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This thesis deals with the efficient resolution of Vehicle Routing Problems (VRPs). The routing
of vehicles is a core activity in logistics and with the rise and continuous growth of e-commerce
shopping, being able to tackle problem instances having larger and larger sizes is becoming
increasingly important. The first chapter of the thesis deals with the archetype of all VRPs: the
Capacitated Vehicle Routing Problem (CVRP). Despite having being introduced more than 60
years ago, it still remains an extremely challenging problem. In this chapter I design a Fast
Iterated-Local-Search Localized Optimization algorithm for the CVRP, shortened to FILO. The
simplicity of the CVRP definition allowed me to experiment with advanced local search accel-
eration and pruning techniques that have eventually became the core optimization engine of
FILO. Thanks to them, FILO experimentally shown to be extremely scalable and able to solve
very large scale instances of the CVRP in a fraction of the computing time compared to exist-
ing state-of-the-art methods, still obtaining competitive solutions in terms of their quality. The
chapter also contains a detailed analysis of all components of FILO, which I hope can be useful
for designing scalable algorithms for other VRP variants as well as other combinatorial opti-
mization problems. The second chapter deals with a novel extension of the CVRP called the
Extended Single Truck and Trailer Vehicle Routing Problem, or simply XSTTRP. The XSTTRP
models a broad class of VRPs in which a single vehicle, composed of a truck and a detachable
trailer, has to serve a set of customers with accessibility constraints making some of them not
reachable by using the entire vehicle. This problem moves towards VRPs including more re-
alistic constraints and it models scenarios such as parcel deliveries in crowded city centers or
rural areas, where maneuvering a large vehicle is forbidden or dangerous. The XSTTRP gen-
eralizes several well known VRPs such as the Multiple Depot VRP and the Location Routing
Problem. For its solution I developed an hybrid metaheuristic which combines a fast heuristic
optimization with a polishing phase based on the resolution of a limited set partitioning prob-
lem. Finally, the thesis includes a final "reference chapter" to guide the computational study
section of new approaches to VRPs proposed by the machine learning community.
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Chapter 1

Introduction

1.1 Vehicle Routing Problems

Vehicle routing problems (VRPs) are among the most studied combinatorial optimization prob-
lems and are nowadays very relevant due to their huge impact in real-world applications.

Transportation of goods or people is, in fact, a pervasive theme in our daily life. As an exam-
ple, more and more people are making use of e-commerce shopping. The COVID-19 pandemic
started in the late 2019 and peaked in 2020 caused online retail, which was already greatly used,
to grew massively especially during lockdown periods. Moreover, given the convenience for
the final customers, this trend is expected to continue over the next decades. Indeed, the ability
of e-commerce retailers to readily process and deliver goods make them very appealing to users
that, without moving from home, can with a few clicks order an item and receive it during the
next few hours. Planning of delivery routes is a fundamental step in this process. Moreover,
being able to handle larger and larger volumes of requests is already of great importance nowa-
days and it will become crucial in future given the increasing usage of these platforms. The
need for highly efficient solvers able to find, in short computing time, routes serving effectively
thousand of customers is thus becoming increasingly relevant.

Most VRPs rely on a graph-based definition. More formally, given a graph G = (V, E) where
V is the set of vertices representing locations of interest (for example customers and depot lo-
cations), and E is a set of edges connecting these vertices. A value cij with i, j ∈ V is associated
with each arc (i, j) ∈ E and represents the cost for going from i to j. Moreover, these costs
are symmetric, that is cij = cji. Basic VRPs consider G to be complete, thus having an edge
between every pair of vertices, and undirected, since each edge can be traversed in both di-
rections. The cost of a VRP solution S is given by the sum of the cost of all edges defining it,
that is, COST(S) = ∑(i,j)∈S cij. The objective consists in finding a solution with the minimum
cost.

The above description provides a common base for several highly-relevant VRPs. On top of
this base, problem-specific constraints can be added to model particular scenarios casting this
abstract and general problem into a precise one.

Traveling Salesman Problem The most well known combinatorial optimization problem aris-
ing in the VRP area is probably the Traveling Salesman Problem (TSP).

The TSP requires to find the routing for a salesman who starts from a origin vertex in G, visits
the remaining vertices, and returns to the origin one in such a way that each vertex is visited
exactly once and the total distance traveled is a minimum.

Applications of the TSP, however, go far beyond the route planning problem of a traveling
salesman. They span, in fact, over several areas of knowledge from mathematics and computer
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science to genetics and electronics (see Gutin and Punnen (2006) for a comprehensive descrip-
tion of the TSP and its applications).

The TSP, despite not solved directly in its pure abstract definition, is among the fundamental
subproblems contained into the core of routing problems faced in this thesis.

Capacitated Vehicle Routing Problem In 1959, Dantzig and Ramser introduced the truck dis-
patching problem as a generalization of the TSP with the aim of modeling a real-world application
concerning the delivery of gasoline to gas stations.

The TSP is generalized by attaching an additional label qi to each vertex i ∈ V and considering
one of the vertex in G, say node 0 ∈ V to be the origin vertex with a label q0 = 0. Vertex 0 is
called depot and the remaining vertices i ∈ V ∖ {0} are said customers. The value qi represents
the quantity of a certain product required by customer i. Moreover, the vehicle, which is initially
located at the depot, has a maximum capacity Q. When Q ≥ ∑i∈V qi, all customers can be
served by a single route starting from the depot, visiting all customers and coming back to
the depot (and thus the problem can be reduced to a TSP). On the other hand, when Q ≪
∑i∈V qi, more than one vehicle is required to serve all the customers and multiple routes must
be defined.

The truck dispatching problem is nowadays known as the Capacitated Vehicle Routing Problem
(CVRP) and since the 1959 has been among the most studied VRPs. In Chapter 2 I will develop a
solution approach specifically tailored for CVRPs having several thousand of customers.

The CVRP, which has primarily an academic relevance, belongs to what is known as the VRP
family. This family contains a great variety of problems that, by extending the standard CVRP,
model scenarios having a more concrete applicability in the real world. Among the most stud-
ied variants we have the VRP with Time Windows, in which customers have to be visited dur-
ing specific time intervals, the Heterogeneous VRP, in which vehicles possibly have different
capacities and a fixed cost for their usage, and finally, the VRP with Pickup and Deliveries,
where goods or passengers have to be transported from different origins to different destina-
tions. Constraints and objectives arising from real-world applications are studied in the so-
called multi-attribute VRPs (see e.g., Vidal et al. (2013)).

The problem described in the following section goes in the direction of a more realistic VRP.

Truck and Trailer Routing Problem By considering vehicles composed of a truck and a trailer,
and introducing incompatibilities between customers and (part of) vehicles, Chao (2002) in-
troduced the family of Truck and Trailer Routing Problem (TTRP) as a generalization of the
CVRP.

In the TTRP, some customers cannot be reached by the whole vehicle, for example because
located in crowded city centers where maneuvering the complete vehicle is difficult or forbid-
den. It is thus necessary to park the trailer on appropriate parking locations, serve one or more
customers and return to retrieve the parked trailer.

In Chapter 3 I deal with a variation of the TTRP, called the Extended Single TTRP (XSTTRP)
which directly generalizes the CVRP by introducing parking locations, where the trailer can be
possibly detached, and specializing the role of customers in G in truck customers and vehicle
customers with and without parking location. Truck customers can be visited by the truck only,
while vehicle customers can be visited both by the whole vehicle as well as by the truck only.
Moreover, some vehicle customers can be used as parking locations. Thanks to the flexibility
offered by the XSTTRP, several well-known VRPs, such as the Multiple Depot VRP (MDVRP,
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Cordeau, Gendreau, and Laporte (1997)) and the Location Routing Problem (LRP, Schneider
and Drexl (2017)), can be modeled within this framework.

1.2 Solution of Vehicle Routing Problems

The TSP belongs to the class of NP-hard problems. It is thus very unlikely that a polynomial
time algorithm exists which is able to solve a generic instance. The CVRP as well as the XSTTRP,
containing the TSP as a subproblem, are also NP-hard.

Even though problems are classified as NP-hard, it does not mean that finding a proven op-
timal solution is impossible. Indeed, enormous advances have been made in the area of ex-
act solution approaches since the introduction of the truck dispatching problem by Dantzig
and Ramser (1959). State-of-the-art exact solvers consists of branch-cut-and-price algorithms,
which combine column and cut generation to effectively explore the space of all possible solu-
tions. These approaches can consistently solve CVRP instances with up to 250 customers and in
some cases even larger instances (Baldacci, Toth, and Vigo (2007), Pecin et al. (2017), Pessoa et al.
(2020), and Pecin et al. (2014)). Moreover, specialized routing solvers such as VRPSolver by Pes-
soa et al. (2020), containing cutting-edge algorithms, are freely available for research purposes
providing a great value and opportunities for the entire VRP community.

In order to solve VRPs having a larger size within a reasonable computational effort one must
however rely on heuristic approaches. More precisely, the evolution of VRP heuristics over the
past years has mostly taken place within the context of meta and math heuristics. A metaheuris-
tic (see Talbi (2009)) balances intensification and diversification phases to explore promising re-
gions of the search space trying to escape from local optima. On the other hand, a matheuristic
(see Boschetti et al. (2009)) sees the interoperation of metaheuristics and mathematical program-
ming techniques combining the flexibility of the former with the effectiveness of the latter.

As I have briefly mentioned above, most of the research in the solution of large scale VRPs
consists in meta and math heuristics. Among the most successfully used paradigms we find
Genetic Algorithms (Vidal et al. (2012) and Vidal (2022)), Iterated Local Search (Subramanian,
Uchoa, and Ochi (2013)), and Guided Local Search (Arnold and Sörensen (2019)). The common
theme in the above approaches is the usage of local search that when coupled with effective
diversification techniques is able to find high-quality solutions. However, among the notable
exceptions to local-search based approaches, we find algorithm SISR (Slack Induction by String
Removals) proposed by Christiaens and Vanden Berghe (2020). Indeed, SISR combines an ex-
tremely well-designed ruin-and-recreate procedure with a diversification mechanism based on
the simulated annealing paradigm. SISR achieves several desirable properties of metaheuris-
tics (see Chapter 4 of Toth and Vigo (2014)) such as flexibility, conceptual and implementation
simplicity, and effectiveness into an unique solution framework able to tackle a great variety of
VRPs.

Moreover, I want to mention a recently ri-discovered trend consisting of so-called polishing
algorithms based on the POPMUSIC paradigm (Taillard and Voss (2002)) that, starting from
near-optimal solutions, explore very large neighborhoods through the resolution of carefully se-
lected subproblem typically by means of exact methods (Toth and Tramontani (2008), Queiroga,
Sadykov, and Uchoa (2020), and Cavaliere, Bendotti, and Fischetti (2020a)).

The intensification phase of most state-of-the-art metaheuristics for VRPs includes local search
procedures as the fundamental ingredient to readily find high-quality solutions.

The trend of the last few years is that of moving to very large scale instances with several
thousand of customers. In these scenarios, even standard local search procedures such as 2-opt
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or relocate exploring neighborhoods of quadratic cardinality may become the bottleneck of an
algorithm if naively designed.

In this cases one may rely on the so-called local search acceleration and pruning techniques as
dedicated tools to speed up local search execution.

In particular, an acceleration technique provides design guidelines on the efficient implementa-
tion of local search operators without reducing the scope of the search. Among the most pop-
ular acceleration techniques we have Static Move Descriptors, introduced by Zachariadis and
Kiranoudis (2010) that replace the standard nested for-loop exploration of local search neigh-
borhoods with specialized data structures and procedures, that avoid unnecessary neighbors
re-evaluation by exploiting the locality of a local search move application. Alternatively, the
Sequential Search proposed by Irnich, Funke, and Grünert (2006) breaks a local search move
into basic blocks called partial moves. The execution of a sequence of partial moves can be
aborted as soon as certain conditions are met, thus pruning in advance a nonpromising local
search move.

A (heuristic) pruning technique, on the other hand, typically improves the execution speed pos-
sibly by reducing the scope of the search. It is thus crucial to find a good tradeoff between the
efficiency and effectiveness of a local search operator making use of such techniques. Granu-
lar Neighborhoods (GN) introduced by Toth and Vigo (2003) is a popular pruning technique
widely and successfully adopted in VRP algorithms. A GN is a restricted local search neigh-
borhood in which special arcs associated with the instance, called move generators, are used to
identify promising local search moves in which the edge associated with the move generator
is inserted into the solution. Move generators are defined by a so-called sparsification rule. As
an example, a simple sparsification rule considers as move generators all arcs (i, j) and (j, i)
associated with an edge (i, j) such that cij is lower than a given threshold γ. The value of γ
can also be changed during the algorithm execution, to implement a dynamic intensification of
local search procedures.

An alternative way to deal with very large scale instances consists in considering smaller sub-
problems derived from the original one. A promising direction considers the usage of decom-
position techniques in which statically defined portions of the instance are defined and solved
independently (see, e.g., Santini et al. (2021)). Such an approach would also allow for a parallel
optimization of the different areas, possibly reaching an horizontal algorithm scalability.

In Chapter 2, I will develop a simple, yet effective, technique called Selective Vertex Caching
(SVC) that combines heuristic pruning and decomposition techniques and can be thought as
a sort of GN counterpart, but for vertices. The idea behind SVC is to localize local search ap-
plications to well defined areas instead of optimizing the whole solution. In particular, each
solution is designed to keep track of a limited set of interesting vertices. In our design, a vertex
is considered to have some interest if it belongs to a solution area that recently underwent some
changes. In Chapter 2, the SVC, which seamlessly integrates with GNs and SMDs, provides a
dynamic and soft instance decomposition.

As will be clear to the reader that will go through the forthcoming chapters, the design of ef-
ficient local search procedures (through the local search acceleration and pruning techniques)
has been among the main themes of my research activity.

1.3 Research Contribution

In this thesis I focused on basic and fundamental combinatorial optimization problems arising
in the vehicle routing area. I purposely abstracted away real-world constraints to concentrate
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on the core of routing problems. This has allowed me to experiment and push to their limits the
different techniques used, without the need to complicate their design and implementation to
cope with additional constraints.

I believe, however, that most of the positive results obtained on the basic VRPs studied in this
thesis could be reproduced on more realistic variants possibly even though that may require
some non-negligible design and implementation development which is thus left as a possible
future research direction.

Finally, since the research I did was mainly of experimental nature, I made available the soft-
ware produced during these years that can be freely used for research purposes.

The thesis is structured as follows.

Chapter 2 We study local search acceleration and pruning techniques for the Capacitated Ve-
hicle Routing Problem. As a result, we design a fast and scalable, yet effective, solution ap-
proach able to achieve state-of-the-art results on several well-known benchmark instances hav-
ing a variety of sizes ranging from few hundreds to tens of thousands of customers.

This work has been done in collaboration with my supervisor prof. Daniele Vigo and it has
eventually been published in Transportation Science with the title "A Fast and Scalable Heuristic
for the Solution of Large-Scale Capacitated Vehicle Routing Problems".

Chapter 3 We define a problem that describes a broad class of vehicle routing problems that
use a single vehicle, composed of a truck and a detachable trailer, to serve a set of customers
having specific accessibility constraints. We then propose a matheuristic solution approach
achieving good quality results also on very well-known and studied special cases of the general
problem.

This work has been done in collaboration with my supervisor prof. Daniele Vigo and it has
eventually been published in Transportation Science with the title "A Hybrid Metaheuristic for
Single Truck and Trailer Routing Problems".

Chapter 4 Vehicle routing problems are increasingly receiving attention in the machine learn-
ing community and several very promising results have already been published. Despite of the
relevance of the problems, the increasing attention it is receiving in the ML community and the
promising results achieved so far, these techniques have not yet become widespread in the ve-
hicle routing community. This may be because of their novelty and the great changes required
to adopt them by the OR community that typically has a different background. However, at
the same time, the computational testing performed by most of the proposed machine learn-
ing methods may not be very convincing with respect to the standard practices in the vehicle
routing community. The current work deals with the second aspect by highlighting important
points to consider during the computational testing, providing guidelines and methodologies
that we believe are relevant from an operations research perspective.

This work has been done in collaboration with my supervisor prof. Daniele Vigo and prof.
Andrea Lodi.
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Chapter 2

A Fast and Scalable Heuristic for the
Solution of Large-Scale Capacitated
Vehicle Routing Problems1

In this chapter, we propose a fast and scalable, yet effective, metaheuristic called FILO to solve
large-scale instances of the Capacitated Vehicle Routing Problem. Our approach consists of a
main iterative part, based on the Iterated Local Search paradigm, which employs a carefully
designed combination of existing acceleration techniques, as well as novel strategies to keep
the optimization localized, controlled and tailored to the current instance and solution. A Sim-
ulated Annealing-based neighbor acceptance criterion is used to obtain a continuous diversifi-
cation, to ensure the exploration of different regions of the search space. Results on extensively
studied benchmark instances from the literature, supported by a thorough analysis of the al-
gorithm’s main components, show the effectiveness of the proposed design choices, making
FILO highly competitive with existing state-of-the-art algorithms, both in terms of computing
time and solution quality. Finally, guidelines for possible efficient implementations, algorithm
source code and a library of reusable components are open-sourced to allow reproduction of
our results and promote further investigations.

2.1 Introduction

The Capacitated Vehicle Routing Problem (CVRP) has been studied for several decades but still
remains a challenging problem to solve in practice. Recently, several new benchmark instances
having large and very large scale of this fundamental problem (see X dataset, Uchoa et al. (2017)
and B dataset, Arnold, Gendreau, and Sörensen (2019)) have brought it into focus again in the
vehicle routing scene.

The careful design and implementation of solution algorithms becomes of primary importance
when dealing with large instances. Failing to find the best tradeoff between effectiveness and
efficiency has dramatic effects which are much more noticeable than when dealing with smaller
instances. While computer memory capacity is a less pressing problem every year, finding a so-
lution of satisfactory quality within a reasonable computing time still remains the real challenge:
algorithm designers cannot rely on continuous increments in the working frequency of future
processors. Processing units have, in fact, almost hit their maximum physical speed. New chips
are moving towards massive parallelization (see Etiemble (2018)), possibly initiating an age of
new algorithms that make use of concurrent decomposition techniques.

1The results of this chapter appears in: L. Accorsi and D. Vigo, "A Fast and Scalable Heuristic for the Solution of
Large-Scale Capacitated Vehicle Routing Problems", Transportation Science, 2021, 55:4, 832-856
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The CVRP can be described by using an undirected graph G = (V, E) where V is the vertex set
and E is the edge set. The vertex set V is partitioned into V = {0} ∪ Vc where 0 is the depot
and Vc = {1, . . . , N} is a set of N customers. A cost cij is associated with each edge (i, j) ∈ E.
Moreover, we assume that the cost matrix c satisfies the triangle inequality. For a vertex i ∈ V
and a subset of vertices V ′ ∈ V, we identify with N k

i (V
′) the set of the k nearest neighbor

vertices j ∈ V ′ of i with respect to the cost matrix c. The set N k
i (V

′) is shortened to Ni(V ′) for
the case k = |V ′|. Each customer i ∈ Vc requires an integer quantity qi > 0 from the depot,
and q0 = 0. An unlimited fleet of homogeneous vehicles with capacity Q is located at the depot
available to serve the customers.

Recalling that a Hamiltonian circuit is a closed cycle visiting a set of customers exactly once,
a CVRP solution S is composed of a number |S| of Hamiltonian circuits, called routes, starting
from the depot, visiting a subset of customers and coming back to the depot. We identify with
ri the route of load qri serving customer i ∈ Vc. A solution is feasible if all customers are visited
exactly once and none of the vehicles exceed its capacity. The cost of a solution S is given by
the sum of the cost of the edges defining the routes of S. Finally, the CVRP goal is to find the
feasible solution with the minimum cost.

An analysis of the current best state-of-the-art CVRP algorithms having a termination criterion
based on the number of iterations (namely, HGSADC by Vidal et al. (2012), ILS-SP by Subrama-
nian, Uchoa, and Ochi (2013), and SISR by Christiaens and Vanden Berghe (2020)) shows that
they often exhibit a non-linear growth of the computing time that may, in their current state,
undermine their applicability to large-scale instances within a reasonable computational effort.
Clearly, as described in Chapter 4 of Toth and Vigo (2014), computing time is just one among
many, seldom conflicting, dimensions characterizing heuristic solution approaches. The quality
of the solutions is often another of the most obvious criteria used to assess algorithm quality. In
addition, scalability with respect to the instance size is another very valuable quality, especially
when moving to very large-scale instances.

The challenge we faced in this research was to design an effective and scalable heuristic ap-
proach to the CVRP that can solve, in reasonable computing times, very large-scale instances
without an explicit instance decomposition. To this end, we reviewed and adapted existing
local search acceleration techniques and introduced new strategies to keep the optimization lo-
calized, controlled, and tailored to the current instance and solution. The result is a well-defined
and cohesive solution method.

In fact, local search acceleration techniques represent a very promising direction in the design
of scalable algorithms that are efficient but still retain their effectiveness. The local search com-
ponent, for a local search-based solution method, is typically one of the most time-consuming.
Naive implementations, e.g., those built on full neighbor enumeration, fail to be competitive
even for medium-sized instances. Among the most popular acceleration techniques, Granular
Neighborhoods (GNs), proposed by Toth and Vigo (2003), define a heuristic filtering of less
promising neighbors. This approach has been experimentally shown to provide an excellent
compromise between computing time and solution quality; see, e.g., Toth and Vigo (2003),
Zachariadis and Kiranoudis (2010), Schneider, Schwahn, and Vigo (2017), and Accorsi and
Vigo (2020). The Sequential Search proposed by Irnich, Funke, and Grünert (2006) breaks a
local search move into basic blocks called partial moves. The execution of those partial moves
can be aborted if certain conditions are met, thus pruning in advance a non-promising local
search move. Finally, Static Move Descriptors (SMD), introduced by Zachariadis and Kira-
noudis (2010) and later improved by Beek et al. (2018), provide a data-oriented approach to the
local search execution that avoids unnecessary evaluations by exploiting the locality of a local
search move application.
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Successful CVRP algorithms for large-scale instances typically make use of acceleration tech-
niques and ad-hoc data structures to support their optimization process. Kytöjoki et al. (2007)
have devised a Variable Neighborhood Search (VNS, see Mladenovi and Hansen (1997)) algo-
rithm combined with the Guided Local Search metaheuristic (GLS, see Voudouris and Tsang
(1999)) to escape from local optima by accepting moves that worsen the solution value accord-
ing to certain solution features. Their method is able to solve problems with up to twenty thou-
sand customers in short computing times by using a number of implementation techniques to
reduce memory utilization (e.g., storing compact representations for the cost matrix) and speed-
ing up the computation with appropriate data structures and smart pre-processing. Zachariadis
and Kiranoudis (2010) propose a Tabu Search metaheuristic (TS, see Glover (1989)) based on
the SMD concepts in which a penalization strategy is used to diversify the search process. The
method is able to solve problems with up to three thousand customers by exploiting the accel-
eration role of the SMD and a neighborhood reduction policy similar to the GN concept. Finally,
Arnold, Gendreau, and Sörensen (2019) propose an adaptation for very large instances, having
up to thirty thousand customers, of the algorithm introduced in Arnold and Sörensen (2019),
consisting of a local search-based approach using a GLS metaheuristic enhanced by knowl-
edge extracted from previous data mining analyses. The authors reduce the computing time
and space requirements by limiting the amount of information stored and using pruning and
sequential search techniques.

The algorithm described in this chapter, called FILO, consists of a main iterative part based on
the Iterated Local Search paradigm, coupled with a Simulated Annealing-based neighbor ac-
ceptance criterion to obtain a continuous diversification aimed at exploring diversified regions
of the search space. Our approach makes use of GNs and SMDs to speed up the local search
executions, together with other newly introduced concepts to keep the optimization localized,
controlled, and tailored to the current instance and solution.

The main design contributions, embedded into the proposed solution algorithm, are the follow-
ing:

• We extend the move generator concept introduced in Schneider, Schwahn, and Vigo (2017)
to support a dynamic, fine-grained management to intensify the local search only in areas
that are more likely to require a more accurate optimization process, such as parts of the
solution that were not improved after several attempts.

• We introduce a selective caching of vertices to identify solution parts that are more likely
to be relevant for forthcoming decisions (e.g., because they were changed more recently).
This technique is used to selectively optimize restricted solution areas.

• We develop a semi-structured organization of local search operators to achieve the best
compromise between diversification and intensification, likelihood of escaping from local
optima, and execution time.

• We refine the integration of GNs and SMDs in light of the above concepts. We also provide
guidelines on the implementations of local search operators that (to the best of our knowl-
edge) were never encoded into the SMD framework, such as the general CROSS-exchange
(see Taillard et al. (1997a)) and the ejection-chain (see Glover (1996)) operators.

• We detail a strategy to iteratively adapt the strength of a compatible shaking procedure
based on the quality and structure of instances and solutions.

Finally, as the result of a thorough analysis we are able to combine the above defined concepts
to obtain a fast, scalable, and effective CVRP solution algorithm.



12 Chapter 2. Heuristic Solution of Large-Scale CVRPs

The chapter is structured as follows. Section 4 describes the details of our solution approach.
Section 2.3 provides the experimental results, and Section 6 offers an experimental analysis
of the algorithm components. Finally, the Appendix contains supplemental material covering
implementation details.

2.2 Solution Approach

The metaheuristic we propose, whose high-level pseudocode is shown in Algorithm 1, consists
of a construction phase (Line 3), which builds an initial feasible solution using a restricted version
of the savings algorithm (see Clarke and Wright (1964a)). Then, it follows an improvement phase
(Lines 4-6) aimed at further enhancing the initial solution quality.

More precisely, the improvement phase may first employ a route minimization procedure, to
possibly reduce the number of routes in the initial solution when it is considered to be us-
ing more routes than necessary. A core optimization procedure, which is the central part of our
algorithm, then uses an iterative, and localized optimization scheme to further improve the so-
lution quality. Both route minimization and core optimization follow the Iterated Local Search
paradigm (ILS, see Lourenço, Martin, and Stützle (2003)) in which shakings, performed in a
ruin-and-recreate fashion (see Schrimpf et al. (2000a)), and local search applications interleave
for a prefixed number of iterations. The result is a Fast ILS Localized Optimization algorithm,
shortened to FILO.

The following paragraphs provide a detailed description of the algorithm, which is the outcome
of an iterative design process based on the analyses described in Section 6. In particular, we first
describe the construction phase, then the local search engine, which is a central component of
the improvement phase, and finally, the section ends with the definition of the improvement
procedures.

Algorithm 1 High-level FILO structure
1: procedure FILO(I , s)
2: R ← RANDOMENGINE(s)
3: S← CONSTRUCTION()
4: k← GREEDYROUTESESTIMATE(I)
5: if |S| > k then S← ROUTEMIN(S,R)
6: S← COREOPT(S,R)
7: return S
8: end procedure

Notation: I instance, s seed

2.2.1 Construction

The initial solution is built using an adaptation of the well-known savings algorithm by Clarke
and Wright (1964a). As was already shown by other authors (see, e.g., Arnold, Gendreau, and
Sörensen (2019)), the savings computation, which is quadratic in nature, can be linearized by
considering for each customer i ∈ Vc a restricted number ncw of neighbors j ∈ N ncw

i (Vc) for
which the saving value is computed. By limiting the number of savings, one can speed up the
construction process without significantly harming the quality and compactness (i.e., the num-
ber of routes) of initial solutions especially when working with very large-scale instances. Note
in addition that, since the construction phase is executed only once per run, over-optimizing
it does not substantially contribute to the efficiency of the whole algorithm. As suggested in
Arnold, Gendreau, and Sörensen (2019), we set ncw = 100, and we compute the savings values
for the arcs connecting each customer i to its ncw neighbor customers j using a lexicographic
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order for the customers so as to avoid symmetries. More precisely, this set is given by the arcs
{(i, j) : i ∈ Vc, j ∈ N ncw

i ({j ∈ Vc : i < j})}. In fact, as reported in Section 2.4.1, larger ncw values
did not create significant differences either in the quality or compactness of the solutions.

2.2.2 Local Search Engine

Improvement procedures are designed around a complex local search engine making use of a
tight integration of GNs, SMDs, and a novel selective vertex caching whose details are described
in Sections 2.2.2 to 2.2.2. The result is a very fast and extremely localized local search execution,
exploring neighborhoods induced by the following operators:

• an exchange of a contiguous sequence, or path, of n vertices with another path of m ver-
tices belonging either to the same or a different route, see CROSS-exchange, Taillard et al.
(1997a). In the following this exchange is referred to as nmEX. For example, 21EX identi-
fies the case in which n = 2 and m = 1. In particular, we implement the neighborhoods
associated with n, m = 0, . . . , 3 such that n ≥ m and nmEX is equivalent to mnEX;

• variants for 20EX, 21EX, 22EX, 30EX, 31EX, 32EX and 33EX, in which the first path of n
vertices is reversed before being exchanged, called nmREX;

• variants for 22EX, 32EX and 33EX, in which both paths are reversed before being ex-
changed, called nmREX∗;

• an intra-route 2-opt procedure, called TWOPT, as it is designed for the Traveling Salesman
Problem, see Jünger, Reinelt, and Rinaldi (1995);

• two inter-route adaptations of the 2-opt procedure, called TAIL and SPLIT, both working
on two different routes at a time. By denoting with head, a path of vertices belonging to
the initial part of a route, and with tail, a path of vertices belonging to the final part of a
route, TAIL swaps the tail of the two involved routes at some point, whereas SPLIT cuts
the two routes at some point, then it replaces the tail of the first route with the reversed
head of the second route and the head of the second route with the reversed tail of the
first route;

• finally, an ejection-chain procedure, called EJCH, implementing the first improving se-
quence of 10EX, found by exploring a restricted number of sequences. That is, starting
from an initial 10EX, a tree of at most nEC nodes representing partial sequences is built.
The sequence with the most improving value is always explored first, and a number of
relocations (10EX) are generated by ejecting customers that restore the feasibility of the
current route sequence endpoint. A 10EX may visit the same route more than once and no
limit on the length of a sequence is imposed. As soon as a sequence is found to restore the
feasibility of the target route, the associated 10EX exchanges are implemented. For more
details, see Appendix B.3.

The above operators are structured in a Hierarchical Randomized Variable Neighborhood De-
scent (see Section 2.2.2), whose aim is to define a balanced combination of intensification-
diversification, likelihood of escaping from local optima, and execution efficiency.

The next paragraphs provide a detailed description of the individual components of the local
search engine that are extensively used in both improvement procedures. Finally, the section
ends with characterizations of the route minimization and core optimization.
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Hierarchical Randomized Variable Neighborhood Descent

We propose a local search architecture based on a combination of the Variable Neighborhood
Descent (VND, see, e.g., Duarte et al. (2018)) and the Randomized VND (RVND, see, e.g., Sub-
ramanian, Uchoa, and Ochi (2013)) principles.

Both VND and RVND consider a set of local search operators that are sequentially applied to a
solution S, generating a so-called neighborhood of S containing a number of neighbor solutions,
or simply neighbors, of S. The key difference between VND and RVND is the criterion defining
the order in which those operators are applied.

In the VND, operators are generally sorted in increasing neighborhood cardinality, with larger
neighborhoods possibly including smaller ones. A typical example is a sequence of k-opt oper-
ators, with k = 2, 3, . . . , ℓ. This order has an efficiency purpose, because smaller neighborhoods
are faster to explore, and a functional purpose, because larger neighborhoods are used to escape
from the local optima of smaller ones. Whenever an improving neighbor is found, the search is
restarted from the initial smallest neighborhood.

In contrast, in the RVND, the sequence of operators is randomly shuffled before each local
search execution. This approach is used when neighborhoods induced by local search oper-
ators are not related one to another or have the same cardinality, because there are no well-
defined guidelines providing hints about the order that will eventually lead to the best possible
outcome. Relying on randomness is thus a reasonable approach that does not bias the search
towards any operator, provides a natural diversification that still improves the objective func-
tion, and prevents the designers from enforcing a neighborhood exploration order that might
not be ideal. When an improvement is found, all the operators are re-considered (after possibly
being re-shuffled).

The Hierarchical RVND (HRVND) we propose mixes the two principles by defining a slightly
more structured neighborhood exploration strategy, in which the operator order is neither com-
pletely random nor fixed a priori. More precisely, local search operators are arranged in tiers.
Each tier is a compound operator that applies its subset of local search operators by following
the RVND principles.

The overall HRVND links the tiers together once they have been ordered according to the crite-
ria defined by the VND, such as the overall computational complexity of the operators involved
in the tier.

The HRVND can thus be seen as a standard VND in which each tier is a compound local search
operator and where successively more expensive tiers are used to escape from the local optima
of the previous ones.

The proposed HRVND local search applies the operators described in Section 2.2.2 organized
in the following two tiers: (i) 10EX, 11EX, SPLIT, TAILS, TWOPT, 20EX, 21EX, 22EX, 20REX, 21REX,
22REX, 22REX∗, 30EX, 31EX, 32EX, 33EX, 30REX, 31REX, 32REX, 33REX, 32REX∗ and 33REX∗, and
(ii) EJCH.

The first tier contains operators defining neighborhoods of quadratic cardinality and having
very similar execution times; whereas the second tier contains the most expensive operator em-
ployed by the local search engine. More details about computing times and improving power
are provided in the analysis in Section 2.4.2 and in Section A.2 of the Appendix.

Each tier stores its operators in a circular list which is shuffled before the application (see Al-
gorithm 2). The neighborhood associated with an operator is completely explored and all the
improvements are applied before moving to the next operator on the list. More details about
the neighborhood exploration are given in Section 2.2.2 and in Section B.2 of the Appendix. The
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Algorithm 2 HRVND tier application
1: procedure TIERAPPLICATION(S,O,R)
2: O ← SHUFFLE(O,R)
3: e← 0, c← 0
4: repeat
5: S′ ← APPLY(Oc, S)
6: if COST(S′) < COST(S) then S← S′, e← c
7: c← (c + 1) mod LENGTH(O)
8: until c ̸= e
9: return S

10: end procedure

Notation: O list of tier operators, Oc operator in position c,R random engine.

next tier is only applied when the solution is a local optimum for the previous tiers. Moreover,
as in the standard VND setting, if the solution improved after a complete tier execution, the
search is restarted from the initial tier (see Algorithm 3).

Algorithm 3 HRVND application
1: procedure HRVND(S, T ,R)
2: e← 0
3: repeat
4: S′ ← TIERAPPLICATION(S, Te,R)
5: if COST(S′) < COST(S) ∧ e > 0 then
6: S← S′, e← 0
7: else
8: e← e + 1
9: end if

10: until e < LENGTH(T)
11: return S
12: end procedure

Notation: T list of tiers, Te operators in tier indexed e,R random engine

Move Generators and Granular Neighborhoods

A move generator (i, j) ∈ E is an arc that, as the name suggests, is used to generate and identify
a unique move in a local search context. In Toth and Vigo (2003), a set T of move generators
is used to define a restricted local search neighborhood, also known as a granular neighborhood
(GN), containing a subset of the possible moves associated with a local search operator.

One way to select the arcs of interest is to use a sparsification rule. For example, in Toth and Vigo
(2003) and Accorsi and Vigo (2020), arcs are chosen if their cost is below a given threshold, while
in Schneider, Schwahn, and Vigo (2017), the reduced cost coming from a simple relaxation is
used for the same purpose. Performing a local search by considering moves induced by move
generators in T only allows to linearize the search time to O(|T|).

In our approach, to speed up the local search execution, all neighborhoods induced by local
search operators are implemented as GNs. We define the set T of move generators to contain
all arcs connecting a vertex i ∈ V to its ngs = 25 nearest vertices. More precisely, the set
T = ∪i∈V{(i, j), (j, i) ∈ E : j ∈ N ngs

i (V ∖ {i})}. Note that move generators are described by arcs
instead of edges. In fact, a GN is said to be asymmetric if the move induced by (i, j) is different
from that induced by (j, i), and symmetric otherwise.

All the local search operators we considered, with the exception of TWOPT and SPLIT, identify
asymmetric GNs. The defined sparsification rule comes directly from the original GN definition
by Toth and Vigo (2003), where the emphasis was on trying to replace long edges with short
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ones. However, in their work the sparsification is based on a cost rule selecting all edges having
a cost lower than a given threshold, while here we adopt a nearest-neighbor rule that ensures
a minimum number of move generators involving any vertex. A cost rule may in fact not be
well suited when the standard deviation among arc costs is high, e.g., in clustered instances,
and may cause several vertices not to have any move generator associated with them when the
threshold is very low.

As described in previous works such as those by Schneider, Schwahn, and Vigo (2017) and Ac-
corsi and Vigo (2020), by using an additional value called a sparsification factor, one could further
filter the set of move generators according to some criteria, typically based on the arc cost, re-
sulting in a dynamic GN based on a dynamic set of active move generators. In the following, a
move generator is said to be active when selected by the current sparsification factor.

In our implementation, instead of using a single sparsification factor, we propose a more fine-
grained management of dynamic move generators by means of a vertex-wise sparsification factor
γi ∈ [0, 1] for each vertex i ∈ V. The dynamic set of active move generators for a sparsification
vector γ = (γ0, γ1, . . . , γN) is identified by Tγ = ∪i∈V{(i, j), (j, i) ∈ E : j ∈ N ki

i (V ∖ {i})} and
ki = ⌊γi · ngs⌉, where ⌊x⌉ denotes the nearest integer to x. Because the local search is indeed
local, precise control over the move generators may allow the search to be tailored for specific
areas where it is more needed. For example, the number of move generators may be increased
for a part of the solution in which no (local) improvement has happened after several search
attempts. Because GNs are used in both improvement procedures, the precise description of
the sparsification vector γ management is detailed in their respective sections.

Finally, several papers (e.g., Schneider, Schwahn, and Vigo (2017)), support the inclusion of all
the edges connecting the depot to customers in the set of move generators. However, in our ex-
perience, when scaling to large-scale instances, even the dynamic management of these move
generators becomes very challenging, causing a significant increase in computing time with-
out guaranteeing any improvements to the solution quality. More details are given in Section
2.4.4.

Static Move Descriptors

Static move descriptors (SMDs), introduced for compound neighborhoods by Zachariadis and Ki-
ranoudis (2010) and later adapted to the VND setting by Beek et al. (2018), enable the efficient
execution of local search procedures by replacing the classical for-loop exploration of neigh-
borhoods with a structured inspection of the moves associated with a local search operator,
through the careful design of specialized data structures and procedures.

SMDs can be used to thoroughly describe the neighborhood of a solution. Every SMD identifies
a unique local search move generating a neighbor solution and the associated change in the ob-
jective function value, called δ-tag. The combination of GNs and SMDs arises very naturally. In
fact, a move generator uniquely defines a move within a GN and thus unambiguously identifies
an SMD. On the other hand, an SMD uniquely describes a move (and its effect on the objective
function) and thus unambiguously identifies the move generator inducing that move. For this
reason, in the rest of the chapter we will use SMD and move generator interchangeably.

A local search operator whose neighborhood is designed according to the SMD principles re-
quires four stages. First, an initialization stage, executed once at the beginning of the neigh-
borhood exploration, computes the δ-tag for the available SMDs. Then, a sequence of search,
execution, and update stages is performed until no more improving solutions are available in the
neighborhood.
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The search stage looks for a feasible and improving SMD - that is, an SMD associated with a move
that generates a feasible and improving neighbor solution. Moreover, the SMD might also be
required to meet some additional criteria (e.g., the SMD associated with the most improving
feasible move might be sought). Once found, the move associated with the SMD that meets the
criteria is executed during the execution stage. Because a local search application causes only
a local change in a solution, most of the SMDs will still hold a correct δ-tag even after (part of)
the solution is changed. An operator-specific list of SMDs requiring an update to their δ-tag can
thus be considered during the update stage. Finally, the neighborhood exploration ends when
the search stage is no longer able to identify a feasible and improving SMD.

In our implementation, all (granular) neighborhoods are designed according to the SMD prin-
ciples, and a binary heap is used to store the SMDs, corresponding to active move generators,
organized according to their δ-tag. During the initialization stage, only improving SMDs are
inserted into the heap, to keep the computational complexity of managing the heap to a mini-
mum. As in Beek et al. (2018), during the search stage, instead of retrieving the most improving
SMD by removing infeasible SMDs until a feasible one is found, we linearly scan the vector rep-
resenting the heap data structure searching for a feasible SMD. This approach does not require
the re-insertion of removed SMDs once a feasible move is found, but it no longer guarantees
the execution of the most improving move. However, since the SMDs are roughly sorted by
the heap’s internal procedures, the linear scan provides a so called rough-best-improvement move
acceptance strategy. Note that the heap data structure is not unique for a set of entries, and the
linear scan is highly affected by the order in which heap management operations are executed.
For more details we refer the reader to Sections B.2 and B.3 of the Appendix.

Finally, to speed up the initialization stage we coupled it with the selective vertex caching strat-
egy described in Section 2.2.2 that forces the local search to focus on recently changed areas of
the solution.

Selective Vertex Caching

Sparsification rules describing GNs are complemented by the identification of a set of vertices
of interest by means of a selective vertex caching (SVC) strategy. In particular, every solution S
keeps track of a subset of vertices V̄S ⊆ V that, for the current algorithm state, is considered to
be highly relevant.

In our implementation, V̄S consists of the set of vertices directly belonging to solution areas
that recently underwent some changes. Without loss of generality, changes in a solution S,
seen from a vertex perspective, can be subdivided into insertions and removals. For example,
consider the relocation of vertex i from its original position to another one between vertex j and
its predecessor πj. The removal directly affects vertex i itself, its successor σi, and its predecessor
πi, while the subsequent insertion affects vertices i, j and πj. Within this setting, after the move
execution, we say that i, πi, σi, j, and πj are cached for S: i.e., they are inserted into V̄S.

This strategy allows us to easily keep track of solution areas that were recently changed. How-
ever, not all changes have the same importance; more recent ones are more likely to be relevant
to a forthcoming decision. This aspect is captured by imposing a limit, for a solution S, on the
maximum number of vertices that can be cached at the same time equal to a constant value C,
by imposing |V̄S| ≤ C and adopting a least recently used strategy to maintain V̄S.

SVC to Restrict Local Search Execution. Vertices can be selectively cached in order to identify
a kernel of relevant vertices to be used in local search procedures. As mentioned at the end of
Section 2.2.2, we used this method as a heuristic acceleration and filtering technique for the
initialization stage of the SMDs, which as shown in the analysis of Section 2.4.5, may also have
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Figure 2.1: A 20EX application induced by move generator (i, j) relocating path
(πi − i) between πj and j. SMDs involving vertices in the gray area require an
update to their δ-tag after the move execution.

a significant influence on subsequent SMD stages and, ultimately, on the overall local search
execution.

During the optimization of a solution S, the SMD initialization stage considers, for the heap
insertion, the restricted subset of move generators (i, j) ∈ T̄γ(S) ⊆ Tγ, such that at least one
of the endpoints i or j belongs to the subset of cached vertices V̄S. More precisely, T̄γ(S) =

∪i∈V̄S
{(i, j), (j, i) ∈ E : j ∈ N ki

i (V ∖ {i})} with ki = ⌊γi · ngs⌉.

During subsequent SMD update stages, additional move generators might, however, be added
to the heap due to the search incrementally extending to vertices not belonging to the selective
cache and whose SMDs require an update although they have not been directly involved in a
change of the solution.

To better understand this, consider the scenario shown in Figure 2.1 in which, during a 20EX

neighborhood exploration, a move induced by move generator (i, j) is executed, causing the
relocation of path (πi − i) between πj and j. Once the move is executed, vertices π2

i , πi, i, σi, πj
and j will be marked as cached. However, as shown by the gray overlay, two additional vertices,
namely σ2

i and σj are also (indirectly) affected by the move execution. In particular, active move
generators involving σ2

i , i.e. {(σ2
i , j) : j ∈ V} ∩ Tγ, require an update because the predecessor of

σi changes from i to π2
i . Similar reasoning applies to some move generators involving σj. More

details about update lists associated with different local search operators are given in Section
B.3 of the Appendix. Note that σ2

i and σj do not belong to the cache, but their move generators
will be updated and, if improving, inserted into the heap and considered during subsequent
SMD search stages.

Move generators evaluated during the SMD search stage could hence have been considered,
because they involve vertices belonging to the selective vertex cache or vertices indirectly af-
fected by a previous move application. Thus, it is clear that the cache dimension C actually
imposes a soft constraint on the SMDs considered during the local search execution: starting
from the restricted kernel of cached vertices, the search may extend to include move generators
involving all instance vertices.

A possible scenario in any of the improvement procedures, analyzed from the perspective of
the number of distinct vertices either cached or (directly and indirectly) reached by the local
search execution, is depicted in Figure 2.2. Improvement procedures, at the beginning of each
iteration, work with solutions S having no cached vertices, i.e., V̄S = ∅. As mentioned in
Section 2.2.2, both procedures make use of a shaking performed in a ruin (R−) and recreate
(R+) fashion. The vertices involved in the disruptive effects of the shaking applied to solution
S are added to the set V̄S. This set is the kernel of vertices used to identify the area where
the optimization of the subsequent local search execution is focused. In particular, each SMD
initialization stage (I) considers the current kernel of cached vertices. Then, a sequence of SMD
search (S) and execution and update (X) stages might cause the search to reach far more vertices
than those cached (dashed line), potentially covering all vertices. However, as discussed in
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Figure 2.2: Evolution of an improvement procedure iteration in terms of number
of distinct vertices simultaneously cached and considered during a
neighborhood exploration (Reached). The number of vertices is analyzed after
the ruin (R−), recreate (R+), and local search operator applications. Each local
search operator application is partitioned into an SMD initialization (I) and a
sequence of search (S) and execute and update (X) stages.

Section 2.4.5, the maximum size C of this kernel indirectly affects the exploration power as well
as the computing time of the local search.

The overall result is an implicit dynamic instance decomposition, induced by a very focused
and localized neighborhood exploration strategy which mainly considers the areas of the so-
lution that are more likely to require further optimization because they were more recently
changed.

2.2.3 Improvement

Improvement procedures are iterative randomized local search-based procedures aimed at fur-
ther enhancing the initial solution quality. Both procedures, namely route minimization and
core optimization, work by re-optimizing, through the local search engine, a restricted area
disrupted by a ruin-and-recreate application. This area is identified by a number of vertices
stored in the selective vertex cache. At the beginning of each improvement procedure iteration,
the cache is emptied to perform an optimization focused primarily on the very limited solu-
tion area identified by the upcoming shaking application. The route minimization procedure
may visit infeasible solutions to perform its route compacting action, while the core optimiza-
tion procedure only moves in the feasible space and achieves its diversification by means of an
effective simulated annealing strategy.

Route Minimization

The CVRP typically does not impose any limit on the number of routes that solutions may have.
However, there is often a positive correlation between the number of routes in a solution and
its cost. Moreover, many simple construction algorithms, such as the one we use, typically
produce solutions using far more routes than those found in good-quality solutions. We thus
include an optional route minimization procedure that may be executed right after the initial
solution construction.

This procedure is applied to a solution S built by the initial construction phase whenever the
number |S| of its routes is found to be greater than an ideal estimated number of routes k. The
value k is computed by heuristically solving a bin-packing problem with an item of weight qi for
each customer i ∈ Vc and bins of capacity Q through a simple greedy first-fit algorithm (see, e.g.,
Chapter 8 of Martello and Toth (1990)). The route minimization procedure, whose pseudocode
is shown in Algorithm 4, starts by setting the best found solution S∗ to be equal to the initial
solution S generated by the construction phase. During each iteration a pair (ri, rj) of routes
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Algorithm 4 Route minimization procedure
1: procedure ROUTEMIN(S,R)
2: S∗ ← S,P ← P0, L← [ ]
3: for n← 1 to ∆RM do
4: V̄S ← ∅
5: (ri, rj)← PICKPAIROFROUTES(S,R)
6: L← [L, CUSTOMERSOF(ri), CUSTOMERSOF(rj)]
7: S← S ∖ ri ∖ rj
8: L← DEFINEORDER(L,R)
9: L̄ = [ ]

10: for i ∈ L do
11: p← BESTINSERTIONPOSITIONINEXISTINGROUTES(i, S)
12: if p ̸= none then
13: S← INSERT(i, p, S)
14: else
15: if |S| < k ∨U(0, 1) > P then
16: S← BUILDSINGLECUSTOMERROUTE(i, S)
17: else
18: L̄← [L̄, i]
19: end if
20: end if
21: end for
22: L← L̄
23: S← HRVND.TIER1(S,R)
24: if |L| = 0∧ (COST(S) < COST(S∗) ∨ (COST(S) = COST(S∗) ∧ |S| < |S∗|)) then
25: S∗ ← S
26: if |S∗| ≤ k then return S∗

27: end if
28: P ← z · P
29: if COST(S) > COST(S∗) then S← S∗

30: end for
31: return S∗

32: end procedure
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belonging to S is selected and their customers removed from the solution and placed into a list
of unrouted customers L (Lines 5-7). The first route ri is chosen as the route containing a random
customer seed i. The second route rj is identified by considering customer neighbors j ∈ Ni(Vc)
in increasing cij cost until a customer j belonging to a route rj ̸= ri is found. Customers in
L are, with equal probability, either randomly shuffled or sorted according to their demand,
in decreasing order. Then, for each unrouted customer i ∈ L, a position in the current set of
existing routes is searched, such that with the insertion of i the target route remains feasible and
the insertion cost is minimized (Lines 10-21). When such a position cannot be found (i.e., when
inserting i violates the capacity constraints of all existing routes), and consequently a new route
should be created to accommodate customer i, an action is selected according to the current
number of routes |S|. If |S| is lower than the estimate k, a new single-customer route with i is
created. Otherwise, the single-customer route serving i is created only when a random number
drawn from a uniform real distribution in the interval [0, 1] is greater than a threshold P , set to
P = 1 at the beginning of the route minimization procedure. When the random number is not
greater than P , i is inserted into an additional list L̄.

Once all customers in L have been considered, the list L is set to L = L̄ and the threshold P is
lowered according to an exponential schedule P = z · P with z = (P f /P0)(1/∆RM), P f = 0.01,
and P0 = 1. Where P f and P0 are the final and initial probabilities of not creating an additional
single-customer route, respectively.

Next, a restricted HRVND, consisting of the first tier only but using all the available move gen-
erators, i.e., γi = 1, i ∈ V, is applied to the (possibly partial) current solution. We restrict
the HRVND to the first tier because we noticed it was sufficient to obtain good-quality solu-
tions and resulted in a considerable computing time saving. Moreover, we set γi = 1, i ∈ V
to avoid a complex management of move generators in this secondary improvement phase
which, as shown in the parameters Table 2.1, is executed for a small number ∆RM = 1000 of
iterations.

When a solution S in which all customers are routed is found, the best solution S∗ is replaced
with S if the latter has a lower cost or the same cost but fewer routes. Moreover, we impose an
early stopping condition (Line 26) such that if S∗ has a number of routes lower than or equal to
k, the route minimization procedure prematurely ends and returns S∗.

Before proceeding to the next iteration, a partial or feasible solution S having a cost higher than
the current best solution S∗ is reset to the latter; i.e., S = S∗. Finally, solution S∗ is returned after
∆RM iterations if the early stopping condition is not met throughout the route minimization
execution.

Core Optimization

The core optimization procedure, whose pseudocode is shown in Algorithm 5, is iterative and
randomized. By making use of an adaptive shaking strategy and the local search engine, it im-
plements a powerful localized solution improvement. First, the best solution S∗ is set equal to
solution S, generated by the construction phase and possibly improved by the route minimiza-
tion procedure.

A shaking application, whose pseudocode is shown in Algorithm 6, performs a ruin step,
removing a number of customers in the customer sub-graph by means of a random walk.
Then, a simple greedy recreate step defines the new position for the previously removed cus-
tomers. More precisely, the ruin step, starting from a randomly selected seed customer i ∈ Vc,
identifies a random walk of length ωi in the sub-graph G′ = (V ′c , E′c) where V ′c = Vc and
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Algorithm 5 Core optimization procedure
1: procedure COREOPT(S,R)
2: ω← (ω0, ω1, . . . , ω|Vc |), ωi ← ωbase ∀i ∈ V
3: γ← (γ0, γ1, . . . , γ|Vc |), γi ← γbase ∀i ∈ V
4: S∗ ← S, T ← T0
5: for n← 1 to ∆CO do
6: V̄S ← ∅
7: Ŝ, i′ ← SHAKE(S,R, ω),S ← V̄Ŝ ∖ {0}
8: S′ ← HRVND(Ŝ,R),L ← V̄S′

9: if COST(S′) < COST(S∗) then
10: S∗ ← S′

11: RESETSPARSIFICATIONFACTORS(γ,L)
12: else
13: UPDATESPARSIFICATIONFACTORS(γ,L)
14: end if
15: UPDATESHAKINGPARAMETERS(ω, S′, S, i′,S ,R)
16: if ACCEPTNEIGHBOR(S, S′, T ) then S← S′

17: T ← c · T
18: end for
19: return S∗

20: end procedure

E′c = {(i, j) : i, j ∈ V ′c} is the set of arcs connecting customers. When a customer i is vis-
ited, it is removed from the solution and the sub-graph G′ is updated accordingly by setting
V ′c = V ′c ∖ {i} and E′c = E′c ∖ {(i, j), (j, i) : j ∈ V ′c}. A partial walk ending at customer i is
extended by moving either forward or backward within the same route ri, or by jumping to
a neighbor route, which can be any route or a not yet visited one (Lines 7-20). First, whether
to move along the same route or jump to another is decided; then the possible options asso-
ciated with that choice are considered. At every step, the choices are considered with equal
probability. When a jump to a neighbor route is selected to extend a walk ending at i ∈ V ′c , cus-
tomers j ∈ Ni(V ′c ) are examined in increasing cij cost until a route rj satisfying the appropriate
requirements, i.e., either any route (including rj = ri) or a not yet visited one, is found. The rj,
identified by scanning the routes to which neighbor customers j of i belong, is considered to be
a neighbor route of ri. In the unlikely case that such a route cannot be found, the ruin procedure
is prematurely aborted (Line 18). Note that a jump to a neighbor route is always selected when
the current route ri contains customer i only (Line 7).

The recreate step greedily inserts the removed customers into the position that minimizes the
insertion cost after they have, with equal probability, either been randomly shuffled or sorted
by decreasing demand or by increasing or decreasing distance from the depot.

The ruin intensity is controlled by a meta-procedure (described in Paragraph 2.2.3) that itera-
tively adapts the random walk length ωi from a seed customer i ∈ Vc to identify a disruptive
action that best suits the instance and solution under examination.

The HRVND is then applied to the shaken solution S to identify a local optimum S′. Whether
to accept S′ as the next point in the search trajectory is determined by a simulated annealing
acceptance strategy; see Kirkpatrick, Gelatt, and Vecchi (1983). In particular, S′ is accepted if
c(S′) < c(S) + T · ln U(0, 1). The value of T is initially set to T = T0 and lowered at the end of
each core optimization iteration by performing T = c · T with c = (T f /T0)(1/∆CO); ∆CO is the
number of core optimization iterations.

The core optimization makes full use of vertex-wise dynamic move generators. In particular, at
the beginning of the procedure, sparsification parameters γi are set to a base value γbase. When-
ever (δ ·∆CO · AVERAGE(|V̄S|))/|V| nonimproving iterations involving a vertex i are performed,
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Algorithm 6 Adaptive shaking procedure
1: procedure SHAKE(S,R, ω)
2: i′ ← RANDOMCUSTOMER(R)
3: i← i′, e← 0, C = [ ], R = {}
4: B ← RANDOMBOOLEAN(R)
5: repeat
6: C ← [C, i], R← R ∪ {ri}
7: if |S| > 1∧ B( ) then
8: if B( ) then
9: j← NEXTCUSTOMERINROUTE(i)

10: else
11: j← PREVCUSTOMERINROUTE(i)
12: end if
13: else
14: if B( ) then
15: j← NEARESTSERVEDCUSTOMER(S, i)
16: else
17: j← NEARESTSERVEDCUSTOMER(S, i) such that rj ̸∈ R
18: if j = none then e← ∞
19: end if
20: end if
21: S← REMOVECUSTOMER(S, i)
22: i← j
23: until e < ωi′

24: C ← DEFINEORDER(C,R)
25: for i ∈ C do
26: p← BESTINSERTIONPOSITIONINEXISTINGROUTES(i, S)
27: if p ̸= none then
28: S← INSERT(i, p, S)
29: else
30: S← BUILDSINGLECUSTOMERROUTE(i, S)
31: end if
32: end for
33: return S, i′

34: end procedure
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the value is updated as γi = min{γi · λ, 1}where δ ∈ [0, 1] is a reduction factor, AVERAGE(|V̄S|)
denotes the average number of vertices cached after previous local search executions, and λ is
an increment factor. However, the value of γi is reset to γbase whenever a solution S improving
S∗ is found during the execution of a local search involving i (i.e., i ∈ V̄S after the HRVND
application). This update rule is a possible vertex-wise implementation of the standard way of
handling dynamic move generators described in Schneider, Schwahn, and Vigo (2017) in which
the total number of core optimization iterations is partitioned over restricted working areas
identified by cached vertices. Note that, when the cache size C is smaller than the total number
of instance vertices, i.e., C < |V|, some vertex i may not be considered for the γi update even if
it is involved in a change during the HRVND execution because, due to the limit imposed by C,
it is no longer cached after the optimization. However, as shown in the analysis in Section 2.4.5,
an accurate selection of C, which might heuristically filter out some vertices from the update,
does not prevent good solutions from being found much faster than in the scenario in which
C = |V| and the SVC is completely disabled.

Structure-Aware and Quality-Oriented Shaking Meta-Strategy. We propose a declarative
approach to the selection of the shaking intensity that, if coupled with a shaking procedure
able to take advantage of it, improves flexibility and adaptability compared to a random or
fixed intensity. This strategy makes use of a number of integer shaking parameters ωi, i ∈ Vc
defining the intensity of a shaking application seeded at customer i.

The idea is to iteratively adapt the parameters ωi so that solution S′, obtained by re-optimizing
the disrupted area of solution S, meets some quality criteria with respect to S. On the one hand,
S′ could be of lower quality than S or, more precisely, the distance in terms of cost between S′

and S is greater than an intensification upper bound threshold ΩUB, i.e., COST(S′)− COST(S) >
ΩUB. From a simplified perspective, we may assume this happened because the initial dis-
ruption produced by the ruin was too strong, causing so much turbulence on the original
solution S that subsequent local search procedures were not able to successfully correct and
improve it. On the other hand, S′ and S may be of comparable quality and in particular,
0 ≤ COST(S′) − COST(S) < ΩLB with ΩLB an intensification lower bound threshold. In this
case, the disruptive effect of the ruin was probably not strong enough to jump to a different
search space area, and the subsequent local search procedures were able to partially undo the
changes. Finally, S′ may be better than S, showing that the combination of shaking and sub-
sequent re-optimization was appropriate. In our implementation, we define ΩLB = c̄S · ILB
and ΩUB = c̄S · IUB, where c̄S is the average cost of an arc in solution S, computed as c̄S =
COST(S)/(N + 2 · |S|); ILB, IUB ∈ R are shaking factors.

From the above observations, we can derive a simple update rule for the shaking parameters
ωi that is executed at every core optimization iteration (Line 15 of Algorithm 5). Denoting by
ω̃ = ωi′ the shaking parameter value associated with the current seed customer i′

ωi =


ωi + 1, if 0 ≤ COST(S′)− COST(S) < ΩLB ∧ωi < ω̃ + 1 (i)
ωi − 1, if COST(S′)− COST(S) > ΩUB ∧ωi > ω̃− 1 (ii)
randomly select between (i) and (ii), otherwise (iii)

i ∈ S

where S = V̄Ŝ ∖ {0} is the set of vertices cached in the shaken solution Ŝ right after the shaking
execution (excluding the depot, which is never considered in the ruin execution); see Line 7 of
Algorithm 5. Shaking parameters ωi, i ∈ S are moved towards the new value for ω̃, without
exceeding it.
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Figure 2.3: Shaking parameters values at the end of the core optimization
procedure for instance X-n979-k58 of the X dataset. Each circle represents a
customer i in its xi and yi coordinates and the color denotes the shaking
parameter ωi value.

This limit prevents situations in which a single vertex j surrounded by a set of vertices Ṽ,
all having a very small (respectively, large) shaking parameter value has its ωj indirectly in-
cremented (respectively, decremented) to very large (respectively, small) values due to up-
dates involving some i ∈ Ṽ. Furthermore, update rule (iii) describes the scenario in which
S′ is improving with respect to S or the shaking was of the appropriate strength; i.e, ΩLB ≤
COST(S′)− COST(S) ≤ ΩUB.

Through experimentation, we found it beneficial to perform limited random variations of the in-
volved shaking parameter values, to avoid their stagnation to minimum values which satisfied
rules (i) and (ii) in order to explore other promising combinations of values. Finally, the update
depends on the specific area where the shaking was executed; the parameters are iteratively
adjusted according to the effects on nearby areas caused by previous shaking applications. This
adaptive procedure thus makes the shaking aware of both the structure of the instance and the
solution under examination.

As an example, consider Figure 2.3, showing shaking parameter values ωi, i ∈ V for instance
X-n979-k58 of the X benchmark after the core optimization procedure.

As can be seen from the figure, very dense areas of customers typically require lower values
for the shaking parameters, whereas customers in sparse areas are associated with stronger
shaking applications. Note that set S also contains vertices involved in the recreate step. An
ideal update rule should consider only customers involved in the ruin step or, even better, only
the seed customer. However, especially for large-scale instances, this rule would require an
enormous amount of iterations for the procedure to converge on reasonably effective shaking
parameter values, which would likely still require an update as the algorithm evolves. We
thus found that updating the shaking parameters for all vertices that are in the selective cache
after the shaking application is a reasonable strategy to identify a number of vertices that are
somehow related and can be thought of as belonging to the same area.

Finally, the initial value for the shaking parameters is not relevant for small-sized instances in
which an initial value of ωbase = 1 may be used. On the contrary, it becomes quite important
when moving to very large instances, if the total number of core optimization iterations remains
constant. In fact, on the one hand, using a small value might cause several fruitless shaking
iterations in which ωi values are slowly increased to more effective values, wasting precious
computing resources with insufficient disruptions. On the other hand, a value that is too high
might dramatically slow down the overall algorithm execution with the risk of an excessive ruin
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activity. We experimentally found a reasonable compromise by setting ωbase = ⌈ln |V|⌉ as the
initial shaking intensity, which is then automatically adjusted by the above update rules.

2.3 Computational Results

The computational testing has the main objective of assessing the performance of the proposed
algorithm. To accomplish this, we first show its effectiveness on the X dataset proposed by
Uchoa et al. (2017), on which state-of-the-art CVRP algorithms are typically evaluated. Then, we
proceed to the real target of the chapter, showing how the designed components allow the over-
all algorithm to easily scale to very large-scale instances while still retaining its effectiveness.
To this end, we focus on the increasingly popular B instances proposed by Arnold, Gendreau,
and Sörensen (2019) and on two less-studied very large-scale datasets, K and Z proposed by
Kytöjoki et al. (2007) and Zachariadis and Kiranoudis (2010), respectively.

2.3.1 Implementation and Experimental Environment

The algorithm was implemented in C++ and compiled using g++ 8.3.0. The experiments were
performed on a 64-bit desktop computer with an Intel Xeon CPU E3-1245 v5 central process-
ing unit (CPU), running at 3.5 GHz and with 16 GB of RAM on a GNU/Linux Ubuntu 18.04
operating system. The algorithm source code, together with a library of reusable components,
can be downloaded from https://acco93.github.io/filo/; detailed instructions are given
to accurately reproduce our results. In all the computational testing, we considered a stan-
dard version of FILO and a longer version, called FILO (long), which performs ten times more
core optimization iterations than the standard version. Because of the randomized nature of
the algorithm, for every experiment, we executed a symbolic number of fifty runs for each in-
stance, defining the seed of the pseudorandom engine (the Mersenne twister of Matsumoto and
Nishimura (1998)) as equal to the run counter minus one. Moreover, to mitigate the impact of
small time-variations due to the overhead of the operating system, we used a clock function
that reports running times with the minimum recordable run time set to one second. To bet-
ter compare our results with other algorithms executed on different hardware configurations,
for which no source code was available, we used the single-thread rating defined by PassMark
®Software (2020). At the time of writing, a score of 2285 was assigned to our CPU. Competing
methods’ CPU times are scaled to match our CPU score; their normalized time is identified by
t̂ = t · (PA/PB), where PA is the competing method’s CPU single-thread rating, PB is our CPU
rating, and t is the raw computing time. All times refer to an average run and are reported in
minutes. For randomized algorithms we report, when available, the best (Best), average (Avg)
and worst (Worst) gaps of the solution found by the algorithm, with respect to the best known
solution value (BKS). Gaps are computed as 100 · (COST(S)− BKS)/BKS, where S is the final
solution. For deterministic algorithms, we report the gap (Gap) of the solution found by a single
run.

2.3.2 Parameter Tuning

Crafting algorithm FILO and tuning its parameters followed an iterative process whose key
decisions are detailed in Section 6.

Parameters are summarized in Table 2.1; their tuning, whose hidden interactions and inter-
connected effects might be very challenging to analyze, followed a straightforward sequential
strategy aimed at keeping the tuning effort low but still able to identify good performing values
for each parameter considered individually.

https://acco93.github.io/filo/
https://www.cpubenchmark.net/cpu.php?cpu=Intel+Xeon+E3-1245+v5+%40+3.50GHz&id=2674
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Initial solution definition – Described in Sections 2.2.1 and 2.2.3 – Analyzed in Section 2.4.1

ncw = 100 Number of neighbors considered in the savings computation.
∆RM = 103 Maximum number of route minimization iterations.

Granular neighborhood – Described in Section 2.2.2 – Analyzed in Section 2.4.4

ngs = 25 Number of neighbors considered by the sparsification rule.
γbase = 0.25 Base sparsification factor.
δ = 0.5 Reduction factor used in the definition of the fraction of non-improving

iterations performed before increasing a sparsification parameter.
λ = 2 Sparsification increment factor.

Core optimization – Described in Sections 2.2.2 and 2.2.3 – Analyzed in Sections 2.4.2, 2.4.5 and 2.4.3

∆CO = 105, 106 Number of core optimization iterations for a short and a long run.
T0, T f Initial and final simulated annealing temperature.
C = 50 Maximum number of cached vertices.
ωbase = ⌈ln |V|⌉ Initial shaking intensity.
nEC = 25 Maximum number of sequences explored by EJCH for each move gener-

ator.
ILB = 0.375, IUB = 0.85 Shaking factors.

Table 2.1: Parameters of Algorithm FILO.

First, reasonable values were identified using the authors’ judgment and experience, along with
a trial-and-error approach. Then we evaluated the algorithm’s behavior while changing the
value of one parameter at a time (keeping the others fixed). A new value was kept when it
allowed an improvement in quality without increasing the computing time. This process was
iterated several times until satisfactory results were obtained. In fact, we noticed that the iter-
ated sequential tuning of individual parameters, without a prefixed order, was enough to reach
good local optima without exploring all possible combinations of values.

The parameter tuning, as well as the algorithm design, was mainly performed by considering
the largest X instances - in particular, those with more than five hundred vertices. The resulting
tuned algorithm was then used for all our computational testing.

We briefly summarize, in the following, the key choices made during the parameter tuning
procedure, referring to Section 6 for more details. The number of customers ncw for which the
savings are computed in the construction phase and the maximum number of route minimiza-
tion iterations ∆RM are both low impact parameters. Once they are set to reasonable values,
small variations do not significantly change the outcome of the procedures in which they are
employed. We set them approximately to one of the smallest values able to provide results of
a quality comparable to larger values, which may, however, have required a longer computing
time. Conversely, the value of ngs, γbase, δ and λ heavily affect the algorithm performance.

The number of neighbors ngs, the base sparsification factor γbase and the reduction factor δ were
set so as to obtain the best trade-off between computing time and solution quality; see Section
2.4.4. In particular, we noticed that a milder sparsification (obtained, for example, by increasing
ngs, γbase or both; or by decreasing δ) may sometimes provide slightly better solutions, but with
an unacceptable increment in the computing time. This is particularly noticeable in instances
for which very good-quality (or near-optimal) solutions are found early in the search, and for
which the sparsification is just steadily decreased by increasing the γi, i ∈ V and never reset;
see, e.g., the computing time for instance X-n219-k73 of the X dataset in Table 2.9 (Section C of
the Appendix). We set the the value for λ as in the original proposal of Toth and Vigo (2003),
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leaving the other granular parameters depending on it. On average, we found a very aggressive
sparsification associated with an large number of optimization iterations to be preferable to a
very accurate local search execution performed with fewer iterations.

The number of core optimization iterations ∆CO was set appropriately to suit all the medium to
very-large instances we considered. However, to alleviate the above-mentioned indiscriminate
increment for γi values in small-sized instances, which typically converge to the final value
faster, defining the number of iterations as a function of the instance size might be more ap-
propriate. Nonetheless, we preferred not to use that approach in order to better highlight the
scalability properties of FILO.

The simulated annealing temperatures T0 (initial) and T f (final) were defined to be proportional
to the average cost of an arc in an instance. In particular, the value of T0 is defined as 0.1 times
the average instance arc cost; i.e., T0 = 0.1 ·∑i,j∈V:i<j cij/(|V| · (|V| − 1)/2) and T f is 0.01 times
T0. In fact, we found this strategy to be better than defining a fixed range when applied to
different datasets with completely unrelated arc costs. For example, the average arc cost for the
K dataset is about 3, 500% larger than that for the X dataset and 164,100% larger than that for
the Z dataset.

The size of the selective cache C was chosen to be the value that identified a good trade-off
between computing time and solution quality; see Section 2.4.5.

As mentioned in Section 2.2.2, both small and large-scale instances are not significantly affected
by the choice of the initial shaking intensity ωbase; in fact, comparable quality and computing
time are obtained by setting ωbase = 1. However, when considering very large-scale instances,
the difference in the final outcome is much more noticeable. We found that setting ωbase as a
logarithmic function of the number of vertices provides a reasonable starting point. The shaking
procedure then actually performs some fruitful iterations in large instances before reaching
better-performing values for the shaking parameters ωi, i ∈ Vc.

We set the number nEC of EJCH sequences explored from every move generator, to the minimum
value that could provide reasonably good improvements with a much more limited computing
time variability compared to larger values; see Section 2.4.2.

Finally, the shaking factors ILB and IUB can have a major impact on the overall algorithm exe-
cution. In fact, assigning them large values allows the guiding meta-strategy to increment the
ωi values, inducing a stronger shaking effect that will eventually require a longer local search
re-optimization. On the other hand, values that are too low do not disrupt the current solution
sufficiently to allow the re-optimization the possibility of performing some improvements. The
identified values, coming from the limited random search analysis (see Bergstra and Bengio
(2012)) described in Section 2.4.3, define an associated shaking which is neither too disruptive
nor too gentle, resulting once again in a compromise between computing time and final solution
quality.

2.3.3 Testing on X Instances

The X instances introduced in Uchoa et al. (2017) are the current standard benchmark for the
CVRP. They consist of a hundred small- to large-sized instances, containing up to one thousand
customers and covering a wide range of demand distributions and customer layouts.

The performance of FILO is compared with current state-of-the-art algorithms on this dataset.

• The iterated local search matheuristic (ILS-SP), proposed by Subramanian, Uchoa, and Ochi
(2013), consists of an ILS interacting with a mixed integer programming (MIP) solver. The
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Figure 2.4: State-of-the-art CVRP algorithms performance comparison over the
X instances of Uchoa et al. (2017). A tuple describing the computing time and the
average percentage gap is reported below each algorithm name. For ILS-SP and
HGSADC we report a range of times since the exact CPU model is not specified.

MIP solver is used to define new solutions as a combination of routes belonging to previ-
ously found local optima, through the time-limited solution of a set partitioning model.

• The Hybrid Genetic Search with Adaptive Diversity Control (HGSADC), proposed by Vidal et
al. (2012), is a population-based method with an advanced and continuous diversification
procedure.

• The Knowledge-Guided Local Search (KGLS), proposed by Arnold and Sörensen (2019), is a
GLS metaheuristic enhanced by knowledge extracted from previous data mining analy-
ses.

• Finally, the Slack Induction by String Removal (SISR) recently introduced by Christiaens and
Vanden Berghe (2020), is a sophisticated, yet easily reproducible, ruin-and-recreate-based
approach combined with a simulated annealing metaheuristic.

ILS-SP, HGSADC, and SISR are general methods able to solve a broad class of VRP variants,
while KGLS also supports the Multi-Depot VRP and the Multi-Trip VRP. ILS-SP, HGSADC, and
KGLS are local search-based methods, whereas SISR performs its improvement action through a
ruin-and-recreate approach. Finally, KGLS defines a time-based termination condition of three
minutes every 100 customers, while all the other methods fix a maximum number of itera-
tions.

Figure 2.4 provides a graphic comparison of the algorithms’ performances in terms of efficacy
and efficiency by reporting the average behavior over 50 runs for ILS-SP, HGSADC, SISR, and
FILO, and over a single run for KGLS, since it is a deterministic algorithm. The best known solu-
tion values (BKS) used to compute gaps are taken, at the time of writing, from CVRPLIB (2020).
FILO compares favorably with the best existing algorithms, achieving an excellent compromise
between solution quality and computing time. In fact, FILO finds average solutions that are
significantly better than those of ILS-SP and KGLS, and similar to those found by HGSADC.
However, SISR outperforms FILO. FILO (long), on the other hand, finds average solutions that
are significantly better than those of ILS-SP, HGSADC, and KGLS and similar to those found by
SISR. See Section C of the Appendix for full details.
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ILS-SP HGSADC KGLS SISR FILO FILO (long)

Size Vertices Avg t̂1 Avg t̂1 Avg t̂ Avg t̂ Avg t Avg t

S 101 – 247 0.31 1.52 0.07 3.79 0.28 4.66 0.11 3.78 0.18 1.69 0.09 18.06
M 251 – 491 0.59 14.57 0.30 19.09 0.64 9.40 0.25 19.64 0.40 1.66 0.25 17.51
L 502 – 1001 0.98 123.32 0.50 169.28 0.69 19.47 0.21 110.54 0.50 1.72 0.30 17.56

Table 2.2: Aggregate computations on X instances.
1obtained by averaging normalized times associated with the fastest and the
slowest compatible CPUs.

As mentioned in Section 2.3.1, the average computing time for a single run t̂ has been roughly
normalized to match our CPU score by using the single-thread rating of PassMark ®Software
(2020), which assigns a score in the range of 1389 – 1491 to the compatible Intel Xeon CPUs used
by ILS-SP and HGSADC (for which the precise model is not specified in Uchoa et al. (2017)), a
score of 2052 to the AMD Ryzen 3 1300X CPU used by KGLS, and a score of 1662 to the Intel
Xeon E5-2650 v2 CPU used by SISR.

Table 2.2 provides aggregate computations, grouped by instance size. The table highlights the
scalability properties of FILO, by showing that the computing time for the largest instances is
very similar to that obtained for smaller ones, yet the solution quality remains comparable to
that achieved by other state-of-the-art algorithms. In fact, the computing time of FILO is more
related to the number of core optimization iterations rather than to the instance size. More-
over, when the computing times of FILO and FILO (long), which differ by the number of core
optimization iterations by a factor of ten, are compared, the increase in computing time is pro-
portional to the increase in the number of iterations.

More experiments can be found in Section 2.4.6; for the largest instances, we studied the effects
of further increasing the number of core optimization iterations which resulted in lowering the
average gap to 0.19%.

2.3.4 Testing on Very Large-Scale Instances

Having assessed the performance of FILO on the standard X instances, we now examine the
real target of the proposed approach: very large-scale instances. To this end, we tested FILO on
three challenging datasets containing instances with several thousands of customers.

The B instances proposed by Arnold, Gendreau, and Sörensen (2019) are a set of ten very large-
scale instances containing up to thirty thousand customers and reflecting real-world parcel dis-
tribution problems in Belgium. They include a first scenario, in which the depot is located
centrally with respect to the customers and relatively short routes are performed, and a second
one in which the depot is eccentric with respect to the service zone, thus much longer routes are
required to visit the customers. We mainly compared FILO with KGLSXXL proposed in Arnold,
Gendreau, and Sörensen (2019), an adaptation for very large-scale instances of the KGLS algo-
rithm introduced in Section 2.3.3. Like KGLS, KGLSXXL also defines a time-based termination
condition of either three or twelve minutes every 1000 customers for the short or the long ver-
sion, respectively. KGLSXXL was executed on the same hardware configuration described for the
X dataset. Moreover, for the sake of completeness, we include results obtained by the LKH-3
algorithm proposed by Helsgaun (2017) in very long computing sessions (up to several days).
The best known solution values (BKS) were taken, at the time of writing, from CVRPLIB (2020)
and used to compute gaps. We note that for many of those BKS, no citable publication is avail-
able; the results are typically the outcome of very long runs. In other cases, as reported us
by the authors (see Cavaliere, Bendotti, and Fischetti (2020b) and Uchoa (2020)), the methods

https://www.cpubenchmark.net/cpu.php?cpu=AMD+Ryzen+3+1300X&id=3057
https://www.cpubenchmark.net/cpu.php?cpu=Intel+Xeon+E5-2650+v2+%40+2.60GHz&id=2042
https://www.cpubenchmark.net/cpu.php?cpu=Intel+Xeon+E5-2650+v2+%40+2.60GHz&id=2042
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KGLSXXL KGLSXXL(long) LKH-3 FILO FILO (long)

ID (|Vc|) BKS Gap t̂ Gap t̂ Gap Best Avg Worst t Best Avg Worst t

L1 (3000) 193092 0.74 13.47 0.71 53.88 0.67 0.26 0.38 0.50 2.13 -0.02 0.12 0.20 21.50
L2 (4000) 111810 4.18 17.96 2.69 71.84 1.50 0.43 0.62 0.86 3.28 -0.13 0.07 0.29 36.20
A1 (6000) 478091 0.83 26.94 0.73 107.76 0.68 0.35 0.43 0.55 2.76 0.04 0.10 0.17 28.00
A2 (7000) 292597 2.62 31.43 1.18 125.72 1.67 0.53 0.68 0.87 3.11 -0.10 0.00 0.14 33.66
G1 (10000) 470329 0.86 44.90 0.69 179.61 0.82 0.51 0.59 0.67 3.63 0.08 0.14 0.19 36.57
G2 (11000) 259712 2.94 49.39 1.85 197.57 2.33 0.50 0.72 1.06 4.62 -0.39 -0.31 -0.20 59.34
B1 (15000) 503407 1.35 67.35 0.73 269.41 1.20 0.66 0.75 0.82 4.67 0.03 0.09 0.14 47.83
B2 (16000) 349602 3.49 71.84 1.77 287.37 2.23 0.58 0.80 1.08 5.34 -0.72 -0.60 -0.45 62.70
F1 (20000) 7256529 0.97 89.80 0.54 359.21 0.61 0.52 0.56 0.62 7.22 0.08 0.12 0.18 78.44
F2 (30000) 4405678 3.65 134.70 2.24 538.82 2.13 1.21 1.40 1.57 10.99 -0.12 -0.02 0.12 150.93

Mean 2.16 54.78 1.31 219.12 1.38 0.56 0.69 0.86 4.78 -0.12 -0.03 0.08 55.52

Table 2.3: Computations on B instances.
New best solutions: (L1, 193052);(L2, 111661);(A2, 292303);(G2, 258700);(B2,
347092);(F2, 4400188).

were initialized with previously-known best solutions. Therefore, their achievements cannot be
compared with monolithic approaches such as the one we propose.

As can be seen from Table 2.3, FILO is able to successfully find very good quality solutions in
a shorter computing time than KGLSXXL. In fact, the average gap of FILO is almost half that
of KGLSXXL (long) in just about five minutes of computing time. Furthermore, FILO (long) is
able to find several new BKS in less than three hours of computing time, and the computing
times remain consistent across instances with different structures. We again note the scalability
of FILO by observing that, to solve an instance with ten times more customers, the computing
time only increases approximately fivefold.

The K dataset proposed by Kytöjoki et al. (2007) contains eight very large-scale instances with
up to twelve thousand customers. The first four instances (W, E, S, and M) are derived from
real-life waste collection problems in Finland, while the remaining instances contain customers
randomly and uniformly distributed. Again, we mainly compared FILO with KGLSXXL pro-
posed in Arnold, Gendreau, and Sörensen (2019) but we also include results of the GVNS al-
gorithm introduced in Kytöjoki et al. (2007) (the first method used to solve the K instances).
GVNS was run on an AMD Athlon 64 3000+ having a single thread score of 554 and KGLSXXL

GVNS KGLSXXL KGLSXXL (long) FILO FILO (long)

ID (|Vc|) BKS∗ Gap t̂ Gap t̂ Gap t̂ Best Avg Worst t Best Mean Worst t

W (7798) 4481423 1.75 8.36 0.39 7.72 0.00 35.02 -7.35 -5.71 -3.31 9.59 -8.47 -7.74 -6.23 145.23
E (9516) 4507948 5.54 20.34 0.33 18.86 0.00 42.66 -2.87 -2.01 -0.58 14.10 -4.06 -3.41 -2.49 248.11
S (8454) 3189850 4.51 13.63 0.46 12.66 0.00 38.17 -5.04 -3.85 -1.90 9.30 -6.07 -5.48 -4.07 146.82
M (10217) 3071090 3.25 18.81 0.78 17.42 0.00 45.80 -2.54 -1.82 0.44 15.86 -3.46 -3.13 -2.74 263.56
R3 (3000) 182206 2.20 1.16 0.50 1.08 0.00 13.47 -0.50 -0.39 -0.25 2.25 -0.88 -0.81 -0.70 21.09
R6 (6000) 347224 1.58 5.92 0.19 5.48 0.00 26.94 -0.35 -0.27 -0.19 2.97 -0.81 -0.74 -0.68 27.70
R9 (9000) 511378 1.19 13.99 0.05 12.93 0.00 40.41 -0.25 -0.17 -0.09 3.70 -0.70 -0.66 -0.61 33.48
R12 (12000) 672456 1.25 26.28 0.06 24.34 0.00 53.88 -0.09 -0.01 0.07 4.47 -0.60 -0.54 -0.50 39.76

Mean 2.66 13.56 0.35 12.56 0.00 37.04 -2.37 -1.78 -0.73 7.78 -3.13 -2.81 -2.25 115.72

Table 2.4: Computations on K instances.
∗taken from Arnold, Gendreau, and Sörensen (2019).
New best solutions: (W, 4101686.00);(E, 4324802.50);(S, 2996254.00);(M,
2964867.25);(R3, 180597.91);(R6, 344407.00);(R9, 507787.66);(R12, 668435.00).

https://www.cpubenchmark.net/cpu.php?cpu=AMD+Athlon+64+3000%2B&id=66
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was run on the same hardware configuration as for the B dataset.

As can be seen from Table 2.4, FILO is able to successfully find very good-quality solutions
in a relatively short computing time compared to KGLSXXL. Importantly, both FILO and FILO
(long) find new best solutions for all instances. The computing time associated with random
instances follows the same trend seen for the B instances. On the other hand, instances derived
from real-life problems require a much longer computing time. By analyzing the structure of
the final solutions obtained by FILO (long), we note that they are composed of few very long
routes with several hundred customers. Moreover, the shaking intensity at the end of a run
ω = ∑i∈Vc

ωi/|Vc|, averaged over the W, E S and M instances, has a value four times larger than
that associated with the B dataset (91.37± 28.86 and 22.42± 4.40, respectively). The reason for
such a high average value may be related to the shaking procedure. In particular, given the very
low number of routes for those instances (on average 15.00± 1.83), the shaking procedure might
choose to jump to a not-yet-visited neighbor route that is not available. In such cases, the ruin
is prematurely aborted, possibly causing a mismatch between the actual shaking intensity and
the required one identified by ωi, i ∈ Vc values. The mismatch may cause the average shaking
intensity to increase to an abnormally large value. In many cases, the ruin activity is unaffected,
because it will be prematurely aborted. However, if the early stop comes after several customers
have already been removed, the average ruin activity will be stronger than required, causing a
more time-consuming re-optimization.

Finally, the Z dataset was proposed in Zachariadis and Kiranoudis (2010). The dataset contains
four large-scale instances, representing the actual distribution of customers’ locations within
Greek cities. All instances have three thousand customers whose demand is uniformly dis-
tributed in 1–100. The vehicle capacity is set to 1000. We compared FILO with the Penalized
Static Move Descriptors Algorithm (PSMDA) described in Zachariadis and Kiranoudis (2010),
consisting of a Tabu Search metaheuristic in which the local search is executed by means of
SMDs considering compound operators and a neighborhood pruning technique similar to that
of GNs. The algorithm was run for a prefixed amount of time on an Intel Core2 Duo T5500 CPU
with a single-thread score of 573.

As can be seen from Table 2.5, FILO successfully solved the Z dataset, finding new best solu-
tions for all four instances in a very short computing time, which is comparable to that associ-
ated with instances of similar size of the B and K datasets.

To summarize, FILO and FILO (long) obtain, in short computing time, average solutions that
are generally significantly better than those found by the competing algorithms. We refer to
Section D of the Appendix for the statistical significance of the above reported results.

PSMDA FILO FILO (long)

ID (|Vc|) BKS Best Avg t̂1 Best Mean Worst t Best Avg Worst t

ZK1 (3000) 13666.36 0.00 0.94 60.18 -1.45 -1.31 -1.14 2.50 -1.81 -1.71 -1.54 22.68
ZK2 (3000) 3536.25 0.00 1.32 60.18 -2.14 -1.97 -1.76 2.30 -2.68 -2.55 -2.36 20.81
ZK3 (3000) 1170.33 0.00 1.55 60.18 -2.67 -2.53 -2.39 1.97 -3.24 -3.09 -2.96 18.60
ZK4 (3000) 1139.08 0.00 1.32 60.18 -2.23 -2.08 -1.91 1.86 -2.76 -2.65 -2.55 16.84

Mean 0.00 1.28 60.18 -2.12 -1.97 -1.80 2.16 -2.62 -2.50 -2.35 19.73

Table 2.5: Computations on Z instances.
1max (normalized) time per run.
New best solutions: (ZK1, 13419.44);(ZK2, 3441.54);(ZK3, 1132.47);(ZK4, 1107.62).

https://www.cpubenchmark.net/cpu.php?cpu=Intel+Core2+Duo+T5500+%40+1.66GHz&id=922


2.4. Algorithmic Components Analysis 33

2.4 Algorithmic Components Analysis

The design of FILO followed an iterative process, whose core decisions were driven by the anal-
yses detailed in this section. We review (i) the definition of the initial solution by means of the
construction phase, possibly followed by the route minimization procedure; (ii) the accelera-
tion and pruning techniques employed by the local search engine; and (iii) the guiding of the
shaking strategy. As for the parameter tuning, if not stated otherwise, the analyses reported
here refer to the set of large-size X instances with more than five hundred vertices. Moreover,
when analyzing components involving some randomization, we performed ten runs by setting
the pseudorandom engine seed equal to the run counter minus one and reported aggregated
results averaged over seeds and instances. Finally, we refer to Section A of the Appendix for
additional material.

2.4.1 Initial Solution Definition

The construction phase depends on the parameter ncw to identify, for each customer i ∈ Vc,
the number of neighbors j ∈ N ncw

i ({j ∈ Vc : i < j})} involved in the savings computation.
Figure 2.5 (left) shows the variation of the solution quality (QUALITY GAP) and compactness
(ROUTE GAP) when varying ncw. We focused on the subset of instances, listed in Table 2.6, for
which computing an initial solution of good quality is difficult (i.e., instances for which initial
solutions have a large gap and use more routes than suggested by the heuristic estimate).

Our findings validate what was already proposed in Arnold, Gendreau, and Sörensen (2019). A
value of ncw around 100 provides initial solutions of quality comparable to that of larger values,
but in slightly shorter computing times (the differences are, however, in the order of a few tens
of milliseconds for the largest ncw values we considered).

As in Section 2.3.1, the QUALITY GAP is defined as 100 · (COST(S) − BKS)/BKS, where S is
the solution resulting from the procedure and, similarly, ROUTE GAP is defined as 100 · (|S| −
k)/k, where k is the heuristically found ideal estimated number of routes described in Section
2.2.3.
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FILO without RM FILO with RM
(∆RM = 0, ∆CO = 105) (∆RM = 103 , ∆CO = 105)

ID1 Best Avg Worst t Best Avg Worst t

X-n524-k153 0.29 0.57 0.81 1.37 0.08 0.39 0.68 1.34
X-n536-k96 0.69 0.80 0.89 1.51 0.71 0.80 0.87 1.60
X-n586-k159 0.46 0.65 0.79 1.73 0.57 0.73 0.87 1.65
X-n599-k92 0.37 0.47 0.60 1.54 0.37 0.47 0.69 1.57
X-n613-k62 0.51 0.68 0.84 1.12 0.39 0.66 0.96 1.16
X-n670-k130 1.32 1.95 2.38 1.36 0.83 1.08 1.32 1.41
X-n685-k75 0.35 0.55 0.67 1.34 0.47 0.63 0.82 1.42
X-n733-k159 0.32 0.38 0.45 1.25 0.25 0.34 0.45 1.25
X-n749-k98 0.57 0.75 0.88 1.40 0.54 0.68 0.85 1.46
X-n766-k71 0.59 0.73 0.93 1.59 0.46 0.59 0.66 1.60
X-n783-k48 0.52 0.60 0.72 1.74 0.34 0.62 0.87 1.75
X-n819-k171 0.60 0.76 0.93 1.37 0.83 0.90 1.03 1.43
X-n936-k151 0.90 1.26 1.52 1.29 0.39 0.83 1.23 1.31
X-n979-k58 0.27 0.36 0.48 2.24 0.26 0.35 0.44 2.37

Mean 0.55 0.75 0.92 1.49 0.47 0.65 0.84 1.52

Table 2.6: Computations with and without route minimization (RM) procedure.
1for which the route minimization procedure is executed.

Not surprisingly, using larger ncw values is not sufficient to increase solution compactness. In-
deed, the route minimization procedure tackles this strategic aspect of the CVRP, which is more
concerned with the assignment of customers rather than with their routing.

Note, however, that, contrarily to most existing route minimization procedures, the proposed
one is still quality-oriented. In fact, a solution with a better objective function is always pre-
ferred over a solution with a lower number of routes, but the procedure structure is more
specifically aimed at reducing the number of routes while also often obtaining the desirable
effect of improving the objective function.

Figure 2.5 (right) shows the results of this procedure when it is applied, for different numbers
of iterations ∆RM, to a solution S built by the construction phase with ncw = 100. The diagrams
highlight the procedure’s effectiveness, both in improving low-quality initial solutions and in
quickly compacting them by (often significantly) reducing the number of routes. As a result,
we selected ncw = 100 and ∆RM = 1000. The average computing time for largest values of ∆RM
is approximately ten seconds.

In addition, Table 2.6 compares the final algorithm outcome when the route minimization pro-
cedure is disabled, i.e., ∆RM = 0. Despite not always being crucial for the final solution quality
because of the complex interactions among all the algorithm’s components, the route mini-
mization procedure provides substantial improvement for those instances containing several
customers with small demand and a few customers with relatively large demand, such as X-
n670-k130 and X-n936-k151. We can conclude that, in average, the route minimization posi-
tively affects the final algorithm’s outcome without any significant impact on the computing
time.

2.4.2 Local Search

We analyzed the local search operators described in Section 2.2.2 in the context of the core op-
timization procedure, where all features we propose are fully employed. The effect of a local
search operator application is tightly linked to the state of the algorithm in that specific instant.
In our approach, randomization plays a major role in selecting the area that, once disrupted by
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the shaking procedure, is re-optimized, and the evolution of the algorithm affects shaking in-
tensity and sparsification factors. We thus believe that the evaluation of a local search operator
should not occur “in a vacuum”, but needs to be performed within the algorithm execution.
Therefore, we studied the effectiveness of individual operators by sampling the algorithm state
throughout the core optimization phase. More specifically, a sample consists of a shaken solu-
tion S and its subset of cached vertices V̄S, the shaking vector ω, and the sparsification vector γ.
Each sample, derived from the actual algorithm execution, is a relevant snapshot describing the
algorithm evolution. Moreover, according to when the sample is taken, it could describe initial
or final algorithm states associated with lower or higher quality solutions.

We tested every local search operator on each sample for a total number of ∆CO = 105 core op-
timization iterations. In addition, we considered seven variants for the EJCH operator, named
EJCH(nEC), where nEC defines the maximum number of sequences explored from each move
generator, when searching for a feasible sequence of relocations. For each local search op-
erator (applied to a shaken solution), we analyzed the gap improvement when successfully
applied, the application time, and the success ratio computed as the number of improving ap-
plications over the total number of attempts. Full details are available in Section A.2 of the
Appendix.

As expected, EJCH(·) are the most effective, yet time-consuming, operators. Their success ratio
also suggest that in most shaken solutions, finding an improving ejection-chain is relatively
easy. However, when this is not the case, the computing time can be very large especially for
the EJCH with the highest nEC.

We also noted that simpler operators, such as 10EX, 11EX, TAILS, and SPLIT have a large success
ratio, meaning that they are more likely to be applied, and provide larger gap improvements
compared to all other operators with quadratic cardinality. These differences may occur because
their feasibility requirements are more easily met, and thus they are more frequently applied.
On the other hand, all the remaining operators, despite having a lower success ratio, still do
allow better final solutions than when they are disabled. Surprisingly, TWOPT is seldom useful,
meaning that the shaking procedure typically generates routes that are almost two-optimal.
However, we kept it because of its very short application time. When structuring the HRVND,
we grouped all the operators with a comparable application time in the first tier (i.e., all the
operators but EJCH(·)).

Selecting which EJCH to include was guided by an additional analysis comparing the results
obtained by the EJCH(nEC), for the different values of nEC, when applied to solutions that are
already a local optimum for the first HRVND tier. We observed that by applying the EJCH(·)
operator on first tier local optima, the application time (as well as its variability) is dramatically
reduced to a magnitude similar to that of other simpler operators. Moreover, the success ratio,
the gap improvement, and experiments with an HRVND without EJCH(·) all suggest that its
application may be beneficial to obtain high-quality final solutions. In our implementation, we
selected EJCH(25) (shortened to EJCH in the rest of the chapter), because it is more compatible
with the scalability objectives of our approach while still retaining its effectiveness compared to
EJCH(·) with greater nEC.

Finally, as we apply the operators of each tier in an RVND fashion, we may expect a lower
success ratio and less gap improvement, as well as a shorter application time, when they are
applied on solutions that are already local optima for a number of other operators of the same
tier. We can now study how each operator contributes to the total improvement of the defined
HRVND structure in more detail. Denoting with O the set of local search operators we employ,
we stored the total gap improvement D(O) achieved in a number of I(O) successful applica-
tions for each operator O ∈ O. Note that a single application consists of a full neighborhood



36 Chapter 2. Heuristic Solution of Large-Scale CVRPs

EJCH
7.42%

11EX
7.37%

22REX
5.93%

TAILS
5.81%

10EX
5.49%

33REX
5.38%

SPLIT
5.18%22EX

5.08%

22REX∗
4.64%

33EX
4.44%

21EX
4.27%

32REX
4.07%

21REX
4.04%

32EX
3.90%

33REX∗
3.64% 31EX

3.33% 20EX
3.32%

30EX
3.10%

20REX
2.97%

31REX
2.94%

32REX∗
2.91%

30REX
2.90%

TWOPT
1.88%

Figure 2.6: Percentage relative neighborhood improvement index for each local
search operator in the engine. The index summarizes the contribution of each
operator to the total improvement.

exploration. The ratio R(O) = D(O)/I(O) thus identifies the expected improvement that a suc-
cessful exploration of O would produce on an average solution. We can compute the percentage
Relative Neighborhood Improvement index of O with respect to the set of the available operators O

as RNI(O, O) = 100 · R(O)/ ∑O′∈O R(O′), which is shown in Figure 2.6. As shown in the figure,
all the operators positively contribute to the overall improvement process.

2.4.3 Shaking Guiding Strategy

The structure-aware and quality-oriented strategy employed by the core optimization proce-
dure to guide the shaking intensity uses two factors to determine whether to increment, reduce,
or randomly change the parameters ωi, i ∈ Vc of customers involved in a shaking application.
More precisely, ILB determines when shaking parameters are increased, while IUB defines when
they are decreased. Together, they identify the range in which the guiding strategy actively
operates. To determine reasonably effective values for ILB and IUB, we performed a limited ran-
dom search, testing a hundred unique combinations for ILB ∈ [0.2, 0.4] discretized with steps
of 0.025, and IUB ∈ [0.5, 1.5] discretized with steps of 0.05. A graphic representation for the
different configurations and their performances is depicted in Figure 2.7.

The proposed ranges are the outcome of an iterative process in which larger ones were nar-
rowed down to focus on combinations producing good-quality solutions in a short computing
time. As shown in Figure 2.7, the values in the selected ranges have a minor impact on the
solution quality and a slightly greater one on the computing time. In our implementation, we
selected configuration 78 (ILB = 0.375 and IUB = 0.85). We noticed that slightly better solutions
can be obtained when using moderately larger values particularly for IUB. However, as shaking
parameters reach larger values, we expect the associated re-optimization time to increase and
selecting values that are too large may also result in poor quality final solutions.

Finally, once the factors, which are used in combination with the average cost of a solution arc
(see Section 2.2.3), are set to reasonable values, the procedure can generalize well to solutions
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Figure 2.7: Tuning of ILB and IUB. In the left diagram, the configurations we
considered in the random search. In the right, the performance associated with
each configuration obtained by running FILO with the ones we plot on the left
diagram. Only the best configurations are numbered.

and instances with a very different structure, as shown by our computational results.

2.4.4 Move Generators and Granular Neighborhoods

The benefits of GNs are well documented in several papers, such as Toth and Vigo (2003) and
Schneider, Schwahn, and Vigo (2017). However, careful tuning is necessary to get the best out
of GNs. In fact, different values for the number of neighbors considered in the sparsification
rule ngs, the base sparsification factor γbase, and the reduction factor δ affecting the number
of nonimproving iterations before increasing a sparsification factor, can dramatically alter the
performance of the algorithm and, more specifically, its computing time.

The sparsification increment factor λ may also play a role; however, we fixed it to λ = 2, as in
the original GN definition, and made the other parameters depend on its value.

As for the shaking parameters, we studied the effect of varying ngs, γbase and δ by performing a
limited random search among reasonable ranges of values. The selected configurations and the
associated performances can be seen in Figure 2.8. In particular, we generated a hundred unique
combinations for ngs ∈ {25, 50, 75, 100}, γbase ∈ [0.1, 0.5] discretized with steps of 0.025, and δ ∈
[0.1, 1] discretized with steps of 0.05. As expected, a larger value for ngs is generally associated
with a better final solution quality. However, the associated computing time increment provides
only an extremely limited gap improvement.

In our implementation, we selected configuration 40 (ngs = 25, γbase = 0.25, and δ = 0.5)
because it allows solutions of very good quality in a relatively short computing time. We classi-
fied those Pareto optimal configurations producing an average gap lower than or equal to 0.55%
within a computing time not longer than 5 minutes as high-performing, and the remaining as
low-performing; thus we obtained a dataset of 14 high-performing and 16 low-performing con-
figurations. We gained some insights about the granular-related characteristics of these con-
figurations by analyzing a simple J48 decision tree trained with WEKA 3.8 (Frank, Hall, and
Witten (2016)) on the above dataset. A configuration can be classified as high-performing with
an accuracy of about 97% if ngs ≤ 50 ∧ 0.12 < γbase ≤ 0.35 or ngs > 50 ∧ γbase ≤ 0.15. Appar-
ently, δ does not provide useful insights for classifying configuration performances. These rules
suggest that a very aggressive sparsification is preferable for obtaining reasonably good results
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Figure 2.8: Tuning of ngs, γbase, and δ. In the top row, the configurations we
considered in the random search. In the bottom row, the performance associated
with each configuration obtained by running FILO with the configuration
values. Only the best configurations are numbered; seven suboptimal ones, with
computing times greater that 15 minutes, are omitted.

in short computing times. The reason may be related to the neighbor acceptance strategy used
in FILO that is based on a simulated annealing rule. In fact, the current search trajectory may
be far worse than the current best solution, thus making additional core optimization iterations
more convenient than very accurate neighborhood explorations.

As suggested in several papers, we then studied the effect of including arcs incident into the
depot in the sparsified set.We considered the set T0 = ∪i∈Vc{(i, 0)(0, i)} and defined T′ = T ∪
T0, where T is the set of move generators defined in Section 2.2.2. Moreover, we defined the
dynamic set of move generators Tγ0

0 = {(i, 0), (0, i) : i ∈ N k(Vc)} ⊆ T0 with k = ⌊γ0 · |Vc|⌉. The
new complete set of dynamic move generators is thus T′γ = Tγ ∪ Tγ0

0 . Note that, by filtering
each set separately, we avoid the possibility that one set completely overshadows another in
case it considers shorter arcs. The average gap obtained by running FILO with this new set of
move generators was 0.51%, compared to the 0.49% obtained with move generators defined by
the rule of Section 2.2.2. Moreover, the computing time was approximately 115% larger (i.e.,
3.70 minutes compared to 1.72). In light of this result, including all arcs incident into the depot
may not be appropriate when moving to very large-scale instances.

Finally, we compared the vertex-wise management of move generators with the more standard
one, in which after a number of δ · ∆CO nonimproving iterations the total number of active
move generators is doubled; i.e., γi = min{γi · λ, 1}, i ∈ V. When a solution improving the
current best solution is identified, all sparsification factors are reset; i.e., γi = γbase, i ∈ V. By
running FILO with move generators managed in the standard way we obtained a gap of 0.51%
compared to a gap of 0.49% with the vertex-wise management, and computing times were
similar. However, we believe both strategies to be equally effective when properly tuned. To
conclude, the proposed vertex-wise management of move generators might be a reasonable and
effective alternative generalization of the standard one and better fits the localized optimization
design of FILO.
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Figure 2.9: Tuning of C. Computational results (left) and local search statistics
(center, right) obtained by running FILO with the associated C value.

2.4.5 Selective Vertex Caching

The dimension of the cache C may considerably affect the overall algorithm outcome by indi-
rectly acting on the different components employed: a smaller C value will promote a milder
shaking intensity. In fact, most of the customers involved in stronger shakings would not be
considered by subsequent local search application because they are no longer cached, due to
the limit imposed by C. Furthermore, a low C value would cause the local search to perform
fewer improvements per iteration, reducing the likelihood of improving the best solution S∗.
As a result, sparsification factors γi, i ∈ V might reach larger values compared to scenarios us-
ing a larger C. Figure 2.9 illustrates the average performance of FILO and statistics related to
the local search execution as C is varied.

In our implementation, we selected C = 50 because it produces solutions of a quality compara-
ble to larger values but with shorter computing times. Note, however, that the SVC and shaking
guiding strategy are highly interconnected components. In fact, even when C >> 100, results
and statistics remain comparable to those with C ≈ 100, because of the limits on the number of
ruined customers imposed by the shaking guiding strategy.

Figure 2.10 provides a number of hints about the scalability of FILO.

In fact, we observed that the number of moves explored by the local search, as well as its average
application time, does not depend on the instance size. There is, however, a positive correlation
between the number of routes and the number of explored moves.

Finally, we tested FILO without the SVC: we set C = |V| and included all vertices in the cache
(never removing them). Recall that, normal cache behavior requires that it be emptied at the
beginning of each improvement iteration. Several components make use of the cache to identify
areas where it may be worth working. In this scenario, the update of the shaking parameters
will try to identify a set of values that are globally good. The average results were comparable
with those with C = 50 and the cache enabled: the average gap was 0.50%, but the computing
time increased by a factor of ten, increasing to 20.15 minutes.

2.4.6 Extreme Runs

In this section we investigate whether allowing longer computations is enough to improve the
quality of final solutions. This question is partially answered by the computational results of
Section 2.3, where we considered the FILO (long) version. In addition we performed an even
longer run by setting ∆CO = 107. The average gap for the subset of large instances of the X

decreased from the 0.30% with FILO (long) to 0.19% in 183.74 minutes. Moreover, we found
three new best solutions. The increment in the computing time remains quite constant: i.e.,
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Figure 2.10: Statistics for local search operators while varying the instance size
and the nominal number of routes defined in the X instance name.

increasing the number of iterations by a factor of ten increases the computing time about ten
times. Full details are given in Section A.3 of the Appendix.

Finally, we studied whether performing a larger number of runs per instance drastically changes
the average result and computing time. To this end, we compared the results obtained on the
large scale X instances in 50 runs (described in Section 2.3.3) with the results obtained by per-
forming 100 runs. Seeds were selected as described in Section 2.3.1. The average gap (rounded
to two decimal places) when performing 100 runs increased to 0.51% and the computing time
remained the same; see Figure 2.11.

To better assess whether there was a statistically significant difference among the averages be-
tween runs with seeds 0–49 and runs with seeds 0–99, we performed a Wilcoxon signed-rank
test (Wilcoxon (1945)) using the R software (R Core Team (2020)). The null hypothesis states
that the two samples of averages are identical; that is, they have the same median. Both the
average gap and computing time do not statistically differ, whether performing 50 or 100 runs.
In fact, assuming a confidence level α = 0.025, the p-values are 0.977935 and 0.500047 for the
average solution quality and computing time, respectively. In both cases, the p-value is greater
than α and thus we cannot reject the null hypothesis that the samples are not statistically differ-
ent.
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Figure 2.11: Average gap and computing time comparison while varying the
number of runs per instance. The median value is shown below each boxplot.
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2.4.7 Simplified Versions of FILO

In this section, we study the behavior of two simplified versions of FILO to better understand
and assess the contribution of the main algorithmic components we developed when moving
from large- to very large-scale instances. To this end, we concentrate our analysis on the X and
B datasets.

The first version, called FILO1, complies with the initial design objectives of FILO: realizing an
effective algorithm which exhibits an almost-linear computing time growth based on a localized
and tailored local search optimization. More precisely, FILO1 contains the following changes
with respect to FILO, which will make the implementation considerably easier:

• The HRVND is replaced by a RVND, containing only simple local search operators, iden-
tified as the most effective according to Figure 2.14 of Section A.2 of the Appendix. In
particular, we selected 11EX, 10EX, TAILS and SPLIT because they have a high success rate
(greater than 45%).

• The selected neighborhoods are explored according to a best-improvement strategy, with-
out exploiting SMDs.

• The route minimization phase is never executed.

Although their implementation may be easier because of the above changes, the following com-
ponents remain the same as in FILO:

• The vertex-wise management of move generators is still used to provide a tailored inten-
sification. However, its implementation becomes trivial when SMDs are not used.

• The SVC is still used to keep the optimization localized.

• The core optimization phase remains unchanged; e.g., the shaking procedure still contains
the adaptive update of shaking parameters to perform a tailored optimization.

Note, however, that removing the SMDs means that the cache size becomes a hard constraint,
and each neighborhood exploration will only consider those moves for which at least one of the
vertices is cached.

The second version, called FILO0, further simplifies FILO1 by retaining only the optimization
due to the random walk ruin-and-recreate, without the application of any local search - thus
removing all components associated with the local search engine. Each X and B instance was
solved 50 times with seeds defined as in Section 2.3.1. Parameters for the preserved compo-
nents have the same tuning as in Section 2.3.2. From the results (shown in Figure 2.12) we can
summarize that:

• FILO0, inspired by the effectiveness of the work by Christiaens and Vanden Berghe (2020),
confirms that an accurate design of a ruin-and-recreate procedure, coupled with an effec-
tive diversification strategy, may be enough to find good-quality solutions for medium
to large instances in negligible computing time. However, results on very large-scale in-
stances show that, given the same number of iterations, other strategies are necessary to
improve the effectiveness of the method.

• FILO1, given enough iterations, proved to be competitive with FILO on the X dataset.
However, it is not always Pareto-optimal on the largest B instances. The reduced number
of local search operators thus has a significant impact for the proposed algorithm when
moving to very large-scale instances. Finally, the SVC and GNs allow us to limit the
computing time of FILO1 considerably, because the filtering of GNs is fairly aggressive
with the proposed parametrizations. We strongly suggest, however, the adoption of SMDs
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Figure 2.12: Performance comparison of FILO variants on the X (left) and B

(right) instances.

in VND settings, which would allow considerable savings in the computational effort (see,
Zachariadis and Kiranoudis (2010) and Beek et al. (2018)). In fact, the computing time of
FILO1 is reduced in average of about 10% when the implementation exploits SMDs even
if using few local search operators and very aggressive neighborhood filtering strategies.

2.5 Conclusions

In this chapter, we presented FILO: an effective and scalable algorithm for the CVRP. The pro-
posed algorithm combines an efficient implementation of existing speedup techniques for local
search engines together with several new algorithmic components whose role and impact are
extensively analyzed. In particular, FILO performs its main improving action by re-optimizing
a very limited area that was previously disrupted by a localized shaking application. The shak-
ing is performed in a ruin-and-recreate fashion and guided by a meta-strategy that iteratively
tailors the ruin intensity to the current instance and solution. A sophisticated implementa-
tion of a local search engine then re-optimizes the disrupted area by means of a number of
interconnected components, both novel and revisited, which characterize the effectiveness and
scalability of the proposed algorithm. More precisely:

• An innovative Selective Vertex Caching strategy is used to focus the optimization process
on solution areas that were recently changed.

• Dynamic Granular Neighborhoods (GN), managed in a more general way than was orig-
inally proposed by Toth and Vigo (2003), are used to identify a number of promising
neighbor solutions by intensifying the search only where it is more required.

• A considerable number of local search operators are implemented using the Static Move
Descriptors (SMD), and structured into a Hierarchical Randomized Variable Neighbor-
hood Descent to actually perform the improvements.

• A new adaptive shaking strategy is proposed to iteratively modulate the intensity of the
shaking based on the quality and structure of instances and solutions.

Despite the exploration of several neighborhoods, the method is still very fast, thanks to an
accurate design; it also greatly benefits from the above-mentioned acceleration and pruning
techniques. Moreover, FILO exhibits a computing time that grows linearly with respect to the
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instance size, making it very suitable for solving very large-scale instances without sacrificing
the quality of the final solutions. In fact, it was able to find several new best solutions for very
large-scale instances and two new best solutions for the well-studied X dataset proposed by
Uchoa et al. (2017).

The effectiveness and potential of the new algorithmic components proposed in FILO are fur-
ther assessed by analyzing two simplified versions, which maintain the main elements of FILO
listed above, but are considerably easier to implement. The first one does not make use of SMDs
to speed up the local search and removes some minor components, such as the route minimiza-
tion step. In contrast, the second one, inspired by the effective algorithm of Christiaens and
Vanden Berghe (2020), completely removes the local search engine and only performs a ruin-
and-recreate, while adopting the diversification and intensification strategies of FILO. Overall,
the simplified versions proved able to obtain very good solutions thanks to the contribution of
the new components, particularly on medium and large instances. However, the combination
of these new ideas with the faster execution provided by the combination of GNs and SMDs
in the local search engine leads to an algorithm which is able to obtain much better solutions
than the simplified versions, within the same amount of time. In addition, the computational
requirement of FILO grows almost linearly with the instance size, so it is possible to efficiently
solve very large-scale instances with much shorter computing times than the existing methods
from the literature.
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A Algorithmic Components Analysis: Additional Material

This section contains additional material related to the Algorithmic Components Analysis Sec-
tion.

A.1 Initial Solution Definition

Consider the scenario depicted in Figure 2.13, showing a single run for instance X-n936-k136.
This example illustrates the evolution of the route minimization procedure with ∆RM = 1000 on
the left and of the core optimization procedure with ∆CO = 5000 on the right. Both procedures
ran for about three seconds and were applied to the same starting solution generated by the
construction phase. By moving into the infeasible space, the route minimization procedure is
very effective in quickly improving and compacting trivially bad initial solutions. However,
since its structure is specifically designed to reduce the number of routes, the improvements
vanish after a few hundred iterations.
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Figure 2.13: Example of improvement procedures evolution when applied to the
same initial solution for instance X-n936-k151. The continuous line shows the
cost (top) and number of routes (bottom) associated with the best solution (in
terms of cost) found up to that iteration; dots represents the current search
trajectory. Gray and black dots are associated with infeasible and feasible
solutions, respectively.

A.2 Local Search

Figure 2.14 shows, for each local search operator applied to a shaken solution, the gap improve-
ment when successfully applied, the application time in 10−6 seconds, and the success ratio
computed as the number of improving applications over the total number of attempts. Simi-
larly, Figure 2.15 shows the effect of EJCH(·) when applied to solutions that are already a local
optimum for the first HRVND tier.
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Figure 2.14: Statistics for local search operators when applied to shaken
solutions. For each operator, we report the expected gap improvement when
successfully applied (left), the total exploration time (right), and the success ratio
(below each operator’s name). The median value is shown below each boxplot.
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local optima. For each operator, we report the expected gap improvement when
successfully applied (left), the total exploration time (right), and the success ratio
(below each operator’s name). The median value is shown below each boxplot.

A.3 Extreme Runs

Table 2.7 shows the results we obtained by setting ∆CO = 107.

A.4 Computations with Limited Memory Footprint

Random access memory (RAM) is relatively cheap nowadays, and large amounts are easily
supported, even by low-cost laptops. Time, on the other hand, is much more valuable; new
chips are moving to massive parallelization rather than an increase in their working frequency.
Solution methods, however, seldom make use of parallel processing to solve a single instance,
even though this approach might be a very interesting, yet challenging, research direction for
very large-scale instances. We can thus state that the real bottleneck is probably not the amount
of available RAM, but the computing time used to solve an instance. Indeed, the largest instance
we considered, F2 from the B dataset, with thirty thousand vertices, can be easily processed on
a laptop with 16GB of RAM. During the main core optimization procedure, only about 66% of
the available RAM would be used. Despite the fact that RAM is not currently a limiting factor, in
this section we investigate the behavior of FILO when the cost matrix, which is one of the most
RAM-consuming data structures we use, is not stored but, instead, arc costs are computed on
demand. In this case, the computing time increases by about 52% (i.e., from 1.72 minutes to 2.60
minutes). As an example, without storing the cost matrix, the F2 instance’s RAM requirements
drop from 10.56 GB to 3.68GB. This may allow the algorithm to be applicable to instances even
larger than the one we considered. An alternative, more sophisticated, method proposed in
Arnold, Gendreau, and Sörensen (2019), consists of storing a number of arcs connecting close
vertices that are supposed to be used more frequently than others, in a hashmap.
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ID BKS Best Avg Worst t

X-n502-k39 69226 0.00 0.01 0.04 262.65
X-n513-k21 24201 0.00 0.07 0.16 222.27
X-n524-k153 154593 0.01 0.14 0.27 146.99
X-n536-k96 94868 0.50 0.60 0.71 161.76
X-n548-k50 86700 0.01 0.02 0.09 207.85
X-n561-k42 42717 0.08 0.20 0.28 138.73
X-n573-k30 50673 0.12 0.22 0.26 205.74
X-n586-k159 190316 0.20 0.25 0.31 181.93
X-n599-k92 108451 0.15 0.22 0.33 189.87
X-n613-k62 59545 0.12 0.20 0.39 121.34
X-n627-k43 62173 0.03 0.12 0.32 198.31
X-n641-k35 63705 0.05 0.11 0.18 206.51
X-n655-k131 106780 0.00 0.02 0.03 378.73
X-n670-k130 146332 0.50 0.64 0.90 136.33
X-n685-k75 68225 0.17 0.34 0.52 142.94
X-n701-k44 81923 0.03 0.11 0.35 163.87
X-n716-k35 43387 0.09 0.16 0.29 176.98
X-n733-k159 136190 0.06 0.13 0.20 135.04
X-n749-k98 77314 0.15 0.25 0.38 141.90
X-n766-k71 114456 0.16 0.27 0.34 156.24
X-n783-k48 72394 0.10 0.17 0.26 191.01
X-n801-k40 73331 -0.03 0.09 0.15 188.16
X-n819-k171 158121 0.39 0.44 0.53 141.35
X-n837-k142 193737 0.12 0.21 0.26 191.22
X-n856-k95 88990 0.01 0.07 0.13 188.52
X-n876-k59 99303 0.11 0.16 0.24 176.58
X-n895-k37 53928 -0.04 0.13 0.31 189.72
X-n916-k207 329179 0.19 0.23 0.31 200.72
X-n936-k151 132812 0.16 0.26 0.38 127.16
X-n957-k87 85469 -0.00 0.06 0.11 195.38
X-n979-k58 118988 0.05 0.16 0.24 244.49
X-n1001-k43 72369 0.06 0.17 0.27 169.54

Mean 0.11 0.19 0.30 183.74

Table 2.7: Long computations on large-sized X instances.
New best solutions: (X-n801-k40, 73311);(X-n895-k37, 53906);(X-n957-k87, 85467).
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B Move Generators and Static Move Descriptors

Efficiently managing move generators is crucial for any local search-based algorithm making
use of GNs. In addition, flexibility might be required when experimenting different sparsifi-
cation rules and composition of them, as we did in the analysis proposed in Section 2.4.4. In
the following sections, we first discuss a flexible but still efficient implementation of move gen-
erators for the symmetric CVRP, supporting the union of different sparsification rules and a
vertex-wise dynamic management. Then, we show how it can be used to efficiently implement
SMD-based local search operators.

B.1 Move Generators: Storage and Management

Given a set R of sparsification rules, the complete set of move generators T is defined by
the union of a number of move generator sets Tr, each one defined by a sparsification rule
r ∈ R; that is, T =

∪
r∈R Tr. Each set Tr may be filtered according to a sparsification vector

γ = (γ0, γ1, . . . , γN) defining, for each vertex i ∈ V, a percentage γi ∈ [0, 1] of move gener-
ators in Tr to be considered as active. More precisely, the dynamic set of move generators Tγ

r
filtered according to γ is defined as Tγ

r =
∪

i∈V{(i, j), (j, i) : j ∈ V ∧CONDITION(i, j, γi)}, where
CONDITION(i, j, γi) is a criterion that determines whether (i, j) and (j, i) are active based on the
value of γi.

In the following, we describe a possible implementation of the above defined general frame-
work for move generators. An illustrative example, representing the implementation of a set of
move generators T defined by the union of two sparsification rules r0 and r1, is shown in Figure
2.16.

A list of move generators L(T) is built by considering unique move generators defined by the
different sparsification rules r ∈ R. By denoting with L(T)ℓ the move generator (i, j)ℓ indexed
by ℓ in L(T), we structured the list L(T) so as to satisfy:

1. L(T)ℓ = (i, j)ℓ ∧ L(T)ℓ+1 = (j, i)ℓ+1 for each even index ℓ;

2. L(T) /∋ (i, i), ∀i ∈ V.

Condition 1 asks that both (i, j) and (j, i) are considered. This ensures the evaluation of a con-
sistent set of moves when exploring asymmetric neighborhoods. Moreover, (i, j) and (j, i) are
stored contiguously into L(T) so that given a move generator indexed by ℓ, its reversed coun-
terpart can be efficiently retrieved, when necessary. Finally, Condition 2 discards self-moves
which are typically not used in local search procedures.

A number of lists L(Tr, v), one for each vertex v ∈ V, is associated with each sparsification
rule r ∈ R. Those lists identify a portion of L(T) consisting of move generators (i, j) ∈ Tr. In
particular, each list L(Tr, v) keeps track of the even indices ℓ of move generators (i, j)ℓ such that
v = i or v = j. Because of Condition 1 on L(T), it is not necessary to store the index of the
counterpart of (i, j) that can be found accessing L(T)ℓ+1.

In addition, each list L(Tr, i), along with indices ℓ, stores an inclusion percentage value priℓ
used to define whether move generators (i, j)ℓ and (j, i)ℓ+1 are active according to the current
sparsification factor γi. More precisely, the above defined CONDITION(i, j, γi) is implemented
as CONDITION(i, j, γi) = priℓ ≤ γi where ℓ is the even index pointing to move generator L(T)ℓ
having i and j as endpoints.

Depending on how the inclusion percentage values are defined we can model the classical or
the vertex-wise management of the dynamic move generators for a sparsification rule r ∈ R.
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Figure 2.16: Implementation of the list L(T) of move generators defined by two
sparsification rules r0 and r1. Two move generators (i, j) and (j, i) indexed ℓ and
ℓ+ 1 respectively, are explicitly shown. As can be seen, those move generators
are defined by both sparsification rules and the associated entry in the lists point
to the same shared entry in L(T). The inclusion percentages pr0iℓ and pr1 jℓ might
however cause those move generators to be active at different times according to
the value of γi and γj.

In the classical management ∑i∈V ∑ℓ∈L(Tr ,i) priℓ = 1 whereas in the vertex-wise management
∑ℓ∈L(Tr ,i) priℓ = 1 for each i ∈ V.

The complete dynamic set of move generators can thus be addressed by iterating over each
sparsification rule r ∈ R, each vertex i ∈ V, each list L(Tr, i), and considering move generators
(i, j)ℓ and (j, i)ℓ+1 such that priℓ ≤ γi.

Note that by storing indices instead of move generators, different sparsification rules identify-
ing the same subset of move generators would point to the same entry of L(T).

In our implementation, the Sparsification Rule r0 described in Section 2.2.2 is implemented
by defining pr0vℓ = n/|L(Tr0 , v)|, where n is the index of move generator ℓ in a list of move
generators (i, j) ∈ L(Tr0 , i) sorted in increasing cij cost. The additional Sparsification Rule r1
employed in the analysis of Section 2.4.4 defines instead pr1vℓ = n/|Tr1 |, where n is the index of
move generator ℓ in a list of move generators (i, j) ∈ L(Tr1) sorted in increasing cij cost.

B.2 An Abstract SMD-based Local Search Operator

The general structure of all SMD-based local search operators we used is shown in Algorithm
7. Note that, as mentioned in Section 2.2.2, we use the terms SMD and move generator inter-
changeably.

First, during a pre-processing step, additional computation useful for the actual neighborhood
exploration may be executed. As an example, TAILS and SPLIT benefit from pre-computing
route cumulative loads.

A heap data structure H is initialized with the currently active move generators according to
the sparsification vector γ, and such that at least one of the endpoints belongs to the set V̄S
of cached vertices for the solution S under examination. In particular, those move generators,
denoted by Tγ(S), can be easily retrieved by using the data structures defined in Section B.1
and, more specifically, Tγ(S) =

∪
r∈R,i∈V̄S

{(i, j)ℓ : priℓ ≤ γi, ℓ ∈ L(Tr, i)}. When dealing with
local search operators defining asymmetric neighborhoods, both (i, j)ℓ and (j, i)ℓ+1 have to be
included. Given condition 1 on list L(T) defined in Section B.1, this can be done by setting
Tγ(S) = Tγ(S) ∪∪

r∈R,i∈V̄S
{(j, i)ℓ+1 : priℓ ≤ γi, ℓ ∈ L(Tr, i)}.
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For each move generator (i, j) ∈ Tγ(S), the δ-tag δ(i, j), identifying the effect of the application
of the move induced by (i, j) on S, is computed. Every (i, j) inducing an improving move
(i.e., δ(i, j) < 0) is inserted into the heap data structure H. By only inserting improving move
generators, the heap computational complexity is kept at its minimum.

The heap H is linearly scanned until a feasible move is found. If such a move cannot be found,
then S is considered to be a local optimum with respect to the local search operator under
examination. Note that by heuristically restricting the initialization stage to only consider move
generators involving vertices in V̄S some improvement may be overlooked, but, as shown by
the experiments in Section 2.4.5, this does not significantly affect the final solution quality.

Once a move generator (i, j) inducing a feasible and improving change to S is found, a list A of
operator-dependant affected vertices is assembled. The application of (i, j) during the execute
stage will change some of the δ-tag of move generators involving vertices in A.

The update stage recomputes the δ-tag for active move generators U(i,j) =
∪

r∈R,i∈A{(v1, v2)ℓ :
ℓ ∈ L(Tr, i)∧ (v1 = i∨ v2 = i)∧ priℓ ≤ γi}. In case of an asymmetric neighborhood, the updates
are extended to U(i,j) = U(i,j) ∪

∪
r∈R,i∈A{(v2, v1)ℓ+1 : ℓ ∈ L(Tr, i) ∧ (v1 = i ∨ v2 = i) ∧ priℓ ≤

γi}. For each move generator requiring an update (v1, v2) ∈ U(i,j), the following cases are
possible:

• (v1, v2) is removed from the heapH if (v1, v2) ∈ H and δ(v1, v2) ≥ 0;

• (v1, v2) is inserted into the heapH if (v1, v2) ̸∈ H and δ(v1, v2) < 0;

• the heap property is checked and possibly restored if (v1, v2) ∈ H and δ(v1, v2) < 0;

• finally, (v1, v2) is ignored if (v1, v2) ̸∈ H and δ(v1, v2) ≥ 0.

Since different sparsification rules may refer to the same move generators, a timestamp as-
sociated with each move generator (i, j) can be used to avoid evaluating it more than once,
both in the initialization and in the update stages. Note that also when using a single spar-
sification rule r, a double evaluation may occur when i, j ∈ A and Tℓ = (i, j)ℓ is such that
ℓ ∈ L(Tr, i) ∧ priℓ < γi and ℓ ∈ L(Tr, j) ∧ prjℓ < γj.

Restricted Update for Asymmetric Neighborhoods. The δ-tag update of move generators
involving a vertex i ∈ A for a local search operator defining an asymmetric neighborhood may
sometimes be restricted from {(i, v2), (v1, i) : v1, v2 ∈ V} ∩ Tγ to only one between {(i, v2) :
v2 ∈ V} ∩ Tγ and {(v1, i) : v1 ∈ V} ∩ Tγ. As an example, consider the 30EX application shown

Algorithm 7 Abstract SMD-Based Local Search Operator
1: procedure APPLY(S, Tγ)
2: PREPROCESS(S)
3: H ← INITIALIZATION(S, Tγ)
4: n← 0
5: while n < len(H) do
6: (i, j)← PEEK(H, n)
7: n← n + 1
8: if ¬ISFEASIBLE(S, (i, j)) then continue
9: A← AFFECTEDVERTICES(S, (i, j))

10: S← EXECUTE(S, (i, j))
11: UPDATE(H, Tγ, A)
12: n← 0
13: end while
14: end procedure
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Figure 2.17: A 30EX application induced by move generator (i, j) relocating path
(π2

i − i) between πj and j. Some SMDs involving vertices in the gray area
require an update to their δ-tag after the move execution.

in Figure 2.17. The set of affected vertices is A = {π3
i , π2

i , πi, i, σi, σ2
i , σ3

i , πj, j, σj, σ2
j }. However,

not all move generators {(i, j), (j, i) : i ∈ A, j ∈ V} ∩ Tγ have to be updated. For example,
considering vertex π3

i , move generators (π3
i , j), j ∈ V require an update since the successor of

π3
i changes after the move execution, however, move generators (j, π3

i ), j ∈ V do not, in fact, the
predecessor of π3

i remains the same. For operator 30EX (and ignoring the current sparsification
level), the total number of move generators requiring an update after a 30EX application can be
reduced of approximately 36%.

Finally, we refer to Section B.3 of the Appendix for the operator-dependant definitions of the
feasibility check, the assembly of the list A of vertices, the restricted update and the execution
stage.

Dynamic Vertex-wise Move Generators for SMD-based Local Search Operators

Vertex-wise management of move generators requires a little extra care for the SMD update
stage to be correctly performed. To highlight this, consider a scenario in which a vertex j is
currently marked as cached at the beginning of a neighborhood exploration for a solution S;
that is, j ∈ V̄S. An illustrative example is shown in Figure 2.18. The figure represents a portion
of an instance with six customers together with a number of move generators depicted as lines
ending with little circles. In particular, for a move generator (v1, v2), a full circle near to v1
means that the move generator is currently active in v1, i.e., prv1ℓ ≤ γv1 where ℓ is the index of
(v1, v2)ℓ in L(T), while an empty circle represents the opposite scenario, i.e., prv1ℓ > γv1 . In the
example, (i, j) is active in j but not in i. Finally, the grayed area identifies the set V̄S of currently
cached vertices for S.

During the SMD initialization stage, move generators involving vertices in V̄S are considered
to be inserted into the heap data structure H. Suppose that, because inducing an improving

bc

bcbc

bc j

V̄S bc

bc
i

v

Figure 2.18: A portion of an instance containing six customers (circles) and five
move generators (lines). A move generator (v1, v2)ℓ active in v1, i.e., prv1ℓ ≤ γv1 ,
is represented with a full circle near to v1, whereas an empty circle denotes the
opposite, i.e., prv1ℓ > γv1 . As an example (i, j) is active in j but not in i. The
direction of move generators is not shown because not relevant.
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move and currently active in j, move generator (i, j) along with with other improving move
generators including (i, v) are inserted into H. During the SMD search stage, move generator
(i, v) is found feasible before the evaluation of (i, j). The move induced by (i, v) is then applied
and a number of affected vertices A may be such that i ∈ A but j ̸∈ A. Note that i shares
(i, j) with j but (i, j) is not currently active in i because of the sparsification factor γi. The SMD
update stage requires that, from each vertex v ∈ A active move generators are updated. Should
(i, j) still be updated even if not active in i? The answer is yes. Being (i, j) active in j, it may be,
as described in this scenario, already into the heap H and possibly be extracted during future
search stages. In fact, being i among the affected vertices A as a result of the application of (i, v),
the δ-tag of any move generator involving a vertex v ∈ A requires an update, and hence (i, j)
does. On the other hand, if (i, j) were not active in both j and i, updating it after (i, v) was not
required because it could have never been inserted intoH.

The dynamic management of vertex-wise move generators may thus require the update of
move generators that are not active in one of the affected vertices but only active in the other
endpoint that may not be in the list of vertices affected by the move application. A possible
implementation uses two additional flags per move generator (i, j) storing whether it is active
in i and/or in j. During the SMD update stage the flags are checked to identify whether an
update is required.

Finally, note that this approach works correctly under the assumption that the sparsification
vector γ is not changed during a neighborhood exploration.

B.3 SMD Implementation Details of Local Search Operators

In the following, we provide a detailed description of the implementation for the local search
operators used in FILO. In particular, we detail the operator-dependant procedures to be de-
fined when applying a move induced by a move generator (i, j) within an SMD-based operator.
To better accomplish this, we introduce few additional notation elements. In particular, we de-
note by πℓ

i and σℓ
i the ℓth- predecessor and successor of vertex i ∈ V, respectively, in the solution

under examination. We omit the apex when ℓ = 1. Moreover, we identify with qup
i and q f rom

i the
cumulative load up to and from any customer i ∈ Vc included, i.e., qup

i = qi + qπi + qπ2
i
+ . . .+ q0

and q f rom
i = qi + qσi + qσ2

i
+ . . . + q0. In the following paragraphs, a figure is shown for each

local search operator highlighting the move induced by a move generator (i, j) and the set of
vertices affected by its application (grayed area). Note that the move generator direction does
not necessarily reflect the crossing direction in the resulting route. Finally, as defined in Sec-
tion 2.2.2, path is used to refer to a contiguous sequence of vertices belonging to a route, and
head and tail are used to denote a path belonging respectively to the initial and final part of a
route.

TWOPT

Replace a path of vertices with its reverse.

bc bcrs i σi

jσj

bc bc

• Type: symmetric.
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• Pre-processing: none.

• Cost computation: δij = −ciσi + cij − cjσj + cσiσj .

• Feasibility Check: ri = rj.

• Update List: all vertices between i and σj, for which successors and predecessors change
after the move application.

• Execution: reverse the path between σi and j included.

SPLIT

Replace the tail of route ri with the reversed head of route rj and replace the head of route rj
with the reversed tail of route ri.

bc bcrs i σi

j σj

bc bcrs rs

rs

• Type: symmetric.

• Pre-processing: compute qup
i and q f rom

i for any customer i ∈ Vc.

• Cost Computation: δij = −ciσi + cij − cjσj + cσiσj .

• Feasibility Check: (ri ̸= rj) ∧ (qup
i + qup

j ≤ Q) ∧ (q f rom
σj + q f rom

σi ≤ Q).

• Update List: all vertices from i to the depot and from the depot to σj, for which successors
and predecessors change after the move application.

• Execution: replace (i, σi) and (j, σj) with (i, j) and (σi, σj) and reverse paths from depot to j
and from σi to depot. Update the cumulative load qup

v and q f rom
v for customers v belonging

to ri and rj, if not empty.

TAILS

Swap the tails of two different routes.

rs i σi

jπj

bc

bc

bc

bcrs

• Type: asymmetric.

• Pre-processing: compute qup
i and q f rom

i for any customer i ∈ Vc.

• Cost Computation: δij = −ciσi + cij − cjπj + cπjσi .

• Feasibility Check: (ri ̸= rj) ∧ (qup
i + q f rom

j ≤ Q) ∧ (qup
πj + q f rom

σi ≤ Q).



54 Chapter 2. Heuristic Solution of Large-Scale CVRPs

• Update List: i, σi, j and πj.
The update can be restricted to move generators {(i, v), (v, σi), (v, j), (πj, v) : v ∈ V} ∩ Tγ.

• Execution: replace (i, σi) and (πj, j) with (i, j) and (πj, σi). Update the cumulative load

qup
v and q f rom

v for customers v belonging to ri and rj, if not empty.

n0EX with n ≥ 1

Relocate a path of n vertices within the same or into a different route.

i σi

jπj

bc
σn
iπn

i

bc

bc

bcbc

bc

rs

rs

bc

π
n−1

i

σn−1

j

bc

• Type: asymmetric.

• Pre-processing: none.

• Cost Computation: δij = −cπn
i πn−1

i
− ciσi − cjπj + cπn

i σi + cπjπ
n−1
i

+ cij.

• Feasibility Check: logical disjunction of

– (ri = rj) ∧
∧n−1

ℓ=1 (j ̸= πℓ
i ) ∧ (j ̸= σi).

When ri = rj and
∨n−1
ℓ=1 j = πℓ

i , the path to relocate overlaps with the destination position.
When ri = rj and j = σi, the move does nothing but the δij computation is not correct.

– (ri ̸= rj) ∧ (i ̸= 0) ∧∧n−1
ℓ=1 (π

ℓ
i ̸= 0) ∧ (qrj + qi + ∑n−1

ℓ=1 qπℓ
i
≤ Q).

The condition makes sure the depot is not relocated and the capacity constraint of the target route is
respected.

• Update List:
∪n

ℓ=1 πℓ
i ∪ i ∪∪n

ℓ=1 σℓ
i ∪ πj ∪ j ∪∪n−1

ℓ=1 σℓ
j .

The update can be restricted to move generators

– {(πn
i , v), (πn−1

i , v), (v, πn−1
i ) : v ∈ V} ∩ Tγ;

– {(πℓ
i , v) : ℓ = n− 2, . . . , 1 and v ∈ V} ∩ Tγ;

– {(i, v) : v ∈ V} ∩ Tγ;

– if n = 1 include {(v, i) : v ∈ V} ∩ Tγ;

– {(σi, v), (v, σi) : v ∈ V} ∩ Tγ;

– {(σℓ
i , v) : ℓ = 2, . . . , n and v ∈ V} ∩ Tγ;

– {(πj, v) : v ∈ V} ∩ Tγ;

– {(j, v), (v, j) : v ∈ V} ∩ Tγ;

– {(σℓ
j , v) : ℓ = 1, . . . , n− 1 and v ∈ V} ∩ Tγ.

• Execution: replace (πn
i , πn−1

i ), (i, σi) and (j, πj) with (πn
i , σi), (πn−1

i , πj) and (i, j).

n0REX with n ≥ 2

Relocate a reversed path of n vertices within the same or into a different route.
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i σi

j

bc
σn
i

σj

πn
i

bc

bc

bcbc

bc

rs

rs

bc

πn−1

i

bc
σn
j

• Type: asymmetric.

• Pre-processing: none.

• Cost Computation: δij = −cπn
i πn−1

i
− ciσi − cjσj + cπn

i σi + cσjπ
n−1
i

+ cij.

• Feasibility Check: logical disjunction of

– (ri = rj) ∧
∧n

ℓ=1(j ̸= πℓ
i ).

When ri = rj and
∨n−1
ℓ=1 j = πℓ

i , the path to relocate overlaps with the destination position.
When ri = rj and j = πn

i , the move could be reduced to a TWOPT induced by move generator (j, i) but
would require a special handling in this context.

– (ri ̸= rj) ∧ (i ̸= 0) ∧∧n−1
ℓ=1 (π

ℓ
i ̸= 0) ∧ (qrj + qi + ∑n−1

ℓ=1 qπℓ
i
≤ Q).

The condition makes sure the depot is not relocated and the capacity constraint of the target route is
respected.

• Update List:
∪n

ℓ=1 πℓ
i ∪ i ∪∪n

ℓ=1 σℓ
i ∪ j ∪∪n

ℓ=1 σℓ
j .

The update can be restricted to move generators

– {(πℓ
i , v), (πℓ

i , v), (i, v), (v, i) : ℓ = n, . . . , 1 and v ∈ V} ∩ Tγ;

– {(σℓ
i , v), (σℓ

j , v) : ℓ = 1, . . . , n and v ∈ V} ∩ Tγ;

– {(j, v), (v, j) : v ∈ V} ∩ Tγ.

• Execution: replace (πn
i , πn−1

i ), (i, σi) and (j, σj) with (πn
i , σi), (πn−1

i , σj) and (i, j).

nmEX with 1 ≤ m ≤ n

Swap a path of n vertices with a path of m vertices within the same or between different
routes.

i σi

jπj

πn
i

bcbcrs

rs

πn−1

i

bc bc

πm
j

bc

σ
max{n,m+1}
i

bc bc bc bc

σ
max{n−1,m}
j

π
m+1

j

bc

• Type: asymmetric.

• Pre-processing: none.

• Cost Computation: δij = −cπn
i πn−1

i
− ciσi − cπm+1

j πm
j
− cjπj + cπn

i πm
j
+ cπjσi + cπm+1

j πn−1
i

+ cij.

• Feasibility Check: logical disjunction of

– (ri = rj) ∧
∧n−1

ℓ=1 (j ̸= πℓ
i ) ∧

∧m+1
ℓ=1 (j ̸= σℓ

i ).
When ri = rj and

∨m
ℓ=1 j = σℓ

i ∨
∨n−2
ℓ=1 j = πℓ

i , the paths overlap.
When ri = rj and j = σm+1

i , the move could be reduced to a m0EX induced by move generator (σi, πn−1
i )

or to a n0EX induced by move generator (i, j) but would require a special handling in this context.
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When ri = rj and j = πn−1
i , vertex j is at the same time part of the path to move and destination of the

movement.

– (ri ̸= rj)∧ (i ̸= 0)∧∧n−1
ℓ=1 (π

ℓ
i ̸= 0)∧∧m

ℓ=1(π
ℓ
j ̸= 0)∧ (qrj + qi +∑n−1

ℓ=1 qπℓ
i
−∑m

ℓ=1 qπℓ
j
≤

Q) ∧ (qri − qi −∑n−1
ℓ=1 qπℓ

i
+ ∑m

ℓ=1 qπℓ
j
≤ Q).

The condition makes sure the depot is not relocated and the capacity constraints are not violated.

• Update List:
∪n

ℓ=1 πℓ
i ∪ i ∪∪max{n,m+1}

ℓ=1 σℓ
i ∪

∪m+1
ℓ=1 πℓ

j ∪ j ∪∪max{n−1,m}
ℓ=1 σℓ

j .
The update can be restricted to move generators

– {(πn
i , v) : v ∈ V} ∩ Tγ;

– {(πℓ
i , v) : ℓ = n− 1, . . . , 1 and v ∈ V} ∩ Tγ;

– {(v, πℓ
i ) : ℓ = n− 1, . . . , n− 1−m and v ∈ V} ∩ Tγ;

– {(i, v) : v ∈ V} ∩ Tγ;

– if n−m < 2 include {(v, i) : v ∈ V} ∩ Tγ;

– {(σi, v), (v, σi) : v ∈ V} ∩ Tγ;

– {(σℓ
i , v) : ℓ = 2, . . . , n and v ∈ V} ∩ Tγ;

– {(v, σℓ
i ) : ℓ = 2, . . . , m + 1 and v ∈ V} ∩ Tγ;

– {(πm+1
j , v) : v ∈ V} ∩ Tγ;

– {(πℓ
j , v), (v, πℓ

j ) : ℓ = m, . . . , 1 and v ∈ V} ∩ Tγ;

– {(j, v), (v, j) : v ∈ V} ∩ Tγ

– {(σℓ
j , v) : ℓ = 1, . . . , n− 1 and v ∈ V} ∩ Tγ;

– {(v, σℓ
j ) : ℓ = 1, . . . , m and v ∈ V} ∩ Tγ.

• Execution: replace (πn
i , πn−1

i ), (i, σi), (πm+1
j , πm

j ) and (j, πj) with (πn
i , πm

j ), (π
n−1
i , πm+1

j ),
(πj, σi) and (i, j).

nmREX (and nmREX∗) with 1 ≤ m ≤ n

Swap a reversed path of n vertices with a path of m vertices within the same or between different
routes (nmREX). If m ≥ 2, we consider an additional variant that also reverses the path of m
vertices (nmREX∗).

rs i σi

j

rs

πn−1

i
σn
i

σj

πn
i

πm
jσm

j

bc bcbcbc bcbc
πn+m
i

bc bcbcbc bcbc
σ
m+1

jσ
n+m
j

rs i σi

j

rs

πn−1

i
σn
i

σj

πn
i

πm
jσm

j

bc bcbcbc bcbc
πn+m
i

bc bcbcbc bcbc
σ
m+1

jσ
n+m
j

• Type: asymmetric.

• Pre-processing: none.

• Cost Computation:

– nmREX∗: δij = −cπn
i πn−1

i
− ciσi − cjσj − cσm

j σm+1
j

+ cπn
i σm

j
+ cπn−1

i σm+1
j

+ cσjσi + cij.

– nmREX: δij = −cπn
i πn−1

i
− ciσi − cjσj − cσm

j σm+1
j

+ cπn
i σj + cπn−1

i σm+1
j

+ cσm
j σi + cij.
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• Feasibility Check: logical disjunction of

– (ri = rj) ∧
∧n+m

ℓ=1 (j ̸= πℓ
i ).

When ri = rj and
∨n+m−1
ℓ=1 j = σℓ

i , the paths overlap.
When ri = rj and j = σm+n

i

* nmREX∗: the move could be reduced to a TWOPT induced by move generator (j, i);

* nmREX: the move could be reduced to a n0REX induced by move generator (i, j);

but, in both cases, this would require a special handling.

– (ri ̸= rj)∧ (i ̸= 0)∧∧n−1
ℓ=1 (π

ℓ
i ̸= 0)∧∧m

ℓ=1(σ
ℓ
j ̸= 0)∧ (qrj + qi +∑n−1

ℓ=1 qπℓ
i
−∑m

ℓ=1 qσℓ
j
≤

Q) ∧ (qri − qi −∑n−1
ℓ=1 qπℓ

i
+ ∑m

ℓ=1 qσℓ
j
≤ Q).

The condition makes sure the depot is not relocated and the capacity constraints are not violated.

• Update List:
∪n+m

ℓ=1 πℓ
i ∪ i ∪∪n

ℓ=1 σℓ
i ∪

∪m
ℓ=1 πℓ

j ∪ j ∪∪n+m
ℓ=1 σℓ

j .
The update can be restricted to move generators

– {(v, πℓ
i ) : ℓ = n + m, . . . , n + 1 and v ∈ V} ∩ Tγ;

– {(πℓ
i , v), (v, πℓ

i ) : ℓ = n, . . . , 1 and v ∈ V} ∩ Tγ;

– {(i, v), (v, i) : v ∈ V} ∩ Tγ;

– {(σℓ
i , v) : ℓ = 1, . . . , n and v ∈ V} ∩ Tγ;

– {(σℓ
j , v) : ℓ = n + m, . . . , m + 1 and v ∈ V} ∩ Tγ;

– {(σℓ
j , v), (v, σℓ

j ) : ℓ = m, . . . , 1 and v ∈ V} ∩ Tγ;

– {(j, v), (v, j) : v ∈ V} ∩ Tγ;

– {(v, πℓ
j ) : ℓ = 1, . . . , m and v ∈ V} ∩ Tγ.

• Execution:

– nmREX∗: Replace (πn
i , πn−1

i ), (i, σi), (j, σj) and (σm
j , σm+1

j ) with (πn
i , σm

j ), (π
n−1
i , σm+1

j ), (σj, σi)

and (i, j). Reverse the paths between πn − 1 and i and the path between σj and σm
j .

– nmREX: Replace (πn
i , πn−1

i ), (i, σi), (j, σj) and (σm
j , σm+1

j ) with (πn
i , σj), (πn−1

i , σm+1
j ), (σm

j , σi)

and (i, j). Reverse the path between πn − 1 and i.

EJCH

Perform a sequence of 10EX applications.

i

j
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bc
bc bc

rs rs rs

bc
bc

bc

bc

bc bc
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bc
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i3

j3

i j

i1 j1

i2 j2

i3 j3
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• Type: asymmetric.

• Pre-processing: none.

• Cost Computation: same as for 10EX operator.

• Feasibility Check: a tree of nodes associated with 10EX moves is generated by using (i, j)
as tree root. A path from the tree root (i, j) to any other node in the tree is a sequence
of 10EX moves. Every sequence s stores a number of state variables defining the effect
of its application on the current solution. The goal of the feasibility check is to find a
sequence whose application generates a feasible and improving solution. In particular,
each sequence s contains

– the modified loads qs
r for each route r affected by 10EX moves of s;

– the change in the objective function δs due to the application of 10EX moves of s;

– a set F s
i storing customers that cannot be relocated because already involved in pre-

vious relocate moves within s. More precisely, the successors or predecessors of cus-
tomers in F s

i have changed in previous 10EX moves of s but the current structure
of the solution does not reflect these changes. Note, in fact, that during the feasibil-
ity check we are only simulating the 10EX effects to find a feasible and improving
sequence without really changing the solution;

– finally, a setF s
j storing customers that cannot be the target of a relocate move because

already involved in previous relocate moves within s. More precisely, the predeces-
sors of customers in F s

j have changed in previous 10EX moves of s but, as described
above, the current structure of the solution does not reflect these changes.

Note that a different handling without F s
i and F s

j would require, for each tree node asso-
ciated with a sequence s, to keep a copy of the solution.

A sequence s of 10EX moves generating a cost change δs in the objective function, ending
with a move (in, jn) that relocates customer in ∈ Vc from route rin to route rjn before vertex
jn ∈ V, is extended by scanning all customers in+1 belonging to rjn = rin+1 that satisfy the
following joint conditions:

– qs
rin+1
− qin+1 ≤ Q.

The removal of in+1 restores the feasibility of route rin+1 that was violated by the previous insertion of
jn.

– in+1 ̸∈ F s
i .

Customer in+1 can be relocated.

Every customer in+1 satisfying the previous conditions is considered as the new starting
point for a 10EX for which a potential endpoint is generated by scanning the currently ac-
tive move generators Tγ that have in+1 as the object of the relocation, i.e., {(in+1, jn+1), jn+1 ∈
Vc} ∩ Tγ. A customer jn+1 ∈ Vc belonging to route rjn+1 is selected to be the target of the
relocation if it satisfies the following joint conditions:

– jn+1 ̸= 0.
The depot alone does not allow to identify a specific route.

– rin+1 ̸= rjn+1 .
Customer in+1 is relocated into a route different from the origin one.

– δs + δin+1 jn+1 < 0.
Sequence s still provides an improvement to the objective function.
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– jn+1 ̸∈ F s
j .

Customer jn+1 can be the target of a relocation.

Every customer jn+1 satisfying the previous conditions is considered as an endpoint for
the (in+1, jn+1) 10EX move and a new tree node s′, son of the current one s, is created. State
variables of s′ are defined as follows:

– qs′
rin+1

= qs
rin+1
− qin+1 ;

– qs′
rjn+1

= qs
rjn+1

+ qjn+1 ;

– δs′ = δs + δin+1 jn+1 ;

– F s′
i = F s

i ∪ {πin+1 , in+1, σin+1 , πjn+1 , jn+1};

– F s′
j = F s

j ∪ {in+1, σin+1 , jn+1}.

The tree frontier is explored by following a best-δ-first strategy, that is, the sequence pro-
viding the greatest improvement is always extended first. This is obtained by using an
additional heap data structure managing the tree nodes. As can be inferred by the above
description, sequences are not limited in depth and the same route can be accessed by a
10EX move more than once. A limit is, however, imposed on the total maximum number
of explored tree nodes which in the proposed implementation is nEC = 25. Finally, the
feasibility check step ends as soon as a feasible sequence is found, i.e., the last 10EX move
does not violate the capacity of the target route, or the maximum number of tree nodes is
explored.

• Update List: F s∗
i with s∗ a feasible improving sequence.

For each 10EX (i, j) move generator composing the sequence s∗, the update can be restricted to move genera-
tors {(πi, v), (i, v), (v, i), (σi, v), (v, σi), (j, v), (v, j), (πj, v) : v ∈ V} ∩ Tγ

• Execution: execute the 10EX moves of a feasible sequence. Note that, due to the restrictions
imposed during the sequence space exploration, the order in which moves are executed
does not affect the final result.
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C Computational details for X instances

Detailed results about computations on the X dataset can be found in Tables 2.9 – 2.11 and
Figure 2.19. Moreover, to better assess whether the results obtained by FILO are statistically
different with respect to competing algorithms, we followed the procedure used in Christiaens
and Vanden Berghe (2020). In particular, we conducted a one-tailed Wilcoxon signed-rand test
(Wilcoxon (1945)) in which we consider a null hypothesis H0

H0 : AVERAGECOST(FILO) = AVERAGECOST(X)

and an alternative hypothesis H1

H1 : AVERAGECOST(FILO) > AVERAGECOST(X)

where X can be ILS-SP, HGSADC, KGLS, and SISR. We tested the above hypotheses on small,
medium, large and over all the instances. The p-values associated with the tested hypothesis
are shown in Table 2.8 (left). The p-values for a similar analysis in which we compared FILO
(long) with competing methods are shown in Table 2.8 (right).

A hypothesis is rejected when its associated p-value is lower than a significance level α. Failing
to reject H0 means that the average results of the two compared methods are not statistically
different. On the other hand, when H0 is rejected, the average results obtained by the methods
are statistically different and the alternative hypothesis H1 can be tested to find whether the
average results obtained by FILO are statistically greater than those of the competing method.
Rejecting H1 implies that FILO performs better than the competing method.

When performing multiple comparisons involving the same data, the probability of erroneously
rejecting a null hypothesis increases. To control these errors, the significance level α is typically
adjusted to lower values. Bonferroni correction (Dunn (1961)) is a simple method used to adjust
α when performing multiple comparisons. In particular, given n comparisons, the significance
level is set to α/n. In our case, for each FILO configuration, we tested a total number of n = 8
hypotheses corresponding to the partitioning of instances (Small, Medium, Large, and All) and
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Figure 2.19: Comparison of average gaps obtained by algorithms on the X

dataset. For each group, boxplots, from left to right, are associated with: ILS-SP,
HGSADC, KGLS, SISR, FILO, and FILO (long).
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Small

ILS-SP HGSADC KGLS SISR

H0 0.309491 0.000273 0.020427 0.064141
H1 0.154746 0.999876 0.010214 0.969381

Similar Worse Similar Similar

Medium

ILS-SP HGSADC KGLS SISR

H0 0.071754 0.001737 0.000000 0.000066
H1 0.035877 0.999183 0.000000 0.999970

Similar Worse Better Worse

Large

ILS-SP HGSADC KGLS SISR

H0 0.000335 1.000000 0.000234 0.000000
H1 0.000167 0.503678 0.000117 1.000000

Better Similar Better Worse

All

ILS-SP HGSADC KGLS SISR

H0 0.000036 0.007739 0.000000 0.000000
H1 0.000018 0.996173 0.000000 1.000000

Better Similar Better Worse

Small

ILS-SP HGSADC KGLS SISR

H0 0.000273 0.808654 0.000140 0.130121
H1 0.000136 0.404327 0.000070 0.065061

Better Similar Better Similar

Medium

ILS-SP HGSADC KGLS SISR

H0 0.001057 0.046584 0.000000 0.346122
H1 0.000528 0.023292 0.000000 0.830925

Better Similar Better Similar

Large

ILS-SP HGSADC KGLS SISR

H0 0.000000 0.000837 0.000000 0.002227
H1 0.000000 0.000419 0.000000 0.998963

Better Better Better Worse

All

ILS-SP HGSADC KGLS SISR

H0 0.000000 0.000111 0.000000 0.065432
H1 0.000000 0.000056 0.000000 0.967546

Better Better Better Similar

Table 2.8: Computations on the X dataset: p-values for FILO on the left and
FILO (long) on the right.
p-values in bold are associated with rejected hypothesis when α = 0.003125.
The last row of each group contains a p-value interpretation when α = 0.003125.
In particular, FILO is not statistically different from the competing method when
H0 cannot be rejected (Similar), FILO is statistically better when both H0 and H1
are rejected (Better), and, finally, FILO is statistically worse when H0 is rejected
and H1 is not rejected (Worse).

to the two hypotheses (H0 and H1). Thus, by assuming an initial significance level α0 = 0.025,
the adjusted value becomes α = α0/8 = 0.003125.

As can ben seen from Table 2.8 (left)

• FILO performs better than ILS-SP on large instances and on all the X dataset, and it has a
similar performance on small and medium instances;

• FILO has a similar performance compared to HGSADC on large instances and on the
whole X dataset, however, HGSADC performs better on small and medium instances;

• FILO performs better than KGLS on medium and large instances, as well as on all the X

dataset, and it has a similar performance on small instances;

• finally, FILO has a similar performance compared to SISR on small instances, however,
SISR performs better on medium, large and on all the X dataset.

Table 2.8 (right) shows a similar analysis comparing FILO (long) with the other methods. In
particular,

• FILO (long) performs better than ILS-SP on all partitions of instances;
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• FILO (long) performs better than HGSADC on large and on all the X dataset, and it has a
similar performance on small and medium instances;

• FILO (long) performs better than KGLS an all partitions of instances;

• finally, FILO has a similar performance compared to SISR on small, medium and on the
whole X dataset, however, SISR performs better on large instances.



C. Computational details for X instances 63

IL
S-

SP
H

G
SA

D
C

K
G

LS
SI

SR
FI

LO
FI

LO
(l

on
g)

ID
BK

S
A

vg
t̂1

A
vg

t̂1
A

vg
t̂

A
vg

t̂
Be

st
A

vg
W

or
st

t
Be

st
A

vg
W

or
st

t

X
-n

10
1-

k2
5

27
59

1
0.

00
0.

06
–0

.0
7

0.
00

0.
85

–0
.9

1
0.

21
2.

69
0.

00
0.

58
0.

00
0.

00
0.

22
1.

10
0.

00
0.

00
0.

00
11

.8
9

X
-n

10
6-

k1
4

26
36

2
0.

05
1.

22
–1

.3
1

0.
08

2.
43

–2
.6

1
0.

19
2.

83
0.

07
0.

95
0.

00
0.

06
0.

11
1.

82
0.

00
0.

02
0.

08
19

.6
4

X
-n

11
0-

k1
3

14
97

1
0.

00
0.

12
–0

.1
3

0.
00

0.
97

–1
.0

4
0.

00
2.

94
0.

00
0.

73
0.

00
0.

00
0.

00
1.

63
0.

00
0.

00
0.

00
16

.4
3

X
-n

11
5-

k1
0

12
74

7
0.

00
0.

12
–0

.1
3

0.
00

1.
09

–1
.1

7
0.

00
3.

07
0.

00
0.

15
0.

00
0.

00
0.

00
1.

65
0.

00
0.

00
0.

00
16

.9
4

X
-n

12
0-

k6
13

33
2

0.
04

1.
03

–1
.1

1
0.

00
1.

40
–1

.5
0

0.
00

3.
21

0.
00

1.
16

0.
00

0.
00

0.
00

1.
74

0.
00

0.
00

0.
00

18
.3

6
X

-n
12

5-
k3

0
55

53
9

0.
24

0.
85

–0
.9

1
0.

01
1.

64
–1

.7
6

0.
47

3.
34

0.
03

2.
25

0.
00

0.
53

1.
37

1.
24

0.
00

0.
16

0.
61

11
.7

5
X

-n
12

9-
k1

8
28

94
0

0.
20

1.
15

–1
.2

4
0.

03
1.

64
–1

.7
6

0.
11

3.
45

0.
03

1.
09

0.
00

0.
06

0.
19

1.
58

0.
00

0.
03

0.
05

17
.7

2
X

-n
13

4-
k1

3
10

91
6

0.
29

1.
28

–1
.3

7
0.

17
2.

01
–2

.1
5

0.
00

3.
58

0.
22

2.
04

0.
00

0.
15

0.
30

1.
58

0.
00

0.
06

0.
16

16
.8

1
X

-n
13

9-
k1

0
13

59
0

0.
10

0.
97

–1
.0

4
0.

00
1.

40
–1

.5
0

0.
00

3.
72

0.
04

1.
45

0.
00

0.
00

0.
00

1.
98

0.
00

0.
00

0.
00

21
.8

4
X

-n
14

3-
k7

15
70

0
0.

29
0.

97
–1

.0
4

0.
00

1.
88

–2
.0

2
0.

18
3.

83
0.

04
1.

53
0.

15
0.

17
0.

43
1.

55
0.

00
0.

14
0.

17
17

.7
8

X
-n

14
8-

k4
6

43
44

8
0.

01
0.

49
–0

.5
2

0.
00

1.
95

–2
.0

9
0.

35
3.

96
0.

05
2.

04
0.

00
0.

12
0.

35
1.

36
0.

00
0.

01
0.

33
15

.1
0

X
-n

15
3-

k2
2

21
22

0
0.

85
0.

30
–0

.3
3

0.
03

3.
34

–3
.5

9
0.

80
4.

10
0.

04
4.

07
0.

02
0.

22
0.

69
1.

66
0.

02
0.

05
0.

34
15

.3
0

X
-n

15
7-

k1
3

16
87

6
0.

00
0.

49
–0

.5
2

0.
00

1.
95

–2
.0

9
0.

00
4.

20
0.

02
2.

69
0.

00
0.

00
0.

00
2.

57
0.

00
0.

00
0.

00
28

.7
4

X
-n

16
2-

k1
1

14
13

8
0.

16
0.

30
–0

.3
3

0.
02

2.
01

–2
.1

5
0.

06
4.

34
0.

14
2.

47
0.

02
0.

18
0.

23
1.

82
0.

00
0.

09
0.

18
18

.9
5

X
-n

16
7-

k1
0

20
55

7
0.

25
0.

55
–0

.5
9

0.
03

2.
25

–2
.4

1
0.

16
4.

47
0.

02
2.

33
0.

00
0.

05
0.

17
1.

91
0.

00
0.

00
0.

02
20

.1
9

X
-n

17
2-

k5
1

45
60

7
0.

02
0.

36
–0

.3
9

0.
00

2.
31

–2
.4

8
0.

44
4.

61
0.

03
3.

85
0.

00
0.

01
0.

14
1.

15
0.

00
0.

00
0.

00
12

.6
5

X
-n

17
6-

k2
6

47
81

2
0.

92
0.

67
–0

.7
2

0.
30

4.
62

–4
.9

6
0.

39
4.

71
0.

08
3.

78
0.

00
0.

65
1.

25
1.

35
0.

00
0.

19
1.

13
14

.2
8

X
-n

18
1-

k2
3

25
56

9
0.

01
0.

97
–1

.0
4

0.
09

3.
83

–4
.1

1
0.

23
4.

85
0.

04
4.

00
0.

00
0.

02
0.

10
2.

22
0.

00
0.

00
0.

01
23

.7
0

X
-n

18
6-

k1
5

24
14

5
0.

17
1.

03
–1

.1
1

0.
01

3.
59

–3
.8

5
0.

20
4.

98
0.

14
2.

91
0.

01
0.

10
0.

30
1.

55
0.

00
0.

04
0.

21
15

.9
4

X
-n

19
0-

k8
16

98
0

0.
96

1.
28

–1
.3

7
0.

05
7.

36
–7

.9
0

0.
33

5.
09

0.
03

6.
62

0.
00

0.
09

0.
44

1.
80

0.
00

0.
02

0.
05

18
.4

7
X

-n
19

5-
k5

1
44

22
5

0.
02

0.
55

–0
.5

9
0.

04
3.

71
–3

.9
8

0.
49

5.
23

0.
17

4.
44

0.
00

0.
18

0.
53

1.
25

0.
00

0.
06

0.
26

12
.0

3
X

-n
20

0-
k3

6
58

57
8

0.
20

4.
56

–4
.8

9
0.

08
4.

86
–5

.2
2

0.
29

5.
36

0.
10

4.
87

0.
18

0.
68

1.
91

1.
32

0.
08

0.
36

0.
51

16
.1

7
X

-n
20

4-
k1

9
19

56
5

0.
31

0.
67

–0
.7

2
0.

03
3.

22
–3

.4
6

0.
52

5.
47

0.
50

3.
56

0.
00

0.
13

0.
70

1.
41

0.
00

0.
01

0.
12

14
.9

0
X

-n
20

9-
k1

6
30

65
6

0.
36

2.
31

–2
.4

8
0.

08
5.

23
–5

.6
1

0.
27

5.
60

0.
04

4.
36

0.
00

0.
12

0.
27

1.
31

0.
00

0.
05

0.
12

13
.7

0
X

-n
21

4-
k1

1
10

85
6

2.
50

1.
40

–1
.5

0
0.

20
6.

20
–6

.6
6

0.
67

5.
74

0.
48

6.
33

0.
13

0.
43

1.
11

1.
37

0.
04

0.
23

0.
93

14
.2

2
X

-n
21

9-
k7

3
11

75
95

0.
00

0.
49

–0
.5

2
0.

01
4.

68
–5

.0
2

0.
09

5.
87

0.
05

5.
82

0.
00

0.
00

0.
01

4.
94

0.
00

0.
00

0.
00

54
.0

1
X

-n
22

3-
k3

4
40

43
7

0.
24

5.
17

–5
.5

5
0.

15
5.

05
–5

.4
2

0.
63

5.
98

0.
23

5.
53

0.
08

0.
28

0.
66

1.
22

0.
00

0.
16

0.
27

12
.8

4
X

-n
22

8-
k2

3
25

74
2

0.
21

1.
46

–1
.5

7
0.

14
5.

96
–6

.3
9

0.
34

6.
12

0.
19

7.
64

0.
03

0.
21

0.
45

1.
33

0.
00

0.
16

0.
25

13
.8

4
X

-n
23

3-
k1

6
19

23
0

0.
55

1.
82

–1
.9

6
0.

30
4.

13
–4

.4
4

0.
58

6.
25

0.
21

5.
89

0.
16

0.
42

0.
71

1.
56

0.
00

0.
30

0.
54

17
.2

4
X

-n
23

7-
k1

4
27

04
2

0.
14

2.
13

–2
.2

8
0.

09
5.

41
–5

.8
1

0.
38

6.
36

0.
18

5.
24

0.
00

0.
03

0.
50

2.
13

0.
00

0.
01

0.
16

23
.6

7
X

-n
24

2-
k4

8
82

75
1

0.
15

10
.8

2–
11

.6
1

0.
24

7.
54

–8
.0

9
0.

47
6.

49
0.

16
7.

20
0.

09
0.

31
0.

58
1.

51
0.

00
0.

16
0.

39
16

.8
1

X
-n

24
7-

k5
0

37
27

4
0.

63
1.

28
–1

.3
7

0.
03

12
.4

0–
13

.3
1

0.
17

6.
63

0.
13

13
.3

8
0.

06
0.

71
1.

30
1.

56
0.

00
0.

46
1.

05
16

.0
8

M
ea

n
0.

31
1.

46
–

1.
57

0.
07

3.
65

–
3.

92
0.

28
4.

66
0.

11
3.

78
0.

03
0.

18
0.

47
1.

69
0.

00
0.

09
0.

25
18

.0
6

Ta
bl

e
2.

9:
C

om
pu

ta
ti

on
s

on
sm

al
l-

si
ze

d
X

in
st

an
ce

s.
1 co

m
pu

te
d

by
co

ns
id

er
in

g
th

e
ra

ng
e

of
si

ng
le

-t
hr

ea
d

ra
ti

ng
of

co
m

pa
ti

bl
e

C
PU

s.



64 Chapter 2. Heuristic Solution of Large-Scale CVRPs
ILS-SP

H
G

SA
D

C
K

G
LS

SISR
FILO

FILO
(long)

ID
BK

S
A

vg
t̂ 1

A
vg

t̂ 1
A

vg
t̂

A
vg

t̂
Best

A
vg

W
orst

t
Best

A
vg

W
orst

t

X
-n251-k28

38684
0.40

6.57–7.05
0.29

7.11–7.63
0.60

6.74
0.28

7.13
0.17

0.36
0.66

1.57
0.00

0.25
0.38

17.38
X

-n256-k16
18839

0.24
1.22–1.31

0.22
3.95–4.24

0.32
6.87

0.26
8.36

0.22
0.22

0.23
2.13

0.22
0.22

0.22
23.80

X
-n261-k13

26558
1.17

4.07–4.37
0.27

7.72–8.29
0.55

7.00
0.32

8.58
0.17

0.48
1.27

1.56
0.01

0.31
0.50

16.98
X

-n266-k58
75478

0.11
6.08–6.53

0.37
13.01–13.96

0.65
7.14

0.19
7.86

0.18
0.51

0.87
1.80

0.07
0.38

0.57
20.67

X
-n270-k35

35291
0.21

5.53–5.94
0.22

6.81–7.31
0.46

7.25
0.20

8.29
0.05

0.26
0.44

1.40
0.05

0.15
0.27

14.17
X

-n275-k28
21245

0.05
2.19–2.35

0.17
7.29–7.83

0.26
7.38

0.11
9.67

0.00
0.08

0.37
1.87

0.00
0.02

0.39
20.23

X
-n280-k17

33503
0.80

5.84–6.26
0.31

11.61–12.46
0.61

7.52
0.37

12.87
0.05

0.46
0.76

1.47
0.04

0.36
0.52

15.52
X

-n284-k15
20215

1.16
5.23–5.61

0.35
12.10–12.99

0.86
7.62

0.35
11.13

0.15
0.53

1.03
1.58

0.06
0.26

0.53
15.51

X
-n289-k60

95151
0.31

9.79–10.51
0.33

12.95–13.90
0.77

7.76
0.21

10.40
0.31

0.60
0.86

1.77
0.24

0.40
0.61

20.07
X

-n294-k50
47161

0.20
7.54–8.09

0.21
8.94–9.59

0.61
7.89

0.24
10.69

0.14
0.32

0.59
1.12

0.12
0.23

0.35
11.80

X
-n298-k31

34231
0.37

4.19–4.50
0.18

6.63–7.11
0.30

8.00
0.13

10.55
0.00

0.27
0.46

1.18
0.01

0.19
0.31

12.36
X

-n303-k21
21738

0.73
8.63–9.27

0.52
10.52–11.29

0.64
8.14

0.18
12.58

0.21
0.45

0.89
1.23

0.09
0.33

0.66
11.91

X
-n308-k13

25859
0.94

5.77–6.20
0.14

9.30–9.98
0.82

8.27
1.35

18.69
0.01

0.51
1.83

1.62
0.02

0.46
1.42

18.27
X

-n313-k71
94044

0.27
10.64–11.42

0.24
13.62–14.62

0.85
8.41

0.15
13.75

0.29
0.52

0.81
1.39

0.15
0.32

0.57
15.23

X
-n317-k53

78355
0.00

5.23–5.61
0.04

13.62–14.62
0.08

8.51
0.05

16.00
0.00

0.01
0.04

3.02
0.00

0.00
0.01

31.68
X

-n322-k28
29834

0.53
8.94–9.59

0.41
9.24–9.92

0.68
8.65

0.31
12.29

0.25
0.48

0.88
1.25

0.05
0.34

0.54
13.19

X
-n327-k20

27532
1.02

11.61–12.46
0.35

11.06–11.88
0.44

8.78
0.36

15.71
0.17

0.47
0.81

1.71
0.09

0.29
0.55

19.83
X

-n331-k15
31102

0.43
9.54–10.24

0.19
14.83–15.92

0.13
8.89

0.08
14.84

0.00
0.02

0.30
2.00

0.00
0.00

0.01
21.59

X
-n336-k84

139111
0.25

13.01–13.96
0.30

23.10–24.80
1.40

9.03
0.19

16.58
0.36

0.61
0.93

1.41
0.19

0.38
0.55

13.80
X

-n344-k43
42050

0.56
13.74–14.75

0.38
13.19–14.16

0.83
9.24

0.26
15.64

0.28
0.58

0.80
1.35

0.03
0.33

0.56
12.67

X
-n351-k40

25896
0.98

15.32–16.44
0.46

20.49–21.99
1.03

9.43
0.33

19.27
0.33

0.67
1.03

1.36
0.26

0.45
0.72

13.06
X

-n359-k29
51505

1.11
29.73–31.91

0.42
21.21–22.77

0.94
9.64

0.14
16.80

0.16
0.48

0.85
1.51

0.00
0.24

0.45
16.30

X
-n367-k17

22814
0.83

7.96–8.55
0.11

13.37–14.36
0.69

9.86
0.09

26.26
0.00

0.19
0.68

1.65
0.00

0.04
0.15

17.03
X

-n376-k94
147713

0.00
4.32–4.63

0.03
17.20–18.47

0.11
10.10

0.05
23.28

0.00
0.01

0.03
4.17

0.00
0.01

0.03
43.35

X
-n384-k52

65940
0.66

20.97–22.51
0.50

24.44–26.23
0.70

10.32
0.25

18.84
0.19

0.46
0.74

1.71
0.13

0.27
0.51

18.01
X

-n393-k38
38260

0.52
12.64–13.57

0.30
17.39–18.66

0.32
10.56

0.35
22.11

0.10
0.29

0.61
1.41

0.03
0.12

0.37
14.97

X
-n401-k29

66187
0.80

36.72–39.41
0.27

30.09–32.30
0.58

10.78
0.09

27.64
0.09

0.22
0.44

1.98
0.02

0.10
0.20

19.96
X

-n411-k19
19712

1.23
14.47–15.53

0.16
21.09–22.64

1.79
11.05

0.29
42.48

0.22
0.52

1.49
1.82

0.24
0.37

0.84
18.87

X
-n420-k130

107798
0.04

13.49–14.49
0.12

32.34–34.71
0.51

11.29
0.08

34.84
0.08

0.25
0.50

1.16
0.04

0.14
0.26

11.29
X

-n429-k61
65467

0.43
23.22–24.93

0.28
25.23–27.08

0.54
11.53

0.19
25.46

0.19
0.39

0.75
1.40

0.01
0.19

0.33
14.55

X
-n439-k37

36391
0.14

24.07–25.84
0.17

20.97–22.51
0.31

11.80
0.23

30.62
0.01

0.09
0.25

1.64
0.01

0.02
0.10

17.74
X

-n449-k29
55254

1.72
36.41–39.09

0.54
39.45–42.35

0.89
12.07

0.28
27.64

0.34
0.62

1.02
1.46

0.18
0.34

0.67
15.14

X
-n459-k26

24145
1.31

36.84–39.54
0.53

26.02–27.93
0.39

12.34
0.40

41.10
0.09

0.31
0.86

1.57
0.00

0.21
0.39

16.51
X

-n469-k138
221824

0.16
22.07–23.69

0.36
52.70–56.57

0.73
12.61

0.18
34.91

0.73
1.07

1.36
1.62

0.47
0.64

0.80
16.03

X
-n480-k70

89449
0.47

30.64–32.89
0.35

40.73–43.72
0.58

12.90
0.12

36.73
0.15

0.36
0.55

1.63
0.02

0.21
0.41

17.09
X

-n491-k59
66487

1.11
31.73–34.06

0.62
43.71–46.92

1.16
13.20

0.24
37.39

0.29
0.53

0.84
1.40

0.12
0.32

0.50
13.88

M
ean

0.59
14.05

–
15.09

0.30
18.42

–
19.77

0.64
9.40

0.25
19.64

0.17
0.39

0.75
1.66

0.08
0.25

0.45
17.51

Table
2.10:C

om
putations

on
m

edium
-sized

X
instances.

1com
puted

by
considering

the
range

ofsingle-thread
rating

ofcom
patible

C
PU

s.



C. Computational details for X instances 65

IL
S-

SP
H

G
SA

D
C

K
G

LS
SI

SR
FI

LO
FI

LO
(l

on
g)

ID
BK

S
A

vg
t̂1

A
vg

t̂1
A

vg
t̂

A
vg

t̂
Be

st
A

vg
W

or
st

t
Be

st
A

vg
W

or
st

t

X
-n

50
2-

k3
9

69
22

6
0.

17
49

.1
2–

52
.7

2
0.

15
38

.6
6–

41
.5

0
0.

15
13

.5
0

0.
07

44
.3

0
0.

00
0.

04
0.

10
2.

52
0.

00
0.

03
0.

07
25

.9
2

X
-n

51
3-

k2
1

24
20

1
0.

96
21

.2
8–

22
.8

4
0.

40
20

.1
2–

21
.6

0
0.

36
13

.7
9

0.
38

56
.0

8
0.

06
0.

35
0.

86
1.

84
0.

00
0.

15
0.

40
19

.5
4

X
-n

52
4-

k1
53

15
45

93
0.

27
16

.6
0–

17
.8

1
0.

25
49

.0
6–

52
.6

6
0.

48
14

.0
9

0.
14

11
0.

12
0.

08
0.

50
0.

99
1.

38
0.

04
0.

24
0.

56
13

.6
8

X
-n

53
6-

k9
6

94
86

8
0.

88
37

.7
5–

40
.5

2
0.

49
65

.3
5–

70
.1

5
1.

06
14

.4
1

0.
32

54
.3

3
0.

71
0.

83
1.

00
1.

58
0.

53
0.

71
0.

83
16

.0
2

X
-n

54
8-

k5
0

86
70

0
0.

20
38

.9
0–

41
.7

6
0.

34
51

.1
8–

54
.9

4
0.

25
14

.7
4

0.
11

46
.9

1
0.

00
0.

10
0.

25
1.

86
0.

00
0.

05
0.

13
19

.6
0

X
-n

56
1-

k4
2

42
71

7
0.

97
41

.8
8–

44
.9

6
0.

35
36

.8
4–

39
.5

4
0.

64
15

.0
9

0.
35

53
.6

8
0.

21
0.

43
0.

74
1.

32
0.

08
0.

29
0.

54
13

.4
9

X
-n

57
3-

k3
0

50
67

3
0.

99
68

.0
8–

73
.0

8
0.

48
11

4.
40

–1
22

.8
0

0.
68

15
.4

1
0.

26
82

.1
9

0.
22

0.
37

0.
66

1.
91

0.
15

0.
25

0.
38

20
.0

0
X

-n
58

6-
k1

59
19

03
16

0.
32

47
.7

2–
51

.2
2

0.
27

10
6.

56
–1

14
.3

9
0.

41
15

.7
6

0.
15

62
.7

7
0.

45
0.

70
0.

98
1.

62
0.

22
0.

37
0.

63
16

.3
9

X
-n

59
9-

k9
2

10
84

51
0.

86
44

.3
8–

47
.6

3
0.

57
76

.5
3–

82
.1

5
0.

87
16

.1
1

0.
22

54
.8

4
0.

30
0.

51
0.

74
1.

68
0.

19
0.

30
0.

45
17

.5
8

X
-n

61
3-

k6
2

59
54

5
1.

51
45

.4
7–

48
.8

1
0.

70
71

.3
0–

76
.5

4
0.

93
16

.4
9

0.
31

64
.0

8
0.

39
0.

67
1.

11
1.

16
0.

06
0.

40
0.

76
11

.3
5

X
-n

62
7-

k4
3

62
17

3
1.

18
98

.9
0–

10
6.

16
0.

56
14

5.
71

–1
56

.4
1

0.
71

16
.8

7
0.

23
64

.9
5

0.
17

0.
34

0.
54

1.
80

0.
09

0.
20

0.
41

18
.6

5
X

-n
64

1-
k3

5
63

70
5

1.
41

85
.3

5–
91

.6
1

0.
76

96
.5

3–
10

3.
62

0.
52

17
.2

4
0.

23
67

.2
8

0.
13

0.
38

0.
66

1.
88

0.
11

0.
22

0.
45

19
.1

0
X

-n
65

5-
k1

31
10

67
80

0.
00

28
.6

9–
30

.8
0

0.
11

91
.4

9–
98

.2
0

0.
18

17
.6

2
0.

06
79

.7
2

0.
01

0.
04

0.
08

3.
23

0.
00

0.
02

0.
05

33
.4

4
X

-n
67

0-
k1

30
14

63
32

0.
92

37
.2

0–
39

.9
3

0.
61

16
0.

54
–1

72
.3

3
1.

00
18

.0
2

0.
27

14
4.

67
0.

66
1.

11
1.

70
1.

42
0.

43
0.

86
1.

24
14

.1
6

X
-n

68
5-

k7
5

68
22

5
1.

12
44

.8
6–

48
.1

6
0.

63
95

.2
5–

10
2.

25
1.

03
18

.4
3

0.
21

98
.2

7
0.

44
0.

63
0.

88
1.

42
0.

16
0.

43
0.

67
13

.6
5

X
-n

70
1-

k4
4

81
92

3
1.

37
12

7.
72

–1
37

.0
9

0.
69

15
3.

91
–1

65
.2

2
0.

77
18

.8
6

0.
17

89
.1

0
0.

36
0.

53
0.

69
1.

57
0.

06
0.

28
0.

51
15

.9
1

X
-n

71
6-

k3
5

43
38

7
1.

81
13

7.
26

–1
47

.3
4

0.
59

16
0.

66
–1

72
.4

6
0.

89
19

.2
6

0.
22

11
5.

14
0.

49
0.

70
1.

06
1.

67
0.

14
0.

28
0.

50
17

.1
4

X
-n

73
3-

k1
59

13
61

90
0.

63
67

.8
4–

72
.8

2
0.

29
14

8.
63

–1
59

.5
4

0.
86

19
.7

2
0.

15
10

4.
16

0.
18

0.
36

0.
48

1.
26

0.
09

0.
21

0.
31

12
.8

4
X

-n
74

9-
k9

8
77

31
4

1.
24

77
.3

2–
83

.0
0

0.
71

19
0.

81
–2

04
.8

2
1.

32
20

.1
5

0.
25

10
6.

41
0.

54
0.

71
0.

88
1.

45
0.

28
0.

42
0.

63
13

.9
0

X
-n

76
6-

k7
1

11
44

56
1.

12
14

7.
17

–1
57

.9
7

0.
60

23
2.

82
–2

49
.9

1
0.

84
20

.6
1

0.
27

12
6.

85
0.

46
0.

68
1.

07
1.

59
0.

24
0.

43
0.

76
15

.7
6

X
-n

78
3-

k4
8

72
39

4
1.

84
14

3.
16

–1
53

.6
7

0.
85

16
3.

94
–1

75
.9

8
0.

89
21

.0
7

0.
37

12
3.

80
0.

34
0.

61
0.

87
1.

75
0.

18
0.

35
0.

57
18

.5
4

X
-n

80
1-

k4
0

73
33

1
0.

92
26

2.
97

–2
82

.2
8

0.
55

17
5.

80
–1

88
.7

1
0.

26
21

.5
5

0.
14

99
.7

2
0.

02
0.

23
0.

41
1.

80
-0

.0
2

0.
11

0.
26

18
.2

8
X

-n
81

9-
k1

71
15

81
21

0.
82

90
.5

1–
97

.1
6

0.
49

22
7.

53
–2

44
.2

4
0.

89
22

.0
4

0.
19

12
5.

47
0.

65
0.

84
1.

05
1.

39
0.

44
0.

56
0.

67
14

.3
1

X
-n

83
7-

k1
42

19
37

37
0.

67
10

5.
28

–1
13

.0
2

0.
38

28
1.

69
–3

02
.3

8
0.

76
22

.5
2

0.
12

12
1.

32
0.

37
0.

53
0.

70
1.

78
0.

21
0.

31
0.

42
18

.5
7

X
-n

85
6-

k9
5

88
99

0
0.

32
93

.4
3–

10
0.

29
0.

28
17

5.
31

–1
88

.1
9

0.
34

23
.0

3
0.

16
11

6.
38

0.
02

0.
14

0.
28

1.
76

-0
.0

0
0.

06
0.

16
18

.0
0

X
-n

87
6-

k5
9

99
30

3
1.

12
24

8.
80

–2
67

.0
7

0.
59

30
1.

14
–3

23
.2

6
0.

95
23

.5
7

0.
18

15
8.

13
0.

32
0.

47
0.

63
1.

74
0.

15
0.

26
0.

38
17

.4
6

X
-n

89
5-

k3
7

53
92

8
1.

91
24

9.
35

–2
67

.6
6

0.
95

19
5.

68
–2

10
.0

5
0.

73
24

.0
9

0.
29

15
4.

56
0.

33
0.

58
0.

94
1.

77
0.

02
0.

26
0.

55
17

.9
3

X
-n

91
6-

k2
07

32
91

79
0.

54
13

7.
44

–1
47

.5
3

0.
31

34
0.

90
–3

65
.9

3
0.

58
24

.6
5

0.
10

15
6.

60
0.

50
0.

70
0.

85
1.

75
0.

17
0.

39
0.

55
18

.9
8

X
-n

93
6-

k1
51

13
28

12
1.

29
12

3.
10

–1
32

.1
3

0.
53

32
3.

09
–3

46
.8

1
0.

87
25

.1
9

0.
23

30
0.

18
0.

39
0.

91
1.

38
1.

32
0.

24
0.

50
0.

79
12

.7
0

X
-n

95
7-

k8
7

85
46

9
0.

55
18

9.
17

–2
03

.0
6

0.
41

26
3.

15
–2

82
.4

7
0.

34
25

.7
6

0.
18

14
7.

22
0.

04
0.

14
0.

24
1.

86
0.

00
0.

09
0.

20
18

.9
3

X
-n

97
9-

k5
8

11
89

88
1.

06
41

7.
73

–4
48

.4
1

0.
43

33
6.

76
–3

61
.4

9
0.

63
26

.3
5

0.
11

20
1.

19
0.

26
0.

37
1.

02
2.

36
0.

12
0.

23
0.

35
23

.7
6

X
-n

10
01

-k
43

72
36

9
2.

23
48

1.
93

–5
17

.3
2

0.
81

33
3.

72
–3

58
.2

3
0.

95
26

.9
4

0.
22

20
6.

79
0.

41
0.

65
0.

83
1.

65
0.

15
0.

33
0.

53
16

.4
0

M
ea

n
0.

98
11

8.
95

–
12

7.
68

0.
50

16
3.

28
–

17
5.

27
0.

69
19

.4
7

0.
21

11
0.

54
0.

30
0.

50
0.

77
1.

72
0.

14
0.

30
0.

49
17

.5
6

Ta
bl

e
2.

11
:C

om
pu

ta
ti

on
s

on
la

rg
e-

si
ze

d
X

in
st

an
ce

s.
1 co

m
pu

te
d

by
co

ns
id

er
in

g
th

e
ra

ng
e

of
si

ng
le

-t
hr

ea
d

ra
ti

ng
of

co
m

pa
ti

bl
e

C
PU

s.
N

ew
be

st
so

lu
ti

on
s:

(X
-n

80
1-

k4
0,

73
31

3)
;(X

-n
85

6-
k9

5,
88

98
9)



66 Chapter 2. Heuristic Solution of Large-Scale CVRPs
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Figure 2.20: Comparison of average gaps obtained by algorithms on the B

dataset.

D Computational details for very large-scale instances

This section contains computational details associated with large-scale datasets. In particular,
Figures 2.20 – 2.22 show by means of boxplots the average gaps obtained by algorithms on the
B, K, and Z dataset, respectively. Average solution values are analyzed by conducting analyses
similar to those for the X dataset described in Section C. In particular, the null hypothesis H0
and the alternative hypothesis H1 are the same. However, contrarily to the previous analysis,
we did not partition dataset instances in smaller groups. Thus the total number of analysis
performed for each dataset is n = 2, one for each hypothesis. The initial confidence level
α0 = 0.025 is thus adjusted through the Bonferroni correction to α = 0.025/2 = 0.0125. Tables
2.12 and 2.13 show the p-values associated with the B and K datasets, respectively. Finally, due
to the very limited number of instances of the Z dataset, the Wilcoxon signed-rank test cannot
be used because it cannot give a significant result.

As can be seen from Table 2.12

• FILO performs better than KGLSXXL and it has a performance similar to that of KGLSXXL

(long);

• FILO (long) performs better than KGLSXXL and KGLSXXL (long).

KGLSXXL KGLSXXL (long)

H0 0.001953 0.037109
H1 0.000977 0.018555

Better Similar

KGLSXXL KGLSXXL (long)

H0 0.001953 0.001953
H1 0.000977 0.000977

Better Better

Table 2.12: Computations on the B dataset: p-values for FILO on the left and for
FILO (long) on the right.
p-values in bold are associated with rejected hypothesis when α = 0.0125.
The last row contains a p-value interpretation when α = 0.0125. In particular,
FILO is not statistically different from the competing method when H0 cannot be
rejected (Similar), FILO is statistically better when both H0 and H1 are rejected
(Better), and, finally, FILO is statistically worse when H0 is rejected and H1 is not
rejected (Worse).



D. Computational details for very large-scale instances 67

KGLSXXL KGLSXXL (long) FILO FILO (long)

−8

−6

−4

−2

0 0.36
0

−1.1

−1.97

A
ve

ra
ge

%
ga

p

Figure 2.21: Comparison of average gaps obtained by algorithms on the K

dataset.

KGLSXXL KGLSXXL (long)

H0 0.0078125 0.0078125
H1 0.00390625 0.00390625

Better Better

KGLSXXL KGLSXXL (long)

H0 0.0078125 0.0078125
H1 0.00390625 0.00390625

Better Better

Table 2.13: Computations on the K dataset: p-values for FILO on the left and for
FILO (long) on the right.
p-values in bold are associated with rejected hypothesis when α = 0.0125.
The last row contains a p-value interpretation when α = 0.0125. In particular,
FILO is not statistically different from the competing method when H0 cannot be
rejected (Similar), FILO is statistically better when both H0 and H1 are rejected
(Better), and, finally, FILO is statistically worse when H0 is rejected and H1 is not
rejected (Worse).



68 Chapter 2. Heuristic Solution of Large-Scale CVRPs

PSMDA FILO FILO (long)

−3

−2.5

−2

−1.5

−1

−0.5

0 0

−2.03

−2.6

A
ve

ra
ge

%
ga

p

Figure 2.22: Comparison of average gaps obtained by algorithms on the Z

dataset.

As can be seen from Table 2.13, both FILO and FILO (long) performs better than KGLSXXL and
KGLSXXL (long).
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Chapter 3

A Hybrid Metaheuristic for Single
Truck and Trailer Routing Problems1

In this chapter, we propose a general solution approach for a broad class of vehicle routing
problems that all use a single vehicle, composed of a truck and a detachable trailer, to serve a
set of customers with known demand and accessibility constraints. A more general problem,
called the Extended Single Truck and Trailer Routing Problem (XSTTRP), is used as a com-
mon baseline to describe and model this class of problems. In particular, the XSTTRP contains,
all together, a variety of vertex types previously only considered separately: truck customers,
vehicle customers with and without parking facilities, and parking-only locations. To solve
XSTTRP we developed a fast and effective hybrid metaheuristic, consisting of an iterative core
part, in which routes that define high-quality solutions are stored in a pool. Eventually, a set-
partitioning based post-optimization selects the best combination of routes that forms a feasible
solution from the pool. The algorithm is tested on extensively studied literature problems such
as the Multiple Depot Vehicle Routing Problem, the Location Routing Problem, the Single Truck
and Trailer Routing Problem with Satellite Depots, and the Single Truck and Trailer Routing
Problem. Finally, computational results and a thorough analysis of the main algorithm’s com-
ponents on newly designed XSTTRP instances are provided. The obtained results show that
the proposed hybrid metaheuristic is highly competitive with previous approaches designed to
solve specific specialized problems, both in terms of computing time and solution quality.

1 Introduction

Truck and trailer routing problems constitute a very well-studied class of vehicle routing prob-
lems (VRPs) in which vehicle capacities may be augmented with trailers. This class of problems
was introduced by Chao (2002) as an extension of the basic VRPs to better model real-world
applications arising mainly in freight distribution and city logistics. The literature contains sev-
eral variations on the basic settings for these problems that add specific constraints modeling
specific scenarios. In Section 2 we give a brief overview of the literature, and we refer the in-
terested reader to Cuda, Guastaroba, and Speranza (2015) for a general survey of related VRPs,
including truck and trailer problems.

In this chapter, we study the Extended Single Truck and Trailer Routing Problem (XSTTRP) as a
more general variant which allows us to derive a unified solution approach for a class of single
truck and trailer routing problems. In particular, the XSTTRP contains, all together, a variety of
vertex types previously only considered separately, namely: truck customers, vehicle customers
with and without parking facilities, and parking-only locations. The XSTTRP calls for servicing

1The results of this chapter appears in: L. Accorsi and D. Vigo, "A Hybrid Metaheuristic for Single Truck and
Trailer Routing Problems", Transportation Science, 2020, 54:5, 1351-1371
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a set of customers with known demand using a single vehicle, composed of a capacitated truck
and a non-autonomous, detachable trailer, which is initially located at a (main) depot. In the
following, the term “truck" refers to the vehicle when the trailer is detached and parked at some
parking location, while “complete vehicle" denotes the vehicle when the trailer is attached to
the truck. The customers are partitioned into two different sets: truck customers and vehicle
customers. The accessibility constraints impose that truck customers must be visited by the truck
only, while vehicle customers can be visited either by the complete vehicle or by the truck.
Vehicle customers are, in turn, split into vehicle customers with parking facilities and vehicle
customers without parking facilities. The problem also contains a set of satellite depots (or just
satellites), i.e., locations (which are not customers) where the trailer may be parked whenever
necessary.

An XSTTRP solution is made up of a main route, in the following referred to as main-route,
traveled by the complete vehicle, which starts from the main depot, visits a subset of vehi-
cle customers and satellites, and returns to the depot. When the vehicle visits a parking loca-
tion (i.e., either a satellite depot or a vehicle customer with parking facilities) it can detach its
trailer, serve a subset of customers with the truck, and then return to pick up the trailer. We
call this a sub-route, and the place where the trailer has been decoupled is the root of the sub-
route. The objective is to find a solution which serves all customers while minimizing the total
traveling cost and respecting both the truck capacity along the sub-routes and the accessibility
constraints.

We developed a comprehensive, yet effective, heuristic solution approach to the XSTTRP. The
resulting metaheuristic has been extensively tested on many instances, including special cases
involving well-known problems such as the Multiple Depot Vehicle Routing Problem (MD-
VRP; see e.g., Cordeau, Gendreau, and Laporte (1997)), the Location Routing Problem (LRP; see
Schneider and Drexl (2017)), the Single Truck and Trailer Routing Problem with Satellite Depots
(STTRPSD; see Villegas et al. (2010)) and the Single Truck and Trailer Routing Problem (STTRP;
see Bartolini and Schneider (2018)). The results show that the proposed method is highly suc-
cessful in tackling the studied problems, producing good quality solutions in short computing
time. The XSTTRP was originally introduced in a preliminary work by Accorsi (2017).

The chapter is structured as follows. In Section 2 we review the literature relating to the XST-
TRP in more depth and discuss related problems. In Section 3 we describe the XSTTRP more
comprehensively and compare it with existing related problems. Section 4 describes the details
of our solution approach, and experimental results are provided in Section 5. Section 6 offers
an experimental analysis of the algorithm components. Finally, the chapter ends with possible
future research directions and concluding remarks in Section 7.

2 Literature review

The first comprehensive reference for the class of truck and trailer problems is the work by Chao
(2002) who introduced the original Truck and Trailer Routing Problem (TTRP). Some earlier
papers, such as that written by Semet and Taillard (1993), introduced similar variants which
will be examined later in this section. The TTRP identifies a class of vehicle routing problems
in which a fleet of capacitated vehicles, each composed of a truck and possibly a trailer, is
used to serve a set of customers with a known demand. The objective is to minimize the total
traveling cost without violating the capacity and accessibility constraints. The customers are
split into truck customers and vehicle customers. Truck customers can only be visited by the truck
without the trailer, so prior to visiting them, the vehicle has to park its trailer at an appropriate
vehicle customer. The truck must then return to the same customer to pick up the trailer before
continuing the journey. Vehicle customers can instead be served either by the truck or by the
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complete vehicle. Chao (2002) associated three possible types of route with each vehicle: a
pure truck route which starts from the depot with the truck only, visits a subset of customers
and returns to the depot; a pure vehicle route which starts from the depot with the complete
vehicle, visits a subset of vehicle customers and returns to the depot; and a complete vehicle route
consisting of a pure vehicle route and a set of pure truck routes starting from customer locations
where the trailer could be parked. A feasible solution for the TTRP is thus composed of a set of
routes, at most one for each vehicle, satisfying capacity constraints and belonging to one of the
three types.

The current state-of-the-art algorithm for the TTRP is a matheuristic developed by Villegas et al.
(2013). They populated a pool of high-quality solutions using a GRASP× ILS method (a greedy
randomized adaptive search procedure combined with an iterated local search), and then they
selected the best combination of routes from the pool by solving a set-partitioning formulation.
The core of their approach was the construction of a giant tour that used a randomized nearest-
neighbor heuristic to visit all the customers; the tour was further optimized by the interleaved
application of a variable neighborhood descent (VND) and a perturbation phase. Each local op-
timum of the VND phase is stored in the set-partitioning solutions pool that is used to provide
the final solution. The authors dealt with the standard TTRP as well as the Relaxed TTRP (see
Lin, Yu, and Chou (2010)) which has an unlimited fleet. A previous method based on a GRASP
with evolutionary path relinking was presented by Villegas et al. (2011).

Villegas et al. (2010) introduced the Single Truck and Trailer Routing Problem with Satellite De-
pots (STTRPSD). In this problem, a set of truck customers is served by a single capacitated ve-
hicle composed of a truck and a trailer. The problem does not contain any vehicle customer; in-
stead, it contains a set of parking locations called satellite depots where the trailer can be parked.
Satellites do not have an associated demand and thus can be left unvisited if not needed. The
authors did not consider the depot to be a parking location.

The presence of satellites introduces an interesting variation to the problem, relating it to the
well-known class of Location Routing Problems (LRPs). For a comprehensive survey of LRPs
refer to Schneider and Drexl (2017). In fact, the STTRPSD generalizes the 2-echelon LRP with
zero opening costs, uncapacitated depots and capacitated vehicles (see e.g., Tuzun and Burke
(1999)). The authors proposed four heuristic methods for solving the STTRPSD, which they
also tested on the MDVRP (a special case of the LRP). The best-performing of the four was
a multi-start evolutionary local search. Recently, Belenguer et al. (2016) proposed an exact
branch-and-cut algorithm for the STTRPSD, based on an arc-flow formulation, which was able
to consistently handle instances with up to sixty vertices. A paper that is important for its work
towards unifying the TTRP variants is the Generalized Truck and Trailer Routing Problem (GT-
TRP) and its extension, the Vehicle Routing Problem with Trailers and Transshipment (VRPTT)
proposed by Drexl (2011) and Drexl (2014). In the GTTRP, vehicles can leave the trailer ei-
ther at vehicle customers or at transshipment locations (similar to satellites in STTRPSD); both
may have associated time windows. The VRPTT extends the GTTRP by dropping the fixed
assignment of a truck to a trailer; that is, any trailer may be pulled by any compatible truck
for all or part of its itinerary. Moreover, the VRPTT adds the possibility that trucks may trans-
fer, all or part of their load to any trailer at any transshipment location (with load-dependent
transfer times). Note that, different vehicles may have different utilization (fixed and distance-
dependent) costs. Drexl (2011) addressed the GTTRP with a branch-and-price algorithm and
several heuristic variants, whereas in a different paper Drexl (2014) solved the VRPTT using
five different branch-and-cut algorithms. As previously mentioned, real-world TTRP-like ap-
plications were documented long before the actual problem was defined by Chao (2002). For
example, in the Site-Dependent Vehicle Routing Problem considered by Semet and Taillard
(1993), a fleet of heterogeneous vehicles composed of trucks and trailers serves a number of
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grocery stores in Switzerland cantons, taking into account vehicle-location incompatibilities,
time windows for deliveries and vehicle-dependent utilization costs. The Partial Accessibility
Constraint Vehicle Routing Problem analyzed in Semet (1995) consists of defining an appro-
priate number of trailers to increase the capacity of some trucks. Gerdessen (1996) considered
the Vehicle Routing Problem with Trailers, which has been used to model two real-world sce-
narios: a Dutch dairy industry that has to serve customers located in crowded cities, where
maneuvering a complete vehicle is difficult or forbidden; and the distribution of animal feed
among farmers, some of whom are only reachable traversing narrow roads or small bridges.
In both cases the trailer is often parked in appropriate locations before the truck performs the
service. Further real-world TTRP applications include milk collection from farms (see Caramia
and Guerriero (2010)), fuel oil delivery to private households (see Drexl (2011)), postal delivery
(see Bodin and Levy (2000)) and container movement (see Tan, Chew, and Lee (2006)).

3 Problem description

The XSTTRP can be formulated by using an undirected graph G = (V, E), where V is the vertex
set and E is the edge set. The vertex set V is partitioned into V = {0} ∪ Vc ∪Vd, where 0 is the
depot, Vc is the set of customers and Vd is the set of satellite depots. Vc is, in turn, decomposed
into Vc = V1

c ∪ V2
c , where V1

c represents the truck customers and V2
c the vehicle customers.

Finally, we assume that a subset V2
c ⊆ V2

c of vehicle customers has parking facilities. From
now on, Vd = Vd ∪ V2

c denotes the parking locations where the vehicle is allowed to detach
its trailer, namely the satellite depots and the vehicle customers with parking facilities, and
V+

d = Vd ∪ {0}. Figure 3.1 provides a graphic summary of the vertex sets and their relations.
A cost cij is associated with each edge (i, j) ∈ E, and we assume that the cost matrix c satisfies
the triangle inequality. Each customer i ∈ Vc requires an integer quantity qi > 0 from the depot
and we assume that qi = 0, i ∈ {0} ∪ Vd. A vehicle with capacity Q = Q1 + Q2 is located at
the depot, where Q1 is the truck capacity and Q2 is the trailer capacity. We assume that the
vehicle is able to serve all the customers; that is, ∑i∈Vc

qi ≤ Q. We further suppose that, at
parking locations, the goods required to satisfy the demand of the subsequent sub-routes are
instantaneously transferred from the trailer to the truck. Therefore, all customers can be served
by just one vehicle. Truck customers i ∈ V1

c can be visited by the truck only, i.e., without the
trailer, while vehicle customers i ∈ V2

c can be visited either by the truck or by the complete
vehicle. A feasible solution requires that the trailer is detached (either at an appropriate satellite
depot k ∈ Vd or at a vehicle customer with parking facilities j ∈ V2

c ) before visiting any truck
customer i ∈ V1

c and, possibly, some vehicle customer i ∈ V2
c . Then, the truck returns to the
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Figure 3.2: An example of a feasible solution to an XSTTRP instance.

parking location where the trailer has been detached, to pick the trailer up before moving to
the next vehicle customer, satellite, or even to the main depot. In other words, reminding that a
Hamiltonian circuit is a closed cycle that visits a set of vertices exactly once, a feasible XSTTRP
solution is composed of:

• a Hamiltonian circuit, called main-route, that starts from the depot, visits a subset of vehicle
customers i ∈ V2

c and satellites k ∈ Vd and eventually returns to the depot;

• a number of Hamiltonian circuits, called sub-routes, each of which starts from a parking
location k ∈ Vd visited by the main-route, visits one or more customers i ∈ Vc and ends
at the starting parking location k. It is allowed to have more than one sub-route rooted at
the same parking location.

Each customer must be visited exactly once, while satellite depots may remain unvisited if not
necessary. Moreover, in order to be compatible with the STTRPSD definition, sub-routes directly
starting from the depot are not allowed. This limit can be easily overcome by creating a satellite
coincident with the main depot location. Figure 3.2 shows a possible solution for an XSTTRP
instance where the empty square denotes the main depot, the empty triangles represent satellite
depots, the empty circles denote truck customers, the full circles represent vehicle customers
without parking facilities and the full triangles are vehicle customers with parking facilities.
The main-route is defined by a continuous line and the sub-routes by dashed lines.

3.1 Comparative analysis of related problems

The XSTTRP is inspired by the combination of STTRPSD and STTRP. Both problems are direct
specializations of the XSTTRP, and as such include just a subset of its vertex types. However,
the XSTTRP generalizes many other vehicle routing problem variants. To illustrate this, we
focus on the MDVRP (with capacitated vehicles) and the LRP (with uncapacitated depots and
capacitated vehicles), because both of these problems require two levels of decisions (assign-
ment of customers to depots and routing) so they naturally fit into the XSTTRP model. We note
that the Capacitated VRP (CVRP), being a special case of the MDVRP, is also generalized by the
XSTTRP, which is therefore NP-Hard in the strong sense. The MDVRP, LRP and CVRP could
be directly encoded as XSTTRP by: (i) mapping depots and customers to satellites and truck
customers respectively, (ii) adding an additional dummy main depot, (iii) setting to 0 all costs
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Figure 3.3: A possible topology (for a subset) of VRPs.
The relation X → Y means X is a generalization of Y. The problem variants
studied in this chapter are those enclosed by the dashed line.

associated with the edges between satellites and those between satellites and depot, and (iv)
setting the truck capacity equal to the original problem vehicle capacity and the trailer capacity
equal to, at least, the sum of customer demands. The MDVRP usually imposes a maximum on
the number of vehicles available in each depot, while the LRP defines a fixed cost associated
with each vehicle and depot used. Both features are not directly modeled by the XSTTRP; thus
they must either be handled by the solution procedure or indirectly encoded in the instance
definition, e.g., by changing the cost of some arcs.

Figure 3.3 shows a possible hierarchical structure where several related problem variants are
linked together by generalization/specialization relationships. From the figure we deduce that
the natural generalization of the XSTTRP is the Extended TTRP (XTTRP); several, possibly het-
erogeneous, capacitated vehicles (possibly equipped with a trailer) are available to serve the
customers. We also note that the STTRPSD is in fact a special case of the 2 Echelon-VRP (2E-
VRP). In the latter, satellites are capacitated and might be visited multiple times by different
vehicles. Finally, the GTTRP defined by Drexl (2011) is a complex and interesting unified model
for vehicle routing problems with trailers. It generalizes the TTRP by including transshipment
locations and several complex side-constraints. The XSTTRP and the XTTRP are much more
basic problems, including just capacity and accessibility constraints. Moreover, the XSTTRP
differs structurally from the GTTRP because it includes vehicle customers without parking fa-
cilities. Table 3.1 classifies the previously introduced problems according to the vertex types
and the available number of vehicles they contain. In our computational testing we focused on
the variants, enclosed in the dashed line of Figure 3.3, that preserve the multiple-depot structure
of XSTTRP in which satellites are present.

4 Solution approach

In this section we describe our metaheuristic for the XSTTRP, resulting in the algorithm AVXS.
The algorithm consists of a core part followed by a post-optimization phase. The core part
iterates through the following three phases:
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Depot Satellite Vehicle customer Truck customer

with p. f. without p. f.

Problem rs ut u b bc #veh

CVRP 3 7 7 3 7 ≥ 1
MDVRP 3 7 7 3 7 ≥ 1
LRP 3 7 7 3 7 ≥ 1
2E-VRP 3 7 3 7 3 ≥ 1
STTRPSD 3 3 7 7 3 1
STTRP 3 7 3 7 3 1
TTRP 3 7 3 7 3 ≥ 1
XSTTRP 3 3 3 3 3 1
XTTRP 3 3 3 3 3 ≥ 1
GTTRP 3 3 3 7 3 ≥ 1

Table 3.1: A problem classification based on the vertex types and number of
vehicles #veh.
The symbol 3 means that the problem contains the vertex type and 7 that it does
not. The abbreviation p. f. stands for parking facilities.

1. The assignment phase associates each vertex i ∈ V with an appropriate vertex j ∈ V, e.g.,
customers are assigned to parking locations or to the depot;

2. The construction phase builds an initial routing solution which is complete and feasible,
starting from the given assignment;

3. The improvement phase may further optimize the given solution.

These phases are executed for a fixed number of iterations, called restarts, during which a lim-
ited set of routes composing high-quality solutions are stored in a pool P . The set-partitioning
model F, described in Section 4.4, is then populated with the routes from P . A concluding
post-optimization polishing phase then selects the best combination of routes as the final solu-
tion. Pseudo-code for AVXS is given in Algorithm 8, while the following paragraphs provide
a detailed description of the four phases. Finally, the section ends with a discussion on how to
handle some special requirements arising in problem variants within AVXS, such as the MD-
VRP and the LRP.

Algorithm 8 AVXS algorithm
1: procedure AVXS(instance, seed)
2: R ← RANDOMENGINE(seed) ▷ Initialize the pseudo-random number generator
3: P ← ∅ ▷ Initialize the pool that will eventually contain high-quality routes
4: S∗ ← EMPTYSOLUTION(instance) ▷ Initialize the best known solution
5: for r ← 1 to ∆ do
6: S← EMPTYSOLUTION(instance) ▷ Initialize the current restart best solution
7: A ← ASSIGNMENT(instance,R)
8: S← CONSTRUCTION(S,A)
9: S← IMPROVEMENT(S,P ,R)

10: if COST(S) < COST(S∗) then S∗ ← S ▷ Update the best known solution
11: end for
12: F ← BUILDMODEL(P) ▷ Populate the set-partitioning model F using the routes in P
13: S∗ ← POLISHING(S∗, F)
14: return S∗

15: end procedure
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Figure 3.4: Construction of an assignment tree starting from the instance
depicted in Figure 3.2. Each separate picture represents the result of each step of
the assignment phase.

4.1 Assignment

In this phase we gradually build a feasible assignment tree by iteratively assigning customers to
parking locations and the depot. To this end we define the assignment cost ĉij as the estimated
cost of serving vertex i ∈ V from vertex j ∈ V. In our implementation, we define the assignment
costs as

ĉij =

{
cij (i ∈ V1

c ∧ j ∈ Vd) ∨ (i ∈ V2
c ∧ j ∈ V+

d \ {i}) ∨ (i ∈ Vd ∧ j = 0)
+∞ otherwise

As an alternative, one could use a more sophisticated estimate, such as the reduced costs ob-
tained by a combinatorial optimization bound (see e.g., Toth and Vigo (2002)). However, our
preliminary computational experiments showed that the additional effort of using reduced
costs for the assignments did not provide substantial improvement compared to the original
costs.

We define a parking location k ∈ Vd as open if it has at least one customer assigned to it, and
closed otherwise. The assignment phase performs the following steps in sequence:

(a) Truck customers and vehicle customers without parking facilities i ∈ V1
c ∪ (V2

c \ V2
c ) are

probabilistically assigned to vertices ki ∈ V+
d through a roulette-wheel selection using

an assignment fitness function f i. Once the step is completed some vehicle customers
with parking facilities will be open and others will be closed. See Figure 3.4(a) for an
illustration.

(b) Closed vehicle customers with parking facilities i ∈ V2
c are assigned to open parking

locations and the depot j ∈ Vd ∪ {0}, using the same strategy as in step (a). Open vehicle
customers with parking facilities k ∈ V2

c are assigned to the depot, as depicted in Figure
3.4(b).

(c) Open satellites k ∈ Vd are assigned to the depot and the closed ones are ignored, as in
Figure 3.4(c).

Observe that the assignment resulting from this phase will always respect the accessibility con-
straints defined by the XSTTRP whenever the instance is feasible. The definition of the assign-
ment fitness function f i for each vertex i ∈ V obviously influences the outcome of this phase.
In our implementation, we used the d-NEAR assignment fitness function with d equal to 25. The
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d-NEAR is a restricted GRASP-based function defined as

f i(j) =

{
1 j ∈ Hd

i (ĉ)
0 otherwise

where Hd
i (ĉ) denotes the d nearest vertices to i according to the assignment costs ĉ. For a

comprehensive analysis of the behavior of the d-NEAR function we refer to Section 6.1. Finally,
the probability pij of assigning vertex i ∈ V to vertex j ∈ V is defined as pij = f i(j)/ ∑k∈V f i(k).
It is worth noting that, due to the roulette-wheel selection procedure, subsequent calls of the
assignment phase might produce different assignment trees.

4.2 Construction

Given an assignment tree, an initial feasible solution to XSTTRP is defined as follows. First, the
main-route is determined by solving a Traveling Salesman Problem (TSP) visiting the depot,
the open parking locations, and any vehicle customer without parking facilities assigned to the
depot. Then, for each open parking location k ∈ Vd, the sub-routes are obtained by solving a
specific CVRP with the customers belonging to the sub-tree rooted in k. Note that there is no
limit on the number of sub-routes rooted in a given parking location. As extensively discussed
in Section 6.1, the quality of the initial solution is not crucial for the algorithm’s overall perfor-
mance. Therefore, we solved both the CVRP and the TSP using an adaptation of the well-known
savings algorithm by Clarke and Wright (1964b).

4.3 Improvement

The initial solution defined in the construction phase is improved using a specific procedure
based on the Iterated Local Search paradigm (ILS, see Lourenço, Martin, and Stützle (2003))
in which the local search is performed using a Randomized Variable Neighborhood Descent
(RVND, see e.g., Subramanian, Uchoa, and Ochi (2013)). In addition, to speed up the local
search execution, we adopted a granular approach (see, Toth and Vigo (2003) and Schneider,
Schwahn, and Vigo (2017)). Our ILS intensifies the search around the current best-known so-
lution. The diversification is naturally provided throughout the procedure itself, strengthened
by a global restart mechanism which provides a different starting assignment tree. The ran-
domization in the RVND is used for selecting the order of the neighborhoods and that of the
moves within each neighborhood, the latter are searched according to a first-improvement strat-
egy. This improves the likelihood that different search pathways are explored, thus diversifying
while improving the solution. We considered the following neighborhoods:

• 1-0 exchange (RELOCATE) in which each customer is removed from its current position
and re-inserted in the position that minimizes the insertion cost in the current solution;

• 1-1 exchange (SWAP) in which a pair of customers is exchanged;

• intra-route & intra-park 2-opt (TWOPT) in which an intra-route 2-opt procedure is applied
to each route and an inter-route 2-opt procedure is applied to each VRP, defined by an
open parking location and the vertices assigned to it;

• sub-routes segments-swap (SEGSWAP) in which contiguous, possible empty, paths within
sub-routes including from two up to five vertices are swapped. SEGSWAP is a simple
adaptation of the CROSS-exchange operator introduced by Taillard et al. (1997b). Note
that, for efficiency purposes, our definition of SEGSWAP works on already open satellites
and sub-routes only. Therefore, it does not include RELOCATE or SWAP moves that can
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Figure 3.5: A special case of the ROOTREF move.
In (a) we show the initial solution with the sub-route rooted in vertex k. In (b) the
root is changed to s, and k is removed from the main-route and inserted into the
sub-route.

work on main- and sub-routes. In fact, from our experience, swapping a contiguous path
of vertices between the main-route and a sub-route seldom results in a feasible exchange;

• sub-route root-refine (ROOTREF) (see Chao (2002)), consists of replacing the root of a sub-
route with another one. We extend the operator by also considering the possibility of
leaving the original root, corresponding to a vehicle customer with parking facilities, in
the sub-route (as shown in Figure 3.5).

At this point, we have five local search operators, all but one of which, the TWOPT, can change
the initial assignment tree. As will be analyzed in Section 6.1, the local search step is capable of
greatly improving the quality of the solutions. In the RVND we examine each granular neigh-
borhood exhaustively before moving to the next one. If an improving move is found, we apply
the move and restart the search using the current neighborhood. The local search terminates
once a complete RVND is executed without finding an improving solution.

Once the local search is stopped at a local optimum, we apply a shake procedure to the solu-
tion in a ruin-and-recreate style (see Schrimpf et al. (2000b)). The shake is always applied to the
best known solution found during the current restart. More precisely, we designed three dif-
ferent removal procedures to be used in the ruin step. The first one, called main-vertex-removal
(MREM), operates by removing, with probability η, each vehicle customer served by the main-
route that is not an open parking location (as discussed in Section 5.2, we used η = 0.5). The
other removal procedures work on sub-routes. The sub-routes-removal procedure (SREM) aims to
improve the assignment by destroying a number of long routes from a set of randomly chosen,
open parking locations. For each selected parking location k, we remove the r longest sub-
routes, where r is randomly chosen between 0 and the total number of sub-routes rooted in
k. Note that if the parking location is a satellite, then all the sub-routes rooted in that satellite
are removed and the satellite is closed. We define this special case as SREM.1. On the other
hand, the sub-routes unloading procedure (SUNLOAD), which is intended to improve the routing
solution, consists of removing random customers from each sub-route until its load is less than
a threshold ζ × loadavg, where ζ is a coefficient that is uniformly randomly generated on the
interval [0.3, 0.9] (at each shake application) and loadavg is the average load of all sub-routes.
At each shake application we always execute MREM, and we alternate the executions of SREM

and SUNLOAD. The recreate step inserts each removed customer in the position of the current
solution that minimizes the insertion cost. The order in which customers are considered affects
the final result. Therefore, at every recreate step we examine the customers according to an or-
dering randomly chosen among five possibilities: ascending or descending values of their x or
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y coordinates, respectively, or a random permutation. Pseudo-code for the improvement phase
is provided in Algorithm 9.

Algorithm 9 Improvement phase
1: procedure IMPROVEMENT(S,P ,R)
2: π ← πbase ▷ Initialize the sparsification factor
3: i← 0, g← 0 ▷ Initialize ILS and granular counters
4: S′ ← S ▷ Initialize the current restart best solution
5: while true do
6: S← RVND(S,R) ▷ Improve the current solution using the randomized VND
7: if COST(S) < COST(S′) then ▷ Update the current restart best solution, if necessary
8: i← 0, g← 0, S′ ← S, π ← πbase ▷ Reset some variables
9: P ← P ∪ ROUTESOF(S) ▷ Add routes to the route pool

10: end if
11: i← i + 1, g← g + 1 ▷ Increment ILS and granular counters
12: if i ≥ δ then break ▷ Terminate the improvement phase
13: if g ≥ ϕ · δ then π ← λ · π, g← 0 ▷ Update the move generators set
14: S← S′

15: S← SHAKE(S)
16: end while
17: return S′

18: end procedure

Finally, as to the algorithm’s efficiency, we observe that both RELOCATE and ROOTREF might
evaluate moves which require the opening of closed satellites. To identify the insertion position
for the satellite which minimizes the insertion cost in the main-route, we adopted a lazy caching
strategy. In particular, we use an additional cache data structure that for each closed satellite
stores its best insertion position. At the beginning, the cache is empty (or invalid). When a
move needs to evaluate the opening of a closed satellite, we check the cache for a valid result.
If the result is valid, we return the stored position, otherwise we scan the current main-route,
find the current best insertion position, and update the corresponding cached value. The whole
cache is invalidated each time the main-route is modified.

Granular neighborhoods.

Granular neighborhoods have been successfully applied to several Vehicle Routing Problems
to speed up local search procedures while preserving solution quality compared to complete
neighborhood exploration (see Toth and Vigo (2003)). Following the guidelines presented by
Toth and Vigo (2003) and Schneider, Schwahn, and Vigo (2017) a granular neighborhood is
completely defined by a set T ∈ E of appropriately chosen arcs, called move generators. Each
arc in T is used in the neighborhood search to generate a uniquely defined single move, thus
reducing the search time to O(|T|). Typically, the set T of move generators for a specific neigh-
borhood is defined according to problem-related criteria, often called sparsification rules. For
example, according to Toth and Vigo (2003), arcs are chosen if their cost is below a given thresh-
old, whereas Schneider, Schwahn, and Vigo (2017) used the reduced cost coming from a simple
relaxation for the same purpose. In our algorithm all the neighborhoods used in the RVND are
defined as granular and we adopted a simple cost-based sparsification rule.

The multi-level nature of a problem with a main-route and several sub-routes calls for addi-
tional care in the definition of the set of move generators. More precisely, by examining Fig-
ure 3.6, which reports a sub-optimal solution for instance 25 of Villegas et al. (2010), one may
easily observe that the arcs in the main-route are considerably longer than those of the sub-
routes. Therefore, if we use a relatively small cost threshold to define the sparsification rule,
very few arcs between satellites are likely to be inserted in T, possibly causing severe harm
to the solution quality. As a consequence, we used two different sparsification rules for the
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Figure 3.6: A solution for instance 25 by Villegas et al. (2010), a clustered instance
with 200 truck customers and ten satellite depots. The main-route is clearly

sub-optimal.

arcs of the main-route {(i, j) : i, j ∈ V2
c ∪ Vd ∪ {0}}, called main-route arcs, and for those of

the sub-routes {(i, j) : i, j ∈ Vc ∪ Vd}, called sub-route arcs. Note that some arcs, e.g., those
between vehicle customers, may belong to both sets because such customers may be served
either in the main-route or in the sub-routes. Given a sparsification factor π, we define T as the
union of two sets TM and TS corresponding to main- and sub-route arcs. The set TM includes
the π · (|V2

c |+ |Vd|+ 1) shortest main-route arcs, while the set TS includes the π · (|Vc|+ |Vd|)
shortest sub-route arcs.

Finally, following Schneider, Schwahn, and Vigo (2017), we adopted a dynamic updating of the
sparsification level. We initially set π = πbase, and whenever ϕ · δ non-improving iterations
are performed, π = π · λ. The value of π is reset to πbase, however, whenever an improving
solution is found.

4.4 Polishing

We store every route that constitutes an improving solution produced by the RVND procedure
in a pool P of high-quality routes (see line 9 of Algorithm 9). Note that we only store local
minima which are improving with respect to the current restart best solution and not all the
generated ones. We found that this allows us to limit the size of the pool without a significant
worsening of the solution quality. In storing the routes we discard duplicates and, possibly,
update the existing ones with improved versions. We effectively handle routes retrieval by
using an additional hash-table data structure that, given a set of nodes, is able to efficiently
check whether a route passing through the given set of nodes exists or not. Moreover, routes
in P are stored as set of vertices with an associated cost label which depends on the sequence
of visits of the vertices. Given two routes passing through the same set of vertices we only
maintain the one with the lowest cost label. The final result of our algorithm is the best solution
found by a set-partitioning post-optimization performed on the routes from P .



4. Solution approach 83

More precisely, let M be the subset of all the main-routes in P starting from the depot 0 and
passing through a subset of vehicle customers V2

c and, possibly, through one or more satellites
in Vd. Let Mk ⊂ M be the subset of main-routes passing through k ∈ V2

c ∪ Vd. Note that
Mk = ∅ for each truck customer k ∈ V1

c . Given a main-route r ∈ M, we denote by gr its cost
and by Rr the subset of vehicle customers and satellite depots visited by r. LetRk be the subset
of all the sub-routes in P rooted in parking location k ∈ Vd. We denote by Rki ⊂ Rk the subset
of sub-routes rooted in k ∈ Vd that pass through customer i ∈ Vc. Let ℓ ∈ Rk be a sub-route
rooted in k; we denote by dkℓ its cost and by Rk

ℓ the subset of customers visited by ℓ and we
assume that k /∈ Rk

ℓ. Let yr be a binary variable that is equal to 1 if and only if the main-route
r ∈ M is in the solution, and 0 otherwise. Furthermore, let xkℓ be a binary variable that is equal
to 1 if and only if the sub-route ℓ ∈ Rk, k ∈ Vd is in the solution, and 0 otherwise. The XSTTRP
route-based formulation F is defined as follows.

(F) min ∑
k∈Vd

∑
ℓ∈Rk

dkℓxkℓ + ∑
r∈M

gryr (1)

s.t. ∑
k∈Vd

∑
ℓ∈Rki

xkℓ = 1, i ∈ V1
c (2)

∑
k∈Vd

∑
ℓ∈Rki

xkℓ + ∑
r∈Mi

yr = 1, i ∈ V2
c (3)

∑
ℓ∈Rki

xkℓ − ∑
r∈Mk

yr ≤ 0, k ∈ Vd, i ∈ Vc \ {k} (4)

∑
r∈M

yr = 1 (5)

xkℓ ∈ {0, 1}, ℓ ∈ Rk, k ∈ Vd (6)
yr ∈ {0, 1}, r ∈ M (7)

where the objective function (1) imposes the selection of the best combination of main-route and
sub-routes. Equations (2) and (3) require that each customer i ∈ Vc be visited exactly once by a
compatible route. Inequalities (4) specify that a customer i ∈ Vc can be visited by a sub-route
rooted in a parking location k ∈ Vd only if that location is visited by the main-route. Constraint
(5) dictates that just one main-route must be in the solution. Finally, constraints (6) and (7)
define the variables as binary. The mathematical formulation was introduced in a preliminary
work by Accorsi (2017). The polishing phase brings together the otherwise unrelated restart
results. Similar methods have proved effective in other vehicle routing algorithms (see e.g., the
works by Subramanian, Uchoa, and Ochi (2013) and Villegas et al. (2013)). In doing the post-
optimization, we supply the best found solution as a warm start; we stop the model resolution
after a predetermined computer-independent number of ticks, see Section 5.1.

4.5 Extensions to handle specific sub-problems

The conversion from MDVRP and LRP instances to XSTTRP ones is straightforward, although
both problems include special requirements not directly definable in XSTTRP terms. In partic-
ular, the MDVRP imposes a maximum on the number of vehicles available in each depot and
the LRP defines a fixed cost on the use of vehicles and on the opening of depots. As discussed
in Section 3.1, these problems are encoded as XSTTRP by: (i) mapping depots and customers
to satellites and truck customers respectively, (ii) adding an additional dummy main depot, (iii)
setting to 0 all costs associated with the edges between satellites and those between satellites
and depot, and (iv) setting the truck capacity equal to the original problem vehicle capacity and
the trailer capacity equal to, at least, the sum of customer demands.
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In the MDVRP, we build a zero-cost main-route through the main depot and all the satellites
(that is, we assume all satellites have been visited). Next, in order to handle a maximum number
of available vehicles (say nv) in each satellite, we simply introduce a penalty; the solution cost
is incremented by a very large value for each additional vehicle used in the solution. Although
this alone does not guarantee the discovery of feasible solutions, it has been proved effective
experimentally in solving the instances we consider. Furthermore, this same constraint must be
considered in model F by adding

∑
ℓ∈Rk

xkℓ ≤ nv, k ∈ Vd

Finally, we relax the shaking procedure SREM by discarding the special case SREM.1 defined in
Section 4.3, which removes all routes rooted in a satellite chosen by the SREM shaking procedure.
Since the main-route does not contribute to the objective function in the MDVRP, any empty
visited satellite can remain open. Thus, instead of removing all sub-routes from a satellite, we
remove a random number of them.

To handle the LRP, we simply incorporate the fixed costs of using a vehicle Fv and opening an
LRP depot Fd into the cost matrix as follows.

c′ij =



Fd

2
(i ∈ Vd ∧ j = 0) ∨ (i = 0∧ j ∈ Vd)

Fd i ∈ Vd ∧ j ∈ Vd ∧ i ̸= j
Fv

2
(i ∈ Vc ∧ j ∈ Vd) ∨ (i ∈ Vd ∧ j ∈ Vc)

cij otherwise

We use this new cost matrix c′ to execute the optimization. It is important to note that, when
opening a satellite has high fixed cost, we cannot rely on a probabilistic assignment phase,
because a wrong initial assignment is very difficult to modify when the fixed cost is greater than
the routing contribution. In other words, the attractiveness of already open satellites might be
very high with respect to the opening of closed ones. In particular, our local search procedures
do not contain any specialized technique which is able to completely move several routes from
a satellite to another one in a single evaluation. The SREM ruin procedure might cause a satellite
to be completely closed but, again, if opening a satellite has high fixed cost compared to the
routing cost, the recreate step will prefer to insert the removed customers in routes of already
open satellites instead of opening new ones. Hence, in this situation, a meaningful selection of
initial satellites during the assignment phase can be very important. To handle this, we use the
d-NEAR assignment fitness function with d equal to 1, which deterministically assigns a vertex
i ∈ V to its nearest neighbor j ∈ V according to the assignment cost ĉ.

5 Computational results

The computational testing had two objectives. First of all we wanted to assess the success of
AVXS. To this end, we used the algorithm to solve instances of four special cases of the XSTTRP
which are extensively studied in the literature, namely the MDVRP, the LRP, the STTRPSD and
the STTRP. We also performed a preliminary testing on the CVRP instances of the X benchmark
by Uchoa et al. (2017). Unfortunately, our results with the algorithm’s parameters tuned as
described in Section 5.2 were not state-of-the-art on those large scale instances, therefore we
do not describe them in this section. The second objective was to analyze the impact of the
algorithm’s main components on its performance in detail, by testing AVXS on new instances
of the XSTTRP which have not been previously studied in the literature.
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5.1 Implementation and experimental environment

The proposed algorithm was implemented in C++ and compiled using g++ 6.3.0. To solve the
set-partitioning model F we used CPLEX 12.8 (CPLEX (2017), C callable library) with default
settings and a prefixed number of ticks as a computer-independent measure to prematurely ter-
minate the model resolution. In particular, assuming our machine performs an average number
of 1900 ticks per second, we assigned CPLEX a maximum of 60 · 1900 = 114000 ticks. The exper-
iments were performed on a 64-bit desktop computer with an Intel Core i7-8700K CPU, running
at 3.7 GHz with 32 GB of RAM on a GNU/Linux Debian operating system. Both the algorithm
and CPLEX were executed using a single thread. All the instances used in our testing with
the corresponding graphic solutions, as well as the source code, could be downloaded from
https://acco93.github.io/avxs/. Detailed instructions are given as an aid to others wishing
to accurately reproduce our results. Because our algorithm contains randomized elements, for
every experiment we performed a set of ten runs for each instance and we defined the seed of
the pseudo-random engine, the Mersenne Twister (Matsumoto and Nishimura (1998)), equal
to the run counter minus one. To facilitate comparisons with other algorithms run on com-
puters with different CPUs, we used the single-thread rating defined by PassMark ®Software
(2020), which assigns a score of 2704 to our CPU. Moreover, to mitigate the impact of small
time-variations due to overhead of the operating system we intentionally used a clock func-
tion that reports running times with a precision set to one second as the minimum recordable
time. Therefore, when the algorithm took less than one second, we considered the elapsed time
to be one. Finally, if not stated otherwise, we assume that the arc costs cij were computed as

cij = Euc(i, j) =
√
(xi − xj)2 + (yi − yj)2, where xi, xj, yi and yj represent the x and y coordi-

nates of vertices i, j ∈ V, respectively.

5.2 Parameter definitions

Algorithm AVXS requires that initial values be defined for a number of parameters. We set
these values during preliminary testing, performed on a training which included the XSTTRP
instances with 200 total vertices. The resulting parameter values, which were used on all prob-
lem classes, are the following:

• number of restarts, ∆ = 100;

• maximum number of non-improving ILS iterations, δ = 100;

• probability of removing a customer from the main-route in the MREM procedure, η = 0.5 ;

• unloading range used in the SUNLOAD procedure, ζ = [0.3, 0.9];

• initial sparsification value used to define the granular neighborhood, πbase = 1.25;

• factor, ϕ = 0.2, used to define the fraction of non-improving iterations to be performed
before incrementing the sparsification parameter π;

• factor, λ = 2, used to increment the value of π when ϕ · δ non-improving iterations are
performed.

The parameters tuning followed a simple sequential strategy. At the beginning, we identified
initial reasonable values for all the parameters by performing a preliminary limited trial-and-
error testing. Then, we assessed the performance of the algorithm when changing the value of
one parameter at a time. We kept a new value when it allowed good quality solutions while
keeping the computational time low.

https://acco93.github.io/avxs/
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HGSADC AVXS

Id |V1
c | |Vd| Q1 Type BKS Avg t10 Best Avg Worst t10 t̂10

p01 50 4 80 rd 576.87 0.00 138 0.00 0.00 0.00 10 39.47
p02 50 4 160 rd 473.53 0.00 126 0.00 0.00 0.00 10 39.47
p03 75 2 140 rd 641.19 0.00 258 0.00 0.00 0.00 20 78.95
p04 100 2 100 rd 1001.04 0.02 1164 0.00 0.15 0.31 178 702.65
p05 100 2 200 rd 750.03 0.00 636 0.00 0.00 0.00 56 221.06
p06 100 3 100 rd 876.50 0.00 684 0.00 0.00 0.00 75 296.06
p07 100 4 100 rd 881.97 0.28 930 0.00 0.06 0.30 86 339.48
p12 80 2 60 g 1318.95 0.00 312 0.00 0.00 0.00 10 39.47
p15 160 4 60 g 2505.42 0.00 1152 0.00 0.00 0.00 89 351.32
p18 240 6 60 g 3702.85 0.00 2712 0.00 0.00 0.00 273 1077.65
p21 360 9 60 g 5474.84 0.03 6000 0.00 0.00 0.00 774 3055.32

Mean 0.03 1282.91 0.00 0.02 0.06 143.73 567.35

Table 3.2: Computations on MDVRP instances.
Optimality has been proved for the solutions in boldface by Baldacci and
Mingozzi (2008).

In particular, we noted that few iterations in the improvement phase are typically sufficient to
converge to good local optima and few restarts are generally able to produce a moderate-sized
and diversified pool of high-quality routes. In fact, the results obtained by setting δ = 1000 or
∆ = 1000 were, on average, at most 0.2% better while requiring computing times up to 10 times
larger. Moreover, we noticed that the algorithm is not very sensitive to reasonable values of η
and ζ. Indeed, whenever values of those parameters that cause extremely disruptive effects or
no changes at all are discarded, the algorithm is able to produce comparable results in similar
computing time. On the contrary, πbase, ϕ and λ heavily affects the algorithm performance. The
value of πbase was set following the guidelines defined in Toth and Vigo (2003) who reported
that the best results are typically obtained with a sparsification factor between 1.0 and 2.5 and
used a sparsification value equal to 1.25. From our experience, starting with a very aggressive
sparsification level and reducing it relatively often resulted to be the most effective and efficient
strategy.

5.3 Testing on MDVRP instances

We tested our algorithm on the subset of MDVRP instances with capacitated vehicles proposed
by Cordeau, Gendreau, and Laporte (1997). The set contains 11 instances with 50 to 360 cus-
tomers and up to nine depots. The first seven instances have randomly distributed customers,
while in the last four they are arranged in geometrical patterns. We compared AVXS with the
HGSADC (Hybrid Genetic Search with Advanced Diversity Control) algorithm proposed by
Vidal et al. (2012), which is currently one of the most effective MDVRP solution approaches
capable of handling the complete MDVRP instance set and several other VRP variants. In our
computations, we omitted MDVRP instances with constraints on route length. Table 3.2 sum-
marizes the computational results, organized in the following columns: the instance identifier
(Id), the number of truck customers (|V1

c |), the number of satellites (|Vd|), the truck capacity
(Q1), the instance type (Type) (equal to “rd” for randomly distributed and “g” for geometrical
instances), and the best known solution value (BKS) reported in Vidal et al. (2012). For each al-
gorithm we report (when available) the best (Best), the worst (Worst) and the average (Avg) gap
of the solution found by the algorithm with respect to BKS, the computational time in seconds
for 10 runs (t10) and the corresponding scaled time (t̂10) computed as t̂10 = t10(PA/PB) where
PA is our CPU single-thread rating and PB is the CPU rating of the competing method. The gap
is computed as 100 · (z− BKS)/BKS, where z is the solution value.
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Figure 3.7: LRP algorithm performance comparison over the instances of Tuzun
and Burke (1999). We excluded algorithms DLPP, YLLT and TC for which the
average gaps are not available.

Because Vidal et al. (2012) reported only the average computing time of a single run, the values
of t10 for HGSADC from the original paper have been multiplied by ten. Vidal et al. (2012) tested
their algorithm on an AMD Opteron 250 CPU at 2.4 GHz. We were not able to find the exact
CPU values in PassMark ®Software (2020) so we found a similar model, the AMD Opteron 275
at 2.2 GHz, which has a single-thread rating of 685; thus our CPU is roughly 3.95 times faster.
As can be seen from the table, our algorithm was able to find a solution with the same value
of the best known solution for all instances, and the average solution quality was comparable
with that of HGSADC. Moreover, as our computing times, scaled to be comparable with those
of the competing method, were much shorter, we can conclude that AVXS was able to reach
state-of-the-art results on MDVRP instances within a very limited amount of time.

5.4 Testing on LRP instances

We tested AVXS on the set of 36 LRP instances proposed by Tuzun and Burke (1999), which are
characterized by capacitated vehicles, uncapacitated depots, and fixed costs for using vehicles
and depots. Each instance has between 100 and 200 customers, and between 10 and 20 candi-
date depots. Customers are uniformly randomly distributed or arranged in either three or five
clusters. The vehicle capacity is 150. Table 3.3 shows the details of our computational results;
the columns are the same as for Table 3.2. Type “c (h)” denotes clustered instances with h clus-
ters. We observe that AVXS is able to find solutions close to the best known ones in relatively
short computing times and even detected a new best solution for instance P123222. A general
comparison of our method with other state-of-the-art methods is reported in Table 3.4, where
the details of previous methods are obtained from the recent literature survey by Schneider and
Drexl (2017). The table contains the following columns: the algorithm acronym (Algorithm),
the best (Best) and, when available, the average (Avg) percentage gap with respect to the best
known solution, the average raw run-time of a single run solving the considered LRP instances
in seconds (t), the PassMark ®Software (2020) score as reported in the survey paper (Pscore), and
the scaled running time defined as the normalized single run-time × the number of conducted
runs (t̂). Run-times are normalized according to the processor used by Lopes, Ferreira, and
Santos (2016). Finally, a graphic comparison of the algorithm performance is given in Figure
3.7.
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Id |V1
c | |Vd| Type BKS Best Avg Worst t10

P111112 100 10 rd 1467.68 0.00 0.00 0.04 110
P111122 100 10 rd 1448.37 0.00 0.03 0.06 183
P111212 100 10 rd 1394.80 0.00 0.00 0.01 100
P111222 100 10 rd 1432.29 0.00 0.21 2.08 198
P112112 100 10 c (3) 1167.16 0.00 0.12 0.33 588
P112122 100 10 c (3) 1102.24 0.00 0.00 0.01 584
P112212 100 10 c (3) 791.66 0.00 0.01 0.15 124
P112222 100 10 c (3) 728.30 0.00 0.00 0.00 131
P113112 100 10 c (5) 1238.24 0.02 0.05 0.15 542
P113122 100 10 c (5) 1245.30 0.00 0.00 0.01 438
P113212 100 10 c (5) 902.26 0.00 0.00 0.00 433
P113222 100 10 c (5) 1018.29 0.00 0.00 0.00 499
P131112 150 10 rd 1892.17 0.56 1.08 2.08 704
P131122 150 10 rd 1819.68 0.25 1.06 2.14 770
P131212 150 10 rd 1960.02 0.24 0.27 0.38 420
P131222 150 10 rd 1792.77 0.00 0.26 0.82 688
P132112 150 10 c (3) 1443.32 0.00 0.22 0.31 808
P132122 150 10 c (3) 1429.30 0.86 1.24 1.50 875
P132212 150 10 c (3) 1204.42 0.10 0.20 0.46 699
P132222 150 10 c (3) 924.68 0.70 0.79 0.89 751
P133112 150 10 c (5) 1694.18 0.08 0.58 1.52 705
P133122 150 10 c (5) 1392.01 0.37 0.60 0.79 840
P133212 150 10 c (5) 1197.95 0.00 0.01 0.02 420
P133222 150 10 c (5) 1151.37 0.07 0.15 0.25 725
P121112 200 10 rd 2237.73 0.03 0.66 1.18 863
P121122 200 10 rd 2137.45 0.15 1.02 3.66 855
P121212 200 10 rd 2195.17 0.00 0.66 1.33 883
P121222 200 10 rd 2214.86 0.51 1.44 2.43 981
P122112 200 10 c (3) 2070.43 0.61 1.31 1.94 939
P122122 200 10 c (3) 1685.52 0.86 1.76 2.90 1039
P122212 200 10 c (3) 1449.93 1.20 1.44 1.56 936
P122222 200 10 c (3) 1082.46 0.02 0.07 0.25 937
P123112 200 10 c (5) 1942.23 1.38 1.64 1.76 965
P123122 200 10 c (5) 1910.08 0.09 0.53 1.79 1064
P123212 200 10 c (5) 1761.11 0.34 0.73 1.21 1081
P123222 200 10 c (5) 1390.86 -0.01 0.01 0.04 736

Mean 0.23 0.50 0.95 655.94

Table 3.3: Computations on LRP instances.
Optimality has been proved for the solutions in boldface by Baldacci, Mingozzi,
and Wolfler Calvo (2011).
New best solutions (instance identifier, value): (P123222, 1390.74)
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Algorithm Best Avg t Pscore t̂

DLPP 1.40a 606.64 1200 317.55 × 5
YLLT 1.59a 826.47 1135 409.62 × 1
HCC (500K) 0.53 0.99 165.93 685 49.63 × 5
HCC (5000K) 0.39 0.60 1620.60 685 484.76 × 5
CCG 0.27 0.66 2589.53 1219 1378.44 × 10
ELT 1.24 1.24 392.33 776 132.94 × 1
TC 1.33a 202.08 546 48.18 × 10
ELBT 0.86 0.86 201.22 776 68.19 × 1
SL (speed) 0.31 0.57 65.75 1652 47.43 × 5
SL (quality) 0.04 0.15 1004.65 1652 724.75 × 5
LFS 0.96 1.55 86.02 2290 70.02 × 10
LFS+ 0.80 1.19 363.61 2290 256.66 × 10
A&S 0.30 0.30 171.93 1878 141.00 × 1
AVXS 0.23 0.50 65.59 2704 77.45 × 10

Table 3.4: Comparison with state-of-the-art LRP algorithms.
aData on average gaps not available.
The algorithm acronyms are: DLPP (Duhamel et al. (2010)), YLLT (Yu et al.
(2010)), HCC (Hemmelmayr, Cordeau, and Crainic (2012)), CCG (Contardo,
Cordeau, and Gendron (2014)), ELT (Escobar, Linfati, and Toth (2013)), TC (Ting
and Chen (2013)), ELBT (Escobar et al. (2014)), SL (Schneider and Löffler (2019)),
LFS (Lopes, Ferreira, and Santos (2016)), A&S (Florian (2018))

We conclude that our AVXS favourably compares with the best existing methods, achieving an
excellent compromise between solution quality and running time, as shown by its presence on
the Pareto frontier of Figure 3.7.

5.5 Testing on STTRPSD instances

The STTRPSD instances were proposed by Villegas et al. (2010); they are a set of 32 randomly
generated Euclidean instances defined in a square grid of 100 × 100 units. The set contains ran-
domly distributed and clustered instances including only truck customers and satellite depots.
The size of the instances vary from 25 to 200 truck customers and from 5 to 20 satellites. The
truck capacity is either 1000 or 2000, and the customer demand is uniformly distributed in the
interval [1, 200]. The algorithm of Villegas et al. (2010) was implemented in Java. The experi-
ments were run on a computer equipped with an Intel Pentium D 945 processor running at 3.4
GHz with 1024 MB of RAM. We were not able to find the exact CPU in PassMark ®Software
(2020), so we referred to a similar model, namely the Intel Pentium D 940 working at 3.20 GHz,
which has a single-thread rating of 758. Our CPU is thus 3.57 times faster. The authors pre-
sented four metaheuristics with various characteristics and levels of performance. In Table 3.5
we compare our algorithm with the algorithm MS-ILS of Villegas et al. (2010), which is the best-
performing one with respect to the objective function (and just slightly more time-consuming
than the second-best).

Table 3.5 includes several columns similar to those of previous result tables. Since Villegas et
al. (2010) reported only the average computing time needed to perform a single run of their
algorithm, to obtain the values of t10 we multiplied their times by ten. As can be seen from
Table 3.5, AVXS was able to find seven new best solutions for the largest instances. Moreover,
we note that instances 1-18, 21 and 22 have already been proved to be optimal by Belenguer
et al. (2016); thus we improved 7 out of 12 of the remaining ones. The computational results
show the effectiveness of our method, in terms of both solution quality and processing time
(which is more than ten times shorter than the competing algorithm).
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MS-ILS AVXS

Id |V1
c | |Vd| Q1 Type BKS Best Avg Worst t10 Best Avg Worst t10 t̂10

1 25 5 1000 c 405.46 0.00 0.00 0.00 114 0.00 0.00 0.00 10 35.67
2 25 5 2000 c 374.79 0.00 0.00 0.00 114 0.00 0.00 0.00 10 35.67
3 25 5 1000 rd 584.03 0.00 0.00 0.00 126 0.00 0.00 0.00 10 35.67
4 25 5 2000 rd 508.48 0.00 0.00 0.00 102 0.00 0.00 0.00 10 35.67
5 25 10 1000 c 386.45 0.00 0.00 0.00 132 0.00 0.00 0.00 10 35.67
6 25 10 2000 c 380.86 0.00 0.00 0.00 126 0.00 0.00 0.00 10 35.67
7 25 10 1000 rd 573.96 0.00 0.00 0.00 138 0.00 0.00 0.00 10 35.67
8 25 10 2000 rd 506.37 0.00 0.00 0.00 126 0.00 0.00 0.00 10 35.67
9 50 5 1000 c 583.07 0.00 0.00 0.00 708 0.00 0.00 0.00 10 35.67
10 50 5 2000 c 516.98 0.00 0.00 0.00 570 0.00 0.00 0.00 10 35.67
11 50 5 1000 rd 870.51 0.00 0.00 0.00 612 0.00 0.00 0.00 10 35.67
12 50 5 2000 rd 766.03 0.00 0.00 0.00 588 0.00 0.00 0.00 10 35.67
13 50 10 1000 c 387.83 0.00 0.00 0.00 822 0.00 0.00 0.00 10 35.67
14 50 10 2000 c 367.01 0.00 0.00 0.00 750 0.00 0.00 0.00 10 35.67
15 50 10 1000 rd 811.28 0.00 0.00 0.00 720 0.00 0.00 0.00 10 35.67
16 50 10 2000 rd 731.53 0.00 0.00 0.00 630 0.00 0.00 0.00 10 35.67
17 100 10 1000 c 614.02 0.00 0.06 0.21 3480 0.00 0.00 0.00 58 206.90
18 100 10 2000 c 547.44 0.00 0.02 0.12 3894 0.00 0.00 0.00 30 107.02
19 100 10 1000 rd 1275.76 0.33 0.55 0.81 2976 -0.31 -0.31 -0.31 72 256.84
20 100 10 2000 rd 1097.28 0.00 0.06 0.56 2604 0.00 0.00 0.00 52 185.5
21 100 20 1000 c 642.61 0.00 0.00 0.00 2892 0.00 0.00 0.00 65 231.87
22 100 20 2000 c 581.56 0.00 0.11 0.37 3600 0.00 0.00 0.00 40 142.69
23 100 20 1000 rd 1143.10 0.00 0.31 0.63 3012 0.00 0.00 0.00 58 206.9
24 100 20 2000 rd 1060.75 0.00 0.20 0.40 2946 0.01 0.24 0.27 91 324.62
25 200 10 1000 c 822.52 0.00 0.71 1.52 11544 -0.31 -0.31 -0.31 311 1109.42
26 200 10 2000 c 714.33 0.00 0.79 1.63 11682 -0.51 -0.44 -0.29 284 1013.11
27 200 10 1000 rd 1761.10 0.12 1.26 2.53 10314 -0.32 -0.32 -0.32 418 1491.12
28 200 10 2000 rd 1445.94 0.00 0.84 1.71 9288 0.00 0.00 0.00 255 909.66
29 200 20 1000 c 909.46 0.00 0.45 1.51 13746 -0.25 -0.25 -0.25 319 1137.96
30 200 20 2000 c 815.51 0.63 0.82 1.14 14646 -0.13 -0.13 -0.09 227 809.77
31 200 20 1000 rd 1614.18 0.00 1.08 2.16 12282 -0.22 -0.22 -0.22 341 1216.44
32 200 20 2000 rd 1413.32 0.00 0.81 1.81 12084 0.00 0.00 0.00 307 1095.16

Mean 0.03 0.25 0.54 3980.25 -0.06 -0.05 -0.05 96.50 344.24

Table 3.5: Computations on STTRPSD instances.
Optimality has been proved for the solutions in boldface by Belenguer et al.
(2016).
New best solutions (instance identifier, value): (19, 1271.78) (25, 819.96) (26,
710.70) (27, 1755.44) (29, 907.17) (30, 814.42) (31, 1610.62)
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5.6 Testing on STTRP instances

In order to assess the performances of AVXS on the STTRP, we first solved the small-scale in-
stances proposed by Bartolini and Schneider (2018) and used in a branch-and-cut algorithm.
They had selected subsets of customers with sizes of 30 and 40 from the TTRP instances pro-
posed by Chao (2002) and Lin, Yu, and Chou (2010), deriving the set of 36 instances that we
used for initial testing. Moreover, to comply with the multiple-vehicle versions of the orig-
inal TTRP in which each vehicle can perform at most one route type among the ones de-
fined by Chao (2002) (see Section 2), Bartolini and Schneider (2018) imposed the constraint
of not having any sub-route directly starting from the depot even in the single-vehicle ver-
sion. Since the XSTTRP does not allow sub-routes directly starting from the depot, we could
capture the STTRP considered by Bartolini and Schneider (2018) as a special case of our prob-
lem. Table 3.6 contains the computational results of those instances. We computed the arc costs
cij = (⌊10000 · Euc(i, j)⌋)/10000 as in the the original paper. By analyzing the computational
results of the set of instances shown in Table 3.6, we can conclude that AVXS is able to solve
small-scaled instances of this XSTTRP sub-problem effectively. In particular, the algorithm im-
proved five best known solutions.

After successfully solving the small-sized STTRP instances, we derived larger test instances
from the TTRP ones proposed by Chao (2002) by setting the trailer capacity Q2 equal to the
sum of customer demands and adding a dummy satellite at the same location as the main
depot, to allow an unlimited number of sub-routes starting from the depot location. These new
instances have either randomly distributed or clustered customers, who number between 50
and 200, and the capacity of the truck Q1 is either 100 or 150. Table 3.7 shows our computational
results with columns similar to previous tables. The number of vehicle customers with parking
facilities is denoted as |V2

c |, and BKS identifies the best known solution value found during the
experiments.

From the table we note that AVXS provides results with very small differences between the
best and the worst average gap, and the computing times to perform ten runs never exceed 13
minutes for the largest instances and are, on average, less than three minutes.

5.7 Testing on XSTTRP instances

We derived a set of XSTTRP instances from the TTRP ones proposed by Chao (2002) as follows.
For each TTRP instance, for nc the number of TTRP customers, we turned ns randomly chosen
customers into satellites. From the remaining n′c = nc − ns customers, we randomly chose t · n′c
to turn into vehicle customers without parking facilities. The possible values for ns depend
on the original TTRP instance size: ns = 5 if nc ≤ 99, ns ∈ {5, 10} when 100 ≤ nc ≤ 199 and
ns ∈ {5, 10, 20} if 200 ≤ nc. The values for t are t ∈ {0.2, 0.8}. Moreover, every instance contains
an additional satellite placed at the depot location.

Table 3.8 shows our computational results; in addition to the columns already defined for pre-
vious sub-problems we include a column for the number of vehicle customers without parking
facilities (|V2

c \V2
c |).

The results show that, as for the STTRP instances, the average difference between the best and
the worst average gap remains small. This experimentally indicates that AVXS is able to provide
stable results for XSTTRP instances. Moreover, the average computing time to perform a single
run is always less than 80 seconds and on average slightly more that 19 seconds.
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Id |V1
c | |V2

c | Q1 Type BKS Best Avg Worst t10

chao1.30 7 23 150 rd 350.6 0.00 0.00 0.00 10
chao2.30 15 15 150 rd 371.6 0.00 0.00 0.00 10
chao3.30 23 7 150 rd 383.6 0.00 0.00 0.00 10
chao4.30 7 23 150 rd 351.7 0.00 0.00 0.00 10
chao5.30 15 15 150 rd 383.8 0.00 0.00 0.00 10
chao6.30 22 8 150 rd 435.8 0.00 0.00 0.00 10
chao7.30 8 22 200 rd 365.1 0.00 0.00 0.00 10
chao8.30 15 15 100 rd 419.5 0.00 0.00 0.00 10
chao9.30 22 8 200 rd 408.0 0.00 0.00 0.00 10
chao10.30 8 22 100 rd 411.5 0.00 0.00 0.00 10
chao11.30 15 15 100 rd 398.8 0.00 0.00 0.00 10
chao12.30 22 8 100 rd 471.8 0.00 0.00 0.00 10
tai1 7 23 750 c 508.9 0.02 0.02 0.02 10
tai2 15 15 750 c 711.3 0.00 0.00 0.00 10
tai3 22 8 750 c 757.4 0.00 0.00 0.00 10
tai4 7 23 850 c 310.6 0.00 0.00 0.00 10
tai5 15 15 850 c 333.9 0.00 0.00 0.00 10
tai6 22 8 850 c 359.1 0.00 0.00 0.00 10
tai7 7 23 600 c 491.1 0.00 0.00 0.00 10
tai8 15 15 600 c 538.5 0.00 0.00 0.00 10
tai9 23 7 600 c 585.4 0.00 0.00 0.00 10
tai10 7 23 850 c 608.8 0.00 0.00 0.00 10
tai11 15 15 850 c 667.6 0.00 0.00 0.00 10
tai12 23 7 850 c 719.1 0.00 0.00 0.00 10
chao1.40 10 30 150 rd 399.2 0.03 0.03 0.03 10
chao2.40 20 20 150 rd 452.5 -2.48 -2.48 -2.48 10
chao3.40 30 10 150 rd 472.3 0.00 0.00 0.00 10
chao4.40 10 30 150 rd 415.2 -0.17 -0.17 -0.17 10
chao5.40 20 20 150 rd 455.5 0.00 0.00 0.00 10
chao6.40 30 10 150 rd 501.0 0.00 0.00 0.00 10
chao7.40 10 30 200 rd 423.1 -0.21 -0.21 -0.21 10
chao8.40 20 20 100 rd 461.5 0.00 0.00 0.00 10
chao9.40 30 10 200 rd 449.0 0.00 0.00 0.00 10
chao10.40 10 30 100 rd 502.2 -3.33 -3.33 -3.33 10
chao11.40 20 20 100 rd 500.7 0.00 0.00 0.00 10
chao12.40 30 10 100 rd 576.6 -0.36 -0.36 -0.36 10

Mean -0.18 -0.18 -0.18 10

Table 3.6: Computations on STTRP instances proposed by Bartolini and
Schneider (2018).
Optimality has been proved for the solutions in boldface by Bartolini and
Schneider (2018), for the remaining ones BKS reports the upper-bound provided
by Bartolini and Schneider (2018).
New best solutions (instance identifier, value): (chao2.40, 441.3) (chao4.40, 414.5)
(chao7.40, 422.2) (chao10.40, 485.5) (chao12.40, 574.5)
The objective values from which we computed the above gaps were rounded to
the first decimal place as in the original paper.
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Id |V1
c | |V2

c | Q1 Type BKS Best Avg Worst t10

1 12 38 100 rd 486.07 0.00 0.00 0.00 19
2 25 25 100 rd 548.14 0.00 0.00 0.00 20
3 37 13 100 rd 583.32 0.00 0.00 0.00 10
4 18 57 100 rd 617.13 0.00 0.01 0.09 41
5 37 38 100 rd 676.42 0.00 0.00 0.00 44
6 56 19 100 rd 769.88 0.00 0.00 0.00 30
7 25 75 100 rd 687.64 0.00 0.16 0.28 92
8 50 50 150 rd 745.19 0.00 0.00 0.00 102
9 75 25 150 rd 821.31 0.00 0.17 0.36 78
10 37 113 150 rd 790.54 0.00 0.13 0.23 377
11 75 75 150 rd 857.27 0.00 0.02 0.16 285
12 112 38 150 rd 936.00 0.06 0.21 0.39 249
13 49 150 150 rd 875.85 0.15 0.34 0.71 769
14 99 100 150 rd 950.80 0.19 0.63 1.15 620
15 149 50 150 rd 1049.97 0.18 0.26 0.43 476
16 30 90 150 c 579.29 0.00 0.08 0.18 140
17 60 60 150 c 611.30 0.00 0.00 0.00 136
18 90 30 150 c 698.57 0.00 0.00 0.00 73
19 25 75 150 c 541.87 0.00 0.00 0.00 65
20 50 50 150 c 582.62 0.00 0.00 0.00 75
21 75 25 150 c 676.13 0.00 0.00 0.00 61

Mean 0.03 0.10 0.19 179.14

Table 3.7: Computations on STTRP instances.

6 Algorithm components analysis

This section examines the most relevant design choices by providing a detailed analysis of the
different components of AVXS, namely: (i) the construction procedure to build an initial feasible
solution, (ii) the different neighborhoods explored in the RVND and (iii) the shaking procedures
used in the improvement phase, (iv) the granular speedup strategy, and (v) the set-partitioning-
based post-optimization phase. The results presented here refer primarily to the XSTTRP vari-
ant, the most general of those we studied. However, similar conclusions apply to the other
variants considered in this chapter.

Table 3.8: Computations on XSTTRP instances

Id |V1
c | |V2

c \V2
c | |V2

c | |Vd| Q1 Type BKS Best Avg Worst t10

1 73 17 5 6 150 c 753.43 0.00 0.00 0.00 61
2 66 4 20 11 150 c 602.99 0.00 0.00 0.00 40
3 67 18 5 11 150 c 696.03 0.00 0.00 0.00 50
4 22 4 19 6 100 rd 505.23 0.00 0.00 0.00 10
5 21 19 5 6 100 rd 517.86 0.00 0.00 0.00 10
6 18 10 42 6 100 rd 586.87 0.00 0.00 0.00 40
7 18 41 11 6 100 rd 624.39 0.00 0.00 0.00 30
8 23 14 58 6 150 c 538.40 0.00 0.00 0.00 60
9 25 56 14 6 150 c 582.27 0.00 0.00 0.00 40
10 21 13 56 11 150 c 522.54 0.00 0.00 0.00 61
11 22 54 14 11 150 c 556.61 0.00 0.00 0.00 43
12 108 7 30 6 150 rd 916.39 0.00 0.10 0.19 224
13 108 29 8 6 150 rd 935.35 0.00 0.00 0.00 184
14 106 6 28 11 150 rd 906.58 0.02 0.12 0.29 365
15 103 29 8 11 150 rd 896.46 0.02 0.26 0.50 196
16 36 21 88 6 150 rd 776.73 0.00 0.12 0.36 315
17 35 88 22 6 150 rd 792.22 0.00 0.27 0.77 207
18 36 20 84 11 150 rd 766.28 0.03 0.12 0.31 308
19 35 84 21 11 150 rd 773.97 0.00 0.03 0.09 181
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Table 3.8: Computations on XSTTRP instances

Id |V1
c | |V2

c \V2
c | |V2

c | |Vd| Q1 Type BKS Best Avg Worst t10

20 48 9 38 6 150 rd 735.26 0.00 0.00 0.01 90
21 48 37 10 6 150 rd 743.71 0.00 0.00 0.00 73
22 45 9 36 11 150 rd 700.54 0.00 0.00 0.00 95
23 45 36 9 11 150 rd 715.08 0.00 0.01 0.10 81
24 52 3 15 6 100 rd 716.31 0.00 0.00 0.00 30
25 52 14 4 6 100 rd 802.23 0.00 0.00 0.00 40
26 34 7 29 6 100 rd 652.27 0.00 0.00 0.00 41
27 34 28 8 6 100 rd 661.35 0.00 0.00 0.00 30
28 71 14 60 6 150 rd 849.31 0.05 0.16 0.40 290
29 73 57 15 6 150 rd 887.13 0.00 0.23 0.43 229
30 73 13 54 11 150 rd 820.05 0.02 0.13 0.24 264
31 71 55 14 11 150 rd 858.46 0.01 0.10 0.41 207
32 25 14 56 6 150 rd 667.99 0.00 0.03 0.05 80
33 24 56 15 6 150 rd 671.63 0.00 0.04 0.19 56
34 22 13 55 11 150 rd 627.53 0.00 0.01 0.04 90
35 23 53 14 11 150 rd 651.17 0.04 0.09 0.12 62
36 98 19 77 6 150 rd 948.90 0.43 0.54 0.89 582
37 98 76 20 6 150 rd 980.57 0.10 0.23 0.47 418
38 95 18 76 11 150 rd 931.48 0.00 0.24 0.60 566
39 93 76 20 11 150 rd 963.67 0.48 0.75 1.06 439
40 92 17 70 21 150 rd 900.43 0.02 0.21 0.39 525
41 88 72 19 21 150 rd 929.58 0.34 0.72 1.42 454
42 71 4 20 6 150 rd 787.71 0.00 0.03 0.27 90
43 72 18 5 6 150 rd 784.69 0.00 0.26 0.51 61
44 68 4 18 11 150 rd 758.79 0.01 0.05 0.12 92
45 67 18 5 11 150 rd 773.22 0.00 0.00 0.00 72
46 144 10 40 6 150 rd 1040.68 0.00 0.03 0.12 509
47 145 39 10 6 150 rd 1085.86 0.17 0.29 0.50 460
48 140 9 40 11 150 rd 1009.72 0.02 0.05 0.07 403
49 143 36 10 11 150 rd 1069.28 0.06 0.31 0.67 576
50 132 9 38 21 150 rd 971.67 0.05 0.28 0.70 477
51 135 35 9 21 150 rd 997.43 0.00 0.12 0.35 371
52 57 11 47 6 150 c 603.08 0.00 0.00 0.00 90
53 58 45 12 6 150 c 666.36 0.00 0.00 0.00 73
54 53 11 46 11 150 c 589.21 0.00 0.00 0.03 111
55 54 44 12 11 150 c 607.69 0.00 0.02 0.05 80
56 29 17 69 6 150 c 570.53 0.00 0.01 0.13 121
57 29 68 18 6 150 c 580.00 0.00 0.00 0.00 79
58 26 16 68 11 150 c 561.61 0.08 0.14 0.27 122
59 28 65 17 11 150 c 560.75 0.00 0.12 0.41 70
60 87 5 23 6 150 c 645.86 0.00 0.00 0.00 74
61 86 23 6 6 150 c 777.00 0.00 0.00 0.00 91
62 84 5 21 11 150 c 642.40 0.00 0.00 0.00 68
63 83 21 6 11 150 c 717.47 0.00 0.01 0.11 69
64 33 2 10 6 100 rd 557.56 0.00 0.00 0.00 10
65 34 8 3 6 100 rd 553.54 0.00 0.00 0.00 10
66 49 29 116 6 150 rd 869.02 0.12 0.24 0.35 622
67 47 117 30 6 150 rd 897.21 0.16 0.52 0.90 433
68 44 29 116 11 150 rd 858.61 0.03 0.39 0.65 726
69 48 112 29 11 150 rd 878.07 0.04 0.51 0.91 388
70 43 27 109 21 150 rd 825.73 0.16 0.63 0.85 725
71 45 107 27 21 150 rd 860.21 0.41 0.71 1.12 416
72 11 6 28 6 100 rd 456.01 0.00 0.00 0.00 18
73 12 26 7 6 100 rd 485.42 0.00 0.00 0.00 10
74 49 9 37 6 150 c 573.69 0.00 0.00 0.00 66
75 47 38 10 6 150 c 660.97 0.00 0.00 0.00 51
76 44 9 37 11 150 c 567.98 0.00 0.00 0.00 68
77 47 34 9 11 150 c 594.29 0.00 0.00 0.00 40
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Table 3.8: Computations on XSTTRP instances

Id |V1
c | |V2

c \V2
c | |V2

c | |Vd| Q1 Type BKS Best Avg Worst t10

Mean 0.04 0.12 0.24 193.62

6.1 Assignment fitness functions

The quality of the initial solution is tightly linked to the definition of what we called the assign-
ment fitness function, see Section 4.1. Due to the highly complex interactions between heuristic
algorithm components, good starting points do not guarantee a final solution of superior qual-
ity. In this paragraph we experimentally analyze the effect of using different assignment fitness
functions on the quality of the initial and final solutions, as well as on the search diversification
achieved. To this end, we compared two general approaches to defining the function, using a
range of different parameters. The first approach was the restricted GRASP-based function d-
NEAR that we defined in Section 4.1. In contrast, the second was a rank-based function b-RANK,
defined as f i(j) = 1 + (|V+

d | − rj)
b, where rj is the position for j in a list including all k ∈ V

and sorted according to the assignment costs ĉ; b is the scaling factor. The b-RANK function can
be classified as an empirical bias function. We refer the interested reader to the work by Grasas
et al. (2017) for a general survey on biased randomized procedures with theoretical or empirical
bias functions. More precisely, we ran algorithm AVXS for ten executions on all instances of
the XSTTRP data set, and Table 3.9 shows, for each assignment function (Function), the average
gap of the starting solutions obtained after the construction phase averaged over the ∆ restarts
(Start), the best, average and worst final gap (Best, Avg, Worst) averaged over all instances, the
average total computing time for the ten runs in seconds (t10), the average percentage improve-
ment provided by the polishing phase (sp), the percentage of time to perform the polishing
phase with reference to the total time of the algorithm (%tsp), and the number of routes used in
the set-partitioning model F (|P|). From the table it is clear that neither the final solution gap
nor the computing time depend on the initial gap, but the differences in computing time are
strongly correlated with the post-optimization polishing phase. In fact, the standard deviation
of the computing time among the different approaches without considering the set-partitioning
resolution is less than five seconds. Moreover, some randomization on the initial assignment
was beneficial compared to the deterministic assignment of the 1-NEAR function. In fact, all
considered approaches (except the 1-NEAR) behaved in a similar way. Among the best per-
forming functions we note that the 25-NEAR was the one that obtained good results while being
conceptually simpler than the empirical bias functions of the b-RANK family. As an additional
note, we report that using the 3-RANK we were able to find an additional best known solution

Function Start Best Avg Worst t10 sp %tsp |P|

1-RANK 341.25 0.05 0.13 0.26 202.57 0.05 32.85 6862.04
2-RANK 281.65 0.04 0.12 0.24 196.01 0.05 30.60 6564.64
3-RANK 243.35 0.04 0.13 0.24 190.97 0.05 29.12 6328.70
4-RANK 217.20 0.04 0.13 0.24 186.70 0.05 28.56 6142.69
5-RANK 196.56 0.04 0.13 0.25 185.74 0.05 27.31 5986.62
1-NEAR 36.22 0.09 0.23 0.35 134.19 0.04 9.31 2591.15
2-NEAR 52.13 0.05 0.15 0.27 145.42 0.05 14.69 3764.73
5-NEAR 109.16 0.05 0.13 0.25 160.36 0.04 19.77 4973.16
10-NEAR 184.40 0.05 0.13 0.23 175.64 0.05 26.11 5859.38
25-NEAR 311.53 0.04 0.12 0.24 193.62 0.04 31.76 6738.41

Table 3.9: Computations on XSTTRP instances with different assignment fitness
functions.
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Figure 3.8: The percentage Relative Neighborhood Effectiveness Index for the
XSTTRP instances.

for instance 28 of the STTRPSD with an objective value of 1445.05 (0.06% better than the cur-
rent one). Other problem variants produced very similar results, with the exception of LRP in
which the deterministic 1-NEAR turned out to be preferable, because of the strong influence of
the fixed costs in the solution process (as was discussed in Section 4.5).

6.2 Local search

As extensively described in Section 4, our local search engine is based on an RVND scheme
that searches five different neighborhoods in random order according to a randomized first-
improvement strategy. In this section, we analyze the impact of the various neighborhoods we
used. First of all, we observed that all the neighborhoods contributed significantly to the ef-
fectiveness of the local search step. More precisely, let N be the set of all the neighborhoods
we considered, for each neighborhood N ∈ N we stored the total improvement value D(N ) it
produced and the number I(N ) of times a complete application of N resulted in an improve-
ment. Then, for each neighborhood N , we computed a Relative Neighborhood Effectiveness Index
or RNEI(N ), which defines the effectiveness of N with respect to the other neighborhoods. In
particular, RNEI(N ) is computed as RNEI(N ) = D(N )IΣ/DΣ I(N ) where DΣ = ∑N ′∈N T(N ′)
and IΣ = ∑N ′∈N I(N ′). In other words, RNEI(N ) measures the successful improvement that
any application of N would produce on an XSTTRP solution compared to the application of
any other neighborhood in the set.

Figure 3.8 shows an aggregate measure, averaged over ten runs, for all the XSTTRP instances,
for each neighborhood N computed as 100 · RNEI(N )/ ∑N ′∈N RNEI(N ′). The values (X, Y) re-
ported beside each neighborhood N name are X = 100 · D(N )/DΣ and Y = 100 · I(N )/IΣ.
For example, the values reported for SEGSWAP show that its application was less frequently
successful with respect to other neighborhoods (11%) but the average improvement that it had
produced (16%) during those applications made it the most effective operator, with an RNEI per-
centage score equal to 32%. However, Figure 3.8 clearly shows that all neighborhoods made a
positive contribution to the overall local search effectiveness. We also note that because we used
an RVND approach, the RNEI measure is not affected by the order in which the neighborhoods
are examined.

Next, we compared our implemented scheme to a classical VND with fixed operators and
moves ordering. In particular, we examined a naive reasonable order given by RELOCATE,
SWAP, TWOPT, SEGSWAP, and ROOTREF and a best-RNEI order defined as SEGSWAP, RELOCATE,



6. Algorithm components analysis 97

AVXS ¬RELOCATE ¬SWAP ¬TWOPT ¬ROOTREF ¬SEGSWAP
0

0.2

0.4

0.6

0.15

0.11

0.4

0.28

0.17

0.13

0.24

0.18

0.31

0.22 0.23

0.16

%
ga

p

Figure 3.9: Computations on XSTTRP instances with the complete approach
(AVXS) and disabling one local search operator at a time (¬OPERATOR). For each
configuration, the left box-plot represents the results before the polishing phase
and the right one, the results after the polishing phase. The median value is
shown on the left of each box-plot.

SWAP, TWOPT, and ROOTREF. We executed ten runs of AVXS on all XSTTRP instances with both
approaches. The results with the RVND were slightly better than those with the VND. In par-
ticular, the final gap obtained by the RVND over all instances was about 0.03%, resp. 0.01%,
smaller when compared to the VND with naive, resp. best-RNEI, ordering. The computing
time was similar for all the three approaches. Moreover, the solutions produced by the RVND
appeared to be more diversified, because the set-partitioning polishing phase obtained better
final results with less effort when fed with the RVND solutions rather than with those of the
VND. Thus, we can conclude that the adoption of randomization in the selection of the next
neighborhood (and of the next move within the neighborhood) may play an important role in
improving the final solution quality without lengthening the computational time.

In addition, we evaluated what happens if a certain operator is removed entirely. The results
are shown in Figure 3.9. On the one hand, none of the operators seems mandatory to obtain
high quality final solutions. On the other hand, all of them play a role in determining the best
possible result.

Finally, we analyzed the impact of the two shake operators we described in Section 4.3. We
experimentally observed that both operators proved to be effective in inducing improvements
in the solutions. In particular, over all XSTTRP instances, the percentage improvement asso-
ciated with a local search step following a SUNLOAD shaking was equal to 39% of the total
improvement, while that associated with SREM was 61%. Similar results were obtained with
the other problem classes; therefore we can conclude that both shaking operators are required
for maximum effectiveness.

6.3 Granular neighborhoods adoption

We studied the effect of granular neighborhoods by comparing the average solution quality
and the computing time needed to run AVXS, using either the granular or the complete neigh-
borhood exploration. The results confirmed that use of granular neighborhoods is an effective
speedup technique, greatly improving computing time while only slightly decreasing solution
quality. In particular, we observed that the average running time to execute ten runs over all
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Figure 3.10: Polishing phase contribution

XSTTRP instances with complete neighborhoods exploration was 904.87 seconds and the aver-
age best gap was 0.02%. In contrast, using granular neighborhoods, as reported in Table 3.8, the
average computing time was only 193.62 seconds and the average best gap was 0.04%. We can
conclude that the adoption of granular neighborhoods make it possible to reach high-quality so-
lutions with a very limited running time (almost five times shorter than that of an improvement
phase considering complete neighborhoods).

6.4 Set-partitioning post-optimization

The polishing phase glues together the different restarts, making the overall algorithm more
robust and stable. The bar diagram in Figure 3.10 shows the average polishing phase improve-
ment, the average percent processing time with reference to that of the complete algorithm, and
the average size of the pool P for the different problem variants we considered. The figure
shows that for all variants, the polishing phase was effective. Moreover, with the exception
of LRP (which had a considerably larger solution pool), the phase’s computing time was al-
ways less than 35% of the total. As one can expect, the improvement is much more relevant
for problems that required additional care to be modeled as XSTTRP. In fact, both the MDVRP
and the LRP have additional constraints which are not explicitly considered by the XSTTRP
model and the local search procedures. On the other hand, the core part of AVXS is alone able
to generate high quality solutions for the STTRPSD and the STTRP which are straightforward
XSTTRP special cases. However, by observing Figure 3.9, one can still see the beneficial effects
of the polishing phase on the XSTTRP instances, in terms of improvement and stabilization of
the results.

7 Conclusions

In this chapter we presented AVXS, an effective hybrid metaheuristic for a general variant of
single-vehicle truck and trailer routing problems called the Extended Single Truck and Trailer
Routing Problem (XSTTRP). The AVXS algorithm is based on a four-phase solution approach in
which the main improvement phase consists of an iterated local search (ILS) incorporating two
shaking procedures and a randomized variable neighborhood descent with granular speedup.
A set of high-quality solutions generated during the ILS is stored in a pool, which is used for
a final polishing phase based on the solution of a restricted mathematical formulation of the
problem. Therefore, AVXS can also be classified as a matheuristic (see Maniezzo, Stützle, and
Voß (2010)).

The AVXS algorithm was used to solve, with very short computing times, a large set of instances
for several variants of the problem and proved able to reach state-of-the-art results for those
variants already studied in the literature. In particular, AVXS was able to detect one new best
solution for the extensively studied Location Routing Problem and seven new best solutions for
the Single Truck and Trailer Routing Problem with Satellite Depots.
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Chapter 4

Guidelines for the Computational
Testing of Machine Learning
approaches to Vehicle Routing
Problems

Despite the extensive research efforts and the promising results obtained by the ML community
on Vehicle Routing Problems, most of the proposed techniques are still seldom employed by the
OR community. With the current work, we highlight a number of challenges arising during the
computational evaluation of heuristics for VRPs. The resulting guidelines aim at defining a
common testing setup for the approaches designed by the two communities, thus promoting
and strengthening the collaboration between them.

1 Introduction

Recently, several attempts to use machine learning (ML) to deal with combinatorial optimiza-
tion problems (COPs) have been proposed. Indeed, ML promises to support the design of
algorithms as well as the resolution process, by decreasing the need for hand-crafted and spe-
cialized solution approaches, which are notably known to require high expertise and a huge
time investment for being developed. The incredible advances in deep learning (DP, Goodfel-
low, Bengio, and Courville, 2016) coupled with increasingly powerful hardware, have led to
very promising results for a variety of COPs Bengio, Lodi, and Prouvost, 2021; Mazyavkina
et al., 2020.

In this work, we focus on COPs arising in the area of vehicle routing. Vehicle routing problems
(VRPs, Toth and Vigo, 2014) are, in fact, increasingly receiving attention in the ML community
both because of their relevance in real-world applications and the computational challenges
they pose Vesselinova et al., 2020. Indeed, VRPs have been the test-bed for novel neural network
architectures such as pointer networks Vinyals, Fortunato, and Jaitly, 2015, graph embedding
networks Dai, Dai, and Song, 2016; Khalil et al., 2017 and attention-based models Kool, Hoof,
and Welling, 2019; Deudon et al., 2018 achieving stunning results on a variety of problems. Cur-
rently, most of the proposed approaches aim at learning constructive heuristics, which sequen-
tially extend a partial solution, possibly employing additional procedures such as sampling and
beam search (see e.g., Bello et al., 2017; Hottung, Kwon, and Tierney, 2021). Few others, such
as Wu et al., 2020; Chen and Tian, 2019, instead, focus on learning improvement heuristics to
guide the exploration of the search space and iteratively refine an existing solution.
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Despite of the relevance of the problems, the increasing attention they are receiving in the ML
community and the promising results achieved so far, these techniques have not yet become
widespread in the Operations Research (OR) community. This may be because of their novelty
and the nontrivial effort required to adopt them by the OR community that typically has a dif-
ferent background. But also, at the same time, the computational testing provided by some of
the proposed ML methods may not be very convincing with respect to the standard practices
in the OR and VRP community. In fact, despite working on the same problems, there is a very
limited integration between the experimental results developed by both communities. The cur-
rent work focuses on this second aspect by highlighting important points to consider during the
computational testing and providing guidelines and methodologies that we believe are relevant
from an OR perspective. Finally, we conclude by referring the reader to the excellent overview
on experimental analysis by Johnson, 1999.

The remainder of the paper is organized as follows. Section 2 surveys crucial aspects faced dur-
ing a computational testing such as the selection of proper benchmark instances and baseline
algorithms, as well as techniques to properly compare different solution approaches. Section
3 provides concrete examples and pointers to representative computational studies found in
recent papers. Finally, concluding remarks are given in Section 4.

2 Guidelines for a Computational Testing

In this section, we highlight important points an OR practitioner would consider crucial when
examining the computational results section of a novel approach.

2.1 Benchmark Instances and Problem Definition

The training phase of a ML-based approach typically requires a large number of VRP instances
sharing the same characteristics. A common way to generate these instances is by randomly
defining their characteristics, sampled from arbitrarily defined distributions. In the following,
we argue that adopting a common problem description as well as a common set of benchmark
instances is extremely important to correctly assess the potentialities of a novel approach.

Problem description and objectives. The term VRP identifies a class of problems containing an
enormous number of different variants. Among the most studied ones, we have the Capacitated
Vehicle Routing Problem (CVRP), the Vehicle Routing Problem with Time Windows (VRPTW),
and the Vehicle Routing Problem with Pickup and Deliveries. In the following, if not specified
differently, we limit our treatment to the CVRP which is often taken as a reference problem in
ML-based approaches and, despite its simple definition, is still a challenging problem for both
traditional and innovative approaches. We refer to Chapter 1 of Toth and Vigo, 2014 for a thor-
ough overview of VRPs. Specific VRPs have widely accepted formulations and precise problem
definitions. For example, modern CVRP instances do not fix a-priori the number of routes a
solution should have or heuristic approaches to the VRPTW typically consider a hierarchical
objective: first minimize the number of vehicles and then the routing cost. It is thus clear that
the specific definition of the problem has a crucial impact on the obtained results.

Test instances representativeness. Despite VRPs being NP-hard, the actual challenge posed by
a specific instance is highly dependant on several factors such as customers and depot loca-
tion, the vehicle capacity and the customers demand distribution. The VRP community has
thus identified, for each specific problem in the VRP class, a set of benchmark instances that is
currently considered to be relevant for testing modern approaches. Thus, in addition to possi-
ble instances defined by the ML community, we highlight the importance of using, whenever
possible, instances derived from these widely recognized, used and studied datasets.
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As an example, in Uchoa et al., 2017, the authors introduced the X instances for the CVRP,
thoroughly describing their generation process. This process can then be emulated to generate
(possibly smaller-sized) more representative CVRP instances, as it was done in Kool et al., 2021
and in Hottung, Kwon, and Tierney, 2021 (appendix). In Wu et al., 2020, the authors directly
used a subset of X instances along with distributions more commonly used in other ML works.
Finally, because redefining ad-hoc generators may introduce inconsistencies between different
studies, we encourage the widespread usage of the instance generator provided by Queiroga et
al., 2022 for creating training and validation instances, as well as the usage of the 10,000 X-like
instances (also defined in Queiroga et al., 2022) as a common set for testing purposes.

As an additional example, consider the VRPTW for which the so-called Solomon instances and
their extension proposed by Solomon, 1987 and Gehring and Homberger, 1999, respectively, are
the current benchmark. Also for them, Solomon, 1987 describes the procedure used to define
the time window constraints that can thus be considered when defining new instances.

Repositories of instances. Together with papers introducing or using certain sets of instances
(whose authors could be contacted to retrieve), we mention some among the most popular
repositories of VRP instances. Namely, VRP-REP collects instances for more than 50 different
VRP variants, best known solution values, and references to papers obtaining these results. In
addition, CVRPLIB contains instances and up-to-date best-known solutions of CVRP instances.
Finally, small instances commonly used in the past or in exact methods can be found in TSPLIB
and OR-LIBRARY.

2.2 Baseline Algorithms

The selection of a proper baseline algorithm is extremely important, failing in this task would
hinder the objective evaluation of the potential of a novel approach. Indeed, since results (com-
puting time, solution quality, and possibly more sophisticated measures as detailed in Section
2.3) are crucial to compare different solution approaches over a common set of problems and
instances, a wrong baseline may distort their interpretation, undermining the whole validation
process. Despite the purpose of ML-based approaches not being that of outperforming highly
specialized solvers, but rather that of proposing versatile tools not requiring high-levels of man-
ual engineering, the comparison should still occur against the best performing algorithms to
better comprehend the tradeoff between data-driven and ad-hoc algorithms.

Include the best available algorithms. Along with simple baselines and competing ML-based meth-
ods, we argue that one should consider the inclusion of the best available algorithms proposed
by the OR community for each specific VRP.

The selection of baseline algorithms is often guided by the availability of free-to-use or open-
source reliable software packages. Fortunately, more and more researchers are publishing the
source code of heuristic as well as exact state-of-the-art VRP solvers that can be freely used for
research activities.

Heuristic solvers The widely used Google OR-Tools Perron and Furnon, 2019 is erroneously
considered by most ML papers to be among the best open-source VRP solvers (see, e.g., Nazari
et al., 2018) while achieving on the CVRP far-from-optimal results on the X instances (see Vidal,
2022). Much better open-source solvers for the CVRP are fortunately available. Along with
LKH-3 Helsgaun, 2017, which is already widely used by the ML community for solving VRPs,
we mention HGS-CVRP Vidal, 2022 and FILO Accorsi and Vigo, 2021 as highly effective and
efficient open-source heuristic solvers for the CVRP that, on the widely studied X instances of
the CVRP Uchoa et al., 2017, produce superior results compared with LKH-3 (see Cavaliere,
Bendotti, and Fischetti, 2020a). Finally, we mention SISR Christiaens and Vanden Berghe, 2020,

http://www.vrp-rep.org/
http://vrp.atd-lab.inf.puc-rio.br/index.php/en/
http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/
http://people.brunel.ac.uk/~mastjjb/jeb/info.html
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that, despite not being already available in terms of source code, is conceptually simple and
easy to implement, yet providing state-of-the-art results on a great variety of VRPs.

Exact solvers Several papers solve small instances to optimality by using general-purpose ex-
act optimization solvers such as Gurobi or CPLEX. Despite the noble attempt, trying to directly
solve simple compact VRP formulations by using general-purpose solvers would soon turn out
to be an extremely challenging task. Indeed, several ML papers report the ability of solving only
very small instances (e.g., CVRPs with about 20 customers). Instead, VRPSolver Pessoa et al.,
2020, a freely available (for academic purposes) exact solver specialized for routing problems,
should be considered for serious and reliable testing of VRPs. Indeed, VRPSolver combines
a branch-cut-and-price algorithm with other sophisticated techniques specifically designed for
VRPs such as route enumeration, state-space relaxation, and others being able to consistently
solve around 95% of randomly generated CVRP instances with up to 100 customers within one
hour (a size used in most ML-based approaches proposed so far). Finally, as a general note,
we discourage the usage of exact solvers for comparison reasons since their goal of proving
optimality is deeply different from that of heuristics that aim at finding good quality solutions
within acceptable computing time.

2.3 Algorithms Comparison

Comparing algorithms having a completely different nature is an extremely challenging task
requiring a special attention to parameters tuning and hardware setup.

As to parameters tuning, traditional solution approaches proposed by the OR community are
designed to handle set of instances having a broad range of different characteristics. Moreover,
these approaches are typically tuned to achieve, with a single set of parameter values, results
that are on average good over all tested instances. Instead, ML-based approaches generally
need to treat every instance distribution separately, requiring a specific tuning and thus ad-
ditional training (possibly taking up to several weeks of computing time). A fair comparison
requires the usage of a single algorithm or model tested over the benchmark instances under
examination. Moreover, hyper-parameter tuning should be conducted on a separate dataset.
In addition, traditional OR algorithms are (almost) always executed on CPUs using a single
thread, while ML-based approaches naturally benefit from running on massively parallel hard-
ware architectures such as GPUs. Finally, the programming language may also play a role. In
fact, traditional OR algorithms are usually implemented in highly efficient languages such as
C++, whereas ML-based approaches typically use Python that mixes slow interpreted code with
efficient native libraries.

Facilitate comparisons (i.e., run all solvers by using a common configuration). In production, algo-
rithms should obviously make fully use of the best existing available technologies. In fact, even
traditional algorithms may contain (portions of) embarrassingly parallel code that would thus
benefit from being run on multiple threads. As an example, a common dynamic programming
procedure employed in VRP exact solvers would greatly benefit from a GPU implementation
compared to a traditional sequential version (Boschetti, Maniezzo, and Strappaveccia, 2017 re-
port speedup of up to 40 times). Another well-known example is the parallel implementation
of Branch & Bound algorithms (see, e.g., Crainic, Le Cun, and Roucairol, 2006). Finally, many
heuristics can be easily parallelized with minimal synchronization overhead, for example by
processing solutions in parallel within population-based approaches, or by running in paral-
lel several searches from different starting points. Despite the clear time-savings of a parallel
implementation, experimental evaluation asks to reduce at a minimum the different factors
that would render comparisons among approaches unnecessarily more challenging. It is thus
commonly accepted to consider single-threaded algorithms run on standard CPU architectures.
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Parallelization can, however, be employed to speed up parameter tuning and model training. A
very interesting information, that would promote a direct comparison of newly proposed algo-
rithms with existing ones, consists in including also the computing time taken by the algorithm
when run with the above defined settings. If running all the experiments both on GPU and
on CPU with a single thread would be computationally prohibitive, we argue that one should
consider adding a measure of the speedup associated with the model inference when run on a
GPU rather than on a CPU together with the total algorithmic time (in which everything except
the model inference is run on a CPU with a single thread), and the fraction of time spent doing
inference on GPU. This way, the total computing time of the algorithm on a CPU with a single
thread could be easily estimated. Another possibility sees the inclusion of a rough measure of
the number of CPU cores needed to match the GPU capacity as it was done in Hottung, Kwon,
and Tierney, 2021.

Support the reproducibility of the study. Open-source algorithmic implementations complemented
with scripts that easily allow to reproduce the computational study would provide a great value
to the entire scientific community promoting further exploration and extension of a proposed
approach. Moreover, we encourage the sharing of detailed results (i.e., the solution quality
and computing time for each individual instance solved) for future comparisons and additional
analysis. These pieces of information could be stored in a companion table or a website.

Convert computing time to a common scale. When using results published on other papers, be-
cause the source code may not be available or running again the experiments may be too time
consuming, a common practice consists in roughly scaling the computing time to a common
base by using appropriate factors. A practice increasingly adopted in the OR community con-
sists in using the single-thread rating defined by PassMark ®Software. So that, given a base
processor, say an Intel Xeon CPU E3-1245 v5 having a single-thread rating of 2277, and a target
processor, say an Intel Core2 Duo T5500 having a single-thread rating of 594, the computing
time of an algorithm run on the target processor is reduced of a factor ≈ 3.83. The comparison
is still rough, being the CPU just one among the several components affecting the overall per-
formance. However, this is one of the possible approaches generally accepted as sound by the
OR community. Note that, the above considerations assume all algorithms have been run on an
unloaded system and on a CPU by using a single thread.

On the comparison with general-purpose solvers. General-purpose solvers such as Gurobi or CPLEX
are often used as baseline algorithms to generate good quality solutions when approaching
small-to-medium size instances without necessarily aiming at prove their optimality. When re-
porting the computing time spent by a solver whose aim is to prove the optimality of a solution,
especially if its results are compared with a heuristic algorithm, it should be considered that the
former may find very good quality solutions early during the run and then spend the majority
of the time to prove optimality. Thus, if one wants to report results obtained by these solvers, an
additional column could be added showing the computing time in which the last solution (i.e.,
the optimal one, if the solver is not prematurely stopped) was found. Despite being true that the
solver does not have a termination criterion to know whether the solution at hand is optimal
or not, being compared with heuristics, this approach would still provide a feeling on the con-
vergence speed of the solver. We finally mention the primal integral introduced by Achterberg,
Berthold, and Hendel, 2012, as a measure able to take into account the overall solution process
in terms of convergence towards the optimal (or best known) solution over the entire solving
time.

Consider the statistical relevance of the results. In the past, it was common practice to use just av-
erage percentage errors with respect to the best known solution to compare the performance
of different algorithms. However, more recently, the inclusion of simple statistical tests to ob-
jectively assess the differences among algorithms is increasingly becoming popular in the VRP

https://www.cpubenchmark.net/cpu.php?cpu=Intel+Xeon+E3-1245+v5+%40+3.50GHz&id=2674
https://www.cpubenchmark.net/cpu.php?cpu=Intel+Core2+Duo+T5500+%40+1.66GHz&id=922
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Figure 4.1: On the left side, the performance chart showing for algorithms A, B,
C, D, and E the average normalized time and solution quality obtained in a
number n of runs with different seeds. Algorithms C, D, and E dominate A and
B. On the right side, the search trajectory defined by the average gap found at a
given time instant for algorithms X, Y and Z.

community since differences in solution quality between solvers have decreased over time. A
common practice consists in using a one-tailed Wilcoxon signed-rank test (see Wilcoxon, 1945)
possibly coupled with correction methods when multiple comparisons involving the same data
are performed (e.g., the Bonferroni correction, see Dunn, 1961). These tests are used to deter-
mine whether two sets of paired observations, for which no assumption can be done on their
distribution, are statistically different, and thus, whether two algorithms are considered to pro-
vide equivalent results. A common tool for performing these statistical tests is the R language
(R Core Team), which allows to execute them with just a few lines of code. An example of a test
application can be found in Section 3.3.

Always compare averages. When experimenting with algorithms containing randomized compo-
nents, we argue that one should make comparison by considering the average results obtained
over a reasonable number of runs. Typically, the used number of runs are 10 or 50, that, despite
not being statistically significant, allow to qualitatively identify whether an algorithm provides
stable or highly variable results.

Always report the complete computing time. A common mistake consists in reporting the comput-
ing time spent to find the best found solution instead of the total computing time of the algo-
rithm. The difference between these times can be surprisingly large and the reader may think
that additional time would have allowed an improved solution quality. We thus encourage to
clearly report the complete computing time.

Include charts. Charts allow to visually compare several algorithms at once, thus providing a fast
and effective way to view the results, that, when coupled with tables and statistical tests, give a
satisfying and thorough picture of the computational studies for a set of instances. Among the
most used charts, we mention

• the performance chart, relating the average normalized computing time with the average
solution quality (e.g., the percentage gap with respect to a reference value, which is typi-
cally that of the optimal or best known solution) of each algorithm in the comparison, see
Figure 4.1 (left);

• the convergence profile chart, showing for each time instant the average solution quality
for the compared algorithms, see Figure 4.1 (right).
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The performance chart clearly identifies Pareto optimal algorithms and dominated ones. In gen-
eral, an algorithm dominates another one if it performs better in terms of both computing time
and solution quality. The convergence profile chart shows algorithms convergence speed when
executed for a specific period of time. Convergence profile charts can be used for improvement
heuristics but also for simpler constructive heuristics provided that they include additional it-
erative procedures used to further improve the solution quality (e.g., the active search of Bello
et al., 2017).

On the choice of the programming language. (Baseline) Algorithms should be implemented effi-
ciently. This may include using appropriate data structures as well as programming languages
producing directly executable machine code. An efficient implementation of a competing algo-
rithm should not be considered negatively.

Consider the analysis of the various algorithm components. Several papers include additional anal-
ysis on the components of the proposed algorithm. This may include the behavior of the algo-
rithm when some parameters are changed as well as the contribution of individual components
to the overall final results (e.g., the average improvement of different local search operators
analyzed throughout the algorithm execution). This kind of analysis is both considerably ap-
preciated in the VRP community and extremely important to grasp insights on the overall con-
tribution and usefulness of the different components of an algorithm.

3 Examples of a Computational Studies

To make the above suggestions more concrete, in this section, we report extracts of and pointers
to representative computational studies found in recent papers on the CVRP. We will consider
two scenarios: in the first one, we assume to have all source codes available, whereas in the
second one, we assume at least one of the competing algorithm source code is not available to
the tester.

3.1 Scenario 1: all algorithms source codes are available

This is the ideal setting, since all algorithms can be run on exactly the same platform and for
the same amount of time. In this context the convergence profile chart perfectly shows the
evolution of each algorithm, making evident its speed to reach certain quality levels.

Table 4.1 reports a rearranged extract of Tables 1-3 proposed in Vidal, 2022 comparing three of
the above mentioned algorithms (more specifically HGS-CVRP, SISR, and OR-Tools) run on a
common platform for the same computing time and over the same X instances of the CVRP.
In particular, the table shows for each competing algorithm the average solution value (Avg)
and the associated average gap (Gap) computed considering a certain number of runs of the
algorithm when it includes randomized components. The gap is computed with respect to a
reference best known solution value (BKS) as Gap = 100 · (Avg− BKS)/BKS. Additional useful
columns could include the worst and best gap obtained, so as to better examine the variability
of the quality for the algorithm on the dataset. Finally, we refer to Figures 3 and 4 of Vidal, 2022
for examples of convergence profile charts for the above-mentioned algorithms.

3.2 Scenario 2: at least one algorithm source code is not available

This scenario, which is still unfortunately frequent in the VRP community, makes the compari-
son of results much more challenging. The common case sees only the presence of tables show-
ing the performance of a proposed algorithm over a set of benchmark instances when run on a
certain platform. First of all, an assumption is required when reviewing these tables reporting
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HGS-CVRP SISR OR-Tools

Instance BKS Avg Gap Avg Gap Avg Gap

X-n101-k25 27591 27591.0 0.00 27593.3 0.01 27977.2 1.40
X-n106-k14 26362 26381.4 0.07 26380.9 0.07 26757.5 1.50
X-n110-k13 14971 14971.0 0.00 14972.1 0.01 15099.8 0.86

. . .
X-n979-k58 118987 119247.5 0.22 119108.2 0.10 123885.2 4.12
X-n1001-k43 72359 72748.8 0.54 72533.1 0.24 78084.7 7.91

Mean 0.11 0.19 4.01

Table 4.1: Minimal table showing the solution quality obtained by algorithms
run for the same amount of time on a common platform.

the computational results. In particular, we have to assume that the results published in the pa-
per, which are inevitably obtained with a specific tuning of parameters, are the values on which
the authors desire to compare with other approaches. We shall note that these parameters do
include the termination criterion, which was then selected as a design choice, and considered
to provide competitive results (otherwise a different criterion would have been selected). Since
data on the convergence of the algorithm are typically not available, the comparison can then
be performed over the published results by first normalizing the computing time in the best
possible way (see Section 2.3) and then analyzing the bi-objective perspective provided by the
performance chart shown in Figure 4.1 (left) showing non dominated algorithms for a fixed
configuration of their parameters.

3.3 Statistical validation of the results

In both the above scenarios (and provided that the average solution quality obtained by an
algorithm is available for each instance in the dataset), the (final) solution quality could be
assessed with simple statistical tests. This procedure is useful especially when the proposed
methods do not clearly dominate the others, for example because they obtain similar average
percentage gaps on the considered benchmark instances.

As an example, in the following we compare HGS-CVRP, SISR, and OR-Tools on the X in-
stances. Data have been taken from Tables 1 and 3 of Vidal, 2022 and is summarized in the
boxplots of Figure 4.2.

Similarly to what was done in Christiaens and Vanden Berghe, 2020, we can assess the results
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Figure 4.2: Average gaps obtained on the X instances by HGS-CVRP, SISR and
OR-Tools. Note the different y-axis for OR-Tools. The thick line identifies the
median value.
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SISR OR-Tools

H0 8.27934e-06 3.95591e-18
H1 4.13967e-06 1.97796e-18

Table 4.2: p-values obtained when comparing HGS-CVRP with SISR and
OR-Tools.

obtained by our proposed algorithm, say HGS-CVRP, against the remaining ones, by conduct-
ing a one-tailed Wilcoxon signed-rank test in which we consider a null hypothesis H0

H0 : AVGSOLCOST(HGS− CVRP) = AVGSOLCOST(X),

and an alternative hypothesis H1

H1 : AVGSOLCOST(HGS− CVRP) > AVGSOLCOST(X),

where X can be SISR and OR-Tools. A hypothesis is rejected when its p-value is lower than a
significance level α. In particular, we have that

• failing to reject H0 means that the average results of the two methods are not statistically
different;

• whereas, when H0 is not rejected, the average results are statistically different and the
alternative hypothesis H1 can be tested to find whether they are greater than those of a
competing method. Rejecting H1 thus implies that HGS-CVRP performs better than the
competing method.

Moreover, as mentioned in Section 2.3, when performing multiple comparisons involving the
same data, the probability of erroneously rejecting a null hypothesis increases. To control these
errors, the significance level α is adjusted to lower values. Bonferroni correction (Dunn, 1961)
is a simple method that can be used for this purpose. In particular, given n comparisons, the
significance level is set to α/n.

In the above comparison we tested a total number of n = 2 hypothesis corresponding to the
partitioning of instances (1, all X instances together) and to the two hypothesis (2, H0 and H1).
Assuming an initial significance level α0 = 0.025, the adjusted value becomes α = 0.025/2 =
0.0125. In general, given np, the number of partitions of the instances (e.g., np = 3 if we split
a single dataset into three subsets containing, say, small, medium and large instances), and nh,
the number of hypothesis we want to test for every partition, we have n = np · nh.

We can compute the p-values, which are shown in Table 4.2, for our analysis for example by
using the R language. For both SISR and OR-Tools we have that the associated p-value is lower
than the significance level α. We can thus reject the hypothesis H0 that the average results of
HGS-CVRP are similar to those of SISR and OR-Tools. Finally, by testing H1 we again are able
to reject the hypothesis, concluding that HGS-CVRP average results are statistically better than
those obtained by SISR and OR-Tools on the X instances.

4 Conclusions

With this work we highlighted several challenges arising when comparing traditional and ma-
chine learning-based solution approaches for vehicle routing problems. Our aim was that of
providing a set of reference guidelines that would help the machine learning community to pro-
duce computational studies that would be better appreciated by the operations research, and
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especially the vehicle routing, communities. We believe that cross fertilization of algorithmic
techniques from ML and OR define very promising and potentially game-changing avenues
for effective solutions of routing problems. However, we believe that such a cross fertilization
needs to grow on a shared computational understanding. We hope that this paper is a step
forward in this direction.
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Chapter 5

Conclusions and Future Directions

In this thesis we studied techniques for the effective and efficient resolution of Vehicle Routing
Problems (VRPs). These techniques, when embedded into carefully designed heuristic solution
approaches, allowed to achieve state-of-the-art quality solutions in a relatively short computing
time for several well known classical problems.

In Chapter 2 we proposed a metaheuristic called FILO for the solution of large-scale instances
of the Capacitated Vehicle Routing Problem (CVRP). The main ingredient of FILO is a sophis-
ticated local search engine using several acceleration techniques that allow for the application
of several of local search operators, including complex ones such as the ejection chain, without
any substantial speed penalty. FILO is, in fact, able to achieve solutions of similar quality of
existing state-of-the-art algorithms but in a fraction of the running time. An interesting future
research direction consists in studying whether the acceleration techniques used in FILO could
be extended to handle VRPs including more realistic constraints, such as the VRP with Pickup
and Delivery, the VRP with Time Windows and the Heterogeneous VRP.

In Chapter 3 we study the Extended Single Truck and Trailer Routing Problem (XSTTRP). The
XSTTRP is a general problem arising from the combination of several existing well known prob-
lems such as the Multiple Depot Vehicle Routing Problem, the Location Routing Problem, the
Single Truck and Trailer Routing Problem with Satellite Depots, and the Single Truck and Trailer
Routing Problem. More precisely, the XSTTRP models a broad class of VRPs that use a single
vehicle, composed of a truck and a detachable trailer, to serve a set of customers with known de-
mand and accessibility constraints ruling whether certain customers can be visited by the whole
vehicle or just by the truck. To solve the XSTTRP we proposed a matheuristic called AVXS
which combines an iterative core part based on a multi-start Iterated Local Search, in which
routes that define high-quality solutions are stored in a pool. Eventually, a set-partitioning
based post-optimization selects the best combination of routes that forms a feasible solution
from the pool. Algorithm AVXS shown to be competitive with existing state-of-the-art solution
approaches that were design to solve specialization of the XSTTRP. The natural continuation of
this work consists in the extension of algorithm AVXS to handle multiple vehicles. Moreover,
some techniques introduced in Chapter 2 (whose realization happened chronologically after the
design of AVXS) may be extended to the XSTTRP to possibly further speed up the resolution
process.

In Chapter 4 we highlighted a number of practices which are common way of proceeding in
the computational evaluation of VRP papers produced by the Operations Research community.
In fact, recently, due to the incredible advances in the Machine Learning (ML) techniques as
well as in the hardware technology, several algorithms have been proposed by the ML to solve
VRPs. However, despite the remarkable results obtained by this algorithms, ML techniques
are still seldom employed by the OR community. In our opinion, this may be based on the
different approaches to the computational evaluation of the proposed methods. In this chapter
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we provide some guidelines that will hopefully help promoting the collaboration between the
OR and ML communities. In this regard, an interesting research direction we have already
started exploring, consists in extending FILO to include a simple classifier to identify routes of
the current solution that would most benefit from a re-optimization. This classifier could be
used to bias the selection of the area to disrupt during the shaking procedure. This direction
opens up a number of challenges that we think are worth investigating.
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