Structural and biophysical characterization of RAD52 as novel pharmacological target for synthetic lethality

Balboni, Beatrice (2022) Structural and biophysical characterization of RAD52 as novel pharmacological target for synthetic lethality, [Dissertation thesis], Alma Mater Studiorum Università di Bologna. Dottorato di ricerca in Scienze biotecnologiche, biocomputazionali, farmaceutiche e farmacologiche, 34 Ciclo. DOI 10.48676/unibo/amsdottorato/10268.
Documenti full-text disponibili:
[img] Documento PDF (English) - Richiede un lettore di PDF come Xpdf o Adobe Acrobat Reader
Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato.
Download (7MB)

Abstract

RAD52 is a protein involved in various DNA reparation mechanisms. In the last few years, RAD52 has been proposed as a novel pharmacological target for cancer synthetic lethality strategies. Hence, this work has the purpose to investigate RAD52 protein, with biophysical and structural tools to shed light on proteins features and mechanistic details that are, up to now poorly described, and to design novel strategies for its inhibition. My PhD work had two goals: the structural and functional characterization of RAD52 and the identification of novel RAD52 inhibitors. For the first part, RAD52 was characterized both for its DNA interaction and oligomerization state together with its propensity to form high molecular weight superstructures. Moreover, using EM and Cryo-EM techniques, additional RAD52 structural hallmarks were obtained, valuable both for understanding protein mechanism of action and for drug discovery purpose. The second part of my PhD project focused on the design and characterization of novel RAD52 inhibitors to be potentially used in combination therapies with PARPi to achieve cancer cells synthetic lethality, avoiding resistance occurrence and side effects. With this aim we selected and characterized promising RAD52 inhibitors through three different approaches: 19F NMR fragment-based screening; virtual screening campaign; aptamers computational design. Selected hits (fragments, molecules and aptamers) were investigated for their binding to RAD52 and for their mechanism of inhibition. Collected data highlighted the identification of hits worthy to be developed into more potent and selective RAD52 inhibitors. Finally, a side project carried out during my PhD is reported. GSK-3β protein, an already validated pharmacological target was investigated using biophysical and structural biology tools. Here, an innovative and adaptable drug discovery screening pipeline able to directly identify selective compounds with binding affinities not higher than a reference binder was developed.

Abstract
Tipologia del documento
Tesi di dottorato
Autore
Balboni, Beatrice
Supervisore
Co-supervisore
Dottorato di ricerca
Ciclo
34
Coordinatore
Settore disciplinare
Settore concorsuale
Parole chiave
RAD52; drug discovery; biophysical analyses; cancer; synthetic lethality; NMR fragment based screening; structural biology; molecular interactions; recombinant proteins; MST; GSK-3beta
URN:NBN
DOI
10.48676/unibo/amsdottorato/10268
Data di discussione
24 Giugno 2022
URI

Altri metadati

Statistica sui download

Gestione del documento: Visualizza la tesi

^