Approcci molecolari e bioinformatici volti alla caratterizzazione di Vgt1, QTL coinvolto nella regolazione dell'epoca di fioritura in Zea Mays

Castelletti, Sara (2011) Approcci molecolari e bioinformatici volti alla caratterizzazione di Vgt1, QTL coinvolto nella regolazione dell'epoca di fioritura in Zea Mays, [Dissertation thesis], Alma Mater Studiorum Università di Bologna. Dottorato di ricerca in Biotecnologie cellulari e molecolari, 22 Ciclo.
Documenti full-text disponibili:
[img] Documento PDF (Italiano) - Accesso riservato - Richiede un lettore di PDF come Xpdf o Adobe Acrobat Reader
Download (5MB)

Abstract

The genetic control of flowering time has been addressed by many quantitative trait locus (QTL) studies. A survey of the results from 29 independent studies reporting information on 441 QTLs led to the production of a QTL consensus map, which enabled the identification of 59 chromosome regions distributed on all chromosomes and shown to be frequently involved in the genetic control of flowering time and related traits. One of the major QTLs for flowering time, the Vegetative to generative transition 1 (Vgt1) locus , corresponds to an upstream (70 kb) non-coding regulatory element of ZmRap2.7, a repressor of flowering. A transposon (MITE) insertion was identified as a major allelic difference within Vgt1. One of the hypotheses is that Vgt1 might function by modifying ZmRap2.7 chromatin through an epigenetic mechanism. Therefore, the methylation state at Vgt1 was investigated using an approach that combines digestion with McrBc, an endonuclease that acts upon methylated DNA, and quantitative PCR. The analyses were performed on genomic DNA from leaves of six different maize lines at four stages of development. The results showed a trend of reduction of methylation from the first to the last stage with the exception of a short genomic region flanking the MITE insertion, which showed a constant and very dense methylation throughout leaf development and for both alleles. Preliminary results from bisulfite sequencing of a small portion of Vgt1 revealed differential methylation of a single cytosine residue between the two alleles. ZmRap2.7 expression was assayed in the four developmental stages afore mentioned for the six genotypes, in order to establish a link between methylation at Vgt1 and ZmRap2.7 transcription. To assess the role of Vgt1 as a transcriptional enhancer, two reporter vectors for stable transformation of plants have been developed.

Abstract
Tipologia del documento
Tesi di dottorato
Autore
Castelletti, Sara
Supervisore
Co-supervisore
Dottorato di ricerca
Scuola di dottorato
Scienze biologiche, biomediche e biotecnologiche
Ciclo
22
Coordinatore
Settore disciplinare
Settore concorsuale
URN:NBN
Data di discussione
10 Maggio 2011
URI

Altri metadati

Gestione del documento: Visualizza la tesi

^