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General abstract 

The general aim of this thesis was to investigate the respective contribution of prior information and sensorimotor 

constraints to action understanding and prediction, and to estimate their consequences on the evolution of faithful social 

learning. Even though a huge amount of literature has been dedicated to the study of action understanding and its role in 

social learning, these issues are still largely debated. Here, I critically describe two main perspectives. The first 

perspective (i.e., the ‘Theory-theory’ framework) interprets faithful social learning as an outcome of a fine-grained 

representation of others’ actions and intentions that requires sophisticated – and uniquely human – socio-cognitive 

skills. In contrast, the second perspective (i.e., the ‘simulation theory’ framework) highlights the role of simpler decision 

heuristics, the recruitment of which is determined by individual and ecological constraints. The aim of the present thesis 

is to provide evidence that these two theoretical contributions are not mutually exclusive. 

The general introduction is organised around five sections in which I address the following points: i) the 

relationship between social learning and theories of action understanding; ii) the role of prior information in solving the 

inverse problem addressed by action understanding; iii) the role of rationality in inference mechanisms involved in 

action understanding; iv) the role of object affordances; v) the hybrid model of action understanding. 

The experimental contribution of the thesis is divided into four main studies:  

 The first study aimed to investigate the role of the inferior frontal cortex (IFC), the anterior intraparietal area 

(AIP) and the primary somatosensory cortex (S1) in the recognition of other people’s actions, using a transcranial 

magnetic stimulation adaptation paradigm (TMSA). In a first adaptation phase, participants were repeatedly exposed to 

goal-directed actions performed by a filmed demonstrator. In a second recognition phase, they were presented pictures 

of actions and were asked to match either the type grip or the type of arm action currently presented with those used in 

the preceding adaptation phase. Single-pulse TMS was applied over the three regions of interest during the presentation 

of each picture. Overall, results showed that stimulating the IFC and S1 improved the recognition of the adapted arm 

action, possibly through of ‘simulation’ process of sensorimotor and somatic properties of the observed actions. 

 The second work aimed at studying whether, and how, prior information acquired from the probabilistic 

sampling of past events and prior information derived from an estimation of sensorimotor/biomechanical constraints of 

observed goal-directed actions interact during the prediction of other people’s intentions. Participants performed an 

action prediction task in which they were required to infer, under various conditions of visual uncertainty, the intentions 

of a demonstrator performing tool-use behaviors. Both the probability of observing the demonstrator achieving a 

particular tool function and the biomechanical optimality of the observed movement were varied. Results showed that 

biomechanical priors modulate the extent to which participants’ predictions are influenced by probabilistically-induced 

expectations.  

 In line with this finding, the third study aimed to investigate whether, and how, the interactions between 

probabilistic and biomechanical priors modulate motor system activity. This modulation was measured by means of 

single-pulse TMS applied over the primary motor cortex (M1) during action prediction under visual uncertainty, before 

and after probabilistic exposure to biomechanically optimal and suboptimal actions. Results revealed a suppression of 

the corticospinal excitability, whose magnitude was found to depend on the type of actions (biomechanically optimal or 

suboptimal) that were probabilistically biased.  

 The fourth study tested the extent to which behavioral and ecological constraints – such as the richness of 

individuals’ biomechanical repertoire or the type of search space characterizing a problem – influence at a population 

level the emergence of faithful social learning strategies (e.g., emulation or imitation), and whether the emergence of 

such strategies may explain the stability of observed behavioral traditions. These relationships where explored through 

an evolutionary individual-based model. Results showed that the evolution of faithful social learning only occurs if the 

behavioral repertoire of a population is large enough, and if the search space does not allow trial-and-error learning.  

Overall, the collected data contribute to our understanding of action prediction by humans, by elucidating how 

higher-order and lower-order prior expectations interact during action prediction. In addition, these studies offer a new 

point of view on the neural underpinnings of action representation and action prediction. Finally, this work provides 

promising perspectives for a better understanding of human social learning, with possible extensions to animal models.  
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The present thesis focuses on the cognitive and cerebral mechanisms underlying how human 

observers perceive, predict and learn from their conspecific’s behaviors. It also aims to extend 

the result of such investigations to a broader level of description, such as the emergence of 

cultural traditions in a population of individuals. 

Understanding human culture requires the investigation of at least three main aspects: 

the population-level patterning of traditions; the intermediate level of social learning 

mechanisms; and the individual-level behavioural and cognitive characteristics (Whiten, 

2011). The present thesis contributions to each of these aspects, with particular attention 

devoted to the small-scale, individual level. Throughout these pages the reader will thus 

encounter theoretical and experimental work that, put together, aims to draw links between the 

individual-level and the larger levels of description mentioned above. The main claim of the 

present manuscript stems from the well accepted assumption that perceiving and 

understanding the behaviors of their conspecifics through the situations in which they take 

place is the precondition for social learning and the emergence of culture (Sperber, 1996; 

Sperber and Hirschfeld, 2004).  

Traditionally, it has been claimed that the emergence of cultural traditions depends on 

the use of faithful social learning (i.e., the transmission of information from an individual to 

another through behavioral means, in particular, through learning and teaching), that faithful 

social learning is an outcome of a fine-grained representation of others’ actions and intentions, 

and that this representation requires sophisticated – and uniquely human – socio-cognitive 

skills. In the present thesis, in contrast, I suggest a less exclusive and more integrative 

position. This position proposes that a fine-grained representation of other people’s actions 

and intentions requires sophisticated socio-cognitive skills as well as simpler heuristics and 
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decision-making rules, whose recruitment is determined by individual and ecological 

constraints. These constraints may have a significant impact on the evolution of social-

learning and, thus, on the emergence of cultural traditions.  

The present work is divided into three main parts: 

a) A general introduction that aims to identify the sophisticated socio-cognitive skills and 

simple heuristics that preside over human action understanding, and that underlines 

their cerebral correlates. 

b) A general method section in which the experimental techniques used in the presented 

studies are described. 

c) An experimental part that aims: 

i. to study the cerebral bases of action perception 

ii. to investigate whether, and how, sophisticated skills and simple heuristics 

interact during action prediction  

iii. to investigate how this interaction modulates brain activity  

iv. to investigate whether, and how, individual and ecological constraints can 

impact on the emergence of ‘cultural’ traditions among a population.  

d) A general discussion where experimental data are discussed in the larger context of 

human social learning.  
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A. From social learning to action understanding 

 

 

Behavioral – or cultural – traditions (i.e., behaviors acquired through some form of social 

learning, and which are relatively stable in groups) have been found in humans and in several 

non-human species (Laland and Galef, 2009). The existence of these traditions has usually 

been considered as a strong marker of faithful social transmission mechanisms that guarantee 

both the successful diffusion and the stability of the behaviors (Huffman, 1996; Horner et al., 

2006; Marino et al., 2007). Social learning – that is, the ‘inheritance of acquired behaviors’ – 

has been a longstanding interest of biologists and psychologists alike. Indeed, the idea that 

animals acquire components of their behavioral repertoire by copying their conspecifics is far 

from being new, as witnessed by seminal observations made by Aristotle, for whom human 

and non-human social animals have, in varying degrees, natural predispositions to 

interindividual communication and social learning (1986). The social learning of new skills, 

ranging from the acquisition of complex tool use by humans to the acquisition of vocalization 

by birds, is now considered as a well-established and noncontroversial aspect of the adaptive 

behavior of vertebrates (Seed and Byrne, 2010). However, if a great deal is known about the 

adaptive functions of social learning, such as its impact on the social and cultural transmission 

of behaviors, little is known about the cognitive mechanisms that make them possible.  

Many forms of social learning mechanisms operate in human behaviors. These forms 

are hierarchically organized according to their efficiency for transmitting the behavior to a 

third party with fidelity (Rendell et al., 2011).  A distinction is usually made between: 
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 Stimulus enhancement: a demonstrator exposes an observer to a single stimulus, which 

leads to a change in the probability that the observer will respond to stimuli of that 

type. 

 Local enhancement: a demonstrator attracts an observer to a specific location, which 

can lead to the observer learning about objects at that location. 

 Observational conditioning: the behaviour of the demonstrator exposes an observer to 

a relationship between stimuli, enabling the observer to form an association between 

them. 

 Response facilitation: a demonstrator performing an action increases the probability 

that an observer will do the same. This can result in the observer learning about the 

context in which to perform the action and the consequences of doing so. 

 Social facilitation: social facilitation occurs when the mere presence of a demonstrator 

affects the observer’s behavior, which can influence the observer’s learning. 

 Contextual imitation: observing a demonstrator performing an action in a specific 

context directly improves learning about how to perform this action in the same 

context. 

 Production imitation: observing a demonstrator performing a novel action, or novel 

action sequence, increases the likelihood that an observer performs that action or 

sequence. 

 Emulation: observation of a demonstrator interacting with objects in its environment 

increases the likelihood that an observer performs any actions that bring about a similar 

effect on those objects. 
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Local enhancement, observational conditioning, response facilitation and social 

facilitation are forms of incidental, low-fidelity social learning and are most commonly 

observed in non-human animals. They involve the detection of contextual information, of low-

level social signals (e.g., the mere presence of a peer) or basic reinforcement signals. These 

forms of social-learning are not directly ‘social’. Instead, they result from the fact that 

individuals live in a social environment. In these cases, the learned information is mediated 

through a social channel (Sterelny, 2009) – i.e., through the observation of others’ behavior – 

but the cognitive processes that encode this information are just the same as those that encode 

information received from other channels. They are not adaptively specialized in any way for 

the processing of socially-channeled information.  

In contrast, emulation, contextual imitation, and production imitation are forms of 

motivated, faithful (high-fidelity) social learning that have been rarely reported in non-human 

animals, except in primates (Voelkl and Huber, 2007) and birds (Akins and Zentall, 1998; 

Dorrance and Zentall, 2001). Among primates, humans are well known to be precocious and 

efficient imitators and emulators (Tomasello, 1999). The relative rarity of emulation and 

imitation in the wild suggests that these sophisticated forms of social learning are the hallmark 

of a cognitive specialization for processing social signals (Tomasello et al., 2005). These 

faithful forms of social-learning are thus patently ‘social’ because they require the observer to 

be intrinsically motivated in directing her/his attention towards the behavior of the 

demonstrator. This is particularly salient with humans who are equipped with a set of 

psychological dispositions biasing the individual to preferentially orient to the social world 

(Chevallier et al., 2012; Csibra and Gergely, 2011).  



 

15 

Evolving culture through high-fidelity social transmission mechanisms does not merely 

rely on social motivation. For example, imitation refers to the ability of overtly copying an 

observed action, while emulation refers to the ability to copy the outcome of an observed 

action through the observer’s own means. Thus, copying with fidelity a new behavior from 

mere observation has been tightly related to the observer’s ability to build a fine-grained 

representation of the observed motor sequence, and/or a representation of its underlying cause 

(the goal or the intention of the observed agent). In sum, it requires a deep understanding of 

other people’s behaviors and the mental states that cause these behaviors (Csibra and Gergely, 

2007). 

 

1. Interpreting other people’s behaviors: from theory-theory to motor simulation  

Perceiving and understanding our conspecific’s behaviors is one of the pre-requisites for the 

emergence of human culture (Tomasello et al., 2005). The typically human disposition to 

understand and predict others’ behaviors render an account for a more fundamental aptitude to 

represent, or ’read’, other people’s mental states. Understanding others’ behaviors would thus 

depend on this robust and early ability to represent and attribute mental states (Baron-Cohen et 

al., 1985; Leslie, 1987; Frith and Frith, 2003). Yet, the exact nature of the elementary 

mechanisms this ‘mind-reading’ ability relies on is still a matter of debate.  
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1.1. The ‘theory-theory’ 

According to the advocates of the ‘Theory-theory’ framework, understanding behaviors of our 

peers would require a preliminary, implicit and tacit ‘naive’ theory of psychological 

functioning, involving axioms and elementary inferential mechanisms (Gopnik, 1993; Gopnik 

and Meltzoff, 1994). These axioms and inferential mechanisms would be, at least partly 

(Carruthers, 1996), based on past experience of the observer, and on laws extracted from the 

regularity of past events (Leslie, 1987; Gopnik, 1993). Just like other naive theories, such as 

naive physics, the naive theory of psychological functioning enables us to predict and explain 

another person’s behavior (Saxe, 2005). Although we daily use this theory, we are not actually 

aware of its underlying laws. 

The ‘Theory-theory’ approach posits that the emergence of our capacity to explain 

others’ behaviors in terms of psychological states – such as ‘beliefs’, ‘desires’ or ‘intentions’ – 

intimately depends on interactions experienced by the child with her/his relatives. These 

interactions progressively lead the child to form hypotheses about hidden variables (e.g., the 

beliefs and desires of her/his relatives) that may explain the behavioral regularities she/he 

observes.According to Gopnik and Meltzoff (1994), the child would resemble a ‘little 

scientist’ testing successive hypotheses about what may have caused the observed behaviors 

(‘he believes that’ or ‘he wants that’). Testing these hypotheses would lead the child to 

progressively elaborate a ‘naive’ theory of the psychological functioning of her/his 

conspecifics. At a very early stage, the child would possess a primitive concept of ‘belief’ and 

‘desire’ (the child’s beliefs are always ‘true’ and other people always express the same desires 

as her/his own) that would be refined with experience and development. Thus, the ability to 
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attribute intentions or beliefs to other people would be related to the elementary ability to infer 

mental states causing the observed behaviors and the situation, or context, in which such 

behaviors take place. Interestingly, these inferential rules would be crucial to understand 

others as well as to build knowledge about oneself. Thus, self-knowledge itself would not be 

immediate, but inferential, i.e., mediated by automatic inferences achieved in the presence of 

biological agents. Nonetheless, a difference of degree would exist between knowing oneself 

and knowing others. Indeed, information we have about ourselves would be more abundant, 

and of a better quality, as we naturally are in a better position to collect it. However, this 

difference of degree would not be a difference of nature. In one case (knowing oneself) as in 

the other (knowing others), we would use the same implicit theory of mind functioning 

(Gopnik and Meltzoff (1994). 

 

1.2. Pitfalls of the Theory-theory: the theory of simulation 

A strong argument against advocates of the “theory-theory” is that the formation of a folk 

psychology seems to be a relatively late developmental achievement: the ability to attribute 

‘false beliefs’, for example, only emerges around 4 years of age (Wimer and Perner, 1983). 

Recent data collected in the field of neuroscience – and more particularly in the field of motor 

cognition – provides some convincing counterarguments to the ‘Theory-theory’ approach (see 

for a review, Gallese and Goldmann, 1998). According to these studies, the perception of 

others’ mental states would not require the acquisition of a ‘model’ of the other’s mind. 

Instead, humans already possess such a model, namely, their own mind. Thus, understanding 

other people’s behavior would primarily depend on the observer’s ability to ‘simulate’ the 
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‘point of view’ of the observed agent (Goldmann, 1995; Gordon, 1996; Gallese and 

Goldmann, 1998). 

The acquisition by humans of mental concepts, such as understanding and predicting 

intentional behaviors, would depend on this ability to internally replicate (i.e., ‘simulate’) 

other people’s behaviors. Here, the simulation process would be based on a representation of 

sensori-motor constraints that are shared between the observer and the demonstrator. As the 

observer may form motor representations that are similar to those of the observed agent, she 

would also be able to (automatically) access the intentions underlying, and causing, such 

representations (Wolpert et al., 2003; Blakemore & Decety, 2001; Metzinger & Gallese, 

2003).  

 

1.2.1. A brief historical account of simulationist theories 

Simulationist theory is divided into two main approaches: the introspectionist approach and 

the anti-introspectionist approach. The introspectionnist approach has been mainly popularized 

by Goldman (1995), according to whom simulating an observed behavior requires prior 

knowledge about what ‘believing’ or ‘knowing’ means. Such knowledge is acquired through 

introspection and is the necessary precondition for a simulation process to be effective. In this 

introspectionist perspective, the simulation process is ‘attributor-dependent’, meaning that the 

observer is the reference for the simulation. We often put ourselves into the situation of people 

we observe, and approximate what they might think, but the simulation in itself does not elicit 

in the simulator the very same states as those experienced by the simulated target.  
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In contrast, the anti-introspectionist approach developed by Gordon (1996) posits that 

the simulation process is ‘attributor-neutral’, meaning that simulation is a transformation 

rather than a transfer. Simulation is the transformation of one’s own situation into the other’s 

situation. Here, the introspective dimension is excluded from the simulation. It consists of 

simulating a behavior without using any concepts of folk psychology such as ‘belief’ or 

‘desire’. Rather, it consists of experiencing the values or sensations associated with the 

simulated behavior. For example, a child would not simulate her/his relatives as if they had 

specific psychological properties (e.g., belief, desire or intention). Instead, when a child faces 

a particular situation involving the behavior of a relative, s/he reconstructs the value of the 

observed behavior by simulating it, and concludes that the situation has certain properties: 

motivational, emotional, etc. In this case, the target of the simulation is more the context in 

which an action takes place than the psychological dispositions of the agent. The context 

immediately elicits relational properties about the interest or the danger of a behavior achieved 

in such a context. 

 

1.2.2. The theory of motor simulation 

The existence of this interpretative system based on shared representations has been supported 

by the discovery, in monkeys and more recently in birds, of a new type of visuomotor neuron 

– i.e., the so-called ‘mirror neurons’. These bimodal neurons were originally found in the 

ventral premotor cortex of macaques and have been shown to discharge both when the animal 

performs an action and sees the same action performed by a third party (di Pellegrino et al., 

1992; Rizzolatti et al., 1996; Gallese et al., 1996; Rizzolatti et al., 2000). Mirror neuron 
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activity has been mainly recorded during the observation of specific goal-related motor acts 

(such as reaching and grasping). The firing of these ‘mirror’ neurons would simulate, in the 

observer’s brain, the observed movements of the demonstrator: thus, in the absence of overt 

motor execution, a part of the observer’s motor system is active as if they were actually 

executing this action. That is, the brain transforms the visual information conveyed by the 

observed action’s kinematics into equivalent (non-executed) motor commands. Rizzolatti and 

Arbib (1998) described the functional role of mirror neurons as follows: 

‘The response properties of mirror neurons to visual stimuli can be summarized 

as follows: mirror neurons do not discharge in response to object presentation; 

in order to be triggered they require a specific observed action. The majority of 

them respond selectively when the monkey observes one type of action (such 

as grasping). Some are highly specific, coding not only the action aim, but also 

how that action is executed. They fire, for example, during observation of 

grasping movements, but only when the object is grasped with the index finger 

and the thumb.’ (p. 188) 

The automatic matching of the demonstrator’s movements with motor representations 

stored in the observer’s behavioral repertoire would enable the formation of shared motor 

representations (Jeannerod, 2001). In line with this claim, it has been suggested that mirror 

neurons are involved in various cognitive domains, ranging from imitation to language 

acquisition (Rizzolatti and Arbib, 1998). Furthermore, Gallese & Goldman (1998) suggest that 

one function of mirror neurons is to ‘enable an organism to detect certain mental states of 

observed conspecifics. This function may be part of, or a precursor to a more general mind-

reading ability’ (p. 493). Thus, the activation of these shared motor representations would 
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allow the observer to access the goals and intentions of the simulated demonstrator and, by 

extension, to draw predictions regarding her/his future behaviors.  

The presence in the monkey brain of visuomotor neurons endowed with ‘mirror’ 

properties is well documented and generally agreed upon. However, their presence in the 

human brain is much more controversial (Hickok, 2009), as the correlational techniques used 

in human neuroscience provide no direct evidence for their existence (but see Mukamel et al., 

2010). Several studies using functional neuroimaging have, however, suggested the existence 

of a cortical network (see figure 1) that is common to the observation, the imagination, and the 

execution of a specific action (Iacoboni et al., 1999; Rizzolatti et al., 2001 ; Grèzes et al., 

2003). This network, called the mirror system or the Action Observation Network (AON), is 

distributed along an antero-posterior axis that classicaly involves several cerebral structures 

such as: 

 the superior temporal sulcus (STS) that, in its posterior part, has multimodal 

integration properties (Barnes and Pandya, 1992), is recruited during the observation 

of movements of biological agents (Puce and Perrett, 2003). However, an increasing 

number of studies suggests that the STS also responds to the relationship between an 

observed movement and the structure of the environment, and code for the observation 

of goal-directed movements (German et al., 2004; Saxe et al., 2004) 

 the inferior parietal lobule (IPL) and, more specifically, the anterior intraparietal 

sulcus (AIPs) that is involved in the visual guidance of grasping movements (Faillenot 

et al., 1997) as well as in the decoding of observed movements (Bonda et al., 1996). It 
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has also been shown that AIPs was sensitive to the goals of actions (Hamiltion and 

Grafton, 2006). 

 the ventral part of the premotor cortex (PMv) and, more generally, the inferior frontal 

cortex (IFC), known to be involved in the execution as well as the observation of 

intentional, goal-directed actions (Grèzes and Decéty, 2001; Iacoboni et al., 1999; 

Iacoboni et al., 2005; Buccino et al., 2001) 

Of note is that the AON may involve other sensory regions that are not classicaly reported as 

playing a role in action perception and understanding. In particular, the somatosensory cortices 

may be recruited during the observation of actions and may play a role in the estimation of 

their sensory consequences (Keysers and Gazzola, 2007, 2010; Kilner, 2011). 

According to the most popular assumption, known as the direct-matching hypothesis, 

the AON underlies the processes of imitation and intention attribution. Indeed, the direct-

matching hypothesis presupposes that ‘an action is understood when its observation causes the 

motor system to resonate’ (Rizzolatti et al., 2001). This motor resonance would allow an 

observer to figure out the outcome of the perceived action, for the observer ‘knows its 

outcome when he does it’ (Gallese et al., 2004). Thus, mirroring an observed action would 

provide a simulation device for goal understanding by replicating the observed action in the 

observer’s own motor repertoire. Accordingly, the represented action should be ‘executable’, 

that is, consistent with the constraints of the observer’s motor system. 
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Figure 1. Representation of the human ‘mirror system’, also called Action Observation Network (taken from 

Kilner et al., 2008). The observation of an action drives the firing of neurons in the superior temporal sulcus 

(STS), which drives activity in the inferior parietal area, which in turn drives activity in inferior frontal gyrus.  

 

 

 

However, a specific movement – let say, a grasping movement – may have been 

executed for several different reasons. And the decoding of the kinematics only would not be 

informative enough to allow the observer to unambiguously select the intention that has 

caused the observed action. Recent studies have demonstrated that the predictive function of 

mirror neurons was varying according to the context in which the observed action scene is 

embedded (Iacoboni et al., 2005; Fogassi et al., 2005; Chersi et al., 2011). More specifically, 
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the selection of an appropriate intention would be done through a process of action 

reconstruction. Fogassi and co-workers (2005) proposed that the observation of a motor act 

that is at the origins of a given action would trigger within the observer’s mirror system the 

subsequent motor act that is likely to be associated with the former, and so on until the action 

chain is achieved. Accorrding to these authors, such reconstruction process of action chains 

would occur within the parietal lobe in which motor acts would not be represented 

independently of the global aim of the action, but rather, would form prewired intentional 

chains in which each motor act is facilit ated by the previously executed one. 

Consequently, the activation of a specific action chain within the mirror system would allow 

the observer to form a representation of the intention that, most likely, the agent is about to 

achieve. Interestingly, Iacoboni and colleagues (2005) suggested that the activation of an 

action chain was specified by contextual information processed in cerebral regions that are 

reciprocally connected to the mirror system. This contextual information can be the situational 

constraints in which the action takes place (e.g., if the scene provides additional non-motor 

cues about which intention the observed agent is more likely to achieve), or the affordances of 

objects (e.g., their size, shape, density or texture) that are the target of an action.     

    

In summary, these mechanisms of shared activations of motor representations provide 

convincing arguments in favor of the simulationist theory. Our natural capacities to simulate – 

that are underpinned by the existence of ‘mirror systems’ of shared representations – would 

provide access to the mental states of others – such as the motor intentions that guide their 

actions – without the need for  any naive theory about human psychology or about mind 

functioning in general (Blakemore and Decéty, 2001 ; Gallese, 2003 ; Keysers and Gazzola, 
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2007). Moreover, the theory of motor simulation resolves a developmental problem: indeed, 

how does theory-theory explain the early capacity of human infants to interpret other people’s 

goal-directed behaviors, as young infants do not yet possess psychological concepts such as 

‘belief’, ‘desire’, or ‘intention’? Accordingly, motor simulation, based on a hard-wired 

property of the motor system, itself, is a good candidate to explain the late elaboration of more 

complex interpretative strategies (such as an inferential theory of action understanding). 

However, the exact functional role of mirror neurons in action understanding and 

action prediction remains debated (Jacob and Jeannerod, 2005; Saxe, 2005; Hickok, 2009; 

Mukamel et al., 2010; Rizzolati and Craighero, 2004; Rizzolatti et al., 2001). It has been 

suggested that their contribution to the domain of action understanding depends on the level of 

complexity of the observed behavior. Indeed, an observed action can be ‘understood’ at 

multiple levels, depending on its temporal and structural complexity. 

 

2. Hierarchical representation of actions in the brain 

Recent advances in human neuroscience suggest that complex behaviors are hierarchically 

organized around distal outcomes (Jeannerod, 2004; Hamilton and Grafton, 2007). Let’s take 

the example of an observer watching another agent grasping and lifting a glass full of red 

wine. The observer will roughly decompose this action into a hierarchically organized chain of 

several motor sub-steps, each ultimately achieving different sub-goals. At the top of the 

hierarchy is the agent’s higher-level goal, which is to lift the glass once it has been grasped. 

The overarching goal requires the achievement of a sequence of distinct motor steps. One of 

these sub-steps may be to grasp the glass with the whole hand, which can be considered as a 
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sub-goal to reach the higher-level goal. But in order to achieve this sub-goal, the agent has to 

perform a series of motor acts that, in turn, can be decomposed into finer motor patterns (e.g., 

activating hand muscles during the opening phase of the grasping movement). Of note is that 

the higher-level goal can be achieved by the observed agent using a number of alternative 

sequences of motor acts. For example, instead of grasping the glass with the whole hand, the 

agent may also try to grasp it with two-fingers, or even with the mouth. Although the aim of 

these alternatives is same higher-level goal as the one first described, they recruit a different 

set of motor sub-steps. In the same way, an identical chain of motor sub-steps (e.g., reaching, 

grasping and lifting a glass full of red wine) can lead to different final intentions (e.g., to toast 

somebody versus to check the colour of the wine).  

Actions can thus be roughly organized according to four levels (Kilner, 2011): 

i) the kinematic level: the trajectory and velocity of the action, including both the 

reach and grasp phase of a goal-directed action 

ii) the motor level: the pattern of muscle activity required to produce the 

kinematics 

iii) the goal level: the immediate purpose of the action, such as to grasp an object 

iv) the intention level: the overarching cause – or reason – of the action  

These four levels are not independent, but hierarchically organized: the kinematic level 

is dependent on the motor level; the motor level is dependent on the goal level, and the goal 

level is in turn dependent on the intention level. This hierarchy also defines a continuum of 

abstraction, with the intention level defining the most abstract features of action 

representation. For example, a specific intention (e.g., pouring liquid into a glass) can be 
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achieved through many different motor acts: as such, there is no univocal (i.e., one-to-one) 

mapping between the content of the intention and the set of motor alternatives that can 

potentially achieve it. 

These different levels of representation of goal-directed actions have been shown to be 

distributed within a large cerebral network: 

1. the posterior parietal cortex (PPC) is involved in the processing of the lower level, 

concrete features of the action (i.e., the kinematic level) and the intentional 

planning of movements (Andersen and Buneo, 2002). 

2. the anterior intra-parietal sulcus (AIPs) is known to be involved in the processing 

of goal-directed prehension movements, and is assumed to code perceived 

interactions between objects and goals (Faillenot et al., 1997; Hamilton and 

Grafton, 2006) 

3. the inferior parietal lobule (IPL) and 

4. the inferior frontal gyrus (IFG) would both be involved in the processing of the 

action goal or outcome (Hamilton and Grafton, 2008) 

5. the dorsal part (dPMC) and the ventral part (vPMC) of the premotor cortex – that 

contains a repertoire of premotor representations recruited both during the 

execution and the observation of goal-directed actions (Gallese et al., 2004) – are 

involved in the inference of likely action intentions (Rizzolatti & Craighero, 2004) 
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3. Pitfalls of the motor simulation theory 

We saw that actions are hierarchically organized according to whether they can be identified 

or not on the basis of their motor components. Such an organization implies that the highest 

levels of the hierarchy – the goal and intention levels – are detached from its lowest levels: 

they cannot be strictly reduced to the kinematic and the motor levels. Accordingly, the strategy 

that consists in simulating other people’s intentions based on visual information elicited by the 

observed movement kinematics only, would be a suboptimal, unreliable strategy.  

 In a theoretical article, Jacob and Jeannerod (2005) addressed this problem by arguing 

that the properties of the mirror system are well designed for representing low-level, motor 

subgoals, such as grasping movements of an object-oriented action. On the other hand, such a 

system would not be well designed for representing more abstract goals and intentions, such as 

social or communicative intentions. To illustrate the pitfalls of the motor simulation theory, 

the authors presented the following thought experiment (p.23): 

“Consider Dr Jekyll and Mr Hyde. The former is a renowned surgeon who 

performs appendectomies on his anesthestized patients. The latter is a 

dangerous sadist who performs exactly the same hand movements on his non-

anesthestized victims. As it turns out, Mr Hyde is Dr Jekyll. Suppose that Dr 

Watson witnesses both Dr Jekyll's and Mr Hyde's actions. Upon perceiving Dr 

Jekyll, alias Mr Hyde, execute the same motor sequence twice, whereby he 

grasps his scalpel and applies it to the same bodily part of two different 

persons, presumably the very same mirror neurons produce the same discharge 

in Dr Watson's brain. Dr Jekyll's motor intention is the same as Mr Hyde's. 

However, Dr Jekyll's social intention clearly differs from Mr Hyde's: whereas 

Dr Jekyll intends to improve his patient's medical condition, Mr Hyde intends 
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to derive pleasure from his victim's agony. By matching them onto his own 

motor repertoire, an observer simulates the agent's movements. Simulating the 

agent's movements might allow an observer to represent the agent's motor 

intention. We surmise that it will not allow him to represent the agent's social 

intention.” 

According to Jacob and Jeannerod, motor simulation would only play a minor role in 

the representation of the more abstract levels of actions. Motor simulation would thus be 

involved in representing the action’s low-level features only – the ‘motor intention’ level 

(Jacob & Jeannerod, 2005). In the above fictive experiment, the alternative interpretations of 

the observed behavior fit equally well with the observed kinematic patterns, and, more 

generally, with the visuomotor information conveyed by the action scene. As the current 

movement kinematics of either Mr Hyde or Dr Jeckyll do not sufficiently restrict the space of 

their candidate and mutually exclusive intentions (i.e., treating or torturing), simulating these 

kinematics (mapping the observed kinematics onto the observer’s motor repertoire) does not 

represent an optimal strategy for accurate behavioral prediction.  



 

30 

 

Figure 2. Figure 5. Hierarchical organisation of intentional action (inspired from Hamilton and Grafton, 

2006; Chambon, 2008, with example taken from Jacob and Jeannerod, 2005). A social intention 

(anticipating a social interaction) could involve several private intentions (tasks goals). Each possible private 

intention could be composed of several immediate goals, each of which requires a sequence of basic actions. 

Finally, each basic actions is associated with an action that is composed of several movements. Some exemplars 

are shown at each level, and the dotted lines represent intermediate goals that are required to distinguish between 

the two social intentions ‘to cure’ and ‘to torture’. 
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B. Action understanding as an inverse problem: the role of 

prior information 

 

 

As suggested by the fictive experiment designed by Jacob and Jeannerod, predicting another 

person’s behavior is rarely a ‘one-to-one’ mapping problem as many competing intentions 

may have potentially caused the observed behavior. Conversely, one specific intention may be 

achieved through many different action sequences (‘many-to-one’ mapping problem). In both 

cases, predicting an intention from an observed action sequence, or predicting an action 

sequence from an intended goal, entails two kinds of inferences that require the observer to 

select the most relevant hypothesis among a set of alternatives, which best accounts for the 

current situation, and that can be generalized to new situations. In other words, for each 

observed behavior that has to be interpreted, the human observer should find an appropriate 

strategy that allows him to constrain the space of competing hypotheses. As it has been 

previously mentioned, motor simulation mechanisms might not sufficiently constrain such 

space. 

Overall, understanding or predicting an action can thus be viewed as a kind of inverse 

problem (Kilner et al., 2007a, 2007b; Baker et al., 2009; Csibra & Gergely, 2007). Inverse 

problems precisely refer to situations in which the same sensory input can have many different 

causes, or in which a specific cause may arise from many different sensory inputs. Thus, 

inverse problems are ill-posed and cannot be solved by analytic methods, for the available 

information does not sufficiently constrain the space of candidate solutions. Inverse problems 

are characteristic of many situations in physics or in neuroimaging (Schmidt et al., 1999). 
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Inverse problem approaches have also been used to address a number of issues that the visual 

system has to solve, such as the perception of bi-stable or degraded stimuli, whose resolution 

requires appealing to prior knowledge (such as knowledge about the position and orientation 

of the light source) or making further assumptions about the nature of the observed stimulus 

(Mamassian and Goutcher 2001). Similarly, many different intentions may be achieved 

through the same action kinematics, and many different action kinematics may achieve the 

same intention. Crucially, the inverse problem addressed by the intentional inference further 

depends on the level of abstractness of the goal to predict or infer – i.e., on the type of 

mapping (one-to-one, many-to-one) between the action and the goal it achieves. 

In human adults as in infants, the apparent ease of goal inference does not reflect the 

complexity of the processes at stake. Humans are very efficient at extracting goals from noisy, 

ambiguous, or even sparse sensory data (Baker et al., 2006). What are the specific mechanisms 

that make this inductive leap from incomplete data possible, and whereby human observers 

solve the inverse problem of action understanding? Just like the resolution of bi-stable stimuli 

by the visual system, the inverse problem of action understanding cannot be solved with the 

available visual input only. For example, one needs to take into account another class of 

information in order to select which of the competing intentions best explains the observed 

behavioral sequence. Such information can reflect the observer’s own preferences, her/his 

knowledge about the social and the situational contexts in which the action takes place, her/his 

knowledge about the function and use of the artifact that is the target of the observed action, 

and most importantly, her/his specific knowledge about the observed agent’s behaviors and 

intentions (Frith and Frith, 2006). In turn, these classes of information generate prior 

expectations allowing the observer to make further assumptions about the cause(s) of the 
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observed action, or about the action sequence that may have been used to achieve the intended 

goal(s). By analogy, visual perception implicitly assumes that objects of the environment are 

illuminated from above and, if the system does not contain any extra information that enable 

the observer to solve ambiguities elicited by the convexity of a surface, it automatically 

assigns depth values to points on this surface based on this prior assumption about the position 

of the light source (Ramachandran, 1988). By making similar assumptions about the cause of 

an action, human observers may restrict the number of competing hypotheses in situations 

where the current sensory information under-constraints the space of candidate causes for a 

same phenomenon. As pointed out by Csibra and Gergely (2007), it is important to underline 

that assumptions used by human observers to solve inverse problems are assumptions, which 

means that they do not have to be, and not always are, valid. Crucially, in the case of an 

inverse problem, the validity of a solution depends on the probability that the assumption is 

true (Baker et al., 2006). For example, considering that natural light is generally coming from 

above, the assumption of ‘illumination from above’ is highly likely to give valid solutions. 

Importantly, the selection of certain assumptions also depends on the current context in which 

the action takes place. The ‘illumination from above’ assumption is irrelevant in an 

environment where only directionless, artificial light is present. Going back to the example of 

the Dr. Jekyll and Mr. Hide, the assumption favoring the ‘Dr. Jekyll explanation’ would 

instantly lose its relevance if, let’s say, one heard a strident cry of pain from the victim.   

 

In summary, understanding and predicting other people’s behaviors and intentions requires the 

observer to make inductive inferences from intrinsically ambiguous, or sparse data – i.e., 

under conditions of sensory uncertainty. This uncertainty can be purely statistical – e.g. 
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resulting from the combinatorial explosion due to the inherent nature of the inverse problem – 

or more simply perceptual – e.g. resulting from a noisy or incomplete sensory signal. On the 

one hand, prior expectations restrict the space of candidate hypotheses. On the other hand they 

enable the observer to infer an action intention from a noisy situation by complementing the 

missing visual information (Griffith et al., 2008). Goal or intention inferences thus require 

prior knowledge that may be of different types and be derived from various sources. 

 

1. Social environments 

Numerous studies have shown that human observers may form prior expectations from the 

social intentions of their peers. For example, individuals are prone to take the social risk of 

helping another despite the possibility of non-reciprocation. Yet, relationships based on 

reciprocal altruism are inherently unstable, for an individual may be tempted to act according 

to short-term self-interests only, and thus, accepting the help of others without reciprocating. 

However, in spite of the potential cost and disavantage of engaging oneself in reciprocal 

interactions, humans are naturally biased to trust their relatives for they naturally expect 

reciprocation from other people rather than deception (Trivers, 1971). In line with this 

hypothesis, several studies using fMRI (Krueger et al., 2007; Behrens et al., 2008; Rilling et 

al., 2004) have demonstrated that engaging in reciprocal interactions - .i.e., deciding whether 

to trust a third party or not– involved the same brain system as the Theory of Mind network 

(i.e., the dorsomedial prefrontal cortex, the posterior cingulate cortex, and the temporo-parietal 

junction). 
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In the social domain, reputational knowledge also generates prior expectations that bias 

our appreciation of others’ behavior, as well as our motivation to learn new information from 

them. More specifically, it has been demonstrated that the moral reputation of a social partner 

can outweigh direct experience in deciding whether or not to trust the partner (Delgado et al., 

2005).  

 Finally, the perception and the understanding of other people’s behavior is also 

modulated by other forms of social influence, such as the pressure a group may exert on an 

individual’s decision. The modification of an individual’s judgment under such pressure – i.e., 

an effect that is often referred to as ‘social conformity’ – was first demonstrated by Asch in a 

series of seminal experiments (1951, 1955). In these experiments, participants were asked to 

estimate and make judgments about the relative lengths of line segments. Although these tasks 

were perceptually simple, participants frequently made wrong answers when a group of peers 

was also giving the wrong answer. Recently, it has been shown, in a perceptual decision-

making task (i.e., judging the beauty of faces) that when individual and group opinions 

conflict, the brain generates neural signals in the anterior cingulate cortex (a region located in 

the posterior medial frontal cortex) and the ventral striatum that share common features with 

the prediction error signal carried by the dopaminergic system, and observed during 

reinforcement learning (Jones et al., 2011; Campbell-Meiklejohn et al., 2010). Evidence shows 

that the detection of conflicting social feedback is processed by an individual as the detection 

of an erroneous action outcome which predicts the magnitude of subsequent behavioral 

adjustment (Klucharev et al., 2009). The strength of this ‘prediction error’ signal is correlated 

with the amplitude of the conflict, and is predictive of the individual’s propensity to change 

future decisions to conform to the group (Klucharev et al., 2009). These results show that the 
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mere presence of a group generates prior expectations that bias the observer’s appreciation of 

the behavior of individuals belonging to this group, and alters her/his own decision criterion as 

well. 

  

2. Motor expertise 

Action understanding and prediction also benefits from prior knowledge acquired from past 

experience. Indeed, one can predict the end-state of a movement from its starting 

configuration, but such a prediction may also depend on the motor expertise of the observer. 

For example, Romani and colleagues (2003) asked basketball players and naive participants to 

predict the end-states of filmed basketball free throw shots. By the third frame of the video 

clips, basketball players were much more accurate than non-experts in predicting whether the 

ball would enter the basket or not. This effect of expertise has been shown to be implemented 

in the observer’s own motor system, as revealed by an increase of the corticospinal excitability 

during action predictions by expert observers (Aglioti et al., 2008). This finding suggests that 

motor expertise helps the observer predict the end-state of an observed action (provided it 

belongs to their domain of expertise) by enabling a fine-grained analysis of action kinematics. 

Prior motor information emerges from the formation, through practice, of skillful motor 

programs the observer uses to anticipate the course of an action. It is of note that the two 

studies mentioned above do not specify the extent to which motor priors acquired from 

expertise bias the observer’s intention predictions. Rather, these studies demonstrate that 

motor priors are a useful source of information for on-line monitoring of action goals whose 

representation is already well specified.  
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3. Statistical regualities of past events 

Another form of prior information acquired from past experience may also play an important 

role in action understanding. It is well known that many of our most fundamental abilities are 

the result of an implicit adaptation to the statistical regularities of the environment (Reber, 

1967, 1993). The ability to extract the structure of events from their frequency of occurence 

has been shown to generalize in a number of domain such as language acquisition or 

perceptual learning. Interestingly, these mechanisms of statistical learning appear to be 

functional at a very early stage of the cognitive development of young humans. Indeed, even 

infants are able to detect complex statistical patterns and adapt their future behavior 

accordingly (Gopnik and Wellman, 2012). For example, Saffran and co-workers (1996) 

investigated how 8-month-old human infants segmented words in a corpus of artificial speech. 

The underlying assumption of the authors was that in natural speech, adjacent sounds that co-

occur with a high probability are usually found within words, whereas low probability sound 

pairs tend to span word boundaries. According to the authors, this difference in likelihood of 

co-occurrence provides potential information for word boundaries, and could contribute to 

early language acquisition by strengthening the ability to segment the speech into meaningful 

units.They showed that young infants were able to extract statistical patterns in auditory input 

that are based on transitional probabilities defining the sequencing of the input's components. 

Similar results were also obtained with the learning of sequences of discrete visual stimuli 

whose ordering followed a statistically predictable pattern (Fiser and Aslin, 2002a,b), and so 

even with younger children of 2 months of age (Kirkham et al., 2002). Furthermore, a recent 

study by Wu and collaborators (2011) showed that once the statistical patterns have been 
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extracted from the co-occurence of visual stimuli, 9-months-old infants are capable of forming 

expectations about visual objects and use them to make inference about their properties (see 

also Kersten et al., 2004). 

The variety of cognitive domain in which statistical learning appears to be efficient 

suggests that these learning strategy is ‘domain general’, that is to say, can potentially be 

extended to the learning of many other forms of stimuli (Kirkham et al., 2002). As such, there 

is no reason that action understanding and action prediction would not benefit from statistical 

information derived from past experience of the observer (Tenenbaum et al., 2011). Indeed, 

accumulating information about the number of times a specific action sequence is followed by 

a specific goal, or about how frequently an action sequence has been performed to achieve a 

particular intention, may actively shape predictions made by an observer.  
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C. Solving the inverse problem: rationality, simple heuristics 

and probabilistic inference 

 

 

All these sources of prior information – i.e., social environments, motor expertise, and 

statistical structure of past events – can be used by an observer to constrain the space of 

candidate intentions that potentially drive the behavior of the observed agent.  

Over the last decade, a growing number of studies have investigated the type of 

inferential mechanisms involved in action understanding and prediction. In the next 

paragraphs I will outline two types of inferential mechanisms, and I will distinguish them on 

the basis of both their computational complexity and the type of information computed. These 

two classes of mechanisms may interact in action understanding and action prediction. The 

first type of mechanism can be termed ‘heuristic’ by analogy with Artificial Intelligence. 

Heuristics provide the advantage of being computationally tractable, though restricted to a 

narrow domain (Chase et al., 1996). We specifically aim to describe a heuristic that plays an 

important role in action understanding: the naive theory of rational action (Gergely and Csibra, 

2003) whereby observers assign goals to agents through estimating the optimality of their 

actions. The second type of mechanism is the Bayesian probabilistic inference, which provides 

the advantage of being very flexible, though computationally more complex (Baker et al., 

2006; Baker et al., 2009). Interestingly, these two types of inferential mechanisms – i.e., 

Bayesian inference and simple heuristics – share a similar basis: both should be rational in 

some way, and both are guided by a rational interpretation of the observed action (Gergely and 

Csibra, 2003; Baker et al., 2006, 2009). 
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1. About rationality 

It is important to delimit the notion of ‘rationality’ prior to going further. Generally, the term 

‘rationality’ defines a particular causal relationship that links the components of reasoning and 

action. Specifically, it refers to the idea that the means used to conduct reasoning or to perform 

an action are appropriate given the desires that motivate them. Thus, the notion of ‘rationality’ 

crucially depends on the notion of ‘goal-directedness’. Of note is that rationality refers to a 

very specific type of causal relationship that one can distinguish from the causal relationship 

through which physical events are usually described. For example, there is no reason to 

believe that a planet behaves rationally when it follows its orbit. Here, the causes that describe 

the relationships between the components of such a physical system are formal and efficient, 

but not ‘finalistic’. It has long been argued that behaving rationally – i.e., choosing the 

appropriate means to optimize the chance of achieving a desired goal – amounts to applying 

the rules of the probability theory (Laplace, 1814). In the next paragraph I will explain that 

such approach is, however, no longer adapted to explain human action planning, execution, 

and prediction. Rationality of human behavior and decision-making is not absolute but limited, 

bounded. In other words, rationality is contingent and depends on the internal constraints of 

agents, as well as on external constraints of the environment. 

 

1.1. Rationality is bounded 

Humans and other animals make inductive inference. Firefighters predict how fire will 

progress from various cues such as smoke and roof ‘sponginess’, while peahens rely on how 
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elaborated peacocks’ tails are to infer their fitness before deciding whether to mate or not 

(Petrie, 1994). For firefighters and peahens alike, the cues which their inferences are based on 

are typically uncertain. So how can organisms make rational inferences based on uncertain 

cues? According to Peterson and Beach (1967), 

“Probability theory and statistics can be used as the basis for psychological 

models that integrate and account for human performance in wide range of 

inferential tasks.” (p.29) 

Following this classical view, human reasoning can be evaluated within the norms 

provided by probability theory: if the outcome of reasoning diverges from norms of the 

probability theory, one may conclude that there is something wrong with such reasoning, not 

with the norms. If there is a mismatch between the two, then the assumption of rationality is 

broken.  

Suppose you and four of your friends buy lottery tickets consisting of six number 

combinations each. Suppose that the combination of numbers is randomly assigned to each 

ticket. Suppose that, on the five tickets you and your friends bought, only one is composed of 

successive numbers – let’s say ‘22-23-24-25-26’ –, and the four others are composed of non-

successive distributed numbers – let’s say ‘3-9-14-20-33-42’. In this situation, the probability 

theory clearly argues that each possible combination is as likely to be a winning combination 

as another, due to the law of random draws independence. Thus, a combination composed of 

successive numbers has the same chance of winnig as a combination involving non-successive 

numbers. Now suppose you ask each of your friends to choose a ticket among the five you 

bought. The ticket that will remain to you will depend on the choices of your friends. Under 
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such circumstances, it is highly likely that you ‘inherit’ a ticket with six successive numbers – 

being likely that your friends had chosen tickets with non-successive numbers. Indeed, agents 

behave in this situation as if they believed that the better distributed combinations would have 

more chance to win. Even though people know the law of random draws independence (i.e., 

each number combination has an equal chance to win), the belief that choosing a non-

successive number distribution is more advantageous persists. This example shows that many 

of our daily inferences do not follow the rules of probability theory, especially in situations 

where the weighting of every possible alternative leads to a combinatorial explosion. As such, 

“rationality” rules do not even approximate human behaviors and inferences, for the human 

brain has not evolved to perfectly understand the rules of probability theory. In such 

circumstances, no wonder some researchers interpreted human behaviors and inferences as 

non-rational, for the human brain is not a super computer adapted to embody the rules of 

probability theory. For example, Slovic and co-workers wrote (Slovic et al., 1976): 

“It appears that people lack the correct programs for many important 

judgmental tasks.... it may be argued that we have not had the opportunity to 

evolve an intellect capable of dealing conceptually with uncertainty.” (p.170) 

Yet, given the success of the human interpretative skills one has to admit that, to a 

large extent, humans are ‘rational’ in some way. The example of lottery tickets suggests that 

humans have a strong tendency to attribute decision-relevant properties to objects that, in fact, 

do not have any. This tendency highlights the need of finding cues rendering our choices 

satisfactory, guided by a specific ‘reason’ or, so to say, rationale. In this context, the example 
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of lottery tickets shows that our inferences are biased by our beliefs and other prior 

expectations about events, whether they be valid or not. 

According to some authors (Chase et al., 1996; Newell, 2005; Simon, 1990), the 

classical view of rationality neglects this crucial aspect of behaviors as it assumes that rational 

inference is blind to our expectations regarding the content of the processed information and 

the context of the task. The alternative view on rationality posits that, given the computational 

limitedness of the human mind, human rational inference is necessarily bounded by a number 

of constraints associated with the agent itself or with the context of the task (Gigerenzer and 

Gaissmaier, 2010; Griffiths et al., 2010).  

Rationality is thus limited and bounded (Simon, 1990) in the sense that the agent’s 

behavior is strongly constrained by cognitive capacities, time, and structure of the 

environment such as the search space of a task (i.e., the number of alternatives that can be 

used as relevant solutions to solve a task problem; see Acerbi et al., 2011, 2012). A decision 

can thus be interpreted as rational when it is satisfying enough, given the state of these 

constraints.  

Inference-making mechanisms also depend on the nature of these constraints. For 

example, imagine someone who has to infer the emotional state of a person by scrutinizing her 

facial expressions – let’s say a smile. What kind of computation is her brain performing? If the 

information she has is limited to only the perception of the face, without any additional 

knowledge, her brain will use a simple recognition heuristic for the detection of facial 

expressions, and she will conclude that the observed individual is happy. Here, the heuristic 

underlying the inference consists of a simple cognitive module that generates prior 

expectations filtering the sensory inputs. If the inputs pass the filter, prior expectations are 
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satisfied, and her brain considers the face as expressing happiness (Sperber and Hirschfeld, 

2004). This kind of recognition heuristic provides a rapid and parsimonious solution to the 

task problem, and is likely to be valid in a very large number of situations (possibly providing 

arguments for why such a module may have evolved through natural selection). Now suppose 

that the very same person usually feigns happiness to practice deception, but the observer is 

not aware of that. Her brain will use the same (invalid) recognition heuristic. Finally, suppose 

the observer and the observed individual are colleagues: the former knows from experience 

that the latter usually feigns happiness to practice deception, especially in the case where a 

personal interest is at stake. In this context, the mechanism producing the inference will be 

more complex and flexible, so that expectations generated by the face recognition heuristic are 

weighted by prior expectations that have been formed through probabilistic sampling of past 

observations, and by the context of the situation. In any of these cases, the decision that is 

made about the psychological state of the other person is rational, whether it is based on 

simple heuristics or more complex probabilistic inferences. Such rationality is determined by a 

set of internal and external constraints – such as the cognitive capacity of the decision-maker, 

the knowledge she possesses about the observed agent, and the environmental context in 

which the situation takes place. 

  

1.2. The principle of rationality  

Strikingly, it seems that the computational principles of bounded rational inferences are the 

same as those driving our assumptions about the rationality of an observed action. According 

to Dan Dennett (1971; 1991) humans do not interpret other people’s behavior as any other 
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physical system, but as an ‘intentional system’ endowed with specific desires, beliefs, 

intentions, etc. As such, our interpretation of a person’s intention is derived from an estimation 

of the rationality that characterizes her/his action. Such estimation is not guided by the rules of 

probability but mostly determined by situational constraints and by intrinsic characteristics of 

the agent. Put another way, humans assume by default that other agents behave rationally 

given situational constraints: this is what Dennett called the ‘principle of rationality’. 

According to him, this associated strategy – termed ‘intentional stance’ – provides a powerful 

predictive model of living organisms’ behavior. This model would be much better than, for 

example, a predictive model based on physical causality. 

To illustrate his idea, Dennett (1987) imagines a martian who observes the final of the 

american football championship – the Super Bowl. Suppose that an inhabitant of Mars points a 

very powerful telescope at Earth and, by chance, falls on the field where the Super Bowl is 

currently being played. Suppose that our martian is omniscient in perceiving and predicting 

events following a physical causal scheme. Our martian observes human-shaped entities 

running to and from the field, throwing a ball, chasing after each others, violently punching 

each others, etc. Dennett argues that if our extraterrestrial observer cannot apply the scheme of 

‘intentional pattern’ within the principle of rationality, he will not be able to perceive the 

observed events as stages of a game, that is to say, as stages of a joint, intentional activity in 

which events have a particular ‘reason’ to occur. If our martian does not discover this 

interpretative scheme, he will only appreciate the physical aspects of events: movements, 

trajectories, collisions, etc. But let’s suppose that he manages to adopt the “intentional stance” 

so that he is now able to enjoy the show for what it is: he will understand why one of the 

human-shaped entities jumps up and down after having crushed the ball behind a seemingly 
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arbitrary line, he will further understand why only the cheerleaders of one side burst out and 

those of the opposite side do not, etc. 

According to Dennett the human brain has been tuned by natural selection to perceive 

‘intentional patterns’ in the behavior of humans and other animals. Dennett further remarks 

that some humans also use the intentional stance to attribute rational causes to non-biological 

events, such as the hand of God in explaining the occurrence of natural catastrophes. Recently, 

research in the field of cognitive neuroscience identified in young human infants a very similar 

interpretative strategy (Csibra et al., 1995). These data reveal a very early aptitude of humans 

to infer goal-directed, intentional patterns from biological and non-biological events. This 

heuristic would assume a priori that observed behaviors are rational, given the constraints of 

the situation and the internal properties of the agent. 

 

2. A simple heuristic for goal attribution: the naive theory of rational action 

A number of studies have demonstrated that humans are equipped with an interpretative skill 

that enables the perception of observed actions as goal-directed, independently of whether 

actions involve, or do not involve, biological movements (Gergely and Csibra, 2003). 

Strikingly, it has been shown that this skill operates very early during the development, around 

the end of the first year of birth (Gergely et al., 1995).  

 For example, Gergely and colleagues (1995) habituated twelve-month-old infants to a 

computer-animated goal-directed event during which a small circle approached and reached a 

large circle by jumping over (‘means act’) an obstacle between them (‘situational constraint’). 

During the test phase, experimenters changed the situational constraint by removing the 
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obstacle. Infants were then presented two test conditions: one in which the small circle 

approached and (contacted) the large circle by jumping as in the habituation phase (but 

without the presence of an obstacle), and a new one in which the small circle went straight 

towards the large circle. Researchers found that infants looked longer at the jumping action, 

but showed no dishabituation to the new straight action. The increased looking time registered 

during the jumping action indicated a violation of infants’ expectations. This violation of 

expectations was due to the fact that the small circle used a suboptimal, inefficient means to 

achieve its goal (contacting the large circle) as there was no obstacle to jump over. In contrast, 

the fact the the looking time did not increase during the straight action was interpreted as a 

satisfaction of infants’ normal expectations: the straight action appeared as the most efficient 

means to achieve the goal in this situation. These results are interesting for several reasons. 

First, they reveal that very young infants are able to perceive actions as goal-directed. Second, 

they are able to evaluate which alternative, according to the constraints of the situation, 

provides the most efficient means to achieve a goal. Finally, infants expect the ‘agent’ to adopt 

the most efficient means available to achieve a given goal.  
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Figure 3. Representation of the three types of inference that infants can make on the basis of a teleological 

representation of actions (taken from Csibra and Gergely, 2003). One-year old infants were habituated to the 

event depicted in the left column (Observed behaviour). Their interpretation of this event was tested by 

presenting them with two different outcomes, one of them being incompatible (the middle column), the other one 

being compatible (the right column) with a possible inference based on a teleological representation of the event. 

Infants looked longer at the incompatible outcome than the compatible outcome events, indicating that they based 

their inference on a teleological interpretation of the observed behaviour. The inference of action means (a) has 

been demonstrated by Gergely et al. (1995) and Cisbra et al. (1999). The inference of action goals (b) and 

situational constraints (c) have been demonstrated by Csibra et al. (2003). 

 

 

 

According to the authors, this early sensitivity to action goals and means cannot be 

explained by either the framework of the ‘theory-theory’ or by the ‘simulation theory’ alone. 

Instead, Gergely and Csibra propose that young human infants can “represent, explain and 

predict goal-directed actions by applying a non-mentalistic, reality-based action 

interpretational system, the ‘teleological stance’ ” (p.289). The teleological stance is a 

primitive version of the intentional stance proposed by Dennett. Like the intentional stance, 

this interpretative system is hard-wired, and drives the inference of teleological (i.e., goal-

directed) – rather than causal – relationships between action sequences, future goals, and 

current situational constraints. The advantage of this system is twofold. First, it enables young 
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individuals to interpret observed actions as goal-directed without using a theory about how 

other people minds work (through reference to propositional concepts such as ‘belief’, 

‘desire’, or ‘intention’). Second, it enables young individuals to interpret actions of non-

biological agents (e.g., a circle animated on a computer screen) as goal-directed, without any 

reference to motor simulation or resonance mechanisms. Furthermore, the authors argue that 

neither the theory-theory nor the simulation theory provide sufficient arguments to account for 

the type of mechanisms whereby young infants detect the relevant aspects of a current 

situation and use these aspects as the basis for their interpretation of the observed action. The 

mechanism would simply rely on a simple but central axiom: the rationality principle.  

As described above, the rationality principle provides a powerful predictive model of 

events. This model allows human agents to infer a specific type of causal relationship that 

other predictive strategies (e.g., strategies based on physical cues) do not permit. Following 

this model, human observers expect others' actions to be the most efficient means of achieving 

a desired goal, given the current constraint of the situation. An action can be considered as 

“efficient” when it minimizes the cost of motor parameters, for example, or when it optimizes 

the probability of properly achieving the desired goal. The rationality principle is an axiom 

that relates to each of the other three types of intentional mental states that may be attributed 

to an agent: her beliefs (‘she believes that’), her desires (’she wants to’), her intentions (‘she 

intends to’). The content of these three types of mental states represents the three main aspects 

the teleological stance relies on: the situational constraints (‘she believes that’), the goal (‘she 

wants to’), the action (‘she intends to do’). One can thus imagine an organism without any 

naive psychology that would benefit from a teleological interpretative mechanism. This 

organism would be able to evaluate an observed action as the most efficient mean to achieve a 
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goal simply by applying the rationality principle to the relevant aspects of the current 

situation. 

The rationality principle thus serves two functions. First, it generates prior expectations 

about how “appropriate” an observed behavior is. Second, these prior expectations can be used 

to restrict the space of possible causes for an observed action (see figure 3): given the 

information available about the specific contents represented by any two of the three aspects 

of the reality (e.g., goal and situational constraints), one can infer what the content represented 

by the third aspects ought to be (e.g., action means) (Gergely et al., 1995; Csibra et al., 1999; 

Csibra, 2003).  

 In summary, human infants are equipped with a naive theory of rational action, similar 

and the one postulated by Dennett. This theory drives the interpretation and the prediction of 

other people’s actions. According to Gergely, Csibra and co-workers, the content of this naive 

theory is essentially non-mentalistic, and accounts for goal attribution without motor 

simulation. It is based on the rationality principle, which enables the guidance of everyday 

inference about action goals, means, and situational constraints in which an action takes place. 

This ‘teleological stance’ would be the pre-requisite for using a more complex, mentalistic 

interpretation of actions. Recent evidence suggests that this interpretative strategy is applied in 

a variety of contexts (Csibra, 2003, Wagner and Carey, 2005) and convincingly accounts for 

the behavior of different sorts of ‘agents’: human-like (Sodian et al., 2004; Kamewari et al., 

2005) or not (Luo and Baillargeon, 2005; Bíró and Leslie, 2007); biologically plausible or not 

(Southgate et al., 2008). Remarkably, it has also been shown that ‘rationality’ of an action was 

also used by human infants as a key characteristic to decide which behaviors to imitate or not 

(Gergely et al., 2002).  
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Together, these data show that interpreting other people’s behavior is not primarily 

driven by motor properties of the underlying action. Rather, prior expectations, such those 

elicited by the teleological stance, play a critical role in our ability to understand and predict 

other people’s behavior. Crucially, this ability can be achieved through very simple heuristics. 

 

3. A flexible mechanism for goal attribution: Bayesian probabilistic inference 

In the last past few years, some researchers investigated the apparent ease of goal inference 

made by human infants and adults. In particular, Baker and co-workers (2009) have 

consistently argued that, given the inverse problem of goal attribution (i.e., the fact that the 

same sensory input may have many different causes), goal inference must involve complex 

computations, rather than simple heuristics.  

Furthermore, according to these authors, accounting for the problem of action 

prediction with classical statistical learning mechanisms – i.e., recording over the infinite 

number of experienced action situations all the ways any number of intentions can be achieved 

and all the ways they effectively are achieved – would be almost impossible. Instead, action 

understanding and action prediction require a more flexible approach.  

Starting from the assumption that everyday inferences about other people’s intentions 

are made in noisy or uncertain situations (due to the hidden nature of intentions and to the 

intrinsic scarcity of perceptual inputs), Baker and collaborators claim that such inferences can 

be convincingly described according to the principle of Bayesian probabilistic inference. 

Griffiths et al. (2010) describe the basics of Bayesian probabilistic inference as follows:  
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“if a learner considers a set of hypotheses H that might explain observed data 

d, and assigns each hypothesis     a probability p(h) before observing d 

(known as the ‘prior probability’), then Bayes’ rule indicates that the 

probability p(h|d) assigned to h after seeing d (known as the ‘posterior 

probability’) should be:  

        
           

                  
 

where p(d|h) is the ‘likelihood’, indicating the probability of observing d if h 

were true, and the sum in the denominator simply ensures that the posterior 

probabilities sum to one. Bayes’ rule thus indicates that the conclusions 

reached by the learner will be determined by how well hypotheses cohere with 

prior knowledge, and how well they explain the data.” (p.358) 

Thus, Bayesian probabilistic models highlight the role of prior knowledge in 

accounting for how people learn from noisy, or incomplete data, and provide a framework for 

explaining precisely how prior knowledge interacts with data to guide inductive inferences. 

Remarkably, these models do not require prior knowledge to be innate, such as in the case of 

knowledge derived from our intuitive theories (Clark, in press). Prior knowledge can also be 

learnt from observed past experience through extracting the probablistic structure of events. 

Following this line, Baker et al. (2009) demonstrated in a series of experiments that solving 

the inverse problem of action understanding precisely requires prior knowledge about the 

structure and the content of agents’ behaviors and intentions. Specifically, it requires the 

ability to navigate through a large space of possible interpretations and to infer the best 

candidate alternative. 

Put in the context of predicting an agent’s intention from perceived movement 

kinematics, the Bayesian probabilistic inference combines two parameters: the prior 



 

53 

probability [p(h)] – i.e., the probability of observing the achievement of a possible intention 

(the set of hypotheses H) before the occurrence of the next behavior (the observed data d); and 

a perceptual information having a certain likelihood [p(d|h)] – i.e., the likelihood of perceiving 

a certain behavioral sequence (d) given that a certain intention (h) is true. From the 

combination of these two parameters follows a third parameter, which is the outcome of the 

Bayesian inference: the posterior probability p(h|d) – i.e., the probability that the observer’s 

assumption is true (h) given the currently observed behavior (d). Thus, predicting the 

achievement of a certain intention would consist of combining prior knowledge about the 

agent’s intentions (acquired from probabilistic sampling of past events) with the perceptual 

evidence accumulated over time.  

 This is precisely what we (Chambon et al., 2011b) showed in a recent study (see the 

published version of the article in appendix n°1). This study aimed at investigating action 

prediction in healthy adults and in patients suffering from schizophrenia, who are known to be 

impaired at understanding the intentions of other agents. The experimental setting consisted of 

four action prediction tasks in which participants observed a filmed agent performing several 

types of actions which varyied according to the abstractness of the achieved goal as well as to 

the target of the action. In the first two tasks participants were required to infer the basic (i.e., 

the simple goal of a motor act) and superordinate intentions (i.e., the general goal of a 

sequence of motor acts) of the observed agent. In the third and the fourth tasks, they were 

required to infer the agent’s social basic and social superordinate intentions (i.e., simple or 

general goals achieved within the context of a reciprocal interaction). In each of these tasks, 

both prior expectations about the observed agent’s intentions and perceptual information were 

systematically varied. Prior expectations were manipulated by varying the probability of 
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observing the agent achieving a certain intention, at the expense of other competing ones. 

Perceptual information (the movement kinematics of the observed agent) was manipulated by 

varying the completeness of the action sequence. The underlying hypothesis was that intention 

inference of healthy individuals depends on a consistent interaction between visual 

information and prior expectations. Accordingly, intention inference of schizophrenic patients 

was expected to reflect an abnormal interaction between prior information and perceptual 

evidence.  

As expected, intention inference in healthy individuals reflected an interaction between 

prior expectations and perceptual evidence. The inferences were indeed contingent upon an 

adaptive interplay between these two sources of information, with healthy participants tending 

to progressively rely more on their prior expectations as the reliability of perceptual evidence 

decreased, and vice versa. Crucially, this interaction varied according to the target of the 

intention to be inferred, with prior information gaining priority over perceptual evidence when 

inferring intentions within a social context rather than a non-social context. In patients with 

schizophrenia, results showed no impairment at predicting non-social basic intentions, but 

they were impaired for more abstract types of intentions – i.e., non-social superordinate 

intention, and both types of social intentions. As expected, these impairments were associated 

with abnormal interactions between prior information and perceptual evidence. In the non-

social superordinate condition, schizophrenic patients massively relied on their prior 

expectations, whilst disregarding sensory evidence. In contrast, social conditions prompted 

exactly the opposite pattern, with patients exhibiting weaker dependence on prior expectations 

whilst relying strongly on perceptual evidence.   
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 This study first showed that prior information acquired from probabilistic exposure and 

perceptual information conveyed by movement kinematics interact to drive action 

understanding. Second, we found that the shape of this interaction was modulated by the type 

of intention to infer. The greater the action goal was delayed (superordinate intentions), and 

the more abstract it was (social intentions), the less perceptual information conveyed by the 

observed kinematics was prone to reduce the space of competing intentions. Accordingly, the 

more motor possibilities there are to achieve an intention (many-to-one mapping), the more 

observers relied on their prior expectations to infer it. 

Interestingly, these results may help reconcile the two major accounts of action 

understanding developed over the last two decades, namely, the simulation theory and the 

theory-theory. According to the simulation theory, understanding other people’s intentions 

requires simulating the observed action via the activation of our own motor planning system. 

The result of this simulation process is the selection, in the observer’s own motor repertoire, of 

the intention that may have caused the very same action. This explanation highlights the role 

of visuomotor information extracted from the observed kinematics. According to the theory-

theory, on the other hand, action understanding is based on an inferential mechanism that 

emphasizes the contribution of context-related prior knowledge derived from our intuitive 

theories of human behavior (e.g., the naive theory of rational action proposed by Gergely and 

Csibra, 2003) as well as on the observer’s past experiences and rules she/he has drawn from 

them. While apparently opposed, the data from Chambon et al (2011) are consistent with 

several other recent studies which together plead in favor of a complementary role for 

simulation and inferential mechanisms in action understanding (Brass et al., 2007; Keysers & 

Gazzola, 2007; Kilner et al., 2011; de Lange et al., 2008). Taken together, these studies 
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suggest that intention attribution may rely on an adaptive balance between bottom-up sensory 

and top-down prior information, whose equilibrium would be modulated by the type of 

intentions to be inferred, depending on their temporal and structural complexity – from basic 

(one-to-one action/intention mapping) to superordinate (many-to-one action/intention 

mapping) and social intentions.  
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D. Understanding tool-use actions: how object affordances help 

solve the inverse problem 

 

 

The simulation and Theory-theory are expected to account for the understanding of a variety 

of actions. Yet, it is of note that a majority of studies that investigates motor simulation 

mechanisms uses a specific class of complex actions as stimuli. This class of complex actions 

concerns tool-use behaviors (see for reviews, Rizzolatti and Craighero, 2004; Rizzolatti and 

Sinigaglia, 2010). Tool-use refers to a type of behavior that consists in manipulating “external 

objects with the goal of altering the physical properties of another object, substance, surface, 

or medium, via a mechanical interaction”, or that consists in “mediating the flow of 

information between the tool user and the environment” (St Amant and Horton, 2008, 

pp.1203).  

Tool-use behaviors occupy a particular place in human and animal behavior and 

deserve a particular attention for several reasons. First, the modern human environment is 

overrun by technology, to such an extent that a majority of our daily actions are directed 

towards objects, tools and other artifacts. Second, tool-use behaviors are the most frequently 

observed markers of cultural traditions, both in human societies and in the wild (Whiten et al., 

1999; Whiten et al., 2005). Third, tool-use behaviors is often take as a comparative model to 

assess the ability of individuals to understand and learn socially from their conspecifics 

(Whiten, 2011). Finally, the mastering and manufacture of tool-use is frequently summoned to 

draw hypotheses about human cultural and cognitive evolution (Sterelny, 2003a; Stout and 

Chaminade, 2012).  
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1. Attributing a function to a tool requires mechanisms of intention inference 

Tool-use refers to a type of behavior that “consists in manipulating external objects with the 

goal of altering the physical properties of another object, substance, surface, or medium, via a 

mechanical interaction, or that consists in mediating the flow of information between the tool 

user and the environment” (St-Amant and Horton, 2008). Understanding tool-use behaviors 

requires the acquisition of knowledge about its use and function from observing action means 

and goals achieved by tool users. As such, tool-use behaviors cannot be understood at the level 

of motor intentions only, where simple object manipulations are involved. Instead, the 

achievement of a tool’s function refers to a particular instance of “super-ordinate” intention: 

the object itself is not the target of the intention but just a proxy to achieve a temporally distant 

goal. As such, tool-use behaviors are a particular incarnation of the inverse problem. They 

cannot be solved through merely analyzing the motor sequence underlying the observed 

behavior. A functional intention can be achieved using many different motor sequences, and a 

particular motor sequence can be performed with the aim of achieving many different 

functional outcomes. 

As Csibra and Gergely observed (2007), attributing a function to a tool amounts to 

‘sticking’ a particular action goal to this tool. As such, the function of an artifact is a ‘frozen’ 

goal (a tool can serve a similar goal, or function, under a large scope of situations). Obviously, 

understanding and predicting tool-use behaviors from observation would thus engage the very 

same mechanisms as those described in the preceding sections, namely, i) a mechanism of 

visuo-motor transformation subserving the simulation of the observed tool-use action, ii) a 

simple heuristic enabling goal attribution with regard to the rationality of the observed tool-
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use action, and, finally, iii) a more elaborate inferential mechanism based upon prior 

knowledge acquired from probabilistic sampling of past observations. Together, these 

mechanisms would enable human observers to derive knowledge about the possible uses and 

functions of a tool from observing goal-directed, intentional movements performed by an 

agent.   

 

2. Attributing a function to a tool requires the detection of object affordances 

In addition to these mechanisms, human observers may benefit from another type of heuristic 

to understand and predict tool-use behaviors. Such an heuristic is based upon the detection of 

low-level, local sources of information, such as the manipulative properties of objects, namely, 

their ‘affordances’ (Gibson, 1979). Affordances are not intrinsic properties of objects. Rather, 

an affordance defines a relational property that emerges from matching the perceived physical 

features of an object (e.g. size, shape, texture, density) and the agent’s sensorimotor 

constraints, her goals, plans, values, beliefs, and past experiences (Norman, 1988). 

Specifically, affordances ‘suggest’ how an agent might interact with an object, given the 

sensorimotor constraints of the acting organism. According to Gibson (1979), they represent 

the basis which any living mobile organism relies upon to guide its actions in the world. For 

example, the vision of a wooden stick planted in the ground, of its size and shape, may prompt 

the action of grasping, whereas its density and texture make it perfect to take a piece of fruit 

down from a tree. For birds, however, the very same stick may afford the action to rest on its 

upper extremity, avoiding the threat of terrestrial predators. 
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To underline both the similarities and the differences from the affordance notion 

elaborated by Gibson, Ellis & Tucker (2000) proposed the notion of ‘micro-affordances’ to 

refer to the potentiated elements of an action. Microaffordances are brain assemblies that 

represent objects; they are the product of the conjoining, in the brain, of visual responses and 

action - related responses that have developed throughout individual and species history as 

part of the process of adapting to the environment. Similarly to the original notion of 

affordances, microaffordances are elicited automatically, independent of the goal of the actor. 

Thus, microaffordances do not pertain to complex actions, which are probably mediated by the 

actor’s goal, such as drinking. Rather, they facilitate simple and specific kinds of interaction 

with objects. These simple interactions with objects also imply the activation of conceptual 

knowledge. In fact, microaffordances differ from Gibsonian affordances in that they are much 

more specific and are a consequence of object-based attention (Vainio et al., 2007). They do 

not elicit grasping, but a specific component of grasping, which is suitable to a particular 

object. For example, a ball is represented by making accessible the information that it can be 

reached and grasped, in order to play with it. 

Some recent findings suggest that the detection of affordances is implemented within 

motor simulation mechanisms similar to those that are involved in action observation and 

action understanding. Specifically, a population of neurons mostly located in the anterior intra-

parietal lobule (AIP) and F5 area of the monkey brain – the canonical neurons – has been 

shown to be specifically recruited when individuals deal with geometrical objects. By testing 

responses of single neurons located in area F5 of the monkey brain during object-oriented 

motor actions, Rizzolatti (1988) and colleagues have shown that F5 neurons selectively 

respond to different types of hand prehension movements (e.g., precision grip prehension, 
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whole-hand prehension). Canonical neurons in areas F5 and AIP have also been shown to 

selectively code for visual properties of three-dimensional objects (size, shape, and 

orientation) in a corresponding motor format (Murata et al., 1997; Murata et al., 2000). In 

support of these findings, inactivation studies showed that artificial lesions of the monkey’s 

area AIP (Gallese et al., 1994) or F5 (Fogassi et al., 2001) elicited a substantial deficit in the 

ability to move the hand congruently with the object size and shape. Binkofski and coworkers 

(1998, 1999) showed in human subjects that lesions induced in the anterior part of the lateral 

bank of the intraparietal sulcus led to deficits of hand shaping for grasping objects similar to 

those observed in inactivation studies with monkeys. The presence of canonical neurons in the 

intraparietal and ventral limbs of the precentral sulcus of the human brain has also been 

suggested (Grèzes et al., 2003). The activity of canonical neurons is thought to generate a set 

of motor primitives that are recruited in any type of motor action involving effector/object 

interactions (Flash and Hochner, 2005).  

These motor primitives would participate in the generation of a set of structured motor 

patterns which affordances might be primarily elaborated upon. However, something more is 

needed to make affordances predictive cues of the object’s function. 

 

3. Affordances, sensorimotor constraints, and the principle of rationality: the 

emergence of biomechanical priors 

The role of affordances in the individual exploration of objects and the discovery of their 

function is well known (Osiurak et al., 2010; Visalberghi et al., 2009; Whiten et al., 2004). In 

a recent theoretical commentary (Jacquet et al., 2012a, in press), we proposed that the primary 
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function of affordances is just like other types of prior information  - to narrow the space of 

possible motor acts that one can perform on a given object or tool.  

Our proposal is that affordances generate effector-dependent, biomechanical prior 

expectations which are in line with the agent’s sensori-motor constraints. Crucially, this type 

of prior information would emerge through a primitive form of the rationality principle that 

would bias agents to act towards objects with the aim of biomechanical optimization. 

Interestingly, it has been shown that both human and non-human primates indeed favor object-

directed behaviors that minimize the muscular and/or articulator costs, given the object’s 

affordances and the desired outcome (Rosenbaum et al., 1992; Rosenbaum et al., 1996; Sartori 

et al., 2011; Weiss et al., 2007). Biomechanical priors elicited by object affordances would 

thus provide a simple heuristic for inferring the function and use of a tool. For example, based 

on the amplitude of the observed agent’s grip aperture and the orientation of her wrist, as well 

as on the size, the shape, and the texture of the object to be grasped, one may predict whether 

this object is meant to be lifted, pushed, or merely transported (Chambon et al., 2011). 

Biomechanical priors elicited by affordances may exert strong influences on inference-

making, as the observed agent is expected to adopt a behavior that minimizes biomechanical 

costs. Therefore, the understanding and the prediction of tool-use actions should be facilitated 

when the observed agent uses a tool in a way that fits the observer’s biomechanical 

expectations (low cost behaviors), and should be jeopardized in the case where these 

expectations are patently violated (high cost behaviors). In summary, understanding and 

predicting tool-use behaviors performed by a third party recruit several interacting 

mechanisms. First, a mechanism of motor simulation that, articulated around the axiom of 

rationality, enables observers to estimate the biomechanical costs of an action. This estimation 
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would then bias the selection of the action that, among competing alternatives, is optimal 

given the object configuration and the desired goal. Second, a mechanism of probabilistic 

inference enables the observers to derive knowledge from past observations. Such prior 

knowledge would participate in the specification of its function and use. These mechanisms 

may combine when prior knowledge and biomechanical priors elicited by object affordances 

converge. However, they may also compete when these classes of prior information actively 

diverge; that is, when the agent’s behavior violates the biomechanical expectations of the 

observer whilst being congruent with past observations – and vice versa. 

 

Figure 4. Like humans, non-human animals can take advantages of object affordances to guide their 

actions in the world. Affordances provide cues that narrow the space of possible motor behaviors an 

individual can execute, given its biomechanical architecture, making possible the achievement of complex 

behaviors, such as tool-use, at low cost. The left and the middle photographs are taken from Seed and 

Byrne, 2010; the right photopragh is taken from Weiss et al., 2007.  
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E. Hybrid model of action understanding 

 

 

 Throughout the present theoretical introduction we have examined several types of 

mechanisms that could help in solving the inverse problem associated with action 

understanding, and have isolated two types of inference mechanism, each being dependent on 

the assumption of rationality and varying according to their computational complexity. In 

particular we have discussed how simple heuristics – teleological stance and affordances –, as 

well as probabilistic inference, provide the observer with an information that movement 

kinematics alone cannot provide. Thus, the teleological stance enables one to derive prior 

expectations about the well-formedness of an observed behavior. Affordance-based heuristics 

rely on biomechanical prior expectations that emerge from matching the physical properties of 

an object with sensorimotor constraints shared by both the observer and the observed agent. 

These biomechanical priors over-weight action goals (or tool functions) whose achievement 

minimizes biomechanical costs. Finally, Bayesian probabilistic inference allows an observer to 

predict an agent’s intention by combining prior knowledge about the agent’s intentions 

(acquired from statistical regularities of past observations) with perceptual evidence conveyed 

by the action scene. 

These three types of inference contribute to solving the inverse problem of action 

understanding by constraining the space of possible intentions that may have caused the 

observed action. According to the type of action being predicted, these three respective 

mechanisms are informed by either sensory (movement kinematics and situational constraints) 
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or more abstract cues (goal representation), and even propositional information (the degree of 

belief in one particular intention). These mechanisms are somehow compatible with both a 

simulationist and a theory-theory account of action understanding, emphasizing the relevance 

of a hybrid model that would clarify, at both cognitive and cortical levels, their mutual 

influence during inference-making. 

 

1. The ‘predictive coding’ model 

The latest version of this ‘hybrid’ model has been recently proposed by Kilner and 

collaborators (2007a; 2007b; 2011). The “predictive coding” model accounts for the adaptive 

interaction of two sources of information that are involved in action understanding: the prior 

information (being acquired from past experience, or being ‘innate’) and the visuo-motor 

information conveyed by the action kinematics. This interaction is explained within a 

hierarchical model of action understanding (Grafton and Hamilton, 2007). Note that the 

formalism used by the model – the predictive coding – is particularly adapted to account for 

how an observer solves the inverse problem of action understanding (e.g., many intentions can 

explain a particular motor sequence, or various motor sequences can be peformed to achieve 

the same intention). 

Kilner and colleagues first point out the lack of empirical evidence for the role played 

by mirror neurons (and, by extension, the Action Observation Network – also termed ‘mirror 

system’) in the human ability to understand other people’s behaviors, which has led some 

researchers to speculate that the Action Observation Network (AON) might not even have any 

functional role in this regard (Hickok, 2009). They further claim that such confusion arises 
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from the lack of specificity of the ‘action understanding’ concept used in the literature. Indeed, 

actions can be described at multiple levels and, consequently, there are multiple levels at 

which an observed action can be ‘understood’. Following this, they postulate that 

hierarchically distinct cerebral regions (having ‘mirror’ properties or not) subserve the 

different levels of action understanding: i) the kinematic level, which refers to the trajectory 

and velocity profile of the observed goal-directed action, including both the reaching and 

grasping phase of the action; ii) the motor level, which refers to the processing and pattern of 

muscle activity required to produced the desired kinematics; iii) the goal level, which refers to 

the immediate purpose of the observed action, such as grasping an object; and iv) the intention 

level, wich refers to the general (i.e., super-ordinate) reason, or cause, that motivates the 

execution of the observed action (see figure 5).  

The ‘predictive coding’ framework postulates that each level of the hierarchy generates 

predictions that specify, or bias, the representations at the inferior level. Predicitions generated 

at the highest levels are then compared with current predictions generated at the inferior 

levels. Thus, depending on the type of goal being anticipated, the observer will predict a motor 

command that is congruent with this goal and, on the basis of her own motor repertoire, will 

generate expectations about the specific kinematics that best fits with the predicted motor 

command. The comparison between the predicted and the currently observed kinematics will 

generate, in the case of a mismatch, a prediction error. The magnitude of such a prediction 

error will then be reduced, via forward connections, by updating the representation elaborated 

at the more abstract, higher levels. This exchange of reciprocal signals proceeds until the cause 

that most likely explains the observed action is inferred, or, in other words, until the 
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magnitude of the prediction error is sufficiently minimized to enable accurate inference 

(Kilner et al., 2007a; 2007b).  

In this respect, the ‘predictive coding’ model provides a biologically plausible 

framework for explaining how the brain solves the inverse problem of action understanding by 

minimizing, at each cortical level (kinematic, motor, immediate goal, and intention), the 

prediction error that is automatically generated during action observation (see figure 6). When 

extended to a hierarchical model of brain functioning, such predictive coding also accounts for 

how top-down influences can be produced in a dynamic and context-specific way, through 

internal properties of the system itself (Friston et al., 2006). In this context, the estimations 

generated at the superior levels are the “priors” that inform the inferior levels. By potentiating 

sensory information via top-down adjustments of the prediction error signal, these high-order 

estimations make possible intention inferences, even in the case of noisy or incomplete 

perceptual information (Baker et al., 2006; Summerfield and Egner, 2009). 
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Figure 6. (a) Representation of the three reciprocally connected areas of the 

human ‘mirror system’, also called the Action Observation Network (taken 

from Kilner 2011). Some frontal (such as the ventral IFG) and parietal (such as 

the inferior parietal area) regions are known to contain mirror neurons. These 

frontal and parietal areas are reciprocally connected (Luppino, 1999) creating a 

premotor-parietal mirror system. Neurons within the STS have also been shown 

to respond selectively to biological movements, both in monkeys (Oram and 

Perrett, 2004) and in humans (Frith and Frith, 1999; Alisson et al., 2000; 

Grossman and Blake, 2002). The STS is reciprocally connected to the inferior 

parietal area (Seltzer and Pandya, 1994; Harries and Perrett, 1991) and therefore 

provides visual input to the mirror system. (b) Representation of the predictive 

coding model of the AON (taken from Kilner, 2011). Predictive coding is 

based on minimising prediction error though recurrent or reciprocal interactions 

among levels of a cortical hierarchy. In the predictive coding model, at each 

level of a cortical hierarchy a generative model is implemented which predicts 

the representations in the level below. This generative model uses backward 

connections to convey the prediction to the lower level. This prediction is then 

compared to the representation in this subordinate level to produce a prediction 

error. This prediction error is then sent back to the higher level, via forward 

connections, to tune the neuronal representation of sensory causes, which in turn 

changes the prediction. 
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2. Rethinking the function of the AON: two pathways to action understanding 

Recently, Kilner (2011) proposed that, at the cerebral level, the concrete and abstract features 

of observed actions are encoded through a dorsal and a ventral pathway. A dorsal pathway – 

the AON –encodes the more concrete levels of actions (the kinematic and the motor levels), 

while the encoding of the more abstract levels (the immediate goal and intention levels) 

depends on the interaction between the AON and a ventral pathway linking the middle 

temporal gyrus (MTG) with the anterior inferior frontal gyrus (IFG). 

 The AON involves three main regions that are reciprocally interconnected. Two of 

these regions – the inferior parietal lobule (IPL) and the inferior frontal cortex (IFC) – are 

endowed with mirror properties. The IFC and the IPL would be involved in the coding of 

action goals. The more posterior parts of the IFC – the dorsal (PMd) and ventral premotor 

cortices (PMv) – are involved in the selection of the goal representation that best matches the 

observed action, Other parietal regions located near the IPL also participate in decoding 

features of an observed action. In particular, the anterior intra-parietal sulcus (AIPs) is known 

to be involved in the processing of manual prehension movements of object-directed actions, 

and is assumed to code for object/goal interactions (Tunik et al, 2007). These two clusters of 

brain regions receive inputs from the superior temporal sulcus (STS), which contains 

polysensory neurons that respond to motion from different perceptual modalities (Barraclough 

et al., 2005). The posterior part of the STS is potentially involved in the identification of 

intentional biological movements (Van Owervalle and Baetens, 2009).  

According to the predictive coding model, action understanding would, and could, not 

only rely on the sole Action Observation Network. Rather, this network would be informed by 
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prior expectations about goals and intentions that are formed along the ventral pathway. When 

the most likely goal has been specified, the sensory consequences of the action would be 

inferred by the dorsal pathway through brain areas of the AON. Note that prediction of the 

most likely intention could possibly be estimated outside the AON, from an analysis of 

contextual information surrounding the action scene (possibly through regions of the 

‘mentalizing’ system such as the anterior frontomedian cortex, (Brass et al., 2007).  
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Figure 5. Example of action understanding in the two-pathway framework (taken from Kilner, 2011). The 

demonstrator’s intention is to drink a cup of tea. The first step of action understanding is the visual processing 

and the identification of the object as a cup. The second step is the retrieval, within the observer’s motor 

repertoire, of actions that he learned to be associated with that object. The third step is the selection of the most 

probable actions that can be achieved, given the demonstrator’s final intention. Of note is that many actions can 

be selected. However, the likelihood of an action is signalled through the strength of that action’s representation 

(indicated by the transparency of the picture). The top action is less probable and thus is not selected. The fourth 

step is the encoding of the motor parameters to generate a prediction of the sensory consequences of the observed 

action. Again multiple actions can be encoded as before. The fifth step is the prediction of the sensory 

consequences of the most probable action. Here only the most probable action is encoded. In this schematic, steps 

2–4 would be encoded in the ventral pathway of the connected areas MTG, BA47, BA45 and BA44/BA6 with the 

representation of the action changing from the abstract to the concrete through these steps (left rainbow arrow). 

Steps 4–5 would represent the generation of the predicted sensory consequences of the action encoded in the 

dorsal AON pathway (right rainbow arrow). 
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F. Experimental outlines 

 

 

The experiments presented in this doctoral thesis are guided by a series of questions that can 

be articulated along two dimensions: an individual dimension, through which processes of 

action recognition and action prediction are investigated; and a populational dimension, 

through which mechanisms of social transmission are modeled to account for the emergence 

of behavioral patterns among groups of individuals.  

 

1. The first study (Experimental Contribution Chapter 1) concerns the representational 

aspect of perceived actions. More specifically, it aimed to investigate whether, and how, the 

inferior frontal cortex (IFC), the anterior intraparietal region (AIP) (two regions composing 

the Action Observation Network), and the primary somatosensory cortex (S1), are involved in 

the coding of two specific action features that are hierarchically organized. The first feature is 

the type of grip used by an observed agent to perform a specific action. The second feature is 

the subsequent arm movement that leads to the achievement of the action outcome. To do so, a 

simple action recognition task was designed. In a first step, participants were required to 

observe repeated movies showing a demonstrator acting on a multipurpose tool in order to 

achieve one out of two different goals by using either a power or a precision grip. In a second 

step, static pictures presenting the action outcomes were shown, and participants were asked to 

match either the current grip or the current arm action with the one performed in the preceding 

action movies. To assess the role of the three mentioned target brain areas, a single-pulse 
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transcranial magnetic stimulation technique was applied during the presentation of each static 

picture.   

 

2. The second study (Experimental Contribution Chapter 2) was built upon the 

assumption that action prediction amounts to solving an inverse problem. This study thus 

aimed to investigate whether such a problem could be solve through a simple heuristic – such 

as the detection of object affordances – or required a more complex form of inference – such 

as probabilistic inference. More specifically, we investigated here the contribution of two 

types of prior information to the prediction of actions presented under various conditions of 

visual uncertainty. Using typical techniques from experimental psychology, we designed an 

action prediction task in which participants were required to infer the intentions of a filmed 

demonstrator acting on a multipurpose tool by using either a biomechanically optimal or 

suboptimal strategy. The first type of prior information that was manipulated directly emerged 

from the detection of object affordances, and provided expectations about the biomechanical 

optimality of the observed actions. The second type of prior information that was manipulated 

was the prior knowledge that observers derived about the demonstrator’s behaviors and 

intentions from probabilistic sampling of past observations. Inspired from the framework of 

Bayesian inference, this experiment studied whether, and how, these two types of priors – 

biomechanical and probabilistic priors – interact to actively bias predictions made by 

participants. 

 

3. The objective of the third study (Experimental Contribution Chapter 3) was to 

investigate whether, and how, the interaction between biomechanical and probabilistic priors 
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modulates the activity of the motor system in a task where participants were required to 

predict a demonstrator’s intentions. To do so, we adapted experiment #2 to an on-line TMS 

design. Corticospinal excitability was measured by means of single-pulse TMS applied over 

the primary motor cortex (M1) during action prediction, before and after probabilistic 

exposure to optimal and suboptimal actions. 

 

4. The fourth and last study (Experimental Contribution Chapter 4) tested the extent to 

which some constraints, such as the richness of the biomechanical repertoire of an individual, 

or the type of search space characterizing a problem (two issues that relate to the notion of 

inverse problem), may influence the emergence of faithful social learning strategies (e.g., 

emulation or imitation) at a population level, and whether the emergence of such strategies 

may explain the stability of observed behavioral traditions. To explore these relationships, an 

evolutionary individual-based model was built.  
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The first experiment presented in this thesis focused on a perceptual aspect of action 

understanding. In particular, it aimed at studying whether, and how, the primary 

somatosensory cortex (S1) – together with the inferior frontal cortex (IFC) and the anterior 

intraparietal region (AIP) that are classically reported as forming the Action Observation 

Network (AON) – is involved during the perception of distinct features of complex actions, 

i.e., the type of grip used and the type of effector configuration (arm) associated with action 

outome. Indeed, recent studies suggested that S1 may be recruited during the perception of 

observed actions within an estimation of their sensorimotor and somatic consequences (Keyser 

and Gazzola, 2007; Keyser et al., 2010; Valchev et al., 2012). 

To investigate the respective contribution of S1, AIP and IFC in the perception of these 

action features, we used a transcranial magnetic stimulation adaptation paradigm (TMSA) 

(Silvanto et al., 2008). The underlying assumption of TMSA paradigms is that the impact of 

magnetic stimulation over a neural population does not only depend on the stimulation 

properties itself, but also on the initial state of the neural population prior to delivery of the 

stimulus. TMS may thus have a differential effect on neurons according to their initial 

activation state. Specifically, TMS behaviorally facilitates the detection of perceptual features 

enconded by adapted neural populations, compared with non-adapted, within the stimulated 

brain area (Silvanto et al., 2008). TMSA paradigms consist in manipulating the initial state of 

neural populations prior to the stimulation by perceptual adaptation. The adaptation phase 

simply consists in exposing the participant to the repetition of a stimulus (e.g., a visual 

stimulus) for a duration usually comprised between 40and 60 sec. The adaptation induces 

habituation in a subset of cells that code for a particular feature of that stimulus, making them 

a selective target for TMS. Consequently, stimulation time locked to the cognitive task (e.g., 
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the detection of the adapted stimulus among non-adapted stimuli) should selectively improve 

the performance in processing the stimulus to which the targetd neurons were previously 

adapted. TMS adaptation paradigms have been recently successfully tested in various domains 

of cognition, such as language (Cattaneo et al., 2009a; 2009b) and number processing (Cohen 

Kadosh et al., 2010), multisensory interaction (Romei, 2007) or motor acts observation 

(Cattaneo et al., 2010; 2011).  

In line with these works, we used a TMSA paradigm in two tasks of action recognition. 

During these tasks, participants were habituated to adaptation movies showing a human actor 

performing two types of complex object-directed actions (lifting the object to open a box 

versus turning the object to switch-on a light) using either a power (whole hand grip) or a 

precision grip (pinch grip). After each adaptation phase, a series of static pictures presenting 

the final end-states of each possible possible action was presented. In the first task, 

participants were required to detect the similarity between the grip currently used in the static 

pictures and the grip previously used in the adaptation movie. In the second task, they were 

required to detect the similarity between arm movements that led to the final action end-states 

of the static picture and those observed in the preceding adaptation movie. At the onset of each 

static picture, single-pulse TMS was delivered over the IFC, S1 and AIP. We aimed at 

investigating the role of these structures in the coding of two key features of actions, namely 

the type of grasp and the type of effector configuration that leads to the outcome of the 

observed action.  
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Abstract 

The perception of other people’s actions is negociated by a large cerebral network distributed 

along a parieto-frontal axis – the Action Observation Network (AON). The AON, notably 

composed of the anterior intraparietal area (AIP) and the inferior frontal cortex, is assumed to 

cods action components into a hierarchical manner, ranging from movement kinematics to 

action goals and intentions. Recent studies suggest that other sensory areas, such as the 

primary somatosensory cortex (S1), could actively participate in action perception. Yet, no 

causative evidence has been brought in favor of such involvement. Furthermore, it is not yet 

clear whether, and how, the AIP, the IFC and the S1 cortices are differentially recruited during 

the perception of observed complex goal-directed actions. The objective of the present study is 

to investigate these issues by using a transcranial magnetic stimulation adaptation technique 

(TMSA). TMSA paradigms allow to scrutunize the causal involvement of specific brain areas 

in the achievement of behavioral tasks, and so by manipulating the state of these regions 

through the adaptation of neuronal populations to a constant stimulus. Here, we used single-

pulse TMS over the left AIP, IFC and S1 cortices after the exposure to complex goal-directed 

actions. Participants repeatedly observed adaptation movies in which a demonstrator acted on 

a two-purpose tool by achieving two distinct action goals using either a power or a precision 

grip. After the exposure to adaptation movies, test pictures of the four possible action end-

states (2 grips × 2 intentions) were presented. In a first task, participants were required to 

judge whether the test pictures presented a similar or a different grip compared to the one 

previously observed during the adaptation movies while in a second task, they were asked to 

judge whether the type of arm action used by the demonstrator to achieve his goal was similar 

or different. TMS was applied at the onset of each test pictures over the AIP, IFC and S1 

cortices. If these regions play a role in the processing of the grip or the arm action features, the 

recognition of the adapted stimulus should be improved. First, results showed that stimulating 

the IFC impaired the recognition of the grip, independently of its type (adapted or non-

adapted), and impaired the recognition of the non-adapted arm action. Second, stimulating S1 

improved the recognition of the adapted arm action.  These findings provide the first evidence 

that the IFC and the sensorimotor regions of the AON such as S1 are causatively involved 

during the perception of complex-goal directed actions.  

 

Keywords: action perception, mirror system, state-dependency TMS, Action Observation 

Network, primary somatosensory cortex. 
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Introduction 

Interpreting the behaviors of others crucially requires the ability to decode the observed 

kinematic information into a causal relationship between the motor sequence and its outcome. 

It has been suggested that this ability depends on action ‘simulation’ mechanisms mapping 

observed motor acts onto corresponding motor programs and associated somatosensory 

consequences stored into the observer’s action repertoire (Rizzolatti and Craighero, 2004; 

Wilson and Knoblich, 2005; Urgesi et al., 2010; Keysers et al., 2010; Avenanti and Urgesi, 

2010). Imaging and neurophysiological evidence have suggested that such action simulation 

mechanisms rely on the activity of a widespread bilateral network of cortical brain regions, 

usually referred to as the action observation network (AON) (Grafton, 2009). Classically, 

inferior frontal cortex (IFC, including the ventral premotor cortex and the posterior part of the 

inferior frontal gyrus) and the anterior intraparietal cortex (AIP) have been considered 

important nodes of the AON coupling action observation with execution. Seminal studies on 

monkey indicate that a proportion of neurons in these frontoparietal regions increase their 

firing rate during both action perception and execution (so called ‘‘mirror neurons’’) (di 

Pellegrino et al. 1992; Gallese et al. 1996; Fogassi et al. 2005) and may be involved in 

perceiving and understanding others’ actions. 

In addition, mounting imaging and neurophysiological evidence in humans suggest that 

the somatosensory cortices may be also involved in perceiving others’ behavioral states 

(Adolphs et al., 2000; Keysers et al., 2004; Bufalari et al., 2007; Valeriani et al., 2008; 

Avenanti et al., 2009). In particular, the primary somatosensory cortex (S1) is consistently 

active during action perception and execution (Rossi et al., 2002; Avikainen et al., 2002; 
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Avenanti et al., 2007; Gazzola and Keysers, 2009) and may be thus be considered an 

additional node of the AON (Keysers et al., 2010). 

Although the involvement of IFC, AIP and S1 in perceiving others’ actions has been 

suggested in several imaging and neurophysiological studies (Caspers et al., 2010), it should 

be noted that these methods provide only correlational evidence and cannot establish a direct 

causal link between brain and function. Transcranial magnetic stimulation (TMS) provides an 

extraordinary non-invasive method to interact with neural tissue and thus provide that a brain 

region is critical for behavior. Typically, TMS is used with the aim of disrupting neural 

activity associated with cognitive processes by inducing random neuronal activity that is 

uncorrelated with the ongoing activity (i.e. “virtual lesions”). Previous studies using these 

methods have suggested that disruption of activity in IFC (Pobric and Hamilton, 2006) or S1 

(Valchev et al., 2012) reduces the ability to infer the weight of objects being lifted by a human 

hand. Moreover, inhibition of IFC has been shown to generate several disturbances affecting 

various aspects of action perception and understanding. In particular, inhibition of IFC can 

result in the disruption of action simulation activity within the motor system (Avenanti et al., 

2007; Avenanti et al., 2012), the impairment of the ability to discriminate between two 

different pictures of actions (Urgesi et al., 2007; Candidi et al., 2008), or the impairment to 

discriminate between deceptive or truthful actions (Tidoni et al., 2012, unpublished 

observations). These virtual lesions studies indicate that manipulation of neural activity in the 

AON (mostly in the IFC) impairs action perception. Critically however, to date no studies 

have compared the causative influence of IFC, AIP and S1 in an action recognition task. 

Moreover, virtual lesions approaches suffer from two main limitations. First, the effect 

of brain stimulation is not limited to the target brain region, but can spread ortho- and anti-
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dromically along neural connections (Avenanti et al., 2007; Avenanti et al., 2012). Hence, 

TMS may be best conceptualized as modulating activity across large scale networks reached 

from the directly targeted brain region (Valero-Cabré et al., 2005, 2007). Second, even within 

the targeted brain region, virtual lesion TMS approach cannot elucidate how distinct neural 

populations within the stimulated area interact to give rise to perception and behavior 

(Silvanto and Pascual-Leone, 2008; Avenanti and Urgesi, 2010). 

Recently, TMS-adaptation (TMSA) paradigms have been developed to tackle these 

limitations and to provide information on the cortical topography of brain functions and the 

causal relation of neural activity in the targeted areas to behavior. The TMSA paradigm is 

based on the well established notion of state-dependency, i.e. that TMS effects depends on the 

context and the initial state of the stimulated neurons. Specifically, TMS is thought to 

differentially modulate neurons that are activated by a given perceptual or cognitive process 

relative to neurons that are not activated by such process (Silvanto et al. 2008). Evidence 

suggests that TMS preferentially facilitates the less active neurons and/or suppresses the more 

active neurons within a stimulated brain region and it has been shown that this differential 

modulation have behavioral consequences (Cattaneo and Silvanto, 2008). 

In the TMSA paradigm, the state of the neurons prior to the TMS pulse is manipulated 

in a controlled way by means of perceptual adaptation. The adapting stimulus induces 

habituation in a subset of neurons that code particular stimulus features, making them a 

selective target for TMS. Stimulation time-locked to the cognitive task and delivered over the 

cortical area containing the adapted neurons should selectively improve the performance in 

processing the adapted stimulus features relative to the non-adapted ones and/or reciprocally, 

should impair the performance in processing the non-adapted stimulus feature relative to the 
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adapted ones. Hence, TMSA method allows targeting functionally distinct but spatially 

overlapping neural populations (Silvanto et al., 2009). This paradigm has been successfully 

used to explore color and motion perception in the visual cortex (Silvanto and Muggleton, 

2008) as well as to investigate language and number processing in the parietal cortex 

(Cattaneo et al., 2009; Cohen-Kadosh et al., 2010). However, it should be noted that brain 

stimulation during TMSA paradigm may also lead to disruption of neural function i.e. to 

“state-independent” virtual lesions effects (Burton et al., 2009). 

Recently, the TMSA technique has been used by Cattaneo and colleagues to explore 

action perception mechanisms (Cattaneo et al., 2010a). In this study, participants observed 

adapting movies showing an actor performing grasping or pulling motor acts with either the 

hand or the foot. After each series of adapting movies, participants were subsequently 

presented a series of test pictures showing the same or different motor acts, matched for 

effectors and/or actions. For each test pictures, they were asked to provide a similarity 

judgment, i.e. whether the current picture presented an action that was identical or different to 

the one presented in the preceding adapting movies, irrespective of the effector used to 

perform the action. It was found that response times (RTs) to adapted actions were shorter 

when TMS was applied over two visuo-motor nodes of the AON, namely the IFC and AIP. 

This improvement was independent of the type of effector that was involved in the adapting 

movies, while stimulation of a visual node of the AON (the superior temporal sulcus, STS) led 

to effector specific improvements. These findings suggested a hierarchy in the representation 

of others’ actions, with visual and visuo-motor nodes of the AON being critically involved in 

processing others’ actions in an effector specific and more abstract manner, respectively. 

However, in that study, RTs and accuracy measures were analyzed separately and thus it is not 



 

85 

clear whether speed accuracy trade-off effects were at play in the study. Moreover, no sham 

stimulation condition was present in the design and thus unspecific effects of TMS are not 

determined. 

The experiments performed in the present study are inspired from the Cattaneo et al.’s 

paradigm (2010a), but proposed a finer-grained analysis of action perception mechanisms. 

Indeed, instead of manipulating the type of effector (i.e., hand versus foot), we kept the same 

effectors (i.e., the hand) but manipulated the type of action the actor could perform (i.e., lifting 

an object to open a box versus turning an object to switch-on a light; see fig.1) and the type of 

grip the actor could use to perform the action (i.e., power versus precision grip). Critically, 

subjects had to perform two tasks in which they had to provide similarity judgments both on 

the arm action (irrespective of the grip being used to perform the action; Arm action 

recognition task) and on the grip used in the action (irrespective of the type of action; Grip 

recognition task) while active TMS was applied to the left IFC, left AIP and left S1, and sham 

TMS was applied to the vertex. To rule out any speed-accuracy trade off, the effect of TMS on 

the two action perception tasks was assessed by merging both RTs and accuracy into a single 

measure of performance (inverse efficiency index). By this way we were able to test the causal 

involvement of key nodes of the AON in the differential visual coding of specific actions 

(lifting vs opening) and action components (power versus precision grip). 
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Materials and Methods 

Participants 

Twenty-seven healthy adults (16 females, 11 males; mean age = 25.8, SD = 5.18) volunteered 

to participate in the study. All participants were right-handed, reported normal or corrected-to-

normal vision acuity, and were naïve to the purpose of the experiment. None of them reported 

evidence for neurological or psychiatric diseases. The experimental setting was approved by 

the ethics committee of the Bologna University’s Department of Psychology and was carried 

out in accordance with the ethical standards of the 1964 Declaration of Helsinki. All 

participants gave a written and informed consent and were remunerated 24 Euros for 

participating in the study. 

 

Stimuli 

Participants were seated in a comfortable chair in front of a 19-inch computer screen on which 

series of video clips (adaptation movies) and static pictures (test pictures) were displayed. 

Adaptation movies consisted in 2000ms video clips (30 frame / second, subtending 35 degrees 

of visual angle) showing a male actor operating on an unfamiliar tool. The tool consisted of a 

handle designed to make possible two different goal-oriented actions using two different types 

of hand grip. More specifically, the actor could either i) lift the handle to open the box; or ii) 

turn the handle to switch-on the light. These two actions could be performed using either e) a 

power (whole-hand) or ee) a precision (pinch) grip (see figure 1). Thus, four types of videos 

were created following a 2 (type of action: lifting, turning) × 2 (type of grip: power, precision) 

design. A total of 24 clips for each category were created. All movies were equalized for 
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temporal homogeneity such that the initial (from still hand to tool grasping) and last phase of 

the action (tool manipulation) involved the very same number of video frames and lasted 1000 

ms each. In order to minimize the influence of memorized kinematics on the participants’ 

performances, a movie was presented only one time per adaptation phase.  

Test pictures consisted in single frames extracted from the four possible adaptation 

movies. They presented the actor in the four possible postures, corresponding to the final end-

state of the four possible motor actions (i.e., lifting with power grip, lifting with precision grip, 

turning with power grip, turning with precision grip). Each test picture lasted 1500ms. 

 

Figure 1. Example of the four adaptation movies that participants encountered during the experiments. All 

adaptation movies had a duration of 2000 msec and all began with the demonstrator’s static hand. The actor could 

then use either a ‘power’ or a ‘precision’ grip to achieve either the action of lift the object to open the box (‘open’ 

arm action) or turning the object to switch on the light (‘turn’ arm action).  
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Tasks 

Subjects performed two tasks (Action recognition, Grip recognition) in two separate sessions 

on the same day. In both tasks, subjects were presented with a series of adaptation movies 

showing one of the four motor actions (lifting with power grip; lifting with precision grip; 

turning with power grip; turning with precision grip) followed by a series of 12 test pictures (3 

exemplars for each action). In the Arm action recognition task, participants were asked to 

identify, for each test picture, whether the action (lift versus turn the handle) implied in the 

picture was similar or different as compared to that shown in the preceding adaptation movies 

(independently of the grip used in the action). In the grip recognition task, they had to reported 

whether the grip depicted in the picture (power versus precision grip) was similar or different 

relative to that shown the preceding adaptation movies (independently of the type of action 

being performed). Responses were made with the index and middle finger of the left hand 

(ipsilateral to the stimulated hemispheres) on a keyboard and responses time (RTs) and 

accuracy were recorded and analyzed off-line. 

 

General Procedure 

Participants performed the two tasks in two sessions separated by a pause of 15min duration. 

The order of the tasks was counterbalanced across subjects. The Eprime 2.0 software 

(Psychology Software Tools, Inc, USA) was used to collect both reaction times (RTs) and 

percentages of correct responses.  

Action and Grip recognition tasks were performed in 4 different TMS blocks (Sham, 

IFC, S1, AIP) whose order was randomized across subjects. Each block included 4 trials. On 
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each trial, participants were first presented with 30 adaptation movies displaying one of the 

four possible motor actions. Movies were separated by a white fixation cross of 250ms 

duration. The series of adaptation movies (lasting 67.5 s in total) was followed by a written 

signal of 2000ms duration. This signal simply consisted in a pattern of 8 exclamation points 

the aim of which was to inform participants about the up-coming presentation of test pictures. 

Then a sequence of 12 test pictures (4 action types × 3 different exemplars) was shown. Test 

pictures lasted 1500 ms each and were separated by a fixation cross of 1000 ms of duration. At 

the onset of each test picture, a single-pulse TMS was delivered (Silvanto et al., 2007; 

Cattaneo et al., 2010a). Participants were first required to carefully watch the series of 

adaptation movies and then they had to compare the test pictures to the movies (see figure 2). 

A fixation cross was shown in the inter-trial interval (15 s duration). The order of the trials and 

of the test pictures was randomized. A total of 48 responses were then collected in each block 

(4 trials × 12 test pictures). In both tasks, half of the test pictures showed adapted Action/Grip 

configurations and half showed non-adapted Action/Grip configurations. 
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Figure 2. Example of a TMS block (each subject parformed 4 different TMS block: sham, IFC, S1, AIP). A TMS 

block included 4 trials. On each trial, participants were first presented with 30 adaptation movies showing one of 

the four possible motor acts (‘adaptation phase’). The series of adaptation movies was followed by a 12 test 

pictures (‘test pictures block’ consisted of 4 action types × 3 different exemplars ). Test pictures lasted 1500 ms 

each and were separated by a fixation cross of 1000 ms of duration. At the onset of each test picture, a single-

pulse TMS was delivered. Participants were first required to carefully watch the series of adaptation movies and 

then they had to compare the test pictures to the movies. A total of 48 responses were then collected in each TMS 

block (4 trials × 12 test pictures). 

 

 

 

Transcranial Magnetic Stimulation 

TMS pulses were delivered with a figure-of-eight coil (70mm) and a Magstim Rapid
2
 

stimulator (Magstim, Whitland, Dyfed, U.K.). The individual resting motor threshold (rMT) of 

each participant was identified as the minimal stimulation intensity producing motor evoked 
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potentials (MEPs) of at least 50 μV amplitude in the right first dorsal interosseous muscle 

(FDI), with 50% probability on at least 5 on 10 consecutive stimulations (Rossini et al., 1994). 

MEPs were recorded by means of a Biopac Student Lab MP36 electromyograph (Biopac 

Systems, Inc, U.S.A.). EMG signals were band-pass filtered (30 Hz–1000 Hz) and digitized 

(sampling rate at 5 kHz). Pairs of silver/silver chloride surface electrodes were placed over the 

muscle belly and over the first articulation of the right index finger, whereas a ground 

electrode was placed on the internal bone of the right elbow. The intensity of stimulation used 

during the experiments was then set at 110% of the individual rMT. The experiment was 

programmed using Eprime 2.0 software (Psychology Software Tools, Inc.) to control stimuli 

presentation and trigger the magnetic stimulator.   

Coil position was identified on each participant’s scalp using the SofTaxic Navigator 

system (EMS, Italy) or functional methods as in our previous TMS research (Avenanti et al. 

2007; Avenanti et al., 2012; Bertini et al. 2010; Serino et al. 2011). Skull landmarks (nasion, 

inion, and two preauricular points) and about 60 points providing a uniform representation of 

the scalp were first digitized by means of a Polaris Vicra Optical Tracking System (NDI, 

Canada). Coordinates in Talairach space were automatically estimated by the SofTaxic 

Navigator from an MRI-constructed stereotaxic template.  

Scalp positions corresponding to IFC and AIP were identified by means of the 

SofTaxic Navigator system. The IFC was targeted in the anterior-ventral aspect of the 

precentral gyrus (ventral premotor cortex) at the border with the pars opercularis of the 

inferior frontal gyrus (coordinates: x = -52, y = 10, z = 24), corresponding to Brodmann’s area 

6/44 (Avenanti et al. 2012; Mayka et al. 2006; Van Overwalle et al. 2009; Caspers et al. 2010; 

Urgesi et al. 2007). The AIP region was targeted in the anterior sector of the intraparietal 
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sulcus (x = -40, y = -40, z = 45, corresponding to Brodmann’s area 40; Van Overwalle et al. 

2009; Caspers et al. 2010).  

TMS studies that successfully targeted the hand region in S1 positioned the coil 1–4 

cm posterior to the motor hotspot (Balslev et al., 2004; Avenanti et al., 2007; Valchev et al., 

2012). In keeping, S1 was indentified using a two steps procedure. We first localized the hand 

region in the motor cortex (corresponding to the optimal scalp position for evoking MEPs in 

the FDI muscle) and then moved the coil 2 cm backward. We assumed that from this position 

we could stimulate the hand region in S1 with minimum effects on M1. To test this 

assumption directly, we checked that TMS pulses at 110% rMT with the coil in the above 

position did not elicit any detectable MEP. The three identified sites (IFC, S1, AIP) were 

marked on the bathing cap with a pen. Then the neuronavigation system was used to estimate 

the projections of the scalp sites on the brain surface (see figure 3).  
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Figure 3. Schematic representation of the 3 stimulation sites. The red dot represents the cortical representation of 

the right FDI muscle located on the left prilary motor cortex (M1). It was used to individuate the resting motor 

threshold (rMT) on which the stimulator intensity was set (110% of the rMT). The purple dot represent the left 

inferior frontal cortex (IFC), targeted in the anterior-ventral aspect of the precentral gyrus (ventral premotor 

cortex) at the border with the pars opercularis of the inferior frontal gyrus (coordinates: x = -52, y = 10, z = 24). 

The green dot represents the left primary somatosensory cortex that was targeted by moving the coil 2 cm 

posterior to the FDI location. Finally, the blue dot represents the left AIP region, targeted in the anterior sector of 

the intraparietal sulcus (x = -40, y = -40, z = 45). 
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Data Analysis 

The proportion of correct responses and RTs were analyzed off-line (see table 1 and 2). For 

each condition, RTs deviating more than two standard deviations from the individual mean 

were discarded. During the IFC stimulation, three participants reported being surprised by the 

stimulation in the first sub-block of test pictures (12 trials), resulting in an absence of response 

during this sub-block. This was actually a side effect of the stimulation which brought about 

facial muscle contractions and slight movements of the mandible. Accordingly, responses 

collected during this sub-block were removed from the analyses. No similar effects were 

found in the remaining blocks or in the other participants. 

Statistical analyses were conducted on the inverse efficiency (IE) index (Akhtar and 

Enns 1989; Christie and Klein 1995; Kennett et al 2001; Townsend and Ashby, 1983), 

obtained by dividing the median RT by the proportion of correct responses, calculated for each 

experimental condition and for each subject separately. By combining response latencies and 

accuracy into a single measure, this index allows to discount possible criterion shifts or speed 

accuracy tradeoffs in the different TMS conditions. A lower value on IE indicates a better 

recognition performance, while a higher value on IE indicates a lower recognition 

performance. For the Arm action recognition task, IE scores were submitted to a 4 × 2 × 2 

repeated-measures ANOVA with  Stimulation (Sham, IFC, S1, AIP), Arm action (adapted, 

non-adapted) and Grip (adapted, non-adapted) as within-subject factors. A similar analysis 

was conducted on IE scores of the Grip recognition task. Before reporting the two ANOVAs, a 

preliminary Task (Action, Grip) × Stimulation × Grip × Arm movement ANOVA was carried 

out. Post-hoc analyses were carried out using the Newman-Keuls test.  
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Results 

The Task × Stimulation × Action × Grip ANOVA on the IE index revealed several effects 

including the main effect of Task (F1,26 = 321.41, p < .00001) with greater IE values (lower 

performance) for the Grip (mean ± SD: 677 ms ±  76) relative to the Arm action recognition 

task (493 ms ±  64) and a marginally significant quadruple interaction (F3,78 =2.67, p = .053). 

Thus, to further analyze the data, two separate Stimulation × Arm action × Grip ANOVAs 

were carried out, one for each Task.  

 

Grip recognition task (see table 1) 

The ANOVA on the IE index computed on the Grip recognition task revealed a main effect of 

Grip (F1,26 = 20.30, p = .0001) with greater IE scores for non-adapted  (701 ± 80) relative to 

adapted grips (654 ± 81) and a main effect of Stimulation (F3,78 = 8.81, p = .00004), accounted 

for by the higher IE scores in the IFC block relative to the other blocks (all p < .0004) which 
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in turn did not differ from one another (all p > .80) (see figure 5). No Grip × Stimulation 

interaction was found (F3,78 = 1.57, p = .20), suggesting that TMS did not induce any state-

dependency effects in the Grip recognition task, but only a strong virtual lesion effect (lower 

performance) when applied over the IFC. No other significant main effects or interactions 

were found (all p > .18). 

 

Figure 5. Arm action recognition task: interaction effect ‘Stimulation’ × ‘Arm action’. The vertical axis 

represents the mean inverse efficiency (IE) index (obtained by dividing the median RT by the proportion of 

correct responses collected during the test pictures blocks of the Arm action recognition task). The horizontal axis 

represents the four stimulation condition. The black columns represent IE index calculated for the adapted arm 

actions. The grey columns represent IE index calculated for the non-adapted arm actions. 

Arm action recognition task (see table 2) 

 

The ANOVA on the IE index computed during the Arm action recognition task showed a 

main effect of Stimulation (F3,78 = 4.27, p = .0008), a main effect of Arm action (F1,26 = 4.35, p 
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= .047) and, most importantly, a significant Stimulation × Arm action interaction (F3,78 = 3.12, 

p = .031) (see figure 4).  Post-hoc analysis (Newman-Keuls range tests) of the interaction 

suggested that no clear behavioral correlate of adaptation was present when Sham stimulation 

was administered as comparable IE scores were seen for adapted relative to non-adapted 

actions (p = 0.48). Similarly no difference between adapted and non-adapted actions were 

found in the AIP block (p = 0.66). In striking contrast, when IFC or S1 stimulation was 

administered a clear ‘state change’ was induced in the subject’s perceptual system as a 

function of prior exposure to the adapting  movies. In the S1 block we found that adapted 

actions elicited lower IE (better performance) relative to non-adapted actions (p = .004) and to 

all the other conditions in the other blocks (all p < .032). In the IFC block, we found that non-

adapted actions elicited higher IE (worst performance) relative to adapted actions (p = .0005) 

and to all the other conditions in the other blocks (all p < .0006). No other significant post-hoc 

differences were found (p > .13). Moreover, no other main effect or interactions was 

significant in the ANOVA (all p > .18). 
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Figure 4. Grip recognition task: main effect of the ‘Stimulation’ factor. The vertical axis represents the mean 

inverse efficiency (IE) index (obtained by dividing the median RT by the proportion of correct responses 

collected during the test pictures blocks of the Grip recognition task). The horizontal axis represents the four 

stimulation condition. 

 

 

 

Discussion 

Mounting evidence suggest that the ability to recognize the actions of others is underpinned by 

a large cortical network, called the AON (Grafton 2009), which includes occipital and 

temporal regions involved in the visual processing of body and biological motions (Keysers 

and Perrett, 2004; Downing and Peelen, 2011; Urgesi and Avenanti, 2011; Avenanti et al., 

2012); and sensorimotor regions coupling action execution with perception (Chong et al. 

2008; Etzel et al. 2008; Kilner et al. 2009; Oosterhof et al. 2010). The IFC, AIP and S1 are 
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important sensorimotor regions of the AON and are consistently recruited not only when 

sensing or moving the body but also when perceiving the actions of others (Van Overwalle 

and Baetens 2009; Caspers et al. 2010; Grosbras et al., 2012). However, to date causative 

evidence that non-invasive stimulation of specific AON regions influences action perception is 

relatively scarce.  

Few previous TMS studies have shown that online interference with IFC worsens: i) 

the ability to judge the weight of a box when seen lifted by a human agent (Pobric and 

Hamilton, 2006); ii) the visual discrimination of static images of actions with different 

kinematics (Urgesi et al., 2007); ii) the recognition of deceptive movements (Tidoni et al. 

unpublished observations). All these studies have shown impairments in the recognition of 

relatively simple actions like lifting a box or grasping an object. It is not yet clear whether 

similar disruption in action perception can be obtained with stimulation of other sensorimotor 

regions of the AON such as AIP or S1, nor whether stimulating these regions may impair 

perception of complex goal-oriented motor actions involving multiple sub-actions. 

Furthermore, it should be noted that virtual lesion approach indicates that IFC and possibly 

other regions of the AON may be critical for the recognition of others’ actions but do not 

provide causative evidence on how others’ motor acts are represented in the brain.  

In the present study we used the TMSA paradigm to investigate the neural 

representation of observed complex goal-directed actions in the sensorimotor nodes of the 

AON. Participants were presented with adapting movies of an actor performing complex goal-

directed actions on a tool by using a specific grip and were asked to categorize test pictures as 

showing similar or different action/grip relative to the adapting movie. 
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In the ‘arm action recognition task’, we found that applying TMS over S1 and IFC 

induced state-dependent effects on action recognition (see figure 4). TMS over S1 induced a 

selective decrease of IE index for pictures presenting the adapted action, indicating that 

stimulation of S1 improved the analysis of actions to which participants have been previously 

adapted. Similar greater performance for adapted relative to non-adapted actions was found 

with TMS over IFC, but not with sham stimulation or stimulation of AIP. Such pattern of 

findings suggests that TMS over S1 and IFC specifically enhanced performance of the neural 

subpopulations that respond to a specific invariant feature, i.e. the type of arm action, between 

the adapting stimulus and the test stimulus. The TMS-induced behavioral enhancement 

occurred when subjects had to attend to such invariant feature (i.e. in the Arm Action 

recognition task) and was absent when processing of the same feature was task-irrelevant (i.e. 

in the Grip recognition task). The state-dependency effects of TMS over S1 and IFC are well 

in keeping with the notion that repeated visual presentation of motor acts may induce action-

specific adaptation phenomena in S1 (Dinstein et al., 2007) and IFC (Kilner et al., 2011). Our 

study significantly expands this notion by demonstrating behavioral consequences of such 

neural adaptation in the AON. Taken together these findings indicate that TMS over key nodes 

of the AON may behaviorally modulate the adapted relative to the non-adapted action 

features. Notably, both state-dependent effects of S1 and IFC stimulation were obtained for 

the adapted versus non-adapted action regardless of the type of grip used by the demonstrator 

to achieve it. These findings suggest that neurons in IFC and S1 are critically involved in the 

visual coding of goal-oriented actions at a relatively abstract level of representation in which 

low-level components of the action (i.e., the particular way the action is performed) are less 

reliable. These findings hint at a relatively abstract coding of goal-oriented motor acts in S1 
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which is independent from lower-level components such as the type of grip used to perform 

the action.  

It should also be noted that the pattern of data found with stimulation of IFC suggest a 

decrease in performance for test pictures showing the non-adapted relative to the adapted 

action, which may be in part due to a summation of state-dependent and virtual lesion effects 

during stimulation of IFC. State-independent virtual lesions effects were clear in the Grip 

recognition task where subjects showed impaired performance when TMS was applied over 

the IFC relative to the other stimulation conditions (see figure 5). This result suggests that IFC 

is a critical node for the coding of observed grasping movements. However, the general 

impairment of behavioral performances after stimulation over this area indicates that both 

kinds of grip are coded within a unique neuronal population. This may explain why, in the 

‘Grip recognition task’, TMS stimulation over the IFC results in a virtual lesion-like, state 

independent effect. In contrast, the distinct effect of stimulation over S1 and IFC over the 

recognition of arm actions suggest that the different types of arm actions – adapted and non-

adapted – that are represented within segregated neuronal populations.  Of note is that the 

complexity of the visual analysis (i.e., a global analysis for the ‘Arm action recognition task 

versus a local analysis for the ‘Grip recognition task’) of the adapted stimuli and the task 

difficulty as well may have compromised the observation of state-dependent effects in the 

‘Grip recognition task’. Nevertheless, our study shows that a clear distinction in different 

neuronal populations tuned to a specific action-related feature is more likely to occur with the 

processing of the overarching action than with the grip.  

The occurrence of this virtual lesion-like effect (also observed, to a lesser extent, in the 

IFC stimulation of the ‘Arm action recognition task’) is plausibly due to a jeopardized 
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maintenance of action-related information in working memory relative to the adapted 

stimulus, rather than the deterioration of the stimulus perception per se (TMS is delivered at 

the onset of the test picture, when the information is not yet processed on the retina). Indeed, 

the task requires the subjects to maintain active the representation of the adapted stimulus 

during the recognition task (Candidi, 2008; Urgesi et al., 2007).   

 

 

Conclusion 

In summary, our results provide the first evidence that the IFC and the sensorimotor regions of 

the AON such as S1 are causatively involved during the perception of complex-goal directed 

actions. This recruitment is accounted for by the fact that TMS over S1 and IFC specifically 

enhanced performance of the neural subpopulations that respond to a specific invariant feature 

(i.e. the type of arm action) between the adapting stimulus and the test stimulus, and so 

independently of the behavioral sequence that composes the on-going action (i.e., the 

relationship between the type of grip used and the action goal). Furthermore, our study reveals 

that the facilitatory effect of TMS observed after adaptation to an invariant stimulus may 

partially overlap with inhibitory effect similar to virtual lesions techniques. This overlap could 

depend on the difficulty of the task at play, and possibly on the neural state of brain regions 

that are not currently targeted by the stimulation but that actively participate in the coding of 

stimulus features.  
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The Experimental Contribution Chapter 1 provides evidence that the primary 

somatosensory cortex (S1) plays a role during the observation of other people’s actions. It is 

possible that S1feeds other regions of the Action Observation Network (AON) and especially 

the inferior frontal cortex (IFC) with which it is reciprocally connected, with sensorimotor and 

somatic information about the action that is currently observed.  

Interestingly, sensorimotor and somatic information could also be used by an observer 

to estimate the biomechanical costs (muscular and articulatory) engaged in the execution of an 

action that is currently observed. In the Experimental Contribution Chapter 2, I 

hypothesized that the detection of some visual cues that enable an observer to make prediction 

about these costs activate prior information that biases the interpretation of other people’s 

actions. In this study, these visual cues were provided by the object affordances. The detection 

of object affordances would activate prior information that provides a simple decision 

heuristic, recruited by default during the interpretation other agents’ actions. Besides prior 

information conveyed object affordances, human observers take advantage of another kind of 

prior information to infer other people’s intentions, that is, information extracted from the 

statistical regularities of past events (Griffiths et al., 2008). Indeed, human observers use the 

probability of occurence of another agent’s intentions as a reliable source of information to 

infer the underlying intentions of upcoming actions (Chambon et al., 2011a, 2011b). Both 

these types of prior information may participate in action understanding. However, little is 

known about wheter, and how, these two classes of priors interact during the prediction of 

other people’s intentions. Using methods of experimental psycholgy, this was what the study 

presented in the chapter 2 aimed to test. 
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Abstract 

Learning about the function and use of tools through observation requires the ability to exploit 

one’s own knowledge derived from past experience. It also depends on the detection of low-

level local cues that are rooted in the tool’s perceptual properties. Best known as 

‘affordances’, these cues generate biomechanical priors that constrain the number of possible 

motor acts that are likely to be performed on tools. The contribution of these biomechanical 

priors to the learning of tool-use behaviors is well supported. However, it is not yet clear if, 

and how, affordances interact with higher-order expectations that are generated from past 

experience – i.e. probabilistic exposure – to enable observational learning of tool use. To 

address this question we designed an action observation task in which participants were 

required to infer, under various conditions of visual uncertainty, the intentions of a 

demonstrator performing tool-use behaviors. Both the probability of observing the 

demonstrator achieving a particular tool function and the biomechanical optimality of the 

observed movement were varied. We demonstrate that biomechanical priors modulate the 

extent to which participants’ predictions are influenced by probabilistically-induced prior 

expectations. Biomechanical and probabilistic priors have a cumulative effect when they 

‘converge’ (in the case of a probabilistic bias assigned to optimal behaviors), or a mutually 

inhibitory effect when they actively ‘diverge’ (in the case of probabilistic bias assigned to 

suboptimal behaviors).  

 

Key words: Action prediction, Affordances, Prior information, Observational learning, Tool 

use.  
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Introduction 

Tool-use refers to a type of behavior that consists in manipulating external objects with the 

goal of altering the physical properties of another object, substance, surface, or medium, via a 

mechanical interaction, or that consists in mediating the flow of information between the tool 

user and the environment [1]. A growing amount of evidence suggests that the acquisition of 

knowledge about object use and function through observation is not the privilege of human 

subjects [2]. Yet, the richness and complexity of our technology suggests that we are 

particularly well adapted for such competence [3-6]. It has been argued that this competence 

arises from a set of interpretative and learning predispositions that allows human observers to 

i) decode kinematic information into the causal relationships between a behavioral sequence 

and its result [7], ii) interpret biological movements performed by others as ‘rational’ (i.e. 

assuming that the most optimal actions means are adopted to achieve a particular goal) [8], 

and iii) accumulate knowledge from past observations about an agent’s intentions and 

behaviors, and use this database in order to predict future events [9-13]. Together, these 

mechanisms would enable human observers to derive knowledge about the possible uses and 

functions of a tool from observing goal-directed, intentional movements performed by an 

agent [14-16]. In this article we posit that these sophisticated learning skills could also benefit 

from simpler heuristics allocated to the detection of low-level, local sources of information, 

such as the manipulative properties of objects [17].   

These properties, called ‘affordances’, are not intrinsic to objects but depend on their 

possible interactions with agents [18]. In its extended form [19] an affordance defines a 

relational property that emerges from matching the perceived physical features of an object 
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(e.g. size, shape, texture, density) and the agent’s biomechanical architecture, her goals, plans, 

values, beliefs, and past experiences. They are also described as dispositional states of the 

agent’s nervous system [20]. Critically, affordances ‘suggest’ how one may interact with an 

object [21, 22]. For example, the size and shape of a softball mean that it fits into the human 

hand, and its density and texture make it perfect for throwing. We posit that object affordances 

contribute to delineating the number of potential motor acts that can be performed on a given 

object. They do this by generating effector-dependent, biomechanical priors which are in line 

with the agent’s bodily architecture [17]. These priors then bias individuals to act on objects 

with the aim of biomechanical optimization. In both human and non-human primates, 

preferentially performed behaviors are generally those that minimize the muscular and/or 

articulator costs, given the object’s affordances and the desired outcome [23-26]. 

Crucially, this minimization of costs also transfers to tool use learning. A prominent 

example is provided by our extensive technologies. Humans deliberately manufacture tools 

whose complex physical attributes offer naïve users affordances that enable the extraction of 

their functions at low cost [27-29]. Interestingly, the evolution of human technology might 

have increased the utility of simple heuristics such as affordance detection, in order to 

facilitate the highly demanding cognitive problem of tool use learning [28,30-32]. In our 

technological environments, the detection of affordances might thus play a crucial role in the 

acquisition of tool use skills through individual (i.e. trial-and-error learning) as well as social 

learning (i.e., learning from observing another agent’s behaviors). Perceiving affordances may 

thus facilitate the extraction of functional features associated with an object manipulated by a 

third party [16]. For example, based on the amplitude of the observed agent’s grip aperture 

and the orientation of her wrist, as well as on the size and texture of the object to be grasped, 
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one may predict whether this object is meant to be lifted, pushed, or merely transported [11]. 

As suggested above, agents are expected to adopt tool-use behaviors that minimize 

biomechanical costs. Therefore, learning of a tool function through observation should be 

facilitated when a demonstrator uses a tool in a way that fit the observer’s biomechanical 

expectations (behaviors that minimize the muscular and/or articulator costs), and should be 

jeopardized in the case where these expectations are patently violated (behaviors that increase 

the muscular and/or articulator costs).  

Expert tool users, like tool learners, may also benefit from past experience in their 

daily interactions with objects [33]. It has been widely demonstrated that naïve human 

observers form knowledge (e.g. about tools and their potential use) by taking advantage of 

statistical regularities gathered from past observations [9-13]. The more times an individual 

associates a certain observed goal (e.g. the achieved tool function) with a certain observed 

action (e.g. the way of achieving the tool function), the more likely she is to expect that they 

will be seen together again [34]. These ‘probabilistic’ priors, acquired from past experiences, 

are crucial when the biomechanical information conveyed by tool affordances is too 

ambiguous or noisy to sufficiently constraint the range of candidate functions. Conversely, 

reference to biomechanical priors that are generated by tool affordances may be required when 

the use of the current tool cannot be based on previous experiences. Critically, both these 

classes of priors may be recruited when sensory information conveyed by movement 

kinematics is too incomplete to predict how an agent is most likely to behave. This occurs 

when many competing intentions are equally congruent with the not-yet completed behavior 

[11].  
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While the contribution of both these classes of priors to the individual-learning of 

tools’ functions and use has long been demonstrated, it is not yet clear whether, and how, they 

may both combine to enable social learning of tool use (i.e., learning from observing another 

agent’s behaviors). Here, we directly addressed this question in a task that required 

participants to predict, under various conditions of visual uncertainty, the intentions of a 

demonstrator who was using a multi-purpose tool. Affordance-related priors (termed 

‘biomechanical’ priors) and priors acquired from past observations (termed ‘probabilistic’ 

priors) were manipulated by varying the biomechanical optimality of the tool behaviors and 

the probability (low versus high) of observing optimal versus suboptimal tool behavior.  

We hypothesized that both biomechanical and probabilistic priors would have an effect 

on prediction. First, participants should be more accurate in predicting optimal than 

suboptimal behaviors (biomechanical bias). Second, participants should be more accurate in 

predicting behaviors that are most likely to occur throughout a specific experimental session 

(probabilistic bias). Third, we expected an interaction between these two classes of priors, 

whereby participants would preferentially respond towards the biased behaviors when the 

probabilistic bias is assigned to optimal behaviors. Finally, we expected this effect to vary as a 

function of the amount of visual uncertainty conveyed by the action being performed. Thus, 

the propensity to respond towards the biased behaviors should be strengthened as the amount 

of visual information shown in the action videos decreases. 
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Method 

Participants 

Twenty-four healthy volunteers (mean age=26.5, SD=4.40) took part in an action prediction 

task. All were right-handed, naïve to the purpose of the experiment, and reported normal or 

corrected-to-normal visual acuity.  The experimental protocol was performed with approval of 

the University of Bologna - Department of Psychology - ethical committee and in accordance 

with the Declaration of Helsinki (2008) [35]. All participants gave their verbal and informed 

consent to participate in the study.   Owing to the non-invasive, purely behavioral nature of 

our study (without any emotional stimuli), the University of Bologna - Department of 

Psychology - ethical committee  considered verbal consent was appropriate and approved this 

consent procedure.  Socio-demographic information (full name, age, sex, gender, handedness, 

education) has been collected for each subject on a separate sheet. The sheet contained an 

"Approve" box that was checked by the experimenter after the subject gave their verbal 

consent to participate. 

 

Stimuli 

Stimuli consisted in movies featuring a demonstrator acting on a two-purpose tool. The tool 

consisted of a movable handle screwed onto the lid of a box. The handle offered two distinct 

affordances enabling the demonstrator to grasp the object with a power or a precision grip (see 

fig.1). Using either grip, the demonstrator could achieve two intentions: Opening the box by 

lifting the handle (intention O); Switching on the light by rotating the handle (intention S) (see 

fig.1). 
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Two movie formats were displayed, both having a total duration of 2000msec (see 

fig.1): a complete format in which actions lasted until the achievement of the underlying 

intention (the grasp and the demonstrator’s final intention were apparent); an incomplete 

format in which action course stopped 800msec after movement onset (only the grip was 

apparent but the demonstrator’s final intention was not) while the last displayed frame was 

presented on the screen for the remaining 1200msec.  

 All movies were equalized for temporal homogeneity in such a way that the duration of 

the sub-steps of each action involved the same number of video frames (sub-step 1: static hand 

to physical contact with the tool=1000ms; sub-step 2: physical contact with the tool to action 

end-state=1000ms). 

 

General Procedure 

Participants sat in front of a monitor on which video clips that showed a male demonstrator 

acting on a tool were displayed (see fig.1). The entire experiment was composed of three 

distinct experimental sessions. In each session, participants had a different probability of 

observing the demonstrator achieving his intentions using an optimal (cost-free) or a 

suboptimal (high cost) behavioral strategy [33].  

For each of the three sessions, 4 blocks of 24 complete action movies  were interleaved 

with 4 blocks of 12 incomplete action movies. Crucially, the probabilistic bias was exclusively 

assigned during the complete action movie blocks, where participants could benefit from a 

high amount of visual information to identify the demonstrator’s intentions. In contrast, in the 

incomplete action movies the amount of visual information was too low for the observer to 
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unambiguously infer the demonstrator’s intention. Thus, blocks of complete action movies 

were used to generate prior expectations in favour of either the optimal or the suboptimal 

behavioral strategy. These expectations were induced through biased probabilistic exposure. In 

contrast, blocks of incomplete movies were used to test the effect of each type of bias 

(probabilistic and biomechanical biases) on the participants’ decisions when confronted with 

visually uncertain action scenes (see [11], for a similar procedure). 

For each of the 144 action movies, participants were required to predict the 

demonstrator’s intention by pressing, with their right index and middle fingers, one of two 

adjacent computer keys corresponding to the two possible intentions. The procedure used was 

a self-paced procedure: participants were instructed to make their response as soon as they 

though they had enough visual information to produce an accurate response. However, note 

that both complete and incomplete movies ran until completion independently of the subject’s 

response. 
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Figure 1: Examples of the four combinations ‘grip   intention’ that participants encountered during the 

experiment, and that lead to ‘optimal’ or ‘suboptimal’ behaviors. All combinations began with the 

demonstrator’s static hand. The actor could then use either a ‘power’ or a ‘precision’ grip to achieve either the 

intention of Opening the box (O) or Switching the lights on (S). The combination between the kind of grip and the 

kind of final intention resulted in the complete action as being labeled biomechanically optimal (OPTIMAL) or 

suboptimal (SUBOPTIMAL). Whereas the complete action movies lasted until the achievement of the underlying 

intention for a total duration of 2000msec, the incomplete action movies stopped 800msec after the movement 

onset (when the demonstrator was about to grasp the tool) while the last displayed frame remained on the screen 

for a duration of 1200 msec, so that observers had information about the grip but no information (on that trial) 

about the demonstrator’s intention.  

 

 

 

Typical trial 

All trials started with a white fixation-cross that appeared for 1000msec on a dark 

background. The fixation cross was immediately followed by either a complete or an 
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incomplete action movie (see above for further details). After each decision, response time 

was displayed on the screen for 500msec. For those trials in which participants did not 

respond, or responded too late, ‘NO RESPONSE’ was displayed on the screen. The next trial 

started immediately after the 500msec visual feedback period. This feedback allowed us to 

avoid a ‘guessing bias’ that could occur during the presentation of complete action sequences, 

and that could hinder the integration of the probabilistic bias (see [11], for a similar 

procedure). The presentation of stimuli and recording of responses (correct/incorrect and 

response times) was synchronized using E-prime2 software (Psychology Software Tools, Inc, 

USA).   

 

Biomechanical priors 

The four possible action combinations (2 grips   2 intentions) were divided into two types of 

behavioral category (optimal versus suboptimal) on the basis of their low or high 

biomechanical cost. This procedure allowed us to manipulate biomechanical priors emerging 

from perceived affordances (see fig.1): 

i) Optimal behaviors. Using the power grip to achieve the intention of opening the box 

by lifting the handle was cost-free, as was using the precision grip to achieve the intention of 

switching the lights on by turning the handle. These two combinations were identified as 

optimal behaviors (low biomechanical cost).  

ii) Suboptimal behaviors. The precision grip increased the cost of achieving the intention 

of opening the box, whereas the power grip increased the cost of achieving the intention of 



 

120 

switching on the lights. These two combinations were identified as suboptimal behaviors (high 

biomechanical cost).  

The biomechanical cost of action movies were pre-tested on 10 naïve individuals. They 

were asked to estimate the muscular and/or articulator cost of each perceived movement on a 

5-point Likert scale (ranging from 0 = null cost to 5 = very high cost). As expected, optimal 

behaviors (precision grip/switching-on the lights and power grip/opening the box, mean score 

= 1.01) were estimated as significantly less costly than suboptimal ones (precision 

grip/opening the box and power grip/switching-on the lights, mean score = 3.13) (two-tailed t-

test for paired data: t = -20.87, p < .0001). It is of note that the intentions achieved with a 

precision grip were rated as less costly than those achieved with a power grip for both optimal 

(precision grip/switching-on the lights, mean score = 0.55, versus power grip/opening the box, 

mean score = 1.47; two-tailed t-test for paired data: t = -54.83, p < .0001) and suboptimal 

behaviors (precision grip/opening the box, mean score = 2.90, versus power grip/switching-on 

the lights, mean score = 3.37; two-tailed t-test for paired data: t = -30.82, p < .0001).  

 

Probabilistic priors 

Unbeknownst to the participants, the probability of observing the demonstrator using an 

optimal or a suboptimal behavioral strategy was varied within the three distinct experimental 

sessions (‘baseline’, ‘convergent bias’, ‘divergent bias’ – see below). Varying the probability 

distributions of each possible strategy allowed us to manipulate each participant’s probabilistic 

priors, that is, prior expectations they could form about the behavioral strategy being favored 

by the demonstrator to achieve the tool’s functions.  After each participant performed the task, 
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we controlled for the extent to which she/he was aware of the induced bias. As expected, none 

of the subjects spontaneously reported that one type of action was more likely observed than 

another. 

i) Baseline session: no probabilistic bias. In the first session, participants had an equal 

probability of observing the demonstrator achieving his intention by performing an optimal or 

a suboptimal behavior.  

ii) ‘Convergent bias’ session: probabilistic bias towards optimal behaviors. In this 

session participants were biased towards ‘optimal’ behaviors to the detriment of ‘suboptimal’ 

behaviors. In 80% of the ‘box opening’ trials the demonstrator opened the box using a power 

grip, and in 80% of the ‘light switching’ trials he switched on the lights using a precision grip. 

Here, behaviors that were preferentially used by the demonstrator converged towards the 

participant’s biomechanical priors.  

iii) ‘Divergent bias’ session: probabilistic bias towards suboptimal behaviors. In this 

session participants were biased towards ‘suboptimal’ behaviors to the detriment of ‘optimal’ 

behaviors. In 80% of the ‘box opening’ trials the demonstrator opened the box using a 

precision grip, and in 80% of the ‘light switching’ trials he switched on the lights using a 

power grip. Here, the behaviors that were preferentially used by the demonstrator diverged 

from the participant’s biomechanical priors.  

All participants began the experiment with the baseline session. The order of the two 

bias sessions (convergent and divergent) was counterbalanced across participants.  

Training phase  
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Prior to the experiment participants were familiarised with the task. The training consisted of 

an unbiased complete action movie block followed by an incomplete action movie block.  

Data analysis  

We analysed the percentage of correct responses (hits) and response times (RTs) collected for 

both complete and incomplete action movies. Responses for incomplete actions were encoded 

as correct if the predicted intentions conformed to those that the demonstrator actually 

achieved in their complete format. Participants who responded too early on more than 10 

percent of the complete action movies were discarded from further analyses (responses were 

considered as too early when they occurred between 0 and 1000msec after movie onset, 

making accurate predictions impossible). Using this criterion, two subjects were excluded. 

 All statistical analyses were performed separately for complete and incomplete action 

movies. The magnitude of the probabilistic bias and its interaction with biomechanical 

expectations was investigated by comparing performance during the baseline session with that 

during the two biased sessions. The hit rates and RTs were then analysed using a 2   2   3 

repeated-measures ANOVAs. The first two-level factor was the ‘type of behavior’ (optimal 

versus suboptimal behaviors), the second two-level factor was the ‘type of grip’ (power versus 

precision grip), and the third, three-level factor was the ‘probabilistic bias’ (baseline versus 

convergent bias versus divergent bias). Post-hoc Fisher tests were used to compare 

performance between conditions.  

We further investigated the learning dynamics internal to each session by comparing 

data (hits and RTs) collected during the first (time-step 1) and the second half (time-step 2) of 

each session. Thus, for each session, the hits rates and RTs were analysed using 2   2   2 
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repeated-measures ANOVAs with ‘time-step’ (time-step 1 versus time-step 2), ‘type of 

behavior’ (optimal versus suboptimal behaviors), and ‘type of grip’ (power versus precision 

grip) as two-level factors. Post-hoc Fisher tests were used to compare performance between 

conditions. 

For all analyses, p < .05 was taken as the criterion for significance and eta squared (ή) 

was used as a measure of effect size. Statistical analyses were performed using Statistica 9 

(www.statsoft.com). 

 

 

Results 

Overall performance 

Complete action movies (Hits and RTs) 

The 2 (type of behavior)   2 (type of grip)   3 (probabilistic bias) repeated-measures 

ANOVAs revealed a main effect of the ‘type of behavior’ on both hits (F1,21 = 18.08, p < .001, 

ή = .46) and RTs (F1.21 = 93.43, p < .0001, ή = .82). Participants were more accurate and faster 

at predicting optimal than suboptimal behaviors (hits: 88% vs. 81%; RTs: 1382msec vs. 

1444msec). The main effect of the ‘probabilistic bias’ was also significant on both hits (F2,42 = 

6.5, p < .01, ή = .24) and RTs (F2.42 = 22.18, p < .0001, ή = .51). In the divergent bias session, 

participants made more accurate predictions compared to the baseline (hits: 88% vs. 84%, p < 

.05) and the convergent bias sessions (hits: 88% vs. 82%, p < .001). However, when compared 

to baseline, RTs were faster in both the convergent (1368msec vs. 1452msec, p < .0001) and 

the divergent bias sessions (1420msec vs. 1452msec, p < .05). It is of note that a difference 
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occurred also between the two bias sessions, with faster RTs in the convergent bias session 

(1368msec vs. 1420msec, p < .001). Finally, a main effect of the ‘type of grip’ was found on 

hits only (F1,21 = 23.27, p < .0001, ή = .53), with participants being overall more accurate at 

predicting behaviors that were performed with a precision than a power grip (88% vs. 81%). 

The two-way interaction ‘type of behavior’   ‘probabilistic bias’ was significant for 

both hits (F2.42 = 19.76, p < .0001, ή = .48) and RTs (F2.42 = 31.69, p < .0001, ή = .60) (see 

fig.2a,b). Post-hoc comparisons (LSD Fisher tests) indicated that during the baseline session – 

where both types of behaviors were equally probable – participants were more accurate 

(87.5% vs. 80%, p < .01) and faster (1411msec vs. 1492msec, p < .0001) at predicting optimal 

compared to suboptimal behaviors. A similar pattern was observed in the convergent bias 

session. Participants were more accurate (91% vs. 72%, p < .0001) and faster (1308msec vs. 

1427msec, p < .0001) at predicting the optimal behaviors when these behaviors were more 

frequently shown than the suboptimal ones. In the divergent bias session, no differences were 

found between the optimal and suboptimal behaviors, despite the fact that the latter were more 

frequently shown than the former (hits = 85% vs. 90%, p > .05; RTs = 1427msec vs. 

1414msec, p > .05). Thus, increasing the probability of observing suboptimal behaviors did 

not significantly increase the number of correct responses for these behaviors compared to the 

optimal ones.  

Interestingly, the interaction effect between the optimality of the behavior and the 

probabilistic bias was further modulated by the type of grip used, as revealed by a significant 

three-way interaction between all three factors for hits (F2.42 = 9.49, p < .001, ή = .31). In the 

baseline session, the preference for optimal over suboptimal behaviors was observed for 

power grip only (post hoc test comparing optimal/power grip vs. suboptimal/power grip: p < 
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.0001; post-hoc test comparing optimal/precision vs. suboptimal/precision grip: p > .05). In the 

convergent bias session, participants were impaired at predicting suboptimal over optimal 

behaviors irrespective of the type of grip used. In the divergent session, no difference between 

optimal and suboptimal behaviors was observed, irrespective of the type of grip used. 

 

Incomplete action movies (Hits and RTs) 

The 2 (type of behavior)   2 (type of grip)   3 (probabilistic bias) repeated-measures 

ANOVAs revealed a main effect of the ‘type of behavior’ on both hits (F1.21 = 17.19, p < .001, 

ή = .45) and RTs (F1.21 = 6.97, p = .01, ή = .25); participants were more accurate and faster at 

predicting optimal than suboptimal behaviors (hits: 58% vs. 42%; RTs: 1176msec vs. 

1215msec). This preference for optimal behaviors significantly differed from chance (t-test for 

single mean, t > 4.40, p < .001).The main effect of the ‘probabilistic bias’ was significant only 

for RTs (F2,42 = 5.75, p < .01, ή = .21). This indicated that, compared to the incomplete movie 

blocks of the baseline session, participants make faster predictions in the incomplete movie 

blocks of the convergent bias (1156msec vs. 1235msec, p < .01). Note that they also tended to 

make faster predictions in the incomplete movies of the divergent bias session (1194msec vs. 

1235msec, p = .08). The main effect of ‘type of grip’ was not significant (hits and RTs: all F > 

.33, all p > .48). 

The two-way interaction ‘type of behavior’   ‘probabilistic bias’ was significant for 

both hits (F2,42 = 9.84, p < .001, ή = .32) and RTs (F2,42 = 3.34, p < .05, ή = .14) (see fig.2c,d). 

As for the complete movie blocks, post-hoc comparisons (LSD Fisher tests) indicated that, in 

the baseline session, participants were more accurate at predicting optimal than suboptimal 

behaviors (59% vs. 35%, p < .001). This preference for optimal behaviors significantly 
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differed from chance (t-test for single mean, t > 3.32, p < .01).They were also more accurate 

(66% vs. 36%, p < .0001) and faster (116msec vs. 1197msec, p < .001) at predicting optimal 

than suboptimal behaviors in the incomplete action movie blocks of the convergent bias 

session. Again, the preference for optimal behaviors was significantly different from chance 

level (t-test for single mean, t > 4.75, p < .001). However, in the incomplete action movie 

blocks of the divergent bias session, we did not find any differences between the optimal and 

the suboptimal behaviors, although the latter were most likely observed than the former in the 

complete movie blocks that preceded (hits = 49% vs. 55%, p > .05; RTs = 1187msec vs. 

1202msec, p > .05). Note that performances for both optimal (t-test for single mean, t < -0.17, 

p > .05) and suboptimal behaviors (t-test for single mean, t > 1.46, p = .15) did not 

significantly differ from chance. 

Finally, the interaction effect between the ‘type of behavior’ performed (optimal vs. 

suboptimal) and the ‘probabilistic bias’ (baseline vs. convergent vs. divergent) was modulated 

by the type of grip (power vs. precision) used by the demonstrator (F2,42 = 3.37, p < .05, ή = 

.14). In the incomplete action movie blocks of the baseline and convergent bias sessions, the 

difference between optimal and suboptimal behaviors was observed independently of the type 

of grip used. In the incomplete action movie blocks of the divergent bias session, a difference 

between optimal and suboptimal behaviors was observed only when both of them were 

achieved by a precision grip (optimal/precision = 47% vs. suboptimal/precision = 59%). Note 

that the proportion of correct predictions for suboptimal behaviors achieved with a precision 

grip differed from chance (t-test for single mean, t > 2.38, p < .05). 
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Figure 2: Overall performances. a) and c) represent the mean percentages of correct responses collected during 

complete and incomplete action movies for all three sessions. b) and d) represent the mean response times 

collected during complete and incomplete action movies for all three sessions. The green columns refer to the 

mean percentages of correct predictions for observed ‘optimal’ behaviors (pooled across ‘power’ and ‘precision’ 

grip). The orange columns refer to the mean percentages of correct predictions for observed ‘suboptimal’ 

behaviors (pooled across ‘power’ and ‘precision’ grip). Error bars denote the standard error of the mean.  

 

 

 

Overall performance: preliminary discussion (fig.2) 

Results for the complete action movies demonstrate that, compared to baseline, the 

probabilistic bias significantly improved participants’ performance – as also indicated by 

faster reaction times in the two bias sessions. Note that the rate of correct responses was 

overall higher in the divergent session. This is easily explained by the fact that, in the 
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convergent session, the probabilistic bias assigned to optimal behaviors concomitantly 

increased the errors rate for unbiased (i.e., suboptimal) behaviors. In contrast, the probabilistic 

bias assigned to suboptimal behaviors did not alter the participants’ ability to accurately 

predict the unbiased (i.e., optimal) behaviors. Thus, the higher the probability that a behavior 

occured, the better and faster it was predicted, irrespective of its type (optimal or suboptimal). 

These results indicate that, as expected, participants were successful in integrating the 

probability distributions of both convergent and divergent bias sessions. 

The second set of results shows that the biomechanical constraints generated by the 

detection of tool affordances play a major role in participants’ predictions: participants were 

more accurate and faster at predicting behaviors that minimized biomechanical costs, 

irrespective of probabilities. Thus, in both the complete and incomplete action movies of the 

baseline session (i.e. a session in which the demonstrator equally selected between the two 

available behavioral strategies), participants preferentially chose intentions achieved by 

optimal behaviors rather than suboptimal behaviors (see fig.2a,b,c,d). This result demonstrates 

that when participants cannot rely on past observations (i.e., on probability) to decide how an 

observed agent is most likely to behave, they tend to rely on their biomechanical priors by 

default. That is, they assume that the observed agent behaves ‘rationally’, i.e., that he favors 

strategies which minimize biomechanical costs. 

 The third set of results concerns the interaction between the two kinds of priors 

(biomechanical and probabilistic) (fig.2a,b,c,d). We found that both the magnitude and 

dynamics of the probabilistic bias differed as a function of the type of behavior, with 

participants’ biomechanical expectations overriding the effect of the probabilistic bias. Thus, 

in the convergent bias session (probabilistic bias assigned to optimal behaviors) performance 
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decreased for the suboptimal behaviors, and was facilitated for the optimal behaviors, as 

expected. This pattern of performance – observed in both the incomplete movie and complete 

movie blocks – suggests that it is costly for participants to inhibit a response that fits with their 

biomechanical expectations, even though a high amount of visual information is available. 

However, in the divergent bias session (probabilistic bias assigned to suboptimal behaviors), 

no significant differences were found between the two alternatives: participants did not 

preferentially choose the suboptimal behavior over the optimal one, although the former was 

more likely to be performed than the latter. This pattern suggests that participants actively 

integrated both types of priors, by combining their respective effects. Thus, when probabilistic 

and biomechanical priors diverged, the overall effect tended to sum to zero, resulting in 

performances that did not significantly differ from chance for both optimal and suboptimal 

behaviors.  

 Finally, we found that the type of grip used by the demonstrator had an effect on the 

participants’ predictions when i) the probability of each competing intention was equal 

(baseline session), and ii) when the intention that was eventually achieved was fully visible 

(complete movies). This finding can be accounted for by a facilitatory effect of the precision 

grip. Although suboptimal behaviors that were achieved with a precision grip were estimated 

as suboptimal, they were nevertheless estimated as less constraining than those performed 

with a power grip. Interestingly, this facilitatory effect was easily overcome by the 

probabilistic bias, since it disappeared in both the convergent and divergent bias sessions. It is 

of note that this tendency to over-estimate the optimality of precision grips may be due to the 

biomechanical characteristics of the effector itself. Indeed, performing prehension movements 

with either a power grip or a precision grip differentially affects the synergies of arm 
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segments. While the achievement of a power grip exerts constraints on many degrees of 

freedom of the arm (i.e. the wrist, elbow and shoulder) [36], the precision grip offers more 

flexible solutions [37], independently of the overall cost of the final action (e.g. opening the 

box with a precision grip).   

 

Learning dynamics 

Complete action movies (Hits and RTs) 

i) Baseline session. The 2   2   2 repeated-measures ANOVA performed on ‘time-step’ 

(time-step 1 vs. time-step 2),‘type of behavior’ (optimal vs. suboptimal) and ‘type of grip’ 

(power vs. precision grip) revealed a main effect of the ‘type of behavior’ for both hits (F1,21 = 

11.57, p < .01, ή = .36) and RTs  (F1,21 = 47.7, p < .0001, ή = .69), with optimal behaviors 

being overall  faster (1411msec vs. 1493msec) and more accurately predicted (88% vs. 80%) 

than suboptimal ones. A main effect of ‘type of grip’ was also found on hits only (F1,21 = 9.48, 

p < .01, ή = .31), with behaviors achieved using a precision grip being overall more accurately 

predicted than those achieved using a power grip (87% vs. 80%). The two-way interaction 

‘time-step’   ‘type of behavior’ was significant for hits (F1,21 = 4.91; p < .05, ή = .19) (see 

fig.3a). Post-hoc comparison tests (LSD Fisher tests) showed that the difference between the 

percentage of hits observed at time-step 1 for the optimal and the suboptimal behaviors (90% 

vs. 78%; post-hoc test: p < .0001) was no longer significant at time-step 2 (85% vs. 82%; post-

hoc test: p > .05). Neither the main effect of ‘time-step’, nor the two-way interaction ‘time-

step’   ‘type of grip’, nor the three-way interaction was significant (hits and RTs: all F < 2.93, 

all p > .10). 
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ii) Convergent bias session. The same 2   2   2 repeated-measures ANOVA performed 

on complete movie blocks of the convergent bias session revealed main effects of ‘time-step’ 

(hits: F1,21 = 9.80; p < .01, ή = .32; RTs: F1,21 = 6.87; p < .05, ή = .25) and ‘type of behavior’ 

(hits: F1,21 = 34.09; p < .0001, ή = .62; RTs: F1,21 = 43.61; p < .0001, ή = .67) on both hits and 

RTs. Participants were more accurate but slower at predicting the demonstrator’s intention at 

time-step 1 than at time-step 2 (hits = 85% vs. 78%, p < .01); RTs = 1386msec vs. 1337msec, 

p < .05). Overall, they were more accurate and faster at predicting likely optimal than unlikely 

suboptimal behaviors (hits = 91% vs. 73%, p < .0001; RTs = 1307msec vs. 1416msec, p < 

.0001). A main effect of the ‘type of grip’ was also shown on hits only (F1,21 = 17.26; p < .001, 

ή = .45), revealing that participants more accurately predicted behaviors performed with a 

precision than a power grip (87%vs. 77%, p < .001), independently of their optimality and of 

the time-step. Furthermore, the two-way interaction ‘time-step’   ‘type of behavior’ was 

significant for hits (F1,21 = 9.07; p < .01, ή = .30) (see fig.3a). Post-hoc analyses (LSD Fisher 

tests) showed that throughout the session, participants were overall more accurate at predicting 

the optimal than the suboptimal behaviors, and that this advantage for optimal behaviors 

increased over time (time-step 1 = 91% vs. 79%, p < .001; time-step 2 = 91% vs. 66%, p < 

.0001). The two-way interaction between ‘time-step’   ‘type of grip’ as well as the three-way 

interaction were not significant (hits and RTs: all F < 1.60, all p > .22). 

iii) Divergent bias session. The same 2   2   2 repeated-measures ANOVA performed on 

complete movie blocks of the divergent bias session showed a main effect of ‘time-step’ (F1,21 

= 5.04.; p < .05, ή = .19), with better performance at time-step 1 than at time-step 2 (90% vs. 

85%). A main effect of the ‘type of grip’ was also found on hits (F1,21 = 6.99.; p < .05, ή = 

.25), with better performance for behaviors performed with a precision than a power grip (90% 
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vs. 84%), irrespective of their optimality. The interaction between the ‘time-step’ and ‘type of 

behavior’ factors was significant for hits only (F1,21 = 6.85.; p < .05, ή = .25) (see fig.3a). In 

the first half of the session participants performed equally well (post-hoc test: p > .05) for the 

likely suboptimal (time-step 1 = 89%) and the unlikely optimal behaviors (time-step 1 = 91%). 

In the second half, however, they were more accurate at predicting the suboptimal behaviors 

(time-step 2 = 91% vs 79%; p < .01). This was associated with decreased performance for the 

unlikely optimal behaviors throughout the session (time-step 1 = 90% vs. time-step 2 = 79%). 

The main effect of ‘type of behavior’, the ‘time-step’   ‘type of grip’ interaction, and the 

three-way interaction were not significant (hits and RTs: all F < 3.83, all p > .06).  

 

Incomplete action movies (Hits and RTs) 

i) Baseline session. The 2   2   2 repeated-measures ANOVA performed on ‘time-step’ 

(time-step 1 vs. time-step 2),‘type of behavior’ (optimal vs. suboptimal) and ‘type of grip’ 

(power vs. precision grip) showed a main effect of the ‘type of behavior’ on hits only (F1,21 = 

17.96, p < .001, ή = .46). In the incomplete movie blocks of the baseline session, participants 

were more accurate at predicting optimal (59%) than suboptimal (35%) behaviors, 

independently of the time-step. Neither the main effects of ‘time-step’ or ‘type of grip’, nor 

the two-way interactions ‘time-step’   ‘type of grip’ and ‘time-step’  ‘type of behavior’ (see 

fig.3b), nor the three-way interaction were significant (hits and RTs: all F < 1.21, all p > .28).  

ii) Convergent bias session. The same 2   2   2 repeated-measures ANOVA performed 

on incomplete movie blocks of the convergent bias session revealed a main effect of ‘time-

step’ on RTs only (F1,21 = 9.53; p < .01, ή = .31). Overall, participants responded slower at 

time-step 1 (1178msec) than at time-step 2 (1141msec). A main effect of the ‘type of 
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behavior’ was present for both RTs (F1,21= 14.11; p < .01, ή = .40) and hits (F1,21 = 21.17; p < 

.001, ή = .50), with participants being more accurate (66% vs. 36%) and faster (1116msec vs. 

1203msec) at predicting optimal than suboptimal behaviors. The main effect of the ‘type of 

grip’, the ‘time-step’   ‘type of grip’ and ‘time-step’  ‘type of behavior’ interactions (see 

fig.3b), and the three-way interaction were not significant (hits and RTs: all F < 3.77, all p > 

.07). 

iii) Divergent bias session. The same 2   2   2 repeated-measures ANOVA performed on 

incomplete movie blocks of the divergent bias session showed a significant interaction 

between the ‘time-step’ and ‘type of behavior’ on hits only (F1,21 = 8.39; p < .01, ή = .27) (see 

fig.3b). Post-hoc tests (LSD Fisher tests) demonstrated that in the first half of the incomplete 

movie blocks, rates of correct predictions for the optimal and the suboptimal behaviors did not 

differ (time-step 1 = 54% vs. 54%; p > .05). However, a difference occurred in the second half 

of the incomplete movie blocks, with suboptimal behaviors being more accurately predicted 

than optimal ones (time-step 2: optimal = 44% vs. suboptimal = 57%; p < .001). Of note is the 

fact that this effect was due to the rate of correct predictions for the optimal behaviors 

decreasing over the session (time-step 1 = 54% vs. time-step 2 = 44%; p < .01). However, 

neither the performance for suboptimal behaviors (t-test for single mean, t < 1.47, p = .15) nor 

the performance for optimal behaviors (t-test for single mean, t < -1.32, p = .19) significantly 

differed from chance level. No significant main effects were revealed (hits and RTs: all F < 

1.87, all p > .19). Neither the ‘time-step’   ‘type of grip’ interaction was significant (hits and 

RTs: all F < .74, all p > .40).  
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Figure 3: Learning dynamics. a) and b) represent the mean percentages of correct responses collected during 

complete and incomplete action movies for all three sessions. The green columns refer to the mean percentages of 

correct predictions for ‘optimal’ behaviors (pooled across ‘power’ and ‘precision’ grip). The orange columns 

refer to the mean percentages of correct predictions for ‘suboptimal’ behaviors (pooled across ‘power’ and 

‘precision’ grip). Error bars denote the standard error of mean.  
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Learning dynamics: preliminary discussion (fig.3)  

In both the baseline and the convergent bias session, analyzing the evolution of response 

patterns over time (from time-step 1 to time-step 2) revealed an early preference for the 

optimal behaviors (see fig.3a,b). This preference was already present in the first half of the 

baseline session and did not vary further with increasing probabilities. Interestingly, this 

preference for behaviors that minimized biomechanical costs seemed impervious to their 

probabilistic likelihood sampled from past observations. This suggests that biomechanical 

priors might short-circuit probabilistic sampling, and might interfere with decisions based on 

the extraction of statistical regularities.  

 In the divergent bias session (suboptimal bias), the evolution of the response pattern 

from time-step 1 to time-step 2 suggests that the absence of a difference between performance 

for optimal and suboptimal behaviors – although the latter were more frequently shown – 

could be primarily due to participants’ initial preferences for optimal behaviors (see fig.3a,b). 

This preference progressively decreased over time as the probability of observing suboptimal 

behaviors concomitantly increased. However, overall, this increase was not sufficient to 

compensate for the participants’ initial lack of preference toward suboptimal behaviors. 

Finally, it is noteworthy that the number of responses toward optimal versus 

suboptimal behaviors was overall greater in the incomplete, relative to the complete, action 

movies in both the baseline and the convergent bias sessions. This difference may account for 

the fact that the rate of hits for both the optimal and suboptimal behaviors was very high in the 

complete movie blocks. Therefore, the number of responses for optimal behaviors, and hence 

the difference between the two types of behavior, could not further increase due to a ‘ceiling’ 

effect. Alternatively, this difference may be accounted for by the fact that, in conditions of 
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visual uncertainty, individuals tended to favor responses that were consistent with their prior 

expectations. Interestingly, this assumption is consistent with the finding that one’s priors 

(here, an intrinsic preference for optimal behaviors) are primarily used to complement sensory 

uncertainty in order to allow decisions, and thus actions, to be made even in cases of noisy 

signals or sparse data [11,16].  

 

 

Discussion 

The aim of this study was to test how the biomechanical expectations conveyed by tool 

affordances interact with prior knowledge about tool function and use, and whether this 

interaction influences predictions about a demonstrator’s intentions when using tools. Here, 

we provide the first evidence that low-level local cues such as object affordances influence the 

learning and prediction of tool-use behaviors. We demonstrate that biomechanical priors 

modulate the extent to which participants’ predictions are influenced by probabilistically-

induced prior expectations (see fig.2). In particular, we found that when the demonstrator’s 

behavior satisfied both the participants’ biomechanical and probabilistic priors, the learning 

cost decreased, as participants efficiently combined both types of priors to make their 

predictions. Conversely, when the demonstrator’s behavior violated the biomechanical but not 

the probabilistic priors, the learning cost increased, as participants had to deal with two 

conflicting sources of prior information.  

Specifically, the dynamics of the integration of these probabilistic expectations was 

strongly dependent on the biomechanical optimality of the observed behaviors (see fig.3). 
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When the probabilistic bias favored suboptimal behaviors, participants needed a greater 

number of observations to neutralize a preference for optimal behaviors, as well as to derive 

and use probabilistic information to predict suboptimal behaviors. Furthermore, performance 

during both the baseline and the convergent bias sessions showed that participants exhibited 

an initial preference for optimal behaviors that was sustained throughout the session, and did 

not vary with changes in probabilistic bias. Interestingly, this initial preference was even 

stronger in the interrupted sequences, where subjects had little information about the 

demonstrator’s intention. The strong influence of biomechanical priors in these sequences 

suggests that these priors might be primarily used in the case of noisy signals or sparse data. 

As such, they may be specifically suited to reduce the intrinsic uncertainty of goal-directed 

behaviors [16]. In sum, biomechanical priors provided by the tool’s affordances acted as an 

inductive bias [13], complementing the available perceptual information when this 

information did not sufficiently constrain the number of potential solutions (e.g. ‘opening a 

box’ versus ‘switching the lights on’). 

Together, these findings complement recent results published by Chambon and co-

workers [11]. In their study, participants were requested to infer the intentions of a 

demonstrator who performed various actions on meaningless objects. The authors showed that 

as the amount of visual information conveyed by movement kinematics progressively 

decreased, participants responded more frequently toward the intentions that had the highest 

probability of occurring. Chambon et al.’s findings are consistent with a Bayesian estimation 

scheme: the less information one has about the action scene, the greater the weight of one’s 

priors in the decision. Put another way: the higher the sensory uncertainty, the more the 

probabilistic bias is used to ‘resolve’, or ‘complement’, this sensory uncertainty. Our findings 
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suggest that the effect of priors gathered from probabilistic sampling of past observations also 

depends on whether or not the visual information conveyed by the movement’s kinematics 

meets the expectations that are induced by an object’s affordances.  

Even though visual information did not meet these expectations, participants tended to 

assume the demonstrator to behave in an optimal way. In other words, they expected the 

demonstrator to act as a ‘rational’ agent – i.e., an agent who adopts the most optimal (i.e., least 

costly) action means to achieve his goal given the constraints of the current situation. This 

echoes recent evidence showing that humans, even at a very early age, consider their 

conspecifics to be rational agents [8,38,39]. Thus, children may posit states of the world 

occasionally counterfactual to the perceptual evidence (such as the presence of occluded 

physical objects) but consistent with a rational interpretation of the observed action [40,41]. 

Here, we show that, rather than being restricted to external, environmental aspects of reality 

(e.g., a ball jumps an obstacle to reach a new location versus a ball jumps to reach a new 

location but there is no obstacle present), the situational constraints through which the rational 

attributes of an observed behavior are estimated, are extended to self-centred, sensorimotor 

properties that observers share with the observed agents.  

This issue is currently debated in the literature. On one hand, previous findings suggest 

that in early infancy such sensorimotor cues do not play an essential, selective role in the 

rational interpretation of observed actions. For example, Southgate and colleagues [42] 

showed that 6- to 8- month-old infants attributed rational properties to observed actions even 

when the movements used to achieve them were biomechanically impossible. In their study, 

rationality was defined as conditions in which the observed goal-directed movements were 

adapted to external situational constraints, independently of the biomechanical plausibility of 



 

139 

these movements. On the other hand, other evidence suggests that a rational interpretation of 

goal-directed actions may be predicated upon sensorimotor information conveyed by 

movement kinematics [43]. On a similar line, Southgate and co-workers [44,45] recently 

showed that the motor system of 9- to 15-months old infants was activated during the 

prediction of observed actions. The authors proposed that the activation of the motor system, 

instead of being driven by current visual information, was driven by the infants’ expectations 

about the movements by which an attributed goal would likely be achieved. Given these 

contradicting data, one may speculate that the coupling of a rational interpretation of goal-

directed actions with the processing of sensorimotor cues such as object affordances might be 

highly dependent on motor expertise acquired from experience [46]. Furthermore, this 

coupling might mature later in development. Our results suggest that the coupling of 

biomechanical with probabilistic priors may be particularly strong in adult observers, 

presumably equipped with a high degree of motor expertise.  

Biomechanical and probabilistic priors may recruit two different – and parallel – neural 

systems that occasionally combine to derive information about tool use and function from 

observation. However, the exact nature and function of these systems is still a matter of 

conjecture. Effector-dependent, biomechanical priors may exert their influence on action 

prediction by differently weighting action alternatives within the motor repertoire of posterior 

frontal cortices such that certain actions become favored over others according to the 

biomechanical constraints of the motor effectors. This process of weighting action alternatives 

could be mediated by reciprocal inhibitory connections within the motor cortices, either by 

suppressing or increasing the activity of current competitors [47]. Occasionally, probabilistic 

priors may exert top-down influences on the selection of action alternatives within premotor 
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cortices by using evidence gathered from past events to re-assigning new weights to the set of 

possible actions. Interestingly, these probabilistic priors may recruit more anterior frontal 

regions, such as the dorsolateral [48] or the inferior parts [49] of the dorsolateral prefrontal 

cortex. As a result, one may speculate that an abnormal connectivity between dorsolateral 

prefrontal and premotor regions – resulting from an impaired biasing influence from anterior 

to more posterior frontal cortices – would lead to abnormal action selection [50,51]. Such 

abnormal selection might jeopardize acquisition of motor expertise and the ability to infer 

other people’s intentions from observation [52]. 

 

 

Conclusion 

To our knowledge, the present study provides the first evidence that object affordances play a 

major role in the learning and prediction of observed tool-use behaviors. In particular, we 

show that perceiving observed behaviors as rational depends on low-level local cues from 

which their biomechanical costs are estimated with regard to their final goals. We suggest that 

biomechanical expectations elicited by affordances impede or bias the extraction of 

probabilistic regularities from past events. When these statistical regularities favor the 

observation of biomechanically suboptimal behaviors, biomechanical expectations delay the 

acquisition of probabilistic priors. Consequently, they also hinder the use of these priors in 

solving the uncertainty that is associated with incomplete visual signals.  

Interestingly, one may extrapolate from our results that increasing the number of 

observations for suboptimal behaviors would further boost the weight devoted to probabilistic 
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information in the participants’ decisions. If this is the case what might this boost reflect and 

how might the brain represent it? Further studies should investigate how, and whether, the 

increasing weight of probabilistic information is associated with an update of biomechanical 

priors. Such an update could occur through a mechanism of visuomotor learning mediated by 

the plastic properties of the motor system [53-55]. This would allow one to determine whether 

the interaction between a ‘rational’ interpretation of actions and the detection of affordances 

recruits a modular, domain-specific process that would configure the experience of the 

external world per se. Implications for the social learning of tool use could be particularly 

important, as it would suggest that the larger the magnitude of this interaction for learners, the 

less able they would be to predict and learn from biomechanically suboptimal or unexpected 

behaviors. More generally, we believe that this cognitive selectivity for biomechanical 

optimality could contribute to the convergence of individual behaviors towards homogeneous 

patterns [17]. This could arise in the absence of high-level, faithful social transmission 

mechanisms such as true imitation of observed action goals and means [56- 58]. Affordances 

could enhance the efficiency of less precise, though less costly, forms of social learning 

strategies in the acquisition of novel tool use, like emulation learning [59] or stimulus 

enhancement [60]. 
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The Experimental Contribution Chapter 2 showed that prior information aquired from 

probabilistic exposure and prior information derived from an estimation of the biomechanical 

costs engaged during observed actions interact, and that this interaction modulates the 

prediction of participants regarding a demonstrator’s intentions. In the study presented in the 

Experimental Contribution Chapter 3, I was interested in investigating whether such an 

interaction also translates into the motor system, possibly through a modulation of the motor 

resonance mechanisms.  

 To test this, I used single-pulse TMS over the primary motor cortex (M1) to probe 

corticospinal excitability changes (CSE) during an action prediction task that was similar to 

the one deigned in the Experimental Contribution Chapter 2. Thus, in this task, both the 

biomechanical optimality of actions being observed and their probability of occurrence were 

varied. The very similar stimuli were used: the task consisted of the presentation of a series of 

movies showing an actor performing two types of object-directed actions (lifting an object to 

open a box versus turning an object to switch-on a light) using either a power (whole hand 

grip) and a precision grip (pinch grip). In a first step, participants were presented a series of 

incomplete action movies where only the grasping phase was visible. In a second, step, they 

were presented a series complete action movies where both the grasping phase and the action’s 

final outcome were visiable, and where one action type was more likely observed than 

another. In third step, a second series of incomplete action movies was presented. For each 

movie of the three series, participants were required to predict the final intention of the actor 

(open the box versus switch-on the light). Three groups of participants were tested, each being 

subjected to a specific probability distribution of optimal and suboptimal actions during the 

complete movie series. Single-pulse was assigned over the left M1 during the observation of 
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incomplete action movies, prior and after the observation of complete action movies in which 

the probabilistic biases were implemented. Comparing MEPs between the first and the second 

series of incomplete movies enabled us to study the effect of probabilistic sampling of past 

events on CSE as well as its interaction with the visual information conveyed by the 

movement kinematics. By doing so, we were able to draw inference about whether the motor 

simulation processes were tuned by higher-order expectations, namely, the expectations 

generated by the probabilistic exposure to a specific action type.   

 It has been argued that single-pulse TMS offers a dynamic picture of motor simulation 

processes that are at stake during action observation (Fadiga et al., 2005). The reason is that 

the TMS application over M1 enables the on-line measurement of CSE at high temporal 

resolution. The first evidence of a modulation of CSE during the observation of biological 

actions in humans was provided by Fadiga and collaborators in 1995. In this seminal study, 

experimenters applied TMS over the cortical representation of the hand in M1 and recorded 

motor-evoked potentials (MEPs) of various hand muscles, while participants observed 

transitive (e.g., grasping an object) or intransitive (e.g., lifting the arm) arm-hand movements. 

During observation of grasping action, the amplitude of MEPs recorded from two muscles 

involved in grasping movements (the first dorsal interosseus ‘FDI’ and the opponent pollicis 

‘OP’) increased, as compared with those observed in the control condition. According to the 

authors, this finding demonstrates the involvement of a motor simulation mechanism during 

action observation, a prerequisite for action understanding and prediction. 

The study by Fadiga and collaborators provided the basis of more than 15 years of 

single-pulse TMS studies on action observation (Alaerts et al., 2009; Alaerts et al., 2010; 

Aziz-Zadeh et al., 2002; Brighina et al., 2000; Catmur et al., 2007; Cesari et al., 2011; Clark et 
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al., 2004; Gangitano et al., 2001; Lago and Fernandez-del-Olmo, 2011). The underlying 

hypothesis of these studies is that observing others’ actions potentiates the neural populations 

located in the area corresponding to the cortical representation of muscles that are involved in 

the execution of the observed actions. According to Fadiga and collaborators (2005), this 

potentiation would decrease the activation threshold of these neurons, which leads to a 

facilitation effect after the TMS delivery, as reflected by an increase of CSE. This facilitation 

effect is often interpreted as an indice that motor simulation mechanisms operate during action 

observation.  

 In parallel, single-pulse TMS over M1 has also been recently used to uncover, with 

action preparation paradigms, the impact of statistical regularities of past events over the CSE 

of participants (Bestmann, 2008; van Elswijk et al., 2007). It appears that the predictability of 

an event is encoded within the motor system, as indirectly revealed by an increase of CSE 

when cues serving for action preparation were highly expected by participants. 

 Thus, single-pulse TMS applied over M1 offers a powerful technique allowing the 

measurement of CSE changes that could occur through the modulation of sensorimotor 

components of action stimuli as well as the modulation of their probability distributions.  
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Abstract 

Motor resonance mechanisms – the automatic activation in the motor system of sensorimotor 

representations that are equally recruited during the execution and the observation of an action 

– are assumed to enable an observer to infer the goal or intention of another agent’s action. 

However, it is not yet clear whether, and how, these mechanisms can be adaptively modulated 

by different sources of prior information, such as i) the prior knowledge an observer may 

accumulate about another agent’s behavior through the probabilistic sampling of past events, 

ii) the biomechanical optimality of the observed actions (the muscular and articulator costs of 

given action). The present study aimed to test whether the interactions between biomechanical 

expectations and prior knowledge about a demonstrator’s behaviors, which are known to 

influence the participants’ predictions of the demonstrator’s intentions, can modulate the 

motor system activity. To test this, we used single-pulse TMS applied over the primary motor 

cortex (M1) to derive a well-established measure the corticospinal excitability (CSE) of 

participants during an action prediction task. In this task participants were required to infer, 

under various conditions of visual uncertainty, the intentions of a demonstrator performing 

tool-use behaviors. Both the probability of observing the demonstrator achieving 

biomechanically optimal and suboptimal actions was varied. Our results show that motor 

resonance processes are sensitive to biomechanical optimality, in such a way that they 

adaptively adjust their activity depending on prior expectations of the observer. This 

adjustment is here demonstrated via the maintenance of corticospinal excitability in conditions 

where biomechanical and prior knowledge acquired from probabilistic exposure strictly 

converge, and a decrease of excitability when they diverge.  This regulatory activity could 

reflect an adaptive mechanism whereby the brain efficiently weights information gathered 

from probabilistic sampling of past observations to optimize the understanding, the prediction, 

and possibly the acquisition of new behaviors. 

 

Keywords: action prediction, prior information, motor resonance, transcranial magnetic 

stimulation. 
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Introduction 

The human cultural landscape abounds with unstable, changing, and open-ended behavioral 

environments (Boyd and Richerson, 1985). Under such circumstances, understanding, 

predicting and learning new behaviors from observation requires the ability to adaptively deal 

with each environment’s intrinsic uncertainty by exploiting, adjusting, or inhibiting 

information of various sources (Collins and Koechlin, 2012). One type of information is the 

observer’s expectations regarding the type of motor sequence performed to achieve a predicted 

goal given the biomechanical constraints of the effector itself (Gallese and Goldman, 1998). It 

has previously been shown that actions of both human and non-human animals aim to be 

biomechanically optimal, i.e. to minimize the muscular and articulator costs of the action 

(Flash and Hochner, 2005; Rosenbaum et al., 1992, 1996; Sartori et al., 2011; Weiss et al., 

2007). Recent experimental work in humans suggests that this function of minimizing costs 

also transfers to action prediction (Jacquet et al., 2012b, in press), with observers expecting 

others to behave in accordance with biomechanical optimality rules. Biomechanical prior 

expectations play a role in action prediction when the observed action is directed to, or 

mediated by, an object or a tool, as the tool’s affordances ‘tell’ the agent and the observer how 

to act on it appropriately. Affordances thus reduce the number of possible motor acts one can 

perform on an object or a tool given the biomechanical constraints of the agents (Gibson, 

1979). Predicting and learning new behaviors from observation also depends on acquiring 

prior knowledge about another person’s intentions, or goals, from probabilistic sampling of 

past experience (Baker et al., 2009; Chambon et al.,2011; Csibra and Gergely, 2007). Both 

biomechanical and probabilistic information have been demonstrated to be crucial for action 
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prediction (see Chambon et al., 2011). Specifically, it has been shown that biomechanical and 

probabilistic priors adaptively interact during the prediction of optimal and suboptimal actions, 

with the nature of their interaction depending on whether subjects were exposed to 

probabilistic behaviors that converge with, or diverge from, biomechanical optimality (Jacquet 

et al., 2012b, in press). Indeed, the influence of biomechanical expectations on action 

prediction was found to progressively decrease over time, as the probability of 

biomechanically suboptimal behaviours concomitantly increased (Jacquet et al., 2012b, in 

press).  

How the brain mediates competition between these two potentially conflicting sources 

of information remains unclear. Biomechanical and probabilistic priors may recruit two 

different – and parallel – neural networks that converge at some point in order to derive 

information from observation about action movements and goals. It has been suggested that 

probabilistic priors may exert top-down influences on the selection of action alternatives 

within premotor cortices, by using evidence gathered from probabilistic sampling of the 

environment (i.e., past observations) to re-assign new weights to the whole set of possible 

actions. Interestingly, such top-down influences would recruit anterior regions of the frontal 

hierarchy, such as the dorsolateral (Koechlin et al., 2003) or the inferior parts (Kilner et al., 

2011) of the prefrontal cortex. In contrast, biomechanical priors may exert their influence on 

action prediction downstream of the frontal hierarchy by differentially weighting action 

alternatives within the motor repertoire of posterior frontal cortices, so that certain actions 

become favoured over others according to the biomechanical constraints of the motor 

effectors. This process of weighting action alternatives would be mediated by reciprocal 

inhibitory connections within the motor cortices, either by suppressing or increasing the 



 

153 

activity of current competitors (Cisek et al., 2007). The emergence of biomechanical priors 

may thus be closely related to motor resonance mechanisms – i.e., the transformation of visual 

input containing kinematics of a biological movement into the corresponding motor programs 

stored in the observer’s motor repertoire. This transformation is assumed to be mediated by 

mirror system activity of the human brain (Rizzolatti and Craighero, 2004). This mirror 

activity would allow the observer to understand the outcome of an action by matching the 

motor components of the observed action with the corresponding sensorimotor representations 

stored in her/his own behavioral repertoire (Wilson, Knoblich, 2005; Urgesi et al., 2010; 

Avenanti and Urgesi, 2010). Thus, motor resonance might be a simulation device that aids 

goal understanding by replicating the observed action in the observer’s own motor system. 

Accordingly, the represented action should be ‘executable’, that is, consistent with the 

constraints of the observer’s motor system (Csibra, 2007).  

It has long been argued that motor resonance processes are automatically activated by 

the mere observation of biological movements. If this is the case, they would actively 

participate in action perception, a view that has received considerable empirical support in the 

last two decades (see for a recent review Rizzolatti and Sinigaglia, 2010). However, the role of 

these resonance processes in action prediction is still a subject of controversy. Indeed, 

predicting others’ behaviors through motor resonance would be possible under conditions in 

which the observer owns a representation of the intended goal. That is to say, prediction would 

be possible if, and only if, the goal underlying the observed motor act is known in advance, or 

is familiar to the observer (Csibra, 2007; Kilner, 2011). Thus, motor resonance mechanisms 

would be particularly well suited for predicting goal-directed behaviors achieved in stable, 
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familiar contexts (Aglioti et al., 2008), while being less suited to unfamiliar and open-ended 

ones (Csibra, 2007; Csibra and Gergely, 2007).  

As such, enriching or degrading the familiarity of an action – by increasing the 

probability of observing either familiar and biomechanically optimal actions, or unfamiliar, 

biomechanically suboptimal actions – should modulate motor resonance processes, 

respectively, increasing or lowering corticospinal excitability, according to biomechanical 

optimality (Southgate et al., 2008, 2009). The present study aimed to test this assumption by 

investigating whether, and how, priors derived from probabilistic exposure influence motor 

resonance mechanisms in a task that required predicting ongoing, open-ended behaviors. To 

do so we used an on-line transcranial magnetic stimulation (TMS) technique during an action 

prediction task that has been described previously (Jacquet et al., 2012b, in press). Applying 

single-pulse TMS over the primary motor cortex (M1) is a well-established way to probe 

motor resonance mechanisms that are active during action observation (Alaerts et al., 2009; 

Alaerts et al., 2010; Aziz-Zadeh et al., 2002; Brighina et al., 2000; Catmur et al., 2007; Cesari 

et al., 2011; Clark et al., 2004; Gangitano et al., 2001; Lago and Fernandez-del-Olmo, 2011). 

Observing an agent performing an action facilitates neural activity in an area corresponding to 

the cortical representation of muscles that are involved in the execution of that same action. 

This facilitation effect is measured as an increase in corticospinal excitability (CSE), and is 

expected to signal the involvement of motor resonance mechanisms during action observation 

(Fadiga et al., 1995, 2005).  

During the action prediction task, adult participants were required to infer the 

intentions of a filmed demonstrator acting on a tool that elicited two distinct affordances, each 

of which was biomechanically optimal for performance of a specific goal. The biomechanical 
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optimality of tool-use actions as well as the probability of observing the demonstrator using an 

optimal versus suboptimal strategy were varied. Single-pulse TMS was applied over the left 

primary motor cortex (M1) of participants while they viewed videos in which they had to 

predict the demonstrator’s final goal.TMS was applied before and after they watched a block 

of videos in which the probability of observing optimal or sub-optimal actions was 

manipulated (see Material and Methods, below). Three groups of participants were each 

assigned a specific probabilistic environment (bias): i) the demonstrator equally used optimal 

and suboptimal behaviors to achieve his intention; ii) the demonstrator preferentially used 

optimal behaviors, and iii) the demonstrator preferentially used suboptimal behaviors. This 

procedure allowed us to assess the effect of varying the contribution of the two classes of 

priors (probabilistic and biomechanical) to action prediction, together with investigating how 

such variations translate into changes of corticospinal excitability.  

 

 

Material and Methods 

Participants 

Fifty-four healthy volunteers (29 women) aged 19-36 (mean = 24, SD = 4.2) took part in an 

action prediction task similar to the procedure used in Jacquet et al. (2012b, in press). All were 

right-handed, naive to the purpose of the experiment, and reported normal or corrected-to-

normal visual acuity. All participants gave written informed consent and received payment for 

their participation in the study. Information about the experimental hypothesis was provided 

only after the experiment had been completed. The experimental protocol was performed with 
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approval of the local Ethical Committee (Comité de Protection des Personnes SUD-EST IV, 

no. 2010-A01180-39) and in accordance with the Declaration of Helsinki (2008). All 

participants did not present any neurological, psychiatric, or other medical problems that are 

contraindicated for TMS (Wassermann, 1998). 

 

General Procedure 

Participants sat in front of a monitor on which 2000 ms action movies were displayed. The 

experimental session was divided into three blocks. In all three blocks participants watched 

videos featuring a demonstrator acting on a tool and were required to guess the goal of the 

demonstrator’s action (for a similar procedure, see Jacquet et al., 2012b, in press). The tool 

consisted of a movable handle screwed onto the lid of a box. The handle offered two distinct 

affordances enabling the demonstrator to grasp the object with a power or a precision grip (see 

fig.1). Using either grip, the demonstrator could achieve two actions: opening the box by 

lifting the handle (intention A); switching on the light by rotating the handle (intention B) (see 

fig.1). In the first and third parts participants watched incomplete movies in which the action 

stopped 800ms after movement onset (at this time only the grip was apparent not the 

demonstrator’s final goal) and the last displayed frame was presented on the screen for 

1200ms. During these incomplete videos a single TMS pulse was applied after movie onset. In 

the second part, participants watched complete movies in which the action lasted until 

achievement of the goal (opening or turning), and both the grasp and the demonstrator’s goal 

were apparent. No TMS was applied during these complete videos, and each participant was 

randomly assigned to one of three experimental groups each characterized by a specific 
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probability distribution of optimal and suboptimal complete action movies. These complete 

movies were used to bias participants in favour of either optimal or suboptimal behavioral 

strategies. Of note is that each video (incomplete and complete) was unique: it was shown 

only one time per block. 

Using the power grip to achieve the intention of opening the box by lifting the handle 

was low-cost, as was using the precision grip to achieve the intention of switching the lights 

on by turning the handle. These two combinations were identified as optimal behaviors (low 

biomechanical cost). The precision grip increased the cost of achieving the intention of 

opening the box, whereas the power grip increased the cost of achieving the intention of 

switching on the lights. These two combinations were identified as suboptimal behaviors (high 

biomechanical cost) (see Figure 1).  

Participants assigned to the ‘No bias’ group had an equal probability of observing the 

demonstrator achieving his intention by performing an optimal or a suboptimal behavior. 

Participants assigned to the ‘Convergent bias’ group were biased towards ‘optimal’ behaviors, 

to the detriment of ‘suboptimal’ behaviors. In 80% of the ‘box opening’ trials the 

demonstrator opened the box using a power grip, and in 80% of the ‘light switching’ trials he 

switched on the lights using a precision grip. Here, behaviors that were preferentially used by 

the demonstrator converged towards the participant’s biomechanical priors. Finally, 

participants assigned to the ‘Divergent bias’ group were biased towards ‘suboptimal’ 

behaviors, to the detriment of ‘optimal’ behaviors. In 80% of the ‘box opening’ trials the 

demonstrator opened the box using a precision grip, and in 80% of the ‘light switching’ trials 

he switched on the lights using a power grip. Here, the behaviors that were preferentially used 

by the demonstrator diverged from the participant’s biomechanical priors. Of note is that the 
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distributions of optimal and suboptimal behaviors during the incomplete movie block were 

kept equiprobable: participants were presented the same number of optimal and suboptimal 

actions. 

For each of the 288 action movies that composed an experimental session (96 

incomplete in part 1, 96 complete in part 2, 96 incomplete in part 3) participants were required 

to predict the demonstrator’s intention by producing a vocal response (‘A’ for opening the 

box; ‘B’ for switching on the lights). Vocal responses were recorded via a microphone. 

Participants were instructed to make their response as soon as they thought they had enough 

visual information to produce an accurate response. Note however that both complete and 

incomplete movies ran for the full 2000ms independently of the timing of the subject’s 

response.  

Prior to the experiment participants were familiarised with the task by watching six 

incomplete movies and an unbiased block of twelve complete movies. 
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Figure 1: Examples of the four combinations ‘grip  intention’ that participants encountered during the 

experiment, and that lead to ‘optimal’ or ‘suboptimal’ behaviors. All combinations began with the 

demonstrator’s static hand. The actor could then use either a ‘power’ or a ‘precision’ grip to achieve either the 

intention of opening the box or switching the lights on. The combination between the kind of grip and the kind of 

final intention resulted in the complete action as being labeled biomechanically optimal (OPTIMAL) or 

suboptimal (SUBOPTIMAL). Whereas the complete action movies lasted until the achievement of the 

underlying intention for a total duration of 2000ms, the incomplete action movies stopped 800ms after the 

movement onset (when the demonstrator was about to grasp the tool) while the last displayed frame remained on 

the screen for a duration of 1200 ms, so that observers had information about the grip but no information (on that 

trial) about the demonstrator’s intention.  
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Typical trial 

All trials started with a white fixation-cross that appeared for 2500ms on a dark background. 

The fixation cross was immediately followed by either a complete or an incomplete action 

movie that lasted 2000ms. On each trial participants verbally indicated which goal the 

demonstrator was about to achieve and at the end of the video response time was displayed on 

the screen for 500ms. For those trials in which participants did not respond, or responded too 

late, ‘NO RESPONSE’ was displayed on the screen. The next trial started immediately after 

the 500ms response feedback period. This feedback allowed us to avoid a ‘guessing bias’ that 

could occur during the presentation of complete action sequences, and that could hinder the 

integration of the probabilistic bias (see for a similar procedure, Jacquet et al., 2012b, in 

press).  

For each incomplete movie, a single-pulse TMS was randomly delivered at 600, 700 

and 800ms after the onset of the movies, when the type of grip used by the demonstrator was 

fully visible. Each block of incomplete movies included 16 trials without TMS in order to 

minimize the predictability of the stimulation. Each participant also performed three blocks of 

a TMS control condition, in which motor evoked potentials were recorded during 20 single 

TMS pulses over M1 while they viewed a white fixation cross located in the middle of a black 

screen (Gangitano et al., 2001). The inter-pulse interval was similar between 4800 and 5200 

ms, and three blocks of 20 black-screen trials were included in the experiment; 1) before the 

first block of incomplete videos, 2) after the first block of incomplete videos, and 3) after the 

second block of incomplete videos. This procedure allowed us to check for any modulation of 

corticospinal excitability that did not depend on our experimental variables (e.g., fatigue). 
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The presentation of stimuli, the recording of vocal responses (response times) and the 

TMS triggering was synchronized using Presentation software (Neurobehavioral Systems, 

Inc, USA). 

 

TMS  and electromyographic (EMG) recording 

Motor-evoked potentials (MEPs) were recorded from the first dorsal interosseous (FDI) 

muscle of the right hand. Of note is that the FDI muscle is strongly involved in the execution 

of each action type that was presented to participants. EMG recordings were performed using 

Ag-AgCl electrodes placed in a belly-tendon configuration. EMG activity was amplified and 

digitized with a CED Power 1401 interface and sampled at 5 kHz. Spike2 software 

(Cambridge Electronic Design, Cambridge, England) was used for off-line data analysis.  

A Magstim rapid
2
 stimulator (The Magstim Company, Carmarthenshire, Wales) 

generated single-pulse stimuli, delivered through a figure-of-eight coil (70 mm diameter) 

placed tangentially to the scalp with the handle pointing backward and at a 45° angle away 

from the midline. During the recording sessions, the coil was positioned over the left primary 

motor cortex (M1) in correspondence with the optimal scalp position (OSP), defined as the 

position from which MEPs with maximal amplitude were recorded from FDI. The OSP was 

identified by moving the intersection of the coil in 1cm steps around the hand area of the left 

motor cortex and by delivering TMS pulses at constant supra-threshold intensity. Participants 

wore a bathing cap on which the OSP for stimulation was marked. The mark and the coil 

position relative to the mark were then recorded on each participant’s scalp using the SofTaxic 
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Navigator system (EMS, Italy). The coil was held by hand and its position with respect to the 

target on the reconstructed brain was continuously monitored during the experiment.  

The individual resting motor threshold (rMT) of each participant was identified as the 

minimal stimulation intensity that produced motor evoked potentials (MEPs) of at least 50 μV 

in the FDI, with 50% probability on 10 consecutive stimulations (Rossini et al., 1994). 

Stimulation intensity during the recording sessions was set at 120% of the rMT and ranged 

from 33% to 50% (mean = 41%; SD = 6) of the maximum stimulator output. Using this 

procedure, a clear and stable signal was obtained from the targeted muscle in all participants.  

 

Data preprocessing 

Peak-to-peak amplitudes of the MEPs were determined off-line from the raw EMG data 

(Spike2, version 7.02). To control for background EMG activity the data were visually 

inspected during the experiment. MEPs the amplitude of which could not be distinguished 

from the background activity were removed from the analysis. Background EMG was further 

controlled by computing the root mean squared (RMS) of the EMG during the 100ms prior to 

the TMS pulse.. Trials on which the pre-stimulus RMS exceeded the average (of the 80 TMS 

trials in the block) by more than two standard deviations were discarded. Trials on which MEP 

amplitude was greater than or less than 2 standard deviations from the mean were also 

removed.  

The peak-to-peak amplitudes (mV) of the remaining MEPs were then determined and 

converted into a corticospinal excitability (CSE) change index, expressed as the LOG(10) 

transformation of percentages of variation relative to the mean MEP amplitude obtained in the 
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TMS control conditions. Importantly, the CSE change indices collected during the first 

incomplete movie block were computed relative to the mean MEP amplitude of the control 

blocks 1 and 2; while the CSE change indices collected during the second incomplete movie 

block were computed relative to the mean MEP amplitude of the control blocks 2 and 3. This 

procedure allowed us to disentangle corticospinal excitability changes due to our independent 

variables from non-specific modulations in corticospinal variability across time. 

Because we stimulated at 120% of resting motor threshold, the absolute amplitude of 

the control MEPs varied considerably between subjects. Since these control MEPs were used 

to normalize data collected during the incomplete movies we reasoned that it would be best to 

maximize the physiological homogeneity of all participants and to include only those 

participants who had mean MEP amplitudes during the control conditions greater than 0.8 

mV. The choice of this criterion was based upon the now-common procedure of choosing a 

stimulation intensity that gives a 1mV MEP. Consequently, 11 participants were selected for 

the ‘No bias’ session analysis (7 women; mean age = 23, SD = 3.15), 10 for the ‘Convergent’ 

session analysis (3 women; mean age = 24.6, SD = 4.93), and 12 for the ‘Divergent’ session 

analysis (6 women; mean age = 24.3, SD = 3.92). 

Behavioral performance. We analysed the percentage of correct responses (hits) and 

response times (RTs) collected for both complete and incomplete action movies. Participants 

did not receive any feedback about the accuracy of their responses during the incomplete 

action videos, and responses were classed as correct if the predicted goal was the same as that 

actually achieved by the demonstrator in the complete format of that particular video. All 

statistical analyses were performed separately for each of the three movie blocks.  
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The hit rates and RTs collected during the complete movie block were analysed using 2 

 2  3 repeated-measures ANOVAs. The first two-level factor was the ‘type of behavior’ 

(optimal versus suboptimal), the second two-level factor was the ‘type of grip’ (power versus 

precision), and the third, three-level factor was the ‘probabilistic bias’ (no bias versus 

convergent bias versus divergent bias).  

The hit rates and RTs collected during the two incomplete movie blocks were then 

analysed using 2  2  2  3 repeated-measures ANOVAs. The first two-level factor was 

the ‘block’ (pre-test versus post-test), the second two-level factor was the ‘type of behavior’ 

(optimal versus suboptimal), the second two-level factor was the ‘type of grip’ (power versus 

precision), and the third, three-level between-subject factor was the ‘probabilistic bias’ (no 

bias versus convergent bias versus divergent bias).  

MEP data. MEP data were only collected during incomplete videos, for which there was no 

information concerning the goal of the action. Since we were interested in knowing whether 

corticospinal excitability was modulated as a function of action prediction, a trial was 

classified as optimal or suboptimal according to the participant’s decision on that trial, 

regardless of whether or not this decision was correct. Thus, ‘optimal’ and ‘suboptimal’ trials 

contain both hits and false alarm. The percentage of MEPs excluded (too much background 

EMG activity or MEPs that were 1.96 SD up or down the mean MEP amplitude) ranged 

between 7 and 9% for the pre- and post- blocks (84 trials each) and was approximately equal 

for the three different groups. 

A 2  2  2  3 repeated-measures ANOVA was then performed, with ‘block’ (pre-

test versus post-test), ‘type of behavior’ (optimal versus suboptimal) and ‘type of grip’ (power 
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versus precision) as two-level within-subject factors and the ‘probabilistic bias’ (no bias 

versus convergent bias versus divergent bias) as three-level between-subjects factor.  

 

Results 

Behavioral performance (Hits and RTs) 

Complete action movies  

Figure 2 shows the mean percentage of correct responses (upper panel) and mean reaction 

times (bottom panel) collected during complete action movies. The 2 (type of behavior)  2 

(type of grip)  3 (probabilistic bias) repeated-measures ANOVAs revealed a main effect of 

the ‘type of behavior’ on both hits (F1,30 = 28.20, p < .001) and RTs (F1,30 = 43.79, p < .001). 

Participants were more accurate and faster at predicting optimal than suboptimal behaviors 

(hits: 90% vs. 75%; RTs: 1374ms vs. 1449ms). A main effect of the ‘type of grip’ was found 

only for RTs (F1,30 = 9.84, p < .01), with participants being overall faster at predicting 

behaviors that were performed with a precision than a power grip (1398ms vs. 1425ms). 

 The two-way interaction (type of behavior)  (probabilistic bias) (see figure 2) was 

also significant for both hits (F2.30 = 12.29, p < .001) and RTs (F2.30 = 26.74, p < .0001). Post-

hoc comparisons (LSD Fisher tests) indicated that during the no bias group – where both types 

of behaviors were equally probable – participants were more accurate (92% vs. 77%, p < .05) 

and faster (1398ms vs. 1425ms, p < .05) at predicting optimal compared to suboptimal 

behaviors. A similar though stronger pattern was observed in the convergent bias group where 

optimal behaviors were more likely to be observed. Participants were more accurate (96% vs. 

59%, p < .0001) and faster (1307ms vs. 1510ms, p < .05) at predicting optimal compared to 
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suboptimal behaviors. Furthermore, when compared to the no bias group, participants in the 

convergent bias group were less accurate and slower at predicting the unbiased suboptimal 

behaviors (hits = 59% vs. 77%; RTs = 1510ms vs. 1425ms). In the divergent bias group no 

differences were found between the optimal and suboptimal behaviors, despite the fact that the 

latter were more frequently shown than the former (hits = 84% vs. 86%, p > .05; RTs = 

1428ms vs. 1415ms, p > .05). Thus, increasing the probability of observing suboptimal 

behaviors did not significantly increase the number of correct responses for these behaviors 

compared to the optimal ones, however it cancelled the natural preference towards optimal 

behaviors that was present in the no bias group. 

 Finally, the (type of grip) (type of behavior) interaction was significant for RTs only 

(F2.30 = 4.78, p < .05). Overall, participants were faster at predicting suboptimal behaviors 

when achieved with a precision than with a power grip (1426ms vs. 1471ms, p > .001). 

No other significant main or interaction effects were observed (all p > .07). 
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Figure 2. Behavioral performances. The upper graph represents the mean 

percentages of correct responses collected during complete action movies for all 

three sessions. The inferior graph represents the mean response times collected 

during complete action movies for all three sessions. The blue columns refer to the 

mean percentages of correct predictions for observed ‘optimal’ behaviors (pooled 

across ‘power’ and ‘precision’ grip). The red columns refer to the mean percentages 

of correct predictions for observed ‘suboptimal’ behaviors (pooled across ‘power’ 

and ‘precision’ grip). Error bars denote the standard error of the mean.  
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Incomplete action movies  

Figure 3 shows the mean percentage of correct responses (upper panel) and mean reaction 

times (bottom panel) for the incomplete action movie blocks before (pre) and after (post) 

exposure to one of three probabilistic biases. The 2 (block)  2 (type of behavior)  2 (type 

of grip)  3 (probabilistic bias) repeated-measures ANOVAs revealed a main effect of the 

‘type of behavior’ on both hits (F1.30 = 73.89, p < .001) and RTs (F1.30 = 37.72, p < .001); 

participants were more accurate and faster at predicting optimal than suboptimal behaviors 

(hits: 64% vs. 37%; RTs: 1329ms vs. 1392ms). This preference for optimal behaviors 

significantly differed from chance (t-test compared to 50%, t > 8.68, p < .001). The main 

effect of ‘type of grip’ was significant for RTs only (F1,27 = 15.31, p < .001). Participants were 

faster at predicting behaviors performed with a precision grip than a power grip (1337ms vs. 

1382ms, p < .001).  

 The two-way interaction ‘type of behavior’  ‘type of grip’ was significant for hits 

only (F1,30 = 6.24, p < .05). Post-hoc tests (LSD Fisher tests) showed that participants were 

more accurate at predicting optimal rather than suboptimal behaviors, for both power (61% vs. 

39%, p < .001) and precision grips (67% vs. 34%, p < .001). 

Finally, the three-way interaction ‘block’  ‘type of behavior’  ‘probabilistic bias’ 

(see figure 3) was significant for hits (F2,30 = 4.51, p < .05). First of all, post-hoc comparisons 

(LSD Fisher tests) indicated that accuracy in pre-test was similar for the three probabilistic 

bias groups for both optimal and suboptimal behaviors (no bias = 64% vs. 35%; convergent 

bias = 68% vs. 39%; divergent bias = 62% vs. 38%; all p > .35). This is crucial as it 

demonstrates that the predictions of each group were equally guided by default by 
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biomechanical expectations conveyed by the object’s affordances. Furthermore, in the no bias 

group, no differences were observed between the pre-test and the post-test, for either optimal 

(64% vs.63%, p > .05) or suboptimal behaviors (35% vs. 35%, p > .05), and participants were 

more accurate at predicting optimal than suboptimal behaviors in both the pre (64% vs. 35%, p 

< .001) and post-test blocks (63% vs. 35%, p < .001). Of note is that, in the two blocks, this 

preference for optimal behaviors significantly differed from chance (pre-test = t-test compared 

to 50%, t > 4.28, p < .01; post-test = t-test against 50, t > 4.54, p < .01). In the convergent 

group, a similar pattern was observed for optimal behaviors, with participants being equally 

accurate in pre-test and in post-test (68% vs. 72%, p > .05). However, the accuracy decreased 

in post-test for suboptimal behaviors (39% vs. 29%, p < .05). Note that in both these blocks, 

participants were more accurate at predicting optimal than suboptimal behaviors (pre-test = 

68% vs. 39%, p < .001; post-test = 72% vs. 29%, p < .001). Once again, in the two blocks of 

incomplete movies, the preference for optimal behaviors significantly differed from chance 

(pre-test = t-test for single mean, t > 6.65, p < .001; post-test = t-test compared to 50%, t > 

7.17, p < .001). Post-hoc analyses also showed that the probabilistic exposure to optimal 

behaviors strengthened the participants’ preference for these behaviors in the post-test, when 

compared to the no bias group in which both behaviors were equally presented (72% vs. 63%, 

p < .05). Interestingly, in the divergent group, the preference for optimal behaviors observed in 

pre-test (62% vs. 38%, p < .001) which differed significantly from chance level (t-test 

compared to 50%, t > 3.80, p < .0) was cancelled in the post-test, as indicated by the fact that 

performance for both optimal  (56%; t-test against 50, t > 1.89, p > .05) and suboptimal 

behaviors (43%; t-test compared to 50%, t > -1.52, p > .05) did not differ from chance. A 

comparison with the post-test of the no bias session further shows that after being exposed to 
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the divergent bias, participants were significantly more likely to predict suboptimal behaviors 

(35% vs. 43%, p < . 05). This result indicates that the probabilistic exposure to suboptimal 

behaviors conflicted with biomechanical expectations of participants in such a way that the 

preference for optimal behaviors was no longer observed.  

No other significant main effect effects were observed (all p > .08). 

 

Figure 3. Behavioral performances. The upper graphs represent the mean percentages of correct responses 

collected during incomplete action movies of the pre-test and post-test, and for all three sessions. The blue 

columns refer to the mean percentages of correct predictions for observed ‘optimal’ behaviors (pooled across 

‘power’ and ‘precision’ grip). The red columns refer to the mean percentages of correct predictions for observed 

‘suboptimal’ behaviors (pooled across ‘power’ and ‘precision’ grip). Error bars denote the standard error of the 

mean.  

 

 

 
Behavioral performances: preliminary discussion 

These results demonstrate that, consistent with previous findings (Chambon et al., 2011; 

Jacquet et al., 2012b, in press), participants in both the convergent and divergent groups 

successfully integrated the probability distributions. This was evidenced by comparing the 

results for complete movies for the two biased groups with those of the no bias group (see 

figure 2). Results from the no bias group are characterized by a natural preference for optimal 
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behaviors, that is, for behaviors that satisfied the participants’ biomechanical prior 

expectations. Indeed, in the absence of any relevant information about which behaviour was 

most likely to be performed (in the no bias group the demonstrator achieved his intention by 

equally performing either optimal or suboptimal behaviors), participants made predictions on 

the basis of their biomechanical priors, even though there was enough visual information 

conveyed by the action scene (the video) to predict with 100% accuracy using only visual 

information. Note that this pattern was reinforced in the convergent bias group where optimal 

behaviors were more likely to be observed, as indicated by an increase in reaction times and a 

decrease in hit rate for the unbiased, suboptimal behaviors. Conversely, this intrinsic 

preference for optimal behaviors disappeared in the divergent bias group in which suboptimal 

behaviors were more likely to be observed.  

  These observations further highlight the impact of biomechanical expectations on the 

performances: they were overall more accurate and faster at predicting behaviors that 

minimized biomechanical costs, irrespective of probabilities. Indeed, in both the complete (see 

figure 2) and incomplete (see figure 3) action movies of the no bias group (i.e. who observed 

the demonstrator selecting between the two available behavioral strategies with equal 

probability), participants preferentially chose intentions achieved by optimal actions rather 

than suboptimal actions. This result demonstrates that when participants cannot rely on prior 

knowledge acquired from recent experience (i.e., on probability) to decide how an observed 

agent is most likely to behave, they rely on their biomechanical priors by default. That is, they 

assume that the observed agent behaves ‘optimally’, favouring strategies that minimize 

biomechanical costs. 
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 Finally, the present results show that the magnitude of the probabilistic bias differed as 

a function of the type of behavior, with participants’ biomechanical expectations overriding 

the effect of the probabilistic bias. In the convergent bias group (probabilistic bias assigned to 

optimal behaviors), performance was facilitated for the optimal behaviors, as expected. The 

fact that such a pattern was observed in both the complete movies (see figure 2) and the post-

test blocks of incomplete movies (see figure 3) suggests that it is particularly costly for 

participants to take decisions against what is in line with rules of biomechanical optimality, 

even though the amount of visual information is sufficiently high to infer the demonstrator’s 

intention based on movement kinematics alone. Strikingly, a very different pattern emerged 

for the divergent bias group. Indeed,  in this group no difference was found between the 

optimal and suboptimal behaviors, although the latter were more frequently observed than the 

former. This pattern suggests that participants actively integrated both types of priors: when 

probabilistic and biomechanical priors diverged, the overall effect tended to sum to zero, 

resulting in performance that did not significantly differed from chance for both optimal and 

suboptimal behaviors.  

 

MEP data (CSE change index) 

Incomplete action movies 

The 2 (block)  2 (type of behavior)  2 (type of grip)  3 (probabilistic bias) repeated-

measures ANOVAs revealed a main effect of the ‘block’ on the CSE change index (F1.30 = 

6.92, p < .05). Corticospinal excitability was greater in the pre-test compared to the post-test 

blocks (139% vs. 116%), independent of the type of probabilistic exposure. 
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 The most interesting finding was the significant two-way interaction effect ‘block’  

‘probabilistic bias’ (F2,30 = 5.66, p = .01). As expected, post-hoc comparisons (LSD Fisher 

tests) showed that CSE change index for the pre-test block did not differ between the three 

probabilistic bias groups (no bias = 141%; convergent = 128%; divergent = 145%; all p > .45). 

Critically, in the divergent session, CSE was significantly reduced in the post-test block (145 

vs. 100, p < .001). A similar, albeit not significant tendency was present in the no bias group, 

CSE being slightly lower in the post-test block (141% vs. 114%, p=.062) whereas, in the 

convergent group, MEP amplitude had the opposite, non-significant tendency (128% vs. 

138%, p > .31). These results indicate that the type of probabilistic environment that 

participants were exposed to prior to the post-test block affected the CSE. In particular, only 

when this environment departed from that fitting biomechanical priors, the CSE level was 

significantly decreased.  

No other significant main interaction effect were observed (all p > .29). 
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Figure 4. MEPs data. The graph represents the mean CSE change index recording 

during the incomplete action movies for all three sessions. The CSE change index 

reflects the % of variation of MEPs amplitude relative to the mean MEPs amplitude 

recorded during the TMS control condition (see table 1). The blue columns refer to the 

mean CSE change index for the pre-test (pooled across ‘power’ and ‘precision’ grip as 

well as ‘optimal’ and ‘suboptimal’ behaviors). The red columns refer to the mean CSE 

change index for the post-test (pooled across ‘power’ and ‘precision’ grip as well as 

‘optimal’ and ‘suboptimal’ behaviors). Error bars denote the standard error of the 

mean.  

 

 

 
MEP data: preliminary discussion 

Our results revealed a gradient of CSE that is a function of the adequacy of the probabilistic 

context sampled from the complete movies to the participants’ biomechanical priors. When 

the probabilistic context satisfies biomechanical optimality rules, the CSE level is maintained, 

while when the probabilistic context contradicts or violates biomechanical optimality, the CSE 

level decreased. In the no bias group there was a slight (non significant) decrease in CSE, 

independently of the type of behaviors (see figure 4). Interestingly, in the convergent session 



 

175 

there was a stabilization of the CSE relative to the post-test block. Finally, in the divergent 

session, where participants were most likely to observe behaviors that departed from 

biomechanical optimality, the level of CSE was significantly decreased post-test. Overall, 

these results show that CSE changes may depend on the type of behaviour that was most 

frequently shown to the subject (optimal versus sub-optimal) during the complete video 

session, and on the degree to which the probabilistic environment matched the participants’ 

biomechanical expectations. Indeed, the divergent session profoundly suppressed CSE 

possibly because participants were maximally exposed to actions that did not satisfy 

biomechanical optimality rules.  

 

 

General discussion 

The objective of this study was to test whether the interactions between biomechanical 

expectations (conveyed by tool affordances) and prior knowledge (acquired from probabilistic 

exposure) about a demonstrator’s behaviors – known to influence the participants’ predictions 

of the demonstrator’s intentions – can modulate the motor system activity.  

In a previous study (Jacquet et al., 2012b,  in press), we provided the first evidence that 

biomechanical priors emerging from the detection of object affordances interact with priors 

acquired from probabilistic sampling of past events and can bias the prediction of observed 

actions. The behavioral data of the present study closely replicate our previous findings. We 

show that biomechanical expectations arising from the detection of object affordances adjust 

the participants’ dependence on prior knowledge induced by probabilistic exposure. More 
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specifically, when the behaviors gathered from probabilistic exposure satisfied these 

biomechanical prior expectations, participants efficiently combined both biomechanical and 

probabilistic priors to make their predictions. Conversely, when the behaviors gathered from 

probabilistic exposure violated the biomechanical priors, participants had to deal with two 

conflicting sources of prior information, which resulted in predictions close to chance level.  

Overall, the tendency to the decrease in CSE level in the no bias session was 

suggestive of a general attenuation of the motor cortical activity. However, although CSE 

level significantly changed after repeated exposure to action stimuli, both the direction and the 

magnitude of this change tended to vary according to the probabilistic environment to which 

the participants were exposed, as well as on the degree to which this environment was 

biomechanical optimal. Thus, instead of reflecting an effect of neural adaptation, the 

suppression of corticospinal excitability observed as a tendency in the no bias, and clearly in 

the divergent session, are indicative of a change that does not allow the motor system to 

resonate anymore. This process occurred when the observed behavior departed from 

biomechanical optimality. Thus, in the ‘convergent bias’ group, participants watched the 

demonstrator acting in accordance with such expectations, and no CSE change was observed. 

In the ‘divergent bias’ group, the behaviors performed by the demonstrator frequently 

departed from biomechanical optimality, and the CSE level that was subsequently measured 

dramatically decreased, when compared to the initial exposure to incomplete actions (before 

the probabilistic bias). This pattern of findings suggests that motor resonance is not fully 

encapsulated and automatic, but can be actually quite malleable and sensitive to changes in the 

probabilistically-induced expectations. Further, we found that the magnitude of this inhibitory 

process was a function of the degree of reliability of the observer’s biomechanical 
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expectations, i.e., of how reliable biomechanical optimality rules were to predict the 

behavioral environment.  

This CSE suppression may further suggest that the involvement of motor resonance 

mechanisms in action prediction is dependent on the interaction between the biomechanical 

prior expectations and the nature of the environment in which the prediction needs to be made, 

such that high levels of CSE are maintained only in environments that are consistent with 

these expectations. This is evidenced by the observation of different levels of CSE within each 

of the three environments (no bias vs. convergent vs. divergent). Motor resonance mechanisms 

– that are sensitive to biomechanical optimality – are therefore not affected by observation 

indistinctly (see also Catmur et al, 2007; Stefan et al., 2005, 2008). Rather, they could be 

modulated according to whether observation did, or did not, satisfy rules of biomechanical 

optimality. These findings are consistent with recent studies demonstrating that activity of the 

motor system of 9- to 15-months old infants is driven, during action prediction, by prior 

expectations about which movement is most likely to be performed in order to achieve a given 

goal, rather than by the current visual information alone (Southgate et al., 2009, 2010). 

What may be the function of such a regulatory activity of the motor resonance 

mechanism? We suggest it may protect the observer against errors of prediction in the case 

where observation and expectations conflict, and would do so by leaving inadequate action 

representations with reduced resonance weights. In the context of the present task, such a 

weight reduction would operate during the observation of complete movies by down-

regulating (in the no bias and the divergent bias groups) action representations that match with 

biomechanical prior expectations. Interestingly, the dorsal fronto-median cortex has been 

shown to underlie such ‘refraining’ process in a task requiring voluntary inhibition of 
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prepotent impulsive responses, through top-down inhibition of premotor areas (Khün et al., 

2008). Our results open the interesting possibility that a similar veto on action prediction also 

operates at a low, implicit level, with the aim of preventing observers from making 

maladaptive decisions. Thus, in the divergent bias session, where biomechanical optimality 

and probabilistic likelihood of the observed behaviors conflicted, participants might have 

refrained from inferring optimal behaviors. This regulation of motor resonance mechanisms 

may arise from top-down influences generated by the accumulation of probabilistic priors in 

the frontal regions. It could be that increasing the probabilistic likelihood of conflicting 

behaviors should in turn attenuate the influence of biomechanical expectations, through 

possible top-down adjustment of activation thresholds in the motor mirror system. This 

adjustment would result in decreasing the influence of motor resonance mechanisms on 

prediction, hence down-regulating the predictive value of low-level, kinematic features of the 

observed action. The role of motor resonance in action understanding and prediction has long 

been documented and debated (Rizzolatti and Craighero, 2004; Rizzolatti and Sinigaglia, 

2010; for review). Through internal simulation of an action performed by a third party, an 

observer would be able to predict – on the basis of his or her own motor representations – the 

future states of the observed action, and, by extension, to infer the underlying intention 

(Gallese and Goldman, 1998). However, in order to be a reliable source of information for 

action prediction, motor resonance mechanisms must primarily be fed with a prior 

representation of the goal to predict (Csibra, 2007; Kilner, 2011). On this account, processes 

of motor resonance would not be suitable for inferring new goals, and would adjust poorly to 

unfamiliar, open-ended, environments. Regulation of automatic resonance processes through 

higher-order probabilistic representations of the environment may provide an adaptive 
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mechanism to enable acquisition of unexpected, new behaviors. Interestingly, behaviors that 

over-ride rules of biomechanical optimization are regularly promoted by human culture. This 

is the case for many human cultural praxes, such as in some forms of sports, dances or music. 

Such praxes are often considered as socially valuable behaviors precisely because they are 

particularly difficult to learn and master. In some kinds of sport and dance practices, for 

example, biomechanical ‘suboptimality’ is perceived as a marker of excellence, and is socially 

rewarded for that reason. Importantly, vetoing direct, automatic resonance processes may also 

facilitate the learning of new behaviors from observing a non-expert model. Indeed, relying on 

prior knowledge gathered from probabilistic sampling of past observations may occasionally 

prove more helpful than merely evaluating the (biomechanical) optimality of the observed 

behavior.  

 

 

Conclusion 

Our results support the idea that motor resonance processes, sensitive to biomechanical 

optimality, may adaptively adjust their activity depending on prior expectations of the 

observer. This adjustment is here demonstrated via a maintenance of corticospinal excitability 

in conditions where biomechanical and probabilistic expectations strictly match, and a 

decrease of excitability when they diverge.  This regulatory activity would reflect an adaptive 

mechanism whereby the brain efficiently weights information gathered from probabilistic 

sampling of past observations, to optimize the understanding, the prediction, and possibly the 

acquisition of new behaviors. 
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One of the overarching objectives of the present thesis is to understand how the cognitive and 

behavioral characteristics of humans affect their ability to learn socially from observing their 

conspecifics, and to figure out what the consequences of these characteristics could be on the 

emergence of cultural traditions (i.e., the transmission and the stabilization among a 

population of behavioral patterns via social learning). However, such a prospect is of limited 

interest without testing the impact of individuals’ cognitive and behavioral characteristics on 

the learning dynamics at stake at a population level. This is what we aimed to do in the last 

study presented in this thesis. The objective of the Experimental Contribution Chapter 4 

was to model behavioral constraints of individuals (such as the biomechanical constraints of 

the acting body) and to study their impact on i) their ability to learn socially from each other 

and on ii) the evolution of stable behavioral patterns among the population they belong to. To 

do so, we used a computer simulation procedure known as individual-based modeling. 

Individual-based models (or also term Agent-based models) is a class of computational 

models for simulating the actions and interactions of autonomous agents (both individual or 

collective entities such as groups). The aim of these models is to assess the effects of these 

agents’ interactions on the system as a whole. Individual-based models combine elements of 

game theory, complex systems, emergence, computational sociology, multi-agent systems, and 

evolutionary programming (Grimm and Railsback, 2005). They are used to explain the 

emergence of a variety of higher-order patterns, from network structures ranging from terrorist 

organizations to consumer behavior. Thus, individual-based models are perfectly adapted to 

simulate the simultaneous operations and interactions of multiple agents, in an attempt to re-

create and predict the appearance of complex patterns at the population level, such as the 

emergence of behavioral traditions among a group through social transmission mechanisms. 



 

185 

The process is one of emergence from the lower (micro) level of systems to a higher (macro) 

level. The basic principles of individual-based models are that i) simple behavioral rules 

generate complex behavior, ii) the whole is greater than the sum of the parts. Individual agents 

are typically characterized as bounded rational agents, presumed to be acting in what they 

perceive as their own interests, such as reproduction, economic benefit, or social status, using 

heuristic learning or simple decision-making rules. Agents in individual-based models can 

thus experience learning, adaptation, and reproduction. In most of the cases, individual-based 

models are composed of i) numerous agents specified at various scales, ii) decision-making 

heuristics, iii) learning rules or adaptive processes, iv) an interaction topology; and v) a non-

agent environment. 

Accordingly, the aim of our model was to study, at a population level, the potential 

effect of various constraints (e.g., the size of the behavioral repertoire of an individual and the 

type of search space characterizing a task problem) on the ability of individuals to evolve 

behavioral traditions through the acquisition of faithful social learning. Even though they 

generally represent simplifications of reality, the use of evolutionary individual-based models 

is increasing in animal and human behavior studies. The reason is that they enable the 

identification of different selective pressures under varying ecological conditions, thus helping 

researchers to select the data needed to understand otherwise opaque phenomena (see also 

Acerbi et al., 2011). 
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Abstract 

Behavioral “traditions”, i.e. behavioral patterns that are acquired with the aid of social learning 

and that are relatively stable in a group, have been observed in several species. Recently, 

however, it has been questioned whether non-human social learning is faithful enough to 

stabilize those patterns. The observed stability could be interpreted as a result of various 

constraints that limit the number of possible alternative behaviors, rather than of the fidelity of 

transmission mechanisms. Those constraints can be roughly described as “internal”, such as 

mechanical (bodily) properties or cognitive limitations and predispositions, and “external”, 

such as ecological availability or pressures. Here we present an evolutionary individual-based 

model that explores the relationships between the evolution of faithful social learning and 

behavioral constraints, represented both by the size of the behavioral repertoire and by the 

“shape” of the search space of a given task. We show that the evolution of high-fidelity 

transmission mechanisms, when associated with costs (e.g. cognitive, biomechanical, 

energetic, etc.), is only likely if the potential behavioral repertoire of a species is large and if 

the search space does not provide information that can be exploited by individual learning. 

Moreover we show how stable behavioral patterns (“traditions”) can be achieved at the 

population level as an outcome of both high-fidelity and low-fidelity transmission 

mechanisms, given that the latter are coupled with a small behavioral repertoire or with a 

search space that provide substantial feedback. Finally, by introducing the possibility of 

environmental change, we show that intermediate rates of change favor the evolution of 

faithful social learning.  

 

Keywords: animal social learning; cultural evolution; cultural transmission; copying fidelity; 

individual based modeling. 
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Introduction 

Examples of behavioral “traditions”, i.e. behaviors acquired with the aid of some forms of 

social learning, and which are relatively stable in groups, have been found in several species 

(Laland and Galef, 2009). The existence of these traditions has been usually considered as a 

strong indication of the presence of faithful social transmission mechanisms that guarantee 

both the successful diffusion and the stability of the behaviors involved (Huffman, 1996; 

Horner et al., 2006; Marino et al., 2007). In particular, since imitation - i.e. the high-fidelity 

copy of novel behaviors through the reproduction of action sequences of observed individuals 

(Call and Carpenter, 2002; Tennie et al., 2006; Whiten et al., 2009) - has often been viewed as 

the learning mechanism that best explained the emergence of human traditions (Boyd and 

Richerson, 1996; Tomasello et al., 1993; Tomasello, 1999), it is assumed that also non-human 

traditions are supported by similar imitative capacities (Claidière and Sperber, 2010).  

 However, it has been recently questioned whether non-human social learning is 

actually faithful enough to produce such stable behavioral patterns. For example, it has been 

shown that in experimental settings great apes tend to scarcely use imitation (Tennie et al., 

2006; Tennie et al., 2009; Tennie et al., 2010). On a more theoretical side, Claidière and 

Sperber (2010) argued that the fidelity of social learning, as deduced by transmission chain 

studies in different species, may explain the propagation, but not the stability, of non-humans 

behavioral traditions. 

 Accordingly, researchers have begun to examine whether, and how, non-human 

animals, unequipped with faithful social learning capacities, could be able to develop 

behavioral traditions (Huber et al., 2009; Shea, 2009). It has been suggested that stable 
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behavioral patterns could also result from transmission mechanisms less faithful than 

imitation, such as emulation, social and local enhancement, or even from trial-and-error 

learning (Caldwell and Millen, 2009; Franz and Matthews, 2010; Heyes, 1993; Laland and 

Hoppitt, 2003; Matthews et al., 2010; Whiten et al., 2003). Finally, it has been proposed that 

the observed stability could be the result of constraints that limit the number of possible 

alternative behaviors, more than the result of the fidelity of transmission mechanisms (Tennie 

et al., 2009; Claidière and Sperber, 2010).   

 In this paper we investigate the relationship between behavioral constraints and faithful 

social learning through an evolutionary individual-based model in which a hypothetical 

“species”, first unequipped with high-fidelity copying mechanisms, may evolve them under 

different conditions. More specifically, we assumed that increasing the fidelity of social 

learning had some costs (e.g. cognitive, energetic, etc.) and also that the behavior of this 

species was variously constrained. 

 We introduced two kinds of constraints into our model. The first series of constraints 

limited the variety of individuals’ behavioral repertoires. In real-life those constraints would 

translate into a set of “internal” factors, such as cognitive limitations (e.g. poor working 

memory capacities limit the number of behavioral sequences a species can plan or copy; van 

Leeuwen et al., 2009), cognitive biases (e.g. preference for certain classes of stimuli or certain 

types of demonstrators towards which one directs its behaviors; van de Waal et al., 2010), or 

bodily (biomechanical) architecture of acting individuals (e.g. limited degrees of freedom of 

effectors restrict the flexibility by which one can interact with external objects; Desmurget et 

al., 1995). In our model those constraints determined the number of the possible behavioral 

alternatives a species was provided with. Note that this indicates the distribution of potential 
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behaviors, limiting the space in which the search for the optimal behavior is made, while the 

actual behaviors a population will show is a subset of those.  

 The second series of constraints pertained to the specific task one has to resolve and 

can be exemplified by a set of “external” factors (e.g. ecological) that shape the structure of 

the search space in which the candidate solutions takes place (Acerbi et al., 2011; see also 

Goldstone et al., 2008). For example, finding the ripest fruits on a tree is a very different 

problem with respect to choosing an edible fruit among different (perhaps including 

poisonous) fruits. In the former case an individual can try different fruits and, given adequate 

sensory and cognitive capacities, can choose to eat the sweetest ones; a strategy that is clearly 

not efficient in the latter situation. Here, we identified three distinct search spaces (see Figure 

1), distinguished by the way payoffs were distributed among possible behaviors and, by 

consequence, by their tendency to enable individual search strategies. In the Methods section 

we describe the three spaces used in the model in detail and provide a real-life example for 

each.  

 The model we developed is individual-based (Grimm and Railsback, 2005), meaning 

that we simulated interactions at the level of single individuals, and evolutionary, i.e. an 

evolutionary algorithm (Holland, 1975) is used to optimize the behavior of individuals. The 

evolutionary algorithm acted on a variable that encoded the fidelity of social learning of each 

individual. Individuals that performed better resulted in proportionally more “offspring” than 

others. Even though they generally represent simplifications of reality, the use of evolutionary 

individual-based models is increasing in animal behavior studies. The reason is that they 

enable the identification of different selective pressures under varying ecological conditions, 
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thus helping researchers to select the data needed to understand otherwise opaque phenomena 

(see also Acerbi and Nunn, 2011). 

 In the next section, we describe the implementation and the features of the model in 

detail, before presenting the results. We first investigated in which conditions a species, 

starting from completely unreliable social learning capacities, and thus relying upon individual 

learning only, was likely to evolve costly faithful social learning mechanisms. Secondly, we 

analyzed how population behavioral homogeneity (i.e. behavioral traditions) could be reached 

under different behavioral constraints, i.e. varying the size of the behavioral repertoire as well 

as the tasks' search spaces. Finally, we run other simulations allowing the possibility of 

environmental change, and we tested its effect on the evolution of faithful social learning. In 

the last section, we discuss the relevance of our results for the study of animal social learning 

and culture, limitations and possible extensions of our model, as well as some broad 

implications for modern human culture.  

 

 

Methods 

General description of the model 

All simulations involved populations of individuals (N=100) that interacted in discrete time 

steps (until T=10000). At the beginning of the simulations each individual was assigned a 

behavior, randomly chosen among all possible behaviors characterizing its population. 

Populations varied with respect to the size of their behavioral repertoire (S): we distinguished 



193 

 

three different experimental conditions, with populations disposing of a repertoire of 10, 100, 

or 200 possible behaviors. 

At each time step, individuals interacted in pairs. Each individual (the learner) was 

paired with another individual (the demonstrator) randomly chosen among the ten individuals 

of the population with the highest payoffs (see below for how payoffs were calculated). Thus, 

each learner attempted to copy the behavior of its paired demonstrators. The accuracy of social 

learning depended on an individual characteristic, determined by the parameter α  (fidelity of 

social learning). At the beginning of the simulations, α  was initialized equal to zero for all 

individuals (making social learning completely unreliable for all individuals) and its value 

evolved through time.  

Evolutionary dynamics resulted from a death-birth process in which newborns 

inherited the value of α  from fittest individuals. Below we describe the details of the model's 

implementation. 

 

Behavioral repertoire and search spaces 

Experimental conditions varied with respect to the size of the population's behavioral 

repertoire (S=10, 100, and 200 possible alternative behaviors) as well as to how payoffs were 

distributed among possible behaviors, determining three different “search spaces”. Behavioral 

payoffs varied between 0 and 1, and only a single behavior, randomly selected, brought the 

maximum payoff to individuals in all spaces.  
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The smooth space 

In smooth spaces (see Figure 1a), different behaviors laid on a payoff gradient, and the 

“closest” a behavior was to the optimal one, the higher its payoff. Payoffs were modeled as a 

Gaussian distribution (as in Boyd and Richerson, 1985 and Mesoudi and O'Brien, 2008). 

Smooth spaces represent tasks for which, even if an optimal solution exists, sub-optimal 

alternatives are similar in terms of payoff returns. Moreover, the existence of a payoff gradient 

provides a way to orient individual searches so that individual learning (e.g trial and error 

learning) can potentially be as effective as social learning (Acerbi et al., 2011). Even complex 

behaviors like chimpanzees' ant dipping have aspects that may be considered searches in 

smooth spaces (Humle and Matzusawa, 2002). An individual, for example, can repeatedly 

experiment with sticks of different length, self-evaluate the outcomes of different attempts, 

and then arrive at the measure that is most appropriate in a given situation. 

The rugged space 

Rugged spaces (see Figure 1b) represent “difficult” tasks for which only few good solutions 

exist. Contrary to smooth spaces, the structure of such tasks does not provide ways to orient 

individual searches. In our simulations rugged spaces were generated by assigning to every 

possible behavior a random payoff drawn from an exponential distribution with mean=1 

(rescaled between 0 and 1), so that a single behavior led to the maximum payoff, while a 

restricted number of alternatives approximate it and a vast majority led to low payoffs. One 

real-life example of a task represented by a rugged search space could be foraging in a patchy, 

heterogeneous, environment (see e.g. Gil and Wolf, 1977). In such a situation, an individual 

can potentially try different sources of food, with only few of them being fruitful, without 
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knowing in advance which one will be the richest. The knowledge of one source, furthermore, 

does not give information about the quality of the other sources present in the environment.   

The peaked space 

Finally, peaked spaces (see Figure 1c) represent even more difficult tasks, for which only a 

single behavior provides a payoff to individuals, distinguishing it from the two other search 

spaces described above. In Acerbi et al. (2011) we argued that many real-life tasks, especially 

in human culture, fit this description. One simple example is tying a knot: performing a 

behavior similar – but not equal – to the one requested to tying the knot does not produce a 

“less effective” knot, but in general does not produce any usable result. For this kind of task it 

is likely that any form of individual learning would be very ineffective, since there is nothing 

in the search space that could orient the search and there is only a single rewarding solution. 

 

Figure 1. Search spaces used in the simulations. Schematic representation of the three payoff distributions used 

in the simulations determining the three different search spaces. (a) Smooth space. (b) Rugged space. (c) Peaked 

space. (See text for details). 
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The copying process 

The outcome of the copying process depended on the observer's value of α . Figure 2 

illustrates how the new behavior was picked up by the observer. Once the demonstrator was 

chosen, a new behavior was randomly selected in the search area included between 

±
S

2
(1− α )

 with respect to the demonstrator's behavior, and retained by the individual if its 

payoff was equal or higher with respect to the current payoff.    

When α  is close to 1 – such that the fidelity of the learner's copy is almost perfect – 

this expression is close to 0, meaning that individuals will assume a behavior closely 

approximating the demonstrator's behavior (with α =1 the copied behavior will be exactly the 

demonstrator's behavior, so, in this case, social transmission equates to replication). On the 

contrary, when α  is close to 0, the expression is close to 
S

2 , covering a large range of the 

behavioral repertoire. Since behaviors that decrease individual's payoff are discarded, α =0 

can be considered cases of pure individual learning. 
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Figure 2. Schematic representation of the copying process (in a smooth search space). 
Given the demonstrator behavior, the learner will randomly pick up one behavior in the gray 

area. The size of the area is given by  α
S

± 1
2

 , where S is the size of the population's 

behavioral repertoire and 
α

 represents the learner's fidelity of social learning. (See text for 

details). 

 

 

 

Average payoff and evolutionary algorithm 

A basic assumption of our model was that faithful social learning has some cost, and this cost 

modulated the payoff an individual received from performing a behavior. Individual payoff 

was hence determined both by the behavior performed and by the fidelity of social learning 
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represented by their value of α . 

In more detail, the payoff of individuals (Pi), at each time step, was equal to: 

Pi= Pb− αC
 

that is, the payoff obtained by the behavior performed (Pb), minus the value of α  

multiplied for a factor C:  

We varied the value of C from 0 (no cost) to 0.5 (highest cost), with steps of 0.1, 

representing alternative situations in which using (and evolving) faithful social learning could 

be more or less costly. 

The average individual payoff, used to select individuals for reproduction in the 

evolutionary algorithm, was simply the sum of all payoffs an individual had had in the course 

of its life, averaged for the number of time steps it was alive. 

Individuals were selected for reproduction according to their average payoff. At each 

time step one individual, randomly chosen among the entire population, was replaced by a 

“newborn”. The newborn individual inherited the value of α  from another individual that 

was randomly chosen among the ten individuals with the highest average payoffs. The 

behavior of the newborn was initialized randomly. In other words, the fidelity of social 

learning, and not the behavior per se, was genetically inherited and, hence, subject to 

evolutionary pressures.  

Finally, with a small probability of mutation ( μ =0.05), the inherited value of α  was 

randomly reinitialized with a value comprised between 0 and 1. 
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Simulation procedures 

In a first set of simulations we studied three different sizes of behavioral repertoires (S=10, 

100, and 200) for each payoff distribution (smooth space, rugged space, and peaked space). 

For each condition, we varied the cost factor of fidelity (C=0, 0.1, 0.2, 0.3, 0.4, and 0.5) and 

we ran 100 simulations for every value of C, recording the average value of fidelity evolved. 

We then analyzed how, in peaked search spaces, the interaction between the fidelity of 

social learning and the size of the behavioral repertoire impacted the populations' behavioral 

diversity, namely, the number of behavioral patterns present in a population. To calculate 

behavioral diversity we used Simpson's diversity index. Simpson's diversity index was 

developed mainly to assess ecological diversity, taking into account both the number and 

relative abundance of species present in a given environment (Simpson, 1949). Recently it has 

been used to assess behavioral diversity in cultural evolutionary models (Kandler and Laland, 

2009; Enquist et al., 2010). According to this index the diversity of a population can be 

represented as: 


















i i
χ=D 21  

where χ(i)  is the frequency of the i variant in the population. The value of D tends 

towards 1 as the behavioral diversity of a population increases, and is equal to 0 when all 

individuals share the same behavioral variant.  

We also measured directly the number of existing behaviors at the end of simulations, 

comparing the effect of the three different search spaces, keeping the other parameters 

constant (S=200, C=0.2). 
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In a second set of simulations, we added the possibility of environmental changes. An 

additional parameter (pc=0.001, 0.01, and 0.1) determined at each time step the probability of 

the payoff distribution to be fully reinitialized. Note that reinitialization of payoffs did not 

change the structure of the search space but it changed the distribution of payoffs among the 

behaviors. In smooth spaces as well as in peaked spaces, this involved the “shifting” of the 

optimal behavior in a different position, and in rugged spaces the re-assignation of a random 

payoff to every possible behavior drawn from the exponential distribution described in 

subsection 2.2.2. Notice that when pc=0 this condition reduces to the basic simulation. 

 

Symbol Short description Values 

 

N Population size 100 

T Number of time steps  10000 

S Size of the behavioral repertoire 10, 100, 200 

C Cost factor of fidelity 0, 0.1. 0.2, 0.3, 0.4, 0.5 

μ  Mutation rate 0.05 

pc Probability of environmental change 0, 0.001, 0.01, 0.1 

   

  
Table 1. Main parameters and their value used in the model. Bold typeface values are values varied in 

different experimental conditions. 
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Results 

Faithful social learning evolves with large behavioral repertoire and in peaked 

spaces 

The results of our simulations showed that, in stable environments, costly faithful social 

learning evolved only if two conditions were simultaneously met: the populations had a large 

behavioral repertoire, and the task structure was a peaked space (see Figure 3).  

When faithful social learning was cost-free (C=0), all populations converged towards 

high average values of α , showing that high-fidelity transmission mechanisms proved 

advantageous to individuals in all conditions. However, when copying mechanisms involved 

costs that impacted on the individual's payoff (C>0), these costs were only worthwhile in 

situations where an individual search was ineffective. This occurred in peaked search spaces, 

and with populations characterized by a sufficiently large behavioral repertoire (see Figure 

3c). 

 

Figure 3. Average fidelity evolved at the end of simulations versus cost factor of fidelity.  (a) Smooth space. 

(b) Rugged space. (c) Peaked space. Different lines colors in the three conditions represent different sizes of the 

behavioral repertoire: blue line: S=200; red line: S=100, black line: S=10. (Each data point is an average on 100 

runs). 
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Behavioral homogeneity results from both high-fidelity social learning 

mechanisms and low-fidelity mechanisms 

Figure 4 depicts the evolutionary trajectories of typical runs in the peaked space condition, for 

populations having different sizes of behavioral repertoire and for three different values of C. 

We have chosen to analyze in detail the peaked space condition because in this condition 

faithful social learning evolves also when is costly (see results in Figure 3). Each point in the 

plots represents the “position” of a population with respect to its behavioral diversity (x-axes) 

and its average fidelity of social learning (y-axes), sampled at an interval of 100 time steps, 

during each run. Populations that are in the left part of the graphs are behaviorally 

homogeneous populations and populations that are on the right side are behaviorally diverse. 

With respect to y-axes, populations that are in the lower part of the graphs lack hi-fidelity 

social learning abilities while population in the upper part posses them.    

Populations always “started” in the bottom right corner of the graphs, i.e. they were 

diverse (at the beginning of the simulations behaviors were randomly initialized) and 

individuals also did not possess hi-fidelity social learning abilities ( α  was initialized at 0 for 

all individuals). When faithful social learning was cost-free (C=0, Figure 4 left), populations, 

irrespective of their behavioral repertoire's size, “moved” towards the high left corner of the 

plot during the simulation run, i.e. towards behavioral homogeneity and faithful social 

learning. It is worth noting that populations with a small behavioral repertoire (black line) 

could move to the left area of the plot (i.e. towards behavioral homogeneity) without 

individuals being required to increase their social learning ability (this happened only in later 

stages of the simulation). On the contrary, populations with larger behavioral repertoire (blue 
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and red lines) were required to increase the faithfulness of social learning (“moving up in the 

plot”) in order to move towards behavioral homogeneity.   

For intermediate costs of faithful social learning (C=0.1, Figure 4 center), the 

evolutionary trajectories of populations with large behavioral repertoire were similar, while 

the population with small behavioral repertoires reached homogeneity without developing 

faithful but costly social learning. Finally, when faithful social learning was even more costly 

(C=0.2, Figure 4 right), even populations with large behavioral repertoires did not evolve it, 

and their behavioral diversity remained high. 

In sum, while behaviorally diverse populations (right part of the plots) were the 

outcome of a large behavioral repertoire coupled with low-fidelity social learning mechanisms 

(Figure 4 right), behavioral homogeneity (i.e. low diversity, left part of the plots) could be the 

product either of faithful social learning (Figure 4 left) or of low-fidelity social learning, 

provided that the behavioral repertoire was small (Figure 4 center, black line). 

 

Figure 4. Evolutionary trajectories of populations. Evolutionary trajectories of populations in respect to 

behavioral diversity (x-axes) and average fidelity of social learning (y-axes). Each point in the plot represent the 

“position” of a population at a given stage of the evolution (sampled every 100 time steps in a simulation run).  

Different lines colors represent different sizes of the behavioral repertoire: blue line: S=200; red line: S=100, 

black line: S=10. The cost factor of social learning varies in the three panels: from left to right C=0, C=0.1, 

C=0.2.   
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However, the size of the potential behavioral repertoire was not the only factor that 

influenced the final behavioral diversity of a population. We analyzed simulation runs with the 

same behavioral repertoire size (S=200) and the same cost factor for social learning (C=0.2) 

and we measured the number of behaviors present at the end of the simulations for the three 

different search spaces (Figure 5). In smooth and rugged spaces, where faithful social learning 

did not evolve (see results in Figure 3 a and b), the populations showed approximately 20 

different behaviors. In peaked search paces, however, the final number of behavior in absence 

of faithful social learning was higher, and the same number of behaviors was reached only 

when faithful social learning evolved.      
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Figure 5. Final number of behaviors present in populations in the three different search 

spaces. Each point of the plot represents the results of a simulation in respect to the final 

number of behaviors present in the population (x-axes) and the average fidelity of social 

learning evolved (y-axes), keeping fixed the factor cost of social learning (C=0.2) and the 

size of the behavioral repertoire (S=200). Orange: peaked space, red: rugged space, green: 

smooth space. (For each space 100 simulations were run). 

 

 

 

Intermediate rates of environmental change favor the evolution of faithful social 

learning 

Finally, we analyzed the effect of environmental variation on the evolution of faithful 

social learning, running additional simulations for populations with a large behavioral 

repertoire (S=200). Populations with a large behavioral repertoire were specifically targeted as 
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the above described results showed that in these conditions faithful social learning was more 

likely to evolve when the environment was fixed.  

In smooth search spaces, environmental variation had no effect on the evolution of 

faithful social learning (Figure 6a), and populations remained composed of individuals with 

poor copying abilities, even when the environment was variable. For rugged and peaked 

search spaces (Figure 6b and 6c), we found instead that the evolution of faithful social 

learning was favored for intermediate rates of environmental variation. In fact, when the rate 

of environmental variation was too high (pc=0.1) the average values of fidelity evolved were 

similar to the condition in which the environment was stable (pc=0).  

 

 

Figure 6. Stacked bar plot of the average fidelity evolved with different probabilities of environmental 

change for population with S=200 (size of the behavioral repertoire). The different colors in the bars 

represent different values of C (factor cost of faithful social learning) from C=0.1 (darker) to C=0.5 (lighter). We 

did not take into account C=0 because in this condition faithful social learning always evolved for pc=0 (see 

Figure 3). (a) Smooth space. (b) Rugged space. (c) Peaked space. (Each data is an average on 100 runs). 
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Discussion 

General discussion of the results 

The present individual-based model examined the relationship between behavioral constraints 

and the evolution of faithful social learning. Constraints varied according to the size of the 

behavioral repertoire of populations (10 vs. 100 vs. 200 possible alternative behaviors) and 

according to the intrinsic structure of the search space characterizing the task problem (smooth 

space vs. rugged space vs. peaked space). We firstly analyzed, by varying the cost for 

individuals to use faithful transmission mechanisms (from null to high cost), how and in which 

type of search spaces populations with different sizes of behavioral repertoire would take 

advantage of such faithful social learning. We also took into account the effects of fidelity of 

social learning and behavioral constraints on the behavioral diversity at population level. We 

investigated whether populations unequipped with high-fidelity transmission mechanisms 

were prone to develop and stabilize novel behavioral patterns in a manner outwardly similar to 

populations equipped with high-fidelity transmission mechanisms. Finally, the effect of the 

rate of environmental change in which populations evolved (from no to fast environmental 

change) was studied. 

 Three main results emerged. First, in stable environments, costly faithful social 

learning evolved only in populations with large behavioral repertoires, and particularly in 

peaked search spaces. Second, the convergence towards behavioral homogeneity resulted from 

high-fidelity social learning mechanisms but also from low-fidelity mechanisms, when they 

were associated with a small behavioral repertoire or with smooth and rugged search spaces. 
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Third, intermediate rates of environmental change favored the evolution of faithful social 

learning. 

 The evolution of faithful social learning, when costly, strongly depended on behavioral 

constraints. According to our results, we should expect to find, in real-life, faithful social 

learning in conditions in which a species, or a group, has many behavioral alternatives (a large 

S in our model) and, at the same time, in which the task at hand does not provide any structure 

useful to orient the individual's search. In particular these conditions were met in peaked 

spaces. Tasks characterized by this search space had two interesting features. First, only a very 

narrow number of behaviors – in our model, only one – led to success (i.e. the payoff 

achievable with sub-optimal behaviors is zero, differently from other spaces). Secondly, 

performing behaviors other than the single successful solution did not provide any feedback 

that individuals could use to estimate the optimality of a given behavior. This result confirms 

and enriches our previous findings (Acerbi et al., 2011) where we showed that, for tasks 

whose search structure could be modeled as a peaked space, imitation – i.e. a specific instance 

of high-fidelity social learning mechanism – was more effective than emulation and individual 

learning. 

 We also showed that the convergence of a population towards behavioral homogeneity 

could result, as expected, from high-fidelity social learning mechanisms, but also from low-

fidelity social learning mechanisms. An analysis of simulations for peaked search spaces 

demonstrated that a population with a small behavioral repertoire could become behaviorally 

homogeneous without developing high-fidelity social learning mechanisms. Additionally, our 

results also showed that when the number of potential behaviors was large, the search 

structure had an impact on the number of behaviors actually present in the population. In 
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particular, relative homogeneity in absence of high-fidelity social learning mechanisms was 

obtained for smooth and rugged search spaces, but not for peaked spaces.   

 This observation is of importance since the emergence of behavioral homogeneity in 

wild populations is often presumed to be a sign of faithful social learning (Huber et al., 2009). 

While this could certainly be the case – in the simulations presented here faithful social 

learning does indeed produce behavioral homogeneity – our model provides an alternative 

explanation. This explanation is based on the existence of behavioral constraints, may they be 

due to physical and/or cognitive limitations, or ecological factors (shaping the search space of 

a given task). It has been shown that behavioral constraints can lead to the re-appearance of 

presumed cultural behaviors in naïve captive individuals (Huffman and Hirata, 2004; Tennie 

et al., 2008; see also Masi, 2011). With regard to ecological influences, it has long been 

suggested that these may help explain the distribution of several behaviors across populations 

(Humle and Matzusawa, 2002; though see Schöning et al., 2008; Möbius et al., 2008). For a 

behavior presumed to be a product of faithful social transmission, one has to check whether its 

diffusion among the population is accounted for by such alternative possibilities (see also 

Laland and Janik, 2006; Tennie et al., 2009). Of course, as nearly always in modeling, our 

model represents an ideally simplified situation. However, one could imagine having an 

estimation of the possible alternative behaviors a species is likely to use (see e.g. Changizi, 

2003), as well as an estimation of the search structure of a specific task (for example the 

distribution of resources in a specific environment and their energetic/caloric contribution). 

These data can then be used to parameterize the model. In this way one could obtain more 

realistic results that could be used as a guide to analyze whether, in a specific situation, a 

given population is likely to make use of social learning.   
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 Finally, by manipulating the probability of environmental change, we showed that 

intermediate rates of environmental change favored the evolution of faithful social learning. 

Importantly, with moderate rates of environmental change, costly faithful social learning 

evolved not only in peaked spaces, but also in rugged search spaces. This is consistent with the 

idea that the three search spaces we modeled represent three different levels of “difficulty” 

(see below however for how we intend the meaning of “difficulty” here), with smooth spaces 

representing “easy” tasks, followed by rugged spaces, and then by peaked spaces as the most 

difficult ones. More generally, this result is coherent with the broad consensus that the 

evolution of social learning is more likely to occur for an intermediate rate of environmental 

change than for no change – where genetic evolution is favored - or fast change – where 

individual learning is favored (see e.g. Henrich and McElreath, 2003; Wakano et al., 2004; 

Aoki et al., 2005).  

 

Related literature and possible extensions of the model 

The results of our model are, in general, consistent with the “costly information hypothesis” 

(Boyd & Richerson, 1985), according to which social learning is favored when acquiring 

information individually is costly or inaccurate (see e.g. Rogers, 1988; Boyd & Richerson, 

1995; Wakano et al., 2004; Aoki et al., 2005). We aimed to illustrate how this trade-off 

between social and individual learning could be realized in a scenario analogous to many real-

life situations, focusing on the notion of behavioral constraints, and we believe that this 

illustration may be of some use for field biologists and comparative psychologists who study 

social learning and cultural evolution.  
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 The role of the variation of search spaces, or adaptive landscapes, have been 

considered in previous models of cultural evolution (Boyd & Richerson, 1992; Mesoudi, 

2008). These models show how multimodal adaptive landscapes – i.e. search spaces with more 

than one peak – favor social learning, contrary to unimodal adaptive landscapes, where 

individual learning is favored. Our results add to these previous finding by showing that also 

in unimodal adaptive landscapes social learning may be favored, as long as the search space 

does not provide information that can be used to orient individual learning (our peaked space 

condition).  

 Previously, other computational models (Hinton & Nowlan 1987) had shown that 

problems analogous to tasks represented by the peaked space could be solved through a 

combination of individual learning and genetic evolution. Since we did not consider genetic 

evolution (i.e. our evolutionary algorithm acted on the accuracy of social learning, and not on 

the actual behavior), our model is unable to address this question, though we obtained the 

same qualitative result with respect to the poor performance of individual learning alone. In a 

later development of Hinton and Nowlan's model (Best, 1999), the possibility of social 

learning was added, and it was shown that, indeed, the combination of social learning and 

genetic evolution improved the performance compared to the combination of individual 

learning and genetic evolution. In Best's model, however, social learning was cost-free and no 

changes in the search space or in the size of the behavioral repertoire were taken into account.  

 As with many models, we concentrated here on few parameters that we thought of 

fundamental importance for our study, namely the cost of acquiring faithfully social 

information, the size of the behavioral repertoire, the different search spaces, and, as a final 

check of the validity of our model, the extent of environmental variation. Interesting 
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developments could consist in examining the effects of other factors on the results here 

reported. For example, we used a basic evolutionary algorithm, mainly intended as a proof-of-

concept tool, keeping a fixed – and high – selection pressure, a simple implementation of the 

mutation – α  was reinitialized every time a mutation occurs –, and we did not consider the 

effect of population size on evolutionary dynamics. We had run some exploratory simulations 

to test the effects of the variation of these parameters (not reported in the results section). 

Varying population size (N=200; N=500) and changing the way mutations were implemented 

( α  each time modified by a value randomly selected between -0.1 and +0.1) did not seem to 

change qualitatively our main results. Selection pressure, however, had some impact on the 

results. Interestingly, less selection pressure (“reproducing” individuals randomly chosen 

among the twenty, or fifty, individuals with the highest average payoffs) favored the evolution 

of social learning when costs were high, at least in peaked and rugged search spaces, and for 

large behavioral repertoires (S=100; S=200). We interpret this result as meaning that, with 

high selection pressures, “lucky” individuals that found optimal behaviors without using costly 

social learning were highly favored by the evolutionary algorithm, making populations of 

social learners unstable. The interactions between population size and selection pressure are 

anyhow inherently complex, and we plan to explore their effect on the evolution of faithful 

social learning in scenarios like ours in future works.       

 We also assumed that individuals were randomly paired in their interactions, a part 

from the fact that only individuals with proportionally high payoffs were targeted as possible 

demonstrators. Starting from the same set-up, one could certainly include more realistic rules 

of interactions, considering for example individuals being in different ways selective in their 
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decisions about when and from who to copy (for the importance of these and other social 

learning “strategies” see Laland, 2004; Rendell et al. 2011), or explicitly consider a spatial 

dimension in the model, with individuals having different movement “rules” and interactions 

constrained by physical proximity.   

 As a final remark, we initialized our populations with random behaviors, chosen 

among all the possible alternatives of their potential behavioral repertoire. This is possibly an 

unrealistic situation (real populations do not show highly diverse – and certainly not random – 

behaviors) but we believe such a simplification to be useful as a “starting point” for the 

evolutionary algorithm. Again, future work could analyze how behavioral constraints impact 

on the evolution of social learning, starting from homogeneous populations that behave sub-

optimally or already optimally, in which case social learning would be necessary to maintain 

the correct behavior through time.  

  

General considerations and implications for modern human culture 

We conclude with some general considerations derived from our results. In social learning 

research, the complexity of a task is often considered suggestive of the presence of social 

learning – with “easy” tasks being solved with individual learning and “difficult” tasks 

needing social transmission (see also Acerbi et al., 2011). Especially in laboratory tasks, 

experimenters try to propose “difficult” tasks to animals to encourage the use of social 

information to solve them (Day et al., 2003, Baron et al., 1996, Laland, 2004, Tennie et al., 

2009). While this is probably a good rule of thumb, our model suggests that what makes 

faithful social learning useful is not the difficulty of a task per se (see also Tennie and 



214 

 

Hedwig, 2009) but the fact that relatively unconstrained behavioral alternatives are potentially 

involved in that task (or, if you prefer, a task is “difficult” when this happens). A spider's web 

may or may not be less complex than potato washing, what is different is that, in the former 

case, natural selection, working on the genetic level, highly constrained the behavioral 

repertoire, narrowing down the possible alternatives.  

 Within this perspective, even very complex human “cultural” behaviors may be a result 

of a combination of a genetically/ecologically narrowed behavioral repertoire, constrained 

search spaces, and some form of social learning (Sperber, 1996). One might consider, for 

example, cookery traditions. The impressive variability of foods consumed in different 

cultures is the outcome of various forms of cultural transmission (between and within 

societies) that nonetheless act on a “constrained space”: ecologically constrained (local 

availability of products), genetically constrained (only some products are edible; some taste 

preferences are at least partly innate, Rozin, 1990), and technologically constrained (many 

products have to be processed in a specific way to became edible; the technologies available in 

a group limit the choice of processing food techniques). On the other side, some cultural 

behaviors are relatively less constrained. Many fashions and fads, for example, result from 

pure transmission processes (see e.g. Bentley et al., 2007): the fashion of, say, “wearing 

green” one year but not the next has not much to do with behavioral constraints as we intended 

them in this paper. Analogously, if we take into consideration highly complex technological 

tasks, products of human cumulative culture (Richerson and Boyd, 2005), behavioral 

constraints become less and less important. Building a kayak – or an airplane – is certainly 

subject to constraints (all in all airplanes need to fly and kayaks need to float) but their 

guidance is so loose that only high fidelity copying mechanisms can allow an individual to 
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acquire the necessary skills to produce them. Humans, nevertheless, also excel in a parallel 

strategy to solve those problems: cultural “epistemic engineering” (Sterelny 2003) is, 

according to the view presented here, a matter of narrowing the alternative solutions to a 

problem, and artificially build highly informative search spaces so as to reduce the need of 

costly social learning. 

 In conclusion, we believe that an explicit attention towards what is learned, and 

towards the potential alternatives and constraints, may enrich the theoretical toolbox of social 

learning modeling, and possibly our understanding of humans and other species' culture.   

 

 

References  

Acerbi A, Nunn CL, 2011. Predation and the phasing of sleep: an evolutionary individual-

based model. Animal Behaviour 81: 801-811. 

Acerbi A, Tennie C, Nunn CL, 2011. Modeling imitation and emulation in constrained search 

space. Learning & Behavior, 39: 104-114. 

Aoki K, Wakano JY, Feldman MW, 2005. The emergence of social learning in a temporally 

changing environment: A theoretical model. Current Anthropology, 46: 334-340.  

Baron RS, Vandello JA, Brunsman B, 1996. The forgotten variable in conformity research: 

The impact of task importance on social influence. Journal of Personality & Social 

Psychology, 71: 915-927. 

Bentley RA, Lipo CP, Herzog HA, Hahn M, 2007. Regular rates of popular culture change 

reflect random copying. Evolution and Human Behavior, 28: 151–158. 

Best ML, 1999, How culture can guide evolution: an inquiry into gene/meme enhancing and 

opposition. Adaptive Behavior, 7: 289-306. 

Boyd R, Richerson PJ, 1985. Culture and the evolutionary process. Chicago, IL: University of 

Chicago Press. 

Boyd R, Richerson PJ, 1992. How microevolutionary processes give rise to history. In MK 

Nitecki & DV Nitecki (Eds.), History and evolution (pp. 179-209). New York, NY: 

SUNY Press. 

Boyd R, Richerson PJ, 1995. Why does culture increase human adaptability? Ethology and 

Sociobiology, 16: 125-143. 

Boyd R, Richerson PJ, 1996. Why culture is common but cultural evolution is rare. 

Proceedings of the British Academy, 88: 77-93. 



216 

 

Caldwell CA, Millen AE, 2009. Social learning mechanisms and cumulative cultural 

evolution. Is imitation necessary? Psychological Science, 20: 1478-1483. 

Call J, Carpenter M, 2002. Three sources of information in social learning. In K Dautenhahn 

& CL Nehaniv (Eds.), Imitation in Animals and Artifacts (pp. 211-228). Cambridge, 

MA: MIT Press. 

Changizi MA, 2003. Relationship between number of muscles, behavioral repertoire size, and 

encephalization in mammals. Journal of Theoretical Biology. 220: 157-68. 

Claidière N, Sperber D, 2010. Imitation explains the propagation, not the stability of animal 

culture. Proceedings of the Royal Society of London. Series B, Biological Sciences, 

277: 651-659. 

Day R, Coe RL, Kendal JR, Laland KN, 2003. Neophilia, innovation and social learning: A 

study of intergeneric differences in Callitrichid monkeys. Animal Behaviour, 65: 559-

571. 

Desmurget M, Prablanc C, Rossetti Y, Arzi M, Paulignan Y, Urquizar C, Mignot J-C, 1995. 

Postural and synergic control of three-dimensional movements of reaching and 

grasping. Journal of Neurophysiology, 74: 905-910. 

Enquist M, Strimling P, Eriksson K, Laland K, Sjöstrand J, 2010. One cultural parent makes 

no culture. Animal Behaviour, 79: 1353-1362. 

Franz M, Matthews LJ, 2010. Social enhancement can create adaptive, arbitrary and 

maladaptive cultural traditions. Proceedings of the Royal Society of London. Series 

B, Biological Sciences, 277: 3363-3372. 

Gill FB, Wolf LL, 1977. Nonrandom foraging by sunbirds in a patchy environment. Ecology,  

58: 1284-1296. 

Goldstone RL, Roberts ME, Mason W, Gureckis T, 2008. Collective search in concrete and 

abstract spaces. In Kugler T, Smith C, Connelly T, Son Y-J (Eds.), Decision 

modeling and behavior in uncertain and complex environments (pp. 277-308). New 

York, NY: Springer. 

Grimm V, Railsback SF, 2005. Individual-based Modeling and Ecology. Princeton, NJ: 

Princeton University Press. 

Henrich J, McElreath R, 2003. The Evolution of Cultural Evolution. Evolutionary 

Anthropology, 12: 123-135.  

Heyes C, 1993. Imitation, culture and cognition. Animal Behaviour, 46: 999-1010. 

Hinton GE, Nowlan SJ, 1987. How learning can guide evolution. Complex Systems, 1: 495-

502. 

Holland JH, 1975. Adaptation in Natural and Artificial Systems. Ann Arbor, MI: University of 

Michigan Press. 

Horner V, Whiten A, Flynn E, de Waal FB, 2006. Faithful replication of foraging techniques 

along cultural transmission chains by chimpanzees and children. Proceedings of the 

National Academy of Sciences USA, 103: 13878-13883. 

Huber L, Range F, Voelkl B, Szucsich A, Virányi Z, Miklosi A, 2009. The evolution of 

imitation: what do the capacities of non-human animals tell us about the mechanisms 

of imitation? Philosophical Transactions of the Royal Society of London. Series B, 

Biological Sciences, 364: 2299-2309. 

Huffman MA, 1996. The study of nonhuman primate culture in Japan. In Heyes CM, Galef 

BG (Eds). Social learning in animals: the roots of culture (pp-267-289). San Diego, 



217 

 

CA: Academic Press. 

Huffman MA, Hirata S, 2004. An experimental study of leaf swallowing in captive 

chimpanzees: insights into the origins of self-medicative behavior and the role of 

social learning. Primates, 45: 113-118. 

Humle T, Matsuzawa T, 2002. Ant dipping among chimpanzees of Bossou, Guinea and some 

comparisons with other sites. American Journal of Primatology, 58:133–148. 

Kandler A, Laland KN, 2009. An investigation of the relationship between innovation and 

cultural diversity. Theoretical Population Biology, 76: 59-67. 

Laland KN, 2004. Social learning strategies. Learning & Behavior, 32: 4-14. 

Laland KN, Hoppitt W, 2003. Do animals have culture? Evolutionary Anthropology, 12: 150-

159. 

Laland KN, Janik VM, 2006. The animal cultures debate. Trends in Ecology and Evolution, 

21: 542-547. 

Laland KN, Galef BG, 2009. The question of animal culture. Cambridge, MA: Harvard 

University Press. 

van Leeuwen ML, van Baaren RB, Martin D, Dijksterhuis A, Bekkering H, 2009. Executive 

functioning and imitation: Increasing working memory load facilitates behavioural 

imitation. Neuropsychologia. 47: 3265-3270. 

Marino L, 2007. Cetaceans have complex brain for complex cognition. PLoS Biology, 5: 

e139. 

Masi S, 2011. Differences in gorilla nettle-feeding between captivity and the wild: local 

traditions, species typical behaviors or merely the result of nutritional deficiencies? 

Animal Cognition. 14:921-925. 

Matthews LJ, Paukner A, Suomi SJ, 2010. Can traditions emerge from the interaction of 

stimulus enhancement and reinforcement learning? An experimental model. 

American Anthropologist, 112: 257-269. 

Mesoudi A, 2008. An experimental simulation of the “copy–successful–individuals” cultural 

learning strategy: adaptive landscapes, producer-scroungers dynamics, and 

informational access costs. Evolution and Human Behavior, 29: 350-363. 

Mesoudi, A, O’Brien MJ, 2008. The cultural transmission of great basin projectile-point 

technology I: an experimental simulation. American Antiquity, 73: 3–28. 

Möbius Y, Boesch C, Koops K, Matsuzawa T, Humle T, 2008. Cultural differences in army 

ant predation by West African chimpanzees? A comparative study of microecological 

variables. Animal Behaviour, 76: 37-45. 

Rendell LE, Fogarty L, Hoppitt, WJE, Morgan TJH, Webster MM, Laland KN, 2011. 

Cognitive culture: Theoretical and empirical insights into social learning strategies. 

Trends in Cognitive Sciences, 15: 68-76. 

Richerson PJ, Boyd R, 2005. Not by genes alone: How culture transformed human evolution. 

Chicago, IL: University of Chicago Press. 

Rogers, AR, 1988. Does biology constrain culture? American Anthropologist 90: 819-831. 

Rozin P, 1990. Development in the food domain. Developmental Psychology, 26: 555–562. 

Schöning C, Humle T, Möbius Y, McGrew WC, 2008. The nature of culture: technological 

variation in chimpanzee predation on army ants revisited. Journal of Human 

Evolution, 55: 48-59. 

Shea N, 2009. Imitation as an inheritance system. Philosophical Transactions of the Royal 



218 

 

Society of London. Series B, Biological Sciences, 364: 2429-2443. 

Simpson EH, 1949. Measurement of diversity. Nature, 163: 688. 

Sperber D, 1996. Explaining culture. A naturalistic approach. Oxford: Blackwell. 

Sterelny K, 2003. Though in an hostile world. The evolution of human cognition. Oxford: 

Blackwell. 

Tennie C, Call J, Tomasello M, 2006. Push or pull: emulation versus imitation in great apes 

and human children. Ethology, 112: 1159-1169. 

Tennie C, Hedwig D, Call J, Tomasello M, 2008. An experimental study of nettle feeding in 

captive gorillas. American Journal of Primatology, 70: 584-93.  

Tennie C, Hedwig D, 2009. How latent solution experiments can help to study differences 

between human culture and primate traditions. In Potocki E, Krasinski J (Eds),  

Primatology: Theories, Methods and Research (pp 95-112). New York, NY: Nova 

Publishers.  

Tennie C, Call J, Tomasello M, 2009. Ratcheting up the ratchet: on the evolution of 

cumulative culture. Philosophical Transactions of the Royal Society of London. 

Series B, Biological Sciences, 364: 2405-2415. 

Tennie C, Call J, Tomasello M, 2010. Evidence for emulation in chimpanzees in social 

settings using the floating peanut task. PloS ONE, 5: e10544. 

Tomasello M, 2009. The cultural origins of human cognition. Cambridge, MA: Harvard 

University Press. 

Tomasello M, Kruger AC, Ratner HH, 1993. Cultural learning. Behavioral and Brain 

Sciences, 16: 495-552. 

van de Waal E, Renevey N, Favre CM,  Bshary R, 2010. Selective attention to philopatric 

models causes directed social learning in wild vervet monkeys. Proceedings of the 

Royal Society of London. Series B, Biological Sciences, 277: 2105-2111. 

Wakano, JY, Aoki, K., Feldman MW, 2004, Evolution of social learning: a mathematical 

analysis. Theoretical Population Biology, 66: 249-258.  

Whiten A, Horner V, Marshall-Pescini S, 2003. Cultural panthropology. Evolutionary 

Anthropology, 12: 92-105. 

Whiten A, McGuigan N, Marshall-Pescini S, Hopper LM, 2009. Emulation, imitation, over-

imitation and the scope of culture for child and chimpanzee. Philosophical 

Transactions of the Royal Society. Series B, Biological Sciences, 364: 2417–2428. 

 

 

 



219 

 

 

 

 

 

GENERAL DISCUSSION 

AND PERSPECTIVES 

 

 

 

 



220 

 

This thesis had several objectives. The experiment described in Chapter One focused on a 

perceptual aspect of action understanding, and aimed to investigate the role of the inferior 

frontal cortex (IFC), the anterior intraparietal region (AIP) (thought to form part of the Action 

Observation Network – AON) and the primary somatosensory (S1) cortex in the hierarchical 

decoding of observed actions. The experiment described in Chapter Two investigated the 

contribution of prior information and sensorimotor constraints to action understanding and 

prediction, while Chapter Three’s experiment was designed to probe whether the interaction 

between these two variables modulates corticospinal excitability (CSE) during action 

prediction. Finally, in Chapter Four we attempted to model at a population level the impact of 

these behavioral constraints on the emergence and maintenance of behavioral traditions 

acquired by means of social transmission mechanisms. Even though a huge amount of 

literature has been dedicated to the study of action understanding and its role in social 

learning, the nature of the relationships between these two issues is still a matter of debate. 

Overall, the experimental studies presented in this thesis invrease our understanding of these 

relationships. In particular, within this domain there is a lack of  evidence regarding whether, 

and how, high-level (e.g., acquired from probabilistic exposure) and low-level (e.g., derived 

from the estimation of biomechanical costs engaged in the observed action) prior expectations 

adaptively interact during action prediction. There is also very little evidence concerning the 

brain mechanisms that underlie these adaptive interactions. The broader contribution of this 

work is to highlight the importance of behavioral constraints and simple decision heuristics in 

the emergence of cultural traditions. 
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In the Experimental Contribution Chapter 1 entitled ‘Perturbing the Action Observation 

Network during perception and categorization of others’ actions: state-dependency and 

virtual lesion TMS effects’, we tested the respective contributions of the inferior frontal 

cortex (IFC), the anterior intraparietal region (AIP) (two areas that are thought to form part of 

the Action Observation Network (AON), also referred to as the human mirror system) and the 

primary somatosensory cortex (S1) in the perception and the recognition of observed tool-

directed actions. To do so, we used a transcranial magnetic stimulation adaptation paradigm 

(TMSA). The aim of this type of paradigm is to manipulate, prior to the stimulation, the initial 

state of brain regions thought to play a role in the decoding a specific stimulus. The basic 

assumption is that if the target regions are involved in the decoding of test stimuli, the 

repeated exposure to a constant stimulus should result in an habituation in a subset of neurons 

that are located in these regions (Silvanto et al., 2008; Cattaneo et al., 2008). As neurons 

encoding the adapted attribute of the stimuli (i.e., the type of grip used versus the state of the 

effector configuration when the action outcome is reached) are made less active/excitable by 

adaptation, the application of TMS over the target regions should perceptually/behaviorally 

facilitate the less active/excitable neural populations relatively more than the active ones (e.g. 

faster reaction times for recognizing the stimulus that was previously adapted). After the 

adaptation phase, neurons that are sensitive to the stimulus attributes are assumed to have a 

baseline level of activity that is lower than neurons that are not tuned by adaptation (Li et al., 

1993), and the latter group are more prone to reach a ceiling level of activation.  This 

facilitation effect may occur because for the less active neurons there is a greater range for 
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firing rate to be increased. TMSA paradigms enable one to estimate the causal involvement of 

brain regions in behavioral tasks (e.g. perceptual discrimination tasks) with better spatial 

resoluation than repetitive TMS techniques (see Silvanto and Pascual-Leone, 2008). 

Using TMSA, we were interested in testing the causal involvement of the sensorimotor 

nodes of the AON in the differential visual coding of specific actions and action components. 

Participants were presented with adapting movies of an actor performing complex goal-

directed actions on a tool (actions in which an object was lifted in order to open a box versus 

actions in which the same object was turned in order to switch-on a light) by using two kinds 

of grips (actions achieved with the use of a power versus precision grip) and were further 

asked to categorize test pictures as showing similar or different action/grips relative to the 

adapting movie. TMS was applied after the adaptation phase, at the onset of each test picture.  

The key finding of this study was that applying TMS over S1 and IFC induced state-

dependent effects on action recognition (see chapter 1 of the thesis, figure 4, pp. 98). TMS 

over S1 induced a selective decrease in the Inverse Efficiency index (i.e., a single measure of 

performance merging both RTs and accuracy) for pictures presenting the adapted action, 

indicating that stimulation of S1 improved the visual analysis of actions to which participants 

have been previously adapted. A similar improvement in performance for adapted relative to 

non-adapted actions was found with TMS over IFC, but not with sham stimulation nor 

stimulation of AIP. These results suggest that TMS over S1 and IFC specifically enhanced 

performance of the neural subpopulations that respond to a specific invariant feature, i.e. the 

type of arm action, between the adapting stimulus and the test stimulus. The TMS-induced 

behavioral enhancement occurred when subjects had to attend to such invariant feature (i.e. in 
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the Arm Action recognition task) and was absent when processing of the same feature was 

task-irrelevant (i.e. in the Grip recognition task).  

These findings, to the best of my knowledge, provide the first causative evidence of an 

involvement of S1 in the perception of complex goal-directed actions. This raises the question 

about whether S1, like AIP and IFC, contains mirror neurons that discharge both when an 

individual executes an action and when she/he observes the very same action (di Pellegrino et 

al., 1992). Interestingly, it has been demonstrated that half of the neurons of the IFC 

(specifically the ventral part of the premotor cortex) respond to somatosensory stimulation, 

suggesting that the mirror system may have functional links with the somatosensory cortices 

(Rizzolatti et al., 1988). S1 and S2 are known to be recruited in the processing of tactile, 

proprioceptive, and nociceptive information (see for a review Keysers et al., 2010). S1 has 

been shown to be more active when viewing hands manipulating objects (e.g., grasping a cup 

of tea) than actions that do not involve object manipulation (e.g., pointing movements) 

(Buccino et al., 2001; Pierno et al., 2009). Additionally, a differential activation of S1 was 

revealed when observers watched someone moving a heavy object compared to a light object 

(Molnar-Szakacs et al., 2006). Finally, it has been shown that when participants watched 

movies in which demonstrators manipulate objects, activity was consistently observed in S1. 

According to Keysers and co-workers (2010), this suggests that S1 could be involved in 

‘representing the haptic combination of tactile and proprioceptive signals that would arise if 

the participants manipulated the object in the observed way’ (pp. 423).  

The results of our study could be in line with these findings. However, the 

improvement in behavioral performance during the stimulation of S1 was observed when 

participants had to categorize the type of action that was performed by the filmed 
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demonstrator, independently of the type of grip used to achieve these actions. One 

interpretation of this is that S1 actively participates in a mid-level analysis of the observed 

motor actions, taking into account the general state of the effector at the end-state of the action 

rather than the local variation of movement kinematics such as those characterizing the 

difference between power and precision grips. Possibly, S1 may inform other regions of the 

AON (and in particular the IFC in which action selection processes occur) with somatic cues 

that could be further used to ‘simulate’ the type of action that is currently observed. 

Unfortunately, our study failed to reveal consistent behavioral differences between the types 

of adapted actions. Indeed, according to the findings reported above, one may expect that 

stimulating S1 would improve the recognition of the adapted lifting action compared with the 

adapted switching action, especially when these two actions were performed with a grip that 

increased their general biomechanical costs (i.e., the use of a precision grip is better suited 

than a power grip to achieve the light switching action and, conversely, the use of a power grip 

is better suited than a precision to achieve the box opening action). Although S1 has been 

shown to be sensitive to the sensorimotor constraints associated with observed actions 

(Molnar-Szakacs et al., 2006), we did not find such an effect. The absence of such an effect in 

our experiment is not contradictory in itself, as it could suggest that S1 underlies our general 

capacity to represent what it would feel like to move one’s own arm and hand in an observed 

way, independently of whether what is observed is associated with a high or low sensorimotor 

constraints. In conclusion, the observation of other people’s actions recruits not only the 

classical sensorimotor nodes of the AON such as IFC and AIP, but also S1 which could be 

involved in ‘simulating’ how our own body would move and interact with objects that are the 

targets of the actions we observe.   
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The first experimental study of this thesis showed that action recognition requires the 

contribution of the primary somatosensory cortex, which is involved in the decoding of 

sensorimotor as well as somatic information conveyed by observed actions. Together, this 

information can be used by an observer to estimate the sensorimotor constraints (the muscular 

and articulatory costs) engaged in the execution of an action that is currently observed. In the 

Experimental Contribution Chapter 2 entitled ‘Object Affordances Tune Observers’ 

Prior Expectations About Tool-Use Behaviors’, we postulated that the detection of visual 

cues – the affordances of an object or a tool – that enable an observer to make predictions 

about such constraints activate prior information that biases the interpretation of other people’s 

actions. Such priors (here termed ‘biomechanical priors’) were thought to provide an 

economic, by default, interpretative strategy on which observers rely in order to understand 

and predict actions. Besides prior information conveyed by an estimation of the sensorimotor 

constraints of an observed actions, human observers can take advantage of another kind of 

prior information to infer other people’s intentions, that is, information extracted from the 

statistical regularities of past events (Griffiths et al., 2008). It has been shown recently that 

human observers use the probability of occurence of another agent’s intentions as a reliable 

source of information to infer, from observation, the intentions of an agent’s upcoming actions 

(Chambon et al., 2011a, 2011b). Furthermore, these studies showed that participants were able 

to modulate the contribution of this information as a function of the available perceptual 

evidence as well as the type of intention to be inferred. More specifically, human observers 

progressively disengage from sensorimotor information in favor of probabilistic information 
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when the perceptual evidence decreases (i.e., when the visual information conveyed by the 

action scene was stopped before the completion of the observed action) and when the goal to 

be inferred pertains to the higher levels of description of the action hierarchy (i.e., when the 

goal could potentially be achieved by a variety of motor actions).  

The objective of our second experiment was thus to manipulate the biomechanical and 

probabilistic prior expectations of participants in order to study whether, and how, they 

interacted during action prediction. We designed a task in which participants were required to 

infer, under various conditions of visual uncertainty, the intentions of a demonstrator who 

manipulated a two-purpose tool using either a power or a precision grip in order to achieve 

two different intentions (opening the box versus switching-on the light). Affordance-related 

priors (termed ‘biomechanical’ priors) and priors acquired from past observations (termed 

‘probabilistic’ priors) were manipulated by varying the biomechanical optimality (i.e., using a 

precision grip to switch-on the light and using the power grip to open the box minimized the 

sensorimotor constraints associated with goal achievement) of the tool-use actions and the 

probability (low versus high) of observing optimal versus suboptimal tool-use actions. Results 

of this study showed that biomechanical priors modulate the extent to which participants’ 

predictions are influenced by probabilistically-induced expectations. Crucially, it was revealed 

that when the demonstrator’s behavior satisfied both the participants’ biomechanical and 

probabilistic priors, participants were able to efficiently combine both types of priors to make 

their predictions. Conversely, when the demonstrator’s behavior conflicted with the 

biomechanical but not the probabilistic priors, it was costly for participants to inhibit the 

irrelevant sources of prior information, that is, the biomechanical priors. Nonetheless, our 

results suggest that increasing the number of observations of suboptimal behaviors could lead 
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to a progressive decrease in the influence played by biomechanical priors, in favour of 

probabilistic priors.  

Overall, our study demonstrates that prior information elicited by the sensorimotor 

constraints of the observed action and priors acquired from probabilistic exposure both 

contribute to action understanding. However, it appears that their respective weight in the 

prediction depends on the type of behavioral ‘environment’ (the type of behavior that is more 

likely to occur given past observation) observers are confronted with: biomechanical priors 

being particularly suited to make predictions in familiar behavioral environment (e.g., when 

observed agents behave according to the rules of biomechanical optimality); probabilistic 

priors being particularly suited to generate predictions in new or unfamiliar behavioral 

environment (e.g., when rules of biomechanical optimality are overridden or patently 

violated). 

One of the intriguing aspects of this study concerns the strong predictive value of 

object affordances. Indeed, we propose that object affordances trigger a simple decision 

heuristic that is particularly efficient in predicting tool-use behaviors in conditions of visual 

uncertainty, and we observed that this decision heuristic is particularly difficult to inhibit. We 

proposed that affordances are predictive cues because they are perceived within the principle 

of rationality (Dennett, 1987), i.e., the fact that an action goal is expected to be achieved with 

the most optimal action means that are available given the situational constraints in which the 

action takes place (Gergely and Csibra, 2003; Csibra and Gergely, 2007). Here, object 

affordances are predictive of the upcoming action goals because each of them (the affordance 

that elicits a power grip and the affordance that elicits a precision grip) is ‘rationally’ adapted 

to reach a specific goal (e.g., the affordance that elicits a power grip is particularly prone to be 
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exploited in order to open the box), with the rationality of the observed actions depending on 

whether or not the agent minimizes the muscular and articulatory costs.  

The mere visual detection of an object affordance has been shown to automatically 

trigger in the observer’s motor system (in the anterior intraparietal region and in the inferior 

frontal cortex of monkeys and humans) a set of motor commands corresponding to the 

afforded action (Murata et al., 1997; Murata et al., 2000; Gallese et al., 1994; Fogassi et al., 

2001; Binkofski et al., 1998, 1999; Grèzes et al., 2003). Following this, one can rightfully 

question whether the predictive value of affordances evidenced by our results can be 

accounted for by a mechanism of motor ‘simulation’ or motor ‘resonance’ generated by the 

human mirror system. The answer to this question depends upon the function one attributes to 

the mirror system.  

The first alternative – the well known direct matching hypothesis (Rizzolatti et al., 

2001) –supports the idea that observing a demonstrator who is about to exploit a particular 

affordance activates in the observer’s mirror system low-level motor representations 

corresponding to the detailed kinematics that are currently observed (i.e., the hand and digit 

configuration prior to the grasping movement). The activation of low-level motor 

representations by observation, resulting from visuomotor transformation carried out by mirror 

neurons, then propagates upwards in the observer’s own hierarchically organized action 

system (see Hamilton and Grafton, 2006) to estimate which higher level goals might have 

generated the observed action (Fogassi et al., 2005; Iacoboni et al., 2005; Wolpert et al., 

2003). However, this ‘bottom-up’ propagation would be efficient only for predicting the 

action’s motor sub-goals (e.g., predicting the type grasping movement that is about to be 

performed), and not the higher level goals (e.g. opening the box) (Jacob and Jeannerod, 2005). 
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In our experiment, action stimuli were designed such that predicting the underlying intention 

poses an inverse problem (Baker et al., 2009), i.e., the analysis of sensorimotor information 

conveyed by the initial stages of the observed actions is not sufficient to unambiguously infer 

the demonstrator’s intention. Thus, how do observers, when confronted with a specific type of 

grasping movement, select a particular goal among the two possible alternatives (i.e., opening 

the box versus switching-on the light)? Unfortunately, the direct-matching hypothesis alone 

fails to explain the directionality of the participants’ goal choice, whether it is biased by 

probability or by the observed biomechanical constraints. Nonetheless, it does not mean that 

mirror mechanisms are not involved in this kind of inference. 

Mirror mechanisms may indeed be recruited, but in a different way. For the motor 

simulation mechanisms to be involved in the prediction of complex goal-directed actions such 

as those presented in our second experimental work, one should assume that the observer has a 

prior representation of the goal that is more likely to be achieved by the demonstrator (Csibra, 

2007; Kilner et al. 2007a, 2007b; Kilner, 2011). This is precisely what the rationality principle 

presupposes: considering an observed action as rational (or, in the context of our task, as 

biomechanically optimal) means that a causal link is drawn between the action means (e.g., 

using a precision grip) and the goals (e.g., turning the tool in order to switch-on the light). 

Thus, watching a demonstrator using a specific object affordance enables an observer to select 

by default, between the two concurrent goals, the one that minimizes the muscular and 

articular costs. This selection can occur because the observer has a prior representation of 

these two concurrent goals. This strategy has been showed to be particularly efficient when 

participants have no additional information about the general behavior of the demonstrator 

(i.e., information acquired from a probabilistic sampling of past events), or when the visual 



230 

 

information conveyed by the action scene is noisy or incomplete. We showed that when 

participants had such additional information (i.e., when they integrated the probabilistic bias in 

which suboptimal behaviors were favoured), they were able to progressively inhibit the 

affordance-based inferential strategy to favor a strategy based on probabilistic information, 

though to a lesser extent. In this context, action mirroring would serve a very different 

function from the function postulated by the direct-matching hypothesis. This function is not 

to access the high-level goals and intentions through bottom-up propagation but to anticipate 

the course of the observed action through a top-down reconstruction of its motor sequence 

(Csibra, 2007; Kilner et al., 2007a, 2007b, Kilner, 2011). Crucially, this means that the 

understanding of the action goal and intention is the input rather than the output of the 

mirroring process. According to the ‘action reconstruction’ hypothesis, simulation occurs as 

the prior representation of the overarching goal is mapped onto the observer’s own mirror 

system, within which it can propagate downwards to generate the corresponding motor code at 

the lower levels (see also the chapter E of the General Introduction of the thesis). According to 

Csibra (2007), this top-down propagation does not contradict the idea of  motor simulation but 

instead, assumes that motor simulation is ‘predictive in nature, generating motor actions for 

goal conjectures rather than the other way around’ (pp. 441).  

In summary, these two models of action mirroring can be differentiated by two aspects: 

the action interpretation level at which visuomotor transformation is performed (low-level 

versus high-level mirroring) and the directionality of the propagation within the action system 

following mirroring (bottom-up versus top-down propagation). The ‘direct-matching’ 

hypothesis assumes that simulation mechanisms occur at a low-level of action description (i.e., 

the kinematic level) and generate a bottom-up propagation within the hierarchically organized 
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action representation system, supposedly allowing the inference of high-level goals and 

intentions. The ‘action reconstruction’ hypothesis assumes that simulation mechanisms occur 

at a high or intermediate level of description (i.e., the intention or the goal level) and generate 

a top-down propagation within the hierarchically organized action interpretation system. This 

top-down propagation enables the on-line monitoring of the action course in order to test the 

likelihood of the to-be-predicted intentions. It is unlikely that the first interpretation fits the 

results obtained in our second experimental work, especially because direct-matching fails to 

solve the inverse problem represented by the understanding of our action stimuli (one type of 

grasping movement could equally lead to two action goals). The second interpretation, 

however, could fit with these results, especially because participants based their prediction on 

a prior representation of the demonstrator’s intentions, being inferred from a rational 

estimation of the biomechanical costs (low versus high) of the observed actions 

(biomechanical priors) or from the probabilistic exposure (probabilistic priors) to a particular 

behavior (biomechanically optimal or suboptimal).  
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The ‘action reconstruction’ hypothesis – for which the predictive coding model (see chapter E 

of the General Introduction) developped by Kilner and co-workers provides a biologically 

plausible framework (Kilner et al., 2007a, 2007b; Kilner, 2011) – also offers an interesting 

framework to interpret some results obtained in the third experimental work presented in this 

thesis. 

The first objective of the Experimental Contribution Chapter 3, entitled 

‘Modulating human motor resonance: exposure to suboptimal actions suppresses 

corticospinal excitability’, was to exploit the behavioral results obtained in the experimental 

chapter 2 and to assess whether the motor system could hold traces of the behavioral changes 

exhibited by the observed demonstrator. In order words, I investigated whether the interactions 

between biomechanical priors (conveyed by the detection of object affordances) and prior 

knowledge (acquired from probabilistic exposure) about a demonstrator’s behaviors, which 

influence the participants’ predictions of the demonstrator’s intentions (see Experimental 

Contribution Chapter 2) can modulate the motor system activity. To this aim, I used single-

pulse TMS applied over the primary motor cortex (M1) to measure of the corticospinal 

excitability (CSE) of participants during action prediction. To do so, we adapted the 

experimental design used in our previous study (see Experimental Contribution Chapter 2) to 

an on-line TMS paradigm. Once again, the biomechanical optimality of tool behaviors 

performed by the demonstrator, as well as the probability of observing him achieving an 

intention using optimal and suboptimal behaviors, were varied. Three behavioral 

‘environments’ were then created, each characterized by a different probability of observing 
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the demonstrator performing optimal and suboptimal behaviors (i.e., in the no bias condition, 

the demonstrator equally performed optimal and suboptimal behaviors while in the convergent 

bias session the demonstrator favoured optimal behaviors and in the divergent bias session he 

favoured suboptimal behaviors). While the convergent probabilistic bias provided a stable 

environment (i.e., an environment that conformed to the predictions based on biomechanical 

priors), the no bias and the divergent probabilistic biases provided comparatively more 

unexpected, open-ended environments (i.e., an environment that did not conform to the 

predictions based on biomechanical expectations). We applied TMS over the left M1 of 

participants during the prediction of visually uncertain actions, both before and after the 

probabilistic exposure.  

Two lines of results emerged. Behaviourally, we closely replicated our previous 

findings by showing that when the behaviors gathered from probabilistic exposure and 

biomechanical prior expectations of participants converged, they efficiently combined both 

types of priors to make their predictions. Conversely, when the two priors diverged, 

participants had to deal with two conflicting sources of prior information, which resulted in 

predictions close to chance level. Physiologically, we showed that the the type of 

probabilistically-induced behavioral environment translated into changes in CSE. Specifically, 

a decrease in CSE occurred when the participants were exposed to behaviors that violated the 

biomechanical optimality rules, i.e., when the observed action could not be matched with the 

participant’s biomechanical expectations. These last results reveal that CSE, which possibly 

reflects the involvement of motor resonance mechanisms in action observation (Fadiga et al., 

2005) is malleable and can be altered IN TIME, by varying the degree to which biomechanical 

and probabilistic prior expectations match. Indeed, high levels of CSE were maintained only 
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in environments that were consistent with the convergence of biomechanical and probabilistic 

prior expectations (in our task: the convergent bias session).  

Interestingly, these results suggest that the acquisition of probabilistic information 

affects the level of CSE, and potentially, the state of the mirror system. However, CSE 

changes were only observed at the group level, that is, according to the type of probabilistic 

bias participants were exposed to. Furthermore, no differences in CSE were revealed between 

the different types of action that participants observed, both during the first and the second 

series of visually uncertain actions. The absence of a difference is not surprising in itself. One 

can indeed consider that motor simulation mechanisms are not a direct-matching but instead, 

an action reconstruction process that starts from an analysis of the higher-level action 

component that is then propagated downwards through the hierachically organized action 

representation system to generate the lower level motor codes (Csibra, 2007; Kilner et al., 

2007a, 2007b; Kilner, 2011). In the three groups of participants, the CSE level measured 

before the probabilistic exposure was increased relative to the observation of a black screen. 

CSE remained high after exposure to the no bias and convergent bias, but exposure to the 

divergent bias significantly decreased CSE levels. This might be because during the 

incomplete movies that preceded the exposition to the probabilistic biases as well as during the 

incomplete movies that followed the convergent bias, participants’ predictions were mainly 

driven by their biomechanical priors. In other words, they expected to observe an action 

sequence that was congruent with their prior representation of the goals, that is, an action 

sequence that minimized the biomechanical costs given the final goal that had to be reached. 

More specifically, the level of CSE facilitation was relatively constant within these conditions 

possibly because in each of them, the likelihood of observing an intention resulting in optimal 
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behaviors was confirmed both by the observation of complete movies and by their 

biomechanical priors – priors that were used by default during the incomplete movies to 

complement the missing visual information (Jacquet et al., 2012b, in press). However, CSE 

decreased after exposure to suboptimal behaviors possibly because the likelihood of observing 

optimal behaviors progressively decreased as participants accumulated disconfirmatory 

evidence. The decrease in CSE could potentially occur because of the mismatch between what 

was actually observed by participants (a demonstrator achieving his intentions using 

suboptimal behaviors) and their prior expectations derived from biomechanical constraints of 

the motor system. 

Interstingly, such an interpretation is consistent with the ‘predictive coding’ framework 

proposed by Kilner and co-workers (Kilner et al., 2007a, 2007b, 2011) which proposes a 

biologically plausible model for the action reconstruction hypothesis. The ‘predictive coding’ 

framework postulates that hierarchically distinct cerebral regions (having ‘mirror’ properties 

or not, such regions forming the AON network) subserve the different levels of action 

understanding: the kinematic level, the motor level, the goal level, and the intention level. The 

model postulates that each level of the hierarchy at which an action can be analysed generates 

prediction signals that specify, or bias, the representations at the inferior level. Predictions 

generated at the highest levels are then compared with current predictions generated at the 

lower levels. Thus, depending on the type of goal being anticipated, the observer will predict a 

motor command that is congruent with this goal and, on the basis of her own motor repertoire, 

will generate expectations about the specific kinematics that best fit with the predicted motor 

command. The comparison between the predicted and the currently observed kinematics will 

generate, in the case of a mismatch, a prediction error. The magnitude of such a prediction 
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error will then be reduced, via forward connections, by updating the representation elaborated 

at the more abstract, higher levels. This exchange of reciprocal signals proceeds until the cause 

that most likely explains the observed action is inferred, or, in other words, until the 

magnitude of the prediction error is sufficiently minimized to enable accurate inference 

(Kilner et al., 2007a; 2007b). According to this model, the mirror neuron system would be 

particularly active when the prediction error is minimized. Interestingly, the level of CSE in 

our study decreased after expectations generated byobservation and prior expectations 

conflicted (divergent bias), and this could possibly generate a prediction error resulting in the 

weakening of the mirror activity.  

This influence of prior expectations could be conceived as a way to either facilitate or 

inhibit mirror system activity, depending on whether the probabilistically-induced ‘behavioral’ 

environment converges or diverges with the sensorimotor constraints of the system. Our 

findings support the second possibility (i.e., lack of resonance when the behavior biased by 

probabilistic exposure diverges from sensorimotor constraints). Together, these findings are 

crucial as they suggest that mirror processes are not automatically engaged during action 

understanding or, to say the least, that these processes are altered by higher-order expectations 

about other people’s intentions and behaviors.  

One may speculate about whether this alteration of CSE is purely incidental and 

passive, resulting from a mismatch between what is observed and the motor programs that are 

stored in the observer’s own motor reportoire, or whether it reflects an active inhibitory 

process. Being equipped with active inhibitory process would provide certain advantages. The 

suppression of motor resonance through higher-order probabilistic representations of the 

environment could be viewed as a subtle adaptive response, for in some environments mirror 
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mechanisms would lose their predictive value. Thus, our argument is that such modulatory 

effects may protect the observer against maladaptive predictions in the case where observation 

and expectations conflict. Further studies are needed to establish whether CSE suppression is 

obtained via a passive process (i.e., conditions violated = no resonance) or implies an active 

inhibitory process that could veto ‘automatic’ motor resonance activity in order to reduce the 

weight of inadequate action representations (Khün et al., 2009).  

Ultimately, the active regulation of motor resonance processes through higher-order 

probabilistic representations of the environment may provide an adaptive mechanism to enable 

acquisition of unexpected, new behaviors. Interestingly, behaviors that override rules of 

biomechanical optimization are regularly promoted by human culture. Relying on prior 

knowledge gathered from probabilistic sampling of past observations may thus occasionally 

prove more helpful than merely evaluating the (biomechanical) optimality of the observed 

behavior. 
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The first three experimental contributions presented in this thesis were previously discussed 

highlight the role of sensorimotor (including somatic) constraints and prior information in the 

ability of human observers to understand their conspecifics’ intentions. I attempted to illustrate 

how these types of information may generate distinctive decisional biases that alter the 

prediction of observed actions. In particular, the extraction of information concerning the 

frequency of occurrence of a particular intention was efficiently used by observers to make 

inferences about intentions underlying up-coming actions. Additionally, the detection of 

sensorimotor constraints from visual cues such as object affordances activates a simple 

decision heuristic that, coupled with expectations about the rationality of observed actions, 

provides a by default strategy upon which observers rely to make predictions about intentions 

of observed agents. Our experimental works show that these two decisional mechanisms could 

be differentially recruited according to the type of ‘behavioral’ environments observers are 

confronted with: the probabilistic inference being particularly adapted to make predictions in 

unfamiliar ‘behavioral’ environments (i.e. when the likely behaviors are biomechanically 

suboptimal), and the affordance-based heuristic being particularly adapted to make predictions 

in familiar ‘behavioral’ environments (i.e., when the likely behaviors are biomechanically 

optimal). Nevertheless, I believe that one of the most interesting findings of these works is the 

strong predictive value of object affordances, especially because it represents a cognitively 

tractable and economic inferential strategy that is efficient in a numerous daily situations. It 

provides an alternative to complex, cognitively costly strategies that are usually evoked by 
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researchers to account for the social learning of complex object-directed actions such as tool 

use.  

I propose that affordances, and the function of minimizing biomechanical costs, have a 

significant impact on the acquisition of behaviors through social learning. In a recent 

commentary article (Jacquet et al., 2012a, in press), I addressed this question to Krist Vaesen 

(Vaesen, 2012) who, in his target article, argued that the acquisition of tool-use behaviors 

from social learning crucially depended on uniquely human, sophisticated socio-cognitive 

skills. My purpose was to claim that those skills were also based on simpler detection systems 

humans could share with other animal tool users. Accordingly, I discussed the impact of object 

affordances on the understanding and the social learning of tool use. 

Here I report the main gist of this commentary (see also appendix B for the complete 

version) which, I believe, provides a clear example of how the results of the experimental 

chapter 2 and 3 can be extended to the broader domains of social learning and cultural 

evolution: 

“Krist Vaesen speculates that the humans’ capacity to learn 

novel tool use from observing goal-directed movements 

performed by others (Csibra & Gergely 2007) is a hallmark of 

our uniqueness, and is based on “higher” socio-cognitive skills. 

It has been proposed that such skills were supported by the 

ability to i) decode kinematic information into causal 

relationships between a behavioural sequence and its result 

(Gergely 2007), ii) interpret others’ behaviors as rational 

(assuming that the most efficient observed action means are 

adopted to achieve a particular goal; Gergely & Csibra 2003) and 

iii) accumulate a priori knowledge from past observations about 
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agents‟ intentions and behaviours in order to predict future 

events (Chambon et al. 2011). We agree with the author that the 

sophistication of such socio-cognitive skills goes far beyond 

those of any other animals. Yet, we believe that this 

sophistication could also be the result of simpler systems 

allocated to the detection of low-level, local sources of 

information, such as the manipulative properties of objects called 

“affordances”. 

Affordances define relational properties that emerge from 

matching the perceived physical features of objects and the 

agent’s biomechanical architecture, goals, plans, values, beliefs, 

and past experiences. We propose that affordances allow agents 

to delineate the number of candidate motor acts that could be 

performed on tools. We postulate that affordances constrain the 

number of possible solutions by generating biomechanical prior 

expectations in line with the bodily architecture of agents. These 

priors would bias individuals to act towards objects aiming at 

biomechanical optimization (Rosenbaum et al. 1996; Weiss et al. 

2007). As the author rightly points out, compared to other 

animals, the many degrees of freedom characterizing human 

effectors and their striking motor control considerably enhances 

our ability to detect new affordances and new potential objects 

uses. All this contributes to increase the variety of the 

behavioural repertoire.  

Nonetheless, we are skeptical about the idea that the 

primary advantages such architectural properties brings for tool 

use acquisition is fine-grained social learning. Indeed, in many 

situations, detecting tools affordances allows learners to avoid 

such a high-level but costly strategy. Instead, this biomechanical 

uniqueness could increase the probability of individual 
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innovation, particularly in situations where novel tools are 

physically unstructured and multi-purpose. For example, 

Acheulean stone tools are poorly structured and roughly 

symmetrical objects with a cutting edge. They do not offer 

affordances salient enough to constrain the number of candidate 

motor acts that could be perform on them. Sterelny (2003a) 

points out that the exact functions and uses of Acheulean stone 

tools, though they were the dominant element of human 

technology for over a million years, remain a matter of debate. It 

is more plausible that our ancestors – who were predisposed to 

behavioural innovation thanks to their high biomechanical 

flexibility – progressively discovered not one or two, but a 

multitude of tasks that Acheulean stone tools could roughly carry 

out. 

We argue that the evolution of the human technological 

environment favoured the utility of simpler systems such as 

affordances detection. This eases the negotiation of the highly 

demanding cognitive problems of tool use learning (Clark 1997; 

Dennett 1995; Sterelny 2003a, 2003b). Indeed, tools we interact 

with daily are designed for specific purposes. Affordances that 

are available through their complex physical attributes offer the 

chance for naive users to extract their functions at low cost 

(Dennett 1982, 1995; Gregory 1981; Norman 1988). In our 

engineered environments, affordances play a crucial role in the 

acquisition of tool skills through individual trial-and-error as 

well as social learning. More specifically, we argue that 

perceiving affordances directly biases the understanding of tool 

behaviours performed by others, and consequently the extraction 

of related functional knowledge. The biomechanical priors that 

emerge from the perception of tools affordances constrain the 
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number of candidate motor acts an individual could initiate. 

Similarly, they also tune the observer’s prior expectations about 

which motor behaviors are most likely to be performed by 

others, enhancing their predictability and learnability. Learning 

about a novel tool from observing a demonstrator using it in a 

biomechanically “rational” way would be less costly than 

learning from a demonstrator that violates our expectations. That 

is, the convergence of the demonstrator’s and observer’s 

biomechanical expectations facilitates an efficient learning 

strategy, based on kinematics, rationality principle or prior 

knowledge. Taken together, these observations question the 

exact role of high-level, fine-grained social learning in the 

acquisition of new tool skills. Relevant to this is work addressing 

animal behavioural “traditions” – behavioural patterns which are 

relatively stable in groups and are at least partly maintained by 

some forms of social learning. These could result from 

constraints that limit the number of possible alternative 

behaviours, more than from the robustness of high-level social 

transmission mechanisms (Claidière & Sperber 2010; Tennie et 

al. 2008). Here, we posit that the crucial role affordances play in 

the acquisition of tool use strongly suggests that fine-grained 

social learning strategies, such as true imitation of observed 

action goals and means, is sometimes less important than 

previously assumed. In fact, affordances, together with 

ecological constraints and other products of epistemic 

engineering, could enhance the effectiveness of more frugal 

forms of socially-directed learning (Acerbi et al. 2011; Franz & 

Matthews 2010) like emulation learning (i.e. the observer copies 

action goals performed by a demonstrator without considering 

action means) or even stimulus enhancement (i.e. when an 
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individual directs its behaviour towards an object or a part of an 

object with which it saw another individual interact).” 
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In the above commentary, I speculated that sensorimotor constraints could bias the learning of 

new behaviors from observation. The Experimental Contribution Chapter 4 entitled 

‘Behavioral constraints and the evolution of faithful social learning’ examined, with the 

help of an individual-based model, the relationship between similar constraints and the 

evolution of faithful social learning. The claim of this work is that the emergence of 

behavioral traditions within a population of human and non-human individuals could be 

accounted for by both high-fidelity (e.g., imitation and emulation) and low-fidelity (e.g., 

stimulus enhancement) social transmission mechanisms. The model aimed to demonstrate that 

the use of high-fidelity and low-fidelity social learning strategies was a function of both the 

type of behavioral constraints (biomechanical and cognitive factors that specify the number of 

potential behaviors individuals were provided with) and the type of search space of a task (the 

number of alternatives observers could perform to reproduce the outcome of the behavior 

performed by the demonstrator). We thus tested this hypothesis by modeling three fictive 

populations of individuals, each characterized by a different number of available behaviors (10 

versus 100 versus 200 possible alternative behaviors). Each population was then submitted to 

three specific task problems, each being potentially solved by a certain number of behavioral 

alternatives. More specifically, in the smooth space, many behavioral alternatives could be 

achieved to solve the task problem. In the rugged space however, only few alternatives could 

lead to the optimal solution. Finally, in the peaked space, just one alternative led to the 

optimal solution. These three task structures were thought to differentially orient the 

individual search (trial and error learning), in such a way that for the rugged and peaked space, 
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social-learning was expected to be more efficient than individual learning (for only few 

solutions led to payoffs). Thus, we simulated interactions at the level of single individuals, 

such that individuals of a population interacted in discrete time-steps. At each time-steps 

individuals interacted in pairs. Each individual (the observer) was paired with another 

individual (the demonstrator) randomly chosen among the ten individuals of the population 

with the highest payoffs (the payoff an individual received from performing a behavior). Thus, 

each learner attempted to copy the behavior of its paired demonstrators. An evolutionary 

algorithm was further used to optimize the behavior of individuals. The evolutionary 

algorithm acted on a variable that encoded the fidelity of social learning of each individual. 

Individuals that performed better (i.e., that maximize the fidelity of the copy) resulted in 

proportionally more “offspring” than others. Finally, we also added the possibility of 

environmental changes by assigning different probability for the three distributions payoff 

(smooth versus rugged versus peaked space) to be reinitialized during the simulations. This 

procedure allowed analyzing how the interaction between the fidelity of social learning and 

the size of the behavioral repertoire impacted the populations’ behavioral diversity, namely, 

the number of behavioral patterns present in a population. Three main results emerged from 

the simulations. First, in stable environments (environments where the payoff distribution 

remained unchanged), faithful social learning evolved only in populations with large 

behavioral repertoires, and particularly in peaked search spaces. Second, results showed that 

the convergence towards behavioral homogeneity resulted from high-fidelity social learning 

mechanisms but also from low-fidelity mechanisms. Third, intermediate rates of 

environmental change favored the evolution of faithful social learning.  
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These results are particularly relevant for the take-home message of the present thesis. 

Indeed, our simulations suggest that a population of individuals that is highly constrained 

(small number of potential behaviors) can evolve something similar to cultural traditions, 

without the need of costly faithful social-learning abilities such as true imitation. The fact that 

this could happenin peaked space (i.e., a search space that is unlikely to favor individual 

learning, given the small number of solutions that bring a payoff) is important. Indeed, it could 

mean that, even with human populations, many complex behaviors can be ‘transmitted’ from 

an individual to another without the need of sophisticated social-learning abilities. This is the 

idea I speculated on in the commentary article previously mentioned (section B of the general 

discussion or appendix B). I believe that this is precisely what happens when a human 

demonstrator learns object-directed or tool-use actions by observing  a third party. The 

observer’s behavior is guided by the interaction between the object affordances and the 

biomechanical constraints of his body, such that both the observer and the demonstrator’s 

behavior converge. Consequently, the outcome of the learning process resembles a 

sophisticated imitative process but, instead, reflects a convergence that results from the 

processing of sensorimotor cues. This convergence would be incidental, in the sense that it 

does not result from a sophisticated social learning mechanisms.  

Finally, I argue that similar phenomena occur more frequently than usually assumed in 

our human technological societies. Indeed, even very complex human ‘cultural’ behaviors 

such as tool-use and other object manipulations may be a result of a combination of a 

constrained behavioral repertoire, constrained search spaces, and some form of social learning 

(Sperber, 1996). This is possible because humans engineer their environment in such a way 

that it becomes informationally transparent (Sterelny, 2003). For example, humans 
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deliberately manufacture tools whose complex physical attributes offer naïve users 

informative cues (the affordances) that enable the extraction of their functions at low cost 

(Dennett, 1982, 1995; Gregory, 1981). I believe that the evolution of human technology might 

have favored the use of low-fidelity social transmission mechanisms, and so, without affecting 

the final fidelity of the transmission.  
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Abstract 

An important challenge of embodied theories is to explain the comprehension of abstract sentences. 

The aim of the present study was to scrutinize the role of the motor cortex in this process. We 

developed a new paradigm to study the abstract-concrete dimension by combining action-related and 

non-action-related verbs with nouns of graspable and non-graspable objects. Using these verb-noun 

combinations we performed a Transcranial Magnetic Stimulation (TMS) on the left primary motor 

cortex while participants performed a sentence sensibility task. Single-TMS pulses were delivered 250 

ms after verb or noun presentation in each of four combinations of Abstract and Concrete verbs and 

nouns. To evaluate corticospinal excitability we registered the electromyographic activity of the right 

first dorsal interosseous muscle. As to verb-noun integration, analysis of motor evoked potentials 

(MEPs) after TMS pulse during noun presentation revealed greater peak-to-peak amplitude in 

sentences containing Abstract rather than Concrete Verbs. Response times were also collected and 

showed that compatible (Concrete-Concrete and Abstract-Abstract) combinations were processed 

faster than mixed ones; moreover in combinations containing concrete verbs, participants were faster 

when the pulse was delivered on the first word (verb) than on the second one (noun). Results support 

previous findings showing precocious activation of hand-related areas after concrete verbs processing. 

The prolonged or delayed activation of the same areas by abstract verbs will be discussed in the 

framework of recent embodied theories based on multiple types of representation, particularly theories 

emphasizing the role of different acquisition mechanisms for concrete and abstract words (Borghi & 

Cimatti, 2009;2012). 

 

Keywords: embodied cognition, primary motor cortex, language grounding, abstract and 

concrete sentences. 
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1. INTRODUCTION 

The ability to understand and use abstract words is an important part of the human capacity to 

interact with the environment and with others. While many studies have been devoted to this 

important topic, the issue of how abstract concepts and words are represented is still unsolved 

(for a recent review, see Pecher et al., 2011). It is well known that abstract words are 

remembered and recognized more slowly than concrete ones (Schwanenflugel, 1991). Their 

processing can engage mental imagery, but at a lower rate and with a greater variability 

compared to concrete words (Paivio, et al., 1968; Paivio, 1991). It is also well established that 

abstract words are acquired later than concrete and generally highly imaginable words (Bird et 

al., 2001). Finally, the double dissociations found between the understanding of abstract and 

concrete words (Shallice & Warrington, 1975; Warrington, 1975) further suggest that, even if 

the domain of ‘abstract concepts’ is not homogeneous, there must be some common features 

that link its variegated members. 

In recent years many neuroimaging and meta-analyses have investigated the differing 

neural correlates involved in abstract and concrete concepts (for a recent quantitative meta-

analysis see Wang et al., 2010). On one hand this concern is due to a genuine interest in the 

specific topic, on the other hand this interest is strongly related to the theoretical implications 

of this issue for embodied and grounded theories of cognition (for a review on different kinds 

of embodied views, see Goldman & De Vignemont, 2009). Embodied theories vary in their 

details, but most of them maintain that all concepts and words activate a simulation 

mechanism that recruits the same action, perception and emotional networks activated during 

actual experience with their referents (e.g. Barsalou, 1999; 2003; Glenberg & Robertson, 
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2000; Zwaan, 2004). Notice that different versions of the notion of simulation have been 

proposed (for reviews, see Borghi, in press; Decety & Grezes, 2006).  The term “simulation” 

as we intend it here involves two aspects: it implies the re-enactment of past experiences 

(Barsalou, 1999) and it is predictive. It refers to a process that is embodied, unconscious, not 

deliberate, and it is aimed at action preparation (Gallese, 2009). In contrast with other views 

(e.g., Decety & Ingvar, 1990) simulating does not imply a deliberate reactivation of previously 

performed actions, and it does not consist in a posteriori forms of motor imagery. While 

empirical evidence on simulation is compelling with respect to concrete concepts and words, 

the challenge these theories face with is to clarify whether abstract concepts and words are 

also represented via embodied simulations. Mental metaphors could represent a potential 

solution, as they import the image-schemas derived from the source domain of sensorimotor 

experience (Lakoff, 1987; Gibbs & Steen, 1999). Compelling evidence has been collected in 

favor of this approach (e.g., Casasanto, 2009), but it is hard to foresee how it can be 

generalized to all varieties of abstract words.  

Recently, some scholars have addressed the issue by getting to the root of the problem: 

embodied accounts of language have focused largely on language grounded in bodily 

experiences but have neglected that language also plays a role in shaping our experience 

(Borghi & Cimatti, 2009; 2012; Borghi & Pecher, 2011). In their proposal (Words as Tools, 

WAT) Borghi and Cimatti (2009; 2012), similarly to other authors (Dove, 2009, 2010; 

Louwerse & Jeauniaux, 2009; Barsalou et al., 2008; Simmons et al., 2008), try to integrate 

linguistic and modal approaches. The unique quality of the WAT proposal maintains that the 

linguistic system does not simply involve a form of superficial processing and that words 
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cannot be conceived of as mere signals of something. Words are also tools that allow us to 

operate in the world (Clark, 2007; Mirolli & Parisi, 2011; Tylèn et al., 2010). The WAT 

proposal has direct implications for the explanation of abstract word meanings. Indeed, Borghi 

and Cimatti (2009; 2012) proposed that, probably due to their different acquisition 

mechanisms, abstract word meanings rely on the social experience of language. With concrete 

words, such as “phone”, the word’s referent can be indicated and tagged using linguistic 

labels. With abstract words, instead, there is not a specific referent to be indicated. In this case, 

the word, such as “freedom”, plays a major role, as it helps assemble a set of diverse 

sensorimotor experiences (e.g., we put together different experiences of freedom once we have 

learned the word “freedom”). In support of this proposal, Borghi et al. (2011) have shown that 

the acquisition modality of novel concrete and abstract words (manipulation of their referents 

vs. simply visualization of scenes with interacting objects) has an impact on their 

representation: in a verification task participants responded faster to abstract words when 

using the microphone, and to concrete words when using the keyboard. The results indicate 

that concrete words evoke more manual information, whereas abstract words evoke more 

linguistic information; importantly, the advantage of the microphone with abstract words was 

more pronounced when the meaning of the word was linguistically explained, and it was not 

present when the linguistic information contrasted the perceptual information. These results 

clearly show the similarities but also the differences between embodied accounts (Barsalou et 

al., 2008; Borghi & Cimatti, 2009; 2012; Simmons et al., 2008; for recent brain imaging 

evidence consistent with this view see Rodríguez-Ferreiro, et al., 2010) and Paivio’s dual 

coding theory (e.g, Paivio, 1986; Binder et al., 2005; Desai et al., 2010). Both accounts share 

the idea that multiple types of representation underlie knowledge, but embodied proposals 
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differ from Paivio’s view as they hypothesize that not only concrete, but also abstract words 

are grounded in perception and action.  

The aim of the present study is to test the WAT proposal (Borghi & Cimatti, 2009; 2010; 

2012) through scrutinizing the possible modulation of the left primary motor cortex (M1) 

activity  during abstract and concrete sentence processing. We used an innovative paradigm 

recently developed by Scorolli et al. (2011), in which the same Concrete Verb (CV) was 

combined with a Concrete Noun (CN) and with an Abstract Noun (AN), the same Abstract 

Verb (AV) was combined with the nouns previously used. One of the advantages of this 

design is the possibility to study abstractness along a continuum - that is, to study 

combinations in which abstract and concrete verbs and nouns are put together. This paradigm 

was adapted to the use of single-pulse transcranial magnetic stimulation (TMS) technique, 

with the aim to explore the modulation of M1 activity during the processing of action-related 

and non-action-related verbs, combined with nouns of graspable and non-graspable objects. 

Resting on the predictions of the WAT proposal, we hypothesized that the processing of 

language is different within the motor cortex for concrete and abstract language content. On 

the basis of the assumption that the mode and age of acquisition of concrete and abstract 

words differ, we expected to also find clues for different roots of processing. Specifically, our 

predictions are: 

I. Given that according to embodied theories both concrete and abstract words are 

grounded in the motor system, we predict that concrete and abstract words differentially 

recruit neurons of the hand areas in M1 (detectable on the modulation of motor evoked 

potentials, MEPs, analyses). 
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II. If concrete words, and concrete verbs in particular, evoke motor information more 

directly than abstract words, we predict: 

IIa. an earlier activation of hand representation areas in concrete verb processing over 

abstract verb processing, detectable on MEPs collected after a pulse delivered on the first 

word, and a later modulation due to abstract verb processing, detectable on MEPs collected 

after a pulse delivered on the second word; 

IIb. faster sentence processing when the pulse is delivered on concrete verbs than on 

abstract verbs (detectable on response times, RTs, analyses). 

These effects should be present only when the sentences are sensible, otherwise no 

simulation should occur, or the simulation should be interrupted when the first word (verb) has 

to be combined with the second one (the noun). 

 

2. RESULTS 

Our dependent variables were reaction times (RTs) and motor evoked potentials (MEPs). 

It is worth noting that, due to the fact that we used sentences instead of single words and that 

for each sentence we stimulated either the verb or the noun, results from these two 

measurements cannot be completely matched. To clarify: I. MEPs recorded after the 

stimulation on the first word (verb) provide information concerning the first part of sentence 

processing (the processing of a verb that has later to be integrated with a specific noun); II. 

MEPs recorded after stimulation on the second word (noun) provide us with information on 
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the integration between the verb and the noun (whole sentence processing) ; III. RTs provide 

information on the whole sentence processing. 

 

3.1 Analyses on MEPs 

One participant was eliminated from analyses as, due to reported high levels of anxiety, 

we stopped the experimental session before finishing the overall experiment. As predicted in 

the Sham condition we did not record any MEPs, so we will not further discuss the non-active 

condition. Peak-to-peak amplitude (mV) of each MEP was computed by an automatic Excel 

script prior to normalization by means of a logarithmic transformation [log10 (mean MEPs 

amplitude value)]. MEP amplitudes inferior to 0.05 mV were excluded from analyses. One 

participant was excluded from further analyses due to the high percentage of unrecorded 

MEPs (25.45 %). We eliminated MEPs for which participants gave an incorrect response on 

the sentence sensibility task. 

Normalized MEPs recorded after TMS stimulation on the first word (verb) were 

submitted to a t-test, with Verb (Concrete vs. Abstract) working as the within participant 

variable. MEPs peak-to-peak amplitudes recorded from the right FDI muscle during TMS 

delivery did not differ in the case of Concrete Verbs or Abstract Verbs (p = 0.19). 

Normalized MEPs recorded from the right FDI muscle after the stimulation on the second 

word (noun) provided information on the verb and noun integration. This allowed for a 2 

(Verb: Concrete vs. Abstract) X 2 (Noun: Concrete vs. Abstract) ANOVA, with all variables 

manipulated within participants. We eliminated MEPs for which participants gave an incorrect 

response on the sentence sensibility task. We found a significant main effect of the Verb, F (1, 

13) = 13.21, MSe = 0.002, p < .005: in case of active pulse, peak-to-peak MEPs amplitude was 
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greater for sentences containing Abstract Verbs (M = 2.71) than for sentences containing 

Concrete Verbs (M = 2.67, see Fig. 1). 

The last result obtained when the pulse was delivered on 2
nd

 word (the noun) shows that 

the primary motor cortex activity is specifically modulated by the processing of Abstract 

Verbs. Overall, this result gives an additional hint as to the recruitment of the motor system 

during Abstract Verbs processing.. To understand if this recruitment occurs later or lasts 

longer than with Concrete Verbs, we contrasted the kind of verb and the timings of TMS 

delivery. As we found no effect of the kind of noun, we were entitled to perform a  2 

(Stimulated Word: 1
st
 word vs. 2

nd
 word) X 2 (Verb: Concrete vs. Abstract) ANOVA. We 

found a significant interaction between the Pulse and the Verb, F (1, 27) = 13.78, MSe = 

0.001, p < .001: abstract verbs obtained greater peak-to-peak MEPs amplitude when the pulse 

was delivered 650 ms (400+250), M = 2.71, rather than 250 ms, M = 2.67, after the verb 

presentation, post hoc LSD: p < .005. Symmetrically we found that concrete verbs obtained 

greater peak-to-peak MEPs amplitude for the first timing of TMS delivery, M = 2.69, than for 

the second one (650 ms), M = 2.67, post hoc LSD: p = .055. Interestingly the activation of the 

motor system for concrete verb after a precocious pulse did not differ from the one obtained 

for abstract verb after a delayed pulse (M = 2.69 vs. M = 2.71, p = .07). 
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Figure 1. Normalized MEPs recorded after the TMS stimulation on the 2
nd

 word. Peak-to-

peak MEPs amplitude was greater for sentences containing Abstract Verbs than for sentences 

containing Concrete Verbs. 

 

 

2.2 Analyses on MEPs after a pulse on 2
nd

 word for both sensible and non-sensible 

sentences 

As we found no effect of the kind of noun (abstract vs. concrete), in order to disambiguate 

the role of the kind of pulse (precocious, 250 ms, vs. delayed, 650 ms) and the kind of 

subsequent noun (determining a sensible vs. non-sensible combination) on the verb,  in a 

further analysis we considered also the MEPs recorded from the FDI during non-sensible 

sentence processing (see Kocha et al., 2010). Normalized MEPs (after a pulse on 2
nd

 word) 

were submitted to a 2 (Sentence: Sensible vs. Non-sensible) X 2 (Verb: Concrete vs. Abstract) 

X 2 (Noun: Concrete vs. Abstract) ANOVA. We conducted the analysis with participants as a 

random factor. We found a significant interaction between the Sentence and the Verb, F (1, 

13) = 27.47, MSe = 0.001, p < .001: sensible sentences containing abstract verbs obtained 

greater peak-to-peak MEPs amplitude, M = 2.71, than sensible sentences containing concrete 

verbs, M = 2.67, post hoc LSD: p < .0005, see Fig. 2. Crucially, in the case of meaningless 
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context we found an opposite pattern, that is greater peak-to-peak MEPs amplitude with Non-

sensible Sentences containing Concrete (M = 2.69) rather than Abstract Verbs (M = 2.67, post 

hoc LSD: p < .05). Finally we found a three way interaction between the Sentence, the Verb 

and the Noun, F (1, 13) = 11.24, MSe = 0.001, p < .005: sensible sentences containing abstract 

verbs followed by abstract nouns obtained greater MEPs, M = 2.73, than sensible sentences 

formed by an abstract verbs plus a concrete noun, M = 2.69, post hoc LSD: p < .05; we did not 

find an analogous modulation for non-sensible sentences (p = .44). 

 

Figure 2. The interaction between the kind of Sentence and the Verb: Sensible sentences 

containing Abstract Verbs obtained greater MEPs amplitudes than Sensible sentences 

containing Concrete Verbs. We found an opposite pattern for Non-sensible sentences.  

 

 

2.3 Analyses on accuracy and RTs 

One participant was excluded from behavioral analyses due to the high percentage of 

unrecorded data (35.6%) because of difficulties with the response device. Percentages of 
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errors were submitted to a 2 (Pulse: Active vs. Sham) X 2 (Verb: Concrete vs. Abstract) X 2 

(Noun: Concrete vs. Abstract) X 2 (Stimulated Word: 1
st
 word vs. 2

nd
 word) ANOVA; we 

manipulated all variables within participants. Results showed a main effect of the Verb: 

participants made more errors with sentences containing Abstract Verbs (M = 0.59%) 

compared to sentences containing Concrete Verbs (M = 0.37%), F (1, 12) = 18.97, MSe = 

0.141, p < .001. Analyses also showed a significant interaction between the Verb and the 

Noun, F (1, 12) = 19.71, MSe = 0.286, p < .001, basically due to the high number of errors in 

Abstract Verbs followed by Concrete Nouns (M = 0.81%) condition, that significantly differed 

from Abstract Verbs followed by Abstract Nouns (M = 0.38%, post hoc LSD: p < .001 ), 

Concrete Verbs followed by Concrete Nouns (M = 0.26%, post hoc LSD: p < .001 ) and 

Concrete Verbs followed by Abstract Nouns (M = 0.48%, post hoc LSD: p < .01 ) conditions. 

Finally we found an interaction between the Pulse, the Stimulated Word and the Verb, F (1, 

12) = 7.44, MSe = 0.060, p < .05: in the Active Pulse condition with Sentences containing 

Abstract Verbs participants made more errors (M = 0.78%) when the pulse was delivered on 

the second word than on the first one (M = 0.56%, post hoc LSD: p < .01; the effect was not 

replicated for the control-sham condition, p = .12); we found no effect of the Stimulated Word 

Sentences containing Concrete Verbs (post hoc LSD: p = .28; control-sham condition, p = 

.58).  

Before performing analyses on response times all incorrect responses were eliminated 

(3.57 %). Response times (ms) were submitted to a 2 (Pulse: Active vs. Sham) X 2 (Verb: 

Concrete vs. Abstract) X 2 (Noun: Concrete vs. Abstract) X 2 (kind of Stimulated Word: 1
st
 

word vs. 2
nd

 word) ANOVA, with all variables within participants. Results showed a main 

effect of the kind of Noun, F (1, 12) = 5.05, MSe = 3966.197, p < .05: sentences containing 
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Abstract Nouns (M = 556.32 ms) were processed faster than sentences containing Concrete 

Nouns (M = 575.94 ms). This result appears to be due to the very slow response times 

obtained with Abstract Verbs plus Concrete Nouns combinations. Indeed, due to our particular 

paradigm, we collapsed verb and noun RTs focusing on sentences. As a result Concrete Noun 

processing turned out to be slower than Abstract Noun processing because the timing reflected 

not only the process of noun comprehension, but also the process of previous verb 

comprehension, as well as a possible delay caused by the switching cost. We will not discuss 

this result as it is partially explained by the interaction between Verbs and Nouns: analyses 

showed a significant interaction between the Verb and the Noun, F (1, 12) = 36.86, MSe = 

1740.424, p < .0001, as participants were faster with congruent combinations (AA: M = 

546.29 ms; CC: M = 550.84 ms) than with the mixed ones (AC: M = 601.04 ms; CA: M = 

566.34 ms, post hoc LSD: p < .05). The advantage of congruent over mixed combinations 

replicates results found by Scorolli et al (2011) in a behavioral task employing the same 

paradigm. Additionally, post hoc LSD showed that participants employed the slowest response 

times with Abstract Verbs combined with Concrete Nouns: the modality switching (from 

concrete to abstract, or vice-versa) determines a delay; this delay is larger in case of sentences 

containing Abstract rather than Concrete Verbs. Most crucially we also found a three way 

interaction between the Pulse, the Stimulated Word and the Verb, F (1, 12) = 4.77, MSe = 

3012.27, p < .05: when the pulse was delivered on the 1
st
 word (verb), sentences containing 

Concrete Verbs (M = 538.55 ms)  were processed faster than sentences containing Abstract 

Verbs (M = 576.11 ms, post hoc LSD: p < .05); in the control-sham condition we found no 

effect of the Verb (p = .64). The time latencies for sentences containing concrete verbs (M = 

561.46 ms) and sentences containing abstract verbs (M = 565.65 ms) did not differ when the 
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pulse was delivered on the 2
nd

 word (noun, p = .10); not effect of the kind verb was found for 

the sham condition (p = .16). This result clearly argues in favor of a greater activation of the 

motor system during Concrete Verbs processing in case of TMS pulse.  

To better understand our results we performed two further separated analyses focusing on 

the Sham Condition and on the Active pulse condition: for both the analyses, response times 

(ms) were submitted to a 2 (Verb: Concrete vs. Abstract) X 2 (Noun: Concrete vs. Abstract) X 

2 (Stimulated Word: 1st word vs. 2nd word) ANOVA, with all variables manipulated within 

participants. In the Sham Condition analysis we found only a significant interaction between 

the Verb and the Noun, F (1, 12) = 15.28, MSe = 2476.217, p < .005: participants were faster 

with congruent combinations (AA: M = 551.06 ms; CC: M = 554.52 ms) than with the mixed 

ones (AC: M = 601.85 ms; CA: M = 579.93 ms). The interaction between the Verb and the 

Noun was significant also in the separated analysis on Active Stimulation Condition, F (1, 12) 

= 6.50, MSe = 4121.074, p < .05: participants were faster with congruent combinations (AA: 

M = 541.52 ms; CC: M = 547.26 ms) than with the mixed ones (AC: M = 600.24 ms; CA: M 

= 552.75 ms). Most crucially in this analysis we also found a significant interaction between 

the Verb and the kind of Stimulated Word, F (1, 12) = 4.90, MSe = 1477.771, p < .05: 

sentences containing Concrete Verbs were processed faster when the pulse was delivered on 

the 1
st
 word (verb, M = 538.55 ms) than on the 2

nd
 (noun, M = 561.46 ms, post hoc LSD: p < 

.05, see Fig. 3); conversely with sentences containing Abstract Verbs we found no effect of the 

Stimulated Word (p = .35). 
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Figure 3. The interaction between the Verb and the kind of Stimulated Word: sentences 

containing Concrete Verbs were processed faster when the pulse was delivered on the 1st 

word than on the 2nd; with sentences containing abstract verbs no effect was found. 

 

 

3. DISCUSSION 

An important challenge of embodied theories is to explain the comprehension of abstract 

sentences. We performed a transcranial magnetic stimulation (TMS) study to explore the role 

of the left primary motor cortex during the processing of action-related and non-action-related 

verbs with nouns of graspable and non-graspable objects. Participants performed a sentence 

sensibility task. Single TMS pulses were delivered 250 ms after verbs vs. nouns presentation.  

The first important result, supporting embodied theories, is that both concrete and abstract 

words modulate the activity of the motor system, as indicated by analyses on MEPs and 

suggested by results on RTs, even though this modulation involves different temporal 

windows. In addition, as predicted, our results suggest that concrete words activate the hand-

related motor system in a more direct and straightforward way, while abstract words activate it 
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in a different fashion. Both results are in line with a subset of embodied and grounded theories 

on abstract concepts and words processing. Indeed, they do not support embodied theories 

according to which concrete and abstract words do not differ in processing and representation. 

Rather, they support multiple representation views, and particularly the WAT proposal. We 

will now discuss the results that led us to this conclusion. 

1. Precocious simulation with concrete verbs. In a previous study Pulvermüller et al. 

(2005) found a specific and precocious (150 ms) facilitatory effect of TMS subthreshold 

stimulation of the motor cortex on the action words processing. In their study, participants 

were presented with single words referring to leg (e.g., to kick) or hand-arm actions (e.g., to 

pick) and were asked to perform a lexical decision task. Leg words recognition was faster 

when TMS targeted the leg area than when TMS was delivered over upper limb 

representation; symmetrical results were obtained for hand-arm verbs. The results showed that 

the activation of motor and premotor areas modulates the processing of specific kinds of 

words, semantically related to the arm or the leg. Our study extends their results showing the 

temporal evolution of the language and action systems linkage in case of whole sentence 

processing (for a study on single verb processing using different temporal windows see Papeo 

et al., 2009; see also Liuzza et al 2011 for a study on positive and negative abstract and 

concrete sentences), using a language comprehension task (for a recent study on the functional 

anatomy of the language comprehension network see Turken et al., 2011). Analyses of MEPs 

after the pulse only on the first word do not allow us to draw any conclusion on Concrete 

Verbs processing. However the separate analysis we performed to contrast the kind of verb 

and the timings of TMS delivery showed that abstract verbs elicited greater peak-to-peak 

MEPs amplitude with a delayed pulse (650 ms) than with a precocious one (250 ms); crucially 
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concrete verbs presented an opposite pattern (sse also Candidi, Leone-Fernandez, Barber, 

Carreira and Aglioti, 2010). 

Moreover our data on non-sensible sentences (pulse on the second word) are very 

informative. Indeed, we found that in case of meaningless context, that is when the whole 

sentence processing is broken as it is impossible to integrate the noun with the previous verb, 

motor activation is stronger for verbs referring to physical actions performed with the hand 

(greater peak-to-peak amplitudes with concrete than abstract verbs). It seems that when 

participants have to evaluate the sensibility of a sentence, as in the present task, they do not 

process the single words sequentially; rather the meaning emerges from the combination of 

words in sentences (see Pulvermüller, 2011), consistently with recent findings on single words 

formed by different morphological components (Rueschemeyer, Brass and Friederici, 2007). 

If the integration cannot be accomplished due to semantic constraints the comprehension 

process stops at the verb level. Together with the results on MEPs for sensible sentences, these 

results on both meaningless vs. meaningful sentences help us rule out a possible alternative 

explanation, that motor activity may increase merely as a function of task difficulty (e.g., 

Davis and Johnsrude, 2003; Fridriksson, et al., 2008). Analysis on the sentence sensibility 

judgment task (response latencies) showed consistent findings, as we found an advantage for 

sentences containing concrete rather than abstract verbs only when the pulse was delivered on 

the 1
st
 word. Interestingly this effect seems to be very precocious, as the first pulse was 

delivered just 250 ms after the word presentation. 

2. Verb-noun integration: late simulation with abstract verbs. As we presented verb-noun 

combinations, instead of single words, it is crucial to understand how the integration process 

of verbs and nouns takes place.  
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2a. Our results show that MEPs peak to peak amplitudes after a ‘delayed’ pulse (pulse on 

the second word, the noun) were greater with sentences containing abstract verbs than 

sentences containing concrete verbs. This result favors the hypothesis that abstract words 

(verbs) also activate the motor system (specifically, in our study, the motor system related to 

manual action; see Jirak et al, 2010), but this activation is delayed with abstract words than 

with concrete words, as suggested by separate analysis contrasting the kind of verb and the 

timings of TMS delivery, regardless of the noun (as it did not modulate the MEPs). The role of 

the precocious or delayed pulse and the context is disambiguated by further analysis we 

performed on both sensible and non-sensible sentences: crucially, this greater delayed 

involvement of the motor system in the case of sentences containing abstract verbs disappears 

with non sensible sentences (for which presumably the noun is not integrated with the verb). 

This suggests that simulation related to the semantic meaning of the sentence only occurs 

when the content makes sense and that this process leads to activation of the motor system. 

We propose two possible explanations for this effect, relying on two different embodied 

views: (a) the motor simulation is also evoked by sentences containing abstract verbs, but this 

simulation occurs later than with sentences containing concrete verbs. This interpretation is 

consistent with a recent embodied theory that, similarly to WAT, proposes that multiple kinds 

of representation underlie knowledge, the Language and Situated Simulation Theory, LASS 

(Barsalou et al., 2008). According to LASS linguistic forms and situated simulations interact 

continuously, but while the linguistic system is mainly involved during precocious superficial 

linguistic processing, a deeper conceptual processing would be necessary for the operation of 

the simulation system (e.g., sensorimotor system activation; for consistent results, see also 

Louwerse & Connell, 2011). This proposal can account for the delayed activation of sentences 
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containing abstract as opposed to concrete verbs, but LASS would predict a modulation of 

MEPs by the kind of noun. We found greater activation of the motor system for abstract verbs 

than concrete ones in MEPs after a pulse on the noun (400+250 ms). From 250 ms after the 

noun onset participants should have already processed the noun (Pulvermüller et al., 2005); so 

LASS would predict greater MEPs for graspable than for non-graspable objects combined 

with abstract verbs. Instead, we did not find any modulation of the noun; moreover, in the 

analyses of both sensible and non-sensible sentence we found an opposite pattern. 

The second possible explanation (b) of this result supports the WAT proposal (Borghi and 

Cimatti, 2009; 2012). Due to their acquisition modality, concrete words evoke more manual 

information, while abstract words elicit more verbal information (Borghi et al., 2011). We can 

account for these results through arguing that concrete verbs activate precociously motor areas 

related to the hand, while abstract verbs activate precociously motor areas related to the 

mouth, as data on acquisition modality suggest (Borghi et al., 2011). The early activation of 

motor areas related to the mouth would have a delayed effect on motor areas related to the 

hand, due to their topological contiguity. The reason why MEPs modulation should be similar 

for both a direct effect (hand) and an indirect effect (mouth) might not seem straightforward. 

However, one could speculate that, in the temporal window of 250 ms, we might detect the 

hand related curve in its decreasing phase, while in the temporal window of 650 ms we might 

detect the curve describing the effect of the mouth on the hand areas during its increasing 

phase. On this basis, the signal that we detect at 650 ms could be a compound of mouth 

induced activation (abstract verbs) plus the activation determined by noun processing, that - 

resting in our measures - we cannot estimate, but that is reasonably different from zero (null 

activation). This interpretation is consistent with a study on visual, motor and abstract words 
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by Kellenbach et al (2002): measuring event related potentials (ERPs). They found greater 

anterior positivity (lateral sites) activation with abstract words than with motor words starting 

from 300 ms; the effect lasted until 500 ms (centro-anterior sites). Later the effect became left 

lateralized (550-750 ms). Further results in line with our perspective have been found by Desai 

et al. (2010) with fMRI. Participants were presented with sentences of the form 

‘‘I/You/We/They <verb > the <noun >’’ (e.g., “I throw the ball”) and had to evaluate their 

sensibility by pressing a key; they had to respond only to non sensible sentences. The 

sentences included either a motor (e.g., “grasp”), visual (e.g., “read”) or an abstract verb (e.g., 

“explain”, “allow”) combined with concrete and abstract nouns (e.g., “ball” vs. “method”). 

The results showed that abstract sentences, differently from motor and visual ones, strongly 

activated the superior/anterior temporal and inferior frontal areas. In line with WAT, this study 

on sentence processing suggests that the meaning of abstract words may be represented 

primarily through verbal associations with other words. The difference between Paivio’s view 

and embodied multiple representation views such as WAT is that, according to the last, both 

sensorimotor and linguistic information are crucial for both concrete and abstract words, even 

if the distribution of the two information sources is different. In our study the analysis on 

MEPs when the pulse was delivered on the second word indicates that also abstract verbs 

activated the manual motor system, even if it is unclear from the present study whether this 

activation of the manual system is the cascade effect of the involvement of the mouth areas 

(see below). 

2b. Beyond the analysis on MEPs, the second main result on verb-noun integration is 

from reaction times analyses. We found an interaction between the Verb and the kind of pulse: 

sentences containing concrete verbs were processed faster than sentences containing abstract 
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verbs when the TMS pulse was delivered on the presentation of the verb. We did not find any 

difference when the pulse was delivered on the noun. Consistently with our interpretation of 

MEPs, reaction times were faster when the hand related motor areas were directly involved 

(concrete verbs). The supposed indirect activation of hand areas by abstract verbs affected the 

MEPs but it did not last long enough, and probably was not strong enough, to affect response 

times. Finally, the interaction between the Verb and the kind of Noun is consistent with a 

recent cross-linguistic study (Scorolli et al., 2011) in which we found the same advantage a. 

for compatible combinations, and, b. within the mixed combination, when the concrete word 

preceded the abstract word, regardless of its grammatical class (see Paivio, 1965). 

Overall our results seem to indicate that while sentences containing concrete verbs imply 

a direct precocious activation of the hand related motor system, the activation of the same 

system is delayed in the case of sentences containing abstract verbs. The processing of abstract 

verbs could precociously engage mouth related motor areas, that later affect the contiguous 

areas (hand areas). 

However, the present evidence does not allow for disambiguation between two alternative 

explanations: (1) abstract words have a weaker grounding in the sensorimotor system; (2) 

abstract words are processed in an alternative route, maybe in the premotor cortex, with 

involvement from mouth related motor areas. Integrating these results with those recently 

obtained in a study on novel words acquisition (Borghi et al., 2011) we lean towards the 

second hypothesis. 

As hypothesized by the WAT proposal, mouth areas could be crucial for abstract word 

processing. In thinking about the acquisition of a concrete word, such as “pencil”: the 

acquisition simply requires a person to use the label while indicating the right referent. The 
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acquisition of a concept-word like “democracy”, instead, implies the presence of somebody 

explaining the word meaning, using language. This experience is still a bodily experience but 

the contribution of the social dimension is more relevant to acquisition. In addition, in this 

experience language is not only the counter part of an external referent but is a tool that allows 

us to acquire more complex meanings, a powerful means of collecting a variety of bodily and 

situational experiences. 

 

4. EXPERIMENTAL METHOD 

4.1 Participants  

16 students (7 men and 9 women; mean age = 27.44 years; s.d. = 1.93) attending the 

University of Bologna took part in the study. All were native Italian speakers, right-handed 

and all had normal or corrected-to-normal vision. Before starting the experimental session, the 

experimenters assessed their general health status with a brief interview: none of them were 

reported evidence for neither neurological or psychiatric diseases, nor contraindications 

related to single-pulse TMS procedure. Then participants were provided with a detailed 

explanation about the procedure, contraindications and risks of the experiment (Wessermann, 

1998). To begin the experiment participants had to confirm their voluntary participation by 

written consent. The study was approved by the local ethics committee (Department of 

Psychology, University of Bologna). All participants received compensation for their 

participation. 
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4.2 Transcranial Magnetic Stimulation and EMG recording 

As an index of corticospinal excitability, we recorded motor-evoked potential (MEPs). 

MEPs induced by TMS were recorded from the right first dorsal interosseus muscle (FDI, in 

the region of the index finger) by means of a Biopac Student Lab MP36 electromyograph 

(Biopac Systems, Inc, U.S.A.). EMG signals were band-pass filtered (20 Hz–2.5 kHz, 

sampling rate fixed at 10 kHz), digitized and stored on a computer for off-line analysis. Pairs 

of silver/silver chloride surface electrodes were placed over the muscle belly (active electrode) 

and over the associated joint or tendon of the muscle (reference electrode). A circular ground 

electrode with a diameter of 30 mm was placed on the internal bone of the right elbow. Single-

pulse TMS was applied to the left M1, using a Magstim Rapid 2 stimulator (Magstim, 

Whitland, Dyfed, U.K.) connected to a figure-of-eight coil (70 mm in diameter). The coil was 

moved over the left hemisphere to determine the optimal position from which maximal 

amplitude MEPs were elicited in the FDI muscle. The optimal scalp position for the induction 

of MEPs with the maximum amplitude in the right FDI muscle was individuated for each 

participant. The coil rested tangential to the scalp with the handle pointing backwards and 

laterally at a 45° angle away from the midline. The target site was marked with a drawing pen 

on a cap applied on participants’ head, and the coil was maintained in position by the 

experimenters. The intensity of magnetic pulses was set at 120% of the resting motor 

threshold (rMT), which is the minimum intensity of output required to produce MEPs with 

amplitude of at least 50 μV in the FDI muscle with 50% of probability (Rossini et al., 1994). 

The absence of voluntary contraction was continuously verified visually and, prior to the 

recording session, through auditory monitoring of the EMG signal. 
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4.3 Linguistic materials 

Stimulus materials consisted of word pairs composed of a transitive verb and a concept 

noun. We used 28 quadruplets, thus 112 sensible sentences. Each quadruplet was constructed 

by pairing a concrete verb (e.g. to grasp) with a concrete noun (e.g. a flower) or an abstract 

noun (e.g. a concept); and by pairing an abstract verb (e.g. to describe) with the previously 

used concrete and abstract noun. We defined Concrete Nouns as nouns referring to graspable 

objects and Concrete Verbs as verbs referring to physical actions (Taylor, 1977; Vendler, 

1957) performed with the hand. We defined Abstract Nouns as nouns that do not refer to 

graspable objects and Abstract Verbs as verbs expressing mental processes, with no reference 

to a physical object (Taylor, 1977; Vendler, 1957). To select the 28 critical quadruples from 

48 ones, we asked twenty Italian students to judge the familiarity of each sentence and with 

what degree of probability they would use each sentence. We then selected the quadruples 

with highest scores in both ratings and with lowest scores in the standard deviations (for a 

detailed description of the materials’ selection see Scorolli et al., 2011). 

In order to further test if the selected pairs differed in written frequency of use we utilized 

the research engine “Google”: we checked the number of occurrences of each verb-noun pair, 

by using quotations marks (Page et al., 1998; Griffiths et al., 2007; Sha, 2010). The obtained 

frequencies were submitted to a 2 (Noun: Concrete vs. Abstract) X 2 (Verb: Concrete vs. 

Abstract) ANOVA. Crucially, we did not find any significant effect (all ps ≥ .41). The 

establishment of control on written frequency allowed us to exclude that processing 

differences rest on different degrees of association between the words pairs used in the 

quadruples. Finally we selected 112 non-sensible sentences, that is sentences in which the 

actions described by the abstract (e.g. to suspect) or concrete (e.g. to eat) verbs were not 
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suitable for the abstract (e.g. the freedom) or concrete (e.g. a pen) nouns that followed the verb 

(non-sensible sentences). Due to the particular kind of paradigm it was impossible to balance 

sentences for word length and number of syllables. However, this should not represent a 

problem, given that our main hypotheses pertain to the interactions.  

 

4.4 Procedure 

The experiment was programmed using the EPrime (Psychology Software Tools, Inc, 

U.S.A) software to control sequence and duration of the presentation of the linguistic material, 

and to trigger TMS and EMG recording. Participants were asked to perform a sentence 

sensibility task: they were required to judge if sentences made sense or not. Participants 

focused on a fixation cross; after 1000 ms a verb appeared on the screen; after 500 ms the verb 

was substituted by a noun. The cut-off was set at 2500 ms from the noun onset. On conclusion 

of this cycle there was a pause; then the next trial began. Each trial lasted 8000 ms from start 

to finish, i.e. long enough to prevent interaction between consecutive TMS-pulses (Robertson 

et al., 2003). Participants were instructed to use the left foot – homolateral side with respect to 

TMS stimulation site – to respond. They were randomly assigned to one of two groups. 

Participants in the first group were asked to respond “yes” (= the combination makes sense) 

pressing the right pedal and “no” (= the combination doesn’t make sense) pressing the left 

pedal; participants in the other group were assigned the opposite mapping. Participants were 

instructed to keep their right arm/hand and head motionless and muscle relaxation was 

monitored throughout the entire experiment to check for involuntary movements.  

Response times and errors were recorded using EPrime; the timer started from the noun 

presentation. The experiment consisted of four blocks of 112 items each (56 sensible sentences 
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and 56 non-sensible sentences). For each block participants were alternatively delivered a 

TMS (2 blocks) or a sham (2 blocks) stimulation, randomly delivered 250 ms after the onset of 

the first word (verb) or of the second word (noun). The choice of the temporal window was 

motivated by electrophysiological evidence showing that starting from 250 ms motor words 

elicited greater negativity than both visual and abstract words (Kellenbach, Wijers, Hovius, 

Mulder, & Mulder, 2002). The order of the two stimulation conditions was counterbalanced 

across subjects. To mimic the TMS conditions (Robertson et al., 2003), in the sham 

stimulation conditions the same intensity of magnetic pulse was used, but a cylinder made of 

insulating material was located between the coil and the scalp surface. Each sentence was 

presented twice, so we collected 14 observations for each experimental condition. 224 motor 

evoked potentials (MEPs) were obtained from each participant, one magnetic stimulus being 

applied for each item (the pulses delivered during the two sham-blocks did not elicit MEPs). 

The four kinds of sentences were presented in random order within each block, with a short 

pause after 28 items. 

At the end of the experiment participants were debriefed. Since none of them was 

previously exposed to TMS, they reported that they had attributed the differences in the 

peripheral effects intensity in the sham and TMS conditions to different pressures applied on 

the scalp by the two experimenters.  
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Figure 4. The figure shows the experimental paradigm. The coil was moved over the left 

hemisphere to determine the FDI representation in the primary motor cortex. 

 

 

  



308 

 

Acknowledgments 

Thanks to Michele Marzocchi for the useful script to compute screen for MEPs >= 50 μV. 

Thanks to Alessio Avenanti for discussions and useful suggestions on this paper and to Roberto 

Bolzani for statistical advice. Thanks to Kate Burke for revision of the English text. This work 

was supported by the European Community, project ROSSI: Emergence of communication in 

RObots through Sensorimotor and Social Interaction (Grant agreement n. 216125). 

 

 

REFERENCES 

Barsalou, L. W. (1999). Perceptual symbol systems. Behavioral and Brain Sciences, 22, 577–

660. 

Barsalou, L.W. (2003). Situated simulation in the human conceptual system. Language and 

Cognitive Processes, 18, 513-562. 

Barsalou, L. W., Santos, A., Simmons, W. K., & Wilson, C. D. (2008). Language and 

simulation in conceptual processing. In M. De Vega, A. M. Glenberg, & A. C. 

Graesser (Eds.). Symbols, embodiment, and meaning (pp. 245–284). Oxford, U.K.: 

Oxford University Press. 

Binder, J.R., Westbury, C.F., McKiernam, K.A., Possing, E.T., & Medler, D.A. (2005). 

Distinct Brain Systems for Processing Concrete and Abstract Concepts. Journal of 

Cognitive Neuroscience, 17, 905-917. 

Bird, H., Franklin, S, & Howard, D. (2001).   Age of acquisition and imageability ratings for a 

large set of words, including verbs and function words.   Behavior Research Methods, 

Instruments & Computers. Special Issue, 33, 73-79.  

Borghi, A.M. (in press). Action language comprehension, affordances and goals. In Y. Coello 

& A. Bartolo (Eds). Language and action in cognitive neuroscience. Psychology 

Press. 

Borghi, A.M., & Cimatti, F.(2009). Words as tools and the problem of abstract words 

meanings. In N. Taatgen & H. van Rijn (eds.). Proceedings of the 31st Annual 

Conference of the Cognitive Science Society (pp. 2304-2309). Amsterdam: Cognitive 

Science Society. 

Borghi, A.M., & Cimatti, F.(2010). Embodied cognition and beyond: Acting and sensing the 

body. Neuropsychologia, 48, 763-773. 

Borghi, A.M., & Cimatti, F. (2012). Words are not just words: the social acquisition of 

abstract words. Italian Journal of Philosophy of Language, 5, 22-37. doi: 

10.4396/20120303. 



309 

 

Borghi, A.M., Flumini, A., Cimatti, F., Marocco, D. & Scorolli, C. (2011). Manipulating 

objects and telling words: A study on concrete and abstract words acquisition. 

Frontiers in Psychology, 2:15. doi: 10.3389/fpsyg.2011.00015. 

Borghi, A.M. & Pecher D (2011). Introduction to the special topic Embodied and Grounded 

Cognition. Frontiers in Cognition, 2:187. doi: 10.3389/fpsyg.2011.00187. 

Candidi, M., Leone-Fernandez, B., Barber, H.A., Carreiras, M., & Aglioti, S.M. (2010). Hands 

on the future: facilitation of cortico-spinal hand-re presentation when reading the 

future tense of hand-related action verbs. European Journal of Neuroscience, 32, 677–

683. 

Casasanto, D. (2009). Embodiment of Abstract Concepts: Good and bad in right- and left-

handers. Journal of Experimental Psychology: General 138, 351-367. 

Clark (2007). Curing Cognitive Hiccups: A Defense of the Extended Mind. Journal of 

Philosophy 104,163-192. 

Davis M. H., Johnsrude I. S. (2003). Hierarchical processing in spoken language 

comprehension. Journal of Neuroscinece, 23, 3423–3431. 

Decety, J., & Grèzes, J. (2006). The power of simulation : Imagining one’s own and other’s 

behavior. Brain Research, 1079, 4-14. 

Decety, J., & Ingvar, D.H., (1990). Brain structures participating in mental simulation of 

motor behavior: a neuropsychological interpretation. Acta Psychologica, 73, 13–24. 

Desai, R.H., Binder, J.R., Conant, L.L., & Seidenberg, M.S. (2010). Activation of Sensory-

Motor Areas in Sentence Comprehension. Cerebral Cortex, 20, 468-478. 

Dove, G. (2009). Beyond Conceptual Symbols. A Call for Representational Pluralism. 

Cognition, 110, 412-431. 

Dove G (2011) On the need for embodied and dis-embodied cognition. Frontiers in 

Psychology 1:242. doi: 10.3389/fpsyg.2010.00242. 

Fridriksson J, Moss J, Davis B, Baylis G, Rorden C. (2008) Motor speech perception 

modulates the cortical language areas. Neuroimage, 41: 605–613. 

Gallese, V. (2009). Motor abstraction: a neuroscientific account of how action goals and 

intentions are mapped and understood. Psychological Research, 73, 486-98.  

Gibbs, R., & Steen, G. (1999). Metaphor in cognitive linguistics. Amsterdam: John 

Benjamins. 

Glenberg, A. M., & Robertson, D. A. (2000). Symbol grounding  and meaning: A comparison 

of high-dimensional  and embodied theories of meaning. Journal of Memory & 

Language, 43, 379-401. 

Goldman, A., De Vignemont, F. (2009). Is social cognition embodied ? Trends in Cognitive 

Science, 13, 154-9. 

Griffiths, T.L., Steyvers, M., & Firl, A. (2007). Google and the Mind. Predicting Fluency With 

PageRank. Psychological Science, 18, 1069-1076. 

Jirak, D., Menz, M., Buccino, G., Borghi, A.M., & Binkofski, F. (2010). Grasping language. A 

short story on embodiment. Consciousness and Cognition, 19, 711-720. 

Kellenbach, M.L., Wijers, A.A., Hovius, M., Mulder, J., & Mulder, G. (2002) Neural 

differentiation of lexico-syntactic categories or semantic features? Event-related 

potential evidence for both. Journal of Cognitive Neuroscience,14, 561-577. 



310 

 

Kocha, G, Versacea, V., Bonnì, V.S., Lupoa, F., Lo Gerfoa, E., Oliveri, M., & Caltagirone, C. 

(2010). Resonance of cortico–cortical connections of the motor system with the 

observation of goal directed grasping movements. Neuropsychologia, 48, 3513–3520. 

Lakoff, G. (1987). Women, fire, and dangerous things: What categories reveal about the mind. 

Chicago: University of Chicago Press. 

Liuzza M.T., Candidi M., Aglioti S.M. (2011). Do not resonate with actions: sentence polarity 

modulates cortico-spinal excitability during action-related sentence reading. PLoS 

One, 6(2):e16855. 

Louwerse, M.M., &  Connell, L.  (2011). A taste of words: Linguistic context and perceptual 

simulation predict the modality of words. Cognitive Science, 35, 381-398.  

Louwerse, M.M., &  Jeuniaux, P. (2009). Language comprehension is both embodied and 

symbolic. In M. de Vega, A. Glenberg, & A.C. Graesser (Eds.), Symbols, 

embodiment, and meaning: A debate (pp. 309-326). Oxford: Oxford University Press. 

Mirolli, M., & Parisi, D. (2011). Towards a Vygotskyan cognitive robotics: The role of 

Language as a Cognitive Tool. New Ideas in Psychology, 29: 298-311. 

doi:10.1016/j.newideapsych.2009.07.001.  

Page, L., Brin, S., Motwani, R., & Winograd, T. (1998). The PageRank citation ranking: 

Bringing order to the web (Tech. Rep.). Stanford, CA: Stanford Digital Library 

Technologies Project. 

Paivio, A. (1965). Abstractness, imagery, and meaningfulness in paired-associate learning. 

Journal of Verbal Learning and Verbal Behavior, 4, 32-38. 

Paivio, A. (1986). Mental representations: A dual coding approach. New York: Oxford 

University. 

Paivio, A. (1991). Dual coding theory: retrospect and current status. Canadian Journal of 

Psychology 45, 255-87. 

Paivio, A., Yuille, J. C. & Madigan, S. A. (1968). Concreteness, imagery, and meaningfulness 

values for 925 nouns. Journal of Experimental Psychology Monograph Supplement, 

76, 1-25. 

Papeo, L., Vallesi, A., Isaja, A., Rumiati, R.I., (2009). Effects of TMS on Different Stages of 

motor and Nonmotor Verb Processing in the Primary Motor Cortex. PLoS ONE, 4, 

e4508. 

Pecher, D., Boot, I., & van Dantzig, S. (2011). Abstract concepts: Sensory-motor grounding, 

metaphors, and beyond. In B. Ross (Ed.). The Psychology of Learning and 

Motivation, vol. 54 (pp. 217-248). Burlington: Academic Press. 

Penfield W, & Rasmussen T (1950). The cerebral cortex of man. New York: Macmillan. 

Pulvermüller, F., Hauk, O., Nikulin, V., & Ilmoniemi, R.J. (2005). Functional links between 

motor and language systems. European Journal of Neuroscience, 21, 793-797. 

Pulvermüller, F., Shtyrov, Y., & Ilmoniemi, R. J. (2005). Brain signatures of meaning access 

in action word recognition. Journal of Cognitive Neuroscience, 17, 884-892.  

Pulvermüller, F. (2011). Meaning and the brain: The neurosemantics of referential, interactive, 

and combinatorial knowledge. Journal of Neurolinguistics. 

Robertson, E.M., Théoret H., Pascual-Leone A. (2003). Studies in cognition: the problems 

solved and created by transcranial magnetic stimulation. Journal of Cognitive 

Neuroscience, 15, 948–960. 



311 

 

Rodríguez-Ferreiro, J., Gennari, S.P., Davies, R., & Cuetos, F. (2010). Neural Correlates of 

Abstract Verb Processing. Journal of Cognitive Neuroscience 23, 106–118. 

Rossini, P.M., Barker, A.T., Berardelli, A., Caramia, M.D., Caruso, G., Cracco, R.Q., 

Dimitrijevic, M.R., Hallett, M., Katayama, Y., Lucking, C.H., et al. (1994). Non-

invasive electrical and magnetic stimulation of the brain, spinal cord and roots: basic 

principles and procedures for routine clinical application. Report of an IFCN 

committee. Electroencephalogr Clin Neurophysiol, 91, 79-92. 

Rueschemeyer, S.A., Brass, M., & Friederici, A.D. (2007) Comprehending Prehending: 

Neural Correlates of Processing Verbs with Motor Stems. Journal of Cognitive 

Neuroscience 19:5, pp. 855–865. 

Schwanenflugel, P. (1991) Contextual constraint and lexical processing. In G. B. Simpson 

(Ed.), Understanding word and sentence. Amsterdam: Elsevier. 

Scorolli, C., Binkofski, F., Buccino, G., Nicoletti, R., Riggio, L., & Borghi, A. (2011). 

Abstract and concrete sentences, Embodiment and languages. Frontiers in 

Psychology 2:227. doi: 10.3389/fpsyg.2011.00227 

Sha, G. (2010). Using Google as a super corpus to drive written language learning: a 

comparison with the British National Corpus. Computer Assisted Language Learning, 

23, 377-393. 

Shallice, T, & Warrington, E.K. (1975). Word recognition in a phonemic dyslexic patient. 

Quarterly Journal of Experimental Psychology, 27, 187–199. 

Simmons, W.K., Hamann, S.B., Harenski, C.N., Hu, X.P., & Barsalou, L.W. (2008). fMRI 

evidence for word association and situated simulation in conceptual processing. 

Journal of Physiology – Paris, 102, 106-119. 

Taylor, B. (1977). Tense and continuity. Linguist Philosophy, 1, 199–230. 

Turken, A. U., & Dronkers, N.F. (2011). The neural architecture of the language 

comprehension network: converging evidence from lesion and connectivity analyses. 

Frontiers in Systems Neuroscience, 5 

Tylèn, K., Weed, E., Wallentin, M., Roepstorff, A. & Frith, C.D. (2010). Language as a Tool 

for Interacting Minds. Mind & Language, 25, 3-29. 

Vendler, Z. (1957). Verbs and times. Philosophical Review, 66, 143–160. 

Wang, J., Conder, J.A., Blitzer, D. N. & Shinkareva, S. V. (2010). Neural representation of 

abstract and concrete concepts: A Meta-Analysis of Neuroimaging Studies. Human 

Brain Mapping, 31, 1459-68. 

Warrington, E.K. (1975): The selective impairment of semantic memory. Quarterly Journal of 

Experimental Psychology, 27, 635–657. 

Wessermann, E.M. (1998). Risk and safety of repetitive transcranial magnetic stimulation: 

report and suggested guidelines from the international workshop on the safety of 

repetitive transcranial magnetic stimulation. Electroencephalogr Clin Neurophysiol, 

108, 1–16.  

Zwaan, R.A. (2004). The immersed experiencer: toward an embodied theory of language 

comprehension. In: B.H. Ross (Ed.), The Psychology of Learning and Motivation,  

44, 35-62. New York: Academic Press. 

  



312 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



313 

 

 

 

 

 

 

 

APPENDIX II 

Scientific project submitted to the post-

doctoral fellowship granted by the 

Fyssen Foundation 

(deliberation: 15th July 2012) 

 

 

 



314 

 

INVESTIGATING THE NEURAL DYNAMICS OF HUMAN SOCIAL CONFORMITY 

SCIENTIFIC PROJECT 

 

Prior expectations refer to the set of information on which individuals rely to make decisions 

in noisy or uncertain situations. These expectations are derived from prior knowledge that may 

originate from the past experience of the person (through expertise or learning of statistical 

regularities), from her intuitive theories, as well as from contextual information surrounding 

an action scene [1]. During my PhD, I participated in a series of studies that investigated how 

different types of prior information (i.e. biomechanical versus probabilistic priors) alter the 

perception and the prediction of goal-directed actions [2,3]. In a theoretical paper, I proposed 

that biomechanical priors (a class of priors based on a sensori-motor estimation of action 

costs)reduce the space of behavioral alternatives one may perform in a given situation and 

thereby directly influence the social learning of new skills and favor the emergence of stable 

behavioral traditions in a population [4]. Furthermore, using the technique of evolutionary 

individual-based modeling, we demonstrated that stable behavioral patterns can emerge at the 

population level via both high-fidelity and low-fidelity social learning mechanisms, as long as 

the latter are coupled with a highly constrained behavioral repertoire (e.g., constrained by 

biomechanical priors) [5]. The two-year project presented here naturally follows from these 

previous studies and extends on them by proposing to investigate another form of priors, 

namely expectations generated by social environments. 

 

Two kinds of social conformity 

Changing one’s behavior to adopt the behavior exhibited by a majority of peers is a form of 

social influence that has been termed social conformity [6,7]. The modification of an 

individual’s judgment under the pressure of a group was first demonstrated by Asch in a series 

of seminal experiments [8,9]. In these experiments participants were asked to estimate and 

make judgments about the relative lengths of line segments. Although these tasks were 

perceptually simple, participants frequently gave the wrong answers when a group of peers 

was also giving the wrong answer. Following Asch’s work, social psychologists agreed on a 

dual explanation of conformity split into informational conformity and normative conformity 

[10,11]. It has been proposed that the influence of these two types of conformity differs 

according to the number of sources in the influence group and the amount of uncertainty 

during decision-making [12,13]. 

Informational conformity helps an individual to pick up nonsocial information from 

behaviors displayed by other group members, and is guided by the need to maximize 

performance (e.g., being accurate in discriminating sensory stimuli). Informational conformity 

is particularly salient in private contexts – i.e., when the individual’s decisions are unseen by 

the group. In such contexts, the probability of an individual showing conformity is positively 

correlated with the amount of subjective uncertainty; the more uncertain a subject is the more 

likely she/he is to pick up information from the group in order to reduce the level of 

uncertainty. Furthermore, the effect of group size on the probability of conforming decreases 

with increasing group size: a minimum number of influence sources is assumed to be 

sufficient to reduce the individual’s uncertainty [12,13].  
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In contrast, normative conformity occurs when an individual picks up social information 

from the behavior displayed by other group members. Normative conformity biases are most 

often expressed in public contexts – i.e., when the individual’s decisions are seen by the 

group. Such biases occur when individuals adapt their behavior to the group’s expectations in 

order to maximize their own social outcomes (e.g., maintaining social cohesion or avoiding 

social exclusion). For this reason, the probability of conforming in a normative context 

depends less on subjective uncertainty or the reliability of the information provided by the 

group and more on social approval. Furthermore, the effect of the group size on the probability 

of conforming increases as a function of the group size: increasing the number of people 

giving feedback increases the weight of social information [12,13].  

 

The neuroscience of social conformity 

We intend to study whether informational and normative biases engage distinct cerebral 

processes during the treatment of social information which, in turn, differentially influence 

perceptual decisions.  

The existing neuroscientific literature suggests that social information can be processed 

similar to any other type of rewarding stimulus [14,15]. For example, it has been shown that 

when the individual and group opinions conflict, the brain generates neural signals in the 

anterior cingulate cortex (a region in the posterior medial frontal cortex) and the ventral 

striatum that share common features with the prediction error signal carried by the 

dopaminergic system and observed during reinforcement learning [16,17]. Detection of 

conflicting social feedback appears to be processed by an individual as the detection of an 

erroneous action outcome and the the magnitude of subsequent behavioral adjustments is 

correlated with the magnitude of the ‘error signal’. Furthermore, the strength of this 

‘prediction error’ signal is correlated with the amplitude of the conflict, and is predictive of the 

individual’s propensity to change future decisions to conform to the group [18]. Together, 

these results indicate that the encoding of social priors as a specific class of reward generates a 

top-down signal in frontal regions that influences complex decisions. Moreover, the likelihood 

of adjusting decisions to match those of the influence group is increased when the target 

stimuli are initially judged as uncertain. This suggests that the influence of social priors may 

be particularly strong when an individual has to make decisions in uncertain situations – i.e., 

when the available information does not sufficiently constrain the number of potential 

alternatives.  

Berns et al. (2005) [19] used neuroimaging to demonstrate that, in a simple mental 

rotation task, when perceptual judgments conflicting with the group were followed by 

conformity, a functional change occurred in an occipital-parietal network known to be 

involved in mental rotation. This result suggests that – just as for other types of prior 

information [20,21] – social information processed in frontal regions of the brain generates 

prior expectations that bias low-level perceptual decisions operating in sensory cortices.  

It is important to point out that all the above-mentioned studies differed in terms of the 

social context or the amount of subjective uncertainty. For example, Berns et al. (2005) were 

the only ones who simulated realistic individual-to-group interactions in which participants’ 

responses were fully visible to other group members. Thus, unlike the other studies, their task 

context was appropriate for the emergence of a normative conformity bias (see above). 
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Whether or not this was crucial for the observed results is unclear, however, given that neither 

the context nor the amount of subjective uncertainty was systematically varied. 

Without systematically varying context and perceptual uncertainty two fundamental 

questions in the social conformity realm will remain unanswered. First, how does the brain 

process social information according to i) the informational (private) and normative (public) 

context in which the decision is taken, ii) the number of sources in the influence group that 

provide feedback, and iii) the perceptual uncertainty during decision-making? Second, do 

these factors have a direct impact on brain mechanisms responsible for high-level and low-

level decision-making? The aim of the research proposed here is to address these questions.  

  

 

EXPERIMENTAL OUTLINE 

EEG EXPERIMENT 

 

Objectives. Using behavioral and neuroimaging methods, the aim of the present project 

is to investigate whether, and how, expectations about information provided by a group 

of peers influence the neural mechanisms of perceptual decision-making. We will use a 

protocol in which the participants’ propensity to conform to group opinion (i.e., the weighting 

of social priors) will be manipulated within an ecological context of social influence. In this 

protocol, healthy adults are required to categorize facial expressions after having received 

computer-generated feedback simulating the responses of three bogus influence sources (see 

fig.1). The experiment will be composed of two separate tasks performed by a group of twenty 

healthy volunteers. In the informational conformity task participants will receive social 

feedback from three influence sources but will not directly confront these sources. This 

‘private’ context should favor conformity to social feedback for informational motives. In the 

normative conformity task participants will receive the same social feedback from the three 

influence sources. In this task, however, they will direct confront the sources and will 

simultaneously perform the task with them. This ‘public’ context should favor conformity to 

social feedback for normative motives.  

In each task we will vary i) the amount of perceptual uncertainty elicited by the target 

stimuli (ambiguous versus unambiguous faces) as well as ii) the distribution of social feedback 

(0, 1, 2 or 3 sources conflicting with the perceptual evidence elicited by the target stimulus). 

While participants perform the task we will use EGG to measure four well-known event-

related potentials (ERPs). The feedback-related negativity (NFB) reflects the prediction error 

signal that occurs during the monitoring of erroneous action outcome and predicts behavioral 

adjustment [22]. The feedback-related positivity (PFB) is modulated by negative feedback that 

provides information relevant to the task goal [23]. The early posterior negativity (EPN) and 

the late positive potentials (LPP) are involved in the perceptual processing of facial 

expressions [24]. NFB and PFB reflect modulations of neural signal in the medial frontal region, 

and will be used to predict changes in decisional strategy. EPN and LPP assess modulations of 

neural signal in sensory and associative cortices, and will be used to predict changes in 

perceptual decision-making. 

Hypotheses. We hypothesize that social information provided by a group can affect 

perceptual decision making by changing neural activity in frontal areas and by exerting 
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backward influences on sensory areas in which perceptual decisions are processed. We 

expect this effect to be modulated by perceptual uncertainty, the distribution of social 

feedback, as well as the informational and normative context of the task. More specifically, we 

expect social information to be processed as a rewarding stimulus when the need for social 

approval overtakes the need to maximize performance (normative context), in particular when 

feedback from the three sources reaches consensus and conflicts with perceptual evidence 

provided by unambiguous faces. This could result in a change in high-level decisional 

processes operating in medial frontal regions (evident as an increase in NFB amplitude) without 

any alteration in low-level perceptual decisional processes (shown by no modulation of EPN 

or LPP). In contrast, we expect social information to be processed just like any other type of 

information when perceptual uncertainty is high (ambiguous faces) and when maximizing 

performance overtakes the need for social approval (informational context), and this, 

independently of whether social feedback reaches consensus. This could result in a change in 

high-level decisional processes (shown by an increase in PFB amplitude) as well as a change in 

low-level decisional processes operating in sensory cortices (shown by a modulation of EPN 

or LPP). 

Participants. Participants will be tested at the ‘Laboratoire de Psychologie de la 

Perception’ at the Paris Descartes University (Paris, France). The same twenty healthy 

volunteers will perform both informational and normative conformity. All participants will 

complete the self-monitoring scale of interpersonal influence [25], the Hare Psychopathy 

Checklist-Revised [26], and the State-Trait Anxiety Inventory [27].  

Methods. Informational and normative tasks will be separated by a minimum of two 

weeks. Taking into account the constraints associated with EEG (long preparation time, the 

influence of fatigue on EEG signals, etc.), we will run each task in two identical testing 

sessions lasting approximately 45 min each and separated by 24 hours. In each 45 min session 

we will present 350 computer-generated male faces extracted from the free database 

developed by [28]. Subjects will be required to judge whether the face is friendly or 

threatening.  

General procedure. A typical trial consists of two presentations of the same face stimulus: 

one before and one after the social feedback (see [18] for a similar procedure). A first screen 

will present a single face stimulus for 1000ms during that the participant is required to 

carefully observe (first presentation = observation phase). Then three pictures will appear at 

the center of the screen representing the influence sources. In the next screen the participant 

sees the decisions of the influence sources for the face presented on the first screen. After 

1000ms the social feedback is followed by a black screen for between 200 and 800ms. The 

next screen then presents the face stimulus that was previously observed and judged by the 

influence sources (second presentation = decision phase) and participants will have 1000ms to 

make their own decision by pressing one of two computer keys corresponding to ‘friendly’ 

(green key) and ‘threatening’ (red key). After their decision they will be required to indicate 

their level of confidence on a 5 point scale by moving a cursor to the desired value. An 

intertrial interval will then be presented for a variable duration of 1500 to 3000ms.  

Manipulating the informational and normative context. For the informational conformity 

task, participants will be informed that they will participate in the pilot rating of a new face 

stimuli database. The experimenter will clearly explain to participants that their responses will 
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remain strictly private and anonymous (private context, see fig.1a). Participants will be told 

that, before answering, they will see a screen showing the decisions of three other participants 

who have already performed the task. After seeing the group’s decision, the participants will 

be required to give his/her own decision about the same stimulus. 

The normative conformity task is identical to the informational conformity task, except 

that we will simulate realistic on-line interactions between the participant and the three 

influence sources (public context, see fig.1b). Prior to running the experiment, participants 

will meet the three sources (members of the lab). The participant and the three confederates 

will be informed that they will simultaneously perform the task, in different rooms, connected 

by a computer network. We will inform the participant that the three confederates will make 

their decisions after the first exposure to the stimulus, while she/he will make her/his decisions 

after the second exposure. A webcam attached to the computer screen will capture the 

participant’s and the three confederates behaviors, such that they can keep an eye on each 

others all along the task. Finally, we will inform the participant that each of her/his perceptual 

decisions will be communicated to the other members under the form of a colored pattern. 

Participants will be naïve to the real purpose of the tasks. 
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Figure 1a,b,c. Figure 1a represents a typical trial in the informational conformity task. In the example, the face is ambiguous (-1 value) but 2 

out of 3 influence sources perceived it as threatening (rectangle predominantly coloured in red). Because the participant’s initial percept is 

uncertain, she/he is expected to conform to the group majority (social information is used to reduce perceptual uncertainty and maximize 
performance) with a moderate to high level of confidence. Figure 1b represents a typical trial in the normative conformity task. Here, the face 

is unambiguously threatening (+2 value) but 2 out of 3 influence sources perceived it as friendly (rectangle predominantly coloured in green). 

Although the participant’s initial percept is unambiguous, she/he is expected to conform to the group majority, but with a low level of 
confidence (social information overwhelms the perceptual evidence and is used to maximize social outcomes). In this task, the icons will 

display pre-recorded video clips of the three sources as if they were performing the run. Figure 1c represents the baseline condition for both 

tasks. Here, the feedback is not social as it does not give any information about the group’s decisions. For both tasks, ERP components will be 
recorded during the third (NFB and PFB) and the fifth screen (EPN and LPP).  
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Manipulating perceptual uncertainty (see fig.2). The face stimuli will be distributed along 

a continuum, from friendly to threatening. During the tasks, we will manipulate the level of 

perceptual uncertainty by presenting unambiguous and ambiguous faces. Faces located at 

extremes of the continuum are ‘unambiguous’ (-2; +2) and elicit low perceptual uncertainty, 

faces located around the center are more ‘ambiguous’ (-1; +1) and elicit higher perceptual 

uncertainty. Of note is that faces labelled as ‘ambiguous’ do not have unclear expressions (for 

the pre-testing of face stimuli see [28]). Simply, their expressions are less salient. Thus, 

perceptual uncertainty of ‘ambiguous’ faces is not total but just greater than perceptual 

uncertainty of ‘unambiguous’ faces. 

 

 
Figure 2. The left part of the figure represents an example of face stimuli. Faces located at the extremities of the continuum (-2; +2) are 

labelled ‘unambiguous faces’. Those located around the center are labelled ‘ambiguous faces’. The right part of the figure represents the 
possible distributions of social feedback. The fully coloured rectangles represent group consensus, meaning that the three influence sources 

made the same decision about the stimulus (green = ‘friendly; red = ‘threatening’). Intermediate feedback configurations are represented by 

rectangles coloured with ⅔ of one colour and and ⅓ of the other (2 ‘friendly’ and 1 ‘threatening’ or 2 ‘threatening’ responses and 1 
‘friendly’). Finally, non social feedback in the baseline condition is represented by two superimposed green and red rectangles. These 

configurations do not provide any information about the decisions of the influence sources. 

 

Manipulating the distribution of social feedback (see fig.2). Social feedback will be 

provided by three influence sources, represented in each trial by three personal photographs or 

three stills taken from video clips and located at the center of the second screen. The social 

feedback represents the decisions of the three sources on face presented at the beginning of 

the trial (‘friendly’ or ‘threatening’) and appears on the third screen in the form of a horizontal 

rectangle colored in red or/and green (green = ‘friendly’ decisions, red = ‘threatening’ 

decisions). Fully coloured rectangles represent group consensus, meaning that the three 

influence sources made the same decision. Intermediate feedback configurations are 

represented by rectangles coloured with ⅔ of one colour and and ⅓ of the other (2 ‘friendly’ 

and 1 ‘threatening’ or 2 ‘threatening’ responses and 1 ‘friendly’). Group consensus and the 

intermediate feedback configurations will be randomized and fully counterbalanced across 

conditions. This will allow us to manipulate the conflict magnitude generated by social 

feedback (i.e., the effect of group consensus and disagreement on the participants’ decisions). 

Baseline condition trials will consist of showing two superimposed green and red rectangles 

which model uninformative, non social feedback as no information about the influence 
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sources’ decisions can be inferred from them. Both the ambiguity of face stimuli and the 

meaning of social feedback will be pre-tested.  

EEG acquisition. Several ERP components will be examined. The feedback error-related 

negativity (NFB) and the feedback error-related positivity (PFB) reflect the transmission of 

reinforcement signals from the mesencephalic dopamine system to the medial frontal cortex 

(i.e., rostral cingulate zone of the anterior cingulate cortex) [22]. The NFB is involved in error 

monitoring and has been shown to be modulated by negative feedback following active-

choices, especially when participants’ expectations about the outcome of their choice conflict 

with the current feedback [29]. The PFB has been shown to be modulated by negative feedback 

providing information relevant for the task goal [23]. These ERPs could be reliable predictors 

of a change in decisional strategy operating in medial frontal cortex after the processing of 

negative feedback. The NFB and PFB will by measured during the presentation of social 

feedback (see fig.1a,b,c).  

We will also measure the early posterior negativity (EPN) and the late positive potentials 

(LPP). EPN and LPP have been shown to be modulated by the early and late processing of 

emotional stimuli such as friendly and threatening faces [24]. They have been localized in the 

centro-parietal and temporo-occipital regions, respectively. The EPN and LPP components 

will be examined during the second exposure to the face stimulus (decision phase) (see 

fig.1a,b). Task-related modulation of the EPN and LPP could predict that the processing of 

social feedback in the medial frontal zone exerts a backward influence on perceptual decisions 

operating in sensory and associative cortices. 

Analyses. For both tasks 70 trials per conditions will be collected (2 stimulus levels 

[unambiguous vs. ambiguous] × 5 levels of feedback [baseline + 2 possible consensus + 2 

possible intermediate distributions]) (see fig.2). We will compute hit and false alarm (FA) 

rates for each stimulus level – i.e., for both ‘ambiguous’ and ‘unambiguous’ faces. The hit rate 

is the proportion of ‘friendly’ responses when the stimulus was indeed friendly, or the 

proportion of ‘threatening’ responses when the stimulus was indeed threatening. The false 

alarm rate is the proportion of ‘friendly’ responses when the stimulus was threatening, or the 

proportion of ‘threatening’ responses when the stimulus was friendly. Hit and false alarm rates 

will be used to compute d’ and c indices from Signal Detection Theory [30]. The d’ is a 

measure of the subject’s sensitivity (perceptual discrimination) and c is a measure of the 

subject’s bias (decisional strategy).  

A 2 × 5 repeated-measures ANOVA will then be performed on d’ and c, with the within-

subject factors ‘Perceptual uncertainty’ and ‘Social feedback’. The confidence levels will be 

further analyzed using receiver operating characteristic (ROC) curves [31]. A sensitivity index 

to ‘ambiguous’ and ‘unambiguous’ faces will be determined using A’, the area under the 

curve. The group’s mean amplitude of the NFB, PFB, EPN and LPP will be compared across 

each experimental condition.  

Predictions. For the informational conformity task, the effect of social feedback should 

increase conformal decisions, as assessed by a decrease in d’. For example, participants should 

make fewer accurate decisions for threatening faces if those faces have been judged by the 

group as ‘friendly’. This effect is expected to be restricted to faces eliciting perceptual 

uncertainty, and is expected to be independent of whether the feedback reaches consensus or 
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not. Such a decrease in d’ might be correlated with an increase in PFB amplitude during the 

processing of social feedback. If so, it would suggest that in an informational context social 

feedback is not processed as conflicting information generating a prediction error signal, but 

rather as relevant information that participants can use to improve their performance – i.e., 

information that would be integrated into the decision process in order to reduce uncertainty. 

Finally, the decrease in d’ might also be associated with an increase in EPN and LPP 

amplitudes recorded during the presentation of ambiguous faces after the feedback. This 

would reveal that, under condition of uncertainty, social feedback processed in medial frontal 

cortex generates expectations that bias perceptual decisions operating in sensory and 

associative cortices.   

For the normative conformity task, a similar effect of social feedback on decisions is 

expected for faces that elicit perceptual uncertainty. However, social feedback should also 

have an effect on the decisions made on unambiguous faces, especially when associated with a 

consensus that conflicts with perceptual evidence. This change in decisional strategy should be 

revealed by a switch in the c index. For example, participants will likely categorize as 

‘threatening’ unambiguous friendly faces that have been judged by the three sources as 

‘threatening’. We expect this switch in decisional strategy to be associated with an increase in 

the NFB amplitude during the feedback delivery. If so, this would show that in a normative 

context social feedback that conflicts with perceptual evidence is processed in the medial 

frontal cortex as an erroneous action outcome or as a rewarding stimulus, both of which 

motivate behavioral adjustment. We do not expect to observed modulations of EPN and LPP 

amplitudes, suggesting that this change in decisional strategy does not affect lower level, 

perceptual decisional processes.  

 

 

rTMS EXPERIMENT 

COLLABORATION WITH THE INSERM UNIT 1028 – LYON, FRANCE 

 

Objectives. In order to confirm the causal role of those brain structures examined in our 

social conformity tasks we will adapt the informational and normative conformity tasks to an 

on-line repetitive transcranial magnetic stimulation (rTMS) protocol.  

Recently, it was shown that TMS-induced transient inhibition of the posterior medial 

frontal cortex (pMFC) attenuated social conformity [32]. However, nothing is known about 

whether pMFC disruption differentially affects conformity in an informational or normative 

context. Since we expect informational and normative contexts to modulate the effect of social 

feedback and perceptual uncertainty on decision-making our aim will be to test whether pMFC 

downregulation differentially affects behavioral performance in informational and normative 

contexts. 

To do this we will collaborate with Dr. Alessandro Farnè and Dr. Karen Reilly at the 

Lyon Neuroscience Research Center (INSERM U1028 - CNRS UMR5292). This will give us 

the opportunity to interact with two acknowledged TMS specialists and to take use a state-of-

the-art TMS platform.  

Methods. A group of 20 healthy adults will be tested in both the informational and 

normative conformity tasks described above. During the tasks, we will use on-line, trial-by-
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trial rTMS [33] to transiently inhibit the right pMFC. On each TMS trial we will apply 5Hz 

rTMS over the target site for 1 sec after the first exposure to the face stimulus but before 

delivery of the social feedback (see fig.1). To control for any non-specific effects of rTMS, in 

addition to stimulating over the right pMFC we will also stimulate the right parietal cortex 

(precuneus). The stimulation sites will be chosen on the basis of anatomical MRIs acquired at 

the CERMEP platform in Lyon, as well as on the basis of brain coordinates used in a previous 

rTMS study [32]. Half of the trials will be with rTMS, the other half will be without TMS. 

Behavioral performances will thus be compared between trials with rTMS and trials without 

rTMS trials.  

Predictions. We predict that transient inhibition of pMFC will reduce the number of 

conformal decisions. In particular, rTMS should affect decision-making by attenuating the 

perception of the conflict that a social feedback generates when it contradicts perceptual 

evidence. As such, the decrease in conformal decisions is expected to be particularly marked 

in the normative conformity task, in which participants are normally expected to follow the 

group decision even when it conflicts with perceptual evidence. By contrast, this effect should 

not be observed in the informational conformity task, since conformal decisions are motivated 

by the need to gain relevant information from social feedback in order to reduce perceptual 

uncertainty.  

 

 

RELEVANCE OF THE PROJECT TO THE GOALS OF THE FOUNDATION 
 

The results of the present project will provide the first insight into the cerebral bases of 

informational and normative conformity, and issues which is of particular importance to 

several scientific domains.  

First, social conformity participates in the transmission of information between 

individuals and thereby significantly influences the evolution of human culture. Thus, 

exploring the neural dynamics of informational and normative conformity is of central 

importance for understanding what makes human cultural evolution possible. But culture also 

shapes brain, and it could be that some cultural traits have an influence on how individuals 

code and evaluate social information. A future development of this work would thus consist of 

testing whether brain mechanisms associated with the propensity to conform are sensitive to 

cultural variants (e.g. cultural variants that differently promote affective and intellectual 

autonomy or conservatism). Second, conformity regulates interactions between members of a 

group by generating shared expectations, and those who violate these expectations are exposed 

to social exclusion. A fine-grained understanding of brain mechanisms underlying conformity 

would contribute to better targeting of personality traits that are potentially predictive of anti-

social and pro-social behaviors (e.g. psychopathic personality traits or sensitivity to 

interpersonal influences). For example, psychopathic patients exhibit dysregulation of the 

medial prefrontal cortex, a region that is known to be involved in the coding of social 

information as a rewarding stimulus [14-18]. At least partially, anti-social and pro-social 

behaviors could result from the incapacity to evaluate the value of social information. Testing 

the present tasks with populations exhibiting such personality traits is one of the promising 

potential extensions of this work. 
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This interdisciplinary project fits the goals of the Fyssen Foundation in several ways. 

First, at a theoretical level, it relies on various approaches to social conformity developed in 

neuroscience, social psychology, and cognitive anthropology. Second, at the experimental 

level, the project uses various methods originating in different fields such as experimental 

psychology and functional neuroimaging. Finally, I have been involved in interdisciplinary 

approaches to cognition since my undergraduate studies. I completed degrees in Philosophy, 

Cognitive Science and Clinical Neuropsychology, and I learned to test hypotheses using a 

wide range of methods. For these reasons I think that my project, as well as my profile, 

naturally fit Fyssen’s interests. 
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