Unconventional computing paradigm methods with application to computational chemistry

Maronese, Marco (2024) Unconventional computing paradigm methods with application to computational chemistry, [Dissertation thesis], Alma Mater Studiorum Università di Bologna. Dottorato di ricerca in Data science and computation, 35 Ciclo. DOI 10.48676/unibo/amsdottorato/11370.
Documenti full-text disponibili:
[img] Documento PDF (English) - Richiede un lettore di PDF come Xpdf o Adobe Acrobat Reader
Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato.
Download (12MB)

Abstract

Over the last two decades, applied chemistry has experienced a significant shift, integrating theory and modeling as essential aspects of the discipline. This transformation has been driven by advancements in methodology, numerical techniques, and the increased capabilities of computer hardware and software. Notably, parallel Graphics Processing Units (GPUs) have become instrumental in computational chemistry, allowing for efficient simulations alongside traditional CPU-based computing. However, despite these advances, classical computing faces limitations, particularly in solving complex optimization and sampling problems inherent in computational chemistry. These challenges have prompted exploration into alternative computing paradigms, including quantum computing and memcomputing. Quantum computers leverage principles of quantum mechanics to surpass classical computing limits for specific tasks, while memcomputing exploits classical mechanics in a non-Turing manner, using the evolution of physical systems for computation. This thesis examines these alternative paradigms and their potential to address the limitations of classical computing in computational chemistry. It delves into the physical implementations of quantum and memcomputing systems and evaluates their performance through benchmarking against classical methods. Tests include assessing quantum amplitude estimation methods on trapped ion computers, evaluating quantum optimization for crystal structure prediction, and analyzing the effectiveness of memcomputing and adiabatic quantum computing on NP-hard optimization problems. While the results show promise for these alternative paradigms, they also highlight current limitations in hardware and implementation. Nonetheless, the findings suggest a hopeful outlook for the future development and application of quantum computing and memcomputing in computational chemistry.

Abstract
Tipologia del documento
Tesi di dottorato
Autore
Maronese, Marco
Supervisore
Co-supervisore
Dottorato di ricerca
Ciclo
35
Coordinatore
Settore disciplinare
Settore concorsuale
Parole chiave
Computational Chemistry, High-Performance Computing (HPC), Monte Carlo (MC) Methods, Quantum Computing, Memcomputing, Optimization Problems, Quantum Amplitude Estimation, Machine Learning, Benchmarking.
URN:NBN
DOI
10.48676/unibo/amsdottorato/11370
Data di discussione
10 Aprile 2024
URI

Altri metadati

Statistica sui download

Gestione del documento: Visualizza la tesi

^