Hickman-lewis, Keyron
(2019)
Coupling instrumentation and methodology in the search for traces of life on the early Earth and Mars, [Dissertation thesis], Alma Mater Studiorum Università di Bologna.
Dottorato di ricerca in
Scienze della terra, della vita e dell'ambiente, 32 Ciclo. DOI 10.48676/unibo/amsdottorato/9105.
Documenti full-text disponibili:
|
Documento PDF (English)
- Richiede un lettore di PDF come Xpdf o Adobe Acrobat Reader
Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato.
Download (179MB)
|
Abstract
Evaluating the nature of the earliest, often controversial, traces of life in the geological record (dating to the Palaeoarchaean, up to ~3.5 billion years before the present) is of fundamental relevance for placing constraints on the potential that life emerged on Mars at approximately the same time (the Noachian period). In their earliest histories, the two planets shared many palaeoenvironmental similarities, before the surface of Mars rapidly became inhospitable to life as we know it. Multi-scalar, multi-modal analyses of fossiliferous rocks from the Barberton greenstone belt of South Africa and the East Pilbara terrane of Western Australia are a window onto primitive prokaryotic ecoystems. Complementary petrographic, morphological, (bio)geochemical and nanostructural analyses of chert horizons and the carbonaceous material within using a wide range of techniques – including optical microscopy, SEM-EDS, Raman spectroscopy, PIXE, µCT, laser ablation ICP-MS, high-resolution TEM-based analytical techniques and secondary ion mass spectrometry – can characterise, at scales from macroscopic to nanoscopic, the fossilised biomes of the earliest Earth. These approaches enable the definition of the palaeoenvironments, and potentially metabolic networks, preserved in ancient rocks. Modifying these protocols is necessary for Martian exploration using rovers, since the range and power of space instrumentation is significantly reduced relative to terrestrial laboratories. Understanding the crucial observations possible using highly complementary rover-based payloads is therefore critical in scientific protocols aiming to detect traces of life on Mars.
Abstract
Evaluating the nature of the earliest, often controversial, traces of life in the geological record (dating to the Palaeoarchaean, up to ~3.5 billion years before the present) is of fundamental relevance for placing constraints on the potential that life emerged on Mars at approximately the same time (the Noachian period). In their earliest histories, the two planets shared many palaeoenvironmental similarities, before the surface of Mars rapidly became inhospitable to life as we know it. Multi-scalar, multi-modal analyses of fossiliferous rocks from the Barberton greenstone belt of South Africa and the East Pilbara terrane of Western Australia are a window onto primitive prokaryotic ecoystems. Complementary petrographic, morphological, (bio)geochemical and nanostructural analyses of chert horizons and the carbonaceous material within using a wide range of techniques – including optical microscopy, SEM-EDS, Raman spectroscopy, PIXE, µCT, laser ablation ICP-MS, high-resolution TEM-based analytical techniques and secondary ion mass spectrometry – can characterise, at scales from macroscopic to nanoscopic, the fossilised biomes of the earliest Earth. These approaches enable the definition of the palaeoenvironments, and potentially metabolic networks, preserved in ancient rocks. Modifying these protocols is necessary for Martian exploration using rovers, since the range and power of space instrumentation is significantly reduced relative to terrestrial laboratories. Understanding the crucial observations possible using highly complementary rover-based payloads is therefore critical in scientific protocols aiming to detect traces of life on Mars.
Tipologia del documento
Tesi di dottorato
Autore
Hickman-lewis, Keyron
Supervisore
Co-supervisore
Dottorato di ricerca
Ciclo
32
Coordinatore
Settore disciplinare
Settore concorsuale
Parole chiave
Archaean; palaeontology; geochemistry; geobiology
URN:NBN
DOI
10.48676/unibo/amsdottorato/9105
Data di discussione
10 Ottobre 2019
URI
Altri metadati
Tipologia del documento
Tesi di dottorato
Autore
Hickman-lewis, Keyron
Supervisore
Co-supervisore
Dottorato di ricerca
Ciclo
32
Coordinatore
Settore disciplinare
Settore concorsuale
Parole chiave
Archaean; palaeontology; geochemistry; geobiology
URN:NBN
DOI
10.48676/unibo/amsdottorato/9105
Data di discussione
10 Ottobre 2019
URI
Statistica sui download
Gestione del documento: