Calabrese, Francesca
  
(2022)
Integrating Machine Learning Paradigms for Predictive Maintenance in the Fourth Industrial Revolution era, [Dissertation thesis], Alma Mater Studiorum Università di Bologna. 
 Dottorato di ricerca in 
Meccanica e scienze avanzate dell'ingegneria, 34 Ciclo. DOI 10.48676/unibo/amsdottorato/10133.
  
 
  
  
        
        
        
  
  
  
  
  
  
  
    
  
    
      Documenti full-text disponibili:
      
        
          
            | ![Tesi_CalabreseFrancesca.pdf [thumbnail of Tesi_CalabreseFrancesca.pdf]](https://amsdottorato.unibo.it/style/images/fileicons/application_pdf.png) | Documento PDF (English)
 - Richiede un lettore di PDF come Xpdf o Adobe Acrobat Reader Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato.
 Download (6MB)
 | 
        
      
    
  
  
    
      Abstract
      In the last decade, manufacturing companies have been facing two significant challenges. First, digitalization imposes adopting Industry 4.0 technologies and allows creating smart, connected, self-aware, and self-predictive factories. Second, the attention on sustainability imposes to evaluate and reduce the impact of the implemented solutions from economic and social points of view. In manufacturing companies, the maintenance of physical assets assumes a critical role. Increasing the reliability and the availability of production systems leads to the minimization of systems’ downtimes; In addition, the proper system functioning avoids production wastes and potentially catastrophic accidents. Digitalization and new ICT technologies have assumed a relevant role in maintenance strategies. They allow assessing the health condition of machinery at any point in time. Moreover, they allow predicting the future behavior of machinery so that maintenance interventions can be planned, and the useful life of components can be exploited until the time instant before their fault. 
This dissertation provides insights on Predictive Maintenance goals and tools in Industry 4.0 and proposes a novel data acquisition, processing, sharing, and storage framework that addresses typical issues machine producers and users encounter. The research elaborates on two research questions that narrow down the potential approaches to data acquisition, processing, and analysis for fault diagnostics in evolving environments. The research activity is developed according to a research framework, where the research questions are addressed by research levers that are explored according to research topics. Each topic requires a specific set of methods and approaches; however, the overarching methodological approach presented in this dissertation includes three fundamental aspects: the maximization of the quality level of input data, the use of Machine Learning methods for data analysis, and the use of case studies deriving from both controlled environments (laboratory) and real-world instances.
     
    
      Abstract
      In the last decade, manufacturing companies have been facing two significant challenges. First, digitalization imposes adopting Industry 4.0 technologies and allows creating smart, connected, self-aware, and self-predictive factories. Second, the attention on sustainability imposes to evaluate and reduce the impact of the implemented solutions from economic and social points of view. In manufacturing companies, the maintenance of physical assets assumes a critical role. Increasing the reliability and the availability of production systems leads to the minimization of systems’ downtimes; In addition, the proper system functioning avoids production wastes and potentially catastrophic accidents. Digitalization and new ICT technologies have assumed a relevant role in maintenance strategies. They allow assessing the health condition of machinery at any point in time. Moreover, they allow predicting the future behavior of machinery so that maintenance interventions can be planned, and the useful life of components can be exploited until the time instant before their fault. 
This dissertation provides insights on Predictive Maintenance goals and tools in Industry 4.0 and proposes a novel data acquisition, processing, sharing, and storage framework that addresses typical issues machine producers and users encounter. The research elaborates on two research questions that narrow down the potential approaches to data acquisition, processing, and analysis for fault diagnostics in evolving environments. The research activity is developed according to a research framework, where the research questions are addressed by research levers that are explored according to research topics. Each topic requires a specific set of methods and approaches; however, the overarching methodological approach presented in this dissertation includes three fundamental aspects: the maximization of the quality level of input data, the use of Machine Learning methods for data analysis, and the use of case studies deriving from both controlled environments (laboratory) and real-world instances.
     
  
  
    
    
      Tipologia del documento
      Tesi di dottorato
      
      
      
      
        
      
        
          Autore
          Calabrese, Francesca
          
        
      
        
          Supervisore
          
          
        
      
        
      
        
          Dottorato di ricerca
          
          
        
      
        
      
        
          Ciclo
          34
          
        
      
        
          Coordinatore
          
          
        
      
        
          Settore disciplinare
          
          
        
      
        
          Settore concorsuale
          
          
        
      
        
          Parole chiave
          Predictive Maintenance; diagnostics; evolving environments; Machine Learning; incremental learning
          
        
      
        
          URN:NBN
          
          
        
      
        
          DOI
          10.48676/unibo/amsdottorato/10133
          
        
      
        
          Data di discussione
          17 Marzo 2022
          
        
      
      URI
      
      
     
   
  
    Altri metadati
    
      Tipologia del documento
      Tesi di dottorato
      
      
      
      
        
      
        
          Autore
          Calabrese, Francesca
          
        
      
        
          Supervisore
          
          
        
      
        
      
        
          Dottorato di ricerca
          
          
        
      
        
      
        
          Ciclo
          34
          
        
      
        
          Coordinatore
          
          
        
      
        
          Settore disciplinare
          
          
        
      
        
          Settore concorsuale
          
          
        
      
        
          Parole chiave
          Predictive Maintenance; diagnostics; evolving environments; Machine Learning; incremental learning
          
        
      
        
          URN:NBN
          
          
        
      
        
          DOI
          10.48676/unibo/amsdottorato/10133
          
        
      
        
          Data di discussione
          17 Marzo 2022
          
        
      
      URI
      
      
     
   
  
  
  
  
  
    
    Statistica sui download
    
    
  
  
    
      Gestione del documento: 
      
        