
Alma Mater Studiorum – Università di BolognaAlma Mater Studiorum – Università di Bologna

DOTTORATO DI RICERCA IN

Computer Science and Engineering

Ciclo XXX

Settore Concorsuale: 01/B1 Informatica

Settore Scientifico Disciplinare: INF/01 Informatica

A new Nested Graph Model for Data Integration

Presentata da: Giacomo Bergami

Coordinatore Dottorato Supervisore

Prof. Paolo Ciacccia Prof. Danilo Montesi

Esame finale anno 2018

A new Nested Graph Model for
Data Integration

Giacomo Bergami

Dottorato di Ricerca in Computer Science and Engineeering
Ciclo XXX

Settore concorsuale di afferenza: 01/B1 - Informatica
Settore scientifico disciplinare: INF/01 - Informatica

Coordinatore:

Paolo Ciaccia

Supervisore:

Danilo Montesi

Alma Mater Studiorum - Università di Bologna Esame finale anno 2018

Contents

1 Introduction 9

1.1 Graph Data: Use Cases . 11

I Related Works 13

2 Data integration: a data representation-independent approach 17

2.1 Preliminaries: data representation dependent approach 18

2.1.1 Structured Data integration: Integrating entities represented with
different schemas . 20

2.1.2 Semistructured Data Integration: Integrating multiple relations into
a common representation . 21

2.1.3 Structured and Semistructured data integration: schema alignment
as a data cleaning step . 24

2.1.4 Integrating unstructured data via semistructured representation 28

2.1.5 Aligning (Nested) Graphs . 29

2.2 In-Database Integration . 34

2.2.1 Preliminaries: towards a uniform data representation 34

2.2.2 Aggregations . 40

2.3 Multi-database integration . 47

2.3.1 Preliminaries: Description Logic and Ontologies 47

2.3.2 Ontology Alignments and Data Integration 49

2.3.3 Query Rewriting . 50

2.4 Conclusions . 53

3 Analysing the properties of Data Models and Query Languages 55

3.1 Structured data: the Relational Model . 56

3.1.1 Query Languages . 56

3.1.2 Representation Problems . 58

3.1.3 Representing graphs . 63

3.2 Nested Relational Model, Semistructured data and Streams 64

3.2.1 Query languages . 68

3.2.2 Representation problems . 68

3.2.3 Representing graphs . 69

3.3 Unstructured Data: Full Text Documents 70

3.3.1 Query Languages . 71

3.4 Graph (Data) Models . 73

3.5 Classifying Graph Query Languages . 76

3.5.1 Graph Traversal and Pattern Matching Languages 77

3.5.2 Graph Grammars . 79

3.5.3 Graph Algebras . 80

3.5.4 (Proper) Graph Query Languages 82

3.6 Conclusions . 84
3

4

II On Combining Graphs 85

4 On Joining Property Graphs 89

4.1 Graph Query Languages limitations’ on Graph Joins 91

4.2 Graph Data Model . 95

4.3 Graph θ-Joins . 97

4.3.1 Graph Join properties . 98

4.4 Graph Conjunctive Equi-Joins . 100

4.4.1 Algorithm and Data Structure . 101

4.4.2 Experimental Evaluation . 105

4.5 Graph Less-Equal Join . 108

4.6 Left, right and full graph joins. 112

4.7 Conclusions . 115

5 General Semistructured Model and Nested Graphs 119

5.1 General Semistructured (Data) Model . 121

5.1.1 script, a MetaModel for GSM 125

5.1.2 Characterizing object identifiers 131

5.2 Nested Graph . 133

5.3 Data model translation functions . 136

5.4 Use Cases . 139

5.4.1 Representing part-of aggregations 139

5.4.2 Graph ETL and Ϙ
ϛ(–)
α(Di),H(α(Di)): the Transformation phase . 143

5.5 Conclusions . 155

6 GSQL: a Generalized Semistructured Query Language 157

6.1 General Semistructured Query Language (GSQL) 158

6.2 Derived GSQL operators over GSM . 162

6.2.1 (Attribute labelled) Set operations 162

6.2.2 Relational and semistructured operations 164

6.3 GSQL Use cases . 172

6.3.1 paNGRAm: Nested Graph Relational Algebra 172

6.3.2 Implementing traversal query languages’ semantics (σ) 177

6.3.3 Representing is-a aggregations . 182

6.3.4 Generalized Graph Grammars G for Nested Graphs. ϘGH,T (H)(ï) 183

6.4 Conclusons . 193

7 On Nesting Graphs 195

7.1 Graph Query Languages limitations’ on Graph Nesting 199

7.1.1 Graph Joins’ limitations in providing the ν≅ operator 199

7.1.2 Implementing Graph Nesting over (two) graph collections . . 201

7.1.3 Query Languages’ and data models’ limitations 203

7.2 Class of optimizable graph nesting queries 206

7.3 Nested Graphs . 209

7.4 Graph Nesting . 211

7.4.1 Two HOp Separated Patterns Algorithm 213

7.5 Experimental Evaluation . 217

7.6 Conclusions . 219

0. CONTENTS 5

III Conclusions 221

8 Conclusions 223

A Resolving Alignments and Morphisms: OCaml Source Code 225

B Dovetailing lemmas 233

C Expressing containment functions in script 235

6

“No plan can predict everything. Some people will raise their

heads, others will mutiny. The time will not cease to bestow losses

and fame to whose who will continue the fight. [. . .] Do not

pursue your actions according to a plan.”

— Luther Blissett, Q, Epilogue

Abstract

Despite graph data gained increasing interest in several fields, no data model suitable for
both querying and integrating differently structured graph and (semi)structured data has
been currently conceived. The lack of operators allowing combinations of (multiple) graphs
in current graph query languages (graph joins), and on graph data structure allowing
neither data integration nor nested multidimensional representations (graph nesting) are a
possible motivation. In order to make such data integration possible, this thesis proposes
a novel model (General Semistructured data Model) allowing the representation of
both graphs and arbitrarily nested contents (e.g., one node can be contained by more than
just one parent node), thus allowing the definition of a nested graph model, where both
vertices and edges may include (overlapping) graphs.

We provide two graph joins algorithms (Graph Conjunctive Equijoin Algorithm

and Graph Conjunctive Less-equal Algorithm) and one graph nesting algorithm
(Two HOp Separated Patterns). Their evaluation on top of our secondary memory
representation showed the inefficiency of existing query languages’ query plan on top
of their respective data models (relational, graph and document-oriented). In all three
algorithms, the enhancement was possible by using an adjacency list graph representation,
thus reducing the cost of joining the vertices with their respective outgoing (or ingoing)
edges, and by associating hash values to both vertices and edges.

As a secondary outcome of this thesis, a general data integration scenario is provided
where both graph data and other semistructured and structured data could be represented
and integrated into the General Semistructured data Model. A new query language
outlines the feasibility of this approach (General Semistructured Query Language) over
the former data model, also allowing to express both graph joins and graph nestings. This
language is also capable of representing both traversal and data manipulation operators.

7

1 Introduction

Contents

1.1 Graph Data: Use Cases . 11

Despite that modern Graph Database Management Systems (GDBMSs) are a well-known
subject of studies, three fundamental aspects are missing in literature: operators integrating
and combining graphs, the adoption of such operators in current graph query languages,
and the definition of a graph data structure providing both a multidimensional and nested
representation. As regards of the aforementioned graph integration operators, both graph
joins generalizing the graph products and graph nestings summarizing graph data with
other extracted graph patterns are required.

In particular, this thesis is going to focus on two graph operators allowing to combine
graphs: graph joins and graph nestings. First, the graph join operator (Chapter 4 on
page 89) is useful in practical scenarios, such as the intersection or the merge of different
transport overlay networks, or for comparing and merging different ontology representa-
tions. The flexibility at the edge combination level provides adaptiveness to such operator
(Figure 1.1a). Moreover, if we fix a same theta-join predicate and a specific edge semantics,
we could further on extend the definition of the graph join as in the relational model, that
is by allowing that even the non matching vertices from one (left and right join) or both
operands (full join) must also appear (Figure 1.1b). Hereby, the graph join operator defines
a whole class of graph operators (graph ⊗θ-products), that can be differently instantiated
as required by the user, and hence can be also differently implemented.

Graph nesting (Chapter 7 on page 195) permits the summarization of graph data within
one graph data source: in particular, we could “fuse” or “summarize” all the vertices
belonging to the same cluster, and then we could group the paths occurring between the
fused vertices as edges containing such paths. As a consequence, such operator provides
dimensionality reduction that is often required in multidimensional data analysis. Group

Recommendation Systems characterize a use case scenario in which the members sharing
similar interests and their suggested activities could be “fused”, thus providing a coarser
representation of the sequence of similar activities. While the class of graph join operators
can be defined on top of current graph representations, graph nesting requires an extension
of the graph data model for fulfilling the aforementioned graph data integration purposes.
Such extension must allow to represent graphs within both vertices and edges (nestings),
thus representing a summarized view of the contained graph. Nested representations are
shared among task representations and complex world knowledge representations, such as
medical procedures for specific diseases such as glaucoma [KW82].

Graphs distinguish two different classes of data types, vertices and edges. Edges are
constrained by the ids of the vertices through source and destination dependencies. In par-
ticular, most graph operators require the execution of distinct operations over the vertex and
edge sets. Nevertheless, current graph data structures do not allow a direct data integration
with semistructured data [Rol13, PSAH16] (and hence, even structured data) because graph
definitions such as property graphs and RDFs do not permit nested representations, neither
in vertices nor in edges. Expert systems are an example of practical use cases requiring the
features in the previous generalized data integrations; such systems could be either general
purpose (such as IBM Watson [oRD12] and DeepDive [PAKR16]) or more domain knowledge

9

10

G1 v2

v4 v3

⋊⋉θ G2

v1 v2

v4 v3
G1 ⋊⋉

∧

θ G2 v2

v4 v3

G1 ⋊⋉
∨

θ G2 v2

v4 v3

(a) This picture provides two different possible evaluations of the graph join operators: in both
cases, given the graph operands G1 and G2, the matched vertices are merged together into one single
vertex. Over this basis of matching vertices, the way to combine the edges between these matched
vertices may vary. In particular, we will later on present the conjunctive (∧) and the disjunctive (∨)
“semantics” for combining such edges.

G1 v2

v4 v3

⋊⋉
∨
θ

G2

w1 w2

v4 v3

G1 ⊲⊳∨θ′ G2

v2

v4 v3

G1 ⊲⊳
∨

θ′ G2

w1 w2

v4 v3

G1 ⊲⊳ ∨

θ′ G2

w1 w2 v2

v4 v3

(b) Given two graphs G1 and G2, we provide the result of three possible outer joins over the
disjunctive graph join: vertices sharing the same id identify vertices with the same value. These
figure make explicit that the left/right full outer interpretation returns both the vertices that are
shared among the graphs and the vertices belonging to the left/right graph.

Figure 1.1 Introducing Graph Joins over standard graphs.

1. Introduction 11

related, such as healthcare settings (medical diagnosis formulation [KW82] and health
condition prediction methods [BBMP15]). For this reason the present thesis proposes a
new graph data model, named nested graphs, allowing the embedding (or nesting) of both
vertices and edges for both data class types, hence permitting graph nesting operations.
Nested graphs allow to directly represent semistructured documents. In particular, such
data model relies on a broader semistructured model, General Semistructured Model

(GSM), which both overcomes current data models’ limitations and is proposed by this
thesis.

Last, we must ask ourselves which is a proper language to query nested data structures,
including nested graphs: given the aforementioned considerations, such query language
should be able to express queries for both (semi)structured and graph data. In order to
complete the data integration of (semi)structured with graph data, such language should
express data transformations towards the most general data representation - our nested
graphs - and to uniform the sources’ data schema in one single user-provided final schema.
In order to meet such research goals, this thesis proposes the GSQL query language over
GSMs, thus allowing to formally characterize the Global as A View data integration
scenario in its entirety. The graph join and nesting operator, the definition of a graph
query language for data integration and the outline of a data integration system for any
sort of data representation are all required features missing in current literature, which
are provided by the current thesis. In particular, the adoption of these solutions allows to
achieve these further outcomes:

A new property graph representation allowing to optimize the graph join operators
by exploiting primary and secondary indices. This data structure also allows an easy
parallelization by splitting the data in different vectors. This data structure is extended
to efficiently support a nested data representation.
Current query languages optimization strategies do not efficiently implement graph
joins and nestings. The definition of graph joins in current query languages is verbose,
while the proposed graph join definition provides a more user-friendly representation.
The definition of GSQL (Chapter 6 on page 157) allows the expression within the same
syntax of both graph and semistructured pattern query languages, alongside with
set, relational and semistructured operations. On the other hand current graph query
languages often provides these features singularly at an higher abstraction level.
GSQL query language allows the implementation of all the data integration operators
required in the Global As A View approach.

1.1 Graph Data: Use Cases

Graph databases are already used in tasks requiring the integration of both schemaless
(or time-variant schema) data alongside with structured information [PJMR14, SAZ11].
Graphs are used as an intermediate representation during the data transformation phase,
thus allowing to integrate intermediate graph representation with other graph data. In
addition to Social Networks [DMR16], graph data is also used in the following scenarios:

Analysing (Hyper)texts. Even if hypertext contents are usually provided as semi-structured
data using markup languages like XML, some recent work proposed alternative graph
representations.

Firstly, if we want to focus on the mere syntactic representation of semi-structured data,
we could analyse how the author used the XML tags to produce the document, and

12 1.1 Graph Data: Use Cases

investigate which structural patterns were used. In this case an RDF representation
[LS99, GHMP11] provides a ideal schema-independent data [IPPV14, BDIP+13] that could
be used in automatic reasoners such as Jena [CDD+04] and Pellet [SPG+07] to extract
structural informations.

Finally, graphs can provide a semantic interpretation of the textual content [VnI11].
Such representation allows to later perform either specific graph mining algorithms
[SHJ+13] such as clustering and association rules, or basic graph metric operations such
as betweenness centrality and degree distribution [New10]. In this context, graphs are
also used to represent knowledge bases such as BabelNet or WordNet, for multi-word
recognition [LVJRT14], word similarity [HRJM15] and multilingual word disambiguation
[NP12b].

Temporal Data. One of the problems1 of the relational model is its inability to represent
temporal data. Many possible representations for temporal graphs structures have been
proposed. The most simple data model is to represent the evolution of a network through
time via distinct graph snapshots [Khu12]. This multi-layer network model is not very
informative since no information is provided to understand how the different layers are
related to each other.
Temporal information can be represented as a single graph [WCH+14]: each vertex
represents an agent and each edge expresses an interaction, which time span is represented
through the edge’s weight. Such representation suffers from interpretation problems:
firstly, when cyclic interactions occur it is not clear which node started the communication
process, and secondly, nodes having different interaction times are not taken into account.
All those issues are solved by another multi-layer graph representation [Kos08], where
each layer describes the snapshot of the interactions occurring at a given time, while the
extra-layer edges link the same agents interacting subsequent time steps.

MOLAP representation. Business Intelligence applications may also use graph databases
for MOLAP multi-dimensional data warehouses, in which different types of data are
integrated [PJMR14, SAZ11]. Given that vertices can be associated to distinct dimensions
[PMB+17], graphs allow data warehouse multidimensional queries [CYZ+08, ZLXH11,
EV12a]. Companies are already generating graph data as Enterprise Social Networks,
which are used as an infrastructure for internal communication and opinion mining.
Graphs allow the measurement of enterprise success [RHKB13] and to design company
workflows [PAK16]. Such enterprise graph data could be integrated with external business-
oriented OnLine Social Networks (e.g. LinkedIn, Ask-a-peer).

1See Section 3.1.2 on page 58 for further problems related to the relational model.

Part I

Related Works

13

1. 15

John Cage, Concert for Piano and Orchestra Page 18 of Solo for Piano

An example of unstructured information in contemporary music. The graph’s vertices are musical

notes, while the edges’ interpretation may be freely interpreted by the player.

2 Data integration: a data

representation-independent approach

Contents

2.1 Preliminaries: data representation dependent approach 18

2.1.1 Structured Data integration: Integrating entities represented with
different schemas . 20

2.1.2 Semistructured Data Integration: Integrating multiple relations into
a common representation . 21

2.1.3 Structured and Semistructured data integration: schema alignment
as a data cleaning step . 24

2.1.4 Integrating unstructured data via semistructured representation 28

2.1.5 Aligning (Nested) Graphs . 29

2.2 In-Database Integration . 34

2.2.1 Preliminaries: towards a uniform data representation 34

2.2.2 Aggregations . 40

2.3 Multi-database integration . 47

2.3.1 Preliminaries: Description Logic and Ontologies 47

2.3.2 Ontology Alignments and Data Integration 49

2.3.3 Query Rewriting . 50

2.4 Conclusions . 53

Logic is the most useful tool of all the arts. Without it no science

can be fully known. It is not worn out by repeated use, after the

manner of material tools, but rather admits of continual growth

through the diligent exercise of any other science. For just as a

mechanic who lacks a complete knowledge of his tool gains a fuller

[knowledge] by using it, so one who is educated in the firm

principles of logic, while he painstakingly devotes his labor to the

other sciences, acquires at the same time a greater skill at this art.

— William of Ockham, Summa Logicæ, Prefatory Letter

Data Integration is a sequence of transformations (and hence, queries) through which
all the data coming from different data sources are mapped (transcoded) to a reconciled

representation over a many-to-one data association (alignment). Each resulting value-
representation (type) may be indistinguishable from the representation available from the
data sources (uniform representation).

Data integration theory uses abstraction to generalise all the possible approaches which
are data structure specific. Such theory focuses on the main preprocessing steps which
are alignment and transcoding as introduced in the incoming introductory examples
(Section 2.1). While languages and models outlining data representation abstraction were
defined decades ago and date back to the studies on programming languages [omg96,
Pie02], the theoretical approaches abstracting data integration process are more recent
[Len02, DGLL+17]. This lack of formalisation made all the researchers focus more on
the data integration aspect that are representation-dependent (how shall we integrate data

with different “shapes”) than on the actual integration process (what makes data from different
17

18 2.1 Preliminaries: data representation dependent approach

sources “hard” to integrate, independently from their representation?). The latter takes stock of
two different integrations (or fusion1) which are “In-Database integration” (Section 2.2.2)
and “Multi-database integration” (Section 2.3). These specific topics allow to draw the
following observations for both current query languages and data structures:

In-Database Integration requires that joins and group by operations are generalised to
the nesting operator, which enables structural aggregations (Section 2.2.2). Structural
aggregations should allow representing data at different abstraction levels, where
summarised and coarser representations coexist (Example 8 on page 44). Current query
languages and data structures do not meet these requirements.

Multi-database integration requires that a query language should support all the operators
used on different data representations (Section 2.3.3) alongside with transcoding (Section
2.3.1). Data representation should be able to represent data and alignments uniformly.

2.1 Preliminaries: data representation dependent approach

The data integration approaches over specific data representations produced a vast amount
of literature with little scientific advancement. The lack of generality forced the authors to
repeat the same strategies under different possible data structures (between semistructured

XML data [Pog06], among relational tables [MM09], between structured and semistructured

documents [MFK01, Lu06, MM06]). Moreover, the lack of uniformity in these approaches
led to similar results achieved at different abstraction levels: compare [GMP+12] with
the general schema alignment approach in [ES13]. This latter approach proved to be
interesting on the long run: it is recently used both theoretical [VMT15] and more practical
scenarios, such as data integration among federated data warehouses with different schemas
[GMP+12].

Instead of associating an uncertainty to each schema representation and providing all
the possible combinations for schema integrations [MM09], from the very beginning of this
thesis, we’re going to consider a more flexible approach considering only the final schema
to which all the data sources must comply.

Even though we’re going to discuss the difference between structured and semistruc-
tured data in depth in Chapter 3, we’re going to show how the approaches as mentioned
above could be all generalised using the schema alignment (also known as “ontology
alignment”) approach. We refer to such chapter for additional details concerning the
data representations that are here just mentioned in passing. We provide some examples
on how to integrate different semistructured formats (representing graphs) into graphs
(Section 5.4.2 on page 143) and vice versa (Section 6.3.3 on page 182) in the following
chapters of this thesis.

1In current literature, the term “fusion” assumes an ambiguous connotation: while anglophone
literature [HL97, KKKR13] focuses on the integration of sensor unstructured data possibly with structured
data (e.g. geospatial information), germanophone literature [LN07, BN09] calls “data fusion” (Datenfusion)
the process of data cleaning and conflict resolution that could be carried out within one same data source.
This terminological ambiguity reveals two different aspects of performing data integration.

2. Data integration: a data representation-independent approach 19

SocialSecurityNo diagnosis week month year ward ICD-9-CM

BCDVHZ59S23F743S Right parotid neoplastic formation 1 1 2017 Oncology 210.2
PNPMZZ74H45H782P Relapsing epistaxis 2 1 2017 Emergency 784.7
PKTBMF36E14H842O Septal deviation and nasal-sinus polyps 3 1 2017 Emergency 748.1, 471.0

(a) Admissions table from the internal Data Warehouse.

SocialSecurityNo organ disease day month year ward

BCDVHZ59S23F743S NULL Right vestibular deficit 2 1 2017 Emergency
PNPMZZ74H45H782P Appendix Severe Appendicitis 17 2 2017 Emergency
PKTBMF36E14H842O Intestine Recanalization of Crohn’s Disease 25 3 2017 Emergency

(b) Hospitalization table from an external Data Warehouse.

SocialSecurityNo diagnosis week month year ward ICD-9-CM

BCDVHZ59S23F743S Right parotid neoplastic formation 1 1 2017 Oncology 210.2
BCDVHZ59S23F743S Right vestibular deficit 2 1 2017 Emergency 386.10

PNPMZZ74H45H782P Relapsing epistaxis 2 1 2017 Emergency 784.7
PNPMZZ74H45H782P Severe Appendicitis 8 2 2017 Emergency 540.9
PKTBMF36E14H842O Septal deviation and nasal-sinus polyps 3 1 2017 Emergency 748.1, 471.0
PKTBMF36E14H842O Recanalization of Crohn’s Disease 15 3 2017 Emergency 555.0

(c) Expected result for the integration of the two upper tables.

Figure 2.1 Integrating two tables (a and b) pertaining to hospitalization into one final table (c),
matching with the schema of b. Diagnoses and diseases were obtained from the “ICD code it” dataset,
available at smartdata.cs.unibo.it, while the other parts are randomly generated.

FC

FC

Diagnosis

DiseaseOrgan

Week

Day

Month

Month

Year

Year

Ward

Ward

ICD 9 CM

transform

(a) Alignment between the schemas of the two data sources. Data types associated to each field are
not showed.

SocialSecurityNo disease week month year ward ICD-9-CM

BCDVHZ59S23F743S Right vestibular deficit ϛ(2, 1) 1 2017 Emergency ϛ ′(Rigth. . .)
PNPMZZ74H45H782P Severe Appendicitis ϛ(17, 2) 2 2017 Emergency ϛ ′(Severe. . .)
PKTBMF36E14H842O Recanalization of Crohn’s Disease ϛ(25, 1) 3 2017 Emergency ϛ ′(Recanalization. . .)

(b) Record transformation for Hospitalization after the alignment with Admissions.

SocialSecurityNo disease week month year ward ICD-9-CM

BCDVHZ59S23F743S Right vestibular deficit 2 1 2017 Emergency 386.10

PNPMZZ74H45H782P Severe Appendicitis 8 2 2017 Emergency 540.9
PKTBMF36E14H842O Recanalization of Crohn’s Disease 15 3 2017 Emergency 555.0

(c) Resolution of the transcoding functions ϛ over the aligned Hospitalization

Figure 2.2 Data integration steps: intermediate schema alignment and transcoding transformation
steps before providing the final result.

smartdata.cs.unibo.it

20 2.1 Preliminaries: data representation dependent approach

2.1.1 Structured Data integration: Integrating entities represented
with different schemas

Given that both Data Warehouses require an associated schema towards which the data
sources are transformed, and that most of the Data Warehouse literature relies on a
multidimensional representation of relational databases (ROLAP), we can freely assume
that Data Warehouses are structured data stores. We can now extend and adapt their use
cases to the relational model, like the ones already presented in [GMP+12]. The following
example provides an use case that will also be restated for other data structures.

▸ Example 1. A set of local health-care departments share some internal knowledge into a peer-

to-peer Business Intelligence network. Within this network, such departments exchange medical

records concerning the patients. Moreover, all such departments have different data representation

for the same concepts.

Suppose that one department wants to retrieve all the records about the cured patients in both

its structure and in an external department: provide a uniform representation for the patients using

the local representation format.

The local data warehouse provides a table Admissions, as depicted in Figure 2.1a: we now want

to grasp all the admissions from remote locations, which may store the same entities with different

relation names and with different data schemas. An example is the Hospitalization relation in

Figure 2.1b, where the ICD-9-CM2 field refers to a machine-readable representation categorizing

patients’ diseases.

After retrieving the two aforementioned tables to be integrated, the associated schemas3

must be extracted and compared, as showed in Figure 2.2a: this preliminary step is
required before actually integrating the data, because we must first detect which are the
fields describing the same concepts in both relations. This comparison process at the
schema level is called alignment, and it will be addressed in Section 2.3.2 on page 49.

We can subsume the schema alignment as follows: (a) each attribute having the
same name will contain the same concept and, whether similar concepts are represented in
different formats and representations, some transcoding function4 ϛ is associated [GMP+12].
Otherwise, a correspondence is required: (b) if terms between the two schemas are similar
(e.g., synonyms), they are aligned as in (a). Last, (c) if there is no perfect match, then either
one attribute A is more general than the other B (A is a supertype for B [LN07], A ⊒ B),
or vice versa (A ⊑ B); when A ⊒ B, then the conversion is not always possible (e.g., if you
have a Week number, you cannot map this information into a precise Day of the month),
but the reverse process is always possible through a transcoding ϛ ′. Please note that all
the transcodings could be either inferred using other ontologies5 or by using techniques
exploiting artificial intelligence inference tools which suggest such relations. Therefore, the
ways how such alignments may be provided are beyond the targets of the present thesis.

▸ Example 1 (continuing from p. 20). Regarding Figure 2.1, an ontology may detect that the

Diagnosis allows to identify a Disease, and hence the two fields shall provide the same content.

This scenario fits case a: since they represent a description, no translation is required; the ICD-9-CM

2https://web.archive.org/web/20140212190115/http://www.who.int/classifications/icd/en/
3For both structured and semistructured data, the schema represents the “patterns” through which the

data is represented using a specific data model. In this case, the tables’ headers plus their associated data
types represent their schema. See Chapter 3 for more complete details.

4It is represented by the stigma Greek letter: Ϛ, ϛ.
5See Section 2.3.1 for more details.

https://web.archive.org/web/20140212190115/http://www.who.int/classifications/icd/en/

2. Data integration: a data representation-independent approach 21

code offers a Diagnosis for a disease and such code describes a disease: a transcoding from one

concept to the other is then required.

Last, since Day is part of the Week and since each Month could have several Weeks, an ontology

can infer the Week to which a Day belongs to from the information of Day and Month: this “alignment”

step must be handled as described on case (c).

The final result for table Hospitalization to match the schema of Admissions is then showed

in Figure 2.2b: first, we associate to each field how such alignments have to be solved (Figure 2.2a

on page 19), and then definitively solved (Figure 2.2c) before being merged through a “union” in the

Admissions table (Figure 2.1c).

2.1.2 Semistructured Data Integration: Integrating multiple relations
into a common representation

In the previous subsection we saw one possible way of performing data integration, that is
the integration of local data with external sources. Moreover, data was represented in a
tabular form. Now, we want to integrate together (i) different concepts (ii) described using
no explicit schema, (iii) while representing the final data with an uniform representation.
The third condition also implies that no (global) matching schema is provided. In this
scenario, we require that the schema must be extracted in a (semi)automatic fashion from
the data sources. As we are going to address in Section 2.2.1, this is always possible
because, to each datum stored in a field and using a specific data representation, we can
always associate a type. Let us now change the scenario slightly:

▸ Example 2. Suppose now to cope with complete medical records, which are represented in two

distinct data source as semistructured XML documents with different associated schemas. The

records shall track the patient from the admission (“Hospitalization”) to the discharge from the

hospital.

Integrate such records belonging to both the remote hospital and local hospital, while preserving

the whole information coming from the two distinct sources.

If we just focus on the semistructured representation provided from the data source in Figure 2.5b

on page 25, we see that three distinct concepts are represented: the patients that entered the hospital

(<patient>. . . </patient>), whether this patient was cured (<treatment>. . . </treatment>)

and which ward he attended (<ward>. . . </ward>). On the other hand, Figure 2.5a represents the

patients (<patient>. . . </patient>) and a record associated with him/her (<record>. . . </record>).

Given this data, we want to obtain the final result provided in Figure 2.6 on page 26, using an

intermediate representation between the two.

The data integration process seems quite hard at first because no schema is associated
to the original data. The extraction of an associated schema is always possible [BLC+17]
and, as a result, we’re going to apply the schema alignment on top of such extracted
representation. Figure 2.3 on the next page provides the associated schema to the two XML
files in a JSON format6. At the schema level we observe that while schema (a) describes
a person’s full name through the Surname and Name tags, schema (b) only provides a name

field. If we extend our schema comparison to the actual hospitalised patients’ records
in both medical structures, we could then infer that name in (b) contains both Name and

6Even though there are standard and conventional ways to associate schemas to XML files such as
XML Schema [Vli02], RelaxNG and DTD, and given that it is always possible to convert an XML file into
JSON, I here prefer to show the XML schema using a more compact JSON representation. Both XML and
JSON are, anyhow, semistructured data representations.

22 2.1 Preliminaries: data representation dependent approach

{

"hospital": {

"patient": [{

"SSN": SSNID ,

"Surname": Str ,

"Name": Str ,

"cure": Integer

}*],

"treatment": [{

"trId": Integer ,

"description": Str

}*],

"ward": [{

"name": Str ,

"admitted": SSNID

}*]

}

}

(a) Representng the local clinical record using the schema in [Pog06].

{

"medical": {

"patient": [{

"ssNo": SSNID ,

"name": Str ,

"dob": Date ,

"address": String

}*],

"record": [{

"patientSSno": SSNID ,

"entry": {

"id": Integer ,

"date": Date ,

"symptomps": Str ,

"diagnosis": {

"icd9": Float ,

"#text": Str

},

"medication": Str

}

}*]

}

}

(b) Representing the local clinical record using the schema in [MFK01].

Figure 2.3 Representing the schema associated to the XML files using the notation provided in
[BLC+17] for JSON documents. Instead of associating values to each property, we associate properties
to their types. Arrays of T elements are represented with the [T*] syntax, where T may represent
another record, representing a composite type.

2. Data integration: a data representation-independent approach 23

?

?
?

?
?

?

(a) Complete alignment process of the two schemas associated to the XML files. The green lines
remark the alignments between the schemas, the blue lines mark the key detection within a local
schema. When these terminological correspondences (edges) do not directly connect identical values
which may appear in internal fields, such field is marked with a filled circle. The red question marks
underline the fields that are missing in the other schema, and that will be filled with missing fields.

{

"medical␣hospital": [{

"patient": [{

"SSN": SSNID ,

"Surname": Str ,

"name": Str ,

"dob": Date ,

"address": String ,

"cure_treatmentId", Integer

}*],

"treatment_entry": [{

"id": Integer ,

"patientSSno": SSNID ,

"date": Date ,

"symptomps": Str ,

"diagnosis": {

"icd9": Float ,

"#text": Str

},

"medication": Str

}*],

"ward": [{

"name": Str ,

"admittedPatient": SSNID

}]

}

(b) Merged schema resulting from the hschema alignment process.

Figure 2.4 Alignment process between the XML schema, and final XML schema integration

24 2.1 Preliminaries: data representation dependent approach

Surname in (a). Where this is not possible, we could always assume that we have a personal
data bank of names and surnames, through which detect which part of name contains a
name and which contains a surname. Schema (b) also provides some more fields that
are not in (a), such as the date of birth (dob) and the patient’s address. By using an
external ontology, we may also know that medication in (b) corresponds to treatment in
(a) and, given that the only field which has an associated Str(ing) in it is description,
then medication and treatment shall both contain the same type of content. We can also
infer that record is a supertype of treatment because the first contains more fields than
the latter one.

As a second step, we can make some assumptions on which fields represent a key field
within each single data source, by comparing the data in Figure 2.5b on the facing page and
the associated schema in Figure 2.3a. We notice that cure is a synonym for treatment, and
hence they can refer to the same concepts: by comparing the data sources, values in cure

correspond to values in trId which has a functional dependency with treatment. We can
infer that admitted refers to a SSN because they have the same type; if more sophisticated
tools are available (e.g., ontologies) by knowing that an hospital can admit a patient, we
can also infer that SSN is a key for patient, which contains the SSN field, and that admitted
refers to a patient. This assumption could also be confirmed by looking at data values.

Figure 2.4a provides all the matches inferred for the schema alignment process, in-
cluding the previous steps described in words. This alignment also allows to extend
the “syntactic” semistructured schema integration approach presented in [BLC+17], and
it consequently provides the merged schema depicted in Figure 2.4b. At this point, we
can transform both sources to match the provided schema using transcoding functions,
and then provide a global representation of such integrated data as already presented in
Figure 2.6 on page 26. As the last step, we could integrate all the fields that pertain to the
same entity using clustering techniques (in this case, we can merge all the patients having
the same SSN id). Section 2.2 addresses this last part while focusing on dimensionality
reduction and data cleaning processing. Moreover, if the use ontologies which are powerful
enough to express that “an Italian SSN contains information concerning the date of birth of a

person”, then such information could be easily imputed using some associated transcoding
functions.

By comparing the alignments process for structured data and the one for semistructured
data, we observe that the schema alignment process is data representation independent,
and that all the computational steps reduce to a comparison of either fields (in the relational
case) or compound fields (in the semistructured one) defining entities, which appear in two
different schemas. After the former comparisons, correspondences are found. Section 5.4.2
on page 143 is going to further investigate this topic, where we’re going to answer the
following question: “is it possible to express both schemas and alignments within the same

representation?”.

2.1.3 Structured and Semistructured data integration: schema
alignment as a data cleaning step

Given the considerations of the former paragraph, we would like to use the outcomes
of the data integration process presented in Section 2.1.1 as imputations for the missing
values coming from the semistructured integration phase. In particular, we want that such
data can be integrated with the ward and the ICD-9-CM pieces of information coming from
the Hospitalization table. We must now use both the source data (Figure 2.1a on page 19)
and the transcoding functions generated from the alignment between the two schemas

2. Data integration: a data representation-independent approach 25

<medical >

<patient ssNo="BCDVHZ59S23F743S">

<name>Bocedi , Venhz</name>

<dob>23/11/1959 </dob>

<address >via San Biagio 1, Morozzo , Cuneo</address >

</patient >

<record >

<patientSSno >BCDVHZ59S23F743S </patientSSno >

<entry id="1">

<date>01/01/2017 </date>

<symptomps >fluid draining from the ear ,

trouble swallowing </symptomps >

<diagnosis icd9="210.2">Right parotid

neoplastic formation </diagnosis >

<medication >Radiotherapy </medication >

</entry>

</record >

</medical >

(a) Representing the local clinical record using the schema in [MFK01].

<hospital >

<patient >

<SSN>BCDVHZ59S23F743S </SSN>

<Surname >Bocedi </Surname >

<Name>Venhz</Name>

<cure>505</cure>

</patient >

<treatment >

<trId>505</trId>

<description >Epley maneuver </description >

</treatment >

<ward name="Emergency">

<admitted >BCDVHZ59S23F743S </admitted >

</ward>

</hospital >

(b) Representing the external clinical record using the schema in [Pog06].

Figure 2.5 Representing two possible medical records for the same patient coming from different
hospitals.

26 2.1 Preliminaries: data representation dependent approach

<medical_hospital >

<patient >

<SSN>BCDVHZ59S23F743S </SSN>

<Surname >Bocedi </Surname >

<Name>Venhz</Name>

<dob>23/11/1959 </dob> <!-- from SSN -->

<address />

<cure_treatmentId >505</cure_treatmentId >

</patient >

<patient >

<SSN>BCDVHZ59S23F743S </SSN>

<Surname >Bocedi </Surname >

<Name>Venhz</Name>

<dob>23/11/1959 </dob>

<address >via San Biagio 1, Morozzo , Cuneo</address >

<cure_treatmentId >1</cure_treatmentId >

</patient >

<treatment_entry >

<id>505</id>

<patientSSno >BCDVHZ59S23F743S </patientSSno >

<date />

<symptomps />

<diagnosis />

<medication >Epley maneuver </medication >

</treatment_entry >

<treatment_entry >

<id>1</id>

<patientSSno >BCDVHZ59S23F743S </patientSSno >

<date>01/01/2017 </date>

<symptomps >fluid draining from the ear ,

trouble swallowing </symptomps >

<diagnosis icd9="210.2">Right parotid

neoplastic formation </diagnosis >

<medication >Radiotherapy </medication >

</treatment_entry >

<ward name="Emergency">

<admittedPatient >BCDVHZ59S23F743S </admittedPatient >

</ward>

</medical_hospital >

Figure 2.6 Expected outcome of the XML data integration. Missing values are represented by
tags with no contents.

2. Data integration: a data representation-independent approach 27

<medical_hospital >

<patient >

<SSN>BCDVHZ59S23F743S </SSN>

<Surname >Bocedi </Surname >

<Name>Venhz</Name>

<dob>23/11/1959 </dob>

<address />

<cure_treatmentId >505</cure_treatmentId >

</patient >

<patient >

<SSN>BCDVHZ59S23F743S </SSN>

<Surname >Bocedi </Surname >

<Name>Venhz</Name>

<dob>23/11/1959 </dob>

<address >via San Biagio 1, Morozzo , Cuneo</address >

<cure_treatmentId >1</cure_treatmentId >

</patient >

<treatment_entry >

<id>505</id>

<patientSSno >BCDVHZ59S23F743S </patientSSno >

<date>NULL /01/2017 </date>

<symptomps />

<diagnosis icd9="386.10">Right vestibular deficit </diagnosis >

<medication >Epley maneuver </medication >

</treatment_entry >

<treatment_entry >

<id>1</id>

<patientSSno >BCDVHZ59S23F743S </patientSSno >

<date>01/01/2017 </date>

<symptomps >fluid draining from the ear ,

trouble swallowing </symptomps >

<diagnosis icd9="210.2">Right parotid

neoplastic formation </diagnosis >

<medication >Radiotherapy </medication >

</treatment_entry >

<ward name="Emergency">

<admittedPatient >BCDVHZ59S23F743S </admittedPatient >

</ward>

</medical_hospital >

Figure 2.7 Merging the two relational tables from Subsection 2.1.1 with the XML document
resulting from Subsection 2.1.2. This data integration step fills in the missing values marked with
?. After analysing the schema alignments paired with the to-be-aligned data, we can draw more
guesses than the ones initially formulated for providing Figure 2.6 on the preceding page.

28 2.1 Preliminaries: data representation dependent approach

(Figure 2.2a on page 19). Firstly, we still have to create correspondences between each XML
treatment_entry and a record belonging to either Admissions or Hospitalization. As
previously noticed, it is not possible to retrieve the precise day of the week of the Admission

of a patient if no further precise information is known: for this reason, we’re going to use
the following transcoding function, where the day information is coded through a day null
value, 00:

ϛ−1(week, month, year) = “00/month/year”

Concerning the data coming from the external sources, we can still associate a ICD-9-CM

code to each disease representing a diagnosis through the ϛ ′ given above.
Figure 2.7 provides the outcome of this alignment and integration phase: as we can see,

the data imputation phase required for data cleaning may resemble the data integration
steps (see Section 2.2). The only missing pieces of information are the patient’s address
(that could be easily retrieved after another data cleaning process after which the patient

record will be merged), and the symptoms related to the “Right vestibular deficit”.
If no symptoms are provided, we can now ask ourselves if it still possible to retrieve

this information from full-text medical books: which is the best way to represent such
information in order to answer the question “Which are the symptoms for balance disorders?”?

2.1.4 Integrating unstructured data via semistructured representation

Unstructured data represents digital information that cannot be immediately used as pieces
of information until its transformation in a semantic dependent form is provided [RH08].
Unstructured data usually has no associated description for interpreting such information.
Figure 2.8 provides some examples of unstructured contents: the index at bottom left
represents an association between some medical terms represented in a hierarchical form
and some ICD-9-CM codes, while the picture represents a tumour of the salivary glans.
As we will see in Section 3.3 on page 70, full-text content shall be represented either in
a purely syntactical structured form (spans), or in a semistructured representation. Such
representations include graphs (universal dependencies graph) and nested graphs7 (proposed
by this thesis in Section 6.3.4 on page 183). Suppose now that we want to integrate the
three textual representations altogether: we cannot mix them at the textual level because
full-text documents could be represented in different formats (txt, doc, RDF, wiki markup
or pdf) and may also express different concepts requiring different interpretations. As a
consequence, the best way to integrate unstructured data is to first provide them some
structure reflecting their semantics, and then try to merge the data.

▸ Example 3. We now want to merge the two indices presented in Figure 2.8 to create an ontology

allowing the detection of clusters of similar diseases8. We cannot directly combine the two indices

into one single file, because each file must be processed differently; while the taxonomy is a tree

where all the terms point to the most general term, the alphabetical index is a graph where each

general term shall point to the most specific sub-item. In the last scenario, each of these terms are

disambiguation terms and directly depend on the main synset. In the previous indexing structure,

distinct terms could be related to the same concept represented by a unique ICD-9-CM code: e.g.,

both “vestibular vertigo” and “peripheral vertigo” lead to the same concept, labelled as 386.10,

classified within the taxonomy as “Peripheral vertigo, unspecified” (not showed).

7Since both nested graph data integration is proposed for the first time by this thesis, we refer to
Section 2.1.5 on the next page for further details.

8https://rebrand.ly/githu52932

https://rebrand.ly/githu52932

2. Data integration: a data representation-independent approach 29

Balance disorder

. . . The symptoms may be recurring

or relatively constant and, when

symptoms exist, they may include:

a sensation of dizziness or vertigo,

lightheadedness or feeling woozy,

problems reading and difficulty

seeing or disorientation . . .

. . .

Vertigo: 780.4

→ Ménière’s disease, 386.00

→ Vestibular, 386.10

→ Cerebral dysfunction, 386.2

→ Peripheral, 386.10

→ . . .

. . .

General symptoms: 780

→ Alteration of consciousness, 780.0

→ Hallucinations, 780.1

→ Syncope and collapse, 780.2

→ Dizziness and giddiness, 780.4

→ . . .

Figure 2.8 Different possible types of unstructured information: full-text sentences from Wikipe-
dia (top left), alphabetical indices (top right), taxonomy indices (bottom left) and pictures (bottom
right).

As a consequence, different graph representation techniques shall be adopted for distinct files:

Figure 2.9 represents an example of how such indices could be first represented (a and b), and then

merged into one single graph (c), thus providing an ontology. The integration of the two graphs is

merely performed via a union of the vertex and edge set.

The graph representations provided in the last example are not the sole one possible
for full-text corpora: Figure 2.10 provides an example of the NLP interpretation of the
top left full-text from Figure 2.8, that is also machine-readable. Section 3.3 on page 70 is
going to present more insights concerning the need for an intermediate representation of
unstructured data.

2.1.5 Aligning (Nested) Graphs

If we shift the schema alignment process from (semi)structured data to graphs, it is also
possible to extend the schema alignment techniques to graph schema alignments. Given
that graphs are a specific case of semistructured data (because they have no strict associated
schema), it is also possible to represent full-text as both data, schema and queries. Graph
schema alignments are the result of the query answering process: in this scenario, we align
the actual data vertices and edges instead of the data schema, and where vertices may
represent variables to be instantiated for solving the desired query.

▸ Example 4. Let us leave the healthcare data integration scenario. Suppose that we want to

answer the following question: “In May 1898 Portugal celebrate the 400th anniversary of the arrival

of this explorer in India” [oRD12], where this explorer is the subject that has to be found, and

hence the “variable” to be instantiated. Since this is a very general question, we have to use some

full-text corpora, like the one from Wikipedia. From this full-text sources, we can extract different

sentences from different pages. At this step, we want to check which part of the text matches with

30 2.1 Preliminaries: data representation dependent approach

. . .

Vertigo: 780.4

→ Ménière’s disease, 386.00

→ Vestibular, 386.10

→ Cerebral dysfunction, 386.2

→ Peripheral, 386.10

→ . . .

Vertigo 780.4
hasCode

Ménière’s disease 386.00

sym
ptom

O
f hasCode

Vestibular 386.10

canB
e

hasCode

Peripheral

can
B
e

ha
sC
od
e

Cerebral dysfunction 386.2

sy
m
p
to
m
O
f

hasCode

(a) Representation of the alphabetical index in a graph form.

. . .

General symptoms: 780

→ Alteration of consciousness, 780.0

→ Hallucinations, 780.1

→ Syncope and collapse, 780.2

→ Dizziness and giddiness, 780.4

→ . . .

General symptoms 780
hasCode

Alteration of consciousness 780.0
isA hasCode

Hallucinations 780.1

isA

hasCode

Syncope and collapse 780.2

isA

hasCode

Dizziness and giddiness 780.4

isA

hasCode

(b) Representation of the taxonomy as a graph, where the association between the ICD-9-CM codes
is explicit.

General symptoms 780
hasCode

Alteration of consciousness 780.0
isA hasCode

Hallucinations 780.1

isA

hasCode

Syncope and collapse 780.2

isA

hasCode

Dizziness and giddiness 780.4

isA

hasCode
Vertigo

hasCode

Ménière’s disease 386.00

sym
ptom

O
f hasCode

Vestibular 386.10

canB
e

hasCode

Peripheral

canB
e

ha
sC
od
e

Cerebral dysfunction 386.2

sym
ptom

O
f

hasCode

(c) Integration of the two indices as a common graph, thus representing an ontology.

Figure 2.9 Representing full-text contents as graphs.

2. Data integration: a data representation-independent approach 31

conj

aux punctdobj

det
nmod

case

ccconj

compound

punct conjcc conj

compound compound

punct appos

acl

advcl

advmod nsubj

dobj

punctnsubj

cc

nsubj

det

auxconj

nsubjdobj

cc

copcc conj

nsubj advmod

cc
punct

recurring

include

may :sensation

adizziness

of

orwoozy

vertigo

, lightheadednessor feeling

, problems

reading

exist

when symptoms

,they

and

symptoms

The

mayseeing

difficultydisorientation

or

beor constant

relatively

and,

Figure 2.10 Dependency graph of the wikipedia fulltext in Figure 2.8 obtained via the Stanford
NLP Library (See my source code at https://rebrand.ly/unibo7252c). Each vertex represents one
word within the full-text document, while each edge expresses a part of speech grammatical function,
called universal dependency (http://universaldependencies.org) [dMDS+14], which may also be
(human) language dependant (i.e., different languages may provide a different set of language
dependencies).

https://rebrand.ly/unibo7252c
http://universaldependencies.org

32 2.1 Preliminaries: data representation dependent approach

our question. To do this we have to first provide a nested graph representation of both the question

(Figure 2.11b on the facing page) and for the two candidate answers (a and c). As we can see, nested

graphs allow to nest whole concepts, such as “the arrival of this explorer in India” as one single

vertex, thus allowing to draw an edge between the “400th anniversary” and this other object.

Even in this case, each graphs’ node has neither an associated schema – that changes from

question to question – nor a type associated to each vertex and edge. Nevertheless, we can first

provide some types to the question: we have that Portugal is a Place as well as India, and

explorer is elected as a type itself since it is not a simple term of the graph. The last one also

represents the goal of our question. All the verbs and nouns expressing motions are marked as

Action (e.g., celebrated and arrival), while more generic terms are associated to Concept, such

as Anniversary. Temporal pieces of information can be marked with a Time type. Before starting the

alignment process, we must ask ourselves which elements are considered as explorers or at least

Persons in the two candidate answers. After using an ontology such as DBpedia, we know that

Vasco da Gama is for sure an explorer but, using the open world assumption, we cannot say that

Gary is not for sure an explorer, and so we associate to him a Person type. In the next phase, we

want to associate the place Place India to all the other geographical pieces of information within

the candidate answers: while India perfectly matches as both type and content in the first candidate

answer, we find Kappad Beach in the second answer. Even in this case, after using DBpedia we can

infer that Kappad Beach is a part-of India, and hence in both cases we have a perfect match. At

this stage, we can also try to find the matches between the temporal vertices: while the first candidate

answer has no temporal information, the first one has an information that, on the other hand, is very

hard to match with the one contained in the question. At this step, we could think to provide the

original question some refinements: if we have the availability of an ontology matching the concept

of 400th anniversary to a function:

anniversary(number, when) = when − number

then we can infer that if at time when we celebrated the number anniversary, then the concept shall

refer to a fact occurred on the year “when−number”. In this case, we will obtain 1898−400 = 1498,

and so we can extend the nested vertex within the question with a when edge and the resolved time,

May 1498: finally, we have mined a further correspondence between the temporal aspect.

After finding all the correspondences between the vertices and nested vertices, we have to map

the Action entities either to edges (since edges in this graph could also represent verbs) or other

entities: in this case we have that the type information is not enough because it is too general,

and hence we require some term similarity, that can be even in this case achieved using term

ontologies such as Babelnet. At this stage, we can make correspondences between the terms landed,

arrival and arrived, and hence the arrival matching with arrived could be transformed into a

verb, and hence into an edge. Moreover, the result of the alignment process including such graph

transformations is presented in Figure 2.12. We can now finally perform some approximated graph

matching techniques [VMT15, AGG+15], after which we can observe that the second candidate

answer contans all the information we are looking for and, since this explorer and Vasco da

Gama match and have the same type, we can say that Vasgo da Gama is the answer we were looking

for from the very beginning.

This last example showed that alignment techniques could be used not only for aligning
schemas, but also for finding correspondences within ambiguous data representations.
As a consequence, this example shows that graphs could be used to represent both
schemas and data, and hence could be used to represent two different and distinct concepts.
Consequently, we need a language expressing graph schemas, thus generalizing the schema
language for semistructured documents in [BLC+17]. Moreover, it has been also showed

2. Data integration: a data representation-independent approach 33

Gary
India

prop: in

arrived

he anniversary
celebrated

belongs to

Portugal

prop: in

where?

when? after

(a) Candidate Answer 1: “In May, Gary arrived in India after he celebrated his anniversary in
Portugal”

Portugal

In May 1898

prop: in

when?

400th anniversary

det: the

celebrated

arrival

det: the

explorer

det: this

who?

India

prop: in

where?

what?

(b) Question: “In May 1898 Portugal celebrate the 400th anniversary of the arrival of this explorer in
India”

Vasco da Gama
Kappad Beach

prop: in

27th of May 1498

prop: on

det: the

landed

when?

(c) Candidate Answer 2: “On the 27th of May 1498, Vasco da Gama landed in Kappad Beach.”

Figure 2.11 Representing the question (b) and two possible candidate answers (a and c) using
nested graphs. Candidate answer 2 is correct.

34 2.2 In-Database Integration

that graphs could also represent query languages for graphs [CM90a, CM90b, FLM+12,
GPG14]: as we will se in the next section, Data, Model and (Query) Language represent
three distinct levels within usual modelling languages, while graphs allow to collapse into
one single representation.

Last, pictures can be also represented as (semi)structured data: object categorization
techniques [GB10] such as region-based segmentations [GGK09] can be applied to extract
interesting features from the pictures. By doing so each picture is automatically associated
to the features that it contains. Within the e-Health scenario, such techniques have been
applied to tumour detection and classification [RJKK15, RJ16], where the benign forms are
separated from the malignant ones. Each fragment allowing such categorization could be
then stored alongside with the classification’s outcome, thus providing a way to transform
unstructured data to structured pictures providing informations. Moreover, pictures could
be represented as hypergraphs [BG05] and hence also as nested graphs.

We can finally observe that, prior to allowing the integration of graphs with structured
and unstructured data, we need to find a common representation for all the provided
datasets. Hence, we have to discuss which is the best and general data representation
allowing to represent both nested component and edges, and why such features are
important and relevant. For this reason, I refer to Chapter 3 on page 55 and 5 on page 119.
Moreover, a more general approach considering data at different nesting levels is going to
be discussed in Section 5.4 on page 139 after describing our proposed nested graph data
model.

2.2 In-Database Integration

As observed in Section 2.1.3, the data integration step can also be used to perform data
cleaning and duplicate removal. This also implies that, when a uniform data representation
for all the data sources is provided (either structured or semistructured), such data cleaning
steps can be also performed within the same data model and query language [LN07]. It is
remarked that SQL lacks a proper support for data cleaning it its (Commercial) Off-the-
Shelf dialects: such operations must be necessarily performed at the software level, thus
failing on optimizing such tasks within the same environment.

We now outline two limitations of such language: first, SQL does not allow unions
between tables having different schemas (Outer Union). This is the first required pre-
processing step before performing some further cleaning operations, as described in the
incoming paragraph. This union requirement could be easily met if we change the data
model and chose a semistructured representation, which is schema flexible. We start to
discuss this general data model from Section 2.2.1.

Second, SQL lacks functions clustering similar entities together (or which are able to
accept collections of data collections as an input) and associating to each cluster (or data
collection) one single object and – at the same time – preserving the original content. This
is due both to data representation problems and query languages’ limitations: for example,
the Group By clause in SQL can only subsume records by aggregating them only if they
share the same values for a certain set of chosen fields. For this reason, we will introduce a
more general aggregation operation in Section 2.2.2 on page 40.

2.2.1 Preliminaries: towards a uniform data representation

In this section we want to show that the MetaObject Facility (MOF) data model (used for

meta-modelling) can represent different data abstraction levels.

2
.

D
a
ta

in
te

g
ra

tio
n

:
a

d
a
ta

re
p
re

se
n

ta
tio

n
-in

d
e
p

e
n

d
e
n

t
a
p

p
ro

a
ch

3
5

Portugal

In May 1898

prop: in

when?

400th anniversary

det: the

celebrated

arrival

det: the

explorer

det: this

who?

India

prop: in

where?

what?

Gary
India

prop: in

arrived

he anniversary
celebrated

belongs to

Portugal

prop: in

where?

when? after

Vasco da Gama
Kappad Beach

prop: in

27th of May 1498

prop: on

det: the

landed

when?

Explorer

Explorer

Person

Place

Place

Place

Place

Place

Time

Time

=

=

≈

Concept

Concept ≈

Action

Action

Action

Action

≈

?

?

Action

May 1494when?

arrive

Place annotated type

= perfect type match

annotated type

edge matching
vertex matching

≈ approx. type match

⊑⊑
⊑ subtype match

edge creation

Legend

? question match

Figure 2.12 Aligning the query to the candidate answers through nested graphs.

36 2.2 In-Database Integration

The origins of meta-modelling could be retrieved in [omg96]: the OMG group aimed
to develop a type system for a distributed computation system (CORBA), in order to
manipulate data via “a common, integrated set of services”. Through the definition of
the MetaObject Facility, they wanted to distinguish between data, data collections (types)
and properties hold by such data collections. Even though it was designed for Software
Engineering, such hierarchy could be also applied to database systems [ACB06, LZ09] and
the Semantic Web [BAdCG16].

▸ Definition 1 (MetaObject Facility). The MetaObject Facility relies on different layers repres-

enting different abstraction (and hence, different abstraction levels). The first layer, simply called

Data (D = DO ∪ DR), contains both objects and relationships. In particular, an object o ∈ DO

is an aggregation of attributes and values that provides an information. An object composed of

different objects is referred as composite. Relationships r ∈ DR are n-ary association between

objects. Relationships could also have a direction (directed relationships) or not (in this case they are

called “undirected”).

The second layer is called Model (M) and it is a simplified representation of reality. It contains

the types, that are sets of objects T = { o1, . . . , on } satisfying a property p, written9 T(p), that is

also called schema in the data science community10. Hereby, one object could belong to more than

just one type (e.g.,11 o ∈ T1 ∧ o ∈ T2), and hence satisfy more than just one property.

The third layer is called MetaModel (MM), and it contains the definition of the types and of

the relationships used at lower levels: in particular it contains meta-objects describing properties

p for given types T . ◂

Besides of the very general representation of both entities and relationships, such model
allows to point out at which abstraction level a query language must be located, thus
introducing the next topic on ontologies. Moreover, its general definition of “value” allows
it to be either an atomic value, or a collection of values, and each value could be also an
object.

Despite the aforementioned definition, there is no universal acclaim of what a MetaModel

should be. [HS12] points out some alternative approaches that have been followed on
this regard (e.g., for the UML modelling language [OMG11b] extending the MOF): either
(i) the MetaModel is the modelling language itself, allowing to outline the Model and
its instance, or (ii) The MetaModel is a model for the modelling language. The choice of
UML of class diagrams that could be used on both the Model and the MetaModel level
causes a limit in the expressive power of the meta-modelling language, that could not be
used to define more advanced properties (Figure 2.13) and, for example, cannot lead to the
definition of a query language. Hereby, we will continue to use the MetaModel definition
that was previously provided: as a consequence, Model and MetaModel do not abstract
from the data structures, but characterize the properties hold by the same initial data.

9Originally, [omg96] used the inverse notation pT , thus associating to each property a given type, and
not vice versa. On the other hand, we use the notation T(p) which resembles the notation in relational
databases, where T is the relation and the predicate p is the associated schema. Moreover, in type theory
[Pie02] such relation is expressed as T ∶∶ p, because there is a correspondence between the data types to the
types in type theory, and between such (data) predicates to the sorts expressing the well-formed types.

10At this level relationships cannot be defined among types: this is one of the differences between
Model as in the MetaObject Facility and Ontologies (Section 2.3.1) or UML Model (Figure 2.13).

11In this case I choose to adopt the set theory notation, widely used in relational databases to express
that a tuple belongs to a relation (t ∈ r). On the other hand, in type theory an object is called a term, and to
express that a term o belongs to a type T the notation o∶T is used [Pie02].

2
.

D
a
ta

in
te

g
ra

tio
n

:
a

d
a
ta

re
p
re

se
n

ta
tio

n
-in

d
e
p

e
n

d
e
n

t
a
p

p
ro

a
ch

3
7

Legend

Employee

id

name

surname

gender

Vendor
Manager

department

SalesOrder

id

date

deliveryDate

Product

id

name

category

price

coordinates

1..N

process

0..N

items

0..N

Model

Employee

Vendor ManagerSalesOrderProduct

Container Conent Aggregation
name

cardinality

Source Target Association
name

cardinality

Child Father Generalization

UML Model

MetaModelProduct(id,name,category,price)

dom(id) = N

dom(name) = String
dom(category) = String
dom(price) = Q

SalesOrder(id,date,deliveryDate)

dom(id) = N

dom(date) = Date
dom(deliveryDate) = Date

itemR(salesOrder,Product)

Vendor(id,name,surname,gender)

Vendor<:Employee

processesR(vendor,salesOrder)

Employee(id,name,surname,gender)

dom(id) = N

dom(name) = String
dom(surname) = String
dom(gender) = Boolean

Manager(id,name,surname,gender,department)

Manager<:Employee

dom(department) = String
coordinatesR(manager,vendor)

Figure 2.13 Comparing the UML model representation and the one provided in Definition 1. The white diamond represents part-of relations and the white
arrow represent is-a relations. As we could see, the UML Model already provides a structured notion of the types, since the type definition and the schema is
not separated as in the MetaObject Facility. Hereby, we will continue to use the MetaObject Facility separation between Model and MetaModel, thus allowing
to provide a data representation which is not schema related. In particular, we express schema (data types’ properties) as in the relational model, and use the
Datalog syntax for expressing relationships among types.

3
8

2
.2

In
-D

a
ta

b
a
se

In
te

g
ra

tio
n

Data

name : Abigail

surname : Conner

gender : F

name : Baldwin

surname : Oliver

gender : M

name : Cassie

surname : Norman

gender : F

name : Darcy

surname : Parker

gender : M

name : Edmund

surname : Spencer

gender : M

date : 30-Dec-2016

deliveryDate : 2-Oct-2017

date : 13-May-2017

deliveryDate :

14-May-2017

date : 5-Jan-2017

deliveryDate :

12-Feb-2017

date : 13-June-2017

deliveryDate : 1-Aug-2017

processes

processes

processes

processes

name : Irma

surname : Abbott

gender : F

name : Langdon

surname : Attaway

gender : M

name : Madge

surname : Bailey

gender : F

coordinates

coordinates

coordinates

coo
rdi

nat
es

co
or
di
na
te
s

001

002

003

004

005

100

101

102

103

050

051

052

name : Coffee

category : Drink

price: 2.57

name : Milk

category : Diary Product

price : 0.80

name : Shiny

category : Cleaner

price : 4.10

name : Marseille

category : Soap

price : 0.99

item

quantity : 1

itemquantity : 2

item

quantity : 1

ite
m

qua
nti

ty
: 10

item

quantity : 1

Model

Employee

Vendor ManagerSalesOrderProduct

MetaModelProduct(id,name,category,price)

dom(id) = N

dom(name) = String
dom(category) = String
dom(price) = Q

SalesOrder(id,date,deliveryDate)

dom(id) = N

dom(date) = Date
dom(deliveryDate) = Date

itemR(salesOrder,Product)

Vendor(id,name,surname,gender)

Vendor<:Employee

processesR(vendor,salesOrder)

Employee(id,name,surname,gender)

dom(id) = N

dom(name) = String
dom(surname) = String
dom(gender) = Boolean

Manager(id,name,surname,gender,department)

Manager<:Employee

dom(department) = String
coordinatesR(manager,vendor)

Figure 2.14 Complete MetaObject Facility example. Each object in the Data layer which has a given type (provided on the top label in bold) is associated to
the class in the Model layer with an α relation.

2. Data integration: a data representation-independent approach 39

▸ Example 5. Figure 2.14 provides an example of all the MetaObject Facility layers for a vending

company use case scenario. In particular, we represent two types of Employees, Vendors and

Managers. The latter ones coordinate the former ones, while the first ones can process SalesOrders

order containing Products. One Manager could coordinate one or more Vendors, which could

process some SalesOrders composed of several items, which are Products. All the objects sharing

the same type are arranged in the same column where their corresponding type at the Model level

is located, on top of which its properties at the MetaModel are provided.

As we could se from the former example, such model allows to represent a graph: each
object could be considered as a vertex, while each relationship as an edge. As a result,
we have that even edges must be represented as primary concepts within the MetaObject
Facility. Hereby, even each relationship should be a primary concept within this modelling
definition, and hence each edge should have an associated type, as it happens in current
graph databases (compare with edge labels). On the other hand, this already happens
within the UML modelling language [OMG11b, Obj11].

Given that the schema and all the properties pertaining to the types are expressed as
properties, it is now easy to define any query Language LMM on top of the MetaModel

MM through which express the schema of the types at the Model level by abstracting
from the data representation. The fact that LMM includes MM is confirmed by the fact that
queries could be represented as mere combinations of to-be-satisfied properties, as well as
schema representations [Len02]. Please note that such query Language (LMM) does not
belong to the original MetaObject Facility model, and that it has been introduced at this
level for the first time within this thesis for modeling purposes.

Between such abstraction layers only an “instance-of” function12 α is allowed to connect
each lower layer to the immediately upper one [HS12]; such kind of relation is not allowed
between instances of the same layer, and hence it could not be used to provide aggregations
within the Data layer. As a consequence, α should be denoted by the following expression:

α∶D ⊍ M → M ⊍ MM

where ⊍ provides the disjoint union between two sets, thus allowing to map each element
of D into one of M, and similarly for M and MM. Such function is defined in literature as
follows:

▸ Definition 2. An abstraction function is an α relation that is defined as follows:

MM = α(M) = α(α(D)) (2.1)

Such α could be seen as the following transformation between objects at different layers of

abstraction [K0̈6]:

τ ○ α ′ ○π (2.2)

where π is a projection function that reduces the informative content of the given object, α ′ provides

a further abstraction (i.e., over object’s relations) and τ translates the refined object into a more

abstract modelling language. Sometimes [K0̈6] α ′ could be omitted or replaced by an identity

function. ◂

12α is a widely adopted symbol field for many different aspects: it is also a relational algebra operator for
transitive closures [Agr88], one of the two possible data aggregations presented in [Joh11] or an alignment
between two ontologies [ES13].

40 2.2 In-Database Integration

Since there is an unique function for abstracting different layers, this function also
makes possible that each layer could be represented similarly. The possibility of doing so is
also confirmed for the previously-introduced “semi-structured data”13. For the moment is
only sufficient to know that the visual language UML extending the aforementioned model
[Obj11, OMG11b], could be expressed with a (semistructured) XML specification, called
XMI [OMG11a], through which Data, Model and MetaModel could be all represented.
Given that XML can express both data and model layers, XML provides a better abstraction
than the former model. Please also note that XML syntax can be also used to represent
query languages (XSLT) and, therefore, XML may be also used to represent all data
representation layers in the former model. Therefore, semistructured data provide a more
uniform representation allowing the definition of α as simply as a XML transformation
function.

As it will be outlined in the next chapter, XML has also modelling limitations for
representing nested concepts. Therefore, not even XML can be totally adopted as a suitable
model for data integration. We procrastinate the discussion for our proposed Data Model
to Chapter 5. Bearing this in mind, we’re still considering within this chapter MOF as the
final data model of choice.

2.2.2 Aggregations

Please observe that this section introduces some running examples that are going to be used along

the thesis.

MOF allows to describe α-abstractions between different representation layers but, as
previously pointed out, such operator is not allowed to express generalizations inside
the same abstraction layer. This consideration implies that other generalization operators
working within the same layer (e.g., the Data level) are required. The need of such
abstraction mechanism is repeatedly remarked by both data modelling [Pre10, Lar04] and
complex systems literature [Joh11], where two distinct types of aggregations are outlined:
part-of and is-a14. While the part-of relation identifies all the objects that constitute
another object within the same abstraction, the is-a relation identifies all the objects that
could be summarized as one single entity in a coarser representation. Since all those
relations are aggregations on the data level, they could be summarized by the following
relation, summarizing the information of all the provided objects into one single object
[BMM16, BMM17]:

⊕ f ∶ P(DO)→ DO (2.3)

Please observe that this definition could be used to arbitrarily aggregate a collection of
objects through a transformation (e.g., aggregation) function f . Moreover, ⊕ is an object
combination operator appearing both Join and the Group By operators. In the first case,
⊕ combines the tuples coming from two distinct relational tables [BMM16], while in the
second it aggregates all the objects belonging to the same equivalence class. Within the
relational model, we can suppose that DR = ∅: now, we can see that both Join and Group
By operators are generalizable using the following nesting operator:

ν
⊕ f

C (d) = {⊕ f (γ ∩ d) ∣ γ ∈ C } (2.4)

13See Chapter 3.2 on page 64 for more details.
14In [Joh11], those two operations are ambiguously called α-aggregation and β-aggregation respectively,

or even AND-aggregation and OR-aggregation. Both those notations are not-common in both data
modelling and in semantic web literature, where the more explanatory part-of and is-a are used.

2. Data integration: a data representation-independent approach 41

where C ∈ P(P(DO)) is a collection of collections, and ν
f
C ∶ P(DO) → P(DO) transforms a

collection of objects into a collection of objects. Given this definition, the join operation
within the relational model can be defined as:

R ⋈θ S = ν⊕{ { a,b ∣ b∈S,θ(a,b) } ∣ a∈R }(R ∪ S)

This means that we select to merge through the tuple combination function ⊕ only the
tuples that match the predicate θ. Moreover, the Group By can be expressed as follows:

γ
f
A1,...,An

(R) = ν
f{ { t ′∈R ∣ t[A1]=t ′[A1],...,t[An]=t ′[An] } ∣ t∈R }(R)

This means that we use a generic aggregation function f aggregating the record that share
the same common values for the attributes and fields A1, . . . , An. Both these operations
are used within the relational model for data integration and cleaning purposes [LN07].

Consequently, the ν
⊕ f

C operator can perform both (unary) dimensionality reductions and
(n-ary) data operators through combinations.

▸ Example 6. The part-of aggregation could be used within the context of social network analysis,

where all the users that belong to an on-line community are part-of such community. Figure 2.15a

on the next page provides an example of a social network graph, where each vertex represents an

user and each edge represents a friendship relation. Within the social network scenario, we could

be also interested in analysing the user activities, such as the messages that have been exchanged

between the users. An example of such interaction is provided in Figure 2.15b: please note that from

this picture is very hard to guess which is the high level perspective of the messages that have been

exchanged among the users and which are the kind of interactions among such communities.

Figure 2.16b represents the interaction graph where each user replaced by its corresponding

community, thus providing a coarser view of the interaction. At this level, the interaction between

the communities is more readable and easier to visualize. Similarly, Figure 2.16a represents a

simplified view of the social network graph in Figure 2.15a, where the intimacy between social

network communities is determined from the friendship relationships between users belonging to

different networks.

As we could see from the next example, an operation that only performs an ν
⊕ f

C
aggregation is not enough for establishing new links between the connected components,
because as a result of the aggregation, we could be also interested in establish relationships
between the objects (i.e., vertices), differently from the former example. Hereby, an
operation creating new edges between the objects is required.

▸ Example 7. Suppose to have a bipartite graph, where each vertex could be either an author or a

paper, and where each edge connects each author to its paper. An example of such graph is provided

in Figure 2.17a on page 44. Moreover, on top of this graph, we want to extract an aggregated15

Co-Authorship graph as the one in Figure 2.17b, where each author internally contains a reference to

the papers that he has written. Please observe that the rule establishing the relationships between the

resulting vertices here differs from the rule required by the former example: in this example we have

to establish an edge between the two aggregated vertex vertices if the original vertices are connected

by a path of length 2, while on the former scenario the path length was 1. This suggests that another

relevant operation in data integration is the establishment of new relationships among the vertices.

15This problem is addressed in [DMR16] and is named Graph Projection. Later on on this thesis
(Chapter 7), we’re going to show that a graph projection operator shall be defined differently, that is by

directly providing an implementation of ν
⊕ f

C
.

42 2.2 In-Database Integration

●

●

●

●

●

●

●

●
●

●●

●
●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●
●

●
●

●

●

●

●
●

●
●

●

●● ●
●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

(a) An example of an social network graph where all the users belonging
to the same community are marked with the same colour.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
● ●●

●

●
●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●

2

3

4

6

7

8

10

11

12

13

14

16

17

18

19

20

2123

24

25

26

27

28

29

30

31

32

33

34

35

36

38

39

41

42

43

44

45

47
49

50

51

52

53

54

55

56

57

58

59

60

62

63

64

66

67

68
6970

72

73

74
75

76

77

78

79

80

81

83

84

85

86

87

88 89

90

92

93

94
95

96

97

98

99

100

101

102

103 104

105

106

107

108

109

110

111

112

113

114

115

116

117

119

120

121

122

123

124

125

126 128

129

130 132

133

134

137

138

139

140

142

143

144

145

146

148

149

151

152

153

154

155

156

158

159

160

161

162

163

164

165

167
168

169

171

172

173
175

176

178

180
181

183

184

185

186

187

189

190

191
192

193

194

197

198

199

201

202

204

205

206

207

208

209

210

211

212

213

214

216

217

218
220

221

222

224

225

226

228

65

127
37

196

136

188

203

179

91

177

166

195

227

135
150

223157

15

170

22

141

46

5
118

215182

131
71

40

61

48

174

82

1

219

200

147

9

(b) Interaction graph between all the users of the users appearing in the
previous graph. Each vertex represents an user and an edge represents
that the source user has sent a message to a destination user. We use
the same community colours as in the social network graph.

Figure 2.15 Two examples of graph data for social network analysis: a Friendship Graph (2.15a)
and an Interaction Graph (2.15b)

2. Data integration: a data representation-independent approach 43

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

1

2

3

4

5

6

78

9

10

11

12

13

14

15

16

(a) Social network graph where all the users belonging to the same
community are aggregated together. As a result, there is an edge
between one community and another one if one user belonging to the
first is friend with another one belonging to the latter.

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

(b) Upscaling the network interaction at the community level.

Figure 2.16 Coarse grained representation of both the social network graph and the network
interaction, aggregated at the community level.

44 2.2 In-Database Integration

Author

name : Abigail

surname : Conner

0

Author

name : Baldwin

surname : Oliver

1

Author

name : Cassie

surname : Norman

2

Paper

title : On Joining Graphs

3

Paper

title : Object Databases

4

Paper

title : On Nesting Graphs

5

AuthorOf

6

Aut
hor

Of

7

AuthorOf

8

Aut
hor

Of

9

AuthorOf

10

(a) Input bibliographical network.

Author

name : Abigail

surname : Conner

Author

name : Baldwin

surname : Oliver

Author

name : Cassie

surname : Norman

c
o
a
u
t
h
o
r
s
h
i
p

c
o
a
u
t
h
o
r
s
h
i
p

(b) Aggregated result.

Figure 2.17 Bibliographic network

At this point we want to show why the is-a relation could be represented with a nested
representation supporting “structural aggregation” instead of a is-a edge, as currently done
in graph literature. The following example provides an explanation.

▸ Example 8. Suppose to associate a hierarchy to each product within Figure 2.14 on page 38,

thus allowing to represent vertices at different abstraction levels. Hierarchies are “key elements

in analytical applications” [VZ14] and graphs allow to provide a direct representation to “non-

strict hierarchies”. Such graph representation could be also be adopted for transactional data

within business process execution [PMB+17], thus allowing to more efficiently represent the data

that has to be joined within a standard relational star schema by simply using edge traversals

[VTBL13, BDK+13, SFS+15].

Figure 2.18a provides an example of a hierarchy for some products in Figure 2.14 on page 38

at three different abstraction levels. Even though this representation explicitly expresses the is-a

relation, it does not provide a good representation of the aggregation. Such aggregation should be

represented by the inverse relation of is-a, that is parent-of, and such relation should be an n-ary

relation containing all its child elements [Joh11]; by doing so we associate value representing the

result (e.g., the result of the ν
⊕ f

C function) to the aggregation of the contained (and aggregated)

elements.

Another standard representation of such hierarchies is provided in Figure 2.18b. In this relational

representation each type and category is replicated for each product. This solution is adopted in order

to avoid the navigation cost within relational databases through the join queries. This hierarchy

representation, on the other hand, is costly for hierarchy updates (data updates and removals require

a linear scan of the whole table); also, data aggregations are not feasible within this representation

and require an additional join and aggregation cost. On the other hand, this hierarchy representation

approach is even worse than the former one, because the notion of the is-a relation is completely

driven by the “position of the attributes” within the table.

The nested relational model, on the other hand, provides a better parent-of representation by

allowing the relations as possible values within a relation’s tuple. Figure 2.18c provides an example

of how such hierarchy could be modelled within such representation. Even this representation is not

beneficial, as within the relational model is not possible to associate to a whole nested relation a data

value expressing an aggregated result of its contents.

For this reason, the current thesis will provide in Chapter 5 a data model where such part-of

2. Data integration: a data representation-independent approach 45

Shiny

Brighty

CleanHand

Marseille

Milk

Yogurt

Water

Coffee

Product

Cleaner

Soap

Diary Product

Drink

Category

House Cleaner

Food

Type

(a) Graph and NOF representation, where each edge represent the is-a

relation. Each vertex under the same grayed area has the same label of
the title of the aforementioned area.

type category product

House Cleaner Cleaner Shiny

House Cleaner Cleaner Brighty

House Cleaner Soap Clean Hand

House Cleaner Soap Marseille

Food Diary Product Milk

Food Diary Product Yogurt

Food Drink Water

Food Drink Coffee

(b) Standard relational representation (tabular) within RDBMS for
ROLAP data warehouses. Type and category values are replicated for
each product.

type parent-of

House Cleaner category parent-of

Cleaner product

Shiny

Brighty

Soap product

Clean Hand

Marseille

Food category parent-of

Diary Product product

Milk

Yogurt

Drink product

Water

Coffee

(c) Standard nested representation of the is-a hierarchies in Data
Warehouses through the inverse relation, parent-of.

Figure 2.18 Different representations for a balanced hierarchy describing the taxonomy associated
to the products from Figure 2.14 on page 38. If we assume that each node represents with a different
type, we could completely describe such hierarchy at the model level (see Section 2.3.1).

46 2.2 In-Database Integration

type ⊟ quantity

House Cleaner category ⊟ quantity

Cleaner product quantity

Shiny 1

Soap product quantity

Marseille 10

Marseille 1

Food category ⊟ quantity

Diary Product product quantity

Milk 2

Drink product quantity

Coffee 1

(a) Completely expanded components. Each quantity referring to a
specific SalesOrder is associated to its product.

type ⊟ quantity

House Cleaner category ⊞ quantity

Cleaner 1

Soap 11

Food category ⊞ quantity

Diary Product 2

Drink 1

(b) Aggregating each product, associating to each category the sum of
the sold product within the quantity field.

type ◫ quantity

House Cleaner category ⊞ quantity

Cleaner 1

Soap 11

Food ⊞ 3

(c) Partially expanded components, where only the Food, Cleaner and
Soap components are aggregated.

type ⊞ quantity

House Cleaner 12

Food 3

(d) Completely aggregated components at the type level.

Figure 2.19 Expressing the duality nested relation and aggregated value as provided in mod-
ern Data Warehouses [Rol13, PSAH16]. ⊟ represents a fully expanded attribute, ⊞ a completely
aggregated attribute, and � a partially aggregated field.

association is possible, as well as expressing relations between the data as in the graph model. An

example of how such dualism (contained elements and aggregated value) is possible is introduced

in Figure 2.19, where we associate to each product the quantity of the goods sold within each

SalesOrder (a). If we consider such aggregation as a “view” over the data, we could think of

each aggregated value associated to a nested relation as an expression associated to each of its

subcomponents16. As a consequence, our desired data model should provide both atomic values and

expressions composing values and attributes; each quantity field at both the type and category

16http://rebrand.ly/githuaf109

http://rebrand.ly/githuaf109

2. Data integration: a data representation-independent approach 47

level should provide both the expression sum(x ↦ x.quantity) for the aggregated representation, and

a relation over which perform the aforementioned aggregation. Please note that this association could

not be provided by the standard nested relational model but, on the other hand, it is frequently used

in Data Warehouses for exploring via expansions and collapses the multidimensional components.

An example of how to perform such queries is going to be provided later on in Section 6.3.3 on

page 182 through the help of some algebraic operators. Moreover, each component could be arbitrarily

expanded or aggregated (c): therefore such representation could not fit in the nested relational model.

This example will extended and discussed within the nested graph model at page 187, after providing

a query Language allowing the combination of (nested) graph data alongside with other represented

within the same general data model.

2.3 Multi-database integration

In this section we’re interested to attack the multi-database integration problem, that can
be stated as follows: given a global schema G of my integrated system and a query q written

in a Language LG, evaluate such query among multiple data-sources D = {D1, . . . , Dn } having

different schemas and data representations and provide the final results in a reconciled representation.
This definition is general enough to include both distributed and federated databases data
integration.

In order to proficiently solve this problem, we’re going to see that ontologies (Section
2.3.1), generalizing data schemas [GP13], attack the schema matching problem (Section
2.3.2) on different data sources with several schemas and representations. Last, we address
the problem of evaluating query q on either the original data sources or on the global
schema (Section 2.3.3).

2.3.1 Preliminaries: Description Logic and Ontologies

When compared with other data models such as the three world relational model for
data mining [CLNP06], MOF also shows its inability to outline and suggest which are the
relevant operations to either manipulate the data or to perform assertions on it. Ontologies
are now introduced in particular for the latter reason, thus allowing to assert properties
over objects and relations at the Data level, as required by the Model level. Literature
provides the following generic definition of an ontology:

▸ Definition 3. An ontology [AH11] is a semantic interpretation of a model establishing relations

among model’s types and defining generic inference rules. Moreover “an ontology plays a role of

a semantic domain in denotational semantics” [SK06] and refers to concepts or entities, that are

language and representation independent [HS12]. ◂

Even though the MOF characterization clearly puts the ontology at the Language level,
the unclear literature characterization has the problem of distinguishing Models from
ontologies [TSL+06] because their distinction is “diverse and frequently contradictory” [HS12].
On the other hand, other researchers cited in [SK06] claim that the aim of distinguishing
Models from ontologies is to separate the representation of the information from the
description of the data collected inside it. On the other hand, [SK06] distinguishes the
Model from the ontology level by defining a semantic mapping function associating each
element of the Model to a collection of the elements of the ontology. Within the MOF
characterization, such definition matches with the α function, where each element of the
ontology is provided within one single formula predicating the properties associated to the
type.

48 2.3 Multi-database integration

Description Syntax (⋅) Semantics (⋅I)

R
o

le
s atomic role R {r ∈ DR∣α(r) = R}

inverse role R− {(x, y)∣(y, x) ∈ RI}
universal role U DO ×DO

C
o

n
ce

p
ts

atomic concept A {o ∈ DO∣α(o) = A}
intersection C ⊓D CI ∩DI
union C ⊔D CI ∪DI
complement ¬C DO/CI
top ⊺ DO

bottom � ∅
existential restriction ∃R.C {o ∈ DO∣∃o ′ ∈ DO.(o, o ′) ∈ RI ∧ o ′ ∈ CI}
universal restriction ∀R.C {o ∈ DO∣∀o ′ ∈ DO.(o, o ′) ∈ RI ⇒ o ′ ∈ CI}
at-least restriction ≥ n R.C { o ∈ DO ∣ ∣{ o ′ ∈ DO ∣ (o, o ′) ∈ RI ∧ o ′ ∈ CI }∣ ≥ n }
at-most restriction ≤ n R.C { o ∈ DO ∣ ∣{ o ′ ∈ DO ∣ (o, o ′) ∈ RI ∧ o ′ ∈ CI }∣ ≤ n }
reflexivity ∃R.Self { x ∈ DO ∣ (x, x) ∈ RI }
nominal {o} {o∣o ∈ DO}

Table 2.1 Syntax and semantics of SROIQ constructors using Data as a domain for the interpret-
ation under the CWA. SROIQ is the DL language expressing the OWL2.

Among all the possible classes of Language expressing ontologies (such as frame-

based or first order logic-based languages [CGP00]), we chose to describe ontologies
using Description Logic (DL) languages. This choice is due to the wide diffusion of OWL,
a member of the DL language family, for Semantic Web applications. DL is also widely
dealt in current literature, such that their notation is even adopted for expressing generic
concepts in data integration literature [ES13]. As a consequence, we provide a DL-biased
definition for an ontology:

▸ Definition 4 (Description Logic Ontology). Given a set I = { i1, . . . , in, . . . } of individuals, a

description logic ontology O is a pair (A,T), where both properties of individuals and binary

relations between such individuals are expressed.

In particular, A is called ABox because it contains the following “sorts” of term, called axioms:

tA ∶= C(i) ∣ R(i, i ′) ∣ C1 ⊑ C2 ∣ C1 ≡ C2 ∣ R1 ⊑ R2 ∣ R1 ≡ R2

where C describe concepts (types) characterizing the individuals, and R represent roles (relation-

ships) among source (i) and destination (i ′) individuals. Moreover, inclusions (⊑) and equivalence

(≡) between the concepts could be also defined among concepts or roles.

T represents the TBox containing all the assertions and properties concerning the statements

within the ABox. Such assertions are expressed within description logic languages, which expressive

power and computational complexity may vary depending on the constructors of choice. An example

of such constructors for the SROIQ language is provided in Table 2.1. ◂

As a consequence, the Model is a part of the ontology (MO) describing the collection of
all the types that could be represented. On the other hand, ABox and TBox statements do
not allow to transform individuals into others via transcoding functions ϛ, because such
logic focuses more on expressing properties over existing data than on showing which
operations shall be used on top of such data.

2. Data integration: a data representation-independent approach 49

Another difference between Description Logic and standard query Language is that the
preferred TBox interpretation relies on the “open world assumption” (OWA) [BCM+10].
This implies that the truth value of the DL statements may be true irrespectively of whether
or not it is known to be true within the ABox, thus opposing their query interpretation to
the closed world assumption (CWA), where only the represented data are assumed to be
true, thus describing a “negation as failure” approach (NAF, [RPZ10]). As a consequence,
OWA semantics for very expressive languages leads to an undecidable evaluation of the
TBox assertions, thus preventing to use such languages for practical interests [BHLS17].
On the other hand, the axiomatic restrictions of the CWA lead to decidable evaluations of
DL languages [PSF12], albeit still intractable in some cases. Within the CWA assumption
where the Data layer is the domain of the interpretation for both individuals and roles,
and assuming that each individual is an actual object of the Model level, C(i) could be
interpreted as α(i) = C. Please also note that, while MOF allows the representation of
a multigraph, thus allowing multiple edges between two vertices, the description logic
does not permit to refer to one specific edge among a given source and destination. This
last observation makes the standard DL characterization unserviceable on top of our data
model, thus requiring to extend such language.

Still within the field of Modal Logics but beyond DL languages17, the Register Logic
language [BFL13] makes constraint checking tractable at the price of the loss of expressive
power of graph navigation, but allowing to execute queries always in data polynomial time
(NLogspace).

2.3.2 Ontology Alignments and Data Integration

After describing an ontology, we’re going to use ontology alignments for attacking the
data integration problem. Such class of solutions have received more research acclaim than
schema related one [MM09, MM10], which are strictly representation dependent.

At this point we must extend the Description Logic syntax so that individual transcoding
functions ϛ are allowed, in order to be able to express supertypes’ transcoding functions.
Such transformations will be required in the following scenario in order to say that
C(i) ⊑ C ′(ϛ(i)).

After describing in the previous sections how ontological alignments are useful within
the process of data integration, we can now formally define what an alignment between two
ontology is. Moreover, since in some scenarios the alignment uses the data representation
to infer such alignment [AGG+15], I extend the usual alignment definition provided for
either schema or ontology alignments [ES13, GHKR11] as follows:

▸ Definition 5 (Ontological Alignment). An ontological alignment A(O, O ′) of a source

ontology O towards a destination ontology O ′ is a set of tuples called correspondences. Each

correspondence maps a set of types δt from a model MO into one type t in MO ′ using a transcoding

function ϛδt→t. Such correspondence is expressed as (δt, F, t,ϛδt→t, s), where F is the alignment

expressed in description logic axioms between the correspondent types and, whenever ϛδt→t is a

bijection18, the inverse function ϛt→δt = ϛ−1
δt→t is also provided. An uncertainty score s could be also

associated to the accuracy of the alignment [ES13, HGR13]. ◂

17DL could be considered as a class of languages providing extensions to modal logic.
18If t expresses a part-of or an is-a relation such as δt ⊑ t, then sometimes is not possible to unambigu-

ously associate to the aggregation the single disaggregated components.

50 2.3 Multi-database integration

As a consequence of this definition, given that the ontology subsumes both the in-
formations from the Model (it describes the concepts and roles) and the ones from the
MetaModel (TBox expressions), we have that a Language LMM could be also described
by the language expressed in its correspondent ontology. In the case of Description Logic
Ontologies, the query Language is the Description Logic itself. Given that both ontologies
(containing the schema definition, MM) and queries could always be expressed within the
Description Logic ([BCM+10, Chapter 16]), from now on we’ll always use the terms query,
ontology and schema interchangeably as already did in [Len02].

As outlined by both more recent literature [GHKR11, HGR13] and in the former
Example, it is possible to provide alignments between multiple local ontologies into one
single global ontology, which in this case it is referred as hub (ontology). Therefore, the
previous definition could be extended as follows:

▸ Definition 6 (Multisource Data Integration System). A multisource data integration system

is defined as a triplet ⟨H,I ,O⟩, where H is the hub ontology, representing the target of all the

ontological alignments A(O, H) ∈ I having O ∈ O as a source (or local) ontology. ◂

2.3.3 Query Rewriting

In the previous section we focused on performing data integration among different data
sources and to reconcile them into one global representation in a data representation
independent approach. At this point we should ask at which stage we prefer to execute
the query q, either on the still-to-be integrated data sources and then also after the data
integration process (Local As a View, [MFK01, NRA+17, SSSF09]), or always at the end
of such integration process (Global As a View, [MM06, Lu06, BCC+16]). These two
approaches are interchangeable within the data integration task.

▸ Example 9. By rephrasing the data integration approach in the latter subsection, Figure 2.20

provides general data integration framework, where both such approaches could be used. The

difference between the two approaches are hidded by the integration arrow, that is going to be

expanded and analyzed in the following definitions. Our local data either comes with an associated

schema (e.g., the SQL dumps containing the constraints on the relational tables) or such schema

should be extracted through ad hoc α functions, thus providing an ontology (represented in Figure

with blue clique-3 graphs). All such local ontologies must be aligned to the main global hub ontology

H, that is either directly provided by the user or obtained “at runtime” from the local ontologies by

abstracting over each local schema [BLC+17]. If the data to be integrated contains general purpose

concepts such as IBM Watson for Jeopardy [oRD12], then the Ontology Alignment process shall

require intermediate general purpose ontologies for producing alignments, such as BabelNet for

word relations and DBPedia for more complex and complete data. A more domain specific scenario,

such as eHealth, requires more advanced and precise ontologies and taxonomies, such as MeSH and

ICD-10 CM, such that the precision of the ontology alignment process can be increased.

We’re now going to see that ontological alignments can be used within a more general
data integration framework, that is data representation dependent, and hence we have to
introduce functions to translate both data representation and queries. The first class of
functions is represented by the class of translation functions τD1→D2 , which convert the
data representation in D1 into D2 in a purely syntactical way:

τD1→D2 ∶D1 → D2 (2.5)

2. Data integration: a data representation-independent approach 51

G
l
o
b
a
l

D
a
t
a

Local Data Data Integration Framework

α α α α

sam
e

as

schema+
constraints

α

Unstructured Documents

Local Data Ontologies

Structured Documents

Semi-structured Documents

Ontology Aligner

{L1, . . . , L9}

Integrated Data

Hub Ontology

query (q)H

α

integration

(L
A

V
/

G
A

V
)

{D1, . . . , D9}

result

Figure 2.20 Representation of the data integration scenario of both the Local As a View and
Global As a View approaches. Beside their definition, the only difference with this representation
stands in the representation of the integrated data as either a materialized view of the local sources
or as a temporarily query result. The components highlighted in yellow remark the parts that could
be directly provided by the external user.

▸ Example 10. The coding of a function allowing to transform a graph representation (Figure 2.17a

on page 44) into a JSON one (e.g., Figure 5.7 on page 145) is straightforward, it is commonly used

to export data from databases (dump) and does not require to use some specific knowledge concerning

either the Model or the Ontology describing the data. Some data translation function will be

provided in Section 5.3 on page 136 for translating any possible data model into the proposed GSM.

The second operation is the query translation function19 ϘA
O1,O2

from a language LO1 to
another language LO2 using the information of the alignment A(O1, O2) between the two
ontologies. More formally:

Ϙ∶ ∀O1, O2 ∈ O. A(O1, O2) → LO1 → LO2

19It is represented by the qoppa Greek letter: Ϙ,ϙ.

52 2.3 Multi-database integration

ϘA
O1,O2

= Ϙ(A(O1, O2)) s.t. ϘA
O1,O2

∶ LO1 → LO2

The Global As a View query rewriting approach, uses the alignments A(α(Di), H)
translating the local schema α(Di) of database Di into a global view, thus performing the
integration and the schema alignment within the same data representation of H. Using the
aforementioned notation, such systems could be summarized with the composition of all
the aforementioned functions as in the following definition:

▸ Definition 7 (Global As a View). Given a multisource data integration system ⟨H,I ,O⟩ for a set

of databases D = {D1, . . . , Dn } having their schemas in O (∀Di ∈ D.α(Di) ∈ O), a query q could

be run on heterogeneous data sources at the end of the data integration steps. First, we translate the

data sources into a common representation (τα(Di)→H(Di)). Given that a schema at the ontology

level could even represent a query, such data is now aligned (ϘA
α(Di),H(α(Di))(τα(Di)→H(Di))):

now all the data are in the same representation, and hence they could be aggregated (ν≅(. . .)) using

a clustering algorithm among similar components [SPR17]. Such aggregated data is then queried

with q. As a result, we obtain the following expression:

q (ν≅ (ϘA
α(D1),H(α(D1))(τα(D1)→H(D1)), . . . ,ϘA

α(Dn),H(α(Dn))(τα(D1)→H(Dn))))
◂

This definition confirms the intuition expressed in [Len02], stating that GAV systems
do not require the translation of the main query q over the different data sources, but only
on translating the local schemas into the global one. On the other hand, such systems
could not be optimized when q and H are determined on the fly. Nevertheless, this is the
traditional approach used in Data Warehouses, where data is extracted, transformed and
processed to be compliant to the data warehouse schema expressed through an OLAP
query [AGG+15]. Moreover, even in traditional data warehouses all the data must be
converted into one final schema representation, that is here represented by H [VZ14].

With the second approach, called Local As a View, alignments are used to translate
part of the query q to be executed separately on the local sources. Then, the data is
translated for the hub schema and integrated as in the previous phase, and then the
remaining part of q is run on the global representation.

▸ Definition 8 (Local As a View). Given a multisource data integration systems ⟨H,I ,O⟩ for

a set of databases D = {D1, . . . , Dn } having their schemas in O, a query q could be run on

heterogeneous data sources by first performing a subquery of q over the data that could be queried

from Di accordingly to the alignment A (hence, q gets partially translated in ϘA
H,α(Di)(q)(Di)),

then the data is necessarily transformed into the global representation τα(Di)→G(ϘA
H,Li
(q)(Di)).

Later on, the data is integrated into a common data element, over which the remaining part of q,

namely qEND, is processed to process the remaining part of the query requiring the combination of

the pre-process data from the original sources. This process could be sketched as follows:

qEND (ν≅(τα(D1)→H(ϘA
H,α(D1)(q)(D1)), . . . , τα(Dn)→H(ϘA

H,α(Dn)(q)(Dn))))
◂

On the other hand, this approach is best suited for data that changes through time, and
for which the ontology definition and the data representation could change. Despite the
non-negligible cost of query rewriting, this solution provide a best solution when the final

2. Data integration: a data representation-independent approach 53

data schema could change at any possible query of the database. Nevertheless, this thesis
is going to focus on the GAV approach, because it better separates the distinct operations
that have to be performed in order to reach our final goal.

2.4 Conclusions

After showing data integration over specific data models, we discussed a general strategy
abstracting from particular data representations. We showed that current data models are
not able to express structural aggregation, where coarse data representation and finer ones
cannot coexist within one single instance. We also showed that current query languages
(e.g., SQL and SROIQ) fail at representing either aggregations or alignment tasks. As
a consequence, data integration requires both a generalised data model providing the
desired structural aggregation and a query language (over such general representation)
expressing queries currently used for specific types of data sources. As we’re going to see
in Chapter 6, our proposed query language is able to express the Ϙ, α and ν≅ operators
for data integration, that can now be only supported outside traditional query languages.
All these concepts are going to be addressed and solved within this thesis, either from a
formal point of view, or on an algorithmic one (ν and ⋈). With respect to graph data, the
present thesis is going to show that it is possible to provide efficient implementations of
both graph joins (Chapter 4) and graph nesting (Chapter 7) operators.

The analysis of MetaObject Facility data model showed that query languages should be
a part of the desired data model: in particular, a subset of such query languages asserting
data properties or transforming data representations should be representable within the
data model. Chapter 5 (with special reference to Section 5.1.1 on page 125) will show that
this feature allows a straightforward characterisation of structural aggregations within our
Generalized Semistructured data Model.

3 Analysing the properties of Data Models and

Query Languages

Contents

3.1 Structured data: the Relational Model 56

3.1.1 Query Languages . 56

3.1.1.1 Data Mining Algebra 58

3.1.2 Representation Problems . 58

3.1.3 Representing graphs . 63

3.2 Nested Relational Model, Semistructured data and Streams . . . 64

3.2.1 Query languages . 68

3.2.2 Representation problems . 68

3.2.3 Representing graphs . 69

3.3 Unstructured Data: Full Text Documents 70

3.3.1 Query Languages . 71

3.4 Graph (Data) Models . 73

3.5 Classifying Graph Query Languages 76

3.5.1 Graph Traversal and Pattern Matching Languages 77

3.5.1.1 Graphs Extraction Languages 77

3.5.1.2 Graph Selection Languages 78

3.5.2 Graph Grammars . 79

3.5.3 Graph Algebras . 80

3.5.4 (Proper) Graph Query Languages 82

3.6 Conclusions . 84

Therefore a science, the advancement of science, and the

acquisition of science, is not simply the oblivion of old [scientific]

prejudices, or the fall of certain obstacles [to understanding], it is a

new grid [of concepts] that masks certain things while allowing for

the appearance of new knowledge.

— Michel Foucault on The Chomsky-Foucault Debate: On

Human Nature, (1971)

The previous chapter aimed to evaluate present data structures and query languages
within the context of data integration. Bearing such considerations in mind, we analyse
currently-proposed data models and query languages: as a result, we have that current data
models do not support structural aggregation and that current query languages cannot
handle both data and schema at the same time. Both these features are required within
data integration scenarios. In this chapter, we also compare the previous data model with
the property graph data model and its extensions. We draw the following conclusions:

The relational data model (Section 3.1) does not distinguish entities from relationships
(semantic overloading), and does not represent data and data properties (M, MM) within
the same representation (Section 3.1.1.1).

55

56 3.1 Structured data: the Relational Model

Semistructured data provide a multimap association between properties and values
(e.g., multiple tags with the same name); even if both semistructured and nested
relational model allow a content-container relation, only the stream data model meets
the requirements for structural aggregation (Section 3.2).
Current graph data model distinguish entities from relationships but do not provide a
structural aggregation over both vertices and edges (Section 3.4).

For each data model, we’ll also briefly discuss their query languages and their implic-
ations concerning the data manipulation abilities. In particular, we’re going to analyse
graph query languages’ features regarding their underlying data models (Section 3.5).

3.1 Structured data: the Relational Model

A data model is said to be structured if it relies on a fixed data model over which some
data representation constraints are defined. In particular, a structured data model could
be read by a domain-specific program (query), which can transform it or create new data
expressed in the same model. The most widespread one is the relational model, where
data are modelled on n-ary mathematical relations r [SS93] to which a schema R is associated
(denoted as r(R)). Such schema constrains the arity of the tuples t ∈ r and the range of values
that such tuples could assume. In particular, each schema R is denoted as R(A1, . . . , An),
where each Ai is a distinct attribute and R is the name given to the relation r. Each

relation r(R) is then a subset of the cartesian product dom(R) def== dom(A1)× ⋅ ⋅ ⋅ ×dom(An),
where dom is the domain function associating a set of possible values to each attribute.
Consequently, each tuple may be represented within a single relation only once. In
particular, each tuple t ∈ r(R) is composed by n values1 (v1, . . . , vn) such that vi ∈ dom(Ai)
for each2 1 ≤ i ≤ n. A constraint, called first normal form (1NF), provides some restrictions
on the possible domains associated with such attributes: the domain can only map attributes
to sets of simple values, thus excluding tuples’ values to be either sets of values [Cod71],
other relations [EN16] or bag values.

▸ Example 11. Figure 3.1b provides an example of such data model. In particular, each table

represents a relation. These are the schema of all the relations in the picture:

Employee(id,name,surname,gender)
SalesOrder(id,date,deliveryDate,orderer)

Product(id,name,category,price)
ComposedBy(order,product,quantity)

In particular, each row of each table represents a tuple within the relational model.

3.1.1 Query Languages

Contrarily to what happens for current (graph) query languages, the first language to be
developed for this data model was an algebra (called Codd’s algebra or Relational Algebra
[ACB06, ACPT09, EN16]): it investigated the most elementary operations over relations for

1This constraint will be later on called “horizontal homogeneity”.
2This constraint will be later on called “vertical homogeneity”.

3. Analysing the properties of Data Models and Query Languages 57

Employee

Id
Name

Surname

Gender

Processes
0..N

SalesOrder
1

Id
Date

DeliveryDate

ComposedOf

Quantity

1..N
Product

0..N

Id
Name

Category

Price

(a) Representing the ER model for a subset of a enterprise database, describing that each employee
is able to create sales order formed by at least one product.

id name surname gender

001 Abigail Conner F

002 Baldwin Oliver M

003 Cassie Norman F

004 Darcy Parker M

005 Edmund Spencer M

E
nt

it
y

id date deliveryDate orderer

100 30-Dic-2016 2-Oct-2017 002

101 5-Jan-2017 12-Feb-2017 004

102 13-May-2017 14-May-2017 002

103 13-June-2017 1-Aug-2017 005

E
nt

it
y

id name category price

100 Coffee Beverage 2.57 $

101 Milk Beverage 0.80 $

102 Nuggets Chicken Meat 4.10 $

103 SPAM Canned Meat 0.99 $

E
nt

it
y

order product quantity

100 100 1

100 101 2

101 103 1

102 103 1

102 102 10

R
el

at
io

ns
hi

p

Employee
SalesOrder

Product
ComposedOf

Primary key Foreign key

Primary key Foreign key

Primary key Foreign key

(b) An instance of the overlying ER model. Some relations are directly expressed with Primary
Key-Foreign Key relations (Processes), while others (ComposedBy) are require an intermediate table.
The name of the relations appear on top of each table.

Employee

name : Abigail

surname : Conner

gender : F

Employee

name : Baldwin

surname : Oliver

gender : M

Employee

name : Cassie

surname : Norman

gender : F

Employee

name : Darcy

surname : Parker

gender : M

Employee

name : Edmund

surname : Spencer

gender : M

SalesOrder

date : 30-Dec-2016

deliveryDate : 2-Oct-2017

SalesOrder

date : 13-May-2017

deliveryDate :

14-May-2017

SalesOrder

date : 5-Jan-2017

deliveryDate :

12-Feb-2017

SalesOrder

date : 13-June-2017

deliveryDate : 1-Aug-2017

Pr
oc
es
se
s

Proce
sses

Proce
sses

Proce
sses

Product

name : Coffee

category : Drink

price: 2.57

Product

name : Milk

category : Diary Product

price : 0.80

Product

name : Shiny

category : Cleaner

price : 4.10

Product

name : Marseille

category : Soap

price : 0.99

ComposedOf

quantity : 1

ComposedOfquantity : 2

ComposedOfquantity : 1

ComposedOf

quantity
:
10

ComposedOfquantity : 1

001

002

003

004

005

100

101

102

103

500

501

502

503

(c) Representing the same relational database through a property graph. Please note that this is a
faithful representation of the ER schema. The association between vertex and edge id’s and their
property-value association is described in Section 3.1.2 on page 59 (Object Identity)

Figure 3.1 While the process of modelling a relational database (a) requires to distinguish
between entities and relationships, its instantiation in a logical database model discards them (b).
This information could be preserved within the property graph model (c).

58 3.1 Structured data: the Relational Model

transforming and combining them, and allowed to perform equational reasoning. Such
equivalences allow rewriting a relational expression into an equivalent one which is more
efficient to compute. Query languages’ pre-processing steps use this theoretic result to
enhance the query evaluation: declarative query languages such as SQL are compiled into
Relational Algebra, over which the aforementioned optimizations can be applied [CG85].
Similar approaches are also used in current column store databases, such as MonetDB 3.

Given SQL’s characterisation of Section 2.2, we take for granted the basic knowledge of
SQL and relational algebra. On the other hand, we now focus on a generalisation of such
algebra allowing data mining operations.

3.1.1.1 Data Mining Algebra

Algebraic operators are a useful tools to denote and isolate single relevant data operations
over a specific data structure (in this case, the relational model). We shall now discuss which
“higher order” operations are relevant in order to meet this goal. As a main reference, we
now take the relational data mining algebra proposed in [CLNP06], which main concepts
are sketched in Figure 3.6. This algebra suggests that data in D (mainly DR = ∅) can
represent three distinct concepts: (i) the data itself, representing some information content
(data world, D), (ii) the constraints over the data (intensional world, I), and (iii) the association
to each data representation to the constraints that such data satisfies (extensional world, E).
Within each data world, the traditional set of relational algebra operators extended with a
group by Γ and a tuple extension Calc (or their subset) may be used. Such tripartite data
model suggests that the relational data model is unable to represent data and its properties
within one single representation.

For each data collection c represented in D (c ∈ ℘(D)) we want to remember the data’s
properties satisfying a given pattern p. Such operation is performed by instantiating such
patterns into regions in I through the κp(c) operator.

As a next step, the algebra defines a mining loop operator λ over the regions in I, in
which an associated algebraic expression refines the regions until a fixpoint is reached. In
particular, the class of the λ operators is the core of a vast range of data mining algorithms,
such as frequent (subgraph) mining [JKA+17] and (graph) clustering [vDAG12] algorithms.

Then, we want to preserve the data satisfying the mined regions in I by joining them
into an intermediate representation in E. The task is achieved through the Pop operator.
Given that the relational data model does not provide a uniform data representation for
both data and regions, two distinct operations must separate the filtered data (πA) from
the satisfied regions (πRDA).

3.1.2 Representation Problems

Although most of the strengths of the relational data model rely upon a well-established
theory [Cod90] that could be easily found in textbooks [GMUW08], this model is no more
up with the times. The relational model assumes a centralized structure where all the data
is consolidated, and relies on the Closed World Assumption, while modern data analysis
techniques may also work on historical data that changes through time. Moreover, big data

forces companies to distribute data among multiple nodes: therefore it is proved [GL02]
that we cannot achieve strong consistency required by the relational model if we want to

3https://www.monetdb.org/Documentation/Manuals/MonetDB/Optimizers

https://www.monetdb.org/Documentation/Manuals/MonetDB/Optimizers

3. Analysing the properties of Data Models and Query Languages 59

achieve high availability and network error tolerance. As a consequence, the model appears
to be “static” [BL11] in comparison to other approaches that allow using open world data
evolving through time. Those other approaches allow cooperative support [AGG+15] and
handle schema mappings changing over time. We are now going to discuss in depth some
limitations of the relational model.

Semantic Overloading

Each instance of a relational database can be modelled through the Entity Relationship

(ER) model [Che76] using graphs; in brief, each real-world entity is defined as a vertex
(represented as squared boxes), while the relationships between such entities are modelled
as edges (which are represented as rhombus between the vertices). Both entities and
relationships can be associated with an attribute (rendered with an oval shape). Figure 3.1a
provides a toy example of a usage of such modelling language, where some employees can
process sale orders within a company.

As a next step, we have to transform this representation into relational tables: as we
could see from Figure 3.1b, such model is table based, and hence it does not distinguish en-
tities from relationships. Consequently, this whole design approach suffers from semantic

overloading. Moreover, some relationships have to be expressed through referential in-

tegrity constraints, and occasionally represent relationships through additional tables. In
particular, referential integrity constraints require that every value of a foreign key must
exist as a value of a primary key within the referred table.

On the other hand, graphs solve the problem of the semantic overloading by represent-
ing the entities as vertices and relationships as edges as in Figure 3.1c. Despite this, such
data model still has to implement some integrity constraints for consistency checking (e.g.
when a vertex is removed, all the incoming and outgoing edges to (and from) that vertex
must be removed).

Data Homogeneity

Within the relational model, each tuple could be only represented within a relation and has
no independent identification or existence outside a relation. All the relations’ tuples must
share the same attributes (horizontal homogeneity) which must always contain values
from the same domain (vertical homogeneity). As a consequence, relational databases do
not cope with data having a flexible and schemaless representation.

On the other hand, the property graph model provides an ideal representation, because
it does not force to represent vertices and edges into a homogeneous schema [VTBL13]. As
shown in Figure 3.1c, each vertex and edge make explicit the entity from which it comes
from through its label. Moreover, no specific constraint as the relations’ schema is specified
for both vertices and edges, thus achieving horizontal and vertical heterogeneity.

Object Identity

The original relational model does not formalise explicit constraints such as primary keys

identifying each tuple within a relation through a (set of) attribute(s). Those constraints
can be expressed within Relational DataBase Management Systems (RDBMSs), thus
extending the theoretical relational model. In this scenario, even if the user-defined primary
key could be associated with a specific column within a table, the same key value could be
still used to identify two different relational table’s tuples when no specific constraints are

60 3.1 Structured data: the Relational Model

specified. As an example, Figure 3.1b shows that SalesOrder’s id and Product’s id share
the same primary key values, even if they refer to different instances of entities. This
phenomenon does not arise in other graph data models (e.g. RDF [AH11], EPGM [JPT+16]
and Networks [Joh11]), because each node is associated with a unique identifier [GHMP11],
while the same problem affects graph databases (e.g., in Neo4J [HG16]), where vertex and
edge ids are used to index the graph elements and not to unambiguously identify them.

The Object Identity problem has already been formulated and solved within the Object-
Oriented data model: for each object representing an instance of a relation R, the unique
identifier could be uniquely determined via a function fR (called Skolem Functor) which
computes the unique id from the object’s terms [Cab98]. This function generates new IDs
for each newly created objects. Consequently, such objects could be easily implemented in
current programming languages (e.g. Java) where both hashing functions and equivalence
predicates are provided for each class. On the other hand, this approach does not allow to
establish explicit primary keys and makes hard to retrieve the stored information. Still, the
vertex and edge identifier solution could be seen as a relaxation of this Object Identification,
and hence it could be adopted by the property graph such that one single set of attributes
and values (and even labels) corresponds to that id.

Recursive queries

An early extension of the relational algebra [AU79] tried to introduce an algebraic operator
providing a transitive closure over the directed binary relations stored in relational tables
via fixpoint evaluation. As we could see from the previous discussions, the implementation
of object identifiers is the main prerequisite for checking whether the tuples have been
already visited or not. This fix-point operator would be later named α [Agr88]. Recursive
queries became standard with SQL:1999, where a WITH RECURSIVE was added to the SQL
syntax, and a least fix-point semantic was associated with this clause, by assuming each
distinct tuple as a different object.

Generalization and Inheritance

Another feature of the Entity Relationship model is the ability of expressing generalizations

(is-a), through which we state that an entity is derived from another one (similarly to
subclassing in object oriented programming). Such generalizations are modelled within
the ER model through ISA triangular nodes as the one in Figure 3.2a on the next page,
extending the previous ER diagram in Figure 3.1a. In particular, we want to distinguish
two different kind of Employees, the Vendors and the Managers, having different tasks: the
Managers administer the Vendors, which could process the SalesOrders. Figure 3.2b show
that there could be ER model instantiations in the relational model that remove such
explicit information for efficiency reasons, as explained in the following example:

▸ Example 12. Instead of using just two distinct relations as in Figure 3.2b, Vendor and Manager,

with the following schemas:

Vendor(id,name,surname,gender,manager)
Manager(id,name,surname,gender,department)

we could have used the following schema, preserving the isa generalization:

Employee(id,name,surname,gender)

3. Analysing the properties of Data Models and Query Languages 61

Employee

Id
Name

Surname

Gender

ISA

Vendor Coordinates
1 Manager

Department

1..N
Processes

0..N
SalesOrder

1

Id
Date

DeliveryDate

(a) Representing generalizations within the ER model: both vendors and managers are employees,
sharing some basic attributes, except from department.

id name surname gender manager

001 Abigail Conner F 050

002 Baldwin Oliver M 051

003 Cassie Norman F 050

004 Darcy Parker M 051

005 Edmund Spencer M 051

E
nt

it
y

id date deliveryDate orderer

100 30-Dic-2016 2-Oct-2017 002

101 5-Jan-2017 12-Feb-2017 004

102 13-May-2017 14-May-2017 002

103 13-June-2017 1-Aug-2017 005

E
nt

it
y

id name surname gender department

050 Irma Abbott F ReadyForSale

051 Langdon Attaway M Storage

052 Madge Bailey F Storage

E
nt

it
y

. . .

Vendor
SalesOrder

Manager

(b) Vendors and Managers are represented as distinct entities. Any original information concerning
the fact that they both are Employees is lost within the translation.

Vendor

name : Abigail

surname : Conner

gender : F

Vendor

name : Baldwin

surname : Oliver

gender : M

Vendor

name : Cassie

surname : Norman

gender : F

Vendor

name : Darcy

surname : Parker

gender : M

Vendor

name : Edmund

surname : Spencer

gender : M

SalesOrder

date : 30-Dec-2016

deliveryDate : 2-Oct-2017

SalesOrder

date : 13-May-2017

deliveryDate :

14-May-2017

SalesOrder

date : 5-Jan-2017

deliveryDate :

12-Feb-2017

SalesOrder

date : 13-June-2017

deliveryDate : 1-Aug-2017

Pr
oc
es
se
s

Processes

Processes

Processes

Manager

name : Irma

surname : Abbott

gender : F

Manager

name : Langdon

surname : Attaway

gender : M

Manager

name : Madge

surname : Bailey

gender : F

Employee

i
s
a

i
s
a

i
s
a

i
s
a

i
s
a

i
s
a

i
s
a

isa

Coo
rdi

nat
es

Coordinates

Coordinates

Coordinates

Coordinates

001

002

003

004

005

100

101

102

103

050

051

052

(c) Representing the generalization within the graph data model through isa edges.

Figure 3.2 Comparing the ability of expressing generalization between the relational model and
property graphs.

62 3.1 Structured data: the Relational Model

Vendor(employee_id,manager) Manager(employee_id,department)
This representation comes with the following computational price: if we want to retrieve the personal

informations’ for each Vendor and Manager, we must always perform join queries while, in the

previous cases, we could simply access the Vendor and the Manager tables using the following SQL

queries:

SELECT id , name , surname , gender , manager

FROM Employee , Vendor

WHERE id = employee_id

SELECT id , name , surname , gender , department

FROM Employee , Manager

WHERE id = employee_id

Such SQL queries could be respectively expressed in Relational Algebra as follows:

πid,name,surname,gender,manager(Employee ⋈id=employee_id Vendor)
πid,name,surname,gender,department(Employee ⋈id=employee_id Manager)

On the other hand, graph databases maintain the isa relation as metadata [LS99]
information, because both data and metadata could be expressed within the same graph
database instance4 [VTBL13]. Figure 3.2c shows how to associate metadata (the Employee

information with the isa edges) within the original graph data, so that the isa information
could be traversed only when required. It is also showed that accessing to such information
through graph traversal queries (path joins) is more efficient than traversing relations
through relational joins. As an example, within a graph database we could retrieve the
subgraph containing all the Vendors with their Managers with the following Cypher query:

MATCH (vendor:Vendor) -[:isa]->(: Employee) <-[:isa]-(boss:Manager)

MATCH path = (vendor:Vendor) -[: hasManager]->(boss:Manager)

RETURN path

After rewriting the Property Graph model into the RDF graph model as described in
[DSP+14] (see Section 3.4 on page 73), we could express the same query in SPARQL as
follows:

PREFIX company: <http :// company.com/graphdb#>

CONSTRUCT {

?vendorid company:name ?vname;

company:surname ?vsurname;

company:gender ?vgender;

company:hasManager ?managerid.

?managerid company:name ?mname;

company:surname ?msurname;

company:gender ?mgender;

company:department ?dept.

} WHERE {

4This property will be also later on important for expressing data integration tasks.

3. Analysing the properties of Data Models and Query Languages 63

company:Vendor a company:Employee.

?vendorid a company:Vendor;

company:name ?vname;

company:surname ?vsurname;

company:gender ?vgender;

company:hasManager ?managerid.

company:Manager a company:Employee.

?managerid a company:Manager;

company:name ?mname;

company:surname ?msurname;

company:gender ?mgender;

company:department ?dept.

}

Graph query languages such as Cypher and SPARQL are going to be described in
Section 3.5 on page 76.

3.1.3 Representing graphs

The previous sections showed how relational databases could be completely described by
Property Graphs [HG16]. We could formalize the data structure used in Figure 3.1c as
follows:

▸ Definition 9 (Property Graph). A property graph is a tuple (V, E, L, A, U, ℓ, κ, λ), such that

V and E are sets of distinct integer identifiers (V ⊆N, E ⊆N, V ∩ E = ∅). L is a set of labels, A is

a set of attributes and U a set of values.

Concerning the functions, ℓ∶V ∪ E → P(L) is a function associating to each vertex and edge

of the graph a set of labels5; κ∶V ∪ E → A → U is a function associating, for each vertex and edge

within the graph and for each attribute within A, a value in U; last, λ∶E → V ×V is the function

associating to each edge e ∈ E a pair of vertices λ(e) = (s, t) ∈ V ×V, where s is the source vertex

and t is the target. ◂

Given the data model provided by this definition, we can now instantiate the graph
illustrated in Figure 3.1c within this very model as shown by the following example:

▸ Example 13. Graph in Figure 3.1c is described by the following vertex set:

V = {001,002,003,004,005,100,101,102,103,500,501,502,503}
The label association is defined as follows:

ℓ(001) = ℓ(002) = ℓ(003) = ℓ(004) = ℓ(005) = {Employee}
ℓ(100) = ℓ(101) = ℓ(102) = ℓ(103) = {SalesOrder}
ℓ(500) = ℓ(501) = ℓ(502) = ℓ(503) = {Product}

Moreover, we could model the edges as follows:

E = {800,801,802,803,804,805,806,807,808}
5I prefer to associate to each vertex and edge a set of labels instead of one single label in order to be

able to express the Neo4J [Neo13, HG16] each vertex and edge could have more than one possible label

64 3.2 Nested Relational Model, Semistructured data and Streams

Even the edges could show labels as follows:

ℓ(800) = ℓ(801) = ℓ(802) = ℓ(803 = {Processes}
ℓ(804) = ℓ(805) = ℓ(806) = ℓ(807 = ℓ(808 = {ComposedOf}

In this scenario, edges do not have associated attributes or values, and hence could be modelled as

relational tuples with 0 arity. Edges’ sources and destinations are modelled through the λ function:

λ(800) = (002,100) λ(801) = (002,102) λ(803) = (004,101) λ(804) = (005,103) . . .

In particular, the properties and the values can be associated with both vertices and edges. For

example, Employee Abigail Conner is modelled as follows:

κ(001,name) = Abigail κ(001,surname) = Conner κ(001,gender) = F

while the association between Coffee and the first SalesOrder in chronological order is modelled

with the following properties:

κ(804,quantity) = 1

3.2 Nested Relational Model, Semistructured data and Streams

A data model is said to be semistructured if it relies on a fixed data model over which no

constraints are imposed. Given this definition, we could now distinguish the nested rela-

tional model from the XML data model: even though both models rely on the relaxation
of the 1NF by allowing nested data representations as possible data values (thus allowing
the representation of hierarchical data), the former model still requires the nested relations
to be compliant to a given schema, while the latter does not. As a consequence, the first
model still suffers from the “data homogeneity” problem addressed for the Relational
Model in Section 3.1.2 on page 59, while the second does not.

▸ Example 14. As we could see in Figure 3.3, XML achieves the 1NF relaxation through the

definition of tags: a tag is a construct beginning with the character “<” and ending with “>”: all the

data is contained between the start tag (e.g., “<Database>”) and the end tag (e.g., “</Database>”),

that could cointain either textual elements or other tags. To each tag, some properties and values could

be associated (e.g. the tag “<Vendor id="001">. . . </Vendor>” contains a property id with value

001). An empty tag (e.g., “<salesOrder />”) represents a tag containing no information. Table

3.1 provides the same representation for nested relations: in this case the nested data representation

is represented by relations that could be used as valid values for some attributes (e.g., salesOrder),

provided that the relation has a fixed schema. The empty tag could be represented by either a NULL

value or an empty relation.

A graphical representation of such tree is provided in Figure 3.4 in the footsteps of [MM06].

Please note that such alternative representation does not consider the tag’s attributes like “id”, and

only provides label-less edges. A more complete XML data model representation in this regard is

provided by Lu [Lu06], also allowing to integrate relational data with XML and Object Oriented

databases.

The flexibility of the XML representation is also evident by the fact that one single
tag can contain multiple tags with the same name, while the nested relational model
only allows one single attribute per nested relation. As a consequence, the XML model
generalizes the Object model represented in Definition 1 on page 36 because within that

3. Analysing the properties of Data Models and Query Languages 65

<Database >

<Vendor id="001">

<name>Abigail </name>

<surname >Conner </surname >

<gender >F</gender >

<salesOrder />

</Vendor >

<Vendor id="002">

<name>Baldwin </name>

<surname >Oliver </surname >

<gender >M</gender >

<salesOrders >

<saleOrder id="100">

<date>30-Dic -2016</date>

<deliveryDate >2-Oct -2017</deliveryDate >

</saleOrder >

<saleOrder id="102">

<date>13-May -2017</date>

<deliveryDate >14-May -2017</deliveryDate >

</saleOrder >

</salesOrders >

</Vendor >

<Vendor id="003">

<name>Cassie </name>

<surname >Norman </surname >

<gender >F</gender >

<salesOrder />

</Vendor >

<Vendor id="004">

<name>Darcy</name>

<surname >Parker </surname >

<gender >M</gender >

<salesOrders >

<saleOrder id="101">

<date>5-Jan -2017</date>

<deliveryDate >12-Feb -2017</deliveryDate >

</saleOrder >

</salesOrders >

</Vendor >

<Vendor id="005">

<name>Edmund </name>

<surname >Spencer </surname >

<gender >M</gender >

<salesOrders >

<saleOrder id="103">

<date>13-Jun -2017</date>

<deliveryDate >1-Aug -2017</deliveryDate >

</saleOrder >

</salesOrders >

</Vendor >

</Database >

Figure 3.3 Representing the association between the Vendors and their SalesOrders in Figure
3.1b with an XML representation.

66 3.2 Nested Relational Model, Semistructured data and Streams

id name surname gender salesOrders(id,date,deliveryDate)

001 Abigail Conner F

002 Baldwin Oliver M id date deliveryDate

100 30-Dic-2016 2-Oct-2017

102 13-May-2017 14-May-2017

003 Cassie Norman F

004 Darcy Parker M id date deliveryDate

101 5-Jan-2017 12-Feb-2017

005 Edmund Spencer M id date deliveryDate

103 13-Jun-2017 1-Aug-2017

Table 3.1 Representing the association between the Vendors and their SalesOrders in Figure 3.1b
with a nested tabular representation. Each attribute containing a nested relation exposes both the
name of the attribute and the schema associated to the relations that it contains.

database

Vendor

id

001

name

Abigail

surname

Conner

gender

F

Vendor

id

002

name

Baldwin

surname

Oliver

gender

M

salesOrders

salesOrder

id

100

date

30Dic2016

deliveryDate

2Oct2017

salesOrder

id

102

date

13May2017

deliveryDate

14May2017

............

Database

............ Vendor

id

003

name

Cassie

surname

Norman

gender

F

Vendor

id

004

name

Darcy

surname

Parker

gender

M

salesOrders

salesOrder

id

101

date

5Jan2017

deliveryDate

12Feb2017

Vendor

id

005

name

Edmund

surname

Spencer

gender

M

salesOrders

salesOrder

id

103

date

13Jun2017

deliveryDate

1Aug2017

Figure 3.4 Representing the association between the Vendors and their SalesOrders with an tree
representation of Figure 3.3. Please note that the two trees represent the same XML document, that
has been here split in two parts due to page size and readability limitations. The representation of
choice is the one provided in [MM06], where no tag attributes are considered. The XML’s empty tags
are removed since they are not supported by the data model.

definition, the attribute-value association is implicitly represented by a map while, in this
case, such association can be represented with a multimap.

Data models having no fixed schema could be always associated to a schema in a later
step: for example, tag schema could be externally validated through XML Schema6 [Vli02],
expressing such constraints within the same XML data representation. As a result, while
the XML data model is widely adopted due to its flexibility in web technologies, the nested

6Other languages that could be used to express XML schemas are RelaxNG and DTD, even though
such languages do not use the XML syntax.

3. Analysing the properties of Data Models and Query Languages 67

F 0
0 ≡ S

0 1 2 3 4 5 6 7

F 0
1

F 1
1

F 0
2

F 1
2

F 2
2

F 3
2

Figure 3.5 A representation of an incremental feature extraction scenario, where the window size is
w = 2 and the update rate is T = 1. If we use α as the sum function, then F0

1 [0] = 1 and F0
2 [0] = 6,

where F0
2 [0] = F0

1 [0]+F0
1 [1] = (0+ 1)+ (2+ 3).

relational model is not, even though it is adopted for providing multidimensional view
of structured data (thus, homogeneous) as in Pentaho [Rol13] and JasperServer [PSAH16].
The reason why the nested relations are preferred for visualizing nested multidimensional
data is evident by comparing the XML representation in Figure 3.3 with the nested
representation in Table 3.1. XML is more verbose and less compact and intuitive than the
nested relational tables.

Last, we must also observe that the previous nested relational models and semistruc-
tured models do not allow a complete representation of the stream data model. This data
model is an extension of collection representations [LWZ04, AW04], where the incoming
stream S[0, . . . , n − 1] is represented as a collection of n values. On top of such stream, we
may create features FT

j+1 representing data at a given resolution j, which it may be sampled

after a (possibly zero) update rate T [BS07]. Each value FT
j+1[i] ∈ FT

j+1 may be computed

from a finer data resolution α(FT mod wj

j [iw, . . . , (i + 1)w − 1]), where α is an abstraction
function [Joh11] allowing dimensionality reduction for acquiring higher level information
[BS07].

▸ Example 15. Figure 3.5 provides an example of a data stream where α is the sum function

over naturals. This implies that each possible sub-collection FT mod wj

j [iw, . . . , (i + 1)w − 1] ⊂
FT mod wj

j must both represent a value and may also remember the coarser data levels, too. In

particular, such feature is missing in current nested and document based data models, thus making

impossible the definition of structural aggregations as required by current MOLAP systems (see

Example 8 on page 44).

Last, please observe that each data element can be part of different multiple stream representations.

For example, both raw data and aggregated data are contained in multiple coarser representations. In

the first case, S[1] = 1 is contained in both F0
1 [0] and F1

1 [0]; in the second case, F0
1 [1] is contained

in both F0
2 [0] and F2

2 [0].

68 3.2 Nested Relational Model, Semistructured data and Streams

3.2.1 Query languages

It has been already proved that any nested relational query expressed in the nested calculus
could be mapped into a relational algebra query run over a flattened representation of the
nested relational algebra [PG92]. As a result, such nested calculus benefits from the same
rewriting rules presented within the relational model, and hence benefits from the same
query optimizations. Since the relational algebra has been also extended to XML trees
[Lu06] we have that even such algebras take advantage of such rewriting rules [MM06].
Despite the interest of data integration between structured and semi-structured that such
query language made feasible, none of the aforementioned algebras have been implemented
yet in real systems.

On the other hand, traversing query languages over one single representation and over
semistructured data have been more successful: in particular, XPath [BBC+15] is very used
within other semistructured query languages, such as XQuery [Wal07] and XSLT [Tid08],
which transform semistructured documents to other documents in any other format. In the
footsteps of [MM06], we’re going to analyse a minimal subset of XPath, merely concerning
the path traversal, thus discarding all the axis notation and the selection predicates.

▸ Definition 10 (Minimal XPath). A minimal XPath expression <µXPath> is formed by a concat-

enation of traversal operator <c>, that can be either / (direct descendant) or // (any node contained

at any depth) to which a collection selector (<s>) may be applied (e.g. /‘‘Tag’’, which means to

select the nodes directly descendant from root contained in the Tags collection).

<s> ∶= ε ∣ ⋆ ∣ [name]

<c> ∶= /
<s> ∣ //⋆

<µXPath> ∶= <c><s> ∣ <c><s><µXPath>

◂

The semantics associated to such query language [Wad00] returns the forest (tree
collection) that is reached after the stepwise evaluation of the XPath expressions.

3.2.2 Representation problems

Given that property graphs do not relax 1NF, they do not allow nested representations.
Therefore, we cannot say that they provide a better representation than the data models
that have been now presented, but we can only say that are complementary models. As a
consequence, this section is going to be later on used as a set of requirements that general
semistructured data models must satisfy for solving the representation problems. The
resulting data model will be presented in a separate chapter (Chapter 3.4 on page 73).

Semantic Overloading

Both models suffer from semantic overloading: while the motivation for the nested rela-
tional model could be found in Section 3.1.2 on page 59, the XML model suffers from this
problem because it uses tags for expressing entities (e.g., Vendor), properties (e.g., name,
surname) to which values could be associated, and nesting components (e.g., salesOrders).
This problem is practically solved within the proposed property graph model, where labels
l ∈ L belong to a different set than attributes a ∈ A, and attributes could be not expressed in
two possible different ways (e.g. tag attributes and tags containing values). On the other

3. Analysing the properties of Data Models and Query Languages 69

id name surname gender salesOrders(. . .)

001 Abigail Conner F

002 Baldwin Oliver M id date deliveryDate products(. . .)

100 30-Dic-2016 2-Oct-2017 id quantity name category price

100 1 Coffee Drink 2.57

101 2 Milk Diary Product 0.80

102 13-May-2017 14-May-2017 id quantity name category price

102 1 Shiny Cleaner 4.10

103 10 Marseille Soap 0.99

003 Cassie Norman F

004 Darcy Parker M id date deliveryDate products(. . .)

101 5-Jan-2017 12-Feb-2017 id quantity name category price

103 1 Marseille Soap 2.57

005 Edmund Spencer M id date deliveryDate products(. . .)

103 13-Jun-2017 1-Aug-2017

Table 3.2 Extension of the nested representation of Table 3.1 showing the deficiencies of such
data representation over multiple nesting levels.

hand, the nested extension of the property graph model should allow to contain vertices
and edges, as nested relations could contain other relations as values, as well as XML tags’
contents could be other XML tags.

Data Homogeneity

As previously discussed, only the nested relational model suffers from this representational
problem because it still has an associated schema. As a consequence, each nested relational
table could be expressed by a XML document, but not the other way around. As a
consequence, within this thesis we’re going to represent nested relations as nested tables.

Data Replication vs. Object Identity

When nesting multiple relations at different levels, the need of unambiguously identify
the contained objects becomes more evident. Let us observe Table 3.2, extending the
previous nested relation example. As tuples describing the same entity (e.g., the product
names SPAM having id 103) appear in different places within the table, their price change
requires a complete scan of the whole table. Update operations within these models are
quite inefficient (update of multiple instances against an update of one single instance),
therefore the nested relational data model could not be used for representing hierarchical
data changing through time. Moreover, since the nested relational model also suffers
from semantic overloading, the description of the entity Product now also depends on
the SaleOrder’s quantity of ordered products. To avoid data replication problems, direct
value containment should be replaced by object identifier containment. At the time of the
writing, nested graphs data models are represented by the former approach (e.g., GraphML
[BELP07]), while our proposed data model is going to adopt the latter solution (Chapter 5).

3.2.3 Representing graphs

Even if XML was originally designed to represent tree data structures, it could also
represent graphs through specific XML schemas. GraphML [BELP07] and GXL [BLP04],
which are based on the XML markup language, allow to express graphs, that could also

70 3.3 Unstructured Data: Full Text Documents

contain other graphs (nested graphs) inside some other vertices and edges. We’re going to
analyze and compare such data models with the one we propose in Section 3.4 on page 73.

On the other hand, graphs could be also used to represent semistructured information,
such as XML documents [LS99, GHMP11]. As well as XML, graphs could provide a
syntactical representation (metadata, see Chapter 2) of the XML data: as a result, we
could analyze how different authors choose to differently use the tags within some XML
documents, and investigate which “structural patterns” have been used [IPPV14, BDIP+13].

This fact also suggests that graphs must belong to the semistructured data family and
that all semistructured data are able to describe both data and the meta-data level with the
same description language, as well as describing query languages. We invite the reader to
compare the aforementioned XSLT query language in XML with GraphQL [CM90b] pattern
query language, which is expressed through graphs; other query languages represented as
graphs are another graph pattern query language [FLM+12] and an artificial intelligence
one [GPG14].

3.3 Unstructured Data: Full Text Documents

In contrast with structured data, unstructured data relies on a data representation that
could not be directly handled by non-domain-specific program to extract information,
process it and provide results in the same format. Such kind of pieces of information
include full-text documents, audio, image and video formats [SSSF09]. Within this thesis,
we will particularly address the full-text documents even if some of the following illustrated
techniques may also apply to the other aforementioned formats.

The need of retrieving machine readable information from full text was clear since
the early days of computer science [Luh58], when IBM imagined a Business Intelligence
System that was able to retrieve full text documents by using single words (keywords) as
indices (see Subsection 3.3.1 on the facing page for more details). Anyhow, this project was
too ambitious for those times, when only small full text corpora were available [Sin01]. All
the research effort was then moved towards the analysis of structured documents and to
develop a query language on top of it [Cod71]. During the 1990s, the first full text corpora
was delivered [CHoSU93] and hence, the Information Retrieval field could finally became
a meaningful research topic.

With the increase of the volume of the corpora and the rise of the World Wide Web, it
became more relevant that the combination of classical Information Retrieval’s keyword-
indexed document based search [MRS08] with lexical similarities [KB17] was no more
sufficient to achieve hight precision scores. As a result, at the beginning of the 2000s [Bra03]
Natural Language Processing techniques such as dependency graphs were firstly addressed
for increasing the precision of IR techniques. Computational Linguistic research developed
this technique for providing a graph semantic representation of the text [VnI11]. By
doing so, problems like multi-word recognition [LVJRT14], word similarity [HRJM15] and
multilingual word disambiguation [NP12b] could be finally solved by using specific (multi
language) knowledge bases, such as BabelNet [NP12a] or WordNet [Fel98]. Moreover,
the usage of (e.g., OWL) ontologies such as YAGO [oRD12] and reasoning techniques on
top of such graph-structured data, could even help with the increase of the recall values
[WM06].

As an outcome of an NLP oriented Information Retrieval approach, it was not only
possible to extract full documents satisfying some user information need, but also to extract
the passages from one single document containing only the relevant information for the

3. Analysing the properties of Data Models and Query Languages 71

Algorithm I.1 Initializing an Invertex Index for classical information retrieval queries.
for each Di ∈ D do

for each tj ∈ Di do

if tj ∈ V then

IX[tj]← IX[tj]∪ {(i, j)}

user. Such process, called Information Extraction (IE), is relevant in biology, where we
could extract which genes interact with each other [MZRA16] or even between different
documents by using a bibliographical network [SHK+14]. This approach was also used to
analyse clinical data [WKS+11], or even providing answers to open-domain questions as
in the case of IBM Watson [oRD12] and DeepDive [PAKR16]. In particular, Information
Extraction techniques extract graph representations of full text documents in two main
phases: Entity Extraction and Relation Extraction [Sar08]. In the first phase, entities are
extracted by querying the unstructured document or using some other statistical techniques.
The second phase allows to extract relations among the previously extracted entities: in
order to do so, grammatical relations can be preliminarily extracted from the text through
dependency graphs [dMDS+14]. This last task can be more profitably used within domain
specific applications, where the relationships are known beforehand [ZRC+17]. In those
other use cases, universal dependencies techniques may be used instead.

Finally, graph data representation of full-texts allows to later perform either specific
graph mining algorithms [SHJ+13] such as clustering [CJ10] and association rules, or basic
graph metric operations, such as betweenness centrality and degree distribution [New10].

3.3.1 Query Languages

The aim of a query language is to return (either partly or as a whole) and manipulating
some data. Contrary to this common sense, classical Information Retrieval [MRS08] can
only return (sub)sets of documents stored in huge document collections satisfying the
user’s information need. This consideration also applies for more standardized IR query
languages, such as Context Query Language7, which are not able to extract relevant
information from the given document.

▸ Definition 11 (Classical Information Retrieval). The ground truth is composed of a document

collection D = {D1, . . . , Dn }. Each document Di ∈ D is indexed using a set V of relevant terms

(t ∈ V), called vocabulary. Each document Di ∈ D is defined as a list of consecutive terms

Di = { t1, . . . tmi
}. Each document is indexed using the vocabulary terms through inverted indices

IX: such index associates each term t ∈ V to a set of pairs (i, j) defining that the term t occurs in

document di as the j-th term. Such indices could be initialized as showed in Algorithm I.1. ◂

Classical Information Retrieval does not provide a formalization of how to translate an
user’s full text query into a formal language. To make matters worse, some approximated
frequency-based approaches such as TF-IDF are ill defined so that, in the worse case
scenario, negative frequencies could be obtained8. For this reason, only exact information

7http://www.loc.gov/standards/sru/cql
8“The counter-intuitive negative weights referred to in section 1.3 would normally arise only in the case of a term

which occurred in a very large portion of the collection. As this is a very rare occurrence in most collections, this has
not been seen as a problem.” [RW97]

http://www.loc.gov/standards/sru/cql

72 3.3 Unstructured Data: Full Text Documents

retrieval approaches will be considered within this thesis. In particular, the “Boolean IR
Query” language could be formalized as follows:

▸ Definition 12 (Boolean IR Query). A full text query f tq is defined as follows:

1. A string “k”, where k is a string (keyword) containing no empty characters, is a f tq.

2. A string “k1 k2 . . . kn”, containing n space separated keywords is a f tq.

3. “ f tq1 AND f tq2” is a f tq.

4. “ f tq1 OR f tq2” is a f tq.

5. “(f tq)” is a f tq.

○. Nothing else is a f tq.

Given an inverted index IX, the interpretation [[f tq]]IX of a f tq returns the set of documents

satisfying f tq:

1. [[k]]IX = {Di ∣ ∃j.(i, j) ∈ IX[k] }
2. [[k1 . . . kn]]IX = {Di ∣ ∃j.⋀n

h=1(i, j + h − 1) ∈ IX[kh] }
3. [[f tq1 AND f tq2]]IX = [[f tq1]]IX ∩ [[f tq2]]IX .

4. [[f tq1 OR f tq2]]IX = [[f tq1]]IX ∪ [[f tq2]]IX .

5. [[(f tq)]]IX = [[f tq]]IX .

◂ ◂

We now want to provide an example to show that the aforementioned semantics for a
Boolean IR query is the usual intended meaning for a full-text query.

▸ Example 16. The following table represent an example of document corpus that could be used

for information retrieval:

Document Id Content

D1 The quick brown fox jumps over the lazy dog

D2 Jack be nimble, Jack be quick. And Jack jump over the candle stick

D3 And it seems to me you lived your life like a candle in the wind.

If we want to perform the query “quick”, then we could easily see that it evaluates to {D1, D2},
while “candle” evaluates to {D2, D3} because the inverted index IX from the document collection is

accessed and the stored values are simply returned.

At this step, the interpretation of the query “quick” AND “candle” we have that such query

evaluates to {D2} because in that document both terms appears. Last, the query “quick candle”

returns no document because in no document those two words appear consecutively.

The previously defined query language is so simple that we cannot extract multiterms
and avoid some intermediate characters. For these reasons, cascading grammar rules
have been considered for term extraction techniques, jointly with dictionary and regex
matching. Nevertheless, such approach have been supplanted by relational algebra tech-
niques [RRK+08], providing a “semantic” for such grammar rules that could boost their
performance by using relational algebra rewriting rules. This implies that we must provide
a structured representation for the unstructured document.

▸ Definition 13 (Span). Given a document D represented as a collection of characters c1 . . . cn,

a span [RRK+08] is an interval represented as a pair (i, j) identifying a term ci . . . cj within the

document. Each span could be represented as a tuple t = (i, j) of a relation r(R) having schema

R = (begin,end). ◂

3. Analysing the properties of Data Models and Query Languages 73

After obtaining such spans through either regex-es or dictionary extraction techniques
over a full text document (span extraction operators), we can aggregate such spans with given
rewriting rules by composing the previously extracted term (span aggregation operators)
Even though such last operators could be still expressed through a composition of the
standard relational operators plus a while-loop operator as the one described in [CLNP06],
they were implemented as distinct operators for efficiency reasons.

To the best of our knowledge, the only other algebra over full text documents that
has been defined is the one for retrieving and querying full text information within
semistructured documents [BM08] but again, such algebra is not able to recombine textual
contents but only to filter and score them as the other IR query languages.

3.4 Graph (Data) Models

Graph data models directly overcome the semantic overloading problem by distinguishing
entities and relationships, respectively represented as vertices and edges. In particular,
graphs G are represented as pairs (V, E), where V is the vertices’ set and E ⊆ V ×V is the
edges’ set. This popular theoretical data structure has been variously extended to support
data representations. Such solutions are going to be discussed in the following paragraphs.

Property Graph

Property graphs represent multigraphs (that are graphs where multiple edges among two
distinct nodes are allowed) where both vertices and edges are multi-labelled tuples. This
model does not allow the storage of aggregated values, both because values in U cannot
contain either vertices or edges, nor U is made to contain collection of values. This data
model is implemented in almost all recent Graph DBMSs, such as Neo4J [RWE13] or Titan.
We discussed this data model in the previous sections, where it was compared to other
non-graph data models. Given that we have already observed that this data model is
complementary to the previous "nested" ones, we now want to check whether other graph
data model extensions support nested graph contents.

RDF Model

This other graph data model is used in the semantic web and in the ontology field to
describe Linked Data [FPG15, HP15]. Consequently, modern reasoners such as Jena

[CDD+04] or Pellet [SPG+07] assume such data structure as the default graph data model.

▸ Definition 14 (RDF (Graph Data) Model). An RDF (Graph data) model [GHMP11] is

defined as a set of triples (s, p, o), where s is called “subject”, p is the “predicate” and o is the

“object”. Such triple describes an edge with label p linking the source vertex s to the destination

vertex o. Such predicate can even appear as a source vertex whenever additional information is

provided [DSP+14]. Each vertex is either identified by a unique URI identifier or by a blank node

bi. Each predicate is only described by an URI identifier. ◂ ◂

Even if this data model provides unique resource identifiers as a common basis, it does
not allow to store some attribute-value information inside each node. Consequently, each
entity’s attribute is mapped as an edge linking the resource to its property. [DSP+14] shows
that property graphs can be entirely mapped into RDF triplestore systems as follows:

74 3.4 Graph (Data) Models

▸Definition 15 (Property Graph over Triplestore). Given a property graph G = (V, E, A, U, ℓ, κ, λ),
each vertex vi ∈ V induces a set of triples (vi, α, β) for each α ∈ A such that κ(vi, α) = β having

β ≠ NULL. Each edge ej ∈ E induces a set of triples (s, ej, d) such that λ(ej) = (s, d) and another set

of triples (ej, α ′, β ′) for each α ′ ∈ A such that κ(ej, α ′) = β ′ having β ′ ≠ NULL. ◂

The inverse morphism is not always possible because RDF properties can be even used
as either source or targets for other properties, while edges within the property graph
model can be only used to link other vertices. Last, this RDF also support named graphs,
through which graphs are associated to a resource identifier; in particular, each property
graph may be stored as a distinct named graph. Even though this model allows to use such
named graphs as subjects, they cannot be used as neither objects or properties. Therefore,
such model does not overcome property graphs’ limits.

Extended Property Graph Model (EPGM)

The need of representing both graphs and graph collections for handling pattern matching
queries presented for GraphQL [He07] brought to the definition of data models where both
representations are provided. Therefore, the property graph data model requires to be
extended because property graphs do not natively support graph collections. For this reason
both GRADE [GRS+16, GRS+15] and EPGM [JPT+16, JPR17] were introduced: within this
thesis we’re going to describe only the latter one due to its practical implementation in
Gradoop. This data model can be re-defined9 as follows:

▸Definition 16 (EPGM Database). An EPGM database DB = (V, E, L, K, T, A, λ, ν, ε, κ) consists

of vertex set V ⊆ N, edge set E ⊆ N and a set of logical graphs L ⊆ N such that those identifiers’

sets are pairwise disjoint. An edge e ∈ E is mapped to its source and target vertices through the

λ function, e.g. λ(e) = (s, t), where λ∶E → V2. To each logical graph g ∈ L is associated a

set of vertices and edges through the ν and ε functions, such that ν(g) ⊆ V and ε(g) ⊆ E, and

each extracted edge connects edges within ν(g) (∀e ∈ ε(g).λ(e) ∈ ν(g)2). Vertex, edge and graph

properties are defined by key set K, value set A and mapping κ ∶N ×K → A. Labels T are expressed

as a value A associated to a key τ ∈ K. ◂

Even though this data model was used to express graph aggregations, neither logical
graphs nor vertices could be directly used to describe the structural content of summarized
graphs. Logical graphs were not used for linking aggregated informations because EPGM
does not allow any primitive object acting as a relation between either logical graphs
or vertices. Moreover, neither vertices nor edges can be used for structural aggregation
because, as for the property graph model, A values can represent neither object identifiers
nor collections. As a consequence, ancillary “super-vertices” and “super-edges” were used
to store the result of the aggregation, consisting respectively of a collection of vertices
and edges. Therefore, even this definition fails at representing nested graphs, where it
is required that each component contains a whole graph as represented in the former
Figure 2.11 on page 33.

9From now on, the data models are re-defined using the same notation and terminology, in order to
remark the similarities with the previous models. In particular, ν and ε are introduced as containment
functions for vertices and edges, and λ is used to associate to each edge its source and destination vertices.
Later on, we’re only going to use φ for both vertex and edge containments.

3. Analysing the properties of Data Models and Query Languages 75

Statechart and Hypernode models

Statecharts [Har87] represent one of the first applications of nested graphs for complex
systems modelling. This choice allowed the representation of multiple abstraction levels at
the same time: each node represents a state or “configuration” of the system, and each edge
represents a transaction between two different states on a given event. In order to represent
different nesting levels, each node may contain other states and edges. As a consequence,
there is no distinction between (simple) states and states containing other states. Given
that this model was not designed for data representations, vertices and edges are labelled
but cannot contain any property-value association. Therefore, we can say that each vertex
can represent both a simple vertex or a logical graph as within the EPGM Database.

▸Definition 17 (Harel’s Statechart). An Harel’s statechart is a labelled multi-graph (V, E, ℓ, λ, ν, ε),
where ℓ∶ (V ∪ E)→ Σ is the vertex and edge labelling function and ℓ∶E → V2 is the function associ-

ating to each vertex its source and destination. ν∶V → P(V) and ε∶V → P(E) are the vertex and

edge containment function defining which vertices and edges are contained in V; in particular, each

edge e contained by a state v must link at least one vertex10 within v.

In particular, we say that a vertex v is contained at the n-th nesting level of a vertex u iff.

v ∈ νn(u): since each state represents a different abstraction level, each vertex cannot contain itself

in any abstraction level (∀n ≥ 1.v ∉ ν(v)). Last, since one internal state shall be contained only

once because each state has an unique representation, the vertices’ vertex content shall be mutually

disjoint (∀u, v ∈ V.ν(u) ∩ ν(v) = ∅). ◂

We can say that Figure 2.11 provide an example for statecharts. This model allows
both external edges and internal edges11: an edge e will be called external if its source (or
target) is contained by the target (or source) but neither of them contains e12; the edge will
be called internal when the containing vertex (either its source or target) also contains the
edge13. Besides of state representation purposes, this model has also been used for both
modelling the evolution of pathophysiological states and to describe the clinical treatments
to which the patient must undergo. This model also allowed to subdivide each treatment
into smaller and consequential procedures [KW82].

Statecharts were also adopted as a basis for the subsequent hypernode data model
[PL94]. Unlike statecharts, hypernodes allow neither edge labelling nor external and
internal edges. As previously stated for statecharts, even this model does not allow to
fully represent a property graph, since the attribute-value association must be necessarily
expressed as a relation between two different vertices. The fact that the vertex containments
cannot overlap make such nested model affected from the same data replication represent-
ation problem described for semistructured and nested data (Section 3.2.2 on page 68).
A first extension of the hypernode model towards data representation is represented by
CoGITaNT [GS98], where any type of edge (thus including internal and external ones) are
included and data is firstly contained inside a node. Nested graphs can be serialized in
both GraphML [BELP07] and GXL [HSSW06] formats.

10Formally, ∀e ∈ ε(v).∃u ∈ ν(v).∃u ′ ∈ V.λ(e) = (u, u ′) ∨ λ(e) = (u ′, u)
11Since each edge provides a state transition, the external edge was originally called called external

transition. Similar consideration follows for internal edge.
12Formally, ∃n ≥ 1.λ(e) = (s, t) ∧ ((s ∈ νn(t) ∧ e ∉ ε(t)) ∨ (t ∈ νn(s) ∧ e ∉ ε(s)))
13Formally, ∃n ≥ 1.λ(e) = (s, t) ∧ ((s ∈ νn(t) ∧ e ∈ ε(t)) ∨ (t ∈ νn(s) ∧ e ∈ ε(s)))

76 3.5 Classifying Graph Query Languages

Graph Data models for roll-up and drill-down operations

As outlined in the Introduction at page 12, graph representation have recently became a
favourite representation for multidimensional data. Current literature uses two different
approaches for extending graph databases to support nesting operations: some try to
overcome graph data structure limitations by extending their query languages, while
others try to extend the data structures used for both input and intermediate computations.
Among the first type of approaches, [EV12b] proposes the definition of a RDF vocabulary
over which the OLAP cube can be defined. On top of this “structured” RDF graph, an
algorithm generates the SPARQL query that will allow to perform either the roll-up or the
drill-down operation. This implies that each possible computation over the data view has
to be always recomputed on top of the raw data as in ROLAP systems, thus thwarting the
benefits of updating the intermediate query result. On the other hand, the last type of
approaches has been recently widely investigated and seems to be more promising with
regard to optimization techniques. In these approaches [THP08, CYZ+08, QZY+11], graph
data structures are associated with external graph indices and, thus, allow to connect one
graph to a broader one with respect to the roll-up query. As a consequence, these solutions
do not allow to freely expand any aggregate components at the same time but can only
backtrack the aggregation to a previous known state.

As it will be showed in Chapter 5, in order to meet such goals the nesting indices are
going to be directly embedded within the definition of the nested (graph) data model, thus
allowing to extend all the aforementioned approaches.

3.5 Classifying Graph Query Languages

Contrariwise to current graph query languages’ surveys [AAB+17], we’re going to classify
them not only from their expressiveness and ability to perform several forms of traversal
and matching queries but also by their ability to generate new graph data. Therefore, graph
Query Languages can be categorised in three main classes:

1. The first class tries to find a possible match for a specific traversal or for extracting all
the subgraphs that match a given pattern (Section 3.5.1 on the next page). Such graph
queries do not necessarily manipulate the graph data structure, but they traverse it
using data properties which select the pieces of informations that must be returned
after the visiting process.

2. Graph grammars are used to select parts of a same graph and create new vertices and
edges by using rewriting rules (Section 3.5.2 on page 79). These languages provide the
possibility of adding and removing new vertices and edgesh which do not necessarily
depend on previous data.

3. Graph algebras extend the previous operations with set and simil-relational algebra
operators for graphs (Section 3.5.3 on page 80). These languages permit n-ary operators
and the modification (projection, extension) of already-existing objects. Some graph
algebras also provide operators accepting as inputs (or returning) graph collections.

4. The last class of languages are “proper” graph query languages, that include within
their expressive power all the aforementioned class of operations (Section 3.5.4 on
page 82).

3. Analysing the properties of Data Models and Query Languages 77

Graph Language Query Result

Wenfei Fan et al.
[FLM+12]

Graph + REGEX 1 single transformed matched graph

GraphLOG
[CM90a, CM90b]

Graph + REGEX 1 single transformed matched graph

Isomorphism Graph Morphisms defining a collection of matched subgraphs

NautiLOD [FPG15] REGEX Matched graph (or vertex) collections

Description Logic
[BCC+16, BCM+10]

Description Logic Vertices from which the graph can be matched

NLR+ [BFL13] REGEX + registers Register-based morphisms over satisfiability

Gremlin [Rod15] Gremlin Bag of values V ∪ E and side effects

HyperLog [PH01] Clauses Hypernode

XPath [BBC+15] REGEX Subtrees reached after traversing the expression

Table 3.3 An example of graph traversal and graph pattern matching query languages: as
we can see, there are huge differences between those graph query languages, both on the query
representation and on the provided result and on its semantics.

3.5.1 Graph Traversal and Pattern Matching Languages

In present literature there are two distinct types of languages allowing the subgraphs
“extraction” from a single graph operand: the first approach is to write an expression
in a given language L such that its interpretation involves a visit of the graph, while
the second approach is to express such query with another graph (eventually enriched
with other path expressions), thus directly providing the data structure to be searched
within the graph. In both cases, there are solutions allowing to perform the graph visit via
“tractable” algorithms, such that the graph visit happens at most in a polynomial time with
respect to the graph data size [FLM+12, FPG15, BFL13]. Consequently, such solutions do
not necessarily involve to run a subgraph isomorphism problem, except when expressly
requested by specific semantics [AAB+17, JKA+17].

Table 3.3 shows that there is no strict classification under which we can label such graph
languages, even though we can observe that they all rely on a same mechanism: each query
has to be interpreted by a specific semantics transforming such query into an intermediate
language expression (e.g. a generic program) over which the graph data input can be
provided as an input and returned as an output. Consequently, we can just distinguish
these query languages by the result they provide, either a single graph or a collection of
graphs. For both languages we introduce a new denomination, and call the former “graph
selection languages” and “graphs extraction languages” the latter.

3.5.1.1 Graphs Extraction Languages

Since the graph data structure does not allow an uniform representation for both graphs
and graph collections, we represent graph extraction languages as an operator from graph
to graph collections (which are here expressed via a collection of “morphisms”). Such
morphisms can be expressed as single tuples within one relational table [AAB+17].

▸ Definition 18 (Graphs Extraction Languages). Given a graphs extraction language L and a

query Q ∈ L expressed as a graph or a regex (or both), the interpretation mQ(G) of Q over an input

graph G returns a set of functions fi called morphisms mapping each component of P into a list of

78 3.5 Classifying Graph Query Languages

either vertices or edges in G in ℘(VG ∪ EG). In particular:

mQ(G) = { fi∶Q → ℘(VG ∪ EG)}i≤n

◂

Gremlin

Gremlin is a Turing Complete graph traversal query language [Rod15]: this is not a
desired feature for query languages since they must usually guarantee that each query
evaluation must always converge and that it must always return an answer in a “reasonable”
amount of time. Another problem with this query language is based on its path navigation
semantics [TPAV17]: while all the other graph traversal languages return the desired
subgraph, Gremlin returns a bag of values (e.g. vertices, values, edges). This peculiarity
does not allow the user to take advantage of partial query evaluations and to combine them
in a final result. This feature is also shared by other other path navigation algebras, such
as the one for Cypher14 [HG16, MSV17], which algebra only considers the graph traversal
aspects of the language.

3.5.1.2 Graph Selection Languages

Instead of returning multiple graphs matching one single query Q, other languages prefer
to return the maximal subgraph containing all the graphs that match Q.

▸ Definition 19 (Graph Selection Language). Given a graph selection language L and a query

t for such language expressed as a graph (or both), the interpretation [[t]]L of t over an input graph

G returns, it it exists, an (homo)morphism ε ∶ γ → t such that γ ⊆ G is the least upper bound15 of

all the subgraphs γ ′ of G satisfying t:

[[t]]L(G) = { ε ∶ γ → t ∣ γ = sup({γ ′ ⊆ G∣t(γ ′)}), ε(γ) = t }

Since this operation acts as a selection function for the graph, the returned graph can be expressed

through the following selection operator:

σt(G) =
⎧⎪⎪⎨⎪⎪⎩
(V ∩dom(εV), E ∩dom(εE)) ε ∈ [[t]]L(G)
(∅,∅) oth.

◂

As a consequence, this selection operator appears to be more general than the graph
selections provided in graph literature [JPT+16], where there are only predicates over
vertices and edges, that are included by the aforementioned graph traversal operator, from
now on called “selection”. I now provide some examples of graph selection languages in
the following subsections.

14Please note that the algebra [TPAV17] for Gremlin and the other one [HG16, MSV17] for Cypher are
substantially the same, with some minor changes.

15An upper bound for X in poset (S,⪯) is an element M ∈ S such that ∀x ∈ X.x ⪯ M. T is also a least
upper bound for X in S, denoted by sup(X), if ∀x ∈ X.x ⪯ T ∧∀d ∈ X.(∀x ∈ X.x ⪯ d) ∧ T ⪯ d.

3. Analysing the properties of Data Models and Query Languages 79

Description Syntax (⋅) Semantics ([[⋅]](u))
Entry point ⋅p ⋃{Γ ∈ [[p]](u)∣TΓ ≠ ∅}

Edge traverse ℓ ⋃
u

ℓÐ→v
({u, v},{u ℓÐ→ v}, u,{v})

Inverse edge traverse ℓˆ ⋃
v

ℓÐ→u
({u, v},{v ℓ

Ð→ u}, u,{v})
Any edge ⟨_⟩ ⋃ℓ∈U ⋃

v
ℓÐ→u
[[p]](u)

Vertex predicate θ p[θ] ⋃{(V, E, s,{v ∈ T∣θ(v)}) ∣ (V, E, s, T) ∈ [[path]](u)}
Traversing p/q [[p]](u) ○ (⋃v∈TΓ ,Γ∈[[p]](u)[[q]](v))
Disjunctive Path (p∣q) [[p]](u)∪ [[q]](u)
Kleene Star (p)∗ ({u},∅, u,{u})∪ (⋃∞i=1[[p/ . . . /p

´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶
i

]](u))

Table 3.4 Successful semantics S associated to each query ⋅p expressed in the NautiLOD syntax.
Side effect action evaluations were removed. u denotes the initial source vertex from which the graph
traversal query is started.

NautiLOD

The NautiLOD [FPG15] query language was conceived for performing path queries
(defined through path expressions with REGEX-es) over “RDF graphs”. Notwithstanding
the usage of recursion operators via Kleene Star, the same paper shows that queries can
be evaluated in polynomial time. While other graph pattern matching query languages
provide as an outcome of their evaluation a blob of both graph vertices and edges (e.g.
Gremlin), its interpretation can be mapped into a combination of algebraic graph operators,
through which a graph collection is provided in return.

NautiLOD uses MultiPointed Graphs to express the result of the query evaluation:
each MPG= (V, E, s, T) is a RDF graph extended with a source vertex s and a target set T : s

represents the vertex from which the graph traversal is started, and T represents one of the
possible ending nodes. The interpretation of such graph traversal semantics is expressed
using three basic MPG operators, that can be extended to MPG collections. In particular,
mpg1 ○mpg2 expresses a path concatenation, where the two graphs are united only if s2
appears in T1; the union16 mpg1 ⊔mpg2 either performs the union of two non-empty MPGs
sharing the same source vertex, or returns one of the two empty graphs; ⋃ denotes17 the
union of two MPG sets. Table 3.4 provides an example of how such operators provide
the query interpretation using the graph and graph collection operators. We’re going to
discuss this query language’s interpretation over our proposed data model at page 179,
where we’re going to use it for traversing nested graphs.

3.5.2 Graph Grammars

Graph grammars are similar to grammars generating programming languages: the latter
grammars are defined through a collection of “rewriting rules” H → T, called productions,
where H is a non-terminal symbol while T is a collection of both terminal and non-terminal
symbols. In particular, H → T means that each occurrence of H produced while expanding

16Originally denoted as ∪.
17Originally denoted as ⊕.

80 3.5 Classifying Graph Query Languages

the rules must be replaced by T. Similarly, graph grammars are expressed through
“rewriting rules” allowing to re-write a subgraph into one subgraph, while keeping the
former connections valid. In particular, this thesis will consider single-pushout graph
grammars formalized over traditional graphs as follows:

▸ Definition 20 (Graph Grammar). A single-pushout graph grammar G [Ren03, Löw93] is a

collection of productions GH
ϕ→ GT , where GH is the pattern graph and GT is the rewriting graph,

and ϕ is the identity function mapping all the vertices and edges in GH that are preserved in GT .

For each production rule GH
ϕ→ GT , given a morphism ϕ mapping the subgraph γ ⊆ G of

a given graph G = (V, E) into the pattern graph GH , the rewriting of G is defined as the graph

(Vτ , Eτ ∣Vτ
), where the vertex set Vτ and Eτ are defined as follows:

Vτ = (VGT
/ cod(ϕ)) ∪ ϕ(VG)

Eτ = (EGT
/ cod(ϕ)) ∪ ϕ(EG)

while Eτ ∣Vτ
is a restriction of all the edges in Eτ wth Vτ as defined in [Ren03] where all the source

and destination edges appear in Vτ . ◂

On the other hand, these languages do not guarantee to be invariant to the order of the
application of the grammar rules G over the graph input, and hence different production
rules application strategies can be carried out to provide the desired result. This problem
still appears in current graph query languages implicitly adopting such techniques (e.g.
Cypher), which internally apply the graph grammar’s rewriting rules while generating
new graphs. Moreover, such formalizations only applies when GH actually matches a
subgraph of the input graph operand.

Last, there are a few problems in applying such technique to current graph query
languages: the first aspect is that the graph GH is often used as a pattern matching query,
and hence it often does not represent the actual data stored in a graph G, but some general
features that have to be present. Moreover, since such graph pattern matching techniques
can return more than one possible match through one or more morphisms, such techniques
fails at rewriting graphs in GT using the different morphisms. We’re going to later on
generalize such concept in Section 6.3.4 after studying the other query languages and,
above all, (proper) graph query languages, where these graph rewriting concepts are used
even if they haven’t been formalized yet.

3.5.3 Graph Algebras

Within the field of database query languages, a (relational) algebra is a data structure
(e.g., finitary relations in the case of Codd’s relational algebra) that is closed under certain
operators. The aim of such languages is to provide a semantics and optimizations to
declarative programming languages (e.g. SQL for the relational algebra [CG85]) such that it
can be used within the databases’ query plans to obtain, through their rewriting rules (i.e.
equational reasoning), the most efficient query providing the equivalent result, independently
from the data actually stored within the database. Moreover, algebras express graph
transformation that are either impossible or hard to provide through graph rewriting, such
as the basic graph set operators (union, intersection, difference over the vertices’ and edges’
set) and binary graph operators (join).

Currently there are two types of algebras that have been developed for graphs: path
algebras and (proper) graph algebras. While path algebras have been developed to provide

3. Analysing the properties of Data Models and Query Languages 81

a formal semantics to path traversal and graph pattern matching queries, graph algebras
have been designed either to change the structure of property graphs through unary
operators, or to combine then through binary ones (e.g., the graph join and graph nesting
that will be respectively introduced in Chapter 4 on page 89 and 7 on page 195). Among all
the (graph) algebras, only path algebras have been studied for both expressing equivalence
rules (for SPARQL, [PAG09]) for providing path evaluations’ optimizations (for Cypher,
[HG16]) and allowing incremental updates (for SPARQL, [Shm11]). On the other hand,
due to the fact that such algebras were only designed for path manipulation and not for
returning graphs, they cannot be directly used to return graphs.

Property graphs (and their extensions) also fail both to be closed under their proposed
(proper) graph algebras, and to provide some interesting rewriting rules. The reason for
this is twofold: firstly, the need to express graph collections and graphs for some graph
data analysis tasks [JPT+16] and the impossibility of expressing them both within the same
representation under the property graph model requires the algebras to design four distinct
class of operators: graph to graph operators, graph to graph collection operators [JKA+17],
graph collection to graph collection operators [He07], and graph collections to graph
operators [JPT+16]. Therefore, no simple rewriting rules can be modelled on top of such
algebras (GRAD [GRS+16, GRS+15] and GrALa [JPT+16]): such problem was originated
by their ancestor GraphQL18 [He07]. Moreover, those algebras were designed more to be
useful APIs to the programmers than actual tools for query optimization: this intuition
is supported by their implementation, focusing more on the algorithmic enhancement
of the single operator and not on how such operators interact [JPR17]. Moreover, the
graph collection to graph collection operators do not implement all the possible collection
operators as outlined in [MM06]: as an example, proper join operations are missing.

Last, some of the path algebras do not distinguish data from the operator themselves,
and hence data became actually 0-ary operators [HG16, MSV17, TPAV17], that have no
sense with respect to standard algebras, where the data itself is not expressed as an
operator.

GraphQL, GrALa and GRAD

GraphQL [He07] is yet another graph query language with an SPARQL-like syntax, mainly
conceived for pattern extraction from the data, called graph motifs, and their construction.
The language allows graphs naming similarly to SPARQL named graphs. The most interest-
ing scientific contribution of He [He07] is the first attempt in defining a graph algebra for
collection of graphs.

This approach has been finally specialized for single graphs in the GRAD algebra
[GRS+16, GRS+15]. In this latter definition the cartesian product and join operations are
still defined over graph collections and are still not specialized for the single graphs.
Consequently, in both languages the cartesian product over two graph collections produces
a graph containing two (possibly) disjoint graph components. The graph join over the
two collections only merges the matched vertices and no considerations are made on the
graphs’ edges structure. In the end, GRAD propose an alternative graph data model that
could be expressed as a specific implementation of the Property Graph model.

On the other hand, graph joins are completely missing on the other development of the
GraphQL algebra, that is GrALa over EPGM [JPT+16]: its graph pattern matching through

18Not to be confused with Facebook’s GraphQL query language [HP17].

82 3.5 Classifying Graph Query Languages

graph motifs inspired the recent pattern matching operator [JKA+17], acting both as a graph
traversal and as a proper pattern matching query interpretation on top of Cypher’s query
syntax. Last, the dichotomy between graph and graph collection inspired the authors to
extend the basic property graph model to support graph collections within a same graph
database. The definition of graph operators for such algebra is still under development.

3.5.4 (Proper) Graph Query Languages

A graph query language is “proper” when its expressive power includes all the afore-
mentioned query languages, and possibly expressing the graph algebraic operators. In
particular, such languages are able to express graph grammars’ rewriting rules for both
updating the data within the given graph database, and creating new elements:

in Cypher, the following keywords are used: SET for setting new values within vertices
and edges, MERGE for merging set of attributes within a single node or edges, REMOVE for
removing labels and properties from vertices and edges, and CREATE for the creating of
new nodes, edges and paths [Inc14].
in SPARQL, INSERT and DELETE clauses allow to create and remove RDF triplets [SGP08].
in HyperLog [PH01] uses a Prolog-friendly syntax with negations, which are used to
remove the matched vertices or edges. Such query language also allows the creation of
new hypernodes.

Moreover, they can express graph traversal queries [KRRV15], set operations and pattern
matching ones [JKA+17]. Even if graph grammars seems to arbitrarily extend the expressive
power of such query language by allowing to express some new graph operators, in some
cases a direct algebraic implementation proves to be more efficient than the pattern
matching (or graph traversing) plus graph transformation mechanism. This intuition was
proved for the graph join operator that is going to be presented in Chapter 4 on page 89,
where a straightforward implementation of such operator proved to be more efficient than
the query matching and rewriting.

Last, even though these languages can be closed under either property graphs or RDF,
graphs must not be considered as their main output result, since specific keywords like
RETURN for Cypher and CONSTRUCT for SPARQL must be used to force the query result to
return graphs. Given also the fact that such languages have not been formalized from the
graph returning point of view, such languages prove to be quite slow in producing new
graph outputs.

The following paragraphs will provide a round up of the features of such proper graph
query languages.

SPARQL

At the time of writing, the most studied graph query language both in terms of semantics
and expressive power is SPARQL, as it is the most time-worn language among those that
are both well-known and implemented. Some studies on the expressive power of SPARQL
[AG08, PAG09] showed that it allows to write very costly queries that can be computed
more efficiently whether only a specific class of (equivalent) queries is allowed. As a result,
the design flaws of a query language relapse on the computational cost of the allowed
queries. These problems could be avoided from the very beginning whether the formal
study had preceded the practical implementation and definition of the language. However,
such limitations do not preclude some interesting properties: the algebraic language used

3. Analysing the properties of Data Models and Query Languages 83

MetaObject Facility 1○

MetaModel
(MM)

Model (M)

Data (D)

Language (LMM)

α

α
TBox (T)

ABox (A)

RBox (R)

Enriched Data

isA

πT

πA

G

Description Logic 2○

Data (D)

Intensional
(I)

κ

λ

Extensional
(E)

Pop

π
R
D
A

π A

Data Mining Algebra 3○

Graph Data

Graph
Schema

Graph Patterns
(w/ Regex)

Graph Query Language

Graph Representation 4○

Figure 3.6 A coarse view of all the query languages that have been analysed so far. Red dashed
lines represent the level at which the query languages lie with respect to the representation of the
data to be queried. Blue dotted lines represent the level at which either data (below) or its properties
(above) are represented.

to formally represent SPARQL performs queries’ incremental evaluations [Shm11], and
hence allows to boost the querying process while data undergoes updates (both incremental
and decremental). Anyway, a lot of research has been carried out [PAG09] and efficient
query plans have been implemented [HAR11], even when multiple graphs are took in input.
These results involve the interpretation and the execution of “optional joins” paths [Atr15],
thus allowing to check whether the graph conjunctive join conditions are not met for the
outgoing edges. While SPARQL was originally designed to return tabular results, later
extensions (SPARQL 1.1) tried to overcome to such problem with the CONSTRUCT clause, that
returns a new graph (see the query at page 62). While the clauses represented within the
WHERE statement are mapped to an optimisable intermediate algebra, such considerations
do not apply for the CONSTRUCT statement. However, CONSTRUCT is required for produce a
graph as a final outcome of our graph join query. Last but not least, the usage of so-called
named graphs allows the selection of over two distinct RDF graphs.

Cypher

Cypher [Neo13, RWE13, Inc14] is yet another SQL-like graph query language for property
graphs. No formal semantics for this language were defined from the beginning as in
GraphQL, but nervelessly some theoretic results have been carried out for a subset of
Cypher path queries [HG16] by using an algebra adopting a path implementation over the
relational data model. Similarly to SPARQL, such algebra does not involve graph creation
processes within the CREATE clause. Such solution is also reflected by its query evaluation
plan, which provides a relational output as a preferred result; as a result, the process of
create new vertices and edges is not optimized. Such language allows to update a property
graph and to produce a new graph as a result.

84 3.6 Conclusions

3.6 Conclusions

Structured and semistructured models point out that a schema can be externally represen-
ted, and that (semi)structured data can be represented without the constraints provided
by a specific schema, thus allowing a more flexible approach to data integration between
different representations. Moreover, the analysis of unstructured data revealed that their
translation into a representation of choice depends on a specific scenario, similarly to the
adoption of a specific schema to semistructured data. On the other hand, all the non-graph
models fail to represent explicit relations between different data and are all affected by se-
mantic overloading: this last problem is solved by the property graph model. Additionally,
these data model representations failed to provide structural aggregations: the only model
achieving this final result was the stream data model: any summarized representation is
directly associated to the finer values, and each value may be also contained in multiple
possible coarser representations. As a consequence, a proper model extending both the
semistructured data representation and the graph model is required: Chapter 5 on page 119

is going to propose GSMs where associations between attribute and value for each tag,
tuples and objects are going to be generalized into a MultiMap of object references instead
of a single Map; GSMs will also enable structured aggregations.

Finally, we completed the analysis of several types of query languages: those are
roughly subsumed by Figure 3.6. 1© At the very beginning of this thesis, we were trying to
find a valid representation of semi-structured data, and recognized that the data model
itself shall contain a subset MM of the whole query language LMM. Still, at this abstraction
level it was not clear which query language should have been used. Then, 2© we analysed
the Description Logic framework (Definition 4 on page 48), which is currently used
for data integration, and we observed that, even though this language can be used to
model data alongside its properties, it fails to reproduce data transformation operations.
Then, we moved to an 3© relational algebra extension for data mining (Section 3.1.1.1
on page 58), where it was also possible to transform the tuples’ representations and to
perform aggregations. Nevertheless, this query language showed the impossibility one
singe relational representation for both data and intensional data properties, thus requiring
the explicit definition of extra-world operations. Then, we moved to analyse 4© graph
query languages: we introduced graph grammars, introducing the pattern matching and
rewriting process that happens in proper graph query languages; such operations both
represent most of the possible operations over graph data structures and perform schema
alignments and rewritings. We also observed that their instance-specific head rules must be
substituted with more general graph pattern matching or traversing queries, thus allowing
to nest vertex and edge properties within graph data structures. This observation also
suggests that graph data and graph schemas/patterns may be represented using the same
data model, thus suggesting that a generalized graph data model should be also able to
embed metamodel information. Consequently, we expect that the GSQL query language
(Chapter 6) on top of GSM will also express all the previous types of queries, as well as
embed the GSM’s metamodel within its operators.

Part II

On Combining Graphs

85

3. 87

Giovanni Boccaccio, Decameron, Hamilton 90 Codex.

Capital letters in different sizes and colours remark different levels of the frame stories. Frame

stories are just one example of nested content in literature.

4 On Joining Property Graphs

Contents

4.1 Graph Query Languages limitations’ on Graph Joins 91

4.2 Graph Data Model . 95

4.3 Graph θ-Joins . 97

4.3.1 Graph Join properties . 98

4.4 Graph Conjunctive Equi-Joins . 100

4.4.1 Algorithm and Data Structure 101

4.4.2 Experimental Evaluation . 105

4.4.2.1 Evaluating Data Structures 105

4.4.2.2 Join Execution Time 107

4.5 Graph Less-Equal Join . 108

4.6 Left, right and full graph joins. 112

4.7 Conclusions . 115

A Cypher query walks into a bar and sees two graphs. It walks up

to them and says, “May I join you”?.

— Restating a well known pun on SQL.

The hight availability of graph data demands for a binary operator combining two
distinct graphs into one single graph. Since in the relational model this task is entrusted to
join operators, we would expect that similar tasks already appear to be on graph query
languages. As described in Section 2.2.2, the join operation is just one of the two operations
required for data integration alongside with grouping. While the graph grouping operation
has already been defined [JPR17], this graph operation is still missing on current Graph

DataBase Management Systems (GDBMS).
Despite the term “join” appearing in graph database literature, such operator could

not be used to combine two distinct graphs, as for tables’ joins in the relational model.
Such joins are path joins running over a single graph [ATOR16]: they are used for graph
traversal queries [GYQ+12, MSV17] where vertices and edges are considered as relational
tables [SFS+15, HG16]. The result of such path joins could not be directly used to combine
values from different sources (e.g. join two distinct vertices appearing in different graphs
alongside with their values), and hence supplementary graph operations are required. The
graph integration operation resulting from this combination of two operators does not scale
on the large, thus motivating for a specific operator. Such operations require matching
traversal paths and then generating new paths from the older ones. Moreover, the term join
(SJoin [GCR+17]) has been also recently used to express a link discovery operator between
subgraphs of different graph ontologies, where each subgraph represents one single entity
alongside with its attributes. Even in this case, the proposed graph join operator does not
resemble a binary relational join between graphs, because no new graph is produced as an
output, and the only result of such operation is the definition of new correspondences

As for relational databases, they solve common graph queries efficiently, so GDBMS rely
either on relational database engines [ATOR16, PLB15, EM09] or on column store databases
[SFS+15, BDK+13]. Moreover, relational databases already have efficient implementations

89

90

Name=Alice

{User}

Name=Carl

{User}

Name=Bob

{User}

Name=Dan

{User}

{Follows}

{
F
o
llow

s}

{
F
o
llow

s}

{Follows}

(a) ResearchGate graph, Follower relations.

Title=Graphs

1Author=Alice

{Paper}

Title=Join

1Author=Alice

{Paper}

Title=Projection

1Author=Carl

{Paper}

Title=OWL

1Author=Bob

{Paper}

Title=µ-calc

1Author=Dan

{Paper}

{Cites}

{C
it
es

}

{
C

it
es

}

{Cites}

(b) Reference graph, citation relations. Each paper
has a first author.

Title=Graphs

1Author=Alice

Name=Alice

{User,Paper}

Title=Join

1Author=Alice

Name=Alice

{User,Paper}

Title=Projection

1Author=Carl

Name=Carl

{User,Paper}

Title=OWL

1Author=Bob

Name=Bob

{User,Paper}

Title=µ-calc

1Author=Dan

Name=Dan

{User,Paper}

{Follows,Cites}

{F
ol
lo
ws,C

ite
s}

(c) First query:
ResearchGate⋈∧Name=1AuthorReference

Title=Graphs

1Author=Alice

Name=Alice

{User,Paper}

Title=Join

1Author=Alice

Name=Alice

{User,Paper}

Title=Projection

1Author=Carl

Name=Carl

{User,Paper}

Title=OWL

1Author=Bob

Name=Bob

{User,Paper}

Title=µ-calc

1Author=Dan

Name=Dan

{User,Paper}

{Follows,Cites}

{Follows}

{
F
o
ll
ow

s}

{
F
o
llow

s}

{Follows}

{F
ol
lo
ws,C

ite
s}

{Cites}

{Cites
}

(d) Second query:
ResearchGate⋈∨Name=1AuthorReference

Figure 4.1 Example of a Graph Database for an Enterprise. Dotted edges remark edges shared
between the two different joins.

for (equi) join algorithms [SCD16]. We want to show that graph joins over the relational
data model are not inefficient. Before all, let us see an example of a graph join query:

▸ Example 17. Consider an on-line service such as ResearchGate (Figure 4.1a, or Academia.edu)

where researchers can follow each others’ work, and a citation graph (Figure 4.1b). Now we want

to “return the paper graph where a paper cites another one iff. the first author 1Author of the

first paper follows the 1Author of the second. (Figure 4.1c)”. The ResearchGate graph does

not contain any edge regarding the references, while the Reference graph does not contain any

information pertaining to the follow relations. This demands a join between the two graphs: as a

first step we join the vertices together as in the relational model (vertices are considered as tuples

using Name = 1Auth as a vertex equi-join predicate, θ) and then combine the edges from both

graphs. Accordingly to the query formulation, we establish an edge between two joined vertices only

if the source has a paper citing the destination, and the user in the source follows the user in the

destination.

Let us now examine the graph join implementation within the relational model: vertices
and edges are represented as two relational tables ([SFS+15], Figure 4.2a). In addition to
the attributes within the vertices’ and the edges’ tables, we assume that each row (on both
vertices and edges) has an attribute id enumerating vertices and edges. Concerning SQL
interpretation of such graph join, we first join the vertices (see the records linked by θ lines
in Figure 4.2a). Then the edges are computed through the join query provided in Figure
4.2b: the root and the leaves are the result of the θ join between the vertices, while the
edges appear as the intermediate nodes. An adjacency list representation of a graph, as
the one proposed in the current paper, reduces the joins within the relation solution to
one (each vertex and edge is traversed only once), thus reducing the number of required
operation to create the resulting graph.

4. On Joining Property Graphs 91

VResearchGate

id Name ℓv
6 Alice {User}
7 Bob {User}
8 Carl {User}
9 Dan {User}

EResearchGate

id src dst ℓe
5 6 7 {Follows}
6 6 8 {Follows}
7 7 9 {Follows}
8 9 8 {Follows}

VReference

id Title Name ℓv
1 Graphs Alice {Paper}
2 Join Alice {Paper}
3 OWL Bob {Paper}
4 Project Carl {Paper}
5 µ-calc Dan {Paper}

EReference

id src dst ℓe
1 1 3 {Cites}
2 2 4 {Cites}
3 3 4 {Cites}
4 4 5 {Cites}

θ

θ

θ

θ

(a) Representing the operands’ vertices and edges
with tables. The θ join for the vertices only involves
tables VResearchGate and Vprojects.

VResearchGate ⊲⊳ VReference

EResearchGate EReference

VResearchGate ⊲⊳ VReference

⊲⊳ ⊲⊳

⊲⊳ ⊲⊳

(b) SQL join query plan required to create edges
for ResearchGate⋈∧Name=1AuthorReference. The leaves
acts as the edges’ sources while the root as their
destinations.

Figure 4.2 Graphically representing the relational join procedure required to evaluate the first
query (Figure 4.1c).

Example 17 showed only one possible way to combine the operands’ edges, but we can
even return edges pertaining to both operands as in the following query: “For each paper

reveal both the direct and the indirect dependencies (either there is a direct paper citation, or one of

the authors follows the other one in ResearchGate)”. The resulting graph (Figure 4.1d) has the
same vertex set than the previous one, but they differ on the final edges. This implies that
our graph join definition must be general enough to allow different edge combinations: we
refer to those as edge semantics, “es” for shorthand.

This chapter provides the following main contributions:

(binary) Graph θ-join operator; we first outline a simple graph model in order to
provide a first intuitive definition of a graph join (see our Technical Report [BMM16]
outlined in Section 4.2). The operator is both commutative (by swapping the graph
operands, the result doesn’t change) and associative (it doesn’t matter which graph is
joined first). Finally, such data model is closed under graph join (i.e. the output of the
computation is a graph).
Graph Conjunctive Equi-join Algorithm for a specific graph combination task (“con-
junctive”, Section 4.4.1): we compare it to its implementation over both graph (SPARQL,
Cypher) and relational (SQL) query languages: as a result our solution outperforms the
query plan implementation of the other query languages and scales on the large. An
example on how to use the same algorithm for less-equal predicate is also prodived
(Graph Conjunctive Less-equal Algorithm, Section 4.5)
Graph Joins are then generalized into left, right and full joins, and it is also showed
how to extend the first graph join definition to implement such operators (Section 4.6).
We show how full graph joins can be used to integrate both graph data and graph
schemas into one single intermediate representation.

4.1 Graph Query Languages limitations’ on Graph Joins

The reason of comparing our graph join with multiple graph query languages is twofold:
we want both to show that graph joins can be represented in different data representations
(RDF and Property Graphs), and to detail how our experiments in Section 4.4.2 were
performed.

Graph Selection Languages. A first reason why it is impossible to implement graph joins
on such languages is that they perform graph query patterns among the edges only one

92 4.1 Graph Query Languages limitations’ on Graph Joins

graph at a time. Even though we want to express the edge and vertex match in two distinct
graph operands that have to be rewritten in one single graph, such languages do not allow
to visit two distinct graph components contemporaneously, that is to check if two graph
patterns are matched at the same time, and also they do not support binary predicates
between two distinct nodes. At this point suppose that we decide to implement the path
join as a binary operation over a graph and the matching graph pattern: even if this
interpretation were possible, such languages do not allow to merge into one final result
node the query’s values with the graph ones, since such languages are only designed to
extract specific subgraph from the data graph. The inability of expressing such operator
within such query languages discards them from a comparison with our graph join
algorithm.

On (Proper) Graph Query Languages. At the time of writing, such graph query lan-
guages do not provide a specific keyword to operate the graph join between two graphs.
Moreover, all the current graph query languages, except SPARQL, assume that the under-
lying GDBMS stores only one graph at a time, and hence binary graph join operations are
not supported. As a consequence, an operator over one single graph operand must be
implemented instead.
Let us now suppose that we want to express a specific θ-join, where the binary predicate θ

is fixed, into a (Property) Graph Query Language: in this case we have both (i) to specify
how a final merged vertex v⊕ v ′′ is obtained from each possible pair of vertices containing
different possible attributes A1, A2, . . . , An , and (ii) to discard the pair of vertices that do
not jointly satisfy the θ predicate and the following join condition (that varies upon the
different vertices’ attributes over the graph):

(v⊕ v ′′)[A1] = v ∧ (v⊕ v ′′)[A2] = v ′′

Please notice that A1 and A2 explicitly refer to the final graphs’ attributes appearing only
on one graph operand. Moreover, for each possible graph join operator, we have to specify
which vertices are going to be linked in the final graph and whose nodes are going to
have no neighbours.
Among all the possible graph query languages over property graph model, we consider
Cypher. An example of the implementation of the an equi-join operator is provided in
Figure 4.3: the CREATE clause has to be used to generate new vertices and edges from graph
patterns extracted through the MATCH...WHERE clause, and intermediate results are merged
with UNION ALL. While current graph query languages allow to express our proposed
graph join operator as a combination of the aforementioned operators, our study shows
that our specialized graph join algorithm outperforms the evaluation of the graph join
with existing graph and relational query languages.

On the other hand, in the case of RDF graph models, we have to discriminate whether
vertices either represent entities or values that describe them and, consequently, we have
to discriminate between edges representing relations among entities and the ones acting
as attributes (when such each links an entity to its associated value expressed as the
destination vertex, see Definition 15 on page 74). Even in this case the join condition

depends upon the specific graphs’ schema, that may vary on different RDF graphs. In
particular, as showed in Figure 4.4, SPARQL allows to access multiple graph resources
through named graphs and performs graph traversals one graph at a time through path

joins [FB09, ACZH10, YLW+13]. At this point the CONSTRUCT clause is required if we want
to finally combine the traversed paths from both graphs into a resulting graph.

4. On Joining Property Graphs 93

MATCH (src1) -[:r]->(dst1),

(src2) -[:r]->(dst2)

WHERE src1.Organization1=src2.Organization2 AND src1.Year1=src2.Year2

↪ AND dst1.Organization1=dst2.Organization2 AND dst1.Year1=dst2.

↪ Year2 AND src1.graph=’L’ AND src2.graph=’R’ AND dst1.graph=’L’ AND

↪ dst2.graph=’R’

CREATE p=(:U {Organization1:src1.Organization1 , Organization2:src2.

↪ Organization2 , Year1:src1.Year1 , Year2:src2.Year2 , MyGraphLabel

↪ :"U-"}) -[:r]->(:U {Organization1:dst1.Organization1 , Organization2

↪ :dst2.Organization2 , Year1:dst1.Year1 , Year2:dst2.Year2 ,

↪ MyGraphLabel :"U-"}) return p

UNION ALL

MATCH (src1) -[:r]->(u), (src2) -[:r]->(v)

WHERE src1.Organization1=src2.Organization2 AND src1.Year1=src2.Year2

↪ AND src1.graph=’L’ AND src2.graph=’R’ AND ((u.Organization1 <>v.

↪ Organization2 OR u.Year1 <>v.Year2))

CREATE p=(:U {Organization1:src1.Organization1 , Organization2:src2.

↪ Organization2 , Year1:src1.Year1 , Year2:src2.Year2 , MyGraphLabel

↪ :"U-"}) return p

UNION ALL

MATCH (src1) -[:r]->(u), (src2)

WHERE src1.Organization1=src2.Organization2 AND src1.Year1=src2.Year2

↪ AND src1.graph=’L’ AND src2.graph=’R’ AND (NOT ((src2) -[:r]->()))

CREATE p=(:U {Organization1:src1.Organization1 , Organization2:src2.

↪ Organization2 , Year1:src1.Year1 , Year2:src2.Year2 , MyGraphLabel

↪ :"U-"}) return p

UNION ALL

MATCH (src1), (src2) -[:r]->(v)

WHERE src1.Organization1=src2.Organization2 AND src1.Year1=src2.Year2

↪ AND src1.graph=’L’ AND src2.graph=’R’ AND (NOT ((src1) -[:r]->()))

CREATE p=(:U {Organization1:src1.Organization1 , Organization2:src2.

↪ Organization2 , Year1:src1.Year1 , Year2:src2.Year2 , MyGraphLabel

↪ :"U-"}) return p

UNION ALL

MATCH (src1), (src2)

WHERE src1.Organization1=src2.Organization2 AND src1.Year1=src2.Year2

↪ AND src1.graph=’L’ AND src2.graph=’R’ AND (NOT ((src2) -[:r]->()))

↪ AND (NOT ((src1) -[:r]->()))

CREATE p=(:U {Organization1:src1.Organization1 , Organization2:src2.

↪ Organization2 , Year1:src1.Year1 , Year2:src2.Year2 , MyGraphLabel

↪ :"U-"}) return p

Figure 4.3 Cypher implementation for the graph equi-join operator. Please note that one of the
limitations of such query language is that each vertex and edge is going to be visited and path-joined
more than one time for each pattern where it appears.

94 4.1 Graph Query Languages limitations’ on Graph Joins

CONSTRUCT {

?newSrc <http :// jackbergus.alwaysdata.net/graph > "Result";

<http :// jackbergus.alwaysdata.net/edges/result > ?newDst;

<http :// jackbergus.alwaysdata.net/property/Ip1 > ?ip1;

<http :// jackbergus.alwaysdata.net/property/Organization1 > ?org1;

<http :// jackbergus.alwaysdata.net/property/Year1 > ?y1;

<http :// jackbergus.alwaysdata.net/property/Ip2 > ?ip2;

<http :// jackbergus.alwaysdata.net/property/Organization2 > ?org2;

<http :// jackbergus.alwaysdata.net/property/Year2 > ?y2.

?newDst <http :// jackbergus.alwaysdata.net/graph > "Result";

<http :// jackbergus.alwaysdata.net/property/Ip1 > ?ip3;

<http :// jackbergus.alwaysdata.net/property/Organization1 > ?org3;

<http :// jackbergus.alwaysdata.net/property/Year1 > ?y3;

<http :// jackbergus.alwaysdata.net/property/Ip2 > ?ip4;

<http :// jackbergus.alwaysdata.net/property/Organization2 > ?org4;

<http :// jackbergus.alwaysdata.net/property/Year2 > ?y4.

}

FROM NAMED <leftpath/to/graph >

FROM NAMED <rightpath/to/graph >

WHERE

{

GRAPH ?g {

?src1 <http :// jackbergus.alwaysdata.net/property/Id> ?id1;

<http :// jackbergus.alwaysdata.net/property/Ip1 > ?ip1;

<http :// jackbergus.alwaysdata.net/property/Organization1 > ?org1;

<http :// jackbergus.alwaysdata.net/property/Year1 > ?y1.

}.

GRAPH ?h {

?src2 <http :// jackbergus.alwaysdata.net/property/Id> ?id2;

<http :// jackbergus.alwaysdata.net/property/Ip2 > ?ip2;

<http :// jackbergus.alwaysdata.net/property/Organization2 > ?org2;

<http :// jackbergus.alwaysdata.net/property/Year2 > ?y2.

}

filter (?g=<leftpath/to/graph > &&

?h=<rightpath/to/graph > &&

(?org1 = ?org2) && (?y1 = ?y2))

BIND (URI(CONCAT("http :// jackbergus.alwaysdata.net/values/",?id1 ,"-",?id2)) AS ?newSrc)

OPTIONAL {

GRAPH ?g {

?src1 <http :// jackbergus.alwaysdata.net/edges/edge > ?dst1.

?dst1 <http :// jackbergus.alwaysdata.net/property/Id> ?id3;

<http :// jackbergus.alwaysdata.net/property/Ip1 > ?ip3;

<http :// jackbergus.alwaysdata.net/property/Organization1 > ?org3;

<http :// jackbergus.alwaysdata.net/property/Year1 > ?y3.

}.

GRAPH ?h {

?src2 <http :// jackbergus.alwaysdata.net/edges/edge > ?dst2.

?dst2 <http :// jackbergus.alwaysdata.net/property/Id> ?id4;

<http :// jackbergus.alwaysdata.net/property/Ip2 > ?ip4;

<http :// jackbergus.alwaysdata.net/property/Organization2 > ?org4;

<http :// jackbergus.alwaysdata.net/property/Year1 > ?y4.

}

FILTER ((?org3 = ?org4) && (?y3 = ?y4))

BIND (URI(CONCAT("http :// jackbergus.alwaysdata.net/values/",?id3 ,"-",?id4))↪ AS ?newDst)

}

}

Figure 4.4 SPARQL implementation for the graph equi-join operator. Please note that while the
SPARQl engine can optimize the graph traversal tasks, the creation of a new graph as a result is not
included in the optimization steps.

4. On Joining Property Graphs 95

G1

v2

v4 v3

⋊⋉
op

θ
G2

v1 v2

v4 v3

G1 ⋊⋉
∧

θ G2 v2

v4 v3

G1 ⋊⋉
∨

θ G2 v2

v4 v3

Figure 4.5 Given two graph with vertices with same id, hence sharing the same value, the graph
conjunctive join extracts the common pattern, while the disjunctive join retrieves at least one edge
shared among the matched nodes.

Consequently, for the two following conditions current graph query languages do not
support graph joins as a primitive operator.

1. An explicit graph join operator is missing in current graph database languages.
2. Even if we hold fixed the θ binary property, each time that the underlying graph schema

changes we have to rewrite the join query every time, either because we have to specify
how to merge the nodes and how to create final edges, or because we have to re-write
the join condition.

4.2 Graph Data Model

Differently from the previously mentioned relational model, we now provide a data model
allowing an explicit representation of tuples, which may appear more than once within
a single set (e.g., vertex or edge set.). Still, we decide to embed the relational model on
property graphs, so that the standard operators’ properties from the relational model can
be inherited.

We model the vertices’ and edges’ set as multisets (of tuples) S of elements si, where
si unequivocally identifies the i-th occurrence of a tuple s in S. Each tuple associates to
each attribute a value: it is a function A ↦ V ∪ {NULL} mapping each attribute in A to
either a value in V or NULL (ε is the empty tuple). We slightly change the previous property
graph definitions in order to ease the join definition between vertices and edges as later on
required by the graph join:

▸Definition 21 (Property Graph). A property graph is a tuple G = (V, E, Σv, Σe, Av, Ae, λ, ℓv, ℓe)
where (a) V is a multiset of nodes, (b) E is a multiset of edges, (c) Σv is a set of node labels, (d) Σe is a

set of edge labels, (e) Av is a set of node attributes, (f) Ae is a set of edge attributes, (g) λ∶E → V ×V

is a function assigning node pairs to edges, (h) ℓv∶V → P(Σv) is a function assigning a set of labels

to nodes, and (i) ℓe∶E → P(Σe) is a function assigning a set of labels to edges. ◂

Given that the standard property graph model is unable to model graphs and databases
in a similar representation, we must provide the following definition:

96 4.2 Graph Data Model

▸ Definition 22 (Graph Database). A graph database is a collection of n distinct property graphs

{G1, . . . , Gn} represented as a single property graph D with n distinct connected components. From

now on we refer to each component simply as graph. Each graph is identified by two functions:

V∶ {1, . . . , n} ↦ P(V) determining the vertices V(i) of the i-th graph and E∶ {1, . . . , n} ↦ P(E)
determining the edges E(i) of the i-th graph. ◂

▸ Example 18. Two edges ei and f j come from two distinct graphs, respectively Ga and Gb, within

the same graph database D. Edge ei connects vertex uh to vk (λ(ei) = (uh, vk)), while f j connects

u ′h to v ′k (λ(f j) = (u ′h, v ′k)). Such edges store only the following values:

ei(Time) = 12:04, f j(Day) = Mon

and have the following labels:

ℓe(ei) = { Follow } , ℓe(f j) = { FriendOf }

For the multiset θ-join, we need a function ⊕ combining two tuples for the relational
join operator over multisets, where ri ⊕ tj is a valid multiset element (r ⊕ s)i⊕j and i⊕ j

maps each integer pair (i, j) to a single number. If we define ⊕ as a linear function (that is
for each function H, H(ei ⊕ f j) = H(ei)⊕ H(f j)), the θ-join also induces the definition of ℓv,
ℓe and λ for the joined tuples. As a consequence, ⊕ must be overloaded for each possible
expected output from H. Such function is defined as follows:

▸ Definition 23 (Concatenation). ⊕ ∶ A × A ↦ A is a lazy evaluated concatenation function

between two operands of type A returning an element of the same type, A. The concatenation

function is a linear function such that, given any function H with dom(H) = A, H(u ⊕ v) =
H(u)⊕ H(v). ⊕ is defined for the following A-s:

sets: it performs the union of the two sets: S⊕ S ′ de f
= S ∪ S ′

integers: it returns the dovetail number associating to each pair of integers an unique integer:

i⊕ j
de f
= ∑

i+j
k=0 k + i

functions: given a function f ∶ A ↦ B and g ∶ C ↦ D, f ⊕ g is the overriding of f by g

returning g(x) if x ∈ dom(g), and f (x) if x ∈ dom(f). NULL is returned otherwise. Such

function concatenation are used in joins when ∀x ∈ A ∩C. f (x) = g(x).
pairs: given two pairs (u, v) and (u ′, v ′), then the pair concatenation is defined as the pairwise

concatenation of each element, that is (u, v)⊕ (u ′, v ′) de f
= (u⊕ u ′, v⊕ v ′). Elements belonging

to multisets are represented as pairs of elements and integers, and hence si ⊕ tj
de f
= (s⊕ t)i⊕j.

◂

After providing the definition of the concatenation function, we can provide the graph
join definition as follows:

▸ Definition 24 (θ-Join). Given two (multiset) tables R and S over a set of attributes A1 and A2,

the θ-join R ⋈θ S [ACPT99, ACPT09] is defined as follows:

R ⋈θ S = {ri ⊕ sj ∣ ri ∈ R, sj ∈ S, θ(ri, sj), (ri ⊕ sj)(A1) = ri, (ri ⊕ sj)(A2) = sj}

where (t⊕ t ′)(Ai) denotes the projection of the tuple t⊕ t ′ over Ai. If θ is the always true predicate,

θ can be omitted and, when also A1 ∩ A2 = ∅, we have a cartesian product. ◂

4. On Joining Property Graphs 97

▸ Example 18 (continuing from p. 96). Suppose now that the edge ei ⊕ f j comes from a graph join

where edges from Ga are joined to the ones in Gb in a resulting graph, where also vertices uh ⊕ u ′h
and vk ⊕ v ′k appear. So:

(ei ⊕ f j)(Time) = 12:04, (ei ⊕ f j)(Day) = Mon

By ⊕’s linearity, we have that the labels are merged:

ℓe(ei ⊕ f j) = ℓe(ei)⊕ ℓe(f j) = {Follow}⊕ {FriendOf} = {Follow, FriendOf}
And the result’s vertices are updated accordingly:

λ(ei ⊕ f j) = λ(ei)⊕ λ(f j) = (uh, vk)⊕ (u ′u, v ′k) = (uh ⊕ u ′h, vk ⊕ v ′k)
Since all the relevant informations are stored in the graph database, we represent the

graph as the set of the minimum information required for the join operation.

▸ Definition 25 (Graph). The i-th graph of a graph databaseD is a tuple Gi = (V(i),E(i), Ai
v, Ai

e),
where V(i) is a multiset of vertices and E(i) is a multiset of edges. Furthermore, Ai

v is a set of

attributes a ∈ Ai
v s.t. there is at least one vertex vj ∈ V(i) having vi(a) ≠ NULL; Ai

e is a set of

attributes a ′ ∈ Ai
e s.t. there is at least one edge ek ∈ E(i) having ek(a ′) ≠ NULL. ◂

4.3 Graph θ-Joins

At the time of writing, the only field where graph joins where effectively discussed is
Discrete Mathematics. In this field such operations are defined over either on finite graphs
or on finite graphs with cycles, and are named graph products [HIK11]. As the name
suggests, every graph product of two graphs, e.g. G1 = (V1, E1) and G2 = (V2, E2), produces
a graph whose vertex set is defined as V1 ×V2, while the edge set changes accordingly to
the different graph product definition. Consequently the Kroneker Graph Product [Wei62]
is defined as follows:

G1 ×G2 = (V1 ×V2,{ ((g, h), (g ′, h ′)) ∈ V1 ×V2 ∣ (g, g ′) ∈ E1, (h, h ′) ∈ E2 })

while the cartesian graph product [IP07] is defined as follows:

G1 ◻G2 = (V1 ×V2,{ ((g, h), (g ′, h ′)) ∈ V1 ×V2 ∣ (g = g ′, (h, h ′) ∈ E2)∨ (h = h ′, (g, g ′) ∈ E1) })

Please observe that this definition creates a new vertex which is a pair of vertices: hereby
such operation is defined differently from the relational algebra’s cartesian product, where
the two vertices are merged. As a consequence, such graph products admit commutativity
and associativity properties only up to graph isomorphism. Other graph products are
lexicographic product and strong product [HIK11, IK00]. Recently, a Kronecker Product for
edge uncertainty was also provided [ZY17], even though no information on how to combine
the data associated to either vertices or edges was provided.

Consequently, even our graph join is based on the combination of vertices and edges:
Ga ⋈es

θ Gb expresses the join of graph Ga with Gb where (i) we first use a relational θ-join
among the vertices, and then (ii) we combine the edges using an appropriate user-de-
termined edge semantics, es. This modularity is similar to the operators previously
described in graph theory literature, where instead of a join between vertices they have a
cross product, and different semantics are expressed as different graph products. We now
provide the graph join definition:

98 4.3 Graph θ-Joins

▸Definition 26 (Graph θ-Join). Given two graphs Ga = (V, E, Av, Ae) and Gb = (V ′, E ′, A ′
v, A ′

e),
a graph θ-join is defined as follows:

Ga ⋈es
θ Gb = (V ⋈θ V ′, Ees, Av ∪ A ′

v, Ae ∪ A ′
e)

where θ is a binary predicate over the vertices and ⋈θ the θ-join (Definition 24) among the vertices,

and Ees is a subset of all the possible edges linking the vertices in V ⋈θ V ′ expressed with the es

semantics. ◂

Given that graph join returns a property graph like the graphs in input, property graphs
are closed under the graph join operator via the definition of ⊕ for the multiset θ-join.
Moreover, this allows a first step towards the edge result combination as required by
some data integration scenarios. For example, The result of the join between two graphs,
ResearchGate (Figure 4.1a) and References (Figure 4.1b), produces the same set of vertices
regardless of the edge semantics of choice. On the other hand, edges among the resulting
vertices change according to the edge semantics. In the first one (Figure 4.1c) we combine
edges appearing in both graphs and linking vertices that appear combined in the resulting
graph. We have a Conjunctive Join, that in graph theory is known as Kronecker graph

product [Wei62, HIK11]. In this case Ees is defined with the “∧” es semantics as an edge
join E∧ = E ⋈Θ∧ E ′, where the Θ∧ predicate is the following one:

Θ∧(eh, e ′k) = (eh ∈ E ∧ e ′k ∈ E ′)∧ λ(eh ⊕ e ′k) ∈ (V ⋈θ V ′)2 (4.1)

We can also define a disjunctive semantics (Figure 4.1d), having “∨” as es. In this case
we want edges appearing either in the first or in the second operand. This means that two
vertices, uh ⊕ u ′h and vk ⊕ v ′k, could have a resulting edge ei ⊕ ε ′j even if only λ(ei) = (uh, vk)
appears in the first operand1 and ε ′ is a “fresh” empty edge λ(ε ′j) = (u ′h, v ′k) not appearing
in Gb such that λ(ea ⊕ ε ′b) = (uh ⊕ u ′h, vk ⊕ v ′k). Consequently the disjunctive join can be
represented as a full outer join, where the edges either match in the conjunctive semantics,
or appear in the two distinct graph operands:

E∨ = E ⋈Θ∧ E ′ ∪ {(ei ⊕ ε j)∣ε j, (∀e ′ ∈ E ′.¬Θ∧(ei, e ′)) , ℓe(ε j) = ∅, λ(ei)⊕ (v, v ′) ∈ (V ⋈θ V ′)2}
∪ {(εi ⊕ ej)∣εi, (∀e ∈ E.¬Θ∧(e, ej)) , ℓe(εi) = ∅, (u, u ′)⊕ λ(ej) ∈ (V ⋈θ V ′)2}

= E ⋈Θ∧ E ′

4.3.1 Graph Join properties

With this section we want to discuss some properties of graph joins that allow to analyse
their scalability with respect to the generalization of such joins to multiple graphs. We
could first check that the proposed graph θ-join is closed under composition: it takes two
(property) graphs and returns a property graph as an output by construction. We discuss
the commutativity and the associativity for graph joins in each semantics.

▸ Lemma 1 (Join Commutativity). Given two graphs G and G ′ from the same graph database

D and a symmetric binary predicate θ, then we have G ⋈∧θ G ′ ≡ G ′ ⋈∧
θ−1 G for the conjunctive

semantics and G ⋈∨θ G ′ ≡ G ′ ⋈∨
θ−1 G for the disjunctive one.

1The statement addressing the edges in the second operand that do not bond with the ones in the other
graph is expressed as follows: ∀e ′ ∈ E ′.¬Θ∧(ei, e ′)

4. On Joining Property Graphs 99

Proof. We first choose θ−1 as the inverse predicate of θ, such that θ−1(b, a)⇔ θ(a, b). For
the conjunctive semantics, we have that G ⋈∧θ G ′ is:

(V ⋈θ V ′, E ⋈Θ∧ E ′, Av ∪ A ′
v, Ae ∪ A ′

e ,Vv ∪V ′v ,Ve ∪V ′e)
Since we have that V ⋈θ V ′ = V ′ ⋈θ−1 V and E ⋈Θ∧ E ′ = E ′ ⋈Θ∧ E, then we have that the
graph join is equivalent to G ′ ⋈∧

θ−1 G.
This is proved because the relational join between vertices and edges is a commutative

operator [R9̈4], and predicate Θ∧ is symmetric when either E and E ′ or E ′ and E are joined.
A similar proof could be carried out for the disjunctive semantics, since it is in the form:

E ⋈Θ∧ E ′ ∪{(ei ⊕ ε j)∣ε j, (∀e ′ ∈ E ′.¬Θ∧(ei, e ′)) , ℓe(ε j) = ∅, λ(ei)⊕ (v, v ′) ∈ (V ⋈θ V ′)2}
∪{(εi ⊕ ej)∣εi, (∀e ∈ E.¬Θ∧(e, ej)) , ℓe(εi) = ∅, (u, u ′)⊕ λ(ej) ∈ (V ⋈θ V ′)2}

= E ′ ⋈Θ∧ E ∪{(ej ⊕ εi)∣εi, (∀e ∈ E.¬Θ∧(e, ej)) , ℓe(εi) = ∅, (u ′, u)⊕ λ(ej) ∈ (V ′ ⋈θ V)2}
{(ε j ⊕ ei)∣ε j, (∀e ′ ∈ E ′.¬Θ∧(ei, e ′)) , ℓe(ε j) = ∅, λ(ei)⊕ (v ′, v) ∈ (V ′ ⋈θ V)2}

This equation is true because the relational join is symmetric as the set union and the ⊕
operator with the null tuple εi. ◂

The following corollary strengthens the previous result: it shows that join commutativity
implies having two resulting graphs where both vertices and edges have the same labels,
and the same edges link the same vertices.

▸ Corollary 1 (Commutativity for λ, ℓv and ℓe). For each vertex vi ⊕ v ′j from the vertex set

V ⋈θ V ′ from G ⋈∧θ G ′ and the corresponding equivalent vertex v ′j ⊕ vi in V ′ ⋈θ V from G ′ ⋈∧θ G

(vi ⊕ v ′j = v ′j ⊕ vi), we have that both vertices have the same label set.

For the conjunctive semantics, for each edge eh ⊕ e ′k from the edge set E ⋈Θ∧ E ′ from G ⋈∧θ G ′
and the corresponding equivalent edge e ′k ⊕ eh in E ′ ⋈Θ∧ E from G ′ ⋈∧θ G (eh ⊕ e ′k = e ′k ⊕ eh), we

have that both edges have the same label set and link the same equivalent vertices. This statement

also applies for the disjunctive semantics.

Proof. This corollary is proved by the linearity of ⊕. Regarding the vertex labelling, we
have that the labelling provided by the result of the two commutated joins is the same by
the commutativity of the set union operator:

ℓv(ui ⊕ u ′j) = ℓv(ui)⊕ ℓv(u ′j) = ℓv(ui)∪ ℓv(u ′j) =
= ℓv(u ′j)∪ ℓv(ui) = ℓv(u ′j)⊕ ℓv(ui) =
= ℓv(u ′j ⊕ ui)

Regarding the conjunctive semantics, the proof of ℓe(eh ⊕ e ′k) = ℓe(e ′k ⊕ eh) is similar,
by using the set union’s commutativity. We prove that equivalent edges link equivalent
vertices:

λE∧(eh ⊕ e ′k) = λE(eh)⊕ λE ′(e ′k) = (ui, vj)⊕ (u ′l , v ′m) =
= (ui ⊕ u ′l , vj ⊕ v ′m) = (u ′l ⊕ ui, v ′m ⊕ vj)

λE∧(e ′k ⊕ eh) = λE ′(e ′k)⊕ λE ′(e ′k) = (u ′l ⊕ ui, v ′m ⊕ vj)
The proofs for the disjunctive semantics are the same. ◂

100 4.4 Graph Conjunctive Equi-Joins

Since the relational algebra θ-join operator satisfies associativity [R9̈4], we could carry
out a similar proof for join associativity:

▸ Lemma 2 (Join Associativity). Given three graphs G, G ′ and G ′′ from the same graph database

D and a symmetric binary predicate θ, then we have G ⋈∧θ1∧θα
(G ′ ⋈∧θ2

G ′′) = (G ⋈∧θ1
G ′) ⋈∧θα∧θ2

G ′′
for the conjunctive semantics and G ⋈∨θ1∧θα

(G ′ ⋈∨θ2
G ′′) = (G ⋈∨θ1

G ′) ⋈∨θα∧θ2
G ′′ for the disjunctive

one.

Proof. Since we have that the usual θ-relational joins are associative as outlined by the
following equivalence:

(A ⋈θ1
B) ⋈θα∧θ2 C = A ⋈θ1∧θα

(B ⋈θ2 C)

then, we have that the relational θ-joins among the edges are associative too, as well as the
theta joins among the edges. Hereby, the join between the graphs is associative. ◂

Similarly to the graph join’s commutativity, we can strengthen the result for the join
associativity with the following corollary:

▸ Corollary 2 (Associativity for λ, ℓv and ℓe). For each vertex vi ⊕ (v ′j ⊕ v ′′k) from the vertex

set V ⋈∧θ1∧θα
(V ′ ⋈∧θ2

V ′′) from G ⋈∧θ1∧θα
(G ′ ⋈∧θ2

G ′′) and the corresponding equivalent vertex

(vi ⊕ v ′j)⊕ v ′′k in V ′ ⋈θ V from (G ⋈∧θ1
G ′)⋈∧θα∧θ2

G ′′ (vi ⊕ (v ′j ⊕ v ′′k) = (vi ⊕ v ′j)⊕ v ′′k), we have

that both vertices have the same label set.

For the conjunctive semantics, for each edge eh ⊕ (e ′k ⊕ e ′′t) from the edge set E⋈Θ∧ (E ′ ⋈Θ∧ E ′′)
from G ⋈∧θ1∧θα

(G ′ ⋈∧θ2
G ′′) and the corresponding equivalent edge (eh ⊕ e ′k)⊕ e ′′t from (G ⋈∧θ1

G ′)⋈∧θα∧θ2
G ′′, we have that both edges have the same label set and link the same equivalent vertices.

This statement also applies for the disjunctive semantics.

Proof. This corollary is proved by the linearity of ⊕. Regarding the vertex labelling, we
have that the labelling provided by the result of the two commutated joins is the same by
the associativity of the set union operator:

ℓv(ui ⊕ (u ′j ⊕ u ′′k)) = ℓv(ui)⊕ ℓv(u ′j ⊕ u ′′k) = ℓv(ui)∪ ℓv(u ′j)∪ ℓv(u ′′k) =
= ℓv(ui ⊕ u ′j)⊕ ℓv(u ′′k) = ℓv((ui ⊕ u ′j)⊕ u ′′k)

Regarding the conjunctive semantics, the proof of eh ⊕ (e ′k ⊕ e ′′t) = (eh ⊕ e ′k)⊕ e ′′t is similar,
by using the set union’s associativity. We prove that equivalent edges link equivalent
vertices:

λE∧((eh ⊕ e ′k)⊕ e ′′t) = λE(eh ⊕ e ′k)⊕ λE ′(e ′′t) = (ui ⊕ u ′l , vj ⊕ v ′m)⊕ (u ′′n , u ′′p) =
= (ui ⊕ u ′l ⊕ u ′′n , vj ⊕ v ′m ⊕ u ′′p) = λE∧(eh ⊕ (e ′k ⊕ e ′′t))

The proofs for the disjunctive semantics are the same. ◂

These properties for the graph joins prepare to a scalable implementation of multi-way
graph joins: we could start to perform such joins from the smallest graph up to the greatest
graph, such that the number of bucket comparisons is reduced.

4.4 Graph Conjunctive Equi-Joins

In the present section we’re going to first describe the graph equi-join for θ conjunctive
equijoins, and then introduce the secondary memory graph representation used by the

4. On Joining Property Graphs 101

presented algorithm (Section 4.4.1). In Section 4.4.2 we’re going to compare our proposed
algorithm (GCEA) to both graph database libraries (Section 4.4.2.1 on page 105), on top of
which the same algorithm is implemented and evaluated, and graph query languages on
top of specific graph databases (Section 4.4.2.2 on page 107), thus comparing the efficiency
of our algorithm to their query plan evaluation.

4.4.1 Algorithm and Data Structure

We now outline our algorithm, GCEA, for θ equijoin predicates, involving an equivalence
between attributes or a conjunction of such equivalences. We also suppose that both graph
operands are always stored within the same graph database, and that the query itself will
be provided to be read inside the same database environment. The query result is read only

Algorithm II.1 Graph Conjunctive EquiJoin Algorithm (GCEA)

1: procedure ConjunctiveJoin(G, G ′, θ)
2: hashFunction = generateHash(θ);
3: omap1 = OperandPartitioning(G,hashFunction)
4: omap2 = OperandPartitioning(G ′,hashFunction)
5: G1 = SerializeOperand(G,omap1)
6: G2 = SerializeOperand(G ′,omap2)

return PartitionHashJoin(G1, G2, θ)

7:
8: procedure SerializeOperand(G,omap):
9: File VertexIndex = Open();

10: VertexVals= Open(), HashOffset= Open();
11: ulong offset = HashOffset = 0;
12: for each h ∈Keys(omap) do ▷ Ordered maps have ordered keys.
13: HashOffset.Write({h,HashOffset});
14: for each id ∈omap[h] do

15: v = G.V[id];
16: v.hash = h; v.offset = VertexVals;
17: VertexIndex.Write({v.id, h, offset});
18: ulong offsetNext = VA.Write(serialize(v));
19: offset+=offsetNext; HashOffset+=offsetNext;

return (VertexIndex,VertexVals,HashOffset,G.Av,G.Ae)

20:
21: procedure PartitionHashJoin(G1, G2, θ):
22: θ ′(u, u ′) := θ(u, v) ∧ (u⊕ u ′)(Av) = u ∧ (u⊕ u ′)(A ′

v) = u ′;
23: Θ

′(e, e ′) := (e⊕ e ′)(Ae) = e ∧ (e⊕ e ′)(A ′
e) = e ′

24: HI = IntersectHashes(HashOffset1,HashOffset2).iterator();
25: File AdjFile = Open();
26: while HI.hasNext() do

27: h = HI.next();
28: for each u ∈ VertexVals1[h.offset1], u ′ ∈ VertexVals2[h.offset2] do

29: if θ ′(u, u ′) then

30: AdjFile.Write(V={u⊕ u ′},)
31: HIout = IntersectHashes(outV(u),outV ′(u ′)).iterator();
32: while HIout.hasNext() do

33: hout = HIout.next(); ▷ Offsets refer to the blocks for u and u ′ outgoing edges

34: for each edge e ∈ outV(u)[hout.offset1], e ′ ∈ outV ′(u ′)[hout.offset2] do

35: if θ ′(e.outv, e ′.outv) and Θ
′(e, e ′) then

36: AdjFile.Write(E={e⊕ e ′})

102 4.4 Graph Conjunctive Equi-Joins

as in other graph query languages (SPARQL, SQL for databases) and does not correspond
to a “materialized view”. Therefore, the result of the graph query itself can postpone the
creation of a complete property graph output (that is, the complete attribute-value and
label information for our graphs).

The starting point of each data integration procedure is the identification of similar
pieces of data occurring into the to-be-merged operands. In our case, the graph integration
task starts from the identification of the to-be-joined vertices and, after that, we have to
decide how to combine the outgoing edges. The most intuitive way to match similar data
content is to use equivalence predicates.

This specific predicate choice was driven by the fact that the most performant and
implemented relational database join is the equi-join [SCD16], and that the result of
relational databases’ queries already produces join indices [Dit16] where only the left and
right operand indices are kept in the final result, so that the relational tables’ pieces of
informations are kept in primary memory purely as indices. Please also note that not all
the graph join’s equijoin predicates may be optimized2 and consequently, in some cases
we must undoubtedly pay the computational price of the cartesian product. Moreover,
we provide an implementation for conjunctive semantics, since this task is more prone to
be optimized than the disjunctive one. Algorithm II.1 for GCEA consists in three parts:
(i) vertex partitioning (bucketing) through an hashing function (OperandPartitioning)
(ii) graph serialization on secondary memory (SerializeOperand), and (iii) actual join
algorithm over the graphs’ buckets (PartitionHashJoin). Relational partition hash-join
undergo the same phases, even if relational algorithms do not deal with outgoing edges
(lines 31-35). We allow vertices with replicated values as in current graph databases
implementations (such as Titan and Neo4J). Consequently, ids enumerate the vertices
within a single graph.

As a first step, the hashing function h is inferred from θ (line 2): if θ(u, v) is a binary
predicate between distinct attributes from u and v, then h is defined as a linear combination
of hash functions over the attributes of either u or v. When no h could be inferred from θ,
then h is a constant function.

OperandPartitioning performs a vertex bucketing in main memory: its outcome is
an ordered map, where each vertex v is stored in a collection omap[h(v)], where h is the
aforementioned hashing function. For each operand Gi, the omapi construction takes at
most ∑∣V(i)∣

j=0 log(j) time, where ∣V(i)∣ is the multiset vertex size. Such time complexity is

bounded by ∣V(i)∣ ≤ ∑∣V(i)∣
j=0 log(j) < ∣V(i)∣2 where ∣V(i)∣≫ 1.

SerializeOperand stores the operand in secondary memory: both buckets (line 12)
and vertices (line 14) are already sorted by hash value, and hence such data structures are
accessed linearly. Figure 4.6c depicts a serialized representation of the graph in Figure
4.6a: all the labels and the edge values are not serialized but are still accessible through
the original graph G via id. Moreover, such representation provides a adjacency list
representation of graphs, that has been already proved to be graph traversal efficient,
even in distributed computation contexts [LBO+15]. Buckets are represented by HashOffset

2Consider two relations R(A1, A2) and S(A3, A4) within the relational model; we want to θ-join them
using the following predicate:

θ(r, s) = r[A1] − s[A4] = r[A2] ⋅ s[A3]

Since this predicate requires performing arithmetical operations between attributes appearing in distinct
relations (r[A1]− s[A4]) which evaluation requires the computation of all the R × S tuples, such predicate
cannot benefit from a preliminary hashing and bucketing step.

4. On Joining Property Graphs 103

G1 v0

v2 v1

eo

e1

User MsgTime1

v0 Alice 1

v1 Bob 3

v2 Carl 2

(a) G1: an example property graph that is going
to be serialized using our proposed indexing struc-
ture.

node size outgoing offset id M length(val[1]) . . . length(val[M-1]) val[1] . . . val[M] length(out) outvertex[1] hash[1] edgeid[1] . . .

Id Hash offset value offset

VertexVals

VertexIndex HashOffset

values out

(b) Data structures used to implement the graph in secondary memory. Each data structure represents
a different file.

16

v0

15 0 2 5 1 ‘Alice’ ‘1’

values

0

out = {}

18

v2

14 2 2 4 1 ‘Carl’ ‘2’

values

1 1 h2 0

out = {e0}

17

v1

13 1 2 3 1 ‘Bob’ ‘3’

values

1 0 h1 1

out = {e1}

h1

h1

h2

h2

0

v0

h1 1

v1

h2 2

v2

h1

VertexVals

VertexIndex HashOffset

(c) Using the graph schema in Figure 4.6b for representing G1 in secondary memory. v0 and v2
belong to a different bucket from v1 only for illustrative purposes.

1⊕1

V

1⊕1

E

1⊕2

V

2⊕2

E

3⊕4

V

2⊕3

V

4⊕5

V

(d) Representing the serialization of the join ResearchGate⋈∧Name=1AuthorReference depicted in Fig-
ure 4.1c on page 90.

Figure 4.6 Graph representation in secondary memory.

providing both the bucket value and the pointer to the first vertex of the bucket stored in
VertexVals. VertexVals stores vertices alongside with their adjacency list, where vertices are
sorted by hash value and are represented by id and hash value. VertexIndex allows to find
the vertices stored in VertexVals in constant time: each record is ordered by vertex id, has
a constant size and contains the pointer to where the vertex data is stored in VertexVals.
Even the outgoing edges are stored by the destination vertex’s hash value. Given ki the
size of Keys(omapi), this phase takes 3ki + ∣Gi∣ time, where 2ki is the omap visit cost, ki is
the omap serialization as HashOffset and ∣Gi∣ is the time to serialize the graph as VAi.

104 4.4 Graph Conjunctive Equi-Joins

The last step performs the actual conjunctive join over the serialized graph (PartitionHash-
Join): the data structure is accessed from secondary memory through memory mapping.
Line 24 prepares the intersection: while performing a linear scan over the buckets, the HI

iterator checks if both operands have a bucket with the same hash value (line 26), then
the common hash value is extracted (line 27) and the two buckets accessed (line 28), then
the composition u⊕ u ′ between the vertices is performed (line 30). Next, differently from
the relational join, the adjacent vertices for both operands are visited. Similarly to line 24,
the hash-sorted edges induce a bucketing (line 31), and then we check if the destination
vertices meet the join conditions alongside with the to-be-joined edges (line 35). Please note
that, as stated out in Definition 26, edges are not filtered by θ predicate. Furthermore, the
resulting graph is stored in a bulk graph (Figure 4.6d on the preceding page) where only
the vertices id from the two graph operators appear as pairs. This last operation takes time
k1 + k2 +∑h∈HI (bh

1 ⋅ bh
2 + outh

1 ⋅ outh
2) where bh

i is the size of the h bucket for the i-th operand,
while outh

i is the outgoing vertices’ size for all the vertices within the h bucket for the i-th
operand.

Such algorithm could be also extended to the disjunctive semantics as outlined in
Algorithm II.2, where isDisjunctive activates the part concerning the evaluation of the
disjunctive semantics. All the edges discarded from the intersection in line 26 for u⊕ u ′

Algorithm II.2 Graph Disjunctive EquiJoin Algorithm: Join Phase
1: procedure DisjunctiveEdges(G1, G2, ⟨HI, h̄, ∆E1, ∆E2, f⟩):
2: o f f sets ∶=find(h̄, HI)
3: if h̄.offset1 ≠NULL and o f f sets.offset2 ≠NULL then

4: ⊳ Checking all the left graph edges that have a target vertex which will be returned. . .
5: for each e ∈ ∆E1, v ′ ∈ VertexVals2[o f f sets.offset2] do

6: if θ ′(e.outv, v ′) then

7: f.Write(E={(u⊕ u ′) e
→ (e.outv⊕ v ′)})

8: else if h̄.offset2 ≠NULL and o f f sets.offset1 ≠NULL then

9: ⊳ . . . and the dual case for the right graph operand
10: for each v ∈ VertexVals1[o f f sets.offset1], e ′ ∈ ∆E2 do

11: if θ ′(v, e ′.outv) then

12: f.Write(E={(u⊕ u ′) e ′
→ (v, e ′.outv)})

13:
14: procedure DisjunctivePartitionHashJoin(G1, G2, θ, isDisjunctive = true):
15: θ ′(u, u ′) := θ(u, v)∧ (u⊕ u ′)(Av) = u ∧ (u⊕ u ′)(A ′

v) = u ′;
16: Θ

′(e, e ′) := (e⊕ e ′)(Ae) = e ∧ (e⊕ e ′)(A ′
e) = e ′

17: HI = IntersectHashes(HashOffset1,HashOffset2).iterator();
18: File AdjFile = Open(), DisjFile = Open();
19: while HI.hasNext() do

20: h = HI.next();
21: for each u ∈ VertexVals1[h.offset1], u ′ ∈ VertexVals2[h.offset2] do

22: if θ ′(u, u ′) then

23: AdjFile.Write(V={u⊕ u ′},)
24: for h1,2 ∈UnionHashes(outV(u),outV ′(u

′)).iterable() do

25: if h1,2.offset1 ≠NULL and h1,2.offset2 ≠NULL then

26: ⊳ Conjunctive case: we have a match between the outgoing elements
27: BitMap LE := new BitMap(outV(u)[h1,2.offset1]);
28: BitMap RE := new BitMap(outV ′(u

′)[h1,2.offset2]);
29: for each edge e ∈ outV(u)[h1,2.offset1], e ′ ∈ outV ′(u

′)[h1,2.offset2] do

30: if θ ′(e.outv, e ′.outv) and Θ
′(e, e ′) then

31: AdjFile.Write(E={e⊕ e ′}); LE.remove(e); RE.remove(e ′);
32: ⊳ Checking which of the unmatched edges satsfy the disjunctive semantics
33: if isDisjunctive then DisjunctiveEdges(G1, G2, ⟨HI, h1,2, LE, RE, DistFile⟩);

34: else if isDisjunctive then

35: DisjunctiveEdges(G1, G2, ⟨HI, h1,2, outV(u)[h1,2.offset1], outV ′(u
′)[h1,2.offset2], DistFile⟩);

4. On Joining Property Graphs 105

(cf. line 31 in Algorithm II.1) should be considered (line 35), either if they come from the
left operand (line 4) or from the right one (line 9). Among all such edges, we can consider
first the ones coming from the first graph operand: since the final edges must only connect
vertices belonging to the final vertex set, we consider only those e that have a destination
vertex “e.outv” which hash value appears in HI (line 2). Moreover it has to satisfy the
binary predicate θ (line 6) jointly with another vertex v ′, coming from the opposite operand
(line 4). Hence we establish (e.g.) an edge (u⊕ u ′, e.outv⊕ ν ′) having the same values and
attributes of e ′ and the same set of labels (line 7), and stored into a different file. Similar
considerations should be done by the edges discarded from the conjunctive phase (line 33).

4.4.2 Experimental Evaluation

Through the following experiments we want to prove that (i) both hash buckets and
memory mapping for the graph join operands provide better results for GCEA, (ii) which
outperforms the query plans for other query languages (both graph and relational). For
the first case we have to use graph libraries or graph databases where transactions and
logging can be disabled, while for the second we choose state of the art graph databases
implementing specific query languages.

In order to do so we choose the simplest graph representation that provides better
performances for all the addressed languages: we choose a graph where only vertices
contain values and where labels are stored in both vertices and edges. We created our
data using the LiveJournal Graph [LLDM09] containing 4,847,571 unlabelled vertices
and 68,993,773 unlabelled edges. Each vertex represents a user which is connected to
each of its friends by an edge. Since no data values are given within the datasets, we
enriched the graph using the guidelines of the LDBC Social Network Benchmark protocol
[EALP+15], and hence associated to each user an IP address, an Organization and the year
of employment3. For each experiment, the input data were obtained by starting a random
walk from the same vertex but using a different seed for the graph traversal. New data sets
were obtained incrementally by visiting each time a number of vertices that is a power of
10, from 10 to 106.

We performed our tests over a MacOsX with a 2.2 GHz Intel Core i7 processor and
16 GB of RAM at 1600 MHz, and an SSD Secondary Storage with an HFS file system.
We evaluate the graph join using as operands two distinct sampled subgraphs with the

same vertex size (∣V∣), where the θ predicate is the following one: θ(u, v) de f
= u.Year1 =

v.Year2 ∧ u.Organization1 = v.Organization2. Such predicate does not perform a perfect
1-to-1 match with the graph vertices, thus allowing to test the algorithm with different
multiplicities values. We tested the algorithm with the conjunctive semantics, having a
subset of the operations of the disjunctive one.

4.4.2.1 Evaluating Data Structures

We benchmark our solution with graph data models where database transactions either
do not exist or can be disabled. We first consider two graph libraries accessing graphs
in main memory; we tested the Boost Graph Library 1.60.0 with the most efficient con-
figuration for graph traversals tasks, vec [SLL02], and Snap 3.0 [LS16] considering the

3The resulting enriched graph is available at http://rebrand.ly/c2e0e. The repository at http://

rebrand.ly/unibo1516a provides our full source code including 1) our graph model implementation in
both Java and C++, plus the queries in SPARQL and Cypher.

http://rebrand.ly/c2e0e
http://rebrand.ly/unibo1516a
http://rebrand.ly/unibo1516a

106 4.4 Graph Conjunctive Equi-Joins

Operands Size GCEA running time, result creation excluded GCEA result creation time

Left (∣V∣) Right (∣V∣) Proposed Boost SNAP Sparksee Proposed Boost SNAP Sparksee

10 10 0.19 ms 0.09× 0.23× 9.42× 0.0010 ms 17.00× 36.40× 738.33×
100 100 0.18 ms 0.85× 1.72× 24.96× 0.0023 ms 5.39× 17.04× 290.14×

1 000 1 000 0.31 ms 5.68× 14.93× 88.42× 0.0036 ms 7.72× 14.67× 215.65×
10 000 10 000 1.90 ms 11.13× 26.83× 156.42× 0.3706 ms 4.60× 7.61× 15.67×

100 000 100 000 32.31 ms 8.73× 19.33× 81.05× 39.3428 ms 4.20× 5.80× 11.70×
1 000 000 1 000 000 332.60 ms 15.42× 33.15× 171.54× 3,207.8738 ms 5.76× 12.29× 15.50×
(a) This table shows a comparison between different data structures while performing the GCEA algorithm, and when
the operands are already loaded: Boost and SNAP load the operands in primary memory, Sparksee load only some
indices, while our data structure leaves everythin in secondary memory. The first part of the table shows that the indexing
structure becomes relevant for big data, when our data structure starts to outperform the most efficient data structure,
Boost. The second part shows that our data structure allows a fast serialization of the resulting adjacency graph.

Left (∣V∣) Right (∣V∣) Proposed Boost SNAP Sparksee

10 10 0.23 ms 0.68× 0.98× 7.73×
100 100 0.50 ms 1.60× 5.22× 11.76×

1 000 1 000 3.38 ms 1.68× 6.94× 13.47×
10 000 10 000 34.26 ms 1.52× 7.25× 13.84×

100 000 100 000 355.96 ms 1.47× 6.27× 14.73×
1 000 000 1 000 000 3,518.47 ms 1.89× 6.10× 17.79×

(b) Graph operand creation+storing time. This table represents the cost of SerializeOperand where
each operand is stored in the data representation of choice. Given that the other data representation
do not allow to index the graphs, the indexing step is performed only over our proposed data
structure.

Table 4.1 Benchmarking results for the LiveJournal database over C++ graph libraries and low
level databases.

Operands Size Result Join Time (C/C++) (ms) Join Time (Java) (ms)
Left (∣V∣) Right (∣V∣) Size (∣V∣) Size (∣E∣) Virtuoso PostgreSQL GCEA (C++) Neo4J GCEA (Java)

10 10 5 2 4.99 11.29 0.53 211.45 24.97

102 102 16 4 4.94 22.82 0.93 222.87 32.70

103 103 251 55 4.55 22.92 4.35 448.97 117.58

104 104 2,734 680 117,712.00 183.90 40.42 3,149.90 1,150.37

105 105 26,803 7,368 >4H 7,150.74 411.78 241,026.79 17,178.49

106 106 151,212 99,558 >4H 99,683.91 3,966.72 >4H 178,066.80

Table 4.2 Graph Join Running Time. Each data management system is grouped by its graph
query language implementation. This table clearly shows that the definition of our query plan clearly
outperforms the default query plan implemented over those different graph query languages and
databases.

attributes only over the vertices (TNodeNet<TAttr>). Then we consider the Sparksee∗ graph
database [DSUBGVn+10]: transactions were disabled in the configuration file, as well as
logging, rollback and recovery facilities. Concerning the graph database management
implementation, no assumptions can be made as it is closed source.

We implemented our graph join algorithm for all the aforementioned libraries. We used
the standard graph library methods to store the graph in secondary memory (serialization
or graph database storage) and extended the PartitionHashJoin by doing a preliminary
vertex bucketing phase: buckets are not supported and vertices cannot be sorted by hash

4. On Joining Property Graphs 107

value.

Join Evaluation Time

In this case we evaluate two aspects: (i) the join algorithm running time and (ii) the time
required to create the solution and store it in secondary memory.

Table 4.1a provides the cost of performing the sole join algorithm excluding the result
storing time. All the competitors’ graphs were joined through GCEA and vertices with
the same hash were put in the same bucket in main memory. It must be emphasised that
both Boost and SNAP operands were loaded in primary memory, while our operands were
accessed in secondary memory through memory mapping. The table shows how all the
other data structures had a worse performance due to the initial cost of the bucket creation
and sorting. We must also remark that this result justifies the need of our data structure
for the proposed algorithm. The same table provides the time required to store the results
as an adjacent list in secondary memory using the default graph library representation
(non-labelled vertices and edges, default serialization). In this case our solution always
outperforms the other graph libraries and databases.

Operand creation time

We consider the graph creation time in main memory and the cost of storing it in secondary
memory per operand (Table 4.1b). For both Boost and SNAP the default serialization
methods are performed, while for Sparksee∗ we simply closed the database. In this case
our solution outperforms all the competitors.

4.4.2.2 Join Execution Time

This last experiment compares the interpretation of query plans for both relational and
graph databases with GCEA.

It is necessary to compare the performances of our algorithm with query languages
running on top of property graph databases because our physical model generalizes
property graphs. Among the Property Graph databases we do not consider SQLGraph
[SFS+15] because there is no existing implementation and, most importantly, the Gremlin
query language allows only to perform graph traversal queries returning bag of values.

We used default configurations for both Neo4J and PostgreSQL, while we changed the
cache buffers configurations for Virtuoso (as suggested in the configuration file) for 16GB
of RAM. We kept the default multithreaded query execution plan.

We choose to perform our tests over Neo4J using Cypher as a query language, because
Neo4J allows to extend the built-in query plans with ad hoc solutions [HG16], eventually
allowing an implementation of our algorithm in a future. Cypher queries were sent using
the Java API but the graph join operation was performed only in Cypher through the
execute method of an GraphDatabaseService object. Neo4J graphs were fine tuned by
indexing the attributes Organization and Year involved in the query and, since Cypher
language does not allow to access to different graphs, both graph join operands were stored
within the same graph.

PostgreSQL queries were evaluated directly through the psql client and benchmarked
using both explain analyse and \timing commands.

Virtuoso was benchmarked through iODBC connection evoked in C using Redland
RDF library: no HTTP connections were used and only the librdf_model_query_execute

108 4.5 Graph Less-Equal Join

function was involved in the graph join operation. Virtuoso prefer to index triplets per
patterns and do not allow triplet indexing by values. This allows us to query each property
graph with SPARQL query language, specifically targeted for triplestores, through their
RDF representation. Indexing structures were not tuned, as a default set of indices are
defined during the graph creation, and data is automatically indexed. we also took into
account that both input and output met the requirements of Definition 15 on page 74.

All the aforementioned conditions do not degrade the query evaluations.
Table 4.2 represents the result of such benchmarks. The competitors’ join time is made

up only by the query evaluation time, while our proposed implementation considered the
whole GCEA algorithm, and hence both the partitioning phase, the operands’ serialization
and the actual join execution were considered. As a result our solutions always outperform
the competitors’ query plans within their own language implementation.

Such performances quickly degrade due to both the sparsity of the data representa-
tion requiring to perform more path joins than the ones required for the property graph
model. Cypher uses a pipe query evaluation model allowing to refine queries in further
steps. Regarding the implementation of the graph conjunctive join operator in Cypher,
ValueHashJoins are performed between vertices coming from different graph operands, and
hash values are either evaluated at run time, or depend on attributes’ values indexings.
This choice supports the experimental evidence of Cypher having a better scalability than
SPARQL, where RDF graphs cannot be indexed by values (see the next paragraph). Once
the Cypher query is transformed into a pipe-based query plan, most of the pipes’ sources
appear to be NodeByLabelScan and AllNodeScan: this means that all the graph’s vertices
(with a given label) are considered in the first steps of computation. As a result the query
plan scans more data than it should to provide the final result. In our algorithm this
drawback does not occur because we directly access the data per buckets on both graph
operands, avoiding to consider any vertices’ combinations that will not appear in the final
result.

4.5 Graph Less-Equal Join

In this section we’re going to extend the previous algorithm to support less equal predicates,
e.g. Ai ≤ Aj. Hereby, in this scenario the generateHash function must associate Ai values
for the left operand and the Aj values for the second operand. Given that our proposed
GCEA algorithm is based on an extension of the sort merge join relational algorithm, we
can simply extend it to support less-equal joins. Hereby, the only part of Algorithm II.1
that has to be rewritten is the PartitionHashJoin procedure. The parts in which such
algorithm differs from Algorithm II.3 are remarked with blue text or background colour: in
particular, instead of selecting the hash values that are in common between the two vertices’
sets, we extract hashes h1 for the first graph and h2 for the second such that h1 ≤ h2. For
our experimental evaluation, we choose Ai and Aj to be the years of employment (Year1
and Year2).

Figures 4.7 and 4.8 respectively represent the less-equal join for Cypher and SPARQL,
that is going to be benchmarked against our algorithm. If we compare such queries to
the ones firstly presented for the equi-join query (respectively Figure 4.3 on page 93 and
4.4) we can see that the only difference was the replacement of the equivalence predicate
with the less equal one. The results of such queries evaluations are provided in Table 4.3:
we used the same experimental environment and dataset described in Section 4.4.2 on
page 105 for the previous algorithm. The relational database is always more performant

4. On Joining Property Graphs 109

MATCH (src1) -[:r]->(dst1),

(src2) -[:r]->(dst2)

WHERE src1.Year1<=src2.Year2 AND dst1.Year1<=dst2.Year2 AND src1.graph=’L’

↪ AND src2.graph=’R’ AND dst1.graph=’L’ AND dst2.graph=’R’

CREATE p=(:U {Organization1:src1.Organization1 , Organization2:src2.

↪ Organization2 , Year1:src1.Year1 , Year2:src2.Year2 , MyGraphLabel

↪ :"U-"}) -[:r]->(:U {Organization1:dst1.Organization1 , Organization2

↪ :dst2.Organization2 , Year1:dst1.Year1 , Year2:dst2.Year2 ,

↪ MyGraphLabel :"U-"}) return p

UNION ALL

MATCH (src1) -[:r]->(u), (src2) -[:r]->(v)

WHERE src1.Year1<=src2.Year2 AND src1.graph=’L’ AND src2.graph=’R’ AND

↪ ((u.Year1 >v.Year2))

CREATE p=(:U {Organization1:src1.Organization1 , Organization2:src2.

↪ Organization2 , Year1:src1.Year1 , Year2:src2.Year2 , MyGraphLabel

↪ :"U-"}) return p

UNION ALL

MATCH (src1) -[:r]->(u), (src2)

WHERE src1.Year1<=src2.Year2 AND src1.graph=’L’ AND src2.graph=’R’ AND (

↪ NOT ((src2) -[:r]->()))

CREATE p=(:U {Organization1:src1.Organization1 , Organization2:src2.

↪ Organization2 , Year1:src1.Year1 , Year2:src2.Year2 , MyGraphLabel

↪ :"U-"}) return p

UNION ALL

MATCH (src1), (src2) -[:r]->(v)

WHERE src1.Year1<=src2.Year2 AND dst1.Year1<=dst2.Year2 AND src1.graph=’L’

↪ AND src2.graph=’R’ AND (NOT ((src1) -[:r]->()))

CREATE p=(:U {Organization1:src1.Organization1 , Organization2:src2.

↪ Organization2 , Year1:src1.Year1 , Year2:src2.Year2 , MyGraphLabel

↪ :"U-"}) return p

UNION ALL

MATCH (src1), (src2)

WHERE src1.Year1<=src2.Year2 AND src1.graph=’L’ AND src2.graph=’R’ AND (

↪ NOT ((src2) -[:r]->())) AND (NOT ((src1) -[:r]->()))

CREATE p=(:U {Organization1:src1.Organization1 , Organization2:src2.

↪ Organization2 , Year1:src1.Year1 , Year2:src2.Year2 , MyGraphLabel

↪ :"U-"}) return p

Figure 4.7 Cypher implementation for the graph less-equal join operator. Please note that the
equivalence predicate has changed to <= , while the pattern matching parts are fixed.

110 4.5 Graph Less-Equal Join

CONSTRUCT {

?newSrc <http :// jackbergus.alwaysdata.net/graph > "Result";

<http :// jackbergus.alwaysdata.net/edges/result > ?newDst;

<http :// jackbergus.alwaysdata.net/property/Ip1 > ?ip1;

<http :// jackbergus.alwaysdata.net/property/Organization1 > ?org1;

<http :// jackbergus.alwaysdata.net/property/Year1 > ?y1;

<http :// jackbergus.alwaysdata.net/property/Ip2 > ?ip2;

<http :// jackbergus.alwaysdata.net/property/Organization2 > ?org2;

<http :// jackbergus.alwaysdata.net/property/Year2 > ?y2.

?newDst <http :// jackbergus.alwaysdata.net/graph > "Result";

<http :// jackbergus.alwaysdata.net/property/Ip1 > ?ip3;

<http :// jackbergus.alwaysdata.net/property/Organization1 > ?org3;

<http :// jackbergus.alwaysdata.net/property/Year1 > ?y3;

<http :// jackbergus.alwaysdata.net/property/Ip2 > ?ip4;

<http :// jackbergus.alwaysdata.net/property/Organization2 > ?org4;

<http :// jackbergus.alwaysdata.net/property/Year2 > ?y4.

}

FROM NAMED <leftpath/to/graph >

FROM NAMED <rightpath/to/graph >

WHERE

{

GRAPH ?g {

?src1 <http :// jackbergus.alwaysdata.net/property/Id> ?id1;

<http :// jackbergus.alwaysdata.net/property/Ip1 > ?ip1;

<http :// jackbergus.alwaysdata.net/property/Organization1 > ?org1;

<http :// jackbergus.alwaysdata.net/property/Year1 > ?y1.

}.

GRAPH ?h {

?src2 <http :// jackbergus.alwaysdata.net/property/Id> ?id2;

<http :// jackbergus.alwaysdata.net/property/Ip2 > ?ip2;

<http :// jackbergus.alwaysdata.net/property/Organization2 > ?org2;

<http :// jackbergus.alwaysdata.net/property/Year2 > ?y2.

}

filter (?g=<leftpath/to/graph > &&

?h=<rightpath/to/graph > &&

xsd:integer (?y1) <= xsd:integer (?y2))

BIND (URI(CONCAT("http :// jackbergus.alwaysdata.net/values/" ,?id1 ,"-",?id2)) AS ?newSrc)

OPTIONAL {

GRAPH ?g {

?src1 <http :// jackbergus.alwaysdata.net/edges/edge > ?dst1.

?dst1 <http :// jackbergus.alwaysdata.net/property/Id > ?id3;

<http :// jackbergus.alwaysdata.net/property/Ip1 > ?ip3;

<http :// jackbergus.alwaysdata.net/property/Organization1 > ?org3;

<http :// jackbergus.alwaysdata.net/property/Year1 > ?y3.

}.

GRAPH ?h {

?src2 <http :// jackbergus.alwaysdata.net/edges/edge > ?dst2.

?dst2 <http :// jackbergus.alwaysdata.net/property/Id > ?id4;

<http :// jackbergus.alwaysdata.net/property/Ip2 > ?ip4;

<http :// jackbergus.alwaysdata.net/property/Organization2 > ?org4;

<http :// jackbergus.alwaysdata.net/property/Year1 > ?y4.

}

FILTER (xsd:integer (?y3) <= xsd:integer (?y4))

BIND (URI(CONCAT("http :// jackbergus.alwaysdata.net/values/",?id3 ,"-",?id4))↪ AS ?newDst)

}

}

Figure 4.8 SPARQL implementation for the graph less-equal join operator. Even in this case, the
pattern matching is kept the same, while the only change is with the predicate <= .

4. On Joining Property Graphs 111

Size (L,R) Neo4J PostgreSQL Virtuoso GLEA C++ (ms)

101 9, 359.86× 82.61× 37.58× 0.15
102 2, 374.98× 21.57× 10, 308.09× 1.17
103 28, 368.97× 191.32× > 3.6 ⋅ 106 ms 10.72
104 > 3.6 ⋅ 106 ms 1616.22× > 3.6 ⋅ 106 ms 98.50
105 > 3.6 ⋅ 106 ms > 3.6 ⋅ 106 ms > 3.6 ⋅ 106 ms 1, 016.44
106 > 3.6 ⋅ 106 ms > 3.6 ⋅ 106 ms > 3.6 ⋅ 106 ms 12, 583.89

Table 4.3 Graph Less-Equal Join running time. GLEA considers the time required to write the
solution into secondary memory. Each data management system is compared with the most efficient
implementation of GLEA in C++. Please note that the graph creation time, which is an order of
magnitude less (Table 4.1b) than the GLEA execution time.

than the two graph databases, thus suggesting that the relational databases have more
efficient query optimizations for less-equal predicates than graph databases. This final
result remarks that the presented algorithm could be easily extended to fit other query
evaluation scenarios.

Please note that the same algorithm can be also used when we have a conjunction
between less-equal predicates, Ai ≤ Aj ∧ Ak ≤ Ah and if there is a lexicographical order
between the elements Ai × Ak and Aj × Ah. In these cases we can generate a hashing
function h such that if i ≤ j ∧ k ≤ h holds, then the order is reflected by the hashing function
h(i, k) ≤ h(j, h) [BBPV11].

Algorithm II.3 Graph Less-Equal join Algorithm (GLEA)

1: procedure LEqJoin(G, G ′, θ)
2: hashFunction = generateHash(θ);
3: omap1 = OperandPartitioning(G,hashFunction)
4: omap2 = OperandPartitioning(G ′,hashFunction)
5: G1 = SerializeOperand(G,omap1)
6: G2 = SerializeOperand(G ′,omap2)

return PartitionHashJoin(G1, G2, θ)

7:
8: procedure PartitionHashJoin(G1, G2, θ):
9: θ ′(u, u ′) := θ(u, v) ∧ (u⊕ u ′)(Av) = u ∧ (u⊕ u ′)(A ′

v) = u ′;
10: Θ

′(e, e ′) := (e⊕ e ′)(Ae) = e ∧ (e⊕ e ′)(A ′
e) = e ′

11: for h1 ∈MinHashIterator(HashOffset1) do

12: for h2 ∈MaxHashIterator(HashOffset2) s.t. h1 ≤ h2 do

13: for each u ∈ VertexVals1[h1.offset1], u ′ ∈ VertexVals2[h2.offset2] do

14: if θ ′(u, u ′) then

15: AdjFile.Write(V={u⊕ u ′},)
16: for h ′1 ∈MinHashIterator(outV(u)) do

17: for h ′2 ∈MaxHashIterator(outV ′(u ′)) s.t. h ′1 ≤ h ′2 do

18: for each edge e ∈ outV(u)[hparticular ′1.offset1], e ′ ∈

outV ′(u ′)[h ′2.offset2] do

19: if θ ′(e.outvertex, e ′.outvertex) and Θ
′(e, e ′) then

20: AdjFile.Write(E={e⊕ e ′})

112 4.6 Left, right and full graph joins.

Carl

Eric

Dom

Fred

Greg

Microsoft

Apple

Pixar

(a) Company Membership,
Graph A

Carl

Eric

fof
Fred

Greg

Hans

fof

fof
fof

fof

(b) Social Network Friend-
ship, Graph N

Carl

Eric

Dom
fof

fof Fred

Greg

fof

fof
fof

Apple

Microsoft

Pixar

(c) Merged Graph, A ⋈∨∼ N

4.6 Left, right and full graph joins.

The following example motivates the need of an extension of the aforementioned graph
operators, since they cannot describe all the possible join combinations for graphs.

▸ Example 19. Suppose to have a company membership bipartite graph A (Figure 4.9a), where

each employee is associated to a company where (s)he works. Suppose now to have another graph N
(Figure 4.9b) providing a social network where some users are provided. Given that we can infer a

predicate ∼ which finds correspondences between each employee in A and their on-line account inN , join the graphs so that A is enriched with the friendship edges from N as in Figure 4.9c. For

this toy example, such ∼ function associates the employee and the social network users that have the

same name.

Concerning the edges, we must adopt a disjunctive semantics, because the edges in A link

employees to companies, while the ones in N link friends among them. As a consequence, such edges

could never match with a conjunctive semantics: in order to preserve the worksFor relationships

in A and inherit the friendship relationships fof among employees, we must adopt the disjunctive

semantics.

Concerning the vertices that have to be returned by the graph join operation, we can observe

that graph N contains more users than the employees in A, and that A contains employees that

have no account in N . Since is A the graph to be enriched, we want to preserve all the information

in A and to discard all the users in N . We can even observe that the companies are not included in

the definition of ∼, and hence a VA ⋈∼ VN between the vertices shall not return any company. For

this reason, we have to perform the left join VA ⋈∼ VN over the vertices, so that all the employees

and the companies from graph A are preserved, while the users in N that are not employees are not

represented in the final graph.

We must observe that the operation outlined by the previous example is not matched
by the former definitions of graph joins. Consequently, we now introduce the outer
join operators by extending the join’s vertex definition: if we want to include only the
unmatched vertices belonging to the left join operand then we have a left join (⋈), which
is defined as follows:

▸Definition 27 (Graph Left θ-Join). Given two graphs Ga = (V, E, Av, Ae) Gb = (V ′, E ′, A ′
v, A ′

e),
a graph left θ-join is defined by extension of Definition 26 as follows:

Ga ⋈es
θ Gb = (V ⋈θ V ′, Ees, Av ∪ A ′

v, Ae ∪ A ′
e)

4. On Joining Property Graphs 113

where ⋈θ the left outer θ-join among the vertices. ◂

If we symmetrically include only the vertices from the right graph then we have a right

join (⋈), and thus the following definition can be provided:

▸ Definition 28 (Graph Right θ-Join). Given two graphs Ga = (V, E, Av, Ae) and Gb =(V ′, E ′, A ′
v, A ′

e), a graph right θ-join is defined as:

Ga ⋈es
θ Gb = (V ⋈ θ V ′, Ees, Av ∪ A ′

v, Ae ∪ A ′
e)

where ⋈ θ the right outer θ-join among the vertices. ◂

Given that both the conjunctive and the disjunctive semantics are expressible as joins
among the edges and given the well known properties for the relational algebra operators,
we have that for es= ∧ or es= ∨ the following rewriting rule follows:

Ga ⋈es
θ Gb = Gb ⋈es

θ Ga

If we want also to include the excluded vertices from both graphs we have a full join

(⋈). Similarly to the graph right θ-join, we can define this new operator either as a graph
join where the vertices undergo a full θ-join or as a composition of the left and right join as
follows when es is one of the two aforementioned edge semantics:

Ga ⋈ es
θ Gb = Ga ⋈es

θ Gb ∪Ga ⋈es
θ Gb

As a consequence, we can say that the graph joins are a class of join operators, where
an arbitrary combination ⊗ of vertices and es of edges is provided. Consequently, we can
provide the following definition including all the previously defined graph join operators.

▸Definition 29 (Graph ⊗θ product). Given two graphs Ga = (V, E, Av, Ae) Gb = (V ′, E ′, A ′
v, A ′

e),
the class of all the possible graph join operators is defined by the following graph ⊗θ product:

Ga ⊗es
θ Gb = (V ⊗θ V ′, Ees, Av ∪ A ′

v, Ae ∪ A ′
e)

where ⊗θ is an arbitrary θ-join operation among the vertices. ◂

▸ Example 20. As a further example, let us take a look at Figure 4.10: suppose to have two graphs

G1 (a) and G2 (b), describing interaction graphs between some users within different social network:

any edge u
δ→ v describes that a user u.User sent a message to v.User at a time u.MsgTimei, that

received it and read it at time v.MsgTimei. Given a predicate θ allowing to match the same users

within different networks, we want to show which is the meaning of the different graph joins on top

of these data structures.

Generally speaking, the graph conjunctive semantics is used to retrieve the interactions occurring

in different networks between the same users, even if at different times. The usage of the left (c),

right (d) or full join (e) could be used to only change the result set of the vertices. Moreover, on all

the three different cases of graph joins, the conjunctive semantics does not change the edges that are

returned in the final result, since that semantics imply that the edges must appear in both graphs

among the matched vertices.

As a consequence, the outer joins over the disjunctive semantics allow to return also the

interactions coming either from the left operand (f), or from the right one (g) or both (h).

As a last step, we would like to intercept the interaction that only appear either in the left graph,

or in the right one, or the interaction occurring either in the left graph or in the right one but not in

114 4.6 Left, right and full graph joins.

G1 v2

v4 v3

User MsgTime1

v2 Alice2 1

v3 Bob 3

v4 Carl 2

(a) G1

G2

w1 w2

w4 w3

User MsgTime2

w1 Dan 6

w2 Alice 7

w3 Bob 3

w4 Carl 2

(b) G2

v2

z4 z3

User MsgTime1 MsgTime2

v2 Alice2 1 NULL

z3 Bob 3 3

z4 Carl 2 2

(c) G1 ⋈∧θ G2

w1 w2

z4 z3

User MsgTime1 MsgTime2

w1 Dan NULL 6

w2 Alice NULL 7

z3 Bob 3 3

z4 Carl 2 2

(d) G1 ⋈∧θ G2

w1 w2 v2

z4 z3

User MsgTime1 MsgTime2

v2 Alice2 1 NULL

w1 Dan NULL 6

w2 Alice NULL 7

z3 Bob 3 3

z4 Carl 2 2

(e) G1 ⋈∧θ G2

v2

z4 z3

User MsgTime1 MsgTime2

v2 Alice2 1 NULL

z3 Bob 3 3

z4 Carl 2 2

(f) G1 ⋈∨θ G2

w1 w2

z4 z3

User MsgTime1 MsgTime2

w1 Dan NULL 6

w2 Alice NULL 7

z3 Bob 3 3

z4 Carl 2 2

(g) G1 ⋈∨θ G2

w1 w2 v2

z4 z3

User MsgTime1 MsgTime2

v2 Alice2 1 NULL

w1 Dan NULL 6

w2 Alice NULL 7

z3 Bob 3 3

z4 Carl 2 2

(h) G1 ⋈∨θ G2

v2

z4 z3

User MsgTime1 MsgTime2

v2 Alice2 1 NULL

z3 Bob 3 3

z4 Carl 2 2

(i) G1 ⋈δ∨
θ G2

w1 w2

z4 z3

User MsgTime1 MsgTime2

w1 Dan NULL 6

w2 Alice NULL 7

z3 Bob 3 3

z4 Carl 2 2

(j) G1 ⋈δ∨
θ G2

w1 w2 v2

z4 z3

User MsgTime1 MsgTime2

v2 Alice2 1 NULL

w1 Dan NULL 6

w2 Alice NULL 7

z3 Bob 3 3

z4 Carl 2 2

(k) G1 ⋈ δ∨
θ G2

Figure 4.10 Representation of outer joins over both conjunctive and disjunctive joins, where θ is
defined as MsgTime2≤MsgTime1. Wiggled edges represent the edges obtained from right graph while
zigzag edges represent the ones from left one. Straight-lined edges are the ones provided by the
definition of the conjunctive join, and hence E⋈. NULL values only appear in the tabular representation,
while the provided vertex merge definition do not insert null values

4. On Joining Property Graphs 115

both. In order to do so, we can define another edge semantics δ∨, removing from the disjunctive

semantics the edges that appear in the conjunctive semantics, that is:

Eδ∨ = E∨/E∧
After this step, we can finally obtain the graphs depicted in Figures 4.10i, 4.10j and 4.10k.

As a final example, we want to show how graph full joins may help in the creation of
a common schema, generated from the two graph sources’ schemas, thus showing how
graph joins can be used for at both the data (D) and model (or schema, M) level.

▸ Example 21. Section 2.1.2 on page 21 introduced the operations of schema alignments between

semistructured schemas. Given that literature expresses the containment relations through edges,

Figure 4.11 on the next page represents the same structural representation of the former examples in

a JSON schema format: now, each vertex represents an empty tuple, where only one single label is

associated and therefore showed.

Figure 4.12 provides the intermediate result of the schema integration previously provided in

Figure 2.4b on page 23, where multiple matches are not resolved into one single entity (compare

the previous treatment_entry node with the current treatment-record and treatment-entry),

where the two schemas where merged using a full join with a disjunctive semantics. This solution

allows to preserve the non-matched information, while aggregates together the parts which have been

matched within the alignment phase.

4.7 Conclusions

This chapter showed the dualism between logical model used to represent data in a formal
model and the physical model used for the final algorithms. While the former representation
separates the operations on the vertices from the one over the edges, that are run in a
subsequent step, the latter allows an implementation of the join algorithm over an adjacency
lists combining both vertices and edges within the same step. The inefficiency of the first
approach is also showed by the current graph data structures and graph databases, that
provide a non scalable implementation of such join algorithms. We can also note that the
bucketing phase allows to pre-process the graph in order to enhance the parallelization
of the graph join algorithm. Furthermore, given the graph operator’s commutative and
associative properties, we plan to perform further studies for distributed graph multi-joins
in order to check whether current relational query model proposed in [AGK+17] can be
also used for graph data.

Last, it was showed that the graph join operators can be used both to combine data and
schema representations; therefore, the graph join acts as a relevant graph operator for data
integration at two distinct abstraction levels. Further investigations must be carried out in
order to analyse whether it is useful to join graph data with their respective schema.

116 4.7 Conclusions

hospital

patient

SSN

Surname

Name

cure

treatment

trId

description

ward

name

admitted

medical

patient

ssNo

name

dob

address

record

patientSSno

entry

id

date

symptomps

diagnosis

icd9

#text

medication

Figure 4.11 Representing the containments in Figure 2.4a on page 23 as the ontology graphs
presented in [ES13]: the left and the right graphs represent different schemas, where their blue edges
express the containment relations. Green edges express either directly the result of the ontology
alignment operation (continuous lines) or their refinements (dashed lines) that are going to be used
to provide the integrated schema as a θ predicate.

4. On Joining Property Graphs 117

hospital-medical

patient

SSN

Surname <: name

Name <: name

cure

treatment-record treatment-entry

trId

description-medication

ward

name

admitted

dob

address

patientSSno

date

symptomps

diagnosis

icd9

#text

Figure 4.12 Representing an intermediate step for merging the two schemas via providing a
graph full join with disjunctive semantics using the green edges as θ predicates. The vertices showed
in orange represent the vertices that have been matched, and hence fused into one single vertex.

5 General Semistructured Model and Nested

Graphs

Contents

5.1 General Semistructured (Data) Model 121

5.1.1 script, a MetaModel for GSM 125

5.1.1.1 Using environment Γ with external GSM values . . 128

5.1.2 Characterizing object identifiers 131

5.2 Nested Graph . 133

5.3 Data model translation functions . 136

5.4 Use Cases . 139

5.4.1 Representing part-of aggregations 139

5.4.2 Graph ETL and Ϙ
ϛ(–)
α(Di),H(α(Di)): the Transformation phase 143

5.5 Conclusions . 155

“The empirical basis of objective science has nothing ’absolute’

about it. Science does not rest upon solid bedrock. The bold

structure of its theories rises, as it were, above a swamp. It is like a

building erected on piles. The piles are driven down from above

into the swamp, but not down to any natural or ’given’ base; and if

we stop driving the piles deeper, it is not because we have reached

firm ground. We simply stop when we are satisfied that the piles

are firm enough to carry the structure, at least for the time being.”

— Karl R. Popper, The Logic of Scientific Discovery, V. 30

Chapter 3 on page 55 addressed the problem of providing nested concepts in current
data models. Graph models also proved not to meet such representation goals adequately
and, therefore, a new data model for graph nested data is required. On the other hand,
semistructured data representations do not allow to represent the containment of one single
object by multiple containers, as needed for a possible generalization of the EPGM model.
Consequently, we choose to define a Generalized Semistructured data Model (GSM,
Section 5.1) on top of which the new nested graph model is going to be subsequently
defined (nested graphs, Section 5.2).

Section 5.3 provides some translation functions τ from the previous data models towards
the GSM data model, thus meeting two distinct goals: (i) we show the generality of GSM,
that (ii) can be the used within the LAV/GAV data integration scenarios for syntactically
τ-translating one data model towards the GSM or Nested Graph model. The choice of
representing both vertices and edges with “objects” may surprise the reader, because
Chapter 3 warned against the problem of semantic overloading. The reader must be aware
that the implications of the previous paragraph fall only at the representation level of the
single element while, on the other hand, the data model should distinguish those different
concepts.

Last, we provide some use cases for both aggregating (Section 5.4.1) and integrating
(Section 5.4.2) data representations within the proposed data format. Concerning the last
use case, we must observe that in the third chapter we showed that the alignment of

119

120

1

2 3

4 5

(a) This picture provides a representation of
a data structure containing two different nest-
ing levels. Each object is represented by a
circle, while the containment ϕ function of
each object is represented by the cone depart-
ing from each object. Within this graphical
representation, the leftmost nested object is
the first object appearing in the containment
function ϕ.

2 3

4 5

1 6

(b) The data model that is now provided is
as general as possible, and hence can support
any possible representation. This also implies
that recursive nestings are allowed. In partic-
ular, this Figure shows that node 2 may con-
tain elements 4 and 5, which contains 6 and
1 which contains 2. Therefore, ϕ(2) = [4, 5],
ϕ2(2) = [1, 6] = ϕ(5), and ϕ3(2) = [2, 3]. This
recursive nesting solutions should be avoided
for representing aggregations.

0

2 3

1

4

(c) This picture shows how the GSM model
allows to nest one element (e.g. 3) in more
than one single element. In particular, φ(0)∩
φ(1) = [3].

Figure 5.1 Different possible instances of the GSM model, allowing arbitrary nestings within its
objects. These pictures show some situations that cannot be natively expressed by the current nested
relational model and other semistructured representations. In particular, each cone represents one
single association between the containing object and its content through an expression p.

5. General Semistructured Model and Nested Graphs 121

types – which may nest other concepts – relies on both the successive alignment of other
attributes (or nested types) and on the attributes contained inside such types. Given that
both types and attributes are involved in the alignment process, it follows that they all must
be represented – within the alignment process – as objects with a given type represented
through labels. After this alignment process, edges must be aligned too: this process is
required for a complete data integration scenario. Consequently, this chapter introduces the
concept of edge alignment for data integration (as previously introduced in Section 2.1.5 on
page 29), thus allowing to provide a first definition of the Ϙ operator as well as ϛ refining
the previously mined alignments. Moreover, the same example shows that GSM allows a
uniform representation between data models, schemas and alignments.

5.1 General Semistructured (Data) Model

After observing all the definitions provided in the previous sections and chapters, we
shall now define a general framework allowing to include all the aforementioned nested
representation, including the aggregation requirements provided in the previous sections.
We must also consider that any object can nest several objects, and that any object can
contain several others simultaneously.

Contrariwise to other approaches which distinguished atoms (e.g., numbers, strings)
from objects (e.g., tuples, documents, object-oriented objects) and collections [MM06], the
proposed Generalized Semistructured data Model provides a uniform representation
of the three data representations. This characterisation implies the absence of a binding
between a fixed schema and the data representation.

The uniform representation of objects and atoms permits collections supporting both
representations uniformly. XML documents are an example where such situation already
happens: in fact, both tags and text nodes may appear as the content of one single tag. This
solution is achieved within our data model by representing both objects and values by their
reference identifier o, and by using their identifier to insert them within such collections.
The reference number provides both the associated expressions (list of atoms, ξ(o)) and
labels (list of strings, ℓ(o)). Moreover, we decide to represent atoms within the MetaModel,
so that they can be later on used within transformation functions ϛ. Therefore, data can
possibly embed both model and meta-model information.

However, all current data models (except from programming languages) do not allow a
uniform representation of collections as objects and vice-versa. Given that objects may be
represented as a property-value association, where values can be either atoms (as in the
relational model and property graphs) or objects, we can assume that each property may
be associated to a collection of object identifiers. In particular, our data model chooses to
implement object o as multimap associations, which are expressed through a φ function,
allowing to represent an object as a collection of (named) collections. In particular, each
collection l represented within an object o can be referenced by using its identifying (and
associated) property p, such that φ(o, p) = l.

▸ Definition 30 (General Semistructured (Data) Model). Given a MetaModel language MM

expressing both constraints and values that can be checked by such constraints and a model M

representable in MM (α(M) ⊆ MM), any object o is directly represented by its object identifier

o ∈ N. Such object o shall belong to multiple model types ℓ(o) ∈ ℘(M), and has an associated

list of expressions ξ(o) ∈ ℘(MM) expressing either values or constraints associated to o. The

attribute-value association embedded in each object o is expressed by the function φ: in particular

φ(o, p) ∈ ℘(N) associates o and an attribute p (represented as an expression p ∈ MM) to a list of

122 5.1 General Semistructured (Data) Model

objects. ϕ(o) provides all the objects contained by o for any p and is defined as follows:

ϕ(o) def== ⋃
p∈L

φ(o, p)
Therefore, any object o is identified by its id and is completely described by the functions ℓ, ξ and φ.

Consequently, any instance of the GSM is described by the following quintuple:

GSM = (o, O, ℓ, ξ, φ)
where O ⊆ N is a finite set of object identifiers containing all the elements nested in the reference

object o at any nesting level (ϕ∗(o) = O), thus defining o as multiple collections of objects

(ϕ(o) ⊆ O). Moreover, the labelling function ℓ, the expression and data function ξ and the

containment function φ are both defined over o and over each element in O. Formally, we have

ℓ∶O → ℘(M), ξ∶O → ℘(MM) and φ∶O → MM → ℘(O), which are all finite functions.

◂

In particular, we are going to provide the MM language associated to GSMs in Sec-
tion 5.1.1 on page 125. For the moment, we focus on the data representation aspects of
GSM, and later on on the simple queries that can be performed on such model from the
integration point of view (Section 5.4.1 on page 139).

▸ Example 22. Figure 5.1a on page 120 provides an example of a GSM. In particular, this model

can be modelled as follows:

(1,{ 1, 2, 3, 4, 5 } , ℓ, ξ, φ)
φ(1, p) = [2, 3] φ(2, p) = [4, 5]

The containment function maps the object to the contained objects by returning the last ones in

a list. This data structure may become relevant in some domain specific applications, such as

semistructured information, in which the order in which such data appear is relevant. Within our

examples, we will graphically represent such containment order from left to right. Please also note

that “o” can be arbitrarily chosen from any element in O.

Moreover, this data model represents objects as single atoms through ℓ and ξ, and as objects

or collections. With respect to the current example, we can consider nodes 3, 4 and 5 with empty

nestings as empty collections or objects.

At this point the following question arises: “why identifiers (also referred as “indices”)
are crucial within nested data structures?” As previously discussed, object identifiers also
provide a solution to the data replication problem: by only storing the object identifier,
we allow that one single piece of information is replicated in more that one single point
within the database, thus allowing to overcome some limitations within semistructured
data representations.

▸ Example 22 (continuing from p. 122). Figure 5.1c on page 120 represents the following GSM

model:

(0,{ 0, 1, 2, 3, 4 } , ℓ ξ, φ)

φ(0, p) = [2, 3] φ(1, p) = [3, 4]

In particular, we can see that element 3 is contained by both 0 and 1. This solution is only possible

by using explicit identifiers that map objects to its content, typing and value information.

5. General Semistructured Model and Nested Graphs 123

We can use this data model as the most general representation of data structures. Please
note that this data model allows arbitrary nestings, such as “an element can contain itself”
(∃o ∈ O.∃p ∈ L.o ∈ φ(o, p)) or “contain an element that, at any nesting level, contains the
container object” (∃o, o ′ ∈ O.∃n ∈ N>0.∃p, p ′ ∈ L.o ′ ∈ φ(o, p) ∧ o ∈ φn(o ′, p ′)).
▸ Example 22 (continuing from p. 122). Figure 5.1b on page 120 provides an example of arbitrary

nesting levels. In particular, if we choose to use 2 as the main element within our data model, we

can have the following data model:

(2,{ 1, 2, 3, 4, 5, 6 } , ℓ, ξ, φ)
φ(2, p) = [4, 5] φ(5, p) = [1, 6] φ(1, p) = [2, 3]

If we want to focus on the arbitrary nesting levels of node 2, we shall use the power notation over ϕ,

where ϕn+1 is recursively defined as the application of ϕ to any element of ϕn. Therefore, given that

ϕ(4), ϕ(6) and ϕ(3) map to the empty set, we can have the following situation:

ϕ(2) = [4, 5] ϕ2(2) = [1, 6] ϕ3(2) = [2, 3]

In particular, we are going to refer to any power n as (nesting) depth. As we can see, this means

that 2 may contain itself at the nesting depth of 3. Since that this model always allows arbitrary

nesting levels, we will use the Kleene plus notation, which is defined as follows:

ϕ+(o) = ⋃
n∈N>0

ϕn(o)

Therefore, we can now express that 2 contains itself at any level of nesting with the more compact

notation 2 ∈ ϕ+(2). Moreover, we can define ϕ∗(o) as the union of ϕ+(o) with the singleton {o}
representing the missed application of φ over o (∀x.ϕ0(x) = {x}).

We can observe that such model features violate the aggregation assumptions presented
in Section 2.2.2 on page 40. The reader should remember that aggregations (that can be
represented through φ containments) represent data abstractions: consequently, neither an
object’s abstraction can be represented by the containing object nor shall the containing
object contain itself at any nesting depth. Since we want that our data model definition
can be as slim and as general as possible, we want to express such restrictions as a side
properties, similarly to the XML’s DTD or RelaxNG. In particular, this thesis is going to
focus on a subset of all the possible GSM-based data models (nested graphs included),
which are the ones that avoid the recursive nestings presented in the previous example.

▸ Axiom 1 (Nesting Loop Free). A general semistructured data model GSM g ∈ (o, O, ℓ, ξ, φ) is

said to be nesting loop free if each object o ∈ O does not contain itself at any nesting level. More

formally: ∀o ′ ∈ O ∪ { o } . o ′ ∉ ϕ+(o ′)
Objects o ∈ O having empty φ containments are referred as leaves.

Moreover, we shall guarantee that the data operations on nesting loop free GSMs shall
always return nesting loop free GSM results. This axiom also allows to define the hight at
which one object is contained by the other without divergences or the possibility of having
many possible nesting levels for the same object. Consequently, we can define a “relative
height” definition, where the containment-container relationship is expressed through the
sign. This function will be later used to select which is the highest child, from which start

124 5.1 General Semistructured (Data) Model

the GSM visiting task, thus allowing to choose which element allows the visit most of the
contained objects by reducing the visiting steps1.

▸ Definition 31 (Heights). Given a nesting loop fee GSM g = (o, O, ℓ, ξ, φ), the relative height2

of two objects o ′, o ′′ ∈ O is expressed as the function returning n if o ′ contains o ′′ after maximum3

n applications of ϕ over o ′ (5.1), −n if o ′ is contained by o ′′ after n applications of ϕ over o ′′ (5.2),

or zero if the objects are the same or if they are siblings (5.3). For all the other cases (e.g., if they

have a common ancestor), the function is undefined.

rh(o ′, o ′′) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

max S + 1 S = { n > 0 ∣ o ′′ ∈ ϕn(o ′) } , S ≠ ∅ (5.1)

−(max S)− 1 S = { n > 0 ∣ o ′ ∈ ϕn(o ′′) } , S ≠ ∅ (5.2)

0 o ′ = o ′′ ∨∃o ′′′ ∈ O. o ′, o ′′ ∈ ϕ(o ′′′)∧ o ′ ≠ o ′′′ ∧ o ′′ ≠ o ′′′(5.3)

The former definition can be also used to sort4 the children ϕ(o) of one single containing object o

via their relative height by using the following function5:

ho(o ′) = max{ rh(o ′, o ′′) ≠ 0 ∣ o ′′ ∈ ϕ∗(o)∧ o ′′ ≠ o ′ }
Therefore, we can generalize such function to the height of the whole GSM as follows6:

h(g) = max{ rh(o, o ′) ≥ 0 ∣ o ′ ∈ ϕ∗(o) }
◂

We can also define the concept of “strongly nested object-set” by restating the “strongly
connected component” for graphs over the ϕ containment function. In this case, we want
to select from O of a GSM g the sets that contain both the containers and their contents,
recursively towards their respective leaves.

▸ Definition 32 (Strongly nested object-set). Given a GSM g = (o, O, ℓ, ξ, φ), it is said that

O ′ ⊆ O is a strongly nested object-set of g if each object in O ′ is either a container or a content

of another different object of O ′ (∀u, v ∈ O ′.u ≠ v ′ ⇒ u ∈ ϕ+(v)∨ v ∈ ϕ+(u)).
We also say that O ′ is a strongly nested object-set component of g if O ′ ⊆ O and if O ′ is a

maximal strongly nested object-set: this means that it does not exist any object-set O ′′ such that

O ′ ⊂O ′′ ⊆O and O ′′ is a strongly nested object-set.

If we also fix a subset δO ⊆ O, then we can also say that O ′ is a strongly nested object-set

(component) with respect to δO if O ′ is a strongly nested object-set component of O such that

O ′ ⊆ δO. Therefore, δO provides an upper bound for O ′. ◂

Given that the concept of “subset” is present both in relational data (via set theory)
and on property graphs (via the “subgraph” definition from graph theory), we may also
provide a similar concept for our GSM model. We’re going to use later on this concept for
“filtering” operators, allowing a partial extraction of the given data structures. We can also
use the notion of “subgraph” or “subset-of” for GSMs and define it as follows:

1For a more practical definition, see line 449 of the code presented in Appendix A on page 225 in
OCaml.

2See line 407.
3Please note that, given that the GSM is nesting loop free, it there exists an n > 0 such that ϕm(o) = ∅

for any o ∈ O and m ≥ n.
4See line 449.
5See line 443.
6See line 434.

5. General Semistructured Model and Nested Graphs 125

▸ Definition 33 (Substructure). Given two GSMs g = (o, O, ℓ, ξ, φ) and g ′ = (o ′, O ′, ℓ ′, ξ ′, φ ′),
it is said that g ′ is a substructure of g (g ′ ⊆ g) if and only if it exists a transcoding function

ϛ(oc+1) = oc, usually called morphism in graph literature, mapping each object in O ′ to one single

object in O, where each pair of correspondent objects oc+1 and oc maintain the same labels and

expressions, but their containment functions are one the subset of the other:

∀o ∈ O ′.ℓ ′(o) = ℓ(ϛ(o))∧
ξ ′(o) = ξ(ϛ(o))∧
∀p ∈ L.ϛ(φ ′(o, p)) ⊆ φ(ϛ(o), p)

When the transcoding function is made explicit, we denote the substructure relation as g ′ ⊆ϛ g. ◂

From this basic definition, we can infer the definition of GSM equivalence, where objects’
labels, expressions and containments are compared independently from the id appearing
in O.

▸Definition 34 (GSM Equivalence). Given two GSMs g = (o, O, ℓ, ξ, φ) and g ′ = (o ′, O ′, ℓ ′, ξ ′, φ ′),
it is said that g ′ abd g are equivalent (g ′ ≡ g) if and only if it exists a bijective transcoding function

ϛ through which g ′ ⊆ϛ g and g ⊆ϛ−1 g ′. ◂

5.1.1 script, a MetaModel for GSM

We now describe the MetaModel for the GSM model; script7 is an untyped imperative
language with dynamic scope and shallow binding, where each program is represented by
a list of expressions which are lazy evaluated. Each program returns the value resulting
from the evaluation of the last statement. The script syntax is depicted in Listing 5.1 on
the following page: script provides some native operations over numbers (either bignum
integers or doubles, Z ∪Q), strings, booleans and lists. All those types are considered
compatible between each others, that is they always allow a conversion into a specific
representation. Therefore, this language aims to define transcoding functions that can be
used for object transformations.

This language adopts the implicit casting while evaluating the native operations. As a
consequence, the number add operator + is implemented as a binary function + taking a
pair of numbers as an input and returning another number:

+ ∶ Z ∪Q ×Z ∪Q → Z ∪Q

Consequently, the following expression:

expr1 + expr2

will be interpreted8 as follows:

[[expr1 + expr2]]∅ = toNumeric([[expr1]]∅) + toNumeric([[expr2]]∅)
where ∅ represents the environment Γ with which such expressions are evaluated; this
means that for the moment, Γ does not influence the outcome of the expression’s evaluation.

7See http://rebrand.ly/unibo41251 for the source code implementing such language. Within this
project, you can see the actual implementation of some functions that will follow, such as toNumeric,
toFunction toList that are going to be used within the following denotational semantics.

8A complete discussion of script’s denotational semantics [NN92] goes beyond the goals of the present
thesis. In brief, we use the notation [[P]]Γ instead of the less intuitive Γ[[P]].

http://rebrand.ly/unibo41251

126 5.1 General Semistructured (Data) Model

Listing 5.1 Subset of the script language in Antlr4.
script : (expr ’;’)* expr ;

expr : ’(’ expr ’)’ #paren

| expr ’+’ expr #number add

| expr ’-’ expr #number subtract

| expr ’/’ expr #number divide

| expr ’*’ expr #number multiply

| expr ’++’ expr #string concatenation

| expr ’@’ expr #list append

| expr ’&&’ expr #boolean and

| expr ’||’ expr #boolean or

| ’not’ expr #boolean negation

| expr ’==’ expr #equals

| expr ’!=’ expr #not equals

| expr ’<=’ expr #less equal

| expr ’>=’ expr #greater equal

| expr ’>’ expr #greater

| expr ’<’ expr #less

| expr ’:=’ expr #assignment

| expr ’.’ expr #method invocation

| ’(’ expr expr ’)’ #apply right element to left function

| expr ’=>’ expr #if left is true when bool evaluated,

return it, otherwise return right

| ’if’ expr ’then’ expr ’else’ expr #if ... then ... else

| ’substring(’ expr ’,’ expr ’,’ expr ’)’ #substring (or sublist of first,

#between the second and third index)

| expr ’[’ expr ’]’ #get the element indexed with right

↪ in left

| expr ’[’ expr ’]:=’ expr #put the rightmost expression

| expr ’in’ expr #contains

| ’remove ’ expr ’from’ expr #remove left element from right list

| EscapedString #native string

| BOOL #native boolean

| NUMBER #native number

| ’{’ (expr ’,’)* expr ’}’ #native expressions ’ array

| VARIABLE ’->’ ’{’ (expr ’;’)* expr ’}’#lambda function

| VARIABLE #variable

| ’map(’ expr ’:’ expr ’)’ #map left list over right function

| ’select(’ expr ’:’ expr ’)’ #select left elements using right

↪ pred.

;

BOOL : ’tt’ | ’ff’ ;

VARIABLE : [a-z]+ ;

EscapedString : ’"’ (’""’ | ~["\r\n])* ’"’;

NUMBER : [0-9]+ (’,’[0 -9]+)? ;

5. General Semistructured Model and Nested Graphs 127

Such implicit casting operations allow to reduce the number of the data-type specific
operations, such as defining the length of the list,that can be expressed as outlined in the
following example.

▸ Example 23. We want to evaluate the following script expression:

0 + {1, 2, 3}

where a bignum 0 is added to a list9 {1, 2, 3}. Given that our canonical function toNumeric

maps each list to its length expressed as bignum integers, the following expression will be evaluated

to 3.

[[0 + {1, 2, 3}]]∅ = toNumeric([[0]]∅) + toNumeric([[{1, 2, 3}]]∅)
= toNumeric(0) + toNumeric([1, 2, 3])
= 0+ 3 = 3

A similar strategy is used for the definition of the map and filter operator (select). The
first operator has the following associated semantics:

[[map(expr1 : expr2)]]Γ = [toFunction([[expr2]]Γ)(x) ∣ x ∈ toList([[expr1]]Γ)]

In particular, toFunction returns a function if the input is a function itself, or acts as a
constant function otherwise. When the first argument is a list, map acts as a mapping
function over the list, otherwise if it is a function acts as a concatenation between functions,
otherwise if it is a single value, it acts as a function application. Similar considerations can
be carried out for select.

A script program allows to define variables and functions, which declarations creates
an association within an environemnt Γ. Such environment is a set of variable-expressions
associations, that can be updated or defined for the first time with an assignment operation:

VARIABLE := expr

Therefore, we have that evaluation of such expression will result into an update of Γ as
follows:

[[VARIABLE := expr; c]]Γ = [[c]]Γ∪{(VARIABLE,expr)}
The script language is also capable of defining recursive functions, through which it is
possible to generate numeric sequences, and hence generate enumerations. In particular,
the following expression will generate a set containing all the positive natural numbers
from 2 to 5:
✞ ☎
f := x -> { if (x >= 5) then x else (x @ (f (x+1)))};

(f 2)
✝ ✆

This language even allows to emulate the result of a fold operation over a set. The following
example shows how we can add all the natural numbers from 1 to 10 by using the following
expression:

9Please observe that the script notation for a list is {. . . }, while the one used for the lists within the
GSM model is [. . .]. In this way we can distinguish between the syntactic representation and its semantic
one.

128 5.1 General Semistructured (Data) Model

✞ ☎
acc := 0;

sgen := x -> { if (x >= 10) then x else (x @ (sgen (x+1))) };

s := (sgen 1);

select(s : x -> { acc := (x + acc) ; ff });

acc
✝ ✆

In particular, this program initializes the accumulator acc to zero, defines a set containing
all the numbers from 1 to 10 and stores it into s, then uses select to iterate over s and
produce an empty result while, at each iteration step, acc is incremented by one of the
elements contained within s. Last, the result of the accumulation is returned.

Consequently, we can generally define the foldl operator as follows:
✞ ☎
foldl := x -> {

acc := x[0];

select(x[1] : y -> {

acc := (x[2] {y, acc});

ff

});

acc

}
✝ ✆

Before defining any possible operation over the lists, we must make explicit the meaning
of set operations over lists.

▸ Definition 35 (Set operations over lists). Given a binary set operator ⋈, its definition over lists

is defined as follows:

L1 ⋈ L2 = distinct(L1 ⋈ L2,=)
where distinct returns the element where the repeated elements are preserved, and only the leftmost

instance is kept10:

let rec distinct l eq =

let rec removehead x ls =

match ls with

| [] -> []

| h::t -> if (eq h x) then t else h::(removehead x t)

in match l with

| [] -> []

| a::[] -> [a]

| a::b -> a::(removehead a (distinct b))

◂

5.1.1.1 Using environment Γ with external GSM values

An interesting feature of such language is its possibility of initializing Γ with external
objects prior to the evaluation of the expression: this feature is crucial to manipulate and

10This operator can be also defined in script as:
distinct = x ->{fold [x, y ->{if (y[0] in y[1])then y[1] else [y[0]] ++y[1]}]}

5. General Semistructured Model and Nested Graphs 129

define predicates over the labels, expressions and containments associated to single objects.
For this reason script will reserve variable names “o” and “g” respectively to the current
GSM object of interest represented as an object-oriented Object, and to the reference object
of the current GSM. Given a GSM (o, O, ℓ, ξ, φ), we can represent each object o ′ ∈ O as an
object in a object oriented language. In particular, this11 is the object representation that is
used in script for the representation of object as external objects.

class Object {

id objectId;

public Object(id i) { objectId = i; }

private List phiFuncs(boolean toObject) {

List toreturn = new List();

for (L e : dom(φ(objectId))) {

List elist = new List();

elist.add(e);

List idlist = new List();

for (id i : φ(id, e)) {

idlist.add(toObject ? new Object(↪ i) : i);

}

elist.add(idlist);

}

return toreturn;

}

public id id() { return objectId; }

public List ell() { return ℓ(objectid); }

public List xi() { return ξ(objectId); }

public List phi() { return phiFuncs(true); }

public List phiVisit () { return phiFuncs(false); }

}

This object will use two different phi implementations: phi can be used to manipulate
the containment function, and hence will return the GSM objects as ids, while phiVisit

can be used in depth visiting operators for the GSM, and hence will return the GSM objects
as Objects. Last, a GSM is represented by its reference object as an Object g.

▸ Example 24. Suppose to have an object o = 2345 within a GSM (o, O, ℓ, ξ, φ), where o is

associated to the following values:

ℓ(o) = [“ciao1”, “ciao2”, “ciao3”] ξ(o) = []

φ(o, “elemento”) = [0, 1, 2] φ(o, “elementu”) = [3, 4, 5]
In particular, we initialize Γ by associating “o” and “g” to the same object o. In particular, we can

get its id by invoking the id method as follows:

[[o.id]]Γ = [[o]]Γ.id() = 2345

11http://rebrand.ly/unibobd4f8 provides a more complete representation of the code that follows.

http://rebrand.ly/unibobd4f8

130 5.1 General Semistructured (Data) Model

Similarly, finite functions as φ(o) can be expressed by their graph. Even in this case we can use the

method invocation to return the content associated to φ(o) as a list of lists containing two elements,

where the first is an expression e and the second is the content of φ(o, e).
[[o.phi]]Γ = [[“elemento”, [0, 1, 2]], [“elementu”, [3, 4, 5]]]

Consequently, from now on we choose to graphically represent the graph of a function f as a list of

pairs (represented as lists of two elements), where each first element represents an element x from

the domain, and the second element represents the values associated to the codomain: if f (x) is a

function for some x ∈ dom(f), f (x) can be represented in script with the same list representation.

This also means that we can easily express the function dom for functions represneted by their

graph as follows:
✞ ☎
dom := f -> { map(f : x -> {x[0]})}
✝ ✆

Then, we can use a combination of select and get list accessors to obtain the values φ(o, “elemento”)
by selecting the expected list position:

[[(select((o.phi) : x -> { x[0] == “elemento”}))[0] [1]]]Γ
= [[(select((o.phi) : x -> { x[0] == “elemento”}))]]Γ.get(0).get(1)

= [x ∈ [[o.phi]]Γ ∣ x.get(0) == “elemento”].get(0).get(1)
= [x ∈ [[“elemento”, [0, 1, 2]], [“elementu”, [3, 4, 5]]] ∣ x.get(0) == “elemento”].get(0).get(1)
= [[“elemento”, [0, 1, 2]]].get(0).get(1)
= [“elemento”, [0, 1, 2]].get(1)
= [0, 1, 2]

In particular, we can use the following shorthand for accessing such values:
✞ ☎

e[s]
def== (select(e :x -> { x[0] == s}))[0] [1]

✝ ✆

so that we can return the “elemento” Consequently, we can write an expression allowing us

to map, filter and extend the containment. In particular, the following expression will multiply

each id referenced by “elemento” for φ by 2, remove the “elementu” elements and create a new

containment “neu” containing 1. The desired expression is the following one:
✞ ☎
{{"elemento", map((o.phi) ["elemento"] : x -> { (x * 2) })}} @↪ {{"neu", {1}}}
✝ ✆

Last, by using the foldl function previously defined, we can also define ϕ+ within
script as follows:
✞ ☎
varphiplus := x -> {

(foldl {{}, x.phi , y -> {y[0][1] @ y[1]} })

@

(map(x.phi : varphiplus))

}
✝ ✆

Appendix A on page 225 also provides a functional definition of such GSM model
through the usage of a functional programming language, OCaml. Moreover, the use case
in Section 5.4.1 on page 139. and 6.3.3 on page 182. will provide some examples of how
such Γ environment for GSM values achieves structural aggregations.

5. General Semistructured Model and Nested Graphs 131

5.1.2 Characterizing object identifiers

Before introducing either the operations that are possible on top of this model or the nested
graph data model itself, we must consider if we have to provide some further constraints on
object identifiers. In particular, we must assume that each identifier maps to one single and
possible data representation. The same concept was introduced with the Object Identity
problem at Section 3.1.2 on page 60, where the Skolem functor fR always provided an
unique mapping between object and its id. Similarly to other presented graph model, we
adopted the symmetrical solution, that is the index is mapped to the data and not vice
versa. GSM already provides this constraint because φ-containment is defined by the list of
object identifiers associated with each object’s property.

An object transformation should always generate a different object with a different id,
and shall not update the original object (uniquely referenced by its id) with newly associated
values. The reason is twofold: we want that shared nothing distributed algorithms
make local changes consistent with the global status of the computation, and that the
implementations of GSM over object oriented languages maintain the same object reference
over the same already-existing object. This constraint must be also satisfied by the data
operations that manipulate the objects.

In order to do so, we must ask ourselves what is the aim of querying data, and
which is a suitable representation of the answer to such query within the data model. If
we take SQL as a reference, our final query language must allow the creation of views
on top of the database (in our case, the GSM itself), without necessarily modifying the
underneath data representation to which the result is subjected. The same concept is
self evident within the relational algebra: the relations took as an input by the algebraic
expression are manipulated within the sequence of operations, and returned as a new
relation. Consequently, at each step the data subsumes some changes, either structurally or
from the informative content, and new elements are created after each operation.

Given that the creation of new data within queries implies the creation of new identifiers,
it is important that even the data model guarantees the creation of identifiers that are
easily referable to a previous computation [Ber14] for optimizing some data operations.
This feature is going to be crucial for the algorithm that will be used for graph nesting
in Chapter 7 on page 195. In particular, each element j represented at the i-th step of
computation, should change its id jointly with its internal representation. In order to do so
we’re going to use dovetailing functions [Odi92] that associate unique integer numbers to
a given pair of numbers:

▸ Definition 36 (Dovetailing function). Given a pair of two integers i, j ∈ N, the dovetailing

function associates to them an unique integer ji
def== dt(i, j) ∈ N defined by the following function:

ji
def== dt(i, j) = (i + j)(i + j + 1)

2
+ j

This can be also showed by the definition of the following inverse dovetail function dt−1(ji)
[Ber14]:

dt−1(ji) = (dt−1
Left(ji), dt−1

Right(ji))
where each single component is defined as follows:

dt−1
Right(ji) = ji − 1/2 ⋅ (⌊1/2 ⋅ (√8ji + 1− 1)⌋ + 1) ⋅ ⌊1/2 ⋅ (√8ji + 1− 1)⌋

dt−1
Left(ji) def== ⌊1/2 ⋅ (√8ji + 1− 1)⌋ − dt−1

Right(ji)
◂

132 5.2 Nested Graph

In particular, to each element j represented at the i-th computational step, the compu-
tation shall have an id dt(i, j), and i = 0 when the object is kept unaltered from the data
representation level. When one of the two numbers has a maximum value (e.g., when the
number L of the query operators involved within the computation is known), then we can
reduce the size of the generated number as follows:

▸ Definition 37 (L-bounded dovetailing function). Given a pair of two integers i, j ∈ N where i is

upper bounded by L, the L-bounded dovetailing function associates to them an unique integer

dt(i, j) ∈ N defined by the following function:

dtL(i, j) = j ⋅ (L + 1) + i

◂
Such dovetailing function can be also used to uniquely associate a number to a list of

numbers. In such contexts we can use the dtl function:

dtl(l) = ⎧⎪⎪⎨⎪⎪⎩
0 l = []
1+ dtr(∣l∣, dtr(l)) oth.

(5.4)

where dtr is recursively defined as follows:

dtr(l) =
⎧⎪⎪⎨⎪⎪⎩

e l = e ∶∶ []
dt(h, dtr(t)) l = h ∶∶ t

This other function will be later on used when new elements will be generated from
scratch without necessarily transforming the already-existing ones.

Dovetailing over object identifiers: properties

Suppose that each object with id y within the original data sources is represented by an
unique id dt(0, y) = y0 and that, after each transformation step, y0 is transformed into a new
object y1. Hereby, given the object y at the n-th computational step with id yn, we would
like to know if there is an efficient way to compute yn+1 from yn: the attribution of such
step numbers can be given by the query system by the query plan engine by enumerating
all the query computation steps. After observing that the following lemma is true (proof at
page 233):

▸ Lemma 5.1.1. dt(x + 1, y) = dt(x, y) + x + y + 1

we can observe that:

dt(x + 2, y) = dt(x, y) + 2(x + y) + 1+ 2

and hence, we can prove the following lemma by induction (proof at page 233)

▸ Lemma 5.1.2. dt(x + i, y) = dt(x, y) + i(x + y) +∑i
n=0 n

Hereby, we can express an arbitrary increment i of the computational step transform-
ing y by using an additive step, where yn+1 = yn + y + 1 and that yn+1 = y0 + (n + 1) ⋅ y +
(n + 1)(n + 2)/2. This implies that the transformation of any object yn into the next computa-
tional step ϛn+1 can be expressed as a view ϛ over the object yn producing a new object
ϛ(yn) = yn+1. As a result, we can avoid to replicate the information generated at each
computational step.

We can also prove a lemma similar to 5.1.1 that is going to be used for object creation:

▸ Lemma 5.1.3. dt(x, y + 1) = dt(x, y)+ x + y + 2

5. General Semistructured Model and Nested Graphs 133

1 5
20

2
3
0

(a) Traditional repres-
entation of the graph
({1, 2, 5},{ 30 = (2, 5), 20 = (1, 5) }).

1 5

20
source

30

2

target target source

entity

relationship

(b) Nested representation reflecting the actual structure of
the data model.

Figure 5.2 Nested graph representation (b) of a traditional graph data structure extended with
edge id (a).

5.2 Nested Graph

Despite the definition of efficient graph distributed models using a nested relational
representation [LBO+15], a proper graph data model embodying a nested representation
of graphs is missing. As we already saw, GSM allows to perform arbitrary nestings up to
user-defined model constraints. Now, we must specialise this data model to distinguish
the objects representing vertices from the ones representing edges; moreover, we want also
that objects representing atoms should be distinguishable from the other two. The reason
for doing this is that different kind of operations can be performed simultaneously over
vertices and edges, as presented by the join operator in the last chapter. Therefore, instead
of representing vertices and edges as belonging to the same set and then extract them in
order to perform a distinct set of operations, we will directly distinguish the vertices and
edges as belonging to two distinct properties of the same (reference) object.

▸ Definition 38 (Nested Graph). A nested graph is a nesting loop free GSM ï = (g, O, ℓ, ξ, φ)
where g is an object containing both the vertex (φ(g, “Entity”)) and edge (φ(g, “Relationship”))
set. Each object g ∈ ϕ∗(g) such that “Relationship” ∈ dom(φ(g)) ∧ “Entity” ∈ dom(φ(g)) is

said to be a graph. Each graph must satisfy the following properties:

Each vertex v ′ in g is associated to a “Entity”collection (∃g ∈ ϕ∗(g).v ′ ∈ φ(g, “Entity”)).
Each edge e ′ in g is associated to a “Relationship”collection (∃g ∈ ϕ∗(g).e ′ ∈ φ(g, “Relationship”)).
The same object shall not belong to both “Entity”or “Relationship”collections of any object12

(⋃o∈ϕ∗(g) φ(o, “Entity”) ∩ ⋃o∈ϕ∗(g) φ(o, “Relationship”) = ∅).

All the edge elements e ′ must contain only two vertices s and t such that s is a source for e ′
(φ(e ′, “src”) = [s]) and t is its target13 (φ(e ′, “dst”) = [t]). Moreover, s and t must both be

vertices (∃g, g ′ ∈ ϕ∗(g).s ∈ φ(g, “Entity”)∧ t ∈ φ(g ′, “Entity”)). Such elements are uniquely

identified by a λ function which is defined as follows:

λ(o) def== φ(o, “src”)× φ(o, “dst”)

12Please note that, by enforcing the model with such constraint, no RDF graph representation will be
possible. On the other hand, alignment over the edges’ types would not be formulated. As we will see on
the later sections, we will not strictly perform such alignments at the nested graph level, but we will use
general GSM to do so. Nevertheless, the thesis will focus only on this nested graph model.

13More formally, ∀o ∈ O.∀e ′ ∈ φ(o, “Relationship”).∣φ(e ′, “src”)∣ = 1 ∧ ∣φ(e ′, “dst”)∣ = 1. Please note
that, by relaxing such constraint to an arbitrary non-zero number of elements (that is, s ∈ φ(e ′, “src”)
with ∣φ(e ′, “src”∣ ≥ 1 and t ∈ φ(e ′, “dst”) with ∣φ(e ′, “dst”)∣ ≥ 1), this representation allows to represent
hypergraphs, that are graph representations where edges allow more than one possible source and edge.

134 5.2 Nested Graph

0

2 3

1

4 13 12

CassieNorman

name surname

14On Joining Graphs

title title

Data Mining Algebra1615

title

Object Databases

source

target

CoauthorWith

P
a
p
e
r

11

Abigail Conner

name surname

10

P
a
p
e
r

P
a
p
e
r

0 1

5

20

entity

relationship

attributes

AuthorAuthor

attributes
entity entity

Figure 5.3 Representation of a nested graph in different steps. This data structure represents
“Author Abigail Conner is Coauthor with Cassie Norman because they both authored the Paper
“Object Databases”. Abigail Conner also wrote “On Joining Graphs”, while Cassie Norman wrote
“Data Mining Algebra”. From now on we will represent the objects with empty containments as
squares, and the non-empty ones as circles. Edges are represented by circles filled in red, while
vertices are represented by red bordered circles. Moreover, labels are placed above the nodes, while
the expressions are placed below.

Given that are not specific on what a ‘graph’ should be, both vertices and edges may represent

(nested) graphs. ◂

The proposed nested graph data model provides a “(nested) relational representation”
of a graph: vertices and edges are both represented as objects, and edges’ source and target
vertices are represented as edges’ fields. Our model allows to nest (sub)graphs for each
vertex and edge: this is due to the fact that an object can contain “Entity” and “Relationship”
properties. Consequently, this data structure allows to represent traditional graphs and
multigraphs, as outlined in Figure 5.2 on the previous page. The actual transformation
function allowing to transform a graph into a nested graph representation will be provided
in Section 5.3 on page 136, alongside with other data transformation representations. The
example that follows provide some insights on how such data structures can be used to
represent nested components.

▸ Example 25. Figure 6.3 provides a graphical representation of a nested graph.

N = (20,{ 0, 1, . . . , 4, 10, . . . , 16, 20 } , ℓ, λ, ξ, φ)
As we can see, the vertex set is φ(20, “Entity”) while the edge set is φ(30, “Relationship”).

5. General Semistructured Model and Nested Graphs 135

0

2 3

1

4 13 12

14 1615

source

target

11 10

0 1

5

20

entity

relationship

entity entity
attributesattributes

(a) Expressions in ξ for vertices and edges. Entity,
Relationship and the edges’ source and target in-
formation.

0

2 3

1

4 13 12

14 1615

CoauthorWith

P
a
p
e
r

11 10

P
a
p
e
r

P
a
p
e
r

0 1

5

20

AuthorAuthor

(b) Labels in ℓ for vertices and edges. Labels do
only represent the objects’ associated types.

0

2 3

1

4 13 12

CassieNorman

name surname

14On Joining Graphs

title title

Data Mining Algebra1615

title

Object Databases

11

Abigail Conner

name surname

10

0 1

5

20

attributesattributes

(c) Labels and expressions for the attributes, that are objects containing neither
‘‘Entity’’ nor ‘‘Relationship’’ expressions. Their keys are expressed in ℓ

while their values are stored as ξ expressions.

Figure 5.4 Analysing each component in Figure 5.3 on the facing page.

136 5.3 Data model translation functions

Consequently, those sets are represented as objects providing the following collections (i.e., lists):

φ(20, “Entity”) = [0, 1] φ(20, “Relationship”) = [5]

Given that both vertices and edges are represented as objects, vertices and edges can contain other

vertices and edges, too. Moreover, those objects can contain other objects, too, such as attributes, or

the information of the edges’ source and target vertices. In particular, such nested graph contains

two authors, 0 and 1, which are coauthors. In particular, the coauthorship relation is represented by

the edge 5, which contains source and target elements as nested nodes:

ℓ(0) = [Author] = ℓ(1) ℓ(5) = [CoAuthorship]

φ(5, “src”) = [0] φ(5, “dst”) = [1]
Moreover, each vertex nests the information of the papers that have been published by the containing

author. Among this information, their names and surnames are also contained:

ℓ(2) = ℓ(3) = ℓ(4) = [Paper]

φ(0, “Entity”) = [2, 3] φ(0, “Attribute”) = [11, 10]
φ(1, “Entity”) = [3, 4] φ(0, “Attribute”) = [13, 12]

ℓ(11) = ℓ(13) = [Name] ξ(11) = [“Abigail”] ξ(13) = [“Cassie”]
ℓ(10) = ℓ(12) = [Surname] ξ(10) = [“Conner”] ξ(12) = [“Norman”]

For each paper, the title information is also provided through object containment:

ℓ(14) = ℓ(15) = ℓ(16) = [Title]

ξ(14) = [“On Joining Graphs”] ξ(15) = [“Object Databases”] ξ(16) = [“Data Mining Algebra”]

Please note that this graphical representation is verbose, and does clarify which object
is a vertex and which element is an edge only by its containment into a graph object. We
call simple vertex (simple edge) a vertex (edge) which is not a graph. A more interesting
example of Nested Graphs is going to be provided by Example 26 on page 141.

5.3 Data model translation functions

We now define the τ operators for translating some of the previous models into either
GSMs or Nested Graphs in a purely syntactic fashion, thus providing a common data
representation required by the Global as A View scenario as outlined in Equation 2.5 on
page 50. Please also note that τ cannot be represented in a fixed query language, because
it may translate any possible present (and future) data structure. For this reason, we are
going to implement τ using some generic pseudocode. This section will focus on some
τ definitions showing that the nested graph data structure allows to represent all the
aforementioned structured and semistructured representations and the GSM model.

In particular, we’re going to use the usual notation for function overriding [NNH05] that has

already been presented in Definition 23 on page 96 with the ⊕ notation. In particular, f (x) ∶= y is a

shorthand for f ⊕ [[x, y]], where [[x, y]] is the graph14 of the function {x}→ {y} mapping x into

y.

14The graph of a function is the collection of all the ordered pairs represented as a list [x, f (x)] for each
x ∈ dom(f). We will use this notation for reasons that will be clear in Section 5.1.1.1 on page 128.

5. General Semistructured Model and Nested Graphs 137

Algorithm II.4 Relational Table (τR) and Database (τDB) to GSM

1: ℓ
def
==new func. ∅→ ℘(M);

2: ξ
def
==new func. ∅→ ℘(L);

3: φ
def
==new func. ∅→N;

4:
5: function τR(r(R), ℓ, ξ, φ, seed) ∶GSM ▷ R = (A1 . . . An), seed ≥ 1

6: O
def
== { dt(seed, dt(i, j))0 ∣ 1 ≤ i ≤ ∣r∣, 1 ≤ j ≤ n }∪ {dt(seed, dt(0, 0))0}

7: ro
def
== dt(seed, dt(0, 0))0 φ(ro, “Entity”) ∶= [dt(seed, dt(i, 0))0∣1 ≤ i ≤ ∣r∣] ℓ(ro) ∶= [‘r’]

8:
9: for ti ∈ r s.t. i ≤ ∣r∣ do

10: o
def
== dt(seed, dt(i, 0))0

11: ℓ(o) ∶= [‘R’]; φ(o, “Attribute”) ∶= [dt(seed, dt(i, j))0∣1 ≤ j ≤ n]
12: for ∀Aj ∈ R do

13: ℓ(dt(seed, dt(i, j))0) ∶= [‘‘Aj’’] ξ(dt(seed, dt(i, j))0) ∶= [t[Aj]]
14: return (ro, 0, O, ℓ, ξ, φ)
15:
16: function τDB(DB, seed) ∶GSM

17: db
def
== seed; ℓ(db) ∶= [DB]; φ(db, “Entity”) ∶= [dt(i + seed, dt(i, j))0∣1 ≤ i ≤ ∣DB∣]

18: O
def
== {db}

19: for each table ri(Ri) ∈ DB ≡ { r1(R1), . . . , rn(Rn) } do

20: (ri, Oi, ℓ, ξ, φ) ∶= τR(r1(R1), ℓ, ξ, φ, i + seed)
21: O ∶= O ∪Oi

22: return (db, 0, O, ℓ, ξ, φ)

Relational Databases to GSM

We now propose two translation functions, one for transforming relational tables to GSMs,
and the other one for translating a full relational database into GSM. Such GSM are (nested)
graphs composed of entities with no relationships. Therefore, it implies that such model
can be used to represent a whole multidimensional database. For these first translation
functions we choose to translate instances of the relational model (either tables or whole
relational databases) into nested vertices (entities) belonging to one single nested object: in
Section 3.1.2 on page 59 we discussed that relations can be used to define either entities or
relationships with a semantic overload. Given that such distinction is model dependant, we
leave to the single user the definition of a function that translates such GSM into a faithful
representation of the ER model. Algorithm II.4 provides at line 5 the associated τR function
returning a GSM for each relation table r(R). In particular, the seed argument is required
for generating new elements with distinct ids. For each table r(R) with schema R, we want
to return an object for each tuple in t, nesting other vertices which provide the information
stored inside each field. Each object obtained from the relation is marked with the label
representing the relation name R (line 11), while any other object representing a field for
the attribute Aj has Aj as a label, and stores its value into the ξ function (line 13). The τDB

translation function (line 16) provides a representation for a whole database DB using τR

for all the intermediate results (line 20), where each table is now represented as one single
object, nesting the contents of all of its tables.

138 5.3 Data model translation functions

Algorithm II.5 Semistructured (XML) to GSM
1: function τXML(rootXML, seed) ∶GSM

2: V ∶= { 0 }
3: ℓ

def
==new func. ∅→ ℘(M);

4: ξ
def
==new func. ∅→ ℘(L);

5: φ
def
==new func. ∅→N;

6: ṽ = recursiveXML(rootXML,∅, ℓ, ξ, φ, [1])
7: return (ṽ, 0, V, ℓ, ξ, φ)
8:
9: procedure recursiveXML(elementXML, V, ℓ, ξ, φ, list, seed)

10: v
def
== (dt(seed, dt(dtl(list), 0)))0; V ∶= V ∪ {v}

11: if elementXML.isTag() then

12: ℓ(v) ∶= { elementXML.tag }
13: for ⟨key, value⟩j ∈ attributes(elementXML) do

14: vk
def
== (dt(seed, dt(dtl(list), j)))0

15: V ∶= V ∪ {vk}; φ(v, “Attribute”) ∶= φ(v, “Attribute”)∪ {vk}
16: ℓ(vk) ∶= { key }
17: ξ(vk) ∶= { value }
18: for childj ∈ children(elementXML) do

19: ⊳ h ∶∶ t defines a list where h is the head and t is its tail or rest.
20: ṽ = recursiveXML(childj, j ∶∶ list)
21: V ∶= V ∪ {ṽ}; φ(v, “Tag”) ∶= φ(v, “Tag”)∪ {ṽ}
22: else

23: ℓ(v) ∶= { “Text” }
24: ξ(v) ∶= { elementXML.getText() }
25: return v

XML to GSM

Similarly to relational databases, semistructured models have no clear distinction between
entities and relationships in their characterization. Moreover, such representations may
represent graph entities and relationships using different schemas (see Section 5.4.2 on
page 143). As an example for semistructured data, we use the XML model. Please note
that a JSON document can be trivially transformed into an XML and hence they may
share the same τXML operator. Similar considerations can be formulated for the nested
relational model, or document oriented. We translate XML documents into a GSM, which
object containments represent the document’s root. We leave to the user the definition of
domain specific functions performing a proper translation according to the data’s schema.
Algorithm II.5 provides the desired transformation: in particular, each tag node or attribute

or text is associated to an unique identifier (line 10) and are contained in collections within
different properties, where each object is distinguished by its label (respectively lines 12,
16 and 23). Moreover, expression functions ξ are used to store only the associated values
for both attributes’ values (line 17) and text nodes content (line 24). The indices that will
be associated to each nested component will use the usual XML tree indexing function
[LZ16] associating to each element a list of identifiers. Such list can then be mapped into
one single number (respectively line 21, 15 and again 21) via the dtl function (line 14, see
Equation 5.4 on page 132).

5. General Semistructured Model and Nested Graphs 139

Algorithm II.6 EPGM to Nested Graph

1: function τEPGM(V, E, L, K, T, A, λ̃, φ, ω, κ, seed) ∶N

2: g
def
== dt(seed, dtl(V))0

3: φ ′(g, “Entity”) ∶= [dt(seed, dt(i, 0))0∣i ∈ V ∪ L]
4: φ ′(g, “Relationship”) ∶= [dt(seed, dt(i, o))0∣i ∈ E]
5: O ∶= { (dt(seed, dt(i, 0)))0 ∣ i ∈ V ∪ E ∪ L }∪ { g }
6: for each i ∈ V ∪ E ∪ L do

7: j
def
== (dt(seed, dt(i, 0)))0; φ ′(j) ∶= []

8: ℓ(j) ∶= [κ(i, τ)]
9: for each k ∈ K s.t. κ(i, k) ≠ NULL do

10: h
def
== (dt(seed, dt(i, bin(k)+ 1)))0; ℓ(h) ∶= [k]; ξ(h) ∶= [κ(i, k)]

11: φ ′(j, “Attribute”) ∶= φ ′(j, “Attribute”)∪ [h]
12: O ∶= O ∪ φ(j)
13: for each l ∈ L do

14: φ ′((dt(seed, dt(l, 0)))0, “Entity”) ∶= [(dt(seed, dt(i, 0)))0∣i ∈ φ(l)]
15: φ ′((dt(seed, dt(l, 0)))0, “Relationship”) ∶= [(dt(seed, dt(i, 0)))0∣i ∈ ω(l)]
16: for each e ∈ E do

17: (s, t) def
== λ(e)

18: ξ((dt(seed, dt(e, 0)))0, “src”) ∶= [(dt(seed, dt(s, 0)))0]
19: ξ((dt(seed, dt(e, 0)))0, “dst”) ∶= [(dt(seed, dt(t, 0)))0]
20: return (g, O, λ, ℓ, ξ, φ ′)

EPGM to Nested Graph

Among all the property graph generalizations, we choose to provide a transformation
between EPGM graphs to Nested Graphs because EPGM extends the property graph
model with logical graphs. Algorithm II.6 provides the desired transformation to nested
graphs. Each vertex is transformed into an “Entity”object (line 3) and each edge into a
“Relationship”one (line 4). In order to overcome the limitations of the EPGM model, we
decide to represent each logical graph as an “Entity”containing all the “Entity”(ies) in φ

(line 14) and “Relationship”-s in ω (line 15) as nested components ϕ. Even in this case, each
property value association κ (except from the labels τ) for vertices, edges and logical graphs
(line 6) are mapped as nested objects which are neither “Entity”(ies) nor “Relationship”-s
(line 9).

5.4 Use Cases

This section will show how our proposed graph data structure can be used in different
context and scenarios. We’re going to show how nested graphs can be used to represent part-

of aggregations (Subsection 5.4.1) and how such data structures can be usefully used during
the alignment operations (Subsection 5.4.2 on page 143). The usage of is-a aggregations
requires to explicitly use some query languages operators, and hence this other aggregation
is going to be discussed in Section 6.3.3 on page 182.

5.4.1 Representing part-of aggregations

In the following example, we will focus on a social network use cases: we will see how a
graph data representation within this model can express both aggregation that are specific
to both semi-structured and relational nested models, and graphs.

140 5.4 Use Cases

User

Name : Abigail

Surname : Jones

1

User

Name : Baldwin

Surname : Smith

5

User

Name : Caitlin

Surname : Abbott
2

User

Name : Damon

Surname : Brent
7

User

Name : Ella

Surname : Chester
6

User

Name : Francis

Surname : Bloxam
4

User

Name : Francis

Surname : McKellar
3

Follows

Fol
low
sFollows

Follows

F
o
l
l
o
w
s

Follows

F
o
l
l
o
w
s

Follows

Follows Follows

(a) Example of a social network within the
nested model: when no nesting is preformed,
it appears as a usual property graph

1 5

62

7 4 3

20

21
22

23

2
425

2
6

27

2928

50

(b) Example of nested representation of the
social network data, where the whole original
graph data is deliberately nested inside one
vertex.

User

Name : Abigail

Surname : Jones

1

User

Name : Baldwin

Surname : Smith

5

User

Name : Caitlin

Surname : Abbott
2

User

Name : Damon

Surname : Brent
7

User

Name : Ella

Surname : Chester
6

User

Name : Francis

Surname : Bloxam
4

User

Name : Francis

Surname : McKellar
3

Follows

Fol
low
sFollows

Follows

F
o
l
l
o
w
s

Follows

F
o
l
l
o
w
s

Follows

Follows Follows

(c) Overlapping the extracted collection of
communities on top of the original social net-
work data.

1 5

62

7 4 3

20

21
22

23

2
425

2
6

27

2928

50

60

98 10

(d) Nested representation of the communities
extracted on top of the original data.

Community

UserCount : 5

8

Community

UserCount : 3

9

Community

UserCount : 3

10

User

Name : Damon
Surname : Brent

7

F
o
l
l
o
w
s

Follows

Follows

Follows

Follows F
o
l
l
o
w
s

F
o
l
l
o
w
s

(e) Aggregated representation of the com-
munities, aggregated by the COUNT function
over the vertices.

1 5

62

7 4 3

20

21
22

23

2
425

2
6

27

2928

50

60

98 10

70

30 31

32 33

34

(f) Nested representation of the nested com-
munities on top of the data graph.

Figure 5.5 An example of part-of aggregation within a Social Network. As we can see from
the representation, property graphs cannot express the nested components. In order to ease the
representation of nested graphs, edges are depicted as arcs instead of objects.

5. General Semistructured Model and Nested Graphs 141

▸ Example 26. Suppose to have asocial network graph containing millions of users, thus making

impossible to visually represent the interactions happening within our data. An aggregation of

this data helps us to reduce the amount of informations, and hence makes us better understand the

connections within the graph. Figure 5.5a represents the initial non-aggregated nested graph: given

that it does not contain any nested component, it appears as an usual property graph. This graph

can be expressed by our data model sketched in Figure 5.5b as follows:

SN = (50,{ 1, . . . , 7, 20, . . . , 29, 50, 101, . . . , 107, 111, . . . , 117 } , ℓ, λ, ξ, φ)
φ(50, “Entity”) = [1, . . . , 7] φ(50, “Relationship”) = [20, . . . , 29]

∀1 ≤ v ≤ 7.ℓ(v) = [User]

φ(1, “Attribute”) = [101, 111]
ℓ(101) = [Name] ξ(101) = [“Abigail”] ℓ(111) = [Surname] ξ(111) = [“Jones”]

φ(2, “Attribute”) = [102, 112]
ℓ(102) = [Name] ξ(102) = [“Caitlin”] ℓ(112) = [Surname] ξ(112) = [“Abbott”]

φ(3, “Attribute”) = [103, 113]
ℓ(103) = [Name] ξ(103) = [“Francis”] ℓ(113) = [Surname] ξ(113) = [“McKellar”]

φ(4, “Attribute”) = [104, 114]
ℓ(104) = [Name] ξ(104) = [“Francis”] ℓ(114) = [Surname] ξ(114) = [“Bloxam”]

φ(5, “Attribute”) = [105, 115]
ℓ(105) = [Name] ξ(105) = [“Baldwin”] ℓ(115) = [Surname] ξ(115) = [“Smith”]

φ(6, “Attribute”) = [106, 116]
ℓ(106) = [Name] ξ(106) = [“Ella”] ℓ(116) = [Surname] ξ(116) = [“Chester”]

φ(7, “Attribute”) = [107, 117]
ℓ(107) = [Name] ξ(107) = [“Damon”] ℓ(117) = [Surname] ξ(117) = [“Brent”]

∀20 ≤ e ≤ 29.ℓ(e) = [Follows]
φ(20, “src”) = [5] φ(20, “dst”) = [1] φ(21, “src”) = [5] φ(21, “dst”) = [6]
φ(22, “src”) = [6] φ(22, “dst”) = [1] φ(23, “src”) = [3] φ(23, “dst”) = [6]
φ(24, “src”) = [3] φ(24, “dst”) = [5] φ(25, “src”) = [1] φ(25, “dst”) = [3]
φ(26, “src”) = [2] φ(26, “dst”) = [1] φ(27, “src”) = [2] φ(27, “dst”) = [4]
φ(28, “src”) = [4] φ(28, “dst”) = [7] φ(29, “src”) = [3] φ(29, “dst”) = [4]

Please note that vertex 50 actually nests a full representation of a graph and consequently, we have

that each vertex or edge may nest a whole graph within φ.

142 5.4 Use Cases

By using community detection algorithms, we extract a set of graph collections in polynomial

time with respect to the data size [vDAG12], where some overlaps between communities may be

present. Figure 5.5c presents such extracted communities as shaded areas on top of the original data

sources: please note that the property graph model does not allow to represent such communities

inside the same given graph. This problem can be overcome by our proposed data structure as showed

in Figure 5.5d on page 140: each community, marked with a different colour, is nested inside one

given object. In particular we have that:

φ(8, “Entity”) = [1, 2, 3, 4, 6] φ(8, “Relationship”) = [22, 23, 25, 26, 27, 29]
φ(9, “Entity”) = [1, 5, 6] φ(9, “Relationship”) = [20, 21, 22]

φ(10, “Entity”) = [3, 5, 6] φ(10, “Relationship”) = [21, 23, 24]
As we can see from the same picture, we can create a graph collection by creating another object

including the three objects nesting the communities:

ℓ(60) = { Communities’Collection } φ(60, “Entity”) = [8, 9, 10]

The aggregation function evaluating how many users are contained within the community can be

expressed with a script expression as follows:

ℓ(8) = ℓ(9) = ℓ(10) = {Community,UserCount}

ξ(8) = ξ(9) = ξ(10) = [“0+(o.phi ["Entity"])”]
Please observe that each expression in ξ(o) is going to be evaluated by choosing “o” as o.

As a result, we would like to summarise each component as a single vertex containing all the

vertices and edges describing the communities, as represented by Figure 5.5e, where only the result

of the aggregation is provided. Given the outline provided by the former example, it is easy to define

a preliminary algorithm that takes both the outcome of the community detection algorithm and the

social network graph, and aggregates each community as a single vertex: (a) given a graph with

its vertex set V, return as V ′ the vertices that do not appear within any detected community, (b)

alongside with the aggregated representation of each community. As a result of this vertex creation

phase, vertices 8, 9 and 10 are selected alongside with 7, which does not belong to any community.

As a result we have that:

φ(70, “Entity”) = [7, 8, 9, 10]
In a later step, we must also define the criteria by which we have to generate the edges among the

V ′ returned vertices. In particular, we must consider that new edges may occur between vertices

where: (i) source comes from phase (a) and targets from (b) (or vice versa), (ii) or if vertices from

phase (a) are linked to at least one vertex appear inside an aggregated component from (b) (or vice

versa), (iii) or even if one vertex from phase (b) contains a vertex that is linked to another vertex

represented inside an aggregated component from (b). If we want to simply establish a link for all

the aforementioned cases, then the result can be modelled within our nested graph definition.

The result of such aggregation is depicted by the nested element 70, containing both the vertices

and the edges extracted following the previous sketched algorithm.

φ(70, “Relationship”) = [30, 31, 32, 33, 34]

Given that edges can also contain graph nested components, we could also decide
that each edge obtained after the vertex aggregation phase can show how many users
(vertices) are shared between the two communities and provide which vertices and edges

5. General Semistructured Model and Nested Graphs 143

from the source and target communities allowed the creation of the new link. As we
can observe from this latter description, we have that the graph collections required to
perform the nesting can be returned by an external algorithm, while the link creation
process can be derived from a previous pattern matching process on top of the previously
vertex aggregated data. On the other hand, since current graph traversal and graph pattern
matching languages do not formally support nested graphs, it is impossible to use currently
implemented languages to express the vertex containment. On the next chapter we will
then discuss on the features that are required by the graph query languages on top of this
novel data structure.

5.4.2 Graph ETL and Ϙ
ϛ(–)
α(Di),H(α(Di)): the Transformation phase

Despite the attempts of defining graph data warehouses [EV12a, EV12c, ZLXH11], a com-
plete outline of graph ETLs is still missing, that is the process of integrating multiple
heterogeneous graph data sources into one final graph [CYZ+08]. All the required compon-
ents for such process are already described in literature, and consists into two main phases,
called transformation and loading. From the following definition it will be also evident
that usually ETLs use a different sequence of operations than the one prospected by the
previous GAV approach. Nevertheless, we’re going to walk in the footsteps of GAV, as it
provides a better formal approach.

Concerning the transformation phase, we first have to transform our data into a common
representation. After doing so, we can clean data (ν≅) and resolve all the ambiguities
[Rah16]. Then, we consider the informative need of the user expressed through a hub
schema (called “conceptual graph model” in Data Warehouse contexts [JFL15]), expressing
the graph schema to which the final graph must be compliant with. This graph schema,
expressed as a graph pattern query, is used for aligning each graph data source [AGG+15]
over a same representation through either approximate pattern matching [DVMT15] or
the aforementioned Ϙ operator. After the alignment phase, the data sources are finally
transformed to match the alignment schema.

In the loading phase, the graphs resulting from the previous phase are integrated into
one final graph. As a consequence, the generalization of graph joins with disjunctive
semantics in full graph joins is required. Nevertheless, graph joins are not flexible enough
within a general data integration scanario. We will continue such discussion in Section 7.1.1
on page 199.

This section will focus on one possible definition of the Ϙ operator, Ϙ Ϙ
ϛ(–)
α(Di),H(α(Di)),

within the data transformation phase embedding an alignment transcoding step ϛ: by doing
so we show that GSM provides a common representation for comparing semistructured data
in JSON and graphs through the definition of correspondences, and describe how the result
of the alignment can be differently interpreted with respect to the different information
need. Another definition of such operator within our proposed query language (defined
as a generalization of the graph grammar approach) is going to be described on the next
chapter at Section 6.3.4 on page 183.

After introducing the graphs as data structures on which we mined the correspondences
for the alignment, we now want to generalize the data integration approach for semis-
tructured data and choose to integrate them into graphs. This time we will not integrate
semistructured data using merged schema between the two sources as in Section 2.1.2 on
page 21, but we will use a graph of choice as a target schema, thus resembling more what
it has been outlined for Ϙ in the LAV/GAV scenario.

144 5.4 Use Cases

Author

name: Str

surname: Str

Paper

title: Str

source

Authorship

target

(a) Property graph representation.

0 1

12

title

Str

Author

source

Paper

Authorship

11

name surname

Str

10

Str

target

5

 *

graph

relationship

entity

(b) Nested graph representation.

Figure 5.6 Representation of the hub schema providing the final desired representation of the
JSON files after the alignment phase.

In order to simplify the more general problem, we will use as input JSON (semis-
tructured) data representing graphs using two different kinds of schemas. We use some
notation that was already introduced during the formalization of schema correspondences
and data modelling (Section 2.2.1 on page 34). In particular, we will start to analyse the
data alignment applied to data provided with different non-GSM representation, both as
inputs and outputs.

▸ Example 27. Suppose to have two bibliographic networks represented as bipartite graphs in

JSON files using different schemas (see Example 7 on page 41): we now want to integrate them

into one final single graph. Such formats are provided in Figure 5.7 (g for short) and Figure 5.8

(g ′ for short). Their respective schemas α(g) and α(g ′) are provided in Figure 5.9, using the same

syntax adopted in the previous introductory examples. As in the Data Warehouse scenario, the

querying user provides the hub schema [GHKR11, HGR13] in Figure 5.6a as a property graph:

such schema already provides which fields shall be contained by the vertices, and which are the labels

to be associated to authors, papers and edges connecting them. All the possible data sources must be

mapped to this hub schema and then aligned towards it [ES13]. Thus correspondences will tell how

to transform the data source instance into the global schema definition, thus completing the data

integration task.

Now we should consider if the schema extraction α from data sources jointly with the usual

data structures represented in a non uniform representation (JSON data and graph schema), can be

5. General Semistructured Model and Nested Graphs 145

{ "graph": {

"nodes": [{

"id": "0", "label": "Author",

"metadata": { "name": "Abigail", "surname": "Conner" }

},{

"id": "1", "label": "Author",

"metadata": { "name": "Cassie", "surname": "Norman" }

},{

"id": "2", "label": "Author",

"metadata": { "name": "Baldwin", "surname": "Oliver" }

},{

"id": "3", "label": "Paper",

"metadata": { "title": "On␣Joining␣Graphs" }

},{

"id": "4", "label": "Paper",

"metadata": { "title": "Object␣Databases" }

},{

"id": "5", "label": "Paper",

"metadata": { "title": "On␣Nesting␣Graphs" }

}],

"edges": [{

"id": "6", "label": "AuthorOf",

"source": "0", "target": "3",

"metadata": {}

},{

"id": "7", "label": "AuthorOf",

"source": "1", "target": "3",

"metadata": {}

},{

"id": "8", "label": "AuthorOf",

"source": "1", "target": "4",

"metadata": {}

},{

"id": "9", "label": "AuthorOf",

"source": "2", "target": "4",

"metadata": {}

},{

"id": "10", "label": "AuthorOf",

"source": "2", "target": "5",

"metadata": {}

}]

}

}

Figure 5.7 JSON representation g of the graph presented in Figure 2.17a using the JSON Graph
Format. http://jsongraphformat.info/

http://jsongraphformat.info/

146 5.4 Use Cases

[

{ "id":"0",

"data":{ "name": "Abigail", "surname": "Conner" },

"meta":{"label":"Author","graphs":["11"]}

},{

"id":"1",

"data":{ "name": "Cassie", "surname": "Norman" },

"meta":{"label":"Author","graphs":["11"]}

},{

"id":"2",

"data":{ "name": "Baldwin", "surname": "Oliver" },

"meta":{"label":"Author","graphs":["11"]}

},{

"id":"3",

"data":{ "title": "On␣Joining␣Graphs" },

"meta":{"label":"Paper","graphs":["11"]}

},{

"id":"4",

"data": { "title": "Object␣Databases" },

"meta":{"label":"Paper","graphs":["11"]}

},{

"id":"5",

"data":{ "title": "On␣Nesting␣Graphs" },

"meta":{"label":"Paper","graphs":["11"]}

}

]

(a) Vertex representation, v ′. Instead of representing both field “name” and “sur-
name, in this case we provide a “fullname” field for data integration explanatory
reasons.

[

{ "id":"6", "source":"0", "destination":"3",

"data":{},

"meta":{"label":"AuthorOf","graphs":["11"]}

},{

"id":"7", "source":"1", "destination":"3",

"data":{},

"meta":{"label":"AuthorOf","graphs":["11"]}

},{

"id":"8", "source":"1", "destination":"4",

"data":{},

"meta":{"label":"AuthorOf","graphs":["11"]}

},{

"id":"9","source":"2","destination":"4",

"data":{},

"meta":{"label":"AuthorOf","graphs":["11"]}

},{

"id":"10","source":"2","destination":"3",

"data":{},

"meta":{"label":"AuthorOf","graphs":["11"]}

}

]

(b) Edge representation, e ′. The original tag “target” is here repres-
ented with the name “destination” for data integration explanatory
reasons.

Figure 5.8 JSON representation g ′ = (v ′, e ′) of the graph presented in Figure 2.17a using the
GRADOOP JSON format http://gradoop.org/, where vertices and edes are represented in different
files.

http://gradoop.org/

5. General Semistructured Model and Nested Graphs 147

{ graph: { nodes: [({ id: Str ,

label: Str ,

metadata: { name: Str , surname: Str} +

{ title: Str }

})*],

edges: [({ id: Str ,

label: Str ,

source: Str ,

target: Str ,

metadata: {}

})*],

}

}

(a) Schema α(g) associated to the g representation in Figure 5.7

[{ id: Str ,

data: { fullname: Str} + { title: Str},

meta: { label: Str ,

graphs: [Str*]

}

}*]

(b) Schema α(v ′) associated to the v ′ representation in Figure 5.8a

[{ id: Str ,

data: {},

source: Str ,

destination: Str ,

meta: { label: Str ,

graphs: [Str*]

}

}*]

(c) Schema α(e ′) associated to the e ′ representation in Figure 5.8b

Figure 5.9 Extracting the schema associated to the JSON files representing some graphs. The
same syntax of [BLC+17] is adopted.

148 5.4 Use Cases

supported by one single DBMS with one single query language. This example will show that the

proposed data models are not able to draw correspondences between some internal representation

components, such as single values or attributes. Since the correspondence of the Authorship edge

depends on the prior correspondence of the entities Author and Paper, we must resolve the latter

first, and the former in a subsequent step. For the moment, let us focus on the correspondences

between α(g) and the hub schema, with respect to the nodes’ information: α(g) tells us that the

field metadata contains either the authors’ information (name and surname appear in one option)

or the paper’s information (title appears as the other alternative). Even if this solution could

be considered valid for distinguishing authors from papers papers within the data source (those

elements are fully described by such disjunct set of attributes), in some real cases the dependency

between the label and the contained attribute-value association could be helpful to distinguish the

most relevant correspondence [oRD12]. Since the information of such labels is lost in the schema

extraction process because the label is expressed as a value, we must extend the schema with some

inference rules, thus allowing to define a complete ontology describing the data:

if (graph.nodes.metadata : {name: Str , surname: Str}) then

(label : Str) = "Author"

else

(label : Str) = "Paper"

Such rules could be extracted using associative rules [TSK05] but can be represented by neither the

schemas nor the data sources. This extension is although required because it is also impossible to

draw correspondences as edges between the hub schema’s attributes (belonging to either Author or

Paper) and the fields of the JSON format. This is also true because, in traditional property graphs,

attributes cannot be connected to other components via edges. Given that edges may contain other

properties, this problem will be also be present in the edge alignment phase.

Let us move on and discuss the relationship alignment phase. The hub ontology already tells that

an Authorship relation associates an Author (source) to a Paper (target). We now want to match

such definition for the edges contained in the JSON representation g: even in this case an edge has a

field called source and target as in the hub schema, but within our JSON representation source

and target do not explicitly syntactically refer to a vertex, because source and target information

is represented as a string (Str). Even if we stopped the analysis at this point, we would notice that

it is impossible to draw scuh correspondences as an “edge” between the edge’s source within the hub

schema and any object represented in α(g). Even in this case, we must represent correspondences at

a metalevel because no direct data manipulation is possible in practice.

Let us continue to draw correspondences at the meta level. Our data integration system already

knows that Author and Paper in the hub schema are “Entity”(ies), and that Authorship is an edge

connecting a vertex of the first type to a vertex of the latter. We can also freely assume that an

internal dictionary will tell the system that target and destination are synonyms and that they

both refer to edges. Similar considerations could be done for α(g), where only the edges field will be

detected as containing a collection of edges. At this point, a word ontology such as Babelnet [NP12a]

could tell that the term Authorship is related to the term AuthorOf used in g representing an edge.

Moreover, such JSON edges have a field called source and target, and hence there should be a

correspondence between the JSON AuthorOf and the final graph Authorship edges, e.g. remarked

by an i variable:

graph.edges[i] : {source: Str , target: Str , label: Str , . . .}
graph.edges[i].label = "AuthorOf"

Moreover, with the previous alignment phase we also have found that Author and Paper are nodes,

and then there should also be a correspondence between source and target as follows:

5. General Semistructured Model and Nested Graphs 149

 4

0

id label

 5

Author

 6

metadata

 7

Abigail Conner

name surname

 8

 10

3

id label

 11

Paper

 12

metadata

 13

On Joining Graphs

title

 3 9

 1

nodes

 2

60

 61

id label

62

6 AuthorOf

 63

source target

 64

0 3

edges

 0

graph

 5 Schema Matched Element

 10 Extended Ontology Matched Element

Legend

(a) GSM representation of a subset of the g JSON graph represented in Figure 5.7 on page 145.

 4

id

 5

Author

 6

⋆
 7⋆ ⋆

name surname

 8

 10

⋆id ⋆ 11

Paper

 12

⋆
 13⋆
title

 3 9

 1

nodes

 2

14

 15

id

16

AuthorOf

 17

source target

 18

edges

 0

graph

(b) Schema extracted from the aggregation over the schema components found in the former GSM
representation. Stars represent placeholders for the underlying data that has been ignore in the
schema generation phase.

Figure 5.10 Manipulation of the JSON data for schema extraction.

150 5.4 Use Cases

graph.nodes[source] : {label: Str , . . .}
graph.nodes[source].label = "Author"

graph.nodes[target] : {label: Str , . . .}
graph.nodes[target]. label = "Paper"

In order to close the correspondence diagram, now we only have to detect which is the correspondence

within the hierarchy associating each edge to a vertex: this could be done as previously through the

extraction of associative rules, and hence we could determine that source and target within g must

refer to the nodes’ id-s, thus allowing to extend the general edge rule as follows:

graph.edges[i] : {source: Str , target: Str , label: Str , . . .}
graph.edges[i].label = "AuthorOf"

graph.edges[i]. source = source

graph.edges[i]. target = target

We completed the alignment process via the enrichment of the hub schema through the extraction

of associative rules. At this stage the alignment of g with the hub schema is completed, and then

we can use such correspondences to perform the sources’ translation towards the hub schema

representation. ◂

After describing how to carry out the data alignment within these two different data
models (JSON and property graphs), we want to show how the previous data alignment
process can be defined without any additional meta-level information by using GSM, which
allows to represent both alignments and schemas. While in the previous example we
needed to express further predicates and association rules in a distinct layer different from
the data representation, in this incoming example such correspondences (morphisms) are
going to be expressed through an edge representation as introduced in Definition 18 on
page 77. If we want to create (hyper)edges having as targets the objects o in the pattern P

and as sources one of the objects ⋃ fi∈mP(ï) fi(o) in ï, such edges can be represented via the
following object set:

wm,P,ï(o) = { eoo ′ ∣ fi ∈ mP(ï) ⇒ φ(eoo ′ , “src”) = f (o)∧ φ(eoo ′ , “dst”) = [o] }
On the other hand, the function providing all the edges from the ï data source towards the
matched object in P is defined as follows:

ûm,P,ï(o ′) = { eoo ′ ∣ fi ∈ mP(ï), o ′ ∈ fi(o)⇒ φ(eoo ′ , “src”) = [o ′] ∧ φ(eoo ′ , “dst”) = [o] }

In the next example we are going to focus on how such data structures can support
correspondences’ transcodings, while Chapter 7 will show how to instantiate and transform
the matched parts after the definition of a query language over such data structures.
Appendix A on page 225 provides the full source code describing the following example.

▸ Example 27 (continuing from p. 144). We now must translate the hub schema into a nested

graph representation as in Figure 5.6b on page 144. This other representation explicitly tells us

that “Relationship”s have structural dependencies on “Entity”(ies), because each edge contains the

information for the vertices. Hereby, the implication “entities must be reconstructed before the edges”

comes for free from the traversal of the hub schema itself. Therefore, the schema alignment can be

carried out by extracting the data’s schema from the GSM-translated representation of the JSON

objects: in particular, we can first perform a linear scan of the data (Figure 5.10a on the preceding

page) where the key elements of interest of the hub schema are selected (in magenta) alongside with

5. General Semistructured Model and Nested Graphs 151

other relevant terms (in orange). Then again, we aggregate each object in the data structure by

the hub schema elements matched by each object, and hence we obtain the schema in Figure 5.10b.

Please note that the outline of the abstraction function α1 extracting the schema from the data acts

similarly to the aggregation operator15, and then new edge morphisms in w⋆,α1(g),g are generated:

in particular, ⋆ represents an arbitrary summarized value that can be induced by the aggregation

α1(g) of the input data (g); moreover, α1(g) actually represents the schema for g as required in the

previous examples. This means that GSM, as well as graphs semistructured data representations,

allow to represent Data g and Model α1(g) at the same representation level.

After “aligning” the data object g to the source schema ones α1(g) obtained through aggregations

of the objects in g, we want to continue with the (proper) schema alignment phase between the

source schema and the elected hub schema: Figure 5.11a on the next page shows a traditional

way to compare schemas, where correspondent entities are matched (even with this case) with

an edge. Please also note that edges may be represented as nested graphs’ edges and hence as

objects even though, for representational ease, we distinguish such objects from the schema ones by

representing them as arcs, similarly to what we did in the previous social network scenario. This

schema matching representation must distinguish16 the correspondences’ edges in two main types:

(1) orange dashed edges remark “ℓ”-matches that are objects containing similar (or identical) labels,

and (2) black uniform edges remark “ξ”-matches establishing correspondences between objects õ in

the source schema and hub schema objects õ ′, appearing similar “constrainable values” according to

a similarity predicate ϑ; in particular the constrainable values are contained by either ξ functions

(e.g., a ∈ ξ(õ) and a ′ ∈ ξ(õ ′)) or the attribute through which the object is contained via φ (e.g.,

a ∈ { p ∣ ∃o ′.õ ∈ φ(o ′, p) } and a ′ ∈ { p ′ ∣ ∃o ′.õ ′ ∈ φ(o ′, p ′) }). All the black arrows showed in

Figure 5.11 on the following page belong to such second scenarios, because the “source” and “target”

values appearing in the source schema match with the containment attribute on the hub schema.

Therefore, we can define the set of all the ξ-constrainable values appearing at a maximum17 height δ

from o as follows:

cvδ(o) def== ξ(o) ∪ { a ∣ ∃o ′.o ∈ φ(o ′, a) } ∪ ⋃
o ′∈ϕδ(o)

cv(o ′)

over which we can define our desired notion of object similarity over constrainable values18 via a

similarity predicate ϑ:

cvδ,ϑ(o, o ′)⇔ ∃a ∈ cvδ(o).∃a ′ ∈ cvδ(o ′).ϑ(a, a ′)
While the “ℓ”-matches identify the possible translation of an entity in two different representa-

tions by comparing the Model pieces of information, the “ξ”-matches identify the constraints that

must be preserved in the transformation phase. Please also note that these considerations are valid if

the data of choice represents the objects’ types through ℓ, and values or constraints through ξ-s.

We can now observe that such “raw” correspondences can be refined by transforming them with ⊲ Alignment’s
refinement

15This operation will be formalized as a derivate GSQL operator at page 170. We can also think that the
final id of the aggregated components depends on the list dovetailing dtl of all the elements that have been
aggregated, thus easing the subsequent transformation phase by reducing the visit time of the data data
structure.

16Such distinction, which is self-evident during the match creation phase, can be saved (e.g.) by storing
the correspondences in different collections of a same object ω; as an example φ(ω, “ell”) and φ(ω, “xi”)
containments may collect these two types of correspondences.

17See line 192 at Appendix A.
18See line 215 at Appendix A.

152 5.4 Use Cases

0 1

12

title

Str

Author

source

Paper

Authorship

11

name surname

Str

10

Str

target

 4

id

 5 6 10

id

 11

Paper

 12

 13

title

 3 9

 1

nodes

 2

14

 15

id

16

AuthorOf

 17

source target

 18

edges

 0

graph

 7

name

surname 8

Author

5

 *

graph

relationship

entity

(a) Preliminar alignments (sketched as edges instead of objects in order to distinguish the two
representations) based on either ontology or word similarity.

0 1

12

title

Str

Author

source

Paper

Authorship

11

name surname

Str

10

Str

target

 4

id

 5 6 10

id

 11

Paper

 12

 13

title

 3 9

 1

nodes

 2

14

 15

id

16

AuthorOf

 17

source target

 18

edges

 0

graph

 7

name

surname 8

Author

5

 *

graph

relationship

entity

(b) Refactoring the previous alignments by comparing the depth of where such elements are located.

Figure 5.11 Depicting two distinct phases of the entity alignments. Both the ξ (dashed and in
orange) and ℓ alignments (in a black continuous line) are represented as object in order to visually
distinguish them from the source (on the right) and hub schema (on the left) objects.

a ϛ: while in the hub schema the Author node contains the attributes name and surname, in the data

schema we have that the latter information is contained in a sibling object; therefore, the previous

correspondences need to be post-processed to match each element of the hub schema with the coarsest

representation within the data model. Therefore, we must reconcile each ℓ-correspondence to the

nearest ξ-correspondence, so that the reconciliation of the schema corresponding objects (happening

on the next phase) will be eased. This ϛ process can be carried out with a depth postVisit19 of the

hub schema starting from its reference object, where the following operations are performed over the

object o:

19See line 469 at Appendix A.

5. General Semistructured Model and Nested Graphs 153

If the current element o represents a leaf, no transformation occurs.

Otherwise, after performing the preVisit20 on all the contents in ϕ(o), update the correspondences

having o as a target, so that they are mapped to the α1(g) coarser representation describing o

and ϕ(o). This post condition is satisfied by the following procedure:

Given T the set of the ℓ-matched having their targets {o} ∪ φ(o) in the hub schema, let S be

the set of their sources in the source schema (S
def== ⋃t∈T φ(t, “src”)), we want to select the set

of strongly nested object-set with respect to ϕ∗(S), that is ϕ∗(S) itself by definition. Now, we

group all the correspondences in T by their sources’ membership to a specific element a ∈ ϕ∗(S),
that is:

TS
def== { { t ∈ T ∣ a ∈ φ(t, “src”) } ∣ a ∈ ϕ∗(S) }

From each non empty collection c ∈ TS, choose just one ℓ-match tc ∈ c having a target object otc
dst

(e.g., otc
dst

∈ φ(tc, “src”)) maximizing the absolute relative height rh over o ′ ∈ {o} ∪ ϕ(o):
tc

def== arg max t∈c,
t∈φ(ω,“ell”)

{ rh(o ′, õ) ∣ õ ∈ φ(t, “dst”), o ′ ∈ {o} ∪ ϕ(o) }
Last, update tc’s source to the common ancestor(s) of both ℓ and ξ matches originating (i.e.,

having their sources) in φ(ac), where ac ∈ φ(tc, “src”).
Figure 5.11b depitcs the outcome of such process: while the matches over leaf objects subsume no

refactoring, the others are refactored; for example, the Author element in the hub schema perfectly

matches with the author representation within the nodes collections. Similar considerations can be

carried out for the edges.

After consolidating the ℓ-correspondences, we want to resolve both the morphisms and the

alignment transformation by associating the data objects to the hub schema. Please note that the

association of the results is only a preliminary step leading to the schema instantiation into some

actual data. Such final process is going to be discussed in more detail in the next chapter with the

help of GSQL, an ad hoc query language for GSM data representations.

At this point, we must ask ourselves how to traverse both schemas, hub and source, in order to ⊲ Associating
the data to the
hub schema

associate the data objects to the final representation (similarly to the Pop illustrated in Section 3.1.1.1

on page 58): this can be carried out by both traversing the schemas’ alignment and the morphisms

linking the data to its schema representation. This operation can be carried out using a postVisit 21

over the hub schema objects, starting from the reference object.

For each currently visited object ω, postVisit22 the contained objects ϕ(ω) first; the contents

are accessed by ordering them from the highest one with respect to the definition of ho. For each

visited object oi ∈ ϕ(ω), the complete list of associations Ioi
is going to be returned23; each list Ioi

has an associated schema Soi
, which is a list of objects in the source schema to which oi corresponds

via ℓ-correspondences and subsequent refinements (Soi
= { ιi1 , . . . , ιim }); consequently, each element

a ∈ Ioi
is a list of lists a = { λa

i1
, . . . , λa

im
} where λa

ij
is a list of data objects corresponding to an object

ιij
via the morphism24 ιij

→ λa
ij

. In order to use such λa
ij

as constraints for the objects associated to

our current object, we must first extract the set Iω of all the objects associated to it. This procedure25

is defined as follows:

20This means that o is evaluated by the visiting algorithm before any other of its contents ϕ(o).
21This means that, before visiting o, we postVisit the contents o ′ ∈ ϕ(o), from the highest o ′ to the lowest

o ′ w.r.t. ho(o ′), and then we evaluate o ′ as a last step.
22See line 492 on page 231 at Appendix A.
23See line 475 on page 231 at Appendix A.
24Refer to Definition 18 on page 77 for this notion of morphism.
25See line line 398 on page 230 at Appendix A.

154 5.4 Use Cases

If (i) ω is a target for no ℓ-correspondences, then Sω is the join of all the sources’

schemas (Sω = ⋈i≤nSoi
) and Iω is the join between all the contents’ associated values

(Iω = ⋈i≤nIoi
). Otherwise, (ii) Sω is the set { ω1 , . . . , ωm } of all the source schema objects

ωi
linked to ω via a ℓ-correspondence ωi

→ ω and all the elements b ∈ Iω are lists of lists

b = { λb
ω1

, . . . , λb
ωm

} where λb
ωi

is a set of data objects, which is associated to the source

schema ωi
via a morphism ωi

→ λb
ωi

. This means that, in the second case, the data object

referring to the parent ω are not (necessarily) restricted via the containment information.

The only refinements may only occur via ξ correspondences, as described in the following

paragraph.

Next, if (iii) ω is a target for no ξ-correspondences, Iω is not restricted (or filtered).

Otherwise, (iv) we must first create a set Iξ,ω for such correspondences, constructed similarly

to Iω for the ℓ-correspondences, and hence having an associated schema Sξ,ω ; then, for each

b ∈ Iω, we preserve each set λb
ωi

where there is at least one element satisfying one of the

values associated to the objects in e, for each e ∈ s, where s is contained in ∈ Iξ,ω.

After defining Iω, we can further skim the Iω using ⋈i≤nIoi
over Iω, similarly to the steps

outlined in (iv)26. After this further filtering, we can return Iω to all the possible containers, and

hence terminate the postVisit for ω. After terminating the postVisit for the reference object of the

hub schema, we can use the instantiated hub schema and either return a graph by unnesting all

the matched elements as it will be remarked for the Pop operator presented at page 177 or even

transform the content, as it will be showed in Section 6.3.4 on page 183.

Please observe that the alignment of g ′ with the hub schema could be carried out similarly,

except for the process requiring to align fullname with both name and surname. If both g and

g ′ share a common subset of data sources, then we could try to perform a match between all the

values associated to the attributes defining an Author [LJ14]. Since in α(v ′) there is just one

field for the Authors, fullname, while in α(g) we have both name and surname, we could try to

find some correspondences and manage to find that fullname is just a combination of name and

surname. When such task is not generally possible because the two bibliographic network belong to

different conferences with authors with different research interests, then the only way to associate

fullname with name and surname is to use an ad-hoc ontology containing informations regarding

such ontology, thus allowing to perform the whole alignment process.

This last example showed us that the whole alignment process of the hub schema
towards the dataset via the dataset’s schema resembles an approximated alignment. In
particular such matches are refined through a ϛ transcoding based on the data content
through the correspondences. After this preprocessing and data association phase, we can
manipulate the matched data by associating it to the hub schema through ϕ containment
relations. In the next chapter we are going to see a different approach for data integration,
where the data matched by traversing the morphisms may be also transformed into new
object not pre-existing the data source.

26See line 368 on page 229 at Appendix A.

5. General Semistructured Model and Nested Graphs 155

5.5 Conclusions

This chapter allowed to introduce the topic of data integration: as required by the Global

as a View scenario, a general data representation for integrating different data sources
is provided. This intermediate representation is the Generalized Semistrucured Model,
GSM for short, which allowed the definition of the τ translation operators required by
Definition 7 on page 52. If we have some more precise information concerning the original
data, we can then elect which objects have to be considered as entities and which others
are promoted to relationships: after this intermediate step, we can now transform a GSM
into a Nested Graph by providing the schema to which the final data must comply to.

Another similar approach for data matching and rewriting is going to be provided in
the next chapter as a generalization of the graph grammars.

The last section also showed how GSM promotes a better alignment between entities
and attributes (both represented as objects). In particular, the data objects are associated to
the hub schema H via the (intermediate data) schemas α(D): after matching the data to
its schema and refining the correspondences, we obtain a grammar rule α(D)→ H. Then,
by filtering out the data in D, we create direct correspondences between D and H. After
a data cleaning phase which on which we will not linger because it is a topic already
addressed in literature (ν≅), we’ll have to discuss which is the actual language on which
we can express our query q over the nested graph model. The chapter that follows will
conclude our theoretical framework by defining such query language, while the second last
chapter will focus more on algorithmic and implementation issues concerning an algorithm
for a specific instance of the nesting operator, ν.

6 GSQL: a Generalized Semistructured Query

Language

Contents

6.1 General Semistructured Query Language (GSQL) 158

6.2 Derived GSQL operators over GSM 162

6.2.1 (Attribute labelled) Set operations 162

6.2.2 Relational and semistructured operations 164

6.3 GSQL Use cases . 172

6.3.1 paNGRAm: Nested Graph Relational Algebra 172

6.3.2 Implementing traversal query languages’ semantics (σ) . . . 177

6.3.3 Representing is-a aggregations 182

6.3.4 Generalized Graph Grammars G for Nested Graphs. ϘGH,T (H)(ï) 183

6.4 Conclusons . 193

Language is a process of free creation; its laws and principles are

fixed, but the manner in which the principles of generation are

used is free and infinitely varied. Even the interpretation and use

of words involves a process of free creation.

— Noam Chomsky, Language and Freedom, (87-8)

The definition of a new data model requires a new query language: even though several
distinct algorithms and query languages have been developed distinctly for integrating
either graph and semistructured data, the definition of an algebra (and hence, a set of
operations) can detect which is the minimal set of the required operations. This thesis
also shows that the General Semistructured Query Language proposed at Section 6.1
expresses all the possible queries over different data models over GSM. This query language
offers the primary building blocks over which we can (i) implement the (semistructured)
relational algebra and the nested graph operator (Section 6.3.1 on page 172), and (ii) define
the semantics for traversal query languages (both semistructured and graph, Section 6.3 on
page 172). Section 6.2.2 on page 164 shows that such algebra is able to define two different
abstraction operators (α1, α2) that can be used in the last example from the previous chapter
for extracting a schema from semistructured data sources. The same section is also going
to show that these abstraction operators are a specialisation of the nesting operator which,
as introduced in Chapter 2, is also able to express the whole class of the ⊗θ-products and
the semistructured grouping γ.

The previous chapter showed that by embedding expressions within the data structure
we might achieve structural aggregation as required by the stream data model; this idea
is going to be refined in Section 6.3.3, where we also use GSQL to achieve the final
goal. The proposed General Semistructured Query Language may also use the former
chapter’s script expressions for providing predicates and functions (LMM ≡ GSQLscript),
thus allowing to extend the already-existing data structures with data manipulations.

Last, this chapter is going to show that the combination of GSM and GSQL extends
the graph grammar approach as currently implemented in current graph query languages
(match + transformation) by also allowing structural aggregation. Such general operator is

157

158 6.1 General Semistructured Query Language (GSQL)

going to be implemented as one single derived operator in Section 6.3.4. Moreover, we’re
also going to show that a refinement of this operator allows the definition of the Ϙ operator
for data transformation over schema alignments. Moreover, this chapter will also show
that traditional traversal languages may be also expressed via GSQL operators such that
GSM are closed over the GSQL expressions.

6.1 General Semistructured Query Language (GSQL)

As observed within the dynamic graph context [DEGI10], the four main unary graph
operations that a database must support are the insertion, deletion, and the update of the
basic components of a data structure, alongside with its navigation (filtering). Please note
that, within (nested) graphs, the vertices’ and edges’ operations must be implemented
differently: while the removal of an edge has no consistency problems, the removal of
a vertex must imply the removal of all the incoming and outgoing edges and, in this
sense, it can be considered as the removal of several elements at once. This observation
leads to the fact that we can’t unify one same operator for different data constructors.
Therefore, the only way to generalise such operations is to generalise and de-specialise the
data model, as it has been already done for GSM. Moreover, the graph join contribution
in Chapter 4 also showed that binary graph operations can be all implemented with the
same subset of relational operations plus some refinements required to preserve the data
model’s constraints (see Section 6.3.1 on page 172). This intuition can be supported by
the GSM model, where both vertices and edges are represented as objects: for example,
instead of defining an explicit operation allowing the creation of new edges, we can define
an operation creating new objects within the GSM that is also going to be used for the edge
creation task. By doing so, the object creation operation may be also used in further several
data representations, from relational data, to semistructured and nested graphs represented
in GSM. Given that also different models and operations may come after this thesis, we
want to provide the most basic set of operations that may be adopted as a common basis
by either current or subsequent query languages over GSM.

Before providing a definition for nested graphs, we’re going to describe the basic
operations to be used within the nested semistructured model. We’re now going to discussObject Creation⊳
and motivate the object creation operator: this operation is generally required by our data
model, because such model can only express φ containment over objects that already exist.
Therefore, if we want either to extend or aggregate some objects, we must create first an
object representing either its extension or aggregation. The object creation operator can be
defined as follows:

▸ Definition 39 (Object Creation). Given an GSM n = (o, O, ℓ, ξ, φ), the object creation of

ω ∉ O associated to a set of labels L and expressions E with a containment function φω for a list of

elements already contained in O (cod(φω) ⊆ ℘(O)) is defined as follows:

create
ω
L,E,φω

(n) = (oc, O ∪ {ω}, ℓ⊕ [[ω, L]], ξ ⊕ [[ω, E]], φ⊕ [[ω, φω]])

◂

In particular, both ontology alignments and data cleaning processes [SPR17] use the
creation of new relationships for storing the similarity between the matched values; such
operation is called link discovery or match (see Section 6.3.1 on page 172).

The removal of an element from an object (or a collection) is not a primitive operation,Object removal⊳
is a specific case of

filtering

because it can be expressed through a filtering predicate expressing the concept “not

6. GSQL: a Generalized Semistructured Query Language 159

appearing in”. In particular, within the relational model we can express a set difference
A/B (stating the removal from A of all the objects contained by B) through a selection
predicate as follows:

A/B = { x ∈ A ∣ x ∉ B } = σx↦x∉B(A) (6.1)

Moreover, the database filtering1 is the most relevant operation for several traversal and
visiting tasks [TPAV17, HG16, MSV17, FPG15]. Nevertheless, the filtering operation can ⊲ Filtering is a

specific case of

mapping

be further on generalized by the definition of a transformation function: given that all the
GSM objects can contain other objects associated to properties within φ, it implies that the
filtering operation over the objects has to be considered as a special case of the “update”
or map operation, where the non-desired objects may also be removed. Let us define the ⊲Map operator.
map operator first, which will update any object oc contained in the object repository O by
creating a new one with a different id (oc+1) when at least one of his two functions are not
involve into a transformation:

▸ Definition 40 (Map). Given an GSM n = (o, O, ℓ, ξ, φ), the map operator map fL , fE , fC
associates

to each object o represented in ϕ∗(o), o included, a new one having labels fL(o), expressions fE(o)
and containments fC(o). Moreover, it associates a new id to all the transformed objects δO such

that δO = { o ∈O ∣ fL(o) ≠ ℓ(o) ∨ fE(o) ≠ ξ(o) ∨ fC(o) ≠ φ(o) }:

map fL , fE , fC
(n) = (o c+1,

O ∪ [oc+1∣oc ∈ δO],
ℓ ⊕ ⊕

oc∈δO

[[oc+1, fL(oc)]],

ξ ⊕ ⊕
oc∈δO

[[oc+1, fE(oc)]],

φ ⊕ ⊕
oc∈δO

[[oc+1, ⊕
e∈dom(fC(oc))

[[e, [o ′c+1∣o ′c ∈ fC(oc, e)∩ δO]∪ (fC(oc, e)/δO)]]]]

)

Please note that the double-squared “graph of a function” notation introduced ad page 136 is used

to describe the functions’ updates. Furthermore, if fL is defined using script programs (fL ≡

[[expr]]Γ), the writing fL(oc) has to be intended as the evaluation of the associated expression expr

where o is associated to oc and g to oc (fL(oc) def
== [[expr]]Γ∪{(o,oc),(g,o)}). Similar considerations

can be also carried out for fE and fC. Last, the user must be aware that this operation may transform

a nesting-loop free GSM into a general GSM due to the arbitrary way of performing nestings. ◂

We can now express a filtering operator using map: given a GSM n = (o, O, ℓ, ξ, φ), the
selection of the objects upon a predicate P within an object containment is expressed by
the map operator:

filterP(n) def
== map[[o.ell]]Γ ,[[o.xi]]Γ ,[[map((o.phi): x -> [x[0], select(x[1] :P)])]]Γ

(n) (6.2)

where each expression is going to be evaluated with a context Γ where o is associated to
the currently evaluated object and g is n.

1Within the context of relational algebra, such operation is referred as selection (σ). The term filtering
is here used instead of select, because the latter one has a completely different meaning in other query
languages, such as SQL, where its remarks a projection operation.

160 6.1 General Semistructured Query Language (GSQL)

a b

o₁
a

b

o
2

c d
e

o
3

f

(a) n possible operands for the disjoint operator. In particular, each object oi is the
reference object for the GSM ni.

(1,a)

o
c

(1,b) (2,a) (2,b) (2,c) (3,d) (3,e) (3,f)

(b) Result of disjoint(n1, n2, n3).

Figure 6.1 disjoint operator. As you can see from the picture, each collection from the operand
oi is treated as a separate element of o and, consequently, mapped into the final result oc.

These two operators will permit the implementation of most of the unary operators. In
order to increase the operations that our language is able to express, we must also include
the n-ary operators, taking more than just one data input. Before defining such operator, we(S)electing the ⊳

object over which

perform the opera-

tions.

must be able to select one specific object within the GSM, over which we’re going to perform
the n-ary operations in a subsequent step. Most graph and relational n-ary operations are
applied within the same database, where we often have to select the operands over which
the queries have to be carried out: (e.g. FROM in SQL, GRAPH in SPARQL). The selection may
be implemented by changing (e.g., “electing”) the reference object for the current GSM.
Therefore, this preliminary election operator for n-ary operations is defined as follows:

▸ Definition 41 (Elect). Given an GSM n = (o, O, ℓ, ξ, φ), the elect operation chooses an object

o ′ ∈ O to be used as a new object reference for GSM.

electo ′(n) = (o ′, O, ℓ, ξ, φ)
◂

After providing the possibility of electing the GSM’s references, we can now define
the class of all the non-recursive n-ary operations over GSMs . By taking take n GSMs asn-ary disjoint ⊳

union operator inputs, and then mapping their reference objects into one single object, ω, such object is
going to have the labels’ (and the expression’) set as the union of the input reference objects’
labels (and expressions’) set; the φ containment expresses the disjoint concatenation of
the incoming objects concatenation, such that φ(ω, [i, l]) ∶= φ(oi

c, l) for each input reference
object oi

c with 1 ≤ i ≤ n. As a last step, the result of the disjoint union can be mapped as we
please to implement the desired n-ary operator. Before doing so in the following section,
we provide a definition of such operation:

▸ Definition 42 (n-ary Disjoint Union). Given n GSMs, (for each 1 ≤ i ≤ n, ni = (oi
c, Oi, ℓi, ξ i, φi))

their n-ary disjoint union disjoint(n1, . . . , nn) is defined as the new object having as reference a

new object ω ∉ ⋃i Oi. If the ω is omitted, then it is generated as (max(o1, . . . , on)+1)max(c1,...,cn)+1,

where oi
ci = max Oi for each 1 ≤ i ≤ n. The labels (and expressions) associated to ω are the union

6. GSQL: a Generalized Semistructured Query Language 161

of the labels (and expressions) associated to all the reference objects, while the collections are also

merged by extending the φi functions.The resulting GSM is defined as follows:

disjoint
ω(n1, . . . , nn) = (ω,

⋃
1≤i≤n

Oi ∪ {ω},

⊕
1≤i≤n

ℓi ⊕ [[ω, ⋃
1≤i≤n

ℓi(oi
c)]]

⊕
1≤i≤n

ξ i ⊕ [[ω ⋃
1≤i≤n

ξ i(oi
c)]]

⊕
1≤i≤n

φi ⊕ [[ω, ⊕
1≤i≤n

⊕
p∈dom(φ(oi

c))
[[[i, p], φ(oi

c, p)]]]])

Later on, we’re going to denote ℓn1,...,nn , ξn1,...,nn and φn1,...,nn respectively the ℓ, ξ and φ functions

associated to the GSM resulting from disjointω(n1, . . . , nn). ◂

▸ Example 28. Figure 6.1 on the facing page provides an example of how the disjoint union behaves

on three distinct data inputs: as we can see, each collection φ(oi, p) belonging to the i-th operand is

mapped into the collection φ(ω, [i, p]) of the expected result. This operator allows to keep distinct

collections coming from different operands into one single object, and preserves both the operator

and the expression from which it comes from.

We have to define an iterative operator similarly to the one defined in [CLNP06, JPT+16]: ⊲ Expressing iter-

ations.most data mining algorithms can be expressed as fold operators jointly with the body of
the iteration expressed through a GSQL expression, as already introduced in Section 3.1.1.1
on page 58. Given that our query language shall not be able to diverge, we will restrict
such operator to a finite recursion. In particular, we’re going to use the following high
order fold operator that can be applied to any kind of collection.

▸ Definition 43 (High Order Fold Operator). Given any finite collection S of elements, the fold

operator takes as inputs a collection S of elements of type Σ over which the iteration is performed, an

accumulator “α∶A” providing the initial value, and a binary function f ∶ Σ → A → A. Starting from

the min of S min(S) (e.g., the first element of a collection), fold updates α via f to f (min(S), α),
and then iterates the process until all the elements of S are visited. The final value of α is then

returned. This function can be recursively written as follows:

foldS, f (α) =
⎧⎪⎪⎨⎪⎪⎩

α S = ∅
foldS/min(S), f (f (min(S), α)) oth.

Please note that if α is a GSM, f can be even an arbitrary GSQL expression, and hence it can be used

for GSQL expressions. Also note that S can be also a nested graph and, in this case, the iteration is

performed over the collection of objects of both vertex and edge set, thus providing another nested

graph binary operator. ◂

Last, GSQL may also support the creation of view by associating a variable to a ⊲ Views

GSQL expression. This concept is widely supported on both relational [CLNP06, ACPT99,
ACPT09] and graph algebras [GRS+16], in order to be later used as other data inputs. We
formally define a GSQL expression as follows:

162 6.2 Derived GSQL operators over GSM

▸ Definition 44 (GSQL expression). Given the set GSM containing all the possible GSM n and

a set Var of all the possible variables Vi, a GSQL expression <GSQL> is defined as follows:

<GSQL> ∶ = n ∈ GSM ∣ V ∈ Var

∣ createω
L,E,φω

(<GSQL>) ∣ map fL , fE , fC
(<GSQL>) ∣ electo(<GSQL>)

∣ disjointω(<GSQL>(,<GSQL>)∗) ∣ foldS, f (<GSQL>)
The semantics associated to the evaluation of a GSQL expression was provided2 by the previous

operators’ definitions (Definitions 39-43). The variable’s semantics is defined by the evaluation of

the associated GSQL expression, if any. ◂

6.2 Derived GSQL operators over GSM

The previous section constructively provided the basic building blocks for expressing data
operations. The present section will show that those can be used to express all the possible
operations on top of GSMs. In particular, we will redefine all the source models’ usual
operators and provide traversal semantics. We first describe set operators (Subsection 6.2.1)
and then we extend them to relational and semistructured operators (Subsection 6.2.2 on
page 164). These operators are going to introduce the nesting operator, which is going to
express abstraction, grouping and ⊗θ-products (as well as joins).

6.2.1 (Attribute labelled) Set operations

In this section we’re going to define set operations using the disjoint union operator
combined to a map, given that map can represent most of the unary operators. Consequently,
for all the binary (or n-ary) set operations, we must use disjoint first and then transform
the elements. Each binary (or n-ary) is going to be carried out over each operand’s reference
object. The set operations are going to be carried out over the collections’ referenced by the
same expression p via φ(oi, p) for each 1 ≤ i ≤ n.

Please note that in the following definitions we’re going to omit the script syntax in
favour of a more compact mathematical notation. Nevertheless, we’re going to provide the
script definition of the incoming ψ functions in Appendix C on page 235.

We now introduce the first GSQL set operation, that is the union. We must remark that
this operator is anyway different from the traditional union operator defined for sets: while
the present operator considers that two element are the same if and only if they are indeed
the same object, the set operator considers two elements to be equivalent just if they have
the same value. This consideration implies that some relational algebra operators can be
defined through the definition of an equivalence predicate between the objects, and thus
requiring the definition of the “group by” operator, that we are going to provide in the
next subsection.

▸ Definition 45 (Union). Given n GSMs ni = (oi
c, O, ℓi, ξ i, φi) for each 1 ≤ i ≤ n, their union

⋃1≤i≤n ni maps the union of their object into a new reference object ω, where only the resulting

reference object is transformed as follows:

ψ∪ = o ↦ p ↦ ⋃
1≤i≤n

φn1...nn(ω, [i, p])

2See also http://rebrand.ly/unibo9e6c3 for its implementation.

http://rebrand.ly/unibo9e6c3

6. GSQL: a Generalized Semistructured Query Language 163

Therefore, the result of the union will return a reference object containing either the union of the

containments associated to the same attribute p in both operands, or their preservation. The operator

can be defined as follows:

ω⋃
1≤i≤n

ni = mapℓ
n1...nn ,ξ

n1...nn ,φ
n1...nn⊕ψ∪(disjointω(n1, . . . , nn))

◂
We can define the intersection and difference operators similarly to the union as follows:

▸ Definition 46 (Intersection). Given n GSMs ni = (oi
c, Oi, ℓi, ξ i, φi) for each 1 ≤ i ≤ n, their

intersection ⋂1≤i≤n ni maps the intersection of their object into a new reference object ω, where

only the reference object is transformed in the φ function as follows:

ψ∩ = o ↦ p ↦ ⋂
1≤i≤n

φn1...nn(ω, [i, p])

Therefore, the result of the intersection will return a reference object containing the intersection of

the containments associated to the same attribute p in both operands. The operator can be defined as

follows:
ω⋂

1≤i≤n

ni = mapℓ
n1...nn ,ξ

n1...nn ,φ
n1...nn⊕ψ∩(disjointω(n1, . . . , nn))

◂
▸ Definition 47 (Difference). Given two GSMs n = (oc, O, ℓ, ξ, φ) and n ′ = (o ′c , O ′, ℓ ′, ξ ′, φ ′),
their difference n/ωn ′ maps the union of their object into a new reference object ω, where only the

reference object is transformed in the φ function as follows:

ψ/ = o ↦ p ↦ φn,n ′(ω, [1, p])/φn,n ′(ω, [2, p])

Therefore, the result of the intersection will return a reference object containing the intersection of

the containments associated to the same attribute p in both operands, and the remaining elements

from the sole left operand:

n/ωn ′ = mapℓnn ′ ,ξnn ′ ,φnn ′⊕ψ/(disjoint
ω(n, n ′))

◂

▸ Example 29. This example provides some graphical representations of the former multi-set

operations. Let us take a look at Figure 6.2 on the next page: set operations are performed over

the containments both at the collection level (the set operation is performed over all the collections

identified by the same attribute) and at the object level. While the union operation (b) merges the

collections with the same attribute (containments) coming from both operands, the intersection (c)

keeps only the ones appearing in both operands and, while doing so, it preserves only the object

shared between the collections. Last, the difference (d) keeps only those collections (containments)

appearing on the left operand (nL) and, among those collections, only the element not appearing in

the attribute-correspondent collection in nR are preserved.

Given that φ associates to each object o the attributes p alongside their list of values
φ(o, p), we can slightly change the previous operations in order to define the combine
operation required for the relational join operation, as already outlined in Definition 23 on
page 96. As a consequence, even the combine operator may be expressed as the following
derived operator.

164 6.2 Derived GSQL operators over GSM

a b

o
L

a c

o
R

1 2 1 3 4

(a) Two possible operands for the set operations. Even in this case, oL is the reference
object for the GSM nL, while oR is the reference object for nR.

c

1 3 4

o
c

a b

2

(b) nL ∪ nR ∶= ⋃{nL, nR}

o
c

a

1

(c) nL ∩ nR ∶= ⋂{nL, nR}

o
c

b

2

(d) nL/nR

Figure 6.2 Representing different possible outcomes for the set operators. While the disjoint

operator treated each operand’s containment as an element of a set represented by the object itself,
these operations treat each containment as a collection. Moreover, the set operations are carried out
over the set sharing the same labels.

▸ Definition 48 (Object Concatenation). Given two GSMs n and n ′, their concatenation n⊕n ′
maps them into a new reference object ω, such that the attribute-values coming from the first

operand are rewritten in favour of the ones coming from the second operand when sharing the same

attribute. Therefore, the operator is defined as follows:

n⊕ω n ′ = n ′ ∪ω (n/n ′)
◂

The former operation shows that the MOF objects and sets are uniformly represented
within this data model through GSM reference objects: this is evident from the definition
of the object concatenation operator, which was defined through the composition of over
set operators.

6.2.2 Relational and semistructured operations

The previous subsection discussed the definition of set (and object) operators on top of
GSQL.Attribute ⊳

labelled Set

operators over

relations’ GSM

representations.

For this reason, we must make sure that the former definitions are also compliant
with GSM translations of relations as defined in Algorithm II.4 on page 137: given that the
aforementioned translation maps each possible relation into one object ro associating all
the tuples ti via a single “Entity”attribute (ti ∈ φ(ro, “Entity”)), by definition of the former
operators we have that the desired set operation will be actually performed over the set
of objects defined over “Entity”. Therefore, the former section provides a straightforward
definition for set operations that are compliant with objects produced by a translation from
the relational model, and hence they do also provide set operations for the relational model.
Moreover, the union actually defines an outer union [LN07], where the resulting relation is
the union of two relations’ schemas as a resulting schema.

Similar considerations can be also performed for the relational filtering (also known as
selection, σ) operator: if we restrict the filtering property just to the elements contained by

6. GSQL: a Generalized Semistructured Query Language 165

the object reference in “Entity”, we can express the σP operator from filterP presented in
Equation 6.2 on page 159 as follows:

filtert -> {not(t in (g.phi[“Entity”])) || P(t)}(n)
Please note that such restriction may be completely ignored for semistructured models,
where the filter operator may be directly introduced.

At this point, we want to show that the map operator can express other algebraic
operators that have already been defined in current literature, such as embedding (εEF)
and the projection (πPF) operators presented in [MM06]. Both operations act as a specific
instance of map operators: while EF is defined as a function extending the object’s collection
with new identifiers or creating new associated collections, PF either reduces the number
of collections or reduces their content. Consequently, both operators can be defined as
follows:

▸ Definition 49 (Embedding). Given a GSM n, its embedding is defined as a specific map

function EF such that ∀o ∈ O.∀p ∈ L.EF(o, p) ⊇ φ(o, p):
εEF(n) = mapℓnn ′ ,ξnn ′ ,φnn ′⊕EF(n)

◂

▸ Definition 50 (Projection). Given a GSM n, its projection is defined as a specific map function

PF such that ∀o ∈ O.∀p ∈ L.EF(o, p) ⊆ φ(o, p):
πPF(n) = mapℓnn ′ ,ξnn ′ ,EF(n)

◂

In order to express π as the one defined within the relational model, we can simply
express PF as the relevant L attributes for φ that must be returned, instead of specifying the
whole PF definition (∀o ∈ O.∀l ∈ L.l ≃ φ(o, l)). If we want to explicitly create new objects
resulting from an expression evaluation f returning the list of values to be associated via ξ,
we can define the Calc operator [CLNP06] as follows:

▸ Definition 51 (Calc). Given a GSM n, the Calc operator extends each object x appearing in

φ(g, K1) with a newly created object (o + 1)c contained in φ(o, K2); (o + 1)c will have a label set A

and value f (x):
Calc

K1,K2
f as A

(n) = fold[[o.phi[K]]]{(g,g),(K,K1)}, fK
(n)

where f ∶O ↦ ℘(MM) and fK is the accumulation function which is defined as follows:

fK = x ↦ α ↦ let oc
def== max O in map[[o.ell]]∅ , [[o.xi]]∅ , [[e]](oc,(o+1)c),(K,K2),(x,x) (create(o+1)c

A, f(x),∅(α))
and e is the expression performing the K2 extension for each x as follows:

map(o.phi : z ↦ {if (o.id == x.id && z[0] == K) then {z[0], z[1] @ {oc}} else

z})

◂

If n is a relation obtained using the canonical transformation (Algorithm II.4 on page 137)
where each relation contains its tuples in φ(g, “Entity”) and each tuple in is represented by

166 6.2 Derived GSQL operators over GSM

an object o containing its attribute in φ(g, “Attribute”), we have that K1
def== “Entity” and

that K2
def== “Attribute”.

Expressing the ⊳
class of nesting

operations.

In Section 2.2.2 on page 40 we observed that a nesting operator (Equation 2.4 on
page 40) can be used to generalize both joins and grouping operations. As promised, this
operator will generalize the already-existing join and grouping operations by expressing
the broader class of clustering algorithms which are both overlapping and partial [TSK05],
thus allowing the social network clustering scenario. As a consequence, the (derived)
nesting operator is going to provide several different data operators, as well as the class
of the ⊗θ-products. As a first intuition, this operator should generalize the class of the
group-by operations: therefore, such operation should use an object classifier GF mapping
each object into a (possibly empty) subset of clusters in C (GF∶O ↦ ℘(C)). As showed in the
part-of aggregation example (see Example 26 on page 141), the clusters can be summarized
into one single object: therefore, the desired operation shall generalize most of the algebraic
grouping operations.

This operation requires an expression ⊕ f (Equation 2.3 on page 40) providing a ag-
gregation over either similar or equivalent elements, and a way to generate collection of
collections from a initial collection: this last step must use the aforementioned clustering
operation GF. The definition of such operator allows to group all the elements belonging
to the same cluster and leaves out all the non-represented outliers, that may be included or
not in the final result.

As previously discussed for both the ε and Calc operators, this data model does not
allow to refer to elements that still do not exist. For this reason each element expressing
the result of an aggregation must be created before effectively aggregating the desired
components. Moreover, in order to create multiple elements, we must finally iterate over
the all possible clusters minable within each object’s collection, and then detect which
are the group to be created. The set over which the iteration is going to be performed is
defined as follows:

SGF,n
def==

⎧⎪⎪⎨⎪⎪⎩ (o, p, k)∣o ∈ ϕ(n), p ∈ dom(φ(o)), φ(o, p) ≠ ∅, k ∈ ⋃
o ′φ(o,p)

GF(o, p, o ′) ⎫⎪⎪⎬⎪⎪⎭
Each triplet (o, p, k) contained in this set associates to each non-empty collection φ(o, p) a
labelled cluster k ∈ C containing at least one element of φ(o, p). Therefore, all the elements
matched by k in φ(o, p) are going to be replaced by one single object. This new object has
to be created by the ⊕ f function (also mentioned in the third chapter) as follows:

⊕ f (α, k, ω,{ o ′ ∈ φ(o, p) ∣ k ∈ GF(o, p, o ′) })
where α is a previous step of n where another object pointed by SGF,n was generated, and
ω is the object id associated to the object generated by the expression associated to ⊕ f . In
particular we can arbitrarily choose to set ω using an id generation function gen(oc̃, k, o, p),
where oc̃ = max n.O. The newly created object by ⊕ f can be concatenated to the object
generator via SGF,n and a fold iterator:

ce
def=== foldSGF,n ,(o,p,k)↦α↦let oc̃=max O in ⊕ f (α,k,gen(oc̃ ,k,o,p),{ o ′∈φ(o,p) ∣ k∈GF(o,p,o ′) })(n) (6.3)

where n provides the initialization of the accumulator for the fold operation. After creating
the objects associated to the mined clusters, we can now replace the objects of φ(o, p)
belonging to a cluster k by using a map, which retrieves the clustered objects via gen.

6. GSQL: a Generalized Semistructured Query Language 167

All those intermediate computational steps may be chained together into the following
definition of a nesting operator:

▸ Definition 52 (Nesting). Given a GSM ï = (g, O, ℓ, ξ, φ), the nesting operator ν
keep
GF,gen,⊕ f

aggregates the elements within each non empty collection φ(o, p) (where o ∈ O and p ∈ dom(φ(o)))
by replacing with one single object all the elements belonging to the same class k ∈ cod(GF).
Moreover, all the elements that belong to no class are not aggregated. The outliers may be returned

(keep=tt) or not (keep=ff), dependingly on the desired final representation. The operator is defined

as follows:

ν
keep
GF,gen,⊕ f

(n) = mapℓ,ξ,o↦p↦[o ′∈φ(o,p)∣GF(o,p,o ′)=∅∧keep] ∪ ⋃[gen(oc̃ ,k,o,p)∣k∈⋃(o,p,o ′)∈dom(GF) GF(o,p,o ′)](ce)
where “ce” was defined in Equation 6.3 on the facing page. This operation uses the gen function to

associate the associations and classes generated by GF to the objects that are generated in the “ce”

phase. ◂

Given that this operation can replace any object within any collection, GF can be
constrained within the relational model by ensuring that GF must return an empty set
for any (o, p, k) where o does not appear as an entity within n. This approach is similar
to what it has been previously stated for filter. The former definition (and restrictions)
allows to instantiate the other derived operators, for both relational and semistructured
models.

Before introducing some of the possible derivations for such operator, we introduce
the last remaining operator, which is the opposite operation of nesting: the unnesting
operation. In this case, we must select which element o ′ ∈ φ(o, p), within a given object o

and associated to an attribute p, has to be replaced by its expansion in φ(o ′, p ′), where p ′ is
an attribute appearing in the given set. Given that now the unnesting choice is binary, we’re
going to select which elements are going to be expanded, dependingly to the attribute p

where o ′ is contained and on o ′ itself.

▸ Definition 53 (Unnesting). Given a GSM n, a set of attributes a ∈ A – over which replace and

expand via the objects o ′ (φ(o ′, a)) that are contained in o ′ ∈ φ(o, p) –, and a binary predicate P

through which select the o ′ appearing in p (P(p, o ′)), the unnesting operator is defined as follows:

µA,P(n) = mapℓ,ξ,o↦p↦[o ′∈φ(o,p)∣¬P(p,o ′)] ∪ ⋃[φ(o ′,p ′)∣p ′∈A,o ′∈φ(o,p),P(p,o ′)](n)
◂

As we will see in the following four operators, relational joins, grouping and abstraction
operators may be all derived from the nesting operator.

Data-Preserving Aggregation (α2)

We can generalize the aggregation operator by associating all the GF-similar elements to
one single element, containing all the references. In particular, we use the È

3 gen function
for generating new ids:

È(oc̃, k, o, p) = { (o + dtl([bin(k), o,bin(p)]))c̃+1 }

3This symbol is called ram’s horns in linguistics.

168 6.2 Derived GSQL operators over GSM

where bin is the function associating to each element its byte representation expressed as
bigint compatible with the id definition. By using the dovetailing function over the binary
representation of the triplet, we ensure that different id-s are going to be associated to their
correspondent generated objects. We let the user decide on how to represent the resulting
set of labels, the set of expressions, and the containment respectively through fL, fE and fC

functions.
α2

keep
GF, fL , fE , fC

(n) = ν
keep

GF,È,(α,k,ω,s)↦createω
fL(k,s), fE(k,s), fC(k,s)(α)(n)

▸ Example 30. In Example 27 on page 144 we addressed the problem of extracting the schema from

a JSON representation of a graph. As we previously outlined, we could choose to use an aggregation

where each matched component via a class k is nested within an object o via k, and that k is used as

a label for the object that will contain such data. Therefore, the desired result can be achieved via the

following application of the α2 aggregator:

α2
tt
GF1,(k,s)↦[k],(k,s)↦ f(s),(k,s)↦[[k, s]](n)

At this point we want to aggregate each object by its associated label; if the object is a “label” object,

we want to return the value associated to it designign the containing object’s label; if the object

ha associated to a non relevant label w.r.t. the schema extraction process (e.g. “metadata”), a set

containing the concatenation of the GF classes of all the concatenating object is returned; in all the

other cases, no nesting is performed. the following clustering operation describes the desired result:

GF1(_, _, o) =
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∅ “metadata” ∈ ℓ(o)∨ P(o)
ξ(o) “label” ∈ ℓ(o)
ℓ(o) ℓ(o) ≠ ∅
∅ oth.

(6.4)

where the underscores remark the ignored arguments. P is a predicate avoiding to aggregate the

elements that are represented only once within the hierarchy and appear at the coarsest levels of it;

such predicate is defined as follows:

P(x) = (ℓ(x) = ∅∨(¬∃o ′ ∈ ϕ∗(o.n).o ′ ≠ x∧ ℓ(o ′) = ℓ(x)))∧(∀o ′ ∈ ϕ∗(o.n).x ∈ ϕ+(o ′)⇒ P(o ′))
The result of the application of such aggregation to the nested structure represented in Figure 6.3a is

provided in Figure 6.3b: this operation preserves all the original data within each aggregated element

but, at the same time, increases the amount of generated data. As a consequence, this solution

could potentially increase the time required to visit the data structure that may occur at subsequent

steps. Therefore, a different approach preserving the GSM height in spite of the representation of the

original information is required.

Grouping (γ)

The grouping operation for semistructured data was originally presented in [MM06],
where ⊕ f is simply defined as the n-ary union of all the matched objects, thus allowing to
integrate each similar component into one single representation. The desired operation can
be described as follows:

γ
keep
GF (n) = ν

keep

GF,È,(α,k,õc ,s)↦electo(⋃õc
i∈s

electi(α))(n) (6.5)

6. GSQL: a Generalized Semistructured Query Language 169

label

 5

Author

 6

metadata

 7

Abigail Conner

name surname

 8

label

 11

Paper

 12

metadata

 13

On Joining Graphs

title

 3 9

 1

nodes

label

 16

Paper

 17

metadata

 18

On Nesting Graphs

title

 14

(a) Rephrasing the data input for a bibliographical network represented in Figure 5.10a on
page 149.

 70

 7

Abigail

name

 8

 80

 6

name

 8

 80

metadata

label

Author

author

 3 9

 1

nodes

 14

Conner

surname

130

13

On Joining

Graphs

title

12

title

 11

 80

metadata

label

Paper

paper

180

18

On Nesting

Graphs

title

 17

title

16

 80

metadata

label

Paper

paper

surname

(b) α2
tt
GF1,(k,s)↦[k],(k,s)↦∅,(k,s)↦[[k, s]](n)

 70

 7

Abigail

name

 8

 80

 6

name

 8

 80

metadata

label

Author

author

 3 23

 1

nodes

Conner

surname

130

13

On Joining

Graphs

title

12

title

 11

 80

metadata

label

Paper

paper

180

18

On Nesting

Graphs

title

 17

title

16

 80

metadata

label

Paper

paper

surname

(c) mapx↦ℓ(x)/“α”,ξ,φ(γtt
GF2

(α2
tt
GF1,(k,s)↦[k,“α”],(k,s)↦∅,(k,s)↦[[k, s]](n)))

Figure 6.3 Representing different possible results from the application of the general nesting
definition. (cont.)

170 6.2 Derived GSQL operators over GSM

▸ Example 30 (continuing from p. 168). Figure 6.3c shows an example of grouping. In this case

we want to aggregate even the elements that were not previously inserted within a cluster. Therefore,

we change the α2 by marking with “α” the elements matched by GF1. Last, the following GF

function for γ is provided:

GF2(_, _, o) =
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ℓ(o)/{“α”} “α” ∈ ℓ(o)
ℓ(o) ℓ(o) ≠ ∅∧∃o ′ ∈ ϕ+(o).GF2(_, _, o ′) ≠ ∅
⊙o ′∈ϕ(o) GF2(_, _, o ′) ℓ(o) = ∅
∅ oth.

where ⊙ is the string concatenation function over set of strings. As we can see, this operation does

not structurally propagate the aggregation within all the containment levels, but it only aggregates

the data at the first nesting level available. In order to propagate the nesting in depth, we must

iterate the same operation until all the similar components are structurally aggregated together.

Therefore, it is now relevant why the fold construct is relevant for our algebra.

Abstraction (α1)

Let us now discuss on how to achieve the α schema extraction operator over our nested
data representation. In the previous chapter we mentioned that, within this thesis, we are
going to work exclusively on nesting-loop free GSMs: this constraint allows a definition
of structural length of a GSM. Given that the structured aggregation must be further
propagated towards the leaves after each iteration, we can consider the GSM’s height
as an upper bound to the number of iterations required to propagate the aggregations
as expected. Therefore, we may first perform an α2 aggregation and, after that, we can
recursively group by the former labels. Such operator may be defined as follows:

▸ Definition 54 (Structural Aggregation). Given an equivalence relation SF to be tested among

the objects within each containment φ(o, p), the structural aggregation propagates the aggregation

result to all the underlying data structures by marking them with a “α” label. This operator is then

defined as follows:

α1
keep
SF (n) = γ

keep
GF2
(α)(fold{ i∈N ∣ 0<i<h(n) },x↦α↦γtt

GF2
(α)(α2

tt
SF,(k,s)↦[k,“α”],(k,s)↦∅,(k,s)↦[[k, s]](n)))

◂

▸ Example 30 (continuing from p. 170). Figure 6.3d on the next page provides the desired solution

allowing to implement the schema extraction operation outlined in Example 27 on page 144 for the

data integration scenario. In order to met the requirements of the former definition, GF1 presented

in Equation 6.4 on page 168 is used for the first aggregation step, while the remaining ones are

performed via the following function applied to has to be extended in order to mark the elements that

must be structurally aggregated.

After performing this operation, we can now aggregate the left out elements, thus
allowing to implement the relational group over overlapping classes.

▸ Definition 55 (Multi Group-By). Given an equivalence relation SF to be tested among the objects

within each containment φ(o, p) and an aggregation function expressed by the three functions

fL, fE, fC to be applied over the remaining non-aggregated objects via SF, the multi group by over

a GSM n is defined as follows:

Γ
fL , fE , fC

SF (n) = α2
tt, fL , fE , fC(o,p,o ′)↦“α”∉ℓ(o ′)?“α”∶∅(α1

tt
SF(n))

◂

6. GSQL: a Generalized Semistructured Query Language 171

 70 80

 6

name

 80

metadataauthor

 3 9

 1

nodes

surname

 70

 6

title

 80

metadatapaper

(d) mapx↦ℓ(x)/“α”,ξ,φ(α1
ff
GF1

(n))

Figure 6.3 Representing different possible results from the application of the general nesting
definition.

⊗θ-Product

Given that ⊗θ-products take two GSMs as an input and provide one single GSM, we must
preliminarily merge the two operands n and n ′ via a disjoint union disjointωc(n, n ′).
Consequently, the input GSM’s reference objects are considered as multiple labelled sets
and, therefore, the final join operation shall be performed among all the collections
appearing in the left and right operand. In particular, for each collection φ(ωc, [1, p ′]) and
φ(ωc, [2, p ′′]) respectively coming from the first and second operand, we want to return
a new collection φ(ωc+1, p ′p ′′) containing the result of the ⊗θ product of the contained
objects. As a final result, a create predisposing the p ′p ′′ collection has to be performed
immediately after the disjoint union.

The clustering function GF shall create a distinct cluster for each pair of matching
objects x and y, respectively contained in the collections φ(ωc, p ′) and φ(ωc, p ′′), and then
associates each object to the pairs bin(p ′)bin(p ′′)xy. Such set of elements will be used in
the clustering function (Equation 6.6a) and can be defined as follows:

JSc
ωc ,p ′,p ′′(x) ={(bin(p ′) ⋅ 0 ⋅ bin(p ′′)xy)c+1∣θ(x, y), x ∈ φ(ωc, [1, p ′]), y ∈ φ(ωc, [2, p ′′])}

∪ {(bin(p ′) ⋅ 0 ⋅ bin(p ′′)yx)c+1∣θ(y, x), x ∈ φ(ωc, [2, p ′′]), y ∈ φ(ωc, [1, p ′])}
On the other hand, each [1, p] and [2, p ′′] collection contained in disjointω(n ′, n ′′) must
be empty (Equation 6.6c) while all the remaining objects’ containment should be kept
unaltered (Equation 6.6b).The whole definition of GF is defined as follows:

GFθ(o, p, x) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

JSc
ωc ,p ′,p ′′(x) o = ωc+1, p = p ′p ′′.[1, p ′], [2, p ′′] ∈ dom(φ(ωc))(6.6a)

� o ≠ ωc+1 (6.6b)

∅ oth. (6.6c)

This definition is then involved in two different roles: first, (i) GFθ is used in Equation 6.3
on page 166 to generate the pairs (o, p ′p ′′,bin(p ′) ⋅ 0 ⋅ bin(p ′′)xy), so that the aggregation
function J⊗ used for ⊕ f is able to generate a new object by ⊗-concatenating the two objects
u and v matching with predicate θ for containments b1 and b2:

J⊗(α,bin(p ′) ⋅ 0 ⋅ bin(p ′′)xy, ω, s) = electω
⎛
⎝
bin(p ′)⋅0⋅bin(p ′′)xy⊗

u∈s electu(α)
⎞
⎠

172 6.3 GSQL Use cases

where ⊗ is a generic aggregation operation for each element u appearing in the cluster
for the elements matching the cluster label bin(p ′) ⋅ 0 ⋅ bin(p ′′)xy that is going to be used
for an object identifier for the previously-aggregated element. Then, the operators re-set
ω as a reference object over which perform the remaining operations. For the relational
join purposes, we can choose the previously-introduced concatenation operator ⊕ as ⊗ for
combining the matched objects.

Last, (ii) the JS function within the GFθ classifier is used in cooperation with È
′ to

define which are the resulting containments, directly generated by GFθ as a result of the⊗θ-product operator, and which are the elements that are not involved by the ⊗θ-product
operation (oc̃ ≠ ω); while in the first case the result of the ⊗θ combination shall be returned
for each matched pair of objects (Equation 6.7a), for the other cases where the resulting
reference object is not involved and hence the involved map must neither change nor update
their containments must be preserved (Equation 6.7b).

È
′(oc̃, k, o, p) = { φ(o, p) k = � (6.7a)

{k} oth. (6.7b)

Consequently, the binary ⊗θ-product operation can be defined as follows:

n⊗JS,θ n ′ = νffGFθ ,È ′,J⊗(createωc+1
ℓ(ωc),ξ(ωc),⊕[1, p ′],

[2, p ′′] ∈ dom(φ(ωc))
[[p ′p ′′,φ(ωc ,[1,p ′])∪φ(ωc ,[2,p ′′])]] (

disjoint
ωc(n, n ′)

))
Consequently, by replacing ⊗ with ⊕ we achieve and by constraining θ to check that all the
elements contained by the to-be-merged elements and having the same ℓ label must show
the same ξ values, we have the implementation of the join operator, thus the following
expression provides the join definition alongside the definition of the restriction for θ:

n ⋈θ n ′ def== n⊕
JSc ,

(x,y)↦θ(x,y)∧∀e∈dom(φ(x))∩dom(φ(y)).
∀x ′∈φ(x,e).∀y ′∈φ(y,e).

ℓ(x ′)∩ℓ(y ′)≠∅⇒ξ(x ′)=ξ(y ′)=∅∨ξ(x ′)∩ξ(y ′)≠∅.

n ′

6.3 GSQL Use cases

The previous section showed that GSQL is able to express set, relational and semis-
tructured operators. This section shows that such minimal operators’ set may be also
adopted for (i) providing nested graph operators including data mining manipulating
ones (Subsection 6.3.1), (ii) providing a semantics for graphs and semistructured traversal
languages (Subsection 6.3.2 on page 177), (iii) performing is-a aggregations by combining
nested graphs with semistructured hierarchies (Subsection 6.3.3 on page 182), (iv) and
implementing the definition of a generalized graph grammar operator for nested graphs
(Subsection 6.3.4 on page 183). Such definitions may adopt basic GSQL operator or may
require derived GSQL operators.

6.3.1 paNGRAm: Nested Graph Relational Algebra

Previously we defined set of operations to be applied over GSM data representation that
have no specific domain constraints. One of the data structures that have such kind of

6. GSQL: a Generalized Semistructured Query Language 173

constraints are graphs: an edge cannot generally exist without either a source or a target
vertex. Therefore, while defining such operations, we must also make sure that the original
model constraints’ are preserved. This also implies that some operations, previously
defined for general GSM, will be implemented for nested graphs with some restrictions
(constraint). The following paragraphs group the required operations by type.

Unary operators

Walking on the footsteps of GSQL, we have to define two different creation operations for ⊲ Vertex and

Edge creationboth vertices and edges because they have two different requirements, while other value
creation operations may directly use the create operation. Concerning the vertices, we
have that vertices are specific object contained in a graph’s “Entity” collection by definition.
It follows that the creation of an object is not a sufficient definition for their creation.
Therefore, we must chain the creation operation immediately with a map operation,
allowing to immediately insert the object inside a graph (in this case, the reference object).

▸ Definition 56 (Vertex Creation). Given a nested graph ï = (gc, O, ℓ, ξ, φ), the vertex creation

operator creates and promotes an object with a fresh id ω into a vertex by embedding it into a graph

g
′
∈ ϕ(g). By knowing the object that will contain ω as a vertex in g

′, we can also apply some

restrictions to the contents of fC that is going to define φ(ω) by removing from its codomain all the

elements containing g
′ and g

′ itself (as well as ω).

κg
′←ω

L,F, fC
(ï) = mapℓ,ξ,φ⊕g ′↦“Entity”↦φ(g ′,“Entity”)∪[ω](createω

L,F,x↦ fC(x)/[ω,o ′∈O∣g ′∈ϕ∗(o ′)](ï))
◂

We can follow the same approach for creating edges: in this case we can generalize the
creation of one single element into a creation of several edges, so that the “link discovery”
class of operations can be implemented [NHNR17] via the straightforward satisfaction of a
θ predicate among the vertices.

▸ Definition 57 (Edge Creation (Link Discovery)). Given a nested graph ï = (gc, O, ℓ, ξ, φ),
the edge creation (link discovery) operator κ̇θ

L,F, fC
establishes new edge duc ,vc s.t. λ(duc ,vc) =(uc, vc) ∈ φ(g, “Entity”)2 having L as a labels set and F(uc, vc) as a set of expressions. Such edge

links two vercies satisfying the given θ predicate. Such operator is defined as follows:

κ̇g
′⇐θ

L,F, fC
(ï) = mapℓ

ïï ′ ,ξïï ′ ,φïï ′⊕[[g ′,φ(g ′)⊕ [[“Relationship”,φ(gc ,“Relationship”)∪[duc ,vc ∣(uc ,vc)∈Sθ]]]]](foldSθ , f3
(ï))

where S is the set containing all the pair object-vertices satisfying the θ predicate:

Sθ
def
== { (uc, vc) ∈ φ(g, “Entity”)2 ∣ θ(uc, vc) }

and f3 is the function creating the new edge for each pair in Sθ :

f3
def
== ((uc, vc), ï

′) ↦ create
duc ,vc

L,F(uc ,vc),(x↦ fC(x)/[ω,o ′∈O∣g ′∈ϕ∗(g)])⊕[[“src”,[uc+1]],[“dst”,[vc+1]]](ï ′)
duc ,vc is the function generating the new edge id from each pair of vertices uc and vc defined as(max O + dt(u, v))c. By knowing the object that will contain ω as an edge in g

′, we can also apply

some restrictions to the containts of fC that is going to define φ(ω) by removing from its codomain

all the elements containing g
′ and g

′ itself (as well as ω). ◂

174 6.3 GSQL Use cases

Please note that create (Definition 39 on page 158) can be always used to create
other non-vertex or non-edge objects. Let us now discuss the map operator for GSMs for
transforming vertices and edges: as we previously discussed, a general embedding function Update ⊲

fC can potentially undermine the nested graph model constraints; therefore, even if map
(Definition 40 on page 159) will be still used for defining other nested graph operations, we
may restrict the map operation to the sole label and value update for consistency reasons:

▸ Definition 58 ((Value and Label) Update). Given a nested graph ï = (gc, O, ℓ, ξ, φ), the (value

and label) update operator4 υ fL , fE
associates to each object o represented in ϕ∗(g), g included,

a new one having labels fL(o) and expressions fE(o). Moreover, it associates a new id to all the

transformed objects δO such that δO = { o ∈O ∣ fL(o) ≠ ℓ(o) ∨ fE(o) ≠ ξ(o) }. The operator is

defined as follows:

υ fL , fE
(ï) = map fL , fE ,φ(ï)

◂
This decision also implies that filter operations are not directly possible within this

model. As we previously observed, such operations will be generalized through (nested
graph) traversal operations as observed in the previous section for NautiLOD, through
which edges may also be removed using a GSM traversing semantics.

Continuing in the same steps of GSQL, we can elect the graph to be used as a referenceelect, fold, Calc. ⊳

object. Please note that given that the GSM nesting-loop freeness condition applies to any
object of the GSM, the elect operation does not undermines the model constraints for
the GSM. Therefore, the very same operator in Definition 41 on page 160 may be used.
Similar considerations may be also applied to the fold (Definition 43 on page 161) and
Calc (Definition 51 on page 165).

Before defining the unnesting operator, we must observe that we must check whether
the result of the unnesting operator returns a correct nested graph. Therefore, we must
define this intermediate operator assuring the consistency:

▸ Definition 59 (Nested Graph Constraint). The constraint operation over a nested graph ï

assures that all the edges appears as nodes within one of the objects of ϕ∗(g). This operator can be

defined via a map operator as follows:

constraint(ï) = map
ℓ,ξ,φ⊕[[g,[[“Entity”,φ(g,“Entity”)],

[“Relationship”,[e∈φ(g,“Relationship”)∣∃o,o ′∈ϕ(g).λ(e)∈φ(o,“Entity”)×φ(o ′ ,“Entity”)]]]]](ï)
◂

Please note that a combination of constraint with a fold recursion may also ensure
that each graph within the nested graph ï satisfies the model’s requirements. Moreover,
observe the similarity between the former operator and the edge restrictions for graph
grammars as in Definition 20 on page 80. At this point, we can define the unnesting
operator, which replaces the nested vertices and edges within the reference object with
their content:

µ
keep
P (ï) = constraint(
map

ℓ,ξ,φ⊕⎡⎢⎢⎢⎣⎡⎢⎢⎢⎣g,
⎡⎢⎢⎢⎣

[“Entity”,[o ′∈φ(g,“Entity”)∣¬P(o ′)∧keep]∪⋃o∈φ(g,“Entity”),P(o) φ(o,“Entity”)],
[“Relationship”,[o ′∈φ(g,“Relationship”)∣¬P(o ′)∧keep]∪⋃o∈φ(g,“Relationship”),P(o) φ(o,“Relationship”)]

⎤⎥⎥⎥⎦

⎤⎥⎥⎥⎦

⎤⎥⎥⎥⎦

(ï))

4It is represented by the upsilon greek letter, Υ, υ.

6. GSQL: a Generalized Semistructured Query Language 175

Finally, the (nested) graph operators may be defined as a generalization of the semistruc-
tured nesting approach for arbitrairly aggregating vertices and edges together in similar
clusters, that then are going to be recombined:

▸ Definition 60 (Graph Nesting). For every nested graph ï, given a clustering function CL

returning set of pairs k = (a, b), where b is the nested element identifier, either vertex (a = e) or

edge (a = r) in which the element is going to be nested to and two (pairs of) transcoding functions

UDFV = ⟨ f V
E , f V

C ⟩ and UDFE = ⟨ f E
E , f E

C ⟩ for transforming the clusters into objects representing

vertices and edges, the graph nesting operator νg is defined by the following procedural steps: (i)

we must first group each vertices and edges belonging to the same cluster (a, b) with the same

label through CL, and within each cluster distinguish the objects representing either entities or

relationships as marked in the following α2’s containment function:

ν
CL,keep
1 = α

keep
2

CL,(k,s)↦[k],(k,s)↦[k],(k,s)↦⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣if s ⊆ φ(o.ï, “Entity”) then[“Entity”, s]
else if s ⊆ φ(o.ï, “Relationship”) then[“Relationship”, s]
else []

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(ï)

(ii) then, we merge them together within the same collections, and merge them into objects by

matched cluster, thus keeping entities and relationships separated:

ν2 = γtt

G̃F(electω(createω[],[],[[“elements”,φ(g,“Entity”)∪φ(g,“Relationship”)]](νCL,keep
1)))

In particular, we have that G̃F performs this further aggregation of the nested objects by the cluster

labels returned by CL as follows:

G̃F(o) = ⎧⎪⎪⎨⎪⎪⎩
ℓ(x) ∃b.ℓ(o) ⊆ cod(CL)
∅ oth.

(iii) Then, we transform the object representing clusters either to entities (V) or to relationships (E)

dependingly on the first component of the object’s label. Therefore, we shall use the transformation

functions:

ν3 = map

ℓ,o↦⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩ f V
E (o) ∃b.ℓ(o) = [(e, b)]

f E
E (o) ∃b.ℓ(o) = [(r, b)]

ξ(o) oth.

,o↦⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩ f V
C (o) ∃b.ℓ(o) = [(e, b)]

f E
C (o) ∃b.ℓ(o) = [(r, b)]

φ(o) oth.

(ν2)

(iv) Last, we create a new element where the clustered objects are separated by the first component of

their label, representing if they are either entities or relationships as follows:

νg
keep,ω
CL,UDFV ,UDFE

(ï) = create
ω

[],[],
⎡⎢⎢⎢⎢⎢⎣

“Entity”↦{ x∈ϕ(o.ν2) ∣ x∈φ(o.νCL,keep
1 ,“Entity”)∨∃b.ℓ(x)=(e,b) }

“Relationship”↦{ x∈ϕ(o.ν2) ∣ x∈φ(o.νCL,keep
1 ,“Relationship”)∨∃b.ℓ(x)=(r,b) }

⎤⎥⎥⎥⎥⎥⎦

(ν3)

◂
If we want to nest a graph by using the matched patterns as described in the introduction,

we must express CL as a graph pattern matching classifier, checking whether the given
vertex or edge would match the pattern, and returning the cluster identifiers to which it
belongs. Please also note that we can perform pattern matching techniques over a single
nested graph ï as a consequence of the implementation of such languages in GSQL, as it
will be described in Section 6.3.2 on page 177. Consequently, we will be able to optimize
the aforementioned general approach to nesting graphs (that can be also used for graph
grouping) into a more efficient operator, which only requires to generate two distinct sets
of graph collections that, then, will be used to create the new nested graphs.

176 6.3 GSQL Use cases

n-ary operators

As previously observed, the class of graph ⊗ϑ product may be defined as a vertex join
operation alongside with the creation of new edges among the returned and matched
vertices by using a specific semantics, es. In the context of the nested graphs’ edge creations,
the semantics is represented by a ⟨es, L, F⟩ triple required by the κ̇g

′⇐es
L,F operator. Therefore,

the graph join operation can be defined as follows:

▸ Definition 61 ((Nested) Graph ⊗ϑ Product). Given two nested graph operands, ï and ï
′, a

ϑ predicate over the edges and an edge semantics ⟨es, L, F⟩, such operator can be represented as

follows:

ï⊗⟨es,L,F⟩
JSc ,ϑ ï

′ = κ̇g
′⇐es

L,F (ï⊗JSc ,(x,y)↦x,y∈φ(g ′,“Entity”)∧ϑ(x,y) ï
′)

◂

On the other hand, the disjoint union (Definition 42 on page 160) clearly breaks
the model constraints for nested graphs, because it doesn’t preserve the containment
attributes in which vertices and edges are stored. Therefore, we can use such operator
only in combination with other operators that will change the structure by subsequently
using a map operator. Therefore, instead of directly implementing it, we can continue
our discussion with the set operators outlined in Subsection 6.2.1 on page 162. We
observed that such operations play a double role of both object and collection operators,
due to the object collection-attributes’ values dualism. Nevertheless, the intersection and
difference operations may also require that the edges must be always checked if may
actually link some nodes appearing in a φ(o, “Entity”) within the final result. The set
operations over nested graphs by combining the set operations with the constraint as

follows:

ω⊔
1≤i≤n

ïi = constraint(ω⋃
1≤i≤n

ïi) ï//ωï
′ = constraint(ï/ωï

′) ω⊓
1≤i≤n

ïi = constraint(ω⋂
1≤i≤n

ïi)
The

constraint operator may also be adopted within the (unary) unnesting definition for
nested graphs:

Graph Data Mining operators

With reference of the three world data mining model, we may observe that graph represent-
ations allow to collapse the three distinct data worlds into one. In Chapter 4 on page 89 we
observed that graphs may represent both Data and Models , where – as observed in the
succeeding chapters – the latter may be also generalized and interpreted as MetaModels
because such models may be used as query languages.

As a consequence, the intensional world can be represented as either the graph schema
(vertices’ and edges’ properties) or the data edges’ (representing vertices’ properties).
Therefore, we can derive two different interpretations for the κ regionizing operator for
extracting intensional data. In the first scenario, such operator is subsumed by the α1
operator allowing the extraction of a graph schema from the given graph data. In the
second scenario, κ may be interpreted as the creation of new edges between the vertices.
Therefore, the link discovery operator acts as the required κ regionize operator when
vertices represent data and edges represent the intensional world. Consequently, graphs
are the extensional representation where each vertex is connected to its edges.

The mining loop λ operator may be defined via the higher order fold operator, which
allows to perform iterations over arbitrary data collections.

6. GSQL: a Generalized Semistructured Query Language 177

Given that in the second scenario graphs already provide the extensional world, we
now have to discuss Pop for the first scenario. Such operator must associate each data
representation to the schema by extending the intensional representation of a graph schema
(or pattern) P with the data it matches. Each object o in P is associated to the objects f j(o)
in ï resulting from the morphism f j generated by mP(ï).

Popm(ï, P) = εo↦⊕ f j∈mP(ï)[[“j”, f j(o)]](P) (6.8)

Nested graphs (and more generally GSMs) provide the required extensional representation
for Pop operator. If we unnest the extensional information we may obtain the original

data values with its original schema (πA
def== µff

tt), while the πRDA operation may forget
the nested information may be defined by a simple map operation which forgets all the
morphism-nested information within the nested graph and retains the objects that have
been actually matched in the previous phase, thus acting as projection operator.

Finally, this section showed that the joint combination of the nested graph model and
GSQL provide the characterization of a data mining model for graphs via nested graphs,
where an uniform set of both data representations and operators is given.

6.3.2 Implementing traversal query languages’ semantics (σ)

Please refer to Section 3.5.1 on page 77 for the graph query language terminology adopted in this

subsection.

Both graph selection and graphs extraction query languages rely on visiting the input
data graph and then returning either the visited part (NautiLOD [FPG15]) or the data
that is reached after evaluating the visiting steps (XPath [BBC+15]). If we consider trees
as a specific graph, both languages are (graphs) extraction languages, even though they
substantially differ on how both traversing is performed and on the returned results: while
NautiLOD returns a graph which subgraphs match a given specification, XPath returns a
forest of trees that can be reached after the traversal process. These two languages may
be also distinguished from the way they traverse the GSM data structure: while the first
performs a navigation of the graph data structure by alternatively moving across objects
belonging to different containments (vertices and edges) and does not necessarily involve a
visit of the GSM by using ϕ∗ recursively, the second query language visits in depth (ϕ) all
the objects belonging to the same root object and performs a visit in depth.

A combination of these two traversal approaches leads to a complete nested graph
traversal language. Even though this thesis is not going to provide a user friendly syntax for
such query language, it is going to provide an example on how to interpret such languages
into GSQL, so that it can be used to navigate GSM data structures. Then, given that both
languages may be represented in GSQL (and hence, at the semantics level), this means that
such languages may be also freely integrated even at a syntactic level. The definition of
another nested graph traversing language combining both features then comes for granted.
The final language may provide the selection predicate, which is defined as follows:

▸ Definition 62 (Selection). Given a GSM ï = (g, O, ℓ, ξ, φ), a traversal algorithm s and a pattern

P, the selection operator σP(ï) returns a GSM which is a substructure of ï through the execution

of the query P on ï interpreted with s, where s(P) is interpreted as a sequence of GSQL operators

(s(P)(ï)). Consequently:

σs,P(ï) = (s(P))(ï) = (g
′, O ′, ℓ ′, ξ ′, φ ′)

178 6.3 GSQL Use cases

In particular each semantics “s” must guarantee to return a substructure, compliant to the con-

straints of the original input data. E.g., for nested graph we must ensure that φ(g
′, “Entity”) ⊆

φ(g, “Entity”), φ(g
′, “Relationship”) ⊆ φ(g, “Relationship”) and O ′ ⊆ O, where each edge i in

e ′ has source and target it v ′ (∀i ∈ φ(e ′).λ(e ′) ∈ φ(v ′) × φ(v ′)). ◂

In the following subsections we’re going to show how to define such s expressions for
translating traversal query languages into GSQL expressions.

XPath Traversals

With reference to Definition 10 on page 68 where we outlined a minimal subset of XPath, we
now focus on the path traversal discarding all the axis notation and the selection predicates.
This core language provides the minimal language allowing to traverse data structures in
depth. The reason of doing so is that we want to use such language only for traversing the
data structure in depth, and not to filter the obtained data, which can be easily achieved in
our algebra via map.

Moreover, on the footsteps of [FPG15], which did a similar approach for graph traversals,
we’re going to show that is possible to express a nested data structure traversal using
algebraic operators. In particular, we’re going to show that we can define the semantics
XPathInit interpreting the minimal XPath expressions.

▸ Definition 63 (Minimal XPath (GSQL Semantics)). XPathInit interprets the Minimal XPath

query over a GSM representation of XML documents using GSQL. Before evaluating the <µXPath>

expression P via XPath, such function preventively creates a new object with a fresh id ω where the

result is going to be stored in φ(ω, “result”). Therefore:

XPathInit(P) = n ↦ XPath(P)(electω(createω[],[],[[{‘‘result’’,[g]}]]Γ
(n)))

At this point, we can define the semantics associated to the expression as follows:

XPath(P) = n ↦
⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

mapℓ,ξ,φ⊕{ω,{‘‘result’’,t(cSem(<c>))}}(n) P ≡ <c>⋆
map

ℓ,ξ,φ⊕{ω,{‘‘result’’, t(select(cSem(<c>) : y -> {<s> in y.ell}))}}(n) P ≡ <c><s>

XPath(<µXPath>)(XPath(<c><s>)n) P ≡ <c><s><µXPath>

where the union of the script lists can be defined as union = x ->distinct {x[0] ++x[1]},

and the interpretation of the subSelectors is defined as follows:

sSem(u, s) = ⎧⎪⎪⎨⎪⎪⎩
u[s] s ≠ ⋆∧ s ≠ ε

foldl {[], map(u : y -> y[1]), union} oth.

cSem(<c>) = ⎧⎪⎪⎨⎪⎪⎩
sSem(x[0].phi,<s>) <c> ≡ /<s>

sSem(x[0].varphiplus,⋆) <c> ≡ //⋆

t(expr) = foldl {[], g.phi[‘‘result’’], x↦ {expr ++ x[1]}}

◂

Consequently, instead of using many distinct algebraic operator for performing a
traversal of the nested structure as in [MM06], we may now traverse the whole data
structure by providing the full XPath expression, and then performing the desired operation
over the forest of selected substructures.

6. GSQL: a Generalized Semistructured Query Language 179

▸ Example 31. As an example, let us try to express the XPath traversal query: /medical/patient/name.

Given that τXML converts each tag into the “Tag” containment, we can rewrite the query as

/“Tag”medical/“Tag”patient/“Tag”name. By the definition of the aforementioned GSQL semantics

for XPath, from XPathInit(/“Tag”medical/“Tag”patient/“Tag”name) we obtain the following ex-

pression:

XPathInit(P)(n) = XPath(/“Tag”
medical/

“Tag”
patient/

“Tag”
name)(electω(createω[],[],[[{‘‘result’’,[g]}]]Γ

(n)))

XPath(/“Tag”
medical/

“Tag”
patient/

“Tag”
name)(electω(createω[],[],[[{‘‘result’’,[g]}]]Γ

(n))) =
XPath(/“Tag”

patient/
“Tag”

name)(XPath(/“Tag”
medical)(electω(createω[],[],[[{‘‘result’’,[g]}]]Γ

(n)))) =
XPath(/“Tag”

name)(XPath(/“Tag”
patient(XPath(/“Tag”

medical)(electω(createω[],[],[[{‘‘result’’,[g]}]]Γ
(n)))))) =

In particular, each internal expression designing one part of the whole visiting step can be

rewritten for medical as follows:

XPath(/“Tag”
medical)(n) = map

ℓ,ξ,φ⊕{ω,{‘‘result’’, t(select(cSem(/“Tag”) : y -> {‘‘medical’’ in y.ell}))}}(n)
= map

ℓ,ξ,φ⊕{ω,{‘‘result’’, t(select(sSem(x[0].phi,“Tag”) : y -> {‘‘medical’’ in y.ell}))}}(n)
= map

ℓ,ξ,φ⊕{ω,{‘‘result’’, t(select(x[0].phi[“Tag”] : y -> {‘‘medical’’ in y.ell}))}}(n)
=

mapℓ,ξ,φ⊕{ω,{‘‘result’’, foldl {[], g.phi[‘‘result’’], x↦{select(x[0].phi[“Tag”] : y -> {‘‘name’’ in y.ell}) ++ x[1]}}}}(n)
Please note that the present semantics does not provide one substructure of the GSM,

while provides a collection of objects which are effectively substructures of the original
GSM.

NautiLOD Traversals

In Table 3.4 on page 79 we provided the Successful NautiLOD’s semantics over MPGs.
This paragraph shows that we can express such graph traversal semantics in GSQL after
mapping MPGs and MPGs collections into GSM nested graphs. In particular, we use ℓ to
store the starting node of the visit, and ξ for storing the ending nodes’ collection.

The first class of operators are the ones over the graphs, where only the concatenation ○
and a distinct union for MPGs5 ⊔ and MPGs’ collections6. The first concatenation operator
can be defined as follows:

▸ Definition 64 (NautiLOD concatenation). Given two nested graphs ïL and ïR representing

MPG pointed graphs, we can define the NautiLOD concatenation for GSM Pointed Graphs as

follows:

5In the original paper, such operator is defined as ∪. Given that we have already used ⊔ for our operator
over GSMs and given that their operator also uses the

6In the original paper, such collection operator is defined as ⊕. We prefer to use the ∪ notation as the
one originally addressed for GSMs, and hence, for labelled collections.

180 6.3 GSQL Use cases

φ○ =
⎡⎢⎢⎢⎢⎣ ω ↦ ⎧⎪⎪⎨

⎪⎪⎩

φ(ω) ℓ(o.ïR) ⊆ ξ(o.ïL)∅ oth.

⎤⎥⎥⎥⎥⎦

ℓ○ =
⎡⎢⎢⎢⎢⎣

ω ↦ ⎧⎪⎪⎨
⎪⎪⎩

ℓ(o.ïL) ℓ(o.ïR) ⊆ ξ(o.ïL)∅ oth.

⎤⎥⎥⎥⎥⎦
ξ○ =
⎡⎢⎢⎢⎢⎣

ω ↦ ⎧⎪⎪⎨
⎪⎪⎩

ξ(o.ïR) ℓ(o.ïR) ⊆ ξ(o.ïL)∅ oth.

⎤⎥⎥⎥⎥⎦

ïL ○ ïR = mapℓ⊕ℓ○, ξ⊕ξ○, φ⊕φ○(ïL ∪ω
ïR)

◂

On the other hand, the NautiLOD union of matched subgraph patterns can be defined
as follows:

▸ Definition 65 (NautiLOD union). Given two nested graphs ïL and ïR representing MPG

pointed graphs, we can define the NautiLOD union for GSM Pointed Graphs as follows:

φ⊔ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ω ↦
⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ(ω) ℓ(o.ïR) = ℓ(o.ïL)
φ(o.ïL) φ(o.ïR, “Entity”) = φ(o.ïR, “Relationship”) = ∅
φ(o.ïR) φ(o.ïL, “Entity”) = φ(o.ïL, “Relationship”) = ∅
∅ oth.

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

ℓ⊔ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ω ↦
⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ℓ(o.ïL) ℓ(o.ïR) = ℓ(o.ïL)
ℓ(o.ïL) φ(o.ïR, “Entity”) = φ(o.ïR, “Relationship”) = ∅
ℓ(o.ïR) φ(o.ïL, “Entity”) = φ(o.ïL, “Relationship”) = ∅
∅ oth.

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

ξ⊔ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ω ↦
⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ξ(o.ïR)∪ ξ(o.ïL) ℓ(o.ïR) = ℓ(o.ïL)
ξ(o.ïL) φ(o.ïR, “Entity”) = φ(o.ïR, “Relationship”) = ∅
ξ(o.ïR) φ(o.ïL, “Entity”) = φ(o.ïL, “Relationship”) = ∅
∅ oth.

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

ïL ⊔ω
ïR = mapℓ⊕ℓ⊔, ξ⊕ξ⊔, φ⊕φ⊔(ïL ∪ω

ïR)

◂

Given that ∪ (originally ⊕) denotes the union between GSMs collections, such operation
can be directly expressed through the ⋃ GSQL operator. Please also note that in the
original paper is also relevant to extend the two previously-mentioned operations to graph
collections, such that those operators can be applied to all the graphs appearing in the
resulting collections. For this reason we can choose to instantiate the ⊗θ-Product by
replacing ⊗ with one of the aforementioned operators and by choosing a θ predicate that
can be eventually the always true predicate. Please also note that the resulting collection
must be re-labelled at the end of the step in order to achieve an uniform notation.

▸ Example 32. Suppose that we now want to traverse a graph represented as a nested graph ï from

any given initial paper u, of which we want to know its authors’ affiliations. NautiLOD expressions,

similar to XPaths’, represent such graph traversal query as follows:

authoredBy/affiliatedTo

6. GSQL: a Generalized Semistructured Query Language 181

Among all the possible semantics proposed by NautiLOD, we adopt in this example the Successful

(S) over our nested (data) graph ï. In particular, given that NautiLOD’s action expressions are not

relevant for our graph query purposes because they provide customizable side effects not affecting

the final result, we may remove them from the query interpretation. Therefore, the interpretation of

such semantics reduces to the rewriting of the NautiLOD expression:

[[⋅authoredBy/affiliatedTo]](u) =⋃[[authoredBy/affiliatedTo]](u)
=⋃⎛⎝[[authoredBy]](u) ○

⎛
⎝ ⋃

v∈TΓ ,Γ∈[[authoredBy]](u)
[[affiliatedTo]](v)⎞⎠

⎞
⎠

= ⋃
v∈TΓ ,Γ∈[[authoredBy]](u)

Γ ○ [[affiliatedTo]](v)
(6.9)

We use the fold iteration over the content of a given ï
′ GSM for defining the recursive application

of the operator on all the elements of the set. Therefore, we use bigop to apply recursively operation

op to a GSM-elected object identified by ς, which accepts all the arguments of the folding function:

bigop
op,ς(ï ′) def== fold{ (ok ,v) ∣ ok∈φ(ωc ,“Entity”),v∈ξ(ok) },((ok ,v),α)↦(electok

(α) op ς(ok ,v,α))(ï ′)
At this point, we have to define how to extract each graph containing a as a label, originating from

u ([[a]](u)). This solution can be achieved by using the graph nesting operator, through which we

create a nested graph containing only nested vertices, which contain a subgraph of the initial dataset:

[[a]](u) def==
def== µff

tt(
map

o↦⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩φ(x, “src”) o ∈ φ(g, “Entity”), ℓ(o) = [(v, x)]
∅ oth.

,ℓ,ξ

(νg
ff,ω
CLu

a ,UDFa,u
V

,UDFa,u
E

(ï))

)

Such definition uses the following functions:

Su
a = { (v, x) ∣ x ∈ φ(g, “Relationship”)∧ a ∈ ℓ(x)∧ u ∈ φ(x, “src”) }

CLu
a(x) =

⎧⎪⎪⎨⎪⎪⎩
{ (v, y) ∈ Su

a ∣ x ∈ φ(y, “src”)∪ φ(y, “dst”) } x ∈ φ(g, “Entity”)
(v, x) (v, x) ∈ Su

a

UDFa,u
E = ⟨[[]], φ⟩ UDFa,u

V = ⟨o ↦ ⎧⎪⎪⎨⎪⎪⎩
φ(x, “dst”) ℓ(o) = [(v, x)]
∅ oth.

, φ⟩
After the previous definitions, we can finally write the GSQL semantics as:

µff
tt(bigop○,(_,v,_)↦[[affiliatedTo]](v)([[authoredBy]]ωc(u)))

Similar considerations may be provided for the whole set of NautiLOD syntax, which
do not fall within the aims of the present thesis. Nevertheless, we showed that it is possible
to provide a graph traversal semantics on GSM which are closed under the GSQL algebraic
operators used to represent NautiLOD’s semantics.

182 6.3 GSQL Use cases

6.3.3 Representing is-a aggregations

Within Section 2.2.2 on page 40 and specifically on Examples 6 and 7, we have already
touched upon structural graph aggregation. We also observed that aggregations on top
of graph data structures do not allow drill-down operations on top of aggregated data.
Even if the formal operator performing such operation on top of nested graphs will be
fully provided in Chapter 7 on page 195, in the following two subsections we will show
how GSM allows to integrate tree (hierarchy) and relational data extracted from a graph,
so that it can be drill-down in a second step by the user.

As we saw in Example 8 on page 44 where data aggregation operations were briefly
introduced, there is a need for representing nested components to which an aggregated
representation is provided. In particular, GSMs can explicitly associate to each object o a
collection φ(o, p) of elements over which aggregation functions p can be evaluated over the
data in such collection.

▸ Example 8 (continuing from p. 44). We want to show how is-a aggregations are possible by using

already existing data hierarchies. Since our data model violates the first normal form - similarly to

other semi-structured data models - it is possible to express the hierarchy in Figure 2.18a on page 45

through the following instantiation:

H = (r,{ r, t1, t2, c1, . . . , c4, p1, . . . , p8 } , ℓ, ξ, φ)
The reference object r represents the root of the hierarchy and is defined as follows:

ℓ(r) = [root] φ(r,parentof) = [t1, t2]
In particular, each element of the hierarchy is defined as follows:

ℓ(t1) = [type] ξ(t1) = [“House cleaner”] φ(t1, “parentof”) = [3, 4]
ℓ(t2) = [type] ξ(t2) = [“Food”] φ(t2, “parentof”) = [5, 6]

ℓ(c1) = [category] ξ(c1) = [“Cleaner”] φ(c1, “parentof”) = [7, 8]
ℓ(c2) = [category] ξ(c2) = [“Soap”] φ(c2, “parentof”) = [9, 10]

ℓ(c3) = [category] ξ(c3) = [“Diary Product”] φ(c3, “parentof”) = [11, 12]
ℓ(c4) = [category] ξ(c4) = [“Drink”] φ(c4, “parentof”) = [13, 14]

ℓ(p1) = [product] ξ(p1) = [“Shiny”] ℓ(p2) = [product] ξ(p2) = [“Brighty”]
ℓ(p3) = [product] ξ(p3) = [“CleanHand”] ℓ(p4) = [product] ξ(p4) = [“Marseille”]

ℓ(p5) = [product] ξ(p5) = [“Milk”] ℓ(p6) = [product] ξ(p6) = [“Yogurt”]
ℓ(p7) = [product] ξ(p7) = [“Water”] ℓ(p8) = [product] ξ(p8) = [“Coffee”]

We now want to use this hierarchy as a dimension for the Product objects in Figure 2.14 on page 38.

As a start, let us suppose that each Product vertex is associated to a quantity attribute, providing

the sum of the quantity of the ingoing item edges. Since such aggregation functions can be only

expressed over the data collections and given that there are no particular constraints on the types of

the ids to be stored in such data collections, we have that each expression shall provide the following

aggregation function (ξ ′[0]):

6. GSQL: a Generalized Semistructured Query Language 183

✞ ☎
quantity := (foldl {0,

o.phi ["quantity"],

x -> { (foldl {0,

map(select(x[0]. phi["Attribute"] : y -> {y.ell == "quantity"↪ }))}) }

: y -> { y.xi[0] }),

y -> { y[0] + y[1] }

}) }

}

)
✝ ✆

In this case we can use ξ to store the definition of quantity function, that will differ from the one

used within hierarchies. This other function is going to be defined as follows (ξ ′′[0]):
✞ ☎

quantity := (foldl {0, o.phi ["quantity"], y -> {(y[0].xi[0] x[0])+y[1]}})
✝ ✆

In this way, the functions’ evaluation may be evaluated directly by traversing the hierarchy, without

any required need of effectively aggregating the data. As a next step, from the whole company

database we can select only the products (filtering through σ), and then extend each of them with a

new quantity attribute aggregating their incoming edges’ quantity values. Such statement can be

expressed through the following statement:

P ′ = filterx↦“Product”∈ℓ(x)(
mapℓ,ξ ′,φ⊕v[[v,[“quantity”,[v∈φ(gDB ,“Relationship”)∣∃u.λ(e)=(u,v)∧“Product”∈ℓ(v)]]]](DB)
)

At this point, we want to do the same operation for the hierarchy: we must first rename parentof

into quantity(x), and then just replace the parentof placeholder with the function performing the

aggregation:

H ′ = mapℓ,ξ ′′,φ⊕s[[s,[“quantity”,φH(s,“parentof”)]]](H)
In order to be able to evaluate the aggregation at different hierarchy’s abstraction levels, discard

all the other informations from the database’s products and keep only the given dimension, we can

finally perform the following left join (that can be defined from the ⊗θ product):

H ′ ⋈ πname,quantity(P ′)
Please note that this final join was possible because the products within the hierarchy do not have a

parentof field, and hence they have no quantity one. At this point, the amount of the products

bought by the company’s employees can be done by evaluating the quantity(x) expression over its

nested content: the expression’s evaluation will recursively visit the remaining part of the hierarchy

joined with the data.

6.3.4 Generalized Graph Grammars G for Nested Graphs. ϘG
H,T (H)(ï)

We continue to both analyse the dependency graph semistructured representation for
unstructured data (as already introduced in Section 2.1.4 on page 28), and search for a
Ϙ definition. As also remarked in Section 3.3 on page 70, the problem with representing
unstructured data is that they lack of a precise data structure that could be directly queried,
handled and created by automated processes. As a consequence, some “structure” has to
be provided.

If we suppose that the full text is well written and that it follows the correct grammar
rules of its natural language, then we can express such full text as a dependency graph
(Figure 6.4 on page 185), and we can express grammatical rules through graph grammar

184 6.3 GSQL Use cases

operations. In particular, we can use graph pattern matching queries to match all the
foreseeable natural language’s constructs, and then transform them into a nested graph,
where entities will represent whole complements or whole sentences (e.g., dependent or

subordinate clauses), and verbs - representing actions from the subject to the object or from
the agent towards the subject - represent edges connecting the former concepts through
linguistic relationships.

On the footsteps of GraphLOG, Figure 6.5a provides an example of a visual repres-
entation of match (H) and rewrite (T) rules: we want to match the graphs represented in
the “pattern” column, and rewrite them as the nested graphs presented within the “result”
column. The first rule tells that each vertex X that has outgoing edges with one of the
labels depicted in λ has to be updated with the value stored in its correspondent adjacent
vertex Y. The second rule tells to collect inside one single nested vertex all the elements
that are in conjunction conj with each other through a conjunction Z: moreover, any other
ingoing and outgoing edge to this nested object of a given label must be rewritten as
a single ingoing or outgoing edge. The last one tells to rewrite the verb of a sentence,
represented as a root V linked to the list of subjects S⃗ and the object X∣∣V (that can be a
verb being a root of another sentence), as a whole nested vertex containing an edge to the
nested object of all the components of the subject, directed to the final object or sentence.
In particular, graph grammars are defined through the combination of such rewriting rules
[CM90b, Plu99]: the former picture also shows how such match and rewrite query can be
expressed by a visual formalism, instead of being coded using a specific programming
language as already showed in the early 90s [CM90b].

A possible outcome of such pattern matching and transformation is provided in Figure
6.5b: this result is both more human readable and machine readable than the first sentence
input, thus allowing a computer to better analyse the content of the sentence. As we have
already seen in Section 3.5.2 on page 79, graph grammars neither allow to nest graphs
nor allow to fully transform the matched vertices and edges. Consequently, we have to
generalize such approach in this regard. Moreover, we also have to allow the transformation
of multiple pattern graphs into one single rewriting graph (hub schema). The following
definition provides a preliminary and wordy definition, that is going to be formalized after
an exaplainatory running example on a much simpler use case involving bibliography
graphs.

▸ Definition 66 (Generalized Graph Grammars). A generalized graph grammar7 is a collection

of n graph rewriting rules [Hi → Ti]mi

i≤n applied to nested graph ï via the following operator

Gm1,...,mn[Hi→Ti]i≤n
(ï), returning another nested graph. In particular, the set of all the His appearing in the

rules is denoted by H, while the Tis are referenced by T .

The associated semantics of such graph grammar on a given nested graph in input ï is the

following: each graph head Hi provides a graph pattern matching query which is going to be

interpreted through a semantics mi returning a collection mi
Hi
(ï) of morphisms f j as a result of the

matching phase.

The associated transformation Ti is described through a nested graph, and it is instantiated

on each generated morphism f j generating several graphs replacing the matched ones. Each

transformation graph Ti may contain (i) vertices (and/or edges) oh also contained8 in Hi providing

7See Sherlock for both a representation of nested graphs and an implementation of such generalized
graph grammars: http://rebrand.ly/unibo7252c

8We preferred to use object identity instead of using further morphisms as in both graph grammars

http://rebrand.ly/unibo7252c

6. GSQL: a Generalized Semistructured Query Language 185

nsubj

detccconj nmod

casenmod

case
det

amodnmod

case cc conj

nmod

ccomp

marknsubj auxdobj

det acl:relcl

nsubj
auxnmod

case nmod:poss

nsubj

revealed

discovery

Theandpublication 1987

incorrespondence

of anearlyEinstein

between and Maric

had

thatthey haddaughter

a staying

whichwasparents

with her

Figure 6.4 Graph representation of the following sentence from Wikipedia: “The discovery and

publication in 1987 of an early correspondence between Einstein and Maric revealed that they had had a

daughter was staying with her parents.”.

186 6.3 GSQL Use cases

Pattern Result

X Y
λ =aux||det||nmod:poss

move Y in X@{λ : Y.value}

X ~H

Z

X||V K

∀λ

c
o
n
j

?
c
c

∀
γ

?c
as
e

let λ̃ := if λ =nmod then

complement(K) else λ in

X

~H

X||V

conj:JZK

λ̃
γ

V~S X||V

T

?
c
a
s
e

∀nsubj λ =dobj||ccomp||nmod

let λ̃ := if λ =nmod then

complement(T) else JVK in

~S X||V
λ̃

V

(a) Query for nested graph allowing to rewrite the full-text graph representation.

discovery

det: The
publication

conj:and

1987

w
h
e
n

correspondence

det: an

adj: early

w
h
a
t

Einstein Maric

conj:and
bet

wee
n

they
daughter

det: a

had

revealed

parents

det: a

poss: her

which

staying with

a
c
l
:
r
e
c
l

(b) Result of the application of the patterns in Figure a.

Figure 6.5 Translating the full-text representation as a graph in Figure 6.4: this requires a graph
transformation language and the definition of nested graphs.

6. GSQL: a Generalized Semistructured Query Language 187

the semantics “return all the matched vertices (and/or edges) by a given vertex (and/or predicate)

represented by oh” and possibly apply a transformation, (ii) or new vertices (and/or edges) oc that

are not in the vertex set φ(g, “Entity”), thus providing the semantics “transform (or aggregate)

the matched vertices (and/or edges) according to the (aggregation) functions of oc”. Consequently,

(iii) all the vertices (and edges) that are matched in Hi but not returned as vertices in (i) (or edges

linking vertices that are neither contained in other objects nor appear as vertices in the final result)

are removed from the returned graph. In particular, all the edges generated in (ii) must be associated

with all the returned or generated vertices by the pattern. ◂
The following example motivates the operator’s subsequent formalization.

▸ Example 33. With reference to Example 7 on page 41, we want to show how such aggregation is

possible by simply using graph grammar rules. In order to obtain the same result in Figure 2.17b on

page 44, we can use the Generalized Graph Grammars with just one rule G = [H → T]s, where H is

the query “return all the authors that are co-authors” nested graph:

H = (h,{ h, u0, u1, p0, e0, e1 } , ℓ, ξ, φ)
ℓ(u0) = { Author } = ℓ(u1) ℓ(p0) = { Paper } ℓ(e1) = { AuthorOf } = ℓ(e2)

ξ(u0) = [“isGroupBy”, “o.id != u1”]
ξ(u1) = [“isGroupBy”, “o.id != u0”]

φ(h, “Entity”) = [u0, u1, p0] φ(h, “Relationship”) = [e0, e1]
φ(e0, “src”) = [u0] φ(e0, “dst”) = [p0] φ(e1, “src”) = [u1] φ(e1, “dst”) = [p0]

This query then expresses that the pattern matching query must return the pattern fixing the two

user (“isGroupBy”), and let return all the papers in common, and not just one single paper. We

can enforce the fact that u0 and u1 cannot be the same user within the graph, if we allow vertices to

insert predicates within their expressions as the second condition provided above.

The T graph states that only the authors must be returned and that a new edge between the

co-authors must be created. Moreover, all the papers must be removed from the final result. In

particular, the edge can contain all the papers that will be matched by p0 as follows:

(t,{ t, u0, u1, ca0, p0 } , ℓ, ξ, φ)
ξ(ca0) = [“o.src!= o.dst”]

ℓ(u0) = { Author } = ℓ(u1) ℓ(ca0) = { coauthorship }
φ(t, “Entity”) = [u0, u1] φ(t, “Relationship”) = [ca0]

φ(ca0, “src”) = [u0] φ(ca0, “dst”) = [u1] φ(ca0, “pp”) = [p0]
Since the grammar rules can only tell how to transform the matched subgraphs, we must

first restrict the bibliography network BN in Figure 2.17a on page 44 into the greatest subgraph

matching H: therefore, we’re going to apply our graph grammar rules over BN ′ = σs,H(BN). As a

consequence, BN ′ will not contain the Paper with id 5, because was only authored by the Author

with id 1, and hence is not involved in any coauthorship relation. ◂

and nested graph alignments’ refinement as in the previous chapter. Transformations and embeddings are
going to be expressed as target objects’ containments.

188 6.3 GSQL Use cases

Before providing the formal definition of the semantics of such operator, we shall
provide some explanations on how to generate the final formula, step by step. In particular,
the removal of vertices in (iii) from the vertex set of the result can be defined as follows:

δV = φ(g, “Entity”)/foldG, ([Hi→Ti]mi ,α)↦fold
mi

Hi
(ï), (f j ,β)↦ f j(φ(g

H
i

,“Entity”)/φ(g
T
i

,“Entity”))∪β
(α)([])

(6.10)
This expression has to be read as follows: given a nested graph ï, from its vertex set remove
all those vertices that appear in the morphism f j originated by a matching oh that is not
represented in Ti. This is performed , for each graph pattern Hi belonging to the i-th rule of
the grammar associated with a match semantics mi over which morphisms f j are provided,

▸ Example 33 (continuing from p. 187). Each morphism f j returned from the match of BN ′ with

H will have as many keys as the vertices and edges in H. In particular we will have four morphisms:

f0(u0) = [0] f0(u1) = [2] f0(p0) = [3] f0(e0) = [6] f0(e1) = [7]

f1(u0) = [2] f0(u1) = [0] f0(p0) = [3] f0(e0) = [7] f0(e1) = [6]

f2(u0) = [2] f0(u1) = [1] f0(p0) = [4] f0(e0) = [8] f0(e1) = [9]

f3(u0) = [1] f0(u1) = [2] f0(p0) = [4] f0(e0) = [9] f0(e1) = [8]
Given that all the aforementioned morphism have a domain {u0, u1, p0, e0, u1} and that

φ(t, “Entity”) = {u0, u1}, this means that the only element of H not represented in T can be only

p0, and hence Equation 6.10 can be rewritten as follows:

φ(g, “Entity”)/fold[H↦T]m , (Hi ,α)↦fold
mi

Hi
(ï), (f j ,β)↦ f j(φ(g

H
i

,“Entity”)/φ(g
T
i

,“Entity”))∪β
(α)([])

= φ(g, “Entity”)/fold{ f0, f1, f2, f3}, (f j ,β)↦ f j(φ(gH
i

,“Entity”)/φ(gT
i

,“Entity”))∪β([])
= φ(g, “Entity”)/fold{ f0, f1, f2, f3}, (f j ,β)↦ f j(φ(gH

i
,“Entity”)/φ(gT

i
,“Entity”))∪β([])

= φ(g, “Entity”)/fold{ f0, f1, f2, f3}, (f j ,β)↦ f j([p0])∪β([])
= φ(g, “Entity”)/ ⋃

f j∈{ f0, f1, f2, f3}
f j ([p0])

= φ(g, “Entity”)/[3, 4]
= [0, 1, 2, 5]

Please note that node 5 is kept because it has not been matched by H and, consequently, it does

not appear in the final morphisms. ◂
We now must add to the previously filtered vertices the new ones v ′c+1 that are generated,

for each morphism f j, by the vertices vc in φ(gT
i): the id v ′c+1 associated to the generated

vertex depends on both the position p of the generalized graph grammar within the
sequence of the queries, and to the id j associated to the generated morphism f j, and the
one belonging to the transformation vertex. Therefore:

v ′c+1 = dt(j, vc)c+1

6. GSQL: a Generalized Semistructured Query Language 189

Moreover, each of the v ′c+1 must have the same label of vc (ℓ(v ′c+1) ∶= ℓ(vc)) and must share
its same attributes (φ(v ′c+1) = φ(vc)). In particular, φ(v ′c+1, k) must contain all the elements
matched by φ(vc, k). This implies the creation of the following object:

WV
f j ,vc

(ï) = create
dt(j,vc)c+1
ℓ(vc),ξ(vc),⋃k∈dom(φ(vc))[[k, f j(φ(vc ,k))]](ï) (6.11)

Hereby, the final vertex set is provided as follows:

V ′ = δV ∪ foldG, ([Hi→Ti]mi ,α)↦fold
mi

Hi
(ï), (f j ,β)↦{dt(j,v)c+1 ∣vc∈φ(g

T
i

,“Entity”)/φ(g
H
i

,“Entity”)}∪β
(α)([])

While the creation of such newly associated elements can be performed via Equation 6.11

as follows:
ïV(ï) = foldG, ([Hi→Ti]mi ,α)↦fold

mi
Hi
(ï), (f j ,β)↦WV

fj ,vc
(β)(α)(ï)

▸ Example 33 (continuing from p. 188). In our case, the set of the vertices in T that are not

present in H is empty, and hence no new vertices are generated in this case. ◂
Differently to what it has been already stated for the vertices, we must preserve all

the edges that are (i) either kept after the matching and transformation phase, (ii) or are
connecting vertices that are either returned, or newly created, or connect vertices to other
nested elements. For this reason, we must consider the newly generated edges first (since
they may contain other nested vertices) prior to the definition of the edges that must be
removed. Now, the newly generated vertices have to take into account that they will be
associated to either existing or aggregated source and target vertices. We can distinguish
them in the following expression returning their ids because the first ones are directly
provided with no dovetailing definition, while the latter are defined like so:

M f j ,L,i ={ dt(j, v)c+1 ∣ vc ∈ L ∩ (φ(g
T
i , “Entity”)/φ(g

H
i , “Entity”)) }

∪ { k ∈ f j(vc) ∣ vc ∈ L ∩ φ(g
H
i , “Entity”)∩ φ(g

T
i , “Entity”) } (6.12)

Therefore, the aforementioned extension of W for the edges where those are associated to
their new source and target vertices is defined as follows:

WE
f j ,ec ,s ′,t ′(ï) = create

dtl([ec ,s ′,t ′])c+1
ℓ(ec),ξ(ec),[[“src”,[s ′]],[“dst”,[t ′]]]⊕⋃k∈dom(φ(ec))[[k, f j(φ(ec ,k))]](ï)

W̃ f j ,ec ,i ′(ï) = foldM f j ,φ(ec ,“src”),i , (s ′,α)↦fold
M f j ,φ(ec ,“dst”),i , (t ′ ,β)↦WE

fj ,ec , f j(s ′), f j(t ′)(β)(α)(ï) (6.13)

Thus allowing to return the following new edges:

ïE(ïV) = foldG, ([Hi→Ti]mi ,α)↦fold
mi

Hi
(ï), (f j ,β)↦fold

φ(g
T
i

,“Relationship”)/φ(g
H
i

,“Relationship”),(ec ,γ)↦W̃fj ,ec ,i ′ (γ)(β)(α)(ïV)

while the edge set can be enriched as follows:

nE = foldG, ([Hi→Ti]mi ,α)↦fold

mi
Hi
(ï), (f j ,β)↦

⎧⎪⎪⎨⎪⎪⎩
dtl([ec ,s ′ ,t ′])c+1

RRRRRRRRRRRRR

ec∈φ(g
T
i

,“Relationship”)/φ(g
H
i

,“Relationship”)
s ′∈ f j(φ(ec ,“src”)),t ′∈ f j(φ(ec ,“dst”))

⎫⎪⎪
⎬
⎪⎪⎭
∪β

(α)([])
(6.14)

At this point, we must state that we shall keep only the edges that link vertices that are
preserved, because they are either returned in δV or nested inside a nested object (either

190 6.3 GSQL Use cases

vertex or edge). In order to expand each possible nesting for each newly generated vertex
(or edge) in V ′ (or nE ∪ E), we use ϕ∗ thus forcing to extract each nested component.
Therefore, the set of the edges to be returned is the following one:

E ′ = nE ∪ {ec ∈ φ(g, “Relationship”)∣φ(ec, “src”), φ(ec, “dst”) ∈
℘(δV ∪ ϕ(nE ∪ φ(g, “Entity”) ∪ φ(g, “Relationship”)))}

(6.15)

▸ Example 33 (continuing from p. 189). All the edges in φ(g
T
i , “Relationship”) are not defined

in φ(g
H
i , “Relationship”), and hence they are considered as new edges. Moreover, the only edge to

be instantiated is ca0 having λ(ca0) = (u0, u1). Given that both u0 and u1 appear in both H and T,

we have that the M-s in Equation 6.12 can be rewritten as follows:

M f j ,[u0],i = f j([u0]) M f j ,[u1],i = f j([u1])
Consequently, Equation 6.13 on the preceding page can be partially rewritten for each morphism mj

as follows:

W̃ f j ,ca0
(ï) = fold f j([u0]), (s ′,α)↦fold

f j([u1]), (t ′ ,β)↦WE
fj ,ca0,s ′ ,t ′ (β)(α)(ï)

and the internal expression W can be rewritten as follows:

WE
f j ,ca0,s ′,t ′(ï) = create

dtl([e,s ′,t ′])c+1[coauthorship],[],[[“src”,[s ′]],[“dst”,[t ′]],[“pp”,[p0]]](ï)
In order to provide further simplifications, we must introduce all the morphisms. Therefore,

Equation 6.14 on the previous page can be rewritten as follows:

nE = foldG, ([Hi→Ti]mi ,α)↦fold

mi
Hi
(ï), (f j ,β)↦

⎧⎪⎪⎨⎪⎪⎩
dtl([e,s ′ ,t ′])c+1

RRRRRRRRRRRRR

ec∈φ(g
T
i

,“Relationship”)/φ(g
H
i

,“Relationship”)
s ′∈ f j(φ(ec ,“src”)),t ′∈ f j(φ(ec ,“dst”))

⎫⎪⎪
⎬
⎪⎪⎭
∪β

(α)([])

= fold{ f0,..., f3}, (f j ,β)↦{ dtl([e,s ′,t ′])c+1 ∣ ec∈φ(gT
i

,“Relationship”)/φ(gH
i

,“Relationship”)

s ′∈ f j(φ(ec ,“src”)),t ′∈ f j(φ(ec ,“dst”))
}∪β
([])

= ⋃
f j∈{ f0,..., f3}

{ dtl([e, s ′, t ′])c+1 ∣ ec ∈ φ(gT
i , “Relationship”)/φ(gH

i , “Relationship”)
s ′ ∈ f j(φ(ec, “src”)), t ′ ∈ f j(φ(ec, “dst”)) }

= ⋃
f j∈{ f0,..., f3}

{ dtl([e, s ′, t ′])c+1 ∣ s ′ ∈ f j(φ(ca0, “src”)), t ′ ∈ f j(φ(ca0, “dst”)) }
= ⋃

f j∈{ f0,..., f3}
{ dtl([e, s ′, t ′])c+1 ∣ s ′ ∈ f j([u0]), t ′ ∈ f j([u1]) }

= { dtl([ca0, 0, 2])1, dtl([ca0, 2, 0])1, dtl([ca0, 2, 1])1, dtl([ca0, 1, 2])1 }
Consequently, we can see that four edges are returned, one for each morphism. We now must

consider the edges that we want to keep, that are the edges that still link vertices that are preserved

by the transformation or that are nested: given that δV = [0, 1, 2, 5], that the newly generated

vertices do not nest any content and that the only elements that nest some elements are the edges in

nE containing the matched papers having id 3 and 4, we have that the edges E ′/nE that have been

preserved are all the edges appearing in the former nested graph, and hence:

[6, 7, 8, 9, 10]
As this example finally showed, this allows to nest the matched elements inside either vertices

the edges (as in this example) only if explicitly stated by the graph transformation. ◂

6. GSQL: a Generalized Semistructured Query Language 191

We can now continue with the formal definition of the generalized graph grammar:

▸ Definition 66 (continuing from p. 184). Given a nested graph ï = (g, O, ℓ, ξ, φ), the application

of the set of rules G on ï is defined as follows:

G(ï) = electω(createω←max O+1[],[],[[“Entity”,V ′],[“Relationship”,E ′]](ïE(ïV(ï))))
◂

At this point, we can use this same operator to perform more than one changes at once:
for example, we can simply extend the previous example in order to associate to each user
the number of the papers that he has coauthored by simply using such expression either in
a containment or in a ξ expression.

nsubj

det

cc
conj nmod

casenmod

case

det

amod

nmod

case cc

conj
nmod

ccomp

mark
nsubj

aux

dobj

det

acl:relcl

nsubj
aux

nmod

case

nmod:poss

nsubj

revealed

discovery

Theandpublication 1987

incorrespondence

of anearlyEinstein

between and Maric

had

thatthey haddaughter

a
staying

which
was

parents

with her

Figure 6.6 Underlying which part of the dependency graph are matched by the patterns outlined
in Figure 6.5a on page 186. The blue matches represent the first graph matching rule, the purple ones
with the loose dashing represent the second one, while the last one with the thick dashes represent
the last one.

192 6.4 Conclusons

▸ Example 34. Despite the possibility of performing multiple matches and rewriting as the previous

examples showed, this approach is not always possible. After explicitely defining what a generalized

graph grammar is, let us suppose to want to match simultaneously all the pattern graphs that were

previously provided. The result of such matching phase is then depicted in Figure 6.6: if we now

compare the matches with the expected transformations, we can see that some times we would return

both matched contents and aggregated ones while, on the other hand, we would like that the changes

provided by one of the grammar rules are kept in the following matching phases. You can test such

outcomes by using the Sherlock project.

In order to avoid such conflicts, the only thing that is possible to do is to subdivide one single

generalized graph grammar rule into more subsequent matching and rewriting steps. The next

chapter will provide an example of such operator, that will allow us to generalize the nesting for

semistructured and nested relational data for graphs.

The nesting operator for nested relations [LY05, PVG92] allows nesting other attributes
belonging to a same relation inside a field belonging to the same relation. If we look at
the definition of a nested graph, vertices and edges are not explicitly defined as values
associated to an attribute of a specific object inside database. Consequently, the traditional
nesting operation for nested relations cannot help us for the definition of an operator
allowing to store a subgraph of a given nested graph inside either a vertex, or another edge.
We must also note that we cannot create new vertices matched by different graphs Hi and
link them by newly created edges by using a link discovery predicate over such predicates,
we must necessarily apply a second operator (either a link discovery or a generalized graph
grammar operator) for the creation of such edges.

Therefore, even this operator cannot be used in practice to define a general operator
allowing graph nesting. The next chapter is going to provide another possible solution for
graph nesting by incorporating the definition of the semistructured grouping operators
and by allowing vertices’ and edges’ grouping contemporarily.

Before closing this chapter, we should ask ourselves whether this operator actually
matches within the requirements of Ϙ, that already appeared in Section 2.3.3 on page 50

and 5.4.2 on page 143, where we also provided an algorithm for transforming the morph-
isms associated to the source schema into morphisms associated to the hub schema. As
we can see, this approach is more general than the previous one, because through G we
can even create new elements as aggregations of the matched elements which have not
been returned by the graph transformation phase. Notwithstanding, this operator provides
more data than the one required by the data integration scenario: the non matched objects
within the head pattern are returned, while in the previous chapter’s approach we only
return the matched objects, and we distinguish different possible matchings between the
head and tail pattern. First, if we want to remove the unmatched elements from the final
vertex and edge set, we can simply restate the former definition as follows:

ϘGH,T (H)(ï) = electoc+1(createlet oc=max O in oc+1[],[],[[“Entity”,δV],[“Relationship”,nE]](ïE(ïV(ï))))
Moreover, if we have simple GSMs not represented as nested graphs, we can simply
ignore the returned edges. Now, this last equation differs from the previous proposal from
qualitative measures, but they have no specific distinctions from a formal point of view
(that is, they both adhere to the specifics, but they substantially differ on the returned
result). Therefore, further tests have to be carried out in order to test the quality of both Ϙ

definitions, in order to check which of the two provide the best expected results from a
user experience point of view. We address to some future work on establishing which of
the two definitions is better for data integration within nested data.

6. GSQL: a Generalized Semistructured Query Language 193

6.4 Conclusons

This chapter provided the definition of the GSQL query language expressed through
an algebra, which was able to express set, relational, semistructured and (nested) graph
operators. In particular, it was showed that such operators were able to implement all the
missing operators required for the GAV data integration scenario, which are the schema
extraction (via aggregation) and the matching with rewriting (Ϙ) by generalizing the
properties of graph rewriting and pattern matching. On the other hand, we do not still
provide a full definition of all the possible graph data operators but we showed that it is
possible to combine the semistructured operations with the edge creation ones to create
new nested graphs.

We also remark some futher works that should be carried out on GSQL:

Provide some equivalence rules for GSQL if any.
If there are some equivalence rules, provide some query rewriting optimizations as it
currently happens on relational models’ query plans.
Similarly to the relational ⋈θ , check if there are other set of operators that can grouped
and provide better optimizations within one single definition that in multiple disag-
gregated operators.
Provide a more formal definition for a nested graph traversal language, combining
XPath’s and NautiLOD’s semantics.
As it will be outlined in the next chapter, check if there are some cases when traversals
may be provided as a predicate for a GSQL operator and, given that both graph traversal
and GSQL are represented in GSQL itself, check if the former types of optimization
provide some benefit.

Last, we also showed how such algebra allows the definition of graph joins. In the next
chapter, we’re going to introduce an algorithm for a specific instance of the graph nesting
operator. By showing that both filtering queries and algebraic operators may be expressed
within the same language, it would be also possible to perform mutual optimizations
between such operators: this intuition will lead into the next chapter, where it will be
showed how graph pattern matching queries can be nested within graph nesting operators.
This final scenario will motivate the need of such a low level algebra for describing each
possible optimizable step, thus leading towards some more future works on higher level
operation over GSMs. This possibility is going to concretely lead to better optimizations
and, therefore, we’re going to create an algorithm, where both graph visit and new graph
creations are combined together.

7 On Nesting Graphs

Contents

7.1 Graph Query Languages limitations’ on Graph Nesting 199

7.1.1 Graph Joins’ limitations in providing the ν≅ operator 199

7.1.2 Implementing Graph Nesting over (two) graph collections . 201

7.1.3 Query Languages’ and data models’ limitations 203

7.2 Class of optimizable graph nesting queries 206

7.3 Nested Graphs . 209

7.4 Graph Nesting . 211

7.4.1 Two HOp Separated Patterns Algorithm 213

7.5 Experimental Evaluation . 217

7.6 Conclusions . 219

Did she say: “He yelled, ‘Frame stories are an example of nestings

in literature!’ ”?.

— An example of a nested quote.

Graphs allow flexible analyses of relationships among data objects. Thus, graph data
management systems play an increasing role in present data analytics. Graphs have been
already used as a fundamental data structure to represent data within different contexts
such as corporate data [RHKB13, PAK16], social networks [XKS13, BK14] and linked data
[VTBL13]. Despite an increasing number of applications, a general operator that aggregates
a single graph in a roll-up fashion is still missing. The operation of adding structural
aggregations to an existing graph is called graph nesting. A respective operator shall not
only create a new graph of nested vertices and nested edges, each containing subgraphs of
the original input graph, but also preserve the vertices and edges that are not affected by
the actual operation. Further on, the operator must ensure that the nested elements can be
freely unnested such that the original graph may be obtained back again. Vertices or edges
of the original graph will be called members of a nested vertex or edge, if they appear in its
underlying subgraph.

▸ Example 35. Figure 7.1a represents a bibliographic graph with (at least) Authors and Papers

as vertices and authorOf relationships as edges, which connect authors to papers they have

authored. With the graph nesting operator, we want to “roll up” the graph into a coauthorship graph

(Figure 7.1b): each Author will be connected by a coAuthor edge with another Author(2) if

they have published at least one paper in common. More precisely, each resulting Author(2) vertex

shall contain authored papers as vertices and each coAuthor edge shall contain all the coauthored

papers with regard to source and target Authors. However, we want to exclude coAuthor hooks

over the same vertex.

In a resulting nested graph, edges connecting nested vertices express that members of
the nested vertices are connected by an edge or, more generally, by a path in the original
graph. In contrast to this general approach, current literature distinguishes between
vertex summarization and path summarization. Thus, it is not possible to define a single
query evaluating both kinds of patterns at the same time. Before outlining our proposed
algorithmic solution, let’s have a look on these existing approaches:

195

196

Author

name : Abigail

surname : Conner

0

Author

name : Baldwin

surname : Oliver

1

Author

name : Cassie

surname : Norman

2

Paper

title : On Joining Graphs

3

Paper

title : Object Databases

4

Paper

title : On Nesting Graphs

5

AuthorOf

6

Aut
hor

Of

7

AuthorOf

8

Aut
hor

Of

9

AuthorOf

10

(a) Input bibliographical network.

Paper

title : On Joining

Graphs

3

Paper

title : Object

Databases

4

ǫ(0 → 1), ǫ(1 → 0)

title : On Nesting

Graphs

5

Author

name : Abigail

surname : Conner

0

ǫ(0)
ǫ(0 → 2), ǫ(2 → 0)

ǫ(2)

Author

name : Baldwin
surname : Oliver

1

Author

name : Cassie
surname : Norman

2

coauthorship coauthorship

ǫ(1)

(b) Nested result: given two Authors a and a ′, there exist two coauthorship edges, a → a ′ and
a ′ → a if and only if they share some authored paper contained respectively in φ(a → a ′, “Entity”)
and φ(a ′ → a, “Entity”). Moreover, each author a is associated to the set of his authored papers
φ(a, “Entity”).

Figure 7.1 Nesting a bibliographic network. While in the previous Example 7 on page 41 the
information was summarized, in this case the provenance information is nested within the original
node.

The vertex summarization strategies group vertices in the manner of the relational GROUP
BY operation and aggregate edges accordingly [JPR17]. In this class of operations, summar-
ized edges can only be formed by edges that directly connect members of summarized
vertices in the original graph. In other words, these approaches cannot freely nest edges:
for example, it is not possible to aggregate paths. Since most of vertex summarization
techniques are based on graph partitioning, they further provide no support for nested ver-
tices and edges with overlapping members [YG16, THP08, JFL15]. Exceptions are HEIDS
[CJQ16] and Graph Cube [ZLXH11], which perform graph summarizations of one single
graph over a collection of non pairwise disjoint subgraphs. However, the union of these
underlying subgraphs must be equivalent to the original graph, i.e., it is not possible to
take vertices and edges of the original graph over to the summarized graph or to represent
outliers that belong to no group.

7. On Nesting Graphs 197

Author Paper∗
authorOf

(a) Vertex summarization pattern (V). Author is the vertex grouping reference γV .

Authorsrc Paper∗ Authordst
authorOf authorOf

(b) Path summarization pattern (E). Authorsrc and Authordst are respectively edge grouping
references γsrc

E and γdst
E .

Figure 7.2 Vertex and Path summarization patterns for the query expressed in the running
example. Vertex and edge grouping references are marked by a light blue circled node. As we can
see, the vertex grouping reference depicts the same property expressed by edge grouping references.

By contrast, path summarization techniques allow the aggregation of multiple paths
among pairs of source and target vertices that share the same properties. Currently,
approaches to path summarization can only be found within graph query languages. These
languages also support vertex summarization, but no combination of both approaches in
a single step. Cypher, the query language of the productive graph database Neo4j, can
perform distinct aggregations only within distinct MATCH clauses. SPARQL, the standard
query language of the resource description framework (RDF), requires to combine vertex
and path aggregation with a UNION operator, i.e., the same input graph must be visited
twice.

In particular, vertex nesting approaches were not compared to already existing (graph)
query languages and, consequently, we provide a general graph nesting definition in
Section 60 on page 175 and its generic implementation in Section 7.1.2 on page 201 as the
first naïve (but general) algorithm for a graph nesting. Such straightforward implementation
proves to be inefficient: if we want to nest k subgraphs of g within g itself, in the worst
case scenario we have a visiting cost of O(∣g∣k). This results in an exponential algorithm,
because the size of k may vary, while ∣g∣ is fixed. This implies that the graph must be always
visited more than once, even if this may not be required. This general operator also proves
to be inefficient in practice, it allows detecting a broader class of problems and optimizable
algorithms. In order to reduce the graph visiting cost from ∣g∣k to O(∣g∣), we could use a
graph traversal approach: instead of pre-computing k subgraphs of g that are going to be
later on used to nest g, we can directly perform the graph nesting while visiting the graph,
thus allowing not to perform additional costs for comparing the resulting graphs in a later
step. The following example shows how such queries can be efficiently formulated and
implemented.

▸ Example 35 (continuing from p. 195). Figure 7.2 shows summarization patterns to describe

the vertex (V) and path (E) nestings of our bibliographic network example: the former will create a

nested Author(2) vertex and the latter will create a coAuthor nested edge. Given that V appears

twice in E, we may also pre-istantiate the pattern V by visiting E once. The two patterns have

different key roles: while the vertex summarization retrieves all the Papers that one Author has

published and nest them within one single matched Author, the path summarization nests all the

198 7.1 Graph Query Languages limitations’ on Graph Nesting

Papers authored by two different Authors as members of a newly created nested edge connecting

the two previously nested vertices. We can express this nesting requirement within vertex and path

summarization patterns by electing both Author in V as a vertex grouping reference γV , and

the two distinct Authors in E (acting as the nested edge’s source and targets) respectively as edge

grouping references γsrc
E and γdst

E . In particular, the two latter vertices must both match with the

vertex grouping references, so that the newly generated edge will have as source and target the

previously vertex-nested elements. In particular, this chapter focuses on E where γsrc
E and γdst

E are

separated by a two-edge (hop) distance.

We solve this problem by visiting the graph only once: If the current vertex is a Paper, traverse

backwards all the authorOf edges, thus reaching all of its Authors (γsrc
E and γdst

E), that are going

to be coAuthors for at least the current chapter. Instead of associating the nesting content at the

end of the graph visiting process, I can incrementally define the subgraph to be nested by using a

separated nesting index: by visiting the two distinct Author vertices adjacent to the current Paper,

the latter one shall be contained in both final Author(2) vertices, thus allowing the definition of a

coAuthor edge. By doing this, only the edges are visited twice, but the vertices are visited only

once. These patterns allow to reach the optimal solution.

There might be other possible patterns that can be optimized, but we’re going to focus
on vertex and path summarization patterns where edge grouping references are connected
to each other at a 2 edge step distance (Section 7.4.1). We’re also going to show how such
optimizations can be detected beforehand by looking at the pattern representation. This
chapter shows that such query language limitations can be reduced by using a graph
nesting operator, which performs both vertex and path summarization queries concurrently
with only a single visit of the input graph. We propose graph patterns to declare graph
nesting operations and propose algorithmic optimizations as well as a specific physical
model for efficient execution.

In the remainder of this paper, we will This is achieved by the following contributions:

We propose a Nested Graph Data Model that is capable to implement the aforemen-
tioned solution of our example scenario. We use an optimized physical model that
differs from the logical one (Section 7.3).

We provide a general definition of a Graph Nesting Operator which combines vertex
and path summarization approaches to nesting graphs (Section 7.4).

We introduce the Two HOp Separated Patterns (THoSP) algorithm for graph nesting
(Section 7.4.1). We present the results of an experimental evaluation that compare it
to alternative implementations using graph (SPARQL, Cypher), relational (SQL) and
document oriented (AQL) query languages: our solution outperforms all competitors
by at least one order of magnitude in average with regard to the sum of both indexing
and query evaluation time (Section 7.5).

A general strategy on how to extend the THoSP algorithm for patterns having vertex
and edge grouping references is provided (Section 7.2). This approach shows that graph
nesting can be defined on top of current-existing graphs extraction languages.

The repository at http://rebrand.ly/unibo612df provides the C++ benchmarks’ source
code.

http://rebrand.ly/unibo612df

7. On Nesting Graphs 199

7.1 Graph Query Languages limitations’ on Graph Nesting

7.1.1 Graph Joins’ limitations in providing the ν≅ operator

We now discuss a use case where the graph nesting approach aggregates similar nodes
into one single representation while discarding the original sources’ pieces of information.
Please refer to Section 2.3.3 on page 50 for the general data integration scenario where
such operator (ν≅, that is grouping over an equivalence classifier ≅) may be adopted. In
particular, we are going to show that, even though full graph join may represent this
procedure, the resulting solution may be hardly implementable. To make our point, we are
going to provide a different use case from the one previously offered.

▸ Example 36. Suppose to integrate, within a graph ETL, three distinct bibliographic sources (e.g.

DBLP, Microsoft Academic Graph, Google Scholar) into one final graph. Each of these separately

undergoes a data cleaning phase and are represented as the distinct connected components after an

entity resolution processes [NHNR17]. Such components are represented by the graphs G1, G2 and

G3 in Figure 7.3a. As a next step, the entity resolution [SPR17] analyses if nodes are appearing in

the different sources and representing the same entity: as a consequence, we create the red relations

in Figure 7.3a, and then collect them into graphs representing a clique of all the resolved entities.

The outcome of this operation is provided in Figure 7.3b on the next page, where all the entities

representing one single entity are merged into one single vertex.

Another example where such edge joins could be of some use is within the ontology
alignment process provided in Definition 5 on page 49. For instance, we can interpret each
description logic axiom C ⊑ C ′ as an oriented edge connecting each vertex of the graph
satisfying the predicate C to the ones satisfying C ′, thus allowing to join two graphs which
schemas were previously aligned.

The class of graph ⊗θ products could be then generalised to support edges E as a basis
for the definition of the θ predicates. In particular, such predicate θE can be defined over a
set of edges E as follows:

θE(a, b)⇔ ∃e ∈ E.λ(e) = (a, b)
In such cases, we will write the predicate θE directly as E through abuse of notation
allowing to list the edges involved within the join operation directly. We can now ask
ourselves if the following expression provides Gout in Figure 7.3b:

(G1 ⋈∨{RSum1} G2) ⋈∨{RAda ,RSum2,RCarl} G3

Let us first perform (G1 ⋈∨{RSum1} G2) as G12, thus merging the two Summarization nodes
in G1 and G2 into a node sJ : we can see that we can still join the nodes linked by the edges
RAda and RCarl , but we can no more join sJ with the Summarization vertex in G3, because
RSum2 is not defined on sJ . As a consequence, we have that this way to join graphs is
no more associative: if we now associate the join to the right and evaluate the following
expression:

G1 ⋈∨{RSum1} (G2 ⋈∨{RAda ,RSum2,RCarl} G3)
we can now see that RSum1 is not defined over the Summarization node from G1 and the
merged node from G2 ⋈∨{RAda ,RSum2,RCarl} G3. As a consequence, these two evaluations of
the edge join query provide two different results, which is disadvantageous within an

200 7.1 Graph Query Languages limitations’ on Graph Nesting

Ada AuthorG1

Nesting Paper

Summarization

Paper

Authorship

A
u
th
o
rsh

ip

C
ite
s

Bob AuthorG2

Summarization

Paper

Carl Author

A
u
th
o
rsh

.
A
u
th
o
rsh

.

G3

Ada L. Author

Summarization Paper

Carl Author

Multilayer

Paper

A
u
th
o
rsh

.

A
u
th
or
sh
.

C
ites

Authorsh.

ℜSum1

ℜSum2

ℜSum3

ℜAda

ℜCarl

(a) Cleaned sources resulting from the transformation phase. The shaded areas represent distinct
graphs indicating which vertices (Authors and Papers) must be considered as the same entity.

Ada L.

Author

Bob

Author

Nesting Paper

Summarization Paper

Authorship

A
u
th
o
rsh

ip

C
ite
s

CarlAuthor

A
u
th
o
rs
h
.

Multilayer Paper

A
u
th
o
rs
h
.

Cites

A
u
th
o
rsh

.

(b) Representing the expected output Gout for the data integration phase, ready to be fit to the graph
datawarehouse.

Figure 7.3 ν≅: another use case requiring the nesting operator ν, as required by the last step of
the data integration process before actually performing the queries over the integrated data. This
last chapter ends the thesis by providing an example of the last operator required for such data
integration process. In this case the outcome of the clustering operator is a similarity predicate ≅
using a entity-resolution process.

7. On Nesting Graphs 201

Figure 7.4 Overview about the general graph nesting process. UDF stands for User Defined

Function.

automated computer environment requiring operations that can be easily scaled by using
associativity rules (i.e., order invariant) and that can be hence parallelised.

Figure 7.3a also suggests on how such an operation can be carried out: instead of
performing the stepwise full outer join on the graph, we can first set-union the three
graphs, and then aggregate all the elements within the same dashed area as one single
vertex by using the ν nesting operator over graphs. This approach motivates the need of
such graph nesting operator.

7.1.2 Implementing Graph Nesting over (two) graph collections

In order to create nested vertices and edges, we can first propose a generic nesting operator,
allowing the creation of arbitrary vertices and edges over a given (nested) graph (original

or input graph). Figure 7.4 provides an overview about the nesting process. First, in step
1© a query is used to determine subgraphs which will later on be nested as vertices’ content.
In Example 35 on page 195, we want to nest each Author with its egonet represented by
the paper he has authored, and hence we’re going to extract all the subgraphs matching

the pattern Author
authorOfÐ→ Paper∗ (Figure 7.2a). Another example is the Social Network

scenario presented in Example 6 on page 41: we want to nest each user of the DataSource

in her or his Community. Here, the term query generally refers to either a pattern matching
query (e.g., a community can defined by each user’s egonet) or a partitioning algorithm (e.g.,
community detection). As a consequence, the way to extract subgraphs to be summarized
as vertices is application dependent, and may require a previous graph traversal phase or
not.

Subsequently, in step 2© a User Defined Function (UDF) can be applied to the
resulting subgraphs in order to derive aggregated vertices from the subgraph’s elements
that will be added to the final nested vertex. In particular, in a data integration scenario
one could select representative property values to appear in the resulting vertex or, in
a summarization process, one could evaluate measures such as vertex count over the
extracted graph. The subsequent step 3© takes the original graph as well as the processed
subgraphs as input and turns the latter into nested vertices. The resulting vertex-nested
graph contains all the nested vertices from 3©, containing at least one vertex also nested in
the original graph, but also all vertices of the original graph not appearing in one of the
subgraphs. In the Social Network scenario, the previous steps could have been performed
by an external community detection algorithm.

In order to obtain the final nested graph from the vertex-nested graph, we must apply
a similar process over the edges: in step 4© subgraphs containing nested vertices can be
extracted using a dedicated query. These subgraphs form the basis of the later nested

202 7.1 Graph Query Languages limitations’ on Graph Nesting

Algorithm II.7 General Nesting Algorithm
1: procedure GeneralNesting((GV , UDFV), (GE, UDFE), keep; ï)
2: GV = ∅; GE = ∅; VR = ∅; ER = ∅
3: for each graph gv = (V, E) in GV do

4: δV = V ∩ φ(g, “Entity”)
5: δE = E ∩ φ(g, “Relationship”)
6: if δV ≠ ∅∨ δE ≠ ∅ then

7: GV = GV ∪ {UDFV(gv)}
8: if keep then

9: VR = VR ∪ φ(g, “Entity”)/δV

10: ER = ER ∪ φ(g, “Relationship”)/δE

11: for each graph ge = (V, E) in GE do

12: δV = V ∩ φ(g, “Entity”)
13: δE = E ∩ φ(g, “Relationship”)
14: if δV ≠ ∅∨ δE ≠ ∅ then

15: ε = UDFE(ge)
16: if λ(ε) ∈ (GV ∪ φ(g, “Entity”))2 then

17: GE = GE ∪ {ε}
18: if keep then

19: VR = VR ∪ φ(g, “Entity”)/δV

20: ER = ER ∪ φ(g, “Relationship”)/δE

21: return (GV ∪VR, GE ∪ ER)

edges where, using our running example, they can be previously extracted by visiting the

pattern Author
authorOfÐ→ Paper∗ authorOf

←Ð Author (Figure 7.2b). In contrast to vertices, an
UDF (step 5©) is mandatory since its purpose is not only to aggregate properties but also
to select source and target on the later nested edge of step 6©. These can be both nested
and simple vertices. For example, in a summarization scenario a nested edge may connect
two previously nested vertices while in a transformation scenario it can replace a path
between two simple vertices. Consequently, before adding edges between vertices that do
not appear in the vertex-nested graph, we must also ensure that such UDF generate valid
edges. Please note that, also in this case, phases 4© and 5© can be also carried out by an
external algorithm.

The unfeasibility of this naïve approach is remarked by Algorithm II.7: given that
any to-be-nested graph may come from an external source, it is required that each graph
collection pertaining either to the to-be-nested vertices (1©- 3©) or edges (4©- 6©) must be
analysed in order to get which elements are matched within the vertices and edges of the
nested graph ï. Only after this second visiting process, we can then apply the UDF function
over the filtered graphs. This means that we must at least visit ï after each collection, with
a cost of ∣ï∣∣GV ∣ + ∣ï∣∣GE ∣, where ∣GV ∣ and ∣GE∣ are the graph collections generated respectively
from the vertex and the edge subgraph extraction process. The expensiveness of such
approach is going to be later on compared to a more efficient algorithm for a specific
subproblem (THoSP, Section 7.4.1). This cost must be further on increased if we want to
preserve the un-matched vertices and edges in the final graph (keep=true). Therefore, we
want to decrease this computational post whenever possible: given that nesting is a specific
case of summarization1, we can observe that the previously proposed graph summarization
algorithms provide one possible algorithmic enhancement for the cases when the graph
is represented by an exact partition, as when we group the graph by either its labels or
attributes [JPR17]. As previously observed, the purpose of this chapter is instead to extend

1Compare this statement with the formal definitions of semistructured and relational nesting proposed
in Definition 52 on page 167.

7. On Nesting Graphs 203

the family of such graph nesting algorithms by combining pattern matching approaches
to the nesting process: instead of generating multiple graph collections with an external
method for then nesting them, we want to compactly generate them while visiting the
graph. Then, the visited graph will be immediately used to generate a nesting, thus
combinating the graph visit process with the nesting one, thus allowing to decrease the
overall time complexity. We’re going to tackle this problem in Section 7.2 on page 206 after
providing a formal definition of such operator in Section 7.4 on page 211.

7.1.3 Query Languages’ and data models’ limitations

As previously mentioned, some recent query languages support graph nesting semantics
by exploiting the underlying data model’s features. To express the query presented
in our running example, these query languages must support id collections or nested
representations. For these reasons, we firstly select PostgreSQL which, by extending the
SQL-3 syntax and by allowing JSON data, provides an array_agg aggregation function.
The latter collects (i.e., groups) the result-set into arrays. We represent graphs by storing
edge triples as Edge(edgeId, sourceId, edgeLabel, targetId). In our running example, nested
vertices are obtained by grouping edges by sourceId and collecting all target’s id results
via array_agg. Similarly, our nested edges are obtained by joining consecutive Edges and
then grouping by distinct sourceId and targetId vertices limiting the two hop path; the list of
all the Papers is collected via array_agg. The overall graph nesting cannot be created in
one single SQL query, because we cannot distinctively group the same dataset in different
ways. Instead, we must perform two distinct aggregations (see Listing 7.1). We want
now to discuss how current query languages can express nesting constraints within their
data model of choice. In particular, we must select query languages that either support
collections or nested representations allowing to express the same query presented in our
running example.

All the other query languages are going to be affected by the same problem, SPARQL
included (Listing 7.2): despite the fact that SPARQL may represent the graph nesting
query as a single statement, a UNION clause implies a separate visit for the two graph
patterns. The first pattern presented in Listing 7.2 (see Appendix) allows to traverse
those patterns matching the coauthorship statement in Figure 7.2b, so that they can be
nested within the created CoAuthorship edge. The second part returns the remaining
Paper associations that have been authored by one single Author. In the first case, the
edge nesting is performed via the association of different <http://contains.io/nesting>
properties departing from one single coAuthorship edge (?newedge). In particular, the
OPTIONAL. . . FILTER(!bound(. . .)) syntax is adopted instead of FILTER NOT EXISTS,
because the latter is only supported in SPARQL1.1, which is not supported by the current
version of librdf used to query Virtuoso.

We extend our query languages comparison presented on graph joins (Chapter 4) with
AQL, because ArangoDB is a document-oriented NoSQL database, which query language
AQL allows the access and the creation of nested members. An example of how such graph
nesting query can be carried out in AQL is presented in Listing 7.3: in this scenario we
assume that we’ve previously loaded our graph data with the default ArangoDB format,
where vertices are indexed by id while edges are also indexed by source and target vertex
id2. Even though AQL returns JSON documents instead of relational tables, we can state

2https://docs.arangodb.com/3.2/Manual/Graphs/

https://docs.arangodb.com/3.2/Manual/Graphs/

204 7.1 Graph Query Languages limitations’ on Graph Nesting

Listing 7.1 Graph Nesting in PostgreSQL. Two distinct tables are created for both ver-
tices and edges. The nesting is represented by nesting the elements’ id within an array
(array_agg). Please note that such sybtax is not SQL-3 standard.✞
-- Nesting Vertices

SELECT distinct T.sourceId as src , array_agg(distinct T.dst) as↪ papers

FROM edges -i as T

GROUP BY T.sourceId;

-- Nesting Edges

SELECT distinct T.sourceId as src , T1.sourceId as dst ,

array_agg(distinct T1.targetId) as papers

FROM edges -i as T, edges -i as T1

WHERE T.targetId = T1.targetId AND T.sourceId <> T1.sourceId

GROUP BY T.sourceId , T1.sourceId;
✡✝ ✆

Listing 7.2 Graph Nesting in SPARQL. Given that the RDF List solution is inefficient and
that named graphs cannot be used either in the RDF models as vertices or edges, we use
other properties to associate to either vertices and edges the nesting content.✞
CONSTRUCT {

?autha ?newedge ?authb.

?newedge <http :// contains.io/nesting > ?paper1.

?authc <http :// test.graph/graph/edge > ?paper2.

} WHERE {

{

GRAPH <http :// test.graph/graph/i/> {

?autha <http :// test.graph/graph/edge > ?paper1.

?authb <http :// test.graph/graph/edge > ?paper1.

}

FILTER (? autha != ?authb).

BIND(URI(CONCAT("http :// test.graph/graph/newedge/",STRAFTER(↪ STR(? autha),"http :// test.graph/graph/id/"),"-",STRAFTER↪ (STR(? authb),"http :// test.graph/graph/id/"))) AS ?↪ newedge).

} UNION {

GRAPH <http :// test.graph/graph/i/> {

?authc <http :// test.graph/graph/edge > ?paper2.

}

OPTIONAL {

?authd <http :// test.graph/graph/edge > ?paper2.

FILTER (? authd != ?authc)

}

FILTER (! bound (? authd))

}

}
✡✝ ✆

7. On Nesting Graphs 205

Listing 7.3 Graph Nesting in ArangoDB using AQL as a query lanugage. Please note
that all the fields marked with an underscore represent externally indexed structures and.
Therefore, only external indices are used within the query plan.✞
-- Nesting vertices

FOR b IN authorOf

COLLECT au = b._from INTO groups = [b._to]

RETURN {"author" : au , "papers": groups }

-- Nesting edges

FOR x IN authorOf

FOR y IN authorOf

FILTER x._to == y._to && x._from != y._from

COLLECT src = x._from , dst = y._from INTO groups = [x._to]

RETURN {"src": src , "dst": dst , "contain": groups}
✡✝ ✆

Listing 7.4 Graph Nesting in Neo4J using Cypher as a Query Language. Please note that,
even in this case, is it not possible to return one single nested graph immediately, and
hence the nested vertices must be created before creating the nested edges. This implies
that a greater number of joins is required to associate the previously nested data to the
original operand.✞
MATCH (a1: Author) -->(p1:Paper)

WITH a1 , collect(p1.UID) AS papers1

CREATE p=(: Authors {authored: papers1 , id:a1.UID})

MATCH (a1: Author) -->(p:Paper) <--(a2: Author), (a1p: Authors), (↪ a2p: Authors)

WITH a1 , a2 , a1p , a2p , collect(p.UID) AS common

WHERE a1.UID = a1p.id AND a2.UID = a2p.id AND a1.UID <> a2.UID

CREATE p=(a1p) -[:Papers {coauthored: common}]->(a2p)
✡✝ ✆

206 7.2 Class of optimizable graph nesting queries

that its resulting query plan is similar to PostgreSQL’s query plan, except that JSON
documents are returned instead of relational tables containing JSON arrays.

Last, Listing 7.4 provides an example of Cypher: even if Neo4J’s property graph model
does not directly nest graphs inside vertices or edges, we can associate member ids to each
of them. This solution can be achieved by first matching the vertex summarization pattern
of Figure 7.2a and then performing an Author group by (with). Afterwards, we nest
the set of authored Papers via collect. Last, we match the path summarization pattern
presented in Figure 7.2b and group it by source and destination Author, then we create
the coAuthorship edge containing the co-authored Paper’s id. As it will be observed
within the benchmarks (see Section 7.5), the solution of not separating the elements’ ids
from their data quickly leads to an intractable solution.

In all the former query languages, the vertices undergoing GROUP BY-s are either vertex
or edge grouping references.

7.2 Class of optimizable graph nesting queries

Before defining the general graph nesting operator and its THoSP algorithm, this seec-
tion detects the broader class of vertex and path summarization patterns optimizable as
discussed in the chapter’s introduction. The generation of the collections is only relevant
with respect to actual data that is going to be nested and, in our case, we can only nest a
subgraph of the graph resulting from the graph visiting process: consequently, within each
pattern we must remark which elements are going to be nested at the final result. Instead
of traversing a graph, generating the collections to be nested within the graph and check
which one of them can be actually nested, we can directly create the nested graph while
visiting the property graph.

First, we must provide a formal characterization of the grouping reference: we want
to elect a subgraph γp for each graph pattern gp such that each graph generated by the
morphisms3 mgp(ï) expose unique elements referring to γp. These grouping references
elect the subcomponents identifying an entity over which the aggregation will be performed
during the graph matching process. Hereby, we can provide the following formal definition
for grouping references:

▸ Definition 67 (Grouping reference). Given a graph pattern gp generating a set of morphisms

mgp(ï) over a nested graph ï, a grouping reference γp is a subpattern γp ⊆ gp restricting the

possible morphisms generated by mgp(ï) to the fi such that ∣ fi(o)∣ = 1 for each object o ∈ Oγp and

that another morphism f j ≠ fi is such that fi(Oγp) ≠ f j(Oγp). ◂
If we reduce the grouping references to one single vertex for vertex summarization

patterns, and to two (distinct) vertices for path summarization patterns, we may reduce the
computational complexity of aggregating the grouping reference. As already sketched by
the introduction, the class of the desired nesting algorithms create new nested edges only
over vertices that will be matched as grouping references and then nested. Moreover, we
can choose to mark with a specific ξ value (e.g. “toNest”) each pattern vertex and pattern
edge to explicitely state which elements have to be nested in the final result; this implies
that User Defined Functions are directly required to create the matched vertices and
edges because they can be directly represented within the graph patterns.

3See Definition 18 on page 77 for a back reference.

7. On Nesting Graphs 207

•

γV

gV gE

•

γdst
E

•

γsrc
E

α?

(a) Comparing the vertex summarization pattern and the path summarization patterns. We suppose
that edge grouping references (γsrc

E and γdst
E) correspond to the same vertex appearing as a vertex

grouping reference (γV) Such correspondence is directly marked my the user itself providing the
query by drawing morphisms (correspondences) between the vertex and the path summarization
patterns (red edges). The intersections between the two patterns may be directly outlined by the user
itself that provides the query (blue edges, representing other morphisms).

gE

•

γdst
E

•

γsrc
E

α

(b) Path summarization pattern sharing an α

area of common patterns shared between the
patterns, which are necessairly not the edge
grouping references by definition.

gE

•

γdst
E

•

γsrc
E

(c) Path summarization pattern not sharing a
common α area, although γsrc

E and γdst
E must

always be present in gE by hypothesis. This
constraint guarantees that the newly created
edge will be associated to a nested vertex
originating from the vertex summarization
pattern.

Figure 7.5 Vertex (V) and Path (E) summarization patterns for the query expressed in Example 35

on page 195. Vertex and edge grouping references are marked by a light blue circled node. As we can
see, the vertex grouping reference depicts the same property expressed by edge grouping references.

208 7.2 Class of optimizable graph nesting queries

Algorithm II.8 Grouping Reference Optimizable Queries (GROQ)
1: new ï

′
∶= (gc+1, O, ℓ, ξ, φ)

2:
3: procedure GROQ((gV , γV), (gE, γsrc

E , γdst
E), m; ï): ▷ ï = (gc, O, ℓ, ξ, φ)

4: α ∶= gV ∩ gE/(γV ∪ γE);
5: lV ∶= [];
6: if α ≠ ∅ then

7: for each graph gi generated from mα(ï) do

8: lV ∶= { fi ∈ mgV ;γV (ï)∣ fi(α) = gi}
9: GROQα((gV , γV), (gE, γsrc

E , γdst
E), m; lV, ï)

10: else

11: lV ∶= mgV ;γV (ï)
12: GROQα((gV , γV), (gE, γsrc

E , γdst
E), m; lV, ï)

13:
14: procedure GROQα((gV , γV), (gE, γsrc

E , γdst
E), m; lV, ï)

15: for each morphism fi ∈ lV do

16: {ic} ∶= fi(γV)
17: ℓ(ic+1) ∶= ℓ(ic); ξ(ic+1) ∶= ξ(ic); φ(ic+1) = φ(ic+1)∣dom(φ(ic+1))/{“Entity”,“Relationship”}
18: φ(gc+1, “Entity”) ∶= φ(gc+1, “Entity”)∪ {ic+1}
19: φ(ic+1, “Entity”) ∶= φ(ic+1, “Entity”)∪ { fi(o) ∣ o ∈ OgV , “toNest” ∈ ξ(o)∧ o ∈ φ(ogV , “Entity”) }
20: φ(ic+1, “Relationship”) ∶= φ(ic+1, “Relationship”)∪{ fi(o) ∣ o ∈ OgV , “toNest” ∈ ξ(o)∧ o ∈ φ(ogV , “Relationship”) }
21: for each morphism fi, f j ∈ lV do

22: lE ∶= { fk ∈ mgE ;γsrc
E

,γdst
E
(ï)∣ fi(γV) = fk(γsrc

E), f j(γV) = fk(γdst
E)}

23: for each morphism fk ∈ lE do

24: {sc} ∶= fi(γsrc
E); {dc} ∶= fi(γdst

E)
25: ω ∶=max O.ï+ dt(s, d)
26: ℓ(ωc+1) ∶= ℓ(sc)∪ ℓ(dc); ξ(ic+1) ∶= ξ(ic)∪ ℓ(dc)
27: φ(ωc+1, “Relationship”) ∶= φ(ωc+1, “Relationship”)∪ fk(γV)
28: φ(ωc+1, “src”) ∶= {sc+1}; φ(ωc+1, “dst”) ∶= {dc+1}
29: φ(ωc+1, “Entity”) ∶= φ(ωc+1, “Entity”)∪ { fk(o) ∣ o ∈ OgE , “toNest” ∈ ξ(o)∧ o ∈ φ(ogE , “Entity”) }
30: φ(ωc+1, “Relationship”) ∶= φ(ωc+1, “Relationship”)∪{ fk(o) ∣ o ∈ OgE , “toNest” ∈ ξ(o)∧ o ∈ φ(ogE , “Relationship”) }

Figure 7.5 on the previous page provides an example on how graph nesting queries
based on grouping references can be optimized for both vertex (gV) and path (gE) sum-
marization queries; given that the users are going to provide both the vertex and the path
summarization queries, such users must directly draw the correspondences between vertex
and edge pattern queries, so that the correspondences can be promptly be identified by the
query plan which can better optimize the whole query execution (a). After doing so, we
can start to perform the general graph visiting algorithm for graph nesting (Algorithm II.8)
by detecting which regions of both patterns are shared together in α = gV ∩ gE (Figure 7.5b).
Given that path summarization patterns’ grouping references have distinct source and
destination vertices by definition, source and destination vertices may not be represented
in α (line 4). Consequently, we can first perform pattern matching over the input graph
over α, thus allowing a partial instantiation of the gV and gE patterns, and then iteratively
extend the nesting information after each visit of α and its own refinements. In particular,
we can perform the algorithm as follows:

Given a graphs extraction language m (not necessarily) supporting grouping references,
we extract all the subgraphs gi of ï generated by morphisms mα(ï), when α is not
empty (line 7). If α is otherwise an empty pattern, we must necessarily perform a
complete visit of the vertex patterns gV , and perform complete instantiations of such
patterns (line 11).
Given that the nested graph representation relies on the GSM model, we can iteratively
construct the nested graph without knowing the complete information by relying on the
ids of the expected elements, and we can provide the greatest subgraph of g matching

7. On Nesting Graphs 209

α after visiting each possible α matching result, represented as a morphism fi. For this
reason, the GROQα subroutine may be called in both cases.
After providing a partial instantiation of the vertex summarization patterns via α, we
find a vertex ic matching the grouping reference γV to which we are going to nest the
remaining objects: from ic we generate a newly derived vertex ic+1 (line 16) preserving all
the labels, expressions and containments of ic (except from “Relationship”and “Entity”–
line 17). In particular, the nesting content of ic+1 derives from the partial instantiation of
the morphism fi, by choosing the vertices and edges in ï which corresponds to vertex
summarization objects marked with “toNest” (lines 19 and 20).
At this point we can use the same semi-instantiated morphisms in lV from α to partially
instantiate the path summarization pattern, that is now going to be fully traversed (line
22). For each of these fi instantiations, new edges are going to be generated, inheriting
the labels, values and containments (except from “Relationship”and “Entity”) from
the matched edges grouping references, sc and dc. In particular, we can directly create
associate to such edge the soruces and the targets represented by nested vertices, which
will respectively be sc+1 and dc+1.
The procedure is iterated until the whole graph is not visited via subsequent morphisms,
and hence all the matched elements are associated from the objects ic+1 (either vertices
or edges) generated from the ones matched by the grouping reference ic.

As we can see from the algorithm, the advantage of this approach is that the graph
gi and the instantiated morphisms (as a consequence of the graph matching phase) are
promptly used to define the nested information (e.g., lines 18-20). It is evident that the
aforementioned algorithm provides the best performances when γsrc

E and γdst
E are separated

by one edge distance in α and both gV and gE create graph collections that are partitions
of ï. On the other hand, this class of algorithms was already discussed in literature and,
consequently, an approach describing how to optimize such scenarios can be already found
in literature [JPR17]. Nevertheless, this chapter focuses on another types of algorithms,
which are the ones where α contains two edges and one vertex; this class of problems, to
the best of our knowledge, has not been discussed yet in current literature with respect
to their optimizations. Please note that, when α = ∅, the computational complexity of the
algorithm may easily become quadratic (∣φ(g, “Entity”)∣ + ∣φ(g, “Entity”)∣2).

7.3 Nested Graphs

In this chapter we try to define the nested graph data model independently from the GSM
and GSQL query language. This choice will result in a limitation within the definition of
the data structure and on the operators’ formalization. We now define the nested (property)

graph database from scratch as the following extension of the property graph data model for
nested information:

▸ Definition 68 (Nested Graph DataBase). Given a set Σ
∗ of strings, a nested (property) graph

database G is a tuple G = ⟨V ,E , λ, ℓ, ω, ν, ǫ⟩, where V and E are disjoint sets, respectively referring

to vertex and edge identifiers o ≡ ic ∈ N; c is an incremental unique number associated to each graph

as in the GSM model.

A function λ∶E → V2 maps each edge to its source and target vertex. Each vertex and edge

is assigned to multiple possible labels through the labelling function ℓ ∶ V ∪ E → ℘(Σ∗). ω is a

function mapping each vertex and edge into a relational tuple.

210 7.4 Graph Nesting

In addition to the previous components defining a property graph, we also introduce functions

representing vertex members ν∶ (V ∪ E) → ℘(V) and edge members ǫ∶ (V ∪ E) → ℘(E). These

functions induce the nesting by associating a set of vertices or edges to each vertex and edge. Each

vertex or edge o ∈ V ∪ E induces a nested (property) graph as the following pair:

Go = ⟨ν(o),{ e ∈ ǫ(o) ∣ λ(e) ∈ (∪n≥0 νǫ(n)({o}))2 }⟩
where νǫ returns the vertices contained in both vertices and edges (νǫ(x) = ν(x) ∪ ν(ǫ(x))). We

denote f (X)∶=⋃x∈X f (x) when X ⊆ dom(f). . ◂
As we previously observer, nested graphs can be also implemented in the GSM model.

Since the member functions ν and ǫ induce the expansion of each single vertex or edge
to a graph, we must avoid recursive nesting to support expanding operations. Therefore,
we additionally introduce the following constraints to be set at a nested property graph
database level:

▸ Axiom 2 (Recursion Constraints). For each correctly nested property graph, each vertex v ∈ V
must not contain v at any level of containment of ν and, any of its descendants m must not contain

v: ∀v ∈ V .∀m ∈ ν+(v). m ≠ v ∧ v ∉ ∪n≥1 νǫ(n)(m)
Similarly to vertices, any edge shall not contain itself at any nesting level:

∀e ∈ E .∀m ∈ ǫ+(e).m ≠ e ∧ e ∉ ∪n≥1 ǫν(n)(m)
where ǫν returns the edges contained in both vertices and edges (ǫν(x) = ǫ(x)∪ ǫ(ν(x)))

Please also note that this model has more restrictive constraints than the ones in the
GSM model. This is due to the fact that GSM nested graphs differentiates vertices and
edges by containing axioms while, in this case, we must restrict the edges to only the
ones that are contained within the strongly nested components of the single nested graph.
Nonetheless, a vertex v having a non-empty vertex or edge members is called nested

vertex, while vertices with no members are simply referred to simple vertices. For edges,
we respectively use the terms nested edges and simple edges.

▸ Example 37. The property graph in Figure 7.1a can be represented by the graph G(110), which

is a nested vertex contained in the following nested graph database:

G = ⟨{00, 10, . . . , 50, 110},{60, . . . , 100}, λ, ℓ, ω, ν, ǫ⟩
The nested vertex (110) represents a “Bibliography” graph (ℓ(110) = [“Bibliography”]), to

which an empty tuple is associated (ω(110) = {}). Its vertex (ν) and edge (ǫ) members are defined

as follows:

ν(110) = {00, . . . , 50} ǫ(110) = {60, . . . , 100}
The simple edge 6 within the property graph in Figure 7.1a (ν(60) = ǫ(60) = ∅) has now id

(60); it has one label, ℓ(60) = [“AuthorOf”], and it is associated to an empty tuple (ω(60) = {}).
The source and target vertices are λ(60) = ⟨00, 30⟩. Similar considerations can be carried out for

each remaining edge.

The simple vertex 0 in the same Figure has id (00) in the present example; such vertex refers to

the “Author” Abigail Conner. This information is represented as follows:

ℓ(00) = [“Author”] ν(00) = ǫ(00) = ∅
ω(00) = {name∶Abigail,surname∶Conner}

Similar considerations can be carried out for each remaining vertex.

7. On Nesting Graphs 211

7.4 Graph Nesting

The graph nesting operator uses a classifier function grouping all the vertices and edges
that shall appear as a member of a cluster C.

▸ Definition 69 (Nested Graph Classifier, gκ). Given a set of cluster labels C, a nested graph

classifier function gκ maps a nested graph Go into a nested graph collection {GC}C∈C,GC≠∅ of

subgraphs of Go. Such function uses a classifier function κ∶V ∪ E → ℘(C) mapping each vertex

or edge in either no graph or at least one non-empty subgraph. Each nested graph GC is a pair

GC = ⟨VC,EC⟩ where VC (and EC) is the set of all the vertices v (and edges e) in Go having C ∈ κ(v)
(and C ∈ κ(e)). Therefore, the nested graph classifier is defined as follows:

gκ(Go) = { ⟨VC,EC⟩ ∣ C ∈ C, (VC ≠ ∅∨EC = ∅) }
◂

The former definition is also going to express graph pattern evaluations, where κ may
be represented as a graph (cf. Neo4J). This assumption allows us to use the graphs in Figure

7.2 as possible κ. When κ is a graph, we denote as κ
fC→ GC the function fC associating

each vertex (and edge) in κ to possibly more than one vertex (and one edge) in a subgraph
GC ∈ gκ(Go). In order to represent the latter subgraphs as either vertices and edges, we
may use the following User-Defined Functions:

▸ Definition 70 (User-Defined Functions). An object user defined function µΩ maps each

subgraph GC ∈ gκ(Go) into a pair µΩ(GC) = (L, t), where L ∈ ℘(Σ∗) is a set of labels and t is a

relational tuple.

An edge user defined function µE maps each subgraph GC ∈ gκ(Go) into a pair of identifiers

µE(GC) = (s, t) where s, t ∈ N. ◂
▸ Example 38. Within our use case scenario, µΩ must associate the authors’ informations to each

nested vertex resulting from gV(Go) , and create nested edges with coAuthorship label and no

associated tuple:

µΩ(GC) =
⎧⎪⎪⎨⎪⎪⎩
([“coAuthorship”], ∅) GC ∈ gE(Go)
(ℓ(fC(γV))), ω(fC(γV))) GC ∈ gV(Go)

While µΩ may be used for transforming subgraphs to both vertices and edges, µE

is only used to map subgraphs to edges. In order to complete such transformation, we
have to map each graph in gκ(G) into a new id ic ∉ V ∪ E , for which an indexing function
ιG over each GC has to be defined within our specific task. As we will see in the next
section, our scenario provides some constraints on both patterns; this allows the definition
of an indexing function uniquely associating each matched subgraph GC to the grouping
references’ ids. The previous functions are involved in the definition of our general graph
nesting operator:

▸ Definition 71 (Graph Nesting). Given a nested graph Gic within a nested graph database G, an

object user defined function µΩ, an edge user defined function µE and an indexing function ιG, the

graph nesting operator η
keep
gV ,gE ,µΩ ,µE ,ιG converts each subgraph in GC ∈ gV(Gic) (and GC ∈ gE(Gic))

into a nested vertex (and nested edge) ιG(GC) and adds them in a newly-created nested vertex;

vertices and edges in Gic appearing neither in a nested vertex nor in a nested edge may be also

212 7.4 Graph Nesting

returned if keep is set to true. This operator returns the following nested graph:

η
keep
gV ,gE ,µΩ ,µE ,ιG(Gic) = Gic

=

= ⟨{v ∈ ν(ic)∣V(v) = ∅∧ keep}∪ ιG(gV(Gic)),
{e ∈ ǫ(ic)∣E(e) = ∅∧ keep}∪ ιG(gE(Gic))⟩

where c = max{c∣(ic) ∈ V ∪E}+ 1. As a side effect of the graph nesting operation, the nesting graph

database is updated using the nested graph classifier and user defined functions as follows:

⟨V ∪ ιG(gV(Gic))∪ {(c, i)}, E ∪ ιG(gE(Gic)),
λ⊕ ⊕

GC∈gE(Gic) ιG(GC)↦ µE(GC),
ℓ⊕ ⊕

GC∈gE(Gic)∪gV(Gic) ιG(GC)↦ fst µΩ(GC),
ω⊕ ⊕

GC∈gE(Gic)∪gV(Gic) ιG(GC)↦ snd µΩ(GC),
ν⊕ ⊕

GC∈gE(Gic)∪gV(Gic) ιG(GC)↦ VC

⊕ dtl(i)c ↦ {v ∈ ν(ic)∣V(v) = ∅∧ keep}∪ ιG(gV(Gic)),
ǫ⊕ ⊕

GC∈gE(Gic)∪gV(Gic) ιG(GC)↦ EC

⊕ dtl(i)c ↦ {e ∈ ǫ(ic)∣E(e) = ∅∧ keep}∪ ιG(gE(Gic))⟩

where (f ⊕ g)(x) returns g(x) if x ∈ dom(g) and f (x) otherwise, and both f and g are finite

domain functions. a ↦ b denotes a finite function, which domain contains only a. ◂
The following example describes the outcome of the graph nesting process.

▸ Example 39. Figure 7.1b provides the result of η when the non-traversed vertices and edges are

not preserved (keep = false) and where V and E are the ones represented in Figure 7.1. As showed

by the former definition, the nesting operation updates the nested graph database by creating new

nested vertices (01, 11, 21) and nested edges (31, 51, 71, 81). Such nested components are contained

within the returned nested graph G111 , which is represented as a nested vertex with the following

members:

ν(111) = {01, 11, 21} ǫ(111) = {31, 51, 71, 81}
The nested graph database updated as a side effect of the graph nesting may be represented as follows:

G ′ = ⟨{00, 10, . . . , 50, 110, 01, 11, 21, 111},
{60, . . . , 100, 31, 51, 71, 81},
λ ′, ℓ ′, ω ′, ν ′, ǫ ′⟩

Let us now focus on the nested vertices and edges of G111 . As requested by the UDF functions,

each resulting nested Author(2) preserves the original vertices’ tuple information, and its vertex

members correspond to the Papers authored by the corresponding Author(1). For easing the

7. On Nesting Graphs 213

nested graph representation, we assume that each Author(2) has an associated id (1, i), which

derives from a simple vertex with id (0, i) in G(0,11). Therefore, vertex 01 is represented as follows:

ℓ ′(01) = [“Author”] ν ′(01) = {30} ǫ ′(01) = ∅
ω ′(01) = {name∶Abigail,surname∶Conner}

Last, each resulting nested edge coAuthorship has a “coAuthorship” label, it has no tuple

information and its vertex members correspond to the Papers coauthored by source and target

Paper. For easing the nested graph representation, we assume that each coAuthorship edge

a1 → a ′1 has an associated id (∑a+a ′
k=0 k + a ′)1, which derives from the grouping references. Therefore,

edge 0→ 2 in Figure 7.1b is represented as follows:

ℓ ′(51) = [“coAuthorship”] ν ′(51) = {(30)} ǫ ′(01) = ∅ ω ′(01) = {}
In particular, we can freely assume that our nested graph pattern matching semantics

s ′ acts as an UDF function, and hence associates to each graph cluster matched by gE a
source and a target vertex. On the other hand, while the previous formal definition of
the graph nesting operator provides a general definition matching with Algorithm II.7 on
page 202, the following algorithms allow to match the class of graph nesting optimizable
problems that is going to be defined in the next section.

7.4.1 Two HOp Separated Patterns Algorithm

We now want to focus on a specific instance of the problem stated in Algorithm II.8:
suppose to store a graph using adjacency lists similarly to the one proposed in the Graph
Join algorithm chapter (Section 4.4.1 on page 101); in particular, the previous data structure
is now extended with both vertex and edge containment, plus with both ingoing and
outgoing edges for each single graph vertex. The latter requirement is added in order to
satisfy the possibility to visit the edges backwards, thus allowing to navigate the graph in
each possible direction. Given that the data structure requires a simple linear visit of the
graph, no additional primary and secondary data structures are required. Nevertheless,
during our serialization phase we provide both a primary index for accessing external
informations (VertexIndex) and the serialization of all the vertices’ adjacency lists, which is
going to be used for traversing the graph (VertexVals).

The THoSP algorithm requires a preliminary phase, where the operand is loaded
into secondary memory using the input data representation, and where primary and
secondary indices are serialized for backward compatibility with graph joins. Such rep-
resentation is presented in Figure 7.6: it is an extension of the usual graph adjacency lists
(OutgoingEdges[], IngoingEdges[]) where each vertex o has an associated Header contain-
ing its id (o), its associated hash and the offset pointing to other serialized fields, such as
the labelset and eventually its property-value representation (⟨ℓ(o), ω(o)⟩). Last, for each
edge we store its id and hash value, as well as the hash and the id of the adjacent vertex.
Hash values are used within the proposed THoSP algorithm to store the correspondences
with the graph patterns in Figure 7.2; therefore, each ℓ(o) is associated to a distinct hash
value h(o). We also suppose that the input graph data to be serialized does not represent
an exact adjacency list: for this reason, the graph is firstly created in primary memory
without the offset information, and then serialized into secondary memory.

In order to solve our specific graph nesting problem as presented in Example 35 on
page 197, we have to formally determine the η parameters representing THoSP. We focus

214 7.4 Graph Nesting

Algorithm II.9 Two HOp Separated Patterns Algorithm (THoSP)

1: procedure doNest(Index, pattern, f ,
→

memb = {m1, . . . , mn})

2: for each mi ∈
→

memb s.t. pattern(
→

memb).doSerialize(mi) do

3: Index.write(⟨ f , mi⟩)
4:
5: procedure ηfalse

gV ,gE ,...(ï)
6: File AdjFile = Open_MemoryMap(ï); ▷ Serialized operand
7: File Nesting = Open(new); ▷ ν ∪ ǫ, member information
8: Adjacency toSerialize =

new Map<Vertex,<Edge,Vertex»(); ▷ Nested graph, adj. list
9: α ∶= V ∩ E/(γV ∪ γsrc

E ∪ γdst
E); ▷ Shared pattern

10: for each vertex v ′ in AdjFile do ▷ v ′ ∶= vc

11: if v ′ ⊧ α then

12: for each (u ′, e, v ′) ⊧ V do ▷ u ′ ∶= uc ′

13: u ∶= dtl(u)c ▷ ιG, nested vertex
14: doNest(Nesting, V, u,{u ′, e, v ′})
15: for each (w ′, e, v ′) ⊧ V do ▷ w ′ ∶= wc ′′

16: if (u ′, e, v ′, e ′, w ′) ⊧ E then

17: w ∶= dtl(w)c ▷ ιG, nested vertex
18: e ∶= dtl(u, w)c ▷ ιG, nested edge
19: doNest(Nesting, E, e,{u ′, e, v ′, e ′, w ′})
20: toSerialize.put(u,⟨e, w⟩)
21: AdjFile.serialize(toSerialize);
22: return (AdjFile,Nesting) ▷ Nested graph

on vertex (and edge) summarization patterns which grouping references associate unique
vertices to distinct matching subgraphs; they require that:

∀GC ∈ gV(Go).¬∃Gd ∈ gV(Go). Gc ≠ Gd ∧ fC(γV) = fD(γV)
∀GC ∈ gE(Go).¬∃Gd ∈ gE(Go). Gc ≠ Gd

∧ fC(γsrc
E) = fD(γsrc

E) ∧ fC(γdst
E) = fD(γdst

E)
This requirement leads to a one-to-one mapping between subgraphs GC and vertices
matched by vertex (or edge) grouping references, that can be expressed by the following
indexing function:

ιG(GC) =
⎧⎪⎪⎨⎪⎪⎩

dtl(snd fC(γV))c GC ∈ gV(Go)
dtl (snd fC(γsrc

E), snd fC(γdst
E))c GC ∈ gE(Go)

This assumption permits a deterministic µE function, associating to each newly created
nested edge from GC two nested vertices having fC(γsrc

E) and fC(γdst
E) as vertex grouping

references:
µE(GC) = ⟨dtl(snd fC(γsrc

E))c, dt(snd fC(γdst
E))c⟩

Please note that the former function provides such association without additional join
costs.

Algorithm II.9 provides the desired interpretation for the two pattern matching graphs
returning the desired nested graph. After opening the previously-loaded graph operand
through memory mapping (Line 6), we must first identify a sub-pattern α (Line 9) that
is going to be visited only once within the graph (Line 11), after which either the vertex

7. On Nesting Graphs 215

Header

length

nodeId (o)

nodeHash (h)

edgeContOffset

attributeOffset

outgoingOffset

ingoingOffset

ν(o)

ǫ(o)

ℓ(o)

ω(o)

OutgoingEdges

length

edgeId[1]

edgeHash[1]

outVertexId[1]

outVertexHash[1]

. . .

IngoingEdges

length

edgeId[1]

edgeHash[1]

outVertexId[1]

outVertexHash[1]

. . .

Figure 7.6 Extending the serialized graph data structure presented for graph join for the nesting
operation. In particular, the present data structure extends each vertex representation in VertexVals

(Figure 4.6b on page 103) in order to fully supports the nested graph data model: entities and
relationships may now be contained into another data node (either a vertex or an edge). The first
block of the serialized data structure contains the pointers towards the memory regions containing
data which may vary in size. The fuchsia nodes remark the memory spaces where such data
containments may be stored. Moreover, ingoing edges are stored as well as outgoing edges.

216 7.4 Graph Nesting

Operands’ Vertices Matched Graphs General Nesting (ms) THoSP (ms)

10 3 0.57 0.11

102 58 0.73 0.14

103 968 2.78 0.46

104 8, 683 152.11 4.07

105 88, 885 14,015.00 43.81

106 902, 020 1,579,190.00 563.02

107 8, 991, 417 >1H 8,202.93

108 89, 146, 891 >1H 91,834.20

Table 7.1 Comparing the performances of the THoSP algorithm with the naive General Nesting
algorithm. This comparison shows that the previously defined algorithm has a worse performance
than the THoSP one.

or the path summarization pattern can be visited in their entirety. We also perform some
restrictions over these patterns enhancing such optimizations: for each vertex v ′ matched
by α (Line 11) we know that we must (possibly) visit all the edges going from v ′ towards
the vertices γsrc

E and γdst
E . Therefore, having an edge as a constraint in α linking v towards

γsrc
E or γdst

E both in E and V reduces the graph visiting time to the actual edges traversed
from v ′ meeting the grouping references (Line 16). Therefore, we know when we finish
our patterns’ instantiation after exhaustively matching all the elements within the pattern.
As a consequence, a “path join” is performed between the two nested patterns (Line 10

with 15): this is evident from the two vertex nested for loops appearing in the algorithm.

Our physical data model differentiates the input data representation from the query result

(Line 22). We suppose that the latter is only used by the user to read the outcome of the
nesting process as in other query languages (such as SPARQL and SQL) and does not
have to produce “materialized views”. Therefore, the result of the graph query itself can
postpone the creation of a complete “materialized view”, which will later use the same
representation of the input data by using both the id information and the application of the
User Defined Functions. In particular, the former dt function is used to associate both the
nested vertices, u and w, and the nested edge e to their grouping references, thus allowing
to easily go back to the original grouping references by using the inverse function of dt,
thus allowing the postponed application of the user defined functions.

Last, the doNest procedure performs the association between the nested vertices (and
edges) f and its members within the input graph mi. When the pattern requires that mi

should be a member of f in the final nested graph, doNest stores in a Nesting file those
membership associations as pairs ⟨ f , mi⟩. By doing so, we omit the GROUP BY cost which
affects the previously seen query languages.

Please note that if in gE there is no path connecting α to γsrc
E or γdst

E , the problem may
quickly become cubic with respect to the size of the vertices, because we must create all the
possible permutations where v ′ is present alongside another element matching γsrc

E or γdst
E .

Table 7.1 provides a comparison between the general Nesting Algorithm sketched in
Section 7.1.2 on page 201 and over the THoSP implementation of the query provided in our
running example, under the assumptions that are going to be soon introduced in the next
section. In particular, while THoSP increases linearly alongside the data size, the general
nesting algorithm grows quadratically, thus quickly leading to a intractable time evaluation
for big data scenarios. Hereby, the THoSP algorithm is going to be used in comparisons

7. On Nesting Graphs 217

with other problem-specific queries on different query languages and data structures.

7.5 Experimental Evaluation

Through the following experiments we want to show that our approach outperforms the
same proposed coauthorship nesting scenario on top of graph, relational, or document
oriented databases. Therefore, we consider the time required to (i) serialize our data
structure and (ii) evaluate the query plan. In the former we compare the loading and
indexing times (the time required to store and index the data structure), and in the latter
we time the query over the previously-loaded operand. This twofold analysis is required
because, in some cases, the costly creation of several indices may lead to a better query
performance.

The lack of ancillary data attached to either vertices or edges (∀o.ω(o) = {}) allows a
better comparison of query evaluation times, which are now independent from the values’
representations and more tailored to evaluate both the access time required for traversing
the loaded operator and returning the nested representation. For our evaluations we choose
a bibliography graph where vertices are only represented by vertex ids and label, and edges
are represented only by both their label, and the source and target vertices’ id. Such graph
was generated by the gMark generator [BBC+17]: a Zipf’s Law distribution with parameter
2.5 is associated to the ingoing distribution of each authorOf, while a normal distribution
between 0 and 80 is associated to its outgoing distribution. Each vertex represents either an
Author or an authored Paper having distinct ids. The resulting graph is represented as a
list of triplets: source id, edge label (author of) and target id. The generator was configured
to generate 8 experiments by incrementally creating a graph with vertices with a power of
10, that is from 10 to 108.

We performed our tests over a Lenovo ThinkPad P51 with a 3.00 GHz (until 4.00

GHz) Intel Xeon processor and 64 GB of RAM at 2.400 MHz. The tests were performed
over a ferromagnetic Hard Disk at 5400 RPM with an NTFS File System. Given that the
secondary memory representation is a simple extension of the one used for nested graphs,
we assume that our data serialization is always outperforming with respect to graph
libraries as discussed in Subsection 4.4.2.1 on page 105 for graph joins. Therefore, we only
evaluate THoSP using the two pattern matching queries provided in the running example.
As in Subsection 4.4.2.2 on page 107, we used default configurations for Neo4J 3.3.0,
PostgreSQL 9.6.6 and ArangoDB 3.2.7, while we changed the cache buffer configurations
for Virtuoso 7.2 (as suggested in the configuration file) for 64 GB of RAM; we also kept
default multithreaded query execution plan. PostgreSQL queries were evaluated through
the psql client and benchmarked using both explain analyse and \timing commands;
the former allows to analyse SQL’s query plans. Virtuoso was benchmarked through the
Redland RDF library using directly the librdf_model_query_execute function; SPARQL’s
associated query plan was analysed via Virtuoso’s explain statement. AQL queries over
ArangoDB were evaluated directly through the arangosh client and benchmarked using
the getExtra() method; statements’ explain method was used to analyse AQL’s query
plans. Cypher queries were evaluated using the Java API through the execute method
of a GraphDatabaseService object; the EXPLAIN statement was used to analyse the query’s
associated query plan. Given that only binary database connections were used (e.g., no
HTTP), all the aforementioned conditions do not degrade the query evaluations. Last,
given that all databases (except from Neo4J) was coded in C/C++ and that Neo4J provided
the worst overall performances, we implemented serialization and THoSP only in C++.

218 7.5 Experimental Evaluation

Operands Size Operand Loading Time (C/C++) (ms)
Vertices (∣V∣) PostgreSQL Virtuoso ArangoDB Neo4J (Java) Nested Graphs (C++)

10 8 3.67 43 3,951 0.23

102 18 6.86 267 4,124 0.65

103 45 23.53 1,285 5,256 5.54

104 225 371.40 11,478 11,251 39.14

105 1,877 3,510.96 135,595 1,193,492 376.07

106 19,076 34,636.80 1,362,734 >1H 4,016.06

107 184,421 364,129.00 >1H >1H 47,452.10

108 1,982,393 >1H >1H >1H 527,326.00

(a) Operand Loading and Indexing Time. PostgreSQL and Neo4J have transactions, while Virtuoso and
ArangoDB are transactionless. Nested Graphs are our proposed method which is transactionless.

Operands Size Two HOp Separated Pattern Time (C/C++) (ms)
Vertices Matched Graphs

PostgreSQL Virtuoso ArangoDB Neo4J (Java) THoSP (C++)
(∣V∣) (∣mV(ï)∣ + ∣mE(ï)∣)
10 3 2.10 11 15.00 681.40 0.11

102 58 9.68 63 3.89 1,943.98 0.14

103 968 17.96 63 12.34 >1H 0.46

104 8, 683 69.27 364 46.74 >1H 4.07

105 88, 885 294.23 4,153 508.87 >1H 43.81

106 902, 020 2,611.48 50,341 7,212.19 >1H 563.02

107 8, 991, 417 25,666.14 672,273 922,590.00 >1H 8,202.93

108 89, 146, 891 396,523.88 >1H >1H >1H 91,834.20

(b) Graph Nesting Time. PLease note that the Graph Join Running Time. Each data management
system is grouped by its graph query language implementation. This table clearly shows that the
definition of our query plan clearly outperforms the default query plan implemented over those
different graph query languages and databases.

Within the relational model the graph operand’s edge information were stored in one single
relational table. Similar approaches are automatically used in Virtuoso for representing
RDF triple stores over its relational engine. As opposed to our implementation, all the
current databases do not serialize the resulting nested graph in secondary memory.

At first, we must discuss the loading and indexing time (Table 7.2a). We shall compare
Virtuoso and PostgreSQL first, because they are both based on a traditional relational
database engine using one single table to store a graph. Virtuoso stores an RDF graph
using its default format, while in PostgreSQL the graph was stored as described in Section
2.2. Given that Virtuoso is transactionless, it performed better at loading and index data
for very small data sets (from 10 to 103) while, afterwards, the triple indexing time takes
over on the overall performances. On the other hand, ArangoDB has not a relational
data representation, and it serializes the data as JSON objects to which several external
indices. Given that the only data loaded into ArangoDB are the edges’ labels, all the time
required to store the data is the indexing time. Neo4J’s serialization proves to be inefficient,
mainly because there are no constraints for data duplication and we must always check if
the to-be-inserted vertex already exists. As a result, Neo4J’s adoption of inverted indices
from Lucene proves not to be useful at dynamically indexing graph data. Finally, our
nested graph data structure creates adjacency lists directly when serializing the data, while

7. On Nesting Graphs 219

primary indices are not used by our input data serialization, because the adjacency lists
information is sufficient to join the edges in a two hop distance scenario.

Let us now consider the graph nesting time (Table 7.2b): albeit no specific triplet or
key are associated to the stored graph, PostgreSQL appears to be more performant than
Virtuoso on graph nesting. Please also note that the Virtuoso query engine rewrites the
SPARQL query into SQL and, hereby, two SQL queries were performed in both cases. Since
both data were represented in a similar way in secondary memory, the completely different
performance between the two databases must be attributed to an inefficient rewriting of
the SPARQL query into SQL. In particular, the nested representation using JSON array
for PostgreSQL proved to be more efficient than returning a full RDF graph represented
as triplets, thus arguing in favour of document stores. The PostgreSQL’s efficiency is
attributable to the run-time indexing time of the relational tables, that is shared with
ArangoDB, where the indices are created at loading time instead: in both cases a single
join operation is performed, plus some (either runtime or stored) index access time. Both
PostgreSQL and ArangoDB use GROUP BY-s to create collections of nested values, separately
for both vertices and edges. As observed in the previous paragraph, no primary index is
used while performing the THoSP query, and adjacency graphs are returned using the
same data structure used for graph joins: one single vertex is returned alongside the set of
outgoing edges. Moreover, the nesting result is not created by using GROUP BY-s, but by
sparsely creating an index that associates the container to its members: as a result, our
query plan does not generate an additional cost for sorting and collecting all the elements
because the nesting is provided during the graph traversal phase. Thus, the choice of
representing the nesting information as a separate index proves to be more efficient.

7.6 Conclusions

To the best of our knowledge, this chapter proposed for the first time an algorithm (THoSP)
which adds structural aggregation to an input graph. The final outcome of this process is a
nested graph, which contains vertices and edges that may contain subgraphs of the original
input graph. Such result is obtained by jointly visiting two graph patterns, the vertex
and the pattern summarization, respectively leading to the creation of nested vertices and
nested edges. The reason why such algorithm outperforms equivalent implementations
over graph, relational and document based competitors is twofold: first, while their query
plans force one graph visit per pattern, our solution allows to visit such graph only once;
last, by detaching the graph representation from the membership information in the query

result we can avoid the cost of performing an additional GROUP BY operation. This paper
also provides a nested graph data model, allowing the definition of a generic graph nesting
operator.

This solution was possible due to the assumptions derived from both GSM and GSQL,
where it is showed that it is possible to refer any time to the elements that are going to
be created later on within the computation, by simply deterministically knowing which is
the id belonging to the element that is going to be created. We already formulated such
assumption in our initial work on hypergraphs [Ber14]; this chapter proved the practical
feasibility of this approach. Therefore, this chapter proves that the representation of nested
graph may lead to the solution of current graph querying problems in a tractable way.
Nevertheless, we believe that further studies will have to be done on the class of GROQ
problems, thus extending our work on THoSP.

This chapter walked in the footsteps of current (graph) database literature, where data

220 7.6 Conclusions

operations are defined at the single data structure level and not at the database level. As
a consequence, the graph nesting operator must be represented as the creation of a new
graph, requiring the update of the whole database as a side effect. On the other hand,
all the operations that are performed on the GSM model via GSQL directly operate at
the database level and provide the outcome of the nesting process as the final reference
object. This chapter showed that the GSM data model provided a more clear and compact
definition of the graph nesting operator (see Definition 60 on page 175).

Last, this chapter (alongside with the former) outlined the definition of a possible
nesting operator permitting the representation of ν≅, which is the last operator required
by the LAV/GAV data integration approach. Hereby, the definition of the graph nesting
operator accomplishes our task of providing the full set of data integration operators via
paNGRAm and GSQL. We believe that further studies will have to be done to implement
and test the GROQ algorithm over this specific data model.

Part III

Conclusions

221

8 Conclusions

“Cuius rei demonstrationem mirabilem sane detexi hanc marginis

exiguitas non caperet.”

— Pierre de Fermat

We remind our reader that each chapter provided a conclusion section, where we provided the

intended future works for each thesis topic.

This thesis introduced the Generalized Semistructured Model, a data model allowing
the representation of both graphs and nested data. This has led to the definition of an
intermediate data model, nested graphs, which allows both to have a data structure with
two main object classes (vertices and edges), and the data to be nested. However, this thesis
has not treated other data models, such as RDF, where there are at least three classes of
objects (note that some RDF properties may act as both vertices and edges). This requires
the definition of ad hoc operators for this additional data model. Similar considerations
may be adopted for hypergraphs, too. Therefore, we leave the definition of these operators
to future developments in our research through the usage of GSQL over GSM data.

In particular, GSQL supported the definition of both graph joins and graph nestings

that are required operations within the context of data integration: while the former
operation allowed to chain the matching vertices and creates new edges by using an
user-defined es semantics, the latter operation is required in the “blocking” operations
where (i) the original obects’ pieces of information are preserved and when (ii) we may
reduce the data representation at its coarsest representation level. We also saw that the
implementation of both graph operators revealed the deficiencies of current graph query
languages in providing those operations, either because of their data model or because of
their query plan. These limitations demand for a new query language allowing these two
(nested) graph operations in an efficient implementation.

Last, we showed that GSM allowed the data integration between different data rep-
resentations and GSQL may be used to express both data integration and data mining
tasks, thus showing that such naïve query language may be used like an assembly interface
towards which we can express different possible query languages. Further work has still to
be carried out at the GSQL optimization level: equivalence axioms and new aggregated
operators allowing computational enhancement frequently occurring in data querying tasks
(similar to the composition ⋈ and σθ providing the ⋈θ operator) are still to be provided.
Moreover, most interesting graph features may arise whether GSQL may deal with graph
data uncertainty [GT07] and graph metrics [DMR16]: further work should also analyse the
ability of such language to manipulate data alongside with uncertainty measures.

223

A Resolving Alignments and Morphisms: OCaml

Source Code

This appendix provides the code of the reconciliation of the matchings between hub schema
and data via the data’s source schema, provided as an outcome of the visit of the alignments
(between the source schema and the hub schema) and of the morphisms (associating the
data to its source schema). In order to do so, the GSM data model is also provided,
alongside with some required utility functions. The following procedure describes the
more theoretical concepts presented in Example 27 on page 150.

(** Utility function , treating ls as sets. It removes duplicated instances *)

let unique ls = List.sort_uniq compare ls

(** Unility function , flattening and treating ls as sets *)

5 let uFlat ls = unique (List.flatten ls)

(**

Returns an equivalence class between the elements of outer and inner. The most

common case is having inner and outer as the same set.

10
outer = Set over which the class are created

inner = Set over which the class are created from the elements of inner

g = function combining the classes in outer and the inner elements matching the class

f = equivalence between the elements and the class

15
{ { g(x,{ y \in inner | f(x,y)}) } | x \in outer }

*)

let toClass outer inner g f =

unique (List.map (fun x -> g x (List.filter (fun y -> f x y) inner)) outer)

20
(** More handy that a toClass function , where there is one single set over which perform

the classification *)

let group_by (ff : ’a -> ’b) (g : ’a -> ’c) (ll : ’a list) :

(’b, ’c list) Hashtbl.t =

25 List.fold_left

(fun acc e ->

let grp = ff e in

let grp_mems = try Hashtbl.find acc grp with | Not_found -> []

in (Hashtbl.replace acc grp ((g e) :: grp_mems); acc))

30 (Hashtbl.create 100) ll

(** Return the group_by result within a list *)

let list_group_by f g ll =

Hashtbl.fold (fun k v acc -> (k, v) :: acc) (group_by f g ll) []

35
let pair a b = (a, b)

let linject x = [x]

40 let limax def = function | [] -> def | x :: xs -> List.fold_left max x xs

let lomin = function | [] -> None | x :: xs -> Some (List.fold_left min x xs)

let lomax = function | [] -> None | x :: xs -> Some (List.fold_left max x xs)

45
let rec range m mm =

if m == mm then [m] else if m > mm then [] else m :: (range (m + 1) mm)

let is_some = function | Some _ -> true | _ -> false

50
let get = function | Some a -> a | _ -> failwith "missing␣value"

module IntSet =

Set.Make(struct let compare = Pervasives.compare

55 type t = int

end)

(** Defining a function with finite domain *)

type (’a, ’b) funzione = { dom : ’a list; f : ’a -> ’b }

60

225

226

let emptyFun c = { dom = []; f = (fun x -> c); }

let domain f = f.dom

65 let expand f = f.f

(** Definition of a gsm as provided in the theorical framework *)

type gsm =

{ o : int; oO : int list; ell : (int , string list) funzione;

70 xi : (int , string list) funzione;

phi : (int , (string , int list) funzione) funzione

}

let egsm reference =

75 {

o = reference;

oO = [];

ell = emptyFun [];

xi = emptyFun [];

80 phi = emptyFun (emptyFun []);

}

(** Practical implementation , more handy to initialize , as provided by the

Java implementation *)

85 type gsm_object =

{ id : int; e : string list; x : string list;

p : (string * (int list)) list

}

90 (* f + [i -> l] *)

let appendList i l ff =

{ dom = i :: ff.dom; f = (fun x -> if x = i then l else ff.f x); }

(* f + [i -> x -> l | (x,l) \in ls] *)

95 let cpListToFunction i ls fu =

if (List.length ls) = 0

then fu

else

{

100 dom = i :: fu.dom;

f =

(fun j ->

if j = i

then

105 List.fold_right (fun (s, il) ff -> appendList s il ff) ls

(fu.f i)

else fu.f j);

}

110
(** Appends a gsm_object into the gsm theorical model *)

let appendElement (iexp : gsm_object) (gsm_elem : gsm) : gsm =

{

o = gsm_elem.o;

115 oO = iexp.id :: gsm_elem.oO;

ell = appendList iexp.id iexp.e gsm_elem.ell;

xi = appendList iexp.id iexp.x gsm_elem.xi;

phi = cpListToFunction iexp.id iexp.p gsm_elem.phi;

}

120
(** Given the reference object ~reference creates a gsm from the ~gol list *)

let gsm_object_list_to_gsm (reference : int) (gol : gsm_object list) : gsm =

List.fold_right (fun elem acc -> appendElement elem acc) gol

(egsm reference)

125
(* \varphi_{gsm} *)

let varphi gsm =

let www = gsm.phi

in

130 (cpListToFunction ()

(List.map

(fun x ->

(x, (let yyy = www.f x in uFlat (List.map yyy.f yyy.dom))))

www.dom)

135 (emptyFun (emptyFun []))).

f ()

(* \varphi ^{step}_{gsm}(o) *)

A. Resolving Alignments and Morphisms: OCaml Source Code 227

let rec varphiRec (step : int) gsm o =

140 if step = 0

then [o]

else

if step = 1

then (varphi gsm).f o

145 else

unique

(List.flatten (List.map (varphi gsm).f (varphiRec (step - 1) gsm o)))

(** Returning the maximum height of the gsm , at any object *)

150 let overallGsmHeight gsm =

let maxHeightO o =

let rec inner ls acc =

if (List.length ls) == 0

then acc

155 else inner (uFlat (List.map (varphi gsm).f ls)) (acc + 1) in

let l = (varphi gsm).f o in if (List.length l) == 0 then 0 else inner l 1

in limax 0 (List.map (fun o -> maxHeightO o) gsm.oO)

let varphiplus gsm o =

160 uFlat

(List.map (fun x -> varphiRec x gsm o) (range 1 (overallGsmHeight gsm)))

let varphistar gsm (o : int) =

unique

165 (o ::

(uFlat

(List.map (fun x -> varphiRec x gsm o)

(range 1 (overallGsmHeight gsm)))))

170 (** returns the elements of gsm of which o is a content *)

let containerOf gsm o =

let w = varphi gsm

in

unique

175 (List.map fst

(List.filter (fun (i, l) -> List.mem o l)

(List.map (fun x -> (x, (w.f x))) w.dom)))

(** returns the elements of gsm of which o is a content , alongside with the label associated↪ to it *)

180 let containerOfWithLabel g o =

List.flatten

(List.map

(fun x ->

let y = g.phi.f x

185 in

List.map fst

(List.filter (fun ((x, y), l) -> List.mem o l)

(List.map (fun z -> ((x, z), (y.f z))) y.dom)))

g.phi.dom)

190
(** Returns the basic correspondences to which o is associated to *)

let cvBase g o =

List.append (g.xi.f o) (List.map snd (containerOfWithLabel g o))

195 let cvBase2 g o = g.xi.f o

let cvRecAll cvBaseFun (step : int) g o =

uFlat (List.map (cvBaseFun g) (varphistar g o))

200 let cvRec step g o = cvRecAll cvBase step g o

let cvRec2 step g o = cvRecAll cvBase2 step g o

(**

205 * After initializing the function with the following elements , it returns if the

* two elements match because of a shared common value

*

* l = value extraction function to be applied on the left

* r = value extraction function to be applied on the right

210 * step = depth step on both elements to go in order to search the common values

* gl = gsm for the left elements

* gr = gsm for the right elements

* vartheta = binary predicate creating the equivalences

*)

215 let cvTest l r step gl gr vartheta o op =

228

List.exists

(fun a -> List.exists (fun ap -> vartheta a ap) (cvRecAll r step gr op))

(cvRecAll l step gl o)

220 (* Function to be used when the data to be compared belong to the same type , and hence the↪ parts where to extract the data are similar *)

let cvTestData vef step g vartheta = cvTest vef vef step g g vartheta

type correspondence = { src : int; dst : int }

225 let oe x y = { dst = x; src = y; }

type morphism = { schema : int; data : int list }

let mo x y = { schema = x; data = y; }

230
(** These are all the kinds of schema alignments that we can achieve on one single

correspondence *)

type schema_alignments =

{ ell_corr : correspondence list; xi_onelements : correspondence list;

235 xi_contents : correspondence list

}

let sa x y z = { ell_corr = x; xi_onelements = y; xi_contents = z; }

240 (** These are all the possible data inputs over which we play on *)

type data_input =

{ hub_schema_gsm : gsm; source_schema_gsm : gsm; data_gsm : gsm

}

245 let edata x y z =

{ hub_schema_gsm = egsm x; source_schema_gsm = egsm y; data_gsm = egsm z; }

type ell_corr = correspondence list

250 type xi_onelements = correspondence list

type xi_contents = correspondence list

type morphisms = morphism list

255
(** Filters the ell_corr having o as a target *)

let getEllO (ec : ell_corr) omega = List.filter (fun x -> x.dst = omega) ec

(** Filters the ell_onelements having o as a target *)

260 let getExprO (ec : xi_onelements) omega =

List.filter (fun x -> x.dst = omega) ec

(** Returns the set of objects matched to the schema through schemaId *)

let getW (ml : morphisms) schemaId =

265 uFlat

(List.map (fun x -> x.data)

(List.filter (fun x -> x.schema = schemaId) ml))

(* Returning the data elements matching with the ell definition *)

270 (** Returns the \mathcal{I} associated to the currently evaluated object *)

let calI (ec : schema_alignments) (ml : morphisms) omega =

uFlat (List.map (fun x -> getW ml x.src) (getEllO ec.ell_corr omega))

(* Filtering the ell by the matchings with the xi values *)

275 (** Returns the set of objects matched to the schema through schemaId , where

the source is kept distinct per morphism *)

let getWSplitted (ml : morphisms) schemaId =

List.map (fun x -> x.data) (List.filter (fun x -> x.schema = schemaId) ml)

280 let eee (ec : xi_onelements) (ml : morphisms) omega =

uFlat (List.map (fun x -> getWSplitted ml x.src) (getExprO ec omega))

(* Given a collection of n elements of (’a list list), it joins the elements together *)

let rec join ls =

285 let rec joining ls acc =

match ls with

| a :: b ->

if (List.length a) = 0

then joining b acc

290 else

joining b

(List.flatten

A. Resolving Alignments and Morphisms: OCaml Source Code 229

(List.map (fun x -> List.map (fun y -> x @ y) a) acc))

| [] -> acc

295 in

match ls with

| [] -> []

| [a] -> a

| a :: b -> if (List.length a) = 0 then join b else joining b a

300
(* Given a collection of n elements of (’a list list), it creates the cross product *)

let rec cross ls =

let rec crossing ls acc =

match ls with

305 | a :: b ->

if (List.length a) = 0

then crossing b acc

else

crossing b

310 (List.flatten

(List.map (fun x -> List.map (fun y -> x @ (linject y)) a) acc))

| [] -> acc

in

match ls with

315 | [] -> []

| [a] -> if (List.length a) = 0 then [] else linject a

| a :: b ->

if (List.length a) = 0

then cross b

320 else crossing b (List.map linject a)

(* Same function as cross , but keeps the schema information as the left part

when the lists preserve the information from where they came from *)

let rec pair_cross ls = ((List.map fst ls), (cross (List.map snd ls)))

325
(* Same function as cross , but it is used on the incoming values from the contents *)

let rec pair_cross2 ls =

((List.flatten (List.map fst ls)), (uFlat (cross (List.map snd ls))))

330 (**

*

* extractor = function used to select the right alignment from "sa"

* sa = alignments to be selected via extractor

* ml = morphisms going from the source schema to the data

335 * omega = element originating from the hub schema

*)

let expandAnyMorphismOverObject2 extractor (sa : schema_alignments)

(ml : morphisms) (omega : int) =

(* I want to select all the xi mappings (over object) that have omega as a target

340 srcw = { x.src | x\in (sa.extractor), x.dst = omega }

*)

let srcw =

List.map (fun x -> x.src)

(List.filter (fun x -> x.dst = omega) (extractor sa)) in

345 (* I want to select all the morphisms that have their schema eleme tin srcw

mlFilt = { x\in ml | x.schema \in srcw }

= { y\in ml | x\in (sa.extractor), x.dst = omega , x.src = y.schema }

*)

let mlFilt = List.filter (fun x -> List.mem x.schema srcw) ml

350 in

(* performs a group by over the mlFilt by source schema elements *)

pair_cross (list_group_by (fun x -> x.schema) (fun x -> x.data) mlFilt)

355 let expandXiMorphismsOverObject (sa : schema_alignments) (ml : morphisms)

(omega : int) =

expandAnyMorphismOverObject2 (fun x -> x.xi_onelements) sa ml omega

let expandEllMorphismsOverObject (sa : schema_alignments) (ml : morphisms)

360 (omega : int) =

expandAnyMorphismOverObject2 (fun x -> x.ell_corr) sa ml omega

let rec listifte f =

function | [] -> [] | a :: b -> (if f a then a else []) :: (listifte f b)

365
(** This function filters the ells that match with the correspondent \xi values

*)

let crossLists vef step vartheta (datei : data_input) (schema , ells)

(schema2 , xixs) =

370 if (List.length ells) = 0

230

then (schema2 , xixs)

else

if (List.length xixs) = 0

then (schema , ells)

375 else

(schema ,

(List.map

(fun bigL ->

listifte

380 (fun l ->

List.exists

(fun bigE ->

List.exists

(fun e ->

385 List.for_all

(fun vare ->

List.exists

(fun lam ->

cvTestData vef step datei.data_gsm

390 vartheta vare lam)

l)

e)

bigE)

xixs)

395 bigL)

ells))

let crossMorphisms vef step vartheta (datei : data_input)

(sa : schema_alignments) (ml : morphisms) (omega : int) =

400 let (schema , ells) = expandEllMorphismsOverObject sa ml omega in

let (schema2 , xixs) = expandXiMorphismsOverObject sa ml omega

in

(* If I only have xi-matches and no \lambda ones , I return directly the data referenced↪ by the source *)

crossLists vef step vartheta datei (schema , ells) (schema2 , xixs)

405
(** Definition of the relatve height *)

let rh (g : gsm) o op =

let h = overallGsmHeight g in

let r = range 1 h

410 in

match lomax

(List.map (fun c -> c + 1)

(List.filter (fun n -> List.mem op (varphiRec n g o)) r))

with

415 | Some n -> Some n

| None ->

(match lomax

(List.map (fun c -> c + 1)

(List.filter (fun n -> List.mem o (varphiRec n g op)) r))

420 with

| Some n -> Some (- n)

| None ->

if

(o = op) ||

425 (List.exists

(fun opp ->

(List.mem o ((varphi g).f opp)) &&

(List.mem op ((varphi g).f opp)))

(List.filter (fun x -> ((!=) x o) || ((!=) x op))

430 g.oO))

then Some 0

else None)

let h g =

435 limax 0

(List.map

(fun op ->

match rh g g.o op with

| Some n -> if n >= 0 then n else 0

440 | None -> 0)

(varphistar g g.o))

let ho gsm o curr =

let ll =

445 List.map (fun x -> rh gsm curr x)

(List.filter (fun x -> (!=) x curr) (varphistar gsm o))

in limax 0 (List.map get (List.filter is_some ll))

A. Resolving Alignments and Morphisms: OCaml Source Code 231

let contentSort gsm o =

450 List.sort (fun x y -> compare (- (ho gsm o x)) (- (ho gsm o y)))

((varphi gsm).f o)

(** Returns the indices indicating which elements has to be extracted to perform

* the object selection.

455 *

* xischemas = elements over which extract the filtering

* ls = list providing the relevant elements to be extractes

* headers = elements originating from the lambda -matches from the hub schema ,

* from which the hub schema elements are referenced

460 *)

let filterIndicesFromContents xischemas ls headers =

List.map fst

(List.filter

(fun (i, xsl) ->

465 List.exists (fun x -> (x.src = xsl) && (List.mem xsl headers))

xischemas)

(List.mapi pair ls))

let rec

470 postVisitPace visit vef step vartheta (datei : data_input)

(sa : schema_alignments) (ml : morphisms) (omega : int) =

(* Performs a postVisit on the contents. I choose the contents by their relative

* height with respect to the containment relations in o

*)

475 let (schema , results) =

pair_cross2

(List.map (visit datei) (contentSort datei.hub_schema_gsm omega)) in

(* Return all the lambda -matches associated to omega *)

let currentElls = getEllO sa.ell_corr omega in

480 (* contents ’ filtered schemas referencing only to the elements that truly have to be↪ matched *)

let indices =

filterIndicesFromContents sa.xi_contents

(varphistar datei.source_schema_gsm omega) schema in

(* Filtering the second -xi-matches having as sources the source schema objects appearing↪ within the results *)

485 let (fs, fr) =

((List.map (List.nth schema) indices),

(List.map (fun ls -> List.map (List.nth ls) indices) results))

in

crossLists vef step vartheta datei

490 (crossMorphisms vef step vartheta datei sa ml omega) (fs, fr)

let performAssociations vef step vartheta datei sa ml =

(** Memoizing the visit steps. This is possible due to postVisit *)

let cache = Hashtbl.create (List.length datei.hub_schema_gsm.oO) in

495 let rec postVisit omega =

try Hashtbl.find cache omega

with

| Not_found ->

(* Performs a postVisit on the contents. I choose the contents by their

500 * relative height with respect to the containment relations in o.

* schema = Soi
* results = Ioi
*)

let (schema , results) =

505 pair_cross2

(List.map postVisit (contentSort datei.hub_schema_gsm omega)) in

(* Return all the lambda -matches associated to omega *)

let currentElls = getEllO sa.ell_corr omega in

(* contents ’ filtered schemas referencing only to the elements that

510 * truly have to be matched *)

let indices =

filterIndicesFromContents sa.xi_contents

(varphistar datei.source_schema_gsm omega) schema in

(* Filtering the second -xi-matches having as sources the source schema

515 * objects appearing within the results *)

let (fs, fr) =

((List.map (List.nth schema) indices),

(List.map (fun ls -> List.map (List.nth ls) indices) results)) in

let f =

520 crossLists vef step vartheta datei

(crossMorphisms vef step vartheta datei sa ml omega) (fs, fr)

in (Hashtbl.add cache omega f; f)

in (postVisit datei.hub_schema_gsm.o; cache)

232

525
(* EXAMPLES *)

let ggg =

gsm_object_list_to_gsm 0

[{

530 id = 0;

e = ["ciao"];

x = ["expr"];

p = [("left", [2]); ("right", [3; 5])];

}; { id = 3; e = []; x = ["expr"]; p = [("left", [2])]; };

535 { id = 2; e = ["ciao"]; x = []; p = [("right", [4])]; };

{ id = 5; e = ["ciao"]; x = ["expr"]; p = []; };

{ id = 4; e = ["ciao"]; x = ["expr"]; p = []; }]

let xmlist = [oe 0 100; oe 0 200; oe 0 300]

540
let lmlist = [oe 0 400; oe 0 500]

let mlist =

[mo 100 [1; 2; 3; 4]; mo 100 [2; 3; 4; 5]; mo 200 [5; 6; 7];

545 mo 200 [8; 9]; mo 300 [10; 11]; mo 400 [1; 2; 3; 303; 4];

mo 400 [100; 279; 305; 303]; mo 400 [10]; mo 500 [8; 9]]

let em = expandXiMorphismsOverObject (sa lmlist xmlist []) mlist 0

550 let lm = expandEllMorphismsOverObject (sa lmlist xmlist []) mlist 0

let cm =

crossMorphisms (fun x y -> [y]) 0 (fun x y -> x = y) (edata 0 0 0)

(sa lmlist xmlist []) mlist 0

B Dovetailing lemmas

▸ Lemma 5.1.1. dt(x + 1, y) = dt(x, y) + x + y + 1

Proof. The proof can be carried out by simple rewriting. Given that:

dt(x, y) = (x + y)(x + y + 1)
2

+ y

and consequently that:

dt(x + 1, y) = (x + y + 1)(x + y + 2)
2

+ y

we have that

dt(x + 1, y) − dt(x, y) = (x + y + 1)
2

(
✘
✘✘x + y + 2

✘
✘
✘−x − y)

= x + y + 1

Therefore:
dt(x + 1, y) = dt(x, y) + x + y + 1

◂
▸ Lemma 5.1.2. dt(x + i, y) = dt(x, y) + i(x + y) +∑i

n=0 n

Proof. We can prove it by induction over i.

i = 0 holds by substitution of i and reflexivity.
i = 1 holds by lemma 5.1.1.
i = n + 1 The induction hypothesis is the following:

dt(x + n, y) = dt(x, y) + n(x + y) + n∑
j=0

j

Therefore, we have that:

dt(x + n + 1, y) = dt(x + n, y) + x + y + (n + 1)
IH= dt(x, y) + (n)(x + y) + n∑

j=0
j + (x + y) + (n + 1)

= dt(x, y) + (n + 1)(x + y) + n+1∑
j=0

j

◂
▸ Lemma 5.1.3. dt(x, y + 1) = dt(x, y) + x + y + 2

Proof. The proof can be carried out by simple rewriting. Given that:

dt(x, y) = (x + y)(x + y + 1)
2

+ y
233

234

and consequently that:

dt(x, y + 1) = (x + y + 1)(x + y + 2)
2

+ y + 1

we have that

dt(x + 1, y) − dt(x, y) = 1+ (x + y + 1)
2

(
✘
✘✘x + y + 2

✘
✘
✘−x − y)

= x + y + 2

Therefore:
dt(x + 1, y) = dt(x, y) + x + y + 2

◂

C Expressing containment functions in script

This appendix provides the script notation for the mathematical notation used in the GSQL
definitions. We chose to use the latter instead of script due to the fact that this notation is
more compact and more readable. On the other hand, a script implementation of such
functions shows how such definitions can be implemented in any system. Therefore, this
appendix is going to provide the implementation of the aforementioned mathematical
notation.

Script for ψ∪
The associated script expression can be defined as follows:

✞ ☎
fold [o.phi ,

k-> { {{k[0][0][1] , k[1][k[0][0][1]]++k[0][1]}} ++

select(k[1] : y -> { not (y[0] == k[0][1]) })

},

{}

]
✝ ✆

Please remember that k is a pair, where k[0] is the current element of o.phi while k[0][1]

is the accumulated value that, in our case, is the step-by-step reformulation of the contain-
ment.

Script for ψ/
Before providing the definition of ψ/ in script, we must define some script utility

functions, such as some set (or, as in this case, list) operations.
✞ ☎
difference = x -> select (x[0] : y -> { not (y in x[1])})

intersect = x -> select (x[0] : y -> { y in x[1]})

distinct = x -> {

fold {x,

y->{if (y[0] in y[1]) then y[1] else [y[0]]++y[1]},

{}

}

}
✝ ✆

We can also define some further shorthands for accessing each object’s attributes. Let us
remember that for each element x in o.phi, x[0] represents the attribute a associated to the
containment, and hence x[0][0] represent the original operand, while x[0][1] represent
the attribute appearing in the original operand.
✞ ☎

keys
def== (distinct (map (o.phi :x -> x[0][1])))

operands
def== (distinct (map (o.phi :x -> x[0][0])))

✝ ✆

Moreover, the following function returns a list of pairs {p, l} for every containment
φ(g, [y,p]) = l found in the disjunct united nested graph belonging to the y-th operand.
✞ ☎
getOperandList = y -> { map(select(o.phi : x -> {x[0][0] = y}) :

x -> {x[0][1] , x[1]})

}
✝ ✆235

236

By combining some of the previous functions, we obtain the final desired result:
✞ ☎
map(keys : x -> {{x,

(difference {(getOperandList 0)[x],

(getOperandList 1)[x]

})

}

}

)
✝ ✆

Script for ψ∩
Similarly to the previous step, we have to perform the intersection over all the operands

over the common set of attributes.
✞ ☎
map(keys : x -> {

(fold { remove operands [0] in operands ,

y -> { (intersect {(getOperandList (y[0]))[x↪],

y[1]

})

},

(getOperandList (operands [0]))[x]

})

})
✝ ✆

Bibliography

AAB+17 Renzo Angles, Marcelo Arenas, Pablo Barceló, Aidan Hogan, Juan L.
Reutter, and Domagoj Vrgoc. Foundations of modern query languages for
graph databases. ACM Comput. Surv., 50(5):68:1–68:40, 2017.

ACB06 Paolo Atzeni, Paolo Cappellari, and Philip A. Bernstein. Model-
independent schema and data translation. In Proceedings of the 10th In-

ternational Conference on Advances in Database Technology, EDBT’06, pages
368–385, Berlin, Heidelberg, 2006. Springer-Verlag.

ACPT99 Paolo Atzeni, Stefano Ceri, Stefano Paraboschi, and Riccardo Torlone.
Database Systems - Concepts, Languages and Architectures. McGraw-Hill, 1st
edition, 1999.

ACPT09 Paolo Atzeni, Stefano Ceri, Stefano Paraboschi, and Riccardo Torlone. Basi

di dati. Modelli e linguaggi di interrogazione. McGraw-Hill, Milan, 3rd edition,
2009.

ACZH10 Medha Atre, Vineet Chaoji, Mohammed J. Zaki, and James A. Hendler.
Matrix "bit" loaded: A scalable lightweight join query processor for rdf
data. In Proceedings of the 19th International Conference on World Wide Web,
WWW ’10, pages 41–50, New York, NY, USA, 2010. ACM.

AG08 Renzo Angles and Claudio Gutierrez. The expressive power of sparql.
pages 114–129. 2008.

AGG+15 Julien Aligon, Enrico Gallinucci, Matteo Golfarelli, Patrick Marcel, and
Stefano Rizzi. A collaborative filtering approach for recommending olap
sessions. Decision Support Systems, 69:20 – 30, 2015.

AGK+17 Tom J. Ameloot, Gaetano Geck, Bas Ketsman, Frank Neven, and Thomas
Schwentick. Reasoning on data partitioning for single-round multi-join
evaluation in massively parallel systems. Commun. ACM, 60(3):93–100,
2017.

Agr88 Rakesh Agrawal. Alpha: An extension of relational algebra to express a
class of recursive queries. IEEE Trans. Softw. Eng., 14(7):879–885, July 1988.

AH11 Dean Allemang and James Hendler. Semantic Web for the Working Ontologist:

Effective Modeling in RDFS and OWL. Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA, 2 edition, 2011.

ATOR16 Christopher R. Aberger, Susan Tu, Kunle Olukotun, and Christopher Ré.
Emptyheaded: A relational engine for graph processing. In Proceedings of

the 2016 International Conference on Management of Data, SIGMOD ’16, pages
431–446, New York, NY, USA, 2016. ACM.

Atr15 Medha Atre. Left Bit Right: For SPARQL Join Queries with OPTIONAL
Patterns (Left-outer-joins). In SIGMOD Conference, pages 1793–1808. ACM,
2015.

AU79 Alfred V. Aho and Jeffrey D. Ullman. Universality of data retrieval lan-
guages. In Proceedings of the 6th ACM SIGACT-SIGPLAN Symposium on

Principles of Programming Languages, POPL ’79, pages 110–119, New York,
NY, USA, 1979. ACM.

AW04 Arvind Arasu and Jennifer Widom. Resource sharing in continuous sliding-
window aggregates. In (e)Proceedings of the Thirtieth International Conference

237

238

on Very Large Data Bases, Toronto, Canada, August 31 - September 3 2004, pages
336–347, 2004.

BAdCG16 Freddy Brasileiro, João Paulo A. Almeida, Victorio Albani de Carvalho,
and Giancarlo Guizzardi. Expressive multi-level modeling for the semantic
web. In International Semantic Web Conference (1), volume 9981 of Lecture

Notes in Computer Science, pages 53–69, 2016.
BBC+15 Anders Berglund, Scott Boag, Donald D. Chamberlin, Mary F. Fernández,

Michael Kay, Jonathan Robie, and Jérôme Siméon. Xml path language
(xpath) 3.1, January 2015.

BBC+17 G. Bagan, A. Bonifati, R. Ciucanu, G. H. L. Fletcher, A. Lemay, and N. Ad-
vokaat. gMark: Schema-driven generation of graphs and queries. IEEE

Transactions on Knowledge and Data Engineering, 29(4):856–869, 2017.
BBMP15 Flavio Bertini, Giacomo Bergami, Danilo Montesi, and Paolo Pandolfi.

Predicting frailty in elderly people using socio-clinical databases. 5th

Workshop on Data Mining for Medicine and Healthcare, 2015.
BBPV11 Djamal Belazzougui, Paolo Boldi, Rasmus Pagh, and Sebastiano Vigna.

Theory and practice of monotone minimal perfect hashing. ACM Journal of

Experimental Algorithmics, 16, 2011.
BCC+16 Elena Botoeva, Diego Calvanese, Benjamin Cogrel, Martin Rezk, and Guo-

hui Xiao. OBDA beyond relational dbs: A study for mongodb. In Description

Logics, volume 1577 of CEUR Workshop Proceedings. CEUR-WS.org, 2016.
BCM+10 Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi,

and Peter F. Patel-Schneider. The Description Logic Handbook: Theory, Im-

plementation and Applications. Cambridge University Press, New York, NY,
USA, 2nd edition, 2010.

BDIP+13 Gioele Barabucci, Angelo Di Iorio, Silvio Peroni, Francesco Poggi, and
Fabio Vitali. Annotations with earmark in practice: A fairy tale. In
Proceedings of the 1st International Workshop on Collaborative Annotations

in Shared Environment: Metadata, Vocabularies and Techniques in the Digital

Humanities, DH-CASE ’13, pages 11:1–11:8, New York, NY, USA, 2013.
ACM.

BDK+13 Mihaela A. Bornea, Julian Dolby, Anastasios Kementsietsidis, Kavitha
Srinivas, Patrick Dantressangle, Octavian Udrea, and Bishwaranjan Bhat-
tacharjee. Building an efficient rdf store over a relational database. In
Proceedings of the 2013 ACM SIGMOD International Conference on Manage-

ment of Data, SIGMOD ’13, pages 121–132, New York, NY, USA, 2013.
ACM.

BELP07 Ulrik Brandes, Markus Eiglsperger, Jürgen Lerner, and Christian Pich.
Graph markup language (GraphML). In Roberto Tamassia, editor, Handbook

of Graph Drawing and Visualization. CRC Press, 2007.
Ber14 Giacomo Bergami. Hypergraph Mining for Social Networks . Master’s

thesis, Italy, 2014.
BFL13 Pablo Barceló, Gaelle Fontaine, and Anthony Widjaja Lin. Expressive Path

Queries on Graphs with Data, pages 71–85. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2013.

BG05 Alain Bretto and Luc Gillibert. Hypergraph-based image representation. In
Luc Brun and Mario Vento, editors, GbRPR, volume 3434 of Lecture Notes

in Computer Science, pages 1–11. Springer, 2005.

C. BIBLIOGRAPHY 239

BHLS17 Franz Baader, Ian Horrocks, Carsten Lutz, and Uli Sattler. An Introduction

to Description Logic. Cambridge University Press, 1st edition, 2017.
BK14 Piotr Bródka and Przemyslaw Kazienko. Multilayered social networks. In

Encyclopedia of Social Network Analysis and Mining, pages 998–1013. 2014.
BL11 Antonio Badia and Daniel Lemire. A call to arms: Revisiting database

design. SIGMOD Rec., 40(3):61–69, November 2011.
BLC+17 Mohamed Amine Baazizi, Houssem Ben Lahmar, Dario Colazzo, Giorgio

Ghelli, and Carlo Sartiani. Schema inference for massive JSON datasets.
In Proceedings of the 20th International Conference on Extending Database

Technology, EDBT 2017, Venice, Italy, March 21-24, 2017., pages 222–233, 2017.
BLP04 Ulrik Brandes, Jürgen Lerner, and Christian Pich. Gxl to graphml and vice

versa with xslt. In International Workshop on Graph-Based Tools (GraBaTs0),
2004.

BM08 Giacomo Buratti and Danilo Montesi. Ranking for approximated xquery
full-text queries. In Sharing Data, Information and Knowledge, 25th British

National Conference on Databases, BNCOD 25, Cardiff, UK, July 7-10, 2008.

Proceedings, pages 165–176, 2008.
BMM16 Giacomo Bergami, Matteo Magnani, and Danilo Montesi. On joining

graphs. abs/1608.05594, 2016.
BMM17 Giacomo Bergami, Matteo Magnani, and Danilo Montesi. A join operator

for property graphs. In Proceedings of the Workshops of the EDBT/ICDT 2017

Joint Conference (EDBT/ICDT 2017), Venice, Italy, March 21-24, 2017., 2017.
BN09 Jens Bleiholder and Felix Naumann. Data fusion. ACM Comput. Surv.,

41(1):1:1–1:41, January 2009.
Bra03 Thorsten Brants. Natural language processing in information retrieval. In

Computational Linguistics in the Netherlands 2003, December 19, Centre for

Dutch Language and Speech, University of Antwerp, 2003.
BS07 Ahmet Bulut and Ambuj K. Singh. Indexing and querying data streams.

In Data Streams - Models and Algorithms, pages 237–259. 2007.
Cab98 Luca Cabibbo. The expressive power of stratified logic programs with

value invention. Information and Computation, 13(IC982734):22–56, 1998.
CDD+04 Jeremy J. Carroll, Ian Dickinson, Chris Dollin, Dave Reynolds, Andy

Seaborne, and Kevin Wilkinson. Jena: Implementing the semantic web
recommendations. In Proceedings of the 13th International World Wide Web

Conference on Alternate Track Papers &Amp; Posters, WWW Alt. ’04, pages
74–83, New York, NY, USA, 2004. ACM.

CG85 Stefano Ceri and Georg Gottlob. Translating sql into relational algebra:
Optimization, semantics, and equivalence of sql queries. IEEE Trans. Softw.

Eng., 11(4):324–345, April 1985.
CGP00 Óscar Corcho and Asunción Gómez-Pérez. A roadmap to ontology specific-

ation languages. In Proceedings of the 12th European Workshop on Knowledge

Acquisition, Modeling and Management, EKAW ’00, pages 80–96, London,
UK, UK, 2000. Springer-Verlag.

Che76 Peter Pin-Shan Chen. The entity-relationship model – toward a unified
view of data. ACM Trans. Database Syst., 1(1):9–36, March 1976.

CHoSU93 Text REtrieval Conference, D. K. Harman, National Institute of Standards,
and Technology (U.S.). The first Text REtrieval Conference (TREC-1) [mi-

240

croform]. U.S. Dept. of Commerce, National Institute of Standards and
Technology Gaithersburg, MD, 1993.

CJ10 Zheng Chen and Heng Ji. Graph-based clustering for computational lin-
guistics: A survey. In Proceedings of the 2010 Workshop on Graph-based Methods

for Natural Language Processing, TextGraphs-5, pages 1–9, Stroudsburg, PA,
USA, 2010. Association for Computational Linguistics.

CJQ16 Gong Cheng, Cheng Jin, and Yuzhong Qu. HIEDS: A generic and efficient
approach to hierarchical dataset summarization. In Procs. of IJCAI 2016,
pages 3705–3711, 2016.

CLNP06 T. Calders, L. V.S. Lakshmanan, R. T. Ng, and J. Paredaens. Expressive
power of an algebra for data mining. ACM Trans. on Database Systems,
31(4):1169–1214, 2006.

CM90a Mariano P. Consens and Alberto O. Mendelzon. Graphlog: A visual
formalism for real life recursion. In Proceedings of the Ninth ACM SIGACT-

SIGMOD-SIGART Symposium on Principles of Database Systems, PODS ’90,
pages 404–416, New York, NY, USA, 1990. ACM.

CM90b Mariano P. Consens and Alberto O. Mendelzon. Low complexity aggrega-
tion in graphlog and datalog. In Serge Abiteboul and ParisC. Kanellakis,
editors, ICDT ’90, volume 470 of Lecture Notes in Computer Science, pages
379–394. Springer Berlin Heidelberg, 1990.

Cod71 E. F. Codd. Further normalization of the data base relational model. IBM

Research Report, San Jose, California, RJ909, 1971.
Cod90 E. F. Codd. The Relational Model for Database Management: Version 2. Addison-

Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1990.
CYZ+08 Chen Chen, Xifeng Yan, Feida Zhu, Jiawei Han, and Philip S. Yu. Graph

olap: Towards online analytical processing on graphs. In ICDM, pages
103–112. IEEE Computer Society, 2008.

DEGI10 Camil Demetrescu, David Eppstein, Zvi Galil, and Giuseppe F. Italiano.
Algorithms and theory of computation handbook. chapter Dynamic Graph
Algorithms, pages 9–9. Chapman & Hall/CRC, 2010.

DGLL+17 Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenzerini, Antonella
Poggi, and Riccardo Rosati. Using Ontologies for Semantic Data Integration,
pages 187–202. Springer International Publishing, Cham, 2017.

Dit16 Jens Dittrich. Patterns in Data Management: A Flipped textbook. Jens Dittrich,
Saarland University, Germany, 1 edition, 2016.

dMDS+14 Marie-Catherine de Marneffe, Timothy Dozat, Natalia Silveira, Katri Haver-
inen, Filip Ginter, Joakim Nivre, and Christopher D. Manning. Universal
stanford dependencies: A cross-linguistic typology. In Proceedings of the

Ninth International Conference on Language Resources and Evaluation, LREC

2014, Reykjavik, Iceland, May 26-31, 2014., pages 4585–4592, 2014.
DMR16 Mark E. Dickinson, Matteo Magnani, and Luca Rossi. Multilayer Social

Networks. Cambridge University Press, 2016.
DSP+14 Souripriya Das, Jagannathan Srinivasan, Matthew Perry, Eugene Inseok

Chong, and Jayanta Banerjee. A tale of two graphs: Property graphs as
RDF in oracle. In Proceedings of the 17th International Conference on Extending

Database Technology, EDBT 2014, Athens, Greece, March 24-28, 2014., pages
762–773, 2014.

C. BIBLIOGRAPHY 241

DSUBGVn+10 D. Dominguez-Sal, P. Urbón-Bayes, A. Giménez-Vañó, S. Gómez-Villamor,
N. Martínez-Bazán, and J. L. Larriba-Pey. Survey of graph database per-
formance on the hpc scalable graph analysis benchmark. In Proceedings of the

2010 International Conference on Web-age Information Management, WAIM’10,
pages 37–48, Berlin, Heidelberg, 2010. Springer-Verlag.

DVMT15 Roberto De Virgilio, Antonio Maccioni, and Riccardo Torlone. Approximate
querying of rdf graphs via path alignment. Distributed and Parallel Databases,
33(4):555–581, 2015.

EALP+15 Orri Erling, Alex Averbuch, Josep Larriba-Pey, Hassan Chafi, Andrey
Gubichev, Arnau Prat, Minh-Duc Pham, and Peter Boncz. The ldbc social
network benchmark: Interactive workload. In Proceedings of the 2015 ACM

SIGMOD International Conference on Management of Data, SIGMOD ’15, pages
619–630, New York, NY, USA, 2015. ACM.

EM09 Orri Erling and Ivan Mikhailov. Virtuoso: Rdf support in a native rdbms.
In Roberto De Virgilio, Fausto Giunchiglia, and Letizia Tanca, editors,
Semantic Web Information Management, pages 501–519. Springer, 2009.

EN16 Ramez A. Elmasri and Shankrant B. Navathe. Fundamentals of Database

Systems. Pearson, 7th edition, 2016.
ES13 Jérôme Euzenat and Pavel Shvaiko. Ontology matching. Springer-Verlag,

Heidelberg (DE), 2nd edition, 2013.
EV12a Lorena Etcheverry and Alejandro A. Vaisman. Enhancing olap analysis

with web cubes. In Elena Simperl, Philipp Cimiano, Axel Polleres, Óscar
Corcho, and Valentina Presutti, editors, ESWC, volume 7295 of Lecture

Notes in Computer Science, pages 469–483. Springer, 2012.
EV12b Lorena Etcheverry and Alejandro A. Vaisman. Qb4olap: A vocabulary for

olap cubes on the semantic web. In Juan Sequeda, Andreas Harth, and
Olaf Hartig, editors, COLD, volume 905 of CEUR Workshop Proceedings.
CEUR-WS.org, 2012.

EV12c Lorena Etcheverry and Alejandro A. Vaisman. Qb4olap: A vocabulary for
olap cubes on the semantic web. In COLD, volume 905 of CEUR Workshop

Proceedings. CEUR-WS.org, 2012.
FB09 George H.L. Fletcher and Peter W. Beck. Scalable indexing of rdf graphs

for efficient join processing. In Proceedings of the 18th ACM Conference on

Information and Knowledge Management, CIKM ’09, pages 1513–1516, New
York, NY, USA, 2009. ACM.

Fel98 Christiane Fellbaum. WordNet: An Electronic Lexical Database. MIT Press,
1998.

FLM+12 Wenfei Fan, Jianzhong Li, Shuai Ma, Nan Tang, and Yinghui Wu. Adding
regular expressions to graph reachability and pattern queries. Frontiers of

Computer Science, 6(3):313–338, 2012.
FPG15 Valeria Fionda, Giuseppe Pirrò, and Claudio Gutierrez. Nautilod: A formal

language for the web of data graph. TWEB, 9(1):5:1–5:43, 2015.
GB10 Carolina Galleguillos and Serge Belongie. Context based object categoriz-

ation: A critical survey. Comput. Vis. Image Underst., 114(6):712–722, June
2010.

GCR+17 Mikhail Galkin, Diego Collarana, Ignacio Traverso Ribón, Maria-Esther
Vidal, and Sören Auer. Sjoin: A semantic join operator to integrate het-
erogeneous RDF graphs. In Database and Expert Systems Applications - 28th

242

International Conference, DEXA 2017, Lyon, France, August 28-31, 2017, Pro-

ceedings, Part I, pages 206–221, 2017.
GGK09 Stephen Gould, Tianshi Gao, and Daphne Koller. Region-based segment-

ation and object detection. In Y. Bengio, D. Schuurmans, J. D. Lafferty,
C. K. I. Williams, and A. Culotta, editors, Advances in Neural Information

Processing Systems 22, pages 655–663. Curran Associates, Inc., 2009.
GHKR11 Anika Groß, Michael Hartung, Toralf Kirsten, and Erhard Rahm. Mapping

composition for matching large life science ontologies. In ICBO, volume
833 of CEUR Workshop Proceedings. CEUR-WS.org, 2011.

GHMP11 Claudio Gutierrez, Carlos A. Hurtado, Alberto O. Mendelzon, and Jorge
Pérez. Foundations of semantic web databases. Journal of Computer and

System Sciences, 77(3):520 – 541, 2011. Database Theory.
GL02 Seth Gilbert and Nancy Lynch. Brewer’s conjecture and the feasibility

of consistent, available, partition-tolerant web services. SIGACT News,
33(2):51–59, June 2002.

GMP+12 Matteo Golfarelli, Federica Mandreoli, Wilma Penzo, Stefano Rizzi, and
Elisa Turricchia. OLAP query reformulation in peer-to-peer data warehous-
ing. Inf. Syst., 37(5):393–411, 2012.

GMUW08 Hector Garcia-Molina, Jeffrey D. Ullman, and Jennifer Widom. Database

Systems: The Complete Book. Prentice Hall Press, Upper Saddle River, NJ,
USA, 2 edition, 2008.

GP13 Aldo Gangemi and Valentina Presutti. A multi-dimensional comparison
of ontology design patterns for representing n-ary relations. In SOFSEM,
volume 7741 of Lecture Notes in Computer Science, pages 86–105. Springer,
2013.

GPG14 Ben Goertzel, Cassio Pennachin, and Nil Geisweiller. Engineering General

Intelligence, Part 1 - A Path to Advanced AGI via Embodied Learning and

Cognitive Synergy, volume 5 of Atlantis Thinking Machines. Atlantis Press,
2014.

GRS+15 Amine Ghrab, Oscar Romero, Sabri Skhiri, Alejandro Vaisman, and Esteban
Zimányi. Advances in Databases and Information Systems: 19th East European

Conference, ADBIS 2015, Poitiers, France, September 8-11, 2015, Proceedings,
chapter A Framework for Building OLAP Cubes on Graphs, pages 92–105.
Springer International Publishing, Cham, 2015.

GRS+16 Amine Ghrab, Oscar Romero, Sabri Skhiri, Alejandro A. Vaisman,
and Esteban Zimányi. Grad: On graph database modeling. CoRR,
abs/1602.00503, 2016.

GS98 David Genest and Eric Salvat. A platform allowing typed nested graphs:
How cogito became cogitant (research note). In Conceptual Structures: Theory,

Tools and Applications, 6th International Conference on Conceptual Structures,

ICCS ’98, Montpellier, France, August 10-12, 1998, Proceedings, pages 154–164,
1998.

GT07 Lise Getoor and Ben Taskar. Introduction to Statistical Relational Learning

(Adaptive Computation and Machine Learning). The MIT Press, 2007.
GYQ+12 Jun Gao, Jeffrey Yu, Huida Qiu, Xiao Jiang, Tengjiao Wang, and Dongqing

Yang. Holistic top-k simple shortest path join in graphs. IEEE Trans. on

Knowl. and Data Eng., 24(4):665–677, April 2012.

C. BIBLIOGRAPHY 243

Har87 David Harel. Statecharts: A visual formalism for complex systems. Sci.

Comput. Program., 8(3):231–274, June 1987.
HAR11 Jiewen Huang, Daniel J. Abadi, and Kun Ren. Scalable sparql querying of

large rdf graphs. PVLDB, 4(11):1123–1134, 2011.
He07 Huahai He. Querying and Mining Graph Databases. PhD thesis, University

of California at Santa Barbara, CA, USA, 2007. AAI3283657.
HG16 Jürgen Hölsch and Michael Grossniklaus. An algebra and equivalences to

transform graph patterns in neo4j. Fifth International Workshop on Querying

Graph Structured Data, 2016.
HGR13 Michael Hartung, Anika Groß, and Erhard Rahm. Composition methods

for link discovery. In BTW, volume 214 of LNI, pages 261–277. GI, 2013.
HIK11 Richard Hammack, Wilfried Imrich, and Sandi Klavzar. Handbook of Product

Graphs, Second Edition. CRC Press, Inc., Boca Raton, FL, USA, 2nd edition,
2011.

HL97 D.L. Hall and J. Llinas. An introduction to multisensor data fusion. Pro-

ceedings of the IEEE, 85(1), Jan 1997.
HP15 Olaf Hartig and Jorge Pérez. The Semantic Web - ISWC 2015: 14th Inter-

national Semantic Web Conference, Bethlehem, PA, USA, October 11-15, 2015,

Proceedings, Part I, chapter LDQL: A Query Language for the Web of Linked
Data, pages 73–91. Springer International Publishing, Cham, 2015.

HP17 Olaf Hartig and Jorge Pérez. An initial analysis of facebook’s graphql
language. 11th Alberto Mendelzon International Workshop on Foundation of

Databases and the Web (AMW), 06 2017.
HRJM15 Sébastien Harispe, Sylvie Ranwez, Stefan Janaqi, and Jacky Montmain.

Semantic similarity from natural language and ontology analysis. Synthesis

Lectures on Human Language Technologies, 8, 2015.
HS12 Brian Henderson-Sellers. On the Mathematics of Modelling, Metamodelling,

Ontologies and Modelling Languages. Springer Briefs in Computer Science.
Springer, 2012.

HSSW06 Richard C. Holt, Andy Schürr, Susan E. Sim, and Andreas Winter. Gxl:
A graph-based standard exchange format for reengineering. Sci. Comput.

Program., 60(2):149–170, 2006.
IK00 Wilfred Imrich and Sandi Klavzar. Product Graphs. Structure and Recognition.

John Wiley & Sons, Inc., New York, NY, USA, 2nd edition, 2000.
Inc14 Neo Technology Inc. Cypher Cheat Scheet, 2014.
IP07 Wilfried Imrich and Iztok Peterin. Recognizing cartesian products in linear

time. Discrete Mathematics, 307(3-5):472–483, 2007.
IPPV14 Angelo Di Iorio, Silvio Peroni, Francesco Poggi, and Fabio Vitali. Dealing

with structural patterns of XML documents. JASIST, 65(9):1884–1900, 2014.
JFL15 Wararat Jakawat, Cécile Favre, and Sabine Loudcher. OLAP Cube-based

Graph Approach for Bibliographic Data. In SOFSEM 2016, Harrachov,
Czech Republic, November 2015.

JKA+17 Martin Junghanns, Max Kießling, Alex Averbuch, André Petermann, and
Erhard Rahm. Cypher-based graph pattern matching in gradoop. In
Proceedings of the Fifth International Workshop on Graph Data-management

Experiences & Systems, GRADES@SIGMOD/PODS 2017, Chicago, IL, USA,

May 14 - 19, 2017, pages 3:1–3:8, 2017.

244

Joh11 Jeffrey Johnson. Hypernetwors in the Science of Complex Systems. Imperial
College Press, London, UK, UK, 2011.

JPR17 Martin Junghanns, André Petermann, and Erhard Rahm. Distributed
grouping of property graphs with gradoop. In Datenbanksysteme für Busi-

ness, Technologie und Web (BTW 2017), 17. Fachtagung des GI-Fachbereichs

Datenbanken und Informationssysteme" (DBIS), 6.-10. März 2017, Stuttgart,

Germany, Proceedings, pages 103–122, 2017.

JPT+16 M. Junghanns, A. Petermann, N. Teichmann, K. Gomez, and E. Rahm.
Analyzing extended property graphs with apache flink. SIGMOD workshop

on Network Data Analytics (NDA), 07 2016.

K0̈6 Thomas Kühne. Matters of (meta-) modeling. Software and Systems Modeling

(SoSyM), 5(4):369–385, December 2006.

KB17 Sarah Kohail and Chris Biemann. Matching, re-ranking and scoring: Learn-
ing textual similarity by incorporating dependency graph alignment and
coverage features. 18th International Conference on Computational Linguistics

and Intelligent Text Processing., 2017.

Khu12 Udayan Khurana. An introduction totemporal graph data management.
Technical report, Computer Science Department, University of Maryland,
2012.

KKKR13 Bahador Khaleghi, Alaa Khamis, Fakhreddine O. Karray, and Saiedeh N.
Razavi. Multisensor data fusion: A review of the state-of-the-art. Information

Fusion, 14(1):28 – 44, 2013.

Kos08 Vassilis Kostakos. Temporal graphs. Physica A: Statistical Mechanics and its

Applications, 388, 2008.

KRRV15 Egor V. Kostylev, Juan L. Reutter, Miguel Romero, and Domagoj Vrgoč.
The Semantic Web - ISWC 2015: 14th International Semantic Web Conference,

Bethlehem, PA, USA, October 11-15, 2015, Proceedings, Part I, chapter SPARQL
with Property Paths, pages 3–18. Springer International Publishing, Cham,
2015.

KW82 Casimir A. Kulikowski and Sholom M. Weiss. Representation of expert
knolwedge for consultation: The CASNET and EXPERT proejcts. In Artifi-

cial Intelligence in Medicine, number 2. Westview Press, Boulder, Colorado,
1982.

Lar04 Craig Larman. Applying UML and Patterns: An Introduction to Object-Oriented

Analysis and Design and Iterative Development (3rd Edition). Prentice Hall
PTR, Upper Saddle River, NJ, USA, 2004.

LBO+15 Alan G. Labouseur, Jeremy Birnbaum, Paul W. Olsen, Sean R. Spillane,
Jayadevan Vijayan, Jeong-Hyon Hwang, and Wook-Shin Han. The g*
graph database: efficiently managing large distributed dynamic graphs.
Distributed and Parallel Databases, 33(4):479–514, Dec 2015.

Len02 Maurizio Lenzerini. Data integration: A theoretical perspective. In Pro-

ceedings of the Twenty-first ACM SIGACT-SIGMOD-SIGART Symposium on

Principles of Database Systems, June 3-5, Madison, Wisconsin, USA, pages
233–246, 2002.

LJ14 Fei Li and H. V. Jagadish. Constructing an interactive natural language
interface for relational databases. PVLDB, 8(1):73–84, 2014.

C. BIBLIOGRAPHY 245

LLDM09 J. Leskovec, K. Lang, A. Dasgupta, and M. Mahoney. Community structure
in large networks: Natural cluster sizes and the absence of large well-
defined clusters. Internet Mathematics, 6(1):29–123, 2009.

LN07 Ulf Leser and Felix Naumann. Informationsintegration. dpunkt.verlag, 2007.

Löw93 Michael Löwe. Algebraic approach to single-pushout graph transformation.
Theor. Comput. Sci., 109(1&2):181–224, 1993.

LS99 Ora Lassila and Ralph R. Swick. Resource Description Framework (RDF)
Model and Syntax Specification. W3c recommendation, W3C, February
1999.

LS16 Jure Leskovec and Rok Sosič. Snap: A general-purpose network analysis
and graph-mining library. ACM Transactions on Intelligent Systems and

Technology (TIST), 8(1):1, 2016.

Lu06 James J. Lu. A data model for data integration. Electron. Notes Theor. Comput.

Sci., 150(2):3–19, March 2006.

Luh58 H. P. Luhn. A business intelligence system. IBM J. Res. Dev., 2(4):314–319,
October 1958.

LVJRT14 Juan Antonio Lossio-Ventura, Clement Jonquet, Mathieu Roche, and
Maguelonne Teisseire. Advances in Natural Language Processing: 9th In-

ternational Conference on NLP, PolTAL 2014, Warsaw, Poland, September 17-19,

2014. Proceedings, chapter Yet Another Ranking Function for Automatic
Multiword Term Extraction, pages 52–64. Springer International Publishing,
Cham, 2014.

LWZ04 Yan-Nei Law, Haixun Wang, and Carlo Zaniolo. Query languages and data
models for database sequences and data streams. In (e)Proceedings of the

Thirtieth International Conference on Very Large Data Bases, Toronto, Canada,

August 31 - September 3 2004, pages 492–503, 2004.

LY05 Hong-Cheu Liu and Jeffery X. Yu. Algebraic equivalences of nested rela-
tional operators. Inf. Syst., 30(3):167–204, May 2005.

LZ09 Ling Liu and M. Tamer Zsu. Encyclopedia of Database Systems. Springer
Publishing Company, Incorporated, 1st edition, 2009.

LZ16 Jian Liu and X.X. Zhang. Dynamic labeling scheme for xml updates.
Know.-Based Syst., 106(C):135–149, August 2016.

MFK01 Ioana Manolescu, Daniela Florescu, and Donald Kossmann. Answering
XML queries on heterogeneous data sources. In VLDB, pages 241–250.
Morgan Kaufmann, 2001.

MM06 Matteo Magnani and Danilo Montesi. A unified approach to structured
and XML data modeling and manipulation. Data Knowl. Eng., 59(1):25–62,
2006.

MM09 Matteo Magnani and Danilo Montesi. Towards relational schema uncer-
tainty. In Proceedings of the 3rd International Conference on Scalable Uncertainty

Management, SUM ’09, pages 150–164, Berlin, Heidelberg, 2009. Springer-
Verlag.

MM10 Matteo Magnani and Danilo Montesi. Us-sql: Managing uncertain
schemata. In Proceedings of the 2010 ACM SIGMOD International Conference

on Management of Data, SIGMOD ’10, pages 1195–1198, New York, NY, USA,
2010. ACM.

246

MRS08 Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze. Intro-

duction to Information Retrieval. Cambridge University Press, New York, NY,
USA, 2008.

MSV17 József Marton, Gábor Szárnyas, and Dániel Varró. Formalising opencypher
graph queries in relational algebra. CoRR, abs/1705.02844, 2017.

MZRA16 Emily K. Mallory, Ce Zhang, Christopher Ré, and Russ B. Altman. Large-
scale extraction of gene interactions from full-text literature using deepdive.
Bioinformatics, 32(1):106–113, 2016.

Neo13 The Neo4j Team NeoThechnology. The neo4j manual v2.0.0, 2013.

New10 Mark Newman. Networks: An Introduction. Oxford University Press, Inc.,
New York, NY, USA, 2010.

NHNR17 Markus Nentwig, Michael Hartung, Axel-Cyrille Ngonga Ngomo, and
Erhard Rahm. A survey of current link discovery frameworks. Semantic

Web, 8(3):419–436, 2017.

NN92 Hanne Riis Nielson and Flemming Nielson. Semantics with Applications: A

Formal Introduction. John Wiley & Sons, Inc., New York, NY, USA, 1992.

NNH05 Flemming Nielson, Hanne R. Nielson, and Chris Hankin. Principles of

Program Analysis. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2005.

NP12a Roberto Navigli and Simone Paolo Ponzetto. Babelnet: The automatic
construction, evaluation and application of a wide-coverage multilingual
semantic network. Artif. Intell., 193:217–250, December 2012.

NP12b Roberto Navigli and Simone Paolo Ponzetto. Multilingual WSD with just
a few lines of code: the BabelNet API. In Proceedings of the 50th Annual

Meeting of the Association for Computational Linguistics (ACL 2012), Jeju,
Korea, 2012.

NRA+17 Sergi Nadal, Oscar Romero, Alberto Abelló, Panos Vassiliadis, and Stijn
Vansummeren. An integration-oriented ontology to govern evolution in big
data ecosystems. In EDBT/ICDT Workshops, volume 1810 of CEUR Workshop

Proceedings. CEUR-WS.org, 2017.

Obj11 Object Management Group (OMG). Uml 2.4.1 superstructure specification,
2011.

Odi92 P. Odifreddi. Classical Recursion Theory: The Theory of Functions and Sets of

Natural Numbers (Studies in Logic and the Foundations of Mathematics). North
Holland, new ed edition, February 1992.

omg96 Common Facilities RFP-5: Meta-Object Facility, cf/96-05-02, June 1996.

OMG11a OMG. OMG MOF 2 XMI Mapping Specification, Version 2.4.1. Object Man-
agement Group, August 2011.

OMG11b OMG. OMG Unified Modeling Language (OMG UML), Infrastructure, Version

2.4.1. Object Management Group, August 2011.

oRD12 IBM Journal of Research and Development. This is Watson, volume 56(3/4).
IBM Co., May/July 2012.

PAG09 Jorge Pérez, Marcelo Arenas, and Claudio Gutierrez. Semantics and com-
plexity of sparql. 34(3):16:1–16:45, September 2009.

PAK16 Minjae Park, Hyun Ahn, and Kwanghoon Pio Kim. Workflow-supported
social networks: Discovery, analyses, and system. Journal of Network and

Computer Applications, 75:355 – 373, 2016.

C. BIBLIOGRAPHY 247

PAKR16 Thomas Palomares, Youssef Ahres, Juhana Kangaspunta, and Christopher
Ré. Wikipedia knowledge graph with deepdive. In Wiki, Papers from the

2016 ICWSM Workshop, Cologne, Germany, May 17, 2016, 2016.
PG92 Jan Paredaens and Dirk Van Gucht. Converting nested algebra expressions

into flat algebra expressions. ACM Trans. Database Syst., 17(1):65–93, 1992.
PH01 Alexandra Poulovassilis and Stefan G. Hild. Hyperlog: A graph-based

system for database browsing, querying, and update. IEEE Trans. Knowl.

Data Eng., 13(2):316–333, 2001.
Pie02 Benjamin C. Pierce. Types and programming languages. MIT Press, 2002.
PJMR14 André Petermann, Martin Junghanns, Robert Müller, and Erhard Rahm.

Graph-based data integration and business intelligence with biiig. Proc.

VLDB Endow., 7(13):1577–1580, August 2014.
PL94 A. Poulovassilis and M. Levene. A nested-graph model for the representa-

tion and manipulation of complex objects. ACM Trans. Information Systems,
12(1):35–68, 1994.

PLB15 Marcus Paradies, Wolfgang Lehner, and Christof Bornhövd. Graphite: An
extensible graph traversal framework for relational database management
systems. In Proceedings of the 27th International Conference on Scientific and

Statistical Database Management, SSDBM ’15, pages 29:1–29:12, New York,
NY, USA, 2015. ACM.

Plu99 Detlef Plump. Term graph rewriting. In Handbook of Graph Grammars and

Computing by Graph Transformation, volume 2, pages 3–61, 1999.
PMB+17 André Petermann, Giovanni Micale, Giacomo Bergami, Martin Junghanns,

Alfredo Pulvirenti, and Erhard Rahm. Scalable frequency mining and
ranking of generalized multi-dimensional graph patterns. ICDIM, 2017.
Forthcoming.

Pog06 Antonella Poggi. Structured and Semistructured Data Integration. PhD thesis,
Università degli Studi di Roma “La Sapienza”, Italy, 2006.

Pre10 Roger Pressman. Software Engineering: A Practitioner’s Approach. McGraw-
Hill, Inc., New York, NY, USA, 7 edition, 2010.

PSAH16 Victor M. Parra, Ali Syed, Mohammad Azeem, and Malka N. Halgamuge.
Pentaho and jaspersoft: A comparative study of business intelligence open
source tools processing big data to evaluate performances. In International

Journal of Advanced Computer Science and Applications, volume 7(10), pages
3–61, 2016.

PSF12 Peter F. Patel-Schneider and Enrico Franconi. Ontology constraints in
incomplete and complete data. In Proceedings of the 11th International

Conference on The Semantic Web - Volume Part I, ISWC’12, pages 444–459,
Berlin, Heidelberg, 2012. Springer-Verlag.

PVG92 Jan Paredaens and Dirk Van Gucht. Converting nested algebra expressions
into flat algebra expressions. ACM Trans. Database Syst., 17(1):65–93, March
1992.

QZY+11 Qiang Qu, Feida Zhu, Xifeng Yan, Jiawei Han, Philip S. Yu, and Hongyan Li.
Efficient Topological OLAP on Information Networks, pages 389–403. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2011.

R9̈4 Thomas Rölleke. Equivalences of the probabilistic relational algebra. Tech-
nical report, 1994.

248

Rah16 Erhard Rahm. The case for holistic data integration. In East European

Conference on Advances in Databases and Information Systems, pages 11–27.
Springer, 2016.

Ren03 Arend Rensink. Model checking graph grammars. Technical report, De-
partment of Computer Science, University of Twente, Netherlands, 2003.

RH08 Jennifer Rowley and Richard Hartley. Organizing Knowledge: An Introduction

to Managing Access to Information. Ashgate Publishing, Ltd., 2008.
RHKB13 Alexander Richter, Julia Heidemann, Mathias Klier, and Sebastian Behrendt.

Success measurement of enterprise social networks. Wirtschaftsinformatik,
(20), 2013.

RJ16 Rahimeh Rouhi and Mehdi Jafari. Classification of benign and malignant
breast tumors based on hybrid level set segmentation. Expert Syst. Appl.,
46(C):45–59, March 2016.

RJKK15 Rahimeh Rouhi, Mehdi Jafari, Shohreh Kasaei, and Peiman Keshavarzian.
Benign and malignant breast tumors classification based on region growing
and cnn segmentation. Expert Syst. Appl., 42(3):990–1002, February 2015.

Rod15 Marko A. Rodriguez. The gremlin graph traversal machine and language.
CoRR, abs/1508.03843, 2015.

Rol13 Mara Carina Roldn. Pentaho Data Integration Beginner’s Guide. Packt Pub-
lishing, 2nd edition, 2013.

RPZ10 Yuan Ren, Jeff Z. Pan, and Yuting Zhao. Closed world reasoning for owl2
with nbox. Tsinghua Science & Technology, 15(6):692 – 701, 2010.

RRK+08 Frederick Reiss, Sriram Raghavan, Rajasekar Krishnamurthy, Huaiyu Zhu,
and Shivakumar Vaithyanathan. An algebraic approach to rule-based
information extraction. In Proceedings of the 2008 IEEE 24th International

Conference on Data Engineering, ICDE ’08, pages 933–942, Washington, DC,
USA, 2008. IEEE Computer Society.

RW97 S. E. Robertson and S. Walker. On relevance weights with little relevance
information. SIGIR Forum, 31(SI):16–24, July 1997.

RWE13 Ian Robinson, Jim Webber, and Emil Eifrem. Graph Databases. O’Reilly
Media, Inc., 2013.

Sar08 Sunita Sarawagi. Information extraction. Found. Trends databases, 1(3):261–
377, March 2008.

SAZ11 Rania Soussi, Marie-Aude Aufaure, and Hajer Baazaoui Zghal. Graph
database for collaborative communities. In Community-Built Databases,
pages 205–234. Springer, 2011.

SCD16 Stefan Schuh, Xiao Chen, and Jens Dittrich. An experimental comparison
of thirteen relational equi-joins in main memory. In SIGMOD Conference,
pages 1961–1976. ACM, 2016.

SFS+15 Wen Sun, Achille Fokoue, Kavitha Srinivas, Anastasios Kementsietsidis,
Gang Hu, and Guotong Xie. Sqlgraph: An efficient relational-based prop-
erty graph store. In Proceedings of the 2015 ACM SIGMOD International

Conference on Management of Data, SIGMOD ’15, pages 1887–1901, New
York, NY, USA, 2015. ACM.

SGP08 Simon Schenk, Paul Gearon, and Alexandre Passant. Sparql 1.1 update.
Technical report, W3C, 2008. Published online on October 14th, 2010 at
http://www.w3.org/TR/2010/WD-sparql11-update-20101014/.

http://www.w3.org/TR/2010/WD-sparql11-update-20101014/

C. BIBLIOGRAPHY 249

SHJ+13 Nagiza F. Samatova, William Hendrix, John Jenkins, Kanchana Padman-
abhan, and Arpan Chakraborty. Practical Graph Mining with R. Chapman &
Hall/CRC, 2013.

SHK+14 Min Song, Nam-Gi Han, Yong-Hwan Kim, Ying Ding, and Tamy Chambers.
Correction: Discovering implicit entity relation with the gene-citation-gene
network. PLOS ONE, 9(1), 01 2014.

Shm11 Florian Shmedding. Incremental sparql evaluation for query answering
on linked data. In Second International Workshop on Consuming Linked Data,
COLD2011, 2011.

Sin01 Amit Singhal. Modern information retrieval: A brief overview. IEEE Data

Eng. Bull., 24(4):35–43, 2001.
SK06 M. Saeki and H. Kaiya. On Relationships Among Models, Meta Models,

and Ontologies. In Proceedings of the 6th OOPSLA Workshop on Domain-

Specific Modeling, 2006.
SLL02 Jeremy Siek, Lie-Quan Lee, and Andrew Lumsdaine. The Boost Graph Lib-

rary: User Guide and Reference Manual. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 2002.

SPG+07 Evren Sirin, Bijan Parsia, Bernardo Cuenca Grau, Aditya Kalyanpur, and
Yarden Katz. Pellet: A practical owl-dl reasoner. Web Semantics: Science,

Services and Agents on the World Wide Web, 5(2):51 – 53, 2007. Software
Engineering and the Semantic Web.

SPR17 Alieh Saeedi, Eric Peukert, and Erhard Rahm. Comparative evaluation of
distributed clustering schemes for multi-source entity resolution. ADBIS,
2017.

SS93 Gunther Schmidt and Thomas Ströhlein. Relations and Graphs - Discrete

Mathematics for Computer Scientists. EATCS Monographs on Theoretical
Computer Science. Springer, 1993.

SSSF09 Rolf Sint, Stephanie Stroka, Sebastian Schaffert, and Roland Ferstl. Com-
bining unstructured, fully structured and semi-structured information in
semantic wikis. In 4th Semantic Wiki Workshop (SemWiki 2009) at the 6th

European Semantic Web Conference (ESWC 2009), Hersonissos, Greece, June 1st,

2009. Proceedings., 2009.
THP08 Yuanyuan Tian, Richard A. Hankins, and Jignesh M. Patel. Efficient ag-

gregation for graph summarization. SIGMOD, pages 567–580, 2008.
Tid08 Doug Tidwell. Xslt, Second Edition. O’Reilly Media, Inc., 2 edition, 2008.
TPAV17 Harsh Thakkar, Dharmen Punjani, Sören Auer, and Maria-Esther Vidal.

Towards an integrated graph algebra for graph pattern matching with
gremlin. In Database and Expert Systems Applications - 28th International

Conference, DEXA 2017, Lyon, France, August 28-31, 2017, Proceedings, Part I,
pages 81–91, 2017.

TSK05 Pang-Ning Tan, Michael Steinbach, and Vipin Kumar. Introduction to Data

Mining, (First Edition). Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 2005.

TSL+06 Marie-Noölle Terrasse, Marinette Savonnet, Eric Leclercq, Thierry Grison,
and George Becker. Do we need metamodels and ontologies for engineering
platforms? In Proceedings of the 2006 International Workshop on Global

Integrated Model Management, GaMMa ’06, pages 21–28, New York, NY,
USA, 2006. ACM.

250

vDAG12 Stijn van Dongen and Cei Abreu-Goodger. Using MCL to Extract Clusters

from Networks, pages 281–295. Springer New York, New York, NY, 2012.

Vli02 Eric van der Vlist. Xml Schema. O’Reilly Media, Inc., 1 edition, 2002.

VMT15 Roberto De Virgilio, Antonio Maccioni, and Riccardo Torlone. Approxim-
ate querying of RDF graphs via path alignment. Distributed and Parallel

Databases, 33(4):555–581, 2015.

VnI11 Adrian Viaño Iglesias. Graph representation of documents content and its
suitability for text mining tasks. Master’s thesis, Norwegian University of
Science and Technology, Norway, 2011.

VTBL13 Elena Vasilyeva, Maik Thiele, Christof Bornhövd, and Wolfgang Lehner.
Leveraging flexible data management with graph databases. In First In-

ternational Workshop on Graph Data Management Experiences and Systems,
GRADES ’13, pages 12:1–12:6, New York, NY, USA, 2013. ACM.

VZ14 Alejandro Vaisman and Esteban Zimányi. Data Warehouse Systems. Design

and Implementation. Springer, 2014.

Wad00 Philip Wadler. A formal semantics of patterns in XSLT and xpath. Markup

Languages, 2(2):183–202, 2000.

Wal07 Priscilla Walmsley. XQuery. O’Reilly Media, Inc., 2007.

WCH+14 Huanhuan Wu, James Cheng, Silu Huang, Yiping Ke, Yi Lu, and Yanyan
Xu. Path problems in temporal graphs. Proc. VLDB Endow., 7(9):721–732,
May 2014.

Wei62 Paul M Weichsel. The kronecker product of graphs. Proceedings of the

American Mathematical Society, 13(1):47–52, 1962.

WKS+11 Stephen T. Wu, Vinod C. Kaggal, Guergana K. Savova, Hongfang Liu,
Jiaping Zheng, Wendy W. Chapman, Christopher G. Chute, and Dmitriy
Dligach. Generality and reuse in a common type system for clinical natural
language processing. In Proceedings of the First International Workshop on

Managing Interoperability and Complexity in Health Systems, MIXHS ’11, pages
27–34, New York, NY, USA, 2011. ACM.

WM06 Christopher A. Welty and J. William Murdock. Towards knowledge ac-
quisition from information extraction. In The Semantic Web - ISWC 2006,

5th International Semantic Web Conference, ISWC 2006, Athens, GA, USA,

November 5-9, 2006, Proceedings, pages 709–722, 2006.

XKS13 Jierui Xie, Stephen Kelley, and Boleslaw K. Szymanski. Overlapping com-
munity detection in networks: The state-of-the-art and comparative study.
ACM Comput. Surv., 45(4):43:1–43:35, August 2013.

YG16 Dan Yin and Hong Gao. A flexible aggregation framwork on large-scale
heterogeneous information networks. In Journal of Information Science, pages
1–18, February 2016.

YLW+13 Pingpeng Yuan, Pu Liu, Buwen Wu, Hai Jin, Wenya Zhang, and Ling Liu.
Triplebit: A fast and compact system for large scale rdf data. Proc. VLDB

Endow., 6(7):517–528, May 2013.

ZLXH11 Peixiang Zhao, Xiaolei Li, Dong Xin, and Jiawei Han. Graph cube: On
warehousing and olap multidimensional networks. In Proceedings of the 2011

ACM SIGMOD International Conference on Management of Data, SIGMOD ’11,
pages 853–864, New York, NY, USA, 2011. ACM.

C. BIBLIOGRAPHY 251

ZRC+17 Ce Zhang, Christopher Ré, Michael J. Cafarella, Jaeho Shin, Feiran Wang,
and Sen Wu. Deepdive: declarative knowledge base construction. Commun.

ACM, 60(5):93–102, 2017.
ZY17 Kangfei Zhao and Jeffrey Xu Yu. All-in-one: Graph processing in rdbmss

revisited. In Proceedings of the 2017 ACM International Conference on Man-

agement of Data, SIGMOD ’17, pages 1165–1180, New York, NY, USA, 2017.
ACM.

	Alma Mater Studiorum – Università di Bologna
	DOTTORATO DI RICERCA IN
	Ciclo XXX
	A new Nested Graph Model for Data Integration
	Presentata da: Giacomo Bergami
	
	Esame finale anno 2018

	1 Introduction
	1.1 Graph Data: Use Cases

	I Related Works
	2 Data integration: a data representation-independent approach
	2.1 Preliminaries: data representation dependent approach
	2.1.1 Structured Data integration: Integrating entities represented with different schemas
	2.1.2 Semistructured Data Integration: Integrating multiple relations into a common representation
	2.1.3 Structured and Semistructured data integration: schema alignment as a data cleaning step
	2.1.4 Integrating unstructured data via semistructured representation
	2.1.5 Aligning (Nested) Graphs

	2.2 In-Database Integration
	2.2.1 Preliminaries: towards a uniform data representation
	2.2.2 Aggregations

	2.3 Multi-database integration
	2.3.1 Preliminaries: Description Logic and Ontologies
	2.3.2 Ontology Alignments and Data Integration
	2.3.3 Query Rewriting

	2.4 Conclusions

	3 Analysing the properties of Data Models and Query Languages
	3.1 Structured data: the Relational Model
	3.1.1 Query Languages
	3.1.2 Representation Problems
	3.1.3 Representing graphs

	3.2 Nested Relational Model, Semistructured data and Streams
	3.2.1 Query languages
	3.2.2 Representation problems
	3.2.3 Representing graphs

	3.3 Unstructured Data: Full Text Documents
	3.3.1 Query Languages

	3.4 Graph (Data) Models
	3.5 Classifying Graph Query Languages
	3.5.1 Graph Traversal and Pattern Matching Languages
	3.5.2 Graph Grammars
	3.5.3 Graph Algebras
	3.5.4 (Proper) Graph Query Languages

	3.6 Conclusions

	II On Combining Graphs
	4 On Joining Property Graphs
	4.1 Graph Query Languages limitations' on Graph Joins
	4.2 Graph Data Model
	4.3 Graph -Joins
	4.3.1 Graph Join properties

	4.4 Graph Conjunctive Equi-Joins
	4.4.1 Algorithm and Data Structure
	4.4.2 Experimental Evaluation

	4.5 Graph Less-Equal Join
	4.6 Left, right and full graph joins.
	4.7 Conclusions

	5 General Semistructured Model and Nested Graphs
	5.1 General Semistructured (Data) Model
	5.1.1 script, a MetaModel for GSM
	5.1.2 Characterizing object identifiers

	5.2 Nested Graph
	5.3 Data model translation functions
	5.4 Use Cases
	5.4.1 Representing part-of aggregations
	5.4.2 Graph ETL and (–)(Di),H((Di)): the Transformation phase

	5.5 Conclusions

	6 GSQL: a Generalized Semistructured Query Language
	6.1 General Semistructured Query Language (GSQL)
	6.2 Derived GSQL operators over GSM
	6.2.1 (Attribute labelled) Set operations
	6.2.2 Relational and semistructured operations

	6.3 GSQL Use cases
	6.3.1 paNGRAm: Nested Graph Relational Algebra
	6.3.2 Implementing traversal query languages' semantics ()
	6.3.3 Representing is-a aggregations
	6.3.4 Generalized Graph Grammars G for Nested Graphs. H,TG(H)()

	6.4 Conclusons

	7 On Nesting Graphs
	7.1 Graph Query Languages limitations’ on Graph Nesting
	7.1.1 Graph Joins' limitations in providing the operator
	7.1.2 Implementing Graph Nesting over (two) graph collections
	7.1.3 Query Languages' and data models' limitations

	7.2 Class of optimizable graph nesting queries
	7.3 Nested Graphs
	7.4 Graph Nesting
	7.4.1 Two HOp Separated Patterns Algorithm

	7.5 Experimental Evaluation
	7.6 Conclusions

	III Conclusions
	8 Conclusions
	A Resolving Alignments and Morphisms: OCaml Source Code
	B Dovetailing lemmas
	C Expressing containment functions in script

