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Abstract
Radars are expected to become the main sensors in various civilian applications, espe-
cially for autonomous driving. Their success is mainly due to the availability of low
cost integrated devices, equipped with compact antenna arrays, and computationally
efficient signal processing techniques. This thesis focuses on the study and the devel-
opment of different deterministic and learning based techniques for colocated multiple-
input multiple-output (MIMO) radars. In particular, after providing an overview on the
architecture of these devices, the problem of detecting and estimating multiple targets
in stepped frequency continuous wave (SFCW) MIMO radar systems is investigated and
different deterministic techniques solving it are proposed. Moreover, novel solutions,
based on an approximate maximum likelihood approach, are developed. The accu-
racy achieved by all the considered algorithms is assessed on the basis of the raw data
acquired from low power wideband radar devices. The results demonstrate that the
developed algorithms achieve reasonable accuracies, but at the price of different com-
putational efforts. Another important technical problem investigated in this thesis con-
cerns the exploitation of machine learning and deep learning techniques in the field of
colocated MIMO radars. In this thesis, after providing a comprehensive overview of the
machine learning and deep learning techniques currently being considered for use in
MIMO radar systems, their performance in two different applications is assessed on the
basis of synthetically generated and experimental datasets acquired through a commer-
cial frequency modulated continuous wave (FMCW) MIMO radar. Finally, the application
of colocated MIMO radars to autonomous driving in smart agriculture is illustrated.





vii

Acknowledgements
Before going deeper in the detail of this thesis work, I would like to thank all the people
that have played a fundamental role in my PhD studies.

In particular, I am very glad to thank my Supervisor Prof. Giorgio Matteo Vitetta
and equally my Co-Supervisor Prof. Paolo Pavan for the opportunity they gave me to
be involved in the doctorate course on automotive for an intelligent mobility. Especially,
I am very grateful to my Supervisor for his constant supervision and help in all my re-
search works, for his precious daily advices, for the possibility he gave me to participate
at different PhD schools and for his faith in me.

I would like to thank CNH Industrial Italy and Belgium for the possibility to use
their radar sensors and for their investments on this research area.

I would like to thank also Professors Michele Rossi and Francesco Fioranelli for ac-
cepting to revise this work. In particular, I am proud to have the opportunity to person-
ally thank Michele Rossi for organising the Summer School of Information Engineering
in a wonderful place like Bressanone; this helped me to investigate various machine
learning topics and to meet a lot of brilliant students and researchers.

I am very grateful to all the people studying in the Telecommunication Laboratory of
the University of Modena and Reggio Emilia and to various colleagues of University of
Bologna; I had the opportunity to discuss my research work with them and collaborate
with some of them in my research work. Their presence during these three years al-
lowed me to spend very pleasant days in the Telecommunication Laboratory and made
my PhD experience unique and unrepeatable.

Finally, I will never finish to thank my family, my sister with her family and my girl-
friend Martina, that constantly and patiently supported and encouraged me in achiev-
ing this so important result.





ix

Contents

1 Introduction 1
1.1 Autonomous driver assistance systems . . . . . . . . . . . . . . . . . . . . 1
1.2 Radar signal processing for autonomous systems . . . . . . . . . . . . . . . 2
1.3 Main contributions of my research project . . . . . . . . . . . . . . . . . . . 3

2 Automotive radars: an overview 5
2.1 Basic Principles and Classification of radars . . . . . . . . . . . . . . . . . . 5
2.2 A brief history of MIMO radars . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 MIMO radar basic architecture . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3.1 Antenna arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4 MIMO radar received signal model . . . . . . . . . . . . . . . . . . . . . . . 13

2.4.1 FMCW MIMO radar . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4.2 SFCW MIMO radar . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.5 Basic signal processing considerations: a case study . . . . . . . . . . . . . 18
2.6 Current trends in the automotive radar technology . . . . . . . . . . . . . . 24

3 Deterministic Detection and Estimation techniques 25
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2 Considered signal model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3 Bi-dimensional deterministic estimation methods . . . . . . . . . . . . . . 27

3.3.1 Standard beamformer . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3.2 The CLEAN algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3.3 The Wax and Leshem estimation method . . . . . . . . . . . . . . . 30
3.3.4 EM-based algorithm for refining the target parameters . . . . . . . 35
3.3.5 Computational complexity . . . . . . . . . . . . . . . . . . . . . . . 37

3.4 Three-dimensional deterministic methods . . . . . . . . . . . . . . . . . . . 38
3.4.1 Standard beamformer . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.4.2 The CLEAN algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.4.3 The Wax and Leshem estimation method . . . . . . . . . . . . . . . 41
3.4.4 Computational complexity . . . . . . . . . . . . . . . . . . . . . . . 43

3.5 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.5.1 Bi-dimensional imaging . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.5.2 Three-dimensional imaging . . . . . . . . . . . . . . . . . . . . . . . 50

3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4 A maximum likelihood approach to target detection and estimation 57
4.1 Complex single delay estimators . . . . . . . . . . . . . . . . . . . . . . . . 58

4.1.1 Complex single delay estimator . . . . . . . . . . . . . . . . . . . . 58
4.1.2 Complex single delay estimation and cancellation . . . . . . . . . . 65
4.1.3 Computational complexity . . . . . . . . . . . . . . . . . . . . . . . 70



x

4.2 Bi-dimensional and three-dimensional imaging . . . . . . . . . . . . . . . . 71
4.2.1 Three-dimensional range & angle serial cancellation algorithm #1 . 74
4.2.2 Three-dimensional range & angle serial cancellation algorithm #2 . 91
4.2.3 Bi-dimensional range & angle serial cancellation algorithms . . . . 92
4.2.4 Unequal response of virtual antennas . . . . . . . . . . . . . . . . . 93

4.3 Other target detection and estimation techniques . . . . . . . . . . . . . . . 97
4.4 Computational complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
4.5 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.5.1 Employed radar devices and adopted experimental setup . . . . . 102
4.5.2 Range and amplitude estimation . . . . . . . . . . . . . . . . . . . . 103
4.5.3 Two-dimensional and three-dimensional imaging . . . . . . . . . . 107

4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5 Learning techniques for colocated MIMO radars 113
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
5.2 Machine learning based methods . . . . . . . . . . . . . . . . . . . . . . . . 114

5.2.1 The supervised learning problem . . . . . . . . . . . . . . . . . . . . 116
5.2.2 The frequentist and Bayesian approach to supervised learning . . . 117
5.2.3 Specific methods for binary classification . . . . . . . . . . . . . . . 124
5.2.4 Unsupervised learning . . . . . . . . . . . . . . . . . . . . . . . . . . 133
5.2.5 Selected unsupervised methods . . . . . . . . . . . . . . . . . . . . 134

5.3 Data-driven approach based methods . . . . . . . . . . . . . . . . . . . . . 138
5.3.1 Relevant differences between ML and DL techniques . . . . . . . . 138
5.3.2 Training a deep neural network . . . . . . . . . . . . . . . . . . . . . 140
5.3.3 Autoencoders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
5.3.4 Convolutional neural networks . . . . . . . . . . . . . . . . . . . . . 145
5.3.5 Convolutional autoencoders . . . . . . . . . . . . . . . . . . . . . . 147
5.3.6 Recurrent neural networks . . . . . . . . . . . . . . . . . . . . . . . 147
5.3.7 Generative adversarial networks . . . . . . . . . . . . . . . . . . . . 153
5.3.8 Softmax Classification Layer . . . . . . . . . . . . . . . . . . . . . . 154

5.4 Applications of learning techniques to MIMO radars . . . . . . . . . . . . 154
5.4.1 Human motion characterization . . . . . . . . . . . . . . . . . . . . 155
5.4.2 Human gesture recognition . . . . . . . . . . . . . . . . . . . . . . . 157
5.4.3 Fall detection and health-care monitoring . . . . . . . . . . . . . . . 157
5.4.4 Autonomous driving . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

5.5 Current trends in research on MIMO radars . . . . . . . . . . . . . . . . . . 160
5.5.1 Transfer learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
5.5.2 Object detection and classification . . . . . . . . . . . . . . . . . . . 161
5.5.3 Explainable artificial intelligence . . . . . . . . . . . . . . . . . . . . 162

5.6 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
5.6.1 Human activity classification . . . . . . . . . . . . . . . . . . . . . . 163
5.6.2 Estimation of the range and azimuth of a single target . . . . . . . 169

5.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

6 Colocated MIMO radars for smart agriculture 181
6.1 Autonomous driving system through the rows of a plantation . . . . . . . 181
6.2 Three-dimensional imaging based on a MIMO radar . . . . . . . . . . . . . 183

7 Conclusions and future works 191



xi

List of Figures

2.1 Milestones in the evolution of automotive radars and radar signal pro-
cessing techniques. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 MIMO radar transmitter (upper part) and receiver (lower part). . . . . . . 10
2.3 Representation of the instantaneous frequency of the RF signal generated

by the VCO in an FMCW radar system. . . . . . . . . . . . . . . . . . . . . 10
2.4 Representation of the instantaneous frequency of the RF signal generated

by the VCO in an SFCW radar system. . . . . . . . . . . . . . . . . . . . . 11
2.5 Representation of: a) an ULA (characterized by NT = 2 and NR = 8),

and the relevant geometric parameters referring to the l-th target, the t-
th TX antenna and the r- th RX antenna; b) the associated virtual ULA
(consisting of NT · NR = 16 antennas). . . . . . . . . . . . . . . . . . . . . . 12

2.6 Representation of an URA characterized by NT = 5 TX antennas (green)
and NR = 7 RX antennas (red) and the associated virtual URA (consisting
of NV = NT · NR = 35 antennas) in light-blue. . . . . . . . . . . . . . . . . 12

2.7 Representation of a simple three dimensional scenario in which three tar-
gets (red cylinders) are present. The azimuth (elevation) angle θ (ϕ) asso-
ciated to the l-th target is measured respect the centre of the radar (grey
cube) along the horizontal (vertical) direction. . . . . . . . . . . . . . . . . 14

2.8 Physical geometry and virtual array of a colocated FMCW MIMO radar
equipped with an ULA composed of a single TX antenna and: a) two RX
elements; b) four RX elements. . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.9 Generic representation of an autonomous car endowed with multiple
radar sensors and able to see in its surrounding [62]. . . . . . . . . . . . . . 24

3.1 a) Physical URA of the employed radar device; b) representation of the
associated virtual array and of the portion (enclosed in the dashed rect-
angle) exploited by the estimation algorithms. . . . . . . . . . . . . . . . . 44

3.2 Measurement setup employed in the second scenario. Four metal coins
are placed over a rectangular carton box. . . . . . . . . . . . . . . . . . . . 45

3.3 Contour plot (in Cartesian coordinates) of the cost function Jt(θ̃, τ̃) (3.12)
evaluated by the standard beamformer for the considered propagation
scenario. The peaks associated with the five targets are clearly visible. . . 46

3.4 Representation of: a) the range errors and b) the azimuth errors charac-
terizing scenario # 1. Three different algorithms, namely, MUSIC (MU),
CLEAN (CL) and MWLA (MW) are considered. . . . . . . . . . . . . . . . 46

3.5 Computational complexity (black) and computational time (blue) versus
the number of targets (L). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.6 Normalized residual energy evaluated for the CLEAN algorithm and the
MWLA algorithm for the considered propagation scenario. Both experi-
mental and simulated data are considered. . . . . . . . . . . . . . . . . . . 49



xii

3.7 a. Employed radar device; b. Geometry of the physical antenna arrays
and of the corresponding virtual array. . . . . . . . . . . . . . . . . . . . . . 50

3.8 Outdoor scenario in which the measurements have been acquired. The
three targets, each represented by a metal disk, are clearly visible. . . . . . 51

3.9 2D contour plot (in spherical coordinates) of the function Qt(θ̃, ϕ̃, τ̂1) (3.54)
evaluated at a fixed delay (i.e., at τ̃ = τ̂1) by the standard beamformer in
the first scenario. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.10 Graphical representation of the a) peak error ε̂ and b) the RMSE ε̄ obtained
by CLEAN and MWLA for all the three coordinates X, Y and Z. . . . . . . 52

3.11 Computational complexity and computational time versus P; the CLEAN
and MWLA algorithms are considered. . . . . . . . . . . . . . . . . . . . . 54

3.12 Normalized residual energy versus the iteration index l; the CLEAN al-
gorithm and the MWLA are considered. . . . . . . . . . . . . . . . . . . . . 55

4.1 Block diagram describing the general method proposed in this work. . . . 71
4.2 Virtual antenna array considered in the description of the detection and

estimation algorithms. The selected reference virtual antenna is also shown. 74
4.3 Block diagram describing the overall structure of the RASCA#1. . . . . . . 74
4.4 Example of reference VULA and reference HULA including the reference

antenna. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.5 Representation of a set of vertically folded HULAs. . . . . . . . . . . . . . 79
4.6 Block diagram describing the overall structure of the RASCA#2. . . . . . . 91
4.7 Block diagram representing the RASCA #1 method; a compensation tech-

nique based on deep-learning methods (dubbed as DSTDAEC) is em-
ployed in the SPE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.8 Block diagram describing the overall structure of the FFT-BAs and the
MUSIC-BAs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.9 Representation of: a) the physical array of the VIC SFCW radar; b) the
corresponding virtual array (the red rounded rectangle contains HULA
employed for 2D imaging, whereas the green rounded rectangle the ver-
tical array chosen as a reference for 3D imaging). . . . . . . . . . . . . . . . 103

4.10 Experimental set-up developed for the considered measurement cam-
paigns. The radar device and the reference sensor (pico-flexx) are mounted
on a wooden bar. A group of metal targets, placed at the different height
respect to the sensors, is also visible. . . . . . . . . . . . . . . . . . . . . . . 103

4.11 Unwrapped phase of the complex gain versus index of the virtual channel
of the reference HULA; a single target is assumed. . . . . . . . . . . . . . . 104

4.12 Representation of the ranges estimated by the STDREC algorithm (first
experimental scenario). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.13 Representation of the initial amplitude spectrum of the signal observed
on the central virtual channel (blue line) and of the final residual ampli-
tude spectrum generated by the STDREC algorithm (red line). . . . . . . . 107

4.14 Representation of the range-azimuth map (in x − y coordinates) in the
presence of five targets. The exact position of each target and its estimate
(shown in Table 4.5) is also shown. . . . . . . . . . . . . . . . . . . . . . . . 109

4.15 Representation of a 3D scenario characterized by five targets. The exact
position of each target and its estimates are shown. . . . . . . . . . . . . . 110

5.1 Representation of the points of the synthetically generated training set D
(5.12); Nt = 200 is assumed. . . . . . . . . . . . . . . . . . . . . . . . . . . . 122



xiii

5.2 Representation of the points of the synthetically generated test set Dts
(blue circles) and of the corresponding predictions (green triangles) eval-
uated on the basis of eq. (5.25); N̄t = 25 is assumed. Two straight lines,
expressed by eq. (5.49), are also shown. . . . . . . . . . . . . . . . . . . . . 122

5.3 Representation of the regression technique based on the probabilistic model
(5.45). The blue circles represent the true domain points, whereas the
green triangles the corresponding predictions; the red curves are gener-
ated by interpolating the points generated on the basis of the two equa-
tions tq = µ(rq)± σ(rq), with rq ∈ Dts. . . . . . . . . . . . . . . . . . . . . . 123

5.4 Representation of the decision mechanism employed by a linear SVM
classifier. The points of the training set corresponding to false (real) tar-
gets are identified by the green (blue) circles. The decision boundary of
the SVM is represented by a dashed line, whereas the red crosses identify
support vectors. A new observation, identified by a black cross, is classi-
fied as a false target, since it falls in the lower half plane delimited by the
decision boundary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

5.5 Representation of the decision mechanism employed by a K-NN classifier
(with K = 4). The points of the training set corresponding to false (real)
targets are identified by the green (blue) circles. A new observation, iden-
tified by a black cross, is classified as a false target, since class C1 is the one
having the largest number of representatives contained in the black circle. 131

5.6 Representation of the decision mechanism employed by the Adaboost
classifier. The points of the training set corresponding to false (real) tar-
gets are identified by the green (blue) circles. The decision boundary of
the Adaboost is represented by a dashed line, whereas the red crosses
identify critical targets. A new observation, identified by a black cross, is
classified as a false target, since it falls in the lower region delimited by
the decision boundary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

5.7 Biplot of the dataset D′ generated by the PCA technique. The points of
the reduced dataset corresponding to false (real) targets are identified by
the green (blue) circles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

5.8 Representation of three clusters generated by the K-means algorithm. The
green (red) circles refer to the targets detected on the left (right) of the
considered radar system, whereas the blue circles to the targets detected
in front of it. The black crosses identify the centroids of the clusters. . . . . 138

5.9 Directed acyclic graph describing the architecture of a fully-connected
neural network. Variables are represented by circles (i.e., by nodes), whereas
weights by the links between nodes. A single inner layer (i.e., K = 1) is
assumed for simplicity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

5.10 Example of a feature vector Rq (5.115) (red line) and of the corresponding
output vector yq (5.123) (blue line) predicted by the AE employed in the

example of Par. 5.3.3. The contributions of the four vectors {Y(v)
q ; v = 0,

1, 2, 3} which Rq is made of are delimited by green dashed lines. . . . . . 144
5.11 Representation of the convolution and pooling operations accomplished by

a CNN on a greyscale image. . . . . . . . . . . . . . . . . . . . . . . . . . . 145
5.12 Example of CAE architecture.The acronym ConvX (with X = 1, 2 and

3) identifies the X-th convolutional and pooling layer, whereas DeconvX
(with X = 1, 2 and 3) the transpose and unpooling layer. . . . . . . . . . . 147

5.13 Architecture of: a) a Vanilla RNN; b) an LSTM neural network. . . . . . . . 148



xiv

5.14 Representation of the elements of the two feature vectors R0 and R1; one
refers to a runner (red lines), the other one to a walker (blue lines). . . . . 152

5.15 Architecture of a generative adversarial network. . . . . . . . . . . . . . . 153
5.16 Block diagram representing the signal processing chain of a MIMO radar

system that employs a learning method. . . . . . . . . . . . . . . . . . . . . 154
5.17 a) Colocated MIMO radar system and b) Geometry of the physical TX

and RX arrays (top) and the corresponding virtual array (bottom). . . . . . 163
5.18 Spectrograms observed for the following three different activities: walk-

ing (top), running (center) and jumping (bottom). . . . . . . . . . . . . . . 165
5.19 Representation of a CVD and of two diagrams extracted from it (one pro-

viding information about cadence frequencies, the other one about veloc-
ities). In the diagram appearing on the left, the three strongest frequency
components are identified by blue, red and green dashed lines; each line
is associated with the velocity profile shown in the other diagram and
having the same colour. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

5.20 Experimental-setup developed for the second application. The region of
interest is delimited by an opaque and black line; two coner reflectors are
located on its border. A robot, equipped with corner reflectors, moves
randomly inside that area. The employed radar system and pico-flexx
camera are placed on the tripod visible on the right. . . . . . . . . . . . . . 170

5.21 Range-azimuth map referring to the scenario illustrated in Fig. 5.20. The
ground truth bounding box and the position of the target are identified by
a red square and a red cross, respectively. The prediction of the network,
together with the estimated bounding box, are identified by a green circle
and a green square, respectively. . . . . . . . . . . . . . . . . . . . . . . . . 177

5.22 Representation of the precision versus recall plot referring to the YOLO
v2 network employed in the second application. Note that, if the recall
exceeds the threshold identified by the vertical dashed line, the precision
decreases steeply. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

6.1 Representation of a) the measurement system set-up; b) the range-azimuth
map obtained by moving along the rows of a vineyard , where the two
small red rectangles represents the regions Sg obtained on the basis of a
priori information of the distance between the rows and the vehicle. . . . 183

6.2 Representation of: a) the physical array of the Inras FMCW radar; b) the
corresponding virtual array. . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

6.3 Representation of the point-cloud obtained by the proposed imaging RASCA
technique for the scenario proposed in Fig. 6.1. . . . . . . . . . . . . . . . . 190



xv

List of Tables

2.1 Classification of automotive radars on the basis of their maximum mea-
surable distance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.1 Azimuth and range of the targets characterizing scenario # 1, and their
estimates computed by three different algorithms (MUSIC (MU), CLEAN
(CL) and MWLA (MW)). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2 Azimuth and range of the targets characterising scenario # 2, and their es-
timates computed by five different algorithms: MUSIC, CLEAN, MWLA,
CLEAN + EMBE and MWLA + EMBE. . . . . . . . . . . . . . . . . . . . . . 45

3.3 Root mean square errors, peak errors and computation times for all the
analysed estimation algorithms. Scenario # 1 is considered. . . . . . . . . . 47

3.4 Average of root mean square errors and peak errors for all the investi-
gated estimation algorithms. The six configurations described in Table
3.5 are considered for target geometry. . . . . . . . . . . . . . . . . . . . . . 48

3.5 Azimuth and range of the targets in the considered six configurations (all
related to scenario # 2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.6 Spatial coordinates of the targets characterizing the first scenario and
their estimates computed by the CLEAN algorithm and the MWLA. The
computation time (CT) and computation complexity of these algorithms
are also provided. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.7 3D coordinates of the targets employed in the second scenario. The com-
puted RMSE and the peak errors for both the CLEAN algorithm and the
MWLA are also provided. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.1 Exact positions (range and azimuth) of the considered target (first sce-
nario), estimated ranges and RMSE evaluated for the phase fitting over
the considered sixteen virtual channels of the VIC SFCW device. . . . . . . 105

4.2 Exact positions of the nine targets characterizing the second scenario.
The range estimates computed by the STDREC, HSTDREC algorithms
are also provided. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.3 Root mean square error ε̄R, peak error ε̂R, mean error ε̄m,ψ and computation time
(CT) evaluated for the STDREC algorithm in the first scenario. . . . . . . . 106

4.4 Root mean square error ε̄R, peak error ε̂R, and computation time (CT) evalu-
ated in the second scenario. . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.5 Exact range and azimuth of the five targets considered in the first group
of experiments and corresponding estimates generated by the RASCA#1. 108

4.6 Average root mean square error ε̄, peak error ε̂, and computation time (CT)
evaluated on the basis of first measurement for RASCA, FFT-BA and
MUSIC-BA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108



xvi

4.7 Exact range, azimuth and elevation of the five targets considered in the
second group of experiments and corresponding estimates generated by
the RASCA#1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.8 Average root mean square error ε̄, peak error ε̂, and computation time (CT)
evaluated in the second experiment. Target range, azimuth and elevation
are taken into consideration. . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.1 Accuracy, training time and prediction time evaluated for each of the ML
methods considered for human activity classification. . . . . . . . . . . . . 168

5.2 Architecture of the CNN employed for the classification of three human
activities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

5.3 Accuracy, detection score, training and prediction time of a deterministic
estimation algorithm, a feed-forward NN and a YOLO v2 network. . . . . 174

5.4 Architecture of the CNN employed for target detection and estimation. . . 176



xvii

List of Algorithms

1 Two dimensional CLEAN algorithm . . . . . . . . . . . . . . . . . . . . . . 30
2 Delays, DOA Estimation: modified WAX-LESHEM algorithm . . . . . . . . . 34
3 Expectation-Maximization algorithm: EMBE algorithm . . . . . . . . . . . 37
4 Three dimensional CLEAN algorithm . . . . . . . . . . . . . . . . . . . . . . 40
5 Three-dimensional modified WAX-LESHEM algorithm . . . . . . . . . . . . 42

6 Complex single delay estimator . . . . . . . . . . . . . . . . . . . . . . . . . 64
7 Complex single delay estimation and cancellation (CSDEC) . . . . . . . . . 69
8 Range & Angle Serial Cancellation Algorithm (RASCA) #1 . . . . . . . . . . 90





xix

List of Abbreviations

ACC Adaptive Cruise Control
ADAS Autonomous Driver Assistance System
ADC Analog to Digital Converter
AE Auto-Encoder
AI Artificial Intelligence
AIC Akaike Information Criterion
AM Alternating Maximization
AWGN Additive White Gaussian Noise
Bi Bipolar
BN Batch Normalization
BPTT Back-Propagation Through Time
BSD Blind Spot Detection
CAE Convolutional Auto-Encoder
CFAR Constant False Alarm Rate
CIR Channel Input Response
CMOS Complementary Metal Oxide Semiconductor
CNN Convolutional Neural Network
CS Compressed Sensing
CT Computational Time
CVD Cadence Velocity Diagram
CSDE Complex Single Delay Estimator
CSDEC Complex Single Delay Estimation and Cancellation
DBF Digital Beamforming
DBSCAN Density Based Spatial Clustering of Applications with Noise
DCNN Deep Convolutional Neural Network
DCT Discrete Cosine Transform
DFT Discrete Fourier Transform
DL Deep Learning
DOA Direction of Arrival
EM Expectation and Maximization
ERM Empirical Risk Minimization
ESPRIT Estimation Signal Parameters Rotational Invariance Technique
FC Fully Connected
FCN Fully Convolutional Network
FDM Frequency Division Multiplexing
FET Field Effect Transistor
FFT Fast Fourier Transform
FM Frequency Modulation
FMCW Frequency Modulated Continuous Wave
FOV Field of View



xx

FPGA Field Programmable Gate Array
GAN Generative Adversarial Network
GPS Global Positioning System
GPU Graphic Processing Unit
HCI Human Computer Interface
HCSDEC Hybrid Complex Single Delay Estimation and cancellation
HGR Human Gesture Recognition
HMM Hidden Markov Model
HSTDREC Hybrid Single Target Detection Range Estimation and Cancellation
HULA Horizontal Uniform Linear Array
IAA Iterative Adaptive Approach
IC Integrated Circuit
IFFT Inverse Fast Fourier Transform
IDFT Inverse Discrete Fourier Transform
IOU Intersection Over Union
KNN K - Nearest Neighbour
LIDAR Light Detection and Ranging
LNA Low Noise Amplifier
LO Local Oscillator
LPC Linear Predictive Coding
LRR Long Range Radar
LS Least Square
LSTM Long Short Term Memory
MIMO Multiple Input Multiple Output
MDL Minimum Description Length
ML Machine Learning
MLI Maximum Likelihood
MLP Multi-Layer Perceptron
MMIC Monolithic Microwave Integrated Circuit
MRR Medium Range Radar
MUSIC Multiple Signal Classification
MWLA Modified Wax Leshem Algorithm
NB Naive Bayes
NN Neural Network
NRE Normalized Residual Energy
OFDM Orthogonal Frequency Division Multiplexing
PA Power Amplifier
PCA Principal Component Analysis
PMCW Phase Modulated Continuous Wave
R Region
RADAR Radio Detection And Ranging
RASCA Range and Angle Serial Cancellation Algorithm
RCS Radar Cross Section
RF Radio Frequency
RMSE Root Mean Square Error
RNN Recursive Neural Network
ROI Region of Interest
RPE Range Profile Estimator
RX Receive
SAE Society of Automotive Engineers
SAMME Stagewise Additive Modelling Multi-class Exponential



xxi

SBC Single Bin Cancellation
SFCW Stepped Frequency Continuous Wave
SGD Stochastic Gradient Descent
SIC Serial Iterative Cancellation
SiGe Silicon-Germanium
SNR Signal-to-Noise Ratio
SRR Short Range Radar
SPE Spatial Estimator
STDAEC Single Target Detection Angular Estimation and Cancellation
STDREC Single Target Detection Range Estimation and Cancellation
SVM Support Vector Machine
TDM Time Division Multiplexing
TOF Time Of Flight
TRP Target Profile Estimator
TX Transmit
ULA Uniform Linear Array
URA Uniform Rectangular Array
UWB Ultra-wideband
VA Virtual Array
VGA Variable Gain Amplifier
VCO Voltage Controlled Oscillator
VULA Vertical Uniform Linear Array
XAI eXplainable Artificial Intelligence
YOLO You Look Only Once





1

1 | Introduction

1.1 Autonomous driver assistance systems

In the automotive world, one of the most important and promising research topics
emerged during the last few year regards the development of Advanced Driver Assis-
tance Systems (ADAS) for autonomous driving. Inside this word, are comprised all the
systems to support, assist and eventually substitute the driver for enhancing the safety,
the comfort and, more in general, for making feasible the autonomous car of the future.
These systems are mainly focused on safety; in fact, the ultimate goal of ADAS is to
avoid any kind of accident or collision, even without the driver intervention.

In 2018, the Society of Automotive Engineers (SAE) defined six levels of automation
(ranging from zero to five), that paved the way for the advancement of the technology
employed in autonomous vehicles. In particular, from level zero to two, humans have
to actively drive the car, i.e. to steer, brake or accelerate as needed to ensure safety
during the driving. Nevertheless, there are some driver support features already im-
plemented, like Adaptive Cruise Control (ACC) for modulating the speed of the vehicle
according to the distance with respect to the cars or obstacles placed in front of it and
Blind Spot Detection (BSD) for detecting cars or obstacles near the vehicle (and avail-
able starting from Level 1), as well as line assist and Steering Assistance available starting
from Level 2. From Level 3 onwards, the human interventions during driving are even
less required, until Level 5, where the automatic features and, in particular, ADAS can
drive the vehicle alone, under any weather and environmental conditions. Especially
in these last levels, in order to guarantee the safety of the passengers, the car must gain
the ability to perfectly reconstruct the environment around it, in order to promptly react
in case of dangerous situations. In other words, the car needs to become conscious of
the surrounding environment. For this reason, the car of the future does not have to be
conceived as an unanimated piece of metal any longer, but as a cognitive system able
to sense and react to the environment and lastly humans, as human beings themselves
typically do. Moreover, driver-less cars are expected to become systems able to make a
critical decision in a very short time and within an extremely fast and potentially dan-
gerous environment; for this reason, it is important that a fully autonomous car is also
able to take into consideration its past decisions or past observations and learning from
them.

A full perception of the environment can be acquired through a holistic approach,
also known as sensor fusion, that consists on putting together data received from mul-
tiple sensors like radars, RGB or infrared thermal cameras, LIDAR, and GPS. The first
problem when all these sensors are put together is related with mechanical problems
and the space occupied by their installation in the vehicle. However, nowadays, hard-
ware advancements have made feasible the realization of devices characterized by a
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very compact size; as a matter of fact, they can be certainly installed in a car occupying
a very small space. The second (and certainly more difficult) problem is related to the
fact that all these sensors return large quantities of data that must be processed and ag-
gregated in real time, as fast as possible. This is still one of the biggest challenges today,
since a lot of sophisticated algorithms are required for managing those data.
The third problem is finally related to the coexistence of multiple sensors at the same
time: multiple devices of the same type may be installed in a car or in different cars, and
they may operate at the same time, so interfering with each other. Moreover, assuming
that all the sensors are managed correctly, the car itself should be equipped with a ro-
bust decision algorithm for deciding how to react to the information collected by those
sensors.

1.2 Radar signal processing for autonomous systems

The main lesson to be learnt from the previous section is related to the fact that a driver-
less car will be equipped with a lot of sensors and a lot of algorithms. The aim of my
PhD project is mainly related to these two aspects, i.e. the sensors and the algorithms;
in particular, my PhD research activity aims at providing a contribution to the field of
colocated multiple-input multiple output (MIMO) radars developed for automotive appli-
cations and to the development of new algorithms for radar imaging; these algorithms
should achieve a good resolution along all the dimensions in a physical space (range, az-
imuth and elevation). One of the main reason because I preferred to concentrate on colo-
cated MIMO radar systems instead of other types of sensors is due to the fact that the
application of these sensors to civilian applications and, more definitely, in autonomous
vehicle is very recent, and it looks at the same time tremendously promising. Even if
radar technology is not as mature as the technology of other sensors, in the years of my
PhD studies I have had the pleasure to see how the use of these radar systems for sens-
ing the environment has increased in a wide range of applications, not only autonomous
driving, but also assisted living, health care monitoring, human machine interface, com-
munication and smart agriculture.

The popularity of colocated MIMO radars in all these fields is due to the availability
on the market of new technological solutions, especially for antennas and radio-frequency
(RF) monolithic microwave integrated circuits (MMICs), that allow the development of ex-
tremely compact and small boards, containing a lot of antennas operating at 77 GHz
or at more than 100 GHz. On the other hand, their popularity is also due to the devel-
opment of novel algorithms and signal processing techniques for high resolution radar
imaging, i.e. for estimating the parameters of multiple detected targets, such as range
and direction of arrival (DOA). My PhD research activities have focused on this last field;
in fact, they have concerned the development of novel and powerful techniques for
estimating the parameters of multiple detected targets in bi-dimensional and three di-
mensional scenarios. Most of the developed techniques are based on a deterministic and
approximate maximum likelihood approach, implemented through computationally ef-
ficient and iterative deterministic algorithms. These algorithms offer the advantage of
achieving good estimation accuracy at the price of a reasonable computational complex-
ity.

In a number of recent automotive applications, however, MIMO radars are forced
to work in extremely complex, highly dynamic and time varying scenarios, and such
methods may fail, since the theoretical model on which such techniques are based may
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not accurately represent the observed dynamics in some real life cases. Moreover, mod-
ern radar systems may be not only used for sensing information on the environment, but
also for classifying obstacles or gestures or activities. For these reasons, a data-driven
approach based on machine learning and deep learning techniques for obstacle detec-
tion and radar parameter estimation has also been investigated during my PhD studies.
All the proposed algorithms have been tested on the basis of the raw data acquired from
low power, wideband and state of the art commercial, automotive radars. The obtained
results have evidenced that these algorithms achieve similar accuracies, but at the price
of different computational efforts. Moreover, other activities have been accomplished
in collaboration with CNH Industrial Italy and Belgium with the aim of assessing the
performance of the developed algorithms in different agricultural scenarios.

1.3 Main contributions of my research project

The main activities carried out during my PhD studies have aimed at:

1) Achieving a deep understanding of colocated, multiple input multiple output
radars employed in automotive applications, both from a technological and a sig-
nal processing point of view. This has allowed me to understand the received
radar signal model and the structure of the virtual array (VA) available on the
commercial radars I have employed. This represents a fundamental step in the
development of new algorithms for MIMO radars.

2) Implementing deterministic methods based on an iterative cancellation proce-
dure for two-dimensional (2D) detection of multiple targets and joint estimation
of their range and azimuth. The developed methods, dubbed CLEAN and mod-
ified WLA, have been tested on data acquired through a colocated SFWC MIMO
radar radiating an ultra wide-bandwidth signal in C-band (at 5 GHz) and oper-
ating in time division multiplexing (TDM). The proposed results show that these
algorithms achieve similar accuracies, but at the price of different computational
efforts. Moreover, these methods are able to achieve similar accuracies even re-
spect state-of-the-art algorithms like MUSIC, but employing less computational
complexity and time. Such methods have been initially devised for solving a 2D
estimation problem only. Then, they have been extended for the first time to a
three-dimensional (3D) one, to also include the estimation of target elevation. The
accuracy and computational complexity of the 3D algorithms has been assessed
on the basis of the data acquired through another state-of-the-art colocated SFCW
MIMO radar operating in TDM and radiating a wideband signal in the E-band (at
77 GHz).

3) Developing a novel deterministic algorithm, dubbed complex single delay estima-
tor (CSDE) (complex single delay estimation and cancellation (CSDEC)), based on an
approximate maximum likelihood approach for the estimation of a single un-
dampted exponential (multiple superimposed undamped exponentials).
This method has become the core of another method, called range and angle serial
cancellation algorithm (RASCA) for range and angle (both azimuth and elevation)
estimation of multiple targets. The accuracies of these methods have been assessed
in the presence of closely spaced targets, through computer simulations and on the
basis of data collected through an SFCW MIMO radar operating at 77 GHz. The
obtained results confirm that the proposed method is able to estimate the position
of multiple targets (up to five) in terms of range, azimuth and elevation with a
resolution of few centimeters.
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4) Implementing and testing: a) machine learning techniques and a convolutional neu-
ral network (CNN) in the classification of three different human activities; b) two
deep learning techniques for target detection and localization. A custom dataset
acquired in an indoor scenario through a colocated frequency modulated continuous
wave FMCW MIMO radar operating at 77 GHz and in TDM mode has been pro-
cessed to assess the accuracy of these methods. The obtained results confirm that
the first CNN method is able to classify different human activities with an accu-
racy higher than 90 %, while the second techniques allow to detect, localize and
classify a given target in the space with an accuracy higher than 94 %.

5) Accomplishing further research activities in collaboration with CNH Industrial
Italy and Belgium. These have allowed me to assess the performance of the de-
veloped algorithms in different agricultural scenarios. In particular, a custom re-
gression algorithm and the RASCA method have been used to analyse the raw
data collected through one or multiple FMCW radar systems installed on a tractor
moving through rows of a plantation.

The organization of the remaining part of this thesis follows the same order as that of
the list provided above. Moreover, some conclusions are provided in Chapter 7.
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2 | Automotive radars: an
overview

This chapter aims at providing an introduction to the world of automotive radar systems
and more generally to the colocated MIMO radars, that are commonly employed in the
automotive market. After illustrating some basic information about their characteristics
and outlining their evolution in the last two decades, their architecture is described.
Finally, the received signal model is briefly analysed for both FMCW and SFCW MIMO
radars.

2.1 Basic Principles and Classification of radars

A radar (radio detection and ranging) is a system able to exploit electromagnetic waves
for measuring the position and the velocity of targets. A radio-frequency (RF) signal,
radiated by the transmitter of the considered radar system, hits an object reflecting it
back; the resulting echo, after a certain delay, is then detected by the radar receiver. The
key role of this sensor in a lot of civilian applications and, in particular, in autonomous
driving is motivated by its ability of measuring distance and speed at the same time
and to its robustness even in bad weather and lighting conditions. In an automotive
scenario, the target whose position and velocity need to be estimates is usually repre-
sented by a car, a pedestrian, a bicyclist and whatever represents a potential danger for
the autonomous vehicle. Therefore, automotive radar systems are required to operate
in a polluted environment (from an electromagnetic point of view), where a number of
extended and different-sized targets needs to be accurately detected.

The interest in highly-accurate, compact and low-power automotive radar sensors to
be installed on modern autonomous vehicles has pushed the frequency of such devices
from 5 GHz up to 77 GHz. These devices are also named mm-wave radars. Radar systems
able to transmits signals at sub-THz frequencies are currently under development [1].
Operating at mm-wave frequencies has several advantages; first of all, increasing the
transmitting frequency allows to increase the bandwidth and, as consequence, improve
range resolution, i.e. the capability of resolving two adjacent targets. Secondly, velocity
estimation becomes easier, because the Doppler shift observed at a certain speed gets
larger. Automotive radars can be classified on the basis of the maximum measurable
range. According to this classification, these systems are divided in (see Table 2.1, where,
for each type of radar, the achievable range, the transmission frequency and the typical
applications are listed):

1. Short range radars (SRRs) - These are able to measure a maximum range of about
30 m and offer the highest angular resolution.

2. Medium range radars (MRRs) - These are characterized by a maximum range of
about 100 m, offer a quite large azimuthal FOV and achieve a reasonable angular
resolution.
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3. Long range radars (LRRs) - These are characterized by the largest maximum range
(250 m) and the smallest FOV.

Radar type Max range (m) Freq. (GHz) Typical applications

Short range 30 5-77 Park assist, pre-crash

Blind spot detection
Mid range 100 24-77 Rear collision avoidance

Cross traffic alert

Long range 250 40-77 Adaptive cruise control

TABLE 2.1: Classification of automotive radars on the basis of their maximum measurable dis-
tance.

This thesis work is mainly focused on these three classes; medium and short, but also
long range radars are expected to detect with very high precision not only range and
velocity, but also the angular position of multiple targets in the environment around the
vehicle. For this reason, these devices are equipped with antenna arrays at both transmit
and receive sides. The initial excitement about the use of antenna arrays at both sides
(i.e., briefly, about MIMO) in wireless systems has been sparked by the pioneering work
of J. H. Winters [2], G. J. Foschini [3], Foschini and M. J. Gans [4], and E. Telatar [5];
these researchers predicted huge capacity gains in wireless communications affected by
multipath fading [6]. A few years later, the exploitation of antenna arrays has been also
investigated in the radar field for the potential improvements it could provide in terms
of signal-to-noise ratio (SNR), resolution and detection capability. In fact, in principle, the
availability of multiple transmit/receive antennas allows to (e.g., see [7]–[9])

1) increase the SNR characterizing target echoes and make it more stable;
2) implement spatial filtering (i.e., beamforming) for directional signal transmission/re-

ception and, consequently, achieve a large field of view (FOV);
3) increase the overall number of degrees of freedom and, consequently, the maxi-

mum number of targets that can be detected at a given range;
4) improve the angular resolution with respect to traditional radar systems;
5) exploit spatial diversity, so that uncorrelated aspects of a given target can be per-

ceived.
Generally speaking, MIMO radar systems can be divided in statistical MIMO radars

[10], [11] and colocated MIMO radars [12], [9] on the basis of the distance between their
transmit and receive arrays. In fact, the transmit and receive antennas of the radar sys-
tems belonging to the first class are widely separated; on the contrary, in radar systems
of the second class, transmit antennas are close to the receive ones and, in particular, are
usually placed on the same shield.

Colocated MIMO radars can be further classified as: a) mono-static radars, where
transmit and receive arrays share their antenna elements; b) pseudo-bistatic radars, where
transmit and receive arrays are made of distinct antenna elements, placed at different
positions. It is important to keep in mind that, in statistical MIMO radars, spatial di-
versity originates from the fact that distinct receive antennas, being well separated, can
observe uncorrelated parts of the same target.

In colocated MIMO radars, instead, a large spatial aperture is achieved by radiat-
ing orthogonal waveforms. Based on the way these waveforms are generated, colocated
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MIMO radars can be divided in: a) time division multiplexing, i.e. TDM radars [13], b)
frequency division multiplexing (FDM) radars [14] and c) orthogonal frequency division mul-
tiplexing (OFDM) radars [15]. On the one hand, in TDM (FDM) radars, orthogonality is
achieved by transmitting through distinct antennas over disjoint time (frequency) inter-
vals; on the other hand, in OFDM radars, any transmit antenna can be used to radiate
multiple orthogonal waveforms at the same time. In the last section of this chapter, the
architecture of a pseudo-bistatic colocated MIMO radar operating in TDM mode and
largely preferred as automotive radar is described in detail.

2.2 A brief history of MIMO radars

The birth of radio detection and ranging (briefly, radar) systems dates back to 1904, when
the German inventor Christian Hulsmayer built a simple ship detection device for avoid-
ing collisions in fog [16]. However, the first practical radar system was developed by
the British physicist Sir Robert Watson-Watt in 1935, and was employed by the British
army in World War II to detect air and sea aggressors [17]. Another fundamental step
in the evolution of radar technology is represented by the early studies on optimal filter-
ing; the rigorous formulation of this problem and its solution are due to the American
scholar Norbert Wiener and date back to the 40’ [18]. Since then, many advancements
have been made in military and civilian radar systems, thanks to the development of
signal processing techniques and to the evolution in electronic technology. The most
significant advances in signal processing methods applicable to radar systems equipped
with antenna arrays have involved both the transmit side and the receive side, and can
be summarised as follows.

As far as the transmit side is concerned, substantial research efforts have been de-
voted to the study of analog beamforming (ABF) and digital beamforming (DBF) methods
for controlling phased arrays; both types of methods allow to obtain electronic beam steer-
ing, i.e. to steer the main lobe of the array radiation pattern without any movement of the
antennas forming it. It is worth stressing that phased arrays have been around for more
than fifty years [19], and that a radar equipped with a phased array is much simpler
than a MIMO radar. In fact, a radar system endowed with a phased array generates a
single waveform feeding each transmit antenna with a different phase (or, equivalently,
with a different delay); consequently, the waveforms radiated by distinct antennas are
highly correlated. Moreover, analog beamforming represents the earliest method for
electronic beam steering; in this case, each of the signal feeding a transmit antenna is
first amplified and then delayed through a phase shifter in a radio frequency (RF) stage;
an important drawback of this method is represented by the fact that the shape of the
resulting beam is fixed. On the other hand, DBF is based on the idea of implementing
beam steering in the (digital) baseband portion of the radar hardware by multiplying
each signal by a complex gain [20]. This procedure allows to digitally customize the
radiated beam, adapting its direction to channel conditions. This technique, also known
as adaptive beamforming [21], plays an important role in the presence of severe path loss.
However, it should be always kept in mind that any radar transmitter exploiting beam-
forming requires some time (in practice, multiple dwells) to scan the area of interest.
On the contrary, if a MIMO radar is employed, the entire observed area is illuminated
in a single dwell and beamforming is obtained through the use of different orthogonal
waveforms [22].
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Another important research area concerning the transmit side of radar systems en-
dowed with antenna arrays concerns the design of the radiated waveforms [9]. Despite
the fact that significant theoretical results have been achieved regarding their optimal
design of waveforms (e.g., see [23]), few modulation techniques have been employed
in commercial MIMO radars until now. These include the FMCW technique [24] (also
known as chirp signal modulation) and the Stepped Frequency Continuous Wave (SFCW)
technique [25]. In the last years, considerable attention has been also paid to the use
of the OFDM technique [26], [27] and to the phase modulated continuous wave (PMCW)
technique [28].

Early research work regarding the receive side of radar systems endowed with an-
tenna arrays has focused on the development of beamforming methods [29]. One of
the most important contributions to this area is represented by the so called Capon beam-
former, which can provide good resolution and interference rejection capability [30], [31].
Other fundamental contributions about the processing of multiple signals acquired by
a radar systems through its antenna array concern the estimation of the direction of ar-
rival (DOA) of the electromagnetic waves impinging on the array itself. Here, I limit to
mention the MUSIC [32] and the estimation of signal parameters via rotational invariance
(ESPRIT) techniques [33], [34].

The development of signal processing methods for MIMO radars started after the
end of 2003; in fact, in that period, the concept of MIMO radar, defined as a device
able to probe a wireless channel by transmitting multiple signals and receiving their
echoes with similar multiplicity, was proposed for the first time [8]. Since the begin-
ning, it was clear that MIMO technology could have represented an important tool to
improve the SNR of received signals and to increase radar aperture [7], [9], [22], [35].
Since then, the exploitation of known DOA estimation strategies, developed in the pre-
vious years for antenna arrays (like MUSIC and ESPRIT), has been widely investigated
for this new type of radars (e.g., see [36], [37] and [38]). However, the availability of
MIMO radars able to radiate wideband signals by a large number of antennas and to
acquire their echoes through an even larger number of antennas have raised various
problems, whose solution requires substantial research efforts. In fact, on the one hand,
these devices allow to acquire a rich set of information about the surrounding propaga-
tion environment; on the other hand, they require storing and processing large datasets.
This has motivated the investigation of compressed sensing (CS) and statistical sparsity-
based techniques, since these can be exploited to perform signal detection and param-
eter estimation on the basis of a much smaller dataset than that available in the case in
which the received waveforms undergo Nyquist sampling [39], [40]; various examples
of CS-based estimation algorithms can be found in ref. [41].

As far as the advancement in electronic technology is concerned, in the remaining
part of this paragraph let us focus on some important results achieved in the develop-
ment of compact integrated radar devices employed in the automotive field. The first
generation of commercial ultra-wideband (UWB) automotive radar sensors operating in
the 77 GHz band has become available in 1999. These devices were not endowed with
antenna arrays and their implementation was based on discrete electronic components
(in particular, gallium-arsenide Gunn diodes mounted inside a waveguide cavity were
employed in the generation of RF waveforms). However, electronic technology pro-
gressed quickly in this field and, after few years, MMICs employing high-performance
silicon-germanium (SiGe) transistors became available for the implementation of fully in-
tegrated radars. Advantages of SiGe include the boosting of the fmax of the transistors
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up to several hundreds of GHz [42]. Pioneering work in the development and manu-
facturing of such a technology has been accomplished by the Infineon company, that has
started its production in 2004 [43]. It is also worth mentioning that, in the same year,
a description of the first fully integrated 24-GHz eight-element phased array receiver
in SiGe and of the first fully integrated 24-GHz four-element phased array transmitter
with integrated power amplifiers in complementary metal-oxide semiconductor (CMOS) has
appeared [44]; these devices were able to accomplish beamforming and could be used
for communication, ranging, positioning, and sensing applications. Other examples of
phased arrays operating in X and Ku-band have been described later in ref. [45]. The
first FMCW MIMO radar transceiver operating at 77 GHz has been implemented in SiGe
technology in 2008 [46], whereas the production of the first MIMO FMCW radar, oper-
ating according to a TDM strategy and equipped with an array of colocated antennas,
started in 2009 [47], [48]. To the best of our knowledge, the last device represents the
first compact MIMO radar system based on a MMIC in SiGe, operating at 77 GHz and
radiating ultra-wideband signals. In this system, wide-band and high-frequency patch
antennas are built on a RF substrate [49], while the base-band MIMO signal processing
is accomplished off-chip by a field programmable gate array (FPGA) board. Moreover, the
analog-to-digital converters (ADCs) at the receive side are implemented in CMOS tech-
nology and embedded in the transceiver chip; this has been made possible by the SiGe
Bi-CMOS process. In the last decade, radar designers working on the development of
new integrated radar devices have investigated the use of the more scalable CMOS RF
technology [50], that allows to integrate both RF and digital functions on a single chip
and at low cost. An important trend in the technological evolution of MIMO radar sys-
tems is also represented by the attempt of exploiting the same hardware for both radar
and communications [51]. Some milestones achieved in the evolution of the signal pro-
cessing methods and of the technology employed in colocated radar systems during the
last two decades are summarized in Fig. 2.1.

Technology

Signal processing

1999: single-antenna  

automotive radar

operating at 77GHz

2004: SiGe BiCMOS

RF technology

2008: 4-channel radar  

transceiver operating at 77 GHz

2009: design of the 

first colocated

FMCW MIMO radar

2010: 65-nm CMOS fully

integrated radar transceiver

2016: PMCW

MIMO radar
2015: OFDM

MIMO radar
2013: SFCW

MIMO radar

1992: signal processing  

techniques for  DBF
2003: MIMO

radar concept

2006: micro-Doppler

effect in radar systems

2008: application of  ESPRIT and 

MUSIC to MIMO radars

2016: CS application

to MIMO radar

2019: radar and 

communication coexistence

FIGURE 2.1: Milestones in the evolution of automotive radars and radar signal processing tech-
niques.

2.3 MIMO radar basic architecture

In the remaining part of this thesis, colocated and bistatic MIMO radar systems, and
in particular FMCW or SFCW radars, are considered; their generic architecture is illus-
trated in Fig. 2.2. As it can be inferred from this figure, a MIMO radar is equipped
with multiple antennas at both transmit and receive sides. Typically, the structure illus-
trated here, especially for the RF part, can be repeated multiple times for each radiating
element or a group of them.
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FIGURE 2.2: MIMO radar transmitter (upper part) and receiver (lower part).

However, for simplicity, in the following I focus on the basic building blocks behind
a single radiating element. The transmit side associated with each antenna or a small
group of them of an FMCW or SFCW radar is characterized by a baseband waveform
generator, whose goal is to generate a baseband signal having certain characteristics. In
the case of a FMCW system implemented in SiGe Bi-CMOS technology, this block can be
implemented through an integrated direct digital synthesizer (DDS) and phase locked loop
(PLL) chip [52], [53]. From their combination it is possible to obtain a sequence of highly
linear and ultra wideband frequency sweeps also called chirps. This baseband signal
enters a fully integrated 77 GHz SiGe voltage controlled oscillator (VCO) based on Colpitts
architecture and is up-converted to a central frequency of 77 GHz. If this procedure is
repeated for all the TX antennas, this produces a chirp FM signal centered at 77 GHz,
whose instantaneous frequency evolves periodically, as illustrated in Fig. 2.3.
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FIGURE 2.3: Representation of the instantaneous frequency of the RF signal generated by the
VCO in an FMCW radar system.

In this figure, a TDM strategy is considered for guaranteeing the orthogonality be-
tween different transmitting elements and a time slot of T0 s is assigned to each TX
antenna; therefore, transmission from all the TX antennas is accomplished over an in-
terval lasting TF ≜ NTT0 s; this interval represents the duration of a single transmission
frame. The parameters T, TR and T0 represent the chirp interval, the reset time and the pulse
period (or pulse repetition interval), respectively [54], whereas the parameters f0 and B are
the start frequency and the bandwidth, respectively, of the transmitted signal. Finally, this
signal is amplified by a single (or a cascade) of power amplifiers (PA) and transmitted.
It is important to mention that the RF and digital parts of state-of-the-art automotive
FMCW radars can be fully integrated in CMOS technology; in this case, the PLL is used
for generating both the digital clock (as synchronization signal for the digital part) and
the input frequency on which the local oscillator (LO) is locked. Moreover, for mitigating
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the phase noise of the LO, the VCO generates an oscillation at lower frequency; in par-
ticular, more precise oscillators called Subharmonic Injection-Locked Oscillators (SH-ILO)
are employed for the final conversion at 77 GHz [42]. At the receive side, the first block
following the antenna is a two-stage Low Noise Amplifier (LNA); in turn, this is fol-
lowed by an active Gilbert cell mixer for the downconversion. Then, after a variable gain
amplifier (VGA) and a bank of low pass filters (LPFs), Analog-to-Digital Converters (ADC)
are employed to digitize the downconverted signal. Even in this case, the ADC ICs are
off-chip components in the case of SiGe technology; however, if the CMOS technology
is adopted, these two parts can be integrated together on a single chip, saving cost and
reducing the whole power consumption. The last issue is also strictly related to the PA;
other electronic devices based on the newest GaN (Gallium-Nitride) and FinFET transis-
tors, are still under development for implementing high frequency and efficient PAs. As
far as the architecture of a SFCW radar system is concerned, it is very similar to that of
a FMCW radar system, except for the baseband synthesizer, that changes the frequency
of the oscillations in a step-wise manner, as shown in Fig. 2.4.
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FIGURE 2.4: Representation of the instantaneous frequency of the RF signal generated by the
VCO in an SFCW radar system.

In this case, similarly as the SFWC radar system, a TDM strategy is assumed and
a time slot of T0 s is assigned to each TX antenna; therefore, transmission from all the
TX antennas is accomplished over an interval lasting TF ≜ NTT0 s; this interval repre-
sents the duration of a single transmission frame. The parameters T, TR and T0 represent
the step duration, the reset time and the pulse repetition interval, respectively, whereas the
parameter f0 represents the start frequency and (N − 1)Fs is the bandwidth B of the trans-
mitted signal. A common problem in radar receivers is the so called TX-to-RX spillover;
in fact, since the TX and RX antennas are quite close one to one another, even if the
transmitter shows a good insulation, some of the radiated power may enter the receiver
chain. This unwanted received power manifests itself as a strong target at very small
range (roughly at zero distance) and can potentially saturate the receiver. For an FMCW
system, the spillover can be removed right after the downconversion (this technique is
called DC offset compensation), whereas, in the case of SFCW systems, the removal pro-
cedure is more complicated, because the power is spread uniformly over the different
pulses and frequencies.

2.3.1 Antenna arrays

In general, the radar front end contains NT TX antennas and NR RX antennas. At 77
GHz, each antenna is commonly implemented as a single or a series of patch elements
(typically from four to eight), for improving the gain and the directivity of the radiat-
ing elements and for reducing the sidelobes of the radiated and received power. This
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is important in the case of MRR or LRR radars. The distance between two adjacent
patches is λ/2, in order to maximize the radiated power at the broadside direction [55].
These TX and RX elements made of more than one patches can be combined in different
manner, forming a physical array of antennas, that, according to its shape, can have dif-
ferent characteristics. The simplest mono-dimensional (1D) array is the uniform linear array
(ULA), where the physical distance between two adjacent antennas is constant for the
entire array and typically half a wavelength in order to avoid any ambiguity in angular
estimation. An example of ULA physical array is shown in Figure 2.5-a), where the red
squares represent the modelled TX antennas and the blue ones the RX antennas. In this
figure, the distance between the TX and RX element is d = λ/2, while dt (dr) indicates
the distance of the TX (RX) antenna from the array center.

0

l-th target TX antenna

RX antenna

Virtual antenna
lR

l

 , sint rd 

rd
x

x

a)

b)

d
td

FIGURE 2.5: Representation of: a) an ULA (characterized by NT = 2 and NR = 8), and the
relevant geometric parameters referring to the l-th target, the t-th TX antenna and the r- th RX

antenna; b) the associated virtual ULA (consisting of NT · NR = 16 antennas).

0

0

VHd

VVd

FIGURE 2.6: Representation of an URA characterized by NT = 5 TX antennas (green) and NR =
7 RX antennas (red) and the associated virtual URA (consisting of NV = NT · NR = 35 antennas)

in light-blue.

In radar signal processing, every pair of physical TX and RX antennas (namely, the
t-th TX antenna and the r-th RX antenna) is often replaced by a single virtual antenna of
an equivalent monostatic radar. In particular, the abscissa xv and the ordinate yv of the
v-th virtual antenna element associated with the t-th TX antenna and the r-th RX antenna
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are computed as1

xv =
xt + xr

2
(2.1)

and
yv =

yt + yr

2
, (2.2)

respectively, with v = 0, 1, ..., NV − 1; here, (xt, yt) ((xr, yr)) are the coordinates of the
TX (RX antenna) and NV ≜ NT · NR represents the overall size of the resulting virtual
array (see the one represented in Fig. 2.5 and composed by sixteen elements). An ULA
has the advantage to be a very simple array for range and azimuth estimation, but it
does not allow to obtain any estimate of the elevation angle, since the FOV along the
vertical direction of each single radiating element is very limited. To this purpose, an
uniform rectangular array (URA), like the one shown in Fig. 2.6, can be adopted, since
multiple antennas become available along both horizontal (NR = 7) and vertical direc-
tions (NT = 5). The general rules for deriving the virtual array are still represented by
eqs. (2.1) and (2.2); the corresponding rectangular virtual array is shown in Figure 2.6
and consists of NV = NT · NR = 35 antennas. Other planar array structures with an
irregular distribution of physical antennas are possible and can be found in literature or
in commercial devices, like stretched, staircase or diagonal array [56].

2.4 MIMO radar received signal model

After the description of the general architecture of FMCW and SFCW radars, in this
section, the general signal model received by a MIMO radar for both FMCW and SFCW
is shown.

2.4.1 FMCW MIMO radar

Let us consider the sequence of chirp represented in Fig. 2.3. If we focus on the time
interval t̄ ∈ (0, T) and assume that, in this interval, the t-th TX antenna is employed
by the considered radar system (with t ∈ {0, 1, ..., NT − 1}), the radiated signal can be
expressed as

sRF (t̄) = ARFℜ {s (t̄)} , (2.3)

where ARF is its amplitude,
s (t̄) ≜ exp [jθ (t̄)] , (2.4)

θ (t̄) ≜ 2π
(

f0 t̄ +
µ

2
t̄2
)

(2.5)

and
µ =

B
T

(2.6)

is the chirp rate, i.e. the steepness of the generated frequency chirp. Let x(r)RF(t̄) denote
the signal available at the output of the r-th receive antenna, with r = 0, 1, ..., NR − 1. If
we assume that the radiated signal sRF(t̄) (2.3) is reflected by L static point targets, as the
one shown in Figure 2.4, the useful component of x(r)RF(t̄) consists of the superposition
of L echoes, each originating from a distinct target. In this case, if the propagation

1This is not the only rule adopted in the technical literature to compute the coordinates of the v-th virtual
antenna element. For instance, in ref. [22, Par. 4.3.1, pp. 159-161], the abscissa (ordinate) of this element is
evaluated as 2xv (2yv), where xv and yv are expressed by eqs. (2.1) and (2.2), respectively.
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environment undergoes slow variations and the far field condition is satisfied2, a simple
mathematical model can be developed to represent the sequence of samples generated
by the ADC in a single chirp interval.

𝑥

𝑦

𝑧

𝜃𝑙
𝜙𝑙

𝑅𝑙
𝑇𝑙

𝑇0

𝑇1

FIGURE 2.7: Representation of a simple three dimensional scenario in which three targets (red
cylinders) are present. The azimuth (elevation) angle θ (ϕ) associated to the l-th target is mea-

sured respect the centre of the radar (grey cube) along the horizontal (vertical) direction.

Based on these assumptions, the n-th received, base-band signal sample acquired
through the v-th virtual antenna element (with v = 0, 1, ..., NV − 1) can be expressed
(e.g., see [57, Par. 4.6, eq. (4.27)])

x(v)r,n =
L−1

∑
l=0

al cos
(

2πn F(v)
l + ψ

(v)
l

)
+ w(v)

r,n , (2.7)

with n = 0, 1, ..., N − 1; here, the index r indicates that the signal is real, N is the
overall number of samples acquired over a chirp period, al is the amplitude of the l-th
component of the useful signal (this amplitude depends on both the range Rl and the
reflectivity of the l-th target, but is assumed to be independent of v for simplicity),

F(v)
l ≜ f (v)l Ts (2.8)

is the normalized version of the frequency

f (v)l ≜ µ τ
(v)
l , (2.9)

characterizing the l-th target detected on the v-th virtual receive antenna and consider-
ing Ts the ADC sampling period,

τ
(v)
l =

2
c
[Rl + xv cos (ϕl) sin (θl) + yv sin (ϕl)] (2.10)

or
τ
(v)
l =

2
c
[Rl + xv sin (θl)] (2.11)

is the delay of the echo generated by the l-th target and observed on the v-th virtual
channel for a 3D or 2D scenario, respectively, xv and yv are given by eq. (2.1) and (2.2),
Rl , ϕl and θl denote the range of the l-th target, its azimuth and its elevation, respectively,

2this means that the distance between the radar and the closest object d ≥ 2D2

λ , considering D the
aperture of the radar array and λ the wavelength of the radiating signal [55, Par. 2.2.4, pp. 34-36]
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as shown in Fig. 2.7,
ψ
(v)
l
∼= 2π f0τ

(v)
l , (2.12)

and w(v)
r,n is the n-th sample of the additive white Gaussian noise (AWGN) sequence af-

fecting the received signal (the noise variance is denoted by σ2 in the following and is
assumed to be independent of v). This model can be adopted in all the FMCW radar sys-
tems that extract only the in-phase component of the signal captured by each RX antenna.
However, some commercial MIMO radars provide also the in-quadrature components of
the received RF signals [12, Par. 2.1 eq. (2.2)]. In the last case, the complex model

x(v)c,n =
L−1

∑
l=0

A(v)
l exp

(
j2πn F(v)

l

)
+ w(v)

c,n , (2.13)

must be adopted in place of its counterpart expressed by eq. (2.7) for any n; here,

A(v)
l ≜ al exp

(
jψ(v)

l

)
(2.14)

for any v and l, where ψ
(v)
l is expressed by eq. (2.12). The received signal models (2.7)

and (2.13) hold if all the observed targets are static. Let us focus now on a FMCW radar
system operating in the presence of L moving point targets and having the following
characteristics: a) it is equipped with a single TX antenna and a single RX antenna (i.e.,
NT = NR = 1); b) its reset time TR is equal to 0, so that T0 = T (see Fig. 2.2); c) its
transmission frame consists of Nc chirps, so that the duration TF of the transmission
frame is equal to NcT0 = NcT s; d) N distinct ADC samples are acquired in each chirp
interval at the receive side. Under these conditions, it is not difficult to prove that, if the
ranges of all the targets are much larger than their displacements observed during the
considered transmission frame the n-th sample of the converted signal acquired in the
k-th chirp interval (with k = 0, 1, ..., Nc − 1), can be expressed as [54]

x(k)c,n ≜
L−1

∑
l=0

A(k)
l exp (j2πnFo,l) + w(k)

c,n (2.15)

where n ∈ [0 , N − 1], Fo,l = fo,lTs = ( fl + fD,l) Ts, fl is defined by eqs. (2.9)-(2.10)
considering v = 0, i.e. xv = yv = 0,

fD,l =
2vl

λ
(2.16)

is the Doppler frequency
A(k)

l = al exp
(

jψ(k)
l

)
(2.17)

ψ
(k)
l ≈

4π

λ
R(k)

l (2.18)

with R(k)
l = Rl + vlkT and w(k)

c,n is the AWGN noise factor affecting the n-th sample of
the k-th chirp of the received complex channel. Here Rl represents the frontal distance,
i.e. the range, between the radar and the l-th target, while vl is the speed at which
the considered target is moving. In case the FMCW system manages only the in-phase
component, the expression of x(k)r,n can be defined in a similar way as eq. (2.7), namely as
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(e.g., see [54, eq.(5)]):

x(k)r,n =
L−1

∑
l=0

al cos(2πn Fo,l + ψ
(k)
l ) + w(k)

r,n , (2.19)

where ψ
(k)
l is defined by eq. (2.18) and w(k)

r,n is the n-th sample of the AWGN sequence
affecting the received signal in the k-th chirp interval.

The derivation of models (2.7), (2.13) holds in the presence of multiple static targets
and considering a rectangular array, while the derivation of the simplified models (2.15)
and (2.19) is valid if the targets are moving and the radar is equipped with a single
channel. However, let us consider now the case in which targets are moving and the
radar sounds the environment through a multitude antennas on both transmit and re-
ceive side; in this case, the FMCW radar system has the following characteristics: a) it is
equipped with NT TX antennas and NR RX antennas; b) its reset time TR is equal to 0, so
that T0 = T; c) its transmission frame consists of Nc ·NT chirps, so that the duration TF of
the transmission frame is equal to NcNTT s; d) N distinct ADC samples are acquired in
each chirp interval at the receive side. The received signal model for an FMCW system
receiving only the in-phase component becomes:

x(v,k)
r,n =

L−1

∑
l=0

al cos
(

2πn F(v)
o,l + ψ

(v,k)
l

)
+ w(v,k)

r,n , (2.20)

where in this case, F(v)
o,l =

(
f (v)l + fDl

)
Ts, f (v)l ( fDl ) is defined by (2.9) ((2.16)) and

ψ
(v,k)
l =

4π

λ
R(v,k)

l (2.21)

with
R(v,k)

l = R(v)
l + vlkT (2.22)

and R(v)
l = c

2 τ
(v)
l , τ

(v)
l is defined by eq. (2.10) and vl is the speed of the l-th target. Here,

the noise w(v,k)
r,n is the AWGN affecting the considered v-th channel in the k-chirp and the

n-th sample. On the other hand, for an FMCW system with a received complex signal,

x(v,k)
c,n ≜

L−1

∑
l=0

A(v,k)
l exp

(
j2πnF(v)

o,l

)
+ w(v,k)

c,n (2.23)

where, A(v,k)
l can be obtained considering ψ

(v,k)
l (see eq. (2.21)) instead of ψ

(k)
l in eq.

(2.17) and F(v)
o,l =

(
f (v)l + fDl

)
Ts. Here, the noise w(v,k)

c,n is the AWGN affecting the con-
sidered v-th channel in the k-chirp and n-th sample. The expressions (2.20) and (2.23)
represent the two most complete models for FMCW radars. In this case, for each de-
tected target, the parameters to estimate are four: range, azimuth, elevation and veloc-
ity; for this reason, in this case, the problem of estimating the parameters of a target is
dubbed four-dimensional (4D) radar imaging [58].
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2.4.2 SFCW MIMO radar

The second considered case corresponds to the signal received by an SFCW MIMO
radar. This system provides, for any pair of TX and RX antennas, i.e., for every vir-
tual channel, a set of N measurements in the frequency domain; each measurement rep-
resents an estimate of the frequency response of the communication channel between
such antennas at a specific frequency. In practice, these measurements are acquired by
sounding the communication channel at N equally spaced frequencies; on the basis of
the radiated signal represented in Fig. 2.4, the n-th value of the instantaneous frequency
can be expressed as

fn = f0 + n ∆ f , (2.24)

with n = 0, 1, ..., N− 1, where f0 is the minimum radiated frequency, ∆ f is the frequency
step size. It is not difficult to prove that, under the same assumptions made in the deriva-
tion of eq. (2.13), the measurement acquired through the v-th virtual element at the n-th
frequency can be expressed as

x(v)c,n =
L−1

∑
l=0

A(v)
l exp

(
−j2πnF(v)

l

)
+ w(v)

c,n , (2.25)

with v = 0, 1, ..., NV − 1; here, the amplitude

A(v)
l ≜ al exp

(
−jψ(v)

l

)
(2.26)

and the phase ψ
(v)
l is still expressed by eq. (2.12) (this term can account also for an initial

phase shift), and
F(v)

l ≜ ∆ f τ
(v)
l (2.27)

is the normalised delay characterizing the l-th target and observed on the v-th virtual
antenna, the parameters al is the RCS, as well as τ

(v)
l and the random variable w(v)

c,n that
are expressed by the same definition used for the received signal model (2.7).

Similarly as the FMCW counterpart, let us focus next on a SFCW radar system oper-
ating in the same dynamic scenario as the one just described for a FMCW radar system
and having the following characteristics: a) it is equipped with a single TX antenna and
a single RX antenna; b) its reset time TR is equal to 0, so that T0 = T; c) its transmission
frame consists of Nc frequency sweeps; d) in each sweep (lasting T s), N distinct and
uniformly spaced frequencies are generated; d) the time between two consecutive fre-
quencies, i.e. the duration of each frequency step is Tp. Then, assuming f0 >> N∆ f , the
measurement acquired at the n-th frequency in the k-th frequency sweep (with k = 0, 1,
..., Nc − 1) can be expressed as

x(k)c,n =
L−1

∑
l=0

A(k)
l exp [−j (2πnFo,l)] + w(k)

c,n , (2.28)

where
A(k)

l ≜ al exp
(
−jψ(k)

l

)
(2.29)

ψ
(k)
l is still expressed by eqs. (2.21), Fo,l = (Fl + FD,l)

3, Fl is expressed by eqs. (2.10)-
(2.27) for v = 0, i.e. xv = yv = 0, FD,l = fD,lTp and fD,l is indicated by eq. (2.16). The
derivation of the model (2.25) is valid in the presence of multiple static targets and of a

3In some cases the expression of Fo,l =
(

Fl − FD,l
)
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rectangular array, while the derivation of the simplified model (2.28) is valid if the tar-
gets are moving and only a single channel is considered. Therefore, let us consider now
the most general case in which targets are moving and all the antennas are employed; in
particular, the considered radar has the following characteristics: a) it is equipped with
NT TX antenna and NR RX antennas; b) its reset time TR is equal to 0, so that T0 = T; c)
its transmission frame consists of Nc · NT frequency sweeps; d) in each sweep (lasting T
s), N distinct and uniformly spaced frequencies are generated; d) the time between two
consecutive steps, i.e. the duration of each step is Tp. In this case, the received signal
model for an SFCW system becomes:

x(v,k)
c,n ≜

L−1

∑
l=0

A(v,k)
l exp

[
−j
(

2πnF(v)
o,l

)]
+ w(v,k)

c,n (2.30)

where
A(v,k)

l ≜ al exp
(
−jψ(v,k)

l

)
(2.31)

ψ
(v,k)
l is still expressed by eqs. (2.21)-(2.22) and F(v)

o,l = F(v)
l + F̄D,l (see eq. (2.16)). Here,

the noise w(v,k)
c,n is the AWGN affecting the considered v-th channel in the k-chirp and n-

th sample. The expression (2.30) represents the most complete model for SFCW radars
and it is quite similar to the one expressed by eq. (2.23) for an FMCW radar system,
except for the fact that the exponential factors contains a minus sign.

2.5 Basic signal processing considerations: a case study

In this section a simple example concerning with the detection of a single point target,
and the estimation of its range R and its azimuth θ in a 2D propagation scenario is
proposed. In this case, an FMCW radar system equipped with an ULA, consisting of
three antenna elements, is employed (see Fig. 2.8-a). This array is made of a central
TX antenna and a couple of antipodal RX antennas (these are identified by a red box
and two blue boxes, respectively, in the considered figure), so that NT = 1 and NR = 2;
consequently, a virtual array, consisting of NV = 2 · 1 = 2 virtual elements, is available.
The abscissa xv of the v-th virtual antenna element associated with the TX antenna and
the v-th RX antenna is computed as (see eq. (2.1))

xv =
xt + xr,v

2
(2.32)

with v = 0 and 1; here, xt = 0 and xr,0 = −d (xr,1 = d) are the abscissas of the TX and of
the first (second) RX antenna, respectively (Note that the origin of the reference system
coincides with the center of the array).

If the target is in far field, the wavefront of the electromagnetic echo originating from
it is a straight line and is orthogonal to the line connecting the target with the center of
the array. In these conditions, the n-th time-domain sample acquired on the v-th virtual
antenna in a single snapshot can be expressed as (see eq. (2.7))

x(v)r,n = a(v) cos
(

2πn f (v)Ts + ψ(v)
)
+ w(v)

r,n ,

= C(v) exp
(

j 2πnF(v)
)
+ C(v)∗ exp

(
−j 2πnF(v)

)
+ w(v)

r,n , (2.33)



2.5. Basic signal processing considerations: a case study 19

Target TX antenna

RX antenna

R



 sind 

x

x

Physical array

Virtual array

a)                                                                                                       b)

Target TX antenna

RX antenna

R



sin( )d 

x

x

2dd

d

d

d

FIGURE 2.8: Physical geometry and virtual array of a colocated FMCW MIMO radar equipped
with an ULA composed of a single TX antenna and: a) two RX elements; b) four RX elements.

for n = 0, 1, ..., N − 1, where (see eqs. (2.8), (2.9) and (2.10))

F(v) ≜ f (v)Ts, (2.34)

f (v) =
2µ

c
[R + xv sin (θ)] , (2.35)

xv = (−1)(v+1) d
2

, (2.36)

d is inter-antenna spacing of the considered ULA4,

C(v) ≜
1
2

a(v) exp
(

jψ(v)
)

(2.37)

is a complex parameter depending on the target reflectivity a(v) (see eqs. (2.14)), where
in this case the amplitude a(v) depends on the considered antenna and (see eq. (2.10)
and (2.12))

ψ(v) ≜ ∠C(v) ∼=
4π

λ
[R + xv sin (ϕ)] (2.38)

is the phase observed on the considered antenna. It is important to point out that:

a) Relevant information about the target azimuth are provided by the frequency differ-
ence

∆ f0,1 ≜ f (1) − f (0) (2.39)

or by the phase variation

∆ψ0,1 ≜ ∠C(1) (C(0))∗, (2.40)

where the quantity ∠X represents the phase of the complex number X (it belongs
to interval [−π, π)). In fact, on the one hand, from eqs. (2.35)-(2.36) it can be
inferred that (see the definition (2.39))

∆ f0,1 = 2
µd
c

sin(θ); (2.41)

4This distance will be also called dVH in sect. 4.2.
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on the other hand, based on eqs. (2.36)-(2.38), it is easy to show that (see the definition
(2.40))

∆ψ0,1 = ψ(1) − ψ(0) = 4π
d
λ

sin (θ) , (2.42)

provided that the inequality

4π
d
λ
|sin (θ)| ≤ π (2.43)

holds for any θ. The last condition is met for any θ ∈ [−π
2 , π

2 ) if

d ≤ λ/4. (2.44)

b) If the received signal is noiseless, the frequency f (v) is known and N is large, the
complex amplitude C(v) can be easily estimated as5

Ĉ(v) ∼=
1
N

X̄(v)( f (v)), (2.45)

where

X̄(v) ( f ) ≜
N−1

∑
n=0

x(v)r,n exp(−j2πn f Ts) (2.46)

represents the Fourier transform of the sequence {x(v)r,n ; n = 0, 1, ..., N − 1}.

c) Information about the target range is provided by the average frequency (see eq. (2.35))

fm ≜
f0 + f1

2
=

2µ

c
R (2.47)

Therefore, the estimation of the frequency of the sinusoid contained in the noisy data
sequence acquired through each virtual antenna represents a fundamental problem in
target detection and estimation. It is well known that the so called periodogram method
can be employed to solve it in an approximate way [59], [60]. This method is based on
the computation of the amplitude spectrum of the zero-padded measurement sequence
and on the identification of its peak.

Based on the mathematical results and the considerations illustrated above, a simple
deterministic algorithm, consisting of the three steps listed below, can be easily derived
for the detection of the target and the estimation of its spatial coordinates (R, θ).

1. DFT processing - In this step, the N-dimensional vector

x(v) ≜
[

x(v)r,0 , x(v)r,1 , ..., x(v)r,N−1

]T
, (2.48)

with v = 0 and 1, undergoes zero padding (ZP); this results in the N0-dimensional vector

x(v)ZP ≜
[
x(v)

T
0T

P

]T
(2.49)

5This result can be easily proved by substituting eq. (2.33) in the right-hand side (RHS) of the definition
(2.46).
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where N0 ≜ M N, 0P denotes the P-dimensional (column) null vector and M repre-
sents the selected oversampling factor adopted in time-domain processing. Then, the vec-
tor x(v)ZP (2.49) feeds a N0-th order discrete Fourier transform (DFT); this produces the N0-
dimensional vector

X(v) ≜
[

X(v)
0 , X(v)

1 , ..., X(v)
N0−1

]T
, (2.50)

where
X(v)

l =
1

N0
X̄(v)( f̄l) (2.51)

X̄(v)( f ) is defined by eq. (2.46) and

f̄l ≜
l

N0Ts
, (2.52)

with l = 0, 1, ..., N0 − 1. Finally, the N0-dimensional vector

P ≜ [P0, P1, ..., PN0−1]
T , (2.53)

where

Pl ≜
M2

2

[∣∣∣X(0)
l

∣∣∣2 + ∣∣∣X(1)
l

∣∣∣2] , (2.54)

with l = 0, 1, ..., N0 − 1, is computed; note that the quantity Pl (2.54) represents a sort of
average power spectrum evaluated at the frequency f̄l (2.52).

2. Target detection - The problem

l̂ = arg max
l̃∈{0,1,...,N0/2}

Pl (2.55)

is solved and a target is detected if the condition

Pl̂ > Pth (2.56)

is satisfied, where Pth is a proper threshold. When this occurs, the next step is executed;
otherwise, the algorithm stops.

3. Estimation of target coordinates - The estimate

f̂m =
l̂

N0Ts
(2.57)

of the frequency fm (2.47) and the estimate

Ĉ(v) = M X(v)
l̂

(2.58)

of the complex amplitude C(v) (2.37) (with v = 0 and 1) are computed. Then, the esti-
mate (see eq. (2.47))

R̂ = f̂m
c

2µ
(2.59)

of the target range R and the estimate (see eq. (2.42))

θ̂ = arcsin
(

λ

4πd
∆ψ̂0,1

)
(2.60)



22 Chapter 2. Automotive radars: an overview

of the target azimuth θ are evaluated; here,

∆ψ̂0,1 = ∠X(1)
l̂

(
X(0)

l̂

)∗
. (2.61)

represents an estimate of ∆ψ0,1 (2.42) and its expression is based on eqs. (2.45), (2.51)
and (2.58).
This concludes the description of the proposed detection and estimation algorithm. It is
important to point out that:

a) The accuracy achievable in range estimation is influenced by the DFT order N0
and, consequently, for a given N, by the oversampling factor M. Increasing the value
of the parameter M leads to a more refined analysis of the spectrum X̄(v) ( f ) (2.46) and,
consequently, allows to locate the spectral peak originating from the target with higher
accuracy; however, this result is achieved at the price of an higher computational cost.

b) The estimate ϕ̂ (2.60) is unambiguous if the condition (2.44) is satisfied or if, for a
given d > λ/4, the azimuth θ belongs to the interval [−θm, θm), where (see eq. (2.43))

θm ≜ arcsin
(

λ

4 d

)
(2.62)

c) Eq. (2.41) has not been exploited to compute an estimate of the target azimuth.
This is due to the fact that the quality of this estimate is limited by the accuracy of
frequency estimation on each antenna; such an accuracy, in turn, is intrinsically limited
by the DFT order N0.

d) Assuming that the target reflectivity observed on the two antennas is approxi-
mately the same (i.e., if a(0) = a(1) = a as assumed in eq. (2.14)-(2.26)), an estimate of it
can be computed as (see eqs. (2.37) and (2.58))

â ≜ M
[∣∣∣X(0)

l̂

∣∣∣+ ∣∣∣X(1)
l̂

∣∣∣] . (2.63)

e) The estimation of the azimuth characterizing the echo from a specific target re-
quires at least two RX antennas, since it is based on computation of the phase variation
observed at a specific frequency on at least two receive antennas (see eqs. (2.60) and
(2.61)).

f) The maximum number of detectable targets depends on the number of virtual
elements of the whole array. It is worth noting that, unlike a phased array system, where
a single waveform is transmitted, a MIMO radar system endowed with NT different
TX antennas can radiate NT independent signals. This leads to the conclusion that the
maximum number of targets that be can uniquely identified by a MIMO radar is NT
times larger than that of its counterpart employing a phased array [9], if the first system
employs an ULA whose virtual elements do not overlap (like the ULAs shown in Fig.
2.8).

The estimation accuracy achieved by the considered radar system can be improved
by increasing the size of its ULA, i.e. the overall number of its antennas, so that a larger
number of virtual channels becomes available. For instance, if the ULA shown in Fig.
2.8-a) is replaced by the one represented in Fig. 2.8-b) (and characterized by NT = 1 and
NR = 4), NV = 4 virtual channels become available, i.e. the overall number of virtual
antennas is doubled with respect to the previous case. Note that this results not only in
an increase of the maximum number of detectable targets, but also in an improvement
of the angular resolution ∆θ, defined as the minimum angular separation below which
the DOAs of two distinct targets cannot be separated. More specifically, if an ULA is
used and the bore-sight direction is considered, we have that (e.g., see [61, Par. 4, eq.
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(51)])

∆θ =
λ

2 d (NV − 1) cos(θ)
. (2.64)

It is also worth mentioning that the algorithm illustrated above for a pair of virtual
channels can be promptly extended to the case of an ULA providing NV virtual chan-
nels. The only relevant modification concerns step 3., since the NV-dimensional vector

Ĉ =
[
Ĉ(0), Ĉ(1), ..., Ĉ(NV−1)

]T
, (2.65)

where Ĉ(v) is still expressed by eq. (2.58) for any v, becomes available and, consequently,
(NV − 1) phase variations, referring to the (NV − 1) distinct pairs of adjacent virtual
antennas can be evaluated. If we assume that the variations of the target reflectivity
over the whole virtual array are negligible and that the SNR on each virtual antenna
is high, such variations are approximately constant, being all expressed by the RHS of
eq. (2.42). This means that a phase modulation, characterized by the normalised spatial
frequency

F = 2
d
λ

sin (θ) , (2.66)

is observed in the sequence {Ĉ(v); v = 0, 1, ..., NV − 1}. An estimate of the parameter
F can be computed by exploiting, once again, the periodogram method. In practice, this
requires executing the following three steps:

1. DFT processing - The vector Ĉ is zero padded by appending to it a null vector of
size (MA− 1)NV , where MA represents the oversampling factor adopted in spatial process-
ing; this produces the N̄0-dimensional vector ĈZP, where N̄0 ≜ MANV . The vector ĈZP
feeds a N̄0-th order DFT, generating the N̄0-dimensional vector

s ≜
[
s0, s1, ..., sN̄0/2, s−N̄0/2+1, s−N̄0/2+2, ..., s−2, s−1

]T . (2.67)

2. Azimuth estimation - After solving the problem

p̂ = arg max
p̃∈{−N̄0/2+1,−N̄0/2+2,...,N̄0/2}

∣∣s p̃
∣∣ , (2.68)

the estimate (see eq. (2.60))

θ̂ = arcsin
(

2
p̂

N̄0

)
(2.69)

of the target azimuth θ is evaluated. Note that the angular resolution provided by the
DFT computed in step 1. improves as N̄0 increases. The deterministic algorithm and its
extension illustrated above have the following relevant properties: a) their derivation
is based on a well defined mathematical model; b) if they fail detecting a given target,
or generate inaccurate estimates of its range and/or azimuth, the causes of such events
can be identified; c) they are computational efficient. This algorithm can be extended
also for the elevation and velocity estimation, supposing that a rectangular array is em-
ployed and the targets are moving. The following chapters will propose different types
of deterministic and learning-based algorithms for the detection of multiple targets and
the estimation of their parameters using colocated MIMO radars.
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2.6 Current trends in the automotive radar technology

A car implementing at least a level three of autonomy (see Fig. 2.9) needs to be equipped
with two different types of colocated and pseudo-bistatic radars: a short range, imag-
ing, radar and a long range radar. The former, being equipped by a multitude antennas
(few hundreds) on both transmit and receive side, is characterized by a wide antenna
aperture and, consequently, a very high angular resolution, while the latter is character-
ized by a lower angular resolution, but a much higher transmitting power. In particular,
short range radars are typically equipped with an URA and may detect an obstacle or
a person in the three-dimensional space, estimating the range, azimuth and the eleva-
tion of the detected targets. A long range radar, on the other hand, is typically made
by an ULA with a small number (few decades) of antennas. Also the waveforms of the
signal transmitted by the two radars is different: the short range system is typically a
stepped frequency continuous wave radar, while the long range radar typically send an
FMCW signal. Both the radars topology, however, operate at very high frequency, typi-
cally in the mm-wave band, having a working frequency higher than 24 GHz; the high
operating frequency allows these systems to transmit large bandwidth signals, typically
higher than 2 GHz. Increasing the signal bandwidth means having a very high range
resolution. Short range radar are especially suited for sensing the surrounding environ-
ment in close proximity to the vehicle and, as already stated above, they are typically
installed for park-assist and blind spot detection, while long range radar, having a much
higher radiated power, are useful for sensing the environment at hundred of meters in
front or rear the vehicle. Nowadays, it is possible to cascade multiple long range radar
front-end in order to improve the horizontal or vertical angular resolution of long range,
radars. Another possible solution for increasing the angular resolution of these devices
is to use cognitive, long range radar that are able to steer the beam transmitted by the
device in precise directions of interest, where the obstacle is eventually expected.

FIGURE 2.9: Generic representation of an autonomous car endowed with multiple radar sensors
and able to see in its surrounding [62].
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3 | Deterministic Detection
and Estimation techniques

3.1 Introduction

In this chapter, different deterministic detection and estimation algorithms for colocated
MIMO SFCW radars operating in TDM mode and radiating ultra-wideband signals
are proposed. From a signal processing perspective, the detection and estimation al-
gorithms developed for these radars are mainly based on the use of: a) DFT methods
for estimating range and DOA ([63] and paragraph 2.5), or range and Doppler only (see
[64], [65]); b) standard beamforming methods [66]. All these methods, being determin-
istic, offer the important advantage of a complexity substantially smaller than that of
well known statistical methods like the MUSIC [32], [67] and ESPRIT techniques [33].

My work basically consisted in implementing the deterministic methods described
above for a colocated MIMO radar and in comparing their performance; in particu-
lar in this chapter, a comparison between the standard beamformer and other iterative
deterministic algorithms is proposed, together with an analysis of their accuracy and com-
plexity for 2D and 3D imaging. More specifically, the following iterative algorithms are
taken into consideration:

a) the so called CLEAN technique [68], [69];

b) the estimation algorithm proposed by M. Wax and A. Leshem in [70] (dubbed
WLA in the following and closely related to the algorithm devised in [71]);

c) a modified version of the WLA (dubbed MWLA);

d) two estimation algorithms based on the combination of the CLEAN and the MWLA
with expectation-maximization (EM) technique [72].

Moreover, the CLEAN and MWLA techniques are also extended for 3D images, i.e., to
the estimation of range, azimuth and elevation of a target detected in a 3D scenario.
These algorithms may play an important role in a number of applications for various
reasons; in fact, they process a single snapshot, in principle do not assume a prior
knowledge of the number of targets and, unlike the maximum likelihood (MLI) approach,
involve one-dimensional or 2D maximizations only. Moreover, the numerical results,
based on the experimental data acquired from a low-power radar device, show that
they are able to achieve a good accuracy at a reasonable computational cost. It is also
important to point out that:

1) the application of the standard beamformer and of the CLEAN technique to SFCW
radars has not been investigated previously;
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2) the WLA has been originally proposed for range and DOA estimation in a nar-
rowband system and its adaptation to a wideband radar system is analyzed for
the first time;

3) the MWLA and the estimation algorithms based on combining the CLEAN algo-
rithm (or the MWLA) with the EM technique are new.

The remaining part of this chapter is organized as follows. The signal models for 2D and
3D imaging associated with the considered radar array and for the measurements ac-
quired through a MIMO SFCW radar are illustrated in Section 3.2. The above mentioned
estimation methods for 2D (3D) imaging, together with a detailed study about the com-
putational complexity are described in Section 3.3 (3.4); various numerical results about
the accuracy they achieved are discussed in Section 3.5. Finally, some conclusions are
offered in Section 3.6.

3.2 Considered signal model

The deterministic methods described in this chapter have been applied to data collected
through a colocated MIMO SFCW radar; this device is endowed with: a) a virtual uni-
form linear array for the 2D detection and estimation of L targets; b) a virtual uniform
rectangular array for the 3D detection and estimation of L targets. Moreover, a static or
quasi-static scenario is considered, so that the influence of the speed on the received
radar signal can be neglected; as described in Par. 2.4.2, it is assumed that this device is
able to provide an estimate of the frequency response of the communication channel be-
tween each transmit-receive antenna pair by sounding it at N equally spaced frequencies,
where the n-th frequency can be expressed as fn = f0 + n∆ f (see eq. (2.24)). Consid-
ering the general problem of 3D imaging, in which the considered radar is equipped
with an URA, the channel estimates between the t-th TX antenna and all the associated
receive antennas at the n-th frequency are collected in NR[t]-dimensional vector

H̃ t [n] ≜
[

H̃t,r1 [n] , H̃t,r2 [n] , ..., H̃t,rNR [t] [n]
]T

(3.1)

=
L−1

∑
l=0

hl at(θl , ϕl , fn) b(τl , fn) + nt[n], (3.2)

where nt [n] is a NR[t]-dimensional additive Gaussian noise vector and hl , θl and ϕl
denote the complex amplitude (accounting for both attenuation and phase shift), the
azimuth and the elevation, respectively, of the l-th target (with l = 0, 1, ..., L− 1). Here,

at(θl , ϕl , fn) ≜ [at,r1(θl , ϕl , fn), at,r2(θl , ϕl , fn), ..., at,rNR [t](θl , ϕl , fn)]
T (3.3)

denotes the NR[t]-dimensional steering vector associated with the considered TX an-
tenna. The r-th element of the last vector can be expressed as

at,r (θl , ϕl , fn) ≜ exp (−j2π fn∆τt,r) (3.4)

with r = 0, 1, ..., NR − 1; here,

∆τt,r ≜
2
c
[xt,r sin(θl) cos(ϕl) + yt,r sin(ϕl)] , (3.5)

c is the speed of light, θl (ϕl) is the azimuth (elevation) of the l-th target, xt,r and yt,r
represent the coordinates of the virtual antenna associated with the t-th TX antenna and



3.3. Bi-dimensional deterministic estimation methods 27

the r-th RX antenna (also indicated as xv and yv in paragraph 2.3.1 in eq. (2.1) and eq.
(2.2)), and

b (τl , fn) ≜ exp (−j2π fnτl) (3.6)

is a function depending on the delay τl = 2Rl/c associated with the range Rl of the l-th
target (i.e., with its distance from the center of the URA). It is important to note that the
(t, r)-th element H̃t,r[n] in eq. (3.2) can be seen as another possible representation of x(v)c,n
in eq. (2.25); in fact, for the v-th virtual channel of the array associated to the t-th (r-th)
transmit (receive) antenna (the index pair (t, r) can be replaced with v),

av (θl , ϕl , fn) b(τl , fn) ≜ exp
[
−j2π fn

(
τl + ∆τ(v)

)]
(3.7)

= exp
[
−j
(

2π ( f0 + n∆ f ) τ
(v)
l

)]
= exp

[
−j
(

2πnF(v)
l + ψ

(v)
l

)]

and hl = al exp(−jψ0); assuming that the term ψ0 is incorporated in the phase term ψ
(v)
l

(see eq. (2.12)), the following equivalent equation can be derived

H̃(v) [n] = x(v)c,n ≜
L−1

∑
l=0

A(v)
l exp

(
−j2πnF(v)

l

)
+ nv[n], (3.8)

where nv[n] corresponds to w(v)
c,n of eq. (2.25) and A(v)

l (F(v)
l ) is still defined by eq. (2.26)

(eq. (2.27)). Starting from the general expression of eq. (3.2), it is possible to derive an
equivalent model to be employed in the case of a MIMO SFCW radar equipped with a
single ULA, i.e.

H̃t [n] ≜
L−1

∑
l=0

hl at (θl , fn) b(τl , fn) + nt [n] , (3.9)

where b(τl , fn) is given by eq. (3.6) and at (θl , fn) is the steering vector associated with
the considered TX antenna. Its r-th element can be expressed as

at,r (θl , fn) ≜ exp (−j2π fn∆τt,r) (3.10)

with r = 0, 1, ..., NR − 1 and

∆τt,r ≜
2
c
[xt,r sin(θl)] . (3.11)

This last expression and consequently (3.10) differs from (3.5) and (3.4), respectively,
because the dependence on the elevation angle is no more considered. It is worth noting
that the 2D model expressed by eq. (3.9) is used in paragraph 3.3 for developing the 2D
imaging algorithms, while the model (3.2) is used in paragraph 3.4 for 3D imaging.

3.3 Bi-dimensional deterministic estimation methods

In this paragraph, various mathematical details about range and azimuth estimation
algorithms for 2D imaging are provided; then, their computational complexity is anal-
ysed in detail (see subsection 3.3.5). In the following, these assumptions are made, for
simplicity: a) a single transmit antenna (in particular, the t-th TX antenna) and multiple
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(namely, NR[t]) receive antennas are exploited for range and DOA estimation and b) the
radar received signal is expressed by (3.9).

3.3.1 Standard beamformer

The standard beamforming algorithm employed in this work is based on the cost func-
tion (e.g., see [69] and [59])

Jt
(
θ̃, τ̃
) ∆
=
∣∣St
(
θ̃, τ̃
)∣∣2 , (3.12)

where

St
(
θ̃, τ̃
) ∆
=

N−1

∑
n=0

NR[t]

∑
k=1

H̃t,rk [n] a∗t,rk
(θ̃, fn)b∗(τ̃, fn). (3.13)

H̃t,rk [n], at,rk(θ̃, fn) and b(τ̃, fn) are defined by eq. (3.9), (3.10) and (3.6), respectively. It is
well known that the cost function Jt(θ̃, τ̃) (3.12) describes the power density distribution
of the received signal versus the azimuth θ̃ and the delay τ̃. For this reason, estimates of
the target parameters {(θl , τl)} (and also, approximately, of the gains {hl}) can be com-
puted by identifying the positions of its local maxima; note also that, if a local maximum
is found at (θ̃, τ̃) = (θ̂, τ̂), the estimate

ĥ =
St
(
θ̂, τ̂
)

N · NR[t]
(3.14)

of the complex gain h associated with the corresponding target can be promptly eval-
uated. The most computationally demanding task in the implementation of this algo-
rithm is represented by the identification of the peaks of the function Jt(θ̃, τ̃) (3.12); in
practice, this requires accomplishing a search over a sufficiently fine rectangular grid in
a 2D space. The resolution of this method in both range and azimuth is limited by the
fact that the contributions of weak echoes might not be visible in the presence of strong
echoes due to spatially close targets; in fact, the local maxima originating from the for-
mer echoes might be hidden by the sidelobes associated with the latter ones. These
considerations motivate the use of the estimation algorithms described in the following
two subsections.

3.3.2 The CLEAN algorithm

In this subsection, the so called CLEAN algorithm, originally proposed by J. A. Hogbom
for radio astronomy applications [68], is adapted to the measurement model (3.9) and
the cost function Jt(θ̃, τ̃) (3.12). The resulting algorithm exploits the same cost function
as standard beamforming but, unlike it, employs an iterative beam-removing process. This
means that, within each iteration of this algorithm, the parameters of a new target are
estimated and the contribution of this target (together with those due to the targets
identified in the previous iterations) are subtracted from the function St(θ̃, τ̃) (3.13).
Then, this resulting residual function is passed to the next iteration, where it is processed
to identify a new target. The processing tasks executed by the CLEAN algorithm can be
divided in six steps; a detailed description of each of them is provided below.

1) Initialization - Set the iteration index l to 0 and define (see eq. (3.9))

H̃(0)
t [n] ∆

=
[

H̃(0)
t,r1

[n] , H̃(0)
t,r2

[n] , ..., H̃(0)
t,rNR [t]

[n]
]T

= H̃t[n]. (3.15)

for n = 0, 1, ..., N − 1.
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2) Computation of the cost function over a rectangular grid - Compute the cost function
(see eq. (3.12))

J(l)t
(
θ̃, τ̃
) ∆
=
∣∣∣S̃(l)

t
(
θ̃, τ̃
)∣∣∣2 , (3.16)

for θ̃ = θk
∆
= θ0 + k ∆θ (with k = 0, 1, ..., Nθ − 1) and τ̃ = τp

∆
= τ0 + p ∆τ (with p = 0, 1,

..., Nτ − 1); here, the function S̃(l)
t (θ̃, τ̃) is defined as (see eq. (3.13))

S̃(l)
t
(
θ̃, τ̃
) ∆
=

N−1

∑
n=0

NR[t]

∑
k=1

H̃(l)
t,rk

[n] a∗t,rk
(θ̃, fn) b∗(τ̃, fn), (3.17)

and θ0 (τ0), ∆θ (∆τ) and Nθ (Nτ) represent the lower limit of the search interval consid-
ered for azimuth (delay), the step size and the overall number of values selected for θ̃
(τ̃). In this work, τ0 = 2Rm/c, τNτ−1 = 2RM/c and ∆τ = 2∆R/c have been selected,
where Rm , RM and ∆R represent the minimum value, the maximum value and the step
size, respectively, for the trial value of target range.

3) Estimation of the parameters of a new target - Perform an exhaustive search for the
global maximum over the set {J(l)t (θ̃k, τ̃p)} (consisting of Nθ ·Nτ values); the coordinates
of the point associated with the global maximum are denoted by (θ̂l , τ̂l). Then, compute
the estimate (see eq. (3.14))

ĥl =
S(l)

t (θ̂l , τ̂l)

N · NR[t]
(3.18)

of hl and store the estimates (ĥl , θ̂l , τ̂l).
4) Threshold test for identifying false targets - If

|ĥl | < T, (3.19)

where T denotes a proper (positive) threshold, go to step 6); otherwise, proceed with
the next step.

5) Cancellation of the last identified target - Cancel the contribution of the last target in
the measured frequency response by computing the residual frequency response

H̃(l+1)
t [n] ≜ H̃(l)

t [n]− ĥl at(θ̂l , fn) b (τ̂l , fn) , (3.20)

for n = 0, 1, ..., N − 1. Then, increase the iteration index l by one and go to step 2);
6) End - The final output provided by the algorithm is expressed by the set of values

{(θ̂l , τ̂l , ĥl); l = 0, 1, ..., L̄− 1}, where L̄, the estimate of L, is given by the last value taken
on by the index l.

It is important to point out that, before executing the CLEAN algorithm, a proper
value for the threshold T appearing in eq. (3.19) must be selected. In fact, on the one
hand, relevant echoes might be missed if T is too large; on the other hand, false targets
might be identified if T is too small. This problem can be circumvented by estimat-
ing L before running the CLEAN algorithm (so that step 4) is no more accomplished).
In principle, this result can be achieved by exploiting the minimum description length
(MDL) method [73] or the Akaike Information Criterion (AIC) [74]; in practice, however,
this entails a significant computational cost. Finally, it is worth mentioning that the can-
cellation procedure expressed by eq. (3.20) may suffer from error accumulation; this
is due to the fact that the effects of estimation errors accumulate over successive itera-
tions. This may result in poor accuracy; in particular, in the presence of multiple and/or
closely spaced targets this could even result in the identification of false targets. The
scheme of the proposed CLEAN algorithm is described in Algorithm 1.
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Algorithm 1: Two dimensional CLEAN algorithm

Input: Measured channel response: H̃ t

Output: Targets position:
{(

ĥl , θ̂l , τ̂l

)}
, for l = 0, 1, ..., L̄− 1.

1 Initialisation: Set l ← 0 and H̃(0)
t = H̃ t;

2 while (|ĥl | > T ∨ l = 0) do
a- Standard Periodogram:

• Computation of S̃(l)
t
[
θ̃, τ̃
]

through eq. (3.16);

• Cost fuction: J(l)t
(
θ̃, τ̃
)

through eq. (3.17);

b- Estimation of the parameters of a new target:

• Estimation of:(θ̂l , τ̂l) = arg maxθ̃∈Sθ ,τ̃∈Sτ
J(l)t
(
θ̃, τ̃
)
,

where Sθ ∈ [θ0 ; θ0 + Nθ∆θ] and Sτ ∈ [τ0 ; τ0 + Nτ∆τ];

• Estimation of: ĥl =
S(l)

t (θ̂l ,τ̂l)
N·NR[t]

(see eq.(3.18))

c- Cancellation of the strongest echo:
for r ← 1 to NR[t] do

H̃(l+1)
t,r ← H̃(l)

t,r − ĥl at,r
(
θ̂l , fn

)
b (τ̂l , fn)

end
l = l + 1

end

return
{(

ĥl , θ̂l , τ̂l

)}
for l = 0, 1, ..., L̄− 1;

3.3.3 The Wax and Leshem estimation method

In this subsection, a specific instance of the estimation algorithm proposed by M. Wax
and A. Leshem in ref. [70] (this algorithm is dubbed WLA in the following) is described;
then, it will be also shown how this method can be modified to solve the numerical
problems experienced in its use.

The WLA is an iterative method devised to solve the problem of jointly estimating
the DOA and the time delays of multiple reflections occurring in a 2D multi-target sce-
nario, in which a known narrowband signal is transmitted; its main feature is represented
by the fact that it requires solving one-dimensional optimizations only. Despite the dif-
ferences between the scenario described in [70, Sect. II] and the one considered in my
work (in which a wideband signal is radiated), this algorithm can be modified to solve
the estimation problem since: 1) it operates in the frequency domain (in fact, it pro-
cesses the output of a DFT fed by the time domain samples of the received signal); b)
the structure of the received signal vector in the frequency domain is similar to the one
adopted for H̃t [n] (3.2) (the structures become equivalent if s(ωk) = 1 in eq. (9) of [70,
Sect. III]). A detailed derivation of the formulas employed by the WLA can be found
in [70, Sect. IV]; in the following, I limit to summarise the steps it consists of and to
illustrate the employed formulas. Similarly as the CLEAN algorithm, the WLA, in each
of its iterations, estimates the parameters of a new target; however, unlike the CLEAN
algorithm, the WLA updates the estimates of the parameters related with the previously
identified targets. Let us assume now that, at beginning of the l-th iteration of the WLA
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(with l = 0, 1, ...L̄− 1, where L̄ is an estimate of the number of targets L), the estimates
{(ĥ(l−1)

k , θ̂
(l−1)
k , τ̂

(l−1)
k ), k = 0, 1, ..., l− 1} of the l triplets {(hk, θk, τk), k = 0, 1, ..., l− 1} are

available. Then, the processing accomplished within this iteration evolves through the
four steps described below.

1. Coarse estimation of a new DOA - In this step, a coarse estimate θ̌
(l)
l of the azimuth

θl referring to the new (i.e., to the l-th) target is computed on the basis of the alternating
projection method illustrated in [71]. This requires:
a) computing the NR[t]× NR[t] covariance matrix

R(l)
xx ≜

1
N

N−1

∑
n=0

H̃(l)
t [n]

(
H̃(l)

t [n]
)H

(3.21)

of the residual channel response

H̃(l)
t [n] ≜ H̃t[n]−

l−1

∑
k=0

ĥ(l−1)
k b

(
τ̂
(l−1)
k , fn

)
at(θ̂

(l−1)
k , fn); (3.22)

b) defining the orthogonal projection matrix

P
(

θ̃
(l)
)
≜ At

(
θ̃
(l)
)

Dt

(
θ̃
(l)
)−1

At

(
θ̃
(l)
)H

, (3.23)

where
At

(
θ(l)
)
≜ [at (θ0, fr) , at (θ1, fr) , ..., at(θl , fr)] , (3.24)

is a NR[t] × (l + 1) matrix, Dt(θ
(l)) ≜ AH

t (θ̃
(l)
)At(θ̃

(l)
), θ(l) ≜ [θ0, θ1, ..., θl ], θ̃

(l)
≜

[θ̂
(l−1)
0 , θ̂

(l−1)
1 , ..., θ̂

(l−1)
l−1 , θ̃] and fr is a proper reference frequency (in this work, fr is always

equal to the central frequency fc of the wideband radiated signal). In fact, given the

matrices R(l)
xx (3.21) and P(θ̃(l)) (3.23), the estimate θ̌

(l)
l is computed as

θ̌
(l)
l = arg max

θ̃∈Sθ̃

tr
(

P
(

θ̃
(l)
)

R(l)
xx

)
, (3.25)

where Sθ̃ = [θ0, θNθ−1] is the search interval considered for the azimuth of the new
target, θ0 and θNθ−1 represent its lower and upper limits, respectively, and tr(X) denotes
the trace of the square matrix X.

2. Estimation of target delays - In this step, an estimate τ̂
(l)
k of the delay τk (with

k = 0, 1, ..., l) is evaluated by solving (l + 1) 1D optimization problems. This requires
computing first the (l + 1)-dimensional column vector

û(l)
t,k [n] ≜ Dt

(
θ̌
(l)
k

)−1
At

(
θ̌
(l)
k

)H
H̃(l)

t [n], (3.26)

with n = 0, 1, ..., N − 1; here, θ̌
(l)
k ≜ [θ̂

(l−1)
0 , θ̂

(l−1)
1 , ..., θ̂

(l−1)
l−1 , θ̌

(l)
l ]. Then, the N × (l + 1)

matrix v̂(l)
t,k is generated by stacking the N row vectors {(û(l)

t,k [n])
T, n = 0, 1, ..., N − 1}

according to their natural order (the order on which they are generated). Finally, τ̂
(l)
k is

computed as

τ̂
(l)
k = arg max

τ̃∈Sτ̃

∥∥∥bH (τ̃, fn) v̂(l)
t,k

∥∥∥2
(3.27)
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for k = 0, 1, ..., l, where Sτ̃ ≜ [2Rm/c, 2RM/c], and ∥X∥ denotes the Euclidean norm of
the complex vector X.

3. Fine grained estimation of target DOA - In this step, a fine estimate θ̂
(l)
k of θk (with k =

0, 1, ..., l) is evaluated by solving (l + 1) 1D optimization problems. More specifically, θ̂
(l)
k

is computed as

θ̂
(l)
k = arg max

θ̃∈Sθ̃

∥AH
t (θ̆

(l)
k ) B̂(l)

t,k∥
2, (3.28)

where θ̆
(l)
k ≜ [θ̂

(l)
0 , ..., θ̂

(l)
k−1, θ̃, θ̂

(l−1)
k+1 ..., θ̂

(l−1)
l ], B̂(l)

t,k denotes the k-th column of the NR[t]×
(l + 1) matrix

B̂(l)
t =

[
N−1

∑
n=0

H̃t[n] rH
(

n, τ̂(l)
)] (

Ĉ(l)
)−1

, (3.29)

r
(

n, τ̂(l)
)
≜
[
b
(

τ̂
(l)
0 , fn

)
, b
(

τ̂
(l)
1 , fn

)
, · · · , b

(
τ̂
(l)
l , fn

)]T
(3.30)

is an (l + 1)-dimensional column vector, τ̂(l) ≜ [τ̂
(l)
0 , τ̂

(l)
1 , · · · , τ̂

(l)
l ] is an (l + 1)-dimensional

row vector and

Ĉ(l) ≜
N−1

∑
n=0

r
(

n, τ̂(l)
)

rH
(

n, τ̂(l)
)

(3.31)

is a (l + 1)× (l + 1) matrix.
4. Estimation of target gains - In this step, the estimate

ĥ(l)k =
∥∥∥At

(
θ̂
(l)
k

)∥∥∥−2
AH

t

(
θ̂
(l)
k

)
B̂(l)

t,k (3.32)

of the complex gain hk is computed for k = 0, 1, ..., l; here, θ̂
(l)
k ≜ [θ̂

(l)
0 , θ̂

(l)
1 , ..., θ̂

(l)
l ] and

||At(θ̂
(l)
k )||2 = N · NR[t] (||At(θ̂

(l)
k )||2 = NR[t] if a single frequency is considered). This

concludes the l-th iteration.
The WLA is initialized as follows. A coarse estimate θ̌

(0)
0 of the first DOA (i.e., of the

DOA referring to the dominant target) is computed by means of eq. (3.25), where the
covariance matrix R(0)

xx refers to the vector H̃(0)
t [n] = H̃t[n] for any n (see eq. (3.9)) and

At(θ̃0) ≜ at(θ̃0, fr) is employed in the evaluation of the projection matrix P(θ̃(0)) (3.23).
Then, the initial estimates ĥ(0)0 and τ̂

(0)
0 of the gain h0 and the delay τ0, respectively, are

computed on the basis of the procedure illustrated in the second and fourth steps, re-
spectively.

This algorithm deserves various comments. First of all, it is worth mentioning that
steps 2. and 3. can be repeated multiple times within the l-th iteration of the WLA
(before executing step 4.) in order to progressively refine the estimates of both the de-
lays and the DOA; however, this results in an increase of the overall computational cost.
Second, a method for limiting the number of iterations accomplished by the WLA is re-
quired. In this case, similarly as the CLEAN algorithm, the MDL or the AIC techniques
can be employed to estimate L before executing the WLA. However, a simpler alternative
to this approach, based on the evaluation of the energy

E(l)
H̃ =

N−1

∑
n=0

∥∥∥H̃(l)
t [n]

∥∥∥2
(3.33)

of the residual channel response H̃(l)
t [n] (3.22) at the beginning of the l-th iteration (with
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l ≥ 1), can be employed for estimating L within the WLA. In fact, the new approach
consists in stopping the WLA if

E(l−1)
H̃ − E(l)

H̃ < ε H̃, (3.34)

where ε H̃ is a small positive quantity; this means that the new cancellation (see eq.
(3.22)), based on the parameters of the target identified in the last (i.e., in the (l − 1)-th
iteration), has not resulted in a significant reduction of the residual energy.

Even if the WLA illustrated above is based on a rigorous derivation, the simulations
have evidenced that, in the proposed application, it cannot be employed as it is, since it
suffers from severe ill-conditioning in the presence of multiple and highly correlated im-

pinging signals. In fact, when this occurs, some columns of the matrix At(θ̌
(l)
) (3.24) are

similar and this makes the computation of the projection matrix P(θ̃(l)), of the vectors
{û(l)

t,k} and, consequently, of the estimates {τ̂(l)} (see eqs. (3.23), (3.26) and (3.27), respec-
tively) inaccurate; this results in a poor accuracy in DOA estimation. To circumvent this
problem, the WLA has been modified in way that, when estimating the parameters of
a new target, the presence of all the previously identified targets is accounted for in the
evaluation of the residual H̃(l)

t [n] only (see eq. (3.22)). This means that, in the l-th itera-
tion, the availability of the estimates (ĥl , θ̂l , τ̂l) computed for l-th target is not exploited
to refine the estimates associated with the other detected targets. For this reason, the
following changes are introduced in the WLA:

a) In step 1., the residual H̃(l)
t [n] is computed on the basis of the recursive formula

H̃(l)
t [n] ≜ H̃(l−1)

t [n]− ĥl−1 b (τ̂l−1, fn) at(θ̂l−1, fr), (3.35)

(which is employed in place of eq. (3.22)) and the matrix At(θ̃
(l)
) (3.24) is replaced by

the vector at(θ̃, fc) (with θ̃ ∈ Sθ̃) when computing the projection matrix P(θ̃) (see eq.
(3.23)); consequently, the optimization problem (3.25) can be reformulated as (see [71,
Sect. IV] for a proof)

θ̌l = arg max
θ̃∈Sθ

aH
t,n(θ̃, fr)R(l)

xx at,n(θ̃, fr), (3.36)

where at,n(θ̃, fr) ≜ ||at(θ̃, fr)||−1at(θ̃, fr) and θ̌l corresponds to θ̌
(l)
k .

b) In step 2., the matrix At(θ̌
(l)
k ) is replaced by the vector at(θ̌l , fc) in computing the

vector û(l)
t,n on the basis of eq. (3.26).

c) In step 3., the vector r(n, τ̂(l)) (3.30) is replaced by the scalar b(τ̂(l)
l , fn) in the

evaluation of the matrix Ĉ(l)(3.31) (that turns into a scalar too) and of the matrix B̂(l)
t,k

(3.29).
The estimation algorithm resulting from all these modifications is called modified

WLA (MWLA) in the following. It is worth mentioning that:
1. The frequency domain cancellation formula (3.22) employed in the MWLA is simi-

lar to that adopted in the CLEAN algorithm (see eq. (3.20)). For this reason, the accuracy
of the MWLA is also affected by the phenomenon of error accumulation described at the
end of subsection 3.3.2.

2. In the l-th iteration of the MWLA, the parameters estimated for the l-th target can
be progressively refined by repeating steps 2. and 3. multiple times. However, in this
case, the modified versions of eqs. (3.27) and (3.28) are employed for k = l only.

3. The MWLA is faster than the CLEAN algorithm; this is mainly due to the fact
that the former algorithm, unlike the latter one, requires solving only 1D optimizations
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and does not always exploit the information available at the N frequencies (for instance,

the projection matrix P(θ̃(l)) (3.23) is computed at the reference frequency only). More-
over, computer simulations have evidenced that MWLA is numerically stable and much
faster than WLA and that, despite the substantial simplifications adopted in its deriva-
tion, achieves a good accuracy. The scheme of the proposed MWLA is described in
Algorithm 2.

Algorithm 2: Delays, DOA Estimation: modified WAX-LESHEM algorithm

Input: Measured channel response: H̃ t

Output: Targets position:
{(

ĥl , θ̂l , τ̂l

)}
, for l = 0, 1, ..., L̄− 1.

1 Initialization:
l ← 0;
a- Coarse Estimation of θ̌0 based on eq. (3.36), where R(0)

xx matrix is based on
(3.21) and H̃(0)

t,r ← H̃ t,r;

Computation of the energy E(0)
H̃ (3.33);

2 for p← 1 to 2 do
b- Target delay estimation τ̂0 based on (3.27) and (3.26);
c- Fine estimation of target DOA θ̂0 (3.28);

end
d- Estimation of target gain ĥ0 (3.32);
e- Cancellation of the strongest echo:

3 for r ← 1 to NR[t] do
H̃(1)

t [n] ≜ H̃(0)
t [n]− ĥ0 at(θ̂0, fn) b (τ̂0, fn) .

end

f- Computation of the energy E(1)
H̃ (3.33);

l ← 1;
4 while E(l−1)

H̃ − E(l)
H̃ > ε H̃ do

a- Coarse Estimation of θ̌l based on (3.36), where R(l)
xx matrix is baseed on

(3.21);
5 for p← 1 to 2 do

b- Target delay estimation of û(l)
t,n and v̂(l)

t based on (3.26) and (3.27);
c- Fine estimation of target DOA θ̂l based on (3.28);

end
d- Estimation of target gain ĥl based on (3.32);
e- Cancellation of the strongest echo:

6 for r ← 1 to NR[t] do
H̃(l+1)

t [n] ≜ H̃(l)
t [n]− ĥl at(θ̂l , fn) b (τ̂l , fn) .

end

f- Computation of the energy E(l+1)
H̃ (3.33);

l ← l + 1;
end

return
{(

ĥl , θ̂l , τ̂l

)}
, for l = 0, 1, ..., L̄− 1.
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3.3.4 EM-based algorithm for refining the target parameters

As illustrated in the previous two subsections, the estimates {(θ̂k, τ̂k, ĥk); k = 0, 1, ..., l},
referring to l + 1 distinct targets, are available at the end of the l-th iteration of both the
CLEAN algorithm and MWLA. However, unlike WLA, no attempt is made in these two
algoritms to refine the estimates {(θ̂k, τ̂k, ĥk); k = 0, 1, ..., l − 1} computed in the previ-
ous iterations, once the new estimate (θ̂l , τ̂l , ĥl) becomes available at the end of the l-th
iteration. Moreover, as already mentioned at the end of the previous subsection, MWLA
does not fully exploit the information available at all the transmitted frequencies, since
part of its processing involves the measurements acquired at a reference frequency only;
this may substantially affect its accuracy.

These considerations have motivated the work illustrated in this subsection and con-
cerning the development of a computationally efficient technique that, based on the
whole set of available measurements, can refine the estimates made available by the
CLEAN algorithm or by the MWLA at the end of a) each iteration or b) their final it-
eration. The technique developed for this task is based on the EM algorithm [72] and
has been inspired by the fact that, for a given l, the n-th measurement H̃t,r [n] (3.2) ac-
quired on the r-th RX antenna can seen as the superposition of (l + 1) distinct deter-
ministic samples {hk at,r(θk, fn) b (τk, fn) ; k = 0, 1, ..., l} (characterized by the parameters
{(hk, θk, τk), k = 0, 1, ..., l}) with a noise sample (including the contribution of both the
AWGN and the (L− 1− l) ignored targets). For this reason, the frequency domain mea-
surement model (3.2) is structurally similar to the time domain model expressed by eq.
(50) in ref. [75, Sect. IV] and referring to the case in which a deterministic waveform
is received in the presence of channel noise and multipath. This similarity allows us to
develop an EM-based iterative algorithm (called EM–based estimator, EMBE) potentially
able to refine the estimates of the parameters {(θk, τk, hk), k = 0, 1, ..., l} starting from
their initial values {(θ̂k, τ̂k, ĥk); k = 0, 1, ..., l}. Each of the EMBE iterations consists of an
estimation (E) step, followed by a maximization (M) step; such steps are described below
for the p-th iteration (with p = 1, 2, ..., NEM, where NEM denotes the overall number of
iterations).

E step - This step aims at computing the NR[t]× N matrix

X(p)
t [k] = Ĥt

(
h̃(p−1)

k , θ̃
(p−1)
k , τ̃

(p−1)
k

)
+

+ β
(l)
k

[
H̃t −

L−1

∑
q=0

Ĥt

(
h̃(p−1)

q , θ̃
(p−1)
q , τ̃

(p−1)
q

)]
(3.37)

for k = 0, 1, ..., l; here, (θ̃(p−1)
q , τ̃

(p−1)
q , h̃(p−1)

q ) denotes the estimate of (θq, τq, hq) computed
in the previous (i.e., in the (p− 1)-th) iteration of the EMBE for any q, H̃t is the NR[t]×N
measurement matrix resulting from the ordered concatenation of the N column vectors
{H̃t [n], n = 0, 1, ..., N − 1},

Ĥt
(
h̃, θ̃, τ̃

)
≜ h̃ Mt

(
θ̃, τ̃
)

, (3.38)

Mt(θ̃, τ̃) represents an NR[t]× N matrix, whose element lying on its r-th row and its
n-th column is defined as

mt,r,n(θ̃, τ̃) ≜ at,r
(
θ̃, fn

)
b (τ̃, fn) , (3.39)
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and {β(l)
k , k = 0, 1, ..., l} are real parameters (also known as mixing coefficients) such that:

a) βk ⩾ 0 for any k; b)
l

∑
k=0

β
(l)
k = 1. (3.40)

M step - In this step, the three-dimensional (3D) optimization problem

min
h̃,θ̃,τ̃

∥∥∥X(p)
t [k]− h̃ Mt

(
θ̃, τ̃
)∥∥∥2
→ h̃(p)

k , θ̃
(p)
k , τ̃

(p)
k (3.41)

is solved, so generating the new (and, hopefully, more accurate) estimate (θ̃(p)
k , τ̃

(p)
k , h̃(p)

k )
of the triplet (θk, τk, hk) (with k = 0, 1, ..., l). This problem can be efficiently solved by
first evaluating the minimum of the cost function appearing in eq. (3.41) with respect to
h̃, given the pair (θ̃, τ̃); this produces the estimate

ȟ(p)
k

(
θ̃, τ̃
)
=

1
NR[t] N

NR[t]−1

∑
r=0

N−1

∑
n=0

X(p)
t,r,n [k] m∗t,r,n

(
θ̃, τ̃
)

(3.42)

of hk, where X(p)
t,r,n [k] denotes the element lying on the r-th row and the n-th column of

X(p)
t [k] (3.37). Then, setting h̃ = ȟ(p)

k (θ̃, τ̃) in the RHS of eq. (3.41) results in the 2D
optimization problem

min
θ̃,τ̃

∥∥∥X(p)
t [k]− ȟ(p)

l

(
θ̃, τ̃
)

Mt
(
θ̃, τ̃
)∥∥∥2
→ θ̃

(p)
q , τ̃

(p)
q , (3.43)

that can be solved through an exhaustive search over the domain Sθ̃ × Sτ̃, where Sθ̃ =

[θ0, θNθ−1] and Sτ ≜ [2Rm/c, 2RM/c]. Once θ̃
(p)
q and τ̃

(p)
q become available, h̃(p)

q =

ȟ(p)
k (θ̃

(p)
q , τ̃

(p)
q ) is computed on the basis of eq. (3.42). This concludes the M step and,

consequently, the p-th iteration of the EMBE. At the end of the last (i.e., of the NEM-th)
iteration of the EMBE, the new estimate

(θ̂k, τ̂k, ĥk) =
(

θ̃
(l,NEM+1)
k , τ̃

(l,NEM+1)
k , h̃(l,NEM+1)

k

)
(3.44)

of the triplet (θk, τk, hk) becomes available (with k = 0, 1, ..., l). Note also that the initial-
ization of the first iteration is simply accomplished by setting (θ̃

(0)
k , τ̃

(0)
k , h̃(0)k ) = (θ̂k, τ̂k, ĥk)

for k = 0, 1, ..., l.

The EMBE deserves the following comments:
1. It does not have to be executed at the end of each iteration of the CLEAN algo-

rithm or of the MWLA; for instance, it can employed once the most important targets
(i.e., the targets most contributing to the initial energy E(0)

H̃ ; see eqs. (3.15) and (3.33))
have been identified. Postponing the parameter refinement based on the EMBE can
have a significant impact on the computational cost of the overall estimation procedure.

2. Its accuracy and convergence are influenced by the values of the mixing coefficients
{β(l)

k , k = 0, 1, ..., l}. The simplest choice for these coefficients consists in assigning the

same value to all of them, so that β
(l)
k = 1/(l + 1) (with k = 0, 1, ..., l). However, the

computer simulations have evidenced that the estimation accuracy can be improved by
selecting

β
(l)
k ∝ |ĥk|2 (3.45)
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for k = 0, 1, ..., l; in this case, the second term appearing in the RHS of eq. (3.37) plays a
more important role in the case of stronger echoes. Note also that no rule is available for
a priori selecting a proper value for the parameter NEM; however, it should be expected
that the EMBE convergence becomes slower as l increases.

3. Its most computationally intensive task is represented by the solution of the 2D
optimization problem (3.43). The computational complexity of this problem can be
mitigated by restricting the search domain from Sθ̃ × Sτ̃ to [θ̃

(p−1)
q − ∆θEM /2, θ̃

(p−1)
q +

∆θEM/2]× [τ̃
(p−1)
q −∆τEM /2, τ̃

(p−1)
q +∆τEM/2], where the parameter ∆θEM (∆τEM) rep-

resents the size of the new azimuth (delay) domain (the corresponding size for the range
domain is ∆REM = 2c/∆τEM); the resolutions adopted for the range and the azimuth
over the new domain are denoted by Rres and θres, respectively. This strategy is moti-
vated by the fact that the quality of the initial estimates provided by the CLEAN algo-
rithm (or by the MWLA) to the EMBE is usually good; consequently, it is expected that
the new estimates θ̃

(p)
q and τ̃

(p)
q generated by the EMBE in its p-th iteration will not be

too far from θ̃
(p−1)
q and τ̃

(p−1)
q , respectively. A potential alternative to this approach is

represented by the use of interpolation techniques in the search of the local minima of the
cost function appearing in eq. (3.43) (see [76, Sec. IV]); however, this possibility is not
discussed further and is left for future research. The scheme of the EMBE algorithm is
shown in Algorithm 3.

Algorithm 3: Expectation-Maximization algorithm: EMBE algorithm
Input: {(hk, θk, τk)}, with k = 0, 1, ..., l;
Output:

{(
θ̃
(l,NEM+1)
k , τ̃

(l,NEM+1)
k , h̃(l,NEM+1)

k

)}
, with k = 0, 1, .., l.

1 Initialization:
l ← 0;(

h̃(0)k , θ̃
(0)
k , τ̃

(0)
k

)
=
(

ĥk, θ̂k, τ̂k

)
for k = 0, 1, ..., l;

for p← 1 to NEM do
for k← 0 to l do

a- E step:

• Computation of Ĥ t
(
h̃, θ̃, τ̃

)
based on eq. (3.38), eq. (3.39), eq. (3.42);

• Computation of X(p)
t [k] based on eqs. (3.37) and (3.40);

b- M step:

• Computation of
(

h̃(p)
k , θ̃

(p)
k , τ̃

(p)
k

)
based on eqs. (3.41)-(3.43).

end
end

return
{(

θ̃
(l,NEM+1)
k , τ̃

(l,NEM+1)
k , h̃(l,NEM+1)

k

)}
, with k = 0, 1, .., l.

3.3.5 Computational complexity

The complexity of all the iterative algorithms described in the previous paragraphs has
been carefully assessed in terms of number of floating operations (flops) to be executed
in the detection of L targets. The general criteria adopted in estimating the computa-
tional cost of an algorithm are the same as those illustrated in [77, App. A, p. 5420]
and a detailed analysis of the costs of the different tasks accomplished by each iterative
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algorithm is also provided (see [61, Appendix]). This analysis leads to the conclusion
that the computational cost of the CLEAN algorithm, of MWLA, of EMBE, of CLEAN
combined with EMBE, of MWLA combined with EMBE, and of MUSIC (see [67]) are ap-
proximately of orderO(NCL),O(NMW),O(NEMBE),O(NCLE),O(NMWE) andO(NMU),
respectively, with

NCL = 6 N Nθ̃ Nτ̃ Nv + 2 Nτ̃ Nθ̃ N + 2 Nτ̃ Nθ̃ Nv + 15 N Nv (3.46)

NMW = N2
v (6 N + 8 Nθ) + 30 N Nv + 8 Nτ̃ N + 30 Nθ̃ Nv (3.47)

NEMBE = L
[
28 Nv N Nτ̃,EM Nθ̃,EM

]
+ 2 L2 Nv N (3.48)

NCLE = 6 L Nv N Nτ̃ Nθ̃ + 28 L NEM Nv N Nτ̃,EM Nθ̃,EM (3.49)

NMWE = L N2
v (6 N + 8 Nθ) + 28 L NEM Nv N Nτ̃,EM Nθ̃,EM (3.50)

and
NMU = 17 (l1 l2)

3 + 16 (l1 l2)
2 (p1 p2 + Nτ̃ Nθ̃) . (3.51)

The parameters l1, l2, p1 and p2 appearing in the last formula are the same as those
defined in [67, Sec IV].

3.4 Three-dimensional deterministic methods

In this section, the range and DOA estimation algorithms investigated in Sect. 3.3 are
adapted for solving a three-dimensional imaging problem. In the following, these con-
ditions are assumed, for simplicity: a) a single TX antenna (in particular, the t-th TX
antenna) and multiple (namely, NR[t]) RX antennas of the URA are exploited for range
and DOA estimation; b) the radar received signal is expressed by eq. (3.2).

3.4.1 Standard beamformer

Standard beamformer for 3D detection and estimation requires the evaluation of the cost
function (e.g., see eq. (3.12) in Sect. 3.3, where a 2D scenario is considered)

Jt
(
θ̃, ϕ̃, τ̃

) ∆
=
∣∣St
(
θ̃, ϕ̃, τ̃

)∣∣2 , (3.52)

with

St
(
θ̃, ϕ̃, τ̃

) ∆
=

N−1

∑
n=0

NR[t]

∑
k=1

H̃t,rk [n] a∗t,rk

(
θ̃, ϕ̃, fn

)
b∗ (τ̃, fn) , (3.53)

over a grid in the 3D space of the trial variables θ̃, ϕ̃ and τ̃. Note that the selection
of a dense and uniform grid results in a computational effort substantially larger than
the one required in a 2D scenario (see Sect. 3.3). This problem has been mitigated by
adopting the interpolation method investigated in [60], [76], [78] and based on the use
of Chebyshev polynomials. For this reason, the approximate cost function

Qt
(
θ̃, ϕ̃, τ̃

)
=

P

∑
j=1

Jt
(
θ̆j, ϕ̆j, τ̃

)
l(P−1)
j

(
ϕ̃, ϕ̆j

)
l(P−1)
j

(
θ̃, θ̆j

)
, (3.54)
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based on the Lagrange interpolation formula, is evaluated in place of Jt(θ̃, ϕ̃, τ̃) (3.12) over
the set {(θ̃m, ϕ̃n, τ̃p)}, collecting Nθ̃ · Nϕ̃ · Nτ̃ points, which are uniformly spaced in the
3D domain [θ̃0, θ̃Nθ̃−1]× [ϕ̃0, ϕ̃Nϕ̃−1]× [τ̃0, τ̃Nτ̃−1]. Here,

l(P−1)
j (θ̃, θ̆j)

∆
=

P−1

∏
k=0,k ̸=j

(
θ̃ − θ̆k

) (
θ̆j − θ̆k

)−1
(3.55)

and

l(P−1)
j (ϕ̃, ϕ̆j)

∆
=

P−1

∏
k=0,k ̸=j

(
ϕ̃− ϕ̆k

) (
ϕ̆j − ϕ̆k

)−1 , (3.56)

with j = 1, 2, ..., P, are Lagrange polynomials of degree P depending on the trial azimuth
θ̃ and elevation ϕ̃, respectively,

θ̆k
∆
=
[
(θ̃Nθ̃−1 − θ̃0) x′k + (θ̃0 + θ̃Nθ̃−1)

]
/2 (3.57)

ϕ̆k
∆
=
[
(ϕ̃Nϕ̃−1 − ϕ̃0) x′k + (ϕ̃0 + ϕ̃Nϕ̃−1)

]
/2 (3.58)

and
x′k = cos (π(2k + 1)/(2 P)) (3.59)

is the k-th node of the P-th order Chebyshev polynomial defined over the interval
[−1 , 1] (with k = 0, 1, ..., P− 1). Then, the parameters {(θl , ϕl , τl); l = 0, 1, ..., L̂− 1} of
the L̂ targets detected by this method are estimated by identifying the positions of the L̂
local maxima of the function Qt(θ̃, ϕ̃, τ̃) (3.54). Note also that, if the l-th local maximum
is found at (θ̃, ϕ̃, τ̃) = (θ̂l , ϕ̂l , τ̂l), the estimate

ĥl = St
(
θ̂l , ϕ̂l , τ̂l

)
(N · NR[t])

−1 (3.60)

of the complex amplitude associated with the l-th detected target becomes also avail-
able (note that this last expression is similar to the one reported in eq. (3.14)). Finally,
it is worth mentioning that the accuracy of the adopted approximation depends on the
order P of the selected Chebyshev polynomial. In fact, increasing P results in a smaller
interpolation error; however, this result is achieved at the price of a higher computa-
tional effort. Moreover, increasing P the interpolation solution is more prone to overfit
the data.

3.4.2 The CLEAN algorithm

In this paragraph, an extension of the CLEAN algorithm (already developed in Par. 3.3.2
for 2D imaging) to a 3D scenario is discussed. The processing tasks it executes can be
divided in the six steps listed below.

1) Initialization - Set the iteration index l to 0 and set H̃(0)
t [n] = H̃t[n] for n = 0, 1, ...,

N − 1 (see eq. (3.2)).
2) Computation of the cost function - Compute the values {J(l)t (θ̆j, ϕ̆j, τ̃p)} of the func-

tion J(l)t (θ̃, ϕ̃, τ̃) required in the evaluation of the approximate cost function Q(l)
t (θ̃, ϕ̃, τ̃)

at the points {(θ̃m, ϕ̃n, τ̃p)}; here, J(l)t (θ̃, ϕ̃, τ̃) (Q(l)
t (θ̃, ϕ̃, τ̃)) denotes the function resulting

from the replacement of H̃t[n] with H̃(l)
t [n] in the right-hand side (RHS) of eq. (3.52) (eq.

(3.54)).
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3) Estimation of the parameters of a new target - Search for the global maximum of the
cost function Q(l)

t (θ̃, ϕ̃, τ̃) over a set of its Nθ̃ ·Nϕ̃ ·Nτ̃ values computed in the 3D space of
the variables (θ̃, ϕ̃, τ̃); the coordinates of the point associated with the global maximum
are denoted by (θ̂l , ϕ̂l , τ̂l). Then, compute an estimate ĥl of the complex gain associated
with the l-th target by means of eq. (3.60).

4) Thresholding for identifying false targets - If |ĥl | < T, where T denotes a proper
(positive) threshold, go to step 6), otherwise proceed with the next step.

5) Cancellation of the last identified target - Cancel the contribution of the last identified
target by computing the residual frequency response

H̃(l+1)
t [n] ≜ H̃(l)

t [n]− ĥl at(θ̂l , ϕ̂l , fn) b (τ̂l , fn) , (3.61)

for n = 0, 1, ..., N − 1. Then, increase the iteration index l by one and go to step 2);
6) End - The final output provided by the algorithm is expressed by the set of values

{(θ̂l , ϕ̂l , τ̂l , ĥl); l = 0, 1, ..., L̂− 1}, where L̂ represents an estimate of L and is expressed
by the last value taken on by the iteration index l. As in the 2D imaging, when CLEAN is
used, the following two relevant problems have to be kept into account; a) the selection
of a proper value for threshold T (see 3.3.2); b) the error accumulation generated by
the iterative cancellation procedure expressed by eq. (3.61). The scheme of the CLEAN
algorithm applied for 3D imaging is shown in Algorithm 4.

Algorithm 4: Three dimensional CLEAN algorithm

Input: Measured channel response: H̃ t

Output: Targets position:
{(

ĥl , θ̂l , ϕ̂l , τ̂l

)}
, for l = 0, 1, ..., L̄− 1.

1 Initialisation: Set l ← 0 and H̃(0)
t = H̃ t;

2 while (|ĥl | > T ∨ l = 0) do
a- Standard Periodogram:

• Cost fuctions J(l)t
(
θ̃, ϕ̃, τ̃

)
through eq. (3.52)-(3.53) and Qt

(
θ̃, ϕ̃, τ̃

)
based on

(3.54)-(3.56);

b- Estimation of the parameters of a new target:

• Estimation of (θ̂l , ϕ̃, τ̂l) = arg maxθ̃∈Sθ ,ϕ̃∈Sϕ,τ̃∈Sτ
Q(l)

t
(
θ̃, ϕ̃, τ̃

)
, where

Sθ ∈ [θ0 ; θ0 + Nθ∆θ], Sϕ ∈ [ϕ0 ; ϕ0 + Nϕ∆ϕ], and Sτ ∈ [τ0 ; τ0 + Nτ∆τ];

• Estimation of ĥl based on eq. (3.60);

c- Cancellation of the strongest echo:
for r ← 1 to NR[t] do

H̃(l+1)
t,r ← H̃(l)

t,r − ĥl at,r
(
θ̂l , ϕ̂l , fn

)
b (τ̂l , fn)

end
l = l + 1

end

return
{(

ĥl , θ̂l , ϕ̂l , τ̂l

)}
for l = 0, 1, ..., L̄− 1;
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3.4.3 The Wax and Leshem estimation method

In paragraph 3.3.3 a specific instance of the iterative estimation algorithm proposed by
M. Wax and A. Leshem in ref. [70] (and called WLA) has been developed for MIMO
SFCW radars and a 2D propagation scenario, mitigating the ill-conditioning it suffers
from in the presence of multiple and highly correlated echoes; the resulting algorithm
has been dubbed modified WLA (MWLA). In this subsection, an extension of the MWLA
to a 3D scenario is illustrated. The processing tasks executed by this method can be
divided in the six steps listed below.

1) Initialization - Set the iteration index l to 0, and set H̃(0)
t [n] = H̃t[n] for n = 0, 1,

..., N − 1 (see eq. (3.2)). Then, evaluate the NR[t]-dimensional steering vector at(θ̃, ϕ̃, fr)
and its normalised version āt(θ̃, ϕ̃, fr) ≜ ||at(θ̃, ϕ̃, fr)||−1at(θ̃, ϕ̃, fr) over the set SI ≜
{(θ̆m, ϕ̆n)}, collecting P × P points whose coordinates are computed on the basis of
eqs. (3.57)-(3.59), at a properly selected reference frequency fr (typically the central
frequency).

2) DOA coarse estimation - Evaluate the NR[t]×NR[t] covariance matrix R(l)
xx of the resid-

ual channel response H̃(l)
t [n] (see eq. (3.61)). Then, compute the coarse estimate (θ̌l , ϕ̌l) of

the angular parameters (θl , ϕl) characterizing the l-th target by solving the 2D optimiza-
tion problem (

θ̌l , ϕ̌l
)
= arg max

(θ̃I ,ϕ̃I)∈SI

āH
t (θ̃I , ϕ̃I , fr)R(l)

xx āt(θ̃I , ϕ̃I , fr). (3.62)

3) Delay estimation - Evaluate an estimate τ̂l of the delay τl associated with the l-th target
by solving the 1D optimization problem

τ̂l = arg max
τ̃∈Sτ̃

∣∣∣bH (τ̃) v̂t,l

∣∣∣2 , (3.63)

where v̂t,l is a N-dimensional column vector referring to the l-th target and

v̂t,l [n] ≜ K(θ̌l , ϕ̌l , fr) at(θ̌l , ϕ̌l , fr)
H H̃(l)

t [n], (3.64)

with n = 0, 1, ..., N − 1, K(θ̌l , ϕ̌l , fr) ≜ [aH
t (θ̌l , ϕ̌l , fr) · at(θ̌l , ϕ̌l , fr)]−1, Sτ̃ denotes the in-

terval [τ̃0, τ̃Nτ̃−1 ], b (τ̃) = [b(τ̃, f0), b(τ̃, f1), ..., b(τ̃, fN−1)] is a N-dimensional row vector.
4) DOA fine estimation - Generate a new (and, hopefully, finer) estimate (θ̂l , ϕ̂l) of the

pair (θl , ϕl) by solving the 2D optimization problem(
θ̂l , ϕ̂l

)
= arg max

(θ̃,ϕ̃)∈SI

|L
(
θ̃, ϕ̃
)
|2, (3.65)

where
L
(
θ̃, ϕ̃
)
≜ at(θ̃, ϕ̃, fr) B̂t,l (3.66)

is a P× P matrix,

B̂t,l =

[
N−1

∑
n=0

H̃t[n] b∗ (τ̂l , fn)

]
Ĉ−1

l , (3.67)

is a NR[t]-dimensional column vector and

Ĉl ≜
N−1

∑
n=0

b (τ̂l , fn) b∗ (τ̂l , fn) . (3.68)

The computationally efficient method adopted for solving problem (3.65) is based on
the Lagrange interpolation procedure illustrated in Sec. 3.4.1. For this reason, the matrix
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L(θ̃, ϕ̃) appearing in the RHS of eq. (3.65) is replaced by its approximation

L̄(θ̃, ϕ̃) =
P

∑
j=1

L
(
θ̆j, ϕ̆j

)
l(P−1)
j

(
θ̃, θ̆j

)
l(P−1)
j

(
ϕ̃, ϕ̆j

)
, (3.69)

where the polynomials l(P−1)
j (θ̃, θ̆j) and l(P−1)

j (ϕ̃, ϕ̆j) are defined by eqs. (3.55) and (3.56).
5) Gain estimation - Compute the estimate

ĥl =
∥∥at(θ̂l , ϕ̂l , fr)

∥∥−2
at(θ̂l , ϕ̂l , fr)

H B̂t,l . (3.70)

of the complex amplitude hl . If |ĥl | < T (where T denotes a positive threshold), proceed
with the next step, otherwise increase the iteration index l by one and go to step 2).

6) End - The final output provided by the algorithm is expressed by the set of values
{(ĥl , θ̂l , ϕ̂l , τ̂l); l = 0, 1, ..., L̂− 1}, where L̂ represents an estimate of L and is expressed
by the last value taken on by the iteration index l. Finally, it is worth mentioning that
steps 3) and 4) can be repeated multiple times within the l-th iteration to progressively
refine the estimates of both the delay and the DOA of the new target. The scheme of the
MWLA for 3D imaging is shown in Algorithm 5.

Algorithm 5: Three-dimensional modified WAX-LESHEM algorithm

Input: Measured channel response: H̃ t

Output: Targets position:
{(

ĥl , θ̂l , ϕ̂l , τ̂l

)}
, for l = 0, 1, ..., L̄− 1.

1 Initialization: l ← 0;

a- Coarse Estimation of
(
θ̌0, ϕ̌0

)
(3.62); computation of the energy E(0)

H̃ (3.33);
2 for p← 1 to 2 do

b- Target delay estimation τ̂0 based on (3.63) and (3.64);
c- Fine estimation of target DOA

(
θ̂0, ϕ̂0

)
(3.65), (3.69);

end
d- Estimation of target gain ĥ0 (3.70) and echo cancellation:

3 for r ← 1 to NR[t] do
H̃(1)

t [n] ≜ H̃(0)
t [n]− ĥ0 at(θ̂0, ϕ̂0, fn) b (τ̂0, fn) .

end

f- Computation of the energy E(1)
H̃ based on (3.33); l ← 1;

4 while E(l−1)
H̃ − E(l)

H̃ > ε H̃ do
a- Coarse Estimation of

(
θ̌l , ϕ̌l

)
based on (3.62);

5 for p← 1 to 2 do
b- Target delay estimation τ̂l (3.63) and (3.64);
c- Fine estimation of target DOA

(
θ̂l , ϕ̂l

)
(3.65);

end
d- Estimation of target gain ĥl (3.70) and echo cancellation:

6 for r ← 1 to NR[t] do
H̃(l+1)

t [n] ≜ H̃(l)
t [n]− ĥl at(θ̂l , ϕ̂l , fn) b (τ̂l , fn) .

end

f- Computation of the energy E(l+1)
H̃ based on (3.33); l ← l + 1;

end

return
{(

ĥl , θ̂l , ϕ̂l , τ̂l

)}
, for l = 0, 1, ..., L̄− 1.
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3.4.4 Computational complexity

The computational cost of CLEAN and that of MWLA per iteration are O(NCL) and
O(NMW), respectively; here,

NCL ≈ 6 N Nv P2 Nτ̃ + 8 P2 Nθ̃ + 15 Nv N (3.71)

and

NMW ≈ N2
v
(
6 N + 8 P2 )+ 30 N Nv + 8 Nτ̃ N + 30 P2 Nv + 8 P2 Nθ̃ . (3.72)

It is worth to note that the complexity of the CLEAN algorithm and the MWLA applied
for three-dimensional imaging depends on the interpolation order P2; even when P
is low, this quantity is typically higher than the order Nθ and, hence, the complexity
of the methods applied for three-dimensional imaging is much heavier respect the bi-
dimensional case (see eq. (3.46)-(3.47)).

3.5 Numerical results

In this section, the main results obtained applying the deterministic algorithm described
above for 2D and 3D imaging to data collected by a MIMO SFCW Radar are described.

3.5.1 Bi-dimensional imaging

The accuracy of the 2D detection and estimation algorithms illustrated in Section 3.3
has been assessed in an indoor area of small size, because of the limited power radi-
ated by the radar device employed in the considered experiments. The employed radar
has been designed and manufactured by Vayyar Imaging Ltd Company [62]. It operates in
TDM mode and it is equipped with the uniform rectangular array (URA) illustrated in Fig.
3.1-a). This array consists of 20 antennas; moreover, four of them (more precisely, those
identified by the numbers 1, 10, 11 and 20) can be employed as TX antennas, whereas
those identified by the numbers 2− 20 as RX antennas only. The virtual array associ-
ated with this physical URA is shown in Fig. 3.1-b) and consists of 53 antennas; how-
ever, only the portion enclosed within the dashed rectangle and containing 17 virtual
elements (forming a ULA) has been exploited by the proposed estimation algorithms.
Moreover, the following values have been selected for the parameters characterizing
channel sounding in the frequency domain (see eq. (2.24)): f0 = 5.05 GHz, ∆ f = 9.4
MHz and N = 510 (so that the overall sweep bandwidth is about 5.0 GHz). The nu-
merical results shown in this section refer to two different scenarios. The first scenario
is characterized by five targets and, more specifically, by L = 5 identical metal discs, all
having a diameter equal to 5.5 cm and placed on an horizontal plastic desk. The exact
range and azimuth of each of these targets are listed in Table 3.1. In the second scenario,
instead, L = 4 equal coins, having a diameter of 2.0 cm, are placed at a uniform distance
from the radar device (see Fig. 3.2); their range and azimuth are listed in Table 3.2. The
raw data acquired by the radar over a single snapshot have been processed by the al-
gorithms illustrated in the previous section. The estimation accuracy of each algorithm
has been assessed by evaluating the root mean square error (RMSE)

ε̄X ≜

√√√√L−1
L

∑
l=1

[
Xl − X̂l

]2 (3.73)
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and the peak error
ε̂X ≜ max

l

∣∣Xl − X̂l
∣∣ (3.74)

for the range (X = R) and the azimuth (X = θ); here, Xl and X̂l represent the exact
value of the parameter to be estimated for the l-th target (with l = 0, 1, 2, 3 and 4) and
the corresponding estimate. The analysis of computational requirements is based, instead,
on assessing both the computation time (CT) and the overall computational complexity
required for processing the whole set of acquired data and generating the estimates of
range and azimuth for all the targets.
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FIGURE 3.1: a) Physical URA of the employed radar device; b) representation of the associated
virtual array and of the portion (enclosed in the dashed rectangle) exploited by the estimation

algorithms.

Target Params 1 2 3 4 5

Exact
θ(◦) -18.0 3.0 13.0 24.0 38.0
R (cm) 82.5 81.0 82.5 73.5 53.0

MU
θ(◦) -24.0 -2.0 18.0 30.0 43.0
R (cm) 86.0 85.0 87.5 80.0 58.0

CL
θ(◦) -16.0 2.0 12.0 23.0 35.0
R (cm) 87.5 85.5 86.5 78.0 54.5

MW
θ(◦) -18.0 3.0 13.0 26.0 41.0
R (cm) 87.0 84.5 86.5 76.0 53.0

TABLE 3.1: Azimuth and range of the targets characterizing scenario # 1, and their estimates
computed by three different algorithms (MUSIC (MU), CLEAN (CL) and MWLA (MW)).

The accuracy achieved by the standard beamformer, CLEAN and MWLA in all the
considered scenarios has been assessed under the assumption that the number of targets
is known a priori; moreover, the following values have been selected for the parameters
defining the search domain of these algorithms: a) θ0 = −90◦, ∆θ = 1◦ and Nθ = 181
(Rm = 20 cm, ∆R = 0.5 cm , RM = 120 cm and Nτ = 201) for the sequence {θk} ({Rk})
of trial values of the azimuth (range). A contour plot of the cost function Jt(θ̃, τ̃) (3.12)
evaluated by the standard beamformer and the CLEAN algorithm in the first consid-
ered scenario is illustrated in Fig. 3.3; the estimates of the azimuth and of the range



3.5. Numerical results 45

computed by the CLEAN algorithm, the MWLA and the 2D MUSIC are listed in Table
3.1 (the acronyms CL, MW and MU refer to the CLEAN algorithm, the MWLA and the
2D MUSIC algorithm, respectively), together with the exact values of these quantities.
The values of the errors evaluated for each target are shown in Fig. 3.4; the estimates
computed by all the algorithms are considered. The corresponding values of ε̄θ and ε̄R
(ε̂θ and ε̂R) computed on the basis of eq. (3.73) (eq. (3.74)) are listed in Table 3.3 for
all the considered algorithms and the 2D MUSIC algorithm. These results show that
all the estimation algorithms achieve similar accuracies, but the best one is provided
by the MWLA, which, luckily, requires the shortest CT. Note also that all the iterative
algorithms require a substantially shorter CT than the MUSIC algorithm.

FIGURE 3.2: Measurement setup employed in the second scenario. Four metal coins are placed
over a rectangular carton box.

Target Params 1 2 3 4 ε̄ ε̂ CT (s)

Exact
θ(◦) -15.0 -3.0 8.0 25.0
R (cm) 65.0 65.0 65.0 65.0

MU
θ(◦) -14.0 -2.0 6.0 23.0 1.5 2.0 > 5 h
R (cm) 66.0 67.0 68.0 70.0 3.0 5.0 > 5 h

CL
θ(◦) -15.0 -2.0 7.0 22.0 1.6 3.0 0.5
R (cm) 66.0 67.0 67.0 70.0 3.0 5.0 0.5

MW
θ(◦) -16.0 -3.0 7.0 25.0 0.7 1.0 0.01
R (cm) 67.0 67.0 67.0 68.0 2.0 3.0 0.01

CLE
θ(◦) -15.3 -1.9 7.5 21.8 2.2 3.0 3.9
R (cm) 66.0 67.0 67.0 70.0 3.0 5.0 3.9

MWE
θ(◦) -15.8 -2.7 7.2 23.4 0.9 1.0 3.4
R (cm) 66.0 67.0 68.0 69.0 3.0 3.0 3.4

TABLE 3.2: Azimuth and range of the targets characterising scenario # 2, and their estimates
computed by five different algorithms: MUSIC, CLEAN, MWLA, CLEAN + EMBE and MWLA

+ EMBE.

It is also worth mentioning that the MWLA offers a substantial advantage in terms
of computational complexity/time even for a different number of targets. This can be
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easily inferred from Fig. 3.5, that shows the computational complexity (assessed on
the basis of eqs. (3.46)-(3.51)) and the CT characterizing all the considered iterative
algorithms for a number of targets ranging from 2 to 8 (no result is shown for the MUSIC
algorithm since its complexity and computation time are much higher than those of the
other algorithms).

FIGURE 3.3: Contour plot (in Cartesian coordinates) of the cost function Jt(θ̃, τ̃) (3.12) evaluated
by the standard beamformer for the considered propagation scenario. The peaks associated with

the five targets are clearly visible.
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(A) Range errors characterizing scenario # 1 consid-
ering the three different algorithms: MUSIC (MU),

CLEAN (CL) and MWLA (MW).
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(B) Azimuth errors characterizing scenario # 1 con-
sidering the three different algorithms: MUSIC

(MU), CLEAN (CL) and MWLA (MW).

FIGURE 3.4: Representation of: a) the range errors and b) the azimuth errors characterizing
scenario # 1. Three different algorithms, namely, MUSIC (MU), CLEAN (CL) and MWLA (MW)

are considered.

The results shown in this figure lead to the following conclusions:
1) MWLA has the lowest complexity. This is due to the fact that this algorithm

computes the steering vector at the central frequency only and its estimation of targets
parameters does not involve the cost function (3.12).

2) The complexity assessed for the CLEAN algorithm is higher than that of the
MWLA combined with the EMBE (MWLA+EMBE), since the most demanding task in
the last algorithm involves a limited search domain, as explained at the end of subsec-
tion 3.3.4.
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CL MW CLE MWE MU

ε̄θ (◦) 1.8 1.6 1.8 0.6 5.4
ε̄R (cm) 4.1 3.3 4.1 3.5 4.9
ε̂θ (◦) 3.0 3.0 3.6 1.7 6.0
ε̂R (cm) 5.0 4.5 5.0 4.9 6.5
CT 0.7 s 0.02 s 5.3 s 4.6 s > 5 h
GFlops 9.46 0.01 11.4 2.0 651.7

TABLE 3.3: Root mean square errors, peak errors and computation times for all the analysed
estimation algorithms. Scenario # 1 is considered.

However, the CT observed for the CLEAN algorithm is lower than that of the MWLA
combined with the EMBE (MWLA+EMBE). This is due to the fact the MATLAB imple-
mentation of the former algorithm is more efficient than that of the latter one. Note, in
particular, that in the latter algorithm the parameters of search domain Sθ̃ × Sτ̃ (and,
consequently, the values of the steering vector) need to be re-computed any time that
a new target is found. The potential improvement in estimation accuracy provided by
the EMBE has been also assessed when it is employed at the end of the last (i.e., of the
fourth) iteration of the CLEAN algorithm or of the MWLA, and its mixing coefficients
are computed on the basis of eq. (3.45). Moreover, the following values have been se-
lected for the parameters of the EMBE: a) ∆REM/2 = 0.5 cm and ∆θEM/2 = 1◦ for the
size of the search domain (the adopted resolutions are Rres = 0.1 cm and θres = 0.1◦ for
the range and the azimuth variables, respectively); b) NEM = 5 for the overall number
of iterations.
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FIGURE 3.5: Computational complexity (black) and computational time (blue) versus the num-
ber of targets (L).

The estimation accuracies ε̄θ and ε̄R achieved by combining EMBE with CLEAN and
with MWLA are listed in Table 3.3 (where the acronyms CLE and MWE refer to the
combination of CLEAN with EMBE, and to that of MWLA with EMBE, respectively).
From these results it is possible to conclude that:

1) Combining the CLEAN algorithm with the EMBE does not result in a better accu-
racy in range estimation, and slightly improves the accuracy of azimuth estimates.
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2) The best accuracy in azimuth estimation is obtained by combining the MWLA
with the EMBE; in fact, this reduces the azimuth RMSE from 1.6◦ to 0.6◦. This improve-
ment can be related to the fact that the MWLA benefits from the beamforming expressed
by eq. (3.42) and accomplished by the EMBE in estimating hk, given the trial values θ̃
and τ̃ of the target azimuth and delay, respectively.

The computer simulations have also evidenced that, if the EMBE is used at the end
of each iteration of the CLEAN algorithm (or of the MWLA), no real improvement is
obtained and the computation time becomes substantially larger.

Let us focus now on the second scenario. In this case, the estimates of the azimuth
and of the range computed by all the analysed algorithms, together with the corre-
sponding RMSEs, peak errors and CTs, are listed in Table 3.2. These results lead to the
conclusion that the MWLA achieves, once again, the best accuracy/CT trade-off. More-
over, the use of the EMBE in combination with the CLEAN algorithm or with the MWLA
provides some local improvement in the estimation of the position of the targets; how-
ever, no significant variation in terms of RMSE and peak errors is observed. Another
interesting result found in this scenario is represented by the fact that the MWLA ex-
hibits a good accuracy (better than that of the other algorithms) even if the azimuth of
the targets is not small (e.g., the azimuth of the fourth target is equal to 25.0◦).

Further numerical results about multiple variants of the second scenario are given
in Table 3.4. In this case, the number of targets, that are all placed at a uniform distance
(equal to 65 cm) from the radar device, ranges from two to four and a uniform angular
spacing between adjacent targets is selected. Moreover, six distinct configurations for
the target geometry are considered (the range and azimuth of each target are given in
Table 3.5). The RMSEs and the peak errors resulting from an average over the considered
six configurations are listed in Table 3.4. From these results it is easily inferred that the
iterative algorithms perform well and the best accuracy is achieved again by the MWLA.
The last technical issue analysed in detail is represented by the behaviour of the residual
energy E(l)

H̃ (3.33) available at the end of the l-th iteration in the CLEAN algorithm and
in the MWLA. Some results referring to the first scenario are shown in Fig. 3.6.

CL MW CLE MWE MU

ε̄θ (◦) 1.4 1.2 1.7 1.2 1.3
ε̄R (cm) 2.0 2.0 2.0 2.0 1.8
ε̂θ (◦) 2.0 1.5 2.0 1.5 1.5
ε̂R (cm) 2.8 2.8 2.8 2.8 3.0

TABLE 3.4: Average of root mean square errors and peak errors for all the investigated estima-
tion algorithms. The six configurations described in Table 3.5 are considered for target geometry.

Note that, in this case, two distinct sets of values are given for each algorithm, one
computed on the basis of the raw data acquired by the radar (i.e., of the experimental
data), the other one evaluated on the basis of computer generated data (i.e., of simulated
data); in the last case, five point targets, whose azimuth and range are the same as those
in Table 3.1, have been assumed. From these results it is inferred that the iterative can-
cellation procedure accomplished by the CLEAN algorithm results in a steep decrease
of the residual energy in the simulated case. This suggests that a stopping criterion
based on the inequality (3.34) could be really used in this case. However, a substantially
smaller rate of decrease is observed for the residual energy of the CLEAN algorithm in
the case of experimental data. This is mainly due to the fact that the employed metal
discs cannot be represented as point targets; for this reason, multiple echoes are received
by the radar device from the same target.
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Target Params 1 2 3 4

Exp. 1
θ(◦) -11.0 4.0
R (cm) 65.0 65.0

Exp.2
θ(◦) -25.0 -13.0 4.0
R (cm) 65.0 65.0 65.0

Exp. 3
θ(◦) -25.0 -13.0 4.0 19.0
R (cm) 65.0 65.0 65.0 65.0

Exp. 4
θ(◦) -3.0 8.0
R (cm) 65.0 65.0

Exp. 5
θ(◦) -3.0 8.0 20.0
R (cm) 65.0 65.0 65.0

Exp. 6
θ(◦) -15.0 -3.0 8.0 25.0
R (cm) 65.0 65.0 65.0 65.0

TABLE 3.5: Azimuth and range of the targets in the considered six configurations (all related to
scenario # 2).
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FIGURE 3.6: Normalized residual energy evaluated for the CLEAN algorithm and the MWLA
algorithm for the considered propagation scenario. Both experimental and simulated data are

considered.

As a matter of fact, when experimental data are processed by the CLEAN algorithm,
new echoes, very close to those already identified, appear if its cancellation procedure
proceeds beyond the 4-th iteration. A gap between the residual energy computed on the
basis of the simulated data and that referring to the experimental data is also observed
in the case of the MWLA. However, the rate of decrease is substantially smaller than
that evaluated in the case of the CLEAN algorithm in both cases. This depends on the
fact that the steering vector at(θ̂l−1, fr) is evaluated at the reference frequency fr only
in the computation of the residual H̃(l)

t [n] (3.35) for any n; this unavoidably introduces
an error. These results suggest that, if the MWLA is employed, the stopping criterion
based on the inequality (3.34) can still used, but the threshold ε H̃ has to be selected very
carefully. Despite this problem, the MWLA and the combination of the MWLA with
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EMBE represent the best options for range and azimuth estimation in SFCW MIMO
radars. Finally, it is worth mentioning that, in the measurement campaigns, other sce-
narios, characterized by a different numbers of metal discs and target coordinates, have
been also considered. However, accuracies similar to the ones measured for the two
scenarios described above have been found, provided that the angular coordinates of
the employed targets were contained in a limited domain (see eq. (2.64))

3.5.2 Three-dimensional imaging

The accuracy of the algorithms illustrated in Sect. 3.4 has been assessed by both com-
puter simulation and experimental results; in doing this, the measurements acquired
through a SFCW MIMO radar manufactured by Vayyar Imaging Ltd Company [62] and
illustrated in Fig. 3.7-a) have been processed.

a. b.

FIGURE 3.7: a. Employed radar device; b. Geometry of the physical antenna arrays and of the
corresponding virtual array.

This device operates in the E-band; more specifically, the frequencies of its transmit-
ted signal are expressed by eq. (2.24), with f0 = 78 GHz, ∆ f = 16.67 MHz and N = 121
(for this reason, the bandwidth of the radiated signal is 2 GHz and its central frequency
is fc = 79 GHz). Moreover, it is equipped with NT = 16 TX antennas and NR = 21 RX
antennas (see Fig. 3.7-b)). In principle, 16 · 21 = 336 virtual antennas are available; how-
ever, in practice, 16 of them (the ones that are not horizontally aligned) are discarded
in order to set up a 20× 16 URA. The accuracy of all the algorithms illustrated in the
previous section has been assessed by acquiring multiple measurements in a small area,
because of the limited power radiated by the radar device employed in this work; in
all the experiments proposed in the following, each detectable target is represented by
a metal disk, having a diameter of 5.5 cm. The numerical results shown in this section
refer to two specific static scenarios.

The first one is an outdoor scenario, characterized by a fixed number of detectable tar-
gets (namely, L = 3 metal disks), which are placed at approximately the same distance
from the radar device (see Fig. 3.8); their 3D coordinates are listed in Table 3.6. The sec-
ond one, instead, is an indoor scenario with three distinct configurations, each involving
a different number of targets; more specifically, in this case, the chosen configurations
involve: 1) a single target placed over a plastic desk; 2) two targets placed over two
different plastic desks; 3) three targets placed over three different plastic supports. It is
important to remind that in the first scenario the height of all the three targets is equal,
while it is varied in the latter in order to test the accuracy of the algorithm also along
the elevation direction. In both scenarios, prior knowledge of L is always assumed and
the following values are selected for the parameters defining the search domain of the
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FIGURE 3.8: Outdoor scenario in which the measurements have been acquired. The three tar-
gets, each represented by a metal disk, are clearly visible.

considered algorithms: a) θ̃Nθ̃−1 = ϕ̃Nϕ̃−1 = 60◦, θ̃0 = ϕ̃0 = −60◦ and Nθ = Nϕ = 121
(so that the step sizes ∆θ̃ = ∆ϕ̃ = 1◦ are obtained); b) τ0 = 2Rm/c, τNτ−1 = 2RM/c
and Nτ = 121, where Rm = 0.3 m (RM = 6.0 m) is the minimum (maximum) measur-
able range (consequently, a range resolution ∆R ≈ 5 cm is achieved). Moreover, the
acquired measurements have been always pre-processed by a cancellation technique
already available on the employed radar device; this procedure exploits the measure-
ments acquired from the first transmitted frame to cancel out unwanted received echoes.
A 2D contour plot of the cost function Qt(θ̃, ϕ̃, τ̂1) (3.54) referring to the first scenario is
shown in Fig. 3.9. This 2D plot has been generated by evaluating this cost function at
the delay τ̃ = τ̂1 associated with the first (i.e., with the strongest) echo; this echo origi-
nates from target #2. A coarse estimate of the position of each target can be obtained by
identifying the peaks of this function. Note that, in the considered scenario, only two
peaks (corresponding to the targets #2 and #3) are clearly visible. This can be due to the
fact that: a) the tilt angle of target #1 reduces its RCS; b) the range of target #1 is not
exactly the same as that of the other two targets.
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FIGURE 3.9: 2D contour plot (in spherical coordinates) of the function Qt(θ̃, ϕ̃, τ̂1) (3.54) evalu-
ated at a fixed delay (i.e., at τ̃ = τ̂1) by the standard beamformer in the first scenario.
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The range/azimuth/elevation estimates generated by the developed iterative algo-
rithms in this scenario for each of the three targets, together with their computation time1

(CT) and computational complexity (in GFlops) are listed in Table 3.6; in this case, the or-
der P = 45 is adopted in the interpolation procedure based on Chebyshev polynomials.
This choice for the interpolation order represents the best trade off between accuracy
and computational complexity, as confirmed by Fig. 3.10. In this figure in fact, the val-
ues of the peak error ε̂ and the RMSE ε̄ obtained by CLEAN and MWLA for all the three
coordinates X, Y and Z are shown. These errors are related to the first scenario only,
described in Table 3.6. The value of the errors in correspondence of P = 45 are very low,
at the price of a reasonable computational complexity.
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FIGURE 3.10: Graphical representation of the a) peak error ε̂ and b) the RMSE ε̄ obtained by
CLEAN and MWLA for all the three coordinates X, Y and Z.

In the second scenario, the estimation accuracy of each algorithm has been assessed
by evaluating the RMSE ε̄ and the peak error ε̂ for the estimates of the spatial coordinates
of the targets (see eq. (3.73)-(3.74)); P = 45 has been selected again. These errors have
been computed on the basis of the measurements acquired in the three different config-
urations mentioned above; the 3D coordinates of the targets and the evaluated errors
are listed in Table 3.7 for both the CLEAN algorithm (CL) and the MWLA (ML). Note
that, in this case, the values of the RMSE and those of the peak error are quite similar
and comparable with the resolution of the employed radar device. These results and
those shown for the first scenario lead to the conclusion that the CLEAN algorithm and
the MWLA are able to accurately estimate the position of all the targets. Further re-
sults, not shown here for space limitations, have evidenced that: a) a similar accuracy
is also achieved in the presence of L = 4 targets with P = 45; b) if L ≥ 5, achieving
a good approximation of the functions Jt(θ̃, ϕ̃, τ̃) and L(θ̃, ϕ̃) (see eqs. (3.12) and (3.66),
respectively) requires increasing the order of the Chebyshev polynomials; c) the errors
of the cancellation procedure employed by both the CLEAN algorithm and MWLA ac-
cumulate over successive iterations, so that, for a large value of L, a number of iterations
greater than L might be required to identify all the targets of interest. The sensitivity of
the RMSE and that of the peak error to the order P has been also assessed in the sec-
ond scenario; for this reason, these errors have been also computed for values of this
parameter ranging from 30 to 120. The numerical results have evidenced that: 1) for
all the considered values of P, both the RMSE and the peak error are on the order of
1 cm (i.e., they are comparable with the resolution of the employed radar device); b)

1All the computation times regarding these experiments refer to those required by a desktop computer
equipped with an i7 processor.
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when P increases beyond 60, these errors become approximately constant and do not
significantly differ from those observed in the absence of interpolation. The impact of
P on the CT and overall computational complexity required for processing the whole
set of acquired measurements have been also assessed under the assumption of a single
detectable target (i.e., for L = 1); some results are shown in Fig. 3.11.

Algorithm Coord. T1 T2 T3 CT (sec) GFlops

Exact
X(m) 1.9 2.1 2.0
Y(m) -0.75 -0.3 0.7
Z(m) -0.1 -0.1 -0.1

CLEAN
X(m) 1.89 2.08 2.05
Y(m) -0.69 -0.29 0.62 8.7 457
Z(m) 0 0 -0.1

MWLA
X(m) 1.87 2.1 2.05
Y(m) -0.68 -0.29 0.62 0.9 15
Z(m) 0 -0.07 -0.1

TABLE 3.6: Spatial coordinates of the targets characterizing the first scenario and their estimates
computed by the CLEAN algorithm and the MWLA. The computation time (CT) and computation

complexity of these algorithms are also provided.

Exp.
Coord. Target ε̄ ε̂

1 2 3 CL ML CL ML

1
X(m) 1.35 0.03 0.02 0.03 0.02
Y(m) 0.32 0.03 0.03 0.03 0.03
Z(m) -0.15 0.04 0.04 0.04 0.04

2
X(m) 1.38 0.98 0.02 0.02 0.02 0.02
Y(m) 0.32 -0.75 0.05 0.01 0.07 0.02
Z(m) -0.15 -0.15 0.05 0.04 0.05 0.05

3
X(m) 1.38 0.98 2.10 0.02 0.01 0.02 0.02
Y(m) 0.32 -0.75 2.10 0.05 0.04 0.07 0.05
Z(m) -0.15 -0.18 -0.35 0.04 0.04 0.05 0.06

TABLE 3.7: 3D coordinates of the targets employed in the second scenario. The computed RMSE
and the peak errors for both the CLEAN algorithm and the MWLA are also provided.

These results lead to the following conclusions: 1) the computational complexity
and the processing time steeply increase with P; 2) the computational time/complexity
of the MWLA is substantially lower than that of the CLEAN algorithm.

The last result is due to the fact that: a) the MWLA algorithm requires the computa-
tion of the steering vector at a single frequency only (namely, at the reference frequency
fr); b) its estimation of targets parameters does not involve the computation of the cost
function Jt(θ̃, ϕ̃, τ̃) (3.12). All the results shown in Fig. 3.11 refer to L = 1; increasing L
(i.e., the required number of iterations) results in a linear increase of the complexity of
both the MWLA and the CLEAN algorithm. As for the 2D imaging algorithms, the last
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issue analysed in detail is represented by the behaviour of the residual energy

E(l)
H̃ =

N−1

∑
n=0

∥∥∥H̃(l)
t [n]

∥∥∥2
, (3.75)

available at the end of the l-th iteration in CLEAN and in MWLA, as l increases; here,
H̃(l)

t [n] represents the residual frequency response referring to the n-th frequency and
available at the beginning of the l-th iteration (see eq. (3.61)). Moreover, this energy
has been normalized with respect to its initial value E(1)

H̃ : the resulting parameter is
called normalised residual energy. The NRE computed for the third configuration of the
second scenario is shown in Fig. 3.12 (numerical results are identified by marks, whereas
continuous lines are drawn for ease of reading).
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FIGURE 3.11: Computational complexity and computational time versus P; the CLEAN and
MWLA algorithms are considered.

Note that, in this case, two sets of results are provided for each algorithm; one is
computed on the basis of the raw data acquired by the radar (i.e., of the experimental
data), the other one on the basis of computer generated data (i.e., of simulated data). In
the last case, three point targets, having the same spatial coordinates as those given in
Table 3.7, have been assumed. These results show that the iterative cancellation proce-
dure accomplished by CLEAN and MWLA results in a steep decrease of the NRE in the
simulated case. This leads to the same conclusion of the bi-dimensional case, i.e. that,
in principle, a stopping criterion based on this quantity could be adopted. However,
a slightly smaller rate of decrease is observed in the case of experimental data; this is
mainly due to the fact that: a) due to the high frequency of the impinging waves, the
metal disks employed in this experiments cannot be represented as point targets, so
that multiple echoes are received from each of them; b) the simulated radar signal is
characterized by a signal-to-noise ratio moderately higher than that one of the real signal
received by the radar. This suggests that a stopping criterion based on the evaluation of
the NRE can be really adopted in a real radar system, provided that its threshold is ad-
justed carefully. Note also that the NRE of CLEAN and that of MWLA exhibit a similar
rate of decrease in both cases.
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FIGURE 3.12: Normalized residual energy versus the iteration index l; the CLEAN algorithm
and the MWLA are considered.

3.6 Conclusions

Five deterministic techniques for jointly estimating ranges and DOA in a MIMO SFCW
radar system have been described for 2D radar imaging. All these techniques are de-
terministic and estimate target parameters through iterative cancellation procedures.
The obtained numerical results, based on real measurements, evidence that, in a 2D
scenario, the range and azimuth estimates computed by all algorithms are reasonably
accurate. However, on the one hand, MWLA achieves a slightly better accuracy and
requires a smaller computational effort than CLEAN; on the other hand, limited or no
improvement is found if the estimates generated by these techniques are processed by
an EM-based algorithm to refine them. Moreover, 3D extensions of CLEAN and MWLA
based on an interpolation method to reduce their computational complexity have been
described. The obtained numerical results, based on a set of experimental measure-
ments acquired by a commercial radar device, show that these algorithms perform sim-
ilarly and are able to generate accurate estimates of the 3D position of the detected tar-
gets. Similarly as 2D imaging, the MWLA requires a smaller computational effort than
CLEAN.
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4 |
A maximum likelihood
approach to target
detection and estimation

In radar signal processing for autonomous driving applications, optimal (i.e., maximum
likelihood, MLI) techniques for the estimation of the overall number of targets and of their
spatial coordinates cannot be employed in practice, since they require solving compli-
cated multidimensional optimization problems and, consequently, entail a huge com-
putational effort, even in the presence of a small number of targets [54]. This has mo-
tivated the development of various sub-optimal estimation techniques able to achieve
good estimation accuracy at a manageable computational cost. A well known sub-
optimal technique employed in real world radar systems is the one described in section
2.5 for FMCW radar systems; this requires: a) the computation of a multidimensional
Fast Fourier Transform (FFT) of the matrix collecting the time-domain samples of the sig-
nals acquired through the receive array of the employed radar device; b) the search for
the peaks of the resulting amplitude spectrum over a range-azimuth (range-azimuth-
elevation) domain for 2D (3D) imaging. As already devised in Par. 2.5, despite the
practical importance of this technique, it suffers from the following relevant drawback:
it can fail to locate targets whose electromagnetic echoes are weaker than those gener-
ated by other spatially close targets; this is due to the fact the spectral contribution due
to weak echoes is usually hidden by the leakage originating from stronger echoes. This
drawback may substantially affect the overall quality of radar imaging in the presence
of extended targets, since such targets can be usually modelled as a cluster of point tar-
gets characterized by different radar cross sections.

Alternative sub-optimal techniques available in the literature are based on the idea
of turning a complicated multidimensional optimization problem into a series of sim-
pler and interconnected optimization sub-problems, each of which involves a search for
the local maxima of a specific cost function over a limited 1D or 2D parameter space.
Examples of this approach are offered in Sect. 3.3 (3.4), where range-DOAs estimators
for SFCW MIMO radars, respectively, are proposed. In particular, various iterative de-
terministic methods applicable to a 2D and a 3D propagation scenario are derived. These
methods have the following relevant features: 1) they process a single snapshot of the
received signal (acquired over the whole antenna array); 2) they estimate a new target
in each iteration; 3) they do not require prior knowledge of the overall number of tar-
gets; 4) they involve 1D or 2D maximizations only; 5) they achieve a good accuracy at
a reasonable computational cost; 6) the computational effort they require can be easily
controlled by setting a threshold on the maximum number of targets to be detected.

In this chapter, other two novel detection and estimation algorithms named Range
and angle serial cancellation algorithm for 2D and 3D radar imaging are described. These
techniques, that have been developed and tested by me, similarly as CLEAN and MWLA
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(see Sect. 3.3 and 3.4) they are deterministic, process a single snapshot, operate in an it-
erative fashion and are computationally efficient; this last feature can be related to the
fact they require the evaluation of 1D Inverse Fourier Transforms only and the search
for the global maximum of proper cost functions over 1D (delay, azimuth or elevation)
domains. Moreover, they first extract the range of each detected target from the spectra
of the received signals and, then, fuse the information originating from such spectra to
extract DOA information.

In addition, they exploit a novel iterative estimation technique, dubbed complex sin-
gle delay estimation and cancellation, based on a serial cancellation approach for evaluating
the parameters of multiple overlapped complex exponentials in the presence of additive
noise.
This method, in turn, exploits the complex single delay estimator that is based on:

a) expressing the dependence of the MLI metric on the delay residual in an approx-
imate polynomial form through standard approximations of trigonometric func-
tions;

b) exploiting the alternating minimization technique for the maximization of this met-
ric (e.g., see [71, Par. IV-A]).

Moreover, its most relevant feature is represented by the fact that it requires the eval-
uation of spectral coefficients that are not exploited by all the other related estimation
methods available in the literature. The accuracy of the developed 2D and 3D radar
imaging techniques is assessed on the basis of the measurements acquired through
an SFCW commercial MIMO system in different scenarios. The obtained results lead
to the conclusion that the proposed methods achieve a good probability of conver-
gence and accuracy in the presence of multiple targets in both bidimensional and three-
dimensional spaces.

The remaining part of this chapter is organized as follows. The target detection
and delay estimation methods, on which the algorithms are based, are illustrated in
section 4.1, whereas the algorithms for bi-dimensional and three-dimensional imaging
are presented in section 4.2. The performance of the algorithms is analysed in section 4.5,
where various numerical results, based on experimental measurements, are illustrated.
Finally, some conclusions and final comments are offered in section 4.6.

4.1 Complex single delay estimators

In this section, a novel method for estimating the parameters of a complex exponential is
described. Then, it can be exploited how this method can be exploited to detect multiple
echoes and estimate their parameters through a deterministic procedure based on suc-
cessive cancellation. Finally, the computational complexity of the developed estimation
methods is analysed in detail.

4.1.1 Complex single delay estimator

Let us focus first on the problem of estimating the parameters (namely, the delay and
complex amplitude) of a single exponential contained in the complex sequence {xc,n;
n = 0, 1, ..., N − 1}, whose n-th sample is expressed by eq. (2.25) with L = 11, i.e. as

xc,n = A exp (−j2πnF) + wc,n (4.1)

1the target index l and the channel index v are omitted for simplicity.
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where A (2.26) and F are the complex amplitude and the normalised delay, respectively,
of the exponential itself. It is well known that the MLI estimates FMLI and AMLI of the
parameters F and A, respectively, represent the solution of the least square problem
(e.g., see [79, eq. (22)])

(FMLI, AMLI) ≜ arg min
F̃,Ã

ε(F̃, Ã), (4.2)

where F̃ and Ã represent trial values of F and A, respectively,

ε(F̃, Ã) ≜
1
N

N−1

∑
n=0

εn(F̃, Ã) (4.3)

is the mean square error (MSE) evaluated over the whole observation interval,

εn(F̃, Ã) ≜
[
xc,n − sn(F̃, Ã)

]2 (4.4)

is the square error between the noisy sample xc,n (4.1) and its useful component

sn(F̃, Ã) ≜ Ã exp
(
−j2πnF̃

)
, (4.5)

evaluated under the assumption that F = F̃ and A = Ã.
The cost function ε(F̃, Ã) (4.3) can be easily reformulated in a different way as fol-

lows. To begin, substituting the RHS of eq. (4.5) in that of eq. (4.4) produces, after some
manipulation,

εn(F̃, Ã) = |xc,n|2 + 2
[
Ã2

R + Ã2
I
]
− 2ℜ{xc,n Ã∗} cos(ϕ̃n) + 2ℑ{xc,n Ã∗} sin(ϕ̃n), (4.6)

where
ϕ̃n ≜ 2πnF̃, (4.7)

and ℜ{x} (ℑ{x}) denotes the real (imaginary) part of the complex variable x. Then,
substituting the RHS of eq. (4.6) into eq. (4.3) yields

ε(F̃, Ã) = εx + Ã2
R + Ã2

I − 2ÃRX̄R(F̃)− 2ÃI X̄I(F̃), (4.8)

where

εx ≜
1
N

N−1

∑
n=0
|xc,n|2, (4.9)

X̄R(F̃) ≜ ℜ{X̄(F̃)}, X̄I(F̃) ≜ ℑ{X̄(F̃)}, Ã = ÃR + jÃI and

X̄(F̃) ≜
1
N

N−1

∑
n=0

xc,n exp (jϕ̃n) =
1
N

N−1

∑
n=0

xc,n exp
(

j2πnF̃
)

, (4.10)

is, up to a scale factor, the Inverse Fourier transform (IFFT) of the sequence {xc,n}.
Based on eq. (4.8), it is not difficult to show that the optimization problem expressed

by eq. (4.2) does not admit a closed form solution because of the non-linear depen-
dence of the function ε(F̃, Ã) on its variable F̃. However, an approximate solution to
this problem can be derived by

a) Exploiting an iterative method, known as alternating minimization (AM) [71]. This
allows us to transform the two-dimensional optimization problem expressed by eq. (4.2)
into two interconnected one-dimensional problems, one involving the variable F̃ only
(conditioned on the knowledge of Ã), the other one involving the variable Ã only (con-
ditioned on the knowledge of F̃).
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b) Expressing the dependence of the function ε(F̃, Ã) on the variable F̃ through the
pair (Fc , δ̃) such that

F̃ = Fc + δ̃ FIDFT, (4.11)

where Fc is a given coarse estimate of F, δ̃ is a real variable called residual,

FIDFT =
1

N0
(4.12)

is the normalized fundamental delay associated with the N0-th order inverse discrete Fourier
transform (IDFT)

X0 = [X0,0, X0,1, ..., X0,N0−1]
T (4.13)

of the zero padded version

x0,ZP =
[
xT

0 0T
(M−1)N

]T
, (4.14)

of the vector
x0 ≜ [xc,0, xc,1, ..., xc,N−1]

T (4.15)

collecting all the elements of the sequence {xc,n}, M is a positive integer (dubbed over-
sampling factor), 0D is a D−dimensional (column) null vector and N0 ≜ M · N. It is
important to note that eq. (4.11)-(4.15) does not concern with the alternating maximiza-
tion method described in [71], but they are derived on the basis of the physics of the
problem.

c) Expressing the dependence of the function ε(F̃, Ã) (4.8) on the variable δ̃ through
its powers {δ̃l ; 0 ≤ l ≤ 3}; this result is achieved by approximating various trigono-
metric functions appearing in the expression of ε(F̃, Ã) with their Taylor expansions
truncated to a proper order (three) in order to have a sufficiently accurate result.

Let us show how these principles can be put into practice. First of all, the exploitation
of the above mentioned AM approach requires solving the following two sub-problems:
P1) minimizing the cost function ε(F̃, Ã) (4.8) with respect to Ã, given F̃ = F̂; P2) mini-
mizing the same function with respect to F̃, given Ã = Â. Sub-problem P1 can be easily
solved thanks to the polynomial dependence of the cost function ε(F̂, Ã) on the vari-
ables ÃR and ÃI . In fact, the minimum of the function ε(F̃, Ã) with respect to the last
variables results in

Ã = Â = X̄(F̂) (4.16)

Therefore, given F̃ = F̂, the optimal value Â of the variable Ã can be computed exactly
through the last equation; this requires the evaluation of X̄(F̂) that can be computed
exactly through (4.10) or, in an approximate fashion, through a computationally efficient
procedure based on the fact that the vector

X̄s ≜ M X0 (4.17)

collects N0 uniformly spaced samples of the function X̄(F) (4.10). In fact, the k-th ele-
ment

X0,k ≜
1

N0

N−1

∑
n=0

xc,n exp
(

j
2πnk

N0

)
, (4.18)

of vector X0 (4.13) can be expressed as

X0,k =
N
N0

X̄ (Fk) =
1
M

X̄ (Fk) , (4.19)
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where
Fk ≜ k FIDFT (4.20)

with k = 0, 1, ..., N0− 1. For this reason, an approximate evaluation of the quantity X̄(F̂)
at a normalised delay F̂ different from any multiple of FIDFT (4.12) can be accomplished
by interpolating the elements of the vector X̄s (4.17); the last vector, in turn, can be easily
computed after evaluating the N0-th IFFT of x0,ZP (4.14), i.e. the vector X0 (4.13).

Let us now take into consideration now sub-problem P2. Unluckily, this sub-problem
does not admit a closed form solution. For this reason, an approximate solution is de-
veloped in the following. Such a solution is based on representing the normalized delay
F in the same form as F̃ (see eq. (4.11)), i.e. as

F = Fc + δ FIDFT (4.21)

and on a novel method for estimating the real residual δ, i.e., for accomplishing the fine
estimate of F. This method is derived as follows. Representing the trial normalized delay
F̃ according to eq. (4.11) allows us to express the variable ϕ̃n (4.7) as

ϕ̃n = θ̂n + n∆̃, (4.22)

where
∆̃ ≜ 2πδ̃ FIDFT (4.23)

is a new variable and
θ̂n ≜ 2πn Fc. (4.24)

Then, substituting the RHS of eq. (4.22) into eq. (4.6) (with Ã = Â) yields

εn(F̃, Â) = |xc,n|2 + Â2
R + Â2

I − 2ℜ{xc,n Â∗} cos
(
n∆̃ + θ̂n

)
+ 2ℑ{xc,n Â∗} sin

(
n∆̃ + θ̂n

)
(4.25)

Based on the last equation, the following expression can be derived

εn(F̃, Â) = |xc,n|2 + Â2
R + Â2

I − 2(x(R)
c,n ÂR + x(I)

c,n ÂI) ·
[
cos(θ̂n) cos(n∆̃)− sin(θ̂n) sin(n∆̃)

]
+ 2(x(I)

c,n ÂR − x(R)
c,n ÂI) ·

[
sin(θ̂n) cos(n∆̃) + cos(θ̂n) sin(n∆̃)

]
. (4.26)

where ÂR ≜ ℜ{Â}, ÂI ≜ ℑ{Â}, x(R)
c,n ≜ ℜ{xc,n}, x(I)

c,n ≜ ℑ{xc,n} and ϕ̃n is defined by eq.
(4.22) (see also eqs. (4.23)-(4.24)). If the normalised delay FIDFT is sufficiently small, i.e.
if the IFFT order is large enough, and assuming that:

cos
(
n∆̃
)
≈ 1− 2n2∆̃2 (4.27)

and

sin
(
n∆̃
)
≈ n∆̃− n3 ∆̃3

6
(4.28)
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are valid approximations, the following approximate expression can be obtained after
few algebraic manipulations

εCSDE
(
∆̃, Â

)
≜ εx + Â2

R + Â2
I

− 1
3

∆̃3
(

ÂR X̄(I)
3,ρ − ÂI X̄(R)

3,ρ

)
+ ∆̃2

(
ÂR X̄(R)

2,ρ + ÂI X̄(I)
2,ρ

)
+ 2∆̃

(
ÂI X̄(R)

1,ρ − ÂR X̄(I)
1,ρ

)
− 2

(
ÂR X̄(R)

0,ρ + ÂI X̄(I)
0,ρ

)
(4.29)

can be derived for the function ε(F̃, Â) (4.8); here,

ρ ≜ Fc/FIDFT, (4.30)

X̄(R)
k,ρ ≜ ℜ{X̄k,ρ}, X̄(I)

k,ρ ≜ ℑ{X̄k,ρ}, for any k, p and x ≥ 0,

X̄k,ρ ≜
1
N

N−1

∑
n=0

xk,n exp
(

j
2πnρ

N0

)
, (4.31)

for any ρ and k = 1, 2, and
xk,n ≜ nk · xc,n (4.32)

with n = 0, 1, ..., N− 1. It is important to point out that: a) if ρ is an integer, the quantity
X̄k,ρ (4.31) (with k = 1 and 2) represents the ρ-th element of the vector

Xk = M [Xk,0, Xk,1, ..., Xk,N0−1]
T (4.33)

generated by the N0-th order IDFT of the zero padded version

xk,ZP =
[
xT

k 0T
(M−1)N

]T
, (4.34)

of the vector
xk ≜ [xk,0, xk,1, ..., xk,N−1]

T ; (4.35)

b) if ρ is not an integer, the quantity X̄k,ρ can be evaluated exactly using eq. (4.31) or, in
an approximate fashion, by interpolating a subset of adjacent elements of the vector Xk
(4.33); c) the evaluation of the vectors {Xk; k = 1, 2} requires two additional IFFTs.

Since the function εSDE(∆̃, Â) (4.29) is a polynomial of degree 3 in the variable ∆̃, an
estimate ∆̂ of ∆ and, consequently, an estimate (see eq. (4.23))

δ̂ =
∆̂

2πFIDFT
(4.36)

of δ, can be obtained by computing the derivative of this function with respect to ∆̃,
setting it to zero and solving the resulting quadratic equation

a (ρ) ∆̃2 + b (ρ) ∆̃ + c (ρ) = 0, (4.37)

in the variable ∆̃; here,

a (ρ) ≜
1
2
ℑ
{

Â∗X̄3,ρ
}

, (4.38)
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b (ρ) ≜ −ℜ{Â∗X̄2,ρ} (4.39)

and
c (ρ) ≜ −ℑ{Â∗X̄1,ρ}. (4.40)

Note that only one of the two solutions of eq. (4.37), namely

∆̂ = −
b (ρ) +

√
(b (ρ))2 − 4a (ρ) c (ρ)

2a (ρ)
(4.41)

has to be employed. A simpler estimate of ∆ is obtained neglecting the contribution of
the first term in the left-hand side of eq. (4.37), i.e. setting a (ρ) = 0. This leads to a
first-degree equation, whose solution is

∆̂ = −c (ρ) /b (ρ) . (4.42)

Given an estimate ∆̂ of ∆ (and, consequently, and estimate δ̂ of δ; see eq. (4.36)), the
fine-grained estimate

F̂ = Fc + δ̂ FIDFT = Fc +
∆̂

2π
(4.43)

of F can be evaluated on the basis of eq. (4.21).

The mathematical results derived above allow us to devise a novel estimation algo-
rithm, called complex single delay estimator (also abbreviated as CSDE in the following),
for iteratively estimating the normalised delay F and the complex amplitude A. This
algorithm is initialised by

1) Evaluating: a) the vector X0 (4.13); b) the initial coarse estimate F̂(0)
c of F as

F̂(0)
c = α̂ FIDFT, (4.44)

where the integer α̂ is computed by means of the well known periodogram method (e.g.,
see [79, Sec. IV] or [80, Sec. I]), i.e. as

α̂ = arg max
α̃∈{0,1,...,N0−1}

|X̄0,α̃| ; (4.45)

c) the quantity (see eq. (4.30))

ρ̂(0) ≜
F̂(0)

c

FIDFT
= α̂; (4.46)

d) the initial estimate Â(0) of A on the basis of eq. (4.16) with F̂ = F̂(0)
c ; e) the spectral

coefficients X̄1,α̂ and X̄2,α̂ on the basis of eq. (4.31); f) the coefficients {a(α̂), b(α̂), c(α̂)}
({b(α̂), c(α̂)} according to eqs. (4.38)–(4.40) and the first estimate ∆̂(0) of ∆ on the basis
of eq. (4.41); g) the first fine estimate F̂(0) of F on the basis of eqs. (4.21) and (4.44), i.e. as

F̂(0) = F̂(0)
c +

∆̂(0)

2π
(4.47)

2) Setting its iteration index i to 1.
Then, an iterative procedure is started. The i-th iteration is fed by the estimates F̂(i−1)

and Â(i−1) of F and A, respectively, and produces the new estimates F̂(i) and Â(i) of the
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same quantities (with i = 1, 2, ..., NCSDE, where NCSDE is the overall number of itera-
tions); the procedure employed for the evaluation of F̂(i) and Â(i) consists of the two
steps described below (the p-th step is denoted by CSDE-Sp).

CSDE-S1 - The new estimate ∆̂(i) of ∆ is computed through eq. (4.41) (eq. (4.42));
in the evaluation of the coefficients {a (ρ), b (ρ), c (ρ)} ({b (ρ), c (ρ)}) appearing in the
RHS of these equations, Â = Â(i−1) and

ρ = ρ̂(i−1) ≜ F̂(i−1)/FIDFT (4.48)

are assumed. Then,

F̂(i) = F̂(i−1) +
∆̂(i)

2π
(4.49)

is evaluated.

CSDE-S2 - The new estimate Â(i) of Â is evaluated through eq. (4.16); F̂ = F̂(i) is
assumed in this case. Moreover, the index i is incremented by one before starting the
next iteration.

At the end of the last (i.e., of the NCSDE-th) iteration, the fine estimates F̂ = F̂(NCSDE)

and Â = Â(NCSDE) of F and A, respectively, become available. A proper value of the
number of iteration NCSDE can be obtained when the absolute distance |F̂(i)− F̂(i−1)| <<
0 and |Â(i) − Â(i−1)| << 0 are lower than zero. The CSDE is summarized in Algorithm
6.

Algorithm 6: Complex single delay estimator

1 Initialisation:
a- Evaluate X0 (4.13) and α̂ based on eq. (4.45); then, compute the initial estimate

Â(0) of A (4.16) and set ρ̂(0) = α̂ (see eq. (4.46)).
b- Evaluate the quantities X̄k,α̂ according to eq. (4.31) for k = 1, 2; then, compute
{a(α̂), b(α̂), c(α̂)} according to eqs. (4.38)–(4.40). Finally compute ∆̂(0) and F̂(0)

according to eqs. (4.41) and eq. (4.43), respectively.
2 Refinement: for i = 1 to NCSDE do

c- Estimation of A:
Set F̂ = F̂(i−1); then, evaluate X̄(F̂) according to eq. (4.10) or by interpolating
a few adjacent elements of X̄s (4.17). Finally, compute ρ̂(i−1) and Â(i)

according to eqs. (4.48) and (4.16), respectively.
d- Estimation of F:
Set Â = Â(i); then, compute X̄k,ρ̂(i−1) according to eq. (4.31) or or by

interpolating a few adjacent elements of X̄k (4.33); then, compute {a(ρ̂(i−1)),
b(ρ̂(i−1)), c(ρ̂(i−1))} (4.38)–(4.40). Finally, compute ∆̂(i) and F̂(i) according to
eqs. (4.41) and (4.49), respectively.

end

It is worth observing that:

a) The estimate δ̂(i) of the residual δ computed by the CSDE in its i-th iteration is
expected to become smaller as i increases, since F̂(i) should progressively approach F if
the algorithm converges.

b) The quantities {X̄k,ρ̂(i−1) ; k = 1, 2} required in the first step of the i-th iteration can
be computed exactly on the basis of eq. (4.31). However, they can be also evaluated,
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in an approximate fashion, by interpolating I adjacent elements of the N0-dimensional
vectors Xk (4.33), where I denotes the selected interpolation order.

c) The estimate ∆̂(i) evaluated according to eq. (4.42) is expected to be less accurate
than that computed on using eq. (4.41). However, the obtained numerical results have
evidenced that both solutions achieve similar accuracy. Despite, the use of eq. (4.41) is
assumed in Algorithm 6 for generality.

d) The CSDE can be employed even if the single exponential appearing in the RHS
of eq. (4.1) is replaced by the superposition of L distinct exponentials. In this case, the
strongest (i.e., the dominant) exponential is detected through the periodogram method
(see eq. (4.45)) and the parameters of this exponential are estimated in the presence of
both Gaussian noise and the interference due to the remaining exponentials. Therefore,
the estimation accuracy of the CSDE is affected by both the amplitudes and the delays
of the other (L− 1) exponentials.

e) A stopping criterion, based on the trend of the sequence {∆̂(i); i = 1, 2, ...}, can
be easily formulated for the CSDE. For instance, the execution of its two steps can be
stopped if, at the end of the i-th iteration, the condition∣∣∣∆̂(i)

∣∣∣ < ε∆ (4.50)

is satisfied; here, ε∆ represents a proper threshold.

4.1.2 Complex single delay estimation and cancellation

Let us analyse now in detail how the technique derived in the previous paragraph can be
exploited to estimate the multiple complex exponentials that form the useful component
of the complex sequence {xc,n}, when its n-th sample is expressed by eq. (2.25), with
L > 1. The recursive method developed to achieve this based on the following basic
principles:

1. Exponentials are sequentially detected and estimated.

2. The detection of a new exponential and the estimation of its parameters are based
on the procedure developed for the CSDE in the previous paragraph; in addi-
tion, a cancellation algorithm is incorporated in both these methods to remove the
contribution of previously detected exponentials from all the spectral information
(namely, the spectrum X̄(F) (4.10), the vector X0 (4.13) and the coefficients {X̄k,ρ}
(4.31)), that are processed to detect and estimate the new exponential.

3. After detecting a new echo and estimating its parameters, a re-estimation technique
is executed to improve the accuracy of both this exponential and the previously es-
timated ones; the proposed technique is inspired by the related methods described
in refs. [81], [82] and [83].

4. A proper criterion is adopted to stop recursions. This allows to estimate the (un-
known) number of targets, that is the value of the parameter L.

The recursive method relying on these principles is called complex single delay estima-
tion and cancellation (briefly CSDEC in the following). The CSDEC algorithm is initialised
by:

1) Executing the CSDE, fed by the complex sequence {xc,n}, to generate, through
NCSDE iterations, the initial estimates F̂0 [0] and Â0 [0] of the normalized delay and the
complex amplitude, respectively, of the first detected echo.

2) Setting the recursion index r to 1.
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Then, a recursive procedure is started. The r-th recursion is fed by the vectors

F̂ [r− 1] =
[
F̂0 [r− 1] , F̂1 [r− 1] , ..., F̂r−1 [r− 1]

]T , (4.51)

and
Â [r− 1] =

[
Â0 [r− 1] , Â1 [r− 1] , ..., Âr−1 [r− 1]

]T
, (4.52)

collecting the delays and the associated complex amplitudes characterizing the r expo-
nentials detected and estimated in the previous (r − 1) recursions, and generates the
new vectors

F̂ [r] =
[
F̂0 [r] , F̂1 [r] , ..., F̂r [r]

]T (4.53)

and
Â [r] =

[
Â0 [r] , Â1 [r] , ..., Âr [r]

]T
(4.54)

after: a) estimating the delay F̂r [r] and the associated complex amplitude Âr [r] of a new
(i.e., of the r-th) echo (if any); b) refining the estimates of the r echoes available at the
beginning of the considered recursion. The procedure employed for accomplishing all
this consists of the three steps described below (the p-th step is denoted by CSDEC-Sp).

CSDEC-S1 (CSDE initialisation with cancellation) - In this step, the following quanti-
ties are evaluated (see the initialisation part of Algorithm 6):

a) The residual spectrum

X0 [r] = [X0,0 [r] , X0,1 [r] , ..., X0,N0−1 [r]]
T

≜ X0 − C0
(
Â [r− 1] , F̂ [r− 1] , r

)
, (4.55)

where X0 is the N0-th order IDFT of the zero padded version x0,ZP of the vector x0
collecting all the elements of the sequence {xc,n} (see eqs. (4.14)–(4.15)) and the N0-
dimensional vector

C0
(
Â [r− 1] , F̂ [r− 1] , r

)
≜

r−1

∑
l=0

C̄0
(

Âl [r− 1] , F̂l [r− 1]
)

, (4.56)

represents the contribution given by all the estimated echoes to X0. In particular,

C̄0(Âl [r− 1], F̂l [r− 1]) = Āl W̄(l)
0 , (4.57)

where W̄(l)
0 denotes, up to a scale factor, the N0-th order IDFT of the vector

w̄(l)
0 ≜

[
1, w̄l , w̄2

l , ..., w̄N−1
l , 0, ..., 0

]T
. (4.58)

and
w̄l ≜ exp(−j2πF̂l [r− 1]). (4.59)

Then, the m-th element of the vector W̄(l)
0 is given by

W̄(l)
0 [m] =

1
N

N−1

∑
n=0

w̄n
l exp

(
j
2πm
N0

n
)
=

1
N

N−1

∑
n=0

(q [m])n , (4.60)

where

q [m] ≜ exp
(
−j2π

(
F̂l [r− 1]− m

N0

))
. (4.61)
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Therefore, the identity
N−1

∑
n=0

qn =
qN − 1
q− 1

, (4.62)

holding for any q ∈ C, can be exploited for an efficient computation of all the elements
of the vector W̄(l)

0 .
If the overall energy

E0[r] ≜ |X0 [r]|2 (4.63)

satisfies the inequality
E0[r] < TCSDEC, (4.64)

where TCSDEC is a proper threshold, the algorithm stops and the estimate L̂ = r of L is
generated.

b) The integer (see eq. (4.45))

α̂ [r] = arg max
α̃∈{0,1,...,N0−1}

|X0,α̃ [r]| , (4.65)

that represents the index of the element of X0 [r] (4.55) having the largest absolute value.
c) The preliminary estimate

Ār [r] = X̄(F̂c,r [r])− X̄lk,0
(
Â [r− 1] , F̂ [r− 1] , F̂c,r [r]

)
(4.66)

of the complex amplitude of the new echo; here,

F̂c,r [r] = α̂[r] FIDFT (4.67)

and

X̄lk,0
(
Â [r− 1] , F̂ [r− 1] , F̂c,r [r]

)
≜

r−1

∑
l=0

X̄0
(

Âl [r− 1] , F̂l [r− 1] , F̂c,r [r]
)

(4.68)

represent the coarse estimate of the delay of the new echo (see eq. (4.44)) and the contri-
bution given to X̄(F) by all the estimated echoes (i.e., the leakage) at the delay F = F̄c,r[r],
where X̄0(Âl [r− 1], F̂l [r− 1], F̂c,r[r]) is the leakage due to the l-th echo.

d) The spectral coefficient

X̄k,ρ[r] [r] = X̄k,ρ[r] − X̂lk,k
(
Â [r− 1] , F̂ [r− 1] , F̂c,r [r]

)
(4.69)

for k = 1, 2 and 3; here, we have that (see eq. (4.46))

ρ [r] = F̂c,r[r]/FIDFT = α̂[r] (4.70)

and

X̂lk,k
(
Â [r− 1] , F̂ [r− 1] , F̂c,r [r]

)
≜

r−1

∑
l=0

X̄lk,k
(

Âl [r− 1] , F̂l [r− 1] , F̂c,r [r]
)

(4.71)

is the contribution given to X̄k,ρ[r] [r] by all the estimated exponentials (i.e., the leakage)
at the normalised delay F̂c,r [r] (in particular, X̄lk,k(Âl [r − 1], F̂l [r − 1], F̂c,r[r]) represents
the leakage due to the l-th estimated echo). This last function, for a generic index k can
be expressed as

X̄lk,k
(

Âl [r− 1] , F̂l [r− 1] , F̂c,r [r]
)
= C̄l W̄(l)

k (F̂c,r [r]), (4.72)
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where the quantity

W̄(l)
k (F̂c,r [r]) =

1
N

N−1

∑
n=0

nk w̄n
l exp

(
j2πnF̂c,r [r]

)
=

1
N

N−1

∑
n=0

nk
(

p(m)
)n

(4.73)

with
p(m) ≜ exp

(
−j2π

(
F̂l [r− 1]− F̂c,r [r]

))
. (4.74)

For a more efficient computation of eq. (4.73) using (4.74) considering

q(x) ≜ exp
(
−j

2πx
N0

)
, (4.75)

the following identities can be employed:

(q− 1)2
N−1

∑
n=0

n qn = (N − 1)qN+1 − NqN + q, (4.76)

(q− 1)3
N−1

∑
n=0

n2qn = (N − 1)2qN+2 +
(
−2N2 + 2N + 1

)
qN+1 + N2qN − q2 − q (4.77)

and

(q− 1)4
N−1

∑
n=0

n3qn = q + 4q2 + q3 − N3qN +
(
3N3 − 3N2 − 3N − 1

)
qN+1

+
(
−3N3 + 6N2 − 4

)
qN+2 + (N − 1)3qN+3 (4.78)

e) The coefficients a (α̂ [r]), b (α̂ [r]) and c (α̂ [r]), the residual ∆̂(0) [r] and the normal-
ized delay

F̂(0)
r = F̂c,r[r] +

∆̂(0) [r]
2π

(4.79)

on the basis of eqs. (4.38)–(4.40), eq. (4.41) (or eq. (4.42)), and eqs. (4.44) and (4.47). Note
that F̂(0)

r represents the initial fine estimate of the normalized delay of the new exponen-
tial. The evaluation of the delay F̂(0)

r (4.79) concludes the initialization of the modified
CSDE executed for the detection and the estimation of the new echo.

CSDEC-S2 (CSDE refinement with cancellation) - After carrying out the first step,
NCSDE iterations2 are executed to refine the estimate of the parameters of the new ex-
ponential. The processing accomplished in this step follows closely that described in
the refinement part of Algorithm 6. For this reason, in each iteration, a new estimate of
the complex amplitude and of the delay residual of the r-th exponential are computed.
This requires re-using eqs. (4.66)–(4.68) and (4.69), respectively, in order to remove the
leakage in the spectrum X̄(F) and in the coefficients X̄k,ρ (see steps c and d, respectively).
At the end of the last iteration, the delay F̂CSDE,r [r] and the associated complex ampli-
tude ÂCSDE,r [r] of the new exponential are available; these represent F̂r [r] and Âr [r],
respectively, if the following re-estimation step is not accomplished.

2The potential dependence of the parameter NCSDE on the recursion index r is ignored here for simplic-
ity.
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CSDEC-S3 (re-estimation) - This step is fed by the (r + 1) normalized delays {F̂0 [r− 1],
F̂1 [r− 1] , ..., F̂r−1 [r− 1] , F̂CSDE,r [r]} and the associated complex amplitudes {Â0 [r− 1],
Â1 [r− 1], ..., Âr−1 [r− 1] , ÂCSDE,r [r]}. It consists in repeating the previous step for each
of the detected echoes, starting from the first one and ending with the (r + 1)-th one.
This means that, when re-estimating the l-th echo, the leakage due to the echoes whose
index belong to set {0, 1, .., l − 1, l + 1, ..., r} has to be removed by exploiting equations
similar to (4.66) and (4.69)–(4.71), with l = 0, 1, ..., r. This allows us to progressively
refine the amplitude and the delay of each echo, so generating the final delays {F̂0 [r],
F̂1 [r], ..., F̂r [r]} and their complex amplitudes {Â0 [r], Â1 [r], ..., Âr [r]}. Note that, in
principle, the re-estimation can be accomplished multiple (say, NRES) times.

Algorithm 7: Complex single delay estimation and cancellation (CSDEC)

1 a- Initialisation:

• Set the index r ← 0

• evaluate F̂0[0] and Â0[0];

• Computation of the initial energy E0[r] through eq. (4.63).

while E0[r] > TCSDEC do

• r ← r + 1

• Estimation of X0[r] (4.55)-(4.56);

• Coarse estimation of Ār[r] and F̄c,r[r] through eqs. (4.65)-(4.68).

• Evaluation of X̄k,ρ[r][r] through eqs. (4.69)-(4.71).

• Evaluation of a(α̂[r]), b(α̂[r]), c(α̂[r]) and F̂(0)
r based on eqs. (4.38)-(4.40) and eq.

(4.79), respectively;

• ÂCSDE,r ← Ār[r];

• F̂CSDE,r ← F̄r[r];

2 b- Refinement:
Considering {Â0 [r− 1], Â1 [r− 1] , ..., Âr−1 [r− 1] , ÂCSDE,r [r]} and
{F̂0 [r− 1], F̂1 [r− 1] , ..., F̂r−1 [r− 1] , F̂CSDE,r [r]}:

3 for i = 1 to NRES do
4 for i = 1 to NCSDE do

• Coarse estimation of Ār[r] and F̄c,r[r] through eqs. (4.65)-(4.68).

• Evaluation of X̄k,ρ[r][r] based on eqs. (4.69)-(4.71).

• Evaluation of a(α̂[r]), b(α̂[r]), c(α̂[r]) and F̂(i)
r based on eqs. (4.38)-(4.40) and eq.

(4.79), respectively.

end
end

5 c- Computation of the energy E0[r] through eq. (4.63)
end



70 Chapter 4. A maximum likelihood approach to target detection and estimation

The estimates generated by the CSDEC algorithms are biased. However, this bias
can be removed by running an additional (i.e., a fourth) step after that these algo-
rithms have been executed. In this final step, the estimation algorithm developed by
Ye and Aboutanios in ref. [84], [85] is carried out after initializing it with the estimates
{F̂0[L̂], F̂1[L̂], ..., F̂L̂−1[L̂]} and their complex amplitudes {Â0[L̂], Â1[L̂], ..., ÂL̂−1[L̂]}
({Ĉ0[L̂], Ĉ1[L̂], ..., ĈL̂−1[L̂]}) generated by the CSDE. The hybrid techniques resulting
from interconnecting the CSDEC algorithms with the above mentioned algorithm are
dubbed hybrid CSDEC (HCSDEC). The scheme for the CSDEC is proposed in Algo-
rithm 7. The CSDE and CSDEC algorithms are employed in the bi-dimensional and
three-dimensional imaging described below in Par. 4.2.

It is worth pointing out that:
a) The oversampling factor M adopted in the computation of the vectors {X(l)

k } and
the stopping criterion employed by the CSDE (i.e. the maximum value of NCSDE) need
to be carefully adjusted to achieve a good accuracy in the estimation of the parameters
of each new exponential.

b) Poor estimation of the normalised delay Fl and/or the complex amplitude Al may
lead to significant error accumulation if CSDEC-S3 is removed; it is important to keep in
mind that a fundamental role in accurate cancellation is played by the accuracy of the
estimated delay residual.

c) The threshold TCSDEC needs to be properly adjusted in order to ensure that the
probability that L̂ equals to L is close to unity. On the one hand, a large value of TCSDEC
may lead to miss weaker echoes; on the other hand, a small value of this parameter may
lead to the identification of non-existent echoes and, consequently, of false targets in a
radar system.

4.1.3 Computational complexity

The complexity of the estimation algorithms developed in paragraphs (4.1.1) and (4.1.2)
has been carefully assessed in terms of number of floating operations (flops) to be exe-
cuted in the detection of L targets. This analysis leads to the conclusion that these are
approximately of order O(MCSDE), with

MCSDE = N0 log2 N0 + KCSDE NCSDE I2; (4.80)

here, NCSDE represents the overall number iterations accomplished by the CSDE and
KCSDE = 1/2. Computer simulations have evidenced that, in the considered scenarios,
a small value of I is required if the so called barycentric interpolation is employed (see
[76]). For this reason, the contribution of the second term appearing in the RHS of both
eq. (4.80) can be neglected; therefore, the order of the overall computational cost of both
estimators is approximated well by the first term, which originates from IFFT process-
ing. Moreover, based on the last results, it is not difficult to show that the computational
costs of the CSDEC are approximately of order O(MCSDEC), with

MCSDEC = N0 log2(N0) + KCSDE L N CSDE I2, (4.81)

if no re-estimation is accomplished (see CSDEC-S3 in the description of the CSDEC algo-
rithms) and the algorithms stop after detecting the last echo. Note that the first term
appearing in the RHS of eq. (4.81) accounts for the initialization (and, in particular, for
the computation of the vectors X0 (4.13) and {Xk} (4.33)), whereas the second term for



4.2. Bi-dimensional and three-dimensional imaging 71

the fact that, in the CSDEC, the CSDE is executed L times. It is worth noting that the
costs due to the evaluation of the estimated echoes detected after the first one and to
their time domain cancellation do not play an important role in this case. However, if
re-estimation is accomplished, the parameter L appearing in the RHS of 4.81) is replaced by
L2, since this task involves all the estimated exponentials. Despite this, the increase in
the overall computational cost of the CSDEC with respect to the CSDE is limited since
the use of re-estimation allows these algorithms to achieve convergence with a smaller
value of the parameter NCSDE.

4.2 Bi-dimensional and three-dimensional imaging

All the algorithms developed in the following section can be considered as specific in-
stances of the general detection and estimation method described by the block diagram
shown in Fig. 4.1. The processing accomplished by the blocks this diagram consists of
can be summarized as follows. Each vector of the set {x(v)c }, collecting NV vectors (see
eq. (2.25)), undergoes IFFT processing, so that the analysis of the acquired measure-
ments is moved from the frequency-domain to time-domain. The output of the IFFT
block is processed by the range profile estimator (RPE), that generates the so called target
range profile (TRP), i.e. a collection of the ranges at which the relevant echoes are de-
tected and of the associated energies. Note that the last quantities allow us to rank each
range on the basis of its preceptual importance. The output of the IFFT processing and
the target range profile are processed by the spatial estimator (SPE). This block detects all
the targets associated with each range appearing in the TRP and estimates their angular
parameters; moreover, it may generate a finer estimate of their range. The SPE output
is represented by the set {(R̂l , θ̂l , ϕ̂l); l = 0, 1, ..., L̂− 1}, where L̂ represents an estimate
of the parameter L (i.e., of the overall number of point targets), whereas R̂l , θ̂l and ϕ̂l
represent an estimate of the range Rl , azimuth θl and elevation ϕl , respectively, of the
l-th target (with l = 0, 1, ..., L̂− 1).

IFFT 

Processing

SPE

RPE

TRP

{𝒙𝑐
𝑣
}

{ 𝑅𝑙 , መ𝜃𝑙, 𝜙𝑙 , | መ𝐴𝑙|}

FIGURE 4.1: Block diagram describing the general method proposed in this work.

It is important to point out that:

1. If this method is adopted, range estimation is decoupled from angular estima-
tion, so that a 3D (2D) detection and estimation problem is turned into a) a 1D
detection/estimation problem involving the detection of multiple targets and the
estimation of their ranges only plus b) a 2D (1D) estimation problem concerning
the targets detected at the same range and the estimation of their azimuth and
elevation (azimuth) only. Consequently, the overall problem of detecting multi-
ple targets and estimating their range and angles is turned into a pair of simpler
detection and estimation problems.
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2. The SPE exploits the range information generated by the RPE in order to concen-
trate its computational effort on a set of well defined ranges; this allows reducing the
size of the search space involved in spatial estimation. This explains also why the
processing accomplished by the SPE cannot start before that at a least a portion
of the range/energy information (i.e., a portion of the TRP) generated by the RPE
becomes available.

3. Various techniques can be exploited in the RPE and in the SPE to develop compu-
tationally efficient implementations of this method.

As far as the last point is concerned, the following techniques can be adopted by the
RPE to mitigate its complexity:

a) Antenna selection – This consists in feeding the RPE with a subset of the outputs of
the IFFT block; such outputs are generated on the basis of NA of the NV VAs.
Note that, on the one hand, a larger NA allows to compute more accurate TRP; on
the other hand, selecting a smaller NA results in a reduction of the overall effort
required for the computation of the TRP.

b) Antenna-by-antenna processing – The measurements acquired through the selected NA
VAs can be efficiently processed by adopting a two-step procedure. In the first
step, target range estimation is accomplished on each VA independently of all the
other VAs, i.e. the acquired measurements are processed on an antenna-by-antenna
basis; this is beneficial when parallel computing hardware is employed in the ex-
ecution of the first step. In the second step, instead, the target range information
extracted from each of the selected NA VAs are fused to generate the TRP.

c) Serial target cancellation in the range domain – Target detection and range estimation on
each VA represents a multidimensional problem since they aim at detecting multiple
targets and estimating their ranges. In the considered method, this multidimen-
sional problem is turned into a sequence of 2D estimation problems by adopting a
serial interference cancellation (SIC) approach (like the one proposed in Par. 3.3 and
Par. 3.4). This means that the noisy signal observed on each VA is processed in
an iterative fashion. At each iteration, a single (and, in particular, the strongest)
target is detected, and its range and complex amplitude are estimated. Then, the
contribution of this target to the received signal is estimated and subtracted from
the signal itself (i.e., the detected target is treated as a form of interference to be
cancelled), so generating a residual signal. The last signal represents the input
of the next iteration. This procedure is repeated until the overall energy of the
residual drops below a given threshold. Note also that the use of this SIC-based
approach allows us to mitigate the impact of the spectral leakage due to strong tar-
gets, that can potentially hide weak targets having similar ranges. The range and
complex estimation in each selected VA is implemented by the CSDEC algorithm
thoroughly described in paragraph 4.1.2.

In the SPE, instead, the following techniques can be employed to reduce its overall
computational complexity:

a) Alternating maximization – As for MWLA (see paragraph 3.3 and 3.4), the alternating
maximization technique is exploited to develop iterative algorithms that alternate
the estimation of the elevation of a given target with that of its azimuth; for this
reason, a 2D optimization problem is turned into a pair of interacting 1D opti-
mization problems. Actually, this technique is also exploited by the RPE in its
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serial target cancellation in the range domain; in fact, this allows to decouple the
estimation of the normalised delay characterizing a given target from that of its
complex amplitude.

b) Serial target cancellation in the angular domain – Each of the ranges collected in the TRP
is associated with an unknown number of targets; for this reason, the process-
ing accomplished by SPE aims at resolving all the targets associated with a given
range and estimating their angular coordinates. In the considered method, a SIC
approach is exploited to turn this multidimensional problem into a sequence of
2D (1D) estimation problems if a 3D (2D) propagation scenario is considered. This
means that the noisy data referring to a specific range and acquired on all the VAs
are iteratively processed to detect a single (and, in particular, the strongest) target,
and to estimate its angular coordinates and complex amplitude. Then, the contri-
bution of this target to the outputs of the IFFT block is estimated and subtracted
from them, so generating a set of residual data. This detection/estimation/cancellation
procedure is iteratively applied to the residual data until its overall energy drops
below a given threshold. Moreover, in a 3D propagation scenario, this procedure
is combined with the AM approach described in the previous point; this allows to
detect and estimate the angular parameters of a single target (i.e., to solve a 2D op-
timization problem) by means of an iterative procedure alternating the estimation
of its elevation with that of its azimuth (i.e., by means of an algorithm solving two
intertwined 1D optimization problems). Note also that the use of serial cancella-
tion allows us to mitigate the impact of the spectral leakage due to strong targets,
that can potentially hide weak targets having similar spatial coordinates.

c) Parallel processing of the data associated with different ranges – The detection and the
estimation of the targets associated with distinct ranges of the TRP can be accom-
plished in a parallel fashion or in a sequential fashion. The first approach is more
efficient than the second one if spatial estimation is executed on parallel comput-
ing hardware. In fact, in this case, multiple spatial estimation algorithms can be
run in parallel, one for each of the ranges appearing in the TRP. Note, however, that
the price to be paid for this is represented by the fact that the target information
generated by any parallel procedure need to be fused at its end. In fact, the anal-
ysis of the measurements referring to close ranges appearing in the TRP may lead
to detecting the same target more than once. This problem can be circumvented
by adopting the second approach, since, in this case, the measurements associated
with each of the ranges appearing in the TRP are processed sequentially. In do-
ing so, the followed order is based on the importance of these ranges, i.e. on the
associated energies.

Based on the general method outlined above and on the techniques listed for the RPE
and the SPE, two specific algorithms are developed in the following. These algorithms
are denoted by range & angle serial cancellation algoritm #X (briefly RASCA#X in the fol-
lowing), with X = 1 and 2. In their description it is assumed, without loss of gen-
erality, that the available measurements are acquired through the NV = NVH × NVV
virtual uniform rectangular array (URA) represented in Fig. 4.2 in the case of 3D imaging
and through an horizontal ULA, consisting of NVH virtual antennas, in the case of 2D
imaging. In the first case, the horizontal (vertical) spacing between adjacent antennas
is denoted by dVH (dVV), whereas, in the second one, is denoted by dVH. Therefore, in
this considerations, it has been assumed that a reference virtual antenna, identified by
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(p, q) = (pR, qR) in the 3D (2D) case3, is selected in the virtual array, as exemplified by
Fig. 4.2.

1VHN 

q

p

1VVN 

0

0

VHd

VVd

Rp

Rq

Iq

Fq

FIGURE 4.2: Virtual antenna array considered in the description of the detection and estimation
algorithms. The selected reference virtual antenna is also shown.

4.2.1 Three-dimensional range & angle serial cancellation algorithm #1

The inner structure of the RASCA#1 is described by the block diagram shown in Fig.
4.3.
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FIGURE 4.3: Block diagram describing the overall structure of the RASCA#1.

The processing accomplished inside the blocks appearing in that figure can be sum-
marized as follows. The IFFT processing block allows to turn the frequency domain infor-
mation provided by the set of NV vectors {x(v)c } into the time domain information feeding
both the RPE and the SPE blocks. This transformation requires the evaluation of 3NV

IFFTs, all of order N0. In fact, it consists in the evaluation of the triad (X(v)
0 , X(v)

1 , X(v)
2 ),

3in this chapter the indexes pair (p q) is employed instead of (t r) for indicating a specific virtual channel;
in particular, the p-th (q-th) index refers to an element of the horizontal (vertical) ULA.
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collecting three N0-dimensional vectors, on the basis of x(v)c , for v = 0, 1, ..., NV − 1. For
this reason, the output of the considered block is represented by the set

SIFFT ≜
{(

X(v)
0 , X(v)

1 , X(v)
2

)
; v = 0, 1, ..., NV − 1

}
, (4.82)

consisting of 3 · NV N0-dimensional vectors. Note that, however, a portion of this set is
discarded by the RPE, since this block processes the information originating from NA
distinct VAs only. The triads selected by the RPE form the subset

S̄IFFT ≜
{(

X(v)
0 , X(v)

1 , X(v)
2

)
; v ∈ SA

}
, (4.83)

of SIFFT (4.82); here,
SA ≜ {v0, v1, ..., vNA−1} , (4.84)

represents the set of the values of the VA index v identifying the elements of SIFFT that
belong to S̄IFFT. Each of the triads of S̄IFFT is processed, independently of all the other
ones, by a novel iterative estimation algorithm called single target detection, range estima-
tion and cancellation (STDREC). This algorithm detects the most relevant targets on the
selected antenna and estimates their ranges, i.e. the delays associated with these ranges;
(see eqs. (2.10)-(2.11)) and their complex amplitudes (see eq. (2.26)). Its name originates
from the fact that this algorithm, in each of its iterations, detects a single target (namely,
the strongest target), estimates its parameters (and, in particular, the delay characterizing
it, i.e., its range) and cancels the contribution given by it to the received signal; the resid-
ual signal resulting from target cancellation represents the input of the next iteration.
The output of the STDREC algorithm that processes the raw data originating from the
vk-th VA is represented by the set

Svk ≜
{(

α̂
(vk)
i , Â(vk)

i

)
, i = 0, 1, . . . , Lk − 1

}
, (4.85)

with k = 0, 1, ..., NA − 1; here, Lk is the overall number of targets detected on the
considered VA, whereas Â(vk)

i and α̂
(vk)
i represent the estimate of the complex amplitude

of the i-th target and the index of the delay bin4 in which this target has been detected
(with i = 0, 1, . . . , Lk − 1). Finally, the information provided by the NA sets {Svk} are
merged to generate the single set

SRPE ≜ {(α̂l , Eb,l) , l = 0, 1, . . . , Lb − 1} , (4.86)

where Lb is the overall number of targets detected on all the selected VAs, α̂l is the index
of the delay bin in which the l-th target has been detected and Eb,l is the average energy
estimated for it (with l = 0, 1, . . . , Lk − 1). Note that:

• The cardinality Lb of the set SRPE represents a preliminary estimate of the over-
all number of targets; in fact, multiple targets having the same range or ranges
whose mutual differences are below the resolution of the employed radar system
are detected as a single target and no effort is made at this stage to separate their
contributions.

• The energies {Eb,l} represent the perceptual importance of the identified delay
bins, in the sense that a larger energy is associated with a more important delay
bin.

4The index of the delay bin is computed on the basis of the N0-dimensional vector X(v)
0 (see eq. (4.82))

collecting the elements of the N0 order IFFT of the input time domain vector {x(v)c }
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Both sets SIFFT (4.82) and SRPE (4.86) feed the SPE. The aim of this block is to analyse
the spectral information associated with the ranges (i.e., with the delay bins) identified
by the RPE in order to: a) estimate the angular coordinates (i.e., azimuth and elevation)
of the targets contributing to each delay bin; b) detect additional targets associated with
adjacent delay bins and potentially hidden by the spectral leakage due to stronger tar-
gets; c) estimate the angular coordinates (i.e., azimuth and elevation) of such additional
targets and compute a finer estimate of their range.

The first stage of the processing accomplished by the SPE involves the whole set
SIFFT (4.82) and is executed on a bin-by-bin basis, since it aims at: a) detecting all the
targets that contribute to the energy of each bin contained in the TRP and b) estimating
their angular coordinates. For this reason, this stage consists of Lb estimators running in
parallel; each estimator focuses on one of the Lb delay bins (i.e., ranges) appearing in the
TRP (see Fig. 4.3). Moreover, each estimator executes a novel iterative estimation algo-
rithm, called single target detection, angular estimation and cancellation (STDAEC). The l-th
STDAEC algorithm processes the spectral information available on the whole virtual re-
ceive array and referring to the α̂l-th delay bin only (with l = 0, 1, ..., Lb− 1), detects L[l]
targets and, for each detected target, computes: a) an estimate of its complex amplitude;
b) an estimate of its angular coordinates (i.e., its azimuth and its elevation); c) a refined
estimate of its range (do not forget that the preliminary estimate of this range is pro-
vided by the index α̂l of the considered delay bin). If D[l] iterations are accomplished
by the l-th STDAEC algorithm, D[l] distinct targets are detected in the α̂l-th delay bin
if none of them is classified as a false (i.e., ghost) target. In addition, all the estimates
generated by this algorithm are collected in the set

Tl ≜
{(

Âi [l] , F̂i [l] , α̂i [l] , F̂V,i[l], F̂H,i[l]
)

; i = 0, 1, . . . , D[l]− 1} , (4.87)

with l = 0, 1, . . . , Lb − 1; here, Âi [l], F̂i [l] and α̂i [l] denote the estimates of the complex
amplitude Ai [l], of the normalized delay Fi [l] and of the delay bin αi [l], respectively,
characterizing the i-th target detected on the reference antenna and in the l-th delay bin,
whereas F̂H,i[l] and F̂V,i[l] represent the estimates of the normalized horizontal spatial
delay and of the normalized vertical spatial delay referring to the above mentioned tar-
get.

Finally, in the second (and last) stage of the SPE, the spatial coordinates of all the
detected targets are computed on the basis of the spatial information collected in the Lb
sets {Tl} and an overall image of the propagation scenario is generated in the form of
a point cloud. The derivation of the STDAEC algorithm relies on the fact that: a) each
target provides an additive contribution to the temporal spectra evaluated on all the VAs;
b) the phase of this contribution exhibits periodic variations as we move horizontally or
vertically along the considered virtual array (see Fig. 4.2). In fact, if we assume that
the intensity of the echo received by each VA from the i-th target detected in the l-th
delay bin does not change from antenna to antenna, the complex amplitude Ai[p, q, l]
observed on the (p, q)-th VA can be expressed as5 (see eqs. (2.26) and (2.10))

Ai[p, q, l] = Ai[l] exp
{
−j

4π

λ
[dVH (p− pR) cos(ϕi[l]) sin(θi[l]) + dVV (q− qR) sin(ϕi[l])]

}
;

(4.88)

5Note that the phase of this amplitude is similar to the one of the steering vector proposed in paragraph
3.2.
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here, λ = c/ f0 is the wavelength associated with the start frequency (see eq. (2.24)), (pR,
qR) is the pair of integers identifying the selected reference antenna, θi[l], ϕi[l] and Ri[l]
are the azimuth, the elevation and the range, respectively, characterizing the considered
target, and Ai[l] is its complex amplitude observed on the reference antenna. If eq. (4.88)
holds, the rate of the phase variations observed in the complex amplitudes {Ai[p, q, l]}
for a given l as we move horizontally or vertically along the considered virtual receive
array is proportional to

FH,i[l] ≜
2dVH

λ
cos(ϕi[l]) sin(θi[l]) (4.89)

and
FV,i[l] ≜

2dVV

λ
sin(ϕi[l]), (4.90)

respectively. In fact, the quantity FH,i[l] (FV,i[l]) represents the normalized horizontal
(vertical) spatial delay characterizing the i-th target detected in the l-th delay bin; if both
these delays are known, the elevation and the azimuth of this target can be evaluated as

ϕi[l] = arcsin
(

λ

2dVV
FV,i[l]

)
(4.91)

and

θi[l] = arcsin
(

λ

2dVH cos(ϕi[l])
FH,i[l]

)
, (4.92)

respectively.

Moreover, in the development of the STDAEC algorithm, the following two tech-
niques are exploited:

Serial cancellation of targets – This technique is conceptually similar to the cancellation
strategy exploited by the STDREC algorithm and allows us to detect multiple targets in
the same delay bin and, in particular, to identify targets having similar spatial coordi-
nates. It is important to keep in mind that the delays associated with distinct targets
detected in the same delay bin do not necessarily belongs to that bin; in fact, they can
belong to adjacent bins, so that the tails (not the peak) of their spectra are really ob-
served in the considered delay bin. This problem originates from the fact that, generally
speaking, the contribution of a point target to the spectrum computed on each VA is not a line,
unless the associated delay is exactly a multiple of the IDFT delay term fIDFT (4.103);
consequently, such a contribution is spread over multiple adjacent delay bins (i.e., spec-
tral leakage is observed).

Spatial folding – As already stated above, the delay associated with a target detected
in the l-th delay bin does not necessarily fall exactly in that bin. The technique dubbed
spatial folding has been devised to; a) evaluate a more accurate estimate of the delay as-
sociated with a target detected in a given bin; b) discriminate real targets from ghost
targets. Spatial folding is based on the following idea. Once the horizontal and the
vertical spatial delays associated with a target detected in a given delay bin have been
estimated (see eqs. (4.89) and (4.90)), the spectra computed for all the VAs can be com-
bined in a constructive fashion by

• taking a reference VA (identified by (p, q) = (pR, qR); see Fig. 4.2), and compensat-
ing for the phase differences, estimated for that target, between the reference VA
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and all the other VAs, or

• taking a reference ULA and compensating for the phase differences, estimated for
that target, between the reference ULA and other ULAs parallel to the reference
ULA.

In case 1), folding generates a single spectrum, dubbed folded spectrum, and has the
beneficial effects of a) averaging out the effects of the noise affecting different VAs and
b) combining, in an unconstructive fashion, the contributions of all the targets different
from the one which the employed spatial delays refer to. For this reason, in analysing
the amplitude of the folded spectrum, a well defined peak in its amplitude is expected
in the l-th delay bin or in a bin close to it. When this occurs, the position of this peak
allows to compute a refined estimate of the delay (and, consequently, of the range) char-
acterizing the target for which folding has been accomplished. On the contrary, if this
does not occur, the detected target is actually a ghost target. In case 2), folding generates
as many folded spectra as the number of antennas of the reference ULA and offers the
same advantages as case 1).

In the remaining part of this thesis, when folding is used, the following terminology
is adopted:

Vertical folding – This refers to the case in which folding involves a reference horizon-
tal ULA (HULA) on which other HULAs are folded.

Overall folding – This refers to the case in which folding involves all the spectra, i.e.
the overall URA; a single folded spectrum is computed in this case.
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p

1VVN 

0

0

VHd

VVd

Rp

Rq

Reference VULA

Iq

Fq

Reference 

HULA

Ip Fp

1VULA F iN q q  

antennas

FIGURE 4.4: Example of reference VULA and reference HULA including the reference antenna.

Note that, in any case, folding may involve the whole virtual receive array or a por-
tion of it. The exploitation of a subset of the available VAs is motivated by the fact that,
in practice, in computing a folded spectrum referring to the l-th delay bin, the estimates
F̂H,i[l] and F̂V,i[l] of the delays FH,i[l] and FV,i[l], respectively, are employed, so that the
quality of the phase compensation factors computed for the antennas that are farther
from the reference antenna or the reference HULA may be affected by significant esti-
mation errors. The exploitation of spectral folding in the STDAEC algorithm requires:

1. Selecting a reference VULA, that consists of NVULA adjacent and vertically aligned
VAs (with NVULA ≤ NVV), within the virtual array; in the following, let us as-
sume, that the reference VULA includes the reference antenna and, consequently,
is identified by q = qI , qI + 1, ..., qF, with qI ≤ qR ≤ qF and p = pR, so that
NVULA = qF − qI + 1 (see Fig. 4.4).
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2. Selecting a reference HULA, that consists of NHULA adjacent and horizontally aligned
VAs; in the following, we assume that the reference HULA is the horizontal ULA
containing the reference antenna and, consequently, is identified by q = qR and
p = pI , pI + 1, ..., pF, with pI ≤ pR ≤ pF, so that NHULA = pF − pI + 1 (see Fig.
4.4).

3. Selecting a set of HULAs, different from the reference HULA and having the same
size of it (i.e., the same number of VAs); in the following, we assume that these
HULAs, called vertically folded HULAs, correspond to q = q(VF)

I , q(VF)
I + 1, ..., qR −

1, qR + 1 , ..., q(VF)
F , with q(VF)

I ≤ qR ≤ q(VF)
F , as illustrated in Fig. 4.5; note that the

overall number of involved HULAs is N(VF)
HULA = q(VF)

F − q(VF)
I + 1.
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FIGURE 4.5: Representation of a set of vertically folded HULAs.

In the following, the RASCA#1 processing is divided in three tasks, each associated
with one of the blocks appearing in Fig. 4.3 (the i-th task is denoted by Ti in the follow-
ing). A description of each task is provided below.

T1 – IFFT processing The processing accomplished within this task can be summa-
rized as follows. Given the vector x(v)c (see eq. (2.25)), the N-dimensional vectors

x(v)1 ≜
[

x(v)1,0 , x(v)1,1 , . . . , x(v)1,N−1

]T
(4.93)

and
x(v)2 ≜

[
x(v)2,0 , x(v)2,1 , . . . , x(v)2,N−1

]T
(4.94)

are evaluated for v = 0, 1, ..., NV − 1; here,

x(v)m,n ≜ nm x(v)c,n (4.95)

with n = 0, 1, ..., N − 1 and m = 1, 2. Then, the vectors x(v)c , x(v)1 and x(v)2 undergo zero
padding (ZP) for any v; this produces the N0-dimensional vectors

x(v)0,ZP =
[
(x(v)c )T 0T

(M−1)N

]T
, (4.96)

x(v)1,ZP =
[
(x(v)1 )T 0T

(M−1)N

]T
(4.97)
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and
x(v)2,ZP =

[
(x(v)2 )T 0T

(M−1)N

]T
, (4.98)

respectively; here, M is a positive integer (dubbed oversampling factor), 0D is a D-dimensional
(column) null vector and

N0 ≜ M N. (4.99)

Finally, the N0-dimensional vectors

X(v)
m =

[
X(v)

m,0, X(v)
m,1, ..., X(v)

m,N0−1

]T
= Xm [p, q]

= [Xm,0 [p, q] , Xm,1 [p, q] , ..., Xm,N0−1 [p, q]]T

≜ IDFTN0

[
x(v)m,ZP

]
, (4.100)

with m = 0, 1, 2, are computed for any v (i.e., for any p and q); here, IDFTN0 [x] denotes,
up to a scale factor, the N0 order inverse discrete Fourier transform of the N0-dimensional
vector x. More specifically, we assume that

X(v)
m,k ≜

1
N

N−1

∑
n=0

nm x(v)c,n exp
(

j
2πnk

N0

)
, (4.101)

with k = 0, 1, ..., N0 − 1 and m = 0, 1, 2. 6

T2 – RPE The processing accomplished within this task consists of three consecutive
steps listed below (the i-th step is denoted by T2-Si in the following); each step is asso-
ciated with one of the blocks included in the RPE block, as shown in Fig. 4.3.

T2-S1) VA selection – In this step, the set S̄IFFT (4.83) is built. This requires generating
the set SA (4.84), i.e. a set of NA integers identifying the selected VAs (the elements of SA
are generated by randomly extracting NA distinct integers from the set {0, 1, ..., NV − 1}).

T2-S2) Target detection and range estimation – The processing carried out within this
step is executed by the STDREC algorithm; this operates on an antenna-by-antenna ba-
sis. The STDREC processing for the vk-th VA (with k = 0, 1, ..., NA − 1) can be summa-
rized as follows. A simple initialization is accomplished first by setting

X(vk)
m [0] ≜ X(vk)

m , (4.102)

with m = 0, 1, 2, and the iteration index i to 0. Then, the execution of the STDREC itera-
tions is started; in the i-th iteration, the three steps described below are accomplished to
detect a new target and cancel its contribution to the triad (X(vk)

0 [i], X(vk)
1 [i], X(vk)

2 [i]) (the
p-th step of the considered i-th iteration is denoted by STDREC-Sp in the following).

STDREC-S1) Detection of a new target and estimation of its parameters – The triad
(X(vk)

0 [i], X(vk)
1 [i], X(vk)

2 [i]) is processed to detect a new (i.e., the i-th) target, and to es-
timate the normalized delay F(vk)

i and the complex amplitude A(vk)
i associated with it.

Note that, generally speaking, the normalized delay F(vk)
i is not a multiple of the funda-

mental delay
FIDFT = ts/N0 (4.103)

6Note that this is the same expression derived in eq. (4.31) for X̄k,ρ.
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associated with the IFFT processing executed in T1 (ts = 1/∆ f ); for this reason, it can
be expressed as

F(vk)
i = F(vk)

c,i + δ
(vk)
i FIDFT, (4.104)

where F(vk)
c,i represents a coarse estimate of F(vk)

i and δ
(vk)
i is a real parameter called residual.

This step consists in executing the complex single delay estimator (CSDE), that represent
the most important part of the STDREC algorithm, and which detailed description is
provided in paragraphs 4.1.1. In short, the CSDE computes the estimates Â(vk)

i , F̂(vk)
c,i ,

δ̂
(vk)
i , (see eqs. (4.48) and (4.49))

α̂
(vk)
i =

⌊
F̂(vk)

c,i /FIDFT

⌋
(4.105)

and
F̂(vk)

i = F̂(vk)
c,i + δ̂

(vk)
i FIDFT (4.106)

of the parameters A(vk)
i , F(vk)

c,i , δ
(vk)
i , α

(vk)
i and F(vk)

i , respectively, on the basis of the triad

(X(vk)
0 [i], X(vk)

1 [i], X(vk)
2 [i]); here, α̂

(vk)
i represents the index of the delay bin in which the

i-th target is detected on the vk-th antenna. Note that the parameter F̂(vk)
i , even if useless

in the construction of the set Svk (4.85), is exploited in the next step.

STDREC-S2) Cancellation of the new target – The contribution (C(vk)
X0

[i], C(vk)
X1

[i], C(vk)
X2

[i]),

given by the i-th (i.e., by the last) target detected on the vk-th VA to the triad (X(vk)
0 [i],

X(vk)
1 [i], X(vk)

2 [i]) is
C(vk)

X0
[i] = Â(vk)

i W̄(vk)
0 [i], (4.107)

C(vk)
X1

[i] = Â(vk)
i W̄(vk)

1 [i] (4.108)

and
C(vk)

X2
[i] = Â(vk)

i W̄(vk)
2 [i], (4.109)

respectively; here, W̄(vk)
m [i] denotes, up to a scale factor, the N0-th order IDFT of the

vector

w̄(vk)
m [i] ≜

[
0, 1m · w̄(vk)

i , 2m ·
(

w̄(vk)
i

)2
, . . . , (N − 1)m ·

(
w̄(vk)

i

)N−1
, 0, . . . , 0

]T

, (4.110)

with m = 0, 1 and 2,
w̄(vk)

i ≜ exp(−j2π F̂(vk)
i ), (4.111)

F̂(vk)
i ≜ τ̂

(vk)
i ∆ f (4.112)

and Â(vk)
i and τ̂

(vk)
i represent the estimates of the complex amplitude A(vk)

i and of the

delay τ
(vk)
i , respectively, characterizing the i-th target and the vk-th selected channel. An

efficient method can be used for the computation of the vector W̄(vk)
m [i] appearing in the

RHS of eqs. (4.107)–(4.109) (with m = 0, 1 and 2), since, for any m, this vector is, up to a
scale factor, the N0-th order IDFTs of the sequence {nm (w̄(vk)

i )n; n = 0, 1, ..., N − 1}. In
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fact, the l-th element of the vectors W̄(vk)
m [i] is given by

W̄(vk)
m [i, l] =

1
N

N−1

∑
n=0

nm
(

w̄(vk)
i

)n
exp

(
j
2πl
N0

n
)
=

1
N

N−1

∑
n=0

nm(q̄ [l])n, (4.113)

where

q̄ [l] ≜ exp
(
−j2π

(
F̂(vk)

i − l
N0

))
. (4.114)

Even in this case, the identities listed in eqs. (4.76)-(4.78) can be exploited for an efficient
computation of the RHS of eq. (4.113). Cancellation consists in the computation of the
new residual triad

X(vk)
m [i + 1] =

[
X(vk)

m,0 [i + 1], ..., X(vk)
m,N0−1[i + 1]

]T
≜ X(vk)

m [i]− C(vk)
Xm

[i], (4.115)

with m = 0, 1, 2.

STDREC-S3) Computation of the residual energy in the time domain – The energy

E(vk)
i+1 ≜

∥∥∥X(vk)
0 [i + 1]

∥∥∥2
=

N0−1

∑
p=0

∣∣∣X(vk)
0,p [i + 1]

∣∣∣2 (4.116)

characterizing the residual spectrum vector X(vk)
0 [i + 1] (4.115) is computed and com-

pared with the positive threshold TSTDREC (which may exhibit a dependence on range,
i.e. on the detected delay). If this energy is below the threshold, the STDREC algorithm
stops and Lk = i relevant targets are detected on the vk-th VA; otherwise, the recursion
index i is increased by one and a new recursion is started by going back to STDREC-S1.

T2-S3) Fusion of range information – This step aims at merging the information pro-
vided by the NA data sets {Svk} evaluated in the previous step. Its output is represented
by the set SRPE (4.86), whose elements (i.e., the Lb pairs {(α̂l , Eb,l)}) are evaluated as fol-
lows. If we define the set

A(vk)
b ≜ {α̂(vk)

i ; i = 0, 1, . . . , Lk − 1}, (4.117)

identifying all the bins in which at least one target has been detected on the vk-th VA
(with k = 0, 1, ..., NA − 1), the set

Ab ≜ {α̂l ; l = 0, 1, . . . , Lb − 1} (4.118)

is generated by putting together all the distinct integers that appear at least once in the
NA sets {A(vk)

b ; k = 0, 1, ..., NA − 1}. Then, the average energy Eb,l associated with the
α̂l-th bin (with l = 0, 1, . . . , Lb − 1 ) is computed as

Eb,l =
1

Nb,l

NA−1

∑
k=0

Lk−1

∑
i=0

∣∣∣Â(vk)
i

∣∣∣2δ
[
α̂
(vk)
i − α̂l

]
, (4.119)

where

Nb,l =
NA−1

∑
k=0

Lk−1

∑
i=0

δ
[
α̂
(vk)
i − α̂l

]
(4.120)
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represents the overall number of antennas that contribute to this energy (here, δ[z] = 1
if z = 0 and δ[z] = 0 if z ̸= 0).

T3 – SPE The processing accomplished within this task consists of the two consecu-
tive steps listed below (the i-th step is denoted by T3-Si in the following); each step is
associated with one of the blocks contained in the SPE representation shown in Fig. 4.3.

T3-S1) Bin analysis – Within this step, Lb STDAEC algorithms are run in parallel, one
for each of the Lb ranges (i.e., delay bins) appearing in the TRP. A schematic description
of l-th STDAEC algorithm is provided below (with l = 0, 1, ..., Lb − 1). This algorithm
consists of three steps (its r-th step is denoted by STDAEC-Sr in the following) and is
initialised by

1. Setting its iteration index i to 0.

2. Setting
X(0) [l] ≜ X [l] , (4.121)

where
X [l] ≜ [X0,α̂l [p, q]] , (4.122)

is a NVH × NVV matrix collecting the spectral information available on the whole
virtual receive array and referring to the α̂l-th delay bin only.

Then, the STDAEC algorithm starts executing its iterations. Within its i-th iteration,
it accomplishes the three steps described below.

STDAEC-S1) Detection of a new target and estimation of its angular parameters – In this
step, the NV = NVH × NVV matrix

X(i) [l] ≜
[

X(i)
l [p, q]

]
, (4.123)

is processed to detect the strongest target contributing to it, and to compute the esti-
mates θ̂i[l], ϕ̂i[l], and Âi[l], of θi[l], ϕi[l]) and Ai[l], respectively (note that this target
represents the i-th one detected in the considered delay bin, since (i − 1) targets have
been detected in the previous recursions). The processing accomplished within this step
is accomplished by a novel iterative detection and estimation algorithm called single
target detection and angular estimation (STDAE); this algorithm consists in the five steps
described below (its r-th step is denoted by STDAE-Sr in the following).

STDAE-S1) IFFT processing on the reference VULA – The portion of the initial spectral
information referring to the reference VULA is extracted from the matrix X(i) [l] and
stored in the NVULA-dimensional vector

S(i)
VULA,0 [l] =

[
S(i)

0,0 [l] , S(i)
0,1 [l] , ..., S(i)

0,NVULA−1 [l]
]T

≜
[

X(i)
l [pR, qI ] , ..., X(i)

l [pR, qF]
]T

. (4.124)

Based on the last vector, the NVULA-dimensional vector

S(i)
VULA,k [l] ≜

[
S(i)

k,0 [l] , S(i)
k,1 [l] , ..., S(i)

k,NVULA−1 [l]
]T

, (4.125)
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is generated for k = 1, 2 and 3; here,

S(i)
k,p [l] ≜ pk X(i)

VULA,p [l] = pk X(i)
l [pR, qI + p] (4.126)

with p = 0, 1, ..., NVULA− 1. The vector S(i)
VULA,k [l] (with k = 0, 1, 2 and 3), after ZP, feeds

a IDFT of order

N̄0 ≜ M̄ · NVULA (4.127)

where M̄ represents the adopted oversampling factor. This produces the vector

s(i)VULA,k [l] =
[
s(i)k,0 [l] , s(i)k,1 [l] , ..., s(i)k,N̄0−1 [l]

]T

≜ IDFTN̄0

[
S̄(i)

VULA,k [l]
]

, (4.128)

where S̄(i)
VULA,k [l] denotes the zero padded version of S(i)

VULA,k [l]. Then, we have that

s(i)k,m [l] ≜
1

NVULA

NVULA−1

∑
p=0

S(i)
k,p [l] exp

(
j
2πpm

N̄0

)
, (4.129)

with m = 0, 1, ..., N̄0 − 1.

STDAE-S2) Single angle estimation – The N̄0-dimensional vectors {s(i)VULA,k [l]; k = 0,
1, 2, 3} are processed by the complex single delay estimator (CSDE) to detect the i-th
(strongest target) appearing in l-th delay bin and estimate its angular coordinates (this
target represents the i-th one detected in the considered delay bin, since (i− 1) targets
have been detected in the previous iterations). The CSDE computes the estimates ÂV,i [l]
and F̂V,i[l] of the parameters Ai[l] and FV,i[l] (see eq. (4.90)), respectively. Note that the
quantity ÂV,i [l] is not exploited in the following since, it represents a preliminary estimate
of Ai[l].

STDAE-S3) Vertical folding – The estimate F̂V,i[l] of the normalized vertical delay
FV,i[l] (4.90) is employed to compensate for the phase difference between each of the
HULAs to be vertically folded and the reference HULA (i.e., for the phase differences
along the vertical direction), so that the spectral data associated with all these HULAs
can be combined (i.e., summed) in a constructive fashion. In practice, first, the phase
rotation factor

R(VF)
i [l, q] ≜

[
exp

(
j∆ψ

(VF)
i [l]

)]q−qR
, (4.130)

with
∆ψ

(VF)
i [l] ≜ 2πF̂V,i[l], (4.131)

is computed for the q-th HULA (with q = q(VF)
I , q(VF)

I + 1, ..., qR − 1, qR + 1, ..., q(VF)
F ).

Then, vertical folding is accomplished by computing the NHULA-dimensional vector

X(VF)
i [l] = X(i) [l, qR] +

q(VF)
F

∑
q=q(VF)

I
q ̸=qR

X(i) [l, q] R(VF)
i [l, q] , (4.132)
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that represents a set of NHULA vertically folded spectra; here,

X(i) [l, q] ≜
[

X(i)
l [pI , q] , X(i)

l [pI + 1, q] , ..., X(i)
l [pF, q]

]T
, (4.133)

is a NHULA-dimensional row vector extracted from the q-th row of the matrix X(i) [l]
(4.123).

STDAE-S4) IFFT processing and horizontal delay estimation – The processing accom-
plished in this step is very similar to that carried out in STDAE-S1 and STDAE-S2. In
fact, the only difference is represented by the fact that the NVULA-dimensional vector
S(i)

VULA,0[l] (4.124) is replaced by the NHULA-dimensional vector X(VF)
i [l] (4.132) gener-

ated in the previous step. Therefore, in this case, the CSDE is exploited to estimate the
horizontal delay FH,i[l] and, again, the complex amplitude Ai[l] associated with the i-th
target. The CSDE computes the estimates ÂH,i [l] and F̂H,i[l] of the parameters Ai[l] and
FH,i[l], respectively. Note that: a) the quantity ÂH,i [l] is not exploited in the following
since, it represents a preliminary estimate of Ai[l]; b) the estimates ÂV,i [l] and ÂH,i [l]
can be significantly different if multiple targets having similar horizontal delays or sim-
ilar vertical delays contribute to the considered delay bin.

STDAE-S5) Overall folding and delay/amplitude estimation– In this step, the angular
information (i.e., the delays F̂V,i[l] (4.90) and F̂H,i[l] (4.89)) computed in the previous
step are exploited to accomplish overall folding7; this step involves the whole spectrum
computed on the selected VAs. If the whole receive antenna array is exploited, overall
folding consists in computing the N0-dimensional vector

X0,OF [l] ≜
NVH−1

∑
p=0

NVV−1

∑
q=0

X0 [p, q] R(HV)
i [l, p, q] , (4.134)

where
R(HV)

i [l, p, q] ≜ R(VF)
i [l, q] R(HF)

i [l, p] (4.135)

is a phase rotation factor, R(VF)
i [l, q] is expressed by eq. (4.130),

R(HF)
i [l, p] ≜

[
exp

(
j∆ψ

(HF)
i [l]

)]p−pR
(4.136)

and
∆ψ

(HF)
i [l] ≜ 2πF̂H,i[l]; (4.137)

note that R(HV)
i [l, pR, qR] = 1. Given X0,OF[l] (4.134), the sequence of the absolute values

of its elements is analysed to verify the presence of an amplitude peak in the α̂l-th delay
bin or in a bin close to it; for this reason, the difference |α̂OF − α̂l | is compared with the
positive threshold TOF, where

α̂OF = arg max
ã∈{0,1,...,N0}

|X0,OF[ã]| . (4.138)

7As already mentioned above, a portion of the whole virtual array can used to mitigate the impact of
the estimation errors affecting the two spatial delays.
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If this difference exceeds TOF, the presence of a ghost target is detected; otherwise, the
N0-dimensional vector

Xm,OF [l] ≜
NVH−1

∑
p=0

NVV−1

∑
q=0

Xm [p, q] R(HV)
i [l, p, q] , (4.139)

is computed for m = 1 and 2, and the CSDE algorithm is run to estimate, on the basis of
the vectors X0,OF[l], X1,OF[l] and X2,OF[l] (see eq. (4.134)), the final estimates F̂i[l] and Âi[l]
of the parameters Fi[l] and Ai[l] characterizing the i-th target detected in the l-th delay
bin. Note that the integer part α̂i[l] of the delay F̂i[l] does not necessarily coincide with
α̂l (see eq. (4.105)) but, if it differs, it is certainly close to α̂l . When this happens, if the
quantity α̂i[l] appears in one of the pairs of set SRPE (4.86), it is discarded, because the
corresponding bin is already being analysed. Otherwise, the new pair(

α̂i [l] , Eb,Lb

)
, (4.140)

where Eb,Lb = |Âi[l]|
2
, is added to the set Sb and the number of its elements (denoted

by Lb) is increased by one. This means that the STDAEC algorithm has to be run on the
(new) α̂i[l]-th bin.

STDAEC-S2) Target cancellation – The contribution C(i)
X0

[l], given by the i-th target
detected in the l-th delay bin, to the vector X(i) [l] (4.123) is computed considering

C(i)
X0

[l] =
[
C(i)

X0
[p, q, l]

]
(4.141)

given by the i-th (i.e., by the last) target detected in the l-th delay bin on the whole array
(see eq. (4.143)) and the expression

C(i)
X0

[p, q, l] = Âi[l] exp
{
−j2π

[
(p− pR)F̂H,i[l] +(q− qR)F̂V,i[l]

]}
, (4.142)

is employed for any VA (i.e., for any p and q). Finally, the cancellation consists in this
case in the computation of the new residual vector

X(i+1) [l] ≜ X(i) [l]− C(i)
X0

[l] . (4.143)

STDAEC-S3) Residual energy test – The energy

E(i+1) [l] ≜
∥∥∥X(i+1) [l]

∥∥∥2
=

NVH−1

∑
p=0

NVV−1

∑
q=0

∣∣∣X(i+1)
l [p, q]

∣∣∣2 (4.144)

of the residual spectrum vector X(i+1) [l] (4.143) is compared with the positive thresh-
old TSTDAEC (which may exhibit an angular dependence). If this energy is below the
threshold, the STDAEC algorithm stops; otherwise, the recursion index i is increased by
one and a new iteration is started by going back to STDAEC-S1. If D[l] iterations are
accomplished by the STDAEC algorithm operating on the α̂l-th delay bin, no more than
D[l] distinct targets are identified in that bin (D[l] targets are found if none of them is
deemed to be a ghost target). All the target information acquired from the α̂l-th delay
bin are collected in the set Tl (4.87).

T3-S2) Evaluation of the target spatial coordinates and generation of the overall image – In
this step, the estimates of the range, of the elevation and of the azimuth of the i-th target
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detected in the α̂l-th delay bin are computed as

R̂i[l] =
c
2

τ̂i [l] , (4.145)

ϕ̂i[l] = arcsin
(

λ

2dVV
F̂V,i[l]

)
(4.146)

and

θ̂i[l] = arcsin
(

λ

2dVH cos(ϕ̂i[l])
F̂H,i[l]

)
, (4.147)

respectively; here, τ̂i [l] = F̂i[l]/∆ f (see eq. (2.27)). Finally, these information are fused
to generate the overall set

It ≜
{(

R̂l , θ̂l , ϕ̂l ,
∣∣Âl
∣∣) ; l = 0, 1, . . . , L̂− 1

}
, (4.148)

describing the generated radar image, which, generally speaking, is a cloud of L̂ points.
The set It results from the union of all the sets {I (l)t }, where

I (l)t ≜
{(

R̂i[l], θ̂i[l], ϕ̂i[l],
∣∣Âi[l]

∣∣) ; i = 0, 1, . . . , D[l]− 1
}

, (4.149)

with l = 0, 1, . . . , Lb − 1.
The structure of the RASCA#1 deserves a number of comments, that are listed below

for the different tasks and the steps they consist of.

T1 – In this task, each of the vector {X(v)
0 , X(v)

1 , X(v)
2 }, defined by eq. (4.100), is com-

puted by executing a N0 order IFFT. The vector X(v)
0 (4.100) consists of N0 equally spaced

samples of the spectrum of the sequence {x(v)c,n } acquired on the v-th VA. The vectors X(v)
1

and X(v)
2 , instead, consist of, up to a scale factor, N0 equally spaced samples of the first

and the second derivatives, respectively, of the same spectrum.

T2-S1 – The exploitation of a subset of the available antennas is motivated by the
need of reducing the computational effort required by T2 as much as possible. The
adoption of a deterministic method for the selection of NA antennas (with NA < NV) is
not recommended. In fact, when multiple consecutive snapshots are processed to gener-
ate independent images, randomly changing the subset of NA antennas from snapshot
to snapshot allows the considered radar system to benefit from antenna diversity.

T2-S2 – The STDREC algorithm deserves the following comments:

a) The availability of accurate estimates of the normalized delay F(vk)
i and of the com-

plex amplitude A(vk)
i plays an important role in this step, since these parameters

are exploited in the serial cancellation procedure based on eq. (4.115). In partic-
ular, ignoring the delay residual δ

(vk)
i of the normalized delay F(vk)

i (4.104) in this

procedure (i.e., assuming that F̂(vk)
i = α̂

(vk)
i ; see eq. (4.105)) may result in a signifi-

cant error accumulation in that procedure.

b) A threshold on the maximum computational effort required by the STDREC algo-
rithm can be set by requiring that the recursion index i never exceeds a fixed
threshold; this is equivalent to limit the overall number of targets that can be de-
tected on each VA.
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c) The STDREC algorithm generates NA different data sets; the k-th data set consists
of the triplets {(α̂(vk)

i , F̂(vk)
i , Â(vk)

i ); i = 0, 1, . . . , Lk − 1} ({(α̂(vk)
i , F̂(vk)

i , Â(vk)
i );

i = 0, 1, . . . , Lk − 1}), characterizing the Lk targets detected on the vk-th antenna
(with k = 0, 1, ..., NA − 1). Note that the overall number of targets may change
from antenna to antenna, especially in the presence of extended targets; this is
due to the fact that the signals acquired on different VAs can exhibit significant
differences in their spectral content.

d) The following important interpretation of the processing accomplished by the STDREC
algorithm on the vk-th VA can be given. The vector X(vk)

0 can be seen as a collection
of noisy spectral information referring to N0 distinct delay bins (i.e., to N0 distinct
range bins) and is usually dense in the presence of multiple extended targets. The
STDREC allows to extract a discrete delay (i.e., range) profile from the vector X(vk)

0 .
In various real world scenarios, this profile turns out to be sparse, even in the pres-
ence of a dense vector X(vk)

0 ; this is beneficial, since allows to concentrate the RPE
computational effort on a set of specific ranges (i.e., delay bins). The range profile
referring to the vk-th VA is described by the set of Lk pairs Svk = {(α̂(vk)

i , Â(vk)
i );

i = 0, 1, . . . , Lk− 1}, with k = 0, 1, ... , NA− 1; the parameter α̂
(vk)
i identifies the de-

lay bin associated with the i-th target (or targets) detected on this VA, whereas the
absolute value of Â(vk)

i represents an estimate of the strength of the echo associated
with it.

e) The STDREC algorithm can be used for detecting multiple targets and accurately es-
timating their range in a monostatic radar, i.e., equipped with a single TX antenna
and a single RX antenna.

f) The STDREC algorithm can be easily extended in a way that multiple targets are de-
tected and estimated in parallel in each of its iterations. If we focus on its i-iteration
and the vk-th VA, this result is achieved by running multiple (say, m(vk)

i ) instances
of the CSDEC algorithm in parallel. Each of these instances is initialised with the
delay associated with the absolute maximum or a relative maximum detected in
the sequence of the absolute values of the elements of the vector X(vk)

0 [i] (see eq.
(4.100)). A constraint is set on the minimum spacing between the m(vk)

i detected
delays in order to minimize the interference between the instances running in par-
allel. Moreover, after identifying the absolute maximum in the above mentioned
sequence, a threshold, proportional to such a maximum, is set on the minimum
value of the acceptable relative maximum/maxima, so that unrelevant delays are
discarded. It is also worth stressing that, if a cluster of m(vk)

i distinct delays is es-

timated, each of the components of the triplet (C(vk)
X0

[i], C(vk)
X1

[i], C(vk)
X2

[i]) appearing

in the RHS of eq. (4.115) consists of the sum of m(vk)
i terms, each associated with

one of these delays.

g) As shown in Par. 4.1.1, the estimates generated by the STDREC algorithm are biased
if the values selected for the parameters NCSDE and NRES are not large enough.
In principle, this bias can be arbitrarily reduced by increasing the values of these
parameters. However, it is found out that a computationally efficient alternative
to this approach is represented by running an additional step (i.e., STDREC-S4)
once that the STDREC algorithm has been executed. In this final step, the Alg-YA
is carried out after initializing it with the estimates of the normalized frequencies
and the associated complex amplitudes generated by the STDREC. The hybrid
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technique resulting from interconnecting the STDREC algorithm with the above
mentioned algorithm is dubbed hybrid STDREC (HSTDREC) in the following; note
that this algorithm represents an instance of the hybrid CSDE proposed in ref.
4.1.1.

T3-S1 – This step is the most complicated of the whole algorithm and deserves the
following comments:

a) In principle, the horizontal and vertical spatial delays (see eqs. (4.89) and (4.90)) of
multiple targets contributing to the l-th delay bin can be detected by first com-
puting a 2D IDFT of the matrix X [l] (4.122) and, then, by looking for the local
maxima over the absolute values of the elements of the resulting 2D matrix; note
that the matrix X [l] can be also zero-padded before computing its 2D IFFT to im-
prove the resulting spectral resolution. This procedure may require a significant
computational effort and its accuracy is affected by the spectral leakage due to
any potential strong target. In the STDAEC algorithm, instead, 2D processing is
avoided by alternating vertical and horizontal 1D IDFTs; consequently, relevant
spatial delays are estimated by searching for the peaks of 1D amplitude spectra
(i.e., S(i)

VULA,0[l] and X(VF)
i [l]) (in other words, an AM approach is adopted). This

allows to mitigate computational complexity and to detect weak targets hidden
by close strong targets through successive cancellations.

b) Each of the four vectors {s(i)VULA,k [l]; k = 0, 1, 2, 3} defined in STDAE-S1 can be
computed by executing a N̄0-th order IFFT (see eq. (4.128)). Note that, on the one
hand, the vector s(i)VULA,0 [l] collects N̄0 equally spaced samples of the spectrum of

the sequence {X(i)
VULA,p; p = 0, 1, ..., NVULA − 1} (see eq. (4.126)). On the other

hand, the k-th vector s(i)VULA,k [l] (with k = 1, 2 and 3) collects, up to a scale factor,
N0 equally spaced samples of the k-th order derivative of the same spectrum.

c) The processing accomplished in STDAE-S4 is very similar to that carried out in
STDAE-S1 and STDAE-S2. In fact, the only difference is represented by the fact
that the NVULA-dimensional vector S(i)

VULA,0 [l] (4.124) is replaced by the NHULA-

dimensional vector X(VF)
i [l] (4.132) generated in STDAE-S3. Therefore, in this

case, the CSDE is exploited to estimate the horizontal delay FH,i[l] and, again, the
complex amplitude Ai[l] associated with the i-th target.

d) As already suggested for the STDREC algorithm, the STDAEC algorithm can be em-
ployed to detect and estimate multiple angles in parallel; this requires running
multiple instances of the CSDE algorithm in parallel.

The scheme of RASCA #1 for three-dimensional imaging is shown in Algorithm 8.
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Algorithm 8: Range & Angle Serial Cancellation Algorithm (RASCA) #1

1 T1 – IFFT: Compute {x(v)0,ZP, x(v)1,ZP, x(v)2,ZP} and {X(v)
0 , X(v)

1 , X(v)
2 } (4.96)-(4.100).

2 T2 – RPE: S1) Extract NA VAs from the available VAs; build the set S̄FFT (4.83).
3 for k = 0 to NA − 1 do

S2) Set X(vk)
m [0] ≜ X(vk)

m for m = 0, 1, 2 (4.102), i = 0; compute E(vk)
0 (4.116).

while E(vk)
i > TSTDREC do

STDREC-S1) Compute (Â(vk)
i , F̂(vk)

i ) from (X(vk)
0 [i], X(vk)

1 [i], X(vk)
2 [i]).

STDREC-S2) Compute (C(vk)
X0

[i], C(vk)
X1

[i], C(vk)
X2

[i]) (4.107)–(4.109) and

(X(vk)
0 [i + 1], X(vk)

1 [i + 1], X(vk)
2 [i + 1]) (4.115).

STDREC-S3) Compute the residual energy E(vk)
i+1 according to eq. (4.116).

end
end
S3) Build the set SRPE (4.86) (see eqs. (4.117) and (4.120).

4 T3 – SPE: S1) Set i = 0 and X(0)[l] (4.121); then, compute E(0)[l] (4.144).
Parallel For l = 0 to l = Lb − 1 do

while E(i)[l] > TSTDAEC do
STDAEC-S1) Compute (ÂV,i[l], F̂V,i[l]) (4.128), R(VF)

i [l, q] (4.130) and

X(VF)
i [l] (4.132). Then, compute (ÂH,i[l], F̂H,i[l]), R(HF)

i [l, p] (4.136) and
finally {Xm,OF[l]; m = 0, 1, 2} (4.134), evaluating (Âi[l], F̂i[l]).
STDAEC-S2) Compute C(i)

X0
[l] (4.141)–(4.142) and X(i+1)[l] (4.143).

STDAEC-S3) Compute E(i+1)[l] (4.144).
end
S2) Compute R̂i[l], ϕ̂i[l], θ̂i[l] according to eq. (4.145)–(4.147).

end
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4.2.2 Three-dimensional range & angle serial cancellation algorithm #2

The inner structure of the RASCA#2 is described by the block diagram shown in the
below Fig. 4.6.
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FIGURE 4.6: Block diagram describing the overall structure of the RASCA#2.

The processing accomplished by this algorithm can be divided into three tasks, each
associated with one of the blocks appearing in that figure (the i-th task is denoted by
Ti in the following). In all these tasks, a single snapshot is processed. The first two
tasks (namely, those concerning the IFFT processing and the RPE) coincide with those
of RASCA#1, since the only differences about the last algorithm and RASCA#2 concern
their SPEs. For this reason, in the remaining part of this paragraph, a schematic de-
scription of the third task only is provided. In this last task of this technique, spatial
estimation is accomplished serially i.e., on a bin-by-bin basis; moreover, the delay bins
selected by the RPE are analysed in an ordered way and, more precisely, according to
their decreasing energies; in the following it is assumed, for simplicity, that the bins
appearing in the set SRPE (4.86) have been ordered in a way that

Eb,l ≥ Eb,l−1 (4.150)

for l = 0, 1, . . . , Lb − 1. The SPE is initialised by setting

X(v)
m [0] ≜ X(v)

m , (4.151)

with m = 0, 1, 2 and the bin index l to 0. Then, Lb consecutive iterations are run. In the
l-th iteration, the STDAEC algorithm is run to a) estimate, on the basis of the NVH×NVV
matrix

X(i) [l] ≜
[

X(i)
l [p, q]

]
, (4.152)

the angular parameters of the D̄[l] distinct targets contributing to that bin. A refined
estimate of the range for all the targets detected in the considered delay bin is computed
on the basis of set of triplets {(X(v)

0 [l], X(v)
1 [l], X(v)

3 [l])}. Then, the estimates of the range
and of the angular parameters of the D̄[l] detected targets are: a) made available at the
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output of the SPE; b) processed by another algorithm, called single bin cancellation (SBC).
The SBC algorithm estimates the contributions {(C(v)

X0
[l], C(v)

X1
[l], C(v)

X2
[l])} of these targets

(i.e., of the l-th delay bin) to the set of triads {(X(v)
0 [l], X(v)

1 [l], X(v)
3 [l])} (see eq. (4.100))

and cancels it. In particular, the terms (C(v)
X0

[l], C(v)
X1

[l], C(v)
X2

[l]) employed in the single
bin cancellation procedure of RASCA#2 (see eq. (4.156)) are evaluated as

C(v)
X0

[l] ≜
D[l]−1

∑
i=0

Âi [l] W̄(v)
0 [i, l] (4.153)

C(v)
X1

[l] ≜
D[l]−1

∑
i=0

Âi [l] W̄(v)
1 [i, l] (4.154)

and

C(v)
X2

[l] ≜
D[l]−1

∑
i=0

Âi [l] W̄(v)
2 [i, l] (4.155)

respectively, with v = 0, 1, ..., NV − 1. Here, D[l] represents the overall number of
distinct targets detected in the α̂l-th time bin and Âi[l] denotes the complex amplitude
associated with the i-th target detected in the α̂l-th time bin. Moreover, the complex
elements W̄(v)

0 [i, l], W̄(v)
1 [i, l] and W̄(v)

2 [i, l] are based on (4.113) (with k = 0, 1 and 2),
where, however, the normalized delay F̂i[l] is used in place of F̂(vk)

i (see eq. (4.112))

in the computation of the quantity W̄(v)
i (see eq. (4.111)). Cancellation consists in the

computation of the new residual triad

X(v)
m [l + 1] ≜ X(v)

m [l]− C(v)
Xm

[l], (4.156)

with m = 0, 1, 2 and v = 0, 1, ..., NV − 1. Finally, if l < Lb − 1, l is increased by one and
a new iteration is started; otherwise, if l = Lb − 1, processing is over.

4.2.3 Bi-dimensional range & angle serial cancellation algorithms

The two algorithms described in the previous two paragraphs can be easily adapted to
the case in which the considered colocated MIMO radar system is equipped with an
HULA and, consequently, can be exploited for 2D imaging only. In this case, RASCA#1
and RASCA#2 can be employed after making minor changes in their structures. Such
changes concern only the SPE and can be summarized as follows:

1. The first three steps of the STDAE in T3-S1 are not performed; therefore, the fourth
step of that algorithm is the first one to be executed. Moreover, the matrix X(i) [l]
(4.123) is replaced by the NVH-dimensional vector

X(i) [l] ≜
[

X(i)
l [p]

]
, (4.157)

collecting the spectral information available on the whole virtual receive array and
referring to the l-th echo only.

2. The delay F̂V,i[l] (4.90) is not available and, therefore, it is not included in the set
Tl (4.87) (the elevation angle ϕ̂i[l] (4.146) is not estimated). As consequence, the
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amplitude Ai[p, l] observed on the p-th VA can be expressed in this case as:

Ai[p, l] = Ai[l] exp
{
−j

4π

λ
[dVH (p− pR) sin(θi[l])]

}
; (4.158)

where the dependence on the vertical element q is ignored respect eq. (4.88). In
the bi-dimensional version of RASCA #1 and RASCA #2 the whole overall folding
is the horizontal folding:

X0,OF [l] ≜
NVH−1

∑
p=0

X0 [p] R(HV)
i [l, p] , (4.159)

where
R(HV)

i [l, p] ≜ R(HF)
i [l, p] (4.160)

is a phase rotation factor and

R(HF)
i [l, p] ≜

[
exp

(
j∆ψ

(HF)
i [l]

)]p−pR
(4.161)

with
∆ψ

(HF)
i [l] ≜ 2πF̂H,i[l]; (4.162)

and
FH,i[l] ≜

2dVH

λ
sin(θi[l]) (4.163)

Similar changes are made in the RASCA#2, since this is makes use of the same tech-
niques adopted in the RASCA#1.

4.2.4 Unequal response of virtual antennas

The derivation of the RASCA#1 and RASCA#2 for SFCW radar systems relies on the
assumption that the sample sequence made available by the v-th VA is expressed by eq.
(2.25). The adopted signal models holds if the amplitudes of the L overlapped oscilla-
tions contributing to the useful component of the received signal do not change from
antenna to antenna. The experiments accomplished on commercial colocated SFCW
MIMO radars have evidenced that: a) these amplitudes are not constant across the
whole virtual array; b) their differences are influenced by the azimuth and the eleva-
tion of each target. I believe that all this is due to the different behavior of the multiple
receive chains employed in each MIMO device and to the mismatches in the receive an-
tenna patterns. This problem, that affects the quality of collected data can be mitigated
by enriching the physical array with a set of surrounding passive antennas; in this case,
the array is artificially extended with new antennas along all its sides, so that the behav-
ior of all its active antennas becomes more uniform.

In principle, this phenomenon can be accounted for, by including its effects in the
received signal model. For instance, eq. (2.25) can be generalised as

x(v)c,n =
L−1

∑
l=0

αv (θl , ϕl) al exp
(
−j
(

2πnF(v)
l + ψ

(v)
l

))
+ w(v)

c,n , (4.164)

where αv(θl , ϕl) represents an attenuation factor depending on the angular coordinates
of the l-th target and v is the VA index. Neglecting the presence of the factor αv (θl , ϕl)
in the development of the algorithms has the following implications:
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a) An error is introduced by the STDAEC algorithm in its cancellation procedure (see
STDAEC-S2 in paragraph 4.2.1; eq. (4.143)) of the RASCA#1. Note, in particular,
that the estimate Âi[l] of the complex amplitude characterizing to the i-th target
detected in the α̂l-th bin is computed after the overall spatial folding (i.e., after
STDAE-S5); consequently, its absolute value represents a sort of spatial average
computed over all the involved VAs. Moreover, only the phase variations of this
complex gain are accounted for in the computation of the contribution C(i)

X0
[l] of

this target to the matrix X(i)[l] (see eqs. (4.141)–(4.142)).

b) An error in the cancellation procedure is introduced by the SBC algorithm in T3 of
the RASCA#2 (see paragraph 4.2.2). In fact, in the computation of the vector C(v)

Xm
[l]

(with m = 0, 1 and 2) appearing in eq. (4.156), the variations in the absolute value
of the complex gain Ai [l] are not accounted for (see eqs. (4.153)–(4.155)).

In principle, if the functions {αv(θl , ϕl)} were known for all the VAs, their effect
could be compensated for after evaluating the estimates (θ̂i, ϕ̂i) of the angular coordi-
nates of the i-th target; in fact, this result could be achieved by replacing the estimate
Âi[l] of the complex gain Ai[l] with

Âi[v, l] ≜ Âi[l] αv(θ̂i, ϕ̂i). (4.165)

in the evaluation of the term C(i)
X0
[l] appearing in eqs. (4.141)–(4.142) or eqs. (4.153).

Estimating the function αv(θ, ϕ), however, is a time consuming task, since it requires a
proper measurement setup and a calibration procedure in an anechoic chamber, know-
ing the scattering properties of the radiated target. This problem can be circumvented
by: a) exploiting deep learning techniques [86] in the SPE; b) adopting a data-driven ap-
proach [87].
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FIGURE 4.7: Block diagram representing the RASCA #1 method; a compensation technique
based on deep-learning methods (dubbed as DSTDAEC) is employed in the SPE.

The proposed approach is motivated by the fact that:
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a) Deep learning techniques can be employed to approximate complicated functions,
that do not lend themselves to a simple parametric representation and without requir-
ing particular expertise in data pre-processing.

b) A data-driven approach allows to train different models on the basis of data col-
lected in a real scenario or synthetically generated, without prior knowledge about the
parametric representation of the considered problem.

The training procedure is important, because, through it, the involved network ac-
quires the ability to generate a correct prediction on the basis of never seen data avail-
able at its input. In practice, the adoption of this approach requires modifying the
STDAEC technique employed in the RASCA#1 (see Fig. 4.3) and, in particular, embed-
ding a deep neural network in it. This network is employed to estimate the distorted
amplitudes of all the targets detected in the l-th delay bin (with l = 0, 1, . . . , Lb − 1),
so that accurate cancellation becomes possible. If the proposed method is adopted in
RASCA #1, the block diagram illustrated in Fig. 4.3 is replaced by that shown in Fig.
4.7. As it can be easily inferred from comparing the first figure with the second one, the
STDAEC block is replaced by a new block, that implements a new algorithm, called deep
STDAEC (DSTDAEC). The initialization procedure is the same of the STDAEC and the
DSTDAEC algorithm consists of three steps (its r-th step is denoted by DSTDAEC-Sr in
the following) and the processing accomplished within each of them is sketched below
for the l-th delay bin (with l = 0, 1, . . . , Lb − 1).

DSTDAEC-S1) Detection of a new target and estimation of its angular parameters - This
step is identical to the first step of the STDAEC technique. Therefore, the NVH × NVV
matrix X(i) [l] is processed to detect the strongest target (i.e., the i-th target) contributing
to the l-th delay bin and to estimate its parameters (θi[l], ϕi[l], Ri[l], Ai[l]).

DSTDAEC-S2) Estimation of the distorted amplitudes - In this step, a deep neural net-
work is employed to predict the absolute value8 of Ãi[v, l] (i.e., to predict a new estimate
Ãi[v, l] of |Âi[v, l]|; on the basis of the absolute value of the amplitude Âi[l] (estimated in
STDAE-S5). This network is designed to solve a regression problem through a supervised
learning approach. Network training is based on the dataset

D =
{(

Λ̂q, Λ̃q
)

; q = 1, 2, ..., Nt
}

, (4.166)

collecting Nt distinct points; here,

Λ̂q =
[∣∣Âi[1, l]

∣∣ ,
∣∣Âi[2, l]

∣∣ , ...,
∣∣Âi[NV , l]

∣∣]T
(4.167)

and
Λ̃q =

[∣∣Ãi[1, l]
∣∣ ,
∣∣Ãi[2, l]

∣∣ , ...,
∣∣Ãi[NV , l]

∣∣]T (4.168)

are NV-dimensional vectors representing the input of the network and its response, re-
spectively, in the q-th trial. In network training, the following assumptions are made: a)
the vectors Λ̃q and Λ̂q are known for any q; b) in the q-trial, the radar system observes
a single point target and the target is detected in the frequency bin b̂l . It is important to
note that:

8The network is used for amplitude prediction, since we assume that the antenna array is introduces an
amplitude distortion only.
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a) The evaluation of the elements {Âi[v, l] = Âi[p, q, l]} in vector Λ̂q (4.167) is based
on the estimate Âi[l] computed in STDAE-S5; for this reason we have that∣∣Âi[1, l]

∣∣ = ∣∣Âi[2, l]
∣∣ = ... =

∣∣Âi[NV , l]
∣∣ = ∣∣Âi[l]

∣∣ . (4.169)

b) If the vector Λ̃q (4.168) is known, an estimate |Ǎi[l]| of the absolute value of Ai[l]
can be also computed as

|Ǎi[l]| = N−1
V

NV

∑
v=1
|Ãi[v, l]|. (4.170)

The architecture proposed for the deep neural network has been inspired by that of
a reasonably simple feed-forward neural networks [86, Chapter 5]. This architecture is
characterized by input and output layers of the same size (NV) and K hidden layers. Each
layer is composed by neurons and each neuron provides a non-linear combination of its
inputs to the next layer. The amount of layers and neurons in the network are hyperpa-
rameters that they can be freely chosen, so that the weights and bias in each neuron can
be optimized. Note, however, that the size of each layer decreases from the input layer
to the output layer. During training, the network has the ability to tune its parameters in
order to learn a compressed representation of the input data, so generating an estimate
of the amplitude distortion αv(θ, ϕ).

DSTDAEC-S3) Target cancellation - In this step, the contribution C(i)
X [l], given by the

i-th target detected in the l-th delay bin, to the matrix X(i) [l] is computed. Eqs. (4.141)-
(4.142) in STDAEC-S2 can be still exploited; however, eq. (4.142) is modified as

C(i)
X [l] = |Ãi[p, q, l]| exp∠Âi [l] exp

{
−j2π

[
(p− pR)F̂H,i[l] + (q− qR)F̂V,i[l]

]}
(4.171)

where |Ãi[p, q, l]| = |Ãi[v, l]| and |Ãi[v, l]| is predicted by the network. Then, cancella-
tion is accomplished by computing the new residual vector X(i+1) [l] on the basis of eq.
(4.143).

DSTDAEC-S4) Residual energy test - The energy E(i+1) [l] of the residual spectrum
vector X(i+1) [l] computed on the basis of eq. (4.144) is compared with the positive
threshold TSTDAEC. If this energy is below the threshold, the DSTDAEC algorithm stops;
otherwise, the recursion index i is increased by one and a new iteration is started by
going back to DSTDAEC-S1.

All the target information referring to the b̂l-th delay bin are collected in the set Tl ;
note that the quantity |Âi [l]| appearing in the RHS of the definition (4.149) is replaced
by |Ǎi[l]| estimated by the network.

The method for amplitude compensation illustrated for the RASCA #1 can be easily
adapted to RASCA #2 (see Fig. 4.6). In this case, the STDAEC technique is replaced
by the DSTDAEC technique. Moreover, the SBC procedure is still based on eqs. (4.156);
however, in the computation of the vectors C(v)

Xm
[l], on the basis of eqs. (4.153)-(4.155), the

dependence of the absolute value of the quantity Â(v)
i = Ǎi[v, l] on the antenna index v

has to be taken into account.
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4.3 Other target detection and estimation techniques

The detection and estimation algorithms described above have been compared, in terms
of accuracy and complexity, with two different types of algorithms that, similarly as the
RASCAs, are able to generate radar images in the form of point clouds. The algorithms
of the first type are called FFT-based algorithms (FFT-BAs), since they rely on multidi-
mensional IFFT processing for the evaluation of all the spatial coordinates of targets
(i.e., their range and DOA); such algorithms have been inspired by the FFT-based algo-
rithm proposed by Texas Instrument in [88]. The algorithms of the second type, instead,
are called MUSIC-based algorithms (MUSIC-BAs); these make use of the same method as
the first type for range estimation, but the MUSIC algorithm for DOA estimation [32].
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𝑣

FIGURE 4.8: Block diagram describing the overall structure of the FFT-BAs and the MUSIC-BAs.

In the remaining part of this section, a brief description is provided for both types
referring to a SFCW radar system. The inner structure of both types of algorithms is
described by the block diagram shown in Fig. 4.8. The processing accomplished by the
blocks this diagram consists of, can be summarized as follows. Each vector of the set
{x(v)c }, collecting NV vectors (see (2.25)), undergoes, after ZP, a N0 order inverse FFT; this
produces a set of N0-dimensional vectors {X(v)

0 } (see (4.96), (4.100) and (4.101)). Based
on this set of vectors, the N0-dimensional power spectrum

P0 = [P0,0, P0,1, ..., P0,N0−1]
T (4.172)

is computed; here,

P0,i ≜
1

NVR

NVR−1

∑
v=0

(
X(v)

0,i

)2
(4.173)

with i = 0, 1, ..., N0− 1. The vector P0 (4.172) feeds the cell-averaging smallest of - constant
false alarm rate (CFAR-CASO) algorithm developed in [89]. Based on this algorithm, a
target is detected in the i-th delay bin if

P0,i > TCFAR, (4.174)

where i ∈ {im, im + 1, ..., iM}. Here,

TCFAR = K0 min (P̄l , P̄u) (4.175)
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represents a decision threshold, K0 is a real parameter whose value is selected on the
basis of the required false alarm rate, and

P̄l =
1
Cs

i−(Gs+1)

∑
k=i−(Gs+Cs)

P0,k (4.176)

and

P̄u =
1
Cs

i+Gs+Cs

∑
k=i+Gs+1

P0,k (4.177)

represent the average of the power spectrum computed over Cs adjacent bins positioned
on the left and on the right, respectively, with respect to the i-th delay bin. Moreover,
Gs and Cs are two integer parameters defining the size and the position (with respect
to the i-th bin), respectively, of the set of frequency bins involved in the computation
of P̄l (4.176) and P̄u (4.177), whereas im and iM are two non negative integers such that
im ≥ (Gs + Cs) and iM ≤ N0 − 1− (Gs + Cs). In our work, the inequality

P0,i > Pl,u (4.178)

is also required to be satisfied together with the condition (4.174), where Pl,u represents
the largest element of the set {P0,i+l ; l = −(Gs + Cs), −(Gs + Cs) + 1, −Gs − 1, Gs + 1,
Gs + Cs}. This allows us to reduce the overall number of detected targets, so reducing
the density of the generated point cloud. The CFAR-CASO algorithm generates the
vector

ACF = [α̂0, α̂1, ..., α̂Lb−1]
T (4.179)

where α̂l represents the index of the delay bin in which the l-th target has been detected
(with l = 0, 1, . . . , Lb− 1) and Lb is the overall number of detected targets. This vector is
processed for DOA estimation. The two options (associated with the above mentioned
types of algorithms) are considered for this task and are described in the remaining part
of this paragraph.

IFFT-based DOA estimation – Let us focus first on the case in which a virtual HULA,
consisting of NVH virtual elements, is employed for resolving the targets associated with
a given delay bin and estimating their azimuth. In this case, azimuth estimation consists
of the following two steps:

1) The NVH-dimensional column vector (see (4.157))

X [l] ≜
[

X(0)
0,α̂l

, X(1)
0,α̂l

, ..., X(NVH−1)
0,α̂l

]T
, (4.180)

collecting the spectral information available on the whole array and referring to the α̂l-
th delay bin (with l = 0, 1, ..., Lb − 1) is applied to an N̄0 order IFFT algorithm; let
s[l] = [s0[l], s1[l], ..., sN̄0−1[l]]T denote the N̄0-dimensional IFFT output.

2) The dominant peaks9 in the sequence {|sk[l]|; k = 0, 1, ..., N̄0 − 1} are identified;
each peak corresponds to a distinct target. If ki[l] denotes the index of i-th peak (with i =
0, 1, ..., Lh[l]− 1, where Lh[l] is the overall number of targets detected in the considered
frequency bin), the estimate of the azimuth of the i-th target is evaluated as

θ̂i [l] = arcsin
(
hN̄0

[ki [l]]
)

(4.181)

9It is important to distinguish peaks associated with different targets from side-lobes; in our simulations,
a candidate peak is classified as a side-lobe (and, consequently, ignored) if its amplitude differs by more
than 1 dB from that of a close dominant peak, as suggested in [88].
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where
hN̄0

[x] ≜ 2 (x− N̄0/2)
/

N̄0 . (4.182)

Let us now consider the case in which the URA represented in Fig. 4.2 is employed
for resolving the targets associated with each delay bin, and estimating their azimuth
and elevation. The algorithm employed in this case involves the NVH × NVV matrix
X[l] ≜ [X0,α̂l [p, q]] (4.122), collecting the spectral information available on the whole
array for the α̂l-th delay bin. This algorithm consists of the following four steps:

1) The pR-th row of the matrix X[l] is processed to generate the N̄0-dimensional col-
umn vector sVULA,0[l] = [s0,0 [l] , s0,1 [l] , ..., s0,N̄0−1 [l]]

T on the basis of (4.124); here, pR
represents the column index of the reference antenna in the considered URA (see Fig.
4.2).

2) The dominant peaks of the sequence {|s0,r [l] |; r = 0, 1, ..., N̄0 − 1} are identified.
If ri[l] denotes the index of i-th peak (with i = 0, 1, ..., Lv[l]− 1, where Lv[l] is the overall
number of targets detected in the considered delay bin), the estimate of the elevation
ϕ̂i[l] of the associated target is evaluated as

ϕ̂i [l] = arcsin
(
hN̄0

[ri [l]]
)

. (4.183)

3) The 2D inverse FFT of the matrix X[l] is computed; this produces the N̄0 × N̄0
matrix S̄[l] = [S̄k,r[l]], such that

S̄k,r [l] ≜
1

NV

NVV−1

∑
q=0

NVH−1

∑
p=0

X0,α̂l [p, q] · exp
(

j
2π

λ
ψr,k

)
, (4.184)

where
ψr,k ≜ q hN̄0

[r] dVV + p hN̄0
[k] dVH. (4.185)

4) The dominant peaks of the sequence {[|S̄k,ri [l][l]|; k = 0, 1, ..., N̄0− 1} are identified
(with i = 0, 1, ..., Lv[l]− 1); let Lh[i, l] denote their overall number. If the m-th peak is
found for k = km,i[l] (with m = 0, 1, ..., Lh[i, l]− 1), the azimuth θ̂i,ri [l][l] of the associated
target is evaluated as

θ̂i,ri [l] [l] = arcsin

(
hN̄0

[km,i[l]]
cos

(
ϕ̂i [l]

) ) , (4.186)

where ϕ̂i [l] is expressed by (4.183); consequently, the angular coordinates of the i-th
target detected in the α̂l-th delay bin are (θ̂i,ri [l] [l], ϕ̂i [l]), whereas its range is computed
on the basis of α̂l . The last step concludes our description of the FFT-BAs. Note that the
overall number of detected targets is given by

L̂ =
Lb−1

∑
l=0

Lv[l]−1

∑
i=0

Lh [i, l] . (4.187)

MUSIC-based DOA estimation – Similarly as our description of the FFT-BAs, we first
focus on the case in which a virtual HULA, consisting of NVH virtual elements, is em-
ployed for resolving the targets associated with a given delay bin and estimating their
azimuth. In this case, the algorithm considered for DOA estimation consists of the fol-
lowing three steps:

1) The NVH × NVH autocorrelation matrix

RX [l] = X [l] X[l]H (4.188)
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is computed; here, X [l] is defined by (4.180).
2) The N̄0-dimensional pseudo-spectrum P(l)

MU is evaluated; its k-th element is given by

P (l)
MU[k] =

1
aH [k] QNVR QH

NVR
a [k]

(4.189)

with k = 0, 1, ..., N̄0 − 1; here, (·)H denotes the conjugate and transpose operator, QNVH

is a matrix having size NVH × (NVH−1) and whose columns are the (NVH−1) noise
eigenvectors (associated with the (NVH−1) smallest eigenvalues) of RX[l] (4.188) and
a[k] is a NVH-dimensional steering vector, whose n-th element an[k] is given by

an[k] = exp
(
−jπn hN̄0

[k]
)

, (4.190)

with n = 0, 1, ..., NVH − 1.
3) The dominant peaks appearing in the sequence {P (l)

MU[k]; k = 0, 1, ..., N̄0 − 1},
consisting of the ordered elements of P(l)

MU, are identified; let Lh[l] denote their overall
number. If the i-th peak is found for k = ki[l] (with i = 0, 1, ..., Lh[l]− 1), the azimuth
θ̂i[l] of the associated target is evaluated on the basis of (4.181)–(4.182).

Let us consider now the case in which the uniform rectangular array shown in Fig.
4.2 is employed for resolving the targets associated with each delay bin, and estimating
their azimuth and elevation. In this case, the adopted procedure involves the NVH ×
NVV matrix X[l] ≜ [X0,α̂l [p, q]] (4.122) for any α̂l and consists of the following four steps:

1) The pseudo-spectrum referring to the reference VULA (that consists of NVULA
virtual elements) is evaluated. In this step, we assume that the pR-th row of X[l] is
employed for the evaluation of the autocorrelation matrix RX[l] (4.188) and that the N̄0-
dimensional vector P(VULA)

MU [l] is computed on the basis of (4.189)–(4.190) (note that NV
and δ[k] are replaced by NVULA and δ[r], respectively).

2) The dominant peaks appearing in the sequence of the ordered elements of P(VULA)
MU [l]

are identified; let Lv[l] denote their overall number. If the i-th peak is found for r = ri[l]
(with i = 0, 1, ..., Lv[l]− 1), the elevation ϕ̂i[l] of the associated target is evaluated on the
basis of (4.183).

3) The pseudo-spectrum P(HULA)
MU [l, i] associated with the i-th estimated elevation is

evaluated for the whole virtual array. In this step, if we assume that the autocorrelation
matrix RX is computed according to (4.188) (where, however, X [l] is the NVH × NVV

matrix defined above), the N̄0-dimensional vector P(HULA)
MU [l, i] is generated on the basis

of (4.189). Note that, in this case, NV is replaced by NHULA and that the n-th element
an[k] of the NHULA-dimensional steering vector a[k] is

an[k] = exp
(
−jπn hN̄0

[k] cos
(
ϕ̂i[l]

))
(4.191)

with n = 0, 1, ..., NHULA.
4) The dominant peaks appearing in the sequence of the ordered elements of P(HULA)

MU [l]
are identified; let Lh[i, l] denote their overall number. If the m-th peak is found for
k = km,i[l] (with m = 0, 1, ..., Lh[i, l]− 1), the azimuth θ̂i,ri [l][l] of the associated target is
evaluated as

θ̂i,ri [l] [l] = arcsin
(
hN̄0

[km,i[l]]
)

. (4.192)

Consequently, the angular coordinates of this target are (θ̂i,ri [l][l], ϕ̂i [l]), whereas its range
is computed on the basis of its bin index α̂l . The last step concludes our description of
the MUSIC-BAs. Finally it is important to point out that:
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a) The overall number of targets detected by these algorithms is still expressed by
(4.187).

b) The order adopted in the computation of the pseudo-spectra (first the vertical pseudo
spectrum P(VULA)

MU [l], then the horizontal pseudo-spectra {P(HULA)
MU [l, i]}) is dictated

by the fact P(HULA)
MU [l, i] depends on the elevation estimate ϕ̂i[l] for any i.

The performance of the FFT-BAs and the MUSIC-BAs has been assessed for both 2D
and 3D propagation scenarios. It is important to worth that this MUSIC implementation
is different from that one proposed in chapter 3, since this algorithm is based also on the
concept of Alternating Maximization, in order to reduce the computational complexity
of the algorithm.

4.4 Computational complexity

The computational cost of the algorithms described in section 4.2 and 4.3 has been care-
fully assessed in terms of floating point operations (flops) to be executed in the detection of
L targets10. Our analysis leads to the conclusion that the overall cost of RASCA applied
in a bi-dimensional scenario (range and azimuth estimation only) is approximately of
order O(MR−S2), respectively, where

MR−S2 =24NVH N0 log2(N0) + 26NA KT2 N0

+ Lb KT3 (18NVH N0 + 8N̄0 log2(N̄0)) ; (4.193)

while the overall cost of RASCA applied in a 3D scenario is of order O(MR−S3) where

MR−S3 = 24NV N0 log2 (N0) + 26NA KT2 N0

+ Lb KT3 (18NVH NVV N0 + 16N̄0 log2 (N̄0)) (4.194)

here, KT2 (KT3) represents the overall number of iterations carried out by the STDREC
(STDAEC) algorithm.

The cost of the FFT-based and MUSIC-based algorithms described in Section 4.3 are
approximately of order O(MF−S3), O(MF−S2), O(MM−S3) and O(MM−S2), for FFT-BA
and MUSIC-BA applied to 3D and 2D scenarios, respectively, where

MF−S3 =8NVN0 log2(N0)

+ 8Lb
(

N̄2
0 log2(N̄2

0 ) + N̄0 log2(N̄0)
)

, (4.195)

MF−S2 = 8
(

NVHN0 log2(N0) + LbN̄0 log2(N̄0)
)
, (4.196)

MM−S3 =8NVN0 log2(N0) + LbN̄0(N3
VV + N3

VH)

+ 16LbN̄0(N2
VV + N2

VH) (4.197)

and
MM−S2 = 8NVHN0 log2(N0) + LbN̄0(N3

VH + 16N2
VH). (4.198)

It is important to keep in mind that a comparison among the computational costs listed
above does not fully account for the gap that can be observed in the execution speed

10In the remaining part of this section, the overall number of estimated targets (L̂) is assumed to be equal
to L, for simplicity.
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of the corresponding algorithms. In fact, in practice, a portion of the computation time
is absorbed by the procedure employed to find the dominant peaks of real sequences
in both the FFT-BAs and the MUSIC-BAs. Moreover, the vector ACF (4.179), collecting
the indices of the delay bins in which at least one target has been detected, may include
ghost targets; as evidenced by the numerical results, the impact of this phenomenon on
the overall computation time may not be negligible.

4.5 Numerical results

In this section, the accuracy of the proposed algorithms is assessed on the basis of exper-
imental data collected by an SFCW commercial and colocated MIMO radar. In partic-
ular, after the description of the employed radar device and the adopted experimental
setup, the accuracy achieved by RPE in range and phase estimation on multiple anten-
nas of the same array and the accuracy of the 2D/3D images generated by the RASCA#1
algorithm are analysed in detail.

4.5.1 Employed radar devices and adopted experimental setup

A measurement campaign has been accomplished in the building of the Department of
Engineering “Enzo Ferrari” (University of Modena and Reggio Emilia, Modena, Italy)
to acquire data through an SFCW MIMO radar operating in the E-band. The device,
dubbed VIC SFCW radar in the following, is the Vito-In-Car radar manufactured by Vay-
yar Imaging Ltd Company [62]11; it is classified as a short range radar (SRR). Its main param-
eters are: a) initial transmit frequency f0 = 78 GHz; b) frequency spacing ∆ f = 16.67
MHz; c) overall number of frequencies N = 121. Therefore, the bandwidth and the
central frequency of the radiated signal are BVIC = 2.0 GHz and fc = 79 GHz, re-
spectively. This device is equipped with the uniform rectangular array (URA) shown in
Fig. 4.9-a) this is composed of NT = 16 TX antennas and NR = 21 RX antennas, so
that an URA of 16 · 21 = 336 VAs is available, as shown in Fig. 4.9-b). However, in
this work, only NVV = 20 HULAs, each consisting of NHULA = 16 virtual channels
characterized by the interantenna spacing12 dVH = λ/4, have been exploited; note that
the vertical distance between two adjacent HULAs is dVV = λ/4. The available array,
made of NV = 320 virtual elements, allows us to achieve a reasonable range resolution
(∆R3 = c/(2BVIC) = 7.5 cm), and good azimuthal and elevation resolutions (given by
∆θ3 = λ/(2dH(NHULA − 1)) · (180/π) = 7.6◦ and ∆ϕ3 = λ/(2dV(NV − 1) · (180/π) =
6.0◦, respectively). In this work, the HULA contained in the red rectangle appearing in
Fig. 4.9-b) (the whole array) has been exploited for 2D (3D) imaging.

The measurement campaigns have been conducted in a large empty room (whose
width, depth and height are 10 m, 8 m and 2.5 m, respectively). The employed radar de-
vice has been mounted on an horizontal wooden bar together with a pico-flexx camera
manufactured by PMD Technologies Inc. [90] and has been lifted by a tripod at an height
of roughly 1.60 m from ground, as shown in Fig. 4.10. The employed camera is based on
a near-infrared vertical cavity surface emitting laser (VCSEL), and is able to provide a depth
map or, equivalently, a 3D point-cloud of a small region of the observed environment
(its maximum depth is equal to 4 m, whereas its field of view is 62◦ × 45◦). The measure-
ments acquired through the radar have been always pre-processed by the cancellation

11This radar is the same used for evaluating the accuracy of three dimensional CLEAN algorithm and
MWLA described in Par. 3.5

12the spacing between two adjacent horizontal virtual channels (e.g. see definition in eqs. (2.1)–(2.2)) in
Par. 2.3.1 and Fig. 4.9-b)
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algorithm already available on this device; this algorithm exploits the measurements
acquired from the first transmitted frame to remove unwanted received echoes.

a) b) 1VHN 

q

p

1VVN 

0

0

VHd

VVd

FIGURE 4.9: Representation of: a) the physical array of the VIC SFCW radar; b) the correspond-
ing virtual array (the red rounded rectangle contains HULA employed for 2D imaging, whereas

the green rounded rectangle the vertical array chosen as a reference for 3D imaging).

As far as the acquired measurements are concerned, it is important to point out that:
a) target ranges have been estimated with respect to the central virtual channel of the
employed ULA; b) the exact target positions have been acquired with respect to the cen-
tre of the pico-flexx camera; c) data processing has been accomplished in the MATLAB
environment; d) all the detection and estimation algorithms have been run on a desktop
computer equipped with a single i7 processor. Three different sets of experiments have
been carried out to assess the accuracy of: a) the range and the amplitude estimates
evaluated by the RPE (and, in particular, by the STDREC algorithm) in the presence of a
single target and of multiple targets; b) the 2D and 3D images generated by the RASCA
#1 method in the presence of multiple targets.

VIC Radar

Picoflexx

𝑇1 𝑇5
𝑇4

𝑇3

𝑇2

FIGURE 4.10: Experimental set-up developed for the considered measurement campaigns. The
radar device and the reference sensor (pico-flexx) are mounted on a wooden bar. A group of

metal targets, placed at the different height respect to the sensors, is also visible.

4.5.2 Range and amplitude estimation

In this paragraph, the accuracy of the STDREC algorithm employed by the RPE is anal-
ysed. The numerical results illustrated in this subsection refer to two specific static
scenarios. The first scenario is characterized by a single detectable target, represented
by a small metal disk13 of size 5.5 cm. The target range R has been chosen in the inter-
val (1.0 m, 3.0 m), with a step of 0.5 m; in all cases, its azimuth θ has remained within

13Each target is hung from the ceiling: a nylon thread has been used for suspending them.
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the interval (−40◦ , 40◦). The exact range and azimuth characterizing the ten distinct
positions considered for the targets are listed in Table 4.1 for all the considered radar
devices (the data referring to the i-th position are collected in the column identified by
Ti, with i = 1, 2, ..., 10). The second scenario, instead, is characterized by the presence
of an overall number of targets ranging from 1 to 9 (so that 1 ≤ L ≤ 9). The targets are
represented by small coins with a diameter of 2 cm; the range and azimuth character-
izing their exact positions are listed in Table 4.2 (the data referring to the i-th target are
collected in the column identified by Ti, with i = 1, 2, ..., 9); they have been sequentially
added in the scenario, starting from a single target and then increasing the number of
targets up to 9. This has allowed to assess how the performance of the STDREC al-
gorithm is influenced by the value of the parameter L in the presence of closely spaced
targets. In processing all the acquired measurements, prior knowledge of L has been
always assumed 14; moreover, the following values have been selected for the param-
eters of the STDREC algorithm: N = 121, N0 = N · M = 1936, M = 16, NCSDE = 5
and I = 7. It is worth nothing that: a) the value of the parameters has been selected in
way to guarantee approximately a sufficient bin resolution for the STDREC algorithm
(given by ∆Rbin = cM

2B = ∆Rx
M , with x = 1, 2, 3). In analysing the data acquired in both

scenarios, the accuracy of range estimates has been assessed by evaluating the RMSE
ε̄R and the peak error ε̂R (see eq. (3.73) and (3.74), respectively, considering Xl = Rl
(X̂l = R̂l)). Moreover, since the RCS of the considered targets was unknown, the anal-
ysis of the complex gains available over the 16 channels of the considered virtual ULA
and associated with the same target has concerned only their (unwrapped) phase.
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FIGURE 4.11: Unwrapped phase of the complex gain versus index of the virtual channel of the
reference HULA; a single target is assumed.

An example of the phases trajectory estimated by the STDREC algorithm over the
considered reference HULA, consisting of 16 VAs (the reference HULA is composed
by the VAs contained inside the red rounded rectangles appearing in Fig. 4.9-b)) and
associated with a target placed at relatively small azimuth angle with respect to the
centre of the radars is shown15 in Fig. 4.11. Since the horizontal distance dVH between
adjacent virtual channels is constant, the estimated phases exhibit a linear dependence
on the index of the virtual channel (see, in particular, eqs. (2.10) and (2.12) in Sect. 2.4).
Moreover, if a linear fitting is drawn for these data, it should be expected that the slope
of the resulting straight line is proportional to sin(θ) (see eq. (2.42)); this is confirmed
by the results shown in Fig. 4.11. To assess the quality of the estimated phases, their

14Some methods for estimating the number of target L are available in [74].
15The exact coordinates can be found in the column labelled by T7 in Table 4.1.
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RMSE16 ε̄ψ has been evaluated in all the scenarios; in doing so, the linear fitting of the
phases estimated over the whole ULA has been taken as a reference with respect to
which the error of each phase estimate has been computed. The estimate of the target
range generated by the STDREC algorithms in each of the Nm = 10 distinct positions
considered in the first scenario are listed in Table 4.1; in the same table, the value of ε̄ψ

computed for each position is also given. The target ranges and their estimates listed in
Table 4.1 are also represented in Fig. 4.12. The errors ε̄R (3.73) and ε̂R (3.74), the mean
of ε̄ψ (denoted by ε̄m,ψ and generated by taking the average of the Nm values available
for ε̄ψ) and the average computation time (CT) evaluated on the basis of these results are
listed in Table 4.3.

Methods T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

Exact
R (m) 1.2 1.08 1.5 1.42 2.05 2.1 2.75 2.45 2.88 3.09

θ (◦) -35 30 -20 20 -12 15 -14 15 - 18 25

STDREC
R̂ (m) 1.242 1.06 1.517 1.413 2.025 2.06 2.78 2.409 2.905 3.041

ε̄ψ (rad) 0.25 0.35 0.67 0.345 0.422 0.45 0.686 0.919 0.379 0.54

TABLE 4.1: Exact positions (range and azimuth) of the considered target (first scenario), es-
timated ranges and RMSE evaluated for the phase fitting over the considered sixteen virtual

channels of the VIC SFCW device.
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FIGURE 4.12: Representation of the ranges estimated by the STDREC algorithm (first experi-
mental scenario).

These results and those listed in Table 4.1 have led us to the following conclusions:

1. In all the considered cases, the STDREC is able to accurately estimate the range
and the amplitudes of a single target.

2. All the values of ε̄R and ε̂R are comparable, reasonably low and in the order of the
resolution of the devices.

3. The value of ε̄ψ characterizing the VIC SFWC radar is lower when the target is
closer to this device. This result is mainly due to the fact: a) the far-field condition

16The evaluation of this RMSE is based on a formula similar to eq. (3.73).
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of the VIC SFWC device is satisfied at short ranges, since the antenna array of the
former device is more compact than that of the latter one; b) the VIC SFCW radar
is a SRR system. In fact, for these reasons, the measurements provided by the VIC
SFCW radar allow us to obtain accurate results at a shorter distance.

4. The CT is in the order of few milliseconds.

Method
T1 T2 T3 T4 T5 T6 T7 T8 T9

(m) (m) (m) (m) (m) (m) (m) (m) (m)

Exact 1.860 1.900 1.980 2.110 2.190 2.220 2.370 2.410 2.460

STDREC 1.837 1.920 1.98 2.081 2.192 2.266 2.355 2.427 2.518

HSTDREC 1.838 1.920 1.976 2.081 2.199 2.265 2.351 2.423 2.530

TABLE 4.2: Exact positions of the nine targets characterizing the second scenario. The range
estimates computed by the STDREC, HSTDREC algorithms are also provided.

Methods
ε̄R ε̂R ε̄m,ψ CT

(m) (m) (rad) (msec)

STDREC 0.032 0.049 0.501 0.3

TABLE 4.3: Root mean square error ε̄R, peak error ε̂R, mean error ε̄m,ψ and computation time (CT)
evaluated for the STDREC algorithm in the first scenario.

Methods
ε̄R ε̂R CT

(m) (m) (msec)

STDREC 0.03 0.06 15

HSTDREC 0.03 0.07 16

TABLE 4.4: Root mean square error ε̄R, peak error ε̂R, and computation time (CT) evaluated in the
second scenario.

Let us focus on the second scenario now. In this case, the range estimates have
been generated by the STDREC algorithm and its hybrid version, i.e. the HSTDREC
algorithm. The obtained results are listed in Table 4.2. The errors ε̄R and ε̂R, and the CT
assessed in this case are listed in Table 4.4. From these results it is easily inferred that:

1. The STDREC and the HSTDREC algorithms works properly for L = 1 up to L = 9.

2. In the considered scenario, the HSTDREC algorithm does not provide a better
accuracy than the STDREC algorithms; this means that estimation bias of the last
algorithms does not play an important role in this case.

3. The estimated RMSEs and peak errors are comparable to the order of the reso-
lution of the device, even if the estimation of the first target is not as good as
expected. This is probably due to the fact that the energy received from this target
has been found to be lower than that coming from the other four targets.
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FIGURE 4.13: Representation of the initial amplitude spectrum of the signal observed on the
central virtual channel (blue line) and of the final residual amplitude spectrum generated by the

STDREC algorithm (red line).

Finally, it is important to stress on the fact that the robustness of STDREC and HST-
DREC algorithms is related to the accuracy of the estimation and cancellation procedure
they accomplish. This is exemplified by Fig. 4.13, where the initial amplitude spectrum of
the signal received on the central virtual channel of the SFCW radar in the second sce-
nario and its residual, resulting from the cancellation of the spectral contributions due to
the five detected targets, are shown.

4.5.3 Two-dimensional and three-dimensional imaging

The numerical results illustrated in this subsection have been generated to assess the
accuracy of the 2D and 3D images generated by the RASCA #1 algorithm. Two different
groups of experiments have been done. The first (second) group has allowed to assess
the performance achieved by the above mentioned algorithm in 2D (3D) imaging. In
both cases, the measurements have been acquired in the presence of an increasing num-
ber of targets through the radar device; in practice, these targets, each represented by a
small metal disk of size 5.5 cm, have been sequentially introduced in the propagation en-
vironment, so that their overall number (L) has ranged from one to five (i.e., 1 ≤ L ≤ 5).
In the first group of experiments, the following choices were made:

1. The targets have been placed in a very small region and at the same height. The
range R and azimuth θ of each of them are listed in Table 4.5; note that these
parameters belong to the intervals [2.2 m, 2.7 m] and [−15 ◦, 30◦], respectively.

2. The measurements have been acquired through a virtual ULA, consisting of 16
VAs.

The range R, azimuth θ and elevation ϕ of the targets considered in the second group
of experiments are listed in Table 4.7; the values of these parameters belong to the in-
tervals [1.9 m, 2.8 m], [−30 ◦, 35 ◦] and their elevation [−10 ◦, 10 ◦]. In this case, the
measurements have been acquired through the whole virtual array of the employed
radar device.

In analysing the acquired measurements, the following choices have been made for
the parameters of RASCA #1: a) NA = 16 (NA = 10) in the RPE employed in 2D (3D)
imaging; b) NCSDE = 10 in both the STDREC and the STDAEC algorithms; c) the values
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of the parameters N0 and M are equal to those employed for the STDREC in the previous
paragraph; d) the oversampling factor M̄ = 16, obtaining a value of N̄0 = 320 when the
entire array is employed and e) TOF = 0. Moreover, the following values have been
selected for the parameters of the FFT-BAs and the MUSIC-BAs: Cs = 6, Gs = 6 and
K0 = 2. Furthermore, prior knowledge of L has been always assumed (otherwise a
minimum threshold TSTDREC = 0.2 · E(vk)

0 (4.116) can be employed for both 2D and 3D)
and the threshold TSTDAEC has been selected in the range [0.01, 0.9] · E(0)[l] (4.144) (its
value has been adjusted on the basis of the SNR of the received signal and the number
of detectable targets).

Exp. Methods Params. T1 T2 T3 T4 T5

Exact
R (m) 2.26 2.51 2.44 2.68 2.21
θ (◦) -12.7 -4.5 10.6 18.0 28.3

1) RASCA
R (m) 2.18
θ (◦) -11.8

2) RASCA
R (m) 2.25 2.55
θ (◦) -12.8 -6.3

3) RASCA
R (m) 2.31 2.54 2.16
θ (◦) -13.2 -7.2 25.5

4) RASCA
R (m) 2.31 2.54 2.75 2.16
θ (◦) -13.2 -6.7 17.5 25.5

5) RASCA
R (m) 2.30 2.52 2.53 2.7 2.13
θ (◦) -12.5 -7.0 4.0 17.1 27.0

TABLE 4.5: Exact range and azimuth of the five targets considered in the first group of experi-
ments and corresponding estimates generated by the RASCA#1.

Let us focus first on the case of 2D imaging. The estimates of range and azimuth
generated by the RASCA #1 are listed in Table 4.5, whereas the values of RMSE, peak
error and CT computed by averaging the RMSEs in each single experiment are listed
in Table 4.6. From these results it can be easily inferred that all the range and azimuth
errors are reasonably low and comparable to the resolution of the device.

Method
ε̄ ε̂ CT

R (m) θ (◦) R (m) θ (◦) (sec)

RASCA 0.07 2.5 0.09 3.8 0.3

FFT-BA 0.07 3.0 0.09 4.0 0.45

MUSIC-BA 0.06 2.5 0.08 3.5 0.45

TABLE 4.6: Average root mean square error ε̄, peak error ε̂, and computation time (CT) evaluated on
the basis of first measurement for RASCA, FFT-BA and MUSIC-BA.

The good accuracy achieved by the RASCA#1 is also evidenced by Fig. 4.14, where
the range-azimuth map17 generated on the basis of the measurement acquired through

17This is generated though standard 2D IFFT processing [58].
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the SFCW radar is represented as a contour plot18; in the same figure, the exact position
of the five targets employed in the first group of experiments and their estimates are
shown. Let us consider now the case of 3D imaging.
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FIGURE 4.14: Representation of the range-azimuth map (in x− y coordinates) in the presence of
five targets. The exact position of each target and its estimate (shown in Table 4.5) is also shown.

Exp. Methods Params. T1 T2 T3 T4 T5

Exact
R (m) 1.94 2.34 2.75 2.49 2.08
θ (◦) -27.8 -9.9 0 14.0 35.2
ϕ (◦) -6.0 2.0 -2.1 -7.0 -2.0

1) RASCA
R (m) 1.85
θ (◦) -20.9
ϕ (◦) -3.5

2) RASCA
R (m) 1.91 2.05
θ (◦) -21.0 28.5
ϕ (◦) -3.5 -1.5

3) RASCA
R (m) 1.89 2.24 2.1
θ (◦) -21.0 -9.5 29.2
ϕ (◦) -4.0 5.0 -3.0

4) RASCA
R (m) 1.85 2.23 2.60 2.06
θ (◦) -21 -9 15 29
ϕ (◦) -3.5 0 -7 -2.5

5) RASCA
R (m) 1.82 2.26 2.82 2.61 2.1
θ (◦) -21.0 -9.0 2.1 14.6 29.0
ϕ (◦) -3.5 0 -2.5 -8.2 -1.0

TABLE 4.7: Exact range, azimuth and elevation of the five targets considered in the second group
of experiments and corresponding estimates generated by the RASCA#1.

18Note that x − y coordinates are employed in this case, in place of range and azimuth; the position of
the radar system corresponds to the origin of the reference system.
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Methods
ε̄ ε̂ CT

R (m) θ (◦) ϕ (◦) R (m) θ (◦) ϕ (◦) (sec)

RASCA 0.07 5.2 1.7 0.09 5.3 1.8 2.2

FFT-BA 0.08 5.1 2.1 0.11 6.5 2.8 1.0

MUSIC-BA 0.11 5.3 2.1 0.18 6.7 3.1 1.1

TABLE 4.8: Average root mean square error ε̄, peak error ε̂, and computation time (CT) evaluated in
the second experiment. Target range, azimuth and elevation are taken into consideration.

The estimates of range, azimuth and elevation generated by the RASCA#1 are listed
in Table 4.7, whereas the values of RMSE, peak error and CT computed by averaging
the RMSEs, peak errors and CTs evaluated in each single experiment are listed in Table
4.8. In this last table, the values of RMSE, peak error and CT for the employed FFT-BAs
and MUSIC-BAs are also provided. These results deserve the following conclusions:

a) The RMSE and the peak errors evaluated for target range, azimuth and elevation are
reasonably low and comparable with those obtained in the case of 2D imaging for
range and azimuth only (see Table 4.6);

b) The accuracy achieved by the VIC SFCW radar in the estimation of target elevation
is better than that in azimuth estimation. This is due to the fact that the URA
of the device has more channels, i.e. a finer angular resolution along the vertical
direction respect the horizontal one.

c) The average CT is in the order of few seconds for the proposed algorithm.

The good resolution provided by the RASCA#1 is also highlighted by Fig. 4.15,
where the exact positions of the five targets employed in the second group of experi-
ments and their estimates are shown; note, in particular, that a good accuracy is achieved
even in the presence of closely spaced targets, like T4 and T5.

FIGURE 4.15: Representation of a 3D scenario characterized by five targets. The exact position
of each target and its estimates are shown.
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4.6 Conclusions

In this chapter, a novel algorithm for detecting and estimating the parameters of a sin-
gle exponential using an SFCW radar system has been proposed; moreover, its has
been shown how it can be exploited to estimate the parameters of multiple exponen-
tials through a serial cancellation procedure inspired by the CLEAN algorithm and the
MWLA. These two methods, namely the CSDE and CSDEC, have been exploited for
deriving two imaging algorithms for the detection and estimation of multiple targets
in a colocated MIMO SFCW radar system, dubbed RASCA#1 and RASCA#2. These al-
gorithms allow to obtain reasonably accurate estimates of range, DOAs and amplitude
in the presence of single or multiple closely spaced targets in both 2D and 3D scenario,
representing a valid alternative to the methods proposed in Sect 3.3 and 3.4. The accu-
racy and robustness of STDREC (that includes the CSDEC) and RASCA #1 have been
also assessed on the basis of various measurements acquired through a state of the art
MIMO SFCW commercial radars. The experimental results have led to the conclusion
that a) the STDREC method is able to generate very accurate estimates regarding the
range and the complex amplitude of a single or multiple targets; b) the RASCA#1 is
able to generate accurate 2D and 3D radar images.

It is important to underline that the STDREC and RASCA methods can be potentially
used in other applications, not necessarily related to the field of radar systems, in which
other estimators solving the same problem are adopted. In particular, the STDREC al-
gorithm may be employed for estimating the channel impulse response (CIR) of a channel.
In fact, such a CIR may be represented by a sequence of lines (i.e., of delayed delta func-
tions), each positioned in a specific time bin and characterized by a specific complex gain.
Moreover, the received signal model expressed by eq. (2.25) has the same mathematical
structure as the signal available at the output of the IDFT evaluated by the demodulator
in a digital communication system employing the orthogonal frequency division multiplex-
ing (OFDM) modulation (e.g., see [91, Par.4.4.4, eq. (4.129)]) when known (i.e., pilot) chan-
nel symbols are transmitted. For this reason, the STDREC algorithm may be exploited for
accomplishing pilot-based channel estimation of the impulse response of the communica-
tion channel in this system. This result has significant technical implications, since the
OFDM has been adopted in the air interface of fourth generation (4G) and fifth generation
(5G) standards for cellular communications [92], [93]. It is worth mentioning that, to
the best of my knowledge, the use of a SIC approach to channel estimation has been
proposed in ref. [94, Par. II-A] for a long term evolution-advanced (LTE-advanced) cel-
lular system; however, the estimation technique proposed in that work is completely
different from the STDREC technique devised for a SFCW radar system. The novelty of
the solution is mainly represented by the STDREC technique and by the simplicity of
the adopted cancellation procedure. The STDREC technique, in fact, is able to generate
an accurate estimate of the parameters of each exponential through the computation of
both the integer part and the fractional part of its delay; the accuracy of delay estimation
plays a fundamental role in the efficacy of the serial cancellation procedure, mitigating the
error accumulation problem.
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5 | Learning techniques for
colocated MIMO radars

5.1 Introduction

Based on what has been shown in chapters 3 and 4, it is possible to state that the full ex-
ploitation of the potentialities offered by modern colocated MIMO radar devices cannot
be separated by the use of proper detection and estimation methods [22], [95].
In particular, the proposed methods are model-based, since they require the full knowl-
edge of the employed radar device and rely on a parametric description of the propa-
gation environment; note that, in such a description, targets are usually represented as
points reflecting electromagnetic energy [58], [59], [96], [97]; broadly speaking, in many
cases, these methods allow to achieve good estimation accuracy at the price of an ac-
ceptable computational effort.

Unluckily, in a number of recent applications, MIMO radars operate in extremely
complex, highly dynamic and time varying scenarios, affected by multipath propaga-
tion, clutter and interference, and in the presence of extended targets. In such conditions,
deterministic algorithms may fail, since they are unable to achieve acceptable estimation
accuracy and are prone to generate ghost targets [98]. When this occurs, machine learning
(ML) and deep learning (DL) techniques represent an appealing alternative or the only vi-
able technical solution. A relevant example of this class of techniques is represented by
neural networks (NNs) [87], [99]. These networks can automatically learn specific data
patterns and extract useful information directly from raw data, even in the presence of
strong interference. In fact, they can be trained to recognise interference and remove it,
so making the recovery of useful signal components possible.

Unfortunately, the application of NNs and related methods to MIMO radars is chal-
lenging, because, on the one hand, the problems tackled in this field are often substan-
tially different from those to which such methods have been applied for a number of
years (e.g., processing of RGB images in computer vision); on the other hand, the large
radar dataset required for the proper training of a NN may be unavailable. Another
critical issue emerging from the exploitation of ML and DL methods in real world ap-
plications is represented by the fact that a trained machine is, by and large, a black box
mapping inputs to outputs; for this reason, generally speaking, it cannot be inferred
why a given output has been based on the provided input data [100]. This explains
why, in various radar applications, a model-based approach could be preferred.
Despite this relevant limitation, it is widely accepted that the use of ML and DL meth-
ods in colocated MIMO radars will allow to solve a number of real world problems.
For instance, recent work has evidenced that they can be successfully exploited in the
classification of human activities and gestures, in the detection of human falls [101] and
in the classification of dynamic targets in dense and dynamic urban scenarios [102].
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This chapters aims at providing an overview of the ML and DL methods employed
in most of the possible radar applications, analysing their pros and cons, discussing the
main lessons that have been learnt from their use and illustrating some trends in this re-
search area. Furthermore, the description of learning methods is enriched with various
numerical examples on synthetically generated dataset and an entire section is devoted
to the analysis of numerical results generated the measurements acquired through a
commercial colocated MIMO radar. In particular, differently from what done in the pre-
vious chapter, I preferred to focus on ML methods for an FMCW MIMO Radar, since
these devices are the most popular in the automotive market and, as far as I know, a lot
of works regarding ML algorithms and radar systems available in the recent literature
are concerning with such devices.

The remaining part of this chapter is organized as follows. In sections 5.2 and 5.3 the
most relevant ML and DL methods currently being investigated for their use in colo-
cated MIMO radars are described, respectively. An overview of the specific applications
of these techniques to colocated MIMO radars is illustrated in section 5.4; these applica-
tions regards human-motion and human-gesture classification, healthcare monitoring,
and target detection and localization. Some trends emerging in the current research
activities about the application of DL techniques to colocated MIMO radars are illus-
trated in section 5.5. Various ML and DL methods are compared, in terms of accuracy
and computational complexity, in section 5.6, where their use in human activity classi-
fication, and in the detection and position estimation of a moving target is illustrated.
Finally, some conclusions are offered in section 5.7.

5.2 Machine learning based methods

In paragraph 2.5 one of the simplest deterministic approaches for target detection and
estimation of its parameters is proposed for an FMCW radar. An alternative to such
algorithm is offered by ML methods [87]. If ML techniques are employed, the inner
structure of the considered radar system and the physical laws on which its operation
is based can be ignored, since the required information are automatically extracted by
an algorithm able to learn the regularities characterizing the set of observed data. Let us re-
consider now the detection and estimation problem described in paragraph 2.5 from
this new perspective and show how a solution based on ML methods can be devised.
To this aim, I take into consideration again a FMCW radar system equipped with the
antenna array shown in Fig. 2.8-a) and assume that it is employed to perform a mea-
surement campaign. In this campaign, Nt independent trials are accomplished in the
presence of a single point target or in the absence of it; in each trial, the pair [x(0), x(1)]
of noisy vectors (see eq. (2.48)) is acquired and stored in a database together with the
target range and azimuth (when the target is present). In the following, [rq,0, rq,1] and

tq ≜
[
dq, Rq, ϕq

]T (5.1)

denote the value of the pair [x(0), x(1)] and the associated label acquired in the q-th trial
(with q = 0, 1, ... , Nt − 1) and used as ground truth; here, dq = −1 (1) if the target is
absent (present), and Rq and ϕq represent the target range and azimuth1, respectively, in
the same trial if dq = 1 (if dq = −1, the values of both Rq and ϕq are irrelevant). In this

1In this chapter the azimuth angle is always indicated by the Greek letter ϕ, in order to avoid confusion
with the vector of parameters of the network.
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case, the ML approach consists in processing the dataset

Di ≜
{[

rq,0, rq,1
]

, tq; q = 0, 1, ..., Nt − 1
}

(5.2)

to learn how to detect the presence of a target on the basis of a new pair [x(0), x(1)]
and, if a target is detected, how to estimate its position. The accuracy of the algorithm
resulting from the learning phase (i.e., from training) depends not only on the adopted
ML method, but also on the size of Di (i.e., on Nt). Generally speaking, the use of ML
methods requires the availability of a large set of measurements, i.e. a large Nt (say, at
least, a few thousands). Unluckily, any ML method extracting the required knowledge
directly fromDi (5.2) has to process high dimensional vectors if the size N of the vectors
rq,0 and rq,1 is large. Actually, the dimensionality of the given problem can be reduced by
exploiting prior knowledge about the problem itself. In fact, in developing the proposed
deterministic algorithm, we have learnt that essential information for target detection
and estimation is provided by the complex pair [X(0)

l̂
, X(1)

l̂
] (see eqs. (2.50)-(2.51)), where

l̂ is expressed by eq. (2.55). These considerations suggest to:

a) Pre-process the pair (rq,0, rq,1) in order to generate the vector

Xq ≜
[

X(0)
q , X(1)

q

]T
, (5.3)

where X(0)
q and X(1)

q are the values taken on by the quantities X(0)
l̂

and X(1)
l̂

, respec-

tively, in the q-th trial (with q = 0, 1, ..., Nt − 1); X(0)
q and X(1)

q can be considered
as highly informative data extracted from the received signal, i.e., briefly, as the
features available for the considered problem.

b) Replace the set Di (5.2) with the new set

D ≜ {Xq, tq; q = 0, 1, ..., Nt − 1}, (5.4)

that consists of low dimensional vectors only, and use it to train the considered
ML method; when this occurs, the last set is called training set.

Once training is over, the ML algorithm resulting from it is able to infer the un-
known value of tq (5.1) for any new vector Xq (5.3) of noisy data (with q > Nt − 1); in
other words, it is able to predict: a) dq; b) Rq and ϕq if a target is detected. It is impor-
tant to remark that any ML algorithm predicting dq solves a binary classification problem,
since it assigns a new observation to one of two categories of noisy data, one associated
with the presence of a target, the other one with its absence; in other words, the algo-
rithm is exploited to recognise a specific pattern in the noisy observations. If the considered
ML algorithm is also able to predict the value of the pair (Rq, ϕq) (i.e., of two continuous
variables), it solves a regression problem too. In the considered radar system, different ML
algorithms can be employed to learn classification and regression rules from the train-
ing set D (5.4). Moreover, all such algorithms can be considered as specific instances
of the so called supervised learning methodology, as shown in the following paragraph.
Generally speaking, supervised learning techniques can be employed when:

1. A training set
D ≜ {

(
rq, tq

)
; q = 0, 1, ..., Nt − 1}, (5.5)
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collecting Nt, Dr-dimensional real observations (also called covariates, or domain
points, or explanatory variables) {rq; q = 0, 1, ..., Nt − 1}, with

rq ≜
[
rq,0, rq,1, ..., rq,Dr−1

]T , (5.6)

and the associated Dt-dimensional real labels (also called dependent variables or re-
sponses) {tq; q = 0, 1, ..., Nt − 1}, with

tq ≜
[
tq,0, tq,1, ..., tq,Dt−1

]T , (5.7)

is available.

2. There exists some mechanism relating the variable rq to the variable tq for any q.

The last point is a fundamental one, since it does not make any sense to develop rules
applicable to unseen examples in the absence of some assumptions about the mecha-
nism underlying data generation; the set of these assumptions is known as the inductive
bias.

5.2.1 The supervised learning problem

Generally speaking, supervised learning concerns the identification of the conditional
probability density function (pdf) f (t|r) (also called predictive distribution) minimizing the
average generalization loss

Lp(t̃) ≜ E f (t,r) {ℓ (t, t̃ (r))} ; (5.8)

here, E f (x) {·} denotes the expectation evaluated with respect to the joint f (x), t̃(r) is
a prediction of the label t computed from the observation r and ℓ (·, ·) is a given cost
function. If the label of each observation is one-dimensional (1D) and is real, the cost
functions

ℓ2
(
t, t̂
)
= (t− t̂)2 (5.9)

and

ℓ0
(
t, t̂
)
=

{
1 if t = t̂
0 elsewhere

(5.10)

are often employed for regression and binary classification, respectively. It is well known
that, if the posterior pdf f (t|r) is known, the minimum value of the loss Lp(t̃) (5.8) is
achieved by selecting the optimal prediction (e.g., see [87, Par. III.C, eq. (4)])

t̂ (r) = arg min
t̃

E f (t|r) [ℓ (t, t̃) |r] , (5.11)

whatever cost function is selected.

Supervised learning methods are employed when the conditioned pdf f (t|r) (or the
joint pdf f (t, r)) is unknown, but a training set D, collecting Nt distinct data generated
on the basis of it and structured according to eq. (5.4), is available. The objective of these
methods is to generate a predictor, denoted by t̂D(r), exclusively based on D and whose
performance, in terms of generalization loss, is as close as possible to that of the optimal
predictor t̂(r) (5.11); this means that the loss evaluated for the prediction of the label
associated with a new observation should be as small as possible. The derivation of the
predictor t̂D(r) can be formulated as an optimization problem, whose form depends on
the specific assumptions about the model that is being learnt. The frequentist approach
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or a Bayesian approach can be adopted for solving this problem, as illustrated in the fol-
lowing paragraph. In particular, the general principles of these two approaches can be
employed to solve a specific regression problem concerning the FMCW radar system
described in chapter 2 and equipped with the array shown in Fig. 2.8-a). In this case,
we assume: a) the presence of a single point target placed at a fixed and known range
R; b) the availability of the synthetically generated dataset (see eq. (5.5))

D ≜ {rq, tq; q = 0, 1, ..., Nt − 1}, (5.12)

where2

tq ≜ ϕq, (5.13)

rq = ∆ψ̂q (5.14)

is an estimate of the phase difference

∆ψq ≜ ψ
(1)
q − ψ

(0)
q (5.15)

and ψ
(0)
q (ψ(1)

q ) is the phase of the sinusoidal oscillation associated with the considered
target and observed on the first (second) RX antenna for any q (see eqs. (2.33)-(2.38) and
(2.42)).

5.2.2 The frequentist and Bayesian approach to supervised learning

The frequentist approach relies on the assumption that all the points of the set D (5.12)
are generated independently on the basis of the same unknown joint pdf f (r, t) , that is(

rq, tq
)
∼ f (r, t) = f (t|r) f (r) , (5.16)

with q = 0, 1, ..., Nt− 1. Under this assumption, two possible approaches can be adopted
to derive the above mentioned predictor t̂D(r), namely: a) separate learning and inference;
b) direct inference via empirical risk minimization (ERM). The first approach consists in
learning an approximation, denoted by fD(t|r), of the conditional pdf f (t|r), and in
using the former pdf in place of the latter one to derive the expression of the predictor
t̂D(r) on the basis of eq. (5.11). The second approach, instead, aims at directly learning
t̂D(r) by solving the problem

t̂D (r) = arg min
t̃

LD (t̃ (r)) , (5.17)

where

LD (t̃ (r)) ≜
1

Nt

Nt−1

∑
q=0

ℓ
(
tq, t̃

(
rq
))

(5.18)

is the so called empirical loss. In both cases, the optimization of a set of parameters charac-
terizing the model selected for the conditional pdf fD(t|r) or that chosen for the predic-
tor t̂D(r) is required. However, the first approach is more flexible than the second one
since, in principle, the approximate pdf fD(t|r) it generates can be exploited to derive
the predictor t̂D(r) for any cost function; on the contrary, the solution of the problem
(5.17) holds for a specific cost function only. Moreover, it should be kept in mind that,
if the first approach is adopted, two options are available. The first consists in learn-
ing a discriminative probabilistic model, i.e. in learning directly an approximation of the

2Note that, in this case, dq = 1 and Rq = R in eq. (5.1), so that the label tq turns into a scalar.



118 Chapter 5. Learning techniques for colocated MIMO radars

posterior f (t|r). On the contrary, the second option consists in learning a generative prob-
abilistic model, i.e. in learning the joint pdf f (t, r) and, then, in deriving an estimate of
the posterior f (t|r) from it.

Considering a frequentist approach, the predictor of the azimuth ϕq (5.13) associ-
ated with the new observation ∆ψ̂q for any q > Nt − 1 can be derived considering the
discriminative probabilistic model

f
(
t|rq, w

)
= N

(
t; µ
(
rq, w

)
, β−1

)
, (5.19)

where

µ
(
rq, w

)
≜

M̄

∑
j=0

wj φj
(
rq
)
= wT φ

(
rq
)

, (5.20)

M̄ is the order of the model,
w ≜ [w0, w1, ..., wM̄]T (5.21)

is a vector collecting M̄ + 1 distinct real parameters (called weights),

φ
(
rq
)
≜
[
φ0(rq), φ1(rq), ..., φM̄(rq)

]T (5.22)

is the so called feature vector, {φj(x); j = 0, 1, ..., M̄} are M̄ + 1 non linear functions and
β−1 is the variance of the noise affecting the labels. In the following, let us assume that

φj(x) = xj (5.23)

for j = 0, 1, ..., M̄; consequently, eq. (5.20) becomes

µ(rq, w) ≜ w0 +
M̄

∑
j=1

wj rj
q. (5.24)

It is worth noting that:
a) Adopting the probabilistic model (5.19) with the mean µ(rq, w) (5.24) is amounts

to postulating a polynomial dependence of the label ϕq on the corresponding observa-
tion ∆ψ̂q.

b) The selected model depends on its order M̄ and on the (M̄ + 2)-dimensional pa-
rameter vector θ ≜

[
wT, β

]T.
c) The parameter M̄ defines the number of degrees of freedom available in the model

and, consequently, determines its bias.

As far as the last point is concerned, it is worth mentioning that, if M̄ is too small,
the resulting predictor may underfit the observations, since it is unable to accurately rep-
resent this dependence on their labels. On the contrary, if M̄ is too large, the model is
able to account for the observations of the training set, but it may generate inaccurate
predictions; in other words, it memorizes the training set, but it is unable to generalise
what has learnt to new examples. The last problem is known as overfitting. For instance,
in the considered problem, good results are obtained if M̄ = 3 is selected.

If the ERM approach is adopted to adjust the parameters of the probabilistic model
(5.19) (and, in particular, the weight vector w (5.21)) in an optimal fashion, the obtained
result depends on the selected cost function and cannot be always put in a closed form.
However, if the cost function ℓ2(t, t̂) (5.9) is chosen and noise is neglected (i.e., β−1 is
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assumed to be very small), a closed form expression can be derived for ŵ for any M̄. In
fact, under these assumptions, it can be proved that:

1. The optimal predictor t̂D(r) (5.17) becomes (e.g., see [86, Sect. 3.1.1, eq. (3.20)])

t̂D(rq) = µ
(
rq, ŵ

)
, (5.25)

where
ŵ = arg min

w̃
LD (w̃) , (5.26)

w̃ denotes a trial value of w and

LD (w̃) ≜
1

Nt

Nt−1

∑
q=0

(
tq − µ

(
rq, ŵ

))2 (5.27)

is the empirical loss (see eq. (5.18)).

2. The solution of the minimization problem appearing in the RHS of eq. (5.26) is

ŵ = (ΦT
DΦD)

−1 ΦT
D tD, (5.28)

where
ΦD ≜ [φ(r0),φ(r1), ...,φ(rNt−1)] (5.29)

is a Nt × (M̄ + 1) matrix and

tD ≜ [t0, t1, ..., tNt−1]
T . (5.30)

Given the weight vector ŵ (5.28), the estimate

β̂−1 ≜
1

Nt

Nt−1

∑
q=0

(
tq − ŵTφ

(
rq
))2

, (5.31)

of the noise variance β−1 can be easily evaluated.

The Bayesian approach consists in formulating the uncertainty about the parame-
ters of the adopted probabilistic model in statistical terms, i.e. in treating its parameter
vector θ as a random vector. Let us assume that each observation and its label are 1D
(i.e., Dt = Dr = 1), so that all the labels of the training set D (5.12) and the associated
observations can be collected in the Nt-dimensional vectors tD (5.30) and

rD ≜ [r0, r1, ..., rNt−1]
T , (5.32)

respectively. If the discriminative probabilistic model (5.19) introduced in the previous
paragraph is exploited, a Bayesian method based on it can be developed as follows. To
begin, the joint pdf

f
(
t, tD, w|rq, rD,

)
= f (tD, w|rD, α, β) f

(
t|rq, w

)
(5.33)

is considered in place of the pdf f (t|rq, w) (5.19); here, β−1 is the variance of the noise
affecting the labels,

f (tD, w|rD, α, β) = f (tD |rD, w, β) f (w|α) (5.34)
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is the joint probability of the (M̄ + 1)-dimensional weight vector w (5.21) and the label
vector tD (5.30) conditioned on rD (5.32), on the hyperparameter α and on the parameter
β, and f (w|α) is the prior pdf of w. The Gaussian model

f (w|α) = N
(

w; 0, α−1IM̄+1

)
=
( α

2π

)(M̄+1)/2
exp

{
−α

2
wTw

}
(5.35)

is employed for the second pdf appearing in the RHS of eq. (5.34) (e.g., see [86, Sect.
1.2.4, p. 30, eq. (1.65)] ); here, IN is the N× N unit matrix and α represents the precision
of the last pdf. The first pdf appearing in the RHS of eq. (5.34), instead, represents
a likelihood function expressing how likely the response tD are, given rD, w and β; this
function can be factored as

f (tD |rD, w, β) =
Nt−1

∏
k=0

f (tk|rk, w, β) , (5.36)

and, consequently, can be expressed in terms of the probabilistic model (5.19).
Given the joint pdf f (t, tD, w, |rq, rD) (5.33), the predictive distribution f (t|rq, rD, tD)

can be evaluated as

f
(
t|rq, rD, tD

)
=

1
f (tD |rD, α, β)

∫
f
(
t, tD, w|rq, rD

)
dw, (5.37)

where

f (tD |rD, α, β) =
∫

f (tD, w|rD, α, β) dw =
∫

f (tD |rD, w, β) f (w|α) dw (5.38)

is a marginal likelihood. The expression (5.37) can be also reformulated as follows. Sub-
stituting the RHS of eq. (5.34) in that of eq. (5.33) and the resulting factorization in the
RHS of eq. (5.37) yields

f
(
t|rq, rD, tD

)
=
∫ f (tD |rD, w, β) f (w|α)

f (tD |rD, α, β)
· f
(
t|rq, w

)
dw. (5.39)

Then, since
f (tD |rD, w, β) f (w|α)

f (tD |rD, α, β)
= f (w|rD, tD, α, β) , (5.40)

eq. (5.39) can be rewritten as

f
(
t|rq, rD, tD

)
=
∫

f (w|rD, tD, α, β) f
(
t|rq, w

)
dw. (5.41)

The last equation shows how the predictive distribution is influenced by the uncertainty
about the weight vector; such an uncertainty is expressed by the pdf f (w|rD, tD, α, β).

If the pdf f (w|rD, tD, α, β) is assumed to be Gaussian and, in particular,

f (w|rD, tD, α, β) = N (w|µD, σ2
D), (5.42)

where (e.g., see [86, Sec. 3.3, p. 153, eqs. (3.53)-(3.54)])

µD = β σ2
D ΦT

DtD, (5.43)

σ2
D =

(
αIM̄+1 + βΦT

DΦD
)−1

(5.44)
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and the Nt × (M̄ + 1) matrix ΦD is given by eq. (5.29), the expression

f
(
t|rq, rD, tD

)
= N (t; µ(rq), σ2(rq)) (5.45)

can be derived from eq. (5.41) (e.g., see [86, Sec. 1.2.4, p. 31, eq. (1.69)] for a proof of this
result); here,

µ
(
rq
)
= βφ

(
rq
)T S

Nt−1

∑
k=0

φ (rk) tk, (5.46)

σ2 (rq
)
= β−1 +φ

(
rq
)T Sφ

(
rq
)

, (5.47)

φ(rq) is the (M̄ + 1)-dimensional vector (5.22) and

S−1 ≜ α IM̄+1 + β
Nt−1

∑
k=0

φ (rk) φ (rk)
T (5.48)

is an (M̄ + 1) × (M̄ + 1) matrix. It is important to underline that the variance σ2(rq)
(5.47) of the predictive distribution f

(
t|rq, rD, tD

)
(5.45) (and, consequently, the accu-

racy of the prediction), unlike that of the Gaussian model f (t|rq, w) (5.19), is given
by the sum of two terms; the first term originates from the noise affecting the labels,
whereas the second one from the uncertainty about the parameter vector w. Moreover,
the second term is influenced by the considered observation (i.e., it depends on rq); in
practice, smaller values of the standard deviation σ(rq) are usually obtained when rq is
close to the observations of the training set.

Both the two topologies of algorithms illustrated above have been trained on the
basis of the available training set D (5.12). Once the training has been carried out, the
generalization capability of the resulting algorithm can be assessed by evaluating the
empirical loss (5.18) on the basis of a different dataset, called test set Dts and collecting
N̄t observations generated in the same way as the ones of D, but in an independent
fashion. In the considered computer simulations, the training set D (5.12) and the test
set Dts consist of Nt = 200 and N̄t = 25 observations, respectively. In generating the
considered dataset, the following choices have been made:

a) the distance d between adjacent virtual channels is equal to λ/4;
b) the target range R is equal to 3.0 m, whereas the target azimuth ϕq is uniformly

distributed over the interval [ϕm, ϕM] = [−60◦ 60◦], respectively, for any q (this interval
is comparable to the horizontal FOV of a real radar system);

c) the amplitude a(v)q characterizing the sinusoid observed on the v-th virtual antenna
is randomly selected in the interval [0.4, 1.2] V for any q (see eq. (2.7));

d) the random variable a(v)q is independent of a(u)p for any u ̸= v and/or p ̸= q;
e) the observation rq (5.14) is generated on the basis of eqs. (2.61) and (5.3), i.e. as

∆ψ̂q = ∠X(0)
q (X(1)

q )∗ for any q.
Moreover, the following choices have been made for the parameters of the radar

system:
a) the generated frequency modulated waveform is characterized by µ = 7.8125 ·

1012 Hz s−1, T = 256 µs and TR = 64 µs;
b) the sampling period employed at the receive side is Ts = 0.25 µs and N = 512

time-domain samples are acquired from each of the two RX antennas;
c) the standard deviation of the noise affecting these samples is σw =

√
2 V (see eq.

(2.7));



122 Chapter 5. Learning techniques for colocated MIMO radars

d) the oversampling factor M = 4 (see eq. (2.58)) and the threshold Pth = 0.5 V2Hz−1

are employed by the detection algorithm based on eqs. (2.55)-(2.56). The points of these
data sets are represented in Figs. 5.1 and 5.2, respectively.
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FIGURE 5.1: Representation of the points of the synthetically generated training set D (5.12);
Nt = 200 is assumed.
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FIGURE 5.2: Representation of the points of the synthetically generated test set Dts (blue circles)
and of the corresponding predictions (green triangles) evaluated on the basis of eq. (5.25); N̄t =

25 is assumed. Two straight lines, expressed by eq. (5.49), are also shown.

First, the weight vector ŵ (5.28) and the estimate β̂−1 (5.31) of the noise variance
have been computed on the basis of D. Then, the accuracy of the resulting regression
algorithm has been assessed on Dts. The predictions obtained through the frequentist
approach associated with the points of Dts are represented in Fig. 5.2; in this figure, two
(red) straight lines, generated on the basis of the linear equations

t = µ(r, ŵ)± β̂−1/2, (5.49)

are also shown to highlight the meaning of the noise standard deviation 2β̂−1/2. These
results lead to the conclusion that, in the considered scenario, the developed regression
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method is able to predict the azimuth of a target with good accuracy. This is confirmed
by the fact that the empirical loss computed over the set Dts (i.e., the generalization loss)
is close to the empirical loss LD (ŵ) evaluated over the set D (see eq. (5.18)); in fact,
the root mean square error3 (RMSE) evaluated over D is equal to4 1.7◦, whereas that com-
puted over Dts is equal to 1.3◦.

The accuracy of the Bayesian regression algorithm described above has been as-
sessed on the test set shown in Fig. 2.6 after training it on the set illustrated in Fig.
2.5; moreover, α = 0.05 has been selected in this case. The prediction µ(rq) evaluated
on the basis of eq. (5.46) for each observation of the test set and the corresponding stan-
dard deviation σ

(
rq
)

(i.e., the square root of the RHS of eq. (5.47)) are represented in
Fig. 5.3. The RMSE evaluated over the test set is equal to 1.4◦ and is approximately
equal to that one computed over the training set. Note that this value is comparable to
those ones computed for the predictor described in the previous paragraph (and based
on a frequentist approach). For this reason, in this case, the Bayesian approach does not
offer any advantage with respect to the frequentist one.
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FIGURE 5.3: Representation of the regression technique based on the probabilistic model (5.45).
The blue circles represent the true domain points, whereas the green triangles the corresponding
predictions; the red curves are generated by interpolating the points generated on the basis of

the two equations tq = µ(rq)± σ(rq), with rq ∈ Dts.

In general, a specific discriminative regression problem is represented by the para-
metric pdf f (t|r, θ), a closed form expression for the optimal value

θ̂ = arg min
θ̃

LD
(
θ̃
)

, (5.50)

of the Dθ-dimensional parameter vector θ is unavailable in most cases. When this oc-
curs, iterative optimization techniques, like the stochastic gradient descent (SGD) method,
can be employed to estimate θ̂ . The application of the SGD to the considered problem
leads easily to the recursive equation

θ̂
(i+1)

= θ̂
(i)

+ γ(i+1)N−1
S ∑

q∈S
∇θ̃ ℓ

(
tq, t̂

(
rq, θ̃

)) ∣∣
θ̃=θ̂

(i) , (5.51)

3This parameter represents the square root of the empirical loss.
4The RMSE computed over D is given by β̂−1/2.
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with i = 0, 1, ..., NE − 1; here, θ̂
(i)

denotes estimate of θ̂ computed in the i-th recursion,
S is a set of NS integers randomly selected in the set {0, 1, ..., Nt − 1} (with NS < Nt),
γ(i) is the learning rate adopted in the i-th iteration and ∇x f (x) denotes the gradient of
the function f (x).

It can be proved that, if the learning rate schedule (i.e., the sequence {γ(i)}) satis-
fies the so called Robbins-Monro conditions, the SGD converges to the optimal solution,

provided that the function LD(θ̃) is strictly convex. The initial value θ̂
(0)

can be either
randomly selected or it can be inherited from the training procedure accomplished an-
other model; the last solution represents a specific application of the so called transfer
learning principle. Iterations are stopped when negligible variations are observed in
the estimates generated by consecutive recursions or an upper limit set on the overall
number of recursions is reached. Once the final estimate of θ̂ has been computed from
the available training set, the generalization capability of the resulting algorithm can be
assessed by evaluating the empirical loss (5.18) on a given test set Dts.

Finally, it is worth mentioning that the selection of the parameter M (i.e., of the
model complexity) plays a fundamental role. In fact, if its value is too small (too large),
the resulting regression method can suffer from underfitting (overfitting). Overfitting
is usually prevented by including a regularization term in the training of the adopted
model. For instance, if the optimization problem (5.50) is considered, this result can be
achieved by adopting the cost function

LD
(
θ̃
)
+

λ

Nt

∥∥θ̃
∥∥2 , (5.52)

where λ is a real positive weight influencing the predictive capability of the resulting
solution and ||x|| is the Euclidean norm of the vector x.

5.2.3 Specific methods for binary classification

In the remaining part of this section the focus is moved on a specific supervised problem,
namely binary classification; two classification methods, based on discriminative determin-
istic models, are proposed to solve it. Moreover, it is shown how different classification
methods can be combined to improve the overall accuracy. Note that, in general, clas-
sification methods based on discriminative deterministic models are able to represent the
deterministic mapping between domain points and labels through specific functions,
called discriminant functions. In the field of radar systems, these methods can be ex-
ploited for target detection.

The first method taken into consideration in this paragraph is the support vector ma-
chine (SVM) technique; in the following, the analysis is limited to its linear form, for sim-
plicity, and the label of each observation can take on only the values ±1 (consequently,
Dt = 1). The SVM technique processes the training set D (5.5) to find the maximum-
margin hyperplane; this divides the subset of observations for which tq = 1 from that for
which tq = −1 in a way that the distance between itself and the nearest point from ei-
ther group is maximized. In the considered case, the above mentioned hyperplane can
be defined as the set of points satisfying the equation

y(rq, w) = 0 (5.53)

for any q, where
y(rq, w) ≜ wT rq + b , (5.54)
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rq is the q-th observation of D (see the definition (5.6)), w represents a Dr-dimensional
weight vector (expressed by eq. (5.21), with M̄ = Dr− 1) and b is a real parameter called
bias. The adoption of a classification strategy based on the approach illustrated above
relies on the implicit assumption that, if the parameters w and b appearing in eq. (5.54)
are properly selected, the dataset D (5.5) is linearly separable in the feature space. In fact,
when this occurs, two parallel hyperplanes separating the above mentioned two subsets
of observations and having their mutual distances as large as possible can be found. If
the observations of the set D are normalised, the hyperplanes delimiting the subsets of
observations associated with tq = 1 and tq = −1 can be represented by the equations

y(rq, w) = 1 (5.55)

and
y(rq, w) = −1, (5.56)

respectively, i.e. briefly as
tq y(rq, w) = 1. (5.57)

The last formula expresses the canonical representation of the decision hyperplanes. Based
on the last result, the constraint according to which each point of the set D (5.5) must
lie on the correct side of each of the two hyperplanes (i.e., that it must fall in the correct
decision region) can be formulated as

tq y(rq, w) ≥ 1 (5.58)

for any q.
A method for the optimization of the parameters b and w appearing in eq. (5.54) can

be developed as follows. The perpendicular distance of the point rq from the decision
hyperplane can expressed as

tq y(rq)

||w|| =
tq
(
wTrq + b

)
||w|| (5.59)

for any q; its minimum value over the set D is known as margin. The optimal choice
(ŵ, b̂) of the parameters (w, b) is the one maximizing the margin and, consequently, can
be evaluated as (

ŵ, b̂
)
= arg max

w̃,b̃

{
1
∥w̃∥ min

q

[
tq(w̃Trq + b̃)

]}
, (5.60)

where (w̃, b̃) denotes a trial value of the pair (w, b); the data points closest to the max-
margin hyperplane are called support vectors. Unluckily, the optimization problem ap-
pearing in the RHS of eq. (5.60) does not admit a simple solution. However, since there
is always at least one support vector satisfying eq. (5.57), this problem can be reformu-
lated in a simpler form, i.e. as the maximization of ||w̃||−1 or, equivalently, as

ŵ = arg min
w̃

||w̃||2
2

(5.61)

under the constraint expressed by eq. (5.58); note that the parameter b̃ is no more visible
in the last formulation, but its value is implicitly determined by the above mentioned
constraint. To solve the constrained optimization problem (5.61), the Lagrangian function
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L
(
w̃, b̃, ã

)
≜
||w̃||2

2
−

Nt−1

∑
q=0

ãq{tq(w̃Trq + b̃)− 1}. (5.62)

is defined; this function depends not only on the parameters w̃ and b̃, but also on the
non negative parameters {ãq}, called Lagrange multipliers and collected in the vector ã ≜
[ã0, ã1, ..., ãNt−1]

T (the q-th element of this vector is associated with the q-th constraint
expressed by eq. (5.58)). Taking the partial derivatives of the function L(w̃, b̃, ã) (5.62)
with respect to w̃ and b̃ and setting them to zero results in

Nt−1

∑
q=0

ãq tq = 0 (5.63)

and

w̃ =
Nt−1

∑
q=0

ãq tq rq, (5.64)

respectively. Then, substituting eqs. (5.63)-(5.64) in the RHS of eq. (5.62) produces the so
called dual representation of the margin maximization problem. Solving the last problem
requires maximizing the function

L (ã) ≜
Nt−1

∑
q=0

ãq −
1
2

Nt−1

∑
q=0

Nt−1

∑
k=0

ãq ãk tq tk(rT
q rk) (5.65)

with respect to the vector ã, under the set of constraints {ãq ≥ 0 for any q} and the
constraint expressed by eq. (5.63) and produces the optimal value â of the vector ã.
Given â, the optimal values ŵ and b̂ of w̃ and b̃, respectively, are computed as (see eq.
(5.64))

ŵ =
Nt−1

∑
q=0

âq tq rq, (5.66)

and

b̂ = N−1
SM ∑

q∈SM

(
tq − ∑

k∈SM

âk tk rT
q rk

)
, (5.67)

respectively, where SM and NSM denote the set of support vectors and its cardinality,
respectively. Given (ŵ, â, b̂), the classification of a new data point (rq, tq) (with q >
Nt − 1) is accomplished on the basis of the sign of the quantity (see eq. (5.54))

y(rq, ŵ) ≜ ŵT rq + b̂, (5.68)

that can be also expressed as (see eq. (5.66))

y(rq) =
Nt−1

∑
k=0

âk tk rT
q rk + b̂. (5.69)

As mentioned above, this classification method is derived under the assumption that
the set of feature vectors {rq} is linearly separable. When this does not occur, a specific
kernel function, denoted by ϕ(·), can be used to map the vector rq (5.6) into the new fea-
ture vector ϕ(rq) for any q (e.g., see [86, Chap. 6]). The objective is transforming the
available classification space into a one characterized by linear boundaries; in principle,
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the dimensionality of ϕ(·) may differ from Dr. Well known examples of the kernels em-
ployed with the SVM method are the polynomial, the Gaussian and the Laplace kernels.
It is important to note that kernel selection is very critical, since its choice can signifi-
cantly influence classification accuracy.

The second method taken into consideration is the so called K nearest-neighbour (K-
NN) technique [57], that represents an example of non-parametric approach to the clas-
sification problem. In the case of binary classification, it can be summarised as follows.
The points of the training set D (5.5) are partitioned into two classes, denoted by C0 and
C1, where

Ck ≜ {(rqk , tqk); qk = 0, 1, ..., Nk − 1}, (5.70)

with k = 0 and 1, and Nk denotes the number of points belonging to the k-th class, so
that

1

∑
k=0

Nk = Nt. (5.71)

Let us assume now that a new Dr-dimensional observation, denoted by rq (with q >
Nt − 1) and called query instance, becomes available. The K-NN strategy classifies rq,
i.e. assigns it to one of the two classes defined above, on the basis of the votes of its K
nearest neighbours (i.e., of the K points of D closest to rq); here, K is an integer parameter,
whose value is usually small and odd. The identification of the nearest neighbours
unavoidably requires the computation of the distance of rq from all the points of the set
D; if the Euclidean distance is employed, the distance of rq from rt ∈ D is given by

dq ≜ ||rt − rq||, (5.72)

with t = 0, 1, ..., Nt − 1. Given the set {dq}, consisting of Nt distances, the nearest
neighbours {rnn,j; j = 0, 1, .., K− 1} are identified by searching for the K points ofD that
satisfy the inequality

dq < Vq (5.73)

where Vq is a fixed threshold, such that all the required K points are found. Then, if Kk
denotes the number of nearest neighbours belonging to Ck (i.e., the number of represen-
tatives of Ck), rq is assigned to the class having the largest number of representatives, i.e.
to C0 (C1) if K0 > K1 (K1 > K0).

It is worth pointing out that the parameter K controls the degree of smoothing, i.e.
the size of the regions assigned to each class. In fact, a small value of K usually results
in many small regions assigned to each class, whereas a large one leads to fewer larger
regions [86, Par. 2.5.2]. Moreover, if K = 1 is selected, a nearest-neighbour classifier is
obtained; in this case, if the dataset is quite large, it can be shown that the error rate of a
K-NN classifier is never larger than twice the minimum achievable error rate of an op-
timal classifier5, i.e. of a classifier having full knowledge of the pdf of the observations
[103].

Multiple classification methods can be combined to improve the overall accuracy;
this idea leads to the development of the so called ensemble classifiers [86, Ch. 14.2]. Spe-
cific examples of these classifiers are represented by the so called bootstrap aggregating
(also known as bagging [104]) and boosting methods [86]. The first method can be em-
ployed when MB predictions, denoted by {y(m)(rq); m = 0, 1, ..., MB − 1} and generated

5The optimal classification strategy can be easily formulated on the basis of eq. (5.11) (see paragraph
5.2.1).
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by MB different classifiers (called base classifiers), are available; the output is computed
as

YM ≜
1

MB

MB−1

∑
m=0

y(m)
(
rq
)

, (5.74)

i.e. as an average of all the above mentioned predictions and the predicted class is iden-
tified by the sign of this quantity; this reduces the impact of the error due to each single
classifier MB times. This method is really effective when the errors originating from
distinct classifiers are uncorrelated; unluckily, in some cases, such errors may be signif-
icantly correlated. When this occurs, classification accuracy can be improved through
boosting and, in particular, through the adaptive boosting method, also known as Ad-
aBoost [105]. In fact, the AdaBoost technique can achieve good accuracy even if its MB
base classifiers do not perform well (say, their behaviour is only slightly better than
random), i.e. they are weak learners. If a binary classification problem is considered, the
training phase of this method evolves through MB classification stages, each involving
a distinct base classifier; moreover, this method is initialised assigning the same weight
to all the observations, i.e. setting w̃(0)

q = 1/Nt for any q, where w̃(0)
q denotes the initial

weight assigned to the q-th observation. The m-th stage (with m = 0, 1, ..., MB − 1)
evolves through the following steps:

1) The m-th base classifier is trained to minimise the weighted error function

J(m) ≜
Nt−1

∑
q=0

w̃(m)
q I(y(m)(rq)), (5.75)

where

I
(

y(m)
(
rq
))

≜
{

1 if y(m)
(
rq
)
̸= tq

0 otherwise
(5.76)

and {w̃(m)
q } is a set of non negative weights such that

Nt−1

∑
q=0

w̃(m)
q = 1. (5.77)

2) The weighted measure of the error rate

ε(m) ≜
∑Nt−1

q=0 w̃(m)
q I

(
y(m)

(
rq
))

∑Nt−1
q=0 w̃(m)

q

(5.78)

and the weighting coefficient (e.g., see [86, Par. 14.3, eq. (14.16)])

α(m) ≜ ln

(
1− ε(m)

ε(m)

)
(5.79)

are computed.
3) The weight assigned to the q-th data point is updated using the recursive formula

(e.g., see [86, Par. 14.3, eq. (14.18)])

w̃(m+1)
q = w̃(m)

q exp
(

α(m) I
(

y(m)
(
rq
)))

(5.80)

for any q.
These steps force the classifier employed in each stage to put more emphasis on
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those points that have been misclassified by previous classifiers. In fact, a higher error
rate entails a larger increase in the weight assigned to the q-th observation (see eqs. (5.79)
and (5.80)), provided that it has not been correctly classified (i.e., that I(y(m)(rq)) = 1).
The final prediction generated by the AdaBoost technique is

YBM(rq) = sign

(
MB−1

∑
m=0

α(m) y(m)(rq)

)
. (5.81)

In assessing the accuracy of any classification method, N̄-fold cross validation can
be used when the size of the available dataset is not so large. This consists in:

a) randomly partitioning the available dataset into N̄ blocks;
b) assessing the classification accuracy on the n-th block (taken as test set) after that

the considered method has been trained on the basis of the remaining (N̄ − 1) blocks
(with n = 0, 1, ...., N̄ − 1).

At the end of this procedure, N̄ distinct accuracies are available; the final score is
expressed by their average.

Let us focus now on a specific application of the SVM and K-NN techniques to an
FCMW radar system equipped with the antenna array shown in Fig. 2.8-b) (and char-
acterized by d = λ/4) and operating in the presence of at most a single point target. In the
q-th trial, the set {x(0)q , x(1)q , x(2)q , x(3)q }, consisting of four N-dimensional noisy vectors,
each associated with one of the NV = 4 virtual receive channels, is available for any q
(see eq. (2.48)). The 4-dimensional (4D) feature vector

Rq =
[

R(0)
q , R(1)

q , R(2)
q , R(3)

q

]T
≜
[∣∣∣X(0)

q

∣∣∣ ,
∣∣∣X(1)

q

∣∣∣ ,
∣∣∣X(2)

q

∣∣∣ ,
∣∣∣X(3)

q

∣∣∣]T
; (5.82)

can be considered in place of the noisy channels; here,

X(v)
q = M X(v)

q,l̂
(5.83)

and X(v)
q,l̂

is computed from eqs. (2.51), (2.55) and (2.58), i.e. by sampling the spectrum

X̄(v)
q ( f ) (2.46) of the zero-padded sample sequence acquired on the v-th virtual antenna

at the target frequency f̂m (2.57) (with v = 0, 1, 2 and 3). The target detection strategy
adopted in this case differs from that presented in one illustrated in paragraph 2.5 and
based on the computation of the average power

Pq ≜ N−1
V

NV−1

∑
v=0
|X(v)

q |2, (5.84)

and on its comparison with a threshold (see eqs. (2.54) and (2.56)). This choice is mo-
tivated by the fact that, the amplitude a(v)q of the sinusoid observed on the v-th virtual
channel and associated with the detected point target is assumed to depend on the an-
tenna index6 v; the last assumption allows to account for: a) the dependence of the target
reflectivity on the direction of observation; b) the differences in the amplifications intro-
duced by distinct receive chains of the employed MIMO radar. In fact, in the considered

6For this reason, the assumption we made in writing eq. (2.7) does not hold any more.
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radar system, a target is detected if the inequality

max
v∈{0,1,2,3}

∣∣∣X(v)
q

∣∣∣2 > Pda, (5.85)

holds, i.e. if |X(v)
q |2 > Pda for at least a single value of v.

In the considered experiment, the training set

D ≜ {(Rq, tq); q = 0, 1, ..., Nt − 1}, (5.86)

referring Nt = 100 independent trials, has been synthetically generated. Half of its data
are associated with the detection of a real target, the remaining half with the detection
of a false target; for this reason, the vector Rq (5.82) is labelled by tq = 1 (−1) in the
presence of a real (false) target. Moreover, the following assumptions have been made in
generating the q-th observation of the training set D and the test set Dts:

a) The amplitude a(v)q of the sinusoid observed on the v-th antenna in the presence
of a real target is uniformly distributed over the interval [0, 1] V;

b) The random variable a(v)q is independent of a(u)p for any u ̸= v and/or p ̸= q.
c) The range Rq and the azimuth ϕq of the target (if present) are uniformly distributed

over the intervals [Rm , RM] = [1.0 m, 5.0 m] and [ϕm , ϕM] = [−60◦, 60◦], respectively,
for any q.

The values selected for most of the parameters of the considered radar system are
equal to those listed in the examples of paragraph 5.2.2, the only differences being rep-
resented by the fact that:

a) the standard deviation of the noise affecting the received signal samples is σw =
1.0 V (see eq. (2.7));

b) the threshold Pda = 0.3 V2Hz−1 is employed by the detection algorithm based on
eq. (5.85).

The datasetD (5.86) has been employed to train the linear SVM, K-NN and Adaboost
techniques; K = 4 (this number is the best found for K, but also other odd number are
possible) and MB = 100 has been selected for the second classifier and the third one,
respectively. Moreover, the weak learner employed in the m-th step of the Adaboost
technique consists in comparing one of the components of the vector Rq (5.82) with a
threshold7. More specifically, the classification criterion adopted by each weak learner
can be expressed as

R(v)
q

tq=1
>
<

tq=−1

P(v) (5.87)

where the index v is randomly selected in the set {0, 1, 2, 3} and P(v) ∼ U (min
q

(R(v)
q ),

max
q

(R(v)
q )) is the decision threshold associated with the v-th feature R(v)

q acquired in

the q-th trial. Note that the classification criterion (5.87) leads to partitioning the obser-
vation space into two regions, separated by a hyperplane (perpendicular to one of the
reference axes).

In this case, the aim of the three classifiers is discriminating between the presence of
a real target and that of a false target any time a target is detected; for this reason, they
are exploited to reduce the false alarm probability. Some numerical results are shown in

7This simple classifier can be interpreted as a form of a decision tree known as decision stump and char-
acterized by a single node (e.g., see [86, Ch. 14.3-14.4]
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Figs. 5.4, 5.5 and 5.6, that refer to SVM, K-NN and Adaboost, respectively; in all these
figures, the set of points8 {(R(0)

q , R(1)
q )} extracted from the dataset D (5.86) are repre-

sented on a Cartesian plane and are identified by a green (blue) circle if associated with
a false (real) target.
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FIGURE 5.4: Representation of the decision mechanism employed by a linear SVM classifier. The
points of the training set corresponding to false (real) targets are identified by the green (blue)
circles. The decision boundary of the SVM is represented by a dashed line, whereas the red
crosses identify support vectors. A new observation, identified by a black cross, is classified as

a false target, since it falls in the lower half plane delimited by the decision boundary.
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FIGURE 5.5: Representation of the decision mechanism employed by a K-NN classifier (with
K = 4). The points of the training set corresponding to false (real) targets are identified by the
green (blue) circles. A new observation, identified by a black cross, is classified as a false target,
since class C1 is the one having the largest number of representatives contained in the black

circle.

8Note that the observations of the dataset belong to a 4D space in this case; for this reason, all their
components cannot be represented in the same figure.
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FIGURE 5.6: Representation of the decision mechanism employed by the Adaboost classifier.
The points of the training set corresponding to false (real) targets are identified by the green
(blue) circles. The decision boundary of the Adaboost is represented by a dashed line, whereas
the red crosses identify critical targets. A new observation, identified by a black cross, is classi-

fied as a false target, since it falls in the lower region delimited by the decision boundary.

These results deserve the following comments:
1) SVM training leads to generating the linear decision boundary shown in Fig. 5.4;

in this figure, a new observation is classified as a false target, since it falls in the lower
decision region.

2) The K-NN method classifies the new observation shown in Fig. 5.5 as a false
target, since class C1 is the one having the largest number of representatives contained
in the black circumference (having radius equal to Vq = 0.07 V and centered at the new
observation).

3) Adaboost training leads to generating the decision boundary shown in Fig. 5.6. In
the same figure, the critical points of the base classifiers (i.e., their misclassified points)
are also shown; as it can be easily inferred from eq. (5.80), their weights of these points
tend to increase with iterations.

In the same figure, a new observation is classified as a false target, since it falls in the
lower decision region. In the considered scenario, our computer simulations have evi-
denced that the accuracy achieved by the considered classification techniques is around
90%, assuming N-fold cross validation with N = 5; in particular, the accuracies of SVM,
K-NN and Adaboost are 91%, 89% and 93%, respectively. The binary classification meth-
ods illustrated above can be also exploited to develop solutions to multi-class problems;
in fact, in general, any problem of this type can be represented as a sequence of binary
classification problems [106]. This approach is exemplified in paragraph 5.4.1 and, in
more detail, in paragraph 5.6.1, where its application to the classification of three hu-
man activities is illustrated. In particular, in paragraph 5.6.1, it is shown how a specific
solution to this problem can be devised by exploiting pairwise classification (also known
as round-robin class binarization). If K denotes the overall number of classes, this clas-
sification method is based on a) combining L = K(K − 1)/2 binary classifiers (called
base learners) and b) using the so called one-versus-one coding scheme. In this case, each
binary classifier is trained assuming one class as positive, another class as negative (the
labels associated with the q-th observation are tq = 1 and tq = −1 for the first class
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and the second one, respectively), and ignoring all the other classes (the label associated
with this case is tq = 0). When a new observation is available, it is processed by each
binary classifier, so that all its possible assignments to every class pair are taken into
consideration. This procedure leads to generating a codeword of size L for each class;
the l-th element of this codeword can take on the values ±1 or 0 on the basis of the class
membership established by the l-th binary learner (with l = 0, 1, ..., L− 1). The K code-
words produced by the L learners in response to the q-th observation represent the rows
of the K × L design matrix Tq = [t(q)k,l ]; note that the presence of a ‘0’ on the k-th row of
the l-th column for any q means that all the observations associated with the k-th class
are ignored by the l-th classifier. The class predicted for the q-th observation is the one
minimizing the average of the binary losses over the L different binary learners [107]; in
practice, the value of the class index for the q-th observation is computed as

k̂q = arg min
k∈{0,1,...,K−1}

∑L−1
l=0 |t

(q)
k,l | g

(
t(q)k,l , yq,l

)
∑L−1

l=0 |t
(q)
k,l |

, (5.88)

where yq,l is the score9 assigned by the l-th binary learner to the considered observation
and

g
(

t(q)k,l , yq,l

)
≜

1
2

exp (−t(q)k,l yq,l) (5.89)

is the binary loss function.

5.2.4 Unsupervised learning

Unsupervised learning is less well defined than its supervised counterpart, since it deals
with learning some specific properties of the mechanism on which the generation of
the considered set of observations is based. Unlike supervised methods, unsupervised
learning works with unlabelled datasets. In the following, it is assumed that:

1) Learning is based on the dataset

D ≜ {rq; q = 0, 1, ..., Nt − 1}, (5.90)

that consists of Nt i.i.d. unlabelled Dr-dimensional observations;

2) All the available observations are realizations of the same random variable r, char-
acterized by its unknown pdf f (r).

The goal of unsupervised methods is to learn some useful properties of the pdf f (r).
It is important to bear in mind that the Dr elements which the random vector r is made
of can be highly correlated. These mutual dependencies are often modelled by introduc-
ing a new vector, denoted by z and collecting the so called latent or hidden variables. This
approach allows to model the dependencies between the elements of the observations
indirectly, i.e., through the direct dependencies between such elements and the hidden
vector. The relationship between the vectors z and r can be modelled in different ways.
This results in different models that can be adopted in unsupervised learning; further
details can be found in ref. [108].

9This quantity can be computed on the basis of eq. (5.69) (eq. (5.81)) if the SVM (Adaboost) method is
used.
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In the remaining part of this paragraph, a list of the typical unsupervised problems
tackled in the field of MIMO radar systems is provided. Then, two specific unsupervised
methods and their application to specific problems in that field are described.

Unsupervised learning methods can be exploited to solve the following four rele-
vant technical problems:

a) Clustering - Data clustering consists in partitioning the dataset D (5.90) in a num-
ber of groups such that data points in the same group are dissimilar from the data points
belonging to all the other groups. In clustering problems, an hidden random variable,
called class variable, is usually added to all the elements of the dataset; this variable de-
scribes the cluster membership for every observation in the dataset. In the last years,
significant attention has been paid to the use of clustering methods in automotive radar
systems, since distinct clusters can be related to different types of targets, like pedestri-
ans, cars or obstacles. A description of two clustering methods employed in the above
mentioned field is provided in paragraph 5.4.4.

b) Dimensionality reduction - This aims at generating a reduced dimensionality rep-
resentation of the observations. Such a representation eases the visualization and inter-
pretation of the dataset, and the identification of specific patterns in it. A well known
technique for dimensionality reduction is the principal component analysis (PCA); its de-
scription is provided in paragraph 5.4.3, whereas its application to a dataset referring to
a specific MIMO radar system is illustrated in paragraph 5.2.5.

c) Feature extraction - This consists in deriving a vector-valued function, denoted by
g(·) and such that g(r) represents a useful and lower-dimensional representation of
the feature vector r; the vector g(r) can be used as an input to a supervised learning
method. A well known method for synthetizing the function g(·) is represented by
the autoencoder, as illustrated in paragraph 5.3.5. A simple method for feature extrac-
tion in a MIMO radar system has been described in paragraph 2.5; other techniques
are illustrated in paragraphs 5.4.1 and 5.4.4, where their use of radar in human motion
characterization and in autonomous driving, respectively, is considered.

d) Generation of new samples - This aims at producing new samples of a random vector
r in a way that these are approximately distributed according to its true pdf f (r). Meth-
ods for generating new samples can be exploited to de-noise data and for interference
mitigation in autonomous driving applications, as illustrated in paragraph 5.4.4.

5.2.5 Selected unsupervised methods

In this paragraph two specific unsupervised methods, namely the PCA technique for
dimensionality reduction [109] and the K-means algorithm for data clustering [110] are
presented. The PCA method is employed to project the dataset D (5.90) onto a new
space, called principal subspace and having a dimension D′r < Dr; in doing so, the vari-
ance of the projected data is maximised, in order to retain the most relevant variations
characterizing the original dataset. This method can be understood by illustrating its
application to the case in which Dr = 4, D′r = 1 and rq = Rq, where the 4D vector Rq is
expressed by eq. (5.82). In this case, the 4D observation Rq is projected onto the scalar

R
′
q ≜ uT

0 Rq, (5.91)
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where u0 is a 4D unit vector [86]. If we define the data covariance matrix

∆ ≜
1

Nt

Nt−1

∑
q=0

(
Rq − R̄

) (
Rq − R̄

)T , (5.92)

where

R̄ ≜
1

Nt

Nt−1

∑
q=0

Rq, (5.93)

is the data mean, the variance
σ2

R = uT
0 ∆ u0 (5.94)

of the projected dataset is maximized if

uT
0 ∆ u0 = λ0, (5.95)

where λ0 is the largest eigenvalue of the matrix ∆ (5.92) and u0 (that represents the first
principal component) is the associated eigenvector.

In general, if a D′r-dimensional projection space is considered, the principal compo-
nents are represented by D′r eigenvectors {ul ; l = 0, 1, ..., D′r − 1} of the data covariance
matrix ∆; these eigenvectors are associated with its D′r largest eigenvalues {λl ; l = 0, 1,
..., D′r − 1} and are chosen to be orthonormal. The quality of the resulting transformation
can be assessed by evaluating the distortion measure (e.g., see [86, Par. 12.1.2, eq. (12.18)])

J ≜
Dr−1

∑
l=D′r

λl , (5.96)

i.e., the sum of the eigenvalues associated with the eigenvectors that are orthogonal to
the principal subspace; the smaller is the value taken on by this parameter, the better is
the original dataset approximation. Actually, if D′r = Dr, the PCA does not cause any
distortions, but it simply restates the input dataset in a new domain, where the features
of the datasets are uncorrelated. In this particular case, the value of J is zero (see (5.96)).
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FIGURE 5.7: Biplot of the dataset D′ generated by the PCA technique. The points of the reduced
dataset corresponding to false (real) targets are identified by the green (blue) circles.
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In the considered experiment, the PCA method has been applied to extract a 2D
dataset from the 4D dataset which Figs. 5.4-5.6 refer to (see paragraph 5.2.3). The 2D
points of the new dataset, denoted by D′, are represented in the principal component bi-
plot10 shown in Fig. 5.7. In this figure, the axes of the Cartesian plane are associated with
the principal components, whereas the vector wi, represented by an oriented segment,
allows to quantify, through its amplitude and orientation, the weight of the contribution
provided by the i-th component of the original feature vectors (i.e., of the set {Rq}; see
eq. (5.82)) to the principal components (with i = 0, 1, 2 and 3). From Fig. 5.7 it is easily
inferred that:

1. The weights of the contributions due to R(2)
q and R(3)

q are similar and are about

half of those provided by R(0)
q and R(1)

q .

2. The new 2D observations referring to real (false) targets are spread over the right
(left) half plane of the Cartesian plane.

The K-means method allows partitioning the available datasetD into K clusters, each
collecting the samples whose mutual distances are small with respect to the distances
from the points outside the cluster itself. In practice, if the center of the k-th cluster is
denoted by µk (with k = 0, 1, ..., K− 1), the K-means method assigns the q-th data point
rq to the cluster whose center is closest to rq. This strategy can be formalised as the one
minimizing the so-called distortion measure

V ≜
Nt−1

∑
q=0

K−1

∑
k=0

pq,k||rq − µk||
2, (5.97)

with respect to the variables {pq,k} and the vectors {µk}; here, pq,k is a binary indicator
variable implementing the 1-of-K coding scheme, i.e. such that pq,k = 1 (pq,k = 0)
if rq is (is not) assigned to the k-th cluster. The problem of minimizing the function
V (5.97) is solved by means of an iterative procedure, whose iterations consist of two
steps. In the first step, known as expectation, the metric V is minimized with respect to
each of the variables {pq,k}, keeping the centers {µk} fixed; on the contrary, in the second
step, called maximization, the same metric is minimized with respect to the vectors {µk},
keeping the variables {pq,k} fixed. More specifically, in the first step, the values of the
variables {pq,k} employed are computed as

pq,k ≜

1 if k = arg min
j
||rq − µj||2

0 otherwise
(5.98)

for any q (in other words, the q-th data point is assigned to the cluster whose center is
closest to it). Then, in the second step, the center of the k-th cluster is evaluated as

µk =
∑Nt−1

q=0 pq,krq

∑Nt−1
q=0 pq,k

, (5.99)

with k = 0, 1, ..., K− 1. It is important to point out that:

10A detailed description of how a bi-plot is generated can be found in ref. [109, Sect. 5.3]



5.2. Machine learning based methods 137

1. In principle, the initial values of the cluster centers can be arbitrarily chosen. In
this case, however, the algorithm may require several iterations to reach conver-
gence. A better initialization procedure consists in choosing the initial centers in a
random fashion.

2. The sum appearing in the denominator of the RHS of the eq. (5.99) gives the
overall number of points assigned to the k-th cluster; consequently, the cluster
center evaluated on the basis of the same equation represents the mean of all the
data points rq assigned to the k-th cluster.

3. Iterations are stopped when there is no further change in the assignments of the
data points to the K clusters or their overall number has reached a fixed threshold.

Let us analyse now an application of the K-means technique to the dataset D (5.90),
where Nt = 100,

rq ≜
[
R̂q , ϕ̂q

]T , (5.100)

and R̂q and ϕ̂q represent the estimates of the range and of the azimuth, respectively,
of the single point target observed in the q-th trial; these estimates are generated by the
algorithm illustrated in paragraph 2.5 and employed in a FCMW radar system equipped
with the antenna array illustrated in Fig. 2.3-b) (d = λ/4 is assumed). Moreover, in
generating the q-th observation of the dataset D (5.90), the following assumptions have
been made:

a) The amplitude a(v)q of the sinusoid observed on the v-th virtual antenna is uni-
formly distributed over the interval [0.3, 1.0] V.

b) The random variable a(v)q is independent of a(u)p for any u ̸= v and/or p ̸= q.
c) The overall number of time-domain samples (N) acquired from each of the four

RX antennas is equal to 512 and the standard deviation σw of the noise affecting them is
equal to 1.0 V (see eq. (2.7)).

d) The oversampling factor M = 4 and the threshold Pth = 0.5 V2Hz−1 are employed
by the detection algorithm based on eqs. (2.55)-(2.56).

e) The range Rq of the target detected in the q-th trial is uniformly distributed over
the interval [Rm , RM] = [1.0 m, 9.0 m], whereas its azimuth is randomly selected in the
set of relative integers ranging from ϕm to ϕM, with ϕM = −ϕm = 45◦.

f) The parameters of the employed radar system take on the same values as those
selected for the example illustrated for the SVM and K-NN methods in paragraph 5.2.3.

In this case, the K-means algorithm is employed to group the detected targets in
three different clusters (consequently, K = 3 is selected) on the basis of their azimuth
only; the points of the first (third) cluster are characterized by ϕq < −15◦ (ϕq > 15◦),
whereas those of the second one by |ϕq| ≤ 15◦. The observations collected in the syn-
thetically generated dataset and their partitioning into the clusters generated by the
K-means technique are shown in Fig. 5.8, where circles of different colours are used to
identify targets assigned to distinct classes.

From these results it is easily inferred that:

1. all the points are correctly classified on the basis of their azimuth, even if an unla-
belled dataset is used;
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2. each of the centroids is located in the middle of the corresponding cluster and its
position is influenced by the distribution of the detected targets along the range dimen-
sion.

This is a quite ideal scenario in which the targets are equally distributed in the range
azimuth space. K-means works particularly well in this case and, more in general, in
all the cases where clusters have globular or spherical shapes. In all the other scenarios
where clusters have different shapes K-means is likely to fail and the performance drops
significantly. In these cases other clustering techniques can be preferred; an overview of
other clustering techniques employed in real automotive scenarios are described in Par.
5.4.4.
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FIGURE 5.8: Representation of three clusters generated by the K-means algorithm. The green
(red) circles refer to the targets detected on the left (right) of the considered radar system,
whereas the blue circles to the targets detected in front of it. The black crosses identify the

centroids of the clusters.

5.3 Data-driven approach based methods

In this section, after a description of some relevant differences between ML and DL
techniques, the readers are introduced to deep neural networks by illustrating their ar-
chitecture, their training and a specific application to an FMCW radar system. Finally,
few fundamental DL methods employed in the field of MIMO radar systems are illus-
trated.

5.3.1 Relevant differences between ML and DL techniques

Machine learning techniques allow to achieve satisfying accuracy in various applica-
tions at the price of a reasonable computational complexity. Nevertheless, in pattern
recognition problems, their capability is often limited by the features selected to learn
common patterns and to detect them; in fact, in these cases, devising a transformation
able to extract a suitable internal representation from the observed raw data requires
good expertise and engineering skills [111]. A revolutionary data-driven approach to
feature extraction is offered by DL methods. Despite the significant computational
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complexity of these methods, in recent times their implementation has become possi-
ble thanks to the availability of low-cost powerful graphic processing units (GPUs), which
make the exploitation of their inner parallelism possible.

Deep learning solves the problem of feature extraction by adopting a multilayer rep-
resentation of raw data. This fundamental principle is exemplified by a feedforward deep
network, also known as multilayer perceptron (MLP); such a network is able to represent a
complicated mathematical function by composing multiple simpler functions, i.e. mul-
tiple layers. Generally speaking, a MLP consists of three different types of layers: an
input layer, multiple hidden layers with learnable weights and an output layer. Its ar-
chitecture can be represented through a directed acyclic graph (DAG), whose structure is
exemplified in Fig. 5.9, that refers to the specific case of a fully connected MLP contain-
ing a single inner layer. The basic building block of each layer is the so called neuron.
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FIGURE 5.9: Directed acyclic graph describing the architecture of a fully-connected neural net-
work. Variables are represented by circles (i.e., by nodes), whereas weights by the links between

nodes. A single inner layer (i.e., K = 1) is assumed for simplicity.

In general, the output z(k)j generated by the j-th neuron of the k-th layer can be ex-
pressed as

z(k)j = h
(

a(k)j

)
, (5.101)

with j = 1, 2, ..., Mk and k = 1, 2, ..., K; here, Mk denotes the overall number of neurons
in the k-th layer, K denotes the overall number of layers, h(·) is a differentiable non-
linear function (i.e., a sigmoid function, an hyperbolic tangent or rectifier linear unit)
and the quantity

a(k)j ≜
Mk−1

∑
i=1

w(k)
j,i z(k−1)

i + w(k)
j,0 , (5.102)

known as activation function, is a linear combination of the neuron inputs {z(k−1)
i ; i = 1,

2, ..., Mk−1} (whose learnable weights are the Mk parameters {w(k)
j,i ; i = 1, 2, ..., Mk−1})

and the bias w(k)
j,0 . The outputs of the neurons of the k-th layer are collected in the vector

z(k) ≜
[
z(k)1 , z(k)2 , ..., z(k)Mk

]
, (5.103)
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that feeds the successive hidden layer. The input layer is fed by the Dx-dimensional
input vector

x ≜ [x1, x2, ..., xDx ] , (5.104)

whereas the output layer generates the Dy-dimensional output vector

y ≜
[
y1, y2, ..., yDy

]
, (5.105)

on the basis of eqs. (5.101) and (5.102).

It is important to mention that: a) the learnable weights of the hidden layers can be
interpreted as an encoded representation of the inputs; b) unlike ML methods, where a
number of manually extracted features are chosen a priori, the considered neural net-
work automatically extracts features through the use of non linear functions.

5.3.2 Training a deep neural network

Training a deep neural network is an art [108], even if in future years we will go from
alchemy art to solid theory. Its objective is the same as that already illustrated for ML
methods, i.e. the minimization of a loss or an error function (see paragraph 5.2.1). How-
ever, in a feedforward neural network, this result is achieved by using a local message
passing scheme, according to which the internal representations of each neuron are sent
forward, towards the output of the network, and the errors obtained by the computation
of the loss are sent backward, from the output to the neurons, along the graph represent-
ing the network itself (e.g., see [86, Par. 5.3]). This scheme, known as back-propagation
[112], operates as follows (batch processing is assumed here). For each pattern of the
training set, the activations of the hidden and output layers of the considered network
are computed through successive applications of eqs. (5.102) and (5.101), respectively;
this process is known as forward propagation, since it proceeds from the input to the out-
put of the network. The back-propagation algorithm, instead, allows to compute the
gradient of the selected error function, denoted by E and corresponding to the loss func-
tion defined for ML methods (see eq. (5.8)), with respect to the weights appearing in
each layer. The derivative of the error function E with respect to the weight w(k)

j,i , refer-
ring to the i-th input of the j-th neuron in the k-th layer of the network, can be expressed
as

∂E

∂w(k)
j,i

= ∑
q

∂Eq

∂w(k)
j,i

, (5.106)

with j = 1, 2, ..., Mk, i = 1, 2, ..., Mk−1 and k = 1, 2, ..., K; here, Eq represents the error
associated with the q-th observation. Based on the chain rule, the partial derivative
appearing in the RHS of eq. (5.106) can be evaluated as

∂Eq

∂w(k)
j,i

= σ
(k)
j z(k)i , (5.107)

where σ
(k)
j ≜ ∂Eq/∂a(k)j , z(k)i ≜ ∂a(k)j /∂w(k)

j,i and a(k)j is defined by eq. (5.102). Conse-
quently, eq. (5.106) can be put in the form

∂E

∂w(k)
j,i

= ∑
q

σ
(k)
j z(k)i . (5.108)
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The quantity σ
(k)
j appearing in the last formula can be evaluated as follows. First, the

quantity
σ
(K)
l ≜ yl − tl (5.109)

is computed for the l-th unit of the output layer, where tl denotes its target. Then, the
backpropagation formula

σ
(k)
j = h′

(
a(k)j

)
∑

l
w(k+1)

l,j σ
(k+1)
l . (5.110)

is applied for k = K − 1, K − 2, ..., 1 and, given k, for j = 1, 2, ..., Mk; here, h′(·)
denotes the first derivative of the function h(·) appearing in eq. (5.101). This allows
to recursively compute all the quantities {σ(k)

l } on the basis of the similar quantities

{σ(k+1)
l }made available by all the units appearing in the (k + 1)-th layer of the network.
It is worth noting that: a) the computational complexity of the network depends on

the number of neurons in each hidden layer, since this determines the number of pa-
rameters to be tuned; b) overfitting may be observed in the presence of a large number
of neurons. The last problem can be mitigated by including a regularization term in the
considered error function (a similar strategy has been also proposed for ML methods;
see eq. (5.52) in paragraph 5.2.2). An alternative to this approach is represented by the
so called early stopping procedure, that consists in stopping network training when the
error over a given validation dataset11 is minimised.

Let us focus now on a neural network having the architecture illustrated in Fig. 5.9
and analyse its possible use in an FMCW radar system equipped with the antenna ar-
ray shown in Fig. 2.8-b) (d = λ/4 is assumed). In the experiment at hand, the overall
synthetically generated dataset includes N̂t = 2500 observations, all acquired in the
presence of a single point target, whose range Rq and the azimuth ϕq are uniformly
distributed over the intervals [Rm, RM] = [1 m, 7 m] and [ϕm, ϕM] = [−60◦, 60◦], respec-
tively, for any q. Moreover, the values selected for the parameters of the employed radar
system are equal to those listed in the example of paragraph 5.2.2; the only difference is
represented by the standard deviation of the noise affecting the received signal samples,
that is σw =

√
2/2 V. The q-th observation and the associated label are12

rq ≜
[
rq,0, rq,1, rq,2, rq,3, rq,4

]T
=
[
ψ̂
(0)
q , ψ̂

(1)
q , ψ̂

(2)
q , ψ̂

(3)
q , f̂q

]T
(5.111)

and
tq ≜

[
tq,0, tq,1

]T
=
[
Rq, ϕq

]T , (5.112)

respectively; here, ψ̂
(v)
q = ∠Ĉ(v)

q (with v = 0, 1, 2 and 3) and Ĉ(v)
q is the complex ampli-

tude measured on the v-th virtual element at the frequency f̂q (2.57) (see eqs. (2.58) and
(2.65)).

The aim of the neural network is predicting the position of the target (i.e., its azimuth
and range) on the basis of a new observation. In this case, the network has 5 inputs two
outputs, since xj = rq,j (with j = 0, 1, ..., 4) and yk = tq,k (with k = 0, 1). Moreover,
a single hidden layer consisting of M1 = 10 neurons is used; each of these neurons
is connected to all the available inputs and employs the hyperbolic tangent transfer

11The validation dataset is a set of data on which the performance of the considered network is evaluated
during its training.

12Unwrapped phases are employed in this case, since they ease network training



142 Chapter 5. Learning techniques for colocated MIMO radars

function

h(x) ≜
exp(2x)− 1
exp(2x) + 1

(5.113)

in the evaluation of its output on the basis of eqs. (5.101)-(5.102). The predictions of the
target range and azimuth are computed by the output layer, that contains two neurons.

The scaled conjugate gradient method [113] has been employed to train the network
described above. The size of the training set D is Nt = 2225, since 85% of the overall
dataset has been exploited for network training; the remaining part Dts of the dataset,
whose size is N̄t = 375, has been used as a test set. The simulation results have ev-
idenced that the adopted network is able to accurately predict the position of a new
target; in fact, the RMSEs evaluated for the range and the azimuth on the set Dts are
approximately equal to 4 cm and to 0.2◦, respectively. Finally, it is worth noting that:

a) The use of the network described above does not require a specific expertise.
b) Unlike the regression methods illustrated in Par. 5.2.2, the employed network is

able to predict both the azimuth and the range of a single point target; however, a by far
larger dataset is used for its training.

In general, the main drawback of DL methods is represented by the size of the
dataset, which is usually much larger than that needed by ML techniques; this results
in a significant increase in the computational effort of the required training. Moreover,
especially for radar application, the availability of a so large dataset is not guaranteed.

5.3.3 Autoencoders

An autoencoder (AE) is a neural network that, similarly as the PCA technique, is able
to perform dimensionality reduction by learning an efficient representation of its input
data in an unsupervised fashion. Since the goal of an AE is to approximate the identity
function without learning it exactly, its Dy-dimensional output vector (5.105) can be
expressed as

y = hw (x) ≈ x, (5.114)

where hw(·) represents the transformation performed by the network on its Dx dimen-
sional input vector x.

The architecture of an under-complete AE based on a symmetric encoding-decoding
structure is illustrated in [114]. In the following, only under-complete AEs are consid-
ered, since they are employed in various radar applications, as shown in paragraphs
5.4.1-5.4.4. It is also worth mentioning that, in such applications, autoencoding is often
employed as pre-processing method preceding supervised classification; this allows to
learn repetitive structures of input data when the training dataset is not so large. The
last application of AEs will be analysed in paragraph 5.3.5 in more detail.

Let us now focus on a possible application of auto-encoding to an FMCW radar
system equipped with the antenna array shown in Fig. 2.8-b) (d = λ/4 is assumed)
and operating in the presence of at most a single point target. In this case, the set
{x(0)q , x(1)q , x(2)q , x(3)q } (e.g. see eq.(2.7)), consisting of four N-dimensional noisy vectors
becomes available in the q-th trial, with q = 0, 1, ..., Nt − 1. Each of these vectors
undergoes the DFT processing described in paragraph 2.5; this allows to compute the
4N̂0-dimensional feature vector

Rq = [Rq,0, Rq,1, ..., Rq,4N̂0−1]
T ≜

[(
Y(0)

q

)T
,
(

Y(1)
q

)T
,
(

Y(2)
q

)T
,
(

Y(3)
q

)T
]T

(5.115)
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for any q; here, for any v,

Y(v)
q = [Y(v)

q,0 , Y(v)
q,1 , ..., Y(v)

q,N̂0−1
]T ≜ M

[∣∣∣X(v)
bm

∣∣∣ ,
∣∣∣X(v)

bm+1

∣∣∣ , ...,
∣∣∣X(v)

bM

∣∣∣]T
(5.116)

is an N̂0-dimensional vector, X(v)
k is the k-th element of the N0-dimensional vector X(v)

q
computed on the basis of eq. (2.50) (with k = bm, bm + 1, ..., bM), M is the oversampling
factor employed in DFT processing,

N̂0 ≜ bM − bm + 1, (5.117)

and bm and bM are integer parameters delimiting the portion of the received signal spec-
trum over which an amplitude peak, due to the presence of a possible target, is expected.
Note that the pair (bm, bM) represents a form of a priori information and that, in general,
the inequality 0 ≤ bm < bM ≤ N0 − 1 holds. Let assume now that the overall data set

Do = {(Rq, tq); q = 0, 1, ..., N̂t − 1}, (5.118)

acquired in N̂t = 2400 independent trials, is available; here, the label tq = 1 (−1) refers
to the presence of a real (false) target detected on the basis of the deterministic strategy
expressed by eq. (5.85). Moreover, the following assumptions are made to synthetically
generate the set Do (5.118):

a) Half of its data are associated with the detection of a real target, the remaining half
with the detection of a false target.

b) The parameters of the employed radar system take on the same values as those se-
lected for the example illustrated for the SVM and K–NN methods in Par. 5.2.3.

c) The stochastic models adopted for amplitude a(v)q of the sinusoid observed on the
v-th antenna in the presence of a real target, and for the range Rq and the azimuth
ϕq of the target (if present) are the same as those defined in the example illustrated
for the SVM and K–NN methods in paragraph 5.2.3.

d) The size N̂0 of the vector X(v)
q is equal to 121, since (see eq. (5.117))

bm =

⌊
2Rm µ

c
N0Ts

⌋
= 13 (5.119)

and

bM =

⌊
2RM µ

c
N0Ts

⌋
= 133, (5.120)

where Rm = 0.5 m (RM = 5.0 m) represent the minimum (maximum) range ex-
pected for the target.

An AE is employed in the considered radar system to reduce the dimensionality
of the feature vector Rq (5.115) (whose size is 4N̂0 = 484); note that, unlike the de-
terministic approach described in paragraph 2.5 and based on a maximum search, an
unsupervised data-driven method is exploited in this case. The adopted AE architec-
ture includes only a single layer in its encoder and a single layer in its decoder, for
simplicity. The compressed representation available at the output of the encoder layer
is represented by the M̄-dimensional vector

zq ≜ he
(
WeRq + be

)
(5.121)
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collecting the hidden variables; here, We is a weight matrix of size M̄ × 4 N̂0, be is an
M̄-dimensional bias vector and he (x) is an M̄-dimensional vector resulting from the
element-by-element application of the positive saturating linear transfer function

h(x) =


0 if x ≤ 0
x if 0 < x < 1
1 if x ≥ 1

(5.122)

to the 4N̂0-dimensional input vector Rq (5.115). The decoder maps the encoded repre-
sentation zq (5.121) back to the 4N̂0-dimensional vector

yq = [yq,0, yq,1, ..., yq,4N̂0−1]
T

≜ Wd zq + bd, (5.123)

that represents an estimate of the original input vector; here, Wd is a 4N̂0 × M̄ weight
matrix and bd is an 4N̂0-dimensional bias vector. In simulations, M̄ = 60 has been se-
lected; consequently, a 60-dimensional hidden vector is extracted from a 484-dimensional
observation (i.e., roughly an eightfold dimensionality reduction is achieved). Moreover,
the scaled conjugate gradient method [113] has been employed to train the AE. Train-
ing is based on the dataset D, that contains 90% of the dataset Do (5.118) and, conse-
quently, involves Nt = 2160 observations; the remaining part of the dataset, whose size
is N̄t = 240, forms the test set Dts. The effectiveness of the employed AE is exemplified
by Fig. 5.10, where the output vector yq generated by the autoencoder in response to
a specific feature vector Rq of the test set is shown; this is also confirmed by the small
RMSE evaluated over Dts: RMSE = 0.1 V is found in this case.
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FIGURE 5.10: Example of a feature vector Rq (5.115) (red line) and of the corresponding output
vector yq (5.123) (blue line) predicted by the AE employed in the example of Par. 5.3.3. The

contributions of the four vectors {Y(v)
q ; v = 0, 1, 2, 3} which Rq is made of are delimited by

green dashed lines.

This leads to the conclusion that the compressed representation computed by the
AE and expressed by the vector zq (5.121) is really able to capture all the relevant infor-
mation conveyed by the input vector Rq (5.115). Finally, it is worth mentioning that the
compressed representation zq (5.121) can be exploited to train the linear SVM and K-NN
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methods described in paragraph 5.2.3 and employed to discriminate between real and
false targets. In the experiment at hand, these two supervised methods have trained
on a dataset consisting of Nt = 240 observations (K = 4 has been selected for the K-
NN method); half of them are associated with the detection of a real target, half with
the detection of a false target. Computer simulations have evidenced that, despite the
dimensionality reduction, a slightly better accuracy is achieved by the considered clas-
sification techniques; in fact, the obtained accuracies are equal to 93% and 97% for the
K-NN and the linear SVM, respectively (N̄-fold cross validation, with N̄ = 5, has been
used) compared to 89% and 91% without dimensionality reduction.

5.3.4 Convolutional neural networks

Convolutional neural networks (CNNs) play an important role in DL applications, since
they allow to exploit the spatio-temporal information available in a sequence of images
[111], [114]; for this reason, they are trained using a labelled dataset. The processing
performed by a CNN aims at capturing the local features of input images and is based
on spatially localized convolutional filtering. Its typical architecture includes convolutional,
pooling, fully connected layers, and is motivated by the fact that, in images, local groups
of values may exhibit high correlation and local statistics are invariant to position. In
fact, convolutional layers aim at detecting local features on the basis of the data origi-
nating from the previous layer, pooling layers at merging semantically similar features
and fully connected layers at generating the final feature vector. The processing accom-
plished by the convolution and pooling operations on a greyscale image is outlined in
Fig. 5.11.

Convolution Pooling

Input

image

YS pF
F

PI

dN
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W

pW

pYS

dN

Output

image

FIGURE 5.11: Representation of the convolution and pooling operations accomplished by a CNN
on a greyscale image.

The output of the convolution depends on both its input, represented by a small por-
tion of the image, and the adopted convolution kernel, denoted by {K[m, n]}; moreover,
this operation is repeated on multiple disjoint portions until the whole input image is
scanned. From a mathematical viewpoint, the convolution input is a matrix, consisting
of IS × IS pixels and denoted by I = [I[i, j]], whereas the resulting output is a SY × SY
matrix, called activation or feature map and denoted by Y = [Y[i, j]]. The (i, j)-th element
(i.e., unit) of the activation map is evaluated as13

Y[i, j] ≜ σ

(
F/2−1

∑
m=−F/2

F/2−1

∑
n=−F/2

K[m, n] I[i−m, j− n]

)
, (5.124)

13In practical implementations, the convolution operations are substituted with the cross-correlations,
since they are faster and more computationally efficient.
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where F and K[m, n] are the size of the convolutional filter (also known as kernel size) and
its (m, n)-th weight, respectively, and σ(·) is a non linear activation function. Another
relevant parameter of a convolutional layer is its stride S, that represents the number of
pixels shifts over the input matrix when the kernel moves from a portion of the image
to the next one; for instance, when the stride is one, the filter moves one pixel at a time.
The area of the input image processed by the kernel can be also extended by adding a
set of numbers (usually set at zero) to the border of image itself, as shown in Fig. 5.11;
in that figure, the parameter P (dubbed padding) represents the number of zero columns
and rows added to the input image. The stride, the padding and the kernel size of a
convolutional layer influence the size SY of the output matrix; in fact, it can be shown
that

SY =
IS − F + 2 P

S
+ 1. (5.125)

For this reason, the above mentioned parameters have to be jointly selected in a way
that the RHS of last equation takes on an integer value.

Generally speaking, the convolution operation expressed by eq. (5.124) can be per-
formed Nd times over the same image; in accomplishing this procedure, the parameters
P and S do not change. This produces the output volume (i.e., matrix) W shown in Fig.
5.11 and having size SY × SY × Nd (the parameter Nd is called depth); this matrix results
from stacking Nd distinct activation maps, each representing a specific slice.

The convolutional layer represented in Fig. 5.11 feeds a pooling layer, whose task
is reducing the dimensionality of each input slice and, consequently, the overall com-
plexity of the considered CNN. The processing accomplished by the pooling layer can
be easily described by referring to a single slice, denoted by Y, of the output volume
W. Similarly as the convolution operation, the pooling operation is fed by a portion,
having size Fp × Fp, of the considered slice and generates the SYp × SYp output matrix
Yp = [Yp[i, j]]. The most popular layers of this type are known as max pooling and as
average pooling. In the former case, the (i, j)-th pixel of the output matrix Yp is computed
as

Yp[i, j] ≜ max
p,q∈SFp (i,j)

Y[p, q], (5.126)

whereas in the latter one as

Yp[i, j] ≜
1
F2

p
∑

p,q∈SFp (i,j)
Y[p, q], (5.127)

where SFp(i, j) ≜ {(p, q)| − Fp/2+ i ≤ p ≤ i+ Fp/2− 1,−Fp/2+ j ≤ p ≤ Fp/2− 1+ j)}
and the parameter Fp is called pool size. It can be shown that

SYp =
SY − Fp

Sp
+ 1, (5.128)

where Sp is the stride of the pooling (its meaning is similar to that illustrated above for
the parameter S). Note that the depth Nd of the final output volume Wp generated by
pooling is the same as that of W. Finally, it is important to point out that:

a) in CNN applications, a chain of pairs of convolutional and pooling layers is com-
monly used. Moreover, fully connected layers (FC) of different lengths are often added
at the end of the cascade of convolutional/pooling layers; this allows to combine all the
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extracted features in a 1D vector.
b) As shown in paragraphs 5.4.1-5.4.4, CNNs are employed in a number of radar ap-

plications ranging from human activity characterization to autonomous driving. Some
experimental results about the use of CNNs in the classification of three different human
activities CNN are illustrated in section 5.6.

5.3.5 Convolutional autoencoders

A convolutional autoencoder (CAE) may represent an appealing technical option in those
applications in which a large amount of labelled data is unavailable. In fact, it com-
bines the advantages offered by unsupervised learning techniques (i.e., by AEs) with
the capability of CNNs to extract spatio-temporal information from a sequence of im-
ages. The architecture of a CAE is exemplified by Fig. 5.12; this network consists of
an encoder side, combining convolutional and pooling (i.e., downsampling) layers, and
of a decoder side, made of transposed convolutional (also called deconvolutional) and
unpooling (i.e., upsampling) layers. Each transposed convolutional layer allows to up-
sample its input feature map with the aim of retrieving the original shape of the image
available at the input of the first convolutional layer contained in the encoder side. In
each unpooling layer, instead, an upsampling procedure exploiting the positions of the
maxima stored in the corresponding max pooling operation executed at the encoder
side is accomplished.

Input

Image (  )

Output

Image (  )

Conv1

Conv2

Conv3 Deconv1

Deconv2

Deconv3

Compressed 

Data (  )𝐳

Down-sampling Up-sampling

𝐱
𝐲

FIGURE 5.12: Example of CAE architecture.The acronym ConvX (with X = 1, 2 and 3) identifies
the X-th convolutional and pooling layer, whereas DeconvX (with X = 1, 2 and 3) the transpose

and unpooling layer.

5.3.6 Recurrent neural networks

In the neural networks treated so far, all the inputs and all the outputs are time indepen-
dent from each other. Features related to the time evolution of the observed data can
be extracted through a recurrent neural network (RNN) [115]. A well known example of
RNN is the so called Vanilla RNN, whose architecture is represented in Fig 5.13-a). In
this network, past information contribute to the computation of its output, since they
are reinjected into the network itself and stored in its internal (i.e., hidden) state. More-
over, the following three distinct weight matrices are employed by this network: a) the
M̄ × Dr matrix U employed in the mapping of the Dr-dimensional input vector r(t)q at
time t to its M̄-dimensional hidden state h(t); b) the M̄× M̄ square matrix W involved
in the update of its internal state; c) the D′r × M̄ matrix V employed to map h(t) to its
D′r-dimensional output vector o(t).
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FIGURE 5.13: Architecture of: a) a Vanilla RNN; b) an LSTM neural network.

In fact, based on these matrices, the state update of the network and the computation
of its output at time t can be expressed as

h(t) = ϕ(W h(t−1) + U r(t)q ) (5.129)

and as
o(t) = V h(t), (5.130)

respectively; here, ϕ(·) denotes a non-linear activation vector function. It is important
to point out that:

a) A RNN can be thought as the result of the interconnection of multiple copies of
the same network, each passing a message to a successor. In fact, unrolling it leads to
a chain-like architecture, made of multiple replicas of the same module and such that
each module passes a message to its successor.

b) The standard procedure for training a RNN is known as backpropagation through
time (BPTT) [116]. Unluckily, it may not be so effective when training involves long time
sequences, because of the so called vanishing and the exploding gradient problems [117].
The former problem refers to the exponential decrease observed in the norm of the gra-
dient of the employed cost function during training, whereas the latter one concerns the
opposite behaviour (more specifically, a large increase of the same gradient).

The problems mentioned in the last point can be circumvented by adopting a long
short term memory (LSTM) neural network [118], whose architecture is illustrated in Fig.
5.13-b). This architecture consists of a memory cell and of three different multiplicative
gates, namely an input gate, an output gate and a forget gate. The input gate, whose
content at time t is denoted by i(t), represents the input of the memory cell (whose
content at time t is denoted by c(t)) and is employed to protect the content of this cell
from perturbations due to irrelevant inputs. The output gate, whose content at time t
is denoted by o(t), protects the other units connected to the output of the memory cell
from perturbations due to irrelevant memory contents. Finally, the forget gate, whose
content at time t is denoted by f(t), protects the contents stored in the vector c(t) from
the unwanted fluctuations of the memory at the previous instance (i.e., from c(t−1)).
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In summary, the cell allows for long term memory storage, whereas the gates prevent
memory contents from being perturbed by irrelevant inputs and outputs.

If r(t)q denotes the vector of input features at time t, the time evolution of the LSTM
network shown in Fig. 5.13-b) is described by the equations

i(t) = σ(Ui r(t)q + Wi s(t−1)), (5.131)

f(t) = σ(U f r(t)q + W f s(t−1)), (5.132)

o(t) = σ(Uo r(t)q + Wo s(t−1)), (5.133)

g(t) = σc(Ug r(t)q + Wg s(t−1)), (5.134)

c(t) = c(t−1) ⊙ f(t) + g(t) ⊙ i(t) (5.135)

and
s(t) = σc(c(t))⊙ o(t); (5.136)

here, σ(·) is a logistic sigmoid vector function, σc(·) is an hyperbolic tangent vector
function, the operator ⊙ denotes the Hadamard product, s(t) is the output of the mem-
ory cell at time t, Ui, U f , Uo and Ug (Wi, W f , Wo and Wg) are weight matrices charac-

terizing the multiplicative gates and referring to the vector r(t)q (s(t−1)), and g(t) can be
interpreted as a candidate state, whose influence on the state c(t) is controlled by the
input gate through i(t). From eqs. (5.131)-(5.136) it is easily inferred that: a) the contents
of the input, output and forget gates at time t are proportional to a combination of both
the vectors r(t)q and s(t−1); b) the output state s(t) depends not only on the cell content
c(t), but also on the content of the output gate (i.e. on o(t)).

Let us focus now on the application of an LSTM neural network to an FMCW radar
system equipped with a single TX-RX pair and detecting a person that accomplishes
specific activities and, in particular, runs or walks. In this case, each observation pro-
cessed by the LSTM involves N f consecutive frames, in each of which Nc chirps are
transmitted (see paragraph 2.3). For this reason, the q-th observation processed by the
considered network is extracted from N f Nc noisy vectors, acquired over N f consecutive
frames, (i.e., over N f Nc consecutive chirps). In the p-th frame (with p = 0, 1, ..., N f − 1),

the set of vectors {x(0)p,q , x(1)p,q , ..., x(Nc−1)
p,q }, each having size N, is available; here,

x(k)p,q =
[

x(k)p,q,0, x(k)p,q,1, ..., x(k)p,q,N−1

]
, (5.137)

represents the vector of signal samples acquired in the k-th chirp interval of the p-th
frame and its n-th sample x(k)p,q,n is expressed by a formula similar to eq. (2.19) (with n =
0, 1, ..., N − 1). In the proposed experiment, the Phased Array System toolbox available
in the MATLAB environment is employed to generate the useful signal component (i.e.,
the contribution of the detected person) to the vector x(k)p,q (5.137) [119]. This contribution
is modelled as the superposition of L different echoes, each originating from a point-
like target and associated with a different part of the body. Moreover, in the p-th frame
contributing to the q-th observation, the l-th point target is characterized by its RCS a(q)p,l ,
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its range R(q)
p,l and its radial velocity v(q)p,l (with p = 0, 1, ..., N f − 1 and l = 0, 1, ..., L− 1).

These parameters are assumed to be static over each frame; in addition, the values they
take on in the p-th frame are automatically computed by the above mentioned toolbox
on the basis of the height hp of the person, its position and its RCS in the previous frame,
the direction of its movement with respect to the radar system and its radial velocity vq.
The dataset processed by the network is

Do ≜ {(Rq, tq); q = 0, 1, ..., N̂t − 1}, (5.138)

where

Rq ≜
[(

r(q)0

)T
,
(

r(q)1

)T
, ...,

(
r(q)N f−1

)T
]T

, (5.139)

is the q-th noisy observation, tq its label,

r(q)p ≜ [R̂(q)
p , v̂(q)p ]T, (5.140)

and R̂(q)
p and v̂(q)p are the estimates of the range R(q)

p and of the velocity v(q)p , respectively,
of the considered person in the p-th frame (with p = 0, 1, ..., N f − 1); moreover, it is

assumed that tq = 1 (−1) if the person is walking (running), i.e. if |v(q)p | ≤ vth (|v(q)p | >
vth), being vth a proper threshold.

In the proposed experiment, the dataset Do (5.138) has been acquired in N̂t = 400
independent trials; half of the labels of this dataset are associated with a walker and the
remaining half with a runner; moreover, the estimates R̂(q)

p and v̂(q)p are computed by the
algorithm consisting of the following two steps:

1. Range Estimation - In this step, the N-dimensional vector x(k)p,q (5.137) undergoes

zero padding; this results in the N0-dimensional vector x(k)p,q,ZP, with N0 ≜ MN
(here, the parameter M represents the selected oversampling factor). The last vec-
tor feeds a N0-th order FFT, whose output is the N0-dimensional vector X(k)

p,q =

[X(k)
p,q,0, X(k)

p,q,1, ..., X(k)
p,q,N0−1]

T. Then, the average power spectrum

P(q)
m ≜

1
Nc

Nc−1

∑
k=0
|X(k)

p,q,m|2, (5.141)

is computed. Finally, R̂(q)
p is evaluated as (see eqs. (2.55), (2.57) and (2.59))

R̂(q)
p =

c
2µ

f̂ (q)p , (5.142)

where f̂ (q)p = m̂(q)
p /N0Ts and

m̂(q)
p = arg max

m∈{0,1,...,N0/2}
P(q)

m . (5.143)

2. Velocity Estimation - This step is based on the Nc-dimensional vector

Ĉp,q = [Ĉ(0)
p,q , Ĉ(1)

p,q , ..., Ĉ(Nc−1)
p,q ]T, (5.144)

where
Ĉ(k)

p,q = M X(k)

p,q,m̂(q)
p

(5.145)
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and m̂(q)
p is expressed by eq. (5.143). Applying zero padding to this vector pro-

duces the N
′
0-dimensional vector Ĉ(ZP)

p,q , with N
′
0 ≜ MANc (here, the parameter

MA represents the selected oversampling factor); the last vector feeds a N
′
0-th or-

der FFT, whose output is the N
′
0-dimensional vector

dp,q ≜
[
d(0)p,q , ..., d(N′0/2)

p,q , d(−N′0/2+1)
p,q , ..., d(−1)

p,q

]T
. (5.146)

After solving the maximization problem

k̂(q)p = arg max
k̃∈{−N′0/2+1,−N′0/2+2,...,N′0/2}

∣∣∣d(k̃)p,q

∣∣∣ , (5.147)

the estimate (see eqs. (2.16) and (2.57))

v̂(q)p =
1
2

f (q)p λ (5.148)

of the person velocity is evaluated; here,

f (q)p ≜
2k̂(q)p

N′0T0
(5.149)

represents the Doppler frequency estimated in p-th frame.

For any q, in generating the sequence of pairs {(R̂(q)
p , v̂(q)p ); t = 0, 1, ..., N f − 1}, the

following assumptions have been made about the detected person:
a) its response to the signal radiated by the radar system consists of L = 16 echoes;
b) its height hp is uniformly distributed over the interval (1.70 , 2.0) m;

c) its initial coordinates in a 3D space are (x(q)0 , y(q)0 , z(q)0 ) = (0,10,0) m, whereas the
coordinates of the employed radar device in the same reference system are (xr, yr, zr) =
(0,0,1) m;

d) the angle ϕi representing the initial direction of its velocity is uniformly dis-
tributed over the domain (60◦ , −60◦) ∪ (120◦, 180◦) (the reference line, with respect
to which this angle is measured, is perpendicular to the array of the radar system).

e) the radial velocity v(q)p is uniformly distributed over the interval (0.1, 2.1) m/s
((−2.1, −0.1) m/s) if ϕi ∈ (60◦ , −60◦) (ϕi ∈ (120◦, 180◦)) for any p and, in each frame,
changes in an independent fashion;

f) the initial amplitude a(q)0,l is equal to 1V (with l = 0, 1, ..., L− 1).
Moreover, the following choices have been made for the employed radar system:
a) the TX waveform has λ = 4 mm, µ = 1.5625 · 1013 Hz s−1, T = 64 µs, T0 = 72 µs;
b) each frame consists of Nc = 128 chirps;
c) consecutive frames are separated by a time interval lasting ∆t = 40 ms;
d) the sampling period employed at the receive side is Ts = 12.5 µs;
e) the overall number of time-domain samples acquired in each chirp interval is

N = 1024 and the standard deviation of the noise affecting each sample is σw = 0.1 V
(see eq. (2.19));

f) the oversampling factors M = 2 and MA = 8, and the threshold vth = 1.1 m/s are
selected for the range/estimation algorithm illustrated above;

g) each observation refers to N f = 30 consecutive frames.
The representation, on a Cartesian plane, of two different feature vectors (see eqs.

(5.139)-(5.140)), is provided in Fig. 5.14.
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FIGURE 5.14: Representation of the elements of the two feature vectors R0 and R1; one refers to
a runner (red lines), the other one to a walker (blue lines).

These vectors are denoted by R0 and R1; the former refers to a runner, whereas the
latter to a walker. Note that the range difference ∆R̂0 ≜ |R̂(0)

N f−1 − R̂(0)
0 | referring to the

runner is greater than the corresponding quantity (i.e., ∆R̂1 ≜ |R̂(1)
N f−1 − R̂(1)

0 |) referring
to the walker. In this case, the proposed LSTM network is employed to discriminate a
walker from a runner. The core of its architecture is characterized by an LSTM layer,
able to learn the long term dependencies between different frames. The behaviour of
network is described by the block diagram shown in Fig. 5.13 and by eqs. (5.131)-
(5.135) (the time index t corresponds to the frame index p in this case). Moreover, in this
experiment, the following choices have been made:

1) the size of the input vector is Dr = 2, whereas that of the inner state is M̄ = 10;
2) the non-linear gate activation function σ(x) = [1 + exp(−x)]−1 is used;
3) the size of each of the weight matrices {Ui, U f , Ug, Uo} is M̄ × Dr = 10 × 2,

whereas that of the weight matrices {Wi, W f , Wg, Wo} is M̄× M̄ = 10× 10;
5) both the initial cell content c(0) and the initial state s(0) are independently chosen

as random vectors of size M̄ = 10;
6) a fully connected layer and a softmax layer (see paragraph 5.3.8) have been added

at the output of the LSTM layer to perform classification.

The adaptive moment estimation (briefly, adam) optimizer [120] has been exploited to
train the proposed network (i.e., to tune all the above mentioned weighted matrices);
the batch size, the (constant) learning rate and the number of epochs selected for this
procedure are NS = 32, γ = 10−3 and NE = 50, respectively (see eq. (5.51)). Moreover, a
training set D of size Nt = 300, corresponding to 75% of the dataset Do (5.138) has been
employed for training; the remaining part Dts of Do has been used as a test set (collect-
ing N̄t = 100 observations)). Using these parameters a 98% accuracy is achieved by the
adopted LSTM network in distinguishing people that are running from others that are
walking.

The obtained results suggest that:
a) Combining deterministic estimators with deep learning methods can result in

classification techniques achieving excellent performance;
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b) Merging range and velocity information can enhance the discrimination capabil-
ity of the network;

c) Observing range/velocity evolution over time (i.e., over multiple consecutive
frames) significantly contribute to improve network accuracy.

5.3.7 Generative adversarial networks

A generative adversarial network (GAN) is a probabilistic generative method consisting of
two deep neural networks, called generator and discriminator, and competing against one
another [121]; its architecture is shown in Fig. 5.15. The generator produces a sample14

x = G(z, θg) from a pdf fg(x), starting from an input noise variable z ∼ fz(z); here,
G(·, ·) is called generative model and is typically implemented through a neural network,
whereas θg is the vector of training parameters.

Generator

Discriminator

( )z zzf
 ,G z θg

( , )x θdD

y( )x xxf

FIGURE 5.15: Architecture of a generative adversarial network.

The discriminator, instead, generates the output y = D(x, θd), that represents the prob-
ability that an input x originates from the training data (i.e., from their pdf fd(x)) rather
than from the generator pdf fg(x); here, D(·, ·) represents the discriminative model and
θd is the vector of the training parameters characterizing the network that implements
the model itself. In practice, the generative model can be thought as a team of counter-
feiters, trying to produce fake currency for fooling the police, while the discriminator,
acting like the police, tries to detect the counterfeit currency. Competition in this game
drives both teams to improve their methods. In fact, the objective of the training of the
generative network is minimizing the accuracy of the discriminative network when the
data generated by the former network are provided to the latter one; on the contrary,
the objective of the discriminator is maximizing the probability of assigning the correct
label to both the real data of the training set and the fake samples originating from the
generator. For this reason, the interaction between the discriminator and the generator
can be modelled as a two-player minimax game. This leads to formulating the optimal
strategy of these networks as the solution of the minimax problem

min
G

max
D

V(D, G) = min
θg

max
θd

V(D, G), (5.150)

where

V(D, G) ≜ Ex∼ fd(x) {log D (x, θd)}+ Ez∼ fz(z)
{

log
(
1− D

(
G
(
z,θg

)
, θd
))}

. (5.151)

The backpropagation algorithm can be used for training a GAN; the training pro-
cess allows the discriminator of the considered GAN to learn, through a proper feature

14Scalar variables are considered in this paragraph, for simplicity.
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representation, how to identify real inputs among the generated data and, similarly, the
generator how to generate realistic data.

Generative adversarial networks have the favourable property that a wide variety of
functions can be incorporated into their model; these make them able to represent very
sharp (and even degenerate) data distributions. However, their use require the avail-
ability of efficient tools to solve the minimax optimization problem (5.150). Moreover, a
tight synchronization between the generator and the discriminator has to be guaranteed
during training; in fact, if one of the two networks learns too quickly, the other one may
fail to learn.

5.3.8 Softmax Classification Layer

Generally speaking, the DL methods illustrated above can be employed to extract the
relevant features of an image. Once this result has been obtained, any multi-class prob-
lem referring to that image can be solved by adding a softmax layer to the employed
network. If K classes are assumed, the target of this layer is generating the posterior
probability

pi =
exp(ai(r(L)))

∑K−1
j=0 exp(aj(r(L)))

(5.152)

for the i-th class, with i = 0, 1, ..., K− 1; here,

aj(r(L)) = wT
j r(L) + wj,0 (5.153)

and r(L) is an L-dimensional feature vector made available by the previous hidden (con-
volutional or LSTM) layer, and wj and wj,0 are an L-dimensional weight vector and a
bias term, respectively, characterizing the softmax layer.

5.4 Applications of learning techniques to MIMO radars

In this section some applications of the learning methods illustrated in sections 5.2 and
5.3 to MIMO radar systems are proposed. More specifically, these methods are exploited
in the following fields: a) human motion characterization; b) human gesture recognition
(HGR); c) fall detection and health-care monitoring; d) autonomous driving.

I/Q raw 

data
Radar 

pre-processing
Feature extraction

Classifier
Classified

object 

Regression

algorithm

Parameter

estimate

FIGURE 5.16: Block diagram representing the signal processing chain of a MIMO radar system
that employs a learning method.

Before delving into the analysis of each application, it is worth pointing out that the
typical processing accomplished at the receive side of any MIMO radar system employ-
ing a learning method for classification and/or regression is based on the block diagram
shown in Fig. 5.16. First, the received signal undergoes frequency downconversion to
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generate its in phase and quadrature components. Sampling these components pro-
duces a stream of raw data, which is pre-processed (e.g., it may undergo FFT process-
ing; see paragraphs 2.3 and 2.5) before extracting relevant features from it. Finally, these
features are processed by a classifier or by a regression algorithm; in the former case, a
specific object class is selected, whereas, in the latter one, an estimate of the parameters
of interest is evaluated. Feature extraction is based on the prior knowledge about the
employed radar system if a ML method is exploited; on the contrary, features are au-
tomatically selected and extracted from pre-processed data if a DL method is adopted.
In the following paragraphs, various details about the processing accomplished by the
blocks appearing in Fig. 5.16 are provided.

5.4.1 Human motion characterization

Human motion characterization aims at recognizing and classifying different human
activities on the basis of the micro-movements of the detected targets; such movements
usually originate from mechanical vibrations or rotations (overlapping to a bulk transla-
tion) and may generate a frequency modulation in the received signal; this phenomenon
is also known as micro-Doppler. These micro-Doppler fluctuations observed in the spec-
trograms of radar signals are known as micro-Doppler signatures15. Classifiers employed
for this application aim at: a) identifying different types of human motion (e.g., walk-
ing, running and sitting) [122]; b) differentiating human motion from that of other living
animals [123]; c) remotely identifying potential active shooters [124], [125].

In the technical literature about this application, the following two methods are ex-
ploited to extract relevant features from micro-Doppler signatures, also called spectro-
grams: a) manual extraction of handcrafted features; b) automatic extraction of features
based on a data-driven approach. Machine learning methods exploiting manual extrac-
tion of features have been investigated in [125]–[133], whereas the automatic extraction
of features from spectrograms through DL methods has been proposed in [122], [124],
[134]–[137]. It is important to bear in mind that:

1. Machine learning methods relying on spectrogram information usually exploit: a)
physical features related to the characteristics of the observed motion; b) transform-
based features; c) speech-inspired features. Physical features include the frequency
and the bandwidth of the received waveforms, the offset and the signal intensity
of the associated signature (see paragraph 2.3). The first two physical features are
strictly related to motion dynamics, whereas the other types of features to the RCS
of the body of the observed person [123].

2. Transform-based features exploited by ML methods can be extracted from a re-
ceived waveform by evaluating a) its spectral coefficients (e.g., its discrete cosine
transform coefficients) or b) other signal-dependent coefficients. As far as point b)
is concerned, the use of linear predictive coding (LPC) has been proposed in ref. [128]
to transform a time-varying Doppler signal in a low dimensional set of prediction
coefficients. A different approach, based on the computation of pseudo-Zernike
moments, is illustrated in ref. [129, Sect. II-A, eqs. (10)-(12)]; this allows to extract
relevant characteristics from micro-Doppler signatures, such as translational and
scale invariance.

15Additional details regarding the detection of micro-Doppler signatures through the computation of
spectrograms and cadence velocity diagrams are provided in Par. 5.6
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3. In many cases, the dimensionality of the feature space can be substantially reduced
(see paragraph 5.2.4). An interesting example of this approach is offered in ref.
[130], where the use of a 1D standard PCA and of a robust PCA for extracting
physical features from a Doppler radar signal is investigated.

Frequently used ML methods for the classification of human motion based on a set
of handcrafted features include the naive Bayes (NB) [131], the non linear SVM [132] and
the K-NN methods [133]. The use of a binary SVM classifier for multi-class problems
in human motion characterization is investigated in ref. [126], where a classification
procedure based on a decision-tree is proposed. This procedure is based on the idea of
representing a classification problem involving multiple choices as a set of binary clas-
sification problems, each of which is solved through a binary SVM. This approach is
exemplified in [126, Fig. 8], where a decision tree referring to the case of seven classes
is illustrated. In practice, a binary SVM is employed for each node of the employed
decision tree in order to separate the possible activities in two groups; if each of the two
groups is further divided, another SVM classifier is used at an underlying node.

The most relevant problems emerging from the study of ML-based classification of
human motion concern the processing methods to be employed for the extraction of
hand-crafted features from raw micro-Doppler signals, the sensitivity of these methods
to noise and clutter, and the impact of similarities among the considered classes on their
performance. The ability of a deep neural network to learn the relevant features directly
from the available raw data allows to solve the above mentioned problems. This con-
sideration has motivated the investigation of deep CNNs (DCNNs; see paragraph 5.3.4)
for the automatic extraction of features in human motion characterization. The use of a
DCNN, fed by spectrograms (converted in red green blue, RGB, or greyscale images), and
employing convolutional layers and pooling layers of small size, has been proposed in
ref. [134]. A different DL method, based on the same principles as convolutional au-
toencoding (see paragraph 5.3.5), has been developed in ref. [135, Par. IV-C, Fig.8]. It
combines the ability of a DCNN to capture local features of input images with that of an
AE to directly learn features through an unsupervised pre-training procedure. In this
case, after an initial and unsupervised pre-training stage, the decoder of a CAE is sub-
stituted by a few fully connected layers and a softmax classifier. This procedure allows
the resulting DCNN to learn specific patterns from the processed signatures, so easing
training for supervised classification. The performance results obtained in this case lead
to the conclusion that a CAE not only is able to outperform conventional classification
methods based on handcrafted features (e.g., SVM), but also a standard DCNN.

Finally, it is useful to mention that another important research problem investigated
in the field considered in this paragraph is represented by the de-noising of micro-Doppler
spectra. In this case, the training set includes two different types of images: a) perfectly
clean spectrograms; b) the same spectrograms affected by background noise. The use of
a deep GAN, based on a convolutional encoder-decoder structure, has been proposed
in ref. [136] for this application. The performance results obtained in this case evidence
that this network does not affect the relevant components of micro-Doppler spectra and
is able to outperform other classic de-noising techniques commonly used for the sup-
pression of background noise.
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5.4.2 Human gesture recognition

The significant attention paid to HGR is due to its exploitation in advanced human com-
puter interfaces (HCIs), that are employed in a number of control, infotainment and se-
curity applications. Relevant information about the dynamics of human gestures are
typically contained in the micro-Doppler signatures acquired over consecutive trans-
mitted frames. Therefore, similarly as human activity characterization, relevant phys-
ical features can be easily extracted from spectrograms. A commonly employed ML
tool for classifying vectors of handcrafted features in HGR systems is represented by
hidden Markov modelling [138]. This approach leads to classifying a new sequence of
data, called observation, on the basis of a stochastic model, called hidden Markov model
(HMM), which has been extracted from past observations and describes their genera-
tion. If an HMM of a given random phenomenon is available, the probability of observ-
ing a specific realization (e.g., a specific gesture), conditioned on a given sequence of
hidden states, can be computed. In this case, model training aims at estimating the so
called transition and emission probability matrices of the developed HMM; the former
matrix collects the probabilities to move from a given state to another one, while the
latter one the probabilities that a given observation is generated in each specific state.

The efficacy of a HMM-based classifier depends on the overall number of states char-
acterizing the model; in general, a larger number of states allows to model a more com-
plicated process and to improve prediction accuracy. However, a discrete state space of
small size is often adopted in HGR applications to mitigate the overall complexity of the
developed HGR system. This choice makes the resulting classifier unable to distinguish
gestures characterized only by subtle differences in their spectrograms. For this reason,
DCNNs are usually preferred.

One of the first important research activities focusing on the exploitation of this type
of networks in HGR is the well known Google’s Soli project [139], whose scope has been
the development of a HGR mobile and wearable device based on a RF sensor. Various
research results about this research field can be found in ref. [140], where it is shown
that the accuracy of these deep classifiers gets worse if: a) the number of classes16 in-
creases; b) the incident angle and/or the distance between the gesture and the employed
radar device get larger. The accuracy of a classifier based on a DCNN can be improved
by extracting features not only from spectrograms, but also from range-Doppler maps
[141]. Another DL architecture, specifically developed for RF HGR and combining the
ability of a CNN network of capturing local features of input images with that of coping
with time-varying signals, has been investigated in ref. [142]. This architecture con-
sists of a 3D-CNN for spatial-temporal modelling of short consecutive frames, an LSTM
for extracting global temporal features and a final classification layer (a detailed block
diagram is illustrated in ref. [142, Fig. 7]). This architecture achieves a very high recog-
nition accuracy, and outperforms other conventional ML and DL methods used in HGR
applications, like HMMs or 2D-CNNs.

5.4.3 Fall detection and health-care monitoring

Human falls represent a worldwide health problem and are known to be one of the main
causes of unintentional injury death in seniors; this motivates the recent interest in de-
vising electronic systems able to detect their occurrence. Another important problem in
the field of technology for human health concerns the development of non-invasive and

16The maximum number of distinct hand gestures considered in ref. [140] is equal to 10.
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non-contact devices for monitoring human vital signs, such as breath and heart rates,
and sleep quality. Various results in both research areas have evidenced that innovative
solutions to both problems can be developed by exploiting ML and DL methods fed by
the micro-Doppler signatures acquired through a radar system. In any case, when the
overall number of classes to be identified increases and the degree of dissimilarity be-
tween the Doppler signatures characterizing them reduces, DL methods are preferred,
since they achieve better accuracy.

An interesting study on the dynamics of human falls analysed through micro-Doppler
signatures can be found in in ref. [143], where it is shown that fall accidents can be dis-
tinguished from normal activities on the basis of: a) the strength of the received echo
(i.e., the RCS of the subject under test); b) the distance of the radar device from the body
of the subject under test during a fall; c) the Doppler information acquired during the
movement of the subject itself. Experimental results have evidenced that, when a sub-
ject starts falling, the observed Doppler frequency increases steeply; on the contrary, the
RCS of the human subject gradually decreases since its tilt angle gets larger. In this case,
ML and DL algorithms can be trained to detect a fall on the basis of the time variations
of Doppler signatures. A specific DL classifier based on a stacked AE and exploiting a
range-Doppler radar has been developed in ref. [144], where it is shown that the pro-
posed solution is more accurate than PCA-based methods in detecting different actions,
such as falling, walking, sitting and bending.

The use of learning techniques in the analysis of sleep stages has been investigated in
ref. [145], where a solution based on a K-NN classifier has been proposed. The exploita-
tion of learning techniques for heart and breath rate estimation represents a challeng-
ing problem, because a large and heterogeneous datasets for network training cannot
be easily built and contactless systems for vital sign monitoring are strongly limited
by body movements. Some interesting contributions to this field are provided by refs.
[146], [147] and [148]. More specifically, a method based on a classical feed-forward
NN for hearth rate estimation is proposed in ref. [146], whereas a DL method for body
movement compensation is investigated in ref. [147]. Finally, a contactless breathing
disorder recognition system using 2.4-GHz Doppler radar and based on a linear SVM
classifier is developed in ref. [148].

The real-time implementation of radar sensing methods for HGR, health monitor-
ing and fall detection can be computationally intensive. This problem becomes more
relevant in all those applications in which multiple persons have to be monitored in the
same environment; in fact, in such cases, the exploitation of the MIMO technology be-
comes mandatory, because of the need of localising multiple agents. This explains why
an important technical challenge is represented by the exploitation of hardware plat-
forms that support parallel computing (namely, FPGAs and GPUs), require a limited
power consumption and can manage a large data rate at their inputs [149].

5.4.4 Autonomous driving

Automotive radar represents one of the key enabling technologies for autonomous driv-
ing. In a typical processing chain employed for target detection in a MIMO FMCW radar
system for automotive applications the signals acquired through multiple receive an-
tennas undergo multidimensional FFT processing; this allows to extract range, Doppler
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and DoA information. The data generated by the FFT blocks are processed by a de-
tection algorithm, whose objective is identifying the presence of multiple extended tar-
gets, and estimating their spatial coordinates and their radial velocity (i.e., the Doppler
shift characterizing them). Each of the detected targets (e.g., pedestrians, cars or bi-
cycles) usually appears as a cloud of point targets; the association of each point to a
given extended target is called clustering. The simplest unsupervised strategy that can
be adopted for target detection is thresholding; in this case, a target is detected if the
amplitude spectrum of the acquired signals exceeds a fixed threshold, as illustrated in
paragraphs 2.5 and 5.2.3 for specific FMCW radar systems. A more refined alternative
is represented by the constant false alarm rate (CFAR) technique [150]. This method con-
sists in estimating the level of interference in each cell in the range domain of interest
and in exploiting these information for the detection of the presence of a target in each
cell of a radar image. Unluckily, due to the high resolution achieved by automotive
radars, a single target can occupy multiple adjacent cells; when this occurs, the CFAR
technique undergoes performance degradation because of the contamination affecting
the estimated interference level. Clustering techniques rely on the key idea that each
cluster of points is a region containing a group of detected targets, whose center typi-
cally corresponds to the point target characterized by the strongest reflectivity (see Par.
5.2.4). This means that each cluster has a density (in terms of targets per region) which
is considerably larger than that outside it; for this reason, a given point is expected to
be part of a cluster if the number of its neighbours is greater than a proper threshold.
Learning methods for unsupervised clustering include the density based clustering algo-
rithm (DBSCAN) [151], [152], and the K-means algorithm [153]. The main difference
between these two methods consists in the fact that the former method, unlike the latter
one, does not require prior knowledge of the number of clusters and their shape.

All the techniques described above (namely, thresholding, CFAR and clustering) al-
low to detect multiple point targets and to cluster them. In general, learning methods
can be adopted to improve detection performance. A number of technical problems
have been identified in this area; most of them require the development of sophisticated
signal processing algorithms. Specific contributions about the use of ML methods in
target detection can be found in refs. [154]–[156]. In particular, a K-NN classifier is pro-
posed as an alternative to robust CFAR detection in ref. [156], whereas the use of the
SVM and PCA techniques for improving angular resolution is investigated in ref. [154].
The use of DL methods for target classification in a 2D space, instead, have been studied
in refs. [102], [157]–[164]. It is worth mentioning that, in the literature, the first results
about the use of DL methods in automotive radar systems appeared after 2015, when it
was found that DCNNs were able to simultaneously detect, localize and classify multi-
ple targets by simply analysing 2D range-azimuth (or range-Doppler) maps. Networks
originally developed for computer vision applications, like AlexNet [165] or ImageNet
[166], have inspired the architecture of various networks for automatically extracting
features from automotive radar images [102], [157], [158]. Despite this, the CNNs usu-
ally devised for automotive applications are not as deep as those employed in computer
vision. This difference is mainly due to the fact that: a) the information provided by
range-azimuth or range-Doppler maps are not as rich as traditional RGB images; b) the
employed inference procedure has to be as fast as possible [159]. These ideas are exem-
plified by the CNN proposed in ref. [160] for the classification of automotive targets,
like motorcycles, cars, bicycles and pedestrians; its architecture, illustrated in ref. [160,
Fig. 2], consists of three convolutional layers and filters of size 3× 3 (whose depths are
equal to 32, 64 and 128, respectively). Moreover, each convolutional layer is followed
by a 2× 2 average-pooling layer, two fully-connected layers and a softmax layer, which
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is used at the end for classification. A relevant novelty introduced in this work (and in
ref. [161] too) consists in considering a certain region of interest (ROI) around the desired
targets in the analysed scene as prior information to be used during training, in order to
improve the learning procedure.

Deep learning methods can be also employed to solve the problem of scene under-
standing, i.e. of correctly interpreting the events occurring around it (e.g., the event of a
vehicle passing near a pedestrian that crosses a road). In this case, improving the pre-
diction accuracy of the employed NN requires exploiting the information contained in
the frames preceding and following the frame under test because of the high variability
of the data provided by MIMO radar systems. An architecture based on the cascade of
a LSTM module with a CNN has been proposed in ref. [162]; this exploits the temporal
information provided by radar signals and is able to capture the dynamics of the sur-
rounding scene.

Finally, it is worth mentioning that learning methods can be also employed to detect
the fatigue of the driver’s eyes [155] and to mitigate the interference orginating from
the transmission of multiple MIMO radars in the same area. In general, the interfer-
ence affecting a MIMO radar system can be due to the system itself (self-interference) or
from other radar systems placed on the same vehicle or on other vehicles (cross or mu-
tual interference); in both cases, this phenomenon results in an increase of the observed
noise floor and, consequently, affects the detectability of targets. The use of RNNs for
interference mitigation has been investigated in refs. [163] and [164].

5.5 Current trends in research on MIMO radars

In this section, a short description of three research trends in the field of DL techniques
for MIMO radars is provided. More specifically, the focus will be on transfer learning,
and recent DL methods for object detection and classification. Then, the role that ex-
plainable artificial intelligence (XAI) may play in the radar field during the next years will
be analysed in the following.

5.5.1 Transfer learning

The minimization procedure accomplished by a deep NN trained from scratch (through
random initialization) may lead to a local minimum which is far from the globally opti-
mal solution if the involved cost function is highly non-convex. Moreover, if the dataset
employed in network training is not large enough, the risk of over-fitting is quite high.
These problems are likely to arise in radar applications, where the availability of a large
and heterogeneous data set is quite rare. When this occurs, transfer learning could rep-
resent a tool to solve them; in fact, this method often allows to achieve a good general-
ization capability even if the available dataset is limited [167], [168]. Transfer learning is
based on the idea of exploiting the knowledge gained from a different domain to solve
other related classification problems. Two approaches to the exploitation of this method
in radar applications have been recently proposed. The first approach, developed for the
classification of human activities, is based on training an unsupervised network, character-
ized by an encoder-decoder structure and employed to learn specific patterns appearing
in the available dataset [169]. When the decoder becomes able to reconstruct the input
data with a reasonable accuracy, it is removed, and fully connected and softmax layers
are added in cascade to the associated encoder. Finally, the resulting network is trained
in a supervised manner with a smaller, but labelled dataset: this procedure is called
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fine-tuning.

The second approach is based on the architecture developed in ref. [170]. In this
case, a DCNN network trained on a large dataset of RGB images is combined with fully
connected and softmax layers initialized from scratch; this results in a new network,
which is fine-tuned on a small dataset. The decision about which type of transfer learn-
ing has to be preferred is based on the size of the available dataset and on the similarity
of the last dataset with the one used for pre-training the selected network architecture.
It has been shown that the final score of a DCNN-based classifier can be improved either
by exploiting a pre-training procedure based on a simulated radar dataset [171] or by
employing a pre-trained DCNN on a separate large scale RGB dataset [170].

5.5.2 Object detection and classification

The aims of object detection and classification are the labelling of all the objects appear-
ing in a given image and the generation of a bounding box identifying their position.
The fast R-CNN [172] and faster R-CNN [173] are examples of region-based CNNs for
object detection based on bounding boxes. Another relevant solution of this type is rep-
resented by the so called You only look once (YOLO) network17. When building up a
dataset for training this network, each detectable target is bounded with a box charac-
terized by specific size and position in the whole image. If an object detection problem
in which different targets can be associated to several (say, K) classes is considered, the
YOLO network should be preferred to the other methods mentioned above because of:
a) its ability to predict not only the size and the position of the bounding box associated
with a given target, but also the probability that the target inside a given box belongs
to a certain class; b) its architecture which, being based on a CNN, is simple and fast; c)
its ability to learn very general representations of objects. The results illustrated in ref.
[174] for various applications evidence that a YOLO network outperforms a R-CNN in
terms of detection ability, since it produces a lower number of false negatives. However,
it is important to underline that a YOLO network usually makes a significant number
of localization errors and, consequently, achieves a limited accuracy. Better results are
obtained if an improved architecture, known as YOLO v2 and originally proposed in
ref. [175], is adopted. This new version of the YOLO network is still based on a con-
volutional architecture, but employs anchor boxes18 in predicting the position of objects.
The use of anchor boxes makes the learning procedure easy, since the network has only
to adjust and refine their size in order to fit an object detected in the processed image.
A specific application of the YOLO v2 network to a MIMO radar system is illustrated in
paragraph 5.6.2.

A recent research topic in the field of target detection and classification is represented
by the use of semantic segmentation, that represents a powerful technique adopted for
classifying the pixels of an image (a fixed set of classes is assumed in this case). The
state of the art in semantic segmentation for image processing is represented by: a) fully
convolutional networks (FCNs) [176], in which a convolutional network endowed with a
pixel classification layer (instead of a fully connected layer) is used; b) SegNet [177] and
U-Net [178], both based on a symmetrical encoder-decoder architecture. A more com-
plex method is represented by instance segmentation, whose aim is not only detecting and
classifying all the objects appearing in an image, but also generating the segmentation

17The name of this network has been inspired by the human ability of looking once at an image and
instantly recognizing the objects it contains.

18Anchor boxes are a set of predefined bounding boxes having certain height and width.
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of each instance appearing in the bounding box associated with each detected object. To
accomplish the last task, the Facebook AI research group has proposed a new method
called, Mask-R-CNN, that extends a Faster R-CNN by adding a branch for the prediction
of the segmentation mask in each ROI [179].

It is important to note that the application of the above mentioned DL techniques to
object detection and localization in radar images is still at an early stage. Despite this,
specific DL methods inspired by FCNs and U-Net have already been implemented for
detecting and estimating the position of different targets (like cars and other automotive
targets) on the basis of range-Doppler-azimuth radar maps [180]–[182]. Moreover, the
use of semantic segmentation in the radar field has been already investigated for the
classification and localization of 3D point clouds of automotive targets, like cars, tractors
and pedestrians; various results referring to automotive MIMO radars that operate at
77 GHz can be found in refs. [183] and [184], [185] . The experimental results shown
in these manuscripts evidence that the performance of the NNs employed for semantic
segmentation substantially improves if radar data are fused with those one provided
by others (typically optical) sensors. It should not be forgotten, for instance, that radar
information can be augmented by a highly dense point cloud generated by a lidar device
and that lidar data can be replaced by radar data in case of adverse weather or lighting
conditions. An example of radar-centric automotive dataset based on radar, lidar and
camera data for is described in ref. [186]; this dataset has been exploited in ref. [187] to
test DL algorithms for 3D object detection.

5.5.3 Explainable artificial intelligence

Neural networks and sophisticated decision methods are currently employed in a num-
ber of applications to solve complicated tasks. The requirement of transparency is be-
coming more and more important in AI, especially when it is employed in autonomous
systems. Unluckily, understanding which features are evaluated by a DNN in making
decision is a complicated problem. Explainable artificial intelligence is a new branch of
AI and concerns the problem of how the effectiveness of a deep network can be guar-
anteed [188]. An interesting method to improve the transparency of a DNN is based
on the visualization of the features learned by each layer of the network [189]. The first
layers of a DCNNs tested on radar images typically learn basic features, that depend on
the size of their convolution filters. In fact, large (small) filters memorize general shapes
(more specific properties), whereas some filters are also able to learn noise and clutter
[135]. An alternative method to get some insight on the learning process of a CNN is
based on the idea of identifying the parts of a radar image that are relevant for the clas-
sification of the object under test; such parts are also known as spatial supports. This
approach allows to assess if a specific network is robust in making decision on the basis
of a correct analysis of the given image. A specific technique, called saliency extraction,
is based on this idea and, in particular, on the evaluation of the so called saliency map, as
illustrated in ref. [190].

5.6 Experimental results

In this section it is shown how specific ML and DL methods can be employed in a com-
mercial colocated MIMO radar system to: a) classify three different human activities; b)
estimate the range and DOA (azimuth) of a single target in a 2D propagation scenario.
In both cases, such methods are compared, in terms of accuracy and processing time;
moreover, in case b), a comparison with deterministic methods is also carried out.
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TX 1 TX 2

Virtual Array (VA)

FIGURE 5.17: a) Colocated MIMO radar system and b) Geometry of the physical TX and RX
arrays (top) and the corresponding virtual array (bottom).

It is worth stressing that, unlike the previous sections, the results illustrated below
do not originate from a synthetically generated dataset. In fact, the following tools have
been exploited to generate them19:

1. A colocated FMCW MIMO radar manufactured by Inras GmbH [191]. This radar
device, shown in Fig. 5.17-a) and employed to acquire all the measurements,
operates in the E-band (the center frequency of its transmitted signal is f0 = 77
GHz) and is equipped with a TX ULA and an RX ULA, consisting of NT = 2 and
NR = 16 antennas, respectively (see Fig. 5.17-a)); even if, in principle, 2 · 16 = 32
virtual channels are available, only NV = 31 of them are exploited in this work,
since two elements of the virtual array overlap (see Fig. 5.17-b)).

2. A pico-flexx camera manufactured by PMD Technologies Inc. [90]. This time-of-flight
camera is employed as a reference sensor, being able to provide a depth map or,
equivalently, a three-dimensional point-cloud of a small region of the observed
environment. A more complete description of this sensor has been provided in
Sect. 4.5.

3. A desktop computer equipped with a single i7 processor. All the software has been
developed in the MATLAB and/or Python environment and run on this computer.

In the following two paragraphs, various details about the experiments accomplished
for the two specific applications mentioned above and the most relevant obtained results
are illustrated.

5.6.1 Human activity classification

The first experiment concerns the classification of following three different human ac-
tivities: walking, running and jumping. The following choices have been made:

1. The person whose activity has to be classified is alone and is in front of the em-
ployed radar device (at the bore-sight respect to the radar system).

2. A single pair of TX-RX antennas is used (since angular information is not re-
quired).

3. The transmitted waveform is characterized by the following parameters: Nc =
128, T = 128 µs, TR = 32 µs and B = 1 GHz (consequently, µ = 7.8 · 1012 GHz/s;
see eq. (2.6)).

19The datasets employed in these experiments are available at: https://www.sigcomm.unimore.it/downloads/.

https://www.sigcomm.unimore.it/downloads/
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4. At the receive side, analog-to-digital conversion is accomplished at the sampling
frequency fs = 80 MHz and N = 1024 samples are acquired over each chirp
period and an oversampling factor M = 4 is considered.

Different classification methods have been tested for this application. First of all, the
following five ML methods are taken into consideration: a linear SVM technique, the
K-NN technique (with K = 4), an Adaboost classifier with decision stumps as weak
learners (see paragraph 5.2.3), a customised double stage SVM binary classifier (CSVM)
and a specific version of the Adaboost, called Stagewise Additive Modeling using a Multi-
class Exponential loss function (SAMME) [192]. As far as DL methods are concerned, only
a specific CNN has been taken into consideration, since, as shown below, the prepro-
cessed data feeding it can be interpreted as 2D images.

All these methods are fed by the matrices E and G, i.e. the spectrogram and the cadence
velocity diagram (CVD), respectively. In a FMCW radar system equipped with a single TX
antenna and a single RX antenna, these maps are generated as follows. Let assume that
x(k) denotes the N-dimensional (column) vector consisting of the real measurements
acquired in the k-th chirp of a transmission frame, with k = 0, 1, ..., Nc − 1 , where Nc is
the overall number of chirps forming the frame itself. The Nc vectors {x(k); k = 0, 1, ...,
Nc − 1} are collected in the matrix

R = [x(0) x(1) · · · x(Nc−1)] , (5.154)

having size N × Nc. This matrix undergoes zero-padding, that turns it into a matrix
RZP of size N0 × N

′
0. The last matrix feeds a N0 × N

′
0-th order FFT, that generates the

range-Doppler (complex) matrix

D =
[
dp,q
]
≜ FFTN0×N′0

[R] , (5.155)

where FFTX×Y[·] denotes 2D FFT operator of size X × Y; note that the index p (q) la-
belling the elements of the matrix D refers to the range (Doppler) domain. Represent-
ing, on a Cartesian plane, the absolute value of the elements of the matrix D generates
the range-Doppler map.

Let us suppose now that N f consecutive frames (each consisting of Nc chirps) are
transmitted by the considered radar system and that the range-Doppler matrix D (5.155)
is evaluated for each frame (the matrix referring to the m-th frame is denoted by Dm =

[d(m)
p,q ], with m = 0, 1, ..., N f − 1). The micro-Doppler signatures, characterizing a certain

range interval, can be acquired through the real matrix E =
[
Em,q

]
, having size N f × N

′
0

and whose element on its m-th row and q-th column is evaluated as

Em,q ≜
pmax

∑
p=pmin

|d(m)
p,q |2 (5.156)

with m = 0, 1, ..., N f − 1 and q = 0, 1, ..., N
′
0− 1; here, pmin (pmax) denotes the value of the

index p associated with the minimum (maximum) range of interest. Representing the
elements of the matrix E on a Cartesian plane produces the so called spectrogram [193],
that shows the time evolution of the Doppler phenomenon. Additional information
about the dynamical properties of a moving target can be acquired through the cadence
velocity diagram. Its generation is based on the complex matrix G = [Gl,q], having size

N
′
f × N

′
0 and computed as the N

′
f × N

′
0-th order FFT of the matrix EZP = [E(ZP)

m,q ], that
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results from zero padding of the matrix E defined above; therefore, we have that

Gl,q ≜
1

N f

N
′
f−1

∑
m=0

E(ZP)
m,q exp

(
−j2π

m
N ′

f
f̄l TF

)
(5.157)

with l = 0, 1, ..., N
′
f − 1 and q = 0, 1, ..., N

′
0 − 1; here, TF is the duration of a single

transmission frame, E(ZP)
m,q = Em,q for m = 0, 1, ..., N f − 1 and E(ZP)

m,q = 0 for m > N f − 1
and

f̄l ≜
l

TF
(5.158)

is the l-th cadence frequency. The CVD results from representing, on a Cartesian plane,
the absolute value of the elements of the matrix G. In all the experiments made for the
considered application, N f = 143, N′0 = 256 and N′f = 512. Examples of the spectro-
grams associated with the three possible activities are shown in Figs. 5.18-(a), -(b) and
-(c) (note that the same time scale is used in all these figures), whereas an example of
CVD is illustrated in Fig. 5.19.

walking

running

jumping

FIGURE 5.18: Spectrograms observed for the following three different activities: walking (top),
running (center) and jumping (bottom).

Moreover, in the last figure, two additional plots, one referring to the cadence fre-
quency of the observed motion (left), the other one to its velocity (bottom), are also given
for completeness. From Figs. 5.18-5.19 it is easily inferred that:

a) The period of the spectrogram (i.e., the distance between its consecutive peaks) is
inversely proportional to the speed of the observed motion.

b) The shape of the spectrogram is influenced by the type of motion.

c) The CVD diagram contains important information regarding the motion and it is
strictly related to the shape of the spectrogram. The cadence frequencies indicate
how frequently a specific velocity component repeats in the observation interval.

An experimental campaign has been accomplished to build up an experimental
dataset, that collects Nt = 150 observations equally divided among the three classes.
Each observation refers to N f consecutive frames, each consisting of Nc chirps, and is
acquired over an observation interval whose duration is TO = 3 s (each frame lasts
TF = TO/N f = 21 ms).
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FIGURE 5.19: Representation of a CVD and of two diagrams extracted from it (one providing
information about cadence frequencies, the other one about velocities). In the diagram appear-
ing on the left, the three strongest frequency components are identified by blue, red and green
dashed lines; each line is associated with the velocity profile shown in the other diagram and

having the same colour.

Moreover, the q-th entry of the dataset Do processed by the above mentioned ML
methods is represented by the pair (rq, tq) (see eq. (5.2)), where

rq =
[
rq,0, rq,1, rq,2, rq,3

]
(5.159)

is a 4D feature vector (so that Dr = 4) and tq is a integer label identifying the specific
activity which the vector rq is associated with (tq = 0, 1 and 2 if the observed person
is walking, running or jumping, respectively). The first three elements of the vector rq

(5.159) depend on the value Gq = [G(q)
l,m] of the matrix G computed for the q-th observa-

tion, since

rq,0 ≜
l̂q

N′f TF
, (5.160)

rq,1 ≜
1

N′0

N′0−1

∑
m=0

(
G(q)

l̂q,0,m
− µ

(q)
0

)
·
(

G(q)
l̂q,1,m
− µ

(q)
1

)
(5.161)

and

rq,2 ≜
1

N′0

N′0−1

∑
m=0

((
G(q)

l̂q,0,m

)2

+

(
G(q)

l̂q,1,m

)2
)

; (5.162)

here,
l̂q ≜ arg max

l∈{0,1,...,N′f−1}
V(q)

l , (5.163)

l̂q,k is the index identifying the k-th largest peak appearing in the sequence {V(q)
l ; l = 0,

1, ..., N′f − 1} (with k = 0 and 1),

V(q)
l ≜

N′0−1

∑
m=0

G(q)
l,m, (5.164)
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and µ
(q)
k is the mean of the elements of the l̂q,k-th row of the matrix Gq, i.e. of the vector

G(q)
l̂q,k

≜
[

G(q)
l̂q,k ,0

, G(q)
l̂q,k ,1

, ..., G(q)
l̂q,k ,N′0−1

]T

, (5.165)

with k = 0 and 1. The last feature of rq (5.159) (namely, the quantity rq,3) depends on
the value Eq of the matrix E computed for the q-th observation, since it represents the
period of the spectrogram, i.e. the distance between two consecutive peaks observed
along the time dimension. It is important to point out that:

1. The parameter rq,0 (5.160) represents the strongest frequency component detected
in the CVD diagram (see Fig. 5.19). The value of this parameter is expected to
increase with the speed of the observed person.

2. The parameters l̂q,0 and l̂q,1 identify the two strongest frequencies (denoted by f̂q,0

and f̂q,1, respectively) detected in the CVD referring to the q-th observation; such
frequencies are evaluated as

f̂q,k =
l̂q,k

N′f TF
, (5.166)

with k = 0 and 1.

3. The parameter µ
(q)
k is the mean of the velocity profile expressed by the N′0-dimensional

vector G(q)
l̂q,k

(5.165).

4. The parameter rq,1 (5.161) represents the covariance between the velocity profiles

G(q)
l̂q,0

and G(q)
l̂q,1

, whereas rq,2 is the overall energy associated with both profiles; this

experimental data have evidenced that the value of rq,1 (rq,2) decreases (increases)
as the speed of the observed person gets larger (smaller).

5. The value of rq,3 is inversely proportional to the speed of the observed person,
since an increase of the speed shortens the period of the spectrogram.

As far as the adopted ML methods are concerned, the following choices have been
made:

a) The K-NN classifier is structured as illustrated in paragraph 5.2.3.
b) The classifiers based on the SVM and the Adaboost methods exploit the pairwise

classification approach illustrated at the end of paragraph 5.2.3. For this reason, they
combine L = K(K− 1)/2 = 3 identical binary classifiers (i.e., base learners).

c) The CSVM method is obtained by cascading two linear SVM binary classifiers
(whose behaviour is described in paragraph 5.2.3). The first SVM classifier (denoted by
SVM #1) distinguishes jumping from the rest of the activities and is fed by the feature
vector r′q =

[
rq,0 , rq,1

]
(in this case, the scalar labels t′q = 1 and t′q = −1 are associated

with jumping, and with walking and running, respectively). The second classifier (SVM
#2) processes the observations related to running and walking only and is fed by the
feature vector r′′q =

[
rq,2 , rq,3

]
(in this case, the scalar labels t′′q = 1 and t′′q = −1 are

associated with walking and running, respectively). The final predictions of the CSVM
are generated on the basis of the SVM #1 (SVM #2) predictions for jumping (running
and walking).

d) The employed version of the SAMME method is the one implemented in the
Python library Scikit-learn [194] (namely, sklearn.ensemble.AdaBoostClassifier) and
represents a specific version of the Adaboost technique for solving multi-class problems;
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in practice, it is based on a decision tree classifier characterized by two nodes (instead
of a simple decision stump). This methods outperforms a classical Adaboost technique
by simply emphasizing the weights assigned to misclassified points.

In this experiment, a N̄-fold cross-validation, with N̄ = 5, has been employed. The
accuracy achieved by the considered ML methods and the processing time they have
required for training and prediction are listed in Table 5.1.

SVM K-NN ADA CSVM SAMME

Accuracy (%) 89 90 91 90 91

Training time (s) 0.1 0.03 4.5 0.06 0.45

Prediction time (s) 0.01 0.01 0.5 0.01 0.05

TABLE 5.1: Accuracy, training time and prediction time evaluated for each of the ML methods
considered for human activity classification.

From these results, it is easily inferred that:

a) The accuracy is reasonably good in all cases (slightly above the 90%).

b) The Adaboost performs marginally better than the K-NN and SVM methods, at the
price of substantially larger computation time.

c) The best trade-off in terms of performance and computation time is achieved by the
K-NN technique.

d) The CSVM method requires a lower computational effort (especially in training) with
respect to the method based on SVM and round-robin binarization. This is mainly
due to the fact that the former approach employs only two learners, whereas the
latter one three binary classifiers.

e) The SAMME algorithm achieves the same accuracy as the round-robin binarization
of the classic Adaboost, even if its computation time (in both training and predic-
tion) is approximately ten times smaller.

The ML methods tested in the first part of the experiment exploit a dataset of man-
ually extracted features (see eqs. (5.159)-(5.162)). On the contrary, the CNN employed
in the second part of the experiment is able to classify human activities by recognizing
specific patterns directly in the matrix E. A description of its architecture is provided
in Table 5.2. The first three layers of the employed network are represented by three
convolutional 2D filters, having size 15× 5 and depths 4, 8 and 16; moreover, each filter
feeds a linear rectifier, followed by a max pooling layer. Each max pooling layer allows
to halve the size of the image made available by the previous layer, so that a significant
dimensionality reduction is obtained. The first three layers are followed by another 2D
convolutional filter with a batch normalization layer. The last layers are represented by
a fully-connected (FC) and a softmax (Soft) layer transforming the residual 2D image in a
vector of size 3, since three classes are considered. It is worth noting that the adoption
of a CNN having a small depth is justified by the fact that spectrograms referring to
the three activities are quite different, as exemplified by Fig. 5.18. The q-th entry of the
dataset Do processed by the employed CNN is represented by the pair (rq, tq), where,
however, the observation rq is represented by the value Eq taken on by matrix E in the
q-th acquisition (the label tq, instead, has the same meaning as in the ML case).
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Layers Filters Size Stride Output

Convolutional + ReLu 4 15× 5 1 143× 53× 4

Max pooling - 15× 5 2 65× 25× 4

Convolutional + ReLu 8 15× 5 1 65× 25× 8

Max pooling - 15× 5 2 26× 11× 8

Convolutional + ReLu 16 15× 5 1 26× 11× 16

Max pooling - 3× 3 2 12× 5× 16

Convolutional + BN + ReLu 3 3× 3 1 12× 5× 3

FC + Soft 3 - - 1× 1× 3

TABLE 5.2: Architecture of the CNN employed for the classification of three human activities.

Moreover, N f = 143 and N̄′0 = 53, and N̂t = 150 are assumed for the size of the
matrix E and for the dataset Do, respectively. Network training is based on 60% of
the whole dataset (the remaining part of the dataset has been equally divided to gen-
erate a validation set and a test set); moreover, it has been accomplished by an SGD
minimization procedure, which is characterized by a subset S of 4 training data sam-
ples, a learning rate γ(i) = 10−3 for any i and an overall number of epochs NE = 50
(see eq. (5.51)). A 96% classification accuracy has been achieved in this case; the most
of misclassification events occurs between walking and running, especially when the
speed during run is quite low and comparable to that one followed during walking.
The proposed DL method achieves a substantially better generalization capability that
the ML counterparts described above. We should not forget, however, that this result is
achieved at the price of a training time of about 25 s; this is substantially larger than that
required by the considered ML methods (see Table 5.1). Finally, it is important to men-
tion that the computation time required by the employed CNN for evaluating a new
prediction is about 0.03 s and, consequently, is reasonably short and comparable with
the one characterizing the considered ML methods.

5.6.2 Estimation of the range and azimuth of a single target

The second proposed application concerns the detection of a specific target moving on
a 2D multi-target scenario, and the estimation of its range and azimuth. In this experi-
ment, the target to be detected is an omnidirectional reflector, obtained by merging eight
corner reflectors20. This target is mounted, through a vertical carton support, on a Pro-
peller Scribbler 3 mobile robot manufactured by Parallax Inc [195]. This robot has been
programmed to move randomly inside a square white region delimited by four opaque
black lines and whose side is equal to 2.5 m, as shown in Fig. 5.20; note that two cor-
ner reflectors have placed on the borders of this region in order to build a multi-target
scenario. The following choices have been made in the acquisition of measurements:

1. The whole antenna array shown in Fig. 3.7-a) is exploited, so that NV = 31 distinct
virtual channels are available at the receive side.

2. The waveform radiated by each TX antenna is characterized by the following
parameters: Nc = 1, T = 64 µs, TR = 32 µs and B = 2 GHz (consequently,
µ = 3.13 · 1013 GHz/s; see eq. (2.6)).

20Its structure is inspired by the architecture of the echo-master corners used for maritime applications
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3. At the receive side, analog-to-digital conversion is accomplished at the sampling
frequency fs = 40 MHz and N = 2048 samples are acquired over each chirp
period.

4. The reference position of the target with respect to a three-dimensional reference
system is evaluated by means of the pico-flexx camera. This sensor is aligned with
the radar system, being mounted on the same plastic support of the radar device
and at a fixed distance from it (about 10 cm) along the vertical direction.

FIGURE 5.20: Experimental-setup developed for the second application. The region of interest
is delimited by an opaque and black line; two coner reflectors are located on its border. A robot,
equipped with corner reflectors, moves randomly inside that area. The employed radar system

and pico-flexx camera are placed on the tripod visible on the right.

The following two supervised DL methods have been tested: a) a feed-forward NN
exploiting some manually extracted features (further details about this method are pro-
vided below); b) a YOLO v2 NN for object detection (see paragraph 5.5.2). The q-th entry
(rq, tq) of the dataset Do processed by the employed feed-forward NN is generated as
follows. The label tq associated with the q-th observation rq is defined as

tq ≜ [R̂q, ϕ̂q] (5.167)

where R̂q and ϕ̂q represent the estimates of the target range Rq and azimuth ϕq, respec-
tively, evaluated on the basis of the point-cloud made available by the pico-flexx camera.
Such a camera generates the Np × 3 matrix

P ≜ [x y z], (5.168)

collecting the 3D coordinates of Np = 38304 distinct points; here, x, y and z are Np-
dimensional column vectors. The deterministic algorithm developed for the estimation
of the target range and azimuth involves the computation of the estimates (x̂q, ŷq, ẑq)
of the target coordinates (xq, yq, zq) in the q-th observation; note that zq (i.e., the target
height) is assumed to be approximately known (zq ∼= 0.4 m). This algorithm consists of
the following three consecutive steps:

1. The size of the search space for the pair (x̂q, ŷq) is reduced by extracting the set21

Sq ≜ {(xq,n, yq,n, zq,n)|zmin ≤ zq,n ≤ zmax; n ∈ ∆q}, (5.169)

21Note that, in this step, a prior knowledge about the target height is exploited.
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from the matrix P (5.168); here, ∆q is a proper subset of the set of integers {0, 1,
..., Np − 1} and consists of N̄q elements, whereas zmin = 0.3 m and zmax = 0.5 m
represent two thresholds.

2. The estimates

x̂q = 1/N̄q

N̄q−1

∑
n=0

xq,n, (5.170)

ŷq = 1/N̄q

N̄q−1

∑
n=0

yq,n (5.171)

and

ẑq = 1/N̄q

N̄q−1

∑
n=0

zq,n (5.172)

are computed. The estimate ẑq (5.172) is exploited only to check if the vector (x̂q,
ŷq, ẑq) is meaningful, i.e. if the condition ẑq ≈ 0.4 m is satisfied; if this does not
occur, the thresholds appearing in the RHS of eq. (5.169) should be properly ad-
justed (i.e., zmin should be increased and/or zmax reduced) in order to improve the
obtained accuracy.

3. The estimates
R̂q =

√
x̂q + ŷq (5.173)

and
ϕ̂q = arctan

(
ŷq/x̂q

)
(5.174)

are evaluated.

The observation rq labelled by tq (5.167) is defined as22

rq ≜
[
ψ̂
(0)
q , ψ̂

(1)
q , ..., ψ̂

(NV−1)
q , f̂q

]T
, (5.175)

where f̂q is the frequency associated with the detected target (and estimated on the

whole array) and ψ̂
(v)
q is the phase of the signal spectrum computed at the frequency f̂q

for the v-th virtual element (with v = 0, 1, ..., NV − 1); note that the size of the vector rq
(5.175) is Dr = NV + 1 = 32. The deterministic algorithm employed for the computation
of the frequency f̂q and the phases {ψ̂(v)

q } forming rq (5.175) consists of the following two
steps:

1. Coarse estimation of the target position - The N-dimensional vector of the time do-
main samples acquired over the v-th virtual antenna (see eq. (2.48)) undergoes
zero padding and FFT processing of order N0 = N ·M (in this experiment, N0 =

8192, since M = 4). This produces the N0-dimensional vector X(v)
q (see eq. (2.50)),

which is employed to compute the power spectrum P(v)
q = [P(v)

q,0 , P(v)
q,1 , ..., P(v)

q,N0−1] on
the basis of eq. (2.53). Then, given (see eq. (2.55))

l̂(v)q ≜ arg max
l̃∈{bm,...,bM}

P(v)
q,l̃

, (5.176)

22Unwrapped phases are employed in this case, since they ease network training
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a target is detected on the v-th antenna if P(v)

q,l̂(v)q
> Pd, where Pd is a proper thresh-

old; here, the integer parameter bm (bM) identifies the frequency bin correspond-
ing to the minimum (maximum) measurable range Rm (RM). In this experiment,
Pd = 0.9, and

bm =

⌊
2µN0TsRm

c

⌋
= 42 (5.177)

and

bM =

⌊
2µN0TsRM

c

⌋
= 147, (5.178)

since Rm = 1.0 m and RM = 3.5 m have been assumed. The procedure illustrated
above is accomplished for each virtual channel (i.e., for v = 0, 1, ..., NV − 1) and is
employed to generate the set

Sl̂ ≜ {l̂
(vk)
q ; k = 0, 1, ..., NA − 1}, (5.179)

with vk < vk+1 for any k; the size NA of this set is usually smaller that NV , since:
a) the target may be missed on one or more virtual channels (this occurs when the
condition (5.176) is not satisfied); b) the elements of Sl̂ are required to be distinct.

The elements of Sl̂ are collected in the vector l̂q = [l̂(v0)
q , l̂(v1)

q , ..., l̂
(vNA−1)
q ]T. Then,

the following vectors are computed: a) the NA-dimensional vector f̂q = [ f̂ (v0)
q ,

f̂ (v1)
q , ..., f̂

(vNA−1)
q ]T and R̂q = [R̂(v0)

q , R̂(v1)
q , ..., R̂

(vNA−1)
q ]T , that collect NA estimates

of the target frequency and range, respectively (these quantities computed on the
basis of eqs. (2.57) and (2.59), respectively); b) the set of NA vectors {Ĉ(vk)

q ; k = 0,

1, ..., NA − 1}, where Ĉ(vk)
q = [Ĉ(vk)

q,0 , Ĉ(vk)
q,1 , ..., Ĉ(vk)

q,NV−1]
T is made of the complex

amplitudes evaluated over the whole virtual array on the basis of eq. (2.58) under
the assumption that l̂ = l̂(vk)

q for any k; c) the set of NA vectors {ψ̂(vk)
q ; k = 0, 1 , ...,

NA − 1}, where
ψ̂

(vk)
q = [ψ̂

(vk)
q,0 , ψ̂

(vk)
q,1 , ..., ψ̂

(vk)
q,NV−1]

T (5.180)

and ψ̂
(vk)
q,l is equal to the phase of the complex gain Ĉ(vk)

q,l for any k and l (see eq.

(2.37)). Finally, each of the vectors {Ĉ(vk)
q } undergoes zero padding, that increases

their size to N̄0 = 128, and N̄0-th order FFT processing for azimuth estimation (see

eqs. (2.67)-(2.69)). This produces the vector ϕ̂q = [ϕ̂
(v0)
q , ϕ̂

(v1)
q , ..., ϕ̂

(vNA−1)
q ]T, collect-

ing NA different estimates of the target azimuth. Therefore, this step produces NA

distinct estimates {( f̂ (vk)
q , R̂(vk)

q , ϕ̂
(vk)
q ); k = 0, 1 , ..., NA− 1} of the target frequency,

range and azimuth, respectively.

2. Fine estimation of the target position - A single estimate of the target frequency, range
and azimuth is evaluated in this step on the basis of the NA estimates {( f̂ (vk)

q ,

R̂(vk)
q , ϕ̂

(vk)
q )} available at the end of the previous step. This estimate is computed

as follows. First, the quantity

v̂q = min
l̃∈Sl̂

∣∣∣ϕ̂q − ϕ̂
(vl̃)
q

∣∣∣ , (5.181)

under the constraint ∣∣∣R̂q − R̂(vl̃)
q

∣∣∣ < Rth, (5.182)
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with Rth = 0.3 m is computed; here, the quantities R̂q and ϕ̂q are expressed by eq.
(5.173) and eq. (5.174), respectively, and Sl̂ is the set defined by eq. (5.179). Then,
the vector rq (5.175) is evaluated as

rq = [ψ̂
(v̂q)
q , f̂ (v̂q)

q ]T (5.183)

where the vector ψ̂
(v̂q)
q is expressed by eq. (5.180) with vk = v̂q.

The entire dataset is generated by accomplishing the feature selection procedure ex-
pressed by eqs. (5.181)-(5.182) for any q. It is important to stress that, in this experiment,
only a specific target must be selected for each observation. In fact, in a multiple target
scenario like the considered one, it is hard to understand which elements of the set Sl̂
(5.179) are associated with the target of interest. The vector rq (5.183) generated by the
deterministic procedure described above represents the input of the feed-forward NN,
whose response is the bidimensional vector t̂q ≜ [t̂q,0, t̂q,1]; the elements of this vector
represent the estimates of the range and the azimuth, respectively, of the target detected
on the basis of the q-th observation (see eq. (5.167)). This network contains three hidden
layers, consisting of M1 = 30, M2 = 20 and M3 = 10 neurons (see Fig. 5.9). Each of
them employs a ReLu, characterized by the transfer function

h(x) = x u (x) , (5.184)

where u (·) denotes the unit step function. The estimates of the target range and azimuth
are computed by the output layer, that contains two neurons only.

The size of the whole dataset acquired in this experiment is N̂t = 1438; 80% of it
has been exploited for training the considered NN and the remaining part for its test
(therefore, the size of the training set and that of the test are Nt = 1150 and N̄t =
288, respectively). Moreover, training has been accomplished by an adam optimizer;
the batch size, the (constant) learning rate and the number of epochs selected for this
procedure are NS = 4, γ = 10−3 and NE = 50, respectively (see eq. (5.51)). The elements
of the feature vector rq (with q = 0, 1, ..., Nt − 1) have been scaled before applying it to
the network (more specifically, a min-max normalization has been employed [196]); this
ensures that the absolute value of such elements belongs to the interval [0, 1] and makes
the training procedure more effective. The accuracy achieved by the network over the
test set has been assessed by evaluating the RMSEs

ε̂R =
1√
N̄t

∥∥R̂− R̂NN
∥∥ (5.185)

and
ε̂ϕ =

1√
N̄t

∥∥ϕ̂− ϕ̂NN

∥∥ , (5.186)

where R̂ (ϕ̂) is the N̄t-dimensional vector collecting the values of the target range (az-
imuth) estimated by means of the pico-flexx camera over the test set and R̂NN (ϕ̂NN)
is the corresponding prediction computed by the NN (||x|| denotes the Euclidean norm
of the vector x). The network performance has been also assessed by evaluating its
detection score

Ac =
NC

NC + NW
, (5.187)

where NC (NW) is the number of trials in the test set in which both target azimuth and
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range have been correctly (wrongly) estimated (note that NC + NW = N̄t). In the q-th
trial, estimation is deemed correct if |R̂q − t̂q,0| ≤ ∆R and |ϕ̂q − t̂q,1| ≤ ∆ϕ, where ∆R =
20 cm and ∆ϕ = 5.5◦. It is worth pointing out that the values selected for the parameters
∆R and ∆ϕ account for the limited resolution of the employed camera and radar system.
Actually, the value selected for ∆R may look larger than expected, because of the high
resolution that can be potentially achieved by both the employed radar device and pico-
flexx camera. However, readers should not forget that the algorithm employed for the
computation of R̂q is not error free (see eq. (5.173) and (5.174)), especially when the
cluster of points ∆q (5.169) is not so dense or when the size N̄q in eq. (5.172) is large.
A low density in the set Sq could be observed when, for instance, the robot reaches the
corners of the delimited area or in presence of optical disturbances.

Methods
ε̂R ε̂θ AC Training Prediction

(m) (◦) (%) (sec) (msec)

FFT based 0.09 3.0 88 - 5

ANN 0.07 3.5 92 8 10

YOLO v2 0.03 1.5 98 398 20

TABLE 5.3: Accuracy, detection score, training and prediction time of a deterministic estimation
algorithm, a feed-forward NN and a YOLO v2 network.

The estimated accuracy and precision achieved by the adopted NN together with
the time required for its training and testing are listed in Table 5.3. In the same table,
the values of the same parameters evaluated on the basis of the deterministic algorithm
employed for feature extraction are also provided; note that, for any q, this algorithm
can be exploited to generate the estimates R̂(q)

v̂q
and ϕ̂

(q)
v̂q

of the target range and azimuth,

on the basis of v̂q (5.181) (note that R̂(q)
v̂q

and ϕ̂
(q)
v̂q

represent the v̂q-the element of the vec-

tors R̂q and ϕ̂q, respectively). From these results it is easily inferred that: a) the NN is
able to accurately predict the position of the target; b) it outperforms the deterministic
algorithm in terms of both accuracy and precision; c) its prediction time is comparable
with the computation time required by the deterministic algorithm.

In general, feed-forward NNs require a clever selection of their feature vector; for
this reason, some expertise in radar systems is desirable when applying them to target
detection and estimation. This problem can be circumvented by applying the YOLO v2
network (see paragraph 5.5.2). Let us illustrate now how this network can be employed
to solve the target detection and estimation problem taken into consideration in this
paragraph. The q-the element of the collected dataset

Do ≜ {
(
rq, bq, tq

)
; q = 0, 1, ..., N̂t − 1} (5.188)

consists of the following three components:

1. The noisy observation rq = Jq, where Jq = [J(q)l,p ] is a range-azimuth matrix having
size N0 × N̄0 and computed on the basis of the measurements acquired in the q-th
trial. The element on the l-th row and the m-th column of Jq is defined as

J(q)l,p ≜
1

N0 N̄0
|

N̄0−1

∑
v=0

N0−1

∑
n=0

Sl,p|, (5.189)
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where

Sl,p = x(v)n,ZP exp (−j2πn flTs) exp
(
−j2πv

d
λ

sp

)
(5.190)

with l = 0, 1, ..., N0 − 1 and p = 0, 1, ..., N̄0 − 1; here, x(v)n,ZP (see eq. (2.33)) is the

n-th element of the N0-dimensional vector x(v)ZP (see eqs. (2.48)-(2.49)) that results
from zero padding N-dimensional vector of time domain signal samples acquired
over the v-th virtual antenna, Ts the sampling period, fl ≜ l/(N0Ts) is the center
frequency of the l-th frequency bin and sp ≜ 2 (p− N̄0/2)/N̄0 is the p-th normalized
spatial frequency (see eq. (2.67)). Note that the matrix Jq can be computed through a

N0× N̄0-order 2D FFT, and that the range and azimuth associated with J(q)l,p (5.189)
are (see eqs. (2.59) and (2.69), respectively)

R̄l = fl
c

2µ
(5.191)

and
ϕ̄p = arcsin sp, (5.192)

respectively.

2. The vector
bq =

[
lq, pq, wq, hq

]
(5.193)

describing the bounding box associated with the detected target; here, the cou-
ple of integers (lq, pq) identifies the frequency bin and the normalised spatial fre-
quency, respectively, corresponding to the center of the box and wq (hq) represents
the width (height) of the box itself.

3. The label tq; this equal to 1 (−1) if a target is detected (absent).

In the experiment at hand, the values N0 = 8192 and N̄0 = 128 in the computation of
the elements of the matrix Jq have been selected. However, since Rm = 1.0 m (RM = 3.5
m) and ϕm = −55◦ (ϕM = 55◦) have been assumed for the minimum (maximum) range,
the N0 × N̄0 matrix J has been resized to an N̄l × N̄p matrix, where N̄l = bM − bm + 1 =
106 (the values of the parameters bm and bM are expressed by eqs. (5.177) and (5.178),
respectively), N̄p = dM − dm + 1 = 106, with

dm =

⌊
N̄0

2
(
sp + 1

)⌋
= 11 (5.194)

and
bm = 42. (5.195)

In addition, a square shape with wq = hq = 12 has been always assumed for the bound-
ing box; its parameters lq and pq have been computed as

lq = arg min
bm≤l̃≤bM

∣∣R̂q − Rl̃

∣∣ (5.196)

and as
pq = arg min

dm≤ p̃≤dM

∣∣ϕ̂q − ϕp̃
∣∣ (5.197)

where R̂q (ϕ̂q) is expressed by eq. (5.173) (eq. (5.174)) and Rl̃ (ϕp̃) by eq. (5.191) (eq.
(5.192)) with l = l̃ (p = p̃). The size of the dataset Do (5.188) is N̂t = 1438; 80% of
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its elements are used for training and the remaining part for testing; consequently, the
sizes of the training set and the test set are Nt = 1150 and N̄t = 288, respectively. Data
augmentation has been performed on the training and test set in order to reduce network
overfitting, since their sizes are not so large; this procedure consists in randomly flipping
and scaling the input image and the associated box.

Layers Filters Size Stride Output

Convolutional + BN + ReLu 16 5× 5 2 52× 52× 16

Max pooling - 2× 2 2 26× 26× 16

Convolutional + BN + ReLu 32 5× 5 2 12× 12× 32

Max pooling - 2× 2 2 6× 6× 32

Convolutional + BN + ReLu 64 3× 3 1 6× 6× 64

Max pooling - 2× 2 2 3× 3× 64

Convolutional + BN + ReLu 128 3× 3 1 3× 3× 128

Convolutional + BN + ReLu 256 3× 3 1 3× 3× 256

Convolutional + BN + ReLu 512 3× 3 1 3× 3× 512

Convolutional 6 1× 1 1 1× 1× 6

TABLE 5.4: Architecture of the CNN employed for target detection and estimation.

The architecture of the employed network is summarized in Table 5.4. It consists of
a cascade of 22 layers and is fed by a normalized version of the resized range-azimuth
matrix generated through the procedure illustrated above and having size N̄l × N̄p =
106× 106. Each of its first two convolutional layers has stride S = 2 and is followed by
a max pooling layer for dimensionality reduction. The use of a batch normalization (BN)
layer after each convolutional layer allows to avoid overfitting, since the dataset size is
not so large; consequently, other forms of regularization (as dropout) are not required.
The activation function at the end of each convolutional layer is ReLu (see eq. (5.184)).
The filter depth in the last convolutional layer must be proportional to N̄A · (NPA + K),
where N̄A is number of anchor boxes, NPA is the number of predictions per each anchor
and K is the number of classes (see refs. [174] and [175]). Since, in the considered test,
N̄A = 1, NPA = 5 and K = 1 (if the background is ignored), the selected filter depth is
equal to 6. A transform layer and an output layer are also included in the architecture
of the adopted network. The former layer improves network stability in predicting the
possible locations for the bounding box, whereas the latter one refines the estimate of
the bounding box location. If the NK candidate boxes {bq[k] = [lq[k], pq[k], wq[k], hq[k]]T;
k = 0, 1, ..., NK − 1} (all labelled by tq = 1) are identified by network, the index k̂q of the
bounding box

b̂q =
[
lq[k̂q], pq[k̂q], wq[k̂q], hq[k̂q]

]
(5.198)

best fitting the ground truth box is evaluated as

k̂q = arg max
k̃∈{0,1,...,NK−1}

I(q)
k̃

, (5.199)
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where

I(q)
k̃

=
A(q)

BG ∩ A(q)
BP

A(q)
BG ∪ A(q)

BP

(5.200)

is the intersection over union (IOU) associated with the k-th candidate box; here, A(q)
BG

(A(q)
BP) represents the surface of the ground truth (predicted) bounding box referring to

the q-th observation. In the proposed experiment, a target is detected if I(q)
k̃

> Ith, where
Ith = 0.1 is a properly selected threshold. Once the predicted bounding box b̂q (5.198) is
known, the estimate of the target range (azimuth angle) is evaluated by setting l = lq[k̂q]

( p = pq[k̂q]) in eq. (5.191) (eq. (5.192)); note that the values selected for the parameters l
and p identify the center of the predicted bounding box. The training procedure of the
adopted network has been carried out through the SGD algorithm; a batch size NS = 10,
a learning rate γ(i) = 10−3 and a number of epochs NE = 25 have been assumed (see
eq. (5.51)). The testing procedure has evidenced that this network is able to predict
the bounding boxes characterized by I(q)

k̃
> 0.1 over 98% of the test set. A realization

of range-azimuth map associated with the matrix J and of the associated ground truth
and the predicted bounding boxes around the detected target is illustrated in Fig. 5.21,
where the position of the two corner reflectors placed on the border of the area of inter-
est is also identified (see Fig. 5.20).
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FIGURE 5.21: Range-azimuth map referring to the scenario illustrated in Fig. 5.20. The ground
truth bounding box and the position of the target are identified by a red square and a red cross,
respectively. The prediction of the network, together with the estimated bounding box, are

identified by a green circle and a green square, respectively.

These results deserve the following comments:

a) The network is able to detect the target on the basis of the value of range and azimuth
obtained through the pico-flexx camera.

b) In the considered case, the IOU between the ground truth bounding box (red line)
and the predicted one (green line) is quite large, being equal to 0.73. Consequently,
the estimate of the position of the target (green circle) is very accurate and certainly
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much better than the one used as reference (red cross) (note that |R̂q − Rlq[k̂q]
| =

0.001 m and |ϕ̂q − ϕpq[k̂q]
| = 0.9◦ in this case).

The values of the achieved accuracy (evaluated in terms of the RMSEs ε̂R (5.185) and
ε̂ϕ (5.186)), the detection score (5.187), and the computational time required for training
and testing are listed in Table 5.3. From these results it is easily inferred that:

a) The YOLO network outperforms the considered (deterministic) FFT-based method
in target detection and estimation.

b) The value of the YOLO detection score Ac (5.187) is really high and better than that
provided by the feed-forward NN.

c) The YOLO RMSE ε̂R (ε̂ϕ) is smaller than (close to) the one characterizing the feed-
forward NN.

These results lead to the conclusion that the YOLO network is more robust than
the feed-forward NN. Note also that, even if the complexity of this network is higher
than those of the other two methods, the time it employs for computing its prediction
is not too long, being in the order of few milliseconds. Since the YOLO v2 network
tries to solve also a binary classification problem, other two important parameters for
evaluating its performance are its precision

P =
TP

TP + TN
(5.201)

and its recall
R =

TP

TP + FN
, (5.202)

where TP (TN) represents the overall number of true positives (true negatives), i.e. the
number of targets (false targets) classified correctly, and FN is the overall number of
false targets classified as targets.
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FIGURE 5.22: Representation of the precision versus recall plot referring to the YOLO v2 net-
work employed in the second application. Note that, if the recall exceeds the threshold identi-

fied by the vertical dashed line, the precision decreases steeply.

The precision versus recall plot evaluated in the considered experiment is shown in
Fig. 5.22. These results lead to the conclusion that, in this case, the precision remains
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high for large values of the recall and drops steeply only when the recall exceeds 0.9. The
area under the curve shown in Fig. 5.22 represents the so called mean average precision
(mAP); in this case, it has found that mAP = 93% (note that the value of this parameter
is expressed as a percentage since the precision P (5.201) and the recall R (5.202) are
defined in the range [0 , 1]).

5.7 Conclusions

Machine learning and deep learning techniques are able to extract relevant information
from the available data in the absence of an accurate mathematical description of the be-
haviour of radar devices and of the mechanisms of electromagnetic propagation. Even
if important steps have been made in this field during the last years, significant research
efforts are still required to make the adoption of these techniques in commercial sys-
tems a reality. In this chapter it has been shown how some learning methods can be
exploited to solve simple classification and regression problems in FMCW radar sys-
tems operating in a 2D propagation scenario and in the presence of point targets. Then,
various applications of learning methods to specific technical problems have been il-
lustrated and relevant trends in research on MIMO radars have been identified. Fi-
nally, the application of machine learning and deep learning methods to two specific
problems, namely human activity classification and range azimuth estimation, has been
investigated. The obtained numerical results, based on experimental datasets acquired
through a colocated MIMO device operating at 77 GHz, allow the readers to understand
the high potential of these methods to solve real world problems. A pervasive use of
such methods should be expected in the near future, as understanding of the learning
methods described in this work, and MIMO technology is continuously evolving.
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Future tractors, like cars, will be intelligent and possibly driver-less systems equipped
with many sensors, like lidars, gps, odometers, inertial units and RGB or IR cameras.
However, with respect to classical automotive scenarios, tractors are used in dirty en-
vironments and sensor data may be affected by its mechanical vibrations. Moreover,
the beam transmitted by optical sensors may be blocked by the presence of vegetation;
for the same reason, the signal-to-noise ratio of the GPS signal may become quite low,
affecting the accuracy with which the position of the tractor is measured. Radars, on
the contrary, are employed thanks to their ability to see in any weather and lighting
conditions; through radar systems, in fact, it is possible to estimate the position and the
velocity of a tractor with respect to soil or a plantation and, finally, to detect the presence
of obstacle in the field. These advantages are particularly useful whenever a vehicle has
to move between the rows of vineyards, where the term "row" indicates an alignment
of poles suitable to support the growth of the plants. In fact, the vineyards may change
during the seasons and plants along the rows may grow in an unpredictable way and
with different shapes; therefore, currently, the vehicles that move between the rows of
the vineyards are still driven by human operators. My contribution to smart agricul-
ture have mainly regarded the development of techniques for autonomous driving of a
tractor through the rows of a plantation; in particular, the innovations provided by my
work consist in:

a) the development of a row recognition technique based on radar data and a pre-
liminary knowledge of the distance between the vehicle and the rows;

b) the development of imaging techniques for the detection of multiple targets and
estimation of their positions based on MIMO radar operating in a slowly-variable,
two-dimensional or three-dimensional scenario.

6.1 Autonomous driving system through the rows of a planta-
tion

The basic idea for detecting the rows of a plantation is based on the combination of a
preliminary knowledge of the approximate distance between rows and the radar data.
The device tested for this kind of application is an FMCW MIMO radar (like the one
shown in Fig. 5.17) operating in E-band (with a center frequency of 77 GHz) and in-
stalled on an agricultural vehicle positioned approximately in the middle between two
rows of the vineyard, as shown in Fig. 6.1-a). Let us assume that the radar system is
equipped with an ULA composed by NV virtual channels and that the horizontal spac-
ing between the adjacent antenna of the array is equal to d. The n-th sample of the
received radar signal x(v)r,n , acquired in correspondence of the v-th virtual channel and in
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the presence of L targets can be expressed by eq. (2.7), where the delay τ
(v)
l is expressed

by eq. (2.11), l = 0, 1, 2..., L − 1, n = 0, 1, 2, ..., N − 1 and v = 0, 1, 2, ..., Nv − 1. The
technique for surveying the vineyard profile includes the following steps:

Step-1) Calculation of a bi-dimensional cost function, also known as range-azimuth map
on the basis of a canonical 2D DFT procedure already shown in Par. 2.5 and in Par.
5.6. In practice, a one dimensional DFT of order N0 (with N0 ≥ N) is evaluated for
each antenna v of the array and the obtained l-th spectral coefficient can be written
as

X̄(v)
l =

1
N

N0−1

∑
n=0

x(v)r,n exp (−j2πn flTs) (6.1)

where l = 0, 1, 2, ..., N0 − 1 and fl ≜
l

N0Ts (see eq. (2.52)). Then, another 1D DFT of
order N̄0 (with N̄0 ≥ NV) is computed as

J[l, p] =
1

NV

NV−1

∑
v=0

X̄(v)
l exp

(
−j2πv

d
λ

sp

)
(6.2)

where l = 0, 1, 2, ..., N0 − 1, p ∈
[
− N̄0

2 ; N̄0
2 − 1

]
and sp is the normalised spatial

frequency sp = 2 p
N̄0

(see eqs. (5.189) and (2.67)). Knowing J[l, p] the cost function

S[l, p] ≜ |J[l, p]|2 is evaluated. In particular, the index l is related to the target
distance (see eqs. (2.57)-(2.59)) and the index p to its azimuth (see eq. (2.69)).

Step-2) Thresholding and clustering - In this part, all the significant values of the cost
function S are found; this allows to identify all the meaningful values of the pair
(l, p), i.e. a set of points {(lk, pk)} on which there is a significant reflection:

S(lk, pk) > T (6.3)

for any k, where T is a proper threshold. For each set of points {(lk, pk)}, another
pair of points in Cartesian coordinates {(xk, yk)} can be evaluated by mean of
xk = Rk · cos(θk) and yk = Rk · sin(θk). This new set of coordinates is divided
in two different groups on the basis of the geometry of the vineyard known a
priori, selecting only those points that fall within a predetermined region of the
2D map, that correspond to a well defined region of the space, where the vineyard
is expected to be found. In a more analytical way, if the two rectangular region are
indicated by Sg, with g = 1, 2, a generic pair (xk, yk) is contained in Sg if:{

xlg ≤ xl ≤ xug

ylg ≤ yl ≤ yug

(6.4)

where xlg (xug ) represents the lower (upper) bound of the region Sg along the x-
axis and ylg (yug ) represents the lower (upper) bound of the region Sg along the
y-axis.

Step-3) Linear Interpolation - This step relies on the assumption that the estimated vine-
yard profile should look like two sequences of vertical lines (one on the left, the
other one on the right). In principle, the data belonging to each cluster Sg are asso-
ciated with a single vertical line and the geometric parameters of each line can be
estimated by applying a least-squares (LS) approach in order to linearly interpolate
such data.
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At this point, from the value of the parameters of the estimated line the distance be-
tween the vehicle and the rows can be inferred; moreover, on the basis of this distance
the intelligent vehicle is able to pick the best decision in order to avoid damages and
proceed along the chosen direction. An example of the range-azimuth map obtained by
moving along the rows of a vineyard is shown in Fig. 6.1-b). On top of the map also
two small red rectangles representing the regions Sg obtained on the basis of a priori
information of of the distance between the rows and the vehicle are shown. In this map
the strongest reflections are given by the pillow on the left and on the right side, but
also small reflections coming from plants are detected; this allows to increase the relia-
bility of the driving based on radars. However, when the machine is approaching to a
bend, data coming from other sensors like GPS or Lidar may help the machine to bend
correctly.

a) b)

FIGURE 6.1: Representation of a) the measurement system set-up; b) the range-azimuth map
obtained by moving along the rows of a vineyard , where the two small red rectangles represents
the regions Sg obtained on the basis of a priori information of the distance between the rows and

the vehicle.

6.2 Three-dimensional imaging based on a MIMO radar

The work presented in the previous section allows to detect the vineyard profile by
smartly looking at the 2D range-azimuth map. However, a possible improvement of
that method consists into directly look at the point-cloud that is obtained by the radar. In
this section, the novel method based on an approximate maximum likelihood approach
described in Par. 4.2 is proposed for vineyard profile detection. This method is also
patent pending. The device employed for this kind of applications is an FMCW MIMO
radar (like the one shown in Fig. 6.2-a)) operating in E-band with a center frequency of
77 GHz and it has to be associated with an agricultural vehicle positioned approximately
in the middle between two rows of the vineyard, as shown in Fig. 6.1-a). It is endowed
with a custom designed planar array made of NT = 16 TX antennas and NR = 16 RX
antennas, each consisting of an array of six patch elements. The resulting virtual array,
consisting of NV = 16 · 16 = 256 VAs, allows us to achieve a range resolution ∆R = 7.5
cm, and azimuthal and elevation resolutions of ∆θ2 = 7.6◦ and ∆ϕ2 = 3.8◦, respectively
(see eq. (2.64)). The received radar signal model x(v)r,n considered in correspondence of
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the n-th sample (n = 0, 1, 2, ..., N − 1) and the v-th virtual channel can be described by
eq. (2.7) and eq. (2.33).

a) b)

q

p0

0

VVd

VHd

VH 1N −

VV 1N −

FIGURE 6.2: Representation of: a) the physical array of the Inras FMCW radar; b) the corre-
sponding virtual array.

The main changes that need to be introduced in the RASCA described in Par. 4.2 to
adapt it to the considered MIMO FMCW radar system consists on the following steps.

T1 FFT processing In this step:

a) the vector {x(v)c } (2.25) is substituted with the real one {x(v)r } (2.7);

b) each IFFT operation is replaced by an FFT. This means that the spectra {X(v)
0 , X(v)

1 ,
X(v)

2 ; v = 0, 1, ..., NV − 1} provide frequency domain information instead of time.
For this reason, delay bins are replaced by bins in the frequency domain.

T2-S2) Target detection and range estimation – In this step, that aims at detecting the
most relevant targets on each of the NA antennas, a minor change is required in the
cancellation procedure with respect to its counterpart employed in the MIMO SFCW
radar system. This is due to the fact that the noisy measurements processed in a MIMO
FMCW radar system are always represented by real (time-domain) sequences.

The initialization of the STDREC algorithm remains unchanged: the triad (X(vk)
0 [0],

X(vk)
1 [0], X(vk)

2 [0]) is defined according to eq. (4.102) (with k = 0, 1, ..., NA − 1). In its
i-th iteration, this algorithm accomplishes the three steps described below (these are de-
noted by STDREC-Sp in the following, with p = 1, 2 and 3).

STDREC-S1) Detection of a new target and estimation of its parameters – In this step,
the normalised frequency F(vk)

i and the complex amplitude C(vk)
i associated with the i-th

target are estimated. Note that, generally speaking, the normalised frequency F(vk)
i is

not a multiple of of the fundamental frequency FDFT = 1/N0 that characterizes the output
of the FFT processing executed in task T1; for this reason, it can be expressed as

F(vk)
i = F(vk)

c,i + δ
(vk)
i FDFT, (6.5)

where F(vk)
c,i is a given coarse estimate of F(vk)

i and δ
(vk)
i is the residual. The processing

accomplished in this step is executed by an algorithm dubbed single frequency estimator
(SFE) that can be derived as the dual version of the CSDE algorithm proposed in Par.

4.1.1. Let us suppose to have the N0-dimensional vectors X(v)
m =

[
X(v)

m,0, X(v)
m,1, ..., X(v)

m,N0−1

]T
≜
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DFTN0

[
x(v)m,ZP

]
, with m = 0, 1, 2, are computed for any v-th channel; here, DFTN0 [x] de-

notes, up to a scale factor (1/N), the N0 order inverse discrete Fourier transform of the
N0-dimensional vector {x(v)r }. More specifically, we assume that

X(v)
m,k ≜

1
N

N−1

∑
n=0

nm x(v)r,n exp
(
−j

2πnk
N0

)
, (6.6)

with k = 0, 1, ..., N0− 1 and m = 0, 1, 2. For every selected vk-th channel1, let us assume
that:

a) a single target is present (the index i can be omitted);

b) the initial coarse estimate F̂(0)
c of F is set to

F̂(0)
c = α̂ FDFT, (6.7)

where the integer α̂ is computed as

α̂ = arg max
α̃∈{0,1,...,N0/2}

∣∣∣X(vk)
0,α̃

∣∣∣ ; (6.8)

c) the quantity

ρ̂(0) ≜
F̂(0)

c

FDFT
= α̂; (6.9)

d) the initial estimate Ĉ(0) of C as

Ĉ(0) = G
(

F̂(0)
c
)

(6.10)

where for a generic F̃ (at the beginning F̃ = F̂(0)
c )

G
(

F̃
)
≜

X̄(F̃)− X̄∗(F̃)g(F̃)

1−
∣∣g(F̃)

∣∣2 (6.11)

g(F̃) =
1
N

exp(−j4πNF̃)− 1
exp(−j4πF̃)− 1

, (6.12)

and

X̄(F̃) ≜
1
N

N−1

∑
n=0

x(vk)
r,n exp

(
−j2πnF̃

)
; (6.13)

e) the spectral coefficients X1,α̂ = X(vk)
1,α̂ , X2,α̂ = X(vk)

2,α̂ (see eq. (6.6) for m = 1, 2), and
the coefficients {Kp(2α̂); p = 1, 2} and {b(α̂), c(α̂)} are computed on the basis of
the definitions

Kp (x) ≜
1
N

N−1

∑
n=0

gp [n] exp
(
−j

2πnx
N0

)
, (6.14)

b (ρ) ≜ −ℜ
{

Ĉ∗X̄2,ρ
}
+ 2ℜ

{(
Ĉ∗
)2

K2 (2ρ)
}

(6.15)

and
c (ρ) ≜ ℑ

{
Ĉ∗X̄1,ρ

}
−ℑ

{(
Ĉ∗
)2

K1 (2ρ)
}

(6.16)

1the index vk is omitted in this steps for simplicity.
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respectively, considering gp[n] ≜ np and g0[n] ≜ 1;

f) the initial estimate ∆̂(0) of ∆ as

∆̂(0) = −
c
(

ρ̂(0)
)

b
(
ρ̂(0)
) (6.17)

g) the first fine estimate F̂(0) of F as

F̂(0) = F̂(0)
c +

∆̂(0)

2π
(6.18)

During the iterative procedure, the r-th iteration is fed by the estimates F̂(r−1) and
Ĉ(r−1) of F and C, respectively, and produces the new estimates F̂(r) and Ĉ(r) of the same
quantities (with r = 1, 2, ..., NSFE, where NSFE is the overall number of iterations); the
procedure employed for the evaluation of F̂(r) and Ĉ(r) consists of the two steps de-
scribed below (the p-th step is denoted by SFE-Sp).

SFE-S1 - The new estimate ∆̂(r) of ∆ is computed on the basis of eq. (6.17); in the
evaluation of the coefficients {b(ρ), c(ρ)} appearing in the RHS of eq. (6.17), Ĉ = Ĉ(r−1)

and
ρ = ρ̂(r−1) ≜ F̂(r−1)/FDFT (6.19)

are assumed. Then,
F̂(r) = F̂(r−1) + ∆̂(i)/(2π) (6.20)

is evaluated.

SFE-S2 - The new estimate Ĉ(r) of Ĉ is evaluated as Ĉ(r) = G(F̂(r)) (see eqs. (6.10)–
(6.11), assuming that F̃ = F̂(r)). Moreover, the index r is incremented by one before
starting the next iteration. At the end of the last (i.e., of the NSFE-th) iteration, the fine
estimates F̂(vk)

i = F̂(NSFE) and Ĉ(vk)
i = Ĉ(NSFE) of F and C, respectively, become available2.

STDREC-S2) Cancellation of the new target – The cancellation procedure requires the
computation of the contributions

C(vk)
X0

[i] = Ĉ(vk)
i W̄(vk)

0 [i] +
(

Ĉ(vk)
i

)∗ (
W̄(vk)

0,c [i]
)

, (6.21)

C(vk)
X1

[i] = Ĉ(vk)
i W̄(vk)

1 [i] +
(

Ĉ(vk)
i

)∗ (
W̄(vk)

1,c [i]
)

(6.22)

and
C(vk)

X2
[i] = Ĉ(vk)

i W̄(vk)
2 [i] +

(
Ĉ(vk)

i

)∗ (
W̄(vk)

2,c [i]
)

(6.23)

given by the i-th (i.e., by the last) target detected on the vk-th VA; here, W̄(vk)
m [i] denotes,

up to a scale factor, the N0-th order DFT of the vector

w̄(vk)
m [i] ≜

[
0, 1m · w̄(vk)

i , 2m ·
(

w̄(vk)
i

)2
, . . . , (N − 1)m ·

(
w̄(vk)

i

)N−1
, 0, . . . , 0

]T

, (6.24)

2here the channel index vk and the target index i are used again, for better clarity.
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with m = 0, 1 and 2, W̄(vk)
m,c [i] the N0-th order DFT of the vector (w̄(vk)

m [i])∗,

w̄(vk)
i ≜ exp(j2πF̂(vk)

i ) (6.25)

and
F̄(vk)

i ≜ f̂ (vk)
i Ts (6.26)

is the normalised frequency associated with f̂ (vk)
i , considering Ts the sampling time. It

is important to point out that an efficient method can be used for the computation of the
vectors W̄(vk)

m [i] and W̄(vk)
m,c [i] appearing in the RHS of eqs. (6.21)–(6.23) (with m = 0, 1

and 2); note that, for any k, these vectors represent, up to a scale factor, the N0-th order
DFTs of the sequences {nm (w̄(vk)

i )n; n = 0, 1, ..., N− 1} and {nm ((w̄(vk)
i )∗)n; n = 0, 1, ...,

N− 1}, respectively. In fact, the l-th element of the vectors W̄(vk)
m [i] and W̄(vk)

m,c [i] is given
by

W̄(vk)
m [i, l] =

1
N

N−1

∑
n=0

nm
(

w̄(vk)
i

)n
exp

(
−j

2πl
N0

n
)
=

1
N

N−1

∑
n=0

nm(q [l])n (6.27)

and

W̄(vk)
m,c [i, l] =

1
N

N−1

∑
n=0

nm
((

w̄(vk)
i

)∗)n
exp

(
−j

2πl
N0

n
)
=

1
N

N−1

∑
n=0

nm(qc [l])
n, (6.28)

respectively, where

q [l] ≜ exp
(

j2π

(
F̂(vk)

i − l
N0

))
(6.29)

and

qc [l] ≜ exp
(

j2π

(
−F̂(vk)

i − l
N0

))
. (6.30)

Therefore, the identities (4.76)-(4.78) can be exploited for an efficient computation of the
RHSs of eqs. (6.27) and (6.28).

STDREC-S3) Computation of the residual energy in the time domain – The energy of the
residual time-domain vector X(vk)

0 [i + 1] is computed (see eq. (4.116)) and compared
with the positive threshold TSTDREC. If this energy is below the threshold, the STDREC
algorithm stops and Lk = i relevant targets are detected on the vk-th VA; otherwise,
the recursion index i is increased by one and a new recursion is started (i.e., go back to
STDREC-S1).

T2-S3) Range information fusion – In this case, the set Ab (see eq. (4.118)) collects Lb
relevant time bins {α̂l ; l = 0, 1, . . . , Lb − 1}, whereas the set {Eb,l} contains the energy
associated with each of them (see eq. (4.119)). The average energy Eb,l associated with
the α̂l-th frequency bin is evaluated as

Eb,l =
1

Nb,l

NA−1

∑
k=0

Lk−1

∑
i=0

∣∣∣Ĉ(vk)
i

∣∣∣2δ
[
α̂
(vk)
i − α̂l

]
, (6.31)

with l = 0, 1, . . . , Lb − 1; here, Nb,l is defined by eq. (4.120). The final output of the
information fusion is represented by the set SRPE (4.86).

The processing accomplished in T3 (i.e., by the SPE) has the same structure and
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interpretation as that illustrated for the SFCW radar system since it aims at estimating
the angular parameters of the targets on the basis of the discrete range profile computed
in T2. However, delay bins are now replaced by frequency bins and, consequently, the
normalised horizontal and vertical delays FH,i and FV,i by their normalised frequency
counterparts. Note also that, in step T3-S1, the matrix X[l] is still defined on the basis of
eq. (4.122), but the complex amplitude Ci[p, q, l] appearing in eq. (4.88) is replaced by

Ci[p, q, l] = Ci[l] exp
[

j
4π

λ
[dVH (p− pR) cos(ϕi[l]) sin(θi[l]) + dVV (q− qR) sin(ϕi[l])]

]
(6.32)

where Ci[l] is the complex amplitude observed for the i-th target in the l-th time bin on
the reference VA. This leads to some relevant differences in the formulas employed by
the STDAE algorithm in the estimation of the parameters {θi[l], ϕi[l], Fi[l], Ci[l]} (see
STDAEC-S1)) with respect to the case of a MIMO SFCW radar system. The STDAE
processing can be summarised as follows.

STDAE-S1) FFT processing on the reference VULA – In this step, the vector

s(i)VULA,k [l] =
[
s(i)k,0 [l] , s(i)k,1 [l] , ..., s(i)k,N̄0−1 [l]

]T
≜ DFTN̄0

[
S̄(i)

VULA,k [l]
]

, (6.33)

is evaluated for k = 0, 1 and 2; note that

s(i)k,m [l] ≜
1

NVULA

NVULA−1

∑
p=0

S(i)
k,p [l] exp

(
−j

2πpm
N̄0

)
, (6.34)

with m = 0, 1, ..., N̄0 − 1, and that the quantity S(i)
k,p [l] is defined by eq. (4.125).

STDAE-S2) Single angle estimation – The normalised vertical frequency FV,i[l] is still
expressed by eq. (4.90); in this case, the quantities ĈV,i[l] and F̂V,i[l] are computed by the
CSFE algorithm. The description of the CSFE algorithm is similar to that illustrated for
the SFE; the only differences being represented by the fact that:

C̃ = Ĉ = X̄(F̂), (6.35)

where X̄(F̂) is computed as (6.13) by replacing x(vk)
r,n with s(i)k,m [l], eqs. (6.15) and (6.16)

are replaced by
b (ρ) ≜ ℜ{Ĉ∗X̄2,ρ} (6.36)

and
c (ρ) ≜ −ℑ{Ĉ∗X̄1,ρ}. (6.37)

and X̄1,ρ, X̄2,ρ can be computed on the basis of eq. (6.6) considering m = 1, 2, k = ρ and

replacing x(v)r,n by s(i)k,m[l].

STDAE-S3) Vertical folding – Vertical folding is employed to compensate for the
phase differences between the considered HULAs. However, the phase rotation factor
appearing in eq. (4.132) is computed as

R(VF)
i [l, q] ≜

[
exp

(
−j2πF̂V,i[l]

)]q−qR , (6.38)

and F̂V,i[l] is an estimate of the normalised vertical frequency FV,i[l] (evaluated in STDAE-
S2).
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STDAE-S4) FFT processing and horizontal frequency estimation – In this step, the CSFE
algorithm is exploited to compute the estimates F̂H,i[l] and Ĉi[l] of the normalised hor-
izontal frequency FH,i[l] and of the complex amplitude Ci[l], respectively; both are as-
sociated with the i-th target. The normalised frequency FH,i[l] is still expressed by eq.
(4.89), but its estimate F̂H,i[l] and the estimate ĈH,i[l] of Ci[l] are computed by the CSFE
algorithm.

STDAE-S5) Overall folding and frequency/amplitude estimation – In this step, the angu-
lar information (i.e., the spatial frequencies F̂V,i[l] and F̂H,i[l]) computed in the previous
steps are exploited to apply folding to the whole receive antenna array or to a portion
of it. Similarly as the case of a MIMO SFCW radar, overall folding requires the compu-
tation of the N0-dimensional vectors X0,OF[l], X1,OF[l] and X2,OF[l] (see eq. (4.134)); the
horizontal phase rotation R(HF)

i [l, p] appearing on the RHS of eq. (4.135) is defined as

R(HF)
i [l, p] ≜

[
exp

(
−j2πF̂H,i[l]

)]p−pR . (6.39)

If a peak is detected in the sequence made of the absolute values of the elements of
X0,OF [l], the CSFE algorithm is run to estimate, on the basis of the vectors X0,OF [l],
X1,OF [l] and X2,OF [l], the final estimates F̂i [l] and Ĉi [l] of the parameters Fi [l] and Ci [l]
characterizing the i-th target detected in the l-th delay bin. Then, if the estimated fre-
quency F̂i [l] (see eq. (6.5)) is close to α̂l and the quantity α̂i [l] appears in one of the pairs
of set SRPE (4.86), it is discarded. Otherwise, the new couple (α̂i [l] , Eb,Lb) (see eq. (4.140))
is added to the set Sb and the number of its elements (denoted by Lb) is increased by one.

STDAEC-S2) Target cancellation – The contribution C(i)
X0

[l], given by the i-th target
detected in the l-th time bin, to the vector X(i) [l] is evaluated as

C(i)
X0

[p, q, l] = Ĉi[l] exp
{

j2π
[
(p− pR)F̂H,i[l] + (q− qR)F̂V,i[l]

]}
, (6.40)

for any VA (i.e., for any p and q) and it is cancelled from X(i) [l]. Cancellation consists in
the evaluation of the new residual according to eq. (4.143).

STDAEC-S3) Residual energy test – In this step, the energy E(i+1) [l] of the residual
X(i+1) [l] evaluated in the previous step is computed on the basis of eq. (4.144)) and is
compared with a positive threshold; if this energy is below the threshold, the STDAEC
algorithm stops, otherwise the recursion index i is increased by one and a new iteration
is started by going back to STDAEC-S1. All the target information acquired from the
α̂l-th frequency bin are collected in the set

Tl ≜
{(

Ĉi [l] , F̂i [l] , α̂i [l] , F̂V,i[l], F̂H,i[l]
)

; i = 0, 1, . . . , D[l]− 1
}

(6.41)

with l = 0, 1, . . . , Lb− 1; here, D[l] denotes the overall number of targets detected in the
considered bin.

In T3-S2 the evaluation of spatial coordinates (ϕ̂i[l], θ̂i[l]) is accomplished in the
same way as in the SFCW case, i.e. on the basis of eqs. (4.146)–(4.147), while

R̂i[l] =
c

2µTs
F̂i[l], (6.42)

where µ and Ts are defined in (2.6)-(2.8). Finally, the available information are merged
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to generate the overall set It (4.148), which, generally speaking, can be represented as a
cloud of L̂ points; note that It results of the union of the sets {I (l)t } and that the set I (l)t
is still defined according to eq. (4.149). An example of the whole point-cloud derived by
the proposed RASCA method is shown in Fig. 6.3 (the data were collected in a vineyard
through the radar shown in Fig. 6.2). From a qualitative point of view, the reconstructed
point-cloud provides a nice and complete description of the two rows of the vineyard
(see Fig. 6.1-b)). Other and more quantitative results cannot be provided here for trade
secret.
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FIGURE 6.3: Representation of the point-cloud obtained by the proposed imaging RASCA tech-
nique for the scenario proposed in Fig. 6.1.
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7 | Conclusions and future
works

In this thesis, an overview of various signal processing techniques developed for colo-
cated MIMO radars operating at mm-waves has been provided. Firstly, its has been
shown that the CLEAN algorithm and the MWLA, proposed for the first time for pro-
cessing the measurements provided by commercial radars operating in C and E band,
allow to achieve a good resolution in the estimation of range, DOA and amplitude of
multiple targets in both 2D and a 3D propagation scenarios.

Nevertheless, the need of a more computationally efficient technique for generating
radar point-clouds has led to the development of: a) the CSDE (CSDEC) method for
the detection and the estimation of range and complex amplitude of single (multiple)
target(s); b) the RASCA technique for detecting multiple targets, estimating their range,
DOAs and amplitude in both 2D and a 3D scenarios. These methods have been ex-
perimentally tested on the measurements acquired from a state of the art SFCW MIMO
radar, operating in E band. The experimental results have led to the conclusion that
a sufficiently good accuracy is achieved by all the proposed methods at the price of a
reasonable computational complexity.
During my doctorate studies, I have employed deterministic algorithms especially for
range and angular estimation; however, in future works it could be very interesting to
apply these methods also along the Doppler domain for a more fined velocity estima-
tion respect traditional methods.

The use of various machine learning and deep learning techniques within the field
of colocated MIMO radars has been analysed in detail to assess the potentialities pro-
vided by colocated MIMO radars in complicated highly dynamic scenarios. In partic-
ular, five machine learning methods and a CNN were successfully employed for clas-
sifying three different human activities on the basis of a custom designed dataset; this
has been generated by extracting multiple features from the measurements collected
though a compact mm-wave FMCW radar. Additionally, two data driven approaches
have been proposed for detecting a single target and estimating its position in a bi-
dimensional scenario in presence of disturbances. Even in this case, the availability of a
custom designed dataset composed by the radar features obtained from data collected
though a compact mm-wave FMCW radar and a TOF camera has allowed me to show
that the selected network can detect the considered target and estimate its position with
a reasonably good accuracy. However, learning based techniques applied to data col-
lected with MIMO radars may be used in future works for solving different problems
like preventing or detecting the fall of elderly people and estimating their vital signs or
recognizing different human gestures; this last application is very interested for modern
and smart infotainment systems. Moreover, as far as obstacle detection and localization
is concerned, other scenarios and targets constituted by different materials are needed
for testing the proposed network. In particular, with a more heterogeneous dataset, it is
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possible to implement also a new network for both classifying and detecting the obsta-
cles.

Finally, a possible application of colocated MIMO radars to autonomous driving in
smart agriculture has been described. In particular, it has been shown that a regression
algorithm based on radar data and the RASCA technique can be employed to recon-
struct the profile of a vineyard. Also in this case some improvements are possible in
future. In particular, future directions may concern with the implementation of filtering
techniques and learning based methods able to cope with point-clouds obtained from
multiple sensors for estimating the trajectory of the vehicle.

All these applications demonstrate how modern and compact MIMO radars may
be employed in a number of applications, not only in the automotive market; in fact,
they allow to detect anomalies, gestures, people, falls and, more generally, everything
that may happen on a particular scenario and in the presence of different light and
environment conditions. However, their future seems to be strictly related to that of
automotive field, because of the huge efforts devoted to the development of the first,
autonomous and driver-less car.
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