Quantum simulation and topological phases in Lattice Gauge Theories

Magnifico, Giuseppe (2020) Quantum simulation and topological phases in Lattice Gauge Theories, [Dissertation thesis], Alma Mater Studiorum Università di Bologna. Dottorato di ricerca in Fisica, 32 Ciclo. DOI 10.6092/unibo/amsdottorato/9254.
Documenti full-text disponibili:
[img] Documento PDF (English) - Richiede un lettore di PDF come Xpdf o Adobe Acrobat Reader
Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato.
Download (9MB)

Abstract

Simulating quantum-mechanical systems is a very challenging issue due to the high computational costs. The main reason for this is related to the dimension of the Hilbert space that grows exponentially with the number of degrees of freedom, making an exact implementation impossible even for the most powerful today’s supercomputers. On this ground it appears clear the need of a new simulation method, i.e. quantum simulation. The general idea is very simple: using a controllable quantum system, called quantum simulator, to emulate and to analyze another quantum system that usually results less controllable or accessible. Quantum simulation is currently a growing and multidisciplinary physical area that involves theoretical and experimental research. From the theoretical side, the main focus is on the study of simulation-models that create a mapping between the target physics and the simulator. In the first two parts of this thesis, we explore these ideas by studying the ground-state properties and the real-time dynamics of a class of Zn lattice gauge theories in 1+1 dimensions, in which the gauge fields are coupled to fermionic matter. These models can be considered as quantum simulation-models of lattice 1+1 Quantum Electrodynamics (QED), which is the simplest gauge theory that shows non-trivial phenomena, like confinement, that are also observed in more complicated gauge theories, such as 3+1 Quantum Chromodynamics (QCD). In the third part of this thesis, we unveil an interesting interplay of symmetry and topology by demonstrating the existence of symmetry-protected topological (SPT) phases in the presence of gauge interactions. More specifically, we introduce an alternative discretization of the Schwinger model leading to a new type of topological-QED. We use bosonization and Density-Matrix Renormalization Group (DMRG) techniques to analyze the phase diagram of the model, opening an interesting route to study topological phases of matter in the context of gauge theories.

Abstract
Tipologia del documento
Tesi di dottorato
Autore
Magnifico, Giuseppe
Supervisore
Dottorato di ricerca
Ciclo
32
Coordinatore
Settore disciplinare
Settore concorsuale
Parole chiave
Quantum Simulation, Quantum Electrodynamics, Schwinger model, Quantum phase transitions, Topological Phases, Density Matrix Renormalization Group, Lattice Gauge Theories, Real-time dynamics of strongly correlated systems.
URN:NBN
DOI
10.6092/unibo/amsdottorato/9254
Data di discussione
16 Marzo 2020
URI

Altri metadati

Statistica sui download

Gestione del documento: Visualizza la tesi

^