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Abstract

Nowadays, the spreading of the air pollution crisis enhanced by greenhouse
gases emission is leading to the worsening of the global warming. In this context,
the transportation sector plays a vital role, since it is responsible for a large part
of carbon dioxide production.

In order to address these issues, the present thesis deals with the development
of advanced control strategies for the energy efficiency optimization of plug-in
hybrid electric vehicles (PHEVs), supported by the prediction of future working
conditions of the powertrain.

In particular, a Dynamic Programming algorithm has been developed for the
combined optimization of vehicle energy and battery thermal management. At
this aim, the battery temperature and the battery cooling circuit control signal
have been considered as an additional state and control variables, respectively.
Moreover, an adaptive equivalent consumption minimization strategy (A-ECMS)
has been modified to handle zero-emission zones, where engine propulsion is not
allowed.

Navigation data represent an essential element in the achievement of these
tasks. With this aim, a novel simulation and testing environment has been de-
veloped during the PhD research activity, as an effective tool to retrieve routing
information from map service providers via vehicle-to-everything connectivity.

Comparisons between the developed and the reference strategies are made, as
well, in order to assess their impact on the vehicle energy consumption.

All the activities presented in this doctoral dissertation have been carried
out at the Green Mobility Research Lab (GMRL), a research center resulting from
the partnership between the University of Bologna and FEV Italia s.r.l., which
represents the industrial partner of the research project.
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[W/(K·m2)]
ℎ𝑐 Convective heat transfer coefficient of the battery coolant [W/(K·m2)]
𝐼𝑏(·) Battery current [A]
𝐼𝑐(·) Cell current [A]
𝐼𝐴𝐶𝐶(·) Air-conditioning HV compressor current [A]
𝐼𝐷𝐶𝐷𝐶(·) DCDC current [A]
𝐼𝐸𝑀(·) Electric motors current [A]
𝐼𝐼𝑆𝐺(·) ISG current [A]
𝐼𝑂𝐵𝐶(·) OBC current [A]
𝐼𝑃𝑇𝐶(·) HV PTC current [A]
𝐼𝑝 Pulse test current [A]
𝐽 (𝑥0,𝑢) ,𝐽 (𝑥0,𝑢

∗) Admissible/minimum cost for the optimal problem
𝐽 (𝑥𝑘 ,𝑢𝑘) Cost-to-go
𝑘 Discrete time index (or stage)
𝑘𝑎(·) Adaptive factor [-]
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𝑘𝑎 ,𝑘𝑑 Reductive factor of the vehicle maximum acceleration/deceler-
ation [-]

𝑘𝑝 Penalty factor [-]
𝑘CO2 CO2 conversion factor [gCO2/lfuel]
𝐿𝑘 Arc or instantaneous cost
𝐿𝑁 Cost associated to the last stage
¤𝑚𝑐 Battery coolant mass flow rate [kg/s]
¤𝑚 𝑓 ,𝑏(·) Virtual fuel mass flow rate associated to battery usage [kg/s]
¤𝑚 𝑓 ,𝑒𝑞(·) Equivalent fuel mass flow rate [kg/s]
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𝑚 Battery mass [kg]
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𝑚𝑣 Vehicle mass [kg]
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𝑀𝐴𝑆𝑛 Noise-related MAS [km/h]
𝑀𝐴𝑆𝑟 Reference MAS [km/h]
𝑁 Number of sub-segments of the speed profile prediction [-]

Number of iterations of the backward vehicle model [-]
Number of stages of the DP-based optimization algorithm [-]

𝑛(·) Engine revolution speed [rpm]
𝑁ℎ Number of magnitudes for each harmonic [-]
𝑛𝑝 Number of cells strings [-]
𝑁𝑠 Number of segments [-]
𝑛𝑠 Number of series-connected cells [-]
𝑛𝑤(·) Wheels revolution speed [rpm]
𝑃(·) Power [W]
𝑝(·) Penalty term of the equivalence factor [-]
𝑃𝑏(·) Battery net power output [W]
𝑃𝑐(·) Battery cooling power request [W]
𝑃𝑎𝑢𝑥 Auxiliary power [W]
𝑃𝑏,𝑙𝑜𝑠𝑠(·) Battery power losses [W]
𝑝𝑏𝑚𝑒(·) Brake mean effective pressure [bar]
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𝑃𝑒𝑙(·) Electrical power [W]
𝑃𝑒𝑃 Electrical pump power [W]
𝑃 𝑓 𝑢𝑒𝑙(·) Chemical power associated to the fuel [W]
𝑃𝑚𝑒𝑐ℎ(·) Mechanical net power at the crankshaft [W]

Mechanical power [W]
¤𝑄𝑎𝑖𝑟(·) Thermal power related to the air-battery convective heat ex-

change [W]
¤𝑄𝑐𝑜𝑜𝑙(·) Cooling heat rate due to battery-coolant convective heat ex-

change [W]
𝑄 Maximum speed [km/h]
𝑄𝑙ℎ𝑣 Fuel lower heating value [J/kg]
𝑅0(·) Ohmic resistance [Ω]
𝑅1(·) Resistance of the RC circuit [Ω]
𝑟𝑤 Wheel radius [m]
𝑠(·) Equivalence factor [-]
𝑆𝑎 Surface of the air-battery convective heat transfer [m2]
𝑆𝑐 Surface of the battery-coolant convective heat transfer [m2]
T𝑠 Vector of the discretized load point shifting torque [Nm]
𝑇(·) Torque [Nm]
𝑇𝑟(·) Torque request at the wheels [Nm]
𝑇𝑠(·) Engine load point shifting torque [Nm]
𝑇𝐸𝑀(·) Electric machines torque [Nm]
𝑇𝑓 𝑟(·) Engine friction torque [Nm]
𝑇𝐼𝐶𝐸(·) Internal combustion engine torque [Nm]
𝑇𝑖𝑛(·) Engine indicated torque [Nm]
𝑇𝑞(·) Driver torque request [Nm]
𝑇𝑡 ,𝑖𝑛(·) Torque request at the transmission input [Nm]
𝑇𝑤, 𝑓 (·),𝑇𝑤,𝑟(·) Torque request at the front/rear wheels [Nm]
𝑇𝑤(·) Driver torque request at the wheels [Nm]
𝑡 Time [s]
𝑡𝑖 ,𝑡 𝑓 Initial/final time instant delimiting CB mode [s]
𝑡𝑠 Computational time step [s]
𝑡𝑢(·) Update time [s]
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𝑡𝑒𝑥𝑝 Data acquisition time [s]
𝑡𝑖 ,𝑍 ,𝑡 𝑓 ,𝑍 ZEZ entrance/exit time instant [s]
u Control variables vector
u𝑐 Vector of the discretized control signal of battery cooling [-]
u𝐸 ,u𝑇 ,u𝐶 Control variables vector of the energy/thermal/combined-DP
u𝑠 Vector of the discretized torque split factor [-]
𝑈 Set of all admissible control policies
𝑢,𝑢∗ Admissible/optimal control policy for the optimal problem
𝑢𝑠(·) Torque split factor [-]
¤𝑉𝑐 Battery coolant volume flow rate [m3/s]
v Predicted vehicle speed profile [km/h]
𝑉 Predicted speed [km/h]
𝑣(·) Vehicle longitudinal speed [km/h]
𝑉0(·) Voltage drop related to the ohmic resistance [V]
𝑉1(·) Voltage drop related to the RC circuit [V]
𝑉𝑏(·) Battery voltage [V]
𝑉𝑐(·) Cell voltage [V]
𝑉𝑑 Engine displacement [m3]
𝑉𝑙𝑖𝑚 Legal speed limit [km/h]
𝑉𝑂𝐶(·) Open circuit voltage [V]
w Disturbance vector
𝑊(·) Work [J]
x State variables vector
x𝐸 ,x𝑇 ,x𝐶 State variables vector of the energy/thermal/combined-DP

Greek symbols
𝛼(·) Angle of slope [rad]
𝛼%(·) Percentage road slope [%]
𝛂% Predicted road slope profile [%]
𝛾 Gear ratio [-]
�̄�𝐸𝑀 Electric motors average efficiency [-]
�̄�𝐼𝐶𝐸 Engine average efficiency [-]
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�̄�𝐼𝑆𝐺 ISG average efficiency [-]
𝜂 Efficiency [-]
𝜂𝑐ℎ Chiller efficiency [-]
𝜂𝑐 Coulombic efficiency [-]
𝜂𝐷𝐶𝐷𝐶 DCDC efficiency [-]
𝜂𝑡𝑜𝑡(·) Engine total efficiency [-]
𝜂𝑡(·) Transmission efficiency [-]
𝛝 Battery predicted temperature [�]

Vector of the discretized battery temperature [�]
Δ𝜗𝑚𝑙,𝑐(·) Logarithmic mean temperature difference [�]
𝜗(·) Battery temperature [�]
𝜗max Maximum allowed battery temperature [�]
𝜗𝑎𝑚𝑏 Ambient temperature [�]
𝜗𝑐,𝑖𝑛 ,𝜗𝑐,𝑜𝑢𝑡(·) Coolant temperature at battery cooling plate inlet/outlet [�]
𝜗𝑐𝑜𝑜𝑙(·) Coolant temperature [�]
𝜗 𝑓 Desired battery temperature at the final stage [�]
𝜗𝑖 Initial battery temperature [�]
𝜗𝑜𝑖𝑙(·) Lubricant temperature [�]
𝛏 Battery predicted SoC [-]

Vector of the discretized SoC [-]
Δ𝜉𝑡 Target SoC tolerance [-]
Δ𝜉𝑍 Net SoC for ZEZ in eDrive [-]
𝜉(·) Battery state of charge [-]
𝜉0 SoC at the beginning of the driving cycle [-]
𝜉𝑖 Initial SoC [-]
𝜉min ,𝑒 𝑙 ,𝜉max ,𝑒 𝑙 Minimum/maximum SoC in CS mode for the RBS [-]
𝜉min,𝜉max Minimum/maximum SoC in CS mode for the modified RBS [-]

Minimum/maximum allowed SoC [-]
𝜉 𝑓 Final SoC [-]

Desired SoC at the final stage [-]
𝜉𝑖 ,𝑍 ,𝜉 𝑓 ,𝑍 SoC at ZEZ entrance/exit [-]
𝜉𝑟, 𝑓 Final value of the reference SoC (at ZEZ entrance) [-]
𝜉𝑟(·) Reference SoC [-]
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𝜉𝑡 Target SoC at ZEZ entrance [-]
𝜌𝑐 Battery coolant density [kg/m3]
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𝜏(·) Time constant of the vehicle acceleration transient [s]
𝜏1(·) Time constant of the RC circuit [s]
𝜏𝑡(·) Total transmission gear ratio [-]
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𝜔(·) Engine revolution speed [rad/s]

Notation
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[A]𝑖 , 𝑗 element 𝑖 , 𝑗 of the matrix A
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Chapter 1

Introduction

In this chapter, an overview of the current automotive background is given in
order to practically comprehend the reasons and motivations lying behind

the research project. In particular, the electric hybridization of the vehicles is
presented as a valid solution to address the air pollution crisis concerning the
transportation sector. Then, a brief introduction to the concept of Smart Mobility
is offered for a better comprehension of why it is important focusing efforts on
urban and sustainable mobility.

1.1 Motivation

In the last century the spreading of industrialization has led to an incessantly
growing emission of carbon dioxide (CO2) and other greenhouse gas (GHG) which
heavily impacts one of the most demanding challenges of present times, global
warming. This issue is even related to automotive sector, in which individual
mobility has been increasing over the past decades.

In fact, the amount of CO2 emitted per capita is now more than 4 tons per year
and 21% comes from the transportation sector [1], which led to stricter regulations
in terms of emitted CO2 mass per driven kilometer. As an example, the EU has
set the limit of 95 g/km of CO2 for 2021 and 80 g/km for 2025 [2], as shown in
Fig. 1.1.

This issue, in conjunction with the large and growing proved discrepancies
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Figure 1.1: Historical fleet CO2 emissions and current standards for passenger cars [3].

between laboratory (new European driving cycle, NEDC) and on-road emissions,
especially for nitrogen oxide (NO𝑥) emissions from diesel cars, has led to the
development of a real-driving emissions (RDE) test procedure by the European
Commission. Such a kind of test does not replace the worldwide harmonized
light vehicles test procedure (WLTP), but complements it. In the RDE cycle, a car
is driven on public roads and over a wide range of different conditions which
are designed to be representative of driving conditions normally encountered on
European roads [4]. On-board emissions measuring is performed by means of
portable emission measuring systems (PEMS) that provide a complete real-time
monitoring of the key pollutants emitted by the vehicle.

Moreover, in addition to European legislations, a possible interesting tech-
nical solution in order to overtake the global CO2 emissions challenge can be
represented by vehicle powertrain hybridization. In hybrid vehicles, two or more
power sources are employed in order to satisfy the driver torque demand. As a
consequence, additional degrees of freedom concerning on-board energy man-
agement are introduced, which implies the development of more complex control
strategies. Despite this disadvantage, several ways now can be pursued in order
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to optimize energy use, with particular attention to fuel consumption minimiza-
tion. Moreover, the adoption of an hybrid architecture allows energy recuperation,
which can be achieved by regenerative braking, for example.

Even though several auxiliary energy sources have been taken into account for
hybridization, the most widely-spread hybrid vehicles are hybrid electric vehicles
(HEV), which use a high-voltage battery as an additional energy storage system.
If the electric energy used for propulsion can be derived from renewable energy
sources, this vehicle technology is a promising way to reduce global warming. As
a consequence, the penetration of HEVs in the automotive market is supposed to
increase in the next decades [5], with a 48% of the total volume of passenger cars
represented by hybrid vehicles in 2030 [6]. Therefore, this will lead to an increasing
in battery capacity and then in the all-electric range of the vehicles[7]. In light of
this consideration, HEVs could represent a valid solution for addressing not only
the CO2, but even the pollutant emissions. This possibility has been addressed
and further investigated during this research activity by focusing on the urban air
pollution crisis, as further described in Section 1.4. In particular, predictive energy
management strategies for HEVs have been developed on the basis of navigation
data retrieved via in-vehicle connectivity in order to allow and ensure all-electric
driving mode in urban areas. With this aim, an advanced connected Hardware-
in-the-Loop system has been set up to effectively test the control strategies in a
simulation environment with real-time, up-to-date route information.

1.2 Hybrid electric vehicles

A vehicle can be considered hybrid if more than one energy source is available
on-board, in addition to the fuel which represents the chemical energy source
(conventional vehicle). Hybrid electric vehicles are hereby introduced to give a
comprehensive overview of this technology to properly understand the concepts
described in this work.
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1.2.1 Electric hybridization

Nowadays, hybrid electric vehicles are a widely discussed and well-known
topic in literature, and numerous studies analyzed this technology in terms of
powertrain configuration, control strategies and achievable benefits [8–11].

They comprehend also an electric rechargeable energy storage system (RESS)
which is usually represented by a battery. The voltage and the capacity of this com-
ponent are chosen on the base of the desired power output, defining the degree
of electrification of the vehicle. One or more electric motors (EM) are installed,
as well, not only for traction purpose, but even for transforming vehicle kinetic
in electric energy for battery recharging during deceleration phases (braking).
Therefore, the energy stored on board is chemical, flowing from the fuel tank to
the internal combustion engine, and electrochemical, flowing from the battery to
the electric machines and viceversa.

The major advantage in developing HEVs consists in combining the character-
istics of pure-electric and conventional ICE-based vehicles, allowing to reduce the
global energy consumption of the vehicle. The main benefits related to HEVs are:

• regenerative braking
the possibility to recover energy during braking phases instead of using
mechanical brakes to dissipate it as heat. Especially in urban cycles, where
accelerations and decelerations are more frequent, this opportunity allows
to considerably improve the global energy efficiency of the vehicle;

• engine operating point can be optimized
for a given speed, the operating point of the engine could be shifted to a
higher efficiency area by increasing the requested torque, performing the
so-called load point shift. This energy surplus can be used by the electric
motor to recharge the battery. This functionality can be achieved with an
energy management strategy of the power required to the engine;

• downsizing
to achieve better performance, the engine size could be reduced since electric
machines can provide part of the torque requested for traction;
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1.2 – Hybrid electric vehicles

• zero emission policy can be achieved
as explained in the next sections, in certain areas the use of the engine could
be prohibited to maintain air pollution levels below a certain threshold. This
task can be achieved by a HEV by addressing the full amount of torque
request to the electric motors.

1.2.2 Topologies and classifications

Concerning HEVs, several categories based on powertrain layout and thus
energy flow can be defined, as shown in Fig. 1.2, which are

• series topology
it is similar to a pure electric drivetrain with the addition of the engine as an
auxiliary power unit. Thus, the latter is not directly connected to the wheels
and no mechanical power summation occurs;

• parallel topology
both the engine and the electric motor(s) can directly propel the vehicle, and
so a mechanical power summation is possible;

• power split topology
both series and parallel working modes are applied simultaneously. This
layout allows higher degrees of freedom than the parallel one, and a higher
efficiency than the series one;

• serial-parallel topology
can act either as a series or as a parallel layout depending on the status of
one or more clutches, hence it is more flexible than the power-split.

With regard to HEVs parallel topology, several architectures based on electric
machines position within the driveline are possible. As shown in Fig. 1.3, they are
as follows

• P0
the motor is coupled to the engine by mean of a belt. In this case, the electric
machine is called Belt-driven Starter Generator (BSG);
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Figure 1.2: HEVs topologies.
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• P1
the motor/generator is directly mounted on the crankshaft upstream of the
clutch. Here, the motor is an Integrated Starter Generator (ISG)

• P2
the motor is still installed before the gearbox, but it is decoupled from the
engine by a clutch and pure electric driving mode is available;

• P3
the motor is mounted on the secondary shaft of the gearbox;

• P4
the motor is directly mounted on the front or rear axle.

Rear

P1

P3

P4

ICE

T

P2

P0

Rear

Figure 1.3: Parallel hybrid architectures depending on electric motor(s) position [8].

An additional classification of HEVs can be made depending on their hybridiza-
tion degree (HD), which can be defined as:

𝐻𝐷 =
𝑃𝑆,max

𝑃𝑆,max + 𝑃𝐼𝐶𝐸,max
(1.1)

where 𝑃𝑆,max, 𝑃𝐼𝐶𝐸,max are, respectively, the maximum power deliverable by the
secondary energy source and the internal combustion engine.

Such a classification, with ascending electrification degree, is presented as
follows:
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• conventional vehicle (no electrification)
the chemical energy of the fuel is the only on-board energy source. The
driver torque request is fully provided by an internal combustion engine;

• micro HEV
the installed battery can not be used for traction. The degree of electrification
is so minimum that a micro HEV can be considered as a conventional vehicle
with only the Start-Stop function available;

• mild HEV
the higher capacity of the battery allows not only the regenerative braking,
but also motor assist, thus improving the driveability of the vehicle (lower
torque oscillations), especially at low speed (turbo-lag reduction). Although
power boosting is available, all-electric driving mode can not be applied;

• full HEV
the capacity of the battery is high enough to perform pure electric driving
and thus to completely fulfill the electric traction;

• plug-in HEV (PHEV)
it presents an off-vehicle charging (OVC) function which is justified by the
higher capacity of the high-voltage battery. The reason is that this kind of
vehicles has been conceived to operate in all-electric driving mode so as to
cover the average daily traveled distance in a urban cycle. Thus, the standard
operating mode of a PHEV is represented by an initial charge depleting (CD)
phase, during which the usage of the electric energy is encouraged as much
as possible, followed by a charge sustaining (CS) phase, aimed at maintaining
the state of charge (SoC) of the battery almost constant and low, within a
certain narrow range.

A schematic representation of the hybridization degree and the CO2 reduction
capability for HEVs is depicted in Fig. 1.4.

Since two batteries are implemented on board of HEVs, the standard low-
voltage (LV) and the high-voltage (HV) ones, for a matter of simplicity hereafter
in this document the HV battery will be referred to as battery.
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1.3 – Connected Autonomous Vehicles

Figure 1.4: Hybridization degree (HD) and CO2 reduction capability for HEVs [12].

1.3 Connected Autonomous Vehicles

A possible definition for autonomous or self-driving vehicles is given by the
U.S. Department of Transportation’s National Highway Traffic Safety Administra-
tion (NHTSA), which consider such vehicles as “those in which operation of the
vehicle occurs without direct driver input to control the steering, acceleration, and
braking and are designed so that the driver is not expected to constantly monitor
the roadway while operating in self-driving mode” [13, 14].

Connected Autonomous Vehicles (CAVs) have gained increasing attention in
the last decades due to several advancements and features aimed to increase
driver comfort and safety, such as adaptive cruise control and collision avoidance
systems. Therefore, together with hybrid electric vehicles, this kind of technol-
ogy is strongly penetrating in the automotive industry. If these technologies are
combined together, the term CAHEV is often adopted to denote hybrid electric
vehicles equipped with connectivity-enabling technologies. The latter enable the
vehicle to exchange data with the surrounding environment, as explained in the
next sections. This can be considered a turning point for a practical on-board
implementation of predictive functions, since they are based on navigation data
that can actually be received by the vehicle.
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1.3.1 Vehicle-to-Everything technologies

Advancements in wireless communication technologies, sensor fusion, imag-
ing technologies, Big Data, and analytics have created opportunities for auto-
motive manufacturers to discover a wide range of solutions for multiple appli-
cations. Miniaturization of electronic components, advancements in navigation,
and adoption of smart devices is expected to fuel advancements in the Vehicle-to-
Everything (V2X) communications industry [15–19]. It is expected to show high
growth potential for the development of future connected cars that will be able
to interact with the surrounding environment to improve driver safety. One of
the practical applications of such technologies imply reducing traffic congestions,
which lead to an increase of fuel consumption and to a worsening of the urban air
pollution. As an additional drawback, the economic impact of traffic jam-related
problems is not negligible [20], as well.

According to 3GPP [21], V2X technologies include communication between
different entities and the ego-vehicle, both for safety and non-safety applica-
tion. Navigation data exchange is made via different vehicular communication
networks, also called nodes. Depending on the type of the node, the following
classification applies:

• Vehicle-to-Vehicle (V2V)
the moving nodes are represented by the vehicles communicating with each
other

• Vehicle-to-Infrastructure (V2I)
road infrastructures transmit navigation data regarding traffic lights timing,
road works, traffic congestions, and so on

• Vehicle-to-Network (V2N)
the ego-vehicle communicates with IT networks and/or data centers

• Vehicle-to-Pedestrian (V2P)
vehicles connect with pedestrians or bikers on the road to prevent accidents
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1.3.2 Advanced Driver Assistance Systems

Since navigation systems are increasingly entering the automotive sector, the
available map data may not only be used for routing purposes but also to en-
able advanced in-vehicle applications [22]. The area of potential features reaches
from headlight control up to active safety applications. With the ongoing devel-
opment of navigation based ADAS features the interface to access the so-called
ADAS Horizon is of rising importance. At this end, Advanced Driver Assistant
Systems Interface Specifications (ADASIS) is an industrial platform where map
provider and automotive developers work together to standardize the map data.
The method of how a vehicle’s control unit could be provided with the navigation
data is specified as well in the ADASIS protocols [23, 24].

To enable this kind of technology, on-board vehicle sensors play a vital role on
driving automation, providing the spreading concept of data fusion in order to
improve navigation data availability as well as reconstruct an electronic horizon
of the upcoming events. As shown in Fig. 1.5, these sensors include

• LIDAR (LIght Detection And Ranging)
surveying method that measures the distance to a target by illuminating that
target with a pulsed laser light;

• RADAR (RAdio Detection And Ranging)
object-detection system that uses radio waves to determine the range, angle,
or velocity of road objects;

• camera
a video sensor used to analyze the environment outside and inside the
vehicle.

ADAS systems, supported by on-board sensors, are leading the way to the ac-
tual self-driving car revolution. There have been multiple definitions for various
levels of automation and for the sake of standardization, to aid clarity and con-
sistency, NHTSA has adopted the autonomy levels proposed by the international
Society of Automotive Engineers (SAE) in [25]. These levels are based on the con-
cept who does what, when and span from no automation (Level 0) to full automation
(Level 5). They can be summarized as follows:
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Figure 1.5: On-board vehicle sensors.

• Level 0: No Automation
the human driver does all the driving;

• Level 1 : Driver Assistance (hands-on)
an ADAS on the vehicle can sometimes assist the human driver with either
steering or braking/accelerating, but not both simultaneously;

• Level 2: Partly Automated Driving (hands-off )
an ADAS on the vehicle can itself actually control both steering and brak-
ing/accelerating simultaneously under some circumstances. The human
driver must continue to pay full attention ("monitor the driving environ-
ment") at all times and perform the rest of the driving tasks.

• Level 3: Conditional Automation (eyes off )
an automated driving system (ADS) on the vehicle can itself perform all as-
pects of the driving task under some circumstances. In those circumstances,
the human driver must be ready to take back control at any time when the
ADS requests the human driver to do so. In all other circumstances, the
human driver performs the driving task.
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• Level 4: High Automation (mind off )
An ADS on the vehicle can itself perform all driving tasks and monitor the
driving environment – essentially, do all the driving – in certain circum-
stances. The human need not pay attention in those circumstances.

• Level 5: Full Automation (brain off )
an ADS on the vehicle can do all the driving in all circumstances. The human
occupants are just passengers and need never be involved in driving.

1.4 Smart Mobility

Connected and autonomous vehicles, equipped with on-board sensors, ADAS
systems and V2X technologies, could represent a first step toward Smart Mobility,
which can be considered a new way of conceiving mobility aimed to improve
its social, environmental and economical impact [26]. In particular, the goal is to
reduce air and acoustic pollution, road congestion and accidents.

This topic has recently gained an increasing attention. The reason is that,
starting from the last decades of the twentieth century, the industrialization has
seen exponential growth that has led to a massive migration of people from the
rural areas to the urban centers. In [27] it is reported that, in 2016, 5 billion people
lived in urban areas and this number is projected to increase to 7 billion by 2050
[28]. This led to a worsening of the air pollution crisis in urban areas and urban
mobility, in general.

Thus, from one hand, manufacturers are responding with innovative solu-
tions such as more efficient conventional engines and the introduction of hybrid
electric vehicles. On the other hand, legislation and regulations are focusing on
enhancing sustainable urban mobility, especially in Europe [29]. In particular, the
introduction of Low (LEZ), Ultra-Low (ULEZ), Zero (ZEZ) Emission Zones are be-
ing adopted to reduce pollutant emission from the transportation sector in urban
contexts. As reported in [30], more than 250 European cities have already taken
such measures. As an example, a ULEZ is constantly active in London, operating
24 hours a day, 7 days a week, every day of the year [31]. Remarkable benefits in
terms of air quality improvement due to emission reduction have been measured:
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a reduction of 31% for NOx and 4% for CO2 have been estimated with respect to
a no ULEZ scenario in the period July-September 2019 [32].

For this reason, this project is focused on energy management strategies of
hybrid powertrains which could play an important role for handling such reduced
emission zones.
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Chapter 2

Literature review

A comprehensive literature review on the topics studied in this research project
is here presented.

In particular, different energy management strategies (EMSs) have been ana-
lyzed in order to improve the energy efficiency of plug-in hybrid electric vehicles.
Since V2X technologies enhanced the possibility of retrieving navigation data and
make them available on board, the prediction of future conditions of the pow-
ertrain has been investigated with the main objective to provide the supervisory
controller detailed information regarding the status of the components. In this
way, it is then possible to optimize the power distribution of the hybrid vehicle
and, at the same time, to ensure global constraints for different scenarios, such as
ensuring all-electric driving in a Zero-Emission Zone.

In order to speed up the testing and the validation of the aforementioned strate-
gies and functions, an advanced simulation environment such as a Hardware-in-
the-Loop (HiL) has been developed and set up.

2.1 Energy management strategies for HEVs

In order to control the power distribution, and then the energy flow, among the
conventional and the electric powertrain of a HEV, different energy management
strategies are available for this purpose, depending on the parameters involved in
the control policy, the degree of hybridization and the complexity of the vehicle
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topology (parallel, series, or a combination of the previous ones).
They are usually implemented in a supervisory controller, known as hybrid

(HCU) or vehicle (VCU) control unit, because the main objective is coordinating
all the other on-board controllers, such as the transmission control unit or the
battery managements system (BMS), as further explained in Section 3. Thus, from
this point of view, the powertrain control can be defined as hierarchical.

Energy management strategies are then used to control every component of
the powertrain (engine, motors, battery, transmission, etc.) by requiring certain
set-points for each of them in order to satisfy the hybrid features of the vehicle.
Although EMSs are very different in terms of approach and mathematical formu-
lation, many of these features can be found in all of them as common practices for
HEVs.

As outlined in Chapter 1, during traction the driver torque request, 𝑇𝑞(𝑡), is
fulfilled by the engine or the electric motors. To this aim, in order to establish
the power distributions between those actuators, a torque-split factor, 𝑢𝑠(𝑡), is
calculated by the HCU. For a parallel hybrid, which is the one considered in
this dissertation, the torque request to the engine and the electric motor(s) are,
respectively, 𝑇𝐼𝐶𝐸(𝑡) = (1− 𝑢𝑠(𝑡))𝑇𝑞(𝑡) and 𝑇𝐸𝑀(𝑡) = 𝑢𝑠(𝑡) ·𝑇𝑞(𝑡). During all-electric
driving mode (𝑢𝑠(𝑡) = 1), only the electric motors provide the needed power
output. In case that vehicle propulsion is addressed only to the conventional
powertrain (𝑢𝑠(𝑡) = 0), the engine is managed by the HCU in such a way that a
torque surplus could be generated to recharge the battery. This technique, called
load-point shifting, allows the engine to be operated at higher efficiency points,
given the speed of the vehicle and then the engaged gear. On the other hand,
during braking, the kinetic energy is converted by means of the electric motors
which apply the required torque to decelerate the vehicle (𝑢𝑠(𝑡) < 1). Since these
components can be used also as generators, the mechanical input (resistant torque)
is converted into an electrical output (current flow), which is used to increase the
state of charge of the battery. This feature is also known as regenerative braking.
This energy saving gives the opportunity to extend the all-electric range of the
vehicle, with consequent benefits on fuel saving.

Different classifications of EMSs are available and are hereby reported.
A first distinction can be made whether optimal control theory is adopted to
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define the control policy or not. As proposed in [33, 34], EMSs can be classified as:

• heuristic
such strategies are defined on physical considerations or intuitions and
are usually developed considering maps or rules to define the operative
working conditions of the powertrain. No explicit optimization of the power
distribution is performed;

• sub-optimal
the main objective of the control algorithm is achieved by optimizing the
energy flow within the powertrain, thus minimizing a certain cost function,
which could represent the energy consumption of the vehicle. Since the
optimization is performed locally, namely at each calculation step of the
HCU, the solution of the minimization process is inherently sub-optimal;

• optimal
a global optimization is performed, meaning that the solution is the one
with the best performance in terms of cost function minimization all over
the possible actuation set-points. This implies the a-priori knowledge of the
driving cycle, with consequent high computational load.

The control strategy can be referred to as

• causal
when no prevision on the route ahead is available and then used.Tthen, the
powertrain control is governed by a cause-effect relationship between the
actuator set-points and the state variables;

• non-causal
when state variables are predicted on the base of the available information
of the driving mission.

Numerous investigations have been conducted on the energy management
strategies [35–38]. More extensive reviews on the topic are available in literature,
spanning among different characteristics such as numerical comparisons [39, 40],
real-time applicability [41] and future trends for EMSs [42, 43].

17



2 – Literature review

2.1.1 Heuristic control strategies

As suggested by their name, heuristic energy management control strategies
are based on intuitions and physical considerations for calculating the required
power distribution among the powertrain.

Although a wide range of possibilities exist in choosing the vehicular pa-
rameters and the conditions to be satisfied for this task, several common design
guidelines can be found.

Since HEVs have been introduced to reduce the fuel consumption and then the
CO2 production, the first assumption could be represented by using the internal
combustion engine as less as possible (for PHEVs), and, in general, in high effi-
ciency working areas (for HEVs), characterized by high load conditions. Another
guiding principle suggests to maintain the battery state of charge (SoC) within a
certain range (for HEVs), which may correspond to the entire working range of
the battery defined by the manufacturer (for PHEVs). As a result of the applica-
tion of these principles, the operative mode of a HEV, without off-board charging
capabilities, is typically represented by a charge-sustaining (CS) mode around
a certain target value of SoC. For HEVs, since the battery can be recharged by
plugging the vehicle to the grid, the operative mode may result in a combination
of charge-depleting (CD) and then charge-sustaining modes. Therefore, the use
of the electric energy stored in the RESS is always encouraged, if the respective
conditions are satisfied, because the conversion efficiency of the chemical energy
of the fuel to the electro-chemical one of the battery is quite low. As a consequence,
battery discharge is applied until the minimum SoC allowed for a correct usage
of the component is reached. At that point, the SoC level is maintained constant
within a certain narrow range.

The aforementioned principles can be applied by means of different approaches:
map-based and rule-based approach.

The first ones are defined by multi-dimensional look-up tables usually de-
pending on the driver torque request, the vehicle speed and the battery SoC. In
order to limit the complexity of the strategy, no more than three parameters are
typically taken into account. In particular, the boundaries between regions can
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Figure 2.1: Control logic for a heuristic, rule-based energy management strategy [33].

be dynamically managed by means of fuzzy-logic rules [44, 45]. Rule-based strate-
gies rely on a set of conditions defined considering vehicular parameters such
as the ones above mentioned [46]. Other parameters such as the power limita-
tions of the electric machine during pure electric driving [47] can be considered
for this purpose. In this case, fixed thresholds have to be established to fulfill all
the boolean conditions, which can be considerably numerous since the limit of a
multi-dimensional map is not present. Such rules are generally implemented in
the control policy by means of finite state machines, representing the state condi-
tion to be fulfilled for the transition to one state to another, as shown in Fig. 2.1.
In this case, if the SoC level is below the lower threshold 𝜉𝑙𝑜 , the engine provides
an additional torque to recharge the battery (𝑢𝑠 < 0). If the battery is sufficiently
charged (𝜉 > 𝜉ℎ𝑖), the engine is used only for vehicle propulsion (𝑢𝑠 = 0). If the
engine is not able to address the total power output, electric motors are used for
power assist (0 < 𝑢𝑠 < 1). On the other hand, if the torque requested by the driver
can be totally delivered by the motors and, at the same time, the energy stored
in the battery is high enough and the vehicle speed is low, all-electric driving is
allowed (𝑢𝑠 = 1), and the engine is switched off.

Since no optimization is performed, this kind of strategies are not affected by
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high computational load. Moreover, the heuristic approach does not require to de-
velop any optimization algorithm, which is usually more complex due to its math-
ematical formulation. This implies a lower computational burden required instant
by instant to the supervisory controller. For those reasons, heuristic strategies, es-
pecially the rule-based ones, are widely used in the industry of the automotive
fields to control the energy management of the hybrid powertrain. Nevertheless,
a intensive calibrations campaign is needed to properly tune the look-up tables
or the threshold values of such strategies. In order to speed up this process and
increase the energy efficiency of the power distribution, optimal energy manage-
ment strategies can be used as benchmarks for this purpose [48, 49].

2.1.2 The optimal energy management problem for HEVs

To properly understand the optimization-based control strategies, the analyt-
ical formulation of the energy management problem for HEVs is provided in this
section.

In general, given a certain topology of hybrid vehicles, the aim of an optimal
energy management strategy is to minimize the global energy consumption and
then the CO2 production. Thus, a mathematical function describing the impact
(energy cost) of such parameters depending on actuator set-points and state vari-
ables shall be defined. It usually known as cost function, or performance index. In this
case, the energy management strategies aim to provide a solution to this problem,
which is represented by the control law that minimizes the cost function over a
certain time horizon.

Thus, as proposed in [40, 50], a formulation of the cost function 𝐽 for HEVs
involving the fuel consumption can be expressed as:

𝐽 =

∫ 𝑡 𝑓

𝑡0

¤𝑚 𝑓 (x(𝑡),u(𝑡),𝑡) 𝑑𝑡 (2.1)

where ¤𝑚 𝑓 is the instantaneous fuel mass flow rate, x(𝑡) and u(𝑡) are the vectors
of the variables states of the system and the control inputs, and [𝑡0,𝑡 𝑓 ] is the
time domain in which the optimal control problem is defined. Its solution is then
represented by the control policy u∗(𝑡) that minimizes the performance index over
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the given time interval and subjected to global boundary conditions, related to
the state of the system:

𝜓
(
𝑥(𝑡 𝑓 ),𝑡 𝑓

)
= 0 (2.2)

and local constraints, representing the admissible actuator set-points and the
physical limitations of the system in terms of available torque and power, admis-
sible speed and SoC: 

𝐺(x(𝑡),𝑡) ≤ 0

u(𝑡) ∈ 𝑈(𝑡)
(2.3)

2.1.3 Sub-optimal control strategies

Sub-optimal control policies solve the optimal energy management problem
defined in Eq. (2.1) by locally minimizing the cost function, which means con-
sidering a time horizon compatible to the calculation step of the supervisory
controller.

The main applications of this approach are represented by

• Model Predictive Control (MPC) [51]

• Equivalent Consumption Minimization Strategy (ECMS)

The local optimization is a reliable trade-off between the real-time capability of
heuristic EMSs and the optimal solution guaranteed by non-causal controllers. In
particular, the ECMS has been demonstrated in [52] to be directly deducible from
the optimal Pontryagin’s Minimum Principle, if properly formulated. Sub-optimal
strategies are inherently implementable on-line and do not require an intensive
calibration effort.

2.1.3.1 Equivalent Consumption Minimization Strategy

The Equivalent Consumption Minimization Strategy was initially formulated
by Gino Paganelli in 1999 [53] and then applied as a practical solution for the
energy management problem in HEVs [54, 55].

It is based on the empirical consideration that a virtual fuel consumption
can be attributed to the usage of the electric energy of the battery. Under this

21



2 – Literature review

assumption, the cost function to be minimized can be represented by an equivalent
fuel consumption that can be formulated as follows:

¤𝑚 𝑓 ,𝑒𝑞 = ¤𝑚 𝑓 + ¤𝑚 𝑓 ,𝑏 (2.4)

where
¤𝑚 𝑓 ,𝑏 = 𝑠(𝑡)𝑃𝑏(𝑡)

𝑄𝑙ℎ𝑣
(2.5)

In other words, the electrical energy used by the battery and the chemical energy
of the fuel are correlated by an equivalence factor 𝑠(𝑡).

Other supervisory controllers perform a local minimization of an equivalent
fuel consumption that considers both the real fuel consumption and the electri-
cal power requested to the battery. Such controllers are usually considered as
sub-optimal [48, 52, 56–58]. Another option is represented by optimization-based
controllers, which are based on optimal control algorithms and can determine the
global optimal solution for the powertrain control [34, 59, 60]. Such methodology
guarantees the best energy management, but still presents issues related to online
implementation, due to the high computational effort required, and the need to
exactly predict future operating conditions. These energy management strategies
have been deeply studied and several of them have been already deployed on
board of vehicles on the market. To keep the pace of the regulations, innovative
technologies are being implemented both on the vehicle and the infrastructure,
such as wireless communication, and cloud computing. These technologies are
divided into vehicle-to-vehicle (V2V), vehicle-to-infrastructure (V2I), and vehicle-
to-network (V2N) communication. In fact, they can provide the aforementioned
strategies with a forecast of the driving path ahead, resulting in more efficient
energy management.

Several studies highlighted the benefits of future driving information for en-
ergy management strategies. An improved A-ECMS based on long-term target
driving cycle recognition and short-term vehicle speed prediction is presented in
[61]. It can optimize the equivalence factor based on mileage, SoC, long-term driv-
ing cycle and real-time vehicle speed, resulting in a reduction of fuel consumption
of 8.7%. Similarly, algorithms can determine the optimal SoC trajectory according
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to the traffic information, while the Equivalence factor is regulated dynamically,
thus enabling effective tracking of the reference SoC trajectory [62, 63]. In [64] is
presented a different A-ECMS that uses a historical driving profile for EF estima-
tion, the proposed strategy is able to foresee the change of the driving behaviors
and adjust the EF more reasonably. Furthermore, in [65] a LEZ-anticipating con-
trol strategy for a PHEV bus with P2-type parallel powertrain configuration. The
control strategy is based on a combined RB/ECMS, and it is superimposed by
generating an optimal SoC reference trajectory aimed at enabling pure electric
driving through forthcoming LEZs and minimizing the overall fuel consumption.
The optimal SoC reference trajectory is generated by minimizing its length over
traveled distance.

2.1.4 Optimal control strategies

The main applications of this approach are represented by

• Dynamic Programming (DP)

• Pontryagin’s Minimum Principle (PMP)

• Convex Optimization (CVX)

2.1.4.1 Dynamic Programming

Dynamic Programming is an optimal, non-casual algorithm that relies on a
numerical approach based on the Principle of Optimality proposed by the mathe-
matician Richard E. Bellman in 1952 [66–68]. It is stated as follows:

An optimal policy has the property that whatever the initial state and initial decision are,
the remaining decisions must constitute an optimal policy with regard to the state resulting
from the first decision.

Thus, considering the powertrain as a generic dynamic system evolving over
time, and assuming that all the intermediate states of this evolution are known
(non-causality), the aim is to find the control policy that minimizes a given cost
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function, which can be formulated as:

𝐽 = 𝐿𝑁 (𝑥𝑁 ) +
𝑁−1∑
𝑘=0

𝐿𝑘(𝑥𝑘 ,𝑢𝑘 ,𝑤𝑘) (2.6)

where:

𝑘 : discrete time index, or stage;
𝑁 : total number of stages, which defines the time horizon length;

𝑥𝑘 ∈ 𝑆𝑘 : system state vector at stage 𝑘;
𝑢𝑘 ∈ 𝑈𝑘(𝑥𝑘) : control inputs vector at stage 𝑘;

𝑤𝑘 : vector representing the disturbances acting on the system at stage
𝑘.

The stage cost 𝐿𝑘 is the cost associated to each state for the applied actuator
set-point, while the terminal cost 𝐿𝑁 ensures the desired state of the system at the
final stage. The objective of the algorithm is to determine, at each stage, the opti-
mal control input 𝑢∗

𝑘
between the all admissible ones (multi-stage decision) which

minimizes the cost function from that stage to the final one, also known as cost-to-
go. The Bellman’s principle ensures that the policy

{
𝑢∗
𝑘
,...,𝑢∗

𝑁−2,𝑢
∗
𝑁−1

}
related to

the last part of the problem represents the optimal control policy. Therefore, the
optimization is performed in a backward-facing approach, starting from the final
stage 𝑁 to the initial one, and establishing the optimal control input at each stage.
In this way, it can be noticed that an a-priori knowledge, or at least a prediction,
of the state vector 𝑥𝑘 is needed. Moreover, the dynamic, multi-stage decision pro-
cess strongly increases the computational load required to numerically solve the
problem. For this reason, optimization-based algorithms are theoretically non on-
line implementable. Nevertheless, since the optimality of the solution provided,
they are used as benchmarks for the calibrations of other energy management
strategies [48].

Only after several decades from its formulation Dynamic Programming has
been applied to the energy management problem of HEVs [69, 70], and it is nowa-
days a well-established topic in the automotive control field [71–74]. Considerable
effort has been put to reduce the computational load of the algorithm. In [75] a
novel approach for state variables definition is proposed. In particular, the SoC has
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been substituted by the cumulative battery power whose shorter discretization
contributes to reduce the size of the state variables vector and, then, the compu-
tational burden. However, although half of the running time can be saved, the
proposed algorithm is still applied as a benchmark tool.

Since the developed DP algorithm take into account the battery thermal behav-
ior for defining the state variable, as further described in Section 2.3, the following
state-of-the-art analysis is here given. First of all, it must be said that, from a ther-
mal management point of view, the electrical battery pack in HEVs must deal with
important thermal issues, which can seriously compromise reliability, safety and
aging of the involved components. Nowadays, most of the in-vehicle strategies
rely on rule-based controllers, as well, which require large calibration campaigns
ad are usually heavily restrictive to avoid power de-rating and battery premature
aging. Consequently, an advanced battery thermal management system (BTMS)
is needed [76]. A predictive thermal strategy has been proposed and analyzed
in [77]. The study is focused on the possibility to attain a certain cooling power
reduction by means of plugged-in battery thermal pre-conditioning. During grid
charging active pre-conditioning is realized by cooling down the battery and thus
no cooling power has to be supplied during the driving cycle because the battery
temperature does not reach the upper threshold set for actuators activation.

In [78] a thermal management strategy for CAEHVs using DP is proposed. In
particular, air and liquid mass flow rates are adopted as control inputs to control
the thermal behavior of the battery. Moreover, to enable the real-time implemen-
tation of the algorithm, the grid dimension due to the number of state variables
and control inputs has been reduced by means of an iterative approach, called
Iterative Dynamic Programming (IDP). It is a numerical method which consists in
applying several times the base DP algorithm and regenerating a coarser grid at
every iteration. Thus, a time horizon of 60 seconds has been achieved and tested
at HiL level, where the BTM strategy has been implemented in a rapid control
prototyping hardware. A multi-objective DP focused on battery life optimization
has been proposed in [79, 80]. For this reason, a battery severity factor has been
evaluated by means of a capacity degradation model in order to take into account
battery aging in the cost function of the DP algorithm.

Several ways to employ route information for energy-efficiency targets are

25



2 – Literature review

under research. One of these is represented by the use of a Model-Predictive
Control (MPC) strategy in which a model of the investigated system is developed
in order to fully describe the associated thermal dynamics. Such an accurate model
is needed to calculate the predicted control as a function of several input signals
[81]. Thus, the control law can be obtained by optimizing an objective function.
In [82] a control-oriented non-linear model is first developed for the system and
a Non-linear Model Predictive Control (NMPC) scheme is formulated to make it
possible to use the knowledge of the predicted future drive cycle and the battery
thermal system model for an efficient battery thermal management. An interesting
study has been conducted in [83] with the aim of developing an MPC design as an
alternative solution for thermal management cabin heating for HEVs. Here, the
challenging possibility of the cabin thermal management to influence the vehicle
energy management is shown. In particular, the torque split factor is evaluated so
as to distribute the workload between the heater core and the PTC heater in an
optimal way, i.e. minimizing fuel consumption.

2.2 Testing environment

The development and validation of predictive control strategies collide with
the shortening of the vehicle time-to-market [84]. A recent survey shows that 68%
of the automotive companies have now a product development and launch cycle
under two years [85]. The old consolidated methodologies (reliable road tests
above all) do not fit anymore because the safety validation of a current driver
assistance system alone requires up to 2 million test kilometers [86]. Besides, most
of the functions under test regard dangerous and highly variable conditions that
are difficult and expensive to replicate with conventional tests. Thus, the tendency
is to move the driven kilometers from the road to advanced simulation environ-
ments in a process called Road-to-Rig-to-Desktop [87]. Among all the advantages
of a virtual test, there is the possibility to control every variable, granting repeat-
able tests especially for conditions hard to recreate in the reality. In particular,
the validation and verification of connectivity-related functionalities are becom-
ing more demanding as they must be tested in a huge number of scenarios,
regarding dangerous (e.g., emergency brake) and highly unpredictable situations
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(e.g., collaborative adaptive cruise control and connectivity-related functions) to
be declared reliable. The challenge is therefore to develop a testing and valida-
tion framework that can replicate the effectiveness of road conditions and traffic
scenarios.

To deal with this problem, advanced HiL testing environments have been
developed among the last decades.

Following this tendency, specific commercial software were developed and
made available on the market, such as PreScan and ITS Modeller presented in
[88], whose aim is to provide the automotive industry with a tool for developing
connected vehicle systems from concept to production. A simulation framework,
consisting of driving, traffic, and network-simulators, has been presented in [89].
Its main objective is testing and evaluation of Co-operative Intelligent Transport
Systems (C-ITS) applications.

Once the simulation of vehicles and networks in a virtual environment is
established, in [90] it has been improved with optimal energy management, which
is tested using the short horizon information coming from the leading vehicle in
the collaborative environment.

In [91], from Bosch, this simulation framework has been adopted to evaluate
the advantages of a route preview (long horizon) in order to determine in which
part of the trip it would be more convenient to regenerate the diesel particulate fil-
ter. In the same way, in [92], from Ford, that example is applied to a real prototype
controller mounted on a prototype vehicle. On the other hand, the short horizon
communication is not implemented in this contribution. A similar on-road test
is proposed in [93], where a short-range wireless communication is tested with
an intersection collision warning function and then verified on a real vehicle. On
the other hand, the long horizon is left apart as well as the vehicle dynamics. An
evolution of that work is presented in [94], where several OBU/RSU hardware
have been connected to a microscopic traffic simulator (Simulator of Urban Mobil-
ity, SUMO) to integrate real vehicular communication devices. Anyway, it focuses
on the C-ITS simulation for automated vehicles while it does not simulate the
vehicles’ dynamics nor the long horizon connectivity. Simulation frameworks like
these are used also for Automated Vehicles functions development, as shown in
[95], where a Hardware-in-the-Loop simulator for developing automated driving
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algorithms has been set up. In this case, the real-time PC carries out the sim-
ulations of other moving vehicles while also generating traffic scenarios while
the prototype control unit runs the algorithm. However, the long horizon is not
simulated even in this work. A step further was made in [96], where an Engine-in-
the-Loop system integrated with a real-time traffic simulator (named VISSIM) has
been developed to evaluate the performance of emerging connected vehicle ap-
plications. This allows a systematic evaluation of connected vehicle mobility and
energy savings, as emissions and fuel consumption can be measured precisely.
Then, a real vehicle equipped with an OBU is driving along with other connected
vehicles. That vehicle data is transmitted to the HiL, which reacts consequently.
There is nothing concerning the long horizon, and, besides, it has been assumed
that perfect communication is available between vehicles.

Finally, the development of a sustainable framework for testing control strate-
gies for CAVs is proposed in [97]. In particular, in the given HiL the vehicle
dynamics are up to ETAS DESK-LabCar, controlled by on-board control units, i.e.
MicroAutoBox and Matrix embedded PC-Adlink. The latter oversees the commu-
nication with the OBU and the cloud, respectively through Ethernet and LTE. The
environment and the perceptive sensors are simulated with PreScan, while the
micro-traffic with PTV VISSIM. Although such an advanced simulation frame-
work is very interesting, it has been presented with a short driving routine.

2.3 Innovative contributions of the research project

The present dissertation is focused on three different typologies of energy man-
agements strategies. The first is represented by rule-based strategies, which are
the default strategies, developed by the industrial partner and implemented in the
prototype vehicle. Furthermore, an Adaptive-ECMS for PHEV based on naviga-
tion data has been developed in order to handle zero-emission zones [98]. Finally,
an algorithm based on Discrete Dynamic Programming for combined energy and
battery thermal optimization is proposed [99]. With regards to the simulation en-
vironments, V2X technologies have been implemented in a Hardware-in-the-Loop
to enable vehicular connectivity for navigation data retrieving [100].

An algorithm based on the equivalent consumption minimization strategy has
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been investigated. In particular, an A-ECMS combined with predictive navigation
data and topological information about upcoming ZEZ is proposed. The devel-
opment, testing and validation of this strategy follows the V-Model methodology
[101]. First, a conventional ECMS has been presented in [102, 103] where the bene-
fits of the ECMS for a PHEV are highlighted by using a Model-in-the-Loop (MiL)
simulation environment. In this paper, the speed profile and the road slope are
used as input for an on-board predictive control strategy developed for a PHEV.
After that, a dedicated algorithm predicts the amount of necessary energy to com-
plete the city event in full-electric mode, giving an SoC target value. To this end, an
A-ECMS has been modified to use navigation data for approaching the ZEZ with
the target SoC. The strategy has been implemented and tested with a Software-
in-the-Loop (SiL) simulation environment. In particular, it is implemented in the
same software architecture that it is used for the final application on the pro-
totype vehicle. The paper finally quantifies the benefits of such an approach in
terms of CO2 emissions by comparing it with a heuristic, rule-based one, adapted
to receive the same input data and calculate the SoC target. In parallel, the HiL
simulation environment setup has been carried out and presented in [100]. So, it
will be possible to test the strategy with navigation data coming from the server,
through the V2N communication, as if the vehicle were on the real road.

Concerning the dynamic programming algorithm, it is aimed to simultane-
ously optimize both the energy and battery thermal management controls. With
this solution, the battery temperature is taken into account when optimizing
the energy management and, at the same time, controlling the thermal manage-
ment in a more energy-efficient way, while still respecting the battery-related
constraints. In [104] a combined optimization of the energy and thermal manage-
ment is proposed, but in this case, the thermal behavior considered is the engine
one, while this study considers the high-voltage battery thermal management.
Instead, in [105], the authors considered the thermal state of the battery in the
energy management as a soft-constraint, following a PMP approach. The novelty
of the proposed approach relies on the derivation of the energy and battery ther-
mal management strategies within the same optimization loop, by considering
the interaction of the propulsion and the battery cooling system, allowing a more
effective usage of the battery. The obtained results are compared with the standard
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controllers implemented in the model-in-the-loop environment of the vehicle, in
order to assess the value of the proposed solution.

Regarding the simulation environment in which the previous strategies have
been developed and tested, this work counts on a highly detailed vehicle model
(validated over experimental data) supervised by the production level HCU soft-
ware unlike those presented in [88, 93, 94], with complete access to the components
and controllers models. The HCU is then equipped with the typical V2X commu-
nication technologies, both for the long horizon such as in [91, 92], and the short
horizon such as in [93–96]. Moreover, the connection to the private server enables
the testing of cloud computing and predictive maintenance functions, as in [96].
So, the proposed HiL-based validation platform results in a more modular and
universal tool for testing and validating predictive eHorizon functions. On one
hand, it provides higher flexibility due to the possibility to test a different kind
of predictive functions (long and short horizon, predictive maintenance) and the
capability of acting on each component and controller model. On the other hand,
it grants higher reliability, as both the hardware and the software are the same as
those implemented on the vehicle, allowing seamless functions implementation
on-board once validated at the HiL. Thus, it will shorten the validation process
and further reduce the gap between laboratory and on-vehicle tests.

2.4 Organization of the dissertation

Following this introduction on the research topics and the presented novel
contributions, the organization of the dissertation is as follows:

• in Chapter 3 the powertrain modeling of the vehicle under study is analyzed,
with particular attention the models of the high-voltage battery, the Battery
Management System (BMS) and the supervisory controller;

• in Chapter 4 the simulation environments are presented. From one hand, the
Software in-the-Loop (SiL) system used for the development of the control
strategies is presented, including the powertrain validation. On the other
hand, the connected HiL set up for strategies testing and validation is shown;
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• Chapter 5 is focused on the control strategies for the energy management of
the vehicle. At first, the standard RBS strategies are introduced. Then, both
the control algorithms and the predictive functions are presented. Their
mathematical formulations are provided, as well;

• in Chapter 6 the results obtained by comparing the reference and the tested
strategies are presented and discussed. In particular, fuel consumption and
CO2 production are estimated;

• in Chapter 7 the achievements of this work are analyzed, together with the
possible future works to overcome the limits of the research project.
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Chapter 3

Control-oriented powertrain
modeling

The modeling of the considered hybrid electric powertrain is here presented.
The main objective of this model is to properly represent the energy flows

within the powertrain in order to evaluate the fuel and energy consumption. At
this aim, since several modeling approaches can be adopted, a brief overview is
given to clarify each aspect of them. They will be applied in different contexts,
as further explained in the next chapters. Moreover, the components of the pow-
ertrain are individually introduced and analytically described, with particular
attention to the high-voltage battery, which plays a crucial role in HEVs.

3.1 Vehicle under test

For the sake of comprehension, before analyzing the powertrain modeling
approach, the examined vehicle is here described. It is represented by a prototype
plug-in HEV with a parallel P1-P4 topology. Its powertrain is depicted in Fig. 3.1,
while the main specifications are listed in Tab. 3.1. A detailed description can be
found in [106].

As previously introduced, according to Fig. 1.2b, the vehicle propulsion can be
provided by two different energy paths: the pure electrical one and the hybrid one.
The former includes two identical electric machines (EMs) mounted on the front
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Figure 3.1: Powertrain architecture for the considered prototype vehicle [100].

Table 3.1: Vehicle powertrain data [100].

Parameter(s) Value(s)

Battery nominal capacity (1C@25°C) 19.4 Ah
Battery nominal/maximum voltage 384/391 V
Electric machines maximum torque (cont./peak) 145/350 Nm
Electric machines maximum power (cont./peak) 64/140 kW
Engine maximum torque 533 Nm
Engine maximum power 449 kW
Overall maximum power (cont./peak) 577/729 kW

axle, which can serve either as motors or generators (for regenerative braking).
They are directly coupled to the front wheels (P4) by means of a fixed gear ratio. A
Li-ion high-voltage (HV) battery is the electrochemical energy source for electric
propulsion. The hybrid path, instead, includes a 5.2 liter Fuel Stratified Injection
engine, another electrical machine used as an Integrated Starter-Generator (ISG)
and directly mounted on the crankshaft (P1), a six-gear dual-clutch automatic
manual transmission, and a differential gear. The motors and the ISG are repre-
sented by the same electrical machine, whose performance are listed in Tab. 3.1.

Depending on the selected driving mode, the two propulsion paths can work
independently or together. If the vehicle is in pure electric mode, the propulsion
comes only from the electrical machines on the front axle, so the engine is kept
switched off and the clutch is open. In this condition, a Front-Wheel-Driving
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3.1 – Vehicle under test

(FWD) is performed. If the vehicle is in hybrid mode, both the engine and P4
motors can work in combination to fulfill the torque request, and thus Four-
Wheel-Drive (4WD) can be achieved.

A schematic and simplified representation of the in-vehicle battery cooling
circuit is given in Fig. 3.2. As it can be seen, it comprehends two different thermo-
dynamic loops: the refrigerant and the coolant one.

Data regarding battery cooling circuit actuators are listed in Tab. 3.2.

battery cooling plate

chiller
HV COMPRESSOR

ePUMP

condenser

refrigerant loop

coolant loop

Figure 3.2: Schematic representation of the in-vehicle battery cooling circuit.

Table 3.2: Battery cooling circuit data.

Parameter(s) Value(s)

Pump nominal speed 7000 rpm
Pump nominal volume flow 20 l/min
Pump nominal power 50 W
Compressor nominal speed 3000 rpm
Compressor max power 4 kW

In the refrigerant loop, a high-voltage compressor, directly supplied by the
battery, pressurizes the refrigerant, which is a two-phase fluid. This means that it
is subjected to different phase transitions during the refrigeration cycle: from vapor
to liquid in the condenser, releasing heat into the environment, and viceversa, in
the chiller, where heat is absorbed from the coolant. Thus, the chiller represents the
common heat exchanger where the heat transfer between the refrigerant and the
coolant takes place. In the other loop, the coolant (a water-glycol mixture) absorbs
the heat generated within the battery pack by flowing through a cooling plate. An
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3 – Control-oriented powertrain modeling

electrical (low-voltage) pump is installed to provide the necessary coolant flow
rate.

3.2 Modeling approach for energy analysis

In order to provide an energy and efficiency assessment of a vehicle, the
fuel consumption has to be estimated and with this aim different simulation
approaches can be adopted.

In a forward-facing simulator, the source of the energy flow is represented by
the propellers and the sink corresponds to the wheels, at which velocity and ac-
celeration are evaluated. As shown in Fig. 3.3a, these output signals are involved
in a closed-loop control (using a PI controller) operated by an effective driver
model with the role of following a target input signal, namely the speed profile of
a certain driving cycle. Thus, this approach can include dynamic effects and con-
sequently performance- and drivability-focused simulations can be performed. In
fact, the adoption of a driver model introduces realistic discrepancies between the
target and the effective vehicle speed, evaluated as a consequence of the applied
control actions. For this reason, this methodology can be referred to as dynamic
approach.

On the other hand, a backward-facing simulator is based on the inverted path
of the energy flow inside the vehicle. Here, as it can be noticed in Fig. 3.3b, the
traction force, and consequently torque and power, are evaluated on the basis
of the vehicle speed and the other parameters representing the given driving
missions, which is then assumed to be perfectly followed. Therefore, there is no
closed-loop control on the latter parameter, i.e. a driver model is not needed. Since
this approach does not involve any powertrain dynamics, it is also referred to as
quasi-static.

A forward-backward approach, resulting form a combination of the presented
methodologies, can also be used. As shown in Fig. 3.3c, the powertrain is dynam-
ically modeled with a forward approach, since the vehicle speed is the result of
the control chain. The latter is based on a backward model, used by the driver to
compute the torque set-point. In this way, the advantages of both the approaches
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are achieved. From one hand, the accuracy of the speed-following control is in-
creased due to the feedback of the effective vehicle speed, as it would happen
for a realistic driver. On the other, the dynamic powertrain model ensures power
limitations of each component, introduced by the forward-facing energy flow.

3.2.1 Approaches used in this work

As will be explained in Chapter 5, the main objective of the predictive func-
tion is represented by the evaluation of the battery power request, and thus the
temperature behavior, with no particular attention to the energy management
optimization problems, and therefore the backward approach is used in this case.
Moreover, since dynamic effects such as torque control are not inherently included,
a quasi-static approach results in a less complex model with benefits regarding
the computational load. In addition to the benefits in terms of real-time capability,
this characteristic is of fundamental importance when a significant amount of
data, such as those related to navigation, has to be processed for the prediction of
future working conditions of the components.

A backward-facing approach has been adopted, as well, for the backward
optimization algorithm of dynamic programming. The reason for this choice relies
on the evaluation of the objective function of the optimal control strategies. In fact,
to evaluate the cost associated to each control policy, all the state variables of the
system, from which the cost-to-go is evaluated, have to be recursively evaluated
from the given driving mission, i.e. speed and slope traces, that act as disturbances
on the dynamic system represented by the hybrid powertrain.

In order to properly conduct the energy analysis of the vehicle comprehending
the developed control strategies, a forward-backward simulator has been chosen
for vehicle modeling at Software-in-the-Loop level, which is further described in
Chapter 4. In this way, the actuators set-points evaluated by each tested strategy
can be applied to the powertrain. Moreover, the input drive cycle can be followed
with high accuracy by considering the power limitation of each component.
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(a) Forward.

(b) Backward.

(c) Forward-backward.

Figure 3.3: Powertrain modeling approaches based on the direction of the energy flow
[50].
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3.3 Powertrain components

In this section, the modeling of the main powertrain components is presented,
from vehicle dynamics to the electrical and thermal characterization of the high-
voltage battery.

3.3.1 Longitudinal dynamics

Since the objective of the present work is represented by energy assessments
of HEVs, performance analyses focused on drivability (vehicle stability, handling,
etc.) and comfort (noise, harshness. and vibrations) issues are neglected. For this
reason, lateral and horizontal vehicle dynamics are not taken into account. Hence,
considering Fig. 3.4, the fundamental equation representing the longitudinal dy-
namics of a vehicle in motion is the following:

𝑚𝑣 ·
𝑑

𝑑𝑡
𝑣(𝑡) = 𝐹𝑚𝑜𝑡(𝑡) − 𝐹𝑟𝑒𝑠(𝑡) (3.1)

where 𝑚𝑣 , 𝑣 are the mass and the speed of the vehicle, 𝐹𝑚𝑜𝑡 is the propulsion force
supplied by the internal combustion engine and/or the electrical machines (P4),
and 𝐹𝑟𝑒𝑠 is the resistant force acting on the vehicle. The latter can be expressed as
follows:

𝐹𝑟𝑒𝑠(𝑡) = 𝐹𝑎(𝑡) + 𝐹𝑟(𝑡) + 𝐹𝑔(𝑡) (3.2)

where:

𝐹𝑎 : aerodynamic friction losses generated by viscous friction of the surround-
ing air on the vehicle surface and pressure difference between the front and
the rear of the vehicle due to air flow separation;

𝐹𝑟 : rolling friction losses at the contact surface between wheels and road,
mainly affected by vehicle speed, tires pressure and road conditions;

𝐹𝑔 : gravitational force caused by driving the vehicle on an inclined road.

Because both air and rolling friction losses depend on vehicle speed, it is
a matter of practicality considering drag and friction forces not separately. In
particular, their contributions can be gathered in a single polynomial expression
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Figure 3.4: Forces acting on a vehicle in motion.

as a function of 𝑣(𝑡) with coefficients depending on the considered vehicle and
which can be practically obtained by means of a coast-down test.

As explained in [107], the test consists in driving the vehicle in a flat road at
a certain reference speed and then starting the coast-down deceleration phase,
which means the transmission shall be in neutral and the engine shall run in
idle. Moreover, the brakes shall not be operated during coasting. Experimental
data of measured vehicle speed are then fit with a regression curve, namely the
total-resistance curve, which has the following form:

𝐹𝑐𝑑(𝑡) = 𝐹𝑎(𝑡) + 𝐹𝑟(𝑡) = 𝑓0 + 𝑓1 · 𝑣(𝑡) + 𝑓2 · 𝑣2(𝑡) (3.3)

where 𝑓0 is the constant term [N], 𝑓1 is the coefficient of the first-order term
[N/(km/h)], 𝑓2 is the coefficient of the second-order term [N/(km/h)2].

The force induced by gravitational field on the vehicle when driving on a road
with non-null gradient is as follows:

𝐹𝑔(𝑡) = 𝑚𝑣 · 𝑔 · sin 𝛼(𝑡) (3.4)

where 𝛼(𝑡) is the slope angle [rad] of the road, which can be derived from per-
centage slope 𝛼%(𝑡) by the relationship

𝛼(𝑡) = arctan 𝛼%(𝑡)
100 (3.5)
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Hence, the resistant force has the following expression:

𝐹𝑟𝑒𝑠(𝑡) = 𝑓0 + 𝑓1 · 𝑣(𝑡) + 𝑓2 · 𝑣2(𝑡) + 𝑚𝑣 · 𝑔 · sin 𝛼(𝑡) (3.6)

By substitution of Eq. (3.3), Eq. (3.4) in Eq. (3.2), the fundamental equation Eq. (3.1)
can be written in the form of a non-homogeneous first-order non-linear ODE.

Therefore, the acceleration and the velocity of the vehicle, which represent the
output of the vehicle model, can be evaluated, resulting in the forward-facing
approach. On the other hand, if the driving cycle is assumed to be perfectly
followed, and then the vehicle speed is considered an input variable, the traction
force 𝐹𝑚𝑜𝑡 is evaluated from the same equation. In this way, the backward approach
is realized.

3.3.2 Internal combustion engine

The internal combustion engine model is based on static maps and a lumped-
parameter dynamic sub-model, which considers the inertia of the crankshaft and
the flywheel. It is modeled as a torque generator, where the requested torque input
is evaluated by the supervisory controller and then saturated according to engine
limitations:

𝑇𝑟𝑒𝑞 = min
(
𝑇max(𝜔),𝑇𝑖𝑛 − 𝑇𝑓 𝑟(𝜔,𝜗𝑐𝑜𝑜𝑙 ,𝜗𝑜𝑖𝑙)

)
(3.7)

where 𝑇𝑚𝑎𝑥 is the maximum available engine torque at the current speed 𝜔, 𝑇𝑖𝑛
and 𝑇𝑓 𝑟 are the indicated and the friction torque, respectively, with the latter
depending on the engine speed and the temperature of the coolant 𝜗𝑐𝑜𝑜𝑙 and the
lubricant 𝜗𝑜𝑖𝑙 .

As shown in Fig. 3.5a, a fuel consumption map is adopted, having as input
variables the torque and the speed of the engine. For reasons of confidentiality, the
fuel consumption has been normalized with respect to the maximum value. An
engine efficiency map, depicted in Fig. 3.5b, is also implemented for the energy
analyses and results discussion, as shown in Chapter 6. In both maps the maximum
torque curve, depending on the engine speed and represented in terms of brake
mean effective pressure (BMEP) by a black line in bold , can be noticed. The fuel
consumption map has been generated by engine characterization at the test cell,
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while the efficiency map has been obtained as follows.
The brake mean effective pressure, 𝑝𝑏𝑚𝑒 , is defined as:

𝑝𝑏𝑚𝑒 =
4𝜋
𝑉𝑑

𝑇 (3.8)

being 𝑉𝑑 the engine displacement and 𝑇 the provided torque.
The total engine efficiency can be then evaluated as the ratio between the

output and input energies. The former is the mechanical energy transferred to
the crankshaft, while the latter is the chemical energy stored in the fuel. Since the
definition involving powers has a higher practical approach, the engine efficiency
𝜂𝑡𝑜𝑡 is usually defined as:

𝜂𝑡𝑜𝑡 =
𝑃𝑚𝑒𝑐ℎ

𝑃 𝑓 𝑢𝑒𝑙
=

𝑇 · 𝑤
¤𝑚 𝑓 · 𝑄𝑙ℎ𝑣

(3.9)

where ¤𝑚 𝑓 is the fuel mass flow, available from Fig. 3.5a, and 𝑄𝑙ℎ𝑣 is the lower
heating value of the fuel, i.e. the amount of chemical energy par unit of fuel mass.

It is not unusual to map the brake specific fuel consumption, 𝐵𝑆𝐹𝐶, instead of the
engine efficiency, which is defined as the amount of fuel per unit of mechanical
energy output (work, 𝑊):

𝐵𝑆𝐹𝐶 =
𝑚 𝑓

𝑊
=

¤𝑚 𝑓

𝑃𝑚𝑒𝑐ℎ
(3.10)

Then, combining Eq. (3.10) with Eq. (3.9), the relationship between the total
engine efficiency and the 𝐵𝑆𝐹𝐶 can be obtained:

𝜂𝑡𝑜𝑡 =
1

𝐵𝑆𝐹𝐶 · 𝑄𝑙ℎ𝑣
(3.11)

3.3.3 Electric machines

The electric machines, namely the P1 (ISG) and P4 motors, have been modeled
following the same approach presented for the internal combustion engine.

In particular, since all the installed motors are identical machines, a unique
efficiency map accounts for energy losses occurring at the motor-inverter side.
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Figure 3.5: Maps used for engine modeling.
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As can be noticed from the map shown in Fig. 3.6, provided by the component
manufacturer, the motor efficiency depends on speed and torque and iso-efficiency
lines are shown, as well. As it is well-known, the efficiencies characterizing an
electric machine are much higher than the ones of an internal combustion engine,
which is strongly penalized by the conversion of the thermal energy into the
mechanical one and by thermal power losses through the wall of the combustion
chambers and the exhaust gases.
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Figure 3.6: Efficiency map used for motors modeling.

The standard operating mode of an electric machine consists in a continuous
power rating, which can be supported for long period of time. In case of high
performance request, such a component is able to provide a peak power for brief
time intervals. As a consequence, two threshold curves of maximum torque can
be defined, namely in continuous and peak operating modes. Another benefit of
using electric machines is that the maximum torque can be provided even at
low speeds. In this way, considering Fig. 3.7, two different trends in terms of
maximum performance can be pointed out: the first phase is characterized by a
constant-torque behavior exhibits, followed by a constant-power one. The value
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of speed at which this transition takes place is called base speed, 𝜔𝑏 . For the sake
of simplicity, neglecting electrical and magnetic effects (flux weakening, etc.), a
simple mathematical description from a mechanical point of view of this behavior
of electric machines may be expressed as:

𝑇𝑙𝑖𝑚 = 𝑇max = const. ⇒ 𝑃𝑙𝑖𝑚 = 𝑇max𝜔 ∝ 𝜔, 𝜔 ≤ 𝜔𝑏

𝑃𝑙𝑖𝑚 = 𝑃max = const. ⇒ 𝑇𝑙𝑖𝑚 = 𝑃max/𝜔 ∝ 1/𝜔, 𝜔 > 𝜔𝑏

(3.12)

where the maximum torque𝑇max is provided for 𝜔 ≤ 𝜔𝑏 , and hence the maximum
power 𝑃max can be delivered only at higher speeds 𝜔 > 𝜔𝑏 .
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Figure 3.7: Motors maximum torque and power, in peak and continuous conditions.

Since electric machines can act as motor as well as generator, in the latter case
all the considerations previously made are still valid. This means that the same
maximum performance, with negative signs (resistant torque and power), are
achieved. Moreover, as a generator, the electric machine is able to convert the input
mechanical energy in electrical energy. This is the case of regenerative braking,
when the kinetic energy of the vehicle is reduced by the generator whose rotor is
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mechanically driven, and thus a current flow is produced. The same concepts lies
behind the load point shifting strategy, since the engine provides a torque surplus
which is absorbed by the generator. In both cases, the produced electrical energy
is transferred to the battery for charge increasing. Nevertheless, it is worth to point
out that the direction of the energy flow within the electric machine affects the
efficiency of the energy conversion, from mechanical to electrical (generator) and
viceversa (motor). In formulas:

𝑃𝑒𝑙 =
𝑃𝑚𝑒𝑐ℎ

𝜂𝛼 (𝜔,𝑇) =
𝑇 𝜔

𝜂𝛼 (𝜔,𝑇) , 𝛼 =


1, 𝑇 ≥ 0 (motor)

−1, 𝑇 < 0 (generator)
(3.13)

with obvious meanings of the symbols.

3.3.4 Driver

As introduced in Section 3.2.1, a driver model is implemented in the simulator
with the aim to follow the speed set-point related to the given driving mission.

Since the simulator is based on a forward-backward approach, the measured
(calculated) vehicle speed, resulting from the application of the control chain on
the driveline, is used as a feedback signal to improve the accuracy of the speed
following capability. In particular, the error of the calculated and the target speed
is fed into different proportional-integral (PI) controllers to compute accelerator
and brake pedal signals.

The steering angle is not calculated because only vehicle longitudinal dynam-
ics are taken into account. The gear is not evaluated, as well, since the transmission
control is set to automatic. The driver torque request, mapped as a function of vehi-
cle speed and accelerator pedal, is estimated by the supervisory controller, which
then evaluates the torque split factor according to the chosen energy management
strategy.

3.3.5 Electric power distribution

The electric power distribution of the considered vehicle is depicted in Fig. 3.8.
it consists of a high-voltage (HV, red line) and a low-voltage (LV, blue line) bus.
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Figure 3.8: Diagram of the electric power distribution.

The HV battery, the electric machines (EM, ISG) including inverters (IPUs,
intelligent power units), the air-conditioning (AC) compressor, the PTC (positive
temperature coefficient) heater, the DC-to-DC (DCDC) converter and the on-board
charging (OBC) device are all connected to the high-voltage bus. The power in-
verters convert the direct-current (DC) power input of the HV battery into an
alternating-current (AC) three-phase output for electric motors speed control.
The AC compressor is used not only for cabin conditioning, but even for battery
cooling, as previously described in Section 3.1. The electric power distribution
among these components is managed by specific devices, named power distri-
bution units (PDUs). In formula, the battery power output 𝑃𝑏 can be expressed
as:

𝑃𝑏 = 𝑉𝑏 · 𝐼𝑏 = 𝑉𝑏 (𝐼𝐸𝑀1 + 𝐼𝐸𝑀2 + 𝐼𝐼𝑆𝐺 + 𝐼𝐷𝐶𝐷𝐶 + 𝐼𝐴𝐶𝐶 + 𝐼𝑃𝑇𝐶 + 𝐼𝑂𝐵𝐶) (3.14)

where 𝑉𝑏 is the voltage of the battery and, then, of the bus, and 𝐼 denotes the
current flow. Considering the last term, by multiplying 𝑉𝑏 for each current, the
power request for each component is calculated. The battery power request can
be either negative or positive, depending on the current flow. The convention
adopted in this work considers a negative power output as an incoming current
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flow to the battery, resulting in charge increasing. On the other hand, during
traction, the battery will provide the required positive power to the driveline,
resulting in charge decreasing. In the presented work, neither cabin conditioning
nor external charging have been taken into account in the context of control
strategies development. Hence, considering Eq. (3.14), this leads to 𝐼𝑃𝑇𝐶 = 𝐼𝑂𝐵𝐶 =

0.
With regards to the low-voltage bus, the DCDC converts the DC input of

the HV bus to a DC low-voltage power output. Hence, this component manages
the power distribution between the two buses in order to maintain the state of
charge of the LV battery (12V, in this case) around a certain constant value. The
latter supplies all the components requiring auxiliary loads, such as water pumps,
cooling fans, sensors, infotainment, and electronic control units.

3.4 High-voltage battery

The high-voltage battery is a key component in hybrid electric vehicles. To
this aim, a control-oriented model of the battery including electrical and thermal
behaviors has been developed, calibrated and validated over experimental data.
The output parameters of the battery model are its voltage, current, state of charge,
and temperature. Compressor power request is calculated, as well, by a simplified
cooling circuit model.

3.4.1 Electrical model

3.4.1.1 Modeling

The electrical behavior of the cell has been represented by a single-polarization
equivalent circuit model, also known as first-order RC equivalent circuit model.
Although several approaches can be adopted for modeling batteries, in equivalent
circuit modeling, electrical circuits made of equivalent components are used for
the evaluation of battery voltage and power losses. Thus, model complexity and
computational time are reduced [108]. For the same reason, the approach followed
in this research project is based on the identification of a single resistor-capacitor
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3.4 – High-voltage battery

(RC) network to reproduce the electrical behavior of the battery pack with enough
accuracy for control-oriented modeling of the component [109, 110].

As depicted in Fig. 3.9, the single polarization equivalent circuit model com-
prehends an open-circuit voltage (OCV), 𝑉𝑂𝐶 , a resistor, 𝑅0, representing the
ohmic resistance caused by the accumulation and dissipation of charge in the
electrical layer, while 𝑅1 and 𝐶1 are the activation polarization resistance and
capacitance respectively, which characterize the fast transient response of the cell
to a current pulse. All the mentioned parameters usually depend on cell SoC, 𝜉,
and temperature, 𝜗.

+

−

𝑉(𝑡)
+ −

𝐶1

𝑅1

𝑅0

𝐼(𝑡)

𝑉1+
−

𝑉𝑂𝐶

Figure 3.9: Single-polarization equivalent circuit model for cell electrical characterization.

When considering a battery pack consisting of 𝑛𝑝 strings made of 𝑛𝑠 cells, the
battery voltage 𝑉𝑏 and current 𝐼𝑏 can be calculated from the following system of
equations: 

𝑉𝑏(𝑡) =
(
𝑉𝑂𝐶 − 𝑅0 · 𝐼𝑏(𝑡)/𝑛𝑝 −𝑉1

)
𝑛𝑠

𝑃𝑏(𝑡) = 𝑉𝑏(𝑡) · 𝐼𝑏(𝑡)
(3.15)

where:

𝐼𝑏(𝑡) = 𝐼𝑐(𝑡) · 𝑛𝑝 (3.16)

𝑉𝑏(𝑡) = 𝑉𝑐(𝑡) · 𝑛𝑠 (3.17)

𝑃𝑏(𝑡) = 𝑃𝐸𝑀1(𝑡) + 𝑃𝐸𝑀2(𝑡) + 𝑃𝐼𝑆𝐺(𝑡) + 𝑃𝐴𝐶𝐶(𝑡) +
𝑃𝑎𝑢𝑥

𝜂𝐷𝐶𝐷𝐶
(3.18)

and being:
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𝑉𝑐 , 𝐼𝑐 : cell voltage and current, respectively;
𝑉1 : voltage drop related to the RC circuit;
𝑃𝑏 : battery power request, which can be evaluated from Eq. (3.14) consid-

ering 𝑃𝐷𝐶𝐷𝐶 = 𝑃𝑎𝑢𝑥/𝜂𝐷𝐶𝐷𝐶 and assuming constant both the auxiliary
load 𝑃𝑎𝑢𝑥 and the DCDC efficiency 𝜂𝐷𝐶𝐷𝐶 .

It is then possible to calculate the power losses 𝑃𝑏,𝑙𝑜𝑠𝑠 of the battery due to
resistive heating as follows:

𝑃𝑏,𝑙𝑜𝑠𝑠 (𝑡) = 𝑉𝑏,𝑖𝑛𝑡 (𝑡) · 𝐼𝑏 (𝑡) =
𝑛𝑠

𝑛𝑝
𝑅0 · 𝐼2

𝑏 (𝑡) + 𝑛𝑠𝑉1 · 𝐼𝑏 (𝑡) (3.19)

in which 𝑉𝑏,𝑖𝑛𝑡 = (𝑛𝑠𝑉𝑂𝐶 −𝑉𝑏 (𝑡)), from Eq. (3.15), is the internal voltage drop of
the battery due to the presence of the internal resistance that causes the power
dissipation 𝑃𝑏,𝑙𝑜𝑠𝑠 when the current 𝐼𝑏 is flowing in the circuit.

Then, the battery state of charge is estimated with an Ampere-hour (Ah) inte-
gral method (also known as Coulomb counting) [111]. In formula:

𝜉(𝑡) = 𝜉𝑖 −
𝜂𝑐
𝐶𝑛

∫
𝐼𝑏(𝑡)𝑑𝑡 (3.20)

being 𝐶𝑛 the nominal battery capacity [Ah], 𝜂𝑐 the coulombic efficiency, and 𝜉𝑖
the initial value of the state of charge.

3.4.1.2 Calibration and validation

The parametrization of the cell electrical model is the first step to be accom-
plished. In particular, the single-polarization equivalent circuit model of the cell
is identified by three parameters, depending on state of charge and temperature,
i.e. 𝑅0,𝑅1,𝐶1 = 𝑓 (𝜉,𝜗). The RC network is an efficient yet simple approach to char-
acterize the typical transient behavior of cell voltage when currents are applied.
This phenomenon can be accurately observed in pulse tests, which consist in ap-
plying to the cell a constant current (pulse) for a given period of time, at given
temperature and state of charge. That is why such test cycles are usually involved
in the cell electrical parametrization.
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3.4 – High-voltage battery

Applying the Kirchhoff’s nodal rule to the closed RC loop of the equivalent cir-
cuit model depicted in Fig. 3.9, the following first-order linear differential equation
applies:

𝑑

𝑑𝑡
𝑉1(𝑡) +

1
𝜏1
𝑉1(𝑡) =

1
𝐶1

𝐼(𝑡) (3.21)

where 𝜏1 = 𝑅1𝐶1 represents the time constant of the related circuit, whose mean-
ing will be clarified later in this section.

The solution is provided by the following equation:

𝑉1(𝑡) = 𝐼𝑝𝑅1

(
1 − 𝑒−𝑡/𝜏1

)
(3.22)

where the assumption 𝐼(𝑡) = 𝐼𝑝 = const. can be made, since pulse tests are used to
characterize the cell. Moreover, the exponential decay of the network voltage 𝑉1

can be then noticed, where the time constant 𝜏 defines the decay rate.

Thus, the voltage 𝑉𝑐 of the cell subjected to the constant current flow 𝐼𝑝 of the
pulse test can be expressed as:

𝑉𝑐(𝑡) = 𝑉𝑜𝑐 − Δ𝑉𝑐(𝑡)
= 𝑉𝑜𝑐 − (𝑉0 +𝑉1(𝑡))

= 𝑉𝑜𝑐 − 𝐼𝑝

[
𝑅0 + 𝑅1

(
1 − 𝑒−𝑡/(𝑅1𝐶1)

)] (3.23)

where the term in brackets can be referred to as equivalent series resistance, 𝑅𝑒𝑠 ,
depending on the series resistance 𝑅0 and the characteristic of the RC branch, 𝑅1

and 𝐶1.

At this point, since the open-circuit voltage 𝑉𝑜𝑐 = 𝑓 (𝜉,𝜗) is provided by the
cell manufacturer, the calibration of the model can be conducted by finding the
optimal set of (𝑅0,𝑅1,𝐶1) = 𝑓 (𝜉,𝜗) that minimizes the error of the analytical cell
voltage (Eq. (3.23)) against the experimental one provided by the pulse tests. With
this aim, the Matlab fminsearchbnd function [112] has been used, which performs
a bound constrained optimization using the native fminsearch. In particular, the
function to be minimized is represented by the root mean square error, RMSE,
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between the simulated 𝑉𝑐 and the experimental voltage. In formula:

𝑅𝑀𝑆𝐸𝑉 =

√
1

𝑡𝑒𝑥𝑝

∫ 𝑡𝑒𝑥𝑝

0

(
𝑉𝑠𝑖𝑚(𝑡) −𝑉𝑒𝑥𝑝(𝑡)

)2
𝑑𝑡 (3.24)

with 𝑉𝑠𝑖𝑚 = 𝑉𝑐 , and 𝑡𝑒𝑥𝑝 the data acquisition time.
As an example, the parameter𝑅0 mapped as a function of battery SoC and tem-

perature, in charge and discharge conditions, resulting from the model parametriza-
tion procedure, is depicted in Fig. 3.10.
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Figure 3.10: Cell internal resistance 𝑅0 as a function of state of charge and temperature.

The results of the calibration of the electric circuit model of the cell are rep-
resented in Fig. 3.12, where different pulse tests at 𝜗 = 20°C are shown. These
tests have been conducted by the industrial partner in order to asses an electrical
characterization of the given cell. In this case, as shown in Fig. 3.11, a curve fit-
ting of the experimental data of the open-circuit voltage was necessary. Voltage is
referred to the battery level according to Eq. (3.17).

Then, the electrical model has been validated using two different test cycles,
as shown in Fig. 3.13. With regards to the second one (Fig. 3.13b), it consists in
a current cycle defined by the industrial partner in order to test the battery in
very demanding working conditions. As a result, the accuracy of the model can
be considered acceptable for the control-oriented modeling since the maximum
voltage error is below 10V in the SoC operating range of the battery.
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Figure 3.11: Fitting of the OCV map to experimental measures.
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Figure 3.12: Calibration of the battery electrical model. Pulse tests at 20°C.
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(a) Capacity test.

(b) Worst case test.

Figure 3.13: Validation of the battery electrical model.
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3.4.2 Thermal and cooling circuit models

3.4.2.1 Modeling

Although several processes are involved in heat transfer for Li-ion batteries
[113], a simplified approach for battery thermal modeling has been adopted, as
well, being a control-oriented approach one of the main objectives of this work.
In particular, contributions to heat losses by radiation and conduction have been
neglected. Therefore, only the convective heat exchanges occurring at environment
and coolant side have been considered. Therefore, the equation for energy balance
applied to the whole battery pack can be written as:

𝑚 𝑐𝑝
𝑑

𝑑𝑡
𝜗(𝑡) = 𝑃𝑏,𝑙𝑜𝑠𝑠(𝑡) −

( ¤𝑄𝑎𝑖𝑟(𝑡) − ¤𝑄𝑐𝑜𝑜𝑙(𝑡)
)

(3.25)

which solved for the battery temperature 𝜗 gives:

𝜗(𝑡) = 𝜗𝑖 +
1

𝑚 𝑐𝑝

∫ (
𝑃𝑏,𝑙𝑜𝑠𝑠(𝑡) − ¤𝑄𝑎𝑖𝑟(𝑡) − ¤𝑄𝑐𝑜𝑜𝑙(𝑡)

)
𝑑𝑡 (3.26)

where:

𝑚, 𝑐𝑝 : mass and specific heat capacity [J/(kg·K)], respectively, of the battery
pack;

𝜗𝑖 : initial battery temperature, assumed to be equal to the environmental
one;

𝑃𝑏,𝑙𝑜𝑠𝑠 : battery power loss due to Joule heating effect, from Eq. (3.19);
¤𝑄𝑐𝑜𝑜𝑙 : cooling heat rate due to battery-coolant convective heat exchange;
¤𝑄𝑎𝑖𝑟 : thermal power related to the air-battery convective heat exchange.

The latter can be expressed as:

¤𝑄𝑎𝑖𝑟(𝑡) = ℎ𝑎(𝑣(𝑡)) · 𝑆𝑎 · (𝜗(𝑡) − 𝜗𝑎𝑚𝑏) (3.27)

where ℎ𝑎(𝑣(𝑡)) is the convective heat transfer coefficient [W/(K·m2)] of the sur-
rounding air, 𝜗𝑎𝑚𝑏 is the ambient temperature, which is considered constant, and
𝑆𝑎 is the surface where the heat exchange takes place, i.e. the external surface of
the battery pack.
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Moreover, the cooling heat rate ¤𝑄𝑐𝑜𝑜𝑙 due to battery-coolant convective heat
exchange can be formulated as:

¤𝑄𝑐𝑜𝑜𝑙(𝑡) = ℎ𝑐 · 𝑆𝑐 · Δ𝜗𝑚𝑙,𝑐 (3.28)

where ℎ𝑐 [W/(K·m2)] is the convective heat transfer coefficient of the coolant, and
𝑆𝑐 is the surface where the heat exchange takes place, i.e. the internal surface of
the pipelines of the cooling plate.

The term Δ𝜗𝑚𝑙,𝑐 , used to characterize the convective heat exchange, is referred
to as logarithmic mean temperature difference. Let 𝜗1 = 𝜗 − 𝜗𝑐,𝑜𝑢𝑡 , 𝜗2 = 𝜗 − 𝜗𝑐,𝑖𝑛 ,
where 𝜗𝑐,𝑖𝑛 and 𝜗𝑐,𝑜𝑢𝑡 are the coolant temperatures at cooling plate inlet and
outlet, respectively. The logarithmic mean temperature difference is as follows:

Δ𝜗𝑚𝑙,𝑐(𝑡) =
𝜗2 − 𝜗1

ln
(
𝜗2
𝜗1

) =
𝜗𝑐,𝑜𝑢𝑡 − 𝜗𝑐,𝑖𝑛

ln
(
𝜗 − 𝜗𝑐,𝑖𝑛

𝜗 − 𝜗𝑐,𝑜𝑢𝑡

) (3.29)

For the sake of simplicity, since the complexity of the integrated cooling circuit
(Fig. 3.2) requires a high number of parameters for the mathematical description
of the thermodynamics of the two cooling loops, resulting also in very demand-
ing calibration and validation phases, the refrigerant loop has not been modeled.
To this aim, the assumption 𝜗𝑐,𝑜𝑢𝑡 = const. has been made. Although experimen-
tal data confirm the weakness of this approach, the control-oriented objective
of the model justifies this choice, as shown by the validation of the model (Sec-
tion 3.4.2.2).

Thus, in order to evaluate the outlet coolant temperature, the thermal balance
can be applied:

¤𝑄𝑐𝑜𝑜𝑙(𝑡) = ¤𝑚𝑐 · 𝑐𝑐 · Δ𝜗𝑐(𝑡) (3.30)

which gives:

𝜗𝑐,𝑜𝑢𝑡(𝑡) = 𝜗𝑐,𝑖𝑛 +
¤𝑄𝑐𝑜𝑜𝑙(𝑡)

𝜌𝑐
¤𝑉𝑐 · 𝑐𝑐

(3.31)

where 𝑐𝑐 is the coolant heat specific capacity, ¤𝑚𝑐 = 𝜌𝑐
¤𝑉𝑐 is the coolant mass flow

rate, 𝜌𝑐 the density, and ¤𝑉𝑐 is the pump volume flow, which can be considered
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constant with good approximation while operating.
Finally, the electrical power absorption due to the high-voltage compressor can

be calculated as:
𝑃𝐴𝐶𝐶(𝑡) = ¤𝑄𝑐𝑜𝑜𝑙(𝑡)

𝐶𝑂𝑃

𝜂𝑐ℎ
(3.32)

where 𝜂𝑐ℎ is the efficiency of the chiller, and 𝐶𝑂𝑃 is the coefficient of performance
of the refrigerant cycle, defined as the ratio between the cooling power output and
the electrical power input of the system. The latter was assumed to be constant,
and thus not varying as a function of compressor speed.

The electrical power request related to the ePump is assumed to be constant
while operating and equal to 𝑃𝑒𝑃 = 50 W, as reported in Tab. 3.2. In this case, this
contribution is added to the auxiliaries power 𝑃𝑎𝑢𝑥 appearing in Eq. (3.18).

3.4.2.2 Calibration and validation

As discussed in the previous section, since the cooling circuit and battery
thermal models are inherently connected, they have been calibrated and validated
simultaneously. With this aim, the used experimental data have been recorded
during tests run at the Nardò Technical Center, where the vehicle cooling systems
were validated and the performance was measured [106].

The following parameters have been chosen as calibration variables:

• the specific heat capacity 𝑐𝑝 [J/(kg·K)] of the battery pack (see: Eq. (3.25));

• the convection heat transfer coefficient ℎ𝑐 [W/(K·m2)] of the coolant (see:
Eq. (3.28)).

The set of experimental data shown in Fig. 3.15 has been used for model
calibration. For each test and for each value of the calibration set, (𝑐𝑝 ,ℎ𝑐)𝑖 , the
RMSE between experimental and simulated average battery temperature has been
calculated as key performance index of the model.

For an overall comparison of the obtained results, the mean RMSEs for each
(𝑐𝑝 ,ℎ𝑐)𝑖 have been evaluated considering all the test cycles and collected together in
the map depicted in Fig. 3.14. The optimal values are those showing the minimum
overall mean RMSE, while in Fig. 3.16 simulated battery temperatures for those
values are shown.
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In Fig. 3.17 the set of experimental data used for model validation is shown.
In Fig. 3.18 simulated battery temperatures for the optimal calibration values are
finally shown.

As it can be noticed from both Fig. 3.16 and Fig. 3.18, the segmented behavior
of the experimental battery temperature is due to the integer data type used for
numerical representation. As a matter of fact, this approach is usually adopted
for parameters involved in thermodynamics effects, which exhibit slow transients,
then justifying the integer representation. Therefore, a certain confidence interval
of width Δ𝑇 = ±0.5°C has to be considered for the given experimental tempera-
tures.
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Figure 3.14: Overall temperature mean RMSE as a function of the calibration parameters.
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Figure 3.15: Experimental data used for battery thermal model calibration.
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Figure 3.16: Simulated battery temperature with optimal values of the calibration param-
eters. Calibration.
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Figure 3.17: Experimental data used for battery thermal model validation.
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Figure 3.18: Simulated battery temperature with optimal values of the calibration param-
eters. Validation.
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Chapter 4

Simulation environments

Different simulation environments have been developed in this work. in par-
ticular, a Software-in-the-Loop and a Hardware-in-the-Loop simulator have

been set up and validated for control strategies development and testing.

4.1 Simulation and testing methodology

Nowadays, vehicle development processes follow the well-known V-Model
or V-Cycle approach, which is a consolidated methodology in the automotive
industry [114, 115].

As it can be seen from Fig. 4.1a, the V-model represents a special case of a
waterfall model that describes the sequential steps of product development. In
such an approach the defined targets are divided in sub-sequential levels: from
system to components in the design phase (left branch), and backward during
testing and validation (right branch). The cyclic nature of the V-Model consists
in the data feedback from one branch to the other, resulting in a more accurate
control of the whole development process. In particular, one of the main benefits
of this methodology is the shortening of the time-to-market of the product, as
shown in Fig. 4.1b.

From a vehicle control point of view, Software-in-the-Loop (SiL) and Hardware-
in-the-Loop (HiL) simulation environments play an important role because they
can speed up and improve the efficiency of the development, the testing and the
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integration of the powertrain control strategies, while reducing the product global
costs. In general, the advantage of a Road-to-Rig-to-Desktop approach, which relies
on representative simulation platforms, is represented by higher reproducibility
and reliability of the involved processes with respect to conventional methodolo-
gies.

(a) Diagram.

time

effort / costs

SiL testing

System design System test & validation

frontloading

HiL testing test drive saved time

(b) Effort/costs impact.

Figure 4.1: V-model approach.
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4.2 Software-in-the-Loop

The SiL environment is here presented and described, with particular attention
to the high-level software implemented in the vehicle model. An overview of the
used simulation tools is given, as well.

4.2.1 Simulation tools

In order to reproduce all the dynamics of a vehicle, and especially the com-
plexity of a hybrid powertrain, numerous engineering simulation tools have been
developed over the years. Although they can be very different, a common classi-
fication can be furnished on the basis of the model representation. In particular,
either an analytical or a physical approach can be used.

The former requires the user to manually insert differential equations de-
scribing the given phenomena. Like every formula, dependent and independent
variables shall be set. As an example, considering a certain rotating element with
its own inertia, the rotating balance allows to determine the speed of the com-
ponent, which is the output, from the knowledge of the motoring and resistant
torques acting on it, that are inputs to the system. Once variables are evaluated,
they can be used in other analytical sub-models.

On the other hand, physical models rely on libraries, i.e. models describing
single components by using equations systems already implemented. Thus, the
major benefit of such an approach is the possibility to build up high-complexity
models with a relative low effort for the user. In other words, these models are
characterized by a-causality, meaning that neither inputs nor outputs have to
be explicitly defined. In fact, the models interfaces are connected by means of
physical signals, which can be intended as a gathering of all the analytical variables
describing a given component.

In the automotive field, widely used tools for powertrain modeling and vehicle
simulation are represented by The MathWorks® products, namely Matlab® and
Simulink®.

Simulink is a Matlab suite for the design and the simulation of model-based
design engineering systems which relies on graphic or visual programming. It
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is an interactive way of programming that enables the user to manipulate visual
objects, like symbols and blocks, to write a program, i.e. equations. To this aim,
a graphical user interface is implemented. In this environment, with regards
to the tools available in this environment, a particular mention is reserved to
Simscape™. This utility enables the user to create multi-domain physical systems
for modeling electric (SimPowerSystems™ and SimElectronics®) and mechanical
components (SimMechanics™), powertrain dynamics (SimDriveline™), and many
other aspects of the vehicle. Moreover, Stateflow® allows to implement decision
logic using state machines and flow charts, being particularly suitable for the
development of supervisory controllers.

Concerning the present work, the entire vehicle model, including powertrain
components and all the controllers introduced in Chapter 3, has been developed in
Simulink environment. In particular, SimDriveline and SimMechanics have been
chosen to model the vehicle longitudinal dynamics, the transmission, the internal
combustion engine and the electric machines, since the last two components are
considered as simple torque generators. In this way, the physical modeling of these
components allows also to properly capture and describe the involved inertial
dyanmics. The high-level software of the Hybrid Control Unit (HCU), in which
all the energy management strategies are implemented, has been developed in
Simulink, as well.

4.2.2 Vehicle model

As stated in Section 3.2.1, the SiL model follows a forward-backward approach,
which means there is a driver model capable of reproducing realistic acceleration
and brake pedals signals. According to that, the model follows the conventional
control chain present in a real vehicle. The driver request (pedals signals) is con-
verted in wheels torque request (drive-by-wire), then vehicle and components con-
trol units manage the actuators in order to provide the necessary power demand
to satisfy the driver request.

This modeling approach allows a more realistic simulation of the powertrain
behavior, calculating not only the energy consumption, but also all the physical
parameters representing the states evolution of the vehicle over time, such as
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the actual vehicle speed and the machines behavior in terms of torque, speed,
temperature.

The SiL vehicle simulator is divided in different parts:

• Components
gathering all together the powertrain components, intended as actuators,
such as engine, motors, battery, transmission;

• Controllers
in which all the control unit installed on-board a real vehicle are modeled,
following the operation they would have in real-time application;

• Communication
reproducing the vehicle communication network.

All the data needed to implement the such detailed SiL derives from the
existing vehicle prototype described in Section 3.1.

4.2.3 Software

The application layer of the in-vehicle Hybrid Control Unit (HCU) software
has been implemented in the vehicle model. A detailed representation of the on-
board Battery Management System (BMS) has been developed and implemented,
as well.

4.2.3.1 Hybrid Control Unit

The Hybrid Control Unit manages all other ECUs. The HCU coordinates the
requests to the powertrain’s subsystems, in order to guarantee the vehicle’s per-
formance and all the safety requirements as:

• electric traction (without the need to add gearbox or clutch controls);

• front axle torque vectoring (without any electronic differential system);

• 4WD control;
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• torque fill during shifting (shift assist system);

• boosting function.

In particular, regarding the 4WD control, the HCU calculates the driver torque
request which is mapped as a function of the vehicle speed and the throttle pedal.
When the latter is less than 5% and the vehicle is moving, the supervisor controller
interprets this condition as a negative torque request, which is actuated by electric
motors operating as generators (and thus regenerative braking is performed). If
the whole negative torque cannot be supplied by the motors, then even mechanical
braking takes place (and thus blended braking is performed).

4.2.3.2 Battery Management System

A highly detailed model of the application software of the on-board Battery
Management System (BMS) has been implemented in the Real-Time PC in the
present configuration.

It comprehends most of the functionalities of the real software, such as

• contactors control (for battery pre-charging);

• isolation monitoring;

• power limitation;

• system diagnostics.

Particular attention has been paid to the latter because error monitoring plays a
vital role in preserving the safety of the vehicle’s components and the passengers.
Moreover, the implementation of the real HCU in the HiL facility has enabled
the testing of this functionality before implementing on-board any control func-
tion. Therefore, the BMS is able to recognize if threshold values for monitoring
are exceeded for several important parameters, such as battery voltage, current,
power, and temperature. High-voltage interlock lines and battery isolation status
are monitored, as well.

In case of errors and failure detection (overheating, overvoltage, overcurrent,
etc.), the BMS sends this information to the HCU which takes remedial action
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depending on the type and severity of the error. If such an action is not applied
within a certain time, the BMS itself takes over control and opens the high-voltage
relays. With this aim, the battery pre-charge circuit comprehending the contactors
has been implemented in the battery model.

4.2.4 Validation

4.2.4.1 Vehicle model

The whole SiL model has been validated with experimental data acquired:

• during an All-Electric Range test [116], that consists of consecutive NEDC
(New European Driving Cycle), repeated as long as the engine is not switched
on by the default control strategy, namely the rule-based EMS. This test has
been conducted on behalf of the industrial partner as a final step of the vali-
dation of the prototype vehicle [106]. As it can be deduced form the typology
of the test, it is then focused on the validation of the electric propulsion only;

• on a rural road drive that consists of driving the prototype vehicle in con-
ventional mode keeping the battery switched off for the validation of the
conventional powertrain. This test has been conducted in the context of the
presented research project and the acquired data have been recorder by
means of commercial software which allowed to read messages of the CAN
buses available on board.

The results of the validation are shown in Fig. 4.2 and Fig. 4.3, respectively.
The ability to correctly match experimental data is demonstrated by the graphs,
and it proves to be accurate enough for a control-oriented modeling approach.

4.2.4.2 Fuel consumption

The fuel consumption of the SiL-based vehicle model has been compared
with experimental data acquired during a NEDC (New European Driving Cycle)
performed in the context of the vehicle testing under the R101 EU Regulation, as
well.

69



4 – Simulation environments

0 500 1000 1500 2000 2500 3000 3500 4000 4500

time [s]

0

50

100

150

S
pe

ed
 [

km
/h

]

Vehicle Speed

0 500 1000 1500 2000 2500 3000 3500 4000 4500

time [s]

0

50

100

P
er

ce
nt

ag
e 

[%
]

State of Charge

Test Bench
Simulation

0 500 1000 1500 2000 2500 3000 3500 4000 4500

time [s]

-100

0

100

200

cu
rr

en
t [

A
]

Battery Current

0 500 1000 1500 2000 2500 3000 3500 4000 4500

time [s]

300

400

V
ol

t [
V

]

Battery Voltage

Figure 4.2: Vehicle model validation [100]. All-electric driving mode (AER test).
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Figure 4.3: Vehicle model validation [100]. Conventional driving mode..
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As it can be seen in Fig. 4.4, except for the slight difference on the gear-shifting
strategy, it can be assumed that the SiL simulator is able to represent the real
vehicle behavior with an acceptable accuracy since the overall difference in the
fuel consumption is less than 3% between the simulated and measured data.

Simulated
Experimental data

Figure 4.4: Fuel consumption validation [102].

4.3 Connected Hardware-in-the-Loop

4.3.1 Architecture

As further explained in [100], the architecture of the connected HiL (cHiL)
developed during the research project is briefly described in the following para-
graphs and its schematic representation is provided in Fig. 4.5.

In particular, the detailed vehicle model described in Section 4.2 is imple-
mented on a Real-Time PC, which is connected to the rapid-prototyping HCU.
The software of the supervisor controller has been deployed into a dedicated
rapid prototyping control unit (dSPACE MicroAutoBox II [117]). Even in this case,
the software is fully open to modifications and functions implementation. The
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Figure 4.5: Connected HiL system representation [100].

software and the hardware are the exact replica of those mounted on the pro-
totype, so the developed predictive functions can be seamlessly implemented
on-board once validated at the HiL. Since it represents the hardware within the
testing loop and so where the functions will be implemented, it is marked with
the red block in Fig. 4.5.

Then, the HCU is connected to another rapid prototyping control unit that
works as a Central Gateway (CG). Its main objective is preparing and forwarding
all the eHorizon-related data to the HCU.

The V2X communication is handled by a Telecommunication Control Unit
(TeCU) using the Multi Radio Access Technology (MultiRAT). The latter enables
the data exchange with external real servers via Long Term Evolution (LTE) and
with RoadSide Unit (RSU) using a commercial OBU (implementing ITS-G5 proto-
col stack). All the hardware within the light-grey box in Fig. 4.5, namely the HCU,
the CG, the TeCU, and the OBU, will be installed in the vehicle.

Thus, it is possible to feed the HCU control functions with realistic data sent
through a real communication protocol laying the ground for predictive strategies
test and validation, with a focus on eHorizon predictive control strategies. In fact,
they require an accurate representation of the surrounding environment for short-
and long-term eHorizon reconstruction.

In the following sections, the main components of the connected-HiL system
are briefly described.
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4.3.2 Central Gateway

The Central Gateway (CG) collects, elaborates, and exchanges the data be-
tween each control unit, ensuring proper and effective communication. The se-
lected hardware is Miracle2 from AlmaAutomotive, which is a compact and fully
programmable control unit suitable for rapid control prototyping and smart data
acquisition [118].

Regarding the eHorizon functions validation, the CG has to provide the HCU
with the prediction of the navigation data, listed in Tab. 4.1. To this aim, firstly
the CG has to simulate the onboard navigator by forwarding the vehicle’s actual
position and the desired destination to the TeCU. The latter communicates with
the map provider and sends back the navigation data to the CG as an XML file
(the communication is described in Section 4.3.3).

Table 4.1: Navigation data.

No Parameter Unit Size Type

1 Route latitudes deg n+1 single

2 Route longitudes deg n+1 single

3 Route altitudes m n+1 uint16

4 Legal speed limits m/s n uint8

5 Legal speed limits segments m n uint16

6 ZEZ entrance/exit positions m uint16

7 Stop events classification - p uint8

8 Traffic code classification - m uint8

9 Stop events positions m p uint16

10 Traffic codes segments m m uint16

Then, the navigation data has to be enriched and forwarded to the HCU. To
do so, the CG receives from the OBUs, through the TeCU:

• Cooperative Awareness Messages (CAM);

• Signal Phase and Timing (SPaT) messages;

• Decentralized Environmental Notification Messages (DENM);
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that are standardized messages for the cooperative vehicular communication sys-
tems, as described in [119]. In this work, the CAM, SPaT, and DENM messages
will include short horizon data such as the next traffic lights phases and timing
or the presence of a moving vehicle approaching the same intersection of the ego
vehicle.

Then, the CG performs the enrichment of the speed profile, that is mainly
composed of two parts. In the first part, the static speed limits coming from the
map provider is integrated with the stop events. In the second part, the updated
speed profile is modified with the introduction of acceleration and deceleration
phases. In parallel, accelerations that are not feasible for the ego vehicle are filtered.
Finally, the CG sends such information to the HCU via CAN at the beginning of
each trip and every time there is a request for a new or updated speed profile,
using the existing communication layout of the prototype vehicle.

4.3.3 Telecommunication Control Unit

In the considered architecture, the role of handling the diverse Radio Access
Technologies is taken over by a single board computer. The latter is capable of ex-
changing data using the different protocols enabling the typical V2X connections.

The update frequency depends on the type of application. In the considered
case, the shorter the eHorizon the smaller the update frequency in terms of time
intervals. In some cases, it is not possible to determine this parameter because
it can be very high or very low depending on unpredictable situations like in
the case the driver takes the wrong direction and the navigation data must be
updated.

The estimation of the payload size for the long horizon has been obtained
considering the size of files typically used for navigation data, such as KML,
XML, JSON files. The short horizon data have a payload size in the same range
of CAM, DENM, SPaT messages which can be about 200-400 bytes. The required
throughput has been estimated exploiting update frequency and payload size.
Thanks to such estimation, each message, and therefore each link, is associated
with a V2X connection. Each server is interrogated to retrieve the information
needed for enabling the eHorizon functionalities. In particular, communication is

75



4 – Simulation environments

established with:

• Map Service Provider
it provides the route to follow, the speed limits, and the slope profile along
that route. Other information given by the map provider is the ZEZ topo-
logical limits;

• Private Server
it is specific for in-cloud functions implementation.

Then, the relative protocol stack has been defined for each message type. For
this analysis, only technologies available on the market have been considered (e.g.,
5G-NR is not considered yet). The LTE is a long-range radio access technology
with relatively low latency, useful, for in-vehicle implementation, to communicate
with diverse internet services. LTE-V2X refers to the device-to-device version of
the LTE (Mode 4) used for vehicular communication. It uses the PC5 air interface,
while LTE indicates the use of the Uu air interface (Mode 3).

The system known as ETSI ITS-G5 was developed by the ITS technical com-
mittee referring to the previous US project, the Wireless Access in Vehicular
Environments (WAVE). The WAVE project defined the changes to the IEEE 802.11
standard (the one behind the Wi-Fi products) to support the requirements of
vehicle transport systems, producing the so-called IEEE 802.11p version.

Therefore, a single-board computer has been selected to implement the TeCU.
This control unit constitutes a multi-RAT technology: it works as a router for the
In-Vehicle Network (IVN) and it also provides some grade of automation at the
application layer. The hardware used is APU3C4 from PC Engines™ [120], which
mounts a Linux-based operating system and its functionalities have been imple-
mented with Python. At the IVN side, it is connected via ethernet to the CG, it
uses TCP/IP and UDP/IP at the transport layer, and SFTP for file exchange. On
the external network side, it exploits an LTE UE for internet access, it uses Mes-
sage Queue Telemetry Transport (MQTT), and a custom TCP/IP based protocols
for data exchange with internet services. For short-range communications, it is
connected via serial port to an OBU equipped with ITS-G5 stack, so that all the
ITS information is passed to the IVN through the TeCU.
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4.3.4 Long-term eHorizon data flow testing

In order to test the end-to-end communication between the aforementioned
components, the communication to the HCU of the enriched navigation data is
taken into account since these data are necessary for the validation of predictive
control strategies.

The eHorizon control functions require the prediction of the navigation data
to be as accurate as possible. So, as shown in Fig. 4.6, the CG performs the en-
richment of the static navigation data (legal speed limits, slope, stop events and
ZEZ topological information). Then, the CG receives short-range eHorizon data,
as well. Finally, the CG forwards the prediction to the HCU where the eHorizon
control strategies will receive it as if the vehicle were on the real road.

Figure 4.6: Short and long eHorizon data flowchart [100].
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Following the light green boxes in Fig. 4.6, the driver sets the desired desti-
nation (point B in Fig. 4.7) into the CG that has an integrated Human-Machine
Interface (HMI). Then, the CG combines it with the actual vehicle position, shown
as point A in Fig. 4.7, and it sends them via the internal vehicle network to the
TeCU along with the request of the navigation data prediction. The TeCU elab-
orates the request and publishes it on the remote server (Map Service Provider)
using the MQTT protocol. The MSP checks if the received coordinates represent
a plausible vehicle’s position, e.g., if the vehicle position is within a building or
outside the road. Again via MQTT, the MSP sends the prediction of the navigation
data back to the TeCU (the orange line in Fig. 4.8, named ”raw data”).

Figure 4.7: Route representation with stop events (red dots) [100].

Finally, the prediction is forwarded to the CG that performs the enrichment,
using the information about stop events, decelerations, and accelerations. In par-
ticular, the CG:

1. searches for and erases unplausible discontinuities in the speed limits, (the
orange spikes depicted in the bottom right chart in Fig. 4.8) from the predic-
tion. These discontinuities are due to driving through roads with different
speed limits, but where it would be either impossible or illogical to accelerate
the vehicle to reach the limit and then immediately decelerate;

2. enriches the speed profile with the information about the static stop events
(red points in Fig. 4.7, Fig. 4.8). The stop events include traffic lights, rights of
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Figure 4.8: Speed profile received and enriched [100].

way, and roundabouts. For the sake of clarity, the stop events here presented
have been added manually with the aim of explaining the workflow of the
system ;

3. modifies the speed profile with realistic constant values of accelerations and
decelerations, as shown in the bottom left chart of Fig. 4.8, in order to handle
the stop events and the discontinuities between different legal speed limits.
The developed speed profile simulator, described in Section 5.2, will take
as input the enriched speed profile in order to predict an energy-equivalent
speed trace over the given route.

Then, the navigation data received in the HCU from the map service provider
through V2N connectivity are used to reconstruct the electronic horizon of the
vehicle in order to apply the predictive strategies for the estimation of future
working conditions of the powertrain, as discussed in the next chapter. Moreover,
in Chapter 6 the implementation of one of the developed control strategies is
discussed, and the introduced workflow for long-term eHorizon function testing
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will be shown, as well, with real-time up-to-date navigation data.
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Chapter 5

Predictive control strategies for
hybrid electric vehicles

In this chapter the developed control strategies during the research project are
presented. In particular, a Discrete Dynamic Programming algorithm and an

Adpative-ECMS are discussed. The former takes into account both energy and
battery thermal management for the optimization, while the latter relies on the
prediction of the powertrain working conditions to handle zero-emission zones
in pure-electric driving mode.

5.1 Standard on-board strategies

The baseline, default strategies for energy and battery thermal management
are presented in this section. They have been calibrated, tested and implemented in
the HCU by the industrial partner, which then represents the software developer
of the entire supervisory controller. Then, the modified energy management RBS
for zero-emission zones handling is introduced, as well.

5.1.1 Rule-Based Strategy for energy management

As previously explained, this heuristic energy management strategy is aimed
at evaluating the torque split factor between the conventional and the electric
powertrain. It is defined by rules relying on fixed thresholds for different vehicular
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parameters, such as wheel torque request, battery state of charge and vehicle
speed.

In particular, if a negative torque is requested by the driver, a regenerative
braking occurs and the battery is recharged by the electric motors (i.e., P4), acting
as generators.

On the other hand, during traction, that is when the driver torque request is
positive, the energy management of the powertrain is performed by a rule-based
strategy (RBS) for energy management, which evaluates the torque split between
the ICE and the EMs. This strategy is based on rules depending on fixed thresholds
(which have been previously calibrated). In addition to the driver torque request,
parameters such as the vehicle speed and the state of charge of the battery are
involved in the torque split factor evaluation. Thus, the controller firstly discharges
the battery and then keeps the state of charge around the chosen threshold. Such
an approach is commonly referred to as the charge-depleting/charge-sustaining
approach and is typically used for PHEVs, like the one used for this activity.

Since this kind of control logic is reliable and easily real-time implementable
due to the low computational burden required [33, 46, 56], it is currently the
on-board standard strategy. It has been calibrated in previous activities by the
industrial partner. Although there are no data available regarding these processes,
the reliability and the robustness of the rule-based energy management strategy
are proven by the numerous HiL and on-road tests performed on the HCU as well
as on the whole vehicle. Further details can be found in [106].

5.1.2 Modified Rule-Based Strategy for Zero-Emission Zones

As further discussed in [98], the standard rule-based strategy has been mod-
ified in the context of the research project to guarantee the target value of SoC
at ZEZ entrance, allowing the all-electric driving in the urban area even with the
conventional control policy. To this end, the thresholds of the rule regarding the
SoC have been modified according to the Eq. (5.1):
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𝜉min =


𝜉min ,𝑒 𝑙 , no ZEZ

𝜉𝑡 , ZEZ

𝜉max =


𝜉max ,𝑒 𝑙 , no ZEZ

𝜉𝑡 + Δ𝜉𝑒𝑙 , ZEZ

(5.1)

where 𝜉min ,𝑒 𝑙 , 𝜉max ,𝑒 𝑙 are the minimum and maximum values of SoC thresholds for
charge-sustaining (CS) mode and whose difference isΔ𝜉𝑒𝑙 = 𝜉𝑚𝑎𝑥,𝑒𝑙−𝜉𝑚𝑖𝑛,𝑒𝑙 = 5%,
and 𝜉𝑡 is the target SoC at ZEZ entrance (whose calculation is one of the topics of
this paper, as explained in the following paragraphs).

The working principle is the same for both the operating modes, as shown in
Fig. 5.1, that is achieving charge sustaining in the SoC range defined by the values
of Eq. (5.1). Thus, if 𝜉(𝑡) < 𝜉min, then electric driving is no more allowed and the
battery is recharged by means of the ISG absorbing an additional amount of torque
provided by the ICE (load-point shifting strategy). During recharging, if 𝜉(𝑡) ≥
𝜉max, then the battery is considered charged enough for eDrive mode (which will
be applied only if all the other conditions imposed by the RBS are analogously
satisfied). Therefore, except for the SoC thresholds, the main difference is that the
conventional RBS will always perform a Charge Depleting - Charge Sustaining
(CD-CS) mode, while the modified one will perform a Charge Increasing - Charge
Sustaining (CI/CS) mode if 𝜉(0) < 𝜉𝑡 , being 𝜉(0) the SoC value at the beginning
of the driving mission.

5.1.3 Rule-Based Strategy for battery thermal management

The heuristic thermal management control strategy, developed by the indus-
trial partner, as well, is based on intuitive rules and correlations involving various
parameters, mainly temperatures. One guiding principle of such a strategy is
to preserve the temperature of thermal-stressed components within a restricted
range of fixed values. Therefore, upper and lower temperature thresholds are
set after a calibration phase, which can turn out to be an expensive and time-
consuming task because the choice of the optimal values is influenced by the
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Figure 5.1: Working modes of the Rule-Based Strategy [98].

architecture of the examined cooling system.
Moreover, in order to avoid performance de-rating and especially premature

aging of the component, the physical constraint represented by the upper limit
of the battery operating temperature range has been considered, as well. In this
case, the thermal characterization of the battery under study led to set the up-
per thermal limit 𝜗𝑏,𝑙𝑖𝑚 = 40°C, as suggested by the battery manufacturer. As a
consequence, because of the standard strategy relies on fixed threshold values,
the latter are usually lower than the one related to the aforementioned thermal
constraint because highly demanding future working conditions have to be taken
into account in advance by setting a high safety margin.

In Fig. 5.2 the working principle of the rule-based control strategy applied to
the electrical pump of the battery cooling circuit is shown.

As it can be seen, battery cooling is either requested or not when the bat-
tery temperature is either higher or lower than the threshold values, which are
respectively 𝑇𝑐𝑜𝑜𝑙,𝑂𝑁 = 30°C, 𝑇𝑐𝑜𝑜𝑙,𝑂𝐹𝐹 = 28°C.

Analogous considerations previously made for the calibration and the valida-
tion of the rule-based energy management strategy can be applied even in this
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Figure 5.2: Working mode of the Rule-Based Strategy for battery thermal management.

case, as well.

5.2 Architecture of the predictive functions

The developed Predictive Functions (PF) have been implemented within the
HCU according to the high-level architecture depicted in Fig. 5.3. The used nomen-
clatures are: speed profile predictor (SPP), driver model (DRV), space-to-time
(S2T) conversion, backward vehicle model (BVM), wheels (W), motors (M), battery
(B), limits (L), energy management strategies (EMS), reference SoC (REF) evalu-
ation, equivalence factor (EF) evaluation, charge-sustaining (CS) SoC thresholds
evaluation. The activation of the A-ECMS can be triggered by the 𝑏𝐸𝐶𝑀𝑆 signal.

In order to predict the behavior of the battery SoC over a given urban electronic
horizon, the so-called eHorizon, which is a reconstruction of the future conditions
of the vehicle on the road ahead, the ZEZ algorithm relies on a backward-facing
vehicle model (BVM), which consequently considers only the electric powertrain
(P4 and battery). Both these functions, the BVM and the ZEZ, together with the
SPP, represent the part of the HCU software in charge of the predictive tasks. It
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control

from CG
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Figure 5.3: Working flow of the predictive functions for target SoC evaluation as imple-
mented in the supervisory controller software.

then takes into account the following parameters:

• input parameter(s)
navigation data from for the evaluation of vectors representing the vehicle
speed profile, v, predicted as in Section 5.3, the road slope profile, 𝛂, and
topological information regarding the zero-emission zone (distances from
city entrance and exit);

• output parameter(s)
target state of charge at ZEZ entrance, 𝜉𝑡 , evaluated by the ZEZ function
(Section 5.5);
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5.3 – Speed profile prediction

• state variable(s)
state of charge, 𝜉, and temperature, 𝜗, of the battery, predicted over the given
urban horizon by the BVM (Section 5.4).

5.3 Speed profile prediction

A speed profile prediction (SPP) algorithm has been developed in Simulink
environment by means of Stateflow with the main objective of generating a realistic
speed trace on the basis of navigation data. It has been calibrated and validated
over experimental data acquired on board.

A detailed explanation of the work conducted for the development of the
algorithm is given in [121].

5.3.1 Architecture

After reconstructing the electronic horizon by gathering all the messages sent
to the HCU via CAN regarding the navigation data, the eHorizon is enriched with
a prediction of a space-based speed profile on the basis of routing information.

In particular, the algorithm relies on the following input data:

• legal speed limits
they are assumed to be boundary thresholds for the maximum allowable
speed (MAS) of the vehicle. A legal speed limit can be considered as an
extensive property of a route because its validity extends over space for a
certain road segment, whose length is provided within navigation data by
the maps service provider;

• traffic density
it affects the MAS, as well, and also how it is followed by the driver. The
traffic density along a certain road segment can be quantified using either
colors or labels, or codes. The former is the case of MPSs, which treat a no
traffic road segment as "green” or ”empty”, while the latter is the convention
adopted in this work, as shown in Tab. 5.1;
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• stop events
they inherently represent a local property of a route, meaning that they are
located in a specific position. Speed profiles are characterized by subsequent
deceleration-acceleration phases in correspondence of stop events, thus af-
fecting the vehicle power distribution and the energy management. Since
not all the stop events require always such maneuvers, like traffic lights or
roundabouts (intended as right-of-way), a stop-over probability for each of
these dynamic stops has been defined and correlated to the traffic density
on the given road segment at the end of which the stop event is located
(Tab. 5.1);

• driver behavior
energy consumption related to a given route can be largely influenced by
driver’s behavior because it can affect the intensity of acceleration and de-
celeration phases and the maximum allowable speed.

Table 5.1: Traffic density convention and stop-over probability.

Traffic color Traffic label Traffic code Green light
probability [%]

● Free 1 80

● Slow 2 60

● Heavy/queueing 3 35

● Stationary 4 20

5.3.2 Algorithm

The main objective of the algorithm is to generate a space-based speed vector,
with the assumption of traveling time minimization. This means that the driver
will always try to reach the 𝑀𝐴𝑆, if possible.

1. space discretization
A space vector is created by intersection of all the segment and position
vectors of the input navigation data. In this way, the vector is represented
by 𝑁 segments whose endpoints are called nodes. Nodes are points where
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boundary conditions are imposed, since they represent coordinates where
changes in traffic code and/or speed limit take place, or where the stop
events are located. Then, another subdivision is made for each segment, and
the resulting 𝑁 points are used to evaluate the speed of the ego-vehicle;

2. legal speed limit and traffic code assignment
The starting values of speed limit and traffic code are allocated within the
new space vector, i.e. for every sub-segment 𝑖 = 1,...,𝑁 of each segment
𝑗 = 1,...,𝑁𝑠 ;

3. next-point MAS evaluation
prior to speed evaluation, the MAS needs to be calculated. If a node coincides
with a stop event location, then the MAS at that node, 𝑀𝐴𝑆𝑖 , is imposed to be
null (in case of a full stop) or equal to a constant value (bump, right of way).
Otherwise, for the remaining nodes, the MAS is evaluated as a function of
the traffic density. The latter affects the MAS in two different ways. The first
effect is the reduction of the maximum speed which results lower than the
legal speed limit due to the presence of other cars, limiting the ego-vehicle
speed. The second effect is the oscillation around that constant speed due
to variable traffic flow. As proposed by [34], with regards to the next point
𝑖 + 1, the MAS can be calculated as:

𝑀𝐴𝑆 = 𝑀𝐴𝑆𝑟 + 𝑀𝐴𝑆𝑛 (5.2)

where the reference 𝑀𝐴𝑆, accounting for the reduction effect due to traffic
density, and the noise-related 𝑀𝐴𝑆, accounting for the oscillatory effect due
to traffic density around 𝑀𝐴𝑆𝑟 , are, respectively:

𝑀𝐴𝑆𝑟 = 𝑉𝑙𝑖𝑚,𝑖+1 · 𝐶𝑊𝑖+1 (5.3)

𝑀𝐴𝑆𝑛 =

𝐻∑
ℎ=1

𝐴ℎ · cos (2𝜋 𝑓ℎ𝑥) (5.4)

being:
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𝐶𝑊𝑖+1 : code weight, depending on the traffic code;
𝑉𝑙𝑖𝑚,𝑖+1 : legal speed limit;
𝐴ℎ , 𝑓ℎ : amplitude and frequency of the oscillation;

𝐻 = 4 is the number of the considered harmonics to properly de-
scribe the oscillatory phenomenon.

The parameters 𝐶𝑊𝑖+1 and 𝐴ℎ , 𝑓ℎ will be explained in Section 5.3.3;

4. next-point speed evaluation
At this point, the next-point speed 𝑉𝑖+1 can be evaluated according to the
following conditions:

• 𝑉𝑖 = 𝑀𝐴𝑆

The driver decides whether to keep the speed constant or to start brak-
ing in order to match a lower speed imposed by the closest stop event
or speed limit change;

• 𝑉𝑖 < 𝑀𝐴𝑆

The driver considers to accelerate to reach 𝑀𝐴𝑆. With this aim, two
parameters are evaluated regarding the next point 𝑖 + 1: the speed 𝑉

due to vehicle acceleration and the the maximum speed 𝑄 that still
allows the driver to brake in time to match the speed imposed by the
next stop event or speed limit change. For this reason, an exponential
acceleration and a linear deceleration law are adopted:

𝑎𝑎(𝑥) = 𝑘𝑎 𝑎𝑎,max · (1 − 𝑒−𝜏𝑥) (5.5)

𝑎𝑑(𝑥) = −𝑘𝑑 𝑎𝑑,max · 𝑥 (5.6)

with:

𝑎𝑎,max, 𝑎𝑑,max : maximum acceleration and deceleration, respec-
tively, depending on vehicle performance;

𝑘𝑎 , 𝑘𝑑 : reductive factors of the maximum acceleration and
deceleration, respectively, depending on driver be-
havior;

𝜏 : time constant defining the acceleration transient.
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Thus, as shown in Fig. 5.4, the next-point speed𝑉𝑖+1 is calculated as the
result of the following conditions:

(a) (𝑉 ≤ 𝑄) & (𝑉 ≤ 𝑀𝐴𝑆) ⇒ 𝑉𝑖+1 = 𝑉

(b) (𝑉 ≤ 𝑄) & (𝑉 ≥ 𝑀𝐴𝑆) ⇒ 𝑉𝑖+1 = 𝑀𝐴𝑆

(c) (𝑉 ≥ 𝑄) & (𝑉 ≤ 𝑀𝐴𝑆) ⇒ 𝑉𝑖+1 = 𝑄

5. for-loop repetition for each point of the 𝑖-th sub-segment
Repeat steps (3) to (4), for 𝑖 = 1,...,𝑁

6. speed and space assignment for vector generation
At the end of each nested loop involving sub-segments, the calculated vehicle
speed and space are assigned to the related vectors

7. for-loop repetition for each point of the 𝑗-th segment
Repeat steps (3) to (6), for 𝑗 = 1,...,𝑁𝑠

8. space-to-time conversion
In order to feed the backward vehicle model with proper input signals, the
speed profile is converted from space to time domain by following a linear
interpolation of the values. in other words, in addition to a speed and a
space vector, a time vector is generated, as well. In particular, a stop time is
assigned every time the vehicle speed is null.

5.3.3 Calibration methodology and procedure

In this section, the parameters listed in Tab. 5.2 are calibrated in different
scenarios. As it can be noticed, they are mainly influenced by the driver behavior
and the traffic density, which strongly affect the speed trace and the related vehicle
energy consumption.

5.3.3.1 Key performance indicators

In order to evaluate the overall goodness of predictions as well as the way they
are affected by single parameters, several key performance indicators (KPI) have
been defined.
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(a) 𝑉𝑖+1 = 𝑉 .

(b) 𝑉𝑖+1 = 𝑀𝐴𝑆.

(c) 𝑉𝑖+1 = 𝑄.

Figure 5.4: Next-point speed evaluation [121].
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Table 5.2: Calibration parameters of the speed profile predictor.

Parameters Related to Affected by

𝑘𝑎 , 𝜏 acceleration law, 𝑎𝑎(𝑥) driver behavior
𝑘𝑑 deceleration law, 𝑎𝑑(𝑥) driver behavior
𝐶𝑊 reference MAS, 𝑀𝐴𝑆𝑟 traffic density
𝐴ℎ , 𝑓ℎ oscillating MAS, 𝑀𝐴𝑆𝑛(𝑥) traffic density

To this aim, two classes of indicators have been introduced: speed-based and
energy-based KPIs. The latter are important because the main objective of the
predictive algorithm is to generate speed traces as close as possible to real ones
from an energy consumption point of view. This is crucial for achieving high
accuracy in battery state of charge prediction, as will be discussed in Section 5.4.
Nevertheless, since the output of the predictive algorithm is a speed profile, an
evaluation of the error in terms of speed is necessary.

Regarding speed-based KPIs, reliable parameters for speed traces comparison
are provided by [122, 123] and they can be represented by the mean absolute error
(MAE) and the BIAS , both expressed in [km/h] and defined as:

𝑀𝐴𝐸 =
1
𝑛

𝑛∑
𝑖=1

��𝑆𝑝,𝑖 − 𝑆𝑟,𝑖
�� (5.7)

𝐵𝐼𝐴𝑆 =
1
𝑛

𝑛∑
𝑖=1

(
𝑆𝑝,𝑖 − 𝑆𝑟,𝑖

)
(5.8)

where 𝑆𝑝,𝑖 and 𝑆𝑟,𝑖 are respectively the predicted and the measured speed at point
𝑖 and 𝑛 is the total amount of points where the differences are calculated. The
MAE provides a measure of the average magnitude of the errors, while the BIAS,
considering the sign of the difference, is useful to identify eventual issues related
to a systematic under/overestimation of the predicted speed.

Energy-based KPIs suggested by SAE [124] have been assumed as reference. In
this document, these metrics are defined to evaluate the goodness of tests where a
reference cycle must be followed by a human operator acting manually on pedals.
First of all, three force components are calculated for both the predicted and the
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measured cycle:

• Road load
analogously to Eq. (3.3), it represents the force required to win rolling resis-
tance and drag force:

𝐹𝑅𝐿 = 𝑓0 + 𝑓1 · 𝑣 + 𝑓2 · 𝑣2 (5.9)

• Positive inertial force
it is associated only to positive values of acceleration (𝑎+) and represents the
force required by the vehicle of mass 𝑚 to be accelerated:

𝐹𝐼+ = 𝑚𝑣 · 𝑎+ (5.10)

• Negative inertial force
it is associated only to negative values of acceleration (𝑎−) and represents
the force required to decelerate the vehicle:

𝐹𝐼− = 𝑚𝑣 · 𝑎− (5.11)

Once the three forces have been defined, the relative energies can be retrieved by
integrating the forces along the path length 𝐿, obtaining:

𝐸𝑅𝐿 =

∫ 𝐿

0
𝐹𝑅𝐿𝑑𝑙 (5.12)

𝐸𝐼+ =

∫ 𝐿

0
𝐹𝐼+𝑑𝑙 (5.13)

𝐸𝐼− =

∫ 𝐿

0
𝐹𝐼−𝑑𝑙 (5.14)

Now, three energy KPI can be introduced in form of energy rate, where subscripts
𝑝 and 𝑟 are respectively referred to the predicted and real (measured) speed
profile:

Δ𝐸𝑅𝐿 =
𝐸𝑅𝐿𝑝 − 𝐸𝑅𝐿𝑟

𝐸𝑅𝐿𝑟

· 100 (5.15)
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Δ𝐸𝐼+ =
𝐸𝐼+𝑝 − 𝐸𝐼+𝑟

𝐸𝐼+𝑟

· 100 (5.16)

Δ𝐸𝐼− =
𝐸𝐼−𝑝 − 𝐸𝐼−𝑟

𝐸𝐼−𝑟
· 100 (5.17)

While differences in the negative inertial energy could be neglected in case of a
conventional vehicle, they have a huge impact in case of HEVs since they represent
the amount of energy that can be potentially restored while braking.

5.3.3.2 Driver-related parameters

The parameters depending on the driver behavior are here calibrated.
Since they affect the acceleration and deceleration phases, described by Eq. (5.5)

and Eq. (5.6), respectively, the conceived scenario is represented by a ramp-up
ramp-down cycle with a nominal speed of 50 km/h and performed on a straight
road. The speed set-point has been chosen considering that the predicted speed
profile will be used for battery SoC prediction over a urban area.

The optimal values of 𝜏, 𝑘𝑎 , 𝑘𝑑, led to the minimum value 𝑀𝐴𝐸 = 2.4 km/h.
In Fig. 5.5 the comparison between the measured and the predicted speed trace
for the optimal values of the calibration parameters is shown.

Figure 5.5: Driver-related parameters calibration [121]. Ramp test.
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5.3.3.3 Traffic-related parameters

In order to calibrate traffic-related parameters, a scenario characterized by
different speed limits and traffic densities has been conceived. In particular, a
urban route within the Bologna city center has been defined to include as many
different speed limits as possible for an effective calibration of the oscillating MAS.

With this aim, the speed trace measured during the road test has been sectioned
by traffic codes, and the resulting portions have been gathered together. Then, four
traffic-based clusters of measured speed sections are obtained. At this point, the
Fast Fourier Transform (FFT) has been applied to every speed signal of each
cluster. A magnitude-frequency diagram is then obtained, as shown in Fig. 5.6 for
the cluster characterized by the orange traffic color (i.e. traffic code equal to 𝑐 = 2).

Traffic color orange
( )

Figure 5.6: Measured speed frequency analysis with FFT for a given traffic code [121].

In this case, 𝐽 = 3 speed signals have been collected, being each of them related
to a certain space segmentation of length 𝑙 𝑗 . Moreover, as previously introduced,
it can be noticed that only the first 𝐻 = 4 dominant harmonics (red boxes) have
been taken into account to describe the oscillatory phenomenon with an acceptable
accuracy. Considering the ℎ-th harmonic, different numbers 𝑁ℎ of magnitudes can
be observed, although one magnitude for each speed signal would be expected
(𝑁ℎ = 𝐽 = 3, ∀ℎ = 1,...,4). For the first one (ℎ = 1), the speed trace (segment) 𝑗 = 2
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presents two different magnitudes (orange dots) because the need to determine
dominant frequencies 𝑓ℎ led to group them together. As a result, this yields to
𝑁1 = 4 > 3 = 𝐽. On the other hand, for the fourth harmonic and frequency (ℎ = 4),
no appreciable magnitude has been individuated for the same speed signal, and
hence 𝑁4 = 2 < 3 = 𝐽.

At this point, with regards to the dynamic term of the MAS (Eq. (5.4)), ampli-
tudes and frequencies can be determined for a given traffic code in order to define
the harmonic behavior of the oscillation. These parameters can be both expressed
as arithmetic means of the relative measured values, weighted for the segment
length 𝑙 𝑗 , as well. In formulas:

𝐴𝑐,ℎ =

∑𝐽

𝑗=1

(
1/𝑁ℎ ·

∑𝑁ℎ

𝑛=1 𝐴𝑛,ℎ,𝑗

)
· 𝑙 𝑗∑𝐽

𝑗=1 𝑙 𝑗
(5.18)

𝑓𝑐,ℎ =

∑𝐽

𝑗=1

(
1/𝑁ℎ ·

∑𝑁ℎ

𝑛=1 𝑓𝑛,ℎ,𝑗

)
· 𝑙 𝑗∑𝐽

𝑗=1 𝑙 𝑗
(5.19)

where 𝑁ℎ is the number of magnitudes 𝐴𝑛,ℎ,𝑗 and 𝑓𝑛,ℎ,𝑗 frequencies corresponding
to the ℎ-th harmonic of the 𝑗-th signal.

Moreover, since the amplitude 𝐴0 of the oscillation at 𝑓 = 0 m-1 (space domain)
represents the average speed along the given segments, it can be used to determine
the parameter 𝐶𝑊 for each traffic code. In particular, since it is aimed to reduce
the maximum speed, namely the legal speed limit, due to traffic density, it may be
calculated as the ratio between the base oscillation amplitude 𝐴0 and the speed
limit 𝑉𝑙𝑖𝑚 , weighted for the length 𝑙 of each segment (spatial dependency). In
formula, the reduction factor 𝐶𝑊 for the traffic code 𝑐 can be calculated as:

𝐶𝑊𝑐 =

∑𝐽

𝑗=1 𝐴0, 𝑗/𝑉𝑙𝑖𝑚,𝑗 · 𝑙 𝑗∑𝐽

𝑗=1 𝑙 𝑗
(5.20)

being 𝑉𝑙𝑖𝑚,𝑗 the legal speed limit for the 𝑗-th segment. In this way, according to
Eq. (5.3), it is possible to evaluate the static contribution to the MAS.
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5.3.4 Validation

In order to validate and analyze the energetic performance of the speed profile
predictor, several test cases have been conceived in a way that the algorithm could
be tested with different traffic densities and legal speed limits. With this aim, sim-
ilarly to the calibration procedure, the test cases are represented by different trips
within the urban area of Bologna, with different travel distances and performed
at different times of the day. In Fig. 5.7 the trip chosen for one of the test cases is
depicted.

Figure 5.7: Scenario for speed profile predictor validation [121].

For the sake of simplicity, in this section the results of the validation procedure
will be briefly presented and discussed. For more details, the work described in
[121] can be examined.

As an example, in the bottom graph of Fig. 5.8a the comparison between
measured and predicted speed traces is presented for the test cases mentioned
above. Since stop-over probabilities have been considered to properly handle stop
events, it can be noticed that dynamic stops do not imply the vehicle always stops.
Moreover, in the top graph it can be noticed how the reference MAS is lowered
due to the traffic codes, represented in color in the middle graph. In particular, the
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higher is the traffic density, the lower is the code weight 𝐶𝑊 and then the higher
is the intensity of the maximum speed reduction.

Speed- and energy-based KPIs are shown in Tab. 5.3. Although the speed
limits have been exceeded two times (at 805 m and 1243 m) by the driver during
the road test, it can be noticed that the predicted speed is centered (very low
𝐵𝐼𝐴𝑆). Moreover, energy-based KPIs show that high accuracy on the energetic
performance of the speed profile predictor have been achieved.

Table 5.3: Speed profile predictor validation [121]. KPIs.

𝑴𝑨𝑬 𝑩𝑰𝑨𝑺 |𝑬𝑹𝑳 | 𝚫𝑬𝑹𝑳 |𝑬𝑰+ | 𝚫𝑬𝑰+ |𝑬𝑰− | 𝚫𝑬𝑰−

[km/h] [km/h] [Wh] [%] [Wh] [%] [Wh] [%]

12.4 -0.1 5 -0.4 32 -2 32 -2

5.4 Backward vehicle model

5.4.1 Architecture

In order to reconstruct the behavior of battery temperature and SoC over
a given electronic horizon, the predictive functions rely on a backward vehicle
model (BVM) which takes in to account the following parameters:

• input parameter
they are provided by the speed prediction block and they are represented
by the vectors of vehicle speed profile, v, and the road slope profile, 𝛂%, and
topological information regarding the zero-emission zone (distance and time
from city entrance and exit) over the predicted eHorizon;

• state variables
battery state of charge, 𝜉, and temperature, 𝜗;

• output parameters
vectors representing the predicted state of charge, 𝛏, and temperature, 𝛝, of
the battery.
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(a) Comparison between measured and predicted speed.

(b) Comparison between measured and predicted energy-related parameters.

Figure 5.8: Speed profile predictor validation [121].
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The backward vehicle model is implemented in a for-loop block, where the
number of iterations, 𝑁 , is equal to the period of time required for crossing the
urban area. In other words, 𝑁 = Δ𝑡𝑍 = 𝑡𝑍,𝑜𝑢𝑡 − 𝑡𝑍,𝑖𝑛 . This results in a function
time step equal to 𝑡𝑠 = 1s. Higher time step values would lead to higher accuracy
and, at the same time, to higher computational load. The energy management
strategies take as input a certain value of SoC (the target one, 𝜉𝑡) to handle the
zero-emission zone event. This means that there is no control based on a local,
instantaneous comparison of the measured SoC with the predicted one. For this
reason, a loss in the prediction accuracy of the SoC trend over the given horizon
due to high time steps can be accepted.

The function containing the backward vehicle model is called every time a
zero-emission zone is detected. It could happen:

1. at vehicle key-on
assuming that the driver has set the destination of the trip and an urban area
will be crossed;

2. in case of multiple urban events
after an urban area has been crossed and another one is planned on the trip;

3. in case of navigation data update
if the driver changes the route (because of road works or human mistakes),
another one is usually planned which could include a passage in an urban
area.

Although this piece of software has been developed in order to handle all the
realistic test cases just mentioned, only the first one is taken into account. In fact,
the behavior of the BVM is the same in all three cases. The main differences are that
the last one needs V2N connectivity in order to be properly tested (which clearly
is not available at SiL development level) and the second one can be considered
just as a repetition of a single ZEZ event (which is handled as in test first test case).

5.4.2 Modeling

As introduced in Section 3.2.1, a backward-facing approach is used to make the
prediction of the battery SoC over the given eHorizon. In this case, the source is
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represented by the wheels and the sinks are the energy storage devices. Here, the
battery power request is evaluated on the basis of the vehicle speed and road slope,
which can be considered as external disturbances acting on the dynamic system
represented by the vehicle. Moreover, dynamic effects such as torque control
are not inherently included. Therefore, this results in a less complex model with
benefits regarding computational load, which is a relevant aspect to be considered
for algorithm implementation in a hardware.

The main equations of the backward vehicle model are reported in the follow-
ing paragraphs.

The vehicle dynamics analytical model only takes into account the longitudinal
forces acting on the car, as discussed in Section 3.3.1. Thus, the fundamental
equation for vehicle longitudinal dynamics (Eq. (3.1)) in discrete domain, i.e. for
the 𝑘-th iteration of the for-loop, for 𝑘 = 1,...,𝑁 , can be rewritten as:

𝑚𝑣 ·
Δ𝑣(𝑘)
Δ𝑡(𝑘) = 𝑚𝑣 ·

𝑣(𝑘) − 𝑣(𝑘 − 1)
𝑡𝑠

= 𝐹𝑚𝑜𝑡(𝑘) − 𝐹𝑟𝑒𝑠(𝑘) (5.21)

where 𝑣(𝑘) = [v]𝑘 is the predicted vehicle speed, and beingΔ𝑡(𝑘) = 𝑡(𝑘)−𝑡(𝑘−1) =
𝑡𝑠 . The resistance force 𝐹𝑟𝑒𝑠 can be expressed as follows:

𝐹𝑟𝑒𝑠(𝑘) = 𝑓0 + 𝑓1 · 𝑣(𝑘) + 𝑓2 · 𝑣(𝑘)2 + 𝑚𝑣𝑔 sin 𝛼(𝑘) (5.22)

where 𝛼(𝑘) is the slope angle of the road, which can be derived from the input
percentage slope 𝛼%(𝑘) = [𝛂%]𝑘 by the relationship:

𝛼(𝑘) = arctan 𝛼%(𝑘)
100 (5.23)

Hence, the total force requested at the wheels is:

𝐹𝑟(𝑘) = 𝐹𝑟𝑒𝑠(𝑘) +
(
𝑚𝑣 + 𝑚𝑒𝑞,𝑟𝑜𝑡

)
· 𝑣(𝑘) − 𝑣(𝑘 − 1)

𝑡𝑠
(5.24)

with obvious meaning of the symbols, already used in Section 3.3.1.
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5.4 – Backward vehicle model

Then, the torque request at the wheels is:

𝑇𝑟(𝑘) = 𝐹𝑟(𝑘) · 𝑟𝑤 (5.25)

with 𝑟𝑤 being the wheel radius.

From the knowledge of the total torque request at the wheels, it is possible
to calculate the torque request to the electrical machines on the front axle by
following the transmission chain from the wheels to the motors:

𝑇𝑤, 𝑓 (𝑘) = 𝑇𝑟(𝑘) · 𝑢𝑠(𝑘) (5.26)

where 𝑇𝑤, 𝑓 is the torque to be provided on the front axle according to the torque
split factor, 𝑢𝑠 , between the electrical and hybrid paths. When it is equal to 1, the
total amount of torque requested at the wheels is provided by the two electric
motors on the front axle and the engine is switched off. Otherwise, if 𝑢𝑠 = 0,
the engine provides the whole torque requested at the wheels and the electrical
machines on the front axle are used only for regenerative braking. Since the
considered eHorizon is related to a zero-emission zone, the traction torque will
be provided only by the P4 motors, and thus 𝑢𝑠 = 1.

At the front differential gear, the motor speed is:

𝑛𝐸𝑀(𝑘) = 𝑛𝑤(𝑘) · 𝜏𝑑𝑖 𝑓 , 𝑓 (5.27)

where 𝜏𝑑𝑖 𝑓 , 𝑓 is the fixed transmission ratio. Still, at the motors side, the requested
torque is:

𝑇𝑑𝑖 𝑓 , 𝑓 (𝑘) =
𝑇𝑤, 𝑓 (𝑘)
𝜏𝑑𝑖 𝑓 , 𝑓

· 𝜂𝑑𝑖 𝑓 , 𝑓 𝑎

𝑎 =


−1, 𝑇𝑤, 𝑓 (𝑘) > 0

1, 𝑇𝑤, 𝑓 (𝑘) ≤ 0

(5.28)

Reaching the motors, the speed is the same as the motors shaft of the differential
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gear, while the torque requested is:

𝑇𝐸𝑀(𝑘) = 𝑇𝑑𝑖 𝑓 , 𝑓 (𝑘) · 𝜂𝐸𝑀𝑎

𝑎 =


−1, 𝑇𝑑𝑖 𝑓 , 𝑓 (𝑘) > 0

1, 𝑇𝑑𝑖 𝑓 , 𝑓 (𝑘) ≤ 0

(5.29)

being 𝜂𝐸𝑀 the mapped motors’ efficiency as a function of the requested torque,
𝑇𝐸𝑀 , and the motor speed, 𝑛𝐸𝑀 , as shown in Fig. 3.6.

The vehicle analytic model is completed by the battery model. It starts with
the calculation of the global electrical power request:

𝑃𝑏(𝑘) = 𝑃𝐸𝑀(𝑘) + 𝑃𝑎𝑢𝑥

𝜂𝐷𝐶𝐷𝐶
(5.30)

in which 𝑃𝐸𝑀(𝑖) = 𝑛𝐸𝑀(𝑘) ·𝑇𝐸𝑀(𝑘) is the power requested from the motors on the
front axle either for traction or regenerative braking, 𝑃𝑎𝑢𝑥 is the constant power
to be supplied to the LV battery and the other auxiliaries, 𝜂𝐷𝐶𝐷𝐶 is the efficiency
of the DCDC converter. Differently from Eq. (3.18), in this case the terms 𝑃𝐼𝑆𝐺,
𝑃𝐴𝐶𝐶 are considered null because the former is related to the load-point shifting
(not applied in pure-electric mode), and the latter is neglected due to the fact
that no control strategy is implemented in such a model. This assumption is even
more robust considering that the battery cooling power request is two order of
magnitudes less than the power requested for vehicle propulsion, i.e. 𝑃𝐸𝑀(𝑖).
To this aim, the initial value of the predicted battery temperature has been set
accordingly to a nominal value of 𝜗1 = 𝜗(𝑘 = 1) = 20°C, ensuring no battery
cooling within urban area during the prediction, as will be shown in Section 5.4.3.

At this point, analogously to the BMS, the battery power request is modified
according to power limitation maps. They take into account charge-discharge and
peak-nominal working conditions of the battery in order to establish the maximum
power as a function of its actual SoC and temperature. These parameters are
calculated by the battery electrical and thermal models, respectively, which are
the same used in the vehicle’s SiL model, as previously explained in Section 3.4.
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5.4 – Backward vehicle model

Therefore, the battery state of charge can be estimated as:

𝜉(𝑘) = 𝜉1 −
𝜂𝑐
𝐶𝑛

∑
𝑘

𝐼𝑏(𝑘)𝑡𝑠 (5.31)

being 𝜉1 = 𝜉(𝑘 = 1) = 95%.
With regards to to the thermal model, considering the previous assumption

on the battery cooling power, it can be stated as ¤𝑄𝑐𝑜𝑜𝑙(𝑘) = 0 ⇒ 𝑃𝐴𝐶𝐶(𝑘) = 0, ∀𝑘 =

1,...,𝑁 . Therefore, only the convective heat exchange between the battery and the
surrounding air has been considered. Thus, the temperature of the battery can be
calculated as:

𝜗(𝑘) = 𝜗1 +
1

𝑚 𝑐𝑝

∑
𝑘

(
𝑃𝑏,𝑙𝑜𝑠𝑠(𝑘) − ¤𝑄𝑎𝑖𝑟(𝑘)

)
𝑡𝑠 (5.32)

Then, at the end of each iteration 𝑘, the predicted SoC value, 𝜉(𝑘), is assigned
to the relative vector:

[𝛏]𝑘 = 𝜉(𝑘), ∀𝑘 = 1,...,𝑁 (5.33)

that, at the end of the iterative process, will be as follows:

[𝛏] =
[
𝛏𝑝 | 0

]
= [𝜉1 . . . 𝜉𝑁 | 0 . . . 0] (5.34)

being dim (𝛏) = 𝑀 ≥ 𝑁 = dim(𝛏𝑝) in order to prevent issues related to memory
dynamic allocation during software deployment.

In conclusion, as explained in this section, the ZEZ eHorizon reconstruction
made by the BVM from the navigation data, namely the vehicle speed profile, v,
and the road slope profile,𝛂%, led to the prediction of the SoC trajectory, 𝛏, among
the given horizon. The latter is then fed into the ZEZ function.

5.4.3 Validation

The backward vehicle model used for battery SoC prediction has been vali-
dated over simulated data obtained by SiL vehicle model, already validated in
Section 4.2.4. The vehicle speed and the road slope profiles, necessary for the
prediction, have been assumed to be known a priori.
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5 – Predictive control strategies for hybrid electric vehicles

Predicted state of charge and temperature are compared to the relative sim-
ulated signals, as shown in Fig. 5.9. In particular, since the eHorizon is always
represented by a ZEZ event, only the urban sectors of the considered RDE cycles
have been considered (Fig. 5.9b, Fig. 5.9c).

Numerical results presented in Tab. 5.4 show an acceptable accuracy for the
prediction of both the state of charge and the temperature. In fact, it is 𝜖𝜉,max =

max
��𝜉𝑠𝑖𝑚 − 𝜉𝑝𝑟𝑒𝑑

�� < 4% and 𝜖𝜗,max = max
��𝜗𝑠𝑖𝑚 − 𝜗𝑝𝑟𝑒𝑑

�� < 1°C.

Table 5.4: Numerical results of the backward vehicle model validation.

Test Data �0 �f ��,max �0 �f ��,max

[%] [%] [%] [°C] [°C] [°C]

1
SiL 95 62.3 - 20 24.1 -

Predicted 95 61.5 1.2 20 23.9 0.3

2
SiL 95 42.3 - 20 27.3 -

Predicted 95 38.6 3.8 20 28.1 0.8

3
SiL 95 27.6 - 20 26.4 -

Predicted 95 28.2 2.5 20 26.9 0.5

5.5 Zero-Emission Zone function

Because of the assumption that urban areas shall be zero-emission zone, there
is the necessity to enter these areas with a specific SoC, 𝜉𝑡 , so as to drive the vehicle
in pure electric mode.

Therefore, the baseline strategy (RBS), without the modifications introduced
and previously explained, would not be capable to make the battery have enough
energy available, causing the driver not to enter the ZEZ or to pay a fee for using
the internal combustion engine. On the other hand, if an urban area is detected
(by means of connectivity, which relies on the information sent by the map service
provider), the backward vehicle model predicts the state of charge, 𝛏, of the battery
along the city route, as explained in the previous section.

Then, the target SoC value can be derived from the SoC prediction, as schemat-
ically represented in Fig. 5.10. In formula:

𝜉𝑡 = Δ𝜉𝑍 + 𝜉min + 𝜉𝑠 (5.35)
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Figure 5.9: Backward vehicle model validation.
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5 – Predictive control strategies for hybrid electric vehicles

where:

𝜉min = 𝜉min ,𝑒 𝑙 is the minimum admissible SoC imposed by the battery manu-
facturer, which is equal to the lower SoC threshold to drive the vehicle
in pure electric mode (see: Eq. (5.1));

Δ𝜉𝑍 = max (𝛏) − min (𝛏) is the net amount of SoC to drive the zero-emission
zone in pure electric drive;

𝜉𝑠 : positive offset value to ensure pure electric driving mode during the
whole city passage. It then takes into account the variability of a real
driver behavior and the traffic density.

At this point, the target SoC, 𝜉𝑡 , is then fed to the energy management control
strategies represented by the modified RBS (Section 5.1.2) and the Adaptive-
ECMS, as discussed in the next section.

: safety margin

: minimum SoC

: net SoC for ZEZ in eDrive

Figure 5.10: Schematic representation of target SoC evaluation.

5.6 Adaptive-ECMS

5.6.1 Working principle of the ECMS

It is well known that the approach proposed by the ECMS allows reducing
the global energy minimization problem of HEVs to a local one which can be
solved instantaneously, leading to a sub-optimal control strategy. In particular, the
formulation of this control policy is based on the physical equivalence between the
electric energy usage of the battery and the virtual fuel consumption associated
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5.6 – Adaptive-ECMS

with it. Thus, the instantaneous equivalent fuel consumption to be minimized
results in:

¤𝑚 𝑓 ,𝑒𝑞(𝑡) = ¤𝑚 𝑓 (𝑡) + ¤𝑚 𝑓 ,𝑏(𝑡) (5.36)

where ¤𝑚 𝑓 is the effective fuel consumption referred to the engine, and ¤𝑚 𝑓 ,𝑏 is
the virtual fuel consumption associated with battery usage. By analogy with the
engine, the latter can be expressed introducing a virtual specific fuel consumption,
𝑠 𝑓 𝑐𝑒𝑞 , giving:

¤𝑚 𝑓 ,𝑏(𝑡) = 𝑠 𝑓 𝑐𝑒𝑞(𝑡) · 𝑃𝑏(𝑡) =
𝑠(𝜉(𝑡),𝑡)
𝑄𝑙ℎ𝑣

𝑃𝑏(𝑡) (5.37)

where𝑄𝑙ℎ𝑣 is the lower heating value of the fuel,𝑃𝑏(𝑡) is the global electrical power
request to the battery, and 𝑠 𝑓 𝑐𝑒𝑞 is considered proportional to a dimensionless
equivalence factor, 𝑠.

5.6.2 Adaptive-ECMS

In [125] and more recently in [126] remarkable improvements have been ob-
tained to make the ECMS a real-time control strategy. In particular, in the latter
work, an adaption of the equivalence factor based on a feedback from SoC has
been proposed. An attempt to apply this adaptive formulation of the ECMS to
PHEVs is proposed in [102, 103]. As a result, the equivalence factor is expressed
as:

𝑠 (𝜉(𝑡),𝑡) = 𝑝 (𝜉(𝑡),𝑡) · 𝑎 (𝜉(𝑡),𝑡) (5.38)

where:
𝑝 (𝜉(𝑡),𝑡) = 1 − 𝑘𝑝

[
𝜉(𝑡) − (𝜉max + 𝜉min) /2

(𝜉max − 𝜉min) /2

]𝑛
(5.39)

𝑎 (𝜉(𝑡),𝑡) = 𝑘𝑎 (𝜉𝑟(𝑡) − 𝜉(𝑡)) + 1
2 (𝑠𝑘−1 + 𝑠𝑘−2) (5.40)

From Eq. (5.38) it can be noticed that there are two main contributions to the
adaptive formulation of the equivalence factor, 𝑠.

The first one is expressed in Eq. (5.39) and it represents a penalty function
with the aim of maintaining the state of charge of the battery within the range

109



5 – Predictive control strategies for hybrid electric vehicles

[𝜉min,𝜉max]. This condition represents a local control constraint for HEV appli-
cations (where only a CS mode could be applied), while it can be considered a
physical constraint in the case of a PHEV, like the considered vehicle. The def-
inition of the penalty function is completed by the gain factor, 𝑘𝑝 , also known
as penalty factor, and the polynomial coefficient, n, which can be considered as
tunable parameters.

The second contribution is represented in Eq. (5.40) by an adaptive function
that plays a vital role in the real-time implementation of the ECMS. In fact, the
drawback of the off-line tuning of the equivalence factor for a given drive cycle is
solved by an online adaption based on the feedback from the SoC, represented by
the term 𝜉𝑟(𝑡)−𝜉(𝑡). This results in a proportional correction of s by considering an
adaptive factor, 𝑘𝑎 , and the difference between the reference value of the SoC, 𝜉𝑟 ,
and the actual one. The introduced gain factor can be used for algorithm tuning, as
well as the proportional factor. In case of availability of navigation data regarding
the planned route, for a PHEV the reference SoC to be followed by the control
policy can be expressed as a linear function of the total distance of the trip in
order to gradually discharge the battery among the driving mission. Thus, neither
a battery discharging nor sustaining behavior is favored, and then the resulting
working mode could be referred to as a charge-blended (CB). Since the adaption
is performed periodically every 𝑡 = 𝑘 · 𝑡𝑢 , 𝑘 = 1,2, . . ., the terms 𝑠𝑘−1 and𝑠𝑘−2

are the values of the equivalence factor used in two previous time intervals,
namely adaptation steps. Therefore, they introduce an integral correction on the
equivalence factor.

5.6.3 Adaptive-ECMS for ZEZ handling

With respect to the works described in [102, 103], the following modifications
have been introduced to the previous formulation of the A-ECMS algorithm.

Regarding the reference SoC, the general formulation previously proposed for
a generic drive cycle has been modified as:

𝜉𝑟(𝑑(𝑡)) = 𝜉𝑖 +
𝜉 𝑓 − 𝜉𝑖

𝑑 𝑓 − 𝑑𝑖
(𝑑(𝑡) − 𝑑𝑖) (5.41)
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with the following assumptions related to the zero-emission zone:


𝑡 𝑓 = 𝑡𝑖 ,𝑧

𝑑(𝑡 𝑓 ) = 𝑑 𝑓 = 𝑑𝑖 ,𝑧

𝜉(𝑡 𝑓 ) = 𝜉 𝑓 = 𝜉𝑖 ,𝑧

(5.42)

In order to clarify the concept behind the reference SoC for ZEZ and all the
introduced parameters, the diagram shown in Fig. 5.11 is presented. The param-
eters with the 𝑖 and 𝑓 subscripts refer to the initial 𝑡𝑖 and final 𝑡 𝑓 time instants
delimiting the CB mode, while 𝑑 indicates the distance.

ZEZ

CB CD (eDrive)

actual SoC reference SoC

(a) Actual and reference SoC trends. (b) Beginning of the ZEZ.

Figure 5.11: Charge-Blended (CB) A-ECMS for ZEZ handling [98].

As shown in Fig. 5.11a, the key-on is performed at the beginning of the drive
cycle, at 𝑡 = 𝑡0 = 0, while the predictive functions for SoC trajectory estimation
(BVM and ZEZ) are called at 𝑡 = 𝑡𝑖 . Although, as previously explained, it is
considered that the prediction is only performed at key-on (𝑡𝑖 = 𝑡0). For sake of
comprehension, the generic case (𝑡𝑖 ≠ 𝑡0) is shown in the diagram of Fig. 5.11a.
In fact, this happens in all the other cases, such as for multiple ZEZ events and
when the navigation data are updated. Then, CB mode is applied by the A-
ECMS following the reference SoC expressed by Eq. (5.41) until the urban area
is accessed at𝑡 = 𝑡 𝑓 after the distance 𝑑 𝑓 = 𝑑𝑖 ,𝑍 has been traveled on the planned
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route, thus representing the ZEZ entrance information (received from the map
service provider via V2N).

Moreover, it is important to mention that in contrast to other formulations of the
reference SoC, the global constraint 𝜉𝑟

(
𝑡 𝑓
)
= 𝜉𝑟, 𝑓 = 𝜉𝑡 has been softened, as shown

in Fig. 5.11b. The unused electrical energy associated with the SoC difference
𝜉𝑖 ,𝑍 − 𝜉𝑡 is justified by the more important aim of pursuing a reliable and robust
energy management control strategy for handling all the ZEZ in pure-electric
driving mode. Therefore, the final reference SoC value becomes the reference SoC
range [𝜉𝑡 ,𝜉𝑡 + Δ𝜉𝑡], centered in 𝜉𝑟, 𝑓 , with 𝜉𝑟, 𝑓 > 𝜉𝑡 and Δ𝜉𝑡 = 5%.

As a consequence, Eq. (5.41) can be rewritten as:

𝜉𝑟(𝑑(𝑡)) = 𝜉𝑖 +
𝜉𝑟, 𝑓 − 𝜉𝑖

𝑑𝑖 ,𝑍 − 𝑑𝑖
(𝑑(𝑡) − 𝑑𝑖) (5.43)

with the global constraint on the SoC value at the beginning of the ZEZ:

𝜉𝑖 ,𝑍 ∈ [𝜉𝑡 ,𝜉𝑡 + Δ𝜉𝑡[ (5.44)

Once the reference SoC trend has been defined, the modality with which the
A-ECMS follows it must be established.

With this aim, the adaptive factor 𝑘𝑎 , which is the proportional gain of the
adaptive term 𝑎 (𝜉,𝑡) defined in Eq. (5.40), has been used as a tuning parameter.

Therefore, several considerations on reference SoC-following control can be
carried out. A mild following control has to be preferred in order to limit as
little as possible the instantaneous optimization performed by the A-ECMS. In
particular, this applies when the vehicle is far away from the city. Thus, when
the actual distance Δ𝑑𝑍(𝑡) = 𝑑𝑖 ,𝑍 − 𝑑(𝑡) between the vehicle and the beginning
of the urban area is very high, the values of the adaptive factor 𝑘𝑎 are very low.
On the other hand, when the vehicle is about to enter the ZEZ, in order to satisfy
the global constraint of Eq. (5.44), the controller has to strictly maintain the SoC
𝜉(𝑡) around the reference value 𝜉𝑟(𝑡). Thus, a logarithmic behavior of the adaptive
factor has been chosen to have high increments of the tuning parameter for small
variations of the ZEZ distance only when approaching the urban area.

Moreover, in this situation, it can be noticed that it could not be useful applying
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such an aggressive SoC-following control even if the global constraint is satisfied.
In other words, if the vehicle is near the beginning of the ZEZ (low Δ𝑑𝑍) and
the difference Δ𝜉𝑟, 𝑓 (𝑡) = |𝜉𝑡 − 𝜉𝑟, 𝑓 | between the actual SoC and the final value of
the reference one is low, as well, there is no need to further increase the adaptive
factor. Therefore, if the parameter Δ𝜉𝑟, 𝑓 (𝑡) is also taken into account, then a map
of the adaptive factor as the one shown in Fig. 5.12 can be obtained.

Figure 5.12: Map of the adaptive factor [98].

It must be said that such an approach could lead to very high values of the
adaptive factor near the beginning of the urban area. This could result in much
more aggressive behavior of the SoC-following policy. In order to soften this
constraint, and thus to avoid overcoming the local optimization performed by the
ECMS, the update time 𝑡𝑢 of the adaptive term 𝑎 (𝜉 (𝑡) ,𝑡) has been decreased with
the decreasing of the distance to the ZEZ entrance, as shown in Fig. 5.13. In this
way, the SoC-following policy is made more accurate without the penalization
introduced by high values of 𝑘𝑎 in terms of optimization performance.
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Figure 5.13: Map of the update time [98].

5.7 Dynamic Programming

Before introducing the results obtained by implementing in the SiL and HiL
simulators the proposed control strategies for predictive ZEZ handling, this sec-
tion describes the other contribution that was developed during this PhD research
activity making use of the connected simulation environment, and specifically
the development of a DP-based control strategy for handling energy and thermal
management simultaneously.

5.7.1 Backward optimization algorithm

The main objective of an optimization-based algorithm such as Dynamic Pro-
gramming (DP) is to evaluate the optimal control policy that minimizes a given
cost function. To this aim, the optimization is achieved by induction, i.e. with a
backward-facing approach, in order to reduce the number of iterations needed
to retrieve the solution of the optimization problem. The validity of this pro-
cedure, ensured by Bellman’s Principle of Optimality (Section 2.1.4.1), has been
analytically proved in [127].
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In formula, let 𝑢 be an admissible policy for the optimal problem, defined as:

𝑢 = {𝑢0, ..., 𝑢𝑘 , ..., 𝑢𝑁−1} (5.45)

for each stage, or time index, 𝑘 = 0,1,...,𝑁−1, being 𝑁 the length of the considered
horizon.

Thus, the cost function expressed for the admissible policy 𝑢, called admissible
cost, can be formulated as:

𝐽 (𝑥0,𝑢) = 𝐿𝑁 (𝑥𝑁 ) +
𝑁−1∑
𝑘=0

𝐿𝑘 (𝑥𝑘 ,𝑢𝑘 ,𝑤𝑘) (5.46)

where 𝑥𝑘 , 𝑢𝑘 , 𝑤𝑘 , are, respectively, the system states, the control variables, and
the disturbances acting on the dynamic system at the stage 𝑘. In other words,
𝐽 (𝑥0,𝑢) represents the total cost required for the system to evolve from state 𝑥0 at
the initial stage 𝑘 = 0 to the final state 𝑥𝑁 at the last stage 𝑘 = 𝑁 , by applying the
control policy 𝑢. The cost 𝐿𝑘 associated to the transition from the state 𝑥𝑘 to 𝑥𝑘+1

is called arc or instantaneous cost.

Let𝑈 be the set of all admissible policies. Then, the optimal control policy 𝑢∗ ∈ 𝑈

is the one minimizing the cost function of Eq. (5.46):

min
𝑢∈𝑈

𝐽 (𝑥0,𝑢) = 𝐽∗ (𝑥0) = 𝐽 (𝑥0,𝑢
∗) ≤ 𝐽 (𝑥0,𝑢) , ∀𝑢 ∈ 𝑈 (5.47)

As stated before, the minimum cost 𝐽∗ (𝑥0) can be obtained recursively, i.e.
starting from the stage, 𝑁 , where the terminal cost 𝐽 (𝑥𝑁 ) is a constraint to ensure
the desired state of the system at the final stage. Then, at each stage 𝑘, the cost-to-go
is evaluated, which is the intermediate cost from state 𝑘 to 𝑁 − 1. In formula:

𝐽 (𝑥𝑘 ,𝑢𝑘) =
[
𝐿𝑁 (𝑥𝑁 ) +

𝑁−1∑
𝑘+1

𝐿𝑘 (𝑥𝑘 ,𝑢𝑘 ,𝑤𝑘)
]
+ 𝐿𝑘 (𝑥𝑘 ,𝑢𝑘 ,𝑤𝑘) (5.48)

Thus, the cost-to-go 𝐽 (𝑥𝑘 ,𝑢𝑘) from stage 𝑘 can be obtained by summing the
actual arc cost 𝐿𝑘 to the remaining cost to the final stage 𝑁 . At this point, the
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intermediate optimal control policy 𝑢𝑘 is the one minimizing the cost-to-go:

𝐽∗ (𝑥𝑘) = min
𝑢∗
𝑘

𝐽 (𝑥𝑘 ,𝑢𝑘) (5.49)

At the end of the recursive optimization process, namely at stage 𝑘 = 0, the
cost-to-go will be equal to the total cost 𝐽 (𝑥0,𝑢) Eq. (5.46) and the intermediate
optimal control policy will coincide with the global one 𝑢∗, then representing the
global optimal solution (Eq. (5.47)) of the energy management problem.

5.7.2 Combined energy-thermal management problem

The application of the described generic algorithm to the considered complex
dynamic system, i.e. the plug-in hybrid electric powertrain, needs an association
between algorithm variables and specific problem variables. In this sense, two
different optimization algorithms are considered. The first one can be referred to
as standard, which means that it only considers the energy management control
problem (energy-DP). The second one (combined-DP), which is the novel approach
proposed in this work, also takes into account the battery temperature as a state
variable and the battery thermal management control as a control variable.

For the optimization problem in question, the disturbances, which are the
variables that are independent of the vehicle state, are the vehicle speed 𝑣 and the
road slope 𝛼 profiles. Thus, the disturbance vector can be expressed as follows:

w = [v 𝛂]𝑇 (5.50)

With regards to the energy-DP, the state variables chosen for defining the
system state are the battery state of charge, 𝜉, and the currently engaged gear, 𝑔.
Moreover, the variables for the powertrain operating control are the torque split
factor, 𝑢𝑠 , and the torque 𝑇𝑠 associated to engine load point shifting for battery
recharging. The latter is used in combination with the split factor to define the total
amount of torque the engine has to provide and, multiplied by −1, to calculate the
torque of the ISG. Thus, the vectors representing the state and control variables
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are respectively defined as:

x = [x𝐸] = [g 𝛏]𝑇 (5.51)

u = [u𝐸] = [u𝑠 T𝑠]𝑇 (5.52)

Concerning the combined-DP, the battery temperature 𝜗 and the control signal
𝑢𝑐 of battery cooling circuit actuators have been considered as additional state and
control variables. Thus, Eq. (5.51) and Eq. (5.54) can be rewritten as follows:

x = [x𝐶] = [x𝐸 | x𝑇]𝑇 = [g 𝛏 | 𝛝]𝑇 (5.53)

u = [u𝐶] = [u𝐸 | u𝑇]𝑇 = [u𝑠 T𝑠 | u𝑐]𝑇 (5.54)

In order to define the mentioned vectors, a specific discretization has been set
for each variable. Thus, the generic discretized variable z can be represented in
the form:

z = [𝑧min : Δ𝑧 : 𝑧max]𝑇 (5.55)

being Δ𝑧 the minimum step the algorithm can take to span a variable vector. In
this sense, the algorithm is considering that the problem variables can only be
part of the fixed domain and, moreover, assume the discrete values defined by
discretization1. In particular:

𝜉min,𝜉max : define the battery operating range for a PHEV, and thus they rep-
resent a physical constraint of the component;

𝜗max : is the higher threshold value for battery operating temperature
range, defined by the manufacturer, in order to prevent perfor-
mance de-rating and premature aging of the component;

𝑇𝑠,max : depends on the maximum torque deliverable by the ISG;
Δ𝑢𝑠 = 1, meaning that the driver torque request is fully provided either

by the engine or the electric machines;
Δ𝑢𝑐 = 1, meaning that the battery cooling is either active or not;
Δ𝑔 = 1.

1For this reason, this optimal control strategy can be also referred to as discrete dynamic pro-
gramming (DDP).
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For the combined-DP, since both energy and thermal management are simul-
taneously optimized, the final cost 𝐽𝑁 depends not only on the required value of
the battery state of charge, 𝜉 𝑓 , but also of the temperature, 𝜗 𝑓 , and are:

𝜉 𝑓 = 30% ∈ [20,95]% = [𝜉min,𝜉max] (5.56)

𝜗 𝑓 = 38°C < 40°C = 𝜗max (5.57)

The cost-to-go be minimized at each stage 𝑘 is represented by the engine fuel
consumption ¤𝑚 𝑓 = 𝑓 (𝑛𝐼𝐶𝐸 ,𝑇𝐼𝐶𝐸), mapped as a function of engine speed and torque
(Fig. 3.5a). Thus, the cost-to-go defined in Eq. (5.48) can be rewritten as:

𝐽 (𝑥𝑘 ,𝑢𝑘) = 𝐿𝑁 (𝜉𝑁 ,𝜗𝑁 ) +
𝑁−1∑
𝑘

¤𝑚 𝑓𝑘 (𝑥𝑘 ,𝑢𝑘 ,𝑤𝑘) (5.58)

where 𝑥𝑘 , 𝑢𝑘 , 𝑤𝑘 are the 𝑘-th elements of the vectors represented in Eq. (5.53),
Eq. (5.53), Eq. (5.50), respectively.

Thus, the optimization algorithm is applied starting from the ending of the
driving mission (whose length is 𝑁) and proceeding to the initial one (𝑘 = 0),
resulting in a backward-facing approach, as previously discussed. Then, for each
stage 𝑘 = 𝑁 − 1,...,0, the cost-to-go in Eq. (5.58) is evaluated by means of a
backward vehicle model, which takes the speed and the slope signals (Eq. (5.50))
as inputs. With this aim, the optimal solution is provided by searching for all
the possible control options u (Eq. (5.54)), i.e. all the values of the discretized
control set-points are applied to the powertrain model. Then, as outputs, the state
variables x𝑘 (Eq. (5.53)) and the engine fuel consumption can be calculated.

The optimization algorithm, including the backward vehicle model, has been
implemented as a Matlab script by means of nested for-loops related to stage
and control variables recursions. The time index 𝑘 has been defined in a way that
Δ𝑡𝑘 = 𝑡𝑘+1 − 𝑡𝑘 = 1 s. Then, the control variables of the optimal control policy
u∗
𝑐 provided by the recursive algorithm have been mapped as a function of the

discretized states of the system, expressed in the form of Eq. (5.55), and time, in
order to ensure the implementation of the map in the vehicle simulator.
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5.7.3 Backward vehicle model

In order to clarify the recursive optimization procedure and, in particular, the
cost-to-go evaluation, the powertain model of the given PHEV is here described.

As introduced in Section 3.2.1, a backward-facing approach has been used for
the modeling purpose, since data related to the driving mission are the inputs
and the state variables the outputs, form which the cost function is recursively
calculated.

Therefore, at the generic stage 𝑘, considering the well-know equation of a
vehicle in longitudinal motion (Eq. (3.1)), the torque request at the wheels, 𝑇𝑟(𝑘),
can be easily determined.

At this point, differently from the backward vehicle model discussed previ-
ously in Section 5.4.2, which is focused only on the electric powertrain, the torque
split factor 𝑢𝑠 can be null, as well. Thus, considering now the conventional pow-
ertrain, too, the torque to be supplied to the rear wheels is:

𝑇𝑤,𝑟(𝑘) = 𝑇𝑟(𝑘) · (1 − 𝑢𝑠(𝑘)) (5.59)

from which the torque request at the engine side can be evaluated as:

𝑇𝑡 ,𝑖𝑛(𝑘) =
𝑇𝑟(𝑘)

𝜏𝑡 (𝑔(𝑘))
· 1
𝜂𝑡

(5.60)

where 𝜂𝑡 is the transmission efficiency, and 𝜏𝑡 is the total gear ratio considering
both the actual gear ratio of the automatic transmission and the rear differential.
The gear ratio depends on the currently engaged gear 𝑔(𝑡) and it is defined only
for the rear axle, while if the vehicle is propelled only using the electrical machines
on the front axle, the automatic transmission is decoupled from the crankshaft by
means of a clutch.

Therefore, the engine torque request is:

𝑇𝐼𝐶𝐸(𝑘) = 𝑇𝑡 ,𝑖𝑛(𝑘) + 𝑇𝑠(𝑘) (5.61)
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and, consequently, the torque request to the ISG (P1) can be expressed as:

𝑇𝐼𝑆𝐺(𝑘) = −𝑇𝑠(𝑘) (5.62)

Since the ISG is directly mounted on the crankshaft, its speed is equal to engine
one, which is:

𝑛𝐼𝐶𝐸(𝑘) = 𝑛𝑤(𝑘) · 𝜏𝑡(𝑘) (5.63)

being 𝑛𝑤 the wheels speed.

In this case, since both the conventional powertrain and the battery cooling
circuit are taken into account, the battery power request defined in Eq. (3.18) can
be applied. In particular, let 𝑃𝑐(𝑘) be the electric power absorbed by the battery
cooling circuit actuators. Then, the battery power request can be rewritten as:

𝑃𝑏(𝑘) = 𝑃𝐸𝑀(𝑘) + 𝑃𝐼𝑆𝐺(𝑘) +
𝑃𝑎𝑢𝑥

𝜂𝐷𝐶𝐷𝐶
+ 𝑃𝑐(𝑘) (5.64)

where the contribution related to battery thermal management, 𝑃𝑐(𝑘), is:

𝑃𝑐(𝑘) = 𝑢𝑐(𝑘) ·
(
𝑃𝐴𝐶𝐶(𝑘) +

𝑃𝑒𝑃

𝜂𝐷𝐶𝐷𝐶

)
(5.65)

being 𝑃𝐴𝐶𝐶(𝑘), 𝑃𝑒𝑃 the electrical power absorbed by the high-voltage compressor
and the electric pump of the battery cooling circuit, respectively. It is assumed
𝑃𝑒𝑃 = const., as well.

Then, omitting the battery electrical and thermal models, previously explained
in Section 3.4.1 and widely applied in this dissertation, it is possible to evaluate
the battery state of charge and temperature at the next stage 𝑘 + 1 as:

𝜉(𝑘 + 1) = 𝜉(𝑘) − Δ𝜉(𝑘) (5.66)

= 𝜉(𝑘) −
𝜂𝑐
𝐶𝑛

𝐼𝑏(𝑘)Δ𝑡𝑘

𝜗(𝑘 + 1) = 𝜗(𝑘) + Δ𝜗(𝑘) (5.67)

= 𝜗(𝑘) + 1
𝑚 𝑐𝑝

(
𝑃𝑏,𝑙𝑜𝑠𝑠(𝑘) − ¤𝑄𝑎𝑖𝑟(𝑘) − ¤𝑄𝑐𝑜𝑜𝑙(𝑘)

)
Δ𝑡𝑘
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where:

𝜉(𝑘) ∈ 𝛏 = [𝜉min : Δ𝜉 : 𝜉max]𝑇 (5.68)

𝜗(𝑘) ∈ 𝛝 = [𝜗min : Δ𝜗 : 𝜗max]𝑇 (5.69)

due to the variables discretization.
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Chapter 6

Application of the control strategies

To asses the benefits of the developed control strategies in terms of energy
efficiency and fuel saving, simulations under different conditions and with

different driving cycles have been conducted. Numerical results are given and
commented, as well.

6.1 CO2 correction for the tested strategies

The CO2 production has been chosen as one of the assessment parameters for
comparing the energy consumption related to the applied control strategies for
the different test cases. In order to make a proper comparison, a correction of the
CO2 production related to the usage of the tested strategies has been proposed on
the basis of the following approach.

The electrical energy additionally used or saved at the end of the driving
mission should be converted into an equivalent amount of fuel. In other words,
the more the battery is used for traction, the less the engine is used for the same
purpose, and thus an additional amount of fuel has to be added to the effective
fuel consumption of the engine in order to cover the fuel saving related to the
battery usage.

Since the correction of the fuel mass can be either positive or negative (due to
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a more or less usage of the battery, respectively), it can be represented as follows:

Δ𝑚 𝑓 𝑄𝑙ℎ𝑣 · �̄�𝐼𝐶𝐸 =
Δ𝐸

�̄�𝐼𝑆𝐺

Δ𝑚 𝑓 𝑄𝑙ℎ𝑣 · �̄�𝐼𝐶𝐸 = Δ𝐸 · �̄�𝐸𝑀
(6.1)

which yields to the mass fuel correction:

Δ𝑚 𝑓 =
Δ𝐸

𝑄𝑙ℎ𝑣
· 1
�̄�𝐼𝐶𝐸 �̄�𝐼𝑆𝐺

Δ𝑚 𝑓 =
Δ𝐸

𝑄𝑙ℎ𝑣
·
�̄�𝐸𝑀
�̄�𝐼𝐶𝐸

(6.2)

where Δ𝐸 = 𝐸𝑟𝑒 𝑓 − 𝐸𝑡𝑒𝑠𝑡 is the difference between the electric energy used by the
battery whit the reference and the tested strategies, and �̄�𝐼𝐶𝐸, �̄�𝐸𝑀 , �̄�𝐼𝑆𝐺 are the
average efficiencies of the engine, the electric motors, and the integrated-starter
generator, respectively. The instantaneous engine efficiency is calculated as the
ratio between the mechanical power provided by the engine and the chemical
power of the injected fuel. Analogously, the instantaneous efficiencies of the elec-
tric machines are evaluated as the ratio between the power output and input,
which can be either mechanical or electrical depending on the working mode of
the component (EM: motor/generator, ISG: generator).

Finally, in order to evaluate the corrected CO2 production CO2,c, the corrected
fuel consumption 𝑚 𝑓 ,𝑐 = 𝑚 𝑓 + Δ𝑚 𝑓 is multiplied by a conversion factor whose
value is 𝑘CO2 = 2370 gCO2/lfuel. The latter can be calculated as suggested by [128]
from the following equation:

𝐹𝐶 =

(
0.1206
𝜌 𝑓

)
(0.829 · HC + 0.429 · CO + 0.273 · CO2) (6.3)

where 𝜌 𝑓 = 0.75 kg/l is the fuel density, and HC, CO and CO2 are the production
of the relative chemical agents [g/km]. In order to evaluate the conversion factor,
the assumption HC = CO = 0 has been made.
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6.2 Adaptive-ECMS for ZEZ handling

The charge-blended A-ECMS for ZEZ handling (Section 5.6.3), which is the
tested strategy, is here compared to the energy management RBS, properly modi-
fied for the same purpose (Section 5.1.2).

They are implemented in the software of the supervisory controller within the
SiL environment, which has been used to carry out the simulations. The results
are presented in the following paragraphs.

Since the simulations are performed at SiL level, it is not possible to retrieve
any navigation data from the map service provider. As a consequence, vehicle
speed and road slope profile for battery SoC prediction are here assumed to be
know a priori. Therefore, as shown in Section 6.4, the A-ECMS will be tested at
the connected HiL with real-time routing information.

6.2.1 Test cases

A set of simulations composed of four test cases (TC), listed in Tab. 6.1, has
been conceived.

Table 6.1: Test cases [98].

TC Cycle

[%] [%] [km] [km] [km]

1 Aachen 30 80 15.0 75.1 90.1

2 Cherasco 30 80 11.8 80.9 92.7

3 Aachen 95 50 9.0 81.1 90.1

4 Cherasco 95 50 6.5 86.2 92.7

Two different scenarios have been identified to compare the performance of
the two strategies: short and long ZEZ. In fact, the higher the length 𝑑𝑍 of the trip
within the urban area, the higher the target SoC 𝜉𝑡 required at the beginning of
the ZEZ.

Moreover, in order to reinforce the validity of the results, Real Driving Emis-
sions (RDE) cycles have been chosen, as shown in Fig. 6.1. The speed and slope
traces have been recorded by the industrial partner during road tests located in
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Aachen, Germany (Fig. 6.1a) and Cherasco, Italy (Fig. 6.1b). They are compliant
to the related R1151 European Regulation [128].
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(a) Aachen.
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(b) Cherasco.

Figure 6.1: RDE cycles [98].

According to the legislation, they can be divided into three sections: highway,
rural, and urban. In this case, the latter is the last one and for each drive cycle
two different ZEZ have been individuated, with different length 𝑑𝑍, so as to have
the desired different values for the target SoC. For each test case, since the all-
electric driving mode is always performed during the city passage, the strategies
are applied only in the extra-urban areas, i.e. as long 𝑑 (𝑡) < 𝑑𝑖 ,𝑍. In both cases,
the predictive functions calculate the value of the target SoC which is then fed to
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the control strategies.
The initial SoC 𝜉0 has been consequently chosen on the basis of the target SoC.

It can be noticed that in this way it is possible to test the strategies in two different
working conditions: overall charge depleting (𝜉0 > 𝜉𝑡) and increasing (𝜉0 < 𝜉𝑡).

6.2.2 Results

The SoC trends related to the RBS and the A-ECMS are presented in Fig. 6.3,
Fig. 6.5, Fig. 6.7, Fig. 6.9. In particular, the actual 𝜉(𝑡), reference 𝜉𝑟(𝑡) and target 𝜉𝑡
SoC behaviors are shown.

Numerical results of the simulations are listed in Tab. 6.2, as well. They include
the SoC values at the beginning, 𝜉𝑖 ,𝑍, and at the end, 𝜉 𝑓 ,𝑍, of the ZEZ, where the
latter corresponds to the final SoC of the simulation; the raw and the corrected CO2

productions (calculated over the entire driving cycle as explained in the previous
paragraph) and the percentage relative differences evaluated as:

ΔCO2 =
CO𝐸𝐶𝑀𝑆

2 − CO𝑅𝐵𝑆
2

CO𝑅𝐵𝑆
2

· 100 (6.4)

In this way, a negative value of the parameter represents a fuel saving of the
A-ECMS with respect to the baseline strategy properly modified. Note that if the
corrected CO2 consumption for the A-ECMS is used in Eq. (6.4), then the corrected
value ΔCO2,𝑐 is calculated.

In test cases 1 and 2 (Fig. 6.3 and Fig. 6.5), the control strategies have to
recharge the battery to reach the target SoC, and thus a charge increasing mode
has to be applied in the extra-urban areas. This objective is achieved by the RBS
by means of a CI-CS mode, while the A-ECMS applies a CB mode, following
the reference SoC which varies linearly over traveled distance. The SoC-following
control is ensured by the adaptive factor and the update time, whose trajectories
over time are depicted in Fig. 6.4, Fig. 6.6. Concerning the first parameter, it can
be noticed that it behaves with a logarithmic-like trend, as previously explained.
Furthermore, for each test case, the initial value of the adaptive factor is relatively
low, despite the different initial conditions and target SoC values, as expected.
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Table 6.2: CO2 production [98].

TC Strategy

[%] [%] [g/km] [%] [g/km] [%]

1
RBS 83.5 32.1 318 − 318 −

A-ECMS 83.4 32.2 263 -17.3 259 -18.5

2
RBS 85.3 35.8 359 − 359 −

A-ECMS 83.1 32.7 289 -19.7 292 -18.8

3
RBS 50.4 25.4 233 − 233 −

A-ECMS 53.6 28.8 203 -12.7 199 -14.6

4
RBS 54.1 29.4 289 − 289 −

A-ECMS 51.2 26.9 223 -22.7 224 -22.6

Table 6.3: Average efficiencies [98].

TC Strategy

[%] [%] [%] [%] [%] [%]

1
RBS 16.2 − 78.2 − 78.4 −

A-ECMS 22.6 +39.9 80.3 +2.6 77.4 -1.2

2
RBS 16.1 − 77.8 − 78.1 −

A-ECMS 22.8 +42.2 78.8 +1.4 77.5 -0.8

3
RBS 16.5 − 79.4 − 77.9 −

A-ECMS 21.5 +30.4 79.3 -0.2 77.3 -0.7

4
RBS 15.9 − 80.5 − 77.5 −

A-ECMS 22.0 +38.5 78.9 -1.9 76.9 -0.8
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The RBS is strongly penalized by the charging phases of the CS mode, accom-
plished using the ICE and the ISG with the load point shift strategy. In fact, it can
be seen that in the initial part of the RDE cycle, which corresponds to the highway
section, the load point shift strategy is more efficient since the high load required
by such a type of road, and a sharp increase of the SoC can be observed. Never-
theless, neglecting the regenerative brakings, every SoC increase due to battery
recharging by means of the ICE is higher in the case of the A-ECMS with respect
to the RBS, which leads to higher average efficiency, as shown in Tab. 6.3.

Analogous considerations can be made for test cases 3 and 4 (Fig. 6.7 and
Fig. 6.9), even if a charge depleting mode is applied before the urban area. In this
case, the RBS performs a CD-CS mode, while the A-ECMS is again in CB mode.
As a representative example, in Fig. 6.2 the engine efficiency maps for RBS and
A-ECMS for test case 3 are shown. The higher is the density of the operating points
(blue dots), the higher is the operating frequency of the engine. The figures show
that with the A-ECMS, the engine works at higher efficiency operating points (due
to a higher load point shift) and for a shorter time (as no CS mode is applied).

In light of this analysis, the following explanation regarding the goodness of
the CO2 numerical results (Tab. 6.2) can be done. In fact, it has to be highlighted that
the rule-based energy management strategy has been modified for ZEZ handling
without a further calibration process, as it has been done for the base one. The
reason of this approach relies on the fact that a complex control policy such
as the given RBS, despite its inherent heuristic nature, would have required an
intensive calibration and validation campaign. Therefore, in order to justify such a
noticeable effort in this task, this activity had the main objective to produce a first
study on the benefit of deploying such an adaptive-ECMS not only to optmize the
vehicle energy management while applied, but even to reduce emissions in urban
areas. Thus, this led the RBS to perform the load point shifting during the CS
phase with the drawbacks previously discussed, resulting in the engine average
efficiency penalization shown in Tab. 6.3. Aware of the limit of the proposed
approach and of the encouraging results here presented, future works will be
focused on reinforcing the heuristic strategy in order to improve the validity of
the energetic assessment of the A-ECMS. Numerical results are expected not to
be as positive as in the proposed case, because of the calibration of the RBS.
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Figure 6.2: Engine efficiency map with operating points for test case 3 [98].
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Nevertheless, the instantaneous optimization performed by the ECMS could still
provide benefits in terms of CO2 reduction.

Moreover, as final comments, for each test case it can be noticed that:

• the value of the SoC target evaluated by the predictive functions is high
enough to ensure pure electric driving for the whole length of the ZEZ.
In formula: 𝜉 𝑓 ,𝑍 > 𝜉min = 20%, being 𝜉min the lower threshold of the SoC
operational range of the battery, established by the manufacturer. In order
to graphically represent this condition, the minimum value of the vertical
axis of each figure has been set to 𝜉min;

• the value of the SoC at ZEZ entrance is higher than the required target SoC:
𝜉𝑖 ,𝑍 > 𝜉𝑡 .
This is true for both the strategies and thus the vehicle is able to reach the
destination of the trip in pure electric driving mode in every scenario;

• in particular, with regards to the previous condition, the A-ECMS satisfies
the global constraint expressed in Eq. (5.44), which is 𝜉𝑡 ≤ 𝜉𝑖 ,𝑍 ≤ 𝜉𝑡 + Δ𝜉𝑡 ,
where Δ𝜉𝑡 = 5%;

• the all-electric driving mode is applied during the city passage, regardless
of the strategy applied in the extra-urban sections.
Therefore, the SoC trajectories are graphically similar and the differences
between SoC values at the beginning and at the end of the ZEZ for every
strategy remain quite the same;

• the A-ECMS results to be more energy-efficient than the standard RBS.
This is true both for the raw and the corrected values of the CO2 production;

• in particular, the maximum absolute variation between the raw and the cor-
rected data is 1.9% (at TC3). Thus, the approach proposed for the correction
does not significantly affect the results, and then it can be considered reliable;

• the average engine efficiency for the A-ECMS is higher than the one for the
RBS.
In particular, it can be noticed from Tab. 6.3 that the relative advantages for
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6 – Application of the control strategies

the average engine efficiency, Δ�̄�𝐼𝐶𝐸, are much higher than the one for the
EMs, Δ�̄�𝐸𝑀 , and the ISG, Δ�̄�𝐼𝑆𝐺. This confirms that the observed benefits in
terms of carbon dioxide reduction are due to a more efficient usage of the
internal combustion engine.
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Figure 6.3: Test Case 1: a) SoC trends, b) vehicle speed [98].
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Figure 6.9: Test Case 4: a) SoC trends, b) vehicle speed [98].
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6.3 Combined Dynamic Programming

The simultaneous energy-thermal management optimization performed by
the developed dynamic programming algorithm (Section 5.7), which is the tested
strategy, is here compared to the energy and battery thermal management RBS,
as described in Section 5.1.1, Section 5.1.3, respectively.

For this purpose, the maps of the optimal control policies depending on the
state variables have been implemented in a simplified model of the supervisory
controller, thus resulting in a Model-in-the-Loop (MiL) simulator developed in
Simulink environment, as well. Nevertheless, the powertrain modeling is un-
changed with respect to the SiL one.

6.3.1 Test cases

The high-detailed MiL simulator has been used in order to investigate the
effects of DP-based control strategies both for energy (Energy-DP) and energy-
thermal management (Combined-DP). From here on, all the reported results de-
rive from the MiL, where the optimal control policies calculated with the DP
algorithm have been integrated into the controllers.

For the purpose, a simulations’ set composed of three test cases (TC) has been
conceived and collected in Tab. 6.4.

Table 6.4: Test cases [99].

For each test case, different values of ambient temperature have been simulated,
since such parameter has a high influence on the thermal behavior of the battery,
and the same driving cycle has been performed. It is represented by the Real-
Driving-Emission (RDE) located in Aachen already used and depicted in Fig. 6.1a.
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However, in this case the cycle is not inverted, and thus, for the sake of clarity,
speed and slope profiles of the cycle hereby adopted are shown in Fig. 6.11.
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Figure 6.11: Aachen RDE cycle.

The decision of choosing such reference route is still due to the more realistic
representation of a real driving mission, both for its duration and for the presence
of a road slope.

6.3.2 Results

The results for the corrected CO2 production [g/km] are listed in Tab. 6.5.
As mentioned before, the initial ambient temperature is quite an important

parameter for the simulation, since it is assumed that at the beginning of the
driving mission the temperature of the battery is equal to the environmental one.

A specific comment deserves the simulation at ambient temperature equal to
𝜗𝑎𝑚𝑏 = 10°C, where both TC2 and TC3 have no active cooling during the whole
driving mission, as confirmed by the temperature trends reported in Fig. 6.13.
Anyway, even without battery cooling the results are slightly higher than the ones
obtained at 𝜗𝑎𝑚𝑏 = 15°C. This behavior can be explained considering Fig. 3.10,
where the battery cell internal resistance is shown versus the battery temperature.
Accordingly, at low temperature the battery power losses increase, resulting in a
lower battery electrical efficiency.

In the tests with the highest ambient temperature, i.e. 𝜗𝑎𝑚𝑏 = 40°C, there are
the largest differences among the controllers. As shown in the upper portion of
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Table 6.5: CO2 production [99].

TC [°C]

10 15 20 25 30 35 40

1 235.2 237.1 238.2 239.3 243.4 242.0 254.5

2 215.0 214.1 214.9 216.4 219.2 221.7 227.4

3 214.1 213.0 212.4 212.4 213.1 217.4 220.7
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Figure 6.12: CO2 production: a) corrected values and b)relative difference [99].
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Figure 6.13: Comparison at 𝜗𝑎𝑚𝑏 = 10°C: a) battery temperature and b) battery cooling
energy consumption [99].

Fig. 6.14, the TC3 controller aims to keep the battery temperature always within
the imposed limits (𝜗 ∈ [𝜗min,𝜗max] = [0,40]°C), following the optimal control
policy calculated with the combined DP algorithm. The other two controllers,
instead, follow the rule-based approach for the thermal management. For TC1
and TC2 the main difference is the energy management implemented, that leads
to a better fuel economy in TC2 with respect to TC1.

As a consequence of the different control policy, both for the thermal and the
energy management, the electrical consumption for the battery cooling widely
changes among the test-cases.

One may assess that the fuel economy improvement at 𝜗𝑎𝑚𝑏 = 40°C of TC3
is mainly related to the fact that the battery temperature is always kept around
the upper limitation, which actually minimizes the battery cooling. Even if this
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Figure 6.14: Comparison at 𝜗𝑎𝑚𝑏 = 40°C: a) battery temperature and b) battery cooling
energy consumption [99].

objection can be considered valid, the main reason why the optimization algorithm
chooses to stay around the upper limit is again related to the characteristic of the
battery. In fact, from Fig. 3.10 it can be noticed that the higher is the battery
temperature, the lower is the internal resistance, which means less power losses.
The minimum value is then around 40°C.

In general, referring to Tab. 6.5 and Fig. 6.12, for TC3 the fuel economy gain,
with respect to the reference controller (TC1), increases with the ambient temper-
ature.

The only exception to this trend is related to ambient temperature equal to
𝜗𝑎𝑚𝑏 = 35°C. In this case, the gain is lower than the one obtained with 𝜗𝑎𝑚𝑏 = 30°C
and it is mainly related to the lower value of the global CO2 production with the
reference controller.

141



6 – Application of the control strategies

As shown in Fig. 6.15, at 𝜗𝑎𝑚𝑏 = 35°C the engine is used less than at 𝜗𝑎𝑚𝑏 =

30°C, respectively the 22.2% and the 23.2% of the mission total time, which is
6483 s. Instead, the global electrical energy usage is the same (same final state of
charge), therefore the balance between the initial and final SOC is the same for
both cases.

0

1000

2000

3000

4000

5000

0 1000 2000 3000 4000 5000 6000 7000

en
gi

n
e 

sp
ee

d
 [

rp
m

]

�me [s]

TC1 @tAmb=30°C [rpm]

TC1 @tAmb=35°C [rpm]

a)

b)

20

30

40

50

60

70

80

90

100

0 1000 2000 3000 4000 5000 6000 7000

So
C

 [
%

]

TC1 @tAmb=30°C [%]

TC1 @tAmb=35°C [%]

Figure 6.15: Comparison at 𝜗𝑎𝑚𝑏 = [30,35]°C for Test Case 1: a) battery SoC and b) engine
speed [99].

As a general comment on the obtained results, it can be said that considering
the battery temperature in the energy management and, simultaneously, manag-
ing the battery cooling circuit according to the optimal control, leads to the largest
fuel economy improvements.

Moreover, it seems also clear that the major contribution to the overall fuel
saving is given by the energy management optimization (TC2), while the thermal
management optimization contribution becomes relevant only for medium-high
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ambient temperatures.

6.4 Adaptive-ECMS implementation at the c-HiL

In this section, the predictive functions and the Adaptive-ECMS discussed in
Chapter 5 are tested at the connected-HiL, described in Chapter 4. In particular,
in this test real-time navigation data are provided by the map service provider
(MSP) via V2N connectivity and then sent to the HCU.

Since an energy assessment has been already performed in the previous sec-
tion, from which the A-ECMS resulted more energy efficient than the baseline
RBS strategy, no performance analysis will be here conducted. Moreover, as pre-
viously explained, the software of the supervisory controller modified at SiL level
with the predictive structure of Fig. 5.3 and the sub-optimal control strategy, is
seamlessly deployable in the target hardware (MicroAutoBox II) at HiL level. This
ensures the same performance of the tested control policies at both simulation
levels.

6.4.1 Issues related to on-line implementation

In this case, the only constraint to be satisfied is represented by the available
computational power of the hardware to properly run the predictive functions. In
fact, the sub-optimality of the ECMS allows this strategy to be real-time capable
without further precautions. At this point, it is worth mentioning the Dynamic
Programming, which requires all the driving mission to be known at the begin-
ning of the cycle, or at least a relevant part of it in order to effectively provide a
globally optimal control policy. Moreover, as discussed in Chapter 5.7, the numer-
ical method applied for solving the optimal control problem implies a very high
number of iterations to be performed by the backward algorithm, which would
definitely lead to the impossibility of a real-time implementation of the developed
strategy on board as it has been conceived. Thus, although the DP can be consid-
ered a valid starting point for future research activities due to the positive benefits
obtained in Section 6.2, only the A-ECMS has been tested at the connected-HiL.

In general, the recursive nature of the prediction tasks makes these algorithms
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to be particularly heavy from a computational point of view. In order to reduce as
much as possible the required computational burden, the backward vehicle model
has been properly designed with this aim. In fact, every time up-to-date navigation
data are received, the for-loop in which the vehicle model has been implemented
must perform 𝑁 iterations within a single software time step, which is equal to
𝑡𝑠 = 10 ms. Since a 1 s discretization has been chosen to avoid computational
overload and, at the same time, to provide an accurate SoC prediction (as shown
in the validation, Section 5.4.3), this means that the iterations number is equal
to the period of time required for crossing the urban area. In other words, 𝑁 =

Δ𝑡𝑍 = 𝑡 𝑓 ,𝑍 − 𝑡𝑖 ,𝑍. Thus, the longer is the urban section of the trip, the higher is the
required computational load. Nevertheless, during the debugging phase of the
predictive functions at the HiL, it has been noticed that the limited performance
of the target hardware (further detailed in [117]) led anyway to overclocking,
thus exceeding the processors computational limits. To this aim, the number of
iterations per time step of the BVM has been limited to 𝑁max = 20. Thus, if a
single prediction task cannot be completed in a single time step, i.e. 𝑁 > 𝑁max, it
is then split in ⌈𝑁/𝑁max⌉ multiple sequential sub-predictions. As a consequence,
although the whole prediction takes more time to be completed (which is equal
to 𝑡𝑝 = 𝑡𝑠 · ⌈𝑁/𝑁max⌉), with this solution the required real-time capability is
guaranteed because the computational effort is preserved well below the hardware
limit performance, while the accuracy of the prediction is not affected.

6.4.2 HiL testing with real-time navigation data

The trip shown in Fig. 6.16a, located in the Bologna metropolitan city, has been
selected for the test. In order to properly test the developed A-ECMS, and since no
zero-emission zone is currently in force in the chosen location, the one depicted
in Fig. 6.16a has been reasonably generated.

As explained in Section 3.3.4, a target speed trace is required by the driver
model to evaluate throttle and braking pedal signals. Since there is no traffic
environment simulator at the HiL that would allow the vehicle to be driven by
an independent driver, a target speed profile has been generated before the test
by means of the speed profile prediction algorithm at the c-HiL. This choice is
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Driven
Planned at key-on

(a) Overview.

(b) Particular: ZEZ.

Figure 6.16: Comparison between the driven route and the one planned at key-on.
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justified by the following reason:

• real navigation data provided by the map service provider have been used
since they are always up-to-date, and data variability is taken into account,
such as traffic flow evolving over time;

• the speed profile prediction is inherently stochastic
in fact, as explained in Section 5.3, the SPP algorithm is able to reproduce
probabilistic events such as the ones related to the traffic flow (by means of
the oscillating MAS) or the traffic lights scheduling (by means of stopover
probabilities, affected by traffic conditions, as well).

Thus, for the given scenario, the real navigation data and the resulting speed
trace for target speed generation at the c-HiL are depicted in Fig. 6.17. Even in this
case, it can be noticed that the legal speed limits represent an upper boundary
conditions for the speed profile, while intense traffic leads to MAS reductions.
The zero emission zone is represented by the green-filled box. Moreover, since
city entrance and exit positions are not provided by the MSP (because no ZEZ
exists for the given scenario), they have been calculated via intersection of the
given route with the ZEZ map boundary line, that has been temporarily stored
within the Telecommunication Control Unit (TeCU) for this purpose.

At this point, the A-ECMS testing at the c-HiL can be performed. As explained
in Section 5.4.1, the first query for navigation info to the MSP is made at the
beginning of the driving mission, i.e. at key-on (1), when the driver is supposed
to select the destination of the trip via HMI. Thus, data are requested by the TeCU
and, when received from the MSP, they are then sent to HCU via CAN bus by
means of the the Central Gateway (CG). The navigation data received by the HCU
at key-on during the test are listed in Tab. 6.6.

Differently from the data sent by the MSP (Tab. 4.1), latitudes and longitudes
of the trip are not included because they are not required inputs by the predic-
tive functions, and the slope has been calculated from altitude profile and path
coordinates by the CG during data pre-processing. These routing data received at
key-on and the predicted speed profile for the entire trip are shown in Fig. 6.18.
Compared to Fig. 6.17 and considering Fig. 6.16b, it can be noticed that a slightly
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Figure 6.17: Graphical representation of the real-time navigation data received before the
test for generating the target speed (blue).
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Figure 6.18: Graphical representation of the real-time navigation data received during
the test at key-on (first prediction) and predicted speed (blue)
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Table 6.6: Real-time navigation data received by the map service provider at key-on (first
prediction).

# speed slope segment stop event stop event
posi�on

traffic code traffic code
segment

ZEZ in/out
posi�on

[km/h] [%] [m] [-] [m] [-] [m] [m]

1 50 0 306 4 52 1 30245 27028
2 50 1 350 1 287 30245
3 50 0 1120 1 306

4 70 0 2076 2 617
5 70 1 2118 2 3944

6 70 0 3841 2 7843
7 90 0 3984 2 8896
8 70 0 4053 2 18809

9 70 -1 4146 1 19649

10 70 -2 4256 2 20676
11 70 -1 4413 1 22062

12 70 0 4661 2 22103

13 70 2 4851 2 23144
14 70 0 5164 1 23221

15 70 -2 5215 2 23844

16 70 -1 5625 2 24673
17 70 0 5869 1 24816

18 70 -1 5927 1 25438

19 70 0 6404 1 25715
20 70 3 6413 1 26006

21 70 2 6497 1 26039

22 70 1 6533 2 26491
23 70 0 6825 1 27028
24 70 -1 6850 1 27079

25 70 -2 6876 1 27768
26 70 -1 7241 1 27785
27 70 1 7538 1 27841

28 70 0 7779 1 28024
29 90 0 7889 1 28236

30 70 0 7934 1 28537
31 90 0 8752 2 28560

32 70 0 8840 1 28743
33 50 0 8972
… … … …

135 30 5 30236
136 30 -1 30245
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different, shorter trip has been defined by the MSP for the same starting and arrival
points because of the different traffic conditions between the two scenarios.

It is now possible to predict the vehicle speed and the battery SoC among the
given urban horizon. To this aim, the bit signal shown in Fig. 6.19 triggers the SPP
and BVM. Then, the Soc target is evaluated as in Eq. (5.10) by the ZEZ function
and it is fed into the A-ECMS as an input parameter. In Fig. 6.19, the charge-
blended mode of the sub-optimal strategy can be noticed, aimed at following the
reference SoC. In order to produce an effective test, since the target SoC 𝜉𝑡 is
relatively low (due to the short urban trip), the initial condition 𝜉0 < 𝜉𝑡 has been
set, analogously to the test cases TC1 and TC2 presented in Section 6.2. Even in
this scenario, the electric energy stored in the REES at the beginning of the ZEZ
is high enough to ensure the all-electric drive mode along the whole city passage
(𝜉 𝑓 ,𝑍 > 𝜉min = 20%).

In Fig. 6.19 the HCU turnaround time (TAT) is also depicted, which represents
the amount of time taken to complete a single calculation process. As it has been
anticipated, to avoid computational overflows, it shall be always 𝑡𝑡𝑎 < 𝑡𝑠 = 10
ms. As it can be seen, the nominal TAT is shown to be around 4 ms, except when
the predictive functions are triggered, resulting in computational load peaks. The
amplitude of such peaks, and thus the computational effort, reduces over time
because the SPP algorithm has to manage a lower quantity of navigation data,
since the vehicle is approaching the given destination.

Multiple predictive tasks occur when up-to-date navigation are available. This
could happen because different rerouting events are triggered by the MSP via
GPS signal, i.e. when the driver takes the wrong direction or intentionally stops
following the suggested route. In this case, the latter is manually reproduced in
order to test the robustness of the predictive functions. In fact, since no traffic sim-
ulation environment, including an independent driver, has been implemented at
the HiL, the GPS signal is generated by interpolation of the latitude and longitude
coordinates as a function of the traveled distance. These coordinates are the same
provided by the MSP for generating the trip used for target speed evaluation. Since
this trip is established before the test and it is not subjected to any modification,
it is as if the driver would follow the same driving path for the whole driving
mission. Therefore, if slightly different trips are generated by the MSP during the
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Figure 6.19: Adaptive-ECMS implementation at the connected-HiL.
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test because of the variability of real-time traffic conditions, this would result in
rerouting events. In this case, the MSP recalculates the trip with the actual GPS
position as the new starting point, while the arrival one remains unchanged. This
situation is properly handled by the supervisory controller because the SPP is able
to predict up-to-date speed traces, as shown in Fig. 6.20. For the sake of simplicity,
only the predicted speed trace for the first and the last rerouting are presented.

Since new navigation data are received every time a rerouting is performed,
up-to-date traffic codes are available, as well. As a consequence, traffic density
variation over time can be noticed during the test. At the first rerouting, no relevant
traffic density is present at the end of the trip, within the urban area (about 𝑡 = 2800
s). Considering Fig. 6.18 and Tab. 6.6, this is true for the first prediction, as well,
where the traffic code is always equal to 𝑐 = 1. However, at the last rerouting, since
a change in traffic density happened during the driving mission, the predicted
speed trace in that section is lower than the first case. This is caused by a reduction
of the reference MAS affected by the code weight 𝐶𝑊 , and then the traffic code 𝑐.
At each rerouting, the BVM is triggered, as well, and the target SoC is evaluated.
As a consequence, small variations in the latter parameter can be observed in
Fig. 6.19. They are not well appreciable because the up-to-date trip, in particular
the traffic density, has only slightly changed since the last data refreshing, without
strongly impacting the prediction.

The implementation at the connected HiL of the Adaptive-ECMS strategy for
ZEZ handling has thus been demonstrated, showing that the prediction-based
energy management functions developed during the PhD research activity can
be directly transferred on-board the vehicle. This allows to take advantage of
already available information (such as navigation data) to further improve the
efficiency of the powertrain, in particular within urban environments in which
specific limitations for air pollution reduction are in force.
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Figure 6.20: Effect of the rerouting on the speed profile prediction.
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Chapter 7

Conclusion

Hybrid electric vehicles (HEVs) are a well-established technology to face the
global warming and air pollution crisis in the transportation sector. At the same
time, the spreading of novel technologies, such as advanced driving assistance
systems (ADAS), and the availability for the vehicle to exchange data with the
surrounding environment (vehicle-to-everything) are leading the way to the con-
cept of smart mobility. It can be intended as a new way of organizing mobility, with
important social and cultural implications especially in urban contexts, where
zero-emission zones (ZEZ) have been proved to be a promising solution for re-
ducing the vehicles impact on urban air quality.

The objective of this dissertation is to provide advanced control strategies for
hybrid powertrains in order to minimize the global energy consumption of the
vehicle. The presented control policies, namely the adaptive equivalent consump-
tion minimization strategy, or adaptive-ECMS, and the dynamic programming,
lie on the concept of predictivity. In other word, the prediction of future working
conditions of the powertrain, which is the core part of this work.

In fact, with regards to the adaptive-ECMS [98], the developed supervisory
controller architecture is focused on predictive functions which rely on a backward
vehicle model which is able to reconstruct the battery state of charge behavior
over the ZEZ using navigation data. In this way, it is then possible to prepare
the vehicle from an energy management point of view through adaptive-ECMS to
ensure all-electric driving mode in urban areas. It has been shown that remarkable
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improvements in terms of CO2 reduction can be obtained, while preventing engine
emissions within city centers at the same time.

On the other hand, dynamic programming is able to provide the optimal so-
lution to the energy management problem of HEVs. With regards to the works
proposed in literature, and with the aim of enhancing HEVs control, the novel
contribution is here represented by the combined, simultaneous optimization of
vehicle energy and battery thermal management [99]. In particular, the implemen-
tation of parameters like battery temperature and battery cooling circuit control
signal led to a CO2 production lower than the one resulting not only from the
baseline rule-based strategy, but also from a dynamic programming based only
on energy optimization.

In order to develop, test and asses the energetic effectiveness of the mentioned
control strategies, simulation and testing environments have been set up during
this work. Therefore, high importance has been given to the control-oriented mod-
eling of the hybrid powertrain under test, including battery electrical and thermal
models and a realistic battery management system. With regards to the software of
the supervisory controller, already developed by the industrial partner, it has been
modified in order to implement the predictive functions and the Adaptive-ECMS,
resulting in a highly-detailed Software-in-the-Loop vehicle model. Moreover, a
Hardware-in-the-Loop (HiL) system with integrated connectivity has been pre-
sented [100]. On one hand, it provides higher flexibility due to the possibility
to test different types of predictive functions (long and short horizon). On the
other hand, it grants higher reliability, as both the hardware and the software
are the same as those implemented on the vehicle, allowing seamless functions
implementation on-board once validated at the HiL.

Future works regarding the research project carried out include the testing
of the adaptive-ECMS and the predictive function at the HiL in order to fur-
ther asses the benefits of this approach toward in-vehicle implementation, which
is a less demanding task with respect to dynamic programming since the sub-
optimal solution is inherently provided at each calculation step. In fact, in order
to overcome the high computational load required by dynamic programming, a
possible enhancement to on-board implementation could be represented by the
integration of the optimization algorithm in a model predictive control, in order to
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consider shorter horizons, being able to perform energy and thermal management
optimization in real-time, for predictive driving applications. Following improve-
ments could focus on cloud computing-based control strategies and predictive
functions in order to reduce the workload of the supervisory controller and, at
the same time, increasing the horizon of the prediction.
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