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Abstract 

Wellness indicates the state or condition of being in good physical and mental health. 

Stress is a common state of emotional strain that plays a crucial role in the everyday quality 

of life, and significantly affects the wellness state of a person, being a ubiquitous risk factor 

for virtually all non-communicable diseases. Nowadays, there is a growing individual 

awareness of the importance of a proper lifestyle and a generalized trend to become an 

active part in monitoring, preserving, and improving personal wellness for both physical and 

emotional aspects. In this respect, it must be pointed out that the majority studies in this 

field relies on the evaluation of the changes of sensed parameters passing from rest to 

“maximal” (intense) stress. However, the vast majority of people usually experiences 

stressing circumstances in everyday life (e.g. at home, at work) which are prompted by a 

wide spectrum of stimuli having varying intensity and consciousness. This led us to 

investigate the impact of mild cognitive activation which can be somehow comparable to 

usual situations that everyone can face in daily life. 

As documented in scientific literature, several signals and data can be useful to 

characterize the state of a person, but not all of them are equally important and/or reliable. 

In order to reduce the complexity of data acquisition procedures and to simplify the 

modelling of individual wellness, it is crucial to analyse the mutual relevance of the different 

pieces of information. In this work we focus on a subset of well-established psychophysical 

descriptors, including heart rate and heart rate variability, respiratory rate, electrodermal 

activity, and electrical brain activity. 

A deepened investigation was carried out to identify a set of devices enabling the 

measurement of the psycho-physical parameters mentioned above. Beside technical and 

methodological constraints on quality of collected data, the design of the experimental 

setup and the selection of sensing devices was also driven by qualitative criteria such as 

intrusiveness, reliability, and ease of use. These are deemed crucial for implementing 

effective (self-)monitoring strategies. 

During the PhD work, a reference dataset, named “Mild Cognitive Activation” (MCA), was 

collected. It includes signals and data from a group of volunteers according to a protocol 

approved by the CNR Committee for Research Ethics and Bioethics. Data collection was 

focused on the impact of a mild cognitive activation induced by a simple test.  

The last aim of the project was the definition of a quantitative model for data integration 

providing a concise description of the wellness status of a person. This process was based on 

unsupervised learning paradigms. In this phase of the work, data from MCA were integrated 

with data from the “Stress Recognition in Automobile Drivers” (SRAD) dataset (MIT Media 

Lab). This allowed a cross validation of the integration methodology. 
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Chapter 1. Personal wellness 

Wellness indicates the state or condition of being in good physical and mental health. 

According to the World Health Organization, health should be defined as a state of 

complete physical, mental, and social wellness, and not merely as the absence of disease 

and infirmity [1]. In this perspective, any effort to evaluate personal wellness needs to be 

framed in a global view encompassing virtually all aspects of individual life. The authors of 

[2] propose a definition of wellness as a multidimensional state of being possessed by the 

individual, which is part of health and can be described as positive health; quality of life and 

a sense of well-being are the descriptors of wellness. In [2] it is pointed out that wellness is 

not the same as physical fitness, is not a form of alternative medicine, and is what one is 

rather than what one does. In [3] wellness is defined as a state of well-coordinated, goal-

oriented functioning to maximize personal potential and to enhance the quality-of-life. 

Critical issues related to wellness include the development of valid and reliable methods 

for assessing wellness and the study of the factors that impact on wellness once good 

measures are established. The first attempts to construct numerical indices for wellness 

evaluation date back to the 1940s. Since the 1960s, more general tools for quantifying 

individual health and wellness have been proposed, which pay attention to individuals in 

their many facets, including physiological measurements, psychological traits, and social 

parameters.  

Over the last years, the interest in the role of individual wellness in disease prevention 

has grown rapidly. The scientific and medical community has started focusing on the need 

to provide people with knowledge, services, and tools to support a healthy lifestyle. Indeed, 

our everyday choices, along with our social and economic environment, influence the way 

our genes express themselves in our dynamic phenotype and contribute to health or 

disease[4][5]. This is especially relevant for non-communicable diseases (NCDs), such as 

heart disease and stroke, cancer, diabetes, and chronic lung disease. Worldwide, NCDs are 

responsible for about two-thirds of deaths. Moreover, the prevalence of NCDs is expected 

to increase dramatically.  

 Objective vs subjective wellness scales 1.1.

The health of an individual can be analysed from different viewpoints and with different 

objectives. A consolidated literature exists on the measurement of the wellness of a 

population [6], motivated by economic or epidemiological reasons. The indices are 

computed via statistics on large population samples, and are usually based on the frequency 



 

 

and duration of single diseases and related mortality [7]. While the indicators are useful to 

characterize the population and drive policy actions by health services, they are not suited 

to model the health status of individuals, drive behavioural changes, and prevent diseases. 

Hence, we will limit our analysis to the assessment of individual wellness.  

Historically, the early attempts to quantify the status of a person were focused on the 

assessment of the functional abilities of a patient in specific pathophysiological conditions. 

Noteworthy examples are the American Rheumatism Association Function Scale [8], the 

Karnofsky Score [9] created for cancer patients, and the New York Heart Association 

Functional Classes [10]. These simple instruments were conceived to combine several 

dimensions into a single scale. They also served to define a common and consistent 

terminology in the medical community. These tools are based on the judgment of an 

external observer, typically a physician, and are therefore referred to as objective.  

By contrast, subjective scales are based on subjective perceived wellness. A relatively 

simple approach to gather information about personal health information is the use of 

questionnaires or remote consultation as forms participative inquiry [11]. The International 

Wellbeing Group [12] proposes a questionnaire-based method to compute a personal 

Wellbeing Index, based on a domain-level representation of global life satisfaction: 

individual items refer to specific life domains, and the scores are averaged to produce a 

measure of Subjective Wellbeing. A well-known tool for assessing the perceived health 

status is the 36-item Short Form questionnaire that measures eight constructs of 

functioning: physical function, mental health, role emotional, role physical, social function, 

bodily pain, vitality, and general health [13]. The study [14] tries to combine the relative 

contributions of both physical and psychological health in a measure of global well-being. 

The study is carried out in a sample of healthy young adults, early in their college careers, 

with the purpose of exploring individual differences that contribute to the sense of well- 

being, and identifying characteristics of flourishing versus non-flourishing individuals. Along 

with age and sex, the study uses indices derived from the following questionnaires: Arizona 

Integrative Outcomes Scale, global physical health, positive and negative mood (Positive and 

Negative Affect Schedule or PANAS), resilience (Connor-Davidson Resilience Scale), and 

repressive defensiveness (Marlowe-Crowne Social Desirability Scale or MCSD-SF). The 

results are based on the ratio of positive/negative scores established by using complex 

systems methods. According to the study results, positive-to-negative affect (P/N) ratio 

explains a substantial portion of the variance in the well-being of healthy young adults and 

represents a well-being measure easy to compute, sensitive, and useful as a clinical measure 

to track change with treatment over time.  

Despite the number of subjective measures reported in the literature, there is substantial 

evidence about the discomfort that traditional information gathering methods produce [15]: 

people are asked to fill lengthy questionnaires, answer a huge set of questions, and provide 



 

 

a large amount of personal information about their health status. On the other hand, 

individual perception of personal wellness is a relevant piece of information about health 

status and should be taken into account when defining/measuring the status of an 

individual. It stands to reason that integrating objective measurements with self-reported 

data should provide the basis for comprehensive and practicable wellness indices. 

 Wellness and Self-Monitoring 1.2.

There is a growing individual awareness of the importance of a proper lifestyle and a 

generalized trend to become an active part in monitoring, preserving, and improving 

personal wellness. The self-monitoring and the self-learning systems are important tools to 

provide the knowledge, the customer care, and the devices for the achievement of the 

personal wellness. Recently, the use of mobile devices has opened a new perspective on the 

assessment of the wellness and stimulated the development of new approaches based on 

individual self-monitoring. In recent years, a growing number of studies addressed the 

development of systems for quantifying the individual health and wellness status [16].  

 

 

Figure 1 Mobile phone as mobile health platform. 

The 2010 position paper by Kailas [17] provides a synthetic view on the paradigm of 

wellness mobiles, wherein mobile phones are equipped with biometric sensors for real-time 

self-wellness monitoring. A possible platform could follow the scheme in Figure 1. 

Inexpensive sensors measure and record biometrics of the user, such as temperature, heart 

rate (HR), and galvanic skin response (GSR). The biometrics are then weighted (weighting 

coefficients denoted as w1, ..., wn, in Figure 1 and combined with other information, possibly 

also obtained using the mobile phone. The result is a wellness index that can be customized 

to the users’ daily lifestyle. In this way, the concept of wellness mobile can improve the 

quality of life of the phone user by facilitating timely and better-quality measurements, 



 

 

supporting instantaneous feedback, improving the quality of medical information, and 

enhancing patient compliance. 

 

 

Figure 2 An activity-based self-wellness monitoring application. 

Further, the mobile application can be used during various activities (Figure 2), which 

entail different demands from the user to track the wellness states transitions during 

different tasks.  

The statements in the position paper [17] are reinforced in [18], which sketches the 

guidelines for defining a wellness inference algorithm based on wellness recognition and 

tracking, followed by user assistance. As shown in Figure 2, a conceptual model for affective 

state monitoring on a mobile wellness platform should consist of four layers (Figure 3):  

1. Predictive Layer (Activities). The layer includes the factors that affect the wellness 

state of a user, under the hypothesis that the state of wellness undergoes variations 

during the day according to different activities carried out: user profile, context, time 

of the activity, and prior wellness state. 

2. Hidden Layer (Wellness State). Well-known wellness inhibitors are stress, fatigue, 

bad health, and confusion, which can cause various diseases or detectable 

conditions such as large deviations from normal processes and biometrics (e.g., body 

temperature, heart rate, etc.). The model recognizes and tracks the anti-wellness 

(e.g., stress) state transitions using sensory measurements. Each anti-wellness state 

can have a set of possible values.  

3. Observable Layer (Evidence). An evidence is an observable feature that is capable of 

providing clues about the users’ internal wellness state that is hidden. There are four 

classes of measurable evidence:  



 

 

a. the user’s physical appearance features: visual features that characterize 

eyelid and pupil movement (gaze tracking, pupillary response, etc.), gestures, 

change in pressure at finger tips, and head movement;  

b. physiological measures: electrocardiography (ECG) measures, 

electromyography (EMG) measures, galvanic skin response measures that 

assess the electrical properties of the skin in response to different kinds of 

stimuli, etc.;  

c. behavioural traits, such as key strokes using the keyboard; 

d. performance measures, as user response time and accuracy rate in a task, 

which can be influenced by wellness states. 

4. Action Layer (Timely User Assistance). The design of an appropriate assistance 

depends on a number of factors such as the activity, and context, and should be 

personalized to the user. The range of applications and assistive services offered to 

the user could range from advice/tips from medical on-line professionals to 

entertainment (e.g., on-demand video, music, etc.) to online games.  

 

Figure 3 A four-layer conceptual model for wellness state monitoring. 



 

 

 Wellness sensing  1.3.

The interest in measuring wellness status and related aspects is documented by a huge 

scientific and technical literature on the topic, exponentially grown in last decade. A 

detailed survey of published works goes beyond the aims of this thesis. Here we limit to 

overview the main contributions pertaining the content of next chapters. It should be 

pointed out that the field is highly interdisciplinary, involving the work of clinical 

researchers, engineers, physicists with strong contribution from ICT academic community. 

Addressed topics include investigation and development of:  

a. physical sensors and devices to improve acquisition of physiological signals; 

b. methods and tools for data processing and analysis; 

c. models for feature selection and integration. 

A major issue underlying the whole research field pertains the operation in daily-life 

setting, possibly in naturalistic or quasi-naturalistic conditions, minimizing sensing 

obtrusiveness. This makes data acquisition extremely prone to different sources of artefacts 

such user motion, environmental interferences, giving rise to an additional de facto research 

line aiming to reduce artefact occurrence and their impact on data quality. 

In this view, there are many papers dealing with use of smart phone to track minor vital 

signs and physical activity. Huang et al. [19], used the camera of a smartphone to measure 

the heart rate and its variability. These parameters could be measured through t-shirts 

provided by textile sensors in order to monitor the state of elderly people [20]. The 

sensorized t-shirts were integrated with Wi-Fi, RFID, and GSP/GSM technologies to obtain 

information about the subject position also and to transmit all the information captured to 

specialists. In this way, if abnormal parameters have been measured it is possible to 

intervene quickly. Some studies describe the integration of the psycho-physical parameters 

to provide information about the individual state such as the fatigue [21][22][23][24]. Al 

Libawy et al. [21] developed a fitness watch that collect data such as heart rate, 

temperature, skin conductivity, and provide information on the fatigue of six subjects. In 

this study, two different classification methods are compared: the Support vector machine 

(SVM) and the feed forward neural networks. Tayibnapis et al. [23], through imaging 

techniques analysed the gaze direction, the eye blinking, the frequency of yawns, the heart 

rate, the heart rate variability (HRV), and the respiratory rate (RR). All these pieces of 

information were used to estimate the level of fatigue in a driver. The level was estimated 

through an SVM system. 



 

 

The studies previously cited, used different psycho-physical parameters to obtain 

information on the wellness state of a person. Indeed, the psycho-physical parameters 

usually involved in the description of the state of a person are numerous such as heart rate, 

heart rate variability, respiratory rate, blood pressure, body temperature, skin conductivity, 

and electroencephalography signal, but not all of these are equally relevant and reliable. In 

order to reduce the complexity of the acquisitions and to simplify modelling tasks, it is 

important to investigate the relevance of the various parameters [25]. Furthermore, it is 

important to define the relationship between the parameters and the individual condition. 

For example, the heart rate increases due to both exercise and a fright. 

Nowadays, research is moving towards development of integrated multi-sensing systems 

able to trace and integrate psycho-physical parameters [26][27][28][29][30]. A significant 

example is provided by the Wize Mirror (WM), a multisensory platform implemented as a 

smart mirror [30]. The Wize Mirror detects and monitors over time semiotic face signs 

related to cardio-metabolic risk, and encourages users to reduce their risk by improving 

their lifestyle. The WM has a user-friendly interface and different devices that measured 

psycho-physical parameters of the user in front of the mirror. The WM collects multispectral 

images, video, 3D scans, and information on the molecules in the breath samples (through 

an external device called Wize Sniffer that contains gas sensors). All the parameters 

extracted are integrated in order to define a virtual model of the person and a wellness 

index is calculated. The wellness index provides to the user an auto assessment of the 

his/her wellness state over time. 

To conclude this section, we would like to observe that, despite the increasing interest on 

the matter, no general (self-)monitoring framework has been established for assessment of 

the an individual’s wellness status by mobile devices. Similarly, no general indicator of the 

individual health status has gained universal acceptance up to now. In this respect, many 

authors agree that AI-based methods able to capture complex knowledge representations 

from data, could provide a valid tool for modelling the individual's state of wellness [31][32]. 

 A ubiquitous wellness factor: stress level  1.4.

Stress is a common state of emotional strain that plays a crucial role in everyday quality of 

life, so as to the wellness state of a person. This state consists of several complementary 

and interacting components (i.e. cognitive, affective, and psycho-physiological). Stress is 

usually a state of tension that is created when a person responds to demands and pressures 

arising from external sources (e.g. work, family, and social environment) as well as those 

internally generated (e.g. self-imposed demands and obligations, self-criticism) [33]. 

Furthermore, chronic stress carries a wide range of health-related diseases, including 

cardiovascular diseases, cerebrovascular diseases, diabetes, and immune deficiencies [34]. 



 

 

Stress is known to induce abnormal responses in the autonomic nervous system (ANS), 

which consists of the sympathetic nervous system and the parasympathetic nervous system 

under antagonistic control [35][36]. These two systems are related to stress and relaxation 

reactions, respectively, so that stress activates the sympathetic nervous system and 

suppresses the parasympathetic nervous system [37][38]. 

Due to the adverse effects of stress in our daily life, stress management has been 

receiving an increasing attention in health-care and wellness research [39]. As a matter of 

fact, stress is recognized as a major risk factor for most NCDs and its evaluation is crucial for 

defining individual wellness. 

The majority of studies in this research field relies on the evaluation of the changes of 

sensed parameters passing from rest to “maximal” (intense) stress. This provides important 

cues about the individual capability to react to severe stress. On the other hand, the vast 

majority of people usually experiences stressing stimuli in everyday life (both family and at-

work) and a wide spectrum of stressing circumstances, both positive and negative, can be 

listed.  

This led us to investigate the impact of mild stimulations which can be somehow 

comparable to a normal condition that everyone can deal with in a daily life. This approach 

also eases monitoring individual status in routine setting (e.g. at work) making it possible to 

design minimally obtrusive monitoring/testing procedures.  

 Targets of the project 1.5.

In this work we aimed at investigating the main aspects of individual psycho-physical 

wellness based on sensing self-monitoring. The scope is mainly the every-day life setting 

with emphasis on stressing conditions. 

The project has multiple aims, including: 

 

1. investigation about which are the most relevant psycho-physical parameters 

involved in the description of the wellness state of a person (Chapter 2); 

 

2. definition of a set of unobtrusive devices for measuring such parameters (Chapter 

2, Chapter 3); 

3. definition of the experimental setup (Chapter 2, Chapter 3); 

4. collection of data from a group of volunteers during a rest state and a mild 

cognitive activation (Chapter 4, Chapter 5, Chapter 6); 

 



 

 

5. definition of a data integration model that could be used to automatically monitor 

psycho-physical parameters (Chapter 7).  



 

 

Chapter 2. Signals and sensors 

As already pointed out in Chapter 1, the signals and data useful to characterize the state 

of a person are numerous, but not all of them are equally important and/or reliable. In 

order to reduce the complexity of acquisition procedures and to simplify modelling tasks, it 

is crucial to analyse the mutual relevance of the different pieces of information [25]. In this 

work we focus on a subset of well-established psychophysical descriptors including: heart 

rate and its variability, respiratory rate, electrodermal activity, and electrical brain activity. 

These are listed in Table 1, where we summarize their main properties in view of their usage 

for wellness monitoring in daily life settings.  

Table 1 Main psycho-physical parameters investigated in this work. Their major scope, standard (or usual) source, as well 
data accessibility and reliability especially for unobtrusive (self-)monitoring are outlined. 

Parameter Relevant to  Data Source Accessibility Reliability 

Heart Rate Homeostasis, 
Emotional status 

PPG, ECG High High 

Heart Rate 
Variability 

Homeostasis, ANS 
activity 

ECG High/Medium High/Medium 

Respiratory Rate Homeostasis, 
Emotional status, 
General health 
status 

Chest Cage motion High High 

Electrodermal 
activity 

ANS activity, 
Emotional status 

GSR signal High Medium 

Electrical Brain 
activity 

In this work we 
focus on Emotional 
status, cognitive 
activity  

EEG  Medium/Low Medium 

 

 Psycho-physical parameters 2.1.

As described in [39], the autonomic nervous system controls the organs of our body such 

as the heart, the stomach, and the gut. ANS includes sympathetic and parasympathetic 

nervous systems. The parasympathetic nervous system is responsible for nourishing, 

calming the nerves to return to the regular function, healing, and regeneration. On the 



 

 

contrary, the sympathetic system is accountable for activating the glands and the organs for 

defending the body from the threat. The activation of the sympathetic nervous system 

might be accompanied by many physical reactions, such as an increase in the heart rate, 

rapid blood flow to the muscle, activation of sweat glands (with related changes of 

electrodermal activity - EDA), and increase of respiratory rate. 

Heart rate and heart rate variability are significant indicators of the psychophysical status 

of an individual and are useful clues for detecting risky conditions. HR is the mean number 

of the heart beats per minute. It is a basic indicator of the cardiovascular homeostasis. The 

HR varies according to the body’s physical needs, changes being observed in a variety of 

conditions including physical exercise, sleep, anxiety, stress, illness, and assumption of 

drugs. Monitoring the heart rate is therefore important in both normal and disease 

conditions. In illness an association exists between HR and outcome in heart failure and high 

baseline heart rate is considered a cardiovascular risk factor [40]. The HRV is the fluctuation 

in the time intervals between adjacent heartbeats. It is an index of the adaptation of the 

heart to circumstances by detecting and readily responding to unpredictable stimuli. The 

HRV is mainly modulated by the sympathetic and parasympathetic components of the 

autonomic nervous system [41]. In particular, the sympathetic stimulation is activated in 

response to stress, exercise, and heart disease and this causes an HR increase [41]. 

Parasympathetic activity is the result of the function of internal organs, reaction to trauma, 

allergic reactions, and the inhalation of irritants. This activity determines a decrease of HR 

[41]. The HRV is altered in several cardiac diseases [42]. In addition, studies have also shown 

that smoking reduces the HRV due to the increase of the sympathetic activity and reduction 

of the vagal activity [43]. As a matter of facts, HRV is an indicator of health status in the 

general population [44], of adaptation to stress in athletes [45], and of fatigue in drivers 

[46]. Furthermore, the HRV is important to measure mental stress and, coupled with the HR, 

can be used to monitor individual wellness in behavioural research [47]. 

Respiratory rate provides important information on a person’s health condition and 

physiological stability, an abnormal respiratory rate being a strong indicator of illness [48]. 

In fact, a sudden change in respiratory rate is one of the strongest predictors of mortality 

[49][50]. Respiratory rate is correlated with emotional status and can be used for stress and 

anxiety detection [51]. Studies reports that respiration rate increases significantly under 

stressful situations [52]. 

Galvanic skin response is used in relation to mental state, such as stress, drowsiness and 

engagement [53]. GSR or EDA is the measure of the continuous changes in the electrical 

characteristics (conductance) of the skin caused by the variation of the sweating of the 

human body. This concept is based on the assumption that skin resistance varies with the 

state of the sweat glands in the skin (the resistance was just reciprocated to determine the 

conductance). This concept is based on the activity of the ANS as a (strong) stimulation of its 



 

 

sympathetic branch activates the sweat glands. This tends to decrease the skin resistance, 

increasing skin conductance [53]. Skin conductivity is sensitive to many different stimuli 

(strong emotion, a startling event, pain, exercise, deep breathing, a demanding task, 

cognitive workload, stress etc.); thus, it is often hard to determine what caused a particular 

skin conductivity response. Different studies noted that the electrodermal response 

represents an adequate measure for sympathetic activation that is related to stress [54]. 

The Electroencephalogram (EEG), being a major manifestation of brain activity, is a rich 

source of information important for detecting and assessing mental stress [55][56][57]. 

Neurophysiological studies [58] have reported the relationship between human emotion 

and hemispheric specialization, where the left hemisphere is more involved in processing 

positive emotions and approach-related behaviours, and the right hemisphere is more 

involved in processing negative emotions and withdrawal behaviours. These differences are 

represented by a model of emotional processing in which the frontal cortex plays a key role. 

Evidence supporting this model has been obtained from studies concerning asymmetry in 

prefrontal EEG alpha activity. Positive mood or reactions have been shown to be associated 

with relatively greater left prefrontal activity and negative mood or reactions with relatively 

greater right prefrontal activity. The results of recent neuroimaging studies suggest that 

negative affect typically elicits activation on the right prefrontal cortex, amygdala, and 

insula, and the left prefrontal cortex is associated with positive emotions [58]. The right 

prefrontal cortex may be critically involved in the response to stress, since it is a 

fundamental component of both the emotional and vigilance networks. Some studies 

suggest that high levels of right-sided prefrontal activation are associated with a negative 

affective style and weakened immune system. For example, Davidson [59][60] has reported 

that differences in prefrontal activity asymmetry reflect individual differences in affective 

styles. Also, the prefrontal cortex may mediate the extent to which psychosocial stress 

affects mental and physical health [61][62]. Differences appear to exists in how activity of 

the left and right cortical hemispheres affects ANS functioning. Moreover, the extent of this 

asymmetry has been suggested to vary under conditions of chronic stress [63]. Similar 

findings are reported for stress related emotions, with preferential right hemispheric 

activation in the frontopolar region that can be associated with electrodermal activity in 

anxious subjects [64]. The asymmetric analysis of the frequency-band powers in the EEG 

measured at the prefrontal cortex has been generally applied in previous stress studies. 

Particularly, the alpha band asymmetry is commonly used as indicator of the personal level 

of stress. Alpha waves reflect a calm, open, and balanced psychological state with a 

decrease in alpha wave activity during stress. Alpha wave training attempts to alleviate 

stress by inducing a state of relaxation. This involves removing or reducing habitual 

tendencies to respond to stressful situations with tension and anxiety [65]. 



 

 

 Experimental setup 2.2.

A deepened investigation was conducted to identify a set of devices enabling the 

measurement of the psycho-physical parameters mentioned above. We analysed different 

devices utilized in studies similar to the present. Besides technical considerations (e.g. type 

and quality of sensed signals, available software packages), the analysis was driven by other 

qualitative criteria: intrusiveness, reliability, and the ease of use were key features taken 

into account in the selection of the devices. 

Non-contact measurement of the HR and the HRV could greatly simplify data acquisition, 

making such measurements easily available in non-clinical scenarios (e.g., driver monitoring 

[66], man-machine interaction monitoring [67]). Furthermore, non-contact systems could 

allow effective remote monitoring of patients. Several methods have been studied with this 

aim: the HR from speech [68], thermal imaging [69], microwave Doppler effect [70][71], and 

imaging photo plethysmography [66][72][73][74]. Imaging photo plethysmography (iPPG) is 

based on similar principles as the detection of finger pulse amplitudes. The heartbeat 

initiates the pulse wave and it travels through the arterial vascular system reaching various 

parts of the body. Here, the pulse wave determines a short-termed change of blood volume 

in the observed skin region: the intensity of the absorbed light depends on this volume, 

likewise the finger pulse measurement (standard plethysmography) [75]. It is therefore not 

surprising that several studies have been performed to evaluate whether the heart rate can 

be assessed from video streams [76], thus avoiding the use of wearable sensors. Concerning 

the signal acquisition in iPPG, video sequences are usually taken from a subject’s face due to 

the high blood supply and the imaging simplicity. Both webcams [73][77][78][79][80] and 

conventional video cameras [81][82][83][84] have been used for this task. Webcams provide 

low-cost and easily available setups, whereas standard cameras are expected to produce 

better quality signals with higher spatial and temporal resolution, along with extended 

spectral capabilities. Tayibnapis et al. [66]utilized an infra-red camera in order to capture 

the driver’s facial images. Zhao et al. [85] utilized a near-IR camera in order to extract the 

HR and the respiratory rate in both day and night light conditions. Authors also conclude 

that the HR and the RR can be extracted using single channel images. Typically, the 

strongest plethysmography signal is contained in the green channel [86]. This result is due 

to the fact that (oxy-)haemoglobin absorbs green light better than that red. Moreover, 

green light penetrates deeper into the skin than the blue light [82]. It stands to reason that 

using spectrally tuned band can significantly enhance iPPG signal. 

Current methods to collect respiration data include the use of respiration belts, 

measurement of impedance through ECG electrodes, spirometers, or visual 

observation/counting. These techniques have drawbacks that limit the frequency and 

convenience of the respiratory monitoring. The large diffusion of wearable devices has 

stimulated interest in monitoring athlete training, with the aim of maximizing performance, 



 

 

and minimizing the risk of injury and illness [87]. In these field, chest belts are very common 

choice and we resorted to adopt them. Measurement of the RR occurs through an 

embedded capacitive sensor composed of layers of conductive fabric, foam, and flexible 

mylar. Based upon the principle of a strain gauge sensor, thoracic expansion and contraction 

cause size differentials that induce changes in capacitance because of resultant changes in 

impedance. The change in impedance is manifested as a change in waveform signal 

amplitude represented as a sine wave with downward and upward deflections indicating 

chest expansion (increased impedance) and contraction (decreased impedance), 

respectively. 

GSR can be measured by different methods. In general, GSR sensor measures the real-

time skin conductance which is related to the sweat gland activity depending on emotional 

response and environmental condition [88][89]. GSR is typically acquired in hand fingers. 

The majority of clinical studies use the EEG channels from hair-bearing scalp areas. 

However, this method requires the use of a conductive gel and an appropriate preparation 

procedure, which are particularly inconvenient for users. Indeed, the EEG recordings from 

hairless regions such as the forehead, or behind or inside the ear, would be more suitable 

for long-term monitoring in daily life. For this reason, there simple headband with sensors 

positioned in the hairless region are of common usage for various applications in well-being 

and fitness field. 

On the basis of what we have just reported, the following set of the non-medical 

commercial devices were used: 

1. Gigabit Ethernet camera with a CMOS monochrome sensor (UI-5240SE-NIR-GL, IDS 

GmbH DE). The camera was operated at 133 fps with an image matrix of 

352 x 224 pixel, 8 bits/pixel. In order to enhance the plethysmographic signal, the 

camera mounted an optical band-pass filter cantered at 560 nm with a bandwidth of 

40 nm. 

2. BioHarness 3 Zephyr chest belt (Medtronic Inc, USA) for the respiratory rate measure 

with a frequency rate of 1 Hz. 

3. Shimmer3 GSR (Shimmer, Ireland) for the galvanic skin response signal acquisition 

with a frequency rate of 256 Hz. 

4. Muse 2 Headband (InteraXon Inc, USA) for the EEG signal acquisition. 

A medical device was also used as ground truth for the ECG signal. To this end we 

adopted the EG05000 Medlab ECG Five Channel Module (Medlab GmbH, DE) operating at 

300 Hz that it was employed to acquire the ECG lead sampled at 300 Hz. 

All these sensors were connected to an Apple Mac Minicomputer (Intel Core i7 dual-core 

processor clocked at 3 GHz, 16 GB RAM, and 500 GB SSD). 



 

 

Though each sensor had its own software tools (apps and libraries), the management of 

the integrated platform made its necessary to design ad hoc instruments so as to record 

signals simultaneously from the different source and store them with proper time stamping. 

This occurred by ad hoc wrappers written in C /C++ languages. 

MATLAB (Mathworks, USA) was extensively used as the data analysis platform for all 

signals collected during the experimental sessions. Several MATLAB toolboxes were 

exploited, such as the Statistics and Machine Learning toolbox or the Curve Fitting toolbox. 

During the acquisition procedures (Figure 4), subjects were sitting still in front of the 

computer monitor at a distance of about one meter. The chair had a headrest to contain 

head motion and make the recording comfortable for the volunteer. The subject face was 

illuminated by a white LED light source.  

Subsequently, all the devices were positioned and calibrated. The ECG lead I had four 

electrodes corresponding to left and right arm, left and right limb. The camera was 

positioned on a tripod at a distance of about one meter from the subject. The BioHarness 3 

Zephyr chest belt was positioned around the chest with the centre line of the device directly 

under the armpit. The two electrodes of the Shimmer3 GSR were positioned on the palmar 

surface of the proximal phalanx of the index and of the middle finger, respectively. The 

Muse 2 Headband is positioned as a normal headband. 

After the sensor’s calibration was asked to the subject to close his/her eyes and to relax. 

The subject’s signals were recorded for five minutes in resting state. Subsequently, signals 

were acquired during a mild cognitive activation induced by the performed of a test. 
 

 

Figure 4 Experimental setup. 



 

 

 Testing protocol 2.3.

Different laboratory procedures can be used to reliably induce stress in human research 

participants [90][91][92]. The most popular methods includes: the Stroop colour word test 

(SCWT), that will be described later [93][94][95][96][97][98], the Trier social stress test 

where subjects perform count backwards [90][99][100][101], and the Montreal imaging 

stress task where subjects perform basic math operation [102][103]. 

Taking into account that we are mainly focusing in moderate (non-maximal) personalized 

stimulations, we resorted to adopt the Stroop colour word test. 

The SCWT is a neuropsychological test extensively used for both experimental and clinical 

purposes. It assesses the ability to inhibit cognitive interference, which occurs when the 

processing of a stimulus feature affects the simultaneous processing of another attribute of 

the same stimulus [93]. In the most common version of the SCWT, which was originally 

proposed by Stroop in the 1935, subjects are required to read three different tables as fast 

as possible. Two of them represent the “congruous condition” in which participants are 

required to read names of colours (henceforth referred to as colour words) printed in black 

ink (W) and name different colour patches (C). Conversely, in the third table, named colour-

word (CW) condition, colour-words are printed in an inconsistent colour ink (e.g., the word 

“red” is printed in green ink). Thus, in this incongruent condition, participants are required 

to name the colour of the ink instead of reading the word. In other words, the participants 

are required to perform a less automated task (i.e., naming ink colour) while inhibiting the 

interference arising from a more automated task (i.e., reading the word) [94][95]. This 

difficulty in inhibiting the more automated process is called the Stroop effect [93]. 

In this project a portable version of the SCWT was implemented by an ad hoc Java app 

(Figure 5). We designed two different versions of the test: 

1. Test A - a congruent version of the SCWT, where the font colour always matched the 

displayed colour name. The time limit to answer each question was set to two 

seconds and the overall test lasted two minutes. 

2. Test B - an incongruent version of the SCWT, where the font colour not matched the 

displayed colour name. The time limit to answer each question was set to two 

seconds and the overall test lasted three minutes. 

 



 

 

        

Figure 5 Test A on the left and Test B on the right. 

   

  



 

 

Chapter 3. Heart rate and heart rate variability from 

single-channel video 

 Introduction 3.1.

Several methods have been proposed to extract the blood volume pulse (BVP) signal from 

face movies. A widely adopted framework is based on blind source separation (BSS) 

techniques. The video signal is modelled as a mixture of contributes including BVP, motion 

artefacts, and external illumination changes. Poh et al. [73] processed the red-green-blue 

(RGB) video components by Independent Components Analysis (ICA) to enhance BVP. An 

alternative approach based on the BSS by Principal Components Analysis (PCA) was 

suggested by Lewandowska et al. [80]. The BSS was applied to RGB video components 

providing acceptable BVP estimation under the assumption of very small face motion and 

low image noise. To overcome such BSS (ICA- and PCA-based) limitations, several 

researchers investigated alternative processing methods. Wang et al. [24] exploits image 

redundancy to counteract the effect of the face movement. Feng et al. [79] adopted a 

simplified model of the optical properties of the skin to compensate for head motion. 

Tarassenko et al. [83] proposed an iPPG system exploiting autoregressive modelling of video 

time series to compute the HR together with the respiratory rate and the Oxygen 

saturation. Though video signal intensity is the most utilized source of information to detect 

BVPs, a different method based on head motion related to BVP propagation is reported in 

[104]. 

The assessment of the HRV from video is usually more demanding than measurement of 

the HR. In fact, the HR estimation only requires BVP detection so as to compute the average 

number of pulse per minute, the HRV assessment requires a precise temporal localization of 

pulses. In principle, most methods for the HR assessment from video can be adapted to 

estimate the HRV. Video sequences are usually processed to detect blood volume pulses 

and obtain a tachogram (i.e., the time series of inter-beat interval duration), similarly to 

what done in ECG-based analysis. In particular, the tachogram can be analysed both in time 

domain and/or in frequency domain [105]. For example, in [73] iPPG tachogram is used to 

compute standard HRV descriptors both in the time and the frequency domain. High 

correlation with parameters derived by standard photoplethysmography (PPG) on 15 

subjects is reported. Another solution based on Zero-phase Component Analysis has been 

reported by Iozzia et al. [106] to evaluate the suitability of iPPG to assess autonomic 

response. Tayibnapis et al. [66] applied the PCA to estimate HR and HRV signals from an 



 

 

RGB video. These signals were then used with a set of facial features to detect fatigue 

through a Support Vector Machine. 

In general, the HR estimation from iPPG is in good agreement with reference techniques. 

In particular, it was shown that the HR estimated from the iPPG highly correlates (Pearson 

coefficient > 0.90) with the HR extracted from standard ECG signals [73]. Standard PPG, due 

to its simplicity, is the most common reference in iPPG studies. Though PPG provides 

accurate HR measurements, the gold standard for HRV assessment remains ECG recording 

that allow a fine localization of the heart beat [105]. PPG seems a viable surrogate of ECG 

for healthy subject at rests, but its performances tends to worsen in exercise and in 

diseased people [107][108]. In addition, it must be pointed out that, up to now, 

experimental results are from small sized populations, data acquisition usually occurring in 

highly idealized conditions. In particular, short-term analysis is considered by most 

researchers with video recordings lasting non longer than 60 s, instead of the usual 

5 minutes recommend in [105], usually capture with a subject staying still in front of a 

camera. 

Obviously, when acquisition constraints are relaxed, several factors can alter the iPPG 

signal and degrade the performances of processing algorithms. For example, subject 

movements can be a source of troublesome artefacts. Rigid motions can be somehow 

compensated by proper tracking of the region of interest but the effects of non-rigid facial 

movements can be hardly removed. Rapid changes of environmental lighting can also 

interfere with iPPG and this need to be taken into account when setting up an iPPG system. 

Imaging parameters such as spatial and temporal sampling and the sensor spectral response 

impact on image quality. Though spatial resolution does not seem a major iPPG problem 

(mostly because iPPG signal is usually averaged on large facial areas), temporal resolution is 

expected to affect BVP localization with a possibly relevant impact on the HRV analysis. In 

this respect, it is worth remembering that in standard ECG-based HRV measurements 

sampling rates lower than 100 Hz are discouraged [105]. Though iPPG is based on different 

principles than ECG, temporal sampling requirements should be more deeply investigated. 

Through this analysis we report on a novel iPPG methodology to monitor the HR and the 

HRV of normal subjects [109]. Based on the previous considerations, the work described in 

this chapter has a twofold aim: a) investigate the use of ICA pre-processing of spectrally-

tuned single-channel video streams to enhance iPPG signal by exploiting multiple spatial 

measurements, b) analyse the impact of imaging parameters on the HR and the HRV 

descriptors estimation. In next sections, after describing the experimental setup, we report 

on the estimation of HR and HRV parameters (computed both in time and frequency 

domain) in varying experimental conditions. The iPPG-derived parameters are compared 

with corresponding descriptors derived from simultaneous ECG recording. 

 



 

 

 Blood volume pulse from video 3.2.

The propagation of blood volume pulses makes skin reflectance changing in time, which, 

in turn, changes the colour of video recordings and this is the primary source of information 

we consider to detect HR from face videos. However, colour changes can be produced by 

other physiological processes, voluntary subject movement as well as ambient factors. In 

this work, we refer to the experimental setup sketched in Figure 6, where an individual is 

sitting in front of a camera with the face uniformly lit by a stable white LED lamp with no 

other (natural or artificial) light sources. On this ground, we will focus mainly on subject-

related effects. 

Among these, respiration is responsible of small cyclic head and neck movements that can 

be detected by imaging face regions including motion sensitive features (e.g., the borders of 

lips). In addition, involuntary movements (e.g., muscular tremor and eye blinking) should be 

taken into account as potential source of interference. Voluntary head motion that may be 

related to a wide variety of activities (e.g., speaking, tracking moving objects) can be 

expected to introduce relevant picture changes interfering with the recording of vital signs. 

In this work, the BVP signal is extracted from a set of observations of the iPPG video taken in 

different facial regions. Let assume that, for a fixed wavelength, a iPPG signal g(t) is 

obtained at time t by spatially averaging the image intensity in a region of interest (ROI). We 

assume that averaging makes camera noise negligible. 

According to a widely accepted model for iPPG [110], g(t) is produced by specular and 

diffuse reflections of the incident light I0(t). Separating continuous and time varying, zero 

mean, contributes, one can write: 

 ( )    (   ( ))(    ( )    ( ))(1) 

where I0(t) = I0(1 + i(t)), k accounts for all contributes to constant reflection, m(t) describes 

changes of specular reflection, and p(t) relates to changes of diffuse reflection. The 

coefficients μ and σ quantify the change of skin reflection and the strength of BVP pulse, 

respectively. It is worth noting that the term p(t) is the only contribute pertaining BVP. 

Equation 1 can be simplified by assuming that the time varying components are small 

compared to continuous ones and that their cross products can be neglected: 

 ( )           ( )      ( )      ( )   (2) 

We can therefore conclude that the iPPG signal is, approximately, a linear combination of 

three contributes: i(t) related to illumination changes that, in our case, is related to subject 



 

 

motion with respect to the light source1, m(t) that describes specular changes of skin 

surface due to subject motion, and p(t) that must be imputed to diffused reflection and 

accounts for BVP contribute. The signal i(t) is often estimated from RGB videos which 

provides three different combinations of the underlying. 

In the following we will consider monochrome images acquired with a narrow-band filter 

centred on haemoglobin absorption peaks. Multiple iPPG signals are generated from 

different ROIs in regions having high vascularization. Assuming that i(t), m(t), and p(t) are 

approximately uniform among the ROIs we rewrite Equation 2 for each region ROI: 

 
  ( )            ( )       ( )       ( )   (3) 

where kj, μj, and σj are the constant reflection, the specular and the diffuse reflection in 

the j-th ROI, respectively. Based on Equation 3 we exploit the spatial dependence of g(t) to 

enhance BVP estimation by means of ICA. 

 Materials and methods 3.3.

3.3.1. Study’s participants 

Thirty healthy participants (12 females and 18 males with mean age of 39.17 years, range 

from 22 to 61) were recruited for voluntary participation in this study. The presented 

examination was part of a larger study aiming at evaluating the possibility of using imaging 

techniques for individual self-assessment and self-monitoring of cardio-metabolic risk [109]. 

The experimental protocol, conducted in Pisa, Italy, was approved (September 10th, 2015) 

by the local Ethical Committee of Pisa, Italy (Study 213/2014) and received the Ethical 

Clearance certification (0086129, November 11th, 2014) by the Italian National Commission 

for Research Ethics and Bioethics. Written informed consent was obtained from all subjects 

included in this study. The study protocol is compliant with the European Union General 

Data Protection Regulation [111]. 

3.3.2. Experimental setup and video acquisition 

The subjects were sitting still in front of the camera at a distance of about one meter 

(Figure 6). The chair had a headrest to contain head motion and making the video recording 

comfortable for the volunteer. After a three minutes rest the subject’s face was recorded 

for five minutes. The subjects were illuminated by a white LED light source. The acquisitions 

                                                           

1 In principle, small cyclic head movements due to Newtonian reaction to blood influx may results in related subtle cyclic 

changes of skin reflectance. However, their impact on m(t) in a uniform skin patch, not including motion sensitive features, 
can be neglected. 



 

 

were performed through the camera and the ECG system described in section 2.2. All the 

videos and the ECG recordings were acquired and analysed through a custom software 

written in C++. 

 

 

Figure 6 Data acquisition setup. 

 

3.3.3. ECG signal analysis 

The reference data were obtained by extracting the tachogram from the ECG signal. To 

this end, the Inter Beat Intervals were defined following QRS complex detection [112]. To 

remove possible artefacts, the interval beat intervals (IBIs) were processed by the NC-VT 

algorithm [113] with a tolerance of 30 %, all the IBIs with a duration less than 200 ms being 

removed. The signals were analysed both in the time domain and in the frequency domain. 

Concerning the time domain, we calculated the average time between adjacent normal 

heartbeats (NN) and its standard deviation (SDNN). Concerning the frequency domain, 

analysis of the HRV was performed by the power spectrum density (PSD) estimated by the 

Lomb-Scargle periodogram [114]. This method is able to cope with non-uniformly sampled 

data even in presence of large gaps, which makes tachogram interpolation unnecessary. 

According to the standard definition of the HRV frequency bands [105], the low frequency 

(LF) and the high frequency (HF) were calculated as the area under the PSD curve 

corresponding from 0.04 Hz to 0.15 Hz and from 0.15 Hz to 0.4 Hz, respectively [113]. The LF 

component reflects both sympathetic and parasympathetic actions, the HF component 

reflects parasympathetic action, and the LF/HF ratio is a measure of the sympatho/vagal 

balance [113]. The features extracted are the most commonly used in the literature for 

short-term analysis [115][116].  

  



 

 

3.3.4. ROI’s selection 

For each video sequence, the Cascading Classifiers algorithm (OpenCV v. 3.0.0) was used 

to detect the face of the subject and locating the centre of each eye in the first frame of the 

recorded video, the related distance being named d. Three different regions of interest 

(ROIs) were selected (Figure 7). ROI definition was driven by anatomical and empirical 

considerations. In particular, ROIs were placed in highly vascularized regions of the face. We 

also tried to have a large integration area so as to reduce the impact of image noise on BVP 

estimation. In addition, ROI sizes were constrained to reduce interference with regions 

interested by marked involuntary movement, such as eyes and lips. The first ROI (ROI1) was 

a rectangle of the forehead area and the others (ROI2 and ROI3) were squares on the right 

and left cheek, respectively. The ROI on the forehead was d × 3/8 d placed at 5/8 d above 

the inter-pupillary line. The two ROIs on the cheeks had a fixed side l = 20 pixel (about 

20 mm on the subject face) placed at d/2 under the pupil. 

 

Figure 7 Dimensions and positions of the ROIs (ROI1 on the forehead area, ROI2 on the right cheek, and ROI3 on the left 
cheek). d is the distance between the centres of the rectangles around the eyes and l is the side of the square that is set to 

20 pixel. 

3.3.5. Video signal analysis 

In order to extract the HR and the HRV parameters from the video, for each frame, grey 

levels were averaged in each ROI, which provided three iPPG signals (v1(t), v2(t), and v3(t)). 

Then, two procedures were implemented to recover the pulse signal:  

1. M1 - Each vi(t) was filtered using a FIR band-pass filter implemented via Hamming 

window, with lower cut-off at 0.75 Hz (45 bpm) and upper cut-off at 2 Hz (120 bpm). 

Such a band is well suited for normal subjects at rest or in during moderate activity, 



 

 

the bandwidth can be adapted during intense physical activity or in presence of 

disease. The signals x1(t), x2(t), and x3(t) were so obtained. 

2. M2 - As illustrated in Figure 8, each vi(t) was detrended by subtracting a 2 s time 

average and the signals y1(t), y2(t), and y3(t) were obtained. Following whitening, the 

three detrended signals were jointly processed through Independent Component 

Analysis as implemented in FastICA algorithm [117]; three new sequences yA(t), yB(t), 

and yC(t) were so obtained, each representing a different signal contribution. The 

spectra of yA(t), yB(t), and yC(t) were computed via Fast Fourier Transform. The BVP-

related component was defined as the one with the highest peak in the range from 

0.75 Hz to 2.0 Hz and was then filtered as in M1 and yS(t) was so obtained. It is worth 

noting that while the algorithm used (that is the FastICA) is not new it was applied to 

three portions of a single-channel video, in opposition to what is usually done (one 

portion of a three-channel video). 

In both procedures, after filtering, the BVP peaks were detected using a multi-scale 

algorithm [118] and local quadratic interpolation. Finally, the tachogram for each BVP peak 

sequence was computed. As described for ECG analysis, possible artefacts were removed by 

the NC-VT algorithm. Similarly to the ECG signal, the NN and the SDNN values were 

extracted from the tachogram. The frequency domain analysis was performed by PSD 

estimation by Lomb-Scargle periodogram and the LF, HF, and LF/HF values were calculated 

from the PSD. 

 

 

Figure 8 Procedure based on ICA. 

3.3.6. Recording length 

The videos with different duration were compared with corresponding ECG portions. In 

particular, pieces spanning one, two, three, four, and five minutes (entire recording) were 

extracted from the available sequence. 

  



 

 

3.3.7. Video frame rate 

The original videos were recorded at 133 fps. To test the effect of lower sampling rates as 

those often reported in literature, each video was down-sampled from the native 133 fps to 

66 fps and 33 fps. The ROIs signals computed from down-sampled videos were interpolated 

with a cubic spline function and resampled at 133 Hz. 

 Results 3.4.

The data analysis was based on absolute errors observed by comparing iPPG with ECG. 

The HR and HRV descriptors estimated from video (both by M1 using band-pass filter only 

and M2 based on ICA pre-processing) were compared to corresponding parameters 

obtained from ECG. The mean, standard deviation, minimum, and maximum values of the 

data obtained by the ECG and the video signal are reported in next sections for the various 

descriptors. For each of them, we give the mean absolute error (MAE), with standard 

deviation (SDAE), minimum (AEmin), and maximum (AEmax). The median of signed errors (Me) 

is also reported as a robust indicator of systematic error. In addition, as correlation 

coefficients are commonly used by many researchers, Pearson coefficient rp and Spearman’s 

rho ρs are also reported for completeness. 

3.4.1. Analysing video at the native frame rate 

The mean, standard deviation, minimum, and maximum values of the data obtained by 

the ECG and the video signal analysis (both obtained from M1 and M2) are reported in Table 

2. The observed MAEs and correlations obtained from each ROI (ROI1, ROI2, and ROI3) are 

reported in Table 3. With respect to NN, both the video signals and the ICA perform well 

against the ECG showing low values of the MAEs, with the smallest ones provided by x1(t) 

(3.812 ms) and yS(t) (3.822 ms), and strong correlations (x1(t), x2(t), x3(t), and yS (t)) with 

rp ≥ 0.999 and ρs ≥ 0.995. Similarly, for SDNN, LF, HF, and LF/HF, the smallest MAEs values 

and strongest correlations are observed in x1(t) and yS(t); instead, the video signals from the 

cheeks ROIs (x2(t) and x3(t)) are more prone to artefacts, so that the extracted parameters 

exhibits a weaker correlation with the ECG data than signal from the forehead ROI. For x1(t) 

the MAEs observed values are 5.643 ms for SDNN, 3.303 % for LF, 6.556 % for HF, and 0.657 

for LF/HF; for yS(t) we have 5.853 ms for SDNN, 2.775 % for LF, 4.372 % for HF, and 0.482 for 

LF/HF. For x1(t) the observed correlations are rp = 0.960 (ρs = 0.903) for SDNN, rp = 0.878 

(ρs = 0.813) for LF, rp = 0.786 (ρs = 0.779) for HF, and rp = 0.842 (ρs = 0.779) for LF/HF. For 

yS(t) the observed correlations are rp = 0.961 (ρs = 0.928) for SDNN, rp = 0.916 (ρs = 0.895) for 

LF, rp = 0.885 (ρs = 0.884) for HF, and rp = 0.931 (ρs = 0.876) for LF/HF. All the parameters 

obtained from yS(t) (M2) were strongly correlated with the reference ones, the correlation 

being larger than those observed for M1 in all cases. Scatter plots of parameters computed 



 

 

from x1(t) and yS(t) and the corresponding ECG ones are summarized in Figure 9 (time 

domain) and Figure 10 (frequency domain). 

Table 2 Mean, standard deviation, minimum, and maximum values of the data obtained by ECG and video signal analysis at 
the native frame rate. 

 



 

 

Table 3 Absolute errors (mean, standard deviation, minimum, and maximum), median of signer errors, Pearson coefficient, 
and spearman’s obtained using M1 and M2, respectively. 

 

 



 

 

 

Figure 9 Scatter plots comparing NN and SDNN between the video signal and ECG signal. The video signal data are obtained 
from x1(t) applying M1, on the left side, and from yS(t) applying M2, on the right side. 



 

 

 

Figure 10 Scatter plots comparing LF, HF, and LF/HF values between the video signal and ECG signal. The video signal data 
are obtained from x1(t). 

3.4.2.  Varying the frame rates 

In Table 4 and Table 5 we analysed the parameters estimated from the down-sampled 

video signals. In particular, we analysed the data obtained by M1 from the forehead signal 

x1(t) (the best performing at 133 fps) and those obtained from yS(t) by M2. The MAE values 

related to NN extracted by the down-sampled video signals for both M1 and the M2 do not 

exhibit appreciable differences (being all slightly larger than 3 ms) at different frame rates. 

High correlation coefficients are observed in all cases (rp ≥ 0.999 and ρs ≥ 0.998). The SDNN 

behaviour shows increasing MAEs when frame rate decreases for both M1 and M2; in 

parallel, the correlation coefficients decrease at the slowest frame rate. Also in the 

frequency domain, the MAE values increase as frame rate decrease, this being more 

pronounced for HF and LF/HF. Generally, the MAE values and correlation coefficients 



 

 

obtained for M2 are better than those obtained for M1. Furthermore, in the frequency 

domain, the contribution of the ICA is outstanding when the sampling rate is less than 

100 fps. 

Table 4 Mean, standard deviation, minimum, and maximum values of the data obtained by video signal analysis varying the 
frame rates. 

 



 

 

Table 5 Absolute errors (mean, standard deviation, minimum, and maximum, median of signed errors, Pearson coefficient, 
and spearman’s obtained at three different video rates for x1(t) and yS(t) using M1 and M2, respectively. 

 

 

3.4.3. Varying the acquisition time 

We analysed the parameters obtained from the video signals (both M1 and M2) having 

different durations. As in the case of section 3.4.2, we considered x1(t) and yS(t) only. In 

Table 6 we reported the basic statistics for parameters measured from ECG, x1(t), and yS(t), 

respectively. In Table 7 the MAEs and the correlation coefficients are given. Both M1 and 

M2 show similar error pattern for NN: the MAE increases when the recording time 

decreases, difference being slightly more evident for durations less than or equal to 

2 minute. High correlation coefficients were observed at any duration for x1(t) (rp ≥ 0.998 

and ρs ≥ 0.995) and yS(t) (rp ≥ 0.999 and ρs ≥ 0.994). The MAEs of remaining parameters tend 



 

 

to increase as the recording duration decreases, the HF showing the more pronounced 

dependence. As shown in Table 7, dependence on acquisition time was slightly more 

pronounced for the frequency domain descriptors. In any case, only for the shortest 

observation window (1 minute) we observed a MAE approximately doubled with respect to 

other durations. 

Table 6 Mean, standard deviation, minimum, and maximum values of the data obtained by ECG and video signal analysis 
varying the acquisition time from M1. 

 

Table 7 Absolute errors (mean, standard deviation, minimum, and maximum), median of signed errors, Pearson 
coefficients, and spearman’s for five different durations of videos for x1(t) and yS(t) using M1 and M2. 

 

 



 

 

 Discussion 3.5.

In this chapter we analysed the use of a monochrome video camera to estimate the HR 

and the HRV from the plethysmographic signal obtained from the human face recordings. 

Videos from 30 subjects were acquired in rest conditions allowing limited natural 

movements. An artificial white light was used and the camera input was band-pass filtered 

so as to match the light absorption peaks of haemoglobin and enhance the BVP contribution 

to the image grey level. We adopted direct BVP estimation via temporal band-pass filtering 

(method M1) and BVP peak detection applied to single ROI signals. In addition, ICA pre-

processing to extract BVP signal from multiple ROIs (method M2) was implemented. 

Standard HR and HRV measurements derived from videos were compared with the 

corresponding descriptors obtained from ECG signals recorded simultaneously to videos. 

We analysed both mean absolute errors between video and ECG in three different regions 

of the face (forehead and each cheek). For completeness, the Pearson and Spearman 

correlation coefficients were computed. In all cases, the ROI on the forehead provided 

smallest errors and highest correlations. This seems consistent with a reduced impact of 

subject motion. Fusion of the three ROIs signals via ICA pre-processing led to substantially 

reduced errors and improved correlation in all frequency domain descriptors, whereas time 

domain descriptors exhibit a behaviour similar to the ones from the ROI on the forehead.  

At the original video rate of 133 fps method M1 produced acceptable results for the 

forehead ROI (MAEs were 3.812 ms for NN, 5.643 ms for SDNN, 3.303 % for LF, 6.556 % for 

HF, and 0.657 for LF/HF).  

Anyway, M2 provided data more consistent with ECG estimation as made evident by 

frequency domain parameters (MAEs were 3.822 ms for NN, 5.853 ms for SDNN, 2.775 % 

for LF, 4.372 % for HF, and 0.482 for LF/HF).  

When the video signal is down-sampled from the native 133 fps to 66 fps and 33 fps 

estimates of the HRV descriptors worsen, whereas the HR does not look significantly 

affected. This finding is in line with the expected need of an accurate detection of the BVP 

pulses for the HRV analysis, a requirement that can be significantly relaxed for the HR 

assessment. In particular, the LF/HF parameter seems to be the most affected. It gets worse 

with the decrease of the sampling rate. In the frequency domain, the contribution of the ICA 

pre-processing is significant at low sampling rates.  

As to the impact of video duration, the HR, as expected, does not exhibit a particular 

sensitivity and both M1 and M2 produce constant and similar results. In the case of the 

HRV, method M1 looks less robust than method M2 and discrepancies arises between iPPG 

and ECG for very short recordings (1 minute). In general, the MAEs increase when the 

sampling rate and the acquisition time decrease.  



 

 

To summarize, both M1 and M2 can be expected to allow a very confident estimation of 

the HR. As concerns the HRV descriptors, the ICA pre-processing enables a more reliable 

estimation in all considered experimental conditions. 
  



 

 

Chapter 4. Unobtrusive monitoring of stress 

indicators at rest 

In this chapter we focus on the assessment of resting status of two groups of voluntaries 

with different age ranges. Evaluating the status in the absence of external stimuli is crucial 

to assess and understand individual stimuli responses. 

To this end we focused on the results obtained by the integration of simple unobtrusive 

devices monitoring skin blood volume pulses, respiratory rate, and galvanic skin response. 

Data were recorded in resting conditions and analysed as described in the following 

sections. 

 Materials and methods 4.1.

4.1.1. Study’s participants and experimental setup 

The data of twelve healthy volunteers were analysed for this chapter. The sample was 

split into two groups: group I was composed by six voluntaries (4 females and 2 males) with 

age between 25 and 35 (mean 29, min. 25, max. 35); group II was composed by six 

voluntaries (4 females and 2 males) with age between 55 and 65 (mean 60.16, min. 53, max. 

63). 

The subject’s signals measured were HR, HRV, RR, and GSR. The devices included in the 

experimental setup of this study were the camera, the BioHarness 3 Zephyr, and the 

Shimmer3 GSR. The experimental setup was deeply described in section 2.2. In this study we 

analysed the data acquired during the rest state only. 

 
4.1.2. Data analysis 

The video signal analysis was performed through M1 procedure as described in section 

3.3.5. Concerning the respiratory rate, the values of the median and the interquartile range 

were calculated. For GSR, the interfering main frequency (50 Hz) was removed from the 

signal by a notch filter. The average slope of the descending portion of the GSR signal was 

estimated by linear regression (see Figure 11). 
 



 

 

 

Figure 11 A typical GSR record. The raw and the filtered signals of the skin conductivity of a subject during the resting state 
are shown. The regression line (obtained by the linear regression) is the average slope of the signal. 

 Results 4.2.

Collected data were analysed for the two groups separately. In Table 8, the median and 

the interquartile range of all the data are reported. 

The median value (and interquartile range) of NN as calculated from the video signal is 

823.24 ms (171.19 ms), and 849.98 ms (50.87 ms) for group I and group II respectively. This 

parameter is smaller in group I than in group II. The median value (and interquartile range) 

of RR as measured through BioHarness 3 Zephyr is 14.92 bpm (3.86 bpm), and 13.29 bpm 

(0.66 bpm) for group I and group II respectively. This parameter is smaller in group II than in 

group I. The variability of NN and RR in group II is lower than in group I. As shown in Figure 

11, the skin conductivity decreases when the subject relaxes. The median (interquartile 

range) of the slope of the skin conductivity trend is -4.15x10-4 (1.16x10-3), and -1.62x10-3 

(3.08x10-3) for group I and group II respectively. This suggests that skin conductivity of group 

II decreases faster than that one of group I. 

 

 



 

 

Table 8 Results summary. For each group, the median and the interquartile range, in brackets, of HR and HRV parameters 
(NN, SDNN, LF, HF, LF/HF), respiratory rate, and the slope of the skin conductivity trend (GSRSLOPE). 

Parameter Group I Group II 

NNVIDEO (ms) 823.24 (171.19) 849.98 (50.87) 

SDNNVIDEO (ms) 86.98 (52.02) 90.01 (48.32) 

LFVIDEO (normalized unit)  56.54 (47.44) 54.06 (9.92) 

HFVIDEO (normalized unit) 43.46 (44.44) 45.94 (9.92) 

LFVIDEO/HFVIDEO 1.32 (1.73) 1.18 (0.52) 

RR (bpm) 14.92 (3.86) 13.29 (0.66) 

GSRSLOPE -4.15x10
-4

 (1.16x10
-3

) -1.62x10
-3

 (3.08x10
-3

) 

 

 Discussion 4.3.

In this chapter we reported the results obtained by the integration of simple unobtrusive 

devices monitoring skin blood volume pulses, respiratory rate, and galvanic skin response. 

Data from two groups of volunteers with different age ranges were recorded in resting 

state. Evaluating the status in the absence of external stimuli is crucial to assess and 

understand individual stimuli responses. 

The results indicate that the variability of NN and RR is smaller in group II than in group I. 

The skin conductance decreases when the subject relaxes and decreases faster in group II 

than in group I. 

The study reported in this chapter allowed us to validate the experimental setup. The 

latter turned out robust and reliable for unobtrusively monitoring the signals taken into 

account, permitting us to extract relevant parameters from two groups of volunteers. 
  



 

 

Chapter 5. Unobtrusive monitoring of EEG signals 

during mild cognitive activation 

In this chapter we report on the acquisition and analysis of EEG signals during mild 

cognitive activation. EEG were acquired simultaneously to skin blood volume pulses, and the 

respiratory rate by the set of unobtrusive devices described in section 2.2. Two different 

condition were compared: rest state and mild cognitive activation. 

 Materials and methods 5.1.

5.1.1.  Study’s participants and experimental setup 

The data of seven healthy participants were analyzed for this study. The sample was 

composed of 5 females and 2 males with mean age of 41.72 years, range from 25 to 62. 

The subject’s signals measured were HR, HRV, RR, and EEG. The signals were recorded in 

rest state for 5 minutes and during a mild cognitive activation induced by two different 

versions of the Stroop color word test, a congruent one and an incongruent one (Test A and 

Test B). The devices included in the experimental setup of this study were the ECG system, 

the camera, the BioHarness 3 Zephyr, and the Muse 2 Headband. These devices and the 

experimental setup were deeply described in section 2.2 and 2.3. 

 
5.1.2. Data analysis 

The ECG signal analysis was performed as described in section  3.3.3. The video signal was 

analyzed through M1 (described in section 3.3.5). Concerning the respiratory rate, the 

values of the median and the interquartile range were calculated. 

The Muse 2 Headband is a simple electroencephalography device. It has three reference 

sensors on the forehead, two channels on the left (antero-frontal AF7 and temporo-parietal 

TP9) and two on the right (antero-frontal AF8 and temporo-parietal TP10). AF7 and AF8 are 

forehead sensors and TP9 and TP10 are Smart Sense conductive rubber ear sensors. The 

band waves were calculated, these are the delta, theta, alpha, and beta. The delta wave is 

the frequency range from 0.5 Hz to 4 Hz; the theta wave is the frequency range from 4 Hz to 

7 Hz; the alpha wave is the frequency from 7 Hz to 13 Hz, the beta wave is the frequency 

from 14 Hz to 30 Hz. The features extracted from the EEG [54] through a custom software 

written in C include the normalized band power for each channel, that is calculated as: 

 



 

 

   
∫  
  
  

  
   (4) 

where f1 and f2 are the lower and the upper frequency of each band respectively (for 

example for the alpha band f1 is 7 Hz and f2 is 13 Hz), p is the band power and Pt is the total 

power. The second feature extracted was the each band’s (delta, theta, alpha, beta) power 

asymmetry (delta power asymmetry-DPA, theta power asymmetry-TPA, alpha power 

asymmetry-APA, beta power asymmetry-BPA), that is calculated as: 

                           

                           
   (5) 

 

where EEGbandpowerR and EEGbandpowerL are respectively the band power measured from the 

sensor on the right side of the head and on the left side of the head. 

The four signals were jointly processed through Independent Component Analysis as 

implemented in FastICA algorithm [119]; four new sequences were so obtained, each 

representing a different signal contribution. One of these signals was identified as the one 

with eyes blinking and, thanks to the help of an expert, it was removed. The remaining 

signals were analysed through the inverse FastICA in order to obtain four signals again 

(Figure 12). The analysis was performed by power spectrum density estimated by the Lomb-

Scargle periodogram [114]. 

 

Figure 12 The EEG signals after ICA processing. 



 

 

 Results 5.2.

In Table 9 we reported the median and the interquartile range of each parameter as 

observed in the study sample. Concerning the ECG results, the median value (and 

interquartile range) of NN is 926.98 ms (128.78 ms), 820.66 ms (191.41 ms), 848.98 ms 

(196.64 ms) in the three conditions respectively (rest, Test A, and Test B). Concerning the 

video results, the median value (and interquartile range) of NN is 851.74 ms (144.62 ms), 

822.67 ms (272.95 ms), and 796.10 ms (143.68 ms), in the three conditions respectively 

(rest, Test A, and Test B). The median value of RR is 13.08 bpm, 15.17 bpm, and 16.51 bpm, 

in the three conditions respectively (rest, Test A, and Test B). 

The most relevant feature extracted from the EEG is the power asymmetry from the left and 

right normalized alpha band power of AF7 and AF8 sensors between rest and Test A, and of 

TP9 and TP10 between rest and Test B. The APA of AF7 and AF8 was significantly smaller 

during Test A (median value = -0.35) than in rest (median value = 0.27) with p-value = 0.01. 

The APA of TP9 and TP10 was significantly smaller during Test B (median value = 0.04) than 

in rest (median value = 0.10) with p-value = 0.01. 

 
Table 9 For each condition, the median and the interquartile range, in brackets, of the all parameters extracted. 

Parameter Rest Test A Test B 

NNECG (ms) 926.98 (128.78) 820.66 (191.41) 848.98 (196.64) 

SDNNECG (ms) 47.94 (42.80) 42.40 (29.77) 55.17 (36) 

LFECG (normalized unit) 79.09 (24.80) 54.86 (19.16) 52.07 (34.23) 

HFECG (normalized unit) 20.91 (24.80) 45.14 (19.16) 47.93 (34.23) 

LFECG/HFECG 3.78 (2.93) 1.22 (1.18) 1.09 (1.63) 

NNVIDEO (ms) 851.74 (144.62) 822.67 (272.95) 796.10 (143.68) 

RR (bpm) 13.08 (2.66) 15.17 (4.22) 16.51 (3.18) 

APA (AF) 0.27 (0.65) -0.35 (0.28) / 

APA (TP) 0.10 (0.33) / 0.04 (0.14) 

 

 Discussion 5.3.

We have reported the results obtained by the integration of simple unobtrusive devices 

monitoring skin blood volume pulses, respiratory rate, and EEG signal. The subjects involved 

in the study underwent a mild cognitive activation. 

During the stress condition, the heart rate and the respiratory rate increased, and 

changes of the brain activity was observed. In particular the last factor indicates that the 



 

 

right alpha power was reduced to a greater extent than the left alpha power in a stress 

situation, which is consistent with the physiological assumptions (i.e., enhanced activation 

occurred in the right hemisphere, which shows negative emotions). 

The results obtained demonstrated that the devices and the procedure involved in this 

study allow detecting differences in a mild stress condition using unobtrusive 

measurements of psychophysical parameters. 

 

 

 



 

 

Chapter 6. Unobtrusive monitoring of stress 

indicators during mild cognitive activation 

In this chapter we report the analysis of the “Mild Cognitive Activation” (MCA) dataset 

collected from the volunteers enrolled during my work. 

We focused on the results obtained by the integration of simple unobtrusive devices 

monitoring skin blood volume pulses, respiratory rate, and galvanic skin response. Data 

were recorded both in rest state and during a mild cognitive activation. 

 Materials and methods 6.1.

6.1.1. Study’s participants and experimental setup 

The data from ten healthy volunteers were analysed for this study. The sample was 

composed of 7 females and 3 males with mean age of 45 years, range from 25 to 62. Two of 

these subjects (namely subject 08 and 09) were considered non-naïve subjects, as they had 

previous experience with the Stroop colour word test. 

The subject’s signals measured were HR, HRV, RR, and GSR. The signals were recorded in 

rest state for 5 minutes and during a mild cognitive activation induced by two different 

versions of the Stroop colour word test, a congruent one and an incongruent one (Test A 

and Test B). The devices included in the experimental setup of this study were the ECG 

system, the camera, the BioHarness 3 Zephyr, and the Shimmer3 GSR. These devices and 

the experimental setup were deeply described in section 2.2 and 2.3. 

 
6.1.2. Data analysis 

The ECG signal analysis was performed as described in section 3.3.3. The video signal was 

analysed through the algorithm M1 (described in section 3.3.5). Concerning the NN values 

both of ECG and video signal, the median and the interquartile range were calculated. 

Regarding the RR, the values of the median, the interquartile range, the minimum, and the 

maximum were calculated. As to the galvanic skin response, the interfering mains frequency 

(50 Hz) was removed from the signal by a notch filter. In order to calculate the GSR 

parameters, the phasic component was extracted. To this end and whereas the GSR signal is 

often sampled at a much higher sampling rate than actually required, the GSR signal was 

down sampled to 10 Hz. Then it was filtered through a mean filter spanning a 4 s window 

and a median filter spanning 8 s. Then the signal from the median filter was subtracted to 

the one from the mean filter (Figure 13). The number of peaks, the maximum peak 

amplitude, and the median peak value were calculated. 



 

 

 

Figure 13 An example of GSR signal. Upward the raw and the filtered signal, below the phasic signal and the peaks 
detection. 

 Results 6.2.

Figure 14 shows the box plot of the NN value calculated by the ECG signal (left) and for 

the video camera (right), for the three conditions (rest, Test A, and Test B). As to the ECG 

results, the median value of the NN (and the interquartile range) is 907.51 ms (102.08 ms), 

825.61 ms (165.58 ms), 815.8 ms (161.82 ms), respectively in rest, Test A, and Test B. 

Concerning the video camera results, the median value of the NN (and the interquartile 

range) is 858.17 ms (121.21 ms), 784.29 ms (129.5 ms), 778.60 ms (170.13 ms), respectively 

in rest, Test A, and Test B. The NN value both for ECG signal and video camera signal 

decreases in the stress condition. The Pearson correlation coefficient between the NN value 

of the ECG and the video signal is equal to 0.92, 0.88 and 0.85, respectively for rest, Test A, 

and Test B (p-value < 0.007). 

     

Figure 14 Box plot of the NN value of the ECG signal (left) and the video signal (right) in the three experimental conditions.  

In Figure 15 is showed the box plot of the of the RR value for the three experimental 

conditions (rest, Test A, and Test B). The median value (and the interquartile range) of the 

RR is 13.5 bpm (2.69 bpm), 16.43 bpm (3.24 bpm), 16.67 bpm (1.91 bpm), respectively in 

rest, Test A, and Test B. The RR value increases in the stress condition. 



 

 

 

Figure 15 The box plot of the RR value in the three experimental conditions. 

In Table 10 we reported, for each subject, the median peak value and the number of 

peaks of the GSR signal calculated in the three experimental conditions (rest, Test A, and 

Test B). In general, these values increase in the stress condition. For subject 08 and 09 we 

obtained zero peaks from the GSR, in all experimental conditions. It is worth noting that 

these subjects were not naïve to the Stroop colour word test. 

Table 10 Median peak value (µS) and number of peaks of the GSR for the three experimental conditions. 

 Median peak value (µS) Number of GSR peaks 

Subject ID Rest Test A Test B Rest Test A Test B 

01 1.49 2.87 2.57 0 9 16 

02 0.43 1.90 1.86 0 12 7 

03 0.34 1.83 1.96 0 4 14 

04 0.48 1.15 1.45 0 9 22 

05 0.23 0.99 1.18 0 11 21 

06 1.74 5.04 5.22 11 20 25 

07 2.73 12.54 15.32 7 11 25 

08 0.38 0.39 0.43 0 0 0 

09 0.94 1.57 1.98 0 0 0 

10 1.98 4.20 4.85 5 15 29 

 

 

 



 

 

  Discussion 6.3.

The results in this chapter were obtained by the integration of simple unobtrusive devices 

monitoring skin blood volume pulses, respiratory rate, and galvanic skin response. The 

signals were monitoring both in rest state and in a mild stress condition. 

During the stress condition, the heart rate, the respiratory rate, and the median peak 

value increased for eight subjects. No peaks of the galvanic skin response were registered 

for the two non-naïve subjects for all the three conditions (rest, Test A, and Test B). These 

two subjects had previous experience with the Stroop colour word test and remained in a 

rest state also during the mild cognitive activation. 

The results are in accordance with literature and, as we have already demonstrated, 

confirmed that the devices and the method involved in this study allow detecting 

differences in a mild stress condition through unobtrusive measurements of psychophysical 

parameters. 

 



 

 

Chapter 7. Data integration 

The final objective of this thesis was to develop a model of the wellness state of a person 

endowed with predictive power. This is the subject of the activities reported in this chapter. 

As the development of a model usually requires as much data as possible, we wanted to 

enrich/integrate the MCA dataset collected from the volunteers enrolled during my work, 

also to mitigate the impact that the COVID-19 lockdown had on the planned acquisition 

campaign. To do so, we searched for similar publicly datasets. During this search, particular 

attention was paid to the data hosted in the Physionet repository [120]. Among these, the 

“Stress Recognition in Automobile Drivers” (SRAD) dataset from the MIT Media Lab was 

deemed relevant for the current project and was analysed in detail. 

A set of features were extracted from the available signals (including ECG, HR, RR, GSR, 

EMG acquired both at rest and during driving). The data harmonization and the feature 

selection were performed using two complementary approaches: sequential forward 

feature selection (SFFS) and auto-encoder (AE) neural network. Then a cluster analysis was 

carried out using two complementary methods: k-means clustering and Kohonen self-

organizing map (SOM). Subsequently the clustering was validated using the MCA dataset. 

 Datasets  7.1.

7.1.1. The MCA dataset description and its analysis 

For each subject, the MCA dataset included three blocks of data. The first block was 

5 minutes long and contained the data acquired during the rest state. The other two blocks 

were 2 minutes and 3 minutes long respectively, they contained data acquired during the 

mild cognitive activation induced by two different versions of the Stroop colour word test 

(Test A and Test respectively, described in section 2.3) . For our aims, these two blocks were 

merged into a single 5-minutes window. In this way each record contains two 5-minute 

blocks. The data analysis is described in section 6.1.2. 

 
7.1.2. The SRAD dataset 

Among the analysed repositories, the SRAD dataset from MIT Media Lab, hosted by 

Physionet.org [120] resulted particularly promising for our purposes. This database contains 

a collection of multiparametric recordings from 17 healthy volunteers. The data were 

acquired during driving. Records include two 15 minutes rest periods occurred one at the 

beginning and one at the end of a driving period. During these periods, the driver sat in the 

garage with eyes closed and with the car in idle. The rest periods were used to gather 



 

 

baseline measurements and to create a low stress situation. After the first rest period, 

drivers drove, for around 50 minutes, on a prescribed route including city streets and 

highways in and around Boston, Massachusetts. 

Four types of physiological sensors were used during the experiment: electrocardiogram, 

electromyogram, galvanic skin response, and respiration (through chest cavity expansion). 

The ECG electrodes were placed in a modified lead II configuration. The EMG was placed on 

the trapezius (shoulder) and has been used as an indicator of emotional stress [121]. The 

galvanic skin response was measured in two locations: on the palm of the left-hand using 

electrodes placed on the first and middle finger and on the sole of the left foot using 

electrodes placed at each end of the arch of the foot. Respiration was measured through 

chest cavity expansion using an elastic Hall-effect sensor strapped around the driver’s 

diaphragm. Figure 16 shows the general placement of sensors with respect to the 

automotive system. The ECG was sampled at 496 Hz, the galvanic skin response and 

respiration sensor were sampled at 31 Hz, and the EMG was sampled at 15.5 Hz after first 

passing through a 0.5 s averaging filter. 

 

 

Figure 16 Placement of recording instruments as deployed while collecting the “Stress Recognition in Automobile Drivers” 
dataset. Picture reproduced from [120]. 

7.1.3. The SRAD dataset analysis 

Seven subjects were excluded from the analysis due to the lack of some data, a sub-group 

of 10 subjects was therefore analysed. Among the signals included in the dataset we 

considered those in common with our dataset. These were: the ECG, the respiratory wave, 

and the GSR acquired on the palm of the hand. 

 The ECG signal was firstly pre-processed so as to derive the related tachogram. QRS 

complexes were detected by Pan-Tomkins algorithm [112]. The tachogram was then 

analysed in 5-minute sliding window (with a 5-minute stride) using the same method 

described in section 3.3.3. 



 

 

The respiratory rate was extracted from the respiratory wave of the chest belt. 

Particularly, the respiratory rate (in breaths per minute) was calculated by detecting and 

counting the signals peaks in sliding windows of 1 minute length (step of 1 s). The GSR was 

analysed as described in section 6.1.2. 

The signals were divided in (non-overlapping) five minutes long windows. As each record 

in the SRAD dataset contained 15 minutes of rest periods both at the beginning and at the 

end of acquisition, for each subject, we had six windows representing the resting condition. 

Data from all other windows represented the driving activation period. For each window, 

the following parameters were calculated. Concerning the ECG signal, in time domain, we 

calculated the average time between adjacent normal heartbeats and its standard 

deviation. Concerning the frequency domain, analysis of the HRV was performed by the 

power spectrum density estimated by the Lomb-Scargle periodogram and the low 

frequency, the high frequency, and their ratio were calculated. Concerning the respiratory 

rate, the median, the interquartile range, the minimum, and the maximum value were 

calculated. Concerning the galvanic skin response, the number of peaks, the maximum peak 

amplitude, and the median peak value were calculated.  

 
Table 11 Extracted features and related source signals. 

 Source 

Feature MCA dataset SRAD dataset 

Median RR Chest belt Chest belt 

RR interquartile range Chest belt Chest belt 

Minimum RR Chest belt Chest belt 

Maximum RR Chest belt Chest belt 

Number of GSR peaks GSR GSR 

Maximum GSR peak amplitude GSR GSR 

Median GSR peak amplitude GSR GSR 

NN Video iPPG ECG 

SDNN Video iPPG ECG 

LF Video iPPG ECG 

HF Video iPPG ECG 

LF/HF Video iPPG ECG 



 

 

 

 Features selection  7.2.

The analysis described above led to a large number of parameters to deal with (Table 11). 

Thus, although the dataset available was expanded through the one found in literature, a 

feature selection process was deemed necessary to avoid the curse of dimensionality before 

proceeding to the actual definition of a model. 

To this end we exploited a sequential forward feature selection method which can also 

provide indications about the relevance of different features at discriminating rest from 

non-rest conditions. 

Simple feature selection is based on the use of a possibly optimal subset of available 

features, and may hinder the correlation among features. During the features selection 

process, dimensionality reduction is usually achieved by completely discarding some 

dimensions, which inevitably leads to loss of information. However, sample data in a high 

dimensional space generally cannot diffuse uniformly in the whole space; they actually lie in 

a low dimensional manifold embedded in the high dimensional space, the dimensionality of 

the manifold being called the intrinsic dimensionality of the data [122]. 

 To investigate this aspect, we explored an alternative approach based on AEs. They 

provide a sort of non-linear generalization of principal component analysis [123]. AEs are 

unsupervised neural networks that learn to output a reconstruction of the input. The 

simplest multilayer architecture for building an auto-encoder is to constrain the number of 

nodes of the hidden layer(s), limiting the amount of information flowing through the 

network. AEs are commonly used for data dimensionality reduction being able to capture 

the intrinsic data dimensionality minimizing the information loss and providing an optimal 

set of synthetic features. 

 
7.2.1. Sequential forward feature selection 

As a preliminary analysis, we explored a SFFS method. In this method, the best single 

feature is selected using some criterion function. Then, pairs of features are formed using 

one of the remaining features and this best feature, and the best pair is selected. Next, 

triplets of features are formed using one of the remaining features and these two best 

features, and the best triplet is selected. This procedure continues until a predefined stop 

criterion is met. This method was selected as a simple feature selection method and was 

considered the perfect balance between efficacy (generally higher than filter methods) and 

computational cost (generally lower than exhaustive) [124]. 

The process was implemented by the MATLAB sequentialfs function which selects a 

subset of features from the data matrix the best predict the data by sequentially selecting 

features until there is no improvement in prediction. Prediction was implemented by 



 

 

standard linear discriminant analysis (LDA) [125]. LDA is a well-known supervised method 

used to find a linear combination of features that characterises or separates objects from 

two or more classes. For each candidate feature subset, sequentialfs performs 10-fold cross-

validation by repeatedly training and testing a model with different training and test 

subsets. 

As sequentialfs randomly splits the initial dataset to implement 10-fold cross-validation, 

the feature selection process can yield to different results depending on the run. This is true 

for both the number of features selected and which features are selected. In order to 

mitigate this effect, sequentialfs was run 1000 times. For each run, we recorded the 

features selected by the procedure and the order in which they were selected. In addition, 

we set up a scoring system to properly weigh the relevance of the features. Specifically, at 

each run, every selected feature got a score equal to its position in the selection process 

(e.g. 1 for the first one, 3 for the third one). The features that were not selected were given 

a score of 12. The process was repeated for every run and the scores for each run were 

summed up. By doing so, a final score of 1000 would indicate a feature selected as the first 

one in all runs. A feature with a final score of 12000 would be a feature never selected by 

the method. 

The method was trained using the SRAD dataset, whilst MCA dataset was used as 

independent test set.  

 
7.2.2. Auto-Encoder neural network 

The aim of an AE is to learn a representation (encoding) for a set of data, typically for 

dimensionality reduction, by training the network to ignore “noise”. Along with the 

reduction side, a reconstructing side is learnt, where the AE tries to generate from the 

reduced encoding a representation as close as possible to its original input. We used the 

dimensionality reduction property of the AE that allow to maps data from a large feature 

space to a small feature space. 

An auto-encoder neural network was applied on the SRDA dataset. This was designed as a 

neural network with a single hidden layer. To build the AE, a 5-fold cross-validation was 

performed by repeatedly training and testing a model with different train and test subsets 

of the data. In order to find the best trade-off between accuracy and data dimensionality, 

the size of the hidden layer was changed from 1 to 12. Using each set of the new features 

generated by the AE, an LDA classifier was trained in order to predict the driver stress level. 

This process generated 12 models of data classification, each one based on a number of 

features varying between 1 and 12. 

Finally, the 12 models were applied on the MCA dataset in order to validate the results 

against new data. 



 

 

 Detection of activation status 7.3.

Recognition of activation status was firstly investigated by k-means clustering. K-means 

clustering is a method of vector quantization, originally from signal processing, that aims to 

partition n observations into k clusters in which each observation belongs to the cluster with 

the nearest mean (cluster centres or cluster centroid), serving as a prototype of the cluster. 

This results in a partitioning of the data space into Voronoi cells. K-means clustering 

minimizes within-cluster variances (squared Euclidean distances). 

The k-means clustering is a widely useful data analysis tool, however it requires the user 

to set the number of clusters a-priori. We resorted to use the Kohonen self-organizing map, 

which exploits self-organization mechanisms and has the ability to build accurate, but low 

dimensional, topology preserving-maps [125]. This means that neighbouring inputs vectors 

tend to excite neighbouring units in the map. Topology preservation is ensured by a 

competitive learning, network parameters being adapted according to a neighbourhood 

function. 

 
7.3.1. Activation representation by k-means clustering 

In this work we used the MATLAB implementation of the k-means algorithm. The data 

were grouped into two clusters: one being expected to represent the rest condition and the 

other one the driving period. The latter was associated with a higher stress level.  

Afterwards, the data from the MCA dataset were used to validate these results against 

new data, not used for  

clustering. As described above, the MCA dataset was composed, for each subject, of two 

windows of data. Each data point, corresponding to one window, was associated to one 

cluster or the other, depending the one having the closest centroid. 

As an additional investigation, we tested the sensitivity of the clustering process to the 

cluster’s initialization (i.e. their initial value). To do so, we repeated the clustering process 

1000 times, forcing the clusters initialization across the whole feature space. 

 
7.3.2. Activation representation by SOM maps  

The Kohonen self-organizing map method uses unsupervised learning to produce a low-

dimensional (typically two-dimensional), discretised representation of the input space of the 

training samples, called a map, and is therefore a method to do dimensionality reduction. 

Self-organizing maps differ from other artificial neural networks as they apply competitive 

learning as opposed to error-correction learning (such as back propagation with gradient 

descent), and in the sense that they use a neighbourhood function to preserve the 

topological properties of the input space.  



 

 

Like most artificial neural networks, SOMs operate in two modes: training and mapping. 

“Training” builds the map using input examples (a competitive process, also called vector 

quantization), while “mapping” automatically classifies a new input vector. 

The visible part of a self-organizing map is the map space, which consists of components 

called nodes or neurons. The map space is defined beforehand, usually as a finite two-

dimensional region where nodes are arranged in a regular hexagonal or rectangular grid. 

Each node is associated with a “weight” vector, which is a position in the input space; that 

is, it has the same dimension as each input vector. While nodes in the map space stay fixed, 

training consists in moving weight vectors toward the input data (reducing a distance 

metric) without spoiling the topology induced from the map space. Thus, the self-organizing 

map describes a mapping from a higher-dimensional input space to a lower-dimensional 

map space. Once trained, the map can classify a vector from the input space by finding the 

node with the closest (smallest distance metric) weight vector to the input space vector. 

The SRAD dataset was used to train the clustering algorithms. Using the Matlab Neural 

Network package, we have analysed 2D maps of varying dimensions, from 3 x 3 to 6 x 6 

units. Networks were trained with the SOM batch algorithm [126] using the SRAD dataset.  

The obtained maps were tested using the MCA data. 

 

 Results 7.4.

7.4.1. Sequential forward feature selection 

Results of the feature selection process are summarized in plot the accuracy of LDA 

classifier obtained on the SRAD dataset with different numbers of features according to 

SFFS ranking. A similar plot is also given for MCA as test set. For SRAD the accuracy starts at 

about 93 % for a single feature rising to about 98 % with two features with no further 

significant changes using the remaining features. For the MCA data we observed a rapid 

increase to about 90 % with two features, fluctuations being present when using more than 

six features. 

Table 12 where features are ranked according to the sequential forward feature selection 

score, selection frequency is also reported. In particular, the median RR was selected in all 

runs, and is constantly the most relevant single feature. This suggests that it carries a 

significant piece of information, irrespectively of how the data is split between training and 

test set. The number of GSR peaks totalized the second score in the process, being selected 

in almost 99 % of the repetitions. 

After the first two features, we observed a net drop in the score. Indeed, LF/HF (the 

feature with the third best score, i.e. > 9200) was selected in 34 % of the runs only. Similar 

results were observed for the RR interquartile range and NN. Finally, all other features had 

scores that are very close to the maximum (> 10000) to end up with the last one (the 



 

 

maximum RR) never being selected by the process. Table 13 and Table 14 show values for 

the two most relevant features for all subjects of SRAD and MCA, respectively, used in this 

work.  

In Figure 17 Accuracy of SFFS process. On the left: accuracy of LDA classifier evaluated on 

the SRAD dataset varying the number of feature according to SFFS ranking. On the right: 

accuracy evaluated on MCA.Figure 17 we plot the accuracy of LDA classifier obtained on the 

SRAD dataset with different numbers of features according to SFFS ranking. A similar plot is 

also given for MCA as test set. For SRAD the accuracy starts at about 93 % for a single 

feature rising to about 98 % with two features with no further significant changes using the 

remaining features. For the MCA data we observed a rapid increase to about 90 % with two 

features, fluctuations being present when using more than six features. 

 
Table 12 The score and the selection frequency (SF) obtained by each features. 

Features Score SF (%) 

Median RR 1000 100 

Number of GSR peaks 2146 98.7 

LF/HF 9220 34.2 

RR Interquartile range 9571 30.9 

NN 9842 26.2 

SDNN 10958 11.8 

LF 11501 7.0 

Minimum RR 11700 4.0 

Maximum GSR peak amplitude 11850 1.7 

HF 11974 0.5 

Median GSR peak amplitude 11991 0.1 

Maximum RR 12000 0 

 

Table 13 SRAD database: median RR and number of GSR peaks both at rest and during driving. Interquartile range is 
reported in brackets. 

 
RR (bpm) Number of GSR peaks 

Subject ID Rest Driving Rest Driving 

01 13.5 (3) 24.5 (3) 8 (6) 22.5 (5) 



 

 

02 15.5 (3) 23 (4.5) 0 (0) 21 (8.5) 

03 14 (2) 20 (2) 10.5 (2) 25 (5) 

04 12 (2) 20.5 (2) 0 (2.25) 17 (7) 

05 15 (0.75) 21 (2) 0 (0) 15.5 (3) 

06 13 (0) 20 (3.75) 3 (0) 18 (6.75) 

07 16 (1) 21 (3.25) 0 (0) 21 (5.5) 

08 18 (0) 24 (1.625) 6 (6) 26 (10.25) 

09 14 (3) 17 (2) 5 (12) 18 (1.5) 

10 18 (0.75) 24.5 (2) 15 (8.25) 31 (4) 

 

Table 14 MCA database: median RR with interquartile range (in brackets) together with the number of GSR peaks both at 
rest and during SCWT. No interquartile range is available for number of GSR peaks as we only have a single block. 

 
RR (bpm) Number of GSR peaks 

Subject ID Rest SCWT Rest SCWT 

01 14 (1) 17.3 (2.7) 0 25 

02 16 (3) 17 (1.5) 0 19 

03 16 (2) 19.5 (2) 0 18 

04 13 (2) 13.5 (1) 0 32 

05 11 (4) 18 (3.5) 0 25 

06 10 (2) 14.5 (4.5) 11 45 

07 17 (1) 19.5 (1) 7 36 

08 15 (1) 17 (0) 0 0 

09 13 (1) 15.5 (1) 0 0 

10 13 (1) 13 (2) 5 44 

 

 

 

 

  



 

 

 

Figure 17 Accuracy of SFFS process. On the left: accuracy of LDA classifier evaluated on the SRAD dataset varying the 
number of feature according to SFFS ranking. On the right: accuracy evaluated on MCA. 

7.4.2. Auto-Encoder neural network 

In general, the observed accuracy of AE features resulted high (> 90 %), with the worst 

performance (about 93 %) obtained when a single feature was available (Figure 18). When 

two (or more) features were employed, the accuracy fluctuated around 93 - 95 %. Therefore 

using more than two AE features did not significantly improve discrimination capabilities. 

Indeed, a maximal accuracy of 95 % was already met using two features.  

When each of the 12 models were tested on the MCA dataset, results were found to be 

affected by a larger variability (Figure 18). With a single feature, the accuracy is 50 % 

(chance level). However, also in this case, using two features produces a substantial 

accuracy boosting. This reached its maximum with three features (at around 90 %). The 

inclusion of additional features results in accuracy fluctuation about a lower value (55 %). To 

sum up, both SFFS and AE method supports the finding that two features may be sufficient 

to reliable recognize activation statuses. 

 

 

Figure 18 Accuracy of AE process. On the left: accuracy of LDA classifier evaluated on the SRAD dataset with different auto-
encoding dimensionality. On the right: accuracy evaluated on MCA. 

 



 

 

7.4.3. K-means clustering 

According to the results of the selection process, the best features were identified as the 

median RR and the number of GSR peaks. We have further investigated the joint use of 

these features with respect to their capability to cluster the data space. To this end, we 

partitioned SRAD data in two cluster using standard k-means algorithm as provided in 

MATLAB (Figure 19). Clustering was correlated with the dataset labels (either rest or 

driving/stress). This process led to an 87.9 % recognition rate for the rest state and a 92.3 % 

recognition rate for the driving state. The overall classification accuracy was found to be 

89.4 %. 

It is worth mentioning that using the same cluster centroids for MCA data we found a 

90 % rate of correct classification (Figure 20). By taking a closer look at these results, we 

found that 100 % classification accuracy was not achieved as the algorithm failed to 

recognize the activation state of the two non-naïve subjects. Actually, they have had 

significant previous experience with the Stroop colour word test.  

To better understand what could have been the contribution of additional features, we 

repeated the same process using other features. However, performances of k-means 

clustering deviated significantly from rest/activation data labelling. 

Finally, we wish to point out that k-means was repeated 1000 times with random 

clustering initialization: we observed changes in final centroid position in less than 15 % of 

cases. However, even in these cases, displacement of cluster centroids was quite limited. 

Indeed, we observed a change in coordinates of < 1 % the total range of the feature space. 

Therefore, the final cluster centres were considered reliable. 

 

 

Figure 19 Classification performance for the SRAD dataset obtained using the first two features selected by the SFFS 
method. On the left a scatter plot of the dataset in the feature space, indicating the two clusters and related centroids. On 

the right the validation of the clusterization process. 



 

 

 

Figure 20 Classification performance for the MCA dataset obtained using the first two features selected by the SFFS 
method. On the left a scatter plot of the dataset in the feature space, indicating the two clusters and related centroids. On 

the right the validation of the clusterization process. 

7.4.4. Self-Organizing Maps 

We have trained a set of two-dimensional SOMs with a number of units varying from 3 x 3 

to 6 x 6. We did not consider larger maps due to the limited dataset size. Maps were trained 

on the SRAD dataset. For each map size, training was run ten times with random weight 

initialization. Apart changes in map orientation, no relevant differences were detected 

inside each run. 

As we are interested in the topographic representation produced by SOMs, we have 

analysed each map with respect to the distance between weights of neighbouring units (the 

so called U-map), and the distribution in the network space of each weight dimension 

(weight-plane maps). In addition, to explore the semantic role of unit activation we analysed 

the distribution of data labels in network space (categorical hit maps). Since the results do 

not vary significantly with the number of units, to ease readability, we show only data for 

4 x 4 and 5 x 5 SOMs in the mentioned figures. 

Map distances in Figure 21 suggest that the units in the right upper corner are rather 

apart from the other units that tend to be closer each other. This confirms previous data 

from feature selection and data clustering, and also suggests that the data space can be 

partitioned into two highly structured clusters. It is worth noting that larger maps are 

expected to capture finer structural details of data as suggested by the comparison of the 

maps. 

The distribution of SOM weights (Figure 22) provides additional support to the distance 

maps. In particular, spatial arrangement of weights looks consistent among different map 

sizes. In the maps of weight components (Figure 22) are represented units that respond to 

high or small values of the parameters. In addition, several components (e.g. those 

corresponding to median RR, number of GSR peaks, LF/HF, NN, LF, and HF) exhibit a well-



 

 

defined spatial distribution. In particular, some of them such as the weights of median RR 

and number of GSR peaks can be related to the partition appearing the left upper part of 

the map. 

Categorical hit maps (Figure 23) for the rest and activation labels of the SRAD dataset 

shows a rather neat distinction among the two categories: only a few units respond 

simultaneously to both rest and activation data. A similar map is shown in Figure 24 for the 

MCA dataset; worth of note is that even this map displays two anomalous units 

corresponding to the non-naïve subjects. To summarize, results support that SOM has 

learned a topographic representation of the input space congruous with a priori data labels. 

 

 

Figure 21 Maps of distances between the weight of neighboring units for 4 x 4 and 5 x 5 maps. Darkest 
colours indicate largest distance while light colours denotes smallest ones. 



 

 

 

Figure 22 Maps of weight components. Darkest colors indicate smallest values while light colors denotes largest ones. 



 

 

 

Figure 23 Map of winning units for SRAD data according to rest and activation labels. 

 

Figure 24 Map of winning units for MCA data according to rest and activation labels. 

 

  Discussion 7.5.

In this chapter we enriched/integrated the “Mild Cognitive Activation” dataset collected 

from the volunteers enrolled during my work through the “Stress Recognition in Automobile 

Drivers” dataset from MIT Media lab. Aiming to assess stress activation, both of them were 

produced by recording a set of physiological signals in different settings. Our investigation 

was mainly conducted using the SRAD dataset (the most numerous) as development set, 

whilst MCA data were used for independent testing. 

From the original data space we extracted a set of 12 features including descriptors of HR, 

HRV, RR and GSR which are sensitive to individual response to stressors with emphasis on 

ANS response. Analysis of SRAD features space by SFFS supports the conclusion that median 

RR and number of GSR peaks have a prominent discriminating power and can lead to 

recognize activation statuses, which is also confirmed by MCA data analysis. 

We also tested AE features obtained from the SRAD dataset. They are estimated by using 

whole original data and are expected to reduce the potential information loss of SFFS 

mechanism. Results suggest that using two AE features can lead to good discrimination of 

rest states from activation ones. A similar conclusion is obtained by using the same AE 

features for MCA dataset. It stands to reason that our data space is intrinsically two-

dimensional with respect recognition of activation condition. This conclusion is also in 

accord with SFFS results. 

When applying standard k-means algorithm using the two most relevant features we 

observed two clusters that well represent rest and activation labels. This clustering is 



 

 

consistent with MCA data. Interestingly, in the latter case, the activation state of two non-

naïve subjects (the ones that had previous experience with the Stroop colour word test) was 

not detected. This actually confirms that the two subjects somehow behaved differently 

from the other ones. One could actually argue that the classification process did not really 

fail in this case, as activation of these subjects was quite moderate. 

As to the final part of the work, it must be pointed out that individual responses are 

intrinsically variable and the use of flexible but compact representations of individual status 

are highly desirable. In this context, the use of SOM networks revealed promising. 

Being non-supervised, SOM has the ability to autonomously discover significant pieces of 

information embedded in data space. In addition, they map data manifold in network space 

preserving topology and major related structural properties such as clustering. 

SOMs derived on SRAD data show the existence of two virtually separated zones in the 

map: one of them tends to respond to rest statuses, whilst the other best matches 

activation statuses. These results are also confirmed by MCA data, not used to train the 

map. A significant aspect of SOMs that is relevant for applications is their ability to discover 

and represent the internal structure of large clusters. In particular, each map unit can be 

viewed as a prototype (or code) of the individual’s status. In this view, activation (or rest) of 

a person is naturally represented by a structured family of codes. 
  



 

 

Conclusions  

In this work we have designed and developed a measurement setup that allowed us the 

unobtrusive recording of basic physiological signals (Chapter 2, targets 1-3). The data so 

collected were used to successfully recognize stress conditions under mild cognitive 

activation. 

A special attention was paid on the unobtrusive implementation of an effective 

processing method for measuring and analyzing the heart rate and its variability by using a 

video camera (Chapter 3). In this view we proposed the integration of multiple blood 

volume pulse signals, simultaneously acquired from a person’s face. The method allows the 

reliable measurement of heart rate and its variability. In addition, respiratory rate, galvanic 

skin response, and EEG signals were analysed through a chest belt, hand sensors, and a 

headband, respectively. 

As described in Chapter 4, Chapter 5, and Chapter 6 the results obtained from “Mild 

Cognitive Activation” dataset showed a good agreement with reports in scientific literature. 

This supports i) the robustness and reliability of our experimental setup for the unobtrusive 

monitoring, and ii) that the analysed signals are robust indicators of general stress 

conditions. The results obtained at this moment allowed the achievement of the target 

number four of the thesis. 

The last target of the thesis was addressed in Chapter 7 and for this reason the dataset 

collected from the volunteers enrolled in this work was enriched/integrated with the "Stress 

Recognition in Automobile Drivers” dataset from the MIT Media Lab. A set of features were 

extracted from the signals available (including ECG, HR, RR, GSR, EMG acquired both at rest 

and during driving). The data harmonization and feature selection were performed using 

two complementary approaches: sequential forward feature selection and auto-encoder 

neural network. From an initial set of 12 features we have determined, by the analysis of 

feature space by SFFS, that 2 of them (median RR and number of GSR peaks) can 

discriminate activation statuses from resting ones; we have obtained similar results using 

the AE approach. 

Then a cluster analysis was carried out using two complementary methods: k-means 

clustering and Kohonen self-organizing map. The preliminary unsupervised clustering 

carried out through the k-means clustering of the "Stress and Recognition in Automobile 

Drivers" exhibited interesting properties, enabling and efficient recognition of stress state. 

This result was further validated using the data from the MCA dataset. Also in this case, we 

were able to achieve good (90 %) discrimination accuracy. 



 

 

Finally we explored the use of Kohonen self-organizing map to provide a flexible 

representation of an individual status. Finally we showed that SOM can provide a 

comprehensive but compact description of activation statuses. 

Though the obtained results are in line with background literature, they are in a sense 

surprising as the two datasets used for development and testing were acquired under 

completely different experimental conditions (while driving or while performing the Stroop 

colour word test). This supports the idea that the used feature set is highly descriptive of 

individual activation status and able to predict a wide spectrum of activation conditions. 

This can support the idea that our approach could generalize across experimental 

conditions and tasks, being a valid procedure to adopt for estimating personal wellness 

during daily activities.  



 

 

Appendix A 

“Mild Cognitive Activation” Dataset – User provided data 

Besides sensed data, during experiments each volunteer is asked to provide some basic 

personal details and fill short questionnaires pertaining her/his perceptions.  

At the beginning of the experiment, the volunteer was asked to provide:  

age, sex, weight, height, and fill in the questionnaire of Perceived Stress Scale [127]. 

 
At the end of each test phase, the volunteers fills a short questionnaire about the stress 

level experienced by the subject. Stress self-assessment was conducted using two different 

questions as reported by Giokoumis et al. [128]. The first one is a Likert-scaled (1–5) 

question directly asking subjects whether they were feeling stressed during the test [129]. 

The second was a subset of the Stress Appraisal Measure questionnaire [130] including 

questions 2, 16, 24, and 26. 

  



 

 

Appendix B 

The experimental protocol received the Ethical Clearance certification (0050349/2019, 

July 09th, 2019) by the Council National Research Committee for Research Ethics and 

Bioethics. In addition to that, written informed consent was obtained from all volunteers 

included in this study. In order to explain the experiment, an information sheet was also 

distributed to the volunteers. 
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