
Alma Mater Studiorum - Università di Bologna

DOTTORATO DI RICERCA IN
INFORMATICA

Ciclo XXVII

Settore Concorsuale di afferenza: 01/B1
Settore Scientifico disciplinare: INF01

Structural patterns for document
engineering: from an empirical

bottom-up analysis to an ontological
theory

Presentata da: Francesco Poggi
fpoggi@cs.unibo.it

Coordinatore Dottorato: Relatore:
Paolo Ciaccia Paolo Ciancarini

Esame finale anno 2015

Abstract

This thesis aims at investigating a new approach to document analysis based on the

idea of structural patterns in XML vocabularies. My work is founded on the belief

that authors do naturally converge to a reasonable use of markup languages and

that extreme, yet valid instances are rare and limited. Actual documents, therefore,

may be used to derive classes of elements (patterns) persisting across documents and

distilling the conceptualization of the documents and their components, and may

give ground for automatic tools and services that rely on no background information

(such as schemas) at all.

The central part of my work consists in introducing from the ground up a formal

theory of eight structural patterns (with three sub-patterns) that are able to express

the logical organization of any XML document, and verifying their identifiability in

a number of different vocabularies. This model is characterized by and validated

against three main dimensions: terseness (i.e. the ability to represent the structure

of a document with a small number of objects and composition rules), coverage (i.e.

the ability to capture any possible situation in any document) and expressiveness (i.e.

the ability to make explicit the semantics of structures, relations and dependencies).

An algorithm for the automatic recognition of structural patterns is then pre-

iii

sented, together with an evaluation of the results of a test performed on a set of

more than 1100 documents from eight very different vocabularies. This language-

independent analysis confirms the ability of patterns to capture and summarize the

guidelines used by the authors in their everyday practice.

Finally, I present some systems that work directly on the pattern-based represen-

tation of documents. Since patterns can be extracted through automatic processing,

these applications may operate on any document without any knowledge of its orig-

inal schema. Moreover, the ability of these tools to cover very different situations

and contexts (from the generation of presentation rules to information synthesis

and extraction, from the exploration of the document content to the identification

of document components) confirms the effectiveness of the model.

iv

Acknowledgements

The work presented in this thesis has benefited from the input, support and sugges-

tion of many people over the past years.

First of all, I wish to acknowledge my advisor, prof. Paolo Cianciarini, for his

support and availability, and for the frank, valuable, constructive suggestions and

critiques to my research activities.

I am extremely grateful to my tutor, prof. Fabio Vitali, who has involved me in

his extraordinary research group and who has encouraged me and my work – it is

really a pleasure working with you. Another thanks to the rest of my commissione,

dott. Angelo Di Iorio and prof. Luciano Bononi, for their support and for having

always been ready to discuss my Ph.D. topics.

Another big thanks goes to all my external referees – namely, dr. Michael

Sperberg-McQueen, prof. Uwe M. Borghoff and prof. Oscar Corcho – for their

precious and careful comments and advices.

I would like to express my deep gratitude to dr. Silvio Peroni, dr. Gioele

Barabucci, dr. Andrea Nuzzolese and Roberto Amadini for having supported my

work.

An infinite thanks to my family and Eugenia for their love, and for having uncon-

v

ditionally endured, supported and encouraged me in everything. This achievement

is mine and yours as well.

vi

Contents

Abstract iii

Acknowledgements v

List of Tables xi

List of Figures xiii

1 Introduction 1

2 Background 7

2.1 Document modeling . 8

2.1.1 Markup and documents: an historical perspective 8

2.1.2 Different objectives, different markup languages 11

2.1.3 Format and content separation 16

2.1.4 Hierarchical models for digital documents: advantages and

open issues . 19

2.1.5 Semantic Web and markup languages 24

2.2 Document analysis . 31

vii

2.2.1 Structural analysis of documents 31

2.2.2 Analysis of document components 34

3 Structural Patterns for document engineering 37

3.1 A pattern-based segmentation model for descriptive documents 38

3.1.1 A document segmentation model: Pentaformat 40

3.1.2 Patterns for document substructures 42

3.2 Structural patterns: an analysis . 46

3.2.1 Specialization of the Marker pattern: Milestone and Meta . . 47

3.2.2 The Popup pattern . 49

3.2.3 The Field pattern . 53

3.2.4 The Headed Container pattern 56

3.3 Towards a revised theory of structural patterns 59

4 A revised theory of structural patterns 65

4.1 The Pattern Ontology: core model 67

4.1.1 Basic properties of content models and contexts 67

4.1.2 Structural patterns . 70

4.2 The Pattern Ontology: specializations of the Container pattern . . . 75

5 Recognising structural patterns in XML-based documents 79

5.1 Assigning patterns to documents . 80

5.1.1 Coherency and pattern shifts 83

5.1.2 Pattern schemes and partitions 86

5.2 An algorithm for the automatic recognition of structural patterns . . 87

viii

5.3 Evaluation: checking patterns on live documents 90

5.3.1 Full adherence or convergence to patterns 94

5.3.2 Large adherence . 96

5.3.3 Partial adherence . 98

6 Leveraging structural patterns to build applications 101

6.1 Document Viewer . 102

6.1.1 Conversion and generation of presentation rules 103

6.1.2 Information synthesis and extraction 106

6.1.3 Supporting reading, navigation and comprehension of docu-

ments . 108

6.2 Document Component Extractor . 111

6.2.1 A model for document logical structure: DoCo 113

6.2.2 An interactive tool for document component analysis 120

6.2.3 Recognizing document components in XML-based academic

articles . 125

6.2.4 Testing the algorithm . 132

7 Conclusions 141

References 147

ix

x

List of Tables

3.1 Patterns and Content-models in DTD syntax 44

3.2 Composition rules over patterns . 45

3.3 The eight patterns of the revised pattern model. Any possible situ-

ation is covered by combining the four content models and the two

contexts. 62

4.1 The eight structural patterns for descriptive documents. 71

4.2 The three sub-patterns of the Container pattern. 76

5.1 The full dataset used to evaluate patterns. 92

5.2 The result of checking patterns on three very structured vocabularies,

which adhere to our theory natively or after a normalization phase. . 94

5.3 The result of checking patterns on some vocabularies, which adhere

largely to our theory. 96

5.4 The result of checking patterns on some vocabularies, which adhere

partially to my theory. 98

6.1 The assignment of each element of the DocBook schema in consider-

ation to DoCO structures. 136

xi

xii

List of Figures

2.1 Sample of proof mark guidelines from a style manual [103] 9

2.2 Example of proofing marks in practice 10

2.3 A Graffoo diagram summarising the EARMARK Ontology. 26

2.4 An example of three different markup hierarchies (light-blue rectan-

gles with solid border, light-green rectangles with dashed border, and

pink rectangles with dotted borders) involving six different ranges

(the five empty rhomboids with solid red border and the one with

blue dashed border). 28

3.1 An overview of the Pentaformat Model that emphasizes the role of

each constituent . 43

4.1 The abstract classes defining the hierarchical structure structural pat-

terns are derived from. The arrows indicate sub-class relationships

between patterns (e.g. Mixed is sub-class of Structured). 69

4.2 The eight concrete patterns derived from the abstract classes of the

ontology. The arrows indicate sub-class relationships between pat-

terns. 70

xiii

4.3 The eight patterns classified according to the particular content model

and context they have. 70

4.4 The three subclasses of the class Container. 75

5.1 All the acceptable shifts. The asterisk as label of the arrow between

Bucket and Mixed refers to a particular case of shifts, called shifty-

shifts, which are still possible even if they change drastically the con-

text (and, thus, the pattern) of all the elements contained by the

shifted one. 85

5.2 Figure 6. The percentage of locally coherent files and globally coher-

ent elements for each language in the dataset. 93

6.1 The layout of the Document Viewer 103

6.2 Basic visualization of a XML document in PViewer. The first blocks

of the documents are shown in the right, beside an automatically-

generated table of content. 104

6.3 Details of visualization in PViewer: inlines use a darker background,

and popups can be expanded on request. The hierarchical organiza-

tion of containers is highlighted through dashed borders. 105

6.4 A zoom-in view of the basic index of terms generated by PViewer. . . 108

6.5 An overview of the Document Component Extractor 122

6.6 Document Component Extractor: an overview of a document before

(on the left) and after (on the right) the execution of the Javascript

and CSS codes. 124

xiv

6.7 Document Component Extractor: a detail of a section composed of

three subsections . 125

6.8 Document Component Extractor: the hypertext-like representation

of the element recognized as list. 126

6.9 All the admissible shifts among patterns. 128

6.10 The outcomes of the evaluation of the Balisage set. 137

xv

xvi

Chapter 1

Introduction

This thesis is positioned over two related research areas: markup languages and doc-

ument engineering. The objective of this work is to present a language-independent

model based on structural patterns that is able to capture the logical organization

of any XML document, and express it in a simple and clear form. Moving off an

analysis on the structure of documents, their basic constituents and composition

rules, the thesis provides a definition of the model by introducing from the ground

up a formal theory of eight structural patterns (with three sub-patterns), and verifies

their identifiability on real world documents.

An algorithm for the automatic recognition of patterns is then presented, to-

gether with an evaluation performed on eight very different vocabularies for a total

of more than 1100 documents. Finally, the thesis describes a set of systems built

the basis of these ideas that help users in their everyday practice (e.g. to read and

navigate document collections, perform complex analysis such as identifying and ex-

tracting document components, etc.) relying on no background information about

document vocabularies, their intended meaning or schemas.

2 Chapter 1. Introduction

A central part of this thesis is devoted to the study of markup languages. XML

schemas (be they DTDs, XSDs, Relax NG schemas, etc.) are the usual tools through

which the regularity of a markup language is expressed. As with many other con-

straint languages, their purpose is both to delineate best practices, and to identify

boundaries within which document instances can still be considered acceptable. The

stricter the schema, the more these two tasks converge into one, but also, the more

flexible the schema, the more difficult it can be to identify the middle ground of

reasonableness within the wide variability of structures allowed by the grammar

defined in it. Yet it is my belief that most authors do naturally converge to a rea-

sonable use of a markup language and that extreme (although valid) instances are

rare and limited. Actual documents (as opposed to their schemas), therefore, may

give interesting insights into the expected characteristics of a vocabulary, and may

give ground for automatic tools and services that are altogether independent of the

schemas.

Is it possible to identify and exploit regularities in XML vocabularies regardless

of the meaning of their terms and the availability of their schemas? Given the

quantity of available XML documents in so many application domains, most of

which are valid against well-known vocabularies, others compliant to niche or ad-

hoc schemas, and still many not explicitly associated with any schema or associated

with schemas that are not available anymore, is there any chance to be able to

perform some useful operations on XML documents, without knowing any details of

the rules with which these documents were composed, or the semantics associated

with individual element names?

The research questions just enumerated guided my work to focus on the analysis

and design of XML vocabularies regardless of their schemas. This perspective differs

Chapter 1. Introduction 3

from other works on XML validation since, instead of looking at the expressiveness of

validation languages in defining element labels and imposing constraints on their use

and positions, this thesis investigates document instances in order to derive classes of

elements (patterns) persisting across documents and distilling the conceptualization

of the document and its components.

The result of this analysis is a theory of structural patterns for XML documents

that defines, from the ground up, a small set of eight fundamental patterns, plus

three important subpatterns and some composition rules, that are sufficient to ex-

press what authors most frequently need (and actually use) in their documents.

I also try to answer a further question about document patterns, namely, to what

extent authors actually use these patterns. Of course, documents are not naturally

and fully compliant to the pattern model, and often schemas give authors a larger

degree of freedom than structural patterns deem appropriate. Still, even with very

general and open schemas, my tests show that authors do tend to adopt a simplified

approach that is fundamentally pattern-based. For each schema, it is possible to

identify reasonable pattern-compliant sub-schemas that most authors very often

adhere to, and identify a small number of problematic elements and examples that

are used in a non-pattern-based way.

The identification of these sub-schemas is not a goal I have, since compliance

to it is often spontaneous and unrecognised by the very authors. Yet, in practice

authors do tend to assign patterns to the elements of a vocabulary and use them

accordingly, although with some exceptions I discuss in the thesis.

One straightforward application of the pattern theory is that it is possible to

build useful applications automatically and without any previous knowledge about

the vocabulary used, as I show in the last part of the thesis. For example, I present

4 Chapter 1. Introduction

the Document Viewer, a tool that provides an hypertext-like representation of doc-

uments and supports the user’s navigation by generating index of terms, table of

contents, and visual representations of the overall structure of documents. The in-

formation about the logical organization of documents summarized by structural

patterns can also be exploited as the basis of further analysis, to grasp insight about

the document itself. For example, I present the Document Component Extractor,

another tool that supports the identification of higher level information such as docu-

ment components (e.g. abstract, introduction, methods, problem statement, related

work, etc.) in scholarly articles solely on the basis of the structural information

provided by patterns.

Another important element in this thesis is the use of Semantic Web technolo-

gies. The first, broad motivation of this choice is that the direction in which I want

to move my research is towards a semantic-enriched machine-readable document,

where any information about the document itself is expressed in a clear and explicit

manner, and can thus be easily retrieved, managed and used for further computa-

tions and analysis. For this purpose, the Web Ontology Language (OWL [79]) has

been used to provide a formal definition of the theory of structural patterns. Then,

I converted XML documents into EARMARK [41], a meta-markup language based

on Semantic Web technologies, and exploited the OWL-DL reasoning capabilities

in the engine that recognizes structural patterns. The transparent integration of

these Semantic Web languages and technologies allowed the identification of meta-

structures, as performed through the ontology, to be combined with other sources

of information so as to validate the content at different levels of abstraction and

to perform sophisticated queries and analysis, such as studying peculiarities of the

documents.

Chapter 1. Introduction 5

Finally, another aspect worth noting is the use of visual analytics and information

visualization techniques in the applications presented in the last part of the thesis.

In particular, by revealing trends and patterns, and making explicit the semantics

of relations, these techniques proved to be effective methods both for providing an

overview of documents that supports reading and browsing, and for helping expert

users to perform complex analysis on documents.

The structure of the dissertation is the following. Chapter 2 discusses related

works and main issues in document engineering and markup languages. Chapter 3

describes the main elements and basic concepts that are the foundations of the pat-

tern model, starting with some case studies. Chapter 4 provides a formal definition

of the theory of patterns. Chapter 5 presents an algorithm for the automatic identifi-

cation of structural patterns compliant with the theory, and an evaluation performed

on an extensive set of vocabularies and documents. Chapter 6 describes some sys-

tems built using these ideas that work directly on pattern-based representation of

documents. Final remarks and ideas for future works are in Chapter 7.

6 Chapter 1. Introduction

Chapter 2

Background

Technical, social and economic aspects have raised interest among researchers and

professionals in the field of digital documents. Two research areas are particularly

related to this dissertation: document engineering and markup languages. Docu-

ment engineering investigates principles, tools and processes that improve our abil-

ity to create, manage, and maintain documents. Markup languages define objects,

properties and rules to express information about raw text and approaches to text

encoding.

In this chapter I discuss the most important issues in these areas, trying to outline

which are the most relevant aspects of digital documents authors and designers have

to deal with. In particular, I divide the analysis in two sections: first, in Section 2.1

I focus on document modeling, whose goal is understanding how a document can

be represented in digital form, and second on (retrospective) document analysis,

whose goal is understanding how the main components and relevant parts of that

representation can be automatically identified and extracted from existing resources,

as described in Section 2.2.

8 Chapter 2. Background

2.1 Document modeling

Although implicitly, authors face a lot of fundamental questions while writing a

document: ”Which logical structures do I need? How to organize the document

content? How to highlight details and specific features?”, and so on. When they

write a digital document new issues need to be solved: ”Which is the most suit-

able format? Which constructs should I use?”, and in particular ”Which markup

language do I need?”.

The following sections aims at answering these questions by providing a con-

cise summary about the main concepts related to markup languages, focusing on

the structural aspects and issues that concerns the overall organization of digital

documents, which is the main topic of this thesis.

2.1.1 Markup and documents: an historical perspective

Before going into details, it is important to define the concept of markup. Histori-

cally, the word markup has been used to describe special marks or other annotations

used to guide a compositor or typist on how a particular portion of text should be

printed or laid out. For example, a straight underline to indicate italic, a wavy un-

derline for boldface, specials symbols for fragments to be moved, aligned or printed

in a particular font, and so forth. These editing (or proof-reading) marks have been

used as a shorthand in copy-editing and proof-reading since the diffusion of Guten-

berg’s movable type mechanical printing technology since the 15th Century [3], and

in a form similar to the modern ISO standard for proofreading [63]1 since the 17th

1The standard ISO 5776 specifies 16 symbols for text correction and proofreading. There are
many other national standards for this purpose, such as the British standard BS-5261, the German
standards DIN 16511 and 16549-1, the Italian UNI 5041:1996, etc.

Chapter 2. Background 9

Century [101]. A sample of proof marks and an example of their use in practice

taken from a famous style manual [103] are shown in Fig. 2.1 and Fig. 2.2 on the

next page respectively.

Figure 2.1: Sample of proof mark guidelines from a style manual [103]

This interpretation of markup as diacritical signs2 introduces us to a broader

definition of the concept of markup. The TEI Guidelines [113] define markup, or

(synonymously) encoding, as “any means of making explicit an interpretation of

a text”. Of course, whenever an author writes anything, he implicitly marks it

up in this sense: for thousands of years, spaces have been used to indicate word

boundaries, commas to indicate phrase boundaries, and periods to indicate sentence

2I use the term diacr i tical to refer not only to the characteristic of a symbol or a sign to
indicate different phonetic values to the letters or words to which it refers to, but also to the
ability of distinguishing words that are otherwise graphically identical. In this sense, the term
diacritical denotes the function of a mark giving a special meaning to a part of text.

10 Chapter 2. Background

Figure 2.2: Example of proofing marks in practice

boundaries, and for hundreds of years page numbering3 or margins have been used

to structure the content.

At this point it is correct to wonder what is the relationship between text and

markup and, in particular, whether the markup should be considered as part of the

text. In [27], Coombs et al. clearly state that “markup is not part of the text, but

it is used for saying something about the text”: for example, no one will say aloud

“comma” or “period” while reading a text, but will create appropriate paralinguistic

behaviours (expressions, tones, pauses) in order to help listeners’ understanding of

the text.

Nevertheless, it is not difficult to show examples where a change in the markup

implies a deep change in the nature of the text. For example, let’s consider the two

propositions “Let’s eat, Grandmother!” and “Let’s eat Grandmother!”: the extent

3The use of page numbering was introduced after the transition from volumen to codex, even
if incunabula and first manuscripts often lack page numbering. For instance, the Gutenberg Bible
printed in the 1450s doesn’t have page numbering.

Chapter 2. Background 11

of a small change in the markup (e.g. the existence/absence of a comma) is not just

limited to the form of the text, but concerns also its interpretation, resulting in two

different texts.

Markup is thus something that precedes the digitalization of texts: the examples

above show that it is not only the unpleasant result of the computerization of print-

ing, nor is it something that remain with us because of the information technology,

but it is something independent and closely linked to texts.

2.1.2 Different objectives, different markup languages

Although markup existed before the advent of information technology, as briefly

described in the previous section, there is no doubt that the development of text

processing systems and their proliferation has led to new types of markup. When

stored in electronic files, documents are indeed marked with special types of markup

designed for processing by computer applications. The first step to understand the

nature of digital documents consist in understanding the basic principles, charac-

teristics and objectives of the languages they are written in. In the literature, many

classifications were proposed, each useful for capturing some specific features.

In [27], Coombs et al. provide a classification of markup languages composed of

six categories, which is still accepted nowadays4:

Punctuational: this type of markup consist of the use of a fixed set of signs to

provide mainly syntactic information about the text. Punctuational rules are rather

stable, familiar to authors and they are used frequently in documents, and for these

reasons authors typically provide their own punctuational markup autonomously.

However, there are significant problems and deficiencies in the use of punctuation:

4The examples used in this summary are taken from Coomb’s original work.

12 Chapter 2. Background

• syntactic and structural uncertainty: e.g. comma, semicolon or period?

• stylistic variation: e.g. teachers and composition instructors often disagree on

the use of commas after sentence-initial adverbial phrases;

• graphic uncertainty: e.g. often there is no agreement on the use of quotation

marks, i.e. single opening and single closed, double opening and double closed

or neutral/curly quotes;

• procedural ambiguity: e.g. the period is used to indicate abbreviations as well

as sentence boundaries.

Authors that recognize these kind of issues often replace punctuational markup

with other types of markup, such as referential or descriptive. For example, short

quotations can be delimited by " (a reference to the entity that represents

the double quotation mark) or by <q> and </q> (a couple of opening and closing

quotation tags): the use of one of these options allows authors to focus on the

content of their text, and to postpone stylistic and graphic choices to a later time.

Presentational: for thousand of years authors have used presentational markup

to make a clearer presentation of their texts. This kind of markup consists, for

example, in vertical and horizontal spacing of portions of text, bullets for enumer-

ating list items, page and section numbering, line-spacing to make reading easier,

etc. Although authors have long inserted presentational markup in their writings

by hand, now with the advent of electronic documents most prefer to have text

processing systems automatically generate this kind of markup: page-numbering,

for example, is a repetitive and error prone activity which is usually entrusted to

automatic presentation systems.

Chapter 2. Background 13

Procedural: with the development of text-processing systems, presentational

markup has been replaced by procedural markup. This type of markup consists

in enriching the document with sequences of commands indicating how text should

be formatted: these instructions are interpreted by an automatic system, which is

responsible for their translation in concrete graphic effects that affect the final lay-

out of the document. Famous examples of text formatters are nroff/troff [80] for

Unix and TeX [69]. Procedural markup has often the drawback of being specific to a

particular text formatter and, even worse, to a unique kind of device: an indentation

of 50 pixels, for example, may be a suitable value for a desktop monitor, but too

little for an high-resolution printer, or too much for a screen of a portable device.

Descriptive: the descriptive approach indicates to overlook the formatting and

printing features and to focus on the structural role of each part of the document.

Instead of specifying graphical effects such as alignment or spacing, the authors

identify the role (e.g. title, section, paragraph, quote, etc.) of each text fragment.

In order to do this, authors surround text fragments with special markers (called

markup descriptors or tags) that indicate the beginning and the end of the portion

of document with that particular role.

Referential: this kind of markup is used to refer to entities external to the docu-

ment. In particular, referential markup is used to specify the meaning of the refer-

ences, or indicate the graphic effect that should be used for their representation. I

have already noted the use of referential markup for device-dependent punctuation

(e.g., " for a quotation mark). Another characteristic use is for abbreviations,

such as &acm; for “Association for Computing Machinery”. Referential markup

might also refer to entities stored in a separate file or even on a different computing

system.

14 Chapter 2. Background

Metamarkup: finally, metamarkup allows authors and designers to control the

interpretation of declarative languages and to extend vocabularies in order to fit

their needs.

With the advent of SGML and XML, descriptive markup languages soon achieved

huge popularity. In [51] Goldfarb stressed two main benefits of descriptive ap-

proaches: generalization and rigorousness. Generalization concerns the ability of a

document to be used in heterogeneous contexts, even very different from those for

which they have been initially conceived and developed. The practical benefit is

then that, once a document has been marked-up, all future processing can be imple-

mented over that representation. Rigorousness means that the information about

the content and the structure of a document are expressed in an unambiguous, clear

and rigorous way, so that advanced and reliable applications can be actually built.

Four other important features of descriptive languages outlined by Coombs et al.

in [27] are maintainability, portability, minimazed cognitive demand and authoring

enhancement. Although providing a complete list of references to the huge quan-

tity of papers and books that have described the power, flexibility and applicability

of descriptive languages is out of the scope of this work, I cannot omit citing the

canonical references to Goldfarb’s SGML Handbook [52], Sperberg-McQueen and

Burnard Introductions to SGML [105], and XML [106].

Another important classification is that between prescriptive and descriptive

DTDs, as described in [87]: a prescriptive DTD mandates a set of rules which must

be followed by all documents and is primarily designed to create new material; a

descriptive one describes structures and components that already exist, and is meant

to create an electronic version of legacy texts. Extending this dichotomy to markup,

prescriptive markup imposes constraints and rules about the organization, use, and

Chapter 2. Background 15

positioning of markup labels, while descriptive markup is mainly used for markup

that simply defines some features of text fragments, without imposing any additional

rule.

Another interesting class of markup has been described by Piez [84] as ”ex-

ploratory/mimetic”. This notion is used to describe all those languages (and, conse-

quently, approaches to markup) that are not primarly meant to impose constraints

about the organization of a document, but to simply describe document instances.

The key aspect is the relation between an instance of document and its model: “the

text to be marked up would be primary, the model merely a secondary and ex post

facto expression of what the markup ’discovered’ about the text” during the anno-

tation process. For this reasons, Piez used the adjectives ”mimetic” to indicate that

a digital document aims at imitating its original source, and ”exploratory” because

it is adaptable to the characterisics of that source. Although the same author ad-

mitted that is difficult to justify a pure exploratory/mimetic language, he presented

a fictional language called ProfML developed to be used in an exploratory way.

Renear [89] described other two dimensions that can be use to characterize

markup languages, “domain” and “mood”. The mood concerns the tone of a lan-

guage, and it can be ”indicative” (i.e. meant to describe something) or ”imperative”

(i.e. meant to impose something). The domain indicates whether a markup lan-

guage (or part of it) refers to the logical organization or presentation of documents,

and it can be classified as either ”logical” or ”renditional”, respectively. In the logi-

cal domain, for example, an indicative element states that the tagged text fragment

is a specific ”object”, independently from its markup; an imperative one states that

the same fragment has to be modeled as that object.

Renear’s imperative and indicative moods overlap with Piez’s classification based

16 Chapter 2. Background

on time processing described in [84]. In fact, Piez’s “retrospective” markup language

seeks to represent something that already exists, as Renear’s indicative moods, while

the objective of a ”prospective” language is to identify the constituents of documents,

as Renear’s imperative moods.

2.1.3 Format and content separation

One of the most accepted principles in designing markup languages is the separation

of format from content. This principle is so well-accepted within the community that

providing a complete list of citations is practically impossible: in fact, any decent

book about SGML, XML and text encoding discusses that paradigm and the benefits

resulting from its application.

The first paper I can’t omit citing is the seminal work by Coombs et al. [27]:

in this paper the authors, beside proposing a classification of the most important

markup languages, outline the benefits of descriptive markup in terms of maintain-

ability, portability, cognitive demand and authoring enhancement. Properly tagged

files eliminate most of the mainteneance concerns: editing is simpler, files are pro-

tected from corruption and changes in the presentation does not affect the original

file, since presentation is a separate activity that can be performed in a second phase.

Moreover, document tagged with accurate and rigorous markup can be ported from

one system to another over different platforms, since the actual meaning and logical

organization of a document is captured by descriptive tags, and specific conversion

can be straightforwardly performed by simple programs: different systems, different

devices and different applications can display the same content simply by converting

it on-the-fly. The process of marking-up documents itsef is simplified, since authors

need only to select the most appropriate labels for content elements, and this re-

Chapter 2. Background 17

quires little more than the normal linguistic processing already necessary to perform

element recognition. What authors called “descriptive markup” can be read as con-

tent/format separation: what really counts is the actual role and logical function of

text objects, rather than their final rendering, formatting and processing.

Other two worth citing works are the introduction to SGML [105] and XML

[106], in which Sperberg-McQueen and Burnard highlight some important benefits

of content/format separation. In particular, they focused on the fact that ”the

same document can readily be processed by many different pieces of software, each

of which can apply different processing instructions to those parts of it which are

considered relevant”. For example, a document with names of persons or places

properly annotated might be used to create an index, or can be used as a source for

data miners, etc. Similarly, a content analysis software might extract and analyze

footnotes, a formatting program migth gather and collect them at the end of the

document, and so on.

The diffusion of this approach has strengthened with the development of XML

technologies, and has been consolidated with the standards proposed by the W3C.

The use of CSS and XSLT recommended and encouraged by XML markup experts

and the consortium, the increasing importance of multi-device and multi-platform

issues, the proliferation of softwares and systems that embody that philosophy have

made the principle of “separation between content and formatting” indissoluble from

the concepts of content managment and advanced publishing. An almost infinite

list of statements about the importance and benefits of XML content/formatting

separation can be found in the literature: “XML helps us turn what is otherwise

a stream of information into structured, manageable and meaningful data” by St.

Laurent [109] ”, “the ability of XML is its ability to separate the user interface

18 Chapter 2. Background

from the data” by Pardi [81], “XML markup describes a document’s structure and

meaning. It does not describe the formatting of elements of the page” by Harold

[57], etc.

Instead of further examining positive opinions, it may be useful to discuss some

“opposite” positions that question a principle so widely accepted . An excellent

critique of the idea is presented by Hillesund in [60]. The claim of the paper is

that the doctrine of “one input – many output” supported by the XML commu-

nity is basically wrong. On the contrary, the advent of new media, genres and

formats (partially powered by XML) will lead publishers into a new and challenging

state of ”many outputs - many inputs”. Hillesund’s theory is based on two main

points: content/format interleaving and impossible reuse. According to Hillesund,

the separation of presentation from content is misleading when applied to publica-

tions such as books, because those two layers are so strictly interwoven and mutually

dependent that there is no easy (and meaningful) way to separate them. The basic

objection is that presentation is an irreplaceable part of a document that expresses

some kind of semantic information, and thus affects not only the way a document

is perceived, but also how it is comprehended by readers. For example, titles, in-

troductions and chapters have both a semantic and typographic connotation, and

authors actually use typographical elements when defining the logical structure of

a document. The conclusion is that such a behaviour is so rooted in the history of

typography and documents that XML cannot expect to separate elements that are

intrinsically combined and have always been living together. The second point con-

cerns the impossibility of reusing and merging fragments of content from different

sources into an aggregate one. In fact, trying to rearrange the content will distort

the logical order of elements, resulting in a document where the original information

Chapter 2. Background 19

is probably unclear, inadequate and too much complex. Such a reuse would be like

“taking a pair of scissors, cutting up a tapestry weaving, rearranging it, and hoping

to create a nice new weaving where all the threads are still connected”. The con-

clusion is that, altough feasible from a technical point of view, there is no practical

and meaningful way to manipulate fragments in a semi-automatic way: without a

manual effort in readiting content, it is not possible to take a part of a book and

reflow it into different layouts, for different purposes and different media, etc.

Walsh [119] wrote a point-to-point response to Hillesund’s objections in the same

journal. In this work, the author supported the principle of separation between con-

tent and structure, and presented some examples where the re-use of content on

different media, with different layout and formatting produced very interesting re-

sults. The central point of Walsh’s argumentation is that the ability to reuse the

document content is dependent from how much the content is suitable to be ex-

tracted and reflowed: the core of the problem, in fact, is mostly editorial and cannot

be solved by technical solutions. Altohough a bad document cannot be manipu-

lated, reformulated and reformatted with perfect results, technologies that follow

the principle of content/format separation provide a platform to build solutions, at

least for those documents designed for that purpose.

Finally, other interesting and subtle discussions of the principle of separation

between content and format have been presented by Liu in [73] and by Piez in [85].

2.1.4 Hierarchical models for digital documents: advantages

and open issues

An important point for creating well engineered documents concerns the overall

structure to use for organizing the textual content. The model to be used for digital

20 Chapter 2. Background

documents has been a topic of discussion since the very beginnings of work on

markup languages.

An analytic and philosophical approach, the OHCO model, was discussed in the

early 1980s by DeRose et al. in [34]. According to OHCO a text is an ’Ordered

Hierarchy of Content Objects’: a document is ’hierarchical’ because elements nest

inside one another like chinese boxes (a book contains chapters, which contain sec-

tions, which contain subsections, then paragraphs, then in-lines, down to the raw

text); it is ’ordered’ because there is a linear relationship among objects (for any

two objects within a book one comes before the other), and it is made of plain units

of information (content).

The adoption of the OHCO approach provides authors with many practical ben-

efits, that can be divided in three main categories: composition assistance, produc-

tion assistance and facilitation of alternate use of data. First of all, this approach

let the authors focus on the logical organization of the document and the relations

among its elements, rather than concentrating on other aspects as formatting, al-

lowing to deal with the document at an appropriate level of abstraction. Writing,

collaboration and alternate views on documents are all simplified since conceptual

models are directly mapped into documents structures, relative relations are made

explicit and different views of the same content can be easily created and updated.

Moreover, since both the overall organization and dependencies among elements are

explicit, advanced retrieval functions can be implemented, as well as functions of

content composition and reflowing. The use of descriptive markup also simplifies the

interchange and reuse of the document content between systems and applications.

Actually few counterproposals to OHCO were done (and they had a very low

success), and OHCO suddenly became the most adopted model for designing markup

Chapter 2. Background 21

languages. The OHCO philosophical approach had been preceded by SGML, and

was soon followed by XML, both offering further evidence of the flexibility and power

of a hierarchical model.

But modeling documents as trees is not enough. For instance, when marking

up text documents it might be necessary to represent features that do not fit into

the tree structure conveyed by an XML document. There are many situations in

which authors may need to annotate the same piece of text with different markup

descriptors (e.g. when a page spans from the middle of one paragraph to the middle

of another, or when speeches span multiple verses, etc.): in such cases, the markup

descriptors sometimes nest correctly into a single tree-hierarchy, sometimes not.

In general, this issue may arises whenever an author wants to maintain two or

more views of a document (e.g. metrical, syntactical, layout, etc.), and consequently

multiple and incompatible hierarchies insists on the same textual content. This

problem is referred to in the literature as the overlap problem.

After a first period in which the deficiencies of markup languages that concerns

the overlap problem were underestimated [8]5 or even suppressed [34]6, the digital

humanities community started to put an increasing effort in trying to define and

develop solutions to this issue. The essence of the problem can be summarized as

follows: “overlap can be presented by graphs that are very like trees, but in which

nodes may have multiple parents. Overlap is multiple parentage” [108].

Since the document model of XML is inherently a tree, there is no simple way

to cover such complex situations when handling multiple hierarchies. In order to

5In the first paper that deals with overlap in digital texts, in 1988 Barnard et al. argue that
“SGML can successfully cope with the problem of maintaining multiple structural views”, and that
the solutions “can be made practical” by means of simple mechanisms, such as by exploiting the
CONCUR feature of SGML [8].

6In [34], Renear et al. defend their OHCO thesis stating that “If you treat texts as ordered
hierarchies of content objects many practical advantages follows, but not otherwise. Therefore
texts are ordered hierarchies of content objects”.

22 Chapter 2. Background

overcome these limitations, many different solutions have been proposed. For in-

stance, the following list summarizes some of the most used XML-based techniques

to manage overlapping situations:

• TEI-style milestones: this approach is to represent a vocabulary as primary

by using a standard XML structure, and to use pairs of empty elements to

mark the boundaries of elements that belong to secondary vocabularies. In

order to make explicit the relation between corresponding opening and closing

empty tags, a co-indexing mechanism may be implemented by means of special

linking attributes [113]7;

• fragmentation: is another technique that prescribes breaking the elements

belonging to secondary hierarchies into as many smaller fragments (also called

partial elements) as needed to nest properly into the primary hierarchy. Also in

this case overlapping elements are linked using special attributes (e.g. id-idref

or next-previous pairs).

• stand-off markup: the key idea is to represent hierarchical and possibly in-

compatible structures separately from their actual content. In fact, the real

content is present elsewhere, for example within the same document or in sep-

arate ones, and included by means of links implemented through a pointer

mechanism such as XPointer [35]. In this way, it is possible to represent mul-

tiple conflicting structures as stratifications of different layers, at the cost of

a overhead to manage and keep up-to-date the referenced content not directly

7It’s worth noting that many slightly different types of milestones have been proposed: for
example, another (more general) type of milestone consists in using milestone elements to mark
the boundary between sections of a text, as indicated by changes in a standard reference system
(e.g. the structure of pages in a standard codex). In those cases, each milestone element (except
the first and the last) represents both the end of the previous feature and the beginning of the
next one.

Chapter 2. Background 23

embedded within these structures.

• twin documents: overlapping hierarchies may also be encoded by using multi-

ple documents that share the same textual content, but each one denoting its

own tree structure, as described in [122].

Other worth citing solutions to overcome this limitation of XML are CONCUR

[52] [107], JITT (Just In Time Trees) [44], MuLaX [59] [90] and Multi-colored trees

[64]. Other approaches such as GODDAG (General Ordered Descendant Directed

Acyclic Graph) [108], TexMECS [62] or LMNL [114] suggest to abandon XML and

the benefits of its tree-based data model, and devise new formalisms and notations

based on a more general and expressive abstract structure, such as a directed graph.

The interested reader may find a complete description of these solutions in [33] or

[74].

The discussion presented in this section about hierarchical models for digital

documents is propaedeutic to introduce the ability of EARMARK [41], the meta-

markup language I used to process documents in this work, to overcome some of the

limitations of traditional markup languages to deal with complex document features:

in Section 2.1.5, for example, I show how overlapping hierarchies can be easily

expressed in EARMARK. Other characteristics such as the ability to add semantic

annotations and to easily perform validity checks makes of EARMARK a suitable

and convenient framework to perform the advanced operations on digital documents

described in this thesis, such as those presented in Section 5.2 and Section 6.2.3.

Moreover, this choice leaves open the possibility of planning new developments and

applications for the techniques developed in this work: for example, it would be

interesting to test the theory of pattern on documents with overlapping situations.

This and other scenarios are briefly described in Chapter 7.

24 Chapter 2. Background

2.1.5 Semantic Web and markup languages

Beside enabling people to create data stores on the web, build vocabularies, and

write rules for handling data, the development of Semantic Web technologies opens

new perspectives for managing, linking and exchanging digital documents and their

related information on the current web. Some recent works have investigated the

possibility to use Semantic Web Technologies to provide a semantic enriched repre-

sentation of XML documents, such as the DTD2OWL approach presented by Thuy

et al. in [116], Vion-Dury’s model to transpose XML/SGML/HTML documents

into RDF triples described in [117], Bishof et al.’s transformation model from XML

to RDF and back described in [13], etc. An updated summary of the research ap-

proaches aimed at providing interoperability and integration between the XML and

Semantic Web worlds, together with a description of the resulting benefits can be

found in [11].

In this section I focus on EARMARK (Extremely Annotational RDF Markup)

[41], a different approach to meta-markup based on ontologies and Semantic Web

technologies developed by my research group. The core of EARMARK is an OWL

2 DL [79] ontology8 that defines document meta-markup. The basic idea is to

model EARMARK documents as collections of addressable text fragments, and to

associate such text content with OWL assertions that describe structural features

as well as semantic properties of (parts of) that content. As a result, EARMARK

allows multiple overlapping hierarchies where the textual content within the markup

items belongs to some hierarchies but not to others.

The interesting point is that, in addition to solving some limitations of tradi-

8EARMARK Ontology: http://www.essepuntato.it/2008/12/earmark. The prefix earmark
refers to entities defined in it, while the prefix co refers to entities – used in the EARMARK
Ontology – defined in the old version of the Collections Ontology [24].

Chapter 2. Background 25

tional markup languages such as the problem of overlapping markup by allowing to

express multiple hierarchies in a transparent way, EARMARK provides a convenient

and complete framework to represent digital documents with complex features and

perform advanced processing operations on them. For example, it can be used to

generate validity constraints (including co-constraints currently unavailable in most

validation languages) [42], to make explicit the semantics of markup [82], to annotate

text or other markup documents [6], to keep track of changes in markup [83], and as

interchange format to enable conversions between different kinds of XML vocabu-

laries embedding overlap [7]. In particular, the ability to add semantic annotations

and to easily perform validity checks, or its seamless integration with ontologies

and reasoning tools, makes of EARMARK a suitable and convenient framework to

perform the operations on digital documents described in this thesis, such as those

presented in Section 5.2 and Section 6.2.3.

The whole ontological description of EARMARK is summarised in the Graffoo

diagram9 [45] shown in Fig. 2.3 on the following page. The core classes of the model

describe three disjoint base concepts: docuverses, ranges and markup items.

The textual content of an EARMARK document is conceptually separated from

its annotations, and is referred to through the earmark:Docuverse class. The in-

dividuals of this class represent the objects of discourse, i.e. all the containers

of text from an EARMARK document. Any individual of the earmark:Docuverse

class – commonly called a docuverse (lowercase to distinguish it from the class) –

specifies its actual content through the property earmark:hasContent. There ex-

ist two different kinds of docuverses, those that specify all its content in form of

a string (defined through the class earmark:StringDocuverse) and those that refer

9Graffoo is a graphical notation for OWL ontologies and it is available at
http://www.essepuntato.it/graffoo.

26 Chapter 2. Background

Figure 2.3: A Graffoo diagram summarising the EARMARK Ontology.

to a document containing the string to be marked up (defined through the class

earmark:URIDocuverse).

The class earmark:Range is used to refer to text fragments lying between two

locations of a docuverse. A range, i.e, an individual of the class earmark:Range, is de-

fined by a starting and an ending location (any literal) of a specific docuverse through

the functional properties earmark:begins, eamark:ends and earmark:refersTo respec-

tively. There exist two main types of ranges: those (i.e., earmark:PointerRange)

that refer to text lying between two non-negative integer locations that identify

precise positions within a docuverse, and those (defined through the class ear-

mark:XPathPointerRange) that refer to any text, obtained from a particular XPath

context (specified through the property earmark:hasXPathContext) starting from a

docuverse content, lying between two non-negative integer locations that identify

precise positions.

Chapter 2. Background 27

The class earmark:MarkupItem is the superclass defining artefacts to be inter-

preted as markup such as elements (i.e., the class earmark:Element), attributes (i.e.,

the class earmark:Attribute) and comments (i.e., the class earmark:Comment). A

markupitem individual is a collection10 (co:Set, co:Bag and co:List, where the latter

is a subclass of the second one and all of them are subclasses of co:Collection) of indi-

viduals belonging to the classes earmark:MarkupItem and earmark:Range. Through

these collections it is possible:

• to define a markup item as a set of other markup items and ranges by using

the property co:element;

• to define a markup item as a bag of items (defined by individuals belonging

to the class co:Item), each of them containing a markup item or a range, by

using the properties c:item and co:itemContent respectively;

• to define a markup item as a list of items (defined by individuals belonging to

the class co:ListItem), each of them containing a markup item or a range, in

which we can also specify a particular order among the items themselves by

using the property co:nextItem.

A markupitem might also have a name, specified in the functional property ear-

mark:hasGeneralIdentifier11, and a namespace specified using the functional prop-

erty earmark:hasNamespace.

In order to introduce some of the advanced features provided by the EARMARK

model, I describe here how a document with three concurrent hierarchies can be

10In the following descriptions the prefix co to indicate entities taken from version 1.2 of
the Collections Ontology [24], an imported ontology used for handling collections, available at
http://swan.mindinformatics.org/ontologies/1.2/collections.owl.

11General identifier has been used to recall the SGML term generic identifier, that is the local
name of the markup item, e.g., “p” for markup element “<p>...</p>”.

28 Chapter 2. Background

represented in EARMARK, while other features of EARMARK will be presented

when needed during the course of this dissertation. Let’s consider the markup

structures shown in Fig. 2.4.

Figure 2.4: An example of three different markup hierarchies (light-blue rectangles
with solid border, light-green rectangles with dashed border, and pink rectangles
with dotted borders) involving six different ranges (the five empty rhomboids with
solid red border and the one with blue dashed border).

In order to express the example in EARMARK, we start defining the whole

textual content of the document – i.e., the first three lines of the Paradise Lost by

John Milton – by creating an instance of the class earmark:StringDocuverse12:

@prefix : <http :// www.essepuntato.it /2014/ balisage/example/>

:doc a earmark:StringDocuverse ;

earmark:hasContent

12This and all the following excerpts are defined in Turtle [86]. In the first excerpt, the content
of the docuverse would have normalized whispace, as shown by character offsets in the following
ranges, but that whitespace has been added to the Turtle example for the sake of clarity.

Chapter 2. Background 29

"Of Mans First Disobedience , and the Fruit

Of that Forbidden Tree , whose mortal tast

Brought Death into the World" .

Then, we define all the six different ranges (as individuals of earmark:PointerRange)

that are introduced in the figure, i.e.:

The string ’Of Mans First Disobedience , and the Fruit ’

:r1 a earmark:PointerRange ;

earmark:refersTo :doc ;

earmark:begins "0"^^ xsd:nonNegativeInteger ;

earmark:ends "41"^^ xsd:nonNegativeInteger .

The string ’the Fruit Of that Forbidden Tree ,’

:r2 a earmark:PointerRange ;

earmark:refersTo :doc ;

earmark:begins "32"^^ xsd:nonNegativeInteger ;

earmark:ends "65"^^ xsd:nonNegativeInteger .

The string ’Of that Forbidden Tree ,’

:r3 a earmark:PointerRange ;

earmark:refersTo :doc ;

earmark:begins "42"^^ xsd:nonNegativeInteger ;

earmark:ends "65"^^ xsd:nonNegativeInteger .

...

Finally, we can build the three markup hierarchies shown in upon these ranges,

as shown in the following excerpt:

30 Chapter 2. Background

:lg a earmark:MarkupItem , co:List ;

earmark:hasGeneralIdentifier "lg" ;

co:firstItem [

a co:ListItem ;

co:itemContent :l1 ;

co:nextItem [

a co:ListItem ;

co:itemContent :l2 ;

co:nextItem [

a co:ListItem ;

co:itemContent :l3]]] .

:q a earmark:MarkupItem , co:List ;

earmark:hasGeneralIdentifier "q" ;

co:firstItem [

a co:ListItem ;

co:itemContent :l1] .

:l1 a earmark:MarkupItem , co:List ;

earmark:hasGeneralIdentifier "l" ;

co:firstItem [

a co:ListItem ;

co:itemContent :r1] .

Chapter 2. Background 31

2.2 Document analysis

Authors of new digital documents take (or at least should take) into account all

the principles discussed so far, in order to produce documents that can be easily

stored, maintained and transmitted. This section is focused on the opposite process

of document analysis, whose goal is understanding how the main components and

relevant parts of existing documents can be automatically identified and extracted

from legacy resources. There are in fact a lot of practical situations where huge

document collections written in different formats and coming from very different

domains and communities need to be collected, analyzed and re-structured.

For this reason, a lot of tools can be found in the literature about a posteriori

analyses and re-structuring of heterogeneous digital documents and web pages. An

exhaustive discussion is not in order here, but an overview of those techniques and,

in particular, a discussion about the approaches and document models they adopt

can be really useful for the purpose of this work.

2.2.1 Structural analysis of documents

Some literature has recently come out about the characterization and identification

of structural components of text documents. For instance, Tannier et al. [112],

starting from previous works by Lini et al. [72] and Colazzo et al. [26], describe an

algorithm to assign each XML element in a document to one of three different cat-

egories: hard tag, soft tag and jump tag. Hard tags are elements that are commonly

used to structure the document content in different blocks and usually “interrupt

the linearity of a text”: for instance, in the DocBook13 vocabulary [121], they cor-

13DocBook is the format used in many examples and discussions in this and the following chap-
ters of this dissertation. The main reasons at the basis of this choice are its popularity, and the
availability of an extensive and clear documentation that can be easily consulted and examined

32 Chapter 2. Background

respond to, among others, para, section, table , etc. Soft tags are the elements that

identify significant text fragments and are “transparent while reading the text”:

they are mostly inline elements carrying presentation rules (e.g., in DocBook, em-

phasis, link, xref, etc.). Finally, jump tags are elements that are logically “detached

from the surrounding text” and that give access to related information – e.g., in

DocBook, footnote, comment, tip, etc. Tannier et al. also introduce algorithms to

assign XML elements to these categories by means of NLP tools. This classification

is rather interesting, in that it provides a justification for the identification of the

classes, but it is a little coarse for my purposes, ignoring empty elements and failing

to distinguish higher level and lower level hard tags (i.e., those containing other

tags but not text from those that never contain text). This classification partially

overlaps with the pattern theory presented in Section 4.1: in particular, soft tags

category is very close to the Inline pattern, the jump tags is similar to the Popup

pattern, but their hard tags group comprises both Block and Container patterns.

Zou et al. [124] categorise HTML elements as belonging to two classes only:

inline and line-break tags. Inline elements all those that do not provide horizontal

breaks in the visualisation of documents – e.g., em, a, strong and q, while line-break

elements are those that do so – e.g., p, div, ul, table and blockquote. Based on this

categorisation and a Hidden Markov Model the authors try to identify the structural

role (e.g., title, author, affiliation, abstract, etc.) of textual fragments of medical

journal articles expressed as HTML pages. Higher-level structural roles (e.g., div

elements used as section separators) are not discussed nor identified; similarly, out-

of-flow elements (corresponding to jump tags in [112] and to the Popup pattern in

the pattern theory) do not really exist as such in HTML and therefore are clearly

by the interested reader. Another important aspect is the availability of large document collec-
tions, that have been used to analyze and evaluate the effectiveness and accuracy of the theories,
algorithms and tools presented in this work.

Chapter 2. Background 33

not identified.

Koh et al. [70] identify text fragments and images of documents that can act

as their surrogates (where surrogates are defined as “information elements selected

from a specific document, which can be used in place of the original document”). In

particular, they address the issue of identifying junk structures, such as navigational

elements of Web sites, advertisements, footers, etc., that usually do not carry the

meaning of a document. Their approach is based on a pattern recognition algorithm

that segments the XML elements of the document according to tag patterns, i.e.,

recurring hierarchies of nested elements that “contextualize the structured markup

of text within a document”. They find that junk structures are often described by

similarly structured markup in different documents, and thus some tag patterns are

crucial for their identification as junk within real HTML pages.

Similarly, Vitali et al. implemented a rule-based system for the analysis of reg-

ularities and structures within web pages [118]. The system seeks patterns in the

HTML code of a page and labels the components of that page according to these

patterns. One key aspect of the system is its extensibility. There is in fact a strong

distinction between the rule engine and the actual patterns, which are declaratively

expressed through XPath expressions in a custom XML vocabulary. Authors define

an initial set of patterns to recognize, for instance: table cells, editable regions,

navigational elements and annotated non-navigational text fragments.

Georg et al. [50] introduce an NLP approach to the automatic processing of

medical texts such as clinical guidelines, in order to identify linguistic patterns that

support the identification of the markup structure of documents. This approach

justifies the development of a system for the automatic visualisation and presentation

of unstructured documents. In a more recent paper [49] Georg et al. illustrate

34 Chapter 2. Background

an extension of such a work in which they introduce an improved version of their

approach.

Finally, another worth citing reasearch area related to the structural analysis

of documents is grammatical inference (also known as grammar induction). The

general problem consits in extracting a grammar from sequential or structured data

(e.g. strings, words, trees, etc.) by capturing regularities in their usage, and has been

investigated by different communities such as machine learning, formal language

theorists, pattern recognition, computational linguistics, etc., as described in [29]. In

the context of digital documents, many algorithms and systems have been developed

to capture the schematic information from SGML and XML document collections

[67] [95] [21].

2.2.2 Analysis of document components

Several approaches have been proposed to extract logical components from paper-

based documents. They can be divided in two main categories: bottom-up and top-

down. Top-down algorithms start with the whole document and iteratively segment

it into subcomponents, considering completed each segmentation step when a set of

predefined properties are met. Bottom-up solutions start with single letters, then

cluster them into words and paragraphs, then into graphical areas up to rebuild

the whole document. For instance, in [65] authors presented a bottom-up approach

for region identification, that exploits the connectivity and contiguity of graphical

elements in order to extract text fragments, tables, images and drawings.

Very interesting results have also been achieved in automatic segmentation of

web pages. Several works exploit visual features of pages in order to synthesise logi-

cal structures. For instance, in [19] a page layout is modelled as a graph of areas and

Chapter 2. Background 35

weighted strings elements for attributes and text. The logical tree is extracted from

the nesting of elements and the weight of their subcomponent. Further informa-

tion is collected by identifying subtrees and paths and by inferring elements names

through a content-based analysis. Others, for instance [32] have proposed to use

geometrical clues and spatial information to infer logical structures. They exploited

a hierarchical representation of the screen coordinates of each page element in order

to determine common areas in the page (headers, side menus, main content areas,

footers, etc.) and their relations, and to infer their structural roles.

In [22] the authors propose a restructuring approach to derive properly nested

XML documents from HTML pages by studying how HTML visual markup is re-

lated to the logical structure of a document. The authors model a document as a

hierarchical structure of block-level and in-line-level objects, where objects of higher

level of abstraction are described as combination of lower level objects. The mean-

ing of a node is not directly associated with the object itself but it is related to

the content and context of that node. Then, they propose a bottom-up process to

restructure a DOM tree consisting of three steps: (1) analysing text in order to iden-

tify atomic units of content, (2) grouping those units in more complex structures and

(3) polishing those structures by removing non-relevant or temporary information.

The latter steps are described through a declarative language of composition and

filtering rules.

Very good results in extracting structured information from documents have been

achieved when focusing on specific domains. For instance, [104] and [20] targeted

Web pages publishing news. They presented hybrid approaches – that take into

account recurring tree structures as well as presentational features – and are able

to automatically characterize titles, publication and authoring data and structured

36 Chapter 2. Background

content. [124] focused on medical content and in particular scientific journals. The

authors classified content objects into in-line and block-level units and proposed an

algorithm based on Hidden Markov Models that identify automatically the main

components (metadata, abstract, title and body) of the input documents.

There are also several research works on the description of structural and rhetor-

ical components of a document. For the rhetorical part, three main models ex-

ist for document segmentation: the Ontology of Rhetorical Blocks (ORB) [23], the

SALT Rhetorical Ontology [53] [55] [56] and the Medium-Grained structure [31].

The former model offers a coarse-grained description (header, introduction, meth-

ods, claims, etc.) and the latter a medium-grained description (hypothesis, objects

of study, direct representation of measurements, etc.) of the rhetorical components

of a document.

Another interesting work is Zhang’s taxonomy of functional units [123] (i.e.

chunks of information with a distinct communicative function) based on Swales’

genre model [111]. The main contribution consists in identifying the functions of the

information units within four journal article components (i.e., introduction, meth-

ods, results, discussion), and their associations with information tasks performed by

users. Encouraging experimental results showed the benefits of the use of functional

units in supporting navigation, close reading and comprehension of journal articles.

Chapter 3

Structural Patterns for document

engineering

Evaluating collections of XML documents without paying attention to the schema

they were written in may give interesting insights about the expected characteristics

of a markup language, as well as any regularity that may span vocabularies and

languages, and that are more fundamental and frequent than plain content models.

These regularities in the document structure (or structural patterns), as well as

the benefits deriving from their identification, are the object of the investigation

presented in this thesis.

My research group has already investigated the idea of using structural patterns

for processing digital documents. In particular, in [37] Di Iorio et al. presented a

minimal set of seven patterns that they used for integrating heterogeneous docu-

ments in a content management system. Taking their work as a starting point, I

performed an analysis on real world documents and identified some deficiencies and

limitations of the pattern model. For instance, I identified four very common situa-

tions (aka new patterns) that were not covered by the minimal set of patterns used

to integrate documents. The result of this analysis is a new model for structural

38 Chapter 3. Structural Patterns for document engineering

patterns that extends and improves the previous one, and that is able to capture and

express the logical organization of any document. Moreover, I identified two dimen-

sions (i.e. content model and context) that are sufficient to characterize the most

important structures in digital documents, and used these notions as the foundations

of the formal definition of structural patterns presented in the next chapter.

This chapter is organized as follows. In Section 3.1 I describe the segmentation

model based on structural patterns developed by my research group, and introduce

the minimal set of patterns they used to capture the logical organization of docu-

ments. In Section 3.2 I present an analysis on real world documents, pointing out

some limitations of the pattern model and proposing amendments and extensions.

In Section 3.3 I discuss the results of the analysis and the design principles which

form the basis of the complete theory of structural patterns presented in the next

chapter.

3.1 A pattern-based segmentation model for de-

scriptive documents

The idea of using patterns to produce high-quality and reusable assets is not new

in the literature. Their inventor Alexander defined a pattern as ”a three part rule,

which expresses a relation between a certain context, a problem, and a solution”

[1]. The basic idea is to capitalize previous experiences, in order to re-propose

accepted solutions to recurring problems in similar contexts. The power of patterns

lies in their ability to capture the core of a problem, and to suggest a guideline

that experts can use to build their concrete solutions: indeed, as stated by the

author, “each pattern describes a problem which occurs over and over again in our

Chapter 3. Structural Patterns for document engineering 39

environment, and then describes the core of the solution to that problem, in such

a way that you can use this solution a million times over without ever doing it the

same way twice” [2]. Moreover, patterns are the building blocks of what Alexander

defines “a pattern language”: as the elements of a language are units of information

that are put together in order to build meaningful sentences, similarly patterns

can be assembled to produce artifacts that meet complex needs and address hard

problems. From this perspective, the benefits of adopting patterns is twofold: first,

(by distilling best practices,) they are the actual solution to specific problem, second,

they are used by experts as a powerful mean to communicate and investigate such

solution.

Alexander was an architect and collected a set of solutions for building homes,

workplaces, towns and cities into a pattern language that addresses a particular

domain. Soon professionals and researchers understood the benefits of patterns in

terms of effectiveness, flexibility and reusability, and started to apply this approach

to different fields too. For example, Gamma et al. [46] provided a complete descrip-

tion of patterns for software development, and their book immediately became (and

still is) a must-read resource for the community of software engineers and object-

oriented experts. More recently, design patterns have been used in the domain of

ontology development [47] [16], facilitating reuse and showing remarkable results in

terms of quality improvement.

My research group has been investigating patterns for XML documents (e.g.

[37] [28]) to understand how the structure of digital documents can be segmented

into smaller components, which can be addressed independently and manipulated

for different purposes. In order to express and capture the logical organization of

heterogeneous documents, the group has defined a minimal model based on such

40 Chapter 3. Structural Patterns for document engineering

patterns, and used this model to project heterogeneous documents into an unified

pattern-based representation. These ideas have been used to develop a group of

systems that cover heterogeneous content management processes: from web editing

to collaboration, from e-learning to professional printing.

This minimal set of patterns is the starting point of my work. Although a deep

analysis of this model and its applications is out of the scope of this dissertations,

in this section I provide an overview of the model and its applications, focusing on

the elements and concepts that are useful for the purpose of this dissertation.

3.1.1 A document segmentation model: Pentaformat

The principle of separation between content and formatting discussed in Section 2.1.4,

as well as the need of segmenting documents into subcomponents, is one of the most

accepted (and widely discussed) principles among document engineers and markup

experts. The analysis and segmentation of documents into subcomponents is so em-

bedded and well-accepted by the community that providing a complete list of refer-

ences is practically impossible (canonical references are [52], in particular Annexes

A “Introduction to Generalized Markup”, B “Basic Concepts” and C “Additional

Concepts”, [27] and [105]).

The most popular markup (meta-)languages (i.e. SGML, XML and HTML) and

their related technologies (i.e. XPATH, XSLT, CSS, ...) have focused on the analysis

and management of three main constituents:

• Content: the pieces of information in the document, the ”what is it” infor-

mation, or the ”gray matter”

• Structure: the arrangement of the content, the ”where is it” information, or

the ”skeletal matter”.

Chapter 3. Structural Patterns for document engineering 41

• Presentation: the formatting or rendering of both structure and content

components; the ”what does it look like” information; much of the time it

doesn’t matter except as it helps to identify components of the other two

types.

Although this three level distinction provides many practical benefits, it is not

difficult to find examples where such a classification is not enough, in particular

considering the increasing importance of interaction and dynamic behaviour in some

contexts, like the World Wide Web. For instance, interactive behaviours frequently

violate any simple notion of a static marked-up document, since both content and

presentation could depend on arbitrary computation and user interaction.

To address these issues, my research group has proposed an approach named

Pentaformat [28], a segmentation model that can be used to capture the most rel-

evant document constituents. The basic idea is to divide a document into sub-

components that express the same information (i.e. meaning, organization, be-

haviour, graphical impact, etc.) of the original document. The main benefit of this

approach is that these components can then be processed, reformulated and reused

in very different situations of the content management process. For example, the

authors describe some systems built on top of these ideas that cover web editing,

collaboration, e-learning and professional printing contexts.

As showed Fig. 3.1 on page 43, the Pentaformat is composed of five dimensions:

• Content: the plain information made of text and images (audio and video

are not considered);

• Structure: the logical organization of the content. Structure is meant to

indicate the role of each content element and their relations, in order to make

a document interpretable and processable;

42 Chapter 3. Structural Patterns for document engineering

• Presentation: the set of visual and typographical features that maximizes

the impact of the document on human readers. This layer is built on top of

the structure, and is crucial to convey what is inherently expressed by struc-

tured content. It is one of the possible expressions of the original information,

interpretable and appealing for human readers;

• Behavior: the set of dynamic actions of events on a document required to

model the interaction between readers and digital documents;

• Metadata: the set of information about the document, which make indi-

vidual resources easy to search, compare and manage within wide document

collections.

Figure 3.1: An overview of the Pentaformat Model that emphasizes the role of
each constituent

Chapter 3. Structural Patterns for document engineering 43

3.1.2 Patterns for document substructures

Among all the dimensions of the Pentaformat, two are particularly important be-

cause they constitute the basic information written and organized by the authors.

The correct addressing of the basic content and the logical organization of a docu-

ment is not an easy task: in fact, markup experts and developers are required to deal

with a wide variety of languages, formats and documents in their everyday practice.

In order to reduce the complexity introduced by this heterogeneity, the authors of

the Pentaformat present seven structural patterns, whose goal is to express in a

clear and unambiguous form the building blocks shared by different vocabularies.

The main characteristics of these patterns can be summarized as follows:

• Marker: an empty element, in case enriched with attributes, whose meaning

primarily depends on its position within the context. A marker is not meant

to provide characterization of the text content, but to identify special rules

for a given position of the text. For example, they can be used to separate

(sometimes visually) what comes before the marker from what follows (e.g.

the elements BR and HR in HTML, or page delimiters).

• Atom: a unit of unstructured and not further divisible information. An atom

contains only plain text and is meant to indicate a specific role or semantics

for that information. Markers are used in text streams to capture the role of

fragments, or as records that are assembled to build more complex structures;

• Block and Inline: both of these elements have a mixed content, and are used

to organize textual content mixed with unordered and repeatable elements.

They have the same role of carrying the text written by the author, with

the difference that blocks can’t contain other block elements recursively (i.e.

44 Chapter 3. Structural Patterns for document engineering

blocks use the the same content model of inlines, but are not listed in the

allowed elements);

• Record: a set of heterogeneous, unordered, optional and non-repeatable el-

ements. Records are first used to group simple units of information in more

complex structures, or to organize data in hierarchical subsets where relations,

dependencies and repetitions among elements are explicit;

• Table: a sequence of homogeneous elements. Tables are used to group similar

objects into the same structure and, also, to represent repeating tabular data;

• Container: a set of heterogeneous, unordered, optional and repeatable el-

ements. The name itself emphasizes the generality of this pattern, used to

model all those circumstances where diversified objects are repeated and col-

lected together.

Table 3.1: Patterns and Content-models in DTD syntax
Pattern DTD syntax

Marker (M) <!ELEMENT M EMPTY>

Atom (A) <!ELEMENT A (#PCDATA)>

Block (B) <!ELEMENT B (#PCDATA |M | A | I) ∗>

Inline (I) <!ELEMENT I (#PCDATA |M | A | I) ∗>

Record (R) <!ELEMENT R (Any-pattern-except-I?)>

Container (C) < !ELEMENT C (Any-pattern-except-I)*>

Table (T) < !ELEMENT T (A* | B∗ | R∗)>

Each pattern is characterized by a content model, which defines the element al-

lowed within each pattern, as summarized in Table 3.1 on the preceding page. These

composition rules express functional dependencies and relations between the docu-

ment components (see Table 3.2), and make explicit the semantics of the structures

within the overall organization of the document.

Chapter 3. Structural Patterns for document engineering 45

Table 3.2: Composition rules over patterns
EMPTY Text Marker Atom Block Inline Record Container Table

Marker X

Atom X

Block X X X X

Inline X X X X

Record X X X X X X

Container X X X X X X

Table X X X X X X

Traditional pattern-based strategies are based on the principle of identifying the

most useful solutions to recurring design problems, and reusing them. The authors

of structural patterns suggest a different approach: instead of using patterns to

guide designers in the creation of new and well-engineered resources from scratch

(constructive model), their objective is to define a minimal model that is able to ex-

presses the essential information about the organization of a document. In practice,

the pattern model provides a uniform representation for heterogeneous documents,

and is therefore used as the center of a conversion system for integrating, recom-

bining and processing documents coming from different sources and formats. This

simplification of the document meta-model has then been successfully exploited to

support the content management process in very different situations: from web

editing to collaboration, from e-learning to professional printing.

3.2 Structural patterns: an analysis

The objective of the minimal model presented in Section 3.1 is to simplify the

document meta-model by identifying a minimal set of patterns that are able to

express the most used and meaningful structures of digital documents. Considering

46 Chapter 3. Structural Patterns for document engineering

the simplicity and diffusion of the patterns proposed, the authors decided to describe

them in a narrative style, as Alexander did with his patterns about architecture [2].

The lack of a rigorous definition produced by this approach is one of the main

limitations of the structural patterns, and lays them open to criticism about their

completeness, validity and applicability. Moreover, it is important to investigate

their identifiability in real documents, and test their ability to capture all the main

and more meaningful structures used by authors to organize the content of their

documents.

Taking this minimal set of patterns as a starting point, my objective is to define

a complete model of patterns that is able to express the logical organization of any

XML document. In order to do so, in this section I describe an analysis I performed

on real XML documents to check the limitations of the minimal set of seven patterns

described in the previous section. The results of this analysis is presented in four

subsections, one for each of the situations that are not well covered by the previous

minimal set of patterns.

Another important objective of this analysis is to delineate a grammar of con-

cepts, notions and relations that can be used to capture the main characteristics

of the document structure, and to provide the foundations of a general model for

structural patterns. In particular, I have identified two orthogonal and strongly re-

lated dimensions that can be used to characterize the semantics of the most relevant

document meta-structures: content model and context. These two notions are the

basis of the pattern theory, and are used to provide the formal definition of patterns

presented in Section 4.1. There are also other relations that are important, such as

the order of the elements in a content model, that can be used to provide a more

specific characterization of some similar patterns, as described in Section 4.2.

Chapter 3. Structural Patterns for document engineering 47

3.2.1 Specialization of the Marker pattern: Milestone and

Meta

According to the theory of structural patterns, a marker is an empty element whose

meaning is strictly connected with its position within the document. Typical exam-

ples of marker are the element HR in HTML 4.01 [88], an horizontal rule whose role

consists in separating visually what comes first from what comes next, or the element

IMG, that is used to embed an image at the location of the element’s definition.

Empty elements are also used for a different purpose: to insert metadata that

asserts things about the document, but are disconnected from its actual content:

in such cases, the position of the empty elements is often not important. In order

to clarify these two different functions played by empty elements, let’s consider the

elements XREF and COL from the Balisage Tag Set1, a small subset of the Docbook

vocabulary [120] used by the Balisage Markup Conference2. The element XREF is

the preferred method for inserting cross-references of any kind at specific locations,

and is usually displayed as a link to the destination of the reference, and IMAGEDATA

indicates an image resource along with information pertaining to its display.

<!ELEMENT para (#PCDATA | blockquote | citation | ... |

xref)*>

<!ELEMENT xref EMPTY >

<!-- BalisageVol1 -Brown01.xml -->

<para >There is also a note indicating that [<xref

1More information about the Balisage Tag Set, such as the DTD and its definition in [48] or [25],
are available online at the address http://balisage.net/tagset.html. A clear and concise treatment
of Docbook, the markup language from which the Balisage Tag Set stems from, can be found in
[121].

2All the examples presented in this chapter are taken from papers presented at the Balisage
Markup Conference. The complete proceedings of the conference are available online at the address
http://balisage.net/Proceedings/index.html

48 Chapter 3. Structural Patterns for document engineering

linkend =" ISOTM"/>] did not explicitly define scope to

include all subjects , therefore there may be some

interoperability issues with older topic map instances

[<xref linkend ="TMDM"/>].</para >

<!ELEMENT mediaobject (imageobject+, caption ?)>

<!ELEMENT inlinemediaobject (imageobject +)>

<!ELEMENT imageobject (imagedata)>

<!ELEMENT imagedata EMPTY >

<!-- BalisageVol8 -Bruggemann -Klein01.xml -->

<mediaobject >

<imageobject >

<imagedata width ="15cm" format ="png"

fileref =" graphics/Bruggemann -Klein01 -001. png"/>

</imageobject >

</mediaobject >

In the first part of the example, cross-references are not meant to provide char-

acterization of the text content, but to identify special rules for a given position

of the text. The second part is an example of the opposite situation: the location

of the element IMAGEDATA is not relevant, and what is important is the metadata

information conveyed by mean of its attributes. For instance, the attribute format

is used to declare the format of another part of the document, i.e. the image to

which it refers.

The fact that the position of this element is not relevant is confirmed by the DTD:

IMAGEOBJECT is a wrapper for IMAGEDATA, that is the only content allowed within

the element. This doesn’t mean that the location of an image is not important,

Chapter 3. Structural Patterns for document engineering 49

but only that this element is not meant to convey such information: the designers

of this format assigned this responsability to the elements INLINEMEDIAOBJECT and

MEDIAOBJECT, two ancestors of IMAGEDATA representing a media object within text

streams or structured content flows, respectively.

This organization of the contents is widely used by schema designers, and em-

bodies one of the principles of good design adopted in many different situations to

increase the regularity, clarity and maintainability of the documents. These obser-

vations led me to consider the possibility of revising the model of patterns in order

to distinguish between these two different uses of empty elements. In particular, I

decided to split the Marker pattern into two more specialized ones: the Milestone

pattern, that is meant to represent locations within the text content that are rele-

vant for any reason, and the pattern Meta, that represents metadata elements that

assert things about the document, but are not connected to its actual text content.

3.2.2 The Popup pattern

The patterns summarized in Section 3.1.2 are defined in terms of their content

models, that indicate the structures or text nodes (possibly intermixed with each

other) that an element can contain as well as their composition rules. The analysis

presented in Section 3.2.1 revealed a strong connection between the function of

empty elements (and, as a consequence, their characterization in terms of structural

patterns) and their position within the document structure. This observation has

led me to investigate the relevance of this aspect for other kinds of patterns. For

this purpose, I first informally introduce the notion of context as the elements in

which an element can appear.

There is a strong relation between the orthogonal dimensions of content models

50 Chapter 3. Structural Patterns for document engineering

and contexts. If an element A can contain an element B, in fact, two relations hold:

B belongs to the content model of A, and A belongs to the context of B. This notion

of context is therefore implicitly present in the definition of structural patterns, but

what I want to do here is to investigate whether the explicit management of this

aspect can improve the characterization of patterns, or emphasize structural features

that have not been covered.

The first thing that has emerged from the analysis of this new perspective relates

to the Table pattern. This pattern is defined as an ordered list used to group ho-

mogeneous objects into the same structure and, also, to represent repeating tabular

data. According to this notion, the elements footnote, that is used to include a se-

quence of paragraphs to be relegated to a footnote or endnote, and keywordset, that

serves as a container for homogeneous items (i.e. keywords) describing the paper,

are both instances of the Table pattern, as confirmed by their DTD definition.

<!ELEMENT footnote (para)+>

<!ELEMENT keywordset (keyword +)>

The content model of these elements are very similar, and an analysis limited to

this aspect would lead us to conclude that, from a structural point of view, they play

the same role. By extending the analysis to their context, a remarkable difference

clearly emerges: footnote can be contained within mixed content elements (i.e.

<emphasis>, <para>, <quote>, <subtitle>, <td>, <term>, <th> and <title>),

while the element keywordset is located into structures that do not contain text

directly (i.e. <info>, a container for the metadata pertaining the document) and

that gather a serie of elements under the same name or super-structure. The next

example clarifies this distinction.

<!-- BalisageVol7 -Sperberg -McQueen02.xml -->

Chapter 3. Structural Patterns for document engineering 51

<para >And the result has , of course , cost later working

groups some indeterminate number of months or years

<footnote ><para >If we count person -months , the number is

way too high , so we ’re talking about multiple person -

years or person -decades of time.</para ></footnote >

trying to patch problems in the formal underpinnings of

their specifications .</para >

<!-- BalisageVol7 -Maloney01.xml -->

<para >The JATS schemas are downloadable from the NLM site ,

and come in flavors <footnote xml:id="foot -flavors">

<para >" Flavor" is my term , which I haven ’t heard used

anywhere else. I will use it throughout this paper to

describe one of the main categories of JATS. One "

flavor" roughly corresponds to one top -level DTD file ,

which might itself have several versions. In a

detailed accounting , there are currently seven

flavors:<variablelist ><!-- OMITTED --></variablelist >

</para >

<para >This is somewhat complicated by the fact that the

NISO standard versions of JATS use a different version

numbering scheme , and so should also be considered

separate flavors , even though they are really just

newer versions of the existing NLM DTDs.</para >

</footnote >, which have different semantics and use cases.

These include Archiving <para >

52 Chapter 3. Structural Patterns for document engineering

<!-- BalisageVol10 -Delpratt01.xml -->

<info >

<confgroup ><!-- OMITTED --></confgroup >

<abstract ><!-- OMITTED --></abstract >

<author ><!-- OMITTED --></author >

<author ><!-- OMITTED --></author >

<legalnotice ><!-- OMITTED --></legalnotice >

<keywordset role=" author">

<keyword >XSLT </keyword >

<keyword >Browser </keyword >

<keyword >GWT </keyword >

<keyword >Java </keyword >

<keyword >JavaScript </keyword >

</keywordset >

</info >

The element footnote is one of the most representative examples of a family of

elements that are meant to include complex substructures that interrupt but do not

break the main flow of text.

Authors make extensive use of these structures to inject comments, references

and other more complex structured information within the text in close proximity

to the content to which they refer. Two different mechanism are used to represent

these common and widespread structures, the first suitable for static contexts such

as printed documents, and the other for interactive contexts such as digital systems.

In the first case, their content is extracted from the text, collected at the foot of the

page or under a separate heading in specific sections, and replaced by superscripted

symbols or markers that refers to the content. In dynamic contexts such as digital

Chapter 3. Structural Patterns for document engineering 53

libraries this approach is replaced by the pop-up technique: in this case, the element

content is hidden until the users decide to activate it by clicking or hovering on the

related mark in the text, and a small window with the content consequently appears

(“pops up”) in the foreground of the visual interface. Both of these solutions are

quite popular, since they realize what these structures are meant for: not to interrupt

the reader and, at the same time, to inform them about the presence of a related

information the can be accessed or shown on their demand, respectively.

For all the aforementioned reasons, I decided to introduce a new pattern named

Popup to the model of structural pattern presented in Chapter 4 to deal with similar

cases.

3.2.3 The Field pattern

The notion of context is a fundamental component of the revised pattern theory: for

instance, it provides a better characterization of relevant document structures such

as empty elements and popups, as described in the previous sections. In this section

I continue the analysis investigating the relation between the notion of context and

other three patterns: Block, Inline and Atom.

The context is an important aspect to differentiate between instances of the Inline

and Block patterns: indeed, these patterns share the same mixed content model,

with the difference that blocks can’t contain other block elements recursively (i.e.

blocks are not listed in the allowed elements). This means that inline elements have

mixed context (i.e. they can be contained in elements with mixed content models),

while blocks can only be contained in elements that do not contain text. For the

sake of brevity, from now on I will refer to this last type of context (i.e. elements

that can contain markup elements but not text) as bucket.

54 Chapter 3. Structural Patterns for document engineering

The notion of context can also be used to differentiate between the two most com-

mon functions played by atom elements. This pattern is meant for both capturing

the role of fragments within text streams, and for representing units of information

that are assembled to build more complex structures. In the following excerpt3, the

elements firstname and surname are examples of the first scenario, and biblioid

is an example of the second one:

<!ELEMENT firstname (#PCDATA) >

<!ELEMENT surname (#PCDATA) >

<!-- BalisageVol7 -Sperberg -McQueen02.xml -->

<author >

<personname >

<firstname >C. M.</firstname >

<surname >Sperberg -McQueen </surname >

</personname >

<personblurb ><!-- OMITTED --></personblurb >

<affiliation ><!-- OMITTED --></affiliation >

</author >

<!ELEMENT biblioid (#PCDATA) >

<!-- BalisageVol7 -Sperberg -McQueen02.xml -->

<bibliography >

<title >Bibliography </title >

<bibliomixed xml:id=" Coombs">Coombs , James H., Allen H.

Renear and Steven J. DeRose. "Markup systems and the

future of scholarly text processing ." <emphasis

role="ital">Communications of the ACM </emphasis > 1987

3BalisageVol7-Sperberg-McQueen02.xml

Chapter 3. Structural Patterns for document engineering 55

Nov; 30(11) :933 -947. doi:<biblioid class="doi">

10.1145/32206.32209 </ biblioid ></bibliomixed >

<!-- OMITTED -->

</bibliography >

Also in this case we can see that the different functions played by the elements

correspond to different contexts: firstname and surname, in fact, appear in a bucket

context, while biblioid is contained by a mixed content element. If we extend the

analysis to their DTD definition, we can verify that this fact is not a coincidence,

but it is a design choice made by the language developers, as shown in the following

excerpt:

<!ELEMENT personname (firstname | surname | lineage |

othername)*>

<!ELEMENT bibliomixed (#PCDATA | emphasis | link | quote |

biblioid)*>

As we can see, the element personname (which is the only element that can

contain firstname and surname) has a bucket content model, and the element

bibliomixed (which is the only container allowed for biblioid) has a mixed content

model. For this reasons, I decided to use two different patterns to handle these

situations separately: the Atom pattern is limited to represent only boxes of text

that are allowed in mixed elements, and the Field pattern (that I introduce here

for the first time) is meant to represent units of text organized in more complex

structures (i.e. they have a bucket context).

56 Chapter 3. Structural Patterns for document engineering

3.2.4 The Headed Container pattern

The structural patterns presented in section Section 3.1.2 includes three patterns

that can be used to model all those structures where diversified objects need to be

collected together: Container, Record and Table.

All of these patterns are quite similar, since they share the same content model

(i.e. bucket), and they also have the same context (i.e. bucket)4. The Container

pattern is the most general, and is defined as a set of heterogeneous, unordered,

optional and repeatable elements of any kind, except inlines. The Record pattern

is similar to Container, but it adds a constraint on the non-repeatability of the ele-

ments, and therefore can be considered as a specialization of the Container pattern.

The Table pattern is another subclass of Container, since it adds the constraints

that the elements must be homogeneous, and that they must be instances of the

Atom, Block or Record patterns.

There is also another similar case that should be investigated: in fact, it is

rather frequent to find containers whose content is preceded by one or more text

wrappers for number, headers or bullets. A typical example is the element section

from the Balisage Tag Set, whose content model is an heading composed of a title

(mandatory) and zero or more subtitles, followed by the actual content of the element

(i.e. block-level elements and sections).

<!ELEMENT section (

title , subtitle?, <!-- HEADING -->

(%para.level;)*, section* <!-- ACTUAL CONTENT -->

)

4It’s worth noting that all those situations where elements have bucket content and mixed
context are instances neither of Container, nor Record, nor Table, since they are addressed by the
Popup pattern by definition, as described in section Section 3.2.2

Chapter 3. Structural Patterns for document engineering 57

These structures are very important because they are often used as a major

division or subdivision of the text, to define the skeleton of the document, and

organize contents that are in some way related in groups of elements that concern

the same topic or fulfill the same functional role within the document structure.

Headed containers are often employed at any level of the hierarchy, and can nest

the one into the other: the following fragment, for example, shows how the entire

content of the document is organized around this pattern.

<!-- BalisageVol11 -Bruggemann -Klein01.xml -->

<article >

<title >Generating Schema -Aware XMLEditors in Xforms </title >

<info ><!-- METADATA --></info >

<section >

<title >Introduction </title >

<para >In his PhD work ...</para >

</section >

<section >

<title >Architecture </title >

<para >Components and their interactions are illustrated

in...</para >

<!-- THE CONTENT IS OMITTED -->

</section >

<!-- OTHER SECTIONS - OMITTED -->

<section >

<title >Related work </title >

<para >We briefly discuss ...</para >

</section >

<section >

58 Chapter 3. Structural Patterns for document engineering

<title >Discussion , conclusions and further work </title >

<para >Maalej in his PhD thesis ...</para >

</section >

<section >

<title >Acknowledgement </title >

<para >The comments of the anonymous referees have been

extraordinarily helpful. Thank you!</para >

</section >

<bibliography >

<title >Bibliography </title >

<bibliomixed xml:id=" RecXForms1 .1" xreflabel =" Boy09">John

M. Boyer , <emphasis >XForms 1.1</ emphasis >, W3C

Recommendation , W3C , October 2009

</bibliomixed >

<bibliomixed xml:id=" XSDatatypes" xreflabel =" BPM04">Paul

V. Biron , Kaiser Permanente , and Ashok Malhotra ,

<emphasis >XML Schema Part 2: Datatypes Second Edition

</emphasis >,W3C Recommendation , W3C , October 2004.

</bibliomixed >

<!-- OTHER BIBLIOGRAPHIC ITEMS -->

</bibliography >

</article >

The element article at the top of the hierarchy is an headed container: in fact,

it is composed by an heading with a title, followed by some metadata and a sequence

of sections concluded by the bibliography. A step down in the hierarchy, section

and bibliography also follow this pattern: the first gathers the main content of

Chapter 3. Structural Patterns for document engineering 59

the document, the latter the list of works referenced in the paper. As defined in the

DTD, sections can be recursively nested too, creating subsections, sub-subsections,

etc.

3.3 Towards a revised theory of structural pat-

terns

In this section I discuss the results of the analysis described in Section 3.2, and

examine how they relate to the two design principles that are the basis of the seven

patterns described in Section 3.1.2: syntactic minimality, i.e. a few objects and

composition rules are sufficient to express all the structures of a document, and

semantic expressiveness, i.e. pattern-based documents make explicit the semantics

of structures, relations and dependencies [36].

The first result of my investigation is the identification of four new patterns,

some of which are brand new (Popup and HeadedContainer), while others arise

from the refinement of other patterns (Milestone and Meta are the specialization

of the Marker pattern, and the Field pattern derives from the Atom pattern). In

the first analysis, one may think that this insertion increases the complexity of the

model and, as a consequence, violates the principle of syntactic minimality. In order

to clarify this point, it is important to discuss the differences between the objectives

of the segmentation model and my work.

The pattern-based approach described in Section 3.1.2 is based on the idea that

“any document can be segmented in some independent components and normal-

ized into a pattern-based projection, that only uses a very small set of objects and

composition rules” [36]. The minimality here is a strong requirement, because the

60 Chapter 3. Structural Patterns for document engineering

pattern-based model is the core of heterogeneous content management processes

and, as a consequence, the complexity of these systems depends on the complexity

of the model.

The objective of my work is to present a new approach to document analysis

based on the idea of structural patterns. In my vision, structural patterns can be

used to derive classes of elements persisting across documents and distilling the

conceptualization of the documents and their components, and can give ground for

automatic tools and services that do not rely on background information (such as

schemas) at all. The basic idea is to leverage the structure of the document to extract

information about the document itself. For example, this information can be used

in support of the entity extraction and information synthesis tasks, to recognize the

document components, to infer the logical organization of the document, to improve

the effectiveness of NLP techniques on the content of the document, to study the

rhetoric of the document and the structure of the argumentations, to derive citation

networks, to investigate the document readability, etc.

For all these cases, the most important aspect of the pattern theory that I

want to develop is not the minimality, but the ability to characterize in a precise

and complete way the structure of the document. In practice, a trade-off between

minimality/under-design and complexity/over-design must be considered:

• under-design: in the extreme case, we can imagine a theory consisting only of

the Inline pattern. Given a document, we could interpret each element as an

instance of the Inline pattern without violating such theory. Obviously, the

semantic expressiveness of this model is null, because it does not provide any

help either to design documents or to understand the document structure;

• over-design: on the other hand, the risk is to contemplate a set of pattern

Chapter 3. Structural Patterns for document engineering 61

too big. Given a document, we might consider, for example, the schema of

the document as our pattern language. A similar theory of patterns would be

useless, because it does not provide any further information to our analysis.

The pattern model that I intend to formalize should be placed in the middle

of these two extremes, and be able to express, manage and represent in a clear

and compact form the main information about the document structural semantics.

In particular, the design of the revised pattern model is characterized by three

properties:

• coverage: the ability to capture any possible situation in any document;

• terseness: the ability to represent the structure of a document with a small

number of objects and composition rules;

• expressiveness: the ability to make explicit the semantics of structures, rela-

tions and dependencies.

In order to analyze the relation between structural patterns and these prop-

erties, it is important to first introduce some concepts that are the core of the

pattern model. In particular, since in SGML and XML (and, in general, in all

the meta-markup languages based on the OHCO model [34]) the semantics about

the document structure derives from the containment relation, my work focuses on

two dimensions: content model, which is derived from the direct application of the

containment relationship, and the context, which is the inverse of the containment

relation. By combining the possible content models5 (i.e. Marker, Flat, Bucket,

5The possible content models are: mixed (textual content and other markup elements are al-
lowed), bucket (only markup elements), flat (only textual content) and marker (neither markup
elements nor textual content is allowed, i.e. they are empty elements).

62 Chapter 3. Structural Patterns for document engineering

Mixed) and contexts6 (i.e. Mixed and Bucket) it is possible to obtain eight general

patterns (i.e. Milestone, Meta, Atom, Field, Popup, Containerm Inline, Blocks)

that are the basis of the pattern theory.

Table 3.3: The eight patterns of the revised pattern model. Any possible situation
is covered by combining the four content models and the two contexts.
``````````````̀Context

Content model
MARKER FLAT BUCKET MIXED

MIXED Milestone Atom Popup Inline

BUCKET Meta Field Container Block

Coverage, terseness and expressiveness are closely related to the way in which

patterns are defined. For instance, as shown in Table 3.3, any possible situation is

covered by the resulting model7: in fact, there is exactly one pattern for each of

the possibile situations within documents (coverage). Moreover, the complexity of

any document is reduced to a few cases, i.e. the eight patterns (terseness). Finally,

these patterns represent the major classes of structures used to organize documents,

and each of them has a specific function and a precise characterization within the

structure of the document (expressiveness). Another important aspect that testifies

to the expressivity of patterns is the ability to develop useful application on top of

the pattern-based representation of documents, as described in Chapter 6.

Altough the limited set of patterns is able to give a meaningful and explicit char-

acterization of the document organization, other relations (e.g. order) and proper-

ties (e.g. cardinality) can be used to describe more specific behaviorss: for example,

6There are only two possible contexts: mixed (textual content and other markup elements are
allowed) and bucket (only markup elements are allowed).

7In XML, it’s very common to find element instances that occur in different contexts: in Doc-
Book, for example, the element citation may occur in a paragraph surrounded/not surrounded by
textual content – i.e. in a mixed/buckect context). Similarly, elements may have different content:
in a DocBook document, it may happen that some instances of the para element contain both text
and elements (i.e. they have mixed content), others only elements (i.e. they have bucket content),
others only text (i.e. they have flat content). These situations are discussed in Section 5.1.1.



Chapter 3. Structural Patterns for document engineering 63

Container has a very general definition, and it is thus useful to define subclasses that

describe situations all ascribable to the Container pattern, but that have a typicality

worth of their own pattern. The class Container, in fact, can be specialized into at

least three subclasses: HeadedContainer, Table, and Record.



64 Chapter 3. Structural Patterns for document engineering



Chapter 4

A revised theory of structural patterns

In this chapter I introduce a novel method to address document patterns, which

generates, in my view, a systematic collection of interesting patterns by specifying

a few meta-structures and some precise rules for combining them.

Patterns are organized around two orthogonal dimensions: their content model

and their context. The content model indicates the structures or text nodes (possibly

intermixed with each other) that an element can contain as well as their composition

rules, while the context indicates the elements in which that element can appear.

There is a strong relation between content models and contexts. If an element A can

contain an element B, in fact, two relations hold: B belongs to the content model

of A, and A belongs to the context of B. This constitutes the basis for the whole

theory. Order relations of the elements of a content model should also be considered,

and an example will be given in Section 4.2.

Instead of defining a large number of complex and diversified structures, we

found a small number of structural patterns that are sufficient to express what most

users need. The two main characterizing aspects of such set of patterns are:

• orthogonality – each pattern has a specific goal and fits a specific context. The



66 Chapter 4. A revised theory of structural patterns

orthogonality between patterns makes it possible to assign a single pattern to

each of the most common situations in document design. Conversely, for every

situation a designer encounters in the creation of a new markup language, the

corresponding pattern is immediately selectable and applicable;

• assemblability – each pattern can be used only in some contexts within other

patterns. Far from being a limitation, this strictness provides expressiveness

and non-ambiguity in the patterns. By limiting the possible choices, patterns

prevent the creation of uncontrolled and misleading content structures.

Patterns allow authors to create unambiguous, manageable and well-structured

documents. Also, thanks to the regularity they provide, it is possible to perform

easily complex operations on pattern-based documents even when knowing very little

about their vocabulary. Thus designers can implement more reliable and efficient

tools, can make hypotheses regarding the meanings of document fragments, can

identify singularities and can study global properties of sets of documents.

This chapter is organized as follows: in Section 4.1 I provide a formal definition

of the eight patterns at the basis of the theory; in Section 4.2 I describe three

situations that are ascribable to the Container pattern, but that have a typicality

worth of their own, and describe three new patterns to model them. Since the

pattern model is the result of a long project made by my research group, for the rest

of this chapter I will use the first plural person to indicate the research group I belong

to. The main contribution I gave to this part of the work is the bottom-up analysis

on document instances presented in Chapter 3, which brought, for instance, to the

identification of four new structural patterns, and the algorithm for the automatic

pattern identification and its evaluation described in Chapter 5: both of these works

have contributed to bring the pattern theory into the shape described in this chapter.



Chapter 4. A revised theory of structural patterns 67

4.1 The Pattern Ontology: core model

This section provides a definition of the concepts at the basis of the theory of struc-

tural patterns. This layer consists of precise definitions of some properties of markup

elements and their content. The whole theory is formally defined through description

logic formulas [61] [71] and has been implemented as an OWL ontology [79] avail-

able at http://www.essepuntato.it/2008/12/pattern. The choice of description logic

(DL) was mainly due to the application environment in which such meta-structures

are further processed. As I discuss later, in fact, I have developed an engine that

recognizes these patterns by exploiting Semantic Web technologies and OWL-DL

reasoning capabilities, which work on axioms of description logic. The transparent

integration with Semantic Web data was another key factor for using OWL-DL,

which allows the combination of the identification of meta-structures, as performed

through our ontology, with other sources of information so as to validate content

at different levels of abstraction and to perform sophisticated queries and analyses,

such as studying peculiarities of the documents and their editing processes.

4.1.1 Basic properties of content models and contexts

Markup elements are first organized in abstract classes from which the actual pat-

terns are derived. At the abstract level, markup elements can be organized in four

disjoint classes according to their ability to contain text and/or other elements.

We define Textual the class of markup elements that can have textual content

in their content models and NonTextual (clearly disjoint with Textual) the class of

elements that cannot. We also define Structured the class of markup elements that

can contain other markup elements, and NonStructured as the class of elements that



68 Chapter 4. A revised theory of structural patterns

cannot. These two classes are disjoint1.

Textual v >

NonTextual v >

NonTextual ≡ ¬ Textual

Textual u NonTextual v ⊥

Structured v >

NonStructured v >

NonStructured ≡ ¬ Structured

Structured u NonStructured v ⊥

We define the property contains (and its inverse isContainedBy) on Structured

to indicate the markup elements its individuals contain:

∃contains.> v Structured

isContainedBy ≡ contains -

By combining the four classes defined above we are able to generate four new

classes:

• class Marker. Individual of this class can contain neither text nodes nor ele-

ments.

• class Flat. Individual of this class can contain text nodes but no elements;

1The pattern theory is introduced by means of description logic (DL) formulas. I briefly intro-
duce the DL notation in order to help readers in reading the formalities of our theory: ”>” and ”⊥”
refer to the top concept (i.e. the concept with every individual as instance) and bottom concepts
(i.e. the empty concept); ”v” expresses concept inclusion; ”≡” expresses concept equivalence; ”¬”,
”t” and ”u” express negation, disjunction (i.e. union) and complement respectively; ”-” expresses
the inverse role, while ”∃” and ”∀” express existential and universal restrictions; ”≤” express the
at-most restriction ( ”≤nR” refers to the set of individuals that are related, through a relation R,
to at most n of other individuals); ”:” expresses a value restriction, (”R:v” is the set of individuals
that are related, through a particular relation R, to a specific value); for more details, see [61] and
[71].



Chapter 4. A revised theory of structural patterns 69

• class Bucket. Individual of this class can contain other elements but no text

nodes;

• class Mixed. Individuals of this class can contain other elements as well as text

nodes;

These classes are defined as follows and shown together with their superclasses

in Fig. 4.1.

Figure 4.1: The abstract classes defining the hierarchical structure structural pat-
terns are derived from. The arrows indicate sub-class relationships between patterns
(e.g. Mixed is sub-class of Structured).

Marker v NonTextual u NonStructured

Flat v Textual u NonStructured

Bucket v Structured u NonTextual

Mixed v Structured u Textual

The behaviour of the content models can be fully described by these classes.

Contexts can be characterized in a similar way, with the only important difference

that, since each element clearly appears only in a content model that accepts ele-

ments, i.e., in a structured content model, the context of an element can only be



70 Chapter 4. A revised theory of structural patterns

either Mixed or Bucket, depending on whether it contains text or not.

4.1.2 Structural patterns

The combination of the possible content models (i.e. Marker, Flat, Bucket, Mixed)

and contexts (i.e. Mixed and Bucket) bring the number to the identification of

distinct patterns to eight. The abstract classes of the ontology, in fact, can be

specialized into eight concrete patterns as shown in Fig. 4.2. Notice that, for each

pair of patterns derived from the same abstract class, the left one has a Mixed

context and the right one a Bucket.

Figure 4.2: The eight concrete patterns derived from the abstract classes of the
ontology. The arrows indicate sub-class relationships between patterns.

The relations between patterns, their content models and their contexts has

been summarized in the table in Section 3.3, that are repeated here in Fig. 4.3 for

convenience.

Figure 4.3: The eight patterns classified according to the particular content model
and context they have.



Chapter 4. A revised theory of structural patterns 71

Table 4.1 instead summarizes all patterns giving a brief description of their goal

and some examples from HTML and DocBook vocabulary [121].

Table 4.1: The eight structural patterns for descriptive documents.
Pattern Description HTML DocBook

Milestone

Any content-less structure (but data could be
specified in attributes) that is allowed in a mixed

content structure but not in a container. The
pattern is meant to represent locations within the

text content that are relevant for any reason.

br xref, co

Meta

Any content-less structure (but data could be
specified in attributes) that is allowed in a

container but not in a mixed content structure.
The pattern is meant to represent metadata

elements that assert things about the document,
but are disconnected from its actual text content.

meta, cols,
colspan, area

imagedata,
colspec

Atom
Any simple box of text, without internal

substructures (simple content) that is allowed in a
mixed content structure but not in a container.

- email, code

Field
Any simple box of text, without internal

substructures (simple content) that is allowed in a
container but not in a mixed content structure.

title
pubdate,

publishername

Popup

Any structure that, while still not allowing text
content inside itself, is nonetheless found in a

mixed content context. The pattern is meant to
represent complex substructures that interrupt

but do not break the main flow of the text, such
as footnotes.

- footnote, tip

Container

Any container of a sequence of other substructures
and that does not directly contain text. The

pattern is meant to represent higher document
structures that give shape and organization to a
text document, but do not directly include the

content of the document.

html, body,
table, map

bibliography,
preface

Inline

Any container of text and other substructures,
including (even recursively) other inline elements.

The pattern is meant to represent inline-level
styles such as bold, italic, etc.

b, i, a, span emphasis

Block

Any container of text and other substructures
except for (even recursively) other block elements.

The pattern is meant to represent block-level
elements such as paragraphs.

p, div, address para, caption

We give now a formal characterization of these patterns and their relations.

In the following subsection we also describe some specializations of the Container



72 Chapter 4. A revised theory of structural patterns

pattern that occur frequently.

The first two patterns are used for the elements that contain neither other el-

ements nor textual content. We in fact define two subclasses of the class Marker:

Milestone andMeta.

The elements of the Milestone pattern are empty and can only be contained

within mixed elements. The formal definition of this class is as follows:

Milestone ≡ Marker u ∀isContainedBy.Mixed

Milestone v ∃isContainedBy.Mixed

Since Milestone elements are surrounded by text nodes, their distinctive char-

acteristic is the location they assume within the document. Examples of DocBook

elements typically used as compliant with the Milestone pattern are xref and co.

The class Meta characterizes empty elements that are placed in a content-only

context. Unlikely Milestones, their main characteristic is their mere existence, inde-

pendently from the position they have within the document. Meta elements often

convey information about the whole document or specific parts of it, independently

of their position (e.g., the elements imagedata or colspec in DocBook). Meta elements

can be contained only within Bucket elements, formalized as follows:

Meta ≡ Marker u ∀isContainedBy.Bucket

Meta u Milestone v ⊥

Other patterns are used for the elements that can contain text but no other

elements. They specialize the class Flat in our ontology.

Atom is the class of elements that contain only literal text (and no other elements)

within the document body. Similarly to Milestone, elements of the Atom pattern

can only be contained within mixed elements (and consequently they also cannot be

used as root elements of documents).



Chapter 4. A revised theory of structural patterns 73

Atom ≡ Flat u ∀isContainedBy.Mixed

Atom v ∃isContainedBy.Mixed

The class Field describes literal metadata or text that is not really part of the

document body, differently from its disjoint sibling Atom. Field is similar to Meta

but the main difference is that Field can contain textual content, while Meta cannot:

Field ≡ Flat u ∀isContainedBy.Bucket

Field u Atom v ⊥

Examples of DocBook elements typically used as compliant with the Field pat-

tern are pubdate and publishername.

The class Bucket is specialized into two subclasses to be used for complex struc-

tures: Popup and Container. Popup is the class of elements that is only present

within mixed elements (and consequently they also cannot be used as root elements

of documents) but only contain other elements. Elements following this pattern have

no textual content and contain only elements compliant with the patterns Meta,

Field, Block (that will be introduced in the following) and Container, as shown in

the following excerpt:

Popup ≡ Bucket u ∀isContainedBy.Mixed

Popup v

∀contains .( Container t Field t Meta t Block) u

∃isContainedBy.Mixed

Popup elements are used whenever complex structures need to be placed within

content elements such as paragraphs. Examples of DocBook elements typically used

in a way compliant with the Popup pattern are footnote and tip.

The sibling pattern Container concerns the structural organization of a docu-

ment. Elements following this pattern contain no textual content and contain only



74 Chapter 4. A revised theory of structural patterns

elements compliant with the patterns Meta, Field, Block and Container. Container

shares the same content model of Popup but they may be contained only in bucket

elements, which makes these classes disjoint. Its formalisation is as follows:

Container ≡ Bucket u ∀isContainedBy.Bucket

Container v ∀contains .( Container t Field t Meta t Block)

Container u Popup v ⊥

Examples of DocBook elements typically used as compliant with the Container

pattern are bibliography and preface.

The last two classes are derived from the abstract class Mixed and are meant to

be used where text nodes are mixed with elements that are further nestable: Block

and Inline.

Block is the class that organises the document content as a sequence of other

nestable elements and text nodes. Elements of the class Block can contain text and

other elements of patterns Inline, Atom, Milestones and Popup it is a requirement

that they are contained only within Bucket elements:

Block ≡ Mixed u ∀isContainedBy.Bucket

Block v ∀contains .( Inline t Atom t Milestone t Popup)

Inline is the class of elements that have the same use and content model of the

pattern Block, but differing primarily because:

• they can contain other elements of the same pattern (block elements cannot);

• they can only be contained in mixed elements, i.e., inline and blocks.

These constraints imply that inline elements cannot be used as root elements of

documents and that Block is disjoint with Inline (i.e., a markup element cannot be

a block and an inline at the same time):



Chapter 4. A revised theory of structural patterns 75

Inline ≡ Mixed u ∀isContainedBy.Mixed

Inline v

∀contains .( Inline t Atom t Milestone t Popup) u

∃isContainedBy.Mixed

Block u Inline v ⊥

4.2 The Pattern Ontology: specializations of the

Container pattern

Container has a very general definition. It is thus useful to define subclasses that

describe situations all ascribable to the Container pattern, but that are distinctive

enough to merit their own distinct pattern. The class Container, in fact, can be

specialized into at least three sub-classes (HeadedContainer, Table and Record) as

shown in Fig. 4.4.

Figure 4.4: The three subclasses of the class Container.

Table 4.2 on the next page describes briefly these patterns and reports some

examples in HTML and DocBook. Their formalisation follows in this section.

While the content model of structured elements (i.e. mixed and bucket elements)

can contain any kind of optional and repeatable selection of elements, we need to be

able to define some restrictions to their element repeatability so as to characterise



76 Chapter 4. A revised theory of structural patterns

Table 4.2: The three sub-patterns of the Container pattern.
Pattern Description HTML DocBook

Record

Any container that does not allow substructures
to repeat themselves internally. The pattern is
meant to represent database records with their

variety of (non-repeatable) fields.

html
address,
revision

Table

Any container that allows a repetition of
homogeneous substructures. The pattern is meant
to represent a table of a database with its content

of multiple similarly structured records.

ul keywordset

Headed
Container

Any container starting with a head of one or more
block elements. The pattern is usually meant to
represent nested hierarchical elements (such as

sections, subsections, etc., as well as their
headings). This is the only pattern we use that

requires the specification of an order in the
sequence of the components.

-
section,
chapter

the specialisation of the Container pattern. We thus define the boolean properties

canContainHomonymousElements, true if the element can contain elements that

share the same name2 of XML elements., and canContainHeteronymousElements,

true if an element can contain elements with different names. In addition, we define

containsAsHeader as a sub-property of contains to specify when a structured-based

element contains header elements.

∃canContainHomonymousElements.> v Structured

> v ≤1canContainHomonymousElements

∃canContainHeteronymousElements.> v Structured

> v ≤1canContainHeteronymousElements

containsAsHeader v contains

Through these new properties, we can define, among many, three subtypes of

the Container pattern that we found particularly useful. For instance, the pattern

Record captures the characteristics (typical of database records) of having many

2By name we mean the pair (namespace, generic identifier)



Chapter 4. A revised theory of structural patterns 77

differently named elements with no repetitions. As such, its element can only contain

heteronymous and non-repeatable elements, as in the following axioms:

Record ≡

Container u

canContainHomonymousElements:false u

canContainHeteronymousElements:true

Examples of DocBook elements typically used as compliant with the Record

pattern are address and revision.

On the opposite end, we find elements that allow a repetition of elements of

the same name, as a database table allowing many homogeneous records. For this

reason we call this pattern Table. Elements compliant with the Table pattern must

contain only homonymous elements (that can be repeated), as follows:

Table ≡

Container u

canContainHomonymousElements:true u

canContainHeteronymousElements:false

Representative DocBook elements that are commonly used as compliant with

the pattern Table are keywordset.

Finally also rather frequent in documents is the pattern where content is preceded

by one or more text containers for numbers, headers or bullets. It is interesting to

note that, in our experience, this is the most general case in which the order of

the elements of a content model is relevant. We call HeadedContainer the subclass

of Container whose content model begins with one or more block elements (the

heading), as specified through the property containsAsHeader :

HeadedContainer v Container u ∀containsAsHeader.Block



78 Chapter 4. A revised theory of structural patterns

Examples of DocBook elements typically used as compliant with the Headed-

Container pattern are section and chapter.

Finally, it is also important to require that these subclasses of Container are all

reciprocally disjoint, as follows:

Table u Record v ⊥

HeadedContainer u Record v ⊥

HeadedContainer u Table v ⊥

Of course this is by far not a complete selection of the possible or the useful

subclasses of containers, but are found quite frequently in real documents and for

this reason they were identified and named. All other variations in the use of the

Container pattern will be categorized simply as Containers.



Chapter 5

Recognising structural patterns in

XML-based documents

In order to verify whether the theory of patterns presented in the previous chapter is

adequate and complete, I describe here an algorithm for the automatic identification

of structural patterns in XML documents that relies on no background information

about the vocabulary, its intended meaning and its schema. This algorithm takes as

input a set of XML documents using the same vocabulary, and produces as output

a pattern scheme, that is a list of associations element-pattern.

It’s worth noting that, in the last step of the computations, the algorithm ex-

ploits Semantic Web technologies to verify that the results comply with/validate

the results of the analysis against the theory of patterns. The basic idea is to

process with an OWL reasoner the Pattern Ontology (TBOX) and the EARMARK

representation of the documents enriched with the information about the pattern as-

signments (ABOX) in order to check the overall consistency. This method is similar

to the approach described in [42] to validate markup documents against syntactical

constrainst expressed in schema.

Finally, I present an experiment I performed on eight different vocabularies for



80 Chapter 5. Recognising structural patterns in XML-based documents

a total of more than 1100 documents. The main objectives of this test are to check

the adequacy and completeness of the theory of patterns, and to verify whether the

characterization provided by a pattern-based analysis can provide valuable insights

for comparing different languages.

This chapter is organized as follows. In Section 5.1 I introduce the concepts

of coherency, pattern shift, partition and pattern scheme that are the basis of the

algorithm for the automatic identification of structural patterns. In Section 5.2 I

describe a language-independent algorithm that assigns patterns to the elements of

XML documents. In Section 5.3 I evaluate the algorithm on a set of 1100 documents

from eight different vocabularies.

5.1 Assigning patterns to documents

The theory introduced in the previous chapter allow us to assign one specific pattern

to each element of a document, by analysing its local content model and context.

Let us introduce an example to clarify this issue1:

<section >

<title >Available physical types </title >

<para >As a result of a query execution ...</para >

<para ><emphasis role="ital">Note:</emphasis > The preceding

subsection introduced the notion of physical types ...

</para >

<table >

<caption >

1The full version of the document is available online at the address
http://www.balisage.net/Proceedings/vol5/xml/Rennau01/BalisageVol5-Rennau01.xml. Some
content has been removed for the sake of clarity.



Chapter 5. Recognising structural patterns in XML-based documents 81

<para >

<emphasis role="bold"><emphasis role="ital">Summary

of Java types delivered by XQJ.</emphasis >

</emphasis >

</para >

</caption >

<col align ="left" valign ="top" span ="1"/>

<thead >

<tr valign ="top">

<th align ="left" valign ="top">category </th >

<th align ="left" valign ="top">types </th >

</tr >

</thead >

<tbody >

<tr valign ="top">

<td><emphasis role="bold">atomic types </emphasis >

</td>

<td>Boolean , BigDecimal , BigInteger , ...</td >

</tr >

<tr valign ="top">

<td><emphasis role="bold">node types </emphasis ></td >

<td>Document , Element , Attr , <!-- OMITTED --> </td >

</tr >

</tbody >

</table >

<para > <!-- OMITTED --> </para >

</section >



82 Chapter 5. Recognising structural patterns in XML-based documents

I can identify the content model (CM) and context (CTX) of all the markup

elements in the previous excerpt, and consequently their actual structural patterns:

• the element section is a HeadedContainer (CM = Bucket with element title

as heading, CTX = Bucket, since it is contained in the document element

article);

• the element title is Block (CM = Mixed, CTX = Bucket);

• the first para child of section is Field (CM = Flat, CTX = Bucket), thesecond

para child of section is Block (CM = Mixed, CTX = Bucket) and the last para

child of caption is Container (CM = Bucket, CTX = Bucket);

• the first emphasis is Atom (CM = Flat, CTX = Mixed), the second is Con-

tainer (CM = Bucket, CTX = Bucket), and the last three are Field (CM =

Flat, CTX = Bucket);

• the element table is a Record (CM = Bucket of heteronymous elements, CTX

= Bucket);

• the elements caption and thead are Container (CM = Bucket, CTX = Bucket)

• the elements col are Meta (CM = Marker, CTX = Bucket).

• the elements tbody and tr are Tables (CM = Bucket of Homonymous elements,

CTX = Bucket);

• the first and the third td elements are Container (CM = Bucket, CTX =

Bucket);

• the second and forth elements td are Field (CM = Flat, CTX = Bucket).



Chapter 5. Recognising structural patterns in XML-based documents 83

This example shows that, athough in most cases the pattern assignment is clear,

there are some elements (i.e. para, emphasis and td) that can be associated with

more than one pattern. In the following sections I investigate these ambiguous

situations.

5.1.1 Coherency and pattern shifts

As seen in the previous section, individual assignments may generate inconsistencies,

where the same element in different parts of the document is assigned to different

patterns. These inconsistencies are often legitimate and solvable, although in other

cases they are more complex to deal with.

Definition 1: local coherency. An element E is locally coherent if all its

instances in a document share the same structural patterns, otherwise it is locally

incoherent. For instance, in the previous excerpt the elements caption, col, section,

table, thead, tbody and tr were locally coherent, while the elements para, td and

emphasis were locally incoherent.

Of course, the previous definition can be also applied to a set of documents rather

than just one, so we need a broader definition:

Definition 2: global coherency. An element E is globally coherent according

to a set of documents S if all its instances in the set S have the same structural

patterns. Of course, the global coherency of an element implies its local coherency

within any document in the set.

The local or global incoherency is not a problem per se. In some cases it is

possible to consider a different pattern for an element, so that its incoherency is

reduced or completely eliminated. I call these pattern modifications shifts.

Consider, for instance, two HTML documents both containing the element strong.



84 Chapter 5. Recognising structural patterns in XML-based documents

In one case all occurrences of strong contain plain text, so that strong is classified

as Atom. In the other document, some instances of strong contain both text and

an emph element, thereby they are classified as Inlines. The presence or absence of

further elements within strong does not imply that the element is meant to cover

two different needs in the two documents. It just depends on the specific content of

each of them. Thus, we can shift the first assignment from Atom to Inline, achieving

a global correct coherency. Notice that the same shift could also be valid within one

single document.

Other shifts are also possible. For instance, an element that is recognized as

Field in some documents and as meta in others can be shifted into a Field. That

means that some information is missing in the second case, but all occurrences can

be considered as empty fields without loss of information. Similar considerations

can be extended to Fields and Blocks. Consider for instance the case of a title.

In most cases title contain plain text (and the corresponding element is probably

classified as Field), while in others they also include in-line elements such as bold

or italic formatting (and are classified as Blocks). Shifting into Block in both cases

is legitimate and increases global coherency.

It is also possible that more than two patterns are assigned to the same markup

item within the same document. Consider for example the element td that represents

a cell of an HTML table: it is possible that the majority of the cells within a table

contain only plain text and therefore are recognized as Field, whereby other cells

contain only elements (such as images, links, etc.), and as such are classified as

Containers yet other cells are completely empty so that they are assigned to pattern

Meta. This situation is handled by shifting all the elements to the most general

case, i.e., in this case, the pattern Block.



Chapter 5. Recognising structural patterns in XML-based documents 85

All the admissible shifts are indicated with arrows in Fig. 5.1. They allow us to

change the content model of an element without changing its context. Shifts that go

in the opposite direction are not valid, as they would lose information. For instance,

they would not consider the presence of text when shifting back from Bucket to

Marker.

Figure 5.1: All the acceptable shifts. The asterisk as label of the arrow between
Bucket and Mixed refers to a particular case of shifts, called shifty-shifts, which are
still possible even if they change drastically the context (and, thus, the pattern) of
all the elements contained by the shifted one.

I define the coherency obtained through shifts as follows.

Definition 3: coherency by shifting. A (globally or locally) incoherent

element E is (globally or locally)coherent by shifting if all its instances have the

same context, and their content models can be acceptably shifted so as to reach the

same content model.

There is a particular kind of shifts called shifty-shifts, labelled with an asterisk

in Figure 5, which is particularly delicate to address. A shifty-shift from Bucket

to Mixed applied on an element E actually changes the context of all the children

of E, and may change radically the structure of a document. It is the case of the

elements td in the previous example, which can be shifted to Blocks and, thus,

modify the nature of all the elements para they contain from Block to Inline. Were



86 Chapter 5. Recognising structural patterns in XML-based documents

this to happen to an element in the higher levels of the document hierarchy, even

within a single document of a large set, it would completely disrupt the nature of

all documents, whereby, for instance, the document element becomes the only Block

and everything inside it becomes an indistinguishable Inline.

5.1.2 Pattern schemes and partitions

Once I have identified the patterns of the several element instances of a set of

XML documents, I can group all the mappings element instance-pattern according

to pattern schemes:

Definition 4: pattern scheme. Given a finite set of XML documents D, a

pattern scheme S D is the set of all the mappings from element instances in D to

patterns.

Of course, pattern schemes can contain locally/globally coherent/incoherent map-

pings according to the situations encountered. In these cases, e.g., in the presence of

global incoherency (but overall local coherency), I can generate two or more pattern

sub-schemes by partitioning the set of documents so as to reach global coherency in

each subset.

Definition 5: partition. A partition of a pattern scheme S D is a set of pattern

schemes SDi where each Di belongs to the same partition of D and each SDi is globally

coherent.

Of course, the presence of locally incoherent documents prevents partitions to

even exist (there would be at least one globally incoherent sub-scheme), but, ban-

ning this situation, I can verify whether there are partitions of the scheme that are

actually adopted by large set of authors of a document set.



Chapter 5. Recognising structural patterns in XML-based documents 87

5.2 An algorithm for the automatic recognition

of structural patterns

In this section I describe an algorithm2 that assigns patterns to the elements of one

or many XML documents (using the same vocabulary) relying on no background

information about the vocabulary, its intended meaning and its schema. The overall

process assigns first a structural pattern to each element in the document trying

to achieve local coherency or, if necessary, coherency-by-shifting, and then tries to

achieve global coherency, possibly by applying even more shifts. If this is not possible

it stops prompting the user to identify possible partitions of the dataset. The goal

is to understand to what extent patterns are used in that set of documents.

The first part of the algorithm takes as input a single XML document. If the

algorithm manages to obtain local coherency it succeeds, otherwise it returns point-

ers to the elements that generate inconsistencies. The overall process is performed

in five steps:

Identification of potential content models and contexts. In this step

I identify which of the four possible content models – empty (i.e. Marker), only

text (i.e. Flat), only element (i.e. Bucket), both text and element (i.e. Mixed) –

can be associated with each element, and thereby to identify the context for each

of its children. This is the place where shifts come into play: whenever different

occurrences of the same element appear to have different content models it tries to

generalize them in a single one.

Pattern assignment. Next, a pattern is assigned to each element instance,

starting from the content model and context identified in the previous step. This is

2The source code of the algorithm is available online at
http://fpoggi.web.cs.unibo.it/patterns/|



88 Chapter 5. Recognising structural patterns in XML-based documents

a direct application of the rules summarized in Figure 3.

Local coherency check. Next, a check is performed to verify whether the

document has reached local coherency after the pattern assignments. To do so, it is

sufficient to verify that all instances of the same element have been assigned to the

same pattern. Notice that two instances of the same element will always have the

same potential content model (since it has been derived by shifting on all instances)

but can still have different contexts when used in different locations. If no further

shifts are possible, the algorithm concludes that the document is locally inconsistent

and reports the elements generating the problem.

Container specialization. This step is meant to identify the three subclasses

of Container (Table, Record, and HeadedContainer) by following the rules discussed

in Section ”Specialisations of the Container pattern”. The algorithm uses the data

collected so far in order to discern the Container elements: it retrieves all instances of

Container, groups them by the name of the element and checks which specialization

rules can be applied. If none of these rules can be applied, the element remains a

Container. There is a borderline case worth discussing, in which every element of a

group has only one child node and these children nodes have the same name. These

elements therefore lie at the intersection of the pattern Table and Record, and are

arbitrarily assigned to the pattern Table.

The opposite operation, container generalization, can be performed as a

step towards global coherency: generalizing Records, Tables, HeadedContainers into

simple Containers. Consider, for instance, the case of an element recognized as

record in some documents and table in others. That might happen because the

element is meant to collect heterogeneous information but, in some cases, it contains

several different elements with no repetitions while in others it only contains only



Chapter 5. Recognising structural patterns in XML-based documents 89

one element (and is therefore recognized as Table). It is therefore appropriate to

generalize these patterns as Containers. Of course generalizing to containers is in a

way to surrender the specialization of the containers and accept that some containers

simply cannot be generalized. Fortunately, the recourse to this operation has been

restricted to just a few well-justified situations.

Validation. The last step consists in verifying whether the associations between

elements and patterns are valid. This is actually an optional step, just added to

improve reliability and to double-check the final output. As described in [42], this

test can be performed easily using the technologies of the Semantic Web in three

steps:

• converting the XML document given in input in EARMARK [42] a version of

the conversion tool is available online3);

• associating the previously calculated pattern to each element (through a rdf:type

assertion);

• launching a reasoner such as Pellet [102] or Hermit [96] to check if the Pattern

Ontology4 with these added assertions (the EARMARK document and the

pattern associations) is consistent (all the pattern constraints hold) or not

(there are some errors when assigning patterns to elements).

Once the algorithm just described is applied to each document in a dataset,

documents locally incoherent are discarded and global coherency of the remaining

ones is verified by comparing each execution against each other and by applying,

where possible, the aforementioned global shifts, including container generalization

as explained.

3http://www.essepuntato.it/xml2earmark
4Pattern Ontology: http://www.essepuntato.it/2008/12/pattern.



90 Chapter 5. Recognising structural patterns in XML-based documents

5.3 Evaluation: checking patterns on live docu-

ments

The operation of automatic recognition of the structural pattern described in the

previous section is independent from the markup language of the documents taken

into account and, consequently, from their schema. I mean to focus on how most

authors of documents actually choose their markup, rather than on how the designers

of the schema give room to special needs of a small number of authors.

For instance, the development of vocabularies used by large communities such

as TEI [113] and DocBook [121] has been (and still is) a long process that had to

deal with complex constraints: schema designers are often required to capture all

requirements of their prospective users, covering very heterogeneous situations and

foreseeing any potential validation mismatch or misinterpretations. These difficulties

conspire to produce rich, complex schemas, that require time and effort to be fully

understood and applied, but that have an extremely simple core.

I rather propose to analyze the characteristics that emerge from real markup

documents, not preventing any peculiar use of the elements still allowed by the

schema, but trying to go for the simple core of the language as it is actually used by

the majority of document authors. In particular I want to check if the theory based

on eight simple structural patterns is able to capture and summarize the guidelines

used by the authors of markup documents in their independent everyday practice.

How do real documents perform compared against the theory of patterns? In

this section I discuss the e, together with instructions on how to run thexperimen-

tal results of tests runs of my algorithm to determine the actual use of patterns

by document authors. These tests largely confirm my hypotheses, but raise some



Chapter 5. Recognising structural patterns in XML-based documents 91

unexpected issues.

In order to build a representative data set I collected about 1200 documents from

eight different XML vocabularies. Vocabularies cover very different domains: from

literary documents to technical documentation, from web pages to databases dumps,

from conference proceedings to cookbooks. Documents vary a lot in terms of size and

number of elements, and they were downloaded from very heterogeneous sources, all

freely accessible on the Web. Table 5.1 on the next page briefly describes the sets

of documents I studied, while full sources and the outcomes of my experiments are

available at http://fpoggi.web.cs.unibo.it/patterns/.

I evaluated each group of documents separately. My goal was to study to what

extent the structural organization of those documents was close to my pattern-based

meta-model. To do so, I ran a Java implementation of the algorithm presented in

the previous section on each paper, and then compared and combined these results

for the overall dataset.

Results are encouraging. A summary view is given in Fig. 5.2 on page 93, where

each point corresponds to a set of documents.

The Y-axis indicates the percentage of documents recognized as locally coherent

(whose elements are all locally coherent). In half of the sets the assignment of pat-

terns was complete and straightforward for all documents. In others I found several

locally incoherent documents but most of the elements of those documents were

still used according to my patterns. The X-axis, in fact, indicates the percentage of

elements of the vocabulary that are globally coherent (i.e. are associated with one

single pattern of my model). In six sets over eight the authors used more than 80%

of the elements in a pattern-based fashion.

Moreover, a detailed analysis of discrepancies shows that most of the mismatches



92 Chapter 5. Recognising structural patterns in XML-based documents

Table 5.1: The full dataset used to evaluate patterns.

Vocabulary Source #files
Min
size

(bytes)

Max
size

(bytes)

Avg
size

(bytes)
#elements

1 GXL

GXLThe full set of examples in the
official documentation of GXL 1.0,

available at:
http://www.gupro.de/GXL/

21 578 32635 4733 14

2 RecipeML

RecipeMLThe first five archives of
recipes from the Squirrel’s RecipeML

Archive, available at:
http://dsquirrel.tripod.com/recipeml/←↩

indexrecipes2.html

498 895 7196 2526 16

3 MusicXML

MusicXMLThe full MusicXML
test-suite used to test the LilyPond

program, available at:
http://lilypond.org/doc/v2.17/←↩

input/regression/

127 828 41760 6587 273

4 FictionBook

FictionBookSome randomly
downloaded books available at:

http://fictionbook-lib.org/
100 69379 3464352 650375 61

5 EPrintXML

EPrintXMLSome randomly
downloaded descriptors form the

Caltech Institute public repository,
available at:

http://caltechln.library.caltech.edu/←↩
eprints/

50 3768 123081 26660 80

6 XHTML

XHTMLThe full version of the Koran
published by LiberLiber and freely

available at: http://www.liberliber.it/
125 5551 261855 33328 31

7 DocBook

DocBookSome randomly downloaded
papers from the proceedings of the

Balisage Series Conferences, available
at: http://www.balisage.net/

117 3283 161337 61053 64

8 TEI

TEI Some randomly downloaded files
from the Gutemberg Project available

at: http://www.gutenberg.org/
90 40245 1965027 445865 92



Chapter 5. Recognising structural patterns in XML-based documents 93

Figure 5.2: Figure 6. The percentage of locally coherent files and globally coherent
elements for each language in the dataset.

are generated by a small number elements that impact on other elements. It is worth

remarking that I did not analyse the definition of the elements in the vocabulary

scheme (DTD or XML Schema or whatever), but rather I examined how these

elements are actually used in real documents.

Thus, I organized this evaluation section in three parts: (i) vocabularies from

which I managed to get global coherency, (ii) vocabularies from which such extrac-

tion was not possible but in which inconsistencies were localized and easy to spot

and solve, and (iii) vocabularies whose usage is quite far from my model. In the

next subsections I go into details of each vocabulary.



94 Chapter 5. Recognising structural patterns in XML-based documents

5.3.1 Full adherence or convergence to patterns

In three experiments I obtained global coherency. These vocabularies define the

structure of graphs (GXL), musical scores (MusicXML) and ingredients of recipes

(RecipeML). For each of them, in fact, it was possible to automatically derive a

univocal patterns scheme by applying shifts. Table 5.2 summarizes these results.

Table 5.2: The result of checking patterns on three very structured vocabularies,
which adhere to our theory natively or after a normalization phase.

Set #files
# locally
coherent

# ele-
ments

# elements
generating

local
incoherency

# elements
globally

coherent (no
global shifts and

containers
generalization)

# elements
globally coherent

(with global
shifts and
containers

generalization)

1 GXL 21
21

(100%)
14 0 (0%) 11 (80%) 14 (100%)

2 RecipeML 498
498

(100%)
16 0 (0%) 10 (62%) 16 (100%)

3 MusicXML 127
127

(100%)
273 0 (0%) 230 (84%) 273 (100%)

Before going into details of each vocabulary, it is interesting to discuss some

commonalities among them. First of all, they are all data-centric. This means

that the content is organized in highly regular structures, such as containers and

records. Thus, the regular and rule-based approach suggested by my patterns fits

very well the needs of the users. They also use few mixed content models, mainly

for descriptions and comments, which reduces the number of shifts and makes it

easier to assign patterns. The number of elements in the vocabulary, on the other

hand, does not affect the results: GXT, using 14 elements, has a similar behaviour

to MusicXML, which has 273.

• GXL: 21 files using the Graph eXchanges Language, a format to describe

graphs and define constructs such as edges, nodes and relations in a very



Chapter 5. Recognising structural patterns in XML-based documents 95

structured way. Each file in the dataset is locally coherent. 11 elements out of

14 are used in exactly the same way in all files (80% of the total elements in

the data set). By applying global shifts and containers generalization, I easily

managed to found a single pattern scheme valid for the whole dataset.

• RecipeML: 498 documents, while the number of elements in the vocabulary

is basically the same (16). All documents were locally coherent. Furthermore,

62% of the elements were assigned to the same pattern in all documents in

the data set, up to 93% by applying global shift. This happened, for instance,

to the element qty, used to indicate the amount of each ingredient in a recipe

and recognized as field in 475 documents and as meta in 10 documents, and to

the element title used 419 times as field and 79 times as block, and eventually

classified as block.

• MusicXML: 127 documents in a vocabulary that counts a much large num-

ber of elements than the others, 273. Yet, I managed to generate one globally

coherent partition with the same techniques of the previous sets. 230 elements

were associated with exactly the same pattern for all documents (84% of the

elements), and the result were globally incoherent in a rather small number

of documents, mainly due to incomplete data. Results were refined to 100%

coherency by aggregating (1) different types of containers into a more general

pattern (as in the case of the elements bend, type and para-list), or (2) empty

fields and meta (as for fermata and part-name), or (3) blocks and fields (beats

and key-alter), (4) elements recognized as containers in most of the docu-

ments, and in some cases, being empty, recognized as meta (that involves, for

instance, the elements ornaments and rest). This happens because some infor-

mation is not mandatory in the schema or simply missing in specific instances.



96 Chapter 5. Recognising structural patterns in XML-based documents

Considering that there are a few of these cases, I can shift into the pattern

Container and achieve a reasonable global coherency on the whole set.

5.3.2 Large adherence

For two sets the number of elements that could not bring to local nor global co-

herency was low and I can conclude that they largely adhere to patterns. Table 5.3

summarizes my results.

Table 5.3: The result of checking patterns on some vocabularies, which adhere
largely to our theory.

Set #files
# locally
coherent

# ele-
ments

# elements
generating

local
incoherency

# elements
globally

coherent (no
global shifts and

containers
generalization)

# elements
globally coherent

(with global
shifts and
containers

generalization)

4 FictionBook 100 97 (97%) 61 1 (2%) 34 (56%) 56 (92%)

5 EPrintXML 50 12 (24%) 80 2 (3%) 57 (71%) 72 (90%)

• FictionBook: 100 documents compliant with FictionBook, an XML vocab-

ulary to encode the structure of e-books, using a total of 61 elements. I can

conclude that a large part of the schema substantially uses patterns. Three

documents were locally incoherent: in most cases, the problem was with the

element emph; the authors used often this element to emphasize entire para-

graphs. In some cases the element was placed outside of the paragraph, in oth-

ers just inside, around the textual content of the paragraph, in others around

pieces of text, in others around inline elements (strong, sup). Such differences

made impossible a straight interpretation of the element. Other troublesome

cases are empty-line (recognized as milestone in 81 files and as field in 1 file,

since it contained one whitespace character) and text-author (recognized as



Chapter 5. Recognising structural patterns in XML-based documents 97

atom in 36 files and as table in 1 file, since the content was structured in a

sequence of very short paragraphs). For these 2 elements no shift or reduction

was possible. I consider this an acceptable result.

• EprintXML The collection I studied was composed of 50 files encoding meta-

data about scientific papers, theses, reports and teaching material. The num-

ber of locally coherent files was very low: 12 over 50. This apparently rather

bad result can be mitigated by observing that errors were connected to only

two elements: type and url. In these files, in fact, these elements are rec-

ognized sometimes as atoms and sometimes as fields, thereby preventing any

shift. Looking at data more carefully an interesting aspect comes to the light.

Both these elements are direct children of the element item and are always used

as fields. Everything would work if the element item was attributed to record.

Unfortunately this element has been used in an odd way in a few bibliographic

references, whose data was all specified as a plain text within one item, with

one line for each entry and no internal structure. Such an odd choice made the

algorithm recognize item as block and therefore type and url as atoms. The

fact that there is no reachable coherency does not imply that the authors have

preferred a different organization, but, in my mind, it is a side effect of the

poor use of some elements. The other interesting point is that the errors on

type and url impact only part of the dataset. In fact, I managed to assign one

single pattern to 61 elements over 72 (90% of the total) by applying global

shifts and containers generalization. The rest of the elements could not be

restructured as patterns.



98 Chapter 5. Recognising structural patterns in XML-based documents

5.3.3 Partial adherence

The search of my patterns on some other vocabularies did not produce fully satis-

factory results. That happened especially with languages that provide users several

constructs and choices: the presence of content models that combine the same ele-

ments in very different ways, the nature of the languages that cover heterogeneous

needs and narrower cases, the unconventional usage of some constructs make doc-

uments far from my pattern-based model. The results, discussed in detail in the

following subsections, are summarized in Table 5.4.

Table 5.4: The result of checking patterns on some vocabularies, which adhere
partially to my theory.

Set #files
# locally
coherent

# ele-
ments

# elements
generating

local
incoherency

# elements
globally

coherent (no
global shifts and

containers
generalization)

# elements
globally coherent

(with global
shifts and
containers

generalization)

6 XHTML 125 1 (1%) 31 2 (6%) 16 (51%) 21 (67%)

7 DocBook 117 62 (53%) 64 15 (23%) 9 (64%) 45 (70%)

8 TEI 90 48 (53%) 92 17 (18%) 27 (33%) 71 (79%)

• XHTML: I collected 125 pages linked to each other and corresponding to

different parts of the same book. The number of locally incoherent files was

very high: 124 out of 125. Such inconsistencies depend on just 2 elements,

that basically generated the same problem in all these files: table and a.

The overall layout is organized through nested tables: some cells contain only

logos and extra information, others contain menus and navigational buttons

(that are again organized in tables), others just text content. Moreover, each

page contains a navigation menu expressed as a table containing a elements

to go back and forward and to access the table of content. The use of the



Chapter 5. Recognising structural patterns in XML-based documents 99

same tableanda elements for such a variety of purposes makes it impossible

to assign them a single pattern and, as a consequence, overall results are

distorted. Isolating these errors, I achieved good results. The elements can

be split in three groups: 16 elements that were assigned the same pattern for

all files (51%), 5 elements that can be reduced to a single pattern via global

shifting and generalization (16%), and 10 elements (33%) that are problematic

and confirm that the openness of the XHTML schema leads authors to create

documents that are syntactically valid but, in my opinion, still unclear from a

structural point of view.

• DocBook (Balisage): My experiment was on a collection of 117 DocBook

files, for a total of 64 different elements. I found 55 locally incoherent docu-

ments (47% of the total). Differently from my previous experiments, several

elements were involved in these local incoherences. In fact, there were 15 ele-

ments (23% of 64) that generated local incoherency, although only 5 of them

were incoherent in more than 10 files. I established that most of the elements

involved were locally incoherent because the Balisage DTD allows them to be

used in more than a way. For instance, some authors used the element figure

within a paragraph thus implicitly assigning it the popup role, while other

times it has been used as direct child of containers and therefore recognised

as yet another container. This variability should be interpreted neither as

an error of the authors nor as a conflict between the pattern popup and con-

tainer. Rather, it simply means that different authors used the same element

in different ways. In particular, the element figure describes a precise struc-

ture according to its documentation, i.e. a block containing a display element

(such as a mediaobject) and a title, which can be aligned to (typical of con-



100 Chapter 5. Recognising structural patterns in XML-based documents

tainers) or unaligned from (i.e. floating, typical of popups) the main flow of

text. Global shifts and generalizations helped us to move towards coherency

but this set is admittedly far from my pattern-based model. The 64% of the

elements were actually given one single pattern even without reductions, while

the final percentage was of 70%.

• Text Encoding Initiative: The datasets included 90 files, using a total of 92

TEI elements. Half of the files (42) in the dataset were locally incoherent. The

number of elements that generate incoherency in quite high (17), even if only

6 of them were incoherent in more than 10 files. Global shifts and containers

generalizations improved these results (up to 33% and 79% of globally coherent

files) but still achieved only partial adherence to patterns. My analysis on the

TEI dataset produced results very similar to DocBook. I believe this is not

a coincidence: the fact that they have to deal with very specific cases makes

room for very different content models and contexts for the same elements

in the vocabularies. As for DocBook, most of these problems derived from

the ambivalent use of some elements. Truth is, these structures are valid and

allowed by the TEI schema, so their different uses cannot be considered errors

or misinterpretations.

There is an intrinsic opposition here between the minimality of my model and

the richness and verbosity of these languages. On one side, this is not a problem

since these two approaches are meant to cover different needs and have different

applications. On the other, I believe that some simplification and re-structuring

could also improve the readability and applicability of well-known vocabularies like

TEI and DocBook.



Chapter 6

Leveraging structural patterns to build

applications

The ability of patterns to capture the most relevant classes of structures and to

express in a rigorous but simple way their relationships can be exploited to build

novel tools for XML documents. For example, patterns allow us to build viewers

that do not require users to directly master XML technologies but offer intuitive

interfaces to read documents, move within their components, analyze their content

and extract relevant information.

The crucial aspect is that these tools are independent of the document vocabu-

laries since they work directly on their pattern-based representation. Since patterns

can be extracted through automatic processing, these applications work on any doc-

ument without any knowledge of its original schema. Thus, they are very helpful

whenever the vocabulary is unknown, not available or available in a different ver-

sion, and can help us to get an idea of the potential and applicability of the theory

of patterns, and persuade us about the feasibility and quality of the pattern-based

approach.

In this chapter I describe two tools I developed that are meant to support the ex-



102 Chapter 6. Leveraging structural patterns to build applications

ploration and analysis of heterogeneous document collections, and that work with no

background information about the format documents are written in. The objective

of the first tool, as described in Section 6.1, is to help the reader in navigating and

exploring the document content. The pattern-based document analysis can also be

used to perform more specific investigations: in Section 6.2, for example, I introduce

another tool that supports the user in the task of searching the logical components

(paragraphs, sections, titles, reference lists, bibliographic references, etc.) of schol-

arly documents. In order to demonstrate the effectiveness of this mechanism, I

describe and evaluate an algorithm for the automatic identification of document

components that has been developed using this tool.

6.1 Document Viewer

In this section I describe the Document Viewer1, an interactive web-based tool

aimed at supporting the reading, navigation and comprehension of documents. The

document Viewer design is composed by two parts, as shown in Fig. 6.1 on the

facing page: on the left side, a zoomable view based on the SunBurst technique

[110] provides an overview of the whole document structure; on the right side, the

content of the document is displayed in an hypertext-like fashion. The navigation

of these two components is strictly coupled: for example, when a user hovers the

mouse cursor over a text fragment in the viewer on the right, the corresponding

element and all its ancestors are highlighted in the document hierarchy on the left;

similarly, when a user focus on an element in the SunBurst view, the viewer scrolls

to the corresponding text. This ability to display in a clear and coordinated way

1The Document Viewer is available online at the address
http://eelst.cs.unibo.it/documentviewer/



Chapter 6. Leveraging structural patterns to build applications 103

both the content of the document and its global contexts is a key point of this tool.

Figure 6.1: The layout of the Document Viewer

6.1.1 Conversion and generation of presentation rules

The information about the organization of the document expressed by structural

patterns can be used to develop interfaces to read documents and explore their con-

tents. I experimented with this approach in Pviewer, a subcomponent of Document

Viewer that provides an hyper-text like representation of an XML document. It

is a proof-of-concept Java and XSLT implementation that takes as input an XML

document and produces an HTML page, plus some CSS and Javascript, with its

content and structures. Fig. 6.2 on the next page, Fig. 6.3 on page 105 and Fig. 6.4

on page 108 show some zoom-in views of a possible output of PViewer generated



104 Chapter 6. Leveraging structural patterns to build applications

automatically from an XML file randomly chosen in our dataset.

Figure 6.2: Basic visualization of a XML document in PViewer. The first blocks
of the documents are shown in the right, beside an automatically-generated table of
content.

Note that no XML tag is shown directly to the user but the page highlights

the logical structures of the document: containers, blocks of text, text fragments,

structured data and so on. The overall conversion process includes two steps, briefly

described below.

Pattern identification

PViewer exploits the algorithm presented in Chapter 5 to identify patterns in any

XML document. Two outputs are possible: in case of local coherency, the algorithm

produces one single map where each element is associated with one pattern; if not, it

assigns multiple patterns to some elements. In that case PViewer implements some

reduction rules (basically, selecting the most general pattern within each sub-set) to

produce a new map where each element is associated with only one pattern. This



Chapter 6. Leveraging structural patterns to build applications 105

makes the overall approach work also on documents that are not locally coherent,

with acceptable results.

Conversion and generation of presentation rules

PViewer translates the original XML file into a HTML page composed of generic

containers, blocks and inlines, associated with some CSS rules. Elements and presen-

tation rules are generated from the map described above, and convey the structural

meaning of each pattern. For instance, as shown in Fig. 6.3: containers are nested

and shown with a border to clarify their containment relation, inline elements are

highlighted with a darker background in contrast to plain text, milestones are re-

placed with images clicking on which users can read their XML source and attributes.

Figure 6.3: Details of visualization in PViewer: inlines use a darker background,
and popups can be expanded on request. The hierarchical organization of containers
is highlighted through dashed borders.

Besides showing how nested containers appear in PViewer, this image shows how

it handles inlines and popups: the former use a darker background, while the latter



106 Chapter 6. Leveraging structural patterns to build applications

are displayed as boxes expanded on demand. The example is helpful to highlight a

very important point: PViewer - and the overall theory of patterns - is not meant to

capture peculiarities of each element in the vocabulary, rather to capture and show

the basic logical structures in that vocabulary, even without knowing it. That is why

all inline elements share the same presentation and there is no special formatting

for specialized containers (for instance, abstract or bibliographies).

6.1.2 Information synthesis and extraction

Information extraction is the name given to any process that automatically extracts

structured information from unstructured or semi-structured text. The main goal

of this activity is to allow computation to be done on previously unstructured data.

While early systems were based on handcrafted rule-based algorithms, most recent

ones use machine learning algorithms starting from a collection of training examples.

The current dominant techniques include Hidden Markov Models [12], Decision Trees

[93], Maximum Entropy Models [18], Support Vector Machines [4] and Conditional

Random Fields [75]. Another characteristic of information extraction systems is that

the analysis has traditionally focused on satisfying precise, narrow, pre-specified

requests from small homogeneous corpora and domains (e.g. biomedical datasets

[94], news articles [75], informal text in emails [78], etc.)

In this section I present a different approach I used to extract relevant informa-

tion from documents based on the pattern-based analysis. In particular, in PViewer

I concentrate on the identification of two classes of information that support the

navigation task: the table of contents and the index of terms. A key point of this

approach is its generality: in fact, these operations are independent from the lan-

guage in which the document is written in, require no background knowledge about



Chapter 6. Leveraging structural patterns to build applications 107

the document content (e.g. domain, context, genre, etc.), and may be performed

without any previous information about the semantics and organization of the XML

vocabulary.

The first element of the navigation interface generated by PViewer is table of

content. As shown in the left part of the screenshot in Fig. 6.2 on page 104, it gives

users a clear insight of the overall structure of the document and its hierarchical

components. This table is created automatically from the data on headed containers,

as titles are mapped into labels of the index, whose hierarchical positions reflect the

order and nesting level within the XML document.

Patterns can also be exploited to extract a preliminary index of terms. In the

pattern model, in fact, text fragments that carry a specific meaning within a flow

of text are atoms or inlines. PViewer extracts all these fragments, removes some

stop words and organizes them in alphabetical order. Fig. 6.4 on the following page

shows a zoom-in view of the PViewer index of terms. The terms under letters ‘A’

and ‘B’ are visible in the image. The whole index is shown to the user when clicking

on the ‘Terms’ button on the left.

There are several improvements possible for this component. For instance, I plan

to add support for counting the number of occurrences of each term, filtering out

some terms (for instance, by also integrating external linguistic components), linking

terms to their occurrences in the text, aggregating statistical data, and so on. The

pattern-based approach may be also combined with other information extraction

techniques to improve the quality of the results: for example, the information about

the function of text fragments in the document structure given by patterns, together

their characterization in terms of document components (e.g. abstract, introduction,

methods, problem statement, related work, etc. - see Section 6.2), may provide



108 Chapter 6. Leveraging structural patterns to build applications

Figure 6.4: A zoom-in view of the basic index of terms generated by PViewer.

valuable hints to entity extraction methods based on NLP techniques. Another

interesting feature is the interlinking of text documents with Linked Open Data

[14]: for example, the approach developed in [77] to automatically annotate text

documents with DBpedia [15] URIs may be used on the extracted terms, on the

table of contents, and on some specific document components (e.g. abstract). This

information can be exploited as background knowledge to implement search and

faceted browsing functionalities.

6.1.3 Supporting reading, navigation and comprehension of

documents

The last component of the Document Explorer introduces some elements borrowed

from the visual analytics discipline in order to facilitate the navigation and ex-

ploration within documents. Visual analytics has been defined as “the science of

analytical reasoning facilitated by interactive visual interfaces” [115], and is based

on the idea of coupling human and machine analysis to support the process of inves-



Chapter 6. Leveraging structural patterns to build applications 109

tigation and sense making of huge amount of information. Although the objective

of this discipline is to ultimately help users to make better decisions [68], some

principles and techniques may also be leveraged in a document analysis context, as

discussed in the rest of this section. For example, the ability to highlight patterns

and trends about data can be used identify document components, as described in

Section 6.2.2.

Design issues

The representation of the logical structure of a document may be reduced to the

well-known problem of visualizing hierarchies. In order to make an efficient use of

space, implicit tree visualizations (i.e. those that resort to an implicit representation

of parent-child relations by positional encodings of the hierarchy items) must be

preferred to explicit techniques (i.e. those that explicitly show parent-child relations

as straight arcs or lines) [76]. In the last 30 years, a wealth of implicit visualizations

have been proposed [92]. Among the possible alternatives, I decided to use the

SunBurst technique [110], a space-filling visualization that uses a radial layout, as

the base of the navigation view. In SunBurst, items in the document hierarchy

are laid out radially, with the root element at the center and deeper levels farther

away from the center. Colors are used to encode the structural role carry out by an

element (i.e. the structural pattern of which the element is an instance of), and the

angle swept out by each element corresponds to the number of characters contained,

even recursively, by it.

This technique has been preferred to other well-known implicit tree visualiza-

tions2. A notable alternative is the Treemap [66]3, a space-filling slice-and-dice

2The interested reader can find a quite complete interactive catalog of tree visualization tech-
niques at the address http://treevis.net. The outcomes of this work are summarized in [91].

3To be precise, a subclass of the Treemap named Ordered Treemap [98] should be used in order



110 Chapter 6. Leveraging structural patterns to build applications

technique based on a rectangular layout. In treemap, each element of a tree is

depicted by a rectangle, which is then tiled with nested rectangles representing sub-

branching. The color and area of each item correspond to attributes of the item as

well: for example, these visual variables may be used to encode the pattern of the

element and the number of contained characters, respectively. Comparing Treemap

and Sunburst, the former has a longer learning curve and a less explicit portrayal of

the hierarchy structure.

Interactive behaviours

One of the principles for browsing and searching at the basis of visual analytics is the

so-called information-seeking mantra “overview first, zoom and filter, then details-

on-demand” [97]. The basic idea is to develop interfaces that give a general context

for understanding datasets by summarizing their most salient features (overview),

reduce the complexity of the representation by removing extraneous information

from the view and allowing for further data organization (zoom and filter), and fi-

nally reveal additional information on a point-by-point basis while the user interacts

with the visualization (details-on-demand). As described in the rest of this section,

this principle is the basis of the interactive behaviours in the Document Viewer.

The first information that is shown on user’s demand concerns generic identifiers:

when he/she hovers over an element, a serie of rectangles (with generic identifiers)

are drawn in a box at the top of the SunBurst to represent the element and all its

ancestors in the document hierarchy, ordered from left to right.

Another interactive behaviour is used to tackle the problem that, since the ele-

ment size depends on the number of contained characters, the clarity of the hierar-

chy gradually degrades moving away from the root element. This problem has been

to preserve the order within the document hierarchy.



Chapter 6. Leveraging structural patterns to build applications 111

solved by adding the ability to zoom in and out: when the user clicks on an ele-

ment, the SunBurst is reconfigured to show only the sub-tree rooted in that element

(zoom in); to move up one step in the hierarchy, the user can click on the centre

circle (zoom out).

Finally, interaction has also been used to keep the SunBurst view and the

hypertext-like viewer coordinated during the user’s investigation: in fact, when

he/she hovers the mouse cursor over a text fragment in the viewer on the right,

the corresponding element and all its ancestors are highlighted in the document

hierarchy on the left; similarly, when a user focus on an element in the SunBurst

view, the viewer scrolls to the corresponding text.

6.2 Document Component Extractor

In most disciplines, academic texts have established models of organisation and

structure which are followed, more or less strictly, by all scholars and contributors.

Some structures are shared across disciplines and capture very common objects of

a text (such as tables, lists, references, front matter, etc.), others are specialised for

specific disciplines (such as program listings in computer science works, epigraphs

in humanities, medical histories in medicine, and so on).

Markup languages, and in particular XML vocabularies, provide authors with

constructs to linearise these structural components. For instance, the element para

in DocBook (a semantic markup language for technical documentation [121]), the

element p of HTML [58], the element block of the legislative XML vocabulary called

Akoma Ntoso [5], refer all to the same concept of one of a set of vertically-organised

containers of (possibly styled) text often called a paragraph.

The idea at the base of this section is to shift my analysis of documents to a higher



112 Chapter 6. Leveraging structural patterns to build applications

level of abstraction, dealing with their structural components - such as paragraphs,

lists, bibliographic references, sections, etc. - independently of the elements and the

format of the markup language they are written in. In order to do this, I used a

general, strong and shared conceptual model for the description of components, and

exploited the pattern-based analysis to match the elements of each XML languages

to it according to the best interpretation of their structural semantic roles. The

result of this work is a pattern-based algorithm for the automatic recognition of

such structural components.

The correct identification of logical components could provide many practical

benefits, such as generating lists and summaries (including list of figures, tables,

references and authors, tables of contents, etc.) automatically, enhancing the visu-

alization of the content rendered in a Web browser window, and providing full-scale

converters (or, in the worst case, robust stubs open to further development). The

abstract representation of a document and its components can also be exploited

to improve the comprehension of the document content, as remarked by [30], and

build Semantic Publishing [100] [99] applications. Verifying semi-automatically some

structural requirements of scientific papers, such as those expressed in [9] for the

inclusion of XML-based vocabularies in PubMed Central, is a further possible appli-

cation. Finally, on top of the identification of specific and inter-connected constructs

– for instance all those structures related to bibliographic references like lists of ref-

erences, inline citations, citation contexts – it will also be possible to implement so-

phisticated (cross-language) services for accessing, querying and manipulating such

content.

The rest of the section is organized as follows. In Section 6.2.1 I give an overview

of DoCO (the Document Components Ontology), the model that provides the general



Chapter 6. Leveraging structural patterns to build applications 113

structured vocabulary of document components I use in this chapter. In Section 6.2.2

I present the Document Component Extractor, a slightly modified version of the

Document Viewer presented in Section 6.1 that I used to develop the algorithm

for the automatic recognition of document components described in Section 6.2.3.

Finally, in Section 6.2.4 I evaluate experimental results on real academic articles.

6.2.1 A model for document logical structure: DoCo

There exists an intrinsic complexity when defining some document components as

purely rhetorical or purely structural. Let us consider as example a well-known

component: the paragraph. A paragraph cannot be considered a pure structural

component – i.e. a component carries only a syntactic function – since it de facto

carries a meaning through its natural language sentences. Thus paragraphs have

more than a syntactic attitude.

However, document markup languages such as HTML and DocBook define a

paragraph as a pure structural component, without any reference to its rhetoric

function:

• “A paragraph is typically a run of phrasing content that forms a block of text

with one or more sentences” [58];

• “Paragraphs in DocBook may contain almost all inlines and most block ele-

ments” [121]4.

Here the term “block of text” and the verb “contains” emphasise the structural

connotation of the paragraph, which is amplified by our direct experience as readers.

4The words inline and block in these list items do not refer to the structural pattern theory
introduced previously, although some sort of overlapping exist.



114 Chapter 6. Leveraging structural patterns to build applications

Experience that implicitly tells us that a particular textual fragment shown in a book

or in an HTML page is a paragraph rather than a chapter or a table.

The Document Components Ontology [39] (DoCO5), which I introduce in the

rest of this section, has been developed so as to bring together the purely structural

characterisation of document elements and their the purely rhetorical connotation.

Besides including the Pattern Ontology (describing structural patterns)6 described

in Section 4.1 and Discourse Element Ontology (describing rhetorical components)7,

DoCO also defines other hybrid classes describing elements that are structural and

rhetorical at the same time, such as paragraph, section, list, and the like.

Rhetorical foundations

A complete description of rhetorical components defined in DoCO is out of the scope

of this work. However, it is useful to illustrate those that are actually used, in some

way, to define the textual structures considered in my analysis, and that I introduce

in the final part of this section.

All these pure rhetorical characterisations are defined in a particular ontology

imported by DoCO, i.e. the Discourse Element Ontology (DEO), which provides a

structured vocabulary for rhetorical elements within documents, enabling these to

be described in RDF. The main class of this ontology is DiscourseElement, which

describes all those elements of a document that carry out a rhetorical function. It

is formally defined as follows8:

5DoCO, the Document Components Ontology: http://purl.org/spar/doco.
6PO, the Pattern Ontology: http://www.essepuntato.it/2008/12/pattern.
7DEO, the Discourse Element Ontology: http://purl.org/spar/deo.
8In this and the following excerpts I use the prefixes po to refer to entities defined in the Pattern

Ontology, deo to refer to entities defined in the Discourse Element Ontology and dcterms that refers
to entities defined in the Dublin Core Metadata Terms model [43]. Entities without prefixes are
defined in the Document Components Ontology (DoCO).



Chapter 6. Leveraging structural patterns to build applications 115

deo:DiscourseElement v >

All the remaining rhetorical behaviours are modelled as subclasses of the above

one. For the scope of this thesis, I introduce in detail only three of these classes:

Reference, Bibliographic Reference and Caption.

A reference is a sort of link either to a specific part of the document or to another

publication. In written text, small numbered superscripts standing for footnotes,

items in a table of contents, items describing documents in a reference section of an

article, can be modelled as individual of the class Reference, defined as follows:

deo:Reference v deo:DiscourseElement

Among all the possible kinds of references that can exists within a research

article, recognising the bibliographic ones is a quite important issue to address,

since they constitute the performative act of bibliographic citation. In particular,

the class BibliographicReference describes references, usually contained in a footnote

or a bibliographic reference list, that refer to another publication, such as a journal

article, a book, a book chapter or a Web site. In DEO, it is defined as follows:

deo:BibliographicReference v deo:Reference

Textual structures in DoCO

All the aforementioned components are used as foundational blocks to define those

classes of DoCO that bring together both a pure structural behavior (i.e. the struc-

tural patterns introduced before) and a generic rhetorical characterization (i.e. the

rhetorical components briefly discussed at the beginning of this section). I particu-

larly focus on those structures that usually define the main components of scientific



116 Chapter 6. Leveraging structural patterns to build applications

papers9.

A paragraph is a self-contained unit of discourse that deals with a particular

point or idea, structured in one or more sentences. In written text, the start of

a paragraph is indicated by beginning on a new line, which may be indented or

separated by a small vertical space by the preceding paragraph. In DoCO the class

Paragraph is modelled as follows:

Paragraph v

deo:DiscourseElement u

po:Block u

∃po:contains.Sentence

A footnote is a particular structure within a sentence that permits the author

to make a comment or to cite another publication in support of the text, or both.

A footnote is normally flagged by a superscript number immediately following that

portion of the text to which it relates. For convenience of reading, the text of the

footnote is usually printed at the bottom of the page or at the end of a text. In

DoCO, the class Footnote is defined as follows:

Footnote v

deo:DiscourseElement u

(po:Container t po:Popup)

A table is a set of data arranged in cells within rows and columns. In XML file

formats, it is usually organised in lines each containing a number of cells. From a

pure structural pattern perspective, the element identifying the whole structure is

organised according to the pattern table while those identifying the lines are always

containers. The DoCO class Table is then defined as follows:

9Note that DoCO actually counts more classes that those described, that cover also other kinds
of bibliographic entities, such as books.



Chapter 6. Leveraging structural patterns to build applications 117

Table v

deo:DiscourseElement u

po:Table u

∃po:contains.po:Container

A figure is a communication object comprising one or more graphics, drawings,

images, or other visual representations. In DoCO, it is modelled as a flat element

without textual content, as introduced in the following excerpt:

Figure v

deo:DiscourseElement u

(po:Milestone t po:Meta)

Commonly, in scientific publications, both figures and tables are contained by

captioned boxes (i.e. a po:Container containing a caption), which can be used

to define a space within a document that contains either a figure (i.e. the class

FigureBox) or a table (i.e. the class TableBox) and its caption, defined respectively

as follows:

FigureBox v

CaptionedBox u

∃dcterms:hasPart.Figure

TableBox v

CaptionedBox u

∃po:contains.Table

A list is an enumeration of items, which may be composed by paragraphs, se-

quence of authors’ names, etc. In DoCO, the class List is defined as follows:

List v

deo:DiscourseElement u



118 Chapter 6. Leveraging structural patterns to build applications

po:Table u

∃po:contains.po:Pattern u

∀po:contains .(

(po:Container u

¬ (po:Table t po:HeadedContainer)) t

po:Field t

po:Block)

The above class is particularly useful for describing other, more specific, kinds

of lists describing table of contents, list of figures, list of tables, and the like. In

particular, the class BibliographicReferenceLists describes a list, usually within a

bibliography, of all the references within the citing document that refer to journal

articles, books, book chapters, Web sites or similar publications. It is defined in

DoCO as follows:

BibliographicReferenceList ≡

List u

∀po:contains.deo:BibliographicReference

Of course, all these textual structures are usually contained in broader elements

that aim at describing the overall organisation of the document structures. First, we

have the front matter, i.e. the initial principal part of a document, usually containing

self-referential metadata. Although in a book it can be quite massive, in a journal

article the front matter is normally restricted to the title, authors and the authors’

affiliation details, although the latter may alternatively be included in a footnote or

the back matter. The DoCO class FrontMatter is defined as follows:

FrontMatter v

deo:DiscourseElement u



Chapter 6. Leveraging structural patterns to build applications 119

po:Container u

∀po:isContainedBy .(¬ BodyMatter)

Along the line of the front matter, the body matter describes the central prin-

cipal part of a document, that contains the real content. It may be subdivided

hierarchically by the use of chapters and, as in research papers, sections. The class

BodyMatter is disjoint to FrontMatter, since an element cannot be the initial and

the central part of the document at the same time, and is defined as follows:

BodyMatter v

deo:DiscourseElement u

po:Container u

∀po:isContainerBy .(¬ FrontMatter)

BodyMatter u FrontMatter v ⊥

The aforementioned elements can be composed by other textual structures used

for a coarse-grained organisation of text, such as sections. The class Section describes

entities used for a logical division of the text (organised in paragraphs), numbered

and/or titled, which may contain subsections. It is defined in DoCO as follows:

Section v

deo:DiscourseElement u

po:HeadedContainer u

∃po:contains .( Paragraph t Section)

Of course, in an article there exist particular kinds of sections that have a par-

ticular strucural and rhetorical function, such as the bibliography, i.e. that section

containing a list of bibliographic references. In DoCO, the class Bibliography is

defined as follows:

Bibliography v



120 Chapter 6. Leveraging structural patterns to build applications

Section u

∃dcterms:hasPart.BibliographicReference

Sections and other high-level constructs such as chapters, captioned boxes or the

document itself, can be introduced by a title. The DoCO class Title was introduced

to describe a word, phrase or sentence that precedes and indicates the subject of a

document or a document component. It is defined as follows:

Title v

deo:DiscourseElement u

(po:Block t po:Field) u

∃po:isContainedByAsHeader.po:HeadedContainer

Starting from the above definition, it is then easy to describe particular kinds of

titles, such as section titles modelled as the title being part of a particular section:

SectionTitle v

Title u

∃po:isContainedByAsHeader.Section

6.2.2 An interactive tool for document component analysis

In this section I present the Document Component Extractor10, a slightly modi-

fied version of the tool presented in Section 6.1 that I used to analyze documents

and develop the algorithm for the automatic recognition of document components

described in the next section. As all the algorithms and tools presented in this dis-

sertation, the Document Component Extractor is language independent and works

10The Document Viewer is available online at the address
http://eelst.cs.unibo.it/componentextractor/



Chapter 6. Leveraging structural patterns to build applications 121

on any XML document. The idea at the basis of my approach, in fact, is to lever-

age only the characterization provided by the pattern-based analysis to identify the

structural roles (as defined in DoCo) of the content of documents stored in XML

files. For example, a doco:Paragraph can be described as the block element (i.e.

po:Block) with more occurrences in the document, a doco:Section can be defined

as an headed container (i.e. po:HeadedContainer) that contains at least either one

paragraph or one section, and a doco:List is a table (i.e. po:Table) that has all the

child elements sharing the same name and pattern, which must be one out of the fol-

lowing ones: po:Container, po:HeadedContainer, po:Record, po:Field and po:Block.

In order to check these hypothesis (and to formulate new ones) we need a language

to define complex conditions, and a method to verify their validity. Instead of creat-

ing new languages and tools from scratch, I decided to use well-known technologies

like Javascript and CSS.

For this purpose, I extended the Document Viewer with two textual areas, as

shown if Fig. 6.5 on the next page: in the former the user can use Javascript (in

particular JQuery11) code to specify the conditions, and to assign CSS classes to

those elements that fulfill such conditions; in the latter the user can define CSS

rules to specify a style for the classes assigned by the Javascript code. The previous

informal characterizations for paragraphs, sections and lists can be easily converted

into the following Javascript code12:

//DoCO -PARAGRAPHS:

var blockCount = {};

11http://jquery.com
12The results of the pattern-based analysis is used to assign CSS classes to the elements of

the visualization. All these classes use the prefix “po-” followed by the name of the class of the
Pattern Ontology to which they belong, as calculated by the algorithm described in Section 5.2.
For example, the element para has been assigned to the class “po-Block”, the element section to
the class “po-HeadedContainer”, etc.



122 Chapter 6. Leveraging structural patterns to build applications

Figure 6.5: An overview of the Document Component Extractor

$(".po -Block").each(function (){

var gi = $(this).prop(" tagName ");

blockCount[gi] = (blockCount[gi] || 0) + 1;

});

var par = null;

var max = 0;

for (el in blockCount) {

if (blockCount[el] > max) {

max = blockCount[el];

par = el;



Chapter 6. Leveraging structural patterns to build applications 123

}

};

$(par).addClass ("doco -Paragraph ");

//DoCO -SECTION:

var toFilter = $(".po -HeadedContainer ");

var sections = toFilter.filter(function () {

return (

($(this).children (".doco -Paragraph ").length > 0) &&

($(this).parent(’[class ^=" article "]’).length != 0 ) );

});

sections.each(function () {

$(this).addClass ("doco -Section ");

});

//DoCO -LIST:

var toFilter = $(".po -Table");

var lists = toFilter.filter(function () {

return (

($(this).children ().length > 0) &&

(

$(this).hasClass ("po-Container ") ||

$(this).hasClass ("po-HeadedContainer ") ||

$(this).hasClass ("po-Record ") ||

$(this).hasClass ("po-Field ") ||

$(this).hasClass ("po-Block ")

) );



124 Chapter 6. Leveraging structural patterns to build applications

});

lists.each(function () {

$(this).addClass ("doco -List");

});

The next step consists in specifying the presentations rules that should be used

to represent these new classes of elements:

.doco -Paragraph { color: blue; }

.doco -Section { color: purple; }

.doco -List { color: red; }

Figure 6.6: Document Component Extractor: an overview of a document before
(on the left) and after (on the right) the execution of the Javascript and CSS codes.

Fig. 6.6 shows an overview of a document13 before (on the left) and after (on

the right) the execution of the Javascript and CSS codes. Elements recognized as

paragraphs are blue, sections are purple andlists are red. Fig. 6.7 on the next page

13The XML file of the document used for all the examples in this section is available at the
address http://balisage.net/Proceedings/vol1/html/Altheim01/BalisageVol1-Altheim01.html.



Chapter 6. Leveraging structural patterns to build applications 125

Figure 6.7: Document Component Extractor: a detail of a section composed of
three subsections

depicts a detailed view of a section composed of three subsections, and Fig. 6.8

on the following page highlights the hypertext-like representation of the element

recognized as list.

The user can browse the updated version of the SunBurst view and the hypertext-

like visualization of the document to check the validity of his/her hypothesis, and

to formulate new ones.

6.2.3 Recognizing document components in XML-based aca-

demic articles

In this section I introduce an algorithm I have developed that takes as input a set

of XML sources of scientific articles that use the same vocabulary and recognizes



126 Chapter 6. Leveraging structural patterns to build applications

Figure 6.8: Document Component Extractor: the hypertext-like representation of
the element recognized as list.

the document components defined in DoCO (see Section 6.2.1). The process is fully

automatic: through three steps of analysis, my algorithm is able to associate the

elements of the input documents with the corresponding classes in DoCO without

relying on any background information about the vocabulary, its meaning, its in-

tended scheme or the actual textual content of the documents themselves. It is

worth noting that, although I believe that this approach may be applied to almost

any type of documents, in this section I limit my preliminary analysis to academic

articles.

During the first phase of this process the algorithm analyses separately every

input document, and for each one performs the recognition of the structural patterns

introduced in Section 4.1. To do this, I use the algorithm described in [38] for each

document and produce a set of element-pattern bindings.



Chapter 6. Leveraging structural patterns to build applications 127

Since the way authors used to create the document according to a particular

XML schema still allows one to use the same element in different structural ways

(as a block, as a container, etc.), the analysis performed separately on each individual

document can lead to the automatic assignment of different patterns to the same

element (e.g. in one document the element figure is retrieved as popup, in another

one as a container). Thus, in the second phase, the algorithm makes a synthesis

of the results obtained in the previous step and assigns, in all the documents, the

same pattern to a particular element: a pattern for all the elements named para, a

pattern for all those named section, etc. The goal of this step is to identify these

ambiguous situations and choose the pattern that best represents authors’ use of

each particular elements. In order to reduce the multiplicity of assignments, the

algorithm considers every element that has been assigned to more than one pattern

and proceeds as follows:

1. The algorithm applies a discrimination rule for containers, where it chooses

a specific kind of container whenever an element was associated with more than

one type of container (i.e. po:Container, po:Table, po:Record and po:HeadedContainer).

Namely, if an element is associated with exactly two of these patterns, then it

chooses the pattern that has the highest number of assignments (i.e. I apply

the “majority wins” rule). Otherwise, if an element is associated with three

or more of these patterns, then the element is assigned to po:Container, the

most general case.

2. All the elements that, at this stage, are assigned to both the pattern po:Container

(or its subclasses) and to the pattern po:Popup are always considered as of the

former type only, regardless the majority wins rule.

3. I then apply a pattern shift: if element E is assigned to both pattern P1 and



128 Chapter 6. Leveraging structural patterns to build applications

P2 and P1 can be used in place of P2, then E has pattern P1. For instance, in

my analysis the element td of Docbook (a cell in a table) can be recognised as

both po:Block (including both text and elements) and po:Field (including only

text) by the algorithm. Since a po:Block element can happen to just contain

text and po:Fields can never contain other elements, then td elements can be

assigned to the pattern po:Block without problems. In Fig. 6.9 I illustrate all

the possible pattern shifts.

4. Finally, I applied the majority wins rule to perform discriminations in the

remaining ambiguous scenarios.

Figure 6.9: All the admissible shifts among patterns.

Thus, in the third phase, starting from the general element-pattern assignments

resulting from the previous phase, I apply the following rules (in the order in which

they are introduced) for each input document I took into account at the beginning

of the process. The final result of this process will annotate the markup elements

within the documents according to the textual structures defined in Section 6.2.1.

Paragraphs. Annotate with Paragraph all those markup elements that were an-

notated with pattern co:Block and that are the block element with more occurrences

in the document.

Sections. Annotate with Section all those markup elements that contain at least

either one paragraph or one section, that were annotated with pattern po:HeadedContainer,



Chapter 6. Leveraging structural patterns to build applications 129

and that are not the document element of the document.

Section titles. Annotate with SectionTitle all those markup elements that are

header of (i.e. po:isContanedByAsHeader) a section.

Body matter. Annotate with BodyMatter all those markup elements that are

not the document element, that were annotated with pattern po:Container (or any of

its subclasses), that were not annotated with Section and are not contained (at any

level) by sections, and that have as children the largest number of element annotated

with Section (note: it must always contain one section at least). Since there can

exist only one body matter within an article, in case multiple markup elements

satisfy the previous rules, select, as body matter, the first of those elements taken

according to a breadth-first visit of the markup document.

Front matter. Annotate with FrontMatter all those markup elements that are

not the document element, that were annotated with pattern po:Container (or any

of its subclasses), that were annotated neither with Section nor BodyMatter, that are

not contained (at any level) by sections and body matters, and that have as children

the smallest number of element annotated with Section. In addition, they must be

placed before the body matter (if any). Since there can exist only one front matter

within an article, in case multiple markup elements that satisfy the previous rules,

select, as front matter, the first of those elements taken according to a breadth-first

visit of the markup document.

Article title. Annotate with Title all those markup elements that were anno-

tated with pattern po:Field or po:Block and that were not annotated with Paragraph.

Since there can exist only one article title within an article, in case multiple markup

elements that satisfy the previous rules, select, as title, the first of those elements

taken according to a depth-first visit of the markup document.



130 Chapter 6. Leveraging structural patterns to build applications

Tables. Annotate with Table all those markup elements that contain at least

two elements, that were not annotated with any of the aforementioned structures,

that were annotated with pattern po:Table, that may have an element annotated

with po:Container (or subclasses) as table header, and that have all the remaining

child elements sharing the same name and pattern, which must be po:Container or

any of its subclasses. In case of multiple descendant candidates, annotate with Table

only the upper element.

Lists. Annotate with List all those markup elements that contain at least one

other element, that were not already annotated as Table, that were annotated with

structural pattern po:Table, and that have all the child elements sharing the same

name and pattern, which must be one out of the following ones: po:Container,

po:HeadedContainer, po:Record, po:Field and po:Block.

Figures. Annotate with Figure all those markup elements that were not pre-

viously annotated with any DoCO structure, that were annotated with structural

pattern po:Milestone or po:Meta, and that have at least one attribute of which value

is a valid URL ending with a file extension associated with an image file format.

Table boxes. Annotate with DoCO TableBox all those markup elements that

were not previously annotated with any DoCO structure, that were annotated with

structural pattern po:Container (or any of its subclasses but po:Table), and that

contain at most three elements, of which at least one was annotated with Table.

In case of multiple descendant candidates, annotate with TableBox only the upper

element.

Figure boxes. Annotate with DoCO FigureBox all those markup elements that

were not previously annotated with any DoCO structure, that were annotated with

structural pattern po:Container (or any of its subclasses but po:Table) and contain



Chapter 6. Leveraging structural patterns to build applications 131

at most three elements, of which at least one is either a Figure, or a pattern po:Block

containing only one element annotated with Figure and no text, or a po:Container (or

its subclasses) containing (at any level) no textual blocks and an element annotated

with Figure. In case of multiple descendant candidates, annotate with FigureBox

only the upper element.

References. Annotate with deo:Reference all those markup elements that were

annotated with pattern po:Milestone, that have an attribute @x with value equal

or similar (i.e. the concatenation of “#” with the value) to the value of another

attribute @y of another element (the name of these two attributes must differ). The

latter element must be also linked by the reference element through the DCTerms

property dcterms:references.

Bibliographic reference lists. Annotate with BibliographicReferenceList all

those markup elements that were annotated with List, that hve all the children

referenced by some reference. In case multiple elements satisfy the previous rules,

consider as bibliographic reference lists only those that have at least one child ref-

erenced twice in the text.

Bibliography. Annotate with Bibliography all those markup elements that were

annotated with Section and that contains either (a) an element annotated with

BibliographicReferenceList or all the children but the section title referenced by

some reference. In case multiple elements satisfy the previous rules, consider as

bibliography only those that have at least a descendant referenced twice in the text.

Bibliographic references. Annotate with deo:BibliographicReference all those

markup elements that are children of elements annotated with either Bibliographi-

cReferenceList or Bibliography (excluding section titles).

Footnotes. Annotate with Footnote all those markup elements that were not



132 Chapter 6. Leveraging structural patterns to build applications

annotated with any DoCO or DEO classes, and that were annotated either with

pattern po:Popup or po:Container. In the former case, their closest ancestors anno-

tated with po:Block must also be paragraphs, while the in latter case they must be

referenced by an element annotated with deo:Reference.

6.2.4 Testing the algorithm

Some preliminary tests were performed to evaluate the effectiveness of my algorithm

and its capability to identify the logical components of XML documents. In order

to run tests I first implemented the algorithm in Java. My testing tool takes as

input a collection of XML documents and annotates it with information about the

structural role of each element in each document. The analysis – and the serialization

of annotations – is not on XML but on the EARMARK representation [41] of the

input documents. As described in Section 2.1.5, the basic idea of EARMARK is

to model documents as collections of addressable text fragments, and to associate

such text content with OWL assertions that describe structural features as well as

semantic properties of that content. The EARMARK framework permits to add

annotations in a fast, reliable and straightforward way.

I repeated the same experiment on two sets of documents, discussed separately

in the following sections. For each of them, the process consisted of three steps14.

Gold standard synthesis : I studied the vocabulary and assigned each of its

elements to one or more DoCO structures. The analysis was subjective and solely

based on their understanding of the semantics of the element, its definition schema

and its documentation. On the other hand, I agreed on classifications that I consider

reasonable. Notice that the same element could be associated with multiple DoCO

14All the materials and results of the experiments are available at
http://www.essepuntato.it/2013/doco/test.



Chapter 6. Leveraging structural patterns to build applications 133

structures, that are all valid. Consider, for instance, the element bibliography of

DocBook. It is clearly a Bibliography according to the DoCO ontology, but also a

Section (a less specialized but equally correct characterization). Another point is

important here: this mapping only includes elements that exist in the datasets and

that experts agreed to associate with the DoCO structures I am interested in (see

Section 6.2.3 for more details). All other elements are not taken into account. I

do not aim at showing the completeness of DoCO in this work. Rather, I focus

on a controlled set of elements in order to have a more precise evaluation of some

preliminary extraction rules and DoCO constructs.

DoCO mapping : the Java algorithm took as input the collection of documents

and produced a map (encoded as RDF statements) that assigns each element to one

or more DoCO structures. Some points are worth highlighting at this stage to

better understand the following results. First of all, the fact that the algorithm

assigns structures to each instance of each element in the documents. There is no

effort to force one single assignment that holds for the whole vocabulary. It may

well happen that the same element is used in two places according to two different

DoCO structures, as noticed for the bibliography element. My goal it to check the

quality of the algorithm on each instance, rather than to find a global classification.

Notice also that the same element can be assigned to multiple structures: the two

(or more) characterizations are meant to be both valid at the same time. It may not

happen, for instance, that an element is characterized as either Table or TableBox

since these two structures cover two different needs.

Results comparison : the two sets of assignments were automatically com-

pared. I measured their agreement in terms of true positives (TP), false positives

(FP) and false negatives (FN) and I derived precision P, recall R and the F1-score to



134 Chapter 6. Leveraging structural patterns to build applications

get a more accurate view of the results. In particular, I calculated P as TP/(TP+FP),

R as TP/(TP+FN), and consequently the F1 as 2*P*R/(P+R).

Let us now discuss separately how my algorithm performed on the two sets of

documents I took into account.

Synthetic IML set

The first set is a collection of 18 IML documents, that use a total amount of 4764

XML elements. IML is a language, basically a subset of XHTML, fully based on

my patterns. As expected, all elements of the language were correctly character-

ized, they being explicitly designed on my model (apart from an exception discussed

below). This training experiment, in fact, was only performed to check basic func-

tioning and minimum requirements of the algorithm on a controlled vocabulary and

set of documents.

There was actually an interesting behaviour worth discussing. The algorithm

found some false positives and negatives (175 elements) all ascribable to some dan-

gling references in the text. The algorithm, in fact, characterizes as bibliographic-

ReferenceList and Bibliography those sections that contain bibliographic references.

These references must be linked by pointers within the same document (besides

other constraints not relevant here, see section Section 6.2.3 for details). The pres-

ence of references that are not used but still in the document makes these elements

to be incorrectly characterized. The error is then propagated to the characteriza-

tion of their containers and sections. Nonetheless, such imperfection depends on the

(wrong) encoding of the document rather than my extraction rules and algorithm.



Chapter 6. Leveraging structural patterns to build applications 135

Real DocBook set

The second set consists of all papers (i.e. 117 scientific papers) published in the

Balisage Series Conferences, and primarily discuss research on document engineering

and markup. There are several reasons for this choice: first of all, all the papers of

the conference are freely available at http://www.balisage.net ; then, I know the

community and the publication process, and I am personally certain that the authors

of the papers are the actual authors of the XML versions available online (i.e., only

a very limited editorial process affected the original XML documents); moreover, I

know that the authors belong to a community composed of markup experts; finally,

since the papers are encoded in the DocBook format, it is possible to consult the

documentation and know the “correct analysis” of the data, thus obtaining a gold

standard answer against which to compare the results of the algorithm.

These documents vary a lot in terms of internal structure and size: from 3K to

160K, with an average size of about 60K. Table 6.1 on the following page shows

the map of associations (gold standard) against which I evaluated the algorithm’s

outcome. Note that not all elements of the vocabulary are listed, but only those I

mapped to DoCO structures, and that the XPath expressions [parent::<element>]

are used to indicate that the element is associated with that structure only if con-

tained in a specific location.

The table shown in Fig. 6.10 on page 137 summarizes my comparison through

the values of the parameters TP, FP, FN, precision, recall, F1-score as introduced

before. The table also shows the elements associated with each DoCO structure

and belonging to the set of TPs, FPs and Fns, useful for the following discussion.

A point worth highlighting is that, even in presence of several false positives and

negatives, they always involve a very small set of elements of the vocabulary.



136 Chapter 6. Leveraging structural patterns to build applications

Table 6.1: The assignment of each element of the DocBook schema in consideration
to DoCO structures.

DoCO Structure DocBook elements

Table tbody, informaltable, variablelist

List itemizedlist, orderedlist, keywordset

TableBox table

Paragraph para

Section section, appendix, bibliography, abstract

SectionTitle title[parent::section]

Figure imagedata

FigureBox
figure, mediaobject[parent::para], mediaobject[parent::section],

imageobject[parent::para], imageobject[parent::section]

BobyMatter -

FrontMatter info[parent::article]

Title title[parent::article]

Reference xref

BibliographicReferenceList -

BibliographicReference bibliomixed

Bibliography bibliography

Footnote footnote

The overall results, shown in the last row of the table, were very encouraging.

The total values of precision and recall, in fact, are quite high (0.887 and 0.89).

It is interesting to discuss why some DoCO structures were recognized better

than others. One of the reasons is that the declarations of the elements assigned

to those structures in the DocBook vocabulary are more precise and stringent. The

rules discussed in the previous section capture such behaviours and produced very

good results. In other cases (for instance for Tables and TableBox) many more

options are available to the users, some of which are not covered by the heuristics

implemented in my algorithm. Let us discuss these issues in detail.

One clear result is that no element is assigned to the bibliographicReferenceList

and bodyMatter DoCO classes. This is what I expected since no element belonging



Chapter 6. Leveraging structural patterns to build applications 137

Figure 6.10: The outcomes of the evaluation of the Balisage set.

to these classes had been identified in the preliminary human analysis, as shown in

Table 6.1 on the facing page. The absence of false positives confirms that rules for

such structures are accurate and reliable. There are other heuristics that worked

very well on this dataset. There is in fact a complete match between the outcome of

the algorithm and the assignments in the gold standard for other 4 DoCO structures

(over 16, for a total of 25%): Reference, Title, SectionTitle e FrontMatter. Even in

this case a precise and unambiguous characterization was possible.

The behaviour of the element abstract is worth discussing. It was expected to be

recognized as a Section since it contains a sequence of blocks preceded by an optional

title. In practice, authors did not include titles within abstracts but organized them

in a plain sequence of text blocks. That explains the 117 false negatives for the

Section class. Similar considerations can be applied to the elements imagedata that



138 Chapter 6. Leveraging structural patterns to build applications

are correctly recognized as Figure in 564 occurrences and in a very few cases (just

4) are missed. The heuristics, in fact, expect that element to be a milestone with an

attribute pointing to a file of a given type (with a given extension). In these cases

the extension is not supported and the results are not correct. The problem can be

easily fixed by extending the set of supported filetypes.

The highest number of FPs and FNs was for the Paragraph DoCO structure.

That is quite expected since paragraphs are the most common structures within

scientific papers. What I did not expect was that so many td elements would be

classified in that way, with more than 2000 FPs. There is a clear explanation for

this if I look at the content of the elements. They all contain plain text, so that

are mapped to the pattern block in the preliminary phase of the algorithm; in the

second phase, being td the most used block in the document, all these elements are

classified as DoCO Paragraphs. The issue here is in the practical use of the element

td: it is often used as a container for blocks of text but there is no explicit element

wrapping that block. Although I believe that is not a correct use of the element,

I could refine and combine heuristics to also handle this specific case. The false

negatives on the element para are connected to the same problem.

The results on the elements related to bibliographies are also very interesting.

For structures Bibliography and BibliographicReference, in fact, the values of preci-

sion, recall and F1-score are considerably lower than other cases. There is a strong

connection between these values. The Bibliography is in fact a special Section whose

content is exclusively made of references, i.e. objects that are pointed by other el-

ements in the text. The presence of blocks that are not recognized as references,

or that do not contain references at all, makes the whole section to be classified

in the wrong way. The solution to this problem will be to add a threshold that



Chapter 6. Leveraging structural patterns to build applications 139

indicates the percentage of pure references expected, so that even hybrid content

can be classified in the same correct way.

The last specific case I would like to highlight is about FigureBox and TableBox.

There are in fact several errors in recognizing these classes. The issue is again

connected to a hybrid usage of the same element. In many cases, in fact, authors

included figure elements to wrap tables. This element was classified as FigureBox

by experts but as TableBox by the algorithm, that worked on its actual content.

Similarly, the cases where the same element wraps plain text and formulas lead my

algorithm to produce an unexpected classification.

The refinement of the heuristics should solve this issue and similar ones. The goal

of this preliminary evaluation, in fact, was to pose the basis for further developments

of my algorithm. I wanted to first identify which are the most common DoCO

structures within real documents and to what extent they can be automatically

recognized. Secondly, I wanted to identify the most relevant issues in order to refine

current heuristics. Starting from the encouraging results I obtained from the tests,

I plan to refine the heuristics I used in the algorithm so as to increase the precision

and recall for each element in the golden standard. In addition, I also plan to extend

the set of DoCO structures to identify automatically other significant ones, such as

mathematical formulas, block-quotes and heading metadata (authors, affiliations,

bios, etc.).



140 Chapter 6. Leveraging structural patterns to build applications



Chapter 7

Conclusions

The protagonist and main object of the analysis proposed in this thesis is the doc-

ument, and in particular its digital representation. Over the years, very different

communities, with heterogeneous objectives, skills and background have worked on

the analysis of documents and, as a consequence, very different perspectives and

interests lead scholars to stress on some aspect more than others: for example,

semiologists focus on languages and signs, communication experts on message pass-

ing and immediacy, computer scientists on automatic analysis and transformations,

psychologists on users’ reactions and so on. Documents, in fact, are complex objects,

and even defining what they really are and what they are used for is a complex issue.

A basic fact should be considered by all these different approaches: a document

is the result of a writing process, made by an author, with the clear intent of storing

and communicating information. It’s no accident that the word root of the term

”document” (derived from the Latin ’docere’, that means ’teaching’) focuses on

such aspect: documents are means for constructing, progressing and disseminating

ideas and data. Then documents (and in particular digital documents) cannot be

conceived as indivisible units but they are the result of a complex process, where

different and heterogeneous interventions work together to obtain the final output:



142 Chapter 7. Conclusions

layered artifacts, where each layer is built for specific goals and that, combined

together, create an effective unit of communication.

Among all these dimensions and layers, in this work I have focused on two

of them, structure and content, that constitute the basic (and often indivisible)

contribution written and organized by the authors. In particular I have analyzed the

relations between content and structure in digital documents, trying to understand

whether and to what extent an analysis based only on these aspects may be used to

make sense of documents.

Starting from an analysis of real documents, I have identified regularities in how

authors habitually organize their content, and derived classes of elements (patterns)

with a precise structural characterization persisting across heterogeneous documents

that use very different vocabularies. The outcome of this investigation is a novel

approach to address document patterns, which captures the main constituents of the

document organization by specifying a few meta-structures and some precise rules

for combining them. This bottom-up approach has led to a formal definition of the

model of structural patterns characterized by three main properties: terseness (a

few objects and composition rules are sufficient to express the organization of docu-

ments), coverage (any possible situation in any document is captured by the model)

and expressiveness (patterns make explicit the semantics of structures, relations and

dependencies).

The main contribution of this work is then providing a theory that is able to

represent and capture the model used by authors of documents to organize their con-

tents and communicate their messages. Working on different vocabularies, contexts,

domains and communities, the theory has proved to be general, effective and robust.

A key aspect of this work, in fact, is the ability to identify structural patterns in



Chapter 7. Conclusions 143

an automatic way with no background information about vocabularies, schemas, or

their intended meaning. The logic behind the theory of patterns guarantees that

no trivial configuration is ever used either at the local level, that is, for the markup

elements within a particular document, or at the global level, for all the elements of

a larger set of documents in the same XML vocabulary. For instance, it is impossible

to assign the same pattern, for example, Inline, to the whole set of elements being

examined, since this would result in making the ontological characterization of pat-

terns described totally inconsistent. In addition, the shift rules and the container

generalization mechanism introduced (both in locally and globally defined scenarios)

guarantee the identification of the most meaningful choice of patterns in terms of

granularity: the algorithm always retrieves the most specific pattern for an element

given its structure in terms of context and content model. This guarantees that the

largest possible set of patterns will be considered and, if possible, selected.

The adoption of a pattern-based approach has many practical benefits in all

stages of the documents’ lifecycle: they can be used as indicators to compare how

different communities organize their discourse and study to what extent their docu-

ments share design principles and guidelines, guidelines for creating well-engineered

documents and vocabularies, rules for extracting structural components and other

useful information from legacy documents, etc.

As regards the first point, the algorithm for the automatic identification of struc-

tural patterns has already proved to provide useful information about documents

that can be used for retrospective analysis. An important research direction I want

to carry on is investigating whether there are differences in the way in which different

authors actually use certain grammars, and to what extent they share design rules.

I want also to compare the production of heterogeneous communities of authors



144 Chapter 7. Conclusions

(e.g., from different disciplines, with different backgrounds, etc.) that use the same

language, in order to further verify the validity and the adequacy of the pattern

theory. Moreover, I plan to test the pattern theory on documents with overlapping

situations , in order to investigate its applicability, and to explore if it is able to

provide some useful information about such complex contexts.

Another useful application of patterns concerns document engineering and the

possibility to perform semiautomatic refactoring operations. For example, I want to

study the relation between the organization of the content and the overall quality of

the document, and investigate how the internal structure of documents, the formal

definition of schemas, and the suggested community guidelines concerning the use

of a particular schema can be improved by adopting patterns.

Finally, applications, services and tools that can be developed using structural

patterns are the last (and probably most important) aspect that should be taken into

consideration in order to understand and evaluate this work. As shown in the last

part of the thesis, patterns can be used to build hypertext-like visualizers, develop

browsers that support the exploration of the document content, extract tables of

contents and indexes of terms. But the most interesting perspective opened by this

approach is the possibility of using structural patterns as the foundations for fur-

ther analysis aimed at (re)constructing the different layers in which the information

contained in the document is organized. For example, I presented the Document

Component Extractor, a tool I developed that supports the identification of higher

level information such as document components (e.g. abstract, introduction, meth-

ods, problem statement, related work, etc.) in scholarly articles solely on the basis

of the structural information provided by patterns. Another pattern-based applica-

tion I’m developing concerns the identification, extraction and characterization of



Chapter 7. Conclusions 145

citation networks emerging from document collections. As future work, I also plan

to use patterns to support the extraction of information about two additional levels:

rhetoric and argumentative.

A final remark concerns Semantic Web Technologies, which has proved to pro-

vide an effective environment for expressing semantic-enriched machine-readable

representations of documents and related models, in which the information about

documents can be expressed in a clear and explicit manner, and can thus be easily

retrieved, managed, provided to the user and used for further computations and

analysis.



146 Chapter 7. Conclusions



References

[1] Alexander, C. (1979). The Timeless Way of Building. Oxford University Press,

1979.

[2] Alexander, C., Ishikawa, S., Silverstein, M., 1977. A pattern language: towns,

buildings, construction (Vol. 2). Oxford University Press.

[3] André, J. (1998). Petite histoire des signes de correction typographique. Cahiers

GUTenberg, (31), 45-59.

[4] Asahara, M., Matsumoto, Y. (2003, May). Japanese named entity extraction

with redundant morphological analysis. In Proceedings of the 2003 Conference

of the North American Chapter of the Association for Computational Linguistics

on Human Language Technology-Volume 1 (pp. 8-15). Association for Compu-

tational Linguistics.

[5] Barabucci, G., Cervone, L., Palmirani, M., Peroni, S., Vitali, F. (2009). Multi-

layer markup and ontological structures in Akoma Ntoso. In Casanovas, P., Pa-

gallo, U., Sartor, G., Ajani, G. (Eds.), Proceeding of the International Workshop

on AI approaches to the complexity of legal systems II (AICOL-II). Berlin, Ger-

many: Springer.

[6] Barabucci, G., Di Iorio, A., Peroni, S., Poggi, F., Vitali, F. (2013). Anno-



148 References

tations with EARMARK in practice: a fairy tale. In F. Tomasi, F. Vitali

(Eds.), Proceedings of the 2013 Workshop on Collaborative Annotations in

Shared Environments: metadata, vocabularies and techniques in the Digital

Humanities (DH-CASE 2013). New York, New York, US: ACM Press. DOI:

10.1145/2517978.2517990

[7] Barabucci, G., Peroni, S., Poggi, F., Vitali, F. (2012). Embedding semantic

annotations within texts: the FRETTA approach. In Proceedings of the 2012

ACM Symposium on Applied Computing (SAC 2012): 658–663. New York, New

York, US: ACM Press. DOI: 10.1145/2245276.2245403

[8] Barnard, D., Hayter, R., Karababa, M., Logan, G., McFadden, J. (1988). SGML-

based markup for literary texts: Two problems and some solutions. Computers

and the Humanities, 22(4), 265-276. doi:10.1007/BF00118602.

[9] Beck, J. (2010). Report from the Field: PubMed Central, an XML-based Archive

of Life Sciences Journal Articles. In Proceedings of the International Symposium

on XML for the Long Haul: Issues in the Long-term Preservation of XML. DOI:

10.4242/BalisageVol6.Beck01

[10] Berglund, A., Boag, S., Chamberlin, D., Fernández, M. F., Kay, M., Ro-

bie, J., Siméon, J. (2010). XML Path Language (XPath) 2.0 (Second Edi-

tion). W3C Recommendation 14 December 2010. World Wide Web Consortium.

http://www.w3.org/TR/xpath20/ (last visited November 26, 2014).

[11] Bikakis, N., Tsinaraki, C., Gioldasis, N., Stavrakantonakis, I., Christodoulakis,

S. (2013). The XML and Semantic Web Worlds: Technologies, Interoperability

and Integration: A Survey of the State of the Art. In Semantic Hyper/Multime-

dia Adaptation (pp. 319-360). Springer Berlin Heidelberg.



References 149

[12] Bikel, D. M., Miller, S., Schwartz, R., Weischedel, R. (1997, March). Nymble:

a high-performance learning name-finder. In Proceedings of the fifth conference

on Applied natural language processing (pp. 194-201). Association for Compu-

tational Linguistics.

[13] Bischof, S., Decker, S., Krennwallner, T., Lopes, N., Polleres, A. (2012). Map-

ping between RDF and XML with XSPARQL. Journal on Data Semantics, 1(3),

147-185.

[14] Bizer, C., Heath, T., Berners-Lee, T. (2009). Linked data-the story so far.

International journal on semantic web and information systems, 5(3), 1-22.

[15] Bizer, C., Lehmann, J., Kobilarov, G., Auer, S., Becker, C., Cyganiak, R.,

Hellmann, S. (2009). DBpedia-A crystallization point for the Web of Data. Web

Semantics: science, services and agents on the world wide web, 7(3), 154-165.

[16] Blomqvist, E., Sandkuhl, K. (2005, May). Patterns in Ontology Engineering:

Classification of Ontology Patterns. In ICEIS (3) (pp. 413-416).

[17] Boag, S., Chamberlin, D., Fernández, M. F., Florescu, D., Robie, J.,

Siméon, J. (2010). XQuery 1.0: An XML Query Language (Second Edi-

tion). W3C Recommendation 14 December 2010. World Wide Web Consortium.

http://www.w3.org/TR/xquery/ (last visited November 26, 2014).

[18] Borthwick, A., Sterling, J., Agichtein, E., Grishman, R. (1998). NYU: Descrip-

tion of the MENE named entity system as used in MUC-7. In In Proceedings of

the Seventh Message Understanding Conference (MUC-7.

[19] Burget, R. (2005). Visual HTML document modeling for information extrac-

tion. In Proceedings of the 2005 International Workshop on Representation



150 References

and Analysis of Web Space (RAWS 2005): 17-24. http://ftp.informatik.rwth-

aachen.de/Publications/CEUR-WS/Vol-164/raws2005-paper2.pdf (last visited

November 26, 2014)

[20] Cardoso, E., Jabour, I., Laber, E., Rodrigues, R., Cardoso, P. (2011). An

efficient language-independent method to extract content from news webpages.

In Proceedings of the 11th ACM symposium on Document engineering (DocEng

11): 121-128. DOI: 10.1145/2034691.2034720

[21] Chidlovskii, B. (2001). Schema Extraction from XML: A Grammatical Inference

Approach. In KRDB (Vol. 45).

[22] Chung, C. Y., Gertz, M., Sundaresan, N. (2002). Reverse engineering

for web data: From visual to semantic structures. In Proceedings of the

18th International Conference on Data Engineering (ICDE 02): 53-63. DOI:

10.1109/ICDE.2002.994697

[23] Ciccarese, P., Groza, T. (2011). Ontology of Rhetorical Blocks

(ORB). Editor’s Draft, 5 June 2011. World Wide Web Consortium.

http://www.w3.org/2001/sw/hcls/notes/orb/ (last visited December 12,

2014).

[24] Ciccarese, P., Peroni, S. (2013). The Collections Ontology: creating and han-

dling collections in OWL 2 DL frameworks. Semantic Web – Interoperability,

Usability, Applicability. DOI: 10.3233/SW-130121

[25] Clark, J. (2001). RELAX NG Specification. Committee Specification.

Organization for the Advancement of Structured Information Standards.

http://relaxng.org/spec-20011203.html (last visited November 26, 2014).



References 151

[26] Colazzo, D., Sartiani, C., Albano, A., Manghi, P., Ghelli, G., Lini, L., Paoli, M.

(2002). A typed text retrieval query language for XML documents. In Journal of

the American Society for Information Science and Technology, 53 (6): 467-488.

DOI: 10.1002/asi.10059.

[27] Coombs, J. H.,Renear A. H., DeRose, S. J. (1987). Markup Systems and the

Future of Scholarly Text Processing. Communications of the ACM 30 (11): 933-

947. DOI: 10.1145/32206.32209.

[28] Dattolo, A., Di Iorio, A., Duca, S., Feliziani, A.A., Vitali, F. (2007). Structural

patterns for descriptive documents. In Baresi, L., Fraternali, P., Houben, G.

(Eds.), Proceedings of the 7th International Conference on Web Engineering

2007 (ICWE 2007). Berlin, Germany: Springer. DOI: 10.1007/978-3-540-73597-

7 35

[29] De La Higuera, C. (2005). A bibliographical study of grammatical inference.

Pattern recognition, 38(9), 1332-1348.

[30] De Waard, A. (2010). From Proteins to Fairytales: Directions in Semantic Pub-

lishing. In IEEE Intelligent Systems, 25 (2): 83-88. DOI: 10.1109/MIS.2010.49.

[31] De Waard, A. (2010). Medium-Grained Document Structure.

http://www.w3.org/wiki/HCLSIG/SWANSIOC/Actions/RhetoricalStructure/

models/medium (last visited November 26, 2014).

[32] Della Penna, G., Magazzeni, D., Orefice. D. (2010). Visual extraction of infor-

mation from web pages. In Journal of Visual Languages and Computing, 21 (1):

23-32. DOI: 10.1016/j.jvlc.2009.06.001



152 References

[33] DeRose, S. (2004). Markup Overlap: A Review and a Horse. In Proceedings

of the Extreme Markup Languages 2004. Rockville, MD, USA: Mulberry Tech-

nologies, Inc. http://conferences.idealliance.org/extreme/html/2004/DeRose01/

EML2004DeRose01.html (last visited November 26, 2014).

[34] DeRose, S. J. , Durand, D., Mylonas, E., Renear, A. H. (1990). What is Text,

Really? In Journal of Computing in Higher Education, 1 (2), 3–26, 1990.

[35] DeRose, S., Maler, E., Daniel, R. (2001). XPointer xpointer() Scheme.

W3C Working Draft, 19 December 2002. World Wide Web Consortium.

http://www.w3.org/TR/xptr-xpointer/ (last visited November 26, 2014).

[36] Di Iorio, A. (2007). Pattern-based segmentation of digital documents: model

and implementation. PhD Thesis. University of Bologna.

[37] Di Iorio, A., Gubellini, D., Vitali, F. (2005). Design patterns for

document substructures. In Proceedings of the Extreme Markup

Languages 2005. Rockville, MD, USA: Mulberry Technologies, Inc.

http://conferences.idealliance.org/extreme/html/2005/Vitali01/EML2005Vitali01.html

(last visited November 26, 2013).

[38] Di Iorio, A., Peroni, S., Poggi, F., Vitali, F. (2012). A first approach to the

automatic recognition of structural patterns in XML documents. In Proceedings

of the 2012 ACM symposium on Document Engineering (DocEng 2012), New

York, ACM, 2012, 85-94. DOI: 10.1145/2361354.2361374

[39] Di Iorio, A., Peroni, S., Poggi, F., Vitali, F., Shotton, D. (2013). Recognising

document components in XML-based academic articles. In Proceedings of the



References 153

2013 ACM symposium on Document Engineering (DocEng 2013): 181-184. New

York, New York, USA: ACM. DOI: 10.1145/2494266.2494319

[40] Di Iorio, A., Peroni, S., Vitali, F. (2009). Towards markup support for

full GODDAGs and beyond: the EARMARK approach. In Proceed-

ings of Balisage: The Markup Conference 2009. Rockville, Maryland,

USA: Mulberry Technologies, Inc. DOI: 10.4242/BalisageVol3.Peroni01.

http://balisage.net/Proceedings/vol3/html/Peroni01/BalisageVol3-

Peroni01.html (last visited November 26, 2014).

[41] Di Iorio, A., Peroni, S., Vitali, F. (2011). A Semantic Web approach to everyday

overlapping markup. Journal of the American Society for Information Science

and Technology, 62(9): 1696–1716. DOI: 10.1002/asi.21591

[42] Di Iorio, A., Peroni, S., Vitali, F. (2011). Using semantic web technologies

for analysis and validation of structural markup. International Journal of Web

Engineering and Technology, 6(4): 375–398. DOI: 10.1504/IJWET.2011.043439

[43] Dublin Core Metadata Initiative (2010). DCMI Metadata Terms. DCMI Recom-

mendation. http://dublincore.org/documents/dcmi-terms/ (last visited Novem-

ber 26, 2014).

[44] Durusau, P., O’Donnell, M. B. (2002). Just-In-Time-Trees (JITTs): Next Step

in the Evolution of Markup. In Proceedings of 2002 Extreme Markup Languages

Conference, Montréal, Canada.

[45] Falco, R., Gangemi, A., Peroni, S., Vitali, F. (2014). Modelling OWL on-

tologies with Graffoo. In ESWC 2014 Satellite Events - Revised Selected Pa-

pers, Lecture Notes in Computer Science. Berlin, Germany: Springer. Post-



154 References

print available at http://speroni.web.cs.unibo.it/publications/falco-in-press-

modelling-ontologies-graffoo.pdf (last visited November 26, 2014)

[46] Gamma, E., Helm, R., Johnson, R., Vlissides, J. (1994). Design patterns: ele-

ments of reusable object-oriented software. Addison-Wesley, New York, 1994.

[47] Gangemi, A., Presutti, V. (2009). Ontology design patterns. In Handbook on

Ontologies (pp. 221-243). Springer Berlin Heidelberg.

[48] Gao, S., Sperberg-McQueen, C. M., Thompson, H. S. (2012). W3C

XML Schema Definition Language (XSD) 1.1 Part 1: Structures.

W3C Recommendation 5 April 2012. World Wide Web Consortium.

http://www.w3.org/TR/xmlschema11-1/ (last visited November 26, 2014).

[49] Georg, G., Hernault, H., Cavazza, M., Prendinger, H., Ishizuka, M. (2009).

From Rhetorical Structures to Document Structure: Shallow Pragmatic Anal-

ysis for Document Engineering. In Proceedings of the 2009 ACM sympo-

sium on Document engineering (DocEng09). New York, New York: ACM.

DOI:10.1145/1600193.1600235.

[50] Georg, G., Jaulent, M. (2007). A Document Engineering Environment

for Clinical Guidelines. In Proceeding of the 2007 ACM symposium

on Document engineering (DocEng07). New York, New York: ACM.

DOI:10.1145/1284420.1284440.

[51] Goldfarb, C. F. (1981). A generalized approach to document markup. In ACM

Sigplan Notices (Vol. 16, No. 6, pp. 68-73). ACM.

[52] Goldfarb, C. F. (1990). The SGML Handbook. New York, New York, USA:

Oxford University Press. ISBN: 0198537373.



References 155

[53] Groza, T., Handschuh, S., Möller, K., Decker, S. (2007). SALT – Semantically

Annotated LaTeX for Scientific Publications. In Franconi, E., Kifer, M., May, W.

(Eds.), Proceedings of the fourth European Semantic Web Conference (ESWC

2007). Berlin, Germany: Springer.

[54] Groza, T., Möller, K., Handschuh, S., Trif, D., Decker, S. (2007). SALT: Weav-

ing the claim web. In Aberer, K., Choi, K., Noy, N. F., Allemang, D., Lee, K.,

Nixon, L. J. B., Golbeck, J., Mika, P., Maynard, D., Mizoguchi, R., Schreiber, G.,

Cudré-Mauroux, P. (Eds.), Proceedings of 6th International Semantic Web Con-

ference and of the 2nd Asian Semantic Web Conference (ISWC 2007 + ASWC

2007). Berlin, Germany: Springer.

[55] Groza, T., Möller, K., Handschuh, S., Trif, D., Decker, S. (2007). SALT: Weav-

ing the claim web. In Proceedings of 6th International Semantic Web Conference

and of the 2nd Asian Semantic Web Conference (ISWC 2007 + ASWC 2007):

197-210. DOI: 10.1007/978-3-540-76298-0 15

[56] Groza, T., Schutz, A., Handschuh, S. (2007). SALT: A Semantic Ap-

proach For Generating Document Representations. In Proceedings of the 2007

ACM symposium on Document Engineering (DocEng 2007): 171-173. DOI:

10.1145/1284420.1284462

[57] Harold, E. R. (2004). XML 1.1 Bible (Vol. 136). John Wiley & Sons.

[58] Hickson, I. (2011). HTML5: A vocabulary and associated APIs for HTML

and XHTML. W3C Working Draft 25 May 2011. World Wide Web Consortium.

http://www.w3.org/TR/html5/ (last visited November 26, 2014).



156 References

[59] Hilbert, M., Schonefeld, O., Witt, A. (2005). Making CONCUR work. In Ex-

treme Markup Languages.

[60] Hillesund, T. (2002). Many Outputs Many Inputs: XML for Publishers and

E-book Designers. In Journal of Digital Information, 3(1), January 2002.

[61] Horrocks, I., Patel-Schneider, P.F., McGuinness, D.L., Welty, C.A. (2007).

OWL: A description logic based ontology language for the Semantic Web. In F.

Baader, D. Calvanese, D.L. McGuinness, D. Nardi, P.F. Patel-Schneider (Eds.),

The description logic handbook: Theory, implementation and applications, 2nd

ed. (pp. 458–486). Cambridge, UK: Cambridge University Press.

[62] Huitfeldt, C., Sperberg-McQueen, C. M. (2001). TexMECS:

An experimental markup meta-language for complex documents.

http://mlcd.blackmesatech.com/mlcd/2003/Papers/texmecs.html

[63] ISO 5776:1983, Graphic Technology - Symbols for Text Correction. Interna-

tional Organization for Standardization, Geneva, Switzerland. (1983).

[64] Jagadish, H. V., Lakshmanan, L. V., Scannapieco, M., Srivastava, D., Wiwat-

wattana, N. (2004). Colorful XML: one hierarchy isn’t enough. In Proceedings of

the 2004 ACM SIGMOD international conference on Management of data. (pp.

251-262). ACM. Doi:10.1145/1007568.1007598.

[65] Jain, A. K., Yu, B. (1998). Document representation and its application to

page decomposition. In IEEE Transactions on Pattern Analysis and Machine

Intelligence, 20 (3):294.308. DOI: 10.1109/34.667886

[66] Johnson, B., Shneiderman, B. (1991, October). Tree-maps: A space-filling ap-

proach to the visualization of hierarchical information structures. In Visualiza-



References 157

tion, 1991. Visualization’91, Proceedings., IEEE Conference on (pp. 284-291).

IEEE.

[67] Kazman, R. (1986). Structuring the text of the Oxford English Dictionary

through finite state transduction. University of Waterloo.

[68] Keim, D. A., Mansmann, F., Schneidewind, J., Thomas, J., Ziegler, H. (2008).

Visual analytics: Scope and challenges (pp. 76-90). Springer Berlin Heidelberg.

[69] Knuth, Donald Ervin (1984), The TeXbook, Volume A of Computers and Type-

setting. Massachusetts, USA, Addison-Wesley. ISBN 0-201-13448-9.

[70] Koh, E., Caruso, D., Kerne, A., Gutierrez-Osuna, R. (2007). Elimination of junk

document surrogate candidates through pattern recognition. In Proceedings of

the 2007 ACM symposium on Document engineering (DocEng07). New York,

New York: ACM. DOI: 10.1145/1284420.1284466.

[71] Krotzsch, M., Simancik, F., Horrocks, I. (2011). A description logic primer.

Ithaca, NY: Cornell University Library. http://arxiv.org/pdf/1201.4089v1 (last

visited November 26, 2014).

[72] Lini, L., Lombardini, D., Paoli, M., Colazzo, D., Sartiani, C. (2001). XTReSy:

A Text Retrieval System for XML documents. In Augmenting Comprehension:

Digital Tools for the History of Ideas.

[73] Liu, A. (20014) Transcendental Data: Toward a Cultural History and Aesthetics

of the New Encoded Discourse. Critical Inquiry, 1(31):49–84, 2004.

[74] Marinelli, P., Vitali, F., Zacchiroli, S. (2008). Towards the unification of formats

for overlapping markup. In New Review of Hypermedia and Multimedia 14, 1,

pages 57-94. doi:10.1080/13614560802316145



158 References

[75] McCallum, A., Li, W. (2003, May). Early results for named entity recogni-

tion with conditional random fields, feature induction and web-enhanced lex-

icons. In Proceedings of the seventh conference on Natural language learning

at HLT-NAACL 2003-Volume 4 (pp. 188-191). Association for Computational

Linguistics.

[76] McGuffin, M. J., Robert, J. M. (2010). Quantifying the space-efficiency of 2D

graphical representations of trees. Information Visualization, 9(2), 115-140.

[77] Mendes, P. N., Jakob, M., Garćıa-Silva, A., Bizer, C. (2011, September). DB-

pedia spotlight: shedding light on the web of documents. In Proceedings of the

7th International Conference on Semantic Systems (pp. 1-8). ACM.

[78] Minkov, E., Wang, R. C., Cohen, W. W. (2005, October). Extracting per-

sonal names from email: applying named entity recognition to informal text. In

Proceedings of the conference on Human Language Technology and Empirical

Methods in Natural Language Processing (pp. 443-450). Association for Com-

putational Linguistics.

[79] Motik, B., Patel-Schneider, P.F., Parsia, B. (2012). OWL 2 web ontol-

ogy language: Structural specification and functional-style syntax, 2nd ed.

W3C Recommendation, 11 December 2012. World Wide Web Consortium.

http://www.w3.org/TR/owl2-syntax/ (last visited November 26, 2014).

[80] Ossanna, J. F. (1980). NROFF/TROFF user’s manual. Bell Laboratories.

[81] Pardi, W. J. (1999). XML in Action. Microsoft Press, Redmond, WA, 1999.

[82] Peroni, S., Gangemi, A., Vitali, F. (2011). Dealing with markup seman-

tics. In Proceedings the 7th International Conference on Semantic Systems (I-



References 159

SEMANTICS 2011): 111–118. New York, New York, US: ACM Press. DOI:

10.1145/2063518.2063533

[83] Peroni, S., Poggi, F., Vitali, F. (2013). Tracking changes through EARMARK:

a theoretical perspective and an implementation. In G. Barabucci, U. Burghoff,

A. Di Iorio, S. Maier (Eds.), Proceedings of 1st International Workshop on

(Document) Changes: modeling, detection, storage and visualization (DChanges

2013), CEUR Workshop Proceedings 1008. Aachen, Germany: CEUR-WS.org.

Retrieved from http://ceur-ws.org/Vol-1008/paper6.pdf (last visited November

26, 2014)

[84] Piez, W. (2001). Beyond the ’descriptive vs. procedural’ distinction. In Pro-

ceedings of the Extreme Markup Conference, Montreal, Canada, 2001.

[85] Piez, W. (2005). Format and Content: Should they be separated? Can they be?:

With a counter-example. In Proceedings of the Extreme Markup Conference,

Montreal, Canada, 2005.

[86] Prud’hommeaux, E., Carothers, G. (2013). Turtle - Terse RDF Triple Lan-

guage. W3C Candidate Recommendation, 19 February 2013. World Wide Web

Consortium. Retrieved from http://www.w3.org/TR/turtle/

[87] Quin, L., 1996. Suggestive Markup: Explicit Relationships in Descriptive and

Prescriptive DTDs. In GCA SGML Conference, Boston.

[88] Raggett, D., Le Hors, A., Jacobs, I. (1999). HTML 4.01 Specification. W3C

recommendation, 24.

[89] Renear, A. H. (2001). The Descriptive/Procedural Distinction is Flawed.

Markup Languages: Theory and Practice, 4(2):411–420, 2001.



160 References

[90] Schonefeld, O. (2007). XCONCUR and XCONCUR-CL: A constraint-based ap-

proach for the validation of concurrent markup. In Data Structures for Linguistic

Resources and Applications. Proceedings of the Biennial GLDV Conference 2007,

Tübingen, Germany, 2007.

[91] Schulz, H. (2011). Treevis. net: A tree visualization reference. Computer Graph-

ics and Applications, IEEE, 31(6), 11-15.

[92] Schulz, H., Hadlak, S., Schumann, H. (2011). The design space of implicit

hierarchy visualization: A survey. Visualization and Computer Graphics, IEEE

Transactions on, 17(4), 393-411.

[93] Sekine, S. (1998, May). NYU: Description of the Japanese NE system used for

MET-2. In Proc. Message Understanding Conference.

[94] Settles, B. (2004, August). Biomedical named entity recognition using condi-

tional random fields and rich feature sets. In Proceedings of the International

Joint Workshop on Natural Language Processing in Biomedicine and its Appli-

cations (pp. 104-107). Association for Computational Linguistics.

[95] Shafer, K. E. (1996). Fred: the SGML grammar builder. OCLC, 1996.

[96] Shearer, R., Motik, B., Horrocks, I. (2008). HermiT: A Highly-Efficient OWL

Reasoner. In OWLED (Vol. 432).

[97] Shneiderman, B. (1996, September). The eyes have it: A task by data type tax-

onomy for information visualizations. In Visual Languages, 1996. Proceedings.,

IEEE Symposium on (pp. 336-343). IEEE.

[98] Shneiderman, B., Wattenberg, M. (2001, October). Ordered treemap layouts.



References 161

In Information Visualization, IEEE Symposium on (pp. 73-73). IEEE Computer

Society.

[99] Shotton, D. (2009). Semantic Publishing: the coming revolution in scientific

journal publishing. Learned Publishing, 22 (2): 85-94. DOI: 10.1087/2009202.

[100] Shotton, D., Portwin, K., Klyne, G., Miles, A. (2009). Adventures in Seman-

tic Publishing: Exemplar Semantic Enhancements of a Research Article. PLoS

Computational Biology, 5 (4): e1000361. DOI: 10.1371/journal.pcbi.1000361.

[101] Simpson, P. (1935). Proof-Reading in the Sixteenth, Seventeenth and Eigh-

teenth Centuries (1st ed.). London, Oxford University Press.

[102] Sirin, E., Parsia, B., Grau, B. C., Kalyanpur, A., Katz, Y. (2007). Pellet: A

practical owl-dl reasoner. Web Semantics: science, services and agents on the

World Wide Web, 5(2), 51-53.

[103] Snooks and Co. (2002). Style manual: for authors, editors and printers (6th

ed.). Brisbane, Wiley Australia, 2002.

[104] Spengler, S., Gallinari, P. (2010). Document structure meets page layout:

loopy random fields for web news content extraction. In Proceedings of the

10th ACM symposium on Document engineering (DocEng 10): 151-160. DOI:

10.1145/1860559.1860590

[105] Sperberg-McQueen, C. M., Burnard, L. (1997). A Gentle Introduction to

SGML. In Guidelines for Electronic Text Encoding and Interchange, pages 13–

36, 1997.

[106] Sperberg-McQueen, C. M., Burnard, L. (2000). A Gentle Introduction to

XML. In Guidelines for Electronic Text Encoding and Interchange, 2000.



162 References

[107] Sperberg-McQueen, C. M., Huitfeldt, C. (1999). Concurrent document hierar-

chies in MECS and SGML. In Literary and Linguistic Computing, 14(1), 29-42.

[108] Sperberg-McQueen, C. M., Huitfeldt, C. (2004). Goddag: A data structure

for overlapping hierarchies. In Digital Documents: Systems and Principles (pp.

139-160). Springer Berlin Heidelberg. doi:10.1007/978-3-540-39916-2 12.

[109] St. Laurent, S. (1997). XML: a primer. IDG Books Worldwide, Inc.

[110] Stasko, J., Zhang, E. (2000). Focus+ context display and navigation tech-

niques for enhancing radial, space-filling hierarchy visualizations. In Information

Visualization, 2000. InfoVis 2000. IEEE Symposium on (pp. 57-65). IEEE.

[111] Swales, J.M. (1990). Genre analysis: English in academic and research settings.

Cambridge University Press.

[112] Tannier, X., Girardot, J.,Mathieu, M. (2005). Classifying XML tags

through “reading contexts”. In Proceedings of the 2005 ACM symposium

on Document engineering (DocEng05). New York, New York: ACM. DOI:

10.1145/1096601.1096638.

[113] TEI Consortium. (2008). TEI P5: Guidelines for electronic text encoding and

interchange. L. Burnard, S. Bauman (Eds.). TEI Consortium.

[114] Tennison, J., Piez, W. (2002). The Layered Markup and Annotation Language

(LMNL). In Extreme Markup Languages, 2002.

[115] Thomas, J. J., Cook, K. A. (Eds.). (2005). Illuminating the path: The research

and development agenda for visual analytics. IEEE Computer Society Press.



References 163

[116] Thuy, P. T. T., Lee, Y. K., Lee, S. (2009). DTD2OWL: automatic transform-

ing XML documents into OWL ontology. In Proceedings of the 2nd International

Conference on Interaction Sciences: Information Technology, Culture and Hu-

man (pp. 125-131). ACM.

[117] Vion-Dury, J. Y. (2013). Using RDFS/OWL to ease semantic integration of

structured documents. In Proceedings of the 2013 ACM symposium on Docu-

ment engineering (pp. 189-192). ACM.

[118] Vitali, F., Di Iorio, A., Campori, E.V. (2004). Rule-based structural analy-

sis of web pages. In Proceedings of the 6th International Workshop on Docu-

ment Analysis Systems (DAS 2004): 425.437. Berlin, Germany:Springer. DOI:

10.1007/978-3-540-28640-0 40

[119] Walsh, N. (2002). XML: One Input Many Outputs: a response to Hillesund.

Journal of Digital Information, 3(1), January 2002.

[120] Walsh, N. (2008). The DocBook Schema Version 5.0.

[121] Walsh, N. (2010). DocBook 5: The Definitive Guide. Sebastopol, CA, USA:

O’Really Media. Version 1.0.3. ISBN: 0596805029.

[122] Witt, A. (2004). Multiple hierarchies: new aspects of an old solution. In Ex-

treme Markup Languages, 2004.

[123] Zhang, L. (2012). Grasping the structure of journal article: Utilizing the func-

tions of information units. Journal of American Society for Information Science

and Technology, 63(3), 469–480.

[124] Zou, J., Le, D., Thoma, G. R. (2007). Structure and content analysis for

HTML medical articles: a hidden Markov model approach. In Proceedings of



164 References

the 2007 ACM symposium on Document engineering (DocEng 07): 199-201.

DOI: 10.1145/1284420.1284468


	Abstract
	Acknowledgements
	List of Tables
	List of Figures
	Introduction
	Background
	Document modeling
	Markup and documents: an historical perspective
	Different objectives, different markup languages
	Format and content separation
	Hierarchical models for digital documents: advantages and open issues
	Semantic Web and markup languages
	Document analysis
	Structural analysis of documents
	Analysis of document components
	Structural Patterns for document engineering
	A pattern-based segmentation model for descriptive documents
	A document segmentation model: Pentaformat
	Patterns for document substructures
	Structural patterns: an analysis
	Specialization of the Marker pattern: Milestone and Meta
	The Popup pattern
	The Field pattern
	The Headed Container pattern

	Towards a revised theory of structural patterns

	A revised theory of structural patterns
	The Pattern Ontology: core model
	Basic properties of content models and contexts 
	Structural patterns
	The Pattern Ontology: specializations of the Container pattern
	Recognising structural patterns in XML-based documents
	Assigning patterns to documents
	Coherency and pattern shifts
	Pattern schemes and partitions
	An algorithm for the automatic recognition of structural patterns
	Evaluation: checking patterns on live documents
	Full adherence or convergence to patterns
	Large adherence
	Partial adherence

	Leveraging structural patterns to build applications
	Document Viewer
	Conversion and generation of presentation rules
	Information synthesis and extraction
	Supporting reading, navigation and comprehension of documents
	Document Component Extractor
	A model for document logical structure: DoCo
	An interactive tool for document component analysis
	Recognizing document components in XML-based academic articles
	Testing the algorithm 


	Conclusions

	References











