Pseudo-operations and pseudo-analysis: applications to probability and risk modelling

Ricci, Massimo (2024) Pseudo-operations and pseudo-analysis: applications to probability and risk modelling, [Dissertation thesis], Alma Mater Studiorum Università di Bologna. Dottorato di ricerca in Scienze statistiche, 36 Ciclo. DOI 10.48676/unibo/amsdottorato/11464.
Documenti full-text disponibili:
[img] Documento PDF (English) - Richiede un lettore di PDF come Xpdf o Adobe Acrobat Reader
Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato.
Download (3MB)

Abstract

The aim of this thesis is to generalize some well-known concepts in probability and statistics from the standard ring to the non-idempotent semi-ring (R+, ⊕h, ⊗h), where pseudo-sum ⊕h and ⊗h are defined by a suitable function h, called generator. In the first part of this dissertation, we introduce the notions of pseudo-independence with respect to a pseudo-additive fuzzy measure and of pseudo-moment generating functions, showing that the classical results concerning moment generating functions of a vector of independent random variables and of their sum extend to pseudo-moment generating functions if the random variables involved are pseudo-independent. Moreover, we prove that pseudo moment generating functions, and more in general pseudo-analysis, can be particularly efficient in characterizing a new class of bivariate random vectors that we call ”pseudo-Schur constant” family, which represents an extension of the well-known Schur-constant class. In the second part of this thesis, we give a generalization of strong and weak bivariate lack-of-memory properties, substituting into their associated functional equations the standard product by the pseudo one ⊗h: we call the distributions satisfying them pseudo strong and weak distributions. After characterising the pseudo weak distribution in full generality, we study the induced dependence structure of the underlying lifetimes and that of the residual ones. Moreover, we show that the distributions satisfying pseudo lack-of-memory properties coincide with the solutions of suitable generalizations of Kaminsky (1983) and Marshall and Olkin (2015) functional equations; finally, we analyse several examples of pseudo weak distributions that may be used in life insurance and we give a non-life insurance application to LOSS and ALAE modelling problem.

Abstract
Tipologia del documento
Tesi di dottorato
Autore
Ricci, Massimo
Supervisore
Dottorato di ricerca
Ciclo
36
Coordinatore
Settore disciplinare
Settore concorsuale
Parole chiave
Pseudo-Operations; Pseudo-Analysis; Schur-Constant Distributions; Bivariate Lack-of-Memory Properties; Residual Lifetimes, Functional Equations; Actuarial Applications.
URN:NBN
DOI
10.48676/unibo/amsdottorato/11464
Data di discussione
3 Luglio 2024
URI

Altri metadati

Statistica sui download

Gestione del documento: Visualizza la tesi

^