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Abstract

This Thesis is composed of a collection of works written in the period 2019-
2022, whose aim is to find methodologies of Artificial Intelligence (AI) and
Machine Learning to detect and classify patterns and rules in argumentative
and legal texts. We define our approach “hybrid”, since we aimed at designing
hybrid combinations of symbolic and sub-symbolic AI, involving both “top-
down” structured knowledge and “bottom-up” data-driven knowledge.

A first group of works is dedicated to the classification of argumentative
patterns. Following the Waltonian model of argument and the related theory
of Argumentation Schemes (86), these works focused on the detection of
argumentative support and opposition, showing that argumentative evidences
can be classified at fine-grained levels without resorting to highly engineered
features. To show this, our methods involved not only traditional approaches
such as TFIDF, but also some novel methods based on Tree Kernel algorithms.

After the encouraging results of this first phase, we explored the use of a
some emerging methodologies promoted by actors like Google, which have
deeply changed NLP since 2018-19 — i.e., Transfer Learning and language
models. These new methodologies markedly improved our previous results,
providing us with best-performing NLP tools. Using Transfer Learning,
we also performed a Sequence Labelling task to recognize the exact span
of argumentative components (i.e., claims and premises), thus connecting
portions of natural language to portions of arguments (i.e., to the logical-
inferential dimension).

The last part of our work was finally dedicated to the employment of Trans-
fer Learning methods for the detection of rules and deontic modalities. In this
case, we explored a hybrid approach which combines structured knowledge
coming from two LegalXML formats (i.e., Akoma Ntoso and LegalRuleML)
with sub-symbolic knowledge coming from pre-trained (and then fine-tuned)
neural architectures.

Keywords: Artificial Intelligence, Machine Learning, Argument Mining,
Natural Language Processing
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Chapter 1

Introduction

This Thesis is the result of a 3-year PhD project based on the analysis and elab-
oration of argumentative and legal texts using Natural Language Processing
(NLP) methods. It is composed of a collection of publications in peer-reviewed
international conferences, along with some novel unpublished studies. The
main direction of this research is the automatic recognition of argumentative
patterns and rules. These two aspects are crucial for Artificial Intelligence
(AI), and their automation can decisively unlock long-term goals such as the
ability to reason automatically from natural language, understanding people’s
communicative strategies and ways of thinking, as well as checking or revising
the logical coherence behind argumentative stances. A domain which can
benefit particularly from this kind of research is the legal one, where laws and
legal sentences could be analyzed by AI systems from an argumentative and
deontic point of view, providing humans with insightful solutions and useful
tools of analysis and decision.

However, when considering the long-term goal of unlocking automatic
reasoning directly on natural language, there are many obstacles to over-
come. One of the main problems is that argumentative patterns and rules
can be instantiated within natural language in so many different ways, which
makes it difficult for NLP algorithms to automatically recognize them. Im-
portantly, natural language has notoriously complex characteristics: it is often
uncertain, ambiguous or even incomplete and misshapen. To unlock automatic
reasoning, the recognition of patterns and rules should be tackled by taking
into account these key complexities of natural language. It should somehow
connect natural language to more formal layers on which reasoners can be
used.

In this introductory chapter, we shortly describe the scope of this Thesis
(Section 1.1). To illustrate the scope we will firstly describe the Thesis
general targets, namely the detection of argumentative patterns and rules
(Section 1.1.1). Then, we will introduce the concept of “Hybrid AI” which we
employed to reach our targets (Section 1.1.2). And finally, we will describe
the Research Questions and the related Challenges (Section 1.1.3 and 1.1.4).

After the scope, a short survey of the State of the Art will be presented in
Section 1.2, and will be focused on three key aspects: argumentation schemes
(Section 1.2.1), Argument Mining (Section 1.2.2), and the classification of
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deontic modalities and rules (Section 1.2.3).
After this short survey, we will briefly introduce the case studies of this

Thesis in Section 1.3, with a short description of each paper, its contributions,
its limitations and how it is related with the targeted research questions.

As far as the other Chapters are involved, while Chapters from 2 to 7
describe the collection of case studies, Chapter 8 concludes the Thesis and
gives some ideas for the future.

1.1 Scope and Targets

1.1.1 Argumentation Schemes and Rules
We started the project by focusing on Argumentation Schemes, which are
semi-formal stereotypical argumentative patterns written in natural language.
The theory of Argumentation Schemes provides the scientific community
with a rich tool of analysis that can be exploited to further improve NLP
methods. Argumentation Schemes are, in fact, half a way between natural
language and the sphere of argumentation. On the one side, they provide
stereotypical ways in which argumentative patterns appear in natural language
(so, natural language is somehow simplified into stereotypical models). On the
other side, they are crucial tools for the argumentative level of analysis. It is
worth pointing out that Argumentation Schemes can be considered, to a great
extent, rules, especially if we analyze their structure following the Waltoninan
model (86), which describes Argumentation Schemes as patterns composed
by a set of premises and a conclusions. In fact, as it has been shown in the
literature (52), many of these patterns are instantiations (within the sphere
of natural language) of famous rules of inference such as modus tollens
and modus ponens. However, it is important to notice that Argumentation
Schemes represents just stereotypical ways of expressing inferences in natural
argumentation, which means that they are an over-simplification of what
people may express in reality (42).

In other words, Argumentation Schemes belongs to a layer of abstraction
which is located between the logical-inferential sphere and the sphere of
natural language. This position can be exploited as a useful middle layer to
bridge the gap between natural language and the logical-inferential dimension
by using a combination of top-down and bottom-up approaches. Figure 1.1
shows a simplified synthesis of this process.
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Figure 1.1: Connect natural language to the logical-inferential sphere using
Argumentation Schemes, combining bottom-up and top-down approaches.

In the second part of this project, we focused on the detection of deontic
rules, which are generally instatiated in legal natural language as obligations,
premissions and prohibitions. The detection of rules in legal texts can be
essential to develop automatic reasoning and Artificial Intelligence applica-
tions for the legal domain and, also in this case, there is a gap between the
logical-inferential (deontic) sphere and natural language. In this case, to bridge
the gap between natural language and the deontic sphere, we combined two
famous LegalXML formats, namely Akoma Ntoso and LegalRuleML. Akoma
Ntoso is the most important format for representing legal documents, and can
connect natural language sentences to the structures of legal documents (e.g.,
articles, paragraphs, sub-paragraphs, and so on); meanwhile LegalRuleML
can formalize legal rules while connecting them to specific structures of the
legal documents. In other words, combining Akoma Ntoso with LegalRuleML
provides us with a chance to connect natural language to logical rules, using
the structures of legal documents as a bridge to fill the gap between natural
language and the logical-inferential sphere. This process is synthesized in
Figure 1.2.

Figure 1.2: Connect legal natural language to the logic layers using Akoma
Ntoso and LegalRuleML, combining bottom-up and top-down approaches.
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Starting from this considerations, we can already summarize the key points
on which the studies presented in this Thesis are focused:

• On the one side, they are focused on the detection/classification of
argumentative patterns and rules;

• On the other side, they try to find solutions and methods to tackle the
gap between the sphere of natural language and the logical-inferential
sphere.

The long-term direction behind this two points is to connect logical-
inferential rules to natural language, making it possible for AI systems to
recognize (and perhaps reproduce) the rules which humans constantly instan-
tiante (more or less coherently) within natural language. In this Thesis, we
did not aim at reaching such a huge long-term achievement. Chasing more
feasible goals, we instead aimed at tackling some of the issues and obstacles
which make this long-term achievement currently unfeasible. Hardly will
there be a “real” Artificial Intelligence, if we are not capable of teaching
computer how to recognize and reproduce those patterns located half-a-way
between the sphere of language and the sphere of reasoning, in a middle layer
between logical-inferential moves and natural language schemes.

1.1.2 A Hybrid Approach to Artificial Intelligence
Before describing the research questions of this Thesis, we clarify why we
use the word “hybrid” in the title. The rationale behind the use of this word
comes from the above-mentioned need to find methods which can bridge the
gap between the sphere of language and the sphere of logic and reasoning.
We start from the assumption that these methods will need to be “hybrid”,
i.e. capable of combining symbolic and sub-symbolic approaches, as well as
connecting data-driven Machine Learning methods (such as Deep Learning or
Transfer Learning) to structured sources of knowledge (such as LegalXML
knowledge bases). In fact, as we mentioned before, the detection of both
argumentative patterns and rules is intrinsically connected to an upper layer
of abstraction where such patterns and rules can be interpreted logically. We
can thus employ methods which use structured knowledge to represent the
upper layers of abstractions (i.e., rules) while using data-driven approaches to
recognize patterns at the lowest levels of abstraction (i.e., natural language).

As described in (71), there might be different ways of referring to the
expression “Hybrid AI”. On the one side, Hybrid AI might refer to the greater
and greater interaction between humans and machines. Human-Computer
Interaction (HCI) is thus one of the ways in which Hybrid AI can be described.
One of the challenges which derives from this first kind of Hybrid AI is related
to how to correctly design the interaction of humans and machines and how
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these design choices1 can affect the ethical and normative sphere of AI. These
design choices in HCI are important to avoid falling into the dychotomy good
AI vs bad AI, where “good” and “bad” are often not very useful indicators of
a more general oversimplification.

A second way of referring to the expression “Hybrid AI” is directly
connected to the greater and greater combination of symbolic AI with sub-
symbolic AI. In this perspective, the challenges are instead related to how to
combine these two approaches successfully. While a growing number of stud-
ies is tackling this challenge, we would like to stress the perspective suggested
in (22), where the authors envisage a combination of “top-down” and “bottom-
up” methods where the former ones are data-drive methods, while the latter
ones are methods based on structured knowledge (e.g., knowledge graphs).
This idea of Hybrid AI is close to what we propose as Hybrid methods in
this Thesis (especially at the end of the work, when we discuss the automatic
detection of deontic rules from legal natural language).

As we mentioned already, this Thesis partially matches the first definition
of “hybrid”, since it goes towards the long-term direction of allowing AI to
recognize patterns of reasoning instantiated within natural language. This can
clearly have an influence in HCI, because it could allow machine to better
“understand” humans, and it could allow humans to better explain machines
behaviour. This explainability is desirable and can have strong consequences
in the interaction of humans and machines allowing humans to design better
regulations for AI systems. However, as we said, these are long-term goals.

As far as the more reachable goals of this Thesis are concerned, our defi-
nition for the word “hybrid” will be the second one. In fact, this collection
of works aims at finding working methodologies of hybrid symbolic and sub-
symbolic approaches capable of combining the different layers of abstraction
(i.e., the layer of natural language, and the layer of logical rules and inferences)
through a connection of top-down and bottom-up methods. With this pur-
pose, we designed hybrid solutions combining symbolic knowledge (such as
tree-structured data representations and LegalXML knowledge-bases) to sub-
symbolic or data-driven methods coming from the training or the fine-tuning
of neural architectures.

1.1.3 Research Questions
Going towards the direction described above, this work consists of a collection
of publications and studies whose research questions can be summarised as
follows:

• (Q1) Can NLP methods detect and classify argumentative support
and opposition?

1Some famous choices of design are for example the Human-in-the loop (HITL), Human-
on-the-loop (HOTL), and Human-in-command principles (HIC). HITL envisage the human
intervention in every decision cycle of the AI; HOCL envisage human supervision in the
design of cycles and in their general supervision; HIC evisage a greater human control and
ability to choose when and how to intervene in any situtation.
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• (Q2) Can we fill this gap between the natural language and the logic
sphere by combining top-down and bottom-up approaches,
and symbolic and sub-symbolic AI?

• (Q3) Can NLP methods detect rules and deontic modalities?

As can be seen from Q1, this work tackled both supportive and oppositive
argumentative patterns. In fact, since the concepts of support and opposition
(attack) are crucial in logic and argumentation, it is important to verify the
ability of classifiers to recognize both types of argumentative patterns. The
tasks of detecting and classifying argumentative support and argumentative
opposition can be considered under the domain of Argument Mining, since it
is related to both NLP and Argumentation (47).

The research question Q2 directly targets the need of bridging the gap
between natural language (which is complex, sometimes ambiguous or uncer-
tain, and sometimes even incomplete or misshapen) and the logical-inferential
sphere (where one can reason using formal or informal logic). This second
research question is probably the most challenging, but this work tried to
elaborate at least some practical and preliminary directions to go towards this
long-term goal of filling the above mentioned gap which keeps us separated
from the ability to apply automatic reasoning directly on natural language.

The research question Q3 focuses on the detection of rules, and we tried
to answer this question by focusing on deontic rules and by designing a hybrid
method of Machine Learning where structured symbolic information, typically
used to represent rules, is combined with sub-symbolic learning methods.

1.1.4 Challenges and Proposed Solutions
Considering the above-mentioned research questions, one of the obstacles is
that it can be difficult to recognize some argumentative structures (Q1),
since the information channelled in natural language can be incomplete and
ambiguous (which is also a common problem in NLP in general). But also
because the theory about Argumentation Schemes and, particularly, the theory
about their classification (which is to say how are Argumentation Schemes
related among each other) is still a matter of philosophical-ontological de-
bate (52; 26; 85). In fact, Argumentation Schemes are semi-abstract models
which sometimes overlap when they are instantiated within the more complex
and ambiguous context of natural language. We can define this problem as P1.
Another important limitation is that there are not enough datasets specifically
designed for this kind of tasks. So, even considering those schemes which are
theoretically sound, it is difficult to find enough data for certain schemes and
the creation of new datasets is costly. We can define this problem as P2. Also,
another important issue is that the creation of Machine Learning algorithms
can be very time-consuming because of the need to design highly engineered
features. We can define this problem as P3. Finally, the most challenging
issue is probably the one tackled by the research question Q2, namely how
to fill the gap between language and the logic-inferential dimension. In fact,
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natural language is complex and variable, it can be ambiguous or uncertain,
and it can even be incomplete or misshapen. These characteristics generate a
huge challenge: how can we connect natural language to the logical-inferential
sphere? We call this issue of the distance, or gap, between natural language
and the logical inferential sphere P4.

All these major problems are synthesized in Table 1.1.

Problem: Description:

P1 Ontological complexity of
argumentative patterns

P2
Scarcity of data both for the detection
of Argumentation Schemes and for
the detection of rules

P3 Complex features are often
needed

P4
Difficulty of bridging the gap
between natural language and the
logical-inferential sphere

Table 1.1: Description of some major challenges (P1, P2, P3 and P4)

Even if these limitations makes this kind of research challenging, this
work attempted to cope with some of these obstacles. To tackle P1 (the onto-
logical complexity of argumentative patterns and the difficulty of recognize
them), we studied the classification made by Douglas Walton (86) and the
analysis proposed by Macagno (52) about the classification of Argumentation
Schemes. Starting from this theoretical background, we designed experimen-
tal settings which are focused on easily recognizable Argumentation Schemes
(some of the targeted Argumentation Schemes are the Argument from Expert
Opinion, the Argument from Negative Consequences, the Slippery Slope
Argument(86; 85), and other related patterns) and we assessed the ability of
our methods to be precise by training NLP classifiers not only on the recogni-
tion of very different argumentative patterns, but also on the recognition of
argumentative patterns which are ontologically related2.

To tackle P2 (the limited availability of data), this Thesis proposes multi-
ple solutions. As far as the detection of argumentative patterns is concerned,
some existing Argument Mining datasets have been used, and even com-
bined, to facilitate the detection and classification of argumentative patterns
which were ontologically close. Also, a new dataset has been created for the
detection of Argumentation Schemes (i.e., we annotated public available sen-
tences as belonging to specific argumentative patterns). As far as the detection
of rules is concerned, we focused on deontic rules tackling the problem of

2For example, the Argumentation Scheme from Expert Opinion is part of an umbrella
category which is based on the testimony from an certain source of information (35), under
which other patterns can be found (for example arguments coming from the reference to
statistics or other testimonies).
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the scarcity of data by leveraging the structure and the meta-data provided in
LegalXML formats (i.e. AkomaNtoso, LegalRuleML). These formats provide
us with important information related to the structure and content of legal
texts. Starting from the assumption that, in legal documents, argumentative
information and rules are closely related to the structure of the document
where the information is hosted, we developed a hybrid approach combining
symbolic and sub-symbolic AI for the recognition of legal rules, including
deontic modalities (e.g. obligations, prohibitions). In this way, we extracted
sentences and their relative classes by leveraging LegalXML documents and
knowledge bases and this labelled dateset was then used to feed Machine
Learning classifiers designed to detect rules and deontic modalities.

As mentioned before, even when data exist, a difficult aspect is to design
what features should be taken into account for the design of the Machine
Learning algorithms. To tackle P3, we adopted two innovative approaches:
using Tree Kernel algorithms and using Transfer Learning methodologies.
The first ones are algorithms capable of leveraging the internal grammatical
and syntactical structures of textual data in order to classify natural language
without the need to design complex features. The second approach, which is
the protagonist of a great step forward in the recent advancements of NLP, is
Transfer Learning, which allows researchers to exploit huge pre-trained neural
architectures in downstream tasks; in this last case, features are internally
projected within the high-dimensional space determined by the weights and
parameters of the pre-trained/fine-tuned neural architectures.

The hugest problem to solve is probably P4, namely the difficulty of
connecting natural language to the logical-inferential sphere, which is directly
connected to Q2 (P4 is the obstacle tackled by Q2). This problem can be
solved in two ways. The first way is to model language into representations
which can handle natural language complexity, uncertainty and ambiguity
while providing all the available information that may channel argumentative
inferential steps or rules. This solution, which we partially discussed in (42)
and (43), can be extremely difficult to achieve and requires huge efforts. For
this reason, in this Thesis we focused on a second potential solution to P4.
This solution is based on the use of Hybrid AI, namely the combined use of
symbolic and sub-symbolic approaches, where structured knowledge is mixed
with data-driven methods.

Table 1.2 synthesizes the proposed solutions for the above mentioned
major challenges and problems (i.e. P1, P2, P3 and P4).
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Problem: Proposed solutions:
P1 • Classifying schemes which are ontologically related

P2
• Combining existing datasets
• Creating a new dataset
• Extracting labelled data from LegalXML

P3 • Using Tree Kernels
• Using Transfer Learning methods

P4
• Using Hybrid symbolic and sub-symbolic methods,
combining structured source of knowledge
with data-drive sub-symbolic approaches

Table 1.2: Description of the solutions to P1, P2, P3 and P4.

A synthesised overview which shows all the case studies described in this
Thesis is reported in Figure 1.3, along with the relative research questions
which have been tackled by each case study.

Figure 1.3: Case studies (on the left) with some of the relative achievements
(on the right), with a reference to their related research questions.

In the following Section, we show a short description of the collection of
case studies presented in this Thesis. These short descriptions will give a brief
introduction to the content of the papers. We hope to facilitate, in this way, the
general comprehension of the path that has been undertaken and, above all, of
the directions which have been selected during the creation of each case study.
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1.2 State of the Art Survey

1.2.1 Argumentation Schemes
An important focus of this Thesis is the classification of argumentative patterns.
The definition of argumentative pattern is strictly related to the definition of a
model of argument, which establishes what are the basic components which
characterize any single argument, and what are the roles of these components
within the structure of the argument. A famous example of model of argument
is the Toulmin model, according to which any well-structured argument should
be composed of six basic elements: claim, ground, warrant, backing, qualifier,
rebuttal3.

In this Thesis, we will mainly refer to the model of argument proposed by
Douglas Walton, including the related theory about argumentation schemes
(86). According to Walton, arguments are composed by a set of premises and
a conclusion. Starting from this assumption, Walton created a compendium
of stereotypical argumentative patterns, i.e., argumentation schemes which
describes some common stereotypical ways in which people use natural
language to argue. Moreover, for each of these schemes, a set of critical
questions is provided, which is designed to assess the argumentative strength of
the given scheme. It is worth remarking that the identification of argumentation
schemes and their classification is an open research area which depends
on the criteria used to find similarities and differences among stereotypical
argumentative patterns. While Walton proposed a set of nearly 30 schemes,
other scholars suggested different sets of schemes. For example, Pollock
identifies less than 10 schemes (65), Grennan identifies more than 50 schemes
(23), Katzav and Reed identifies more than 100 schemes (29).

A well-known example of argumentation scheme is the argument from ex-
pert opinion (reported in Table 1.3). Without considering the critical questions
attached to it, this scheme is composed of just two premises and one conclu-
sion. This argumentation scheme is very frequent in natural argumentation,
and easy to find in public speeches. Intuitively, the argumentative strength of
this stereotypical way of arguing comes from the appeal to the authority of an
expert.

3The claim is the conclusion to be established by the argument; the ground (also known as
“data” or “evidences”) refers to the reasons or evidences supporting the claim; the warrant is
the principle, provision or chain of reasoning that connects the grounds/data to the claim; the
backing is an additional support, justification or chain of reasoning that back up the warrant;
the qualifier is an optional element which defines the relative strength of the warrant (it can
be expressed by locutions such as ’possibly’, ’necessarily’, etc.).
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Table 1.3: The structure of the argumentation scheme known as “argument
from expert opinion”.

Premise 1
Source E is an expert in subject domain S containing
proposition A.

Premise 2
Source E asserts that proposition A (in domain S)
is true (false).

Conclusion Proposition A may plausibly be taken to be true (false).

Another famous argumentation scheme is the argument from negative
consequences, which is reported in Table 1.4.

Table 1.4: The structure of the argumentation scheme known as “argument
from negative consequences”.

Premise If A is brought about, bad consequences will plausibly occur.
Conclusion Therefore A should not be brought about.

The important aspect to remark here is that these schemes can be very
useful because they provide a way to connect natural language to the logical-
inferential sphere of natural argumentation. For this peculiar position, halfway
between natural language and argumentation, schemes can be useful for
developing computational methods of extraction of argumentative information
from natural language.

So far, only few studies tried to use Natural Language Processing and
Argument Mining to identify argumentation schemes within natural language.
Among the first attempts, there is (17). In this Thesis, we will offer some
approaches which go towards this direction, which is still to be explored.

Although one of the obstacles in the direction of automatically detect
argumentation schemes is the fact that the classification of schemes is still
an open research area, important steps toward the aim of creating a robust
system of classification of argumentation schemes has been provided by (52).
From these studies, (35) proposed an approach to classify schemes following
a hierarchy of classification choices which is presented as a decision tree
and which is closely related to both the work of Macagno and Walton about
arguments and argumentation schemes. Probably, the improvements in our
ability to develop computational models of arguments is closely connected to
the improvements on this theoretical side, which is to say, the improvements
in our ability to identify and classify argumentative schemes and pattern.

1.2.2 Argument Mining
Argument Mining is a relatively new domain which aims at connecting Natural
Language Processing and Argumentation Theory to develop computational ap-
proaches able to automatically find and extract arguments, typically expressed
as inferential structures of reasoning within natural language. Argument
Mining often focuses on the following tasks:
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• Detecting/classifying argumentative components and their boundaries
(discarding non-argumentative components);

• Detecting relations among argumentative components;

• Reconstructing argumentative structures (following a given argument
model).

Although there is no consensus about a definitive Argument Mining
pipeline, a good starting point can be found in (34), where the argument
analysis is presented as a 4-step process:

• Text segmentation

• Argumentative/non-argumentative

• Simple structure

• Refined structure

The first step (text segmentation) aims at extracting the fragments of text
which are part of an argument, and which are usually expressed as Elementary
Discourse Unit (EDUs) or Argumentative Discourse Units (ADUs) (34). This
task can be tackled as a sequence labelling task (i.e., the same kind of task
performed for Named Entity Recognition). In this regard there have been only
few studies which tried to detect the exact span of argumentative components
of text using sequence labelling. One of the first attempts to label argumen-
tative sequences is (77), where argumentative sequences have been modeled
by using highly-engineered features (including Structural, Syntactic, Lexical-
Syntactic and Probabilistic elements) and the classification employed Condi-
tional Random Field (CRF) together with an averaged perceptron. Another
study improved the performances by employing a BiLTSM neural network (2).
However, this Argument Mining task is still an open research area which re-
quires further efforts, also considering the recent outbreak of language models
and transfer learning techniques which can certainly allow for better and better
results. In this Thesis, we offered our contribution towards this direction.

The second step (argumentative/non-argumentative) is often performed
together with the first and aims at discarding the segments which are not
relevant to the targeted argumentative structures. However, it can also be
performed as a separate classification task, depending on the design of the
Argument Mining pipeline.

The third step is about finding the relations among the extracted segments,
which generally consists in identifying the relations of attack and support
between segments. In this regard, an important contribution has been offered
by the studies of Stab and Gurevych (78; 79).

The last step is about detecting more refined argumentative structures,
identifying for example specific argumentation schemes. This step depends
on what theory of schemes is taken into account by the analysts - e.g., the
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Waltonian argumentation schemes, or other scheme theories (34). There have
been only few works going towards this direction. One of the few ones are (17)
and (33), which achieved similar results by using highly engineered features.
However, this task of Argument Mining is still to be explored and further
research is needed.

In our works, we focus on all these steps. For example, we performed a
sequence labelling task to recognize the boundaries of argumentative com-
ponents vs non-argumentative components (thus focusing on the first two
points). We also classified different kinds of argumentative support and oppo-
sition (which is more related to the recognition of the argumentative structure
described in the third step). Moreover, we focused on the classification of ar-
gumentative text as belonging to specific argumentative patterns and schemes
(which is closer to the detection of the refined structure described in the fourth
step).

1.2.3 Deontic Modality and Rule Classification
A huge and growing research domain is legal knowledge extraction. Within
this research area, there are crucial tasks which need further efforts from the
scientific community. For example, the automatic classification of rules and
deontic modalities. So far, only few works have focused on this task.

There have been different attempts to extract rules using complex methods
of extraction, for example detecting noun and verb phrases (90), or exploiting
syntactic dependencies between terms (16). Among the few studies which
attempted an automatic classification of deontic rules there is (30), which
employed word lists, grammars and heuristics to extract obligations and
other targets such as rights and constraints. Another study (21) used Machine
Learning to extract different kinds of normative relationships (i.e., prohibitions,
authorizations, sanctions, commitments and powers). Moreover, (84) used
active learning with Multinomial Naive Bayes, Logistic Regression and Multi-
layer Perceptron classifiers to recognize, among the other targets, prohibitions
and permissions. The studies which focuses on the automatic classification
of deontic modalities using neural approaches are very few. Among them we
found (59) and (10), which used Bi-LSTM architectures (the second study
also employed a self-attention method). Other two studies are (28) and (74),
which exploited the potential of the novel and powerful Transfer Learning
approach.

The last part of this Thesis offers a similar approach by using Transfer
Learning, combining its powerful sub-symbolic potential with the symbolic
reliability of legal Knowledge Representation.
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1.3 Case studies

1.3.1 Detecting Argumentative Support
As already mentioned, the first research question is about the detection of argu-
mentative patterns of opposition and support. At the beginning of this project,
we focused on the combined use of Tree Kernels and TFIDF methods for
the classification of argumentative support. Our first work is a peer-reviewed
study published in 2019, in the context of the 57th Annual Meeting of the
Association for Computational Linguistics (ACL), leading conference in the
field of NLP. More specifically, it is one of the papers of the 6th ArgMining
Workshop, which is currently the leading meeting related to Argument Min-
ing. The title of this paper is “Argumentative Evidences Classification and
Argument Scheme Detection Using Tree Kernels” (36).

In a second short paper called “Comparing Tree Kernels performances
in argumentative evidence classification” and published in the context of
CLADAG 2019, conference sponsored by the Italian Statistical Society (37),
the experiment was extended considering two types of Tree Kernel algorithm:
the Smoothed Partial Tree Kernel (SPTK), which was used in the first paper,
but also the Partial Tree Kernel (PTK).

In this Thesis we just selected the first study, which will be now described
from a general perspective. The complete version of the paper, instead, can be
found in Chapter 2.

Argumentative Evidences Classification and Argument Scheme
Detection Using Tree Kernels
The purpose of this paper is to deploy a novel methodology for the classifica-
tion of supportive argumentative patterns, generally referred to as “supporting
evidences”. The proposed methodology is based on the idea that the use of
Tree Kernel algorithms can be a good way to discriminate between different
types of argumentative stances without the need of highly engineered features.
This possibility to classify argumentative text without the need of complex
features, makes Tree Kernel methods very useful in different Argument Min-
ing sub-tasks. In this case, the focus is the classification of argumentative
support (or evidence), which is a key step toward the automatic classification
of Argumentation Schemes.

Interestingly, this paper was the first attempt to use Tree Kernels for
the classification of different types of Argumentation Schemes’ evidences.
Moreover, it shows a clear comparison of the performance of a Tree Kernel
classifier compared to the performance of a TFIDF classifier, along with a
combination of both.

So, starting from the main research questions described before, this paper
more specifically targets the first research question (that we called Q1). The
resulting targeted research sub-questions are the following:
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1. Is it possible to perform a fine-grain discrimination between different
kinds of argumentative evidence by using Tree Kernels and TFIDF
methods, thus avoiding the need of engineering sophisticated feature
vectors? (Q1)

2. Can Tree Kernel methods overcome TFIDF methods in the classification
of supportive argumentative patterns? (Q1)

The classifiers of this first paper exploited the ability of Tree Kernels
to calculate similarities between tree-structured sentences, considering the
similarity of their fragments. The experiment was performed on two famous
Argument Mining datasets, which share a similar labelling system.

Some major contributions of this paper are:

• It is the first research on how Tree Kernels methods can be used to
discriminate Argumentation Schemes without the need of highly engi-
neered features (Q1 and P3).

• It shows a comparison between traditional TFIDF and Tree Kernels,
along with a combination of both (Q1).

• It shows that two famous IBM datasets can be used together, not only
to increase the amount of data to be trained, but also to have a more
reliable assessment on the ability of the algorithms to generalize over
different data (Q1 and P2).

• It shows that it is possible to use Tree Kernels to apply fine-grained
discriminations among different stances of support (Q1 and P1).

Clearly, being the first experiment, this paper also had some aspects that
needed to be improved. For example, some major limitations of this paper are:

• It is focused on supportive evidences only, which is to say, argumentative
evidences whose aim is to support a conclusion, not to go against it.

• The chosen algorithm of this paper only considers one type of Tree Ker-
nel, namely the Smoothed Partial Tree Kernel (SPTK), the experiment
did not take into account other types of Tree Kernels (this limitation has
been tackled later in (37)).

• The paper only employs Grammatical Relation Centered Tree (GRCT)
representation, without considering other types of tree-structured data
representations.

• The paper does not consider the use of n-grams for the generation of
the TFIDF representations.
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1.3.2 Detecting Argumentative Opposition
To tackle some of the limitations described in the first papers, another paper
has been written and published at Rules and Reasoning, Third International
Joint Conference RuleML+RR, in 2019. The title of this paper is “Detecting
‘Slippery Slope’ and Other Argumentative Stances of Opposition Using Tree
Kernels in Monologic Discourse” (39). In this case, we tried to see whether
Tree Kernels could classify argumentative opposition.

In a further paper, this scenario was extended offering a clearer view on
how Tree Kernels and TFIDF (with and without n-gram) perform, also consid-
ering them separately. The title of this paper is “Classifying argumentative
stances of opposition using Tree Kernels” (38) and was presented at the 2nd

International Conference on Algorithms, Computing and Artificial Intelli-
gence (ACAI 2019). While the complete version of this paper can be found in
Chapter 3, the following section is its introductory synthesis.

Classifying argumentative stances of opposition using Tree
Kernels
In this paper, the focus was not on argumentative stances of support but,
instead, on argumentative evidences of opposition. And, importantly, the
dataset was created completely from scratch. This paper was an opportunity
not only to show the effectiveness of the methodology of the previous two
papers, but also a way to describe a brand new dataset, even if not completed
yet, to assess the methodology of the first paper on a completely different kind
of argumentative data.

Broadly speaking, the paper takes inspiration from the previous achieve-
ment, offering an innovative methodology to classify argumentative stances
of opposition in a monologic argumentative context. In particular, the paper
explores the possibility of classifying opposition stances by training multiple
classifiers to reach different degrees of granularity. As already said, discrimi-
nating support and opposition stances can be particularly useful when trying to
detect Argumentation Schemes, which is one of the most challenging sub-task
in the Argument Mining domain. In this sense, the approach can be also
considered as an attempt to classify stances of opposition that are related to
specific Argumentation Schemes.

The targeted research sub-questions which have been tackled by this paper
can be synthesised as follows:

1. Given the previous results on the classification of argumentative support,
can the same methodology be applied on argumentative stances of
opposition? (Q1).

2. Considering that the previous results for TFIDF just involved mono-
grams, can n-grams influence TFIDF performance significantly? (Q1).

Apart from clarifying better the work of the previous papers, some of the
contributions of this paper are the following ones:
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• Importantly, the experiment was performed on a brand new dataset of
more than 600 sentences (P2).

• The paper offers a granular approach, which shows how performances
can reach fine-grained targets (Q1 and P1).

• This paper together with (39) are the first works which focuses on the
classification of Argumentation Schemes of opposition (while the first
paper was the first work which focused on supportive evidences) (Q1
and P1).

• This paper also includes n-grams, showing how they affect results (Q1).

• It compares the performance of classifiers purely based on Tree Kernels
with the performance of classifiers which combine TFIDF and Tree
Kernels for the detection of stances of opposition (Q1). This comparison
shows that the combination Tree Kernel + TFIDF generally outperforms
pure TFIDF/n-grams and pure Tree Kernel classifiers. This is somehow
a confirmation of what has been assessed in the first paper, where Tree
Kernels and monogrammic TFIDF were studied separately on stances
of argumentative support; this time, however, the scenario is related to
the stances of argumentative opposition, and takes into account also
n-grams.

The main limitation of this paper is the following:

• Only one type of Tree Kernel has been used; trying different Tree Kernel
algorithms (testing their configuration with different parameterizations
values) could have been useful.

1.3.3 Combining Tree Kernels and Tree Repre-
sentations

The papers described so far tackled the classification of argumentative support
and opposition using Tree Kernels. We will now describe the last paper in
which we tried to give a complete exploration of all the potentialities of Tree
Kernels by combining different types of Tree Kernel function with different
types of tree representations. This paper, which concludes the exploration of
Tree Kernel algorithms for the detection of argumentative patterns, has been
published under the name “Combining tree kernels and tree representations to
classify argumentative stances”, at Advances in Semantics and Linked Data:
Joint Workshop Proceedings from ISWC 2020. The complete version of the
paper is in Chapter 4.

Combining tree kernels and tree representations to classify
argumentative stances
This paper gathered together all the efforts of the previous papers about
Tree Kernel methods. It investigates how the combination of different tree
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representations with different Tree Kernel functions influences the results of
the classification of both supportive and oppositive evidences.

In this case, the research sub-questions are the following:

1. Are there differences in the performance when trying out different
combinations of Tree Kernels and tree representations? (Q1 and Q2)

2. If so, which is the most performative combination in the classification
of the stances of support? (Q1)

3. And which is the most performative combination in the classification of
the stances of opposition? (Q1)

The main contribution are:

• The paper shows how the performance of classifiers is influenced not
only by the kind of Tree Kernel algorithm, but also by the kind of tree
representation (Q1).

• The paper shows a comprehensive comparison of the main combinations
between Tree Kernels and Tree Representations (Q1).

• Also ‘smoothed’ and ‘compositional’ trees are considered, providing a
hybrid method which combines tree kernel calculations with calcula-
tions based on semantic vector representations (Q2). In other words,
a semantic layer is inserted, which influences the calculation of the
similarity performed by the tree kernel function.

1.3.4 Transfer Learning to Classify Argumenta-
tive Evidences

After having successfully explored Tree Kernels methods, Google brought
about a big success in the domain of NLP by presenting BERT (15), which
paved the way for the proliferation of language models and Transfer Learning
approaches. These method showed to be capable of improving the State of the
Art scores of a great number of NLP benchmarks. For this reason, we started
watching at these methodologies to see if they could outperform our previous
experiments, and to see if they could provide us with more tools to tackle our
research questions.

The first paper which employed Transfer Learning, was “Transfer Learn-
ing with Sentence Embeddings for Argumentative Evidence Classification”
and it was published in the context of the famous COMMA conference (lead-
ing conference in the domain of argumentation), more precisely at the 20th
Workshop on Computational Models of Natural Argument (CMNA), which
is the most important Argument Mining event together with the previously
mentioned ArgMining. The complete version of this paper is in Chapter 5.
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Transfer Learning with Sentence Embeddings for Argumen-
tative Evidence Classification
The paper describes a Transfer Learning methodology aiming at discriminating
evidences related to Argumentation Schemes using three different pre-trained
neural architectures. Although Transfer Learning techniques are increasingly
gaining momentum, the number of Transfer Learning works in the field of
Argument Mining is relatively small and, to the best of our knowledge, no
attempt has been performed towards the specific direction of discriminating
evidences related to Argumentation Schemes. The research question of this
paper is whether Transfer Learning can discriminate Argumentation Schemes’
components, a crucial yet rarely explored task in Argument Mining. Results
show that, even with small amount of data, classifiers trained on sentence em-
beddings extracted from pre-trained transformer-based language models can
achieve encouraging scores, outperforming our previous results on evidence
classification.

The main research sub-questions for this paper are:

1. Can Transfer Learning methods discriminate different Argumentation
Scheme’s evidences? (Q1)

2. Can Transfer Learning methods outperform Tree Kernel methods and
TFIDF methods? (Q1)

Some of the contributions of this paper are:

• It shows results for 3 pre-trained neural architectures and 3 classification
algorithms (Q1).

• It shows that the contextual embeddings produced by pre-trained lan-
guage models can provide powerful ‘learned’ semantic representations
(Q2-P4).

• It shows that Transfer Learning methods can reach the best performances
despite being employed on small datasets (which tackles P2).

The limitations of this work can be synthesised as follows:

• Although this method seems to have encouraging results, the range
of Argumentation Schemes which have been targeted is still quite re-
stricted.

• Moreover, sentence embeddings are just one possible approach of Trans-
fer Learning. It did not explore the so-called ‘fine-tuning’ approach
(which will be employed in the next case study).

So far, the introduced papers have been all related to classification tasks,
the next case study is instead related to the task of sequence labelling, which
is crucial to connect portions of text to specific logical-inferential categories.
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1.3.5 Transfer Learning for Argumentative Se-
quence Labelling

After we proved that Transfer Learning methods outperform our previous
approach (i.e., the Tree Kernel method), we used it in the context of a more
difficult task, namely the task of sequence labelling. Sequence labelling
is the process of labelling span of text. Named Entity Recognition is an
example of sequence labelling task. More specifically, the next paper that we
are going to introduce, and which is fully available in Chapter 6, describes
an Argumentative Sequence Labelling task, performed by fine-tuning a pre-
trained language model (while the previous paper employed another Transfer
Learning approach, based on the extraction of sentence embeddings).

Argumentative Sequence Labelling using Transfer Learning
The paper “Argumentative Sequence Labelling using Transfer Learning” is
still to be published. This paper describes a Transfer Learning method to detect
the exact span of argumentative components (i.e. premises, conclusions). This
task is defined as “Argumentative Sequence Labelling” and can be helpful for
the second research question, related to the ability to connect language to the
logical-inferential sphere (Q2-P4). In fact, it may allow for the connection
of specific portions of text to specific classes related to single argumentative
components. This granularity is arguably necessary to reach the long-term
goal of filling the gap between language and logic.

For this paper, the research sub-question can be expressed as:

1. Can we use Transfer Learning to detect the exact span of argumentative
components? (Q2-P4 )

The contributions of this paper are the following:

• It shows that Transfer Learning can operate Argumentative Sequence
Labelling by using two famous Argument Mining datasets (Q2-P4);

• It shows the process of sequence labelling at different levels (i.e., token
level, span level) and using two labelling strategies (i.e., BILUO and
BIO) (Q2-P4) .

Even if its results are encouraging, the paper shows that at the token level
there is still large room for improvement.

1.3.6 Transfer Learning for Deontic Rule Classi-
fication

The last paper of this Thesis, which is fully available in Chapter 7, is currently
unpublished and is related to the last research question of this project (Q3).
More specifically, it assesses whether it is possible to detect rules and deontic
modalities using Transfer Learning.
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Transfer Learning for Deontic Rule Classification
In this last study, we developed classifiers which automatically detect rules and
deontic modalities using a combination of symbolic and sub-symbolic meth-
ods. More precisely, we employed two famous LegalXML formats (namely,
LegalRuleML and Akoma Ntoso) to feed different neural architectures for the
generation of ‘fine-tuned’ language models capable of classifying rules and
deontic modalities. This process has been applied in the context of the Eu-
ropean General Data Protection Regulation (GDPR), using its Akoma Ntoso
representation along with its LegalRuleML modeling.

One of the research questions of this work is Q3 (“Can NLP methods detect
rules?”). More specifically, a sub-question can be synthesized as follows:

1. Can we leverage structures and meta-data of LegalXML documents to
facilitate the detection of deontic rules and modalities? (Q3)

The contributions of this paper are related not only to Q3, related to
the detection and classification of rules, but also to Q2, which is the most
challenging among our research questions. In this regard, the contributions
can be synthesized as follows:

• The paper shows that it is possible to detect and classify rules and
deontic modalities (Q3);

• For this task, three fine-tuned neural architectures are compared (Q3);

• The paper offers a Hybrid AI approach which combines symbolic “top-
down” knowledge (using Akoma Ntoso together with the biggest Legal-
RuleML knowledge base) with a sub-symbolic (“bottom-up”, data-
drive) neural approach (Q2-P4).

• The paper shows how to retrieve working labelled data by combining
and leveraging the information contained in Akoma Ntoso and Legal-
RuleML (P2);

A limitation of this paper is that its deontic classification only considers
obligations and permissions. In future works, we will also target prohibitions.

This paper clearly does not solve the problem of filling the gap between
language and the sphere of logical-inferential rules (P4). However, it offers a
working solution to partially cover this gap. More efforts are still required to
connect portions of natural language to portions of logical rules. In this regard
the use of LegalRuleML can be crucial in future research projects, because it
provides information about the single components of logical formulæ within
legal sources, as well as the reference to the portion of natural language where
these formulæ are located.

In future works, we will focus on how to match legal rules’ internal
components (at the level of LegalRuleML) to their respective portions of
text (at the level of natural language). This can unlock extremely exciting
perspective for the domain of Legal Artificial Intelligence.
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Chapter 2

Detecting Argumentative Support

Original title: Argumentative Evidences Classification and
Argument Scheme Detection Using Tree Kernels

Abstract
The purpose of this study is to deploy a novel methodology for classifying
different argumentative support (supporting evidences) in arguments, without
considering the context. The proposed methodology is based on the idea that
the use of Tree Kernel algorithms can be a good way to discriminate between
different types of argumentative stances without the need of highly engineered
features. This can be useful in different Argumentation Mining sub-tasks.
This work provides an example of classifier built using a Tree Kernel method,
which can discriminate between different kinds of argumentative support with
a high accuracy. The ability to distinguish different kinds of support is, in fact,
a key step toward Argument Scheme classification.
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2.1 Introduction to the Argument Mining Pipeline
Argument Mining (AM) is a field of growing interest in the scientific com-
munity and a growing number of works have been written about this topic in
the last few years (9; 47). Since it is a relatively young research domain, its
specific target area is huge and its taxonomy is relatively flexible, for example
Argument Mining and Argumentation Mining are used interchangeably. In
spite of this flexibility, it is possible to define a unique and broad target, which
is the extraction of argumentative units and their relations from data.

Another characteristic of AM is its close connection with other domains
such as Knowledge Representation and Reasoning, Computational Argumen-
tation, Information Extraction, Opinion Mining, Human-Computer Interaction.
Also, there is a strong relation between AM and Natural Language Processing
(NLP), since language is the means by which humans express arguments.

Habernal et al. (25) noticed a relation between Opinion Mining (also
known as Sentiment Analysis) and Argument Mining. The former aims to
detect what people say, the latter wants to understand why. For this reason,
Lippi and Torroni (47) consider AM as an evolution of Opinion Mining in
terms of targets.

Being AM a multifaceted problem, it can be useful to imagine it as a
pipeline (with much research focused on one or more of the involved steps).
For example, Lippi and Torroni (47) described it as a three-steps process, from
a Machine Learning perspective. The first step is to discriminate between
argumentative and non-argumentative data; the second step is to detect argu-
ment boundaries; the third step is to predict the relations between arguments
or between argumentative components. The second and third step are strictly
dependent on the underlying argumentative model (the most frequently used
is the claim/premise model described in (86), while another frequent choice
is the model proposed by (81)). Cabrio and Villata (9) proposed a simpler
two-step pipeline, where the first phase is the identification of arguments and
the second step is the prediction of argument relations. In this case, the first
step involves not only the classification argumentative vs non-argumentative,
but also the sub-tasks of identifying arguments components (claims, premises,
etc.) and their boundaries. While, the second step comprises predicting the
heterogeneous nature of argument relations (e.g., supports, attacks) and the
links between evidences (premises) and claims (conclusions). For the purposes
of this paper, this two-step pipeline will be considered.

In an ideal AM pipeline, after having detected the argumentative units,
their relations (e.g., premises, conclusions) and the nature of their relations
(e.g., support, attack), the further step is to fit this argumentative map into a
suitable Argument Scheme (e.g., argument from Expert Opinion, argument
from Example).

To do so it is necessary to develop classifiers able to discriminate between
different kinds of argumentative evidences. This work is an attempt to give
a contribution to the achievement of this sub-task of the pipeline, finding
a working methodology to discriminate between different types of support
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prepositions (or evidence), since being able to classify different kind of support
is a crucial aspect when dealing with the classification of Argument Schemes.

In particular, the proposed methodology is based on the use of Tree Kernels
(TKs).

2.2 Related Works
This work presents an approach for classifying evidence typology within argu-
ments using Tree Kernels (TKs, described in (57)) with the aim to facilitate
the detection of Argument Schemes. TKs have already been used successfully
in several NLP-related works, for example in semantic role labelling (58),
metaphor identification (27) and question answering (18). However, the appli-
cation of TK in the domain of AM has been relatively limited compared to
other methodologies mostly that are dependent on highly engineered feature
sets. One of the first use in Argumentation Mining was proposed by Rooney
et al. (72), who simply employed sequences of Part-of-Speech tags. At that
moment, however, the Argumentation Mining community was still too young.
Some years later, Lippi and Torroni (47) suggested to exploit the potentiali-
ties of TKs for detecting arguments (the first step in the Argument Mining
pipeline) and presented a promising tool for automatically extract arguments
from text (48). Interestingly, TKs have been used to specific domains: Mayer
et al. (56) exploited them for an AM approach related to Clinical Trials, while
promising results have been achieved also in the legal domain (49; 50). TKs
have also been used in (83) for analyzing the similarities between argumenta-
tive structures, thus focusing not on the level of the sentences (step one), but
on the level of the argumentative relations (step two of the Argument Mining
pipeline).

To the best of our knowledge, this is the first attempt to use TKs in the very
last part of the Argument Mining pipeline. In fact, the approach presented
here aims to differentiate different kinds of evidences (or premises), which is
an important sub-task when trying to detect the most suitable Argumentative
Scheme.

Other studies tried to classify arguments by scheme using different ap-
proaches. For example, Feng and Hirst (17) created a complex pipeline of
classifiers that achieved and accuracy ranging from 63 to 91% in one-against-
others classification and 80-94% in pairwise classification. In another study
Lawrence and Reed (33) achieved a similar result, with F-scores ranging from
0.78 to 0.91. However, these two works employed a set of highly engineered
features, which is exactly what this study wants to avoid.

2.3 Tree Kernels Methods
From a very general perspective, a classification problem can be considered as
an attempt to learn a function f able to map in the best way an input space X
to an output spaceY, where the former is the initial vector space and the latter
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is the set of target labels. While in many cases the input space is composed
of simple features such as Bag-of-Words or n-grams occurrences, sometimes
highly engineered (and costly) features are needed, especially when dealing
with complex classification problems like those typically encountered in the
AM pipeline. TK methods can solve the problem of costly engineered features,
embedding in the input space X more complex structural information (e.g.,
graphs, trees) without creating ad-hoc features. In other words, sentences can
be converted into tree representations and their similarity can be calculated by
considering the number of common substructures (fragments).

Kernel machines classifiers, such as support-vector machine (SVM), have
been widely used in classification problems. A kernel can be considered as a
similarity measure that is able to map the inputs of an original vector space X
into a high-dimensional feature spaceV implicitly, which is to say without the
need to calculate the coordinates of data in the new space. More specifically,
a kernel k(x, x′) (where x and x′ belong to the input space X and represent
the labelled and unlabelled input respectively) can be represented as an inner
product in a high-dimensional space V. In this regard, the kernel can be
considered as a mapping φ : X → V where φ is an implicit mapping. The
kernel function can be thus represented as:

k(x, x′) = ⟨φ(x), φ(x′)⟩V (2.1)

Where ⟨., .⟩V must necessarily be an inner product.
Given a training dataset of n examples {(xi, yi)}ni=1, where i ∈ {c1, c2} with

c1 and c2 being the specific classes of a binary classification, the final classifier
ŷ ∈ {c1, c2} can be calculated using the above-mentioned kernel function in
the following way:

ŷ =
n∑

i=1

wiyik(xi, x′) (2.2)

Or:

ŷ =
n∑

i=1

wiyiφ(x).φ(x′) (2.3)

Where wi are the weights learned by the trained algorithm.
A TK can be considered a similarity measure able to evaluate the differ-

ences between two trees. Before selecting the appropriate TK function, two
important steps should be considered: choosing the type of tree representation
and the type of fragments. In this work, sentences have been converted into
Grammatical Relation Centered Tree (GRCT) representations, which involves
PoS-Tag units and lexical terms. While their structures have been divided
into Partial Trees (PTs) fragments (57), where each node is composed of
any possible sub-tree, partial or not, providing a higher generalization. A
description of various kind of tree representations can be found in Croce et al.
(13), while a brief description of tree fragments can be found in Nguyen et al.
(60) and Moschitti (57).
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DS1 n.
Expert/testimony 372
Study/statistics 281
Total 653

DS2 n.
Expert/testimony 311
Study/statistics 258
Total 569

Table 2.1: Number of sentences in the two datasets, grouped by category
group.

In this case, the PTK can be expressed using the following equation (57):

K(T1,T2) =
∑

n1∈NT1

∑
n2∈NT2

∆(n1, n2) (2.4)

Where T1 and T2 are the two trees whose similarity should be evaluated,
NT1 and NT2 are their respective sets of nodes, and ∆(n1, n2) represents the
number of common fragments in n1 and n2 (57).

2.4 The Use Case
Two important Argument Mining datasets have been considered, and they will
be referred to as DS1 and DS2. The first one is taken from Al Khatibet al.
(4), while DS2 is from Aharoni et al. (1). This work is “downstream” from
these two previous works which interestingly contains arguments taken from
several topics, facilitating the creation of a context-independent classifier.

Although these two datasets have been built for different tasks, they share
a very similar labelling system. The two datasets, in fact, classify argu-
mentative text depending on three common labels (i.e. Study/Statistics, Ex-
pert/Testimony, Anecdote). In this study, only the first two groups have
been considered suitable for the final purpose of detecting evidence typology.
The idea is to train a classifier to automatically recognize when a text is an
evidence coming from studies/statistics and when it comes from an expert
opinion/testimony.

Since the two datasets have been created for other purposes, there is
a further layer of complexity. For example, DS1 was composed of very
segmented data, and it was necessary to recompose segmented sentences.
Moreover, even though the two datasets share a similar labelling system when
referring to some evidence typology (especially anecdote, study/statistics and
expert/testimony), they could assume a slightly different idea of what these
labels actually describe. In spite of these problems, their combination can be
a powerful set of data for our aims, and the results of this experiment seem to
confirm this assumption.

As can be seen from Table 2.1, a total of 653 sentences have been extracted
from DS1 (372 belonging to the group “expert/testimony” and 281 belonging
to the group “study/statistics”). While 569 sentences have been extracted
from DS2 (311 for the “expert/testimony” group, 258 for the “study/statistics”
group).
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After having extracted the sentences from DS1 and DS2, a Grammatical
Relation Centered Tree (GRCT) representation was created for each sentence
of the two datasets. Furthermore, a TFIDF vectorialization has been applied
to each dataset.

In other words, the sentences of the two datasets were converted into
two kinds of “representation”, with each labelled example having both a
Grammatical Relation Centered Tree and a vector of TFIDF BoW, representing
the features of the sentence.

For example, the sentence: “Lucretius believed the world was composed
of matter and void” taken from DS2, can be represented as the GCRT in the
Figure 3.1 and can have the following TFIDF vectorial representation:

the:0.0924 and:0.1237 of:0.1193
was:0.1095 believed:0.2526
world:0.1537 matter:0.2092
void:0.3157 composed:0.3020

The final classification algorithm was trained on these two kinds of rep-
resentations by using KeLP (19). Since KeLP allows to combine multiple
kernel functions, the classification algorithm was built as a combination of
a Linear Kernel and a Smoothed Partial Tree Kernel (SPTK) (14), with the
first kernel related to the TFIDF vectors and the second kernel related to the
GRCT representations. More details on kernel combinations can be found
in Shawe-Taylor and Cristianini (75). However, to evaluate the contribution
of TKs, the experiment was also performed by using just one of the two
representations (SPTK or TFIDF).

More precisely, two groups of classifiers were trained following two
different strategies. The classifiers of the first group were trained on the 653
instances of DS1, dividing it into two subsets of 458 and 195 instances, for
training and test. The second group of classifiers was trained on the 569
instances of DS2, dividing it into two subsets of 399 and 170 sentences, for
training and test. After having been trained and tested on its given dataset,
each classifier has also been tested on the other dataset (DS2 for the first group,
DS1 for the second group). In this way, the ability of classifiers to generalize
can be evaluated.

Since each group has three classifiers (TFIDF, SPTK, and the combination
SPTK+TFIDF), a total of six classifiers has been evaluated.

2.5 Results
The results can be seen in Table 2.2. To evaluate the performance of the two
groups of classifiers, a simple “Majority” baseline was created. Interestingly,
all classifiers outperformed the baseline in all metrics.

Overall, TKs (SPTKs, in this case) outperformed simple TFIDF in three
cases out of four (the TFIDF of the first classifier is the only exception). It
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Figure 2.1: The GCRT representation for the sentence “Lucretius believed
the world was composed solely of matter and void”
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BASELINE DS1 DS2
P R F1 P R F1

Averages (macro) 0.28 0.50 0.36 0.27 0.50 0.35

GROUP 1 Performance on DS1
TFIDF SPTK SPTK+TFIDF

P R F1 P R F1 P R F1
Study 0.93 0.87 0.90 0.88 0.83 0.85 0.90 0.92 0.91
Expert 0.89 0.94 0.92 0.85 0.90 0.88 0.93 0.91 0.92
Average F1 (macro) 0.91 0.87 0.92

Performance on DS2
Study 0.80 0.55 0.65 0.77 0.67 0.71 0.78 0.66 0.72
Expert 0.70 0.88 0.78 0.75 0.83 0.79 0.75 0.85 0.80
Average F1 (macro) 0.72 0.75 0.76

GROUP 2 Performance on DS1
TFIDF SPTK SPTK+TFIDF

P R F1 P R F1 P R F1
Study 0.84 0.54 0.66 0.81 0.78 0.80 0.82 0.80 0.81
Expert 0.73 0.92 0.81 0.84 0.86 0.85 0.85 0.87 0.86
Average F1 (macro) 0.74 0.82 0.84

Performance on DS2
Study 0.70 0.67 0.68 0.76 0.64 0.69 0.69 0.69 0.69
Expert 0.73 0.76 0.74 0.73 0.83 0.78 0.74 0.74 0.74
Average F1 (macro) 0.71 0.73 0.72

Table 2.2: Results of the majority baseline and two groups of classifiers,
reporting precision (P), recall (R) and F1.

means that TKs can not only reach the performances of traditional features
such as TFIDF, but also outperform them. Noticeably, the combination of TK
and TFIDF has always performed better than simple TFIDF, which means
that combining TKs and traditional features is a valid strategy to improve
performances.

The classifiers of the first group had a good performance not only on the
dataset they were trained on (DS1), but also on DS2. Noticeably, also the
classifiers of the second group performed better on DS1.

2.6 Conclusion
The aim of this work is to show that it is possible to perform a fine-grain
discrimination between different kinds of argumentative evidence by using
TKs, without the need of using sophisticated feature vectors. The achieved
classifier exploited the ability of Tree Kernels to calculate similarities between
tree-structured sentences, considering the similarity of their fragments.

The experiment was performed on two famous Argument Mining datasets,
which share a similar labelling system (they were referred to as DS1 and
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DS2). More specifically, two groups of classifiers were trained combining a
SPTK related to the GCRT representations and a linear kernel related to the
TFIDF-BoW vector representations. The first group of classifiers was trained
on DS1, while the second was trained on DS2.

A possible improvement to this approach could be achieved by adding
also n-grams to assess if they can offer a better representation of sentences.
Moreover, it would be interesting to compare results from different kinds
of tree representation to assess whether GRCTs are the best choice for this
particular task.

One of the achievements of this study is the successful combination of
two important datasets originally designed for other purposes.

Also, it is worth remarking that this study is context-independent and
focused on the structures of argumentative evidences without considering the
specific context in which arguments are placed.

Finally, the main achievement of this work is to show that TKs can differen-
tiate between different kinds of supporting evidences with high performances,
which can facilitate the discrimination among different Argument Schemes
(e.g. Argument from Expert Opinion), a crucial sub-task in the Argumentation
Mining pipeline.
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Chapter 3

Detecting Argumentative Opposi-
tion

Original title: Classifying Argumentative Stances of Opposi-
tion Using Tree Kernels

Abstract
The approach proposed in this study aims to classify argumentative opposi-
tions. A major assumption of this work is that discriminating among different
argumentative stances of support and opposition can facilitate the detection
of Argument Schemes. While using Tree Kernels for classification problems
can be useful in many Argument Mining sub-tasks, this work focuses on the
classification of opposition stances. We show that Tree Kernels can be success-
fully used (alone or in combination with traditional textual vectorizations) to
discriminate between different stances of opposition without requiring highly
engineered features. Moreover, this study compare the results of Tree Kernels
classifiers with the results of classifiers which use traditional features such as
TFIDF and n-grams. This comparison shows that Tree Kernel classifiers can
outperform TFIDF and n-grams classifiers.
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3.1 Introduction
Publicly open reviews on bills are used in many legal systems. In fact, in some
systems, it is mandatory to open public reviews during the legislative process
to encourage people’s participation and engagement.

Interestingly, web portals for collecting opinions and comments from
citizens are becoming more and more frequent, and the idea of supporting
people participation and engagement has been embraced by many famous
social media.

However, there are still important obstacles when trying to understand the
argumentative threads of online debates, since they are often presented as a
flat flow of textual interactions.

In this regard, it is extremely difficult for decision makers to extract useful
information from debates with hundreds of posts. Similarly, it is difficult to
extract a useful map of pros and cons from a given online debate.

In this sense, one of the most ambitious aims for the future of artificial
intelligence is to automatically recognize arguments and counter-arguments
in debates, along with argumentative fallacies.

This work presents a method which uses Tree Kernels to classify argumen-
tative stances of opposition facilitating the detection of Argument Schemes
such as the well-known “Slippery Slope” argument that produces polarization
and emphasizes debates.

3.2 Methodology

3.2.1 The Argument Mining Pipeline
The main target of Argument Mining (AM) is to analyze arguments, including
their components and the relations connecting these components (9; 47). With
an increasing number of works written and the interest of important private
actors like IBM, this field has attracted a growing attention in the last few
years (9), achieving important results and applications. These applications
have been successfully implemented in a wide range of domains, since AM
is physiologically multidisciplinary and facilitates cooperation among fields
(e.g. Information Extraction, Knowledge Representation, Legal Reasoning,
Sentiment Analysis). Importantly, being language the main means by which
humans express their arguments, there is a close relation between AM and
Natural Language Processing. Also, AM is closely related to Opinion Mining,
with the latter trying to detect what people say and the former trying to
understand why (25).

Lippi and Torroni (47) describe AM as a pipeline composed of three
steps: the first step is the identification of argumentative data (which must be
distinguished from non-argumentative data); the second step is the detection
of the boundaries of argumentative components; the third step consist of
predicting the relations among argumentative units and among arguments.
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Importantly, the last two steps strictly depend on the underlying argumentative
model, e.g. the most frequently used two-role model proposed by Walton
(86) (which considers argumentative units as “claim” and “premise”), or the
more complex five-role model proposed by Toulmin (81) (which considers
fact, warrant, backing, rebuttal and qualified claim).

Cabrio and Villata (9) proposed a simpler two-step pipeline, which is
the one that we will refer to in this work. In their pipeline, the first step is
the identification of arguments, which involves not only the differentiation
between argumentative and non-argumentative data but also the identification
of the roles of argumentative components (claims, premises, etc.) and their
boundaries. The second step involves the prediction of the heterogeneous
nature of argument relations (e.g., supports, attacks) and the connection
between premises/evidences and conclusions/claims.

Ideally, after the above mentioned steps, a last phase can be that of fitting
the map of argumentative components into an Argument Scheme (e.g., argu-
ment from Analogy, “Slippery Slope” argument, argument from Example).

From the one side, this work tries to classify argumentative stances of
opposition. On the other side, it tries to facilitate the detection of those
argumentative stances whose classification is more likely to be related to a
specific Argument Scheme. Particularly, we targeted the well-known “Slippery
slope” argument and we evaluated the ability of Tree Kernel methods to
distinguish this scheme from other kinds of opposition stance.

3.2.2 Tree Kernels Methods
A kernel function can be considered as a similarity measure that perform an
implicit mapping φ : X → V where X is a input vector space and V is a
high-dimensional space. The function can be represented as follows:

k(x, x′) = ⟨φ(x), φ(x′)⟩V (3.1)

Importantly, the above ⟨., .⟩V must necessarily be considered an inner
product, while x and x′ belong to X and represent the labelled and unlabelled
input respectively.

If we consider a binary classification task with a training dataset D =
{(xi, yi)}ni=1 composed of n examples, where y ∈ {c1, c2} (with c1 and c2 being
the two possible outputs of a binary classification), the final classifier ŷ ∈
{c1, c2} can be calculated in the following way:

ŷ =
n∑

i=1

wiyik(xi, x′) =
n∑

i=1

wiyiφ(x).φ(x′) (3.2)

Where the weights wi are learned by the trained algorithm.
Since Tree Kernels belong to the family of kernel methods, they can

be considered a similarity measure too. In particular, they are designed to
calculate similarities between tree-structured documents.
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Importantly, there are different kinds of Tree Kernel functions, which
operate on different segments of the tree-structured documents. In fact, differ-
ent TK functions make calculations by watching at different substructures of
the given tree-structured data. In this study, data was segmented into Partial
Trees (PTs) fragments, where each node is composed of any possible sub-tree,
partial or not. The reason for this choice is that PTs are able to provide a high
generalization (57).

The resulting function, called Partial Tree Kernel (PTK), can be calculated
as follows (57):

K(T1,T2) =
∑

n1∈NT1

∑
n2∈NT2

∆(n1, n2) (3.3)

In the above equation, T1 and T2 are the two trees involved in the calcu-
lation of the similarity, while NT1 and NT2 are their respective sets of nodes
and ∆(n1, n2) is the number of common fragments in node n1 and node n2.
More information about tree fragments can be found in Nguyen et al. (60)
and Moschitti (57).

Another important aspect is the selection of the kind of tree structure that
will represent the textual data. A description of different kinds of tree repre-
sentation is presented in Croce et al. (13). In this work, we represented text as
Grammatical Relation Centered Trees (GRCTs), which take into account not
only Part-of-Speach Tags but also lexical terms.

As we will try to show in this work, there are different reasons for using
Tree Kernels. On the one side, it seems that they can outperform traditional
features, on the other side they can keep a high degree of generalization
leveraging structural information.

3.3 Related Works
This work presents an approach which uses Tree Kernels methods to classify
opposition stances. This method is also presented as a way to facilitate the
detection of Argument Schemes, one of the most complex sub-task in AM.

Noticeably, only few studies tried to detect Argument Schemes. In this
regard, Feng and Hirst (17) managed to achieve an accuracy ranging from
63 to 91% in one-against-others classification and 80-94% in pairwise clas-
sification. Some years later, Lawrence and Reed (33) increased the previous
performances, achieving F-scores ranging from 0.78 to 0.91. However, since
the task of detecting Argument Schemes is very complex, the two above-
mentioned works deployed a set of highly engineered features. The aim of this
study is to give a further contribution in this part of the AM pipeline, showing
a possible method for Argument Scheme discrimination which is also able
to preserve high levels of generalization without requiring highly engineered
features.

TKs have already been used successfully in question answering (18),
metaphor identification (27), semantic role labelling (58) and other NLP-
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related task. Although results of TKs methods have been strongly encouraging
in all the above mentioned tasks, showing the ability of TKs to perform
well, their application in AM has been relatively limited. One of the first
uses in AM was proposed by Rooney et al. (72), who combined the use
of TKs with Part-of-Speech tags. However, it was only after three years
that somebody underlined the potential advantages of deploying TKs in the
argument detection sub-task (which is the first step of the AM pipeline) (47).
One year later, the same authors presented a web application which uses TKs
and is capable of extracting arguments from text automatically (48). Still
today, this is one of the few existing attempts to create a complete argument
extraction tool.

This approach is the continuation of two previous works ((36) (39)), which
aimed at discriminating among different kinds of argumentative stances of
support and opposition. These two works are an attempt to give a contribution
to the AM pipeline finding a working methodology capable to discriminate
among stances of support/opposition by using Tree Kernels. The underlin-
ing assumption is that being able to classify different kinds of support and
opposition is a crucial aspect also in the discrimination of different Argument
Schemes.

In the present paper, our previously achieved findings will be extended,
with a deeper analysis which involves the performances of twenty classifiers.

3.4 Corpus and Annotation
The analyzed corpus is composed of a group of 638 annotated sentences
gathered from public available data. The annotation process is still ongoing
under the supervision of experts of domain and our aim is to further extend
the amount of annotated sentences. Particularly, these sentences have been
extracted from the opinion of voters in the “Opinion Poll” section available
in the official website of Nevada Legislature. More specifically, these sen-
tences are taken from the opinion against the Senate Bill 165(SB165), about
Euthanasia. Each comment of opposition against SB165 has been segmented
into sentences using an automatic sentence segmentation tool.

After a preliminary empirical analysis, each sentence of the corpus has
been manually annotated following an annotation scheme which is designed
to allow different degrees of granularity in the classification process. Table 3.1
shows the list of classes with some examples, while Table 3.2 describes how
these classes have been grouped in super-classes to create different levels of
granularity. Thanks to this flexible annotation, the ability of TKs to perform
fine-grained differentiation at each level of granularity has been tested.

So far, the classes PERSONAL EXPERIENCE, NOT PERSONAL EX-
PERIENCE, JUDGEMENTS SIMPLE and JUDGEMENT MORAL have
not been used, but they could be useful when the annotation process will be
completed and the corpus will be expanded.

As can be seen in Table 3.2, the first level is the least granular, since it
discriminates between just two categories: SLIPPERY SLOPE sentences and
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Table 3.1: The annotation classes with some examples.

Classes Examples

SLIPPERY SLOPE - This would turn physicians into legal murderers.
JUDGEMENT SIMPLE - This bill is terrible.
JUDGEMENT MORAL - This bill is an affront to human dignity.
MORAL ASSUMPTIONS - Only God should decide when a person is

supposed to die.
- Being a Christian, I cannot accept this bill.
- This is totally against the Hippocratic Oath!

STUDY STATISTICS - Our country already experienced 20%
increase of suicide rate.

ANECDOTAL - The bible says that this is wrong.
(PERSONAL EXPERIENCE) - My husband struggled a lot of years and [...]
(NOT PERSONAL EXPERIENCE) - In Oregon this bill created the chaos.
OTHER/NONE All the sentences that does not belong to the

above classes

Table 3.2: The granularity levels and the grouping options.

Granularity 1 Granularity 2 Granularity 3 Granularity 4

SLIPPERY SLOPE SLIPPERY SLOPE SLIPPERY SLOPE SLIPPERY SLOPE

OTHER/NONE

TESTIMONY TESTIMONY ANECDOTAL
STUDY STATISTICS

OTHER/NONE
JUDGEMENTS

MORAL
JUDGEMENTS (simple + moral)
MORAL ASSUMPTIONS

OTHER/NONE OTHER/NONE

the rest of classes. The second level is more granular, since it discriminates
among three categories: SLIPPERY SLOPE, TESTIMONY, OTHER/NONE.
The third level also involves JUDGEMENTS MORAL. The fourth level is
the most granular since it discriminates among six categories: SLIPPERY
SLOPE, ANECDOTAL, STUDY STATISTICS, JUDGEMENTS, MORAL
ASSUMPTIONS, OTHER/NONE.

Importantly, during the annotation process we aimed to find out how
people justify their opposition stances in a monologic debating context. In
other words, the selected classes are the product of our empirical analysis on
how people express their opposition. Since the focus of this annotation is why
people are expressing a stance of opposition, all those comments which do
not give any explanation for the opposition stance have been considered as
part of the class OTHER/NONE (e.g. exhortations like “Please, vote no!”).

The number of sentences grouped by class is listed in Table 3.3.

3.5 The Experiment
For each sentence of the corpus a Grammatical Relation Centered Tree
(GRCT) representation was created along with a TFIDF vectorization. More
precisely, we attempted three different TFIDF vectorizations considering
monograms, 2-grams and 3-grams, in order to assess the effects of n-grams on
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Table 3.3: Number of sentences depending on class and granularity.

Classes Gr.4 Gr.3 Gr.2 Gr.1
SLIPPERY SLOPE 82
STUDY STATISTICS 26

556

ANECDOTAL
107(PERSONAL EXPERIENCE) 133

(NOT PERSONAL EXPERIENCE)
JUDGEMENT SIMPLE

54
423

JUDGEMENT MORAL 140
MORAL ASSUMPTIONS 86
OTHER/NONE 283
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Figure 3.1: The GCRT representation for the sentence “This is a slippery
slope.”

the results.
In other words, each labelled document in the corpus has two typology

of “representation”: GRCT and TFIDF. For example, the sentence “This is a
slippery slope.” can be represented as the GCRT in Figure 3.1 and can have a
TFIDF vectorial representation like one of those in Figure 3.2, which shows
the monogram, 2-grams and 3-grams. This results in three combinations at
each level of granularity and, thus, in a total of twelve possible combinations.

All these classifiers were trained on the GRCT and TFIDF representations
by using KeLP (19). This operation was performed by dividing the corpus
of 638 sentences into a test set of 191 sentences and a training set of 446
sentences and by using a One-vs-All classification, which is one of the most
common approach for multi-class problems. Noticeably, KeLP allows to
combine multiple kernel functions. In this work, the classification algorithm
was built as a combination of a Linear Kernel and a Partial Tree Kernel (PTK)
(57), with the first kernel related to the TFIDF vectors and the second kernel
related to the GRCT representations. More details on kernel combinations can
be found in Shawe-Taylor and Cristianini (75).

An important contribution of this study is that other two classifiers have
been added at each level of granularity to better understand the real contri-
bution of TKs and TFIDF. The first considers just monograms, the second
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Figure 3.2: An example of TFIDF representation of a sentence (monograms
and n-grams).

Monograms:
is:0.2872 this:0.2944 slippery:0.6445 slope:0.6445

2-grams:
is:0.1913 this:0.1961 this_is:0.3442 slippery:0.4293
slope:0.4293 is_slippery:0.4962 slippery_slope:0.4374

3-grams:
is:0.1543 this:0.1581 this_is:0.2776 slippery:0.3462
slope:0.3462 is_slippery:0.4002 slippery_slope:0.3528
this_is_slippery:0.4351 is_slippery_slope:0.4002

considers just TK (monograms were preferred to other n-grams simply be-
cause of their better performances).

3.6 Results
Table 3.4 shows the resulting scores for each classifier, grouped by granularity.
Since we want to show the non-triviality of the proposed task, we added the
performance of a stratified baseline. The stratified method has been chosen
because it produces better results, compared to a majority baseline, at all levels
of granularity and because it reflects the classes’ distribution in the training
set.

As expected, results show that F1 scores are lower at higher granularity.
Importantly, we remark that classifiers 2 and 3 are probably the best ones in
terms of balance among results and number of instances per class. Moreover,
since the class OTHER is often responsible for the increase of the mean F1
value, it is important to consider not just the Mean F1 score. For example,
Figure 3.3 shows the results for the mean F1 scores and the results for the F1
scores related to different classes (and sub-classes), particularly SLIPPERY
SLOPE, which is the main target of this study. In this way it is possible to
have a better understanding of the performance of the classifiers. The same
Figure show the decrease of the mean F1 scores at higher granularity.

Finally, results show that TK-only classifiers can be equal or better than
monograms (at granularity 2 and 3, respectively). Although monograms
outperforms TK-only classifiers at granularity 1 and 4, the combination TK+n-
grams is always the most performing.

The results for each level of granularity will be now discussed.

3.6.1 Results for Granularity 1
The classifiers at granularity level 1 show that the best performance can be
achieved by combining the GRCT Tree Kernel with monograms. In fact,
although the monograms classifier outperforms the TK-only classifier, with
a mean F1 score of 0.79 and 0.76 respectively, the combination of TK and
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monograms outperform all the other combinations, achieving a mean F1 score
of 0.81.

However, the problem of these classifiers is that the number of SLIPPERY
SLOPE instances (82) is too little compared to the instances of OTHER (556).
In fact, the good result is mostly due to the F1 score related to the class
OTHER (0.96), while the F1 score related to the SLIPPERY SLOPE class,
our main target, is at 0.67.

3.6.2 Results for Granularity 2
The classifiers with granularity level 2 achieved more encouraging results.
Interestingly, the results of the TK-only classifier and the monograms classifier
are equal in this case, with a mean F1 score of 0.76. Again, the best results is
achieved by combining TK and monograms, with a mean F1 score 0.77. In
this case, the F1 score for SLIPPERY SLOPE reaches 0.70, while the score
for TESTIMONY is 0.71. Even though the instances of OTHER are still
too many compared to the number of instances of the other two classes, the
numbers of instances is more balanced compared to granularity 1.

3.6.3 Results for Granularity 3
The granularity level 3 is maybe the one with the best balance in terms of
number of instances. The classifiers of this group achieved a mean F1 score
ranging from 0.65 to 0.69. Interestingly, the TK-only classifier outperformed
the monograms classifier, achieving the best performance together with the
TK+monograms combination. This means that TK can outperform traditional
TFIDF representations.

However, for the purposes of this work, the TK+monograms combination
is still preferred, since it produce a better performance on the SLIPPERY
SLOPE and TESTIMONY classes.

3.6.4 Results for Granularity 4
The last group of classifiers is the most granular one. The main problem of
this classifiers is that they were trained on a small number of instances per
class, especially the classes STUDY STATISTICS and JUDGEMENTS, which
have just 26 and 54 instances respectively. On the other side, an important
achievement of this group of classifiers is that they produce an F1 score for
the class SLIPPERY SLOPE which is comparable or superior to granularity 3,
achieving good results also with the class ANECDOTAL.

3.7 Conclusions and Future Work
This study shows that Tree Kenels can outperform traditional features such
as TFIDF. Importantly, we wanted to remark that one of the main advantages
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of Tree Kernels is the possibility of leveraging structural information while
preserving a high generalization.

The proposed method shows the ability of Tree Kernels to classify different
kinds of opposition stance with relatively good results and without using highly
engineered features, while at the same time presenting a working methodology
for Argument Scheme discrimination.

The experiment was performed on a corpus of 638 short comments express-
ing opposition against the Nevada’s Senate Bill 165, which aims to regulate
Euthanasia .

Although results are encouraging, especially with the second and third
groups of classifiers, there are still some obstacles when trying to deepen
the degree of granularity. In the future, creating a chain of classifiers could
help solve this problem, with a gradual and more complex advancement into
granularity.

Moreover, we are working on the enlargement of the annotated data, since
the imbalanced number of instances per class is a significant obstacle towards
the achievement of better scores.

Despite the above-mentioned limitations, the present work shows that TKs
can differentiate between argumentative stances and recognize stances that are
related to the “Slippery Slope” argument. Still, the combination TK+n-grams
outperforms the other classifiers.
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Table 3.4: The scores of the classifiers grouped by granularity (P = Precision,
R = Recall, F1 = F1 score). Close to the class name, the number of instances
is specified. SS = SLIPPERY SLOPE, O = OTHER, T = TESTIMONY,
JM = JUDGEMENTS AND MORAL, ST = STUDY STATISTICS, A =
ANECDOTAL, MA =MORAL ASSUMPTIONS, J = JUDGEMENTS.
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Figure 3.3: A comparison between classes’ scores and Mean F1 scores
(a,b,c,d,e) and the decrease of F1 over granularity (f).

(a) Mean F1 scores for the 4 granularities (b) F1 scores for SLIPPERY SLOPE

(c) TESTIMONY and its sub-classes

(d) JUDGEMENTS AND M. and its sub-
classes (e) Scores for the class OTHER

(f) Mean F1 scores decrease
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Chapter 4

Combining Tree Kernels and Tree
Representations

Original title: Combining Tree Kernels and Tree Representa-
tions to Classify Argumentative Stances

Abstract
This work investigates how the combination of different tree representations
with different Tree Kernel functions influences the results of the classifications
in two specific case studies. One case study is related to the classification of
argumentative stances of support, the other one is related to the classification of
stances of opposition. Results show that some Tree Kernels achieves not only
higher results but also a higher level of generalization. Moreover, it seems that
also the kind of tree representation influences the performances of classifiers.
In this study, we thus explore this relation between tree representation and
different Tree Kernels, considering also compositional trees.
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4.1 Introduction
This study is related to the field of Argument Mining (AM), a relatively new
research field focused on the analysis, detection and classification of argu-
mentative structures, substructures and units from natural argumentation. On
the one side, AM is a field which employs Natural Language Processing
techniques. On the other side, AM is also connected to the field of Argu-
mentation, which involves a wide range of logical and philosophical aspects.
The aspects related to natural language and those related to Argumentation
are both crucial when dealing with legal data, because legal texts contain
several argumentative structures which are encoded in natural language, e.g.
inferential logical-ontological rules or even stereotypical patterns of inference
(known as Argumentation Schemes). These rules and argumentative patterns
are composed of premises (evidences) and conclusions (claims) which can
be classified using Machine Learning algorithms, facilitating the automatic
detection of argumentative structures and rules in legal texts.

Due to the complexity of human language, AM scholars often need to
create classifiers employing highly-engineered features capable of describing
the complexity of argumentative structures in natural language. As suggested
in Lippi and Torroni 2015 (46), the problem of having to engineer features to
catch complex structures can be solved by employing classifiers that works di-
rectly on structures, such as Tree Kernel classifiers. Following this suggestion,
recent studies have shown how Tree Kernels classifiers can discriminate be-
tween different kinds of argumentative stances of support (36) and opposition
(39).

For example, Liga 2019 (36) described a first attempt to use Tree Kernel
classifiers to discriminate argumentative stances of support in the context
of a binary classification. On the other side, Liga and Palmirani 2019 (39)
showed that a similar approach can be applied also to opposition stances and
to a multi-class classification problem. The present work takes inspiration
from these two studies and reproduces their settings by using different tree
representations and tree kernel functions, to assess whether or not there is a
specific combination that better suits the task of classifying/discriminating
argumentative stances.

In Section 4.2, Tree Kernels classifiers will be introduced along with a
description of different tree representations and Tree Kernel functions. In the
Section 4.3, we will briefly describe the related works in the domain of AM,
considering the studies which employed Tree Kernels in AM and describing
the two above-mentioned studies, (36) and (39), from a general perspective.
In Section 4.4, we will reproduce the settings of Liga 2019 (36) applying
different tree representations and different Tree Kernel functions to the same
scenario and analyzing the results of each classifier. In Section 4.5, we will do
the same process, employing different tree representations and different Tree
Kernel functions in the setting of the experiment in Liga and Palmirani 2019
(39). Lastly, in Section 4.6 we will open a short discussion and conclude the
work.
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4.2 Tree Kernels and tree representations
A Tree Kernel is simply a similarity measure. It works by comparing the
similarity between tree-structured pieces of data. Supposing that we want to
use Tree Kernel classifiers for textual data, there are two main elements to
consider.

The first element is the kind of tree-structure to employ, namely the kind
of tree representation we want to use. The second element is defining which
fragments of the tree structures should be involved into the calculation of the
similarity. The following sections briefly describe these two aspects.

4.2.1 Tree representations
The idea is that our data (e.g. textual data such as sentences) must be repre-
sented into a specific tree-structured shape to allow a Tree Kernel function to
calculate the similarity between different pieces of tree-structured data. For
example, a sentence can be converted into some kind of tree representation
such as a dependency tree or constituency tree.

In the following part, we will shortly describe some of the most famous
tree representations for the conversion of textual data into tree structures. They
can be considered as particular kinds of Dependency Trees which combine
grammatical functions, lexical elements and Part-of-Speech tags in different
ways (13).

GRCT The Grammatical Relation Centered Tree (GRCT) representation
is a very rich data representation (14). It involves grammatical, syntactical,
lexical elements together with Part-of-Speech and lemmatized words. In
this representation, after the root there are syntactical nodes (grammatical
relations), then Part-of-Speech nodes and finally lexical nodes. In other words,
a tree of this kind is balanced around the grammatical nodes, which determines
the structure of dependencies.

LCT Also Lexical Centered Tree (LCT) representations involve grammati-
cal, lexical and syntactical element, along with Part-of-Speech tags. However,
the structure of the tree is different. In fact, it is “centered” over Lexical nodes,
which are at the second level, immediately after the root. Part-of-Speech
nodes and grammatical functions nodes are equally children of the lexical
elements.

LOCT The Lexical Only Centered Tree (LOCT) representation contains
just the lexical elements. Intuitively, the contribution of LOCT representation
can be particularly determinant whenever the tasks to be achieved mostly
depend on lexical elements.
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cGRCT and cLCT The compositional Grammatical Relation Centered Tree
(cGRCT) and the compositional Lexical Centered Tree (cLCT) representations
are very similar to the the Grammatical Relation Centered Tree (GRCT)
and the Lexical Centered Tree (LTC) representation. The difference here is
that the representations allow compositional operators. This aspect will be
explained more in depth in the section related to CSPTKs. In fact, cGRCTs
and cLCT can be used with Compositionally-Smoothed Partial Tree Kernels
(CSPTKs) which are designed specifically for the purpose of considering
compositionality (5).

4.2.2 Tree Kernels
A kernel function can be considered as a similarity measure that perform
an implicit mapping φ : X → V where X is a input vector space and V is
a high-dimensional space. A general kernel function can be represented as
follows:

k(x, x′) = ⟨φ(x), φ(x′)⟩V (4.1)

Importantly, the ⟨., .⟩V in the above formula must necessarily be considered
an inner product, while x and x′ belong to X and represent the labelled
and unlabelled input respectively. If we consider, for example, a binary
classification task with a training dataset D = {(xi, yi)}ni=1 composed of n
examples, where y ∈ {c1, c2} (with c1 and c2 being the two possible outputs of
a binary classification), the final classifier ŷ ∈ {c1, c2} can be calculated in the
following way:

ŷ =
n∑

i=1

wiyik(xi, x′) =
n∑

i=1

wiyiφ(x).φ(x′) (4.2)

Where the weights wi are learned by the trained algorithm.
When using Tree Kernels, the function must be adapted to allow the

calculations over tree nodes. In this regards, a general Tree Kernel function
can be calculated as follows (57):

K(T1,T2) =
∑

n1∈NT1

∑
n2∈NT2

∆(n1, n2) (4.3)

In the above equation, T1 and T2 are the two trees involved in the calcula-
tion of the similarity, while NT1 and NT2 are their respective sets of nodes and
∆(n1, n2) is the number of common fragments in node n1 and node n2.

Importantly, ∆(n1, n2) can be seen as a function considering common
fragments between trees. Depending on how this function is configured (i.e.,
which fragments are considered involved into the calculation of the similarity),
different Tree Kernels can be obtained.

Given that our data is tree-structured, the second important element is
the definition of the which fragments must be involved when calculating the
similarity between trees. Defining which fragments to involve also means
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defining the Tree Kernel function, because the names of the Tree Kernel
functions usually derives from the fragment definition.

In the following part, some famous Tree Kernel functions will be shortly
described; each of them defines, in a different way, which fragments should
be involved into the calculation of the similarity.

STK In a SubTree Kernel (STK) (82), a fragment is any subtree, i.e. any
node of the tree along with all its descendants.

SSTK A SubSetTree Kernel (SSTK) (12) considers as fragments the so-
called subset-trees, i.e. it considers any node along with its partial descendancy.
Since in SSTKs the only constraint of not breaking grammar production rules,
and since fragments’ leaves can be also non-terminal symbols, they can be
considered a more general representation compared the previously mentioned
STKs.

PTK A Partial Tree Kernel (57) is a convolution kernel that considers partial
trees as fragments. Similarly to SSTKs, a partial tree is a fragment of a tree
which considers a node and its partial descendancy. However, partial trees
allow also partial grammar production rules. The fact that production rules
can be broken (i.e. partial), makes PTs even more general than SSTs. This is
the reason why PTKs should provide a higher ability to generalize.

SPTK A PTK can be also “Smoothed” PTK (SPTK) (14), which adds a
further semantic layer into the calculation of node similarity. SPTKs allows
to calculate similarities between dependency structures whose surfaces (i.e.
the lexical nodes, or words) are partially or totally different. They introduce a
lexical similarity which allows the generalization of tree structures through
the semantic layer by representing words not just as mere symbols, but as
semantic entities.

CSPTK The scenario can be further expanded considering Compositionally-
Smoothed Partial Tree Kernels (CSPTK) (6), which apply a composition
function between nodes to better represent contextual relations between words.

We have previously showed how compositional trees look like (i.e. cGRCTs
and cLCTs), but we did not explain how compositionality works.

The key point of CSPTKs is that they can compute compositional trees
integrating Distributional Compositional Semantics (DCS) operators into the
kernel evaluation acting on both lexical leaves and non-terminal nodes. On
the one side, SPTK already offer a modeling of lexical information, since they
extend the similarity between tree structures allowing a smoothed function
of node similarity, which makes them able to compare better trees which are
semantically related even if their nodes and leaves differ.

However, SPTKs have an major limitation: they cannot consider composi-
tional interactions between the lexical elements of the trees (i.e. between the
words of the trees).
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The meaning of the verb “to save” can be better captured only if we
consider the verb in composition with the words it is refered to, namely “files”
and “people”. In this sense, CSPTK can better capture the role of more
complex syntagmatic structures and compositions. Regarding the calculation
of ∆, it is similar to SPTK, but the smoothing function is adapted according to
(5; 6).

4.3 Related works
So far, only few studies have employed Tree Kernels in the field of AM. One
of the first studies that mentioned the use of Tree Kernels in this field is
Rooney 2012 (72), where kernels are used with Part-of-Speech tags and with
sequences of words with the aim of detecting whether or not a sentence is
related to an argumentative element (i.e. premise, conclusion, or both).

In 2015, Lippi and Torroni wrote an important study in which Tree Ker-
nels are employed in a context-independent scenario, with the aim to detect
argumentative claims (46). In this case, the authors employed PTKs using
constituency trees as tree representations. Similar approaches have been ap-
plied also in specific domains like the legal domain (48; 50) and the medical
domain (56), where SSTK have been applied over constituency trees.

Outside the field of AM, Croce et Al. (13) focused on the combination
of different Tree Kernels and tree representations. However, no study has
proposed yet a comparison of this kind in AM, particularly in the classification
of argumentative stances of support and opposition.

As already stated, this work is based on two previous studies, Liga 2019
(36) and Liga and Palmirani 2019 (39). Interestingly, the two above-mentioned
studies try to discriminate among stances of support and opposition that can be
related to specific Argumentation Schemes (86). While the first paper focused
on the stances of support potentially related to the Argumentation Scheme
from Expert Opinion (which is a specific kind of source-based Argumentation
Scheme (35)), the second study has a particular focus on the argumentative
stances related to the Argumentation Schemes from Negative Consequences
and the Slippery Slope argument (85). In Liga 2019, Tree Kernels have
been used in combination with TFIDF vectors to automatically discriminate
between different kinds of argumentative support, while in Liga and Palmirani
2019 a similar methodology was employed to detect argumentative stances of
opposition.

Importantly, these two studies explore the ability of different kinds of Tree
Kernel to perform the tasks of classifying argumentative stances (the first study
employs PTK (57), while the second study employs SPTK (14)) However, both
studies employ the same kind of tree representation: namely, they only employ
Grammatical Relation Centered Tree (GRCT representations). However,
as already stated, there are other kinds of tree representation that may be
employed in the same settings. For this reason, the present study reproduce
the same scenarios of these two works by employing different kinds of tree
representation to assess whether or not a particular kind of tree representation

48



can be more suitable for the task of classifying argumentative stances of
support and opposition.

To the best of our knowledge, no study of argumentative stance classifica-
tion has so far presented a comparative analysis of the use of different kinds
of tree representations and Tree Kernels. In particular, this study will compare
the performance of the 5 tree representations described in Section 4.2.1 At
the same time, we will combine these representations with the 5 Tree Kernels
described in Section 4.2.2.

We will now describe the two settings of the present paper. The first one,
related to the first study (36), will be defined Setting One; the second one,
related to the second study (39), will be defined Setting Two. The experiments
have been performed using the JAVA framework KeLP (19), and a 70/30
train-test split ratio.

4.4 Setting One
The first study combined two famous AM datasets in the same setting ((1) and
(4), namely). We will refer to these datasets as DataOne (4) and DataTwo (1).
The aim of the study was to develop a series of classifiers able to differentiate
between argumentative support coming from the opinion of an expert and
argumentative support coming from studies or statistics.

Importantly, in this study, the ability of Tree Kernels to generalize over
different data was explored by training the classifiers on one dataset and testing
them on both datasets (36). For this reason, we will consider Setting One as
divided into two scenarios.

In the first scenario, all classifiers are trained on the training subset of
DataOne (and tested not only on the testing subset of the same dataset, but
also on the whole DataTwo dataset). In the second scenario, all classifiers are
trained on the training subset of DataTwo (and tested not only on the testing
subset of the same dataset, but also on the whole DataOne dataset).

As shown in the left side of Table 4.1, which reports the number of
instances per class per dataset, the two datasets are quite balanced. The label
expert has 372 and 311 instances in DataOne and DataTwo respectively; while
the label Study/statistics has 281 and 258 instances in DataOne and DataTwo
respectively.

4.4.1 Results for Setting One
The top part of Table 4.2 is referred to the first scenario, while bottom part is
referred to the second scenario. For reason of space, compositional trees are
reported jointly with their non-compositional counterpart: compositional tree
representations (cGRCT and cLCT) should be thus considered related only
with CSPTKs.

The experiments were performed using the configurations of the decay
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Table 4.1: Number of sentences in the two datasets, grouped by category
group (left). Configuration of the kernel parameters for Setting One (right).

DataOne n.
Expert 372
Study/statistics 281
Total 653
DataTwo n.
Expert 311
Study/statistics 258
Total 569

Kernels Decay factors
STK λ = .3

SSTK λ = .2
PTK λ = .4 µ = .4

SPTK λ = .4 µ = .4
CSPTK λ = .4 µ = .4

factors reported in the right side of Table 4.11.

Setting One - Scenario A
Results of the top part of Table 4.2 related to GRCT/cGRCT (left sub-table,
on the top), show a similar performance on the dataset DataOne (ranging from
.85 to .87), but above all they show a growing degree of generalization over
DataTwo: from a minimum of .72 (STK) to a maximum of .77 (CSPTK and
SPTK). This shows that the degree of generalization increases when using
PTKs and SPTKs compared to STKs and SSTKs.

A similar trend can be seen also with regard to LCT/cLCT (central sub-
table), where the degree of generalization increase similarly from .72 (STK)
to .77 (SPTK). However, performances are sliglty more polarized on DataOne
(ranging from .84 to .88).

An even more polarized trend is reported on the sub-table on the right,
related to LOCT. In this case, performance on the dataset DataOne range
from .80 to .87 and this is the only case in which PTK outperform SPTK.
Also the performances on DataTwo are more polarized compared to the other
two sub-tables: for the LOCT sub-table scores range from .63 (STK) to .75
(SPTK).

Setting One - Scenario B
Results of bottom part of Table 4.2 related to GRCT/cGRCT (left sub-table),
show that PTKs performed better than the other kernels: they reach a mean
F1 score of .74 on DataTwo (which is the dataset on which the classifiers of
this scenario have been trained) while all the other kernels range from .71 to
.72. Also in this case, results over the other dataset (which in this scenario
is DataOne) show a growing capability of generalization ranging from .79
(STK) to .84 (CSPTK and SPTK).

1Decay factors are meant to penalise long tree fragments, in order to mitigate the risk
that their size might excessively affect similarity scores. In this paper, λ is the vertical decay
factor, while µ is the horizontal decay factor.
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The trend over LCT/cLCT representations (central sub-table) show a
similar picture: PTK is the kernel with the best performance over DataTwo
(with a Mean F1 score of .72) while the other kernels range between .68 and
.71. Also in this case, performances over DataOne show a growing trend
ranging from .80 to .84.

Also in this scenario, the sub-table on the right, related to LOCT, is the
most polarized one: results on DataTwo range from .64 to .69, with PTK
outperforming SPTK; while results on DataOne range from .71 to .83, with
SPTK showing again the best ability to generalize over the other dataset.

4.5 Setting Two
In the second study (39), a similar approach has been employed on a dataset
created ad hoc for the analysis of argumentative stances of opposition. The
dataset has been created by extracting the comments of opposition that citizens
wrote on the public website of Nevada Legislature against a bill aiming at
regulating euthanasia. The limitation of this study is that the annotation
has not been accomplished yet and the number of instances per class is still
unbalanced. However, an interesting aspect of this dataset is that a granular
labelling system has been proposed in order to assess the ability of Tree
Kernel classifiers to detect different kinds of argumentative opposition in a
multi-class setting. The original setting presents four levels of granularity in
which the dataset can be divided. In the present paper, we are going to select
just the granularities with the best balance in the number of instances, namely
granularity 2 and granularity 3.

For this reason, similarly to what has been done with Setting One, also
Setting Two has been divided into two scenarios. In the first scenario, all
classifiers are trained and tested considering three labels (“Slippery Slope”,
“Other” and “Testimony”). In the second one, all classifiers are trained and
tested considering four labels (“Slippery Slope”, “Other”, “Judgements” and
“Testimony”). The number of sentences grouped by class is listed on the left in
Table 4.3, while the configurations of the decay factors used in the experiment
are reported on the right in Table 4.3.

4.5.1 Results for Setting Two
The top part of Table 4.4 is referred to the first scenario, while bottom part is
referred to the second scenario. It is important to underline that this results
should be observed by watching not only at the F1 scores (which can be
misleading, since they are trained upwards by the results of the class “Other”).

To partially overcome this problem, we should instead focus on the F1
scores of the single classes, as described in the following subsections.

Also in this case, compositional trees are reported jointly with their non-
compositional counterpart and should be considered related only with CSP-
TKs.
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Table 4.2: Results for Scenario A (top) and Scenario B (bottom) of Setting
One. Results report the mean F1 score of the binary classification (“Expert”
vs “Study/Statistics”).

SCENARIO A:
GRCT/cGRCT

Kernel DataOne DataTwo
STK .86 .72
SSTK .86 .74
PTK .85 .76
SPTK .86 .77
CSPTK .87 .77

LCT/cLCT
DataOne DataTwo

.84 .72

.84 .73

.86 .75

.88 .77

.87 .76

LOCT
DataOne DataTwo

.80 .63

.80 .66

.87 .73

.83 .75

SCENARIO B:
GRCT/cGRCT

Kernel DataOne DataTwo
STK .79 .71
SSTK .81 .71
PTK .83 .74
SPTK .84 .72
CSPTK .84 .72

LCT/cLCT
DataOne DataTwo

.80 .69

.81 .68

.81 .72

.83 .70

.84 .71

LOCT
DataOne DataTwo

.71 .64

.71 .64

.79 .69

.83 .67
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Table 4.3: Number of sentences depending on class and granularity (above).
Configuration of the kernel parameters for Setting Two (below).

Classes Granularity 2 Granularity 3
Slippery Slope 82 82
Testimony 133 133
Judgements part of Other 140
Other 423 283
Total 638

Kernels Decay factors
STK λ = [.1 − .4]

SSTK λ = [.1 − .4]
PTK λ = [.3 − .4] µ = [.3 − .4]

SPTK λ = [.3 − .4] µ = [.3 − .4]
CSPTK λ = [.3 − .4] µ = [.3 − .4]

Setting Two - Scenario A
Results of the top part of Table 4.4 related to GRCT/cGRCT (left sub-table),
show that the the Mean F1 score is achieved by the PTK classifier (.76).
However, it should be remarked that STK and CSPTK seem to perform better
on the class “Testimony” (reaching a F1 score of .71).

In the central sub-table, related to LCT/cLCT, the SPTK and the CSPTK
are the best ones both in terms of Mean F1 score (.73-.74) and in terms of
balance between the scores for the “Slippery Slope” and “Testimony” classes
(which is .59-.60 and .70-.71, respectively). Conversely, the STK, SSTK and
PTK show nearly one decimal point less (floating between the values .50-.51).

Regarding the sub-table related to the LOCT representation, there is a
clear superiority of the SPTK over the other kernels not only in terms of Mean
F1 score (.75), but also in terms of balance between “Slippery Slope” and
“Testimony” scores (.67 and .69, respectively). In fact, although PTK reaches
.68 on the class “Slippery Slope”, it stops at .58 on the class “Testimony”.

Setting Two - Scenario B
Regarding the second scenario of the Setting Two (the one considering four
labels), results can be seen in the bottom part of Table 4.4. The sub-table on the
left, related to GRCT/cGRCT, shows that performances of PTK and CSPTK
classifiers are slightly better in terms of mean F1 score (.69). However, when
one considers the results of the classes separately, one can see that the SSTK
classifier shows better results in the classification of the “Slippery Slope” class
(.67), while the CSPTK over the cGRCT representation shows better results
in the classification of “Judgements” (.66) and “Testimony” (.74).

Regarding the central sub-table (LCT/cLCT), it seems that the CSPTK
classifier is the one that has the best performance in terms of mean F1 (.68).
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Table 4.4: Results for Scenario A (top) and B (bottom) of Setting Two. SS =
“Slippery Slope”, O = “Other”, J = “Judgements”, T = “Testimony”. In bold
the maximum F1 scores for SS, J and T.

SCENARIO A:
GRCT/cGRCT

Kernel SS O T F1
STK .61 .90 .71 .74
SSTK .62 .91 .67 .73
PTK .67 .91 .69 .76
SPTK .58 .87 .68 .71
CSPTK .63 .90 .71 .75

LCT/cLCT
SS O T F1
.51 .90 .68 .70
.50 .92 .71 .71
.51 .90 .68 .70
.60 .89 .70 .73
.59 .91 .71 .74

LOCT
SS O T F1
.60 .87 .61 .70
.62 .89 .63 .71
.68 .86 .58 .71
.67 .89 .69 .75

SCENARIO B:
GRCT/cGRCT

Kernel SS O J T F1
STK .62 .76 .55 .71 .66
SSTK .67 .80 .60 .63 .67
PTK .64 .79 .61 .71 .69
SPTK .55 .79 .63 .68 .67
CSPTK .57 .79 .66 .74 .69

LCT/cLCT
SS O J T F1
.51 .76 .62 .69 .65
.50 .79 .64 .71 .66
.49 .80 .61 .75 .65
.52 .78 .58 .71 .65
.52 .79 .63 .77 .68

LOCT
SS O J T F1
.62 .76 .54 .61 .63
.65 .77 .51 .60 .63
.59 .72 .47 .62 .60
.65 .75 .47 .66 .63

It is also the classifier that reach the best performance in the classification
of the class “Testimony” (.77). Regarding the class “Judgements”, the best
performances are achieved by the SSTK (.64) and the CSPTK (.63), while the
class “Slippery Slope” is the one with the worst performances, with SPTK
and CSPTK as best classifiers (stopping at .52).

Regarding the sub-table on the right (related to the LOCT representation),
all mean F1 show a similar performance ranging from .60 to .63. Moreover, it
can be seen that the performances for the class “Judgements” are the worst
ones, where the best score is achieved by the STK (.54). On the other side,
SSTK and SPTK achieve the best scores with the class “Slippery Slope” (.65),
while the “Testimony” class has the SPTK as most performing classifier
(reaching .66).
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4.6 Discussion and Conclusions
From the results, some clear patterns can be observed. In general, it seems that
PTKs and above all (C)SPTKs collect the best performances. This appears
particularly evident in Setting One, when watching the numbers of Table 4.2
from the top to the bottom.

Another trend that can be seen from Setting One is the growing degree of
generalization (always watching from the top to the bottom of the tables).

Finally, another interesting trend can be observed on Setting One, namely
the growing degree of polarization, watching from the left (GRCT/cGRCT) to
the right (LOCT), related to the scores between the most and less performing
kernels in each column. It seems that the last table (LOCT) is the most
polarized one, reaching up to .13 points of difference between the most and
less performing score (i.e. in the column DataTwo, Scenario A; and in the
column DataOne, in Scenario B).

To the best of our knowledge, this study is the first attempt to offer a
comparative analysis of the combination of five tree representations and five
tree kernels in the classification of argumentative stances of opposition and
support.

A limitation of this work is that of being related to the specific data
employed. The contribution of different tree representation should be assessed
also in different scenarios and with different kinds of argumentative data.

Moreover, it is important to investigate the relation between the type of tree
representation, the tree kernel function employed and the targeted argument
to be classified. In other words, are there tree representation that can express
better specific kinds of argument? Are there tree kernel functions that better
calculate the similarities between these argumentative representations? This
study suggests that the answer to these questions is positive, showing a first
attempt of investigation in this direction.
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Chapter 5

Transfer Learning to Classify Ar-
gumentative Evidences

Original title: Transfer Learning with Sentence Embeddings
for Argumentative Evidence Classification

Abstract
This work describes a simple Transfer Learning methodology aiming at dis-
criminating evidences related to Argumentation Schemes using three different
pre-trained neural architectures. Although Transfer Learning techniques are
increasingly gaining momentum, the number of Transfer Learning works
in the field of Argumentation Mining is relatively little and, to the best of
our knowledge, no attempt has been performed towards the specific direc-
tion of discriminating evidences related to Argumentation Schemes. The
research question of this paper is whether Transfer Learning can discriminate
Argumentation Schemes’ components, a crucial yet rarely explored task in
Argumentation Mining. Results show that, even with small amount of data,
classifiers trained on sentence embeddings extracted from pre-trained trans-
formers can achieve encouraging scores, outperforming previous results on
evidence classification.
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5.1 Introduction
In the last few years, the use of Transfer Learning methodologies generated in
remarkable hype in the State of the Art of many Natural Language Processing
tasks. Particularly, the Transformer known as “Bidirectional Encoder Rep-
resentations from Transformer” (BERT) has shown extremely good results,
establishing several new records in terms of metrics results (15). In 2018,
BERT obtained new state-of-the-art results on eleven NLP-related tasks. In
a couple of years dozens of variants have been developed, establishing other
new records not just in English but also in other languages (e.g., the Italian
versions, GilBERTo1 and umBERTo2, the French camemBERT (55)).

Despite the high celebrity recently achieved by Transfer Learning tech-
niques, these methodologies have been applied relatively few times in Ar-
gumentation Mining (61; 68). To the best of our knowledge, this is the first
work that explicitly assesses Transfer Learning performances with the aim
of discriminating argumentative components related to Argument Schemes
(86). On the one side, the approach show to be capable of discriminating
argumentative stances of support and opposition related to some famous argu-
mentative patterns (Argumentation Schemes) such as Argument from Expert
Opinion, and Argument from negative consequences, showing better results
compared to previous studies. On the other side, the approach show that it is
possible clustering Argumentation Schemes according to the criteria of the
pragmatical dimension, which is a crucial aspect described in the most recent
literature about Argumentation Scheme classification (52; 35). In summary,
the approach show an ability to classify argumentative evidences not only at
fine-grained levels (e.g., different instances of Argument from Expert Opinion)
but also at the level of large clusters (like the Argumentation Schemes com-
ing from an external source, a class which according to some classification
approaches can be used as first dichotomic criterion of discrimination among
schemes (52; 35)).

Section 5.2 will describe the Transfer Learning methodology and the two
main settings for the experiments. Section 5.3 will describe the datasets used
for the experiments in the two scenarios. Sections 5.4 and 5.5 will show the
experimental results on the two scenarios. Section 5.6 will describe the related
works. In Section 5.7, some final considerations will conclude the paper.

5.2 Methodology
Transfer Learning methods are generally divided in two approaches: the first
approach is called fine-tuning and it consists of using a pre-trained neural
architecture (i.e., a Transformer architecture trained on thousands of inputs)
as a starting point to perform further training steps on a downstream task
(training, thus, the neural architecture on downstream data). The second

1https://github.com/idb-ita/GilBERTo
2https://github.com/musixmatchresearch/umberto
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approach, instead, is that of using a pre-trained neural architecture just to
extract the outputs that the Neural Architecture generate for a given input at a
specific stage of the neural architecture. For example, a sentence can be used
as input and the output generated by the neural architecture can be extracted
and used as sentence embeddings, that can represent our sentence in other
downstream tasks (noticeably, the extraction of the generated output to be used
as embedding can be performed at different stages of the neural architecture,
not necessarily at the final layer). In this paper, the second approach will be
employed: a famous pre-trained architecture will be selected, some sentences
will be used as inputs for this neural architecture, and the output coming from
the neural architecture will be employed as sentence embeddings to represent
our data in a series of downstream classification tasks.

For the pre-trained embeddings we will employ three pre-trained models:
the first one is the famous neural transformer called BERT (15) (specifically,
we will use the uncased base version). The second and third models are two
recent models which are derived from BERT, namely: distilBERT(73) and
RoBERTa(51) (uncased). While BERT base consists of 12 layers, 768 hidden
dimensions, 12 self-attention heads and nearly 110M parameters, RoBERTa
base consists of 12 layers, 768 hidden dimensions, 12 self-attention heads
and 125M parameters. Finally, distilBERT consists of 6 layers, 768 hidden
dimensions, 12 self-attention heads and 66M parameters.

To extract the embeddings from the neural models, each input sentence
must be firstly tokenized according to the requirements of the given model.
Typically, with BERT, a [CLS] and a [SEP] special tokens are inserted at
the beginning and at the end of the input (we are interested in the first one
which is the token holding the classification output we are interested to extract
from the input sentence). Moreover, the length of each input sentence is set
to a max length: all sentences longer than that limit are shortened, while all
sentences shorter than that limit are padded with the special [PAD] token.
This process makes sure that all inputs have the same length before entering
the neural architecture. After the tokenization, inputs are passed into the
neural architecture of a BERT transformer, while deactivating the calculation
of gradients.

After having transformed each input sentence of the test sets into tokens
and having used these tokens as inputs for the BERT neural architecture,
the resulting extracted embeddings have been used, in turn, as input of a
classification using two classification procedure: a Support Vector Machine
(SVM) classifier and a Logistic Regression classifier (LRC). Notice that for
the experiment on D3 our SVM employed a Linear Support Vector Classifier
(Linear SVC), while in all other experiments we employed a standard Support
Vector Classifier (SVC).

The classification method is One vs All. Which means that the classi-
fication has been performed per each class, considering one class against
all the other classes, a typical approach in multiclassification and multilabel
scenarios. Finally, all classifiers have been evaluated on the relative testing
set.
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The experiments have been divided into different scenarios:

1. Baseline scenario: in this scenario, the classification was performed on
the same setting of two previous works, taken as baselines for compari-
son.

2. Extended scenario: in this scenario, the classification was performed
on new settings, using an extended version of two datasets from the
baseline scenario.

5.3 Data
The experiments of this work have been applied to the datasets listed in Table
5.1, reporting reports also the number of instances for each dataset. These
datasets have been selected because their annotations describe classes of
argumentative evidence directly related to specific Argumentation Schemes.
Importantly, during the experiments, all datasets have been split into train and
test sets, following a standard 80/20 ratio.

Table 5.1: Description of all datasets used in this paper.

Dataset Reference Classes Instances
Baseline datasets:

D1
Al Khatib et al. 2016
(only 2 classes extracted as in (36))

Study,
Testimony

653

D2
Aharoni et al. 2014
(only 2 classes selected as in (36))

Study,
Expert

569

D3 Liga and Palmirani 2019
Slippery Slope,
Testimony,
Other

638

Extended datasets:

D1+
Al Khatib et al. 2016
(3 classes extracted following (36))

Study,
Testimony,
Anecdotal

2253

D2+ Aharoni et al. 2014
Study,
Expert,
Anecdotal

1291

D2++ Rinott et al. 2015
Study,
Expert,
Anecdotal

4692

Regarding the baseline scenario, D1 and D2 are a portion of Al Khatib et
al. 2016 and Aharoni et al. 2014 respectively, two important dataset designed
by IBM. Only two classes from the original datasets have been selected,
reproducing the scenario in (36) in order to have baseline scenarios for our
classifiers. D3 is a small dataset (only 638 sentences) from Liga and Palmirani
2019. It is a dataset which has different levels of granularity, depending on
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how many classes are considered. In this case we selected granularity three,
which contains three labels.

Regarding the extended scenario, the dataset D1+ is an extension of D1:
instead of extracting just two classes, it considers three classes. The inputs
of the dataset from Al Khatib et al. 2016 (4) are actually structured in a very
fragmented way, so we needed to rebuild the sentences following the approach
suggested in (36). Similarly, D2+ is an extension of D2 (instead of being a
selection of just two classes, it considers three classes). Finally, D2++ is an
extended version of the same dataset which, having many more instances, can
be a useful benchmark for this kind of classifications.

Importantly, the datasets which have been employed in this work are
among the few available datasets containing instances of argumentative evi-
dences which can be related to Argumentation Schemes. Namely, the dataset
in Al Khatib et al. 2016 (4) shows instances of argumentative evidences
labelled as Study, Testimony and Anecdotal: these evidences support argu-
mentative claims which refer to source-based opinions, this means that they
belong to different types of source-based arguments. One of the most famous
example of source-based Argumentation Scheme is the well-known Argument
from Expert Opinion; another famous scheme is the Argument from witness
testimony (more details about this kind of schemes can be found in (35)).

The datasets in Aharoni et al. 2014 (1) and Rinott et al. 2015 (69) present
similar source-based Argumentation Schemes (however, this time the labels
are Study, Expert and Anecdotal). In this case, the cluster of argumentative
evidences labelled with the class Expert are likely to be compatible with the
evidences of an Argumentation Scheme from Expert Opinion.

The dataset in Liga and Palmirani 2019 (39) offers instead only one class
of evidences which is related to source-based arguments (Testimony) while
another class is related to a cluster of evidences which can be related to the
Argument from Negative Consequences and the Slippery Slope Arguments.

These three datasets can thus be used to assess whether classifiers are
able to discriminate between different cluster of argumentative evidences.
Since these argumentative evidences are strictly related to specific clusters
of Argumentation Schemes, the ability of classifiers to discriminate different
clusters of argumentative evidences is, in our opinion, a crucial step towards
Argumentation Scheme discrimination.

5.4 Results for the Baseline Scenario
The classifications in this Section show that the proposed approach is able to
outperform recent results in the Argumentation Mining literature. With this
purpose, recent results on D1, D2 and D3 are reported (36; 39) and used as
baseline for our classifiers.

In this paper, all F1 scores per class are calculated as the mean macro F1
scores, taken from each One-vs-All classification. All these scores are finally
averaged and reported as mean F1 (per each classifier, i.e. SVM and LR).
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Table 5.2: Results on the baseline classifiers (D1, D2, D3) considering mean
F1 scores (macro) and two kinds of classifier. SVM = Support Vector Machine;
LR = Logistic Regression; BS = Baseline. The columns whose mean F1 value
has an asterisk refers to a Linear Support Vector Classifier. In bold are all the
mean F1 scores which overcome the mean F1 of the baseline. The three grey
columns represent the best classifiers for the baseline scenario.

Classes
Bert Base DistilBERT RoBERTa

BS
SVM LR SVM LR SVM LR

D1 (Al Khatib et al. 2016)
Study .94 .92 .97 .97 .91 .89 .91

Testimony .93 .91 .97 .96 .89 .86 .92
mean F1 .94 .92 .97 .96 .90* .88 .92

D2 (Aharoni et al. 2014)
Study .78 .71 .72 .74 .75 .79 .69
Expert .75 .68 .67 .72 .73 .77 .78

mean F1 .76 .69 .69* .73 .74* .78 .73

D3 (Liga and Palmirani 2019)
Slippery Slope .75 .71 .79 .76 .82 .60 .70

Testimony .90 .92 .93 .94 .93 .73 .71
Other .85 .86 .87 .87 .87 .85 .91

mean F1 .83* .82 .86* .86 .87* .73 .77

As can be seen from Table 5.2, results outperform previous results for the
same scenario, showing the ability of Transfer Learning techniques to achieve
high performances. As indicated by the bold numbers in Table 5.4, for D1, D2
and D3 there are always at least four classifiers out of six which outperform
the baseline.

5.5 Result for the Extended Scenario
The next series of experiments have been performed on an extended ver-
sion of two datasets from the baseline scenario (D1 and D2), to assess how
performances change in a multiclass scenario.

Table 5.3 shows a clear trend, with Logistic Regression on DistilBERT
being the best solution for both the dataset extending D1 (i.e., D1+) and the
datasets extending D2 (i.e., D2+ and D2++).

Regarding the classifications on D1+, one can see that the best perfor-
mances are achieved by the Logistic Regression classifier (LR) trained on
sentence embeddings extracted using DistilBERT. To have a better understand-
ing of these results, the confusion matrix of the best classifier in this scenario
(i.e., Logistic Regression on DistilBERT) are reported with the confusion
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Table 5.3: Results on D1+, D2+ and D2++ considering mean F1 scores
(macro) and two kinds of classifiers. SVM = Support Vector Machine; LR
= Logistic Regression; BS = Baseline. The columns whose mean F1 value
has an asterisk refers to a Linear Support Vector Classifier. In bold are the top
mean F1 scores. The three grey columns represent the best classifiers for the
extended scenario.

Classes
Bert Base DistilBERT RoBERTa

SVM LR SVM LR SVM LR

D1+ (Al Khatib et al. 2016)
Study .83 .85 .83 .87 .86 .77

Testimony .77 .81 .81 .82 .78 .70
Anecdotal .81 .81 .82 .84 .83 .77
mean F1 .80 .82 .82* .84 .82* .75

D2+ (Aharoni et al. 2014)
Study .89 .90 .91 .91 .90 .85
Expert .91 .91 .92 .93 .90 .84

Anecdotal .92 .93 .92 .93 .92 .92
mean F1 .91* .91 .92* .92 .91* .87

D2++ (Rinott et al. 2015)
Study .93 .94 .94 .94 .92 .90
Expert .92 .92 .93 .93 .91 .88

Anecdotal .91 .93 .90 .92 .87 .85
mean F1 .92* .93 .92* .93 .90* .88

matrix from the best classifier of the baseline scenario (i.e., Support Vector
Machine from DistilBERT embeddings from Table 5.2) in Figure 5.1.

Regarding the classifications on D2+ and D2++, one can see that the
best performances are achieved by the Logistic Regression classifier (LR)
trained on sentence embeddings extracted using DistilBERT and Bert Base.
Also in this case, to have a better understanding of the results, the confusion
matrices of the best classifiers in this scenario (i.e., Logistic Regression
from DistilBERT embeddings and from Bert Base) are reported with the
confusion matrix from the best classifier of the baseline scenario (i.e., Logistic
Regression from RoBERTa embeddings from Table 5.2) in Figure 5.2.

Notice that while confusion matrices for D1 and D2 (in green) show a
binary classification, the other confusion matrices in blue (relative to D1+,
D2+ and D2++) show a one-vs-all classification. These blue matrices show
that classifiers are able to recognize classes also in a multiclass scenario. While
Figure 5.1 shows an unbalance (which is probably due to the predominance of
the class anecdotal), results in Figure 5.2 seems more balanced: the diagonal
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D1 (study vs testimony)
SVM on DistilBERT

D1+ (study vs others)
LR on DistilBERT

D1+ (testimony vs others)
LR on DistilBERT

Figure 5.1: Confusion matrices for D1 (in green) and D1+. The number of
instances and the relative percentages are reported.

is always a 30/60 ratio, indicating the goodness of predictions.

D2 (study vs expert)
LR on RoBERTa

D2+ (study vs others)
LR on DistilBERT

D2+ (expert vs others)
LR on DistilBERT

D2++ (study vs others)
LR on DistilBERT

D2++ (expert vs others)
LR on DistilBERT

D2++ (study vs others)
LR on Bert Base

D2++ (expert vs others)
LR on Bert Base

Figure 5.2: Confusion matrices for D2 (in green), D2+ and D2++. The
number of instances and the relative percentages are reported.
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5.6 Related works
Unfortunately, datasets specifically designed in a way that allow a direct
link between classes and specific Argumentation Schemes are very few. A
promising and growing resource, in this sense, is the corpora in AIFdb (34)
thanks also to the contribute of tools like OVA+ (66) which recently added
a very important component for Argumentation Scheme annotation called
Argument Scheme Key (35).

Moreover, although there have been different works of text classification
in Argumentation Mining, only few studies focused on classification tasks
aiming at facilitating the discrimination of Argumentation Schemes.

Rinott et al. 2015 (69) achieved important results on evidence detection
employing the dataset D2++. However, the approach is mostly context-
dependent, while the present work is not considering the context. In Liga
2019 (36), the classification has been performed using Tree Kernels classifiers
on D1 and D2, containing argumentative evidences of support among which
it is possible to find evidences directly related to the Argument from Expert
Opinion. The work is however limited to a binary classification. A similar
approach, in a multiclass scenario, is described in Liga and Palmirani 2019
(39), where Tree Kernels are employed on D3, a small dataset which considers
argumentative evidences of opposition among which one can find, for example,
the Slippery Slope Argument. Considering these two works as baselines, the
approach presented in this paper seems capable of outperforming the previous
achievements.

5.7 Conclusion
The datasets analyzed in this work are composed of argumentative evidences
which are directly related to different clusters of arguments. For example,
many instances which can be found in the datasets of this paper are directly
related to the cluster of source-based arguments. Other instances of argumen-
tative evidences are instead specifically related to the Argumentation Scheme
from Expert Opinion, while others are related to the cluster which includes the
Argument from Negative Consequences and the Slippery Slope Arguments
(which do not belong to the cluster of source-based arguments).

We believe that the ability to discriminate different clusters of argumenta-
tive evidences is a crucial step in the classification of Argumentation Schemes.
For example, the discrimination of clusters of Argumentation Schemes can be
performed in a pipeline of binary classifications starting from source-based
versus non-source-based arguments and continuing towards more specific
binary classifications (similarly to the path of dichotomous choices followed
by ASK, the annotation system recently elaborated in (35), which offers a
valuable system of classification of Argumentation Schemes).

In general, the results presented in this paper seem encouraging, showing
that pre-trained embeddings can outperform previous results in the field of
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Argumentation Mining related to the classification of argumentative evidences.
An interesting aspect is that the proposed classifiers show encouraging results
not only in the discrimination among different source-based argumentative
evidences, but also in classifications involving source-based versus non-source-
based argumentative evidences (i.e. with dataset D3).

However, further analysis is needed to verify if and how Transfer Learning
techniques can discriminate argumentative evidences in such a way that they
can facilitate Argumentation Scheme discrimination. In this regard, the present
paper is just a preliminary exploration of a promising possible approach. In
future works, other Transfer Learning techniques should be assessed too. For
example, it could be useful to assess the performances between the two main
Transfer Learning techniques: sentence embeddings and fine-tuning. Also,
other pre-trained models should be employed and compared (e.g., Xlnet(89),
Albert(32)).

A long-term goal is being able to connect natural language argumentative
evidences to their specific Argumentation Schemes, which can be a further
step in the development of an artificial Natural Argumentation Understanding.
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Chapter 6

Transfer Learning for Argumenta-
tive Sequence Labelling

Original title: Argumentative Sequence Labelling Using
Transfer Learning

Abstract
This work presents an approach for Argumentative Sequence Labelling using
Transfer Learning. Specifically, a famous pre-trained neural architecture,
BERT, has been employed using the Transfer Learning technique known as
“fine-tuning” and employing two different data formats for sequence labelling
(BIO and BILUO). The neural architecture has been fine-tuned on two famous
corpora to recognize not only the boundaries of argumentative units, but also
the specific types of argumentative component. The resulting model not only
outperforms the results of previous models, but it is also easier to implement,
since it does not require highly-engineered features. An evaluation at token-
level and another at span-level are performed, as well as a preliminary error
analysis.
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6.1 Introduction
Transformers like BERT have been extremely popular in the last two years
achieving several records in the State of the Art of Natural Language Under-
standing (15). However, their use in the field of Argumentation Mining (34)
has been relatively small so far. In this work, a Transfer Learning approach
has been applied to the task of detecting argumentative spans. More precisely,
we want to assess the ability of Transfer Learning to facilitate the task of
labelling argumentative sequences.

Transfer Learning methodologies, particularly the fine-tuning and contextual-
embeddings techniques, have been recently used in many NLP tasks, achieving
remarkable steps forward in artificial Natural Language Understanding. BERT
and its derivations have been among the most successful natural language
models employed for Transfer Learning in the last couple of years. The rea-
son for the success of BERT is the fact that it is able to encode important
information about language. To do so, BERT has been pre-trained on a large
amount of data (mostly from wikipedia) performing tasks that are designed
to force the neural architecture to learn language features. As explained in
(15), one of these tasks is the Masked Language task: this task forces BERT’s
neural architecture to predict randomly masked tokens. Thanks to this simple
idea and thanks to its attention-based mechanisms (20), BERT is able to learn
many features of human language, and this knowledge is incorporated in its
neural architecture. As shown in (15), this knowledge can be then transferred
(hence the expression Transfer Learning) to downstream tasks in two ways:
the first option is to use BERT to output the embeddings produced by its
neural architecture, using these embeddings as features for downstream tasks;
the second option is to fine-tune the pre-trained neural architecture, namely
performing new training epochs on it, while using downstream data.

Since fine-tuning has been surprisingly efficient with many NLP-related
tasks, including sequence labelling tasks such as Named Entity Recognition
(15), we think it can be useful to assess BERT’s performances on argumen-
tative sequences employing the fine-tuning method to transfer learning from
the pre-trained model to the downstream task of labelling argumentative
sequences.

In Section 6.2, some related works will be mentioned. Section 6.3 will
describe the datasets employed in this work. In Section 6.4, the proposed
methodology will be presented. Section 6.5 will describe the achieved results,
while Section 6.6 will offer a discussion about the results. Finally, Section 6.7
will conclude the work.

6.2 Related works
While the tasks of sequence labelling and tagging are well known in NLP
(54; 3), only few attempts have been performed in the field of Argumentation
Mining, especially with regard to the labelling of argumentative spans. To
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the best of our knowledge, the first attempt to label argumentative sequences
has been proposed by (77), where the modeling of argumentative sequences
employs highly-engineered features including Structural, Syntactic, Lexical-
Syntactic and Probabilistic elements, while the classification employs a CRF
(31) implemented in CRFsuite (62) with an averaged perceptron (12). In this
study, (77) adapted the standard BIO format to the purpose of the Argumen-
tative Sequence Labelling, using the labels Arg-B (for those tokens that are
at beginning of an argumentative span), Arg-I (for all other argumentative
tokens) and Arg-O (for tokens that are not within an argumentative span) with
the Argument Annotated Essays Corpus (77). The resulting classification of
these three labels achieved a macro averaged F1 score of 0.867.

(2) carried out further experiments, showing that results can be improved
by combining all the features provided by (77) with a Bi-LSTM (bidirectional
long short-term memory) neural network, and showing that the Bi-LSTM
outperforms SVM and CRF classifiers. Importantly, the classification consider
not only the Argument Annotated Essays Corpus but also other two famous
corpora: the Webis-Editorials-16 corpus (4) and the Argument Annotated
UserGenerated Web Discourse corpus (24).

The above-mentioned studies employs highly-engineered features and
their models (the CRF and the BiLTSM) are designed for the labelling of
argumentative spans in general (without considering the differences between
argumentative components, which is considered as a separate task). Moreover,
the two models only consider the BIO format, despite the fact that other
formats showed better learning performances in some cases, e.g. the BILUO
format, which considers also the last token of spans and the spans with just
one token (67).

The main novelties of our paper, are: (a) the assessment of the perfor-
mances of fine-tuning as a Transfer Learning methodology for Argumentative
Sequence Labelling on two famous datasets: the Argument Annotated Essays
Corpus (79) and the Argument Annotated User-Generated Web Discourse
corpus (24); (b) the assessment of the performances of two different data
formats for the sequence labelling: BIO and BILUO; (c) the division of
the experiment in two separate sub-tasks to assess whether Argumentative
Sequence Labelling can be performed not only to detect argumentative vs non-
argumentative spans, but also to detect the spans of different argumentative
components, e.g. premises, claims (somehow combining sequence labelling
and text-classification); (d) an evaluation at span-level, instead of the classic
token-level evaluations proposed in previous works. The research questions
addressed in this paper are:

1) Can Transfer Learning outperform previous Argumentative Sequence La-
belling scores without employing highly-engineered features?

2) Can different labelling formats (e.g. BIO, BILUO) affect these scores
significantly?

3) Can we use the same methodology to discriminate argumentative compo-
nents at a more granular level (distinguishing, for example, premises and
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claims)?

6.3 Data
Essays This corpus is composed of 402 persuasive essays written by students
and annotated by three experts. Particularly, the annotation considers three
types of argumentative units (premises, claims and major claims) considering
all the other spans as non-argumentative spans. The authors split the corpus
into 322 essays for training and 80 essays for test. This split has been preserved
also in the present paper.

Web Discourse This corpus consists of 340 comments written in online
newspapers, forums and blogs. In this case, the annotation has been performed
by considering a five different types of argumentative unit, which are similar
to the famous Toulmin argument model (81): claim, premise, rebuttal, backing
and refutation. Since the dataset does not provide any training-test split, we
followed the classic 80/20 split, also proposed by (2).

These two datasets have a very different nature: the first corpus is composed
by well-structured arguments written by students that were asked to write their
arguments about specific topics, the second one shows less predictable ways
of expressing arguments, as usual with comments from the Internet.

6.4 Methodology
We divided our experiments into two parts. The first one reproduces the same
task of sequence labelling discussed in (77) and (2). The second one is instead
an extension which increases the complexity of the labelling task. Table 6.8,
in the Appendix A, describes this complexity showing the number of targeted
token-level labels considered in the two tasks.

Task 1 focuses on the labelling of sequences as belonging to an argument
or not: in this case, each tokens has been labelled as belonging or not to an
argumentative span. We created a script to convert each corpus into BIO and
BILUO format. For both corpora, the BIO format is represented by three
labels (B-ARG, I-ARG and O), while the BILUO format is represented by five
labels B-ARG, I-ARG, L-ARG, U-ARG and O (however, no U-ARG have
been found in the two corpora).

Task 2 presents exactly the same neural architecture, but we trained it
for a more complex task: labelling each tokens as belonging to specific
argumentative components. This means that each token is considered as being
or not part of a specific argumentative component, such as premise, claim, and
so on. In this case, we converted each corpus into a BIO and BILUO using the
argumentative components specifically belonging to them. This means that
we applied the prefix (B-, I- and L-) to three labels in the case of the Essays
corpus (Claim, Premise, MajorClaim) and to five labels in the case of the Web
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Discourse corpus (Claim, Premise, Rebuttal, Backing, Refutation). In other
words, Task 2 is more complex because the neural architecture tries to classify
more types of sequences. To understand this complexity, we can consider the
prefixes of the chosen format (B-, I- in the case of the BIO format; B-, I-, L-,
U- in the case of the BILUO format) and multiply the number of prefixes by
the number of argumentative components in the two corpora (three in the case
of the Essays corpus, five in the case of the Web Discourse corpus), plus the
label O.

Before feeding our model with the textual data, we used spaCy 1 to
automatically separate each document into different sentences. We noticed
that this process of separation improves significantly the learning results.
Regarding the employed neural architecture, we implemented Google’s BERT
2, a famous attention-based (20; 76) Transformer (15). More specifically, we
used the pretrained BERT base-uncased (we will sometimes refer to it as
BERTbase) which is a neural architecture consisting of 12 encoder layers, 768
hidden units and 12 attention heads and it is pretrained on a large amount of
data (including Wikipedia), resulting in 110M parameters. To use BERT, each
sentence of the corpora has been tokenized using wordpiece (87) tokenization
as required by BERT (15). Moreover, we truncated and padded all sentences
to a fixed length, we trained our model in 4 epochs, with a batch size of 32
and a learning rate of 5e-5.

Finally, to assess the ability of our model to understand argumentative
spans, we evaluated the results of the classification at token-level, considering
Precision, Recall and F1 scores for the correct classification of each tokens.
Moreover, we followed a stricter methodology at span-level, to evaluate the
exact matches of the classified spans, following the evaluation methodology
proposed CoNLL-2000 shared task (80).

6.5 Results
This section reports the results for the two parts of the experiment. The pre-
trained neural architecture is exactly the same in both in Task 1 and Task 2
and we compared it with a baseline, to show whether a simple pre-trained
BERT model can improve previous results. More specifically, we considered
as baseline the previous scores achieved by the BiLSTM model proposed by
(2) on the same two corpora. While (2) employed just the BIO format, we
employed both the BIO and BILUO format. Table 6.1 reports the average
macro F1 score of our BERT model for the Essay and Web-Discourse corpora
considering both the BIO and BILUO formats.

Importantly, our simple BERT implementation is able to reach and outper-
forms the results of the highly-engineered BiLSTM baseline (which answers
our first research question). When considering the Essays corpus in the BIO
format, our model almost reaches the Baseline at 87.43; when considering the

1https://spacy.io/
2github.com/google-research/bert
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BERTbase Baseline BiLSTM
Corpus BIO BILUO BIO
Essays .8743 .8897 .8854
Web Discourse .6026 .5266 .5498

Table 6.1: Comparison with the baseline. Mean F1 scores (macro) for the
token labelling considering the BIO format (3 classes: B-ARG, I-ARG and O)
and the BILUO format (5 classes: B-ARG, I-ARG, L-ARG, U-ARG and O).
In bold, the macro F1 scores that outperformed the baseline.

BILUO format, our model slightly outperforms the baseline at 88.97. How-
ever, the situation is different when considering the Web Discourse: using the
BILUO format, our model performs slightly worse than the baseline at 52.66,
while using the BIO format, our model outperforms the baseline with a more
evident improvement at 60.26. This is a confirmation that the chosen format
can affect the ability of neural architectures to learn (as has been showed for
example in (67)), which is also an answers for our second research question.

6.5.1 Task 1: Argumentative Span Detection
Table 6.2 is a more complete report, showing the F1 scores per class for the
two datasets. This report provides a better understanding of the ability of the
model to classify tokens correctly. For example, we can see that using the
BIO format BERT is capable of discriminating correctly between tokens that
are at the beginning of an argumentative span with an F1 score of 0.87 while
it can recognize inner tokens with a F1 score of 0.92. Interestingly, when
using the BILUO format, performances improve. In this case, the support for
I-ARG is split (1,264 tokens are considered as L-ARG tokens, concluding an
argumentative span), however BERT seems capable to recognize the difference
between B-, I- and L- tokens with an average macro F1 of .89 (i.e., .8897 as
showed in Table 6.1).

6.5.2 Task 2: Argumentative Component Span
Detection

Not surprisingly, results for the Task 2 show lower scores. Tables 6.4 reports
the achieved scores for the two datasets considering BIO and BILUO formats.

In the case of the Essays corpus the labelling involved 3 types of argumen-
tative components, while in the case of the Web Discourse corpus the labelling
involved 5 types of argumentative components. Noticeably, we attempted two
ways for classifying the spans of the argumentative components of the Essays
corpus. In the first method, we simply considered all three classes already
mentioned (Claim, Major Claim and Premise). In the second method, we
considered Claim and Major Claim as the same label, to see if the classifier
could recognize the difference between tokens belonging to claims and tokens
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Task 1
Essays corpus

BIO format P R F1 support
B-ARG .86 .88 .87 1,266
I-ARG .91 .94 .92 18,750
O .86 .81 .83 9,412
macro avg: .87
weighted avg: .89
BILUO format P R F1 support
B-ARG .87 .88 .88 1,266
I-ARG .91 .94 .93 17,484
L-ARG .90 .92 .91 1,266
O .88 .82 .85 9,412
macro avg: .89
weighted avg: .90

Task 1
Web Discourse corpus

BIO format P R F1 support
B-ARG .42 .60 .49 201
I-ARG .59 .66 .63 7,615
O .72 .66 .69 10,325
macro avg: .60
weighted avg: .66
BILUO format P R F1 support
B-ARG .44 .49 .46 201
I-ARG .60 .52 .56 7,414
L-ARG .43 .42 .43 201
O .68 .74 .71 10,325
macro avg: .54
weighted avg: .64

Table 6.2: Complete results for the token-level classification of the Task 1
for the two datasets: detecting argumentative spans on the two corpora using
BIO and BILUO formats.
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belonging to premises.
The left side of Table 6.3 shows the results of the token classification

on the Essays corpus considering the BIO and BILUO format for all the
three types of argumentative components of the Essays corpus (Claim, Major
Claim, Premise). In right side of Table 6.3, instead, we considered Claim and
Major Claim as belonging to the same category (a general Claim category).
Interestingly, the average macro F1 score improves when considering Major
Claim and Claim as a unique class: it increases from .65-.66 (for BIO and
BILUO formats, respectively) to .72-.70. Moreover, in both cases, the BIO
format outperforms the BILUO format. It is important to notice that even if
the support for some classes is relatively small, results seems encouraging
(especially in the when considering just two classes). These scores show that
BERT can not only recognize argumentative spans, but also understand what
kind of argumentative span.

In Table 6.4, the classification of the tokens belonging to argumentative
components is related to the Web Discourse corpus. In this case, the model
tried to classify 11 (in the BIO format) and 16 (in the BILUO format) token-
level labels. The average F1 score is quite low for both the formats, showing
that the model struggles in the classification. This is understandable if con-
sidering the low support for some classes: there are probably not enough
instances for the model to learn. In fact, the labels with the smallest supports
are those that achieve the lowest F1 scores. The weighted F1 describe better
this unbalanced scenario (.55/.56 for BILUO and BIO respectively). Also in
this case, this corpus shows better performances with the BIO format.

6.5.3 Span-level Evaluation
Although some of the results achieved in this work are encouraging, the mere
token-level evaluation is not a sufficiently strong measure of evaluation. A
token-level evaluation can just provide a view on the ability of our model to
classify tokens correctly; however, it does not say anything about the exact
span matching. In order to provide our results with a more robust evaluation,
an approach proposed at the CoNLL-2000 shared task (80) can be followed.
This approach is well known in the the field of Sequence Labelling and Named-
Entity Recognition because allows for the evaluation of precision, recall and
F1 scores for the exact matching of spans, not just for the tokens. The original
script performing these calculations has been originally written in Perl 3,
however we implemented it using the python library seqeval 4. Tables 6.5, 6.6,
6.7 describe the results on the exact matching for all the classes considered in
Task 1 and Task 2.

The left side of Table 6.5 considers all the 1,266 argumentative spans
extracted from the Essays corpus, showing that the actual matching spans
achieve an F1 score of .77 (BIO format) and .79 (BILUO format). Even if this
result is lower than the previously mentioned token-level mean F1 scores (.87

3https://www.clips.uantwerpen.be/conll2002/ner/bin/conlleval.txt
4https://github.com/chakki-works/seqeval
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Task 2
Essays corpus (considering three classes)

BIO format P R F1 support
B-CLAIM .42 .49 .45 304
B-MAJORCLAIM .69 .68 .69 153
B-PREMISE .73 .69 .71 809
I-CLAIM .43 .49 .46 3,920
I-MAJORCLAIM .72 .71 .72 1,970
I-PREMISE .81 .79 .80 12,860
O .85 .82 .83 9,412
macro avg: .66
weighted avg: .75
BILUO format P R F1 support
B-CLAIM .40 .49 .44 304
B-MAJORCLAIM .68 .67 .68 153
B-PREMISE .73 .69 .71 809
I-CLAIM .38 .51 .44 3,616
I-MAJORCLAIM .73 .66 .69 1,817
I-PREMISE .80 .77 .78 12,051
L-CLAIM .43 .51 .46 304
L-MAJORCLAIM .73 .67 .70 153
L-PREMISE .75 .73 .74 809
O .87 .81 .84 9,412
macro avg: .65
weighted avg: .74

Task 2
Essays corpus (considering two classes)

BIO format P R F1 support
B-CLAIM .62 .62 .62 457
B-PREMISE .71 .73 .72 809
I-CLAIM .61 .62 .61 5,890
I-PREMISE .78 .81 .79 12,860
O .86 .80 .83 9,412
macro avg: .72
weighted avg: .76
BILUO format P R F1 support
B-CLAIM .57 .62 .60 457
B-PREMISE .72 .70 .71 809
I-CLAIM .58 .62 .60 5,435
I-PREMISE .79 .77 .78 12,049
L-CLAIM .59 .64 .61 457
L-PREMISE .76 .72 .74 809
O .84 .83 .84 9,412
macro avg: .70
weighted avg: .76

Table 6.3: Task 2 for the Essays corpus, using BIO and BILUO formats
and considering classes Claim, MajorClaim and Premise (the first Table) and
Claim and Premise (the second Table).
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Task 2
Web Discourse corpus

BIO format P R F1 support
B-CLAIM .71 .14 .23 36
B-PREMISE .30 .42 .35 106
B-BACKING .45 .12 .19 43
B-REBUTTAL .00 .00 .00 12
B-REFUTATION .00 .00 .00 4
I-CLAIM .40 .42 .41 680
I-PREMISE .44 .45 .45 4,247
I-BACKING .32 .26 .29 2,089
I-REBUTTAL .32 .15 .20 453
I-REFUTATION .00 .00 .00 146
O .68 .71 .70 10,325
macro avg: .26
weighted avg: .56

Task 2
Web Discourse corpus

BILUO format P R F1 support
B-CLAIM .43 .08 .14 36
B-PREMISE .33 .35 .34 106
B-BACKING .50 .12 .19 43
B-REBUTTAL .00 .00 .00 12
B-REFUTATION .00 .00 .00 4
I-CLAIM .35 .34 .35 644
I-PREMISE .43 .38 .40 4,141
I-BACKING .31 .23 .27 2,046
I-REBUTTAL .11 .08 .10 441
I-REFUTATION .00 .00 .00 142
L-CLAIM .33 .31 .32 36
L-PREMISE .33 .36 .34 106
L-BACKING .00 .00 .00 43
L-REBUTTAL .00 .00 .00 12
L-REFUTATION .00 .00 .00 4
O .67 .76 .71 10,325
macro avg: .20
weighted avg: .55

Table 6.4: Task 2 for the Web Discourse corpus, using BIO (first table)
and BILUO (second table) formats and considering classes Claim, Premise,
Rebuttal, Backing, Refutation.

75



Span-level evaluation - Taks 1
(Essays corpus)

BIO format P R F1 support
ARG .73 .82 .77 1,266
BILUO format P R F1 support
ARG .74 .84 .79 1,266

Span-level evaluation - Taks 1
(Web Discourse corpus)

BIO format P R F1 support
ARG .12 .34 .18 201
BILUO format P R F1 support
ARG .06 .19 .10 201

Table 6.5: Span-level report of the Task 1 for the Essays corpus (the first
Table) and for the Web Discourse corpus (the second Table).

and .89 for the BIO and BILUO format respectively), it might be a more robust
way of assessing the performance of Argumentative Sequence Labelling.

The right side of Table 6.5 shows that the actual matching for the 201
argumentative spans is lower than expected. In this case, the difference from
the token-level evaluation is even more evident (scores plummeted from .60
and 54 to .18 and .10 for BIO and BILUO respectively). Again, we wonder
whether this sharper decrease is due to the less structured composition of the
argumentative text from the web, compared to the students’ essays.

Regarding Task 2, Table 6.6 shows the exact span matching for the Essays
corpus when considering three and two classes. When using three classes,
BERT achieves a macro F1 score of .47 (for both BIO and BILUO formats),
while, also in this case, the classification joining the Claims and Major Claims
classes performs better, achieving .49 (BILUO) and .51 (BIO).

Table 6.7, finally, describes the exact span matching for the five classes
of the Web Discourse corpus classified in Task 2. Not surprisingly, results
are significantly low for the same reasons mentioned before: small number of
instances per class and probably the presence of less well-structured (or more
variable) argumentative structures compared to the Essays corpus.

6.6 Discussion on the results
The research questions mentioned before can now be addressed: results
show, in fact, that a simple BERT model can reach and even outperform
the previous models. This is important, because previous records employed
highly engineered models, while we are using a simple pre-trained model
without changing its neural architecture. We also assessed that the choice of
BIO and BILUO can indeed affect results. However, it seems that the Web
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Span-level evaluation - Taks 2
(Essays corpus)

considering three classes
BIO format P R F1 support
CLAIM .19 .39 .26 304
MAJORCLAIM .36 .59 .45 153
PREMISE .50 .61 .55 809
macro avg: .47
micro avg: .45
BILUO format P R F1 support
CLAIM .22 .43 .29 304
MAJORCLAIM .36 .53 .43 153
PREMISE .50 .62 .55 809
macro avg: .47
micro avg: .46

Span-level evaluation - Taks 2
(Essays corpus)

considering two classes
BIO format P R F1 support
CLAIM .36 .55 .44 457
PREMISE .49 .64 .55 809
macro avg: .51
micro avg: .51
BILUO format P R F1 support
CLAIM .35 .53 .42 457
PREMISE .48 .60 .53 809
macro avg: .49
micro avg: .49

Table 6.6: Span-level report of the Task 2 for the Essays corpus, using BIO
and BILUO formats and considering classes Claim, MajorClaim and Premise
(the first Table) and classes Claim and Premise (the second Table).
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Span-level evaluation - Taks 2
(Web Discourse corpus)

BIO format P R F1 support
CLAIM .04 .11 .06 36
PREMISE .06 .21 .10 106
BACKING .03 .09 .04 43
REBUTTAL .03 .08 .04 12
REFUTATION .44 .49 .46 4
macro avg: .07
micro avg: 07

Span-level evaluation - Taks 2
(Web Discourse corpus)

BILUO format P R F1 support
CLAIM .04 .11 .06 36
PREMISE .06 .21 .10 106
BACKING .03 .09 .04 43
REBUTTAL .03 .08 .04 12
REFUTATION .44 .49 .46 4
macro avg: 08
micro avg: .08

Table 6.7: Span-level report of the Task 2 for the Web Discourse corpus, using
BIO and BILUO formats and considering classes Claim, Premise, Backing,
Rebuttal and Refutation.

Discourse corpus is the one that is most affected by this change. In this regard,
we wonder whether this is due to the composition of the argumentative data
coming from the web (which are probably less well-structured than the Essays
corpus, or structurally more variable). Further studies are needed to investigate
this aspect. Finally, answering to the third research question, we showed that
the sequence labelling achieves encouraging results also at more granular
levels, discriminating among different kinds of argumentative components.
Span-level evaluation, however, show poorer scores.

6.6.1 Preliminary Error Analysis
We are currently performing an Error Analysis which shows that BERT can
recognize patterns of language commonly employed in natural arguments
(e.g. the use of connectors such as “In my view,” or “Finally,”) and also
the beginning and the conclusion of argumentative spans are detected with
precision (please, see Appendix B). However, missing information about the
context unavoidably affects results: for example, some sentences which seems
argumentative (especially in other contexts) but are not (w.r.t. the topic of the
discussion) might generate false positives (see the first false positive reported
in Appendix B). Other false positives might be generated by connectors such
as “because” (see the second false positive reported in Appendix B). Finally,
there are cases in which the argumentative sentence is detected but the match
is not perfect (BERT wrongly adds or misses argumentative spans).

6.7 Conclusion
This study outperformed previous results in the State of the Art of Argumen-
tative Sequence Labelling, showing that BERT can reach and outperform
previous benchmarks on the Argument Annotated Essays corpus and on the
Argument Annotated User-Generated Web Discourse corpus. More precisely,
we divided the work in two Tasks: in the first one, we focused on the recog-
nition (at token-level) of argumentative spans vs non-argumentative spans,
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while in the second task we focused on a more fine-grained classification of
the tokens as belonging to specific argumentative components.

Importantly, we showed that the choice of the labelling format (e.g., BIO,
BILUO) can affect scores, although the extent of such influence seems related
to the underlying data employed. In this regard, further research is required
to understand what kind of format are more performing and how these per-
formances are related to the underlying argumentative data. Furthermore, we
showed that BERT is able not only to recognize sequences of argumentative
tokens (considering argumentative vs non-argumentative), but also to recog-
nize what kind of argumentative components are involved (premise, claim,
rebuttal, etc.).

Although results are encouraging, we are skeptical about token-level
evaluations. We thus proposed to use a more robust methodology to evalu-
ate Argumentative Sequence Labelling tasks following the suggestion from
CoNLL-2000 shared task. Using such approach, we extended our token-
level evaluations with span-level evaluations, showing the actual ability of
BERT to recognize exact matches of argumentative spans for all the proposed
experiments.

In future, the performances of other Transformers might be assessed. In
any case, we think that this work can be a starting point for future research
employing more complex Transfer Learning architecture for Argumentative
Sequence Labelling.
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Appendix A. Description of the span classes.

Task 1 (Argumentative span detection)

Corpora Prefixes Token-level classes
Number of

classes

Essays
(in BIO format)

B-
I-

B-ARG
I-ARG
O

3

Essays
(in BILUO format)

B-
I-
L-
U-

B-ARG
I-ARG
L-ARG
U-ARG†
O

4†

Web Discourse
(in BIO format)

B-
I-

B-ARG
I-ARG
O

3

Web Discourse
(in BILUO format)

B-
I-
L-
U-

B-ARG
I-ARG
L-ARG
U-ARG†
O

4†

Task 2 (Argumentative component span detection)

Corpora Prefixes Token-level classes
Number of

classes

Essays
(in BIO format)

B-
I-

B-CLAIM, B-MAJORCLAIM, B-PREMISE,
I-CLAIM, I-MAJORCLAIM, I-PREMISE
O

7

Essays
(in BILUO format)

B-
I-
L-
U-

B-CLAIM, B-MAJORCLAIM*, B-PREMISE,
I-CLAIM, I-MAJORCLAIM*, I-PREMISE
L-CLAIM, L-MAJORCLAIM*, L-PREMISE
U-CLAIM†, U-MAJORCLAIM*†, U-PREMISE†
O

10†
7*†

Web Discourse
(in BIO format)

B-

I-

B-CLAIM, B-PREMISE, B-BACKING,
B-REBUTTAL, B-REFUTATION
I-CLAIM, B-PREMISE, I-BACKING,
I-REBUTTAL, I-REFUTATION
O

11

Web Discourse
(in BILUO format)

B-

I-

L-

U-

B-CLAIM, B-PREMISE, B-BACKING,
B-REBUTTAL, B-REFUTATION
I-CLAIM, I-PREMISE, I-BACKING,
I-REBUTTAL, I-REFUTATION
L-CLAIM, L-PREMISE, L-BACKING,
L-REBUTTAL, L-REFUTATION
U-CLAIM†, U-PREMISE†, U-BACKING†,
U-REBUTTAL†, U-REFUTATION†
O

16†

Table 6.8: Description of the span classes for the two parts of the experiments,
depending on corpus and format. The dagger (†) refers to the fact that no U-
tokens have been actually found. The asterisk (*) refers to the fact that the
classes Claim and Major Claim can be joint into a unique class, producing 7
total token-level labels instead of 10.
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Appendix B. Error Analysis

Figure 6.1: A preliminary error analysis on the Essay corpus for task 1. We
selected 8 results: 4 correct, 2 partially correct, 2 false positives. Regarding
false positives and partially correct sentences, both the true spans and the
predicted span are reported: true spans are on the top, while their relative
predictions are immediately below them. The red color is just used within
predictions, to show errors (both false positives and false negatives). Please,
compare predictions with the sentences above them. While false positive
are those predictions where the classifier wrongly detected an non-existent
argumentative span, partially correct sentences are those sentences where the
match between true spans (on the top) and their relative predictions (below
them) is not perfect, which means that the classifier either added or missed an
argumentative span.
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Chapter 7

Transfer Learning for Deontic Rule
Classification

Original title: Transfer Learning for Deontic Rule Classifica-
tion: the Case Study of GDPR

Abstract
This work focuses on the automatic classification of deontic sentences. It
presents a novel Machine Learning approach which combines the power of
Transfer Learning with the information provided by two famous LegalXML
formats. In particular, different BERT-like neural architectures have been fine-
tuned on the downstream task of classifying rules from the European General
Data Protection Regulation (GDPR) by using Akoma Ntoso and LegalRuleML.
This work shows that fine-tuned language models can leverage the information
provided in LegalXML documents to achieve automatic classification of
deontic sentences and rules.
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7.1 Introduction
The ability to automatically detect deontic rules directly from natural language
sentences is a crucial long-term goal in the field of Artificial Intelligence and
Law (AI&Law), and in legal argumentation (7; 88). One of the obstacles
of this kind of tasks is the lack of available data designed ad hoc for the
classification of deontic rules. Since the annotation of this kind of datasets
is time-consuming and requires experts of domain, the process of creating
datasets to automatically recognize deontic rules can be costly.

Another obstacle, related to the first one, is that datasets might be too small
to train Machine Learning classifiers, especially when dealing with deep neural
architectures. In this regard, the Computational Linguistics communities have
recently experienced a big step forward in many State of the Art challenges
thanks to the so-called Transfer Learning methods, where pre-trained neural
architectures are employed in downstream tasks. In this sense, BERT (15) was
one of the most famous examples of successful pre-trained neural architectures,
used in many downstream tasks even with very small datasets (40).

On the one side, this work wants to show the potential of using LegalXML
documents as source of data. On the other side, it wants to exploit Transfer
Learning ability to have good performances on downstream tasks even when
dealing with relatively small datasets. Finally, this work tackles the automatic
classification of deontic rules directly from natural language, an AI&Law task
which has been approached by the community only marginally.

7.2 Methodology
The approach proposed in this work is twofold. On the one side, it wants
to prove that Akoma Ntoso (63) and LegalRuleML (8) can be combined to
feed Machine Learning algorithms with reliable data for the classification of
deontic rules. On the other side, it wants to test the use of Transfer Learning
on the task of deontic rule classification. The first aspect (i.e., the combination
of Akoma Ntoso and LegalRuleML) is related to the methodology that has
been used to extract the legal knowledge and data. The second aspect (i.e.,
the usage of Transfer Learning as Machine Learning algorithm) is related
to the methodology for the classification. The combination of these two
methodological aspects (i.e., method of data/knowledge extraction and method
of classification) can be defined as a Hybrid AI approach, since it combines
symbolic knowledge with sub-symbolic knowledge (22; 71).

7.2.1 Data extraction method
Regarding the first aspect, the idea is that combining Akoma Ntoso and Legal-
RuleML is a powerful and convenient solution to extract labelled data for the
classification of rules and deontic modalities. In fact, while LegalRuleML
describes the logical sphere and contains information about the deontic rules,
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it also contains information about where to find these rules in the respective le-
gal resource (where natural language can be found). While LegalRuleML is an
optimal representation of the legal logical sphere, Akoma Ntoso is an optimal
representation of the legal natural language. In fact, Akoma Ntoso contains
crucial pieces of information not only about the legal document, but also about
the structure of natural language where the pieces of deontic information
are located. This can facilitates the reconstruction of the natural language
sentences, especially in those cases where the deontic information is split in
different structural portions within the legal source. In sum, LegalRuleML
describes the logical sphere of legal rules and connect it to the legal source,
while Akoma Ntoso is a rich and complete representation of the content of le-
gal sources. In this work, these two formats have been used to create a dataset,
where natural language sentences are taken (and sometimes reconstructed)
from Akoma Ntoso, while the classes are extracted from LegalRuleML.

7.2.2 Classification method
Regarding the second aspect, related to the classification methodology, the
idea is that Transfer Learning methods can have good performances even
with small datasets. Transfer Learning generally consists in the use of neural
architectures which have been pre-trained on a huge amount of data. On
the one side, the results of this process of pre-training a neural architecture
over a huge amounts of data generates language models which can achieve
remarkable results in many NLP tasks; on the other side, the “knowledge”
acquired by this pre-trained neural architectures during the training, can be
“transferred” (hence the name “Transfer Learning”) on downstream, more
specific, tasks, which can even use small datasets. Importantly, there are two
major ways of using Transfer Learning: a famous approach is to use the pre-
trained neural architecture to extract embeddings to represent our data, these
embeddings can then be classified using a common classification algorithm
(this approach is more similar to what we described in (40)). Another approach
is that of fine-tuning the pre-trained neural architecture on a downstream task,
which means that the output the classification will be generated by the output
layer of the neural network. In this work, we used this second approach.

7.3 Related Works
The first studies which tackled the classification of deontic elements focused
on the deontic elements as parts of a wider range of targets. Among these first
attempts to classify obligations (among other targets) from legal texts there is
(30), which focused on the regulations of Italy and US. Their method employed
word lists, grammars and heuristics to extract obligations among other targets
such as rights and constraints. Another work which tackled the classification
of deontic statements is (84), which focused on the German tenancy law and
classified 22 classes of statements (among which there were also prohibitions
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and permissions). The method used active learning with Multinomial Naive
Bayes, Logistic Regression and Multi-layer Perceptron classifiers, on a corpus
of 504 sentences. In (21), the authors used Machine Learning to extract six
classes of normative relationships: prohibitions, authorizations, sanctions,
commitments and powers.

Perhaps the first study which mainly focused on the deontic sphere is
(59). This work was focused on the financial legislation to classify legal
sentences using a Bi-LSTM architecture, with a training dataset containing
1,297 instances (596 obligations, 94 prohibitions, and 607 permissions). The
work also inspired (10), which introduced a hierarchical Bi-LSTM with self-
attention to extract sentence embeddings, with the goal to detect contractual
obligations and prohibitions.

Since the publication of BERT (15), a growing number of studies employed
Transfer Learning methods. To the best of our knowledge, the first study
which employed BERT for the classification of deontic sentences is (28).
While (10) focused on just prohibitions and obligations, (28) also focused on
permissions, using BERT and achieving an average precision and recall of
90% and 89.66% respectively. Another recent work is (74), which used four
pre-trained architectures (BERT, DistilBERT, RoBERTa, and ALBERT) but
focused just on the binary detection duties vs non-duties.

Also our work presents a Transfer Learning approach of Machine Learn-
ing, which combines the symbolic information of LegalXML formats with
the sub-symbolic power provided by different pre-trained language models
(among which the famous BERT (15)). Moreover, leveraging the information
channeled by the biggest LegalRuleML Knowledge Base available, we present
four different scenarios of classification:

1. Rule vs Non-rule

2. Deontic vs Non-deontic

3. Obligation vs Permission vs None

4. Obligation vs Permission vs Constitutive Rule vs None

The novelty and the power of Transfer Learning methodologies jointly
with the combined use of Akoma Ntoso and LegalRuleML are two major
contributions of this study, along with the design of the experimental settings
in 4 different classification scenarios. Another point which is worth mention-
ing is that LegalXML formats such as Akoma Ntoso and LegalRuleML are
documents which are written by legal experts. In other words, for the task of
detecting deontic classes, the extraction of data from this kind of documents
arguably offers a more convenient and robust solution compared to the use of
datasets which are only partially related to the deontic sphere.
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7.4 Data
The data used in this study consists of 707 sentences extracted from the
European General Data Protection Regulation (GDPR). To extrapolate this
dataset, we used the DAta Protection REgulation COmpliance (DAPRECO)
Knowledge Base (70), which is the LegalRuleML representation of the GDPR
and the the biggest knowledge base in LegalRuleML (8), as well as the biggest
knowledge base formalized in Input/Output Logic (53). The current version
of the DAPRECO1 includes 966 formulæ in reified Input/Output logic: 271
obligations, 76 permissions, and 619 constitutive rules. As explained in
(70), the number of constitutive rules is much higher than permissions and
obligations because constitutive rules are needed to trigger special inferences
for the modelled rules. This means that constitutive rules are an indicator of
the existence of a rule, without giving information about deontic modalities.

Importantly, DAPRECO also contains the connections between each for-
mula and the corresponding structural element (paragraphs, point, etc) in the
Akoma Ntoso representation of the GDPR2. In other words, using a Legal-
RuleML knowledge base like DAPRECO and the corresponding Akoma Ntoso
representation, it is possible to connect the logical-deontic sphere of legal doc-
uments (in this case the 966 Input/Output formulæ provided by DAPRECO)
to the natural language statements in the legal text (provided by the Akoma
Ntoso representation of the GDPR).

Importantly, this combination of Akoma Ntoso and LegalRuleML facilitate
also the reconstruction of the exact target in terms of natural language. For
example, many obligations of legal texts are split into lists, and Akoma Ntoso
is useful to reconstruct those pieces of natural language into a unique sentence.
For example, Article 5 of the GDPR3 states:

Article 5

Principles relating to processing of personal data

1. Personal data shall be:

(a) processed lawfully, fairly and in a transparent manner in relation to the
data subject (‘lawfulness, fairness and transparency’);

(b) collected for specified, explicit and legitimate purposes and not further
processed in a manner that is incompatible with those purposes; further

1The DAPRECO knowledge base can be freely downloaded from its repository: https:
//github.com/dapreco/daprecokb/blob/master/gdpr/rioKB_GDPR.xml

2The Akoma Ntoso representation of the GDPR is currently accessible
from https://github.com/guerret/lu.uni.dapreco.parser/blob/master/
resources/akn-act-gdpr-full.xml, where it can be freely downloaded

3https://eur-lex.europa.eu/eli/reg/2016/679/oj#d1e1807-1-1
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processing for archiving purposes in the public interest, scientific or his-
torical research purposes or statistical purposes shall, in accordance with
Article 89(1), not be considered to be incompatible with the initial purposes
(‘purpose limitation’);

(c) adequate, relevant and limited to what is necessary in relation to the
purposes for which they are processed (‘data minimisation’);

[...]

As can be seen, paragraph 1 of Article 5 is a list composed of an introduc-
tory part (“Personal data shall be:”) and different points. To be concise, only
the first three points of paragraph 1 are reported here, namely point a, point b
and point c. From the point of view of the natural language, each deontic sen-
tence is split between the introductory part (which contains the main deontic
verb “shall”) and the text of each point. While the introductory part contains
the main deontic verb, the actual deontic information is contained within each
point.

The Akoma Ntoso formalization for point a would be:

<article eId=“art_5”>

<num> Article 5 </num>

<heading eId=“art_5__heading”>
Principles relating to processing of personal data

</heading>

<paragraph eId=“art_5__para_1”>

<num> 1. </num>

<intro> <p> Personal data shall be: </p> </intro>

<point eId=“art_5__para_1__content__list_1__point_a”>

<num> (a) </num>

<content>
<p> processed lawfully, fairly and in a

transparent manner in relation to the data subject (‘lawfulness,
fairness and transparency’);

</p>
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</content>
</point>

[...]

In DAPRECO, which uses the LegalRuleML formalization4, a series of
<LegalReference> elements can be found, which contain the structural portion
where the deontic formulas are located, referenced by using the Akoma Ntoso
naming convention5. For example, the reference of the above mentioned point
a can be found in DAPRECO as:

<LegalReference
refersTo = “gdprC2A5P1p1ref”

refID = “GDPR:
art_5__para_1__content__list_1__point_a”/>

Where the “refersTo” attribute indicates the internal ID of the reference,
and the “refID” attribute indicates the external ID of the reference using
the Akoma Ntoso naming convention. The prefix “GDPR” stands for the
Akoma Ntoso uri of the GDPR, namely “/akn/eu/act/regulation/2018-05-
25/eng@2018-05-25/!main#”.

In turn, this <LegalReference> element is then associated to its target
group of logical statements, which collects the group of logical formulas
related to this legal reference (so, in this case, related to point a of the first
paragraph of Article 5). Such association is modelled as follows:

<Association>

<appliesSource keyref=“#gdprC2A5P1p1ref” />

<toTarget keyref=“#statements1” />

</Association>

Where the attribute “keyref” of the target connects the source to the
collection of statements whose “key” attribute is “statements1”:

4https://docs.oasis-open.org/legalruleml/legalruleml-core-spec/v1.
0/legalruleml-core-spec-v1.0.html

5https://docs.oasis-open.org/legaldocml/akn-nc/v1.0/csprd01/
akn-nc-v1.0-csprd01.html
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<Statements key=“statements1”>

<ConstitutiveStatement key=“statements1Formula1”>

<Rule closure=“universal”>

<if>[...]</if>

<then>[...]</then>

</Rule>

</ConstitutiveStatement>

<ConstitutiveStatement key=“statements1Formula2”>

<Rule closure=“universal”>

<if>[...]</if>

<then>[...]</then>

</Rule>

</ConstitutiveStatement>

</Statements>

Importantly, each statement in natural language can have more than one for-
mula in the logical sphere. This is the reason why the element <Statements>
here shows a collection of two logical formulæ.

To finally associate the portion of natural language sentences extracted
from Akoma Ntoso to a class related to the logical sphere, the identification
keys of the two formulæ can be tracked into the <Context> element.

<Context key=“context_1”
type=“rioOnto:obligationRule”>

<inScope
keyref=“#statements1Formula1” />

[...]

</Context>

<Context key=“context_3“
type=“rioOnto:constitutiveRule”>

<inScope
keyref=“#statements1Formula2” />
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[...]

</Context>

As can be seen, the first formula (identified as “statements1Formula1”)
is associated with the ontological class “obligationRule”, while the second
formula (identified as “statements1Formula2”) is associate with the ontologi-
cal class “constitutiveRule”. In other words, the portion of natural language
expressed in point a of the 1st paragraph of Art. 5 of the GDPR is represented
in the logical sphere as a constitutive rule and an obligation rule.

The full path from the natural language sphere (located in the Akoma
Ntoso) to the logical sphere (i.e. the LegalRuleML formalization) where
the deontic classes are located is described in Figure 7.1. The figure further
explains how the combination of Akoma Ntoso and LegalRuleML can be
employed to extract labelled data.

Figure 7.1: Description of the process of class extraction from Akoma Ntoso
and DRAPRECO.
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7.5 Experiment settings and results
At the end of the process of extraction, we achieved a total of 707 labelled
sentences, which have been reconstructed whenever they were split into lists
(thanks to the structural information provided by Akoma Ntoso). The labels
of these sentences are the same as those provided by DAPRECO with the
addition of a ‘none’ category:

1. obligationRule;

2. permissionRule;

3. constitutiveRule;

4. none;

The class obligationRule is referred to those sentences which have at least
one obligation in their related formulæ. The class permissionRule is referred
to those sentences which have at least one permission in their related formulæ.
The class constitutiveRule is referred to those sentences which have at least
one constitutive rule in their related formulæ. These labels allowed 4 different
experimental settings, as shown in Table 7.1:

Table 7.1: Number of instances per class per scenario.

Classes Instances
rule 260Scenario 1

non-rule 447
deontic 204Scenario 2

non-deontic 503
obligationRule 156
permissionRule 44Scenario 3

none 503
obligationRule 156
permissionRule 44
constitutiveRule 56

Scenario 4

none 447

Scenario 1 is a binary classification task and aims at discriminating be-
tween rule and non-rule instances. In this scenario, all labels other than “none”
are considered rule, while “non-rule” is just an alias for “none”. Scenario
2 focus on a binary classification between deontic instances (i.e., any sen-
tence labelled as either obligationRule or permissionRule) and non-deontic
instances (i.e., all instances which are labelled neither as “obligationRule” nor
as “permissionRule”). Scenario 3 is a multiclassification which considers
the classes obligationRule, permissionRule and none (with “constitutiveRule”
considered as part of the latter). Scenario 4 is a multiclassification which
considers the classes obligationRule, permissionRule, constitutiveRule and
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Table 7.2: Results for the four experimental scenarios. P = precision; R =
recall, F1 = F1-score, S/T = Support/Total ratio

BERT DistilBERT LegalBERTClasses P R F1 P R F1 P R F1 S/T

rule .74 .95 .83 .77 .95 .85 .75 .77 .76 39/2601 non-rule .96 .81 .88 .97 .84 .90 .87 .85 .86 68/447
Accuracy .86 Accuracy .88 Accuracy .82 Total:

107/707Macro avg .86 Macro avg .87 Macro avg .81
Weighted avg .86 Weighted avg .88 Weighted avg .82

deontic .74 .90 .81 .82 .90 .86 .80 .77 .79 31/2002 non-deontic .96 .87 .91 .96 .92 .94 .91 .92 .92 76/507
Accuracy .88 Accuracy .92 Accuracy .88 Total:

107/707Macro avg .86 Macro avg .90 Macro avg .85
Weighted avg .88 Weighted avg .92 Weighted avg .88

obligationRule .74 .83 .78 .74 .83 .78 .63 .92 .75 24/156
permissionRule .50 .83 .62 .36 .67 .47 .56 .83 .67 6/443

none .97 .88 .92 .94 .84 .89 1.0 .82 .90 76/503
Accuracy .87 Accuracy .83 Accuracy .84 Total:

106/703Macro avg .78 Macro avg .71 Macro avg .77
Weighted avg .88 Weighted avg .84 Weighted avg .85

obligationRule .70 .79 .75 .80 .83 .82 .84 .67 .74 24/156
permissionRule .60 .50 .55 .40 .67 .50 .17 .67 .28 6/44
constitutiveRule .36 1.0 .53 .47 .89 .62 .89 .89 .89 9/564

none 1.0 .73 .84 .94 .76 .84 .96 .79 .87 67/447
Accuracy .75 Accuracy .78 Accuracy .76 Total:

106/703Macro avg .67 Macro avg .69 Macro avg .69
Weighted avg .78 Weighted avg .80 Weighted avg .81

none. For the multi-classifications (i.e. Scenario 3 and 4) four statements
have been removed, since the classes obligationRule and permissionRule
overlapped.

As far as the experimental settings are concerned, the dataset was divided
into 70% for the training phase, 15% for the test and 15% for the validation;
and for all instances, a max length of 30 was applied.

Regarding the Transfer Learning architecture, 3 pre-trained language
model have been fine-tuned, namely BERT (15), DistilBERT (73), and the
LegalBert trained on EurLex (11). These three neural architectures were fine-
tuned by adding two linear layers with a ReLu activation fuction and with a
dropout of 0.2 after each activation, and a final output layer was added for the
classification, through a softmax activation function. The fine-tuning process
of these 3 neural architectures was performed in 10 epochs using learning rate
1e-3, and a batch size of 32.

The final results on the validation set are reported in Table 7.2, where it
can be seen that DistilBERT outperforms the other classifiers in the two binary
classifications, with an average score reaching .88 in the first scenario and .92
in the second scenario.

The results for the third and fourth scenarios are less straightforward and
show that BERT slightly outperforms other classifiers in the third scenario,
while LegalBERT outperformed the other models in the fourth scenario.

The main problem for the multiclassifications, is the class unbalance and
the restricted amount of instances for some classes.
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7.6 Conclusions
The contribution of this work is showing how Transfer Learning methods can
leverage the information provided in LegalXML to train classifiers capable of
automatically classifying deontic sentences and rules.

Since we were not interested in the internal elements of the logical for-
mulæ, we just addressed the ontological classes of each rule, modelled within
DAPRECO. However, in the future we want to create classifiers that directly
address the internal components of each rule, trying to find a match between
portions of natural language and portions of rules. Also, we would like to
create a stronger connection with the ontological sphere by using PrOnto (64),
strengthening this hybrid AI approach, which combines symbolic knowledge
with sub-symbolic methods.

In general, the ability to connect each internal component (or at least
some) of the deontic formulæ contained in DAPRECO directly to the portion
of natural language where the component is communicated or expressed is
a crucial future direction, and an important step towards the long-term goal
of filling the gap between natural language and the logical-inferential sphere,
which would generate a more reliable and explainable Artificial Intelligence.
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Chapter 8

Conclusion and Future Work

In this Thesis, a collection of works is presented, aiming at detecting patterns
and rules from argumentative and legal texts. Different methodologies have
been employed to achieve our goals, with a hybrid approach which aimed
at combining symbolic and sub-symbolic Artificial Intelligence, searching
for ways to connect “top-down” structured knowledge (typically related to
symbolic AI) with “bottom-up” data-driven methods (typically associated
with sub-symbolic AI).

As described in the introduction of this Thesis (see Section 1.1.3), the
collection of works described in the previous chapters addresses the following
main research questions:

• (Q1) Can NLP methods detect and classify argumentative support
and opposition?

• (Q2) Can we bridge the gap between natural language and the logical-
inferential sphere by using hybrid approaches?

• (Q3) Can NLP methods detect rules?

These research questions are not trivial and pose a number of obstacles
both in terms of available resources and with regards to the methodology to
use.

Among the major issues, we mentioned the following ones:

• (Problem P1) Ontological complexity of argumentative patterns;

• (Problem P2) Scarcity of available data both for the detection of argu-
mentative patterns and for the detection of rules;

• (Problem P3) Complex features are often needed;

• (Problem P4) Difficulty of connecting natural language to the logical-
inferential sphere.
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We showed that Q1 and Q3 have a positive answer. In fact, the presented
methodologies are capable of classifying argumentative evidences of support
and opposition, as well as rules and deontic modalities. Moreover, to answer
research question Q3, we showed how to leverage structured LegalXML data
to feed different neural architectures, and this hybrid approach is one of the
potential solutions to shorten the distance (or gap) between natural language
and the logical-inferential sphere.

The achievements of each paper, as well as the connections between the
papers and the relative research questions and challenges they tackle, are
reported in the Table 8.1. From a general point of view, the aim of all the
papers of this Thesis is to give some little contributions towards an important
long-term direction: using machine learning and NLP to unlock automatic
reasoning directly on natural language. While we are aware that this goal
is too ambitious for a simple PhD project, we still tried to tackle some of
the challenges that this long-term goal involves, that can be broadly grouped
under the research questions Q1, Q2, Q3, as well as issues P1, P2, P3, P4.

In the first part of the project, we dealt with arguments and argumen-
tative patterns. In particular, we showed that Machine Learning classifiers
can discriminate among different argumentative patterns (and this can be
referred to as a classification task). In the first paper (36), we showed that
argumentative support can be successfully discriminated (which is an answer
to Q1) also when classifying argumentative patterns which are ontologically
related (which tackles P1). Also, it showed how to combine two famous IBM
datasets, augmenting the amount of data for the training phase (which tackles
P2). Above all, we employed a methodology which combined TFIDF and
Tree Kernels, which allowed us to avoid highly engineered features (which
tackles P3).

In the second paper (39), we showed that Tree Kernels can discriminate
also among different types of argumentative opposition (which is an answer
to Q1). This is true also when classifying argumentative patterns at different
levels of granularity (which tackles P1). Importantly, in this work a brand new
dataset has been annotated (thus tackling P2)

In the third paper (41), we assessed the combination of different Tree
Kernel functions with different types of tree representation. While, on the one
side, this showed a more solid understanding of the potential of Tree Kernel
methods (Q1), it also presented an important assessment of the potential of
some tree-structured data representations, thus going towards the direction of
Q2, especially when considering the use of “smoothed” and “compositional”
trees, which allow for a hybrid (see Section 1.1.2) connection between tree
structures and the semantic sphere.

In the fourth paper (40), we showed one of the most important and
successful NLP methodologies of the last years: Transfer Learning. More
precisely, we used Transfer Learning to search for a better and better answer
to Q1 by exploring three different pre-trained language models and two classi-
fication algorithms. Moreover, this paper uses a Transfer Learning method
which is based on the extraction of sentence embeddings from the pre-trained
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neural architecture. This provide us with a “learned” semantic representation
of the sentences, generated by the pre-trained neural architecture, and this
can be considered a hybrid approach which is partially sub-symbolic (which
goes towards the direction of Q2-P4). Importantly, the Transfer Learning
method, which outperformed all our previous works, is capable of working in
downstream tasks even when operating on very small datasets (P2).

The fifth paper (44), describe another type of Transfer Learning method
which is dedicated to the detection of argumentative spans. This is not a
classification task like the previous works. Instead, it is a “Sequence Labelling”
task applied to argumentative components. Since its aim is to detect the
internal components of arguments (i.e. premises and conclusions), this work
goes towards the direction of bridging the gap between natural language and
the logical-inferential sphere (thus answering to Q2 and tackling P4).

The sixth paper (45), employs a hybrid method which leverage symbolic
knowledge to generate labelled data (facing P2) for the detection of rules and
deontic modalities (answering Q3). Moreover, it provides a combination of
symbolic knowledge with sub-symbolic Machine Learning methods (which
goes towards the direction of Q2 and tackles P4).

Although both argumentative patterns and rules suffer from the same gap
between natural language and the logical-inferential sphere, in the last paper
of this Thesis, we showed that the situation is more favourable in the legal
domain, thanks to the existence of some LegalXML formats. In fact, in the
legal domain, the combination between these formats (formalized by legal
experts) provides the scientific community with a robust way to tackle the
gap between legal natural language and legal reasoning. We demonstrated
this by combining Akoma Ntoso (a format which is capable of representing
exhaustively natural language and internal structures of legal documents)
and LegalRuleML (a format which is capable of encoding the logical sphere
of legal documents into formulæ) in the context of a sub-symbolic neural
classification for the detection of rules, permissions and obligations.

Although also the results of this last part of the Thesis were quite encour-
aging (which confirms the capability of Tranfer Learning methods to achieve
good performances in many experimental settings), we must point out that the
classification of a sentence as being a rule or not is still not enough to unlock
the long-term goal of reasoning automatically from natural language.
To achieve this long-term goal more efforts are needed. In this regard, in
future works, we will focus, on the matching between legal rules’ internal
components and their relative span of text within natural language. In other
words, we will try to combine the approach proposed in the paper about the
argumentative sequence labelling described in Section 1.3.5 and Chapter 6
(where we successfully identified the exact spans of premises and conclusions
within argumentative sentences) together with the approach of the paper about
the classification of rules described in Section 1.3.6 and Chapter 7 (where we
designed a Hybrid AI method which combined the symbolic information of
LegalXML formats with a sub-symbolic, data-drive neural classification).
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Achievement Target
Argumentative Evidences Classification and Argument Scheme Detection

Using Tree Kernels
Tree Kernels (SPTK) can perform fine-grain discrimination between
different kinds of argumentative evidence, while avoiding the need of
engineering sophisticated features

Q1
P1
P3

Classifiers combining Tree Kernel and TFIDF show better performances
compared to simple TFIDF classifiers in the classification of
argumentative stance of support

Q1

Two famous IBM datasets are combined, not only to increase the amount of
data for the training of the algorithm, but also to assess the generalization
ability of classifiers over different data

Q1
P2

Classifying Argumentative Stances of Opposition
Using Tree Kernels

Tree Kernels (PTK) can classify also argumentative stances of opposition at
different levels of granularity

Q1
P1

The combination with n-grams does not show any significant improvement Q1
A new dataset has been created specifically for the task P2

Combining Tree Kernels and Tree Representations
to Classify Argumentative Stances

5 different Tree Kernels are used Q1
5 different Tree Representations are used, including “smoothed” and
“compositional” trees, which can connect the structural layer of trees
with a semantic layer

Q1
Q2

The most performative combination of Tree Kernels and Tree
Representations are showed Q1

The performance of the combinations seems to show that PTKs
and (C)SPTKs outperform other Tree Kernels while providing a greater
degree of generalization

Q1

Transfer Learning with Sentence Embeddings for
Argumentative Evidence Classification

Transfer Learning classifiers outperform Tree Kernel classifiers Q1
Q2

Three pre-trained architecture (Bert, Roberta, DistilBERT) are compared
together with two different classification algorithms (Logistic Regression
and Support Vector Machines): the combination of DistilBERT sentence
embeddings with a Logistic Regression classifier

Q1
Q2

Contextual embeddings produced by pre-trained language models can
provide powerful ‘learned’ semantic representations Q2-P4

Transfer Learning can reach the best performances even on small datasets P2
Transfer Learning for Argumentative Sequence Labelling

A fine-tuning Transfer Learning method show that it is possible to apply
Argumentative Sequence Labelling, locating the exact span of
argumentative components

Q2-P4

To have a stronger evaluation of the method, the experiment was
performed at different levels (i.e., token-level and span-level) and
two labelling strategies have been used (i.e., BILUO and BIO)

Q2-P4

Transfer Learning for Deontic Rule Classification
LegalXML structures and meta-data can be leveraged for the extraction
of deontic data and the subsequent detection of deontic rules

Q3
P2

Combining LegalRuleXML and Akoma Ntoso with sub-symbolic
classifications can help to fill the gap between the sphere of natural
language and the logical sphere

Q2-P4

Table 8.1: Research questions and problems targeted by each study.
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