A comprehensive experimental and numerical approach for assessing the hydro-mechanical behaviour of river embankments

Dodaro, Elena (2023) A comprehensive experimental and numerical approach for assessing the hydro-mechanical behaviour of river embankments, [Dissertation thesis], Alma Mater Studiorum Università di Bologna. Dottorato di ricerca in Ingegneria civile, chimica, ambientale e dei materiali, 35 Ciclo.
Documenti full-text disponibili:
[img] Documento PDF (English) - Accesso riservato fino a 15 Maggio 2025 - Richiede un lettore di PDF come Xpdf o Adobe Acrobat Reader
Disponibile con Licenza: Creative Commons Attribution Non-commercial No Derivatives 4.0 (CC BY-NC-ND 4.0) .
Download (11MB) | Contatta l'autore

Abstract

In this doctoral dissertation, a comprehensive methodological approach for the assessment of river embankments safety conditions, based on the integrated use of laboratory testing, physical modelling and finite element (FE) numerical simulations, is proposed, with the aim of contributing to a better understanding of the effect of time-dependent hydraulic boundary conditions on the hydro-mechanical response of river embankments. The case study and materials selected for the present research project are representative for the riverbank systems of Alpine and Apennine tributaries of the main river Po (Northern Italy), which have recently experienced various sudden overall collapses. The outcomes of a centrifuge test carried out under the enhanced gravity field of 50-g, on a riverbank model, made of a compacted silty sand mixture, overlying a homogeneous clayey silt foundation layer and subjected to a simulated flood event, have been considered for the definition of a robust and realistic experimental benchmark. In order to reproduce the observed experimental behaviour, a first set of numerical simulations has been carried out by assuming, for both the embankments and the foundation unit, rigid soil porous media, under partially saturated conditions. Mechanical and hydraulic soil properties adopted in the numerical analyses have been carefully estimated based on standard saturated triaxial, oedometer and constant head permeability tests. Afterwards, advanced suction-controlled laboratory tests, have been carried out to investigate the effect of suction and confining stresses on the shear strength and compressibility characteristics of the filling material and a second set of numerical simulations has been run, taking into account the soil parameters updated based on the most recent tests. The final aim of the study is the quantitative estimation of the predictive capabilities of the calibrated numerical tools, by systematically comparing the results of the FE simulations to the experimental benchmark.

Abstract
Tipologia del documento
Tesi di dottorato
Autore
Dodaro, Elena
Supervisore
Co-supervisore
Dottorato di ricerca
Ciclo
35
Coordinatore
Settore disciplinare
Settore concorsuale
Parole chiave
River embankment; laboratory testing; FEM numerical modelling; physical modelling with a centrifuge
URN:NBN
Data di discussione
16 Giugno 2023
URI

Altri metadati

Gestione del documento: Visualizza la tesi

^