.78%
Dec-15 0.38% 0.39% 0.84% 0.77% 1.61% 1.79% 2.44%
Jun-16 0.51% 1.18% 2.15% 3.77% 5.05% 6.01% 12.09%
Dec-16 0.30% 0.61% 1.02% 0.72% 0.78% -0.62% -3.03%
Jun-17 0.21% 0.21% 0.51% 0.82% 1.56% 0.64% -0.12%
Dec-17 0.24% 0.47% 1.15% 1.98% 2.87% 2.51% 2.97%
Jun-18 -0.08% 0.00% -0.20% -0.70% -1.14% -0.57% -0.18%
Dec-18 -0.06% -0.24% -0.43% -0.67% -0.76% -0.83% -1.22%
Jun-19 0.76% 1.40% 3.16% 5.59% 7.84% 7.77% 13.13%
Dec-19 0.07% 0.14% 0.29% 0.60% 0.89% 0.76% 1.45%
Jun-20 -0.60% -0.96% -1.50% -1.79% -1.75% -1.49% -1.55%
Dec-20 1.12% 1.78% 2.78% 4.24% 5.25% 7.17% 11.06%

Table (3.2) shows the performance of BofA ML Euro corporate bond index, EG00, splitted for
duration bucket. At the beginnin of eacn each semester, bond are clustered in duration buckets
according to the duration they exhibit. The return is computed by equally weighting the issues in
the portfolio. For each duration bucket K, the columns header present [mink-maxk).
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of interest, and pure interest measured as YTM. We utilize also Amount Outstanding

as a proxy for liquidity. Other factors are computed by combining this measure, such

as yield to maturity(YTM) over Price that indicates the put to the par component

of each bond relative to the emission level and Sharpe ratio. All the quantitative

measures are employed as stock and flow at different time horizons back, to derive

the movement. In addition, we translate qualitative measures such as Rating into

features that can be exploited from the algorithm.

Statistical Learning algorithms improve forecasts especially when standardized values

are passed through the algorithm as features. In this context, we standardize in a

cross-sectional way rather than a time-series, given the model characteristics, and

within each duration bucket. The feature that the algorithm receives to forecast

Idiosyncratic change in ASW is then the relative position within that duration bucket,

Table shows the main statistics of the principal measures employed.

The following part of the analysis deal with firm specification, to extract issuer

characteristic. We link each bond to its issuer following the unique issuer code iden-

tifier retrieved by Reuters and the issuer information. For equity characteristics, we

utilize month-on-month measures that allow us to disentangle firm-specific charac-

teristics. Then we employ issuer data to forecast bond performances by considering

equity measures retrieved from price information such as percentage change, volatility

as well as technical indicators such as the Moving Average Convergence Divergence

(MACD) and the Relative Strength Index (RSI) and volume information. Also from

issuer data, we retain qualitative information, namely sector and state, that trans-

form into numbers to correctly segment the space.

Table 3.4 shows the main statistics of the principal measures employed. We stan-

dardize just in the mean also the measures here employed. When we were to take

a neural network algorithm, a complete standardization with the variance would be

needed.
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Table 3.3. Bond features statistics and summary

Panel (A) Mean panel (B) Standard Deviation
’10 ’11 ’12 ’13 ’14 ’15 ’16 ’17 ’18 ’19 ’20 ’10 ’11 ’12 ’13 ’14 ’15 ’16 ’17 ’18 ’19 ’20

ret f 4.3% 0.8% 3.4% 2.9% 3.1% 1.1% 2.6% 0.2% 0.7% 2.0% -0.5% 2.75% 1.86% 3.94% 2.93% 2.50% 2.93% 3.77% 1.33% 1.17% 2.75% 1.85%
ret fe 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 2.30% 1.57% 3.80% 2.72% 1.55% 1.14% 2.66% 1.29% 0.94% 1.80% 1.56%
oas f 152.7 156.6 253.2 133.3 97.1 96.4 119.5 99.7 93.6 121.8 115.9 83.2 97.4 150.6 74.9 49.6 63.8 78.6 36.5 36.5 58.8 57.4
oas fe 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 76.71 69.74 141.43 71.58 41.99 39.18 61.42 35.43 33.86 55.70 51.10
ytm f 3.36 3.49 3.18 1.89 1.66 1.13 0.98 0.75 0.76 0.78 0.61 1.07 1.19 1.61 0.97 0.81 0.81 0.90 0.62 0.63 0.71 0.62
ytm fe 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.80 0.74 1.43 0.75 0.45 0.41 0.62 0.38 0.36 0.57 0.51
gain f 3.2% 3.4% 3.2% 1.8% 1.6% 1.1% 1.0% 0.7% 0.7% 0.8% 0.6% 1.2% 1.4% 1.9% 1.0% 0.8% 0.9% 1.0% 0.6% 0.6% 0.7% 0.6%
gain fe 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 1.0% 0.9% 1.8% 0.8% 0.5% 0.4% 0.7% 0.4% 0.4% 0.6% 0.5%
dur f 4.2 4.1 3.9 4.3 4.6 5.0 5.1 5.3 5.2 5.1 5.1 2.25 2.35 2.38 2.59 2.65 2.94 2.95 2.97 2.97 2.94 3.25
std f 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.04 0.03 0.04 0.02 0.02 0.03 0.03 0.02 0.02 0.03 0.07
std fe 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.03 0.01 0.02 0.02 0.01 0.01 0.02 0.01 0.01 0.02 0.04

p f 105.0 103.1 104.2 107.9 107.6 108.6 107.3 106.2 104.8 104.1 104.5 6.14 5.99 7.48 7.00 6.85 8.58 8.94 7.91 7.08 6.62 6.90
p e 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6.07 5.77 7.62 7.02 6.88 8.23 8.75 8.01 7.14 6.42 6.83

sharpe r 1.7 0.5 1.4 1.6 1.8 1.0 1.2 0.2 0.4 0.2 0.0 1.35 0.64 1.08 0.97 0.81 0.67 0.62 0.57 0.39 0.32 0.12
ret f 2m 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.01 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

fwd 2.1% 2.6% 1.43% 0.99% 1.01% 0.51% 0.24% 0.32% 0.41% 0.08% -0.2% 0.4% 0.45% 0.36% 0.42% 0.46% 0.29% 0.31% 0.33% 0.36% 0.28% 0.1%
rf 1.9% 2.4% 1.4% 0.8% 0.9% 0.4% 0.2% 0.2% 0.3% 0.0% -0.2% 0.5% 0.5% 0.3% 0.4% 0.4% 0.3% 0.3% 0.3% 0.4% 0.3% 0.1%

diff 0.2% 0.2% 0.1% 0.2% 0.2% 0.1% 0.1% 0.1% 0.1% 0.1% 0.0% 0.0% 0.1% 0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

Table (3.3) shows the mean and the standard deviation for the entire period (2010-2020) of the
dataset employed as features for the random forest regression algorithm. variable that display 0
mean are standardized.

Table 3.4. Summary Statistics equity

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

ret 0.221 -0.097 0.216 0.051 0.068 -0.005 0.156 0.087 -0.109 0.094 0.169
dvd 3.14 3.74 3.83 3.51 3.04 3.13 3.32 3.13 3.28 3.56 3.02
mkt cap 9.10 9.17 9.18 9.28 9.34 9.34 9.32 9.40 9.43 9.42 9.40
book v 13.99 14.55 14.45 14.99 15.69 16.11 15.69 15.91 16.75 17.14 17.82
roe 7.17 7.79 7.77 8.22 6.87 3.48 3.60 5.14 3.96 0.92 -4.59
longdebt a 22.07 21.66 22.62 23.63 23.12 24.31 25.48 25.60 25.32 25.51 24.85
totdet a 25.76 25.06 26.18 27.04 26.17 27.22 28.34 28.80 28.31 28.37 27.72
capex 4.13 4.99 4.92 4.77 4.74 4.42 4.08 4.10 4.24 4.02 3.02
ppe 8.25 8.26 8.26 8.26 8.24 8.24 8.25 8.26 8.27 8.28 8.39
mom 2.09 0.58 1.48 3.03 0.89 0.45 1.16 1.68 0.27 1.03 1.94

Table (3.4) shows the main statistics for the equity features employed in the statistical learning
algorithm. From bond ISIN it is possible to retrieve Issuer ID and its unique identifier. We collect
fundamental data and the average is done considering the number of firm.
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3.4.2 Climate Risk Data

The data we employ to measure climate risk is related to the transition risk compo-

nent. From Datastream, we obtain Scope 1 and Scope 2 Emission at issuer levels from

2009 until the end of the sample. We consider the log of this value. Employing data

obtained for stock fundamentals and financial data, we derive standardized emission

by sales. In addition, we compute the percentage change of carbon emission. The

frequency of the emission data is yearly, which creates a mismatch with the frequency

of the bond dataframe. We however consider the same measure for the two-semester

periods inside each year. There are two years, 2019 and 2020 in which the amount of

Carbon emission diminishes but the percentage change doesn’t reflect this variation.

This is due to some firms that left the database in that year, so the value of carbon

emission for that year is not available.

3.5 Results

3.5.1 Excess return decomposition

In section 3.5.1 we derive e∆ASW , the market invariant for corporate bond excess

return. In this section we show that the specification of Equation (3.12) is correctly

defined and able to capture the inherent driver for excess return, employing the data-

set from 2010 until 2020 with semester frequency.

We firstly assess the correctness of interpreting e∆ASW,t as the risk driver, following

Table 3.5. Transition Risk summary

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

s1 7.2E+06 7.1E+06 6.9E+06 6.6E+06 6.6E+06 6.3E+06 6.1E+06 5.9E+06 6.4E+06 5.0E+06 4.4E+06
s2 1.1E+06 1.1E+06 1.1E+06 9.9E+05 1.0E+06 9.2E+05 9.0E+05 8.3E+05 8.9E+05 7.5E+05 6.6E+05
ds1 -1.6% 2.8% 0.2% 0.9% 3.0% -1.8% 1.0% -0.4% 3.1% 2.7% -0.1%
ds2 2.3% 4.0% 0.5% -2.6% -2.6% -2.1% 1.5% -1.9% 4.3% 8.3% -0.5%

Table (3.5) shows the summary statistics for the emission data at firm level. s1 is Scope1, s2 represent
Scope2, ds1 is the yearly percentage change in Scope1 emission and ds2 is the yearly percentage
change in Scope2 emissions. Issuer are selected starting from the BoFA ML Euro corporate IG. The
table shows the yearly average equi-weighting the firms
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the definition of market invariant proposed by Meucci (2005). In Figure (3.1) we

plot the excess change in Asset Swap Spread against its lagged value. It ’s possible

to note that the shape of the cloud is circular and centered in 0, so we can safely

conclude that the characterization of e∆ASW is a market invariant.

Figure 3.1. Scatter plot with lags for e∆ASW

Figure (3.1). Scatter plot that shows the relationship between lags of excess change in Asset Swap
Spread, e∆ASW from time t, placed in the x axis, to time t + 1, placed in the y-axis, where the
time-frame is a semester. To correctly define a market invariant, the shape of the scatter-plot must
resemble a circular cloud. Sample period is 2010-2020 for BofA ML EG00.

The second valuation regards the precision of Equation (3.12). We handle several

approximations along the derivation, such as the drop of risk free rate component,

the average of change in Asset Swap Spread over different point of the yield curve,

and the discard of higher derivative moments such as convexity. We demonstrate

that those approximations don’t undermine the exploitative power of e∆ASW over

the excess return. For each semester, we recover the bond’s effective excess return

ert and compare to the excess return computed applying Equation(3.12), employing
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the excess yield to maturity, eyt−1 and the measured idiosyncratic change in Asset

Swap, e∆ASW .

With regard to the length of the duration bucket, the larger the bucket, the higher

the possibility of a miscalculation in the terms that encompass the duration, due to

its amplification properties. The shorter the bucket length, the less bond in each

bucket to analyze and the more imprecise computation of the average change in the

ASW, ∆ASW . We set the duration bucket length equal to one year 7. We test in

particular:

ert = α + β ∗ ẽrt + ε (3.19)

where ˜eri,t = eyi,t−1 −Di ∗ e∆ASW,i refers to Equation 3.12.

Figure 3.2. Estimation of excess return through idiosyncratic asset swap change

Figure (3.2). Scatter plot that shows the relationship between estimated excess returns, ẽr through
the decomposition of idiosyncratic change in ASW and realized excess return, er. On x axis, er,
the realized excess return. On Y axis, ẽrer, the forecasted excess return. The red line shows the
perfect relationship, with the equation y = x. Sample period is 2010-2020 for BofA ML EG00.

7We explore duration buckets length from 5 years to 0.3 years, result presented in Table 3.6.
As expected, from 5 to 2 years the duration multiplication error is high. From 1 year to 0.5 years
duration length, the results still get better but not in a significant way and there’s no gain in
shrinking the bucket
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Table (3.7) shows the estimation result for Equation (3.19) through Ordinary

Least Square (OLS). The first evidence is that α is statistically not different from 0,

that allows to assess that there are no constant effect missing from the formulation.

In addition, β parameter is 1.018, that implies that Equation (3.12) exactly charac-

terizes the excess return dynamics. Considering the R2 coefficient, it is above 90% in

the total sample and the only duration bucket in which is lower is the 10+ bucket.

This approach is thus able to disentangle the great majority of the variance in the

sample.

In Figure 3.2 we plot the actual and estimated excess return, on the y and x axis

respectively, and the straight line y = x where there is perfect match between the

two. It is possible to note that all the points are close to the linear relationship, with

just some exception. In particular, those exception are bonds with high duration that

are the ones difficult to characterize.

This result confirms what moves the analysis: by extracting excess return, in addi-

tion to forget all higher moments, one does not have to reprice all the bond risky

characteristics, it just have to forecast the relative movement with respect to the

index. From a slightly different prospective, among a certain amount of firm with

different characteristics, one does need to highlight who will become more or less

risky compared to the others.

We investigate whether there are differences accounting for duration bucket. In

this way we can test whether the algorithm produces bias at certain duration buckets.

Table (3.7) report the result of the estimation of Equation 3.19 in 4 different duration

buckets, namely smaller then 3 years, between 3 and 5 years, between 5 and 7 years

and greater then 7 years.

It’s possible to see that the intercept coefficient is null in all the buckets, Equation

8We run a F-test on the β coefficient to test H0 : β = 1 and we do not reject the null hypothesis.
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Table 3.6. Duration lenght evidence for modelling excess return

5Y 4Y 3Y 2Y 1Y 0.5 Y

êr 1.007 1.006 1.011 1.013 1.021 1.013
*** *** *** *** *** ***

α -1e-05 4e-05 7e-07 -3e-06 -1e-05 -2e-05
(-0.2390) (0.9538) (0.0180) (-0.1094) (-0.3346) (-0.8621)

No. Obs. 39660 39622 39686 39622 33355 36809
Cov. Est. Clust Clust. Clust. Clust. Clust. Clust.
R-squared 0.7960 0.8287 0.8586 0.8875 0.9032 0.9091

T-stats reported in parentheses

***1% significance,**5% significance, *10% significance,

Table (3.6) shows the same OLS estimation for Etr = α + βÊtr + ε whereêtr = ey −D ∗ E∆ASW

varying the length of the duration bucket employed to compute E∆ASW , that are indicated in the
columns. 5Y stands for the duration buckets: [0, 5); [5, 10); [10+. 4Y stands for[0, 4); [4, 8); [8,
12); [12+. 3 is [0, 3); [3, 6); [6, 9); [9, 12) [12+). 2, 1, and 0.5 year the same up to 12 year and the
last bucket is [12 +. Sample Period is 2010-2020.

Table 3.7. Excess Return and model specification - estimation

<3Y 3-5Y 5-7Y 7-10Y 10Y+ Total
êr 0.89 0.99 1.04 1.09 1.01 1.01

*** *** *** *** *** ***
α -7e-05* -2e-05 2e-06 -9e-05 -2e-03 -2e-05

(-1.72) (-0.52) (0.03) (-1.01) (0.83) (-0.86)
Cov. Est. Clust. Clust. Clust. Clust. Clust. Clust.
R-squared 0.9007 0.9367 0.9371 0.9318 0.7726 0.9091

T-stats reported in parentheses

***1% significance,**5% significance, *10% significance,

Table (3.7) shows the OLS estimation for Etr = α + βêtr + ε where êtr = ey − D ∗ E∆ASW with
duration bucket of 1 year estimated in the different part of the duration region. Bond are assigned
in each region according to the value of the duration at the beginning of the period. Sample Period
is 2010-2020 for Euro IG ER00.
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Table 3.8. Walk Forward - ASW forecast

Panel (A): Percentage of analysis
M1 M2 Pooled MC Pooled BC

Avg Analyzed 65.55% 79.53% 86.25% 86.25%
Min 60.13% 68.12% 79.53% 79.53%
Max 71.17% 85.28% 91.25% 91.25%

Panel (B): Summary Statistics forecasting excercise
M1 M2 Pooled MC Pooled BC

β 0.78 0.82 0.83 0.84
Rˆ2 13.38% 16.82% 24.51% 25.78%
Accuracy 55.6% 53.49% 57.42% 58.12%
RMSE 0.92 0.89 0.85 0.84

Table(3.8) shows the results from the walk-forward exercise from 2016 until 2019 with a rolling
training period of 12 semesters. M1 stands for the model with bond characteristics as features, M2
for the Equity characteristic as features. PooledMC is the MC pooling algorithm of M1 and M2 and
PooledBC is the BC pooling algorithm of M1 and M2. The average analyzed is the simple average of
the 9 semester in out-of-sample exercise. β is the estimated coefficient of E∆ASW = βE∆ASW + ε.
Accuracy is the percentage of time E∆ASW and E∆ASW display the same sign. RMSE is computed
as fraction of the RMSE of a random classifier that sets all E∆ASW equal to 0

(3.19) is not posing a bias in any duration bucket. Regarding the β coefficient, it’s

possible to note that in duration bucket 3-5 and 5-7 and 10+ it’s very close to 1,

the target value. In the shortest duration bucket the coefficient is approximately 0.9,

implying that the effective excess return is sightly smaller then the one we are able

to forecast. It the duration between 7 and 10 however it happens the opposite, with

a coefficient of 1.1, that means a forecast that reduces the differences of the excess

return. When we look at R2, it’s above 90% for all the buckets with except for the

longer duration where is falls at 77%. This is due to the small number of bonds in

each duration bucket, especially for long duration for which it is not feasible to build

1 year duration bucket.
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3.5.2 ASW change forecast

We establish a correct way to disentangle excess return through the asset swap spread.

This element is the crucial to be forecasted to obtain a correct specification for the ex-

cess return evaluation. We implement the forecasting procedure described in Section

3.3) and test its performance in projecting at the horizon the risk driver. The aim is to

assess whether the random forest algorithm is able to forecast excess change in asset

swap and the enhancement obtainable through the pooling mechanism. Considering

the dataset available and the models described, we test the following specification.

• M1, that indicate the exercise in which the forecasted value is E∆ASWi
through

the bond characteristic features

• M2: that indicates the exercise in which the forecasted value is E∆ASWi
through

the equity characteristic features

• Pooled MC: that indicates the exercise in which we pool the results of M1 and

M2 with MC algorithm

• Pooled BC: that indicates the exercise in which we pool the results of M1 and

M2 with Bayesian weighting algorithm

We run a walk forward exercise, with a rolling estimation window of 12 semesters,

starting in December 2016 until December 2020, and obtain 9 out-of-sample period.

Table 3.8 shows the results by averaging the out-of-sample periods. The first thing

to notice is the gain in analysis extent that the pooling mechanism allows to make.

Bond and Equity features alone are able to predict between 65% and 85% of the

sample, given missing values9. By pooling the two results, we obtain a coverage that

is in average at 86% with a maximum value of 91%. 10 We compare the model output

against the realized value. The models on average manage to find the exact direction

9given that the algorithm handles paste returns, it is not possible to analyze bond issued in the
previous months.

10The percentages are equal between the two pooling methods because the percentage is not
affected by the method itself, given that they don’t present any stricter requirement with the respect
to the original models to analyze each bond.
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55% of the times, with a partial increase in the pooled mechanism to 58%. Moreover,

with respect to a random forecaster that assigns to each bond no change in ASW,

the average RMSE diminishes by roughly 10%.

Finally, we analyze the variables the random forest algorithm regards as the most

important to explain changes in ASW in the two different subsets. Table (3.9) shows

the top three variables the random forest employs to address idiosyncratic change in

asset swap spread. We point out that we are not assessing whether the variable has

a positive or negative impact, but rather that its values are employed by the random

forest regressor as primary driver.

Regarding Bond characteristics, we find that the excess Price, (ExcPrice) is the

first to be chosen, followed by the downside deviation (Downside) and Future ex-

pected Gain(GainFe). An important role is caught by the Yield to Maturity and

the same Asset Swap elaboration. Regarding the excess price factor, it is similar to

the approach developed by Nozawa (2013) that matched corporate to governative

bond, here we check against parity. When looking at the downside risk, already doc-

umented as a factor in corporate bond total return (Bai et al. (2019); Augustin et

al. (2020)), our conjecture regards the fact that higher downside risk is reflected by

larger variation in asset swap spread, so the algorithm tends to cluster bond that are

likely to move the most and the least.

Regarding Equity characteristics, we find the most important feature to be the issuer

stock past total return. This finding is well documented in the literature (Ilma-

nen (2003); Cappiello et al. (2006)) and in this case indicates that information flow

in bond market circulates with a certain delay compared to equity market. When

looking at standard deviation, Std, it is either correspondent to the bond downside

deviation, and to the effect of idiosyncratic volatility explored by (Campbell and

Taksler (2003)). In Campbell and Taksler (2003) work, the connection is established

between the idiosyncratic volatility and the cross section of yield change, we further-

more establish the link to the idiosyncratic change in asset swap spread, the specidic

driver for corporate yield.

105



Table 3.9. Variable importance ranking

M1 M2

1 Exc Price Ret
2 Downside Std
3 Gain Fe Mkt Cap
4 YTM LongDebt
5 ASW ROE

Table(3.9) shows the first five elements by ranking importance for the two models estimated. M1
refers to the model built upon Bond characteristics data. M2 stands for the equity characteris-
tic model. Feature importance is derived by considering the Gini coefficient, that ranks features
according to the impurity reduction at each node employing the Gini Index(Nembrini et al. (2018))

3.5.3 Portfolio performance

The leading purpose of the analysis is to derive a portfolio that over-performs the

related benchmark, in an exercise of bond selection. We analyze the excess return

implicitly forecasted by the model through the Equation (3.12)

eri,t = eyi,t−1 −D ∗ e∆ASW,i,t. (3.20)

where eyi,t−1 is the deterministic component.

We emphasize that duration acts as an amplification component and it retrains

heteroskedastic characteristics for er. As stated before, the bond universe is split in

duration buckets of 1 year, and from the the forecasted ASW, we are left with an

overperformance inside a certain bucket.

The main drawback of this derivation is that it is not feasible to compare excess

returns of bonds in different duration buckets. In fact, given a bond’s a excess

return, era, associated to a duration bucket da, and a bond’s b excess return erb

related to different duration bucket db, da 6= db, the case era > erb doesn’t entail

tra > trb. More generally, era ≶ erb ; tra ≶ trb. The an higher era refers to

a negative benchmark return while erb applies to a positive benchmark return and

thus, tra ≤ trb

In our approach this is a minor threat given that in the asset allocation procedure, the
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strategic asset allocation and the tactical asset allocation have already contributed

to define the share of the portfolio that has to be allocated in the different buckets.

In addition, we challenge the position by a general investor without such a report.

In this light, the investor could face the situation formerly described, where selecting

bond based on e∆ASW or er would end up in selecting duration buckets that under-

perform the benchmark 11 The most simple solution is to invest in each duration

bucket a portfolio fraction equal to the share of the bond in the index that are in

that duration bucket 12. Following this procedure, for each duration bucket di, the

total return of the portfolio, trp,di > trb,di given that the algorithm selects bonds

with a positive er in that duration bucket. Then, the portfolio return is the weighted

average of the single duration portfolios,

trP =

Nb∑
i

wd ∗ trp,di

it’s easy to understand that if ∀i, trp,di > trb,di ⇒ trP > trB. A more challenging

approach, would leave the algorithm to select bonds with an higher expected return,

given that this number is not small, we could overcome the previous risk. The risk is

that in this way the algorithm choose long duration bonds, easing the way for good

excess returns. For the prosecution of the work, we investigate the first choice, having

the same percentage of bond in each duration bucket.

We conduct two tests to evaluate the portfolio performances. The former is meant

to evaluate the performance of a portfolio of 100 bonds rebalancing the component

each semester and the second in order to compare the performance of different port-

folios based on the bond percentile.

The first is coherent with an investor logic, that has a lump sum to invest. In this

setting, the investor considers the minimum investment threshold of each bond, in

11Given as granted the forecasted values, this is the only situation in which this algorithm could
produce negative results.

12Note that to be as precise as possible, the computation of the share of bond in the duration
bucket should follow the same rule employed to compute index total return, most often market
weighted
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the most case equal to 100.000€, and chooses the number of bond in which to invest

according to it’s budget. We test the performance of the algorithm by setting a dy-

namic investment portfolio determined by the first 100 bonds the algorithm rank for

excess return. We test the same specifications employed in section(3.5.2), with M1

and M2 respectively the output from the random forest algorithm employed on bond

and equity characteristics, Pooled the MC pooling algorithm and Lasso a control

algorithm employed as a reference.

Table (3.10) presents the result of a walk-forward exercise starting in June 2016,

the first semester ending in December 2016. The nine semesters present an heteroge-

neous sample for market conditions, encompassing situations of credit risk reduction

(2017 and 2019), stressed period (2018), the Covid induced crisis (Jun-2020) and the

resilient gain in the second semester(Dec-2020).

Panel A shows the total return in each semester for the benchmark and the different

portfolios and we compare the single portfolios against the benchmark. Overall it is

possible to note that in positive time, characterized by decrease in credit risk and

positive benchmark total return, the algorithm forecasting idiosyncratic change in

ASW manage to outperform the benchmark with an the performance higher as more

positive is the benchmark return. In down-turning moments, the portfolios generally

perform lower then the benchmark, with a discrepancy lower than the one of the

positive semesters. In addition, the pandemic crisis offers a good test for the robust-

ness of the different models in very adverse situation. The portfolio percentage loss,

compared to benchmark, is between 1.5% and 2%, well below the gains in positive

moments that enable an overperformance from 2% to 4%.

We then compare the number of bonds in each semester for each strategy that out-

perform the benchmark, displayed in Panel D. A higher total return can derive from

some bond well outperforming the benchmark and the majority being close or be-

low, or the entire set slightly over-performing the benchmark. We see that, with

the exception of the first semester in 2020 characterized by Covid, in all semesters

the percentage of bond outperforming the benchmark is well above 50% with just a
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Table 3.10. Portfolio statistics - 4 algorithms

Panel A: Total Return
Nr Bond Bench. M1 M2 Pooled Lasso

Dec - 2016 2033 0.2% 2.4% 2.7% 2.7% 1.4%
Jun - 2017 2157 0.3% 1.7% 1.7% 1.7% 1.1%
Dec - 2017 2293 1.4% 2.6% 1.4% 2.7% 1.9%
Jun - 2018 2412 -0.1% 0.0% -0.1% 0.0% -0.1%
Dec - 2018 2503 -0.6% -1.5% -0.6% -1.2% -1.2%
Jun - 2019 2643 4.5% 7.6% 4.5% 8.7% 6.3%
Dec - 2019 2830 0.3% 2.3% 0.3% 2.3% 1.2%
Jun - 2020 3001 -1.4% -3.0% -1.4% -3.3% -2.5%
Dec - 2020 2774 3.5% 7.5% 3.5% 8.2% 5.7%

Panel B: Portfolio Performance
Bench. M1 M2 Pooled Lasso

Dec - 2016 100.2 102.4 102.7 102.7 101.4
Jun - 2017 100.5 104.1 104.5 104.5 102.6
Dec - 2017 101.9 106.8 107.2 107.3 104.5
Jun - 2018 101.8 106.8 107.2 107.3 104.4
Dec - 2018 101.2 105.2 105.4 106.1 103.2
Jun - 2019 105.8 113.2 113.7 115.2 109.7
Dec - 2019 106.1 115.8 116.6 117.9 110.9
Jun - 2020 104.6 112.3 113.1 114.0 108.2
Dec - 2020 108.2 120.7 121.9 123.3 114.4

Table(3.10) shows characteristics for the walk forward exercises conducted, from 2016 until 2019
with a rolling training period of 12 semesters. M1 stands for the model with bond characteristics
as features, M2 for the Equity characteristic as features and Pooled is the BC pooling algorithm of
M1 and M2 and LASSO a control model. The portfolios are composed by 100 bonds that represent
in each semester the ones each algorithm considers to be the best performer. Panel A shows the
Total Return of each portfolio in the semesters while Panel B the evolution of 100 Euros invested
in the portfolio.
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Table 3.11. Portfolio statistics - 4 algorithms

Panel C: Duration
Bench. M1 M2 Pooled Lasso

Dec - 2016 5.25 5.74 5.75 5.75 4.57
Jun - 2017 5.32 6.24 6.32 6.32 5.09
Dec - 2017 5.40 6.58 6.61 6.31 5.07
Jun - 2018 5.42 6.15 6.19 6.21 5.14
Dec - 2018 5.33 6.16 6.28 6.24 5.02
Jun - 2019 5.29 6.24 6.27 6.35 4.97
Dec - 2019 5.24 6.37 6.49 6.24 4.81
Jun - 2020 5.37 6.26 6.43 6.39 5.03
Dec - 2020 5.21 6.19 6.17 6.13 4.86

Panel D: Percentage beating benchmark
Bench. M1 M2 Pooled Lasso

Dec - 2016 49.1% 87.2% 88.0% 88.0% 83.0%
Jun - 2017 43.6% 83.2% 82.0% 84.0% 76.0%
Dec - 2017 42.0% 70.4% 69.0% 72.0% 53.0%
Jun - 2018 66.5% 61.6% 59.0% 60.0% 61.0%
Dec - 2018 61.3% 57.6% 58.0% 48.0% 59.0%
Jun - 2019 47.3% 66.4% 71.0% 77.0% 60.0%
Dec - 2019 39.5% 84.8% 87.0% 82.0% 66.0%
Jun - 2020 57.9% 33.6% 33.0% 31.0% 40.0%
Dec - 2020 41.5% 82.4% 85.0% 83.0% 68.0%

Table(3.11) shows characteristics for the walk forward exercises conducted, from 2016 until 2019
with a rolling training period of 12 semesters. M1 stands for the model with bond characteristics as
features, M2 for the Equity characteristic as features and Pooled is the BC pooling algorithm of M1
and M2 and LASSO a control model. The portfolios are composed by 100 bonds that represent in
each semester the ones each algorithm considers to be the best performer. Panel C shows the mean
duration of each portfolio, computed by equally weighting each bond duration. Panel D present the
percentage of bond in each portfolio that outperform the benchmark. The benchmark column is
not equal to 50 because the average doesn’t match the median and the distribution is skewed.
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couple of semester around 60% and some close to 90%.

The following analysis we carry regards the distribution of bond returns in the pooled

portfolio against the benchmark by percentage returns. In Figure 3.3, the orange his-

tograms represent the empirical distribution of bond total return and in blue the

pooled portfolio performance. The plots regards four semesters, respectively Decem-

ber 2017, December 2018, June and December 2020.13

Figure 3.3. Total Return distribution for Benchmark and Portfolio

Figure (3.3) presents the histogram of the total return distribution for Benchmark and Pooled
Portfolio (Pooled BC) in four noticeable periods during the walk forward excercise from 2016 until
2020. The top left figure shows June 2020, the top right figure December 2017. The bottom left
distribution present the evidence for December 2018 and the bottom right for December 2020. In
each figure, orange bar represent the benchmark distribution whereas the blue ones the portfolio
distribution.

Considering the different periods, we start by analyzing the ones in which the

portfolio performed less then the benchmark. In December 2018, the resulting port-

13We didn’t present the whole sample given that the remaining ones can be associated with the
ones plotted, and thus don’t retain more information. For seek of completeness, we plotted the two
periods in which the portfolio under-performed the most the benchmark and the period of maximum
gain.
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folio exhibits some important losses that are not offset by the relative high amount

of good choices of bond with positive total returns. Is this setting the distribution of

the portfolio is more skewed compared to the benchmark. In June 2020, the semester

hit by Covid crisis, the distribution is not far from the benchmark and the losses

are capped at 10%, with the choice of some sectors that were severely affected by

the new normality, such as travels and real estates, and we recall such an event was

impossible to forecast from a quantitative based model.

We emphasize the portfolio returns’ distribution in the semesters in which it well out-

performed the benchmark, namely December 2017 and December 2020. It is possible

to see that the algorithm manages to select the bonds that perform the most very

accurately. In these instances, the total return distribution presents an asymmetric

shape characterized by very limited number of bond recording a negative perfor-

mance.

The last analysis we carry is to properly estimate how the algorithm selects winner

and losers. Figure (3.4) shows the sectorial composition of the benchmark and the

portfolio. Again, we plot just four examples of the distribution of the pooled portfolio

against the benchmark. It is possible to see that the algorithm tends to replicate the

composition of the index with over and under weight in certain sectors, that are not

fixed along the time. Benchmark allocation doesn’t change rapidly, whereas for the

portfolio this doesn’t happen. From December 2016 to June 2017, the share of bond

invested in Financial sector diminishes from 35.2% to 24.6%, offset by increases in

Technology, Transportation and Services. This changes in the portfolio composition

represent the extent with which the algorithm expresses its view on each sector per-

formance against the benchmark.

Once we assessed the potential of the procedure, we run a second exercise, by

building four portfolios at different percentiles of the forecasted distribution. In such

a way we check whether the algorithm correctly specifies the different aspects of
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Figure 3.4. Portfolio and Benchmark Distribution by sector

Figure (3.4) shows the pie plot presenting the sectorial distribution of the benchmark and the
portfolio in four semesters along the walk forward exercise. The four semesters represent clue
moments, namely: June 2017, June 2019, December 2016, June 2020. In each subfigure, the pie on
the left represents the benchmark while the pie on the right the portfolio composition.

the distribution. This is a more challenging exercise given that we check the entire

distribution to assess whether we are correctly characterizing quintiles. We employ

the same walk forward exercise run but we select four portfolios. Q1 is the portfolio

of the bond in the first 25% of the forecasted distribution, Q2 is the portfolio of

the bonds in the second 25%, Q3 is the third portfolio with bonds between the 50

and 75th percentile and Q4 is the lower 25% of bonds in each semester. Table 3.12

shows the result. In the first columns we check that the number of bonds in each

portfolio is similar. We then dive into portfolio performances. Q1 results to be the

best portfolio in all semester with exception of December 2018 and June 2020. Also

in June 2018 it is not the best performer, but the difference with the top performer
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Table 3.12. Walk Forward exercises considering four portfolio

Number of Bonds Total Return % over benchmark Portfolio Result
Date Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4

Dec-16 401 402 402 401 1.3% 0.2% -0.2% -0.6% 83% 56% 40% 18% 1.01 1.00 1.00 0.99
Jun-17 437 436 435 436 1.1% 0.2% 0.0% -0.3% 74% 31% 20% 10% 1.02 1.00 1.00 0.99
Dec-17 471 470 470 470 1.8% 1.5% 1.3% 1.0% 53% 44% 36% 26% 1.04 1.02 1.01 1.00
Jun-18 505 506 505 504 -0.1% -0.1% -0.1% 0.1% 65% 66% 67% 75% 1.04 1.02 1.01 1.00
Dec-18 533 534 534 532 -1.1% -0.7% -0.3% -0.2% 52% 67% 79% 87% 1.03 1.01 1.01 1.00
Jun-19 552 551 553 549 5.6% 4.4% 4.2% 4.1% 53% 42% 37% 38% 1.09 1.06 1.05 1.04
Dec-19 564 564 562 561 1.1% 0.2% 0.0% -0.1% 64% 25% 18% 15% 1.10 1.06 1.05 1.04
Jun-20 524 524 522 522 -2.4% -1.1% -0.8% -0.6% 39% 70% 82% 90% 1.07 1.04 1.04 1.03
Dec-20 477 478 477 475 5.1% 3.0% 2.4% 2.1% 62% 32% 20% 14% 1.13 1.08 1.07 1.06
Avg 496 496 496 494 1.4% 0.9% 0.7% 0.6% 61% 51% 48% 41%

Table(3.12) shows the walk forward exercises considering four portfolio based on percentile ranking
with semester rebalancing. Q1 is the portfolio composed by bonds that the algorithm collocates
between the 1st and the 25th percentile. Q2 is portfolio with emissions between the 26th and the
50th percentile. Q3 is the portfolio with emissions between the 51st and the 75th while Q4 is the
portfolio of bond from the 75th until the last percentile. The number of bonds represents the
number of bonds in each portfolio. Total return is computed equally weighting the bonds in the
portfolio. % is computed nominally on the benchmark. Portfolio Results is computed compounding
Total Returns without Transaction Cost and is the only measure for which averaging does not add
information.

is negligible. In addition, excluding these negative periods, it’s possible to note that

the returns of the four portfolios are correctly ranked: the algorithm is thus able to

distinguish, other than the top performer, the relative order of the other portfolios.

When looking at the percentage of bond that over-perform the benchmark, there

is the same relationship observed in semester total return, with Q1 well above the

others. This indicates that the algorithm allows to asses other then the performance

of the single emissions, their correct specification

3.6 Climatic Metrics

We then extend the analysis by considering in the issuer level dataset variables that

express the climate risk linked to the issuer, regarding the transitional risk compo-

nent.

Transition risk variables have been found to affect equity instruments through a risk

premium demanded by investors, as classical asset pricing models suggest (Bolton and

Kacperczyk (2020)). However, bond investors are intrinsically exposed to downside
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risk, so the documented larger hedging cost in the options market for the carbon-

intensive firm (Ilhan et al. (2021)), should affect fixed-income investors. In addition,

lower returns associated with bonds issued by polluting firms(Duan et al. (2020)),

implicitly suggest that investors face the risk of a higher price to bear the firm’s credit

risk.

However, these exercises assess the current impact of transition risk variables rather

than foreseeing corporate bond returns. The proposed approach, disentangling the

idiosyncratic change in firm credit riskiness, could overcome the previous limitation.

The main reason is that climatic variables affect just the residual components of cor-

porate bond returns, with prevailing effect in some sectors.

We check whether climate risk variables are chosen by the random forest algorithm

as a driver for bond overperformance. In this light, a variety of transition risk-related

variables can be associated by the non-linear capabilities of the statistical model to

a positive or negative variation in the idiosyncratic change in the asset swap. We

collect for each firm the Scope 1, Scope 2, Scope 3 Emission as well as their yearly

change. These data are however available at yearly frequency whereas the analysis

carried out has a semester outlook. We don’t restrain or modify the procedure but we

analyze whether there is a difference in the results comparing the different semesters.

If any information regarding a firm’s emission affects prices, it acts especially when

the information becomes available. We replicate the procedure described in section

(3.5.3) and, rather than the portfolio total return performance, our focus concerns the

relative importance of the newly introduced variable with regard to the ones already

discussed. Table 3.13 presents impact of adding transitional risk variables into the

features set on model M2 presented in section (3.5.2), that include firm-level variables.

In particular, Table (3.13) present the ranking of the transition risk-related vari-

ables in the forecasting procedure for changes in e∆ASW . We present the results for

the two semesters distinctly because we want to test whether the release of emission
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Table 3.13. Variables Importance for transition risk variables

Jun Dec

(1) (2) (1) (2)
% Analyzed 79.5% 48.7% 79.5% 50.2%
# Features 20 28 20 28

Rank
Scope 1 15 17
Scope 2 19 22
Delta Scope 1 12 19
Delta Scope 2 27 24
Scope 1 Adj 26 25
Scope 2 Adj. 28 26
Delta Scope 1 Adj 20 28
Delta Scope 2 Adj 21 27

Table(3.13) relates to the updated walk forward exercises employing climate transition risk variables.
It builds on M2, that considers just equity variables. % Analyzed represent the average number
of bond for which the algorithm is able to produce a forecast. Different levels between Jun and
December derive from the fact that December has one more observation - December 2017. Feature
importance is derived by considering the Gini coefficient, that ranks features according to the
impurity reduction at each node employing the Gini Index(Nembrini et al. (2018)

information affects the algorithm’s performance.

The first evidence we document regards the percentage of the analyzed bond, that

declines with respect to the M2 algorithm. The reason behind the drop resides in the

fact that for a given firm, just missing information on any emission variables under-

mine the possibility for the algorithm to project the idiosyncratic change in ASW.

The number in the columns rank represents the relative importance of each vari-

able in the selection algorithm. A lower number represents more salient information

carried by the selected variable. A 1 would mean that the random forest algorithm

chooses that variable as a major driver for future changes in e∆ASW .

The results suggest that the climate variables are still not able to address projection

for idiosyncratic change in an asset swap.
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3.7 Conclusion

In this work, we derive the risk driver for bond excess return in an exercise of bond

selection. Idiosyncratic change in Asset swap, E∆ASW is the only variable to project

in order to correctly forecast the excess return of a bond with respect to its duration-

matched benchmark. To forecast this value, multiple data sources are assessed and

pooled. Issue and issuer characteristics, in addition to their evolution over time, can

forecast the change in asset swap, especially when analyzed through a random forest

algorithm, that exploits non-structured links in the features.

Finally, deriving the excess return from the forecasted idiosyncratic asset swap vari-

ation allows building a portfolio that over-performs the benchmark in all but two

down-turning periods, where it can manage the losses.

Considering the four portfolios composed of bonds in different percentiles, there is

a compelling ability of the algorithm in designating the top and worst performers.

Finally, including transitional risk variables, we find that their exploitative power is

still very limited when employed in the forecasting exercise.
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Chapter 4

Credit Risk Decarbonization:

evidence in corporate bond market

4.1 Introduction

Global warming is a certain threat to the environment and the economics and re-

cent evidence highlights its acceleration (Xu et al. (2018)). GreenHouse Gas emis-

sions(GHG) are the main element affecting the earth radiating power(Hsiang and

Kopp (2018)) with the main polluting element, carbon emission CO2, stemming from

electricity generation (Stern (2008)). The way to prevent it is by diminishing CO2

through the transition to a net-zero economy. Nowadays, regulators are surveying

diverse ways to curb emissions, from Pigouvian taxation to offset externalities (Ba-

iardi and Menegatti (2011)) to another type of emission regulation (Green (2021)).

Transitional risk emerge as regulatory risk (Hjort (2016)) and is still under a process

of translation into action. There are however sectors with active regulation, such as

the EU ETS cap and trade system employed in Europe for utility firms. Through this

mechanism, each year auction mechanisms settle the amount of emission and firms

emitting more have to purchase certificates. Even if a reduction in CO2 emission is

considered the first step to tackle as a corporate strategy to mitigate climate change

(Kolk and Pinkse (2005)), resulting consequences for firm valuation have not always
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coincided (Lee et al. (2015)).

Research has investigated mainly equity instruments, finding investors to value envi-

ronmental performances(Clarkson et al. (2011)) as well as CO2 reduction (Bolton and

Kacperczyk (2020)). However, equity and bond investors face different payoff struc-

tures, so transition risk impacts differently financial instruments (Chen and Silva Gao

(2012)). When the analysis regards bonds instruments, green bonds represent a nat-

ural framework to build up. A well employed technique is to set up an empirical

strategy to match green and conventional bonds to measure the spread with different

results. Green bonds exhibit a negative premium compared to the normal one(Zerbib

(2019)). When the analysis contemplates just states and other governmental entities,

the greenium vanishes as investors account green and conventional bond as substi-

tutes (Lebelle et al. (2020)). Credit risk has been analyzed in the pulp, paper, and

chemical industry to test an impact of environmental performance on bond pricing

Schneider (2011) and as a directly influencedHöck et al. (2020)

The main question that remains is whether becoming greener pays-off, and it’s possi-

ble to answer just understanding in which situation it does(Russo and Minto (2012)).

This is our central question, by taking advantage of the EU ETS program to under-

stand when the market perceives a premium by greening operations.

Our main contribution is the exploitation of the transition risk horizon in the corpo-

rate bond market. We analyze firms in the utility sector that issue a corporate bond

with an investment-grade rating and assess whether the duration plays a role when

analyzing transition risk. Each year, we split firms into quintiles according to the

variation in carbon emission. This analysis enables to discard of major risk drivers

for bond performance and retrain carbon emission as the main difference. We ana-

lyze for the top and the bottom quintiles the bond split into long and short duration

buckets. The objective is a pairwise comparison and we find that the portfolio of

green bonds outperforms the brown one, just in the short duration bucket. We then

analyze the change in asset swap spread, a risk driver for bond performance. Our

conjecture is that transition risk, acting as a regulatory kind of risk, is salient in
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the short duration. Controlling for credit risk-related variables, we find overall that

change in emission is a credit driver and statistically significant especially for the

short-term bond duration. We then control for possible other characterization for

transition risk drivers, confirming that change in Scope 1 emission is the key factor

in the utility industry.

4.2 Methodology

4.2.1 Transition risk buckets

Transition risk arises from the prospective of a sudden change in the regulatory

framework to shift the economy to a net zero target(Grippa et al. (2019)). Industrial

organizations are exposed to this kind of risk and the question is through which chan-

nel this risk propagates(Battiston et al. (2017)). Firms however are not a standalone

in the financial markets and the devaluation of distressed firms’ financial instruments

could propagate in the economy. The quest is to analyze different financial instru-

ment and understand the specific impact that transition risk poses. When analysing

equity, the discussion is the variable of interest, whether the level or the change in

CO2 emission (Bolton and Kacperczyk (2020)). When considering EU ETS regula-

tion, the yearly reduction in the total amount of auctioned CO2 allowance calls for

a correspondent reduction in firm emissions. In this context emission exposure acts

as a regulatory kind of risk (Blyth et al. (2007); Cavanagh et al. (1993)) and we test

whether the risk arise with the path to diminish CO2 emission of each firm. For each

firm, we indicate with:

∆E =
Et
Et−1

− 1 (4.1)

the yearly percentage change in emission reduction where Et represents Scope1

emission at time t. The critical point to our argument is the definition of the risk

exposure. We do not consider either revenues standardization nor emission because

of the characteristic of the EU ETS program that doesn’t allow increase in European
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energy total consumption. In addition, the percentage of auctioned allowances is

almost universal, but still a slight minority and there is a residual percentage of

allowances still allocated. A second reason is the fact that we want to isolate the

emission reduction effect: if a firm decreases its emission following a crisis, then one

would not expect to see a positive portfolio performance nor an improvement in its

creditworthiness. It is possible to rank in each year firms according to the ∆E and

select the top and the worst to obtain the two groups to analyze. We indicate the

firm in the top quantile in reducing CO2 emission green while with brown we indicate

the firm in the last quantile.

Equity instrument are the most analyzed given their availability, whereas on bond

market salient analysis are carried analysing the differences among green and normal

bond. Debt instruments face an higher order of risk component compared to equity,

and we address poor results steam from this ultimate reason.

Our analysis focuses on Euro-denominated bond with investment grade rating

(BBB or higher) and fixed coupon, which are the components of BofA ML Euro

Corporate IG, ER00, bond index tracked by ICE. We thus have all bonds with the

same underlying risk-free factor, paired riskiness (no high yield component) and same

cash flow structure(no floating rate 1)

To shrink the size and risk components we selected just one sector in which to conduct

the analysis.2 Recalling the aim of the work, that is to analyze the influence of

regulatory risk in credit risk, we examine issuers in the utility sector, affected by the

greatest source of regulatory risk in Europe that is EU ETS.

This analysis faces also a second issue related to the instrument characteristics.

Contrary to equity, each bond has a precise payoff structure in the future, and each

expected payment shifts associated risk in different futures outcomes. We split bond

in duration buckets according to the regulatory risk horizon. Regulatory risk impacts

investment decisions when is enforced with a short period horizon up to 5 years (Gros

1Fixed to floater are present in the index provided they are callable within the fixed-rate period
and are at least one year from the last call before the date the bond transitions from a fixed to a
floating rate security

2Accordin to Sector 3 definition provided by ICE
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et al. (2016)). If a firm survives the enforcement period, the probability of default

lowers with the time, displaying the same shape of the credit risk curve for a firm

close to bankruptcy. We aim to test whether this kind of transition risk is priced

differently according to the bond payoff structure. We split bonds by duration at the

beginning of each year, Db and setting the threshold between short and long duration

at 5 years.

Combining the two separations we made, the first at issuer level between green and

brown firms and the second at bond level between long and short duration, we obtain

4 portfolios.

• Green portfolio, Short-duration(GS) : portfolio containing the bond in ER00

issued by one of the top 5 firm in reducing Scope1 CO2 emission in that year.

Duration is between 1.5 and 5.5 years.

• Brown portfolio, Short-duration(BS) : portfolio composed by bond in ER00

issued by one of the worst 5 firm in reducing Scope 1 emission each year.

Duration is between 1.5 and 5.5 years.

• Green portfolio, Long-duration(GL) : portfolio composed by bond in ER00

emitted by one of the Top 5 firm in reducing Scope 1 emission in each year,

duration between 5.5 and 10.5 years.

• Brown portfolio, Long-duration(BL): portfolio composed by bond in ER00 emit-

ted by one of the Worst 5 firm in reducing Scope 1 emission in each year,

duration between 5.5 and 10.5 years.

As anticipated bond portfolios have been divided according to the duration to

worst3 because it is the main driver in price change and thus in bond performance.

The alternative was a subdivision by the maturity that would have pose challenging

questions for callable bonds. We recall that the use of a fixed rate gives the advan-

tage that the change in prices reflect changes in firm riskiness and is also possible to

3Duration to worst takes into account callable bonds by computing the duration for the worst
case prepayment option the investor can face.
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obtain the ASW for each bond, reflecting the risky component.

4.2.2 Portfolio assessment

Our purpose is a pairwise comparison of green and brown portfolios either in the

short-duration bucket or in the long-duration one, detecting the short-duration port-

folio as affected by regulatory risk.

Bond Portfolio performances are direct outcomes of change in the level and shape of

both risk-free and credit risk interest curve. We point out that the bonds are chosen

in a way to maximize similarities of risk factors, to disentangle just possible trade-off

coming from decarbonization process. Change in level and shape of risk-free curve

affects in an identical way all the bonds in the portfolio, provided that they belong

to the same duration bucket. The main driver for the credit risk is change in ASW,

a derivative that disentangle the price of credit as a spread over LIBOR.

It is possible to decompose total return for a constant maturity index in the following

way, looking at the so-called spread duration Fabozzi and Mann (2012)

R = Y tm−D ∗ (∆RF + ∆ASW ) (4.2)

where Y tm is the yield to maturity of the index, D is the duration, ∆RF and ∆ASW

are respectively the change in the risk-free rate and the change in ASW at the corre-

sponding duration of the Index. The most common derivative used to calibrate and

measure credit risk is Credit Default Swap (CDS). CDS however represent a minority

share (when not completely absent) of institutional portfolio, and such motivation

drive us to measure the empirical credit risk decarbonization that can be found in

portfolio. From the expansion in Equation (4.2), we are missing higher moments

than the second, including convexity but for now, it is fine for two reasons. The first

one is that we are not going to fall into the ”convexity trap” Gilkeson and Smith

(1992) thus having an opposite impact on total return from ASW compared to dura-

tion. The second one is that in the first place we want just to analyze the impact of
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emission reduction on firm riskiness, and here we are measuring more this effect than

the importance of change in ASW on total return performance. Change in risk-free

component is common for all the bond in this analysis so we need to disentangle the

change in risky components underlying each bond and analyze it. The second goal

of this work is to isolate the idiosyncratic change in risk that results for each firm

in the green and brown portfolio. To do so, we have to consider the common risk

factor still in our portfolio that affects bond, utility sector risk, and net it from each

bond ASW. We thus compute the ”benchmark” variation in ASW at each year for

all duration buckets (BMK∆ASW,t,Y ). This common risk factor, change in ASW,

depends on levels and curvature of the ASW curve that is a function of maturity, and

hence duration. To be as precise as possible and release the true idiosyncratic change

in ASW, we should split the sample in duration bucket the smaller the possible, tak-

ing into account the tradeoff consisting of not enough bonds for a good benchmark.

The final decision is for a 1-year duration bucket and so it is possible to express the

benchmark for change in ASW at time t for bucket duration D as:

BMK∆ASW,t,Y =

∑n
i=1 ∆ASWb,t1DB=Y∑n

i=1 1DB=Y

(4.3)

where 1 represents the indicator function to include for benchmark Y just bonds with

this duration. The benchmark can thus be considered as a systematic change in delta

ASW and from this, it is possible to recover the idiosyncratic factor by subtracting

benchmark in [4.3] from bond ASW change:

ID∆ASW,t,Y = ∆ASWb,t,D −BMK∆ASW,t,Y=DB
(4.4)

We call this idiosyncratic change because it has been obtained disentangling com-

mon risk factors with other bond and is lastly the object of our analysis. We analyze

the resulting idiosyncratic ∆ASW at bond level,in a pairwise comparison carried out

at two duration buckets of brown and green portfolios.
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4.3 Data

In this work we employ data from 31/12/2013 until 31/12/2020. This time-span co-

incides with phase III of the EU ETS which started in 2013 where the total amount

of emissions decrease year by year. We start our analysis from the BofA Merry Linch

Euro Bond Investment grade index, ER00, that contains the bond traded in euro

with an Investment grade rating and a fixed coupon structure. Bond selected are

those with Third level sector equal to ’Utility’. The number of selected emissions

varies year by year depending on the firm selected, but in agreement with the quan-

tile selection approach, the total number represents merely the 20% of the bond in

this sector. From the index, it is possible to extrapolate the constituent firms from

2013 to 2020 through the issuer parameter associated at each bond. For this firms,

we obtained the value of Scope 1 Emission at each year in our analysis from Thom-

son Reuters and thus determine the ∆E measure employed in Equation (4.1). To

validate our findings, we run the model also employing E/S to match our results

with Bolton Bolton and Kacperczyk (2020). Bonds are assigned to each duration

bucket according to the duration the bond presents at the beginning of the period.

It would be possible to project duration considering only the flow of time but in this

regards it is not necessary given that we are not exploit performances. Prices and

bond characteristics, including ASW that we employ in the last section, are obtained

through the ICE database and compared with Eikon database finding no relevant

differences.

Portfolio performances are computed equally weighting bond’s total return perfor-

mance. Hence it is possible to derive portfolio performance since 2013.

Table 4.3 shows the composition of bond database into short and long duration.

The share of bond in the short duration bucket is larger compared to the long duration

one but increases more proportionally in the last years due to the lower interest rates

environment. The split at 5 years duration bucket doesn’t derive from an optimization

exercise. If it is lower, in the range from 4 to 5 years, results still holds. When it is

longer, the long duration bucket becomes non-informative given the small number of
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Table 4.1. Bond Emission summary statistics

Panel (A) Index statistics
Short Duration Long Duration

2014 2015 2016 2017 2018 2019 2020 2014 2015 2016 2017 2018 2019 2020

No. Bond 87 91 87 89 91 97 105 67 65 80 75 96 93 99
total return 6.3 0.7 4.2 1.8 -0.2 4.3 1.2 14.2 -0.4 6.6 2.7 -1.2 9.1 5.1

std 2.7 1.5 3.1 2.6 1.0 4.2 3.1 3.1 2.4 2.1 3.9 2.1 3.8 2.6
duration 4.0 4.1 4.0 3.9 4.0 4.1 4.2 6.9 7.1 7.1 7.1 7.1 7.1 7.2

total return B 6.81 0.9 4.8 2.5 -0.4 5.1 1.4 14.5 0.3 6.9 3.8 -1.7 10.1 5.6
total return A 5.4 0.4 3.1 0.5 0.3 2.2 0.8 13.9 -0.7 6.7 1.1 0.1 7.1 3.9

Panel (B) Portfolio characteristics
Short Duration Long Duration

2014 2015 2016 2017 2018 2019 2020 2014 2015 2016 2017 2018 2019 2020

No. Green 6 15 11 7 12 12 21 4 7 4 5 14 9 17
No. Brown 17 10 8 12 7 8 17 4 5 12 5 9 12 9

Duration Green 4.1 3.9 3.8 3.9 3.7 3.9 6.6 7.6 7.3 7.4 6.9 7.4 6.7
Duration Brown 4.2 4.0 3.8 3.6 3.3 3.8 3.4 6.7 7.1 7.4 7.2 7.8 7.3 6.3

Table (4.1) shows the the Index emissions characteristics in the various years. Panel (A)
presents the number of bonds (No. Bond) that are analyzed in each duration bucket,
total return that represents the yearly total return, equally weighting the components. Std
indicates the standard deviation of the total return distribution. Duration is the average
of bond duration to worst, computed with respect to worst case scenario dor the investor.
Rotal return B represents the average total return with a B grade rating, whereas total
return A is the specular measure bond rated A. Panel B presents the characteristics of each
portfolio in the different duration bucket.

bonds.

4.4 Portfolio Performances

To obtain portfolio performances we evaluate from time t− 1 to time t the emission

pattern of a firm. At time t we compute issuer’s ∆E to select green and brown firm.

We extract the bond issued by those firm and, among both green and brown portfolio,

we split in short and long duration to form the four portfolios, GS, BS, GL, B. and

evaluate their total return performances(TR) 4 from time t until time t + 1. Table

4.3 shows the result for the 4 portfolios.

The first fact one can note is that while in the short-duration the green portfolio

outperforms the brown one in all years but 2014, in the long-duration portfolio the

4Total Return takes into account both change in price and dividends
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Table 4.2. Issuer Emission Summary statistics

2014 2015 2016 2017 2018 2019 2020

No. Firms 28 26 29 27 30 34 32
E 3.6E+07 4.5E+07 4.2E+07 2.5E+07 2.7E+07 2.4E+07 2.3E+07
σE 5.4E+07 6.0E+07 6.1E+07 4.3E+07 5.0E+07 4.8E+07 4.7E+07
∆E -1.0% -5.7% -4.5% -9.5% -8.7% -6.4% -7.5%
σ∆E 27.1% 12.1% 23.7% 25.4% 22.9% 22.1% 20.2%

Table (4.2) shows the Emission related statistics for the firms composing the database. No. Firms
is the total number of firms in the database each yeat, E represents the estimated tonnes of CO2

averaged emitted by firms, equally weighting the components. ∆E represent the average yearly
perccentage change in E and δ∆E is the yearly standard deviation.

same doesn’t occur. In the long duration indeed, we observe an alternation in the

performance between the green and brown firms. For the same firm then, there is

a comparative advantage in investing in the short-duration bond in opposition to

long-duration one. The only concern regards any possible missing factor that could

explain the discrepancy in portfolio performances. We investigate the main drivers

that impact on portfolio performances to check whether the division between green

and brown firm has influenced this result.

The first effect we check is the duration, that act as amplifier in the bond total return.

In the short-duration bucket the duration of the two portfolios ranges between 4.1

and 3.3 years and is there are no considerable differences between the two. There

is only one year, 2018, which displays a substantial difference between the two mea-

sures, with the green portfolio characterized by a duration of 0.47 years longer than

the brown portfolio. The difference in the performance however is remarkable since

the worst portfolio has a negative performance while the top performer has a positive

performance. The difference in performance is not caused by the longer duration

because its property is to amplify changes in yield to maturity, while preserving the

sign.

Considering the long-duration bucket instead, the duration extends from 6.5 years

to 7.8 years. Also in this context, in 2018, the two portfolios experience a difference

in duration: 6.9 years for the green firm against 7.7 years for the worst ones, almost
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Table 4.3. Portfolio performance statistics

Panel (A) Portfolio total return, percentage point
Short Duration Long Duration

2014 2015 2016 2017 2018 2019 2020 2014 2015 2016 2017 2018 2019 2020

Green 6.0 1.3 3.7 2.2 0.1 3.7 1.3 13.3 0.7 7.0 1.3 -0.3 7.7 3.2
Brown 7.3 1.0 2.5 2.0 -0.2 2.5 1.2 12.3 1.1 5.6 5.6 -1.4 7.9 3.7
G-B -1.3 0.3 1.2 0.2 0.3 1.2 0.1 1.0 -0.4 1.4 -4.2 1.1 -0.2 -0.5

Panel (B) Portfolio Duration
Short Duration Long Duration

2014 2015 2016 2017 2018 2019 2020 2014 2015 2016 2017 2018 2019 2020

Green 4.1 3.9 3.8 3.9 3.7 3.9 6.6 7.6 7.3 7.4 6.9 7.4 6.7
Brown 4.2 4.0 3.8 3.6 3.3 3.8 3.4 6.7 7.1 7.4 7.2 7.8 7.3 6.3

Panel (C) Benchmark total return, percentage point
Short Duration Long Duration

2014 2015 2016 2017 2018 2019 2020 2014 2015 2016 2017 2018 2019 2020

Green 6.8 0.9 4.8 1.6 -0.4 3.4 1.2 14.5 0.3 6.9 1.1 -1.8 8.4 4.8
Brown 6.8 0.9 4.8 2.5 -0.3 3.7 1.2 14.5 0.3 6.8 3.8 -1.3 8.6 4.8

Table (4.3) shows the results for the portfolio exercise described in section (4.4) . The left
panel shows the short duration bucket portfolio while in the right the long duration bucket.
Each section of the table present the statistics for the green and the brown portfolio, to
quickly asses a pairwise comparison. The first evidence regards portfolios performance,
computed as total return. The second part comprises portfolio duration. The final section
shows the benchmark total return for each portfolio, computed according to equation (4.5).
Portfolio performance in bold shows the top performer for each duration bucket.

one year of difference in duration. In this case, the green portfolio outperforms the

brown one, but part of this difference has to be attributed to the lower duration a

longer duration implies a magnified effect of changes in yield on bond’s performance

and, given the negative return caused by an increase in the yield to maturity, a lower

return.

A second stage of analysis is to compare these results with the portfolio benchmark:

the results suggest that only in the short-duration framework green portfolios out-

performs brown ones, but it is still possible the benchmark to perform even better.

In this case, a positive performance of the first quintile would be lower than the

benchmark, a particular situation that prevent a positive outcome when investing in

the green portfolio. Through the previous procedures, we isolate a sector and dura-

tion bucket, so a possible risk driver can be represented by credit rating (Cochrane
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and Piazzesi (2005); Pogue and Soldofsky (1969)). Various market conditions reward

differently firms credit risk. As shown in Table (4.1), years characterized by positive

market performance display a higher returns bond with a higher credit risk. The

opposite happen in downtuning periods, when A-rated bond are purchased as safe

asset.

To conduct a rigorous analysis, we match the portfolios against its rating-based

benchmark. We split the bonds in two subcategories according to their ratings:

Rating A (AAA - A) and Rating BBB.

For each rating class, we compute the yearly average returns in the long and the short

duration bucket. For each portfolio, we compute weighted average of the benchmark

return, Rb, as:

Rb = RA ∗ wA +RBBB ∗ wBBB (4.5)

where RA and RBBB are respectively the rating based portfolio performances for

the bond with A and BBB benchmark. The weights, wA and wBBB, represents the

percentage of bonds in the portfolio with that rating.

At each time there are four different benchmarks, each one related to a single portfolio.

The Panel (C) in Table (4.3) shows the total return for the rating based benchmark

in the long and in the short duration bucket for the green and the brown portfolios.

Two benchmarks coincides in the case the proportion of bonds in the two rating class

coincides.

The aim of the analysis is to disentangle two possible drawbacks in the analysis.

Firstly, a positive overperformance for the green portfolio in the short duration bucket

can derive from a particular choice of bonds with a certain rating. Secondly, the

overperformance of the green bonds just against the brown ones would imply that

presence of bonds that are able to disentangle such an overperformance.

We analyze the last section of Table (4.3) starting from the short duration bucket.

The benchmark total return is almost equal in all the years with 2017 as the only

exception, where the brown portfolio overperformed the green one by 0.9%. It is
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possible to note also a minor difference in 2019 again in favor of the brown portfo-

lio. This evidence suggests that the rating composition of the two portfolio is very

similar. In particular, analyzing 2017, the brown portfolio is composed mostly by

BBB rated bond whereas the green one is more balanced. The BBB rating bench-

mark, in addition, obtains a higher performance (2.5% versus 1.6% for A) but the

return of the green portfolio(2.2%) is still higher then the brown one (2.0%). For

the short-duration bucket the green overperformance does not derive from an unbal-

anced rating selection. Finally, comparing the green portfolio performance against

the benchmark, there is evidence of a better performance in all years but the 2014

and 2016. It is possible to exclude also the second possible source of noise.

Regarding the long-duration bucket, the rating based duration buckets exhibits sim-

ilar values, with also in this case, as it the short duration bucket, 2017 as main

difference. In this case however, the brown portfolio well overperforms the bench-

mark(5.6% versus 3.8%) while the green portfolio obtains a mere 1.3%. In addition.

in 2019 and 2020, the green portfolio well underperforms the rating based bench-

mark.

This finding is in line with recent findings in Australia Qian et al. (2020), where

policy changes resulted in higher financial performances for firms with better carbon

performances. Policy risk is mainly priced in short term portfolios.

By selecting firms according to their reduction level in CO2 and splitting the bonds

between a short-duration (2-5 years) and long-duration(6-10 years) bucket, we find an

overperformance just in the short-duration in all years but in 2014, the first in which

phase III for EU ETS was adopted. In the long duration settings, there is no evi-

dence of a best practice. When controlling for possible factors that could mislead our

conclusions, from duration to rating composition, there is no evidence of a particular

driver for green overperformance. Our assumption is that investors relatively reward

green credit risk against brown. In the following section we analyze this implication.
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4.5 Variation in Credit Risk

4.5.1 Portfolio Level

It is possible to analyze Idiosyncratic change in asset swap spread, ID∆ASW , from

to two different perspective. When we consider the performance, a positive ID∆ASW

indicates a higher increase or a lower decrease of bond change in ASW compared to

its benchmark, resulting thus in lower bond performance, ceteris paribus. Inversely,

it indicates a lower increase or higher decrease that causes a higher bond performance

compared to its benchmark. From a risk perspective, recalling that the change in

ASW describes the risk attached to that bond, a positive ID∆ASW indicates that a

firm is evolving in a riskier way than similar firms. A negative value instead represent

a bond that is evolving in a less risky way than its similar ones.

We are thus interested in analyzing how ID∆ASW behaves according to two different

representations:

• changes grouped by portfolios and duration, to compare the changes between

portfolios in the same duration.

• expand the research and analyze the change taking into account emission re-

duction, this could result in determining a risk factor that affects risk.

We proceed with the first task, In 4.1 we compare the boxplot of Idiosyncratic ASW

change both in short duration portfolio and long duration portfolio between Top-firm

and Worst firm.

Analyzing the situation in the short duration bucket, it is possible to note that

the median(Orange line) of Worst firm portfolio is above the box of Top-firm box.

This indicates that it is likely for the worst-firms to have a variation in ID∆ASW

higher than the one of Top-firms, meaning a lower decrease or a greater increase in

riskiness compared to Top Firm.

In the Long-duration bucket instead, this effect doesn’t show. The two boxplot

exhibit similar characteristic and no difference appear to be. The relative riskiness
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Figure 4.1. Boxplot of Idiosyncratic change in ASW.

Figure (4.1) presents two subfigures with boxplots for the Idiosyncratic change in Asset Swap
Spread (ASW). The left figure plots the short duration bucket framework, comprising bond
with a duration lower than 5 years. The figure on the right plots the long duration bucket,
that are bond with a duration longer than 5 years. Top represent the green firm an worst
the brown one. The box is constructed considering the 25th and 75th percentile

is preserved. These results are in line with what obtained in the previous section:

portfolio performance of green portfolio outperforms brown one just in the short

duration bucket. For the second task, we collect for the bond in a portfolio, the

year change in CO2 emissions, ∆E, and the ID∆ASW . We try to exploit a different

relationship in how the change in emission and the change in ASW behave according

to bond duration. The model we employ is an OLS that links change in emissions to

ID∆ASW as follow:

ID∆ASW = α + γ∆E + ε (4.6)

We group in two samples, short and long duration bonds to capture the different

γ among the two groups. Following the first section, we would expect a positive
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Table 4.4. Estimation result

Short Duration Long Duration

α 1.02 -0.02
(0.87) (0.84)

γ 4.94** -0.51
(2.59) (2.17)

No Observations 144 97
R-Squared 0.073 0.05

T-stats reported in parentheses

***1% significance,**5% significance, *10% significance,

Table (4.4). Sample period is 2014–2020. It shows estimation result for the equation (4.6). Short
duration columns runs the regression on the bonds characterized by duration lower than 5. In the
Long Duration columns we run the regression on the bond with a duration that is higher then 5
years. The Asset Swap are considered as basis point.

influence of variation in emission on the variation in idiosyncratic ASW change. The

smaller the reduction in emission (ore even an in increase) would result in a higher

ID movement, meaning an increase of ASW comparative to comparable bond, hence

a more increased riskiness.

One can observe that γ for a short duration is greater than 0 at 90% confidence level

while γ for a long duration is smaller than 0. Both models have an R-squared score

very low, suggesting that alone this variation in spread doesn’t explain completely

idiosyncratic movement in ASW. It is possible to observe that in the short duration

portfolio there is a positive but statistically not significant α coefficient, this means

a slightly positive on average idiosyncratic change with respect to long-duration set-

ting. This doesn’t alter the previous result: the main point here is the different γ

value found in the short and the long-duration buckets. We find the fact of different

γ parameters to be very interesting for the development of the research: emission

reduction risk, being subject to regulatory risk, concerns more short-duration portfo-

lios rather than long-duration ones. This result could reconcile the view of Byth and

Yang on political risk Yang et al. (2008); Blyth et al. (2007) with the one analyzing

financial performances Lewandowski (2017).
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4.5.2 Aggregate Level

Considering just this small sets of bonds has both positive and negative sides. We

show to be able to disentangle portfolio overperformances and change in riskiness but

on the other side we were not able to disentangle the effect of CO2 reduction effects

on the entire set. In this section we enlarge the database and look whether there

are effects also at an aggregate level. In particular, given the panel data characteris-

tics of the database we could take advantage by considering the time effects adding

appropriate controls variables at equity levels. The relationship we estimate is then

∆ASWi,t = βe ∗∆Et−1 + βc ∗ C + γt + ε (4.7)

where as C we include the DEBT level that measure the amount of Debt the firm

is exposed to and the Interest Coverage Ratio (ICR) that returns the percentage of

reimbursement to be done covered by cash collateral. We include fixed effects at time

level5 and establish the link through the Panel OLS technique.

As in the previous section, we face a different situation in the long and in the

short portfolio duration bucket. After controlling that the coefficient related to debt

and ICR are similar and significant6, it’s possible to see that the positive relationship

in the short term between changes in Delta Emission and change in ASW fades away

in the long run. Again, an increase in emission is linked to an increase in the riskiness

of the issuer especially in the short period environment.

5considering also fixed effect at the entity level results in overfitting given the sparsity of the
data, the average number of observation for each bond is of 4.5 with some with just one or two
observations.

6An increase in the ICR implies a decrease in the firm credit riskiness, due to the more cash that
are available to repay the debt
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Table 4.5. Variation in asset swap at duration buckets

total long duration short duration

α -10.170*** -8.7690** -11.429***
(2.0924) (3.5654) (2.8788)

∆E 41.751*** 32.373 49.581***
(12.577) (24.470) (18.498)

∆ICR -3.7851** -7.2017* -2.9404
(1.7236) (3.9861) (2.2358)

DEBT 11.849 -5.1682 20.386
(9.4127) (21.995) (13.722)

Estimator PanelOLS PanelOLS PanelOLS
No. Observations 872 357 513
Cov. Est. Robust Robust Robust
R-squared 0.1475 0.0748 0.1568

T-stats reported in parentheses

***1% significance,**5% significance, *10% significance,

Table (4.5). Sample period is 2014–2020. It presents the estimation for ∆ASWi,t = α+βe ∗∆Et−1
+

βc ∗ C + γt + ε. Column ”Total” presents the result considering the entire dataset. The columns
Long Duration and Short duration represent respectively the bucket defined in section 4.2.1 with
the former encompassing bond with a duration lower than 5 years, the latter higher. Asset Swap
Spread is measured as basis point.
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4.6 Robustness

4.6.1 Different transition measures

Transition risk is associated to the circumstance in which the firm’s operations and

assets become stranded when regulations to coerce CO2 emissions take place. Which

firm characteristic sharpen this exposure has extensively been debated. ESG scores

present a section for environmental firm performance that takes into account CO2

emissions. This could be an alternative green driver. We employ the logarithm Scope

1 Emission to define an alternative

Tei,t = log(Ei,t) (4.8)

Then, we employ also a standardized measure of CO2 emissions, Ei,t over revenues,

Ri,t, as

Tsi,t =
Ei,t
Ri,t

(4.9)

The persistence of risk measure allows the investors to forecast the riskiness of a

firm , and is a key also considering carbon transition risk( Duan et al. (2020)). We

investigate the transition matrix of different transition risk specification. For each

transition risk definition, we split the firms in our sample in quartile and compute

the transition probability each year and average the results. Table (4.6) shows the

result. Starting from Te, the transition risk defined only on Scope1 level, we note that

the diagonal entries are well above 75% and are similar to the credit risk transition

matrix. Looking at Te instead the values are slightly smaller, similar to the analysis

by Duan et al. (2020) that employs a larger data-sample. Finally, the transition

matrix associated with change in Scope 1 emission is even more disperse but in a

consistent way, with entries in the diagonal and in the closer section above 25%. We

don’t address this as a drawback of T∆e, already Bolton (Bolton and Kacperczyk

(2020)) showed that change in Scope1 emission matters more then CO2 emission

itself.
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Table 4.6. Average Transition matrix

Panel(A): Te
1 2 3 4

1 87.4% 12.6% 0.0% 0.0%
2 10.3% 75.9% 13.8% 0.0%
3 0.0% 7.0% 73.6% 19.4%
4 0.0% 3.0% 5.6% 91.4%

Panel(B): Ts
1 2 3 4

1 76.8% 23.2% 0.0% 0.0%
2 16.7% 59.9% 16.4% 7.0%
3 0.0% 28.5% 57.7% 13.8%
4 3.2% 0.0% 17.7% 79.0%

Panel(C): T∆e
1 2 3 4

1 38.3% 27.5% 17.5% 16.7%
2 35.2% 25.9% 25.0% 13.9%
3 30.5% 26.7% 23.8% 19.0%
4 4.6% 17.6% 48.1% 29.6%

Table (4.6). The sample period is 2014-2020. The tables show the average transition matrix of
different transition risk measure employed. Transition is computed for issuer that have at least one
issued bond in the Investment Grade perimeter of BoFA EG00. Each transition matrix has in the
rows quartile at the beginning of a year and in the columns the quartile in the following period.
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4.6.2 Including Scope2 and Scope3 emissions

Investors look at the emission profile of a firm but, as pointed out, a firm is not

responsible just for Scope 1 emission. Scope1 emissions represent just the direct

emissions coming from the operations a firm owns or runs. Scope 2 emission encom-

pass also indirect emissions required to run the operations, such as energy. Finally,

Scope 3 emissions include all the indirect emissions linked to the firm’s final produc-

tion, such as transportation of goods. Scope 2 and Scope 3 emissions constitute a

challenging exercise concerning their measurement, considering that in certain indus-

tries they can constitute 75% of total CO2 emissions (Downie Downie and Stubbs

(2013)), more and more attention is being piad to assess and manage them (Hertwich

and Wood (2018)). In utility sector there is already a large evidence that Scope 1

emissions are the most important ones (Lewandowski (2017)). With regard to the

database employed, Figure (4.2) shows the relationship between Scope 1 and Scope

2 emissions. The amount of average S1 emissions is in the order of 8 to 10 times the

amount of S2 emission.

Considering the perspective of the analysis, what matters is the relative position-

ing of firms according to the emission level. We test the pairwise confusion matrix

between Scope 1, Scope 2 and Scope 3 emissions, with results in Table [4.7].

The results are quite different considering each pair. Looking at S1 and S2, the

first and second quartile of S2 are well replicated by S1, with respectively 47.4% and

35% of issuers in the same bucket. The third and fourth quartile however are more

disperse, 13.3% of the firms in the bottom 25% in S1 are in the top 25 percentile for

S2. Analyzing the dispersion between S1 and S3 or between S3 and S2, we find an

higher concentration in the diagonal.

4.6.3 Replication

Considering these possible variations, we run the same exercise in Section 4.4 and 4.5

considering the different specifications regarding the transition risk factors as well as

the type of emissions. Table (4.8) presents the results of the different specifications
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Table 4.7. Confusion Matrix between Scope1, Scope2 and Scope3 Emission

Panel(A): S2 vs S1
1 2 3 4

1 47.4% 35.5% 7.7% 9.5%
2 41.8% 34.9% 14.0% 9.3%
3 21.5% 19.9% 37.7% 20.9%
4 13.3% 4.2% 33.2% 49.4%

Panel(B): S3 vs S1
1 2 3 4

1 70.1% 16.8% 6.1% 7.0%
2 27.4% 24.3% 29.5% 18.7%
3 6.4% 20.4% 47.1% 26.1%
4 3.4% 27.6% 20.7% 48.3%

Panel(C): S2 vs S3
1 2 3 4

1 52.7% 12.1% 12.2% 23.1%
2 37.6% 32.3% 30.1% 0.0%
3 4.0% 38.8% 25.3% 31.9%
4 0.0% 7.4% 33.5% 59.1%

Table (4.7). The sample period is 2014–2020. It shows the average confusion matrix between
the different scope emission ranking in the quartiles employing yearly data. Panel (A) shows the
average confusion matrix between Scope 2 emissions (rows) and Scope 1 emissions(columns). Panel
(B) shows in the rows Scope 3 emissions while in the columns Scope 1 emission. Panel (C) displays
in the rows Scope 2 and in the columns Scope 3.
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Figure 4.2. Average Scope 1 and Scoper 2 emission by year

Figure (4.2) shows the average amount of Scope 1, blue bars, and Scope 2, red bars, Emissions in
each year. It is computed among the firms in the utility sector that issued at least one bond with
investment grade rating in the index BofA EG00.

with a comparison with the portfolio benchmark, Panel(E).

Starting by considering Panel(A) and Panel(B), that take into account the alternative

risk metrics such as the total emissions amount, Te, and the standardized emission

by sales, Ts, there is no evidence of an portfolio clearly overperforming either in

the long and in the short run. When considering Te ranking algorithm in the short

duration bucket, the number of time green portfolio overperforms the brown is higher

than the number of time it doesn’t, and in these situations the under-performance is

low. The long short strategy results in a negligible total return. When considering

Ts, in the short duration bucket, the green portfolio obtains a positive spread just in

the first three years, with a negative performance in the remaining ones. This results

are in line with the finding by Bolton and Kacperczyk (2020) that document a risk

premium just when considering the change in Scope emission rather then the levels.
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Panel(C) and Panel(D) finally show the results employing different Scope Emissions,

namely Scope2 in Panel (C) and Scope 3 for panel (D). Again, the results indicate

a less persistent overperformance by the scope 2 emission levels. It is possible to

explain this fact looking at the sector of analysis and the relation between direct

and indirect emission. As shown in Figure (4.2), the amount of indirect emission is

considerably lower compared to the direct ones. A slightly change in this component

then produce a smaller effect compared to S1. In addition, the EU ETS program

acts on direct emissions, and this underlies that a regulatory type of risk acts upon

the variables that carries this risk.
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Table 4.8. Summary statistics for Portfolio performance

Panel (A) Total emissions transition risk: Te
Short Duration Long Duration

2014 2015 2016 2017 2018 2019 2020 2014 2015 2016 2017 2018 2019 2020

Green 6.2 1.1 4.2 1.4 -0.5 3.5 1.2 12.8 0.4 6.8 1.4 -0.1 8.5 4.1
Brown 6.5 0.9 4.3 2.3 -0.2 3.1 1.5 14.6 0.1 6.4 4.2 -1.7 8.6 3.8
G-B -0.3 0.2 -0.1 -0.9 -0.3 0.4 -0.3 -1.8 0.3 0.4 -2.8 1.6 -0.1 0.3

Panel (B) Sales standardized emission transition risk: Ts
Short Duration Long Duration

2014 2015 2016 2017 2018 2019 2020 2014 2015 2016 2017 2018 2019 2020

Green 7.1 0.9 5.3 1.7 -0.2 3.3 1.4 14.4 0.1 6.9 1.8 -2.1 9.1 3.8
Brown 6.3 0.8 4.8 2.8 0 3.9 1.1 12.2 0.1 6.7 2.9 -0.9 8.2 4.5
G-B 0.8 0.1 0.5 -0.9 -0.2 -0.6 0.3 2.2 0 0.2 -1.1 -1.2 0.9 -0.7

Panel (C): Scope 2 transition risk: S2
Short Duration Long Duration

2014 2015 2016 2017 2018 2019 2020 2014 2015 2016 2017 2018 2019 2020

Green 6.9 1 4.5 1.2 -0.3 3.6 1.3 13.1 1.2 7.5 0.8 -2.1 7.5 4.2
Brown 6.5 0.8 5.2 2.5 -0.3 2.4 1.2 15.1 0.8 6.9 3.8 -1.3 8.5 4.9
G-B 0.4 0.2 -0.7 -1.3 0 1.2 0.1 -2 0.4 0.6 -3 -0.8 -1 -0.7

Panel (D) Scope 3 emission transition risk S3
Short Duration Long Duration

2014 2015 2016 2017 2018 2019 2020 2014 2015 2016 2017 2018 2019 2020

Green 6.2 0.8 3.5 1.8 -0.1 3.6 1.4 14.8 -0.1 6.7 1.8 -1.5 8.1 3.2
Brown 7.4 1.2 2.8 2.1 -0.2 2.9 1.1 11.9 0.1 6.5 3.1 -1.1 7.1 5.1
G-B -1.2 -0.4 0.7 -0.3 0.1 0.7 0.3 2.9 -0.2 0.2 -1.3 -0.4 1 -1.9

Panel (E) Benchmark
Short Duration Long Duration

2014 2015 2016 2017 2018 2019 2020 2014 2015 2016 2017 2018 2019 2020

Green 6.8 0.9 4.8 1.6 -0.4 3.4 1.2 14.5 0.3 6.9 1.1 -1.8 8.4 4.8
Brown 6.8 0.9 4.8 2.5 -0.3 3.7 1.2 14.5 0.3 6.8 3.8 -1.3 8.6 4.8

Table (4.8) shows portfolio performance employing different transition risk measures. Panel (A)
presents the exercise with total carbon emissions, Te equation(4.8), as risk measure. Panel (B)
shows the results with the standardized carbon emissions, Ts, as defined by equation (4.9). In Panel
(C) portfolios are discriminated through Scope2 emissions, while in Panel (D) through Scope3
emissions.

4.7 Conclusions

In this paper, we analyze when it pays off to become green for utility companies,

expressed as the time-window horizon in the fixed income market. EU ETS program

forces utility companies either to yearly reduce their carbon footprint or to buy
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emissions certificates. In this light, firms face a trade-off between higher investment

to produce clean energy or undergoing the cost to acquire the certificates. Fixed

income instruments, whose payoff exhibit a precise term structure in the payments,

are better suited to disentangle a risk horizon concerning equity instruments.

We show that by sorting the firms according to the change in scope1 emission, a long-

short strategy is remunerative just when considering bonds with a duration lower

than five years. In addition, we analyze the credit risk driver for bond returns in the

different portfolios and determine that the positive performance associated with the

green portfolios in the short duration is determined by a comparable reduction in the

credit risk component. Finally, we link the credit risk performance to the change in

Scope emissions and, excluding control variables, we find a positive and statistically

significant coefficient suggesting that change in Scope 1 emissions reduces credit risk

for borrowers just in the short part of the credit term structure cruve. In this light,

the so-called transition risk behaves exactly as a regulatory fashioned kind of risk,

with severe impact forecasted when regulation is unexpectedly enforced.
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Appendix A

Alternative temperature

aggregating methods

In this appendix, we discuss in detail the aggregating methods we develop in Section

(2.3.4) to aggregate temperature at the state and country level.

A.1 State aggregation

The first digression regards the state aggregating method. We employ this index to

match two analyses. Firstly, from a financial perspective, we employ energy con-

sumption and the cross-section of equity returns considering the firm’s headquarter

state. The objective is to replicate at the state level the indicator that represents the

deviation from average temperature variability, TD-V AR and allows the comparison

with the state daily temperature anomaly, TD. For this purpose, we collect data at

the grid level within U.S. space and assign each grid to a particular state.

We then define the state s temperature at day d as

Ts,d =
Ns∑
i=1

wi ∗ Ti,d (A.1)
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that is a weighted average of the temperature in the Ns grids within state s. Im-

plementing this procedure we obtain a coherent measure at the state level with the

one defined at the city level. Then, it is possible to proceed as in Equation (2.4)

at the city level obtaining the day-to-day temperature anomaly, the day-to-day vari-

ability, and the deviation from average variability at the state level. We implement

wi =
1

Ns

to obtain an equally-weighted state temperature level index. Alternative to

the equi-weighting algorithm, it is possible to aggregate based are GDP or population

weighted, that will be discussed in more details in the following section.

Since we are dealing with temperature variability, aggregating an index or its variabil-

ity could result in abnormal differences when the index components exhibits different

behaviour1. Alternatively to Equation (A.1), there is the chance to directly aggregate

state TD-V AR:

TD-V ARs,d =
Ns∑
i=1

wi ∗ TD-V ARi,d (A.2)

In this way, the state-level index would represent the average deviation from histori-

cal temperature variability. Castellano et al. (2020) shows that even for temperature

index aggregation, under suitable conditions, with the main being that Ts follows an

AR(p) process, carefully selecting
∑
x2
i = 1 in (A.1) the resulting index has the risk

equal to weighted average of the single indexes risk. It is feasible to compare average

risk coming from A.2 and A.1.

Another reason that allows us to aggregate temperature and not variability deviation

is the number of cell grid within each state. We test possible differences employ-

ing city-level data at airport station2 as temperature data and tested the differences

coming from the different aggregating procedures.

Comparing the state deviation variability coming from the aggregate temperature

levels and the one coming from the aggregate deviation volatility itself, we find an

overall correlation of 95% on the level. Some states exhibit lower values, such as Cal-

1σ(
∑
wi ∗ xi) 6=

∑
wi ∗ σ(xi)

2We enlarge the data set by Diebold and Rudebusch Diebold and Rudebusch (2022) considering
all the airports within the U.S. From the NOAA, 330 airports have active data covering 1960 to
2017
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ifornia and Texas(but still close to 90%), and are the ones that present more airports

in the data set.

We now analyze some characteristics and main differences between state monthly

deviation in variability and the monthly temperature deviation. Figure A1 shows

the cross-sectional difference for a particular month, September 2005. In the upper

section, we plot the monthly state-level temperature deviation (TD) whereas in the

lower panel we display the deviation in variability(TD-V AR).

It is possible to note that also at state levels the two measures exhibit different pat-

terns. There are states, such as Texas, that show a high level in temperature deviation

as well as a high deviation in variability. States very close to Texas, such as New

Mexico and Arizona, display a higher level of deviation in variability (TD-V AR) but,

concerning temperature deviation, the levels are among the smallest in the U.S.

A.2 U.S. deviation in variability factor

The next step we take is to derive a U.S.-wide TD–V AR factor, that could easily be

seen as an aggregate level of the state volatility. Such a method would release the

geographical characterization and give the possibility to match against indexes that

are not geographically tightened but refers to the U.S. In this context, the aim is to

disentangle U.S. TD against U.S. TD–V AR and hence, considering the two possible

approaches employed at state level, A.1 and A.2 and that each state can be seen as

a single cell, at this stage we build U.S.-wide TD and TD–V AR with A.2, defining

USTD,m =
Ns∑
i=1

wiTDi,m (A.3)

USTD-V AR,m =
Ns∑
i=1

wiTD-V ARi,m (A.4)
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Appendix Figure A1. State level aggregation for TD and TD–V AR

(A) State level TD

(B) State level TD-V AR

Figure (A1) presents the empirical measurement in September 2005 for the two tem-
perature components. Figure (A) displays the relative state distribution of TD,
figure (B) present and TDV AR values. The heatmap presents in yellow states that
are more exposed to the temperature statistics (higher anomalies or variability) and
in red states less exposed.
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However, aggregation at the U.S. level poses a second problem. regarding the weights

associated at each state temperature deviation and deviation in variability. Following

what we did with aggregation at the state level, the natural solution would be to

employ an equally weighting method, wi =
1

Ns

.

In such a way, however, an high TD-V AR in a small state would have the same impact

as the one experienced by a larger one, in the final index. The weighting method

should thus reflect the importance each state exhibits in the nationwide index.

The two natural possibilities are GDP– and population-based weight. Both measures

are not available at a monthly frequency, with the former defined quarterly and the

latter yearly, so we forward feed the data series to obtain monthly frequency series

comparable with TD-V AR and TD, as described in Section ().

Employing the first approach, with GDP-weight, would imply relative importance

of the most productive areas, meaning an economic specific impact of TD and TD-

V AR. Applying the second approach instead would gather attention to what people

perceive: more variability in a densely populated state is more important than the

same event in a state less populated.

Figures A2 shows the difference in the U.S.-wide index for TD-V AR according to

the different weighting criteria. When comparing the three measures however there

are minor differences just when considering equally weighting against population or

GDP.
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Appendix Figure A2. Different U.S. TD-V AR acording to weighting method

Figure (A2) shows three main index construction based on different weighting method of ust =∑
i wi ∗ tdvari,t in the year 2005-2020. The left panel show equi-weighted index construction where

Wi = 1/Ni with Ni = 50. The central panel shows the population based weighting method where
wi = popi,t/

∑
i popi,t. In the right panel is plotted the US wide index weighted for state GDP,

defining wi =
GDPi,t∑
iGDPi,t
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Benth, Fred Espen and Jūratė Šaltytė Benth, “The volatility of temperature
and pricing of weather derivatives,” Quantitative Finance, 2007, 7 (5), 553–561.
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Bianchi, Daniele, Matthias Büchner, and Andrea Tamoni, “Bond risk pre-
miums with machine learning,” The Review of Financial Studies, 2021, 34 (2),
1046–1089.

Bigerna, Simona, “Estimating temperature effects on the Italian electricity mar-
ket,” Energy Policy, 2018, 118, 257–269.

Black, Fischer and Myron Scholes, “The Pricing of Options and Corporate
Liabilities,” The Journal of Political Economy, 1973, 81 (3), 637–654.

Blyth, William, Richard Bradley, Derek Bunn, Charlie Clarke, Tom Wil-
son, and Ming Yang, “Investment Risks under Uncertain Climate Change Pol-
icy,” Energy Policy, 11 2007, 35, 5766–5773.

Boissonnade, Auguste C, Lawrence J Heitkemper, and David Whitehead,
“Weather data: cleaning and enhancement,” Climate Risk and the Weather Market,
2002, pp. 73–98.

Bollerslev, Tim, “Generalized autoregressive conditional heteroskedasticity,” Jour-
nal of Econometrics, 1986, 31 (3), 307–327.

151



Bolton, Patrick and Marcin T Kacperczyk, “Carbon premium around the
world,” Available at SSRN 3594188, 2020.

Breiman, Leo, “Random forests,” Machine Learning, 2001, 45 (1), 5–32.

Brieman, Leo, Jerome H Friedman, Richard A Olshen, and Charles J
Stone, “Classification and regression trees,” Wadsworth Inc, 1984, 67.

Burke, Marshall and Vincent Tanutama, “Climatic constraints on aggregate
economic output,” Technical Report, National Bureau of Economic Research 2019.

, Solomon M Hsiang, and Edward Miguel, “Global non-linear effect of tem-
perature on economic production,” Nature, 2015, 527 (7577), 235–239.

Cai, Wenju, Simon Borlace, Matthieu Lengaigne, Peter Van Rensch, Mat
Collins, Gabriel Vecchi, Axel Timmermann, Agus Santoso, Michael J
McPhaden, Lixin Wu et al., “Increasing frequency of extreme El Niño events
due to greenhouse warming,” Nature climate change, 2014, 4 (2), 111–116.

Cai, Yongyang, Kenneth L Judd, Timothy M Lenton, Thomas S Lontzek,
and Daiju Narita, “Environmental tipping points significantly affect the cost-
benefit assessment of climate policies,” Proceedings of the National Academy of
Sciences, 2015, 112 (15), 4606–4611.

Calvin, Katherine, Marshall Wise, Leon Clarke, Jae Edmonds, Page Kyle,
Patrick Luckow, and Allison Thomson, “Implications of simultaneously miti-
gating and adapting to climate change: initial experiments using GCAM,” Climatic
Change, 2013, 117 (3), 545–560.

Campbell, John Y and Glen B Taksler, “Equity volatility and corporate bond
yields,” The Journal of Finance, 2003, 58 (6), 2321–2350.

Campbell, Sean D and Francis X Diebold, “Weather forecasting for weather
derivatives,” Journal of the American Statistical Association, 2005, 100 (469), 6–
16.

Cao, N, Valentina Galvani, and S Gubellini, “Firm-specific stock and bond
predictability: New evidence from Canada,” International Review of Economics &
Finance, 2017, 51, 174–192.

Cappiello, Lorenzo, Robert F Engle, and Kevin Sheppard, “Asymmetric dy-
namics in the correlations of global equity and bond returns,” Journal of Financial
Econometrics, 2006, 4 (4), 537–572.

Carhart, Mark M, “On persistence in mutual fund performance,” The Journal of
Finance, 1997, 52 (1), 57–82.

152



Carr, Peter and Liuren Wu, “Decomposing long bond returns: A decentralized
modeling approach,” Baruch College Zicklin School of Business Research Paper,
2019, (2019-08), 06.

Castellano, Rosella, Roy Cerqueti, and Giulia Rotundo, “Exploring the fi-
nancial risk of a temperature index: A fractional integrated approach,” Annals of
Operations Research, 2020, 284 (1), 225–242.

Cavanagh, Ralph, Ashok Gupta, Dan Lashof, and Marika Tatsutani, “Utili-
ties and CO2 emissions: Who bears the risks of future regulation?,” The Electricity
Journal, 1993, 6 (2), 64–75.

Ceglar, Andrej, Andrea Toreti, Rémi Lecerf, Marijn Van der Velde, and
Frank Dentener, “Impact of meteorological drivers on regional inter-annual crop
yield variability in France,” Agricultural and forest meteorology, 2016, 216, 58–67.

Chang, Yoosoon, Chang Sik Kim, J Isaac Miller, Joon Y Park, and
Sungkeun Park, “A new approach to modeling the effects of temperature fluctu-
ations on monthly electricity demand,” Energy Economics, 2016, 60, 206–216.

Chen, Linda H and Lucia Silva Gao, “The pricing of climate risk,” Journal of
Financial and Economic Practice, Vol12 (2), Spring, 2012, pp. 115–131.

Choi, Darwin, Zhenyu Gao, and Wenxi Jiang, “Attention to global warming,”
The Review of Financial Studies, 2020, 33 (3), 1112–1145.

Clarkson, Peter M, Yue Li, Gordon D Richardson, and Florin P Vasvari,
“Does it really pay to be green? Determinants and consequences of proactive
environmental strategies,” Journal of Accounting and Public Policy, 2011, 30 (2),
122–144.

Cochrane, John H. and Monika Piazzesi, “Bond Risk Premia,” American Eco-
nomic Review, March 2005, 95 (1), 138–160.

Colacito, Riccardo, Bridget Hoffmann, and Toan Phan, “Temperature and
growth: A panel analysis of the United States,” Journal of Money, Credit and
Banking, 2019, 51 (2-3), 313–368.

Da, Zhi, Joseph Engelberg, and Pengjie Gao, “In search of attention,” The
Journal of Finance, 2011, 66 (5), 1461–1499.

Dell, Melissa, Benjamin F Jones, and Benjamin A Olken, “Temperature
shocks and economic growth: Evidence from the last half century,” American Eco-
nomic Journal: Macroeconomics, 2012, 4 (3), 66–95.
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Höck, André, Christian Klein, Alexander Landau, and Bernhard Zwergel,
“The effect of environmental sustainability on credit risk,” Journal of Asset Man-
agement, 2020, pp. 1–9.

Hong, Harrison, G Andrew Karolyi, and José A Scheinkman, “Climate
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