Low-Power Human-Machine Interfaces: Analysis And Design

Kartsch Morinigo, Victor Javier (2020) Low-Power Human-Machine Interfaces: Analysis And Design, [Dissertation thesis], Alma Mater Studiorum Università di Bologna. Dottorato di ricerca in Ingegneria elettronica, telecomunicazioni e tecnologie dell'informazione, 32 Ciclo. DOI 10.6092/unibo/amsdottorato/9396.
Documenti full-text disponibili:
[img] Documento PDF (English) - Richiede un lettore di PDF come Xpdf o Adobe Acrobat Reader
Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato.
Download (5MB)

Abstract

Human-Machine Interaction (HMI) systems, once used for clinical applications, have recently reached a broader set of scenarios, such as industrial, gaming, learning, and health tracking thanks to advancements in Digital Signal Processing (DSP) and Machine Learning (ML) techniques. A growing trend is to integrate computational capabilities into wearable devices to reduce power consumption associated with wireless data transfer while providing a natural and unobtrusive way of interaction. However, current platforms can barely cope with the computational complexity introduced by the required feature extraction and classification algorithms without compromising the battery life and the overall intrusiveness of the system. Thus, highly-wearable and real-time HMIs are yet to be introduced. Designing and implementing highly energy-efficient biosignal devices demands a fine-tuning to meet the constraints typically required in everyday scenarios. This thesis work tackles these challenges in specific case studies, devising solutions based on bioelectrical signals, namely EEG and EMG, for advanced hand gesture recognition. The implementation of these systems followed a complete analysis to reduce the overall intrusiveness of the system through sensor design and miniaturization of the hardware implementation. Several solutions have been studied to cope with the computational complexity of the DSP algorithms, including commercial single-core and open-source Parallel Ultra Low Power architectures, that have been selected accordingly also to reduce the overall system power consumption. By further adding energy harvesting techniques combined with the firmware and hardware optimization, the systems achieved self-sustainable operation or a significant boost in battery life. The HMI platforms presented are entirely programmable and provide computational power to satisfy the requirements of the studies applications while employing only a fraction of the CPU resources, giving the perspective of further application more advanced paradigms for the next generation of real-time embedded biosignal processing.

Abstract
Tipologia del documento
Tesi di dottorato
Autore
Kartsch Morinigo, Victor Javier
Supervisore
Dottorato di ricerca
Ciclo
32
Coordinatore
Settore disciplinare
Settore concorsuale
Parole chiave
Human-Machine Interaction, HMI, Brain-Machine Interface, BCI, Embedded Processing, Parallel Ultra Low Power
URN:NBN
DOI
10.6092/unibo/amsdottorato/9396
Data di discussione
25 Marzo 2020
URI

Altri metadati

Statistica sui download

Gestione del documento: Visualizza la tesi

^