
Alma Mater Studiorum - Università di Bologna

DOTTORATO DI RICERCA IN

INGEGNERIA BIOMEDICA, ELETTRICA E DEI SISTEMI

Ciclo 34

Settore Concorsuale: 09/G1 - AUTOMATICA

Settore Scientifico Disciplinare: ING-INF/04 - AUTOMATICA

SAFE AND COLLABORATIVE NAVIGATION & INTERACTION WITH MOBILE
MANIPULATORS IN DOMESTIC APPLIANCE TEST LABS

Presentata da: Wendwosen Bellete Bedada

Supervisore

Gianluca Palli

Esame finale anno 2022

Coordinatore Dottorato

Michele Monaci

iii

ALMA MATER STUDIORUM · UNIVERSITÀ DI BOLOGNA

Abstract
Department Electrical, Electronic and Information Engineering - DEI

Doctor of Philosophy

Safe and Collaborative Navigation & Interaction with Mobile Manipulators in
Domestic Appliance Test Labs

by Wendwosen Bellete BEDADA

Safe collaboration between a robot and human operator forms a critical requirement
for deploying a robotic system into a manufacturing and testing environment. In
this dissertation, the safety requirement for is developed and implemented for the
navigation system of the mobile manipulators. A methodology for human-robot co-
existence through a 3d scene analysis is also investigated. The proposed approach
exploits the advance in computing capability by relying on graphic processing units
(GPU’s) for volumetric predictive human-robot contact checking. Apart from guar-
anteeing safety of operators, human-robot collaboration is also fundamental when
cooperative activities are required, as in appliance test automation floor. To achieve
this, a generalized hierarchical task controller scheme for collision avoidance is de-
veloped. This allows the robotic arm to safely approach and inspect the interior
of the appliance without collision during the testing procedure. The unpredictable
presence of the operators also forms dynamic obstacle that changes very fast, thereby
requiring a quick reaction from the robot side. In this aspect, a GPU-accelarated dis-
tance field is computed to speed up reaction time to avoid collision between human
operator and the robot. An automated appliance testing also involves robotized
laundry loading and unloading during life cycle testing. This task involves Laundry
detection, grasp pose estimation and manipulation in a container, inside the drum
and during recovery grasping. A wrinkle and blob detection algorithms for grasp
pose estimation are developed and grasp poses are calculated along the wrinkle and
blobs to efficiently perform grasping task. By ranking the estimated laundry grasp
poses according to a predefined cost function, the robotic arm attempt to grasp poses
that are more comfortable from the robot kinematic side as well as collision free on
the appliance side. This is achieved through appliance detection and full-model reg-
istration and collision free trajectory execution using online collision avoidance.

HTTPS://WWW.UNIBO.IT
http://department.university.com

v

Acknowledgements
This journey is about to end and so many taught cross mind at this critical junction. It
was a long journey, full of happy and sad moments. Sometimes unexpected things
happen, but every single moment gave me something I could never have in any
other way. I feel like I’m a better person than I was at the beginning. At this point,
I would like to thank many people that helped me in various ways to reach this
milestone.

First and foremost I am extremely grateful to my supervisor Prof. Gianluca Palli
for his invaluable continuous support, patience and encouragement. I would also
like to thank my colleagues at the Laboratory of Automation and Robotics, Univer-
sity of Bologna: Ismayil, Alessio, Kevin, Davide and Roberto. Those small talks
during lunch breaks and coffee times were therapeutic and highlights of the day
densely filled with work.

A special gratitude goes to my wife, Sefanit Abay. Thank you for carrying all the
responsibility of raising our son. Your strength has kept me going even during the
most dire days. We both endured the challenges of the past three years, apart from
each other. I am eagerly looking forward to make up for these days. I also would
like to thank my family for following up on me, share some of my worries and pray
for me. I would also thank my friend Yilma Tadesse for his encouragement.

Joshua 1:5

vii

Contents

Abstract iii

Acknowledgements v

1 Introduction 1
1.1 Overview . 1
1.2 Thesis Organization . 2

2 Robotic System for Domestic Appliance Test Automation 7
2.1 Introduction . 7
2.2 System Description and Safety Requirement 9
2.3 Human Detection and Pose Estimation 10
2.4 Navigation Module . 10
2.5 Task Priority Control Framework . 14
2.6 Simulations and Experiments . 17

2.6.1 Planning with GPU-based 3D Collision Checking 17
2.6.2 Human-Aware Safety Region Rendering 18
2.6.3 Task priority control of the TIAGO arm 18

Effects of the Velocity Minimizer Tasks 19
Effects of the Inertia Matrix in Task Priority Control 20

2.6.4 Interaction With The Appliance 20
2.7 Conclusion and Future work . 22

3 Realtime Collision avoidance 23
3.1 Introduction . 23
3.2 Literature Review . 25
3.3 General Framework for Collision Avoidance 26

3.3.1 Obstacle Representation . 27
3.3.2 Robot Representation . 28
3.3.3 Exact EDT Computation . 29

Step-1 (BandSweep (Line 3-4)): 29
Step-2 (ComputeProximateSite (line 6)): 29
Step-3 (QueryNearestSite (line 7)) 29
Step-4 (Extention to 3D (line 8-11)) 29

3.3.4 Obstacle Avoidance Task . 29
3.3.5 Self-Collision Avoidance . 31
3.3.6 Task Priority Controller Formulation 31

3.4 Experiments . 34
3.4.1 Experimental Setup . 34
3.4.2 Dynamic Obstacle Avoidance Results 34
3.4.3 Task Oriented Regularization: Evaluation 35
3.4.4 Comparison to related works . 36
3.4.5 Self-Collision Avoidance . 39

viii

3.5 Conclusions . 39

4 Efficient 6D Model Registration of Large Objects 43
4.1 Introduction . 43
4.2 Related Works . 44
4.3 Initial Pose Estimation . 46
4.4 Point Cloud Registration . 48
4.5 Experimental Results . 51
4.6 Conclusions . 55

5 Robotized Laundry Manipulation and Appliance User Interface Interpre-
tation 57
5.1 Introduction . 57
5.2 Laundry Manipulation Strategy . 58
5.3 Grasping Pose Detection . 58

5.3.1 Wrinkle Detection . 59
Normals Estimation . 59
Convexity Map . 60
Depth Map . 61
Entropy Filter . 61
Wrinkles as Interpolated Splines 61

5.3.2 Extension to Washing Machines 63
Pointclouds Registration . 64
Difference Map . 64

5.3.3 Blob Detection . 64
5.4 User Interface Interpretation . 65

Point of Interest Coordinate Estimation 66
Display Recognition . 66

5.5 Experimental Results . 67
Collision Avoidance . 67

5.5.1 Laundry Grasping Task . 68
5.5.2 Graspability Tests . 69

Bin Picking Task . 69
Washing Machine Recovery Picking Task 69
Additional Experiment . 71

5.5.3 Appliance User interface Interpretation 71
5.6 Deployment and Testing . 72

5.6.1 Final Results . 72
5.7 Conclusions and Future Work . 72

6 Conclusions 75

Bibliography 77

ix

List of Figures

1.1 The overall system architecture. 2

2.1 Proposed safety system. 8
2.2 Test Lab. layout in Gazebo Simulation Environment. 9
2.3 Lab. layout dimensions. 9
2.4 Human Detection and Pose Estimation Procedure. 10
2.5 GPU-Based Navigation Stack. 12
2.6 Voxel-based representation of the robot and working environment. . . 13
2.7 Safety requirement description. 14
2.8 GPU-based planning and monitoring: path planning with washing

machine door opened and human-aware safety zone rendered in GPU
memory. 15

2.9 Modified navigation stack. In (a) The planning environment contain-
ing 3d obstacle(an extended bar undetectable by the laser scan) (b)
Shows the final path planned with full body collision checking. (c)
and (d) indicate the initial and final poses on a static map. 19

2.10 Linear velocity Plot with and without Safety Requirement. 19
2.11 Effects of the velocity minimizer task during the TIAGo arm motion. . 20
2.12 Kinetic energy of the TIAGo arm during the motion task with and

without inertia-weighted generalized pseudoinverse. 21
2.13 Different steps of the motion of TIAGo arm. 21

3.1 Representation of the Tiago robot in the scene: (a) links are offline
voxelized and inserted according to the joint state of the robot; (b) the
arm of the robot is approximated with spherical volumes, the body
highlighted in yellow is used as an obstacle for self-collision avoidance. 24

3.2 The Collision Avoidance control scheme implemented on the Tiago
Robot testing platform. The main components of the proposed system
are embedded in the blocks marked with blue. 27

3.3 Raw point cloud processed to remove noise and robot part from the
scene: Raw point cloud visualization in Rviz containing points com-
ing from the robot gripper (left) and GPU voxels representation (right).

. 27
3.4 Bounding spheres computed using OBB for collision avoidance. 28
3.5 Pipeline for Self collision minimum distance domputation: The voxel

model of Links that are not in the ACM are transformed and Inserted
inside a GPU_voxels map followed by EDT. 32

3.6 Experiment 1: The sequence of images top-down demonstrate real
time collision avoidance from a dynamic obstacle while tracking end-
effector setpoint. 35

3.7 Experiment 1: Commanded joint velocities, activation value and min-
imum obstacle distance during the collision avoidance from a moving
person. 36

x

3.8 Experiment 2: Image sequence for a motion through two way points
with collision avoidance. An oscillating and spinning hanging box
approaching the robot arm in the workspace 36

3.9 Experiment 2: Tiago End-effector trajectory. The red line shows the
desired trajectory points and The blue line shows the modified end-
effector trajectory by the fast oscillating obstacle described in Fig 3.8. . 37

3.10 Experiment 3: Joint command: with Task oriented regularization (top)
and without (bottom). A sharp velocity change is observed at time 5.2,
8.6, 10.5 Sec for the same obstacle scene without regularization. 37

3.11 Experiment 4: Tiago robot arm entering the washing machine drum. . 39
3.12 11 distance queries on Octomap as the number of occupied nodes in-

crease shows significant change in the computation time (Red and
Blue). On the other hand, time for distance queries are relatively un-
affected as number of voxels occupied increases GPU voxels (Yellow). 40

3.13 Experiment 5: Sequence of images (top) showing The arm navigating
around the rim of the circular base platform to Avoid self collision
while also moving towards a set point. Visualization of robot body as
a collision object (bottom sequence). 40

3.14 Self collision avoidance: joint velocity, activation and minimum dis-
tance during Experiment 5 shown in Fig 3.13 42

4.1 The workflow of shape registration. 44
4.2 PnP estimation. 47
4.3 Outliers filtering: Rejection based on the distance between the points . 50
4.4 Washing machine: Feature maps fetched from the certain hidden layer

of the neural network. 52
4.5 Washing machine pose. 52
4.6 Projection of the model cloud after initial estimation. blue: filtered

scene point cloud, red: the model point cloud after DL-based initial
transformation, oj: the model point in the camera frame. 53

4.7 The results of the ICP algorithm. The closed glass door configuration. . 54
4.8 Different states of the washing machine: occluded (a), open glass door

configuration (b). 54

5.1 Wrinkle detection algorithm. The input pointcloud is segmented re-
trieving only the interior point of the bin (yellow). The entropy map
is build utilizing the knowledge embedded into the convexity, curva-
ture and combined (depth and edges) maps. The grayscale image is
shown for visualization purpose only. 59

5.2 Drawing showing the convex and concave conditions. 60
5.3 Graph structure (a) and interpolated spline (b). In (a), the points in

the graph denote the supervoxels centroids and the segments connect-
ing them resemble the graph edges. The different colors in the nodes
highlight their different intensities values. In (b), the segmented en-
tropy map is shown in the background with the spline in yellow. . . . 62

5.4 Schema of the vision approach for the washing machine recovery pick-
ing. Grayscale image shown for clarity. 64

5.5 Grasp pose detection using blob regions. The colored set of points
represent the cluster of blobs with their principal and normal direc-
tion computed for grasp pose estimation. 65

xi

5.6 The points of interest on the reference image (red, green and blue dots
marking the coordinates of programs, functions and digits respectively). 66

5.7 Keypoints from SURF descriptor. In (a) keypoints are shown for the
reference image (user interface) (b) shows descriptors from the robot
scene view. (c)Final keypoint matches after eliminating the incorrect
matches. 67

5.8 (a) Scene registration with the appliance model in red, (b) robot and
appliance collision model for safe manipulation inside the drum. . . . 68

5.9 Entering and exiting the washing machine drum: joint velocity and
collision avoidance activation. 68

5.10 Experimental Layout. In (a) The overall system layout: detection, con-
trol and UI. (b) Clothes test set with rulers in centimeters for scale. . . 69

5.11 Sequence of motion during laundry manipulation from Bin and Wash-
ing Machine (WM). 70

5.12 Success rates for the bin picking and washing machine recovery pick-
ing actions. 70

5.13 UI homography estimation for recognition from sharp angles and vary-
ing glass reflection. 70

5.14 UI interpretation for robotic vision: For instance Spin speed and wash-
ing temprature are set to 1400 and 30 respectively as indicated in the
interpretation output. 71

5.15 Three candidate for final deployment has been evaluated: (a) MMO-
500 mobile robot with a ur-10 from Universal robot and an extender.
The size of this combination takes considerable space which limits
reachable space of robot. (b) rbkairos mobile base from Robotnik and
ur10 robotic arm. This option offers acceptable size thanks to the rel-
atively small size of the mobile base apart from the large wrist of the
ur10 arm. (c) The final choice for deployment was rbkairos with ur10
arm and an extender with a gripper mounted at angle at the tip of the
extender. 72

5.16 (a) The mechanical model of the extender with rg6 gripper fron on-
Robot. (b) Extender and gripper mounted on ur10. (c) Reachability
testing by overlying the extender and appliance CAD model at the
near end of the drum and (d) far end. It can be seen that the wrist of
the ur10 arm remains outside in both cases. 73

5.17 Sequence of motion during laundry insertion from Bin and Washing
Machine (WM). 74

xiii

List of Tables

2.1 comparison of RRT-star and LBKPIECE when applying GPU collision
checker. 18

2.2 Effect on the velocity minimizer on the RMS value of joint velocities. . 20
2.3 Time required for each joint to reach a velocity less than 0.02 rad/s. . . 20

3.1 work and time complexity comparison of GPU-based EDT computa-
tion algorithms for 3d voxel grid N = n3 39

3.2 GPU Voxels Exact Euclidean Distance Computation Time (in ms) with
Voxel size of 0.5cm, 1cm and 2cm. 41

3.3 Average minimum distance computation time (in ms) between robot
and obstacle for CPU based models. 41

4.1 Detection results on the MS COCO dataset (Lin et al., 2014b) regard-
ing different values of IoU thresholds and variety of sizes of targeted
objects. mAPL - Mean Average Precision (mAP) with large objects,
mAPM - mAP with medium objects, mAPS - mAP with small objects,
mAP@.50IoU - mAP with 50% of IoU threshold, mAP@.75IoU - mAP
with 75% of IoU threshold. 45

4.2 mAP values after 65K steps of training process. mAPL - mAP with
large objects, mAPM - mAP with medium objects, mAPS - mAP with
small objects, mAP@.50IoU - mAP with 50% of IoU threshold, mAP@.75IoU
- mAP with 75% of IoU threshold. 51

4.3 Comparison between the algorithms. Scene point cloud: 12599 points,
Model point cloud: 117542 points. 53

xv

Dedicated to: Sefanit & Yedidia

1

Chapter 1

Introduction

1.1 Overview

There is a growing interest from the manufacturing companies side, to automate
production line, to minimize cost and improve product quality and standard. In this
regard, Robotic systems that perform automated tasks has risen, in recent years, as
one of the main topics within Industry 4.0 and a relevant factor in firms adopting
the main concepts of Smart Factory and Intelligent Manufacturing. Their success-
ful development and implementation is now offering competitive advantage for the
manufacturers in terms of efficiency and spans various application domains includ-
ing manufacturing, assembly, warehouse automation and logistics.

Within the scope of this project, household appliance manufacturers have stepped
up to deploy mobile manipulators to automate their product reliability test labora-
tories. This emerging interest targets Domestic appliances like washing machines
which are designed and produced in mass scale to be introduced to the market.
These manufacturers have to test all functional capabilities of all new products be-
fore shipping them to future customers. Today these tests require the appliance
manufacturer to employ and train many people to perform these checks in time to
be market effective. The company that proposed this project aims to automate this
procedure. The project aim is to implement all the functionalities for the robot to
carry out the same tasks that a human operator in a similar environment would be
asked to perform. The said operator would follow the given tasks such as opening
the lid of the washing machine, loading the to-be washed load, closing the lid of
the washing machine, operating and selecting the program for the washing cycle,
and activating the washing machine. Trivial tasks to the human operator such as
walking to the washing machine without hitting any obstacles and seeing and un-
derstanding the information of the washing machine control panel, are not trivial to
the robot. Moreover, the robotic system needs to be integrated with the tests and
results databases to be informed about the test matrix and to report new data about
the correct functionalities of the appliances under test. This dissertation focuses on
the development of application for mobile manipulator in an industrial automatic
laundry by addressing research challenges related to safety, real-time performance,
manipulation and interaction in the test facility. The system object of this develop-
ment is schematized in Fig 1.1.

To move in a dynamic environment such as the test laboratory, in which the pres-
ence of humans is not excluded, the robot controller needs to be implemented in a
way that it will navigate to the requested workspace of the washing machine, inter-
act with it safely, and then perceive and program the washing cycle as required. All
this actions need to be executed ensuring the safety of the system with respect to hu-
mans as the primary goal. Therefore, the implementation of functionalities like safe-
navigation, and safe-interaction are extremely important. Development of real-time

2 Chapter 1. Introduction

FIGURE 1.1: The overall system architecture.

software to detect collisions is also vital when working in dynamic environments.
The main issues investigated in this thesis and described in this report are:

• The general control framework for the mobile manipulators oriented to im-
prove the mobility and the manipulation capabilities in restricted environ-
ments preserving safety;

• The localization of the washing machines in the laboratory environment;

• The interface between the robot and the waching machine, in terms of both
interface with the internal data, the interpretation of the appliance console and
the detection of its functional components by the vision system;

• The perception and manipulation of clothes to execute washing machine load-
ing and unloading tasks.

This work was mainly developed using the ROS framework, due to the avail-
ability of powerful libraries for ROS. Within ROS, all the software was written in
C++ or in Python. Matlab and the robotics toolbox are used to ease the controller
testing and debugging phase, but all the controller components are then translated
in C++. LabView is used to acquire data from the washing machine via DAAS in-
terface since the company provided libraries for this software to interface with the
washing machine control hardware.

1.2 Thesis Organization

Robots, nowadays are widely exploited to perform tasks commonly found in the
manufacturing sectors that require speed or are dangerous and repetitive for hu-
mans. In this regard, home appliance manufacturing industry has shown a strong
demand for rapid and efficient ways to test new products to meet the growing cus-
tomers demand for high performance appliances and compete in the market. The
application of mobile manipulators in domestic appliance test facility is useful to re-
lieve human operators from time consuming tasks, speed up the tests and improve
efficiency. However, alleviating the concern for safety in an environment shared
by human operator and a robot plays essential part in the development of auto-
mated systems. The industrial robot safety standard given in (Shea, 2013) outlines

1.2. Thesis Organization 3

safety requirements in a human-robot collaborative workspace. Speed and sepa-
ration monitoring criterion aims at preventing physical impact from occurring by
maintaining a static safe separation distance between the robot and any humans
walking through the collaborative workspace. These safety standards usually has
to be broken down into requirements on which robotic applications are built. The
development of robotic systems that fulfills this safety requirement also involves
integration of complex software and hardware subsystems in a reliable way. Even
more, it is necessary to also tailor the development to fit in to the particular work en-
vironment where humans and the robot collaborate. Therefore, a safe robotic system
considers the following aspects:

• Formulation of Safety requirement from the safety standard given in (Shea,
2013).

• Development of robotic Software and hardware systems to implement these
requirements.

• Work environment and other practical considerations.

In Chapter 2, safety requirement definition and proposed implementation so-
lutions are presented for the navigation system of the mobile manipulator. The
proposed system aims at improving the safety of human operators that share the
workspace with the robotic platform which is a common scenario of test laborato-
ries. A deep learning algorithm is used for the human detection and pose estimation,
while the integration between a conventional motion planning algorithm with a fast
3D collision checker has been implemented as a global planner plugin for the ROS
navigation stack. With the twofold objective of improving safety and saving en-
ergy in the battery-powered mobile manipulator used in this project, the problem of
minimizing the overall kinetic energy is addressed through a properly designed task
priority controller, in which the manipulator inertia matrix is used to weight the joint
speeds while satisfying multiple robotic tasks according to a hierarchy designed to
interact with the appliances while preserving the safety of the human operators.

The manipulator mounted on a mobile base has to also insure safe movement
in the presence of human operators and obstacles. However, the delay in updat-
ing the environment scene, computing a 3D distance map and generating control
command plays crucial factor in utilizing real time collision avoidance for robotic
applications. Most of the Algorithms and models for collision avoidance are based
on the CPU computing power which are limited by the sequential execution nature.
The dynamic environment representations, for instance formed using an octree data
structure such as Octomap (Hornung et al., 2013), updates the scene hierarchically,
therefore they are much slower than the sensor frame rate. If multiple sensor sources
are involved in updating the scene, the scene updating process become even slower.
This limitation has inspired the search for approximate models, for example those
that exploit a coarse representations, thereby trading on the accuracy of the collision
checking and distance computation. Even with approaches that approximate the
environment and the robot, the close interaction remains critical, mainly due to the
need for high resolution information (distance and contact queries) when the robot
and the obstacle come in the near vicinity of each other. With regard to Self-collision
avoidance, it is practically impossible to perform distance computation between full
CAD models such as meshes in real time due to their complex data structure. There-
fore, the links of the robot are approximated using primitive geometries for collision
and distance queries. It is therefore apparent that collision checking and distance

4 Chapter 1. Introduction

queries benefits from the massive parallelization available in GPUs. A high-speed
reactive collision avoidance exploiting gpu’s is detailed in this chapter 3. The fol-
lowing scientific problems are therefore addressed:

• Integration of Reactive collision avoidance with fast GPU-based distance field;

• A simplified robot model capable of exploiting the GPU computation is pro-
posed;

• Practical demonstration of real-time reactive collision avoidance with live sen-
sor data in a dynamic 3D scene.

A typical robotic application may include range of tasks including tracking of end-
effector pose while also avoiding singular configurations, obstacle and self-collision.
Even more, not all this tasks have equal importance or needed all the time. This re-
quirement creates the need for a multiple task kinematic controller with a possibility
of task prioritization.

In addition to safety and collision avoidance from the robot side, detection, seg-
mentation, and full model registration of the appliance (including the interior) and
it’s various parts is also important during interaction which requires 6d model reg-
istration. The application of shape registration nowadays spans multiple areas of
robotic assistant tasks. A practical problem usually emerges due to partial infor-
mation acquired by range finders or 3D vision sensors because of occlusions. This
problem becomes particularly relevant when the robot task objective is to interact
and navigate around a large objects. In this regard, the shape alignment problem
that takes into account large objects with very limited visibility and significant oc-
clusions utilizing an octree data structure on the GPU is discussed in chapter 4. The
proposed algorithm relies on the offline computed 3D model of the object and an
initial estimation of it’s pose using a deep learning technique to detect key features
of the object, in order to improve the accuracy and the speed of the registration pro-
cess. The final aligned pose is achieved by computing the iterative closest point
algorithm on GPU utilizing octree, starting from the initial estimated pose. To high-
light the application of the proposed method, autonomous robotic tasks requiring
interaction with washing machine is discussed. Finally, the performance in terms
of both speed and accuracy of the different implementations of the algorithm on the
CPU and GPU, as well as with and without augmented octree neighbourhood search
is provided.

During the accelerated life cycle testing of an appliance, a robotic system that is
capable of detecting and manipulating a laundry autonomously is required. Being
deformable objects by their nature, the grasping of clothe like objects require a spe-
cial treatment. Even more, the grasping is performed on a large set of clothes pilled
up in a container for loading or in the drum for extraction, which poses the challenge
of identifying stable grasp. In chapter 5, vision algorithm purely based on 3d point-
clouds is applied to four laundry handling tasks, namely the cloth bin picking, drum
picking, washing machine door recovery picking and floor recovery picking. This
leads toward a complete task set for robotized laundry. The core of the approach
is based on a wrinkledness measure for the initial identification of good graspable
areas in clothes. Additional refinement steps are implemented to fit spline curves
on the major wrinkles to estimate possible grasping frames. The approach is vali-
dated experimentally performing the full insertion and extraction operations using
the computed grasping poses. A 7-DoFs robotic arm and a task-priority based con-
troller allowing for real-time collisions avoidance with the appliance and the robot
itself are utilized in the experiments.

1.2. Thesis Organization 5

7

Chapter 2

Robotic System for Domestic
Appliance Test Automation

2.1 Introduction

Home appliance manufacturing industry has shown a strong demand for rapid and
efficient ways to test new products to meet the growing customers demand for high
performance appliances and compete in the market. The application of mobile ma-
nipulators in domestic appliance test facility is useful to relieve human operators
from time consuming tasks, speed up the tests and improve efficiency.

Accelerated Life Test (ALT) is a commonly used technique to acquire reliability
information quickly (Escobar and Meeker, 2006). In particular, appliance manufac-
turing industry conducts ALT on the small fraction of appliances statistically sam-
pled from the production line and are supervised by a human operators. The test is
carried out simultaneously on these appliances with the aim of testing their perfor-
mances through the simulation of the whole life by the accelerated cycles conducted
in reduced time. The utilization of robotic system comes in hand in these types of in-
dustrial setup where a considerably long and continuous test is required for product
verification.

However, alleviating the concern for safety in an environment shared by human
operator and a robot plays essential part in the development of automated systems.
The industrial robot safety standard given in (Shea, 2013) outlines safety require-
ments in a human-robot collaborative workspace. Speed and separation monitoring
criterion aims at preventing physical impact from occurring by maintaining a static
safe separation distance between the robot and any humans walking through the
collaborative workspace. The safeguards for speed and separation monitoring crite-
rion in a collaborative scenario includes, among other thing, a human detection sys-
tem and a reduced speed mode for the robot depending on the separation distance
when human operator is detected in a close vicinity to the robot (Marvel, 2013). The
development of robotic systems that fulfills this safety requirement involves integra-
tion of complex software and hardware subsystems in a reliable way. Even more, it
is necessary to tailor the development to fit in to the particular work environment
where humans and the robot collaborate.

It is also reasonable to consider mobile manipulators for these test labs to fully
take advantage of the above mentioned points due to the extended workspace they
offer while also minimizing the cost associated to the test as sensors and the end-
effector are mounted on a mobile agent and can be shared for all appliances (Choi,
Jin, Shin, et al., 2008; Hamner et al., 2010). In fact, deployment of mobile manip-
ulators in manufacturing and testing floor has been investigated extensively in the

8 Chapter 2. Robotic System for Domestic Appliance Test Automation

Reactive Motion Planning

Human Detection and

Tracking

Navigation Stack

global plan

Planning request

Arm Task Priority Control
velocity scaling

velocity scaling

FIGURE 2.1: Proposed safety system.

past. Important works include flexible test platform for household appliance (Ce-
setti et al., 2010), clinical laboratories (Choi, Jin, Shin, et al., 2008) and assembly tasks
(Hamner et al., 2010).

This work presents safety requirements associated with human-robot collabora-
tion in a domestic appliance test lab and proposes a safety oriented robotic system
with energy efficient arm controller. This work utilizes off-the-shelf (OTS) mobile
manipulators, the TIAGO robot from PAL Robotics, equipped with redundant arm
and RGB-D camera to be deployed in the life test laboratory of washing machines.
A deep learning approach is adopted to detect the humans in the scene, providing to
the robot controller their pose estimation. Moreover, a global planner plugin for the
ROS navigation stack has been implemented through the integration between a con-
ventional motion planning algorithm and a Graphic Processing Unit (GPU) based
fast 3D collision checker. To improve both the safety of the system and to save en-
ergy in the battery-powered mobile manipulator, the overall kinetic energy of the
robot is minimized by the task priority controller through the use of the manipula-
tor inertia matrix to weight the joint speeds. The task priority controller ensures also
to satisfy multiple robotic tasks to perform proper interaction with the appliances
while preserving the safety of the human operators. Simulations and preliminary
experiments have been carried out to evaluate the system capabilities and develop
all the required functionalities, and the results are reported in this chapter. Work
on this project has been presented in (Bedada et al., 2020) and the following key
contributions are reported:

• A complete description of the system and safety requirement.

• A collaborative navigation strategy blending standard navigation stack, gpu-
based 3d collision checking and the safety requirement.

• Development of a full simulation model for evaluating robot-appliance inter-
action and various aspect related navigation and size of the passage (corridor)
and appliance operation.

• Development of a full simulation model for evaluating robot-appliance inter-
action and various aspect related navigation and size of the passage (corridor)
and appliance operation.

• Experimental validation of the system, to evaluate its effectiveness in a differ-
ent scenarios that arise in the test lab.

2.2. System Description and Safety Requirement 9

FIGURE 2.2: Test Lab. layout in Gazebo Simulation Environment.

Washing Machine

120cm

10cm

60cm

20cm

Mobile

Manipulator

Docking Station

FIGURE 2.3: Lab. layout dimensions.

2.2 System Description and Safety Requirement

Apart from detecting obstacles, the robotic system should be able to distinguish the
presence of human operators in the environment. This allows the robot the enforce-
ment of a safe velocity during the workspace sharing with the human operators. The
overall system structure shown in Fig. 2.1 considers safety in a distributed manner in
such a way that both the robotic arm and the mobile base fulfills these requirements.

The navigation system must achieve a 3D collision checking during the motion
planning for navigation in a partially structured indoor environment and manage
unpredictable changes due to the presence of human operators and unknown obsta-
cles. Moreover, the navigation system should also be able to predict future collisions
and demonstrate reactive motion planning capabilities. After reaching the goal, the
system should be capable of detecting the pose of the washing machine as a whole
and the different parts of the appliance such as knobs, buttons and door handle in
particular. Finally, the system should also manipulate and physically interact with
the products while avoiding collision and unsafe maneuvers. The list of tests that
the robot has to set or perform on the appliance must be loaded to the robot in real-
time through a wireless interface from external system. Depending on the size of the
product (small, medium and large), the system should flexibly reconfigure itself to
interact with each appliance.

For the purpose of testing the proposed system, a TIAGO mobile manipulator
(Pages, Marchionni, and Ferro, 2016) has been used. However, different commer-
cial robotic solution will be proposed in the future for deployment of the developed
application in the appliance test lab. TIAGO is completely based on the Robot Op-
erating System (ROS), that facilitates access to hardware and hides the complexities

10 Chapter 2. Robotic System for Domestic Appliance Test Automation

FIGURE 2.4: Human Detection and Pose Estimation Procedure.

of transferring data between components (Quigley et al., 2009).
The test lab contains large number of appliances that are arranged in a row with

pair of rows facing each other and separated by a gap that allow appliance trans-
portation as indicated in Fig. 2.2. This should be considered as an additional con-
straint for motion planning of the arm and the base of the robot.

2.3 Human Detection and Pose Estimation

Almost all robotic systems relies on a robust perception system to demonstrate au-
tonomous and intelligent behaviors. Perception algorithms have been dominated
mainly by computer vision algorithms that involves usage of descriptive features
for object detection and recognition which usually involved human operator in the
past. The emergence of Deep Learning (DL), however, introduced the concept of
end-to-end learning where feature selection and extraction as well as classification
is performed in one big learning network (O’Mahony et al., 2019).

We have applied human detection and estimation of the human pose in order
to provide the required safety and to eliminate the risk of any damage to human
body in the working space of the robot. To implement human detection, Single Shot
Detector (SSD300) (Liu et al., 2016), which has been adopted to MobileNetV2 (San-
dler et al., 2018) neural network, was used in this step. The neural architecture has
previously been trained on COCO dataset (Lin et al., 2014a).

The human pose with respect to the robot mobile base must be estimated for
safety reasons. After detection step, the corresponding points on the image frame
[u, v]T given by detection algorithm, are used as input to the pose estimation step,
which produces [x, y, z]T coordinates of the corresponding points with respect to
the camera optical frame as output. For that goal, the depth map of the scene is
obtained using the RGB-D camera of the robot. Data encoded on the depth map
represents the distance of the arbitrary point with respect to camera optical frame.
After human detection and pose estimation in the robot workspace, the estimated
values of the pose are used to implement safety measures for a shared worskpace.

2.4 Navigation Module

Navigation capability of mobile robots plays crucial role in the success of an au-
tonomous mission. Different variations of software and hardware have been used

2.4. Navigation Module 11

in the navigation systems with motion planning, Localization and Control forming
the basic structure. Potential field based navigation of robots have gained promi-
nence in the papers of early 90’s (Khatib, 1986; Schneider and Wildermuth, 2003),
(Dozier et al., 1998). However, due to trap in local minima and oscillation in the
presence of obstacles and narrow passages, potential field methods are exposed to
be ineffective in these situations (Koren and Borenstein, 1991). To overcome this, the
dynamic window approach to navigation (Fox, Burgard, and Thrun, 1997) is pro-
posed that considers periodically only a short time interval in to the future when
computing the next steering command to avoid the complexity of the general mo-
tion planning problem. Admissible (translational and rotational) velocities within
the dynamic window that maximize an objective function is selected. The objective
function includes a measure of progress towards a goal location, the forward veloc-
ity of the robot, and the distance to the next obstacle on the trajectory (Brock and
Khatib, 1999; Fox, Burgard, and Thrun, 1997). This approach that overlays global
planner with the dynamic window approach have been implemented on interactive
tour-guide robots for museums (Burgard et al., 1998; Thrun et al., 1999) with good
success. In (Marder-Eppstein et al., 2010), a navigation algorithm that consider three
dimensional obstacle data in an efficient way is proposed. This work employs three
dimensional voxel grid to encode the robot’s knowledge about the environment as
free, occupied or unknown.

Collision detection and path monitoring consumes up to 90 percent of computa-
tion time during robot motion planning task (Pan, Lauterbach, and Manocha, 2010a).
This implies that fast collision detection plays central role in enforcing reactive be-
havior that interleaves planning, continuous motion validation and execution. The
advent of fast computing capability has improved the development fast collision
checking and re-planning algorithms that allows to realize robust navigation sys-
tem for mobile robots. Computations related to collision detection and proximity
queries on GPU can be more advantageous because of their multi-thread capabil-
ity. A comparison of mesh based collision checkers with CPU implementation (Pan,
Chitta, and Manocha, 2012a) and voxel based approach on GPU which discretize the
robot and the environment is given in (Hermann et al., 2013). The voxel based im-
plementation of collision detection on GPUs has shown improved results compared
to the mesh based CPU implementation in the case of multiple queries of collision
checking.

In this work, we propose a new approach that utilizes GPU-based collision checker
given in (Hermann et al., 2014a) for motion planning in the framework of ROS nav-
igation stack. A sampling based motion planner and a GPU-based state validity
checking implementation forms the global planner plugin. A sampling based mo-
tion planning implementation in Open Motion Planning Library (OMPL) (Sucan,
Moll, and Kavraki, 2012) is utilized as the global planner. The main difference be-
tween the proposed approach and the standard navigation stack is that we aban-
doned the use of 2D-costmap for environment representation. Instead, a 3D voxel-
map created from depth sensors is utilized to facilitate a more reliable global plan-
ning that considers a three dimensional scene.

A local planner that follows the global plan is combined with an independent
path monitoring implementation utilizing a swept volume of the robot used to de-
tect future collisions and leveraging on the computational capabilities of modern
GPUs. The architecture of the proposed GPU-Based navigation algorithm is re-
ported in Fig. 2.5. During the execution of a plan, the collision checker monitors
the global plan until the goal is reached. This is achieved by creating a voxelized
swept volume of the robot along the planned path and detecting colliding voxels

12 Chapter 2. Robotic System for Domestic Appliance Test Automation

Motion Validator

State Validity checker

GPU based

Collision checker

Point Cloud
Sources

Move base

OMPL

Global Planner Plugin

Local planner

nav msgs/Path

pose follower

base controller

cmd vel

Path Monitoring

swept volume
Path
validity

Replanning
request

map server/map

FIGURE 2.5: GPU-Based Navigation Stack.

in the environment map. The swept volume is generated by keeping the results of
path planning in the Voxel-Map to create a virtual corridor for the robot. The gener-
ation of the voxelized representation of the robot is performed offline and inserted
into the map. The core idea of sampling based motion planning (SBMP) is the ap-
proximation of the connectivity of the sampled search space with a graph structure.
The variations in the different types of SBMP originates from how the sampling of
the planning space is performed to create the vertices of the graph and the strate-
gies employed to generate the edges from it. The sampled states and connection
between them forms the vertices and edges of the graph respectively. It obvious,
however that the graph should constructed only from the valid vertices and edges
which denote the valid states and path segments connecting them. Validating the
sampled states and the connection among them is where the fast collision checking
comes into play.

OMPL facilitate the integration with external collision checking algorithms through
two abstract classes named StateValidityChecker and MotionValidator. The former al-
lows the planner to evaluate the validity of states while the later validates motions
between two specified states, effectively creating valid vertices and segments.

The StateValidityChecker class implements a routine that takes sampled state space
and return the validity information. The path segment between the valid portion
of the sampled state space is also validated to form the edges through a routine
in the MotionValidator class of OMPL. The GPU-based collision checking is used to
implement state validity checker for OMPL using a swept volume technique given
in (Hermann et al., 2013) in which the virtual model of the robot in Fig. 2.6(b) is in-
serted into the robot map at every pose we are checking for validity. The validity of
the states is verified by comparing it to the corresponding occupancy of the voxels in
the environment map. If the same voxel location in the robot and environment map
is occupied, the particular state associated with the robot pose carrying the colliding
voxels will be invalid. In case of motion validity checker, After valid states are sam-
pled, a linearly interpolated path segment between two valid state creates the swept
volume by inserting the discrete model of the robot along this path segment.

The environment map carries a discrete representation about the occupancy of
the scene in a probabilistic way. To create this environment map, a transformed and
filtered pointcloud from the robot’s onboard RGB-D camera is inserted and updated
on the GPU memory for fast collision detection. To perform the transformation of the

2.4. Navigation Module 13

(a) Environment map in GPU voxels visualizer. (b) TIAGO robot voxel repre-
sentation.

FIGURE 2.6: Voxel-based representation of the robot and working en-
vironment.

pointcloud from camera frame of the robot to world frame, an Adaptive Monte Carlo
Localization (AMCL) algorithm is used to localize the robot thereby transforming
the points to the world frame in real-time. The environment map shown in Fig. 2.6(a)
contains voxelized representation of two rows of washing machine partially seen
from the TIAGO on-board camera.

As highlighted above, collision checking and monitoring are performed virtually
using the environment scene and the voxelized robot model. The mesh model of the
robot is rasterized into a binary 3D voxel grid to create a binary voxel model of the
robot using an offline software given in (Nooruddin and Turk, 2003a). This offline
generated voxel representation of the robot will be inserted into a separate robot
map according to the joint state and odometry information of the actual robot. By
inserting the voxelized shape for each corresponding mesh surface on the robot, a
full discrete representation of the robot is added into a robot map with same dimen-
sion as the environment map. The resolution of discretization of the mesh surfaces
of the robot affect the memory usage and collision checking performance and should
be selected carefully. The voxelized shape of the TIAGO robot given in Fig. 2.6(b) is
used throughout this chapter.

The motion planning developed in this work takes into account the presence of
human to enable the robot to operate differently from the basic obstacle avoidance
problem to ensure the safety of humans and enforce collaborative behaviour during
the interaction. To this end, a virtual cylindrical volume is inserted in to the map in
real-time to allow the motion planner to plan safe path. During execution, the veloc-
ity of the robot is varied depending on the distance between the robot and the de-
tected human operator in the environment as 1) Full Operational, 2) Human-Aware
and 3) Danger mode. In the scenario where either human is not in the worskpace
or the distance between the robot and human operator is greater than certain prede-
fined threshold, the robot operates in the Full Operational mode exploiting its full
velocity as generated by the local planner. In the Human-Aware operation mode,
however, the robot is at a distance that can injure the human operator, if they come
in contact. Thus, the robot operates in a reduced velocity mode proportional to the
distance. Finally, the Danger mode sets both linear and rotational velocity to zero
because of the overlapping of the human safety zone and the robot’s footprint.

14 Chapter 2. Robotic System for Domestic Appliance Test Automation

Robot FootPrint

Rendered Safety zone

r

R

Human footprint

where:

Dsafe = 2 ∗ r +R

Ddanger = r +R

D

Full Operational Mode: D ≥ Dsafe
Human Aware Mode: Ddanger ≤ D ≤ Dsafe
Danger Mode: D ≤ Ddanger

FIGURE 2.7: Safety requirement description.

The robot safety features are implemented at both the global and local planner
level inside the software architecture of the GPU-Based navigation stack. At the
global planner level, the presence of human operator is accommodated by inserting
and updating a virtual safety zone during motion planning. The planner consid-
ers a cylindrical volume larger than the footprint of the human operator as a safety
region. This imposes additional planning constraints that insure no part of the 3D
robot shape violates the safety zone around the human. The local planner is re-
sponsible to generate desired velocity commands to the robot base and thus, has a
direct influences on how the robot executes the global plan. Therefore, safety related
behaviours of the robot are implemented in the local planner as follow:

Full Operational Mode if
∥∥x− xsafety

∥∥ > Dsafe

Human-Aware Mode if Ddanger <
∥∥x− xsafety

∥∥ < Dsafe

Danger Mode if
∥∥x− xsafety

∥∥ < Ddanger

(2.4.0.1)

where the x is the mobile robot’s pose, xsafety is the center of the virtual safety vol-
ume around the human, Dsafety is the minimum distance between the robot and the
human before the local planner switches to the Human-Aware mode and Ddanger the
minimum safe distance between the human and robot.

2.5 Task Priority Control Framework

Task priority control enable the execution of several robotic tasks, such as singularity
avoidance, joint limit avoidance, collision avoidance, joint speed limitation other
than conventional end-effector position control, in a hierachical order, i.e. lower
priority tasks do not influence on the behavior of higher priority ones (Simetti and
Casalino, 2016a).

2.5. Task Priority Control Framework 15

(a) Environment scene in
Gazebo.

(b) Path planning and
monitoring.

(c) Human in the scene.

(d) Cylindrical safety zone
around the human opera-
tor.

FIGURE 2.8: GPU-based planning and monitoring: path planning
with washing machine door opened and human-aware safety zone

rendered in GPU memory.

Let’s consider a robotic system with n Degrees of Freedom (DoFs), being q ∈ Rn

the vector of configuration variables, which control input is the desired value of
configuration variable time derivative q̇, and a hierarchical set nt of tasks where
xi ∈ Rmi , i = 1, · · · , nt is the vector of the i-th task variables, each of those can be
represented as a function of q, i.e xi = fi(q) and mi is the dimension of the i-th task.
The time derivative of the i-th task variables can be written as

ẋi =
d fi(q)

dt
= Jiq̇ (2.5.0.1)

where Ji ∈ Rmi×n is the i-th task Jacobian. The solution of eq. (2.5.0.1) is the mini-
mum norm solution of the minimization problem

min
q̇
|| ˙̄xi − Jiq̇||2 (2.5.0.2)

where ˙̄x is a reference velocity vector of the i-th task. This solution is given by the
generalized inverse matrix J#

i as:

q̇ = J#
i ẋi + (I− J#

i Ji)q̇0 (2.5.0.3)

where (I− J#
i Ji) is the projection matrix with image space equal to the null space of

Ji, q̇0 ∈ Rn is an arbitrary vector of null-space joint velocities. The i-th task can be
then controlled by a simple a proportional controller

˙̄xi = Ki(xdi − xi) (2.5.0.4)

where xdi is the desired value of the i-th task variables, Ki ∈ Rmi×mi is the symmet-
ric and positive definite task gain matrix. Adding the vector q̇0 to the solution, as

16 Chapter 2. Robotic System for Domestic Appliance Test Automation

it is clear in eq. (2.5.0.3), allows the generation of internal motions in the kinematic
chain without affecting the goal of the i-th task, i.e. reaching its vector space xi.
Hence, eq. (2.5.0.3) can be used again to find q̇0 the solution of the (i − 1)-th task
having lower priority. This concept will be applied recursively on all the tasks of the
task framework, so lower priority tasks do not influence on the behavior of higher
priority tasks. However, the generalized inverse matrix used to solve eq. (2.5.0.1)
creates a discontinuity when a singularity of the matrix Ji is encountered. Another
type of discontinuity appears during the activation and the deactivation of inequal-
ity control objectives of a given task. Inequality control objective are tasks requiring
to constraints of the type xi ≤ xMi or xi ≥ xmi. When xi needs to stay within an
interval, two separate inequality objectives can be used to represent the problem. A
relevant example of inequality task is the joint limiter. An inequality task becomes
active only when its control objective is going to be violated. On the other hand,
even though conventional equality control tasks, such as end-effector pose control,
can be always considered active, the activation and deactivation feature enables to
switch among different control objectives according to the task objectives. To deal
with task activation and deactivation, a diagonal activation matrix Ai ∈ Rmi×mi can
be considered for the i-th task. The j-th element on the diagonal of Ai, namely ai(j),
is given by:

ai(j) =

1 xi ≥ xMi + b,
si(xi) xMi ≤ xi ≤ xMi + b,
0 xi ≤ xMi.

where si(x) is a sigmoid function given by

si(xi) =
1
2
(cos(

(xi − xMi)π

b
) + 1) (2.5.0.5)

where xMi is threshold and b is the buffer of the sigmoid. Thus, the original mini-
mization problem (2.5.0.2) is replaced by the following

min
q̇

[||Ai(˙̄xi − Jiq̇)||2 + ||Jiq̇||2Ai(I−Ai)
+ ||VT

i q̇||2Pi
] (2.5.0.6)

where VT
i is the right orthonormal matrix of the SVD decomposition of JT

i AiJi =
UiΣiVT

i and Pi is a diagonal regularization matrix where each element p(i,i) is a bell-
shaped function of the corresponding singular value of Ji, or zero if the correspon-
dent singular value do not exist and the notation ‖ · ‖P indicates the weighted norm,
i.e. ‖q̇‖2

Pi
= q̇TPiq̇.

The solution of (2.5.0.2) can be then written as

q̇ = (JT
i AiJi + VT

i PiVi)
#JT

i AiAi ˙̄xi

+ (I− (JT
i AiJi + VT

i PiVi)
#JT

i AiAiJi)q̇0

(2.5.0.7)

To maximize also safety and power saving capabilities by means of the proposed
task priority controller, the previously described control framework is further ex-
tended by including the robot inertia matrix M in the computation of the general-
ized pseudo-inverse. Hence, the kinetic energy enters directly in the minimization
problem, thus reducing the motion of the robot DoFs associated to larger inertia and
leveraging more on the lighter ones, thus reducing power consumption and improv-
ing battery life. By considering this different type of discontinuities, the extension of
any priority levels with the initialization q̇0 = 0, Q0 = I, for k = 1, · · · , nt, to any

2.6. Simulations and Experiments 17

priority levels is expressed in the following equations

Wk = JkQk−1(JkQk−1)
#,Ak ,Qk−1,M

Qk = Qk−1(I− (JkQk−1)
#,Ak ,I,MJkQk−1)

Tk = (I−Qk−1(JkQk−1)
#,Ak ,I,MWkJk)

q̇k = Tkq̇k−1 + Qk−1(JkQk−1)
#,Ak ,.,MWk ˙̄xk

(2.5.0.8)

x#,A,q,M , (M−1T
xTAx + ηM−1(I−Q)T(I−Q) + VTPV)#M−1T

xTAA (2.5.0.9)

where V is the right orthonormal matrix of the SVD decomposition of xTAx + η(I−
Q)T(I−Q) and η is a suitable damping coefficient.

In our application, we considered four different tasks: the end-effector position
controller task, the joint velocity minimizer task, the joint limiter task and the singu-
larity avoidance task. To implement the singularity avoidance task, we used the
concept of the manipulability index proposed in (Yoshikawa, 1985). The idea is
therefore to consider as control variable the smallest singular value of the robot Ja-
cobian. Hence, by satisfying the last value, which is the smallest singular values,
we are also guarantee the other singular values (Sverdrup-Thygeson et al., 2017).
The joint limiter task is added in the hierarchy to ensure the safety of the robot.
However, the joint velocity limiter task is added in order to reach the goal of the
whole task priority while minimizing the joint speeds so the energy spent by the
robot. Since TIAGO is battery powered, the joint velocity minimizer task, together
with the inertia-weighted generalized pseudoinverse, increases also its battery life
by reducing the overall system energy consumption.

2.6 Simulations and Experiments

2.6.1 Planning with GPU-based 3D Collision Checking

The modified navigation stack is tested in an environment with cluttered three di-
mensional environment scene. The test is conducted by creating an environment
that has objects not detected by the laser such as open washing machine door and a
suspended bar between boxes which can lead to the failure of navigation systems
based on 2D obstacle rendering. For a simple comparison, two sampling based
planners, namely RRT-star (Karaman and Frazzoli, 2011) and LBKPIECE1 (Bohlin
and Kavraki, 2000), are chosen for the evaluation of the proposed GPU-based colli-
sion checking. Although they produced approximately identical path as shown in
Fig. 2.8(b), planning time has improved when using control based motion planner
such as LBKPIECE1. The detail of time during planning is shown with breakdown
for state motion validation in Tab. 2.1.

The case of successful path monitoring is also demonstrated in Fig. 2.8(a) and Fig.
2.8(b) where the robot is able to plan and monitor it’s path through a corridor with
an open door washing machine. The path monitoring is able to detect the particular
robot pose in the plan that is in collision with the environment ahead of the actual
collision through the swept volume. This effectively prune out poses of the plan that
are in collision at anytime during the execution. This, in turn, results in the capability
to initialize re-planning from a more suitable pose which avoids the chance that the
robot get stuck in case a new obstacle in encountered along the way. This approach
has also been demonstrated on Tiago robot with in the lab, by creating unstructured

18 Chapter 2. Robotic System for Domestic Appliance Test Automation

TABLE 2.1: comparison of RRT-star and LBKPIECE when applying
GPU collision checker.

Pose and Motion validation time LBKPIECE1 RRT-star

Total no. of Poses Inserted 674 44
Pose insertion time (ms) 3.54021 3.82593
Pose collision time (ms) 0.383763 0.463711
Poses collision 0.383763 0.463711
Total no. of motion Inserted 165 295
motion collision time (ms) 15.4182 145.363
Total Planning time in Sec. 5.188 25.48

environment requiring a whole body collision checking for the path planning task
as demonstrated in this video1.

2.6.2 Human-Aware Safety Region Rendering

To demonstrate the proposed safety approach, the human detection and pose es-
timation algorithm is combined with the human-aware safety region rendering in
GPU to ensure safety and collaborative behaviour. Even from partial view of the
human operator, the related cylindrical safety zone can be inserted into the environ-
ment map and used during planning as shown in Fig. 2.8(d). This 3D-safety require-
ment ensures all parts of the robot(i.e. arm and mobile base) stay outside the region
that collide with the safety zone during motion planning. The velocity of the robot
during each execution cycle satisfies the safety requirement as shown in Fig. 2.10(b).
The robot only reduces it’s full operational velocity when it is in the human-aware
mode and completely stops when the robot enters danger zone. Moreover, the va-
lidity of the remaining path segment is checked on every cycle to avoid collision
and trigger re-planning ahead. The comparison of the velocity command with and
without the safety constraint is shown in Fig. 2.10(a) and Fig. 2.10(b). It can be seen
that the safety constraint reduced the peak velocities only in the region where hu-
man operator is in the vicinity. This allows full operational velocity when human
operators are not in the scene or the distance between the operator and the robot is
greater than Dsafe.

2.6.3 Task priority control of the TIAGO arm

We used /arm_controller/command interface to control the TIAGo arm in a task pri-
ority hierarchy. During our experiments, we considered 4 different tasks in the fol-
lowing order of priority: joint limiter task, end-effector position task, singularity
avoidance task and velocity joint limiter task. After setting the different task param-
eters, the goal for TIAGo end-effector position control to reach the following pose
(translation (x,y,z): [0.857 0.070 0.825], orientation (x,y,z): [3.033 0.079 −0.759]) is
passed. In 2.6.3, we show the effects of the velocity minimizer task during the mo-
tion of TIAGo arm between from its initial position to the end-effector goal position.
However, in 2.6.3, we present the influence of using the inertia-weighted generalized
pseudoinverse on the kinetic energy of the TIAGo arm.

1https://drive.google.com/file/d/13rYR5F276MD4fuYXhRTD0U5TH384f8V2/view?usp=
sharing

https://drive.google.com/file/d/13rYR5F276MD4fuYXhRTD0U5TH384f8V2/view?usp=sharing
https://drive.google.com/file/d/13rYR5F276MD4fuYXhRTD0U5TH384f8V2/view?usp=sharing

2.6. Simulations and Experiments 19

(a) The planning Environment. (b) Final path with Swept volume.

(c) Initial pose of the robot in the
map.

(d) Final pose of the robot in the map.

FIGURE 2.9: Modified navigation stack. In (a) The planning envi-
ronment containing 3d obstacle(an extended bar undetectable by the
laser scan) (b) Shows the final path planned with full body collision
checking. (c) and (d) indicate the initial and final poses on a static

map.

0 2 4 6 8 10 12 14 16 18 20

Time [s]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

H
e

a
d

in
g

 v
e

lo
c
it
y
 [

m
/s

]

(a) Velocity command with safety constraints.

0 2 4 6 8 10 12 14 16

Time [s]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

H
e

a
d

in
g

 v
e

lo
c
it
y
 [

m
/s

]

(b) Velocity command without safety constraints.

FIGURE 2.10: Linear velocity Plot with and without Safety Require-
ment.

Effects of the Velocity Minimizer Tasks

Figure 2.11 compares the joint velocities of TIAGo arm for two different types of
task priority control where the velocity minimizer task is present and absent. Below,
we can see that adding the joint velocity minimizer task reduces the joint veloci-
ties: the joint velocities of different joints is lower when the velocity minimizer task
is present 2.11(a) compared to when it is absent 2.11(b). This conclusion is clearly
seen in Table 2.2 and 2.3. Table 2.2 shows how the root mean square (RMS) velocities
of all the joints reduced when joint velocity minimizer task is added compared to
the joint velocities without the minimizer task. Table 2.3 also indicate that the time
required to reach a steady state velocities lower than 0.02 rad/s. A reduced joint
velocities implies less energy consumption, which improves the battery life of the
TIAGo robot.

Figure 2.13 shows different steps of the robot motion starting from its initial po-
sition and reaching the end-effector goal.

20 Chapter 2. Robotic System for Domestic Appliance Test Automation

0 5 10 15 20 25 30

Time [s]

-2

-1

0

1

2

J
o
in

t
V

e
lo

c
it
y
 [
ra

d
/s

]

Joint 1 2 3 4 5 6 7

(a) Joint velocities with velocity minimizer task.

0 5 10 15 20 25 30

Time [s]

-2

-1

0

1

2

J
o
in

t
V

e
lo

c
it
y
 [
ra

d
/s

]

Joint 1 2 3 4 5 6 7

(b) Joint velocity without velocity minimizer
task.

FIGURE 2.11: Effects of the velocity minimizer task during the TIAGo
arm motion.

Joint 1 2 3 4 5 6 7
With 0.080 0.169 0.05 0.240 0.174 0.160 0.100
Without 0.082 0.172 0.065 0.243 0.180 0.165 0.114

TABLE 2.2: Effect on the velocity minimizer on the RMS value of joint
velocities.

Effects of the Inertia Matrix in Task Priority Control

Figure 2.12 compares the kinetic energy of TIAGo’s arm during the motion task with
and without inertia-weighted generalized pseudoinverse. The task priority hierar-
chy considered the 4 different tasks that are already introduced and the robot gripper
should reach the latter defined goal. It is clear that the robot kinetic energy is lower
when the inertia-weighted pseudoinverse is used (see Figure 2.12). Though, this
solution allows to save energy while guaranteeing.

2.6.4 Interaction With The Appliance

All the proposed algorithms presented in this chapter were evaluated using the
Tiago robot platform which is available in our lab. However, the final robotic system
to be deployed in the test labs should be an industry grade robot. Therefore, all the
evaluations related to the interaction with the washing machine e.g. opening appli-
ance door, operating knobs or inspecting the interior of the drum are performed on
a simulation platform developed for this purpose using rbkairos mobile base with
ur10 arm from robotnik and universal robot respectively. The detail of the choice of
this platform and other considered candidates are presented in chapter 5 together
with the final procured hardware.

By utilizing the simulation model, the movement of the robotic arm inside the
washing machine has been studied. From this, the size of the wrist of the ur10 arm
has been identified to be restrictive to safely maneuver the drum, and to improve

Joint 1 2 3 4 5 6 7
With 10.50 12.71 10.90 12.62 25.30 13.83 12.09
Without 12.17 14.34 13.39 15.07 34.45 18.62 19.73

TABLE 2.3: Time required for each joint to reach a velocity less than
0.02 rad/s.

2.6. Simulations and Experiments 21

0 2 4 6 8 10 12 14 16 18 20

Time [s]

0

0.02

0.04

0.06

0.08

0.1
K

in
e
ti
c
 E

n
e

rg
y
 [

J
]

(a) Robot kinetic energy with inertia-weighted
pseudoinverse.

0 2 4 6 8 10 12 14 16 18 20

Time [s]

0

0.02

0.04

0.06

0.08

0.1

K
in

e
ti
c
 E

n
e

rg
y
 [

J
]

(b) Robot kinetic energy without inertia-
weighted pseudoinverse.

FIGURE 2.12: Kinetic energy of the TIAGo arm during the motion
task with and without inertia-weighted generalized pseudoinverse.

FIGURE 2.13: Different steps of the motion of TIAGo arm.

22 Chapter 2. Robotic System for Domestic Appliance Test Automation

this, a mechanical extender is added to the simulation with an RG6 industrial grip-
per attached to it. This configuration allows the robotic arm to reach all points in the
drum as shown in this simulation video2.

2.7 Conclusion and Future work

This work has presented the results on collaborative navigation system by overlay-
ing the conventional navigation stack with fast collision checking, human detection
and tracking pipeline and safety constraint for the test laboratory environment. The
overall system is shown to operate in a safe way in the vicinity of human operator
while also optimizing energy usage of the arm.

The experimental and simulation tests are conducted for all the subsystems con-
sidering a scenario similar to the actual test laboratory. The result of the experiment
showed significant success in navigating through narrow corridors while maintain-
ing correct detection of appliances and estimating their pose both from close and far
range.

2https://drive.google.com/file/d/1rdbS4MYSvqJ9yniJ1430QXvVUFd7WNj3/view?usp=sharing

https://drive.google.com/file/d/1rdbS4MYSvqJ9yniJ1430QXvVUFd7WNj3/view?usp=sharing

23

Chapter 3

Realtime Collision avoidance

3.1 Introduction

Real time collision avoidance are shown to be relevant for robots in unknown dy-
namic environments, for example in unmanned aerial vehicles and mobile manipu-
lation applications. They are based on reactive motion control which allow them
to be employed within real time feedback loop and are suitable for applications
with unstructured workspaces. As the paradigm of human robot interaction (HRI)
shifts from complete autonomy to collaboration, Real-time reactive collision avoid-
ance should accommodate the presence of humans in the vicinity of robots without
posing danger to their safety. If human operators are considered in the robot envi-
ronment, the safety requirements are even more stringent, since human movements
can be fast and difficult to predict. In this regard, the speed at which the environment
scene is updated, minimum obstacle distance and control commands are computed
play crucial factor in utilizing real time collision avoidance in the context of HRI.

The perception pipelines dedicated to capturing the scene from live sensors and
feed the robot control algorithms with the important information about obstacles
usually consume significant (up to 90%) computational power (Pan, Lauterbach,
and Manocha, 2010b). To minimize the latency during collision checking, the en-
vironment model is usually restricted to 2.5D and the robot model undergoes sig-
nificant simplification in their representation (Kaldestad et al., 2014; Di Lillo et al.,
2018). However, the advance in computing capability, particularly the emergence
of high performance GPU’s has accelerated the computation time thereby allowing
a complete 3D representation of the environment and robots. In this aspect, GPU-
Voxels is an open source library for CUDA based Graphics Processing Units (GPU)
which allows massively parallel computation of collision checking in 3D environ-
ments (Juelg et al., 2017) and offers constant runtime regardless of the occupancy
density in the environment. It is also computationally inefficient and unnecessary
to compute minimum obstacle distance to every point on the robot body, therefore
requiring a simplified but correct robot model approximations. In addition to the
requirement for computational efficiency, real time collision avoidance relies on an
algorithm that generate control directions that avoids obstacles. Task priority con-
trol is commonly used in this scenario since it allows to activate and deactivate tasks
with higher priority, e.g. collision avoidance, only when they are really needed.

In this work, a generalized obstacle avoidance technique exploiting GPU voxels
to compute 3D Euclidean Distance Transform (EDT) for obstacle and self-collision
avoidance is proposed. The EDT contains the nearest obstacle information of all
environment voxels which can be enquired to give the closest obstacles of any num-
ber points on the robot links. In this work, the parallelism offered by the GPU
is exploited by removing the typical hierarchical representation of e.g. Octomap
and directly performing distance computation on a body tight spheres as shown in

24 Chapter 3. Realtime Collision avoidance

(a) Tiago robot voxel model. (b) Obstacle links and bounding sphere
approximation of the manipulator.

FIGURE 3.1: Representation of the Tiago robot in the scene: (a) links
are offline voxelized and inserted according to the joint state of the
robot; (b) the arm of the robot is approximated with spherical vol-
umes, the body highlighted in yellow is used as an obstacle for self-

collision avoidance.

Fig 3.4(b). Therefore, instead of relying on hierarchical representations, the novelty
in the proposed algorithm is that it only relies on simplified robot shape represen-
tation by means of spheres that tightly approximate the robot links shape together
with high resolution distance field of the environment in the range of 1 cm, thereby
allowing collision free movement even in a close vicinity of the obstacle. Task prior-
ity control is then exploited to implement the collision avoidance task. The proposed
approach is evaluated on a mobile manipulator, the Tiago robot from PAL Robotics,
showing that all obstacles and self collision are avoided within one single frame-
work in real time and in presence of dynamic obstacles, while the robot simultane-
ously performs end-effector pose tracking. A comparison with related algorithms
that depend on CPU computed distance fields is also presented to highlight the time
performance as well as accuracy of the GPU distance field. The key contributions of
in this chapter therefore are:

1. Integration of Reactive collision avoidance with fast GPU-based distance field;

2. A simplified robot model (OBB-Aligned minimal spherical bounding volumes)
capable of exploiting the GPU computation is proposed;

3. A novel approach for self collision avoidance that processes a voxelized model
of each link on a GPU to compute minimum self collision distance;

4. A flexible task priority controller suitable for dynamic task transition and able
to handle multiple tasks including obstacle and self-collision avoidance in one
framework;

3.2. Literature Review 25

And finally, Practical demonstration of real-time reactive collision avoidance with
live sensor data in a dynamic 3D scene contributing to practical usage of the algo-
rithm. The remainder of the chapter is organized as follows. In Section 3.2, a liter-
ature review about collision avoidance and distance field computation is presented.
The general framework of the proposed approach is reported in the context task-
priority control using GPU-computed exact EDT together with an algorithm that
unifies them in section 3.3. The summary of the mathematical background for task
priority control and task oriented regularization is also presented in this section. Sec-
tion 3.4 discusses experimental results both for obstacle and self-collision avoidance,
together with a comparison with similar approaches reported in literature. Finally
Section 3.5 presents conclusion and proposes a future extension.

3.2 Literature Review

Robot collision avoidance task has been approached as an offline or online prob-
lem. In the offline case, the goal is to solve a motion planning problem that is free
of collision (Karaman and Frazzoli, 2011), (Karaman et al., 2011), (Moll, Sucan, and
Kavraki, 2015), (Koenig and Likhachev, 2002) whereas online collision avoidance is
characterized by a reactive motion and it is susceptible to local minima. When the
robot operates in a dynamic environment it has to react very fast to obstacles putting
a real time requirement. A reactive motion planning approach is proposed for colli-
sion avoidance in (Juelg et al., 2017) using exact 3D EDT that enable online motion
re-planning. In (Simoni et al., 2018) a Task-Priority controller which supports set-
based tasks is implemented for obstacle avoidance of an underwater vehicle using
spherical collision objects generated from multi resolution Octomap for the obsta-
cle representation. However, the current Octomap implementation only relies on
Central Processing Unit (CPU) and it is therefore expected that it yields poor real
time performance (Aalerud, Dybedal, and Hovland, 2018). A real time self colli-
sion avoidance based on Euclidean distance calculation between bounding spheres
rigidly attached to robot links using robot kinematics is reported in (Bosscher and
Hedman, 2011; Lei et al., 2020). The work in (Pan et al., 2013) by Jia Pan et al presents
a real time dynamic AABB tree for fast culling as well as direct usage of an octree for
obstacle data structure representation. However, octrees are known to slow down
the update from incoming pointcloud, therefore limiting the performance. A dif-
ferent approach based only on depth image as opposed to point clouds to compute
minimum obstacle distance is reported in (Flacco et al., 2012). A recent work based
on Potential field method for real-time collision avoidance that exploits minimum
distance computation between geometric primitives is reported in (Safeea, Neto,
and Bearee, 2019). In this work four wearable inertial sensors are utilized per per-
son to determine the pose of the geometric shapes approximating the shape of the
person (Safeea and Neto, 2019), thereby providing human-like reflexes. It should be
noted that the approach proposed in (Safeea, Neto, and Bearee, 2019) is more suited
to an industrial scenario where one person with a wearable device interact with the
robot. Another recent work in (Di Lillo et al., 2018) addresses obstacle avoidance
within task priority framework for a selected control points by computing the min-
imum obstacle distance at 30 Hz from depth image by exhaustively scanning the
neighbourhood of the control points until it finds the nearest obstacle pixel.

Apart from collision checking and minimum distance computation, online mo-
tion control also relies on a minimization problem with different task constraints
to select optimal control inputs in real time. Motion control strategies with online

26 Chapter 3. Realtime Collision avoidance

collision avoidance are usually handled by exploiting the task priority framework
in which null-space projection matrices are employed (Slotine and Siciliano, 1991),
(Simetti and Casalino, 2016b) and (Mansard, Khatib, and Kheddar, 2009). This ap-
proach applies the null space of higher priority task to achieve lower priority tasks.
For this, a null space projector matrix is derived using pseudo-inverse. To facilitate
task insertion or removal, an activation matrix of dimension equal to the dimension
given task is used. The problem with this approach is that the use of activation
matrix resulted in what is commonly known as a practical discontinuity in which
a mathematically continuous rapidly varying property of the control becomes dis-
continuity when implemented on actual robot. The work in (Simetti and Casalino,
2016b) proposed a task oriented regularization to tackle the problem of practical dis-
continuity i.e. it handles any general number of equality and inequality tasks while
allowing task activation and deactivation without practical discontinuity.

3.3 General Framework for Collision Avoidance

In the proposed collision avoidance algorithm, the environment and the robot are
described inside two separate but equal discretized regular grids of cubic voxels,
with grid resolution equals to the vovel size. At every time step, both the robot
and the environment maps are updated by defining the occupied voxels in their
respective grids and the distance transform of the environment map is computed in
real time. From this distance map, we can efficiently extract obstacle distance for
few key points on the robot to activate collision avoidance tasks. The selection of
these key points, also known as control points, is usually located at the center of the
spheres that approximate the robotic links.

With this general approach in mind, there are challenges associated to exploit-
ing GPU for the collision avoidance algorithm. The first, perhaps the starting point
for our work is to separate various components of the collision avoidance algorithm
based on whether they are suitable for parallelization or not. The collision avoidance
algorithm based on a task-priority controller (Alg. 2) is implemented to run on a CPU
due to their nature, while the EDT (Alg. 1) benefits from the massive parellization
available in GPU. Secondly, both parts of the algorithm exchange information which
may lead to bandwidth bottleneck in copying data from CPU to GPU and vice versa
and therefore minimal data copying procedure is intended. Here, 3D pointcloud is
down-sampled before it is copied to GPU memory. After computing the EDT, copy-
ing back the entire Distance map to CPU is avoided by simplifying the robot model
so that only minimum obstacle distance to selected points suffice for the collision
avoidance algorithm. Lastly, as each voxels are associated to a memory in the GPU,
large map size will result in a significant memory consumption. As our development
targets only online collision avoidance, a map size that accommodate the immediate
workspace of the robot is initialized thereby leveraging memory usage.

To efficiently exploit the redundancy in the manipulator, the obstacle avoidance
task is activated only for those parts of the robot whose distance to the closest ob-
stacle is less than the radius of the spheres used to enclose, i.e. discretize, the robot
structure. The discontinuity due to task activation and deactivation is mitigated by
exploiting the task priority framework and the task oriented regularization, thereby
imposing smooth behavior in the joint control velocity.

3.3. General Framework for Collision Avoidance 27

FIGURE 3.2: The Collision Avoidance control scheme implemented
on the Tiago Robot testing platform. The main components of the

proposed system are embedded in the blocks marked with blue.

(a) (b)

FIGURE 3.3: Raw point cloud processed to remove noise and robot
part from the scene: Raw point cloud visualization in Rviz containing
points coming from the robot gripper (left) and GPU voxels represen-

tation (right).

3.3.1 Obstacle Representation

In our proposed approach the environment (obstacles) is represented as a GPU vox-
els occupancy grid (Hermann et al., 2014b) in a probabilistic way. To create this en-
vironment map, the acquired point clouds are raw-copied into GPU memory to per-
form a statistical outlier filtering based on their Euclidean distance to their neighbors
and followed by a transformation to a fixed coordinate. After transformation, the co-
ordinates of each point are discretized to determine the according Voxel, whose oc-
cupancy status is updated as a Bayesian process. During insertion of points into the
environment map corresponding Voxels’ meanings in the robot map are reviewed
if they are occupied by the robot model to prevent the insertion of points originat-
ing from robot parts, see Fig 3.3. The impact of occlusions can also be tackled using
multiple source of point cloud, without affecting the speed of the algorithm.

For the self-collision avoidance task, the mesh model of the robot is rasterized
into a binary 3D voxel grid to create a binary voxel model of the robot using an
offline software tools such as in (Nooruddin and Turk, 2003b). This offline gener-
ated voxel representation of the robot will be inserted into a a map according to the
joint state information of the actual robot to represent obstacles for the self-collision
avoidance task as shown in Fig. 3.1(a) and Fig 3.1(b). By inserting the voxelized
shape of each corresponding robot link, a full discrete representation of the robot is
added into a robot map with same dimension as the environment map.

28 Chapter 3. Realtime Collision avoidance

(a) OBBs
defined over
robot links.

(b) Spheres
defined over
the OBBs.

FIGURE 3.4: Bounding spheres computed using OBB for collision
avoidance.

3.3.2 Robot Representation

The robot model is critical when performing minimum distance computation as
complex models such as triangle meshes consume considerable amount of time
while an over simplified models might lead to collision. To speedup distance query,
various robot model approximation schemes has been proposed. The predominant
approach utilizes simple primitive shapes in a hierarchical manner (Greenspan and
Burtnyk, 1996; Steinbach et al., 2006; Simoni et al., 2018). An alternative approach
to the hierarchical representation is to utilize complex geometric primitives such as
cylinders, boxes and capsules (Pan et al., 2013; Safeea, Neto, and Bearee, 2019; Safeea
and Neto, 2019). These geometries minimize the number models involved (one of
these shapes can in-close an entire robot link). However, additional computations
are required to determine points of minimal distance on both the models and the
environment side in addition to multiple distance queries. Even more, these compu-
tations are not tailored toward parallel operation.

In this work, we propose a collision model composed of minimal number of
spherical volumes with different radii across different links that discretize each link
with low approximation error and without incurring additional computation on
both CPU and GPU side. Here, spheres are merely used for enclosing the robot
geometry and we do not rely on the hierarchy of spheres for distance query as op-
posed to the approaches reported in (Greenspan and Burtnyk, 1996; Steinbach et al.,
2006; Simoni et al., 2018). To generate this set of bounding spheres, first an oriented
bounding box (OBB) of each link in the kinematic chain is computed. Each OBB is
represented by a center point, an orientation matrix and three half-edge lengths and
are computed only once and in offline, therefore no overhead is added in run-time.
The smallest diagonal dimension on the face of the OBB will be assigned as the di-
ameter of the spheres and are placed along the longest dimension of the box. For

an OBB with dimensions d1, d2, d3 and d1 ≤ d2 ≤ d3, spheres of diameter
√

d2
1 + d2

2
where will be utilized. This guarantees inscription of the OBB within the sequence
of
⌈ d3√

d2
1+d2

2
+ 1
⌉

spheres, thereby allowing finite minimal number on each link. The

distance queries can easily be compared to the radius of each sphere for collision
detection thanks to their rotational invariant property.

3.3. General Framework for Collision Avoidance 29

3.3.3 Exact EDT Computation

Given a 3D voxel grid of G = n× n× n voxels, the EDT problem is to determine the
closest occupied voxel for each voxel in the grid. This problem is closely related to
the Voronoi diagram computation, i.e. The EDT of a binary grid can be thought of as
a discretized version of the Voronoi diagram whose Voronoi sites are the occupied
voxels of the grid.

The parallel banding algorithm (PBA) proposed in (Cao et al., 2010) computes
exact EDT on GPU by computing partial Voronoi which involves three phases where
each of them are parallelized using bands to increase the number of threads (Alg. 1).
For a 3D voxel grid G of size n, Consider a slice Ik at z = k where k ranges from
k = 0 to n− 1. This slice is basically a 2D binary image of n× n size. Algorithm 1 is
a high level pseudo code summarizing the three steps as follow:

Step-1 (BandSweep (Line 3-4)):

Calculates Si,j,k i.e, the nearest Voronoi site, among all sites in slice k and row j, of the
voxel (i, j, k). To efficiently employ threads, the slice Ik is divided into m1 vertical
bands of equal size, and use one thread to handle one row in each band, perform-
ing the left-right sweeps followed by across band propagation. n ∗ m1 threads are
utilized per slice in this step.

Step-2 (ComputeProximateSite (line 6)):

i.e, Pi. Let Si = Si,j,k | Si,j,k 6= ∅, j = 0, 1, 2, ..., n− 1 be the collection of closest sites
for all voxels in column i of slice k. The sequential implementation to determine Pi is
to sweep sites in Si from topmost to bottommost, while maintaining a stack of sites
that are potentially proximate sites, i.e; sites whose voronoi region intersects with
column i. For every new site c, we evaluate whether the site at the top of the stack
is dominated by c and the site a at the second top position in the stack. If so, b is
popped out of the stack, and c is pushed onto the stack, while the sweeping continue
until the column i is completed by returning the stack containing Pi. To parallelize
this sequential operation, each column Si is partitioned horizontally into m2 bands,
thereby employing n ∗m2 gpu threads per slice to perform the above computation.

Step-3 (QueryNearestSite (line 7))

This step utilizesPi from step 2 to compute the closest site for each voxel V in column
i of slice k top-down by checking two consecutive sites a and b in Pi in increasing y
coordinate. If a is closer, then a is the closest site to V, if not a will be removed and the
process continues with b and the next site. This is also performed in m3 horizontal
bands; therefore n ∗m3 threads deployed per slice.

Step-4 (Extention to 3D (line 8-11))

At the end step-3, the voxel map contains a stack of 2D Voronoi diagrams. To extend
this to 3D, step-2 and step-3 are repeated for all columns in the direction of the stack
(line 8-11).

3.3.4 Obstacle Avoidance Task

The obstacle avoidance control is formulated as an m dimensional kinematic con-
straint associated to m bounding spheres distributed along the links of the robot.

30 Chapter 3. Realtime Collision avoidance

Algorithm 1: Parallel_Banding_EDT
Input: G : [0..n− 1]× [0..n− 1]× [0..n− 1]→ {0, 1}, m1, m2, m3
Output: EDT(G)

1 for k = 0 to n− 1 do
2 Ik ← Slice(G, z = k)
3 S

′
i,j,k ← BandSweep(Ik, band = m1)

4 Si,j,k ← PropagateAcrossBand(S
′
i,j,k)

5 for i ∈ [0..n− 1] do
6 Pi ← ComputeProximateSite(Si, band = m2)
7 EDTi,j,. ← QueryNearestSite(Pi, band = m3)

8 for (i, j) ∈ [0..n− 1]× [0..n− 1] do
9 for k = 0 to n− 1 do

10 Pi,j,. ← ComputeProximateSite(Sk, band = m2)

11 EDTi,j,k ← QueryNearestSite(Pi,j,., m3)

Consider, a collision avoidance task vector Xc ∈ Rm, with i-th element xci corre-
sponds to a scalar task associated to i-th sphere on the robot link and defined as the
distance between it’s center Ci and it’s nearest obstacle voxel coordinate Oi:

xci = ‖Oi − Ci‖2 (3.3.4.1)

To implement this, we keep track of the coordinates of voxels at the center of the
spheres described in section 3.3.2 (line 10) and their closest obstacle coordinate (line
11) of Alg. 2. The goal of collision avoidance control is to keep the task variable xci

bigger than the radius of the i-th bounding sphere, xMi .

xci ≥ xMi (3.3.4.2)

The task Jacobian Ji, for the i-th scalar task xci defines the direction that pushes the
particular bounding sphere away from the nearest obstacle. This Jacobian is given
by single row matrix derived by projecting position Jacobian Jci at Ci in the vector
direction connecting Ci and Oi.

Ji =

(
−Oi − Ci

xci

)T

Jci(q) (3.3.4.3)

At every control cycle the task constraint (eq. 3.3.4.1) and task Jacobian (eq. 3.3.4.3)
are updated in Alg. 2, (lines 14-17). The linear velocity in the opposite direction
w.r.t the closest obstacle at Ci is related to the joint velocity through the differential
kinematic equation ẋi = Ji q̇. Subsequently the suitable reference velocity for colli-
sion avoidance can be defined to be proportional to the difference between current
task variable xci and any x∗ > xMi . Therefore, the velocity that drives xci toward its
corresponding objective x∗ is

˙̄xci = κ(x∗ − xci) (3.3.4.4)

To generalize the above scalar representation of the collision avoidance task in to an
m-dimensional task, we make use of the following notation: Xc ∈ Rm is the task
variable vector, ˙̄Xc ∈ Rm is a vector of suitable reference rate for the task vector
Xc and JCA ∈ Rm×n is the obstacle avoidance task Jacobian. They can be described

3.3. General Framework for Collision Avoidance 31

using the scalar quantities shown in eqs. (3.3.4.1) - (3.3.4.4) as follows:

Xc =
[
xc1 xc2 · · · xci · · · xcm

]T ;
˙̄Xc =

[
˙̄xc1

˙̄xc2 · · · ˙̄xci · · · ˙̄xcm

]T (3.3.4.5)

and the collision avoidance task Jacobian is given by

JCA =
[

J1 J2 · · · Ji · · · Jm
]T (3.3.4.6)

The main call to the collision avoidance starts in Alg. 2 by initializing the maps
and loading bounding sphere centers in link frame (line 1). At every control cycle,
new point cloud and the voxelized robot links are updated and inserted into their
corresponding voxel map while the position of the sphere centers are computed us-
ing forward kinematics (line 2-8). This is followed by a call to a gpu kernel that
implements Alg. 1 to compute the EDT of the maps (line 9). Note that, the EDT
transform is stored and updated in GPU memory while only the minimum distance
obstacle coordinate to the sphere centers {C1 . . . Cm} are copied back to the CPU to
update the Jacobian (eq. 3.3.4.3) and control (eq. 3.3.4.4) by calling Alg. 3 in line 12
of Alg. 2.

3.3.5 Self-Collision Avoidance

Self-collision avoidance of an arbitrary link utilizes EDT of a set of prior links to
determine the closest points. In general, the obstacle of a kinematic chain in self-
collision sense is composed of all other links in the robot body L1, L2, . . ., Li that are
not in the allowed collision matrix (ACM) and it is given as:

OL = {L1, L2, . . . , Li} (3.3.5.1)

All links in the set OL are voxelized offline, transformed and inserted into voxel grid
according to their corresponding joint state to compute the EDT for self-collision
avoidance as shown in Fig. 3.5. For our particular robotic platform, i.e Tiago robot,
links shown in yellow voxels in Fig. 3.1(b) form the set of all possible self collision
objects for the arm kinematic chain indicated by the red spherical balls.

Once the closest points are computed, for instance, osi for the a task sphere of ci,
a self-collision avoidance task constrains the relative motion of the two points in the
direction of the line connecting them. In a similar way to obstacle avoidance, the i-th
scalar self-collision avoidance task xsi and It’s corresponding Jacobian Jsi are given
as:

xsi = ‖Osi − Ci‖2 (3.3.5.2)

and

Jsi =

(
−Osi − Ci

xci

)T

Jci(q) (3.3.5.3)

3.3.6 Task Priority Controller Formulation

For a general robotic system with n-DoF, in a given configuration, q = [q1 q2 · · · qn]T,
the forward kinematics of a particular task x ∈ Rm can be expressed as a function of
joint configuration:

x(t) = x(q(t)) (3.3.6.1)

32 Chapter 3. Realtime Collision avoidance

Algorithm 2: Obstacle and Self_Collision_Avoidance

Input: Bounding Sphere Centers in Link frame {C1. . . Cm }

Bounding Sphere Radius {xM1 . . . xMm }
1: Initialisation: GPU_Voxels Self Collision Obstacle Map MS and Environment

Obstacle Map MI

2: while True do
3: update Joint_States q ={q1, q2,. . . qn}
4: {MS, MI}← ClearMap
5: OLk ← UpdateLinks(q)
6: MS ← Insert(OLk)
7: MI ← Insert(Point_Cloud)
8: {C1. . . Cm}global_frame ← ForwardKinematics(q)
9: {MS, MI}← PBA_EDT(MS, MI, m1, m2, m3)

10:
{Osi . . . Osm ; Oi . . . Om}global_frame ←

ExtractClosestObstaclePose(MS, MI, {C1 . . . Cm})

11:
Xc, ˙̄Xc, JCA, JSA, A ←

Update_Col_Jac(C1. . . Cm; Osi . . . Osm ; Oi . . . Om)

12: q̇p ← UpdatePriorityLevel(A, Xc, ˙̄Xc, JCA, JSA, q̇p−1)
13: end while

For such task variable, we also assume the existence of Jacobian relationship be-
tween task space velocity ẋ and the joint velocity vector q̇ as

ẋ = J(q)q̇ (3.3.6.2)

where J(q) ∈ Rm×n is the Jacobian matrix. Given a reference task space velocity vec-
tor ẋ, joint velocity vector q̇ that satisfies ẋ in the least-square sense, can be computed
using Pseudo inverse as

min
q̇

∥∥ẋ− Jq̇
∥∥2

=⇒ q̇ = (JT J)# JT ẋ (3.3.6.3)

Offline voxelized
Robot links

Robot Joint State

Transform

and

Insert link

Voxels into

Distance Map

Allowed Collision Ma-
trix (ACM)

Self Obstacle
Euclidean Distance

gpu voxels

FIGURE 3.5: Pipeline for Self collision minimum distance domputa-
tion: The voxel model of Links that are not in the ACM are trans-

formed and Inserted inside a GPU_voxels map followed by EDT.

3.3. General Framework for Collision Avoidance 33

Algorithm 3: Update_Col_Jac

Input: {C1. . . Cm; Osi . . . Osm ; Oi . . . Om}global_frame
1: for i = 1 to m do
2: Jci(q)← Compute Position Jacobian at Ci
3: xsi ← ‖Osi − Ci‖2
4: xci ← ‖Oi − Ci‖2

5:
Compute Self Collision Avoidance Jacobian at Ci

Jsi(q)← (−Osi−Ci
xsi

)T Jci(q̂)

6:
Compute Obstacle Avoidance Jacobian at Ci

Ji(q)← (−Oi−Ci
xci

)T Jci(q)

7:

Compute Activation Value As(i,i) , Ao(i,i)
As(i,i) ← Sigmoid(xsi , xMi , bi)

Ao(i,i) ← Sigmoid(xci , xMi , bi)

8:
Compute Control ˙̄xsi , ˙̄xci

˙̄xsi ← κ(x∗ − xsi)
˙̄xci ← κ(x∗ − xci)

9: end for
10: Return Xc, ˙̄Xc, JCA, JSA, A

The manifold of all solutions can be derived by introducing null space projector that
ensures task velocity remains unchanged:

q̇ = (JTJ)#JTẋ + (I− (JTJ)#JTJ)q̇0 (3.3.6.4)

where (.)# represents generalized pseudo-inverse and q̇0 denote a joint velocity that
produce an orthogonal component of ẋ i.e. not affecting the desired task.

Task insertion and removal is handled using a diagonal task activation matrix
A ∈ Rm×m associated with each task x ∈ Rm whose value is given by

A(i,i) =

1 xi ≥ xMi (Activated)
si(xi) xMi − bi ≤ xi ≤ xMi (transition)
0 xi ≤ xMi − bi (Deactivated)

(3.3.6.5)

where si(xi) is the sigmoid function given by

si(xi) =
1
2

(
cos

(xi − xMi)π

bi
+ 1
)

(3.3.6.6)

Where bi, xi and xMi are the i-th task transition buffer, i-th elements of the task x
and the task activation threshold of the i-th task respectively. with the activation ma-
trix A, the minimization problem in eq. (3.3.6.3) takes the form minq̇

∥∥A(ẋ− Jq̇)
∥∥2

showing that only tasks that are active will be considered in the minimization prob-
lem.

To avoid large joint velocities due to task singularity, singular value oriented
regularization term is required to penalize joint velocities in the task singularity di-
rection. Even more, to tackle practical discontinuity due to task activation and de-
activation, a task oriented regularization term is added to selectively penalize scalar
tasks that are in transition phase. Thus, introducing both singular value oriented

34 Chapter 3. Realtime Collision avoidance

and task-oriented regularization in to the minimization problem in (3.3.6.3) gives

min
q̇

∥∥A(ẋ− Jq̇)
∥∥2

+ ‖Jq̇‖A(I−A)
2 +

∥∥VTq̇
∥∥

P
2

(3.3.6.7)

where VT is the right orthonormal matrix of the SVD decomposition of JT AJ =
UΣVT and P is a diagonal regularization matrix where each diagonal element p(i,i)
is a bell-shaped function of the corresponding singular value of J, or zero if the cor-
responding singular value do not exist and the notation ‖ · ‖P indicates the weighted
norm, i.e. ‖q̇‖2

P = q̇TPq̇. The generalized solution of (3.3.6.7) is then given by

q̇ = (JTAJ + VTPV)#JTA Aẋ

+ (I− (JTAJ + VTPV)#JTAAJ)q̇0

(3.3.6.8)

where q̇0 can be used to perform lower priority tasks in hierarchy.

3.4 Experiments

3.4.1 Experimental Setup

The 7-DoF Tiago robot arm is used in the experiments to interact with a dynamic ob-
stacle. The scene is captured at 30 Hz by an ASUS Xtion 3D camera available on the
Tiago robot head and eventually transformed to the base frame of the robot using the
approach described in section 3.3.1. The obstacle and self-collision avoidance Alg. 2
calls the GPU kernel from GPU_voxels library in lines 1-8. An external computer
hosting an NVIDIA GeForce GPU (GeForce GTX 1080 Ti) with 3584 CUDA cores
for parallel distance computation is used for this purpose. Even though the robotic
arm can only span a volume of less than 1.2 m x 1.2 m x 1.8 m, the experiments are
performed on a 1.92 m x 1.92 m x 1.92 m physical volume and evaluated the real
time property of maps as large as 20.48 m x 20.48 m x 5.12 m, i.e (512x512x128 with
4cm voxel size). During all experiment scenarios, the following task hierarchy is
considered: (1) Joint limiter (2) Collision Avoidance and (3) End-effector Pose con-
trol, where the priority goes from the highest to the lowest with the joint limiter and
collision avoidance tasks are activated and deactivated according to an activation
matrix.

3.4.2 Dynamic Obstacle Avoidance Results

The real time obstacle avoidance is demonstrated by selecting two test scenarios:
the first test case is to interact with a dynamic scene formed by an approaching per-
son while the robot is tracking a set point and the second test scenario is to follow
an end-effector trajectory while also avoiding dynamic obstacle. During our exper-
iment, the PBA updates distance map at about 350 Hz which is much higher than
other robot obstacles distance evaluation methods. Even though scene point cloud
is updated at 30 Hz, the control points continue to move along with the robot link,
therefore their corresponding minimum distance evaluation should be performed at
higher rate. In the first scenario, the Tiago arm avoids collisions in real time from a
dynamic obstacle, as shown in the sequence of Figs. 3.6 and accompanying video1. A
person walking faster than an average human walk speed (approximately 1.4 m/s)

1https://drive.google.com/file/d/1uu7fmqTX9dWkxG90lXoo85LdTbw-HKkt/view?usp=
sharing

https://drive.google.com/file/d/1uu7fmqTX9dWkxG90lXoo85LdTbw-HKkt/view?usp=sharing
https://drive.google.com/file/d/1uu7fmqTX9dWkxG90lXoo85LdTbw-HKkt/view?usp=sharing

3.4. Experiments 35

FIGURE 3.6: Experiment 1: The sequence of images top-down
demonstrate real time collision avoidance from a dynamic obstacle

while tracking end-effector setpoint.

approaches the robot from different directions. With reference to Fig. 3.6, the first
two images in the sequence show a person approaching the robot from the front,
in the next three the person approaches the robot from the side, in the next two the
person moves his hand close to the robot end effector from the top and finally full
body approach is shown in the last two images. In all these cases, the robot success-
fully avoids collision. As the person retreats from the scene, the end-effector control
task pushes the end-effector to the desired pose. The real time velocity command,
obstacle avoidance task activation value and minimum distance associated to this
maneuver is given in Fig. 3.7. Note that the activation value and minimum obsta-
cle distance for the 12th, 11th, 10th and 9th Bounding Spheres indicated in the plot of
Fig 3.7 are associated to the last four spheres of the robot model and the remaining
spheres are omitted because they remain deactivated throughout the experiment.
The collision avoidance activation matrix A is also seen to get activated only when
the person enters the scene and deactivated when the person exits, see Fig 3.7.

In our second experiment, the robot end-effector follows a trajectory composed
of two way-points, moving back and forth between them. A fast dynamic obstacle
is formed by a box hanging through a thread, oscillating and spinning toward the
robot, therefore requiring a fast reaction. As shown in Fig. 3.8 and the accompanying
video2, the robot avoids collision while also following end-effector trajectory as a
lower priority task. A small part of the 3d Cartesian waypoints(red) and end-effector
trajectory (blue) is shown in Fig 3.9.

3.4.3 Task Oriented Regularization: Evaluation

To specifically evaluate concern with the practical discontinuity, an experiment (ex-
periment 3) is performed in which the robot arm followed an identical trajectory
with and without task oriented regularization. As shown in Fig. 3.10, the joint ve-
locity command at the top contain regularization term which suppresses sudden
velocity jumps during collision avoidance task activation.

2https://drive.google.com/file/d/1Gqkal-3iWbv-Q39KaJLa1sPInsDdwUBF/view?usp=sharing

https://drive.google.com/file/d/1Gqkal-3iWbv-Q39KaJLa1sPInsDdwUBF/view?usp=sharing

36 Chapter 3. Realtime Collision avoidance

-0.2

-0.1

0

0.1

0.2

J
o

in
t

V
e

lo
c
it
y
 [

ra
d

/s
]

Joint 1 2 3 4 5 6 7

0

0.2

0.4

0.6

0.8

1

1.2
A

c
ti
v
a

ti
o

n
 V

a
lu

e
Bounding Sphere 13 12 11 10

0 2 4 6 8 10 12 14 16 18 20 22

Time [s]

0

0.1

0.2

0.3

0.4

0.5

C
lo

s
e

s
t

O
b

s
ta

c
le

 D
is

ta
n

c
e

[m

]

distance sphere 13 12 11 10

FIGURE 3.7: Experiment 1: Commanded joint velocities, activation
value and minimum obstacle distance during the collision avoidance

from a moving person.

3.4.4 Comparison to related works

The real time property is evaluated by examining the time elapsed to insert the scene
point cloud to a GPU and compute distance map with various the map size. As it
can be seen from Table 3.2, the rate of GPU based EDT depends linearly on the
map size. But for a map sizes of practical interest (i.e. within the limit of the robot
workspace) the distance map updates in the range of 200-500 Hz, see Table 3.2. A
GPU based implementation comparable to our work is given in Kaldestad et al.,
2014 which utilizes large set of vertices sampled from the mesh model of the robot
as opposed to bounding spheres in our work to represent the robot. The reported
time for distance field computation in Kaldestad et al., 2014 is at least 10 ms (100 Hz)

FIGURE 3.8: Experiment 2: Image sequence for a motion through
two way points with collision avoidance. An oscillating and spinning

hanging box approaching the robot arm in the workspace

3.4. Experiments 37

FIGURE 3.9: Experiment 2: Tiago End-effector trajectory. The red line
shows the desired trajectory points and The blue line shows the mod-
ified end-effector trajectory by the fast oscillating obstacle described

in Fig 3.8.

-0.3

-0.2

-0.1

0

0.1

J
o
in

t
V

e
lo

c
it
y
 [
ra

d
/s

]

Joint 1 2 3 4 5 6 7

6 7 8 9 10 11 12 13 14

Time [s]

-0.5

0

0.5

1

J
o
in

t
V

e
lo

c
it
y
 [
ra

d
/s

]

FIGURE 3.10: Experiment 3: Joint command: with Task oriented reg-
ularization (top) and without (bottom). A sharp velocity change is
observed at time 5.2, 8.6, 10.5 Sec for the same obstacle scene without

regularization.

38 Chapter 3. Realtime Collision avoidance

for a map dimension of 2 m× 2 m× 1.8 m, in addition to the 4 ms for potential field
computation. Note that the approach given in Kaldestad et al., 2014 represents the
environment in 2.5D and still our approach delivers higher performance.

To evaluate the efficiency of the PBA compared to other GPU-compatible EDT
algorithms, we considered two approaches from literature that could exploit mod-
ern GPU’s. In the first case, we evaluate a naive approach in which the parallelism
is limited to one thread per row. This is the baseline scenario achieved by setting
the banding parameters to m1 = 1, m2 = 1 and m3 = 1. Secondly, a Jumping Flood
algorithm(JFA) in Rong and Tan, 2007 that works by creating outward ripple effect
starting from the occupied voxels so that each voxel in the grid can decide which
occupied voxel is it’s closest one is also considered. Another algorithm comparable
to JFA is also presented in Schneider, Kraus, and Westermann, 2009 with time-work
complexity ofO(3dN), where d is the size of each dimension in the grid. However, It
is reported in Cao et al., 2010 that this algorithm performs slower in all scenarios con-
sidered compared to the PBA, therefore omitted from the comparison in Table 3.1.
In our comparison we considered three important factors: the level of parallelism
(GPU utilization), algorithm run-time and work complexity and computation time
for a practical map size. Although both PBA and JFA exploit GPU resource quite
well, JFA has higher work-complexity that grows very fast with the map dimension
as shown by the significant jump in time from 2562 × 128 map size to 5122 × 128 .

The comparison to algorithms whose distance computation relies on CPU based
3D representations such as Octomap and other methods utilizing approximations
are given in Tab. 3.3. Due to significant amount of latency in capturing and updating
dynamic environment using a CPU based hierarchical data structures such as Octree
(the underlying data structure of of Octomap), which is usually less than 15 Hz, com-
parison to our work is limited to static or very slowly varying scenes. The work in
Pan et al., 2013 proposed two approaches to represent obstacles: the first utilizes
Octomap directly while in the second approach they generate box collision objects
from Octomap as an approximation. The results in Tab. 3.3 shows that, the approach
in Pan et al., 2013 is notably affected by the resolution of the Octomap as well as
the robot model on which distance query is performed. Usage of high resolution
Octomap in combination with mesh model for distance query leads to prohibitive
computational time. On the other hand, for 11 bounding spheres distributed along
the arm of Tiago robot, it takes about 20 ms to complete distance computation from
an Octomap of 2 cm resolution. Although this time is acceptable in terms of real time
execution, the performance deteriorates as the number of occupied nodes in the map
rises, see Fig. 3.12. Another approach proposed in Simoni et al., 2018 approximates
the Octomap at different depth with sphere by replacing each occupied node with
sphere. Here, it is important to note that the depth of query on the Octomap af-
fects the computation time as well as the specific collision avoidance application.
To elaborate this we performed a separate experiment (experiment 4) in which the
robotic arm reaches inside a washing machine to perform inspection and grasping
in the drum. To achieve this, An offline generated point cloud model of a complete
washing machine is registered in to the scene using fiducial markers. For obstacle
avoidance task during entering and existing the interior of an appliance, depth of 14
leafs on Octomap wasn’t sufficient and going higher would incur larger computa-
tion time. However, with the proposed method in this work, a one time EDT for this
static scene was sufficient. As the robot arm moves minimum distance to the control
points is extracted for collision avoidance.

3.5. Conclusions 39

FIGURE 3.11: Experiment 4: Tiago robot arm entering the washing
machine drum.

3.4.5 Self-Collision Avoidance

This experiment demonstrates Tiago arm self collision avoidance with the entire
body in real time. The distance between the bounding spheres of the arm and the
rest of the robot part is computed and a self-collision avoidance velocity is generated
according to Alg. 2 and eqs. (3.3.5.2)-(3.3.5.3) as Tiago arm navigate from initial pose
in Fig. 3.13 to a final pose in Fig. 3.13 along the rim of the circular base.

The minimum distance of the bounding spheres on the gripper and the corre-
sponding activation matrix and joint velocities shown in Fig. 3.14 demonstrate that
the robot arm maintained threshold distance during the movement toward the set-
point.

3.5 Conclusions

This chapter presented a unified real time self and obstacle collision avoidance method
that is based on kinematic task priority control. The main idea in the proposed algo-
rithm is to perform minimum distance computation for both external obstacle and
self collision on a GPU at a very high rate so that the robot is able to react instanta-
neously to avoid collision from dynamic obstacles as well as it’s own link. Multiple
experiments on our mobile robot platform Tiago demonstrated the real time effec-
tiveness of the method. A comparison to related works on reactive collision avoid-
ance has also been given showing that the level of occupancy, resolution and depth
of query of the environment representation significantly affect their performance.

Future work will involve estimation of the velocity of the dynamic obstacle which
will improve the obstacle avoidance task. In addition we also intend to introduce
safety constraints for human interacting with robot.

TABLE 3.1: work and time complexity comparison of GPU-based
EDT computation algorithms for 3d voxel grid N = n3

Factors
PBACao et al., 2010

m1=m2=1
m3=8

JFARong and Tan, 2007
PBA-naive
m1=m2=1

m3=1

GPU Utilization
(Threads and Bandwidth)

Very high Very high under-utilized

time-work complexity O(N) O(N log n) O(N)
Run-time in (ms):

256×256×128
3.18 26.67 3.52

Run-time in (ms):
512×512×128

7.782 114.47 11.271

40 Chapter 3. Realtime Collision avoidance

0 5 10 15 20 25 30 35

occupied nodes (voxels) 10 3

0

50

100

150

200

250

d
is

ta
n
c
e
 c

o
m

p
u
ta

ti
o
n
 t
im

e
 [
m

s
]

Octomap resolution 0.02 0.01 gpu_voxels

FIGURE 3.12: 11 distance queries on Octomap as the number of occu-
pied nodes increase shows significant change in the computation time
(Red and Blue). On the other hand, time for distance queries are rela-
tively unaffected as number of voxels occupied increases GPU voxels

(Yellow).

FIGURE 3.13: Experiment 5: Sequence of images (top) showing The
arm navigating around the rim of the circular base platform to Avoid
self collision while also moving towards a set point. Visualization of

robot body as a collision object (bottom sequence).

3.5. Conclusions 41

TABLE 3.2: GPU Voxels Exact Euclidean Distance Computation Time
(in ms) with Voxel size of 0.5cm, 1cm and 2cm.

Map
Dimension[Vox]

No. of
Occupied

Voxels

Clear
Map

Insert
PointCloud

Compute
Distance

PBA

Voxel size 2cm

192x192x128 6214 0.2284 0.3281 1.7601
256x256x128 9080 0.4565 0.3179 3.2475
512x512x128 12274 0.8268 0.2580 8.1972

Voxel size 1cm

192x192x128 6863 0.9978 1.0639 2.4013
256x256x128 10014 1.2085 0.9460 3.9767
512x512x128 18274 1.3446 0.9426 11.5601

Voxel size 0.5cm

192x192x128 7263 1.0478 1.2639 2.8013
256x256x128 12014 1.2985 0.9962 4.2767
512x512x128 19304 1.5446 1.1426 12.0601

TABLE 3.3: Average minimum distance computation time (in ms) be-
tween robot and obstacle for CPU based models.

Full Octomap obstacle representation (Pan et al., 2013)

Robot
model

1cm res 2cm res 4cm res

mesh Model 269.842 145.571 107.289

bounding spheres 77.8657 19.7948 6.7741

Occupied Box approximation for obstacles (Pan et al., 2013)

1cm res 2cm res 4cm res

mesh Model 142.446 48.1075 17.459

bounding spheres 131.719 36.56 8.3969

Occupied Spheres approximation for obstacles (Simoni et al., 2018)

14 depth 11 depth 9 depth

mesh Model 142.446 48.1075 17.459

bounding spheres 17.724 11.661 9.351

42 Chapter 3. Realtime Collision avoidance

-0.2

-0.1

0

0.1

0.2

J
o

in
t

V
e

lo
c
it
y
 [

ra
d

/s
]

Joint 1 2 3 4 5 6 7

0

0.2

0.4

0.6

0.8

1

1.2
A

c
ti
v
a

ti
o

n
 V

a
lu

e
Bounding Sphere 12 11 10

3 4 5 6 7 8 9

Time [s]

0

0.05

0.1

0.15

0.2

0.25

0.3

C
lo

s
e

s
t

O
b

s
ta

c
le

 D
is

ta
n

c
e

[m

]

distance sphere 12 11 10

FIGURE 3.14: Self collision avoidance: joint velocity, activation and
minimum distance during Experiment 5 shown in Fig 3.13 .

43

Chapter 4

Efficient 6D Model Registration of
Large Objects

4.1 Introduction

The application of shape registration nowadays spans multiple areas of robotic as-
sistant tasks that require a complete understanding of the 3d scene. In this regard,
the main practical problem usually emerges due to partial information acquired by
range finders or 3D vision sensors because of occlusions. This problem becomes
particularly relevant when the robot objective is to interact in a specific way with
certain objects in the environment, having a previous knowledge about its function-
ality but only limited information about its location and that can be also considered
as obstacles form the point of view of the robot motion.

The scenario here considered is related to a mobile manipulator interacting with
a washing machine in household environments. Because of its size, the washing ma-
chine can be seen as an obstacle, but precise knowledge about its location is needed
to interact with it and perform manipulation tasks. Due to the complex geometry
of the drum’s interior, the robotic arm requires up to 1 cm accuracy in the nearest
obstacle measurement when performing inspection and grasp inside the appliance
drum which can only be achieved through full model registration. Besides, to per-
form grasping of pieces of laundry inside or on the exterior of the appliance, laundry
region segmentation is important. Our registration algorithm can contribute to the
correct removal of the point clouds related to the appliance out of the scene. The
same principle can be applied to similar scenarios in which robots need to interact
with other appliances or machines in general. To solve this issue, shape registration
algorithms provide information about the location of a known objects to the robot
manipulator, assuming that the robot has some representation of the object embodi-
ment, such as a 3D CAD model.

The main issue related to the case of relatively big objects is that only limited
information can be obtained by 3D vision sensors. This is due to the limited field
of view of devices such as 3D scanners, RGB-D cameras and LiDAR, and due to the
shape and size and occlusions of target object. This issue is also made harder by the
fact that very likely those objects have very limited features that can be exploited
by the vision system. In facts, many registration algorithms highly depend on the
accurate initial transformation provided by feature-based methods that have been
widely used over the years as a solution. However, feature-based methods require
sufficient shape textures on the given objects in order to calculate the local features.

In this chapter, we provide an efficient algorithm to align the 3D model of a do-
mestic appliance with point cloud provided by a live RGB-D camera in a robust way
by combining object detection based on deep learning, GPU-based implementation
of the Iterative Closest Point (ICP) algorithm and exploiting OcTree structure. The

44 Chapter 4. Efficient 6D Model Registration of Large Objects

FIGURE 4.1: The workflow of shape registration.

proposed scenario is selected because, in common household environments, usu-
ally only the front of the object is visible, but the robot needs to have a complete
knowledge about its spatial location and encumbrance during the interaction with
the internal parts of the appliance.

A deep learning-based approach is implemented in order to have better initial-
ization and avoid computational complexity of feature-based methods. The first
step in our approach is to determine relevant points on the image plane using deep
learning based object detection techniques. This result is exploited to obtain a pre-
liminary information about the appliance location in the camera frame. The initial
pose guess allows us to apply adaptive filtering on the scene data as well, while
localizing the robot with respect to the appliance. The initial pose estimate inte-
grate the rigid transformation obtained from pose estimation module to the solution
of initial estimation problem. The proposed approach has the following important
contributions:

• Improved shape registration in terms of accuracy and speed by using feature-
less technique in combination with usage of OcTree structure in the ICP com-
putation on GPU.

• Comparisons to the different registration approaches that involves Feature-
based technique, involving various data structure and computing hardware
(CPU and GPU).

4.2 Related Works

Object Detection: Nowadays, deep learning based object detection is one of the
hot topics in computer vision. In recent years, one-stage models (Liu et al., 2015),
where localization and classification processes are conducted in a single step by
eliminating initial region proposals provide usually faster and more efficient results
than two-stage approaches (Girshick et al., 2013; Ren et al., 2015). The evaluation
metrics related to the different neural networks are indicated in Table 4.1. It is how-
ever, visible from table 4.1 that, one-stage models sacrifice performance for detection
of small objects to improve on speed.

Pose Estimation: Gauss-Newton (Lowe, 1987; Araújo, Carceroni, and Brown,
1996), Levenberg-Marquardt (Lowe, 1991; Weng, Ahuja, and Huang, 1989) and the

4.2. Related Works 45

TABLE 4.1: Detection results on the MS COCO dataset (Lin et al.,
2014b) regarding different values of IoU thresholds and variety of
sizes of targeted objects. mAPL - Mean Average Precision (mAP)
with large objects, mAPM - mAP with medium objects, mAPS - mAP
with small objects, mAP@.50IoU - mAP with 50% of IoU threshold,

mAP@.75IoU - mAP with 75% of IoU threshold.

Method Data Backbone AP AP50 AP75 APS APM APL

YOLOv3 trainval35k DarkNet-19 21.6 44.0 19.2 5.0 22.4 35.5

SSD300 trainval35k VGG-16 25.1 43.1 25.8 6.6 22.4 35.5

SSD513 trainval35k ResNet-101 31.2 50.4 33.3 10.2 34.5 49.8

DSSD513 traincal35K ResNet-101 33.2 53.3 35.2 13.0 35.4 51.1

RetinaNet800 trainval35k ResNet-101-FPN 39.1 59.1 42.3 21.8 42.7 50.2

ssd trainval4200 ResNet-50 0.35 0.7562 0.2472 0.4891 0.3604 0.2343

orthogonal iteration (Lu, Hager, and Mjolsness, 2000) methods are three widely uti-
lized non-linear optimization techniques to solve Perspective-n-Point (PnP) (Xiao-
Shan Gao et al., 2003; Lepetit, Moreno-Noguer, and Fua, 2009) problems. However,
the first algorithm is highly dependent on the initial projection and prone to failures
if poorly initialized. To avoid incorrect convergence and to obtain maximal pre-
cision, non-iterative EPnP (Lepetit, Moreno-Noguer, and Fua, 2009) algorithm has
been proposed to initialize non-linear approach which produces both higher stabil-
ity and faster convergence. On the other hand, the Levenberg-Marquardt method
can be considered as an interpolation of steepest descent and the Gauss-Newton al-
gorithm. In case of incorrect solution, it provides slow convergence to the desired
solution, behaving like a steepest descent method. When the solution is close to a
correct convergence, it behaves like Gauss-Newton method. This method always
guarantees convergence of the solution.

Point Cloud Registration: Several approaches are reported in literature that can
be comparable in terms of accuracy and convergence time. The ICP algorithm (Besl
and McKay, 1992; Chen and Medioni, 1991) is a dominant registration method for
geometric alignment of three-dimensional models when an initial estimate of the rel-
ative pose is known. The ICP iteratively refines a closed form solution, minimizing
an error metric by targeting maximal convergence between two data. The original
approach of the ICP uses the closest point matching which results in an exhaustive
search. Over the years, several improvements have been proposed to decrease time
needed for convergence and improve the accuracy. These variants can be classified
according to their data sampling approaches, matching and pairs weighting strategy,
threshold value for match rejection and their error metrics which give various results
depending on level of noise, shape features in three-dimensional data (Rusinkiewicz
and Levoy, 2001). It is reported in literature that the ICP can likely diverge to a local
solution depending on initial pose (Yang et al., 2016).

A probabilistic solution for both rigid and non-rigid registration problems, called
Coherent Point Drift (CPD) algorithm, is provided in (Myronenko and Song, 2010).
The ICP has been reinterpreted in (Jian and Vemuri, 2011) as an alignment problem
of Gaussian mixtures in a robust way that statistical discrepancy measure between
the two corresponding mixtures is minimized. Initial correspondence matching is
necessary step for most registration algorithms including the ICP, whereas the ICP

46 Chapter 4. Efficient 6D Model Registration of Large Objects

is highly dependent on a correct correspondence matching. In (Le et al., 2019) semi-
definite relaxation based randomized approach is proposed as a correspondence-
absent registration. To speed up the ICP algorithm, several search methods (Elseberg
et al., 2012; Samet, 1989; Wehr and Radkowski, 2018) in finding the correspondences
have been proposed.

4.3 Initial Pose Estimation

There are four different region of interests on a washing machine which can be tar-
geted in the detection step, namely the Knob, the Detergent Box, the User Inter-
face and the Glass Door. The points corresponding to the region of interest on the
washing machine is obtained in two-dimensional image plane using deep learning
based object detection. The accuracy of the detection is a crucial to improve the
performance of the point cloud registration process as explained in the previous sec-
tion. Table 4.1 shows the performance of different neural architectures trained on
MS COCO (Lin et al., 2014b) dataset with respect to different values of Intersection
over Union (IoU) threshold and the special average precision for the detection of
small, medium and large objects. The choice of the network is motivated by the
need of accuracy and tolerable detection speed of the selected architecture, whereas
SSD architecture with ResNet-50 backbone (He et al., 2015) has been considered as a
suitable solution.

The robot should localize the domestic appliance in order to interact with its
pieces and to implement numerous tasks. Besides, our shape registration algorithm
initially requires the estimated pose of the appliance with respect to the robot as al-
ready shown in Figure 4.1. For that aim, an iterative approach for the PnP problem
is implemented in order to determine the position and orientation of a calibrated
camera with respect to the world frame attached on the knob of the domestic appli-
ance as shown in Figure 4.2, given four 3D-2D point correspondences and the intrin-
sic parameters. The main reason behind choosing the iterative approach is to have
robust precision in spite of being slower solution compared to non-iterative ones.
The accuracy of the initial projection can save computation time needed for overall
convergence. In addition, it has huge impact on the overall accuracy of the ICP al-
gorithm (Rusinkiewicz and Levoy, 2001). Therefore, we are feeding the estimated
pose of the appliance into registration algorithm, whereas the general procedure is
explained in detail in Section 4.4.

To start estimating the pose, we measure the object points of interests on the
appliance with respect to the world frame. Three out of four points are the center of
the bounding boxes of Knob, User Interface and Glass Door respectively which are
shown with red colour in Figure 4.2. The fourth point alters depending on the robot
pose. Variability of the fourth point adds stability to pose estimation task, preventing
incorrect projection caused by detection so that detection on the image plane may be
mismatched with the corresponding points in the world frame depending on the
variety of camera poses. It causes significant pose estimation error and instability.
Two possible options for the last point are indicated with blue colour in Figure 4.2.

Given the homogeneous representation of 4 known object points pw
k = [Xk Yk Zk 1]T,

k ∈ {1, 2, 3, 4} expressed with a reference frame attached to the observed object, the
homogeneous image points p′k = [uk vk 1]T with respect to the camera frame are
obtained by projecting the points pw

k into the image plane by means of a generalized

4.3. Initial Pose Estimation 47

FIGURE 4.2: PnP estimation.

camera model which can be expressed as

p′k =
1
s

A [Rinit|tinit] pw
k (4.3.0.1)

where

A =

 fu 0 cu

0 fv cv

0 0 1

 (4.3.0.2)

is the camera matrix containing the camera intrinsic parameters, such as the focal
length coefficients fu, fv and the principal points cu and cv, s is a scalar parameter
and Rinit and tinit are respectively the rotation matrix and the translation vector rep-
resenting the relative position of the object frame with respect to the camera. The ro-
tation matrix Rinit ∈ SO(3) is orthogonal, which satisfies the constraints RT

initRinit = I3
and det(Rinit) = 1. The matrix Rinit can be specified with three consecutive rotations
around the frame axis using Euler angles {θx, θy, θz}

Rinit = Rinit(θx)Rinit(θy)Rinit(θz) (4.3.0.3)

From eq. (4.3.0.1) we define a homography matrix H as

H =
1
s

A [Rinit|tinit] =

h1 h2 h3 h4

h5 h6 h7 h8

h9 h10 h11 h12

 (4.3.0.4)

By defining the vector h̄ = [h1, · · · , h12] containing the elements of H, the projection
of the 4 considered object points into the image plane can be represented by the
function f (h̄)

f (h̄) = Blockdiag([H, H, H, H])[pw
1 pw

2 pw
3 pw

4]
T (4.3.0.5)

where Blockdiag([H, H, H, H]) is the block diagonal matrix having four H matrices
along the diagonal. Considering that the intrinsic parameters in A are known, the

48 Chapter 4. Efficient 6D Model Registration of Large Objects

elements of h̄ can be defined as a function of the pose vector θ̄ = [θx θy θz tx ty tz]T

containing the 3 Euler angles {θx, θy, θz} and the three components {tx, ty, tz} of the
translation vector t, i.e. h̄ = g(θ̄),

Assuming the vector b′ contains 4 detected image points, the re-projection error
can be computed as

Einit(θ̄) =
∥∥b′ − f (g(θ̄))

∥∥2 (4.3.0.6)

An iterative solution based on the non-linear Levenberg-Marquardt optimization
allows us to compute the rotation matrix Rinit and the translation vector tinit in order
to minimize the re-projection error, which is the sum of squared distances between
the actual image points and the projected object points.

Then, we compute Jacobian matrix J of the re-projection error E(θ̄) by combining
two Jacobian matrices J f and Jg

J =
∂ f (g(θ̄))

∂θ̄
=

∂ f
∂g

∂g
∂θ̄

= J f Jg (4.3.0.7)

To minimize re-projection error, the pose vector θ̄ is updated recursively at each step
k as

θ̄k+1 = θ̄k + (JT
k Jk + λ diag(JT

k Jk))
−1 JT

k (b̄′ − f (g(θ̄k))) (4.3.0.8)

where θ̄k and Jk are the estimated parameter vector θ̄ and the related Jacobian J at
the generic step k respectively, λ > 0 is a damping factor and diag(JT

k Jk) means
a diagonalized matrix of (JT

k Jk). We iterate the computation until the re-projection
error becomes smaller than the certain threshold, i.e. Einit(θ̄k) < α. Once the position
and the orientation of the washing machine with respect to the robot is estimated, the
robot can exploit this information to feed into the point cloud registration algorithm.

4.4 Point Cloud Registration

Reliability of initial transformation has a significant influence on computation time
and accuracy of the ICP algorithm. To this end, feature extraction algorithms are
largely used in the initial guess, but they tends to be error-prone in case of large
occlusions and in the presence of significant noise in the data. In the considered sce-
nario, removing non-appliance points from the scene by filtering has huge impact on
accuracy of the result and computational complexity such that running search algo-
rithms through each point in model data in the correspondence matching between
the scene and the model points is computationally expensive, in particular in the
presence of noisy data. Therefore, the scene point cloud captured by a RGB-D cam-
era of the robot is filtered using Passthrough filter in order to decrease computation
time and to increase accuracy of the registration algorithm.

We estimate the initial projection as described in the previous section (section 4.3)
as opposed to the traditional approaches that require feature extraction and corre-
spondence computation, thereby speeding up the point cloud registration process
and make it more reliable. Assuming B is a finite set of points obtained by uni-
formly sampling the appliance CAD model, which points in the object frame are
named bj ∈ B, j = {1 . . . , Nm}, the initial transformation in the camera frame can be
described as:

oj = Rinit bj + tinit, j = {1 . . . , Nm} (4.4.0.1)

where oj, j ∈ {1, . . . , Nm} represents the model point cloud in the camera frame after
initial transformation, we will refer to this point cloud as O0 in the following

4.4. Point Cloud Registration 49

After the initial transformation provided by eq. (4.4.0.1), we recursively refine
the registration using the ICP algorithm. Let S be the scene point cloud obtained by
filtering the camera data, which points are referred by si, i ∈ {1, . . . , Ns}. Since the
scene point is fixed, the center of mass of the scene cloud is computed and a new
point could with origin on the center of mass is created:

CS =
1

Ns

Ns

∑
i=1

si, ∀si ∈ S (4.4.0.2)

S ′ := {si
′ : si

′ = si − CS , ∀si ∈ S}, (4.4.0.3)

Thereafter, the algorithm is initialised by the initial projection eq. (4.4.0.1), i.e. Ok =
O0 at the initial step. Hereafter, the model point cloud is updated at each iteration k
in order to achieve a suitable alignment of the model with the point cloud provided
by the 3D camera, that is considered fixed. In order to find the correspondences
between closest points between model and scene point clouds, the conventional ICP
algorithm computes the Euclidean distance between each point in model set oj ∈ Ok
and each scene point si ∈ S . This generates a new point cloud

Mk :=
{

mi : min
oj

{√
o2

j − s2
i

}
, ∀si ∈ S , ∀oj ∈ Ok

}
(4.4.0.4)

composed by Ns points oj from the model point cloud Ok representing the point
having the smaller distance to their counterpart in the filtered scene point cloud S .
It results that the conventional ICP algorithm (Besl and McKay, 1992) looks through
every model point in order to compare distances and to find nearest neighbor related
to given source point. This approach causes great computational complexity in the
order of O(NSNM), i.e. the computation time increases proportionally with respect
to the product between the number of points in each set. To improve the effeciency
of the algorithm, the model point cloud is partitioned into an optimized data struc-
ture by exploiting OcTree, a special type of space partitioning which provides faster
solution in nearest neighbor searches in many applications. OcTree speeds up this
process by subdividing recursively each node in a tree into eight children, as it im-
plements searching only through points inside its octant. The average computation
time for the nearest neighbor search using OcTree structure emerges to be in the
order of O(NSlogNM).

To converge to the global minimum in the registration, one useful approach is fil-
tering correspondences (Holz et al., 2015) to reduce the number of the false matches,
once corresponding pairs of the points are determined. There are several filtering
policies of correspondence rejection based on distance, duplicity, surface properties
and statistics. In this work, the outliers are eliminated according to their distance in
GPU-based algorithms. It filters out the matches with a distance larger than given
threshold where it is also formulated in the original ICP algorithm, see Figure 4.3.

The center of mass of the model cloud is found and subtracted from each model
point mi at each iteration:

CM =
1

Ns

Ns

∑
i=1

mi, ∀mi ∈ Mk (4.4.0.5)

M′
k := {mi

′ : mi
′ = mi − CM, ∀mi ∈ Mk}, (4.4.0.6)

50 Chapter 4. Efficient 6D Model Registration of Large Objects

FIGURE 4.3: Outliers filtering: Rejection based on the distance
between the points

The goal in the registration process at each k-th iteration is to determine best fit
transformation Tk between point clouds defined as

Tk =

 Rk tk

0 0 0 1

 (4.4.0.7)

that allows to optimally match the model point cloud with the one provided by the
3D camera. To achieve this goal, the convergence to zero of the following point-to-
point error metric must be ensured

Eicp(Rk, tk) =
1

Ns

Ns

∑
i=1

wi ‖mi − Rk si − tk‖2 (4.4.0.8)

where the weighting factor wi can be used to normalize the matches in the least
squares formulation. The proposed algorithm then updates the rotation matrix Rk
and the translation vector tk in the transformation matrix Tk by means of Singular
Value Decomposition (SVD). To do so, the point clouds are organized in the column
vectors Mk, M′k and S′ containing the points ofMk,M′

k and S ′ respectively. Then, to
define the optimal transformation, the cross-covariance matrix is computed in order
to apply the decomposition:

P = M′kS′T (4.4.0.9)

By applying SVD to P
P = UΛVT (4.4.0.10)

the rotation matrix Rk and the translation vector tk can be computed as

Rk = UVT (4.4.0.11)
tk = CM − RkCS (4.4.0.12)

Assuming Mh
k is homogeneous representation of the vector Mk, the model point

could can be aligned with the filtered scene point cloud using the inverse of Tk

Mh
k+1 = T−1

k Mh
k (4.4.0.13)

Considering the orthogonality condition of the rotation matrix R−1
k = RT

k :

Mh
k+1 =

 RT
k −RT

k tk

0 0 0 1

Mh
k (4.4.0.14)

4.5. Experimental Results 51

This procedure is iterated until the termination criteria is satisfied. Termination
criteria (Holz et al., 2015) can be determined according to maximum number of it-
erations, relative minimum transformation threshold between iterations, maximum
number of similar iterations and the absolute or relative value of error metric, i.e.
Eicp(Rk, tk) < α, where α is a positive threshold. Since this work aims to compare
different variants of the ICP algorithms, the refinement of the scene data is processed
recursively until the given iteration count is obtained.

4.5 Experimental Results

Object Detection: Our data set consists of 3700 training and 500 validation im-
ages. The data samples are collected using a camera mounted on a mobile robot.
Training images have been labelled in both automatic and manual ways. The auto-
matic labelling is based on the fiducial markers (Garrido-Jurado et al., 2014; Romero-
Ramirez, Muñoz-Salinas, and Medina-Carnicer, 2018) and annotation type with 2500
samples of training data in order to increase the number of samples and speedup
labelling process. The rest of training images have been labelled manually on the
marker-free scenes to increase accuracy of detection and to avoid the network learn-
ing the marker itself.

SSD architecture with ResNet-50 backbone is retrained on NVIDIA GeForce RTX
2080Ti graphics adapter over 65K steps using TensorFlow library (al., 2015). The
learning rate is initially assigned to 0.04. However, it adaptively decreases over
training process relative to the number of an iteration in order to provide a smooth
convergence of the cost function to zero value. We set the momentum optimizer
coefficient γ to 0.9. All the input images are normalized and augmented by rotation,
flipping and contrast variance. Table 4.2 indicates that training with our dataset
shows satisfying results for large objects.

Pose estimation: Once the localization of the corner points of the bounding
boxes surrounding targeted appliance parts on the image plane through the detec-
tion module is achieved, four points on the image plane which are not preserving
collinearity condition are selected. Those points of interest are directly fed into pose
estimation algorithm for each frame of the scene. This implementation avoids ad-
ditional computation for feature extraction and correspondence matching between
scene and model images. Given three-dimensional points in the world frame and
the selected points on the image plane, SSD integrated algorithm provides only four
correspondences which results in a reliable and stable pose estimation.

The results of the pose estimation algorithm can be seen in Figure 4.5 and in Fig-
ure 4.7 respectively. The pose accuracy becomes satisfying due to iterative non-linear
optimization. The stability of pose allows us to implement the initial projection of
point cloud which highly influences the accuracy of the ICP registration algorithm.

TABLE 4.2: mAP values after 65K steps of training process. mAPL -
mAP with large objects, mAPM - mAP with medium objects, mAPS -
mAP with small objects, mAP@.50IoU - mAP with 50% of IoU thresh-

old, mAP@.75IoU - mAP with 75% of IoU threshold.

mAP @.50IoU @.75IoU mAPL mAPM mAPS

0.3537 0.7562 0.2472 0.4891 0.3604 0.2343

52 Chapter 4. Efficient 6D Model Registration of Large Objects

FIGURE 4.4: Washing machine: Feature maps fetched from the
certain hidden layer of the neural network.

FIGURE 4.5: Washing machine pose.

Besides, localizing a domestic appliance in a three-dimensional space with respect
to the robot allows us to implement manipulation tasks on the appliance.

Point cloud registration: Table 4.3 reports the comparison of the proposed method
to various of registration approaches to highlight their differences in computation
time of the convergence with respect to the device on which they are implemented,
i.e. CPU or GPU. Intel(R) Core(TM) i9-9900K CPU @ 3.60GHz has been deployed
for the CPU-based operations. GPU-based parallel programming is implemented
in order to create a registration structure handling the ICP algorithms using con-
ventional and OcTree search methods. The GPU algorithms are conducted using
NVIDIA GeForce RTX 2080Ti graphical adapter. The 3D model and the scene point
set are fetched using PCL library and stored initially in memory for the CPU oper-
ations. However, they are transferred in the graphical adapter’s memory addresses
to implement CUDA-based algorithms. The threshold distance for correspondence
rejection has been set to 0.6 in GPU-based implementations. Multiple scenarios are

4.5. Experimental Results 53

TABLE 4.3: Comparison between the algorithms. Scene point cloud:
12599 points, Model point cloud: 117542 points.

Algorithm Initial Projection [s] ICP [s]

ICP CPU Feature-based 10.857 5.522

ICP CPU PnP 0.268 4.106

ICP GPU conventional 0.266 1.597

ICP GPU OcTree 0.258 0.184

(a) (b)

FIGURE 4.6: Projection of the model cloud after initial estimation.
blue: filtered scene point cloud, red: the model point cloud after

DL-based initial transformation, oj: the model point in the camera
frame.

considered to validate the efficiency of our algorithm, i.e with open and closed glass
door cases and with the presence of occlusions in the scene. The ICP computation
performance in terms of time with GPU implementations is about 30 times faster
than their CPU counterparts. If the initial pose estimation is taken into account,
feature-based estimation takes up to 42 times more compared to a deep neural net-
work employed in our work.

The model point cloud contains three-dimensional points of 117.542 after uni-
form sampling of the mesh data, which is shown in red colour in Figure 4.6. Consid-
ering the original representation of the scene point cloud contains the high number
of non-appliance points fetched directly by the robot camera, the effect of filtering
can apparently be seen in Figure 4.6 such that it completely eliminates background
points from the scene data. One of the main impact of filtering in our experiment is a
glass door-open configuration of the appliance. The registration algorithms tend to
diverge to a local minimum in the presence of a glass door of the washing machine
without priori filtering. The reason behind is absence of the glass door in our model,
causing incorrect mismatches between point clouds. However, filtering provides the
algorithm to converge to desired solution both in opened and closed configurations
of the glass door.

In our experiments, a vague estimation of transformation between the point
clouds for the initial projection is conducted in the absence of feature extraction. The
estimation of pose is conducted with four 3D-2D point correspondences, whereas
image points obtained by deep learning based object detection method. The model

54 Chapter 4. Efficient 6D Model Registration of Large Objects

FIGURE 4.7: The results of the ICP algorithm. The closed glass door
configuration.

point cloud after initial transformation is represented with green points in Figure 4.6.
The final alignment of the model onto the scene point set, in case of the closed glass
door configuration of the appliance, is represented in Figure 4.7.

In order to see the effect of our solution on the accuracy of the ICP algorithms, we
also implemented feature-based calculation of the initial projection based on FPFH
(Rusu, Blodow, and Beetz, 2009) descriptors. The results in multiple trials show a
superiority of deep learning based approach over the classical one. It allows us to
skip computational complexity for feature matching in the correspondence estima-
tion step and gives higher accuracy with respect to former method. Table 4.3 indi-
cates a computational difference in terms of time complexity between feature-based
approaches and our algorithm. While determining the correspondences and esti-
mating initial transformation took 10.857 seconds on average after 6 trials, it lasted
averagely only 0.258 and 0.266 seconds at the same number of trials in GPU-based
implementations. In addition, feature-based approach is highly sensitive to camera
noise and partial occlusions. In such cases, feature-based algorithms produce less
success rate in multiple trials due to the lack of information. On the other hand, the
3D model could align to the scene point set in every trial using our approach despite
of the presence of occlusions and the state of open glass door as shown in Figure 4.8.

(a) (b)

FIGURE 4.8: Different states of the washing machine: occluded (a),
open glass door configuration (b).

4.6. Conclusions 55

4.6 Conclusions

In this work a two step 6d shape registration problem of large objects is addressed.
We exploited both the speed of OcTree search method in CUDA environment and
featureless characteristic of initial estimation of the object pose. Integrating the so-
lution of PnP problem into the registration allows us to eliminate computational
burden for the initial transformation. In addition, the approach gives accurate reg-
istration in the presence of noisy point clouds. While the presence of occlusion and
noise can have a significant influence on the results of the registration in the classical
methods, our proposed method demonstrated robustness in these scenarios. Using
the OcTree structure in the GPU-based implementation decreased the duration of
the registration process almost 30 times than time needed for the CPU-based imple-
mentation. Future activities will be devoted on the generalization of the process to
different scenarios using multiple large objects and on the automatic definition of
features for the initial alignment.

57

Chapter 5

Robotized Laundry Manipulation
and Appliance User Interface
Interpretation

5.1 Introduction

The need for automating various stages laundry washing and related operations has
many useful application in domestic as well as industrial scenarios. In particular,
appliance manufacturing industries conduct accelarated life test (ALT) on the small
fraction of appliances statistically sampled from the production line and are super-
vised by a human operators. The test cycle usually involves loading and unloading
of clothes and adjusting the washing cycle through the display interface. In this
scenario, the deployment of robotic system requires autonomous capability to de-
tect the graspable regions of the cloth and target appliance and robust user-interface
interpretation.

The detection and manipulation of deformable objects (DOs) like clothes has a
wide range of applications such as cloth washing, ironing and folding tasks (Jiménez
and Torras, 2020). Clothes are DOs characterized by having one dimension consider-
ably smaller than the other two (i.e. the thickness of the fabric) (Sanchez et al., 2018).
The challenge of manipulating and sensing DOs is massive due to their intrinsic
property of being deformable. In fact, their shape and appearance change spatially
and over time. This implies that the vast majority of the approaches and algorithm
developed for rigid objects need to be modified or are not applicable at all to DOs. A
comprehensive review of the literature on sensing and manipulation of DOs is pro-
vided in a recent survey (Sanchez et al., 2018). Extensive work has also emerged in
the literature specifically related to cloth(es): state estimation of clothes (Kita et al.,
2011); grasp point detection (Ramisa et al., 2012) and (Yamazaki, 2014); manipula-
tion for garment picking-up (Shibata, Ota, and Hirai, 2009) and (Monsó, Alenyà, and
Torras, 2012), manipulation for garment reconfiguration (Cusumano-Towner et al.,
2011) and (Doumanoglou et al., 2014). These previous works either targets a par-
ticular region of the cloth (colar, sleeve) or are trying to extract particular features
such as color for identifying graspable areas. While, In this work we directly oper-
ate on a live pointcloud thereby doesn’t rely on the these specific features for grasp
pose detection. By developing algorithm to detect important 3d shapes in the cloth
(wrinkles and blobs) from 3d pointcloud, the proposed approach can generate stable
grasp from a large of clothes.

In this work, there are two core algorithms developed: The first one is a pointcloud-
based algorithm for the identification of optimal grasping poses based on wrinkles
and blobs in a set clothes inside a bin or during recovery. The second algorithms

58
Chapter 5. Robotized Laundry Manipulation and Appliance User Interface

Interpretation

developed in this chapter deals with the user interface interpretation for washing
cycle setting using deep neural networks.

5.2 Laundry Manipulation Strategy

The laundry operations can be generalized as picking laundry from a source con-
tainer, e.g. a bin or the washing machine drum, and placing laundry inside a des-
tination container, i.e. the washing machine drum or a bin respectively. Moreover,
two intermediate undesired conditions are considered: 1) a portion of cloth lays out-
side the washing machine door; 2) a cloth drops to the floor during manipulation
between the source and the destination container. A generalization of the proposed
laundry manipulation strategy is provided in Alg. 4. We assume in this work that
the approximate location of the source and destination container is known.

Algorithm 4: Laundry Manipulation
Result: Empty Source Container

1 Input: Source Container Type C
2 SourceNotEmpty = True
3 do
4 for Ctmp ∈ {C, Door, Floor} do
5 MoveToSourcePOVLocation(Ctmp)
6 PI = GetPointCloud()
7 Z = GraspPoseDetection(pref(Ctmp), PI)
8 if Z 6= ∅ then
9 LaundryPickAndPlace(Ctmp,Z)

10 else
11 if Ctmp = C then
12 SourceNotEmpty = False

13 while SourceNotEmpty

The laundry task is basically the repetition of the same steps specialized each
time for the specific scene, i.e. the bin, the drum, the door and the floor. Note that
the bin and the drum are mutually exclusive and passed as input (line 1) depending
on the source container, i.e. if a loading or a unloading phase is considered. Then
the task starts by considering the source container: the robot moves to the desired
scene point of view (line 5) and the pointcloud PI is acquired (line 6); the grasp pose
detection is then executed on PI taking into account the specific requirements of the
current scene Ctmp (line 7); if some laundry is detected in the scene, the grasps in Z
are ranked based on specific properties depending on the current scene Ctmp and the
best one is selected to execute the laundry pick and place (line 9). In case the input
container C is empty, i.e. no grasp is found, the task terminates.

5.3 Grasping Pose Detection

Two complementary approaches for grasp poses identification for cloth-like objects
are discussed in this section. The first method was a Wrinkle detection in 3D scene.
The second approach is based on identifying graspable region: based on blob of
graspable points in the pointcloud. To improve grasp success, both wrinkle and

5.3. Grasping Pose Detection 59

FIGURE 5.1: Wrinkle detection algorithm. The input pointcloud
is segmented retrieving only the interior point of the bin (yellow).
The entropy map is build utilizing the knowledge embedded into
the convexity, curvature and combined (depth and edges) maps. The

grayscale image is shown for visualization purpose only.

blob based approaches are combined to generate a set of graspable poses Z . A cost
function based pose scoring is finally utilized to rank all the poses in Z .

5.3.1 Wrinkle Detection

When dealing with the problem of grasping cloth-like objects, wrinkles are distinc-
tive features for grasp where the information about the wrinkledness is embedded
in the 3d surface topology and therefore requires a 3d sensor to capture it. The wrin-
kle detection algorithm presented here targets the task of bin picking and recovery
grasp which consists of four distinct steps. In the first step, the segmentation of the
source pointcloud is performed by identifying the bin in the scene and segmenting
only the region in the pointcloud that are associated to the clothes only. The sec-
ond step applies a wrinkledness measure combined with additional cues (convexity
and depth) in order to find the areas of the segmented pointcloud with wrinkle-
like structures. The third step is responsible for the creation of graph structure and
path building in each detected wrinkle area. The last step, estimates a grasping pose
for each piecewise wrinkle-path. The starting with live scene pointcloud, the algo-
rithm produces poses along wrinkles described by piecewise curves (see Fig 5.1). In
the following the main components of the algorithm are discussed. The segmented
pointcloud is processed in the second step in order to detect graspable regions. A
graspability measure is employed to gain an understanding of the location of highly
wrinkled areas in the cloth. This information is encoded into an entropy map. A depth
map and convexity map are used as auxiliary cues to robustify the detection of the
wrinkled areas.

Normals Estimation

The first step in the detection of the regions is based on low-level features as the
surface normals of the pointcloud. They are computed relying on the Moving Least
Squares algorithm (Alexa et al., 2003) which smooth out the pointcloud surface by
fitting a polynomial curve before estimating the surface normals. By using this ap-
proach, a reduction in the noise in the estimation process is obtained.

The normal vectors obtained are expressed in Cartesian coordinates as (nx, ny, nz).
They are transformed in spherical coordinates since only two components are rele-
vant. The transformation involved is documented in (Rusu, 2010). The pair of angles

60
Chapter 5. Robotized Laundry Manipulation and Appliance User Interface

Interpretation

p1

p2

d

n1

n2

a1

a2

(a) Convex

a1

n1

p1

d

p2

a2

n2

(b) Concave

FIGURE 5.2: Drawing showing the convex and concave conditions.

(φ, θ) are calculated as: φ = atan
(

nz
ny

)
, θ = atan

(√
n2

z+n2
y

nx

)
The angle φ is denoted

as azimuth angle while θ as inclination angle.

Convexity Map

Detecting the concavity or convexity of a local area is important to remove from the
highly wrinkled areas the regions that are not easily graspable. The method pre-
sented here is capable of providing such understanding with a very small compu-
tation footprint. This procedure can determine if a point’s neighborhood is convex
or concave (Christoph Stein et al., 2014). Given the input and normal vectors point-
clouds in Cartesian coordinates, for each point a local neighborhood is found by
choosing local patches composed by 9 points. Focusing on a given patch, lets denote
by ~p1 the (x, y, z) coordinates of the considered point and by ~n1 its normal. Lets ~p2
and ~n2 be in turn one of its neighborhood points. The distance vector between ~p1

and ~p2 is computed as ~d = ~p1−~p2. Then, the angle α1 between~n1 and ~d is compared
with the one α2 between~n2 and ~d. A convex connection between ~p1 and ~p2 is defined
if α1 is smaller than α2. The condition can be expressed as:

α1 < α2 ⇒ cos(α1)− cos(α2) > 0 ⇐⇒ ~n1 · d̂−~n2 · d̂ > 0 (5.3.1.1)

d̂ =
~p1 − ~p2

||~p1 − ~p2||
If the condition (5.3.1.1) is not satisfied, the two points will exhibit a concave

connection between them. The computation is performed for all the neighborhood
points that satisfy a check based on the normal vectors difference angle: the convex
connectivity is calculated only if the two normal vectors n1 and n2 have a significant
angle difference between them. The original point is set to be convex if all of its
neighborhood exhibit a convex connection with him. Figure 5.2 displays the convex
and concave conditions. The results show that this simple approach is able to detect
convex regions as wrinkles and edges in the clothes, at least in an approximated way.
The combination of the entropy filter with the convexity check allows the robust
detection of convex wrinkles only.

5.3. Grasping Pose Detection 61

Depth Map

The depth map is built by using a reference plane and by evaluating the distance be-
tween each point in the input pointcloud and this plane. The choice of the reference
plane depends on the scenario. In the bin picking, the knowledge of the four top
vertices location is used for the computation of the bin-top plane. The point to plane
distance is computed for all the points of the segmented pointcloud. At the height
of the point corresponding to the largest distance is fit a plane parallel to the bin-top
one using RANSAC. This plane is used as reference level for the calculation of the
map.

Entropy Filter

The entropy filter is employed in order to quantify how much information exists
in a given local region. In particular, the goal is to discover regions of the clothes
with a sparse distribution of normals. They will result in a high value in the entropy
measure. Instead, regions with normals mostly aligned with each other will be char-
acterized by a low value in the entropy measure. For each point in the input point-
cloud a local region is considered and a two-dimensional histogram is constructed.
The histogram is built with the two spherical components of the surrounding nor-
mal vectors. Hence, It is used to model the spherical coordinate angles distributions.
The entropy measure is defined as:

H(x) = −wx

n

∑
i=1

p(xi) log p(xi) (5.3.1.2)

where x is the point considered to which a two-dimensional histogram of orien-
tation angles in spherical coordinates (azimuth and inclination) is associated. The
histogram is made of n bins for each dimension. The parameter wx is the weight
related to point x. With xi we are denoting the i-th bin of the histogram and with
p(xi) its associated value. The weight factor comes from the depth map (Sec. 5.3.1).
In particular, wx represent the intensity value in the depth map of the point consid-
ered. As the point is far away from the reference plane, its associated intensity value
is larger and the weight factor increases. As result, the points that are more distant
from the plane are preferred. If the not weighted version of the formula is needed,
wx can be set equal to one.

Wrinkles as Interpolated Splines

To improve the original piece-wise curve fitting reported in (Caporali and Palli, 2020)
on the nodes, the new idea exploited here is to build an undirected graph G = (V, E)
where the nodes (V) are interconnected by the edges (E) based on some properties.
These nodes are ordered according to a predefined sequence and a spline curve is
interpolated to them.

The supervoxel clustering algorithm (Papon et al., 2013) is utilized to create the
graph structure, by applying it to the projected segmented entropy map (i.e. the
output of Entropy Filtering step described in Section 5.3.1.

The algorithm provides, for each supervoxel, its centroid points and the set of
adjacent neighbours. The supervoxels centroids will be the nodes of the graph, the
adjacency information is used for the introduction of edges. Each node is also aug-
mented with an intensity attribute related to the wrinkledness score of the related

62
Chapter 5. Robotized Laundry Manipulation and Appliance User Interface

Interpretation

(a) (b)

FIGURE 5.3: Graph structure (a) and interpolated spline (b). In (a),
the points in the graph denote the supervoxels centroids and the seg-
ments connecting them resemble the graph edges. The different col-
ors in the nodes highlight their different intensities values. In (b), the
segmented entropy map is shown in the background with the spline

in yellow.

area in the entropy map. Figure 5.3(a) displays the result of the clustering with the
generated graph.

The obtained graph is clustered based on connected components resulting into a
set of clusters (subsets) Ci, i = 1, . . . , c where c is the number of clusters, such that
G = ∪ Ci.

The path building process reported in Alg. 5 build a path Pi = {vi,1 . . . vi,l} over
the generic i-th cluster Ci as an ordered set of distinct alternating nodes and edges,
where l is the total number of nodes in Pi. First, the node of Ci exhibiting the max-
imum intensity value is selected as v∗ (line 1). The adjacent nodes of v∗ are stored
in N via the function adj(v∗) (line 2) and the two nodes with the larger intensity
value are selected from N (lines 3 and 5). Thus, two partial paths are built (lines
8 to 20) starting from v∗ and its adjacent nodes with the higher intensity (line 8).
Then, an iterative procedure adds nodes in Pt based on a score sj computed as the
product between the intensity and curvature scores (line 14) considering the last
path node and each of its adjacent nodes. In fact, given a sequence of node posi-
tions, i.e. {vi−1, vi, vi+1}, the angle between the two 3D vectors ~di = vi−1 − vi and
~di+1 = vii − vi is γi = Γ({vi−1, vi, vi+1}) = ~di · ~di+1. Given a Von Mises distri-
bution M(·) centered on π and with variance 1, the curvature score is defined as
sc

j = M(γi). In The sequence {vl−1, vl , v}, denoting the last two elements of the path
and the candidate node under test, is considered in the computation of the curvature
score (line 13). Since M(·) is concentrated around the value of π, it is more likely to
select a straight line path. The node with the greatest product score vj∗ is chosen as
next node and added to the path (line 16). If all the candidate nodes v ∈ N have a
product score of zero, the path is closed and the loop stops. If only one neighbor is
present in N , then the method described consists simply in checking its curvature
and intensity, similarly to a flood-fill algorithm with threshold. Finally, the path Pi
is obtained just by merging rev(P1), i.e. the reversed set obtained form P1, and P2,
using v∗ as junction point (line 20).

Spline Interpolation

The nodes centroids are translated from the projected space back to the original 3D
space. Then, the nodes of each Pi are fed as set of control points to be interpolated

5.3. Grasping Pose Detection 63

Algorithm 5: Wrinkle Path Building
Input: Ci
Output: Pi

1 v∗ ← arg maxv({I(v), ∀v ∈ Ci})
2 N ← adj(v∗)
3 vn

1 ← arg maxv({I(v), ∀v ∈ N})
4 N ← N \ vn

1
5 vn

2 ← arg maxv({I(v), ∀v ∈ N})
6 Pt ← ∅ ∀t ∈ {1, 2}
7 for Pt do
8 Pt ← {v∗, vn

t }
9 N ← {adj(vn

t) \ Pt}
10 do
11 S ← ∅
12 for v ∈ N do
13 sc = M(Γ({vl−1, vl , v}))
14 s = I(v)sc

15 S ← S ∪ s

16 j∗ = arg maxj(S)
17 Pt ← Pt ∪ vj∗

18 N ← adj(vj∗) \ Pt

19 while N 6= ∅ ∪ sj∗ 6= 0

20 Pi ← rev(P1) ∪ P2
21 return Pi

by a spline in the 3D space with a degree of 2. Notice that this is an approximated
solution and different interpolation strategies can be implemented to refine it. The
result of the interpolation for a sample pointcloud is denoted in Fig. 5.3(b) as a
yellow curve.

5.3.2 Extension to Washing Machines

Robotized insertion of clothes into the washing machine drum is a complex task.
Due to many factors related to the initial point of grasp and topology/dimension of
the cloth considered, it may happen that, after the insertion, a portion of the object
lays outside the opening door of the washing machine drum. A possible strategy for
the identification and removal of clothes laying outside the drum door is here dis-
cussed by extending the approach presented in Sec. 5.3 about the bin segmentation.

The idea consists of using a pre-computed pointcloud model PO of the washing
machine for calculating a new pointcloud, named difference map PD, as the difference
between PO and the current scene PS pointclouds. The obtained PD can be used for
understanding if a misplaced cloth is present. Then, the grasping pose identification
algorithm presented in Sec. 5.3 can be employed for computing the recovery poses
for inserting it. Fig. 5.4 provides a summary view of the approach described in this
section.

64
Chapter 5. Robotized Laundry Manipulation and Appliance User Interface

Interpretation

FIGURE 5.4: Schema of the vision approach for the washing machine
recovery picking. Grayscale image shown for clarity.

Pointclouds Registration

In order to calculate PD, PS and PO should be aligned (i.e. registered). In particular,
we need to find the transformation that would bring PO to overlap PS, obtaining the
aligned model pointcloud PÔ. Notice that PO is computed offline and represents a
portion of a washing machine with the door opened. The alignment operation can be
split into 1) the problem of determining the initial (rough) transformation between
P0 and PS, and 2) the optimization of the alignment.

The initial alignment is obtained by exploiting the Samples Consensus Prerejec-
tive (SCP) (Buch et al., 2013) method. It evaluates the correspondences between fea-
ture points, as features we select the Fast Point Features Histograms (FPFH) (Rusu,
Blodow, and Beetz, 2009), and provides the initial guess for the transformation. This
is refined by the Iterative Closest Point (ICP) algorithm (Rusu, 2010) which mini-
mize the Euclidean distance error metric between the overlapping areas of the point-
clouds.

Difference Map

A reference plane is estimated from PÔ and both pointclouds are projected on this
plane. Each point in PS is matched with a point in PÔ and the two point-to-plane
distances between each of them and pref are computed. Then the distances are eval-
uated and their difference stored inside PD, Fig. 5.4 provides an example of difference
map where the point intensity values are encoded in the color-map (reddish means
close to zero). Thus, PD is used to display the regions of the washing machine where
PÔ and PS differ the most. PD is segmented by discarding all the points with a negli-
gible difference (distance) based on an user-defined threshold. Notice that if all the
points in the difference map do not satisfy the threshold, then this can be interpreted
as a signal of not presence of misplaced cloth.

5.3.3 Blob Detection

Blobs are another important features that could easily be computed to augment sce-
narios where the wrinkledness criterion produces very small number of graspable
poses. This happens in situations where clothes form a flat top whith other laun-
dry pilled up underneath. Therefore, By combining wrinkledness measure and blob

5.4. User Interface Interpretation 65

FIGURE 5.5: Grasp pose detection using blob regions. The colored
set of points represent the cluster of blobs with their principal and

normal direction computed for grasp pose estimation.

detection, the laundry grasping algorithm gives higher rate of success. Due to de-
formable nature of clothes, a robot can form the grasp shape by pushing against the
laundry where there are enough surface to make contact, particularly when parallel
grippers are utilized. In this regard, a set of densely populated clusters of points i.e.
blobs can offer another alternative.

To extract the blobs from the segmented pointcloud, we first search for the lo-
cal maxima points with respect to other points within predefined radius along the
normal direction from the surface of the container. To create graspable regions, we
perform clustering to the locally maximum points, effectively culling regions that
are not suitable for the grasp. For each cluster, a centroid and Principal compo-
nent directions are computed to determine the grasp point and it’s orientation (see
Fig. 5.5). By integrating the wrinkle and blob based techniques, there are a number
of graspable points of which the optimal one is selected for grasp execution using the
robot. To identify optimal grasp pose, a score is computed for each of grasp points
based on their location in the container, the direction of the wrinkle or blob w.r.t the
container. In the case of recovery grasp, the poses ranked by considering the point
along the outlaying part of the laundry.

5.4 User Interface Interpretation

Another important problem to autonomous robotic laundry operation is the robust
interpretation of the digital display and setup of the washing cycle. Performing
user interface interpretation from a mobile robotic platform using conventional 2d
cameras has its own challenges. The angle view, lighting condition and reflection
from the glass screen are all varying during the operation. These factors has made
the traditional computer vision approach (feature based) difficult to utilize in our
scenario and a deep convolutional neural network based approach is proposed.

The First step in this regard is to Identify important coordinate points on the
display. This requires matching points between the scene image and model image of
the display by computing the homography matrixH. The output of this step will be
coordinates of digits, symbols and leds which indicate preferred washing program
and options of the washing machine. The second task will be recognizing the value
of digits and identify programs, functions and option at which the washing machine
is working. For this, a MobilenetV2 convolutional neural network architecture has
been used to recognize 10 number of digits and additional two symbols (’-’,’h’) that
possibly appear on the appliances digital display.

66
Chapter 5. Robotized Laundry Manipulation and Appliance User Interface

Interpretation

FIGURE 5.6: The points of interest on the reference image (red, green
and blue dots marking the coordinates of programs, functions and

digits respectively).

Point of Interest Coordinate Estimation

These are Points that should robustly be identified on the scene image i.e (image dur-
ing the actual robotic execution) to perform user interface interpretation by matching
them with the model image. The model image of the user interface and each desired
point to be projected on the scene are indicated as shown in Fig 5.6. By solving the
homography problem between the scene and model images, we will get the homog-
raphy matrixH. The first step to do so is by utilizing efficient feature descriptors (in
our case SURF (Bay, Tuytelaars, and Van Gool, 2006)) to determine the key-points
in the reference and scene images (see Fig. 5.7(a) and Fig. 5.7(b)). The second step is
to Determine the correspondence between the keypoints in scene and model image
by performing a two step procedure: first an approximate matching is computed
by performing nearest neighbour search (Muja and Lowe, 2009) to rapidly generate
pairs of matching keypoints which might include false matches. Then, a homog-
raphy matrix is computed by applying RANSAC (Fischler and Bolles, 1981) to the
matching points from the previous step, thereby eliminating false positives as shown
in Fig. 5.7(c)

The idea of using this two step procedure helps to eliminate outliers (false-matches)
while also being consistent with the inliers. It also improves finding desired points
of the user interface on the scene image with high accuracy from various positions
and orientations of a camera without a need for a prior camera calibration.

Display Recognition

A MobilenetV2 convolutional neural network which takes an input tensors as the
size of 96× 96 in three dimension and gives output of (32,12) where the number 12
indicates the number of classes in Logits layer and the 32 indicates the batch size
which has been set during training step. Considering the small number of classes
to be classified (12), there was no need for training the neural network from the
scratch. Therefore, two dense layers and ten convolutional layers of MobilenetV2
network are fine tuned in training process, giving a final total loss value converging
to 0.5462 starting from nearly 3.1.

Once Homography estimation has been implemented, the scene frame captured
by the camera and the coordinates of the regions of interests are sent to the recogni-
tion steps. The regions of interests on the user interface are divided into three parts
according to their functionality (see Figure 5.10(a)). The different classes(digits, func-
tions, programs) of the target areas are enclosed with rectangles in corresponding
colours(blue, green, red).

5.5. Experimental Results 67

(a) Key points on the reference image. (b) Key points on the scene image.

(c) Final matches after eliminating the incorrect matches.

FIGURE 5.7: Keypoints from SURF descriptor. In (a) keypoints are
shown for the reference image (user interface) (b) shows descriptors
from the robot scene view. (c)Final keypoint matches after eliminat-

ing the incorrect matches.

5.5 Experimental Results

Collision Avoidance

A relevant problem during the execution of the loading and unloading tasks is re-
lated to avoiding collisions. Apart from kinematic constraint, the movement of the
arm inside the drum is also constrained by the appliance itself. Thus, in the exper-
iments, the robotic arm is velocity controlled and, for grasp execution, the redun-
dancy of the arm is exploited in a task-priority framework such that low priority
tasks are fulfilled in the null space of higher priority tasks (Bedada et al., 2020). The
task-priority framework allows us to smoothly insert a collision avoidance task in
the priority hierarchy, task that is required for the safety of the appliance as well
as the robotic arm. The full appliance model registration is performed following the
approach described in Chapter. 4. To this end, the registered model shown in Fig. 5.8
is used as collision object for the washing machine. A spherical approximation of the
robotic arm and an Octomap representation from full model pointcloud regisration
of the washing machine are utilized for reactive collision avoidance, see Fig. 5.8(b).
The minimum distance and the corresponding nearest point between the bounding
spherical volumes and the Octomap is computed by applying distance queries from
Flexible Collision Library (FCL) (Pan, Chitta, and Manocha, 2012b). The collision
avoidance task generates a repulsive velocity in the direction of the vector connect-
ing the center of the sphere bounding part of a link and the closest obstacle in case
the distance is lower than a certain safety threshold. As the robot arm moves min-
imum distance to the control points is extracted for collision avoidance. Figure 5.9
shows the commanded joint velocity, activation value and minimum obstacle dis-
tance of the baxter arm during entering and exit while also successfully avoiding
collision.

68
Chapter 5. Robotized Laundry Manipulation and Appliance User Interface

Interpretation

(a) (b)

FIGURE 5.8: (a) Scene registration with the appliance model in red,
(b) robot and appliance collision model for safe manipulation inside

the drum.

-1

-0.5

0

0.5

1

J
o
in

t
V

e
lo

c
it
y
 [
ra

d
/s

]

Joint 1 2 3 4 5 6 7

0

0.2

0.4

0.6

0.8

1

1.2

A
c
ti
v
a
ti
o
n
 V

a
lu

e

Bounding Sphere 13 12

0 5 10 15 20 25 30 35 40 45

Time [s]

0

0.2

0.4

0.6

0.8

1

C
lo

s
e
s
t
O

b
s
ta

c
le

 D
is

ta
n
c
e

[m

]

minimum distance sphere 13 12 11 10

FIGURE 5.9: Entering and exiting the washing machine drum: joint
velocity and collision avoidance activation.

5.5.1 Laundry Grasping Task

To validate the proposed approach in Sec. 5.3 and Sec 5.4 the algorithms are imple-
mented in the ROS environment with the 7-DoF Baxter robot arm, while a 3D Pi-
coFlexx camera in an eye-in-hand configuration is employed for the vision system.
The schematic representation of the proposed cyber-physical system is reported in
Fig. 5.10(a). An external PC is dedicated to run the cloth and UI vision algorithm
which provide poses as an output. A task-priority based control algorithm is then
utilized to perform grasp execution. In the experiments, the performance of the
robot in the grasps with the poses provided by the proposed method is tested.

Five clothes shown in Fig. 5.10(b) are used as test set. These clothes are selected
in order to increase the variance for what concerns the dimensions of the item but
also the type of fabric (e.g. "harder" or "softer") aiming at providing a comprehensive
analysis. In this regard, the shirt has the softest fabric in the set, whereas the jeans
have the hardest.

5.5. Experimental Results 69

External PC

Task Priority Node

Ros Service

Grasp pose
response request

Pico flexx camera driver

Pico flexx camera

Pointcloud

Joint Velocity

command
end effector pose

Joint states

Baxter Robot

Task-Priority

Controller

T
a
sk
-h
e
ir
a
rc
h
y
In
c
re
a
si
n
g

Joint limits

Avoidance

Collision

Avoidance

End-effector Pose

Control

Washing cycle config.txt

Cloth Vision Node

UI interpretation node

B
u
tt
o
n
K
n
o
b
P
o
se

UI Region of Interest

(a) (b)

FIGURE 5.10: Experimental Layout. In (a) The overall system layout:
detection, control and UI. (b) Clothes test set with rulers in centime-

ters for scale.

5.5.2 Graspability Tests

The experiments are carried out for the two tasks already introduced throughout
this chapter: the bin picking and washing machine recovery picking.

Bin Picking Task

This test is experimented having a single cloth of Fig. 5.10(b) in a bin. At the begin-
ning of the experiment, the cloth is arranged into a random configuration. Then, the
execution of the picking task is performed. In sequence, the vision system provides
a new target pose (as explained in Sec. 5.3), the robot attempt the grasp, lift the item
1 meter and release it. Hence, the cloth falls back down in the bin assuming a new
random configuration. The picking task sequence is repeated 10 times for each cloth.

Washing Machine Recovery Picking Task

This test is carried out similarly to the bin picking one. The clothes of Fig. 5.10(b) are
tested one at the time. For each cloth tested, 10 grasp trials are performed. The cloth
is placed along the drum door partially hanging out from it to simulate an incorrect
insertion. The vision system computes a target pose as described in Sec. 5.3.2. The
robot attempts the grasp, moves the grasped cloth vertically toward the drum cen-
ter, then it releases the grasp. In this case, after each grasp, the cloth is rearranged
manually in a new configuration along the drum door.

In Fig. 5.11, the sequence of actions performed for each task is depicted for clarity.
Instead, Fig. 5.12 provides a chart showing the success rates of the wrinkle-based
grasps for the two tasks from the point of view of each type of cloth. The average
success rate in the bin picking task is 0.70, while it is 0.82 in the washing machine
one. The success rates of the grasps for the two tasks is also shown to improve by

70
Chapter 5. Robotized Laundry Manipulation and Appliance User Interface

Interpretation

Bi
n

W
M

FIGURE 5.11: Sequence of motion during laundry manipulation from
Bin and Washing Machine (WM).

FIGURE 5.12: Success rates for the bin picking and washing machine
recovery picking actions.

combining wrinkle and blob based approaches. The average success rate in the bin
picking task is 0.850 with the proposed approach and 0.7 with only wrinkle based
approach. Similarly, a success rate of 0.87 has been achieved during recovery grasp
from the wachine machine in contrast to the 0.8 success rate with the wrinkle only
approach. Considering the total set of 158 grasps attempted, our algorithm provides
a target pose that results on a successful grasp in 84% of the cases. The full cycle
execution of the laundry loading and unloading task is shown in the accompanying
video1. The failure in the grasps are mostly related to wrong orientations of the
target frame resulting from an erroneous identification of the wrinkle path. In a
smaller extent, failures can be also associated to measurement errors of the camera,
calibration errors for the eye-in-hand and accuracy of the robot arm itself.

FIGURE 5.13: UI homography estimation for recognition from sharp
angles and varying glass reflection.

1https://drive.google.com/file/d/1YwSVt8GzLccz_W9lTMr4pb5_r1pcGYdl/view?usp=sharing

https://drive.google.com/file/d/1YwSVt8GzLccz_W9lTMr4pb5_r1pcGYdl/view?usp=sharing

5.5. Experimental Results 71

FIGURE 5.14: UI interpretation for robotic vision: For instance Spin
speed and washing temprature are set to 1400 and 30 respectively as

indicated in the interpretation output.

Additional Experiment

A second type of experiments are performed related not only to the assertion of the
correctness of the target poses provided by the algorithm, but also to the capability
of those poses to allow the robot to reach a goal state with a reasonable amount of
grasps. In particular, the capability of emptying a bin full of 4 test clothes is tested.
Performing 5 trials, an average number of 5.2 grasps are required for accomplishing
this tasks.

The capability of inserting completely a cloth hanging down from the drum door
is also evaluated by performing 5 trials for each cloth tested. In this case, we adopt
the small and big towels from the test set: for the first, an average number of 1.8
grasps are necessary; for the second, 3.2 grasps are needed;

5.5.3 Appliance User interface Interpretation

In Fig 5.13 a UI homography estimation of sequence of images from a camera mounted
on a robotic arm from various angles is shown. The robotic arm moves to various
poses, the alignment was successfully computed under varying glass reflectance and
lighting conditions. Two dense layers and ten convolutional layers of mobileNet
neural network is fine tuned (instead of training from the scratch) for display recog-
nition on 1280 training data samples. The resulting neural network was able to cor-
rectly classify the 12 classes of the display (sample output is shown in Fig 5.14). The
three categories of outputs shown on the display, i.e. digits, function and programs
are all recognized accurately as shown in this sample video 2.

2https://drive.google.com/file/d/1PSZtzydWnqhokPWT6oKgcYd01sRJ_9T3/view?usp=
sharing

https://drive.google.com/file/d/1PSZtzydWnqhokPWT6oKgcYd01sRJ_9T3/view?usp=sharing
https://drive.google.com/file/d/1PSZtzydWnqhokPWT6oKgcYd01sRJ_9T3/view?usp=sharing

72
Chapter 5. Robotized Laundry Manipulation and Appliance User Interface

Interpretation

(a) (b) (c)

FIGURE 5.15: Three candidate for final deployment has been evalu-
ated: (a) MMO-500 mobile robot with a ur-10 from Universal robot
and an extender. The size of this combination takes considerable
space which limits reachable space of robot. (b) rbkairos mobile base
from Robotnik and ur10 robotic arm. This option offers acceptable
size thanks to the relatively small size of the mobile base apart from
the large wrist of the ur10 arm. (c) The final choice for deployment
was rbkairos with ur10 arm and an extender with a gripper mounted

at angle at the tip of the extender.

5.6 Deployment and Testing

The final evaluation in the lab floor using industrial robot for laundry manipulation
and appliance operation has been performed to verify deployability. For this, var-
ious industry grade robotic platforms have been evaluated for visibility. A combi-
nation different mobile base and manipulator arms are considered: rbkairos mobile
base from Robotnik fig 5.15(b), mmo-500 mobile base Neobotix fig 5.15(a) together
with ur5 and ur10 collaborative arms and wrist extenders. The comparison is based
on the capability to reach safely the interior of the drum, navigate safely in a corridor
with narrow passage and ability to perform grasp inside the drum of an appliance
and it is performed in simulation environment. The simulation result has shown
that utilizing ur10 arm and gripper directly in the appliance drum leads to collision
due to small distance margin. Therefore, a mechanical extender shown in figs 5.16(a)
and 5.16(b) mounts the gripper at the end is developed and deployed. The study on
the dimension of the extender and angle of mounting of the gripper produced a con-
figuration with a small extension and an inclination of 15 °, could make all points
accessible for the most common types of washing machines, with wrist staying out-
side the drum (figs 5.16(c) and 5.16(d)).

5.6.1 Final Results

The capability of laundry loading and unloading by utilizing the approach proposed
in this chapter is tested on the final robotic platform. First, camera and grippers
are calibrated using standard technique to improve accuracy. With the improved
robotic hardware and high quality gripper, the success rate of the grasp from the bin
has been slightly higher to 86 % while the recovery laundry picking task has always
resulted in success in all attempts.

5.7 Conclusions and Future Work

In this chapter, a pointcloud-based approach for the perception of clothes aiming at
the robotized insertion of clothes inside a washing machine is proposed. A percep-
tion pipeline for washing machine display interpretation is also developed to per-
form washing cycle setting autonomously. The approach is validated extensively

5.7. Conclusions and Future Work 73

(a) (b)

(c) (d)

FIGURE 5.16: (a) The mechanical model of the extender with rg6 grip-
per fron onRobot. (b) Extender and gripper mounted on ur10. (c)
Reachability testing by overlying the extender and appliance CAD
model at the near end of the drum and (d) far end. It can be seen that

the wrist of the ur10 arm remains outside in both cases.

74
Chapter 5. Robotized Laundry Manipulation and Appliance User Interface

Interpretation

Bi
n

C
on

t..

FIGURE 5.17: Sequence of motion during laundry insertion from Bin
and Washing Machine (WM).

for both the bin picking and washing machine recovery picking tasks. The grasp-
ing performances are satisfactory allowing a success in 84% of the attempts while
the user interface interpretation works correctly under varying environmental con-
ditions and sharp angle of view. The work to integrate the approach presented into
a complex robotic behavior to achieve full autonomy is underway.

75

Chapter 6

Conclusions

In this dissertation, various aspects of autonomous robotic system for domestic ap-
pliance test automation is evaluated and implemented. A complete pipeline for safe
navigation and collision avoidance and a perception system for appliance and laun-
dry detection has been developed.

In chapter 2 , a navigation system that takes into account the movement of hu-
man operators using a high resolution predictive full body collision checker is de-
tailed. A safety constraint is also implemented on the local planner level of the nav-
igation system. The presence of human operator is taken into consideration by ren-
dering virtual cylindrical volume around the detected person and depending on the
distance from the human, various modes of operation are employed. This behaviour
is implemented to comply with the human-robot collaboration standard defined for
industrial setup. A task priority based versatile and efficient robotic arm controller;
MOVE-RT is designed and implemented in C++. This controller is able to incor-
porate various kinematic constraints dynamically. Considering a battery powered
mobile manipulator, energy efficiency is improved by penalizing joints associated
to large inertia within this controller. Tests that involve inspection of the interior an
appliance drum using a simulation model of the final robotic hardware and the task
priority priority controller developed in this chapter is also discussed.

The control of the robotic arm from chapter 2, is further extended to encompasses
real-time collision avoidance within the task priority control framework in chapter 3.
A GPU based distance field computation from live 3d sensor data is integrated with
the task priority controller of the arm to achieve successful collision avoidance from
a fast moving obstacles. This approach is also extended to self-collision avoidance
by offline voxelization of the robot model, real-time update of the link voxels and
euclidean distance computation. This approach helps to unify obstacle and self-
collision avoidance within one framework.

The actual perception and manipulation challenges related to washing machine
and clothe like deformable objects are discussed chapter 4 and chapter 5. To insure
safe interaction between the robot and washing machine, 6d model registration of
the appliance is computed by combining a deep learning based initial pose estimate
and a gpu-implemented octree data structure. This achieved from only a partial
view and registration includes all the internal components of the appliance. Finally,
Chapter 5 discusses efficient technique acquire stable grasp of clothes in various
scenarios i.e from the bin, door and washing machine. Wrinkled like features com-
bined with blobs on the surface of laundry are detected by segmenting regions of
the clothes with the highest entropy and convexity measure. By integrating it with
appliance user interface algorithm, full robotic laundry loading and unloading ex-
periment has been conducted.

77

Bibliography

Aalerud, Atle, Joacim Dybedal, and Geir Hovland (2018). “Scalability of GPU-Processed
3D Distance Maps for Industrial Environments”. In: Proc. IEEE/ASME Int. Conf.
on Mechatronic and Embedded Systems and Applications, pp. 1–5.

al., Martín Abadi et (2015). TensorFlow: Large-Scale Machine Learning on Heterogeneous
Systems. Software available from tensorflow.org.

Alexa, Marc et al. (2003). “Computing and rendering point set surfaces”. In: IEEE
Transactions on visualization and computer graphics 9.1, pp. 3–15.

Araújo, Helder, R. Carceroni, and C. M. Brown (1996). “A Fully Projective Formula-
tion for Lowe’s Tracking Algorithm”. In:

Bay, Herbert, Tinne Tuytelaars, and Luc Van Gool (2006). “Surf: Speeded up robust
features”. In: European conference on computer vision. Springer, pp. 404–417.

Bedada, Wendwosen Bellete et al. (2020). “A Safe and Energy Efficient Robotic Sys-
tem for Industrial Automatic Tests on Domestic Appliances: Problem Statement
and Proof of Concept”. In: Procedia Manufacturing 51, pp. 454–461.

Besl, P. J. and N. D. McKay (1992). “A method for registration of 3-D shapes”. In:
IEEE Trans. on Pattern Analysis and Machine Intelligence 14.2, pp. 239–256.

Bohlin, Robert and Lydia E Kavraki (2000). “Path planning using lazy PRM”. In:
Proceedings 2000 ICRA. Millennium Conference. IEEE Int. Conf. on Robotics and Au-
tomation. Symposia Proceedings (Cat. No. 00CH37065). Vol. 1, pp. 521–528.

Bosscher, Paul and Daniel Hedman (2011). “Real-time collision avoidance algorithm
for robotic manipulators”. In: Industrial Robot: An International Journal.

Brock, Oliver and Oussama Khatib (1999). “High-speed navigation using the global
dynamic window approach”. In: Proc. IEEE Int. Conf. on Robotics and Automation.
Vol. 1, pp. 341–346.

Buch, Anders Glent et al. (2013). “Pose estimation using local structure-specific shape
and appearance context”. In: Proc. IEEE ICRA.

Burgard, Wolfram et al. (1998). “The interactive museum tour-guide robot”. In: Aaai/i-
aai, pp. 11–18.

Cao, Thanh-Tung et al. (2010). “Parallel banding algorithm to compute exact distance
transform with the GPU”. In: Proceedings of the 2010 ACM SIGGRAPH symposium
on Interactive 3D Graphics and Games, pp. 83–90.

Caporali, Alessio and Gianluca Palli (2020). “Pointcloud-based Identification of Op-
timal Grasping Poses for Cloth-like Deformable Objects”. In: Proc. IEEE Int. Conf.
on Factory Automation and Emerging Technologies.

Cesetti, Andrea et al. (2010). “Development of a flexible test platform for household
appliance testing based on mobile agents”. In: 2010 IEEE International Conference
on Automation Science and Engineering. IEEE, pp. 855–860.

Chen, Y. and G. Medioni (1991). “Object modeling by registration of multiple range
images”. In: Proc.. 1991 IEEE Int. Conference on Robotics and Automation, 2724–2729
vol.3.

Choi, Byung June, Sung Moon Jin, Shin, et al. (2008). “Development of flexible lab-
oratory automation platform using mobile agents in the clinical laboratory”. In:
Proc. IEEE Int. Conf. on Automation Science and Engineering, pp. 918–923.

78 Bibliography

Christoph Stein, Simon et al. (2014). “Object partitioning using local convexity”.
In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 304–311.

Cusumano-Towner, Marco et al. (2011). “Bringing clothing into desired configura-
tions with limited perception”. In: Proc. IEEE ICRA.

Di Lillo, Paolo et al. (2018). “Safety-related tasks within the set-based task-priority
inverse kinematics framework”. In: 2018 IEEE/RSJ International Conference on In-
telligent Robots and Systems (IROS). IEEE, pp. 6130–6135.

Doumanoglou, Andreas et al. (2014). “Autonomous active recognition and unfold-
ing of clothes using random decision forests and probabilistic planning”. In: Proc.
IEEE ICRA.

Dozier, Gerry et al. (1998). “Artificial potential field based robot navigation, dynamic
constrained optimization and simple genetic hill-climbing”. In: Proc. IEEE Int.
Conf. on Evolutionary Computation Proceedings, pp. 189–194.

Elseberg, Jan et al. (Jan. 2012). “Comparison on nearest-neigbour-search strategies
and implementations for efficient shape registration”. In: Journal of Software En-
gineering for Robotics (JOSER) 3, pp. 2–12.

Escobar, Luis A and William Q Meeker (2006). “A review of accelerated test models”.
In: Statistical science, pp. 552–577.

Fischler, Martin A and Robert C Bolles (1981). “Random sample consensus: a paradigm
for model fitting with applications to image analysis and automated cartogra-
phy”. In: Communications of the ACM 24.6, pp. 381–395.

Flacco, Fabrizio et al. (2012). “A depth space approach to human-robot collision
avoidance”. In: Proc. IEEE Int. Conf. on Robotics and Automation, pp. 338–345.

Fox, Dieter, Wolfram Burgard, and Sebastian Thrun (1997). “The dynamic window
approach to collision avoidance”. In: IEEE Robotics & Automation Magazine 4.1,
pp. 23–33.

Garrido-Jurado, Sergio et al. (June 2014). “Automatic generation and detection of
highly reliable fiducial markers under occlusion”. In: Pattern Recognition 47, 2280–2292.

Girshick, Ross B. et al. (2013). “Rich feature hierarchies for accurate object detection
and semantic segmentation”. In: CoRR abs/1311.2524.

Greenspan, Michael and Nestor Burtnyk (1996). “Obstacle count independent real-
time collision avoidance”. In: Proc. of IEEE Int. Conf. on Robotics and Automation.
Vol. 2, pp. 1073–1080.

Hamner, Brad et al. (2010). “An autonomous mobile manipulator for assembly tasks”.
In: Autonomous Robots 28.1, p. 131.

He, Kaiming et al. (2015). “Deep Residual Learning for Image Recognition”. In: CoRR
abs/1512.03385.

Hermann, Andreas et al. (2013). “GPU-based real-time collision detection for motion
execution in mobile manipulation planning”. In: Proc. IEEE Int. Conf. on Advanced
Robotics, pp. 1–7.

Hermann, Andreas et al. (2014a). “Mobile manipulation planning optimized for GPGPU
Voxel-Collision detection in high resolution live 3d-maps”. In: Int. Symp. on Robotics,
pp. 1–8.

Hermann, Andreas et al. (2014b). “Unified GPU voxel collision detection for mo-
bile manipulation planning”. In: Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and
Systems, pp. 4154–4160.

Holz, D. et al. (2015). “Registration with the Point Cloud Library: A Modular Frame-
work for Aligning in 3-D”. In: IEEE Robotics & Automation Magazine 22, pp. 110–
124.

Bibliography 79

Hornung, Armin et al. (2013). “OctoMap: An efficient probabilistic 3D mapping
framework based on octrees”. In: Autonomous robots 34.3, pp. 189–206.

Jian, B. and B. C. Vemuri (2011). “Robust Point Set Registration Using Gaussian Mix-
ture Models”. In: IEEE Trans. on Pattern Analysis and Machine Intelligence 33.8,
pp. 1633–1645.

Jiménez, Pablo and Carme Torras (2020). “Perception of cloth in assistive robotic
manipulation tasks”. In: Natural Computing, pp. 1–23.

Juelg, Christian et al. (2017). “Fast online collision avoidance for mobile service
robots through potential fields on 3D environment data processed on GPUs”.
In: Proc. IEEE Int. Conf. on Robotics and Biomimetics, pp. 921–928.

Kaldestad, Knut B et al. (2014). “Collision avoidance with potential fields based on
parallel processing of 3D-point cloud data on the GPU”. In: Proc. IEEE Int. Conf.
on Robotics and Automation, pp. 3250–3257.

Karaman, Sertac and Emilio Frazzoli (2011). “Sampling-based algorithms for opti-
mal motion planning”. In: The Int. Journal of Robotics Research 30.7, pp. 846–894.

Karaman, Sertac et al. (2011). “Anytime motion planning using the RRT”. In: Proc.
IEEE Int. Conf. on Robotics and Automation, pp. 1478–1483.

Khatib, Oussama (1986). “Real-time obstacle avoidance for manipulators and mobile
robots”. In: Autonomous robot vehicles. Springer, pp. 396–404.

Kita, Yasuyo et al. (2011). “Clothes handling based on recognition by strategic obser-
vation”. In: Proc. IEEE ICRA.

Koenig, Sven and Maxim Likhachev (2002). “Dˆ* lite”. In: Aaai/iaai 15.
Koren, Yoram and Johann Borenstein (1991). “Potential field methods and their in-

herent limitations for mobile robot navigation”. In: Proc. IEEE Int. Conf. on Robotics
and Automation, pp. 1398–1404.

Le, Huu et al. (2019). “SDRSAC: Semidefinite-Based Randomized Approach for Ro-
bust Point Cloud Registration without Correspondences”. In: CoRR abs/1904.03483.

Lei, Maolin et al. (2020). “Real-Time Kinematics-Based Self-Collision Avoidance Al-
gorithm for Dual-Arm Robots”. In: Applied Sciences 10.17, p. 5893.

Lepetit, Vincent, Francesc Moreno-Noguer, and Pascal Fua (Feb. 2009). “EPnP: An
accurate O(n) solution to the PnP problem”. In: Int. Journal of Computer Vision 81.

Lin, Tsung-Yi et al. (2014a). “Microsoft coco: Common objects in context”. In: Euro-
pean conference on computer vision. Springer, pp. 740–755.

Lin, Tsung-Yi et al. (2014b). “Microsoft COCO: Common Objects in Context”. In:
CoRR abs/1405.0312.

Liu, Wei et al. (2015). “SSD: Single Shot MultiBox Detector”. In: CoRR abs/1512.02325.
Liu, Wei et al. (2016). “SSD: Single Shot MultiBox Detector”. In: ECCV.
Lowe, D. G. (1991). “Fitting parameterized three-dimensional models to images”. In:

IEEE Trans. on Pattern Analysis and Machine Intelligence 13.5, pp. 441–450.
Lowe, David G. (1987). “Three-dimensional object recognition from single two-dimensional

images”. In: Artificial Intelligence 31.3, pp. 355–395. ISSN: 0004-3702.
Lu, C.P., Gregory Hager, and Eric Mjolsness (July 2000). “Fast and globally conver-

gent pose estimation from video images. Patt Anal Mach Intell, IEEE Trans”. In:
IEEE Trans. on Pattern Analysis and Machine Intelligence 22, pp. 610 –622.

Mansard, Nicolas, Oussama Khatib, and Abderrahmane Kheddar (2009). “A unified
approach to integrate unilateral constraints in the stack of tasks”. In: IEEE Tran.
on Robotics 25.3, pp. 670–685.

Marder-Eppstein, Eitan et al. (2010). “The office marathon: Robust navigation in an
indoor office environment”. In: Proc. IEEE Int. Conf. on robotics and automation,
pp. 300–307.

80 Bibliography

Marvel, Jeremy A (2013). “Performance metrics of speed and separation monitoring
in shared workspaces”. In: IEEE Tran. on Automation Science and Engineering 10.2,
pp. 405–414.

Moll, Mark, Ioan A Sucan, and Lydia E Kavraki (2015). “Benchmarking motion plan-
ning algorithms: An extensible infrastructure for analysis and visualization”. In:
IEEE Robotics & Automation Magazine 22.3, pp. 96–102.

Monsó, Pol, Guillem Alenyà, and Carme Torras (2012). “Pomdp approach to robo-
tized clothes separation”. In: Proc. IEEE/RSJ IROS.

Muja, Marius and David G Lowe (2009). “Fast approximate nearest neighbors with
automatic algorithm configuration.” In: VISAPP (1) 2.331-340, p. 2.

Myronenko, A. and X. Song (2010). “Point Set Registration: Coherent Point Drift”.
In: IEEE Trans. on Pattern Analysis and Machine Intelligence 32.12, pp. 2262–2275.

Nooruddin, Fakir S. and Greg Turk (2003a). “Simplification and repair of polygonal
models using volumetric techniques”. In: IEEE Tran. on Visualization and Computer
Graphics 9.2, pp. 191–205.

— (2003b). “Simplification and repair of polygonal models using volumetric tech-
niques”. In: IEEE Tran. on Visualization and Computer Graphics 9.2, pp. 191–205.

O’Mahony, Niall et al. (2019). “Deep learning vs. traditional computer vision”. In:
Science and Information Conference. Springer, pp. 128–144.

Pages, Jordi, Luca Marchionni, and Francesco Ferro (2016). “Tiago: the modular
robot that adapts to different research needs”. In: Int. workshop on robot modu-
larity, IROS.

Pan, Jia, Sachin Chitta, and Dinesh Manocha (2012a). “FCL: A general purpose li-
brary for collision and proximity queries”. In: Proc. IEEE Int. Conf. on Robotics and
Automation, pp. 3859–3866.

— (2012b). “FCL: A general purpose library for collision and proximity queries”. In:
Proc. IEEE Int. Conf. on Robotics and Automation, pp. 3859–3866.

Pan, Jia, Christian Lauterbach, and Dinesh Manocha (2010a). “g-Planner: Real-time
motion planning and global navigation using GPUs”. In: Twenty-Fourth AAAI
Conference on Artificial Intelligence.

— (2010b). “g-Planner: Real-time motion planning and global navigation using GPUs”.
In: Twenty-Fourth AAAI Conference on Artificial Intelligence.

Pan, Jia et al. (2013). “Real-time collision detection and distance computation on
point cloud sensor data”. In: Proc. IEEE Int. Conf. on Robotics and Automation,
pp. 3593–3599.

Papon, Jeremie et al. (2013). “Voxel cloud connectivity segmentation-supervoxels for
point clouds”. In: Proc. IEEE Conf. on computer vision and pattern recognition.

Quigley, Morgan et al. (2009). “ROS: an open-source Robot Operating System”. In:
ICRA workshop on open source software. Vol. 3. 3.2. Kobe, Japan, p. 5.

Ramisa, Arnau et al. (2012). “Using depth and appearance features for informed
robot grasping of highly wrinkled clothes”. In: Proc. IEEE ICRA.

Ren, Shaoqing et al. (2015). “Faster R-CNN: Towards Real-Time Object Detection
with Region Proposal Networks”. In: CoRR abs/1506.01497.

Romero-Ramirez, Francisco, Rafael Muñoz-Salinas, and Rafael Medina-Carnicer (June
2018). “Speeded Up Detection of Squared Fiducial Markers”. In: Image and Vision
Computing 76.

Rong, Guodong and Tiow-Seng Tan (2007). “Variants of jump flooding algorithm for
computing discrete Voronoi diagrams”. In: 4th International Symposium on Voronoi
Diagrams in Science and Engineering (ISVD 2007). IEEE, pp. 176–181.

Rusinkiewicz, S. and M. Levoy (2001). “Efficient variants of the ICP algorithm”. In:
Proc. Third Int. Conference on 3-D Digital Imaging and Modeling, pp. 145–152.

Bibliography 81

Rusu, R. B., N. Blodow, and M. Beetz (2009). “Fast Point Feature Histograms (FPFH)
for 3D registration”. In: 2009 IEEE International Conference on Robotics and Automa-
tion, pp. 3212–3217. DOI: 10.1109/ROBOT.2009.5152473.

Rusu, Radu Bogdan (2010). “Semantic 3d object maps for everyday manipulation in
human living environments”. In: KI-Künstliche Intelligenz.

Rusu, Radu Bogdan, Nico Blodow, and Michael Beetz (2009). “Fast point feature
histograms (FPFH) for 3D registration”. In: Proc. IEEE ICRA.

Safeea, Mohammad and Pedro Neto (2019). “Minimum distance calculation using
laser scanner and IMUs for safe human-robot interaction”. In: Robotics and Computer-
Integrated Manufacturing 58, pp. 33–42.

Safeea, Mohammad, Pedro Neto, and Richard Bearee (2019). “On-line collision avoid-
ance for collaborative robot manipulators by adjusting off-line generated paths:
An industrial use case”. In: Robotics and Autonomous Systems 119, pp. 278–288.

Samet, Hanan (1989). “Neighbor finding in images represented by octrees”. In: Com-
puter Vision, Graphics, and Image Processing 46.3, pp. 367 –386. ISSN: 0734-189X.

Sanchez, Jose et al. (2018). “Robotic manipulation and sensing of deformable objects
in domestic and industrial applications: a survey”. In: The Int. Journal of Robotics
Research 37.7, pp. 688–716.

Sandler, Mark et al. (2018). “MobileNetV2: Inverted Residuals and Linear Bottle-
necks”. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 4510–4520.

Schneider, Frank E and Dennis Wildermuth (2003). “A potential field based ap-
proach to multi robot formation navigation”. In: Proc. IEEE Int. Conf. on Robotics,
Intelligent Systems and Signal. Vol. 1, pp. 680–685.

Schneider, Jens, Martin Kraus, and Rüdiger Westermann (2009). “GPU-based real-
time discrete Euclidean distance transforms with precise error bounds.” In: VIS-
APP (1), pp. 435–442.

Shea, Roberta Nelson (2013). “Robot Safety standard Update”. In: RIA meeting, pp. 20–
23.

Shibata, Mizuho, Tsuyoshi Ota, and Shinichi Hirai (2009). “Wiping motion for de-
formable object handling”. In: Proc. IEEE ICRA.

Simetti, Enrico and Giuseppe Casalino (2016a). “A novel practical technique to inte-
grate inequality control objectives and task transitions in priority based control”.
In: Journal of Intelligent & Robotic Systems 84.1-4, pp. 877–902.

— (2016b). “A novel practical technique to integrate inequality control objectives
and task transitions in priority based control”. In: Journal of Intelligent & Robotic
Systems 84.1, pp. 877–902.

Simoni, Roberto et al. (2018). “A novel approach to obstacle avoidance for an I-
AUV”. In: Proc. IEEE/OES Autonomous Underwater Vehicle Workshop, pp. 1–6.

Slotine, Siciliano B and B Siciliano (1991). “A general framework for managing mul-
tiple tasks in highly redundant robotic systems”. In: Proc. of 5th Int. Conf. on Ad-
vanced Robotics. Vol. 2, pp. 1211–1216.

Steinbach, Klaus et al. (2006). “Efficient collision and self-collision detection for hu-
manoids based on sphere trees hierarchies”. In: Proc. IEEE-RAS Int. Conf. on Hu-
manoid Robots, pp. 560–566.

Sucan, Ioan A, Mark Moll, and Lydia E Kavraki (2012). “The open motion planning
library”. In: IEEE Robotics & Automation Magazine 19.4, pp. 72–82.

Sverdrup-Thygeson, J. et al. (2017). “Kinematic singularity avoidance for robot ma-
nipulators using set-based manipulability tasks”. In: 2017 IEEE Conference on
Control Technology and Applications (CCTA), pp. 142–149.

https://doi.org/10.1109/ROBOT.2009.5152473

82 Bibliography

Thrun, Sebastian et al. (1999). “MINERVA: A second-generation museum tour-guide
robot”. In: Proc. IEEE Int. Conf. on Robotics and Automation. Vol. 3.

Wehr, David and Rafael Radkowski (Dec. 2018). “Parallel kd-Tree Construction on
the GPU with an Adaptive Split and Sort Strategy”. In: Int. Journal of Parallel
Programming 46.

Weng, J., N. Ahuja, and T. S. Huang (1989). “Optimal motion and structure estima-
tion”. In: Proc. IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, pp. 144–152.

Xiao-Shan Gao et al. (2003). “Complete solution classification for the perspective-
three-point problem”. In: IEEE Trans. on Pattern Analysis and Machine Intelligence
25.8, pp. 930–943.

Yamazaki, Kimitoshi (2014). “Grasping point selection on an item of crumpled cloth-
ing based on relational shape description”. In: Proc. IEEE/RSJ IROS.

Yang, J. et al. (2016). “Go-ICP: A Globally Optimal Solution to 3D ICP Point-Set
Registration”. In: IEEE Trans. on Pattern Analysis and Machine Intelligence 38.11,
pp. 2241–2254.

Yoshikawa, T. (1985). “Manipulability and redundancy control of robotic mecha-
nisms”. In: Proceedings. 1985 IEEE Int. Conf. on Robotics and Automation. Vol. 2,
pp. 1004–1009.

	64fc345a05cd5f307ed262ca43fd385dc3f57b0ecc599d7d69dff5c097c578ab.pdf
	Safe and Collaborative Navigation & Interaction with Mobile Manipulators in Domestic Appliance Test Labs

