Scagliarini, Olmo
(2023)
Agroecological management of insect pests on sugarbeets and lettuce cultivated in organic farming, [Dissertation thesis], Alma Mater Studiorum Università di Bologna.
Dottorato di ricerca in
Scienze e tecnologie agrarie, ambientali e alimentari, 35 Ciclo. DOI 10.48676/unibo/amsdottorato/9912.
Documenti full-text disponibili:
|
Documento PDF (English)
- Richiede un lettore di PDF come Xpdf o Adobe Acrobat Reader
Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato.
Download (4MB)
|
Abstract
Two-year field trials were conducted in northern Italy with the aim of developing a trapcrop-based agroecological approach for the control of flea beetles (Chaetocnema tibialis (Illiger), Phyllotreta spp. (Chevrolat) (Coleoptera: Chrysomelidae)) and Lygus rugulipennis Poppius (Hemiptera: Miridae), key pests of sugar beet and lettuce, respectively.
Flea beetle damage trials compared a trap cropping treatment, i.e., a sugar beet plot with a border of Sinapis alba (L.) and Brassica juncea (L.) with a control treatment, i.e., a sugar beet plot with bare soil as field border. Sugar beets grown near trap crops showed a significant decrease (≈40%) in flea beetle damage compared to control. Moreover, flea beetle damage varied with distance from the edge of the trap plants, being highest at 2 m from the edge, then decreasing at higher distances.
Regarding L. rugulipennis on lettuce two experiments were conducted. A semiochemical-assisted trap cropping trial was supported by another test evaluating the efficacy of pheromones and trap placement. In this trial, it was found that pheromone baited traps caught significantly more specimens of L. rugulipennis than unbaited traps. It was also found that traps placed at ground level produced larger catches than traps placed at the height of 70 cm. In the semiochemical-assisted trap cropping experiment, a treatment where lettuce was grown next to two Alfa-Alfa borders containing pheromone baited traps was compared with a control treatment, where lettuce was grown near bare soil. This experiment showed that the above-mentioned strategy managed to reduce L. rugulipennis damage to lettuce by ≈30%.
From these studies, it appears that trap crop-based strategy, alone or with baited traps, made it possible to reduce crop damage to economically acceptable levels and to minimize the need for insecticide treatments, showing that those strategy could be implemented in organic farming as a means of controlling insect pests.
Abstract
Two-year field trials were conducted in northern Italy with the aim of developing a trapcrop-based agroecological approach for the control of flea beetles (Chaetocnema tibialis (Illiger), Phyllotreta spp. (Chevrolat) (Coleoptera: Chrysomelidae)) and Lygus rugulipennis Poppius (Hemiptera: Miridae), key pests of sugar beet and lettuce, respectively.
Flea beetle damage trials compared a trap cropping treatment, i.e., a sugar beet plot with a border of Sinapis alba (L.) and Brassica juncea (L.) with a control treatment, i.e., a sugar beet plot with bare soil as field border. Sugar beets grown near trap crops showed a significant decrease (≈40%) in flea beetle damage compared to control. Moreover, flea beetle damage varied with distance from the edge of the trap plants, being highest at 2 m from the edge, then decreasing at higher distances.
Regarding L. rugulipennis on lettuce two experiments were conducted. A semiochemical-assisted trap cropping trial was supported by another test evaluating the efficacy of pheromones and trap placement. In this trial, it was found that pheromone baited traps caught significantly more specimens of L. rugulipennis than unbaited traps. It was also found that traps placed at ground level produced larger catches than traps placed at the height of 70 cm. In the semiochemical-assisted trap cropping experiment, a treatment where lettuce was grown next to two Alfa-Alfa borders containing pheromone baited traps was compared with a control treatment, where lettuce was grown near bare soil. This experiment showed that the above-mentioned strategy managed to reduce L. rugulipennis damage to lettuce by ≈30%.
From these studies, it appears that trap crop-based strategy, alone or with baited traps, made it possible to reduce crop damage to economically acceptable levels and to minimize the need for insecticide treatments, showing that those strategy could be implemented in organic farming as a means of controlling insect pests.
Tipologia del documento
Tesi di dottorato
Autore
Scagliarini, Olmo
Supervisore
Co-supervisore
Dottorato di ricerca
Ciclo
35
Coordinatore
Settore disciplinare
Settore concorsuale
Parole chiave
Chaetocnaema tibialis
Phyllotreta spp.
Lygus rugulipennis
Trap cropping
Pheromones
Agroecology
Conservation biological control
Sustainable agriculture
Habitat manipulation
URN:NBN
DOI
10.48676/unibo/amsdottorato/9912
Data di discussione
22 Giugno 2023
URI
Altri metadati
Tipologia del documento
Tesi di dottorato
Autore
Scagliarini, Olmo
Supervisore
Co-supervisore
Dottorato di ricerca
Ciclo
35
Coordinatore
Settore disciplinare
Settore concorsuale
Parole chiave
Chaetocnaema tibialis
Phyllotreta spp.
Lygus rugulipennis
Trap cropping
Pheromones
Agroecology
Conservation biological control
Sustainable agriculture
Habitat manipulation
URN:NBN
DOI
10.48676/unibo/amsdottorato/9912
Data di discussione
22 Giugno 2023
URI
Statistica sui download
Gestione del documento: