
Alma Mater Studiorum · Università di Bologna

DOTTORATO DI RICERCA IN

ingegneria elettronica, telecomunicazioni e tecnologie dell’informazione
34 ciclo

Settore Concorsuale: 09/E3 - ELETTRONICA

Settore Scientifico Disciplinare: ING-INF/01 - ELETTRONICA

Monitoring and Prediction of Thermal
Emergencies in High Performance

Computing Systems

Presentata da: Mohsen Seyedkazemi Ardebili

Supervisore:
Prof. Luca Benini

Co-supervisore:
Prof. Andrea Bartolini

Coordinatore Dottorato:
Prof. Aldo Romani

Esame finale anno 2022

Abstract
Datacenters are at the heart of the AI, industry 4.0, and cloud revolution. Modern
scientific discoveries are driven by an unsatisfiable demand for computational
resources. High-Performance Computing HPC systems are an aggregation of
computing power to deliver considerably higher performance than one typical
desktop computer can provide, to solve large problems in science, engineering, or
business. An HPC room in the datacenter is a complex controlled environment
that hosts thousands of computing nodes that may consume electrical power in
the range of megawatts. Due to the increasing total power and power density of
computing nodes, the overall datacenter computing capacity is often capped by
peak power consumption and temperature dissipation bottlenecks.

In the datacenter, a thermal anomaly is a suspicious/abnormal pattern in the
monitoring signals. The severity of the anomaly can be different, and in extreme
conditions, it can yield the outage of the datacenter. Although thermal anomalies
are very rare events, anomaly detection and prediction in time is vital to avoid IT
and facility equipment damage and outage of the datacenter, with severe societal
and business losses. For this reason, automated approaches to detect thermal
anomalies in datacenters have considerable potential.

This thesis analyzed and characterized the power and thermal properties of a
Tier0 datacenter 1 during production and abnormal thermal conditions. Then, a
Deep Learning (DL)-powered thermal hazard prediction framework is proposed.
Finally, the anomaly detection task in the HPC room is investigated by defining
more complex statistical rules-based anomaly detection methods and advanced Deep
Learning DL-based thermal anomaly detection methods. The anomaly detection
models are validated against real thermal hazard events reported for the studied
HPC cluster while in production. To the best of my knowledge, this thesis is the
first empirical study of thermal anomaly detection and prediction techniques of
a real large-scale HPC system. It is based on real HPC room monitoring data at
CINECA. This study is done based on real data of in-production HPC cluster and
HPC room facilities and never used any synthetic data or artificial anomalies. 2

1refers to CINECA, the most powerful supercomputing center for scientific research in Italy
and one of the most powerful supercomputers in the world, based on the TOP500 list. HPC
clusters of CINECA ranked 18th in November 2021, 9th in June 2020, and 21st in June 2019 in
the TOP500 list [1–4]

2For this thesis, I used a large-scale dataset, monitoring data of tens of thousands of sensors
for around 24 months with a data collection rate of around 20 seconds.

Contents

Abstract I

List of Figures VII

List of Tables IX

Acknowledgments XI

1 Introduction 1
1.1 Motivations . 1
1.2 Contributions . 2
1.3 Thesis Overview . 4

2 Background 6
2.1 Overview . 6
2.2 CINECA . 6

2.2.1 CINECA Cooling Technologies 7
2.2.2 Room F - Marconi A2 (KNL) 8
2.2.3 Room F - Marconi 100 . 9
2.2.4 Room N . 12

2.3 The ExaMon Framework . 12
2.3.1 System Overview . 12
2.3.2 Collector Measurements Format 16

2.4 Summary . 17

3 Thermal and Power Characteristic of the HPC Room 18
3.1 Overview . 18

3.1.1 Wireless Sensor Network-based Characterization - CINECA
HPC Room N . 19

3.1.2 Big Data-based Characterization - CINECA HPC Room F . 20
3.2 State of the Art . 21
3.3 Thermal and Power Characteristic of the HPC Room 23

II

3.3.1 Methodology . 23
3.3.2 Experimental Results . 28

3.4 Thermal and Power Characteristic of the HPC Room 40
3.4.1 Methodology . 40
3.4.2 Experimental Results . 41

3.5 Summary . 53

4 Detection and Prediction of Thermal Emergency 55
4.1 Overview . 55
4.2 State of the Art . 56
4.3 Background Setup . 57
4.4 Thermal Hazard Prediction Methodology 57

4.4.1 Thermal Hazard Analysis and Labels Generation 58
4.4.2 Imbalanced Dataset . 61
4.4.3 Prediction Horizon . 61
4.4.4 Last Value Predictor . 62
4.4.5 Thermal Hazard Prediction Framework 64

4.5 Machine Learning Model Selection 65
4.5.1 Experimental Dataset . 65
4.5.2 TCN and Competitor Predictors 66
4.5.3 Experiment 1: Random Test Dataset

ML-Model Selection . 67
4.6 Experimental Results . 68

4.6.1 Experiment 2: Overlap Cancellation of Training and Test
Dataset . 68

4.6.2 Experiment 3: Time-separate Test Dataset 71
4.6.3 Experiment 4: Input Selection/Node Selection

Randomly Selected 72 Nodes as Input and TCN with 1D
Conv. Layers . 72

4.6.4 Experiment 5: Randomly Selected 72 Nodes as Input and
TCN with 2D Conv. Layers 75

4.6.5 Experiment 6: Power Consumption (of Randomly Selected
72 Nodes) as a Second Input Channel of TCN with 2DConv
Layers . 76

4.6.6 Experiment 7: TCN Model with 3DConv Layers 79
4.6.7 Experiment 8: Outlet Temperature of Nodes Interleaved to

Inlet Dataset and Depthwise Separable Convolutions 81
4.6.8 Experiment 9: Check the Model’s Performance Week by Week 82
4.6.9 Experiment 10: Cross-validation Month by Month 83
4.6.10 Experiment 11: Decomposition of Time Series Data 83

4.6.11 Experiment 12: Comparison of TCN Models with Different
Convolutional Layers . 85

4.6.12 Experiment 13: Memory Based Labeling 88
4.7 Summary . 96

5 Thermal Anomaly Detection 98
5.1 Overview . 98
5.2 State of the Art . 99
5.3 Dataset . 100
5.4 Rule-based Statistical Method (Flags) 101

5.4.1 Mathematical Definition of the Flags 103
5.4.2 Initial Labeling of Samples Utilizing the Abnormality Level

(Sum of Flags) . 106
5.5 Autoencoder . 107

5.5.1 Autoencoder Model and Training Dataset Configuration Se-
lection . 109

5.6 Experimental Results . 113
5.6.1 Reconstruction Error Threshold 113
5.6.2 Detailed Study of Real Physical Failure 118
5.6.3 Locations of Anomalies . 123

5.7 Summary . 126

6 Conclusion 127

Acronym 133

Bibliography 144

List of Figures

1.1 Thesis overview and dependencies between chapters. 5

2.1 HPC Room Air Cooling System [5]. 7
2.2 Rear Door Heat Exchanger (RDHX) [5]. 8
2.3 Racks Arrangements of Marconi A2 (KNL) Room F in CINECA

Datacenter. 10
2.4 CINECA HPC Room F Marconi 100 Cluster. 11
2.5 CINECA Room N . 13
2.6 Monitoring Framework. 14

3.1 Block Diagram of the Sensor Node. 24
3.2 Sensor Node Deployment. (a) a Hallway Positioning Is Proposed,

(b) the Sensor Node Is Under the Datacenter Floor. 25
3.4 Average Temperature and Standard Deviation from 20-03-2018 to

17-05-2018. 30
3.5 Normalized Euclidean Distances of Sensors From all the CRAC Units. 30
3.6 Pearson’s Correlation Coefficient of Measured Temperatures. 31
3.7 Datacenter Plot and Correlation Coefficient Graph of Sensors and

Outdoor Ambient Temperature. Each Sensor Is Identified by Its
Corresponding Number. 32

3.10 Correlation Coefficients Matrix. 39
3.11 Racks Arrangements of Marconi A2 (KNL) Room F in CINECA

Datacenter. 42
3.12 Boxplot of Inlet and Outlet Temperatures and Power Consumption

of Computing Nodes in June 2019. 43
3.13 Boxplot of Inlet and Outlet Temperature of Computing Nodes in

Different Chassis in June 2019. 44
3.14 Boxplot of Power Consumption of Computing Nodes in Different

Chassis in June 2019. 45
3.15 Boxplot of Fan Speed (RPM) of Computing Nodes in Different

Chassis in June 2019. 45

V

3.16 Average Inlet and Outlet Temperature Variation and Power Con-
sumption Variation of Computing Nodes in Chassis in June 2019. . 46

3.17 Average Inlet Heat Map of Marconi A2 KNL Room F on June 2019. 47
3.18 Average Power Consumption [KWatt] of Racks of Marconi A2 KNL

Room F in June 2019. 48
3.19 Average Inlet and Outlet Temperature and Power Consumption of

Computing Nodes in Different Days of June 2019. 49
3.20 Average Inlet and Outlet Temperature Variation and Power Con-

sumption Variation of Computing Nodes in Different Days of June
2019. 49

3.21 Inlet, Outlet Temperature and Power Consumption of a Computing
Node on 28 June 2019 The Day of Thermal Emergency. 51

3.22 Average Inlet Temperature of Computing Nodes in Different Chassis
in Different Time Instances on 28 June 2019 The Day of Thermal
Emergency. 51

3.23 Average Outlet Temperature of Computing Nodes in Different Chas-
sis in Different Time Instances on 28 June 2019 The Day of Thermal
Emergency. 52

3.24 Average Power Consumption of Computing Nodes in Different Chas-
sis in Different Time Instances on 28 June 2019 The Day of Thermal
Emergency. 52

3.25 Heatmap of Marconi A2 KNL Room F on 28 June 2019 at 17:20
The Day of Thermal Emergency. 53

4.1 Temperature distributions for Marconi A2’s node 141 in June-July
2019. 59

4.2 Time Windowing and Labeling. 59
4.3 Thermal Hazard Detection . 61
4.4 Last Value Predictor. 63
4.5 Auto correlation. 64
4.6 Architecture for Thermal Hazard Predictor. 65
4.7 TCN Model with 1DConv. Layers. 66
4.8 Input Data Structure of the TCN Model with 1DConv. Layers. . . 67
4.9 Overlap and Overlap Cancellation. 70
4.10 Accuracy and F1 score with and without overlap. 71
4.11 Accuracy and F1 score for Randomly Nodes Selection. 74
4.12 Input Data Structure of the TCN Model with 2DConv. Layers. . . 75
4.13 Scatter Plot Matrix of Power Consumption and Temperatures . . . 77
4.14 The correlation coefficient of parameters (power and temperatures)

with lag/lead. 78
4.15 Input Data Structure of the TCN Model with 2DConv. Layers. . . 79

4.16 Input Data Structure of the TCN Model with 3DConv Layers. . . . 80
4.17 Decomposition of Time Series Data. 84
4.18 TCN Model’s Architecture and Input Data Structures for Different

Types of Convolutional Layser (1DConv., 2DConv., and 3DConv.). 87
4.19 Labels generated for memory=7 Days and, Node-Threshold = 0.98,

Spatial-Temporal-Impact-Threshold = 0.1. 89
4.20 Node-Threshold Approach 1. 91
4.21 Node-Threshold Approach 2. 91
4.22 Node-Threshold Approach 3. 92
4.23 Node-Threshold Approach 4. 92
4.24 Threshold temperature of three nodes from a random rack with

different labeling approaches. 93
4.25 Box plot of temperature thresholds of nodes for different weeks of

the year 2019. 93
4.26 Weekly distribution of the thermal hazards with 4 different labeling

approaches. 94

5.1 Schematic of the HPC Room’s Facilities and a Rack. 101
5.2 Comparison of Normal and Abnormal Signals. 102
5.3 Different parts of flags set. 103
5.4 Sum of the Flags and Initial Labeling. 107
5.5 Autoencoder. 108
5.6 Different Configurations of the Train and Test Dataset. 109
5.7 Reconstruction error of MLP-AE and LSTM-AE for the test dataset

for six different configurations of the training dataset. 111
5.8 Reconstruction error of LSTM-AE for configuration of B, C, D of

training dataset. 112
5.9 Schematics of four different configurations for computing the Recon-

struction Error Threshold. 114
5.10 The average percentage of the anomaly for test weeks, utilizing

different configurations as error threshold (5.9). 115
5.11 Results of the 9 different experiments with computing error threshold

with approach Conf. 2: 10 ≤
∑

Flags ≤ 25. 116
5.12 Results of the 9 different experiments with computing error threshold

with approach Conf. 2: 10 ≤
∑

Flags ≤ 25 (Zoom in). 117
5.13 Labels of three interesting points nearby real failure. 118
5.14 Nodes parameters of rack 205. 120
5.15 Room level parameters, Cooling systems parameters. 121
5.16 Severity and zone of the anomaly in the HPC room. 125

List of Tables

3.1 Table of Abbreviations and Definitions. 25
3.2 Power Consumption of Different Clusters of Room N. 28
3.3 Characteristics of Dataset . 41

4.1 Thermal Hazard Percentage. 61
4.2 Prediction Horizon. 62
4.3 Last Value Predictor. 62
4.4 Prediction Results . 67
4.5 Results of Experiment 3. 72
4.6 Different Approaches for Node Selecting. 73
4.7 Results of Experiment 4. 74
4.8 Results of Experiment 5. 75
4.9 Correlation of the Parameters. 76
4.10 Results of Experiment 6: Adding the Power Consumption as a

Second Input Channel of TCN Model with 2DConv Layers. 79
4.11 Results of Experiment 7: the TCN Model with 3DConv Layers. . . 80
4.12 Results of Experiment 8: Comparison of the Results of the Standard

3DConv TCN Model and Depthwise Separable Convolutions. 81
4.13 Results of Experiment 9: Model Is Trained with Data of May 2019

and Test with Subsequent Weeks. 82
4.14 Results of Experiment 9: Model Is Trained with May + N×Weeks

and Test with Subsequent Week. 82
4.15 Results of Experiment 10: Cross-validation Month by Month of

Detector Model. 83
4.16 Results of Experiment 10: Cross-validation Month by Month of

Predictor Model. 83
4.17 Results of Experiment 11: Month by Month Cross-validation of

Predictor Model Trained with Decomposed Time Series Data. . . . 85
4.18 Results of Experiment 12: Comparison of All TCN Models. 88
4.19 Weights of the thermal hazard class in the dataset with different

configurations of the thresholds. 89
4.20 Monthly thermal hazard class weights with different configurations. 90

VIII

4.21 Results of Experiment 13: Predictive Model with Labeling Approach
2. 95

4.22 Periods of Experiments. 95
4.23 Results of Experiment 13: Predictive Model with Labeling Approach

3. 95
4.24 Results of Experiment 13: Predictive Model with Labeling Approach

4. 96

5.1 Definition of Initial Labels Based on the Flags and Percentage of
Dataset. 107

5.2 MLP-AE and LSTM-AE performance results with six different con-
figurations of the training dataset. 112

5.3 Experiments Training Periods. 113

Acknowledgments

I would like to express my sincere gratitude to my supervisor Prof. Luca Benini for
the continuous support of my Ph.D. study and related research, for his patience,
motivation, and immense knowledge. His guidance helped me in all the time of
research and writing of this thesis. I could not have imagined having a better
advisor and mentor for my Ph.D. study.

My special thanks go to Prof. Andrea Bartolini, who has been my co-supervisor
during these years of doctoral study. Andrea has been a mentor and a friend
from whom I have learned the vital skills and discipline of academic research. His
professional guidance and careful scrutiny of my research work have been invaluable.

Apart from my supervisors, I won’t forget to express my gratitude to the rest
of the team: Prof. Andrea Acquaviva, Dr. Francesco Beneventi, Prof. Davide
Brunelli, and Prof. Davide Rossi for giving the encouragement and sharing insightful
suggestions. They all have played a major role in polishing my research writing
skills. Their endless guidance is hard to forget throughout my life.

I would like to thank all the CINECA staff, particularly Dr. Carlo Cavazzoni,
Dr. Giovanni Bortolotti, and Dr. Daniele Cesarini. Without their precious support
and the possibility to use the HPC systems of CINECA, it would not be possible
to conduct this research.

I thank my fellow labmates for their technical help and friendship; I have
appreciated a lot the fun we have had in these years. In no particular order:
Manuele Rusci, Alessandro Capotondi, Daniele Cesarini, Marcello Zanghieri, Alessio
Burrello, Tommaso Polonelli, Andrea Borghesi, Davide Rossi, Francesco Beneventi,
Francesco Conti, and Giuseppe Tagliavini.

Also, I thank Fabio Cumella, Angela Cavazzini, and Giuseppe Stampati for the
invaluable help to fill out the bureaucracy documents during these years.

I would also like to acknowledge the support and encouragement of all my friends
(in no particular order): Arash Bozorgchenani, Mohammad Esmalifalak, Moien
Bahardoost, Neda Mazaheri, Mohamad Jamali, and Mahsa (Maryam) Deldadeh.

Last but not least, I must express my very profound gratitude to my parents,
family, and relatives: My wife Fereshteh Zavvari, My mother Najibeh Ashouraei,
my father Mirreza, and my father in law Ahad Zavvari, my mother in law Roghayeh

X

Zavvari, My brothers Mohamad, Ehsan, My sister in law Shiva, Sara, Zahra, My
brother in law Sadra, and Amir for providing me with unfailing support and
continuous encouragement throughout my years of study and through the process
of researching. This achievement would not have been possible without you.

The work of this thesis has been conducted in the context of EU H2020-
JTI-EuroHPC-2019-1 project REGALE (g.n. 956560) and EU H2020 ICT/2018
project IoTwins (g.n. 857191) and EU H2020 research and innovation programme
“European Processor Initiative” (g.n. 826647) and Emilia-Romagna POR-FESR
2014-2020 project ”SUPER: SuperComputing Unifier Platform – Emilia-Romagna
and CINECA.

Thank you all.
Mohsen

XI

Chapter 1

Introduction

Datacenters are at the heart of the AI, industry 4.0, and cloud revolution. At
large, a datacenter is a facility that hosts a network of computing and storage
resources, and to ensure continuity of the services, it typically contains redundant
components for data communication, power distribution, air conditioning, and fire
suppression. One of the services that datacenters provide is High-Performance
Computing (HPC). HPC systems are an aggregation of computing power to deliver
considerably higher performance than one typical desktop computer can provide,
to solve large problems in science, engineering, or business. An HPC room in
data centers is a complex controlled environment that hosts several HPC clusters
and other required facilities like a high-performance communication network and
cooling systems. Each HPC cluster comprises thousands of computing nodes that
consume electrical power in the range of megawatts. Due to the increasing total
power and power density of computing nodes, the overall datacenter computing
capacity is often capped by peak power consumption and temperature dissipation
bottlenecks.

1.1 Motivations

Homogeneous Performance To prevent the creation of cold and hot spots in
the HPC room, which reduces the cooling system efficiency and the homogeneous
performance between all the nodes, requires complex cooling solutions, but they
might not be sufficient. Therefore, thermal monitoring HPC room is necessary
to capture the effects of the power dissipated by computing nodes to optimize
the cooling while precluding thermal hazards. In addition, a complex thermal
dissipation system can have severe thermal hazards, which in turn jeopardizes the
availability of HPC services.

1

Thermal Hazard Prediction To dissipate the heat generated by the power
consumption of the nodes, forced air/liquid flow is employed, costing millions of
Euros per year [6]. Reducing this cost involves using free-cooling (the capability
to exploit the outside air, using only the air conditioner blowers to circulate it in
the room) and average case design, etc., which can create a cooling shortage and
thermal hazards. When a thermal hazard happens, the system administrators and
the facility manager must stop the production to avoid IT equipment damage and
wear-out. Considering the fact that continuity of some applications or services is
vital (mission-critical application) and millions of Euros of capital expenditures
(CAPEX) (+ a portion of operating expenses (OPEX)) of a datacenter/HPC cluster,
the outage of the datacenter has severe social and financial side effects. Therefore,
predicting the failure in advance to prevent the data center’s outage is extremely
important.

Thermal Anomaly In a datacenter, an anomaly is a suspicious pattern in the
monitoring signals of the HPC room. An anomaly can initiate due to; (i) an
inappropriate working of the cooling system or subsystem, (ii) inconsistency between
the different cooling systems in the HPC room, (iii) abnormal computing demand,
(iv) an extreme hotspot during the summer can affect the cooling systems’ capacity,
(v) fast variation of some monitoring signals that could not support by other signals,
(vi) it can be complex temporal and/or spatial relations of the different monitoring
signals, which is unclear for human experts but can be identified by machine
learning approaches. The severity of the anomaly can be different, and in extreme
conditions, it can yield the outage of the datacenter. Although anomalies in HPC
systems are very rare events, anomaly detection is vital due to the significant
harmful consequence of anomalies. A thermal hazard (which is a kind of anomaly)
is a dramatic increase in node temperature, which can lead to the outage of the
datacenter. Detecting thermal hazards in time is extremely important to avoid IT
and facility equipment damage and outage of the datacenter, with severe societal
and business losses. For this reason, automated approaches to detect thermal
hazards in datacenters have considerable potential.

1.2 Contributions

It is important to emphasize that to the best of my knowledge; this thesis is the
first empirical study of thermal anomaly detection and prediction techniques of
a real large-scale HPC system. It is based on real HPC room monitoring data at
CINECA, which hosts Marconi HPC clusters (Marconi is the 21st most powerful
computing system based on the TOP500 list in June 2019 [2]) and Marconi100
(Marconi100 is the 18th most powerful computing system based on the TOP500

list in November 2021 [1]). This study is done based on real data of in-production
HPC cluster and HPC room facilities and never used any synthetic data or artificial
anomalies. For this thesis, I used a large-scale dataset, monitoring data of tens of
thousands of sensors for around 24 months with a data collection rate of around 20
seconds. The monitoring data is collected employing a holistic monitoring system,
namely ExaMon (Chapter 2), one of the state-of-the-art HPC monitoring systems
developed by other members of our group at the University of Bologna [7].

The first contribution of the thesis (Chapter 2) is to define the HPC facility, cluster,
room, and cooling where results were conducted. This refers to the most powerful
supercomputing center for scientific research in Italy, and one of the most powerful
supercomputers in the world, based on the TOP500 list (Marconi100 HPC cluster
is the 18th most powerful computing system based on the TOP500 list in November
2021 [1], and Marconi HPC cluster is the 21st most powerful computing system
based on the TOP500 list in June 2019 [2]).

The second contribution of the thesis (Chapter 3) is, analyzing and characterizing
the thermal properties of a Tier0 datacenter deploying advanced cooling technologies.
Specifically, the spatial and temporal heterogeneity during production and thermal
hazards are studied. Chapter 3 gives quantitative evidence of thermal bottlenecks
in real-life production workload, showing the presence of significant spatial thermal
heterogeneity, which could be exploited by thermal-aware job scheduling and
datacenter-room runtime workload adaptation and distribution. For instance, the
inlet temperature of the nodes increases vertically with an average difference of
6.5◦C from the top and bottom nodes, and measured data confirm that fans of
nodes of bottom nodes work with lower speed (RPM) and consume 15.8 Watt less
(∼ 6%) than top nodes. Meanwhiles the monthly average inlet temperature for
nodes at the same height in the room experienced up to 10.8 ◦C of difference.

The third contribution of the thesis (Chapter 4) is the study of thermal hazards
signatures on a Tier-0 datacenter room’s monitoring data during a full year of
production. Based on the statistical analysis of true thermal hazard events, a set of
statistical rules to identify the thermal hazards on the inlet and outlet temperature
measurements of all nodes of a room are defined. This chapter proposed a thermal
hazard prediction framework to function on large-scale time-series data, which is
composed of three main components: (i) data collection and storage part, (ii)
data extraction, preprocessing (e.g., missed data handling, time alignments), label
generator, and data loader part, (iii) Deep Learning (DL)-powered thermal hazard
prediction system (training and inference). Different classical machine learning
and deep learning models in predicting the thermal hazard events are investigated,

which would give ample time for taking proactive countermeasures.

The fourth contribution of the thesis (Chapter 5) is thermal anomaly detection.
DL-based thermal hazard prediction and statistical rule-based method for thermal
hazard or anomaly definition are possible only when thermal statistics of the
HPC room is constant, which is not true due to: the yearly ambient temperature
fluctuations, dataset’s complexity, monitoring signal’s dynamism, manual update of
the cooling setpoints, etc. Chapter 5 challenges this task by defining more complex
statistical rules-based anomaly detection methods and focusing on advanced DL-
based thermal anomaly detection methods. In addition to node-level data, the
approaches presented in this chapter utilize cluster/room/facility level metrics (e.g.,
cooling systems metrics) and create a large dataset (4 months) to train anomaly
detection models. Finally, the anomaly detection models are validated against real
thermal hazard events reported for the studied HPC cluster while in production.

1.3 Thesis Overview

The following contains a brief overview of the thesis outline. Figure 1.1 outlines
chapter dependencies.

Chapter 1 is an introduction that contains a brief description of thesis context
and motivations, main contributions of the thesis, and organization of the thesis.

Chapter 2 provides background about HPC facility, cluster, room, and cooling
where studies were conducted.

Chapter 3 studies thermal and power characterization of two main computing
rooms in the CINECA datacenter, leveraging two completely different approaches.

Chapter 4 proposes and examines a Deep Learning DL-powered thermal hazard
prediction framework to function on large-scale time-series data.

Chapter 5, in order to anomaly detection in the monitoring data of computing
nodes and HPC facilities, proposes and examines two set tools: 1- Rule-based
Statistical Methods and 2- Semi-supervised Machine Learning-based Methods.

Chapter 6 concludes the thesis with a short summary.

Thermal and Power
Characteristic of the

HPC Room
Ch. 3

Detection and
Prediction of

Thermal Emergency
Ch. 4

HPC
Background

Ch. 2

Thermal Anomaly
Detection

Ch. 5

Conclusion
Ch. 6

Figure 1.1: Thesis overview and dependencies between chapters.

Chapter 2

Background

2.1 Overview

High-performance computing (HPC) most generally refers to the practice of aggre-
gating computing power in a way that delivers much higher performance than one
could get out of a typical desktop computer or workstation in order to solve large
problems in science, engineering, or business [8]. A rack is a container designed
to house servers, networking devices, cables, and other data center computing
equipment; in the context of this thesis, a rack is a container that contains multiple
chassis, and each chassis can host one or multiple computing nodes. An HPC
room is a room in a datacenter that hosts one or multiple HPC clusters. Thou-
sands of computing nodes in the HPC room may consume megawatts of electrical
power, which is entirely converted into heat; efficiently dissipating heat requires a
sophisticated cooling system [9].

2.2 CINECA

CINECA is a non-profit consortium of 69 Italian universities, 27 national public
research centers, the Italian Ministry of Universities and Research (MUR), and the
Italian Ministry of Education (MI), and was established in 1969 Casalecchio di Reno,
Bologna [10]. It is the most powerful supercomputing center for scientific research
in Italy, and one of the most powerful supercomputers in the world, based on the
TOP500 list of the: Marconi100 HPC cluster, with about 32 PFlop/s, is ranked
18th (list of November 2021) most powerful computing system in the world [1] and
Marconi HPC clusters (A2, A3), with about 20 PFlop/s, is ranked 21st (list of June
2019) most powerful computing system in the world [2]. CINECA has three HPC
rooms F, M, and N, hosting HPC clusters and other facilities. This thesis mostly
focused on rooms F and N, which host powerful HPC clusters of CINECA. The

6

CINECA datacenter features a holistic monitoring framework, namely ExaMon
(more detail in section 2.3), which aggregates a wide set of telemetry data [7].
ExaMon is one of the state-of-the-art datacenter monitoring systems [11]

2.2.1 CINECA Cooling Technologies

CINECA HPC Rooms are cooled with Computer Room Air Conditioning (CRAC)
units by the Direct Expansion (DX) Airconditioning system. In DX Air-conditioning,
the air used for cooling the room is directly passed over the cooling coil. Some of
these CRAC units support the Direct Free Cooling (DFC) system, which is referred
to by the CRAC+DFC in this thesis. The DFC system is designed to reduce energy
dissipation and improve the carbon footprint by utilizing the external cold air for
cooling the room. In this case, the DFC system starts to work when the outdoor
temperature is lower than 18oC. Without the DFC system, the CRAC units work
in standard air recirculation mode with refrigeration-based cooling. Empowering
the CRAC units with a DFC system can reduce the compressor’s operation. The
hot/cold aisle approach is employed to cool the room (figure 2.1). The cold airflow
moves under the raised floor and gets to the loaded areas; then, the hot air returns
to the CRAC units above the raised floor.

Figure 2.1: HPC Room Air Cooling System [5].

Also, there is a water cooling system for Rear Door Heat Exchangers (RDHX),
with the chiller loop (cold loop) temperature around 12oC to 17oC, and RDHX

loop (hot loop) temperature around 23oC to 30oC (figure 2.2). The RDHX device
is placed in front of the hot outlet airflow of the compute node. During operation,
the compute node’s hot airflow is forced through the RDHX device by the compute
node fans, and exchanges heat from the hot air to circulating water from a chiller.
Thus, the compute node outlet air temperature reduces before its discharge into
the datacenter. RDHX is used to augment the computing density in air-cooled
computing rooms.

Figure 2.2: Rear Door Heat Exchanger (RDHX) [5].

2.2.2 Room F - Marconi A2 (KNL)

The Marconi is Tier-0 cluster in the CINECA datacenter, which is based on
the Lenovo NeXtScale platform. Room F before Marconi100 hosted the largest
partition of Marconi A2. The Marconi A2 cluster is based on the 68-cores Intel
Xeon Phi7250 (KnightLandings) at 1.4 GHz, with many-core architecture (Intel
OmniPath Cluster), provided about 250 thousand cores(68 cores/node, 244.800
cores in total) with the computational power of around 11Pflop/s. Each node has
16 GB/node MCDRAM + 96 GB/node DDR4 [12].

Figure 2.3 depicts the layout of the HPC Marconi A2 (KNL) room F in CINECA.
In the Marconi A2 room F, 46+1 racks (one of them is a rack of switches) are
located in three rows. Each rack is composed of 18 chassis in different height, and
each chassis has four computing nodes. Chassis one (C1) is in the bottom, and
chassis 18 (C18) is the highest one. There are six computer room air conditioning
(CRAC) units that support the two cold aisles. Four of these CRAC units have the
Direct Free Cooling system (DFC). All racks are equipped with RDHX, and RDHX
of racks are in the hot aisle. The CINECA datacenter features a holistic monitoring

framework, namely ExaMon (more detail in section 2.3), which aggregates a wide
set of telemetry data [7]. For each node and its associated components, such
as voltage regulators and fans, the Intelligent Platform Management Interface
(IPMI) provides remote telemetry access to the built-in sensors [13]. The ExaMon
monitoring system collects sensor data with the IPMI interface with 20 seconds
sampling rate [7]. ExaMon monitored data is stored in its internal KairosDB
database as time traces and remotely accessible through RESTfull APIs [7].

This thesis studies the Marconi A2 cluster for the entire 2019, and the study
completely employed the in-production Marconi A2 cluster’s real monitoring dataset,
and even anomalies (which are rare events) that used in this study are real physical
failures during cluster’s production, and synthetic data did not employ for this
study.

Marconi A2 stopped production in January 2020, and the same room F with
the same cooling facilities hosted a new Marconi 100 cluster from April 2020.

2.2.3 Room F - Marconi 100

After stopping Marconi A2 in January 2020, Room F hosts the Marconi 100 cluster,
one of the world’s most potent computing systems (18th most powerful computing
system based on TOP500 list November of 2021 [1]). Marconi 100 cluster start
production from April 2020. Figure 2.4 depicts the rack arrangement of Marconi
100 in Room F and cooling facilities. Marconi 100 is the accelerated cluster based
on IBM Power9 architecture and Volta NVIDIA GPUs. Its computing capacity
is about 32 PFlops. Room F (figure 2.4) contains 55 racks (49 computing), and
each rack has 20 chassis, and each chassis host one computing node. Marconi
100 is composed of 980 nodes; each node has 2x16 cores IBM POWER9 (@3.1
GHz) processors and is empowered with 4 x NVIDIA Volta V100 GPU accelerators
(16GB), RAM: 256 GB/node.

Room F contains six computer room air conditioning (CRAC) units that support
the two cold aisles. Four of these CRAC units have the Direct Free Cooling system
(DFC). All racks are equipped with RDHX, and RDHX of racks are in the hot
aisle.

CRAC3+DFCCRAC2+DFCCRAC1+DFC

C
R

A
C

2
+D

FC
C

R
A

C
5

C
R

A
C

6

Cold Aisle

Cold Aisle

Hot Aisle

Hot Aisle

Room F
Marconi A2

Direct Free Cooling (DFC) Direct Free Cooling (DFC)

Rack
RDHX

Management
Nodes

RDHX

Legend

(a) Marconi A2 (KNL) Room F in CINECA Datacenter.

(b) Schematic of One Rack of Marconi A2.

Figure 2.3: Racks Arrangements of Marconi A2 (KNL) Room F in CINECA
Datacenter.

CRAC3+DFCCRAC2+DFCCRAC1+DFC

C
R

A
C

2
+D

FC
C

R
A

C
5

C
R

A
C

6

Cold Aisle

Cold Aisle

Hot Aisle

Hot Aisle

Room F
Marconi 100

Direct Free Cooling (DFC) Direct Free Cooling (DFC)

Rack
RDHX

Management
Nodes

RDHX

Legend

Figure 2.4: CINECA HPC Room F Marconi 100 Cluster.

The CINECA datacenter features a holistic monitoring framework, namely
ExaMon (more detail in section 2.3), which aggregates a wide set of telemetry
data [7]. For each node and its associated components, such as voltage regulators
and fans, the Intelligent Platform Management Interface (IPMI) provides remote
telemetry access to the built-in sensors [13]. The ExaMon monitoring system
collects sensor data with the IPMI interface with 20 seconds sampling rate [7].
From April 2021, ExaMon, in addition to nodes metrics, starts to collect important
metrics of HPC room facilities (CRAC units, RDHX, and Modbus). ExaMon
monitored data is stored in its internal KairosDB database as time traces and
remotely accessible through RESTfull APIs [7].

Although Marconi 100 has been available from April 2020, the monitoring system
implementation for computing systems and HPC room facilities was completed in
April 2021. This thesis studies the Marconi 100 cluster for 4 months of the year
2021 (2021-04-08 to 2021-08-18), and the study entirely employed in-production
Marconi 100 cluster’s real monitoring dataset, and even anomalies (which are rare
events) that used in this study are real physical failures during cluster’s production,
and synthetic data did not employ for this study.

2.2.4 Room N

Figure 2.5 depicts the rack arrangement and cooling facilities of CINECA HPC
room N. Room N comprises three main clusters: the Marconi A1 partition, the
Marconi A3 partition, and the Galileo cluster. Marconi A1, a preliminary system,
was in production from June 2016, based on Intel® Xeon® processor E5-2600 v4
product family (Broadwell) with the computational power of 1Pflop/s. Marconi
A1 was closed in September 2018. Marconi is the Tier-0 system is based on the
LENOVO NeXtScale platform. In August 2017, a Marconi A3 partition was
added, based on Intel Xeon 8160 (SkyLake). 1.512 nodes at first, followed by
about 800 more a few months later(Peak Performance: 8 PFlop/s) [14]. Galileo:
Starting from January 2018, Galileo has been reconfigured with Intel Xeon E5-2697
v4 (Broadwell) nodes, inherited from the Marconi system. Starting from March
2021 was gradually turned off to give space to more performant Infrastructure
Galileo100 [15].

Room N is cooled by the Direct Expansion (DX) Air-conditioning system with
14 CRAC units. Five of these CRAC units support the Direct Free Cooling (DFC)
system, which is referred to by the CRAC+DFC in this thesis. The DFC system is
designed to reduce energy dissipation and improve the carbon footprint by utilizing
the external cold air for cooling the room. In this case, the DFC system starts
to work when the outdoor temperature is lower than 18oC. Without the DFC
system, the CRAC units work in standard air recirculation mode with refrigeration
based cooling. By combining compressors with the DFC system, we can reduce the
compressor’s operation.

There are two cages on the clusters of Galileo and Marconi A1 to shield the
cold part of these two clusters. Also, there is a water cooling system for RDHX on
cluster Marconi A3.

2.3 The ExaMon Framework

To enable datacenter automation, it is essential to collect and analyze data from
different sets of sensors. This section gives a high-level description of the moni-
toring infrastructure and its main components, which integrates all the different
heterogeneous sensors sources.

2.3.1 System Overview

The monitoring framework is composed of several components. From Figure 2.6,
we can distinguish four main layers. Starting from the bottom:

Figure 2.5: CINECA Room N

Data Collection

ExaMon collects different kinds of data: physical data measured with sensors,
workload information obtained from the job dispatcher, and software information
collected from software probes. These are the low-level components having the task
of reading the data from several sensors scattered across the system and deliver
them, in a standardized format, to the upper layer of the stack. These software
components are composed of two main objects, the MQTT API and the Sensor API
object. The former implements the MQTT protocol functions, and it is the same
among all the collectors, while the latter implements the custom sensor functions
related to the data sampling and is unique for each kind of collector. Considering
the specific sensor API object, we can distinguish collectors that have direct access
to hardware resources like PMU, IPMI, accelerators, sensor nodes, and collectors
that sample data from other applications as batch schedulers (PBS and Slurm)
and switchboards Modbus collectors.

The second typology of data regards the jobs running in the system and its
workload. In order to gather this data, we need to extend the job scheduler by
adding a software component that collects the information and sends it as an

Broker1

Cassandra

node
1

MQTT

BrokerM

Cassandra

node
M

Grafana
Apache

Spark

CLUSTER

MQTT Brokers

Applica!ons

NoSQL

ADMIN

MQTT2Kairos MQTT2kairos

Kairosdb

Matlab Pandas

T_sensor

T_sensor

P_sensorP_se

P_sensor

T_sensor

T_sensor

Figure 2.6: Monitoring Framework.

MQTT message to the upper layers of the framework. Current state-of-the-art
schedulers usually expose a set of APIs that developers use to add custom functions
and behaviors [16,17].

Communication Layer

The framework is built around the MQTT protocol. It implements the “publish-
subscribe” messaging pattern and requires three different agents to work: (i)
The “publisher”, having the role of sending data on a specific “topic”. (ii) The
“subscriber”, that needs certain data, so it subscribes to the appropriate topic. (iii)
The “broker”, that has the functions of (a) receiving data from publishers, (b)
making topics available to subscribers, (c) delivering data to subscribers. The basic
MQTT communication mechanism is as follows. When a publisher agent sends
some data having a certain topic as a protocol parameter, the topic is created and
available at the broker. Any subscriber to that topic will receive the associated
data as soon as it is available to the broker. In this scenario, collector agents have
the role of “publishers”.

Storage Layer

The monitoring framework provides a mechanism to store metrics mainly for visual-
ization and analysis of historical data. We use a distributed and scalable time-series
database (KairosDB) that is built on top of a NoSQL database (Apache Cassandra)
as a back-end. A specific MQTT subscriber (MQTT2Kairos) is implemented to
provide a bridge between the MQTT protocol and the KairosDB data insertion
mechanism. The bridge leverages the particular MQTT topics structure of the
monitoring framework to automatically form the KairosDB insertion statement.
This gives a twofold advantage: first, it lowers the computational overhead of the
bridge since it is reduced to a string parsing operation per message; and secondly,
it makes it easy to form the database query starting only from the knowledge of
the matching MQTT topic.

Applications Layer

The data gathered by the monitoring framework can serve multiple purposes, as
presented in the application layer. For example, machine learning techniques can
be applied to extract predictive models or devise online fault detection mechanisms.
Another important application is real-time visualization using web-based tools - a
powerful instrument for both facility administrators and system users.

2.3.2 Collector Measurements Format

At the end of the sampling stage, each collector delivers each metric to the MQTT
broker under a hierarchical topic structure:

- for the per-node metrics it is:
org/<organization name>/cluster/<cluster name>/node/<node name>/plugin/

<plugin name>/chnl/data/<metric name>

- for the case of per-cluster metrics, it is:
org/<organization name>/cluster/<cluster name>/plugin/<plugin name>/

chnl/data/switchboard/<switchboard ID>/<metric name>

- for the case of per-room metrics, it is:
org/<organization name>/cluster/<cluster name>/room/<room name>/plugin/

<plugin name>/chnl/data/sensorID/<sensor node ID>/<metric name>.
The payload of the MQTT message for all the cases is: <value>;<timestamp>.

The MQTT broker is a daemon process that runs on non-computing nodes as login
nodes to minimize infrastructure intrusiveness. Now that the data is available at
the broker, as a temporal sequence of samples, it can be ingested and processed by
the computing engine.

Switchboards

The switchboard pub collector is devoted to the sampling of switchboards meters
data normally available over the Modbus interface. It executes on the management
nodes of the cluster where the site-level data collection software is running1. A
software daemon periodically (every hour) reads the average of the Modbus meters
collected by SiteScan and publishes it to the MQTT broker through MQTT
messages.

Wireless Sensor Network Nodes

The LoRaWAN network structure relies on a commercial product, the MultiCon-
nect® ConduitTM [18], that manages the gateway and the server layer. It is a
highly configurable, manageable, and scalable gateway for IoT applications, sup-
porting a wide-span of programming tools, such as Node-Red and nodejs. Thanks
to a browser-based editor and smart wiring tools, Node-Red is a perfect program
for our needs, forwarding the collected data from LoRaWAN end-devices to the
MQTT broker through MQTT messages.

1Liebert SiteScan

2.4 Summary

This chapter provided an introduction and preliminary definitions related to the
thesis, a brief description of the HPC system and HPC room facilities. Some
technical characteristics of Marconi A1, Marconi A2, Marconi A3, Galileo, and
Marconi 100, which are located in CINECA HPC rooms N and F, were illustrated.
These HPC clusters may consume megawatts of electrical power, which is entirely
converted into heat; therefore, rooms are equipped with sophisticated cooling
systems. It explained CRAC units (+DFC) and water cooling systems (RDHX).
CINECA is equipped with ExaMon (Exascale Monitoring), one of the state-of-the-
art datacenter monitoring systems. This chapter had a brief overview of ExaMon,
which is composed of Data Collection, Communication Layer, Storage Layer, and
Application Layer [7].

Chapter 3

Thermal and Power Characteristic
of the HPC Room

3.1 Overview

High-performance computing (HPC) systems are large and complex industrial
plants [19] which are gaining importance in today’s society and industry [20].
Recent reports quantify the Return on Investment (ROI) produced by applying
HPC in an industrial environment: in Europe, each Euro invested in HPC generates,
on average, 867e of increased revenues and 69e in profit, while in the US, a single
dollar spent in HPC generates, on average, 43$ of profit [20].

HPC systems are hosted in computing rooms, each containing multiple racks
that pack tens/hundreds of computing nodes. Each computing node is composed of
multiple computing elements (CPUs/GPUs) based on multi/many-core processors.
The power consumption of these installations ranges from few to tens of MWatts.
Additional power is required to remove the heat generated by the active electronics.
Performance evolution of computing systems is faced by the end of Dennard’s
scaling and the so-called ”Thermal and Power Wall” [21]. Indeed, the power
density of computing devices has increased across generations: higher power density
increases silicon temperature, which in turn increases cooling costs, complexity,
and/or jeopardizes performance.

Summit [4], which is today one of the most powerful supercomputers worldwide,
consumes 11 MWatts for the computation and an additional 1.32 MWatts for cooling.
To achieving this cooling efficiency, Summit adopts a sophisticated computing node
design and hot water cooling solution [22]. A study shows that even highly tuned
Google datacenters pay, on average, an additional 12% of power consumption for
power delivery and cooling dissipation [23].

Traditional cooling methods, based on Computer Room Air Conditioners

18

(CRAC) or Computer Room Air Handlers (CRAH), have been enhanced with
free-cooling mode, i.e., the capability to exploit the outside air, using only the
Air Conditioner (AC) blowers to circulate it in the room [24–27]. Moreover, cool-
ing energy can be significantly reduced if hot water cooling is used to remove
heat [22,28,29]. In both these cases, a coolant hotter than the traditional chilled
coolant is used to remove the heat, often leading to a higher silicon temperature
in the computing units [19,30]. Rear Door Heat Exchangers (RDHX) are used to
augment the computing density in air-cooled computing rooms.

Monitoring the temperature of the coolants (Air and Liquid) in the computing
room is necessary to capture the effects of the power dissipated by the computing
machines, optimize the cooling while preventing thermal hazard [31,32]. Tempera-
ture monitoring devices, in traditional commercial solutions, use wired sensors with
few measurement points, due to the high installation cost [33]. In this field, Wireless
Sensor Networks (WSNs) are optimal for scattered and ubiquitous deployments;
devices can be placed freely in mobile objects, and also in critical or hard-to-reach
areas, to measure different parameters, such as temperature, power consumption,
and humidity [34–36].

This chapter characterizes the two main computing rooms in the CINECA
datacentre leveraging two completely different approaches. For the CINECA HPC
Room N, which hosts Marconi A1, Marconi A3, and Galileo, we deployed a WSN
together switchboards power consumption. For the CINECA HPC Room F, which
hosts Marconi A2 (Marconi A2 closed in January 2020 and was replaced with
Marconi 100) and Marconi 100, we leverage fine-grain metrics collected directly
from the nodes. The characterization analysis and methodology have been adapted
to the different nature of measurements used (time and spatial granularity). We
refer later to Wireless sensor network-based characterization (applied to Room N)
and Big data-based characterization.

3.1.1 Wireless Sensor Network-based Characterization -
CINECA HPC Room N

In section 3.3, we propose a distributed system designed to measure the temperature
evolution in a datacenter, aiming to improve cooling efficiency. Each sensor embeds
a LoRa (Long Range) transceiver [37]. LoRa is a wide-area IoT communication
technology, developed by Semtech, with unique spread spectrum modulation. We
described a novel deployment of a distributed temperature monitoring system in
a Tier0 datacenter, hosting three HPC clusters, using the LoRa technology. The
detail of the WSN system is out of the scope of this thesis and just the data
collected from this monitoring system has been analyzed in this chapter.

In this study, the relation between the power dissipated by the computing

clusters during production conditions, their spatial position, and the monitored
temperature in a real Tier0 HPC room have been studied. The impact of the
sensor’s location, pre-processing strategy, and data collection rate has been analyzed.
Experiments were run in CINECA room N, the Tier0 supercomputing center
for scientific research in Italy, which is ranked 18th (@2018) in the list of the
most powerful supercomputer worldwide and features hybrid and free-cooling
technologies. [2]. Based on the analysis of the more than 7 million data samples of
the room’s temperature and the power consumption which are collected in ExaMon;
has been shown that the different cooling technologies used in the datacenter room
create heterogeneous thermal zones, and horizontal spatial proximity does not imply
thermal coupling; also, the bottom and top of the racks are thermally decoupled.
Although the temperature measured with the sensors is expected to be directly
related to power consumption, some sensors have an inverse correlation with power
consumption, which means that these parts are more affected by CRAC units than
the direct effects of power consumption. We demonstrate that the data collection
rate and transmission rates can be reduced by two orders of magnitude w.r.t. an
initial rate of 120 samples per hour.

3.1.2 Big Data-based Characterization - CINECA HPC
Room F

In section 3.4, we characterized the temperature distribution of a Tier0 datacenter
hosting the Marconi supercomputer [2, 5], which is ranked 21st (JUNE 2019) in
the list of the most powerful supercomputer worldwide and features hybrid and
free-cooling technologies. To carry out the analysis, we have collected the entire
Marconi node’s telemetry data for a month of activity. During the selected period
(01.06.2019 - 01.07.2019), the ambient temperature has ranged from 12oC to 38oC.
Our analysis shows that:
- The inlet temperature of the nodes increases vertically. With an average difference
of 6.5oC from the top and bottom nodes. Moreover, the bottom nodes face a higher
variability of the inlet temperature than the top nodes in the rack as an effect of a
stronger dependency of their inlet air with the CRAC outlet temperature. This is
less strong with top nodes in the rack due to a stronger dependency of their inlet
air from heat re-circulation.
- The inlet temperature significantly changes in the floorplan. We measured up to
10.8oC difference for the monthly average chassis temperature for chassis at the
same height in the racks. Interestingly the monthly average hotspot position in the
floorplan is correlated with the chassis height.
- In the observed period, the datacenter faced a thermal hazard which has compro-
mised the liquid cooling capacity of the room (used by the RDHX). We carefully

analyze room temperature during this rare but extremely critical event. Our
measurement shows that the effect of the thermal emergency caused an increase in
the average temperature of the computing nodes with a modification of the hotspot
location.

Results of the study show that the inlet temperature in a datacenter is het-
erogeneous and significant patterns are stable for long periods and visible on the
monthly average. If accurately modeled, this information can be used to improve
job scheduling and improve the datacenter’s cooling efficiency.

The following of this chapter is organized as follow: after the state-of-the-art,
the thermal and power characteristic of the CINECA HPC room N, which hosts
the clusters A1, A3, Gailelo, is described in section 3.3 , then with the almost
similar study but with different methods, the thermal and power characteristic of
the CINECA HPC room F, which hosts the cluster Marconi A2 in normal and
thermal emergency conditions is investigated in section 3.4 and finally a summary
of the chapter in section 3.5.

3.2 State of the Art

Several works in literature have analyzed the impact of heat dissipation in datacenter
components. The first set of works focus on the chip-level thermal effects and
show that at chip-level exists hotspots and significant thermal gradients which
can be exploited for improving core’s performance and energy-efficiency [19, 38–41].
Druzhinin et al. have studied the impact of the coolant temperature increase in
a datacenter blade with hot water cooling. The authors show that an increment
of 40oC in the coolant causes 20% of additional leakage power and a consequent
decrease in the performance of 0.5% [30]. The second set of works focus on the
machine level [29, 42, 43]. These works characterize the effect of performance
variability between nominally equal computing nodes. Marathe et al. [43] show that
in power-constrained computing nodes, the hardware control logic turns the process
variation effects into a performance and core’s frequency variation. This can lead
to significant application time-to-solution overheads in parallel applications.

Thermal management of datacenters has been studied in depth in the last
few years [44], exploring diverse strategies and approaches to reduce the cooling
infrastructure power consumption by improving facility efficiency. In this context,
many solutions have been presented such as: automatic cooling mode selection
which optimizes overall power, under defined quality of service and thermal re-
quirements [33]. The works proposed in [45] and [46] aim to fine-tune the speed of
the rack fans, whereas in [47], the CRACs internal temperatures are used as the
reference to minimize the resources used to dissipate the heat. In [48], the effort is
put into selecting the number of active subfloor tiles and blowers speed to optimize

the Computer Room Air Handlers (CRAHs) cooling system.
The authors of paper [49] introduced two virtual sensors (volumetric airflow

sensor and outlet temperature sensor) to control the volume of cold airflow generated
by the CRAC units and needed to cool the compute nodes. They use the aggregated
volumetric airflow of compute nodes to control the Air Conditioning Unit (ACU).
In their simulations and they estimated an annual PUE reduction (Power Usage
Effectiveness) from 1.92 to 1.6. Authors of [50] focus on Dynamic Thermal
Management (DTM) for placing workloads in the datacenter to reach an uniform
temperature distribution and achieve more efficient cooling.

Authors of [26] study the intelligent placement of liquid-cooled servers and
intelligent coordination of different cooling techniques (air cooling, liquid cooling,
and free air cooling), considering the dynamic workload allocation to minimize the
cooling and server power of a datacenter. In [51], authors focus on air management
to improving cooling energy efficiency in the datacenter.

Authors of [52] investigate the temperature management in datacenters by
considering the reliability of the storage subsystem, the memory subsystem, and
compute node reliability as a whole. They propose temperature management
strategies for saving energy while limiting adverse effects on system reliability and
performance.

Authors in [53] proposed a dynamic thermal model that can be used as a
basis for model predictive control algorithms. In [54], the authors study thermal-
benchmarking techniques to extract the servers’ thermal profile and thermal statis-
tics that can be used in thermal efficient datacenter management. In [55], the
authors compare steady and dynamic models to illustrate the computational inter-
actions and thermal relationships among the datacenter components. Moreover, the
authors define an energy minimization problem, which is solved by a two-time-scale
control method.

In [56], the authors propose a real-time monitoring system to optimize the cooling
system’s energy consumption by minimizing the number of active CRACs. They
suggest a four-layer technology for monitoring, which is a cloud-based application for
data collection, analysis, visualization, and reporting. With the proposed approach,
authors are capable of reducing the number of underutilized CRACs and increases
the number of turned off CRACs (from 2 to 7 on a total of 15 CRACs), keeping the
same average return temperature. In [57], the authors present an optimal control
policy for hybrid systems featuring free, liquid, and air cooling. The policy features
a predictive model of the cooling system based on environmental, room, and IT
temperature measurements. It is important to note that all models based on the
predictive approach implicitly assume the availability of high-quality temperature
data, both off-line for training and online for driving control decisions.

Focusing on the room temperature monitoring infrastructure, in [58], the authors

proposes a green cooling system; the management model collects information from
a WSN that utilizes temperature sensors to control the ventilation system and
the air conditioning. The WSN is based on the ZigBee protocol and includes the
actuators. This approach generates a highly sophisticated network and a complex
deployment, with 10 boards scattered in only 20 m2. A novel WSN designed for
datacenter facilities monitoring is presented in [59]. It describes a system based
on Zigbee sensor nodes supplied by 2000 mAh batteries. The deployment consists
of 10 devices in a 30 m2 area. Since the network is configured as a very dense
mesh, several boards operate as a router, and the communication from the farthest
node needs up to 4 hops. While [58, 59] demonstrate the key functionality of
temperature monitoring via a WSN, the power consumption of the sensor nodes is
hardly compatible with battery operation. As a reference, a single sensor in [59]
drew from the battery 73 mA on average, which is two orders of magnitude higher
than our LoRa solution. Furthermore, the range of connectivity of the nodes is
limited, requiring multihop networks with several continuously powered routers,
which greatly complicate the deployment.

While all the previously mentioned studies highlight and characterize the side-
effects of inlet temperature, performance variation, energy efficiency and parallel
job performance in a datacenter, none of them has characterized the temperature
variation in a datacenter’s room. Therefore, we characterize the temperature
distribution of a Tier0 datacenter hosting the Marconi supercomputer [5,60], which
is ranked 18th (@2018) in the list of the most powerful supercomputer worldwide
and features hybrid and free-cooling technologies.

3.3 Thermal and Power Characteristic of the

CINECA HPC Room N

3.3.1 Methodology

Sensor Node: The sensor node (Figure 3.1) is a low power and versatile circuit,
which includes an internal temperature and humidity sensor in parallel with an
efficient (up to 90%) DC converter. Moreover, multiples types of transducers, both
analog and digital, can be connected to its expansion port.

Figure 3.1: Block Diagram of the Sensor Node.

WSN Setup and Description

A LoRaWAN WSN test with 14 sensor nodes was carried out to model the room
temperature. The goal was to verify in a realistic operating condition the im-
provements using LoRaWAN instead of multi-hop protocols in terms of energy
consumption and transmission reliability. The radios packet consists of 29 bytes of
payload and 6 symbols of the preamble. Each end-node was configured to send a
sensor data packet every 30 seconds. The final network experimental deployment
was carried out with 14 sensor nodes, arranged in critical points of the datacenter’s
high power density room (Fig. 3.7 - Room N). The room is composed of three main
clusters, the Marconi A1 partition, the Marconi A3 partition, and the GALILEO
cluster. The Marconi supercomputer (A1 and A3) is composed of 3216 computing
nodes, while the Galileo supercomputer is composed of 400 nodes. We positioned
all the devices in hallways between racks (Fig. 3.2 (a)), close to the CRAC output
and under the floor (Fig. 3.2 (b)), besides, some sensor was placed into full metallic
air conditioning pipes and structure. Figure 3.2 shows two pictures of the WSN
deployment.

Abbreviation Definition
CRAC Computer Room Air Conditioning unit
CRAC+DFC CRAC unit with Direct Free Cooling
TW Time Window
TWN Time Window Number
TDCTW Total Data Collection Time Window
LTWN Last Time Window Number
TWG Time Window Group
Temp(SensorID,TWN) Data set of temperatures that was collected by sensorID in TWN.
Pow(lineID,TWN) Data set of power consumption that was collected by meter from lineID in TWN.
CC(x,y) Correlation Coefficient of x and y
Pair One Sensor and One Power Line
SST Statistical Significance Test
SSTMask Statistical Significance Test Mask
meanCC Mean Correlation Coefficient

Table 3.1: Table of Abbreviations and Definitions.

Figure 3.2: Sensor Node Deployment. (a) a Hallway Positioning Is Proposed, (b)
the Sensor Node Is Under the Datacenter Floor.

Data Collection

Six main electrical distribution lines (”A1 a”, ”A1 b”, ”A3 a”, ”A3 b”, ”Galileo
a”, ”Galileo b”) feed the three main computing clusters (Galileo, Marconi A1, and
A3). Each rack of clusters is bi-powered by branch ”a” and branch ”b”. Servers of
cluster Marconi A1, and A3, are single-fed, and inside each rack half of the servers
have powered by branch ”a” and another half by ”b”.
The switchboards meters monitor the power consumption of each cluster’s power
rail/branch. They are sampled by Lebert SiteScanner and periodically collected on a
per hour average in the ExaMon database. The room temperature values monitored
by the wireless sensor network are also available in the ExaMon database but at
a higher sampling rate (every 30 seconds). Since the Galileo cluster production

started from 12-03-2018, we focused our analysis on the last two months (starting
from the 20-03-2018 until the 17-5-2018) of our WSN installation to cover a period
with minor infrastructure works in the monitored room. We extract data from
ExaMon and process it by Python scripts. Figure 3.3 illustrates the electrical power
consumption of three clusters. The x-axis reports the different days of study, and
the left y-axis the power consumption of clusters by each of the branches (red line
”a”, blue line ”b”, and the yellow line is the absolute difference between ”a” and
”b”. In the studied period, the A3 cluster, with average power dissipation 483.47
KW , consumed more than the two other clusters. The A1 cluster, on average,
consumed 434.30 KW while the Galileo consumed, on average, 68 KW . The heat
produced by the Galileo cluster is lower than the other two clusters (Table 3.2).
In the HPC room N, there are thousands of on-board sensors on the nodes. Although
these sensors collect precise information about the proximity of the HPC nodes,
they are too many to monitor at high speed, and they do not cover the different
areas of the room, such as the subfloor, top of the racks, and CRAC units. In this
study, we leveraged the proposed WSN.
Room N is cooled by the Direct Expansion (DX) Air-conditioning system with 14
CRAC units. In DX Air-conditioning, the air used for cooling the room is directly
passed over the cooling coil. Five of these CRAC units support the Direct Free
Cooling (DFC) system that is referred by the CRAC+DFC in this thesis. DFC
system is designed to reduce energy dissipation and improve the carbon footprint
by utilizing the external cold air for cooling the room. In this case, the DFC system
starts to work when the outdoor temperature is lower than 18oC. Without the DFC
system, the CRAC units work in standard air recirculation mode with refrigeration
based cooling. By combining compressors with the DFC system, we can reduce the
compressor’s operation. For instance, the room was cooled by the DFC system for
5064 hours during the year 2018. There are two cages on the clusters of Galileo
and A1 to shield the cold part of these two clusters. Generally, the airflow moves
under the raised floor and gets to the loaded areas; then, above the raised floor,
the hot air returns to the CRAC units. Also, there is a water cooling system for
RDHX on cluster A3, with the chiller loop (cold loop) temperature around 12oC to
17oC, and RDHX loop (hot loop) temperature around 23oC to 30oC. The RDHX
device is placed in front of the hot outlet airflow of the compute node. During
operation, the compute node’s hot airflow is forced through the RDHX device by
the compute node fans and exchanges heat from the hot air to circulating water
from a chiller. Thus, the compute node outlet air temperature reduces before its
discharge into the datacenter.

0

50

100

150

200

250

300

Po
we

r (
kW

)

A1 a (kW)
A1 b (kW)
Absolute Difference

0

50

100

150

200

250

300

Po
we

r (
kW

)

A3 a (kW)
A3 b (kW)
Absolute Difference

Da
y
0

Da
y
2

Da
y
4

Da
y
6

Da
y
8

Da
y
10

Da
y
12

Da
y
14

Da
y
16

Da
y
18

Da
y
20

Da
y
22

Da
y
24

Da
y
26

Da
y
28

Da
y
30

Da
y
32

Da
y
34

Da
y
36

Da
y
38

Da
y
40

Da
y
42

Da
y
44

Da
y
46

Da
y
48

Da
y
50

Da
y
52

Da
y
54

Da
y
56

Da
y
58

0

10

20

30

40

50

60

Po
we

r (
kW

)

Galileo a (kW)
Galileo b (kW)
Absolute Difference

0

5

10

15

20

25

30

35

40

45

Ab
so

lu
te
 D

iff
er
en

ce
 B
et
we

en

"A
1
a
(k
W
)"
 a
nd

 "A
1
b
(k
W
)"

0

5

10

15

20

25

30

35

40

45

Ab
so

lu
te
 D

iff
er
en

ce
 B
et
we

en

"A
3
a
(k
W
)"
 a
nd

 "A
3
b
(k
W
)"

0

1

2

3

4

5

6

7

8

9

Ab
so

lu
te
 D

iff
er
en

ce
 B
et
we

en

"G
al
ile

o
a
(k
W
)"
 a
nd

 "G
al
ile

o
b
(k
W
)"

Figure 3.3: Electrical Power Consumption of Clusters (Branch a and b) and
Absolute Difference Between Two Branches.

A1 (KW) A3 (KW) Galileo (KW)
mean 434.30 483.47 68.00
std 63.61 107.98 7.48
min 121.06 42.00 50.97
max 526.22 645.42 95.83

Table 3.2: Power Consumption of Different Clusters of Room N.

Data Validation

The collected data were validated with statistical hypothesis testing [61,62]. The
statistical hypothesis testing checks if the observed result is more unusual than
the result that can be produced by chance. As a null hypothesis, we assume that
the results happened by chance; in other words, a null hypothesis states that no
statistical significance exists in a set of a given study. If the occurrence of the given
null hypothesis is unlikely, a result has statistical significance. The p− value shows
the probability of the occurrence of results, given a chance model (null hypothesis)
as unusual as the observed results. The study can define the significance level by
α; it is the probability of the study accepting the null hypothesis. The significance
level for a study typically is set to 5% or much lower, depending on the field of
study. The study is statistically significant, when p − value < α [61, 62]. For
all Pearson’s correlation coefficients calculated in this chapter , the statistically
significant test with the significance level of α = 0.05 has been computed the results
(correlation coefficients) which could not pass the significant test are omitted from
the study.

3.3.2 Experimental Results

In this section, the methodology for thermal and power study of the real in-
production HPC system are represented, data are collected utilizing the combination
of WSN and one of the stat-of-the-art data collection systems (ExaMon) for spatial
monitoring of physical parameters (i.e., temperature) of a datacenter room in a
real Tier 0 datacenter. In this context, (a) The average temperature and Pearson’s
correlation coefficient are computed to explain the impact of the sensors’ placement
in sensing the room’s cooling system heterogeneity. (b) The time-series dataset is
split into smaller periods, i.e., different subsets that have varying durations from
one day to two weeks are created to examine if it is more relevant to consider the
dataset as a unique dataframe; alternatively, is it better to split in chunks due to
the several not monitored events (maintenance, racks substitution, meteorological
changes) that may have potentially modified the room temperature? (c) The effect
of time granularity of collected data (that is critical in optimizing the battery
lifetime of sensor nodes) is analyzed. (d) On the room temperature map, the
correlation of different sensors (which, considering the location of the sensors, they

can be representative of sources of heat and cold) is reported.

Thermal Study

This section analyzes the correlation between the different WSN sensors and
their placement in the datacenter room. The experimental setting consists of 14
wireless sensors distributed to cover each cold and hot aisles, subfloor, cages, and
CRAC. With this in mind, it could expect that the spatial proximity of the sensors
correlates with the sensor’s data. However, as we will discuss in this section, forced
airflow and physical barriers create heterogeneity in the sensors’ readings. The
statistical characteristics of the measurements: average, standard deviation, and
cross-correlation, are analyzed. These parameters are used to cluster the sensors
according to their measurements similarity and compare these results with the
spatial location of the sensors in the datacenter room and floorplan. The monitored
datacenter takes advantage of free-cooling; thus, its thermal system depends on the
computational load and the outdoor ambient temperature fluctuation and phases.

The figure 3.4 reports the average temperature for each sensor during the study
period. The x-axis is the sensor’s name, the left y-axis shows the mean temperature,
and the right y-axis shows the standard deviation. We can divide the sensors into
two groups based on their average temperature (hot-sensors {s5, s11, s12, s6, s3,
s7, s8} and cold-sensors {s10, s14, s13, s2, s4, s1, s9 }). The cold zones of the
room include the subfloor, inside of the cages, and cold aisle with an active subfloor.
The hot zones of the room consist of the top of the room and hot aisles. In the
center of the room, sensor s10, which is located in the subfloor under the cold aisle
of cluster A3 with an average temperature of 13.45oC is the coldest sensor. The
sensor s8 in the same aisle but in the top of the cluster with 27.88oC is the hottest
sensor. Sensor s9 measurements are proximate to the average temperature of the
room.

Figure 3.5 shows the normalized Euclidean distances (normalized on the max-
imum value) of sensors from all the CRAC units. The x-axis is the name of the
sensors, and the y-axis is the normalized distance. Sensor s10 in the center of the
room has the lowest distance from all the CRAC units, and s11, on average, is the
farthest sensor from the CRAC units.

The following matrix in figure 3.6 shows Pearson’s correlation coefficient be-
tween measured temperatures, which includes all the sensors and outdoor ambient
temperature. Ambient temperature is represented in the matrix by ”temp”. All
the data that are used for the study passed the statistical significance test.

By filtering out the correlation coefficient greater than or equal to 0.5 in
matrix Figure 3.6, the correlation coefficient graph (Figure 3.7) is generated, which
visualizes the correlation of measured temperatures by the different sensors. The
green arrows illustrate the direct correlation, and the blue ones show the inverse

s10 s14 s13 s2 s4 s1 s9 s5 s11 s12 s6 s3 s7 s8
Sensors

7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

Av
er

ag
e

Te
m

pe
ra

tu
re

 in
 o C Cold Part of Room Hot Part of Room

1

2

3

4

5

St
an

da
rd

 D
ev

ia
tio

n

mean, Left y-axis
std, Right y-axis

Figure 3.4: Average Temperature and Standard Deviation from 20-03-2018 to
17-05-2018.

s10 s14 s13 s2 s4 s1 s9 s5 s11 s12 s6 s3 s7 s8
Sensors

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

No
rm

al
ize

d
Eu

cli
de

an
 D

ist
an

ce
s

Mean distances from all the CRACs

Figure 3.5: Normalized Euclidean Distances of Sensors From all the CRAC Units.

�� ��� ��� ��� ��� ��� �� �� �� �� �� �	 �
 �� ���

��
��

�
��

�
��

�
��

�
��

�
��

��
��

��
��

�	
�

��
��

�

����� ����� ���	� ����� ������ ���� ������ ����� ����� ���� ����
� ���� ���
� ����

����� ���� ������ ���� ����� ����
 ���� ���
 ���� ����� ����� ���	 ����� ���	

����� ���� ���	 ���	� ���� ���	 ���� ����� ���� ����	� ���
 ����� ��� ����

���	� ������ ���	 ����� ���� ���� ����� �����	 ����
 ���� ������ ����	 ��	� �����

����� ���� ���	� ����� ���
 ����� ��	� ���� ���� ����	 ����� ���	 ���	� ����

������ ����� ���� ���� ���
 ������ ����� ������ ����� ���� ���� ����	 ����� �����

���� ����
 ���	 ���� ����� ������ �����	 ����
� ��� ����	 ���� �����

������ ���� ���� ����� ��	� ����� �����	 ���� ���
 ����
 ���� ����� ���� ���

����� ���
 ����� �����	 ���� ������ ���� ���� ������ ���
� ����� ���� ����

����� ���� ���� ����
 ���� ����� ����
� ���
 ���� ����� ��	� ���� ����� ����

���� ����� ����	� ���� ����	 ���� ��� ����
 ������ ����� ����	 ���
 ����� �����

����
� ����� ���
 ������ ����� ���� ����	 ���� ���
� ��	� ����	 ���� ���� ����

���� ���	 ����� ����	 ���	 ����	 ����� ����� ���� ���
 ���� ����� ����	

���
� ����� ��� ��	� ���	� ����� ���� ���� ���� ����� ����� ���� ����� ���
�

���� ���	 ���� ����� ���� ����� ����� ��� ���� ���� ����� ���� ����	 ���
�

����

����

���

���

���

Figure 3.6: Pearson’s Correlation Coefficient of Measured Temperatures.

correlation.

Figure 3.7: Datacenter Plot and Correlation Coefficient Graph of Sensors and
Outdoor Ambient Temperature. Each Sensor Is Identified by Its Corresponding
Number.

Figure 3.7 reports that there are four thermal zones in the room: in the subfloor,
in the left and right parts of the room, and in the vertical direction. Subfloor
sensors (s2, s9, s10, s1) do not correlate with each other except s1 and s9, which
have an inverse correlation. The room’s left side’s sensors correlate more with each
other than sensors of the right part of the room, and the same situation is valid
for the sensors of the right part of the room, which are more correlated with each
other. In the center of the room, the hottest sensor s8 and coldest s10 are in the
same aisle but with different heights. These sensors do not correlate; therefore,
there is a vertical thermal detachment.

Cold Sensors: generally, the subfloor, bottom of the cold aisle of clusters,
and inside the cage are the cold zones of the HPC room. As evident in figure 3.4,
sensors s2, s9, s1, s10, s14, s13, s4, which are located in specified parts of the room,
measure on average colder temperatures than other sensors.
Sensors, s14, and s13 are in the same cold aisle inside the cage, but they do not
strongly correlate with each other due to the following reasons. First, sensors s13
and s14 sense different sources of cold air. Sensor s13 is closer to the CRAC units
with the DFC system (CRAC+DFC), while s14 is adjacent to the CRAC units
without DFC. Second, the active subfloor creates multiple small air curtains. These
air curtains create thermal barriers in the horizontal (Y-axis) direction.

Sensor s10 is located in the subfloor in the center of the room with the lowest
normalized Euclidean distance (of 0.65) to all the CRAC units; therefore, it receives
cold air from the different CRAC units. With an average temperature of 13.45oC,
it is the coldest sensor in the room. Sensor s10 correlates with s13 (inside the
cage) and s4 (outside the cage). Sensors s2 and s13 are proximate to the same
CRAC+DFC units (CRAC5+DFC, CRAC6+DFC). Sensor s2 in the subfloor, on
average, measures 0.7oC higher temperature than s13, which is inside the cage.
This means that the inside cage can be colder than the subfloor. Sensor s13, which
is inside the cage, correlates with s10. Sensor s10 is located in the coldest part of
the room in the center and subfloor, receives the cold air of all CRAC units. The
correlation of s13 and s10 means that the inside of the cage receives the cold air of
all CRAC units. It is clear that sensor s2, which is close to the CRAC+DFC unit,
should perceive a higher temperature than s13, which measures the temperature of
the CRAC units with DFC and without DFC.

Sensor s4, on average, is located far from the heat sources. It is highly correlated
with different sensors (s2, s13, s3, s10); all of these sensors are in the left part of the
room. Sensor s9 approximately measures the average temperature of all sensors.

Hot Sensors: As mentioned before, the monitored room N hosts three clusters:
Marconi A1, A3, and Galileo. Marconi A3 consumes on average 483.47 KW of
electrical power, Marconi A1 of 434.30 KW , and Galileo of 68.00 KW during the
study period. Sensors s5, s11, s12, s6, s3, s7, s8 are in the hot part of the room.
Pairs of sensors (s3,s7), (s12,s6), and (s5,s11) have a comparable situation of the
viewpoint of location in the hot aisles of clusters. The pair (s3,s7) is between
A1 and A3 clusters that consume more electrical power than the Galileo, so they
experience hotter temperatures than the pair (s12,s6), which is between the A3 and
Galileo. On average, the pair (s5,s11) is colder than the other two pairs, as it is far
from A1 and A3 and closer to Galileo. Sensors of each pair have cross-correlate
except the s5, s11.

Sensors s8, s10 are in the cold aisle of A3 in different elevations. The cold
aisle of the A3 cluster is equipped with an active subfloor, and it does not have
a cage. Sensors s8 on top of racks and s10 in subfloor respectively perceive the
highest and lowest average temperature of 27.9oC and 13.45oC. Therefore, thermal
heterogeneity of the center of the room with, on average, 14.43oC thermal variation
is significant. Although these two sensors are close together, they do not correlate.
Sensor s10 measures the cold air of the CRAC units; meanwhile, sensor s8 perceives
cluster dissipated heat. Sensor s8 has an inverse correlation with the s9, which
means that when the temperature of the s8 increases, the temperature of s9
decreases. Since s8 is affected by the dissipated heat, the CRAC units are activated
when the dissipated heat at the top of cluster A3 increases. Activation of the
CRAC units reduces the temperature of the subfloor where s9 is placed. This is

the cause of the negative correlation between s8 and s9.
Negative Correlation: The following pairs of sensors show a negative cor-

relation: (s1,s9), (s1,s12), (s9, s8), and (s14, s7), i.e., the temperature of the one
sensor in the pair increases, while the other pair experiences a reduction in the
temperature. Sensor s1 is located in the subfloor, neither in front of the CRAC
nor under the active subfloor. It measures the lateral air of one CRAC unit; it
seems that this CRAC unit, which is close to the s1, has a different duty cycle than
the CRAC units close to the s9, so they have an inverse correlation. Sensors s1
and s9 are located in the subfloor. Therefore, they perceive more the temperature
of CRAC units. Sensors s12 and s8 are at the top of clusters, measuring the
clusters’ dissipated heat. Consequently, when the temperature of the room’s hot
part increases due to a rise in dissipated heat of clusters, CRAC units are activated
and reduce the temperature of nearby and cold parts of the room. This creates an
inverse correlation between the room’s hot zones and some parts of the cold zones.
The pair (s9, s8) that measures the temperature of the dissipated heat of clusters
and cold air of CRAC units have an inverse correlation. The same phenomenon is
valid for s7 and s14; s7 is in the hot part of cluster A1, and s14 is inside the cage,
which is the cold part of the same cluster.

As a summary of this analysis, we can conclude that in thermal modeling
and monitoring in a datacenter room, the air volume should be divided into zones
separated not only by hot, cold aisles and cages - which is expected - but as well as
by vertical airflow barriers generated by the active subfloor and RDHX. In addition,
the subfloor temperature cannot be assumed homogeneous.

Thermal and Power Consumption Study

This section investigated the impact of not monitored events (i.e., maintenance,
racks substitution, and meteorological changes that occurred during the study
period, which may have changed the room temperatures and powers dependencies)
by splitting the dataset into chunks of data. Then temporal granularity of the
data collection by the WSN is studied, which plays a significant role in battery
lifetime and dataset size. Temporal granularity has several consequences in different
steps, such as data communication and transmission, data storing, and processing.
Finally, correlations of the sensors with the power consumption of clusters are
analyzed.

Time Window for Correlation Coefficient This test analyzes the impact
of monitoring period duration on the correlation between the clusters’ power
consumption and the temperature (monitored through the wireless sensor network).
Indeed, during the two-month trial, several not monitored events, like maintenance,
racks substitution, and seasonal changes, happened and could have temporally
biased some sensor measurements. Thus, the two-months period is divided into

subsets, calling their length as Time Window (TW). In this analysis, several TWs,
ranging from 24 to 1400 hours are considered (all aligned at the 00:00:00 a.m.).
The set of TWs ({24h, 48h, ..., 1400h}) is named TWG. TDCTW represents the
Total Data Collection Time Window, which is the study period. Time Window

Numbers (TWN) is the number of subsets that it be obtained by ceil(
TDCTW

TW
) or

⌈TDCTW
TW
⌉. The data collection rate of clusters’ power consumption is lower than

thermal data, so to have the same granularity in the dataset for both types of
monitoring data, the upsampling of the clusters’ power consumption (by replication
of the same data) is employed. The power consumption and temperature data
are time-aligned, and there is no time lead or lag between the two types of data.
As early introduced, to analyze the impact of the length of the considered period,
w.r.t the relevance of the room temperature and the power consumption, the
correlation between all the possible pairs of sensors (temperature and power) for
any time windows is computed, i.e., for each pair and for each time window, a
correlation coefficient (CC) is computed. Among these values the mean value
(Mean Correlation Coefficient)(meanCC) is calculated.

Algorithm 1 identifies the TW values, which leads to a higher correlation
between the thermal sensors values and the cluster’s power consumption. It creates
a matrix in which rows are pairs, and columns are different Time Window Numbers
TWN. Then for each pair in different subsets, the Pearson correlation coefficient
and significance test are calculated. For example, for TW = 24 hours for one pair
(temperature sensor s1 and ”power A1 a”), it computes 49 Pearson correlation
coefficients and around half of this for TW = 48 and so on.

Next, as it is shown in Eq. 3.1 with the average for each element of row TWN,
the mean correlation coefficient vector is computed. Finally, the mean correlation
coefficient (meanCC) (Eq. 3.2) for each member of TWG is computed. Results are
illustrated in the bar-chart in Figure 3.8. The maximum mean CC=0.224 obtain
in TW of 216h, and it has no significant difference with CC=0.221 that we use all
the dataset as one time window. Generally, in this study, the CC for larger TW is
higher than the short TW.

cc1,1 cc1,2 cc1,3 . . . cc1,LTWN

cc2,1 cc2,2 cc2,3 . . . cc2,LTWN
...

...
. . .

...
cc84,1 cc84,2 cc84,3 . . . cc84,LTWN

 Maen−−−−→
axis=1

c1
c2
...
c84

 (3.1)

c1
c2
...
c84

 Mean−−−−→
axis=0

[
MeanCC

]
(3.2)

Algorithm 1 Time Window Algorithm

1: procedure Time Window
2: TWG← {24, 48, 72, 96, 120, 144, 168, 192, 216, 240, 264, 288, 312, 336, 1400}
3: for all TW on TWG do

4: LTWN← ⌈TDCTW

TW
⌉

5: for all Pairs do
6: for all TWN on{1, 2, 3, ...,LTWN} do
7: CCmatrix[Index of Pair ,TWN]← CC(Temp(SensorID,TWN), Pow(lineID,TWN))
8: SSTMask[Index of Pair ,TWN]← SST(Temp(SensorID,TWN), Pow(lineID,TWN))
9: end for
10: end for
11: CCmatrix← Hadamard or element-wise product of CCmatrix and SSTMask
12: MeanCCmatrix[Index of Pair , 1]← mean(CCmatrix[Index of Pair ,TWN], axis =

1)
13: MeanCC[Index of TW in TWG]← mean(MeanCCmatrix[Index of Pair , 1], axis =

0)
14: end for
15: end procedure

TW
=2

4h
TW

=4
8h

TW
=7

2h
TW

=9
6h

TW
=1

20
h

TW
=1

44
h

TW
=1

68
h

TW
=1

92
h

TW
=2

16
h

TW
=2

40
h

TW
=2

64
h

TW
=2

88
h

TW
=3

12
h

TW
=3

36
h

TW
=1

40
0h

0.10

0.12

0.14

0.16

0.18

0.20

0.22

Co
rre

la
tio

n
Co

ef
fic

ie
nt

Figure 3.8: Bar Chart Mean Correlation Coefficient (meanCC) of All Pairs in
Different Time Windows (TWs)

Data Aggregation/Reduction Several reasons, such as the monitoring issues,

a considerable volume of collected data, or even Big Data issues, different sampling
rates of different parameters that need to be aligned, can motivate data aggre-
gation or reduction. KairosDB (NoSQL time-series database) has different data
aggregation methods such as averaging, maximum, minimum, last, median [63].
This study has two types of data, temperatures, and powers. The temperature
has a finer granularity (120 samples per hour) than power (One sample per hour);
therefore, to granularity alignment of the temperature and power data, the number
of temperature samples per hour utilizing aggregation methods is reduced from 120
to 1 in this part of the study. (In the previous parts of the study with upsampling,
the granularity of two types of data is adjusted). There are many possibilities
for data aggregation from 120 to 1 per hour, e.g., using the last sample of each
hour or the average of the last 5 samples of each hour. For the aggregation of
the temperature data, the average of the last 1, 5, 10, 15, 30 minutes of each
hour and finally the average of all 120 samples for one hour are examined. For
example, figure 3.9 illustrate different correlation coefficients of ”s1” and ”A1 a”
in different TW with the different averaging periods for data reduction. It is
explicit that the different averaging period has no significant consequence on the
correlation coefficient results. So the data aggregation in the range of one hour
has no significant impact on data analysis. This result is because the average of
standard deviations (std) for each hour does not change more than 0.4 degrees
in the total data collection time window (TDCTW). Therefore, it is possible to
reduce the data collection rate of sensors from 120 to 1 sample per hour. This will
increase the battery lifetime without significant degradation in the quality of the
study. We selected the last-minute sample for further study.

Figure 3.10 reports the average Pearson’s correlation coefficient matrix of
different pairs of clusters power consumptions and temperature sensors through
TW=216h.

Cold Sensors: sensors s10, s2, s9, s1, s14, s13, s4, in the cold parts of the
room generally have an inverse correlation with power consumption, which means
that these parts are more affected by CRAC units than the direct effects of power
consumption. With an increase in power consumption, the temperature of the
hot part of the room increase, and consequently, CRAC units start, so the cold
zones of the room due to the CRAC unit’s activity experiences a reduction in the
temperature. Sensor s1 is an exception; it directly correlates with clusters A3. This
sensor also has a different pattern in correlation with other sensors that are studied
in the thermal study part 3.3.2.

Sensor s10 is located in the center of the room in the middle of cluster A3.
It shows a strong inverse correlation with the power consumption of cluster A3
and inversely correlates with the power consumption of A1; meanwhile, it does
not correlate with the power consumption of Galileo because of the low power

0 20 40 60 80 100
−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00
Time window i 12 hour -- Correlation Coefficientb of Pair = s1,A1a

1 min
5 min
10 min
15 min
30 min
60 min

0 10 20 30 40 50

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

Time window i 24 hour -- Correlation Coefficientb of Pair = s1,A1a
1 min
5 min
10 min
15 min
30 min
60 min

0 5 10 15 20 25
−0.4

−0.2

0.0

0.2

0.4

0.6
Time window i 48 hour -- Correlation Coefficientb of Pair = s1,A1a

1 min
5 min
10 min
15 min
30 min
60 min

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5

−0.4

−0.2

0.0

0.2

0.4

Time window i 72 hour -- Correlation Coefficientb of Pair = s1,A1a
1 min
5 min
10 min
15 min
30 min
60 min

0 2 4 6 8 10 12

−0.1

0.0

0.1

0.2

0.3

0.4

Time window i 96 hour -- Correlation Coefficientb of Pair = s1,A1a
1 min
5 min
10 min
15 min
30 min
60 min

0 2 4 6 8 10

0.0

0.1

0.2

0.3

Time window is 120 hours -- Correlation Coefficientb of Pair = s1,A1a
1 min
5 min
10 min
15 min
30 min
60 min

Figure 3.9: Correlation coefficients of ”sensor 1” and ”A1 a” at TW =
{12, 24, 48, 72, 96, 120}

s10 s2 s9 s1 s13 s14 s4 s3 s7 s12 s6 s5 s11 s8
Sensors

A1
a

A1
b

A3
a

A3
b

Ga
Gb

po
we

rs
-0.32 -0.035 0.045 -0.042 -0.36 -0.66 -0.14 0.54 0.66 0.2 0.33 0.024 -0.13 0.34

-0.32 -0.041 0.039 -0.04 -0.45 -0.4 -0.16 0.41 0.64 0.19 0.29 0.0083 -0.13 0.34

-0.49 -0.13 -0.12 0.15 -0.38 -0.15 -0.26 0.19 0.39 0.14 0.28 -0.0063 -0.091 0.7

-0.5 -0.12 -0.11 0.14 -0.39 -0.21 -0.24 0.19 0.41 0.14 0.28 -0.017 -0.086 0.59

0.083 -0.027 -0.27 0.097 0.023 -0.27 0.12 0.14 0.24 -0.025 0.39 0.1 0.13 0.5

0.069 -0.035 -0.24 0.077 0.017 -0.28 0.077 0.13 0.24 -0.0035 0.39 0.13 0.11 0.51
−0.50

−0.25

0.00

0.25

0.50

Figure 3.10: Correlation Coefficients Matrix.

consumption of this cluster. Although sensor s2 does not strongly correlate with
any of the clusters’ power dissipation, its negative correlation coefficient with the
A3 cluster is bigger than A1 due to the cage effect.

Sensor s9 has an inverse correlation with Galileo and A3 clusters; it more
inversely correlates with the Galileo cluster than A3 due to the distance. For sensor
s1, A3 is farther than the Galileo cluster, but its CC with A3 is slightly higher
than Galileo; it can be because of the high average power consumption of the A3
and the effect of the cage (Galileo has a cage). Therefore, the effect of the cage
and average power consumption can be important than the distance.

Sensors s13 and s14 are inside the cage of cluster A1. They have an inverse
correlation with the power consumption of the A1 cluster, particularly the s14 with
CC=-0.5 correlates with the power consumption of the A1 cluster. Sensor s14 lowly
inversely correlates with the A3 and Galileo clusters. Although the sensor s13 is
inside the cage of the A1 cluster, it shows the same inverse correlation with the
power consumed by the A1 and A3 clusters. Sensor s13 is close to CRAC5+DFC
and CRAC6+DFC, so it measures the output of these CRAC units more than heat
generated by the A1 cluster. These CRAC units are activated based on the heat
generated by clusters A3 and A1 due to their proximity. In clusters with a cage,
the sensors located in the hot aisle (in the top of racks) highly correlate with the
power consumption of these clusters. Conversely, the sensors inside the cage show
an inverse correlation with the power consumption of the clusters.

Sensor s4, located in the cold zone of the room, has a low inverse correlation
with the power consumption of clusters of the center and left side of the room. It
is more affected by all the cold sources, so it has an inverse CC with the power
consumption.

Hot Sensors: Sensors s5, s11, s12, s6, s3, s7, s8 are in the hot part of the
room. Sensors s3 and s7 are between cluster A1 and A3 considering that they
are very close to the hot part of cluster A1; furthermore, cluster A3 have RDHX;
therefore, they have a very high correlation with the power consumption of cluster
A1 around 0.6, and with CC=0.2, 0.4, they correlate with the cluster A3. Due
to the low power consumption of the Galileo cluster and distance and the cage of
Galileo, they have a low correlation with this cluster. The sensor s7 is far from s3
from the sources of cold air, so it has a higher CC than s3.

The sensors s6 has almost the same CC with all clusters. It is more affected
by the heat source than the cold. Because of the closeness, it has a bit high CC
with the Gailelo cluster than others. Sensor s12 correlates with the A3 and A1
clusters. The sensor s5 lowly correlates to the Galileo cluster, and s11 has a low
direct correlation with Galileo and inverse with two other clusters.

Sensor s8 in the center of the room on top of the A3 cluster has a high correlation
with A3 and next Galileo and A1. It directly correlates with all of the three clusters;
meanwhile, the effect of distance is evident in its CC results.

3.4 Thermal and Power Characteristic of the

CINECA HPC Room F

This section investigates thermal and power consumption characteristics of HPC
room F of the CINECA datacenter, which hosts the Marconi A2 Tier-0 cluster.
Marconi A2 employed Lenovo NeXtScale platform, and it is based on 68-cores
Intel Xeon Phi7250 (KnightLandings (KNL)) at 1.4 GHz, with many-core architec-
ture (Intel OmniPath Cluster), provided about 250 thousand cores(68 cores/node,
244.800 cores in total) with the computational power of around 11Pflop/s. Each
node has 16 GB/node MCDRAM + 96 GB/node DDR4 [12]. The CINECA
datacenter features a holistic monitoring framework, namely ExaMon [7], which
aggregates a wide set of telemetry data.

3.4.1 Methodology

Figure 3.11 depicts the layout of the HPC Marconi room F in CINECA. In Marconi
room F, 46+1 racks (one of them is a rack of switches) are located in three rows.
Each rack comprises 18 chassis in different heights, and each chassis has four
computing nodes. Chassis one (C1) is in the bottom, and chassis 18 (C18) is the
highest one. There are six computer room air conditioning (CRAC) units that
support the two cold aisles. Racks’ RDHXs are in the hot aisle. For each node
and its associated components, such as voltage regulators and fans, the Intelligent
Platform Management Interface (IPMI) provides remote telemetry access to the

built-in sensors [13]. The ExaMon monitoring system collects sensor data with
the IPMI interface with 20 seconds sampling rate [7]. ExaMon monitored data is
stored in its internal KairosDB database as time traces and remotely accessible
through RESTfull APIs [7].

This section’s analysis focuses on the following metrics: (i) inlet temperature
(BB Inlet Temp) which senses the temperature of a node close to the cold aisle;
(ii) outlet temperature (Exit Air Temp), which senses the temperature of a node
close to the RDHX and the hot corridor. (iii) The node power, which is derived
from the power measured for the two power supplies of each chassis (namely
PS1 Input Power and PS2 Input Power metrics). The power consumption and
workload are related, which is not the focus of this section. All these metrics are
available in ExaMon. This study investigates the spatial and temporal heterogeneity
during production and thermal hazards for the period from 2019-06-01 00:00:00 to
2019-07-01 00:00:00 over the 3312 Marconi A2 nodes. The following methodology is
employed to conduct the study. The data by using the RESTfull API provided by
ExaMon is extracted from KairosDB, and for data analysis and plots, the Python
codes are utilized [7]. Table 3.3 summarizes the characteristics of the dataset used
in this study, and the boxplot in Figure 3.12 shows the shape of the distribution of
inlet and outlet temperatures and power consumption of nodes in June 2019. All
the collected sensors data during June 2019 are utilized to generate these boxplots.
As it is noticed, there is no overlap in the interquartile range between the inlet and
outlet temperatures.

Name of Parameter Value
Number of Racks 46

Number of Chassis Per Rack 18
Number of Nodes 3312
Number of Metrics 42 IPMI with KNL tag

Sampling Rate 20 Second

Period of Study
from 2019-06-01 00:00:00
to 2019-07-01 00:00:00

Thermal Emergency 2019-06-28

Table 3.3: Characteristics of Dataset

3.4.2 Experimental Results

To study the thermal characteristic of the Marconi A2 KNL room F the spatial
and temporal aspects of temperature and power consumption of nodes in the

CRAC3+DFCCRAC2+DFCCRAC1+DFC

C
R

A
C

2
+D

FC
C

R
A

C
5

C
R

A
C

6

Cold Aisle

Cold Aisle

Hot Aisle

Hot Aisle

Room F
Marconi A2

Direct Free Cooling (DFC) Direct Free Cooling (DFC)

Rack
RDHX

Management
Nodes

RDHX

Legend

(a) Marconi A2 (KNL) Room F in CINECA Datacenter.

(b) Schematic of One Rack of Marconi A2.

Figure 3.11: Racks Arrangements of Marconi A2 (KNL) Room F in CINECA
Datacenter.

room during June 2019 are investigated. This study contributes the 3D view of
the thermal and power characteristics of the room by utilizing the heat-map of
distribution of the power consumption and temperature of nodes, and also, different
chassis-level analysis that represents the power consumption and thermal variation
in different height of the room.

Subsection 3.4.2 analyzes the static spatial gradients present in the computing
room. The analysis is conducted by averaging each metric for the entire month
and studying their correlation and spatial variation. Differently, subsection 3.4.2
analyzes the temporal variations by computing the average and the min-max
variation on a per-day basis for the entire computing room. Finally, subsection
3.4.2 focuses on the day for which the computing room has faced a rare cooling
hazard.

Figure 3.12: Boxplot of Inlet and Outlet Temperatures and Power Consumption of
Computing Nodes in June 2019.

Spatial Study

Figure 3.13 shows the boxplot of inlet and outlet temperatures. In the x-axis, the
chassis number: higher vertical position is represented by bigger chassis number,
being C1 the bottom one, and C18 the top chassis in a rack. The y-axis shows the
temperature in C. For each chassis number, the temperature of nodes located in

the different racks in the room still in the same chassis number and, consequently,
in the same height are collected.

For each chassis number, the boxplot generated among all the nodes belonging
to a given chassis number in the room (4 nodes per chassis× 46racks) and all the
samples (23.8M samples) collected in June 2019. Figure 3.14 reports the boxplot of
power consumption of chassis in Watt. This plot is generated in the same approach
as Figure 3.13.

C1
Bottom Chassis

C2 C3 C4 C5 C6 C7 C8 C9
Center Chassis

C10 C11 C12 C13 C14 C15 C16 C17 C18
Top Chassis

20

25

30

35

40

45

50

55

60

Te
m
pe

ra
tu
re
 [

∘
C]

Inlet Temp∘
Outlet Temp∘

Figure 3.13: Boxplot of Inlet and Outlet Temperature of Computing Nodes in
Different Chassis in June 2019.

Figure 3.13 demonstrates the presence of a vertical spatial thermal gradient.
The nodes hosted in the chassis-2 of racks, on average, have a minimum inlet and
outlet air temperature; therefore, these nodes, on average, are the coldest nodes in
the room (∼ 6oC colder than chassis-18 ones).

Figure 3.15 illustrates the distribution of fans speed in different chassis-numbers.
Measured data confirm that fans of nodes of chassis-2 work with lower speed/RPM
and consume 15.8 Watt less (∼ 6%) than nodes of chassis-18.

Then the thermal variation in different chassis-level is studied by averaging for
the entire June the daily variation for the different analyzed metrics for different
chassis levels. Figure 3.16 reports these values and indicates that chassis-2 endured
maximum thermal variation, and it has experienced on average 7.3oC thermal
variations in inlet temperature and 12.1oC in the outlet. The plot shows that the

C1
Bottom Chassis

C2 C3 C4 C5 C6 C7 C8 C9
Center Chassis

C10 C11 C12 C13 C14 C15 C16 C17 C18
Top Chassis

240

250

260

270

280

290

300

Po
we

r C
on

su
m
pt
io
n
[W

at
t]

Figure 3.14: Boxplot of Power Consumption of Computing Nodes in Different
Chassis in June 2019.

C1
Bottom Chassis

C2 C3 C4 C5 C6 C7 C8 C9
Center Chassis

C10 C11 C12 C13 C14 C15 C16 C17 C18
Top Chassis

21000

21500

22000

22500

23000

23500

24000

24500

Fa
n

Sp
ee

d
[R

PM
]

Figure 3.15: Boxplot of Fan Speed (RPM) of Computing Nodes in Different Chassis
in June 2019.

thermal variation drops vertically and is more severe for the inlet temperature.
This effect can be explained by the fact that the inlet temperature of the lower
chassis is closer to the CRAC outlet air, which, due to free-cooling, follows the
external ambient temperature and daily variations. The inlet air temperature for
nodes in the higher chassis is instead affected also by the rack dissipated heat as
the effect of heat recirculation. The lower variation for the outlet air w.r.t. the
inlet air can be explained by the larger fan speed of the nodes in the higher chassis.

C1
 Bo om Chassis

C2 C3 C4 C5 C6 C7 C8 C9
 Cen er Chassis

C10 C11 C12 C13 C14 C15 C16 C17 C18
 Top Chassis

4

6

8

10

12

Te
m

pe
ra

 u
re

 V
ar

ia
 io

n
(∘

C∘

240

245

250

255

260

265

Po
we

r V
ar

ia
 io

n
W

a

Ou le Tempera ure Varia ion
Inle Tempera ure Varia ion
Power Consump ion Varia ion

Figure 3.16: Average Inlet and Outlet Temperature Variation and Power Consump-
tion Variation of Computing Nodes in Chassis in June 2019.

Two heat-map of room F (figure 3.17) illustrate the distribution of the average
inlet temperature in different racks at two different heights (bottom and top of
the racks) of the room in June. The bar-color shows the temperate in C degree.
The top plot in Figure 3.17 describes the inlet thermal status of nodes at the
top of the room (chassis-18), and the bottom plot in the same figure shows inlet
thermal status at the bottom of the room (chassis-2). The center row of racks
experiences a colder temperature for both the plots. On average, in June, the
bottom nodes of each rack (chassis-2) had a maximum of 34.35oC and a minimum
of 25.46oC as inlet air temperature for the top nodes of each rack (chassis-18) that
was 42.1oC, and 31.3oC, respectively. Moreover, for the same height just by moving
in a horizontal/plane direction for the top of the racks (chassis-18 height), the room
had 10.8oC of thermal variation, which is notable inlet temperature heterogeneity.
At the bottom of the racks (chassis-2 height), the room had 2oC lower thermal
variation. It must also be noted that the two horizontal sections of the average
room temperature show different hotspots locations. This result suggests that

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16
Room F - Chassis 02

25

30

35

40

45

50

(a) Chassis-2.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16
Room F - Chassis 18

25

30

35

40

45

50

(b) Chassis-18.

Figure 3.17: Average Inlet Heat Map of Marconi A2 KNL Room F on June 2019.

the horizontal heat distribution varies vertically in the room. This effect poses
challenges in proactive room-level thermal management, as all the 3D thermal
maps should be considered for optimizations.

Figure 3.18 reports the average power consumption of different racks in the room
in June. The bar-color shows electrical power in KWatt. In the computing room, a
rack’s maximum average power consumption was 20.4 KWatt, the minimum of 14.0
KWatt with a standard deviation of 1.8 KWatt. The power consumption correlated
to the inlet temperature with a correlation coefficient (CC) equal to 0.68. The
outlet temperature correlated with the inlet temperature with CC=0.91. Finally,
the outlet temperature correlated with the power consumption with CC=0.88.
We can conclude that there is an intertwined dependency between node’s power
consumption, inlet temperature, and outlet temperature, which can be exploited
for optimizing the room cooling and saving cooling energy.

Temporal Study

This subsection analyzes the temporal variations in the heat dissipation of the
datacenter room.

Figure 3.19 shows in the x-axis the days of June 2019, and the y-axis reports
the average inlet and outlet temperature of nodes in the room for each day in C
degree. Each reported value corresponds to a day and is computed as the average
among all the nodes in the room (4 nodes per chassis x 18 chassis x 46 racks) and
all the samples in a day (3 samples per minutes x 1440 minutes per day).

From the plot, we can notice that all the reported metrics were relatively
constant for all the days of June except the 28th, which had a thermal capacity

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

12

14

16

18

20

22

Figure 3.18: Average Power Consumption [KWatt] of Racks of Marconi A2 KNL
Room F in June 2019.

failure. In addition, both the outlet and inlet temperature daily variation follows
the average node power consumption. It must be noted that even if during
the thermal emergency the outlet and inlet temperature increased due to the
compromised RDHX cooling capacity, their average value in the day is lower due to
the counteracting action taken by the system administrators that reduced the room
power consumption as we will see in the following subsection. Indeed, the node
average power consumption was 280 Watt on the 11th of June and 183 Watt on the
28th of June. Although with around 100 Watt reduction in the power consumption
of each node, the inlet and outlet temperatures of nodes decreased, its thermal
variation dramatically raised (Figure 3.20).

Measurement reveals that nodes in the thermal emergency day, on average, had
14.7oC of thermal fluctuations in the inlet and 23.7oC in the outlet temperatures. It
must be noted that during regular days, the average thermal fluctuation (computed
as the average of the daily min-max variation) is lower for the inlet temperature
than the outlet temperature.

Thermal Emergency

This section analyzes the data center room’s heat variation during the thermal
emergency day (28th of June 2019). Figure 3.21 shows in x-axis time and left, and

20
19
-0
6-
01

20
19
-0
6-
02

20
19
-0
6-
03

20
19
-0
6-
04

20
19
-0
6-
05

20
19
-0
6-
06

20
19
-0
6-
07

20
19
-0
6-
08

20
19
-0
6-
09

20
19
-0
6-
10

20
19
-0
6-
11

20
19
-0
6-
12

20
19
-0
6-
13

20
19
-0
6-
14

20
19
-0
6-
15

20
19
-0
6-
16

20
19
-0
6-
17

20
19
-0
6-
18

20
19
-0
6-
19

20
19
-0
6-
20

20
19
-0
6-
21

20
19
-0
6-
22

20
19
-0
6-
23

20
19
-0
6-
24

20
19
-0
6-
25

20
19
-0
6-
26

20
19
-0
6-
27

20
19
-0
6-
28

20
19
-0
6-
29

20
19
-0
6-
30

30

32

34

36

38

40

42

44

Te
m
pe
ra
tu
re
 (
∘
C∘

200

220

240

260

280

Po
 e
r W

at
t

Outlet Temperature
Inlet Temperature
Po er Consumption

Figure 3.19: Average Inlet and Outlet Temperature and Power Consumption of
Computing Nodes in Different Days of June 2019.

20
19

-0
6-
01

20
19

-0
6-
02

20
19

-0
6-
03

20
19

-0
6-
04

20
19

-0
6-
05

20
19

-0
6-
06

20
19

-0
6-
07

20
19

-0
6-
08

20
19

-0
6-
09

20
19

-0
6-
10

20
19

-0
6-
11

20
19

-0
6-
12

20
19

-0
6-
13

20
19

-0
6-
14

20
19

-0
6-
15

20
19

-0
6-
16

20
19

-0
6-
17

20
19

-0
6-
18

20
19

-0
6-
19

20
19

-0
6-
20

20
19

-0
6-
21

20
19

-0
6-
22

20
19

-0
6-
23

20
19

-0
6-
24

20
19

-0
6-
25

20
19

-0
6-
26

20
19

-0
6-
27

20
19

-0
6-
28

20
19

-0
6-
29

20
19

-0
6-
30

5

10

15

20

Te
m
pe
ra
tu
re
 V
ar
ia
tio

n
(∘
C∘

220

240

260

280

300

320

340

360

Po
we

r V
ar
ia
tio

n
W
at
t

O tlet Temperat re Variation
Inlet Temperat re Variation
Power Cons mption Variation

Figure 3.20: Average Inlet and Outlet Temperature Variation and Power Consump-
tion Variation of Computing Nodes in Different Days of June 2019.

right y-axis respectively shows the temperature in C degree and power consumption
in Watt. Figure 3.21 reports the inlet, outlet temperatures, and power consumption
of a node during the thermal hazard day, and as it can be seen, the thermal hazard
starts after 16:00 o’clock, then it reaches its’ peak around 17:20 o’clock. In this
period, the power consumption decreased to zero, which means the computing
nodes were turned off for a while, so there is missing data for the outlet temperature.
Therefore the data of five snapshots in time correspond to before, during, and
after the thermal emergency were extracted. The 10:00, 12:00, and 16:00 o’clock
snapshots correspond to the node’s condition before the peak of thermal emergency.
The 17:20 and 19:00 o’clock snapshots provide information for the peak and after
the peak of the thermal emergency. Finally, the 21:00 o’clock snapshot corresponds
to the recovery after the thermal emergency.

Figure 3.22 shows in the x-axis the chassis number and in the y-axis the inlet
temperate in C degree. As can be noted from Figure 3.22, although generally inlet
temperature increase with height, the thermal pattern of chassis in the thermal
emergency period is quite different from the one during the normal conditions.
Around the hazard at 17:20 and 19:00, (i) the inlet temperature increases of ∼ 5oC
(ii) the hotspot from chassis-18 moved to the chassis-17 and 15 also, (iii) the global
minimum for temperature was not on the chassis-2, and (iv) the chassis-1 and 4
were colder than the chassis-2. The outlet temperature is reported in figure 3.23,
which shows in the x-axis the chassis number and in the y-axis the outlet temperate
in C degree. We can notice that the outlet temperature was colder during thermal
hazard than during a typical day. This outlet temperature reduction was more
prominent for the higher chassis than the lower one. For example, chassis-15 faced
a 10oC temperature reduction.

An explanation of this effect can be found in Figure 3.24, which provides
the average power consumption for the nodes in different chassis during the five
time-snapshot examined for the thermal emergency day. The x-axis of Figure 3.24
shows the chassis number, and the y-axis shows the average power consumption in
Watt. We find that the reduction in outlet temperature correlates with a sharp
decrease in power consumption from 270 Watt to 6 Watt, as is evident in Figure
3.24. Moreover, after the thermal emergency at 21:00 o’clock, the average node
power has been reduced to only 150 Watt. This power reduction was due to the
machine administrator intervention, which initially switched off the nodes (17:20)
and then started to bring up the nodes gradually.

To finalize the study of the thermal emergency day in Figure 3.25 we report
two heat-map plots of Marconi A2 room F that show the distribution of the inlet
temperature in different racks at two different heights (bottom and top of the
racks) of the room at 17:20 on the 28th of June 2019. The bar-colour shows the
temperature in C degree. From the figure, we can notice that the center row is

06-28 00 06-28 03 06-28 06 06-28 09 06-28 12 06-28 15 06-28 18 06-28 21 06-29 00
Date Time (Month-Day Hou)

20.0

22.5

25.0

27.5

30.0

32.5

35.0

37.5

Te
m

pe
 a

tu
 e

 (
∘
∘)

Inlet Tempe atu e
Outlet Tempe atu e
Powe ∘onsumption

0

50

100

150

200

250

Po
we

 W
at

t

Figure 3.21: Inlet, Outlet Temperature and Power Consumption of a Computing
Node on 28 June 2019 The Day of Thermal Emergency.

C1
 Bottom Chassis

C2 C3 C4 C5 C6 C7 C8 C9
 Center Chassis

C10 C11 C12 C13 C14 C15 C16 C17 C18
 Top Chassis

28

30

32

34

36

38

40

Te
m
pe

ra
tu
re
 (

∘
C∘

Inlet Temp 10:00
Inlet Temp 12:00
Inlet Temp 16:00
INlet Temp 17:20
Inlet Temp 19:00
Inlet Temp 21:00

Figure 3.22: Average Inlet Temperature of Computing Nodes in Different Chassis
in Different Time Instances on 28 June 2019 The Day of Thermal Emergency.

C1
 Bottom Chassis

C2 C3 C4 C5 C6 C7 C8 C9
 Center Chassis

C10 C11 C12 C13 C14 C15 C16 C17 C18
 Top Chassis

34

36

38

40

42

44

46
Te
m
pe
ra
tu
re
 (

C∘

Outlet Temp 10:00
Outlet Temp 12:00
Outlet Temp 16:00
Outlet Temp 17:20
Outlet Temp 19:00
Outlet Temp 21:00

Figure 3.23: Average Outlet Temperature of Computing Nodes in Different Chassis
in Different Time Instances on 28 June 2019 The Day of Thermal Emergency.

C1
 Bottom Chassis

C2 C3 C4 C5 C6 C7 C8 C9
 Center Chassis

C10 C11 C12 C13 C14 C15 C16 C17 C18
 Top Chassis

50

100

150

200

250

Po
we

r W
at
t

Power Consumption 10:00
Power Consumption 12:00
Power Consumption 16:00
Power Consumption 17:20
Power Consumption 19:00
Power Consumption 21:00

Figure 3.24: Average Power Consumption of Computing Nodes in Different Chassis
in Different Time Instances on 28 June 2019 The Day of Thermal Emergency.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

25

30

35

40

45

50

(a) Chassis-2.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

25

30

35

40

45

50

(b) Chassis-18.

Figure 3.25: Heatmap of Marconi A2 KNL Room F on 28 June 2019 at 17:20 The
Day of Thermal Emergency.

almost always colder than others like the normal. At 17:20, the bottom nodes of
each rack (chassis-2) had a maximum of 37oC and a minimum of 30oC as inlet air
temperature for the top nodes of each rack (chassis-18) that was 43oC, and 36oC
respectively. Moreover, for the same height just by moving in a horizontal/plane
direction for the top of the racks (chassis-18 height), the room had 7oC of thermal
variation, which is lower than the normal condition 10.8oC (Figure 3.17) and also
in the bottom we have the same amount of variation 7oC. Therefore the thermal
heterogeneity of the room was reduced.

3.5 Summary

This chapter studies the thermal and power consumption characteristics of the two
HPC rooms in the CINECA datacenter.

Considering the HPC Room N, which hosts three HPC clusters: the data
collected by a WSN monitoring system in the HPC facility, which tracks the
room temperature, are analyzed. The correlation between the different measured
temperatures is analyzed and find that there are four thermal zones in the room:
(a) Subfloor, which is a cold area. (b) The left and (c) right parts of the room that
are separated by the RDHX. In the (d) vertical direction, we found that there is not
a strong correlation between the top and bottom in the center of the HPC room,
and the center of the room has high thermal variation. Data analysis proves that
we can reduce data collection and transmission rates of two orders of magnitude.
Therefore, sensors consume two times less power. With this reduction in the data
collection, we need a hundred times fewer data storage capacity, and, consequently,

for data processing, it needs lower computing resources. This study can be used
as a guideline for sensor placement. Finally, we can sum up; liquid cooling and
cage divide the room into the different thermal zones; meanwhile, CRAC units,
RDHX, and generated heat by servers create a complex thermal system. Using
the internal temperature sensors and onboard sensors like IPMI combined with
our WSN telemetry system, we can upgrade our system and enhance the study’s
preciseness. We would highlight the difficulties of doing a more precise analysis
with the current WSN and then suggesting to combine it with IPMI.

Considering the HPC Room F, which hosts the Marconi A2 HPC cluster, the
room’s spatial and thermal heat dissipation characteristics are analyzed. The study
revealed that nodes hosted in the top chassis of racks have worse thermal conditions
than bottom nodes. This directly impacts the average power consumption of the
nodes, which is higher for the top nodes. These nodes can consume up to 6% more
power due to a higher fan speed than bottom nodes. The study of the thermal map
revealed that the center row of racks in the Marconi A2 room F is colder than the
other two rows; overall, this was valid for normal and thermal hazard conditions.
The hotspot varies vertically during the thermal emergency condition. We can
conclude that the study of the spatial and thermal heat dissipation characteristics
revealed significant non-idealities and heterogeneity, which, if modeled, can be
leveraged by thermal-aware job-scheduler and room-level power management run-
times.

Chapter 4

Detection and Prediction of
Thermal Emergency

4.1 Overview

The ICT sector’s total electricity consumption is expected to reach 20% of the
world-wide demand by 2030, with data centers expected to account for one-third
of that [64]. Cooling is a high cost item for datacenter operation. The power-
usage efficiency ratio (PUE) expresses the additional power required by the IT
for removing the heat produced by the IT power consumption. While air-cooled
datacenters easily reach PUE up to 2 [64], advances in cooling technologies like
direct-liquid, hot water, and free-cooling can reduce it close to almost 1 [65]. In
2016, Google announced a PUE of 1.12 [23], while in 2018, NREL achieved the
world-record PUE of 1.036 by leveraging thermosyphon technology [65]. A higher
than nominal coolant temperature is required to leverage free-cooling in temperate
regions [32, 66], which increases the risks of thermal runaway. In the scientific
computing sector, in Europe, a EuroHPC pre-exascale system costs on average
∼600K€ per day1. Thus each day on which the supercomputer causes to the
European taxpayer a loss of ∼600k€. Whereas in the business datacenter sector,
in 2016, an Amazon.com web service shortage would have cost, on average, 15M$
of revenue lost [67].

A thermal hazard is a dramatic increase in node temperature, which can
be triggered by i) failures in the cooling equipment (i.e. Computer Room Air
Conditioning) or ii) failures in the monitoring and controlling of the cooling system;
this can lead to the outage of the datacenter, with severe societal and business

1The EuroHPC program has invested ∼650M€ in CAPEX ad OPEX for the three procured
pre-exascale systems with an estimated daily average cost of ∼600k€ for a supercomputer -
https://www.etp4hpc.eu/euexascale.html .

55

losses. Detecting thermal hazards in time is of extreme importance to avoid IT
and facility equipment damage. Therefore, holistic monitoring systems are in place
to monitor and visualize the datacenter state over time [7].

At the same time, progress in Deep Learning (DL) has enabled techniques
for training models on large-scale time-series data. A recent DL architecture
for detection of patterns in time series is the Temporal Convolutional Network
(TCN) [68], which has proved able to outperform Long Short-Term Memory (LSTM)
nets [69]. As such, TCNs are good candidates to perform prediction of thermal
hazards, if a large data set of thermal events is available. For these reasons I
choose a TCN model for our work. TCNs use dilated causal 1D-convolutions inside
residual blocks. For sequence-to-sequence modeling, they can map the input series
to an output with the same length. Since our TCN is a probability predictor, I
equipped it with a block of dense layers at the end.

In this chapter, after an overview, state of the art, and background setup i)
HPC room, thermal distribution during thermal hazards in a real Tier-0 datacenter
is studied; under these hazards conditions, I found regularity across many nodes
with a significant percentage of them having an inlet temperature above the 95%
quantile. Next ii) a rule-based statistical approach is proposed to detect thermal
hazards for an HPC room. After that iii) different machine and deep learning
models (SVMs, SGD-classifier, LSTM, and TCN) in predicting the thermal hazard
events 6 hours before they happen are investigated, which would give ample time
for taking proactive countermeasures. Based on a set of experiments, I identify
an optimal TCN achieving an F1-score of 0.98 in the hazard prediction for a
randomly sampled. Then iv) different methods and tools like; samples overlap
canceling, a method for dealing with an imbalanced dataset, etc., are introduced
or examined. v) Causality is enforced between the training and test dataset to
enable this framework’s practical and realistic implementation in an HPC system,
which leads to significant performance degradation. Then vi) to improve the model
performance with more than 10 sets of experiments, different TCN architectures
and data flows are investigated. Finally vii), new approaches for defining the
thresholds (used in the rule-based statistical thermal hazard labeling method) are
introduced, and the TCN model performance for new sets of labels is evaluated.
And at the end chapter is concluded with a summary of the chapter and motivation
for the future chapter.

4.2 State of the Art

In the SoA, thermal hazards have been studied with different methodologies. [70]
proposed to use simulators. [71,72] proposed Machine Learning (ML) approaches,
[73] proposed mathematical models, and finally, [74] proposed to use sensors with a

computer model to create the room’s heat map or thermal evolution model. While
the simulator is hard to tune to the real environment, [71] used an Artificial neural
network (ANN) model trained with offline simulation data of Computational Fluid
Dynamics (CFD). Compared to the CFD, the ANN model’s fast response time is
suitable for an online predictor. To the best of our knowledge, no one has leveraged
the large data available from holistic monitoring systems to study the statistical
thermal hazard distribution, or proposed a data-driven Big Data (BD) and DL
model for predicting thermal hazards.

4.3 Background Setup

Our study focuses on Marconi-A2 (KNL), the largest partition of the Tier-0 cluster
Marconi at the CINECA datacenter, where it was hosted in the Marconi KNL Room
(Figure 4.6, bottom-left). In this room Marconi-A2 was composed of 3312 nodes with
one 68-cores Intel Xeon Phi 7250 CPU Knights Landing (KNL) running at 1.4GHz.
Nodes had a 16GB/node MCDRAM and a 96GB/node DDR4. The internal
network was Intel OmniPath Architecture 2:1. The cluster’s peak performance was
11PFlop/s [5].

Marconi KNL Room hosted 46 racks, plus 1 rack of switches, arranged in 3
rows; each rack had 18 stacked chassis, each with 4 nodes, totaling 3312 compute
nodes. All racks had Rear Door Heat eXchangers. The room’s 2 hot aisles, and 2
cold aisles were supported by 6 Computer Room Air Conditioning units.

CINECA runs a holistic monitoring framework, called EXAscale MONitoring
(ExaMon) [7], scalable and capable of high-rate HPC telemetry from a wide
range of heterogeneous sensors and data sources. For each cluster node and
associated components, such as voltage regulators and fans, the Intelligent Platform
Management Interface (IPMI) provides remote telemetry access to the built-in
sensors [75]. ExaMon collects sensor data via IPMI at sampling interval 20 s [7]
via an MQTT broker, and stores them using KairosDB, a specialized time-series
database built on Cassandra (a NoSQL database management system), remotely
accessible via RESTful APIs.

4.4 Thermal Hazard Prediction Methodology

In this section, a rule-based statistical tool for thermal hazard detection is introduced
based on the statistical analysis of two real reported thermal emergencies. This
tool is adopted to generate ground-truth labels of the HPC room for the whole year
2019. After some preliminary definitions and analysis related to the dataset, then
a framework for thermal hazard prediction is suggested, which encompasses data

query and preprocessing, model training, and final model inference, which provides
the prediction. Finally, preliminary experiments utilizing classical machine learning
and deep learning tools empirically show that TCN is the best model as a brain of
the framework.

4.4.1 Thermal Hazard Analysis and Labels Generation

In this section, a rule-based statistical tool for thermal hazard detection is introduced
based on the statistical analysis of two real reported thermal emergencies. This tool
is adopted to generate ground-truth labels of the HPC room for the whole year 2019.
Based on the study in [75], CINECA Marconi KNL room had two known physical-
thermal-hazard events in 2019: one on 28th June (peak from 16:00 to 19:00), and
one on 1st July (peak from 14:30 to 17:00). In this chapter, physical-thermal-hazard
refers to these two recorded failures of the cooling system. The distribution of
temperatures during these two peaks to compare the hazard distribution with the
non-hazard distribution is analyzed: the aim is to find indicators of the thermal
hazards in the temperature data.

As a non-hazard distribution, we use the temperatures of the nodes in June
and July, and downsampled to 1 Sample/minute: this yields ∼ 88k samples, large
enough to be representative of the ordinary temperature distribution. In this
study, two temperature metrics from ExaMon are selected: the inlet temperature
BB Inlet Temp and the outlet temperature Exit Air Temp. These are the metrics
most related to room temperature and were taken for every computing node.

Figure 4.1-top reports the inlet temperature distribution of one node for the
three cases: non-hazard, 28th June hazard, and 1st July hazard. The dashed black
line is the quantile 0.95 of the node’s non-hazard distribution: as it is evident,
the quantile 0.95 is a threshold that separates well the non-hazard and hazard
temperatures. Figure 4.1-bottom reports the same information for the outlet
temperature: hazard and non-hazard distributions overlap much more compared to
inlet temperature, making it impossible to discriminate by thresholding on outlet
temperature. We inspected some randomly selected nodes with this approach. We
determined that the single-node quantile 0.95 of the non-hazard inlet temperature
is a good parameter to discriminate between hazard and non-hazard.

Node-threshold (NT)

Based on the characterization of thermal hazards described above, this study
introduces two approaches to define node-threshold to indicate that one node in
one timestamp is in thermal stress.
1.Cooling-aware: node-threshold defined for each node as the 0.95 quantile of its
inlet temperature distribution over the entire dataset (which covers the whole 2019

0.25

0.20

0.15

0.10

0.05

0.0

D
en

si
ty

[1
/

C
]

Non-Hazard 28 th June Hazard 1st July Hazard

INLET TEMP.

20 25 30 35 40 45 50 55 60

0.5

0.4

0.3

0.2

0.1

0.0

Temperature [°C]

D
en

si
ty

[1
/

C
]

OUTLET TEMP.

Figure 4.1: Temperature distributions for Marconi A2’s node 141 in June-July
2019.

Time Node_1 ··· Node_3311 Node_3312 Time Node_1 ··· Node_3311 Node_3312

6
 H

O
U

R
S

2019-01-25
00:00:00

30°C … 41°C 42°C

6
 H

O
U

R
S

2019-01-25
00:00:00

FALSE ··· TRUE TRUE

··· ··· ··· ··· ··· ··· ··· ··· ··· ···
2019-01-25

05:58:00
29°C ··· 39°C 40°C

2019-01-25
05:58:00

FALSE ··· FALSE FALSE

2019-01-25
05:59:00

28°C ··· 39°C 40°C
2019-01-25

05:59:00
FALSE ··· FALSE FALSE

(a) Inlet Temperature dataset (b) True-False table

Figure 4.2: Time Windowing and Labeling.

year). So the node-threshold can be different for different nodes. The Cooling-aware
approach uses the data of all nodes in different racks and chassis, which spread in
the room so it can see the failure of the CRAC units and RDHX system.
2.Aging-aware: node-threshold defined for each node as the 0.95 quantile of inlet
temperature distribution of all nodes in the room over the entire dataset (which
covers the whole 2019 year). So the node-threshold is the same for all nodes. We
know from the study of thermal and power characteristic of the HPC room (Chapter
3) that nodes located in the chassis at the bottom of racks perceive lower tempera-
tures than the chassis at the top of the racks because of the raised floor. Therefore
when one constant temperature for all the nodes’ node-threshold is set, the proba-
bility of that node in the bottom of racks encountering temperature bigger than
node-threshold is less than this probability for top nodes. So in the Aging-aware
approach, we set a node-threshold that takes care of nodes that experience high
temperature. The high temperature has an essential impact on the age of the silicon.

In this study, the Cooling-aware approach to define node-threshold is used. Fig-
ure 4.2(a) summarizes a 6-hour time window (TW) of the inlet temperature dataset.
We applied the node-threshold to assign to each (node, time) cell a True/False
label indicating sample-by-sample thermal trouble, as shown in Figure 4.2(b). We
empirically chose TW = 6hours.

Spatial-temporal-impact-threshold (STIT)

To assign hazard /non-hazard labels to Time Windows (TW)s (Figure 4.2(a)), not
just to samples, we introduce a spatial-temporal-impact-threshold able to account
for thermal hazards’ spatial and temporal continuity. A 3312-node 6-hour TW
with 1 Sample/minute amounts to 3312 × 6 × 60 = 1192320 True/False values
(Figure 4.2(b)). The spatial-temporal-impact-threshold regulates the portion of
True’s inside the TW required to declare the room in thermal hazard. A higher
quorum will select thermal hazards that are more widespread, i.e. involve more
nodes for a longer time. spatial-temporal-impact-threshold is a general answer to
the following question. How much thermal hazard spread in time and different
nodes in the room (in a Time Window)?

It is essential to remark that, though based on real information extracted
from the physical hazard distribution, this statistical labeling approach is artificial
and must be confirmed by comparing with the ground-truth reported thermal
emergencies. As made evident in Figure 4.3 (x-axis is date), if we set the spatial-
temporal-impact-threshold to 5%, our statistical approach captures the reported
ground-truth thermal emergency, while detecting additional thermal hazards, which
were unnoticed by the system administrators. Indeed, these are conditions for
which the compute nodes’ temperatures have drastically increased without causing

immediate damage, but still possibly damaging the nodes. With our statistical
labeling approach, this approach can capture these events which are unnoticed by
humans.

25-6 26-6 27-6 28-6 29-6 30-6 01-7 02-7 03-7

Statistical Labeling Expert Human Reported Hazards

Figure 4.3: Thermal Hazard Detection

If we increased the spatial-temporal-impact-threshold quorum to 25%, the statis-
tical labeling approach could only detect the second hazard, thus being to restrictive
in identifying abnormal states. For the selected spatial-temporal-impact-threshold =
5%, the room is labeled in thermal hazard for 19.5% of the time in 2019. and,
raising the threshold to 15%, the thermal hazard category reduces 3.8%, still
detecting both hazards. This quantifies how rarer the extensive thermal hazards
are, compared to narrow ones.

Spatial-Temporal-Impact-Threshold
5% 10% 15%

Node-threshold 95% 19.5% 8.0% 3.8%

Table 4.1: Thermal Hazard Percentage.

4.4.2 Imbalanced Dataset

In general, anomalies are rare events, so the thermal hazard is a minority class in
this study. There are different methods for dealing with an imbalanced dataset like
(i) upsampling the minority class, downsampling the majority class, (ii) using the
weight of classes in the loss function to compute the loss based on the weight of
the classes [76,77]. We examined both methods and decided to use upsampling the
minority class and downsampling the majority class to reach a balanced dataset.

4.4.3 Prediction Horizon

The Prediction Horizon (PH) is defined the label’s time distance since the last
input data. For instance, if the input is the temperature of time window 00:00:00-
05:59:59 and PH = 6hours, the task is to predict the state of the time interval
06:00:00-11:59:59. For the PH = 0, it is the detection task. Table 4.2 reports the

time interval of state prediction or detection for different PH if the input is the
temperature of time window 00:00:00-05:59:59. In particular, PH = 6hours was
chosen upon discussions with system administrators, as a tradeoff sufficient to
provide enough time for the different correction actions to be taken by the system
administrators. Treating PH = 6hours as a time lag, the hazard/non-hazard binary
ground-truth labels have autocorrelation 0.65 over the year 2019.

Time Interval of
Input Data

Prediction
Horizon

Time Interval of
State Prediction or Detection

Model
Type

00:00:00 to 05:59:00 0 00:00:00 to 05:59:00 Detector
00:00:00 to 05:59:00 6 06:00:00 to 11:59:00 Predictor
00:00:00 to 05:59:00 12 12:00:00 to 17:59:00 Predictor
00:00:00 to 05:59:00 18 18:00:00 to 23:59:00 Predictor
00:00:00 to 05:59:00 24 24:00:00 to 29:59:00 Predictor

Table 4.2: Prediction Horizon.

4.4.4 Last Value Predictor

Last Value Predictor (LVP): minimum baseline for any time-series task; the pre-
diction ŷ is simply a copy of the present observation ytrue, with PH prediction
horizon as defined in Section 4.4.5. For instance, if the prediction horizon = 6 hours,
the LVP will return the room’s label from 00:00:00 to 05:59:00 as a prediction to
06:00:00-11:59:00.

ŷ(t+ PH) = ytrue(t) (4.1)

Last Value Predictor
Time Interval of Labe
that used as Prediction

Prediction
Horizon

Prediction Time
Interval

00:00 to 05:59 6 06:00 to 11:59
00:00 to 05:59 12 12:00 to 17:59
00:00 to 05:59 18 18:00 to 23:59
00:00 to 05:59 24 24:00 to 29:59

Table 4.3: Last Value Predictor.

The following Figure 4.4 reported the accuracy and f1 score of the LVP for
different prediction horizons. There is a periodicity of every 48 hours; it is expected
to be 24 hours.

0 6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96 10
2

10
8

11
4

12
0

12
6

13
2

13
8

14
4

15
0

15
6

16
2

16
8

17
4

18
0

18
6

19
2

19
8

Prediction Horizon [Hour]

0.4

0.5

0.6

0.7

0.8

0.9

1.0 Accuracy Last Value Predictor
F1-Score Last Value Predictor
Autocorrelation of Labels

Figure 4.4: Last Value Predictor.

The average temperature of all nodes and the sum of the node labels (NOT
room label) with time windowing of 6 hours are studied to check the reason for 48
periodicities.

MeanTemp(t) = Mean(Temp(3312Nodes, t to t+ 6)) (4.2)

SumNodeLabel(t) =
∑

(LabelNodes(3312Nodes, t to t+ 6)) (4.3)

Figure 4.5 shows the autocorrelation of the average temperature of all nodes in
the red line and the autocorrelation of the sum of the node labels in the green line
with a time window of 6 hours. The autocorrelation of the mean temperature of all
nodes has a periodicity of the 24 hours the peaks are not strong but visible. After
applying the Node-Threshold to the temperature and converting the temperature
to the label True/False table, the pattern changed to 48 hours periodicity.

Figure 4.5: Auto correlation.

4.4.5 Thermal Hazard Prediction Framework

In this section, a framework for thermal hazard prediction is suggested, which en-
compasses data query and preprocessing, model training, and final model inference,
which provides the prediction. The thermal hazard predictor is a model that, based
on time series data of computing nodes’ sensors, predicts if a thermal hazard will
happen in the room in the next hours. Input data are the time series of nodes’
temperature (and power consumption), and the output is a binary classification:
likely forthcoming hazard or not.

As mentioned, PH = 6hours was chosen upon discussions with system adminis-
trators as a tradeoff sufficient to provide enough time for the different correction
actions to be taken by the system administrators. Treating PH = 6hours as a time
lag, the hazard/non-hazard binary ground-truth labels have autocorrelation 0.65
over the year 2019 and identifying ground-truth labels 6 hours apart as the output
and target of a Last-Value Predictor (LVP) yield an F1-score of 0.72. Being the
LVP, the simplest (non-)model, F1-score = 0.72 is a baseline any proposed model
must be compared against.

Figure 4.6 illustrates our proposed architecture for the thermal hazard predictor,
composed of three main components: the architecture for data collection, storage,
based on ExaMon (section 4.3), the thermal hazard analysis including the data
extraction, preprocessing (e.g., missed data handling, time alignments), label
generator and data loader, and the Deep Learning (DL)-powered thermal hazard
prediction system (training and inference). For the DL model used for prediction,

a Temporal Convolutional Network (TCN) is selected [68].
The TCN’s input is a TW of data extracted from the database. In the off-line

training stage, a large set of TWs is extracted (training set), and preprocessed to
generate the ground-truth labels with the two-threshold statistical approach of
Section 4.4.1. Inferences with the trained model are the predictions of thermal
hazards.

Relying on ExaMon, it is possible to implement and test DL models using a
very broad set of node metrics collected from sensors: the database stores hundreds
of metrics, of which 42 are IPMI metrics. In this work, we focused on the nodes’
inlet temperature (as motivated in Section 4.4.1).

INLET AIR

OUTLET AIR

EX
A

M
O

N

FR
A

M
EW

O
R

K

Time [hours]

Thermal Hazard
Inlet Temp.
Outlet Temp.
Power

Node features

Thermal Hazard
Analysis

Label Generator

Data Preprocessing

Data Loader

Deep Learning

Thermal
Hazard
Prediction

TRAINING

INFERENCE

Figure 4.6: Architecture for Thermal Hazard Predictor.

4.5 Machine Learning Model Selection

In this section, to find the most suitable machine learning model for the thermal
hazard prediction framework, different machine learning tools are evaluated in
predicting thermal hazards in CINECA’s Marconi A2 KNL Room F. We describe
the dataset, introduce our Temporal Convolutional Network (TCN) topology and
competitor models, and finally discuss two experiments highlighting our TCN’s
promising prediction skills.

4.5.1 Experimental Dataset

Experiments were based on the inlet temperature time series of HPC room, which
hosts 46 racks containing 18 chassis, each chassis include 4 nodes. So in total
sensory data of 3312 nodes, for the whole year 2019. There were two thermal
hazards on 28th June and 1st July. We have utilized the IPMI interface to data
collection with a sampling rate of 20 seconds; then, data were downsampled to 1
minute in the preprocessing step.

We generated the ground-truth labels with the statistical approach described in
Section 4.4.1, with node-threshold = 0.95 and spatial-temporal-impact-threshold =
0.05 as motivated. With these values, 19.5% of the data is labeled as a thermal
hazard, sufficient for training our algorithms.

4.5.2 TCN and Competitor Predictors

The proposed TCN has 2 blocks: (1) a Feature Learning Block (14k parameters)
of 7 1D-convolutional layers with average pooling; (2) Classification Block (173
parameters) of 4 dense layers of 15, 6, 4, 3, 2 units. All layers present the batch
normalization and the ReLU activation (Figure 4.7).Models (TCN)

Normal

Thermal Hazard

Feature Learning Classification

1D-Conv.
Average Pooling

Batch Norm.
ReLU

1D-Conv.
Average Pooling

Batch Norm.
ReLU

1D-Conv.
Average Pooling

Batch Norm.
ReLU

Figure 4.7: TCN Model with 1DConv. Layers.

We compare our TCN against other models2:
0) Last Value Predictor (LVP): minimum baseline for any time-series task; the

prediction ŷ is simply a copy of the present observation ytrue: ŷ(t+ PH) = ytrue(t),
with PH prediction horizon as defined in Section 4.4.5.

1) Support Vector Machine (SVM): SVM with either linear or Radial Basis
Function (RBF) kernels. SVMs produce decision boundaries with margins to
improve generalization.

2) Stochastic Gradient Descent (SGD)-classifier : linear SVM trained with SGD
instead of convex optimization, enabling larger train set size.

3) Long Short-Term Memory (LSTM): a type of Recurrent Neural Network
(RNN) that learns long-term dependencies thanks to additional gates [69]. Our
LSTM has 2 layers of hidden and output size 16, followed by a dense layer.

To keep the parameter space of the models small, the models were built using
as input only the BB Inlet Temp temperatures of 72 nodes which composes one

2SVMs and SGD-classifier were implemented in Scikit-learn 0.23; LSTM was implemented in
Keras 2.4; TCN was implemented in PyTorch 1.5.

rack. The rack was selected randomly in the room. We remark that all the 3312
nodes were used for generating the thermal hazard labels.

4.5.3 Experiment 1: Random Test Dataset
ML-Model Selection

In the random test dataset experiment, we selected the test dataset randomly as
20% of the 2019 data, and trained all models on the remaining 80%. Table 4.4
shows the results.

The linear SVM yields F1-score 0.55, essentially random and worse than the
LVP-baseline: this is due to the linear models’ poorness and to the train set
reduction made necessary by computational complexity. The RBF ranks better,
with F1-score 0.86, which is also 0.17 above the SGD-classifier. Both DL models
outperform the non-deep ones: the LSTM reaches F1-score 0.91, and our TCN
ranks best, with F1-score 0.98.

So empirically is shown that DL models work better than classical machine
learning tools in the thermal hazard prediction framework. And in DL models,
TCN outperforms the LSTM model; therefore, we selected the TCN for continuing
the study.

ML-Model Recall Precision F1-score
Last value predictor 0.72 0.72 0.72

Linear SVM 0.55 0.56 0.55
RBF-SVM 0.80 0.94 0.86

SGD-classifier 0.64 0.76 0.69
LSTM 0.84 0.98 0.91
TCN 0.97 0.99 0.98

Table 4.4: Prediction Results

For this experiment, the TCN model (Figure 4.7) employed 1D Convolutional
layers, and the input data structure is depicted in figure 4.8.
Different Models

Number of Weights α
Input Ch* Kernel* Out Ch.

No attention to
spatial relationship

of sensors
1D Conv layers

F1 score = 0.74
Precision = 0.70

Recall = 0.79

2D Conv layers

First layer
w

ith
 1

 In
p

u
t C

h
.

1D

1D

1D size of the model

No attention to
spatial relationship

of sensors

F1 score = 0.82
Precision = 0.73

Recall = 0.93

First layer
w

ith
 1

8
 In

p
u

t C
h

.

size of the model

Spatial relationship
of sensors

F1 score = 0.67 ~ 0.74

1D

1D

Model Input Data

Figure 4.8: Input Data Structure of the TCN Model with 1DConv. Layers.

4.6 Experimental Results

After creating a thermal hazard framework and selecting the best ML model with
preliminary experiments in this selection, the results of different experiments that
are done aim to improve the prediction performance and implement it on the
in-production HPC system to use in an online mode.

4.6.1 Experiment 2: Overlap Cancellation of Training and
Test Dataset

One of the problems of experiment 1, which is a common issue in most studies,
is that there is a lot of overlap in each successive sample, i.e., each consecutive
sample of the dataset has a lot of replicated data. So if one of the two consecutive
samples be in the training dataset and the other in the test dataset, due to the
high overlap of the two samples model, somehow is already trained by the test
sample, i.e., a test sample is somehow inside the training dataset.

Each sample of the dataset is composed of two parts input data which is the
temperature of nodes and thermal hazard label of HPC room; for instance, in
sample-1 of timestamp 2020-01-01 00:00:00 (red line in figure 4.9a), the input data
is the temperature of nodes in the room from 2019-12-31 18:00:00 to 2019-12-31
23:59:00, while with the prediction horizon of 6 hours, the label created based on
the temperature of the nodes in the room from 2020-01-01 00:00:00 to 2020-01-01
5:59:00. Sample-2 of timestamp 2020-01-01 01:00:00 (green line in figure 4.9a),
which has an input (temperature of nodes from 2019-12-31 19:00:00 to 2020-01-01
00:59:00) and a label (with the prediction horizon of 6 hours it used the temperature
of nodes from 2020-01-01 01:00:00 to 2020-01-01 6:59:00 to generate the label) these
two samples have around 83% same temperature data in the input. In the figure
4.9a, we report the percentage of overlap of input data of sample-1 of timestamp
2020-01-01 00:00:00 with other neighbor samples. This overlap or replicated data
percentage increases with a decrease in the time distance of two samples. With a
prediction horizon of 6 hours, assume sample-1 2020-01-01 00:00:00 is in the test
dataset, and sample-2 2020-01-01 01:00:00 is in the training dataset considering
the overlap as mentioned earlier, around 83% input data of the test sample is in
the training sample, and with increase the number samples, this overlap will boost.

So we decided to cancel overlapped data from the training and test dataset
and check the training results. Three overlap cancellation scenarios are studied:
a Cancel the samples of the training dataset that, (i) temporally, are after the
test samples and (ii) if they have overlap. For example, if sample-1 2020-01-01
00:00:00 is in the test dataset, the green part of the dataset will be canceled from
the training dataset (figure 4.9b). Although the samples in the left part of sample-1
have an overlap with sample-1, they did not propagate the temperature of the

future of sample-1 (future with overlap) in the training dataset. b Cancel the
samples of the training dataset if they have overlap with test samples (from both
sides, green and blue parts figure 4.9c) c Cancel the samples of the training
dataset if they have more than 50% overlap with test samples (from both sides,
green and blue parts figure 4.9d).

Barchart 4.10 shows the accuracy and F1-score of training of model with different
overlap cancellation scenarios as well as the training of the model without overlap
cancellation. The last value predictor can be a baseline to compare the results. (i)
The blue bars show the results of the model’s training without any cancellation of
the samples of the training dataset, as it’s clear there is no significant difference
between the prediction and detection, and increasing of prediction horizon has no
effect on the results. This is not reasonable in a real scenario, and the increase
of the prediction horizon should degrade the results. Therefore, considering the
accuracy and F1-score as performance metrics of the model for time-series data
while selecting the training and test dataset randomly (with tools like sklearn

train test split) is inadequate. The samples of time-series data are a sequence
of the data that can overlap with each other, which can be a source of the error in
the study. (ii) Orange bars show the results of both sides’ cancellations. Due to
this substantial reduction in the training dataset, the model’s performance reduces
significantly. (iii) with the right side cancellation or cancellation of the samples
with more than 50% overlap (brown, green bars), the model has reasonable results.

For this experiment, the TCN model (Figure 4.7) employed 1D Convolutional
layers, and the input data structure is depicted in figure 4.8.

2
0
1
9
-1

2
-3

1
1
7
:0

0
:0

0

2
0
1
9
-1

2
-3

1
1
8
:0

0
:0

0

2
0
1
9
-1

2
-3

1
1
9
:0

0
:0

0

2
0
1
9
-1

2
-3

1
2
0
:0

0
:0

0

2
0
1
9
-1

2
-3

1
2
1
:0

0
:0

0

2
0
1
9
-1

2
-3

1
2
2
:0

0
:0

0

2
0
1
9
-1

2
-3

1
2
3
:0

0
:0

0

2
0
2
0
-0

1
-0

1
0
0
:0

0
:0

0

2
0
2
0
-0

1
-0

1
0
1
:0

0
:0

0

2
0
2
0
-0

1
-0

1
0
2
:0

0
:0

0

2
0
2
0
-0

1
-0

1
0
3
:0

0
:0

0

2
0
2
0
-0

1
-0

1
0
4
:0

0
:0

0

2
0
2
0
-0

1
-0

1
0
5
:0

0
:0

0

2
0
2
0
-0

1
-0

1
0
6
:0

0
:0

0

2
0
2
0
-0

1
-0

1
0
7
:0

0
:0

0

Neighbor Samples

0%

10%

20%

30%

100%

90%

80%

70%

60%

50%

40%

P
e
rc

e
n
ta

g
e

o
f
O

v
e
rl

a
p

Percentage of Overlap of
Sample-1=2020-01-01 00:00:00
with other Neighbor Samples

Sample-1

Sample-2

Percentage of Overlap of Sample-1=2020-01-01 00:00:00 with other Neighbor Samples

(a) Overlap Percentage of a Sample.

2
0
1
9
-1

2
-3

1
1
7
:0

0
:0

0

2
0
1
9
-1

2
-3

1
1
8
:0

0
:0

0

2
0
1
9
-1

2
-3

1
1
9
:0

0
:0

0

2
0
1
9
-1

2
-3

1
2
0
:0

0
:0

0

2
0
1
9
-1

2
-3

1
2
1
:0

0
:0

0

2
0
1
9
-1

2
-3

1
2
2
:0

0
:0

0

2
0
1
9
-1

2
-3

1
2
3
:0

0
:0

0

2
0
2
0
-0

1
-0

1
0
0
:0

0
:0

0

2
0
2
0
-0

1
-0

1
0
1
:0

0
:0

0

2
0
2
0
-0

1
-0

1
0
2
:0

0
:0

0

2
0
2
0
-0

1
-0

1
0
3
:0

0
:0

0

2
0
2
0
-0

1
-0

1
0
4
:0

0
:0

0

2
0
2
0
-0

1
-0

1
0
5
:0

0
:0

0

2
0
2
0
-0

1
-0

1
0
6
:0

0
:0

0

2
0
2
0
-0

1
-0

1
0
7
:0

0
:0

0

Neighbor Samples

0%

10%

20%

30%

100%

90%

80%

70%

60%

50%

40%

P
e
rc

e
n
ta

g
e

o
f
O

v
e
rl

a
p

Percentage of Overlap of
Sample-1=2020-01-01 00:00:00
with other Neighbor Samples

Sample-1

Sample-2

Percentage of Overlap of Sample-1=2020-01-01 00:00:00 with other Neighbor Samples

(b) Right Side Overlap Cancellation.

2
0
1
9
-1

2
-3

1
1
7
:0

0
:0

0

2
0
1
9
-1

2
-3

1
1
8
:0

0
:0

0

2
0
1
9
-1

2
-3

1
1
9
:0

0
:0

0

2
0
1
9
-1

2
-3

1
2
0
:0

0
:0

0

2
0
1
9
-1

2
-3

1
2
1
:0

0
:0

0

2
0
1
9
-1

2
-3

1
2
2
:0

0
:0

0

2
0
1
9
-1

2
-3

1
2
3
:0

0
:0

0

2
0
2
0
-0

1
-0

1
0
0
:0

0
:0

0

2
0
2
0
-0

1
-0

1
0
1
:0

0
:0

0

2
0
2
0
-0

1
-0

1
0
2
:0

0
:0

0

2
0
2
0
-0

1
-0

1
0
3
:0

0
:0

0

2
0
2
0
-0

1
-0

1
0
4
:0

0
:0

0

2
0
2
0
-0

1
-0

1
0
5
:0

0
:0

0

2
0
2
0
-0

1
-0

1
0
6
:0

0
:0

0

2
0
2
0
-0

1
-0

1
0
7
:0

0
:0

0

Neighbor Samples

0%

10%

20%

30%

100%

90%

80%

70%

60%

50%

40%

P
e
rc

e
n
ta

g
e

o
f
O

v
e
rl

a
p

Percentage of Overlap of
Sample-1=2020-01-01 00:00:00
with other Neighbor Samples

Sample-1

Sample-2

Percentage of Overlap of Sample-1=2020-01-01 00:00:00 with other Neighbor Samples

(c) Both Sides Overlap Cancellation.

2
0
1
9
-1

2
-3

1
1
7
:0

0
:0

0

2
0
1
9
-1

2
-3

1
1
8
:0

0
:0

0

2
0
1
9
-1

2
-3

1
1
9
:0

0
:0

0

2
0
1
9
-1

2
-3

1
2
0
:0

0
:0

0

2
0
1
9
-1

2
-3

1
2
1
:0

0
:0

0

2
0
1
9
-1

2
-3

1
2
2
:0

0
:0

0

2
0
1
9
-1

2
-3

1
2
3
:0

0
:0

0

2
0
2
0
-0

1
-0

1
0
0
:0

0
:0

0

2
0
2
0
-0

1
-0

1
0
1
:0

0
:0

0

2
0
2
0
-0

1
-0

1
0
2
:0

0
:0

0

2
0
2
0
-0

1
-0

1
0
3
:0

0
:0

0

2
0
2
0
-0

1
-0

1
0
4
:0

0
:0

0

2
0
2
0
-0

1
-0

1
0
5
:0

0
:0

0

2
0
2
0
-0

1
-0

1
0
6
:0

0
:0

0

2
0
2
0
-0

1
-0

1
0
7
:0

0
:0

0

Neighbor Samples

0%

10%

20%

30%

100%

90%

80%

70%

60%

50%

40%

P
e
rc

e
n
ta

g
e

o
f
O

v
e
rl

a
p

Percentage of Overlap of
Sample-1=2020-01-01 00:00:00
with other Neighbor Samples

Sample-1

Sample-2

Percentage of Overlap of Sample-1=2020-01-01 00:00:00 with other Neighbor Samples

(d) Overlap Cancellation of the Samples With
More Than 50% Overlap.

Figure 4.9: Overlap and Overlap Cancellation.

75

80

85

90

95

100

Ac
cu

ra
cy

%
Last Value Predictor
Samples With Overlap
Both Sides Overlap Cancellation (-6Hours,+6Hours)
Cancellation of Samples With More Than 50% Overlap (-3Hours,+3Hours)
Right Side Overlap Cancellation (-0Hours,+6Hours)

Pr
ed

ict
io

n
Ho

riz
on

=0
De

ct
et

or
in

pu
t 0

 to
 6

 la
be

l 0
 to

 6

Pr
ed

ict
io

n
Ho

riz
on

=6
Pr

ed
ict

or
in

pu
t 0

 to
 6

 la
be

l 6
 to

 1
2

Pr
ed

ict
io

n
Ho

riz
on

=1
2

Pr
ed

ict
or

in
pu

t 0
 to

 6
 la

be
l 1

2
to

 1
8

Pr
ed

ict
io

n
Ho

riz
on

=1
8

Pr
ed

ict
or

in
pu

t 0
 to

 6
 la

be
l 1

8
to

 2
4

Pr
ed

ict
io

n
Ho

riz
on

=2
4

Pr
ed

ict
or

in
pu

t 0
 to

 6
 la

be
l 2

4
to

 3
0

Pr
ed

ict
io

n
Ho

riz
on

=3
0

Pr
ed

ict
or

in
pu

t 0
 to

 6
 la

be
l 3

0
to

 3
6

Pr
ed

ict
io

n
Ho

riz
on

=3
6

Pr
ed

ict
or

in
pu

t 0
 to

 6
 la

be
l 3

6
to

 4
2

Pr
ed

ict
io

n
Ho

riz
on

=4
2

Pr
ed

ict
or

in
pu

t 0
 to

 6
 la

be
l 4

2
to

 4
8

Pr
ed

ict
io

n
Ho

riz
on

=4
8

Pr
ed

ict
or

in
pu

t 0
 to

 6
 la

be
l 4

8
to

 5
4

Pr
ed

ict
io

n
Ho

riz
on

=5
4

Pr
ed

ict
or

in
pu

t 0
 to

 6
 la

be
l 5

4
to

 6
00.4

0.5

0.6

0.7

0.8

0.9

1.0

F1
-s

co
re

Figure 4.10: Accuracy and F1 score with and without overlap.

4.6.2 Experiment 3: Time-separate Test Dataset

The concern of randomly selecting training and test dataset is related to the fact
that random selection destroys the chronological order of the training and test
samples. i.e., in the test dataset, some samples are chronologically before the
training samples. But in the real case implementation, the model train with data
of the past to predict the future.

To simulate a real case scenario, we trained the TCN with only May 2019
data and validated the model in the first week of June 2019. Our TCN with
a time-separate test set (Experiment 3) achieved an F1-score of 0.74, which is
0.24 lower than Experiment 1 with a random test set while outperforming results
of overlap cancellation (Experiment 2). Such degradation is due to the random
selection of the test set in Experiment 1 for which similar samples are present in

ML-Model Recall Precision F1-score
TCN - Time-separate Test Set 0.79 0.70 0.74

Table 4.5: Results of Experiment 3.

the training and test set. Experiment 3 is, however, closer to the real usage of
the predictive model. We suspect that the limited accuracy of Experiment 2 is
caused by (1) the limited set of nodes considered for the prediction, and (2) a
non-stationarity in the thermal effects that is not captured if we use only past data
to predict the future.

The limited performance of Experiment 3 motivates us to try in the following
experiments to mitigate causes for the performance loss and propose advanced
models for achieving higher performance.

For this experiment, the TCN model (Figure 4.7) employed 1D Convolutional
layers, and the input data structure is depicted in figure 4.8.

4.6.3 Experiment 4: Input Selection/Node Selection
Randomly Selected 72 Nodes as Input and TCN with
1D Conv. Layers

Label Generating with a Subset of the Dataset:

The size of the TCN model (trainable parameters of the model) will be substantial
if all the nodes’ temperature data are used as an input of the TCN model. So the
temperatures of 72 nodes (nodes one rack 4 NodesperChassis * 18 ChassisperRcak)
are used as input of the ML-Models in the previous experiments. Assume the TCN
model employs the identical role-based statistical approach with two thresholds
(4.4.1) applied in the labeling approach to detect the thermal hazard. Considering
the assumption, what will happen if it uses fewer (72 instead of 3312) nodes’ data
as input of the TCN model? We know that TCN does not use the rule-based
statistical approach for thermal hazard prediction, so it should/could predict with
acceptable performance with fewer input data. The binary labels are generated
utilizing the same statistical tool 4.4.1 by a subset of the nodes regarding the earlier
assumption. The following results are achieved given that the labels generated
by 3312 nodes is the ground-truth label, and the labels generated with 72 nodes
are detected labels. TN = 35895 , FP = 1581, FN = 2260, TP = 10837, F1-score
= 0.85, Accuracy = 92%. So the labeling approach with data of 72 nodes has
an 8% reduction in the accuracy of labeling the room. This experiment shows
that if the TCN model just learns the role-based statistical approach in detecting
the label, how much it will successfully label the room with the same algorithm
but with fewer inputs. Therefore, If the TCN model uses the same rules applied

in the labeling approach in the best case situation, it will have 92% accuracy in
labeling the room. We know the TCN has its own approach and may reach better
accuracy (> 92%) with 72 nodes. As mentioned, to control the size of the TCN
model, the model’s input is restricted; therefore, it is essential to select the most
informative inputs. In the previous experiments, a rack was randomly selected,
and the model’s inputs were the nodes’ temperature of the rack. The following
experiments are done to find a better approach to selecting the more informative
nodes, i.e., the goal is to select a subset of nodes that create labels similar to the
original labels (the original labels created by all nodes 3312) as much as possible.
So most informative nodes mean a subset of nodes with the lowest number of
nodes creates the labels that are very similar to the room’s original labels. I did
some experiments to find the best method to select the nodes. Table 4.6 reports
the result of different approaches. For example, I divided the nodes into three
groups bottom, center, and top, and from inside each group, we randomly selected
36 nodes in total 36*3. Then I selected the same number of nodes (3*36) from
the entire room completely randomly without grouping the nodes to the bottom,
center, and top. Also, I selected the nodes which have the highest correlation with
the rooms’ label; I found that completely random selection has a high F1-score.

Node Selection Approach
Number of

Nodes
F1 score Accuracy Confusion Matrix

From 24 racks, node 0 from chassis 1(bottom),
chassis 9(center), and chassis 18(top)

72 0.85 0.92
[[35904, 1581],
[2251, 10837]]

Select nodes with highest correlation with room label 72 0.77 0.89
[[36713, 772],
[3846, 9242]]

From 36 racks, node 0 from chassis 1(bottom),
chassis 9(center), and chassis 18(top)

108 0.86 0.92
[[35888, 1597],
[1992, 11096]]

Random selection of racks, node 0 from chassis 1(bottom),
chassis 9(center), and chassis 18(top)

108 0.85 0.92
[[35660, 1825],
[1892, 11196]]

Divided the nodes to three groups bottom (chassis 1 to 6),
center (chassis 7 to 12), and top (chassis 13 to 18),

and from inside each group, randomly selected 36 nodes.
108 0.91 0.95

[[36936, 549],
[1689, 11399]]

Completely Random Selection of Nodes 108 0.91 0.95
[[36936, 548],
[1690, 11399]]

Table 4.6: Different Approaches for Node Selecting.

Figure 4.11 reports in the y-axis F1-score (red line) and Accuracy (blue line),
while the x-axis shows the number of randomly selected nodes.

Figure 4.11: Accuracy and F1 score for Randomly Nodes Selection.

We empirically find that random selection of 72 nodes is the best method for input
setting from these experiments because it collects the different nodes’ temperature
data which spread in different locations of the HPC room. This random selection
creates a better representative of the entire room than all nodes of just one random
rack.

Randomly Selected 72 Nodes as Input and TCN with 1D Conv. Layers

It has been shown that randomly selected 72 nodes from the HPC room will
provide more information than 72 nodes of one rack, so the nodes that provide
the TCN model’s input data are selected randomly in this experiment. The labels
are generated utilizing the temperature of all nodes in the HPC room. For this
experiment, the TCN model (Figure 4.7) employed 1D Convolutional layers , and
the input data structure is depicted in figure 4.8. TCN model trained with data
of May 2019 and test is done on the data of the first week of June 2019 and
table 4.7 reports the results of this experiment. Random selection of the nodes
(inputs) makes a slight improvement (F1-score from 0.74 enhanced to 0.77) in the
performance of the predictor TCN model.

Model Test Period TN FP FN TP lr sum Accuracy% Precision Recall F1-score MCC

Detector
First Week

After Training
4934 555 1249 2983 0.01 9721 81.44 0.84 0.70 0.77 0.62

Predictor
First Week

After Training
2912 2217 343 4249 0.01 9721 73.66 0.66 0.92 0.77 0.52

Table 4.7: Results of Experiment 4.

4.6.4 Experiment 5: Randomly Selected 72 Nodes as Input
and TCN with 2D Conv. Layers

Experiment 4 shows that randomly selected 72 nodes from the HPC room will
provide more information than 72 nodes of one rack, so the nodes that provide
the TCN model’s input data are selected randomly in this experiment. The labels
are generated utilizing the temperature of all nodes in the HPC room. To reduce
the size (trainable parameters) of the TCN model (Figure 4.7) instead of 1D
Convolutional (1DConv.) layers, the TCN model employed 2DConv layers, and
the input data structure is depicted in figure 4.12. With 2D Conv. layers, we have
more control over the model’s size. So with a lower number of parameters, it is
possible to reduce the size of the training dataset, so the sampling rate of data
is modified from 1 to 10 minutes. The training time will increase because of the
reduction in the training dataset size. TCN model trained with data of May 2019
and test is done on the data of the first week of June 2019, etc., and table 4.8
reports the results of this experiment. This modification in the architecture of the
TCN model and sampling rate indeed improved the performance of the predictor
and detector models. F1-score of detector enhanced from 0.77 to 0.88 while for
predictor from 0.77 to 0.82.

Different Models

Number of Weights α
Input Ch* Kernel* Out Ch.

No attention to
spatial relationship

of sensors
1D Conv layers

F1 score = 0.74
Precision = 0.70

Recall = 0.79

2D Conv layers

First layer
w

ith
 1

 In
p

u
t C

h
.

1D

1D

1D size of the model

No attention to
spatial relationship

of sensors

F1 score = 0.82
Precision = 0.73

Recall = 0.93

First layer
w

ith
 1

8
 In

p
u

t C
h

.

size of the model

Spatial relationship
of sensors

F1 score = 0.67 ~ 0.74

1D

1D

Model Input Data

Figure 4.12: Input Data Structure of the TCN Model with 2DConv. Layers.

Model Test Period TN FP FN TP lr sum Accuracy% Precision Recall F1-score MCC

Detector
First Week

After Training
277 132 18 546 0.1 973 84.58 0.81 0.97 0.88 0.69

Predictor
First Week

After Training
215 190 40 528 0.01 973 76.36 0.74 0.93 0.82 0.52

Predictor
Second Week
After Training

87 506 23 357 0.01 973 45.63 0.41 0.94 0.57 0.13

Predictor
Third Week

After Training
248 612 31 82 0.01 973 33.92 0.12 0.73 0.20 0.01

Predictor
Fourth Week
After Training

389 249 159 176 0.01 973 58.07 0.41 0.53 0.46 0.13

Table 4.8: Results of Experiment 5.

4.6.5 Experiment 6: Power Consumption (of Randomly
Selected 72 Nodes) as a Second Input Channel of
TCN with 2DConv Layers

Power consumption of the nodes is the primary source of the heat generation in the
room, so the TCN model’s performance with adding the power consumption as a
new channel of the input of the TCN model in this experiment is studied. The TCN
model will have two channels in input (inlet temperature and power consumption)
in this experiment. Before adding the power consumption of the nodes as a second
input channel, some analysis is done to find the best lead or lag between two
input channels, i.e., employing the delay between the power consumption and
heat-generating in feeding the input data to the TCN model aiming to improve
the performance.

The medians of power consumption, inlet temperature, and outlet temperature
of all nodes in each timestamp are computed then the correlation of these medians
is calculated. Table 4.9 reports the correlation matrix of Tin (Inlet temperature),
Tout (outlet temperature), power, and deltaT, which is the difference between the
outlet and inlet temperature. Figure 4.13 shows the pairwise relationship between
power and temperatures (scatter plot matrix). (i) It is clear that inlet temperature
Not correlated with power consumption. It is more under the control of the CRAC
units. (ii) Outlet temperature is highly correlated with inlet temperature and next
power consumption. (iii) There is lower thermal variation in the inlet temperature
than the outlet. (iv) deltaT (Difference of the inlet and outlet temperature) is
more related to the outlet temperature and power than the inlet temperature.

Power Tin Tout deltaT
Power 1 0.4 0.68 0.79
Tin 0.4 1 0.89 0.27
Tout 0.68 0.89 1 0.68
deltaT 0.79 0.27 0.68 1

Table 4.9: Correlation of the Parameters.

Figure 4.13: Scatter Plot Matrix of Power Consumption and Temperatures

The correlation coefficient of different parameters (power and temperatures)
with different lead/lag (lead/lag in the range of 0 to 6 hours) are computed Figure
4.14, to employ the delay between the power consumption and heat-generating in
feeding the input data to the TCN model aiming to improve the performance. As
it is evident, the highest correlation between the different parameters is performed
in zero lag. So the nodes’ power consumption is added as the second input channel
to the model with zero lag.

Figure 4.14: The correlation coefficient of parameters (power and temperatures)
with lag/lead.

Time Window

1D

1D

Node 1

Node N

… Inlet Temp

Power Cons.

Figure 4.15: Input Data Structure of the TCN Model with 2DConv. Layers.

Power Consumption (of Randomly Selected 72 Nodes) as the Second
Input Channel of TCN with 2DConv Layers

Based on the data analysis and correlation of power consumption and temperature
of nodes, the power consumption (of randomly selected 72 nodes) is added without
lead/lag to the TCN model as a second input channel of the TCN model, first
input channel is inlet temperature of randomly selected 72 nodes. Although adding
the power as the second channel to the TCN with the 2DConv layers improved
the test results for the second week after training, in general, it has no significant
impact on the performance of the TCN model 4.10.

Training Period Test Period F1-score MCC Accuracy Precision Recall
2019-01-01 to
2019-06-01

2019-06-01 to
2019-06-08

0.73 0.29 66.39 0.67 0.81

2019-01-01 to
2019-06-01

2019-06-08 to
2019-06-15

0.63 0.33 63.1 0.52 0.82

Table 4.10: Results of Experiment 6: Adding the Power Consumption as a Second
Input Channel of TCN Model with 2DConv Layers.

4.6.6 Experiment 7: TCN Model with 3DConv Layers

This experiment uses the TCN model (Figure 4.7) with 3DConv layers, and the
input data structure is depicted in figure 4.16. In this TCN model with 3DConv
layers, 3 dimensions of the model’s input are utilized to specify for 3 axes of nodes
locations in the HPC room (nodes x, y, z-axis). So considering the location of the

nodes which provided monitoring data, the input data structure is created. For
the time dimension of data, the input channels of the first layer are used, i.e., since
the data is time-series data, each input sample of the TCN model is a sequence of
the data, for each element of the sequence, one input channel is used; e.g., with a
sampling rate of 1 minute, for Time Window of six hours (TW=6 Hours), 360 input
channels are utilized. With this new configuration of the TCN model, it is feasible
to use the inlet temperature data of all the nodes of the HPC room (3312 nodes
instead of randomly selected 72 nodes) in the training and test dataset. The TCN
model with 3DConv layers is trained with data of May 2019, and the test is done
on the first week of June 2019, with a sampling rate of 10 minutes. Utilizing the
3DConv layers in the TCN model in both detection and prediction mode improved
the model’s performance. Table 4.11 reports results. Therefore TCN model with
3DConv layers has the highest performance utile this part of the study, and the 3D
data structure of input data performs better than 1D and 2D.

Time Window

1D

1D

Node 1

Node N

… Inlet Temp

Power Cons.

1D-> Y

1D-> Z
Chassis

1D-> X

1D-> Y

1D-> Z
Chassis

1D-> X

1D-> Y

1D-> Z
Chassis

1D-> X

First layer
w

ith
 TW

 (3
6) In

p
u

t C
h

.

1D-> Z
Chassis

1D-> X,Y

Time Window
1D

First layer
w

ith
 1

 In
p

u
t C

h
.

Figure 4.16: Input Data Structure of the TCN Model with 3DConv Layers.

Model TN FP FN TP lr Accuracy% Precision Recall F1-score MCC
Detector 360 48 14 550 0.1 93.63 0.92 0.97 0.94 0.87
Predictor 266 139 51 516 0.1 80.45 0.79 0.91 0.84 0.60

Table 4.11: Results of Experiment 7: the TCN Model with 3DConv Layers.

4.6.7 Experiment 8: Outlet Temperature of Nodes Inter-
leaved to Inlet Dataset and Depthwise Separable
Convolutions

For detection and perdition of the thermal hazard (binary labeling of the HPC
room) in experiments (2, 3, 4, 5, 7), inlet temperatures of the nodes are used as
input of the model. And experiment 6 empirically reveals that adding the power
consumption of the nodes to the model’s input as the second input channel of the
TCN model did not significantly affect the performance. In this experiment, the
data of all nodes in the room (3312 nodes) is used. Each node has a sensor at the
inlet of the nodes, which measures inlet air temperature (that is already used in the
input of TCN model); also, each node has a sensor at the outlet of the node, which
measures the outlet air temperature. The outlet temperatures are augmented to
the input data structure in this experiment, i.e., the outlet temperature of nodes is
interleaved in the inlet temperature dataset. The TCN model with 3DConv trained
with the augmented dataset for May 2019 and test is done on the data of the first
week of June 2019. In this experiment, the performance of the typical TCN model
and TCN model with depthwise convolution is evaluated. The experiment’s results
are reported in table 4.12. Interleaving the outlet temperature to the dataset of the
inlet temperature reduced the performance of the TCN model. The TT in table
4.12 is training time, and the size is the number of the trainable parameters of the
TCN model. Depthwise separable convolution reduces the model’s size (number
of trainable parameters of the model) and computation. Still, the training time
increases in PyTorch implementation due to the increased number of convolutional
layers (pointwise), i.e., these layers are the sequential layers, and although it reduces
the number of parameters and multiplications, it increases the serial parts of the
codes. So the interleaving of the outlet temperature to the input dataset and
depthwise separable convolutions do not have an advantage, and for the rest of the
study, as the model’s input, just inlet temperature and the standard convolution
are used.

Input Inlet Temp Inlet and Outlet Temp
Model Normal Conv. Depthwise Conv. Normal Conv. Depthwise Conv.

Detector
F1-score=0.94

TT=1H
Size=25.1K

F1-score=0.93
TT=1.5H
Size=5.4K

F1-score=0.87
TT=1.5H
Size=27.1K

F-score=0.92
TT=2H

Size=7.4K

Predictor
F1-score=0.84

TT=1H
Size=25.1K

F1-score=0.80
TT=1.5H
Size=5.4K

F1-score=0.80
TT=1.5H
Size=27.1K

F1-score=0.81
TT=2H

Size=7.4K

Table 4.12: Results of Experiment 8: Comparison of the Results of the Standard
3DConv TCN Model and Depthwise Separable Convolutions.

4.6.8 Experiment 9: Check the Model’s Performance Week
by Week

The TCN model with standard 3DConv layers is trained with data of May 2019
(just inlet temperature of all nodes 3312) as a predictor, and then the test is done
for subsequent weeks without retraining the model, and results are reported in
table 4.13. For example, in row three of table 4.13, there is two weeks gap between
the training of the model and inference. As it is clear from the results, prediction
performance significantly degrades when there is a gap between training and test.
The gap between the training and test is canceled by adding gap data to the training
dataset to mitigate performance degradation, i.e., the training dataset increased
week by week, and the TCN model is trained with data of (May + N×Weeks) and
tested by the week just after the training period. Results are reported in table
4.14. Increasing the training dataset did not improve the model’s performance in
prediction. Some cells of table 4.14 are empty due to the division by zero error; it
is impossible to calculate the associated metrics.

Test Period Percentage of Hazard
Class in Test

Accuracy F1-score Recall Precision MCC TN FN FP TP
Week Start End
Week 01 2019 June 1 2019 June 7 59.42 80.45 0.84 0.91 0.79 0.60 266 51 139 516
Week 02 2019 June 8 2019 June 14 41.27 56.79 0.53 0.62 0.46 0.15 317 145 275 235
Week 03 2019 June 15 2019 June 21 11.11 88.48 - 0.00 - - 860 112 0 0
Week 04 2019 June 22 2019 June 28 36.11 67.08 0.10 0.05 0.86 0.16 634 317 3 18
Week 05 2019 June 29 2019 July 5 4.37 95.47 0.19 0.11 0.50 0.22 923 39 5 5
Week 06 2019 July 6 2019 July 12 5.75 94.75 0.22 0.12 1.00 0.34 914 51 0 7
Week 07 2019 July 13 2019 July 19 15.77 87.04 - 0.00 - - 846 126 0 0
Week 08 2019 July 20 2019 July 26 0.00 100.00 - - - - 972 0 0 0
Week 09 2019 July 27 2019 August 2 0.00 97.74 - - 0.00 - 950 0 22 0
Week 10 2019 August 3 2019 August 9 0.00 100.00 - - - - 972 0 0 0
Week 11 2019 August 10 2019 August 16 0.00 100.00 - - - - 972 0 0 0
Week 12 2019 August 17 2019 August 23 0.00 100.00 - - - - 972 0 0 0
Week 13 2019 August 24 2019 August 30 0.00 100.00 - - - - 972 0 0 0
Week 14 2019 August 31 2019 September 6 0.00 100.00 - - - - 972 0 0 0

Table 4.13: Results of Experiment 9: Model Is Trained with Data of May 2019 and
Test with Subsequent Weeks.

Test Period Percentage of Hazard
Class in Test

F1-score Accuracy MCC Precision Recall TN FP FN TP
Start End

Week 01 2019 June 1 2019 June 7 59.42 0.84 80.45 0.60 0.79 0.91 266 139 51 516
Week 02 2019 June 8 2019 June 14 41.27 0.42 60.39 0.13 0.49 0.37 445 147 238 142
Week 03 2019 June 15 2019 June 21 11.11 - 87.04 -0.04 0.00 0.00 846 14 112 0
Week 04 2019 June 22 2019 June 28 36.11 0.22 59.16 -0.02 0.32 0.17 518 119 278 57
Week 05 2019 June 29 2019 July 5 4.37 0.15 90.74 0.11 0.13 0.18 874 54 36 8
Week 06 2019 July 6 2019 July 12 5.75 0.43 93.52 0.40 0.45 0.41 885 29 34 24
Week 07 2019 July 13 2019 July 19 15.77 0.04 84.77 -0.01 0.11 0.02 821 25 123 3
Week 08 2019 July 20 2019 July 26 0.00 - 100.00 - - - 972 0 0 0
Week 09 2019 July 27 2019 August 2 0.00 - 91.98 - 0.00 - 894 78 0 0
Week 10 2019 August 3 2019 August 9 0.00 - 100.00 - - - 972 0 0 0
Week 11 2019 August 10 2019 August 16 0.00 - 99.18 - 0.00 - 964 8 0 0
Week 12 2019 August 17 2019 August 23 0.00 - 99.28 - 0.00 - 965 7 0 0
Week 13 2019 August 24 2019 August 30 0.00 - 96.81 - 0.00 - 941 31 0 0
Week 14 2019 August 31 2019 September 6 0.00 - 100.00 - - - 972 0 0 0

Table 4.14: Results of Experiment 9: Model Is Trained with May + N×Weeks and
Test with Subsequent Week.

4.6.9 Experiment 10: Cross-validation Month by Month

As shown in experiment 9, for some training and test periods, prediction results of
the model are acceptable, but for other periods, it is not. So table 4.16 reported
the model’s month-by-month cross-validation results to see if the dataset has some
lucky periods and some unlucky. The model is trained with inlet temperature data
of all nodes (3312 nodes) during 2019 except one-month, test-month shown in the
first column. There is no thermal hazard in March and August, so the F1-score
cell in the result table 4.16 is empty due to TP=0 (accuracy is 100%). So the
TCN model with 3DConv layers does not have the same performance for different
months of 2019.

Test Month F1-score Accuracy% MCC TN FP FN TP Precision Recall
January 0.81 96.53 0.79 2186 32 53 177 0.85 0.77
February 0.93 99.00 0.93 3670 8 32 287 0.97 0.90
March 100.00 4429 0 0 0
April 0.98 99.95 0.98 4243 0 2 40 1.00 0.95
May 0.93 93.79 0.87 2387 122 153 1767 0.94 0.92
June 0.88 91.37 0.81 2613 181 189 1302 0.88 0.87
July 0.76 97.54 0.76 4148 20 89 172 0.90 0.66

August 100.00 4429 0 0 0
September 0.80 97.69 0.80 3989 93 6 197 0.68 0.97
October 0.60 42.47 0 2548 0 1881 0.42 1.00

November 0.92 89.96 0.79 1476 304 126 2379 0.89 0.95
December 0.98 97.04 0.75 205 101 30 4086 0.98 0.99

Table 4.15: Results of Experiment 10: Cross-validation Month by Month of Detector
Model.

Test Month F1-score Accuracy% MCC TN FP FN TP Precision Recall
January 0.49 90.11 0.43 2092 126 116 114 0.48 0.50
February 0.18 89.29 0.13 3521 157 271 48 0.23 0.15
March 99.95 4427 2 0 0 0.00
April 0.15 97.62 0.15 4174 69 33 9 0.12 0.21
May 0.85 87.47 0.75 2252 221 334 1622 0.88 0.83
June 0.62 69.57 0.38 1938 888 416 1043 0.54 0.71
July 0.21 92.57 0.18 4055 113 216 45 0.28 0.17

August 99.84 4422 7 0 0 0.00
September 0.37 93.16 0.33 3907 155 138 85 0.35 0.38
October 0.69 68.28 0.41 1448 1092 313 1576 0.59 0.83

November 0.76 70.06 0.37 969 811 472 2033 0.71 0.81
December 0.95 91.09 0.37 143 190 204 3885 0.95 0.95

Table 4.16: Results of Experiment 10: Cross-validation Month by Month of
Predictor Model.

4.6.10 Experiment 11: Decomposition of Time Series Data

As is evident from month-by-month cross-validation, the TCN model with 3DConv
layers successfully predicts some months while not working for others. This

performance fluctuation can be due to the seasonality of data. The input dataset
is decomposed into the trend, seasonal, and residual to deal with the seasonality
of the dataset. In decomposition of the time series data, it is common to use a
time-window of 12 months to check the yearly periodicity of the dataset, which
requires at least data of a few years. While, in this study, just data of one year is
available. So for the time-series decomposition is set time-window of one month.
In Figure 4.17, the first row shows the average inlet temperature of the HPC room
(original inlet temperature data), while other rows illustrate the decomposition of
the data to trend, seasonality, and residual, respectively.

Figure 4.17: Decomposition of Time Series Data.

It is clear from the data trend (second row of 4.17) that it is possible to divide the
dataset into three subsets with three trends. The model’s performance is checked
by training the model with transformed data (residual). The model is trained
with transformed data of all nodes (3312 nodes) during 2019 except one-month,
test-month shown in the first column. In table 4.17, the results are reported. The
firts column shows the test month.

Predictor Decomposition of Inlet Temp Data - Month by Month Cross-validation
Learning Rate=0.1, StepSize=30, Gamma=0.1, Dropout=0

Test Month F1-score Accuracy% MCC TN FP FN TP Precision Recall
1 77.43 -0.12 223 42 23 0 0.00 0.00
2 0.19 87.77 0.13 3449 229 260 59 0.20 0.18
3 97.20 4305 124 0 0 0.00
4 0.01 91.93 -0.01 3937 306 40 2 0.01 0.05
5 0.43 65.48 0.31 2317 156 1373 583 0.79 0.30
6 0.38 68.42 0.22 2511 315 1038 421 0.57 0.29
7 0.10 87.47 0.04 3843 325 230 31 0.09 0.12
8 79.97 3542 887 0 0 0.00
10 0.29 57.73 0.08 2170 370 1502 387 0.51 0.20
11 0.23 42.47 -0.05 1449 331 2134 371 0.53 0.15
12 0.45 34.22 0.14 177 12 1476 597 0.98 0.29

Table 4.17: Results of Experiment 11: Month by Month Cross-validation of
Predictor Model Trained with Decomposed Time Series Data.

The decomposition of the time series data did not improve the model’s per-
formance (table 4.17). The proposed rule-based statistical approach for thermal
hazard labeling of the HPC room utilizes one year’s data; rules and thresholds are
defined based on one year’s data while the data has seasonal properties. Therefore
proposed labeling approach has some issues due to the time-series nature of the
data. This is the motivation for studying the memory-based labeling approach,
which uses adjacent data to generate the label.

4.6.11 Experiment 12: Comparison of TCN Models with
Different Convolutional Layers

Before starting the memory-based labeling, a new set of experiments is done to
have a complete comparison between all TCN models and select a model for further
study. In this experiment, 10% of the dataset is randomly selected as a test dataset
from the whole dataset. After overlap cancelation from both sides (as mentioned
in 4.6.1) of the remaining dataset, the model is trained with the remaining dataset.
The results are reported in table 4.18.

Summary of Input Data Structure (First Layer) of the TCN Model

• TCN model with 1D convolutional layers, and first layer with N Channels:

– 1 Dimension for time

– N channels of the first layer = size of sensors. Sensors create a 1D-array
without considering the location (x,y,z) of the sensors.

– The drawback of this model is the size of the model: The number of
weights is proportional to N channels×kernel size×out channels, and
this is a considerable number of weighs, in the first layer of the model.

• TCN model with 2D convolutional layers, and first layer with 1 Channel:

– 1 Dimension for time

– 1 Dimension for sensors. Sensors create a 1D-array without considering
the location (x,y,z) of the sensors

– First layer with 1 Channel

– More control over the number of the weights (size of the model).

– No attention has been paid to the spatial relationship of the sensors.

• TCN model with 3D convolutional layers and first layer with 1 channel:

– 1 Dimension for time

– 1 Dimension for sensors. Sensors in the same height/z-axis create the
1D-array.

– 1 Dimension for z-axis/height

• TCN model with 3D convolutional layers, and the first layer with T channels
= time windows, for example, with a sampling rate of 1 minute, 360 channels:

– 1 Dimension for sensors x-axis

– 1 Dimension for sensors y-axis

– 1 Dimension for sensors z-axis

– So 3D convolutional for the 3D data of the sensors. For each timestam-
p/sample, it has a cubic data structure.

– Channels of the first layer are different timestamps of Time Window =
6 Hours

Models (TCN)

Normal

Thermal Hazard

Feature Learning Classification

1D-Conv.
Average Pooling

Batch Norm.
ReLU

1D-Conv.
Average Pooling

Batch Norm.
ReLU

1D-Conv.
Average Pooling

Batch Norm.
ReLU

(a) TCN Model with 1DConv. Layers.

Different Models

Number of Weights α
Input Ch* Kernel* Out Ch.

No attention to
spatial relationship

of sensors
1D Conv layers

F1 score = 0.74
Precision = 0.70

Recall = 0.79

2D Conv layers

First layer
w

ith
 1

 In
p

u
t C

h
.

1D

1D

1D size of the model

No attention to
spatial relationship

of sensors

F1 score = 0.82
Precision = 0.73

Recall = 0.93

First layer
w

ith
 1

8
 In

p
u

t C
h

.

size of the model

Spatial relationship
of sensors

F1 score = 0.67 ~ 0.74

1D

1D

Model Input Data

(b) Input Data Structure of the
TCN Model with 1DConv. Layers.

Different Models

Number of Weights α
Input Ch* Kernel* Out Ch.

No attention to
spatial relationship

of sensors
1D Conv layers

F1 score = 0.74
Precision = 0.70

Recall = 0.79

2D Conv layers

First layer
w

ith
 1

 In
p

u
t C

h
.

1D

1D

1D size of the model

No attention to
spatial relationship

of sensors

F1 score = 0.82
Precision = 0.73

Recall = 0.93

First layer
w

ith
 1

8
 In

p
u

t C
h

.

size of the model

Spatial relationship
of sensors

F1 score = 0.67 ~ 0.74

1D

1D

Model Input Data

(c) Input Data Structure of the
TCN Model with 2DConv. Layers.

Time Window

1D

1D

Node 1

Node N

… Inlet Temp

Power Cons.

1D-> Y

1D-> Z
Chassis

1D-> X

1D-> Y

1D-> Z
Chassis

1D-> X

1D-> Y

1D-> Z
Chassis

1D-> X

First layer
w

ith
 TW

 (3
6) In

p
u

t C
h

.

1D-> Z
Chassis

1D-> X,Y

Time Window
1D

First layer
w

ith
 1

 In
p

u
t C

h
.

(d) Input Data Structure of the
TCN Model with 3DConv. Layers.

Time Window

1D

1D

Node 1

Node N

… Inlet Temp

Power Cons.

1D-> Y

1D-> Z
Chassis

1D-> X

1D-> Y

1D-> Z
Chassis

1D-> X

1D-> Y

1D-> Z
Chassis

1D-> X

First layer
w

ith
 TW

 (3
6) In

p
u

t C
h

.

1D-> Z
Chassis

1D-> X,Y

Time Window
1D

First layer
w

ith
 1

 In
p

u
t C

h
.

(e) Input Data Structure of the
TCN Model with 3DConv. Layers.

Figure 4.18: TCN Model’s Architecture and Input Data Structures for Different
Types of Convolutional Layser (1DConv., 2DConv., and 3DConv.).

The first three models of table 4.18 (1D3312C, 2D1C, and 3D1C) have convolu-
tion on the time dimension. The two last models (3D36C and 3D36CBig) used the
first layer’s input channels for the time dimension of input data. As it is clear, the
best model is 3D36CBig with more than 2 million trainable parameters (weights).

In this model, the spatial relationship of data is considered. The input data is a
4D tensor, and the data’s location in the tensor is related to the location of the
sensors in the room. The 3D1C (row 3) has convolution in time, and the spatial
relationship of data just in the z-axis is considered. This model has the lowest
number of trainable parameters.

Model
Name

Number of
Trainable

Parameters

Convolutional
Layers

Number of
Input Channels
of First Layer

F1-score Accuracy% MCC Precision Recall

1D3312C 3,017,186
1 Dimensional

1D for Time Window
Number of Nodes = 3312 0.895 94.286 0.865 0.810 1.000

2D1C 38,315
2 Dimensional

1D for Time Window
1D for Nodes

1 0.824 91.429 0.767 0.824 0.824

3D1C 5,453

3 Dimensional
1D for Time Window

1D for Nodes
1D for Chassis (Height or z-axis)

1 0.889 94.286 0.853 0.842 0.941

3D36C 25,112

3 Dimensional
1D for x-axis of nodes
1D for y-axis of nodes
1D for z-axis of nodes

Time Windows = 36
(Sampling Rate 10 min)

0.878 92.857 0.841 0.783 1.000

3D36CBig 2,253,356

3 Dimensional
1D for x-axis of nodes
1D for y-axis of nodes
1D for z-axis of nodes

Time Windows = 36
(Sampling Rate 10 min)

0.947 97.143 0.930 0.900 1.000

Table 4.18: Results of Experiment 12: Comparison of All TCN Models.

4.6.12 Experiment 13: Memory Based Labeling

The different architectures of the TCN model and methods are investigated to
improve the performance of the thermal hazard prediction of the HPC room.
Although the complex architecture of TCN with 3DConv layers has an improvement
in the performance of the model, the prediction results are not acceptable. The
seasonality and time-series nature of the data is not considered in the proposed
rule-based statistical method for thermal hazard labeling. Rules and thresholds are
defined based on one year’s data distribution while the data has seasonal properties;
this is one of the primary sources of the problem. Based on the results of the
detection model. The detection works well if it randomly selects the training and
test dataset because of well coverage of all ranges of possible temperatures, but
it will be biased if it does not provide the full range of data, i.e., if the training
dataset does not give the full range of the temperature in training, the network
does not learn the similar rules that are used to generate the label. Also, if the
label is generated based on the absolute temperature threshold, even this threshold
changes in a smaller period (every month); if the dataset does not give the network
full coverage of the absolute threshold in the training period, the network can not
learn the same rules because it gets biased. So we decided to define the regular time
window to retrain the model and generate the new thresholds that we employ in
the label generating. So the model will be trained based on the recent past history
and have a new set of thresholds for labeling in each time window. So in each time

window, the threshold to labeling will be redefined. Defining the label based on the
last week’s statistics is a short-term memory extension of what we have done until
now. More extended training that uses the past more samples but is less robust to
the non-stationarity (need to trade-off). The small model 3D1C 5K parameter is
selected to prevent overfitting, and the following experiments will be done on this
model. Memory: In this part of the study, memory means a period (time window)
that the rule-based labeling method defines (or redefines) its Node-Threshold.

Dataset and Label Generation:

With different memory ranges (3, 7, 14 days), and different Node-Threshold (95%,
98%, 99%) and Spatial-Temporal-Impact-Threshold (1%, 5%, 10%, 20%, 50%),the
rooms labels are generated . In table 4.19, the thermal hazard’s weight with
different configurations is illustrated. The configurations that generate around 20%
of the thermal hazard label for a whole year are selected for further study. (Red
Cells).

Memory 3 Days Memory 7 Days Memory 14 Days
Spatial Temporal Impact Threshold Spatial Temporal Impact Threshold Spatial Temporal Impact Threshold
0.01 0.05 0.1 0.2 0.5 0.01 0.05 0.1 0.2 0.5 0.01 0.05 0.1 0.2 0.5

95% 0.89 0.62 0.4 0.17 0.02 0.87 0.54 0.31 0.12 0.02 0.84 0.52 0.31 0.14 0.03
98% 0.82 0.47 0.26 0.1 0.01 0.75 0.35 0.16 0.07 0.01 0.69 0.34 0.18 0.07 0.03

Node
Threshold

99% 0.78 0.4 0.21 0.08 0.01 0.66 0.26 0.12 0.05 0 0.58 0.25 0.13 0.06 0.02

Table 4.19: Weights of the thermal hazard class in the dataset with different
configurations of the thresholds.

The label generated by these configurations should detect the real thermal
hazards (28 June, 1 July), and all the red cells configurations are validated by real
thermal hazards detection. For example, for memory=7 days Figure 4.19 shows
the label around the thermal hazards:

Figure 4.19: Labels generated for memory=7 Days and, Node-Threshold = 0.98,
Spatial-Temporal-Impact-Threshold = 0.1.

Table 4.20 reports the monthly thermal hazard class weights. Compared with
the old labeling approach, the monthly distribution of the new memory-based

labeling approach is closer to a uniform distribution. Although the 3-day memory
has a better uniform distribution, 7-day memory is selected as a starting point for
training the model, aiming to have enough samples in the training dataset in case
of having the same duration of the training dataset and memory. With 14-days
memory, thermal hazard has non-uniform distribution (October).

Old Labeling Approach
Window All Year

STIT=0.05, NT=0.95

Window=3 Days
STIT=0.2, NT=0.95

Window=7Days
STIT=0.1, NT=0.98

Window=14 Days
STIT=0.1,NT=0.98

January 0.08 0.12 0.21 0.06
February 0.07 0.11 0.08 0.09
March 0 0.25 0.09 0.07
April 0.01 0.08 0.08 0.12
May 0.34 0.17 0.29 0.39
June 0.25 0.1 0.05 0.06
July 0.03 0.17 0.18 0.05

August 0 0.14 0.13 0.03
September 0.02 0.2 0.15 0.1
October 0.26 0.17 0.34 0.61

November 0.44 0.24 0.24 0.28
December 0.78 0.21 0.13 0.14

Table 4.20: Monthly thermal hazard class weights with different configurations.

From table 4.18 the model 3D1C (a model with 3DConv, first layer input
channel = 1, in total with 5K parameters) is selected for further study. And
following experiments are done on this model.

Four Approaches for Computing the Node-threshold

As mentioned in section 4.4.1, the thermal hazard labels are generated based on
the rule-based statistical method, which uses two thresholds: (i) Node-threshold
(to indicate that one node in one timestamp is in thermal stress) and (ii) Spatial-
temporal-impact-threshold (to account for thermal hazards’ spatial and temporal
continuity, it regulates the thermal hazard severity). As noted, due to the time-
series nature of the dataset, it is impossible to use the distribution of the entire
year to define the thresholds and rules, and it should use smaller memory for
defining the rule-based statistical method for thermal hazard labeling. Therefore,
in the following, four different approaches for computing, the node-thresholds
are introduced. The main difference between these approaches is related to the
definition of the time window (memory) that the node-threshold is computed based
on the dataset of that time window. After computing node-threshold with each
approach new set of labels is generated, and the performance of the TCN model
(model 3D1C with 5K parameter and with 3DConv layers) trained with new labels
is evaluated.

Approach 1: Node-threshold-Memory = Year2019

The first approach is the approach that was used for label generating until this
part of the study, as Node-thresholds, the quantile 0.95 of nodes’ inlet temperature
for the whole year is computed. So Node-Threshold-Memory = Year2019. In
figure 4.20, this approach is sketched. It shows the period used to compute the
Node-threshold with green-box and the period when those Node-thresholds apply
to generate the label in a red box. In fact, this approach has some issues due to
the time-series nature of the dataset.

Figure 4.20: Node-Threshold Approach 1.

Approach 2: Node-threshold-Memory = Static-Past-Week

In this approach, the past week’s data is used to compute the Node-threshold of
the current week. And the shift/movement unit in the time direction to compute
the Node-thresholds is one week, So each point in that week has the same threshold.
In Figure 4.21, this approach is sketched. It shows the period used to compute the
Node-threshold with green-box and the period when those Node-thresholds apply
to generate the label in a red box. So the memory of the Node-threshold is static,
which means for each week, the Node-thresholds are identical, and updates of the
Node-thresholds occur week by week.

Figure 4.21: Node-Threshold Approach 2.

Approach 3: Node-threshold-Memory = Static-Current-Week

In this approach, the current week’s data is used to compute the Node-threshold of
the same week. And the shift/movement unit in the time direction to compute the
Node-thresholds is one week, So each point in that week has the same threshold.
In Figure 4.22, this approach is sketched. It shows the period used to compute the
Node-threshold with green-box and the period when those Node-thresholds apply to
generate the label in a red box. So Node-threshold-Memory = Static-Current-Week.
So the memory of the Node-threshold is static, which means for each week, the
Node-thresholds are identical, and updates of the Node-thresholds occur week by
week.

Figure 4.22: Node-Threshold Approach 3.

Approach 4: Node-threshold-Memory = Dynamic-Past-Week

In this approach, the connected-last-week data is used for computing each times-
tamp/sample’s Node-thresholds. Moreover, shift/movement unit in time direction
to compute the Node-thresholds is sampling rate (10 minutes or 1 minute). The
difference between this approach and the previous two approaches is that it utilizes
different data for computing the Node-thresholds of two samples within one week.
In contrast, the previous methods for samples of one week use the same data to
compute the Node-threshold. In Figure 4.23, this approach is sketched. It shows
the period used to compute the Node-threshold with green-box and the period
when those Node-thresholds apply to generate the label in a red box. So Node-
Threshold-Memory = Dynamic-Past-Week. Memory is dynamic, which means that
for each sample, this method uses a different dataset (at least one element of the
sequences is different) to compute the Node-thresholds.

Figure 4.23: Node-Threshold Approach 4.

In figure 4.24, the x-axis is DateTime, and the y-axis shows the Node-threshold
(temperature in ◦C) for 4 different Node-threshold computing approaches. Each
row shows one node from one random rack (3 nodes are in the same rack but at
different heights -bottom, center, top chassis). As evident, Node-thresholds are
constant for each week for approach 2, and approach 3 (red and blue lines), while
it is dynamic for approach 4 (green line). And the black line which is constant for
all year shows the approach 1.

Figure 4.24: Threshold temperature of three nodes from a random rack with
different labeling approaches.

Figure 4.25 reports boxplot of Node-thresholds for different weeks of the year
(approach 2, 3). Each box shows the distribution of threshold temperature (◦C)
for 3312 nodes in a week. So each box is generated by utilizing 3312 temperature
data (3312 nodes); for each week, there is one threshold for one node. This figure
shows the variation of the thresholds for the different weeks.

Figure 4.25: Box plot of temperature thresholds of nodes for different weeks of the
year 2019.

Figure 4.26 illustrates the weekly distribution of the thermal hazards with
4 different labeling approaches. The x-axis is the date, and the y-axis shows
the percentage of thermal hazards each week. For example, 10% means that

we classified the room as in thermal hazard for 10% of the time in that week.
Until this part of the study, experiments employ the labeling Approach-1 (with
configuration: Node-threshold-Memory = Year2019, (Node-threshold) NT=95%
(Spatial-temporal-impact-threshold) STIT=5%) , which classified around 20%of
times the HPC room in thermal hazard. Suppose the same thresholds are used
in new approaches; it identifies rooms at thermal hazard for more than 30% of
the time. Therefore thresholds should be modified for new approaches to have a
reasonable percentage of the thermal hazard class in the dataset. New configuration:
NT=95% and STIT=10% to have around 15% thermal hazard class in approach 4.

Figure 4.26: Weekly distribution of the thermal hazards with 4 different labeling
approaches.

Memory Based Labeling (Approach 2: Node-Threshold-Memory =
Static-Past-Week)

In this set of experiments to generate thermal hazard labels, approach 2 is employed.
So Node-thresholds are updated week by week. For 10 different training and
test periods, the selected model (3D1C) is trained with two different sets of
hyperparameters. Then, metrics are computed by summing TP, TN, FP, FN for
20 different experiments. The results are reported in table 4.21; in the first row,
the model is trained with one week’s data, and the test is done in just a week after
training. The train and test periods of experiments of row 1 are reported in table
4.22. Then the train and test period increase to 2 and 3 weeks ((rows 2 and 3 in
table). Results are not satisfactory.

Training Dataset
Duration

TN FN FP TP sum acc% precision recall f1-score MCC #Exp.

7 Days 12253 1231 1315 321 15120 83.16138 0.19621 0.20683 0.20138 0.107385 20
14 Days 19962 3378 4568 820 28728 72.34057 0.15219 0.195331 0.171083 0.008244 20
21 Days 16800 3294 3390 708 24192 72.37103 0.172767 0.176912 0.174815 0.008922 20

Table 4.21: Results of Experiment 13: Predictive Model with Labeling Approach 2.

Start Train
Stop Train

and
Start Test

Stop Test

1 2019-01-21 2019-01-28 2019-02-04
2 2019-01-28 2019-02-04 2019-02-11
3 2019-02-04 2019-02-11 2019-02-18
4 2019-02-11 2019-02-18 2019-02-25
5 2019-02-18 2019-02-25 2019-03-04
6 2019-02-25 2019-03-04 2019-03-11
7 2019-03-04 2019-03-11 2019-03-18
8 2019-03-11 2019-03-18 2019-03-25
9 2019-03-18 2019-03-25 2019-04-01
10 2019-03-25 2019-04-01 2019-04-08

Table 4.22: Periods of Experiments.

Memory Based Labeling (Approach 3: Node-Threshold-Memory =
Static-Current-Week)

In this set of experiments to generate labels, approach 3 is employed. So Node-
thresholds are updated week by week. The results are summarized in table 4.23. The
selected model (3D1C) is trained with different time windows (column ”Training
Dataset Duration” of table 4.23) for various train periods. Then, metrics are
computed by summing TP, TN, FP, FN for different experiments. For example,
in row 1 of table 4.23, the model is trained with one week’s data, and the test is
done just a week after training. Then the train duration increase to 2, 4, and 6
weeks but with the same test duration(a week just after the train). Results are not
satisfactory.

Training Dataset
Duration

TN FP FN TP sum acc% precision recall f1-score MCC #Exp.

7 Days 9488 5467 2406 2079 19440 59.5 0.3 0.5 0.3456 0.084703 20
14 Days 6098 2275 1446 873 10692 65.2 0.3 0.4 0.3194 0.094716 11
28 Days 3883 714 837 398 5832 73.4 0.4 0.3 0.3392 0.173632 6
42 Days 2566 622 458 242 3888 72.2 0.3 0.3 0.3095 0.13919 4

Table 4.23: Results of Experiment 13: Predictive Model with Labeling Approach 3.

Memory Based Labeling (Approach 4: Node-Threshold-Window =
Dynamic-Past-Week)

In this set of experiments to generate labels, approach 4 is employed. So Node-
thresholds are updated dynamically for each sample. The results are summarized
in table 4.24. The selected model (3D1C) is trained with different time windows
(column ”Training Dataset Duration” of table 4.24) for various train periods. Then,
metrics are computed by summing TP, TN, FP, FN for different experiments. For
example, in row 1 of table 4.23, the model is trained with one week’s data, and the
test is done just a week after training. Then the train duration increase to 2, 4,
and 6 weeks but with the same test duration(a week just after the train). Results
are not satisfactory.

Training Dataset
Duration

TN FP FN TP sum acc% precision recall f1-score MCC #Exp.

7 Days 5396 605 689 114 6804 80.982 0.16 0.1 0.1 0.0432 7
28 Days 3483 397 853 127 4860 74.28 0.24 0.1 0.2 0.0353 5

Table 4.24: Results of Experiment 13: Predictive Model with Labeling Approach 4.

4.7 Summary

This section suggests a framework for thermal hazard prediction, which encompasses
data query and preprocessing, model training, and final model inference, which
provides the prediction. The thermal hazard predictor is a model that, based on
time series data of computing nodes’ sensors, predicts if a thermal hazard will
happen in the room in the next hours. Input data are the time series of nodes’
temperature, and the output is a binary classification: likely forthcoming hazard
or not. The dataset does not contain any labels, so this study used statistical
analysis of real thermal hazard data from the CINECA Marconi KNL (largest
HPC cluster of CINECA at 2019) Room F to characterize thermal hazards in
the HPC room. Then based on this analysis, a rule-based statistical method was
defined to create labels. The proposed rule-based statistical method is composed
of two thresholds (i) Node-threshold (to indicate that one node in one timestamp
is in thermal stress) and (ii) Spatial-temporal-impact-threshold (to account for
thermal hazards’ spatial and temporal continuity, it regulates the thermal hazard
severity). Different classical machine learning and DL tools were investigated and
empirically shown that the proposed thermal hazard predictor, namely a Temporal
Convolutional Network (TCN), outperformed non-deep models and LSTM. Some
techniques are introduced/examined to deal with issues like; samples-overlapping of
time series data or imbalanced datasets. I showed that thermal hazard prediction

has many challenges in real case scenario implementation. Although the TCN
model works well in the research phase (selecting the test dataset randomly like
what is common in most research and papers), it will have substantial performance
degradation in real implementation. This study investigates enough complex TCN
models with different convolutional layers, and input data flow to improve the
model’s performance. The memory-based approaches for labeling the thermal
hazard were investigated. During this study, we had meetings with one of the
most powerful HPC cluster’s sys-admin (Marconi A2 HPC clsuter of CINECA
ranked 21th in June 2019 [2] Top500 list) to understand the situation better and
find a solution to implement this thermal hazard prediction framework in a real
in-production large-scale HPC cluster. Based on the study results, I find that due
to the dataset’s complexity, the monitoring signal’s dynamism, manual update of
the cooling setpoints, activation of the free cooling system, etc. it is essential to
use a more sophisticated anomaly detection method (or thermal hazard detection
method), i.e., a rule-based statistical method with just node level data is insufficient
for thermal hazard perdition for real in-production HPC rooms, and I should add
the metrics of HPC room level facilities like RDHX, CRAC unit, etc. to the dataset
and improve the anomaly detection approach. The study results motivated us to
collect essential metrics of the Marconi100 HPC cluster and Room F from April of
2021 and utilize this big dataset to develop a sophisticated anomaly detection tool
in the next chapter of the thesis.

Chapter 5

Thermal Anomaly Detection

5.1 Overview

Anomaly detection is an important research topic and is widely applied in diverse
fields, predictive maintenance in the industry [78], security [79, 80], fault detection
in HPC systems, and Datacenters [81,82], finance [83], sensor networks [84] and
the internet of things [85], etc. Although anomalies in HPC systems, like other
domains, are very rare events, anomaly detection is vital due to the significant
harmful consequence of anomalies. In this study, an anomaly is a suspicious
pattern in the monitoring signals of the HPC room, which can initiate due to; an
inappropriate working of the cooling system or subsystem, or inconsistency between
the different cooling systems in the HPC room, or abnormal computing demand,
or extreme hotspot during the summer that can affect the capacity of cooling
systems, or fast variation of some monitoring signals that could not support by
other signals, or it can be complex temporal and/or spatial relation of the different
monitoring signals which is not clear for human expert but can be identified by
machine learning approaches. The severity of the anomaly can be different. It can
be due to just some transient variation of the monitoring signals, which has no
significant thermal effect at the node level and the temperature of the node level
and room level is under control, or it can be very severe, which create a thermal
hazard and even outage of part or whole of the computing capacity of the HPC
system. In order to the non-conservative operation of the HPC system, different
thresholds that have a critical role in defining the anomaly should adjust accurately.

In this study of anomaly detection, the monitoring data of the real HPC Room
at CINECA, which hosts Marconi 100 (One of the most powerful computing systems
worldwide, ranked 9th in the TOP500 list in June 2020 [3]) is adopted. This study
is done based on real data analysis of in-production HPC cluster and HPC room
facilities (CRAC units, RDHX, etc.) and never used any synthetic data or artificial

98

anomalies. To collect the monitoring data, we used a holistic monitoring system,
ExaMon (2.3), one of the state-of-the-art HPC monitoring systems developed by
other members of our group at the University of Bologna. To anomaly detection in
the monitoring data of computing nodes and HPC facilities, I utilized two tools: 1-
Rule-based Statistical Method (Flags) and 2- Semi-supervised Machine-Learning-
based Method (Autoencoder). The rule-based statistical method consists of a
set of events, which hereby I refer to as flags (in total, 281 flags for one rack
with 20 computing nodes and the room’s facilities) that can identify the samples
with abnormal patterns or variations of the monitored signals. For the ML-based
methods, I focused on two semi-supervised deep-learning approaches, the Multilayer
Perceptron Autoencoder (MLP-AE) and Long Short-Term Memory Autoencoder
(LSTM-AE), which reconstructs the input at the autoencoder’s output. Different
configurations for the training dataset to find a suitable subset of the dataset for the
training of the autoencoder are investigated. Anomalies are detected by comparing
the reconstruction error with a threshold. I defined the threshold based on the
statistical distribution of the training dataset. Finally, the performance of the
introduced approach and tools in anomaly detection at room level and subsystem
level by a detailed study of monitoring signals is verified. The labeling results are
validated with real/physical failure on 28-07-2021.

5.2 State of the Art

By approaching exascale computing systems [86], the importance of anomaly
detection research topics in HPC systems increases [87]. In the HPC system,
anomalies reduce the performance and increase the cost by affecting the computing
capacity and energy of HPC systems. Anomalies are reported due to network
contention [88], shared resources contention [89,90], hardware-level problems [91],
memory [92], CPU [93], and cooling system failure [75, 94]. Some researchers used
the rule-based analysis to define the anomalies; researchers manually, or based on the
statistical analysis or recommendations, set thresholds for system metrics [95, 96].
The monitoring data of the system and component is investigated to find the
correlation between the different problems (like detecting I/O congestion and out-
of-memory) and causes by other studies [92,93]. Although rule-based analysis is easy
to implement, due to the size of the monitoring data of HPC systems, rule-based
analysis or manual root cause analysis is an inefficient approach, so the ML-based
approaches are widely used by researchers for anomaly detection [87,97–99]. Based
on the ML-based approach proposed in [100], the authors introduced an end-to-end
machine learning framework in paper [87] that diagnoses performance anomalies
on compute nodes at node-level and job-level. The authors of [101] used Long
short-term memory (LSTM) neural network to detect running applications with

suspicious behavior to increase the system’s efficiency. In [102], the authors present
an ML-based predictor framework for real-time node failures. They used log
collections of 4 HPC systems to offline training to extract the failures patterns.
Authors in the series of studies provided [81,98,103,104] fault classification and
anomalies detection; first introduced supervised methods which mostly learn trivial
correlations (i.e., idleness equals to failure) without anticipation capability [103].
Then they proposed a semi-supervised method. Using the only semi-supervised
method has suboptimal performance (high number of false positives) [98, 104].
At [81], they propose combining a semi-supervised and a supervised model, in
which both models are accurate (with an F-score around 0.86). This approach can
anticipate anomalies around 1 hour before the system administrator registers the
anomaly.

Most studies investigate the anomalies employing one of the statistical rule-
based or ML-based methods for anomaly detection at the application or node levels
without considering the room level facilities, which can create severer anomalies than
the application and node levels. This study employed a combination of statistical
rule-based and deep learning methods on a big dataset, composed of node-level
metrics as well as room-level facilities metrics (like two different sophisticated
cooling systems metrics, total power consumption metrics of different parts of
HPC room collected from Modbus, etc.) to anomaly detection at room-level, node-
level, system-level, and subsystem-level. Anomalies are infrequent, so some studies
employed synthetic anomalies at the test state and out of production HPC. In this
study, all the data is collected from in production HPC cluster (one of the most
powerful computing systems worldwide), and, finally, the study and approaches
are validated with real physical failure. So, to the best of our knowledge, this is
the first time that a study employed both statistical rule-based and ML-based
(semi-supervised) tools on different levels monitoring data of in production HPC
cluster (collected by one of the states of the art holistic monitoring system at the
different levels node, room facilities, etc. which developed in our group in University
of Bologna by other members of the group) to anomaly study at different levels of
node, system, subsystem, and HPC room. This study included a detailed study of
the real thermal failure, which caused the outage of half of the computing nodes of
the HPC cluster.

5.3 Dataset

This study is done on the monitoring data of the Room-F of the CINECA datacenter,
which hosts the Marconi100 (More Information 2.2.3) cluster. The Marconi100
is a Tier-0 cluster ranked 9th (June 2020 [3]) in the list of the most powerful
supercomputers worldwide [3]. In figure 5.1, the schematic of the HPC room’s

facilities and a rack is depicted. Different metrics like inlet, PCIe, CPU [0,1], and
GPU [0,1,2,3] temperatures, fan speed, power supply are studied for the rack nodes.
The racks are equipped with RDHX, and the metrics: water flow rate, inlet, and
outlet water temperature, position of the three-way valve, and delta temperature
of the water are studied. Moreover, there are 6 CRAC units in the room, metrics
like compressor utilization, free cooling, free cooling valve open position, fan speed,
return, and supply air temperature are studied. From the Modbus, we extracted
the metrics: total power consumption of ICT, total power consumption of RDHX
pumps, total power consumption of chillers, total power consumption of CRAC
units. In total, for one rack with 20 nodes and room facilities, 242 metrics are
collected. The data collection period starts from 2021-04-08 ends on 2021-08-21.

Subfloor

Inlet Temp.

R
D
H
X

CRAC Unit
Setpoint

Power
Fan Speed
Free-Cooling
Compressor
Utilization

ASHREA
Room 21~23 C

Inlet of CRAC
~28 C

Outlet of CRAC
~18 C

Water Temperature
Water Flow Rate
Power Consumption
Valve Position

Pump

Rack
20 Nodes

Outlet Temp.

Cold and Hot
Water Pipes

Figure 5.1: Schematic of the HPC Room’s Facilities and a Rack.

5.4 Rule-based Statistical Method (Flags)

Figure 5.2 shows the two monitoring signals blue line on the right y-axis shows the
total power consumption of the chillers, while the red line in the left y-axis displays
one random node’s inlet temperature. The green zone demonstrates part of the
signal that we know cluster is in normal production; in contrast, the red zone is the
failure zone. The red line (Inlet temperature of a node) in the abnormal zone, the

red zone, reaches a very high value compared to the normal zone; this is the 1
Constraint Violations condition for this signal. Moreover, the blue line (Total

power consumption of chillers) has a high variation in a small time interval in the

abnormal zone (2 High Derivative). Considering these two abnormal patterns
of the monitoring signal in the definitions of the flags, we used High Derivative and
Constraint Violations widely to find the anomalous and suspicious patterns. A set
of flags is defined for all the critical metrics of computing nodes of one rack and
room’s facilities (CRAC Units, RDHX, Modbus, etc.), as mentioned in detail in
the 5.3.

Rule-based Statistical Method (Falgs)

• Dataset does not have a thermal hazard label.

• Flags are defined to find abnormal patterns.

• Comparison of normal and abnormal signals:
• Constraint Violations : The red line (Inlet temperature of a node) reaches a very high value.

• High Derivative: The blue line (Total power consumption of chillers) a high variation in a small
time interval.

Normal Abnormal

FlagsHigh Derivative Constraints Violation

Figure 5.2: Comparison of Normal and Abnormal Signals.

Two main groups of flags: 1 Constraints violation;M(t) > threshold or

M(t) < threshold,M(t) is a metric, and t shows time. and 2 High derivative;

M(t)−M(t− 1) > threshold orM(t)−M(t− 1) < threshold. Group 1 has
three subgroups: a Cooling shortage, indicating a part of the cooling system
reached its max or close to the maximum capacity (M(t) > threshold), or it

is due to the failure of one part (M(t) < threshold). b Thermal/ASHRAE,
which shows CPU/GPU or inlet temperature of the node, violated the ASHRAE
recommendations. c The computing load that shows, based on the history, the
Rack/Room consumes more than usual, reaches its maximum computing capacity.

In group 2 , there are flags due to the high variation of the signals, for example, a
high derivative of the power consumption or temperature. In total, 281 flags for
242 metrics are defined.

Cooling
Shortage

CRACCompressor
Utilization

Fan Speed

Power
Consumption Inlet Air

Temp.

Outlet Air
Temp.

RDHX

Water Flow
Rate

Chiller Power
Consumption

Pump
Power

Consumptio
n

Three-way
Valve Position

Inlet
Water
Temp.

Outlet
Water
Temp.

Node

Fan Speed

Thermal/ASHRAE

Node

CPU
Temp.

GPU
Temp.

CoolingInlet Temp
22~24C

Computing
Load

Total ICT Power
Consumption

Rack Power
Consumption

FlagsHigh Derivative Constraints Violation

High
Derivative

RDHX
Pump Power C.

Chiller
Power C.

Water Flow
Rate

Water
Temp.

Three-way
valve

CRAC

Air Temp.

Free Cooling
Valve

Power C.

Fan
Speed

Compressor
UtilizationHeat Sources

IT/Rack/Node

Thermal Rank

CPU Temp.

GPU Temp.
Power

Consumption

Inlet
Temp.

Fan
Speed

Environmental
Temp

Falgs (Rule-based Statistical Method)

Figure 5.3: Different parts of flags set.

5.4.1 Mathematical Definition of the Flags

In this section, the mathematical formula of the flags is presented. Figure 5.3
shows the different parts of the set of flags. Each rack of Marconi-100 has 20
chassis, and each chassis host one node. From chassis 1 to 20 from bottom to top.
So for Marconi-100, we can use the chassis temperature and node temperature,
interchangeably since each chassis host one node. In the following, the thresholds
are different for each formula, and we set them based on the recommendations like
ASHRAE or data analysis. For metrics with no recommendation for inequality like
M > threshold, we used a quantile of 0.99 of parameter, and for inequality like
M < threshold quantile of 0.01.

In the following equations,M(t) is a metric, and t shows time. M(t) can be
power consumption of node, chiller, CRAC unit, pumps or temperature of GPU,
CPU, PCIe, Inlet, water of RDHX, Air of CRAC, or the fan speed of node, CRAC
units or compressor utilization of CRAC units, the position of the valve of RDHX,
CRAC units, water flow rate, etc. Each rack has 20 nodes/chassis; each node
experiences a different inlet, CPU core, and GPU temperatures. rackMmax(t) and

rackMmin(t) show the maximum and minimum value measured for a metric by
these 20 nodes of the rack at time t. Flag 3.1 and 3.1 check if a metric experience

is higher and lower than a threshold. This is a constraint violation check flag.

rackMmax(t) > majorthreshold (5.1)

rackMmin(t) < minorthreshold (5.2)

The Flag 5.3 checks the maximum heterogeneity of measured value by a metric at
one timestamp for the nodes of a rack.

rackMmax(t)− rackMmin(t) > threshold (5.3)

Flag 5.4 and 5.5 examine the rack’s maximum and minimum value variation
for a metric, respectively.

|rackMmax(t)− rackMmax(t− 1)| > threshold (5.4)

|rackMmin(t)− rackMmin(t− 1)| > threshold (5.5)

Flag 5.6 controls the number of items of a metric that violate the threshold. For
example how many GPUs experience high temperature in the rack.

20∗C∑
i=1

(rackMi(t) > threshold) (5.6)

Flag 5.7, 5.8, and 5.9 how many items of a metric experience abnormal variation
and C for CPU, GPU, inlet, and PCIe temperature is 2, 4, 1, and 1, respectively.

20∗C∑
i=1

(|rackMi(t)− rackMi(t− 1)| > threshold) (5.7)

20∗C∑
i=1

(rackMi(t)− rackMi(t− 1) > +threshold) (5.8)

20∗C∑
i=1

(rackMi(t)− rackMi(t− 1) < −threshold) (5.9)

Flags 5.10, 5.11, 5.12, and 5.13 check the metrics’ constraint violation and abnormal
variation (except the node metrics).

majorM(t) > threshold (5.10)

minorM(t) < threshold (5.11)

M(t)−M(t− 1) > +threshold (5.12)

M(t)−M(t− 1) < −threshold (5.13)

Flags 5.14 check the number of metric items that experience abnormal value based
on their own history. There is a difference between this flag 5.14 and flag 5.6 which
checks the number of the items of metric which violate a defined threshold for all
of the items, i.e., in flag 5.14, GPU-1 has a threshold based on the history of just
GPU-1. However, flag 5.6 has a fixed value as a threshold for all GPUs of the rack,
which can be based on the ASHRAE recommendation or history of all the GPUs
in the rack.

20∗C∑
i=1

(rackMi(t) > cthresholds) (5.14)

Flag 5.15 checks the number of nodes that are in an odd situation due to the
abnormal value of a metric, while the flag 5.16 controls the number of nodes that
have strange variations in a metric.

20∑
i=1

(
C∑
c=1

(rackMi,c(t) > cthresholds) ≥ 1) (5.15)

20∑
i=1

(
C∑
c=1

(|rackMc(t)− rackMc(t− 1)| > cthresholds) ≥ 1) (5.16)

Variation of Coldest Chassis at a Rack: Subscript i shows chassis/node
number. Cinlet(t) shows chassis-number of coldest chassis at time t, based on the
inlet temperature.

|rackCinlet(t)− rackCinlet(t− 1)| > threshold (5.17)

Thermal Rank of Chassis nodeRinlet
i (t): Index of the chassis/node in a

sorted list of chassis/node based on its inlet temperature at time t. For example,
in Marconi 100 chassis− 7 of rack-5 at 2021-02-05 15:50:00 is the coldest chassis,
so its thermal rank is one at that time nodeRinlet

7 (2021/02/01− 15 : 10 : 00) = 1.

20∑
i=1

|nodeRinlet
i (t)− nodeRinlet

i (t− 1)| > threshold (5.18)

In general, this flag can detect a situation that there is switching in the thermal
rank of most of the chassis of the one rack, which mostly appears when chassis
temperatures of a rack quickly change from compact/dense to widespread pattern
or vice versa.

5.4.2 Initial Labeling of Samples Utilizing the Abnormality
Level (Sum of Flags)

Dataset is created by nodes’ metrics and room facilities metrics, but it does
not contain any normal or abnormal label to distinguish between the normal or
abnormal samples. There are some reports related to the anomaly/failure that
the experts of CINECA provided. But these reports are very rare and just for
situations where the bad side effects of the anomaly are evident, and it caused a
reduction of computing capacity or even an outage of the cluster. Some conditions
or abnormalities restrict the effective utilization of resources in HPC systems.
Although these anomalies degrade the performance of HPC clusters, those are not
effortlessly noticeable for human experts. In general, these anomalies can affect
energy-to-solution, time-to-solution, again of the nodes, etc. In this study, to find
the suspicious patterns accurately in the monitoring signals of the HPC room
(Marconi 100), the flags are introduced, and to have an initial label for each sample
of the dataset the sum of the raised flags at each timestamp (sample) is utilized.

The set of flags defined in this study can detect many suspicious patterns in
monitoring signals (especially related to the thermal and power characteristic of the
HPC cluster). The main weakness of the flags and generally most of the rule-based
methods is that these methods could not consider the complicated correlation of
the signals in finding the anomalies or suspicious patterns of the monitoring signals.
Each of the individual signals may represent a normal pattern for a period, but
the correlation of the signals creates an anomaly or vice versa, an individual signal
represents a suspicious pattern, but it is in a normal condition regarding the whole
monitoring signal. If an ML-based approach for anomaly detection design and
train correctly can solve this weakness of the flags.

Utilizing flags makes it potential to identify some abnormal patterns; therefore,
if a sample has zero raised flags, it is more probable that this sample is a normal
sample. So for this part of the study, I classify the samples with zero raised flags as
normal or non-anomaly samples based on the flags. It is difficult or impracticable
to find a solid threshold for classifying samples as abnormal based on the raised
flags at each timestamp. Therefore, a threshold of 25 for the sum of raised flags
is defined to classify a sample as an abnormal sample by statistical analysis of
samples, i.e., this definition of the thresholds for normal and abnormal samples
is very conservative and classifies almost 14%of samples as normal and 4% as
abnormal and majority of the samples classified as grey samples (Tabel 5.1).

Figure 5.4 shows the sum of flags with the blue line on the left y-axis and the
moving average (with a window of one week) of the sum of flags with the orange
line on the right y-axis, two thresholds, divided the samples of the dataset into
three regions. There is a peak in the moving average of the sum of flags after
2021-07-22, which is related to the real physical failure at 2021-07-28. These labels

are not final, but they can assist in finding a subset of the dataset that is normal
or close to normal samples.

These labels are not final labels; they are just for a select part of the dataset
to train the LSTM-AE. The flags could not understand the relation of different
parameters (how different parameters connected to each other), but LSTM-AE
expectedly should know about it.

Initial Label Definition Percentage of Dataset
Normal

∑
Flags = 0 13.93%

Grey 1 ≤
∑

Flags ≤ 25 81.83%
Abnormal

∑
Flags > 25 4.24%

Table 5.1: Definition of Initial Labels Based on the Flags and Percentage of Dataset.

20
21

-0
4-

22

20
21

-0
5-

01

20
21

-0
5-

22

20
21

-0
6-

01

20
21

-0
6-

22

20
21

-0
7-

01

20
21

-0
7-

22

20
21

-0
8-

01

20
21

-0
8-

22

0

20

40

60

80

100

Fl
ag

s Anomaly: Flags > 25

Grey: 1 Flags 25
Non-Anomaly: Flags = 0

Flags

Moving Average of Flags
Window = One Week

2

4

6

8

10

12

14

M
ov

in
g

Av
er

ag
e

of

Fl
ag

s
W

in
do

w
=

On
e

W
ee

k

Figure 5.4: Sum of the Flags and Initial Labeling.

5.5 Autoencoder

Autoencoder is a sort of Artificial Neural Network (ANN) model (Figure 5.5)
composed of three components, Encoder, Code, and Decoder, which reconstruct the
input at the output of the model, and each of these parts can compose of multiple
hidden layers. Encoder(Input) maps the input to the code layer, and Decoder
maps the code layer to the output of the autoencoder. Equation 5.20 shows the

error of the input from the reconstructed input (Înput) at output of autoencoder.
In the training step, by minimizing the error, the autoencoder train to re-

construct the input at the output, and in the test step, the reconstruction error
shows the performance of the autoencoder in reconstruction. The training of
the autoencoder can be in a supervised, semi-supervised or unsupervised manner.
The reconstruction error in anomaly detection can use to classify the samples as
normal and abnormal by comparing with predefined threshold if the well-trained

autoencoder reconstructs the sample with an error lower than the threshold; this
sample is normal; otherwise, it is abnormal [105].

Înput = Decoder(Encoder(Input)) (5.19)

error = Error(Input, Înput) (5.20)

In
p

u
t

R
e

co
n

stru
cte

d
 In

p
u

t

Encoder DecoderCode

Figure 5.5: Autoencoder.

The sum of flags is utilized for selecting a normal subset of the original dataset
to ensure that the autoencoder trained with almost normal samples and learned
the normal property of the data. In this study, two types of the autoencoder are
investigated (i) MLP-AE, which is composed of the Multilayer Perceptron (MLP),
and (ii) LSTM-AE, which is composed of the Long short-term memory (LSTM)
layers. In this study, the input of the autoencoder is the Marconi 100 thermal,
power, and cooling parameters, and the same parameters should be reconstructed
at the output. This model should learn useful properties of data and how different
parameters are related to each other, and the temporal aspect of data.

(i) MLP-AE: This model is composed of the Multilayer Perceptron (MLP)
and can learn the normal relation of different input parameters, which is essential.
However, this model cannot learn the temporal relation of the data. Flags work
based on the derivative of the parameters; it means flags somehow can see some
temporal characteristic of the dataset. (ii) LSTM-AE: Long short-term memory
(LSTM) autoencoder, is composed of LSTM layers, a type of Recurrent Neural
Network (RNN) that learns long-term dependencies thanks to additional gates [69];
therefore, this model can learn the temporal characteristic of the time-series data.

5.5.1 Autoencoder Model and Training Dataset Configura-
tion Selection

From the dataset, the first two months are selected to do some preliminary experi-
ments. In the first row of figure 5.6 graphically illustrated, that selected dataset
is divided into three subsets based on the sum of flags: samples with zero raised
flags as normal or non-anomaly (

∑
Flags = 0), samples with more than 25 raised

flags as the anomaly (
∑

Flags > 25), and samples between normal and abnormal
as a grey dataset (1 ≤

∑
Flags ≤ 25). In these experiments, MLP-AE and

LSTM-AE are evaluated; meanwhile, the effect of mixing some parts of the grey
dataset into the training dataset on the performance of models is investigated.
Each row of figure 5.6 shows the different configurations for the training dataset.
The Autoencoder (AE) models are trained with 75% of the normal dataset or 75%
of the normal dataset + parts of the grey dataset. Adding some parts of the grey
dataset can improve the performance of the autoencoder because it increases the
size of the training dataset and it can help to generalization of the model, and
the labels generated by the sum of the flags are not the final labels, and a lot of
the normal samples are inside the grey dataset. The remaining 25% of the normal
dataset and the whole abnormal dataset are used for the test dataset. The test
dataset is fixed in all the experiments. In training, samples dont have any labels,
and it is somehow unsupervised learning.

1 5 10 15 20 25

TESTTRAIN TEST

TESTTRAIN TESTTRAIN

TESTTRAIN TESTTRAIN

TESTTRAIN TESTTRAIN

TESTTRAIN TESTTRAIN

TESTTRAIN TESTTRAIN

A

B

C

D

E

F

Normal Grey Abnormal

������ > 251 ≤������ ≤ 25������ = 0

Figure 5.6: Different Configurations of the Train and Test Dataset.

The reconstruction error of the trained autoencoders on the test dataset is
computed. If the trained model can reconstruct the input sample with low error, it
means the autoencoder identified that sample as normal, but if it reconstructs with
high error, it means it detects some anomaly at that sample. And as mentioned,
the test is done on the trained model with 25% of the normal dataset, and
usually but not always, the autoencoder should reconstruct this part with low
reconstruction error (the low error will be defined). Moreover, the test dataset
contains whole abnormal (based on the sum of flags) samples, and it is expected
that the autoencoder reconstructs these samples with high reconstruction error (the
high error will be defined). Figure 5.7 reports the reconstruction error of MLP-AE
and LSTM-AE of the test dataset for 6 different configurations of the training
dataset. The outliers are invisible to be a more readable plot. The red and blue
boxes show the reconstruction error of the abnormal and normal parts of the test
dataset, respectively. The goal is to discriminate between the normal and abnormal
samples of the test dataset based on the reconstruction error of the autoencoder.
Consequently, to distinguish between the normal and anomaly samples, these two
boxes should have low overlap i.e., if the boxplot of the reconstruction error of
the normal and abnormal datasets have high overlap, then the distribution of the
error of normal and abnormal samples will have high overlap, and classification of
the samples based on the reconstruction error will be impracticable. As shown in
figure 5.7, the normal and abnormal boxplots in MLP-AE have a higher overlap
than LSTM-AE, so the LSTM-AE in classifying samples will be more effective.
This effectiveness is related to the fact that LSTM can learn about the time-
series characteristic of the dataset. So empirically is shown that the LSTM-AE
outperforms the MLP-AE in anomaly detection, so the LSTM-AE is selected to
continue the research.

Test
Abnormal

Test
Normal

A

MLP-AE LSTM-AE

Test
Abnormal

Test
Normal

B
Test

Abnormal

Test
Normal

C
Test

Abnormal

Test
Normal

D
Test

Abnormal

Test
Normal

E

10 1 100 101 102

Reconstruction Error of MLP-AE

Test
Abnormal

Test
Normal

F
102 103

Reconstruction Error of LSTM-AE

Figure 5.7: Reconstruction error of MLP-AE and LSTM-AE for the test dataset
for six different configurations of the training dataset.

Reconstruction Error Threshold: To binary classification (Normal, Abnormal) of
the samples utilizing the reconstruction error of the autoencoder, a reconstruction
error threshold is required. So a reconstruction error threshold should be defined to
convert the error by comparing it with this threshold; if the error is bigger than the
threshold, the autoencoder identifies the sample as an anomaly; else, it is identified
as non-anomaly. In this step of the study, quantile 0.99 of the error of the training
dataset as a threshold is defined.

Assume the labels created utilizing the sum of the flags are ground truth labels
by comparison of these labels with classification results based on the reconstruction
error of the autoencoder (as detected labels); the results in table 5.2 are achieved.
As mentioned before from boxplots in figure 5.7 evident that the LSTM-AE is
more effective than MLP-AE, and also in all of the F1-score results of experiments
reported in table 5.2 except configuration-A, LSTM-AE outperforms the MLP-AE.

MLP-AE LSTM-AE
Accuracy

Test Normal
Accuracy
Abnormal

Average
Accuracy

Average
F1 score

Accuracy
Test Normal

Accuracy
Abnormal

Average
Accuracy

Average
F1 score

A 0.97 0.8 0.88 0.88 0.61 1 0.83 0.86
B 0.99 0.74 0.85 0.85 1 0.95 0.97 0.97
C 1 0.36 0.64 0.53 1 0.87 0.93 0.93
D 1 0.32 0.61 0.49 1 0.77 0.88 0.87
E 1 0.29 0.59 0.44 1 0.68 0.83 0.81
F 1 0.29 0.6 0.45 1 0.6 0.78 0.75

Table 5.2: MLP-AE and LSTM-AE performance results with six different configu-
rations of the training dataset.

Analyzing the results of the F1-score table 5.2 and figure 5.7, the configuration
B, C, or D for the training dataset can be a good candidate. Figure 5.8 shows
boxplots of reconstruction error of the LSTM-AE for the training and test datasets
for configuration of B, C, D. The red dashed line shows the quantile of 0.99 of
the training dataset; it somehow can classify the normal and abnormal dataset.
Our approach for configuration B identifies 28% of the grey dataset as anomalies,
and for C, D respectively, 9% and 4%. Therefore, I selected configuration C for
continuing the study, which identified a lower percentage of anomalies than B;
although configuration B has the highest F1-score, C has an acceptable F1-score.

Test
Abnormal

Test
Normal

Train
Normal+Grey

B

LSTM-AE

Test
Abnormal

Test
Normal

Train
Normal+Grey

C

102 103 104

Reconstruction Error of LSTM-AE

Test
Abnormal

Test
Normal

Train
Normal+Grey

D

Figure 5.8: Reconstruction error of LSTM-AE for configuration of B, C, D of
training dataset.

In this experiment, the training and test datasets are randomly selected. How-
ever, in a real case scenario with time-series data, the data have chronological
order, and randomly selecting the test and training dataset destroys this order.
This was just a preliminary experiment with the limit data part of the dataset
to select the training dataset configuration and, in future steps of the study, the
configuration C for training dataset without destroying the order of time-series
data will be utilized.

5.6 Experimental Results

In this section, the experiment results are reported for different experiments reported.
Based on the results of section 5.5.1, configuration c for the training dataset is
selected, which means that adding the samples with less than 10 raised flags is
a suitable configuration for the training dataset. Nine different periods from the
dataset are selected for training the LSTM-AE; while the test is done for a week
just after training, training periods are reported in table 5.3.

Experiment Start Train Stop Train
1 2021-06-15 2021-07-15
2 2021-04-08 2021-07-01
3 2021-04-08 2021-07-15
4 2021-04-08 2021-05-22
5 2021-04-08 2021-07-22
6 2021-06-22 2021-07-22
7 2021-04-08 2021-07-27
8 2021-04-08 2021-08-02
9 2021-04-08 2021-08-18

Table 5.3: Experiments Training Periods.

5.6.1 Reconstruction Error Threshold

As mentioned in 5.3, the sample classification is done by comparing the recon-
struction error of each sample by Reconstruction Error Threshold. Defining the
reconstruction error threshold is of utmost importance. This threshold regulates the
anomalies ratio; a low threshold creates a high rate of anomalies and consequently
a high number of False Positives, which can lead to a conservative operation of
the HPC cluster, while a high threshold can generate False Negatives, which can
have drastic harmful consequences. Here four different configurations to define the
Reconstruction Error Threshold are introduced. After training the autoencoder,
the reconstruction error of all samples is extracted by running the whole dataset
to the trained autoencoder (inference). Then as schematics of four configurations
depicted in figure 5.9, different parts of the training samples are used to define the
Reconstruction Error Threshold.

1 5 10 15 20 25

TRAINC

Normal Grey Abnormal

������ > 251 ≤������ ≤ 25������ = 0

Quantile (x)

TRAINC

Quantile (x)

TRAINC

Quantile (x)

TRAINC

Quantile (x)

Conf. 1

Conf. 2

Conf. 3

Conf. 4

Figure 5.9: Schematics of four different configurations for computing the Recon-
struction Error Threshold.

Figure 5.10 reports the average percentage of the anomaly for test weeks of
nine experiments detected by the LSTM-AE. The x-axis shows the quantile, which
starts from the median and reaches the maximum (quantile 1), and the y-axis
shows the average of anomalies for test weeks identified by the autoencoder. Each
line shows one configuration for defining the Reconstruction Error Threshold. Even
with the maximum error threshold, which can be achieved by setting the quantile
to 1, there is a boundary of 4% for a minimum of average anomalies for the
test weeks since the test week of three of experiments contains the real thermal
failure, so physically, there are anomalies in the HPC room. As evident in figure x,
Conf. 2: 10 ≤

∑
Flags ≤ 25 with the lowest percentage of anomalies for different

quantiles provided better control on the percentage of anomalies. So it is a suitable
candidate to define the error threshold. However, its capability of detecting the real
failure on 28-07-2021 should be checked before finalizing this approach to compute
the error threshold. In the following, it will confirm that the trained LSTM-AE
with configuration C for the training dataset and computing Reconstruction Error
Threshold with approach Conf. 2: 10 ≤

∑
Flags ≤ 25 can detect real physical

failure (very severe) accurately as well as anomalies with low severity.

0.
50

0.
52

0.
54

0.
56

0.
58

0.
60

0.
62

0.
64

0.
66

0.
68

0.
70

0.
72

0.
74

0.
76

0.
78

0.
80

0.
82

0.
84

0.
86

0.
88

0.
90

0.
92

0.
94

0.
96

0.
98

1.
00

Quantile of the Reconstruction Error of Autoencoder

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100

An
om

al
y

De
te

ct
ed

 b
y

Au
to

en
co

de
r

%
 o

f T
es

t W
ee

ks
 (A

ve
ra

ge
)

Conf. 1: 0 flags 10
Conf. 2: 10 < flags 25
Conf. 3: 0 < flags 25
Conf. 4: flags = 0

Figure 5.10: The average percentage of the anomaly for test weeks, utilizing different
configurations as error threshold (5.9).

Some of the primary results of the trained LSTM-AE with configuration C (for
the training dataset) and computing Reconstruction Error Threshold with approach
Conf. 2: 10 ≤

∑
Flags ≤ 25 are illustrated in figure 5.11. The x-axis is the date,

and the dashed red line shows around the real thermal failure at 28-07-2021. The
first, second, and third-row show the sum of flags, reconstruction error of the
LSTM-AE for different experiments, and label generated by the sum of flags (given
that zero flags mean normal and more than 25 means abnormal and between 1
and 25 grey zone), respectively, and all remaining rows show the waveform of the
label generated by computing Reconstruction Error Threshold by approach Conf.
2: 10 ≤

∑
Flags ≤ 25 for different experiments. Two dashed black lines show the

training period of each experiment, and the dashed green line shows the end of the
test week, which starts just after training and lasts for one week. This figure shows
all the ranges of the dataset, and it is hard to read, so the zoom-in version around
the real failure is shown in figure 5.12.

As it is evident in figure 5.12, (i) sum of flags has a maximum value at real
failure, (ii) all nine experiments have their peak of reconstruction error at the real
failure, and (iii) all of the experiments can detect the real failure. Experiments
5, 6, and 7 are more important than others because the distance between the
training and real failure is short, and the test period includes the real failure. These
three experiments can identify the real failure with an acceptable percentage of
anomalies.

0

20

40

60

80

100
Fl

ag
s

Flags

102

103

104

Re
co

ns
tru

ct
io

n
Er

ro
r

Experiment 1 LSTM-AE Trained 2021-06-15 to 2021-07-15
Experiment 2 LSTM-AE Trained 2021-04-08 to 2021-07-01
Experiment 3 LSTM-AE Trained 2021-04-08 to 2021-07-15
Experiment 4 LSTM-AE Trained 2021-04-08 to 2021-05-22
Experiment 5 LSTM-AE Trained 2021-04-08 to 2021-07-22
Experiment 6 LSTM-AE Trained 2021-06-22 to 2021-07-22
Experiment 7 LSTM-AE Trained 2021-04-08 to 2021-07-27
Experiment 8 LSTM-AE Trained 2021-04-08 to 2021-08-02
Experiment 9 LSTM-AE Trained 2021-04-08 to 2021-08-18

Normal

Grey

Abnormal

Label generated by: Flags

Normal

Abnormal Experiment 1

Label generated by: LSTM-AE Trained 2021-06-15 to 2021-07-15

Normal

Abnormal Experiment 2

Label generated by: LSTM-AE Trained 2021-04-08 to 2021-07-01

Normal

Abnormal Experiment 3

Label generated by: LSTM-AE Trained 2021-04-08 to 2021-07-15

Normal

Abnormal Experiment 4

Label generated by: LSTM-AE Trained 2021-04-08 to 2021-05-22

Normal

Abnormal Experiment 5

Label generated by: LSTM-AE Trained 2021-04-08 to 2021-07-22

Normal

Abnormal Experiment 6

Label generated by: LSTM-AE Trained 2021-06-22 to 2021-07-22

Normal

Abnormal Experiment 7

Label generated by: LSTM-AE Trained 2021-04-08 to 2021-07-27

Normal

Abnormal Experiment 8

Label generated by: LSTM-AE Trained 2021-04-08 to 2021-08-02

20
21

-0
4-

22

20
21

-0
5-

01

20
21

-0
5-

22

20
21

-0
6-

01

20
21

-0
6-

22

20
21

-0
7-

01

20
21

-0
7-

22

20
21

-0
8-

01

20
21

-0
8-

22

Normal

Abnormal Experiment 9

Label generated by: LSTM-AE Trained 2021-04-08 to 2021-08-18

Figure 5.11: Results of the 9 different experiments with computing error threshold
with approach Conf. 2: 10 ≤

∑
Flags ≤ 25.

0

20

40

60

80

100
Fl

ag
s

Flags

102

103

104

Re
co

ns
tru

ct
io

n
Er

ro
r

Experiment 1 LSTM-AE Trained 2021-06-15 to 2021-07-15
Experiment 2 LSTM-AE Trained 2021-04-08 to 2021-07-01
Experiment 3 LSTM-AE Trained 2021-04-08 to 2021-07-15
Experiment 4 LSTM-AE Trained 2021-04-08 to 2021-05-22
Experiment 5 LSTM-AE Trained 2021-04-08 to 2021-07-22
Experiment 6 LSTM-AE Trained 2021-06-22 to 2021-07-22
Experiment 7 LSTM-AE Trained 2021-04-08 to 2021-07-27
Experiment 8 LSTM-AE Trained 2021-04-08 to 2021-08-02
Experiment 9 LSTM-AE Trained 2021-04-08 to 2021-08-18

Normal

Grey

Abnormal

Label generated by: Flags

Normal

Abnormal Experiment 1

Label generated by: LSTM-AE Trained 2021-06-15 to 2021-07-15

Normal

Abnormal Experiment 2

Label generated by: LSTM-AE Trained 2021-04-08 to 2021-07-01

Normal

Abnormal Experiment 3

Label generated by: LSTM-AE Trained 2021-04-08 to 2021-07-15

Normal

Abnormal Experiment 4

Label generated by: LSTM-AE Trained 2021-04-08 to 2021-05-22

Normal

Abnormal Experiment 5

Label generated by: LSTM-AE Trained 2021-04-08 to 2021-07-22

Normal

Abnormal Experiment 6

Label generated by: LSTM-AE Trained 2021-06-22 to 2021-07-22

Normal

Abnormal Experiment 7

Label generated by: LSTM-AE Trained 2021-04-08 to 2021-07-27

Normal

Abnormal Experiment 8

Label generated by: LSTM-AE Trained 2021-04-08 to 2021-08-02

20
21

-0
7-

25

20
21

-0
7-

26

20
21

-0
7-

27

20
21

-0
7-

28

20
21

-0
7-

29

20
21

-0
7-

30

Normal

Abnormal Experiment 9

Label generated by: LSTM-AE Trained 2021-04-08 to 2021-08-18

Figure 5.12: Results of the 9 different experiments with computing error threshold
with approach Conf. 2: 10 ≤

∑
Flags ≤ 25 (Zoom in).

5.6.2 Detailed Study of Real Physical Failure

In this section, by a detailed study of the monitoring signals at three important
points around the real failure 28-07-2021, the performance of the autoencoder for
detecting the anomaly is evaluated. The generated labels of experiments 5, 6, and
7 are very similar; as experiment 7 has the lowest distance between the training
period and real failure, this experiment is selected to study the results further.
Figure 5.13 shows the sum of flags, reconstruction error at first and second-row
respectively. The third row shows the label generated by the sum of the flags with
the red line and autoencoder with the blue line. Three zones (A, B, and C) around
the real failure are interesting for study. Point A identified by both of the tools,
the sum of the flags and autoencoder as an anomaly. And point B, identified as
non-anomaly by the autoencoder, but it has more than 25 flags, which means that
the sum of flags sees this point as an abnormal point. Finally, point C is a real
failure and identified correctly by both sum of flags and autoencoder as an anomaly.

0

20

40

60

80

100 A B C (Flags)

102

103

104

Autoencoder Reconstruction Error

07-27 00 07-27 06 07-27 12 07-27 18 07-28 00 07-28 06 07-28 12 07-28 18 07-29 00
Non-Anomaly

Grey

Anomaly Label Generated by Autoencoder
Label Generated by (Flags)

Figure 5.13: Labels of three interesting points nearby real failure.

To understand the reasons behind the identifying of these points as anomalies by
the autoencoder. A more detailed study for these three points is done by generating
the line plots of all sensors’ signals, which are summarized in the two figures 5.14
and 5.15, and heatmap 5.16 summarized the location of the issues for both of sum
of flags and autoencoder. In these two figures, the colored lines show the value of
each sensor, and the black dashed line shows the average value of parameters in
each row.

Figure 5.14 shows the signals of different metrics/parameters/sensors of the
computing nodes of rack 205. It illustrates the CPU, GPU, PCIe, Inlet temperature

and fans speed, and finally power consumption of the nodes of one rack at room
F (Rack 205) respectively in row 1 to row 6. While figure 5.14 shows the node
level metrics of the HPC room, figure 5.15 shows room level metrics, especially
the cooling system characteristic of the HPC room. Figure 5.15 from the first row
to last row respectively shows: (i) total power consumption of the ICT devices,
(ii) CRAC units: total power consumption of the CRAC units, fans speed of the
CRAC units, compressors utilization of the CRAC units, Free cooling valve open
position of CRAC units, outlet, inlet temperature of the CRAC units, (iii) RDHX:
total power consumption of the chillers, total pumps power consumption, inlet,
outlet temperature of the water, the position of three-ways valve, delta temperature
of outlet and inlet water temperature, (iv) ambient temperature (temperature of
outside).

30

40

50

60

Te
m

pe
ra

tu
re

 (
C)

A B CAverage CPU Temperature

30

40

50

60

70

Te
m

pe
ra

tu
re

 (
C)

Average GPU Temperature

30

35

40

45

50

Te
m

pe
ra

tu
re

 (
C)

Average PCIe Temperature

20

30

40

Te
m

pe
ra

tu
re

 (
C)

Average Inlet Temperature

0

2000

4000

6000

8000

RP
M

Average Nodes Fan Speed

07-27 00 07-27 06 07-27 12 07-27 18 07-28 00 07-28 06 07-28 12 07-28 18 07-29 00
0

500

1000

1500

W

Average Nodes 20 Power Consumption

Figure 5.14: Nodes parameters of rack 205.

400

600

800

1000

1200

KW

A B C

Total Power Consumption of ICT

50

100

150

200

250
KW

Total Power Consumption of CRAC units

0

20

40

60

80

100

RP
M

Average Fan Speed of CRACs

0

20

40

60

80

100

%

Average Compressor Utilization of CRACs

0

20

40

60

80

100

%

Average Free Cooling Valve Open Poistion of CRACs

5

10

15

20

25

Te
m

pe
ra

tu
re

 (
C)

Average Outlet Temperature of CRACs

20

30

40

50

Te
m

pe
ra

tu
re

 (
C)

Average Inlet Temperature of CRACs

0

200

400

600

KW

Total Power Consumption of Chillers

20

25

30

35

40

KW

Total Power Consumption of Pumps of RDHX

60

80

100

120

140

Water Flow Rate

15

20

25

30

35

40

Te
m

pe
ra

tu
re

 (
C)

Inlet Water Temperature
Outlet Water Temperature

0.5

0.6

0.7

0.8

0.9

1.0

Position Three-Ways Valve

4.0

4.5

5.0

5.5

6.0

Te
m

pe
ra

tu
re

 (
C)

Delta_temp

07-27 00 07-27 06 07-27 12 07-27 18 07-28 00 07-28 06 07-28 12 07-28 18 07-29 00

10

20

30

40

Te
m

pe
ra

tu
re

 (
C)

Ambient Temperature

Figure 5.15: Room level parameters, Cooling systems parameters.

Considering point A, which is identified by both the sum of flags
and autoencoder as an anomaly: While nodes experience the normal inlet
temperature, the inside temperature (CPU, GPU, and PCIe) is high. So the room
temperature is normal, and the cooling system operates correctly. Before point
A the power consumptions of the nodes start to increase due to the computing
demands (GPU and CPU), which turns into the high temperature inside the nodes,
and then quickly, the computing loads are reduced. Meanwhile, the fans of nodes
increase the speed, and it seems that after point A the high power consumption
of nodes related to the fans rather than the computing and there is a peak of
total power consumption of ICT just after point A I think it is due to increase in
fan speeds of the nodes. Although there is some fluctuation in the compression
utilization, and it reduces the outlet temperature of the CRAC units, this is not
enough to change the inlet temperature of the nodes. The anomaly label of point A
was related more to some nodes’ computing load, and the cooling system’s reaction
was not fast enough to support this quick increase in the computing demand or
power consumption, which turned into the nodes as a high temperature of nodes.

So while nodes’ inlet temperatures are normal, computing loads are high and
reaction of the cooling systems are not fast enough to support computing load which
turns into high temperature at nodes level, and autoencoder correctly detects this as
an anomaly due to the high temperature of nodes.

Considering point B, which is identified by the autoencoder as non-
anomaly but the sum of flags detects it as abnormal: The node-level
parameters of this point, like temperature, fan speed, and power consumption of
nodes, are completely normal. In room-level parameters before this point, the free
cooling activated (first two CRAC units out of four units then three out of four)
and this is the primary source of signal fluctuations of the other parts of the two
cooling systems. Activating the free cooling has caused (i) an increase in the power
consumption of the RDHX, which means the water cooling system works more, and
also (ii) an increase in power consumption (fans speed and compressors utilization)
of CRAC units. This situation is controlled by deactivating the free cooling as well
as a reduction in computing load of the room, and as it is explicit, it is successful,
and there is no rise in the node level temperature.

So node level parameters are normal, and activation of free cooling is the primary
source of signals’ fluctuations of cooling systems, and flags identify these signals’
fluctuations as a suspicious pattern while autoencoder correctly detects this point as
normal because all systems are under control.

Considering point C, which is a real thermal failure and identified
by both of sum of flags and autoencoder as an anomaly: All the node
level parameters like temperature and fans speed of the nodes are high, and nodes
experience high inlet temperature, so the cooling systems are in trouble. After

reduction of point B (some parameters like total power consumption of the ICT and
CRAC units), continuously the power consumption of the CRAC units is increased,
and it reached its peak at C. Before C, the free cooling activated for four out of
four CRAC units meanwhile by activating of free cooling the power consumptions
of the chillers of the RDHX reduced, and in the same time, the computing load
increased these three action 1- increasing the computing load 2- activation of free
cooling and 3- reduction in chillers cooling capacity, create thermal emergency
which cause an increase in the temperature of the room and temperature of the
inlet and outlet water of the RDHX and inlet and outlet temperature of the CRAC
units which turn into thermal emergency in the cores of nodes and it creates out of
control situation in node level and room level. The autoencoder and flags correctly
identified these problems and labeled the dataset as an anomaly.

So three actions create a thermal emergency; 1- increasing the computing load,
2- activation of free cooling, and 3- reduction in RDHX cooling capacity. Which
increase: 1- room temperature, 2-inlet and outlet water temperature of RDHX,
and 3- inlet and outlet temperature of CRAC units, which leads to out-of-control
conditions in node level and room level.

5.6.3 Locations of Anomalies

Heatmap in figure 5.16 shows the severity and zone of issues/anomalies that each
of the autoencoder and sum flags identified in three points around real failure. It is
composed of two main columns; the first column from the left shows the results of
the autoencoder and the sum of flags independently, while the second column shows
the aggregated results of both tools. Also, this figure has two rows, and the top row
in the y-axis shows different parts of the HPC room: room level facilities metrics
and node-level metrics, so the first row shows the zone of detected issues/anomalies,
but the second row shows total severity of anomalies in three points. Annotation
of the top columns is a normalized number, while the annotation of the bottom
columns is the sum of the metrics identified as anomalies.

As reported in the bottom left subplot of figure 5.16 in point A, which is
identified by both tools as an anomaly, the autoencoder recognizes 73 out of the 241
sub anomalies in different zones of the HPC room; meanwhile, there are 37 raised
flags out of 281 possible flags in this point. For point B, although there are 46
raised flags which is more than point A, the autoencoder detected 25 metrics with
high reconstruction error, and finally, it identified this point as non-anomaly. And
for point C, which is the real/physical thermal failure, the autoencoder identified
204 out of 241 metrics in trouble, and the sum of flags experienced maximum raised
flags in this point 92 out of 281. As reported in figure 5.16, at point A, with 110
anomalies identified by both tools, the temperature of node level for a few hours is
high, and autoencoder identified some issues in node level temperatures like CPU,

GPU, and PCIe and also the power consumption of nodes, and in the room level
facilities, it discovers some issues mostly on water cooling system (RDHX). In point
B, the autoencoder recognizes the node level metrics as almost normal, but it sees
some issues in the cooling system and total power consumption (as is also evident
in the first two rows of figure 5.15). For point C, autoencoder is detected in almost
all parts of the system.

A:

AE
M

ax
(A

E)

A:

Fl
ag

s
M

ax
(F

la
gs

)

B:

AE
M

ax
(A

E)

B:

Fl
ag

s
M

ax
(F

la
gs

)

C:

AE
M

ax
(A

E)

C:

Fl
ag

s
M

ax
(F

la
gs

)

GPU_Temp

CPU_Temp

Inlet_Node_Temp

Fan_Speed_Node

PCIe_Temp

Node_Power_Consumption

Fan_Speed_CRAC

CRAC_Supply_Air_Temperature

Compressor_Utilization

CRAC_Return_Air_Temperature

Free_Cooling_Status

Free_Cooling_Valve_Open_Position

Total_Power_Consumption_Chiller

Total_ICT_Power_Consumption

Ambient_Temp_Env

Total_Power_Consumption_CRAC

Outlet_Water_Temp

Inlet_Water_Temp

Position_Three_Way_Valve

Water_Flow_Rate

Total_Power_Consumption_Pumps

0.4 0.7 0.1 0.2 0.9 0.6

0.4 0.5 0.0 0.2 0.9 0.5

0.0 0.0 0.2 0.2 0.9 0.8

0.1 0.4 0.0 0.0 1.0 0.7

0.4 0.7 0.0 0.0 0.9 0.7

0.5 0.5 0.0 0.1 0.8 0.2

0.0 0.1 0.3 0.3 0.3 0.3

0.0 0.0 0.3 0.0 0.0 0.1

0.2 0.0 0.5 0.2 0.7 0.2

0.0 0.0 0.2 0.2 1.0 0.5

0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.1

0.0 0.2 0.0 0.0 1.0 0.2

0.0 0.0 1.0 0.5 1.0 0.5

0.0 0.0 0.0 0.0 0.0 0.2

0.0 0.0 1.0 0.5 1.0 0.2

1.0 0.0 1.0 0.0 1.0 0.5

0.0 0.0 1.0 0.0 1.0 0.5

0.0 0.2 0.0 0.0 1.0 0.2

1.0 0.2 0.0 0.5 1.0 0.2

1.0 0.2 0.0 0.5 1.0 0.2

A:

AE
+

Fl
ag

s
M

ax
(A

E)
+

M
ax

(F
la

gs
)

B:

AE
+

Fl
ag

s
M

ax
(A

E)
+

M
ax

(F
la

gs
)

C:

AE
+

Fl
ag

s
M

ax
(A

E)
+

M
ax

(F
la

gs
)

0.4 0.1 0.9

0.4 0.1 0.8

0.0 0.2 0.9

0.2 0.0 0.9

0.5 0.0 0.9

0.5 0.0 0.6

0.0 0.3 0.3

0.0 0.0 0.1

0.0 0.3 0.3

0.0 0.2 0.6

0.0 0.0 0.0

0.0 0.0 0.1

0.2 0.0 0.4

0.0 0.6 0.6

0.0 0.0 0.2

0.0 0.6 0.4

0.2 0.2 0.6

0.0 0.2 0.6

0.2 0.0 0.4

0.4 0.4 0.4

0.4 0.4 0.4

A:

AE

A:

Fl
ag

s

B:

AE

B:

Fl
ag

s

C:

AE

C:

Fl
ag

s

73
241

37
281

25
241

46
281

204
241

92
281

A:

AE
+

Fl
ag

s

B:

AE
+

Fl
ag

s

C:

AE
+

Fl
ag

s

110
522

71
522

296
522

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0

100

200

0

200

400

Figure 5.16: Severity and zone of the anomaly in the HPC room.

5.7 Summary

This study employs monitoring signals of the in-production HPC cluster and HPC
room facilities for anomaly detection in the HPC room. Two sets of methods for
anomaly detection are proposed. (i) A set of rule-based statistical methods (flags)
that explore different metrics at the HPC room, system, sub-system, and node level
to find abnormal patterns. (ii) Semi-supervised ML-based approaches for anomaly
detection; using merely flags in anomaly detection of the HPC room is inadequate
due to the flags’ weakness in analyzing the complicated correlation of the signals in
finding the anomalies or suspicious patterns. Indeed, I propose a methodology that
uses the flags to select suitable subsets of the dataset to train the semi-supervised
ML-based approaches. I tested two different semi-supervised approaches: an
long short-term memory autoencoder (LSTM-AE) and an Multilayer perceptron
autoencoder (MLP-AE). Empirically with a set of experiments, I demonstrated
that the LSTM-AE outperforms the MLP-AE in anomaly detection. Different
approaches for defining the thresholds (essential in rule-based and ML-based
methods to transform floating numbers to binary classes) are investigated accurately.
Finally, all the steps and approaches are validated by a detailed study of the real
thermal failure and illustrated that LSTM-AE could identify the anomalies if it
trains with an appropriate part of the monitoring dataset collected with a telemetry
system in the ExaMon database.

Chapter 6

Conclusion

After an introduction (chapter 1) in chapter 2, I provided preliminary definitions
and a brief description of the HPC system and HPC room facilities. Some technical
characteristics of Marconi A1, Marconi A2, Marconi A3, Galileo, and Marconi 100,
which are located in CINECA HPC rooms N and F, were illustrated. I explained
the cooling systems of CINECA HPC rooms: CRAC units (+Direct Free Cooling)
and water cooling systems (RDHX). CINECA is equipped with ExaMon (Exascale
Monitoring), a state-of-the-art datacenter monitoring system. This chapter had a
brief overview of ExaMon.

In chapter 3 I studied the thermal and power consumption characteristics of
two HPC rooms in the CINECA datacenter.

Considering the HPC Room N, which hosts three HPC clusters: the data
collected by a WSN monitoring system in the HPC facility, which tracks the
room temperature, are analyzed. The correlation between the different measured
temperatures is analyzed, and I find that there are four thermal zones in the room:
(a) Subfloor, which is a cold area. (b) The left and (c) right parts of the room
that are separated by the RDHX. In the (d) vertical direction, I found that there
is not a strong correlation between the top and bottom in the center of the HPC
room, and the center of the room has high thermal variation. With data analysis,
I prove that it is possible to reduce data collection and transmission rates of two
orders of magnitude. Therefore, sensors consume two times less power. With
this reduction in the data collection, it needs a hundred times less data storage
capacity, and, consequently, for data processing, it needs lower computing resources.
This study can be used as a guideline for sensor placement. Liquid cooling and
cage divide the room into the different thermal zones; meanwhile, CRAC units,
RDHX, and generated heat by servers create a complex thermal system. Using
the internal temperature sensors and onboard sensors like IPMI combined with
our WSN telemetry system, we can upgrade our system and enhance the study’s
preciseness. I would highlight the difficulties of doing a more precise analysis with

127

the current WSN and then suggesting to combine it with IPMI.
Considering the HPC Room F, which hosts the Marconi A2 HPC cluster

(Marconi A2 closed in January 2020 and was replaced with Marconi 100): the
room’s spatial and thermal heat dissipation characteristics are analyzed. The study
revealed that nodes hosted in the top chassis of racks have worse thermal conditions
than bottom nodes. This directly impacts the average power consumption of the
nodes, which is higher for the top nodes. These nodes can consume up to 6% more
power due to a higher fan speed than bottom nodes. The study of the thermal map
revealed that the center row of racks in the Marconi A2 room F is colder than the
other two rows; overall, this was valid for normal and thermal hazard conditions.
The hotspot varies vertically during the thermal emergency condition. I can
conclude that the study of the spatial and thermal heat dissipation characteristics
revealed significant non-idealities and heterogeneity, which, if modeled, can be
leveraged by thermal-aware job-scheduler and room-level power management run-
times.

In chapter 4 I suggested a framework for thermal hazard prediction, which
encompasses data query and preprocessing, model training, and final model in-
ference, which provides the prediction. The thermal hazard predictor is a model
that, based on time series data of computing nodes’ sensors, predicts if a thermal
hazard will happen in the room in the next hours. Input data are the time series
of nodes’ temperature, and the output is a binary classification: likely forthcoming
hazard or not. The dataset does not contain any labels, so I used statistical
analysis of real thermal hazard data of the Marconi A2 KNL (largest HPC cluster
of CINECA at 2019) to characterize thermal hazards in the HPC room. Then based
on this analysis, I defined rule-based statistical method to create labels. Different
classical machine learning and DL tools were investigated and empirically shown
that the proposed thermal hazard predictor, namely a Temporal Convolutional
Network (TCN), outperformed non-deep models and LSTM. Some techniques are
introduced/examined to deal with issues like; samples-overlapping of time series
data or imbalanced datasets.

I showed that thermal hazard prediction has many challenges in real case
scenario implementation. Although the TCN model works well in the research
phase F1-score of 0.98 (selecting the test dataset randomly like what is common in
most research and papers), it will have substantial performance degradation in real
implementation (i.e., F1-score reduce from 0.98 to ∼0.74). This study investigates
enough complex TCN models with different convolutional layers, and input data flow
to improve the model’s performance. The memory-based approaches for labeling the
thermal hazard were investigated. During this study, we had meetings with one of
the most powerful HPC cluster’s sys-admin (CINECA) to understand the situation
better and find a solution to implement this thermal hazard prediction framework

in a real in-production large-scale HPC cluster. Based on the study results, I find
that due to the dataset’s complexity, the monitoring signal’s dynamism, manual
update of the cooling setpoints, activation of the free cooling system, etc. it is
essential to use a more sophisticated anomaly detection method (or thermal hazard
detection method), i.e., a rule-based statistical method with just node level data is
insufficient for thermal hazard perdition for real in-production HPC rooms, and I
should add the metrics of HPC room level facilities like RDHX, CRAC unit, etc.
to the dataset and improve the anomaly detection approach. The study results
motivated us to collect essential metrics of the Marconi100 HPC cluster and Room
F from April of 2021 and utilize this big dataset to develop a complex anomaly
detection tool in the next chapter of the thesis.

In chapter 5 for anomaly detection in the HPC room I employed monitoring
signals of the in-production HPC cluster and HPC room facilities. I proposed
two sets of methods for anomaly detection. (i) A set of rule-based statistical
methods (flags) that explore different metrics at the HPC room, system, sub-
system, and node level to find abnormal patterns. (ii) Semi-supervised ML-based
approaches for anomaly detection; using merely flags in anomaly detection of the
HPC room is inadequate due to the flags’ weakness in analyzing the complicated
correlation of the signals in finding the anomalies or suspicious patterns. Indeed,
I propose a methodology that uses the flags to select suitable subsets of the
dataset to train the semi-supervised ML-based approaches. I tested two different
semi-supervised approaches: an long short-term memory autoencoder (LSTM-AE)
and an Multilayer perceptron autoencoder (MLP-AE). Empirically with a set of
experiments, I demonstrated that the LSTM-AE outperforms the MLP-AE in
anomaly detection. Different approaches for defining the thresholds (essential in
rule-based and ML-based methods to transform floating numbers to binary classes)
are investigated accurately. Finally, all the steps and approaches are validated
by a detailed study of the real thermal failure and illustrated that LSTM-AE
could identify the thermal anomalies if it trains with an appropriate part of the
monitoring dataset, collected with a telemetry system in the ExaMon database.

Acronyms

AC Air Conditioning. 19

ACU Air Conditioning Unit. 22

AE Autoencoder. 109

AI Artificial Intelligence. I, 1

ANN Artificial Neural Network. 57, 107

API Application Programming Interface. 11, 13, 15, 41

BD Big Data. 57

CAPEX Capital Expenditures. 2

CC Correlation Coefficient. 25, 35, 39, 40, 47

CFD Computational Fluid Dynamics. 57

CPU Central Processing Unit. 18, 99, 101–103, 118, 122, 123

CRAC Computer Room Air Conditioning. V, 7–9, 11, 12, 17, 19–22, 24–26, 29,
30, 32–34, 37, 39, 40, 46, 54, 60, 76, 97, 98, 101–103, 119, 122, 123, 127, 129

CRAH Computer Room Air Handler. 19, 22

DC Direct Current. 23

DDR4 Double Data Rate 4. 8, 40

DFC Direct Free Cooling. 7–9, 12, 17, 25, 26, 32, 33

DL Deep Learning. I, 4, 56, 57, 64, 65, 67, 96, 128

DTM Dynamic Thermal Management. 22

130

DX Direct Expansion. 7, 12, 26

FN False Negative. 72, 94–96

FP False Positive. 72, 94–96

GPU Graphics Processing Unit. 9, 18, 101–103, 105, 118, 122, 124

HPC High Performance Computing. I, V, VII, 1–4, 6–8, 11, 12, 17–21, 26, 28, 32,
40, 53, 54, 56–58, 60, 65, 68, 74, 75, 79–81, 84, 85, 88, 94, 96–101, 106, 113,
114, 119, 123, 125–129

ICT Information and Communication Technologies. 101, 119, 122, 123

IoT Internet of Things. 16, 19

IPMI Intelligent Platform Management Interface. 9, 11, 13, 40, 41, 54, 57, 65,
127, 128

IT Information Technology. I, 2

KNL Knights Landing. II, V, VI, 8, 10, 40, 41, 47, 48, 53, 58, 65, 96, 128

LoRa Long Range. 19, 23

LoRaWAN Long Range Wide-Area Network. 16, 24

LSTM Long Short-Term Memory. 56, 66, 67, 96, 99, 108, 110, 128

LSTM-AE Long Short-Term Memory Autoencoder. VII, IX, 99, 107–115, 126,
129

LTWN Last Time Window Number. 25

LVP Last-Value Predictor. 62, 64, 66, 67

MCC Matthews Correlation Coefficient. 74, 75, 79, 80, 82, 83, 85, 88, 95, 96

MCDRAM Multi-Channel Dynamic Random-Access Memory. 8, 40

meanCC Mean Correlation Coefficient. 25, 35, 36

ML Machine Learning. 56, 68, 99, 100, 106, 126, 129

MLP Multilayer Perceptron. 108

MLP-AE Multilayer Perceptron Autoencoder. VII, IX, 99, 108–112, 126, 129

NT Node-Threshold. 90, 94

OPEX Operating Expenses. 2

PCIe Peripheral Component Interconnect Express. 101, 103, 118, 122, 124

PH Prediction Horizon. 61, 62, 64

PMU Performance Monitoring Unit. 13

PUE Power Usage Effectiveness. 22, 55

RAM Random Access Memory. 9

RBF Radial Basis Function. 66, 67

RDHX Rear Door Heat Exchanger. V, 7–9, 11, 12, 17, 19, 20, 26, 34, 40, 41, 48,
53, 54, 60, 97, 98, 101–103, 119, 122–124, 127, 129

RNN Recurrent Neural Network. 66, 108

ROI Return on Investment. 18

RPM Rotations per Minute. V, 44, 45

SGD Stochastic Gradient Descent. 56, 66, 67

SST Statistical Significance Test. 25

SSTMask Statistical Significance Test Mask. 25

std Standard Deviations. 37

STIT Spatial-Temporal-Impact-Threshold. 90, 94

SVM Support Vector Machine. 56, 66, 67

TCN Temporal Convolutional Network. III, VI–VIII, 56, 58, 65–67, 69, 71–77,
79–83, 85–88, 90, 96, 97, 128

TDCTW Total Data Collection Time Window. 25, 35, 37

TN True Negative. 72, 94–96

TP True Positive. 72, 83, 94–96

TT Training Time. 81

TW Time Window. 25, 35–38, 60, 65, 80

TWG Time Window Group. 25, 35

TWN Time Window Number. 25, 35

WSN Wireless Sensor Network. 19, 23, 24, 26, 28, 29, 34, 53, 54, 127, 128

Bibliography

[1] The 58th edition of the top500 list., NOVEMBER, 2021.
https://www.top500.org/.

[2] The 53th edition of the top500 list., JUNE 2019. https://www.top500.org/.

[3] The 55th edition of the top500 list., JUNE 2020. https://www.top500.org/.

[4] The 53th edition of the top500 list., JUNE 2019. https://www.top500.org/.

[5] Ufficio Tecnico. Technical documents, Sep 2019. https://www.cineca.it/.

[6] Andrea Borghesi, Andrea Bartolini, Michela Milano, and Luca Benini. Pricing
schemes for energy-efficient hpc systems: Design and exploration. The Inter-
national Journal of High Performance Computing Applications, 33(4):716–734,
2019.

[7] Andrea Bartolini, Francesco Beneventi, Andrea Borghesi, Daniele Cesarini,
Antonio Libri, Luca Benini, and Carlo Cavazzoni. Paving the way toward
energy-aware and automated datacentre. In Proceedings of the 48th Inter-
national Conference on Parallel Processing: Workshops, ICPP 2019, pages
8:1–8:8, New York, NY, USA, 2019. ACM.

[8] ACM. Getting started with hpc, 2021.

[9] Christian Conficoni, Andrea Bartolini, Andrea Tilli, Carlo Cavazzoni, and
Luca Benini. Integrated energy-aware management of supercomputer hybrid
cooling systems. IEEE Transactions on Industrial Informatics, 12(4):1299–
1311, 2016.

[10] Organization. https://www.cineca.it/en/about-us/organization.

[11] Alessio Netti, Michael Ott, Carla Guillen, Daniele Tafani, and Martin Schulz.
Operational data analytics in practice: Experiences from design to deployment
in production hpc environments. arXiv preprint arXiv:2106.14423, 2021.

134

[12] E. Rossi. Marconi-a2 (knl), 2017.

[13] Intel Server Board S2600IP and Workstation Board W2600CR Technical
Product Specification. October 2013.

[14] 2021 Created by Elda Rossi, last modified by Francesco Cola on Nov 25.
UG3.1: MARCONI UserGuide. https://wiki.u-gov.it/confluence/

display/SCAIUS/UG3.1%3A+MARCONI+UserGuide, 2018. Accessed: 2021-12-
27.

[15] 2021 Created by D. Guida, last modified by Neva Besker on Mar 10. UG3.3:
GALILEO UserGuide. https://wiki.u-gov.it/confluence/display/

SCAIUS/UG3.3%3A+GALILEO+UserGuide, 2018. Accessed: 2021-12-27.

[16] Andrea Bartolini, Andrea Borghesi, Antonio Libri, Francesco Beneventi,
Daniele Gregori, Simone Tinti, Cosimo Gianfreda, and Piero Altoè. The
d.a.v.i.d.e. big-data-powered fine-grain power and performance monitoring
support. In Proceedings of the 15th ACM International Conference on Comput-
ing Frontiers, CF ’18, page 303–308, New York, NY, USA, 2018. Association
for Computing Machinery.

[17] Andrea Bartolini, Francesco Beneventi, Andrea Borghesi, Daniele Cesarini,
Antonio Libri, Luca Benini, and Carlo Cavazzoni. Paving the way toward
energy-aware and automated datacentre. In Proceedings of the 48th Interna-
tional Conference on Parallel Processing: Workshops, ICPP 2019, New York,
NY, USA, 2019. Association for Computing Machinery.

[18] MultiTech. Programmable gateway for the internet of things, sept 2019.
https://www.multitech.com/brands/multiconnect-conduit.

[19] Andrea Bartolini, Christian Conficoni, Roberto Diversi, Andrea Tilli, and
Luca Benini. Multiscale thermal management of computing systems-the
multitherman approach. IFAC PapersOnLine, 50(1):6709–6716, 2017.

[20] ETP4HPC. Strategic research agenda, 2017.

[21] Hadi Esmaeilzadeh, Emily Blem, Renee St Amant, Karthikeyan Sankar-
alingam, and Doug Burger. Dark silicon and the end of multicore scaling.
In 38th Annual International Symposium on Computer Architecture (ISCA
2011), pages 365–376, June 2011.

[22] Jim Rogers. Ornl’s warm water hpc facilities and control systems, 2019.

[23] Jim Gao and Ratnesh Jamidar. Machine learning applications for data center
optimization. 2014.

https://wiki.u-gov.it/confluence/display/SCAIUS/UG3.1%3A+MARCONI+UserGuide
https://wiki.u-gov.it/confluence/display/SCAIUS/UG3.1%3A+MARCONI+UserGuide
https://wiki.u-gov.it/confluence/display/SCAIUS/UG3.3%3A+GALILEO+UserGuide
https://wiki.u-gov.it/confluence/display/SCAIUS/UG3.3%3A+GALILEO+UserGuide

[24] Madhurina Pore, Zahra Abbasi, Sandeep K. S. Gupta, and Georgios
Varsamopoulos. Techniques to Achieve Energy Proportionality in Data Cen-
ters: A Survey, pages 109–162. Springer New York, New York, NY, 2015.

[25] Chayan Nadjahi, Hasna Louahlia, and Stéphane Lemasson. A review of ther-
mal management and innovative cooling strategies for data center. Sustainable
Computing: Informatics and Systems, 19:14–28, 2018.

[26] Li Li, Wenli Zheng, Xiaodong Wang, and Xiaorui Wang. Data center power
minimization with placement optimization of liquid-cooled servers and free
air cooling. Sustainable Computing: Informatics and Systems, 11:3–15, 2016.

[27] Mohsen Seyedkazemi Ardebili, Carlo Cavazzoni, Luca Benini, and Andrea
Bartolini. Thermal characterization of a tier0 datacenter room in normal
and thermal emergency conditions. In International Conference on High
Performance Computing in Science and Engineering, pages 1–16. Springer,
2019.

[28] M. Ot, T. Wilde, and H. Ruber. Roi and tco analysis of the first production
level installation of adsorption chillers in a data center. In 16th IEEE
Intersociety Conference on Thermal and Thermomechanical Phenomena in
Electronic Systems (ITherm 2017), pages 981–986, May 2017.

[29] Hayk Shoukourian, Torsten Wilde, Herbert Huber, and Arndt Bode. Analysis
of the efficiency characteristics of the first High-Temperature Direct Liquid
Cooled Petascale supercomputer and its cooling infrastructure. Journal of
Parallel and Distributed Computing, 107:87–100, September 2017.

[30] Alexander Moskovsky, Egor Druzhinin, Alexey Shmelev, Vladimir Mironov,
and Andrey Semin. Server level liquid cooling: Do higher system temperatures
improve energy efficiency? Supercomput. Front. Innov.: Int. J., 3(1):67–74,
January 2016.

[31] C. Conficoni, A. Bartolini, A. Tilli, C. Cavazzoni, and L. Benini. Integrated
energy-aware management of supercomputer hybrid cooling systems. IEEE
Transactions on Industrial Informatics, 12(4):1299–1311, Aug 2016.

[32] Christian Conficoni, Andrea Bartolini, Andrea Tilli, Carlo Cavazzoni, and
Luca Benini. Hpc cooling: A flexible modeling tool for effective design and
management. IEEE Transactions on Sustainable Computing, 2018.

[33] Jungsoo Kim, Martino Ruggiero, and David Atienza Alonso. Free cooling-
aware dynamic power management for green datacenters. In Proceedings of the

ACM/IEEE 2012 International Conference on High Performance Computing
and Simulation (HPCS), volume 1, pages 140–146. IEEE Press, 2012.

[34] Domenico Balsamo, Danilo Porcarelli, Luca Benini, and Brunelli Davide.
A new non-invasive voltage measurement method for wireless analysis of
electrical parameters and power quality. In SENSORS, 2013 IEEE, pages
1–4. IEEE, 2013.

[35] Christos Stergiou, Kostas E Psannis, Brij B Gupta, and Yutaka Ishibashi.
Security, privacy & efficiency of sustainable cloud computing for big data &
iot. Sustainable Computing: Informatics and Systems, 19:174–184, 2018.

[36] Danilo Porcarelli, Davide Brunelli, and Luca Benini. Clamp-and-forget: A self-
sustainable non-invasive wireless sensor node for smart metering applications.
Microelectronics Journal, 45(12):1671–1678, 2014.

[37] LoRa Alliance. Lora™ modulation basics, 2015.

[38] Francesco Beneventi, Andrea Bartolini, Carlo Cavazzoni, and Luca Benini.
Cooling-aware node-level task allocation for next-generation green hpc sys-
tems. In High Performance Computing & Simulation (HPCS), 2016 Interna-
tional Conference on, pages 690–696. IEEE, 2016.

[39] Ayse K Coskun, José L Ayala, David Atienza, and Tajana Simunic Rosing.
Modeling and dynamic management of 3d multicore systems with liquid
cooling. In 2009 17th IFIP International Conference on Very Large Scale
Integration (VLSI-SoC), pages 35–40. IEEE, 2009.

[40] R. Diversi, A. Tilli, A. Bartolini, F. Beneventi, and L. Benini. Bias-
compensated least squares identification of distributed thermal models for
many-core systems-on-chip. IEEE Transactions on Circuits and Systems I:
Regular Papers, 61(9):2663–2676, Sept 2014.

[41] Jungsoo Kim, Mohamed M Sabry, Martino Ruggiero, and David Atienza.
Power-thermal modeling and control of energy-efficient servers and datacen-
ters. In Handbook on data centers, pages 857–913. Springer, 2015.

[42] Francesco Fraternali, Andrea Bartolini, Carlo Cavazzoni, Giampietro Tecchi-
olli, and Luca Benini. Quantifying the impact of variability on the energy
efficiency for a next-generation ultra-green supercomputer. In Proceedings
of the 2014 international symposium on Low power electronics and design,
pages 295–298. ACM, 2014.

[43] Aniruddha Marathe, Yijia Zhang, Grayson Blanks, Nirmal Kumbhare, Ghaleb
Abdulla, and Barry Rountree. An Empirical Survey of Performance and
Energy Efficiency Variation on Intel Processors. In Proceedings of the 5th
International Workshop on Energy Efficient Supercomputing, E2SC’17, pages
9:1–9:8, New York, NY, USA, 2017. ACM. event-place: Denver, CO, USA.

[44] Eduard Oro, Victor Depoorter, Albert Garcia, and Jaume Salom. Energy
efficiency and renewable energy integration in data centres. strategies and
modelling review. Renewable and Sustainable Energy Reviews, 42:429–445,
2015.

[45] Rajarshi Das, Jeffrey O Kephart, Jonathan Lenchner, and Hendrik Hamann.
Utility-function-driven energy-efficient cooling in data centers. In Proceedings
of the 7th international conference on Autonomic computing, pages 61–70.
ACM, 2010.

[46] Donghwa Shin, Sung Woo Chung, Eui-Young Chung, and Naehyuck Chang.
Energy-optimal dynamic thermal management: Computation and cool-
ing power co-optimization. IEEE Transactions on Industrial Informatics,
6(3):340–351, 2010.

[47] Luca Parolini, Bruno Sinopoli, Bruce H Krogh, and Zhikui Wang. A cyber–
physical systems approach to data center modeling and control for energy
efficiency. Proceedings of the IEEE, 100(1):254–268, 2011.

[48] Rongliang Zhou, Zhikui Wang, Cullen E Bash, Alan McReynolds, Christopher
Hoover, Rocky Shih, Niru Kumari, and Ratnesh K Sharma. A holistic and
optimal approach for data center cooling management. In Proceedings of the
2011 American Control Conference, pages 1346–1351. IEEE, 2011.

[49] N. Ahuja, C. W. Rego, S. Ahuja, Shen Zhou, and S. Shrivastava. Real
time monitoring and availability of server airflow for efficient data center
cooling. In 29th IEEE Semiconductor Thermal Measurement and Management
Symposium, pages 243–247, March 2013.

[50] R. K. Sharma, C. E. Bash, C. D. Patel, R. J. Friedrich, and J. S. Chase.
Balance of power: dynamic thermal management for internet data centers.
IEEE Internet Computing, 9(1):42–49, Jan 2005.

[51] Eduard Oró, Albert Garcia, and Jaume Salom. Experimental and numerical
analysis of the air management in a data centre in Spain. Energy and
Buildings, 116:553–561, 2016.

[52] Nosayba El-Sayed, Ioan A Stefanovici, George Amvrosiadis, Andy A Hwang,
and Bianca Schroeder. Temperature management in data centers: why some
(might) like it hot. ACM SIGMETRICS Performance Evaluation Review,
40(1):163–174, 2012.

[53] Y. Fulpagare, Y. Joshi, and A. Bhargav. Rack level forecasting model of
data center. In 2017 16th IEEE Intersociety Conference on Thermal and
Thermomechanical Phenomena in Electronic Systems (ITherm), pages 824–
829, May 2017.

[54] Muhammad Tayyab Chaudhry, M Hasan Jamal, Zeeshan Gillani, Waqas
Anwar, and Muhammad Salman Khan. Sustainable Computing: Informatics
and Systems Thermal-benchmarking for cloud hosting green data centers.
Sustainable Computing: Informatics and Systems, 25:100357, 2020.

[55] Q. Fang, J. Wang, Q. Gong, and M. Song. Thermal-aware energy management
of an hpc data center via two-time-scale control. IEEE Transactions on
Industrial Informatics, 13(5):2260–2269, Oct 2017.

[56] S. A. Bermudez, H. F. Hamann, L. J. Klein, F. J. Marianno, and A. Claassen.
Optimal and distributed automatic discrete control of air conditioning units
in data centers. In 2015 31st Thermal Measurement, Modeling Management
Symposium (SEMI-THERM), pages 13–18, March 2015.

[57] Jetmir Haxhibeqiri, Abdulkadir Karaagac, Floris Van den Abeele, Wout
Joseph, Ingrid Moerman, and Jeroen Hoebeke. Lora indoor coverage and
performance in an industrial environment: Case study. In 2017 22nd IEEE
International Conference on Emerging Technologies and Factory Automation
(ETFA), pages 1–8. IEEE, 2017.

[58] Qiang Liu, Yujun Ma, Musaed Alhussein, Yin Zhang, and Limei Peng. Green
data center with iot sensing and cloud-assisted smart temperature control
system. Computer Networks, 101:104–112, 2016.

[59] Michael G Rodriguez, Luis E Ortiz Uriarte, Yi Jia, Kazutomo Yoshii, Robert
Ross, and Peter H Beckman. Wireless sensor network for data-center envi-
ronmental monitoring. In 2011 Fifth International Conference on Sensing
Technology, pages 533–537. IEEE, 2011.

[60] The 51st edition of the top500 list., June 2018. https://www.top500.org/.

[61] P. Bruce and A. Bruce. Practical Statistics for Data Scientists. O’Reilly,
1005 Gravenstein Highway North, Sebastopol, CA 95472., May 2017.

[62] Brian Beers. P-value definition, Apr 2019. http://www.investopedia.com.

[63] Brian Hawkins. Kairosdb, fast time series database on cassandra, jan 2017.
http://kairosdb.github.io.

[64] Nicola Jones. How to stop data centres from gobbling up the world’s electricity.
Nature, 561(7722):163–167, 2018.

[65] NREL.

[66] Hayk Shoukourian and Dieter Kranzlmüller. Forecasting power-efficiency
related key performance indicators for modern data centers using LSTMs.
Future Generation Computer Systems, 112:362–382, November 2020.

[67] John L. Hennessy and David A. Patterson. Computer Architecture, Sixth
Edition: A Quantitative Approach. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 6th edition, 2017.

[68] Shaojie Bai, J Zico Kolter, and Vladlen Koltun. An empirical evalua-
tion of generic convolutional and recurrent networks for sequence modeling.
arXiv:1803.01271, 2018.

[69] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural
Computation, 9(8):1735–1780, 1997.

[70] Jinkyun Cho, Taesub Lim, and Byungseon Sean Kim. Measurements and
predictions of the air distribution systems in high compute density (internet)
data centers. Energy and buildings, 41(10):1107–1115, 2009.

[71] Jayati Athavale, Yogendra Joshi, and Minami Yoda. Artificial neural network
based prediction of temperature and flow profile in data centers. In 2018 17th
IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena
in Electronic Systems (ITherm), pages 871–880. IEEE, 2018.

[72] M. Marwah, R. Sharma, and C. Bash. Thermal anomaly prediction in
data centers. In 2010 12th IEEE Intersociety Conference on Thermal and
Thermomechanical Phenomena in Electronic Systems, pages 1–7, 2010.

[73] Lizhe Wang, Gregor Von Laszewski, Jai Dayal, Xi He, Andrew J Younge,
and Thomas R Furlani. Towards thermal aware workload scheduling in a
data center. In 2009 10th International Symposium on Pervasive Systems,
Algorithms, and Networks, pages 116–122. IEEE, 2009.

[74] Qinghui Tang, Tridib Mukherjee, Sandeep KS Gupta, and Phil Cay-
ton. Sensor-based fast thermal evaluation model for energy efficient high-
performance datacenters. In International Conference on Intelligent Sensing
and Information Processing. IEEE, 2006.

[75] Mohsen Seyedkazemi Ardebili, Carlo Cavazzoni, Luca Benini, and Andrea
Bartolini. Thermal characterization of a tier0 datacenter room in normal
and thermal emergency conditions. In Proceedings of High Performance
Computing in Science and Engineering 2019.

[76] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Brad-
bury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein,
Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary De-
Vito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style,
high-performance deep learning library. In Advances in Neural Information
Processing Systems 32, pages 8024–8035. Curran Associates, Inc., 2019.

[77] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn:
Machine learning in Python. Journal of Machine Learning Research, 12:2825–
2830, 2011.

[78] Ki Bum Lee, Sejune Cheon, and Chang Ouk Kim. A convolutional neural
network for fault classification and diagnosis in semiconductor manufacturing
processes. IEEE Transactions on Semiconductor Manufacturing, 30(2):135–
142, 2017.

[79] Giulia Moschini, Régis Houssou, Jérôme Bovay, and Stephan Robert-Nicoud.
Anomaly and fraud detection in credit card transactions using the arima
model. In Engineering Proceedings, volume 5, page 56. Multidisciplinary
Digital Publishing Institute, 2021.

[80] Tara Salman, Deval Bhamare, Aiman Erbad, Raj Jain, and Mohammed
Samaka. Machine learning for anomaly detection and categorization in multi-
cloud environments. In 2017 IEEE 4th International Conference on Cyber
Security and Cloud Computing (CSCloud), pages 97–103. IEEE, 2017.

[81] Andrea Borghesi, Martin Molan, Michela Milano, and Andrea Bartolini.
Anomaly detection and anticipation in high performance computing systems.
IEEE Transactions on Parallel and Distributed Systems, 2021.

[82] Hansheng Ren, Bixiong Xu, Yujing Wang, Chao Yi, Congrui Huang, Xiaoyu
Kou, Tony Xing, Mao Yang, Jie Tong, and Qi Zhang. Time-series anomaly
detection service at microsoft. In Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, pages
3009–3017, 2019.

[83] Jerry G Thomas, Sudhir P Mudur, and Nematollaah Shiri. Detecting
anomalous behaviour from textual content in financial records. In 2019
IEEE/WIC/ACM International Conference on Web Intelligence (WI), pages
373–377. IEEE, 2019.

[84] Ioannis Ch Paschalidis and Yin Chen. Statistical anomaly detection with
sensor networks. ACM Transactions on Sensor Networks (TOSN), 7(2):1–23,
2010.

[85] Jorge Ortiz, Catherine Crawford, and Franck Le. Devicemien: network device
behavior modeling for identifying unknown iot devices. In Proceedings of the
International Conference on Internet of Things Design and Implementation,
pages 106–117, 2019.

[86] Ecp: Exascale computing project.

[87] Burak Aksar, Benjamin Schwaller, Omar Aaziz, Vitus J Leung, Jim Brandt,
Manuel Egele, and Ayse K Coskun. E2ewatch: An end-to-end anomaly
diagnosis framework for production hpc systems. In European Conference on
Parallel Processing, pages 70–85. Springer, 2021.

[88] Abhinav Bhatele, Jayaraman J Thiagarajan, Taylor Groves, Rushil Anirudh,
Staci A Smith, Brandon Cook, and David K Lowenthal. The case of perfor-
mance variability on dragonfly-based systems. In 2020 IEEE International
Parallel and Distributed Processing Symposium (IPDPS), pages 896–905.
IEEE, 2020.

[89] Abhinav Bhatele, Kathryn Mohror, Steven H Langer, and Katherine E Isaacs.
There goes the neighborhood: performance degradation due to nearby jobs.
In SC’13: Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis, pages 1–12. IEEE, 2013.

[90] Matthieu Dorier, Gabriel Antoniu, Rob Ross, Dries Kimpe, and Shadi Ibrahim.
Calciom: Mitigating i/o interference in hpc systems through cross-application
coordination. In 2014 IEEE 28th international parallel and distributed pro-
cessing symposium, pages 155–164. IEEE, 2014.

[91] Aniruddha Marathe, Yijia Zhang, Grayson Blanks, Nirmal Kumbhare, Ghaleb
Abdulla, and Barry Rountree. An empirical survey of performance and energy
efficiency variation on intel processors. In Proceedings of the 5th International
Workshop on Energy Efficient Supercomputing, pages 1–8, 2017.

[92] Anthony Agelastos, Benjamin Allan, Jim Brandt, Ann Gentile, Sophia
Lefantzi, Steve Monk, Jeff Ogden, Mahesh Rajan, and Joel Stevenson. To-
ward rapid understanding of production hpc applications and systems. In
2015 IEEE International Conference on Cluster Computing, pages 464–473.
IEEE, 2015.

[93] James M Brandt, David DeBonis, Ann C Gentile, Jim Lujan, Cindy Martin,
David J Martinez, Stephen Lecler Olivier, Kevin Pedretti, Narate Taerat,
and Ron Velarde. Enabling advanced operational analysis through multi-
subsystem data integration on trinity. Technical report, Sandia National
Lab.(SNL-CA), Livermore, CA (United States); Sandia National . . . , 2015.

[94] Mohsen Seyedkazemi Ardebili, Marcello Zanghieri, Alessio Burrello, Francesco
Beneventi, Andrea Acquaviva, Luca Benini, and Andrea Bartolini. Prediction
of thermal hazards in a real datacenter room using temporal convolutional
networks. In 2021 Design, Automation & Test in Europe Conference &
Exhibition (DATE), pages 1256–1259. IEEE, 2021.

[95] Rafiul Ahad, Eric Chan, and Adriano Santos. Toward autonomic cloud: Au-
tomatic anomaly detection and resolution. In 2015 International Conference
on Cloud and Autonomic Computing, pages 200–203. IEEE, 2015.

[96] Hiranya Jayathilaka, Chandra Krintz, and Rich Wolski. Performance monitor-
ing and root cause analysis for cloud-hosted web applications. In Proceedings
of the 26th International Conference on World Wide Web, pages 469–478,
2017.

[97] Behnaz Arzani, Selim Ciraci, Boon Thau Loo, Assaf Schuster, and Geoff
Outhred. Taking the blame game out of data centers operations with netpoirot.
In Proceedings of the 2016 ACM SIGCOMM Conference, SIGCOMM ’16, page
440–453, New York, NY, USA, 2016. Association for Computing Machinery.

[98] Andrea Borghesi, Andrea Bartolini, Michele Lombardi, Michela Milano, and
Luca Benini. A semisupervised autoencoder-based approach for anomaly
detection in high performance computing systems. Engineering Applications
of Artificial Intelligence, 85:634–644, 2019.

[99] Bruno L Dalmazo, João P Vilela, Paulo Simoes, and Marilia Curado. Expedite
feature extraction for enhanced cloud anomaly detection. In NOMS 2016-
2016 IEEE/IFIP Network Operations and Management Symposium, pages
1215–1220. IEEE, 2016.

[100] Ozan Tuncer, Emre Ates, Yijia Zhang, Ata Turk, Jim Brandt, Vitus J Leung,
Manuel Egele, and Ayse K Coskun. Online diagnosis of performance variation
in hpc systems using machine learning. IEEE Transactions on Parallel and
Distributed Systems, 30(4):883–896, 2018.

[101] Denis Shaykhislamov and Vadim Voevodin. An approach for dynamic detec-
tion of inefficient supercomputer applications. Procedia Computer Science,
136:35–43, 2018.

[102] Anwesha Das, Frank Mueller, and Barry Rountree. Aarohi: Making real-time
node failure prediction feasible. In 2020 IEEE International Parallel and
Distributed Processing Symposium (IPDPS), pages 1092–1101. IEEE, 2020.

[103] Alessio Netti, Zeynep Kiziltan, Ozalp Babaoglu, Alina Ŝırbu, Andrea Bar-
tolini, and Andrea Borghesi. A machine learning approach to online fault
classification in hpc systems. Future Generation Computer Systems, 110:1009–
1022, 2020.

[104] Andrea Borghesi, Andrea Bartolini, Michele Lombardi, Michela Milano, and
Luca Benini. Anomaly detection using autoencoders in high performance
computing systems. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 33, pages 9428–9433, 2019.

[105] Burak Aksar, Yijia Zhang, Emre Ates, Benjamin Schwaller, Omar Aaziz,
Vitus J Leung, Jim Brandt, Manuel Egele, and Ayse K Coskun. Proctor: A
semi-supervised performance anomaly diagnosis framework for production
hpc systems. In International Conference on High Performance Computing,
pages 195–214. Springer, 2021.

	Abstract
	List of Figures
	List of Tables
	Acknowledgments
	Introduction
	Motivations
	Contributions
	Thesis Overview

	Background
	Overview
	CINECA
	CINECA Cooling Technologies
	Room F - Marconi A2 (KNL)
	Room F - Marconi 100
	Room N

	The ExaMon Framework
	System Overview
	Collector Measurements Format

	Summary

	Thermal and Power Characteristic of the HPC Room
	Overview
	Wireless Sensor Network-based Characterization - CINECA HPC Room N
	Big Data-based Characterization - CINECA HPC Room F

	State of the Art
	Thermal and Power Characteristic of the HPC Room
	Methodology
	Experimental Results

	Thermal and Power Characteristic of the HPC Room
	Methodology
	Experimental Results

	Summary

	Detection and Prediction of Thermal Emergency
	Overview
	State of the Art
	Background Setup
	Thermal Hazard Prediction Methodology
	Thermal Hazard Analysis and Labels Generation
	Imbalanced Dataset
	Prediction Horizon
	Last Value Predictor
	Thermal Hazard Prediction Framework

	Machine Learning Model Selection
	Experimental Dataset
	TCN and Competitor Predictors
	Experiment 1: Random Test Dataset ML-Model Selection

	Experimental Results
	Experiment 2: Overlap Cancellation of Training and Test Dataset
	Experiment 3: Time-separate Test Dataset
	Experiment 4: Input Selection/Node SelectionRandomly Selected 72 Nodes as Input and TCN with 1D Conv. Layers
	Experiment 5: Randomly Selected 72 Nodes as Input and TCN with 2D Conv. Layers
	Experiment 6: Power Consumption (of Randomly Selected 72 Nodes) as a Second Input Channel of TCN with 2DConv Layers
	Experiment 7: TCN Model with 3DConv Layers
	Experiment 8: Outlet Temperature of Nodes Interleaved to Inlet Dataset and Depthwise Separable Convolutions
	Experiment 9: Check the Model's Performance Week by Week
	Experiment 10: Cross-validation Month by Month
	Experiment 11: Decomposition of Time Series Data
	Experiment 12: Comparison of TCN Models with Different Convolutional Layers
	Experiment 13: Memory Based Labeling

	Summary

	Thermal Anomaly Detection
	Overview
	State of the Art
	Dataset
	Rule-based Statistical Method (Flags)
	Mathematical Definition of the Flags
	Initial Labeling of Samples Utilizing the Abnormality Level (Sum of Flags)

	Autoencoder
	Autoencoder Model and Training Dataset Configuration Selection

	Experimental Results
	Reconstruction Error Threshold
	Detailed Study of Real Physical Failure
	Locations of Anomalies

	Summary

	Conclusion
	Acronym
	Bibliography

