Sita, Giulia
(2023)
Evaluation of the transcriptomic response of an Alzheimer's disease murine model induced at different ages: searching for predictors, [Dissertation thesis], Alma Mater Studiorum Università di Bologna.
Dottorato di ricerca in
Scienze biomediche e neuromotorie, 35 Ciclo.
Documenti full-text disponibili:
|
Documento PDF (English)
- Accesso riservato fino a 1 Gennaio 2026
- Richiede un lettore di PDF come Xpdf o Adobe Acrobat Reader
Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato.
Download (3MB)
| Contatta l'autore
|
Abstract
Alzheimer’s disease (AD) is a chronic, progressive neurodegenerative disease, characterized by the impairment of mnesic and cognitive functions, that represents the most frequent type of dementia in older people worldwide. Aging is the most important risk factor for the sporadic form of the pathology and it is associated to the progressive impairment of the proteostasis network. The endoplasmic reticulum (ER), the main cellular actor involved in proteostasis, appears significantly compromised in AD due to the accumulation of β-amyloid (Aβ) protein and phosphorylated-tau protein. Increasing proteins misfolding activates a specific cellular response known as Unfolded Protein response (UPR) which orchestrates the recovery of ER function.
The aim of the present study was to investigate the role of UPR and aging process in a murine model of AD induced by intracerebroventricular (i.c.v.) injection of Aβ1-42 oligomers at 3 or 18 months. The oligomers injection in aged animals caused the increased of memory impairment, oxidative stress, and the depletion of glutathione reserve. Furthermore, the RNA-sequencing analysis was performed and the bioinformatic analysis showed the enrichment of several pathways involved in neurodegeneration and protein regulations. The following analysis highlighted the significant dysregulation of the three branches of the UPR, the protein kinase RNA-like ER kinase (PERK), inositol-requiring protein 1α (IRE1α) and activating transcription factor 6 (ATF-6). In turn, ER stress affected the PI3K/Akt/Gsk3β and MAPK/ERK pathways, highlighting Mapkapk5 as a potential marker of the neurodegenerative process, which regulation could lead to the definition of new pharmacological and neuroprotective strategies to counteract AD.
Abstract
Alzheimer’s disease (AD) is a chronic, progressive neurodegenerative disease, characterized by the impairment of mnesic and cognitive functions, that represents the most frequent type of dementia in older people worldwide. Aging is the most important risk factor for the sporadic form of the pathology and it is associated to the progressive impairment of the proteostasis network. The endoplasmic reticulum (ER), the main cellular actor involved in proteostasis, appears significantly compromised in AD due to the accumulation of β-amyloid (Aβ) protein and phosphorylated-tau protein. Increasing proteins misfolding activates a specific cellular response known as Unfolded Protein response (UPR) which orchestrates the recovery of ER function.
The aim of the present study was to investigate the role of UPR and aging process in a murine model of AD induced by intracerebroventricular (i.c.v.) injection of Aβ1-42 oligomers at 3 or 18 months. The oligomers injection in aged animals caused the increased of memory impairment, oxidative stress, and the depletion of glutathione reserve. Furthermore, the RNA-sequencing analysis was performed and the bioinformatic analysis showed the enrichment of several pathways involved in neurodegeneration and protein regulations. The following analysis highlighted the significant dysregulation of the three branches of the UPR, the protein kinase RNA-like ER kinase (PERK), inositol-requiring protein 1α (IRE1α) and activating transcription factor 6 (ATF-6). In turn, ER stress affected the PI3K/Akt/Gsk3β and MAPK/ERK pathways, highlighting Mapkapk5 as a potential marker of the neurodegenerative process, which regulation could lead to the definition of new pharmacological and neuroprotective strategies to counteract AD.
Tipologia del documento
Tesi di dottorato
Autore
Sita, Giulia
Supervisore
Co-supervisore
Dottorato di ricerca
Ciclo
35
Coordinatore
Settore disciplinare
Settore concorsuale
Parole chiave
alzheimer's disease, UPR, oxidative stress, aging, beta-amyloid oligomers
URN:NBN
Data di discussione
13 Luglio 2023
URI
Altri metadati
Tipologia del documento
Tesi di dottorato
Autore
Sita, Giulia
Supervisore
Co-supervisore
Dottorato di ricerca
Ciclo
35
Coordinatore
Settore disciplinare
Settore concorsuale
Parole chiave
alzheimer's disease, UPR, oxidative stress, aging, beta-amyloid oligomers
URN:NBN
Data di discussione
13 Luglio 2023
URI
Gestione del documento: