Parvari Rad, Farid
(2014)
Design and Characterization of Curved and Spherical Flexure Hinges for Planar and Spatial Compliant Mechanisms, [Dissertation thesis], Alma Mater Studiorum Università di Bologna.
Dottorato di ricerca in
Meccanica e scienze avanzate dell'ingegneria, 26 Ciclo. DOI 10.6092/unibo/amsdottorato/6544.
Documenti full-text disponibili:
Abstract
A flexure hinge is a flexible connector that can provide a limited rotational motion between two rigid parts by means of material deformation. These connectors can be used to substitute traditional kinematic pairs (like bearing couplings) in rigid-body mechanisms. When compared to their rigid-body counterpart, flexure hinges are characterized by reduced weight, absence of backlash and friction, part-count reduction, but restricted range of motion. There are several types of flexure hinges in the literature that have been studied and characterized for different applications. In our
study, we have introduced new types of flexures with curved structures i.e. circularly curved-beam flexures and spherical flexures. These flexures have been utilized for both planar applications (e.g. articulated robotic fingers) and spatial applications (e.g. spherical compliant mechanisms). We have derived closed-form compliance equations for both circularly curved-beam flexures and
spherical flexures. Each element of the spatial compliance matrix is analytically computed as a function of hinge dimensions and employed material. The theoretical model is then validated by comparing analytical data with the results obtained through Finite Element Analysis. A case study
is also presented for each class of flexures, concerning the potential applications in the optimal design of planar and spatial compliant mechanisms. Each case study is followed by comparing the performance of these novel flexures with the performance of commonly used geometries in terms of principle compliance factors, parasitic motions and maximum stress demands. Furthermore, we have extended our study to the design and analysis of serial and parallel compliant mechanisms, where the proposed flexures have been employed to achieve spatial motions e.g. compliant spherical joints.
Abstract
A flexure hinge is a flexible connector that can provide a limited rotational motion between two rigid parts by means of material deformation. These connectors can be used to substitute traditional kinematic pairs (like bearing couplings) in rigid-body mechanisms. When compared to their rigid-body counterpart, flexure hinges are characterized by reduced weight, absence of backlash and friction, part-count reduction, but restricted range of motion. There are several types of flexure hinges in the literature that have been studied and characterized for different applications. In our
study, we have introduced new types of flexures with curved structures i.e. circularly curved-beam flexures and spherical flexures. These flexures have been utilized for both planar applications (e.g. articulated robotic fingers) and spatial applications (e.g. spherical compliant mechanisms). We have derived closed-form compliance equations for both circularly curved-beam flexures and
spherical flexures. Each element of the spatial compliance matrix is analytically computed as a function of hinge dimensions and employed material. The theoretical model is then validated by comparing analytical data with the results obtained through Finite Element Analysis. A case study
is also presented for each class of flexures, concerning the potential applications in the optimal design of planar and spatial compliant mechanisms. Each case study is followed by comparing the performance of these novel flexures with the performance of commonly used geometries in terms of principle compliance factors, parasitic motions and maximum stress demands. Furthermore, we have extended our study to the design and analysis of serial and parallel compliant mechanisms, where the proposed flexures have been employed to achieve spatial motions e.g. compliant spherical joints.
Tipologia del documento
Tesi di dottorato
Autore
Parvari Rad, Farid
Supervisore
Co-supervisore
Dottorato di ricerca
Scuola di dottorato
Ingegneria industriale
Ciclo
26
Coordinatore
Settore disciplinare
Settore concorsuale
Parole chiave
Circularly curved-beam flexures, spherical flexures, finite element analysis, spherical compliant mechanisms
URN:NBN
DOI
10.6092/unibo/amsdottorato/6544
Data di discussione
15 Aprile 2014
URI
Altri metadati
Tipologia del documento
Tesi di dottorato
Autore
Parvari Rad, Farid
Supervisore
Co-supervisore
Dottorato di ricerca
Scuola di dottorato
Ingegneria industriale
Ciclo
26
Coordinatore
Settore disciplinare
Settore concorsuale
Parole chiave
Circularly curved-beam flexures, spherical flexures, finite element analysis, spherical compliant mechanisms
URN:NBN
DOI
10.6092/unibo/amsdottorato/6544
Data di discussione
15 Aprile 2014
URI
Statistica sui download
Gestione del documento: