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ABSTRACT 

Multiphoton microscopy is a powerful tool for the in vivo imaging of renal processes thanks to the 

improved tissue penetration and the high spatial and temporal resolution. Intravital imaging permits 

to evaluate dynamic processes and pathophysiological parameters in real time using non-invasive 

methods. In this way multiphoton microscopy overcomes the limitations represented by previous 

approaches, such as confocal microscopy, becoming the technique of choice for the study of renal 

function in living animals. 

This project aims to use existing multiphoton microscopy approaches to evaluate in vivo many renal 

parameters in our animal models and, at the same time, to develop an original application for the 

assessment of single nephron glomerular filtration rate. In addition, a method for detection and 

quantification of renal fibrosis ex vivo was developed coupling multiphoton microscopy and machine 

learning-based segmentation software. 

The linescan-based innovative methodology offered a great improvement in terms of temporal 

resolution and provided reliable values of single nephron glomerular filtration rate comparable with 

previous methods.  The validation of this approach was carried out measuring renal filtration in low-

dose dopamine and ischemic treated rats, which showed significantly higher and lower values of 

single nephron glomerular filtration rate, respectively, compared to the control group.  

The dynamic process of renal glucose reabsorption was elucidated in GLUT2 cKO mice mimicking 

the Fanconi Bickel Syndrome. Intravital multiphoton microscopy of the renal tubules after the 

continuous infusion of fluorescent 2-NBDG demonstrated an impaired utilization of glucose in these 

mice compared to the control. Thus, the presence of GLUT2 transporter in renal proximal tubules is 

fundamental to ensure the physiological mechanism of glucose uptake. 

Moreover, the high temporal resolution of intravital microscopy allowed to monitor over the time the 

beta-lactoglobulin uptake in mice proximal tubules, permitting to observe and clarify in detail the 

mechanism of renal protein reabsorption.  

We also developed a novel approach based on second harmonic generation tool provided by the 

multiphoton microscopy and a machine learning-based segmentation software to detect and quantify 

renal fibrosis in kidney slices. This application provided great specificity and 3D reconstruction of 

the fibrotic signal detected as well as high reproducibility of the analysis due to an automatic machine 

learning algorithm, showing promising application as diagnostic and prognostic tool in human 

diseases.  

These multiphoton applications highlighted the great potential of intravital microscopy to elucidate 

in real time the mechanisms involved in renal pathophysiology at cellular and subcellular resolution. 
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1. AIM OF THESIS 

The kidney is a very complex organ constituted by more than 10 cell types and accomplish a multitude 

of fundamental processes. In the last decades many approaches and microscopy techniques have been 

developed and improved in order to understand the mechanisms underline renal physiology.  

MPM represents the gold standard approach to study kidney pathophysiology in tissues and organs 

of living animals at cellular and subcellular resolution thanks to the higher tissue penetration and less 

phototoxicity. Recent advances regarding optics, new fluorescent dyes, transgenic animals and 

analysis methods allowed investigators to enhance MPM approaches, making the data analysis and 

interpretation of results more reliable.  

In this project we aimed to use different MPM image techniques to study in vivo the main renal 

parameters in control and disease animal models.  

The existing imaging method for the assessment of SNGFR developed by Kang et al. is limited in 

terms of temporal resolution when full frames are acquired, limiting the reliability of the 

measurements. For this purpose, we aimed to develop a new imaging approach in rats to improve the 

temporal resolution and accuracy of the SNGFR measurements. To demonstrate the efficiency of this 

original method, SNGFR was measured in control, low dopamine-treated and ischemic rats.   

In addition, we performed experiments to elucidate in vivo the renal glucose uptake in conditional 

GLUT2 knock out mice. This mouse model was generated in our laboratory to mimic and study the 

human Fanconi-Bickel syndrome (FBS), a rare autosomal recessive disease characterized by 

hepatorenal glucose accumulation, disfunctions of proximal tubule and altered function of glucose. 

In order to complete the characterization of this murine model, we investigated in real time the tubular 

transport of glucose with MPM. 

Moreover, we wanted to clarify in vivo the mechanism underlying the protein reabsorption across the 

renal proximal tubule. For this purpose, we imaged and quantified the constant uptake of beta-

lactoglobulin in mice kidneys, showing the reliability of this technique. 

Finally, we worked on the development of a method to quantify ex vivo the renal fibrosis using MPM. 

Interstitial tubular fibrosis, characterized by excessive deposition of extra-cellular matrix, is an 

important prognostic and diagnostic marker of kidney injury in many diseases, such as diabetes and 

systemic hypertension. By using MPM, we visualized the renal parenchyma through emission of 

autofluorescence and any collagen deposits (type I and III collagen) thanks to the “Second Harmonic 

Generation”. After the acquisition of kidney sections, we proceeded with fibrosis quantification by 

using an algorithm of machine learning that permits to have more reproducible results. 
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2. ASSESSING A METHOD FOR SNGFR MEASUREMENT 

2.1 INTRODUCTION 

2.1.1 The glomerular filtration barrier 

The first step in urine production is the ultrafiltration of blood plasma by renal glomeruli. This process 

leads to the formation of a fluid, called glomerular filtrate, which is collected in the Bowman’s space 

to be further filtered into renal tubules. The glomerular filtrate has a solute composition similar to 

that in the plasma, but with reduced concentrations of proteins and high molecular weight substances, 

and it is free of blood cells. The amount of blood filtered per time by renal glomerulus is referred as 

glomerular filtration rate (GFR) and it provides a reliable parameter to measure how efficiently the 

kidney removes a substance from the circulation. In physiological conditions the kidneys filter about 

120 mL/min of plasma, thus 180 L/day (1). 

The selectively permeability of substances filtered by the glomerulus is guaranteed by the glomerular 

filtration barrier (GFB). GFB is a complex system composed by three elements: the endothelial cells, 

the glomerular basement membrane and the podocytes (Figure 1).  

 

 
 

Figure 1. Representation of glomerular filtration barrier. The glomerular filtration barrier shows three 

main components: fenestrated endothelial cells, glomerular basement membrane and podocytes. 

Arif et al., 2013. 
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The endothelial cells (EC) line around the vessels, working as barrier between blood and tissues. 

These cells are characterized by 60-70 nm fenestrations, transcellular holes localized in the cellular 

cytoplasm and specialized in the control of selectivity of GFB (2). The dimension of these 

fenestrations is not enough to restrict the passage of albumin and other plasma proteins, suggesting 

that glomerular capillary wall does not constitute a perfect barrier in restricting the substances. Instead, 

the presence of negative charged components in the glycocalyx of EC may be fundamental to regulate 

the permeability of GFB, allowing preferably the filtration of positive charged molecules (3, 4). 

Moreover, the EC may be useful to limit the filtration of cells components, including erythrocytes.  

The glomerular basement membrane (GBM) is composed by extracellular matrix containing four 

main macromolecules: laminin, collagen IV, nidogen, and agrin (heparan sulfate proteoglycan). This 

membrane, which surrounds completely the endothelial cells separating the vessels from the urinary 

space, contributes to the permeability of the GFB. Since the high negative charge of GBM given by 

heparan sulfate proteoglycan, smaller size and positive charged substances move more readily into 

the filtrate than bigger and negative charged ones (5). Indeed, the plasma albumin is restricted by the 

GBM because of its negative charge. However, mutations of proteins constituting the GBM can cause 

severe diseases that lead to barrier abnormalities resulting in albumin and protein leakage and, in turn, 

kidney failure (6, 7). 

Podocytes represent specialized epithelial cells of GFB that face the Bowman’s capsule and the pre-

urine. Podocytes have a big central cellular body, from which major processes split into numerous 

foot processes, which in turn project and lay on the GBM (8). The processes are connected each other 

by a 40 nm thin structure called slit-diaphragm, formed by nephrin, podocin and other proteins 

fundamental to maintain the glomerular filtration function. All these proteins form a signaling 

network involved in the regulation of podocytes structure and function (9). The architecture of 

podocytes is also characterized by actin cytoskeleton, which contributes to its morphology and 

function. The slit diaphragm allows the passage of water and small solutes but may selectively restrict 

the filtration of larger substances (10). Indeed, the negative charge of proteins covering the podocytes 

and the slit diaphragm, including the podoendin, help to limit the passage of large anionic molecules 

(11). 

The filtration of substances through the GFB strongly depends by their molecular weight and radius. 

Small molecules, such as water, urea and glucose, filtered by the glomerulus show the same 

concentration as in plasma, while higher molecular weight substances including lysozyme or albumin 

pass more difficult in the ultrafiltrate. Electrical charge also contributes to the selectivity of renal 

filtration: as stated above, the negative charge of the GFB allows the cationic molecules to move 

more readily in the ultrafiltrate, restricting instead the anionic ones. The shape also affects the renal 
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permeability, since more rigid molecules seem to pass less easily compared to more deformable 

molecules, e.g. dextrans (12).   

 

2.1.2 The determinants of glomerular filtration 

The main driving force for the glomerular filtration is provided by the Starling forces, which regulate 

the fluid flow in the glomerular capillaries as well as in other vessels. The hydrostatic pressure in 

glomerular capillaries (PGC) and the oncotic pressure in Bowman’s space (pBS) favor the 

ultrafiltration. On the other hand, the oncotic pressure in glomerular capillaries (pGC) and the 

hydrostatic pressure in Bowman’s space (PBS) oppose ultrafiltration. Thus, the driving force favoring 

the renal ultrafiltration is the net hydrostatic force (PCG-PBS) minus the net oncotic force (pGC-pBS) 

(13)(Figure 2). 

 

 
Figure 2. Forces regulating the ultrafiltration. The hydrostatic pressure in glomerular capillaries (PGC) and 

the oncotic pressure in Bowman’s space (pBS) favor the ultrafiltration, while the oncotic pressure in 

glomerular capillaries (pGC) and the hydrostatic pressure in Bowman’s space (PBS) oppose ultrafiltration. 

Adapted from Boron et al., 2012 

 

 

An important parameter that affects the renal filtration is the renal blood flow (RBF), defined as the 

amount of blood arriving to the kidney per time unit. In physiological condition, the kidney receive 
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about 25% of the cardiac output, thus more than 1 L/min. The RBF is correlated to the renal plasma 

flow (RPF), which is the volume of plasma arriving to the kidney, and this value corresponds to about 

600 mL/min. The RPF is strictly connected to renal filtration, since an increase of GFR is shown at 

higher value of RPF, while it decreases strongly with lowering of RPF (14). The GFR-RPF ratio 

describes the volume of formed filtrate derived from a certain amount of plasma entering in the 

glomerulus, a parameter known as filtration fraction (FF). Considering the physiological values of 

GFR and RPF, the FF in health is about 0,2 (14).    

The GFR and RPF can undergo autoregulation mechanisms after a variation of body conditions, such 

as change of mean arterial pressure, allowing them to remain within acceptable limits. Two main 

mechanisms are involved in the renal autoregulation: myogenic response and tubule glomerular 

feedback (TGF). Myogenic response refers to the ability of smooth muscle cells to contract or relax 

according to the different changes in blood pressure: a good blood flow is preserved by the vessels 

contractions after a rise of blood pressure, permitting to increase the resistance of afferent arterioles  

(15, 16). 

The TGF, instead, is a mechanism that involves the macula densa, a region of specialized epithelial 

cells of the thick ascending limb of loop of Henle (TAL). Together with mesangial and granular cells, 

macula densa form the juxtaglomerular apparatus (JGA), a complex machinery implicated in the 

regulation of blood pressure and release of renin. The macula densa cells, in particular, can detect an 

increased sodium load at the distal level thanks to NKCC2 transporter and they can compensate it 

increasing the arteriolar vasoconstriction and lowering the PGC and RPF. As a result, the GFR 

opposes to the initial raise in renal filtration, remaining within regular ranges  (17, 18).  

 

2.1.3 Assessing the renal function: GFR and SNGFR 

The GFR, one of the most important renal parameters, provides a reliable measure of kidney function 

and it taken in account by clinicians to diagnose renal disorders or to monitor chronic renal diseases 

(13, 19). 

Inulin is the ideal marker to estimate the renal function, since it is a substance freely filtered by the 

kidney and it is neither secreted nor reabsorbed by the tubules (20–22). However, it is rarely used in 

the clinical routine due to technical difficulties and high costs (23, 24). The clearance of creatinine, 

instead, is easy to calculate because it is physiologically released from the muscles and excreted by 

the kidney. Despite this method only requires the creatinine values in blood and urine and the day-

urine output, it is not often used since creatinine is proportional to the muscle mass, causing a huge 

variability among patients (25). To overcome these drawbacks, the value of estimated GFR (eGFR) 
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is widely employed in order to monitor the progression of renal injury in many nephropathies (26, 

27).  

The measurement of eGFR considers many factors, such as serum creatinine, age and gender (19). 

According to the National Kidney Foundation’s guidelines for clinical practice, a GFR higher than 

90 mL/min/1.73m2 is considered normal, while values lower than 59 mL/min/1.73m2 indicate 

progressive renal failure (28)(Figure 3). 

 

   
Figure 3. Staging of chronic kidney disease. Each stage indicates the specific kidney function and the 

corresponding GFR range. National Kidney Foundation’s. 

 

 

While GFR refers as the filtration function of all nephrons, the glomerular filtration rate of single 

nephrons (SNGFR) takes in account the individual filtration events in the kidney.  

Since its discovery, the knowledge of SNGFR has become very important for researchers to evaluate 

the renal function, since it gives more precise information regarding the glomerulus dynamics and 

the determination of the mechanisms of tubular reabsorption and secretion (29). SNGFR is affected 

by many determinants: age (30), sex (31), number of kidneys (32), genetic background (33) and can 

vary according to different body conditions. In particular, SNGFR can increase after nephrons loss 

as a compensatory mechanism, allowing the stability of total GFR, or in consequence of the increased 

metabolic request (34). Indeed, in course of diabetic nephropathy whole-kidney GFR may remain 

stable thanks to the renal functional reserve provided by single nephrons even when extensive loss of 
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nephron mass is shown (<50%)(35). However, it is difficult to determine the exact relationship 

between nephrons loss and SNGFR changes, since the counting of human nephrons is challenging.  

SNGFR is influenced also by the examined site in the kidney: in fact, superficial nephrons have a 

lower filtration rate than deeper ones (30, 36). This proves the big morphological and functional 

diversity existing among nephrons. Moreover, changes in SNGFR have been observed after some 

conditions, such as extracellular fluid volume expansion (37) and protein-based diets (38). However, 

the mechanisms regulating SNGFR are not yet well known, and they could arise from the glomerular 

blood circulation or the macula densa cells (39). Higher SNGFR has been linked to old patients (more 

than 70 years), reflecting the compensatory mechanism after nephrons loss, and to patients having 

high body mass index (BMI) and taller than 190 cm. This could be due to the larger size of single 

nephrons, as shown by Denic et al (40). In addition, also other conditions have been related to SNGFR, 

such as patients with obesity or familiar story of end stage renal diseases showed higher SNGFR. 

Therefore, it is reasonable to think that these conditions represent risk factors for the development of 

chronic renal diseases (40, 41). There is not a gold standard method to evaluate SNGFR in humans: 

some investigators have recently developed an approach to calculate it, using kidney donors 

characteristics including total GFR, density of non-sclerotic glomeruli in biopsy samples and cortical 

volume of kidneys; in practice, SNGFR corresponds to the ratio between the total GFR and the total 

number of nephrons (34). The assessment of SNGFR in rodent models may help to provide new 

insights in the mechanism of glomerular filtration in health and in the adaptive changes following 

nephron loss.   

 

2.1.4 Measurements of SNGFR with renal micro-puncture 

Most of the knowledge regarding the renal pathophysiology has been obtained by micro-puncture 

studies. Many renal functions in fact, such as the ultrafiltration, the glomerular filtration barrier and 

the urine concentration mechanisms have been elucidated through micro-puncture.  

In the 1920s, Wearn and Richards applied micro-puncture for the first time on frog kidneys, 

demonstrating the presence of free-protein renal ultrafiltrate in Bowman’s capsule and suggesting a 

mechanism of selective filtration (42). In the 1930s Richards, Walker and Hudson focused their 

studies on renal tubules by using Amphibia (43, 44). In the 1940s, Walker et al. applied micro-

puncture in mammals, in particular rats and guinea pigs, confirming the concept of renal ultrafiltration 

(45, 46).  

Since that time, researchers have exploited and improved this technique to better understand renal 

function in normal and pathological conditions. 
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For micro-puncture experiments an adequate equipment and careful animal preparation are required, 

being very cautious during each technical step and in the analysis of data, in order to avoid errors 

(47). In particular, rats are usually anesthetized with tiobutabarbital (48), while in mice a combination 

of tiobutabarbital and ketamine is used (49). Then, the artery and vein are cannulated for the 

monitoring of blood pressure and for the infusion of experimental substances, respectively. The left 

kidney is then externalized through a flank incision and, after removal of fat and connective tissue, is 

placed in a Lucite cup for its immobilization (50). If the urine samples are required, also the bladder 

is cannulated. A wide range of instruments is necessary for in vivo micro-puncture studies, including 

a high magnification microscope, a micromanipulator for holding glass pipettes and a micro-

perfusion pump. A crucial step in these experiments is the preparation of pipettes. Pipettes are made 

differently according to their function: those for collecting the samples must have thin but enough 

rigid tips, unlike those for blocking definitively the fluid flow, that have larger diameter (51). The 

nephron segments directly reached by the micro-puncture pipettes include the proximal convoluted 

tubule and, in minimal part, distal tubules and collecting ducts. The glomerulus is accessible only in 

some strains of rats, such as the MWF, known to have many superficial glomeruli under the renal 

capsule. Nevertheless, it is possible to get information in indirect manner about the loop of Henle by 

considering the differences in delivery to proximal and distal points. 

The first step in micro-puncture studies is mapping the tubules, this is important to know the length 

of the tubules that have to be punctured. For this purpose, an amount of stained dye is usually injected 

in the desired tubule in order to see the staining of the downstream segments: the colorant is visible 

in the proximal tubule, then in the distal tubule since it disappears through the loop of Henle (51). 

After the tubule is chosen, it can be punctured with the desired pipette that is backfilled with stained 

oil, generally very viscous. This oil is released in the tubule and move with the fluid flow, preventing 

the reflux of the liquid and contamination with fluid of the other segments. Thus, the sample can be 

collected (Figure 4). 
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Figure 4. Equipment for micro-puncture experiments. The animal is positioned on the heated table laying 

on the lateral decubitus to expose the left flank. Externalized left kidney is immobilized in a Lucite cup, and 

is illuminated with light source from the front. The manipulator on the left is holding the marking pipet, while 

the manipulator on the right is holding the pressure pipet. Lorenz et al., 2012.  

 
 

In general, two different approaches for micro-puncture can be used. The first one is the free flow 

collection, that allows to collect fluid from a tubular segment in free flow conditions, in order to get 

the amount of a substance filtered through the glomerulus and to study the net tubular reabsorption 

or secretion (52). The other approach is the micro-perfusion, in which an immobile wax block is 

inserted just upstream of the segment of interest. The tubule can be perfused with an experimental 

substance and then the fluid is collected in the distal portion of the tubule. This method has the 

advantage to manipulate and control the perfusion rate and the composition of the perfusate (53). 

Some variants of micro-puncture technique have been developed to better understand the solute and 

water tubular transport. One of this is the microinjection, which requires continuous injection with a 

micropump of a solution containing inulin and a labeled tracer of interest in some nephron regions. 

Then, the tracer is compared with inulin, allowing to get the fractional unidirectional reabsorption of 

the injected substance (54). Another method is the insertion of luminal fluid droplets in the renal 

tubules, which enable to determinate the alteration in size related to the fluid composition (55). 

Micro-puncture has provided high information regarding the SNGFR. According to the standard 

formula, SNGFR assessment requires the evaluation of inulin in blood and in the fluid sample in ratio 

with the tubular fluid flow rate (56). As an alternative to inulin, iothalamate can be used (57). In male 
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rats the SNGFR average value is 35 nL/min, in mice is 12 nL/min (51). It is not recommendable to 

consider values very far from these, since they could be affected by errors. Lower values than these 

could mean an incomplete sample collection, instead greater values could represent a fluid collection 

from juxtamedullary nephrons (29). Errors during SNGFR measurements seem to be caused by 

sample collection, volume measurements and counting, and they have been evaluated even in 

particular conditions, such as hydropenia and saline diuresis. It is also possible to recollect fluid from 

the same tubular site in order to have more powerful and paired statistic results. This method, however, 

is debated since the oil that has remained in the tubule after the first collection could determinate 

nephron obstruction, causing hydronephrosis or alteration of fluid flow through macula densa cells, 

leading in turn to changes in GFR (58). 

It is understandable that micro-puncture was the approach of choice for the measurement of SNGFR 

in rodents, but it is a very laborious technique, which requires complex animal preparation and 

sophisticated equipment. 

 

2.1.5 Fluorescence microscopy 

Fluorescence microscopy represents an extensively used approach in the field of research to evaluate 

cellular processes in vitro. Most of the techniques utilized for this purpose have been commonly 

applied to cells, isolated tissues, explanted organs or embryos. These approaches, relatively cheap 

and easy to maintain, provided important information regarding the basic cellular and molecular 

biological events.   

However, the cells tend to modify their phenotype when removed from their original environment 

and they are not able to reconstruct the complex architecture and the dynamic physiology of living 

organisms. The in vivo systems, indeed, show complex morphological organization and require 

continuous interactions with other organs, which permit the efficient functioning of the organism. 

Therefore, the usage of in vitro systems is debated since can make the experiments and the following 

data interpretations limited.  

For this reason, the attention of researchers moved to study the biological functions using living 

organisms. The first experiments were described in 1839 by Wagner, who evaluated the leucocytes 

movements within the blood vessels in frog feet using bright field microscope (59). In the following 

decades, researchers used this approach to investigate pathophysiological processes involving 

especially the vascular physiology and the cell migration (60, 61). In the 1980s a big improvement 

was made with the advent of epifluorescence microscopy, which permitted to clarify more in detail 

the cellular physiology in tissues such as vessels (62) and tumors (63). After that, the development of 

confocal microscopy provided a great advancement in the microscopy field thanks to its ability to get 
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optical sections from a sample, leading to a huge increase of spatial resolution compared with 

previous methods. Such technique was used by Villringer et al. in 1989 to study microcirculation on 

rat brain in vivo (64) and by Jester some years later to perform in vivo imaging in tissues such as 

cornea, liver, kidney and thyroid in rabbits and rats (65). 

 

2.1.6 One-photon excitation: confocal microscopy 

Upon the absorption of a photon by a fluorophore, an electron existing in the ground state (S0) is 

raised to the excited state (S1). After a short interval of time in the excited state, the fluorophore 

relaxes back to its ground state and may emit a low energy photon of light. In order to excite properly 

the fluorophore, the photon should have the energy matching the energy of the excited state (Es1). 

Thus, from S1 state the molecules can return back to the ground state without emitting a photon, 

transferring the electronic energy to produce heat. Alternatively, the electron dropping to the ground 

state can emit a photon of lower energy than the one originally absorbed, producing a process called 

“Stoked shift”. The efficiency of fluorescence is given by the quantum yield, which can be defined 

as the ratio between energy emission and energy absorption. The absorption and emission ability of 

a molecule is characterized by the molar extinction e and the fluorescence quantum yield f, whose 

product provides the brightness of a substance (66, 67). 

Confocal microscopy is based on single-photon excitation fluorescence and its applications in the 

field of biomedicine have been widely described. Confocal microscope exhibits a different principle 

compared to traditional fluorescence microscopy, which produce blurred images when a specific 

point of the sample is acquired. Instead, confocal microscopy permits to obtain more detailed pictures 

with higher depth in a small point of the sample thanks to the pinhole that reject all the out of focus.  

The biological applications of confocal microscopy include the evaluation of cellular organelles and 

nuclei: using specific fluorophores permits to track the single cell organelles, such as mitochondria 

and Golgi apparatus, and to image the nuclear chromosomes involved in cell division. Confocal 

microscopy also helps to make 3D reconstruction of the sample studied because of its ability to 

section optically the specimen. In addition, combining confocal microscopy and GFP (green 

fluorescent protein) it is possible to monitor the cellular trafficking and molecular pathway as well as 

gene expression (68). 

Despite the numerous opportunities it offers and its capacity to acquire high resolution 3D images, 

the utilization of confocal microscopy for deep tissue imaging remains limited due to the strong 

scattering of light and the consequent photobleaching of the samples, as described elsewhere (69). 
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2.1.7 Principles of multiphoton microscopy 

Intravital imaging of living organs is possible with conventional confocal microscopy, but this 

method is limited by the relatively low tissue depth and the high photo-toxicity. 

Intravital multiphoton microscopy (MPM) is a superior technique that offers 3D images and high-

resolution movies of dynamic cellular and subcellular events. Thanks to the deeper laser penetration 

and less phototoxicity, MPM allowed researchers to address important questions regarding human 

and animal physiology, becoming the gold standard approach for live imaging.  

The concept of MPM was first described in the 1930s by Maria Göppert-Mayer (70), but it started to 

be used for biological imaging about 50 years later. 

Most studies performed so far have used two-photon excitation, therefore the term “two-photon” 

microscopy rather than “multiphoton” is sometimes preferred. 

Unlike the other techniques, such as confocal microscopy, MPM exploits two low-energy photons 

arriving almost simultaneously on the sample and uses a long wavelength laser exciting in the near 

infrared range (700-1000 nm). The two photons alone have the half of the energy compared to the 

single photons used in one-photon excitation, but the resulting fluorescence emission is comparable 

with that generated in one-photon event. Since the photon energy is inversely proportional to the 

wavelength, in two-photon excitation the wavelength used should be approximately twice than one 

photon excitation (71–73). The figure 5 shows a simplified jablonsky diagram for one-photon and 

two-photon excitation fluorescence.  

MPM exhibits several advantages compared to previous microscope methods. First, the laser 

penetration in the tissue is higher in consequence of less light scattering, allowing to image in the 

kidney up to 150-200 µm (72). This represents a depth capacity 3-4 times more than confocal 

microscopy (74). In more optically transparent organs, such as brain, MPM permits the imaging even 

at higher depth (75, 76). 

Second, the phototoxicity is less thanks to the two low-energy photons arriving on the sample. In this 

way it is possible to image continuously over the time, especially when thick samples are visualized, 

including brain slices, embryos and living organs (77). Third, the out of focus is reduced, and the 

fluorescence is high only in the focal plane because the excitation energy drops proportionally to the 

square of the distance to the focal point. Therefore, the photobleaching is reduced, the necessity of a 

pinhole is avoided, and more sensitive detectors can be used to collect the fluorophore emission (78, 

79)(Figure 6). 
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Figure 5. Simplified Jablonsky representation for one-photon and two-photon excitation. 

One-photon excitation occurs after the absorption of a single photon which provides sufficient energy to reach 

the excited state (S1). Two-photon excitation is provided by the simultaneous absorption of two photons of 

lower energy. The subsequent fluorescent emission of one-photon and two-photon excitation is comparable. 

Schiessl at al., 2016. 

 

 

 
Figure 6. Localization of fluorescence by one-photon and two-photon excitation. In one-photon excitation 

(a) the fluorescence spreads far from the focal plane, requiring a pinhole to reject all the out of focus. Two 

photon microscopy(b), instead, emits fluorescence only at the focal plane, reducing photobleaching and 

avoiding the necessity of a pinhole. 

Zipfel et al., 2003. 
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As consequence of these improvements, MPM permits to capture dynamic events in organs of living 

animals, still incorporating the complexity of hormonal factors and metabolites with subcellular 

resolution, becoming the technique of choice for intravital imaging. 

As largely shown in literature, the application of MPM gave the opportunity to increase the 

understanding of many organs, such as brain (80), skin (81), liver (82), heart (83) and kidney (84) as 

well as investigations in immunology (85) and cancer (86) fields. The kidney, in particular, presents 

a very intricate structure with different cell types that are difficult to analyze with conventional 

techniques since they may show changes when removed from the physiological body. For this reason, 

the imaging of living organs with MPM overcomes the limits shown by confocal microscopy and 

offers the unique occasion to extend the knowledge of human pathophysiology, with the future 

perspective to evaluate efficient treatment strategies. 

 

2.1.8 Application of MPM in kidney physiology 

One of the advantages offered by MPM is the possibility to study the cellular morphology even 

without the external labeling. In fact, lysosomal and mitochondrial NADH fluorescence naturally 

exhibited by cells enables the spontaneous visualization of some tissue structures. Particularly, 

mitochondrial NADH generates strong autofluorescence during its reduced state. This is particularly 

true for kidneys, where renal proximal tubules are characterized by a huge number of mitochondria 

and lysosomes, allowing to recognize them very easily. Other nephron segments such as distal tubules 

and collecting ducts show less fluorescence intensity and appear as dark empty patches. The 

glomeruli, instead, lack any fluorescence and are shown as large dark empty spaces close to proximal 

tubules (87) (Figure 7).  

It is understandable that the renal autofluorescence is very helpful to identify and track the tubules of 

interest during the imaging without exogenous staining. Additionally, the autofluorescence emitted 

by NADH helps to understand the metabolic state of the organ in real time and to compare 

physiological processes, such as aging (88), with diseases conditions, including hypoxia and ischemia 

(89, 90). However, tissue autofluorescence has to be evaluated carefully since it can overlap with the 

emission of external probes, making sometimes the analysis quite doubtful (91). 

Another possibility is to image collagen fibers and skin using second harmonic generation (SHG) 

technology, which takes advantage not from absorption but from Rayleigh scattering, resulting in 

frequency-double photon (92, 93). The imaging with SHG provides an advantage in that it is not 

limited by photobleaching since it does not require fluorescence excitation. SHG can specifically 

detect structures such as collagen I and III, microtubules and myosin (94, 95). The identification of 

collagen fibers in kidney results very useful to detect and quantify the renal fibrosis stadium without 
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external labels, showing high potentiality as pejorative predictor of nephropathies in many renal 

diseases (96) and in translational cancer research (97). 

 

 

 
Figure 7. Visualization of outer cortex in rat kidney. Renal autofluorescence in rat kidney helps to recognize 

the different tubules and other features. The numerous lysosomes and mitochondria present in proximal tubules 

(pt) show strong autofluorescence (orange vesicles), whereas distal tubules (dt) and collecting ducts (cd) lack 

any visible fluorescence, appearing as empty patches. Superficial glomeruli (glom) also lack any discernible 

autofluorescence, so they are represented as circular spaces surrounding proximal tubules. 

Sandoval et al., 2017. 

 

 

The great advantage of MPM is the capacity to label many cellular compartments using concurrently 

up to 4 different fluorescent dyes, allowing comparation of labeled probes and simultaneous analysis 

of multiple parameters in different conditions. For example, vessels can be stained with high 

molecular weight fluorophores that remain in the blood circulation for a relatively long time since 

their big size, permitting to study any abnormalities in vascular permeability (98) or in red blood cells 

velocity (99). Indeed, erythrocytes appear as elongated black shadows in normal conditions as they 

exclude the labeling. The slope of these shadows is inversely correlated to the blood flow, which can 

be assessed dividing the distance Dx traveled by the erythrocyte by the time Dt spent to cover this 
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distance. This represents a very powerful tool when a wild type condition is compared to disease 

models, such as the ischemia-reperfusion injury (100, 101)(Figure 8).  

 

 

 
Figure 8. Evaluation of red blood cells velocity using MPM. In the panel a, the renal cortex shows the 

peritubular vasculature and cell nuclei stained with Texas Red 70 kDa and Hoechst 33342, respectively. The 

panel b shows that the slopes of dark lines is inversely proportional to the velocity of red blood cells. Schiessl 

et al., 2016  

 

 

MPM helped to image in real time the urine concentration mechanism. In 2006, Kang et al. 

demonstrated that inhibiting the sodium-potassium-chloride cotransporter (NKCC2) with 2 mg/kg 

furosemide after low molecular weight dextran injection led to a reduction of dye concentration in 

the distal tubule, as a result of urine dilution and consequently to an enlargement of these tubules 

(102). Moreover, the enlarged distal tubular segments seemed to compress peritubular capillaries, in 

line with previous studies (103). 

MPM is also used to study the morphology and function of single cells involved in physiological or 

pathological events, including apoptosis and necrosis. Many fluorescent probes have been designed 

to this purpose. Blue Hoechst 33342 labels cellular nuclei and emits brighter fluorescent when cells 

become apoptotic compared to the normal ones. Necrotic cells instead are distinguishable because of 

loss of membrane integrity, allowing the dye Propidium Iodide (PI) to enter in the damaged cells. 

These latter cells will appear in red, due to the merge of blue and white color of Hoechst and PI, 
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respectively. The quantification of the apoptotic and necrotic cells shows a useful approach to assess 

the efficiency of treatments in preventing or ameliorating renal injuries (104, 105).  

In addition, MPM provides the great opportunity to image structures that were inaccessible, such as 

podocytes (106) and cells of juxtaglomerular apparatus (JGA)(107) in kidney, and that have been 

studied only in vitro. This has considerably increased the knowledge of the mechanisms regulating 

the glomerular permeability, albumin reabsorption or the glomerulosclerosis. MPM, in fact, has 

offered stunning images and new details of the glomerular components, opening up the way for new 

kind of studies with important functional implications both in physiological and pathological 

conditions.  

The new technologies developed higher quantum yield fluorophores, transgenic animal models and 

new powerful applications that helped investigators to address new biological questions, to improve 

the experimental techniques and the analysis methods, removing some limits existing for intravital 

microscopy. In literature many examples of such innovative technologies are shown. As reported by 

Hackl et al (108), the tracking in vivo of single podocytes during cellular damage, migration or 

differentiation was possible using transgenic podocin-GFP mice. This approach enabled to visualize 

the movements of podocytes within the glomerulus from the capillaries to the Bowman’s capsule, 

demonstrating the dynamic activity of the glomerular components. The results obtained with this 

imaging approach represent an exciting opportunity to investigate the podocytes biology in normal 

and disease models. Furthermore, intravital microscopy experiments using genetic animals opened 

the way to elucidate the calcium imaging in kidney, which was prohibitive so far due to the limited 

delivery of dyes to the interested site. Recent studies on animals expressing calcium indicators have 

suggested a role of intracellular calcium in podocytes in regulating the functioning and selectivity of 

glomerular filtration barrier, presumably remodeling the actin fibers in podocytes processes (109).  

A challenge in the imaging of kidney physiology was represented by the constrained possibility to 

visualize superficial glomeruli in rats, limiting the studies of glomerular dynamics. A mutant strain 

of rats, known as Munich Wistar Frömter (MWF), was then selected from the original Munich Wistar 

rats by Frömter for their elevated number of superficial glomeruli under the renal capsule. Since then, 

the MWF rats have been extensively used for kidney physiology in vivo, offering a unique approach 

to investigate the glomerular pathophysiology. These rats show a smaller body weight compared to 

other strains and present many physiological alterations. They develop proteinuria at 10 weeks and 

show significant glomerulosclerosis at 35 weeks. The average blood pressure is 140-150 mmHg at 

10 weeks and reach approximately 180 mmHg at 9 months of age. The number of nephrons is 50% 

reduced compared to Wistar rats and the average size of Bowman’s capsule is increased: in particular, 
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the reduced number of nephrons suggest a lowered ability to excrete sodium, which in turn lead to 

hypertension and glomerular damage (31, 110).  

An interesting application of MPM is shown by Schiessl et al, who exploited the surgical implantation 

of an abdominal window to image the same renal location over several days, allowing to evaluate the 

mechanisms involved in tubular regeneration. Thanks to this long-term imaging approach, the 

angiogenesis process, the infiltration of tumor cells and the recruitment of inflammatory cells in 

kidney was carried out, overcoming the limits shown by previous techniques (111). 

In addition, the image processing and correction methods were improved with the advent of new 

technology. Indeed, some tools and software have been developed in order to reduce the image noises 

and artifacts caused by the animal breathing and heartbeat, which can make the quantitative analysis 

very complex. This can be for sure mitigated during the animal preparation with a proper anesthesia 

and surgery. In addition, taking images with relatively high spatial resolution (512x512 pixels) can 

help to control some movements (112). Despite these precautions, the artefacts can still remain. To 

overcome these challenging complications, it is possible to stabilize the images using the “registration” 

plugin on imaging software Fiji, which realign the x, y and z positions in a region of interest. 

Moreover, many other image corrections can be performed with the same software. After image 

acquisition some filters can be applied to enhance the contrast, change the brightness and smooth the 

image (113). Furthermore, Bölke et al show that some algorithms help to reduce the noise in the 

pictures acquired with 2PM, preserving the samples from the natural artifacts (114). 

The advantages offered by MPM and its capacity to image both proximal and distal nephron segments 

allowed to investigate in vivo the main renal functions, including the glomerular filtration rate, the 

urine concentration mechanism, the albumin reabsorption, and the functions of juxtaglomerular 

apparatus. MPM, moreover, can be applied to study the rare genetic disease and the most frequent 

pathological conditions reproduced in animal models.    

 

2.1.9 Measurements of SNGFR with MPM 

New generation microscopy techniques and transgenic murine models as well as improvements in 

the data analysis have led to overcome the micro-puncture favoring the MPM for the evaluation of 

renal function. 

The assessment of SNGFR represents one of the most fascinating applications of MPM in kidney 

physiology and can be done observing and quantifying the fluorescent decay time of a low molecular 

weight dye between two regions of interest drawn within a tubule. This method was first developed 

by Kang et al. to compare physiological values of SNGFR in Munich Wistar rats with those obtained 

in Streptozotocin-diabetic rats (102). In particular, a superficial glomerulus connected with early 
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proximal tubule measuring at least 100 µm was chosen for the measurement. The fluorescent marker 

Lucifer Yellow was injected as a single bolus in the venous access appearing in the bowman’s space 

within a few seconds. The changes of fluorescent intensity were measured within 2 regions of interest 

(ROI), of which one was located after the urinary pole and the other at least 100 µm downstream. 

The length and the diameter of the tubule were calculated to obtain the tubular fluid volume, whereas 

the passage time of the filtrate represented the DT, expressed as the shift of the intensity plots between 

the 2 ROIs. The absolute value of SNGFR, expressed as nL/min, was finally obtained from the 

volume/time ratio (Figure 9). 

 

         
Figure 9. Representation of the assessment of SNGFR using MPM. After the intravenous injection of a 

low molecular weight dye, the changes in fluorescence intensity are measured within two regions of interest. 

Kang et al., 2006. 
 

 

To confirm the feasibility of such approach, Kang et al. measured the SNGFR in hyperfiltering 

glomeruli shown in diabetic rats treated with Streptozotocin, obtaining results comparable to the 

micro-puncture technique. This approach, therefore, is quite convenient due to the low molecular 

weight of the dye used and the possibility to easily calculate the tubular size and transit time, proving 

to be an accurate and fast method to assess renal function. In addition, this method allowed to 

accurately measure the Lucifer Yellow transit within the initial 500 µm of early proximal tubule 

showing a good reproducibility.  

However, this technique is limited in terms of temporal resolution when acquiring full frame time-

series, reducing the accuracy of SNGFR measurements. 
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2.1.10 The link between dopamine and SNGFR  

As reported by many studies, a normal dopaminergic system is needed to control the renal 

hemodynamic, electrolyte balance and blood pressure within physiological values. On the contrary, 

impairment of dopamine production or alterations of dopaminergic receptors lead to different 

pathological conditions including oxidative stress, hypertension and progression of renal dysfunction. 

Dopamine exerts complex effects on human body, and it involves many receptors which show 

different actions. The pharmacological effect of dopamine is dose-dependent, inducing natriuresis 

and increased renal blood flow at low dose (<5 ug/kg/min), while at higher dose it stimulates the 

cardiac output (115). In particular, low-dose dopamine is known to increase SNGFR by selective 

renal vasodilation. Therefore, low-dose dopamine is the treatment of choice in preterm human 

neonates with respiratory distress and low-urine output, as it leads to a significative increase of GFR 

(116).   

At high dose, dopamine interacts with peripheral a1-adrenoreceptors determining vasoconstriction, 

whereas the interaction with b1-adrenoreceptors leads to an increase of cardiac output. 

That is the reason why dopamine represents a fundamental drug in intensive care units used as 

vasopressor agent, particularly in hypotensive patients not responding to fluid treatment. 

Moreover, dopamine accomplishes its functions through the interaction with two main subgroups of 

receptors: D1-receptors have been found at least in renal and cerebral arteries, while autonomic 

ganglia and sympathetic nerves showed the presence of D2-receptors. Particularly, D1-receptors 

permit locally produced dopamine to inhibit the functioning of main apical and basolateral 

transporters, such as Na+K+ pump and Na+/H+ exchange. In addition, D1-receptors activate adenylate 

cyclase increasing, in turn, the activity of protein kinase A. On the other hand, D2-receptors inhibit 

adenylate cyclase and regulate ion channels (117). 

Despite the great potential of dopamine in raising the renal function in patients with renal injury and 

increasing the blood pressure in hypotensive patients, its use in clinical practice remain controversial 

due to the overlapping effects when certain dosages are used. 

 

2.1.11 The acute kidney injury  

The acute kidney injury (AKI), previously called acute renal failure (ARF), represents a global health 

problem characterized by a fast and sometimes reversible decrease in kidney function involving both 

morphological damages and impaired function (118, 119). Most of patients with AKI show multiple 

pathophysiology, including sepsis, ischemia and nephrotoxicity, which make difficult the 

identification and treatment of the disease (120). Conventionally, AKI is classified in three categories: 

pre-renal AKI, acute post-renal nephropathy and acute kidney disease. This latter is considered to be 
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the real kidney disease, which is shown only if the pre- and post- renal AKI persist (121). The fast 

decline of GFR, the acute rise of serum creatinine and the reduction of urinary output in a given time 

are the main parameters to diagnose the AKI (122). Many factors promote the AKI and they include 

hypovolemia, vascular surgery, diabetes mellitus, hypoxia, atherosclerosis and sepsis (119). 

The mortality of AKI can reach or even exceed the 50% especially in hospitalized patients and 

patients in ICU that develop severe AKI (123–125). Most cases of AKI recover entirely with right 

management, particularly if they are diagnosed early. The prognosis, however, strongly depends on 

the etiology of the disease and the eventual previous renal injuries. Despite the possibility to recover 

even completely from the disease, repeated events of AKI over the time can determinate a progressive 

worsening of the renal function leading to chronic kidney disease (CKD) or death. Therefore, it is 

fundamental to monitor the patients until their renal function is considered back to the normal. 

Several clinical conditions represent the etiology of AKI and all them have been extensively reviewed: 

rhabdomyolysis, ischemia-reperfusion injury, drug toxicity and glomerulonephritis (120).  

The Rhabdomyolysis is a medical condition showing necrosis and disruption of damaged muscle 

cells, with consequent release in the circulation of their contents, such as myoglobin. The filtration 

of these molecules by the kidney can cause AKI as a consequence of renal tubules obstruction, cellular 

necrosis, inflammation, and blood constriction (126). Ischemia-reperfusion is also a very common 

cause of AKI since it causes tubular necrosis and altered glomerular hemodynamic (127). Drug 

toxicity also represents a huge problem for renal tubular cells, which can be exposed to high 

concentration of toxins after a continuative use of drugs. Drug-induced nephrotoxicity is the result of 

direct injury to renal tubules, hemodynamic alterations and blockage of renal excretion. Antibiotics 

including aminoglycosides are very used in the treatment of serious bacterial infections, however 

their nephrotoxic activity is well documented. Gentamicin, one of the most used aminoglycosides, 

accumulates in the proximal tubule cells leading to loss of integrity of brush borders, tubular necrosis 

and reactive oxygen species formation (128). Besides gentamicin, even other drugs have been 

reported to induce renal injury, such as cisplatin, indomethacin, amphotericin B, and beta-lactam 

antibiotics (129). The intravenous administration of contrast agents, widely used for diagnostic and 

pharmacological approaches, is well known cause of AKI. Several studies on animal models suggest 

that contrast media-induced kidney injury could be determined by renal ischemia, tubular toxicity 

and reactive oxygen species production but the pathophysiology is still not well elucidated (130).  

Many pharmacological agents have been shown to be effective in the treatment of AKI in animal 

models, especially in condition of ischemia reperfusion or sepsis, but no one of these was efficient 

when translated to humans (131). Therefore, a stronger knowledge of the disease at cellular and 
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subcellular level is needed in order to elucidate the differences between the animal and human 

conditions and to find efficient drugs compatible to humans. 

 

2.1.12 Renal ischemia reperfusion injury: morphological and functional aspects 

Ischemia refers to a mechanism through which the delivery of blood to the body tissues is severely 

reduced, leading to morphological alterations and impairment of normal functions. Despite 

reperfusion allows the fast return of oxygenated blood, it contributes to exacerbate the tissue necrosis 

and cell death in a process called “reperfusion injury”. 

Renal ischemia-reperfusion injury (IRI) is the main cause of AKI and its cellular and molecular 

mechanisms are not yet completely elucidated. The lowering of the blood flow is the first feature 

occurring during renal ischemia and in humans it can be caused by a significant decrease of blood 

pressure or as a consequence of vascular diseases, such as atherosclerosis and renal artery thrombosis. 

Surgical procedures involved during renal transplantation, aortic surgery, or clamping of renal artery, 

are also responsible for renal ischemia, determining in turn AKI (131).  

The main renal structure affected during IRI is the proximal tubule, which normally accomplishes the 

essential function of substances reabsorption. These transport mechanisms, which require huge 

amount of energy to be efficient, are strongly affected by IRI since the production of ATP required 

for the transport of molecules is dramatically compromised. The subsequent impairment of 

basolateral Na+K+ pump induces an abnormal accumulation of intracellular sodium, leading in turn 

to cellular swelling, intracellular abnormalities and necrosis (132). In addition to the tubular damage, 

also the vascular endothelium is reported to be altered during IRI, causing increase of blood viscosity 

and loss of fluid from the intravascular space. This would lead, in turn, to defects of renal circulation 

even during reperfusion phase, as shown by capillary occlusion and lowering of blood flow (133). 

Moreover, the development of reactive oxygen species (ROS) during reperfusion and the additional 

renal damage they bring have been widely documented. In particular, ROS have been thought to favor 

the renal damage not only targeting directly the cells, but especially activating molecular pathway of 

transcriptional factors, such as NF-kb (134). Other mechanisms, including alterations of intracellular 

pH and defects in calcium handling, are involved in the pathogenesis of AKI as confirmed by 

numerous studies (135).  

The decline in GFR observed during IRI is one of the major features of IRI-induced AKI and it could 

be explained by the tubular obstruction and the reflux of solutes, such as inulin, across the tubular 

cells caused by tubular damage: the debris and cast formation after tubular occlusion is shown to 

increase tubular pressure and to lower the filtration pressure.  Additionally, the constant reduction of 

tissue oxygen during the reperfusion could lead to a drop of GFR as a compensatory mechanism to 
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maintain the oxygen values within normal ranges. However, the massive ROS production further 

decreases the medullary blood flow, resulting in additional renal injury. As reported by Sutton et al, 

the increased expression of ICAM and leucocytes recruitment as consequence of ROS-mediated 

inflammation contribute to the tubular impairment, leading to further GFR decrease (136).  

The SNGFR also is reported to be reduced after renal damages in IRI models, as extensively 

documented (132, 137, 138). However, SNGFR reduction can’t be only described as the consequence 

of mechanical events like tubular damage and morphological changes. Several studies have 

demonstrated a relationship between TGF and SNGFR reduction in IRI models. The raise of NaCl in 

tubular fluid after Na+K+ pump impairment is a strong stimulus for the activation of TGF, which is 

able to decrease significantly proximal and distal SNGFR. Moreover, some experiments involving 

the use of diuretics, such as furosemide and bumetanide, confirm the strong link between TGF and 

SNGFR (139). From these assumptions it is clear that TGF is the main responsible of SNGFR 

lowering and the inhibition of macula densa cells, the main actor in TGF mechanism, could prevent 

the strong SNGFR reduction exhibited in renal injury (140, 141). 

 

2.1.13 Animal models of IRI 

The animal models represent a necessary and unique tool to mimic the etiopathogenesis of human 

diseases, in order to understand the mechanisms underlying the pathology and to develop an efficient 

treatment.  

Different animal species have been used to develop the IRI model, including dog (142), pig (143), 

mouse (144) and rat  (145). IRI-induced AKI is usually obtained in rodents by occluding the renal 

artery for 30-45 min using a small non traumatic clamp, followed by releasing of the clamp to allow 

the reperfusion of the kidney (146, 147). Ideally, the ischemia of 45 min with 24 h reperfusion 

provides a suitable and reliable model to mimic the vascular alteration of human AKI.  

The study of Bird et al. shows an example of the morphological and functional abnormalities 

exhibited in IRI-treated rats, after 1 hour of ischemia and 24 hours of reperfusion. Macroscopically, 

the ischemic kidneys appear spotted and with a sponge consistency compared to normal kidneys. At 

the histological level, the renal tubules show significant and variable necrosis accompanied by 

intraluminal cast and debris formation. The vessels result to be congested, with a deposit of pigments 

derived from lysed erythrocytes in peritubular capillaries (Figure 10).  
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Figure 10. The histological changes in ischemic rats. The cells of superficial cortex show a great degree of 

tubular necrosis with consequent loss of nuclear detail. The formation of intraluminal cast and cellular debris 

as well as vessels congestion are evident.  Bird et al., 1988. 

 

 

The tubules exhibit slower flow rate when some dyes are injected. Regarding functional aspects, the 

24 hours reperfusion cause a significant reduction in whole GFR and in SNGFR, as shown by micro-

puncture experiments. The renal injury is also confirmed by a significant reduction in plasma 

creatinine over 24 hours (148).  

IRI-induced AKI was extensively studied over the last decades using different approaches. As shown 

by Hall et al., multiphoton microscopy was used to image the mitochondrial structure and function 

during IRI. Particularly, they demonstrated that clamping the renal artery induced a fast and strong 

rise of tubular NADH fluorescence as a consequence of hypoxia caused by a decreased activity of 

respiratory chain, which force the NADH to remain in the reduced state. In addition, the authors show 

that during ischemia the potential difference across the mitochondrial membrane is dramatically 

dissipated in the proximal tubule within a few minutes, whereas the distal tubules better maintain the 

mitochondrial structure. Moreover, thanks to the advantages offered by in vivo imaging the 

investigators were able to detect the morphological changes of tubules at great resolution, such as 

membrane blebbing and shedding of cellular components into the lumen (73). 

Another example of IRI study using intravital microscopy is shown in the work of Schiessl et al., who 

injected in anesthetized rats the fluorescent dye dihydroethidium (DHE) to image the ROS production 

in vivo. When enters in contact with superoxide, DHE moves to the nucleus where it binds nucleic 
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acids emitting a bright red fluorescence. According to their results, the investigators demonstrated 

the strong increase of DHE fluorescent in proximal tubules cells right after the onset of ischemia, 

which persisted even during the reperfusion. These results showing the development of ROS during 

ischemia were in line with previous studies (149). 

The positron emission tomography (PET) is another tool used to investigate IRI since it can produce 

images at higher resolution and quantification of dynamic processes. It provides great reliability 

especially when it is combined with computerized tomography. Moreover, the qualitative and 

quantitative assessment of processes such as hypoxia, apoptosis and endothelial disfunctions can be 

achieved thanks to new PET tracers (150).  

Other advanced technologies, including Infra-Red and magnetic resonance imaging, have been shown 

to offer great potentiality as clinical diagnostic tool to investigate AKI in murine models and patients 

(151).  

 

2.2 RESULTS 

2.2.1 SNGFR measurements with innovative Linescan method 

A superficial glomerulus connected to an early proximal tubule extending at least 100 µm 

downstream from the exit of the Bowman’s space was chosen for the measurement. From the Praire 

view software a linescan path starting from the urinary pole and crossing many times the tubular 

lumen orthogonally to the cellular wall was hand drawn (Figure 11). In the linescan window the 

number of acquired lines was raised until the total acquisition lasted approximately 10 seconds (from 

2000 to 13000 lines). This gives enough time for the FITC to be filtered through the glomerulus. The 

linescan was acquired while performing the iv bolus infusion of the FITC marker. Laser power and 

PMT gain of green channel were adjusted during dye bolus to avoid saturation of the fluorescence 

signal. The analysis of the linescan was performed with Fiji software. The resulting output of the 

linescan is a path of fluorescent lines, each representing a tubular crossing. The x axis of this path 

corresponds to the length of the drawn line, while the y axis to the duration of the linescan. The bolus 

arriving is characterized by an increase of fluorescence intensity in the first vertical tracing. Two lines 

of interest, one right after the urinary pole and the other at least 100 µm downstream, were selected 

for the further analysis (Figure 12). 

 

 



 31 

             
Figure 11. Representation of linescan tool for the assessment of SNGFR. A superficial glomerulus (G) 

with connected S1 proximal tubule on the same optical plane is chosen for the measurement. A line starting 

from the urinary pole and ending at least 100 µm downstream is hand drawn. For this evaluation 6 crossing 

lines were designed along the tubule (1-6). Glomerular and peritubular vessels were labeled with TRITC 500 

kDa. DT (distal tubule) shows concentrated dye. 

 

 

The fluorescence intensity profile of the two lines over time was plotted after background removal. 

The resulting curves were smoothed using a Gamma Variate function in Fiji. The time expressed in 

seconds that takes to the fluorescent dye to cross the two lines of interest (Delta T) is expressed by 

the distance between the maxima of each fitted line multiplied by the scanline period (Figure 13). 

The tubular length and mean diameter were measured and used for calculation of tubular volume as 

shown previously (102). Finally, the SNGFR value expressed as nL/min was given by the formula 

SNGFR= Volume (nL) *60/Delta t. 

In order to make the results more robust, the SNGFR value for each tubule was measured at least 3 

times changing the position of ROI2. 
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Figure 12. Analysis of the linescan technique. The output of linescan is a path of fluorescent vertical lines, 

each representing a different tubular crossing, where the x axis corresponds to the distance of the linescan and 

the y axis represents the time spent for the acquisition. The fluorescence intensity first occurs at line1, which 

represents the arrival of the FITC bolus in the tubular lumen, then it gradually appears in the other lines.  
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Figure 13. Representation of the fluorescence intensity profile of the two selected lines over time. On x 

axis is reported the number of acquired lines, which is further converted in time (sec), whereas the y axis 

represents the fluorescence intensity expresses as arbitrary unit. In the panel the original curves and the 

smoothed curves using gamma variate function are shown. The Delta t is calculated as the difference in seconds 

between the maxima points of the two smoothed curves.    

 

 

2.2.2 Validation of linescan method  

We first aimed to assess SNGFR measurements using the innovative linescan approach in control 

MWF rats. SNGFR in control rats averaged 19.6 ± 1.22 nl/min (46 early proximal tubules from 5 

different animals), as shown in figure 14. These values were comparable with those obtained 

previously with renal micro-puncture (152). In order to demonstrate the efficiency of this technique, 

SNGFR was also measured in low-dose dopamine-treated and ischemic rats.  Significantly higher 

values were obtained in 3 µg/kg/min dopamine-treated rats (25.5 ± 2 nl/min, 34 early proximal 

tubules from 3 different animals, P=0,0117), reflecting the hyperfiltration mechanism caused by 

vasodilation following low-dose dopamine treatment (Figure 14). 

SNGFR was then measured in rats underwent 30 minutes of unilateral ischemia-reperfusion injury. 

The ischemic condition was confirmed by the necrotic tubules, the intraluminal cast and debris 

formation, and the vessels congestion shown in the animal kidneys, consistent with previous data 

(Figure 15). Ischemic rats exhibited significantly lower levels of SNGFR compared to the controls 
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(13.2 ± 1.07 nl/min, 32 early proximal tubules from 3 different animals, P=0,0067), confirming the 

acute kidney injury process as described before (148) (Figure 14). 

 

   
Figure 14. SNGFR measurements in control, 3 µg/kg/min dopamine and ischemia/reperfusion rats. Low-

dose dopamine treated animals show significantly higher SNGFR than control group, whereas ischemic rats 

exhibit significantly lower SNGFR compared to control group. Each point for all groups represents a single 

value of SNGFR measured. 
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Figure 15. Effects of ischemia/reperfusion injury on rat renal cortex. The ischemic renal tubules show 

variable and widespread necrosis, as confirmed by the intraluminal debris and cellular cast formation 

(arrowhead). The peritubular capillaries congestion as a consequence of vascular endothelium impairment is 

also visible (arrow). Blood vessels and tubular lumen are stained with TRITC 500 kDa and FITC 3-5 kDa, 

respectively.  
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3. ASSESSING TUBULAR FUNCTION OF PROXIMAL TUBULE 

3.1 INTRODUCTION 

3.1.1 Glucose handling by the kidney: tubular reabsorption 

The renal glucose handling is crucial to understand the kidney function. The kidneys play a pivotal 

role in glucose homeostasis, releasing glucose into the circulation (gluconeogenesis), taking up the 

glucose from the blood to allow tissues utilization, and, most importantly, reabsorbing glucose from 

ultrafiltrate. The plasma glucose concentration is 70-100 mg/dL in fasting conditions, and his 

mobilization to the tissues and to the blood is regulated by insulin, glucagon and other hormones. 

Since it is not protein-bound or complexed with macromolecules, the plasma glucose is freely filtered 

by the kidneys, then it is nearly all reabsorbed by the proximal tubules so that only traces normally 

appear in the urine (153). After filtration, glucose concentration in the lumen matches glucose 

concentration in plasma, whereas it dramatically drops when proximal tubules start absorbing glucose. 

Consequently, glucose reabsorption is an active transport mechanism since it moves against a 

concentration gradient. The S1 proximal tubules reabsorb the majority of filtered glucose, while the 

remaining glucose reaching the S3 proximal tubules is readily reabsorbed, as shown by experiments 

on isolated rabbit nephrons (154). The glucose reabsorption requires the apical uptake mediated by a 

member of Na/glucose cotransporter family (SGLT) which couple the movements of glucose and Na+, 

while the exit from the cells is guaranteed by a member of GLUT transporter family, located on the 

basolateral membrane (153). Six members of SGLT family have been identified and included in a 

bigger family of transporters, known as SLC5: SGLT1 and SGLT2 are the best characterized, and 

they differ for their localization in the nephron, affinity for the glucose and glucose transport capacity 

(155). Regarding the GLUT family, five transporters called GLUT1, GLUT2, GLUT3, GLUT4 and 

GLUT5 have been identified in human tissues and they are widely distributed in most organs, 

including kidney, liver, brain, intestine and placenta (156). 

Figure 16 shows in detail the glucose reabsorption by SGLT and GLUT in renal tubules. The high-

capacity/low-affinity SGLT2 transporter mediates the apical glucose transport in the S1 proximal 

tubule with a Na+/glucose stoichiometry 1:1, and it is responsible for the 90% of glucose uptake (157). 

On the other hand, the S3 proximal tubule accomplishes this function using high-affinity/low-

capacity SGLT1 transporter with a Na+/glucose stoichiometry 2:1 (158). Once entered in the cell, 

glucose is reabsorbed in the blood circulation through the basolateral GLUT2 transporter in S1 and 

GLUT1 transporter in S3 proximal tubules (159). 
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Figure 16. Glucose reabsorption by SGLT and GLUT in renal proximal tubules. Nearly all the glucose 

filtered by the kidney is reabsorbed along the renal proximal tubules. More than 90% of glucose is reabsorbed 

by SGLT2 located on the apical membrane of early proximal tubules. Remaining glucose is further reabsorbed 

in late proximal tubules by SGLT1. Once in the cell, glucose returns to the bloodstream by facilitated diffusion 

and this mechanism is mediated by GLUT2 and GLUT1 transporters located on the basolateral membrane of 

early and late proximal tubules, respectively. Bailey et al., 2011. 

 

 

Unlike GLUT1 which may be saturated even at normal glucose concentration, GLUT2 is distributed 

in tissues presenting high glucose fluxes where it is difficult to become saturated (160). Compared to 

the SGLT family, the GLUT transporters are Na+ independent, moving glucose by facilitated 

diffusion. The basolateral Na+K+ pump maintains the Na+ concentration relatively low, forcing the 
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Na+ to exit from the cell. Thus, this mechanism ensures an electrochemical Na+ gradient driving the 

glucose movement to the cell (161). 

Physiologically, glucose does not appear in the urine even after a meal when the plasma glucose 

concentration is about 180 mg/dL. If this threshold value is exceeded patients experience glycosuria. 

When the plasma glucose concentration reaches 400 mg/dL the glucose transporters SGLT1 and 

SGLT2 are fully saturated, therefore they can’t reabsorb further glucose filtered, raising dramatically 

the glucose excretion. This imbalance between the filtration of glucose and the capacity of renal 

tubules to reabsorb it can occur when the plasma glucose levels are high, as during the diabetes 

mellitus, or when tubular reabsorption is compromised, as in the Fanconi-Bickel syndrome (162). 

 

3.1.2 Glucose metabolism in Fanconi Bickel syndrome 

Fanconi Bickel syndrome (FBS) is a rare autosomal recessive disease characterized by hepatic and 

renal glucose accumulation, leading to an altered glucose and galactose utilization, and disfunctions 

of proximal tubule (163). Patients affected by FBS suffers from electrolyte and pH imbalances, and 

they exhibit features such as rickets, polyuria, hepatomegaly, and osteoporosis (164, 165). It is known 

that the biochemical aspects of FBS include fasting hypoglycemia, post prandial hyperglycemia and 

glucose intolerance but the molecular mechanisms underlying the dysglycemia are not well elucidated 

(166). The pathology of FBS is caused by heterozygous and homozygous mutations in GLUT2 gene, 

which is mostly expressed in hepatocytes (167) , renal proximal tubules (168) , pancreatic cells (169) 

and neuronal cells (170). GLUT2 has a pivotal role in maintaining the physiological glucose 

homeostasis by glucose reabsorption through renal proximal tubules, glucose release from hepatic 

cells and insulin secretion from pancreatic cells. In FBS patients the lack of GLUT2, which normally 

permits the reuptake of glucose in bloodstream, results in glycogen accumulation in liver and kidney 

and can lead to glomerular hyperfiltration and micro-albuminuria (171). Moreover, impairment of 

GLUT2 is known to cause glycosuria, metabolic acidosis, phosphaturia, hypercalciuria and 

hypophosphatemia as well as nephropathy (172, 173). As stated above, the dysglycemia shown in 

FBS leads to different pathological patterns such as the fasting hypoglycemia, which is aggravated 

by renal glycosuria, and the post prandial hyperglycemia, due to a defect of insulin production from 

pancreatic b-cells. Other conditions related to the dysglycemia are neonatal diabetes and frank 

diabetes mellitus. Despite the dysglycemia caused by FBS, patients show normal values of glycated 

haemoglobin-A1c. Moreover, GLUT2 is thought to work properly in enterocytes of patients affected 

by FBS, as evidenced by the normal glucose transport in intestinal cells (174). The role of GLUT2 in 

pancreatic cells is not yet well investigated, but the high number of cases of neonatal diabetes suggests 

that it could be involved in insulin production during the fetal phase (175) (Figure 17). 
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Figure 17. Summary of pathophysiology of GLUT2 disfunction in FBS. GLUT2 maintains the 

physiological glucose homeostasis in liver, pancreas, kidney and brain. Overall, GLUT2 disfunctions cause 

fasting hypoglycemia, postprandial hyperglycemia, glucose and galactose intolerance, hepatomegaly, 

glucosuria, reduced GSIS (glucose-stimulated insulin secretion) and GH (growth hormone) deficiency. The 

postprandial hyperglycemia is due to decreased glucose uptake by liver and reduced insulin secretion by 

pancreatic cells, while fasting hypoglycemia is caused by the lack of glucose reabsorption by the kidney and 

lowered glycogen degradation in liver. The reduced GH production in brain is a consequence of 

parasympathetic and sympathetic systems alterations. Sharari et al., 2020 

 

 

At present there is not a specific treatment in clinical practice for FBS but the integration of phosphate, 

vitamin D, potassium and bicarbonate is the only therapy compensating the disease (176, 177). 

Further investigations are needed to better understand the mechanisms regulating the pathological 
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patterns of the disease especially in kidney, liver and pancreas, and to develop a therapy that 

specifically triggers the molecular defect.  

 

3.1.3 Limitations of in vitro approaches and advantages of in vivo imaging to assess the glucose 

metabolism  

The intricated structure of the kidney allows it to have many specialized functions. This complexity, 

however, has limited the full understanding of metabolic and transport processes in renal tubules. 

Efforts to elucidate the renal metabolism were made in the last century using in vitro methods, such 

as isolated cells or tubules, and ex vivo kidney slices (178, 179). Despite these approaches resulted 

fundamental to raise the understanding of the basic mechanisms underlying the renal metabolism, 

such limited techniques are constrained in that the cells are removed from their original contest which 

physiologically influence the cell metabolism. Experiments on isolated tubules provided insights 

within the context of the organ, but the results obtained did lack spatial and temporal resolution to 

link the function with the metabolism in a specific tubular segment. As stated above, the cells and 

freshly isolated tissues can’t accurately reproduce the complex interactions occurring in living 

systems.  

In the last decades the imaging tools are improving our capacity to understand the dynamic cell 

processes, becoming powerful methods to be used for clinical and preclinical assessment of metabolic 

functions maintaining the context of whole organ. In this scenario, MPM represents an ideal tool to 

investigate the tubular transport of metabolites and proteins thanks to its ability to resolve tubular 

mechanisms at cellular resolution. As shown by Hato et al., the glucose tubular uptake can be 

evaluated in murine living kidney to assess the functionality of glucose receptors and the metabolic 

state. In particular, the authors coupled the MPM with positron emission tomography (PET) to assess 

cortical and proximal tubule glucose tracer uptake, following experimental perturbations of renal 

metabolism. The continuous infusion of glucose analogue in animals allowed to image over the time 

and analyze the cellular reabsorption, quantifying the kinetics of glucose transport in the living kidney. 

The results obtained by the authors revealed an innovative application of intravital microscopy to 

evaluate the glucose uptake in vivo, overcoming the limits exhibited by previous methods (180). 

 

3.1.4 Physiological role of beta-lactoglobulin  

Beta-lactoglobulin (BLG) is one of the most abundant whey proteins in milk of many species, 

including bovines, baboons and rhesus monkeys, but it is absent from human milk (181). In ruminant 

milk, BLG exists as dimer at normal pH with a molecular weight of 36 kDa. BLG has been widely 

studied in the last decades especially in the field of chemical food because of its molecular 
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characteristics. Indeed, it provides an important nutritional value given by its copious aminoacidic 

composition. BLG is thought to be involved in many biological processes. Since it has many ligand 

bindings sites, BLG can bind vitamins A and D, palmitic acid as well as other hydrophobic 

compounds (182). In addition, LBG seems to have great binding affinity with fatty acid, 

phospholipids and aromatic compounds (181). Besides its ligand binding ability, BLG may 

contributes to protect body against diseases. According to recent studies, BLG exhibits antimicrobial 

and antioxidant activities, which could be used to treat sepsis and infections (183). As shown by Li 

et al, BLC could be associated with curcumin to improve its bioactivity and antioxidant activity (184). 

Furthermore, Tai et al demonstrated that BLG plays a key role in promoting the immune response, 

enhancing the cell proliferation through a receptor-mediated mechanism (185). The whey proteins in 

fact are known to stimulate the mucosal immunity and to improve the migration of immune cells to 

the secondary lymphoid organs (186). As shown by Belford et al, BLG stimulates the growth activity 

in many cell types, including human skin, human embryonic lungs fibroblast and rat myoblast (187). 

BLG was also exploited to ameliorate the encapsulating systems in nutraceuticals thanks to its high 

solubility, binding ability and resistance against peptide digestion (188).  

 

3.1.5 Proteins tubular uptake 

The glomerular filtration barrier selectively filters molecules to limit the filtration of beneficial 

substances and the waste in the urine of the majority of proteins. However, albumin, lysozyme, 

hormones, light chains of immunoglobulins and other proteins can be filtered in certain amount. 

Therefore, the kidney needs to retrieve most of them to prevent proteinuria and albuminuria. Indeed, 

human kidneys filter more the 3 g of albumin per day and the renal tubules reabsorb 96%-99% of 

filtered albumin so that only traces appear in the urine, consistent with micro-puncture experiments 

on rats (189). More than 70% of filtered albumin is reabsorbed by proximal tubules, whereas another 

26% is taken up by more distal nephron segments (190). Similarly, about 10 g of low molecular 

weight proteins are filtered by the kidney and a similar amount is then reabsorbed. Moreover, the 

protein uptake by renal tubules is essential to recovery vitamins, hormones and enzymes. Figure 18 

shows the fraction of the filtered load that the proximal tubule reabsorbs. 
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Figure 18. Protein handling by the kidney. The kidneys reabsorb 96-99% of filtered albumin as well as other 

proteins, such as lysozyme, β2-microglobulin and light chains of immunoglobulins. The green boxes show the 

percentage of the protein load that remains in the tubular lumen in the different nephron segments. Adapted 

from Boron et al., 2012 

 

 

Protein and peptide reabsorption is carried out through a mechanism of receptor-mediated 

endocytosis and this function takes place mostly in the early proximal tubule cells. First part of the 

process is the binding of the proteins to the receptors at the apical membrane, including megalin and 

cubilin. Then, the internalization into clathrin-coated endocytic vesicles occurs, followed by the 

fusion of the vesicles with endosomes. Subsequently, the vesicle membranes are recycled to the apical 

surface and their content is targeted for lysosomes for storage or degradation. The proteins avoiding 

the lysosomes are moved to the basolateral membrane, mostly by transcytosis, then they are released 

in the blood circulation (191) (Figure 19). Damages to the proximal tubules can lead to proteinuria 

even when the glomerular filtration barrier is not compromised. This explains how the kidney play a 

fundamental role in the metabolism of peptides and proteins. 
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Figure 19. Protein reabsorption in kidney by receptor-mediated endocytosis. See text for details. Adapted 

from Boron et., 2012 

 

 

3.1.6 In vivo assessment of tubular protein uptake  

As largely discussed above, the in vitro systems are too simple to investigate complex cell processes, 

such as the tubular uptake of proteins, which involve several receptors and is regulated by hormones. 

In literature several examples regarding the in vivo protein uptake in kidney using MPM are described. 

Russo et al, for instance, demonstrated the use of intravital microscopy to investigate the causes 

leading to albuminuria in diabetic nephropathy. Indeed, the infusion of albumin-labeled dye in rats 

allowed to analyze the albumin endocytosis and distribution along the proximal tubule in control and 

diabetic rats, offering new insights in understanding the albuminuria process useful to develop new 

diagnostic tools and treatments efficient in therapy of diabetic nephropathy (192). 

The group of Molitoris et al. instead, investigated the process of glomerular filtration and tubular 

uptake of albumin to clarify the role of proximal tubules cells in regulating these processes. Using a 

rat model exhibiting an albumin overload, the authors quantified the glomerular sieving coefficients 

(GSC) and the tubular uptake of Texas red-labeled albumin using MPM. Indeed, they demonstrated 

a significant lowering in albumin uptake across the proximal tubules. In addition, they identified 

potential proteins and pathways influenced by albumin overload, suggesting an important role of 

tubular cells in responding quickly to alterations of physiological conditions to keep the albumin 

values within regular levels (193). 

Another example showing the investigation of protein reabsorption using MPM is given by the work 

of Endres et al., who evaluated the mechanisms leading to albuminuria in Dahl salt-sensitive rats, an 
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animal model of hypertension. The investigators confirmed that both glomerulus structure and 

proximal tubule cells affect the albuminuria, suggesting that triggering these two renal compartments 

may provide an efficient treatment against hypertension (194). 

 

3.2 RESULTS 

3.2.1 Imaging and analysis methods of in vivo glucose tubular uptake  

Tubular auto-fluorescence was used to identify the area of interest rich in proximal tubules before 

fluorescent dye injection. Then, a total of 100 µl fluorescent glucose analog 2-NBDG was injected in 

mice for 10 minutes and the intravital imaging of the kidney was performed over 30 minutes. Images 

acquisition was timed every 3 seconds to avoid laser damages. Laser power and PMT gain were 

adjusted during imaging to avoid clipping or saturation of the fluorescence signal. 

Image processing was performed using Fiji software. Indeed, time series were first denoised with Fiji 

PureDenoise plugin using automated global estimation. Then, a CLAHE filter was applied to each 

frame with a block size of 32 and a standardization to a Zscore by subtracting the mean fluorescence 

and dividing by the standard deviation of the mean was carried out.  

In order to quantify the fluorescence in tubular cells (TCs) and tubular lumen, Tseries were segmented 

with Ilastik, a semiautomated machine learning-based segmentation software. A parallel random 

forest classifier was trained in Ilastik by using at least three frames for each processed Tseries. Images 

were segmented in two classes (TCs and tubular lumen/ peritubular interstitium), therefore producing 

segmentation masks where each pixel was assigned two possible values depending on their 

assignment by the algorithm.  

In order to minimize the sample drift due to breathing and hearth beat during the imaging experiments, 

the segmentation masks were then added as a third channel to the denoised-shading corrected Tseries 

and used as target of choice for the Fiji plugin Descriptor based series registration (2d/3d+t).  

After the Tseries stabilization, ROIs were positioned over each S1 proximal tubule recognized by 

their strong autofluorescence and significant increase of 2-NBDG marker over the time of the infusion. 

For each ROI, to obtain the fluorescent glucose signal shown in the cells the previously processed 

segmentation mask was multiplied in order to set to zero the areas covered by the lumen and the 

interstitium. Subsequently, the Tseries were converted to 32bit and a NaN (Not a Number) value was 

assigned to zero pixels.  The ROIs were then measured. The quantification of the lumen was carried 

out in a similar way, giving a zero value to the pixels corresponding to the cell class in the 

segmentation mask (Figure 20). 
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Figure 20. Image processing of glucose infusion in mice kidney using Ilastik software. Panel a shows the 

autofluorescence of the proximal tubules before the glucose infusion. Early proximal tubules exhibit marked 

autofluorescence at apical membrane, whereas late proximal tubules show stronger fluorescence in cellular 

compartments. Panel b shows the tubular segmentation of S1 proximal tubules after Ilastik processing. In 

particular, two classes of segmentation were developed: red color was assigned to tubular cells, while green 

color represented lumen. Scale bar measures 50 µm.  

 

 

3.2.2 GLUT2 mice show an altered glucose utilization in renal tubules 

To measure and quantify the glucose uptake in control and cKO mice, we evaluated the reabsorption 

of fluorescent glucose analogue 2-NBDG across the renal proximal tubules using multi-photon 

microscopy. The glucose infusion lasted 10 minutes and the imaging was carried out over 30 minutes. 

The typical autofluorescence of proximal tubules was visible in all animals, however the tubular 

morphology in cKO mice was altered with an apical and intraluminal widely distributed fluorescent 

spotting, as a consequence of renal damage. After 4 minutes from the glucose administration, 2-

NBDG was more noticeable in the lumen of S1 proximal tubules of control mice than in cKO mice, 

where fluorescence was instead appreciable in the distal tubules. The Control mice showed further 

increase of fluorescence over the time, and after 15 minutes 2-NBDG was evident in the cellular 

compartment of early proximal tubules as a physiological mechanism of reabsorption.  At 15 minutes, 

the fluorescence in cKO mice was very appreciable in late proximal tubules, showing an altered 

mechanism of reabsorption in the early proximal tubules (Figure 21).  
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Figure 21. Glucose uptake in renal tubules of control and GLUT2 cKO mice.  The tubular 

autofluorescence visible in renal cortex is well preserved in control mice (a), while cKO mice show significant 

altered tubular morphology, suggesting renal damage (e). After the infusion of 2-NBDG, control animals show 

a gradual increase of fluorescence first in lumen (b and c), then in cell compartments of early proximal tubules 

(d) showing physiological uptake mechanism. On the contrary, cKO animals exhibit less fluorescence in early 

proximal tubules (f and g), whereas the 2-NBDG signal is very appreciable in late proximal tubules (h), 

suggesting an impaired mechanism of tubular reabsorption. Scale bar measures 100 µm. 
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After the imaging of the renal tubules, the t-series of glucose infusion were analyzed as stated above. 

In particular, only the early proximal tubules were chosen for the analysis in order to evaluate the 

functionality of GLUT2 transporter.  

The fluorescence intensity of intracellular glucose was normalized with the filtered glucose 

fluorescence in early proximal tubules. Analysis of time-fluorescence intensity curves, shown as 

cells/lumen ratio, revealed a faster process of tubular glucose reabsorption in control mice, becoming 

then comparable within the 2 groups after 7 minutes (Figure 22).   

 

 

      
Figure 22. Analysis of time fluorescence intensity curves of glucose uptake. The curves are expressed as 

the ratio between the fluorescence of 2-NBDG in cells and lumen for control and cKO groups. As indicated in 

the figure, the control animals exhibit a faster process of glucose reabsorption across the early proximal tubules 

than cKO group, suggesting that impairment of GLUT2 cause an alteration of the renal glucose uptake. 

 

 

3.2.3 Imaging of in vivo beta-lactoglobulin tubular uptake  

Before fluorescent marker administration, autofluorescence of the renal cortex was used to focus the 

proximal tubules of interest. Then, 25 µl of fluorescent Alexa 568-conjugated beta-lactoglobulin were 

injected in mice as bolus and the intravital imaging of the globulin uptake across the proximal tubules 

was performed for 5 minutes in order to image the apical uptake. The t-series was acquired every 1 

second. Five minutes later the end of t-series, the imaging of the same zoomed region was carried out 

over 25 minutes in order to evaluate the clearance time of beta-lactoglobulin from the tubules. For 

beta-lactoglobulin clearance the t-series was acquired every 3 second to avoid tissues damages. 

Laser power and PMT gain were adjusted during imaging to avoid clipping or saturation of the 

fluorescence signal.  
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Image processing was performed using Fiji software. In particular, for each frame of the t-series the 

fiji plugin Descriptor based series registration (2d/3d+t) was applied in order to reduce the drift and 

the artifacts caused by breathing and heart beats of the animals. Then, the channels were split and 

only the channel of interest (red) corresponding to the beta-lactoglobulin signal was used for the 

analysis. The ROIs were positioned within the apical membrane of each S1 proximal tubules and the 

mean fluorescence intensity was plotted over the time. At least 4 tubules were analyzed, and the final 

result was reported as mean value. The resulting curves were smoothed with a linear regression 

(Figure 23).  

 

       
Figure 23. Analysis method of beta-lactoglobulin tubular uptake. The panel on the left shows the renal 

cortex of mice at the beginning of beta-lactoglobulin infusion. It is possible to observe the red autofluorescence 

of proximal tubular cells, while the red colored vessels (arrows) demonstrate the lactoglobulin arrival to the 

kidney vasculature. Additionally, an example of ROI selected to analyze the mean fluorescence in early 

proximal tubules is shown in yellow. The panel on the right shows the same region during the beta-

lactoglobulin uptake across the apical membrane of proximal tubules. The time on the upper part of pictures 

is expresses in seconds. 

 

 

3.2.4 MPM is an efficient tool to image the protein uptake across the proximal tubules  

The evaluation of beta-lactoglobulin uptake by the proximal tubules of control mice was carried out 

by using intravital multiphoton microscopy. Fluorescent beta-lactoglobulin was injected in the 

animals as single bolus, then the imaging was performed over 30 minutes (5 minutes for the uptake 

study and 25 minutes to investigate the clearance of the uptake). The strong apical autofluorescence 

of early proximal tubules was very helpful to distinguish them from more distal segments and to focus 
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the right tubules. Right after the beta-lactoglobulin infusion, a red fluorescence was visible in the 

peritubular capillaries demonstrating a prompt arrival of the dye into the renal vasculature. After 

about 30 seconds the beta-lactoglobulin fluorescence was already visible across the brush borders of 

early proximal tubules, as expected. This fluorescence signal, clearly distinguishable from the 

autofluorescence of proximal tubules, become much stronger over the time and the maximum value 

was reached about 5 minutes later. We didn’t notice any fluorescence across late proximal or distal 

tubules, confirming that protein uptake occurred only in early nephron segments (Figure 24).  

We subsequently carried out the imaging of the same zoomed area for other 25 minutes, in order to 

investigate the clearance of the beta-lactoglobulin uptake. After 15 minutes from the beta-

lactoglobulin administration (min 10:00) the fluorescence in the apical membrane is still very bright 

but it started to decrease progressively over the time. After about 25 minutes (30 minutes later the 

dye infusion) the red signal around brush borders is much weaker and some fluorescence is visible in 

the cellular compartments, as predictable in a physiological protein reabsorption process (Figure 25). 

The analysis of the time-fluorescence intensity curves shows the intensity of the beta-lactoglobulin 

signal in brush border of early proximal tubules over the time, expressed as fluorescence arbitrary 

unit. In particular the curve represents the average of 6 tubules analyzed coming from one mouse, 

after the smoothing with a mathematical non-linear regression. As displayed in the graph (Figure 26), 

the signal increases progressively over the seconds to reach a plateau at around 5 minutes. The graph 

regarding the clearance time of the beta-lactoglobulin was obtained in similar way, measuring the 

average of the same tubules used for first analysis, and also in this case the curve was analyzed with 

a mathematical non-linear regression. As shown from the graph, the mean apical fluorescence was 

nearly stable for 10 minutes, then it started slowly to decrease. 
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Figure 24. Beta-lactoglobulin uptake in mouse renal proximal tubules. The autofluorescence of proximal 

tubules in mouse renal cortex is well visible in green and beta-lactoglobulin signal is barely noticeable in 

peritubular capillaries (arrows) shown on red (a). The fluorescence of beta-lactoglobulin across the brush 

border of early proximal tubules is already visible after 30 seconds (b, arrowheads), it increases over the time 

(c) and reach the maximum intensity at about 5 minutes (d). Fluorescence of beta-lactoglobulin was not 

detectable in late proximal tubules (*), showing a physiological protein uptake mechanism. 

 

 

* 
* 

* 

* 



 51 

 
Figure 25. Image showing the clearance of beta-lactoglobulin uptake. The images show some of the same 

zoomed tubules seen in Figure 24 to see more in detail the fluorescence of beta-lactoglobulin. At 10 minutes 

(15 minutes from the injection) the red fluorescence is still bright across the brush border of early proximal 

tubules (left panel), whereas after 30 minutes from the dye administration (24 minutes) the apical signal of 

beta-lactoglobulin became very weak and some fluorescence is noticeable in the cellular compartments (arrows, 

right panel).  

 

 

 
Figure 26. Analysis of time-fluorescence intensity curves of beta-lactoglobulin uptake. The graph on the 

left shows the initial uptake of beta-lactoglobulin, whose fluorescence in the apical membrane of proximal 

tubules increases gradually to became maximum at 5 minutes. The panel on the right describe the clearance of 

beta-lactoglobulin uptake in the same tubules after other subsequent 25 minutes of imaging. Particularly, the 

initial apical signal is already lower compared to maximum value observed in the first graph and it remains 

quite stable at 10 minutes. After that, it starts decreasing over time with consequent disappearing of apical 

fluorescence. 
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4. DETECTION AND QUANTIFICATION OF RENAL FIBROSIS 

4.1 INTRODUCTION 

4.1.1 Evaluation of tubulo-interstitial renal fibrosis with histological techniques 

Tubulo-interstitial renal fibrosis can be described as the reduction of number of normal renal cells, 

replaced by extracellular matrix (ECM) components, including types I and III collagen. 

Physiologically, very little collagen fibers are visible in the glomeruli and interstitial space, while 

abundant ECM surrounds renal vessels. On the contrary, fibrotic samples exhibit strong deposit of 

collagen fibers in the tubular interstitium (195). Therefore, renal fibrosis constitutes an important 

landmark of progression in many diseases, including diabetic nephropathy and cancer. 

Renal fibrosis is generally quantified using histological staining. Masson’s trichrome and picrosirius 

red are the most used approaches, but they are limited in terms of variability of the staining and the 

data interpretation by the pathologist. Moreover, the signal obtained with histological techniques is 

not very specific, unless polarized microscope is used. Additionally, these methods lack 3D resolution 

so that they are strongly dependent from the thickness of the slice samples (95). Considering all these 

aspects, it is understandable that the reproducibility and reliability of these analyses can be 

controversial (Figure 27).  

SHG is a MPM tool that uses a laser source inducing a second-order nonlinear polarization in the 

sample and emits at double harmonic frequency. SHG was first used in 1980s to image rat tail tendon, 

then it started to be exploited to detect the morphology of thick samples (196). SHG presents several 

advantages compared with histological approaches. First, since it is associated only at types I and III 

collagen fibers, it offers great specificity of the signal detected. Indeed, no SHG signal is detectable 

in non-fibrillar type IV collagen as shown by Strupler et al (96). Second, SHG has an endogenous 3D 

resolution that is proper of MPM, permitting 3D reconstructions useful for the analysis and avoiding 

variations due to variable thickness of the samples. Third, SHG only requires fresh unlabeled samples 

and no particular preparation is needed. Moreover, quantification of fibrosis using SHG can benefit 

the MPM advantages, like higher tissue penetration especially in thick samples and less light 

dispersion (95, 197). 
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Figure 27. Detection of renal fibrosis using histological methods. The panel on the left illustrates Masson’s 

trichrome staining of a kidney section showing intraluminal cast and tubular necrosis consequent to 

rhabdomyolysis injury. The panel on the right represents picrosirius-red stained kidney under polarized light 

microscopy. Boudhabhay et al., 2020 and Ranjit et al., 2016. 

 

 

4.2 RESULTS 

4.2.1 Ex vivo fibrosis quantification using MPM 

For detection of fibrosis, kidney samples collected from dicer/aqp2 mice were used. Unstained 

paraffin-embedded 4 µm thick sections were used for ex vivo imaging with 2 photon microscopy. The 

fibrillar collagen was detectable from SHG signal. SHG and 2-photon excitation fluorescence (2PEF) 

were simultaneously excited by tuning the laser to 900 nm. For each group (control, cKO 1 month 

and cKO 2 months) at least 3 images were acquired in cortex, outer medulla and papilla. Images were 

collected at 1024x1024 resolution (0.58 µm per pixel) with a dwell time of 2.4 µs. 

In order to quantify fibrosis in mice kidney slices, images were segmented with Ilastik. A parallel 

random forest classifier with a variable importance table was trained in Ilastik by using at least three 

images. Images were segmented in three classes (renal autofluorescence, fibrosis, lumen and 

peritubular interstitium) thus creating segmentation masks where each pixel was assigned three 

possible values depending on their assignment by the algorithm. For images classification, ROIs as 

short brushers were placed in all three compartments, then a simple segmentation was created (Figure 

28).  

For the quantification of the signal, the autofluorescence, the fibrosis and the total areas were 

measured as number of pixel particles in Fiji software. Then, the final result was given by the 

fibrosis/autofluorescence ratio. 
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Figure 28. Quantification of renal fibrosis in kidney slices using Ilastik algoritm. The panel a shows the 

renal OSOM in mice kidney slices. The autofluorescence was detected with 2PEF (visible in brown), whereas 

SHG signal is shown in green. For image classification, several ROIs drawn as short brushers of different color 

were placed in three compartments: red for lumen/interstitium, yellow for autofluorescence, blue for collagen 

fibers (panel b). Panel c shows the simple segmentation made by Ilastik after the images training. Segmentation 

masks were created and for each pixel three possible values were assigned depending on their assignment by 

the algorithm. 
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4.2.2 Imaging and quantification of renal fibrosis in mice with nephrogenic diabetes insipidus 

To evaluate the progression of fibrosis in kidney slices, we used a mouse model of nephrogenic 

diabetes insipidus (NDI) developed in our laboratories. CKO dicer/aqp2 mice showed indeed 

reduction of AQP2 levels and defects of urine concentration mechanism, typical of NDI.   

In order to develop a protocol for visualization and quantification of renal fibrosis in kidney slices, 

the animals were sacrificed, the kidneys embedded in paraffin and unstained 4 µm thick sections used 

for imaging with MPM. Images detection was carried out in cortex, outer medulla and inner medulla 

of control, cKO 1 month old and cKO 2 months old animals. SHG and 2PEF signals were 

simultaneously acquired and showed merged in blue and green, respectively. 2PEF showed well 

conserved glomeruli, tubules and arterioles in control and 1 month cKO animals, while 2 months 

cKO mice exhibit some morphological alterations, such as tubular dilatation. The SHG signal was 

evident mostly in peritubular interstitium of cKO mice, while no distinct collagen fibers were detected 

in controls. In diabetic mice, fibrosis was found in outer medulla already at one month, whereas a 

robust SHG signal in cortex was visible only at two months. Appreciable renal fibrosis was instead 

absent in inner medulla in all groups (Figure 29).  

The quantification of the fibrosis signals in kidney slices was carried out with Ilastik. In the images 

used for algorithm training, we manually put ROIs as short signs at level of autofluorescence, 

collagen fibers, and peritubular interstitium/lumen. Then, segmentation masks produced were 

analyzed in Fiji and the number of particles in all 3 classes were measured. The 

fibrosis/autofluorescence ratios shown in figure 30 confirmed the results displayed by the images. 

Multiphoton microscopy coupled with machine learning algorithms revealed to be a useful tool to 

visualize and quantify the renal fibrosis stadium in disease models. 
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Figure 29. Renal fibrosis evaluation using SHG in mice renal slices. 2PEF is well represented in green, 

while SHG signal is shown in blue. No fibrotic signal was detected in controls mice (CTR), whereas cKO 1 

month old mice (cKO 1M) showed strong fibrosis in outer medulla (OM). On the other hand, cKO 2 months 

old mice (cKO 2M) exhibited robust SHG signal both in cortex (CTX) and in outer medulla. No appreciable 

fibrosis was noted in inner medulla (IM) in all groups. Magnification was 20X. 
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Figure 30. Analysis of fibrosis quantification in mice renal slices. The fibrosis signal is reported as 

SHG/2PEF ratio. As shown from the graph, in the renal cortex the fibrosis is present only in cKO 2M mice 

showing the highest SHG value obtained. In outer medulla both cKO 1 M and cKO 2 M mice exhibit a strong 

fibrosis, while only a modest signal is detected in control group. Almost no SHG signal is revealed in inner 

medulla, except some fibers found in cKO 1M mice. These results are in line with upper panel. 
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5. MATERIALS AND METHODS 

5.1 Multiphoton microscopy  

Two-photon microscopy (2PM) was performed using an upright Ultima Investigator 2-photon 

microscope (Bruker, MS, USA) equipped with a 20X objective XLUMPlanFL20XW NA 1.0 

(Olympus, Japan) and supplemented by a converter arm (Inverterscope, LSM TECH, USA) to allow 

inverted imaging. The microscope was controlled by Prairie View software. Ti-Sapphire laser (Mai 

Tai® DeepSee™, Spectra-Physics, USA) was tuned for an excitation wavelength of 800nm for in 

vivo experiments. For the detection of green channel, emitted light between 500 and 550nm was 

recorded using Hamamatsu model H10770PB-40 GaAsP-detector. For the detection of red channel 

and blue channel light between 570 and 620 and between 435 and 485nm, respectively, were recorded 

using Hamamatsu model R3896 multi-alkali detectors. The images were collected at 512x512 

resolution and the pixel dwell time was 2.8 µs (Figure 31). 

 

      
 

Figure 31. Two-photon microscopy of the intravital microscopy facility at Biogem Scarl 
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5.2 Fluorescent dyes and drugs 

For SNGFR experiments the 500 kDa Tetramethylrhodamine isothiocyanate–dextran (TRITC, 

52194-1G, sigma) and the freely filtered 3-5 kDa Fluorescein isothiocyanate–dextran (FITC, FD4-

1G, sigma) were used to label peritubular and glomerular capillaries (150µl of a 10 mg/ml stock iv 

bolus) and tubular lumen (30 µl of a 10 mg/ml stock iv bolus), respectively.   

For glucose uptake experiments the fluorescent glucose analog 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-

4-yl) amino]-2-deoxyglucose (2-NBDG, N13195, Invitrogen) was injected at 25 µg/min for 10 min 

at a flow rate of 10 µl/min. 

For beta-lactoglobulin uptake experiments the fluorescent Alexa 568-conjugated beta-lactoglobulin 

(A20184, Invitrogen) at 1 µg/g body weight from a stock of 1,25 mg/mL was used. 

Dopamine hydrochloride (S.A.L.F. Spa) was diluted in normal saline and given iv at low dosage of 

3 µg/kg/min in continuous infusion (20 µl/min). The infusion of dopamine started two minutes after 

the beginning of the imaging and lasted until the end of the experiment. For control animals a 

continuous infusion (20 µl/min) of normal saline was given for all the experiments. The injection of 

fluorescent probes and drug was carried out using an automatic infusion pump (KD Scientific). 

 

5.3 Animals and surgical preparation 

For SNGFR experiments 10 Munich-Wistar Frömter (MWF) female rats (170-220 g) at 10-12 weeks 

were used. For glucose uptake study a total of 9 mice were used at 5-27 weeks, of which 5 male 

GLUT2 lox/lox PAX8 wt/wt mice (26-28 g) for control experiments, and 2 male (12-31 g) and 2 females 

(14-24 g) GLUT2 lox/lox PAX8 Cre/ wt mice for cKO experiments. For beta-lactoglobulin uptake 

experiments 1 C57BL/6 control mouse was used for the experiments.  

The animals were anesthetized with an intraperitoneal injection of thiobutabarbital (Inactin, 120 

mg/Kg body weight) for rats and with tiletamine hydrochloride and zolazepam hydrochloride (40 

mg/Kg, Zoletil) and xylazine hydrochloride (4 mg/kg, Rompun) for mice, then they were shaved and 

placed on a thermic pad (kent) to maintain the body temperature at 37°C.  In rats the trachea was 

cannulated with polyethylene catheter (PE210, 2Biological instruments) to facilitate the breathing, 

then the right jugular vein and the left carotid artery were cannulated with polyethylene catheter 

(PE50, 2Biological instruments) for dyes and drug infusion and for blood pressure measurements, 

respectively. A double cannulation for the jugular vein was designed in order to ensure a simultaneous 

injection of the drug and the fluorescent dye. In mice the right jugular vein was cannulated with 

polyethylene catheter (PE10, 2Biological instruments) for dyes infusion. After that, the left kidney 

was exteriorized through a 10-15 mm flank incision, being careful to avoid organ damages and 

bleeding. The animals thus were placed on the stage of an inverted microscope with the exteriorized 
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kidney placed in a 50-mm-diameter coverslip-bottomed cell culture dish bathed in warm saline 

solution. This inverted approach, which requires the positioning of the microscope objective below 

the kidney, is generally preferred since it provides more stable conditions and minimize the 

movements due to breathing and heartbeat (84)(Figure 32). 

All animal protocols were approved by animal license (ID n 747/2019-PR, 11/11/2019) and by the 

Animal Ethics Committee (CESA) of Biogem (Italy). 

For imaging and quantification of renal fibrosis, 3 mice were used for the conduction of the 

experiments, of which 1 control at 1 month, 1 cKO dicer/aqp2 at 1 month and 1 cKO dicer/aqp2 at 2 

months. The animals were sacrificed, then the kidneys were embedded in paraffin and unstained 4 

µm thick sections were cut and further used for imaging with multiphoton microscopy. 

 

          
 

Figure 32. Representation of the inverted approach for kidney imaging. The converter arm is connected 

to the microscope from a side and holds the objective facing up from the other side. The animal covered by a 

heating pad is placed on apposite stage and has the exteriorized kidney immersed in warm saline solution. The 

imaging of the kidney was performed from below to reduce the animal movements. 
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For the experiments concerning the ischemia-reperfusion injury in rats, after kidney externalization 

the renal pedicle was clamped for 30 minutes to obtain the ischemia, then the clamp was removed to 

allow the reperfusion of the kidney and the assessment of SNGFR.  

During in vivo imaging, the arterial blood pressure and the heart rate were continuously monitored 

by means of a pressure transducer (BP-1, 2Biological instruments), connected to a power lab system 

(ADinstruments), in order to guarantee the animal wellness and to keep the normal kidney function. 

The pressure transducer was previously calibrated using a pharmaceutical pressure manometer. The 

mean blood gas values were measured using Epoc blood system analysis (Siemens) at the end of 

surgery and during the imaging experiment.   

At the end of the experiments the animals were euthanized according to the national guidelines. 

 

5.4 Data analysis  

Data were analyzed using Graph Pad Prism 7 software. Statistical analysis was performed by 

ANOVA for SNGFR measurements considering single values of SNGFR for each of three groups 

and by paired t-test for glucose uptake experiments considering the average values from each animal 

in the two groups. 
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6. DISCUSSION 

MPM is a powerful consolidated tool to study the kidney physiology in health and disease. Taking 

advantage from deep optical sections of living tissues, it provides stunning images and high-

resolution movies of pathophysiological renal processes. Because of its great potential, MPM 

represents a superior technique compared to confocal microscopy, allowing to investigate in vivo 

tissues and cellular compartments that were studied only in vitro. Since the kidney has a huge 

connection with blood vessels, it permits an easy labeling of renal structures by injecting specific 

fluorescent tracers in the bloodstream. In addition, the kidney can be exteriorized from the body of 

animal models without compromising the renal function: therefore, the investigation of many renal 

parameters can be carried out in non-invasive way.  

In this study we offer an overview of the main MPM applications used to elucidate the renal function 

in control and disease models. In particular, we used existing MPM approaches shown by other 

researchers and, in the same time we developed an innovative method for the assessment of renal 

filtration. 

Most of the results shown in literature regarding the assessment of SNGFR came from pioneering 

technique of renal micro-puncture. Micro-puncture permitted to elucidate the main renal functions, 

including the ultrafiltration, the glomerular filtration barrier and the urine concentration mechanism. 

Despite the great reliability of this method, it is a very laborious technique that requires sophisticated 

equipment, such as micromanipulators and glass pipettes, and very complex animal preparation. With 

the advent of new technologies, MPM replaced renal micro-puncture and started to be used for the 

evaluation of kidney function. The estimation of SNGFR using MPM can be assessed by observing 

and quantifying the fluorescent decay time of a low molecular weight marker between two regions 

of interest selected within a tubule. This method developed by Kang et al. represents an efficient and 

fast approach to assess renal function, but it requires the full frame acquisition during the bolus 

injection, thus reducing the velocity and accuracy of measurements. The new method to measure 

SNGFR we propose in this work is based on the previous study of Kang et al. but it relies on another 

approach, called Linescan. Linescan tool allows to acquire repetitive scans with very high temporal 

resolution within a region of interest and it is generally used in multiphoton microscopy experiments 

to assess the blood flow in tissues. According to our experience, Linescan is a better approach to 

assess SNGFR in vivo compared to the full frame acquisition: indeed, it offers very fast acquisition 

of the drawn ROIs and permits to have precise and reliable results, comparable with previous methods. 

The values of SNGFR measured in this study are in the same range as obtained by micro-puncture 

technique on the same rat model (152). Moreover, a great reproducibility of the SNGFR values was 
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shown when a different length of the same tubule was used for the measurement changing the second 

crossing.  

To validate this original application, SNGFR was measured in low-dose dopamine treated rats. 

Dopamine is the first vasopressor agent used in intensive care units especially for hypotensive patients 

and it is the drug of choice to increase GFR in preterm human neonates with low-urine output. 

Dopamine is known to cause two main effects in humans, according to the dosage used: in particular, 

at low dosage (<5 µg/kg/min) it raises SNGFR values by specifically vasodilating the renal artery, 

representing a good treatment option in patients with lower kidney function, such as during the AKI. 

For this reason, we decided to treat the rats with low-dose dopamine (3 µg/kg/min) in order to confirm 

the earlier results shown in literature with our approach. Our results corroborate the effect of low-

dose dopamine in raising the SNGFR in line with previous experiments (115), showing the reliability 

of the measurements.  

Moreover, we also aimed to assess SNGFR during ischemia-reperfusion injury. The IRI is a very 

common cause AKI, a global health problem that still need to be elucidated. Many pharmacological 

drugs tested in animal models for the treatment of AKI showed effectiveness, but no appreciable 

results were seen when translated to human condition. Therefore, a deeper knowledge of the disease 

is needed to better understand the differences between the animal and human AKI and to find new 

therapeutical drugs matching with human condition. For this purpose, we induced ischemia by 

clamping the left renal peduncle for 30 minutes, then we allowed the reperfusion of the kidney by 

removing the clamp. This approach provides the best option to mimic the human acute renal injury 

in rodents. From the morphological point of view, the ischemic kidney showed variable tubular 

necrosis, characterized by loss of the proximal tubules structure and shedding of the cellular 

components in the tubular lumen, leading to intraluminal cast and cellular debris formation. In 

addition, we also observed a constriction of blood vessels and consequent reduction in renal blood 

flow resulting from damages to the vascular endothelium. The IRI-induced AKI also causes a 

significant reduction at the SNGFR level, leading in turn to the fall of total glomerular filtration rate. 

This renal injury seems to be due to tubular obstruction presumably accompanied by tubular reflux 

of the solutes across the damaged cells. Additionally, also the TGF mechanism shows a pivotal role 

in regulating the SNGFR since lower values of filtration were observed after a constant activation of 

TGF due to increased sodium load, while the control of macula densa activity at TAL level permitted 

to stabilize the SNGFR, as shown previously by Mason et al. (141). After 30 minutes of IRI, we used 

the linescan tool to measure SNGFR in the ischemic rats, demonstrating a significant reduction of the 

SNGFR values, as previously highlighted (148). 
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This assessment offers a unique opportunity to better understand the pathophysiology of AKI induced 

by IRI. Indeed, multiphoton microscopy and the linescan method are very powerful tools to evaluate 

in real time and at high temporal resolution the dynamic events of the renal function in a way that 

was not possible before. 

Kidney is a very complex organ enrolled to perform specialized tubular functions, such as the retrieval 

of vitamins and proteins, and the secretion of unnecessary substances. Efforts to elucidate the tubular 

mechanisms in health and disease were carried out using isolated cells or tissues slices. The 

information obtained with these approaches provided insights to researchers, but the organ needed to 

be removed from the original physiological context, limiting the reliability of the results.  

In vivo MPM imaging, instead, allows to study in real time the dynamic physiological processes, 

including the protein and glucose reabsorption. This can be performed thanks to the low phototoxicity 

offered by MPM, which permits to image over the time without damaging the structures. In addition, 

the high spatial and temporal resolution obtainable from MPM help to monitor continuously these 

active events even at subcellular level.  

In this study we used the fluorescent glucose analog 2-NBDG to investigate the tubular uptake of 

glucose in control and in GLUT2 lox/lox PAX8 Cre/ wt mice. The glucose reabsorption in S1 proximal 

tubules requires the glucose uptake inside the cell mediated by apical SGLT2, followed by glucose 

exit through basolateral GLUT2. GLUT2 cKO mice we generated in our institute mimic the human 

FBS, developing glycosuria and glycogen accumulation in proximal tubules cells. Indeed, the 

ablation of GLUT2 in our model limited the cellular glucose exit and forced it to accumulate in cells. 

Presumably, the proximal tubules respond to cellular glycogen accumulation by limiting the 

expression of apical SGLT2, thus explaining the glycosuria. This compensatory mechanism would 

reduce the influx of cellular glucose and the progression of cells injury.  

To elucidate the ability of GLUT2 cKO mice to reabsorb glucose, we performed intravital imaging 

of proximal tubules during the administration of fluorescent glucose. According to previous findings, 

2-NBDG represents a good fluorescent dye that shows many applications in optical microscopy 

especially for clinical studies in the field of cancer (198, 199). From the autofluorescence 

physiologically exhibited by renal tubules we observed an altered proximal tubules morphology in 

GLUT2 cKO mice, showing multiple apical and intraluminal granules, compared to the controls. This 

demonstrates a proximal tubular damage caused by glucose intracellular accumulation. After the 

continuous infusion of 2-NBDG, GLUT2 cKO mice showed a slower rate of glucose reabsorption, 

as can be noticed from the difference of time-fluorescence slopes in figure 22. This difference in 

glucose handling is confirmed by the presence in GLUT2 cKO mice of accumulated glucose also in 

late proximal and distal tubules, suggesting an altered and reduced glucose uptake in early proximal 
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tubules. From these results we can assert that GLUT2 cKO animals show a defect of glucose 

reabsorption along the early proximal tubules, leading to glycosuria, and that this can represent an 

adaptative mechanism of proximal tubule cells to stop the progression of cell damage. These 

experiments demonstrate the feasibility of intravital MPM and 2-NBDG to monitor the glucose 

metabolism over the time in living animals, overcoming the limitations showed by previous 

techniques. Future attempts will be aimed to address new pharmacological drugs able to rescue the 

metabolic dysfunctions in disease models.  

The protein reabsorption is one of the key renal functions and it usually requires a receptor-mediated 

endocytosis process at the apical membrane of proximal tubules. This mechanism results 

compromised if components of glomerular filtration barrier, including podocytes, and proximal 

tubules receptors are damaged, with consequent development of proteinuria and waste of useful 

substances. MPM represents a valid tool for tracking the protein uptake process with a cellular 

resolution in living animals. Here, we used MPM to investigate in real time the uptake of Alexa 568-

conjugated beta-lactoglobulin infused in C57BL6 control mice. This fluorescent tracer was rapidly 

filtered by the glomerulus since its relatively low molecular weight and it appeared in less than 1 

minute along the apical membrane of early proximal tubules, confirming the fast process of apical 

endocytosis. The beta-lactoglobulin signal increased gradually over the time and reached a plateau 

after 5 minutes from the iv injection. No fluorescence was detected in late proximal or distal tubules, 

confirming a normal protein uptake process. We exploited the high spatial resolution and the lower 

phototoxicity of MPM to monitor the clearance of beta-lactoglobulin uptake over 25 minutes. The 

apical fluorescence of beta-lactoglobulin remained nearly stable at 15 minutes after the dye infusion, 

after that it started decreasing, and some fluorescence was visible in cellular compartments as 

consequence of the reabsorption mechanism. These experimental results demonstrate the efficiency 

and the great potentiality of intravital microscopy to follow such dynamic events and to compare 

disease with control conditions. Our future aim indeed is to use this approach to evaluate protein 

uptake in models with disfunctions of glomerular filtration barrier or proximal tubules receptors, such 

as diabetes and FBS. 

Tubulo-interstitial fibrosis represents an important prognostic parameter of many diseases, such as 

diabetic nephropathy and cancer. Fibrotic biopsies are usually analyzed and quantified with 

histological staining, such as Masson’s trichrome and picrosirius red. However, these techniques 

represent a reductional approach due to the variability of the staining procedure and the analysis by 

the pathologist as well as the absence of great specificity of the signal. In addition, histological 

procedures are constrained in that they lack 3D resolution making them greatly dependent from the 

thickness of the specimen visualized. SHG instead represents a promising tool for the analysis of 
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renal fibrosis since it does not require any particular preparation of the sample and it constitute a 

versatile technique as it can be applied to fresh, frozen and fixed slices. SHG offers great specificity 

of the fibrotic signal, indeed it is specifically associated to types I and III collagen fibers, excluding 

non-fibrillar type IV collagen. Moreover, it can exploit the intrinsic advantages of the MPM, 

including less photobleaching, increased depth in the sample and high resolution.  

In this study we coupled the MPM and SHG tool to identify and quantify renal fibrosis in mice kidney 

slices. In order to conveniently set up this approach, we used a mouse model with diabetes insipidus 

phenotype we developed in our institute. As expected, we successfully managed to simultaneously 

image renal parenchyma using 2PEF and collagen fibers with SHG. In line with previous studies, we 

didn’t detect fibrosis signal in control group except very few random fibers or around the vessels. 

The diabetic mice, instead, showed a significant increase of fibrosis localized mostly in the tubulo-

interstitial space. The analysis of the SHG pixel covered shows a time-dependent rise in collagen 

accumulation in these animals: indeed, cKO mice at 2 months present comparable collagen fibers 

deposit as mice at 1 months in outer medulla, but they additionally exhibited a robust fibrosis in 

cortex. This result confirms the specificity and reliability of the SHG technique to detect fibrosis in 

tissue slices. We subsequently quantified fibrosis using Ilastik, an open-source software that is able 

to make image classifications thanks to an assisted machine learning program. The concept behind 

Ilastik is that its predictions are based on the input drawn by the users as short brush. It uses a random 

forest classifier that calculate the image features (color, shape, texture) to segment the image of choice 

in well-established classes. After a training phase of the program that requires to give inputs to a 

small set of representative images, the program is capable to classify other images with similar 

features never seen before, ensuring reproducibility and reliability (200).  

Therefore, the combined SHG-machine learning approach proved to be a valid and efficient approach 

to image and quantify the renal tubule-interstitial fibrosis in kidney slices, ensuring specificity of the 

signal and great reproducibility of the results unlike the manual quantification systems such as ImageJ.  

Since the renal tubulo-interstitial fibrosis is a common feature in many renal disorders, SHG assisted 

by machine learning algorithms could be used as diagnostic and prognostic tool in clinical routine for 

human diseases. 

Taken together, these results show that intravital imaging with MPM is a great tool to investigate in 

vivo the renal physiology at cellular and subcellular resolution. By using specific fluorescent probes 

and animal models, it is allowed to elucidate in real time the most important renal processes in health 

and disease, such as SNGFR and substances tubular reabsorption. MPM, indeed, offers the possibility 

to study both global diseases, such as diabetes, and genetic rare diseases, including the FBS.  
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Moreover, given the ability of MPM to detect specifically renal fibrosis in tissue slices, it may provide 

an innovative tool for clinical application. 
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