Alma Mater Studiorum — Universita di Bologna

DOTTORATO DI RICERCA IN

Ingegneria Biomedica, Elettrica e dei Sistemi

Ciclo 33°

Settore Concorsuale: 09/G2 - Bioingegneria

Settore Scientifico Disciplinare: ING-INF/06 — Bioingegneria Elettronica e Informatica

METHODS FOR ACQUISITION AND INTEGRATION OF PERSONAL
WELLNESS PARAMETERS

Presentata da:  Veronica Chiara Zuccala

Coordinatore Dottorato Supervisore

Michele Monaci Giuseppe Coppini

Co-supervisori

Stefano Diciotti

Mauro Ursino

Esame finale anno 2021



Abstract

Wellness indicates the state or condition of being in good physical and mental health.
Stress is a common state of emotional strain that plays a crucial role in the everyday quality
of life, and significantly affects the wellness state of a person, being a ubiquitous risk factor
for virtually all non-communicable diseases. Nowadays, there is a growing individual
awareness of the importance of a proper lifestyle and a generalized trend to become an
active part in monitoring, preserving, and improving personal wellness for both physical and
emotional aspects. In this respect, it must be pointed out that the majority studies in this
field relies on the evaluation of the changes of sensed parameters passing from rest to

IH

“maximal” (intense) stress. However, the vast majority of people usually experiences
stressing circumstances in everyday life (e.g. at home, at work) which are prompted by a
wide spectrum of stimuli having varying intensity and consciousness. This led us to
investigate the impact of mild cognitive activation which can be somehow comparable to
usual situations that everyone can face in daily life.

As documented in scientific literature, several signals and data can be useful to
characterize the state of a person, but not all of them are equally important and/or reliable.
In order to reduce the complexity of data acquisition procedures and to simplify the
modelling of individual wellness, it is crucial to analyse the mutual relevance of the different
pieces of information. In this work we focus on a subset of well-established psychophysical
descriptors, including heart rate and heart rate variability, respiratory rate, electrodermal
activity, and electrical brain activity.

A deepened investigation was carried out to identify a set of devices enabling the
measurement of the psycho-physical parameters mentioned above. Beside technical and
methodological constraints on quality of collected data, the design of the experimental
setup and the selection of sensing devices was also driven by qualitative criteria such as
intrusiveness, reliability, and ease of use. These are deemed crucial for implementing
effective (self-)monitoring strategies.

During the PhD work, a reference dataset, named “Mild Cognitive Activation” (MCA), was
collected. It includes signals and data from a group of volunteers according to a protocol
approved by the CNR Committee for Research Ethics and Bioethics. Data collection was
focused on the impact of a mild cognitive activation induced by a simple test.

The last aim of the project was the definition of a quantitative model for data integration
providing a concise description of the wellness status of a person. This process was based on
unsupervised learning paradigms. In this phase of the work, data from MCA were integrated
with data from the “Stress Recognition in Automobile Drivers” (SRAD) dataset (MIT Media

Lab). This allowed a cross validation of the integration methodology.
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Chapter 1. Personal wellness

Wellness indicates the state or condition of being in good physical and mental health.
According to the World Health Organization, health should be defined as a state of
complete physical, mental, and social wellness, and not merely as the absence of disease
and infirmity [1]. In this perspective, any effort to evaluate personal wellness needs to be
framed in a global view encompassing virtually all aspects of individual life. The authors of
[2] propose a definition of wellness as a multidimensional state of being possessed by the
individual, which is part of health and can be described as positive health; quality of life and
a sense of well-being are the descriptors of wellness. In [2] it is pointed out that wellness is
not the same as physical fitness, is not a form of alternative medicine, and is what one is
rather than what one does. In [3] wellness is defined as a state of well-coordinated, goal-
oriented functioning to maximize personal potential and to enhance the quality-of-life.

Critical issues related to wellness include the development of valid and reliable methods
for assessing wellness and the study of the factors that impact on wellness once good
measures are established. The first attempts to construct numerical indices for wellness
evaluation date back to the 1940s. Since the 1960s, more general tools for quantifying
individual health and wellness have been proposed, which pay attention to individuals in
their many facets, including physiological measurements, psychological traits, and social
parameters.

Over the last years, the interest in the role of individual wellness in disease prevention
has grown rapidly. The scientific and medical community has started focusing on the need
to provide people with knowledge, services, and tools to support a healthy lifestyle. Indeed,
our everyday choices, along with our social and economic environment, influence the way
our genes express themselves in our dynamic phenotype and contribute to health or
disease[4][5]. This is especially relevant for non-communicable diseases (NCDs), such as
heart disease and stroke, cancer, diabetes, and chronic lung disease. Worldwide, NCDs are
responsible for about two-thirds of deaths. Moreover, the prevalence of NCDs is expected

to increase dramatically.

1.1. Objective vs subjective wellness scales

The health of an individual can be analysed from different viewpoints and with different
objectives. A consolidated literature exists on the measurement of the wellness of a
population [6], motivated by economic or epidemiological reasons. The indices are

computed via statistics on large population samples, and are usually based on the frequency



and duration of single diseases and related mortality [7]. While the indicators are useful to
characterize the population and drive policy actions by health services, they are not suited
to model the health status of individuals, drive behavioural changes, and prevent diseases.
Hence, we will limit our analysis to the assessment of individual wellness.

Historically, the early attempts to quantify the status of a person were focused on the
assessment of the functional abilities of a patient in specific pathophysiological conditions.
Noteworthy examples are the American Rheumatism Association Function Scale [8], the
Karnofsky Score [9] created for cancer patients, and the New York Heart Association
Functional Classes [10]. These simple instruments were conceived to combine several
dimensions into a single scale. They also served to define a common and consistent
terminology in the medical community. These tools are based on the judgment of an
external observer, typically a physician, and are therefore referred to as objective.

By contrast, subjective scales are based on subjective perceived wellness. A relatively
simple approach to gather information about personal health information is the use of
guestionnaires or remote consultation as forms participative inquiry [11]. The International
Wellbeing Group [12] proposes a questionnaire-based method to compute a personal
Wellbeing Index, based on a domain-level representation of global life satisfaction:
individual items refer to specific life domains, and the scores are averaged to produce a
measure of Subjective Wellbeing. A well-known tool for assessing the perceived health
status is the 36-item Short Form questionnaire that measures eight constructs of
functioning: physical function, mental health, role emotional, role physical, social function,
bodily pain, vitality, and general health [13]. The study [14] tries to combine the relative
contributions of both physical and psychological health in a measure of global well-being.
The study is carried out in a sample of healthy young adults, early in their college careers,
with the purpose of exploring individual differences that contribute to the sense of well-
being, and identifying characteristics of flourishing versus non-flourishing individuals. Along
with age and sex, the study uses indices derived from the following questionnaires: Arizona
Integrative Outcomes Scale, global physical health, positive and negative mood (Positive and
Negative Affect Schedule or PANAS), resilience (Connor-Davidson Resilience Scale), and
repressive defensiveness (Marlowe-Crowne Social Desirability Scale or MCSD-SF). The
results are based on the ratio of positive/negative scores established by using complex
systems methods. According to the study results, positive-to-negative affect (P/N) ratio
explains a substantial portion of the variance in the well-being of healthy young adults and
represents a well-being measure easy to compute, sensitive, and useful as a clinical measure
to track change with treatment over time.

Despite the number of subjective measures reported in the literature, there is substantial
evidence about the discomfort that traditional information gathering methods produce [15]:

people are asked to fill lengthy questionnaires, answer a huge set of questions, and provide



a large amount of personal information about their health status. On the other hand,
individual perception of personal wellness is a relevant piece of information about health
status and should be taken into account when defining/measuring the status of an
individual. It stands to reason that integrating objective measurements with self-reported
data should provide the basis for comprehensive and practicable wellness indices.

1.2. Wellness and Self-Monitoring

There is a growing individual awareness of the importance of a proper lifestyle and a
generalized trend to become an active part in monitoring, preserving, and improving
personal wellness. The self-monitoring and the self-learning systems are important tools to
provide the knowledge, the customer care, and the devices for the achievement of the
personal wellness. Recently, the use of mobile devices has opened a new perspective on the
assessment of the wellness and stimulated the development of new approaches based on
individual self-monitoring. In recent years, a growing number of studies addressed the
development of systems for quantifying the individual health and wellness status [16].
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Figure 1 Mobile phone as mobile health platform.

The 2010 position paper by Kailas [17] provides a synthetic view on the paradigm of
wellness mobiles, wherein mobile phones are equipped with biometric sensors for real-time
self-wellness monitoring. A possible platform could follow the scheme in Figure 1.
Inexpensive sensors measure and record biometrics of the user, such as temperature, heart
rate (HR), and galvanic skin response (GSR). The biometrics are then weighted (weighting
coefficients denoted as wy, ..., wp, in Figure 1 and combined with other information, possibly
also obtained using the mobile phone. The result is a wellness index that can be customized
to the users’ daily lifestyle. In this way, the concept of wellness mobile can improve the

quality of life of the phone user by facilitating timely and better-quality measurements,



supporting instantaneous feedback, improving the quality of medical information, and
enhancing patient compliance.

Wellness Index

© © 6

LI

Exercising Commuting Work

Self-Wellness Monitoring

Phone with
Biometric Sensors

Figure 2 An activity-based self-wellness monitoring application.

Further, the mobile application can be used during various activities (Figure 2), which
entail different demands from the user to track the wellness states transitions during
different tasks.

The statements in the position paper [17] are reinforced in [18], which sketches the
guidelines for defining a wellness inference algorithm based on wellness recognition and
tracking, followed by user assistance. As shown in Figure 2, a conceptual model for affective

state monitoring on a mobile wellness platform should consist of four layers (Figure 3):

1. Predictive Layer (Activities). The layer includes the factors that affect the wellness
state of a user, under the hypothesis that the state of wellness undergoes variations
during the day according to different activities carried out: user profile, context, time

of the activity, and prior wellness state.

2. Hidden Layer (Wellness State). Well-known wellness inhibitors are stress, fatigue,
bad health, and confusion, which can cause various diseases or detectable
conditions such as large deviations from normal processes and biometrics (e.g., body
temperature, heart rate, etc.). The model recognizes and tracks the anti-wellness
(e.g., stress) state transitions using sensory measurements. Each anti-wellness state

can have a set of possible values.

3. Observable Layer (Evidence). An evidence is an observable feature that is capable of
providing clues about the users’ internal wellness state that is hidden. There are four

classes of measurable evidence:



a. the user’s physical appearance features: visual features that characterize
eyelid and pupil movement (gaze tracking, pupillary response, etc.), gestures,
change in pressure at finger tips, and head movement;

b. physiological measures: electrocardiography (ECG) measures,
electromyography (EMG) measures, galvanic skin response measures that
assess the electrical properties of the skin in response to different kinds of
stimuli, etc.;

c. behavioural traits, such as key strokes using the keyboard;

d. performance measures, as user response time and accuracy rate in a task,
which can be influenced by wellness states.

4. Action Layer (Timely User Assistance). The design of an appropriate assistance
depends on a number of factors such as the activity, and context, and should be
personalized to the user. The range of applications and assistive services offered to
the user could range from advice/tips from medical on-line professionals to

entertainment (e.g., on-demand video, music, etc.) to online games.
Importance User Prior wellness
of the goal profile state
Predictive layer m

Hidden layer Wellness state

sves Lo e .

Observable
layer

@ Physiological

Action layer

Figure 3 A four-layer conceptual model for wellness state monitoring.



1.3. Wellness sensing

The interest in measuring wellness status and related aspects is documented by a huge
scientific and technical literature on the topic, exponentially grown in last decade. A
detailed survey of published works goes beyond the aims of this thesis. Here we limit to
overview the main contributions pertaining the content of next chapters. It should be
pointed out that the field is highly interdisciplinary, involving the work of clinical
researchers, engineers, physicists with strong contribution from ICT academic community.

Addressed topics include investigation and development of:
a. physical sensors and devices to improve acquisition of physiological signals;
b. methods and tools for data processing and analysis;
c. models for feature selection and integration.

A major issue underlying the whole research field pertains the operation in daily-life
setting, possibly in naturalistic or quasi-naturalistic conditions, minimizing sensing
obtrusiveness. This makes data acquisition extremely prone to different sources of artefacts
such user motion, environmental interferences, giving rise to an additional de facto research
line aiming to reduce artefact occurrence and their impact on data quality.

In this view, there are many papers dealing with use of smart phone to track minor vital
signs and physical activity. Huang et al. [19], used the camera of a smartphone to measure
the heart rate and its variability. These parameters could be measured through t-shirts
provided by textile sensors in order to monitor the state of elderly people [20]. The
sensorized t-shirts were integrated with Wi-Fi, RFID, and GSP/GSM technologies to obtain
information about the subject position also and to transmit all the information captured to
specialists. In this way, if abnormal parameters have been measured it is possible to
intervene quickly. Some studies describe the integration of the psycho-physical parameters
to provide information about the individual state such as the fatigue [21][22][23][24]. Al
Libawy et al. [21] developed a fitness watch that collect data such as heart rate,
temperature, skin conductivity, and provide information on the fatigue of six subjects. In
this study, two different classification methods are compared: the Support vector machine
(SVM) and the feed forward neural networks. Tayibnapis et al. [23], through imaging
techniques analysed the gaze direction, the eye blinking, the frequency of yawns, the heart
rate, the heart rate variability (HRV), and the respiratory rate (RR). All these pieces of
information were used to estimate the level of fatigue in a driver. The level was estimated
through an SVM system.



The studies previously cited, used different psycho-physical parameters to obtain
information on the wellness state of a person. Indeed, the psycho-physical parameters
usually involved in the description of the state of a person are numerous such as heart rate,
heart rate variability, respiratory rate, blood pressure, body temperature, skin conductivity,
and electroencephalography signal, but not all of these are equally relevant and reliable. In
order to reduce the complexity of the acquisitions and to simplify modelling tasks, it is
important to investigate the relevance of the various parameters [25]. Furthermore, it is
important to define the relationship between the parameters and the individual condition.
For example, the heart rate increases due to both exercise and a fright.

Nowadays, research is moving towards development of integrated multi-sensing systems
able to trace and integrate psycho-physical parameters [26][27][28][29][30]. A significant
example is provided by the Wize Mirror (WM), a multisensory platform implemented as a
smart mirror [30]. The Wize Mirror detects and monitors over time semiotic face signs
related to cardio-metabolic risk, and encourages users to reduce their risk by improving
their lifestyle. The WM has a user-friendly interface and different devices that measured
psycho-physical parameters of the user in front of the mirror. The WM collects multispectral
images, video, 3D scans, and information on the molecules in the breath samples (through
an external device called Wize Sniffer that contains gas sensors). All the parameters
extracted are integrated in order to define a virtual model of the person and a wellness
index is calculated. The wellness index provides to the user an auto assessment of the
his/her wellness state over time.

To conclude this section, we would like to observe that, despite the increasing interest on
the matter, no general (self-)monitoring framework has been established for assessment of
the an individual’s wellness status by mobile devices. Similarly, no general indicator of the
individual health status has gained universal acceptance up to now. In this respect, many
authors agree that Al-based methods able to capture complex knowledge representations

from data, could provide a valid tool for modelling the individual's state of wellness [31][32].

1.4. A ubiquitous wellness factor: stress level

Stress is a common state of emotional strain that plays a crucial role in everyday quality of
life, so as to the wellness state of a person. This state consists of several complementary
and interacting components (i.e. cognitive, affective, and psycho-physiological). Stress is
usually a state of tension that is created when a person responds to demands and pressures
arising from external sources (e.g. work, family, and social environment) as well as those
internally generated (e.g. self-imposed demands and obligations, self-criticism) [33].
Furthermore, chronic stress carries a wide range of health-related diseases, including

cardiovascular diseases, cerebrovascular diseases, diabetes, and immune deficiencies [34].



Stress is known to induce abnormal responses in the autonomic nervous system (ANS),
which consists of the sympathetic nervous system and the parasympathetic nervous system
under antagonistic control [35][36]. These two systems are related to stress and relaxation
reactions, respectively, so that stress activates the sympathetic nervous system and
suppresses the parasympathetic nervous system [37][38].

Due to the adverse effects of stress in our daily life, stress management has been
receiving an increasing attention in health-care and wellness research [39]. As a matter of
fact, stress is recognized as a major risk factor for most NCDs and its evaluation is crucial for
defining individual wellness.

The majority of studies in this research field relies on the evaluation of the changes of
sensed parameters passing from rest to “maximal” (intense) stress. This provides important
cues about the individual capability to react to severe stress. On the other hand, the vast
majority of people usually experiences stressing stimuli in everyday life (both family and at-
work) and a wide spectrum of stressing circumstances, both positive and negative, can be
listed.

This led us to investigate the impact of mild stimulations which can be somehow
comparable to a normal condition that everyone can deal with in a daily life. This approach
also eases monitoring individual status in routine setting (e.g. at work) making it possible to

design minimally obtrusive monitoring/testing procedures.

1.5. Targets of the project

In this work we aimed at investigating the main aspects of individual psycho-physical
wellness based on sensing self-monitoring. The scope is mainly the every-day life setting
with emphasis on stressing conditions.

The project has multiple aims, including:

1. investigation about which are the most relevant psycho-physical parameters

involved in the description of the wellness state of a person (Chapter 2);

2. definition of a set of unobtrusive devices for measuring such parameters (Chapter
2, Chapter 3);

3. definition of the experimental setup (Chapter 2, Chapter 3);

4. collection of data from a group of volunteers during a rest state and a mild

cognitive activation (Chapter 4, Chapter 5, Chapter 6);



5. definition of a data integration model that could be used to automatically monitor
psycho-physical parameters (Chapter 7).



Chapter 2. Signals and sensors

As already pointed out in Chapter 1, the signals and data useful to characterize the state
of a person are numerous, but not all of them are equally important and/or reliable. In
order to reduce the complexity of acquisition procedures and to simplify modelling tasks, it
is crucial to analyse the mutual relevance of the different pieces of information [25]. In this
work we focus on a subset of well-established psychophysical descriptors including: heart
rate and its variability, respiratory rate, electrodermal activity, and electrical brain activity.
These are listed in Table 1, where we summarize their main properties in view of their usage

for wellness monitoring in daily life settings.

Table 1 Main psycho-physical parameters investigated in this work. Their major scope, standard (or usual) source, as well
data accessibility and reliability especially for unobtrusive (self-)ymonitoring are outlined.

Parameter Relevant to Data Source Accessibility Reliability

Heart Rate Homeostasis, PPG, ECG High High
Emotional status

Heart Rate Homeostasis, ANS ECG High/Medium High/Medium
Variability activity
Respiratory Rate Homeostasis, Chest Cage motion High High

Emotional status,
General health

status
Electrodermal ANS activity, GSR signal High Medium
activity Emotional status
Electrical Brain In this work we EEG Medium/Low Medium
activity focus on Emotional

status, cognitive

activity

2.1. Psycho-physical parameters

As described in [39], the autonomic nervous system controls the organs of our body such
as the heart, the stomach, and the gut. ANS includes sympathetic and parasympathetic
nervous systems. The parasympathetic nervous system is responsible for nourishing,

calming the nerves to return to the regular function, healing, and regeneration. On the



contrary, the sympathetic system is accountable for activating the glands and the organs for
defending the body from the threat. The activation of the sympathetic nervous system
might be accompanied by many physical reactions, such as an increase in the heart rate,
rapid blood flow to the muscle, activation of sweat glands (with related changes of
electrodermal activity - EDA), and increase of respiratory rate.

Heart rate and heart rate variability are significant indicators of the psychophysical status
of an individual and are useful clues for detecting risky conditions. HR is the mean number
of the heart beats per minute. It is a basic indicator of the cardiovascular homeostasis. The
HR varies according to the body’s physical needs, changes being observed in a variety of
conditions including physical exercise, sleep, anxiety, stress, illness, and assumption of
drugs. Monitoring the heart rate is therefore important in both normal and disease
conditions. In illness an association exists between HR and outcome in heart failure and high
baseline heart rate is considered a cardiovascular risk factor [40]. The HRV is the fluctuation
in the time intervals between adjacent heartbeats. It is an index of the adaptation of the
heart to circumstances by detecting and readily responding to unpredictable stimuli. The
HRV is mainly modulated by the sympathetic and parasympathetic components of the
autonomic nervous system [41]. In particular, the sympathetic stimulation is activated in
response to stress, exercise, and heart disease and this causes an HR increase [41].
Parasympathetic activity is the result of the function of internal organs, reaction to trauma,
allergic reactions, and the inhalation of irritants. This activity determines a decrease of HR
[41]. The HRV is altered in several cardiac diseases [42]. In addition, studies have also shown
that smoking reduces the HRV due to the increase of the sympathetic activity and reduction
of the vagal activity [43]. As a matter of facts, HRV is an indicator of health status in the
general population [44], of adaptation to stress in athletes [45], and of fatigue in drivers
[46]. Furthermore, the HRV is important to measure mental stress and, coupled with the HR,
can be used to monitor individual wellness in behavioural research [47].

Respiratory rate provides important information on a person’s health condition and
physiological stability, an abnormal respiratory rate being a strong indicator of illness [48].
In fact, a sudden change in respiratory rate is one of the strongest predictors of mortality
[49][50]. Respiratory rate is correlated with emotional status and can be used for stress and
anxiety detection [51]. Studies reports that respiration rate increases significantly under
stressful situations [52].

Galvanic skin response is used in relation to mental state, such as stress, drowsiness and
engagement [53]. GSR or EDA is the measure of the continuous changes in the electrical
characteristics (conductance) of the skin caused by the variation of the sweating of the
human body. This concept is based on the assumption that skin resistance varies with the
state of the sweat glands in the skin (the resistance was just reciprocated to determine the

conductance). This concept is based on the activity of the ANS as a (strong) stimulation of its



sympathetic branch activates the sweat glands. This tends to decrease the skin resistance,
increasing skin conductance [53]. Skin conductivity is sensitive to many different stimuli
(strong emotion, a startling event, pain, exercise, deep breathing, a demanding task,
cognitive workload, stress etc.); thus, it is often hard to determine what caused a particular
skin conductivity response. Different studies noted that the electrodermal response
represents an adequate measure for sympathetic activation that is related to stress [54].
The Electroencephalogram (EEG), being a major manifestation of brain activity, is a rich
source of information important for detecting and assessing mental stress [55][56][57].
Neurophysiological studies [58] have reported the relationship between human emotion
and hemispheric specialization, where the left hemisphere is more involved in processing
positive emotions and approach-related behaviours, and the right hemisphere is more
involved in processing negative emotions and withdrawal behaviours. These differences are
represented by a model of emotional processing in which the frontal cortex plays a key role.
Evidence supporting this model has been obtained from studies concerning asymmetry in
prefrontal EEG alpha activity. Positive mood or reactions have been shown to be associated
with relatively greater left prefrontal activity and negative mood or reactions with relatively
greater right prefrontal activity. The results of recent neuroimaging studies suggest that
negative affect typically elicits activation on the right prefrontal cortex, amygdala, and
insula, and the left prefrontal cortex is associated with positive emotions [58]. The right
prefrontal cortex may be critically involved in the response to stress, since it is a
fundamental component of both the emotional and vigilance networks. Some studies
suggest that high levels of right-sided prefrontal activation are associated with a negative
affective style and weakened immune system. For example, Davidson [59][60] has reported
that differences in prefrontal activity asymmetry reflect individual differences in affective
styles. Also, the prefrontal cortex may mediate the extent to which psychosocial stress
affects mental and physical health [61][62]. Differences appear to exists in how activity of
the left and right cortical hemispheres affects ANS functioning. Moreover, the extent of this
asymmetry has been suggested to vary under conditions of chronic stress [63]. Similar
findings are reported for stress related emotions, with preferential right hemispheric
activation in the frontopolar region that can be associated with electrodermal activity in
anxious subjects [64]. The asymmetric analysis of the frequency-band powers in the EEG
measured at the prefrontal cortex has been generally applied in previous stress studies.
Particularly, the alpha band asymmetry is commonly used as indicator of the personal level
of stress. Alpha waves reflect a calm, open, and balanced psychological state with a
decrease in alpha wave activity during stress. Alpha wave training attempts to alleviate
stress by inducing a state of relaxation. This involves removing or reducing habitual

tendencies to respond to stressful situations with tension and anxiety [65].



2.2. Experimental setup

A deepened investigation was conducted to identify a set of devices enabling the
measurement of the psycho-physical parameters mentioned above. We analysed different
devices utilized in studies similar to the present. Besides technical considerations (e.g. type
and quality of sensed signals, available software packages), the analysis was driven by other
qualitative criteria: intrusiveness, reliability, and the ease of use were key features taken
into account in the selection of the devices.

Non-contact measurement of the HR and the HRV could greatly simplify data acquisition,
making such measurements easily available in non-clinical scenarios (e.g., driver monitoring
[66], man-machine interaction monitoring [67]). Furthermore, non-contact systems could
allow effective remote monitoring of patients. Several methods have been studied with this
aim: the HR from speech [68], thermal imaging [69], microwave Doppler effect [70][71], and
imaging photo plethysmography [66][72][73][74]. Imaging photo plethysmography (iPPG) is
based on similar principles as the detection of finger pulse amplitudes. The heartbeat
initiates the pulse wave and it travels through the arterial vascular system reaching various
parts of the body. Here, the pulse wave determines a short-termed change of blood volume
in the observed skin region: the intensity of the absorbed light depends on this volume,
likewise the finger pulse measurement (standard plethysmography) [75]. It is therefore not
surprising that several studies have been performed to evaluate whether the heart rate can
be assessed from video streams [76], thus avoiding the use of wearable sensors. Concerning
the signal acquisition in iPPG, video sequences are usually taken from a subject’s face due to
the high blood supply and the imaging simplicity. Both webcams [73][77][78][79][80] and
conventional video cameras [81][82][83][84] have been used for this task. Webcams provide
low-cost and easily available setups, whereas standard cameras are expected to produce
better quality signals with higher spatial and temporal resolution, along with extended
spectral capabilities. Tayibnapis et al. [66]utilized an infra-red camera in order to capture
the driver’s facial images. Zhao et al. [85] utilized a near-IR camera in order to extract the
HR and the respiratory rate in both day and night light conditions. Authors also conclude
that the HR and the RR can be extracted using single channel images. Typically, the
strongest plethysmography signal is contained in the green channel [86]. This result is due
to the fact that (oxy-)haemoglobin absorbs green light better than that red. Moreover,
green light penetrates deeper into the skin than the blue light [82]. It stands to reason that
using spectrally tuned band can significantly enhance iPPG signal.

Current methods to collect respiration data include the use of respiration belts,
measurement of impedance through ECG electrodes, spirometers, or visual
observation/counting. These techniques have drawbacks that limit the frequency and
convenience of the respiratory monitoring. The large diffusion of wearable devices has

stimulated interest in monitoring athlete training, with the aim of maximizing performance,



and minimizing the risk of injury and illness [87]. In these field, chest belts are very common
choice and we resorted to adopt them. Measurement of the RR occurs through an
embedded capacitive sensor composed of layers of conductive fabric, foam, and flexible
mylar. Based upon the principle of a strain gauge sensor, thoracic expansion and contraction
cause size differentials that induce changes in capacitance because of resultant changes in
impedance. The change in impedance is manifested as a change in waveform signal
amplitude represented as a sine wave with downward and upward deflections indicating
chest expansion (increased impedance) and contraction (decreased impedance),
respectively.

GSR can be measured by different methods. In general, GSR sensor measures the real-
time skin conductance which is related to the sweat gland activity depending on emotional
response and environmental condition [88][89]. GSR is typically acquired in hand fingers.

The majority of clinical studies use the EEG channels from hair-bearing scalp areas.
However, this method requires the use of a conductive gel and an appropriate preparation
procedure, which are particularly inconvenient for users. Indeed, the EEG recordings from
hairless regions such as the forehead, or behind or inside the ear, would be more suitable
for long-term monitoring in daily life. For this reason, there simple headband with sensors
positioned in the hairless region are of common usage for various applications in well-being
and fitness field.

On the basis of what we have just reported, the following set of the non-medical

commercial devices were used:

1. Gigabit Ethernet camera with a CMOS monochrome sensor (UI-5240SE-NIR-GL, IDS
GmbH DE). The camera was operated at 133 fps with an image matrix of
352 x 224 pixel, 8 bits/pixel. In order to enhance the plethysmographic signal, the
camera mounted an optical band-pass filter cantered at 560 nm with a bandwidth of
40 nm.

2. BioHarness 3 Zephyr chest belt (Medtronic Inc, USA) for the respiratory rate measure
with a frequency rate of 1 Hz.

3. Shimmer3 GSR (Shimmer, Ireland) for the galvanic skin response signal acquisition
with a frequency rate of 256 Hz.

4. Muse 2 Headband (InteraXon Inc, USA) for the EEG signal acquisition.

A medical device was also used as ground truth for the ECG signal. To this end we
adopted the EGO5000 Medlab ECG Five Channel Module (Medlab GmbH, DE) operating at
300 Hz that it was employed to acquire the ECG lead sampled at 300 Hz.

All these sensors were connected to an Apple Mac Minicomputer (Intel Core i7 dual-core
processor clocked at 3 GHz, 16 GB RAM, and 500 GB SSD).



Though each sensor had its own software tools (apps and libraries), the management of
the integrated platform made its necessary to design ad hoc instruments so as to record
signals simultaneously from the different source and store them with proper time stamping.
This occurred by ad hoc wrappers written in C /C++ languages.

MATLAB (Mathworks, USA) was extensively used as the data analysis platform for all
signals collected during the experimental sessions. Several MATLAB toolboxes were
exploited, such as the Statistics and Machine Learning toolbox or the Curve Fitting toolbox.

During the acquisition procedures (Figure 4), subjects were sitting still in front of the
computer monitor at a distance of about one meter. The chair had a headrest to contain
head motion and make the recording comfortable for the volunteer. The subject face was
illuminated by a white LED light source.

Subsequently, all the devices were positioned and calibrated. The ECG lead | had four
electrodes corresponding to left and right arm, left and right limb. The camera was
positioned on a tripod at a distance of about one meter from the subject. The BioHarness 3
Zephyr chest belt was positioned around the chest with the centre line of the device directly
under the armpit. The two electrodes of the Shimmer3 GSR were positioned on the palmar
surface of the proximal phalanx of the index and of the middle finger, respectively. The
Muse 2 Headband is positioned as a normal headband.

After the sensor’s calibration was asked to the subject to close his/her eyes and to relax.
The subject’s signals were recorded for five minutes in resting state. Subsequently, signals
were acquired during a mild cognitive activation induced by the performed of a test.

EEG headband
GSR sensor

Chest belt

Figure 4 Experimental setup.



2.3. Testing protocol

Different laboratory procedures can be used to reliably induce stress in human research
participants [90][91][92]. The most popular methods includes: the Stroop colour word test
(SCWT), that will be described later [93][94][95][96][97][98], the Trier social stress test
where subjects perform count backwards [90][99][100][101], and the Montreal imaging
stress task where subjects perform basic math operation [102][103].

Taking into account that we are mainly focusing in moderate (non-maximal) personalized
stimulations, we resorted to adopt the Stroop colour word test.

The SCWT is a neuropsychological test extensively used for both experimental and clinical
purposes. It assesses the ability to inhibit cognitive interference, which occurs when the
processing of a stimulus feature affects the simultaneous processing of another attribute of
the same stimulus [93]. In the most common version of the SCWT, which was originally
proposed by Stroop in the 1935, subjects are required to read three different tables as fast
as possible. Two of them represent the “congruous condition” in which participants are
required to read names of colours (henceforth referred to as colour words) printed in black
ink (W) and name different colour patches (C). Conversely, in the third table, named colour-
word (CW) condition, colour-words are printed in an inconsistent colour ink (e.g., the word
“red” is printed in green ink). Thus, in this incongruent condition, participants are required
to name the colour of the ink instead of reading the word. In other words, the participants
are required to perform a less automated task (i.e., naming ink colour) while inhibiting the
interference arising from a more automated task (i.e., reading the word) [94][95]. This
difficulty in inhibiting the more automated process is called the Stroop effect [93].

In this project a portable version of the SCWT was implemented by an ad hoc Java app

(Figure 5). We designed two different versions of the test:

1. Test A - a congruent version of the SCWT, where the font colour always matched the
displayed colour name. The time limit to answer each question was set to two
seconds and the overall test lasted two minutes.

2. Test B - an incongruent version of the SCWT, where the font colour not matched the
displayed colour name. The time limit to answer each question was set to two
seconds and the overall test lasted three minutes.
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Chapter 3. Heart rate and heart rate variability from
single-channel video

3.1. Introduction

Several methods have been proposed to extract the blood volume pulse (BVP) signal from
face movies. A widely adopted framework is based on blind source separation (BSS)
techniques. The video signal is modelled as a mixture of contributes including BVP, motion
artefacts, and external illumination changes. Poh et al. [73] processed the red-green-blue
(RGB) video components by Independent Components Analysis (ICA) to enhance BVP. An
alternative approach based on the BSS by Principal Components Analysis (PCA) was
suggested by Lewandowska et al. [80]. The BSS was applied to RGB video components
providing acceptable BVP estimation under the assumption of very small face motion and
low image noise. To overcome such BSS (ICA- and PCA-based) limitations, several
researchers investigated alternative processing methods. Wang et al. [24] exploits image
redundancy to counteract the effect of the face movement. Feng et al. [79] adopted a
simplified model of the optical properties of the skin to compensate for head motion.
Tarassenko et al. [83] proposed an iPPG system exploiting autoregressive modelling of video
time series to compute the HR together with the respiratory rate and the Oxygen
saturation. Though video signal intensity is the most utilized source of information to detect
BVPs, a different method based on head motion related to BVP propagation is reported in
[104].

The assessment of the HRV from video is usually more demanding than measurement of
the HR. In fact, the HR estimation only requires BVP detection so as to compute the average
number of pulse per minute, the HRV assessment requires a precise temporal localization of
pulses. In principle, most methods for the HR assessment from video can be adapted to
estimate the HRV. Video sequences are usually processed to detect blood volume pulses
and obtain a tachogram (i.e., the time series of inter-beat interval duration), similarly to
what done in ECG-based analysis. In particular, the tachogram can be analysed both in time
domain and/or in frequency domain [105]. For example, in [73] iPPG tachogram is used to
compute standard HRV descriptors both in the time and the frequency domain. High
correlation with parameters derived by standard photoplethysmography (PPG) on 15
subjects is reported. Another solution based on Zero-phase Component Analysis has been
reported by lozzia et al. [106] to evaluate the suitability of iPPG to assess autonomic

response. Tayibnapis et al. [66] applied the PCA to estimate HR and HRV signals from an



RGB video. These signals were then used with a set of facial features to detect fatigue
through a Support Vector Machine.

In general, the HR estimation from iPPG is in good agreement with reference techniques.
In particular, it was shown that the HR estimated from the iPPG highly correlates (Pearson
coefficient > 0.90) with the HR extracted from standard ECG signals [73]. Standard PPG, due
to its simplicity, is the most common reference in iPPG studies. Though PPG provides
accurate HR measurements, the gold standard for HRV assessment remains ECG recording
that allow a fine localization of the heart beat [105]. PPG seems a viable surrogate of ECG
for healthy subject at rests, but its performances tends to worsen in exercise and in
diseased people [107][108]. In addition, it must be pointed out that, up to now,
experimental results are from small sized populations, data acquisition usually occurring in
highly idealized conditions. In particular, short-term analysis is considered by most
researchers with video recordings lasting non longer than 60s, instead of the usual
5 minutes recommend in [105], usually capture with a subject staying still in front of a
camera.

Obviously, when acquisition constraints are relaxed, several factors can alter the iPPG
signal and degrade the performances of processing algorithms. For example, subject
movements can be a source of troublesome artefacts. Rigid motions can be somehow
compensated by proper tracking of the region of interest but the effects of non-rigid facial
movements can be hardly removed. Rapid changes of environmental lighting can also
interfere with iPPG and this need to be taken into account when setting up an iPPG system.
Imaging parameters such as spatial and temporal sampling and the sensor spectral response
impact on image quality. Though spatial resolution does not seem a major iPPG problem
(mostly because iPPG signal is usually averaged on large facial areas), temporal resolution is
expected to affect BVP localization with a possibly relevant impact on the HRV analysis. In
this respect, it is worth remembering that in standard ECG-based HRV measurements
sampling rates lower than 100 Hz are discouraged [105]. Though iPPG is based on different
principles than ECG, temporal sampling requirements should be more deeply investigated.

Through this analysis we report on a novel iPPG methodology to monitor the HR and the
HRV of normal subjects [109]. Based on the previous considerations, the work described in
this chapter has a twofold aim: a) investigate the use of ICA pre-processing of spectrally-
tuned single-channel video streams to enhance iPPG signal by exploiting multiple spatial
measurements, b) analyse the impact of imaging parameters on the HR and the HRV
descriptors estimation. In next sections, after describing the experimental setup, we report
on the estimation of HR and HRV parameters (computed both in time and frequency
domain) in varying experimental conditions. The iPPG-derived parameters are compared

with corresponding descriptors derived from simultaneous ECG recording.



3.2. Blood volume pulse from video

The propagation of blood volume pulses makes skin reflectance changing in time, which,
in turn, changes the colour of video recordings and this is the primary source of information
we consider to detect HR from face videos. However, colour changes can be produced by
other physiological processes, voluntary subject movement as well as ambient factors. In
this work, we refer to the experimental setup sketched in Figure 6, where an individual is
sitting in front of a camera with the face uniformly lit by a stable white LED lamp with no
other (natural or artificial) light sources. On this ground, we will focus mainly on subject-
related effects.

Among these, respiration is responsible of small cyclic head and neck movements that can
be detected by imaging face regions including motion sensitive features (e.g., the borders of
lips). In addition, involuntary movements (e.g., muscular tremor and eye blinking) should be
taken into account as potential source of interference. Voluntary head motion that may be
related to a wide variety of activities (e.g., speaking, tracking moving objects) can be
expected to introduce relevant picture changes interfering with the recording of vital signs.
In this work, the BVP signal is extracted from a set of observations of the iPPG video taken in
different facial regions. Let assume that, for a fixed wavelength, a iPPG signal g(t) is
obtained at time t by spatially averaging the image intensity in a region of interest (ROIl). We
assume that averaging makes camera noise negligible.

According to a widely accepted model for iPPG [110], g(t) is produced by specular and
diffuse reflections of the incident light /o(t). Separating continuous and time varying, zero

mean, contributes, one can write:

g(@© =1, (1 +i(©)(k + um(t) + op(¥))(1)

where Ip(t) = Ip(1 + i(t)), k accounts for all contributes to constant reflection, m(t) describes
changes of specular reflection, and p(t) relates to changes of diffuse reflection. The
coefficients u and o quantify the change of skin reflection and the strength of BVP pulse,
respectively. It is worth noting that the term p(t) is the only contribute pertaining BVP.
Equation 1 can be simplified by assuming that the time varying components are small

compared to continuous ones and that their cross products can be neglected:

g(8) = Iok + uloki(t) + Ioum(t) + Ioop(t) (2)

We can therefore conclude that the iPPG signal is, approximately, a linear combination of

three contributes: i(t) related to illumination changes that, in our case, is related to subject



motion with respect to the light source!, m(t) that describes specular changes of skin
surface due to subject motion, and p(t) that must be imputed to diffused reflection and
accounts for BVP contribute. The signal i(t) is often estimated from RGB videos which
provides three different combinations of the underlying.

In the following we will consider monochrome images acquired with a narrow-band filter
centred on haemoglobin absorption peaks. Multiple iPPG signals are generated from
different ROIs in regions having high vascularization. Assuming that i(t), m(t), and p(t) are
approximately uniform among the ROls we rewrite Equation 2 for each region ROI:

g (&) = Iok; + Ioc;i(t) + Iou;m(t) + loojp(t) (3)

where k;j, u;, and oj are the constant reflection, the specular and the diffuse reflection in
the j-th ROI, respectively. Based on Equation 3 we exploit the spatial dependence of g(t) to

enhance BVP estimation by means of ICA.

3.3. Materials and methods

3.3.1. Study’s participants

Thirty healthy participants (12 females and 18 males with mean age of 39.17 years, range
from 22 to 61) were recruited for voluntary participation in this study. The presented
examination was part of a larger study aiming at evaluating the possibility of using imaging
techniques for individual self-assessment and self-monitoring of cardio-metabolic risk [109].
The experimental protocol, conducted in Pisa, Italy, was approved (September 10th, 2015)
by the local Ethical Committee of Pisa, Italy (Study 213/2014) and received the Ethical
Clearance certification (0086129, November 11th, 2014) by the Italian National Commission
for Research Ethics and Bioethics. Written informed consent was obtained from all subjects
included in this study. The study protocol is compliant with the European Union General

Data Protection Regulation [111].

3.3.2. Experimental setup and video acquisition

The subjects were sitting still in front of the camera at a distance of about one meter
(Figure 6). The chair had a headrest to contain head motion and making the video recording
comfortable for the volunteer. After a three minutes rest the subject’s face was recorded

for five minutes. The subjects were illuminated by a white LED light source. The acquisitions

In principle, small cyclic head movements due to Newtonian reaction to blood influx may results in related subtle cyclic
changes of skin reflectance. However, their impact on m(t) in a uniform skin patch, not including motion sensitive features,
can be neglected.



were performed through the camera and the ECG system described in section 2.2. All the
videos and the ECG recordings were acquired and analysed through a custom software
written in C++.

White LED frame

A

ECG Data acquistion

Figure 6 Data acquisition setup.

3.3.3. ECG signal analysis

The reference data were obtained by extracting the tachogram from the ECG signal. To
this end, the Inter Beat Intervals were defined following QRS complex detection [112]. To
remove possible artefacts, the interval beat intervals (IBls) were processed by the NC-VT
algorithm [113] with a tolerance of 30 %, all the IBls with a duration less than 200 ms being
removed. The signals were analysed both in the time domain and in the frequency domain.
Concerning the time domain, we calculated the average time between adjacent normal
heartbeats (NN) and its standard deviation (SDNN). Concerning the frequency domain,
analysis of the HRV was performed by the power spectrum density (PSD) estimated by the
Lomb-Scargle periodogram [114]. This method is able to cope with non-uniformly sampled
data even in presence of large gaps, which makes tachogram interpolation unnecessary.
According to the standard definition of the HRV frequency bands [105], the low frequency
(LF) and the high frequency (HF) were calculated as the area under the PSD curve
corresponding from 0.04 Hz to 0.15 Hz and from 0.15 Hz to 0.4 Hz, respectively [113]. The LF
component reflects both sympathetic and parasympathetic actions, the HF component
reflects parasympathetic action, and the LF/HF ratio is a measure of the sympatho/vagal
balance [113]. The features extracted are the most commonly used in the literature for
short-term analysis [115][116].



3.3.4. ROI’s selection

For each video sequence, the Cascading Classifiers algorithm (OpenCV v. 3.0.0) was used
to detect the face of the subject and locating the centre of each eye in the first frame of the
recorded video, the related distance being named d. Three different regions of interest
(ROIs) were selected (Figure 7). ROl definition was driven by anatomical and empirical
considerations. In particular, ROls were placed in highly vascularized regions of the face. We
also tried to have a large integration area so as to reduce the impact of image noise on BVP
estimation. In addition, ROI sizes were constrained to reduce interference with regions
interested by marked involuntary movement, such as eyes and lips. The first ROl (ROI1) was
a rectangle of the forehead area and the others (ROI2 and ROI3) were squares on the right
and left cheek, respectively. The ROl on the forehead was d x 3/8 d placed at 5/8 d above
the inter-pupillary line. The two ROIs on the cheeks had a fixed side /=20 pixel (about
20 mm on the subject face) placed at d/2 under the pupil.

Figure 7 Dimensions and positions of the ROIs (ROI1 on the forehead area, ROI2 on the right cheek, and ROI3 on the left
cheek). d is the distance between the centres of the rectangles around the eyes and | is the side of the square that is set to
20 pixel.

3.3.5. Video signal analysis

In order to extract the HR and the HRV parameters from the video, for each frame, grey
levels were averaged in each ROI, which provided three iPPG signals (vi(t), va(t), and vs(t)).

Then, two procedures were implemented to recover the pulse signal:

1. M1 - Each vi(t) was filtered using a FIR band-pass filter implemented via Hamming
window, with lower cut-off at 0.75 Hz (45 bpm) and upper cut-off at 2 Hz (120 bpm).
Such a band is well suited for normal subjects at rest or in during moderate activity,



the bandwidth can be adapted during intense physical activity or in presence of
disease. The signals x;(t), x(t), and x3(t) were so obtained.

2. M2 - As illustrated in Figure 8, each vi(t) was detrended by subtracting a 2 s time
average and the signals y1(t), y2(t), and ys(t) were obtained. Following whitening, the
three detrended signals were jointly processed through Independent Component
Analysis as implemented in FastICA algorithm [117]; three new sequences ya(t), ys(t),
and yc(t) were so obtained, each representing a different signal contribution. The
spectra of ya(t), ys(t), and yc(t) were computed via Fast Fourier Transform. The BVP-
related component was defined as the one with the highest peak in the range from
0.75 Hz to 2.0 Hz and was then filtered as in M1 and ys(t) was so obtained. It is worth
noting that while the algorithm used (that is the FastICA) is not new it was applied to
three portions of a single-channel video, in opposition to what is usually done (one
portion of a three-channel video).

In both procedures, after filtering, the BVP peaks were detected using a multi-scale
algorithm [118] and local quadratic interpolation. Finally, the tachogram for each BVP peak
sequence was computed. As described for ECG analysis, possible artefacts were removed by
the NC-VT algorithm. Similarly to the ECG signal, the NN and the SDNN values were
extracted from the tachogram. The frequency domain analysis was performed by PSD
estimation by Lomb-Scargle periodogram and the LF, HF, and LF/HF values were calculated
from the PSD.
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Figure 8 Procedure based on ICA.
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3.3.6. Recording length

The videos with different duration were compared with corresponding ECG portions. In
particular, pieces spanning one, two, three, four, and five minutes (entire recording) were

extracted from the available sequence.



3.3.7. Video frame rate

The original videos were recorded at 133 fps. To test the effect of lower sampling rates as
those often reported in literature, each video was down-sampled from the native 133 fps to
66 fps and 33 fps. The ROIs signals computed from down-sampled videos were interpolated
with a cubic spline function and resampled at 133 Hz.

3.4. Results

The data analysis was based on absolute errors observed by comparing iPPG with ECG.
The HR and HRV descriptors estimated from video (both by M1 using band-pass filter only
and M2 based on ICA pre-processing) were compared to corresponding parameters
obtained from ECG. The mean, standard deviation, minimum, and maximum values of the
data obtained by the ECG and the video signal are reported in next sections for the various
descriptors. For each of them, we give the mean absolute error (MAE), with standard
deviation (SDag), minimum (AEin), and maximum (AEn.x). The median of signed errors (M)
is also reported as a robust indicator of systematic error. In addition, as correlation
coefficients are commonly used by many researchers, Pearson coefficient r, and Spearman’s

rho p; are also reported for completeness.

3.4.1. Analysing video at the native frame rate

The mean, standard deviation, minimum, and maximum values of the data obtained by
the ECG and the video signal analysis (both obtained from M1 and M2) are reported in Table
2. The observed MAEs and correlations obtained from each ROI (ROI1, ROI2, and ROI3) are
reported in Table 3. With respect to NN, both the video signals and the ICA perform well
against the ECG showing low values of the MAEs, with the smallest ones provided by x(t)
(3.812 ms) and ys(t) (3.822 ms), and strong correlations (xy(t), x2(t), xs(t), and ys (t)) with
rp, 20.999 and ps 2 0.995. Similarly, for SDNN, LF, HF, and LF/HF, the smallest MAEs values
and strongest correlations are observed in x;(t) and ys(t); instead, the video signals from the
cheeks ROIs (x,(t) and xs(t)) are more prone to artefacts, so that the extracted parameters
exhibits a weaker correlation with the ECG data than signal from the forehead ROI. For x(t)
the MAEs observed values are 5.643 ms for SDNN, 3.303 % for LF, 6.556 % for HF, and 0.657
for LF/HF; for ys(t) we have 5.853 ms for SDNN, 2.775 % for LF, 4.372 % for HF, and 0.482 for
LF/HF. For xi(t) the observed correlations are r, =0.960 (ps=0.903) for SDNN, r, = 0.878
(ps =0.813) for LF, r, =0.786 (ps =0.779) for HF, and r, = 0.842 (ps =0.779) for LF/HF. For
ys(t) the observed correlations are r, = 0.961 (ps = 0.928) for SDNN, r, = 0.916 (ps = 0.895) for
LF, r,=0.885 (ps = 0.884) for HF, and r, =0.931 (ps = 0.876) for LF/HF. All the parameters
obtained from ys(t) (M2) were strongly correlated with the reference ones, the correlation

being larger than those observed for M1 in all cases. Scatter plots of parameters computed



from x¢(t) and ys(t) and the corresponding ECG ones are summarized in Figure 9 (time
domain) and Figure 10 (frequency domain).

Table 2 Mean, standard deviation, minimum, and maximum values of the data obtained by ECG and video signal analysis at
the native frame rate.

Parameter Metrics ECG x1(t) x2(t) x3(t) ys(t)
ROII ROI2 ROI3 ICA

Mean 891281 894241  890.732  893.661  894.521

NN (ms) 5D 141.412 142372 143.170 142012 142.575
Min 666470  664.189 648958  669.968  664.090

Max 1127.100 1133250 1133390  1127.130  1132.080

Mean 55.663 58.885 71.285 69.498 59.667

SDNN (ms) P 20.302 19.902 23.646 19.637 19.684
M5 Min 26.189 32.928 41.714 37.094 30.944

Max 113.834 122372 123.666 124734  117.419

Mean 29.153 29.112 30.142 30.039 29.404

LF (%) SD 9.035 8.901 8.309 8.008 8.730
© Min 11.780 13.894 12.267 12.626 14.068

Max 43315 41532 48.140 45.490 41.574

Mean 25.404 26911 33.091 32916 27.692

HE (%) SD 12742 12.899 12711 12.755 12.286
0 Min 4.042 9.182 13.560 11.980 8.447

Max 56.621 61.521 67.840 68.999 58.625

Mean 1.752 1.409 1.099 1.114 1.377

SD 1.814 0.930 0.609 0.672 0.970

LEME 0275 0.235 0.181 0.183 0.259

Max 9.767 4.427 2476 3.349 4910




and spearman’s obtained using M1 and M2, respectively.

Table 3 Absolute errors (mean, standard deviation, minimum, and maximum), median of signer errors, Pearson coefficient,

Parameter ~ Metrics x1 (1) x2(t) x3(t)  ys(t)
ROI1 ROI2 ROI3 ICA

MAE (ms) 3.812 6.124  4.309 3.822

SDAg (ms) 4.174 6.253 4.441 4.076

NN AE,, (ms) 0332 0075 0.114  1.210
AEmax (ms) 24311 24217 23912 24.424

M, (ms) 2.193 1.512 2.156 3.157

Tp 0.999  0.998 0.999 1.000

Ps 0.998 0.995 0.996 0.998

MAE (ms) 5.643  16.653  14.750 5.853

SDAg (ms) 3.197 11.851 11.722  4.076

SDNN  AE,, (ms) 0028 0251 1593  1.500
AEmax (ms) 10.604  53.427  47.773  17.355

M, (ms) 4202 15.164  12.231 3.867

Tp 0.960  0.830  0.794  0.961

Ps 0.903 0.757 0.723 0.928

MAE (%) 3.303 4.666 5.459 2.775

SDAE (%) 2810 4417 5421 2341

LF AEpnin (%) 0.068 0.181 0.110  0.262
AEmax (%) 11.261  15.715  21.345 8.361

M. (%) 0.783 0.205 0.579 0.758

Tp 0.878 0.730  0.596 0916

Ps 0.813 0.685 0.637 0.895

MAE (%) 6.556 11.716 9.605 4.372

SDag (%) 5.324 8.460 8.978 4.684

HF AEpin (%) 0.353 0.076  0.359 0.592
AEmax (%)  20.238 36965 33.823  18.450

M. (%) 3.324 8.046 5.270 1.436

Tp 0.786  0.529 0.638 0.885

Ps 0.779  0.519 0.643 0.884

MAE 0.657 0.925 0.806  0.482

SDAE 0.994 1.444 1.213 0.927

LF/HF AEin 0.007 0.003 0.001 0.002
AEmax 5.339 7.978 6.418 4.857

M, -0.187  -0.356  -0.242  -0.046

rp 0.842 0512  0.827 0.931

Ps 0.779 0.487 0.584 0.876
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Figure 9 Scatter plots comparing NN and SDNN between the video signal and ECG signal. The video signal data are obtained
from x,(t) applying M1, on the left side, and from ys(t) applying M2, on the right side.
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Figure 10 Scatter plots comparing LF, HF, and LF/HF values between the video signal and ECG signal. The video signal data
are obtained from x(t).

3.4.2. Varying the frame rates

In Table 4 and Table 5 we analysed the parameters estimated from the down-sampled
video signals. In particular, we analysed the data obtained by M1 from the forehead signal
X1(t) (the best performing at 133 fps) and those obtained from ys(t) by M2. The MAE values
related to NN extracted by the down-sampled video signals for both M1 and the M2 do not
exhibit appreciable differences (being all slightly larger than 3 ms) at different frame rates.
High correlation coefficients are observed in all cases (r, 20.999 and ps > 0.998). The SDNN
behaviour shows increasing MAEs when frame rate decreases for both M1 and M2; in
parallel, the correlation coefficients decrease at the slowest frame rate. Also in the
frequency domain, the MAE values increase as frame rate decrease, this being more

pronounced for HF and LF/HF. Generally, the MAE values and correlation coefficients



obtained for M2 are better than those obtained for M1. Furthermore, in the frequency
domain, the contribution of the ICA is outstanding when the sampling rate is less than
100 fps.

Table 4 Mean, standard deviation, minimum, and maximum values of the data obtained by video signal analysis varying the
frame rates.

. x1(t) (ROI1) video rate (fps) ys(t) (ICA) video rate (fps)
Parameter Metrics 133 66 13 133 66 33
Mean 894.241 892.987 892.381 894.521 893.122 893.041
NN (ms) SD 142.372 142.134 142.009 142.575 142.130 142.373
Min 664.189 662.083 661.517 664.090 661.946 661.843
Max 1133250  1131.990  1131.960 1132.080 1130.350 1130.680
Mean 58.885 59.891 62.022 59.667 61.780 63.273
SDNN (ms) SD 19.902 19.867 20.663 19.684 20.638 20.001
ms Min 32.928 32.952 34.147 30.944 31.485 32.262
Max 122.372 122.391 123.756 117.419 117.636 116.960
Mean 29.112 29.111 29.394 29.404 29.448 28.875
LE (%) SD 8.901 8.637 8.245 8.730 8.202 8.154
0 Min 13.894 14.090 14.271 14.068 14.897 14.440
Max 41.532 42.007 41.195 41.574 41.300 41.185
Mean 26911 27.280 28.275 27.692 28.368 20.335
HF (%) SD 12.899 13.142 11.962 12.286 11.977 12.055
0 Min 9.182 9.930 11.363 8.447 8.948 10.637
Max 61.521 60.534 60.194 58.625 57.935 57.330
Mean 1.409 1.386 1.302 1.377 1.321 1.240
LE/HF SD 0.930 0.909 0.824 0.970 0.898 0.807
Min 0.235 0.240 0.245 0.259 0.261 0.268
Max 4.427 4.025 3.528 4.910 4.616 3.872




Table 5 Absolute errors (mean, standard deviation, minimum, and maximum, median of signed errors, Pearson coefficient,
and spearman’s obtained at three different video rates for x;(t) and ys(t) using M1 and M2, respectively.

. . x1(t) (ROII) video rate (fps) | yg(t) (ICA) video rate (fps)
Parameter  Metrics 133 66 33 133 66 33
MAE (ms) 3.812 3.337 3.526 3.822 3.136 3.251

SDAE (ms) 4.104 3.993 4.263 4.008 3.840 3.929

NN AEq, (ms) | 0332 0.284 0248 | 1210 0637 0057
AEmax (ms) | 24311  22.713 22.643 | 24424 22872 22.512

Me (ms) 2.193 1.991 1.812 3.157 2.227 1.868

Tp 0.999 0.999 0.999 1.000 0.999 0.999

Ps 0.998 0.998 0.998 0.998 0.998 0.998

MAE (ms) 5.643 6.518 8.668 5.835 7.118 8.497

SDap (ms) | 3.143 3212 48273 | 3502 3810 4732

SDNN  AE., (ms) | 0028 0300 1210 | 1500  3.036 1.939
AEmax (ms) | 10.604  12.596 23.027 | 17.355  19.968 20.645

Me (ms) 4.202 5.500 8.137 3.867 6.137 7.786

Tp 0.960 0.955 0.929 0.961 0.966 0.953

Ps 0.903 0.887 0.874 0.928 0.937 0.911

MAE (%) 3.303 3.179 3.365 2.775 3.311 3.094

SDag (%) 2850  3.278 4827 | 2302 2293 4732

LF AE iy (%) 0.068 0.015 0.002 0.262 0.190 0.077
AEmax (%) 11.261 12971 13.862 8.361 7.996 9.861

M. (%) 0.783 0.629 0.525 0.758 0.774 0.534

Tp 0.878 0.863 0.855 0916 0.892 0.889

Ps 0.813 0.827 0.828 0.895 0.872 0.863

MAE (%) 6.556 6.580 7.083 4.372 4.851 5.571

SDag (%) 5.234 5.571 5.423 4.606 4.906 4.898

HF AEn, (%) | 0353 0454 1.074 | 0592 0093  0.092
AEpax (%) 20.238  19.251 21.200 | 18.450 21.294 22.976

M. (%) 3.324 3.157 4.304 1.436 2.937 3.944

Tp 0.786 0.782 0.760 0.885 0.870 0.868

Ps 0.779 0.766 0.774 0.884 0.871 0.850

MAE 0.657 0.657 0.708 0.482 0.539 0.620

SDAE 0.978 1.037 1.126 0912 0.975 1.084

LF/HF AEnin 0.007 0.074 0.049 0.002 0.004 0.003
AEmax 5.339 5.742 6.239 4.857 5.151 5.895

Me -0.187  -0.196 -0.229 | -0.047  -0.086 -0.197

Tp 0.842 0.817 0.786 0.931 0.922 0.887

Ps 0.782 0.739 0.739 0.876 0.844 0.828

3.4.3. Varying the acquisition time

We analysed the parameters obtained from the video signals (both M1 and M2) having
different durations. As in the case of section 3.4.2, we considered x;(t) and ys(t) only. In
Table 6 we reported the basic statistics for parameters measured from ECG, x4(t), and ys(t),
respectively. In Table 7 the MAEs and the correlation coefficients are given. Both M1 and
M2 show similar error pattern for NN: the MAE increases when the recording time
decreases, difference being slightly more evident for durations less than or equal to
2 minute. High correlation coefficients were observed at any duration for xi(t) (r, > 0.998
and p; 2 0.995) and ys(t) (r, 2 0.999 and ps > 0.994). The MAEs of remaining parameters tend



to increase as the recording duration decreases, the HF showing the more pronounced
dependence. As shown in Table 7, dependence on acquisition time was slightly more
pronounced for the frequency domain descriptors. In any case, only for the shortest
observation window (1 minute) we observed a MAE approximately doubled with respect to
other durations.

Table 6 Mean, standard deviation, minimum, and maximum values of the data obtained by ECG and video signal analysis

varying the acquisition time from M1.

5 min Amin 2min

Parametsr  Metrics B £1(t} walt) FOG £1(t) yalt) ECG wslt) BOG #(t) yz(t) BCG wzlt)
ROIL1 Ca ICA ICa ROI1 ICA ICA

Meen 391,281 §G4. 241 BG4 521 §O6 254 399 108 o224 G3. 165 505,632 LEHE 512381

PN ) 5D a 142372 142 575 144471 144,510 L4§.151 148043 148426 148,316

Min SATO G139 SE4000 G4 GHLODG | e GISA03 4219 G4THDS [ 650885

Max 1127100 1133250 1132480 1139.580 1138950 | 1149.250 LLTS. 780 1167650 1168520 | 11%3.200

Mezn $5.663 58 548 9667 FE.700 53623 55.790 51.433

SDNN {me) 3D 0,302 19 4t 15.684 20,560 20471 19067 18.416

SEATED Min 26,189 32928 30944 13,885 25,448 28998 24,750

Max 113,834 122372 117419 LIE323 12748 99.561 107 222 105 60E 99.203

Mean 19,153 29.112 29404 26318 18539 30,180 26301 31144 31.240 W), 509

LE (%) fdu) 9.035 £.901 730 5703 11.182 10,309 10210 13,386

: Min 176 13 404 14068 11,560 14.527 PRI 13739 14,347

Max 43515 41532 41574 42623 35,533 55.247 57548 57.757 54,450

Mewn 15404 2911 27692 32042 28536 29006 342 33,405 32786 45,135

HE (36} D 12742 12899 12286 12499 12411 11.255 16414 16,736 15651 16.441

" Min 4042 9142 4 3340 9,363 G124 3708 .40 TATE SE17

Max F6.621 615211 59.087 60605 1537 75413 T1.767 T0.85% TH.5TE

Mesn 1752 1409 1128 1356 L3 1,150 1411 1504 (RN

LEHE e L84 0830 119 1008 0.851 1368 0850 L147

Min 0,278 0238 0229 0262 0300 11T 0,301 0214

Max 9787 4427 H.643 4742 3645 7.094 4439 6. 256

Table 7 Absolute errors (mean, standard deviation, minimum, and maximum), median of signed errors, Pearson
coefficients, and spearman’s for five different durations of videos for x,(t) and ys(t) using M1 and M2.

5 min 4 min 3 min 2min 1 min
Parameter ~ Metrics zi(t)  ys(t) | x(®)  ws() | xi(t)  ys(t) | wi(t)  ws(t) | xu(t)  ys(t)
ROI1 ICA ROI1 ICA ROI1 ICA ROI1 ICA ROI1 ICA
MAE (ms) 3.812 3.822 3.742 3.656 3.872 4.204 4.689 4.936 5.737 5.543
SDAg (ms) 4.174 4.076 4.254 4.130 4.551 4.520 5.178 4.708 6.012 5.559
NN AEniy (ms) 0.332 1.210 0.028 0.190 0.063 0.535 0.000 0.221 0.150 0.150
AEprax (ms) | 24311 24424 | 24467 24496 | 26318  26.857 | 27.621 27.317 | 29.123  28.371
M, (ms) 2.193 3.157 2,173 2.405 2.525 2.947 2459 3.582 2.174 2.130
Tp 0.999 1.000 0.999 0.999 0.999 0.999 0.999 0.999 0.998 0.999
Ps 0.998 0.998 0.998 0.998 0.999 1.000 0.997 0.996 0.995 0.994
MAE (ms) 5.643 5.853 5.951 5.331 6.563 5.855 6.568 6.466 7.324 6.898
SDap (ms) 3.197 3.562 3.204 3.057 3.429 3.746 4.478 5.005 4.751 5.191
SDNN AEnMin (ms) 0.028 1.499 0.848 0.083 0.340 0.329 0.864 0.061 0.026 0.360
AEnrg (ms) | 10.604  17.355 | 12313 12.301 12.866  13.929 | 16380 19.619 | 17.744 21.812
Me (ms) 4.202 3.867 4.526 4.265 4.553 4.122 3.812 3.634 4.280 3.810
p 0.960 0.961 0.962 0.976 0.958 0.963 0.933 0.921 0.913 0.893
Ps 0.903 0.928 0.884 0.956 0.895 0.944 0.920 0911 0.883 0.860
MAE (%) 3.303 2.775 3.577 3516 4.185 3915 3.983 4.005 6.204 7.059
SDag (%) 2.898 2.341 2.970 2.727 3.491 3.056 3.305 2.863 6.183 6.027
LF AEin (%) 0.068 0.262 0.290 0.024 0.032 0.005 0.037 0.236 0.097 0.381
AEmax (%0) 11.261 8.361 14.605  10.131 13.424  13.275 | 11.414  13.922 | 20.921  22.453
M. (%) 0.783 0.758 2.397 2.529 2.537 2.626 1.893 2.600 2.302 3.540
T 0.878 0916 0.888 0.906 0.901 0.926 0.904 0.917 0.874 0.857
Ps 0.813 0.895 0.883 0.890 0.887 0.939 0.864 0.873 0.833 0.730
MAE (%) 6.557 4.372 6.172 5.398 7.290 6.620 8.000 8.351 11.159  11.359
SDag (%) 5.324 4.684 6.054 4.027 6.312 4.876 7.971 6.399 9.273 8.832
HF AEnin (%) 0.353 0.592 0.180 0.825 0.398 0.012 0.099 0.243 0.480 0.431
AEpNqa (%) 20.238 18450 | 23394  16.177 | 23250 17.098 | 33.554 28.548 | 30.003  34.608
M. (%) 3.324 1.436 | -3.002 -4.042 -3.046 -4.660 | -2459  -6.187 -4.262  -8.604
Tp 0.786 0.885 0.828 0.907 0.782 0.854 0.811 0.845 0.721 0.729
Ps 0.779 0.884 0.810 0.889 0.758 0.814 0.690 0.713 0.646 0.705
MAE 0.657 0.482 0.416 0.361 0.481 0.409 0.543 0.428 0.832 0.821
SDag 0.994 0.927 0.543 0413 0.634 0.446 0.874 0.547 1.871 1.484
LE/HE AEMin 0.007 0.002 0.008 0.003 0.018 0.020 0.003 0.016 0.004 0.019
AEMax 5.340 4.857 2.537 1.963 3.160 1.576 3.541 2.656 9.832 7.315
Me -0.187  -0.046 0.130 0.208 0.173 0.183 0.112 0.175 0.157 0.249
Tp 0.842 0.931 0.843 0.909 0.723 0.830 0.716 0.881 0.513 0.468
Ps 0.779 0.876 0.826 0915 0.863 0.902 0.833 0.879 0.752 0.765




3.5. Discussion

In this chapter we analysed the use of a monochrome video camera to estimate the HR
and the HRV from the plethysmographic signal obtained from the human face recordings.
Videos from 30 subjects were acquired in rest conditions allowing limited natural
movements. An artificial white light was used and the camera input was band-pass filtered
so as to match the light absorption peaks of haemoglobin and enhance the BVP contribution
to the image grey level. We adopted direct BVP estimation via temporal band-pass filtering
(method M1) and BVP peak detection applied to single ROI signals. In addition, ICA pre-
processing to extract BVP signal from multiple ROIs (method M2) was implemented.
Standard HR and HRV measurements derived from videos were compared with the
corresponding descriptors obtained from ECG signals recorded simultaneously to videos.

We analysed both mean absolute errors between video and ECG in three different regions
of the face (forehead and each cheek). For completeness, the Pearson and Spearman
correlation coefficients were computed. In all cases, the ROl on the forehead provided
smallest errors and highest correlations. This seems consistent with a reduced impact of
subject motion. Fusion of the three ROIs signals via ICA pre-processing led to substantially
reduced errors and improved correlation in all frequency domain descriptors, whereas time
domain descriptors exhibit a behaviour similar to the ones from the ROl on the forehead.

At the original video rate of 133 fps method M1 produced acceptable results for the
forehead ROI (MAEs were 3.812 ms for NN, 5.643 ms for SDNN, 3.303 % for LF, 6.556 % for
HF, and 0.657 for LF/HF).

Anyway, M2 provided data more consistent with ECG estimation as made evident by
frequency domain parameters (MAEs were 3.822 ms for NN, 5.853 ms for SDNN, 2.775 %
for LF, 4.372 % for HF, and 0.482 for LF/HF).

When the video signal is down-sampled from the native 133 fps to 66 fps and 33 fps
estimates of the HRV descriptors worsen, whereas the HR does not look significantly
affected. This finding is in line with the expected need of an accurate detection of the BVP
pulses for the HRV analysis, a requirement that can be significantly relaxed for the HR
assessment. In particular, the LF/HF parameter seems to be the most affected. It gets worse
with the decrease of the sampling rate. In the frequency domain, the contribution of the ICA
pre-processing is significant at low sampling rates.

As to the impact of video duration, the HR, as expected, does not exhibit a particular
sensitivity and both M1 and M2 produce constant and similar results. In the case of the
HRV, method M1 looks less robust than method M2 and discrepancies arises between iPPG
and ECG for very short recordings (1 minute). In general, the MAEs increase when the
sampling rate and the acquisition time decrease.



To summarize, both M1 and M2 can be expected to allow a very confident estimation of
the HR. As concerns the HRV descriptors, the ICA pre-processing enables a more reliable

estimation in all considered experimental conditions.



Chapter 4. Unobtrusive monitoring of stress
indicators at rest

In this chapter we focus on the assessment of resting status of two groups of voluntaries
with different age ranges. Evaluating the status in the absence of external stimuli is crucial
to assess and understand individual stimuli responses.

To this end we focused on the results obtained by the integration of simple unobtrusive
devices monitoring skin blood volume pulses, respiratory rate, and galvanic skin response.
Data were recorded in resting conditions and analysed as described in the following
sections.

4.1. Materials and methods

4.1.1. Study’s participants and experimental setup

The data of twelve healthy volunteers were analysed for this chapter. The sample was
split into two groups: group | was composed by six voluntaries (4 females and 2 males) with
age between 25 and 35 (mean 29, min. 25, max. 35); group Il was composed by six
voluntaries (4 females and 2 males) with age between 55 and 65 (mean 60.16, min. 53, max.
63).

The subject’s signals measured were HR, HRV, RR, and GSR. The devices included in the
experimental setup of this study were the camera, the BioHarness 3 Zephyr, and the
Shimmer3 GSR. The experimental setup was deeply described in section 2.2. In this study we

analysed the data acquired during the rest state only.

4.1.2. Data analysis

The video signal analysis was performed through M1 procedure as described in section
3.3.5. Concerning the respiratory rate, the values of the median and the interquartile range
were calculated. For GSR, the interfering main frequency (50 Hz) was removed from the
signal by a notch filter. The average slope of the descending portion of the GSR signal was

estimated by linear regression (see Figure 11).
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Figure 11 A typical GSR record. The raw and the filtered signals of the skin conductivity of a subject during the resting state
are shown. The regression line (obtained by the linear regression) is the average slope of the signal.

4.2. Results

Collected data were analysed for the two groups separately. In Table 8, the median and
the interquartile range of all the data are reported.

The median value (and interquartile range) of NN as calculated from the video signal is
823.24 ms (171.19 ms), and 849.98 ms (50.87 ms) for group | and group Il respectively. This
parameter is smaller in group | than in group Il. The median value (and interquartile range)
of RR as measured through BioHarness 3 Zephyr is 14.92 bpm (3.86 bpm), and 13.29 bpm
(0.66 bpm) for group | and group |l respectively. This parameter is smaller in group Il than in
group |. The variability of NN and RR in group Il is lower than in group I. As shown in Figure
11, the skin conductivity decreases when the subject relaxes. The median (interquartile
range) of the slope of the skin conductivity trend is -4.15x10™ (1.16x107), and -1.62x10>
(3.08x107%) for group | and group Il respectively. This suggests that skin conductivity of group

Il decreases faster than that one of group |.



Table 8 Results summary. For each group, the median and the interquartile range, in brackets, of HR and HRV parameters
(NN, SDNN, LF, HF, LF/HF), respiratory rate, and the slope of the skin conductivity trend (GSRg opg)-

Parameter Group | Group Il
NNvypeo (mMs) 823.24 (171.19) 849.98 (50.87)
SDNNypeo (Ms) 86.98 (52.02) 90.01 (48.32)
LFyvipeo (normalized unit) 56.54 (47.44) 54.06 (9.92)
HFvioeo (normalized unit) 43.46 (44.44) 45.94 (9.92)
LFvioeo/HFvioeo 1.32 (1.73) 1.18 (0.52)

RR (bpm) 14.92 (3.86) 13.29 (0.66)
GSRs10pe -4.15x10™ (1.16x10%)  -1.62x107 (3.08x10™)

4.3. Discussion

In this chapter we reported the results obtained by the integration of simple unobtrusive
devices monitoring skin blood volume pulses, respiratory rate, and galvanic skin response.
Data from two groups of volunteers with different age ranges were recorded in resting
state. Evaluating the status in the absence of external stimuli is crucial to assess and
understand individual stimuli responses.

The results indicate that the variability of NN and RR is smaller in group Il than in group I.
The skin conductance decreases when the subject relaxes and decreases faster in group Il
than in group I.

The study reported in this chapter allowed us to validate the experimental setup. The
latter turned out robust and reliable for unobtrusively monitoring the signals taken into

account, permitting us to extract relevant parameters from two groups of volunteers.



Chapter 5. Unobtrusive monitoring of EEG signals
during mild cognitive activation

In this chapter we report on the acquisition and analysis of EEG signals during mild
cognitive activation. EEG were acquired simultaneously to skin blood volume pulses, and the
respiratory rate by the set of unobtrusive devices described in section 2.2. Two different

condition were compared: rest state and mild cognitive activation.

5.1. Materials and methods

5.1.1. Study’s participants and experimental setup

The data of seven healthy participants were analyzed for this study. The sample was
composed of 5 females and 2 males with mean age of 41.72 years, range from 25 to 62.

The subject’s signals measured were HR, HRV, RR, and EEG. The signals were recorded in
rest state for 5 minutes and during a mild cognitive activation induced by two different
versions of the Stroop color word test, a congruent one and an incongruent one (Test A and
Test B). The devices included in the experimental setup of this study were the ECG system,
the camera, the BioHarness 3 Zephyr, and the Muse 2 Headband. These devices and the

experimental setup were deeply described in section 2.2 and 2.3.

5.1.2. Data analysis

The ECG signal analysis was performed as described in section 3.3.3. The video signal was
analyzed through M1 (described in section 3.3.5). Concerning the respiratory rate, the
values of the median and the interquartile range were calculated.

The Muse 2 Headband is a simple electroencephalography device. It has three reference
sensors on the forehead, two channels on the left (antero-frontal AF7 and temporo-parietal
TP9) and two on the right (antero-frontal AF8 and temporo-parietal TP10). AF7 and AF8 are
forehead sensors and TP9 and TP10 are Smart Sense conductive rubber ear sensors. The
band waves were calculated, these are the delta, theta, alpha, and beta. The delta wave is
the frequency range from 0.5 Hz to 4 Hz; the theta wave is the frequency range from 4 Hz to
7 Hz; the alpha wave is the frequency from 7 Hz to 13 Hz, the beta wave is the frequency
from 14 Hz to 30 Hz. The features extracted from the EEG [54] through a custom software

written in C include the normalized band power for each channel, that is calculated as:



100& (4)
Pt
where f; and f; are the lower and the upper frequency of each band respectively (for
example for the alpha band f; is 7 Hz and f,is 13 Hz), p is the band power and P; is the total
power. The second feature extracted was the each band’s (delta, theta, alpha, beta) power
asymmetry (delta power asymmetry-DPA, theta power asymmetry-TPA, alpha power

asymmetry-APA, beta power asymmetry-BPA), that is calculated as:

EEGbandpowergr—EEGbandpowery,

(5)

EEGbandpowergr+EEGbandpowery,

where EEGpangpowers aNd EEGpandpower. are respectively the band power measured from the
sensor on the right side of the head and on the left side of the head.

The four signals were jointly processed through Independent Component Analysis as
implemented in FastICA algorithm [119]; four new sequences were so obtained, each
representing a different signal contribution. One of these signals was identified as the one
with eyes blinking and, thanks to the help of an expert, it was removed. The remaining
signals were analysed through the inverse FastlCA in order to obtain four signals again
(Figure 12). The analysis was performed by power spectrum density estimated by the Lomb-

Scargle periodogram [114].
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Figure 12 The EEG signals after ICA processing.



5.2. Results

In Table 9 we reported the median and the interquartile range of each parameter as
observed in the study sample. Concerning the ECG results, the median value (and
interquartile range) of NN is 926.98 ms (128.78 ms), 820.66 ms (191.41 ms), 848.98 ms
(196.64 ms) in the three conditions respectively (rest, Test A, and Test B). Concerning the
video results, the median value (and interquartile range) of NN is 851.74 ms (144.62 ms),
822.67 ms (272.95 ms), and 796.10 ms (143.68 ms), in the three conditions respectively
(rest, Test A, and Test B). The median value of RR is 13.08 bpm, 15.17 bpm, and 16.51 bpm,
in the three conditions respectively (rest, Test A, and Test B).
The most relevant feature extracted from the EEG is the power asymmetry from the left and
right normalized alpha band power of AF7 and AF8 sensors between rest and Test A, and of
TP9 and TP10 between rest and Test B. The APA of AF7 and AF8 was significantly smaller
during Test A (median value =-0.35) than in rest (median value = 0.27) with p-value = 0.01.
The APA of TP9 and TP10 was significantly smaller during Test B (median value = 0.04) than

in rest (median value = 0.10) with p-value = 0.01.

Table 9 For each condition, the median and the interquartile range, in brackets, of the all parameters extracted.

Parameter Rest Test A Test B
NNgcg (ms) 926.98 (128.78)  820.66 (191.41) 848.98 (196.64)
SDNNgcg (ms) 47.94 (42.80) 42.40(29.77) 55.17 (36)
LFecs (normalized unit) 79.09 (24.80) 54.86 (19.16) 52.07 (34.23)
HFgcs (normalized unit) 20.91 (24.80) 45.14 (19.16) 47.93 (34.23)
LFece/HFecq 3.78 (2.93) 1.22 (1.18) 1.09 (1.63)
NNyipeo (MS) 851.74 (144.62)  822.67 (272.95)  796.10 (143.68)
RR (bpm) 13.08 (2.66) 15.17 (4.22) 16.51 (3.18)
APA (AF) 0.27 (0.65) -0.35 (0.28) /

APA (TP) 0.10 (0.33) / 0.04 (0.14)

5.3. Discussion

We have reported the results obtained by the integration of simple unobtrusive devices
monitoring skin blood volume pulses, respiratory rate, and EEG signal. The subjects involved
in the study underwent a mild cognitive activation.

During the stress condition, the heart rate and the respiratory rate increased, and
changes of the brain activity was observed. In particular the last factor indicates that the



right alpha power was reduced to a greater extent than the left alpha power in a stress
situation, which is consistent with the physiological assumptions (i.e., enhanced activation
occurred in the right hemisphere, which shows negative emotions).

The results obtained demonstrated that the devices and the procedure involved in this
study allow detecting differences in a mild stress condition using unobtrusive

measurements of psychophysical parameters.



Chapter 6. Unobtrusive monitoring of stress
indicators during mild cognitive activation

In this chapter we report the analysis of the “Mild Cognitive Activation” (MCA) dataset
collected from the volunteers enrolled during my work.

We focused on the results obtained by the integration of simple unobtrusive devices
monitoring skin blood volume pulses, respiratory rate, and galvanic skin response. Data
were recorded both in rest state and during a mild cognitive activation.

6.1. Materials and methods

6.1.1. Study’s participants and experimental setup

The data from ten healthy volunteers were analysed for this study. The sample was
composed of 7 females and 3 males with mean age of 45 years, range from 25 to 62. Two of
these subjects (namely subject 08 and 09) were considered non-naive subjects, as they had
previous experience with the Stroop colour word test.

The subject’s signals measured were HR, HRV, RR, and GSR. The signals were recorded in
rest state for 5 minutes and during a mild cognitive activation induced by two different
versions of the Stroop colour word test, a congruent one and an incongruent one (Test A
and Test B). The devices included in the experimental setup of this study were the ECG
system, the camera, the BioHarness 3 Zephyr, and the Shimmer3 GSR. These devices and

the experimental setup were deeply described in section 2.2 and 2.3.

6.1.2. Data analysis

The ECG signal analysis was performed as described in section 3.3.3. The video signal was
analysed through the algorithm M1 (described in section 3.3.5). Concerning the NN values
both of ECG and video signal, the median and the interquartile range were calculated.
Regarding the RR, the values of the median, the interquartile range, the minimum, and the
maximum were calculated. As to the galvanic skin response, the interfering mains frequency
(50 Hz) was removed from the signal by a notch filter. In order to calculate the GSR
parameters, the phasic component was extracted. To this end and whereas the GSR signal is
often sampled at a much higher sampling rate than actually required, the GSR signal was
down sampled to 10 Hz. Then it was filtered through a mean filter spanning a 4 s window
and a median filter spanning 8 s. Then the signal from the median filter was subtracted to
the one from the mean filter (Figure 13). The number of peaks, the maximum peak

amplitude, and the median peak value were calculated.
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Figure 13 An example of GSR signal. Upward the raw and the filtered signal, below the phasic signal and the peaks
detection.

6.2. Results

Figure 14 shows the box plot of the NN value calculated by the ECG signal (left) and for
the video camera (right), for the three conditions (rest, Test A, and Test B). As to the ECG
results, the median value of the NN (and the interquartile range) is 907.51 ms (102.08 ms),
825.61 ms (165.58 ms), 815.8 ms (161.82 ms), respectively in rest, Test A, and Test B.
Concerning the video camera results, the median value of the NN (and the interquartile
range) is 858.17 ms (121.21 ms), 784.29 ms (129.5 ms), 778.60 ms (170.13 ms), respectively
in rest, Test A, and Test B. The NN value both for ECG signal and video camera signal
decreases in the stress condition. The Pearson correlation coefficient between the NN value
of the ECG and the video signal is equal to 0.92, 0.88 and 0.85, respectively for rest, Test A,
and Test B (p-value < 0.007).
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Figure 14 Box plot of the NN value of the ECG signal (left) and the video signal (right) in the three experimental conditions.

In Figure 15 is showed the box plot of the of the RR value for the three experimental
conditions (rest, Test A, and Test B). The median value (and the interquartile range) of the
RR is 13.5 bpm (2.69 bpm), 16.43 bpm (3.24 bpm), 16.67 bpm (1.91 bpm), respectively in
rest, Test A, and Test B. The RR value increases in the stress condition.
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Figure 15 The box plot of the RR value in the three experimental conditions.

In Table 10 we reported, for each subject, the median peak value and the number of
peaks of the GSR signal calculated in the three experimental conditions (rest, Test A, and
Test B). In general, these values increase in the stress condition. For subject 08 and 09 we
obtained zero peaks from the GSR, in all experimental conditions. It is worth noting that
these subjects were not naive to the Stroop colour word