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ALMA MATER STUDIORUM-UNIVERSITÀ DI BOLOGNA

Abstract

Formulations and Metaheuristics for combinatorial optimization problems

by Carlos REY

Combinatorial optimization problems have been strongly addressed throughout his-
tory. Their study involves highly applied problems that must be solved in reason-
able times. This doctoral Thesis addresses three Operations Research problems: the
first deals with the Traveling Salesman Problem with Pickups and Delivery with
Handling cost, which was approached with two metaheuristics based on Iterated
Local Search; the results show that the proposed methods are faster and obtain good
results respect to the metaheuristics from the literature. The second problem cor-
responds to the Quadratic Multiple Knapsack Problem, and polynomial formula-
tions and relaxations are presented for new instances of the problem; in addition,
a metaheuristic and a matheuristic are proposed that are competitive with state
of the art algorithms. Finally, an Open-Pit Mining problem is approached. This
problem is solved with a parallel genetic algorithm that allows excavations using
truncated cones. Each of these problems was computationally tested with difficult
instances from the literature, obtaining good quality results in reasonable computa-
tional times, and making significant contributions to the state of the art techniques
of Operations Research.

HTTPS://WWW.UNIBO.IT/IT
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Chapter 1

Introduction

Modern Operations Research originates from the Second World War. War scenar-
ios such as aircraft redeployment, and camouflage were tasks deployed by essential
Operations Research personnel, such as Great Britain’s Army Operations Research
Group (AORG), for Normandy’s Battle [1]. Once the war ended, these personnel
adapted the knowledge obtained during that period for civil needs and later indus-
trial markets. Since then, Operations Research continues to grow in applications,
such as allocation, network optimization, routing, and planning processes [2]. Op-
erations Research is defined as a discipline that uses methods supported in mathe-
matical sciences (such as mathematical modeling or statistical analysis) that help a
decision-maker [3].

An important branch that is related to Operations Research is combinatorial op-
timization. Combinatorial optimization could be defined as a field of research that
seeks a maximum (or minimum) of an objective function within a discrete space [4].
This branch has contributed to crucial research areas such as artificial intelligence,
software engineering, and computer science. The complexity theory classifies many
combinatorial optimization problems due to their difficulty. This theory formalizes
the classification and helps to quantify the number of resources necessary to solve
them, such as time and memory [5].

There are problems of combinatorial optimization that have been widely studied
throughout history. The Traveling Salesman Problem (TSP), for example, consists of
minimizing the distance of a route, where it is necessary to visit a set of places (for
example, cities, commercial premises, among others) only once and later return to
the point of origin. This problem is classified by complexity theory as NP-Hard [6].
It has various applications in industry such as drilling of printed circuit boards [7],
overhauling gas turbine engines [8], X-Ray crystallography [9], and Vehicle Routing
[10]. A specific case of the TSP that has been widely studied in the literature is the
TSP with time windows or TSPTW; this problem consists of solving the TSP prob-
lem such that each customer has a window time in which it can be visited, therefore,
the time availability of each customer must be taken into account. Another signifi-
cant and widely studied problem is the Knapsack Problem (KP). Given a finite set of
items, each with a weight and a profit, it is necessary to select a subset of these items
so that the global weight does not exceed a specific capacity and the global profit is
maximized. This problem is classified by complexity theory as NP-Complete [11]. It
has various applications in the industry such as selection of investments and portfo-
lios [12] or selection of assets for asset-backed securitization [13].
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Solving these types of problems can impact a company’s resource allocation.
For example, a copper deposit study problem (related to knapsack constraints men-
tioned above) is necessary to get the site’s geological and geographic properties to
plan future extraction and obtain future profits. Chile is one of the leading countries
in copper exports, and the demand increases every year; by 2020, the demand in-
creased by 5.82 million tons of copper, equivalent to a year-on-year increase of 0.6%,
and by 2021, it is estimated that it will increase by 5.99 million tons [14]. Maximiz-
ing copper extraction during the mining process is vital for deposits of this type,
which must respond to a set of resource constraints over a time horizon. One prob-
lem that has been applied to real-world systems is the TSPTW; a recent extension is
the on-demand delivery service problem [15], which considers the mobility of a cus-
tomer to a delivery point, for example, Amazon Locker in the United States [16] and
UNIQL-7eleven in Japan. By solving these types of problems, the company saves
delivery times to customers without losing quality in the service time, allowing de-
livery companies to save money and generate profits at the delivery points. The
examples mentioned must be solved with approaches capable of responding to the
decision-maker’s timing, vital for Operations Research.

Optimization problems can be solved using different approaches. These are clas-
sified into two large sets: exact and heuristic. Exact methods are characterized by
finding optimal solutions, and generally solve small or medium size problems since
their computing time and required computational resource are large. Examples of
these approaches are Dynamic Programming, Branching Approaches (Branch and
Bound, Branch and Cut, and Branch and Prize), and Constrained Programming. On
the other hand, heuristics are search procedures that do not guarantee optimal solu-
tions but ,for large problems, find solutions faster than an exact approach. In 1962
a different line of research on solution methods appeared that used the evolution
of species [17] as an analogy to generate an algorithmic framework. This idea gave
way to a set of techniques known as metaheuristics.

A metaheuristic is a high-level process that helps to generate a heuristic that pro-
vides a good quality solution in reasonable computational times independently of
the problem [18]. This set of techniques has proven to be a good approach through-
out the history of Operations Research. Figure 1.1 shows a graph with some meta-
heuristics mentioned in this thesis organized according to their year of definition
(inspired by [19]). The arrows indicate the relationship between the metaheuris-
tics. The fundamental techniques are Local Search and Greedy heuristics. In 1962
the first essential evolutionary computing techniques appeared: Evolutionary Pro-
gramming [20] and Genetic Algorithms [21]. Various techniques based on Local
Search (LS) were defined during the 1980s and 1990s, such as Simulated Annealing
[22], Tabu Search [23], GRASP [24], Memetic Algorithm [25], Iterated Local Search
([26] but formally in [27]) and Variable Neighborhood Search [28]. During the 90s,
techniques such as Ant Colony Optimization [29], Particle Swarm Optimization [30]
and Genetic Programming [31] were also defined. Metaheuristics based on some of
those mentioned above have been defined in the last 25 years, such as Granular Tabu
Search [32] or Multi-Start Iterated Local Search [33].
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FIGURE 1.1: Timeline of some metaheuristics

Modeling a mathematical problem to obtain optimal solutions, or designing a
metaheuristic to find feasible solutions in reasonable times, remain challenging ac-
tivities. Operations Research makes discoveries year by year to answer real indus-
try problems or to improve the techniques mentioned above. In this way, this thesis
presents solutions for various Operations Research problems defined in recent years.

1.1 Main problems studied

1.1.1 The Traveling Salesman Problem

The Traveling Salesman Problem (TSP) has a long history in Operations Research.
There are two classifications for the TSP according to the edges: asymmetric TSP
or ATSP where the graph has edges with direction (i.e., the distance between two
customers depends on the source customer and the destination customer); and sym-
metric TSP or STSP where the graph does not have edges direction (i.e., the distance
between two customers does not depend on the origin customer and the destination
customer since both are equivalent). The most important foundations for the ATSP
were proposed by George Dantzig, Delbert Ray Fulkerson and Selmer M. Johnson
between the 1950s and 1960s, with exact approaches based on integer linear pro-
gramming models and the addition of valid inequalities (cutting plane methods).
Subsequently, other techniques for the solution of the symmetric STSP were de-
signed based on the Minimum Spanning Tree, approximate algorithms [34], and
new branch and bound and branch and cut approaches, solving instances of almost
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FIGURE 1.2: For berlin52 (to the left), the heuristic took 0.01 sec with an av-
erage percentage optimality gap of 0.00%, while for vm1084 (on the right) it
took 314.01 sec with an average percentage optimality gap of 0.0185%. The
number of nodes and the geometry have a significant impact on the com-
puting times. Also, consider that the Lin-Kernighan heuristic is not an ex-
act approach, so algorithms like Branch and Bound takes larger computing

times.

2400 cities. During the 1990 the Concorde program was developed, famous for ob-
taining optimal solutions for different large size instances. Besides, [35] publishes
the most important library of the TSP: TSPlib. This library of instances is used to
test the effectiveness of TSP algorithms and is widely recognized by the operations
research scientific community. Even this group of instances is used to test the ef-
fectiveness of the algorithms in other related problems such as the generalized TSP
(GTSP). In the year 2000 an effective implementation of the Lin-Kernighan heuristic
[36] was designed to solve large problems [37].

Formally, in the STSP, we are given G = (V, E) a complete undirected graph,
where V is a set of nodes (customers for the next explanation) such that V = {1...n}
and E is the set of edges such that E = {(i, j) : i, j ∈ V, i 6= j}: Each edge (i, j) ∈ E
has a positive and symmetric cost cij : cij = cji. The problem consists of generating a
Hamiltonian cycle, i.e. a cycle such that all nodes are considered only once.

The execution time to solve the TSP could depend on the number of cities and
their geometry. An interesting exercise to demonstrate the completeness of TSP is
randomly selecting two instances from TSPlib as berlin52 (based on the city of Berlin
with 52 cities) and vm1084 (generated by Reinelt with 1084 cities). Figure 1.2 shows
the image of two solutions to classic STSP instances: berlin52 and vm1084 using the
Lin-Kerninhan heurisitic with the same parameters for both executions [38].

Different variants for the problem have been defined. However, the variants
considered in this thesis will focus on the definition of pickup and delivery. Pickup
and Delivery problems (PDPs) are an important class of routing problem, where
a finite amount of commodities (called demand) is associated with each customer.
The customer’s demand can be classified in the pickup, where the vehicle must load
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the customer’s demand, and delivery, where the vehicle must unload the customer’s
demand. Finally, a transport vehicle with a previously defined capacity, is associated
with the route. The restrictions for this type of problem are:

• All pickup and delivery requests must be satisfied.

• No transshipments of commodities are made at customers.

• The vehicle must not exceed its capacity.

• The initial node, called depot, has a pickup unit d = 0.

The classification of the PDPs was defined in-depth in [39], and extended for
the VRP in [40]. The categories are based on three main aspects: structure, visits,
and vehicles. For the structure, the origin and destination of the commodities are
defined:

• Many to many (MM): Any customer can serve as an origin or destination for
any commodity.

• One-to-many-to-one problems (1-M-1): the commodities are initially available
at the depot and are transported to the customers. In addition, commodities
available at the customers are transported to the depot.

• One-to-one (1-1) problem, each commodity has specific origin and destination.

On the other hand, visits can be classified according to the way the pickup and de-
livery process is carried out:

• PD indicates that each customer must be visited (mandatory) only once for
pickup and delivery combinations.

• P-D indicates that each costumer can be visited more than once to satisfy the
pickup and delivery combination.

• P/D, when only one type of commodity must be satisfied (i.e., either pickup
or delivery for each customer, not both).

Finally, vehicles relate to the number of vehicles used in operation. For the TSP, this
last classification does not apply since only one vehicle must be used. Consequently,
the P-D classification cannot be applied to a Hamiltonian cycle with a single vehicle.
The exceptions mentioned above can be applied to different variants of the VRP (see
in-depth [41]).

Aim of this Thesis: A problem defined in recent years is the Traveling Sales-
man Problem with Simultaneous Pickup and Delivery and Handling Cost TSPPD-
H, [42]). This problem falls precisely in the definition of PD and 1-M-1 ([1-M-1 | PD
| 1] for the general classification). This thesis defines in detail the problem and two
metaheuristic approaches in Chapter 2: an ILS with a dynamic local search based
on the frequency of use, and a granular version of the ILS (GILS). Computational
experiments on instances of the literature will be presented.
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1.1.2 The Knapsack Problem

Another problem studied is the Knapsack Problem (KP). Given a set N of items,
each one associated with a profit pi and weight wi∀i ∈ N, and given a knapsack
of capacity C, the KP problem consists of selecting a set of items such that the to-
tal profit is maximized and the total weight does not exceed C. In [43] affirm that
this problem is widely studied due to 3 reasons: KP can be considered as one of
the simplest problems of Integer Linear Programming; it appears as a subproblem
in many more complex problems; it represents many practical situations. Essential
foundations for the problem were presented by Bellman in the 1950s, designing a
dynamic programming algorithm, and by Danzing in 1957 proposing a continuous
relaxation. Subsequently, new approaches or improvements of Dynamic Program-
ming were designed [44], branch and bound [45], approximate algorithms [46, 47],
Lagrangian relaxations [48]. Variants of the KP and related problems are widely
described in the book "Knapsack problems: algorithms and computer implementa-
tions" by [49]. This last book is considered one of the most important ones written
on the problem (over 5000 citations according to Google Scholar). It continues to be
an important reading in the Operations Research courses. Another important book
for the study of knapsack is presented at [50].

Although different approaches have solved KPs with good results, the problem
remains a challenge. Indeed, depending on the correlation between the weight and
the profit of each item, the problem may take longer to resolve [51]. Dynamic pro-
gramming methods guarantee to find optimal solutions in pseudo-polynomial times
in the worst case and is used to solve KP instances mixing constructive and destruc-
tive heuristics [52].

KP has a broadly defined set of variations and related problems. One of them is
the Multiple Knapsack Problem (MKP), where more than one knapsack with a de-
fined capacity are considered. Another problem is the Quadratic Knapsack problem
(QKP, [53]), which consists of maximizing a linear objective function (called linear
profit, associated with the selection of an item) and a quadratic objective function
(called quadratic profit, related to the choice of a pair of items). QKP applications
found in telecommunication [54] and location problems [55].

Aim of this Thesis: The Quadratic Multiple Knapsack Problem (QMKP, [56]) is an
extension of the two previous described problems (and it is detailed in the chapters
3). Several approaches are presented in order to solve this problem: Polynomial-size
formulations and relaxations, a matheuristic approach, and a multi-start iterated
local search metaheuristic.

1.1.3 The Open-Pit Mine Production Scheduling Problem

Within the mining systems, Operations Research has aided the extraction planning,
determining where to extract and when to extract. For this reasons, the economic
potential that a study of the mine should consider (shape, size) and also the associ-
ated resources (roads, vehicles, excavators, among others) must be evaluated. In this
way, a preliminary study must be carried out to obtain the properties of the mine.

The mine is modeled in small blocks or three-dimensional segments with differ-
ent properties (ore or trash) to obtain planning [57]. Generally, deeper blocks must
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be removed respecting to the precedence restriction of the blocks and have a higher
cost (or a positive cost). In contrast, blocks on the surface are removed at a nega-
tive cost. An example of a block model is shown in Figure 1.3. The yellow blocks
(B={D, E, F, G, H, I}) must be removed since they have a higher profit. However, the
precedence restriction must be respected, i.e., the brown blocks must first removed
from the previous levels (B={A, B, C}) with negative cost.

FIGURE 1.3: Example with the three-dimensional blocks

The Open-Pit Mine Production Scheduling Problem (OPMPSP) consists of schedul-
ing the extraction of a mineral deposit divided into several smaller segments or
blocks so as to maximize the Net Present Value (NPV) of the mine [58]. Let T be
the set of periods, B the set of blocks, Bb′ ⊂ B the set of blocks preceding block b′, R
the set of resources, the model is described as follows:

max ∑
b∈B

∑
t∈T

pbtxbt (1.1)

s.t.
∑
s≤t

xbs ≤ ∑
s≤t

xb′s ∀ b ∈ B, b′ ∈ Bb, t ∈ T; (1.2)

∑
t∈T

xbt ≤ 1 ∀ b ∈ B; (1.3)

Lrt ≤ ∑
b∈B

qbrxbt ≤ Urt ∀ t ∈ T, r ∈ R; (1.4)

xbt ∈ ¸{0, 1} ∀ b ∈ B, t ∈ T; (1.5)

The problem must maximize a pre-calculated profit pbt associated with a block
extracted in period t (1.1) using a binary decision variable xbt (1.5). The variable xbt
is 1 if the block b ∈ B is extracted in the period t ∈ T, and 0 in case the block is not
extracted. Constraints 1.2 consider the restriction of maintaining the precedence of
the blocks, i.e. to extract block b, the preceding blocks of b (Bb) must be extracted
in the same period in or a previous period. Constraints 1.3 indicate that one block
must be mined only once in a single period. Finally, Constraints 1.4 are the resource
constraints (for example, mine capacity or processing capacity), so the resource use



8 Chapter 1. Introduction

is associated with a block and a resource qbr. In this way, the sum of the resources
extracted in period t is between Lrt and Urt.

Aim of this Thesis: In this thesis, a variant of the OPMPSP, which is called Con-
strained Pit Limit Problem with Phases or CPIT-P is presented. The problem was
solved by a means of parallel genetic algorithm (PGA) based on the master-slave
approach which is applied it to well-known instances from the literature. It is shown
that the proposed algorithm can find reasonable solutions compared to previously
known results for these instances.

1.2 Overview

The problems described above were approached with different techniques and pre-
sented at conferences (or accepted in journals). Table 1.1 shows a summary of the
most important works of the doctoral process. Each work has the title with which it
was presented, the acronym of the associated problem, the type of approach used,
the associated chapter of the document, the conference (or the journal) related to the
work. Describing in detail:

• "An Iterated Local Search for the Traveling Salesman Problem with Pickup,
Delivery and Handling Costs" was presented at the 39th International Confer-
ence of the Chilean Computer Science Society. An article was indexed in IEEE
in November 2020 in Chile

• "A Granular approach for the Traveling Salesman Problem with Pickup, De-
livery and Handling Costs" was presented at the International Conference on
Optimization and Decision Science (ODS) in November 2020 in Italy.

• "Polynomial-size formulations and relaxations for the quadratic multiple knap-
sack problem" is has been published in the European Journal of Operational
Research [59].

• "Matheuristic Algorithms for the Quadratic Multiple Knapsack Problem" has
been presented at the 31st European Conference on Operational Research (EURO)
in Athens, July 2021.

• "Lagrangian heuristics for the Quadratic Multiple Knapsack Problem" has been
presented at the 34th Conference of the European Chapter on Combinatorial
Optimization (ECCO), Madrid, June 2021.

• "Open pit mining with truncated cones by a parallel genetic algorithm" was
presented at IFORS 2021, and that was the internship period carried out in
Santiago-Chile (3 months).
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Chapter 2

Iterated Local Search Algorithms
for the TSPPD-H

2.1 Introduction

Routing problems with pickup and delivery have been widely studied. The single
vehicle routing problem with pickups and deliveries (SVPDP-P&D), for instance, is
an NP-hard problem, which implies designing a minimum cost Hamiltonian tour
for a specific capacitated vehicle. Each customer may be visited once for simultane-
ous pickup and delivery of commodities, or twice if these operations are performed
separately, applying reverse logistics [39].

A special case of SVPDP-P&D is the Traveling Salesman Problem with Pickups,
Deliveries, and Handling Costs (TSPPD-H). Given G = (V, A) a non-directed, com-
plete graph, where V = {0, 1, ..., n} is the set of vertices, and A the set of arcs; ver-
tex 0 represents the depot and vertices Vc = V/{0} are the customers. Each arc
(i, j) ∈ A is related to a travel time cij, and each customer i ∈ Vc is related to αi deliv-
ery commodity units and βi pickup commodity units. In this problem, we assume
that both commodities have the same dimension. The cost of loading/unloading
a pickup commodity unit is ha, and the cost of loading/unloading a delivery com-
modity unit is hb. The capacity of the vehicle is Q, a last in, first out (LIFO) loading
policy is applied. TSPPD-H requires to determine a Hamiltonian tour satisfying the
capacity constraint and minimizing a global cost given by the sum of the tour cost
and the handling cost related to the loading/unloading operations performed at the
customers. TSPPD-H has several applications: Delivery of full bottles and pickup
of empty bottles [60, 61], pickup and delivery of damaged and working bicycles in
public spaces [42], pickup and delivery of new and broken machinery from hospitals
for specific suppliers.

In [42] defined three essential policies for TSPPD-H. As the internal vehicle flow
follows a LIFO loading policy, there is an obstruction between delivery or pickup
units. If we suppose that the vehicle is a stack data structure, the beginning being
the top, and the front the final part, Policy 1 always maintains pickup units at the
top and delivery units in the final part. Therefore, it is always necessary to load
pickup units every time a customer is visited. Policy 2, on the other hand, always
maintains delivery units at the top and pickup units in the final part. Therefore, it
is always necessary to load delivery units every time a customer is visited. Policy
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3 requires determining the specific position of delivery or pickup units at each visit
to a customer. That is, the position of pickup/delivery commodities at the top or
final part of the vehicle must be decided. Thus, the handling costs are defined as the
additional cost for loading delivery or pickup commodity units.

Several methods regarding TSPPD-H have been developed. In [42] presented
the problem and propose three linear programming models for the three defined
policies, and solve them with two exact algorithms, a Branch & Cut, and a Ben-
ders Decomposition [62] considering up to 25 customers. Clearly, it was necessary
to generate new approaches to solve larger problems. The policies used in [42] are
also studied in [63], where two approaches are defined in order to get the handling
cost: a dynamic programming algorithm with complexity O(n2) for computing a
route; the second algorithm is a heuristic approach with complexity O(n), that al-
lows to identify whether a route is promising or not. Furthermore, [63] presented
three metaheuristics for TSPPD-H, an Iterated Local Search (ILS, [27]), a Tabu Search
[64], and an Iterated Tabu Search based on the first two approaches. The main aim
of their paper is to compare the three metaheuristics and the handling cost algo-
rithms. Thus, similar termination criteria were defined, maintaining the simple al-
gorithms. Recently, [65] defined a version with several routes and vehicles (VRP –
Vehicle Routing Problem), solving the instances of TSPPD-H proposed by [63] with
an Adaptive Large Neighborhood Search (ALNS, [66]), finding new best known so-
lutions (BKS). However, the large-scale instances are solved in 7 hours with the DP
approach and in 30 minutes with the heuristic approach.

A new approach based on ILS can be applied. As a matter of fact, considering
fluctuations on the elementary procedures of an ILS would contribute to explore
new solution spaces for TSPPD-H. In this chapter an ILS with the Granular version
for TSPPD-H is presented. This algorithm proposes a roulette wheel method for
the perturbation and a frequency-based local search procedure. In section 2.2, a
variation of the handling cost algorithm for the local search is described. Section 2.3
details a new ILS for TSPPD-H, called ILS-F. In section 2.4 the granular version of
the ILS-F, called GILS, is presented. Section 2.5 reports computational results and
Section 2.6 presents our conclusions and future directions. A preliminary version of
this ILS metaheuristic has been presented in [67].

2.2 The Handling Cost

In the TSPPD-H, for each vehicle it is necessary to analyze the handling cost at each
customer and to consider that the commodities follow a LIFO policy, i.e., the last
commodity that enters the vehicle must be the first to be unloaded. In this way, each
time a customer is visited, an additional time is spent for the loading and unloading
management on the vehicle, and this time must be considered in the global cost
function.

The formulation of the handling cost was proposed in [42]. The handling cost
depends on the additional operations that must be performed for unloading and
reloading one unit of commodity at a customer location. The optimal solution of the
TSPPD-H is then a Hamiltonian circuit on G that minimizes the sum of the cost of
the total travel time and of the additional operation times.
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FIGURE 2.1: A Handling Cost example for delivery and pickup of
oxygen tank between hospitals.

Figure 2.1 shows an example of the handling cost concept applied to oxygen tank
supply vehicles for hospitals. We assume that the cost ha and hb are both equal to
1. For this case, there are two identical sub-routes with hospitals i, j, k, and the load
management must be carried out for hospitals j and k. Empty oxygen tanks inside
the vehicle are represented in white tanks and must be collected from each hospital.
Full oxygen tanks are gray and must be delivered to each hospital. For routes a)
and b), when the vehicle goes the hospital i to hospital j, it has four empty oxygen
tanks at the beginning of the vehicle, five full oxygen tanks in the middle of the
vehicle, and three empty oxygen tanks at the end of the vehicle. When the vehicle
arrives at hospital j, pickups and delivery operations must be performed; for this
example, hospital j has a delivery equal to 2 and a pickup equal to 1 unit. In this
way, considering the current state of the vehicle, we could consider two policies:

• Route a):

– Unload from the beginning of the vehicle four empty oxygen tanks.

– Deliver two full oxygen tanks of the current load to satisfy the demand in
j.

– Reload at the beginning of the vehicle the four empty tanks previously
unloaded.

– Pickup at the beginning of the vehicle the empty tank corresponding to
the demand of j.

• Route b):

– Unload from the beginning of the vehicle four empty oxygen tanks.

– Deliver two full oxygen tanks of the current load to satisfy the demand in
j.
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– Unload from the beginning of the vehicle the three remaining full oxygen
tanks.

– Reload at the beginning of the vehicle the four empty tanks previously
unloaded.

– Pickup at the beginning of the vehicle the empty tank corresponding to
the demand of j.

– Reload at the beginning of the vehicle the three full oxygen tanks previ-
ously unloaded.

For route a) in hospital j, an additional handling cost is generated for pickup
commodities (CostP) equal to four, since four empty oxygen tanks must be unload.
In contrast, the additional cost for delivery commodities (CostD) is not generated,
since only one full oxygen tank was unloaded corresponding to the demand of the
hospital j, and there are no additional costs related to the commodities. For route
b) in hospital j, an additional handling cost equal to four is generated for pickup
commodities, since four empty oxygen tanks must be unload. On the other hand, the
additional cost for delivery commodities is three since three additional full oxygen
tanks are unloaded and must be reloaded into the vehicle. Observe, that the vehicle’s
state after leaving hospital j is different for each route. The handling cost of hospital
j for route a) is 4 (CostP + CostD = 4 + 0 = 4), while for route b) the handling cost
is 7 (CostP + CostD = 4 + 3 =7). In conclusion, more additional movements were
made on route b).

The vehicle must continue its the route and arrive at the hospital k . At this point,
routes a) and routes b) have different additional handling costs since the vehicle’s
state that arrives from hospital j impacts the load management cost. For route a),
the vehicle must unload five empty oxygen tanks that are carried over from hospital
j, unload three full oxygen tanks corresponding to the demand of hospital k, and
finally reload the five empty oxygen tanks initially unloaded plus the empty tank
corresponding to the demand of hospital k. In this case, the additional handling cost
at hospital k is 5, and the global handling cost for this subroute is 9. For route b),
the vehicle must only unload three full oxygen tanks and upload one empty oxygen
tank, both corresponding to the demand of hospital k. For this stop, no additional
costs are generated, and the final handling cost for this sub-route is 7.

The handling cost value depends on each decision made along the route. For
the previous example, it is assumed that the vehicle’s state when it leaves hospital i
is the same for routes a) and b). However, this is not necessarily the case since the
accumulated handling cost depends on the additional costs generated by previous
customers. In this way, a route can have many associated handling costs. In [63]
proposed the first approaches in order to get the additional handling cost. The first
is a quadratic time dynamic programming (DP) algorithm, and the second is a linear
time heuristic algorithm. The DP algorithm is an approach that can be improved
and adapted for heuristic search moves. The following sections describe the DP
algorithm and its improvements.

2.2.1 Dynamic programming algorithm

The two most important processes of the algorithm are the following:
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• Recursive formulation: Given a Hamiltonian route with i and j the customer
indexes along the route, hc(i) is the optimal handling cost between customers
i + 1 to n with policy 2 applied to customer i. Also, pij is the handling cost
associated with applying policy 1 between customers i + 1 to j− 1. For policy
2 to customer j, a recursive formulation of dynamic programming is as follows:

(DP); hc(i) = min
j∈{i+1,n}

{pij + hc(j)}, ∀i ∈ {0, ..., n− 1} (2.1)

hc(n) = 0 (2.2)

Remember that i and j are customer indexes along a previously defined route
and that the termination condition of the DP algorithm is n with handling
cost equal to 0. Generate matrix p: In order to generate the matrix elements
pij, ∀i, j ∈ {1, ..., n} three state variables are used:

– α′ as the number of delivery units onboard the vehicle.

– β′ as the number of pickup units onboard the vehicle.

– θ as the accumulated cost of applying policy 1.

Algorithm 1 shows the procedure to calculate the matrix p and the execution of
the dynamic programming algorithm. The state variables α′, β′, and θ are initialized
within the main loop (lines 3,4, and 5). Between lines 9 to 20, the values of the matrix
elements pi,j are calculated as follows:

• The state variable α′ is updated, containing the remaining delivery units for
the future customers. All delivery units corresponding to customer demand j
are unloaded regardless of the policy (line 10).

• The algorithm checks if the customer j has pickup units demand and if the ve-
hicle has pickup units on board from other customers. If the global number of
pickup units units (β′ + β j) is greater than 0, pij is set equal to the accumulated
cost of applying policy 1 up to this customer of the route plus the cost of the
management associated to the units onboard the vehicle (pickup and deliv-
ery). If the sum β′ + β j is equal to 0, pij is equivalent to the accumulated cost
of applying policy 1.

• If the delivery request of the customer j is greater than 0, the state variable θ is
updated.

• Finally, the state variable β′ is updated as if policy 1 were used.

Note that each external for-loop has complexity O(n2). In [63] stated that, when
using this algorithm within heuristic search moves, the complexity can reach O(n4).
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Algorithm 1 DP algorithm by [63]
Input: α,β,ha,hb
Output: hc0 (Optimal Value)

1: // Generating p
2: for i = 0 to n− 1 do
3: β′ = 0
4: θ = 0
5: α′ = α0
6: for j = 1 to i do
7: α′ = α′ − αj
8: end for
9: for j = i + 1 to n do

10: α′ = α′ − αj
11: if β′ + β j > 0 then
12: pi,j = θ + (ha*α′) + (hb*β′)
13: else
14: pi,j = θ
15: end if
16: if αj > 0 then
17: θ = θ + (hb ∗ β′)
18: end if
19: β′ = β′ + β j
20: end for
21: end for
22: // DP procedure
23: hc(n) = 0
24: for i = n− 1 to 0 do
25: for j = i + 1 to n do
26: if hc(i) > pij + hc(j) then
27: hc(i) = pij + hc(j)
28: end if
29: end for
30: end for
31: return hc(0)

FIGURE 2.2: Final matrix p for the TSPPD-H using DP.
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An example of the handling cost calculation is shown in Figure 2.2. At the bottom
of the figure, a route with four customers and the depot with simultaneous pickup
and delivery requirements is presented. To apply the exact approach, input data
must be precalculated α = {α0, 4, 4, 2, 2} and β = {b0, 6, 4, 5, 1} with α0 = ∑i∈Vc

αi =
12 and b0 = ∑i∈Vc

βi = 16. Considering this example with ha = hb = 1, the output
matrix p generated by Algorithm 1 is shown at the top of the figure.

With the matrix p and its candidate handling cost values, a recursive tree is gen-
erated and shown in Figure 2.3. Note that each value hc(i) requires the values hcj
hj ∀ j ∈ {i + 1, ..., n} with h(n) = 0. For each operation, the minimum value is
selected, which defines the definitive handling cost value for the route between the
depot and each customer (colored boxes). Finally, an output vector hc = {8, 8, 6, 2, 0}
is generated and the optimal value of handling cost is hc(0) = 8.

FIGURE 2.3: Recursive Tree of DP Approach.
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2.2.2 Improved DP Algorithm

The original DP algorithm from [63] can be adapted in order to be used for local
search methods. It should be noted that the improvement to the algorithm does not
change the value and logic of the process; it only decreases the execution time. We
show an example of this improvement using Figure 2.4. The handling cost vector is
calculated as exemplified in the recursive tree of Figure 2.3.

Note that the value of each handling cost depends on its predecessor. In this way,
original values of vector hc and matrix p can be maintained during a local search in-
dependently of the type of movement. For the example above, customers 1 and 2
could be swapped. However, the rest of the route maintains the handling costs cal-
culated with the previous values of hc and p. As some initial arcs of the original
route are changed, some rows of matrix p must be recalculated, and also some new
values for vector hc must be recalculated. This principle allows to generate an im-
provement on the DP algorithm previously described. Figure 2.5 shows the details
of this movement.

FIGURE 2.4: Orig-
inal route.

FIGURE 2.5:
New route with
improvement

(red)
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Algorithm 2 DP algorithm for Local Search
Input: α,β,ha,hb,costCurrent, costRoute, limit, hc
Output: hc0+ costRoute

1: for i = limit to 0 do
2: β′ = 0
3: θ = 0
4: α′ = α0
5: for j = 1 to i do
6: α′ = α′ − αj
7: end for
8: for j = i + 1 to n do
9: α’ = α’ - αj

10: if β’ + β j > 0 then
11: pi,j = θ + (ha*α’) + (hb*β’)
12: else
13: pi,j = θ
14: end if
15: if αj > 0 then
16: θ = θ + (hb ∗ β′)
17: end if
18: β′ = β′ + β j
19: end for
20: min = ∞
21: //DP starts from route change
22: for k = i + 1 to n do
23: if min > hc(k) + pi,k then
24: min = hc(k) + pi,k
25: end if
26: end for
27: //If the current value has not decreased from the original path
28: if costCurrent < (costRoute + min) then
29: return costCurrent
30: else
31: hc(i) = min
32: end if
33: end for
34: return hc(0)+ costRoute

Algorithm 2 shows the details of the improvement. This process has new input
parameters: costCurrent is the current cost of the original tour corresponding to the
sum of the cost of the original tour and of the optimal handling cost of the original
tour; costRoute is the cost of the tour applying the movements to the original tour;
limit is an integer parameter defining the initial customer to be considered; and hc
is the current vector of handling costs of the original tour. Note that the core of
the algorithm (lines 2-19) is not changed but the considered customers depend on
the value of limit. Then, for each considered customer (row) i, the DP routines are
applied (lines 20 -26). Finally, a boundary condition for the algorithm is applied, for
which the cost of the route costRoute is added to the handling cost on the customer
i (min, line 28). If this value is less than the original cost costCurrent, the algorithm
cut the execution and continues with another movement (returning costCurrent);
otherwise, the algorithm continues calculating the optimal handling cost.

This algorithm will be used to calculate the handling costs, within the procedures
defined for the ILS algorithm. In the next section, the metaheuristics will be defined
in more details.
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2.3 The Iterated Local Search Algorithm

2.3.1 Existing algorithm

Algorithm 3 ILS by [63]
Input: s0, Nrand , Niter ,
Output: bestSolution

1: costCurrent = cost(s0)
2: bestSolution = s0
3: for i = 1 to Niter do
4: Tour = bestSolution

Perturbation :
5: for r = 1 to Nrand do
6: j, k=RandomNumber(1,|Vc|)
7: if (j == k) then
8: p =RandomNumber(1,|Vc|) / p 6= j
9: Tour = Relocate(Tour,j,p)

10: else
11: Tour = Reverse(Tour,j+1,k)
12: end if
13: end for

Local Search :
14: while improvement do
15: Tour = Relocate(Tour)
16: Tour = 2-Opt(Tour)
17: end while
18: if (cost(Tour) < costCurrent) then
19: costCurrent = cost(Tour)
20: bestSolution = Tour
21: end if
22: end for
23: return bestSolution

The Iterated Local Search approach (ILS) was introduced by [27] and has been
used for several routing problems related to TSP [68–70]. Algorithm 3 shows an
ILS pseudocode designed in [63]: the algorithm receives an initial solution s0 gen-
erated by the Symmetric TSP software Concorde [71], a number Nrand of iterations
of perturbation and a number Niter of iterations of ILS. The variable costCurrent is
initialized with the cost of the initial solution s0, and the best route or bestSolution is
initialized with the solution s0 (lines 1 and 2). Later, within the internal cycle of the
ILS, two random numbers, j and k are generated. If j = k, a new random number p
(with p 6= j) is generated and the customer j is relocated in position p; otherwise, a
reverse function between the customers j + 1 and k is applied. Then, the 2-Opt [72]
and Relocate improve heuristics are used on the perturbed route until no further
improvement is found.

Relocate and Reverse moves are considered in the perturbation. Figure 2.6 shows
an original route (with indices from 1 to 7 representing the sequence of its cus-
tomers), and three random perturbation moves: Swap(i, j) moves the customer from
position i to position j and vice versa, Relocate(i, j), which moves the customer from
position i to position j, and Reverse(i, j) which changes a direction subroute (sub-
route between i, j). The moves considered in the ILS by [63] are Relocate and Re-
verse. Swap is considered by the new metaheuristics detailed in 2.3.3.
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FIGURE 2.6: Perturbation moves

The previous algorithm can be used to define a new ILS. To do so, the two defined
procedures must be taken into account.

2.3.2 Iterated Local Search using Frequency (ILS-F)

A new ILS called ILS-F is introduced to solve the TSPPD-H. The new approach con-
siders new procedures that improve the performance of the metaheuristics and that
are different from those used in the ILS of [63]:

• It is possible to generate an initial feasible solution using a framework that
solves the TSP with Pickups and Delivery. Although Concorde can find good
initial solutions for the TSP, it does not consider the demands of the customers,
which are vital for the proper management of the handling costs.

• This initial solution can be improved by a local search based on the best neigh-
borhood approach (called GreedyBasedLS).

• Subsequently, a perturbation based on a not crooked roulette (called Roulet-
tePerturbation) can be applied. In this process, the perturbation must select a
random movement without preference among a set of possible movements.

• A local search based on the frequency of use (called Local search with fre-
quency or LSF) can be applied. This adaptive local search allows to improve
the performance of a search. To do this, the algorithm considers whether a
neighborhood improves the current solution; if this is true, the neighborhood
increases its probability to be executed in the next search iteration.

• An acceptance criterion can be applied based on the Simulated Annealing ap-
proach. This criterion allows us to accept solutions that do not improve the
objective function but can allow us to escape from local optima.

Note that the higher-level components listed above are not part of a standard
ILS. ILS-F tries to guide the search with the same initial solution, not randomly per-
turbing it as done in the ILS from [63]. For ILS-F, a local search based on the best
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neighborhood is used, and a local search executes the best moves using frequency.
Algorithm 4 shows the pseudocode of ILS-F.

Algorithm 4 ILS-F: Main Scheme

Input: Data, NitrL , Nper, Niter,ε,t0
Output: sb

1: s0 = LKH(Data)
2: s∗ = GreedyBasedLS(s0)
3: t = t0
4: sb = s∗
5: costS∗ = costSb = cost(s∗)
6: f ls = equivalentFrequency()
7: historyval = ∅
8: for it = 1 to Niter do
9: s+ = RoulettePerturbation(s∗, historyval , Nper)

10: (s++, f ls) = LSF(s+, f ls, NitrL)
11: if (cost(s++) < costSb) then
12: sb = s∗ = s++

13: costSb = costS∗ = cost(s++)
14: historyval = ∅
15: historyval .enqueue(costSb)
16: f ls = equivalentFrequency()
17: t = t0
18: else if (cost(s++) < costS∗||A(cost(s++), costS∗, t, ε)) then
19: s∗ = s++

20: costS∗ = cost(s++)
21: t = max(t ∗ ε, 0)
22: else
23: t = max(t ∗ ε, 0)
24: end if
25: end for
26: return sb

ILS-F receives several input parameters for its execution and initial processing.
The instance data (Data), the number of iterations NitrL for the LSF, the number of
iterations Nper for the perturbation, the corresponding number Niter of iterations of
the main loop, ε the value t0 used for the acceptance criterion based on a cooling con-
figuration in the decreasing variable t that is explained in detail in section 2.3.6. The
initial solution s0 is generated by the Lin-Kernighan TSP heuristic (LKH), version
2.0.9 [37]. Then, a GreedyBasedLS is performed, obtaining a solution s∗, which will be
the current search solution. After that, the variables to be used in the main loop are
updated: sb represents the best known solution and costS∗ and costSb are the cost of
the solution s∗ and sb respectively. The variable f ls (line 6) is a triple of pairs of the
form (< 2−Opt, δ >,< Relocate, ζ >,< Swap, η >)/δ, ζ, η ∈ [0, 1], δ + ζ + η = 1,
where δ, ζ and η are the frequencies of moves "2-Opt", "Relocate" and "Swap", re-
spectively (see section 2.3.4). Initially the three moves have equivalent frequencies
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(δ = 1/3, ζ = 1/3, η = 1/3). Finally, the variable historyval is a queue structure that
saves the values of the target function (pair < TSPcost, HandlingCost >) generated
by the perturbation.

The main loop contains the perturbation and local search procedures defined for
ILS-F. RoulettePerturbation uses the current solution and generates a new neighbor-
ing solution s+ in a number Nper of iterations. Subsequently, the routine local search
with frequency LSF is used, which performs two main processes: LSF improves the
perturbation solution s+ by generating s++, and it also updates the variable f ls with
new frequencies for the following search process. The new current solution may be
accepted under three criteria:

• If the solution is the best from the search: All search variables are updated and
the variable f ls, the variable historyval , and the variable t are reset (lines 12-17).

• If a local optimum is found or an acceptance criterion is fulfilled (section 2.3.6,
A function). Only the variables storing the current search solutions are up-
dated (line 18-21).

A flow-chart of the algorithm is shown in Figure 2.7.

2.3.3 Roulette Perturbation

The RoulettePerturbation algorithm makes random perturbations using three moves.
Algorithm 5 details the process and receives a solution s∗, a queue with the values
from the last perturbations historyval and the number Nper of iterations for pertur-
bation. The internal loop randomly performs 3 types of moves: Reverse, reverting a
sub-route between positions j + 1 and k; Relocate, selecting a customer j and putting
it on position k, and Swap, exchanging the customer in position j with that in posi-
tion k. It is worth noting that the number of moves made by the internal loop only
depends on Nper. Once the random moves are applied, it is verified that the route
cost and the handling cost from sper are not contained within the variable historyval .
The process behind this verification is based on the pair < TSPcost, HandlingCost >
having a high chance of being unique data for a route, i.e., a route generates a route
cost and a handling cost unique to both together. Thus, routes containing both costs
in historyval are avoided for not applying a redundant local search. If the route is
valid, the first pair input to historyval (the oldest one on queue) is removed, and
the new perturbation route is returned. Otherwise, the internal algorithm loop is
executed again until a valid perturbation is found.
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FIGURE 2.7: FlowChart of the ILS-F
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Algorithm 5 RoulettePerturbation

Input: s∗,historyval , Nper,
Output: s+

1: s+ = s∗
2: ValidPerturbation = False
3: while (ValidPerturbation==False) do
4: sper = s∗
5: for i = 1 to Nper do
6: per = RandomRoulette(1, 2, 3)
7: (j, k) = RandomUni f orm(1, n) / j < k
8: if (per == 1) then
9: sper = Reverse(sper,j+1,k)

10: else if (per == 2) then
11: sper = Relocate(sper,j,k)
12: else if (per == 3) then
13: sper = Swap(sper,j,k)
14: end if
15: end for
16: if (costTSP(sper), costHC(sper) /∈ historyval) then
17: ValidPerturbation = True
18: s+ = sper
19: end if
20: end while
21: historyval .dequeue()
22: return s+

2.3.4 Elementary Heuristics

Given a route to apply a move, three heuristics may be described for TSPPD-H:
Relocate, 2-Opt, and Swap. Relocate implies the best relocation of a single customer
during the route, therefore, the number of possible relocations is |Vc| ∗ (|Vc| − 1). The
move 2-Opt removes two arcs from the route and replaces them with two other arcs,
thus, a single enhanced Hamiltonian cycle is formed, and the number of possible
moves in this neighborhood is ((|Vc|+ 1) ∗ (|Vc| − 2))/2. Swap consists of finding
the best exchange of positions for two customers in the route, therefore, the number
of exchange moves in each neighborhood is |Vc| ∗ (|Vc| − 1)/2. For our ILS-F, each
heuristic is executed until the first improvement is found, i.e., the total number of
possible neighborhoods is only executed in a worst-case scenario.

The effectiveness study made in [63] suggests that it is better to use two of the
three described heuristics. As a matter of fact, for this problem, Relocate and 2-Opt
were the best among three considered heuristics. In this way, two neighborhoods
are used in the metaheuristics of [63] and one (i.e. Swap) is completely discarded.

However, for the procedure LSF (described in section 2.3.5), we consider all three
heuristic but, only two are performed during the local intensification search, and the
third one is executed only when there is no possibility of improving the current
solution. The two best moves are defined based on their use frequency during the
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searching. Our hypothesis is based on the effectiveness of the heuristics depending
on the structure of the instance, given by the travel time between the customers, the
commodities on-board, the commodities not on-board. Now, the use of the heuristics
within the local search is explained.

2.3.5 Local search methods

Algorithm 6 GreedyBasedLS
Input: s0
Output: s∗

1: s∗ = s0
2: costS∗ = cost(s0)
3: improve = True
4: while (improve==True) do
5: sδ = 2−OptHeu(s∗)
6: sζ = RelocateHeu(s∗)
7: sη = SwapHeu(s∗)
8: cost f = min(cost(sδ), cost(sζ ), cost(sη))

9: bestroute = best(sδ, sζ , sη)
10: if (cost f < costS∗) then
11: costS∗ = cost f
12: s∗ = bestroute
13: else
14: improve = False
15: end if
16: end while
17: return s+

The algorithm GreedyBasedLS (see Algorithm 6) chooses the best solution by ap-
plying each heuristic to a current solution. The Algorithm 6 receives a solution s0 as
parameter. After the updating of the algorithm variables (current solution s∗, and
costS∗), a loop is executed, where all the three described heuristics are applied to the
current solution (lines 5-7) getting the routes sδ, sζ and sη . Then, the best route is
selected (lines 8-9) and the solution improved is compared with the current solution
(lines 10-15). The loop end criterion is applied when no further improvements over
s0 can be found.

The local search frequency (LSF) algorithm iteratively executes the heuristics
based on the use of the last iterations. Algorithm 7 receives a solution s+, the cur-
rent use frequencies f ls and the number of iterations of the local search NitrL. As
with the previous algorithms, the current solution variables of the algorithm must
be updated. In addition, a variable f lsnew to be used to update the new frequency
values according to the local search to be performed is generated. First, the internal
loop of the algorithm (lines 5-20) takes each heuristic heu from f ls, assuming it is al-
ready ordered according to the prior iteration use frequency (it is worth noting that
for the first iteration all the frequencies are equal. However, 2-Opt and Relocate are
executed first, based on [63]). Then, the chosen heuristic is applied, and the solution
is stored in sheu (line 7). If the solution is feasible (line 9) and suffered changes due to
the heuristic (line 10), 3 actions are performed (lines 11-14): the variable f lsnew with
the applied heuristic, the current solution variables are updated, and the counter of
improvements is increased of one unit. It is also worth mentioning that the inter-
nal loop may execute all three moves if, and only if, any (or none) of the first two
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heuristics does not achieve an improvement of the current solution. Once the heuris-
tic move loop is finished, the variable f ls is updated with the new values (line 22,
sort process) and it is verified that the new current solution is the best solution of
the search. If this falls in a local optimum, the main loop is terminated without com-
pleting the NitrL iterations (lines 23-28). The LSF algorithm returns the final solution
found and the updated frequency.

Algorithm 7 LSF
Input: s+, f ls,NitrL
Output: s++, f lsnew

1: s++ = sLSF = s+
2: f lsnew = f ls
3: for (it = 0 to NitrL) do
4: improve=0

heuPair is a pair structure <frequency ratio, heuristic> :
5: for (heuPair in f ls) do
6: heu = HeuPair.getHeuristic()
7: sheu = applyHeu(heu, sLSF)
8: costSheu = cost(sheu)
9: if ( f esaible(sheu)) then

10: if (costSheu 6= costSLSF) then
11: Update( f lsnew, heu)
12: sLSF = sheu
13: costSLSF = costSheu
14: improve = improve + 1
15: end if
16: end if
17: if (improve==2) then
18: break
19: end if
20: end for
21: f ls = f lsnew

The fls structure is sorted based on the new frequency ratio :
22: sort( f ls)
23: if (costSLSF < costS++) then
24: s++ = sLSF
25: costS++ = costSLSF
26: else
27: break
28: end if
29: end for
30: sort( f lsnew)
31: return s++, f lsnew

2.3.6 Acceptance Criterion

The acceptance criterion for the ILS-F is based on a Simulated Annealing cooling
setup. This metaheuristic defined in [73] and [22], is based on the controlled cooling
of materials. However, the cooling setups for this metaheuristic are different and
have been used in several works of the literature [74, 75]. For this ILS-F, a configura-
tion expressed in equation 2.3 has been defined, where t0 and t f are initial and final
temperatures, respectively, Niter is the number of iterations, ε is the cooling factor,
s++ is the current solution and s∗ is the new solution to consider accepting in the
search.
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ε = (
t f

t0
)

1
Niter t0 < t f < 0

tk+1 = ε ∗ tk 0 < k < Niter
cost(s∗) < cost(s++)− tk ∗ ln(U(0, 1))

(2.3)

• t0 and t f are initial and final temperatures, respectively.

• Niter is the number of iterations.

• ε is the cooling factor.

• s++ is the current solution.

• s∗ is the new solution to consider for acceptance in the search.

The convergence of the temperature allows the change of neighborhood within
the ILS. The criterion is applied for each iteration and it is necessary to check the
cooling temperature each time a solution is obtained from the local search.

2.4 Granular Iterated Local Search

The Granular Iterated Local Search (GILS) is based on the ILS metaheuristic [27] and
the granular search concept proposed by [32]. The essential idea of this algorithm is
to use ILS but with a granular search within the neighborhoods in the local search.
The concept of granularity is based on eliminating a priori arcs of the problem that
may not be part of the optimal solution, reducing the search computation time. For
example, the algorithm could calculate an average arc value and remove the arcs
having values greater than threshold given by a fixed percentage of the average arc
value. This idea proved to be effective for the VRP obtaining good results [32].

2.4.1 The granular approach

The granular search concept consists of evaluating only those edges which have
larger probabilities to be part of a good solution. The classical granular approach
proposed by [32] uses a travel time based criterion to decide which edges will be
evaluated. Nevertheless, we propose an hybrid criterion, which combines the travel
time based-criterion with the similarity of the demand between customers. Thus, a
new granular cost λi,j associated to each edge (i, j), connecting two customers i, j in
the graph, is generated. The new granular cost will be used to guide the local search
and the neighborhood exploration; it can be computed as follows:

λij = δ ∗ (
cij

MAXC
) + η ∗ (

|qi − qj|
2 ∗MAXQ

) (2.4)

Where, MAXC is the maximum traveling cost computed over all edges in the
graph, qi is the absolute value of the difference between the pickup and the delivery
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demand of a customer i (i.e. |αi − βi|), MAXQ represents the largest absolute differ-
ence between qi and qj computed out of all pairs of customers (i, j)i 6= j, i, j ∈ Vc.
The parameters δ and η represent the weights respectively of the travel time and
the demand in the final cost, with δ + η=1. Note that if η = 0, the granular cost is
reduced to a travel time based criterion. The idea of the hybrid criterion is based on
the fact that the similarity between the customers requirements affects the handling
sub-problem. Finally, the factor 2 is used in the second denominator since there are
two demands considered (that is, two customers i and j).

The details of the main algorithm are presented in Algorithm 8. A feasible ini-
tial solution (line 1) generated with the well known LKH-3 heuristic [76] is used as
starting point of the GILS. The obtained solution is improved by using a initial local
search procedure (line 2), which is exclusively applied after the initial solution. Fur-
thermore, the variables related to the acceptance criteria, expansion factor, and tabu
solutions are initialized. The main cycle follows the original ILS, with a perturbation
(line 12), and a local search (line 13). Then, the GILS updates the solution variables
according to three criteria:

• If the solution found (LSRoute) is better than the global solution (bestRoute),
the algorithm is restarted (i.e. all the parameters are updated), and the current
solution (currentCost) is updated.

• If the solution found (LSRoute) is only better than the current solution (currentCost)
or the solution found (LSRoute) fulfills the acceptance criteria (section 2.3.6),
the current solution is updated.

The next step is to check if it is necessary to increase the granular factor ρ (lines
34-42). This factor is an input parameter for the granular local search and is de-
fined as the neighbor ratio for the search. This check is applied through the variable
reset. If the algorithm reaches reset iterations, ρ is increased to ρ+ γ (with γ constant
throughout the search), the tabu list is cleaned and the variable reset is updated in
order to increase again in the following iterations of the main cycle. When ρ = 1, the
GILS algorithm runs without granularity, using all neighbors with Niter iterations.
Finally, the temperature and the iteration counter are updated.

The granular cost is used to sort the edges, and the ρ% cheapest ones are evalu-
ated. The parameter ρ is initialized to 50%, nevertheless, if the algorithm remains in
a local optimum for reset iterations, ρ is augmented to ρ + γ.
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Algorithm 8 GILS Main Scheme
1: (initialRoute, initialCost) = LKH3()
2: (bestRoute, bestCost) = GreedyLocalSearch(initialRoute, initialCost)
3: ρ = ρinitial
4: sReset = N/ratioReset
5: reset = sReset
6: currentRoute = bestRoute
7: currentCost = bestCost
8: temp = sTemp
9: TabuSolutions = empty

10: it = 0
11: while it < NIter do
12: (perturbationRoute, perturbationCost) = Perturbation(currentRoute, currentCost, TabuSolutions)
13: (LSRoute, LSCost) = LocalSearch(perturbationRoute, perturbationCost, ρ)
14: if LSCost < bestRoute then
15: bestRoute = LSRoute
16: bestCost = LSCost
17: currentRoute = LSRoute
18: currentCost = LSCost
19: TabuSolutions.clear()
20: UpdateTabuList(bestRoute, TabuSolutions)
21: temp = sTemp
22: it = 0
23: ResetParameter = sResetParameter
24: else
25: if LSCost < currentCost then
26: currentRoute = LSRoute
27: currentCost = LSCost
28: else
29: if AcceptanceCriteria(temp, LSRoute, LSCost) then
30: currentRoute = LSRoute
31: currentCost = LSCost
32: end if
33: end if
34: if reset == it then
35: if ρ + γ < 1.0 then
36: ρ = ρ + γ
37: TabuSolutions.clear()
38: reset = reset + sReset
39: else
40: reset = NIter
41: end if
42: end if
43: it = it + 1
44: temp = max(temp ∗ alpha, eTemp)
45: end if
46: end while

2.4.2 Neighborhoods, perturbation and local search

This subsection details the operators used as neighborhoods of a certain solution,
the perturbation procedure used to escape from local optima, and the local search
process.

Neighborhoods

The neighborhoods used in GILS are the same ones defined in chapter 2.3.4 and also
defined in [67]. For this approach, each neighborhood works with the expansion
factor (only in local search procedures) ρ, previously defined. This parameter defines
the number of customers (within the neighborhoods) that can be used (i.e. n ∗ ρ ).
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Perturbation

The perturbation algorithm is based on the method proposed in [67] (see Algorithm
9). It selects randomly a neighborhood, and a random move of the neighborhood is
applied if it is feasible and is not contained in the TabuSolutions list. If one of the
two mentioned conditions does not hold the whole process is repeated. That is, the
neighborhood and the move are randomly selected again until the conditions are
fulfilled. Once the perturbation is accepted, the tabu list and the objective function
are updated. The perturbation process described is less-aggressive than that used in
[67] since only feasible moves are accepted.

Using a tabu list within the perturbation avoids the redundant execution of the
local search procedure for routes previously considered, with a reduction of the com-
putation time to obtain the optimal value of the handling cost. For this reason, the
output solution of this perturbation is a new route and avoids delivering to the local
search process a solution that has been visited.

Algorithm 9 Perturbation for GILS
Input: currentRoute, currentCost, TabuSolutions
Output: TabuSolutionsperturbationRoute, perturbationCost

1: noPerturbationFound = true
2: perturbationRoute = empty
3: while (noPerturbationFound) do
4: perturbationRoute = currentRoute
5: ipr = 0
6: jpr = 0
7: while ipr == jpr do
8: ipr = RandomIntegerNumber(0, N)
9: jpr = RandomIntegerNumber(0, N)

10: end while
11: selectNeghboord = RandomIntegerNumber(1, 3)
12: if selectNeghboord == 1 then
13: perturbationRoute = SingleRelocate(currentRoute, ipr, jpr)
14: end if
15: if selectNeghboord == 2 then
16: perturbationRoute = SingleSwap(currentRoute, ipr, jpr)
17: end if
18: if selectNeghboord == 3 then
19: perturbationRoute = SingleTwoOpt(currentRoute, ipr, jpr)
20: end if
21: if NoTabu(perturbationRoute, TabuSolutions) and isFeasible(perturbationRoute) then
22: noPerturbationFound = f alse
23: end if
24: end while
25: UpdateTabuList(perturbationRoute, TabuSolutions)
26: perturbationCost = HandlingCost(perturbationRoute) + RouteCost(perturbationRoute)
27: return (TabuSolutions, perturbationRoute, perturbationCost)

Local search

The proposed algorithm uses two local search procedures. The first one (GreedyBasedLS)
is applied only once, after the construction of the initial solution. The objective of
this local search is to improve the solution provided by the LKH-3 algorithm, be-
cause this algorithm seeks for minimizing the traveling cost without considering the
handling cost. The second algorithm (LocalSearch) is used within the ILS, i.e. after
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the perturbation process. The GreedyBasedLS description was proposed in [67] and
is described in detail in Algorithm 6.

Algorithm 10 LocalSearch
Input: perturbationRoute, perturbationCost, ρ, Nmax
Output: LSRoute, LSCost

1: iter = 0
2: LSRoute = perturbationRoute
3: LSCost = perturbationCost
4: while iter < Nmax do
5: currentRoute = LSRoute
6: currentCost = LSCost
7: for selectNeghboord ∈ {1, 2, 3} do
8: if selectNeghboord == 1 then
9: (RouteN, costRouteN) = TwoOpt(currentRoute, currentCost, ρ)

10: end if
11: if selectNeghboord == 2 then
12: (RouteN, costRouteN) = Relocate(currentRoute, currentCost, ρ)
13: end if
14: if selectNeghboord == 3 then
15: (RouteN, costRouteN) = Swap(currentRoute, currentCost, ρ)
16: end if
17: if currentCost > costRoute then
18: currentRoute = costRouteN
19: currentCost = RouteN
20: end if
21: end for
22: if isFeasible(currentRoute) then
23: if LSCost < currentCost then
24: LSRoute = currentRoute
25: LSCost = currentCost
26: iter = iter + 1
27: else
28: break
29: end if
30: else
31: break
32: end if
33: end while
34: return (LSRoute, LSCost)

The LocalSearch procedure is detailed in algorithm 10. The input parameters
are the following: a feasible route generated by the perturbation process, the cost
of that route, ρ, Nmax, and the maximum number of iterations. The internal cycle
executes the three neighborhoods in a sequential way, one per iteration. Then, it
verifies the feasibility of the solution, and if it is improved in order to replace the
current solution. The change in the current neighborhood is performed regardless
of the result in the internal cycle, that is, if the current solution is improving or not.
Finally, within the outer cycle the global solution is updated if an improvement is
found, otherwise, the cycle ends and the algorithm returns the best solution found
and its cost.
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2.5 Results

2.5.1 Instances

The computational experiment is performed by considering the instances presented
by [63]. This set contains ten instances for each value of n =[20; 40; 60; 80; 100; 120;
140; 160; 180; 200]. Each of these instances was adapted from [77] and the pickups
and deliveries were scaled from [42]. For each customer i ∈ Vc, the pickup value
pi is scaled using p′i = max{1, pi mod 20}. Finally, each value of αi and βi for the
TSPPD-H is obtained using :

βi =
⌊

p′i(i mod 5)/5
⌋

and αi = (p′i − βi) (2.5)

The vehicle capacity is Q = max{∑i∈Vc
αi, ∑i∈Vc

βi}. Finally, an analysis in [63]
suggests using h = ha = hb in a constant way with value h = 20/|Vc|.

2.5.2 Parameters and Experiments for ILS-F

TABLE 2.1: Parameters Setting

Parameter Values Final Value
t0 [50,100,200] 100

Niter [50,100,200,300] 200
NiterL [10,20,30,40,50] 10
Nper [50,100,200,300,400] 200

In order to obtain appropriate values of the parameters, different ranges were
used, executing ILS-F for the instances with n = 60. Table 2.1 shows a summary of
the domain range used for each parameter and the chosen value. The ranges of the
values were considered according to the performance of the algorithm, which was
executed 5 times for each combination of the parameter values:

• t0: The value t0 = 100 was determined by considering the behavior of the
algorithm. During different iterations, the allowed temperature and cooling
scheduling change the current solution in an effective way inside the ILS-F.

• Niter: If the number of iterations is large (Niter > 200), the metaheuristic does
not improve the current solution. On the other hand, if Niter is small (Niter <
200 ), low quality solutions are obtained.

• NiterL: The number of iterations of the local search can generate better solutions
with a value of 10. Even the local search finishes the execution earlier when it
does not improve a perturbation.

• Nper: If the number of iterations Nper is large (Nper > 200), the perturbation
generates a neighbor that is too far from the current solution. As a conse-
quence, the improvement procedure does not obtain better results with respect
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to the current solution. On the other hand, if the number of iterations is low
(Nper < 200 ), the perturbation generates a neighbor too near to the current
solution. For this reason, the improvement procedure falls in a local optimum.

Metaheuristic ILS-F has been coded in C++ programming language, and the ex-
periments were executed on an Intel Xeon E5-2660 processor of 2.2 Ghz and 8 GB.

2.5.3 Parameters and Experiments for GILS

The granular version of the ILS was calibrated using the Irace package [78]. This
package iteratively and elitistically searches for the best parameters using a prede-
fined range (or set) for each GILS parameter. Each iteration of Irace updates the pa-
rameters, thus obtaining high quality parameters. Small instances (n=20 and n=40)
were used for the calibration, and the values related to the granular formula (i.e. δ
and η) and the ratioReset parameter were fixed. The details are given in Tables 2.2
and 2.3.

TABLE 2.2: Fixed values for δ, η and ratioReset

δ η ratioReset
0.5 0.5 0.5
0.5 0.5 0.7
0.25 0.75 0.7
0.75 0.25 0.7

TABLE 2.3: Set of parameters from Irace

ID γ ti t f NIter tabutenure
1 0.05 250 1 200 40
2 0.05 100 5 200 40
3 0.1 100 5 200 40
4 0.05 100 1 200 30
5 0.05 100 5 200 30

The final experiments were performed using the four sets of parameters reported
in Table 2.2. No combination of parameters in this table generates results dominated
for each considered instance, with respect to others, the details of these results are
reported in Appendix A. In this way, we executed the algorithm four times, and we
used only the best set of parameters from Irace, i.e., the set ID = 1. . The calibration
experiments were performed on a multi-thread AMD Ryzen 7 2700X Eight-Core Pro-
cessor running at 3.7 GHz with 64 GB RAM. Finally, the algorithm was run on the
same computer as ILS-F to make a fair comparison. The calibration time was 296
hours.
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2.5.4 Results and comparison

Tables 2.4, 2.5, 2.6 and 2.7 contain the computational results obtained by the algo-
rithm Series [63], ALNS [65], ILS-F and GILS for the considered instances.The results
of ALNS correspond to those reported in [65], and were obtained on an Intel Xeon
Gold 6148 processor of 2.4 GHz with 16 GB (having characteristics similar to those
of our computer). The tables report for each instance, the values of the best known
solution (column BKS defined as the minimum value found by [63] and [65]) and
of the best solution found in [63] (column Series). In addition, for the algorithms
ALNS, ILS-F, and GILS the following values are reported:

• The best solution value using dynamic programming (DP column).

• The best solution value using linear heuristics (Heu column).

• The best solution value between DP and Heu (Best columns).

• The sum of the average times (expressed in seconds) required by DP and Heu
(Time(s) column).

• The percentage gap between the best-known solution value (BKS) and Best,
computed as Gap(%) = 100*((Best - BKS) / BKS).

At the end of each set, the average values of the corresponding columns are also
shown. The ALNS results with |Vc| = {80, 100} were not presented, as in [63],
the reported values were abnormal, and therefore in [65], it was decided to avoid
the comparison on these two sets of instances. However, we rectified those values
presenting the best known value found by the metaheuristics presented in [63], and
made a full comparison with ILS-F and GILS.

About the Iterated Local Search with frequency

Relocate, Swap and 2-Opt heuristics are used in the local search procedure. The two
best (with respect to the frequency) heuristics always used and when these heuristics
do not improve the current solution, the third heuristic is used. Figure 2.8 shows (for
the instance with n = 120 and l = 10) a chart that contains the frequencies of use
of the heuristics (from 0 to 1 on axis f ) during 200 iterations (x axis) and a line chart
(red) for the temperature (T axis). Our algorithm resets the initial temperature (100°)
when a new best solution is found in the search process. When this happens, the
frequencies of use are again equivalent < 1/3, 1/3, 1/3 >. Between iterations 1 and
28, the prioritized heuristics for the execution are 2-Opt and Relocate. However,
when the first new best solution is found, Relocate starts to not enhance solutions in
LSF and Swap begins to do so. Thus, the frequencies start to change in the following
iterations. When a second best solution is found (iteration 73), Relocate has again
a higher frequency during the remaining iterations. The studies presented in [63]
can be confirmed in this case, as 2-Opt and Relocate are used in most iterations.
However, Swap is necessary at some point of the search to find good results.

ALNS obtains better results than ILS-F. Our results are competitive only for small
instances. However, for larger instance sets (particularly |Vc| = {180, 200}), ILS-F is
bested by the metaheuristics of [63], and by ALNS. However, it should be taken into
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FIGURE 2.8: Frequency of use (200 iterations, instance with n=120
and l=10)

account that the results presented in [63], are obtained by executing three different
metaheuristics, thus the computing time are even larger than that of ALNS. Also,
considering the global average, the |Vc| = 200 set is the only one to present a per-
centage gap close to 1% (with respect to [63]). Therefore, our results are close to
those shown by the previously proposed studies algorithms.

ILS-F is significantly faster than ALNS. As a matter of fact, it is faster on each in-
stance. For n = 200, ALNS takes, on average, 7.5 hours against 27 minutes for ILS-F.
This may have two explanations: first, the ALNS approach used a depth intensifi-
cation process applying the three elementary heuristics proposed in [65], while we
bet on the study presented in [63], and considered always to use two of the three
heuristics, only using a third one if no enhancement could be found with the other
two heuristics; second, our DP approach allows us to avoid redundant operations in
the computation of the handling costs.

About the Granular Iterated Local Search

There are no significant differences between ALNS and GILS for the small instances.
The value of %gap for ALNS and GILS is identical in Table 2.4, and the execution
times are similar. Of course, the GILS was run 4 times, so the average time for a
single run is considerably smaller than that of ALNS in this case. Another strange
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behavior is that in 6 instances for n = 60, ALNS, ILS-F, and GILS do not obtain
results better than those found by the metaheuristics in [63]. Still, the best results
among them are the same (for example, for l = 9, the metaheuristics from [63] get
1001.4, while the other metaheuristics find 1004.3).

For medium-size instances, the granular approach gets the best results in the
literature (Table 2.5). Considering n = 80 and n = 100, GILS gets better (or equal)
results than those found by the metaheuristics in [63] and by the ILS-F approach.
Thus, the new best known solution values for these set are updated. For n = 120,
algorithm GILS finds 9 new best known solutions compared to the algorithms in the
literature.

For the large instances, ALNS is globally better than GILS (Tables 2.6 and 2.7).
While GILS finds new best known solutions for 12 (over 40) instances, on average,
ALNS appears to be better (although not significantly) than GILS. However, the run
times of ALNS remain high with respect to GILS. As the number of customers in-
creases, GILS loses quality compared to ALNS. For n = 200, GILS finds only one
best known solution, and the worst value of %gap becomes 1.49%.

2.6 Conclusion and future directions

This study proposes a new Iterated Local Search algorithm (called ILS-F) for the
solution of TSPPD-H based on the frequency of use during the iterations and a gran-
ular version (called GILS). We have improved the algorithm proposed by [63] for
computation of the handling cost during the execution of the local search methods
so as to avoid redundant computational processes of the dynamic programming ap-
proach. ILS-F uses a roulette wheel-type perturbation based on a queue-data his-
tory structure that allows us to generate new neighbors. Also, a local search us-
ing frequency, and an acceptance criterion based on Simulated Annealing were pro-
posed. ILS-F seems to be competitive with the recently proposed algorithms, result-
ing 20 times faster than ALNS algorithm [65]. GILS was executed with four differ-
ent groups of parameters concerning the proposed granular formula. The formula
considers the travel time between the customers and also the pickup and delivery
units to be handled at each customer. The granular approach finds several new best
known solutions for the instances of the literature. Its performance for small and
medium-sized instances is better than that of the state-of-the-art metaheuristics, but
it loses quality for large-sized instances.

New experiments will be considered for the travel time granularity and a new
calibration process for the large instances will be analyzed. In addition, a new prob-
lem based on Handling cost could be defined with Draft Limits or Time Windows.
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Chapter 3

Formulations, Relaxations and
Heuristics for the QMKP

3.1 Introduction

The (linear) Multiple Knapsack Problem (MKP) has been intensively studied in the last
40 years (see the relative chapters in the monographs by [79] and [50]).

The MKP is defined on n items and m knapsacks. Each knapsack k ∈ M =
{1, . . . , m} has a capacity Ck. Each item i ∈ N = {1, . . . , n} has a profit pi and a
weight wi. The objective is to select m disjoint subsets of items to be assigned to the
knapsacks so that the total weight assigned to each knapsack does not exceed its
capacity and the total profit of the selected items is maximized. By introducing nm
binary variables xik (i ∈ N, k ∈ M) taking the value 1 if and only if item i is assigned
to knapsack k, the problem is formally defined by the 0-1 Linear Program

max
n

∑
i=1

m

∑
k=1

pixik (3.1)

s.t.
n

∑
i=1

wixik ≤ Ck (k ∈ M) (3.2)

m

∑
k=1

xik ≤ 1 (i ∈ N) (3.3)

x ∈ {0, 1}n×m, (3.4)

where (3.2) and (3.3) are the classical capacity and cardinality constraints, respec-
tively. The problem is a generalization of the famous 0-1 Knapsack Problem (KP), in
which m = 1. While the KP is ordinary NP-hard and admits pseudo-polynomial
time dynamic programming algorithms, the MKP is known to be stronglyNP-hard,
as it can be seen by transformation from 3-partition (see, e.g., [79]). Strongly NP-
hard is a complexity class of decision problems which are still NP-hard even when
all numbers in the input are bounded by some polynomial in the length of the input
[80].

Although a problem with a similar flavor had been considered by [81] in 1975,
to the best of our knowledge, the first quadratic version of a knapsack problem was
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introduced by [82]. In the (single) Quadratic Knapsack Problem (QKP) one is given a
knapsack with capacity C and n items. Each item i ∈ N has a profit pi and a weight
wi. In addition, each pair of distinct items i, j gives a profit pij if both belong to the
solution. (It is assumed that pji = pij.) The objective is to select a subset of items
so that the total weight does not exceed the capacity, and the total profit (sum of the
profits of the selected items and of their pairwise profits) is maximized. Formally,

max
n

∑
i=1

pixi +
n−1

∑
i=1

n

∑
j=i+1

pijxixj (3.5)

s.t.
n

∑
i=1

wixi ≤ C (3.6)

x ∈ {0, 1}n, (3.7)

where xi is a binary variable taking the value 1 if and only if item i is selected. We
refer the reader to monograph ([50], Chapter 12) for an extensive treatment of the
QKP until 2003, and to [83], [84], [85], [86], [87], and [88] for later studies.

The Quadratic Multiple Knapsack Problem (QMKP), to which this study is devoted,
was first introduced by [89], and ideally combines the objective function of the QKP
and the constraints of the MKP. We have n items and m knapsacks. Each knapsack
k ∈ M has a capacity Ck ∈ Z+, each item i ∈ N has a profit pi ∈ Z+ and a weight
wi ∈ Z+. Each pair of distinct items i, j produces a profit pij ∈ Z+ (with pji = pij) if
both are assigned to the same knapsack. The objective is to select m disjoint subsets
of items to be assigned to the knapsacks, so that the total weight assigned to each
knapsack does not exceed its capacity, and the total profit (sum of the profits of the
selected items and of the pairwise profits of items assigned to the same knapsack) is
maximized. Formally,

max
n

∑
i=1

m

∑
k=1

pixik +
n−1

∑
i=1

n

∑
j=i+1

m

∑
k=1

pijxikxjk (3.8)

s.t.
n

∑
i=1

wixik ≤ Ck (k ∈ M) (3.9)

m

∑
k=1

xik ≤ 1 (i ∈ N) (3.10)

x ∈ {0, 1}n×m, (3.11)

where x is defined as for the MKP. As the QKP is the special case of the QMKP
arising when m = 1, the QMKP is stronglyNP-hard. In addition, all computational
experiments reported so far in the literature indicate that it is extremely challenging
to solve in practice.

Owing to its many practical applications, that range from project management to
capital budgeting to product-distribution system design, as well as to its mathemat-
ical structure borrowing from well-studied combinatorial problems, the QMKP has
received increasing attention in the literature over the last fifteen years. In their sem-
inal work, [89] presented the first 60 benchmark instances and three heuristics. Their
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paper started a stream of research based on meta-heuristic techniques, that includes
a genetic algorithm by [90]; an artificial bee colony algorithm by [91]; and a memetic
algorithm by [92]. More recently, [93, 94] presented a strategic oscillation algorithm
and a Tabu-enhanced iterated greedy approach. In [95] and [96] used, respectively,
an iterative response threshold search algorithm, and an evolutionary path relinking
approach, for which recent variations have been proposed by [97] and [98]. Other
recently proposed methods are presented in [99] and [100].

Despite this growing stream of research on heuristics, no exact method for the
QMKP was proposed in the literature until the recent contribution by [101], who
presented the first exact solution approach to the QMKP, that uses a formulation
based on an exponential-size number of variables, solved via a Branch-and-Price
algorithm.

While the literature has been so far concentrating on exponential-size formula-
tions and meta-heuristic approaches, our contribution consists of investigating sev-
eral polynomial-size formulations, aiming at devising the relaxations that produce
good upper bounds in reasonable computing times. In particular, our goal is to com-
pare the effectiveness of the Lagrangian relaxation when applied to the quadratic
formulation (3.8)-(3.11) and to a Level 1 Reformulation Linearization, that leads to a
decomposable structure. We present the results of computational experiments on a
large set of benchmark instances.

The chapter has the following structure. In Section 3.2, we derive several lin-
ear models for the QMKP, obtained from classical reformulations of 0-1 quadratic
programs. Some theoretical properties and dominances among the resulting formu-
lations are outlined. The surrogate relaxation of the quadratic model is discussed in
Section 3.3. Section 3.4 is concerned with the Lagrangian relaxation of the quadratic
model (3.8)-(3.11) and of a linear reformulation leading to a set of independent, well-
structured subproblems.. Section 3.5 describe a Multi-Start Iterated Local Search.
Section 3.6 present a Matheuristic approach for the problem.Section 3.7 presents the
computational results and Section 3.8 contains some concluding remarks.

3.2 Linear Formulations

In this section we show how some linear reformulations for 0-1 Quadratic Programming
problems with linear constraints (01QP) can be specialized for the QMKP.

3.2.1 Classical Linear Formulations

In [102] proved that any integer-valued algebraic function can be transformed into
a linear function by introducing auxiliary binary variables and linear linking con-
straints. In 1974 the idea was independently re-discovered and developed by [103]
for 01QP. A direct application to the QMKP would result in 4-index variables, each
representing the product xikxj` for i, j ∈ N and k, ` ∈ M. We can observe, however,
that our objective function (3.8) only includes products involving the same knapsack
index, so it is sufficient to introduce 3-index binary variables ŷijk, taking the value one
if and only if items i and j are assigned to the same knapsack k:

ŷijk = xikxjk for i ∈ N \ {n}, j ∈ N (j > i), k ∈ M. (3.12)
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The Fortet-Glover-Woolsey (FGW) formulation for the QMKP is

(FGW) max
n

∑
i=1

m

∑
k=1

pixik +
n−1

∑
i=1

n

∑
j=i+1

m

∑
k=1

pijŷijk (3.13)

s.t. ŷijk ≤ xik (i ∈ N \ {n}, j ∈ N(j > i), k ∈ M) (3.14)

ŷijk ≤ xjk (i ∈ N \ {n}, j ∈ N(j > i), k ∈ M) (3.15)

ŷijk ≥ xik + xjk − 1 (i ∈ N \ {n}, j ∈ N(j > i), k ∈ M) (3.16)

ŷijk ∈ {0, 1} (i ∈ N \ {n}, j ∈ N(j > i), k ∈ M) (3.17)

(3.9), (3.10), (3.11).

Constraints (3.14) and (3.15) ensure that variable ŷijk takes the value 0 when at
least one of the two variables xik and xjk is equal to 0. Constraints (3.16) force ŷijk to
take the value 1 when both variables xik and xjk are equal to 1.

We next show that an equivalent formulation can be obtained by removing con-
straints (3.16) and (3.17):

Lemma 1 The optimal solution to the LP relaxation of FGW does not change if constraints
(3.16) are removed.
Proof. Let (x∗, ŷ∗) be an optimal solution to the LP relaxation of FGW without
inequalities (3.16). The second term of the objective function maximizes a linear
function of ŷ with coefficients pij ≥ 0. It follows that every variable ŷ∗ijk will take
the largest possible value, and hence, from (3.14)-(3.15), ŷ∗ijk = min{x∗ik, x∗jk}. Since
x∗ik ≤ 1 ∀i ∈ N and k ∈ M, we have min{x∗ik, x∗jk} ≥ x∗ik + x∗jk − 1. �

Corollary 1 If the LP relaxation of FGW satisfies (3.11), constraints (3.17) are automati-
cally satisfied.

Proof. Assume that the optimal solution (x∗, ŷ∗) to the LP relaxation of FGW
satisfies x∗ik ∈ {0, 1} ∀i ∈ N and k ∈ M. From the proof of Lemma 1 we have
ŷ∗ijk = min{x∗ik, x∗jk}, and hence ŷ∗ijk ∈ {0, 1}. �

Proposition 1 Constraints (3.16) and (3.17) are redundant for FGW and for its LP relax-
ation.

Proof. Immediate from Lemma 1 and Corollary 1. �

Model FGW has O(n2m) variables and constraints. A more compact, O(nm),
linear model for 01QP was proposed in 1975 by [104], who introduced, for each
original variable xik, a new continuous variable zik to represent its contribution to
the objective function. For the QMKP, let us define, for each i ∈ N and k ∈ M,

gik(x) =
{

pi + ∑n
j=i+1 pijxjk if i ∈ N \ {n};

pn if i = n.
(3.18)

The contribution of xik to the objective function is then

zik = gik(x)xik (i ∈ N, k ∈ M), (3.19)
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and observe that zik will always take integer values as the profits are assumed to be
integer. The resulting Glover model (GLOV) for the QMKP is

(GLOV) max
n

∑
i=1

m

∑
k=1

zik (3.20)

s.t. Lixik≤ zik≤Uixik (i ∈ N, k ∈ M)
(3.21)

gik(x)−Ui(1−xik)≤ zik≤ gik(x)− Li(1− xik) (i ∈ N, k ∈ M)
(3.22)

(3.9), (3.10), (3.11),

where gik(x) is defined in (3.18), while Li = pi + ∑n
j=i+1 min{0, pij}, Ui = pi +

∑n
j=i+1 max{0, pij} (for i ∈ N \ {n}), and Ln = Un = pn are the smallest and largest

values, respectively, that gik (and hence zik) can take. Note that, as we assume the
pairwise profits pij to be non-negative, these values can be simplified to Li = pi,
Ui = pi + ∑n

j=i+1 pij (for i ∈ N). Constraints (3.21) and (3.22) link variables xik and
zik: constraints (3.21) impose zik = 0 when xik = 0, while constraints (3.22) impose
zik = gik(x) when xik = 1. (Note the similarity with the effect of (3.14)-(3.15) and
(3.16), respectively.)

GLOV is indeed more compact than FGW, but, as proved by [105], its LP relax-
ation is weaker.

3.2.2 Reformulation Linearization Technique

In [106] strengthened FGW by proposing a new linearization method for 01QP. The
idea was later extended to general 0-1 problems in [107]. The method, known as
the Reformulation Linearization Technique (RLT), provides different Levels of represen-
tation with an increasingly stronger LP bound.

Let n̄ denote the number of original binary variables appearing in each con-
straint. New quadratic constraints are added to the original formulation, to strengthen
the resulting LP relaxation. At Level 1,

(i) each equality constraint results into n̄ quadratic constraints obtained by multi-
plying it by each original binary variable;

(ii) each inequality constraint results into 2n̄ quadratic constraints obtained by
multiplying it by each original binary variable and by its complement.

All the resulting quadratic constraints are then linearized by introducing auxiliary
binary variables to represent the products of the original ones together with appro-
priate linking constraints. Higher levels are rarely used as the problem size increases
so sharply that the bound computation becomes impractical.

In order to adapt the RLT to the QMKP, let us define binary variables yijk similarly
to variables ŷijk of Section 3.2.1, but by considering all ordered pairs (i, j) with i 6= j,
i.e.,

yijk = xikxjk for i ∈ N, j ∈ N \ {i}, k ∈ M. (3.23)
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A Level 1 RLT model (RLT1) for the QMKP is then

(RLT1) max
n

∑
i=1

m

∑
k=1

pixik +
1
2

n

∑
i=1

n

∑
j=1
j 6=i

m

∑
k=1

pijyijk (3.24)

s.t. yijk ≤ xik (i∈N, j∈N\{i}, k∈M) (3.25)

yijk = yjik (i∈N\{n},j∈N(j> i),k∈M)

(3.26)

yijk ≥ xik + xjk − 1 (i∈N, j∈N\{i}, k∈M) (3.27)

∑
j∈N\{i}

wjyijk ≤ (Ck − wi) xik (i∈N, k∈M) (3.28)

∑
j∈N\{i}

wj(xjk−yijk)≤Ck(1−xik) (i∈N, k∈M) (3.29)

yijk ∈ {0, 1} (i∈N, j∈N\{i}, k∈M) (3.30)

(3.9), (3.10), (3.11).

(3.29) are the RTL constraints derived for each knapsack k (k ∈ M) from the
corresponding capacity constraint (3.9) by multiplying both the left-hand side and
right hand side times the binary variable xik and its complement (1 - xik) for each
item i(i ∈ N). For each pair (i, k), with i ∈ N and k ∈ M, by multiplying (3.9) times
xik we obtain:

xik ∑
j∈N

wjxjk ≤ Ckxik (i ∈ N, k ∈ M) (3.31)

From which we obtain:

∑
j∈N\{i}

wjxikxjk ≤ Ckxik − wjxik (i ∈ N, k ∈ M) (3.32)

And then:

∑
j∈N\{i}

wjyijk ≤ (Ck − wj)xi (i ∈ N, k ∈ M) (3.33)

Which corresponds to (3.28). For each pair (i, k), with i ∈ N and k ∈ M, by
multiplying (3.9) times (1 - xik) we obtain:

(1− xik) ∑
j∈N

wjxjk ≤ Ck(1− xik) (i ∈ N, k ∈ M) (3.34)

From which we obtain:

∑
j∈N\{i}

wj(xjk − xikxjk) + wi(xik − x2
ik) ≤ Ck(1− xik) (i ∈ N, k ∈ M) (3.35)

And then:
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∑
j∈N\{i}

wj(xjk − yijk) ≤ Ck(1− xik) (i ∈ N, k ∈ M) (3.36)

Which corresponds to (3.29).
We next show that if we drop the RLT constraints from RLT1, the LP relaxation

of the resulting model is equivalent to the LP relaxation of FGW.

Proposition 2 The polyhedra associated with the LP relaxation of RLT1 without the RLT
constraints (3.28)-(3.29), and the LP relaxation of FGW are isomorphic under the linear
transformation

ŷijk = yijk = yjik ∀ i, j ∈ N (j > i), k ∈ M

(with x unchanged).

Proof. Inequalities (3.25) and (3.26) imply yijk ≤ xjk ∀ i, j ∈ N (i 6= j), k ∈ M. By
observing the different j-indexing in the two objective functions, it easily follows
that the two solutions produce the same value. �

If, besides removing the RLT constraints, we also remove inequalities (3.27), the
resulting LP bound is still as strong as the one produced by the LP relaxation of
FGW:

Corollary 2 The LP relaxation of RLT1 without constraints (3.27)-(3.29) is equivalent to
the LP relaxation of FGW.

Proof. According to Proposition 2, the polyhedra associated with the LP relaxations
of the two models are isomorphic. Lemma 1 guarantees that inequalities (3.27) can
be removed without changing the optimal value. �

Note that RLT1 does not include the RLT constraints obtained from cardinal-
ity constraints (3.10). The reason for this comes from our choice of having 3-index
variables. Indeed, by applying RLT to (3.10), we would obtain products involving
different knapsacks, for which an additional index would be needed. On the one
hand, this choice makes the LP relaxation of the resulting model weaker, but, on the
other hand,

(i) it produces a more compact model, of size O(n2m) (instead of O(n2m2)), which
lends itself to a much faster computation of the resulting LP bound;

(ii) RLT1 can be effectively decomposed, as shown in the next section.

A decomposable Level 1 RLT model

In this section we show how, starting from RLT1, we can construct a new linear re-
formulation that is amenable to a decomposable Lagrangian relaxation (to be examined
in Section 3.4.2) that: (i) provides a stronger bound than the one given by its contin-
uous relaxation, and (ii) can be computed with reasonable computational effort.

Point (i) obviously requires that the relaxed model does not have the integrality
property (see, e.g., [108]). An effective way to pursue point (ii) is to obtain a “de-
composable” Lagrangian problem, leading to a set of independent, well-structured
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subproblems. We generalize the approach presented by [109] for the single QKP.
The same approach was later applied by [110] to the p-dispersion problem, then
generalized by [111] to 0-1 quadratic problems with linear constraints, and recently
adopted by [112] for a generalization of the quadratic assignment problem. Recall
that the coefficients of the quadratic terms of the objective function (i.e., the pair-
wise profits pij) are assumed to be non-negative, as it normally holds for the QMKP
instances considered in the literature.

Let yijk be defined as in (3.23). A Decomposable Level 1 RLT model (DRLT1) for the
QMKP can be obtained from RLT1 by eliminating constraints (3.27) and (3.29), i.e.,

(DRLT1) max
n

∑
i=1

m

∑
k=1

pixik+
1
2

n

∑
i=1

n

∑
j=1
j 6=i

m

∑
k=1

pijyijk (3.24)

s.t. yijk ≤ xik (i ∈ N, j ∈ N \ {i}, k ∈ M) (3.25)

yijk = yjik (i∈N\{n},j∈N(j> i),k∈M)

(3.26)

∑
j∈N\{i}

wjyijk ≤ (Ck − wi) xik (i ∈ N, k ∈ M) (3.28)

yijk ∈ {0, 1} (i∈N, j∈N\{i}, k∈M) (3.30)

(3.9), (3.10), (3.11).

Note that the effect of RLT1 constraints (3.29) was purely to strengthen the con-
tinuous relaxation of the model. Moreover, as formally proved in Proposition 1 (also
see [109] and [111]), constraints (3.27) are redundant when the coefficients of the
quadratic term are non-negative. Therefore, DRLT1 is a valid (linear) reformulation
for the QMKP.

The continuous relaxation of DRLT1 is weaker than that of RLT1 but stronger than
that of FGW. In addition, it has the advantage that dualizing constraints (3.26) results
in a decomposable Lagrangian relaxed problem, that does not have the integrality
property, as we will show in Section 3.4.2.

Proposition 3 The LP relaxation of DRLT1 is stronger than the LP relaxation of FGW.

Proof. From Corollary 2, the LP relaxation of FGW is as strong as the LP relaxation of
DRLT1 without constraints (3.28). Therefore, it is enough to show an example where
inequalities (3.28) improve the LP bound. Consider an instance consisting of a single
knapsack of capacity C = 8, and three items with w1 = 2, w2 = 8, w3 = 5, p1 = 1,
p2 = 3, p3 = 1, and pairwise profits p12 = 4, p13 = 2, p23 = 2. The optimal solution
of the LP relaxation of DRLT1 is x̄1 = x̄3 = 1, x̄2 = 0.125, ȳ13 = ȳ31 = 1 (all other
ȳ being 0) and has value 4.375. The optimal solution of the LP relaxation of FGW is
instead x̄1 = x̄2 = x̄3 = 0.53̄, ȳ12 = ȳ13 = ȳ23 = 0.53̄ and has value 6.93̄. �

Model DRLT1 can be improved by means of the following considerations:

(i) variables yijk for which pij = 0 can always be set to zero;

(ii) variables yijk for which wi + wj > Ck must take the value zero;.
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(iii) due to Corollary 1, constraints (3.30) can be relaxed in a continuous way.

By defining

Sik ={j ∈ N \ {i} : pij > 0 and wi + wj ≤ Ck} (i ∈ N, k ∈ M); (3.37)

Tik ={j ∈ N \ {i} : wi + wj > Ck} (i ∈ N, k ∈ M); (3.38)

Rik ={j ∈ N : j > i, pij > 0, and wi + wj ≤ Ck} (i ∈ N \ {n}, k ∈ M), (3.39)

we get the Modified Decomposable Level 1 RLT model (MDRLT1)

(MDRLT1) max
n

∑
i=1

m

∑
k=1

pixik+
1
2

n

∑
i=1

m

∑
k=1

∑
j∈Sik

pijyijk (3.40)

s.t. yijk ≤ xik (i ∈ N, k ∈ M, j ∈ Sik) (3.41)

yijk = yjik (i ∈ N \ {n}, k ∈ M, j ∈ Rik)

(3.42)

∑
j∈Sik

wjyijk ≤ (Ck − wi) xik (i ∈ N, k ∈ M) (3.43)

yijk ≥ 0 (i ∈ N, k ∈ M, j ∈ Sik) (3.44)

xik + xjk ≤ 1 (i ∈ N, k ∈ M, j ∈ Tik) (3.45)

(3.9), (3.10), (3.11).

3.3 Surrogate relaxation of the quadratic model

A classical relaxation technique for the (linear) MKP is obtained by surrogating the
capacity constraints (3.9) with multipliers πk ≥ 0 (k ∈ M). Its popularity comes
from the fact that, as proved by [113], the optimal choice for the surrogate multipliers
is to have them all equal to any positive number. We next show that such property
carries through to the quadratic case.

For the QMKP, the surrogate relaxation of the quadratic model (3.8)-(3.11) is:

S(π) = max
n

∑
i=1

m

∑
k=1

pixik +
n−1

∑
i=1

n

∑
j=i+1

m

∑
k=1

pijxikxjk (3.46)

s.t.
m

∑
k=1

πk

n

∑
i=1

wixik ≤
m

∑
k=1

πkCk (3.47)

m

∑
k=1

xik ≤ 1 (i ∈ N) (3.48)

x ∈ {0, 1}n×m. (3.49)

Lemma 2 There always exists an optimal solution to (3.46)-(3.49) that assigns all the se-
lected items to the knapsack with smallest surrogate multiplier.



52 Chapter 3. Formulations, Relaxations and Heuristics for the QMKP

Proof. Let k∗ = arg min{πk : k ∈ M} and let x be a feasible solution to (3.46)-(3.49).
Another feasible solution x̄, not worse than x, can be obtained by setting x̄ik = 0 and
x̄ik∗ = 1 for each i ∈ N such that xik = 1 and k 6= k∗. �

Proposition 4 The optimal vector of multipliers for (3.46)-(3.49) is πk = π̄ (where π̄ is
any positive constant) for all k ∈ M.

Proof. Using Lemma 2, (3.46)-(3.49) is equivalent to the (single) QKP

S(π) = max
n

∑
i=1

pixik∗ +
n−1

∑
i=1

n

∑
j=i+1

pijxik∗xjk∗

s.t.
n

∑
i=1

wixik∗ ≤
⌊

m

∑
k=1

πk

πk∗
Ck

⌋
(3.50)

xik∗ ∈ {0, 1} (i ∈ N).

where k∗ is the (knapsack) index corresponding to the smallest surrogate multiplier.
Since

⌊
∑m

k=1
πk
πk∗

Ck

⌋
≥ ∑m

k=1 Ck, the choice πk = π̄ (any positive constant) for all
k ∈ M produces the minimum capacity and hence the minimum value of S(π). �

3.4 Decomposable Lagrangian relaxations

In this section we study the Lagrangian relaxation when applied to the quadratic
formulation (3.8)-(3.11) of Section 3.1, and to the DRLT1 formulation of Section 3.1.

3.4.1 Relaxing the Quadratic Model

A classical relaxation of the MKP is obtained by relaxing in a Lagrangian fashion the
cardinality constraints (3.10) with multipliers λi ≥ 0 (i ∈ N). For the QMKP, such
relaxation becomes:

LQ(λ) =
n

∑
i=1

λi + max
n

∑
i=1

m

∑
k=1

(pi − λi)xik +
n−1

∑
i=1

n

∑
j=i+1

m

∑
k=1

pijxikxjk

s.t.
n

∑
i=1

wixik ≤ Ck (k ∈ M) (3.51)

x ∈ {0, 1}n×m.

As the objective function does not contain terms involving items assigned to dif-
ferent knapsacks, the problem decomposes into m independent QKPs (one for each
knapsack k ∈ M).

It is worth mentioning that, if the knapsack set M is partitioned into t subsets
M1, . . . , Mt, such that all knapsacks in Mh (h = 1, . . . , t) have the same capacity Ch,
the optimal solution to the above Lagrangian relaxation can be obtained by solving
t independent QKPs. Indeed, for each subset Mh, it is enough to solve one single
QKP and to sum up the optimal values. Such situation occurs, e.g., in the benchmark
instances by [101], where all knapsacks have the same capacity.
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In order to solve the Lagrangian dual problem, i.e., to find the best possible set
of multipliers, λ∗, in our computational experiments we adopted the proximal bun-
dle method, as implemented by [114]. The corresponding software is freely available
at https://gitlab.com/frangio68/ndosolver_fioracle_project (as a part of the
NDOSolver/FiOracle suite of C++ solvers for NonDifferentiable Optimization, devel-
oped by the Department of Computer Science of the University of Pisa).

3.4.2 Relaxing DRLT1

A different Lagrangian relaxation can be obtained by the DRLT1 model introduced
in Section 3.1. Let us dualize the symmetry equations (3.26) with multipliers λijk Q 0.
We get:

LR(λ) =max
n

∑
i=1

m

∑
k=1

pixik +
n

∑
i=1

n

∑
j=1
j 6=i

m

∑
k=1

( 1
2 pij + λijk)yijk (3.52)

s.t. yijk ≤ xik (i∈N, j∈N\{i}, k∈M) (3.53)

∑
j∈N\{i}

wjyijk ≤ (Ck − wi) xik (i ∈ N, k ∈ M) (3.54)

yijk ∈ {0, 1} (i∈N, j∈N\{i}, k∈M) (3.55)

(3.9), (3.10), (3.11).

Since the multipliers λijk for the symmetry constraints (3.26) are only defined for
j > i, we assume, for notational convenience, that λjik = −λijk in (3.52).

The main reason for relaxing (3.26) is that the resulting model has a decomposable
structure. Observe indeed that constraints (3.53) allow a variable yijk to be 1 only if
xik is 1. Moreover, for each pair i, k (i ∈ N, k ∈ M), variables yijk (j ∈ N \ {i}) only
appear in capacity constraints (3.54) and in the objective function. Hence, if all xik
variables are fixed, the relaxed problem consists of nm independent sub-problems,
one for each pair i, k. More precisely, the relaxed problem decomposes into nm + 1
sub-problems, that can be cascaded as follows:

(i) first we solve nm (linear) KPs, one for each pair i, k (i ∈ N, k ∈ M), of the form:

max
n

∑
j=1
j 6=i

( 1
2 pij + λijk)yijk

s.t. ∑
j∈N\{i}

wjyijk ≤ (Ck − wi)xik (3.56)

yijk ∈ {0, 1} (j ∈ N \ {i})
xik ∈ {0, 1}.

having only one xik variable and its associated n − 1 auxiliary variables yijk
(j ∈ N \ {i}) subject to a single capacity constraint (3.56) associated with the
pair (i, k). We denote by vik the optimal solution value when xik = 1, while the
optimal solution value is clearly 0 when xik = 0.

https://gitlab.com/frangio68/ndosolver_fioracle_project
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(ii) then we solve a unique (linear) pseudo-MKP with all the original xik variables
subject to constraints (3.9)-(3.11):

max
n

∑
i=1

m

∑
k=1

p̃ikxik (3.57)

s.t. (3.9), (3.10), (3.11),

where p̃ik = pi + vik (i ∈ N, k ∈ M).

Observe that, as it is known that the polyhedron of the 0-1 knapsack problem KP
is not integral (see, e.g., [108]), our Lagrangian problem does not have the integral-
ity property. Therefore, the Lagrangian bound, corresponding to the optimal dual
multipliers λ∗, is not dominated by the standard continuous relaxation of DRLT1.

In this case too we performed our computational experiments by solving the
Lagrangian dual problem by means of the proximal bundle method, as implemented
by [114].

3.5 Meta-heuristic Approach: The Multi-Start Iterated Local
Search

Several large size benchmark instances have been presented for the QMKP. Billion-
net and Soutif originally proposed these instances for testing algorithms for QKP
[83]. However, for the QMKP, a set of knapsacks with homogeneous capacities is
defined, and the corresponding instances are very difficult to solve with exact meth-
ods. For solving larger instances, meta-heuristics have been the most used tech-
nique. Evolutionary Algorithms [89, 90, 115], Tabu Search [94, 97], Path Relinking
[96],and heuristics based on thresholding [93, 96].

Large instances of QMKP remain a challenge for the state of the art algorithms.
The current instances for the QMKP, based on the single QKP have been randomly
generated, with number of items 100 and 200 and can be found http://cedric.
cnam.fr/soutif/QKP/QKP.html. The latest results about these instances are based
on time limit stopping criteria, so possibly the best results for the considered in-
stances have not been explored yet. This section presents the Multi-Start Iterated
Local Search (MS-ILS) algorithm for the solution of large instances of the problem.

The MS-ILS is based on the classic ILS described in the previous chapter. For
an ILS, four essential processes must be defined: initial solution, perturbation, local
search, and acceptance criteria. An initial solution can be generated randomly or by
executing a constructive heuristic for the problem. A perturbation allows to diver-
sify the search space by making random moves to a current solution; perturbation
must control this process since a very aggressive move can generate a solution that
does not help in the search as it is far from the optimum of the problem, while a less
aggressive move can stall the process at a local optimum. The local search allows
to intensify the search based on a candidate solution or current solution and deter-
mines if it is possible to change the neighborhood. For this, the local search strategy
can be determined based on how the neighborhoods are applied (first improvement
or best improvement) and the order in which they are applied (one neighborhood

http://cedric.cnam.fr/soutif/QKP/QKP. html
http://cedric.cnam.fr/soutif/QKP/QKP. html
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first or all simultaneously). Finally, the acceptance criterion allows to accept solu-
tions no better than the current solution with a defined threshold to "navigate" in a
larger problem-solution space.

The MS-ILS performs an ILS using more than one initial solution. The initial
solution for the ILS can be changed during the execution and allows to diversify
the search for the meta-heuristics. Generally, random processes based on properties
of the problem or deterministic methods that allow to give stability to the algorithm
considering the final result are used. In the following subsections, the meta-heuristic
for QMKP is presented in detail, considering the critical ILS processes and initial
solutions for multiple executions.

3.5.1 MS-ILS: Main Scheme

The MS-ILS approach generates initial solutions using different algorithms and ap-
plies Perturbations and local searches for the QMKP. The details of this metaheuristic
are described in Algorithm 11. The algorithm receives as input parameters: maxStart
corresponding to the number of ILS executions with different initial solutions; maxIter
corresponding to the maximum number of iterations within the ILS; r1, r2 and r3
are numbers between 0 and 1 that allow to define in which iteration to use a specific
initial solution; maxPl corresponding to the maximum number of iterations; λ and
maxTry are parameters for the perturbation (see the details later in Algorithm 13);
tabuTenurein f and tabuTenure f ea corresponding to the length of different tabu lists
used by the MS-ILS; M and β are parameters for the infeasible local search (see the
details in Algorithm 14). Initially, we define the variable s to control the number of
times the ILS is executed; we also define an empty list of tabu solutions that the al-
gorithm will use during the execution of the MS-ILS. Finally, the Quad− GreedyH()
algorithm is executed (see the details in the following subsection).

Depending on the current value of s, an initial solution is generated and stored
in xinitial (lines 5 to 15), and a local search procedure is applied (line16). The first it-
eration of the MS-ILS allows to define xbest, corresponding to the best solution found
by the metaheuristic.

The executions of a single ILS are carried out with the input parameters of the al-
gorithm. The internal while-loop of the MS-ILS (lines 22-36) allows for a generation
of perturbations based on thresholds and local searches in the feasible space of the
problem. The tabu list solutions is also updated to avoid to run procedure FeaLS re-
dundantly. Also, if an improvement is found during the execution of the while-loop,
the variables concerning the termination condition are reset (lines 29 and 30).

Finally, an infeasible local search process is executed. First, the list of tabu so-
lutions is checked to avoid redundant executions of the algorithm (line 37). Subse-
quently, infeasible local search and repair algorithms are implemented. The global
variables are updated before closing the main while-loop (lines 49-52).
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Algorithm 11 MS-ILS: Main Scheme
Input: maxStart, maxIter, r1, r2, r3, maxPl, λ, maxTry, tabuTenurein f , tabuTenure f ea, M, β
Output: BestProfit, xBest

1: s = 1
2: tabuList = ∅
3: xquad = Quad− GreedyH()
4: while s ≤maxStart do
5: if 0 <(s/maxStart) ≤ r1 then
6: xinitial = xquad
7: end if
8: if r1 <(s/maxStart) ≤ r2 then
9: xinitial = Random− FeasibleH()

10: end if
11: if r2 <(s/maxStart) ≤ r3 then
12: xinitial = Greedy− RandomH()
13: else
14: xinitial = xIn f LS
15: end if
16: (xls, tabuList, tabuCond) = FeaLS(xinitial , tabuList, tabuTenure f ea)
17: if s==1 then
18: xbest = xls
19: end if
20: f = 1
21: pertLength = 1
22: while f ≤ maxIter and pertLength ≤ maxPl do
23: xp = Perturbation(xls,pertLength,λ,maxTry,0.5,0.5)
24: (x f eaLS, tabuList, tabuCond)=FeaLS(xp, tabuList, tabuTenure f a)
25: if tabuCond == 1 then
26: pertLength = pertLength + 1
27: else
28: if f(x f eaLS) > f(xls) then
29: xls = x f eaLS
30: f = 1
31: pertLength = 1
32: else
33: f = f + 1
34: end if
35: end if
36: end while
37: if x f eaLS /∈ tabuList then
38: (xFeasible, xIn f easible)=InfLS(x f eaLS, M, tabuTenurein f , β)
39: x f easible2 = Repair(xIn f easible, xFeasible, 10)
40: xIn f LS = Best(xFeasible, x f easible2)
41: if f(xIn f LS) > f(xls) then
42: if xIn f LS /∈ tabuList then
43: xls = xIn f LS
44: f = 1
45: pertLength = 1
46: end if
47: end if
48: end if
49: if f(xls)> f(xbest) then
50: xbest = xls
51: end if
52: s=s+1
53: end while
54: return f (xbest), xbest

Initial Solutions

Four ways to obtain initial solutions are used in the MS-ILS:

• Quad-GreedyH consists of optimally solving the QKP with the available items
and the capacity of the homogeneous knapsack (i.e. Ck). This last process
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must be carried out m times always using the remaining available items that
the algorithm did not select in the previous iterations. In order to solve each
QKP, the quadknap algorithm was used.

• Random-FeasibleH consists of randomly selecting an item and assigning ran-
domly it to a knapsack whenever the latter has available capacity.

• Greedy-RandomH consists of randomly selecting an item and assigning it to the
best knapsack, improving the objective function for the QMKP.

• Use the best feasible solution found by the last MS-ILS run.

In Algorithm 11 (line 3), the Quad-GreedyH function is called only once, since it
always generates a deterministic solution, while the remaining functions are called
within the main loop since they use random processes and/or depend on past exe-
cutions.

Feasible Local Search

The feasible local search works by considering on the Relocate and Exchange neigh-
borhoods. BestRelocateSolution relocates each (available and unavailable) item be-
tween the different knapsacks, returning the best solution from the search neigh-
borhood. BestExchangeSolution exchanges each pair of (available and unavailable)
items between the different knapsacks (available and unavailable items), returning
the best solution from the search neighborhood. All neighborhoods work based on
the best improvement.

Another essential point of the feasible local search is how the neighborhoods are
applied. Algorithm 12 receives as parameters: x∗∗ the current solution, TabuList the
list of the best solutions found, and tabuTenure f ea the size of the tabu list. The al-
gorithm begins by checking if the initial solution (x∗∗) is in the tabu list, in order to
avoid to perform a redundant execution in the local search. Subsequently, a VND is
executed: first, a neighborhood is applied; if this move does not improve the solu-
tion or if the solution found is tabu, it is changed to the second neighborhood. If the
second neighborhood generates an improvement, it returns to the previous neigh-
borhood (line 20). The above steps are done iteratively until no neighborhood can
improve the solution. Finally, a list of local tabu solutions is considered for the FeaLS
process, which stores all the solutions found (line 21) and updates the global tabu
list tabuList at the end of the local search.
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Algorithm 12 FeaLS
Input: x∗∗, tabuList, tabuTenure f ea
Output: xls, tabuList, tabuCond

1: xls = x∗∗
2: if xls ∈ tabuList then
3: tabuCond = 1
4: return xls, tabuList, tabuCond
5: end if
6: k = 1
7: tabuCond = 0
8: tabuListSolution = ∅
9: while k <= 2 do

10: if k == 1 then
11: xm = BestExchangeSolution(xls, f (xls))
12: else
13: xm = BestRelocateSolution(xls, f (xls))
14: end if
15: if xm ∈ tabuList then
16: k = k + 1
17: else
18: if f (xm) > f (xls) then
19: xls = xm
20: k = 1
21: tabuListSolution.add(xls)
22: else
23: k = k + 1
24: end if
25: end if
26: end while
27: for solution ∈ tabuListSolution do
28: tabuList.update(solution, tabuTenure f ea)
29: end for
30: return xls, tabuList, tabuCond

Perturbation

The perturbation for the MS-ILS is based on the perturbation process defined in [116]
for the VRP and [117] for the Generalized-QMKP. This perturbation is defined based
on the concept of perturbation length (pertLength), the number of moves performed
in the input solution; and a threshold (γ)that allows to control the impact of each
move. In the perturbation process described in Algorithm 13, the variables of the
process are initialized in the first lines; later, within the main loop, a random neigh-
borhood is selected with probability Neighborhood1 for Exchange and Neighborhood2
for Relocate, and this move is iteratively applied.

Finally, if the solution is accepted with respect to f (xp) ∗ γ (where xp is the per-
turbed solution and, f (xp) is profit of xp.), the search variables are replaced. Also,
note that if the solution is not accepted, the counter variable try is used in order to
update γ.
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Algorithm 13 Perturbation
Input: xls,pertLength,λ,maxTry,Neighborhood1,Neighborhood2
Output: xp

1: p = 1
2: γ = 1− λ
3: xp = xls
4: try = 0
5: while p <= pertLength do
6: neighRandom = RandomNeighborhoodSelect(Neighborhood1,Neighborhood2)
7: xpw =applySingleRandomMove(neighRandom, xp)
8: if f (xpw) > f (xp) ∗ γ then
9: xp = xpw

10: γ = γ− λ
11: p = p + 1
12: try = 0
13: else
14: try = try + 1
15: if try > maxTry then
16: γ = γ− λ
17: try = 0
18: end if
19: end if
20: end while
21: return xp

Infeasible local Search and the Repair procedure

The infeasible local search is based on the procedure presented by [97]. This search
method is based on two major processes:

• The first process applies the BestExchangeSolution and BestRelocateSolution algo-
rithms by respecting the capacity of each knapsack (we always assume homo-
geneous capacities). When the first process falls into a local optimum, i.e., the
method cannot continue to improve the current feasible solution, the second
process is executed.

• The second process consists of the relaxation of the capacity restriction, and
the relocate neighborhood is used to explore infeasible areas. Generally, the
relocation move of this process moves items from a heavy knapsack to a light
knapsack.

The second process works stochastically, randomly choosing a knapsack and ap-
plying the relocation move. A function Relocate(item,k1,k2) is defined for the infeasi-
bility process, this function returns:

Relocate(item, k1, k2) = (∆(item, k2)− ∆(item, k1))/wβ
i (3.58)

where ∆(item, knapsack) = pitem + ∑j∈knapsack pitem,j. Algorithm 14 describes in
detail the method from the [97], where at lines 23 and 24 the selection of the knap-
sack, and the definition of the corresponding weight are performed:

• If Wkinput < Ckinput, the algorithm selects the item i ∈ k
′
, and the knapsack k

′ ∈
{kb ∈ K|Wkb ≥ Wkinput} such that maxi∈k′ {Relocate(i, k

′
, kinput)} (procedure

RelocateInfGain1).



60 Chapter 3. Formulations, Relaxations and Heuristics for the QMKP

• Otherwise, the algorithm selects the item i ∈ kinput and the knapsack k
′′ ∈

{ks ∈ K|Wks ≤ Wkinput} such that maxi∈kinput{Relocate(i, kinput, k
′′
)} is se-

lected (procedure RelocateInfGain2).

Algorithm 14 InfLS
Input: xc, M, tabuTenurein f , β
Output: xFeasible, xs (i.e. xs= the infeasible solution)

1: m = 1
2: xFeasible = xc
3: xs = xc
4: tabuListMovements = ∅
5: localOptFlag = False
6: f easibleFlag = True
7: while m <= M do
8: if (localOptFlag == False) and ( f easibleFlag == True) then
9: //FirstProcess

10: (xexc, γ1) = BestExchangeSolution(xs, f (xs,TabuList)
11: (xrel , γ2) = BestRelocateSolution(xs, f (xs,TabuList)
12: (xs, γbest) = SelectBest(xexc,xrel ,γ1,γ2)
13: tabuListMovements.update(γbest, tabuTenurein f )

14: if f (xs) > f (xFeasible) then
15: xFeasible = xs
16: localOptFlag = False
17: f easibleFlag = True
18: else
19: localOptFlag = True
20: end if
21: else
22: //SecondProcess
23: kinput = RandomKnapsack(1,K,0)
24: Wkinput = KnapsackWeight(kinput)
25: if Wkinput < Ckinput then
26: (xs, γ) = RelocateIn f Gain1(xs,β,kinput,Wkinput, TabuList)
27: else
28: (xs, γ) = RelocateIn f Gain2(xs,β,kinput,Wkinput, TabuList)
29: end if
30: tabuListMovements.update(γ, tabuTenurein f )
31: if Feasible(xs)== True then
32: xFeasible = xs
33: f easibleFlag = True
34: localOptFlag = False
35: else
36: f easibleFlag = False
37: end if
38: end if
39: m = m + 1
40: end while
41: return xFeasible, xs

All processes do not consider the capacity restriction, but consider the TabuList
received as an input parameter. Finally, a repair procedure is applied. Three neigh-
borhoods are used for this process: extraction, exchange, and relocation, that work
on the same the infeasible solution. The move that generates the least infeasibility is
selected, i.e., the move that produces the smallest overload with respect to the knap-
sack capacity. If there is a tie (i.e., more than one neighborhood generate the same
degree of infeasibility), the algorithm selects the move that produces the highest
profit (see Appendix A).
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A second approach is presented in the next section. Previously described proce-
dures concerning the Lagrangian relaxation and the local search processes are con-
sidered.

3.6 Matheuristics Approach

An effective solution process arises when heuristics and exact techniques are used
in combination to solve a problem. This process gives rise to a solution approach
known as Matheuristic, a field responsible for generating approaches that use math-
ematical programming and heuristics and/or metaheuristics, one within the other
or both executed sequentially [118]. Consider the QKP described above: a Greedy
heuristic can quickly find feasible solutions but of poor quality. On the other hand,
an integer programming (IP) approach can find high-quality solutions in intractable
computing times [51]. However, the combination of a pre-processing heuristic that
allows to identify the items that are not part of a good solution for the QKP with the
solution of the resulting subproblem by using an IP approach, can generate high-
quality solutions. This process can be iterative, and the heuristics can deliver small
subproblems to the IP model until a defined stop criterion is reached. Matheuristics
have been studied in great depth in the field of operations research, and have been
shown to be effective for various combinatorial optimization problems.

The Lagrangian relaxation of the quadratic model proposed for the QMKP pro-
cess (see section 3.4.1) can generate reasonable solutions. Observe that a valid QKP
solution and a valid upper bound UB are obtained at each iteration the bundle pro-
cedure. Thus, to solve the QMKP effectively, a new matheuristic algorithm can be
considered. This approach is based on the methods previously described:

• The bundle procedure used to get the optimal multipliers for the Lagrangian
relaxation of the quadratic model.

• The local search neighborhoods to improve the solutions in the MS-ILS.

• The search process proposed by [97] that considers infeasible moves through-
out the thesis and that is also addressed in the MS-ILS.

This hybrid approach for the solution of QMKP is new and could be applied to
other optimization problems, depending on the quality of the Lagrangian relaxation
solutions determined during the executions of the bundle procedure. The following
subsections describe the proposed matheuristic in detail considering the processes
mentioned above.

Matheuristic: Main Scheme

Before executing the matheuristic, it is necessary to solve the Lagrangian relaxation
of the quadratic model. Let us assume that the Bundle procedure requires t itera-
tions. In this way, at the end of the bundle procedure, we have t solutions of the
single QKP and t upper bound values.

The matheuristic receives the solutions generated by the bundle procedure and
generates feasible solutions for the QMKP. Algorithm 15 details the input variables:
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solQKP a set of solutions for the single QKP obtained by the bundle procedure, UB
a vector of upper bound values associated with each solution from solQKP, UBM
a threshold value to generate a subset from solQKP and a scalar δ used during the
matheuristic.

Algorithm 15 Matheuristic 1
Input: solQKP, UB, UBM, δ
Output: bestSolution

1: (A∗, s∗) = selectThreshold(solQKP, UB, UBM)
2: (A, s) = DeleteRedundanceSolutions(A∗)
3: b = GetNumberO f Elements(A)
4: bestSolution = ∅
5: for r = 1, 2..m do
6: if r > s then
7: break
8: end if
9: for i = 1, 2..s do

10: gi = bi ∗ δ
11: end for
12: StopCriteria = False
13: YY = ∅
14: it = 1
15: while StopCriteria == False do
16: y = SolveCCSP(A, g, r)
17: if y ∈ YY then
18: StopCriteria = True
19: else
20: YY.add(y)
21: for i = 1...s do
22: gi = gi − yi ∗ (10 + it + 1)
23: end for
24: currentSolution = GetSolutions(A, y)
25: nKnap = GetNomberO f Knapsack(currentSolution)
26: while nKnap < m do
27: availableItems = GetAvailableItems(currentSolution)
28: SolutionQKP = Quadknap(availableItems, C)
29: currentSolution.add(SolutionQKP)
30: nknap = nknap + 1
31: end while
32: LocalSearchSol = FeaLS(currentSolution)
33: In f LocalSearchSol = In f LS(LocalSearchSol)
34: if f (bestSolution) < f (In f LocalSearchSol) then
35: bestSolution = In f LocalSearchSol
36: end if
37: it = it + 1
38: end if
39: end while
40: end for
41: return bestSolution

The first phase of the matheuristic consists of selecting the QKP solutions that
can be part of the final QMKP solution. Lines 1-3 of Algorithm 15 deletes the QKP
solutions that are not "promising". First, selectThreshold is executed and returns a set
A∗ = {A∗i |A∗i ∈ solQKP ∧UBi <= UBM ; ∀i ∈ {1, 2..t}} and also a value s∗ = |A∗|.
Then, DeleteRedundanceSolutions deletes identical solutions from the subset of solu-
tions in A∗, returning the set of solutions A and s = |A|. Finally, GetNumberOfEle-
ments returns a vector b = {bi|bi = ∑n

j=1 Ai,j; ∀i ∈ {1, 2..s}}.
The matheuristic explores various combinations of the matrix A and generates a

feasible solution for the QMKP using hybrid approaches. Lines 5-40 define the main
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loop based on the number of knapsacks m. The value of r represents the maximum
number of QKP solutions chosen by the matheuristic. Then, a vector gi is defined
using the number of selected items (bi) and the parameter δ.

The matheuristic iteratively solves an IP model in order to identify the best QKP
solutions that are part of the final QMKP solution. The model solves the Cardinality
Constrained Set Packing Problem (CCSP, line 16) described in the following:

max
s

∑
h=1

ghyh (3.59)

s.t.
s

∑
h=1

Ahiyh ≤ 1 (i ∈ N) (3.60)

s

∑
h=1

yi ≤ r (3.61)

yh ∈ {0, 1}. h = 1, ..., s (3.62)

For the h-th QKP solution (h = 1, ..., s), the binary decision variable yh takes the
value 1 iff the solution is selected, and gh represents the corresponding "gain". The
objective function (3.59) maximizes the global "gain" of the selected solutions (i.e.,
the global number of items). The constraints (3.60) forbid each selected item to be
repeated among the solutions (no overlap). Finally, the constraint (3.61) ensures that
the model selects no more than r solutions (with r ≤ m). In this way, the SolveCCSP
function returns the (at most) r selected QKP solutions belonging to the QMKP so-
lution.

A list YY of "tabu selections" is defined. Line 13 initializes the YY list. If the
model generates a selection that has already been made (i.e., it is found in the tabu
list), the external while-loop (lines 15-39) ends and the main loop continues (lines
5-40). The vector g is also updated allowing the model to explore new selections.

The selection of the QKP solutions performed by the model may be incomplete,
since the model can choose at most r QKP solutions for the QMKP. Lines 26-31 fill
the remaining knapsacks using the available items (returned on line 27) using for
each knapsack the quadknap algorithm.

Improvement algorithms are applied until a local optimum is found. First, the
FeaLS algorithm (Algorithm 12), and then In f LS algorithm (Algorithm 14) are ap-
plied. Each local search process does not use the input tabu list; it only uses the local
tabu list defined internally in each algorithm. Also, consider that the knapsack se-
lection process for the infeasible relocation phase is carried out by examining all the
knapsacks and selecting the move that generates the largest profit. Finally, the best
solution found is returned.

A variation of the previous matheuristic (Matheuristic 2) is described in Algo-
rithm 16. In this second matheuristic, the vector g is defined by considering the
original profit of each QKP solution. In this way, line 2 calculates the profit for
each QKP solution from the matrix A. The following steps are the same as those
of Matheuristic 1, but in this case, there is no inner loop that updates the vector g.
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Algorithm 16 Matheuristic 2
Input: solQKP, UB, UBM
Output: bestSolution

1: (A∗, s∗) = selectThreshold(solQKP, UB, UBM)
2: (A, s) = DeleteRedundanceSolutions(A∗, s∗)
3: g = GetSinglePro f it(A)
4: bestSolution = ∅
5: for r = 1, 2..m do
6: if r > s then
7: break
8: end if
9: Y = SolveCCSP(A, g, r)

10: currentSolution = GetSolutions(A, Y)
11: nKnap = GetNomberO f Knapsack(currentSolution)
12: while nKnap < m do
13: availableItems = GetAvailableItems(currentSolution)
14: SolutionQKP = Quadknap(availableItems, C)
15: currentSolution.add(SolutionQKP)
16: nknap = nknap + 1
17: end while
18: LocalSearchSol = FeaLS(currentSolution)
19: In f LocalSearchSol = In f LS(LocalSearchSol)
20: if f (bestSolution) < f (In f LocalSearchSol) then
21: bestSolution = In f LocalSearchSol
22: end if
23: end for
24: return bestSolution

3.7 Computational experiments

3.7.1 Formulations and the Relaxations

The formulations and the relaxations introduced in the previous sections were im-
plemented in C++ language. In the present section, we report the outcome of compu-
tational experiments aimed at evaluating the quality of the upper bounds produced
by the polynomial-size models and the relaxations we have introduced. All the ex-
periments were performed on a single thread of an AMD Ryzen 7 2700X Eight-Core
Processor running at 3.7 GHz with 64 GB RAM. In order to evaluate our models and
relaxations, we used benchmark instances adopted by [101], for most of which his
Branch-and-Price algorithm could find the optimal solution (available online, see
below). For the sake of completeness, in the next section we describe the way in
which the instances were generated. The solution of our mathematical models was
obtained using different codes:

• the general purpose solver CPLEX 12.10;

• the open source C code quadknap, that implements the algorithm for the QKP
developed by [109] and is available at the home page of D. Pisinger, http://
hjemmesider.diku.dk/~pisinger/codes.html . This code works with integer
parameters and non-negative pairwise profits pij: in Section 3.7.1 we detail
how we handled this feature to solve Lagrangian subproblems;

• the open source Fortran code MT1R, that implements a variant of the KP algo-
rithm MT1 by [79] (adapted to non-integer parameters), available at the home
page of S. Martello, http://www.or.deis.unibo.it/knapsack.html .

http://hjemmesider.diku.dk/~pisinger/codes.html
http://hjemmesider.diku.dk/~pisinger/codes.html
http://www.or.deis.unibo.it/knapsack.html
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Benchmark instances

[101] presented two sets of random instances, called HJ and SS, based on the gen-
eration schemes proposed, respectively, by [89] for the QMKP and by [115] for a
generalization of the problem. However, as reported by [95], the known optimality
gap for even the easiest of the HJ instances (n = 100) is enormous, so smaller in-
stances were generated by [101] (with n ∈ {20, 25, 30, 35}) to test his exact approach.
For our experiments, we considered the HJ instances, both because they have been
specifically designed for the QMKP and because all the involved pairwise profits are
non-negative.

All the instances can be downloaded from the INFORMS page as a zipfile at the
address https://pubsonline.informs.org/doi/suppl/10.1287/ijoc.2018.0840/
suppl_file/ijoc.2018.0840-instances.sm2.zip . The knapsacks have a common
integer capacity C, with n ranging in {20, 25, 30, 35} and m in {3, 5, 10}. Three dif-
ferent values d ∈ (0, 1] were used for the density of the non-zero quadratic terms:
d ∈ {0.25, 0.50, 0.75}. For each triple (n, m, d), 5 random instances were produced as
follows. Linear profits pi were generated as uniformly random integers from [0, 100].
For every pair i, j ∈ N, quadratic profits pij were set with probability d to a random
integer value uniformly drawn from [0, 100], and to 0 with probability 1− d.

The weights wi were generated as uniformly random integers from [1, 50], while
the capacities C were all set to b0.8 ∑i∈N wi/mc. In total, 180 instances were thus
generated.

In addition, in order to analyze how the most promising reformulations and
relaxations scale for larger values of n, we generated new HJ instances, using the
instance generator provided by [101], that is available for download. The gen-
erator produces instances according to the scheme described above. In this case,
we considered instances with n ranging in {40, 45, 50, 55, 60}, m in {3, 5, 10}, and
d ∈ {0.25, 0.50, 0.75}.

Experiments

We first evaluate the polynomial-size formulations discussed in Sections 3.1 and 3.2,
for what concerns both their performance on the computation of the optimal solu-
tion and the quality of the LP relaxation of the linear ones. Table 3.1 reports on the
different formulations of the QMKP, when solved through CPLEX, with one hour
time limit. The six groups, of three columns each, refer to the models we have ob-
tained for the QMKP:

• CPLEX-QF: 0-1 quadratic formulation (Section 3.1);

• CPLEX-FGW: 0-1 linear formulation by Fortet, Glover, and Woolsey (Section 3.2);

• CPLEX-GLOV: mixed-integer linear formulation by Glover (Section 3.2);

• CPLEX-RLT1: Level 1 reformulation linearization by Sherali and Adams (Sec-
tion 3.2.2);

• CPLEX-DRLT1: decomposable Level 1 reformulation (Section 3.1).

• CPLEX-MDRLT1: modified decomposable Level 1 reformulation (Section 3.1).

https://pubsonline.informs.org/doi/suppl/10.1287/ijoc.2018.0840/suppl_file/ijoc.2018.0840-instances.sm2.zip
https://pubsonline.informs.org/doi/suppl/10.1287/ijoc.2018.0840/suppl_file/ijoc.2018.0840-instances.sm2.zip
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Each line refers to a triple (n, m, d). For each formulation, the three entries in the
table report (over the corresponding 5 instances),

• %gap = average percentage optimality gap of the best solution value z obtained
by CPLEX within one CPU hour with respect to its best found upper bound u,
computed as 100 (u− z)/z. In parentheses #, total number of instances solved
to proven optimality;

• nodes = average number of nodes of the CPLEX branch-decision tree;

• t(s) = average CPU time expressed in seconds.

The average values of %gap, nodes, t(s) and the total value of # for each value of
n (45 instances) are also reported, as well as the overall values over the 180 instances.

The table shows that the direct use of the models to provide solutions to the
QMKP through a general purpose solver like CPLEX (we also tried Gurobi 9, with
similar results) can only be effective for small size instances. We observe that the
quadratic formulation QF and the two linear formulations FGW and GLOV obtain
worse results than those obtained by the three Level 1 RLT formulations.

For n ≤ 25, RLT1, DRLT1, and MDRLT1 could solve all 90 instances to optimality.
DRLT1 turned out to be the fastest method, although it requires a higher number
of CPLEX decision nodes than RLT1. For n = 30, the same models could solve,
respectively, 40, 43, and 44 instances out of 45, with CPU times of few hundred
seconds. The models look instead inadequate for instances with n = 35.

As previously mentioned, all the considered instances but two were efficiently
solved to optimality by [101] Branch-and-Price algorithm, referred to as BBP in the
following. (He used Gurobi 7.5.1 with one hour time limit on a computer similar to
ours, namely an Intel Core i7-4770 running at 3.40 GHz with 32 GB RAM.) Although
a direct comparison between the CPLEX solution of polynomial-size models and a
specialized Branch-and-Price algorithm may be questionable, we can observe that
the Level 1 RLT models appear to perform better for n = 20 and n = 25, while BBP
is more effective for n = 30, and much better for n = 35. More specifically,

• for n = 20, the three Level 1 reformulations and BBP solved all instances, with
DRLT1 and MDRLT1 taking smaller times (on average, 1.6 and 2.1 seconds,
respectively, versus 4.2 seconds of RLT1 and 3.6 seconds of BBP);

• for n = 25, RLT1 and DRLT1 solved all 45 instances (with average times 62.1
and 60.0 seconds, respectively) while BBP solved one instance less with av-
erage time 95.8 seconds. MDRLT1 solved all instances, but required a much
higher, anomalous, time;

• for n = 30, MDRLT1 solved 44 instances with an average time of 462.4 seconds,
while BBP solved all 45 instances with an average time of 151.2 seconds;

• for n = 35, RLT1 solved 29 instances with an average time of 1974.2 seconds,
while BBP solved 44 instances with an average time of 455.2 seconds.

Table 3.2 examines the quality of the upper bounds computed through the LP
relaxations of the linear models considered in Table 3.1. The five groups, of two
columns each, refer to:
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TABLE 3.2: Upper bounds computed through LP relaxation of the lin-
ear formulations. Average percentage optimality gap and CPU time

over 5 instances. Time limit: 1 hour.

instance LP-FGW LP-GLOV LP-RLT1 LP-DRLT1 LP-MDRLT1

n m d %gap t(s) %gap t(s) %gap t(s) %gap t(s) %gap t(s)
20 3 0.25 37.75 0.01 39.21 0.00 29.83 0.01 29.83 0.00 29.83 0.00
20 5 0.25 64.50 0.01 66.31 0.00 29.47 0.01 29.48 0.00 29.30 0.00
20 10 0.25 163.12 0.01 166.21 0.00 19.31 0.02 19.32 0.01 11.94 0.00
20 3 0.50 68.66 0.01 70.94 0.00 31.59 0.01 31.63 0.00 31.63 0.00
20 5 0.50 126.35 0.01 129.41 0.00 29.31 0.01 29.32 0.01 28.05 0.00
20 10 0.50 265.74 0.01 270.76 0.01 24.72 0.02 24.72 0.01 16.72 0.00
20 3 0.75 90.80 0.01 95.75 0.00 28.76 0.01 28.77 0.01 28.77 0.00
20 5 0.75 156.59 0.01 163.41 0.00 24.26 0.02 24.26 0.01 23.67 0.01
20 10 0.75 310.87 0.01 322.10 0.01 19.36 0.02 19.37 0.01 12.06 0.01

Avg 142.71 0.01 147.12 0.00 26.29 0.01 26.30 0.01 23.55 0.00
25 3 0.25 41.19 0.01 42.97 0.00 36.28 0.02 36.28 0.00 36.28 0.00
25 5 0.25 65.55 0.01 67.69 0.00 33.27 0.02 33.27 0.01 33.27 0.00
25 10 0.25 138.13 0.02 141.35 0.01 24.82 0.04 24.85 0.01 19.86 0.01
25 3 0.50 78.55 0.01 81.90 0.00 40.42 0.02 40.49 0.01 40.49 0.01
25 5 0.50 132.64 0.01 137.10 0.01 33.33 0.03 33.34 0.01 33.34 0.01
25 10 0.50 263.46 0.02 270.41 0.01 27.69 0.04 27.74 0.02 20.17 0.01
25 3 0.75 93.43 0.01 97.98 0.00 34.57 0.02 34.59 0.01 34.59 0.01
25 5 0.75 163.96 0.01 170.19 0.01 30.60 0.03 30.60 0.01 30.60 0.01
25 10 0.75 310.82 0.02 320.75 0.01 23.95 0.05 23.98 0.02 20.03 0.01

Avg 143.08 0.01 147.81 0.00 31.66 0.03 31.68 0.01 29.85 0.01
30 3 0.25 43.53 0.01 45.56 0.00 39.37 0.02 39.37 0.01 39.37 0.00
30 5 0.25 69.84 0.02 72.27 0.00 39.87 0.03 39.91 0.01 39.91 0.01
30 10 0.25 135.77 0.03 139.28 0.01 28.45 0.07 28.53 0.02 24.19 0.01
30 3 0.50 77.83 0.01 82.43 0.00 47.04 0.03 47.10 0.01 47.10 0.01
30 5 0.50 125.58 0.02 131.49 0.01 37.88 0.04 37.88 0.01 37.88 0.01
30 10 0.50 250.12 0.03 259.62 0.01 29.97 0.07 30.01 0.02 26.12 0.02
30 3 0.75 104.83 0.02 110.95 0.00 36.65 0.04 36.65 0.01 36.65 0.01
30 5 0.75 175.09 0.02 183.45 0.01 28.54 0.05 28.54 0.02 28.54 0.01
30 10 0.75 348.85 0.04 362.68 0.01 26.20 0.08 26.20 0.03 20.71 0.02

Avg 147.94 0.02 154.19 0.01 34.89 0.05 34.91 0.02 33.39 0.01
35 3 0.25 50.01 0.02 53.32 0.00 43.19 0.04 43.19 0.01 43.19 0.01
35 5 0.25 77.38 0.02 81.28 0.01 44.89 0.05 44.90 0.02 44.90 0.01
35 10 0.25 137.54 0.04 142.89 0.01 31.79 0.09 31.79 0.03 29.81 0.01
35 3 0.50 82.83 0.02 87.35 0.00 49.75 0.04 49.79 0.02 49.79 0.01
35 5 0.50 135.69 0.03 141.55 0.01 42.82 0.05 42.85 0.02 42.85 0.01
35 10 0.50 248.47 0.05 257.14 0.01 30.51 0.09 30.51 0.03 28.35 0.02
35 3 0.75 101.86 0.02 108.36 0.01 36.15 0.06 36.16 0.02 36.16 0.02
35 5 0.75 178.30 0.03 187.29 0.01 32.10 0.07 32.10 0.02 32.10 0.02
35 10 0.75 345.25 0.05 360.17 0.01 24.95 0.11 24.95 0.04 23.37 0.04

Avg 150.81 0.03 157.70 0.01 37.35 0.07 37.36 0.02 36.72 0.02
Ov.Avg 146.14 0.02 151.71 0.01 32.55 0.04 32.56 0.01 30.88 0.01

• LP-FGW: LP relaxation of FGW (Section 3.2.1);

• LP-GLOV: LP relaxation of GLOV (Section 3.2.1);

• LP-RLT1: LP relaxation of RLT1 (Section 3.2.2);

• LP-DRLT1: LP relaxation of DRLT1 (Section 3.1);

• LP-MDRLT1: LP relaxation of MDRLT1 (Section 3.1);
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The LP relaxations were solved through CPLEX. Each line refers to a triple (n, m, d).
For each formulation, the two entries in the table report the values (over the corre-
sponding 5 instances) of:

• %gap = average percentage gap of the upper bound u obtained within one CPU
hour with respect to the best known solution value z, computed as 100 (u −
z)/z. The value of z is optimal for 179 instances out of 180: 178 were provided
by Bergman [101], one more was found by the Level 1 RLT models (see the
comments on Table 3.1);

• t(s) = average CPU time expressed in seconds.

We have seen in Table 3.1 that the linear models (DRLT1 in particular) can pro-
vide good solutions for instances of limited size. Table 3.2 shows that the CPU
times for computing their LP relaxations are very small, but the quality of the up-
per bounds they provide is poor, especially for what concerns GLOV and FGW. The
performances of RLT1 and DRLT1 are very similar to each other. Although the con-
tinuous relaxation of DRLT1 is weaker than that of RLT1 (as observed in Section
3.1), the quality of the bounds they produce is practically the same, while DRLT1
is faster. The best performance was obtained by MDRLT1. In particular: (i) for
m = 10, MDRLT1 produced the smallest percentage gaps, thanks to the addition of
constraints (3.45); (ii) MDRLT1 was slightly faster than DRLT1, probably due to the
use of sets Rik and Sik.

In any case, the results of Table 3.2 indicate that the LP relaxations are inadequate
to be embedded in an enumerative approach. We next show that much better results
can be obtained from Lagrangian relaxations.

In Table 3.3 we analyze the quality of the upper bounds obtained by the surro-
gate and Lagrangian relaxations studied in Sections 3.3-3.4. For the surrogate relax-
ations, the optimal multipliers are known (see Proposition 4). For the Lagrangian
relaxations, the search of the best multipliers was always performed via the proxi-
mal bundle method [114]. The columns provide information on the different ways
we solved the relaxed subproblems (either CPLEX, or Quadknap [109], or MT1R
[79]). We also consider both the case where separability due to equal capacities is
exploited (see Section 3.4.1) and where it is not. The eight groups, of two columns
each, refer to:

• Srg CPLEX: surrogate bound S(π) (Section 3.3) solved through CPLEX;

• Srg Qknap: surrogate bound S(π) (Section 3.3) solved through quadknap [109];

• Lgr QP CPLEX: Lagrangian bound LQ(λ) (Section 3.4.1) solved through CPLEX;

• S-Lgr QP CPLEX: Lagrangian bound LQ(λ) exploiting separability, with the
single QKP solved through CPLEX;

• S-Lgr QP Qknap: Lagrangian bound LQ(λ) exploiting separability, with the
single QKP solved through quadknap [109]. Note that quadknap works with
non-negative pairwise profits pij (which holds in our formulation) and integer
coefficients. Since our Lagrangian linear profits pi − λi (i ∈ N) can assume
non-integer values, we multiplied all profits by 100, rounded each resulting
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value a to dae, and correspondingly divided the solution value by 100 (thus
obtaining a valid upper bound on the optimal QKP solution);

• S-Lgr QPL CPLEX: Lagrangian bound LQ(λ) exploiting separability, with the
single QKP linearized through the MDRLT1 formulation with m = 1 and
solved through CPLEX;

• D-Lgr DRLT1 CPLEX: Lagrangian bound LR(λ) exploiting the decomposable
structure (see (i)-(ii) of Section 3.4.2) with single KPs solved through CPLEX;

• D-Lgr DRLT1 MT1R: Lagrangian bound LR(λ) exploiting the decomposable struc-
ture (see (i)-(ii) of Section 3.4.2) with single KPs solved through MT1R [79].

Preliminary computational experiments showed that the exact solution of the linear
pseudo-MKP (point (ii) in Section 3.4.2), performed at each iteration of the bundle
procedure, takes a large computing time, so we replaced it with its LP relaxation
(solved through CPLEX). The entries in the table are the same as for Table 3.2. The
results indicate that:

• despite using optimal multipliers, the surrogate relaxation is very weak: it
takes very short CPU times, but the upper bounds are extremely loose;

• all Lagrangian relaxations provide much better bounds, although LR(λ) is con-
siderably weaker than LQ(λ) (with D-Lgr DRLT1 MT1R requiring much smaller
CPU times than D-Lgr DRLT1 CPLEX);

• all versions of LQ(λ) are by far the best approaches:

– they produce an average gap of 0.34%, with individual gaps rarely ex-
ceeding 1%;

– their gaps are identical, with the only exception of S-Lgr QP Qknap due
to the non-optimal solution of the Lagrangian subproblems imposed by
quadknap, which can result in a suboptimal Lagrangian dual (for 7 in-
stances out of 180, its value is higher by one unit);

– Lgr QP CPLEX, which does not exploit separability, has the highest CPU
times;

– the second highest times are those of S-Lgr QP CPLEX, which solves the
single QKP Lagrangian subproblem through CPLEX on the standard quadratic
formulation. By linearizing the QKP through the MDRLT1 formulation,
S-Lgr QPL CPLEX reduces the computational effort by two thirds;

– the best approach is by far S-Lgr QP Qknap, which directly solves the
QKP through quadknap. It provides very tight upper bounds in short
CPU times, with a much smaller growth rate with respect to n than that
of the other LQ(λ) methods;

– by comparing the obtained upper bounds with the optimal solution val-
ues, it turns out that they are frequently identical: it happens for 94 in-
stances out of 180 (92 instances for S-Lgr QP Qknap).



72 Chapter 3. Formulations, Relaxations and Heuristics for the QMKP

Finally, Table 3.4 shows how the two best performing reformulations RLT1 and
MDRLT1, as well as three of our relaxations scale for larger values of n, up to 60. The
five groups, of two columns each, refer to:

TABLE 3.4: CPLEX solution and upper bounds for larger instances.
Average percentage gap and CPU time over 5 instances. Time limit: 1

hour (3 hours for CPLEX runs).

instance CPLEX-RLT1 CPLEX-MDRLT1 LP-MDRLT1 S-Lgr QP Qknap D-Lgr DRLT1 MT1R

n m d %gap %gapL %gapU t(s) %gap %gapL %gapU t(s) %gap t(s) %gap t(s) %gap t(s)
40 3 25 0.00 0.00 0.00 2476.2 0.00 0.00 0.00 191.6 45.26 0.01 0.11 11.47 44.23 34.24
40 5 25 4.72 0.27 4.43 9577.2 2.65 0.12 2.53 8368.1 48.91 0.01 0.55 1.81 44.14 71.77
40 10 25 5.49 0.29 5.18 9308.6 0.00 0.00 0.00 2010.2 35.23 0.02 0.43 0.59 25.22 156.48
40 3 50 2.18 0.01 2.17 9154.0 8.32 0.04 8.28 10559.8 54.21 0.02 1.05 25.30 51.79 129.77
40 5 50 11.12 2.24 8.67 10793.2 11.12 0.00 11.11 10800.0 46.99 0.02 1.03 3.39 42.73 247.10
40 10 50 9.55 0.22 9.31 10792.9 6.60 0.04 6.56 9335.4 32.12 0.03 0.83 0.71 24.86 428.60
40 3 75 1.71 0.05 1.65 9265.2 8.81 0.20 8.59 10795.0 40.76 0.03 0.45 26.12 38.88 233.18
40 5 75 11.13 0.66 10.41 10793.2 10.82 0.29 10.49 10794.2 37.36 0.03 1.76 3.79 33.84 310.38
40 10 75 8.23 1.31 6.84 10792.8 6.96 0.00 6.96 10794.8 25.19 0.05 0.70 0.67 19.53 434.95

Avg 6.01 0.56 5.41 9217.0 6.14 0.08 6.06 8183.2 40.67 0.02 0.77 8.21 36.14 227.39
45 3 25 3.91 0.62 3.25 8889.6 0.00 0.00 0.00 1548.8 50.35 0.01 0.23 83.92 49.53 61.97
45 5 25 11.78 1.89 9.69 10792.8 12.27 0.00 12.27 10800.0 55.36 0.01 0.68 10.12 51.30 138.89
45 10 25 14.03 2.39 11.35 10792.7 10.27 0.00 10.28 10800.0 38.67 0.02 0.45 0.91 29.74 342.53
45 3 50 7.26 0.81 6.39 10117.3 16.17 0.00 16.17 10800.0 56.59 0.03 1.25 151.94 54.57 236.79
45 5 50 17.64 2.77 14.45 10792.9 19.00 0.00 19.00 10800.0 50.84 0.03 1.59 12.01 47.34 413.74
45 10 50 15.30 2.62 12.37 10792.5 11.23 0.00 11.23 10800.0 35.22 0.04 1.31 1.27 29.29 701.21
45 3 75 4.91 0.02 4.89 9354.8 12.09 0.13 11.95 10800.0 42.57 0.04 0.98 125.74 41.00 395.29
45 5 75 15.42 2.63 12.43 10792.7 12.93 0.00 12.94 10800.0 38.83 0.04 1.84 12.48 36.21 533.15
45 10 75 13.81 2.02 11.55 10792.3 11.16 0.00 11.16 10800.0 30.06 0.06 1.72 1.48 24.64 854.63

Avg 11.56 1.75 9.60 10346.4 11.68 0.01 11.67 9772.1 44.28 0.03 1.12 44.43 40.40 408.69
50 3 25 10.05 1.98 7.91 10792.3 3.91 0.00 3.91 7977.8 53.29 0.01 0.57 702.10 52.61 172.38
50 5 25 18.44 2.56 15.52 10792.1 21.03 0.00 21.03 10800.0 62.60 0.02 2.00 44.53 59.12 411.04
50 10 25 19.87 2.02 17.51 10792.2 15.51 0.00 15.51 10800.0 46.75 0.03 1.48 2.61 37.67 977.58
50 3 50 13.94 1.81 11.92 10792.5 24.23 0.00 24.23 10800.0 59.71 0.04 1.24 1459.54 58.13 390.89
50 5 50 24.33 2.65 21.16 10792.4 28.86 0.12 28.70 10800.0 56.69 0.04 3.09 58.10 53.61 610.32
50 10 50 21.84 4.36 16.73 10792.3 17.82 0.00 17.82 10800.0 37.30 0.05 1.98 2.66 31.87 919.93
50 3 75 10.47 2.40 7.88 10792.4 17.20 0.00 17.20 10800.0 44.24 0.05 0.84 1134.35 42.95 873.14
50 5 75 16.60 2.52 13.70 10792.5 19.73 0.00 19.73 10800.0 42.59 0.06 2.59 76.35 40.38 1455.24
50 10 75 17.85 2.14 15.41 10792.6 17.10 0.35 16.69 10800.0 35.77 0.08 3.94 4.32 31.11 2317.03

Avg 17.04 2.49 14.19 10792.4 18.38 0.05 18.31 10486.4 48.77 0.04 1.97 387.17 45.27 903.06
55 3 25 12.91 2.13 10.54 10796.4 9.29 0.08 9.21 10800.0 57.31 0.01 0.79 2527.69 57.13 169.40
55 5 25 23.26 3.66 18.89 10795.7 28.92 0.00 28.92 10800.0 69.31 0.02 1.37 183.96 66.30 389.81
55 10 25 26.92 3.03 23.21 10793.7 23.66 0.00 23.66 10800.0 51.07 0.03 2.52 3.27 43.72 793.73
55 3 50 19.81 2.15 17.29 10796.4 35.11 0.11 34.96 10800.0 67.15 0.05 3.88 3659.88 65.70 656.78
55 5 50 31.03 4.54 25.34 10795.6 36.68 0.00 36.68 10800.0 62.47 0.05 3.52 334.96 59.98 1019.73
55 10 50 27.17 2.87 23.61 10793.6 25.52 0.26 25.20 10800.0 44.25 0.06 4.91 6.31 39.04 1422.40
55 3 75 13.53 2.55 10.70 10796.3 23.18 0.00 23.17 10800.0 46.56 0.07 1.15 3570.32 45.46 1049.39
55 5 75 16.38 1.67 14.44 10795.6 23.28 0.07 23.19 10800.0 42.76 0.07 2.26 207.63 40.89 1237.25
55 10 75 20.57 1.64 18.61 10793.5 21.29 0.23 21.02 10800.0 36.90 0.08 5.35 8.54 33.14 1581.45

Avg 21.29 2.69 18.07 10795.2 25.21 0.08 25.11 10800.0 53.09 0.05 2.86 1166.95 50.15 924.44
60 3 25 18.19 3.64 14.04 10795.7 18.67 0.00 18.67 10800.0 62.73 0.02 3.43 3682.17 62.54 415.61
60 5 25 33.09 7.33 23.99 10794.7 38.30 0.00 38.30 10800.0 76.75 0.03 1.73 1791.48 74.11 1056.09
60 10 25 38.17 7.80 28.16 10793.7 31.99 0.00 31.99 10800.0 58.47 0.05 3.29 12.37 51.91 2284.78
60 3 50 23.04 4.10 18.20 10795.8 37.20 0.00 37.20 10800.0 67.25 0.06 5.93 3841.32 66.00 1033.00
60 5 50 33.26 4.59 27.42 10794.7 42.16 0.28 41.76 10800.0 65.77 0.06 4.01 1259.54 63.47 1798.34
60 10 50 32.69 3.60 28.17 10793.5 31.13 0.01 31.11 10800.0 51.20 0.07 6.92 23.76 46.63 1795.76
60 3 75 15.06 3.60 11.09 10795.6 25.10 0.00 25.10 10800.0 46.46 0.10 2.94 3735.64 45.55 1990.74
60 5 75 20.42 3.16 16.80 10794.9 27.21 0.07 27.12 10800.0 44.87 0.09 3.48 1211.01 43.47 2031.27
60 10 75 20.93 1.34 19.32 10793.3 23.82 0.31 23.44 10800.0 38.25 0.13 6.66 19.91 35.09 2214.12

Avg 26.10 4.35 20.80 10794.7 30.62 0.07 30.52 10800.0 56.86 0.07 4.26 1730.80 54.31 1624.41
Ov.Avg 16.40 2.37 13.61 10389.1 18.41 0.06 18.33 10008.3 48.73 0.04 2.20 667.51 45.25 817.60
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• CPLEX-RLT1: Level 1 reformulation linearization by Sherali and Adams (Sec-
tion 3.2.2);

• CPLEX-MDRLT1: modified decomposable Level 1 reformulation (Section 3.1);

• LP-MDRLT1: LP relaxation of MDRLT1 (Section 3.1);

• S-Lgr QP Qknap: Lagrangian bound LQ(λ) exploiting separability, with the
single QKP solved through quadknap [109];

• D-Lgr DRLT1 MT1R: Lagrangian bound LR(λ) exploiting the decomposable struc-
ture (see (i)-(ii) of Section 3.4.2) with single KPs solved through MT1R [79].

Since for most of these instances the optimal value is unknown, we ran CPLEX,
both for RLT1 and MDRLT1, with a time limit of three hours (instead of one our, as
for all other runs): the percentage gaps of the relaxations were thus computed with
respect to the best solution value z obtained by the two CPLEX executions. The %gap
and t(s) values have the same meaning as in the previous tables. For CPLEX-RLT1
and CPLEX-MDRLT1, two additional columns provide:

• %gapL = average percentage gap of the lower bound L obtained within three
hours with respect to z, computed as 100 (z− L)/L;

• %gapU = average percentage gap of the upper bound U obtained within three
hours with respect to z, computed as 100 (U − z)/z.

The table shows that the computing time for the three relaxations was generally
below one hour, apart from a few cases that took slightly longer for the Lagrangian
relaxation S-Lgr QP Qknap. The Lagrangian relaxation of the quadratic model still
provides fairly good bounds, if compared to the others. Yet, the computing time
of the bundle procedure may be rather large for n > 50. The bounds provided by
D-Lgr DRLT1 MT1R are pretty close to those found by LP-MDRLT1 despite a consider-
ably larger computational effort required by the bundle method. Considering the
size of gaps for the LP relaxation, it comes as no surprise that CPLEX cannot find
an optimal solution for most of the instances. The %gapL values confirm that the
MDRLT1 reformulation leads to a better CPLEX performance.

We finally mention that it turned out to be impossible to execute the experiments
with even larger instances, as already for n = 60 CPLEX required more than 30 GB of
memory to solve an instance. Observe that, in any case, the %gap values in the table
are still likely to overestimate the real gaps.



74 Chapter 3. Formulations, Relaxations and Heuristics for the QMKP

3.7.2 Multi-Start Iterated Local Search

General descriptions and Parameter Setting

TABLE 3.5: Best sets of parameters from Irace for MS-ILS

ID maxPl maxIter maxStart r1 r2 r3 λ maxTry tabuTenurein f M tabuTenure f ea β

1 60 90 20 0.03 0.19 0.36 0.8 150 100 80 80 0.97
2 60 90 20 0.07 0.1 0.19 0.79 200 100 80 60 0.92
3 60 90 20 0.04 0.09 0.14 0.72 200 100 80 60 0.85
4 60 90 20 0.04 0.05 0.09 0.62 200 100 80 60 0.81
5 60 90 20 0.03 0.28 0.38 0.81 200 100 80 80 0.99

All the experiments were performed on a single thread of an AMD Ryzen 7 2700X
Eight-Core Processor running at 3.7 GHz with 64 GB RAM. The meta-heuristic was
programmed in C ++ using the code quadknap that was programmed in C in [109].
Finally, we used the classic instances of the literature available in http://cedric.
cnam.fr/soutif/QKP/QKP.html with size n = {100, 200}, d = {25, 75} and m =
{3, 5, 10}. Each group has five instances, globally obtaining 60 instances.

The MS-ILS was calibrated using Irace [78]. This framework iteratively and elitis-
tically searches for the best parameters using a predefined range (or set) for each MS-
ILS parameter. Each iteration of Irace updates the parameters, thus obtaining high
quality parameters. An instance was used for each group (globally 12 instances).
The details of the obtained parameters are shown in Table 3.5. The set of parameters
corresponding to ID = 1 has been used since it is the one that empirically obtained
the best results. The total duration of the calibration was 163944 seconds.

Comparison of results without time limit

The proposed algorithm is compared with four metaheuristics from the literature.
The first approach is an Iterated Responsive Threshold search (IRTS) presented by
[96]; also a Tabu-Enhanced Iterated Greedy Algorithm (TIG) presented by [94], a
Strategic Oscillation (SO) presented by [93], and finally a Hybridization of Tabu
Search (HTS) presented by [97] are considered. The results for the different meta-
heuristic presented in the Tables 3.6 and 3.7 are taken from [97]. However, a scale
factor was used with respect to the original computing times since the reported re-
sults are obtained in 15 seconds for n = 100 and 90 seconds for n = 200, but using a
computer with less computing power. The reported computing times (expressed in
seconds) are scaled with respect to our computer. The results of CPLEX 12.4, which
will not be analyzed due to their poor performance, are also added.

The MS-ILS metaheuristic approach is not compared with the matheuristic de-
scribed in section 3.6, because the latter requires (as shown in Tables 3.4 and 3.9)
long computing time to execute the bundle procedure for the instances with n > 50
(mainly when the number of knapsacks is small).

Tables 3.6 and 3.7 report, for each instance, the value of the best known solution
(BKS) and, for each metaheuristic algorithm, the following values:

• Max: value of the best solution found by executing 40 runs;

http://cedric.cnam.fr/soutif/QKP/QKP. html
http://cedric.cnam.fr/soutif/QKP/QKP. html
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• % Gap: percentage gap between BKS and Max;

• Avg: average value of the solutions found by executing 40 runs;

• Time: average computing time for each run.

MS-ILS appears to be competitive for the instances with n = 100. Our approach
is not better in solution quality (considering the maximum and average values)
than HTS and IRTS, which are the current best approaches in the literature, and are
extremely stable despite the stochastic component: HTS obtains an average value
equal to the best solution value in 20 of the 30 instances, and IRTS gets an average
value equal to the best solution value in 11 of the 30 instances. With respect to the
SO and TIG metaheuristics, MS-ILS finds a better maximum value for 5 instances;
it seems to be more competitive for the remaining instances, not having significant
gaps. Regarding the execution times, our algorithm does not manage to use the time
limit specified by the state-of-the-art algorithms, being competitive with all the ap-
proaches in the literature. Indeed, in the best case, MS-ILS uses an average of 2.03
seconds (for the 100.75.3 group), and in the worst case, it uses an average of 5.94
seconds (for the 100.25.3 group).

MIS-ILS obtains encouraging results for the largest instances of the literature
with n = 200 (see Table 3.7). The proposed algorithm is not able to obtain compet-
itive results with respect to HTS and IRTS. However, both algorithms lose stability
for this group of instances; HTS obtains an average value equal to the best solution
value in 8 of the 30 instances, while IRTS obtains an average value equal to the best
solution value in 2 of the 30 instances. Regarding SO and TIG metaheuristics, MS-
ILS finds a better maximum value for 2 instances. Regarding the computation time,
MS-ILS is three times faster in the best case (for group 200,75,3) and uses a similar
computation time in the worst-case (group 200,25,10).

A statistical comparison is performed between MS-ILS and the other metaheuris-
tics. Wilcoxon signed-rand test was applied to check the average performance of
each algorithm; the details are reported in Appendix B. Using two groups of in-
stances per number of items (n = {100, 200}) to perform the analysis, MS-ILS fails
to have competitive performance, and in all hypothesis tests, the algorithm does
not prove to be better than any of the algorithms of the literature. Figures B.1 and
B.2 show two box plots for the average performance of each metaheuristic (see Ap-
pendix B).

3.7.3 Matheuristic Experiments

General descriptions and Parameter Setting

The thresholds for the proposed matheuristic were defined based on their perfor-
mance. The procedures executed after bundle procedure are fast, so the matheuris-
tic process is executed with different thresholds and the best value is selected. The
thresholds considered (i.e. selectThreshold for the Algorithms 15 and 16) are the fol-
lowing:

• UBM: (1 + 0.001) * UB
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• UBM: (1 + 0.01) * UB

• UBM: (1 + 0.02) * UB

• UBM: UB + 1.0

• UBM: UB + 2.0

Where UB is the Upper Bound associated with the candidate QKP solution used
within the matheuristic process.

Variants of the presented algorithms arise when the processes are executed us-
ing different time limits. First, the quadknap function is bounded with a QTL time
limit for the execution of the Lagrangian process; that is, each iteration of the bun-
dle procedure can take a maximum time equal to QTL. Second, the global time for
the execution of the bundle procedure can be limited with a time limit equal to BTL.
From this perspective, we define QTL={3, 5} seconds and BTL={100, 300, 500} sec-
onds.

A variant of Algorithm 15 is presented. The current stopping criterion of the
matheuristic is satisfied when the generated solution is inside the tabu list. How-
ever, an alternative execution is presented with a new stopping criterion. Specifi-
cally, at line 18, the matheuristic is stopped if all the values in g are negative and if
the algorithm has been executed a specific number of iterations. The results of this
variant are shown in the tables 3.8 and 3.9 with the suffix scit (stop criteria using
iterations).

The experiments were performed on a single thread of Intel(R) Core(TM) i7-
8700K CPU @ 3.70GHz with 32 GB RAM (characteristics similar to those of the sys-
tem used for the BP algorithm by [101]).

Two groups of instances were used. The first group considers the instances
presented by [101], with the number of items n = {20, 25, 30, 35}, densities d =
{25, 50, 75} and m = {3, 5, 10}; each triple (n, d, m) has five instances. The second
group was described in the previous sections and published in [59], with the number
of items n = {40, 45, 50, 55, 60}, densities d = {25, 50, 75} and m = {3, 5, 10}, each
triple (n, d, m) has five instances.

Comparison

Tables 3.8 and 3.9 show a comparison of the proposed matheuristic with the Branch
& Bound (B&B) algorithm presented in [119]. This algorithm is available at https://
sites.google.com/view/kfleszar/research and was executed for all the instances
with a time limit of one hour. The considered versions of the proposed matheuristic
correspond to the pairs (BTL,QTL)= (100,3), (100,5), (300,3), (300,5), (500,3), (500,5),
and to the variant of Algorithm 15 denoted as scit (with BTL=500). The values of
BTL and QTL are expressed in second.

Tables 3.8 and 3.9 report, for each triple (m, m, d) and for each algorithm, the
averages (computed with respect to the five instances of the triple) of the following
values;

• Value: value of the best solution found (or value of the upper bound for the
bundle procedure);

https://sites.google.com/view/kfleszar/research
https://sites.google.com/view/kfleszar/research
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• Time: computing time (expressed in seconds);

• Gap %: percentage gap between the solution value of the Branch & Bound
(B&B) algorithm and the best solution value found by the matheuristic.

For the Bergman instances (with n ≤ 35), the matheuristic is competitive in terms
of solution values and computing time with respect to B&B. There are no significant
differences in time and quality of solution for the different versions of the matheuris-
tic for this group of instances, indeed, the matheuristics find the optimal solution for
13 out of 36 triples of instances regardless of the time limit used. The matheuristic
(500,scit) finds optimal solution in 21 out of 36 triples in much shorter times than
B&B. For example, for the triple (35, 50, 5), B&B finds the optimal solutions with an
average time 1412.79 seconds, while the matheuristic (500,scit) takes on average 4
seconds.

For the instances in [59] (n ≥ 40), the matheuristic is competitive in result quality
and vastly superior in computational time. Table 3.9 shows that B&B reaches the
time limit of 1 hour for most of the instance triples. The versions of the matheuristic
with smaller time limits worsen their solution quality in many instances, but not
in a significant way. For specific instance triples, the matheuristic versions with
smaller time limits may have large % gaps with respect to B&B (4.06 % gap for triple
(60.25.5)), but the average & gap of the total set of instances (that is, the average of
the average gaps) does not reach 1% in any case. The matheuristic version (500,5)
found the average best known solution (BKS) on 8 out of 45 triples. The matheuristic
version (500,scit) finds good results in this set of instances, but with a longer time
than the other versions. This metaheuristic version finds the average best known
solution in 14 out of 45 triples in much shorter times than B&B.

A comparison with the metaheuristics proposed in the literature is not performed,
since no computational results obtained by these metaheuristics are reported for in-
stances (having values of n in the range {20, ..60}) considered in this section.
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3.8 Conclusions

3.8.1 Formulations and Relaxations

Over the last 15 years, the quadratic multiple knapsack problem has received in-
creasing attention from the literature, dealing almost exclusively with meta-heuristics.
Although in 2019 Bergman [101] and in 2021 Fleszar [119] presented the first special-
ized exact algorithms, the problem has never been studied from a broader math-
ematical perspective. We attempted to fill this gap, by focusing on classical refor-
mulations and relaxations and analyzing their properties, in order to gain insight
into the strengths and weaknesses of such methods. Currently, exact algorithms
can solve instances up to 10 knapsacks and 35 items. Yet, the original benchmark
instances considered in the literature (for heuristic solutions) are one order of mag-
nitude larger, involving up to 30 knapsacks and 300 items. We believe our results
have implications for the development of future exact algorithms capable of tackling
larger instances. Indeed, in an enumerative algorithm, a trade-off must be made be-
tween the quality of the upper bound and the time taken to compute it. Our results
suggest that, among the different possible approaches, the most promising is the one
based on the Lagrangian relaxation of the cardinality constraints of the 0-1 quadratic
model, both in terms of bound quality and CPU time. In particular, the convergence
of the proximal bundle method to solve the Lagrangian dual problem appears to be
very fast. Another interesting observation is that the adoption of non-optimal so-
lutions of the Lagrangian subproblems speeds up the computation of each bundle
iteration without deteriorating the bounds significantly. This turns out to be true for
both Lagrangian relaxations we have considered. Our experiments also show that
the use of specialized methods to solve the subproblems can be crucial to reduce the
computing time, and should always be preferred, when possible, to general purpose
MIP solvers.

3.8.2 Multi-Start Iterated Local Search

This chapter presented an MS-ILS for the QMKP that successfully solved different
groups of instances. We defined four initial solution approaches based on stochastic
and deterministic processes. In addition, a perturbation used in the literature and
two local searches that consider feasible and infeasible moves were used. Finally,
a repair function is applied to the infeasible solution based on its infeasibility with
respect to the capacity. The proposed metaheuristic has a good performance regard-
ing the CPU time but obtains solution of lower quality than those obtained by the
metaheuristics from the literature.

Different future works can be defined in this line of research. An Adaptive Large
Neighborhood Search (ALNS, [66]) can consider additional destruction and repair
moves for the problem, use specific defined local search procedures and update the
corresponding weights associated with each move. Infeasible moves should be con-
sidered for the considered instances, since the literature results suggest to use these
moves due to the quality of the obtained solutions [96, 97].
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3.8.3 Matheuristic

We presented a matheuristic approach to QMKP based on the Lagrangian relaxation
of the quadratic model presented in [59]. We used candidate solutions obtained
through the bundle procedure and which are subsequently subjected to a hybrid
process using a mathematical model and then heuristic refinements. Two variants of
the matheuristic are generated based on a gain vector for the mathematical model.
In addition, for each variant, new approaches are presented by imposing time lim-
its on the execution of the Lagrangian relaxation and of the code used to solve the
QKP at each iteration of the bundle procedure. The proposed matheuristics prove
to be highly efficient in quality of result and much faster than the other approaches
presented in the literature for the solution of the considered instances.

Different future works can be defined in this line of research. We can improve
the local search methods, changing the VND for some other process, or improve the
infeasible local search, specifically, the selection of the relocation move.
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Chapter 4

A parallel genetic algorithm for
strategic mine planning

4.1 Introduction

Scheduling mineralized material extraction from an open-pit mine is a critical stage
in the optimization of mining production. In a deposit, the ore grade is not homo-
geneous, therefore the order in which the ore and waste must be explored to obtain
the maximum economic profit should be planned. A solution to the optimization
problem must specify the part of the mineral deposit that must be extracted and
processed in each period to obtain the maximum profit. Thus, the solution to the
problem must specify spatial and temporal dimensions for the extraction. This com-
plex problem has received attention in the literature, however it is still a computa-
tional challenge due to the number of resources required when planning real-world
solutions [120]. Extraction schedule must identify the period for each part of the
mineral deposit considering the mining capacity, which defines the amount of ma-
terial that can be excavated in a specific period, as well as the capacity of the plant,
which limits the amount of material that can be processed.

The standard model in mine production scheduling consists of a discretization
scheme of the ground in cubic extraction blocks [121]. Each block is identified using
geostatistical techniques and is denoted by a set of coordinates, a grade and ton-
nage. Thus, a block model composed of a three-dimensional array of blocks that
represents the entire deposit, is the standard tool used to search for the optimal so-
lution. A block model may consist of a few thousand blocks and, for large open-pit
operations, this number can reach millions. Then, given the block model, the com-
mon way to define the mine production schedule is to find the period in which each
block should be mined and the best possible treatment for that block, giving rise to
a complex optimization problem. A block schedule must comply with technical and
economic considerations. First, the extraction must be compatible with the slope an-
gles that keep the open pit from collapsing. In fact, the slope constraints consider
the maximum slope angles to be satisfied at any given period and can be repre-
sented as the precedence between the blocks. When only geometrical constraints
are considered, an optimal solution for this problem gives the ultimate pit limit con-
tours, and the problem is known as the ultimate pit limit problem (UPIT, [122, 123]).
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Second, a set of constraints related to mining capacity involves the extraction equip-
ment capacity. Third, the processing capacities consider the capacity of the available
facilities, which also limits some characteristics of the orebody that is sent to each
destination at each period. The net present value (NPV) is the measure for evaluat-
ing a schedule and the optimal solution is the one with the maximum NPV. NPV was
referenced in the objective function of the OPMPSP mathematical model (see section
1.1.3), where for practical study purposes, the value of NPV per block is precalcu-
lated before solving any optimization problem associated with the Open Pit Mine.
Of course, the NPV depends on factors associated with planning, such as the time
in which the block is extracted and a discount ratio α (defined later) associated with
the study mine.

A variant of the problem arises when each block must be mined entirely in a
single period considering a limit in the number of available resources. This variant
is known as the constrained pit limit problem (CPIT) and has been formulated as
an integer programming problem [124–126] . To solve the CPIT, the economic value
of each block, the minimum and maximum operational capacities per period and
a set of precedences per block are required. The optimal solution is obtained by
maximizing the NPV for the life of the mine.

In practice, the mining process occurs through extraction phases with access
roads and sufficient spaces for the loading of the vehicles that must transport the
orebody to some of the predefined destinations. An extraction phase is defined by
a subset of blocks that must be extracted during a time interval of the planning pe-
riod. An extraction phase allows the definition of a set of operating periods by con-
sidering the spatial geometry of the mine. To consider this geometry, we propose
truncated instead of complete cones. Each truncated cone has: a centroid block of
the basal face, a radial basal face and a slope lateral angle. Thus, truncated cones are
staggered by cuts or benches with two uncovered faces: a flat top face and a lateral
vertical side inner face. Figure 4.1a) shows a cone generated from a block model,
while Figure 4.1b) shows benches and ramps generated from such block model. The
extraction scheduling requires a design of the benches at each period.

An extraction phase is composed of one or more truncated cones with a common
base that contains basal blocks. Each truncated cone is identified by its centroid
block in the base. Thus, we define a base by clustering a set of centroids accord-
ing to the distance. Consequently, each extraction phase is carried out in one or
more periods considering the mine capacity. An example of the extraction phases is
shown in Figure 4.2. The example is composed of 10 truncated cones with centroid
blocks in set A = {3, 27, 43, 48, 55, 61, 68, 70, 75, 93}. To generate bases that corre-
spond to the extraction phases the set A is clustered with respect to the distance.
The clustering process produces three bases: f 1 = {3, 43, 48}, f 2 = {27, 55, 61, 68}
and f 3 = {70, 75, 93}. At the top of the figure are depicted the periods that in turns
define the extraction phases. For this example: the first extraction phase requires
period 1 and part of period 2; the second extraction phase requires part of period
2, period 3, and part of period 4; and the third extraction phase requires part of pe-
riod 4, period 5 and part of period 6. The period length is limited by the mine and
processing capacities.

The mine production schedule identifies the order in which the extraction phases
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FIGURE 4.1: Truncated cone (Image from [127])

should be mined. Similar to the CPIT, in this variant of the problem that we call
CPIT-P, the mine production scheduling grouped by extraction phases must satisfy
the operational capacities. Thus, CPIT-P considers three additional aspects related
to the CPIT: extraction phases, operational periods in which the extractions phases
take place and geometrical conditions to ensure enough space to handle equipment
and trucks during the operations.

Formally, let B = {b1, b2, . . . , bM} be the set of blocks belonging to the initial cube
containing the entire mine with M blocks, and R be a set of resources necessary to
extract blocks in B. A feasible solution for CPIT-P is identified by a set of extraction
phases F = { f1, f 2, ..., fp}. In turn, each phase f j ∈ F∀j ∈ {1, 2, ..., p} is characterized
by a set of truncated cones and the set of blocks belonging to a truncated cone is
individualized from the centroid of its base, the basal radius and the slope angle.
Thus, the precedence set of a block corresponds to the set of blocks that are at the next
higher level and that satisfy the inclination defined by the slope angle. Furthermore,
the processing capacity CP and the mining capacity CM are known parameters. The
objective is to maximize the NPV for the life cycle of the mine.

This problem was presented in Navarro, 2015, where a parallel genetic algorithm
(PGA) that solves a sub-set of instances from the literature and the first results for
the problem are presented. However, not all the instances were considered, and
new experiments need to be run. In addition, internal parallelism processes must be
improved, to obtain better results.

This chapter presents an approach to CPIT-P based on a parallel genetic algo-
rithm improving vital processes to obtain quality results. This chapter is based on
an internship in Santiago de Chile for three months. The proposed model follows a
genotype-phenotype scheme. The genotype is represented by a structure that iden-
tifies the centroid blocks that compose the phases, whereas the phenotype is con-
structed by truncated cones, which allow adequate space and properly handle the
order precedence constraints. The PGA is based on a master-slave configuration, in
which a single computer node is used as the master to coordinate several slaves to
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FIGURE 4.2: Examples about the phases

evaluate the fitness of an individual, which is part of the same unique population. A
set of instances available in the literature are considered for a numerical experiment
aiming to identify the performance of the PGA.

The remainder of this chapter is structured as follows. A general description of
the Parallel Genetic Algorithm is presented in the next section. The representation
of the problem for the parallel genetic algorithm is presented in Section 4.3 in which,
both the representation of a solution and the evaluation function are described. In
Section 4.5, a discussion on the results obtained from the computer experiment is
given, and the conclusions are described in the last section.
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4.2 General description of the Parallel Genetic Algorithm

FIGURE 4.3: FlowChart of the Simple Genetic Algorithm

A Genetic Algorithm with its elementary properties was defined to solve the CPIT-
P. A genetic algorithm is a population metaheuristic that works with individuals
that represent solutions to the combinatorial optimization problem. Each individ-
ual is subjected to a set of operators, generating new individuals for the following
generations. The logic behind this algorithm is that, as generations advance, the best
individuals survive, following the Darwinian logic of human evolution [128]. Figure
4.3 shows the flow diagram of the algorithm:

1. Individuals with population size n are defined randomly.
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2. A fitness function should evaluate the current population. This function de-
pends on the problem to be addressed; for this case, a fitness function must be
defined for CPIT-P.

3. A selection process of the evaluated individuals must be applied to obtain a
candidate population with size k with k < n (i.e., a subpopulation defined as a
subset from the main population).

4. A crossover operator is applied with probability cx to the subpopulation from
the previous selection step. This process is binary, and the content of two indi-
viduals must be exchanged with each other. In this way, we have two parent
individuals and two child individuals.

5. A mutation operator is applied with probability 1-cx to the individuals result-
ing from the previous step (child individuals). This operator is unary, so only
the content of an individual is changed.

6. A new population is generated that is subjected again to the fitness function
(Step 2). The stopping criterion of the genetic algorithm must be checked; for
the presented problem, the number of generations will be used.

FIGURE 4.4: FlowChart of the Parallel Genetic Algorithm

The genetic algorithm described above can be run in parallel. For this end, a
classic form of asynchronous parallelization can be applied to execute the genetic
algorithm in different computer cores. Figure 4.4 presents a flow chart for the paral-
lel genetic algorithm. Like the simple genetic algorithm, the parallel algorithm starts
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with an initial population that is considered for each of the simple genetic algorithms
that run in parallel. Subsequently, each algorithm returns the best individual which
is stored in a repository of the best individuals. Finally, the termination criterion
based on the number of generations of the main scheme is checked and the best
solution is returned.

4.3 Representation of CPIT-P for PGA

To search the space of CPIT-P by means of a GA it is necessary to define an indi-
vidual, the fitness function and the operators. A GA is a search method that allows
to find good solutions for optimization problems by imitating the laws of natural
evolution [128, 129]. Each individual in the population encodes a point in the search
space of a given problem, and the offspring are generated by a random process that
emulates natural selection and works with selection, crossover and mutation oper-
ators. We propose a genotype-phenotype scheme to represent the CPIT-P solution
space [130]. This means that a solution for CPIT-P is only partially coded as a geno-
type solution and the complete solution is constructed from such partial solution
composing the phenotype.

4.3.1 Representing a feasible solution for the CPIT-P

A genotype solution is a set centroids represented by integer numbers. Conse-
quently, the length of the genotype solution is variable and the result is not affected
by the order of the elements in the set. The use of a set of integer numbers instead
of lists ensures that elements of the individual are not duplicated. To generate the
extraction phases from the genotype solution, we generate clusters with those cen-
troids that are close among them. This process is carried out by the clustering tech-
nique: corresponding to the K-Means algorithm [131]. An example of the genotype
representation is shown in Figure 4.5, which shows a genotype solution composed
of four bases of truncated cones with a constant radius r = 2. In such case, the model
of blocks, defined by nx = 10 and ny = 8, is framed in a concentric circle. To the
left of the figure, the precedences that define the individual structures are shown.
A phenotype solution that considers the geotechnical and operational constraints, is
constructed from a clustered genotype solution. The phenotype solution specifies
the complete mine scheduling, i.e. extraction phases, periods and the blocks to be
extracted. Thus, all blocks that belong to an extraction phase are identified by a con-
structive algorithm that considers the feasibility of a solution. Specifically, given a
centroid, the radial base and the slope angle, both blocks belonging to the base and
the precedent blocks are, identified.



92 Chapter 4. A parallel genetic algorithm for strategic mine planning

FIGURE 4.5: Representing a feasible solution (Image from [127])

FIGURE 4.6: Crossover operator (Image from [127])

4.3.2 Definition of the PGA operators

Selection, crossover and mutation operators were defined for this particular algo-
rithm PGA. To select the appropriate genotype solution for the PGA population, a
standard roulette operator is used, whereas the variation operators are designed to
operate on the set of integer numbers. In fact, weighed roulette selection assigns
a proportional part of their fitness to each of the solutions in the population [129].
Besides, the crossover operator combines two sets, p1 and p2, and two offspring are
generated. The first offspring h1 is defined by the intersection, which contains com-
mon elements of p1 and p2, whereas the second offspring h2 is obtained from the
symmetrical difference of the parents. The example in Figure 4.6 considers parents
p1 and p2 of length four and six, respectively, that generate two offspring (h1 and
h2) with lengths of two and five. The mutation operator randomly adds or removes
an element according to a determined probability. In Figure 4.7 a single mutation is
shown by applying the probability of removing or adding an element by randomly
selecting a position in p1.



4.3. Representation of CPIT-P for PGA 93

FIGURE 4.7: Mutation operator (Image from [127])

4.3.3 Fitness evaluation

Each solution evaluated by the NPV considers the blocks scheduled for each extrac-
tion phase. Because each block has an associated economic value, considering the
capacities it is possible to identify an extraction period for each block. The value of
each period is corrected with the discount rate. The procedure to evaluate a geno-
type solution is presented in Algorithm 17. The function receives the following in-
put parameters: I the individual from the PGA; G: geometry of the block models; r:
basal radius; δ: slope angle; CP: processing capacity; CM: mining capacity; and α:
discount rate. From lines 1 to 3, the algorithm variables are initialized, where t is the
number of periods and S is the set of blocks extracted. In line 4, the clustering func-
tion produces a set of extraction phases F, each of which contains centroids c. Then,
in both cycles, each extraction phase is reviewed and a set of blocks to be scheduled
is identified. In variable B (line 7) the total of the blocks of the truncated cone is
obtained; this solid cone is built based on the center c for the block model G, with
radius r and angle δ. Subsequently, a difference of sets is performed (line 8) between
the blocks belonging to the truncated cone of phase f with base c and the blocks that
have already been extracted in the previous processes. Finally, the Scheduling func-
tion returns the NPV generated by the extracted blocks and the number of periods
used (γ, t). Lines 10 and 11 updates the extracted blocks and the total NPV of the
process.
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Algorithm 17 Fitness Function
Input:

I: the individual from the PGA;
G: geometry of the block models;
r: basal radius;
δ: slope angle;
CP: processing capacity;
CM: mining capacity;
α: discount rate.
——————————————-

Output: NPV: The net present value.
——————————————-

1: t = 0
2: NPV = 0
3: S = ∅
4: F = KMeans(I)
5: for f ∈ F do
6: for c ∈ f do
7: B = Precedence(c, G, r, δ)
8: B = B \ S
9: (γ, t) = Scheduling(B, G, CP, CM, α, t)

10: S = S ∪ B
11: NPV = NPV + γ
12: end for
13: end for
14: return NPV

4.4 Computational Experiments

4.4.1 Set of instances

To study the performance of the PGA, a set of instances from Minelib (presented in
Table 17) were used [57]). Each instance is a block model and specifies the amount of
ore contained per block, the total tonnage of the block, and the minimum and max-
imum limits of operational resources for extraction and processing. A cut-off grade
that determines if a material is an ore or waste is also considered. There are costs as-
sociated with sending these blocks either to processing or to the mine. Considering
the extraction plan, an ad hoc discount rate (α) is used for each instance.

The PGA was implemented in Python 3.4.3 programming language and exper-
iments have been performed on a computer with 32 Intel Xeon Haswell 2.30 GHz
and 28.8 GB RAM (by using 32 threads) and a Debian GNU/Linux 9 (stretch), 64-bit
operating system.

4.4.2 Tuning of the parameters

The iterated racing for automatic algorithm configuration (Irace) method was used
[78]. At each iteration, the samples are updated, and the parameter values with
the best performance increase their probabilities of being selected. The instances
considered in order to use Irace were: Newman1, Zuck small and KD.

The parameters for PGA are given in the following:

• Clusters: Number of clusters using k-means.

• Size Chrom: Size of Chromosome.
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• Ngen: Number of generations.

• Npop: Number of populations.

• Cx: Crossover probability.

• Mx: Mutation probability.

TABLE 4.1: Set of Instances for CPIT

Name Blocks Precedences CM CP1 CP2 α
Newman1 1,060 3,922 2,000,000 1,100,000 No 0.08
Zuck small 9,400 145,640 60,000,000 20,000,000 No 0.1

KD 14,153 219,778 ∞ 10,000,000 No 0.15
Zuck Medium 29,277 1,271,207 18,000,000 8,000,000 No 0.1

P4HD 40,947 738,609 52,500,000 12,500,000 No 0.15
Marvin 53,271 650,631 60,000,000 20,000,000 No 0.1

W23 74,260 764,786 68,000,000 3,610,000a 1,000,000a 0.1
Zuck Large 96,821 1,053,105 3,000,000 1,200,000 No 0.1

McLaughlin Limit 112,687 3,035,483 3,300,000 No No 0.15
a : Multidimensional processing Capacity.

TABLE 4.2: Set of Parameters

N° Clusters Size Chrom Ngen Npop Cx Mx
1 50 80 60 70 0,9784 0.0216
2 20 80 80 70 0,9670 0.0330
3 20 80 80 50 0,9670 0.0330
4 20 80 60 70 0,9670 0.0330

4.5 Results

The considered problem does not have algorithms in the literature that can be con-
sistently compared. However, we can consider the UPIT and CPIT problems to es-
tablish value comparisons and conclude methodological differences. Remember that
UPIT only considers the flow restriction (precedence), while CPIT considers the pe-
riod and resource restrictions (mine capacity and processing capacity). Table 4.3
shows the different values for the considered instances: the first column has the
best known solution value (BKS) for the UPIT problem; this value is a Valid Upper
Bound when the period and resource constraints are removed. The following three
columns contain information about the CPIT extracted from [57]. The upper bound
is obtained with LP relaxation of the decision variable. Column Per in Table 4.3 con-
tains the maximum number of periods (or time horizon) that the CPIT problem can
use. Finally, the PGA results are presented: the average number of increments, the
average number of periods, the best value of the different executions, the average
value, and the average time per run.
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The PGA has reasonable solutions regarding the CPIT values for small instances.
This is due to two reasons: first, the number of periods is not delimited in our algo-
rithm and neither in the CPIT-P, so that, as there are more periods to extract more
blocks, the higher the NPV value. Second, processing of the predecessor blocks is
performed to obtain nested truncated cones. In this way, we can get different val-
ues concerning the original CPIT problem. Quantitative examples of this are the
instances newman1, Zuck small, KD, and Zuck medium, where the best value of the
PGA is always much better than the BKS of the CPIT.

The PGA does not get reasonable solutions for large instances. Even the perfor-
mance of the algorithm is worst than that of the CPIT using more periods. Analyzing
the geometric shape of the instances, the number of truncated cones does not always
respond to all the scenarios in the same way. Thus, a calibration must be performed
with all instances and not just with small instances.

The number of increments for the different instances seems to converge to the
same number. This is because K-Means is a parametric algorithm and all the in-
stances generate a similar number of clusters (increments) with respect to the gener-
ated chromosome.

The PGA is fast for some specific instances and very slow for two particular in-
stances. As we concluded in the previous paragraphs, the construction of the trun-
cated cones depends on the instance and its geometric shape. For two different in-
stances like Zuck Medium and McLaughlin Limit, the average PGA evolution time
exceeds 4 hours. However, for the instance Zuck Medium, good results are found,
while for the instance McLaughlin Limit it seems is not highly effective algorithm.

4.6 Conclusion

An approach supported by a parallel genetic algorithm is studied for the mining
scheduling problem, considering both geotechnical and operational constraints for
real-size instances. This new CPIT-P variant was addressed considering a set of in-
teger numbers as the representation. Such a representation, together with an ad
hoc constructive function to evaluate each feasible solution, facilitates the data man-
agement and the geometric and mathematical operations involved. The solutions
provided by PGA respect the criteria of the operational and geotechnical conditions
so that robust phases are produced in consideration of the location of both ore and
waste. The initial evaluation used provided a good starting point for the conver-
gence of the algorithm, although using a different form of phase extraction could
lead to better initial information for the genetic algorithm. Numerical tests demon-
strated the flexibility of the presented solution, because the proposed genetic algo-
rithm allows for solving small and large size instances, as well as providing feasible
solutions to real large-scale problems
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4.7 Current and future works

The problem does not have an integer programming mathematical formulation. It is
vital to obtain good upper and lower bounds for the problem to be able to perform
a better comparison of the proposed PGA.

Local search algorithms are being tested. To this end, three-dimensional vec-
tors will be used to find better bases for the truncated cones. In this way, random
crossovers and mutations can be complemented with intelligent operators either
within crossover or mutation processes or local searches via Memetic Algorithms
[25].

Finally, a machine learning algorithm can be used to improve the offline per-
formance of our PGA. First, images can be generated that allow to identify of win-
ning bases, and classification via Convolutional Neural Network [132] can catalog
whether worth while to change the base for the generation of a truncated cone.
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Chapter 5

Conclusion

In this thesis, different combinatorial optimization problems have been addressed:

• The TSPPD-H was solved by means of different metaheuristics during the first
year of the PhD. (2019), and was compared with the algorithms proposed in
[63] and [65]. The first metaheuristic approach, called Iterated Local Search
with Frequency (ILS-F), is a fast method but does not get good quality solution.
The second approach, called the Granular Iterated Local Search, was executed
with four different configurations, and was shown to be competitive with the
most effective algorithm of the literature.

• Polynomial-size formulations and relaxations were presented for the QMKP
during the second year (2020). The different formulations are competitive with
the algorithms of the literature. Other approaches presented in the thesis are
the metaheuristic MS-ILS and matheuristics developed during the year 2021.

• A new open-pit mining problem called CPIT-P, is presented, and successfully
solved with a Parallel Genetic Algorithm (PGA) in the year 2021. This meta-
heuristic can solve large-scale instances in reasonable computational times.

For each problem, different future works that are being developed as of the date
of the presentation of this document have been proposed.

Although the general situation of the development of the Ph.D. activity was not
the best due to the pandemic, the objectives of each work were successfully met.
Each work was always supported by the supervisor of my Ph.D activity, indepen-
dently of the situation, and they all complied with the planning indicated in the pro-
cess (3 years). The knowledge acquired at the University of Bologna will represent a
contribution that will be transferred to the country of the PhD student.
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Appendix A

GILS - Details for the Granular
parameters

A.1 Results

This section shows the detailed results of the GILS for each group of granular pa-
rameters. The results are reported in Tables A.1 to A.8 in order to corroborate the
non-dominance between the parameters. In each table, the first 4 columns show: n,
number of customers; l ,instance index; BKS, the best value obtained by metaheuris-
tics proposed by [63] and [65]; and UBKS, corresponding to the best value found
by all metahueristics (including GILS). For each group of parameters, the following
values are reported:

• Min: minimum value for the experiment.

• %Gap : %Gap between Min and BKS with formula ((Min− BKS)/BKS) ∗ 100.

• %Gap Hns: %Gap between Min and BKS with formula ((Min− BKS)/Min) ∗
100.

• Avg. Value : average value for the experiment.

• Avg. Time(s): : Average time for the experiment.

The tables A.1,A.2, A.3 and A.4 contain the values associated with the use of the
improved dynamic programming algorithm.

The tables A.5,A.6, A.7 and A.8 contain the values using the heuristics of [63] and
dynamic programming.
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A.2 Wilcoxon Test

Finally, a statistical test based on the best values of each instance is applied. For this,
the Best column values were obtained for each metaheuristic (4 columns in total).
For this test, two groups of instances were generated: G1, corresponding to instances
n = {20, 40, 60, 120}; and G2, corresponding to the instances n = {140, 160, 180, 200}.
Note that instances with n = {80, 100}were discarded as ALNS results are not avail-
able. Subsequently. The Wilcoxon signed-rand test is applied using two hypotheses:

• H0: AverageCost (GILS) = AverageCost (X) (null hypothesis).

• H1: AverageCost (GILS) > AverageCost (X) (alternative hypothesis).

With X = { Erdogan Series, ALNS and ILS-F }. In this way, the p− values must
be contrasted for each test between GILS and X. α = 0.004166666 is considered and
the test is rejected when p-value > α. The following table summarizes the result of the
statistical test applied for each metaheuristic and each group. The accepted values
are black, and the final test result is in the last row.

TABLE A.9: p-values for the Wilcoxon Test for G1

Erdogan ILS-F ALNS
H0 0.000 0.002 0.005
H1 0.000 0.001 0.003

Better Better Similar

TABLE A.10: p-values for the Wilcoxon Test for G2

Erdogan ILS-F ALNS
H0 0.000 0.000 0.013
H1 0.000 0.000 0.994

Better Better Worse

The statistical analysis about the best values is different for G1 and G2. Indeed,
for G1, GILS proves to be better than the metaheuristics of [63] and the ILS-F and has
a similar performance to ALNS. However, for the G2 group, GILS is better than the
[63] series and ILS-F but performs worse than ALNS. Finally, boxplots are shown in
Figures A.1 and A.2.
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FIGURE A.1:
Group G1

FIGURE A.2:
Group G2
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Appendix B

MS-ILS

B.1 Repair procedure

Observations about Algorithm Repair:

• The function Criteria returns true if in f easibleM < in f Measure. If in f easibleM =
in f Measure, then the function returns true if newGain > gain. In any other
case, it returns false.

• The ternary expression var1 = ((exp1)?(exp2) : (exp3)) is a simplified state-
ment. If exp1 is true, the expression (exp2) is saved in the variable var1, other-
wise the expression (exp3) is saved in the variable var1.

• The function ApplyMove applies the moveType (moveType = 1 is extraction,
moveType = 2 is relocation, and moveType = 3 is exchange) with the input
parameters to the xIn f easible matrix solution.

• The function Update is a simplified way of indicating that the variables
R, Items, totalOverL, xPro f it are updated.
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Algorithm 18 Repair procedure
Input: xIn f easible, xFeasible, NiterRep
Output: xIn f easible2

1: f easible = f alse
2: Items = R = ∅
3: totalOverL = repairCount = 0
4: for k ∈ {1, 2...K} do
5: for i ∈ {1, 2...N} do
6: if xIn f easiblek,i == 1 then
7: Rk = Rk + wi
8: Itemsk = Itemsk ∪ i
9: end if

10: end for
11: Rk = Ck − Rk
12: totalOverL = totalOverL + ((Rk < 0)?(−Rk) : 0);
13: end for
14: xPro f it = f (xIn f easible)
15: while f easible == f alse and repairCount < NiterRep do
16: moveType = elem1 = elem2 = knap1 = knap2 = gain = −1
17: in f Measure = ∞ //*************Extraction********************
18: for k ∈ {1, 2...K} do
19: for i ∈ Itemsk do
20: newGain = xPro f it− ∆(i, k)
21: in f easible1 = ((Rk + wi) < 0)?− (Rk + wi) : 0
22: Rwk = (Rk < 0)?− (Rk) : 0
23: in f easibleM = totalOverL− (Rwk) + in f easible1
24: if Criteria(in f easibleM, in f Measure, newGain, gain) then
25: moveType = 1;
26: elem1 = i;
27: knap1 = k;
28: gain = newGain;
29: in f Measure = in f easibleM
30: end if
31: end for
32: end for

//*************re-allocation*************
33: for k ∈ {1, 2...K} do
34: for i ∈ Itemsk do
35: for kaux ∈ {1, 2...K} do
36: if kaux!=k then
37: newGain = xPro f it + ∆(i, kaux)− ∆(i, k)
38: in f easible1 = ((Rk + wi) < 0)?− (Rk + wi) : 0
39: in f easible2 = ((Rkaux − wi) < 0)?− (Rkaux − wi) : 0
40: Rwk = (Rk < 0)?− (Rk) : 0
41: Rwaux = (Rkaux < 0)?− (Rkaux) : 0
42: in f easibleM = totalOverL− (Rwk + Rwaux) + in f easible1 + in f easible2
43: if Criteria(in f easibleM, in f Measure, newGain, gain) then
44: moveType = 2;
45: elem1 = i;
46: knap1 = k;
47: knap2 = kaux;
48: gain = newGain;
49: in f Measure = in f easibleM
50: end if
51: end if
52: end for
53: end for
54: end for//*************exchange*************
55: for k ∈ {1, 2...K} do
56: for i1 ∈ Itemsk do
57: for kaux ∈ {1, 2...K} do
58: for i2 ∈ Itemskaux do
59: if kaux!=k then
60: newGain = xPro f it + ∆(i1, kaux)− ∆(i1, k) + ∆(i2, k)− ∆(i2, kaux)− 2pi1,i2
61: in f easible1 = ((Rk + wi1 − wi2) < 0)?− (Rk + wi1 − wi2) : 0
62: in f easible2 = ((Rkaux + wi2 − wi1) < 0)?− (Rkaux + wi2 − wi1) : 0
63: Rwk = (Rk < 0)?− (Rk) : 0
64: Rwaux = (Rkaux < 0)?− (Rkaux) : 0
65: in f easibleM = totalOverL− (Rwk + Rwaux) + in f easible1 + in f easible2
66: if Criteria(in f easibleM, in f Measure, newGain, gain) then
67: moveType = 3;
68: elem1 = i1;
69: elem2 = i2;
70: knap1 = k;
71: knap2 = kaux;
72: gain = newGain;
73: in f Measure = in f easibleM
74: end if
75: end if
76: end for
77: end for
78: end for
79: end for
80: ApplyMove(moveType, xIn f easible, elem1, elem2, knap1, knap2, gain, in f Measure)
81: Update(R, Items, totalOverL, xPro f it)
82: repairCount = repairCount + 1
83: if isFeasible(xIn f easible2) then
84: f easible = True
85: break;
86: end if
87: end while
88: if f easible then
89: return xIn f easible2
90: else
91: return xFeasible
92: end if
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B.2 Wilcoxon signed-rand test

TABLE B.1: % Gap between BKS and Average for the instances with
n = 100

n d m l MS-ILS HTS TIG SO IRTS
100 25 3 1 0.95421 0.00000 0.88131 0.28785 0.00000
100 25 3 2 1.41817 0.00000 0.07125 0.00941 0.00000
100 25 3 3 1.04732 0.00000 0.60010 0.01398 0.00000
100 25 3 4 1.16987 0.00000 0.00000 0.04284 0.00000
100 25 3 5 0.60985 0.00000 0.02391 0.25104 0.00000
100 25 5 1 1.03937 0.00797 1.35964 0.78606 0.22284
100 25 5 2 1.37809 0.07418 0.25802 0.37583 0.17048
100 25 5 3 1.11069 0.00000 0.65775 0.40492 0.01436
100 25 5 4 1.17961 0.00000 0.00261 0.07520 0.00045
100 25 5 5 1.67636 0.00000 0.02377 0.47072 0.05806
100 25 10 1 1.27335 0.11837 1.00734 1.38197 0.12619
100 25 10 2 1.43185 0.00000 0.90650 1.61529 0.21879
100 25 10 3 2.09151 0.23447 1.27802 1.86622 0.50245
100 25 10 4 1.31759 0.00000 0.07725 0.60763 0.00000
100 25 10 5 1.69222 0.00000 0.89097 1.50796 0.21532
100 75 3 1 0.34326 0.00000 0.06002 0.06002 0.00000
100 75 3 2 0.42674 0.00000 0.00000 0.00950 0.00633
100 75 3 3 0.12952 0.00000 0.02295 0.02760 0.00000
100 75 3 4 0.43254 0.00000 0.00000 0.00000 0.00000
100 75 3 5 0.31237 0.00000 0.01535 0.05708 0.00000
100 75 5 1 0.50009 0.00000 0.25374 0.36861 0.11133
100 75 5 2 0.53917 0.02834 0.26964 0.35101 0.10000
100 75 5 3 0.28147 0.00000 0.04289 0.27663 0.00000
100 75 5 4 0.53149 0.00000 0.55606 0.24241 0.20798
100 75 5 5 0.74836 0.00000 0.03651 0.07101 0.00800
100 75 10 1 1.66573 0.20993 1.30433 1.31436 0.18418
100 75 10 2 1.04992 0.48162 0.76217 0.93889 0.35633
100 75 10 3 1.38709 0.03912 0.82252 0.90009 0.04430
100 75 10 4 1.44355 0.16088 0.85064 0.88376 0.17474
100 75 10 5 1.64831 0.18389 1.51080 1.48025 0.15898

TABLE B.2: p-values for the Wilcoxon Test for the instances, with n =
100.

Hip. HTS TIG SO IRTS
H0 1.86E-09 1.64E-07 8.01E-08 1.86E-09
H1 1 1 1 1
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TABLE B.3: % Gap between BKS and Average for the instances with
n = 200

n d m l MS-ILS HTS TIG SO IRTS
200 25 3 1 1.07873 0.07391 1.24568 0.68492 0.02957
200 25 3 2 0.32753 0.00000 0.13339 0.27325 0.00000
200 25 3 3 0.60585 0.00956 0.13768 0.21417 0.02868
200 25 3 4 1.74528 0.03296 1.29744 0.96419 0.03795
200 25 3 5 0.57814 0.00000 0.42420 0.50728 0.00098
200 25 5 1 1.08525 0.18976 1.66812 1.63069 0.09111
200 25 5 2 1.16621 0.00000 0.71679 0.98534 0.01200
200 25 5 3 1.12521 0.00000 0.41313 0.60503 0.01800
200 25 5 4 1.76470 0.15619 1.55867 1.53089 0.10616
200 25 5 5 1.08746 0.00300 0.92006 1.01827 0.01616
200 25 10 1 2.82026 0.34077 1.90198 2.38860 0.25720
200 25 10 2 1.82665 0.52945 1.37279 1.82163 0.29865
200 25 10 3 2.35012 0.15500 1.65153 2.22534 0.16714
200 25 10 4 2.65009 0.39843 1.98725 2.53242 0.43624
200 25 10 5 1.59042 0.02947 1.42597 2.28623 0.16553
200 75 3 1 0.53803 0.01367 0.00000 0.00776 0.01219
200 75 3 2 0.31335 0.00000 0.07346 0.13876 0.00583
200 75 3 3 0.52037 0.00000 0.00000 0.01518 0.05295
200 75 3 4 0.75235 0.04535 0.12510 0.17733 0.04696
200 75 3 5 0.70358 0.00000 0.00000 0.00000 0.01001
200 75 5 1 1.13907 0.02696 0.38762 0.45932 0.31753
200 75 5 2 0.85034 0.00000 0.11096 0.22364 0.08465
200 75 5 3 0.88819 0.02249 0.14295 0.22594 0.05354
200 75 5 4 1.42849 0.13402 0.39188 0.53607 0.23633
200 75 5 5 0.79577 0.02431 0.15933 0.24520 0.04811
200 75 10 1 1.32262 0.23208 0.87713 0.94067 0.45445
200 75 10 2 1.55494 0.15006 0.84467 0.95509 0.49264
200 75 10 3 1.57043 0.22723 0.80968 0.99512 0.42922
200 75 10 4 2.18701 0.46189 1.09665 1.43295 0.46063
200 75 10 5 1.49234 0.31455 0.88910 1.08943 0.30859

TABLE B.4: p-values for the Wilcoxon Test for the instances with n =
200.

Hip. HTS TIG SO IRTS
H0 1.86E-09 4.71E-07 2.69E-05 1.86E-09
H1 1 0.9999 0.9999 1
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A statistical test was performed using the % gap between the BKS and the Av-
erage for each instance (n, m, d, l). Tables B.1 and B.3 contain the values for each
instance (rows) and for each metaheuristic (columns). These tables are normalized
to be able to apply a statistical test and check the performance of the MS-ILS.

The Wilcoxon test is applied to the data in Tables B.2 and B.4. For this test, we
consider two hypotheses:

• H0: AverageCost (MSILS) = AverageCost (X) (null hypothesis).

• H1: AverageCost (MSILS) > AverageCost (X) (alternative hypothesis).

With X = { HTS , TIG , SO , IRTS } With significance level α = 0.05. Looking
at the p− values in Tables A.2 and A4, all algorithms are better than MS-ILS (H0 is
rejected and H1 is not rejected).

Figures A.1 and A.2 show the average performance against the BKS for each
metaheuristic using Tables A1 and A3. HTS and IRTS are the best algorithms to date
and show to be much more stable than any other algorithm (HTS for the smallest
instances finds the BKS for any seed in 25 cases for the first group and 8 cases for the
second group).

FIGURE B.1: Box plot about the performance of the metaheuristics for
the instances with n = 100
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FIGURE B.2: Box plot about the performance of the metaheuristics for
the instances with n = 200
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