
Alma Mater Studiorum - Università di Bologna

DOTTORATO DI RICERCA IN

INGEGNERIA BIOMEDICA, ELETTRICA E DEI SISTEMI

Ciclo 35

Settore Concorsuale: 01/A6 - RICERCA OPERATIVA

Settore Scientifico Disciplinare: MAT/09 - RICERCA OPERATIVA

ADJUSTABLE ROBUST OPTIMIZATION WITH NONLINEAR RECOURSES

Presentata da: Henri Bertrand Roger Jean-Marc Arthur Lefebvre

Supervisore

Michele Monaci

Esame finale anno 2023

Coordinatore Dottorato

Michele Monaci

Co-supervisore

Enrico Malaguti

“We should not speak so that it is possible for the audience to understand us,

but so that it is impossible for them to misunderstand us.”

—M. F. Quintiliano, De Institutione Oratoria (c. 95 AD)

2

Acknowledgements

First and foremost, I would like to address my deepest thanks to Pr. Michele Monaci and to

Pr. Enrico Malaguti, who were my Ph.D advisors. I am particularly grateful for the trust they

granted me throughout these years, and the mature relationship we could build. Their advice and

guidelines are inestimable.

I am also grateful to Pr. Boris Detienne with whom working has always been a pleasure.

To Pr. François Clautiaux, I would like to address a warm thank you for the work we have

conducted together, but also for his constant availability in times of doubt.

Many thanks should go to my colleagues from the DEI laborartory of the University of Bologna

for making these years an enjoyable moment. In particular, I would like to thank Naga Venkata

C. Gudapati for his kindness.

I would also like to acknowledge my dear colleagues from the MINOA project, with special

mentions to Benedikt Bienhüls and Dennis Adelhütte.

The first two years of my research were supported by the MINOA consortium, which received

funding from the European Union’s EU Framework Programme for Research and Innovation Hori-

zon 2020 under the Marie Sklodowska-Curie Actions Grant Agreement No 764759. I am grateful

for the opportunities they offered me.

The last year of my Ph.D was supported by the Air Force Office of Scientific Research under

award FA8655-20-1-7019. My research would not have been possible without this opportunity.

To Charlotte, thank you for all the rest.

3

Abstract

Over the last century, mathematical optimization has become a prominent tool for decision making.

Its systematic application in practical fields such as economics, logistics or defence led to the

development of algorithmic methods with ever increasing efficiency. Indeed, for a variety of real-

world problems, finding an optimal decision among a set of (implicitly or explicitly) predefined

alternatives has become conceivable in reasonable time. In the last decades, however, the research

community raised more and more attention to the role of uncertainty in the optimization process.

In particular, one may question the notion of optimality, and even feasibility, when studying

decision problems with unknown or imprecise input parameters. This concern is even more critical

in a world becoming more and more complex —by which we intend, interconnected —where each

individual variation inside a system inevitably causes other variations in the system itself.

In this dissertation, we study a class of optimization problems which suffer from imprecise

input data and feature a two-stage decision process, i.e., where decisions are made in a sequential

order —called stages —and where unknown parameters are revealed throughout the stages. The

applications of such problems are plethora in practical fields such as, e.g., facility location prob-

lems with uncertain demands, transportation problems with uncertain costs or scheduling under

uncertain processing times.

In the first chapter of this thesis, we present the main existing approaches for dealing with

uncertain parameters in mathematical optimization along with their underlying assumptions. In

particular, we discuss the main motivations behind the robust optimization paradigm, to which

this thesis aims at contributing. Chapter 2 is then dedicated to a deeper introduction to robust

optimization and its existing solution approaches. In this chapter, it is also made clear that further

effort is needed for a sub-class of problems where second-stage decisions are nonlinear (e.g., mixed-

integer and/or convex). The second part of the thesis is then dedicated to original contributions

to the two-stage robust optimization field, and is organised as follows.

– In Chapter 3, we study problems in which costs are subject to uncertainty and the second-

stage decisions are modeled as a mixed-integer nonlinear problem (MINLP). Extending a

recent contribution from the literature, we introduce a new general approach for our class of

problems. This work is under revision at EJOR - European Journal of Operational Research.

4

– In Chapter 4, we apply the previous method to a practical problem arising in scheduling

where jobs are subject to failure. This work has been published in Journal of Scheduling (see

Clautiaux et al. [2023]).

– In Chapter 5, we study problems where the uncertain parameters are binary and the second

stage mixed-integer. We introduce an enumerative algorithm akin to a Benders branch-and-

cut scheme able to solve this class of problems. This work is under revision at INFORMS

Journal on Computing.

– In Chapter 6, we apply the previous method to a facility location problem with unknown

demands. This work was accepted as a conference paper at ROADEF 2022 which took place

in Lyon (France), in 2022.

– In Chapter 7, we study problems where the second-stage decisions are defined by means

of general convex constraints and show that such problems can be solved by column-and-

constraint generation when the set of possible scenarios has an affine mapping to a 0 − 1

polytope.

The thesis ends with a conclusion and future research directions.

5

Contents

Abstract 4

I Introduction 14

1 Decision making under uncertainty 15

1.1 Introduction . 15

1.2 Mathematical modeling . 17

1.2.1 Stochastic optimization . 17

1.2.2 Chance-constrained optimization . 18

1.2.3 Robust optimization . 20

1.2.4 Distributionally robust optimization . 20

1.3 Recourse decisions . 21

1.3.1 Two-stage decision flows . 21

1.3.2 The K-adaptability approach . 22

1.4 Summary . 23

2 Robust optimization 24

2.1 Problem formulation . 24

2.1.1 Single stage models . 24

2.1.2 Two-stage models . 27

2.1.3 Classical uncertainty sets . 27

2.2 Solution approaches . 29

2.2.1 Linear second stage . 29

2.2.2 Convex second stage . 32

2.2.3 Mixed-integer second stage . 33

2.2.4 The K-adaptability problem . 35

6

II Contributions 38

3 Mixed-integer problems with objective uncertainty 39

3.1 Introduction . 39

3.2 Problem definition . 40

3.3 A hull-relaxation-based branch-and-bound algorithm 43

3.3.1 Problem reformulation . 43

3.3.2 Relaxation . 45

3.3.3 Enumerative algorithm . 47

3.3.4 A convexification scheme based on column-generation 52

3.4 Computational experiments . 53

3.4.1 Problem definition . 54

3.4.2 Mathematical formulation . 54

3.4.3 Test bed . 56

3.4.4 Implementation details . 57

3.4.5 General results . 57

3.5 Conclusion . 59

4 Application: scheduling under uncertain job failure 61

4.1 Introduction . 61

4.2 Minimizing the weighted number of tardy jobs: literature review 63

4.3 Robust problem . 66

4.3.1 Problem description . 67

4.3.2 Formulation . 68

4.4 Solution approaches . 71

4.4.1 K-Adaptability . 71

4.4.2 Convexification of the recourse set . 73

4.5 Order-fixing first stage . 78

4.5.1 Formulation . 78

4.5.2 Relation with problem without order-fixation 80

4.6 Computational experiments . 81

4.6.1 Implementation details and experimental setting 81

4.6.2 Instances . 82

4.6.3 Protocol for comparing the two solution methods 83

4.6.4 Comparison of the approaches for problem without order-fixation 84

4.6.5 Comparison of the approaches for the order-fixing problem 86

4.7 Conclusion . 87

5 Mixed-integer problems with binary uncertainty 93

5.1 Introduction . 93

5.2 Problem modeling . 95

5.2.1 Uncertainty model . 95

5.2.2 Expressiveness of our model . 95

5.3 Example: The Multiple Knapsack Problem . 97

7

5.4 Theoretical development . 98

5.4.1 Reformulation . 98

5.4.2 Relaxation . 102

5.4.3 Solving the separation problem . 104

5.4.4 Dealing with infeasibility . 106

5.5 A Branch-and-bound algorithm . 106

5.5.1 Statement of the procedure . 106

5.5.2 Identifying active cuts . 108

5.5.3 Convergence result . 108

5.6 Computational experiments . 109

5.6.1 Reformulation . 110

5.6.2 Instance generation . 110

5.6.3 Results . 110

5.7 Conclusion . 111

6 Application: Facility Location Problem with uncertain demands 113

6.1 Problem description . 113

6.1.1 Deterministic problem . 113

6.1.2 A two-stage robust variant . 114

6.2 Numerical example . 115

6.3 Reformulation . 117

6.4 Computational experiments . 118

6.4.1 Instance generation . 118

6.4.2 Results . 119

7 Convex problems with 0-1 polytope uncertainty 121

7.1 Introduction . 121

7.1.1 Problem formulation . 121

7.1.2 Contribution . 122

7.2 Theoretical development . 122

7.2.1 A non-convex separation problem . 122

7.2.2 Generalized Benders Decomposition . 125

7.2.3 Column-and-constraint generation . 127

7.2.4 Convergence . 127

7.2.5 0-1 polytopic uncertainty sets . 129

7.3 Application: resource planning problem . 130

7.3.1 Problem description . 130

7.3.2 Instance generation . 131

7.3.3 Results . 131

7.4 Conclusion . 132

8

Conclusion 133

7.5 Main contributions . 133

7.5.1 Mixed-integer second stage . 133

7.5.2 Convex second stage . 134

7.6 Future research directions . 134

7.6.1 Exploiting structure from deterministic problems 134

7.6.2 Improving solution guarantees for problems with second-stage problems . . 135

Appendices 137

A Recalls on convex optimization 137

A.1 Fenchel duality . 137

A.1.1 Introduction . 137

A.1.2 Examples . 139

A.1.3 Calculus rules . 140

A.1.4 Duality theorem . 141

A.2 Convex-hull splitting property . 141

B Additional proofs 143

B.1 Proof of Example 11 . 143

B.1.1 Computing convex conjugates . 143

B.1.2 Applying Theorem 8 . 144

9

List of Figures

1.1 Single-stage decision flow under uncertainty . 16

1.2 Two-stage decision flow under uncertainty . 21

1.3 K-adaptability decision flow under uncertainty . 22

3.1 Graphical representation of different sets from example 3 46

3.2 Branching on continuous variable x from example 3 49

3.3 Graphical representation of fLB and G . 52

4.1 An instance with three jobs, and the job-occurrence representation of the instance. 65

4.2 Two schedules and the associated extra cost under the failure of each job if the

sequence of jobs is fixed before the uncertainty is revealed 81

4.3 A K-adaptability plateau for a 15-jobs instances. 84

4.4 Performance profiles Dolan and Moré [2002] for different sets of instances. Each

curve is associated with one method, and shows the fraction of instances it solves

not slower than the value of the abscissa times the time required for the fastest

approach . 85

6.1 Robust solutions for FLP with different uncertainty budgets Γ 116

A.1 Geometric interpretation of the convex conjugate for f(x) = ex and π = 2, f∗(2) =

ln(2) . 138

A.2 f∗(π) can also be seen as the minimum of f with respect to the axis y = πx 139

10

List of Tables

1.1 Summary of approaches for dealing with uncertainty in optimization problems . . 23

2.1 Convex conjugate of the support functions of each “primitive” uncertainty set . . . 29

3.1 Computational experiments on ARCCFLP instances. Each row refers to 15 instances. 58

3.2 Comparison of exact and linearized approaches . 59

4.1 CPU execution times for solving problem (P) . 88

4.2 Feasible solutions found for (P), over instances that could not be solved to opti-

mality by the method within the time limit T = 1 hour 89

4.3 The cost of approximating with finite adaptability for problem (P) 89

4.4 Computation times for solving problem (P̃) . 90

4.5 The cost of approximating with finite adaptability for problem (P̃) 91

4.6 Fixed-order solutions cost analysis . 92

5.1 Computational results on ARMKP instances. 111

5.2 Additional statistics on ARMKP instances . 112

6.1 Computational results on ARFLP instances . 119

6.2 Additional statistics on ARFLP instances . 120

7.1 Computational results on the resource allocation problem with different uncertainty

budgets. 132

11

List of Notations

Linear Algebra

x ∈ Rn n-dimensional real vector

A ∈ Rm×n real-valuated matrix with m rows and n columns

a(j) ∈ Rm jth column of matrix A

a(i) ∈ R1×n ith row of matrix A

aij ∈ R component (i, j) of matrix A

AT transpose of A

||x||p ℓp-norm of x (p ∈ N∗ ∪ {∞})
diag(A) diagonal of matrix A as a column vector

diag(a(j)) (n, n)-dimensional diagonal matrix whose (j, j) component is aj (j = 1, ..., n)

{xp}p∈P → x̄ convergent sequence indexed by p ∈ P with limit x̄

Convex Optimization

R extended real line, i.e., R = R ∪ {−∞,+∞}
f : Rn → R multivariate function from Rn to R
dom (f) domain of function f , i.e., dom (f) = {x ∈ Rn : f(x) < +∞}
f(X) image of f over X (with X ⊆ dom (f))

f∗ : Rn → R convex conjugate of function f , i.e., f∗(π) = sup
{
πTx− f(x) : x ∈ dom (f)

}
f∗ : Rn → R concave conjugate of function f , i.e., f∗(π) = inf

{
πTx− f(x) : x ∈ dom (−) f

}
ψ(•,y) equivalent to x 7→ ψ(x,y) for a fixed y (when appropriate)

δ(·|X) indicator function of set X, i.e., evaluates to +∞ if its argument is in X, 0 otherwise

∂f(x) set of sub-gradients of f at x

cont (X) continuous relaxation of set X (when context is clear)

int(X) interior of set X

conv (X) convex hull of set X

vert (X) set of extreme points of the convex polyhedron X

projy(C) projection of C onto the y variables (when context is clear)

12

Probability Theory

(Ξ̂,F ,P) probability space

P (X) probability of a random event X

E (φ(X)) expected value of φ(X) with X a random event and φ : F → R
N (µ, σ2) normal law of mean µ and variance σ2

N (µ,Σ) multivariate normal law of mean µ and covariance matrix Σ

U(a, b) continuous uniform law between a and b

Logic Theory

1(E) function which equals 1 if E is true, 0 otherwise

¬E logical negation of proposition E
E1 ∧ E2 logical “and” between propositions E1 and E2
E1 ∨ E2 logical “or” between propositions E1 and E2
Others

N set of natural numbers

N∗ set of natural numbers strictly greater than 0

Z set of integer numbers

13

Part I

Introduction

14

CHAPTER 1

Decision making under uncertainty

1.1 Introduction

What is a good decision? Decision making is a complex subject. In Simon [1993], the American

political scientist Herbert A. Simon describes three types of decisions: irrational, those which are

poorly adapted to one’s goal; nonrational, those for which the goal cannot clearly be identified

and, finally, rational, those which lead to well adapted actions with respect to one’s goal. While

the first two kinds of decisions are of great interest, even computationally, we will not address

them. In this thesis, we will always refer to decision making as rational decision making.

As we understand it, decision making considers an alternative of choice consisting in, at least,

two different options and aims at selecting one of them so as to reach a given objective. Thus

let X be a set of feasible decisions (also called solutions) and ψ be a function, defined over X,

associating a score to each solution. Informally speaking, ψ (which we refer to as the objective

function) is a measure of how good a decision is and is to be understood as “the lower ψ(x), the

better decision x is”. When the image of ψ, noted ψ(X), lies in a partially ordered set, one is

concerned by a multi-objective problem. An interested reader may refer to Mandal et al. [2018]

for a complete introduction. In this thesis, however, we will always assume that ψ(X) lies in a

totally ordered set. Even more, that X ⊆ RnX (for some fixed nX ∈ N∗) and ψ : X → R. Thus,

given two decisions x and x′ in X, we have that “x is a better decision than x′ if and only if

ψ(x) < ψ(x′)”. Thus, given the objective function ψ, one is interested in minimizing function ψ

over the domain X, which we write as

inf
x∈X

ψ(x). (1.1)

Problem (1.1), without any further restricting assumption, is impossible to solve computa-

tionally. This is trivial given that there exists uncomputable functions (see Turing [1937]). This

might seem a technically, but it is not. Indeed, a careful reader may have noticed that, so far, we

have not really answered the very first question that was asked: What is a good decision? Sure, a

15

time

Make decision x ∈ X
based on a priori
knowledge φξ

Observe the real
outcome ξ of ξ

Endorse decision x
no matter ξ

Here and now Uncertainty Wait and see

Figure 1.1: Single-stage decision flow under uncertainty

good decision is one that minimizes ψ, but what does ψ look like? How do we know? Let me be

very specific: is the function ψ which returns 0 if its argument is the best decision to make and 1

otherwise an interesting choice for ψ? In theory, it sure is. In practice, however, it is useless.

Defining the shape of ψ and X is what is called modeling a problem. It consists in studying

a real-world problem and deriving mathematical expressions which are thought to describe it well

enough. Every model is subjective. This is a fact, and not much can be done about it. However,

it is very common that ψ (alternatively, X) is defined in terms of some parameters which have to

be measured or estimated. For instance, consider a routing problem where someone must decide

a route from a city A to B. A reasonable model for this problem would be to consider every

feasible route from A to B which cost less than a given budget and to select the one minimizing

the total travel time. Here, X is the set of feasible routes linking A to B respecting the budget

while, given a route x ∈ X, ψ(x) returns the total travel time of x. This model may readily be

cast into (1.1). Yet, it is easily seen that the objective function, i.e., the travel time of each route,

must be estimated and will depend on multiple parameters such as the weather, the time of day

or even very specific scenarios such as social strikes and road closings. Thus, in reality, ψ may

be expressed in terms of external parameters. Let ξ ∈ RnΞ be a vector of such parameters (for

a fixed nΞ ∈ N∗), to better account for the dependence of ψ on ξ, we will write ψ(x) = ψ(x; ξ).

Now, assume that the actual value of ξ can be observed before the decision time, i.e., here and

now, and takes value ξ. Then, (1.1) is readily solved by the following problem.

inf
x∈X

ψ(x; ξ) (1.2)

In practice, assuming that those parameters ξ can be observed here and now, and with an

infinite precision, is very optimistic. Consider planning a trip in one months, can the weather be

estimated well enough? Can the social strikes be easily foreseen? In other words, can ξ, and thus

ψ(•; ξ), be estimated well enough? This, off course, depends on the situation, but it typically is

not the case. In fact, one may rather see the sought parameters as realizations of random events.

This consideration is the starting point of what is referred to as optimization under uncertainty.

More formally, let ξ be an nΞ-dimensional random vector in the probability space (Ξ̂,F ,P)
where Ξ̂ is the set of all possible outcomes for ξ, F is an event space (set of subsets of outcomes)

and P is a probability measure which assigns a probability to each event in F . We introduce

function φξ : (X × Ξ̂→ R)×X → R which estimates the impact of a decision onto the objective

function with respect to ξ. For instance, φξ may no longer return “the” travel time of a route,

but well the expected travel time of a route (i.e., the average travel time for the route over an

infinite test bed). In this case, we have φξ(ψ,x) = E (ψ(x;ξ)).

Figure 1.1 depicts the actual decision flow which we consider here. Clearly, here and now,

16

a decision x ∈ X must be taken. However, the outcome ξ of ξ cannot yet be observed, and is

therefore uncertain. Instead, one may take decision x based on the a priori knowledge of ξ as

measured by φξ. Later, the actual outcome ξ of ξ will be observed and the taken decision x will

have to be endorsed. Thus, the decision maker’s goal, here and now, is to decide x so that, in the

future, the taken decision is regarded as good. With an appropriate a priori knowledge on ξ, φξ,

we thus aim at solving the following problem.

inf
x∈X

φξ(ψ,x) (1.3)

Again, what is meant by “an appropriate a priori knowledge on ξ” depends on the situation.

In the next section, we will present four widely studied approaches for designing φξ. Informally

speaking, chance-constrained optimization aims at controlling the probability of taking a good

decision while stochastic optimization seeks at taking averagely good decisions. Robust optimization

looks for good decisions in the worst scenario while distributionally robust optimization can be seen

as a combination of stochastic and robust optimization. All four approaches will be introduced in

light of the current discussion, i.e., for each paradigm, ψ and X will be formally given so as to fit

in (1.3). When needed, some more natural formulations will also be presented in order to agree

with the scientific literature and to reach more readability. Indeed, all three fields have their own

convention and notational habits, which we intend to follow in the rest of the dissertation.

We end this section by formally defining what we refer to as a (parametrized) optimization

model and its uncertain counterpart.

Definition 1 (Parametrized optimization model). Let Ξ̂ ⊆ RnΞ and X ⊆ RnX be two given sets

and let ψ : X × Ξ̂ → R. Then, (ψ,X, Ξ̂) is called a (parametrized) optimization model. The

optimization problems associated to this model is written as{
inf
x∈X

ψ(x; ξ)

}
ξ∈Ξ̂

. (1.4)

Remark 1 (Constraint uncertainty). In this section, we have assumed that only ψ was parametrized

by unknown parameters. We briefly enlight that this is done without loss of generality. Indeed,

assume that the feasible set X depends on some parameters ξ so that it may be written as X(ξ).

Then, one can build a model (ψ′, X ′) accounting for it which can be cast as (1.2). Indeed, we choose

X ′ = RnX and ψ′(•; ξ) = ψ(•; ξ) + δ(•|X(ξ)), where δ(•|X(ξ)) denotes the indicator function of

set X(ξ).

Definition 2 (Uncertain optimization model). Let (ψ,X, Ξ̂) be a given optimization model and

let φξ : (X× Ξ̂→ R)×X → R be a given risk measure. Then, (ψ,X, Ξ̂, φξ) is called an uncertain

optimization model and its associated optimization problem is 1.3.

1.2 Mathematical modeling

1.2.1 Stochastic optimization

Stochastic Optimization (SO) finds its origin in the 1950s with an article by George B. Dantzig,

entitled “Linear programming under uncertainty” (see Dantzig [1955]). Intuitively, a reasonable

17

decision, under uncertainty, could be defined as a decision which is optimal with respect to what

is reasonably expected to happen. Thus, the stochastic optimization framework suggests to define

φξ in terms of the mathematical expectation. This is done as follows

φξ(ψ,x) = E (ψ(x;ξ)) =

∫
ξ∈Ξ̂

ψ(x; ξ)dP. (1.5)

Clearly, if ψ is a linear function of the unknown parameters, i.e., if there exists ϕ such that

ψ(x; ξ) = ϕ(x)T ξ, the obtained stochastic model is equivalent to take the expected value of the

parameters and to use φξ(x) = ψ(x,E (ξ)) = ϕ(x)TE (ξ). This fact directly follows from the

linearity of expectation. However, when ψ fails to be linear, this may no longer be true. Indeed,

let us assume that ψ is convex, then the following inequality, called Jensen’s inequality, holds

ψ(x;E (ξ)) ≤ E (ψ(x;ξ)) . (1.6)

In other words, replacing the parameters with their expected value, directly inside ψ, may lead to

overly optimistic decisions.

Extreme care should be taken at this point. Inequality (1.6) would suggest that the determin-

istic model leads to better decisions, in the sense that its optimal solutions have a lower objective

value than those arising from the stochastic model. In other words, we always have

inf
x∈X

ψ(x;E (ξ)) ≤ inf
x∈X

E (ψ(x;ξ)) . (1.7)

However, recall that what matters here is the taken decision with respect to one’s goal and its

adequacy with the real world. As such, one should always remember that optimality is relative

to a given criterion. Indeed, let x∗
DT be the optimal solution of the deterministic model (left

hand-side) and let x∗
SO be the optimal solution of the stochastic model (right hand-side). By

definition, we have that x∗
DT is a better decision than x∗

SO, assuming that ξ takes value E (ξ),

i.e., ψ(x∗
DT ;E (ξ)) ≤ ψ(x∗

SO;E (ξ)). But we also have that x∗
SO is a better decision than x∗

DT ,

assuming we know its probability distribution and the number of experiments is large enough, i.e.,

E (ψ(x∗
DT ;ξ)) ≥ E (ψ(x∗

SO;ξ)). All in all, the following holds

ψ(x∗
DT ;E (ξ)) ≤ E (ψ(x∗

SO;ξ)) ≤ E (ψ(x∗
DT ;ξ)) . (1.8)

Clearly, when E (ψ(x∗
SO;ξ))− ψ(x∗

DT ;E (ξ)) is large, stochastic optimization is well justified.

For a complete introduction to the field of stochastic optimization, the reader may refer to

Schneider and Kirkpatrick [2010].

1.2.2 Chance-constrained optimization

In the stochastic optimization framework, it is assumed that every outcome of ξ should be taken

into account when deciding x. In that sense, the taken decision is always such that, for all

possible outcome ξ of ξ, we have ψ(x; ξ) < +∞ (since, otherwise, we have E (ψ(x;ξ)) = +∞).

The Chance-Constrained Optimization (CCO) framework relaxes this assumption by ensuring that

“ψ(x;ξ) < +∞” is not violated up to a certain probability threshold. This is justified by the fact

that, in many applications, dramatic scenarios do exist but with a very low probability. Thus, it

18

often is judicious to remove this tail when making a decision.

For a given decision x ∈ X, let us define Pξ(x) as the random event “ψ(x;ξ) < +∞” and let

Fα be the subset of X such that x ∈ Fα if and only if the probability of Pξ(x) is greater than

1 − α, where α ∈ [0, 1) is an input parameter. Then, the CCO approach considers the following

objective function

φξ(ψ,x) = P (Pξ(x))E (ψ(x; ξ)|Pξ(x)) + δ(x|Fα). (1.9)

First, the term “δ(x|Fα)” disqualifies any decision x ∈ X which would be such that P (ψ(x;ξ)

< +∞) ≤ 1 − α by penalizing them with an infinite objective value. Then, the remaining term

computes the expected value of ψ(x;ξ), only on those outcomes ξ which fulfill ψ(x; ξ) < +∞.

Remark 2 (Relation with stochastic optimization). Note that the CCO model (1.9) can be re-

duced to the SO model (1.5) by choosing α = 0. In this case, we have P (Pξ(x)) = 1 and

E (ψ(x; ξ)|Pξ(x)) = E (ψ(x; ξ)) while δ(x|F0) becomes redundant.

We now give the example of the Knapsack Problem with uncertain data.

Example 1 (Knapsack Problem with uncertain weight). The Knapsack Problem (KP) is a famous

combinatorial problem where one must decide, among a set of items, a subset of items to put inside

a container of limited capacity. Let B be this capacity and let I be a set of items. For each item

i ∈ I, we denote its weight (i.e., the resource consumption of i) by wi and denote its profit by pi

(i.e., the reward one gains by taking the item inside the container).

This problem may be modeled by introducing, for each item i ∈ I, a binary variable xi which

equals 1 if and only if i is put in the container and 0 otherwise. Then, the deterministic problem

1.1 takes the following form.

max
∑
i∈I

pixi (1.10)

s.t.
∑
i∈I

wixi ≤ B (1.11)

xi ∈ {0, 1} ∀i ∈ I (1.12)

First, the objective (1.10) maximizes the profit associated to the items selected in the container.

Constraint (1.11) enforces that the container’s capacity is not exceeded while (1.12) defines the

domain of the x variables.

Now, assume that the weight of each item i ∈ I depends, in reality, on external parameters ξ

and let us denote its weight by wi(ξ) instead of wi, where ξ is an observed value for ξ. Assuming

that the probability distribution of ξ is known, the chance-constrained counterpart of (1.10)-(1.12)

is obtained by replacing (1.11) with the following constraint.

P

(∑
i∈I

wi(ξ)xi ≤ B

)
≥ 1− α (1.13)

Note that, in this case, the objective function does not change. This is due to the fact that we did

not assume that pi depends on ξ.

19

1.2.3 Robust optimization

A common assumption to stochastic and chance-constrained optimization is that one knows the

probability distribution of the external parameters ξ. For instance, this assumption is necessary

for computing the expected value of ψ(x;ξ) for all x ∈ X. This is a rather strong assumption

in practice since one may not have such an a priori knowledge at hand. Moreover, even under

this assumption, effectively computing E (ψ(x;ξ)) for a given x ∈ X may be hard in practice and

result in an NP-hard uncertain counterpart —even when the underlying deterministic problem is

polynomial.

To circumvent this burden, Robust Optimization (RO) removes the necessity of knowing the

parameters’ probability distribution but relies on the weaker assumption that one only knows a

subset of the support of the probability density function. In other words, RO only assumes to

know a subset of outcomes (or scenarios) for which the density function is positive. Let Ξ ⊆ Ξ̂ be

such a set and let us refer to it as the uncertainty set. Without any further assumption, one may

see Ξ as a set of equally probable outcomes and, therefore, define a good decision as one which is

optimal for the worst scenario. Thus, the RO paradigm considers the following shape for φξ.

φξ(ψ,x) = sup
ξ∈Ξ

ψ(x; ξ) (1.14)

Now, let x∗
RO be an optimal decision and let ξ∗ be an outcome realizing the supremum of ψ(x∗, •)

over Ξ, i.e., let ξ∗ be the (/a) worst-case scenario. Then, for any scenario ξ′ ∈ Ξ, we have

ψ(x∗
RO; ξ

∗) ≥ ψ(x∗
RO, ξ

′). Informally, were ξ to realize in a scenario which is not the worst case,

then x∗
RO would be an “even better” decision.

The RO paradigm offers many advantages over the stochastic and chance-constrained ap-

proaches. First, it will be shown in Chapter 2, which is dedicated to the state of the art of robust

optimization, that the robust counterpart of a given deterministic problem belongs to the same

class of complexity, i.e., the RO counterpart of polynomially solvable problems remains polyno-

mially solvable (under mild assumption). Second, it does not rely on any assumption regarding

distributions of the parameters —which make it easily applicable to practical situations. Third,

choosing appropriate uncertainty sets removes outcomes with low probability, as is desired by the

CCO approach (see, for instance, the Γ-uncertainty approach from Bertsimas and Sim [2004]).

Finally, it may well be the only viable approach for some critical applications.

Clearly, the RO approach also has some pitfalls among which, obviously, the lack of account-

ability for probabilistic knowledge on ξ is inherently present. Another known drawback is that

RO tends to lead to decisions which can be regarded as too conservative, i.e., decisions which are

too risk averse with respect to what could be considered rational.

1.2.4 Distributionally robust optimization

It is clear that the robust optimization framework removes the necessity for the decision maker to

have a full and perfect knowledge about the probability distribution of the uncertain parameters

ξ. In the same vein, Distributionally Robust Optimization (DRO) assumes to know, rather than

“the” probability distribution, a set of possible probability distributions, gathered in what is

referred to as an ambiguity set. Let P be such a set, one takes interest in the worst possible

20

time

Make decision x ∈ X
based on a priori
knowledge φξ

Observe the real
outcome ξ of ξ

Make recourse decision
y ∈ Y (x, ξ) based on

a posteriori knowledge ξ

Here and now Uncertainty Wait and see

Figure 1.2: Two-stage decision flow under uncertainty

realization of the distribution with respect to the decision maker’s objective while the impact of

ξ is measured in terms of expectation.

More formally, let EP(X) denote the expected value of a random variable X with respect to

the probability measure P. Then, the DRO paradigm considers the following shape for φξ.

φξ(x) = sup
P∈P

EP (ψ(x;ξ)) (1.15)

Distributionally robust optimization is a recent field motivated by some data-driven applica-

tions and can be seen, as its name suggests, as a mix between stochastic optimization and robust

optimization and was heavily popularized by Delage and Ye [2010]. For a complete introduction,

however, the reader may refer to the recent review Lin et al. [2022].

Remark 3 (Relation with RO). Consider an RO problem with uncertainty set Ξ, then, one can

derive an equivalent optimization problem under the DRO paradigm by choosing the following

ambiguity set: P = {P : P is a probability measure over Ξ}.

1.3 Recourse decisions

1.3.1 Two-stage decision flows

In the previous section, we considered that decision x ∈ X has to be taken before the realization

of the unknown parameters ξ and has to be endorsed once the latter can be observed. In many

applications, decisions x are, in fact, a call for future decisions to be made, which will depend on

both the here-and-now decision x and on the observed outcome of ξ. This consideration leads

to what is called two-stage models in which one accounts for the possibility of future decisions

arising in a later instant while taking a decision here and now. This approach typically leads to

less conservative decisions.

In Figure 1.2, we have depicted the decision flow we now consider. Here and now, decisions x

has to be taken based on the a priori knowledge φξ on ξ. Then, once the actual outcome ξ of ξ

is observed, so called wait-and-see decisions may be taken so as to react/adjust to the observed

scenario. Thus, the decision maker’s goal, here and now, is to decide x so that, in the future, the

taken decision is regarded as good, taking into account that he will be able to react to the observed

outcome of ξ. This additional stage in the decision flow is referred to as the second stage and the

associated decisions as second-stage decisions, wait-and-see decisions, or recourse decisions.

Clearly, the possibility to adjust one’s decision after the realization of the uncertain parameters

changes the cost of the considered decision, when regarded here and now. Indeed, the cost of a

decision x ∈ X, not only integrates costs which can be understood here and now, but also includes

21

time

Make decision x ∈ X and
decide K contingency

plans y(1), ...,y(K) based
on a priori knowledge φξ

Observe the real
outcome ξ of ξ

Select one contingency
plan among y(1), ...,y(K)

based on a posteriori
knowledge ξ and apply it

Here and now Uncertainty Wait and see

Figure 1.3: K-adaptability decision flow under uncertainty

the costs of the future decisions which are implied by x. In that sense, the set of solutions to the

two-stage problem remains X. It is only the cost of each solution x ∈ X which is changed.

More formally, let Y ⊆ RnY be the set of feasible wait-and-see solutions and let ψ′ : X×Y ×Ξ̂→
R be a function such that, for a given x ∈ X, y ∈ Y and ξ ∈ Ξ̂, ψ′(x,y; ξ) reflects the quality of

the decisions (x,y) under the a-posteriori -observed scenario ξ. Then a two-stage model is cast as

1.2 by defining ψ as

ψ(x; ξ) = inf
y∈Y

ψ′(x,y; ξ). (1.16)

Note that a more natural form can be obtained for cases in which constraints are also uncertain

by introducing Y (x, ξ) = dom
(
ψ′(x, •; ξ)

)
for x ∈ X and ξ ∈ Ξ̂ and to optimize ψ′(x, •; ξ) over

Y (x, ξ). In the remainder, we will refer to Y (x, ξ) as the wait-and-see (second-stage, or recourse)

feasible space.

For the reader’s convenience, we give here the example of a general two-stage robust optimiza-

tion, also called Adjustable Robust Optimization (ARO) in the literature

inf
x∈X

{
sup
ξ∈Ξ

inf
y∈Y (x,ξ)

ψ′(x,y; ξ)

}
. (ARO)

Clearly, an optimal decision x∗ typically is such that φξ(x
∗) < +∞, and thus, ensures that

Y (x∗, ξ) ̸= ∅ for all considered outcome ξ, i.e., there exists feasible future decisions.

1.3.2 The K-adaptability approach

As it will be examplified in the subsequent chapter dealing with solution approaches for RO, two-

stage problems under uncertainty can be challenging to solve computationally, especially when

the second-stage feasible space is discrete. To circumvent this fact, so-called K-adaptability has

been introduced. It consists in deciding, here and now, decision x ∈ X (as always) as well as

K contingency plans y(1), ...,y(K) ∈ Y (K being an input parameter), and to select, when the

uncertainty is revealed, one of the K pre-computed policies as recourse decision.

The decision flow of the K-adaptability approach is depicted in Figure 1.3. Here and now, the

decision maker decides x as well as K recourse decisions based on the a priori knowledge φξ on

ξ. When the uncertainty can be observed, the recourse decision is chosen as the best among the

K contingency plans which have been selected in the first stage.

The advantage of such an approach is threefold: first, as anticipated, the resulting problem

tends to be more tractable than the fully adaptable problem (i.e., the original two-stage model);

second, it typically leads to more explainable solutions since the K “recourse” decisions are part

of the solution; finally, it may well be the only viable solution approach for certain applications

22

where the contingency plans literally have to be prepared before the actual scenario is observed.

Given a two-stage uncertain optimization model (ψ,X, Ξ̂, φξ) with ψ(x; ξ) = infy∈Y ψ
′(x,y; ξ),

one can easily build a K-adaptability model (ψ′′, X ′, Ξ̂, φξ) which lead to a problem cast as 1.3.

This is done by fixing X ′ = X × Y K and ψ′′ as follows.

ψ′′((x,y(1), ...,y(k)), ξ) = min
k=1,...,K

ψ′(x,y(k); ξ) (1.17)

For simplicity, we slightly abuse notation by writing ψ′′(x,Y , ξ) instead of ψ′′((x,y(1), ...,y(k)), ξ)

where Y is the so-called contingency matrix whose columns are the contingency plans y(1), ...,y(k).

For the reader’s convenience, we give here the example of a general K-adaptability problem in

robust optimization.

inf
x∈X

y(1),...,y(K)∈Y

sup
ξ∈Ξ

min
k=1,...,K

ψ′(x,y(k); ξ) (K-ARO)

1.4 Summary

We close this chapter by discussing the different variants so far introduced regarding optimization

under uncertainty. A first distinction is the choice of φξ, i.e., how uncertainty is accounted for

in the decision making process. Changing the definition of φξ changes the paradigm, but also

changes the underlying assumptions on what is known about ξ. These paradigms are recalled in

Table 1.1.

Paradigm Risk measure, φξ(x) Assumes knowledge of...

Deterministic ψ(x; ξ) ...the exact outcome ξ of ξ

Stochastic E (ψ(x;ξ)) ...the probability distribution

Chance-constrained P (Pξ(x))E (ψ(x; ξ)|Pξ(x))
+δ(x|Fα)

...the probability distribution

Robust sup
ξ∈Ξ

ψ(x; ξ) ...a subset of the support of the density

Distributio. robust sup
P∈P

EP (ψ(x;ξ)) ...a set of probability distributions

Table 1.1: Summary of approaches for dealing with uncertainty in optimization problems

A second distinction is the way the decision flow is modeled. Formally, let (ψ,X, Ξ̂, φξ) be a

given uncertain optimization model, we say that the model is a two-stage model when there exists

(non-trivial) Y ⊆ RnY and ψ′ : X×Y×Ξ̂→ R such that ψ(x,y; ξ) = infy∈Y ψ
′(x,y; ξ). The model

is said to be single stage otherwise. Finally, we also have introduced the idea of K-adaptability

which considers the model (ψ′′, X × Y K , Ξ̂, φξ) with ψ
′′(x,Y ; ξ) = mink=1,...,K ψ′(x,y(k); ξ).

23

CHAPTER 2

Robust optimization

As anticipated in Chapter 1, the Robust Optimization (RO) paradigm discards the necessity of

knowing the exact probability distribution governing the unknown parameters of an optimization

problem. Instead, it is assumed that a subset of the support of the density function is known.

This subset is referred to as the uncertainty set and gathers, in essence, a set of possible outcomes

for the parameters which are regarded as equally probable. The decisions are then searched

among those which are feasible for every scenario and the objective function is computed in the

least advantageous case. For this reason, robust optimization is also referred to as worst-case

optimization.

In this chapter, we will go through the current state of the art of robust optimization. First, the

robust counterpart of a (parametrized) optimization problem will be introduced for both single-

and two-stage problems. Then, classical uncertainty sets will be presented alongside to their

conjugate support functions, which will be shown to play a crucial role in the derivation of efficient

algorithmic solution methods. Subsequently, some state-of-the-art solution approaches for two-

stage problems will be presented. Finally, we will cover algorithms for tackling K-adapatability

problems in robust optimization.

2.1 Problem formulation

2.1.1 Single stage models

Our discussion starts with the following optimization problem, parameterized by an nΞ-dimensional

real vector ξ —realization of a random variable ξ.

inff0(x; ξ) (2.1)

s.t. fi(x; ξ) ≤ 0 i = 1, ...,mX (2.2)

x ∈ X ⊆ RnX (2.3)

24

Note that, contrary to what was considered in Chapter 1, both the objective function (2.1) and

(part of) the constraints (2.2) depend on the uncertain parameters. We refer to Remark 1 for

an elaboration on the equivalence between objective uncertainty and constraint uncertainty inside

the framework of Chapter 1. Simply put, one can cast problem (2.1)-(2.3) as (1.3) by choosing

ψ(x; ξ) = f0(x; ξ) +
∑mX

i=1 δ(x|{x′ : fi(x
′; ξ) ≤ 0}). However, expressions (2.1)-(2.3) are a more

natural way to express our model.

Now, assuming that the parameters ξ is not known to exactly take value ξ but, rather, that only

a subset of the support of the density function of ξ, noted Ξ, is known. The robust counterpart

of (2.1)-(2.3) is given as follows.

inf sup
ξ∈Ξ

f0(x; ξ) (2.4)

s.t. sup
ξ∈Ξ

fi(x; ξ) ≤ 0 i = 1, ...,mX (2.5)

x ∈ X (2.6)

Under “natural” assumptions on functions f0, ..., fmX
and on the uncertainty set Ξ, it has

been shown by Ben-Tal et al. [2014] that problem (2.4)-(2.6) can be reformulated as a monolithic

optimization problem. We now introduce these assumptions.

Assumption A. The uncertainty set is assumed to be a convex, nonempty, compact set.

Assumption B. For all x ∈ X, functions f0(x; •), ..., fmX
(x; •) are assumed to be concave.

Assumption A reduces the scope of admissible uncertainty sets by requiring, among others,

convexity. This assumption is justified in the context of convex optimization theory and includes

polyhedral uncertainty sets, ellipsoidal uncertainty sets and generally convex uncertainty sets

(see below). Assumption B assumes that functions (fi)i=0,...,mX
are concave in the uncertain

parameters. Both assumptions are necessary to prove the following theorem based on Fenchel

duality. For more details on Fenchel duality, the reader may refer to Appendix A.

Theorem 1 (Ben-Tal et al. [2014]). Under Assumption A and B, and if Slater’s conditions hold,

a vector x ∈ RnX satisfies (2.5) if and only if the following conditions hold.

∃π(i) ∈ RnΞ , δ∗(π(i)|Ξ)− fi∗(x;π(i)) ≤ 0 i = 1, ...,mX (2.7)

Here, δ∗(•|Ξ) is the convex conjugate of the indicator function of Ξ and fi∗(x; •) is the partial

concave conjugate of fi with respect to the unknown parameters.

Theorem 1 is a fundamental theorem in robust optimization. Indeed, it allows to turn model

(2.4)-(2.6) into a monolithic optimization model which can be solved by standard optimization

solvers such as Gurobi or Mosek. The robust counterpart of (2.1)-(2.3) is equivalently solved by

the following optimization problem.

inf δ∗(π(0)|Ξ)− f0∗(x;π(0)) (2.8)

s.t. δ∗(π(i)|Ξ)− fi∗(x;π(i)) ≤ 0 i = 1, ...,mX (2.9)

π(i) ∈ RnΞ i = 1, ...,mX (2.10)

25

x ∈ X (2.11)

Thus, if the deterministic problem (2.1)-(2.3) is a convex MINLP, say, then its robust counterpart

can be solved by a convex MINLP as well.

Clearly, Theorem 1 is only useful if one is able to derive δ∗(•|Ξ) and f∗(x; •) in analytical form

(for all x ∈ X). We give here an example where Ξ is a polyhedron and (fi)i=0,...,mX
are linear

functions of the uncertain parameters. For more examples, we refer to Ben-Tal et al. [2014] which

details this extensively.

Example 2 (Linear setting). We consider the case where fi(x; ξ) = ξTAix − bi and Ξ = {ξ ∈
RnΞ

+ : Fξ ≥ g}. In this setting, one obtains the following results.

δ∗(π(i)|Ξ) = max
v∈RnΞ

{
π(i)Tv − δ(v|Ξ)

}
= max π(i)Tv

s.t. Fv ≤ g

v ≥ 0

= min gTλ

s.t. F Tλ ≥ π(i)

λ ≥ 0

(2.12)

fi∗(x;π
(i)) = min

v∈RnΞ

{
π(i)Tv − vTAix+ bi

}
= bi + min

v∈RnΞ

{
(π(i) −Aix)Tv

}
(2.13)

=

bi if π(i) = Aix

−∞ otherwise
(2.14)

Equalities (2.12) follow from LP duality theory (note that strong duality holds since Ξ is assumed

to be nonempty) while (2.13)-(2.14) follow by inspection. Thus, by Theorem 1, we have that (2.5)

are equivalent to the following condition. min gTλ

s.t. F Tλ ≥ π(i)

λ ≥ 0

+

−bi if π(i) = Aix

+∞ otherwise

 ≤ 0 i = 1, ...,mX (2.15)

Again, by inspection, we obtain the following equivalent form. min gTλ

s.t. F Tλ ≥ Aix

λ ≥ 0

 ≤ bi i = 1, ...,mX (2.16)

Finally, by a characterisation of minima, we have that x is “robust feasible”, i.e., x satisfies

min{gTλ : F Tλ ≥ Aix,λ ≥ 0} ≤ bi, if there exists λ(i) ≥ 0 such that F Tλ(i) ≥ Aix and

gTλ(i) ≤ bi. All in all, the robust counterpart of (2.1)-(2.3), is equivalent to the following problem.

min gTλ(0) − b0 (2.17)

s.t. gTλ(i) ≤ bi i = 1, ...,mX (2.18)

F Tλ(i) ≥ Aix i = 0, ...,mX (2.19)

λ(i) ≥ 0 i = 0, ...,mX (2.20)

x ∈ X (2.21)

26

Note that if X is MILP-representable, then this problem is an MILP as well.

2.1.2 Two-stage models

We now turn our attention to problems which feature a two-stage decision flow. The reader may

refer to Chapter 1 for an introduction to two-stage problems in decision making under uncertainty.

Here and now, a set of decisions x ∈ X must be taken. Then, once the parameters can be observed,

a second set of decisions y ∈ Y ⊆ RnY can be taken which depend on the first-stage decisions

and on the observed parameters. Thus, let x ∈ X be a given first-stage decision and let ξ ∈ Ξ be

an observed outcome for ξ, we introduce the set of feasible second-stage decisions, noted Y (x, ξ),

defined as follows, where g1, ..., gmY
are given functions and Y ⊆ RmY is a given set specifying the

domain of the y-variables.

Y (x, ξ) = {y ∈ Y : gi(x,y; ξ) ≤ 0 i = 1, ...,mY } (2.22)

Now, based on the previous section, any uncertainty regarding the first-stage decisions can be

turned into classical constraints and embedded inside X. Thus, without loss of generality, we will

assume that the first stage is not subject to uncertainty. We now state the natural formulation

for two-stage robust problems.

inf
x∈X

{
sup
ξ∈Ξ

inf
y∈Y (x,ξ)

g0(x,y; ξ)

}
(2.23)

In Section 2.2, we discuss several algorithmic solution approaches for this class of problems.

2.1.3 Classical uncertainty sets

In this section, we go through classical choices for uncertainty sets in robust optimization. For a

more complete discussion however, we refer to the work of Li et al. [2011]. We focus here on convex

uncertainty sets in line with Assumption A. In Chapter 5, we will dive into discrete uncertainty

sets and introduce new solution methods for this case.

For simplicity and homogeneity, we assume that Ξ is expressed as Ξ =
{
ξ ∈ RnΞ : ξ + Pξ, ξ ∈ Z

}
where ξ is a so-called nominal value and Z is a convex compact set governing the deviations of ξ

from ξ and P is a given matrix. This allows us to introduce generic uncertainty sets, correspond-

ing to Z, which can be regarded as primitive to build more complex uncertainty sets. In what

follows, n will denote the dimension of the primitive set Z, i.e., Z ⊆ Rn and P ∈ RnΞ×n. In Table

2.1, we reported the convex conjugate of the support of each uncertainty set.

Box uncertainty

The simplest uncertainty set one can imagine is the so-called box uncertainty set. It is expressed

using the ℓ∞-norm and an extra parameter, noted Ψ, as follows.

Z∞(Ψ) = {z ∈ Rn : ||z||∞ ≤ Ψ} (2.24)

27

Assuming that the random parameters ξ are bounded, letting ξ̂ be the maximum deviation from

ξ so that it is known that ξ ∈ [ξ− ξ̂, ξ+ ξ̂], then one can use Z∞ to model the interval uncertainty

set by fixing Ψ = 1 and assuming that the outcome of ξ is ξ + diag
(
ξ̂
)
z.

Polyhedral uncertainty and Γ-uncertainty

Another norm-based uncertainty set is the so-called polyhedral uncertainty which can be introduced

using the ℓ1-norm and a parameter Γ. It is mathematically described as follows.

Z1(Γ) = {z ∈ Rn : ||z||1 ≤ Γ} (2.25)

Again, for bounded unknown parameters, one can use Z∞ and Z1 to control the sum of the

deviations of ξ from its nominal value ξ. This is done through the very well-known Γ-uncertainty

set introduced by Bertsimas and Sim [2004]. Formally, it is expressed as follows.

Z ′(Γ) = Z∞(1) ∩ Z1(Γ) (2.26)

Remark 4. We here enlight that, as originally introduced by Bertsimas and Sim [2004], the Γ-

uncertainty set was defined as Z ′(Γ)∩{0, 1}n. We refer to the latter as the discrete Γ-uncertainty

set instead. We note, however, that we have conv (Z ′(Γ) ∩ {0, 1}n) = Z ′(Γ) so that, for uncertain

MILPs which feature a single-stage decision flow, the two uncertainty sets are equivalent. In a

two-stage context, however, using one set or the other is not equivalent. Also note that the discrete

Γ-uncertainty set is, by definition, non-convex.

Ellipsoidal uncertainty

We end this brief discussion on uncertainty sets by introducing the so-called ellipsoidal uncertainty

set which can be used to account for correlations between the uncertain parameters. Mathemati-

cally, it is given as follows.

Z2(Ω) = {z ∈ Rn : ||z||2 ≤ Ω} (2.27)

In the following remark, we enlight an interesting bridge between chance-constrained optimization

and robust optimization when Z2 is being used.

Remark 5 (Relation with CCO). Consider the following robust constraint where µ and Σ are

given vectors and matrices of agreeable size.

sup
z∈Z2(Ψ)

(µ+Σ1/2z)Tx ≤ b ⇐⇒ µTx+Ψ
∣∣∣∣∣∣Σ1/2x

∣∣∣∣∣∣
2
≤ b (2.28)

Note that the right part of the equivalence is derived thanks to the techniques introduced in Section

2.1.1. We now show that constraint (2.28) has a direct relation with the following CCO constraint

under suitable assumptions regarding ξ and Ψ. Consider the following chance constraint.

P
(
ξTx ≤ b

)
≥ 1− α (2.29)

Now, assume that ξ follows a normal distribution of mean µ and variance Σ, i.e., ξ ∼ N (µ,Σ).

28

In this setting, we have that ξTx − b ∼ N (µTx − b,xTΣx) and, by noting Φ the cumulative

distribution function of the normal law and Φ−1 its inverse, constraint (2.29) is equivalent to the

following constraint.

µTx+Φ−1(1− α)
∣∣∣∣∣∣Σ1/2x

∣∣∣∣∣∣
2
≤ b (2.30)

In other words, assuming normality of the random variables and choosing Ψ = Φ−1(1 − α), then
RO and CCO are equivalent.

Uncertainty set Z δ∗(π|Z)
Z∞(Ψ) Ψ ||π||1
Z1(Γ) Γ ||π||∞
Z∞(1) ∩ Z1(Γ) minw∈Rn {Γ ||π −w||∞ + ||w||1}
Z2(Ω) Ω ||π||2

Table 2.1: Convex conjugate of the support functions of each “primitive” uncertainty set

2.2 Solution approaches

In this section, we present the state of the art for solving two-stage robust optimization prob-

lems. In the second part of this thesis, new solution techniques will be introduced for dealing, in

particular, with integer recourse decisions or convex constraints in the second stage.

2.2.1 Linear second stage

This subsection treats the case where the second-stage feasible space is expressed as a linear

optimization problem. We make this formal by introducing the following assumption.

Assumption C (Linear second stage). For a given x ∈ X and an observed outcome ξ ∈ Ξ, we

assume that the second-stage feasible space Y (x, ξ) is given as follows.

Y (x, ξ) = {y ∈ Y : Tx+Wy ≥ h−Hξ} (2.31)

In other words, we assume that gi(x,y; ξ) = hi−h(i)ξ−w(i)y−t(i)x with i = 1, ...,mY . Moreover,

we assume that Y = RnY
+ and that g0(x,y; ξ) = cTx+ dTy.

For simplicity of exposure, we additionally make the following assumption, referred to as the

complete recourse assumption.

Assumption D (Complete recourse). For all x ∈ X and all ξ ∈ Ξ, it holds Y (x, ξ) ̸= ∅.

Assuming that X is an MILP representable set (or more generally, any compact set), problem

(2.23) can be formulated as follows.

min
x∈X

{
cTx+max

ξ∈Ξ
min

y∈Y (x,ξ)
dTy

}
(2.32)

29

Column-and-constraint generation method

The first solution method was introduced in Zeng and Zhao [2013] and consists in the dynamic

generation of columns and constraints. First, notice that the value function of the second-stage

problem, i.e., ξ 7→ miny∈Y (x,ξ) d
Ty, is a convex function of the uncertain parameters. Thus, the

following equality holds.

∀x ∈ X, max
ξ∈Ξ

min
y∈Y (x,ξ)

dTy = max
ξ∈vert(Ξ)

min
y∈Y (x,ξ)

dTy (2.33)

Here, vert (Ξ) denotes the set of extreme points of Ξ which we write as vert (Ξ) = {ξ1, ..., ξR}.
Then, observe that the following model is a reformulation of problem (2.23).

min cTx+ θ (2.34)

s.t. x ∈ X (2.35)

θ ≥ dTyr r = 1, ..., R (2.36)

yr ∈ Y (x, ξr) r = 1, ..., R (2.37)

Indeed, for each scenario ξr (r = 1, ..., R), a corresponding recourse decision yr has been added

to the model in such a way that the whole set of scenarios are covered by at least one recourse

decision. Now, because the number of extreme points of Ξ may be prohibitively large to consider

them all inside model (2.34)-(2.37), the column-and-constraint generation approach consists in

solving a restricted problem where only a subset of vert (Ξ) is considered and to generate a new

variable yr′ (with its corresponding constraints of type (2.36)-(2.37)) by solving a given separation

problem which tries to identify an extreme point ξr
′
which is not yet covered by the wait-and-see

decisions y1, ...,yr′−1.

Let xr′−1 denote an optimal solution of a restricted problem where only r′ − 1 extreme points

of Ξ are considered. Then the following separation problem can be used to identify an extreme

point ξr
′
to be added to the restricted problem in order to decrease the optimality gap.

max
ξ∈Ξ

min
y∈Y (xr′−1,ξ)

dTy (2.38)

Letting v denote the optimal objective value of this separation problem, a non-covered scenario is

found if and only if θr
′−1 < v.

We enlight that this method was originally presented in the linear setting, allowing for (2.33)

to be established. The extension of this method to more general cases, such as convex second-stage

constraints, is not straightforward since (2.33) would not necessarily hold and solution methods

for (2.38) may not be at hand. This case is discussed in the last chapter of this thesis (see Chapter

7). In the technical report Zhao and Zeng [2012], this method has been extended to deal with

mixed-integer second stage provided that the value function of the second stage is quasi-convex

with respect to the unknown parameters. To the best of our knowledge, it has not been published

in any scientific paper after 10 years.

30

Benders decomposition

Another broadly used approach for dealing with (2.23) is a duality-based solution technique akin

to Benders decomposition. First, observe that we assumed that the second-stage feasible space is

non-empty for every x ∈ X and every ξ ∈ Ξ (Assumption D). Thus, by strong LP duality, the

second-stage problem has the same objective value as its dual, given as follows. min dTy

s.t. Tx+Wy ≥ h−Hξ

y ∈ RnY
+

 =

 max (h−Hξ − Tx)Tπ

s.t. W Tπ ≤ d

π ∈ RmY
+

 (2.39)

Note that the dual feasible space is independent of the first-stage variables and unknown param-

eters. Let us denote it by D, i.e., D =
{
π ∈ RmY

+ : W Tπ ≤ d
}
. Then, the following problem is

equivalent to 2.23.

min
x∈X

{
cTx+ max

ξ∈Ξ,π∈D
(h−Hξ − Tx)Tπ

}
(2.40)

Now, observe that x 7→ maxξ∈Ξ,π∈D(h−Hξ− Tx)Tπ is a convex function (maximum of convex

(affine) functions). Thus, it can be approximated by its supporting hyperplanes (in fact, supporting

hyperplanes of its epigraph), which, since the function is piecewise linear, are simply given as

x 7→ (h−Hξ̂ − Tx)T π̂ with (ξ̂, π̂) ∈ Ξ×D. Thus, one obtains the following model for (2.23).

min cTx+ θ (2.41)

s.t. x ∈ X (2.42)

θ ≥ (h−Hξ̂ − Tx)T π̂ (ξ̂, π̂) ∈ (Ξ,D) (2.43)

Now, because the number of cuts of type (2.43) may be large in practice, or hard to enumerate,

dynamic row generation has been proposed. Here again, a restricted problem is considered where

only a subset of constraints of type (2.43) (Benders optimality cuts) are present. Then, letting x∗

denote an optimal solution of the restricted problem, one can identify potential violated constraints

by solving the following bi-linear problem.

max
ξ∈Ξ,π∈D

(h−Hξ − Tx∗)Tπ (2.44)

Note that, in this case, Assumption D can be relaxed to consider the more general case where

the second-stage problem is not always feasible. This gives rise to so-called Benders feasibility cuts

which rule out first-stage decisions leading to infeasible second-stage decisions.

Affine Decision Rules (safe approximation)

While the first two solution approaches we presented are exact methods, we now turn our attention

to a very popular so-called safe approximation of two-stage robust problems. The starting point

is the equivalence between problem (2.23) and the following one.

min cTx+max
ξ∈Ξ

dTy(ξ) (2.45)

s.t. x ∈ X (2.46)

31

y : Ξ→ Y (2.47)

y(ξ) ∈ Y (x, ξ) ∀ξ ∈ Ξ (2.48)

Here, the optimization is done over X and over the set of all functions from Ξ to Y . Informally

speaking, function y(•) now returns the decided recourse decision to use in the scenario corre-

sponding to its argument. Thus, we must enforce that, for all ξ ∈ Ξ, it holds y(ξ) ∈ Y (x, ξ). In

the literature, function y(•) is called a Decision Rule (DR).

Unfortunately, optimizing over a set of functions is challenging. Instead, one may restrict its

attention to cases in which y(•) is an affine function of the unknown parameters, thus obtaining

a (math-)heuristic approach. This leads to the Affine Decision Rule (ADR) approximation. This

approximation is obtained by the following single-stage robust optimization problem.

min cTx+max
ξ∈Ξ

dT (y + Y ξ) (2.49)

s.t. x ∈ X,y ∈ RnY ,Y ∈ RnY ×nΞ (2.50)

Tx+W (y + Y ξ) ≥ h−Hξ ∀ξ ∈ Ξ (2.51)

Here, x,y and Y are the decision variables and y(ξ) = y+Y ξ. By using the classical techniques

introduced in Section 2.1.1, a monolithic optimization problem can be derived and directly solved

using standard optimization algorithms. For a discussion on optimality conditions for ADR, we

refer to Marandi and den Hertog [2017]. Unfortunately, in most cases, the ADR approach only

offers a safe approximation of (2.23) and fails to return an optimal solution.

We enlight that this approach cannot be extended to cases where the second stage is defined

by means of (nonlinear) convex functions. Indeed, this would lead to formulations in which

Assumption B fails to be fulfilled. Moreover, generalizing it to mixed-integer second stages is also

impossible as it would require imposing integrality of y + Y ξ for all ξ ∈ Ξ.

2.2.2 Convex second stage

Regarding the convex case, occurring when Y (x, ξ) is defined by convex functions of the first- and

second-stage variables, the techniques introduced for the linear case are not directly applicable,

and the scientific literature is much more sparse.

In Boni and Ben-Tal [2008], the authors consider two-stage problems with ellipsoidal uncer-

tainty and conic quadratic second-stage constraints. They show that an optimal ADR can be

obtained by means of a semidefinite programing problem. Unfortunately, this approach cannot be

generalized to other uncertainty sets and other convex functions as it relies on the strong duality

result of a non-convex problem which, as is known to all, does not hold in the general case.

Then, Takeda et al. [2007] considers two-stage problems where the uncertainty set is expressed

as the convex hull of a finite set of points and report conditions under which their problem can

be reduced to a single-stage problem. However, the size of the resulting problem depends on the

number of points defining the uncertainty set which, in general, is exponentially large.

In de Ruiter et al. [2022], the authors derive a dualized problem for a class of convex two-stage

problems by extending an approach from Bertsimas and de Ruiter [2016]. This dualized problem

being linear in the uncertain parameters, they use ADR techniques to obtain a tight approximation

32

for the objective value. Moreover, they show that a primal feasible ADR can be derived from an

optimal dual ADR. This is in contrast with the results of Bertsimas and de Ruiter [2016] where

an optimal primal ADR could be derived from the dual.

In Chapter 7, we show that the column-and-constraint generation algorithm introduced for the

linear case can be adapted to the more general convex case under some limiting assumptions on

the uncertainty set which is used.

2.2.3 Mixed-integer second stage

For cases where the second stage contains integer decisions, all the previously introduced methods

fail to be generalized in a straightforward manner. The scientific literature regarding mixed-integer

second stage, which do gather a very large set of real-world applications, is very sparse and no

real outsiding method can be pointed out.

In this section, we make the following assumption that the second-stage feasible space contains

integer decisions.

Assumption E (Mixed-integer second stage). Same as Assumption C, but with Y ⊆ RnY
+ instead

of Y = RnY
+ . In particular, we allow for Y = {0, 1}nY .

Binary decision rules (approximation)

In Bertsimas and Georghiou [2017], the authors introduce binary decision rules which, in the vein

of ADR approximation, replaces the decision rule y(ξ) with some parameterized function. In

particular, they use linearly parameterized binary decision rules and derive exact reformulations

for the decision rule problem. The general shape of such decision rules is as follows.

y(ξ) = Y p(ξ), Y ∈ ZnY ×g (2.52)

0 ≤ y(ξ) ≤ e (2.53)

where pi(ξ) = 1(αT
i ξ ≥ βi) for i = 1, ..., g. Here, Y , A and β are to be decided. Unfortunately,

this approach fails to return optimal solutions in the general case. Moreover, solving the obtained

approximation may result in the solution of an exponentially large problem implying a possible

trade-off between efficiency and optimality.

Column generation (for objective uncertainty)

In the special case where only the objective function is parametrized by the unknown parameters,

a decomposition-based solution approach was introduced in Arslan and Detienne [2021] under

some restrictive assumptions made on the linking constraints between the first- and second-stage

variables. In particular, we make the following assumption which replaces Assumption C and E.

Assumption F (Objective uncertainty). For a given x ∈ X and an observed outcome ξ ∈ Ξ, we

assume that the second-stage feasible space Y (x, ξ) is independent of ξ, i.e., Y (x, ξ) = Y (x), and

given as follows.

Y (x) = {y ∈ Y : Tx+Wy ≥ h} (2.54)

33

In other words, we assume that gi(x,y; ξ) = hi −w(i)y − t(i)x with i = 1, ...,mY . Moreover, we

assume that Y ⊆ RnY and that g0(x,y; ξ) = cTx+ ξTQy.

Under Assumption F, problem (2.23) can be formulated as follows.

min
x∈X

{
cTx+max

ξ∈Ξ
min

y∈Y (x)
ξTQy

}
(2.55)

Then, observe that the second-stage feasible space can be replaced by its convex hull, by linearity

of the objective function. Indeed, when ξ is fixed, y 7→ ξTQy is a linear function. Moreover,

note that conv (Y (x)) is a convex compact set. Thus, one may apply the Von Neumann min-max

theorem to swap the max and min operators in (2.55). Formally, this is done as follows.

min
x∈X

{
cTx+max

ξ∈Ξ
min

y∈conv(Y (x))
ξTQy

}
= inf

x∈X
y∈conv(Y (x))

{
cTx+max

ξ∈Ξ
ξTQy

}
(2.56)

In Arslan and Detienne [2021], the authors consider that Ξ is defined by mΞ linear constraints, say

Ξ = {ξ ∈ RnΞ
+ : Fξ ≤ g}, allowing to turn the inner maximization problem into a minimization

problem by strong LP duality (note that Ξ is assumed to be non-empty). Thus, one obtains the

following reformulation of (2.55).

min cTx+ gTλ (2.57)

s.t. x ∈ X (2.58)

F Tλ ≥ Qy (2.59)

y ∈ conv (Y (x)) (2.60)

λ ∈ RmΞ
+ (2.61)

A challenging issue with formulation (2.57)-(2.61) is enforcing constraint (2.60) which requires

that y belongs to the convex hull of a set of points depending on some decision variables. To

tackle this issue, Arslan and Detienne [2021] introduce a restrictive assumption on Y (•) so as to

move out the dependency on the x variables. We now state this assumption.

Assumption G (Interdiction linking constraints). We assume that x can be split into (x1,x2)

such that x ∈ X implies that x1 ∈ {0, 1}pX . Moreover, we assume that Y (x) = Y (x1) and

T = [I;0], W = [−I;W ′] and h = [0;h′] with W ′ and h′ matrices of agreeable size. In other

words, we assume that Y (•) is expressed as follows.

Y (x) = Y (x1) =
{
y ∈ Y : W ′y ≥ h′ and y1 ≤ x1

}
(2.62)

Here, y1 denotes the sub-vector of y whose components are linked to x.

Then, the authors exploit the fact that, under Assumption G, the following equality holds:

conv
(
Y (x1)

)
= conv ({y ∈ Y : Wy ≥ h′}) ∩ {y : y1 ≤ x1}. For convenience, let Y ′ = {y ∈ Y :

Wy ≥ h′}. Thus, the following model is an exact reformulation of (2.55) under Assumption G.

min cTx+ gTλ (2.63)

34

s.t. (x1,x2) ∈ X (2.64)

(y1,y2) ∈ conv (Y ′) (2.65)

y1 ≤ x1 (2.66)

F Tλ ≥ Q[y1;y2] (2.67)

λ ∈ RnΞ
+ (2.68)

Finally, assuming that X is defined by linear constraints, the obtained model can be solved using

standard linear column generation techniques, leading to a branch-and-price algorithm.

In Chapter 3, we generalize their work to handle a more general case, removing any assumption

on the linking constraints and allowing for convex second-stage feasible space. In Chapter 4, we

apply the resulting framework to a two-stage scheduling problem with uncertain job failure.

Finally, in Chapter 5, we introduce a new result regarding two-stage robust problems with

discrete uncertainty sets and mixed-integer second-stage decisions. We will show that, in this case,

any problem with uncertain constraints can be transformed into a problem where the uncertain

parameters only interfere in the objective function. We then introduce a new solution method for

this hard class of problems by generalizing the work of Kämmerling and Kurtz [2020], a similar

approach to that of Arslan and Detienne [2021].

2.2.4 The K-adaptability problem

In this section, we consider the K-adaptability problem for (2.23) when the second-stage feasible

space is an MILP. We now turn our attention to two solution methods which have been proposed

in the literature to solve (2.69). The first approach does not rely on any assumption stronger than

A and C. The second one, instead, assumes that the uncertainty only interferes in the objective

function.

Scenario-based Branch-and-Bound

In this subsection, we work under Assumption A and C. The K-adaptability problem can be

formulated as follows.

inf
x∈X

Y ∈Y K

{
cTx+max

ξ∈Ξ
min

k=1,...,K

{
dTy(k) + δ(y(k)|Y (x, ξ))

}}
(2.69)

The method, which was introduced in Subramanyam et al. [2019], relies on the following key

idea: choosing K contingency plans to address all scenarios inside Ξ reduces to build a partition of

Ξ of size K for which one has to decide an optimal policy for each element of the partition. Now,

let Ξ1, ...,ΞK be such that Ξ1 ∪ ... ∪ ΞK ⊆ Ξ and consider the following optimization problem.

inf cTx+ θ (2.70)

s.t. x ∈ X (2.71)

y(k) ∈ Y k = 1, ...,K (2.72)

θ ≥ dTy(k) k = 1, ...,K (2.73)

y(k) ∈ Y (x, ξ) ∀ξ ∈ Ξk, k = 1, ...,K (2.74)

35

Intuitively, y(k) denotes the policy to apply for all scenarios inside Ξk. Clearly, a crucial point is

that one does not know, a priori, an optimal set {Ξ1, ...,ΞK} for which (2.69) and (2.70)-(2.74)

are equivalent.

In Subramanyam et al. [2019], the authors suggest to start with an initial set of empty subsets,

i.e., with Ξ1 = ∅, ..., ΞK = ∅. And to dynamically generate scenarios so as to build an appropriate

partition of Ξ. The obtained algorithm is a Branch-and-Bound algorithm where each parent

node has K children. Now, let (θ,x,Y) be an optimal solution to (2.70)-(2.74). The following

separation identifies a scenario for which none of the contingency plans inside Y are feasible.

max
ξ∈Ξ

min
k=1,...,K

max
i=1,...,mY

{hi − h(i)ξ −w(i)y − t(i)x} (2.75)

If the separation problem identifies one such scenario, say ξ∗, then K new nodes in the branch-

and-bound tree are created such that, for each k ∈ {1, ...,K}, node k is such that ξ∗ ∈ Ξk. The

method is proved to converge asymptotically to an optimal solution of (2.69).

Linearization for objective uncertainty

In this section, we assume that the uncertain parameters only interfere in the objective function.

Thus, we work in the framework implied by Assumption F. Thus, the K-adaptability problem is

cast as

inf
x∈X

Y ∈[Y (x)]K

{
cTx+max

ξ∈Ξ
min

k=1,...,K
ξTQTy(k)

}
. (2.76)

In this framework, Hanasusanto et al. [2015] introduced a solution method akin to what is done

for the fully adaptable case of Arslan and Detienne [2021]. Their approach, however, is restricted

to the case where Y = {0, 1}nY as it will become clear later on. First, the inner minimization

problem is reformulated as

min
k=1,...,K

ξTQTy(k) = min
α∈{0,1}K

K∑
k=1

αkξ
TQTy(k). (2.77)

Then, by linearity of the objective function, “α ∈ {0, 1}K” can be replaced by “α ∈ [0, 1]K”. In

turn, the Von Neumann min-max theorem may again be applied to obtain the following formula-

tion.

inf cTx+max
ξ∈Ξ

K∑
k=1

αkξ
TQTy(k) (2.78)

s.t. x ∈ X (2.79)

y(k) ∈ Y (x) k = 1, ...,K (2.80)

α ∈ [0, 1]K (2.81)

The remaining steps are similar to that of Arslan and Detienne [2021]. Indeed, assuming that

Ξ = {ξ ∈ RnΞ
+ : Fξ ≤ g}, LP duality can be used to turn the remaining maximization into

minimization. The last step in order to reformulate (2.76) as a classical optimization problem

is to linearize every product between αk and y(k) for k = 1, ...,K. This is done using standard

36

linearization techniques and are the key argument for requiring Y = {0, 1}nY . One should note

that if K ≥ nY + 1, Hanasusanto et al. [2015] and Arslan and Detienne [2021] are equivalent (see

Carathéodory’s theorem).

37

Part II

Contributions

38

CHAPTER 3

Mixed-integer problems with objective uncertainty

Boris Detienne, Henri Lefebvre, Enrico Malaguti, Michele Monaci1

In this chapter, we study optimization problems where some cost parameters are not known at

decision time and the decision flow is modeled as a two-stage process within a robust optimization

setting. We address general problems in which all constraints (including those linking the first

and the second stages) are defined by convex functions and involve mixed-integer variables, thus

extending the existing literature to a much wider class of problems. We show how these problems

can be reformulated using Fenchel duality, allowing us to derive an enumerative exact algorithm,

for which we prove asymptotic convergence in the general case, and finite convergence in the binary

case.

An implementation of the resulting algorithm, embedding a column generation scheme, is then

computationally evaluated on a variant of the Capacitated Facility Location Problem with unkown

transportation costs, using instances that are derived from the existing literature. To the best of

our knowledge, this is the first approach providing results on the practical solution of this class of

problems.

3.1 Introduction

Recall from Chapter 2 that a general two-stage robust optimization problem is formulated as

inf
x∈X

{
sup
ξ∈Ξ

inf
y∈Y (x,ξ)

g0(x,y; ξ)

}
. (3.1)

Here, X denotes the set of feasible first-stage decisions (or, here-and-now decisions), Ξ is a given

uncertainty set (i.e., a subset of the support of the density function of the random parameters)

1The content of this chapter has been submitted to EJOR - European Journal of Operations Research and is
currently under revision.

39

and, Y (x, ξ) denotes the set of second-stage decisions (or, wait-and-see decisions) defined for a

given first-stage decision x ∈ X and a given scenario ξ ∈ Ξ. We refer to Chapter 2 for an extensive

state-of-the-art description regarding this general case.

An important special case of (3.1) arises when uncertainty affects the objective function only,

i.e., Y (x, ξ) = Y (x),∀ξ ∈ Ξ. For this specific case, Kämmerling and Kurtz [2020] proposed an

oracle-based algorithm relying on a hull relaxation combining the first- and second-stage feasible

spaces embedded within a branch-and-bound framework. However, this approach applies to purely

binary variables and linear constraints only. On the other hand, Arslan and Detienne [2021] pro-

posed an exact MILP reformulation of the problem in case of linear linking constraints that involve

binary variables only. Besides solving the problem by means of a branch-and-price algorithm, a

further contribution of Arslan and Detienne [2021] is proving the NP-completeness of the problem

in this setting.

In the setting where uncertainty affects the objective function only, our analysis shows that

further effort is needed to tackle more general cases, in particular when linking constraints are

defined by nonlinear functions or involve both integer and continuous variables. Similarly, to the

best of our knowledge, the case in which the objective function is nonlinear has not been considered

yet. This work contributes in filling this gap, as we consider two-stage robust problems with

objective uncertainty, convex constraints and mixed-integer first and second stage. By extending

in a non-trivial way some recent results from the two-stage stochastic optimization literature (see

Sherali and Fraticelli [2002], Sherali and Zhu [2006] and Li and Grossmann [2019]), we obtain a

relaxation of the problem, and analyze its tightness for different special cases. This relaxation can

be embedded within a branch-and-bound scheme thus producing an exact solution approach, for

which we prove asymptotic convergence in the general case, and finite convergence in the integer

case.

This chapter is organized as follows. In Section 3.2 we formally introduce the class of problems

we are considering throughout this work, whereas, in Section 3.3, we present a relaxation of the

problem, and an effective algorithm for its solution. We then derive sufficient conditions for the

relaxation to coincide with the original problem in a mixed-integer context. So as to close the

optimality gap, we introduce a branch-and-bound algorithm which embeds a spatial branching

mechanism on continuous first-stage variables, and prove asymptotic convergence of the overall

algorithm in presence of continuous first-stage decisions and finite ε-convergence in case of integer

first-stage decisions. Finally, Section 3.4 applies the proposed method to a capacitated facility

location problem with congestion.

3.2 Problem definition

As anticipated, our goal is to solve problem (3.1) with objective uncertainty, convex constraints

and mixed-integer first and second stages.

For the sake of clarity, let us first introduce several sets. Set I = {1, . . . , nX} denotes the set

of indices for the first-stage variables, and is partitioned into two sets II and IC : variables whose

index belongs to II are required to take integer values, while those whose index belongs to IC are

continuous variables, i.e., wlog, X ⊂ R|IC | × Z|II |. Similarly, we introduce set J = {1, . . . , nY }
as the indices for the second-stage variables and partition this set into JI and JC , i.e., wlog,

40

Y ⊂ R|JC | × Z|JI |. Finally, we introduce set U = {1, . . . , nΞ} as the index set for the uncertain

variables, i.e., Ξ ⊂ R|U |.

We now explicit some assumptions on the problem.

Assumption H (Objective uncertainty). For all ξ ∈ Ξ and x ∈ cont (X), Y (ξ,x) = Y (x).

Assumption I (Convexity).

1. cont (X) is compact and convex;

2. The uncertainty set Ξ is a finite-dimensional, bounded convex set;

3. For all x ∈ cont (X), cont (Y (x)) is a finite-dimensional, bounded convex set;

4. The objective function g0 is a concave function of the uncertain parameters and a convex

function of the first- and second-stage decisions, i.e., gx,y0 : ξ 7→ g0(ξ,x,y) is a concave

function for all fixed x ∈ cont (X) and y ∈ cont (Y(x)) and gξ0 : (x,y) 7→ g0(ξ,x,y) is a

convex function for all fixed ξ ∈ Ξ.

Assumption J (Complete recourse). For every (relaxed) first-stage decision, there exists at least

one feasible second-stage decision, i.e., for every x ∈ cont (X), Y (x) is a non-empty set.

Assumption K (Boundedness).

1. The objective function g0 is bounded over the first- and second-stage feasible space, i.e., for

all fixed ξ ∈ Ξ, {(x,y) : x ∈ cont (X) ,y ∈ cont (Y (x))} ⊆ dom
(
gξ0

)
2. For all (x,y) : x ∈ cont (X) and y ∈ cont (Y (x)), relint(Ξ) ∩ dom (gx,y0) ̸= ∅

Assumption L (Separability). Let Q = {1, . . . , q}.

1. The objective function g0 can be expressed as a sum of q functions, i.e., there exist q functions

(ϕi : R|I|+|J|+|U | → R)i∈Q such that g0(x,y; ξ) =
∑

i∈Q ϕi(x,y; ξ) for all x ∈ X,y ∈ Y (x)

and all ξ ∈ Ξ.

2. For all i ∈ Q, ϕi is separable in ξ and (x,y) meaning that there exists functions (wi :

R|U | → R)i∈Q and (ρi : R|I|+|J| → R)i∈Q such that ϕi(x,y; ξ) = wi(ξ)ρi(x,y). In addition,

we assume that wi(·) is a concave function and ρi(·) is a convex function.

A few remarks regarding these assumptions are necessary. First, note that Assumptions H

and I are here to define what we refer to as convex mixed-integer robust problems with objective

uncertainty. It is important to highlight that the word ”convex” is here to suggest that all

involved functions are convex with respect to the first- and second-stage variables. Yet, in general,

even under these assumptions, problem (3.1) may fail to have a straightforward convex MINLP

formulation, as function h : x 7→ maxξ∈Ξ miny∈Y (x) g0(x,y; ξ) is not necessarily a convex function

over the continuous relaxation of X. We give here a small example.

Example 3 (nonconvex MINLP). Consider the following first- and second-stage feasible regions:

X = [0, 1] and Y (x) =

{
y ∈ {0, 1}2

∣∣∣∣∣ y1 + y2 ≤ 1

y1 ≤ 1− x

}

41

By inspection, we have that (y1, y2) = (0, 0) and (y1, y2) = (0, 1) are always feasible second-stage

solutions, while (y1, y2) = (1, 0) is feasible only when x = 0. Fixing the uncertainty set Ξ = [0, 1],

we take interest in the following convex mixed-integer two-stage robust problem:

min
x∈[0,1]

G(x) with G : x 7→ max
ξ∈[0,1]

min
(y1,y2)∈Y (x)

ξ(−2y1 + y2 + 1)

Though every involved functions are convex (in fact, affine), the following holds:

G(x) =


max
ξ∈[0,1]

min {ξ; 2ξ;−ξ} = 0 if x = 0

max
ξ∈[0,1]

min {ξ; 2ξ} = 1 if x > 0
= 1(x > 0)

Clearly, G fails to be convex over [0, 1] which ends our example.

Assumption J is a standard assumption in the two-stage optimization literature, and is known

to be easy to enforce as soon as the considered problem is bounded, which is implied by Assumption

K.1. Assumption K.2 is not restrictive in practice, and will be used in the proof of lemma (2).

Finally, Assumption L is structural to our work, and implies the following remark.

Remark 6. The assumption that ρi(·) is a convex function (at most affine) for all i ∈ Q is without

loss of generality.

Proof. Let i ∈ Q such that φi(·) is concave, then, to fulfill Assumption I.4, wi(ξ) must be negative

for all ξ ∈ Ξ. Thus, one may equivalently replace wi(·) by −wi(·) and ρi(·) by −ρi(·).

Remark 7. For all i ∈ Q such that ρi(·) (resp. wi(·)) is not single-signed, then wi(·) (resp. ρi(·))
is affine.

Remark 8. For all i ∈ Q such that ρi(·) (resp. wi(·)) is not affine, then wi(·) (resp. ρi(·)) is a

non-negative function.

For the reader’s convenience, we now give some examples of functions which fulfill or violate

the separability assumption (i.e., Assumption L).

Example 4 (Fulfilling Assumption L). We give here some examples of functions which satisfy

Assumption L. For simplicity, we denote z = (x,y).

– Uncertain linear functions of the form (ξ, z) 7→ ξAz where A is a given real matrix;

– Diagonal uncertain convex quadratic form (ξ, z) 7→ zT diag(ξ)z where ξ ≥ 0;

– Uncertain positively weighted sum of convex functions of the form (ξ, z) 7→
∑

i∈Q ξiφi(z)

with Ξ ⊂ R|U |
+ , e.g., (ξ,x,y) 7→

∑
i∈Q ξix

2
i /yi with y ≥ 0.

Example 5 (Violating Assumption L). We give here some examples of functions which do not

satisfy Assumption L.

– Non-concave functions of the uncertainty, e.g., (ξ, z) 7→ ||z − ξ|| for any given norm;

– General uncertain quadratic form (Σ, z) 7→ zTΣz even with Σ ⪰ 0 (unless Ξ ∩ R|U |
− = ∅)

42

In the following lemma, we finally state the class of problems we consider.

Lemma 1. Under Assumptions (H)-(L), there exists [l,u] ⊂ R|I|+|J| such that (3.1) is equivalent

to the following problem:

inf
x∈X∩[l,u]

sup
ξ∈Ξ

inf
(t,y)∈Y ′(x)

∑
i∈Q

wi(ξ)ti (2SRO-P)

with Y ′(x) such that Y (x) = projy(Y
′(x)) and cont (Y ′(x)) is a convex and finite-dimensional

set.

Proof. The existence of the hyper-rectangle [l,u] is trivial as X is assumed to be bounded (As-

sumption I.1). Moreover, the following equality holds:

inf
y

∑
i∈Q

wi(ξ)ρi(x,y) : y ∈ Y (x)

 = inf
t,y

∑
i∈Q

wi(ξ)ti : y ∈ Y (x), ti = ρi(x,y),∀i ∈ Q


However, the optimization problem on the right side of the equality may fail to be convex if there

exists i ∈ Q such that ρi is not affine. Let QA ⊆ Q be the set of indices for which ρi is affine. By

Assumption L, for all i ∈ Q\QA, we have wi(·) ≥ 0 and thus constraint ”ti = ρi(x,y)” may be

equivalently replaced by ”ti ≥ ρi(x,y)”, which is convex. We therefore can choose

Y ′(x) =

(t,y) :

y ∈ Y (x)

ti = ρi(x,y) ∀i ∈ QA

ti ≥ ρi(x,y) ∀i ∈ Q\QA


For every x ∈ cont (X), the continuous relaxation of Y ′(x) is convex and non-empty (Assumption

J); by construction, it is also finite dimensional.

In what remains, we will assume to know a hyper-rectangle [l,u] as described in Lemma 1.

3.3 A hull-relaxation-based branch-and-bound algorithm

In this section we present our main contribution and its theoretical foundations for this chapter.

We first turn problem (2SRO-P) from a min-max-min problem to a min-max problem in our

mixed-integer and convex context. Then, since linear duality does not apply in our setting, we

resort to Fenchel duality to obtain a reformulation of the problem. The rest of the development

is dedicated to dealing with a non-convex constraint implying the convex hull of a set of points

which depend on some decision variables. While in the linear and binary case (see Chapter 2 and

Arslan and Detienne [2021]), an exact reformulation could be obtained, we show that one obtains

a relaxation by a similar approach in the general case. This relaxation is thus embedded into a

branch-and-bound scheme to obtain an optimal solution of (2SRO-P).

3.3.1 Problem reformulation

The following lemma extends to the mixed-integer and convex context the result given in Arslan

and Detienne [2021].

43

Lemma 2 (Single-stage reformulation). Problem (2SRO-P) is equivalent to the following problem:

inf
(x,t,y)∈F

sup
ξ∈Ξ

∑
i∈Q

wi(ξ)ti (3.2)

with F = {(x, t,y) : x ∈ X ∩ [l,u], (t,y) ∈ conv (Y ′(x))}.

Proof. This lemma relies on the same arguments as those employed in Arslan and Detienne [2021]:

first, the feasible space of the inner minimization problem is replaced by its convex hull by linearity

of the objective function and convexity of the feasible region. By assumption I.2 and Lemma 1,

both Ξ and conv (Y ′(x)) (for all x ∈ X) are convex and finite dimensional. Thus, the result in

Perchet and Vigeral [2015] can be used to turn the inner sup− inf into an inf − sup problem. This

achieves the proof.

The inner maximization problem may be turned into a minimization problem by use of Fenchel

duality, as done in Ben-Tal et al. [2014]. In the following proposition, we therefore derive a general

reformulation of problem (2SRO-P).

Proposition 1 (Deterministic reformulation). Problem (2SRO-P) is equivalent to the following

problem:

inf
x,y,t,(vi)i∈Q,ξ

δ∗(ξ|Ξ)−
∑
i∈Q

(tiwi)∗
(
vi
)

(3.3)

s.t. x ∈ X ∩ [l,u] (3.4)

(t,y) ∈ conv (Y ′(x)) (3.5)∑
i∈Q

vi = ξ (3.6)

vi ∈ R|U | ∀i ∈ Q (3.7)

Proof. By a direct application of Fenchel duality and some conjugate calculus results, the following
holds

sup
ξ∈Ξ

∑
i∈Q

tiwi(ξ) = sup
ξ∈R|U|

∑
i∈Q

tiwi(ξ)− δ(ξ|Ξ)

 = inf
ξ∈R|U|

δ∗(ξ|Ξ)−

∑
i∈Q

tiwi(ξ)


∗


= inf

ξ∈R|U|

δ∗(ξ|Ξ)− sup
vi∈R|U|,i∈Q

∑
i∈Q

(tiwi)∗
(
vi

)
:
∑
i∈Q

vi = ξ




= inf

δ∗(ξ|Ξ)−
∑
i∈Q

(tiwi)∗
(
vi

)
:
∑
i∈Q

vi = ξ,vi ∈ R|U|, i ∈ Q, ξ ∈ R|U|


See also appendix A for more details on conjugate calculus.

Remark 9. Assume wlog that |Q| = |U |. If, for all i ∈ Q, wi(ξ) = wi(ξi), then problem (2SRO-P)

is equivalent to

inf
(x,t,y)∈F

δ∗(ξ|Ξ)−∑
i∈Q

(tiwi)∗ (ξ)

 (3.8)

Remark 10. Let i ∈ Q such that wi(·) is affine, i.e., wi(ξ) = (ri)T ξ+ ri0. Problem (2SRO-P) is

44

equivalent to

inf
(x,t,y)∈F

{
δ∗(Rt|Ξ) + rT0 t

}
(3.9)

Proof. Indeed, we have

(tiwi)∗(v) = inf
ξ∈R|U|

{vT ξ − ti((ri)T ξ + ri0)} =

−tiri0 if v = tir
i

−∞ otherwise.

These results show that although the reformulation for the general case adds |Q| × |U | con-
tinuous variables, for some relevant cases these additional variables can be omitted. In particular

this is true in case all the wi(·) functions are either separable or affine.

3.3.2 Relaxation

Note that the deterministic reformulation presented above still is not, in general, a convex MINLP

and that no tractable, compact form is known in the general case. To overcome this drawback,

we replace constraint (t,y) ∈ conv (Y ′(x)) (3.5) by the following relaxed requirement:

(x, t,y) ∈ conv (S) with S =

(x, t,y) :

lj ≤ xj ≤ uj ∀j ∈ I
xj ∈ Z ∀j ∈ II
(t,y) ∈ Y ′(x)

 . (3.10)

The problem obtained from this substitution is thus

min
x,y,(vi)i∈Q,ξ

δ∗(ξ|Ξ)−
∑
i∈Q

(tiwi)∗
(
vi
)

s.t. x ∈ X ∩ [l,u]

(x, t,y) ∈ conv (S)∑
i∈Q

vi = ξ

vi ∈ R|U | ∀i ∈ Q
ξ ∈ R|U |

(P)

It is clear that, for any fixed x̄ ∈ X, we have {x̄} × Y ′(x̄) = S ∩ {(x, t,y) : x = x̄}, and
that the same holds even for x̄ ∈ cont (X). However, as shown, e.g., in Sherali and Zhu [2006],

the convexified counterpart does not hold, in the sense that the inclusion ”{x̄} × conv (Y (x̄)) ⊆
conv (S) ∩ {(x, t,y) : x = x̄}” may be strict. Example 6 below illustrates this case.

Example 6 (Hull relaxation). We consider the first- and second-stage feasible sets introduced in

Example 3. In Figure (3.1a), we represent the convex hull of S. For a fixed first-stage decision

x̄ (here, x̄ = 0.4), Figure (3.1b) reports the feasible points for constraint (3.10), whereas Figure

(3.1c) describes the exact shape of conv (Y (x̄)). The figure shows an example in which inclusion is

strict. In addition, note that, whenever x̄ attains its bounds (i.e., x̄ ∈ {0, 1}), {x̄}×conv (Y (x̄)) =

conv (S) ∩ {(x,y) : x = x̄} holds.

The following lemma follows from the considerations above.

45

y1

y2

x

(a) conv (S)

y1

y2

x

(b) conv (S) ∩ {x = x̄}

y1

y2

x

(c) {x̄} × conv (Y (x̄))

Figure 3.1: Graphical representation of different sets from example 3

Lemma 3 (Lower-bounding property). Denoting by v(•) the optimal objective value of problem

•, we have:

v(P) ≤ v(2SRO-P)

In other words, (P) is a relaxation of (2SRO-P). In the next proposition, we introduce a

condition under which a feasible solution for problems (P) is feasible for problem (2SRO-P) as

well.

Proposition 2. If x̄ ∈ vert ([l,u]), then

{x̄} × conv (Y ′(x̄)) = conv (S) ∩ {(x, t,y) : x = x̄}

Proof. Let x̄ ∈ vert ([l,u]) and let (x̂, t̂, ŷ) ∈ conv (S)∩ {(x, t,y) : x = x̄}. Then, (x̂, t̂, ŷ) can be

expressed as a (finite) convex combination of points of conv (S) (Carathéodory’s theorem), i.e.,

(x̂, t̂, ŷ) =
∑
e∈E

(x̄e, t̄e, ȳe)αe

where E is a given index list of such elements of conv (S). Assume that there exists j ∈ I and

i ∈ E such that x̄ij ̸= x̄j . If x̄ij > x̄j , condition x̄i ∈ conv (S) implies that x̄j = lj . Hence, αi = 0

since x̄kj ≥ lj ∀k ∈ E. The same argument shows that x̄ij < x̄j implies αi = 0. Thus, for each

e ∈ E such that αe > 0, we must have x̄e = x̄. This implies that (t̄e, ȳe) ∈ Y ′(x̄) and thus∑
e∈E(t̄

e, ȳe)αe ∈ conv (Y ′(x̄)).

Corrolary 1 (Tightness condition). Let X ∗ be the set of optimal first-stage decisions of problem

(P). Then:

X ∗ ∩ vert ([l,u]) ̸= ∅ ⇒ v(P) = v(2SRO-P)

Proof. Let (x∗, t∗,y∗) be an optimal solution of (P) with x∗ ∈ vert ([l,u]). From Proposition 2, it

is also feasible for problem (2SRO-P). Thus, Lemma 3 implies optimality for problem (2SRO-P).

This result directly implies Corollary 2 which states that, in the special case where the first-

stage variables are all binary, problem (P) is always an exact reformulation of (2SRO-P).

46

Corrolary 2 (Tightness condition/binary case). If the first-stage decisions are all binary, i.e.,

IC = ∅ and [l,u] = [0,1], then

v(P) = v(2SRO-P)

Proof. Any optimal first-stage solution x∗ satisfies x∗ ∈ {0, 1}|II | = vert ([l,u]) which, by Corol-

lary 1, proves the result.

3.3.3 Enumerative algorithm

We now present an exact method for solving problem (2SRO-P). Motivated by Corollary 1, the

main idea of the algorithm is to determine an optimal value of the first-stage variables, and then

derive the corresponding optimal values for the second-stage variables. To this aim, we developed

a branch-and-bound algorithm in which we relax both the integrality of the x and requirement

(3.5). To ensure feasibility, we perform a spatial branching on the x variables, until each of its

components attains either its lower or upper bound. The algorithm stores the best feasible solution

found (the incumbent solution) which is returned when the algorithm stops.

Node solution

Let p denote a generic node of the branch-and-bound tree, associated with bounds lp and up on

first-stage variables.

A lower bound on the optimal solution value of node p can be computed solving the following

problem:

min
x,t,y,(vi)i∈Q,ξ

δ∗(ξ|Ξ)−
∑
i∈Q

(tiwi)∗
(
vi
)

s.t. x ∈ cont (X) ∩ [lp,up]

(x, t,y) ∈ conv (Sp)∑
i∈Q

vi = ξ

vi ∈ R|U | ∀i ∈ Q
ξ ∈ R|U |

(LBp)

where Sp = {(x, t,y) : lp ≤ x ≤ up, xj ∈ Z,∀j ∈ II , (t,y) ∈ Y ′(x)}. This problem is exactly the

continuous relaxation of problem (P) where the bounds l and u have been replaced by lp and up.

Note that at the root node we have l0 = l and u0 = u.

Let (xp∗, tp∗,yp∗, (vip∗)i∈Q, ξ
p∗) be an optimal solution of problem LBp. If v(LBp) is greater

than or equal to the cost of the incumbent, the node is fathomed by bounding. Otherwise, we

distinguish three cases:

– if xp∗ ∈ vert ([lp,up]), by Proposition 2, this solution is optimal for the current node. Hence,

the node is fathomed by optimality and the incumbent is updated;

– if xp∗ ∈ X \ vert ([lp,up]), we compute a feasible solution for (2SRO-P) by solving the

following model in which the first-stage variables are fixed to xp∗:

47

min
t,y,(vi)i∈Q,ξ

δ∗(ξ|Ξ)−
∑
i∈Q

(tiwi)∗
(
vi
)

s.t. (t,y) ∈ conv (Y ′(xp∗))∑
i∈Q

vi = ξ

vi ∈ R|U | ∀i ∈ Q
ξ ∈ R|U |

(UBp)

Note that, in this case, xp∗ corresponds to a feasible first-stage solution; hence, by As-

sumption J, problem UBp is always feasible, and possibly the incumbent is updated. If

v(LBp) = v(UBp) then node p is solved; otherwise, we perform a branching;

– if xp∗ ∈ cont (X) \X, we branch.

In the last case, before branching, one can try to round xp∗; if the resulting point is in X, a

feasible solution for (2SRO-P) can be computed. In our experiments, every fractional value for xp∗j
with j ∈ II was rounded to the closest integer while variables xp∗j with j ∈ IC were not rounded.

Branching

We now describe how to select the branching variable at node p. For each first-stage variable, say

with index j ∈ I, we compute the minimum distance of xp∗j from one of its bounds at the node,

i.e., we evaluate:

θpj = min{xp∗j − l
p
j ;u

p
j − x

p∗
j }.

For branching, we give priority to integer variables that do not attain their bound. Otherwise,

we resort to spatial branching on continuous variables. In both cases, we select the variable with

maximum θpj value, i.e., we select variable xj such that,

j ∈

argmax{θpj : j ∈ II} if ∃j ∈ II , θj > 0

argmax{θpj : j ∈ IC} otherwise.

If j ∈ II , then a standard integer branching is executed. Otherwise, we resort to spatial

branching, and generate two descendant nodes by imposing xj ≤ x
p∗
j

for the left node and xj ≥ x
p∗
j

for the right one. We associate to each node the lower bound value of the current node v(LBp)

and insert them in a list of open nodes. At each iteration, we extract from the list one node with

minimum lower bound value, halting the algorithm when the list is empty.

Example 7. Figure 3.2 illustrates the left and right child obtained by spatial branching on x ≤ β
and x ≥ β from example 3 (here, β = 0.4). Clearly, the right child allows the same recourse

decisions as in Y (x) for all x ≥ β. The left child, however, still allows second-stage decisions

that could end up being infeasible in the original problem. In particular, (x,y) = (ε, 1− ε, 0) with
ε ∈ (0, β] is feasible for (LBp) but not for (2SRO-P).

48

y1

y2

x

(a) Left child (x ≤ β)

y1

y2

x

(b) Right child (x ≥ β)

Figure 3.2: Branching on continuous variable x from example 3

Convergence

In the following, we analyze the convergence of the branch-and-bound algorithm. While finite

convergence is ensured if all first-stage variables are integer, this may not be the case when the

first-stage includes continuous variables. We now consider the case where our branch-and-bound

algorithm has an infinite number of nodes. Note that, in this case, there exists at least one infinite

branch to the branch-and-bound tree since the number of variables which can be selected for

branching is finite. We consider one such branch and denote it by P . For each node p ∈ P ,

we denote by (lp,up) the associated bounds for the x variables and by (xp∗, tp∗,yp∗,V p∗, ξp∗)

an optimal solution to the corresponding lower-bounding problem. Additionally, we introduce

functions fLB and fST which correspond to the objective function of the lower bounding problem

and of the single stage reformulation from Lemma 2, respectively. For the reader’s convenience,

we recall them here.

fLB(t,V , ξ) := δ∗(ξ|Ξ)−
∑
i∈Q

(tiwi)∗
(
vi
)

(3.11)

fST (t) := sup
ξ∈Ξ

∑
i∈Q

wi(ξ)ti (3.12)

Remark 11. For each node p ∈ P it holds fLB(t
p∗,V p∗, ξp∗) = fST (t

p∗).

Proof. This directly follows from the definition of (xp∗, tp∗,yp∗,V p∗, ξp∗) and Proposition (1).

Lemma 4. Let P be a sequence of nodes of any infinite branch of the branch-and-bound tree.

Then,

(i) The sequence {(lp,up)}p∈P has a unique accumulation point, which we denote by (l∗,u∗);

(ii) The sequence {(xp∗, tp∗,yp∗)}p∈P has at least one accumulation point;

(iii) Let x∗ be any accumulation point of {xp∗}p∈P , then, for each j ∈ IC which is infinitely

selected for branching, there exists a sub-sequence P j ⊆ P such that either {upj}p∈P j → x∗j
or {lpj }p∈P j → x∗j ;

(iv) Every accumulation point x∗ of {xp∗}p∈P satisfies x∗ ∈ vert ([l∗,u∗]).

Proof.

49

(i) This follows from the fact that lp (resp. up) is a bounded, non-decreasing (resp. non-

increasing) sequence.

(ii) This follows from the Bolzano-Weierstrass theorem since the sequence {xp∗}p∈P is generically

bounded by [l,u], X is compact and conv(S) is closed and bounded, thus compact (indeed,

for all i ∈ Q, tpi is trivially bounded by sup{φi(x,y) : x ∈ X ,y ∈ Y(x)} which is finite by

Assumption K.1).

(iii) Consider any accumulation point x∗ of {xp∗}p∈P with its associated convergent sub-sequence

P ′ ⊆ P , i.e., {xp∗}p∈P ′ → x∗. Let j ∈ IC be as described in the lemma, and consider the

sub-sequence Puj ⊆ P ′ such that, for all p ∈ Puj , up+1
j = xp∗j . Assume Puj is not finite.

Then, we have that {xp∗j }p∈Puj → x∗j since Puj ⊆ P ′. And thus, by definition of Puj ,

we have that {up+1
j }p∈Puj → x∗j . We therefore chose P j = {p + 1 : p ∈ Puj} and have

{upj}p∈P j → x∗j . If instead Puj is finite, the sub-sequence P lj ⊆ P ′ defined by nodes p for

which lp+1
j = xp∗j is infinite; therefore, the similar argument can be applied.

(iv) We have just shown that, for any accumulation point x∗ of {xp∗}p∈P , with its associated

convergent sub-sequence P ′ ⊆ P , and any infinitely branched index j ∈ IC , there exists

P j ⊆ P ′ such that either {upj}p∈P j → x∗j or {lpj }p∈P j → x∗j . Assume {lpj }p∈P j → x∗j holds.

Then, we have that P j ⊆ P ′ and {lpj }p∈P ′ → l∗j . Thus, x
∗
j = l∗j holds, since any sub-sequence

of a converging sequence converges to the same point. The same argument can be applied

when {upj}p∈P j → x∗j .

Theorem 2. Let P be a sequence of nodes of any infinite branch of the branch-and-bound tree.

Then, every accumulation point of {(xp, tp,yp)}p∈P , say (x∗, t∗,y∗), is an optimal solution of

problem (3.2), and, thus, x∗ is an optimal solution of (2SRO-P).

Proof. By Lemma 4 (ii), there exists a sub-sequence P ′ ⊆ P such that {(xp∗, tp∗,yp∗)}p∈P ′ →
(x∗, t∗,y∗). Note that X and conv (S) are compact sets, hence we have that (x∗, t∗,y∗) ∈ X ×
conv (S). Moreover, by Lemma 4 (iv), we know that x∗ ∈ vert ([l∗,u∗]) which, by Proposition 2,

ensures that (t∗,y∗) ∈ conv (Y ′(x∗)). Hence, (x∗, t∗,y∗) is feasible for (3.2). Note that fST is a

continuous function since it is the point-wise supremum of continuous (affine) functions. Thus,

by Remark 11, we have {fLB(t
p∗,V p∗, ξp∗)}p∈P ′ → fST (t

∗). In other words, the objective value

of the feasible solution (x∗, t∗,y∗) to (3.2) is fST (t
∗). Yet, by Lemma 2, we know that (3.2) and

(2SRO-P) have the same objective value. This makes x∗ a feasible solution to (2SRO-P) of value

fST (t
∗). Since our node selection strategy always picks a node with minimum lower bound, for

each node p ∈ P , we have fLB(t
p∗,V p∗, ξp∗) = v(LBp) ≤ v(2SRO-P) ≤ fST (t

∗). As v(LBp)

converges to fST (t
∗), we also have fLB(t

p∗,V p∗, ξp∗) = fST (t
∗) = v(2SRO-P).

Thus, asymptotic convergence of our branch-and-bound algorithm is proved. We further give a

sufficient condition for finite ε-convergence even when IC ̸= ∅. More specifically, given an optimal

solution xp∗ of the lower bounding problem at a node p, we introduce the following function

G(xp∗) := v(UBp),

50

that returns the solution value in the upper bounding problem. We show that, if G is a continuous

function, then our branch-and-bound algorithm enjoys finite ε-convergence.

Proposition 3 (Sufficient condition for finite ε-convergence). Let ε > 0 be a given precision and

assume that G is continuous. Then our branch-and-bound algorithm converges to an ε-optimal

solution of (2SRO-P) in a finite number of iterations.

Proof. By continuity of G, we have {G(xp∗)}p∈P ′ → G(x∗) = v(LB∗), which allows us to fathom

the node by optimality after a finite number of nodes for any positive tolerance.

We conclude this section by observing that, at each node of the branch-and-bound algorithm,

the lower bounding problem can be solved with ε-tolerance in a finite number of operations.

Indeed, as shown in Ceria and Soares [1999] and Grossmann and Ruiz [2011], one can reformulate

a convex disjunctive program as a compact convex MINLP by introducing an exponential number

of auxiliary variables that model the disjunctions. The resulting model can thus be solved in finite

number of states by using any algorithm designed for convex optimization.

Example 8 (Asymptotic convergence). We further elaborate on Example 3 by exhibiting a case

in which our algorithm may not finitely converge but, instead, has asymptotic convergence in the

first-stage solution values. Remember that, in this case, Problem (2SRO-P) is equivalent to solving

“minx∈[0,1]G(x) with G(x) = 1(x > 0)”. Applying the reformulation from Lemma 2, one obtains

the following reformulation of G.

G(x) = min max{0,−2y1 + y2 + 1}

s.t. (y1, y2) ∈ conv (Y (x))

Applying a hull-relaxation, one obtains that “minx∈[0,1] fLB(x)” with fLB defined as follows, is a

lower-bounding problem for (2SRO-P).

fLB(x) = min max{0,−2y1 + y2 + 1} (3.13)

s.t. (x, y1, y2) ∈ conv

({
(x′, y′1, y

′
2) :

l ≤ x′ ≤ u
(y′1, y

′
2) ∈ Y (x)

})
(3.14)

In Figure 3.3, we have depicted functions G (in green) and fLB (in black). Now, observe that, for

any u > 0 and l = 0, x∗ = u/2 is a minimizer of fLB. Indeed, we always have the following:u/21/2

0

 = (1/2)

0

1

0

+ (1/2)

u0
0

 and 1/2 + 1/2 = 1

and fLB(u/2) = max{0,−2(1/2) + 0+ 1} = 0. However, we have G(u/2) = 1, since u > 0. Thus,

the lower-bounding problem and the upper-bounding problem are always distanced by 1 if x∗ = u/2

is returned when minimizing fLB (note that 0 is also a minimize of fLB, if this minimizer is

returned, instead, the algorithm finitely terminates).

51

Now, since l < u, our algorithm will branch on x in order to reduce the gap between l and u.

Since u/2 is always a minimizer of the lower-bounding problem when u > 0, the same situation

could repeat infinitely while u decreases. Yet, observe that the following holds.u/2
p

1/2

0

→
 0

1/2

0

 as p→ +∞

In other words, the optimal solutions (xp∗, yp∗1 , yp∗2) of the lower-bounding problem will converge

to (x∗, y∗1 , y
∗
2) = (0, 12 , 0). Clearly, (0, 0) ∈ Y (0) and (1, 0) ∈ Y (0), thus (1/2, 0) = (1/2)(0, 0) +

(1/2)(1, 0) ∈ conv (Y (0)). Thus (x∗, y∗1 , y
∗
2) is feasible for the reformulation in Lemma (2) and the

corresponding objective value is zero. We well have fLB(x
∗) = G(x∗) = 0.

x
0 u/2 u

G(x)

fLB(x)

[l, u]

Figure 3.3: Graphical representation of fLB and G

3.3.4 A convexification scheme based on column-generation

In this section, we propose a nonlinear column-generation algorithm to be used, at each node p,

to solve problem (LBp) to ε-optimality in a finite number of iterations. According to this scheme,

we approximate conv (Sp) by the convex hull of a finite set of points belonging to Sp.

Restricted Master Problem: To determine this set, we use an iterative approach. At each

iteration k, let K = {1, . . . , k} and denote by Hpk = {(x̄pj , t̄pj , ȳpj) : j ∈ K} the associated

set of points. We clearly have conv
(
Hpk

)
⊆ conv (Sp), thus the optimal solution of the problem

obtained by substituting conv (Sp) with conv
(
Hpk

)
in (LBp) gives an upper bound of (LBp). The

52

resulting problem, denoted as (L̂B
pk
), is called the Restricted Master, and is formulated as follows:

min
x,t,y,V ,ξ,α

δ∗(ξ|Ξ)−
∑
i∈Q

(tiwi)∗
(
vi
)

(3.16)

s.t. x ∈ cont (X) ∩ [lp,up] (3.17)

x =
∑
j∈K

αjx̄
pj (3.18)

t =
∑
j∈K

αj t̄
pj (3.19)

y =
∑
j∈K

αjȳ
pj (3.20)

∑
j∈K

αj = 1 (3.21)

∑
i∈Q

vi = ξ (3.22)

vi ∈ R|U | ∀i ∈ Q (3.23)

ξ ∈ R|U | (3.24)

αj ≥ 0 ∀j ∈ K (3.25)

(L̂B
pk
)

Following the classical column-generation framework, the current approximation can be im-

proved by means of a so-called Pricing Problem, defined as follows.

Pricing Problem: Let λpk∗,µpk∗,πpk∗ and ηpk∗ be the values of the dual variables associated

with constraints (3.18), (3.19), (3.20), and (3.21) in an optimal solution of problem (L̂B
pk
). Pricing

asks to solve the following problem

(x̄p,k+1, t̄p,k+1, ȳp,k+1) ∈ argmin
(x,t,y)∈Sp

− λpk∗T

x− µpkT

t− πpk∗T

y − ηpk∗
T

(PPpk)

and generates a new point (x̄p,k+1, t̄p,k+1, ȳp,k+1) belonging to Sp. If v(PPpk) ≥ −ε, we have

an ε-optimal solution to (LBp), and hence the algorithm terminates. Otherwise, we set Hk+1 =

Hk ∪ {(x̄p,k+1, t̄p,k+1, ȳp,k+1)}, k = k + 1 and iterate. Note that, at each iteration k, a lower

bound on the optimal solution value of (LBp) is given by v(L̂B
pk
)− v(PPpk). This lower bound,

combined with an upper bound, can allow us to early terminate the solution of problem (LBp).

The convergence of nonlinear column generation has been established in Garćıa et al. [2003].

3.4 Computational experiments

In this section, we report computational results of our solution algorithm when applied to an

uncertain counterpart of a Capacitated Facility Location Problem with congestion.

53

3.4.1 Problem definition

We consider a variant of the Facility Location Problem, in which we are given a set V1 of candidate

sites for opening facilities, as well as a set V2 of clients to be served with some product. Each

client j ∈ V2 has a demand dj representing the quantity of product that she/he wants to receive.

Each site i ∈ V1 can be activated at a given fixed cost fi > 0. In this case, one has to decide the

capacity to be installed, at cost ui per unit of capacity. Each site i has an upper bound q̄i on

the maximum capacity that can be installed. Each connection (i, j) ∈ V1 × V2 is associated with

a fixed cost cij , and a variable cost tij per unit of product which is transported. In our setting,

we explicitly model congestion at each site i by means of an additional cost which depends on

the total amount of product, say vi, leaving the facility. As in the congested Facility Location

Problem considered in Desrochers et al. [1995] and in Fischetti et al. [2016], the congestion cost

for site i is given by

Fi(vi) = (αi + βiv
γi

i)vi (3.25)

where αi ≥ 0, βi > 0 and γi ≥ 1 are input parameters. Note that each function Fi is convex

for non-negative arguments vi. The problem asks to determine the capacity to be installed at

each opened facility and the flow of product from facilities to clients, so as to serve all clients at

minimum cost. This problem can be reduced to the one addressed in Desrochers et al. [1995] in

case there are no capacity constraints at the sites (i.e., q̄i = ∞ and ui = 0 for each i ∈ V1) and

transportation costs only include a variable component (i.e., cij = 0 for each (i, j) ∈ V1 × V2).
In our context, connection costs are not known when deciding the capacities to be installed.

Formally, for each connection (i, j) ∈ V1 × V2, we denote by c̄ij and t̄ij the nominal fixed and

variable costs from i to j, and by c̃ij and t̃ij their maximal deviations. Without loss of generality,

we assume that, for each connection (i, j) ∈ V1 × V2, the actual realizations for the costs are

determined by the same variable ξij . In other words, we have cij = c̄ij+ξij c̃ij and tij = t̄ij+ξij t̃ij ,

with ξ ∈ Ξ and Ξ is a given uncertainty set (see Section 3.4.2).

We consider the adjustable robust version of this uncertain problem, where capacity installation

is determined at the first stage whereas product flows are determined after uncertainty reveals.

We denote the resulting problem as ARCCFLP (for Adjustable Robust Congested Capacitated

Facility Location Problem).

3.4.2 Mathematical formulation

To model ARCCFLP, we introduce, for each site i ∈ V1, first-stage variables xi and qi; the former

takes the value 1 if site i is activated, whereas the latter denotes the actual capacity installed.

The feasible set X for the first-stage variables is defined as

X = {(x, q) : xi ∈ {0, 1} and 0 ≤ qi ≤ q̄ixi ∀i ∈ V1} . (3.26)

Once the actual realization of uncertainty ξ ∈ Ξ is known, thus defining the transportation

costs, the remaining decisions concerning the flow of product from opened sites to clients must

be taken. To this aim we introduce, for each connection (i, j) ∈ V1 × V2, variables zij and yij

denoting if the connection is activated and the fraction of request of client j that is served by site

i, respectively. For each site i, we also denote by vi the total amount of product leaving the site.

54

Accordingly, the feasible set Y (x, q) associated with a given pair (x, q) is defined by the following

constraints. ∑
j∈V2

djyij ≤ qi ∀i ∈ V1 (3.27)

∑
i∈V1

yij = 1 ∀j ∈ V2 (3.28)

yij ≤ zij ∀i ∈ V1,∀j ∈ V2 (3.29)

vi =
∑
j∈V2

djyij ∀i ∈ V1 (3.30)

yij ≥ 0 ∀i ∈ V1,∀j ∈ V2 (3.31)

zij ∈ {0, 1} ∀i ∈ V1,∀j ∈ V2 (3.32)

Constraints (3.27) enforce that the total demand leaving each site does not exceed the installed

capacity, while constraints (3.28) impose that, for each client, all the demand is served.

Constraints (3.29) activate connections with a positive flow. Finally, (3.30) define the total

demand served by each site, whereas (3.31) and (3.32) give the domain of the variables.

Then, ARCCFLP is formulated as

min
(x,q)∈X

{∑
i∈V1

(fixi + uiqi)

+max
ξ∈Ξ

min
(z,y,v)∈Y (x,q)

∑
i∈V1

(
Fi(vi) +

∑
j∈V2

(
(c̄ij + ξij c̃ij)zij + (t̄ij + ξij t̃ij)yij

))}
. (3.33)

By applying the methodology introduced in this paper, the corresponding lower-bounding

problem is given as follows

min
∑
i∈V1

(
fixi + uiqi + ri +

∑
j∈V2

(c̄ijzij + t̄ijyij)

)
(3.34)

+ max
ξ∈Ξ

∑
i∈V1

∑
j∈V2

ξij(t̃ijzij + c̃ijyij) (3.35)

s.t. (x, q) ∈ X (3.36)

(q, r,v,y,z) ∈ conv


(q, r,v,y,z) :

0 ≤ qi ≤ q̄i ∀i ∈ V1

ri ≥ Fi(vi) ∀i ∈ V1

(3.27)− (3.32)


 . (3.37)

The inner maximization problem can then be expressed by using Fenchel duality, and the resulting

formulation depends on the uncertain set. In our experiments, we consider two widely used

uncertainty sets, namely, the Γ-uncertainty set and the ellipsoidal uncertainty set.

Γ-uncertainty (see, Bertsimas and Sim [2004]) assumes that uncertainty affects the cost of at

most Γ arcs, where Γ is a parameter used to control the robustness of the solution. Namely,

Ξ▷
Γ =

ξ ∈ [0, 1]|V1|×|V2| :
∑
i∈V1

∑
j∈V2

ξij ≤ Γ

 . (3.38)

55

In this case, Fenchel duality reduces to LP duality as follows.

max
ξ∈Ξ▷

Γ

∑
i∈V1

∑
j∈V2

ξij(t̃ijzij + c̃ijyij) = min Γλ+
∑
i∈V1

∑
j∈V2

πij (3.39)

s.t. λ+ πij ≥ t̃ijzij + c̃ijyij ∀i ∈ V1, ∀j ∈ V2 (3.40)

λ ≥ 0 (3.41)

πij ≥ 0 ∀i ∈ V1, ∀j ∈ V2 (3.42)

The Ellipsoidal uncertainty set is defined as

Ξ◦
Γ =

ξ ∈ [0, 1]|V1|×|V2| :

√∑
i∈V1

∑
j∈V2

ξ2ij ≤ Γ

 (3.43)

where again Γ is a control parameter. In this case, one obtains the following formulation.

max
ξ∈Ξ◦

Γ

∑
i∈V1

∑
j∈V2

ξij(t̃ijzij + c̃ijyij) = min Γλ+
∑
i∈V1

∑
j∈V2

πij (3.44)

s.t. νij + πij ≥ t̃ijzij + c̃ijyij ∀i ∈ V1,∀j ∈ V2 (3.45)√∑
i∈V1

∑
j∈V2

ν2
ij ≤ λ (3.46)

λ ≥ 0 (3.47)

πij ≥ 0 ∀i ∈ V1, ∀j ∈ V2 (3.48)

νij ≥ 0 ∀i ∈ V1, ∀j ∈ V2 (3.49)

An interested reader may refer to Li et al. [2011] for associated theoretical properties of both

uncertainty sets, including their robust counterparts and probabilistic guarantees for linear con-

straints.

3.4.3 Test bed

Instance generation We tested our solution method on random instances, that were generated

by following the guidelines of the extensive computational study by Cornuéjols et al. [1991]. Ac-

cordingly, for each facility i ∈ V1, the maximum capacity q̄i and the fixed opening cost fi follow

uniform distributions in [10, 160] and [0, 180], respectively, whereas the variable coefficient ui was

generated in [200/
√
q̄i, 220/

√
q̄i]. Moreover, locations for each facility i ∈ V1 and each client j ∈ V2

were generated in the unit square, and nominal transportation costs were set to the Euclidean

distance multiplied by 10 and rounded up. The demands were uniformly generated between 0 and

1 and scaled so that
∑

i∈V1
q̄i/
∑

j∈V2
dj = ν where ν is a parameter taking value in {1.1, 1.2, 1.3}.

In addition, following Desrochers et al. [1995], for each i ∈ V1, we used γi = 1 and αi = βi = 0.75,

i.e., each function Fi is quadratic with respect to the amount of product leaving site i. Concerning

the parameters affected by uncertainty, the maximum deviation t̃ij was set to 0.50 × t̄ij , thus

allowing a maximum of 50% deviation. As to the opening cost of each arc, we randomly generated

the nominal value between 50 and 100, allowing a maximum of 50% deviation with respect to this

value.

Finally, the number of sites and clients take values (4, 8), (5, 10) and (6, 12). For each combina-

56

tion of |V1|, |V2|, and ν, we generated 5 test-cases. Each test-case was solved for Γ = 1, 2, 3, 4, both

in the Γ-uncertainty and in the Ellipsoidal uncertainty settings, thus producing 360 instances.

3.4.4 Implementation details

We implemented our branch-and-price algorithm with spatial branching in C++ and run all the

experiments on an AMD Ryzen 5 PRO 4650GE at 3.3 GHz, with a time limit equal to 10,800

CPU seconds per run (3 hours).

At the root node, an initial upper bound is computed by solving the single-stage version of

ARCCFLP where all decisions are taken here and now. This bound is obtained by solving (3.34)-

(3.37) without convexifying the wait-and-see feasible space in constraint (3.37). At each node

of the algorithm, we solve the restricted master problem by using Mosek 9.2, and the pricing

problem by means of IBM CPLEX 22.10. This combination of solvers turned out to be the most

numerically stable on our instances.

The column-generation procedure includes stabilization by dual price smoothing, as described

in Pessoa et al. [2018]; and at most one column is added to the restricted master problem at each

iteration.

For the branching strategy of continuous variables, we used a tolerance of ε = 10−3 for com-

paring real numbers in finite precision. Local bounds derived from branching decisions are applied

to the column generation sub-problem. Columns in the restricted master problem are checked

against the local bounds, and possibly removed from the master.

At a given node, to check the optimality of a first-stage decision and possibly fathom the node,

we use the sufficient condition from Proposition 2. If the latter does not hold, we check if all

active columns at optimality are built on the same values for the continuous variables; in this

case, Proposition 2 can be exploited to ensure local optimality of the corresponding solution. If

the first-stage solution is not feasible, an upper bound is computed as follows. We detect the

variable with largest value in the RMP current solution, recover the values of variables (x, q) that

were used for generating this column and fix variables (x, q) to those values, possibly rounding up

integer variables.

Finally, observe that branching may induce infeasibility in the second stage. To early detect this

situation, at a given node of the branch-and-bound tree, we simply check if
∑

i∈V1
xui q

u
i <

∑
j∈V2

dj

holds, where xui and qui denote the local upper bound of variable xi and qi, respectively. In this

case the node is declared infeasible.

3.4.5 General results

Table 3.1 reports our computational results on ARCCFLP. The upper part relates to experiments

done with the Γ-uncertainty set (Γ-unc.), while the lower part addresses those with the ellipsoidal

uncertainty set (Ellips.). Columns |V1|, |V2| and Γ give the number of sites, the number of clients

and the value for the uncertainty parameter Γ, respectively. Column “solved” reports the number

of instances (out of 15) which could be solved to proven optimality within the given time limit.

Into brackets we report the number of instances for which the computation was stopped due

to numerical issues of the used solvers. For the sake of consistency, all remaining columns but

the last one are relative to instances which could be solved within the time limit. In particular,

57

columns “time” report, from left to right, the average time needed to prove optimality (“total”),

the average time spent solving the RMP (“RMP”) and the average time spent solving the pricing

problem (“PP”) during the execution of our Branch-And-Price algorithm. All times are expressed

in seconds. Column “nodes” reports the average number of explored nodes, while “columns”

gives the average number of generated columns throughout the entire execution of our algorithm.

Finally, we report the average optimality gap at the root node (“root”) and the average optimality

gap at time limit (“end”) (or when the algorithm was stopped for numerical troubles). This last

figure is computed only over those instances which could not be solved to optimality.

Time (s) Gap (%)
|V1| |V2| Γ solved total RMP PP nodes columns root end

Γ-unc.

4 8 1 15 2.45 0.12 2.04 4.73 42.60 0.21
2 15 3.19 0.14 2.68 5.00 56.53 0.21
3 15 4.75 0.26 4.03 5.27 84.60 0.22
4 15 4.74 0.22 4.10 5.27 78.60 0.23

5 10 1 15 44.83 0.78 42.35 5.80 110.00 0.29
2 15 21.83 0.47 20.27 6.60 82.20 0.31
3 15 36.59 0.64 34.70 7.53 125.87 0.33
4 15 38.33 0.80 36.16 9.40 166.80 0.34

6 12 1 11 319.17 1.92 313.31 4.82 139.55 0.17 0.24
2 13 572.80 1.64 562.48 5.46 102.69 0.19 0.30
3 13 1117.35 2.35 1110.73 6.23 162.92 0.22 0.23
4 11 1261.83 4.63 1249.46 6.45 239.00 0.22 0.26

Ellips.

4 8 1 13 (2) 6.64 0.35 5.70 5.00 67.92 0.22 0.11
2 14 (1) 7.46 0.52 6.25 5.00 88.79 0.22 0.30
3 14 (1) 12.47 0.67 10.90 5.29 121.07 0.20 0.46
4 13 (2) 11.16 0.40 10.08 4.54 86.77 0.21 0.09

5 10 1 12 (3) 26.96 1.27 24.59 6.00 117.58 0.26 0.44
2 12 (3) 83.59 2.34 79.28 7.17 206.75 0.32 0.38
3 15 82.47 3.19 76.72 8.73 278.80 0.34
4 15 151.89 2.17 147.62 6.33 195.27 0.31

6 12 1 14 (1) 324.66 3.45 315.11 5.29 169.57 0.18 0.21
2 14 (1) 420.62 4.01 412.94 5.86 202.21 0.22 0.21
3 13 859.62 5.66 847.91 7.00 280.08 0.24 0.10
4 13 (2) 1574.26 10.83 1551.17 10.69 526.38 0.22 0.15

Table 3.1: Computational experiments on ARCCFLP instances. Each row refers to 15 instances.

The table shows that our method is able to solve a large fraction of the instances, namely

168 in the Γ-uncertainty setting and 162 in the Ellipsoidal uncertainty setting. In most cases,

the solution time required by the algorithm is quite small and solving the RMP is very fast in

practice (below 7% of the total time, on average). Indeed, the most challenging subproblem solved

is the pricing problem; when increasing the size of the instances the number of columns that are

needed increases and each execution of the pricing problem is more time consuming. However,

the solved relaxation allows to compute a very tight approximation, as the gap between lower and

upper bounds at the root that is always below 0.35%, and producing small enumeration trees,

in which the number of generated nodes is always below 11. Moreover, the performance of the

algorithm is satisfactory also for the instances that were not solved to proven optimality, as the

average residual gap at the end of the enumeration is always quite small (below 0.5%). Finally,

58

observe that numerical issues arise only when uncertainty belongs to the Ellipsoidal uncertainty

set, a nonlinear setting in which Mosek may encounter numerical instability on some instances.

Linearized costs

As an alternative approach for both uncertainty sets described in Section 3.4.2, we considered

solving a linearized approximation of ARCCFLP obtained by replacing each function Fi (i ∈ V1)
by a piecewise linear approximation. By introducing L approximation points {v̄il}l=1,...,L, function

Fi is underestimated by the following one:

F̃i(vi) = max
l=1,...,L

{Fi(v̄il) + F ′
i (v̄il)(vi − v̄il)} . (3.50)

In our experiments, we chose L = 10 and, for all i ∈ V1, defined the approximation points to be

equally distributed in the interval [0, q̄i], i.e., v̄il = q̄i(l − 1)/(L− 1) for l = 1, ..., L.

Table 3.2 reports the results obtained by using the linearized approach. For each combination

of |V1| and |V2|, we give for both the exact and the linearized approaches, the number of instances

solved to optimality. Moreover, for the latter we report the average and maximum percentage

error introduced by the linearization, computed as z∗−zL

z∗ , where z∗ and zL denote the optimal

values of an ARCCFLP instance and of its linearized counterpart, respectively. These figures are

computed with respect to instances solved by both approaches only.

exact linearized

|V1| |V2| solved solved avg. err. max. err.

Γ-unc.
4 8 60 60 0.37 0.61
5 10 60 60 0.38 0.63
6 12 48 42 0.39 0.56

Ellips.
4 8 54 58 0.36 0.59
5 10 54 59 0.39 0.58
6 12 54 59 0.40 0.56

Table 3.2: Comparison of exact and linearized approaches

The table shows that the linearized approach turns out to be harder in the Γ-uncertainty

setting, while it gives some improvement when the Ellipsoidal setting is considered; this is mainly

due to the reduced number of instances for which we encountered numerical troubles. However,

in both settings, linearization introduces a nonneglibile error when underestimating the true cost

of a solution. The average percentage error, over all instances, is 0.38% and can be as large as

0.63%.

3.5 Conclusion

In this work, we studied optimization problems where part of the cost parameters are not known at

decision time, and the decision flow is modeled as a two-stage process. In particular, we addressed

general problems in which all constraints (including those linking the first and the second stages)

are defined by convex functions and involve mixed-integer variables. To the best of our knowledge,

this is the first attempt to extend the existing literature to tackle this wide class of problems.

59

To this aim, we derive a relaxation of the problem which can be formulated as a convex

optimization problem, and embed it within a branch-and-bound algorithm where branching occurs

on integer and continuous variables. By combining enumeration and on-the-fly generation of the

variables, we obtain a branch-and-price scheme, for which we prove asymptotic convergence in the

general mixed-integer case and give sufficient conditions for finite convergence.

In addition to the theoretical analysis, we applied our method to an optimization problem

affected by objective uncertainty arising in the logistic field, namely a variant of the congested

Capacitated Facility Location problem with uncertain transportation costs. Our computational

experiments showed that the proposed method is able to solve medium-size instances for this

problems. In addition, we provide a comparison with a natural approach based on linearization

of the congestion function, showing that this alternative solution method would give marginal

improvements in terms of performances though introducing a non-negligible error in terms of cost

of the provided solution.

60

CHAPTER 4

Application: scheduling under uncertain job failure

François Clautiaux, Boris Detienne, Henri Lefebvre1

Minimizing the weighted number of tardy jobs on one machine is a classical and intensively studied

scheduling problem. In this chapter, we develop a two-stage robust approach, where exact weights

are known after accepting to perform the jobs, and before sequencing them on the machine. This

assumption allows diverse recourse decisions to be taken in order to better adapt one’s mid-term

plan.

The contribution of this chapter is twofold: first, we introduce a new scheduling problem and

model it as a min-max-min optimization problem with mixed-integer recourse by extending exist-

ing models proposed for the deterministic case. Second, we take advantage of the special structure

of the problem to propose two solution approaches based on results from the recent robust opti-

mization literature: namely theK-adaptability (Hanasusanto et al. [2015]) and the convexification-

based approach introduced in Arslan and Detienne [2021] and generalized in Chapter 3. We also

study the additional cost of the solutions if the sequence of jobs has to be decided before the

uncertainty is revealed. Computational experiments are reported to analyze the effectiveness of

our approaches.

4.1 Introduction

Historically, scheduling optimization problems have been solved in a deterministic fashion assum-

ing that every input data were perfectly known at decision time. These problems have been, and

still are, extensively studied in the literature. For an overview of the broad scheduling litera-

ture, the reader may refer to Graham et al. [1979], which introduced the widely used notation

for scheduling problems, and to Pinedo [2016], which covers important theoretical models and

significant scheduling problems occurring in the real world.

1The content of this chapter has been accepted for publication at Journal of Scheduling.

61

Regarding robust scheduling approaches, Aloulou and Della Croce [2008] and Yang and Yu

[2002] present different complexity results for single machine problems. They show that even

simple scheduling problems become NP-hard as soon as the uncertainty set contains more than

one scenario. In Bougeret et al. [2018], the authors provide approximation algorithms for the

problem of minimizing the weighted and unweighted sum of completion times on a single machine

where the processing time of the tasks are uncertain. Problems with stochastic breakdowns on one

machine (resp. two machines) are studied in Birge et al. [1990] (resp. Allahverdi and Mittenthal

[1995]). Affine decision rules are proposed for two-stage robust batch process scheduling under

polyhedral uncertainty in Lappas and Gounaris [2016], based on continuous-time models oriented

towards chemistry applications. In van den Akker et al. [2018], a variant of 1||
∑
Uj with uncertain

processing times is studied. Given a discrete scenario-based uncertainty set, one has to determine

an initial sequence of jobs that is feasible for nominal processing times. At second stage, once

the scenario of actual processing times is revealed, the sequence can be adapted by rejecting some

jobs. The objective is to minimize the expected cost of the repaired solution. The authors propose

a dynamic programming, a branch-and-bound and a branch-and-price algorithms to solve the

problem exactly.

In this chapter, we introduce a new scheduling problem as an extension of the well known

1|rj |
∑
wjUj problem where the weighted sum of tardy jobs has to be minimized. In our problem,

the jobs are subject to failures, which lead to additional costs. Once the uncertain parameters

are revealed (i.e. the weights of the jobs), the decision maker is allowed to take discrete recourse

actions: determining the sequence of jobs, outsourcing or spending more time on the jobs to fix

them. We address this problem with a robust approach.

This problem has several practical applications. Consider the following example, which arises

in the astronomical field when one needs to allocate observatory time. At planning time, a number

of sessions have to be reserved for observation purposes, yet, many factors which can alter the

quality of the observation are not known, e.g., weather, air quality (see e.g. Garcia-Piquer et al.

[2017], van Rooyen et al. [2018]). As a result, it may happen that the sessions lead to lower

quality observations, which can be fixed by increasing the time allocated to it, or outsourcing it to

another facility. The costs involved in such situations are typically high, therefore, a worst-case-

type optimization approach is appropriate.

From an operational point of view, rescheduling jobs might be difficult or costly, and decision-

makers may favour recourse solutions where the modifications are easier to handle. In this case,

one may seek solutions involving minor modifications to the original plan (see e.g., Bendotti et al.

[2017]). The advantages of such solutions are well understood: they reduce the operational costs,

reduce the possibility of error in the process, and are generally better accepted by the operators.

We therefore propose an alternative version of the scheduling problem where the sequence of jobs

cannot be modified after the uncertainty is revealed.

We thus consider two hard scheduling problems with integer recourse, which were never studied

before. In general, solving a robust combinatorial problem with integer recourse is a ΣP
2 -hard

problem (see e.g. Claus and Simmoteit [2020]), which induces that even verifying that a first-

stage solution is feasible (for any realization of the uncertain parameter) is an NP-hard problem.

In deterministic optimization problem, most classical scheduling problems obviously belong to NP,

so the main question is generally whether the problem belongs to P or is at least as hard as any

62

problem in NP. This is different in robust optimization, where the question of whether a problem

belongs to the NP class is crucial from both theoretical and practical points of view. For example,

if the problem does not belong to NP, the problem cannot be modelled as a Mixed-Integer Linear

Program (MILP) of polynomial size (unless NP = P). In this chapter, we show that our specific

scheduling problems belong to the subclass of robust problems identified by Arslan and Detienne

[2021], and, thus, are NP-complete.

We show that the two new scheduling problems can be reformulated in such a way that recent

works on robust optimization can be instantiated to reformulate this problem exactly (see Arslan

and Detienne [2021] and Chapter 3) or heuristically (see Hanasusanto et al. [2015]) by deterministic

(exponentially large) MILP models. In both cases, our work consists in finding non-trivial efficient

reformulations that lead to models satisfying the technical conditions imposed by the two general

frameworks. The computational experiments confirm that the practical difficulty of both problems

is considerable: even with state-of-the art methodologies, some instances with 25 jobs remain open

after one hour of computing time. We also show a surprising result: forbidding to modify the order

of the jobs in the second stage increases the cost of the solution only marginally.

Among the work mentioned above, only van den Akker et al. [2018] proposes exact solving

approaches. The problem that we study is different in the following ways. First, we include

release dates constraints and different weights for the jobs. Second, we extend the set of possible

recourse actions by adding, to the possibility of keeping or rejecting a job at the second stage, the

option of repairing it at the expense of an extra processing time. Third, the uncertainty is modeled

in van den Akker et al. [2018] by a finite set of discrete scenarios that affects the processing times

only, while we consider a polyhedral uncertainty set defining the objective function. Both papers

aim at optimizing the worst-case cost, added to average cost in van den Akker et al. [2018]. In terms

of methodology, although the two works use branch-and-price algorithms, the reformulations used

are totally different. The work in van den Akker et al. [2018] is based on a classical deterministic

equivalent formulation, where the recourse decisions for each scenario are modeled using one set of

variables and constraints, whereas the current work is based on a robust two-stage programming

formulation, which is rewritten as a static robust program of very large size.

In Section 4.2, we recall some useful results on the deterministic 1|rj |
∑
wjUj , which will be

used in the remainder of the chapter. In Section 4.3, we formally describe a first robust version

of this problem, before proposing solution methods in Section 4.4. Section 4.5 is devoted to the

problem version where the order of the jobs cannot be changed at the second stage. We report

our computational experiments in Section 4.6 before concluding.

4.2 Minimizing the weighted number of tardy jobs: literature review

Minimizing the weighted number of tardy jobs on a single machine, denoted 1|rj |
∑
wjUj in the

literature, is a well known NP-hard scheduling problem (see Graham et al. [1979]) and can be

stated as follows.

63

Problem: 1|rj |
∑
wjUj (decision)

Input data: (V,J , (r, d, w, p)), where V is a positive value, J a set of jobs, each of which

are characterized by the following data: rj : a release date (i.e., the time before which the job

cannot start); dj : a due date (i.e., the time after which the job is considered tardy; wj : a

weight (i.e., the fixed cost for executing the job tardy) ; pj : a processing time (i.e., the time

needed to execute the job).

Question: Is there a permutation σ of the tasks whose cost (i.e., the weighted number of

tardy jobs) is smaller than V ?

This problem has been extensively studied in the literature. In particular, Jackson [1955]

proposes a dominance rule for cases with equal release dates known as the Earliest Deadline

First rule. Heuristic approaches and lower bounds are given in Dauzère-Pérès and Sevaux [2003],

Dauzère-Pérès [1995] while exact approaches are given in Baptiste et al. [2003], M’Hallah and

Bulfin [2007], Péridy et al. [2003], Sadykov [2008]. To our knowledge, the best exact results are

described in Detienne [2014], where up to 500-job instances are solved in less than one hour.

Since it is of particular interest for our approaches, we formally recall a mixed integer linear

programming (MILP) formulation introduced in Detienne [2014] for solving the 1|rj |
∑
wjUj prob-

lem. The approach is based on two distinct decisions: (1) decide which jobs are to be executed

tardy and (2) in what order will the on-time jobs be executed. This is possible since late jobs

can be postponed arbitrarily without incurring additional costs. Moreover, we know Kise et al.

[1978] that if jobs have agreeable time windows (i.e., the tasks can be ordered in such a way that

i < j implies ri ≤ rj and di ≤ dj), then a feasible sequence of on-time jobs exists if and only if

the earliest due-date first rule yields a feasible solution. Therefore, an advantage of this approach

is that one is able to order the jobs a priori, which avoids the need for variables determining

the sequence of the jobs. The main idea of Detienne [2014] is to reformulate 1|rj |
∑
wjUj into

the selection of jobs on a single machine, so that the dominance rule can be exploited, even if

the initial instance does not have agreeable time windows. Formally, for any pair of jobs i ∈ J
and j ∈ J such that there are solutions where j is scheduled after i and both jobs are on-time

(i.e., ri + pi + pj ≤ dj) and that have non-agreeable time windows (i.e., ri < rj and di > dj), a

job occurrence k ∈ J̃ is created, which represents scheduling i before j. It has a hard deadline

d̄k = dj , and rk = ri, pk = pi, wk = 0. The original job i is also added to the set of job occurrences

J̃ , with a null weight, and a deadline d̄i = di. The hard deadline is imposed to ensure that if

the job occurrence is selected then it is scheduled on time. For every job j ∈ J , let Gj be the set

gathering all job occurrences related to j. At most one job occurrence in Gj can be selected in a

solution, since all of them correspond with the same original job j.

Figure 4.1 gives a small example of an initial instance defined on jobs, and a modified instance

defined on job occurrences.

The following dominance rule extends the earliest deadline first rule to the general 1|rj |
∑
wjUj

problem. It states that when job occurrences are built as described above, the dominance rule

applies (although some pairs of time windows may not be agreeable).

Dominance rule 1 (Detienne [2014]). There is at least one optimal solution to 1|rj |
∑
wjUj in

which the selected job occurrences of the on-time jobs are ordered according to a non-decreasing

order of their deadlines with ties being broken by non-decreasing order of release dates.

64

i ∈ J (pi, ri, di) Graphical representation

1 (4, 0, 8)
r1 d1

1

2 (2, 4, 7)
r2 d2

2

3 (4, 2, 9)
r3 d3

3

Original instance

k ∈ J̃ (pk, rk, d̄k) Graphical representation

2 (2, 4, 7)
r2 d2

2

4 (4, 0, 7)
r4 d̄4

4

1 (4, 0, 8)
r1 d1

1

3 (4, 2, 9)
r3 d3

3

Job-occurrence instance

Figure 4.1: An instance with three jobs, and the job-occurrence representation of the instance.

Jobs 1 and 3 already have agreeable time windows, 2 and 3 have non agreeable time windows,
but cannot both be scheduled on-time. Since 1 and 2 have non agreeable time windows, a job
occurrence numbered 4 representing scheduling 1 before 2 is created. Occurrences are sorted

according to Dominance rule 1.

65

In the remainder, we assume that the job occurrences are ordered according to Dominance

Rule 1. Moreover, •k denotes the data • of the kth job occurrence in that order. For instance, pk

denotes the processing time of the kth job occurrence in that order.

We now recall in detail an MILP model, which is based on the following consideration: assume

having fixed the sequencing of the on-time tasks, a straightforward way to check the feasibility of

the corresponding schedule is to plan every task as soon as possible. This allows Detienne [2014] to

derive an efficient MILP model for 1|rj |
∑
wjUj , close to the one proposed in Dauzère-Pérès [1995].

In this model, one has to choose which jobs are late, and for each on-time job j, a job occurrence

from Gj has to be selected. Then timing variables are used to ensure that job occurrences are

scheduled in their hard time window. For every job j ∈ J , let Uj be a binary variable equal to 1

if j is tardy, 0 otherwise. Then, for every job occurrence k ∈ Gj , xk is the binary variable equal to

1 if k is selected, 0 otherwise, and tk is a variable equal to its completion time if it is scheduled,

or to tk−1 if xk = 0. The following MILP models 1|rj |
∑
wjUj .

min
∑
j∈J

wjUj (4.1)

s.t.
∑
k∈Gj

xk = 1− Uj ∀j ∈ J (4.2)

tk ≤ d̄k ∀k ∈ J̃ (4.3)

tk − tk−1 − pkxk ≥ 0 ∀k > 1, k ∈ J̃ (4.4)

tk − pkxk −Mkxk ≥ rk −Mk ∀k ∈ J̃ (4.5)

Uj ∈ {0, 1} ∀j ∈ J (4.6)

xk ∈ {0, 1} ∀k ∈ J̃ (4.7)

tk ≥ 0 ∀k ∈ J̃ (4.8)

Objective function (4.1) minimizes the weighted number of tardy jobs. Constraints (4.2) enforce

that exactly one job occurrence is selected for an on-time job while no job occurrence should be

selected if the job is tardy.

Constraints (4.3) enforce that no job ends after its deadline, while constraints (4.4) ensure that

jobs do not overlap. Finally, constraints (4.5) force each scheduled job to begin after its release

date. A suitable value for constant Mk is given by max(0,minℓ>k{rℓ}), which ensures that if a

job is not scheduled, then the value of tk will not be larger than the smallest release date of a job

occurrence of larger index.

4.3 Robust problem

In this section, we introduce a problem where the weighted number of tardy jobs has to be

minimized and where the weight associated with the execution of a task is subject to uncertainty.

In 1|rj |
∑
wjUj , if a job is not processed on time, it can be arbitrarily delayed. So, deciding that

a job will be processed late can be seen as the decision not to accept the order at all. Thus the

cost associated with the late job can be seen as a loss of income.

In the two-stage robust version of 1|rj |
∑
wjUj , we assume that the precise weights wj are

known only after deciding which jobs will be on time, and before processing them. Such hypothesis

66

holds for example when orders are accepted at a mid-term level without precise knowledge of the

future technical difficulties that may arise from specific jobs, incurring extra production costs.

Our approach is also a conservative approximation of multi-stage decision processes, where

the actual production costs would be revealed along time. To the best of our knowledge, un-

certain multi-stage integer problems are far out of reach of existing optimization methodologies

(see for example Georghiou et al. [2019] or Shapiro [2012] for algorithms dedicated to multi-stage

continuous optimization problems), so that such an approximation can still be useful.

4.3.1 Problem description

We now consider that the executed jobs may fail in such a way that the output of the task is

deteriorated, leading to an additional cost. When a deterioration is detected, the decision maker

can take recourse decisions of three types: (1) accept the output of the job as it is, thus undertaking

a penalty for producing faulty goods; (2) spend more time on the job to perform it correctly and

thus avoiding the additional cost or (3) outsource the execution of jobs. Note that it is possible

to outsource any job j, even if its weight wj has not been modified, since it gives additional time

for other jobs to be executed or repaired.

We assume that the maximum possible penalty for the faulty production of each job j ∈ J is

known, and denoted by δ̄j . The penalty to pay for a given task j ∈ J is computed as δ̄jξj , where

ξj is the (uncertain) ratio of penalty incurred by j. Following the robust optimization framework,

vector ξ ∈ R|J | belongs to the uncertainty set Ξ ⊂ R|J |. In this chapter, we consider the budgeted

uncertainty set, recalled as here,

Ξ =

ξ ∈ R|J |
+

∣∣∣∣∣∣ξj ≤ 1,∀j ∈ J and
∑
j∈J

ξj ≤ Γ


where Γ is referred to as the uncertainty budget or uncertainty parameter. This uncertainty set was

introduced in Bertsimas and Sim [2004] and is conservative in the following sense: if Γ increases,

the size of Ξ increases. A given vector ξ ∈ Ξ can be interpreted as a job failure scenario. In any

scenario, at most Γ jobs can incur their maximum penalty, but more of them can be partially

impacted since vector xi does not have to take integer values, and the worst-case scenario is

generally not an extreme point of Ξ in the two-stage robust optimization context. Remark that

when Γ ≥ |J |, the uncertainty set embeds every possible job failure scenarios.

The decision flow goes as follows: in a here-and-now phase (or first stage), the decision maker

decides a set of jobs to be executed on time, then, as the jobs fail, the decision maker is allowed,

in a wait-and-see phase (or second stage), to take recourse actions. Note that the optimal solution

may be to decide to execute more tasks on time than what is feasible and to finally outsource

some of these jobs to restore feasibility.

The problem can now be enunciated formally as follows. We first describe the (second-stage)

repairing problem.

67

Problem: Repairing problem (decision)

Input data: (V,J , (r, d, w, p, δ̄, τ, f), A, ξ), where V ∈ R is a target value, J , a set of jobs

characterized by data (r, d, w, p), and for each job j, a maximum additional cost δ̄j if j fails,

a fixed extra time τj needed to repair j, a fixed cost fj for outsourcing j, a set of initially

on-time jobs A, and ξ̄ is a failure scenario.

Question: Is there a partition (B,C,D) of A and a permutation σ of B ∪ C, where B
is the set of jobs to be scheduled without modification, C is the set of jobs to be fixed and

scheduled, and D is the set of jobs to be outsourced, such that all jobs of B ∪C are on-time

and
∑

j∈J\A wj +
∑

j∈B δ̄jξj +
∑

j∈D fj ≤ V ?

Using this definition, one can enunciate the two-stage problem formally.

Problem: Robust 1|rj |
∑
wjUj (decision)

Input data: (V,J , (r, d, w, p, δ̄, τ, f),Ξ), where V ∈ R is a target value, J , a set of jobs

characterized by data (r, d, w, p), and for each job j, a maximum additional cost δ̄j if j fails,

a fixed extra time τj needed to fix j, a fixed cost fj for outsourcing j, and Ξ is an uncertainty

set.

Question: Is there a subset A ⊆ J of on-time jobs such that for any scenario ξ ∈ Ξ,

REPAIRING PROBLEM with data (V,J , (r, d, w, p, δ̄, τ, f), A, ξ) has answer yes?

Our scheduling problem consists in seeking the minimum value of V such that the decision

problem has answer yes. This optimization problem will be further referred to as problem (P).
When δ̄j = 0 for any job j, the problem becomes the classical 1|rj |

∑
wjUj and is therefore NP-

hard. However, note that for given input data, if one is given a subset A of jobs, determining

if the repairing problem has solution yes for all possible scenarios is not straightforward. This

means that in terms of theoretical complexity, a first-stage solution A does not provide a direct

polynomial certificate, as would be the case in a deterministic setting. We need to introduce

complex reformulations before being able to prove that the problem belongs to class NP, and so,

is NP-complete.

4.3.2 Formulation

In this section, we show that (4.1)-(4.8) can be extended to model problem (P). To do so, we use

an approach similar to Detienne [2014] and which was recalled in Section 4.2. Its validity is based

on dominance rule 1, we therefore need to ensure that it still holds for the robust case.

We create a set of job occurrences J̃ from the original set of jobs J in order to turn the

problem into a job occurrence selection problem with agreeable time windows. Formally, consider

a job i ∈ J , for any job j ∈ J whose time window is included in that of i (i.e., ri < rj , di > dj),

and such that i and j can both be on-time in a solution (i.e. ri + pi + pj ≤ dj), we create a job

occurrence k ∈ J̃ such that rk = ri, pk = pi, wk = 0, fk = fi, δ̄k = δ̄i, τk = τi and dk = dj . Again,

the original job i is also added to J̃ and we introduce the set Gj as the set of job occurrences

related to a given job j.

We can now extend the dominance rule 1 in the following sense:

68

Dominance rule 2. There is at least one optimal solution ((B∗, C∗, D∗), σ∗) for REPAIRING

PROBLEM such that jobs of B∗ ∪ C∗ are scheduled according to a non-decreasing order of their

deadlines

Proof. Let ((B,C,D), σ) be a feasible solution for REPAIRING PROBLEM, and consider two

jobs i and j such that i, j ∈ B ∪ C. Assume moreover that i is before j in σ.

If di < dj (or di = dj and ri < rj), then i and j are already scheduled in the desired order.

Otherwise, for any job ℓ, let p̂ℓ = pℓ if ℓ ∈ B and p̂ℓ = pℓ + τℓ if ℓ ∈ C. Note that since (B,C,D)

is feasible, it holds that

ri + p̂i + p̂j ≤ dj . (4.9)

Two cases remain:

– di > dj and ri < rj : (4.9) implies that ri + pi + pj ≤ dj . Therefore, there exists a job

occurrence k ∈ Gi such that dk = dj and with which we can replace i. Doing so, we end up

in the desired order and the objective value remains unchanged.

– di ≥ dj and ri ≥ rj : swapping i and j leads to the desired order, without modifying the cost

of the solution. Since rj ≤ ri and di ≥ dj , it holds from (4.9) that rj + p̂j + p̂i ≤ di, which

shows that the solution remains feasible.

In the exact same way as what has been done in Detienne [2014] and recalled in Section 4.2,

we sort the job occurrences according to a non-decreasing order of their deadlines.

We now propose a characterization of valid recourse decisions. Schedule-feasibility of a selection

of jobs has been studied in the static case by Detienne [2014] (see Section 4.2) and can be extended

to our case.

For any k ∈ J̃ , binary variable yk takes value 1 if k is selected, 0 otherwise ; variable zk takes

value 1 if k is repaired, 0 otherwise. For each occurrence k ∈ J̃ , variable ρk ∈ R+ is equal to the

processing time of the job (including possible repairing).

We define the set Ȳ ⊂ {0, 1}2|J̃ | × R2|J̃ |
+ , which contains every feasible schedule, as follows.

Ȳ =



ρk = pkyk + τkzk ∀k ∈ J̃

zk ≤ yk ∀k ∈ J̃∑
k∈Gj

yk ≤ 1 ∀j ∈ J

tk ≤ d̄k ∀k ∈ J̃

tk − tk−1 − ρk ≥ 0 ∀k > 1, k ∈ J̃

tk − ρk −Mkyk ≥ rk −Mk ∀k ∈ J̃

tk ≥ 0 ∀k ∈ J̃

yk, zk ∈ {0, 1} ∀k ∈ J̃

ρk ≥ 0 ∀k ∈ J̃

(4.10)

(4.11)

(4.12)

(4.13)

(4.14)

(4.15)

(4.16)

(4.17)

(4.18)

69

Constraints (4.10) ensure that each value ρk is equal to the processing time of k with respect to

the recourse action. Constraints (4.11) enforce that a job may be fixed only if it is scheduled

while constraints (4.12)-(4.17) are understood exactly as (4.1)-(4.8) where the constant processing

times p have been substituted by decision variables ρ. Recall that a job can be outsourced, which

explains why constraints (4.12) are less-or-equal constraints whereas (4.2) are equality constraints.

Let us also denote the set of second-stage decisions that admit a feasible timing of the jobs by

Y = {(y, z)|∃t,ρ : (y, z, t,ρ) ∈ Ȳ }.

To enforce the non-anticipation property, which stipulates that the decided recourse action may

not contradict the first-stage decision, we add so-called linking constraints between the first-stage

decisions and the second-stage decisions. These linking constraints are expressed as

∑
k∈Gj

yk ≤ 1− Uj ∀j ∈ J (4.19)

We also introduce the set Y (U) of admissible recourse decisions respecting both the non-

anticipation and the schedule-feasibility property. It is given by Y (U) = {(y, z) ∈ Y | (4.19)}.
We now take interest in the objective value. Let j ∈ J be a job to be scheduled, then:

– if Uj = 1, then j is executed tardy and we have ∀k ∈ Gj , yk = zk = 0 (i.e., no recourse

action)

– if Uj = 0, then j is accepted in the first stage. In the second stage (i.e., once the uncertainty

is revealed) the sequencing of the jobs has to be decided as well as the recourse actions. The

following cases may arise:

– there is k ∈ Gj such that yk = zk = 1: the job is executed and fixed

– there is k ∈ Gj such that yk = 1 and zk = 0: the job is executed

– for all k ∈ Gj , yk = zk = 0: the job is outsourced.

The problem can finally be cast as:

(P) : min
U∈{0,1}|J |

∑
j∈J

wjUj + fj(1− Uj) + max
ξ∈Ξ

min
(y,z)∈Y (U)

R(ξ, y, z)

where R(ξ,y, z) denotes the cost of recourse action (y, z) corresponding to scenario ξ given by:

R(ξ,y, z) =
∑
j∈J

∑
k∈Gj

[
(δ̄kξj − fk)yk − δ̄kξjzk

]
.

Note that the outsourcing cost appears both in the first-stage and second-stage objective func-

tions. This technical manipulation is required to preserve their linearity, and can be interpreted

as always paying outsourcing, unless the job is scheduled in the second stage.

70

4.4 Solution approaches

In this section, we develop two solution approaches for solving this min-max-min problem based on

two recent studies on robust optimization. First, we present the K-adaptability approach, which

uses restrictive assumptions on the recourse set. Then, an exact approach is developed based on

polyhedral results introduced in Arslan and Detienne [2021], which are further briefly recalled for

the sake of completeness.

4.4.1 K-Adaptability

The derivation of an exact MILP model of the finite adaptability approximation for robust prob-

lems with recourse where the uncertainty is confined in the objective function has been summarized

in Hanasusanto et al. [2015] and is well established (see also Chapter 2). In our setting, this con-

sists in deciding at the first stage, in addition to the set of jobs accepted (i.e. a vector U), K

recourse solutions (yq, zq) ∈ Y (U), q = 1, . . . ,K, each of which prescribing which jobs should

be executed and repaired if we select this specific recourse solution. The second stage reduces to

choosing one of these recourse solutions, once the uncertain parameters ξ are revealed. We get

the following model:

min
∑
j∈J

wjUj + fj(1− Uj) + max
ξ∈Ξ

min
q=1,...,K

R(ξ,yq, zq) (4.20)

s.t. (yq, zq) ∈ Y (U) q = 1, . . . ,K (4.21)

U ∈ {0, 1}|J | (4.22)

The reformulation process proposed in Hanasusanto et al. [2015] goes by writing the max-

min problem in (4.20) as a single stage maximization linear program (LP), by making use of an

epigraph formulation of the inner finite minimum. Using LP duality, an equivalent minimization

LP model is derived for expressing the cost of the second-stage max-min sub-problem. Integrated

into the first-stage model, this yields a bilinear model which is further linerarized with help of

additional decision variables.

More precisely, let us focus on the inner maximization problem in (4.20) and employ an epigraph

formulation of the finite minimum, we get that

maxξ∈Ξ minq=1,...,K R(ξ,yq, zq) is equivalent to the following problem:

max θ (4.23)

s.t. θ ≤ R(ξ,yq, zq) q = 1, . . . ,K (βq ≥ 0) (4.24)∑
j∈J

ξj ≤ Γ (u ≥ 0) (4.25)

ξj ≤ 1 ∀j ∈ J (vj ≥ 0) (4.26)

ξj ≥ 0 ∀j ∈ J (4.27)

θ ∈ R (4.28)

where constraints (4.25)-(4.27) ensure that ξ ∈ Ξ. Observe that model (4.23)-(4.28) is a feasible

71

and bounded linear program. We can then use the strong duality theorem in linear programming

to obtain an equivalent dual linear program, where β, u and v are the vectors of dual variables

respectively associated with constraints (4.24), (4.25) and (4.26) of conforming dimensions. For

the sake of completeness, we note that the fully developed expression of Constraints (4.24) at rank

q is:

θ −
∑
j∈J

∑
k∈Gj

δ̄k(z
q
k − y

q
k)

 ξj ≤∑
j∈J

∑
k∈Gj

−fkyqk.

The dual program reads:

min −
K∑
q=1

∑
j∈J

∑
k∈Gj

fky
q
kβq + Γu+

∑
j∈J

vj (4.29)

s.t.

K∑
q=1

βq = 1 (θ ∈ R) (4.30)

∑
k∈Gj

K∑
q=1

δ̄k (z
q
k − y

q
k)βq + u+ vj ≥ 0 ∀j ∈ J (ξ ≥ 0) (4.31)

βq ≥ 0, q = 1, . . . ,K (4.32)

vj ≥ 0,∀j ∈ J (4.33)

u ≥ 0 (4.34)

This equivalent formulation contains a bilinear term in (y, z) and β, which can be linearized

using standard techniques and introducing auxiliary variables such that ψq
k = yqkβq and ζqk = zqkβq

for all q = 1, . . . ,K and k ∈ J̃ . Doing so, we obtain the following MILP finite adaptability

formulation:

min
∑
j∈J

[wjUj + fj(1− Uj) + vj] + Γu−
K∑
q=1

∑
k∈J̃

fkψ
q
k (4.35)

s.t. ρqk = pky
q
k + τkz

q
k ∀k ∈ J̃ , q = 1, . . . ,K (4.36)

tqk ≤ d̄k ∀k ∈ J̃ , q = 1, . . . ,K (4.37)

tqk − t
q
k−1 − ρ

q
k ≥ 0 ∀k > 1, k ∈ J̃ , q = 1, . . . ,K (4.38)

tqk − ρ
q
k −Mky

q
k ≥ rk −Mk ∀k ∈ J̃ , q = 1, . . . ,K (4.39)

zqk ≤ y
q
k ∀k ∈ J̃ , q = 1, . . . ,K (4.40)∑

k∈Gj

yqk ≤ 1− Uj ∀j ∈ J , q = 1, . . . ,K (4.41)

∑
k∈Gj

K∑
q=1

δ̄k (ζ
q
k − ψ

q
k) + u+ vj ≥ 0 ∀j ∈ J (4.42)

ψq
k ≤ y

q
k ∀k ∈ J̃ , q = 1, . . . ,K (4.43)

72

ψq
k ≤ βq ∀k ∈ J̃ , q = 1, . . . ,K (4.44)

ψq
k ≥ βq − 1 + yqk ∀k ∈ J̃ , q = 1, . . . ,K (4.45)

ζqk ≤ z
q
k ∀k ∈ J̃ , q = 1, . . . ,K (4.46)

ζqk ≤ βq ∀k ∈ J̃ , q = 1, . . . ,K (4.47)

ζqk ≥ βq − 1 + zqk ∀k ∈ J̃ , q = 1, . . . ,K (4.48)

(4.30)− (4.34)

tqk ≥ 0 ∀k ∈ J̃ , q = 1, . . . ,K (4.49)

Uj ∈ {0, 1} ∀j ∈ J (4.50)

yqk ∈ {0, 1} ∀k ∈ J̃ , q = 1, . . . ,K (4.51)

zqk ∈ {0, 1} ∀k ∈ J̃ , q = 1, . . . ,K (4.52)

ψq
k ≥ 0 ∀k ∈ J̃ , q = 1, . . . ,K (4.53)

ζqk ≥ 0 ∀k ∈ J̃ , q = 1, . . . ,K (4.54)

Here, equation (4.35) defines the objective function to be minimized. Constraints (4.36),(4.37)-

(4.39) correspond to scheduling constraints (4.10),(4.13)-(4.15) for each q = 1, . . . ,K, derived

from Detienne [2014], enforcing that the final decision must yield a feasible schedule. Constraints

(4.40) make sure that a job can be fixed only if it is scheduled while constraints (4.41) enforce

that one may only process a job which was chosen to be on-time in the first stage. Constraints

(4.42) correspond to the dualized cost corresponding to the uncertain event, obtained from (4.31)

through linearization of the bilinear terms. Finally, constraints (4.43)-(4.48) correspond to the

linearization of yqkβq and zqkβq.

This problem will be referred to as problem (PK) and its model as model KAdapt1-a. Ad-

ditionally, Subramanyam et al. [2019] has introduced a generic branch-and-bound algorithm in

order to solve finite adaptability approaches. Their approach is based on disjunctive programming

considerations and scenario generation. We will denote this approach by KAdapt1-b.

4.4.2 Convexification of the recourse set

In this section, we briefly show how one can apply the results from Arslan and Detienne [2021]

which were generalized in Chapter 3. In problem (P), the inner max-min problem involves con-

tinuous decision variables for the max part, and mixed-binary decision variables for the min part.

Thanks to the special structure of the linking constraints (4.19), one can use Proposition 4 re-

called below and employ the following reformulation process. First, replace the feasible space of

the inner min sub-problem with its convex hull (step 1). It is then possible to swap the max

and min operators (step 2). This second step leads to a static robust MILP model. The third

step applies the classical LP duality-based reformulation Bertsimas and Sim [2004] to obtain a

single-stage deterministic model (step 3). To write a proper MILP model, the final step expresses

Y (U) in terms of its extreme points (step 4). This step implies an exponential growth of the

model, which, at solution time, is taken care of with help of a column generation algorithm.

We first detail the reformulation process applied to problem (P), and then show how the

large-scale MILP model obtained can be solved.

73

Reformulation

To perform step 1, observe that the recourse cost function R is affine in (y, z). It follows that

minimizing R over Y (U) and conv (Y (U)) is equivalent. Problem (P) is then equivalent to:

min
U∈{0,1}|J |

∑
j∈J

[wjUj + fj(1− Uj)] + max
ξ∈Ξ

min
(y,z)∈conv(Y(U))

R(ξ,y, z)

Step 2: Since function R is affine in both (y, z) and ξ, it is convex in (y, z) and concave in

ξ. Moreover, thanks to step 1, both max and inner min operators are performed over compact

convex sets, so that we can use the well-known minimax theorem Neumann [1928] to swap them.

Grouping both min operators yields:

min
U∈{0,1}|J |

(y,z)∈conv(Y (U))

∑
j∈J

[wjUj + fj(1− Uj)] +max

R(ξ,y, z) :
∑
j∈J

ξj ≤ Γ (u ≥ 0)

ξj ≤ 1,∀j ∈ J (vj ≥ 0)

ξj ≥ 0,∀j ∈ J




Step 3 relies on the fact that the inner maximization problem is a feasible and bounded LP.

Using the strong LP duality theorem, one can replace it with its dual problem to get the following

formulation, where u and v are dual variables associated with the constraints imposing ξ ∈ Ξ:

min
∑
j∈J

[wjUj + fj(1− Uj) + vj] + Γu−
∑
k∈J̃

fkyk

s.t. (y, z) ∈ conv (Y(U)) (4.55)

u+ vj ≥
∑
k∈Gj

δ̄k (yk − zk) ∀j ∈ J

Uj ∈ {0, 1} ∀j ∈ J

yk, zk ≥ 0 ∀k ∈ J̃

vj ≥ 0 ∀j ∈ J

u ≥ 0

This model is linear except for constraint (4.55). In order to write a linear system for these

conditions, step 4 alleviates a key obstacle: considering a fixed vector Ū , it is easy to express

the set conv
(
Y (Ū)

)
in terms of the extreme points of Y (Ū) since it is a bounded mixed-integer

set. However, the set of extreme points to consider depends on the value of Ū . In a general

setting, this naturally leads to a disjunctive formulation whose numerical solution seems to be

very challenging (the reader may refer to Arslan and Detienne [2021] and Chapter 3 for details

about this technical difficulty and approaches to cope with it). Problem (P) enjoys a convenient

structure that allows us to use the convex hull of Y instead of Y (U), and impose the restrictions

over y, z and U independently. That means that a single set of extreme points, independent of

U , can be considered in the model. To this end, we use the following key result:

Proposition 4 (Arslan and Detienne [2021]).

Consider the following two-stage robust mixed-integer linear problem with objective uncertainty:

74

min
x∈X

{
cTx+max

ξ∈Ξ
min

y∈Ỹ (x)
ξTQx

}
where X ⊂ {0, 1}N×RM denotes the set of feasible first-stage decision, Ξ represents the uncertainty

polyhedron and Ỹ (x) denotes the set of eligible second-stage decisions defined as {y ∈ Y |y1 ≤ x1}
with Y ⊂ {0, 1}N×RM and y1 ∈ {0, 1}N , x1 ∈ {0, 1}N . It holds conv

(
Ỹ (x)

)
= conv (Y)∩{y|y1 ≤

x1} for any x ∈ X.

From which we easily derive the following corollary:

Corrolary 3.

conv (Y (U)) = conv (Y) ∩


y ∈ R|J̃ |

z ∈ R|J̃ |

t ∈ R|J̃ |
+

∣∣∣∣∣∣∣
∑
k∈Gj

yk ≤ 1− Uj ,∀j ∈ J


Let us denote the set of extreme points of Y by (ye, ze), e ∈ E (E being a list for their indices).

Problem (P) is finally modeled by this deterministic equivalent program:

[DEP] : min F (U , u,v,α) =
∑
j∈J

[wjUj + fj(1− Uj) + vj] + Γu−
∑
k∈J̃

[
fk
∑
e∈ER

ye
kαe

]
(4.56)

s.t.
∑
e∈E

αe = 1 (4.57)∑
k∈Gj

∑
e∈E

ye
kαe ≤ 1− Uj ∀j ∈ J (4.58)

u+ vj ≥
∑
k∈Gj

[
δ̄k
∑
e∈E

(ye
k − zek)αe

]
∀j ∈ J (4.59)

Uj ∈ {0, 1} ∀j ∈ J

αe ≥ 0 ∀e ∈ E

u ≥ 0

vj ≥ 0 ∀j ∈ J

Here, decision vector α represents the convex combination multipliers from the reformulation

of conv(Y). Again, u and v are the dual variables associated to the constraint ξ ∈ Ξ. Constraints

(4.58) link the recourse action with the first-stage decision. Constraint (4.57) enforces that the

recourse actions are convex combinations of the extreme points of conv(Y). Finally, constraints

(4.59) embed the dualized cost associated to the worst case scenario. This model will be referred

to as ColGen1.

We remark that such a characterization of the convex hull as its Minkowski-Weyl formulation

is akin to the Dantzig-Wolfe decomposition. Unlike the typical application of Dantzig-Wolfe

decomposition, there is no integrality requirements over the reformulated variables (here, the

second-stage variables y and z). This stems from the reformulation process that we use. Although

(P) involves integer variables in the second-stage, step 1 allows considering conv (Y (U)) instead

75

of Y (U) while keeping an equivalent problem, hence dropping the integrality requirements on

variables y and z. It follows that the Dantzig-Wolfe reformulation is applied to a subsystem

that involves only continuous variables. Note that, in optimal solutions of [DEP], second-stage

variables are most of the time non-integer. Intuitively, several different second-stage solutions are

required to prevent the adversary that maximizes the cost of the solution from increasing the value

of the first-stage solution by moving slightly the uncertain parameters.

Problem (P) is trivially NP-hard, since considering null penalties yields a problem equivalent

to the deterministic 1|ri|
∑
wiUi. However, it is often not clear whether two-stage robust problems

lie higher in the polynomial hierarchy or not (see Bertsimas et al. [2013] for example). As a by-

product, this reformulation shows that problem (P) is not harder than NP-complete problems

(the result is proven in a more general setting in Arslan and Detienne [2021]).

Corrolary 4. Problem (P) is NP-complete.

Column generation-based solution algorithm

Model [DEP] has an exponential number of variables. A classical approach to solve such problems

is to use the column generation algorithm to compute its linear relaxation. In this section, we

formally present the master program and the pricing problem that has to be solved in this purpose.

We then describe the column generation procedure. Finally, we depict the so-called branch-and-

price algorithm, which is a tree search embedding the column generation routine to compute the

optimal feasible solution of [DEP].

The column generation procedure solves the linear relaxation of model [DEP]. Its basic idea is

to consider only a subset ER of the α-variables and solve optimally the so-called restricted master

program (RMP) [DEP]R, using for example the simplex algorithm. The linear relaxation of RMP

can be stated as follows (constraints Uj ≤ 1 are dropped since they are implied by constraints

(4.62)).

[DEP]R : min FR(U , u,v,α) =
∑
j∈J

[wjUj + fj(1− Uj) + vj] + Γu−
∑
k∈J̃

[
fk
∑
e∈ER

ye
kαe

]
(4.60)

s.t.
∑
e∈ER

αe = 1 (4.61)

∑
e∈ER

ye
kαe + Uj ≤ 1 ∀k ∈ Gj ,∀j ∈ J (4.62)

u+ vj ≥
∑
k∈Gj

[
δ̄k
∑
e∈ER

(ye
k − zek)αe

]
∀j ∈ J (4.63)

αe ≥ 0 ∀e ∈ ER (4.64)

Uj ≥ 0, vj ≥ 0 ∀j ∈ J (4.65)

u ≥ 0 (4.66)

Basic LP theory tells us that the solution obtained is optimal for the linear relaxation of

[DEP] if the reduced costs of all the α-variables are non-negative. Let λ, µ and π be the dual

variables respectively associated with constraints (4.61), (4.62) and (4.63). Given an optimal dual

76

solution (λ∗, µ∗, π∗) to [DEP]R, the so-called pricing problem that seeks a minimum reduced cost

α-variable can be cast as:

[Pricing(λ∗,µ∗,π∗)] :min G(λ∗,µ∗,π∗, y, z) = −λ∗ +
∑
j∈J

∑
k∈Gj

[
(−fk − µ∗

k + δ̄kπ
∗
j)yk − δ̄kπ∗

j zk
]

s.t. (y, z, t,ρ) ∈ Ȳ

This problem can be interpreted as a variant of 1|ri|
∑
wiUi where each job comes in two possible

modes (related with variables y or z), having different processing times and weights.

When the optimal solution (U∗,u∗,v∗,α∗) of the linear relaxation of [DEP] satisfies the

integrality requirements (i.e. U∗ ∈ {0, 1}|J |), then it provides an optimal first-stage solution for

(P). Otherwise, one has to branch in order to exclude the current fractional solution and explore

the feasibility set. Algorithm 1 summarizes the branch-and-price procedure proposed to solve

problem (P) through its formulation [DEP]. Line 1 initializes the set of columns so that the

restricted master problem is feasible. The best primal bound found, PrimalBound and the best

feasible solution found, S∗ are initialized in Line 2. Each node is encoded as the set of branching

constraints, B, defining the set of solutions of that node. The list of open nodes, Q, is thus

initialized in Line 2 with the root node, that has no branching constraints. Loop 3-14 processes

the open nodes. The solution of the relaxation at the current node is computed in Line 5. If the

solution satisfies the integrality requirements (Line 10), PrimalBound and S∗ are updated (line

11). When U∗ is not integer, branching is performed in Lines 13 and 14.

Algorithm 1: Branch-and-price algorithm for solving model [DEP].

1 Initialize the set of columns so that [DEP]R is feasible: (ȳ1, z̄1)← {(0,0)}, ER ← {1}
2 PrimalBound←∞, S∗ ← ∅, Q ← {∅}
3 while Q ≠ ∅ do
4 Pop a node/set of branching constraints B from Q
5 (U∗,u∗,v∗,α∗)← optimizeRelaxation(B, ER)
6 DualBound← F (U∗,u∗,v∗,α∗)
7 if DualBound ≥ PrimalBound then
8 Current node is pruned by bound
9 else

10 if U∗ ∈ {0, 1}|J| then
11 Update PrimalBound and S∗ with DualBound and (U∗,u∗,v∗,α∗)
12 else
13 Choose i ∈ {1, . . . , |J |} such that U∗

i ∈]0, 1[
14 Add two nodes B0 = B ∪ {Ui = 0} and B1 = B ∪ {Ui = 1} to Q

15 return S∗, an optimal solution of [DEP]

Algorithm 2 depicts the column generation procedure used to compute the relaxation at each

node of the search tree in Line 5 of Algorithm 1. Loop 1-8 adds new columns to the restricted

master [DEP]R until no negative reduced cost column is found. Model [DEP]R is solved in Line

2, providing optimal dual variables that are used as input to the pricing problem in Line 4. Lines

6-7 add a new column to [DEP]R if the pricing problem returns a column with a negative reduced

cost.

77

Algorithm 2: optimizeRelaxation(B, ER): column generation algorithm for computing
the dual bound at each node of the search tree when solving [DEP].

Input: B: set of branching constraints, ER: set of indices of columns
1 repeat
2 Solve [DEP]R with additional branching constraints B
3 Let (U∗, u∗,v∗,α∗) be the optimal solution and λ∗, µ∗ and π∗ be the optimal dual

values associated with constraints (4.61), (4.62) and (4.63)
4 Solve [Pricing(λ∗,µ∗,π∗)]
5 Let (y∗, z∗, t∗,ρ∗) be the optimal solution
6 if G(λ∗,µ∗,π∗,y, z) < 0 then

7 ER ← ER ∪ {|ER|+ 1}, (ȳ, z̄)|ER| ← (y∗, z∗)

8 until G(λ∗,µ∗,π∗,y, z) ≥ 0
9 return (U∗, u∗,v∗,α∗)

4.5 Order-fixing first stage

In this section, we study a variant of problem (P), denoted (P̃), where the first-stage decisions

include not only the selection of jobs to process, but also their order. In a wait-and-see phase, the

recourse actions to be decided for each accepted job are: process the job (possibly with a decreased

cost), outsource the job, or repair the job. In problem (P), one can decide the actual processing

order of the jobs after knowing their true weight, while in (P̃) the sequence of accepted jobs is

decided at first stage, and can only be amended by removing some elements of the sequence in

the second stage.

We first formalize this variant, characterize its relation with problem (P) and derive MILP

formulations. The same two solution approaches, namely finite adaptability and convexification

can be applied. Since their application to this variant uses the same mathematical results as the

first problem, we do not report them.

4.5.1 Formulation

We formally state problem (P̃). Similarly to problem (P), we first define the recourse problem.

Problem: Fixed-order-Repairing problem (decision)

Input data: (V,J , (r, d, w, p, δ̄, τ, f), A, ξ, σ), where V ∈ R is a target value, J , a set of jobs

characterized by data (r, d, w, p), and for each job j, a maximum additional cost δ̄j if j fails,

a fixed extra time τj needed to repair j, a fixed cost fj for outsourcing j, a set of initially

on-time jobs A, ξ̄ a failure scenario, and σ a permutation of the elements of A.

Question: Is there a partition (B,C,D) of A, where B is the set of jobs to be scheduled

without modification, C is the set of jobs to be fixed and scheduled, and D is the set of jobs

to be outsourced, σ restricted to B ∪ C is feasible, and∑
j∈J\A wj +

∑
j∈B δ̄jξj +

∑
j∈D fj ≤ V ?

The order-fixing version of the problem can now be defined formally.

78

Problem: Order-fixing Robust 1|rj |
∑
wjUj (decision)

Input data: (V,J , (r, d, w, p, δ̄, τ, f),Ξ), where V ∈ R is a target value, J , a set of jobs

characterized by data (r, d, w, p), and for each job j, a maximum additional cost δ̄j if j fails,

a fixed extra time τj needed to fix j, a fixed cost fj for outsourcing j, and Ξ is an uncertainty

set.

Question:

Is there a subset A ⊆ J of on-time jobs, and a permutation σ of the elements of A such that

for any scenario ξ ∈ Ξ, Fixed-order-repairing problem with data (V,J , (r, d, w, p, δ̄, τ, f),
A, ξ, σ) has answer yes?

Problem (P̃) can be formulated in a similar way as what has been done for problem (P). Just
like in Section 4.2, let us denote, for any job occurrence k ∈ J̃ , by xk the selection of the kth job

occurrence in the non-decreasing order of their deadlines (i.e., 1 if the kth job occurrence is used,

0 otherwise). Variables yk, zk for job occurrences and Uj will keep the same meaning as in the

previous section.

Again, regarding the set of admissible recourses, the schedule-feasibility property is dealt with

by set Y introduced in Section 4.3. Concerning the non-anticipativity property, which stipulates

that the recourse action should not contradict a first-stage decision, we impose that yk ≤ xk,∀k ∈
J̃ . That is, that one may confirm the execution of a job, or fix a job, only if it were actually

accepted in the first stage. The set of admissible recourses is then given by the following set:

Ỹ (x) = {(y, z) ∈ Y | yk ≤ xk ∀k ∈ J̃ }.
We now detail the different possible decisions. Let j ∈ J be a job:

– if Uj = 1, then the job is executed tardy and no recourse action may be taken (i.e., yk =

zk = 0)

– if there is k such that k ∈ Gj and xk = 1, the job is to be scheduled on time in the first

stage:

– if yk = zk = 1, job j is executed and fixed on time

– if yk = 1 and zk = 0, job j is executed on time and a penalty is paid

– if yk = zk = 0, job j is outsourced

The objective function can therefore be expressed as follow:

min
(x,U)∈X̃

∑
j∈J

[wjUj + fj(1− Uj)] + max
ξ∈Ξ

min
(y,z)∈Ỹ (x)

R(ξ,y, z)

where X̃ denotes the set of feasible first-stage solutions (i.e., the set of solutions which define a

sequence of tasks), that is:

X̃ =

(x,U) ∈ {0, 1}|J̃ | × {0, 1}|J |

∣∣∣∣∣∣
∑
k∈Gj

xk + Uj = 1 ∀j ∈ J


Again, note that the first-stage decision does not have to be physically feasible in the sense

that the optimal solution may be to decide a sequence of jobs in the first stage and to outsource

79

some of them in the second stage so as to make the schedule feasible.

4.5.2 Relation with problem without order-fixation

This section is devoted to show that the first problem yields a lower bound for the second problem,

which is an intuitive result: compared to (P̃), in (P) some decisions are postponed. That means

that, for different realizations of the uncertainty those decisions can be different in (P) but must

be identical in (P̃). In that sense, (P) relaxes some of the non-anticipativity constraints of (P̃).

Remark 12. Denoting by (•)∗ the optimal value of problem •, the following relation holds:

(P)∗ ≤ (P̃)∗

We now provide an example showing that (P̃) is a strict relaxation of (P̃).

Remark 13. Given one problem instance, optimal solutions to (P) may attain a strictly lower

objective value than the optimal solutions to (P̃).

Proof. Consider the following instance:

j rj dj pj τj wj δ̄j fj

i 0 6 1 4 100 6 ∞
j 5 8 2 2 100 4 ∞
k 1 9 2 3 100 5 ∞

, Γ = 1

where the outsourcing of a task is never considered (not affordable) for simplicity. The three jobs

can be scheduled on time and it is never optimal to execute a job tardy, even after knowing the

penalty (i.e., it is always better to pay the penalty than to execute the job tardy). That being said,

it is clear that the optimal sequence is either (i, k, j) or (i, j, k). Since the uncertainty parameter

Γ is set to one, exactly one job will be affected by the uncertainty (note that, because we are in

a two-stage robust context, the uncertainty can be spread among different random parameters in

the worst case, but this does not happen for this instance).

Let us first consider problem (P̃) where one decides the sequencing of the jobs before knowing

the uncertainty. Figure 4.2 depicts the two solutions detailed below. If the decision, in the first

stage, implies using sequence i, k, j, then it is only possible to fix k. Thus, the cost of the worst case

is given by max(δ̄i, δ̄j , 0) = max(6, 4, 0) = 6. If one were to choose sequence i, j, k however, the only

fixable task is i which means that the worst-case scenario costs max(0, δ̄j , δ̄k) = max(0, 4, 5) = 5.

The optimal solution to the overall problem minimizes the worst-case cost, hence (P̃)∗ = 5.

If we consider (P) where one only selects on-time jobs in the first stage however, one can better

react to the uncertainty in the second stage. Indeed, if the uncertainty affects job j one is forced

to pay δ̄j = 4 since it is never possible to fix it. However, if the uncertainty affects job i, one

can react to that scenario by choosing the sequence i, j, k under which job j can be fixed. If, to

the contrary, the uncertainty affects job k, the optimal recourse decision is realised by using the

sequence i, k, j under which one can fix job k. This shows easily that, for this problem, the worst

case is realised when the uncertainty hits job j. In any way, (P̃)∗ > (P)∗ (5 > 4).

80

J Extra cost Graphical representation

Using sequence i, k, j

i δ̄i = 6
ri rk rj di dj dk

x
i k j

j δ̄j = 4
ri rk rj di dj dk

i k
x
j

k δ̄k − δ̄k = 0
ri rk rj di dj dk

i
x
k j

Using sequence i, j, k

i δ̄i − δ̄i = 0
ri rk rj di dj dk

x
i j k

j δ̄j = 4
ri rk rj di dj dk

i
x
j k

k δ̄k = 5
ri rk rj di dj dk

i j
x
k

Figure 4.2: Two schedules and the associated extra cost under the failure of each job if the sequence
of jobs is fixed before the uncertainty is revealed

From left to right : the failing job, the associated extra cost, a graphical representation of the
schedule

4.6 Computational experiments

This section reports the main computational results for the two problems we are addressing.

We first give some details about our implementation, and then explain how random instances

were generated. We also describe our protocol to compare the exact approach with the finite

adaptability methods, which are exact only if the input parameter K is large enough.

4.6.1 Implementation details and experimental setting

All mixed integer linear programs, as well as linear programs inside the column generation pro-

cedures, are solved using IBM ILOG Cplex 12.9, through the C callable library, using default

parameters and four threads. The generic implementation BapCod Vanderbeck [2005] of the

branch-and-price Algorithm 1 is used to optimize models ColGen1 and ColGen2. At each node

of the search tree, the linear relaxation of the problem is computed using column generation

(Algorithm 2). The pricing sub-problem is solved using the MILP solver. At most one column

is added to the master program [DEP]R at each iteration. To improve the convergence of the

column generation procedure, we use stabilization by automatic smoothing of the dual variables

of the master program, as described in Pessoa et al. [2018]. When the optimal solution of the

corresponding relaxation does not satisfy the integrality requirements of first-stage variables, one

81

fractional variable is chosen and two child nodes are created in order to exclude its current value

from the search space. This variable is chosen to be the closest from 0.5. The open nodes are

processed according to the best first rule. The implementation of the branch-and-price algorithm

is sequential.

The approach from Subramanyam et al. [2019] (i.e., KAdapt1-b and KAdapt2-b) for solving

the finite-adaptability counterpart has been implemented in C++ using the author’s code which

is publicly available2.

All our experiments are conducted using a 2 Dodeca-core Haswell Intel Xeon E5-2680 v3 2.5

GHz machine with 128Go RAM running Linux OS, part of the PlaFRIM3 experimental platform.

The resources of this machine are strictly partitioned using Slurm Workload Manager4 to run

several tests in parallel. The resources available for each run (algorithm-instance) are set to 4

threads and a 20 Go RAM limit (we remark that our branch-and-price algorithm does not benefit

from parallel processing). This virtually creates six independent machines, each running one single

instance at a time.

4.6.2 Instances

The test bed was randomly generated based on the technique used in Dauzère-Pérès and Sevaux

[2003] in which the authors generate a random test bed for the deterministic 1|rj |
∑
wjUj problem.

Their approach takes as input three parameters: the number of jobs N , a factor for the dispersion

of the release dates R1 and a factor controlling the dispersion of the deadlines R2. Having fixed

these parameters, we generate, for each of the N jobs, random characteristics defined as follows5:

pj ∼ U(1, 100) wj ∼ U(1, 100)

δ̄j ∼ U(1, 100) fj ∼ U(1, 100)

rj ∼ U(0, N ×R1) ∆j ∼ U(0, N ×R2)

dj = rj + pj +∆j τj ∼ U(0, λ∆j)

Here, ∆j denotes the slack time of jobs j within its time window. Note that the extra time

needed to fix one job τj is generated depending on an extra parameter λ, fixed, for our experiments,

to 5
4 . This implies that it is generally feasible to fix a job if it had its whole time window to be

scheduled (i.e., if no other job interferes with it). The parameters which were used are combinations

of N ∈ {5, 10, 15, 20, 25}, R1 ∈ {5, 10, 20, 30} and R2 ∈ {5, 10, 20, 30}. In total, 480 instances

were generated. Yet, each of these instances are parameterized by the uncertainty budget Γ.

Throughout our experiments, the value for Γ varied, from 1 to 3 for 5-job instances, from 1 to 7

for 10-job instances, from 1 to 10 for 15, 20 and 25-job instances. Therefore, we compared the two

approaches over 3200 instances.

2https://github.com/AnirudhSubramanyam/KAdaptabilitySolver
3PlaFRIM: Plateforme Fédérative pour la Recherche en Informatique et Mathématiques (https://www.plafrim.

fr/fr/accueil/)
4https://slurm.schedmd.com/ (accessed June 2020)
5U denotes the discrete uniform distribution law

82

https://www.plafrim.fr/fr/accueil/
https://www.plafrim.fr/fr/accueil/
https://slurm.schedmd.com/

4.6.3 Protocol for comparing the two solution methods

The finite adaptability method solves the problem exactly only if parameter K is large enough;

otherwise it solves an approximation which is tighter and tighter as its parameter K grows. For

this reason, we must be careful when comparing its numerical performance with the one of the con-

vexification approach. For a given problem (P), let (PK) be its approximation as a K-adaptability

problem. We denote by (•)∗ the optimal solution of problem • (or the best known upper bound in

case of reached time limit) and by t(•) the computation time to solve problem •. An attractive case

to compare the finite adaptability and the exact approach is when (P)∗ = (PK)∗, since it amounts

to comparing two exact methods. However, large values of K lead to intractable models, so we

need to find the smallest value for K which fulfills this condition. More formally, we are interested

in the following problem : K∗ = min{K : (PK)∗ = (P)∗,K ∈ N∗}. This problem is feasible and

has an upper bound equal to dimΞ + 1 = |J | + 1 (Hanasusanto et al. [2015]). Note that the a

priori knowledge of the optimal value (P)∗ is assumed. If this assumption is not satisfied, we do

not have a practical method to find K∗, since a local minimum of function K 7→ (PK)∗ sometimes

fails to be global. This is illustrated in Figure 4.3, which reports the optimal objective value for a

specific 15-job instance of (P̃) for various values of K. We can see that from the 1-adaptability to

the 4-adaptability, the optimal value does not change while it does for greater values of K. This

shows that guessing the value K∗, for which the approximation is, in fact, an exact solution, is

hard and to our knowledge there is no straightforward stopping criterion for the search for K∗.

As a matter of fact, for that specific instance, we are unable to conclude if K∗ = 7 or if K∗ > 7

since we were unable to solve it within one hour. That particular observation holds for the two

problems (P) and (P̃).
We run our algorithms under a given time limit and not all instances are solved to optimality,

thus (P)∗, (PK)∗ and their fixed-order counterparts are sometimes approximated. To overcome

this difficulty, we focus on a slightly different problem: find the smallest value for K which, under

a given time limit T , yields an objective function at least as good as the solution of the exact

approach. Formally, we estimate K∗ by

K̂∗ = min

K :

(PK)∗ ≤ (P)∗,
t(P) ≤ T,
t(PK) ≤ T,
K ∈ N∗


In our experiments, the search for K̂∗ is done iteratively starting from K = 1 and increasing K

by one unit until one of the four conditions is reached:

– (PK)∗ ≤ (P)∗, t(P) ≤ T and t(PK) ≤ T : the two problems were solved optimally and we

set K̂∗ = K (in this case, the equality of the objectives hold and the approximation is tight:

K̂∗ = K∗);

– (PK)∗ ≤ (P)∗, t(P) > T and t(PK) ≤ T : the exact approach could not achieve and/or

prove optimality, and (P)∗ equals the best upper bound found. We set K̂∗ = K and we

know that K̂∗ ≤ K∗;

– t(P) ≤ T and t(PK) > T : the finite adaptability approach could not achieve and/or

83

1 2 3 4 5 6 7

264

265

266

267

268

K Objective Gap

1 269.000
2 269.000
3 269.000
4 269.000
5 268.252
6 267.963
7 267.888 1.129

Figure 4.3: A K-adaptability plateau for a 15-jobs instances.
The optimal objective value does not change between the 1-adaptability and the 4-adaptability,
we were unable to solve the instance using the 7-adaptability within one hour (the vertical bar

represents the optimality gap).

prove optimality, the search for K̂∗ is stopped since increasing K typically increases the

computation time to solve (PK). We set K̂∗ = K and we know that K̂∗ ≤ K∗;

– t(P) > T and t(PK) > T : none of the two problems could be solved to proven optimality,

the search for K̂∗ is stopped and the two methods are considered to perform as badly as the

other. We set K̂∗ = K and we know that K̂∗ ≤ K∗.

Note that, as K∗ is typically unknown, comparing (P) with (PK∗) or (PK̂∗) in fact gives an

advantage to the finite adaptability.

4.6.4 Comparison of the approaches for problem without order-fixation

In Table 4.1, we present a comparison between finite adaptability from Section 4.4.1 (columns

KAdapt1-a and KAdapt1-b) and the exact approach from Section 4.4.2 (columns ColGen1). We

use the experimental protocol described above with a time limit T = 1 hour for each run. The

two first columns describe the main characteristics of the instances considered (number of jobs

and value of Γ). The left-hand part of the table gathers the percentage of instances that were

not solved to optimality within the time limit. Then, the average computing time is reported

(instances for which the time limit is reached count for 3600 seconds). In the right-hand part of

the table, we finally reported the percentage of times in which one solution was found to be the

fastest among the three. The same data are illustrated as performance profiles in Figure 4.4.

The finite adaptability approach KAdapt1-a solves all five-job instances, but fails to solve

11.25% of the instances for 10 jobs and Γ = 2. Less than 15% of the 25-job instances instances are

solved by this method when Γ ≤ 4. Indeed, we have noticed that the hardest instances correspond

to those having a value of Γ such that the ratio Γ/|J | is around 0.3-0.4. For very small values of Γ

the problem often becomes easy since a small number of critical jobs have to be found. For large

values of Γ, to the contrary, the problem almost reduces to the deterministic problem where all

the jobs are penalized. The in-between instances are the most challenging. Regarding KAdapt1-b,

our results show that the method proposed in Subramanyam et al. [2019] is more efficient than

the MILP formulation. Indeed, the average CPU time for KAdapt1-b is typically smaller than the

time spent solving the MILP model for KAdapt1-a. Moreover, it solves significantly more hard

instances than the MILP approach (see Figure 4.4c). The branch-and-price algorithm ColGen1 is

84

(a) All instances (b) 25-job instances (c) Instances with Γ ≤ |J |/4

Figure 4.4: Performance profiles Dolan and Moré [2002] for different sets of instances. Each curve
is associated with one method, and shows the fraction of instances it solves not slower than the
value of the abscissa times the time required for the fastest approach

able to solve all instances up to 20 jobs to optimality, and more than 88% of the 25-job instances.

When finite adaptability is able to find the optimal solution, it is generally faster than ColGen1.

Note that the reported computing times are those of the last run of KAdapt1 during the search

for K̂∗ (those can be obtained only if one is able to ”guess” value of K̂∗ beforehand, which is not

the case in a practical context).

Table 4.2 shows the percentage of 25-job instances for which each method could find a feasible

solution within the time limit T although it was not able to prove its optimality. KAdapt1-a

always finds a feasible solution while it is clearly not the case for the convexification approach.

Once again, note that the results for KAdapt1-a are obtained with the first value of K for which

the execution time exceeded T , which may not be equal to K∗. This means that the cost reported

is an upper bound of the actual cost of the first-stage solution found by K-adaptability (since the

recourse used is heuristic if K is not large enough). For these instances, KAdapt1-a always finds a

feasible solution but with a very large optimality gap: the gap between the lower and upper bounds

of the MILP solver at the time limit is larger than 70% on average. This is partly explained by the

poor linear relaxation of the MILP model. Conversely, the branch-and-price algorithm ColGen1

based on the convexification approach does not always find a feasible solution, but when it does,

the optimality gap is often small (4.5% on average). Similarly, KAdapt1-b always finds a feasible

solution within the given time limit, except for a pathological case of 25-jobs and Γ = 1.

In Table 4.3, we study the values of K that are needed to obtain the optimal solution with the

K−adaptability method. We considered only the approach KAdapt1-a since this method has been

shown to be more efficient for our case. For this purpose, we report for every value of K from 1 to

K∗, the average gap between the value found by KAdapt1-a and the exact method ColGen1. We

also compare computation times of KAdapt1-a and ColGen1, according to the different values of

K. An important information gathered from the table is that a very large proportion of instances

can be solved to optimality within one hour with a value of K = 1. This means that for many

instances, the so-called static model where the recourse actions are decided a priori is sufficient to

solve the problem.

It can also be noted that K−adaptability with a small value of K can be a good heuristic:

for the 16 instances where K̂∗ = 5, setting K to 1 produces a gap of less than 7%, for compu-

tation times often two order of magnitude smaller than the time required to solve the problem

optimally using the branch-and-price algorithm. This table also shows the high sensitivity of the

85

K−adaptability approach with respect to parameter K. For example, let us consider instances

with K̂∗ = 2. When K = 1, 587 instances can be solved within one hour, whereas incrementing

the value of K to 2 allows solving only 110 instances within the same time limit. KAdapt1-a

appears, at first glance, to perform surprisingly better when K̂∗ increases. Indeed, when K̂∗ = 5

and K = 3, and when K̂∗ = 6 and K = 4, its computation time looks significantly smaller than

the one for ColGen1. But this anomaly is explained by the fact that only the instances that could

be solved using KAdapt1-a with K = 5 and K = 6, respectively, are reported in these sections of

the table. They are very likely to be well-suited for this approach, which explains the very good

results when the value of K is smaller. Notice that we could determine the value of K∗ for 2231

out of the 3200 instances, leaving this question open for the 969 others.

Finally, looking at the last column of table 4.3, one can see that KAdapt1-a, when K = 1,

is significantly faster than ColGen1. In this case, the MILP model simplifies to a static robust

optimization model (thanks to the structure of constraint (4.30)), which explains the very good

performance. However, for the more complex settings, ColGen1 outperforms KAdapt1 by one to

two orders of magnitude.

4.6.5 Comparison of the approaches for the order-fixing problem

Table 4.4 compares computation times for approaches KAdapt2-a, KAdapt2-b and ColGen2. The

values reported for KAdapt2-a and KAdapt-b are obtained with parameter K = K̂∗ for each

instance.

We can see that problem (P̃) is much more challenging to solve than (P), since theK−adaptability
methods reach limitations for 10-job instances while the branch-and-price algorithm ColGen2 is

unable to solve some 15-job instances. This is mainly explained by the relatively large number of

variables in the models. Indeed, while the number of first-stage variables was O(|J |) for problem
(P), it is now O(|J̃ |) = O(|J |2). Hence, there is a significant number of additional variables

subject to integrality constraints in problem (P̃) compared to (P).
Table 4.5 shows the computation time ratio between KAdapt2-a and ColGen2. As for problem

(P), we can see that the closer K gets to K̂∗, the faster the branch-and-price algorithm becomes

compared to K-adaptability.

We also studied the increase of the objective function when one has to decide the sequence of

the selected jobs before uncertainty is revealed. In Table 4.6, for several sizes of instances and

several values of Γ, we report the average costs related to problem (P) (column Free) and (P̃)
(column fixed order), respectively.

Our experiments show that fixing the sequence of jobs beforehand only leads to a marginal

increase of the cost on average. The largest gap we obtained was 0.26% for instances with ten

jobs.

As a conclusion, it appears that for this problem, the cost to pay to keep the order fixed in the

first-stage is not the cost of the solutions itself, but the practical difficulty to solve the optimization

problem with state-of-the-art algorithms.

86

4.7 Conclusion

In this chapter, we have described a robust version of the classical one-machine scheduling problem

where one minimizes the weighted number of tardy jobs. Although solving general robust integer

programs with integer recourse is typically Σ2
P -hard, we were able to show that this problem is NP-

complete, and proposed two solution approaches: an exact reformulation which can be solved by

means of the branch-and-price algorithmic procedure, and a (MILP) conservative approximation.

Our computational experiments show that this problem is hard to solve in practice, since state-

of-the-art methods may fail to solve 25-job instances in one hour.

Regarding the exact method we proposed, we think that the development of good heuristic

procedures for the pricing problem may substantially improve the computing times. As for the

conservative approximation, its main drawback is its poor linear relaxation, which is a known issue

in the literature. We also have investigated another version of the problem where the sequencing

decisions from the first stage cannot be modified. It appears that this version of problem is harder

than the first: some 15-job instances are left unsolved by both approaches.

Acknowledgments

Experiments presented in this chapter were carried out using the PLAFRIM experimental testbed,

being developed under the Inria PlaFRIM development action with support from Bordeaux INP,

LABRI and IMB and other entities: Conseil Régional d’Aquitaine, Université de Bordeaux, CNRS

and ANR in accordance to the programme d’investissements d’Avenir (see https://www.plafrim.

fr/).

87

https://www.plafrim.fr/
https://www.plafrim.fr/

Table 4.1: CPU execution times for solving problem (P)

Unsolved within T = 1 hour (%) Average CPU time (s.) Fastest approach (%)
|J | Γ KAdapt1-a Kadapt1-b ColGen1 KAdapt1-a KAdapt1-b ColGen1 KAdapt1-a KAdapt1-b ColGen1

5 1 0 0 0 0 0 2 10 90 0
2 0 1 0 0 0 2 4 96 0
3 0 0 0 0 0 2 1 99 0

Avg. |J | = 5 0 0 0 0 0 2 5 95 0

10 1 6 12 0 85 59 13 11 76 12
2 11 24 0 49 30 15 18 64 19
3 5 10 0 17 1 11 5 85 10
4 1 2 0 0 1 8 1 96 2
5 1 2 0 7 0 7 1 96 2
6 0 0 0 0 0 7 1 99 0
7 0 0 0 0 0 7 1 99 0

Avg. |J | = 10 4 7 0 22 13 10 6 88 7

15 1 35 28 0 443 207 43 8 50 42
2 57 69 0 452 27 69 4 28 69
3 46 49 0 16 1 64 1 50 49
4 29 29 0 55 0 47 4 68 29
5 12 12 0 0 0 29 6 81 12
6 10 10 0 0 0 23 2 88 10
7 2 2 0 0 0 21 4 94 2
8 0 0 0 0 0 17 4 96 0
9 0 0 0 0 0 16 1 99 0
10 0 0 0 0 0 16 1 99 0

Avg. |J | = 15 19 20 0 97 24 35 3 75 21

20 1 66 45 0 693 184 118 2 44 54
2 88 86 0 171 39 190 4 12 84
3 86 91 0 306 42 273 5 6 89
4 71 76 0 132 20 332 6 19 75
5 55 56 0 20 1 346 5 39 56
6 35 35 0 0 0 269 16 49 35
7 20 20 0 0 0 188 20 60 20
8 5 5 0 0 0 127 31 64 5
9 0 0 0 0 0 67 34 66 0
10 0 0 0 0 0 46 28 72 0

Avg. |J | = 20 43 42 0 132 29 196 15 43 42

25 1 82 59 9 384 345 375 8 30 62
2 95 95 12 78 45 623 11 9 79
3 91 92 16 5 0 629 15 16 69
4 78 78 19 0 0 613 18 25 56
5 66 66 21 0 1 538 25 29 46
6 57 57 20 0 1 534 29 29 41
7 39 39 18 0 0 442 33 38 30
8 31 31 12 0 1 442 38 37 26
9 15 15 10 0 1 426 50 37 13
10 6 6 5 0 2 286 59 35 6

Avg. |J | = 25 56 54 14 47 40 491 29 29 43

From left to right : the number of jobs, the uncertainty budget, the average computation time
(when less than T = 1 hour) for the K-adaptability approach, the convexification-based branch-
and-price algorithm, the percentage of times one method was found to be the most efficient and the
percentage of instances which could not be solved within T = 1 hour. For the sake of readability,
all numbers are rounded to the closest integer.

88

Table 4.2: Feasible solutions found for (P), over instances that could not be solved to optimality
by the method within the time limit T = 1 hour

Feasible solutions found (%)
Jobs Γ KAdapt1-a KAdapt1-b ColGen1

25 1 100.00 100.00 28.57
2 100.00 100.00 30.00
3 100.00 100.00 15.38
4 100.00 100.00 6.67
5 100.00 100.00 5.88
6 100.00 100.00 6.25
7 100.00 100.00 0.00
8 100.00 100.00 10.00
9 100.00 100.00 25.00

10 100.00 100.00 25.00

From left to right : the number of jobs, the uncertainty budget and the percentage of instances
for which a feasible solution could be found within T = 1 hour over the instances which could not
be solved optimally within T = 1 hour. Numbers are rounded to the closest integer.

Table 4.3: The cost of approximating with finite adaptability for problem (P)

K̂∗ K # Instances Approximation gap (%) Time ratio

1 1 1989 0 0.03

2 1 587 6.6 0.01
2 110 0 5.23

3 1 368 0.00 0.03
2 368 1.43 6.00
3 90 0 14.59

4 1 123 6.3 0.01
2 123 2.06 0.09
3 123 0.6 14.23
4 32 0 13.27

5 1 16 6.85 0.01
2 16 2.25 0.04
3 16 0.67 0.82
4 16 0.24 34.76
5 3 0 29.28

≥6 1 3 1.92 0.01
2 3 1.7 0.02
3 3 0.58 0.05
4 3 0.13 0.31
5 3 0.02 5.87
6 2 0 2.06

From left to right : the value of K̂∗ (i.e. the value ofK required forK-adaptability to be equivalent
to (P) or a lower bound on this value), the value of K which was used, the number of instances
with this value of K̂∗ which were solved using Kadapt1 with that value of K within T = 1 hour,
the approximation gap computed as |KAdapt1∗ − ColGen1∗|/|ColGen1∗|, the computation time
ratio computed as t(KAdapt1)/t(ColGen1).

89

Table 4.4: Computation times for solving problem (P̃)

Unsolved within 1 hour (%) Average CPU time (s.) Fastest approach (%)
|J | Γ KAdapt2-a KAdapt2-b ColGen2 KAdapt2-a KAdapt2-b ColGen2 KAdapt2-a KAdapt2-b ColGen2

5 1 0 0 0 0 0 1 12 87 1
2 0 0 0 0 0 1 14 86 0
3 0 0 0 0 0 1 7 93 0

Avg. |J | = 5 0 0 0 0 0 1 11 88 0

1 0 11 0 14 27 28 22 72 5
2 1 22 0 22 18 24 28 59 14
3 1 9 0 9 4 11 16 78 6
4 0 2 0 43 2 8 6 91 2
5 0 1 0 37 40 4 12 86 1
6 0 0 0 0 0 3 6 94 0
7 0 0 0 0 0 3 8 92 0

Avg. |J | = 10 0 7 0 18 13 12 14 82 4

15 1 11 18 8 191 118 243 14 61 25
2 36 55 16 212 280 219 25 27 48
3 25 38 12 154 0 158 19 46 35
4 19 26 8 131 0 169 21 56 23
5 9 10 4 24 0 77 18 74 9
6 5 6 4 8 0 47 20 76 5
7 2 2 2 0 0 61 23 74 2
8 0 0 0 0 0 50 19 81 0
9 0 0 0 0 0 15 12 88 0

Avg. |J | = 15 12 17 6 80 44 115 19 65 16

From left to right : the number of jobs, the uncertainty budget, the average computation time
(when less than T = 1 hour) for each method, the percentage of times one method was found to
be the most efficient and the percentage of instances which could not be solved within the time
limit T = 1 hour. All numbers are rounded to the closest integer.

90

Table 4.5: The cost of approximating with finite adaptability for problem (P̃)

K̂∗ K # Instances Approximation gap (%) Time ratio

1 1 1165 0 0.23

2 1 87 4.88 0.06
2 87 0 0.11

3 1 79 6.37 0.02
2 76 0.97 0.09
3 65 0 3.74

4 1 93 7.15 0.04
2 93 1.65 0.09
3 73 0.4 2.01
4 59 0 5.79

5 1 40 7.93 0
2 40 2.72 0.03
3 40 0.83 0.53
4 40 0.19 8.75
5 14 0 14.17

6 1 14 5.84 0.01
2 14 2.98 0.02
3 14 1.12 0.09
4 14 0.41 0.81
5 14 0.09 13.24
6 6 0 35.19

≥7 1 2 0.37 0.01
2 2 0.37 0.02
3 2 0.37 0.14
4 2 0.37 0.65
5 2 0.14 5.52
6 2 0.03 78.13

From left to right : the value of K̂∗ (i.e. the value ofK required forK-adaptability to be equivalent
to (P) or a lower bound on this value), the value of K which was used, the number of instances
with this value of K̂∗ which were solved using Kadapt2 with that value of K within T = 1 hour,
the approximation gap computed as |KAdapt2∗ − ColGen2∗|/|ColGen2∗|, the computation time
ratio computed as t(KAdapt2)/t(ColGen2).

91

Objective cost
Jobs Γ Free Fixed order Gap (%) N. Instance

(ColGen1) (ColGen2)

5 1 70.39 70.40 0.00 80
5 2 75.27 75.28 0.01 80
5 3 75.94 75.94 0.00 80
10 1 144.76 145.14 0.26 80
10 2 165.92 166.21 0.18 80
10 3 171.73 171.80 0.04 80
10 4 173.24 173.26 0.01 80
10 5 173.61 173.61 0.00 80
10 6 173.70 173.70 0.00 80
10 7 173.70 173.70 0.00 80
15 1 192.83 193.32 0.25 74
15 2 232.46 233.06 0.26 67
15 3 248.97 249.57 0.24 70
15 4 253.39 253.78 0.15 74
15 5 254.77 254.91 0.05 77
15 6 255.35 255.37 0.01 77
15 7 255.74 255.74 0.00 78
15 8 256.98 256.98 0.00 80
15 9 256.98 256.98 0.00 80
15 10 256.98 256.98 0.00 80

Table 4.6: Fixed-order solutions cost analysis
From left to right : the number of jobs, the uncertainty budget, the average objective costs of free
solutions and fixed-ordered solutions, the relative gap between the two, the number of instances
which where accounted for in the computation (i.e., instances which could be solved within the
time limit T = 1 hour for both problems).

92

CHAPTER 5

Mixed-integer problems with binary uncertainty

Henri Lefebvre, Enrico Malaguti, Michele Monaci1

In this chapter, we study Adjustable Robust Optimization (ARO) problems with discrete uncer-

tainty. Under a very general modeling framework, we show that such two-stage robust problems

can be exactly reformulated as ARO problems with objective uncertainty only. This reformulation

is valid with and without the fixed recourse assumption and is not limited to continuous wait-and-

see decision variables, unlike most of the existing literature. We then discuss how to apply the

reformulation on a variant of the Multiple Knapsack Problem where each item’s weight is regarded

as an unknown parameter. The latter problem is also shown to include ΣP
2 -hard problems.

Additionally, we introduce an enumerative algorithm akin to a Benders branch-and-cut scheme

for which we study the asymptotic convergence. Finally, we report extensive computational results

on instances of the two considered problems, demonstrating the effectiveness of the approach.

5.1 Introduction

In this chapter, we consider the following underlying optimization problem, where it is assumed

that H is a matrix which cannot be known at decision time.

min cccTxxx+ dddTyyy (5.1)

s.t.TTTxxx+HHHyyy ≤ fff (5.2)

xxx ∈ X (5.3)

yyy ∈ Y (5.4)

000 ≤ yyy ≤ uuu (5.5)

1The content of this chapter has been submitted to INFORMS Journal on Computing and is currently under
revision.

93

Here, xxx denotes the vector of here-and-now decisions, yyy represents wait-and-see decisions that

can be taken after uncertainty reveals, and ccc,ddd,TTT ,HHH,fff and uuu are real vectors and matrices of

appropriate dimension. The objective function includes a cost for both here-and-now and wait-

and-see decisions; the corresponding variables are coupled by means of linking constraints (5.2).

Constraints (5.3) and (5.4) impose that xxx and yyy belong to some polyhedral set; these constraints

may also include integrality requirements on some variables, if any. Moreover, we assume that

matrix H is known to take a finite set of values, noted H. Let us denote by Y (x̂xx, ĤHH) = {yyy ∈
Y : ĤHHyyy ≤ fff − TTTx̂xx,000 ≤ yyy ≤ uuu} the set of feasible wait-and-see decisions for a given here-and-now

decision x̂xx ∈ X and random outcome ĤHH ∈ H of HHH.

Already in the case of min-max optimization and objective discrete uncertainty, it has been

shown Buchheim and Kurtz [2018] that the problem is NP-hard as soon as the here-and-now

decisions are binary and the uncertainty set contains exactly two scenarios. Since min-max-min

problems are a generalization of min-max optimization, this complexity result trivially extends

and several approaches have been designed to approximately or exactly address the general min-

max-min case.

Assuming that the convex hull of the uncertainty set is known, one considerably simplifies the

problem by replacing Ξ with conv(Ξ), leading to a relaxation of the original problem. In such

cases, typical approaches designed for continuous uncertainty sets as described in Chapter 2 may

be employed.

To the best of our knowledge, however, no viable solution approach has been introduced in

the literature for the case where the wait-and-see decisions are mixed-integer and uncertainty is

discrete and affects the problem constraints. This work is aimed at bridging this gap between

objective-uncertain problems and constraint-uncertain problems with mixed-integer wait-and-see

decisions, and provides the following main contributions:

– In Section 5.2, we introduce our modeling framework and discuss its generality. We show

that virtually any linearly-constrained Adjustable Robust Problem with discrete uncertainty

can fit our framework. Among others, we emphasize that our model includes problems with

and without the fixed recourse assumption. Moreover, we allow for both mixed-integer first-

and second-stage decisions.

– In Section 5.3, we introduce an ARO problem which is a natural extension of the well-known

Multiple Knapsack Problem (MKP) where each item’s weight is uncertain. We show that

its ARO counterpart includes ΣP
2 -hard problems.

– In Section 5.4, we present our main theoretical results. We prove the general validity of a

non-trivial reformulation of ARO problems with discrete uncertainty as objective-uncertain

ARO problems. This reformulation is based on polyhedral results and Lagrangian duality.

– In Section 5.5, we extend a recent contribution (Kämmerling and Kurtz [2020]) from the

ARO literature to the mixed-integer case while it was originally designed for objective-

uncertain problems with binary first-stage decisions only. We also explicitly treat the case of

ARO problems which are infeasible, or which do not have complete recourse (i.e., for which

∃x ∈ X,∃ξ ∈ Ξ, Y (x, ξ) = ∅).

94

– In Section 5.6, we report computational results for this class of hard optimization prob-

lems, showing that our approach is able to solve medium size instances within a reasonable

computing time.

5.2 Problem modeling

5.2.1 Uncertainty model

Our modelling of uncertainty is based on the following assumption.

Assumption M. For all i = 1, ...,mY and all j = 1, ..., nY , let hij and h̄ij be two real numbers

such that hij ≤ h̄ij. The set H of possible outcomes forHHH is such that H ⊆ {ĤHH : (ĥij = hij ∨ ĥij =
h̄ij), i = 1, ...,mY , j = 1, ..., nY }.

To ease the presentation, we introduce a binary set Ξ ⊆ {0, 1}mY ×nY used to encode the

combinatorial aspects of H as follows: for all ξξξ ∈ Ξ and any (i, j), ξij = 0 if ĥij = hij and ξij = 1

if ĥij = h̄ij . For a given x̂xx ∈ X and ĤHH ∈ H, with a small abuse of notation we denote set Y (x̂xx, ĤHH)

as Y (x̂xx, ξ̂ξξ) for an appropriate ξ̂ξξ ∈ Ξ. Using this notation, set Y (x̂xx, ξ̂ξξ) includes all those elements

fulfilling constraints (5.4), (5.5), and

nX∑
j=1

tij x̂j +

nY∑
j=1

(
hijyj + (h̄ij − hij) ξ̂ij yj

)
≤ fi i = 1, ...,mY (5.6)

We assume that wait-and-see decisions are bounded, as it happens in practical applications. In

addition, as typically done in adjustable robust optimization, Y (xxx,ξξξ) is supposed to be non-empty

for all xxx ∈ X and all ξξξ ∈ Ξ. As a consequence, we may restrict our attention to the case in

which X is bounded, since otherwise the problem would reduce to select here-and-now decisions

producing an infinitely negative cost.

Accordingly, the class of problems which we are addressing can be reformulated as follows:

min
xxx∈X

{
cccTxxx+max

ξξξ∈Ξ
min

yyy∈Y (xxx,ξξξ)
dddTyyy

}
(5.7)

In the robust optimization terminology, matrix HHH is often called the recourse matrix. The class

of problems we consider in this paper can therefore be summarized as adjustable robust problems

with mixed-integer first and second stage, uncertain recourse matrix and binary uncertainty.

5.2.2 Expressiveness of our model

In this section, we show that Assumption M can be done without loss of generality. In addition, we

discuss how a large variety of uncertain problems can be cast in our framework without introducing

further assumptions.

More than two possible outcomes Assume that a generic coefficient, say hij , has more than

two possible outcomes. Let R > 2 be this number and denote by ĥ1ij , ..., ĥ
R
ij the possible values,

sorted by increasing order. In the i-th constraint, we replace variable yj by R additional variables

y1ij , ..., y
R
ij , the r-th associated with an uncertain coefficient hrij having hrij = 0 and h̄rij = ĥrij .

95

In order to impose that exactly one value is selected by the uncertainty for coefficient hij , the

following constraint
R∑

r=1

ξrij = 1 (5.8)

has to be added to the definition of Ξ. Finally, the relationship between the original yj and the

additional yrij variables can be enforced by imposing the following constraints

yj = yrij r = 1, ..., R (5.9)

Notice that constraints (5.9) can simply be added to the definition of set Y .

“≥”-inequalities and equalities In our definition of the problem, all linking constraints (5.2)

are assumed to be written in the ≤ form. Since we make no assumption on the sign of coefficients

of Ĥ, any ≥ inequality can be rewritten in ≤ form.

As to equations, we assume they are replaced by a pair of ≤ inequalities before the reformulation

is applied. Let i1 and i2 the indices of the inequalities derived from a given equation and notice

that each variable yj has, in these constraints, the same coefficients but with complementary signs:

h̄i1j = −hi2j and hi1j = −h̄i2j . Hence, consistency in the realization of the same parameter can

be enforced by the following constraint

ξi1j + ξi2j = 1 (5.10)

More in general, our framework allows modelling of situations in which the realization of a pair

of coefficients of Ĥ is correlated; for example, if the first coefficient takes its smallest value, then

the second assumes its smallest value as well, and vice-versa. These situations can be handled by

adding suitable constraints to the definition of Ξ.

Right-hand-side uncertainty Though our uncertainty model assumes recourse matrix uncer-

tainty, it is clear that right-hand-side uncertainty is comprised within our framework. In other

words, it can be used for modelling contexts with and without the fixed recourse assumption. To

see this, consider one constraint whose right-hand-side may not be known, i.e., assume that fi is

replaced by f
i
+ (f̄i − f i)ξ

′
i in (5.6) with f

i
≤ f̄i for some (unknown) binary ξ′i. Then, clearly,

adding one decision variable ynY +1 fixed to 1 which multiplies ξ′i turns our problem in the desired

form.

Objective uncertainty Finally, it is well known (see, e.g., Bertsimas and Sim [2004]) that

assuming full knowledge of the objective function is without loss of generality. Indeed, uncertainty

in vector ddd in (5.1) can be easily handled by introducing an additional (uncertain) constraint that

defines the objective function value. Overall, this shows that our modelling approach defines a

completely general setting.

96

5.3 Example: The Multiple Knapsack Problem

In this section, we give an example of application that fits our framework and analyze its theoretical

complexity. We consider a variant of the Multiple Knapsack Problem (MKP). In the deterministic

MKP, given a collection of items with associated weights and profits, one should decide a subset

of items to be packed inside bins of fixed capacities. We consider here a natural adaptation of the

MKP where here-and-now decisions select some items, and dispatch each item to one knapsack.

At a second stage, the exact weight of each item is revealed and, for each knapsack, a subset of

items having maximum profit is determined while respecting the capacity constraint. We note

that, though the here-and-now decisions do not have explicit costs in the objective, not all here-

and-now decisions are equivalent for the second stage. For example, while assigning all items to

one knapsack is a feasible here-and-now decision, this policy may be sub-optimal with respect to

the wait-and-see problem which, therefore, would optimize over a single knapsack only.

Our first theorem states that the adjustable robust variant of the MKP is at least ΣP
2 -hard. To

show this result, we formally give the definition, as decision problems, of the Knapsack Problem

(KP), the Knapsack Interdiction Problem (KIP) and the Adjustable Robust Multiple Knapsack

Problem (ARMKP). We show in Theorem 3 that any instance of KIP, which has been shown to

be ΣP
2 -hard (see Caprara et al. [2013]), can be transformed in polynomial time into an instance of

the ARMKP.

Problem: Knapsack Problem (Decision)

Input data:(V, I, w, p,W), where V ∈ R is a target value, I is a finite countable set, w : I →
R+ and p : I → R+ are two functions and W ∈ R+.

Question: Is there a set J ⊆ I such that
∑

i∈J w(i) ≤W and V ≤
∑

i∈J p(i) ?

Problem: Knapsack Interdiction Problem (Decision)

Input data: (V, I, v, w, p,Γ,W), where V ∈ R is a target value, I is a finite countable set,

v : I → R+, w : I → R+ and p : I → R+ are given functions, Γ ∈ R+ and W ∈ R+.

Question: Is there a set S ⊆ I such that
∑

i∈S v(i) ≤ Γ and Knapsack Problem with

data (V, I\S,w, p,W) has an answer no?

Problem: Adjustable Robust Multiple Knapsack Problem (Decision)

Input data: (V, I,K,w,w, p,Ξ,W), where V ∈ R is a target value, I and K are two finite

countable sets, w : I → R+, w : I → R+ and p : I → R+ are given functions (w ≤ w),

Ξ ⊆ {0, 1}|I| and W : K → R+ is a given function.

Question: Is there a partition of I into |K| subsets Q1, ..., Q|K|, such that ∀ξξξ ∈ Ξ (i) there

exists v1, ..., vk ∈ R+ (k = 1, ..., |K|) with
∑|K|

k=1 vk = V and, (ii) for k = 1, ..., |K|, Knapsack

Problem with data (vk, Qk, w, p,W (k)) has an answer yes, where w : I → R+ is a function

defined as w(i) = w(i) + (w(i)− w(i))ξi for each i ∈ I?

Theorem 3. The ARMKP includes ΣP
2 -hard problems.

97

Proof. Given any instance of KIP, say (V, I, v, w, p,Γ,W), we define, in polynomial time, an in-

stance of ARMKP, denoted as (V̂ , Î, K̂, ŵ, ŵ, p̂, Ξ̂, Ŵ), such that KIP with data (V, I, v, w, p,Γ,W)

has an answer no if and only the ARMKP with data (V̂ , Î, K̂, ŵ, ŵ, p̂, Ξ̂, Ŵ) has an answer yes.

We define V̂ = V , Î = I, K̂ = {□} and set Ŵ (□) = W . We also let ŵ = w, ŵ = W + ϵ (with

ϵ > 0) and p̂ = p. Finally, we define Ξ̂ as {ξξξ ∈ {0, 1}|Î| :
∑

i∈Î v(i)ξi ≤ Γ}.
Since |K̂| = 1, there exists only one partition of the item set, i,e. Q1 = Î; consequently, the

target value for the first conjunction is v̂1 = V̂ . Assume now that the ARMKP instance has answer

yes. Then, for all ξξξ ∈ Ξ̂, the KP instance induced by items’ weights w(i) = w(i) + (w(i)−w(i))ξi
has answer yes. In other words, there is no ξξξ ∈ {0, 1}|Î| such that

∑
i∈Î v(i)ξi ≤ Γ and for which

Knapsack Problem with data (v1, Q1, w, p,W (k)) has an answer no. This proves that there is

no S ⊆ Î such that
∑

i∈S v(i) ≤ Γ and Knapsack Problem with data (V, I\S,w, p,W) has an

answer no, i.e., that KIP with data (V, I, v, w, p,Γ,W) has answer no.

Vice-versa, if ARMKP has answer no, there exists a vector ξξξ ∈ {0, 1}|Î| for which the associated

KP instance has answer no. Item set S = {i ∈ Î : ξi = 1} is a certificate for the KIP instance

with data (V, I, v, w, p,Γ,W) to have a positive answer.

5.4 Theoretical development

This section presents the main theoretical development of our work. We start by reformulating

problems of type (5.7) as adjustable robust problems with objective uncertainty; then, we consider

a relaxation introduced in Kämmerling and Kurtz [2020] for this class of problems, introduce a

solution algorithm for the relaxation and discuss its computational complexity. In the next section,

we will discuss how this relaxation can be embedded in a branch-and-bound algorithm to close

the optimality gap.

5.4.1 Reformulation

We first linearize every product involving variables ξij and yj for some (i, j) in constraints (5.6).

An exact reformulation of each product can be obtained by introducing continuous variables

zij = ξijyj and adding the following linear constraints to the definition of set Y (x̂xx, ξ̂ξξ).

zij ≤ ujξij i = 1, ...,mY , j = 1, ..., nY (5.11)

zij ≤ yj i = 1, ...,mY , j = 1, ..., nY (5.12)

zij ≥ yj − (1− ξij)uj i = 1, ...,mY , j = 1, ..., nY (5.13)

zij ≥ 0 i = 1, ...,mY , j = 1, ..., nY (5.14)

Let us introduce, for all xxx ∈ X and all ξξξ ∈ Ξ, set Z(xxx,ξξξ) as the set of decisions (yyy,zzz) ∈
RnY × RmY ×nY fulfilling constraints (5.4), (5.5),(5.12), (5.13) and (5.14) as well as constraints

(5.15) obtained by replacing each bilinear terms in (5.6).

nX∑
j=1

tijxj +

nY∑
j=1

(
hijyj + (h̄ij − hij)zij

)
≤ fi i = 1, ...,mY (5.15)

98

Remark 14. We enlight that constraints (5.11) are not part of the definition of Z(xxx,ξξξ) and that

this can be done without changing the optimal objective value of the second stage.

Proof. We show that, given any solution of the second-stage problem violating (5.11), one can

build a solution respecting (5.11) with the same objective value. Let ī, j̄ be the indices of a

violated constraint (5.11) and note that zīj̄ > 0. Since zīj̄ ≤ yj̄ ≤ uj̄ , violation of the constraint

implies ξīj̄ = 0. Therefore (5.13) reduces to zīj̄ ≥ yj̄ − uj̄ , which remains satisfied by setting

zīj̄ = 0. Note that, since (h̄īj̄ − hīj̄) ≥ 0 (see Assumption M), setting zīj̄ = 0 satisfies constraint

(5.15) as well, as it only reduces its left-hand-side. Finally, notice that zīj̄ does not appear in the

objective function, i.e., the two solutions have the same value.

In turn, it is clear that problem (5.7) is equivalent to the following adjustable robust problem

min
xxx∈X

{
cccTxxx+max

ξξξ∈Ξ
min

(yyy,zzz)∈Z(xxx,ξξξ)
dddTyyy

}
(5.16)

where the linking constraints between yyy, zzz and ξξξ are of simpler kind. In the next theorem, we turn

problem (5.16) into an adjustable robust problem where the uncertainty is confined within the

objective function. This result follows from a polyhedral analysis result and Lagrangian duality.

Theorem 4. Problem (5.7) is equivalently solved by the following problem.

min
xxx∈X


nX∑
j=1

cjxj + max
ξξξ∈Ξ,λλλ≤0

min
(yyy,zzz)∈Z′(xxx)

nY∑
j=1

(
djyj +

mY∑
i=1

λijξij(zij − yj)

) (5.17)

where Z ′(xxx) is defined as Z(xxx,ξξξ) after omitting constraints (5.13).

Proof. As already observed, one can consider problem (5.16) instead of (5.7). Then, by linearity

of the objective function, condition ”(yyy,zzz) ∈ Z(xxx,ξξξ)” can equivalently be replaced by ”(yyy,zzz) ∈
conv(Z(xxx,ξξξ))”. Moreover, it holds that, for all ξξξ ∈ Ξ, conv(Z(xxx,ξξξ)) = conv(Z ′(xxx)) ∩ {(yyy,zzz) :

(5.13)} (see Theorem 14 in appendix). Thus, using a Dantzig-Wolfe reformulation of conv(Z ′(xxx)),

one can see the inner minimization problem as the solution of an LP for which strong Lagrangian

duality holds, provided that the primal problem is feasible. Since we have assumed that Y (xxx,ξξξ) ̸= ∅
for all xxx ∈ X and ξξξ ∈ Ξ, strong duality holds. The partial Lagrangian dual is given as follows,

where λλλ are the dual variables associated to the interdiction constraints (5.13).

max
λλλ≤0

min
(yyy,zzz)∈Z′(xxx)

{
nY∑
j=1

djyj +

mY∑
i=1

nY∑
j=1

λij((1− ξij)uj + zij − yj)

}
(5.18)

By splitting the terms, we obtain:

max
λλλ≤0

min
(yyy,zzz)∈Z′(xxx)


nY∑
j=1

djyj +

nY∑
i=1

 ∑
j:ξij=0

λij(uj + zij − yj) +
∑

j:ξij=1

λij(zij − yj)

 (5.19)

We now argue that λij = 0 is optimal whenever ξij = 0. In this case, λij is multiplied by

zij + uj − yj , which is nonnegative as zij ≥ 0 and yj ≤ uj . Given that λij ≤ 0, an optimal choice

for the outer maximization problem is λij = 0.

The reformulation introduced in Theorem 4 is conceptually simpler than problem (5.7) as

99

uncertainty interferes within the objective function only. In other words, as shown by the following

example, the feasible space does not depend on ξξξ.

Example 9. Let us consider a numerical example, in which the here-now-variables have been fixed

and the resulting inner optimization problem is as follows:

max
ξξξ∈{0,1}2:eeeTξξξ≤1

min −y1 − y2
s.t. (1 + ξ1)y1 + (1 + 2ξ2)y2 ≤ 3

y1, y2 ∈ {0, 1}

(5.20)

It is easily seen (e.g., by enumeration) that the optimal objective value is −1, obtained by choosing

ξ1 = 0 and ξ2 = 1. A direct application of Theorem 4 yields the following reformulation.

max
ξξξ∈{0,1}2,λλλ∈R2

−:eeeTξξξ≤1
min −y1 − y2 + ξ1λ1(z1 − y1) + ξ2λ2(z2 − y2)
s.t. y1 + z1 + y2 + 2z2 ≤ 3

z1 ≤ y1
z2 ≤ y2
y1, y2 ∈ {0, 1}
z1, z2 ≥ 0

(5.21)

Note that, for any ξξξ, the feasible space does not change. Thus, (y1, y2, z1, z2) = (1, 1, 0, 0) is

always feasible. However, this solution is optimal only when ξ1 = ξ2 = 0 and the objective is

−y1− y2 = −2. Yet, if we consider ξ1 = 0 and ξ2 = 1, the objective is now −y1− y2+λ2(z2− y2).
Since λ2 ≤ 0 and z2−y2 ≤ 0, the inner minimization problem will “tend to” minimize the distance

between z2 and y2. With a negative enough value for λ2, such a penalization will eventually force

y2 = z2 since any feasible solution with y2 ̸= z2 will be dominated. Observe that, for this example,

λ2 = −1 is enough. Similarly. when ξ1 = 1 and ξ2 = 0, one can show that λ1 = −1 is enough.

Theorem 5 shows how to compute sufficiently negative λ values for a general class of problems.

We now discuss a possible way to fix variables λij to an optimal value in the reformulation, so

as to omit bilinear terms λijξij .

Corrolary 5. Let λ∗ij(ξξξ) be an optimal solution associated to a given ξξξ ∈ Ξ for problem (5.18)

and let λij be such that λij ≤ λ∗ij(ξξξ) ≤ 0 for all ξξξ ∈ Ξ. Then, problem (5.7) can be rewritten as

follows:

min
xxx∈X


nX∑
j=1

cjxj +max
ξξξ∈Ξ

min
(yyy,zzz)∈Z′(xxx)

nY∑
j=1

(
djyj +

mY∑
i=1

λijξij(zij − yj)

) (5.22)

Proof. By definition of λ∗ij(ξξξ), problem (5.17) is equivalent to

min
xxx∈X


nX∑
j=1

cjxj +max
ξξξ∈Ξ

min
(yyy,zzz)∈Z′(xxx)

nY∑
j=1

(
djyj +

mY∑
i=1

λ∗ij(ξξξ)ξij(zij − yj)

) (5.23)

By optimality, for a given ξξξ′ ∈ Ξ, since λ∗ij(ξξξ
′) ≤ 0 and zij ≤ yj , any value λij ≤ λ∗ij(ξξξ′) is also an

optimal solution for ξξξ′. This achieves the proof.

Corollary 5 therefore eliminates the need for variables λλλ by replacing them with a fixed and

100

exact violation penalization in the objective. However, it does not provide a practical value for

λij which would not be problem-specific. In the next theorem, we give such a value for a large

class of problems.

Lemma 5. In Corollary 5, assume that dj ≤ 0 and hij ≥ 0 (i = 1, ...,mY and j = 1, ..., nY). Then,

one can safely use λij = dj for all i = 1, ...,mY and j = 1, ..., nY , provided that the requirement

zij ∈ {0, 1} is added to the definition of Z ′(xxx) for all i = 1, ...,mY and all j ∈ {1, ..., nY } such

that yj is a binary variable.

Proof. Note that the inner maximization term of (5.17) can be reformulated as follows:

max

θ :

θ ≤
nY∑
j=1

(
djyj +

mY∑
i=1

λijξij(zij − yj)

)
∀(yyy,zzz) ∈ Z′(xxx)

λij ≤ 0 i = 1, ...,mY , j = 1, ..., nY

θ ∈ R

 (5.24)

Let (θ∗,λλλ∗) be an optimal solution of (5.24). By strong duality, the following holds:

θ∗ = min
(yyy,zzz)∈Z(xxx,ξξξ)

dddTyyy (5.25)

Our goal is to derive a family of valid inequalities for (5.24), depending on points in Z ′(xxx) but not

on Λ, that bound θ∗ from above.

To this end, let (yyy′, zzz′) be any point in Z ′(xxx), and define a point (ŷyy, ẑzz) as follows: for all j ∈
{1, ..., nY },

– If ξij = 0 for every i = 1, ...,mY , set ŷj = y′j and ẑij = 0 for all i = 1, ...,mY .

– Otherwise, there exists at least one index i ∈ {1, ...,mY } such that ξij = 1.

Let īj ∈ argmini∈{1,...,mY }{z′ij : ξij = 1} and set ŷj = z′
ījj

and ẑij = ξij ŷj for all i =

1, ...,mY .

Note that, in both cases, we have ŷj ≤ y′j for all j. This is straightforward in the first case, and is

enforced by (5.12) in the latter as ŷj = z′
ījj

. In addition, we have ẑij ≤ z′ij for all i and j. Now,

since hij ≥ 0, (ŷyy, ẑzz) ≤ (yyy′, zzz′), and ŷj = ẑij when ξij = 1, we can conclude that (ŷyy, ẑzz) ∈ Z(xxx,ξξξ).
From (5.25) it follows that, given any feasible solution (θ,Λ) to (5.24), we have:

θ ≤
nY∑
j=1

dj ŷj =
∑
j∈N

dj ŷj +
∑

j∈{1,...,nY }\N

dj ŷj (5.26)

where N denotes the set of indices of variables for which ξij = 0 for all i = 1, ..., nY . Observe

that, for each j ∈ N , we have ŷj = y′j , hence

∑
j∈N

dj ŷj =
∑
j∈N

djy
′
j =

∑
j∈N

(
djy

′
j +

mY∑
i=1

djξij(z
′
ij − y′j)

)
. (5.27)

As to the remaining variables, we have∑
j∈{1,...,nY }\N

dj ŷj =
∑

j∈{1,...,nY }\N

djz
′
ījj

=
∑

j∈{1,...,nY }\N

(
djy

′
j + djξījj(z

′
ījj
− y′j)

)
,

101

where the last equality holds as ξījj = 1. Since, for each i and j, dj(z
′
ij − y′j) ≥ 0, we have,

∑
j∈{1,...,nY }\N

dj ŷj ≤
∑

j∈{1,...,nY }\N

djy′j + djξījj(z
′
ījj
− y′j) +

∑
i ̸=īj

djξij(z
′
ij − y′j)

 =

∑
j∈{1,...,nY }\N

(
djy

′
j +

mY∑
i=1

djξij(z
′
ij − y′j)

)
(5.28)

By combining (5.26), (5.27), and (5.28), we obtain

θ ≤
∑
j∈N

(
djy

′
j +

mY∑
i=1

djξij(z
′
ij − y′j)

)
+

∑
j∈{1,...,nY }\N

(
djy

′
j +

mY∑
i=1

djξij(z
′
ij − y′j)

)
=

nY∑
j=1

(
djy

′
j +

mY∑
i=1

djξij(z
′
ij − y′j)

)
(5.29)

Given the arbitrary choice of point (yyy′, zzz′) ∈ Z ′(xxx), the following family of inequalities are valid

for (5.24):

θ ≤
nY∑
j=1

(
djyj +

mY∑
i=1

djξij(zij − yj)

)
∀(yyy,zzz) ∈ Z ′(xxx) (5.30)

We know from Corollary 5 than all negative enough Λ values are optimal. Any inequality of (5.24)

would be dominated by these cuts when λij ≤ dj , making λij = dj a safe choice.

Example 10. We continue the example based on the problem introduced in Example 9 to discuss

the interpretation of Theorem 5. As anticipated, a large enough value for λ1 and λ2 is −1. The

objective function now becomes −y1 − y2 − ξ1(z1 − y1) − ξ2(z2 − y2) which, once re-organized, is

equivalently written as follows.

− y1(1− ξ1)− ξ1z1 − y2(1− ξ2)− ξ2z2 (5.31)

A very clear interpretation is now at hand: when ξ1 = 0, then the contribution of (y1, z1) to the

objective is −y1, whereas this term reduces to −z1 if ξ1 = 1. In other words, setting ξ1 = 1 and

ξ2 = 0 forces z1 = y1. More in general, for a given ξξξ ∈ Ξ, setting ξij = 1 induces a contribution

h̄ijyj in the left-hand-side of the i-th constraint (5.15).

Theorem 5 achieves the ultimate goal of reformulating problem (5.7) as an adjustable robust

optimization problem with objective uncertainty. We emphasize that this result generalizes the

work of Fischetti et al. [2019] on bi-level interdiction games in two directions: (i) it extends their

results (in particular, Theorem 2 and 3) to two-stage robust problems; and (ii) it provides a dual

interpretation of valid cost penalization.

5.4.2 Relaxation

In the previous section, we have reformulated problem (5.7) so as to obtain an objective-uncertain

ARO. This class of problems has been studied, among others, in Kämmerling and Kurtz [2020],

Arslan and Detienne [2021] and Detienne et al. [2021]; in many of these works, only the case in

102

which here-and-now variables are binary and the uncertainty set convex is considered. We now

make a step further in the analysis of uncertain adjustable robust problems, and consider the

more general case with mixed-integer here-and-now decisions, and in which the uncertainty set is

binary.

To ease our presentation, we first assume that problem (5.7) is feasible. Note that this assump-

tion is easily enforced in practice by adding decision variables with high costs (similarly to Phase

I in the Simplex algorithm). Solving ARO problems without this assumption will be discussed in

Section 5.4.4.

Assumption N (Feasibility). Problem (5.7) is feasible.

Theorem 5. Let v∗ be the optimal objective value of problem (5.7) and let v∗R be the optimal

objective value of the following problem

max θ (5.32)

s. t. θ ≤
nX∑
j=1

cj x̂j +

nY∑
j=1

(
dj ŷj +

mY∑
i=1

λijξij(ẑij − ŷj)

)
∀(x̂xx, ŷyy, ẑzz) ∈W (5.33)

ξξξ ∈ Ξ, (5.34)

where W denotes the set of extreme points of the convex hull of {(xxx,yyy,zzz) : xxx ∈ X, (yyy,zzz) ∈ Z ′(xxx)}.
Then, v∗ ≥ v∗R. Moreover, if all active constraints of type (5.33) are built upon the same here-

and-now decision, say x̄xx, then v∗ = v∗R and x̄xx solves problem (5.7).

Proof. The first part of the theorem comes from the min-max inequality; indeed, for any function

f : A×B → R, it holds that supaaa∈A infbbb∈B f(aaa,bbb) ≤ infbbb∈B supaaa∈A f(aaa,bbb).

As to the second part, assume that all the active cuts are built upon the same here-and-now

variable, say x̄xx (note that, by Assumption N, W ̸= ∅). Then,

v∗R = max
ξξξ∈Ξ

min
(xxx,yyy,zzz)∈{x̄xx}×Z′(x̄xx)


nX∑
j=1

cj x̄j +

nY∑
j=1

(
djyj +

mY∑
i=1

λijξij(zij − yj)

) (5.35)

= min
xxx=x̄xx

max
ξξξ∈Ξ

min
(yyy,zzz)∈Z′(x̄xx)


nX∑
j=1

cj x̄j +

nY∑
j=1

(
djyj +

mY∑
i=1

λijξij(zij − yj)

) (5.36)

≥ v∗ (5.37)

Though the relaxation introduced in Theorem 5 consists in a monolithic Mixed Integer Linear

Program (MILP), it contains an exponential number of cuts of type (5.33). For the sake of

simplicity, let us introduce the following function:

Π(xxx,ξξξ,yyy,zzz) :=

nX∑
j=1

cjxj +

nY∑
j=1

(
djyj +

mY∑
i=1

λijξij(zij − yj)

)
(5.38)

The procedure described in Algorithm 3 is a cut-generation approach for solving problem (5.32)-

(5.34). The finite convergence of the obtained algorithm is well-established. Algorithm 3 includes

103

an initialization phase assuming that (at least) one point (xxx0, yyy0, zzz0) such that xxx0 ∈ X and

(yyy0, zzz0) ∈ Z ′(xxx0) is available. For example, in the common case in which 000 ∈ Ξ, such a point

may be found by solving the following problem, corresponding to the deterministic version of the

original problem:

(xxx0, yyy0, zzz0) ∈ argmin {Π(xxx,000, yyy,zzz) : xxx ∈ X, (yyy,zzz) ∈ Z ′(xxx)} (5.39)

Algorithm 3: Cut-generation algorithm

1 Initialize Ŵ with some point (xxx0, yyy0, zzz0) with xxx0 ∈ X and (yyy0, zzz0) ∈ Z ′(xxx0).
2 repeat

3 (θ∗, ξξξ∗)← argmax
{
θ : (θ, ξξξ) ∈ R× Ξ θ ≤ Π(x̂xx,ξξξ, ŷyy, ẑzz) ∀(x̂xx, ŷyy, ẑzz) ∈ Ŵ

}
4 (xxx∗, yyy∗, zzz∗)← argmin {Π(xxx,ξξξ∗, yyy,zzz) : xxx ∈ X, (yyy,zzz) ∈ Z ′(xxx)}
5 Ŵ ← Ŵ ∪ {(xxx∗, yyy∗, zzz∗)}
6 until θ∗ ≥ Π(xxx∗, ξξξ∗, yyy∗, zzz∗)
7 stop, and v∗R = θ∗.

5.4.3 Solving the separation problem

In this subsection, we discuss the complexity of the separation problem of Algorithm 3. This

separation problem is recalled here: for a fixed ξ̄ξξ ∈ Ξ, this problem reads:

min

nX∑
j=1

cjxj +

nY∑
j=1

(
djyj +

mY∑
i=1

λij ξ̄ij(zij − yj)

)
(5.40)

s.t. xxx ∈ X, (yyy,zzz) ∈ Z ′(xxx) (5.41)

We make the following remark on solving the separation problem.

Remark 15 (Relation with the deterministic problem). The separation problem can be solved by

any oracle designed for solving the deterministic problem (5.1)-(5.5) with appropriate input values.

Proof. Reading the proofs of Corollary 5 and Theorem 4 in the reversed order, the following holds.

min
xxx∈X,(((yyy,zzz)∈Z′(xxx)

Π(xxx, ξ̄ξξ,yyy,zzz) (5.42)

= min
xxx∈X

{
cccTxxx+ min

(yyy,zzz)∈Z′(xxx)
dddTyyy +

nY∑
j=1

mY∑
i=1

λij ξ̄ij(zij − yj)

}
(5.43)

= min
xxx∈X

{
cccTxxx+ min

(yyy,zzz)∈conv(Z′(xxx))
dddTyyy +

nY∑
j=1

mY∑
i=1

λij ξ̄ij(zij − yj)

}
(5.44)

= min
xxx∈X

{
cccTxxx+max

λλλ≤000
min

(yyy,zzz)∈conv(Z′(xxx))
dddTyyy +

nY∑
j=1

mY∑
i=1

λij((1− ξ̄ij)uj + zij − yj)

}
(5.45)

= min
xxx∈X

{
cccTxxx+ min

(yyy,zzz)∈Z(xxx,ξ̄ξξ)
dddTyyy

}
(5.46)

= min
xxx∈X,yyy∈Y (xxx,ξ̄ξξ)

cccTxxx+ dddTyyy (5.47)

104

Now, given an optimal solution (xxx∗, yyy∗) of the deterministic problem arising when ξξξ = ξ̄ξξ, an

optimal solution to the separation problem is given by (xxx∗, yyy∗, zzz∗), where zzz is defined as z∗ij =

ξ̄ijy
∗
j .

Remark 16. The separation problem and the deterministic problem (5.1)-(5.5) belong to the same

complexity class.

Proof. We already have that any instance of the separation problem can be solved using an oracle

for the deterministic problem. We also show that any instance of the deterministic problem can

be solved by any oracle solving the separation problem. Indeed, using ξ̄ξξ = 000, problem (5.40)-(5.41)

reduces to the deterministic problem since variable zzz becomes useless and can be removed from

the model. Indeed, zzz comes in ≤-inequality constraints with positive coefficients and have no

contribution to the objective function. Thus, solutions such that zzz > 000 are dominated by those

solutions with zzz = 0.

In the next remark, we also provide a simple way to generate lifted cuts we are shown to be

stronger than those provided by Algorithm 3. These cuts counterbalance the possible degeneracy

of the separation problem.

Remark 17 (Lifted cuts). Assume ddd ≤ 000 and consider an optimal solution (xxx∗, yyy∗, zzz∗) of the

separation problem arising from ξ̄ξξ ∈ Ξ. Then,

∀ξξξ ∈ Ξ, Π(xxx∗, ξξξ,yyy∗, zzz+) ≤ Π(xxx∗, ξξξ,yyy∗, zzz∗) (5.48)

i.e., cuts built with zzz+ dominate those built with zzz∗, where zzz+ is an optimal solution of the following

problem:

min

mY∑
i=1

nY∑
j=1

λijzij (5.49)

s. t. (yyy∗, zzz) ∈ Z ′(xxx∗) (5.50)

zij = z∗ij ∀(i, j) : ξ̄ij = 1 (5.51)

zij ≥ z∗ij ∀(i, j) : ξ̄ij = 0 (5.52)

Proof. Firstly, note that zzz∗ is feasible for the lifting problem. And, it is easy to see that (xxx∗, yyy∗, zzz+)

is feasible for the separation problem. Moreover, notice, that, whenever ξ̄ij = 1, i.e., whenever

variable zij appears in the objective function of the separation problem, we have zij = z∗ij . There-

fore, the two solutions, (xxx∗, yyy∗, zzz∗) and (xxx∗, yyy∗, zzz+) have the same objective value with respect to

ξ̄ξξ. Yet, we have that, for all (i, j) such that ξ̄ij = 0, z+ij ≥ z∗ij . Therefore, we have that, for all

ξξξ ∈ Ξ,
∑mY

i=1

∑nY

j=1 ξijλij(z
+
ij − y∗j) ≤

∑mY

i=1

∑nY

j=1 ξijλij(z
∗
ij − y∗j) (since λλλ ≤ 000).

Intuitively, the lifted cuts are expected to be better than the “degenerated” cuts arising from

the natural solution of the separation problem since they contain more information about the

possible recourse decisions which the decision maker can decide in the wait-and-see phase. Also

notice that the same property holds for any sub-optimal solution for the lifting problem as well.

105

5.4.4 Dealing with infeasibility

When Assumption N holds, observe that the proposed relaxation is valid even for problems without

complete recourse. Indeed, since the optimization order is changed in the relaxed problem (i.e.,

the scenario is decided first), it cannot be that a here-and-now decision without recourse decision

is returned by the separation problem. As a matter of fact, Assumption N implies that there exists

at least one here-and-now decision with a feasible recourse decision, for any given scenario.

Thus, the only feasibility check which needs to be done, in case Assumption N is not known

to hold, is that, given scenario ξ̂ ∈ Ξ returned by the maximization problem, there indeed exists

one x ∈ X such that Y (x, ξ̂) ̸= ∅. This condition is met if and only if the following optimization

problem has an optimal objective value of zero:

min ||s||1 + ||u||1 +
mY∑
i=1

nY∑
j=1

λijξij(zij − yj) (5.53)

s. t. (x+ s) ∈ X, (y + u) ∈ Z ′(x) (5.54)

s ∈ RnX ,u ∈ RnY . (5.55)

If, to the contrary, the optimal objective value is strictly less than zero, then the following cut

may be added,

0 ≤ ||s∗||1 + ||u∗||1 +
mY∑
i=1

nY∑
j=1

λijξij(z
∗
ij − y∗j), (5.56)

where (x∗, s∗,u∗,y∗, z∗) denotes an optimal solution of (5.53)-(5.55).

5.5 A Branch-and-bound algorithm

In this section, we generalize the branch-and-bound scheme in Kämmerling and Kurtz [2020] to the

case in which the here-and-now decisions are mixed-integer and the uncertainty set is binary. This

extension requires non-trivial arguments for the convergence analysis of the resulting algorithm,

as well as specific subroutines to account for the discrete nature of the uncertainty set. For the

sake of simplicity, we present the algorithm for the case in which integer here-and-now variables

are all binary, the extension to the general case being straightforward.

5.5.1 Statement of the procedure

For a given node q with local bounds noted lllq and uuuq, letW q := {(xxx,yyy,zzz) : xxx ∈ X∩ [lllq,uuuq], (yyy,zzz) ∈
Z ′(xxx)} and let vqR denote the optimal objective value of (5.32)-(5.34) where W has been replaced

by W q. Additionally, we let Hq denote the set of active constraints of type (5.33) for the obtained

problem (see Section 5.5.2) and xxx[h] denote the here-and-now decision which was used to generate

the h-th cut of type (5.33), for h ∈ Hq. Finally, let us introduce x̄xxq defined as follows:

x̄xxq =
1

|Hq|
∑
h∈Hq

xxx[h]. (5.57)

We denote by l0j and u0j the initial bounds for the here-and-now variables. Therefore, we have that

W 0 =W , and the root node corresponds to computing v0R. We assume that our algorithm makes

106

use of a list L which contains all active nodes still to be explored in order to close the optimality

gap. In addition, we assume that the best lower and upper bounds found, denoted by LB and

UB, respectively, are dynamically updated during the execution of the algorithm.

At the beginning of the algorithm, we solve the root node (5.32)-(5.34) and set L ← {0},
LB ← v0R and UB ← +∞. Clearly, if x̄xx0 ∈

{
lll0,uuu0

}
, the algorithm stops and the problem has

been solved from the root node, i.e., v∗ = v0R and UB ← v0R. Otherwise, we iteratively perform

the following steps:

Node selection A node q with minimal objective value is selected for branching, i.e.,

q ∈ argmin{vpR : p ∈ L} (5.58)

This operation may lead to an update of the best known lower bound, i.e., LB ← vqR.

Branching strategy Given a selected node q, we compute, for every here-and-now decision

variable, a score θqj ∈ [0, 1] and select the variable with maximum score, prioritizing binary

variables. In our implementation, we used the following score.

θqj =

0 if lqj = uqj

min
{
uj − x̄qj ; x̄

q
j − l

q
j

}
/(uqj − l

q
j) otherwise

(5.59)

Let j′ be the index of the variable selected for branching; we create two new nodes q1 and

q2 in which we set lq
1

j = lq
2

j = lqj and uq
1

j = uq
2

j = uqj for all j ̸= j′ and set lq
1

j′ , l
q2

j′ , u
q1

j′ and

uq
2

j′ as follows: if j′ corresponds to a binary variable, then x̄j′ is fixed to 0 (resp. to 1) in q1

(resp. in q2), i.e., lq
1

j′ = uq
1

j′ = 0 and lq
2

j′ = uq
2

j′ = 1; otherwise, we set lq
1

j′ = lqj′ , u
q1

j′ = x̄qj′ ,

lq
2

j′ = x̄qj′ , and u
q2

j′ = uqj′ . The two created nodes are then solved in the following step.

Node solution For q′ ∈ {q1, q2}, we compute vq
′

R and x̄xxq
′
. If “x̄xxq

′ ∈
{
lllq

′
,uuuq

′
}
”, a new incumbent

solution has been found and we let UB ← min{UB, vq
′

R}. Otherwise, q′ is added to the list

of active nodes, i.e., L← L ∪ {q′}.

Bounding For any active node q′ ∈ L, if vq
′

R ≥ UB, then q′ can be removed from L, i.e.,

L← L\{q′}.

Stopping criteria If L is empty, the algorithm stops and UB = v∗.

In addition to the described steps of the branch-and-bound algorithm, note that it is also

possible to compute feasible solutions thanks to the following proposition.

Proposition 5. Let q be a given node and let us assume that x̄qj ∈ {0, 1} for all j for which xj is

required to be binary. Then, a feasible solution for (5.7) can be computed by solving formulation

(5.32)-(5.34) where W has been replaced by vertex(conv({x̄xxq} × Z ′(x̄xxq))).

Proof. The proof is similar to that of Theorem 5.

For every node q, when appropriate, we will denote by vqU the objective value obtained applying

Proposition 5. Notice that, even when some binary here-and-now variables are fractional, one could

still try to round fractional values to the closest integer and check if the resulting is feasible; in

that case, vqU is a valid upper bound for (5.7).

107

5.5.2 Identifying active cuts

At each node of the branch-and-bound tree, a here-and-now decision is reconstructed from the

solved relaxation by means of formula (5.57). This formula computes the “average” here-and-now

decision among all active cuts, gathered in Hq. When the uncertainty set Ξ is a convex set,

identifying the set of active constraints is easily done by checking the slack variables of each cut.

To adapt the approach from Kämmerling and Kurtz [2020] to our binary uncertainty context,

we should here discuss a procedure to identify active cuts when Ξ is binary. A key observation

is that replacing Hq in (5.57) by the set of generated constraints, noted Ĥq, does not change

the overall validity of the procedure. Unfortunately, the number of generated constraints may be

large, possibly leading to poor branching decisions and a large branch-and-bound tree. Indeed, the

tightness condition from Theorem 5 may be identified only at a late instant. Similarly, the quality

of the solution returned by the heuristic proposed in Proposition 5 may not be good enough to

prune nodes at an early stage if the here-and-now decision x̄q is loosely computed. Instead, one

could try to obtain the subset of generated constraints which prevent the objective value from

growing, in the lower-bounding problem. To this end, let us introduce a given real ε > 0. Then,

identifying the set of active constraints can be done by searching for an Irreducible Infeasible

Subsystem (IIS) of the following infeasible model:

max θ (5.60)

s. t. θ ≤
nX∑
j=1

cj x̂j +

nY∑
j=1

(
dj ŷj +

mY∑
i=1

λijξij(ẑij − ŷj)

)
∀(x̂xx, ŷyy, ẑzz) ∈ Ĥq (5.61)

θ ≥ vqR + ε (5.62)

ξξξ ∈ Ξ. (5.63)

Depending on the selected tolerance ε, a subset Hq ⊆ Ĥq is identified as being part of the IIS and

formula (5.57) can be applied to obtain a reconstructed here-and-now decision.

5.5.3 Convergence result

The enumerative scheme presented in the previous section solves problem (5.7) by iteratively

partitioning the feasible set, possibly performing branching on a continuous variable. Clearly,

if X ⊆ {0, 1}nX , our algorithm finitely converges. We show that, otherwise, the algorithm still

converges towards an optimal solution of (5.7) though, potentially, an infinite number of steps is

required.

Theorem 6. Let v∗ denote the optimal solution value of problem (5.7). Then, the branch-and-

bound algorithm either finitely terminates with UB = v∗ or enters an infinite sequence of nodes,

say p ∈ P , for which {x̄xxp}p∈P → xxx∗, where xxx∗ is an optimal solution of the problem.

Proof. We focus on the case in which the algorithm enters an infinite sequence of nodes. Since

our branching strategy prioritizes binary variables over continuous ones, we may assume that all

variables of the former type are fixed in the sequence. Moreover, an infinite sequence of nodes

implies the existence of an infinite subsequence of nodes belonging to the same branch; we denote

this subsequence by P and its generic node by p. We will denote by [lllp,uuup] the local bounds of

108

node p, by (θp∗, ξξξp∗) the optimal solution of problem (5.32)-(5.34), and by x̄xxp∗ the here-and-now

decision computed according to (5.57).

Since branching always reduces the domain of the here-and-now variables, we have [lllp+1,uuup+1] ⊆
[lllp,uuup]. Thus, there exists a subsequence of P for which [lllp,uuup] converges to [lll∗,uuu∗]. In addition,

there exists a subsequence for which ξξξp∗ converges to ξξξ∗, as ξξξ variables are binary and the number

of their feasbile combinations is finite.

Since our node selection strategy always picks the node with lowest bound, we have that θp∗

is a lower bound on v∗. In addition, branching operation implies that θ(p+1)∗ ≥ θp∗, and thus θp∗

converges to θ∗. Finally, x̄xxp∗ ∈ [lllp,uuup] ⊆ [lll0,uuu0], hence there exists a subsequence for which x̄xxp∗

converges to a solution x̄xx∗ that belongs to [lll∗,uuu∗]; otherwise there would exist a node p for which

x̄xxp∗ /∈ [lllp,uuup]. In addition, x̄xx∗ ∈ X as X is a compact set.

We now show that x̄xx∗ ∈ vert([lll∗,uuu∗]). Indeed, let j ∈ {1, ..., nX} be a here-and-now variable

index which is infinitely branched on, and consider the subsequence P ′ ⊆ P such that, for all

p ∈ P ′, up+1
j = xp∗j . If P ′ is infinite, then {up∗j }p∈P ′ → x∗j since {xp∗j }p∈P ′ → x∗j as P ′ ⊆ P . If

instead P ′ is finite, then the subsequence P ′′ ⊆ P such that, for all p ∈ P ′′, lp+1
j = xp∗j is infinite

and, for the same reason, we have {lp∗j }p∈P ′′ → x∗j .

Thus, we have that x̄xx∗ ∈ vert([lll,uuu]) and, by Theorem 5, its cost is θ∗. In addition, x̄xx∗ is feasible

for (5.7) and thus θ∗ ≥ v∗. Since θp∗ ≤ v∗ for all p ∈ P , this is true for θ∗ as well, and hence θ∗

coincides with the optimal solution value v∗.

5.6 Computational experiments

In this section, we study the ARMKP introduced in Section 5.3. We are given n items, the j-th

characterized by a nominal weight w̄j and by a profit pj , and K identical knapsacks, each having

a given capacity W . We assume that the weight of each item cannot be known here and now, i.e.,

when the assignment of an item to a knapsack is decided. Rather, the actual weight of each item

j may take only two possible values, namely, wj and w̄j = wj + w̃j , with w̃j > 0.

In a first stage, every item has to be assigned to exactly one knapsack. The here-and-now

feasible space X is therefore modeled by means of binary variables xjk, defined for each item

j ∈ {1, ..., n} and knapsack k ∈ {1, ...,K}. Each variable takes value 1 iff item j is assigned to

knapsack k. More formally, X is deined as follows

X =

{
xxx ∈ {0, 1}n×K :

K∑
k=1

xjk = 1, j = 1, ..., n

}
(5.64)

As to uncertainty, we assume that up to Γ (Γ ∈ N\{0}) items may have a largest weight (i.e., w̄j)

than their nominal weight (i.e., wj). We therefore consider the following uncertainty set,

Ξ =

ξξξ ∈ {0, 1}n :

n∑
j=1

ξj ≤ Γ

 (5.65)

Accordingly, given ξξξ ∈ Ξ, the actual weight of each item j is wj + ξjw̃j .

Once the uncertainty reveals, the decision maker has to decide, for each knapsack, the set of

109

items to be packed (among those dispatched to the knapsack in the first stage) while respecting

the capacity constraint. This leads to the following definition of the wait-and-see feasible space:

Y (xxx,ξξξ) =

yyy ∈ {0, 1}n×K :

yjk ≤ xjk j = 1, ..., n, k = 1, ...,K
n∑

j=1

(wj + ξjw̃j)yjk ≤W k = 1, ...,K

 (5.66)

5.6.1 Reformulation

By exploiting the presented reformulation, we have that the ARMKP is equivalent to the following

problem with objective uncertainty only:

min
xxx∈X

max
ξξξ∈Ξ

min
(yyy,zzz)∈Z′(xxx)


n∑

j=1

K∑
k=1

(−pjyjk + pjξj(yjk − zjk))

 (5.67)

and

Z ′(xxx) =

(yyy,zzz) :

yyy ∈ {0, 1}n×K , zzz ∈ {0, 1}n×K j = 1, ..., n, k = 1, ...,K

zjk ≤ yjk ≤ xjk j = 1, ..., n, k = 1, ...,K
n∑

j=1

(wjyjk + w̃jzjk) ≤W k = 1, ...,K

 (5.68)

Given the here-and-now decisions, each item j can be packed in a knapsack k only if xjk = 1.

Intuitively, the objective function is well understood as it reduces to rewarding the selection of an

item j by −pj if ξj = 0. If instead ξj = 1 (i.e., if the item should have a larger weight), then the

decision maker can still achieve a reward of −pj provided that she decides zjk = 1 as well (i.e.,

the item is taken with its additional weight). This is, indeed, the essence of Corollary 5.

5.6.2 Instance generation

We generated random ARMKP instances using the following input parameters: number of items

n ∈ {10, 15}; uncertainty parameters H ∈ {0.1, 1.0} and Γ ∈ {1, 2, 3, 4}; number of knapsacks

K ∈ {2, 3, 4}; and capacity tightness ratio α ∈ {0.25, 0.50, 0.75}.
For each item j, both the profit pj and the nominal weight wj were generated according to

a discrete uniform distribution in [1, 1000]. The item weight in the worst case was defined as

w̄j = wj(1 + δj), where δj was randomly generated in [0, H], rounding the resulting value to the

closest integer. In our instances, all knapsacks have the same capacity, defined as α
∑n

j=1 wj . For

each combination of these parameters, we generated 5 instances, thus producing a benchmark with

840 instances.

5.6.3 Results

Table 5.1 reports the outcome of our experiments. Column “opt” gives the number of instances

(out of 5) that are solved to proven optimality within the time limit, whereas “time” reports the

average computing time, computed with respect to the instances solved to optimality only.

110

K = 2 K = 3 K = 4

H = 0.1 H = 1.0 H = 0.1 H = 1.0 H = 0.1 H = 1.0
n α Γ opt time opt time opt time opt time opt time opt time

10 0.25 1 5 0.4 5 0.5 5 6.0 5 2.1 5 405.6 5 70.1
2 5 3.3 5 1.0 5 277.7 5 113.1 4 72.4 3 0.9
3 5 6.4 5 5.3 5 209.7 5 86.3 4 1.1 4 0.8
4 5 8.1 5 6.1 5 37.0 5 255.9 4 1.4 4 1.3

0.50 1 5 3.7 5 0.7 5 126.0 5 241.3 5 0.2 5 1.0
2 5 15.0 5 13.3 5 776.8 5 732.5 1 0.1 2 0.1
3 5 56.8 5 16.7 3 886.3 5 1483.0 1 0.8 2 0.1
4 5 69.1 5 56.6 5 1542.8 5 1400.1 1 1.5 2 0.4

0.75 1 5 0.1 5 3.8 5 0.1 5 0.1 5 0.1 5 0.3
2 5 37.6 5 22.4 5 0.8 5 749.4 5 0.6 5 5.8
3 5 93.7 5 26.0 5 17.6 4 1357.0 5 2.6 5 22.8
4 5 68.3 5 21.8 5 73.2 3 1198.8 5 9.7 5 87.2

15 0.25 1 5 4.3 5 5.6 1 1572.9 3 419.1 1 0.6 5 8.3
2 5 253.5 5 132.6 0 – 1 3591.0 0 – 4 2.7
3 5 658.0 5 588.4 0 – 0 – 0 – 4 40.2
4 3 451.7 5 1041.6 2 2070.9 0 – 0 – 1 6.5

0.50 1 5 173.7 5 32.7 5 0.8 3 68.6 5 0.2 5 0.4
2 5 753.5 5 1008.1 0 – 0 – 5 208.3 1 686.1
3 1 126.5 4 1379.1 0 – 0 – 0 – 0 –
4 2 2369.9 3 1461.9 0 – 0 – 0 – 0 –

0.75 1 5 0.1 5 0.1 5 0.1 5 0.1 5 0.1 5 0.1
2 4 578.2 1 2314.7 5 2.1 5 72.6 5 1.2 5 11.0
3 1 486.0 0 – 5 41.3 4 1178.5 5 61.8 5 105.5
4 0 – 0 – 2 817.1 0 – 5 804.3 1 1235.2

Table 5.1: Computational results on ARMKP instances.

The results show that our algorithm is able to solve almost all the instances with n = 10,

though some of them are far from trivial, in particular for K = 4 and α ∈ {0.25, 0.75}. The

problem appears to be easier for smaller values of Γ, in particular, for Γ ∈ {1, 2}. For n = 15 the

instances are typically harder, in particular when Γ = 3, 4, i.e., approximately a quarter of the

items can deviate from the nominal weight. For K = 3 and α ∈ {0.25, 0.50}, only 15 out of 80

instances can be solved within time limit.

Table 5.2 gives some additional statistics on the behaviour of the algorithm, and reports the

number of nodes which were generated during the execution of the branch-and-bound algorithm

(column “nodes”), the average number of generated cuts (column “cuts”), and the average time

spent for solving the relaxation and the separation problems (columns “trel” and “tsep”, respec-

tively). All these figures are computed with respect to the instances solved to optimality only.

These results show that, although we considered instances of medium size, the number of nodes

is typically quite large (more than 1200, on average), each node producing, on average, around

60 separated cuts. In addition, we notice that the solving the relaxed problem is the most time

consuming step of the algorithm, as it accounts for almost 90% of the total solution time.

5.7 Conclusion

In this chapter, we considered adjustable robust optimization problems with mixed-integer wait-

and-see decisions and discrete uncertainty set. For this class of problems, we proposed a novel

111

n α Γ opt time nodes cuts trel tsep

10 0.25 1 30 80.8 1597.0 3103.5 73.6 7.1
2 27 84.0 1398.5 6957.5 78.3 5.7
3 28 55.2 730.3 4960.5 52.6 2.6
4 28 55.2 605.6 4639.6 52.3 2.9

0.50 1 30 62.2 1292.6 5668.2 59.6 2.5
2 23 334.3 2107.1 23262.9 314.1 20.2
3 21 497.3 2207.8 33429.4 475.0 22.3
4 23 667.2 2374.0 41392.0 626.4 40.7

0.75 1 30 0.7 42.1 195.1 0.7 0.0
2 30 136.1 635.9 10553.4 133.9 2.2
3 29 215.2 528.6 16955.0 212.8 2.4
4 28 174.9 264.1 12433.4 173.4 1.5

15 0.25 1 20 146.1 1426.3 6329.8 113.3 32.8
2 15 368.8 2098.3 19669.2 293.5 75.3
3 14 456.6 1612.9 33544.8 399.5 57.1
4 11 973.8 2122.5 53311.2 911.0 62.8

0.50 1 28 44.5 790.7 4955.1 42.1 2.3
2 16 658.5 2300.9 45363.0 632.9 25.6
3 5 1128.6 3365.8 71782.6 1120.4 8.2
4 5 1825.1 2263.0 76708.6 1814.3 10.8

0.75 1 30 0.1 1.3 20.3 0.1 0.0
2 25 202.5 285.7 14262.9 200.3 2.1
3 20 312.1 29.8 7396.3 310.9 1.2
4 8 861.4 7.0 5828.5 858.4 3.0

Table 5.2: Additional statistics on ARMKP instances

reformulation in which uncertainty appears in the objective function only. This allows us to derive

the first viable exact algorithm for this class of problems, closing a gap both from a theoretical and

from a computational viewpoint with respect to the existing literature. We performed a computa-

tional analysis of the algorithm on an adjustable robust variant of the well-known combinatorial

optimization problem coined the Adjustable Robust Multiple Knapsack Problem. Our computa-

tional results show that our approach is able to solve instances of medium size in a reasonable

amount of time.

112

CHAPTER 6

Application: Facility Location Problem with uncertain demands

Henri Lefebvre, Enrico Malaguti, Michele Monaci1

Facility Location Problems (FLPs) are among the most prominent applications of operations

research. This type of problem consists, for a company, in deciding the locations for opening

facilities so as to serve a given set of clients with maximum efficiency. The vast literature dedicated

to FLPs attest that a lot of variants can be considered given this definition.

In this chapter, we study FLPs in which the demand of each client is not completely known

at decision time, as it typically happens in many practical applications. Moreover, the timing of

the taken decisions (i.e., opening facilities and serving clients) suggests a two-stage nature of the

decision flow. As a consequence, we consider the case where only the opening of facilities shall be

decided here and now, the actual assignment of clients to opened facilities being postponed at a

later instant. We then apply the theoretical results introduced in Chapter 5 in order to readily

solve the obtained problem.

6.1 Problem description

6.1.1 Deterministic problem

We denote by V1 be the set of candidate locations for opening facilities and V2 be the set of clients.

Each location u ∈ V1 is associated with a setup cost fu which must be paid for opening a facility

in site u, as well as a maximum capacity qu restricting the amount of goods leaving the site.

Each client v ∈ V2 is associated with a given demand, noted dv and we let pv denote the unitary

profit earned by the decision maker for delivering one unit of product to a client. As it often

happens in practical applications, partially serving a client is not allowed. For each connection

(u, v) ∈ V1 × V2, we denote by tuv the unitary transportation cost from u to v.

1The content of this chapter has been accepted as a conference paper at ROADEF 2022 which took place in
Lyon, France.

113

We first assume that every input data is known at decision time. To model our problem, we

introduce, for each site u ∈ V1, a binary variable xu which equals 1 if and only if a facility is

opened in site u. Then, for every connection (u, v) ∈ V1 × V2, we let suv ≥ 0 be a continuous

decision variable accounting for the amount of demand which travels from u to v. Finally, we let

yv be a binary variable, defined for each client v ∈ V2, which equals 1 when client v is fully served

by the company. Now, our Facility Location Problem can be modeled as follows.

min
∑
u∈V1

fuxu +
∑
u∈V1

∑
v∈V2

tuvsuv −
∑
v∈V2

pvdvyv (6.1)

s.t.
∑
u∈V1

suv = dvyv ∀v ∈ V2 (6.2)

∑
v∈V2

suv ≤ quxu ∀u ∈ V1 (6.3)

suv ≥ 0 ∀(u, v) ∈ V1 × V2 (6.4)

xu ∈ {0, 1} ∀u ∈ V1 (6.5)

yv ∈ {0, 1} ∀v ∈ V2 (6.6)

Here, constraints (6.2) enforces that clients which are chosen to be served have their demand

fulfilled, while constraints (6.3) ensures that the total capacity of each facility is not exceeded.

Finally, the objective function (6.1) minimizes the sum of the opening costs and transportation

costs, to which is removed the profit made fulfilling each clients’ demand. Note that we trivially

have, for each (u, v) ∈ V1 × V2, suv ≤ qu so that every involved variables are generically bounded.

Moreover, observe that (6.2) can be turned into a greater-or-equal-to constraint without changing

the optimal solution space while dividing by two the size of the dual space of the continuous

relaxation of our model.

6.1.2 A two-stage robust variant

In practical applications, assuming knowing the exact demand of each client when taking the

decision to open facilities is a demanding assumption. To circumvent this fact, we introduce

a two-stage robust variant of FLP where demands are uncertain. In particular, following the

guidelines of Bertsimas and Sim [2004], we assume that the demand of each client v has a nominal

value d̄v and can be either increased by a fixed amount d̃+v or decreased by a fixed amount d̃−v .

For the sake of simplicity, we consider the case in which d̃+v = d̃−v and denote by d̃v this value.

We assume that up to Γ clients can change their demands, where Γ is an integer input parameter

used to control the robustness of the solution. Accordingly, each scenario is characterized by two

subsets L ⊆ V2 and H ⊆ V2 with |L|+ |H| ≤ Γ and the actual demand of each client v ∈ L (resp.

v ∈ H) is d̄v− d̃v (resp. d̄v + d̃v), all remaining clients (i.e., in V2\(L∪H)) having a demand equal

to d̄v. We introduce set Ξ, modeling the uncertainty set as

Ξ = {(L,H) : L ⊆ V2, H ⊆ V2, L ∩H = ∅, |L|+ |H| ≤ Γ} (6.7)

As done in Section 6.1.1 for the deterministic case, we model the here-and-now decisions by

introducing |V1| binary decision variables such that, for u ∈ V1, xu = 1 iff a facility is opened in

114

site u. We note X = {0, 1}|V1|.

The wait-and-see (assignment) problem is modeled as follows: for each client v ∈ V2, we

introduce a binary variable yv taking value 1 iff client v is entirely served and, for each connection

(u, v) ∈ V1×V2, there is a non-negative continuous variable suv representing the amount of goods

transported from u to v. Each client v is entirely served if the amount of goods arriving to v

is equal to its actual demand, see constraints (6.8). Moreover, constraints (6.9) impose that the

total amount of goods leaving each site u ∈ V1 must not exceed its total capacity qu. Therefore,

for a fixed here-and-now decision xxx ∈ X and for given L and H (as described above), the feasible

space Y (xxx, L,H) for the wait-and-see variables includes all vectors (yyy,sss) ∈ {0, 1}|V2| × R|V1|×|V2|
+

fulfilling the following constraints:

∑
u∈V1

suv ≥ d̄vyv +

−d̃vyv if v ∈ L

+d̃vyv if v ∈ H
∀v ∈ V2 (6.8)

∑
v∈V2

suv ≤ quxu ∀u ∈ V1 (6.9)

Finally, the two-stage robust facility location problem which we consider is the following

min
xxx∈X

{∑
u∈V1

fuxu + max
(L,H)∈Ξ

min
(yyy,sss)∈Y (xxx,L,H)

F (yyy,sss, L,H)

}
, (6.10)

where function F is defined as

F (yyy,sss, L,H) =
∑

(u,v)∈V1×V2

tuvsuv −
∑
v∈L

pv(d̄v − d̃v)yv −
∑

v∈V2\(L∪H)

pvd̄vyv −
∑
v∈H

pv(d̄v + d̃v)yv (6.11)

Before, jumping to the reformulation of problem (6.10) as a two-stage robust problem with

objective uncertainty (applying the results introduced in 5), we discuss, in the next section, a

numerical example showing the relevance of considering uncertain demands in this context.

6.2 Numerical example

Let us now consider the numerical example presented in Figure 6.1a where the numbers close to

the arcs denote the unitary transportation costs between sites (rectangles) and clients (circles).

The figure also reports the capacity and opening cost of each facility, as well as the unitary profit

and demand for each client.

Assuming that no client changes his demand, the optimal solution is to open two facilities in

sites 1 and 3 in order to both serve client A and B. The associated profit is 623, as it can be

seen in Figure 6.1b where figures on the arcs are the amount of goods being transported (opening

costs: 1286 + 867, transportation costs: 106× 7 + 20× 6 + 74× 3, earnings: 106× 24 + 94× 14;

profit: 623). Yet, we show that this solution is not robust when uncertainty is at stake. Indeed,

if client B increases his demand to 116, the total demand (106 + 116 = 222) becomes greater

than the overall capacity of the opened facilities (143 + 74 = 217). For this reason, one of the

two clients cannot be served anymore. Even worse, the decision maker won’t be able to make

profit in this particular setting. Indeed, assume that the decision maker decides to serve client A

115

1

2

3

q1 = 143
f1 = 1286

q2 = 85
f2 = 1046

q3 = 74
f3 = 867

A BdA ∈ [106, 114]
pA = 24

dB ∈ [94, 116]
pB = 14

7 6

4 2

7 3

(a) FLP instance

1

2

3

A B
d̂A = 106 d̂B = 94

106 20 74

(b) Γ = 0

1

2

3

A B
d̂A = 106 d̂B = 94

106 9

85

(c) Γ = 1

1

2

3

A B
d̂A = 106 d̂B = 94

106

(d) Γ = 2

Figure 6.1: Robust solutions for FLP with different uncertainty budgets Γ

only. This choice would yield a negative profit of −351 (already-paid opening costs: 1286 + 1046,

transportation costs: 106× 7, earnings: 106× 24; profit: −351). On the other hand, serving client

B only leads to a negative profit of −1143 (already-paid opening costs: 1286+1046, transportation

costs: 74 × 3 + 42 × 6, earnings: 116 × 14; profit: −1143). All in all, we end up in a situation

which is not profitable as a useless facility has been opened.

On the other hand, the decision maker could take into account the uncertain demands when

designing its network. Assuming that at most one client changes his demand, a more robust

solution is to open facilities in site 1 and 2, so as to prevent the previous situation to occur. In

such design, the worst-case scenario is one in which no client change his demand and the associated

profit is then of 562, achieved by serving both clients (opening costs: 1286 + 1046, transportation

costs: 106 × 7 + 31 × 6 + 85 × 2, earnings: 106 × 24 + 94 × 14; profit: 562). This situation is

depicted in Figure 6.1c. Now, assume that client B increases his demand to 116, as we previously

imagined. In this case, serving client B remains feasible, and the associated profit is 738 (opening

costs: 1286+ 1046, transportation costs: 106× 7+ 31× 6+ 85× 2, earnings: 106× 24+ 116× 14;

profit: 738).

In Figure 6.1d, we depicted the optimal here-and-now decision as well as the optimal wait-

and-see decision in the worst case assuming that up to two clients change their demands. In this

case, the worst-case corresponds to having both clients with their nominal demands. Note that

the here-and-now decision, again, changes to lead more robust decisions. Under this assumption,

in the worst-case, the decision maker will make a profit of 516.

This small example shows the importance and practical relevance of considering robust ap-

proaches as sensitivity analysis for network designs in FLP contexts.

116

6.3 Reformulation

In this section, we show how to apply the results obtained in Chapter 6 to our two-stage robust

FLP variant. Results are stated without proof as they directly follow from the previous chapter.

Let us start by considering the binary encoded version of Ξ. We consider the binary set Ξ ⊆
{0, 1}|V2| × {0, 1}|V2| comprising all couples of vectors lll and hhh such that the following constraints

are satisfied. ∑
v∈V2

(lv + hv) ≤ Γ and lv + hv ≤ 1 ∀v ∈ V2 (6.12)

Informally, (lll,hhh) now encodes sets L and H as binary decision variables, and one can consider

Y (xxx, lll,hhh) equivalent to Y (xxx, L,H). This allows us to rewrite the inner minimization problem (i.e.,

the wait-and-see problem) as follows, in terms of xxx, lll and hhh.

min
∑
v∈V2

(∑
u∈V1

tuvsuv − pv(d̄v − d̃vlv + d̃vhv)yv

)
(6.13)

s.t.
∑
u∈V1

suv ≥ yv(d̄v − d̃vlv + d̃vhv) ∀v ∈ V2 (6.14)

(6.9)

sss ∈ R|V1|×|V2|
+ , yyy ∈ {0, 1}|V2|

In this problem, uncertainty appears in the objective function and each uncertain coefficient

may take three values. As discussed in Section 5.2.2, this case can be incorporated in the framework

presented in Chapter 5. However, in this specific case where each coefficient can take 3 values

only, a more direct reformulation can be obtained by introducing variables zzzl and zzzh such that

zlv = yvlv and zhv = yvhv (for all v ∈ V2) and adding the corresponding linearization constraints

zlv ≤ lv zlv ≤ yv zlv ≥ yv + lv − 1 zhv ≤ hv zhv ≤ yv zhv ≥ yv + hv − 1 (6.15)

Let us introduce, for all x ∈ X and all (h, l) ∈ Ξ, set Z(x, l,h) as the set of decision variables

(y,S, zl, zh) such that y ∈ {0, 1}|V2|, S ∈ R|V1|×|V2|
+ , zl ∈ {0, 1}|V2|

+ and zh ∈ {0, 1}|V2|
+ and

fulfilling capacity constraints (6.9), linearization constraints (6.15) as well as constraints (6.16)

defined as (6.14) where bilinear terms have been substituted.∑
u∈V1

suv ≥ d̄vyv − d̃vzlv + d̃vz
h
v v ∈ V2 (6.16)

In turn, it is clear that the wait-and-see problem is equivalent to the following problem.

min
(y,S,zl,zh)∈Z(x,l,h)

{∑
v∈V2

(∑
u∈V1

tuvsuv − pv(d̄v − d̃vlv + d̃vhv)yv

)}
(6.17)

By the same arguments used in Remark 14, constraints of type “zhv ≤ hv” and of type “zlv ≥
yv + lv − 1” can be omitted.

Now, following the development of Chapter 5, we can derive the following theorem.

117

Theorem 7. For all x ∈ X and (l,h) ∈ Ξ, the wait-and-see problem in the two-stage robust FLP

is equivalent the following problem,

max
(λl,λh)≥0

g(λl,λh,x, l,h) (6.18)

where g(λl,λh;x, l,h) is defined as the optimal objective value of the following problem,

min
(y,S,zl,zh)∈ZX (x)

{∑
v∈V2

(∑
u∈V1

tuvsuv − pv(d̄v − d̃vlv + d̃vhv)yv + λh
vhv(yv − zhv) + (1− lv)λ

l
vz

l
v

)}
(6.19)

where ZX() is defined as Z() where constraints ”zhv ≤ hv”, ”zlv ≥ yv + lv − 1”, ”yv − zlv ≤ 1− lv”
and ”zhv ≥ yv + hv − 1” have been omitted.

Moreover, a clever analysis of the obtained problem in Theorem 7 directly leads to the following

corollary, akin to Corollary 5 and Lemma 5.

Corrolary 6. For all v ∈ V2, let λlj = pj(d̄j − d̃j) and λhj = pj(d̄j + d̃j), then, the following holds.

max
(λl,λh)≥0

g(λl,λh,x, l,h) = g(λl,λh;x, l,h) (6.20)

All in all, we have now obtained the desired reformulation of our two-stage robust FLP into an

equivalent two-stage robust problem where the uncertain parameters are confined in the objective

function. This reformulation is recalled as follows.

min
x∈X

max
(l,h)∈Ξ

min
(y,S,zl,zh)∈ZX(x)

Π(y,S, zl, zh, l,h) (6.21)

Π(y,S,zl,zh, l,h) =
∑
j∈V2

 ∑
u∈V1

tuvsuv − pv(d̄v − d̃vlv + d̃vhv)yv + λh
vhv(yv − zhv) + (1− lv)λ

l
vz

l
v

 (6.22)

Then, the algorithmic solution from Kämmerling and Kurtz [2020], which was extended in Chapter

5, can be employed in order to solve the obtained reformulation.

6.4 Computational experiments

6.4.1 Instance generation

We generated facility location instances according to Cornuéjols et al. [1991], and considered the

following sizes (|V1|, |V2|): (6, 12), (8, 16), (10, 12), and (12, 24). For each site u ∈ V1, the

capacity qu was uniformly generated between 10 and 160 while the opening cost was computed as

fu = αu+βu
√
qu where αu and βu were generated between 0 and 90 and 100 and 110, respectively.

The candidate positions for opening facilities and the location of clients were randomly generated

in the unitary square. Then, for each pair (u, v) ∈ V1 × V2, the transportation cost tuv was

defined as the associated Euclidean distance multiplied by 10. Demands were generated so that∑
u∈V1

qu/
∑

v∈V2
d̄v = µ where µ is a parameter taking value 1.5 or 2, and d̃v was set to d̄v

multiplied by a randomly generated number between 0.00 and 0.25 (i.e., demands can vary up

to 25%). Finally, every client’s profit was set equal to pv = 4
|V1|

∑
u∈V1

tuv. Every input data

118

µ = 1.5 µ = 2.0
|V1| |V2| Γ opt time opt time

6 12 2 16 0.9 16 0.8
4 16 20.6 16 29.5
6 16 117.9 15 107.0

8 16 2 16 3.5 16 2.8
4 15 367.4 15 173.9
6 5 143.7 11 845.5

10 20 2 16 9.4 16 6.4
4 11 752.1 14 549.3
6 3 1150.2 7 1123.1

12 24 2 16 18.6 16 15.7
4 9 1277.1 5 797.1
6 2 708.7 1 2173.8

Table 6.1: Computational results on ARFLP instances

was rounded to the closest integer. For each combination of (|V1|, |V2|) and µ, we generated 16

instances which were solved for Γ ∈ {2, 6, 8}.

6.4.2 Results

Tables 6.1 and 6.2 report the outcome of our experiments and give the same information as Tables

5.1 and 5.2 in Chapter 5. The results show that our reformulation is able to solve most of the

instances of size (6, 12) and (8, 16) for relatively small values of Γ (2 and 4 in particular), whereas

larger instances seem to be harder to solve within the given time limit. In addition, we note that

our approach can solve all instances with Γ = 2 in less than twenty seconds. Finally, we can

notice that the instances with bigger values of µ are harder to solve in practice. As to the number

of nodes, it is considerably smaller than its counterpart on the ARMKP instances, the average

value being 2. On average, the algorithm generates 600 cuts per node, i.e., considerably more

than in the ARMKP case. Finally, for this problem as well, the solution of the relaxed problem

takes most of the total time (around 80% on average), the separation problem requiring a smaller

computational effort. Indeed, while the relaxation consists in maximizing a concave (piecewise)

function over a binary set, the separation problem has the same complexity as the deterministic

FLP, which can be easily solved in practice for medium-size instances.

119

|V1| |V2| Γ opt time nodes cuts trel tsep

6 12 2 32 0.9 2.3 72.8 0.4 0.4
4 32 25.1 2.3 400.8 21.5 3.4
6 31 112.6 2.5 732.4 104.1 8.2

8 16 2 32 3.2 2.3 146.1 1.9 1.2
4 30 270.6 2.3 1143.1 249.3 20.6
6 16 626.1 1.6 1378.6 591.5 33.8

10 20 2 32 7.9 2.6 230.8 5.1 2.6
4 25 638.5 2.4 1595.2 587.6 49.6
6 10 1131.3 1.0 1466.4 1069.4 60.7

12 24 2 32 17.1 2.1 312.4 11.6 5.2
4 14 1105.7 1.7 1931.4 1012.8 90.7
6 3 1197.1 1.0 1648.0 1113.2 82.2

Table 6.2: Additional statistics on ARFLP instances

120

CHAPTER 7

Convex problems with 0-1 polytope uncertainty

Henri Lefebvre, Enrico Malaguti, Michele Monaci

In this chapter, we study ARO problems where the second-stage feasible space is defined by means

of convex functions. Such ARO problems can be formulated as

inf
x∈X

sup
ξ∈Ξ

inf
y∈Y (x,ξ)

g0(x,y), (7.1)

where X denotes the feasible set of decisions to be taken here-and-now (first-stage decisions), Ξ is

the uncertainty set, and Y (x, ξ) is the set of all feasible recourse actions (second-stage decisions)

for a given x ∈ X and ξ ∈ Ξ.

7.1 Introduction

7.1.1 Problem formulation

Let nX , nΞ, nY and m be given natural numbers. We let the first-stage feasible set X be any

subset of RnX and assume that the uncertainty set Ξ ⊆ RnΞ is defined as

Ξ =
{
ξ ∈ RnΞ

+ : Uξ ≤ d
}

(7.2)

where U ∈ Rq×nΞ and d ∈ Rnq . As is customary, we write matrices and vectors in bold case and

use ≤ to compare vectors of agreeable size.

For each i = 1, . . . ,m and j = 1, . . . , nΞ, we let fij : RnX → R be given real-valued convex

functions; for a given x ∈ RnX , we denote by F (x) the m × nΞ matrix whose generic element is

fij(x). Similarly, for each i = 1, . . . ,m, we let gi : RnX+nY → R be a convex function; for a given

x ∈ RnX and y ∈ RnY , we denote by g(x,y) the m-dimensional vector whose generic element is

gi(x,y) .

121

For given x ∈ X and ξ ∈ Ξ, the second-stage feasible space Y (x, ξ) is defined by

Y (x, ξ) = {y ∈ RnY : F (x)ξ + g(x,y) ≤ 0} . (7.3)

Finally, we assume that the objective function g0 : RnX+nY → R is a real-valued convex function.

In other words, we consider the class of problems of type (7.1) where the uncertainty set has

a polyhedral representation and the second-stage optimization problem is modelled as a convex

problem.

Additionally, we make the following technical assumption.

Assumption O. For every (x0,x) ∈ R×X and every ξ ∈ Ξ, the following set, noted Z(x, ξ), is

closed.

Z(x0,x, ξ) =

{(
α

β

)
∈ Rm+1 : ∃y ∈ RnY ,

g0(x,y)− x0 ≤ α
F (x)ξ + g(x,y) ≤ β

}
(7.4)

7.1.2 Contribution

As discussed in the literature review in Chapter 2, few exact methods for convex ARO have been

proposed so far, mostly relying on strong assumptions. In this work, we start filling this gap by

providing a reformulation which is valid for the broad case of ARO problems introduced above.

In addition, we introduce a Generalized-Benders-Decomposition-type algorithm Geoffrion [1972]

and a column-and-constraint generation scheme Zhao and Zeng [2012] under the unifying lens of

convex conjugates. This method can be applied to any convex ARO, including cases where the

second stage is an SOCP, an SDP, or a (conic) LP. In our solution scheme, separation of robust

feasible solutions asks for solving a non-convex optimization problem. We show that a suitable

convex reformulation of the separation problem can be used when the uncertainty set has some

structural properties, thus allowing to derive a computationally sound algorithm built on top of a

general-purpose solver. Finally, we give computational evidence of the applicability of our solution

method to an uncertain planing application from the literature.

This chapter is organized as follows. In Section 7.2, we introduce our main theoretical results.

In particular, we show in Section 7.2.1 that separating first-stage solutions can be done by means

of a non-convex MINLP and derive a Generalized Benders Decomposition algorithm in Section

7.2.2 and a column-and-constraint generation algorithm in Section 7.2.3. Convergence of both al-

gorithms is established in Section 7.2.4. In Section 7.2.5, we show how the non-convex MINLP can

be exactly reformulated as a convex MINLP by exploiting structural properties of the uncertainty

set. Finally, we apply our solution methods to a resource planning problem in Section 7.3.

7.2 Theoretical development

7.2.1 A non-convex separation problem

Problem 7.1 can be reformulated as (see e.g., Takeda et al. [2007])

(P) inf x0 (7.5)

s.t. x ∈ X,x0 ∈ R (7.6)

122

∀ξ ∈ Ξ,∃y ∈ Y (x, ξ), x0 ≥ g0(x,y). (7.7)

Since explicitly adding all constraints (7.7) to the formulation is not viable in practice, we

follow a separation approach in which, given pair (x0,x), we check whether a violated constraint

exists. Solving the separation problem asks to answer the following question:

“Given (x0,x) ∈ R×X, can we show that for all ξ ∈ Ξ there exists a ŷ ∈ Y (x, ξ) such that

x0 ≥ g0(x, ŷ) ? If not, can we identify ξ̂ ∈ Ξ such that either Y (x, ξ̂) = ∅ or
∀y ∈ Y (x, ξ̂), x0 < g0(x,y) ?”.

In the following lemma, we give a sufficient and necessary condition for answering an easier

question: given (x0,x) ∈ R ×X and ξ ∈ Ξ, is there a feasible second-stage decision ŷ ∈ Y (x, ξ)

such that x0 ≥ g0(x, ŷ)?

Lemma 6. Given (x0,x) ∈ R×X and ξ ∈ Ξ, there exists ŷ ∈ Y (x, ξ) such that x0 ≥ g0(x, ŷ) if
and only if the following condition holds

∀(λ0,λ) ∈ RmY +1
+ , inf

y∈RnY

{
λT (F (x)ξ + g(x,y)) + λ0(g0(x,y)− x0)

}
≤ 0. (7.8)

Proof. First, it is trivial that ŷ ∈ Y (x, ξ) and x0 ≥ g0(x, ŷ) implies (7.8).

Assume now that condition (7.8) holds, in which case we have

sup
(λ0,λ)∈RmY +1

+

inf
y∈RnY

{
λT (F (x)ξ + g(x,y)) + λ0(g0(x,y)− x0)

}
≤ 0 (7.9)

Since (0, 0) is a possible choice for (λ0,λ) in (7.9), we have that

sup
(λ0,λ)≥0

inf
y∈RnY

{
λT (F (x)ξ + g(x,y)) + λ0(g0(x,y)− x0)

}
= 0. (7.10)

This shows that the dual of the following problem has an optimal objective value of 0.

inf
y∈RnY

{0 : x0 ≥ g0(x,y),y ∈ Y (x, ξ)} . (7.11)

Recalling Assumption O, it must be that the primal problem (7.11) is feasible (see also, Geoffrion

[1972], Theorem 5.1).

Remark 18. Condition (7.8) of Lemma 6 remains valid when adding the restriction ||(λ0,λ)|| =
1, where ||•|| is any norm of Rm+1. Indeed, scaling does not impact the sign of the inner inf

optimization problem in (7.9).

Thanks to Lemma 6, we now introduce a non-convex optimization problem which solves the

separation problem.

Theorem 8. Let (x0,x) ∈ R×X, the following propositions are equivalent.

1. ∀ξ ∈ Ξ,∃ŷ ∈ Y (x, ξ), x0 ≥ g0(x, ŷ);

123

2. The following non-convex optimization problem has an optimal objective value which is non-

positive

sup −
m∑
i=0

λigi|∗x

(
ui

λi

)
+ λTF (x)ξ − λ0x0 (7.12)

s.t.

m∑
i=0

ui = 0 (7.13)

(λ0,λ) ∈ Λ (7.14)

ξ ∈ Ξ (7.15)

ui ∈ RnY i = 0, 1, . . . ,m, (7.16)

where gi|x(•) = gi(x, •), g0|x(•) = g0(x, •), and Λ = {(λ0,λ) ∈ Rm
+ × R+ : ||(λ0,λ)|| = 1}.

Proof. Let (x0,x) ∈ R × X. By Lemma 6, for any ξ ∈ Ξ, there exists ŷ ∈ Y (x, ξ) such that

x0 ≥ g0(x, ŷ) if and only if condition (7.8) is satisfied. Let (λ0,λ) be any element of Λ. We start

by re-arranging the terms of (7.8) for (λ0,λ) as follows

inf
y∈RnY

{
λTg|x(y) + λ0g0|x(y)

}
+ λTF (x)ξ − λ0x0 ≤ 0 (7.17)

where terms which do not depend on y are moved out from the optimization problem. Now, letting

ϕ(y) = λTg|x(y) + λ0g0|x(y), by definition the inf problem in (7.17) is (−ϕ)∗(0). By exploiting

the fact that (−ϕ)∗(z) = −ϕ∗(−z) for any z (see Rockafellar [1996], p. 308), we have that (7.17)

is equivalent to

− ϕ∗(0) + λTF (x)ξ − λ0x0 ≤ 0. (7.18)

Using standard conjugate rules (see Rockafellar [1996], p. 145), one obtains the following expres-

sion of ϕ∗

ϕ∗(z) = inf

m∑
i=0

(λigi|x)
∗(ui) (7.19)

s.t.

m∑
i=0

ui = z (7.20)

ui ∈ RnY i = 0, 1, ...,m. (7.21)

Then, we have (λigi|x)∗(ui) = λigi|∗x(ui/λi) (see Rockafellar [1996], p. 140). The proof is achieved

by requiring that (7.17) be enforced for all ξ ∈ Ξ.

Example 11 (ℓp-norm objective and constraints). Assume that, for each i = 0, 1, ..., m, it holds

gi(x,y) =
∣∣∣∣Ki

Xx+Ki
Y y + χi

∣∣∣∣
pi

+ δiX
T
x+ δiY

T
y + κi where Ki

X , Ki
Y , χ

i, δiX , δiY and κi are

given. Then, after some convex conjugate algebra, the separation problem from Theorem 8 reads

sup

m∑
i=0

ai(x)Tzi + (b(x) + F (x)ξ)
T
λ− λ0x0 (7.22)

s.t.

m∑
i=0

KiT

Y zi +∆λ+ δ0Y λ0 = 0 (7.23)

124

∣∣∣∣zi
∣∣∣∣
p′
i

≤ λi i = 0, 1, ...,m (7.24)

zi ∈ RnY i = 0, 1, ...,m (7.25)

(λ0,λ) ∈ Λ (7.26)

ξ ∈ Ξ (7.27)

where ai(x) = Ki
Xx+ χi, b(x) = (δ1X

T
x+ κ1, . . . , δmX

Tx+ κm)T and ∆ = (δ1Y , . . . , δ
m
Y).

Proof. For brevity, the proof is reported in Appendix B.

Example 12 (Linear case). Assume that gi(x,y) = t(i)x + w(i)y for given matrices w(0), W ,

t(0) and T . Then, Theorem 8 yields the following separation problem:

max (Tx+ F (x)ξ)Tλ+ t(0)xλ0 − λ0x0 (7.28)

s.t.W Tλ+wT
(0) = 0 (7.29)

λ ∈ Λ (7.30)

ξ ∈ Ξ. (7.31)

For the specific case where F is affine in x, T = 0 and w(0) = 0, we enlight that this result is

equivalent to Theorem 1 in Ayoub and Poss [2016].

7.2.2 Generalized Benders Decomposition

In this section, we introduce a new Generalized-Benders-Decomposition algorithm able to solve

(7.1) by means of successive separation of infeasible (x0,x) pairs.

For notational convenience, we denote by s a generic tuple (ξ, λ0,λ,u
0, ...,um), and by S be

the set of all such tuples satisfying constraints (7.13)-(7.16). In addition, we introduce function σ

defined for each x0 ∈ R, x ∈ X and s ∈ S as the objective function (7.12), i.e.,

σ(x0,x; s) = −
m∑
i=0

λigi|∗x

(
u

λi

)
+ λTF (x)ξ − λ0x0.

In the following theorem, we use the result from Theorem 8 to introduce an alternative pro-

jected formulation of (7.1).

Theorem 9. Assume X is convex, then Problem (7.1) is equivalently solved by the following

infinite-dimensional convex MINLP

inf x0 (7.32)

s.t. x ∈ X,x0 ∈ R (7.33)

σ(x0,x; s) ≤ 0 ∀s ∈ S. (7.34)

Proof. The reformulation holds by Theorem 8. To show that it is convex, we have to show that,

for each s ∈ S, function σ(•, •; s) is convex with respect to x0 and x. Note that since λ, ξ ≥ 0

125

and function fij is convex for each i = 1, . . . ,m and j = 1, . . . , nΞ, we have that

x 7→ λTF (x)ξ − λ0x0 (7.35)

is convex since the non-negative sum of convex functions is convex and the last term is linear. We

therefore focus on the remaining part, and first show that x 7→ g0|∗x(π) is a concave function for

any fixed π ∈ RnY . Thus, let π ∈ RnY be fixed. By definition, we have

g0|∗x(π) = sup
y∈dom(g0|x)

{ πTy − g0|x(y)} = sup
y∈dom(g0|x)

{ πTy − g0(x,y)}. (7.36)

Let us introduce new variables z ∈ RnX such that z = x. Then, the following holds by

Lagrangian duality:

g0|∗x(π) = sup
(z,y)∈dom(g0),z=x

{ πTy − g0(z,y)} (7.37)

= inf
λ∈RnX

sup
(z,y)∈dom(g0)

{ λT (z − x) + πTy − g0(z,y)} (7.38)

= inf
λ∈RnX

sup
(z,y)∈dom(g0)

{ −λTx+

(
λ

π

)T(
z

y

)
− g0(z,y)} (7.39)

= inf
λ∈RnX

{−λTx+ g∗0(λ,π)}. (7.40)

Thus, g0|∗x(π) can be expressed as the infimum of infitely many affine functions of x, thus, it is

concave in x. Clearly, similar arguments can be applied to each x 7→ gi|∗x(π) with i = 1, ...,m so

as to conclude.

Algorithm 4: Generalized Benders decomposition

Input: an instance of (7.1), a tolerance ε ≥ 0 and an initial set Ŝ ⊆ S such that (MP) is
bounded.

1 Stop← false ;
2 while Stop = false do
3 Solve (MP) ;
4 if (MP) is infeasible then
5 Declare (7.1) infeasible and return ;

6 Let (x∗0,x
∗) be an optimal solution of (MP) ;

7 Solve the separation problem (7.12)-(7.16) for (x∗0,x
∗) ;

8 Let s∗ = (ξ∗, λ∗0,λ
∗,u0∗, ...,um∗) be an optimal solution of the separation problem ;

9 if σ(x∗0,x
∗; s∗) ≥ 0 then

10 Ŝ ← Ŝ ∪ {s∗} ;
11 else
12 Stop← true ;

Based on Theorem 9, we can derive a cutting-plane algorithm where cuts (7.34) are dynam-

ically generated, for which we discuss finite convergence. The complete procedure is reported in

126

Algorithm 4, where problem (MP) is defined as,

inf{x0 : (x0,x) ∈ R×X σ(x0,x; s) ≤ 0 ∀s ∈ Ŝ} (MP)

for some Ŝ ⊆ S which is dynamically augmented.

7.2.3 Column-and-constraint generation

As a second solution approach, we generalize the column-and-constraint algorithm introduced in

Zeng and Zhao [2013] to our convex setting. A complete description of the algorithm is given in

Algorithm 5, where (M̃P) is defined as,

inf{x0 : (x0,x) ∈ R×X yξ̂ ∈ Y (x, ξ̂) ∧ x0 ≥ g0(x,yξ̂) ∀ξ̂ ∈ Ξ̂} (M̃P)

for some Ξ̂ ⊆ Ξ which is dynamically augmented.

Algorithm 5: Column-and-constraint generation

Input: an instance of (7.1) and an initial set Ξ̂ ⊆ Ξ such that (M̃P) is bounded.
1 HasConverged← false ;
2 while HasConverged = false do

3 Solve (M̃P) ;

4 if (M̃P) is infeasible then
5 Declare (7.1) infeasible and stop ;

6 Let (x∗0,x
∗) be an optimal solution of (M̃P) ;

7 Solve the separation problem ;
8 (7.12)-(7.16) for (x∗0,x

∗) ;

9 Let s∗ = (ξ∗, λ0,λ
∗,u0∗, ...,um∗) be an optimal solution of the separation problem ;

10 if σ(x∗0,x
∗; s∗) > 0 then

11 Ξ̂← Ξ̂ ∪ {ξ∗} ;
12 else
13 HasConverged← true ;

7.2.4 Convergence

In this section, we study the convergence properties of the generalized Benders decomposition and

the column-and-constraint generation algorithm. To ease our discussion, we first introduce some

definitions.

Definition 3 (ε-oracle for separation). Let ε ≥ 0. We say that an oracle is an ε-oracle for the

separation problem if and only if, given pair (x0,x) ∈ R×X, it returns s̃ such that

1. s̃ ∈ S ;

2. sup
s∈S

σ(x0,x; s)− σ(x0,x, s̃) ≤ ε.

Moreover, we say that the ε-oracle is stable if for a given (x0,x), different calls to the oracle yield

the same s̃. It is called extreme if the returned s̃ = (ξ, λ0,λ,u
0, ...,um) is such that ξ ∈ vert (Ξ).

127

Definition 4 (ε-relaxed feasible space). We define the ε-relaxed feasible space as

Y ε(x, ξ) = {y ∈ RnY : F (x)ξ + g(x,y) ≤ εe} . (7.41)

Moreover, we define the ε-relaxed version of (7.1) as the problem obtained by substituting Y (x, ξ)

by Y ε(x, ξ) in (7.1).

We are now ready to state our first convergence result regarding the generalized Benders

decomposition algorithm.

Theorem 10. Assume solving the separation problem with a stable ε-oracle. Then, Algorithm

4 finitely terminates. Moreover, it either returns a solution (x0,x) such that ∀ξ ∈ Ξ,∃y ∈
Y ε(x, ξ), x0 ≥ g0(x,y)− ε, or correctly concludes that (7.1) is infeasible.

Proof.

1. First, observe that the separation problem from Theorem 8 is an uncoupled biconvex prob-

lem. Thus, at most |vert (Ξ) | cuts of type (7.34) exist. We claim that no first-stage solution

can repeat itself so that at most |vert (Ξ) |+ 1 iterations are needed to terminate. Assume,

by contradiction, that (x̂0, x̂) is repeated, meaning that the cut “σ(x0,x; ŝ) ≤ 0” is part

of MP at the second apparition of (x̂0, x̂), ŝ being the solution returned by the oracle for

(x̂0, x̂). By feasibility, it holds σ(x̂0, x̂; ŝ) ≤ 0. This implies that sups∈S σ(x̂0, x̂; s) ≤ ε.

This, in turn, implies the termination of the algorithm. (Here, we used the fact that the

ε-oracle is stable.)

2. Assume that, at some iteration, the oracle returns a solution s∗ such that σ(x∗0,x
∗; s∗) ≤ 0.

Together with sups∈S σ(x
∗
0,x

∗; s)− σ(x∗0,x∗, s∗) ≤ ε, we have that sups∈S σ(x
∗
0,x

∗; s) ≤ ε.

In turn, this implies

sup
s∈S

σ(x∗0,x
∗; s) (7.42)

= sup
ξ∈Ξ,(λ0,λ)∈Λ

inf
y∈RnY

{
λT (F (x∗)ξ + g(x∗,y)) + λ0(g0(x

∗,y)− x∗0)
}

(7.43)

= sup
ξ∈Ξ

inf
y∈RnY

sup
(λ0,λ)∈Λ

{
λT (F (x∗)ξ + g(x∗,y)) + λ0(g0(x

∗,y)− x∗0)
}

(7.44)

= sup
ξ∈Ξ

inf
y∈RnY

max

{
max

i=1,...,m

{
f(i)(x

∗)ξ + gi(x
∗,y)

}
; g0(x

∗,y)− x∗0; 0
}

(7.45)

≤ ε. (7.46)

Here, the minimax theorem from Perchet and Vigeral [2015] was used to swap the sup and

inf operators. This shows that (x0,x) is such that ∀ξ ∈ Ξ,∃y ∈ Y ε(x, ξ), x0 ≥ g0(x,y)− ε.

3. Assume that, at some iteration, (MP) is infeasible. This means that

∀(x0,x) ∈ R×X,∃ŝ ∈ Ŝ, σ(x0,x; ŝ) > 0 (7.47)

which implies that

∀(x0,x) ∈ R×X, sup
s∈S

σ(x0,x; s) > 0. (7.48)

128

By Theorem 8, this shows that (7.1) is infeasible.

This theorem directly implies convergence of the column-and-constraint generation algorithm,

as announced in the following theorem.

Theorem 11. Assume solving the separation problem with an extreme ε-oracle. Then, Algorithm

4 finitely terminates. Moreover, for a sufficiently small ε > 0, it either returns a solution (x0,x)

such that

– ∀ξ ∈ Ξ̂,∃y ∈ Y (x, ξ), x0 ≥ g0(x,y) ;

– ∀ξ ∈ Ξ\Ξ̂,∃y ∈ Y ε(x, ξ), x0 ≥ g0(x,y)− ε,

or correctly concludes that (7.1) is infeasible. The result also holds for ε = 0.

Proof. The proof is similar to that of the previous theorem. The stronger characterization of

the returned solution directly comes from the fact that the oracle is extreme and the associated

constraints are exact.

7.2.5 0-1 polytopic uncertainty sets

Algorithms 4 and 5 give general schemes for solving problem (7.1), though its applicability depends

on the possibility of solving the separation problem in practice. In this section, we present a convex

MINLP formulation of the latter in the relevant case in which Ξ is as an affine mapping of a 0-1

polytope. Note that, given any polytopic uncertain set, there exists an affine mapping to a 0-1

polytope. To see this, one can always express Ξ as the set of convex combinations of its extreme

points. In the following, we will denote by Ω ⊆ RnΩ the 0-1 polytope associated with Ξ, and

assume its dimension nΩ be manageable. Clearly, when Ξ ⊆ [0, 1]nΞ , U is a totally unimodular

matrix and d is integral (see (7.2)), the identity mapping can be used and nΩ = nΞ. This is

notably the case for the budgeted uncertainty set (see Bertsimas and Sim [2004]) with an integer

parameter. For the case where the budget parameter is fractional, Ayoub and Poss [2016] shows

that an affine mapping with a 0-1 polytope of size 2nΞ exists. We now state our theorem.

Theorem 12. Let Ω ⊆ RnΩ be a given 0-1 polytope and let ρ0,ρ1, ...,ρnΩ ∈ RnΞ be some vectors.

Assume that Ξ = ρ̃(Ω) where ρ̃ : ω 7→ ρ0 +
∑nΩ

k=1 ρ
kωk. Then, given a pair (x0,x) ∈ R×X, the

separation model introduced in Theorem 8 can be reformulated as the following convex MINLP.

sup −
m∑
i=0

λigi|∗x

(
u

λi

)
+ λTF (x)ρ0 +

nΩ∑
k=1

θkTF (x)ρk − λ0x0 (7.49)

s.t.

m∑
i=0

ui = 0 (7.50)

(λ0,λ) ∈ Λ (7.51)

θk ≤ λ k = 1, ..., nΩ (7.52)

θk ≤ ωke k = 1, ..., nΩ (7.53)

θk ≥ λ+ ωke− e k = 1, ..., nΩ (7.54)

129

θk ∈ Rm
+ k = 1, ..., nΩ (7.55)

ω ∈ Ω ∩ {0, 1}nΩ (7.56)

ui ∈ RnY i = 0, 1, ...,m (7.57)

Proof. By replacing each ξ ∈ Ξ by an ω ∈ Ω such that ξ = ρ0 +
∑nΩ

k=1 ρ
kωk, objective function

(7.12) can be rewritten as

sup −
m∑
i=0

λigi|∗x

(
ui

λi

)
+ λTF (x)ρ0 +

nΩ∑
k=1

λTF (x)ρkwk − λ0x0

Noting that this function includes bilinear terms, we can restrict our attention to ω ∈ vert (Ω) ⊆
{0, 1}nΩ . By introducing variables θki = λiωk (i = 1, ...,m and k = 1, ..., nΩ), the bilinear term

can be linearized as follows

nΩ∑
k=1

λTF (x)ρkwk =

nΩ∑
k=1

m∑
i=1

nΞ∑
j=1

fij(x)ρ
k
j λiωk︸︷︷︸

=θk
i

=

nΩ∑
k=1

θkTF (x)ρk. (7.58)

The result follows as (7.52)–(7.54) are linearization constraints and 0 ≤ λi ≤ 1 by assumption.

7.3 Application: resource planning problem

We tested our method on a stochastic resource planning problem from the literature, modified so

as to incorporate resource congestion.

Our algorithm was implemented in C++17 using Gurobi 9.5 to solve the underlying optimiza-

tion problems. All experiments were conducted on an AMD Ryzen 5 PRO 4650GE at 3.3 GHz,

with a time limit equal to 3,600 CPU seconds per run.

7.3.1 Problem description

We are given a set I of resources (e.g., server types) and a set J of customers. Each resource i ∈ I
is associated to a unitary cost ci, and each customer j ∈ J has a demand dj . We denote by µij

the service rate of resource i for customer j, i.e., the fraction of demand of j can be served by

a unit of i. The deterministic problem introduced in Luedtke [2010] asks to serve all customers’

demands while minimizing the total cost of the used resources, and is formulated as follows

min
∑
i∈I

cixi (7.59)

s.t.
∑
j∈J

yij ≤ xi i ∈ I (7.60)

∑
i∈I

µijyij ≥ dj j ∈ J (7.61)

xi ≥ 0 i ∈ I (7.62)

yij ≥ 0 (i, j) ∈ I × J, (7.63)

130

Here, each variable xi (i ∈ I) represents the amount of resource i to buy, while yij ((i, j) ∈ I × J)
is the amount of resource i allocated to customer j.

We modify the model to consider congestion, which may reduce the possibility for the customers

to access the resources, thus requiring an increased amount of resource to guarantee a given service

rate. Accordingly, constraints (7.60) are replaced by(
1 + αi

[∑
j∈J

yij
]βi
)(∑

j∈J

yij

)
≤ xi i ∈ I, (7.64)

where αi and βi are given parameters related to resource i ∈ I. This congestion function, which

is convex for any non-negative αi and βi, was introduced by Desrochers et al. [1995] for a facility

location problem.

In a two-stage setting, customers’ demands are typically not known when the resources have

to be bought, whereas the assignment of customers to resources can be postponed after the actual

realization of the demands reveals. We assume that the demand of each customer j has a nominal

value d̄j and maximum deviation d̃j . The resulting demand is dj = d̄j+ξj d̃j , where ξj is a random

parameter and ξ belongs to a budgeted uncertainty set Ξ = {ξ ∈ [0, 1]|J| :
∑

j∈J ξj ≤ Γ}.

7.3.2 Instance generation

We generated random instances as follows: for each resource i and customer j, the service rate

µij is defined as U(0, 1), where U(a, b) denotes the uniform distribution between a and b. For

each customer j, the nominal demand d̄j is taken from U(1, 50), and the maximum deviation d̃j

is either 0.05d̄j or 0.10d̄j . For each resource i, the cost ci is in U(8, 10)
∑

j∈J µij/|J |, so that the

higher the average efficiency the more costly the resource. In addition, congestion of the resource

is defined by αi in U(0, 1) and βi = 1.

We generated instances of different sizes (|I|, |J |) equal to (10, 20), (10, 30), (15, 30), (15, 40),

(20, 40) and (20, 50). For each size, 5 instances were generated. Finally, the uncertainty budget Γ

was set to ⌊p|J |⌋ where p ∈ {0.05, 0.10, 0.20}, i.e., up to p% of the clients change their demands

to the maximum value.

7.3.3 Results

Table 7.1 gives the outcome of our computational experiments and reports, for each group of 5

homogeneous instances, the number of cases in which the algorithm computes a provably opti-

mal solution, and the corresponding average computing time and average number of times the

separation problem was solved.

The results show that our approach is able to solve to optimality all instances with p = 0.05,

with an average computing time raising from few seconds to almost 15 minutes. Increasing the

value of p yields more challenging instances. This is shown both by the number of optimal solution

(51 out of 60) and by the average computing time for solved instances, which can be as large as

twice the time needed in the previous case. This trend is more evident for p = 0.20, in which

case the algorithm solves to optimality only 36 instances (out of 60) with a significantly larger

computing time. Concerning the number of separation rounds, it grows with the size of the

instance, whereas the value of p is immaterial. Finally, instances with d̄j/d̃j = 0.05 appear to be

131

p = 0.05 p = 0.10 p = 0.20

|I| |J | d̄j/d̃j opt time |Ŝ| opt time |Ŝ| opt time |Ŝ|
10 20 0.05 5 13.92 187.00 5 15.82 201.00 5 19.63 201.40

0.10 5 15.13 194.60 5 16.39 197.40 5 21.05 202.40
30 0.05 5 23.41 213.80 5 35.76 216.80 5 386.51 222.00

0.10 5 23.81 207.80 5 45.37 223.20 5 290.78 223.40

15 30 0.05 5 64.01 406.60 5 118.86 412.00 4 517.51 451.00
0.10 5 70.41 429.20 5 175.26 426.00 5 357.54 420.60

40 0.05 5 129.24 381.60 3 1133.50 346.00 1 215.05 311.00
0.10 5 143.41 387.40 5 743.03 382.60 1 2507.04 313.00

20 40 0.05 5 383.06 664.40 3 1900.71 675.33 0 — —
0.10 5 455.72 669.00 5 847.54 695.40 3 952.38 669.67

50 0.05 5 785.16 692.60 1 801.34 532.00 0 — —
0.10 5 853.19 683.60 4 1507.89 646.25 2 3117.22 692.00

Table 7.1: Computational results on the resource allocation problem with different uncertainty
budgets.

more challenging for our algorithm.

7.4 Conclusion

In this Chapter, we studied general adjustable robust problems where the second-stage feasible

space is defined by means of convex constraints. Using Fenchel duality, we were able to derive a

nonconvex separation problem leading to a generalization of well-known algorithmic methods for

linear adjustable robust optimization. We also showed how a special structure of the uncertainty

set can be exploited to derive a convex MINLP formulation of the separation problem. Thus allow-

ing the practical implementation of the aforementioned algorithms to solve real-world problems.

We confirmed this by reporting computational experiments on a planning problem which we were

able to solve to optimality for reasonable sizes.

132

Conclusion

This chapter concludes this thesis by recalling its main contributions to the robust optimization

community and by suggesting future research directions.

Recall that the present thesis was concerned by optimization problems suffering from imprecise

input data and featuring a two-stage decision process. While different approaches exist in the

scientific literature (see Chapter 1), the robust optimization approach was the one employed in this

research. This was motivated by the weaker assumptions (compared to other approaches) which

it imposes. These weaker assumptions allow for a wider applicability in real-world applications.

Unfortunately, we also showed, in Chapter 2, that the two-stage RO approach led to hard

optimization problems. In particular, we made clear that further effort was (and still is) needed to

tackle the large class of problems where feasible second-stage decisions are describded by nonlinear

constraints (in which we include integrality requirements).

In the next section, we recall the main contributions which were presented throughout this

thesis.

7.5 Main contributions

7.5.1 Mixed-integer second stage

A large part of this thesis was dedicated to problems where second-stage decisions have to take

integer values. For this class of problems, only special cases were treated in the scientific literature.

We therefore tried to contribute to the current state of the art by introducing two new theoretical

results and to apply them to two real-world problems.

Objective uncertainty

The first line of research has been on objective uncertain two-stage problems. For this class of

problem, a decomposition scheme had been introduced for the special case where constraints are

linear and the constraints linking the first- and second-stage decisions have special structure.

In Chapter 3, we showed how this approach could be generalized to a much broader class

of problems where the second-stage is defined by general convex constraints and removing any

133

assumption on the linking constraints between the first and second stage. We enlight that this

generalization required further analysis and is not a straightforward extension of the original

approach. In particular, it requires the use of Fenchel duality, spatial branching and asymptotic

convergence.

In Chapter 4, we applied the previous method to a scheduling problem where one has to select

of set of jobs to schedule on a single machine while the output of each task may be deteriorated

by some random event. We showed that our approach was actually faster in solving this prob-

lem compared to existing solution schemes which, contrary to our method, only report heuristic

solutions.

Binary uncertainty

Chapter 5 studied ARO problems where the second stage is defined by mixed-integer constraints

under the specific case where the uncertainty is discrete (in fact, binary). In this setting, no

previous work could be found for a setting as general as the one our work addresses. We showed

how any such problem with constraint uncertainty can be reformulated as a problem with objec-

tive uncertainty, allowing us to derive a computationally sound method for solving this class of

problems.

In Chapter 6, we applied the previous method to a facility location problem, a famous opti-

mization problem arising in logistics, where clients’ demands are uncertain. We showed that our

method could solve instances of reasonable size.

7.5.2 Convex second stage

In the last chapter of this thesis (i.e., Chapter 7), we studied ARO problems where the second-

stage decisions are defined by means of convex constraints. In this setting, no exact approaches

could be found for the general case. We showed that two approaches developed for the linear

setting could be extended to the convex setting by using Fenchel duality and exploiting a special

structure of the uncertainty set. Unfortunately, we also showed that this generalization has weaker

guarantees than their linear counterparts in terms of solution quality.

7.6 Future research directions

We end by discussing future research directions.

7.6.1 Exploiting structure from deterministic problems

While more and more effort is done in deriving exact methods for solving two-stage robust problems

with mixed-integer second stage, the existing algorithms are often very sensitive to the size of the

second-stage problem (in terms of number of constraints and/or variables). This remains true when

the deterministic problem has a “nice” structure (in terms of decomposition). For instance, for a

large class of problems, Dantzig-Wolfe or Benders decomposition have been specialized to obtain

very efficient methods. Unfortunately, the same cannot be said regarding the robust counterpart

of such problems. A potential line of research could be to develop solution schemes which preserve

134

the deterministic problem’s structure. A first result was introduced by Kämmerling and Kurtz

[2020] for problems with objective uncertainty.

7.6.2 Improving solution guarantees for problems with second-stage problems

While the Benders decomposition and the column-and-constraint generation algorithm were gen-

eralized in Chapter 7 to problems with convex second stage, the quality of the returned solution

may not be satisfactory for some critical applications. Another line of research could be to try to

alleviate these limitations by developing new algorithmic methods. Informally speaking, it could

actually be that this research direction and the previous are connected, if not equivalent.

135

Appendices

136

APPENDIX A

Recalls on convex optimization

A.1 Fenchel duality

A.1.1 Introduction

A dual perception

Let f : Rn → R be a closed convex function over X. A classical representation for f is to consider

a set of values P = {(x, f(x)) : x ∈ X}. Yet, it is not the only way to represent f . Indeed, by

convexity, f can be represented by a set of infinitely many ”linear approximating hyperplanes”

(in fact, supporting hyperplanes of the epigraph of f). Indeed, considering a point x0 ∈ Rn, there

exists π ∈ Rn and b ∈ R such that,

πTx0 − b = f(x0) and πTx− b ≤ f(x) ,∀x ∈ Rn.

Note that these equations provide, knowing only π (i.e., the slope of a hyper-plane), a way to

compute b (i.e., the y-intercept of the hyper-plane). Indeed, the following holds:

b = sup
x∈Rn

{
πTx− f(x)

}
Note that the optimal solution x∗ is exactly x0. Forgetting about point x0, these small considera-

tions show that, given any slope for a supporting hyper-plane π, one is able to compute its offset.

This offset is then noted f∗(π) and function f∗ is called the convex conjugate of f . Moreover, be-

cause f is equivalently described by its linear approximating hyperplanes, one obtains a so-called

dual representation of f , given as D = {(π, f∗(π)) : π ∈ Rn}.
In the following table, we detail the dual representation of a function f .

137

−1 0 1 2 3 4

−10

0

10

20

30

Figure A.1: Geometric interpretation of the convex conjugate for f(x) = ex and π = 2, f∗(2) =
ln(2)

Primal (Fenchel) Dual

Type points hyperplanes

Variables x ∈ Rn π ∈ Rn

Values f(x) f∗(π)

In figure A.1, the convex function f : x 7→ ex is drawn. A hyper-plane with slope π = 2 is also

shown in blue. In red, a supporting hyper-plane of f with slope π is depicted. Its y-intercept is

f∗(2) = ln(2).

An economic interpretation

We briefly give here an economic interpretation of the convex conjugate. Assume that f(x)

represents the cost for producing x products. Now, let π be the market price per unit for this

product.

Assuming that every item is sold, the generated income is given by πx (unitary price × number

of goods). The profit corresponds to the income minus the production price f(x). Thus, the profit

is given by πx − f(x). In search for the maximum profit one can make, we have to solve the

following:

sup
x∈dom(f)

{πx− f(x)}. (A.1)

Thus f∗(π) is exactly the maximum profit one can make when the market price is π.

A relative infimum interpretation

Consider a function f , its infimum is given by the following.

inf
x∈dom(f)

f(x) = − sup
x∈dom(f)

{0− f(x)} (A.2)

138

−1
0

1
2

3
4

−10

0

10

20

30

−1 0 1 2 3 4

−10

0

10

20

30

Figure A.2: f∗(π) can also be seen as the minimum of f with respect to the axis y = πx

Yet, what if one wants to find the infimum of f with respect to a given hyperplane, say, 0 = πTx?

This can be done as follows:

− sup
x∈dom(f)

{πx− f(x)} (A.3)

Thus, −f∗(π) is also the infimum of function f with respect to the hyper-plane 0 = πTx.

In figure A.2, we rotated the axes so that the x-axis may be parallel to the blue line (y = 2x).

The minimum of the ”rotated f” is attained at f∗(2).

A.1.2 Examples

Example 13 (Affine functions). Assume f(x) = aTx+ b, then,

f∗(y) =

−b if y = a

+∞ otherwise

Example 14 (Convex quadratic functions). Assume f(x) = 1
2x

TAx + bTx + c with A a psd

matrix, then,

f∗(y) =

 1
2 (y − b)TA†(y − b)− c if y ∈ span(A) + b

+∞ otherwise

where A† is the Moore-Penrose pseudo inverse of A. If f is strictly convex (i.e., A is positive

definite), then A† = A−1 and the column span of A is Rn.

Example 15 (Maximum). Assume f(x) = maxi=1,...,n xi, then,

f∗(y) =

0 if
∑n

i=1 yi = 1,y ≥ 0

+∞ otherwise

139

Example 16 (Soft max.). Assume f(x) = log (
∑n

i=1 e
xi), then,

f∗(y) =


∑n

i=1 yi log(yi) if
∑n

i=1 yi = 1,y ≥ 0

+∞ otherwise

Example 17 (Norms). Assume f(x) = ||x||, then,

f∗(y) =

0 if ||y||∗ ≤ 1

+∞ otherwise

where || • ||∗ is the dual norm of || • ||.

Example 18 (Negative entropy). Assume f(x) =
∑n

i=1 xi log xi with dom(f) = Rn
++, then,

f∗(y) =

n∑
i=1

eyi−1

A.1.3 Calculus rules

Proposition 6 (Addition to affine mapping). Assume f(x) = f̃(x) + aTx+ b, then,

f∗(y) = f̃∗ (y − a)− b

Proposition 7 (Composition with an invertible affine mapping). Assume f(x) = f̃(Ax+b) with

det(A) ̸= 0, then,

f∗(y) = f̃∗
(
A−Ty

)
− bTA−Ty

Proposition 8 (Separable sums). Assume f(x1,x2) = f1(xi) + f2(x2), then,

f∗(y1,y2) = f∗1 (y1) + f∗2 (y2)

Proposition 9 (Non-separable sums). Assume f(x) =
∑p

i=1 fi(x), then,

f∗(y) = inf
∑p

i=1 f
∗
i (v

(i))

s.t.
∑p

i=1 v
(i) = y

V ∈ Rp×n

Proposition 10 (Scalar multiplication). Assume f(x) = αf̃(x), then,

f∗(y) = αf̃∗
(y
α

)
Proposition 11 (Convex/Concave conjugate). Let f be a given function, then (−f)∗(y) =

−f∗(−y).

Proof.

(−f)∗(y) = inf
x
{yTx− (−f)(x)} = − sup

x
{−yTx− f(x)} = −f∗(−y)

140

A.1.4 Duality theorem

Theorem 13 (Fenchel duality). Assume f : Rn → R is proper and convex and let g : Rn → R be

a given proper concave function. If the following Slater’s conditions hold,

∃x̂ ∈ int(dom (f)) ∩ int(dom (−g)) (A.4)

then the following equality holds.

inf
x∈dom(f)∩dom(g)

{f(x)− g(x)} = sup
y∈dom(f∗)∩dom(−g∗)

{g∗(y)− f∗(y)} (A.5)

Corrolary 7 (Maximizing a concave function over a convex set). Let X ⊆ Rn be a convex set with

non-empty interior and let g : Rn → R be a proper concave function over X, then the following

holds.

sup
x∈X

g(x) = inf
y∈dom(−g)

{δ∗(y|X)− g∗(y)}

A.2 Convex-hull splitting property

The following theorem is derived, and extended, from Arslan and Detienne [2021].

Theorem 14. Let Y ⊆ Πn
j=1[lj , uj] and let L(xxx) be defined, for xxx ∈ {0, 1}n as follows,

L(xxx) =

yyy ∈ Rn
+ : ∀j ∈ {1, ..., n},

xj = 1⇒ yj ∈ [α1
j , β

1
j]

xj = 0⇒ yj ∈ [α0
j , β

0
j]

 (A.6)

with α0
j , α

1
j , β

0
j , β

1
j ∈ {lj , uj}. Then, the following equality holds,

∀xxx ∈ {0, 1}n, conv(Y ∩ L(xxx)) = conv(Y) ∩ L(xxx) (A.7)

Proof. First, it is clear that conv(Y ∩ L(xxx)) ⊆ conv(Y) ∩ L(xxx) for any xxx ∈ {0, 1}n. Thus,

assume that there exists α1, ..., αn+1 ≥ 0 and ȳyy1, ..., ȳyyn+1 ∈ Y such that
∑n+1

k=1 αk = 1 and

yyy =
∑n+1

k=1 αkȳyy
k ∈ conv(Y)∩L(xxx) while yyy /∈ conv(Y ∩L(xxx)). Thus, there exists some k̄ and j̄ such

that αk̄ > 0, ȳyyk̄ ∈ Y and ((xj̄ = 1) ∧ (ȳyyk̄
j̄
/∈ [α1

j , β
1
j]) ∨ ((xj̄ = 0) ∧ (ȳyyk̄

j̄
/∈ [α0

j , β
0
j])).

We only treat the case where xj̄ = 1, since the case xj̄ = 0 can be treated similarly. We then

have four possibilities:

– α1
j̄
= lj̄ , β

1
j̄
= lj̄ : Then, ȳ

k̄
j̄
/∈ [α1

j̄
, β1

j̄
] implies that ȳk̄

j̄
> lj̄ and since yyy ∈ L(xxx) we must have

yj̄ = lj̄ . Then, we can write the following,

lj̄ = yj̄ =

n+1∑
k=1

αkȳ
k
j̄ >

∑
k:ȳk

j̄
∈[α1

j̄
,β1

j̄
]

αklj̄ +
∑

k:ȳk
j̄
/∈[α1

j̄
,β1

j̄
]

αklj̄ = lj̄ (A.8)

which is absurd.

– α1
j̄
= uj̄ , β

1
j̄
= lj̄ : Impossible, unless uj̄ = lj̄

141

– α1
j̄
= lj̄ , β

1
j̄
= uj̄ : Then, ȳ

k̄
j̄
/∈ [α1

j̄
, β1

j̄
] implies ȳk̄ /∈ Y , which violates the assumption.

– α1
j̄
= uj̄ , β

1
j̄
= uj̄ : this case yields a contradiction with the same argument as in the first

case.

Remark 19. Special cases of Theorem 14 are L(xxx) = {yyy : yyy ≤ xxx}, L(xxx) = {yyy : yyy ≥ xxx},
L(xxx) = {yyy : yyy = xxx} and L(xxx) = {yyy : yj ≥ (1− xj)uj} for binary xxx.

142

APPENDIX B

Additional proofs

B.1 Proof of Example 11

Assume that gi (i = 0, 1, ...,m) is generically defined by means of ℓp-norms, i.e., assume that

gi(x,y) =
∣∣∣∣Ki

Xx+Ki
Y y + χi

∣∣∣∣
pi

+ δiX
T
x + δiY

T
y + κi where Ki

X ,K
i
Y ,χ

i, δiX , δ
i
Y and κi are

given.

B.1.1 Computing convex conjugates

First, observe that

gi|x(y) = h1(y) + δiX
T
x+ δiY

T
y + κi (B.1)

where h1(y) =
∣∣∣∣Ki

Xx+Ki
Y y + χi

∣∣∣∣
pi
. By addition to an affine function, we have

gi|∗x(π) = h∗1(π − δiY)− δiX
T
x− κi. (B.2)

Now, we may write h1 as

h1(y) = h2(K
i
Y y) (B.3)

where h2(y) =
∣∣∣∣Ki

Xx+ y + χi
∣∣∣∣
pi
. By composition with a linear mapping (see Ben-Tal et al.

[2014], Lemma 6.7) and since dom (h2) = RnY , we have

h∗1(π) = inf
ω
{h∗2(ω) : Ki

Y

T
ω = π}. (B.4)

Together with (B.2), we have

gi|∗x(π) = inf
ω
{h∗2(ω) : Ki

Y

T
ω = π − δiY } − δiX

T
x− κi. (B.5)

Then,

h2(y) = h3(y +Ki
Xx+ χi) (B.6)

143

with h3(y) = ||y||pi
. Thus, by translation of argument, we have

h∗2(π) = h∗3(π)− (Ki
Xx+ χi)Tπ. (B.7)

Now, h3 being a norm, its convex conjugate is the indicator of the unit ball for the dual norm,

thus,

h∗3(π) = δ(π|Bp′
i
(0, 1)) (B.8)

with 1/pi + 1/p′i = 1. Together with (B.5) and (B.7), we have

gi|∗x(π) = inf
ω
{δ(ω|Bp′

i
(0, 1))− (Ki

Xx+ χi)Tω : Ki
Y

T
ω = π − δiY }

− δiX
T
x− κi. (B.9)

By optimality, we get

gi|∗x(π) = inf − (Ki
Xx+ χi)Tω − δiX

T
x− κi (B.10)

s.t.Ki
Y

T
ω = π − δiY (B.11)

||ω||p′
i
≤ 1 (B.12)

ω ∈ RnY (B.13)

B.1.2 Applying Theorem 8

By substitution, we get

λigi|∗x(ui/λi) = infλi

(
−(Ki

Xx+ χi)Tωi − δiX
T
x− κi

)
(B.14)

s.t.Ki
Y

T
ωi = ui/λi − δiY (B.15)

||ω||p′
i
≤ 1 (B.16)

ωi ∈ RnY . (B.17)

Introducing zi = λiω
i, we have

λigi|∗x(ui/λi) = inf − (Ki
Xx+ χi)Tzi − λi(δiX

T
x+ κi) (B.18)

s.t.Ki
Y

T
zi = ui − λiδiY (B.19)∣∣∣∣zi
∣∣∣∣
p′
i

≤ λi (B.20)

zi ∈ RnY . (B.21)

We therefore obtain

sup

m∑
i=0

(
(Ki

Xx+ χi)Tzi + λi(δ
i
X

T
x+ κi)

)
+ λTF (x)ξ − λ0x0 (B.22)

s.t.

m∑
i=0

(
Ki

Y

T
zi + λiδ

i
Y

)
= 0 (B.23)

144

∣∣∣∣zi
∣∣∣∣
p′
i

≤ λi i = 0, 1, ...,m (B.24)

zi ∈ RnY i = 0, 1, ...,m (B.25)

(λ0,λ) ∈ Λ (B.26)

ξ ∈ Ξ. (B.27)

By letting ai(x) = Ki
Xx+ χi, b(x) = (δ1X

T
x+ κ1, . . . , δmX

Tx+ κm)T and ∆ = (δ1Y , . . . , δ
m
Y), we

may rewrite it as follows.

sup

m∑
i=0

ai(x)Tzi + (b(x) + F (x)ξ)
T
λ− λ0x0 (B.28)

s.t.

m∑
i=0

KiT

Y zi +∆λ+ δ0Y λ0 = 0 (B.29)

∣∣∣∣zi
∣∣∣∣
p′
i

≤ λi i = 0, 1, ...,m (B.30)

zi ∈ RnY i = 0, 1, ...,m (B.31)

(λ0,λ) ∈ Λ (B.32)

ξ ∈ Ξ (B.33)

145

Bibliography

Ali Allahverdi and John Mittenthal. Scheduling on a two-machine flowshop subject to random

breakdowns with a makespan objective function. European Journal of Operational Research,

81(2):376 – 387, 1995. ISSN 0377-2217. doi: https://doi.org/10.1016/0377-2217(93)E0318-R.

URL http://www.sciencedirect.com/science/article/pii/0377221793E0318R.

Mohamed Ali Aloulou and Federico Della Croce. Complexity of single machine scheduling problems

under scenario-based uncertainty. Oper. Res. Lett., 36(3):338–342, May 2008. ISSN 0167-6377.

doi: 10.1016/j.orl.2007.11.005. URL http://dx.doi.org/10.1016/j.orl.2007.11.005.

Ayşe N Arslan and Boris Detienne. Decomposition-based approaches for a class of two-stage

robust binary optimization problems. INFORMS Journal on Computing, 2021. URL https:

//hal.inria.fr/hal-02190059.

Josette Ayoub and Michael Poss. Decomposition for adjustable robust linear optimization subject

to uncertainty polytope. Computational Management Science, 13(2):219–239, February 2016.

doi: 10.1007/s10287-016-0249-2. URL https://doi.org/10.1007/s10287-016-0249-2.

Philippe Baptiste, Laurent Peridy, and Eric Pinson. A branch and bound to minimize the number

of late jobs on a single machine with release time constraints. European Journal of Operational

Research, 144(1):1 – 11, 2003. ISSN 0377-2217. doi: https://doi.org/10.1016/S0377-2217(01)

00353-8. URL http://www.sciencedirect.com/science/article/pii/S0377221701003538.

Aharon Ben-Tal, Dick den Hertog, and Jean-Philippe Vial. Deriving robust counterparts of non-

linear uncertain inequalities. Mathematical Programming, 149(1-2):265–299, February 2014. doi:

10.1007/s10107-014-0750-8. URL https://doi.org/10.1007/s10107-014-0750-8.

Pascale Bendotti, Philippe Chrétienne, Pierre Fouilhoux, and Alain Quilliot. Anchored reactive

and proactive solutions to the cpm-scheduling problem. European Journal of Operational Re-

search, 261(1):67 – 74, 2017. ISSN 0377-2217. doi: https://doi.org/10.1016/j.ejor.2017.02.007.

URL http://www.sciencedirect.com/science/article/pii/S0377221717301121.

D. Bertsimas and A. Georghiou. Binary decision rules for multistage adaptive mixed-integer

optimization. Mathematical Programming, 167(2):395–433, March 2017.

146

http://www.sciencedirect.com/science/article/pii/0377221793E0318R
http://dx.doi.org/10.1016/j.orl.2007.11.005
https://hal.inria.fr/hal-02190059
https://hal.inria.fr/hal-02190059
https://doi.org/10.1007/s10287-016-0249-2
http://www.sciencedirect.com/science/article/pii/S0377221701003538
https://doi.org/10.1007/s10107-014-0750-8
http://www.sciencedirect.com/science/article/pii/S0377221717301121

Dimitris Bertsimas and Frans J. C. T. de Ruiter. Duality in two-stage adaptive linear optimization:

Faster computation and stronger bounds. INFORMS Journal on Computing, 28(3):500–511,

July 2016. doi: 10.1287/ijoc.2016.0689. URL https://doi.org/10.1287/ijoc.2016.0689.

Dimitris Bertsimas and Melvyn Sim. The price of robustness. Operations Research, 52(1):35–53,

February 2004. doi: 10.1287/opre.1030.0065. URL https://doi.org/10.1287/opre.1030.

0065.

Dimitris Bertsimas, Ebrahim Nasrabadi, and Sebastian Stiller. Robust and Adaptive Net-

work Flows. Operations Research, 61(5):1218–1242, October 2013. ISSN 0030-364X, 1526-

5463. doi: 10.1287/opre.2013.1200. URL http://pubsonline.informs.org/doi/abs/10.

1287/opre.2013.1200.

J. Birge, J. B. G. Frenk, J. Mittenthal, and A. H. G. Rinnooy Kan. Single-machine scheduling

subject to stochastic breakdowns. Naval Research Logistics (NRL), 37(5):661–677, 1990.

Odellia Boni and Aharon Ben-Tal. Adjustable robust counterpart of conic quadratic prob-

lems. Mathematical Methods of Operations Research, 68(2):211–233, April 2008. doi: 10.1007/

s00186-008-0218-9. URL https://doi.org/10.1007/s00186-008-0218-9.

Marin Bougeret, Artur Pessoa, and Michael Poss. Robust scheduling with budgeted uncertainty.

Discrete Applied Mathematics, 08 2018. doi: 10.1016/j.dam.2018.07.001.

C Buchheim and J. Kurtz. Robust combinatorial optimization under convex and discrete cost

uncertainty. EURO Journal on Computational Optimization, 6(3):211–238, 2018.

A. Caprara, M. Carvalho, A. Lodi, and G. J. Woeginger. A complexity and approximability

study of the bilevel knapsack problem. In International Conference on Integer Programming

and Combinatorial Optimization, pages 98–109. Springer, 2013.

Sebastián Ceria and João Soares. Convex programming for disjunctive convex optimization. Math-

ematical Programming, 86(3):595–614, Dec 1999. ISSN 1436-4646. doi: 10.1007/s101070050106.

URL https://doi.org/10.1007/s101070050106.

Matthias Claus and Maximilian Simmoteit. A note on σp
2-completeness of a robust binary linear

program with binary uncertainty set. Operations Research Letters, 48(5):594–598, September

2020. doi: 10.1016/j.orl.2020.07.006. URL https://doi.org/10.1016/j.orl.2020.07.006.

François Clautiaux, Boris Detienne, and Henri Lefebvre. A two-stage robust approach for min-

imizing the weighted number of tardy jobs with objective uncertainty. Journal of Schedul-

ing, February 2023. doi: 10.1007/s10951-022-00775-1. URL https://doi.org/10.1007/

s10951-022-00775-1.

G. Cornuéjols, R. Sridharan, and J-M. Thizy. A comparison of heuristics and relaxations for the

capacitated plant location problem. European journal of operational research, 50(3):280–297,

1991.

George B. Dantzig. Linear programming under uncertainty. Management Science, 1(3/4):197–206,

1955. ISSN 00251909, 15265501. URL http://www.jstor.org/stable/2627159.

147

https://doi.org/10.1287/ijoc.2016.0689
https://doi.org/10.1287/opre.1030.0065
https://doi.org/10.1287/opre.1030.0065
http://pubsonline.informs.org/doi/abs/10.1287/opre.2013.1200
http://pubsonline.informs.org/doi/abs/10.1287/opre.2013.1200
https://doi.org/10.1007/s00186-008-0218-9
https://doi.org/10.1007/s101070050106
https://doi.org/10.1016/j.orl.2020.07.006
https://doi.org/10.1007/s10951-022-00775-1
https://doi.org/10.1007/s10951-022-00775-1
http://www.jstor.org/stable/2627159

Stéphane Dauzère-Pérès and Marc Sevaux. Using lagrangean relaxation to minimize the weighted

number of late jobs. Naval Research Logistics, 50(3):273–288, 2003. doi: 10.1002/nav.10056.

URL https://hal.archives-ouvertes.fr/hal-00069413.

Stéphane Dauzère-Pérès. Minimizing late jobs in the general one machine scheduling prob-

lem. European Journal of Operational Research, 81(1):134 – 142, 1995. ISSN 0377-2217.

doi: https://doi.org/10.1016/0377-2217(94)00116-T. URL http://www.sciencedirect.com/

science/article/pii/037722179400116T.

Frans J. C. T. de Ruiter, Jianzhe Zhen, and Dick den Hertog. Dual approach for two-stage robust

nonlinear optimization. Operations Research, April 2022. doi: 10.1287/opre.2022.2289. URL

https://doi.org/10.1287/opre.2022.2289.

Erick Delage and Yinyu Ye. Distributionally robust optimization under moment uncertainty

with application to data-driven problems. Operations Research, 58(3):595–612, June 2010. doi:

10.1287/opre.1090.0741. URL https://doi.org/10.1287/opre.1090.0741.

Martin Desrochers, Patrice Marcotte, and Mihnea Stan. The congested facility location problem.

Location Science, 3(1):9–23, May 1995. doi: 10.1016/0966-8349(95)00004-2. URL https://

doi.org/10.1016/0966-8349(95)00004-2.

B. Detienne, H. Lefebvre, E. Malaguti, and M. Monaci. Adaptive robust optimization with objec-

tive uncertainty. Technical Report OR-21-1, DEI-University of Bologna, 2021.

Boris Detienne. A mixed integer linear programming approach to minimize the number of late jobs

with and without machine availability constraints. European Journal of Operational Research,

235:540–552, 2014.

Elizabeth D. Dolan and Jorge J. Moré. Benchmarking optimization software with performance

profiles. Mathematical Programming, 91(2):201–213, Jan 2002. ISSN 1436-4646. doi: 10.1007/

s101070100263. URL https://doi.org/10.1007/s101070100263.

M. Fischetti, I. Ljubić, M. Monaci, and M. Sinnl. Interdiction games and monotonicity, with

application to knapsack problems. INFORMS Journal on Computing, 31(2):390–410, 2019.

Matteo Fischetti, Ivana Ljubić, and Markus Sinnl. Benders decomposition without separability: A

computational study for capacitated facility location problems. European Journal of Operational

Research, 253(3):557–569, September 2016. doi: 10.1016/j.ejor.2016.03.002. URL https://doi.

org/10.1016/j.ejor.2016.03.002.

A. Garcia-Piquer, J. C. Morales, I. Ribas, J. Colomé, J. Guàrdia, M. Perger, J. A. Caballero,

M. Cortés-Contreras, S. V. Jeffers, A. Reiners, P. J. Amado, A. Quirrenbach, and W. Seifert.

Efficient scheduling of astronomical observations - Application to the CARMENES radial-

velocity survey. Astronomy & Astrophysics, 604:A87, August 2017. ISSN 0004-6361, 1432-0746.

doi: 10.1051/0004-6361/201628577. URL https://www.aanda.org/articles/aa/abs/2017/

08/aa28577-16/aa28577-16.html. Publisher: EDP Sciences.

148

https://hal.archives-ouvertes.fr/hal-00069413
http://www.sciencedirect.com/science/article/pii/037722179400116T
http://www.sciencedirect.com/science/article/pii/037722179400116T
https://doi.org/10.1287/opre.2022.2289
https://doi.org/10.1287/opre.1090.0741
https://doi.org/10.1016/0966-8349(95)00004-2
https://doi.org/10.1016/0966-8349(95)00004-2
https://doi.org/10.1007/s101070100263
https://doi.org/10.1016/j.ejor.2016.03.002
https://doi.org/10.1016/j.ejor.2016.03.002
https://www.aanda.org/articles/aa/abs/2017/08/aa28577-16/aa28577-16.html
https://www.aanda.org/articles/aa/abs/2017/08/aa28577-16/aa28577-16.html

Ricardo Garćıa, Angel Maŕın, and Michael Patriksson. Column generation algorithms for

nonlinear optimization, i: Convergence analysis. Optimization, 52(2):171–200, 2003. doi:

10.1080/0233193031000079856. URL https://doi.org/10.1080/0233193031000079856.

A. M. Geoffrion. Generalized benders decomposition. Journal of Optimization Theory and Appli-

cations, 10(4):237–260, October 1972. doi: 10.1007/bf00934810. URL https://doi.org/10.

1007/bf00934810.

Angelos Georghiou, Angelos Tsoukalas, and Wolfram Wiesemann. Robust Dual Dynamic Pro-

gramming. Operations Research, April 2019. doi: 10.1287/opre.2018.1835. URL https:

//pubsonline.informs.org/doi/abs/10.1287/opre.2018.1835. Publisher: INFORMS.

R.L. Graham, E.L. Lawler, J.K. Lenstra, and A.H.G.Rinnooy Kan. Optimization and approxi-

mation in deterministic sequencing and scheduling: a survey. In P.L. Hammer, E.L. Johnson,

and B.H. Korte, editors, Discrete Optimization II, volume 5 of Annals of Discrete Mathematics,

pages 287 – 326. Elsevier, 1979. doi: https://doi.org/10.1016/S0167-5060(08)70356-X. URL

http://www.sciencedirect.com/science/article/pii/S016750600870356X.

Ignacio E. Grossmann and Juan P. Ruiz. Generalized disjunctive programming: A frame-

work for formulation and alternative algorithms for MINLP optimization. In Mixed In-

teger Nonlinear Programming, pages 93–115. Springer New York, November 2011. doi:

10.1007/978-1-4614-1927-3 4. URL https://doi.org/10.1007/978-1-4614-1927-3_4.

Grani A. Hanasusanto, Daniel Kuhn, and Wolfram Wiesemann. K-adaptability in two-stage

robust binary programming. Operations Research, 63(4):877–891, August 2015. doi: 10.1287/

opre.2015.1392. URL https://doi.org/10.1287/opre.2015.1392.

J.R. Jackson. Scheduling a production line to minimize maximum tardiness. Research report.

Office of Technical Services, 1955.

Nicolas Kämmerling and Jannis Kurtz. Oracle-based algorithms for binary two-stage robust

optimization. Computational Optimization and Applications, 77(2):539–569, June 2020. doi:

10.1007/s10589-020-00207-w. URL https://doi.org/10.1007/s10589-020-00207-w.

Hiroshi Kise, Toshihide Ibaraki, and Hisashi Mine. A solvable case of the one-machine scheduling

problem with ready and due times. Oper. Res., 26(1):121–126, February 1978. ISSN 0030-364X.

doi: 10.1287/opre.26.1.121. URL http://dx.doi.org/10.1287/opre.26.1.121.

Nikolaos H. Lappas and Chrysanthos E. Gounaris. Multi-stage adjustable robust optimization for

process scheduling under uncertainty. AIChE Journal, 62(5):1646–1667, 2016. ISSN 1547-5905.

doi: 10.1002/aic.15183. URL https://aiche.onlinelibrary.wiley.com/doi/abs/10.1002/

aic.15183. eprint: https://aiche.onlinelibrary.wiley.com/doi/pdf/10.1002/aic.15183.

Can Li and Ignacio E. Grossmann. A finite ε-convergence algorithm for two-stage stochastic

convex nonlinear programs with mixed-binary first and second-stage variables. J. Glob. Op-

tim., 75(4):921–947, 2019. doi: 10.1007/s10898-019-00820-y. URL https://doi.org/10.1007/

s10898-019-00820-y.

149

https://doi.org/10.1080/0233193031000079856
https://doi.org/10.1007/bf00934810
https://doi.org/10.1007/bf00934810
https://pubsonline.informs.org/doi/abs/10.1287/opre.2018.1835
https://pubsonline.informs.org/doi/abs/10.1287/opre.2018.1835
http://www.sciencedirect.com/science/article/pii/S016750600870356X
https://doi.org/10.1007/978-1-4614-1927-3_4
https://doi.org/10.1287/opre.2015.1392
https://doi.org/10.1007/s10589-020-00207-w
http://dx.doi.org/10.1287/opre.26.1.121
https://aiche.onlinelibrary.wiley.com/doi/abs/10.1002/aic.15183
https://aiche.onlinelibrary.wiley.com/doi/abs/10.1002/aic.15183
https://doi.org/10.1007/s10898-019-00820-y
https://doi.org/10.1007/s10898-019-00820-y

Zukui Li, Ran Ding, and Christodoulos A. Floudas. A comparative theoretical and computational

study on robust counterpart optimization: I. robust linear optimization and robust mixed in-

teger linear optimization. Industrial and Engineering Chemistry Research, 50(18):10567–10603,

August 2011. doi: 10.1021/ie200150p. URL https://doi.org/10.1021/ie200150p.

Fengming Lin, Xiaolei Fang, and Zheming Gao. Distributionally robust optimization: A review

on theory and applications. Numerical Algebra, Control and Optimization, 12(1):159, 2022. doi:

10.3934/naco.2021057. URL https://doi.org/10.3934/naco.2021057.

James Luedtke. An integer programming and decomposition approach to general chance-

constrained mathematical programs. In Integer Programming and Combinatorial Optimization,

pages 271–284. Springer Berlin Heidelberg, 2010. doi: https://10.1007/978-3-642-13036-6\ 21.
URL https://doi.org/10.1007/978-3-642-13036-6_21.

Jyotsna K. Mandal, Somnath Mukhopadhyay, and Paramartha Dutta, editors. Multi-Objective

Optimization. Springer Singapore, 2018. doi: 10.1007/978-981-13-1471-1. URL https://doi.

org/10.1007/978-981-13-1471-1.

Ahmadreza Marandi and Dick den Hertog. When are static and adjustable robust optimiza-

tion problems with constraint-wise uncertainty equivalent? Mathematical Programming, 170

(2):555–568, June 2017. doi: 10.1007/s10107-017-1166-z. URL https://doi.org/10.1007/

s10107-017-1166-z.

Rym M’Hallah and R.L. Bulfin. Minimizing the weighted number of tardy jobs on a single machine

with release dates. European Journal of Operational Research, 176(2):727 – 744, 2007. ISSN

0377-2217. doi: https://doi.org/10.1016/j.ejor.2005.08.013. URL http://www.sciencedirect.

com/science/article/pii/S0377221705006958.

J v Neumann. Zur theorie der gesellschaftsspiele. Mathematische annalen, 100(1):295–320, 1928.

Vianney Perchet and Guillaume Vigeral. A minmax theorem for concave-convex mappings with

no regularity assumptions. Journal of Convex Analysis, 22, 01 2015.

Artur Pessoa, Ruslan Sadykov, Eduardo Uchoa, and François Vanderbeck. Automation and com-

bination of linear-programming based stabilization techniques in column generation. INFORMS

Journal on Computing, 30(2):339–360, 2018.

Michael L. Pinedo. Scheduling: Theory, Algorithms, and Systems. Springer Publishing Company,

Incorporated, 6th edition, 2016. ISBN 0387789340.

Laurent Péridy, Eric Pinson, and David Rivreau. Using short-term memory to minimize the

weighted number of late jobs on a single machine. European Journal of Operational Research,

148(3):591 – 603, 2003. ISSN 0377-2217. doi: https://doi.org/10.1016/S0377-2217(02)00438-1.

URL http://www.sciencedirect.com/science/article/pii/S0377221702004381.

Ralph Tyrell Rockafellar. Convex analysis. Princeton Landmarks in Mathematics and Physics.

Princeton University Press, Princeton, NJ, December 1996.

150

https://doi.org/10.1021/ie200150p
https://doi.org/10.3934/naco.2021057
https://doi.org/10.1007/978-3-642-13036-6_21
https://doi.org/10.1007/978-981-13-1471-1
https://doi.org/10.1007/978-981-13-1471-1
https://doi.org/10.1007/s10107-017-1166-z
https://doi.org/10.1007/s10107-017-1166-z
http://www.sciencedirect.com/science/article/pii/S0377221705006958
http://www.sciencedirect.com/science/article/pii/S0377221705006958
http://www.sciencedirect.com/science/article/pii/S0377221702004381

Ruslan Sadykov. A branch-and-check algorithm for minimizing the weighted number of late jobs

on a single machine with release dates. European Journal of Operational Research, 189(3):

1284 – 1304, 2008. ISSN 0377-2217. doi: https://doi.org/10.1016/j.ejor.2006.06.078. URL

http://www.sciencedirect.com/science/article/pii/S0377221707005991.

Johannes Schneider and Scott Kirkpatrick. Stochastic Optimization. Scientific Computation.

Springer, Berlin, Germany, November 2010.

Alexander Shapiro. Minimax and risk averse multistage stochastic programming. European Journal

of Operational Research, 219(3):719–726, June 2012. ISSN 0377-2217. doi: 10.1016/j.ejor.2011.

11.005. URL http://www.sciencedirect.com/science/article/pii/S0377221711009921.

Hanif Sherali and Barbara Fraticelli. A modification of benders’ decomposition algorithm for

discrete subproblems: An approach for stochastic programs with integer recourse. Journal of

Global Optimization, 22:319–, 01 2002. doi: 10.1023/A:1013827731218.

Hanif D. Sherali and Xiaomei Zhu. On solving discrete two-stage stochastic programs having

mixed-integer first- and second-stage variables. Mathematical Programming, 108(2):597–616,

Sep 2006. ISSN 1436-4646. doi: 10.1007/s10107-006-0724-6. URL https://doi.org/10.1007/

s10107-006-0724-6.

Herbert A. Simon. Decision making: Rational, nonrational, and irrational. Educational Admin-

istration Quarterly, 29(3):392–411, August 1993. doi: 10.1177/0013161x93029003009. URL

https://doi.org/10.1177/0013161x93029003009.

Anirudh Subramanyam, Chrysanthos E. Gounaris, and Wolfram Wiesemann. K-adaptability in

two-stage mixed-integer robust optimization. Mathematical Programming Computation, 12(2):

193–224, November 2019. doi: 10.1007/s12532-019-00174-2. URL https://doi.org/10.1007/

s12532-019-00174-2.

A. Takeda, S. Taguchi, and R. H. Tütüncü. Adjustable robust optimization models for a nonlinear

two-period system. Journal of Optimization Theory and Applications, 136(2):275–295, October

2007. doi: 10.1007/s10957-007-9288-8. URL https://doi.org/10.1007/s10957-007-9288-8.

A. M. Turing. On computable numbers, with an application to the entscheidungsproblem. Pro-

ceedings of the London Mathematical Society, s2-42(1):230–265, 1937. doi: 10.1112/plms/s2-42.

1.230. URL https://doi.org/10.1112/plms/s2-42.1.230.

Marjan van den Akker, Han Hoogeveen, and Judith Stoef. Combining two-stage stochastic pro-

gramming and recoverable robustness to minimize the number of late jobs in the case of un-

certain processing times. Journal of Scheduling, 21(6):607–617, December 2018. ISSN 1094-

6136, 1099-1425. doi: 10.1007/s10951-018-0559-z. URL http://link.springer.com/10.1007/

s10951-018-0559-z.

Ruby van Rooyen, Deneys S. Maartens, and Peter Martinez. Autonomous observation schedul-

ing in astronomy. In Alison B. Peck, Robert L. Seaman, and Chris R. Benn, editors, Obser-

vatory Operations: Strategies, Processes, and Systems VII, volume 10704, pages 393 – 408.

International Society for Optics and Photonics, SPIE, 2018. doi: 10.1117/12.2311839. URL

https://doi.org/10.1117/12.2311839.

151

http://www.sciencedirect.com/science/article/pii/S0377221707005991
http://www.sciencedirect.com/science/article/pii/S0377221711009921
https://doi.org/10.1007/s10107-006-0724-6
https://doi.org/10.1007/s10107-006-0724-6
https://doi.org/10.1177/0013161x93029003009
https://doi.org/10.1007/s12532-019-00174-2
https://doi.org/10.1007/s12532-019-00174-2
https://doi.org/10.1007/s10957-007-9288-8
https://doi.org/10.1112/plms/s2-42.1.230
http://link.springer.com/10.1007/s10951-018-0559-z
http://link.springer.com/10.1007/s10951-018-0559-z
https://doi.org/10.1117/12.2311839

F. Vanderbeck. Bapcod – a generic branch-and-price code, 2005. URL https://realopt.

bordeaux.inria.fr/?page_id=2.

Jian Yang and Gang Yu. On the robust single machine scheduling problem. Journal of Combi-

natorial Optimization, 6(1):17–33, Mar 2002. ISSN 1573-2886. doi: 10.1023/A:1013333232691.

URL https://doi.org/10.1023/A:1013333232691.

Bo Zeng and Long Zhao. Solving two-stage robust optimization problems using a column-and-

constraint generation method. Operations Research Letters, 41(5):457–461, September 2013.

doi: 10.1016/j.orl.2013.05.003. URL https://doi.org/10.1016/j.orl.2013.05.003.

Long Zhao and Bo Zeng. An exact algorithm for two-stage robust optimization with mixed integer

recourse problems. Technical report, University of South Florida, 2012.

152

https://realopt.bordeaux.inria.fr/?page_id=2
https://realopt.bordeaux.inria.fr/?page_id=2
https://doi.org/10.1023/A:1013333232691
https://doi.org/10.1016/j.orl.2013.05.003

	Abstract
	I Introduction
	Decision making under uncertainty
	Introduction
	Mathematical modeling
	Stochastic optimization
	Chance-constrained optimization
	Robust optimization
	Distributionally robust optimization

	Recourse decisions
	Two-stage decision flows
	The K-adaptability approach

	Summary
	Robust optimization
	Problem formulation
	Single stage models
	Two-stage models
	Classical uncertainty sets
	Solution approaches
	Linear second stage
	Convex second stage
	Mixed-integer second stage
	The K-adaptability problem

	II Contributions
	Mixed-integer problems with objective uncertainty
	Introduction
	Problem definition
	A hull-relaxation-based branch-and-bound algorithm
	Problem reformulation
	Relaxation
	Enumerative algorithm
	A convexification scheme based on column-generation

	Computational experiments
	Problem definition
	Mathematical formulation
	Test bed
	Implementation details
	General results

	Conclusion

	Application: scheduling under uncertain job failure
	Introduction
	Minimizing the weighted number of tardy jobs: literature review
	Robust problem
	Problem description
	Formulation

	Solution approaches
	K-Adaptability
	Convexification of the recourse set

	Order-fixing first stage
	Formulation
	Relation with problem without order-fixation

	Computational experiments
	Implementation details and experimental setting
	Instances
	Protocol for comparing the two solution methods
	Comparison of the approaches for problem without order-fixation
	Comparison of the approaches for the order-fixing problem

	Conclusion

	Mixed-integer problems with binary uncertainty
	Introduction
	Problem modeling
	Uncertainty model
	Expressiveness of our model

	Example: The Multiple Knapsack Problem
	Theoretical development
	Reformulation
	Relaxation
	Solving the separation problem
	Dealing with infeasibility

	A Branch-and-bound algorithm
	Statement of the procedure
	Identifying active cuts
	Convergence result

	Computational experiments
	Reformulation
	Instance generation
	Results

	Conclusion

	Application: Facility Location Problem with uncertain demands
	Problem description
	Deterministic problem
	A two-stage robust variant

	Numerical example
	Reformulation
	Computational experiments
	Instance generation
	Results

	Convex problems with 0-1 polytope uncertainty
	Introduction
	Problem formulation
	Contribution

	Theoretical development
	A non-convex separation problem
	Generalized Benders Decomposition
	Column-and-constraint generation
	Convergence
	0-1 polytopic uncertainty sets

	Application: resource planning problem
	Problem description
	Instance generation
	Results

	Conclusion
	Conclusion
	Main contributions
	Mixed-integer second stage
	Convex second stage

	Future research directions
	Exploiting structure from deterministic problems
	Improving solution guarantees for problems with second-stage problems

	Appendices
	Recalls on convex optimization
	Fenchel duality
	Introduction
	Examples
	Calculus rules
	Duality theorem

	Convex-hull splitting property
	Additional proofs
	Proof of Example 11
	Computing convex conjugates
	Applying Theorem 8

