Mancuso, Andrea
(2024)
The XENONnT neutron veto: design, construction and performance, [Dissertation thesis], Alma Mater Studiorum Università di Bologna.
Dottorato di ricerca in
Fisica, 36 Ciclo. DOI 10.48676/unibo/amsdottorato/11437.
Documenti full-text disponibili:
|
Documento PDF (English)
- Richiede un lettore di PDF come Xpdf o Adobe Acrobat Reader
Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato.
Download (70MB)
|
Abstract
Many astrophysical and cosmological observations point to the presence of Dark Matter (DM) in the universe. Among the potential DM candidates, WIMPs emerge from theories beyond the SM. The XENON Dark Matter Project is one of the leading experiments for DM direct detection, employing a dual-phase xenon TPC. The current phase of the project, XENONnT, features a TPC with a sensitive liquid xenon mass of 5.9 t surrounded by a Gadolinium-loaded water Cherenkov Neutron Veto (NV). A critical challenge in DM detection is distinguishing WIMP-induced NR from the backgrounds.
In particular, neutrons emitted by detector materials can mimic WIMP signals, posing a significant threat to the sensitivity to DM. The NV plays a crucial role in mitigating this background by tagging the escaping neutrons through their delayed capture in water. The NV surrounds the TPC, with highly reflective panels and is instrumented with 120 PMTs. In the first two science runs the NV operated with pure water. In this setup, the NV achieved a neutron tagging efficiency of 53%, contributing significantly to the first WIMP analysis in the first XENONnT science run. A blind analysis over a total exposure of 1.1 tonne-year revealed no significant excess over the expected background, establishing the lowest upper limit to the WIMP-nucleon spin-independent cross-section of 2.58×10−47 cm2 for WIMPs of 28 GeV/c2 mass at a 90% confidence level.
Abstract
Many astrophysical and cosmological observations point to the presence of Dark Matter (DM) in the universe. Among the potential DM candidates, WIMPs emerge from theories beyond the SM. The XENON Dark Matter Project is one of the leading experiments for DM direct detection, employing a dual-phase xenon TPC. The current phase of the project, XENONnT, features a TPC with a sensitive liquid xenon mass of 5.9 t surrounded by a Gadolinium-loaded water Cherenkov Neutron Veto (NV). A critical challenge in DM detection is distinguishing WIMP-induced NR from the backgrounds.
In particular, neutrons emitted by detector materials can mimic WIMP signals, posing a significant threat to the sensitivity to DM. The NV plays a crucial role in mitigating this background by tagging the escaping neutrons through their delayed capture in water. The NV surrounds the TPC, with highly reflective panels and is instrumented with 120 PMTs. In the first two science runs the NV operated with pure water. In this setup, the NV achieved a neutron tagging efficiency of 53%, contributing significantly to the first WIMP analysis in the first XENONnT science run. A blind analysis over a total exposure of 1.1 tonne-year revealed no significant excess over the expected background, establishing the lowest upper limit to the WIMP-nucleon spin-independent cross-section of 2.58×10−47 cm2 for WIMPs of 28 GeV/c2 mass at a 90% confidence level.
Tipologia del documento
Tesi di dottorato
Autore
Mancuso, Andrea
Supervisore
Co-supervisore
Dottorato di ricerca
Ciclo
36
Coordinatore
Settore disciplinare
Settore concorsuale
Parole chiave
Dark Matter, XENONnT, Neutron Veto, Gadolinium
URN:NBN
DOI
10.48676/unibo/amsdottorato/11437
Data di discussione
17 Giugno 2024
URI
Altri metadati
Tipologia del documento
Tesi di dottorato
Autore
Mancuso, Andrea
Supervisore
Co-supervisore
Dottorato di ricerca
Ciclo
36
Coordinatore
Settore disciplinare
Settore concorsuale
Parole chiave
Dark Matter, XENONnT, Neutron Veto, Gadolinium
URN:NBN
DOI
10.48676/unibo/amsdottorato/11437
Data di discussione
17 Giugno 2024
URI
Statistica sui download
Gestione del documento: