Marsi, Antonio
  
(2020)
Essays in Empirical Macroeconomics, [Dissertation thesis], Alma Mater Studiorum Università di Bologna. 
 Dottorato di ricerca in 
Economics, 32 Ciclo. DOI 10.48676/unibo/amsdottorato/9525.
  
 
  
  
        
        
        
  
  
  
  
  
  
  
    
  
    
      Documenti full-text disponibili:
      
        
          
            ![tesi phd_Antonio Marsi.pdf [thumbnail of tesi phd_Antonio Marsi.pdf]](https://amsdottorato.unibo.it/style/images/fileicons/application_pdf.png)  | 
            
              
Documento PDF (English)
 - Richiede un lettore di PDF come Xpdf o Adobe Acrobat Reader
   Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato.
 
              Download (2MB)
              
			  
			  
              
  
              
             | 
          
        
      
    
  
  
    
      Abstract
      In the first chapter I analyze the predictability of European stock returns, using a large set of stock-level predictors and several machine learning algorithms. The analysis suggests monthly returns are hardly predictable. In the second and third chapters monetary policy in the Euro Area is studied in a core-periphery perspective. First, I study the effects of the quantitative easing on the convenience yield on safe German bonds. I identify a contractionary component of the QE related to the induced increase in the scarcity of German bonds. In the last chapter I identify a novel shock, necessary to fully characterize   monetary policy in the Euro Area, using high-frequency variations of asset prices around ECB press conferences. This shock generates from the ECB having a direct role in driving expectations about the credit/redenomination risk of peripheral countries’ debt and have tangible effects on Euro Area economy.
     
    
      Abstract
      In the first chapter I analyze the predictability of European stock returns, using a large set of stock-level predictors and several machine learning algorithms. The analysis suggests monthly returns are hardly predictable. In the second and third chapters monetary policy in the Euro Area is studied in a core-periphery perspective. First, I study the effects of the quantitative easing on the convenience yield on safe German bonds. I identify a contractionary component of the QE related to the induced increase in the scarcity of German bonds. In the last chapter I identify a novel shock, necessary to fully characterize   monetary policy in the Euro Area, using high-frequency variations of asset prices around ECB press conferences. This shock generates from the ECB having a direct role in driving expectations about the credit/redenomination risk of peripheral countries’ debt and have tangible effects on Euro Area economy.
     
  
  
    
    
      Tipologia del documento
      Tesi di dottorato
      
      
      
      
        
      
        
          Autore
          Marsi, Antonio
          
        
      
        
          Supervisore
          
          
        
      
        
      
        
          Dottorato di ricerca
          
          
        
      
        
      
        
          Ciclo
          32
          
        
      
        
          Coordinatore
          
          
        
      
        
          Settore disciplinare
          
          
        
      
        
          Settore concorsuale
          
          
        
      
        
          Parole chiave
          Monetary Policy, Proxy SVARs, Machine Learning
          
        
      
        
          URN:NBN
          
          
        
      
        
          DOI
          10.48676/unibo/amsdottorato/9525
          
        
      
        
          Data di discussione
          19 Ottobre 2020
          
        
      
      URI
      
      
     
   
  
    Altri metadati
    
      Tipologia del documento
      Tesi di dottorato
      
      
      
      
        
      
        
          Autore
          Marsi, Antonio
          
        
      
        
          Supervisore
          
          
        
      
        
      
        
          Dottorato di ricerca
          
          
        
      
        
      
        
          Ciclo
          32
          
        
      
        
          Coordinatore
          
          
        
      
        
          Settore disciplinare
          
          
        
      
        
          Settore concorsuale
          
          
        
      
        
          Parole chiave
          Monetary Policy, Proxy SVARs, Machine Learning
          
        
      
        
          URN:NBN
          
          
        
      
        
          DOI
          10.48676/unibo/amsdottorato/9525
          
        
      
        
          Data di discussione
          19 Ottobre 2020
          
        
      
      URI
      
      
     
   
  
  
  
  
  
    
    Statistica sui download
    
    
  
  
    
      Gestione del documento: