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Abstract

Massive early-type galaxies (ETGs) are "red and dead" systems mainly composed by
old and metal-rich stellar populations. In a cosmological context, present-day ETGs
are believed to be the remnants of a complex stellar mass assembly history marked by
several mergers, which are the consequence of the underlying hierarchical assembly
of their host dark matter halos.

This Ph.D. thesis deals mainly with the merger-driven evolution of ETGs, studying
how scaling relations evolve across cosmic time, how the stellar populations of the
progenitors settled into the remnant galaxies, and how the mass of the host dark
matter halos can be inferred from other galaxy properties.

In the first part of this thesis, I will present the results of the first systematic study
in the literature of the evolution of the scaling relation that links the stellar mass
of ETGs to their stellar velocity dispersion. By exploiting a Bayesian hierarchical
formalism, I tested different functional forms to investigate how the stellar mass–
velocity dispersion relation may vary as a function of redshift, finding evidence for
an evolution over the redshift range 0 . z . 2.5.

In the second part, I will illustrate a comparison between observed ETGs from the
MaNGA survey and simulated galaxies from the cosmological simulation suite Illus-
trisTNG. The aim of this project is to provide an interpretative scenario of the stellar
mass assembly history of present-day ETGs, comparing the radial distributions of
their stellar properties with those of simulated galaxies, in which we can disentangle
the role of stars formed in situ (i.e. within the main progenitor galaxy) and stars
formed ex situ (i.e. in other galaxies) and then accreted through mergers.

Finally, in the last part, I will exhibit the preliminary results of a project aimed at
inferring the dark matter mass of halos hosting central galaxies of the IllustrisTNG
simulation, using Explainable Boosting Machine, a state-of-the-art machine learning
implementation of the generalised additive models with pairwise interactions. I will
show the strength of this new machine learning method that allows us to provide a
prediction for the dark matter halo mass using several galaxy properties, in order to
understand which of them are the most relevant to be used in observed galaxies.



Overall, the results presented in this manuscript confirm and extend previous out-
comes about ETGs, their merger-driven evolution and the galaxy-halo connection,
highlighting also the importance of making contrast between observations and simu-
lations. The projects illustrated in this thesis make use of novel methods of statistics,
data analysis and machine learning, which are becoming fundamental during the last
years to handle huge amount of data and to face complex astrophysical problems.



To my Family.
To Elenina.
To Matilde.





“Every day I remind myself that my inner and outer life are based on the labors of
other men, living and dead, and that I must exert myself in order to give in the same

measure as I have received and am still receiving.”

— Albert Einstein, The World As I See It





— Vincent Willem van Gogh, Starry Night Over the Rhône
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An overview of early-type
galaxies

1

„This fright, this night of the mind must be
dispelled not by the rays of the sun, nor day’s
bright spears, but by the face of nature and her
laws.

— Titus Lucretius Carus

In the middle of the XVIII century, Thomas Wright (1711 - 1786) and, soon thereafter,
Immanuel Kant (1724 - 1804) suggested that our locus in the Universe, the Milky
Way, is a structure with a finite size, whose shape is more or less like a flat disk.
Over the centuries, we have learned much more about the Milky Way: this system,
totally sustained by gravity, is not composed only by stars, but there are a few other
components like gas, dust, black holes and dark matter that work together to sustain
this complex scaffolding. We have also learned that the faint "elliptical nebulae"
seen in the obscurity of the sky might be something very similar to our galaxy. Kant
named these other objects island universes.

1.1 The nature of galaxies

Galaxies we observe close to us show a wide variety of shapes and sizes, spanning
broad ranges in luminosities and masses. The most evident property that charac-
terises galaxies is their morphology. Indeed, akin to the classifications of animals
and plants, it is useful to classify galaxies based on how they look like in the sky.
Galaxy shapes result as a combination of their real intrinsic three dimensional shape
and their orientation along the line of sight. The first "zoological" classification
of galaxies was purposed in 1926 by Edwin Hubble (1889 - 1956) in his paper
"Extragalactic Nebulae" (Hubble, 1926) and, subsequently, in his book "The Realm
of the Nebuale" (Hubble, 1936). Understanding the physical processes behind the
formation and evolution of the galaxies and their morphology is still one of the
crucial aims of extragalactic astrophysics.
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Fig. 1.1: The Hubble tuning-fork sequence diagram. This plot is taken from https://www.
spacetelescope.org/images/heic9902o/.

According to their morphologies, galaxies were placed by Hubble upon the classical
tuning fork, known as the Hubble Sequence. In this tuning-fork diagram, galaxies
are arranged as shown in Figure 1.1. This morphological scheme divides galaxies
in three main classes: ellipticals (Es), spirals (Ss) and irregulars (Irrs). Originally,
Hubble interpreted (incorrectly) the tuning fork as an evolutionary diagram for
galaxies. Therefore, from the left to the right, we move from early-type galaxies
towards the late-type galaxies. Nowadays, we currently refer to the two main types
of galaxies using this "wrong" terminology, but not considering more the Hubble
diagram as an evolutionary sequence.

Starting from the left of the Hubble sequence, we find the class of ellipticals. Hubble
subdivided these galaxies on the basis of their observed flattening, a quantity that is
related to the ellipticity

ε = 1− β

α
, (1.1)

where α and β are the apparent semi-major and semi-minor axes of an ellipse,
respectively. The "E" Hubble type is quoted in units of 10ε: elliptical systems, indeed,
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Fig. 1.2: Examples of oblate (top panels) and prolate (bottom panels) spheroids. Top panels:
oblate spheroid with a = b > c. If c/a = 0.6, the apparent shape for observer A
corresponds to an E4 galaxy (β/α = 0.6), while for observer B corresponds to an
E0 galaxy (β/α = 1). Bottom panels: prolate spheroid with a > b = c. If b/a = 0.6,
the apparent shape for observer A corresponds to an E0 galaxy, while for observer
B corresponds to an E4 galaxy. This plot is an adapted version of two original plots
taken from Carroll & Ostlie (2006).

can vary from a circular distribution of stars in the plane of the sky, E0, to a very
flattened distribution, E7. Galaxies with values of ellipticity ε > 0.7 have never been
observed. Indeed, moving to the right of the Hubble sequence, galaxies start to
show a different morphology mainly dominated by a central spheroid, the so-called
bulge, surrounded by a disc without spiral arms. We stress here that, the apparent
ellipticity does not necessarily correspond to the intrinsic ellipticity of Es, since
their orientation along the line of sight may affect their observed real morphology.
This effect is illustrated in Figure 1.2. In general, an ellipsoid is triaxial with axes
a ≥ b ≥ c. Special cases are a sphere (a = b = c), an oblate spheroid (a = b) and a
prolate spheroid (b = c).

Moving toward the right part of the Hubble sequence, we find the lenticular systems,
S0s, a transitional class of galaxies between ellipticals and spirals. Proceeding
further to the right, the spiral sequence forks into two subgroups. The upper prong
includes normal spiral galaxies that are characterised by a central bulge and a
surrounding disc. Depending on the prominence of the bulge and the importance of
the winding of the arms, we subdivide normal spirals into Sa, Sb and Sc. The lower
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prong, instead, considers the barred spirals (SBs), which present a bar in the central
regions, like a bridge between the bulge and the arms.

Finally, the remaining category of galaxies is composed by irregulars that can be
divided into Irr I, which show at least a hint of spiral arms or organised substructures,
and Irr II that, instead, are completely disordered systems.

As we will see in this Chapter and in the rest of this manuscript, massive ellipticals
(Es) and S0s systems, which we will refer to as early-type galaxies (ETGs) hereafter,
are galaxies composed by old and metal-rich stellar populations (both responsible for
the red colours of these objects), a quasi-absent star formation activity, characterised
by the presence or not of a significant rotation, and that tend to occupy the innermost
parts of overdense regions (like galaxy groups and clusters) in the Universe. Instead,
spirals (both barred and not) are bluer galaxies, because of their more recent star
formation activity, owing to a large amount of cold gas, whose stellar populations
span a wide range in age. Moreover, they are more rotationally supported than
ETGs, and tend to occupy lower density regions of the Universe.

In 1959, the classical Hubble sequence was extended following the revision by
Gérard Henri de Vaucouleurs (1918 - 1995). In addition to elliptical and spiral
galaxies, the novel classification included also further subclasses of lenticulars (S0a
and S0b), spirals (Sd and Sm), and the irregular galaxies Im (where "m" stands
for Magellanic-like objects such as the Small Magellanic Cloud). Moreover, other
intermediate types were added along and between the two prongs of the original
Hubble fork, that consider galaxies with ring structures (letter "r") or pure spirals
(letter "s"), and much more. A detailed description of the revised version of the
Hubble sequence can be found, for instance, at the beginning of Chapter 3 of Cimatti,
Fraternali, & Nipoti (2019).

The morphological classification of galaxies strongly depends on which wavelength
range is used to obtain their images. This difference in morphology, caused by a
different wavelength used to observe the same galaxy, is called morphological K
correction. There are two main reasons for this effect. On the one hand, younger
stellar populations, usually located in the spiral arms of galaxies, are characterised
by bluer colours and they are better revealed by UV observations; instead, older stars,
usually occupying bulges, show redder colours, that are better identified by infrared
observations. On the other hand, the presence of dust causes an extinction effect
that tends to attenuate bluer colours. However, since ETGs are mainly composed
by red stellar populations and almost completely free of dust, they do not strongly
suffer the effects of the morphological K correction.
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1.1.1 The integrated light of galaxies

For the closest galaxies to the Milky Way, i.e. those at most within a few Mpc, we are
able to resolve individual stars. However, the majority of galaxies that we observe
can be studied in terms of their integrated light properties. The information about
stellar populations in a galaxy are derived from its spectral energy distribution (SED),
i.e. the energy emitted by a source as a function of wavelength (or frequency).

The evolution of galaxies is a very complex subject to deal with, involving both
dynamical and spectral evolution. Analysing the spectral evolution of galaxies
allows to understand how the stellar populations change across cosmic time. From
a theoretical point of view we know that high-mass stars (e.g., > 1 M�) evolve
over timescales shorter than the age of the galaxy where they live. This implies a
succession of the type of stars whose emission dominates at different stages, causing
a change in the observed spectra. If two similar galaxies have different ages this is
reflected on their SEDs which can be interpreted in terms of spectral evolution (e.g.,
Spinrad, 1977; Wilkinson & Oke, 1978; Spinrad, 1980). For instance, in a single
stellar population (SSP) evolving passively, the most massive stars continuously die
and their role in dominating the integrated light goes to less massive stars. Galaxies,
however, are more complex systems where multiple stellar populations coexist due
to both new star formation episodes and accreted stars from other galaxies via
mergers, cannibalism, stripping, etc.

In this context, it is interesting to take a look at the behaviour of a SSP and how it
evolves during its lifetime. In Figure 1.3, the evolution of a SSP with solar metallicity
and assuming a Salpeter (1955) initial mass function is shown, highlighting the
relative contribution to the bolometric luminosity of each type of stars. The general
behaviour is that the SSP fades as it ages. Specifically, for the first ≈ 20 Myr the
bolometric luminosity is dominated by main sequence stars. Subsequently, the role of
asymptotic giant branch stars grows. In old stellar populations (i.e. & 10 Gyr) half of
the total luminosity comes from the red giant branch stars. ETG stellar populations
are mainly composed by old G-type and K-type giant stars, responsible for the typical
red colours (see section 1.3 and section 1.4). However, a blue component in light
has been observed in ETGs, not compatible with the expected ageing of stars (e.g.,
Faber, 1972, 1973; O’Connell, 1980; Trager, 1999). The presence of young and
blue stars within ETGs is usually interpreted as recent star formation induced by
interactions with other galaxies.
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Fig. 1.3: The bolometric luminosity of the different types of stars as a function of time for a
solar metallicity population SSP with a Salpeter initial mass function. The types
of stars shown are main sequence (MS), horizontal branch (HB), subgiant branch
(SGB), red giant branch (RGB), asymptotic giant branch (AGB), and post asymptotic
giant branch (P-AGB) stars. The upper x-axis indicates the corresponding main
sequence turnoff (TO) mass. This plot is taken from Renzini & Buzzoni (1986, in
Spectral Evolution of Galaxies, eds. C. Chiosi & A. Renzini, Reidel Publishing).

For a more detailed description about the spectral evolution of galaxies, we refer the
reader to Bruzual A. (1983), Renzini & Buzzoni (1986), Binney & Merrifield (1998),
and section 8.6 of Cimatti, Fraternali, & Nipoti (2019).

1.2 A few useful definitions

In the following we introduce some concepts that are frequently used through this
manuscript.

1.2.1 Mass-to-light ratio

The brightness of an astrophysical object is usually expressed in solar units, and,
specifically, it is quantified as the number of the Suns required to reproduce the flux
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of that object at its distance (Binney & Merrifield, 1998). If the stellar mass derived
for this object is M∗, it is useful to compute the so-called mass-to-light ratio

Υ∗,x = M∗/M�
L∗,x/L�,x

, (1.2)

where L∗,x and L�,x are the luminosity of the source and of the Sun in the waveband
x, respectively.

1.2.2 Surface brightness profiles

Establishing which are the limits in size of a galaxy is not straightforward. Galactic
systems are extended sources on the sky and their shape can be derived by analysing
their surface brightness profiles. The curves on the observed image of a galaxy char-
acterised by the same value of surface brightness are called isophotes. If the shape of
the isophotes is approximately an ellipse, their ellipticity has the same form of Equa-
tion 1.1, and the elliptical raidus α or, alternatively, the circularised radius Rc =

√
αβ

can be used to obtain the surface brightness radial profile, i.e. a 1D curve showing
how the surface brightness changes as a function of the galactocentric distance.
Since galaxies do not have sharp edges, their physical size is often expressed in units
of the isophotal radius, i.e. the radius of the isophote that includes a given level of
surface brightness. It is commonly used as a radius the so-called effective radius Re

(or half-light radius), i.e. the radius of the isophote including 50% of the total flux of
the galaxy.

1.2.3 Sérsic profiles

The surface brightness profile of a galaxy can be modelled with different functional
forms. For instance, discs are usually modelled using an exponential decay, while
historically bulges of spiral galaxies and ellipticals are fitted by the r1/4 law of the de
Vaucouleurs profile (de Vaucouleurs, 1948). A generalised version of these models
is given by the so-called Sérsic profile (Sérsic, 1968):

I = Ie exp
{
−b(n)

[(
R

Re

)1/n
− 1

]}
, (1.3)

where Ie is the surface brightness at the effective radius, n is the Sérsic index, and b is
a parameter depending on n that can be approximated by b(n) = 2n−1/3+4/(405n)
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(Ciotti & Bertin, 1999). Equation 1.3 reduces to the classical de Vaucouleurs profile,
when n = 4, while assuming n = 1 we end up with an exponential distribution.

As deeply discussed in Ciotti & Bertin (1999), as the Sérsic index increases, the
surface brightness profiles tends to become steeper at small radii and shallower
at large radii. Usually, when fitted by one Sérsic component, ETGs are separated
from late-type galaxies (LTGs), by selecting those objects with n > 2.5. In many
cases, however, since galaxies can be composed by more the one stellar population,
a multi-component fit is adopted, by combining two (or more) Sérsic laws.

1.3 The red sequence of ETGs

Galaxies in the Universe can be classified depending on the colours of their stellar
populations. Indeed, it is well known that we can identify two galaxy families:
blue galaxies, which usually are star-forming and disc-dominated systems, and red
galaxies, which, instead, are usually early-type, quiescent and bulge-dominated
systems.

In Figure 1.4 three colour–mass diagrams from Schawinski et al. (2014) for a galaxy
sample based on photometric and spectroscopic data from the Sloan Digital Sky
Survey (SDSS) Data Reease 7 (York et al., 2000; Abazajian et al., 2009) is illustrated.
Specifically, this figure shows galaxies with u− r colours already corrected for dust
extinction (see section 1.1), adopting the correction at z = 0.0 from the NYU-VAGC
(Blanton et al., 2005; Blanton & Roweis, 2007; Padmanabhan et al., 2008). The
upper-left panel of Figure 1.4 shows the entire sample considered which is separated
in ETGs and LTGs in the two plots on the right side. The global arrangement of
galaxies in the three colour–mass diagrams reveals the presence of the so-called
colour bimodality. Indeed, we can easily identify two well-defined regions: the red
sequence (mainly populated by ETGs) and the blue cloud (mainly populated by LTGs).
Although both ETGs and LTGs span the entire range of colours, highlighting the
contamination of some blue ETGs and red LTGs, the two galaxy populations tend
to be separated, showing a transition "bridge" called green valley. Moreover, the
location of the red sequence in these colour–mass plots suggests that, on average, as
already said in section 1.1, the most massive galaxies tend to be ETGs.

From a galaxy-evolution point of view, an important question concerns the origin
of the observed bimodality, that is also found at higher redshifts (e.g., Bell et al.,
2004; Brammer et al., 2009; Wuyts et al., 2011; Cheung et al., 2012; McIntosh et al.,
2014). This origin should be sought in the building-up processes of the red sequence
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Fig. 1.4: The reddening-corrected u− r colour–mass diagrams for the whole galaxy sample
(top-left panel), and for the ETGs (top-right panel) and LTGs (bottom-right panel),
respectively of the SDSS DR7. The two green lines in the three plots delimit the
green valley. This plot is taken from Schawinski et al. (2014).

itself. Several processes can be responsible for the movement of the galaxies in the
colour–mass plane, such as mergers, quenching of star formation in galaxies, etc
(e.g., Faber et al., 2007; Pozzetti et al., 2010).

1.4 The stellar population relations of ETGs

The star formation history of ETGs is influenced by all the evolutionary processes
occurred during their cosmic evolution. As described in the previous section, ETG
colours tend to be redder with respect to those of star forming galaxies because of a
combination of factors. Indeed, as a consequence of the lack of cold gas, the stars
that populate ETGs are old and metal rich, and, since the quasi absence of dust,
the observed red colours of ETGs are basically coinciding with their intrinsic red
colours.
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1.4.1 The colour–magnitude relation

In 1992, by observing galaxies within the Virgo and Coma galaxy clusters, it was
discovered that ETGs obey the colour–magnitude relation (Bower, Lucey, & Ellis,
1992). This tight correlation involves the U − V rest-frame colour and the absolute
magnitude of ETGs. An important property of this relation is its scatter. In particular,
if ETGs actually are the result of a passive evolution, this scatter can give us informa-
tion about the redshift of their formation. From the observed colour scatter, Bower,
Lucey, & Ellis (1992) stated that ETGs in clusters are mainly composed by very old
stellar populations, whose bulk of formation dates back to z & 2. A correlation is
also found between colour and stellar velocity dispersion σ, consistent with the fact
that σ correlates with luminosity (see section 1.6).

As we already said, the presence of red stellar populations in a galaxy cannot be
sufficient to provide a satisfying explanation for the evolution of ETGs and the
already mentioned relations, because of the presence of the so-called age-metallicity
degeneracy: indeed, red colours can be caused by old and/or metal-rich stars. This
degeneracy can be circumvented by extending the analysis to other and more
stringent properties of stars looking at ETG spectra. Some features within spectra of
ETGs like the shape of the stellar continuum, the presence of absorption lines or the
D4000 break show peculiarities typical of old stellar populations, that can be derived
by adopting two specific methods: the full spectral fitting technique adopting stellar
population synthesis models and the exploitation of Lick indices (or other estimators)
for deriving the equivalent widths of specific absorption lines. Both techniques can
give us consistent results and help in breaking the age-metallicity degeneracy (for a
more detailed explanation we refer the reader to Cimatti, Fraternali, & Nipoti 2019).
Anyway, regardless of the method adopted, on the average, the stellar populations
composing ETGs in the present-day Universe are both old and metal-rich.

1.4.2 The stellar mass–metallicity relation of ETGs

Metallicity of stars is found to correlate with the stellar mass, giving rise to the so-
called mass–metallicity relation1. The stellar mass–metallicity relation was discovered
in present-day ETGs combining the analysis of their spectra and colour–magnitude
diagrams (McClure & van den Bergh 1968; Sandage 1972; Mould, Kristian, & Da
Costa 1983, Buonanno et al. 1985). The first interpretation of the existence of

1We underline that also the gas-phase metallicity of galaxies shows a correlation with the stellar mass.
In this manuscript, however, when we will refer to metallicity in general, we consider only the
stellar metallicity.
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Fig. 1.5: Stellar mass–metallicity relation (left panel) and stellar mass–age relation (right
panel) for z ' 0.05 SDSS quiescent (red curves) and star forming (blue curves)
galaxies. These plots are adapted from Peng, Maiolino, & Cochrane (2015).

the stellar mass–metallicity relation was in terms of the chemical pollution due to
supernova winds from low-mass galaxies: a part of the expelled material from these
small systems is captured and retained by galaxies with higher masses, which mix
and dilute their global metal content (Tinsley, 1974, 1978; Mould, 1984). Recently,
by exploiting information from optical spectra, relevant studies have been conducted
in particular using SDSS galaxies to obtain the stellar mass–metallicity relation for
both star forming and passive galaxies (e.g., Trager et al., 2000; Kuntschner et al.,
2001; Gallazzi et al., 2005; Thomas et al., 2005; Gallazzi et al., 2006, 2008; Thomas
et al., 2010; Conroy et al., 2014; González Delgado et al., 2015; Zahid et al., 2017;
Zhang et al., 2018).

Disentangling the role of star forming and quiescent galaxies, Peng, Maiolino, &
Cochrane (2015) studied in detail the stellar mass–metallicity and also the mass-age
relations for a sample of SDSS galaxies (see Figure 1.5). The authors found evidence
that environment-related processes such as the so-called strangulation (e.g., Larson
et al., 1980; Balogh et al., 2000; Kereš et al., 2005) in galaxy may be responsible for
the existence of these relations. Indeed, strangulation stops the gas accretion onto
galaxies, causing a passive evolution of the systems, which evolve like closed boxes
(Tinsley, 1968; Searle & Sargent, 1972). When the gas reservoir is consumed, there
is no more star formation activity.

For a more detailed presentation of the stellar mass–metallicity relation, we refer
the reader to the review by Maiolino & Mannucci (2019).
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1.4.3 Relations involving the velocity dispersion

Of course, in light of the relations presented so far, the direct consequence is the
presence of other scaling relations involving evolutionary and dynamical properties
of ETGs, that allow to reconstruct their star formation history. We will briefly
summarise these scaling relations below.

Metallicity–velocity dispersion relation

The [Z/H]−σ relation is an empirical correlation between the galaxy velocity disper-
sion and stellar metallicity (e.g., Greggio, 1997; Thomas et al., 2005, 2010). This
relation suggests that massive ETGs, and so systems with high velocity dispersion,
tend to be metal rich, even supersolar. The presence of such relation is somewhat
related to the fact that the deep potential wells of ETGs are able to retain material
expelled through galactic winds, that enrich globally their interstellar medium.

α-element abundance–velocity dispersion relation

Similarly to the [Z/H]−σ relation, the [α/Fe]−σ relation contains information on
the star formation history in ETGs, since α elements2 are optimal indicators of the
star formation timescale. Indeed, the presence of α elements in galaxies is mainly
due to the explosions of Type II supernovae, and longer timescales imply a lower
values of [α/Fe], because, in the meanwhile, explosions by Type Ia supernovae –
main responsible for the presence of iron (and the other peak elements) in galaxies –
dilute the α-element content. The deep potential wells of ETGs ensure that these
galaxies have a large amount of α elements (e.g., Worthey et al., 1992; Greggio,
1997; Jørgensen, 1999; Kuntschner, 2000).

Age–velocity dispersion relation

The age of stellar populations is found to correlate with stellar velocity dispersion in
ETGs. As we already seen, massive ETGs tend to be populated by old stars (& 5 Gyr)
even reaching at z ≈ 0 ages comparable with the age of the Universe. This relation
shows a large scatter (e.g., Proctor & Sansom 2002, Thomas et al. 2005, 2010).

2α elements, such as C, O, Ne, Mg, Si, etc, are chemical elements synthesised in stars as a consequence
of fusion processes involving helium.
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Fig. 1.6: The age−σ (top panel), [Z/H]−σ (middle panel), and [α/Fe]−σ (bottom panel)
relations are shown. Open red dots and black squares represent central values and
mean stellar values of stellar population parameters of the sample considered by
Spolaor et al. (2010). The red and black lines are the weighted least-squares linear
fits. This plot is taken from Spolaor et al. (2010).

In Figure 1.6 the age−σ, [Z/H]−σ and [α/Fe]−σ relations described above from
Spolaor et al. (2010) are displayed.

The relations presented in this section involve integrated properties of ETGs. Spatially-
resolved stellar properties can give us a more detailed view on the variations of
these properties within galaxies. For instance, by analysing a sample of ETGs and
spiral galaxies from the MaNGA survey (Bundy et al., 2015), Li et al. (2018) studied
how stellar age, metallicity and stellar mass-to-light ratio are distributed in galaxies,
confirming that these properties tend to increase for increasing local σ. In particu-
lar, they found that the stellar age and, especially, the stellar metallicity gradients
strongly depend on stellar velocity dispersion, that peaks at around 100 km s−1, cor-
responding approximately to a stellar mass of log(M∗/M�) ≈ 10.5, i.e. the critical
mass where the break in the stellar mass–size relation occurs (Cappellari, 2016). The
fact that these gradients tend to become flatter as the velocity dispersion increases
can be interpreted in terms of the rising role of mergers, which redistribute the
stellar metallicity in these high-velocity-dispersion systems.

1.4 The stellar population relations of ETGs 13



1.5 Selecting ETGs

Massive ETGs are spheroidal or elliptical systems (E/S0) composed by red, old and
metal-rich stellar populations, and with an almost negligible activity in forming new
stars, which makes these galaxies essentially passive. However, their identification
in galaxy surveys is not always trivial.

In their work, Moresco et al. (2013) deeply analysed the nature of ETGs, shedding
light on similarities and differences of various selection criteria adopted to identify
ETGs. In the following we briefly summarise the analysis made by Moresco et al.
(2013) for different samples of galaxies out to z ' 1 extracted from the zCOSMOS-
20k survey (Lilly et al., 2009). Leaving out from this summary all the details of
each selection method presented, the authors discuss pros and cons of six different
criteria:

• "morphological" ETGs, i.e. a morphological selection that combines the infor-
mation from a principal component analysis of five structural diagnostics and
a single-Sérsic fit of the surface brightness;

• "red-sequence" galaxies, i.e. a criterion based on the (U−B) colour–stellar mass
relation;

• "red UV J" galaxies, i.e. a selection made on the UV J colour–colour diagram;

• "red SED" galaxies, i.e. a criterion based on fitting photometric data with
templates of photometric galaxy types;

• "quiescent" galaxies, i.e. a selection based on the values of specific star forma-
tion rate of galaxies;

• "red & passive" ETGs, i.e. a criterion based on a combination of morphological,
photometric and optical spectroscopic information.

Though each galaxy sample selected with one of the previous methods displays a
percentage of contamination due to the presence of blue/star-forming/non-passive
galaxies, among these six approaches, the "red & passive" method performs best,
identifying galaxies by fitting their spectral energy distributions (SEDs) with E/S0
templates, keeping only objects with weak or negligible emission lines using EW([O
II]) or EW(Hα), requiring a spheroidal morphology and observed (K − 24µm)
colours of z ≈ 0 E/S0 objects. However this approach is very demanding, because it
requires a large number of data, often hard to be retrieved, in particular for galaxies
at high redshift.
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In this thesis we consider various methods to select ETGs. Indeed, since galaxies
in the projects presented are taken from different surveys, the same quantities
used for the selection of ETGs are often not available for different catalogues. In
particular, in Chapter 2 we will make use of a sample of galaxies, which we will refer
to as the fiducial sample, identified by combining a selection in EW([O II]) with a
morphological visual inspection, while the so-called high-redshift sample is composed
by galaxies presented in other works selected in UV J colours or in morphology.
Concerning the fiducial sample, we will show also the results of our analysis adding
a further selection based on UV J colours.

In Chapter 3, we will select both observed and simulated ETGs adopting two different
selection criteria: a method based on a cut in g − r colours, and a method based on
the locus of galaxies in the SFR–stellar mass plane.

Finally, in Chapter 4 we will focus our analysis on central galaxies (and not specifi-
cally on ETGs). However, as we will see in section 1.7, massive central galaxies tend
to be ETGs.

1.6 The scaling relations of ETGs

In section 1.4 we have briefly described relations for some stellar population proper-
ties of ETGs. In the following we will introduce scaling relations involving structural
and kinematic properties.

1.6.1 The Faber-Jackson relation

In the late 70’s, the first empirical relation found for ETGs was the Faber-Jackson
relation (Faber & Jackson, 1976). This relation links the central velocity dispersion
to the magnitude MB, or equivalently, to the luminosity so that

L ∝ σβ0 , (1.4)

where β ≈ 4. Although this relation, historically, was set as a single power-law,
subsequent evidence for a more complex behaviour was found (e.g., Hyde &
Bernardi, 2009b). In fact, while low-luminosity ETGs tend to be better reproduced
by β ≈ 3, the high-luminosity tail show a steeper correlation, with β ≈ 5. The
Faber-Jackson relation, as well as the Tully-Fisher relation (Tully & Fisher, 1977)
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for spirals – where the circular velocity takes the role of the velocity dispersion –,
show a correlation between a kinematic property of galaxies and luminosity. Such
correlations are not necessarily satisfied by a stationary stellar systems and thus
contains precious information on the galaxy formation and evolution processes.

1.6.2 The Kormendy relation

Just one year after the discovery of the Faber-Jackson relation, another empirical
law, the Kormendy relation, connecting the effective radii Re of ETGs to their surface
brightness at that radius, Ie, was found (Kormendy, 1977). The Kormendy relation
can be formulated also in terms of the effective surface brightness Īe = L/(2πR2

e),
which is the average surface brightness within Re. Converting Īe into luminosity, we
obtain

L ∝ Rαe , (1.5)

with 0.6 . α . 0.7 (for instance in the r band).

The Kormendy relation indicates that within the effective radius, very luminous
galaxies have lower surface brightness than low-luminosity galaxies, implying a
lower average stellar density for the more luminous systems.

1.6.3 The Fundamental Plane of ETGs

Soon after the discovery of the Faber-Jackson and the Kormendy relations, both laws
were found to be just two projections of a plane in parameter space where ETGs
lie: the Fundamental Plane (Djorgovski & Davis, 1987; Dressler et al., 1987). In the
3D parameter space (logRe; log σ0; log Īe), the Fundamental Plane can be expressed
as

logRe ≡ α log σ0 + β log Īe + const, (1.6)

where generally 1 . α . 1.4 and −0.9 . β . −0.75, depending on the photometric
band adopted for observations. A 3D visualisation of the Fundamental Plane for the
near-infrared sample of ETGs in the 6-degree Field Galaxy Survey (6dFGS; Jones
et al., 2004, 2005, 2009) is displayed in Figure 1.7.

The Fundamental Plane shows a smaller intrinsic scatter (around 15%Re) with
respect to its projections, the Faber-Jackson and the Kormendy relations. It must

16 Chapter 1 An overview of early-type galaxies



Fig. 1.7: The Fundamental Plane of galaxies from the 6dFGS. Blue and black dots trace
galaxies above and below the best-fitting plane, respectively. This plot is taken
from Magoulas et al. (2012).

be underlined that ETGs sharing the same position in the edge-on view of the
Fundamental Plane, do not necessarily have the same positions on the Faber-Jackson
and the Kormendy projections.

The location of an ETG in the space (Re;σ0; Īe) depends on various properties,
such as stellar density distribution, stellar velocity distribution, stellar M∗/L and
relative distributions of dark and luminous matter. The properties of the observed
Fundamental Plane are usually interpreted so that ETGs with higher luminosities
have higher mass-to-light ratios and also a higher fraction of dark matter. These
differences lead to variations of properties like metallicity and age, as we have seen
in section 1.4.

A more detailed description of the Fundamental Plane is provided in Binney &
Merrifield (1998), Binney & Tremaine (2008), and Cimatti, Fraternali, & Nipoti
(2019).

1.6.4 The evolution of the structural and kinematic properties

of ETGs

With the advent of newest technologies and surveys that observe galaxies at higher
redshifts, it is possible to extend the analysis of scaling relations looking for evidence
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for their evolution. Indeed going towards high redshift, the effective radius of ETGs
of given stellar mass is found to reduce, on average, even by a factor of around 2−3,
implying that galaxies today tend to be less compact than galaxies of similar stellar
mass at high redshift (e.g., Trujillo et al. 2006; van der Wel et al. 2008; Cimatti,
Nipoti, & Cassata 2012). In the last decades the stellar mass–size relation of galaxies
at different redshift has been largely studied (e.g. Ferguson et al., 2004; van der Wel
et al., 2014; Damjanov et al., 2019). In Figure 1.8, the stellar mass–size relation
studied by van der Wel et al. (2014) for the 3D-HST+CANDELS composite-sample
of galaxies in six redshift bins for both ETGs and LTGs is shown.

Figure 5. from 3D-HST+CANDELS: The Evolution of the Galaxy Size-Mass Distribution since z = 3
van der Wel et al. 2014 ApJ 788 28 doi:10.1088/0004-637X/788/1/28
http://dx.doi.org/10.1088/0004-637X/788/1/28
© 2014. The American Astronomical Society. All rights reserved.

Fig. 1.8: The stellar mass–size relation in six redshift bins for ETGs (red dots) and LTGs
(blue dots) from the 3D-HST+CANDELS composite-sample. This plot is taken from
van der Wel et al. (2014).

As clearly visible, for both galaxy populations, at fixed stellar mass, galaxies at z ≈ 0
are more extended than those at z ≈ 3.

Analogously, the velocity dispersion of ETGs of given stellar mass is found to evolve
with redshift (e.g., Cenarro & Trujillo 2009, van de Sande et al. 2011; Oser et al.
2012). In Figure 1.9, a plot from Oser et al. (2012) showing the evolution of the
velocity dispersion as a function of redshift is reported. It is clear that, at a given
stellar mass (in this plot, ≈ 1011 M�), the velocity dispersions of ETGs systematically
decrease going towards z = 0.
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Figure 4. from The Cosmological Size and Velocity Dispersion Evolution of Massive Early-type Galaxies
Oser et al. 2012 ApJ 744 63 doi:10.1088/0004-637X/744/1/63
http://dx.doi.org/10.1088/0004-637X/744/1/63
© 2012. The American Astronomical Society. All rights reserved.

Fig. 1.9: The central projected velocity dispersion as a function of redshift for observed and
simulated galaxies with M∗ ≈ 1011 M� from Oser et al. (2012). Solid symbols
trace star-forming galaxies, while empty symbols represent quiescent galaxies. The
black curves show the result of a power-law fit for all (dashed curve) and the
quiescent (solid curve) galaxies, respectively. Adapted from Oser et al. (2012).

However, unlike the estimates of galaxy sizes, measuring velocity dispersion is very
demanding and requires high-resolution spectroscopic observations. Hence, it is
more difficult to study the evolution of scaling relations that involve velocity disper-
sion as the stellar mass–velocity dispersion relation or the stellar mass Fundamental
plane. In Chapter 2, we will present our state-of-the-art study of the evolution of the
M∗−σ0 relation for ETGs from the present-day Universe out to z ≈ 2.5, making use
of different galaxy samples in the literature.

1.7 The role of the environment for ETGs

One of the most relevant factors to be taken into account when considering galaxies
and their evolution is the environment. Depending on the properties of the regions
of the Universe where galaxies are located, the interaction with other galaxies as well
as with the surrounding medium can alter dramatically the evolution of individual
objects.
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Defining which is the environment of a galaxy basically means understanding how
other galaxies are located with respect to that galaxy. In this sense, we can identify
three types of environment for galaxies:

• Field galaxies are isolated objects almost alone, sometimes in cosmic voids,
that are rarely surrounded by smaller satellites;

• Galaxy Groups consist of aggregations of few tens of galaxies (. 50 members)
with size of around 1 Mpc, velocity dispersion . 500 km s−1, and virial mass3

at most of 1014 M�;

• Galaxies Clusters are systems larger than Groups, even containing up to around
1000 galaxies, with size & 1 Mpc, virial masses & 1014 M� and velocity disper-
sions of ≈ 103 km s−1.

One of the most relevant environmental effects is the so-called morphology–density
relation (Dressler, 1980). This relation is an observationally determined connection
between the environment in which galaxies are found (specifically, the density of
the environment, i.e. the number of galaxies per unit volume) and the Hubble
morphological type (see section 1.1). In Figure 1.10, the morphology–density
relation found by Dressler (1980) for more than 6000 galaxies in 55 clusters is
illustrated.

As found by Dressler (1980), this study revealed that the fraction of ETGs is higher
in denser environments. In particular, the percentage of ETGs can reach even
80−90 % in the densest galaxy clusters, while spirals and irregulars dominate in the
field. Since ETGs populate the red sequence in the colour–mass plane (section 1.3),
densest environments are mainly dominated by red galaxies (see Balogh et al.,
2004).

We have seen that the most luminous and massive galaxies tend to be ETGs. In
particular, some of the most massive and luminous galaxies in the Universe are
those located in the densest environments: they are giant ETGs sitting in the centres
of clusters. These galaxies are called brightest cluster galaxies (BCGs). BCGs are
characterised by luminosities higher than 1012 L�. Their total mass can be as high
as ≈ 1013 M�. Naturally, because of their central location in clusters and their
properties, BCGs are expected to be the culmination of a hierarchical assembly
scenario characterised by several mergers.

3The virial mass is the integrated mass of a galaxy within a sphere of radius equal to the virial radius,
i.e. the radius within which the system is virialised.
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Fig. 1.10: The morphology–density relation for more than 6000 galaxies in 55 clusters. The
fraction of galaxies as a function of the projected galaxy density ρproj (or the 3D
density ρ) is shown for ellipticals E (open dots), lenticulars S0 (filled dots), and
spiral + irregular (crosses). This plot is taken from Dressler (1980).

1.8 The merger-driven evolution of ETGs

So far, we have seen that massive ETGs are, on average, composed by red, metal-rich
and old stellar populations. They are preferentially located in central regions of
overdensities like groups and clusters and they obey scaling relations that involve
structural, kinematic and stellar population properties. Now, we try to address the
question of how they formed and why their properties evolve through cosmic time.

One of the most significant results that astrophysicists reached about galaxy forma-
tion and evolution, using both observations and simulations, is that galaxies collide
and merge, forming new galaxies whose masses, sizes, shapes and other properties
inevitably depend on how these mergers happen. The galaxy merging is a process in
which two or more galaxies form a new galaxy. There are several aspects to be taken
into account when galaxies interact. For instance, if the encounter occurs at high
speed, usually called high-speed encounter or fly-by, the result is just a perturbation.
Instead, if two (or more) systems interact with sufficiently low relative speed, they
end up forming a single new object.
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Mergers can be categorised under different points of view. For instance, by the
number of galaxies (usually called progenitors) involved in the merger, we can
distinguish binary mergers, when only two progenitors take part to the merger, or
multiple mergers, when three or more progenitors are involved. Concerning the
relative masses of progenitors, we can distinguish between minor mergers and major
mergers, by defying the merger mass ratio

ζ = M1
M2

, (1.7)

where M1 and M2 are the mass of the two progenitors, and M1 ≤ M2. In the
literature, we commonly refer to merger as minor when ζ . 1/3, otherwise, we refer
to a major merger. Another classification for mergers depends on the presence (or
not) of gas in the progenitors. Specifically, we talk about wet mergers (or dissipative
mergers) when at least one of the two progenitors has a relatively high content of gas
(usually, blue and star forming galaxies). Instead, two progenitors that are gas-poor
systems (so, basically formed by dark matter and stars) produce a dry merger (or
dissipationless merger).

Concerning ETGs, it is commonly believed that they are the results of a building-up
process composed by two phases: in a first phase, galaxies at high redshift formed
their stars in situ, while later, stars formed in other galaxies, i.e. ex situ, were
accreted onto the main progenitor in a stellar assembly history mainly marked by
dry mergers.

When comparing observations with theoretical models, it is useful to estimate the
merger rate Γ of galaxies, i.e. the number of mergers per unit of time per unit of
volume. The merger rate can be estimated from observations as

Γ = nmerger
τmerger

, (1.8)

where nmerger is the number of mergers per unit of volume and τmerger is the merging
timescale. The value of nmerger is inferred from observations by counting objects
that show typical signatures of interactions, such as tidal disruption and disturbed
morphologies, or by counting the close pairs per volume expected in mergers. About
τmerger, it is assumed based on theoretical models.

Moreover, we can define another related quantity, the fractional merger rate

Rmerger = fmerger
τmerger

, (1.9)
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where fmerger = nmerger/ngalaxy as the fraction of galaxies involved in merging and
ngalaxy the total number density of galaxies. In the present-day Universe, reference
values are fmerger ≈ 0.01, and Rmerger ≈ 0.02 Gyr−1, for the latter assuming as
timescale τmerger ≈ 0.5 Gyr (for more details, see to Cimatti, Fraternali, & Nipoti
2019).

1.8.1 The two-phase formation scenario of ETGs

The ETGs that we observe in the present-day Universe are usually referred to as
red and dead galaxies, because of their colours and the lacking formation of new
stars. The theory of the formation of ETGs is not fully understood, and sometimes is
still controversial. However, it is almost accepted that ETGs are the outcome of a
growth that happens in two steps, usually called the two-phase formation scenario
of ETGs (see Naab et al., 2009; Oser et al., 2010; Hilz et al., 2013). Specifically,
the most massive ETGs, usually belonging to the slow-rotator type (see Emsellem
et al., 2004; Cappellari et al., 2007; Emsellem et al., 2007; Cappellari, 2016),
are located into very massive halos (Mvir & 1013 M�), occupying the innermost
parts of overdense regions like groups and clusters of galaxies (see section 1.7). At
z & 2, central galaxies are fed by streams of cold gas following the paths traced by
filaments, experiencing several episodes of star formation. Regardless of the specific
mechanisms that trigger star formation in galaxies, the first phase of the formation
of ETGs is the in situ formation, i.e. stars formed as a consequence of a collapse of
gas within the central galaxy.

At z . 2, however, the star formation within the central galaxy becomes highly ineffi-
cient because of the gradual consumption of the cold gas and the inefficiency of cold
gas accretion. Hence, this second phase of ETG formation is mainly characterised
by dry mergers, where stars formed ex situ are accreted onto the main progenitor.
Star formation is negligible during the merger because of the scarcity of cold gas, so
the merger remnant is basically a galaxy whose stellar mass is the sum of the stellar
mass of its progenitors.

In Figure 1.11, the average fraction of the stellar mass formed in situ and ex situ as
predicted by the hydrodynamical cosmological simulation presented in Oser et al.
(2010) is shown as a function of redshift for massive ETGs: the transition at z ≈ 2 is
apparent.
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Figure 8. from The Two Phases of Galaxy Formation
OSER ET AL. 2010 ApJ 725 2312 doi:10.1088/0004-637X/725/2/2312
http://dx.doi.org/10.1088/0004-637X/725/2/2312
© 2010. The American Astronomical Society. All rights reserved.

Fig. 1.11: The average stellar mass contents for the in-situ and ex-situ stellar populations
(normalised to the total stellar mass at z = 0) as a function of redshift for massive
ETGs (with virial masses of 12.7 . log(M200/M�) . 13.4) in a cosmological
hydrodynamical simulation. This is an adapted version of a plot taken from Oser
et al. (2010).

1.9 Thesis structure

This Ph.D. thesis is mainly devoted at studying the merger-driven evolution of ETGs,
how their stellar populations and scaling relations evolve through cosmic time, as
well as looking for a new method for possibly deriving the dark matter mass in
observed galaxies. In the following, the structure of this thesis is summarised.

• The cosmic evolution of the stellar mass–velocity dispersion relation of
early-type galaxies

In Chapter 2, we will present the first systematic study in the literature that
traces the back-in-time evolution of the stellar mass–velocity dispersion relation
in ETGs, performed by adopting a Bayesian hierarchical formalism.

• The role of in-situ and ex-situ star formation in early-type galaxies: MaNGA
versus IllustrisTNG

In Chapter 3, we will illustrate a comparison of the radial distributions of stel-
lar properties such as the stellar metallicity and age, between observed ETGs
in the MaNGA survey and simulated galaxies in the IllustrisTNG simulation
suite, providing an explanation for these profiles in terms of stars formed in
situ and ex situ.
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• Inferring the Dark Matter halo mass in galaxies from other observables
with Machine Learning

In Chapter 4, we will show some preliminary results on a study intended to
train a model with a state-of-the art machine learning technique, exploiting
simulated galaxies from IllustrisTNG, whose main scope will be to derive a
functional form for estimating the DM mass of halos that surround observed
galaxies in the Universe.

• Conclusions & Future Perspectives

Finally, in Chapter 5, we will sum up the results derived from the three projects
above mentioned, discussing their main implications, and we will also present
our future plans to pursue and extend the analysis carried out so far.
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The cosmic evolution of the
stellar mass–velocity
dispersion relation of
early-type galaxies

2

„All truths are easy to understand once they are
discovered; the point is to discover them.

— Galileo Galilei

In this Chapter, the first systematic study in literature concerning the evolution of
the stellar mass–velocity dispersion relation in early-type galaxies is presented. The
content of this Chapter is drawn from Cannarozzo, Sonnenfeld, & Nipoti (2020a)
and Cannarozzo et al. (2020b).

2.1 Introduction

Since the late 1970s it was found empirically that present-day early-type galaxies
(ETGs) follow scaling relations, i.e. correlations among global observed quantities,
such as the Faber-Jackson relation (Faber & Jackson, 1976) between luminosity L
and central stellar velocity dispersion σ0, the Kormendy relation (Kormendy, 1977)
between effective radius Re and surface brightness (or luminosity), and the funda-
mental plane (Djorgovski & Davis, 1987; Dressler et al., 1987) relating σ0, L and
Re. When estimates of the stellar masses are available, analogous scaling relations
are found, replacing L with M∗: the M∗–Re (stellar mass–size) relation, the M∗–σ0

(stellar mass–velocity dispersion) relation and the stellar-mass fundamental plane
(e.g., Hyde & Bernardi, 2009b; Auger et al., 2010; Zahid et al., 2016a). These
scaling laws are believed to contain valuable information on the process of forma-
tion and evolution of ETGs. Any successful theoretical model of galaxy formation
should reproduce these empirical correlations of the present-day population of ETGs
(Somerville & Davé, 2015; Naab & Ostriker, 2017).
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The observations strongly indicate that ETGs are not evolving passively. For instance,
measurements of sizes and stellar masses of samples of quiescent galaxies at higher
redshift imply that the M∗–Re relation evolves with time: on average, for given
stellar mass, galaxies were significantly more compact in the past (e.g. Ferguson et al.,
2004; Damjanov et al., 2019). There are also indications that ETGs at higher redshift
have, on average, higher stellar velocity dispersion than present-day ETGs of similar
M∗ (e.g. van de Sande et al., 2013; Belli et al., 2014a; Gargiulo et al., 2016; Belli
et al., 2017; Tanaka et al., 2019). Interestingly, the stellar-mass fundamental plane,
relating M∗, σ0 and Re appears to change little with redshift (Bezanson et al., 2013b,
2015; Zahid et al., 2016b). The observed behaviour of these scaling relations as a
function of redshift represents a further challenge to models of galaxy formation and
evolution. Furthermore, some studies in the literature discuss about the presence of
a curvature in the scaling relations of ETGs (e.g., Hyde & Bernardi, 2009a; Bernardi
et al., 2011a,b). In particular, the most massive ETGs have larger sizes, smaller
velocity dispersions, and fainter surface brightnesses than what expected in the
absence of curvature. In particular, Bernardi et al. (2011a,b) found that the M∗–Re,
M∗–b/a, M∗–colour and M∗–colour gradients scaling relations show a curvature,
compatible with a scenario in which ETGs with log(M∗/M�) & 11.3 are subject to a
recent stellar mass assembly history dominated by dry major mergers.

In the standard cosmological framework, structure formation in the Universe occured
as a consequence of the collapse and virialisation of the dark matter halos, in which
baryons infall and collapse, thus forming galaxies. Massive ETGs are believed to be
the end products of various merging and accretion events. Given the old ages of
the stellar populations of present-day ETGs, any relatively recent merger that these
galaxies experienced must have had negligible associated star formation. Based on
these arguments, a popular scenario for the late (z . 2) evolution of ETGs is the
idea that these galaxies grow via dissipationless (or "dry") mergers. Interestingly, dry
mergers make galaxies less compact: for instance, galaxies growing via parabolic dry
merging increase their size as Re ∝Ma

∗ , with a & 1, while their velocity dispersion
evolves as σ0 ∝M b

∗ , with b . 0 (Nipoti, Londrillo, & Ciotti, 2003; Naab, Johansson,
& Ostriker, 2009; Hilz, Naab, & Ostriker, 2013). Thus, the transformation of
individual ETGs via dry mergers is a possible explanation of the observed evolution
of the M∗–Re, M∗–σ0 and stellar-mass fundamental plane relations (Nipoti et al.,
2009a, 2012; Oogi & Habe, 2013; Posti et al., 2014; Frigo & Balcells, 2017). Though
this explanation is qualitatively feasible, it is not clear whether and to what extent
dry mergers can explain quantitatively the observed evolution of these scaling laws.
In this context, the stellar velocity dispersion σ0 is a very interesting quantity to
consider. Even for purely dry mergers of spheroids, σ0 can increase, decrease of
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stay constant following a merger, depending on the merger mass ratio and orbital
parameters (Boylan-Kolchin et al., 2006; Naab et al., 2009; Nipoti et al., 2009b,
2012; Posti et al., 2014). Moreover, even slight amounts of dissipation and star
formation during the merger can produce a non-negligible increase of the central
stellar velocity dispersion with respect to the purely dissipationless case (Robertson
et al., 2006; Ciotti et al., 2007).

In a cosmological context, the next frontier in the theoretical study of the scaling
relations of ETGs is the comparison with observations of the evolution measured
in hydrodynamic cosmological simulations. A quantitative characterisation of the
evolution of the observed scaling relations of the ETGs is thus crucial to use them
as test beds for theoretical models. On the one hand, the evolution of the observed
stellar mass–size relation is now well established, being based on relatively large
samples of ETGs out to z ≈ 3 (Cimatti, Nipoti, & Cassata 2012; van der Wel et al.
2014). On the other hand, given that measuring the stellar velocity dispersion
requires spectroscopic observations with relatively high resolution and signal-to-
noise ratio, the study of the redshift evolution of correlations involving σ0, such
as the M∗–σ0 relation and the stellar-mass fundamental plane, is based on much
smaller galaxy samples than those used to study the stellar mass–size relation. This
makes it more difficult to characterise quantitatively the evolution of these scaling
laws out to significantly high redshift.

In this Chapter, we focus on the stellar mass–velocity dispersion relation of ETGs
with the aim of improving the quantitative characterisation of the observed evolution
of this scaling law. We build an up-to-date sample of massive ETGs with measured
stellar mass and stellar velocity dispersion by collecting and homogenising as much
as possible available state-of-the-art literature data. In particular, we consider
galaxies with stellar masses higher than 1010.5 M� and we correct the observed
stellar velocity dispersion to σe, the central line-of-sight stellar velocity dispersion
within an aperture of radius Re, so in our case σ0 = σe. We analyse statistically the
evolution of the M∗–σe relation without resorting to binning in redshift and using a
Bayesian hierarchical approach. As a result of this analysis we provide the posterior
distributions of the hyper-parameters describing the M∗–σe relation in the redshift
range 0 . z . 2.5, under the assumption that, at given redshift, σe ∝ Mβ

∗ . We
explore both the case of redshift independent β and the case in which β is free to
vary with redshift.

The Chapter is organised as follows. Section 2.2 describes the galaxy sample and
the criteria adopted to select ETGs. We present the statistical method in section 2.3
and our results in section 2.4. Our results are discussed in section 2.5. Section 2.6
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concludes. Throughout this Chapter, we adopt a standard Λ cold dark matter
cosmology with Ωm = 0.3, ΩΛ = 0.7 and H0 = 70 km s−1Mpc−1. All stellar masses
are calculated assuming a Chabrier (2003) initial mass function (IMF).

2.2 Galaxy sample

To study the evolution of the stellar mass–velocity dispersion relation of ETGs we
build a sample of galaxies consisting in a collection of various subsamples of ETGs
in the literature. Our definition of what constitutes an ETG is based mainly on
morphology, with the addition of cuts on emission line equivalent width of [O II]
aimed at removing star-forming galaxies (as explained in the rest of this section).
Our goal is to build a sample spanning a redshift range as large as possible. At
the same time, in order to make an accurate inference, it is important to 1) select
galaxies and measure their stellar mass and velocity dispersion in a homogeneous
way and 2) ensure that, at any given redshift and stellar mass, our selection criteria
do not depend, either directly or indirectly, on velocity dispersion. With our main
focus on accuracy, we first define a fiducial sample of galaxies, for which conditions
1) and 2) above are satisfied. We drew our fiducial sample from the Sloan Digital
Sky Survey (SDSS; Eisenstein et al., 2011) and the Large Early Galaxy Astrophysics
Census (LEGA-C; van der Wel et al., 2016). For the galaxies in this sample we strictly
apply consistent selection criteria and measure their stellar masses using photometric
data from the first data release of the Hyper Suprime-Cam (HSC; Miyazaki et al.,
2018) Subaru Strategic Program (Aihara et al., 2018, DR1). The two surveys cover
the redshift range 0 . z . 1 and, most importantly, have well defined selection
functions, which is critical to meet condition 2).

We then define a second high-redshift sample, consisting of stellar mass and velocity
dispersion measurements of galaxies at 0.8 . z . 2.5 from various independent
studies. For the galaxies in this high-redshift sample, we only require that the
definitions of stellar mass and stellar velocity dispersion are the same as those of
the fiducial sample. We also define an extended sample, obtained by combining the
fiducial and high-redshift samples. In building our samples, we include only galaxies
with stellar mass higher than a minimum mass M∗,min, which in general depends
both on the survey and on z (see subsection 2.2.1 and subsection 2.2.2): in all cases
M∗,min ≥ 1010.5M�, which we adopt as absolute lower limit in stellar mass.

Our strategy is to carry out our inference on both the fiducial and the extended
samples. Given the way the samples are built, we expect our results at z < 1 to
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be more robust (i.e. less prone to observational biases), but it is nevertheless very
interesting to examine trends out to z ≈ 2.5, as probed by our extended sample. In
the following two subsections we describe in detail how measurements for these
samples are obtained.

2.2.1 The fiducial sample

Our fiducial sample consists of two sets of galaxies. The first set is drawn from the
data release 12 (DR12; Alam et al., 2015) of the SDSS. In particular, we consider
only objects belonging to the main spectroscopic sample (Strauss et al., 2002), which
was built using observations up to SDSS DR7. The second set is selected from the
LEGA-C survey DR2 (Straatman et al., 2018). The LEGA-C DR2 contains spectra of
1,922 objects obtained with the Visible Multi-Object Spectrograph (VIMOS; Le Fèvre
et al., 2003) on the Very Large Telescope (VLT). LEGA-C targets were selected by
applying a cut inKs-band magnitude to a parent sample of galaxies with photometric
redshift in the range 0.6 < z < 1.0 drawn from the Ultra Deep Survey with the VISTA
telescope (UltraVISTA; Muzzin et al., 2013a).

ETG selection

As anticipated, our definition of ETG is based mostly on morphology. For the
morphological classification we opted for visual inspection because the number of
galaxies of our sample is relatively small. Valid alternatives, which are necessarily
preferable for larger data sets, are automated morphological classification algorithms
(e.g. Domínguez Sánchez et al. 2018). Before the visual inspection, we applied a
pre-selection based on star formation activity: we removed star-forming galaxies
from our sample, under the assumption that they are mostly associated with a
late-type or irregular morphology. We relied on the presence of emission lines in
the spectra of our galaxies as an indicator of star formation activity. In particular,
we applied a selection based on the equivalent width of the forbidden emission line
doublet of [O II], EW([O II])λλ3726, 3729: we included only those galaxies that have
EW([O II]) ≥ −5 Å, where EW([O II]) of SDSS and LEGA-C galaxies are obtained
from the respective data release catalogues. Although [O II] is not a perfect indicator
of star formation activity, as it can suffer from contamination from emission by an
active galactic nucleus, and other spectral lines could be used in its place (Hβ, for
example), these lines are in general not accessible in the spectra of most LEGA-C
galaxies, as they are redshifted outside the available spectral range. For the sake
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[Å

]

SDSS

LEGA-C

Fig. 2.1: Equivalent width of Hβ, EW(Hβ), as a function of equivalent width of [O II],
EW([O II]), for galaxies drawn from the original catalogues of SDSS (circles) and
LEGA-C (squares). For LEGA-C galaxies, we show only objects with signal-to-noise
ratio > 10. The black dashed line represents a linear fit to the data. Galaxies in the
shaded region of the diagram (EW([O II]) < −5 Å) are excluded from our sample
of ETGs.

of homogeneity in our selection criteria, and in order to keep the high end of the
redshift distribution of the LEGA-C galaxies in our sample, we used [O II] as a
first step towards obtaining a sample of ETGs. Nevertheless, we found a good
correlation between EW([O II]) and EW(Hβ) for those galaxies drawn from the
original catalogues of SDSS and LEGA-C for which both measurements are available
(see Figure 2.1).

Although half of the LEGA-C galaxies do not have values of EW([O II]) in the DR2
catalogue, these are for the most part objects at the low end of the redshift range,
z < 0.8.

The second step in our selection is to include only galaxies with an early-type
morphology, according to visual inspection. We used imaging data from the Wide
layer of the HSC DR1, for this purpose. The Wide layer of HSC covers approximately
108 square degrees. The number of SDSS main sample galaxies present in this
dataset is ≈ 2000, which, while only a small fraction of the total number of SDSS
galaxies, is still sufficiently large to carry out a statistical analysis of the stellar
mass–velocity dispersion relation. LEGA-C targets are located in a ' 1.3 deg2 region,
for the most part overlapping with the Cosmic Evolution Survey (COSMOS; Scoville
et al., 2007) area. HSC DR1 data from the Ultra Deep layer are available for most
(≈ 1700) of the objects in the LEGA-C DR2.

The motivation for using HSC data is in its high depth (i-band 26 mag detection
limit for a point source in the Wide layer) and good image quality (typical i-band
seeing is 0.6′′). This is particularly important for the LEGA-C galaxies, which are
much fainter and have smaller angular sizes compared to the SDSS ones, due to their
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higher redshift. For each galaxy with available HSC DR1 data, we obtained cutouts
in the g, r, i, z and y filters, then visually inspected colour-composite RGB images
made using the g−, r− and i−band data. We removed objects showing any presence
of discs, spiral arms, as well as galaxies for which a single Sérsic model (Sérsic,
1968) does not provide a qualitatively good description of the surface-brightness
distribution (e.g., irregular galaxies). Such objects account for roughly 50% of the
inspected galaxies. Examples of successful and unsuccessful Sérsic fits are shown in
Figure 2.2 and Figure 2.3, respectively.

Additionally, a few percent of the objects were removed because of contamination
from stars, and an even smaller fraction was eliminated because of the presence of
close neighbours that make it difficult to carry out accurate photometric measure-
ments. Although this last step could in principle introduce a bias in the inferred
M∗–σe relation in case this varies as a function of environment, given the small
fraction of objects with close neighbours removed, any such bias will in any case be
very small.

In Figure 2.4 and Figure 2.5 we show colour-composite images of example sets of
SDSS galaxies included and excluded from our sample on the basis of our morpho-
logical classification.

Photometric measurements

Our procedure for measuring stellar masses of the galaxies in the fiducial sample
consisted in fitting stellar population synthesis models to broadband photometric
data. Although photometric measurements for these galaxies are available from the
literature, we chose to carry out new measurements using photometric data from the
HSC survey. The data from the HSC survey are much deeper and have a much higher
image quality compared to the SDSS data. This is important, because it allows
for a cleaner detection and masking of foreground contaminants, and allows for a
better characterisation of the faint extended envelope of massive galaxies (see e.g.
Huang et al., 2018). Moreover, by using the same data and procedure to estimate
the stellar masses of the galaxies in the SDSS and LEGA-C samples, our inference
on the evolution of the M∗–σe relation is less prone to possible systematic effects
related to the photometric measurements.

We estimated the g, r, i, z and y magnitudes of each galaxy by fitting a Sérsic
surface brightness distribution to the data in these five bands simultaneously. In
particular, we obtained 201×201 pixel (≈ 34′′ × 34′′) sky-subtracted cutouts of each
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Fig. 2.2: A succesful case of Sérsic model in the g, r, i, z and y filters (from the top to the
bottom) for one galaxy (HSC ID #42648136191078699) of the fiducial sample. Left
panels show the original images of the galaxy in the five filters, while right panels
illustrate the corresponding models.
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Fig. 2.3: Same as Figure 2.2, but for one galaxy (HSC ID #41214944259116180) of the
fiducial sample for which the Sérsic fit is unsuccessful.
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Fig. 2.4: Colour-composite HSC images of a set of SDSS main sample ETGs that passed our
selection in EW([O II]) and our visual inspection.

Fig. 2.5: Colour-composite HSC images of a set of SDSS main sample galaxies that passed
our selection in EW([O II]), but were rejected in our visual inspection step, due to
the presence of disks and/or spiral arms.
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galaxy in each band, we fitted the five-band data simultaneously with a seeing-
convolved Sérsic surface brightness profile with elliptical isophotes and spatially
uniform colours, while iteratively masking out foreground or background objects
using the software SEXTRACTOR (Bertin & Arnouts, 1996).

Saturated pixels were also masked, using the masks provided by HSC DR1. We
added in quadrature a 0.05 magnitude systematic uncertainty to the observed flux in
each band, to account for zero-point calibration errors in the HSC DR1 photometry,
which have been shown to be on this order of magnitude or smaller (see Aihara
et al., 2018).

An important data reduction step on which our measurements rely is the sky subtrac-
tion. We checked the robustness of the sky subtraction by repeating the analysis on
a subset of galaxies, using the more recent data from the HSC data release 21 (DR2
Aihara et al., 2019). The HSC DR2 used a substantially different sky subtraction
method, compared to the DR1 (see subsection 4.1 in Aihara et al., 2019). The
corresponding difference in flux leads to an average difference of 0.03 dex on the
stellar masses, with a 0.07 dex scatter. While the scatter is well within the observa-
tional uncertainty on the stellar mass, this bias is a potential systematic effect that is
difficult to correct for and should in principle be taken into account in our global
error budget. However, it does not affect the conclusions of our study: our main
goal is to measure the slope and evolution of the M∗–σe relation, which are robust
to overall shifts in the stellar mass measurements of the sample.

Stellar mass measurements

To infer stellar masses, we fitted the observed g, r, i, z and y fluxes with composite
stellar population models. These were obtained using the BC03 stellar population
synthesis (SPS) code (Bruzual & Charlot, 2003), with semi-empirical stellar spectra
from the BaSeL 3.1 library (Westera et al., 2002), Padova 1994 stellar evolution
tracks (Fagotto et al., 1994a,b,c) and a Chabrier IMF. We considered star formation
histories with an exponentially declining star formation rate and we applied a prior
on metallicity based on the mass–metallicity relation measured by Gallazzi et al.
(2005). We sampled the posterior probability distribution of stellar mass, age (time
since the initial burst of star formation), star formation rate decline timescale, metal-
licity and dust attenuation with a Markov Chain Monte Carlo (MCMC), following
the method introduced by Auger et al. (2009). We then considered the posterior

1The HSC DR2 was released when the bulk of our analysis was complete.
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probability distribution in log-stellar mass, marginalised over the other parameters,
and approximated it as a Gaussian with mean equal to

logMobs
∗ = logM (84)

∗ + logM (16)
∗

2 (2.1)

and standard deviation

σM∗ = logM (84)
∗ − logM (16)

∗
2 , (2.2)

where logM (84)
∗ and logM (16)

∗ are the 84-th and 16-th percentile of the distribution,
respectively. We refer to Sonnenfeld et al. (2019) for more details. In Appendix 2.A,
we compare our estimates of stellar mass with those of Mendel et al. (2014, M14
hereafter) for the SDSS galaxies of our sample.

A complete sample

In order to accurately infer the M∗–σe relation, it is necessary that the selection
criteria used to define our sample do not introduce spurious correlations between
these two variables. A sufficient condition to achieve this is working with a sample
that, at any given redshift, is highly complete in stellar mass, or is randomly drawn
from a complete sample. For the SDSS sample, we achieved this condition by
first estimating, at each redshift z, the minimum stellar mass above which our
sample is 99% complete, M∗,min(z), and then removing from the sample all galaxies
with stellar mass below this value. To estimate M∗,min(z) of the SDSS sample we
proceeded as follows. The SDSS main sample, from which our galaxies are drawn, is
complete down to an r−band Petrosian magnitude rP of 17.77 (Strauss et al., 2002).
At any redshift, this value of rP corresponds to a range of values of the stellar mass,
with a spread that is due to scatter in the stellar mass-to-light ratio and to a mismatch
between the definition of Petrosian and Sérsic magnitudes. We can nevertheless
define the ratio between the observed stellar mass and the observed-frame SDSS
r−band Petrosian luminosity Lr and consider its distribution P(M∗/Lr). We then
made narrow redshift bins and, approximating P(M∗/Lr) as a Gaussian, used the
mean and standard deviation of the sample of M∗/Lr values in each bin to find
the 99-th percentile of this distribution, M∗/Lr|99. Finally, we obtained M∗,min(z)
by multiplying M∗/Lr|99 by the Petrosian luminosity corresponding to the limiting
value rP = 17.77.

In Figure 2.6, we illustrate an application of this procedure on three redshift bins:
in the upper panel, we show values of stellar mass as a function of rP, while in the
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lower panel we show the corresponding distributions in M∗/Lr. The 99-th percentile
of the P(M∗/Lr) distribution and the corresponding value of M∗,min(z) are shown
as dashed lines in the two panels.

We estimated M∗,min(z) in a series of bins in the redshift range 0.05 < z < 0.20.
Outside this interval, the number of galaxies per redshift bin becomes small, and it is
more difficult to obtain an accurate estimate of M∗,min. We therefore only included
SDSS galaxies in this redshift range, with a stellar mass larger than the value of
M∗,min at the corresponding redshift. We approximated the function M∗,min(z) as a
quadratic polynomial for this purpose. In the upper panel of Figure 2.7, we show the
initial distribution in stellar mass as a function of redshift of our SDSS main sample
ETGs composed by 2127 sources (grey dots), as well as the final sample (black dots),
which consists of 413 objects, obtained after applying the cut in stellar mass. The
solid curve shows M∗,min(z): our SDSS sample is more than 99% complete above
this stellar mass.

LEGA-C primary targets have been selected on the basis of their photometric redshift
and Ks-band magnitude, as obtained from the UltraVISTA survey photometric data
(Muzzin et al., 2013a). Specifically, according to Straatman et al. (2018), primary
targets have been selected in the photometric redshift range 0.6 < zphoto < 1 and
applying a redshift-dependent Ks-magnitude selection Ks < Ks,max(zphoto), with
Ks,max(zphoto) = 20.7 − 7.5 log [(1 + zphoto)/1.8]. For the sake of robustness, in
order to avoid contamination from objects with incorrect photo-z, we apply a more
conservative selection adopting a constant Ks limit, Ks < 20.36 = Ks,max(1). We
then obtained M∗,min(z) for the LEGA-C sample using the method described above
for the SDSS sample, simply replacing rP with the UltraVISTA Ks-band magnitude.
The resulting distribution in redshift and stellar mass is shown in the lower panel
of Figure 2.7. From a sample of 492 galaxies selected in morphology, Ks-band
magnitude and EW([O II]) (grey dots), after selecting only galaxies with stellar mass
above M∗,min(z), our LEGA-C sample of ETGs reduces to 178 objects2 (black dots).

The LEGA-C DR2 sample, however, does not include all galaxies brighter than the
stated magnitude limit, as the survey was not finished at the time of that data
release. Instead, the targets included in DR2 were selected according to a Ks-
dependent probability, P(Ks). The resulting sample is therefore incomplete, but the
incompleteness rate P(Ks) is a known quantity, provided in the LEGA-C DR2. In

2The number of LEGA-C galaxies selected on morphology, Ks-band magnitude, and with a measure-
ment of EW([O II]) ≥ −5 Å or without a measurement of EW([O II]) is equal to 492. By applying
also the selection on stellar mass, we obtain a sample of 292 objects. Among these 292 galaxies,
around 40% are excluded because the doublet of [O II] is out of the observed range, ending up with
a sample composed by 178 ETGs.
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Fig. 2.6: Stellar mass as a function of SDSS r−band Petrosian magnitude, for SDSS main
sample ETGs in three narrow redshift bins (upper pannel). Horizontal dashed
lines mark, in each redshift bin, the stellar mass above which an ETG drawn from
the SDSS main sample has more than 99% probability of entering our sample.
Distribution in the ratio between stellar mass and observed-frame r−band Petrosian
luminosity of the galaxies in the three redshift bins shown in the upper panel (lower
panel). The 99-th percentile of each distribution is marked by a vertical dashed
line. This value, multiplied by the Petrosian luminosity corresponding to the
limiting r−band magnitude of the SDSS main sample, rP = 17.77, gives the 99%
completeness limit shown in the upper panel.
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Fig. 2.7: Stellar mass as a function of redshift for SDSS (upper panel) and LEGA-C (lower
panel) galaxies. The solid curves represent the empirical 99% mass-completeness
limits. The horizontal dashed lines represent the absolute lower stellar mass
limit 1010.5 M�, while the vertical dashed lines are the lowest (z = 0.05) and
highest (z = 0.20) redshift limits imposed in the SDSS galaxy selection. In
the upper panel, grey dots represent all the 2127 SDSS main sample galaxies
morphologically selected and with EW([O II]) ≥ −5 Å, while black dots are the 413
objects above the mass-completeness limit, with log(M∗/M�) > 10.5 in the redshift
range 0.05 < z < 0.2. In the lower panel, grey dots are the 492 LEGA-C galaxies
selected in morphology, EW([O II]) and Ks-band magnitude, while the black dots
represent the final LEGA-C sample of 178 ETGs above the mass-completeness limit.
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Tab. 2.1: Summary table of the selection steps adopted to build the final SDSS and LEGA-C
samples.

Selection step NETG

SDSS sample

SDSS main sample galaxies selected on
2127

morphology and EW([O II])

SDSS galaxies at 0.05 ≤ z ≤ 0.2
413

with M∗ > 1010.5 M� and M∗ > M∗,min(z)

LEGA-C sample

LEGA-C galaxies selected on
492

morphology, EW([O II]) and Ks-band magnitude

LEGA-C galaxies
178

with M∗ > 1010.5 M� and M∗ > M∗,min(z)

order to obtain an unbiased inference of the M∗–σe relation, it is then sufficient to
re-weight each measurement by the inverse of P(Ks). In Table 2.1, we summarise
the selection steps used to obtain the final SDSS and LEGA-C samples.

Velocity dispersion measurements

For each SDSS galaxy, we obtain, from the DR12 catalogue, the value and relative
uncertainty of the line-of-sight stellar velocity dispersion measured in the 1.5′′ radius
fiber of the SDSS spectrograph, which we label σap. We convert this measurement
into an estimate of the central velocity dispersion integrated within an aperture
equal to the half-light radius, σe, by applying the following correction:

σe = σap ×
(
Re

1.5′′
)−δ

, (2.3)

where Re is the half-light radius and δ = 0.066 (Cappellari et al., 2006).

Velocity dispersion measurements provided in the LEGA-C DR2 are converted to
values of the central velocity dispersion σe applying the aperture correction

σe = 1.05σap, (2.4)
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Tab. 2.2: Properties of the subsamples of ETGs used to build our fiducial (SDSS and LEGA-C)
and high-redshift (vdS13, B14, G15 and B17) samples. Column 1: subsample
name. Column 2: redshift range. Column 3: stellar mass range in logarithm.
Column 4: number of galaxies.

Sample z log(M∗/M�) NETG

SDSS (0.05; 0.20) (10.50; 12.19) 413

LEGA-C (0.60; 1.02) (10.80; 11.90) 178

vdS13 (0.81; 2.19) (10.53; 11.69) 56

B14 (1.02; 1.60) (10.59; 11.35) 26

G15 (1.26; 1.41) (11.04; 11.49) 4

B17 (1.52; 2.44) (10.60; 11.68) 24

which is a good approximation for galaxies in the redshift range of the LEGA-C
sample (van de Sande et al., 2013; Belli et al., 2014a). The distributions in redshift
and in stellar mass of the SDSS and LEGA-C subsamples and of the fiducial sample
are shown in Figure 2.8 (see also Table 2.2).

2.2.2 The high-redshift and extended samples

Our high-redshift sample of ETGs is a sample of 110 galaxies with log(M∗/M�) >
10.5 in the redshift range 0.8 . z . 2.5, built as follows. We obtain measurements
of the stellar mass and stellar velocity dispersion of ETGs out to z ≈ 2.5 from a
variety of studies. In order of increasing median redshift, we take 26 galaxies drawn
from the LRIS sample presented in Belli et al. (2014a, hereafter B14), including
only those galaxies for which EW([O II]) ≥ −5 Å (as done for the fiducial sample;
subsection 2.2.1), 56 galaxies from van de Sande et al. (2013, hereafter vdS13),
4 galaxies from Gargiulo et al. (2015, hereafter G15), and 24 galaxies from Belli
et al. (2017, hereafter B17). The main properties of each of these subsamples are
summarised in Table 2.2. Among the original sample of 73 galaxies of vdS13, only 5
galaxies are presented for the first time, while the remaining 68 sources are collected
from different studies. We removed 17 of these 73 ETGs because they are already
included as part of either B14’s or B17’s samples. All the galaxies in the high-redshift
samples are classified as ETGs, based on their UV J colours, morphology and/or
spectra. Of course, given the more heterogeneous selection, our extended sample
is not as self-consistent as our fiducial sample, and, due to the known correlations
between σe and some structural or spectral properties of ETGs (Zahid & Geller,
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Fig. 2.9: Redshift distribution of the extended sample on the M∗−σe plane. In the left
panel each galaxy is colour-coded as a function of its redshift, while in the right
panel the redshift distribution is smoothed by means of the two-dimensional
Locally Weighted Regression (LOESS, Cleveland & Devlin, 1988) using the Python
implementation of Cappellari et al. (2013, available at https://www- astro.
physics.ox.ac.uk/~mxc/software/).

2017), we cannot exclude that selection biases have non-negligible effects when the
high-redshift sample is considered. However, for the vast majority of these galaxies,
stellar masses are measured by fitting SPS models to broadband imaging data and
by scaling the total flux to match that measured by fitting a Sérsic surface brightness
profile to high-resolution images from Hubble Space Telescope (HST). The details
of the SPS models are very similar to those we adopted in our measurement of
the stellar masses of the fiducial sample. In all these subsamples stellar masses
are computed assuming Chabrier IMF and central velocity dispersions are given
within an aperture of radius Re. Our extended sample, obtained by combining the
fiducial and high-redshift samples, consists of 701 ETGs with M∗ & 1010.5 M� in the
redshift interval 0 . z . 2.5. The distributions in redshift and in stellar mass of the
high-redshift and extended samples are shown in Figure 2.8.

Finally, in Figure 2.9 the scatter distribution of the extended sample on the M∗−σe

plane colour-coded as a function of redshift is illustrated, suggesting that the evo-
lution of the relation between log σe and logM∗ may be described by assuming a
linear function with a positive slope, whose normalisation should increase towards
higher redshifts.
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2.3 Method

We use a Bayesian hierarchical method to infer the distribution of stellar velocity
dispersion as a function of stellar mass and redshift for the ETGs in our samples.
This method allows us to properly propagate observational uncertainties, to disen-
tangle intrinsic scatter from observational errors and to correct for Eddington bias
(Eddington, 1913), which is introduced when imposing a lower cutoff to the stellar
mass distribution. Throughout this section stellar masses are expressed in units of
M�.

2.3.1 Bayesian hierarchical formalism

We describe each galaxy in our sample by its redshift, stellar mass and central
stellar velocity dispersion. We refer to these parameters collectively as Θ =
{logM∗, log σe, z}. These represent the true values of the three quantities, which are
in general different from the corresponding observed values. We assume that the
values of Θ are drawn from a probability distribution, described in turn by a set of
hyper-parameters Φ:

P(Θ) = P(Θ|Φ). (2.5)

Our goal is to infer plausible values of the hyper-parameters, which summarise
the distribution of our galaxies in the (logM∗, log σe, z) space, given our data. We
will describe in detail the functional form of the distribution P(Θ|Φ) in subsec-
tion 2.3.2.

Using Bayes’ theorem, the posterior probability distribution of the hyper-parameters
given the data d is

P(Φ|d) ∝ P(Φ)P(d|Φ), (2.6)

where P(Φ) is the prior probability distribution of the model hyper-parameters and
P(d|Φ) is the likelihood of observing the data given the model.

The data consist of observed stellar masses, stellar velocity dispersions and redshifts,

d ≡ {logMobs
∗ , log σobs

e , zobs}, (2.7)

and related uncertainties. Since measurements on different galaxies are independent
of each other, the likelihood term can be written as

P(d|Φ) =
∏
i

P(di|Φ), (2.8)
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where di is the data relative to the i-th galaxy. For each galaxy in our sample, the
likelihood of the data depends only on the true values of the redshift, stellar mass
and velocity dispersion, Θ, and not on the hyper-parameters Φ. In order to compute
the P(di|Φ) terms in Equation 2.8, then, we need to marginalise over all possible
values of the individual object parameters Θi:

P(di|Φ) =
∫

dΘiP(di,Θi|Φ) =
∫

dΘiP(di|Θi)P(Θi|Φ). (2.9)

This allows us to evaluate the posterior probability distribution, Equation 2.6, pro-
vided that a model distribution P(Θ|Φ) is specified, priors are defined and the
shape of the likelihood is known. The method is hierarchical in the sense that there
exists a hierarchy of parameters: individual object parameters Θi are drawn from a
distribution that is, in turn, described by a set of hyper-parameters.

As explained in subsection subsection 2.2.1, the LEGA-C sample is not representative
of a complete sample, but each galaxy was included with a Ks magnitude-dependent
probability P(Ks), so that brighter galaxies are over-represented (see figure 2 of
Straatman et al., 2018). To correct for this, we re-weight the contribution of each
LEGA-C measurement to the likelihood by a factor proportional to 1/P (Ks): we
transform Equation 2.8 to

P(d|Φ) =
∏
i

P(di|Φ)wi , (2.10)

where wi is given by

wi = 1/P (Ks,i)
〈1/P (Ks)〉

(2.11)

for LEGA-C galaxies and wi = 1 otherwise. The normalisation of the weights given in
the equation above ensures that the effective number of LEGA-C data points equals
the number of LEGA-C galaxies.

2.3.2 The model

The purpose of our model is to summarise the distribution in stellar mass and velocity
dispersion of our samples of ETGs with a handful of parameters, Φ, that can provide
an intuitive description of the M∗–σe relation. In the absence of a well-established
theoretically motivated model, we opt for an empirical one, that we describe in this
subsection.
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The dependent variable of our model is the central velocity dispersion, σe, while
stellar mass and redshift are independent variables. As such, it is useful to write the
probability distribution of individual galaxy parameters as

P(Θ|Φ) = P(logM∗, z|Φ)P(log σe| logM∗, z,Φ). (2.12)

Here, P(logM∗, z|Φ) describes the prior probability distribution for a galaxy in our
sample to have logarithm of the true stellar mass logM∗ and true redshift z. This
probability depends on some hyper-parameters, which may vary between different
subsamples. Our galaxies have been selected by applying a lower cut to the observed
stellar masses, Mobs

∗ > M∗,min. We then expect the probability distribution in the
true stellar mass to go to zero for low values of M∗. We also expect P(logM∗, z|Φ) to
vanish for very large values of M∗, as there are few known galaxies with M∗ > 1012.
For simplicity, we assume that P(logM∗, z|Φ) separates as follows:

P(logM∗, z|Φ) = P(logM∗|Φ)P(z|Φ), (2.13)

where P(logM∗|Φ) is a skew Gaussian distribution in logM∗,

P(logM∗|Φ) ∝ 1√
2πσ2

σ∗

exp
{
−(logM∗ − µ∗)2

2σ2
∗

}
E(logM∗|Φ), (2.14)

with
E(logM∗|Φ) = 1 + erf

(
α∗

logM∗ − µ∗√
2σ∗

)
, (2.15)

where the three hyper-parameters µ∗, σ∗, α∗ are modelled as

µ∗ = µ∗,0 + µ∗,s log
( 1 + z

1 + zpiv

)
, (2.16)

σ∗ = σ∗,0 + σ∗,s log
( 1 + z

1 + zpiv

)
(2.17)

and
α∗ = const. (2.18)

Since this is a prior on the stellar mass distribution, and since the typical uncertainty
on the stellar mass measurements is much smaller than the width of this distribution
(as shown in section 2.4), the particular choice of the functional form of P(logM∗|Φ)
does not matter in practice, because the likelihood term dominates over the prior.
The main role of the prior is downweighting extreme outliers and measurements
with very large uncertainties. The term P(z|Φ) in Equation 2.13 describes the
redshift distribution of the galaxies in our sample. As we show below, this term
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does not enter the problem, because uncertainties on the observed redshifts can be
neglected.

The second term on the right hand side of Equation 2.12 is the core of our model.
With it, we wish to capture the following features of the M∗–σe relation: its normali-
sation (i.e. the amplitude of the stellar velocity dispersion at a given value of the
stellar mass) and its redshift evolution, the correlation between velocity dispersion
and stellar mass, and the amplitude of the intrinsic scatter in σe at fixed M∗ and
redshift. With these requirements in mind, we assume that the logarithm of the
stellar velocity dispersion is normally distributed, with a mean that can scale with
redshift and stellar mass and with a variance that can evolve with redshift:

P(log σe| logM∗, z,Φ) = 1√
2πσ2

σ

exp
{
−(log σe − µσ)2

2σ2
σ

}
. (2.19)

We adopt the following functional form for the mean of this distribution:

µσ = µSDSS
0 + β log

(
M∗

Mpiv
∗

)
+ ζ log

( 1 + z

1 + zpiv

)
. (2.20)

In general, the slope β is allowed to depend on z as

β = βSDSS
0 + η log

( 1 + z

1 + zpiv

)
. (2.21)

We perform our analysis considering two different cases: the first is a constant-slope
case (modelMconst), i.e. Equation 2.21 with η = 0; in the second, which we refer
to as the evolving-slope case (model Mevo), η is a free hyper-parameter. For the
standard deviation σσ in Equation 2.19, namely the intrinsic scatter of our relation,
we adopt the form

σσ = ψSDSS
0 + ξ log

( 1 + z

1 + zpiv

)
. (2.22)

In equations (2.20-2.22) Mpiv
∗ = 1011.321 and zpiv = 0.10436, i.e. the median values

of stellar mass and redshift of the SDSS ETGs, respectively, while the quantities
µSDSS

0 , βSDSS
0 and ψSDSS

0 are the median values of the hyper-parameters µ0, β0 and
ψ0 obtained when fitting Equation 2.19 to the ETGs of the SDSS subsample with

µσ = µ0 + β0 log
(
M∗

Mpiv
∗

)
and σσ = ψ0, (2.23)

i.e. neglecting any dependence on z. In order to prevent the redshift dependence
of the relation from being influenced by any redshift dependence within the SDSS
sample, which constitutes ≈ 60% of the extended sample, we assume the model in

2.3 Method 49



Equation 2.23 as the zero point at zpiv for our redshift-dependent models, because
our main interest is to trace the evolution of the relation at higher redshift (z & 0.5).
Hereafter, we will refer to the model in Equation 2.23 applied to the SDSS subsample
as modelMSDSS.

Allowing for intrinsic scatter is an important feature of our model. Neglecting it leads
typically to underestimating the slope of the M∗–σe relation (see e.g. Auger et al.,
2010). Our choice for the functional form of the distribution in velocity dispersion
introduced above is somewhat arbitrary. Although there could exist alternative
distributions that fit the data equally well as our model or better, however, exploring
such distributions is beyond the scope of this work.

2.3.3 Sampling the posterior probability distribution

functions of the model hyper-parameters

Our goal is to sample the posterior probability distribution function (PDF) of the
model hyper-parameters Φ given the data d, P(Φ|d). For this purpose, we use
an MCMC approach, using a Python adaptation of the affine-invariant ensemble
sampler of Goodman & Weare (2010), emcee (Foreman-Mackey et al., 2013). For
each set of values of the hyper-parameters, we need to evaluate the likelihood of the
data. This is given by the product over the galaxies in our sample of the integrals in
Equation 2.9. Using logM∗, log σe and z as the integration variables and omitting
the subscript i in order to simplify the notation, Equation 2.9 reads

P(logMobs
∗ , log σobs

e , zobs|Φ) =

=
∫∫∫

d logM∗ d log σe dz×

×P(logMobs
∗ , log σobs

e , zobs| logM∗, log σe, z)×

×P(logM∗, log σe, z|Φ) =

=
∫∫∫

d logM∗ d log σe dz×

×P(logMobs
∗ | logM∗) P(log σobs

e | log σe) δ(zobs − z)×

×P(logM∗|Φ)P(z|Φ)P(log σe| logM∗, z,Φ).

(2.24)

In the last line, we have used equations (2.12) and (2.13), and we have approxi-
mated the likelihood of observing redshift zobs as a delta function, in virtue of the
very small uncertainties on the redshift (typical errors are < 10−4). As a result, the
redshift distribution term P(z|Φ) becomes irrelevant, as it contributes to the integral
only through a multiplicative constant that we can ignore.
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Assuming a Gaussian likelihood in log σobs
e for the term P(log σobs

e | log σe), the inte-
gral over d log σe can be performed analytically, as we show in Appendix 2.B. We
also assume a Gaussian likelihood for the measurements of logMobs

∗ ,

P(logMobs
∗ | logM∗) = A(logM∗)√

2πσ2
M∗

exp
{
−(logM∗ − logMobs

∗ )2

2σ2
M∗

}
, (2.25)

with one caveat: we are only selecting galaxies with logMobs
∗ > logM∗,min, where

logM∗,min is derived from the mass-completeness limits at a given redshift for SDSS
and LEGA-C galaxies (see section 2.2.1) and it is assumed to be constant and equal to
10.5 for all the ETGs of the high-redshift sample. The likelihood must be normalised
accordingly:

∫ ∞
logM∗,min

d logMobs
∗
A(logM∗)√

2πσ2
M∗

exp
{
−(logM∗ − logMobs

∗ )2

2σ2
M∗

}
= 1. (2.26)

In other words, the probability of measuring any value of the stellar mass larger
than M∗,min, given that a galaxy is part of our sample, is one. We perform the final
integration over logM∗ numerically with a Monte Carlo method (see Appendix 2.B).
We assume flat priors on all model hyper-parameters.

2.3.4 Bayesian evidence

In our analysis, we consider models with different numbers of free hyper-parameters.
To evaluate the performance of a given model in fitting the data, we rely on the
Bayesian evidence Z that is the average of the likelihood under priors for a given
modelM:

Z = P(d|M) =
∫

dΘ P(d|Θ,M) P(Θ|M). (2.27)

We remark that, in our approach, the parameters Θ are described by a set of global
hyper-parameters Φ. When comparing two models, say modelsM1 andM2, we
are interested in computing the ratio of the posterior probabilities of the models

P(M1|d)
P(M2|d) = B P(M1)

P(M2) , (2.28)

where
B ≡ P(d|M1)

P(d|M2) = Z1
Z2

(2.29)

is the Bayes factor. When B � 1,M1 provides a better description of the data than
M2, and vice versa when B � 1. The value of the Bayes factor is usually compared
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Tab. 2.3: Jeffreys’ scale (Jeffreys, 1961), giving the strength of evidence in the comparison
of two models having Bayes factor B (equation 2.29).

| lnB| Strength of evidence

0− 1 Inconclusive
1− 2.5 Weak evidence
2.5− 5 Strong evidence
> 5 Decisive evidence

with the reference values of the empirical Jeffreys’ scale (Jeffreys, 1961), reported in
Table 2.3. Given two different models, the quantity | lnB| is a measure of the strength
of evidence that one of the two models is preferable. We compute the Bayesian
evidence Z of a model exploiting the nested sampling technique (Skilling, 2004).
Briefly, the nested sampling algorithm estimates the Bayesian evidence reducing
the n-dimensional evidence integral (where n is the number of the parameters of
a given model) into a 1D integral that is less expensive to evaluate numerically.
In practice, we evaluate Z for a model using the MULTINEST algorithm (see Feroz
& Hobson, 2008; Feroz et al., 2009) included in the Python module PyMultiNest
(Buchner et al., 2014). For details about the estimates of the Bayesian evidence and
the algorithm exploited to compute them, we refer the interested readers to Feroz &
Hobson (2008) and Buchner et al. (2014).

2.4 Results

In this section we present the results obtained applying the Bayesian method
described in section 2.3 to our fiducial and extended samples of ETGs (see sec-
tion 2.2).

In subsection 2.3.2 we have introduced three models: modelMSDSS (representing
the present-day M∗–σe relation), modelMconst (representing the evolution of the
M∗–σe relation with redshift-independent slope β) and modelMevo (representing
the evolution of the M∗–σe relation with redshift-dependent slope β). In models
Mconst andMevo the intrinsic scatter of the M∗–σe relation is allowed to vary with
redshift. In addition to these models, we also explore simpler models in which the
intrinsic scatter is assumed to be independent of redshift. These models are named
Mconst,NES andMevo,NES, where NES stands for non-evolving scatter. In summary,
we take into account five models: model MSDSS, represented by Equation 2.23,
models Mconst and Mevo, described by Equation 2.20 (the former obtained by
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Tab. 2.4: Hyper-parameters used in the models. Column 1: name of the model. Column
2: name of the hyper-parameter. Column 3: description of the hyper-parameter.
Column 4: uniform priors used in the models ("low" and "up" indicate, respectively,
the lower and upper bounds). For those hyper-parameters showing two ranges
for prior assumptions, the first refers to the fiducial sample and the second to the
extended sample. Mpiv

∗ and zpiv are the median values of stellar mass and redshift
of the SDSS ETGs (subsection 2.3.2).
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assuming η = 0 in Equation 2.21), and the modelsMconst,NES andMevo,NES, which
are the same asMconst andMevo, respectively, but with ξ = 0 in Equation 2.22. A
description of the hyper-parameters used for each model is provided in Table 2.4.
ModelMSDSS is applied to the SDSS subsample. The other four models are applied
twice, once to the fiducial sample and once to the extended sample (we use the
superscripts fid and ext to indicate that a model is applied, respectively, to the fiducial
and extended samples).

The model-data comparison is performed as described in section 2.3. We validated
our method by applying it to a mock data set similar to the our SDSS data set (see
Appendix 2.C). Each MCMC run (see subsection 2.3.3) uses 50 random walkers
running for 1000 steps to reach the convergence of the hyper-parameter distribution.
The resulting inferences on the hyper-parameters used in modelMSDSS are shown in
Figure 2.10. The SDSS galaxies are described by σe ∝Mβ0

∗ with β0 ' 0.176. The nor-
malisation µ0 ' 2.287 is such that galaxies with M∗ = 1011M� have σe ' 170 km s−1

and the intrinsic scatter is ' 0.075 dex in σe at fixed M∗. The posterior distributions
of the hyperparameters µ0, β0 and ψ0 are relatively narrow (Figure 2.10), with 1σ
scatter of at most few percent (Table 2.5), so our SDSS sample of ETG is sufficiently
numerous for our purposes, even if it contains only a small fraction of the massive
ETGs of the entire SDSS sample. Our results on the present-day M∗–σe relation are
broadly consistent with previous analyses (see subsection 2.5.2 for details).

The median values of the hyper-parameters of all models, with the corresponding 1σ
uncertainties, are listed in Table 2.5. In order to compare the models we compute
the Bayesian evidence Z of each model (subsection 2.3.4), using a configuration of
400 live points in the nested sampling algorithm. The resulting Z and the Bayes
factors are listed in Table 2.6. The performances of modelsMconst andMevo are
relatively poor when applied to both the fiducial and the extended samples, so in
the following we focus on model Mconst,NES and Mevo,NES: in Figure 2.11 and
Figure 2.12, we show the inferences of these two models applied to both the fiducial
and the extended samples.

2.4.1 Fiducial sample (0 . z . 1)

The model with the highest Bayesian evidence, among those applied to the fiducial
sample, isMfid

const,NES (see Table 2.6). ModelMfid
evo,NES, though with slightly lower

evidence, describes the data as well as model Mfid
const,NES, according to Jeffreys’
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Tab. 2.5: Inferred median and 68% posterior credible intervals of the hyper-parameters of
the models.
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Tab. 2.6: Logarithm of the Bayesian evidence, lnZ, and logarithm of the Bayes factor, lnB,
of the models. The values of B are relative to the Bayesian evidence of model
Mfid

const,NES for the fiducial sample and of model Mext
const,NES for the extended

sample, i.e. the models with the highest evidences for given sample.

Model lnZ lnB

Mfid
const 241.791± 0.204 −2.269± 0.391

Mfid
evo 240.645± 0.216 −3.415± 0.403

Mfid
const,NES 244.060± 0.187 −−

Mfid
evo,NES 243.710± 0.197 −0.350± 0.384

Mext
const 284.705± 0.225 −2.653± 0.431

Mext
evo 283.908± 0.235 −3.450± 0.441

Mext
const,NES 287.358± 0.206 −−

Mext
evo,NES 286.584± 0.222 −0.774± 0.428

scale3 (Table 2.3), while modelsMfid
const andMfid

evo are rejected with strong evidence.
Thus, based on our analysis of the fiducial sample, we conclude that at z . 1 the
normalisation of the M∗–σe relation changes with z, while the intrinsic scatter is
independent of redshift; the slope β is either constant or increasing with redshift
(see Figure 2.13).

The median M∗–σe relations found for models Mfid
const,NES and Mfid

evo,NES at three
representative redshifts are shown in the left panels of Figure 2.14. Quantitatively,
according to modelMfid

const,NES, in the redshift interval 0 . z . 1, the M∗–σe relation
is well described by a power law σe ∝Mβ

∗ with redshift-independent slope β ' 0.18
and intrinsic scatter ' 0.08 dex in σe at given M∗. At fixed M∗, σe ∝ (1 + z)ζ , with
ζ ' 0.40, so galaxies of given M∗ tend to have higher σe at higher redshift: the
median velocity dispersion at fixed M∗ is a factor ≈ 1.3 higher at z = 1 than at z = 0.
According to modelMfid

evo,NES, σe varies with M∗ and z as σe ∝M∗β(z)(1 + z)ζ , with
ζ ' 0.42 and β(z) ' 0.16 + 0.26 log(1 + z). For instance, at z = 1, the slope of the
M∗–σe relation is β ' 0.24. The time variation of σe at given M∗ depends on M∗: at
M∗ = 1011 M� it is similar to that inferred according modelMfid

const,NES (Figure 2.13,
upper panel).

3The difference between modelsMfid
const andMfid

evo is thatMfid
evo has the additional hyper-parameter

η (modelMfid
evo reduces to modelMfid

const for η=0). We note that the posterior distribution of η
found for modelMfid

evo is such that η = 0 within 2σ from the median.
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In summary, the evolution of the M∗–σe relation in the redshift range 0 . z . 1 can
be roughly described by

log
(

σe
km s−1

)
' 2.21 + 0.18 log

(
M∗

1011M�

)
+ 0.40 log(1 + z), (2.30)

based on the median values of the hyper-parameters of modelMfid
const,NES, or

log
(

σe
km s−1

)
' [0.16 + 0.26 log(1 + z)] log

(
M∗

1011M�

)
+

+ 0.42 log(1 + z) + 2.22,
(2.31)

based on the median values of the hyper-parameters of model Mfid
evo,NES, with

redshift-independent intrinsic scatter ' 0.08 dex in σe at a given M∗.

2.4.2 Extended sample (0 . z . 2.5)

The results obtained for the extended sample are very similar to those obtained
for the fiducial sample. The model with the highest Bayesian evidence is model
Mext

const,NES (Table 2.6), but the performance of modelMext
evo,NES is comparable on

the basis of Jeffreys’ scale (see Table 2.3). ModelsMext
const andMext

evo are rejected with
strong evidence. Thus, on the basis of our data, over the redshift range 0 . z . 2.5
the M∗–σe relation of ETGs evolves in time by changing its normalisation, with
redshift-independent intrinsic scatter, and with slope either constant or increasing
with redshift (see Figure 2.13).

The median M∗–σe relations of modelsMext
const,NES andMext

evo,NES at five representa-
tive redshifts are shown in the right panels of Figure 2.14. Quantitatively, according
to model Mext

const,NES, in the redshift interval 0 . z . 2.5, the M∗–σe relation is
well described by a power law σe ∝ Mβ

∗ with slope β ' 0.18 and intrinsic scatter
' 0.08 dex in σe at given M∗: at fixed M∗, σe ∝ (1+z)ζ , with ζ ' 0.48, so galaxies of
given M∗ tend to have higher σe at higher redshift. For instance, the median velocity
dispersion at fixed M∗ is a factor ≈ 1.7 higher at z = 2 than at z = 0. According to
modelMext

evo,NES, σe varies with M∗ and z as σe ∝Mβ(z)
∗ (1 + z)ζ , with ζ ' 0.51 and

β(z) ' 0.17 + 0.18 log(1 + z) (so β ' 0.26 at z = 2; Figure 2.13, lower panel). The
time variation of σe at given M∗ depends on M∗, but at M∗ = 1011 M� is similar to
that obtained with modelMext

const,NES (Figure 2.13, upper panel)
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In summary, the evolution of the M∗–σe relation in the redshift range 0 . z . 2.5
can be roughly described by

log
(

σe
km s−1

)
' 2.21 + 0.18 log

(
M∗

1011M�

)
+ 0.48 log(1 + z), (2.32)

based on the median values of the hyper-parameters of modelMext
const,NES, or

log
(

σe
km s−1

)
' [0.17 + 0.18 log(1 + z)] log

(
M∗

1011M�

)
+

+ 0.51 log(1 + z) + 2.21,
(2.33)

based on the median values of the hyper-parameters of model Mext
evo,NES, with

redshift-independent intrinsic scatter ' 0.08 dex in σe at a given M∗.

2.4.3 Comparing the results for the fiducial and extended

samples

Among the hyper-parameters of model Mconst,NES, only ζ, which quantifies the
redshift dependence of σe at given M∗, contains physical information on the M∗–σe

relation: the other five hyper-parameters describe properties of the galaxy sample.
Thus, when comparing the inferences obtained for model Mconst,NES applied to
the fiducial and extended samples (Figure 2.11), we must focus on the inference
on ζ. For model Mevo,NES, instead, the physical information is contained in the
hyper-parameters η and ζ, which must be considered when comparing the infer-
ences for modelsMfid

evo,NES andMext
evo,NES (Figure 2.12). While the differences in

the distributions of η betweenMfid
evo,NES andMext

evo,NES are well within 1σ, the dif-
ferences in the distributions of ζ are between 1σ and 2σ for both pairs of models
(Mfid

const,NES-Mext
const,NES andMfid

evo,NES-Mext
evo,NES). Thus, while we find no significant

differences in η, the extended-sample data prefer a somewhat higher value of ζ than
the fiducial-sample data, suggesting that the evolution of σe at a given M∗ might be
stronger at higher redshift.

However, we recall that the extended sample is not as homogeneous and complete
as the fiducial sample, so the aforementioned difference in ζ could be produced by
some observational bias. For instance, while for the fiducial sample we selected ETGs
on the basis of morphology and strength of emission lines, in some of the subsamples
of the high-redshift sample (Belli et al. 2014b and Belli et al. 2017), ETGs were
selected using also the so-called UV J colour-colour diagram, which is a useful tool
to separate passive and star-forming galaxies (e.g. Moresco et al., 2013). To quantify
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the effect of these different selection criteria, we performed the following test. Using
UV J colour measures from the UltraVISTA survey (Muzzin et al. 2013a), we placed
the LEGA-C galaxies of our fiducial sample in the UV J diagram, finding that 90%
of them lie in the locus of passive galaxies (see Cannarozzo et al. 2020b). We then
modified our fiducial sample by excluding the remaining 10% of the LEGA-C galaxies
and applied modelMfid

const,NES to this modified fiducial sample, finding inferences
on the hyper-parameters (in particular ζ = 0.408+0.032

−0.031) in agreement within 1σ with
those of Mfid

const,NES shown in Figure 2.11. This test, presented in Appendix 2.D,
indicates that the results obtained for the extended sample should be independent
of whether the UV J-colour selection is used as additional criterion to define the
sample of ETGs. Of course the selection of the extended sample is heterogeneous
also in other respects, so we cannot exclude that there are other non-negligible
biases.

As a more general comment, we note that, for both the fiducial and the extended
samples, the results on the evolution of the M∗–σe relation hold within the assump-
tion that the slope and the normalisation vary as power laws of 1 + z. Our inferences
on the redshift intervals in which we have no galaxies (0.2 < z < 0.6) or very few
galaxies (z > 1.75) in our samples (Figure 2.8) clearly rely on this assumption and
are thus driven by the properties of galaxies in other redshift intervals.

2.5 Discussion

2.5.1 Potential systematics

Our inference relies on measurements of the stellar mass and central velocity disper-
sion of galaxies. Both these quantities are subject to systematic effects that could in
principle affect our results. The biggest systematics are those affecting the stellar
mass measurements, which we discuss here.

Stellar mass measurements are the result of fits of Sérsic profiles to broad band
photometric data, from which luminosities and colours are derived and subsequently
fitted with stellar population synthesis models. One possible source of systematics
is a deviation of the true stellar density profile of a galaxy from a Sérsic profile.
For instance, as shown by Sonnenfeld et al. (2019) in their study of a sample of
massive ellipticals at z ∼ 0.6, it is difficult to distinguish between a pure Sérsic
model and a model consisting of the sum of a Sérsic and an exponential component,
even with relatively deep data from the HSC survey: differences between the two
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Fig. 2.13: Median central stellar velocity dispersion σe at M∗ = 1011 M� (upper panel) and
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sented by the grey solid line. The curves are obtained by computing, at given x,
the median value of y (where x and y are the quantities in abscissa and ordinate,
respectively) among all the values sampled by the posterior distribution obtained
with the MCMC; similarly, the shaded bands, which we will refer to as 1σ uncer-
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Fig. 2.14: Central stellar velocity dispersion as a function of stellar mass. In the left pan-
els the curves represent the median relations of the fiducial-sample models
Mfid

const,NES (upper panel) and Mfid
evo,NES (lower panel), at z = 0, z = 0.5 and

z = 1. In the right panels the curves represent the median relations of the
extended-sample modelsMext

const,NES (upper panel) andMext
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at z = 0, z = 0.5, z = 1, z = 1.5 and z = 2. The bands indicate the 1σ uncertainty
ranges. The median relations and the 1σ bands are computed as described in the
caption of Figure 2.13. The grey error bars represent the redshift-independent
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models only arise at large radii and can lead to variations in the estimated luminosity
on the order of 0.1 dex. Secondly, our models assume implicitly that the stellar
population parameters of a galaxy are spatially constant. However, if these vary as a
function of radius, a bias on the inferred stellar masses could be introduced. More
generally, the stellar population synthesis models on which our M∗ measurements
are based are known to be subject to systematics (see e.g. Conroy, 2013a). Most
importantly, uncertainties on the stellar IMF can lead to a global shift of the stellar
mass distribution, affecting the inference on the normalisation of the M∗–σe relation
µ0, and/or the slope of the relation β0, in case the IMF varies as a function of
mass. Additionally, gradients in the IMF can also introduce biases: along with
M∗/L gradients at fixed IMF, these are particularly relevant if our measurements are
used to quantify the stellar component to the dynamical mass of a galaxy (see e.g.
Bernardi et al., 2018; Li et al., 2018; Sonnenfeld et al., 2018; Domínguez Sánchez
et al., 2019, and related discussions).

All of these systematic effects are common to virtually all estimates of the M∗–σ0

relation in the literature and are difficult to address, given our current knowledge
on the accuracy of our models of galaxy stellar profiles and stellar populations. Nev-
ertheless, they should be taken into consideration when comparing our observations
with theoretical models.

2.5.2 Comparison with previous works

In this section we compare our results on the M∗–σe relation with previous works in
the literature, which we briefly describe in the following.

• Auger et al. (2010) study a sample of 59 ETGs (morphologically classified
as ellipticals or S0s) identified as strong gravitational lenses in the Sloan
Lens ACS Survey (SLACS) (Bolton et al., 2008; Auger et al., 2009) with a
mean redshift z ≈ 0.2. The stellar masses of these ETGs span the range
11 < log(M∗/M�) < 12. Auger et al. (2010) report fits of the M∗–σe/2 relation
both allowing and not allowing for the presence of intrinsic scatter (σe/2 is the
velocity dispersion within an aperture Re/2).

• Hyde & Bernardi (2009a) extract 46410 ETGs from the SDSS DR4 with pa-
rameters updated to the DR6 values (Adelman-McCarthy et al., 2008), se-
lecting galaxies with 60 < σe/8/(km s−1) < 400, where σe/8 is the stellar
velocity dispersion measured within an aperture Re/8, in the redshift range
0.07 < z ≤ 0.35. Hyde & Bernardi (2009a) fit the distribution of log σe/8
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as a function of logM∗ both with a linear function, over the stellar mass
range 10.5 < log(M∗/M�) < 11.5, and with a quadratic function, in the range
9.5 < log(M∗/M�) < 12.

• Damjanov et al. (2018) estimate the M∗–σ0 relation of 565 quiescent galaxies
of the hCOS20.6 sample, with 10.5 < log(M∗/M�) < 11.4, in the redshift
range 0.2 < z < 0.5. The velocity dispersions, corrected to an aperture of
3 kpc, can be taken as good approximations (to within 3− 4%; I. Damjanov,
private communication) of measurements of σe.

• Zahid et al. (2016a) analyse the M∗–σ0 relation for massive quiescent galaxies
out to z ≈ 0.7. For our comparison, we use their power-law fit obtained for a
subsample of 1316 galaxies drawn from the Smithsonian Hectospec Lensing
Survey (SHELS; Geller et al. 2005) at 0.3 < z < 0.4. Also in this case the
velocity dispersions, which are corrected to an aperture of 3 kpc, can be taken
as measurements of σe.

• Belli et al. (2014a) measure σe and M∗ for a sample of galaxies with median
redshift z ' 1.23. We take from Zahid et al. (2016a) the best fit parameters of
the M∗–σe relation for the sample of Belli et al. (2014a).

• Mason et al. (2015) study the redshift evolution of the M∗–σe relation, assum-
ing redshift-independent slope determined by the low-z relation measured
by Auger et al. (2010), finding that σe at fixed M∗ increases with redshift as
(1 + z)0.2 In particular, we consider here the fit of Mason et al. evaluated at
z = 0.35, 1.23 and 2, taking as reference the fit of Auger et al. (2010) with
non-zero intrinsic scatter.

In order to compare the results of the different works, we express all the fits in the
form

log
(

σe
km s−1

)
= µ+ β log

(
M∗

Mpiv
∗

)
+ γ

[
log

(
M∗

Mpiv
∗

)]2

, (2.34)

where Mpiv
∗ = 1011.321 M� (Chabrier IMF). We correct for aperture the fits of Auger

et al. (2010) and Hyde & Bernardi (2009a) using Equation 2.3, so log σe = log σe/8−
0.06 and log σe = log σe/2 − 0.02. Except for the quadratic fit of Hyde & Bernardi
(2009a), all the other fits assume γ = 0 in Equation 2.34. The values of the
parameters of Equation 2.34 for the considered literature works are reported in
Table 2.7. In Figure 2.20, we show the comparison between our models and the
previous works at z = 0.2, 0.35, 1.23 and 2.
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Tab. 2.7: Values of the parameters of Equation 2.34, according to the fits of the literature
works that we compared with our model. γ = 0 in all cases, but in the case of the
quadratic fit of Hyde & Bernardi (2009a), for which γ = −0.044.

Redshift Reference µ β

z ' 0.2

Auger et al. (2010) 2.38 0.24

Auger et al. (2010) 2.38 0.18
with intrinsic scatter

Hyde & Bernardi (2009a) 2.32 0.29
Linear fit

Hyde & Bernardi (2009a) 2.32 0.24
Quadratic fit

z ' 0.35

Damjanov et al. (2018) 2.37 0.25
hCOS20.6 (0.2 < z < 0.5)

Zahid et al. (2016a) 2.38 0.31
SHELS (0.3 < z < 0.4)

z = 0.35 Mason et al. (2015) 2.39 0.18

z ' 1.23 Belli et al. (2014a) 2.48 0.30

z = 1.23 Mason et al. (2015) 2.43 0.18

z = 2 Mason et al. (2015) 2.46 0.18
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Fig. 2.15: Comparison between the median M∗–σe relations of our models Mconst,NES
(dashed curves) andMevo,NES (dotted curves), and fits from the literature (solid
curves) at z = 0.2 (upper left panel), z = 0.35 (upper right panel), z = 1.23
(lower left panel) and z = 2 (lower right panel). Upper left panel: the red
and blue solid curves are the linear fits of Auger et al. (2010), including and
not including the intrinsic scatter, respectively, while the gold and light green
solid curves are the linear and the quadratic fits of Hyde & Bernardi (2009a),
respectively. The thin dash-dotted curve is the median relation of modelMfid

evo,NS,
in which we assume zero intrinsic scatter (see text). Upper right panel: the azure
curve is the linear fit for the hCOS20.6 galaxies (0.2 < z < 0.5) by Damjanov
et al. (2018), the brown curve is the linear fit of Zahid et al. (2016a) for the
SHELS sample (0.3 < z < 0.4) and the violet curve is the fit of Mason et al.
(2015) evaluated at z = 0.35. Lower left panel: the green curve is the linear fit of
Belli et al. (2014a) and the violet curve is the fit of Mason et al. (2015) evaluated
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evaluated at z = 2. Each curve is shown over the stellar mass range spanned by
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At z = 0.2 (upper left panel of Figure 2.20) we compare our results with Auger et al.
(2010) and Hyde & Bernardi (2009a). The curve of modelMfid

const,NES at z = 0.2
intersects the linear fit of Hyde & Bernardi (2009a), but has shallower slope, similar
to the fits to lens ETGs of Auger et al. (2010), which however have ≈ 20% higher
normalisation, probably reflecting the fact that, at given stellar mass, higher velocity
dispersion galaxies are more efficient lenses. At z = 0.2 the median relation of
modelMfid

evo,NES, not shown in the plot, is very similar to that of modelMfid
const,NES.

The steeper slope β of the fits of Hyde & Bernardi (2009a) can be ascribed to two
main reasons: they exclude the highest-mass galaxies and they do not allow for
intrinsic scatter in their model. The fact that the correlation is shallower at higher
M∗ is apparent from the shape of the quadratic fit of Hyde & Bernardi (2009a). The
difference between the two fits of Auger et al. (2010) illustrates the effect on β

of allowing for intrinsic scatter. As a further test of the importance of considering
the intrinsic scatter in the model, we applied to the fiducial sample the analysis
described in section 2.3, but assuming zero intrinsic scatter (σσ = 0 in equation 2.22)
for modelsMconst andMevo. Based on the Bayesian evidence, in this case the best
model isMfid

evo,NS, i.e. an evolving-slope model with a null scatter (NS) that can be
approximately described by

log
(

σe
km s−1

)
' 2.21 + β(z)

(
M∗

1011M�

)
+ 0.46 log(1 + z), (2.35)

with β(z) = 0.22 + 0.89 log(1 + z). This model evaluated at z = 0.2 (dash-dotted
curve in upper left panel of Figure 2.20) has slope β ' 0.29 and overlaps almost
perfectly with the linear fit of Hyde & Bernardi (2009a).

In the upper right panel of Figure 2.20 we compare our models Mfid
const,NES and

Mfid
evo,NES at z = 0.35 with the fits obtained by Mason et al. (2015) at the same

redshift, by Damjanov et al. (2018) at 0.2 < z < 0.5 and by Zahid et al. (2016a)
for SHELS galaxies at 0.3 < z < 0.4. Taking into account the differences in the
stellar-mass range, and that Damjanov et al. (2018) and Zahid et al. (2016a) do not
allow for the presence of intrinsic scatter, there is reasonable agreement among the
five curves.

In the lower left panel of Figure 2.20 we compare our models Mext
const,NES and

Mext
evo,NES at z = 1.23 (mean redshift of the sample of Belli et al. 2014a) with the

linear fit obtained by Belli et al. (2014a) and that of Mason et al. (2015) at the
same redshift. Considering that Belli et al. (2014a) do not allow for the presence of
intrinsic scatter, the four curves are broadly consistent.
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In the lower right panel of Figure 2.20 we compare the median relations of our
modelsMext

const,NES andMext
evo,NES with the estimate of Mason et al. (2015) at z = 2,

finding that our relations predict a higher velocity dispersion at the same stellar
mass, which is a consequence of the fact that the Mason et al. (2015) find a weaker
redshift dependence of the normalisation than our models.

Overall, we do find a satisfactory agreement among our results and previous works in
the literature. Some of the differences pointed out above may be ascribed to different
redshift distributions of the galaxy sample, stellar mass ranges, data and models
used in the measurements of the stellar masses, selection criteria or fitting methods.
For instance, it is apparent from Figure 2.20 that different studies consider different
stellar mass intervals. Studies focusing on lower stellar masses tend to find steeper
slopes than those focusing on higher stellar masses. Furthermore, allowing for the
presence of intrinsic scatter when modelling the data leads to shallower slopes.
Models allowing for the presence of intrinsic scatter, such as those presented in this
work, are expected to provide a more correct description of the M∗–σe correlation.

2.5.3 Connection with the size evolution of ETGs

It is useful discuss the results here obtained for the evolution of the M∗–σe relation
of ETGs in light of the well known evolution of the M∗–Re relation: the redshift
dependence of the median effective radius at fixed stellar mass can be parameterised
as Re ∝ (1 + z)aR . The value of aR for ETGs appears to depend somewhat on the
considered sample, mass and redshift intervals, ranging from aR ≈ −1.5 (van der
Wel et al. 2014; 0 . z . 3) to aR ≈ −0.6 (Cimatti et al. 2012; 0 . z . 2). If
all the ETGs in the considered redshift range were structurally and kinematically
homologous (see, e.g., section 5.4.1 of Cimatti, Fraternali, & Nipoti 2019), we would
have σ2

e ∝M∗/Re and thus, at fixed stellar mass M∗, σe ∝ R−1/2
e ∝ (1 + z)ζhom , with

ζhom = −aR/2. For −1.5 . aR . −0.6, we get 0.3 . ζhom . 0.75. This toy model is
consistent with our observational finding σe ∝ (1 + z)ζ with 0.4 . ζ . 0.5.

It must be stressed that the observed value of ζ must not be necessarily equal to
ζhom. From a theoretical point of view, an observed evolution in σe different than
predicted by the above toy model can be expected if ETGs do not evolve maintaining
homology. For instance, dry merging, which is one of the processes believed to be
responsible for the size and velocity dispersion evolution of ETGs (see Chapter 1), is
known to produce non-homology, because it varies the shape and the kinematics
of the stellar distribution, and the mutual density distributions of luminous and
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dark matter (Nipoti et al., 2003; Hilz et al., 2013; Frigo & Balcells, 2017). We can
quantify the effect of non-homology by defining the dimensionless parameter

k∗ ≡
GM∗
σ2

eRe
, (2.36)

such that galaxies that are structurally and kinematically homologous have the same
value of k∗. If, at fixed M∗, Re ∝ (1 + z)aR and σe ∝ (1 + z)ζ , the average value
of k∗ must vary with redshift as k∗ ∝ (1 + z)ak with ak = −(2ζ + aR). Thus, we
have ζ 6= −aR/2 if ak 6= 0, i.e. if, on average, galaxies at different redshift have
different k∗. However, from an observational point of view, a significant evolution
of k∗ seems to be excluded. Defining the dynamical mass Mdyn ≡ 5σ2

eRe/G, the
average ratio M∗/Mdyn ∝ k∗ is found to increase mildly with redshift (for galaxies
with M∗ > 1011 M�, it varies as (1+z)0.17 from ' 0.6 at z = 0 up to ' 0.9 at z > 1.5;
van de Sande et al. 2013), or even remain constant (' 0.7 in the range 0 < z < 1.6;
Belli et al. 2014a), and the zero point of the stellar-mass fundamental plane (which
also can be seen as a measure of the average k∗) varies only little with redshift
(Bezanson et al., 2013a; Zahid et al., 2016b).

For our extended sample of galaxies we computed the median k∗ by binning the
galaxies in bins of either Sérsic index or redshift. We found that k∗ decreases
systematically for increasing n, ranging, on average, from k∗ ≈ 4 for n = 2 to
k∗ ≈ 1.5 for n = 10, suggesting a moderate structural non-homology (see Bertin
et al., 2002). The median k∗ is ≈ 2.5 at z = 0 and tends to increase with redshift,
but only by a factor of ≈ 1.5 from z ≈ 0 to z > 1.

2.6 Conclusions

We have studied the evolution of the correlation between central stellar velocity dis-
persion σe (measured within Re) and stellar mass M∗ for massive (M∗ & 1010.5 M�)
ETGs observed in the redshift range 0 . z . 2.5. We have modelled the evolu-
tion of this scaling law using a Bayesian hierarchical method. This allowed us to
optimally exploit the available observational data, without resorting to binning in
either redshift or stellar-mass space. The main conclusions of this work are the
following.

• On average, the central velocity dispersion of massive (M∗ & 1010.5 M�) ETGs
increases with stellar mass following a power-law relation σe ∝ Mβ

∗ with
either β ' 0.18, independent of redshift, or β increasing with redshift as
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β ' 0.16 + 0.26 log(1 + z) in the redshift range 0 . z . 1 probed by our
fiducial sample.

• The normalisation of the M∗–σe relation increases with redshift: for instance,
when β ' 0.18 independent of redshift, at fixed stellar mass σe ∝ (1 + z)ζ with
ζ ' 0.4 out to z ≈ 1. In other words, a typical ETG of M∗ ≈ 1011 M� at z ≈ 0
has σe lower by a factor ≈ 1.3 than ETGs of similar stellar mass at z ≈ 1.

• The intrinsic scatter of the M∗–σe relation is ' 0.08 dex in σe at given M∗,
independent of redshift.

• Over the wider redshift range 0 . z . 2.5, probed by our extended sample, we
find results similar to those found for the z . 1 fiducial sample, with slightly
stronger redshift dependence of the normalisation (ζ ' 0.5) and weaker
redshift dependence of the slope (dβ/d log(1 + z) ' 0.18) when β varies with
time. On average, the velocity dispersion of ETGs of M∗ ≈ 1011 M� at z = 2 is
a factor of ≈ 1.7 higher than that of z = 0 ETGs of similar stellar mass.

The results of this work confirm and strengthen previous indications that the M∗–σe

relation of massive ETGs evolves with cosmic time. The theoretical interpretation
of the observed evolution is not straightforward. Of course, the stellar mass of an
individual galaxy can vary with time: it can increase as a consequence of mergers
and star formation and decrease as a consequence of mass return by ageing stellar
populations. In the standard paradigm, the first effect is dominant, so we expect
that, as cosmic time goes on, an individual galaxy moves in the M∗–σe plane in
the direction of increasing M∗. As pointed out in Chapter 1, the variation of σe

for an individual galaxy is more uncertain: even pure dry mergers can make it
increase or decrease depending on the merging orbital parameters and mass ratio.
It is then clear that, at least qualitatively, the evolution shown in Figure 2.14 could
be reproduced by individual galaxies evolving at decreasing σe, but, at least at
the low-mass end, even an evolution of individual galaxies at constant or slightly
increasing σe is not excluded. Remarkably, our results suggest that, on average, the
stellar velocity dispersion of individual galaxies with M∗ & 3 × 1011M� at z ≈ 1
must decrease from z ≈ 1 to z ≈ 0 for them to end up on the median present-day
M∗–σe relation.

An additional complication to the theoretical interpretation of the evolution of the
scaling laws of ETGs is that it is not guaranteed that the high-z (say z ≈ 2) ETGs are
representative of the progenitors of all present-day ETGs. If the progenitors of some
of the present-day ETGs were star-forming at z ≈ 2, they would not be included
in our sample of z ≈ 2 ETGs: this is the so-called progenitor bias, which must be
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accounted for when interpreting the evolution of a population of objects. However,
the effect of progenitor bias should be small at least for the most massive ETGs in
the redshift range 0 . z . 1, in which the number density of quiescent galaxies
shows little evolution (López-Sanjuan et al., 2012).

The theoretical interpretation of the evolution of the scaling relations of ETGs
can benefit from the comparison of the observational data with the results of
cosmological simulations of galaxy formation. In this approach, the progenitor bias
can be taken into account automatically if simulated and observed galaxies are
selected with consistent criteria. Moreover, in the simulations we can trace the
evolution of individual galaxies, which is a crucial piece of information that we do
not have for individual observed galaxies. The method presented in this Chapter is
suitable to be applied to samples of simulated as well as observed galaxies. In the
near future we plan to apply this method to compare the observed evolution of the
M∗–σe relation of ETGs with the results of state-of-the-art cosmological simulations
of galaxy formation.
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Appendix 2.A: Comparison with independent

estimates of the stellar mass of SDSS galaxies

In this work we have estimated the stellar masses of the SDSS and LEGA-C galaxies
anew in a self-consistent way. As a sanity check and for comparison with other
works, it is useful to compare our estimates with others available in the literature.
For this purpose, we contrast here, for our SDSS sample of ETGs, our values of M∗
with those obtained for the same galaxies by M14, who measured M∗ for ≈ 660,000
galaxies of the SDSS DR7 Legacy Survey, relying on the photometric analysis of
Simard et al. (2011) in the g and r bands, extended by M14 also to the u, i and z
bands (we took M14’s stellar mass estimates from the UPENN_PHOTDEC_MSTAR4

catalogue of Meert et al. 2015).

Both our and M14’s stellar masses are obtained by multiplying the galaxy luminosity
L by the stellar mass-to-light ratio M∗/L, so it is interesting to compare indepen-
dently estimates of these two quantities. Since our stellar masses are based on a
Sérsic photometric fit, we limit our comparison to the stellar mass estimates of M14
based on the pure Sérsic fits of Simard et al. (2011). We calculate M14’s stellar
mass-to-light ratio in the r band M∗/Lr related to two different models considered:
one based on a "dust-free" model (assuming zero dust extinction) and the other on
a "dusty" model (assuming non-zero dust extinction). In Figure 2.16, we show, for
the ≈ 2000 galaxies of our SDSS sample (see Table 2.1), the distributions of the
ratios between our M∗/Lr and those of M14 (left panel), and of the ratios between
our r-band luminosities Lr and those obtained by Simard et al. (2011) for pure
Sérsic fits. The overall agreement is good, though, on average, our M∗/Lr tend to
be slightly lower and our Lr slightly higher than those of M14 and Simard et al.
(2011), respectively. In Figure 2.17 we show, for the same galaxies as in Figure 2.16,
the dust-free (left panel) and dusty (right panel) stellar masses of M14 as functions
of our stellar masses. In both cases, there is remarkably good agreement between
our and M14’s stellar masses: the linear fits are very close the 1:1 relation and the
scatter is relatively small.

4Available at http://alan-meert-website-aws.s3-website-us-east-1.amazonaws.com/fit_
catalog/download/index.html.
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Fig. 2.16: Left panel: distribution of the ratio between our r-band stellar mass-to-light ratio
((M∗/Lr)CSN) and those obtained by M14 assuming dust-free ((M∗/Lr)DF, blue
histogram) and dusty ((M∗/Lr)D, red histogram) models for the SDSS galaxies of
our sample. Right panel: distribution of the ratio between our r-band luminosity
(Lr,CSN) and that of Simard et al. (2011) (Lr,Simard) for the same galaxies as
in the left panel. In both panels, the dashed lines represent the medians of the
distributions, while the intervals between the 16-th and 84-th percentiles are
indicated by the shaded areas.
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Fig. 2.17: Pure Sérsic fit stellar masses based on the dust-free (left panel) and dusty (right
panel) models of M14 (logM∗,DF and logM∗,D, respectively) as functions of our
stellar masses (logM∗,CSN) for the SDSS galaxies of our sample. The distributions
are represented as two-dimensional histograms: the darkest the colour of the
pixel the highest the number of galaxies. In each panel, the solid line represents
the 1:1 relation, while the dashed line is the linear fit to the data.
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Appendix 2.B: Details of the calculation of the

likelihood used in the model-data comparison

Here we provide some steps of the calculation of the likelihood in Equation 2.19. In
this section all masses are in units of solar masses. By writing explicitly each term in
Equation 2.8 for our case, we obtain

P(d|Φ) =
n∏
i=1

∫
d logM∗,i d log σe,i dzi P(logMobs

∗,i , log σobs
e,i , z

obs
i | logM∗,i, log σe,i, zi)×

×P(logM∗,i, log σe,i, zi|Φ).
(2.37)

As explained in subsection 2.3.2, we neglect the uncertainty on redshift, so that the
first term on the right-side of Equation 2.37 becomes

P(logMobs
∗,i , log σobs

e,i , z
obs
i | logM∗,i, log σe,i, zi) =P(logMobs

∗,i | logM∗,i)×

×P(log σobs
e,i | log σe,i)×

× δ(zobs
i − zi).

(2.38)

Therefore, we can rewrite Equation 2.19 for the i-th galaxy as follows:

P(logMobs
∗,i , log σobs

e,i , z
obs
i |Φ) =

∫
d logM∗,i

A(logM∗,i)√
2πσ2

M∗,i

exp
{
−

(logM∗,i − logMobs
∗,i )2

2σ2
M∗,i

}
×

× 1√
2πσ2

∗
exp

{
−(logM∗,i − µ∗)2

2σ2
∗

}
E(logM∗,i|Φ)×

×
∫

d log σe,i
1√

2πσ2
σe,i

exp
{
−

(log σe,i − log σobs
e,i )2

2σ2
σe,i

}
×

× 1√
2πσ2

σ,i

exp
{
−(log σe,i − µσ,i)2

2σ2
σ,i

}
,

(2.39)
where

µσ,i = µ0 + β log
(
M∗,i

Mpiv
∗

)
+ ζ log

( 1 + zi
1 + zpiv

)

and

σσi = ψ0 + ξ log
( 1 + z

1 + zpiv

)
.

(2.40)
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Equation 2.39, the term A(logM∗) allows to normalise the distribution over all
values of the observed stellar mass. Specifically, A(logM∗) ensures that the proba-
bility of having an ETG with logMobs

∗ between logM∗,min (the lower bound of the
considered observed stellar mass interval) and +∞ is one:

∫ ∞
logM∗,min

d logMobs
∗,i
A(logM∗,i)√

2πσ2
M∗,i

exp
{
−

(logM∗,i − logMobs
∗,i )2

2σ2
M∗,i

}
= 1. (2.41)

Hence, A(logM∗,i) is given by

A(logM∗,i) = 1∫ ∞
logMmin

∗
dM′ 1√

2πσ2
M∗,i

exp
{
−(logM∗,i −M′)2

2σ2
M∗,i

} =

=


√
σ2
M∗,i

1
2 σ

2
M∗,i erf

(√
2

2
logM∗,i −M

σ2
M∗,i

)


+∞

logMmin
∗

.

(2.42)

In the previous two equations the term logM∗,min is obtained from the mass-
completeness limits at a given redshift for SDSS and LEGA-C ETGs (section 2.2.1),
while for the high-redshift sample galaxies we assume a constant value of 10.5.

The integral term in d log σe,i of Equation 2.39 can be written as

1√
2π(σ2

σe,i + σ2
σ,i)

exp
{
−

(log σobs
e,i − µσ,i)2

2(σ2
σe,i + σ2

σ,i)

}
×

×
∫

d log σe,i
1√

2πσ̃2
i

exp
{
−(log σe,i − µ̃i)2

2σ̃2
i

}
=

= 1√
2π(σ2

σe,i + σ2
σ,i)

exp
{
−

(log σobs
e,i − µσ,i)2

2(σ2
σe,i + σ2

σ,i)

}
,

(2.43)

where

µ̃i =
log σobs

e,i σ
2
σ,i + µσ,i σ

2
σe,i

σ2
σ,i + σ2

σe,i

and

σ̃i =

√√√√ σ2
σ,iσ

2
σe,i

σ2
σ,i + σ2

σe,i

.

(2.44)
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By writing µσ,i explicitly, Equation 2.39 becomes

P(logMobs
∗,i , log σobs

e,i , z
obs
i |Φ) =

∫
d logM∗,i

A(logM∗,i)√
2πσ2

M∗,i

exp
{
−

(logM∗,i − logMobs
∗,i )2

2σ2
M∗,i

}
×

× 1√
2πσ2

∗
exp

{
−(logM∗,i − µ∗)2

2σ2
∗

}
E(logM∗,i|Φ)×

× 1√
2πσeff,i|β|

exp
{
−(logM∗,i − µeff,i)2

2σ2
eff,i

}
(2.45)

with

µeff,i = logMpiv
∗ +

log σobs
e,i − µ0 − ζ

[
log(1 + zi)− log(1 + zpiv)

]
β

and

σeff,i =
(σ2
σe,i + σ2

σ,i)
β2 .

(2.46)

P(logMobs
∗,i , log σobs

e,i , z
obs
i |Φ) = 1

|β|
1√

2π(σ2
M∗,i

+ σ2
eff,i)

exp
{
−

(logMobs
∗,i − µeff,i)2

2(σ2
M∗,i

+ σ2
eff,i)

}
×

×
∫

d logM∗,i
1√

2πσ′i
2

exp
{
−(logM∗,i − µ

′
i)2

2σ′i
2

}
×

× A(logM∗,i) S(logM∗,i),
(2.47)

with

µ
′
i =

logM∗,iσ2
eff,i + µeff,iσ

2
M∗,i

σ2
eff,iσ

2
M∗,i

and

σ
′
i =

√√√√ σ2
eff,iσ

2
M∗,i

σ2
eff,i + σ2

M∗,i

.

(2.48)

We compute the integral term in Equation 2.47 numerically, using the trapezoidal
rule.
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Appendix 2.C: Mock sample

In order to check the reliability of our method, we performed some tests on mock
samples. In the following, we provide an example of our method applied to a
mock sample of around 400 ETGs, with properties similar to our SDSS subsample,
generated as follows (masses are in units of M� and velocity dispersions in units of
km s−1):

• stellar masses M t
∗ are generated extracting logM t

∗ from a normal distribution
with mean 11.321 and standard deviation 0.358;

• the true velocity dispersions σt
e are generated extracting log σt

e ≡ µt from a
normal distribution with mean

µt = µmock
0 + βmock

0 log
(

M t
∗

Mmock
∗

)
(2.49)

and standard deviation 0.075 dex, where Mmock
∗ = 1011.321, µmock

0 = 2.287,
βmock

0 = 0.176;

• the errors on the stellar masses σM∗ are extracted from a normal distribution
with mean 0.760 (the median stellar mass error in the SDSS sample) and
standard deviation ' 0.009 (the standard deviation of the stellar mass error
distribution in the SDSS sample);

• the errors on the velocity dispersions σσe are extracted from a normal distribu-
tion with mean 8.7 (the median stellar velocity dispersion error in the SDSS
sample) and standard deviation 2.995 (the standard deviation of the stellar
velocity dispersion error in the SDSS sample);

• the values of logMobs
∗ and log σobs

e are extracted from N (µ = logM t
∗, σ = σM )

and N (µ = log σt
e, σ = σσe), respectively;

• galaxies with logMobs
∗ < 10.5 are excluded, so for the mock logM∗,min = 10.5.

For simplicity, we assume that all galaxies are at z = zpiv, so that the mean and
standard deviation of the skew prior in Equation 2.14 used to model the stellar mass
distribution reduces to µ∗ = µ∗,0 and σ∗ = σ∗,0.

In order to sample the PDFs of the model applied to our mock catalogue (hereafter
modelMmock), we perform a MCMC run (see subsection 2.3.3), using 50 random
walkers running for 1000 steps to reach the convergence of the hyper-parameter
distribution. In Figure 2.18 we show the posterior PDFs of all hyper-parameters
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and report the median values of the hyper-parameters µ0, β0 and ψ0 with their 1σ
uncertainties. The input values of the hyper-parameters are all recovered within 1σ.
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Appendix 2.D: Testing a different definiton of

ETG

One of the properties of ETGs is to be passive and EW([O II]) is only one of the
possible diagnostics for the star formation rate. Another indicator is the position of
galaxies within the UV J colour-colour diagram, in which the loci of passive and
star-forming galaxies are separate (e.g., Cimatti, Fraternali, & Nipoti, 2019). For
instance, Belli et al. (2014a), from which part of the galaxies of the high-redshift
sample are taken, select using a UV J-based criterion. In principle, this different
selection criterion can induce spurious evolution when the extended sample is
considered. In this appendix we analyse the effect of adding a UV J -based selection
to the criteria used for the fiducial sample.

The model with the highest value of Bayesian evidence explored in this work, named
model Mconst,NES, has six hyper-parameters: ζ, µ∗,0, µ∗,s, σ∗,0, σ∗,s and α∗ (see
section 2.4 for details). We repeated the same analysis by considering a modified
fiducial sample. In particular, we changed the selection criterion for the galaxies
of the LEGA-C sample: in addition to the criteria used for the fiducial sample, we
exclude galaxies that are star-forming on the basis of their position in the UV J
colour-colour diagram, as done in Muzzin et al. (2013a). In the top panel of
Figure 2.20, the UV J diagram for the LEGA-C sample of 178 ETGs illustrated in
section 2.4 is shown (the UV J colours are taken from the UltraVISTA catalogue of
Muzzin et al. 2013b). In this diagram the locus of passive galaxies is the area above
and to the left of the broken line: about 90% of the LEGA-C galaxies of the fiducial
sample are in this area. Excluding galaxies that are outside the locus of passive
galaxies in the UV J diagram of Figure 2.20, we end up with a modified fiducial
sample, consisting of 161 instead of 178 LEGA-C galaxies, in addition to the SDSS
galaxies.

We applied model Mconst,NES to this modified fiducial sample (hereafter model
Mfid,UVJ

const,NES) and compared the results with those obtained for the original fiducial
sample (hereafter model Mfid

const,NES). The posterior distributions of the hyper-
parameters of models Mfid,UVJ

const,NES and Mfid
const,NES, shown in the bottom panel of

Figure 2.20, are in agreement within 1σ. In particular, for modelMfid,UV J
const,NES, the

normalisation of the M∗–σe scaling relation evolves with ζ = 0.408+0.032
−0.031, consistent

with 0.398+0.028
−0.031 obtained by modelMfid

const,NES. This analysis suggests that, at least
as far as the UV J selection is concerned, the results of the extended sample shown
in section 2.4 are not biased.
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Fig. 2.19: UV J colour-colour diagram for the LEGA-C sample of 178 ETGs (red dots). The
broken line separates quiescent (upper-left region) and star-forming galaxies
(lower-right region) as in Muzzin et al. (2013a).
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Fig. 2.20: Posterior probability distributions of the hyper-parameters for the M∗–σe models
Mfid

const,NES (purple contours) andMfid,UV J
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tions (top panel of each column) the vertical solid lines and colours delimit the 68,
95 and 99.7-th quantile based posterior credible interval. In the 2D distributions
(all the other panels) the contours enclose the 68, 95 and 99.7 percent posterior
credible regions. The lines indicate the median values of the hyper-parameters.
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The role of in-situ and
ex-situ star formation in
early-type galaxies:
MaNGA versus
IllustrisTNG

3

„If I have seen further than others, it is by
standing upon the shoulders of giants.

— Isaac Newton

A possible way to understand the formation and evolution scenario of galaxies
consists in the exploitation of numerical simulations that reproduce real objects. In
this Chapter we present a work that deals with the comparison of observed galaxies
from the MaNGA survey with simulated galaxies from the IllustrisTNG simulation,
disentangling for the latter the role of in-situ and ex-situ stellar populations. This
Chapter is based on Cannarozzo et al. (a, in prep. to be submitted to MNRAS
soon).

3.1 Introduction

The spatial distributions of metallicity, chemical abundances, age and other proper-
ties of stellar populations in a galaxy enclose all the evolutionary processes occurred
across cosmic time.

In the context of the standard cosmological framework, an early-type galaxy (ETG)
may experience several episodes of accretion of material from the intergalactic
medium or via mergers that can dramatically change the whole system. A natural
outcome of the merger-driven evolution experienced by ETGs is the evolution
of internal scaling relations. Indeed, as described in section 1.6, historically we
know that ETGs show relations that link, for instance, the stellar luminosity (or
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interchangeably the stellar mass) to the velocity dispersion (Faber & Jackson, 1976),
to the size (Kormendy, 1977), or, more generally, involving these three properties
together in the so-called Fundamental Plane (Djorgovski & Davis, 1987; Dressler
et al., 1987). The improvement of technologies together with the increasing of the
statistics in the newest surveys led the astrophysicists to study those relations at
different redshifts. Indeed, massive ETGs at high redshifts are found to be compact,
with an effective radius Re smaller than that of galaxies in the present-day Universe
(e.g., Ferguson et al., 2004; van der Wel et al., 2014; Damjanov et al., 2019). As we
have seen in Chapter 2, also the stellar mass–velocity dispersion relation, M∗−σe,
evolves: on average, for given stellar mass, the lower the redshift, the lower the
velocity dispersion (e.g., van de Sande et al., 2013; Belli et al., 2014a; Gargiulo
et al., 2016; Belli et al., 2017; Tanaka et al., 2019; Cannarozzo et al., 2020a).

An intriguing result obtained from cosmological simulations that model the forma-
tion of ETGs is the so-called two-phase formation scenario (e.g., Naab et al., 2009;
Oser et al., 2010; Hilz et al., 2013, see subsection 1.8.1). According to this scenario,
in an early phase (z & 2), the stellar component within massive galaxies is mainly
constituted by stars that formed in situ, i.e. in the same galaxy. Subsequently, as a
consequence of multiple minor and major mergers, an ETG accretes stars formed
ex situ, i.e. in other galaxies, hence modifying the total mass, the size and stellar
properties in general.

A possible way to investigate how the progenitor stellar populations settled in the
final galaxy remnants would be to perform high-resolution simulations. For instance,
by exploiting a set of N -body dissipationless binary merging simulations, in Nipoti
et al. (2020) we studied the effect of dry mergers on the final distribution of the
initial mass function (IMF) mismatch parameter αIMF

1, finding that these encounters
tend to flatten the αIMF profiles, because of the mixing of the stellar populations of
the two progenitors. On the other side, hydrodynamical cosmological simulations
can help the study of the evolution of stellar population properties, taking into
account the aspects of a cosmological evolution of systems. In this context, as found
by Rodriguez-Gomez et al. (2016) for galaxies in the Illustris simulation suite (Genel
et al., 2014; Vogelsberger et al., 2014a,b; Sijacki et al., 2015), stars formed in situ
tend to be more dominant in the innermost regions of galaxies, while stars accreted
from other systems tend to lie in the outer parts.

1The IMF mismatch parameter αIMF (Treu et al., 2010) is defined as the ratio between (M∗/L)true,
i.e. the true stellar mass-to-light ratio of an ensemble of stars in a given band, and (M∗/L)ref , i.e.
the stellar mass-to-light ratio in the same band that one would infer adopting a reference IMF, for
example the Salpeter (1955), the Kroupa (2001), or the Chabrier (2003) IMF.

84 Chapter 3 The role of in-situ and ex-situ star formation in early-type
galaxies: MaNGA versus IllustrisTNG



The presence of initial gradients in stellar metallicity can be determined by the
first episodes of star formation (e.g., Larson, 1974; Thomas et al., 2005) and a
natural consequence is the production of metallicity profiles that decrease going
towards the external regions of galaxies, while stellar age profiles remain almost
constant. As show in Hirschmann et al. (2015) and Cook et al. (2016), the large
number of mergers and interactions occurred in galaxies cause the presence of
shallow metallicity profiles and almost flat (or slightly positive) age gradients,
because of the mix of stars with different metallicities and the accumulation of
old stellar populations in the outer regions, respectively. On the contrary, a lack
of late-time minor mergers in galaxies produces metallicity profiles substantially
negative, causing the formation of metal-poor regions in the outskirts of galaxies
(e.g., Kobayashi, 2004; Pipino et al., 2010; Taylor & Kobayashi, 2017).

In the last decades, the integral field spectroscopy (IFS) technique has been ex-
ploited in many surveys: SAURON (Spectroscopic Areal Unit for Research on Optical
Nebulae; Bacon et al., 2001; de Zeeuw et al., 2002), ATLAS3D (Cappellari et al.,
2011), CALIFA (Calar Alto Legacy Integral Field Array survey; Sánchez et al., 2016),
SAMI (Sydney-Australian-Astronomical-Observatory Multi-object Integral-Field Spec-
trograph Croom et al., 2012; Bryant et al., 2015), MASSIVE (Ma et al., 2014) and
MaNGA (Mapping Nearby Galaxies at Apache Point Observatory; Bundy et al.,
2015). The main advantage of IFS is to obtain simultaneously spectra in different
regions of a given source, spatially resolving morphological and kinematic aspects.
Indeed, each pixel is associated with a spectrum (the so-called spaxel, i.e. spectral
pixel), providing a measure of the flux at different wavelengths. These spatially-
resolved surveys allow to study in detail the properties of stellar populations in
individual objects, therefore not limiting the analysis only to the study of gradients,
but revealing the 2D spatial distribution over the entire galaxy on the plane of the
sky.

By analysing a set of ETGs with log(M∗/M�) > 10.3 in SAURON, Kuntschner et al.
(2010) found that stellar metallicity gradients become shallower with increasing
stellar mass, while stellar age remain constant. Also Li et al. (2018) using MaNGA
galaxies with 9 < log(M∗/M�) < 12.3 found metallicity gradients consistent with
those of Kuntschner et al. (2010). Moreover, Li et al. (2018) found that the stellar
metallicity gradients show a strong dependence on stellar velocity dispersion: they
peak (being most negative) at velocity dispersions of around 100 km s−1. The
interpretation of this radial dependence is in terms of a different evolutionary
scenario for galaxies with different velocity dispersions. In particular, metallicity
gradients tend to flatten at high velocity dispersions suggesting a rising role of
mergers that redistribute stellar populations in these galaxies. However, the studies
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conducted so far that involve IFS surveys are sometimes in contrast. For example,
also Goddard et al. (2017b) picked ETGs from MaNGA with 9 < log(M∗/M�) <
11.5: although, the galaxies were drawn from the same survey as done by Li
et al. (2018), the authors derived metallicity profiles that become steeper going
towards the high-mass tail. A consistent result was found by Zheng et al. (2017),
for ETGs in the MaNGA survey with 8.5 < log(M∗/M�) < 11.5. In Greene et al.
(2015), subsequently extended in Greene et al. (2019) to larger radii, ETGs with
log(M∗/M�) > 11.6 show shallow metallicity gradients and radius-independent age
and α-element abundances relative to the iron, i.e. [α/Fe]. Recently, by analysing
a sample of 96 passive brightest cluster galaxies (BCGs) from the SAMI survey,
Santucci et al. (2020) found negative metallicity gradients that tend to become
shallower as the stellar mass increases, slightly positive age gradients and almost
zero [α/Fe] gradients, the latter tending to become a bit more negative as the mass
increases. This study revealed also that there are no significant differences in the
stellar profiles of the analysed properties between central and satellite galaxies, both
at fixed stellar mass and as a function of halo mass, highlighting for the two galaxy
populations follow a similar formation scenario, which appears to be independent of
the environment. The differences found among the various studies (also when using
the same galaxy survey) may depend on a combination of different selection criteria
adopted to identify ETGs, stellar mass ranges considered, as well as methods used
to retrieve properties and their profiles.

Despite the relatively large number of IFS surveys, understanding whether a stellar
population in a galaxy either formed in situ or was accreted from another progenitor
is not a trivial argument. In a recent work, Oyarzún et al. (2019), making use of
more than 1000 ETGs with 10 < log(M∗/M�) < 12 from the MaNGA survey, studied
the radial distributions of metallicity adopting three different stellar fitting codes,
i.e. FIREFLY, PROSPECTOR and PPXF. They found that, regardless of the fitting
code used, metallicity profiles in galaxies with log(M∗/M�) > 11 tend to become
flatter in the outer regions, interpreting this feature as a signature of accretion.
In order to understand the presence of this flattening, the authors built a simple
toy model. Specifically, they assumed that the low-mass tail of galaxies in their
sample is representative of galaxies mainly constituted by stars formed in situ. As
the mass increases, the flattening in the metallicity profiles becomes more prominent
at R & 1Re. Hence, for the high-mass end of galaxies, the inner part of the profiles
(R . 1Re) is associated to the in-situ stellar population, while the external parts
are mainly dominated by stars accreted from other galaxies. Quantitatively, they
infer the role of ex-situ stars that, within R ≈ 2Re, is around 20% of the total stellar
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mass in ETGs with log(M∗/M�) < 10.5, while in ETGs with log(M∗/M�) > 11.5 this
fraction reaches even 80% of the stellar mass content.

In this work, we propose a more realistic model to provide an interpretative scenario
for the radial distributions of stellar properties in real ETGs in terms of in-situ
and ex-situ stellar components. Specifically, we compare the profiles of stellar
mass surface density, metallicity, age and velocity dispersion for observed galaxies
drawn from the MaNGA survey with those for in-situ and ex-situ stellar populations
(information that is directly accessible from simulations) in ETGs extracted from the
IllustrisTNG project. On the one hand, we make use of MaNGA galaxies because,
up to now, MaNGA represents the largest spatially-resolved survey (≈ 10000 nearby
galaxies) that exploits the IFS technique. On the other hand, IllustrisTNG is a suite of
state-of-the-art magneto-hydrodynamic cosmological galaxy formation simulations
that sheds light on the physical processes occurring into galaxies across cosmic
time. This Chapter is organised as follows. In section 3.2 we describe the galaxy
sample and the criteria adopted to select ETGs. The methods to obtain radial profiles
are described in section 3.3. Our results are discussed in section 3.4. Section 3.5
concludes. Throughout this Chapter, we assume a ΛCDM cosmological framework
with the cosmological parameters derived from Planck Collaboration et al. (2016),
i.e. ΩΛ,0 = 0.6911, Ωm,0 = 0.3089, Ωb,0 = 0.0486, and H = 67.74 km s−1Mpc−1.

3.2 Galaxy samples

In order to provide an explanation for radial profiles of stellar properties in observed
ETGs in the present-day Universe, in this work we compare galaxies drawn from the
MaNGA survey with simulated galaxies taken from the hydrodynamical cosmological
simulation suite IllustrisTNG. In the following, we describe the samples used for our
analysis, the selection criteria, the properties of the observed and simulated ETGs,
and the method adopted to directly compare the two samples.

3.2.1 The MaNGA survey

The MaNGA survey (Bundy et al., 2015; Yan et al., 2016a), one of the three parts of
the fourth generation of SDSS (York et al., 2000; Gunn et al., 2006; Blanton et al.,
2017) mapped, through the 2.5 m telescope Apache Point Observatory, ≈ 10000
galaxies in the redshift range 0.01 . z . 0.15, providing for each source spatially-
resolved spectra. MaNGA was designed to map a representative sample of galaxies
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with log(M∗/M�) > 9. This sample is taken from an extended version of the original
NASA-Sloan Atlas (NSA v1_0_12; Blanton et al., 2011) catalogue. By exploiting all
the advantages of the IFS technique (Smee et al., 2013; Drory et al., 2015; Law
et al., 2015), galaxies in MaNGA are observed with a set of 17 hexagonal bundles,
each composed by fibers with a total diameter that varies from 12′′ (with 19 fibers)
to 32′′ (with 127 fibers). Each fiber has a diameter of 2′′. MaNGA achieves a uniform
radial coverage of galaxies to 1.5Re and 2.5Re, for ≈ 2/3 (Primary Sample) and
≈ 1/3 (Secondary Sample) of the final sample, respectively. The observations provide
a wavelength coverage in the range 3600−10300 Å, with a spectral resolution of
R ∼ 1400 at λ ∼ 4000 Å and R ∼ 2600 at λ ∼ 9000 Å. A value of R ∼ 2000
corresponds to a velocity dispersion of around 70 km s−1 (see Smee et al., 2013).

The MaNGA observations used in this work were previously reduced by the Data
Reduction Pipeline (DRP; Law et al., 2016; Yan et al., 2016b). In this work, both
the de-projected distances and stellar kinematic maps are computed using the Data
Analysis Pipeline (DAP; Westfall et al., 2019) for MaNGA. The MaNGA galaxies
forming our observed sample are drawn from the SDSS Data Release 15 (DR15;
Aguado et al., 2019), a sample of the first 4675 observed MaNGA sources3.

In order to study the behaviour of radial profiles of some stellar properties in
observed ETGs, but concurrently reducing the presence of effects of systematic biases
caused by different assumptions, priors and fitting methods (Conroy, 2013b), we rely
on measurements derived from two full spectral fitting codes: FIREFLY4 (Maraston
& Strömbäck, 2011; Comparat et al., 2017; Goddard et al., 2017a; Wilkinson et al.,
2017; Maraston et al., 2020) and PROSPECTOR5 (Leja et al., 2017; Johnson et al.,
2019). In addition, we take into account the estimates of velocity dispersion obtained
by using the PPXF code6 (Cappellari & Emsellem, 2004; Cappellari, 2017). In the
following we briefly summarise the settings adopted for the three stellar population
fitting codes.

• FIREFLY (Fitting IteRativEly For Likelihood analYsis) is a χ2 minimisation
fitting code for deriving the stellar population properties. This code aims
at disentangling stars and dust, subtracting the low-order continuum shape
before fitting spectra. A set of simple stellar populations (SSPs) with a variety
of age and metallicity are considered iteratively, in order to minimise the
χ2 fitting procedure, allowing FIREFLY to fit non-parametric SFHs. For our

2Available at https://www.sdss.org/dr15/manga/manga-target-selection/nsa/.
3Available at https://www.sdss.org/dr15/manga/manga-data/.
4Available at https://github.com/FireflySpectra/firefly_release.
5Available at https://github.com/bd-j/Prospector.
6Available at http://www-astro.physics.ox.ac.uk/~mxc/software/.
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scope, we adopt the stellar population models of Maraston & Strömbäck
(2011), the MILES stellar library (Sánchez-Blázquez et al., 2006; Vazdekis
et al., 2010) and a Chabrier (2003) IMF. The set of SSPs used are spread
over the range 6.5 Myr−15 Gyr in age, while metallicity can assume values
in the range −2.3 ≤ log(Z∗/Z�) ≤ 0.3. The library covered wavelength range
is 4000−7400 Å. We include only spectra with S/N > 10 (see Goddard et al.,
2017b; Wilkinson et al., 2017), and we mask emission lines.

• PROSPECTOR is a code able to infer stellar population properties from pho-
tometric and/or spectroscopic data with flexible models. It is based on the
original stellar population synthesis code FSPS7 (Conroy et al., 2009; Conroy
& Gunn, 2010). PROSPECTOR is able to sample the posterior distribution of
a stellar population parameter space (externally defined by users) and pro-
vides uncertainties and degeneracies. We adopt the MILES stellar population
library, the MIST isochrones (Choi et al., 2016; Dotter, 2016) and a Kroupa
(2001) IMF8. Our fit procedure explores a ten-dimensional parameter space.
In this fit, the dust optical depth in V -band, stellar mass, stellar velocity dis-
persion and mass-weighted metallicities are taken into account. Moreover,
non-parametric SFHs with a continuity prior are considered. Following the
same approach described in Leja et al. (2019), our parameter space considers
the SFR spanning over the following time bins: 0 Myr < t < 30 Myr; 30 Myr <
t < 100 Myr; 100 Myr < t < 330 Myr; 330 Myr < t < 1.1 Gyr; 1.1 Gyr < t <

3.6 Gyr; 3.6 Gyr < t < 11.7 Gyr; 11.7 Gyr < t < 13.7 Gyr.

The priors used for our PROSPECTOR runs are listed in Table 3.1. Finally, the
posterior distributions are obtained exploiting the Dynamic Nested Sampling
package dynesty (Speagle, 2020).

• The Penalized Pixel-Fitting method (PPXF) code derives the stellar or gas kine-
matics and stellar population from absorption-line spectra of galaxies, using a
maximum penalized likelihood method. The original approach was presented
in Cappellari & Emsellem (2004) and then improved in Cappellari (2017).
Since the high robustness in inferring stellar and gas kinematics, PPXF has
been used to estimate velocity dispersions for our observed ETGs. Specifically,
the penalisation of the non-well-fitted pixels minimises the mismatch with the
used templates. We ran PPXF with the included libraries based on MILES.

7Available at https://github.com/cconroy20/fsps.
8For our purpose, the assumption of a Kroupa IMF or a Chabrier IMF for retrieving stellar population

properties is almost indistinguishable.
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Tab. 3.1: List of priors used for our PROSPECTOR runs. Column 1: parameter. Column 2:
prior.

Parameter Prior

Star formation history Continuity

dust2 TopHat (0, 1)

Stellar metallicity log(Z∗/Z�) TopHat (−2, 0.3)

Formed stellar mass M∗/M� LogUniform(107, 1012)

Velocity dispersion σ∗ [km s−1] TopHat (0.1, 400)

For a more extended description about the stellar fitting codes used and the method,
we refer the reader to Oyarzún et al. (2019).

3.2.2 IllustrisTNG simulations

In this work, we extract simulated ETGs from The Next Generation Illustris project
(hereafter, IllustrisTNG9; Marinacci et al., 2018; Naiman et al., 2018; Nelson et al.,
2018; Pillepich et al., 2018a; Springel et al., 2018), the successor to the original
Illustris10 simulation suite (Genel et al., 2014; Vogelsberger et al., 2014a,b; Sijacki et
al., 2015). This is a state-of-the art magneto-hydrodynamic cosmological simulation
that models the formation and evolution of galaxies within the ΛCDM framework. As
its predecessor, IllustrisTNG exploits all the advantages of the unstructured moving-
mesh hydrodynamics method AREPO (Springel, 2010), but improving for instance the
numerical methods, the subgrid physical model, and the recipe for galaxy feedback
both from stellar component and AGN. In particular, IllustrisTNG is equipped with a
novel dual mode (thermal and kinetic) AGN feedback that shapes and regulates the
stellar component within massive systems, maintaining a realistic gas fraction. Also
the feedback from galactic winds has been improved to have better representation of
low- and intermediate-massive galactic systems (Weinberger et al., 2017; Pillepich
et al., 2018b).

The IllustrisTNG model was calibrated to significantly reduce the tensions between
the original Illustris suite and the observations. For instance, some discrepancies
concern the SFR density as a function of time, the stellar-to-halo mass relation
in the present-day Universe, the stellar mass function, as well as the black hole

9Official website at https://www.tng-project.org.
10Official website at https://www.illustris-project.org.
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mass−stellar mass relation or the black hole mass−halo mass relation, and the gas
amount within virial radii.

The IllustrisTNG simulation suite consists of three simulation volumes: IllustrisTNG50
(Nelson et al., 2019; Pillepich et al., 2019), IllustrisTNG100 and IllustrisTNG300.
The three runs have different box sizes, with sides of about 50 Mpc, 100 Mpc and
300 Mpc, respectively. The project assumes a ΛCDM cosmology and the cosmological
parameters, drawn from Planck Collaboration et al. (2016), are ΩΛ,0 = 0.6911,
Ωm,0 = 0.3089, Ωb,0 = 0.0486, σ8 = 0.8159, ns = 0.9667 and h = 0.6774. The
starting redshift of each run is set at z = 127 using the Zeldovich approximation and
the simulations evolve down to z = 0.

For our scope, we make use of the highest-resolution version of the medium volume
size IllustrisTNG100, i.e. IllustrisTNG100-1. This run includes 2× 18203 resolution
elements. The dark matter and baryonic mass resolutions are mDM = 7.5× 106 M�
and mb = 1.4 × 106 M�. The softening length employed for this version for both
the dark matter and stellar components is ε = 0.74 kpc, while an adaptive gas
gravitational softening is used, with a minimum εgas,min = 0.125 ckpc/h (in comoving
units). In particular, we take into account the properties of subhalos of the snapshot
#91, corresponding to z = 0.1, i.e. the mean redshift of galaxies in the MaNGA
survey.

In-situ & ex-situ stars in IllustrisTNG galaxies

In the last decade, a few cosmological simulations have indicated that especially the
most massive galaxies grew in mass as well as in size accreting stars during their
evolution. The fraction of stars accreted onto a galaxy strictly depends on the stellar
or DM halo masses (e.g., Oser et al., 2010; Lackner et al., 2012). From the original
Illustris simulation suite, Rodriguez-Gomez et al. (2016) derived the fraction of the
ex-situ stellar component accreted onto systems with stellar masses from 109 M� up
to 1011 M�. They found that this fraction increases from . 10% of the total stellar
amount, to beyond 50% in the most massive galaxies. A similar analysis has been
conducted on the IllustrisTNG runs: Pillepich et al. (2018a), by analysing stellar
masses within different apertures, i.e. < 10 kpc, < 30 kpc, the total central galaxy
with intracluster light (excluding satellites), and > 100 kpc, found that at z = 0
the low-mass tail of galaxies are mainly formed by in-situ stellar particles, while
the central galaxies of the most massive halos (log(M200c/M�) > 14) accreted even
more than 80% of their total stellar mass via mergers and accretion events. Moreover,
by considering stellar masses within an aperture larger than 100 kpc, the ex-situ
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fraction is found to be dramatically dominant at these distances, exceeding even
90% of the total stellar population. The relevant contribution in massive systems of
the ex-situ stars reaches around 60% in the innermost regions (< 10 kpc).

In the following, we adopt the same definition of in-situ and ex-situ stars used in
Pillepich et al. (2014), Rodriguez-Gomez et al. (2016), Pillepich et al. (2018a), and
Tacchella et al. (2019), exploiting the baryonic merger trees of Rodriguez-Gomez
et al. (2015):

• in-situ stars are those stellar particles that, at the time of their formation,
formed in a galaxy lying in the main progenitor branch of the merger tree;

• ex-situ stars are those stellar particles that, at the time of their formation,
formed and were gravitationally bound to a halo outside the main progenitor
branch of a given halo and later accreted onto it.

3.2.3 ETG selection

The comparison of observations and simulations is not trivial under several points of
view. In our case, the first issue arises when we want to select ETGs. IllustrisTNG
simulations were calibrated in order to reproduce different properties of galaxies in
the present-day Universe, including the colour bimodality (see section 1.3). Nelson et
al. (2018) take into account three different models for deriving ugriz magnitudes for
simulated galaxies, comparing them with those of SDSS galaxies. One model (Model
A) considers the intrinsic stellar particle emission in each subhalo, not accounting for
attenuation due to the presence of dust. The other two models take into account the
contribution of dust: the unresolved dust model (Model B) is introduced to account
for the presence of gas clouds surrounding young stellar population; the resolved dust
model (Model C), instead, improves the unresolved model, following the distribution
of neutral gas in galaxies, adding also the attenuation caused by the presence of
metals. In their paper, Nelson et al. (2018) discuss in detail the results using the
colours derived through Model C, providing the supplementary data catalogue
SDSS PHOTOMETRY, COLORS, AND MOCK FIBER SPECTRA11. IllustrisTNG colours
were compared with the observed colours of galaxies in the present-day Universe
(z < 0.1) drawn from the SDSS DR12 (Alam et al., 2015). The distributions of (g−r)
colours in each mass bin well recover the colour bimodality shown by SDSS galaxies.
In particular, the blue and red galaxy populations show a peak at (g − r) ≈ 0.4
and ≈ 0.8, respectively. Moreover, the colour bimodality tends to disappear above

11Available at https://www.tng-project.org/data/downloads/TNG100-1/.
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Fig. 3.1: Distributions of simulated (g− r) colours at different mass bins in IllustrisTNG100-
1 (blue curve) compared with SDSS (black curve) and Illustris-1 (red curve)
estimates. This plot is taken from Nelson et al. (2018).

M∗ ' 1010.5 M�, where the red population dominates. Tacchella et al. (2019)
studied the connection between the star formation activity and morphology of central
galaxies in IllustrisTNG, by adopting as morphological indicators the spheroid-to-
total ratio, S/T , and the concentration of stellar mass density profiles, C82, defined
as 5× log(r80/r20), with r80 and r20 the radii including the 80% and 20% of the total
stellar mass, respectively. In particular, they found that the S/T parameter strongly
correlates with (g − r) colours: S/T is higher for redder colours and higher stellar
masses (while, at fixed mass, C82 is found to be weakly dependent on colour).

In order to compare as homogeneously as possible observed and simulated galaxies
we apply a simple selection based on (g − r) colours, identifying hereafter ETGs
as Red Galaxies, i.e. those galaxies with (g − r) > 0.6, since (g − r) ' 0.6 marks
the transition value between the blue cloud and the red sequence of galaxies.
As discussed by Nelson et al. (2018), by looking at the colour–mass diagrams,
beyond the excellent agreement found between simulations and observations, some
second-order discrepancies arise, such as the flatter slope of the red sequence for
simulated galaxies. However, these discrepancies are negligible for our scope. For
this comparison, to select ETGs in our observed MaNGA sample, we retrieve the
ugriz Petrosian magnitudes from the NSA catalogue. Moreover, our MaNGA sample
was pre-selected on the basis of the equivalent width of the emission line Hα,
including only objects with EW(Hα) ≥ −3 Å.
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In Appendix 3.C we test a different selection criterion for ETGs based on the star
formation rate, following one of the approaches described in Donnari et al. (2019),
finding consistent results with those presented here.

3.2.4 Stellar mass estimates

Another potential source of systematic effects when comparing observations and
simulations concerns the estimate of stellar masses. Indeed, differences in the
measurements of stellar masses can be caused by several factors, such as the fit-
ting method used to derive luminosities and colours that, in turn, depend on the
stellar population synthesis models and libraries assumed, etc. Sonnenfeld et al.
(2019) discuss the differences in deriving luminosity of galaxies in massive ETGs ob-
served with the Hyper-Supreme Cam (HSC; Miyazaki et al., 2018) Subaru Stratyegic
Program (Aihara et al., 2018, DR1), assuming either a simple Sérsic fit or a Sér-
sic+Exponential fit. The difference between the two methods can cause a variation
of around 0.1 dex on the measurements of luminosity for the same object. Moreover,
as already discussed in subsection 2.5.1, a different assumption of IMF can imply a
global shift of stellar masses and the potential presence or IMF radial variations can
introduce biases.

Given the wide variety of systematic effects on the final estimate of stellar masses, as
done for the ETG selection criteria described above, in the following we present the
results for two definitions of masses available in the UPENN_PHOTDEC_MSSTAR12

catalogue of Meert et al. (2015). The two stellar masses for the MaNGA ETGs we
use here, obtained multiplying the stellar mass-to-light ratios (M∗/L) from Mendel
et al. (2014) by the luminosities from the PyMorph SerExp (Sérsic+Exponential)
photometry, assume M∗/L fitting models which either account or do not account
for the effects of dust extinction (Table 3 and Table 5 of Mendel et al. 2014, respec-
tively). We refer to these two estimates as SerExp Dusty and Dust-free stellar masses,
respectively. For simplicity’s sake, in section 3.4 we will discuss the results limiting
the analysis only to the SerExp Dusty stellar mass estimates for MaNGA ETGs, post-
poning in Appendix 3.A the comparison with the SerExp Dust-free measurements.

In order to compare MaNGA and IllustrisTNG stellar masses as similarly as possible,
for the latter we consider the 2D projected stellar mass defined as the sum of all
bound stellar particles within a circle of radius R = 2Rhm, where Rhm is the radius
of a circle containing half of the projected mass. This is the same mass definition

12Available at http://alan-meert-website-aws.s3-website-us-east-1.amazonaws.com/fit_
catalog/download/index.html.
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adopted by Ardila et al. (2021), where the authors discuss the fact that the agreement
between observed and simulated galaxies considerably depends on the definition
of mass adopted. In Figure 3.2, the comparison between the above-mentioned
projected 2D stellar mass within 2Rhm (M2hmr,2D

∗ ) and the 3D mass estimate, i.e.
the mass defined as the sum of all stellar particles gravitationally bound within a
sphere of radius r = 2rhm, where rhm is the radius of a sphere containing half of the
3D total stellar mass (M2hmr,3D

∗ ) is shown for our initial IllustrisTNG galaxy sample
of ≈ 3000 subhalos with total mass (i.e., the mass defined as the sum of all star
particles gravitationally bound, M tot,3D

∗ ) log(M tot,3D
∗ /M�) ≥ 10.5. As clearly visible,

the difference between the two mass estimates increases with mass, underlying the
importance of adopting the stellar mass definition as similar as possible to that of
observations.

Hereafter, we will refer to M2hmr
∗ or, equivalently, to 2hmr mass as the projected

mass within a circle of radius R = 2Rhm, and, in general, we will consider only
projected masses for simulated galaxies.
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Fig. 3.2: Comparison between the 2D stellar mass within 2Rhm (M2hmr,2D
∗ , x-axis) and the

3D stellar mass within 2rhm (M2hmr,3D
∗ , y-axis) for the IllustrisTNG starting sample

of ≈ 3000 subhalos with log(M tot,3D
∗ /M�) ≥ 10.5.

For completeness, in Appendix 3.C, we study the effect of adopting different defi-
nitions of stellar mass. In particular, we consider for IllustrisTNG the stellar mass
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Tab. 3.2: Summary table of the MaNGA and IllustrisTNG samples. Column 1: sample.
Column 2: stellar mass range in logarithm. Column 3: mean value. Column 4:
median value. Stellar masses are in units of M�.

Red galaxy samples

Sample NETG (min logM∗; max logM∗) log M̄∗ logM∗|med

MaNGA SerExp Dusty 700 (10.50; 12.26) 11.12 11.12

MaNGA SerExp Dust-free 717 (10.51; 12.37) 11.21 11.21

IllustrisTNG100 2hmr 1543 (10.50; 12.27) 10.83 10.76

within a projected aperture of 30 kpc and for MaNGA the mass estimates derived
from Sérsic and Petrosian fits (drawn from the original NSA catalogue) and the
mass defined as the sum of the masses included in the 5 concentric annuli used to
derive the profiles of stellar properties from FIREFLY and PROSPECTOR. Based on
this exploration, we conclude that our main results are independent of the specific
definitions of M∗.

In Table 3.2, we summarise the properties of the final IllustrisTNG and MaNGA (for
the latter reporting both the SerExp Dusty and SerExp Dust-free stellar masses) Red
galaxy samples, i.e. objects with log(M∗/M�) ≥ 10.5 and (g− r) > 0.6. In Figure 3.3
the colour–mass diagrams (left panel) and the mass distributions of the MaNGA
galaxies (assuming the SerExp Dusty masses) compared with the IllustrisTNG sample
(right panel) are illustrated. Although the MaNGA and IllustrisTNG galaxies are
similarly distributed over the colour–mass diagrams, we note that the samples are
very different in the distributions of stellar masses. Indeed, while MaNGA sample,
by construction, show an almost uniform distribution over the entire range in stellar
mass, IllustrisTNG peaks at the low-mass end and rapidly decrease, becoming lower
than the MaNGA sample in counts above 1011 M�.

Concerning our MaNGA Red galaxies, we verified the reliability of the adopted
selection to identify ETGs, checking the morphological type assigned by the MANGA
MORPHOLOGY DEEP LEARNING DR15 CATALOGUE13. This catalogue, presented in
Fischer et al. (2019), is built by exploiting the Deep Learning method for identifying
the morphology of galaxies as described in Domínguez Sánchez et al. (2020) for
all the objects of MaNGA DR15. In brief, the Deep Learning methodology relies
on a Convolutional Neural Network trained on the morphological catalogues of
Nair & Abraham (2010) and Willett et al. (2013). The resulting catalogue provides

13Available at https://www.sdss.org/dr15/data_access/value-added-catalogs/?vac_id=
manga-morphology-deep-learning-dr15-catalogue.
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Fig. 3.3: Red galaxy samples with with (g − r) > 0.6. Left panel: the scatter distribution
indicates the MaNGA sample assuming the SerExp Dusty masses (orange dots).
The 2D histogram indicates the IllustrisTNG colour-selected sample, assuming the
2hmr mass. Right panel: 1D histograms of the mass distributions for the MaNGA
(orange histogram) and the IllustrisTNG (grey histogram) estimates.

the T-Type morphological parameter by applying the methodology on the Nair &
Abraham (2010) catalogue, while the other available parameters are derived by
using the Galaxy Zoo 2 (Willett et al., 2013) catalogue. For our scope, we identify
ETGs as in Domínguez Sánchez et al. (2020), i.e. requiring a T-Type ≤ 0, otherwise
sources are late-type galaxies (LTGs). The left panel of Figure 3.4 illustrates the
distribution of the morphological type for our MaNGA Red Galaxy sample. A fraction
of ≈ 84% of the whole galaxy sample effectively shows a morphology compatible
with an E/S0 type, of which ≈ 27% with a probability of being a lenticular (see right
panel). Similar fractions are found also for the MaNGA sample using the Dust-free
mass estimates.

3.3 Methods

In this work we compare the radial distributions of some stellar population properties,
such as age or metallicity, in observed and simulated galaxies. In the following
we describe the method used to retrieve the radial profiles from the 2D maps. In
particular, we make use of mass-weighted stellar metallicity and age for both MaNGA
and IllustrisTNG galaxies. We tested also the luminosity-weighted measurements for
MaNGA galaxies finding no significant difference between the two choices.
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Fig. 3.4: Distributions of the T-Type (left panel) and PS0 (right panel) morphological
parameters for our MaNGA Red Galaxy sample. A value of T-Type ≤ 0 identifies
an ETG, i.e. a system with a E/S0 morphology, otherwise the source is a LTG. The
parameter PS0 gives the probability for each galaxy of being a S0 lenticular galaxy
(with PS0 > 0.5) rather than a pure elliptical (with PS0 < 0.5). In both panels, the
black dashed lines divide the plots between ETGs and LTGs, and between pure
ellipticals and lenticulars, respectively.

3.3.1 Radial profiles for MaNGA galaxies

To obtain the stellar properties in each MaNGA galaxy at different galactocentric
distances we adopt the approach described in Oyarzún et al. (2019), but considering
a radial binning in physical units (not in units of effective radii). Specifically, by
considering the axis ratio of each source obtained from r-band photometric images,
elliptical polar radii are associated to spaxels. Afterward, we bin into five concentric
elliptical annuli each galaxy map, assuming the following radii as the edges of each
bin: R/kpc = {0; 2; 4; 10; 20; 100}.

The next step after radial binning consists in the shift of spectra to the rest-frame
taking the stellar systemic velocity from DAP as a reference. A Voronoi binning is
then applied to the maps, considering a minimum S/N = 10 in each bin. Spectra
belonging to the same annulus are co-added and, after running PPXF with the
MILES library, they are stacked to estimate the line-of-sight stellar mean velocity and
velocity dispersion. For a more detailed description of the methods used to obtain
the radial profiles, we refer the reader to Oyarzún et al. (2019).
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3.3.2 Radial profiles for IllustrisTNG galaxies

In order to compare simulated galaxies with observations, we apply the same method
presented in Ardila et al. (2021). We firstly project the 3D particle distributions of
the simulated galaxies on 2D maps. For each object, the 2D map is composed by 300
pixels per side, with a resolution of 1 kpc per pixel (for a total physical side length
of the map of 300 kpc). For extracting the 1D stellar profiles we then use the same
methodology presented in Huang et al. (2018) and also used in Ardila et al. (2021),
that we briefly summarise in the following. To obtain the 1D stellar mass surface
density profiles we use the projected 2D stellar mass maps. We applied galsbp,
the galaxy surface brightness profile function included in the kungpao package14.
Galaxy centroids are identified by means of extract, a function included in the sep
library, and the ellipse algorithm allows to fit concentric elliptical isophotes on the
source. The position angle and ellipticity of the isophotes used are the mean values
from the 2D fitting procedure of the galaxy maps. The radial binning of isophotes
is spaced uniformly in log over the range 0−150 kpc. Concerning metallicity, age
and velocity dispersion profiles, for each map we use the same center coordinates
and ellipticity of isophotes computed during the fitting procedure of stellar mass
surface density maps. Therefore, to derive mass-weighted stellar properties, each
pixel for example in the metallicity maps is weighted by the corresponding value of
mass in that pixel. The entire procedure is applied to both the in-situ and ex-situ
stellar populations, starting from their 2D stellar property maps.

For a more detailed description about the methods used to obtain the radial profiles,
we refer the reader to Huang et al. (2018) and Ardila et al. (2021).

Another aspect to be taken into account when comparing simulated and observed
objects concerns the effect of degradation in observations due to the finite spatial
resolution. Together with the profiles derived from the original IllustrisTNG maps,
we obtain the corresponding profiles from PSF-convolved maps. Specifically, we
associate to each simulated galaxy an angular diameter distance, assuming as
redshift of the source the one obtained by fitting the z−M∗ distribution of the
MaNGA sample used for the comparison (see Appendix 3.B). Afterwards, for each
galaxy we compute its mock MaNGA resolution and then, for smoothing its original
map, we compute the corresponding 2D Gaussian filter kernel to be used defined as

σkernel,i =
√
R2

MaNGA,i −R2
TNG, (3.1)

14The kungpao library is avavilable at https://github.com/dr-guangtou/kungpao/.
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where RTNG = 1 kpc, while RMaNGA,i = sin(PSFMaNGA)dA,i, with PSFMaNGA =
2.5′′ (' 1.21 × 10−5 in radians), and dA,i the angular diameter distance (in kpc)
for the i-th galaxy in the IllustrisTNG sample determined as described above. For
example, at z = 0.05, RMaNGA ' 2.52 kpc. In Appendix 3.B, the z−M∗ planes for
the SerExp Dusty and Dust-free stellar mass samples are shown with their fitting
forms.

3.3.3 Building stellar mass bins

For comparing the profiles of the stellar properties of MaNGA and IllustrisTNG
galaxies, we firstly subdivide galaxies in bins of stellar mass and then we compute
the median profile in each stellar mass bins.

To consider similarly observed and simulated galaxies, we select objects adopting two
diverse criteria of binning. The first choice consists in comparing galaxies in the same
stellar mass bins, i.e. we select galaxies in the three bins 10.5 < log(M∗/M�) < 11,
11 < log(M∗/M�) < 11.5, and log(M∗/M�) > 11.5. The second choice, instead,
relies on a selection made at fixed number density. Therefore, to associate similar
galaxies, we make a number density matching, building number-density-based stellar
mass bins starting from the stellar mass functions (SMFs) of each sample. For our
scope, we compute the SMF for our IllustrisTNG galaxy sample, and we take from
Table 1 of Bernardi et al. (2017) the observed (i.e., error-broadened) SMFs associated
to the Dusty (ΦM14d

Obs ) and Dust-free (ΦM14d−f
Obs ) mass estimates from Mendel et al.

(2014) with the SerExp photometry of Meert et al. (2015). For every SMF we
computed the cumulative stellar mass function (CSMF) as the sum of the number
counts of galaxies with stellar masses greater than a given value M∗,i:

n(> M∗,i) =
∫ +∞

M∗,i
Φ(M ′∗) dM ′∗. (3.2)

In this context, it would be useful to check whether and to what extent the results
depend on the bin selection. In Figure 3.5, the CSMFs for the IllustrisTNG and
for the two mass definitions used for the MaNGA galaxies are shown, in which we
highlighted the three number-density-based stellar mass bins, while in Table 3.3, we
list the values of stellar mass for the three CSMFs corresponding to their cut values
in number density of Figure 3.5. For an easier comparison with the results obtained
using the stellar mass bins as above, the number-density-based stellar mass bins
are built starting from the values of number density of the MaNGA galaxy CSMFs
corresponding to the stellar mass values log(M∗/M�) = 10.5, 11.0, 11.5.
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Fig. 3.5: Cumulative stellar mass functions for the IllustrisTNG (red solid curve) and the
MaNGA samples for the SerExp Dusty (black dotted curve) and the Dust-free
(black dashed curve) stellar mass measurements. The CSMFs are compared at the
same number-density-based stellar mass bins built deriving the values of number
density of the MaNGA galaxy CSMFs corresponding to the stellar mass values
log(M∗/M�) = 10.5, 11.0, 11.5: from −2.50 to −3.15 (blue shaded region), from
−3.15 to −4.15 (green shaded region), and below −4.15 (yellow shaded region).
The vertical lines trace the stellar mass values of each galaxy sample corresponding
to their number density value, following the same formalism in colours and curve
styles. The grey shaded regions correspond to value of stellar masses and/or
number densities excluded by our selection.
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Tab. 3.3: Values of stellar mass corresponding to each number density value for the three
CMFs. Column 1: number density in logarithm. Column 2: stellar mass in
logarithm for the MaNGA Dusty/Dust free model samples. Column 3: stellar mass
in logarithm for the IllustrisTNG sample.

Red galaxy samples

log(n/Mpc−3) log(M∗/M�)MaNGA log(M∗/M�)TNG

−2.50 10.50 10.50

−3.15 11.00 10.78

−4.15 11.50 11.45

3.3.4 Building median radial profiles with errors

In order to account for the errors associated to MaNGA measurements, the profiles
are obtained by computing in each radial bin the median value (and its errors) of all
the estimates in that bin, exploiting a Bayesian hierarchical approach. Specifically,
we assume that each stellar property X in any radial bin has a Gaussian distribution,
so that its likelihood can be written as

P(X inf |Xdata, σdata
X , µ, σ) = 1√

2πσ2
X

exp
{
−(Xdata − µ)2

2σ2
X

}
, (3.3)

where X inf is the quantity we would like to infer in each radial bin (e.g., the
logarithm of the stellar mass surface density), while Xdata and σdata

X are the data
values and the related uncertainties, respectively. The variance in Equation 3.3 has
the form

σ2
X = σdata

X
2 + σ2. (3.4)

In Equation 3.3 and in Equation 3.4, µ and σ are the two hyper-parameters of our
Bayesian hierarchical approach and represent the mean value and the intrinsic
scatter of the distribution of the quantity X inf , respectively. In table Table 3.4, we
list the priors adopted for each property.

The stellar properties of MaNGA galaxies are sampled adopting a Markov Chain
Monte Carlo (MCMC) approach, using for each run 10 random walkers and 150
steps to reach the convergence of the hyper-parameter distribution. For our scope,
we use the Python adaptation of the affine-invariant ensemble sampler of Goodman
& Weare (2010), emcee by Foreman-Mackey et al. (2013). For the IllustrisTNG
profiles, the median values and the corresponding 1σ uncertainties in each radial
bin are obtained applying a bootstrap method with 1000 random extractions.
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Tab. 3.4: Hyper-parameters used to compute MaNGA profiles. Column 1: stellar property.
Column 2: Prior on the mean (low; up). Column 3: Prior on the intrinsic scatter
(low; up).

Stellar property (minµ; max µ) (min σ; max σ)

Surface density log(Σ∗/M�kpc−2) (7; 11) (0; 5)

Metallicity log(Z∗/Z�) (−1; 1) (0; 1)

Age [Gyr] (0; 13) (0; 5)

Velocity dispersion σ∗/km s−1 (80; 340) (10; 100)

3.4 Results

In this section, we show the median radial profiles of the stellar mass surface
density, metallicity, age and velocity dispersion for both MaNGA and IllustrisTNG
Red galaxies, comparing the profiles in stellar mass bins (subsection 3.4.1), and
briefly discussing the differences for the cases in which galaxies are subdivided in
number-density-based stellar mass bins (subsection 3.4.2).

3.4.1 Comparing profiles in stellar mass bins

In the following, we describe the radial profiles in stellar mass bins of IllustrisTNG
and MaNGA ETGs. For the latter we focus on the SerExp Dusty model stellar masses,
postponing to Appendix 3.A a comparison with the SerExp Dust-free model stellar
mass. In all the plots, we show only the median profiles and their uncertainties
for both MaNGA and IllustrisTNG stellar properties, omitting, for clarity reasons,
the intrinsic scatters of the distributions. However, they are comparable with those
of the profiles shown in Appendix 3.C. The hatched area up to ≈ 2.1 kpc in each
plot indicates three times the force resolution of the stellar particles of IllustrisTNG
galaxies, i.e. the region might be affected by numerical effects.

The top panels of Figure 3.6 show the profiles of stellar mass surface densities for
the total stellar population (i.e. in-situ & ex-situ stars) of IllustrisTNG (black curves)
and the estimates from FIREFLY (yellow dots) and PROSPECTOR (green squares) for
MaNGA ETGs in the log-mass bins (in solar units) from 10.5 to 11 (left panel), from
11 to 11.5 (middle panel), and above 11.5 (right panel). In each stellar mass bin,
we find a satisfying agreement at all radii between the two MaNGA measurements,
with a small systematic shift to higher values of the stellar mass surface density
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obtained by PROSPECTOR, compatible with the systematic shift in mass estimates
(for the same galaxy, PROSPECTOR infers a stellar mass that, on average, is higher
than the estimate obtained by FIREFLY by ≈ 0.15−0.2 dex). In each stellar mass bin,
IllustrisTNG reproduces remarkably well the surface densities of MaNGA ETGs.

The top panels of Figure 3.7 show the median profiles of the stellar mass surface den-
sity for the in-situ (red dashed curves) and ex-situ (blue dotted curves) stellar popu-
lations in the three different mass bins. In the mass range 10.5 < log(M∗/M�) < 11,
on the average, the in-situ stellar component is found to be dominant out to≈ 30 kpc,
radius beyond which the ex-situ stars tend to become slightly more relevant. The
central mass bin, i.e. 11 < log(M∗/M�) < 11.5, reveals the rising role of the ex-situ
stars in these ETGs: in this case, the profiles of the two populations almost overlap
over the entire range in radius. Above log(M∗/M�) ≈ 11.5, the ex-situ stars dom-
inate at all radii. Therefore, to sum up, we do find that below log(M∗/M�) ≈ 11,
the most relevant stellar component (at least 20−30 kpc) is the in-situ population,
whereas beyond the ex-situ stars become dominant across the entire range of radii.
The shapes of the in-situ and ex-situ profiles depend on the mass bin. Going towards
the high-mass tail of ETGs, the two stellar mass surface density profiles become more
and more similar to each other. The latter result, together with the fact that the
ex-situ stars are the most important stellar component in these systems, corroborate
previous findings on IllustrisTNG from Pillepich et al. (2018a) and Tacchella et al.
(2019), for which the stellar mass assembly history of these massive galaxies are
mainly marked by a major-merger-driven evolution. Major mergers not only allow
ex-situ stellar populations to settle even in the innermost regions of galaxies, but also
mix homogeneously the two stellar components at all radii, causing the formation
of similar surface density profiles (that only differ in normalisation). The result
predicted by IllustrisTNG might be in light tension with previously scenarios for
which massive ETGs are the results of a merger-driven evolution mainly marked
by minor mergers (e.g., Naab et al., 2009; Oser et al., 2010; Hilz et al., 2013).
As discussed in Tacchella et al. (2019), the ex-situ stellar mass fraction increases
with stellar mass. The interpretation of this difference in galaxies with stellar mass
below and above M∗ ≈ 1011 M� is due to the main formation channels of galaxies.
Especially in galaxies with M∗ & 1011 M�, major mergers start to be relevantly more
important than minor mergers. Figure 3.8 reports some details about the merger
activity of the IllustrisTNG ETGs: specifically, in the first row the fractions of the
in-situ and ex-situ stellar components are illustrated, while in the second row the
ex-situ fractions coming from all mergers and only from major mergers are made
explicit; in the third row the whole number of minor and major mergers experienced
by galaxies are displayed; in the last row the redshifts of the last minor and major
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Fig. 3.6: Radial profiles of (from the top to the bottom) stellar mass surface density, metal-
licity, age, and velocity dispersion in three bins of stellar mass for MaNGA and
IllustrisTNG Red galaxies. For MaNGA ETGs we use the Dusty model masses, while
for IllustrisTNG ETGs we use the 2hmr masses. The green, yellow and violet dots
represent the median estimates for MaNGA ETGs from FIREFLY, PROSPECTOR

and PPXF codes, respectively, in the 5 radial bins identified by the grey dashed
lines. The two black curves represent the median value of each stellar property
for the total stellar populations in IllustrisTNG galaxies in 20 radial bins spaced
uniformly in log over the range 0−150 kpc, both obtained from the original maps
and from the maps convolved with the MaNGA PSF, respectively. The black shaded
area is the region that lies in between the profiles obtained from the original and
the convolved IllustrisTNG maps. The errorbars represent the 1σ uncertainties on
the median for MaNGA and IllustrisTNG estimates. The hatched area (0:2.1 kpc)
shows 3x the force resolution of the stellar particles in IllustrisTNG.
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Fig. 3.7: Radial profiles of (from the top to the bottom) stellar mass surface density, metal-
licity, age, and velocity dispersion in three bins of stellar mass for IllustrisTNG Red
galaxies. The black solid, red dashed and blue dotted curves (and their shaded
areas) are the same as in Figure 3.6, but for the total, the in-situ, and the ex-situ
stellar populations, respectively. The errorbars represent the 1σ uncertainties on
the median for IllustrisTNG estimates. The hatched area (0:2.1 kpc) shows 3x the
force resolution of the stellar particles in IllustrisTNG.
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Fig. 3.8: Violin plots of eight properties related to the merger history of the IllustrisTNG
ETGs. First row: fractions of the in-situ (left panel) and the ex-situ (right panel)
stellar components. Second row: fractions of the ex-situ stellar component due to
all mergers (0 < µ∗ < 1, excluding stars stripped from surviving galaxies), and only
due to major mergers (right panel) normalised to the total ex-situ stellar fraction.
Third row: number of minor (left panel) and major (right panel) mergers. Fourth
row: redshifts of the lasts minor (left panel) and major (right panel) mergers. All
the distributions are shown for the three stellar mass bins as in Figure 3.6 and in
Figure 3.7. For each violin plot the median value of the corresponding distribution
is reported.
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mergers are shown. For each stellar mass bin, the data distributions are presented
as violin plots, which provide the probability density of a sample of data, smoothed
by a kernel density estimator. The shape of each violin plot represents the frequency
of data, so that the larger the violin’s body, the higher the density of data at a
given y-axis value. The complementary behaviour of the in-situ and ex-situ stellar
mass fractions in the two top panels of Figure 3.8 confirms the rising importance
of the accreted stars going towards the high-mass tail of ETGs. In particular, the
median distribution of the ex-situ stellar fraction grows from around 29% of the
total stellar mass for galaxies with 10.5 < log(M∗/M�) < 11 up to ≈ 77% for the
most massive systems. As in Rodriguez-Gomez et al. (2015, 2016), by defining µ∗ as
the stellar mass ratio between the two progenitors of a given galaxy, a major merger
is identified by a µ∗ > 1/4, while a minor merger is defined by 1/10 < µ∗ < 1/4.
However, the fraction of accreted stars from other galaxies is not only due to major
and minor mergers: indeed, the remaining fraction includes stars from the so-called
very minor mergers, i.e. with µ∗ < 1/10, as well as stripped stars from surviving
galaxies. As illustrated in the left panel of the second row of Figure 3.8, the analysis
of the ex-situ fraction from all mergers (i.e. major, minor, and very minor mergers)
relative to the total ex-situ fraction, reveals that, on average, more than 80% of stars
are accreted via mergers. Specifically, this relative fraction reduces from ≈ 98%
to ≈ 84% towards the most massive galaxies. The remaining percentage of stars,
instead, are those stripped from other surviving galaxies, which increases as the
stellar mass goes up. By isolating the role of major mergers (see the right panel
in the second row), their contribution presents broad distributions, with median
values of around 50% (relative to the whole ex-situ stellar fraction) for ETGs with
log(M∗/M�) > 11. Furthermore, looking at the distributions of the number of major
and minor mergers occurred in the IllustrisTNG ETGs, the two plots clearly show
the relevance of major mergers in producing the final remnants. Finally, during their
stellar mass assembly history, IllustrisTNG ETGs experienced, on average, their last
major mergers in each stellar mass bin more recently than the last minor mergers,
with a median redshift that decreases from z ' 1.41 in the low-mass bin to z ' 0.32
for ETGs with log(M∗/M�) > 11.5.

The second row of plots in Figure 3.6 illustrates the metallicity profiles in the three
mass bins. The two MaNGA profiles show similar radial distributions, that differ
mainly in normalisation: on average, FIREFLY provides for the same galaxy an
estimate of metallicity higher than the one made by PROSPECTOR by ≈ 0.1 dex.
The stellar metallicity from IllustrisTNG tends, on average, to be slightly higher in
normalisation, but, in particular in the intermediate and high mass bins, it is quite
similar to the metallicity estimated by FIREFLY. In this case, we stress also the
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importance of applying a smoothing using the MaNGA PSF on the original maps
of simulated objects. Indeed, in all the mass bins the metallicity profiles from the
original maps (upper black curves in the plots) are steeper than those obtained from
the convolved maps, the latter giving a metallicity lower by ≈ 0.15−0.2 dex in the
innermost parts. Concerning in-situ and ex-situ stellar metallicity (second row of
plot in Figure 3.7), IllustrisTNG galaxies are characterised by ex-situ stars that are
more metal rich than the in-situ population, and this gap increases as increasing
stellar mass.

The radial distributions of stellar age (third row of plots in Figure 3.6) derived from
FIREFLY and PROSPECTOR show a common behaviour in the three stellar mass
bins: a systematic shift in age is found between the two stellar fitting codes that, on
average, for the same galaxy assign an age to the stellar population at each radius
that differs of around 2 Gyr. The systematic difference in age obtained by the two
codes may be partially explained in terms of the age-metallicity degeneracy: the red
colours that characterise old stellar populations can be explained also assuming a
higher metallicity, and viceversa (Worthey, 1994). Indeed, for the same sample
of ETGs, on average, FIREFLY derives a bit more metal-rich and younger stellar
populations with respect to the estimates from the PROSPECTOR code. However,
most of the substantial discrepancy between the two estimates of stellar age should
be ascribed to the different fitting methods and libraries used by FIREFLY and
PROSPECTOR, as discussed in subsection 3.2.1. The large gap between the two stellar
age profiles can be taken as a measure of the uncertainty on the age of the observed
galaxies of our sample. It is clear that these age profiles have little constraining
power on theoretical models, implying that the almost flat IllustrisTNG profiles lies
in between. Moreover, qualitatively speaking, we observe that, while at the low-mass
tail IllustrisTNG reproduces better the age predicted by FIREFLY, analysing the
most massive systems, these tend to be more representative of the ages provided by
PROSPECTOR, at least within the first 10 kpc. The analysis of the radial distributions
of age for the in-situ and ex-situ stellar populations in the simulated ETGs (third rows
of plots in Figure 3.7) shows that, below log(M∗/M�) ≈ 11, the ex-situ component is
older (up to +1.5 Gyr) than the in-situ one over the entire range in radius, whereas
the inner regions (R . 7 kpc) of galaxies with log(M∗/M�) & 11 are composed by
stars with similar ages.

Finally, the bottom panels in Figure 3.6 display the radial profiles of stellar velocity
dispersion for simulated and observed ETGs, the latter obtained using the PPXF code.
Below log(M∗/M�) ≈ 11.5, albeit PPXF profiles tend to be slightly steeper than
the IllustrisTNG ones, we found a good agreement between the two measurements.
Above log(M∗/M�) ≈ 11.5, the velocity dispersion profiles of both MaNGA and

3.4 Results 109



IllustrisTNG galaxies are almost flat out to R ≈ 40 kpc. However, we find an
almost constant discrepancy between the two profiles, with velocity dispersions
for the simulated ETGs generally higher by 30−40 km s−1 (that will be discussed in
subsection 3.4.3), but enough compatible within the uncertainties. The line-of-sight
velocity dispersion profiles for in-situ and ex-situ stellar populations (the bottom
panels in Figure 3.7) almost coincide in the intermediate and high mass bins, while
in the low-mass bin the velocity dispersion is higher in the centre for the in-situ
component. For given gravitational potential, the line-of-sight velocity dispersion
profile of a given component depends both on its intrinsic velocity distribution and
its density distribution. In the low-mass bin, the higher central velocity dispersion of
the in-situ component can be qualitatively explained by its shallower surface density
profile (top-left panel in Figure 3.7).

3.4.2 Comparing profiles in number-density-based stellar

mass bins

The same analysis performed using a selection in number-density-based stellar mass
bins, rather than in stellar mass bins, does not reveal crucial differences from the
previous results. As illustrated in Figure 3.9, the most evident exceptions concern
the central bins of the stellar properties analysed. In particular, the discrepancy
between the radial profiles of the stellar mass surface density increases, highlighting
a tendency of the simulated galaxies to assume lower values. On the contrary, the
discrepancy of the stellar metallicity profiles between the MaNGA and IllustrisTNG
reduces. Age profiles are not significantly affected by this selection. Instead, con-
cerning velocity dispersion, in this case there is a better agreement between the
observed and simulated profiles in the last bin, to the detriment of the central bin,
where the IllustrisTNG profile is systematically lower than that of MaNGA. The
same considerations are valid for in-situ and ex-situ stellar profiles in Figure 3.10 if
compared with Figure 3.7.

3.4.3 Central versus satellite galaxies

The analysis of radial distributions of stellar physical properties can be extended to
central and satellite galaxies, by disentangling their role in both IllustrisTNG and
MaNGA samples. Halos and subhalos in IllustrisTNG are detected by SUBFIND, the
subhalo finder code developed by Springel et al. (2001). An IllustrisTNG subhalo
is classified as central if it is the most massive subhalo of each friends-of-friends
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Fig. 3.9: Same as Figure 3.6, but in number-density-based stellar mass bins.
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Fig. 3.10: Same as Figure 3.7, but in number-density-based stellar mass bins.
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(FoF) halo (flag is_primary==1). Otherwise, subhalos are classified as satellites.
Concerning MaNGA galaxies, to separate ETGs into central and satellite galaxies
we rely on the classification provided by Yang et al. (2007), obtained for a sample
of more than 300,000 galaxies from SDSS DR4 (Adelman-McCarthy et al., 2006).
In the following we will show the results of this analysis only for the convolved
profiles of Red galaxy samples, using for MaNGA the SerExp Dusty masses and for
IllustrisTNG the 2hmr masses. The same analysis carried out on the other samples
return results consistent with those described here. The stellar mass surface density
(Figure 3.11), metallicity (Figure 3.12), age (Figure 3.13), and velocity dispersion
(Figure 3.14) profiles in the three stellar mass bins as in Figure 3.6 are displayed. The
darkest curves (black, red and blue) indicate the radial distributions for IllustrisTNG
central galaxies (for the total, in-situ, and ex-situ stellar components), while the
lightest curves (grey, pink and cyan) refer to satellites. The green, yellow and
violet dots indicate the estimate derived by FIREFLY, PROSPECTOR and PPXF for
centrals, while azure, redbrick and orange are those related to satellites. The profiles
for MaNGA central and satellite galaxies show, within the uncertainties, similar
results for all the stellar properties analysed in this work. The only exception
concerns two median estimates derived by FIREFLY, in the radial bins 4−10 kpc
and 10−20 kpc for galaxies within the range 10.5 < log(M∗/M�) < 11 (the top-left
panel of Figure 3.13), for which satellites have slightly older stellar populations than
the central counterparts. However, these differences are quite small if compared
with the discrepancies between FIREFLY and PROSPECTOR measurements.

In the IllustrisTNG stellar mass surface density profiles, no significant differences
between central and satellite galaxies are found at all masses, at least out to ≈ 30 kpc
from the centers. Moreover, even in this case, centrals and satellites share the same
behaviour for the in-situ and ex-situ stellar populations over the entire range in
stellar mass considered. Although one would expect that central galaxies should
accrete more ex-situ stars than satellites, a possible explanation for this similarity
(that we plan to investigate in the future) is that most satellites have been recently
accreted onto the main halo and acquired a significant fraction of their ex-situ
component when they were centrals of other halos. Also stellar metallicity profiles
for the two galaxy populations in IllustrisTNG almost overlap at all radii and masses.
The stellar age radial distributions for the total stellar components for centrals and
satellites are consistent to each other, showing only a small difference for the median
age of the most massive systems (M∗ > 1011.5 M�), for which centrals appear to be
slightly older (but consistent within the uncertainties) than satellite galaxies.

The analysis made on the radial profiles of velocity dispersion in IllustrisTNG reveals
the most impactful result: though centrals and satellites have a common behaviour
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Fig. 3.11: Top panels: radial profiles for stellar mass surface density in three bins of stellar
mass for MaNGA and IllustrisTNG Red central and satellite galaxies. For MaNGA
ETGs we use the Dusty model masses, while for IllustrisTNG ETGs we use the
2hmr masses. The green and yellow dots represent the median estimates for
MaNGA central ETGs from FIREFLY and PROSPECTOR codes, while the azure and
redbrick dots are the median values obtained for MaNGA satellites ETGs, in the 5
radial bins identified by the grey dashed lines. The errorbars represent the 1σ
uncertainties for MaNGA and IllustrisTNG estimates. The black and grey curve
represent the median value of each stellar property for the total stellar populations
in central and satellite IllustrisTNG galaxies in 20 radial bins spaced uniformly in
log over the range 0−150 kpc, both obtained from the maps convolved with the
MaNGA PSF. Bottom panels: the red dashed and blue dotted curves represent
the in-situ and the ex-situ stellar components for centrals, while the pink dashed
and cyan dotted curves indicate the in-situ and ex-situ stellar components for
satellites. For clarity reasons, we omit the errobars for the plots in the lower
panels. The hatched area (0:2.1 kpc) shows 3x the force resolution of the stellar
particles in IllustrisTNG.
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Fig. 3.12: Same as in Figure 3.11, but for stellar metallicity.
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Fig. 3.13: Same as in Figure 3.11, but for stellar age.
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Fig. 3.14: Same as in Figure 3.11, but for stellar velocity dispersion. The violet and orange
diamonds represent the median estimates for MaNGA central and satellite ETGs
from PPXF code, respectively.

for systems with M∗ < 1011.5 M�, central galaxies in the high-mass tail exhibit, at
fixed radius, a systematic shift with respect to the median profile of satellites that
generally is of ≈ +50 km s−1, while satellites agree within the errors with estimates
derived by PPXF for both the observed populations. Albeit the study of the dark
matter content in galaxies is out of the scope of this project, a possible explanation
for the significant difference in velocity dispersion between IllustrisTNG centrals
and satellites may reside on the large amount of dark matter in central simulated
galaxies. As discussed in Lovell et al. (2018), whose study is focused only on central
galaxies of IllustrisTNG, the simulation predicts an important enhancement of the
dark matter content in the inner regions of subhalos. Hence, this high fraction of
dark matter, that dominates galaxies at z ≈ 0, may be the responsible of this high
velocity dispersion especially for the most massive central galaxies.

3.4.4 Comparison with recent works in literature exploiting

MaNGA data

So far, we have discussed the contrast made between MaNGA and IllustrisTNG,
finding a reasonable similarity between the two samples and the radial distributions
of the analysed stellar properties. In this section, we compare our outcomes with
some recent works in literature based on MaNGA galaxies.
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Using a sample of 366 ETGs, selected as such by adopting the Galaxy Zoo morpho-
logical classification (Lintott et al., 2011; Willett et al., 2013) and then visually
inspected, with masses in the range 9.9 < log(M∗/M�) < 10.8, Parikh et al. (2018,
2019) analysed the radial gradients of stellar age, metallicity, [α/Fe], [Na/Fe], and
IMF slope out to one half-radii. If we consider in our sample only galaxies with
stellar mass lower than 1010.8 M�15, we find a satisfying consistency with the stellar
age and metallicity gradients provided by Parikh et al. (2018, 2019).

Bernardi et al. (2019) show stellar population gradients for a sample of MaNGA
DR15 elliptical galaxies subdivided into slow and fast rotators, making consider-
ations on the role of environment as well. ETGs are identified as in Domínguez
Sánchez et al. (2020), i.e. applying the same morphological approach described
in subsection 3.2.4 based on T-Type ≤ 0, considering both pure ellipticals and
lenticulars. Moreover, the authors subdivide galaxies into slow and fast rotators,
where the former are expected to be characterised by a merger-dominated stellar
mass assembly history. Among the stellar population properties taken into account,
they found that fast rotators are more metal rich, but poor in α-elements, and
younger than slow rotators. Even in that work, the study of the stellar populations
gradients are extended out 1Re, and their age and metallicity gradients are qualita-
tive compatible with our estimates. One of the most relevant outcomes of Bernardi
et al. (2019) is that slow rotators become dominating above log(M∗/M�) ≈ 11.5:
at this stellar mass, where also the size-mass relation slope changes (see Bernardi
et al., 2011a), ellipticals are found to be almost central galaxies16. Moreover, as
the mass increases, ETGs tend to move from fast to slow rotators, the latter mainly
assembled via the two-phase formation scenario (see Cappellari, 2016), result in
agreement with findings from IllustrisTNG. As an extension of the Bernardi et al.
(2019) work, in Domínguez Sánchez et al. (2020) the authors focus their study on
stellar properties of S0 lenticular galaxies, highlighting a bimodality in this galaxy
population depending on stellar mass. Above log(M∗/M�) ≈ 10.5, indeed, these
galaxies are characterised by stronger age and velocity dispersion gradients, with,
instead, negligible gradients in metallicity.

In a recent work, Pulsoni et al. (2020) analyse the photometric and kinematic
properties out to 15Re of ETGs stellar halos for 1114 objects in IllustrisTNG100
(together with other 80 sources in IllustrisTNG50), with 10.3 < log(M∗/M�) <
12 and selected in g − r colours (pretty similiarly with the selection adopted in
this work) and in the angular momentum–ellipticity plane. IllustrisTNG ETGs are

15The median effective radius for our MaNGA ETGs with stellar mass lower than 1010.8 M�, i.e. the
highest mass considered in Parikh et al. (2018, 2019), is . 3 kpc.

16Bernardi et al. (2019) make use of the Yang et al. (2007) environmental catalogue used also in this
work.
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compared with some observational survey, including MaNGA galaxies. Looking at
the distribution of galaxies in the angular momentum–ellipticity plane within 1Re,
a percentage of the IllustrisTNG galaxies lie in a region where no observed ETGs
are found: these are basically elongated, triaxial systems. However, when simulated
galaxies with an intemediate-to-major axis ratio p < 0.6 at 1Re are removed - the
centrally elongated objects -, the simulated ETGs reflect the location in the plane of
observed galaxies, except for a region where a large fraction of MaNGA S0 with an
angular momentum parameter > 0.7 is present.

3.5 Conclusions

In this work we made a consistent comparison between ETGs with M∗ & 1010.5 M�
taken from the state-of-the-art spatially-resolved MaNGA survey and the magneto-
hydrodynamic cosmological simulation IllustrisTNG100. The main scope of this
project was to provide an interpretative scenario of the stellar mass assembly history
of ETGs that we observe in the present-day Universe, disentangling the role of in-situ
and ex-situ stellar populations in simulated galaxies, through the analysis of the
radial distributions of stellar mass surface density, metallicity, age, as well as velocity
dispersion.

Our main results are summarised here below.

• We do find a remarkable agreement between observations and simulations in
the stellar mass surface density radial profiles. This agreement is observed at
all radii, at any stellar mass as well as considering different definitions of ETGs
and/or stellar mass definitions.

• Generally, IllustrisTNG galaxies profiles reproduce quite well the metallicity,
age and velocity dispersion radial distributions of MaNGA galaxies. Concerning
metallicity, the shape of the PSF-convolved profiles for IlllustrisTNG galaxies is
similar to those of MaNGA ETGs, in particular for galaxies with M∗ & 1011 M�,
differing at most in normalisation. The age of observed ETGs are highly
uncertain. The age profiles of stellar populations in IllustrisTNG are found to
lie in between the profiles predicted by FIREFLY and PROSPECTOR. Finally,
for galaxies M∗ < 1011.5 M�, we find a rather good agreement also for the
radial distributions of velocity dispersion for both simulated and observed
ETGs. However, the very massive systems of IllustrisTNG tend to overpredict
the velocity dispersion, over the entire range of radii, even by ≈ +50 km s−1.
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• By separating central and satellite galaxies for both IllustrisTNG and MaNGA
ETGs, we find that there are not relevant differences in all the profiles between
the two galaxy populations, except for the velocity dispersion profiles of
massive systems (M∗ > 1011.5 M�). Indeed, we find that, while satellites are
in a good agreement with the MaNGA velocity dispersion profiles, central
galaxies tend to have velocity dispersion at all radii higher than observed ETGs
by around 50 km s−1.

• The behaviour of the in-situ and ex-situ stellar mass surface density profiles
identifies two different scenarios for the merger-driven history of these objects,
corroborating previous outcomes from Pillepich et al. (2018a) and Tacchella
et al. (2019): galaxies with M∗ < 1011 M� are mainly dominated by the in-situ
stellar populations out to ≈ 20−30 kpc; going towards the high-mass tail of
galaxies (M∗ & 1011 M�), in these systems the role of the ex-situ stars becomes
as relevant as that of the in-situ component, being even totally dominating for
very massive ETGs (M∗ & 1011.5 M�).

• The similar shapes found for the radial distributions of the stellar mass surface
density for both in-situ and ex-situ stars (see Figure 3.7 and Figure 3.10) as
well as the detailed analysis of the merger history (see Figure 3.8) of simulated
ETGs reveal that especially galaxies with M∗ & 1011 M� experienced across
cosmic time a merger-driven evolution mainly marked by major merger events.
Indeed, major mergers allow both to explain the presence of a significant
percentage of ex-situ stars that are able to penetrate even in the innermost part
of galaxies, and also that the two stellar components are well homogenised at
all radii, showing similar stellar mass surface density profiles.

This study sheds light on the current state of both cosmological simulations and
stellar fitting codes used in observations. On the one hand, this work contributes to
improve our understanding of the comparison between simulated and real objects,
allowing to check whether and to what extent the physical models implemented in
cosmological simulations are able to well describe the scenario of formation and
evolution of galaxies (see also van de Sande et al., 2019). On the other hand, we
showed that the estimates of some properties, like the stellar age, strongly depends
on the choice of the fitting methods, models and libraries used to retrieve their
estimates in observed sources, confirming previous works in the literature (e.g.,
Conroy, 2013b) about the necessity of improving current recipes.

For the future, we plan to extend the analysis to other stellar physical properties, like
single chemical abundances. In order to provide a more complete scenario behind
the cosmic evolution of the ETGs that we observe at z = 0, in simulations we will
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reconstruct the merger history of individual progenitors, to take a look at the spatial
distributions of their stellar properties and how these vary during their merging
history. Finally, we will make use of the newest IllustrisTNG50 simulation which,
though characterised by a smaller physical volume and thus a lower statistics, it
benefits from a higher mass resolution that could allow us to make a more reliable
comparison at smaller scales of galaxies with data from current and upcoming
surveys.
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Appendix 3.A: Comparing the results obtained

using the SerExp Dusty and SerExp Dust-free

model masses for MaNGA ETGs

In section 3.4, we have discussed the radial distributions of stellar properties of
IllustrisTNG ETGs with those of MaNGA galaxies, using for the latter the stellar
masses from the SerExp Dusty model taken from Meert et al. (2015). We applied
again the same analysis using the masses from the SerExp Dust-free model for
MaNGA ETGs. The colour-mass diagram and the mass distribution for this MaNGA
sample compared with the IllustrisTNG galaxies is shown in Figure 3.15 (as in
Figure 3.3). Similarly to what found for the MaNGA sample using the SerExp Dusty
masses, using the MANGA MORPHOLOGY DEEP LEARNING DR15 CATALOGUE of
Fischer et al. (2019), we do find that a percentage of around 84% of entire sample
shows a typical ETG morphology, of which 23% with a high probability (PS0 > 50%)
of being a lenticular galaxy.

The analysis of the profiles in stellar mass bins considering the SerExp Dust-free
stellar mass measurements for MaNGA (Figure 3.17) shows an overall similar
behaviour than that for the SerExp Dusty mass sample (Figure 3.6), with only few
exceptions17:

• with Dust-free model masses, MaNGA ETGs, at fixed mass bin, tend to be
slightly more metal poor than with Dusty model masses;

• similarly, at fixed mass bin, stellar ages tend to be slightly younger with the
Dust-free model than with the Dusty model;

• in this case, the MaNGA velocity dispersion profiles are, on average, shifted
down by around 20 km s−1 with respect to those of the Dusty model sample.

The same analysis performed using a selection in number-density-based stellar mass
bins (Figure 3.18), rather than in stellar mass bins, does not reveal any significant
difference from the results in Figure 3.9, except for the velocity dispersion profiles,
where the median profile tends to assume lower values (similarly to the effect in
Figure 3.17), showing a slightly better agreement with the IllustrisTNG profiles.

17The IllustrisTNG profiles shown in Figure 3.6, Figure 3.7 and in Figure 3.17 are the same, as well as
the profiles selected in number-density-based stellar mass bins in Figure 3.9, Figure 3.10 and in
Figure 3.18.
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Fig. 3.15: Same as Figure 3.3, but for the SerExp Dust-free model stellar mass for MaNGA
galaxies.

−2 0 2 4
T-Type

0

100

200

300

400

N
ga

la
xy

0.00 0.25 0.50 0.75 1.00
PS0(T-Type ≤ 0)

0

20

40

60

80

100

120

N
ga

la
xy

Red galaxies
SerExp Dust-free masses

Fig. 3.16: Same as Figure 3.4, but for the SerExp Dust-free model stellar mass for MaNGA
galaxies.
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Fig. 3.17: Same as Figure 3.6, but for the Dust-free model masses for MaNGA ETGs.
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Fig. 3.18: Same as Figure 3.6, but in number-density-based stellar mass bins and for the
Dust-free model masses for MaNGA ETGs.
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Appendix 3.B: Computing the angular

diameter distances to convolve IllustrisTNG

maps

As described in subsection 3.3.2, in order to account for the effects of MaNGA
resolution on simulated galaxies, for each stellar property we consider two limit-case
profiles: given an IllustrisTNG ETG, one profile is computed directly from the original
2D stellar property map, while the other profile is derived from a map previously
convolved with a 2D Gaussian filter kernel σkernel.

For computing the kernel of each simulated galaxy, we use Equation 3.1, where
RTNG = 1 kpc is the IllustrisTNG resolution of the original maps, while RMaNGA,i =
sin(PSFMaNGA)dA,i is the resolution of the i-th MaNGA ETGs, that depends on
PSFMaNGA = 2.5′′ and the angular diameter distance dA,i of the i-th MaNGA galaxy.
To measure dA,i we rely on the angular_diameter_distance function of the Python
package ASTROPY, that takes in input the redshift of the i-th source.

Since MaNGA was built in such a way that the most massive galaxies are located at
higher redshifts, we fit the z−M∗ distribution of each MaNGA sample considered (so
taking into account also the different definitions of the MaNGA masses for a given
sample) and we assign to each IllustrisTNG galaxy the corresponding redshift value
depending on its stellar mass.

In particular, the functional form adopted for fitting the z−M∗ distributions in
MaNGA is

z = a eb log(M∗/M�), (3.5)

where a and b are the two parameters used for each fit. In Figure 3.19, the z−M∗
scatter distributions with the corresponding fits for the SerExp Dusty (left panel)
and Dust-free (right panel) model masses are shown. Thus, these fits are used to
assign the redshifts to the IllustrisTNG ETGs on the basis of their stellar masses, to
compute their angular diameter distance, and then the kernel used to convolve their
stellar property maps.
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Fig. 3.19: The z−M∗ scatter distributions of the Red galaxy samples of MaNGA, using the
SerExp Dusty model (left panel) and the SerExp Dust-free model (right panel)
masses. The black solid curves trace the fit of each distribution. In each plot the
corresponding fit functional form is reported. The two stripes of dots in each
panel trace the Primary sample (the lower cloud) and the Secondary sample (the
upper cloud) of the MaNGA total sample.
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Appendix 3.C: Testing other definitions of

ETGs and stellar masses

In subsection 3.2.3 and subsection 3.2.4 we presented the criteria adopted to select
as homogeneously as possible ETGs from MaNGA and IllustrisTNG, as well as the
definitions used for comparing stellar masses. Specifically, we selected ETGs as those
galaxies characterised by colours (g−r) > 0.6, and for stellar masses we adopted the
two mass estimates derived by Meert et al. (2015) using the PyMorph SerExp Dusty
and Dust-free model stellar masses for MaNGA, and for IllustrisTNG we consider as
stellar mass the sum of all stellar particles included within a projected area of radius
twice the half-mass radius.

In order to check the reliability of our results, we extended our analysis to another
definition of ETG and we adopted different stellar mass definitions for both MaNGA
and IllustrisTNG samples. In particular, the other definition of ETGs tested here
is presented in Donnari et al. (2019, see their Table 2), considering ETGs those
galaxies having a measure of star formation rate below 1 dex the star-forming main
sequence of galaxies:

log
( SFR

M�yr−1

)
= α(z) log

(
M∗
M�

)
+ β(z), (3.6)

assuming as α and β those at z = 0 reported in Table 3 of Donnari et al. (2019), i.e.
α(z = 0) = 0.8 and β(z = 0) = −8.15. MaNGA and IllustrisTNG galaxies selected by
applying the above-mentioned selection criterion constitute the so-called Quiescent
galaxy samples.

Concerning the estimates of stellar masses, we consider as further definition for
IllustrisTNG galaxies the sum of all star particles within a projected aperture of
30 kpc, while for MaNGA we use the masses derived from a Sérsic fit and a Petrosian
fit included in the NSA catalogue, as well as the mass defined as the sum of the
masses in the 5 concentric annuli estimated by FIREFLY and PROSPECTOR.

Overall, in all the cases shown in the following, we find a very high consistency
with the results presented in section 3.4, corroborating the robustness of our study
and its implications. Given the soundness of the results, for conciseness, here we
will present results only for profiles derived from the original IllusrtisTNG maps
(i.e. not derived from the convolved maps) and in stellar mass bins (i.e. not in
number-density-based stellar mass bins).
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In Figure 3.20 we show the colour–mass diagrams and the stellar mass distributions
for the MaNGA and IllustrisTNG Quiescent galaxy samples, adopting for MaNGA
the SerExp Dusty model and the SerExp Dust-free model stellar masses, while for
IllustrisTNG the 2hmr stellar masses. The profiles for both MaNGA and IllustrisTNG
Quiescent galaxies with these stellar masses are shown in Figure 3.21 (assuming
for MaNGA the Dusty model masses) and in Figure 3.22 (assuming for MaNGA the
Dusty model masses).

In Figure 3.23 we show the colour–mass diagrams and the stellar mass distributions
for the MaNGA and IllustrisTNG Red galaxy samples, adopting for MaNGA the NSA
Sérsic and Petrosian stellar masses, and the stellar masses included into the 5 radial
bins computed by FIREFLY and PROSPECTOR, while for IllustrisTNG the stellar
masses within an aperture of 30 kpc. The profiles for both MaNGA and IllustrisTNG
Red galaxies with these stellar masses are shown in Figure 3.24 (assuming for
MaNGA the NSA Sérsic masses), in Figure 3.25 (assuming for MaNGA the NSA
Petrosian masses), and in Figure 3.26 (assuming for MaNGA the masses within the
5 radial bins computed by FIREFLY and PROSPECTOR).

Finally, in Figure 3.27 we show the colour–mass diagrams and the stellar mass
distributions for the MaNGA and IllustrisTNG Quiescent galaxy samples, adopting
for MaNGA the NSA Sérsic and Petrosian stellar masses, and the stellar masses
included into the 5 radial bins computed by FIREFLY and PROSPECTOR, while for
IllustrisTNG the stellar masses within an aperture of 30 kpc. The profiles for both
MaNGA and IllustrisTNG Quiescent galaxies with these stellar masses are shown in
Figure 3.28 (assuming for MaNGA the NSA Sérsic masses), in Figure 3.29 (assuming
for MaNGA the NSA Petrosian masses), and in Figure 3.30 (assuming for MaNGA
the masses within the 5 radial bins computed by FIREFLY and PROSPECTOR).
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Fig. 3.20: Same as in Figure 3.3, but for Quiescent galaxies, i.e. galaxies with star formation
rate below 1 dex the star-forming main sequence of galaxies, using the SerExp
Dusty (top panels) and the SerExp Dust-free (bottom panels) stellar masses.

3.5 Conclusions 129



1 10 100
4

6

8

10

lo
g

Σ
∗[

M
�

kp
c−

2 ]

10.5 ≤ log(M∗/M�) < 11.0

1 10 100
4

6

8

10
11.0 ≤ log(M∗/M�) < 11.5

IllustrisTNG total profile

IllustrisTNG in-situ profile

IllustrisTNG ex-situ profile

1 10 100
4

6

8

10
log(M∗/M�) ≥ 11.5

MaNGA FIREFLY profile

MaNGA Prospector profile

1 10 100

−0.50

−0.25

0.00

0.25

0.50

lo
g(
Z
∗/
Z
�

)

1 10 100

−0.50

−0.25

0.00

0.25

0.50

1 10 100

−0.50

−0.25

0.00

0.25

0.50

1 10 100
6

7

8

9

10

11

A
ge

[G
yr

]

1 10 100
6

7

8

9

10

11

1 10 100
6

7

8

9

10

11

1 10 100

R [kpc]

100

200

300

σ
[k

m
/s

]

1 10 100

R [kpc]

100

200

300

1 10 100

R [kpc]

100

200

300

MaNGA pPXF profile

Quiescent galaxies
SerExp Dusty vs. 2hmr masses

Fig. 3.21: Radial profiles of (from the top to the bottom) stellar mass surface density,
metallicity, age, and velocity dispersion in three bins of mass for MaNGA and
IllustrisTNG Quiescent galaxies. For MaNGA ETGs we use the Dusty model
masses, while for IllustrisTNG ETGs we use the 2hmr masses. The green, yellow
and violet dots represent the median estimates for MaNGA ETGs from FIREFLY,
PROSPECTOR and PPXF codes, respectively, in the 5 radial bins identified by the
grey dashed lines.The black solid, red dashed and blue dotted curves represent
the median profiles of each stellar property for the total, the in-situ and the ex-situ
stellar populations in IllustrisTNG galaxies in 20 radial bins spaced uniformly in
log over the range 0−150 kpc obtained from the original maps. The black, green,
yellow and violet shaded areas indicate the 68% intrinsic scatter distributions for
IllustrisTNG, FIREFLY, PROSPECTOR, and PPXF profiles, respectively. The error-
bars represent the 1σ uncertainties on the median for MaNGA and IllustrisTNG
estimates. The hatched area (0:2.1 kpc) shows 3x the force resolution of the
stellar particles in IllustrisTNG.
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Fig. 3.22: Same as Figure 3.21, but assuming the SerExp Dust-free model masses for MaNGA
galaxies.
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Fig. 3.23: Same as Figure 3.20, but for Red galaxies. For MaNGA galaxies we adopt, from
the top to the bottom panels, the NSA Sérsic masses (blue dots and histograms),
the NSA Petrosian masses (pink dots and histograms) and the masses included
into the 5 radial bins computed by FIREFLY (green dots and histograms) and
PROSPECTOR (yellow dots and histograms), while for IllustrisTNG galaxies we
assume the masses within an aperture of 30 kpc (grey 1D and 2D histograms).
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Fig. 3.24: Same as Figure 3.21, but for Red galaxies and assuming the NSA Sérsic masses
for MaNGA galaxies, and the masses within 30 kpc for IllustrisTNG galaxies.
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Fig. 3.25: Same as Figure 3.21, but for Red galaxies and assuming the NSA Petrosian masses
for MaNGA galaxies, and the masses within 30 kpc for IllustrisTNG galaxies.
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Fig. 3.26: Same as Figure 3.21, but for Red galaxies and assuming the masses within the 5
radial bins computed by FIREFLY and PROSPECTOR for MaNGA galaxies, and the
masses within 30 kpc for IllustrisTNG galaxies.
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Fig. 3.27: Same as Figure 3.23, but for Quiescent galaxies.
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Fig. 3.28: Same as Figure 3.21, but assuming the NSA Sérsic masses for MaNGA galaxies,
and the masses within 30 kpc for IllustrisTNG galaxies.
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Fig. 3.29: Same as Figure 3.21, but assuming the NSA Petrosian masses for MaNGA galaxies,
and the masses within 30 kpc for IllustrisTNG galaxies.
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Fig. 3.30: Same as Figure 3.21, but assuming the masses within the 5 radial bins computed
by FIREFLY and PROSPECTOR for MaNGA galaxies, and the masses within 30 kpc
for IllustrisTNG galaxies.
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Inferring the Dark Matter
halo mass in galaxies from
other observables with
Machine Learning

4

„Everything should be made as simple as possible,
but not simpler.

— Albert Einstein

In 2019, I was awarded Marie Skłodkowska-Curie grant by the Horizon2020-MSCA-
RISE-2017 Project 777822 GHAIA “Geometric and Harmonic Analysis with Interdis-
ciplinary Applications” to carry out a project on the scientific area of Data Analysis
and Machine Learning. This Chapter is based on an ongoing project that will be
presented in Cannarozzo et al. (b, in prep.).

4.1 Introduction

In the last few years, the astrophysical research has been increasingly approaching
the world of artificial intelligence methods. This is mainly due to the fast growth
of data and the large amount of information coming from surveys. Astrophysics
has been entering into the so-called Big Data age, making this science the ideal
branch in which data analysis, machine and deep learning techniques are becoming
essentials.

The impelling need of developing and improving machine learning (ML) methods
finds fertile ground in the current and next generations of telescopes and surveys:
Atacama Large Millimeter Array (ALMA; Wootten & Thompson, 2009), the Large
Synoptic Survey Telescope (LSST; Ivezić et al., 2019), the Square Kilometer Array
(SKA; Dewdney et al., 2009), as well as the upcoming Euclid mission (Laureijs et al.,
2011), the James Webb Space Telescope (JWST; Gardner et al., 2006), the Nancy
Grace Roman Space Telescope (Dressler et al., 2012; Green et al., 2012; Spergel et
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al., 2015), etc. But we do not have to wait for future surveys to deal with big amount
of astrophysical data: we are already used to the immense volumes of surveys like
the Sloan Digital Sky Survey (SDSS; York et al., 2000), Pan-STARRS (Kaiser et al.,
2010), Gaia (Gaia Collaboration et al., 2016) and the Dark Energy Surveys (DES;
Abbott et al., 2018; Troxel et al., 2018). Artificial intelligence allows us to shed light
on intricate relations among data, predict and infer hidden information and manage
quickly a huge amount of data for a wide range of tasks.

4.1.1 The importance of machine learning in astrophysics

The constant growth of interest in ML techniques for astrophysics and cosmology
is due to the extreme necessity to develop algorithms able to identify objects and
their properties, but, at the same time, to weave together information from different
telescopes facilities.

Among the vastness of ML methods, we recognise two main subgroups: the supervised
and unsupervised ML algorithms. Supervised ML consists in using a set of features
to learn the relationship with a specific target variable. This link can be exploited
to make the inference of the target on a test sample. In contrast to classical fitting
procedures for which a model is preset, supervised ML methods allow to build
a model that adapts itself to the input sample. The supervised ML techniques
generally consist of three main steps: the training step, the validation step and the
test step. During the training step, the method learns the relationship between a
given training set and the target. The second step allows to validate the predictions
made by the model to find the best set of parameters. Finally, during the test step,
the model is applied to a subsample in order to infer the target variable on the
basis of what the model learned. Supervised ML problems can be grouped into two
classes: classification and regression models. In the case of classification, a method
provides capabilities for mapping input to output labels, or in other words to assign
a given category to the target, for example classifying a brilliant source as a star or a
galaxy. Regression methods, instead, are implemented to map input to a continuous
output. If the variable varies over a range, regression allows to estimate it from a
set of features as done, for instance, for the derivation of redshift from photometric
measurements. Among the supervised learning methods we count linear regression,
logistic regression, decision trees and random forests, and neural networks.

Unsupervised ML tools are used when one is interested in learning about the mutual
connections in data, without using given labels. Hence, the aim of this class of
methods is to identify hidden structures in measurements that were previously
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undetected to understand more about the input data. Unlike supervised ML, this
kind of methods cannot be applied to problems like regression or classification, since
the user does not know which might be the output from data. In this large class of
methods, we identify clustering analysis, dimensionality reduction and visualisation.

In the last years, many novel approaches that exploit ML techniques have been
developed in astrophysics. For example, ML methods are used to classify objects like
galaxies (e.g., Huertas-Company et al., 2008; Chattopadhyay et al., 2019; Pérez-
Carrasco et al., 2019) or variable stars and transients (Richards et al., 2011; Carrasco-
Davis et al., 2019), to disentangle components kinematically in simulated galaxies
(Obreja et al., 2018, 2019) and to retrieve redshift of sources (e.g., Tagliaferri et al.,
2003; Luken et al., 2019; Norris et al., 2019; Salvato et al., 2019).

In this framework, ML can be used also to find relations between dark matter (DM)
halos and their host galaxies. For example, by training a neural network architecture
on a cosmological simulation performed with RAMSES-RT, Sullivan et al. (2018)
provided a prediction of the baryon fraction content in DM halos using their physical
features, while Agarwal et al. (2018) used the Mufasa simulation to connect galaxy
features to halo features. Recently, Moster et al. (2020) presented GalaxyNet, a deep
neural network which allows to link the properties of galaxies and of their haloes.
Specifically, GalaxyNet finds these connections between observed properties and
simulated DM halos by directly training the algorithm with observed data, exploiting
a reinforcement learning method.

A more detailed presentation of supervised and unsupervised ML applied to as-
trophysical problems, and a discussion of the pros and cons of the techniques, is
provided in Baron (2019).

4.1.2 Linking DM halos to other galactic properties

An important aspect to be investigated in order to link DM halos to their host galaxies
concerns our knowledge on how the diverse galaxy properties correlate with their
halos, as well as, how a given property can be a good estimator for the mass of
DM halos. The idea behind the connection that should subsist between DM halo
mass and other galaxy properties lies at the basis of galaxy formation and evolution
theory. Indeed, this connection should find origin during the process of structure
formation, when galaxies formed as the result of baryon condensation inside the
gravitational wells yielded by DM halos (e.g. Rees & Ostriker, 1977; White & Rees,
1978; Fall & Efstathiou, 1980; Blumenthal et al., 1984). The entire process gives rise
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to the so-called galaxy-halo connection. Given this connection between DM halos
and galaxies, we expect also that the biggest halos host the biggest galaxies, and
they grow in tandem through cosmic time.

As discussed in Wechsler & Tinker (2018), the existence of a relationship between
the DM halo and its galaxy does not specify directly which galaxy properties are
more linked to their halo, and in particular which are the more useful to infer its
mass. The most well-known relation between the DM halo and its host galaxy is the
so-called stellar-to-halo mass relation (SHMR), that can be derived for example from
galaxy formation models or parametrised models (Kravtsov et al., 2004; Moster
et al., 2010; Leauthaud et al., 2011; Tinker et al., 2017; Wechsler & Tinker, 2018;
Behroozi et al., 2019; Girelli et al., 2020). From an observational point of view, other
approaches to estimate the mass of halos in single objects relies on the measurements
of some observed properties, for example by exploiting gravitational lensing effects
(e.g., Mandelbaum et al., 2006, 2016), or kinematics (e.g., More et al., 2009; Wojtak
& Mamon, 2013; Lange et al., 2019), or estimates derived from X-ray observations
(e.g., Kravtsov et al., 2018). Although the galaxy stellar mass can be considered
as the primary property strictly linked to the DM mass, it could be useful to look
for other possibilities. For instance, the gas in galaxies is expected to be another
crucial property, but deriving complete and statistical relevant samples with reliable
measurements of gas (e.g., mass, size) is very demanding. More generally, we can
think whether and to what extent the correlation between the DM halo mass and
whole baryon mass gives more constraints on the correlation with respect to the
SHMR. This aspect has been largely studied with the Tully-Fisher relation (e.g.,
McGaugh et al., 2000) as well as with clustering analysis of HI-selected sources (e.g.,
Guo et al., 2017), finding so far estimates of scatter similar to those coming from
the classic SHMR.

Together with possible primary properties directly linked to DM halos, we have
to bear in mind that they show, in turn, other relations with other quantities. An
example is given by the stellar mass which exhibits several further correlations: for
example, the M∗−MBH relation (e.g., Magorrian et al., 1998; Reines & Volonteri,
2015), or the relations with the stellar and gas metallicities (e.g., Tremonti et al.,
2004; Gallazzi et al., 2005; Gallazzi et al., 2006; Mannucci et al., 2010; Mingozzi et
al., 2020). Hence, because of the complexity of the problem and the high number of
features that might be related to the DM halo in a galaxy, the study of the galaxy-halo
connection can be performed, as we will present in this ongoing work, exploiting ML
methods to shed light in this intricate network of possible relations among several
galaxy properties.
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The final aim of this project will be to derive a functional that allows to infer DM
mass in galaxies exploiting observed properties. To do that, we train a model on the
results of the IllustrisTNG simulations, by exploiting Explainable Boosting Machine,
a state-of-the-art machine learning implementation of the Generalized Additive
Models with pairwise interactions.

This Chapter is organised as follows. The machine learning method adopted in
this work is presented in section 4.2. The preliminary results are illustrated in
section 4.3. Section 4.4 concludes. Throughout this Chapter, we assume a ΛCDM
cosmological framework with the cosmological parameters derived from Planck
Collaboration et al. (2016), i.e. ΩΛ,0 = 0.6911, Ωm,0 = 0.3089, Ωb,0 = 0.0486, and
H = 67.74 km s−1Mpc−1. Stellar masses are estimated assuming a Chabrier (2003)
initial mass function.

4.2 The Method

The main scope of this project will be to derive a functional form able to provide a
prediction of the DM mass in a given galaxy using a bunch of observed properties,
and not limiting, for instance, to the only use of the stellar mass as usually done, but
extending the analysis to other quantities that may have hidden connections with
their halo. In this context, the use of ML methods can help us to go through the
dataset in input, train a model, and estimate the halo mass. For our goal, we exploit
Explainable Boosting Machine, a state-of-the-art ML technique recently developed
by Microsoft Research in the context of Generalized Additive Models with pairwise
interactions.

4.2.1 Generalized additive models & GA2Ms

Generalized additive models (GAMs) were firstly introduced by Hastie & Tibshirani
(1990). From a mathematical point of view, a GAM is an additive model whose
ability is to capture the role of the predictive features exploiting a series of smooth
functions1. The basic idea behind GAMs is to simply link individual predictors and a
dependent variable through a linear or nonlinear pattern.

Before seeing the architecture behind a GAM, we start from the simpler class of
General Linear Models (GLMs, McCullagh & Nelder, 1989). In a GLM, the target

1Usually, spline functions are implemented in GAMs as smooth functions
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variable yi one would like to infer can be expressed as a summation of linear terms
as

yi = β0 + β1xi1 + · · ·+ βpxip, (4.1)

with an associated error term εi. Examples with the same functional form as in
Equation 4.1 are the scaling relations of ETGs introduced in Chapter 1, like the
Fundamental Plane (Equation 1.6). The simplest case of a linear model reduces to a
one-variable dependence model called Simple Linear Model (SLM)

yi = β0 + β1xi1. (4.2)

The linearity of theses classes of models lies in the fact that yi is a linear function of
xi1, . . . , xip. The main limitation of these models is that, in many cases, treating a
problem adopting SLMs may be restrictive in capturing the role of each predictor.
Hence, ideally one would like to adopt a more complex, fully general model, like
Random Forests, Neural Networks, or Boosted Trees, in which an arbitrary function
may take into account all the predictors simultaneously

yi = fi(xi1, . . . , xip). (4.3)

Between these two extreme cases of models, there is the family of Additive Models.

Let assume a training dataset D = {(xi, yi)}N1 , where N is the size of the dataset,
xi = (xi1, . . . , xip) denotes a feature vector composed by p features, and yi is the
target variable, that, in our case, would be the DM mass. With xj we indicate the
j-th variable within the space of features. The GAM formulation can be written as

g(E[y]) = β0 +
∑
j

fj(xj) = β0 + f1(x1) + · · ·+ fp(xp), (4.4)

where y is the dependent variable that we would like to estimate, E[y] indicates
the expected value, g is the so-called link function, and for each functional term
fj , called shape function, E[fj ] = 0. The functional terms fj are non-parametric
functions whose shapes are completely determined by the data. This characteristic
guarantees a great flexibility in the estimate of models without knowing a priori the
hidden patterns of models.

In order to improve the accuracy of the model, we can add other terms to the
standard GAM in Equation 4.4, for instance allowing for the presence of the pairwise
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interactions obtaining a Generalized Additive Model with pairwise interactions (Lou
et al., 2013, GA2M):

g(E[y]) = β0 +
∑
j

fj(xj) +
∑
i 6=j

fij(xi, xj). (4.5)

A GA2M computes all the "first-order" terms as a standard GAM and then identifies
and sorts the possible k-th pairwise interactions required by the training dataset.

The high intelligibility of GAMs and GA2Ms lies in the straightforward visualisations
of the feature terms: indeed, the relationship between each variable xj and the
corresponding function fj in a GAM can be visualised in the fj(xj)−xj plane, while
the mutual interactions in a GA2M can be represented as maps of fij(xi, xj).

4.2.2 The Explainable Boosting Machine model

In ML we can identify a sort of tradeoff between two characteristics: accuracy and
intelligibility. Accuracy is the quality of a method of being precise in making its
tasks, whereas intelligibility represents the property of a method of being easily
understandable and manageable. Among the most accurate methods (but less
intelligible) we count for instance Random Forests, Neural Networks or Boosted
Trees. These complex models are often more accurate than a linear model, but they
tend to be less intelligible. Instead, methods like Logistic Regressions or Decision
Lists are very intelligible, but usually not very accurate. Recently, Microsoft Research
released a state-of-the-art ML method called Explainable Boosting Machine (EBM),
a C++/Python fast implementation of the GA2M algorithm presented in Lou et al.
(2013).

EBM is part of InterpretML (Nori et al., 2019), an open-source Python-based package
consisting in a unique framework that makes possible a direct comparison of different
ML methods, with the help of an API platform for the visualisation. InterpretML
contains two classes of methods:

• glassbox (or whitebox, or transparent-box) type is a ML class of algorithms with
high intelligibility, so as to be easily understood;

• blackbox models are complex structures designed for providing an explanation
to problems with a hidden pattern.
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Among the supported techniques within the current version of InterpretML, we find
EBM, Decision Tree, Decision Rule List and Linear & Logistic Regressions among the
glassbox models, while the available blackbox explainers are SHAP Kernel Explainer,
SHAP Tree Explainer, LIME, Morris Sensitivity Analysis and Partial Dependece.

Once a glassbox or blackbox technique is chosen, the user gives in input the dataset
and InterpretML returns four kinds of explanations:

• Data gives an overview of the target variable in the training set and the
relations between each training features and the target;

• Performance reports performances of the inference;

• Global explains the overall behaviour of all the features used for the inference;

• Local explains the behaviour of all the features used for the inference in each
entry of the test sample.

After the explanation step, all the information concerning the prediction of the
model, the training and test samples are stored and usable for visualisation through
an interactive dashboard.

In particular, for our scope, we exploit EBM, an implementation of GAM and GA2M
that basically learns the 1D and 2D functions reported in Equation 4.4 and Equa-
tion 4.5. To learn, EBM makes use of state-of-the-art ML techniques like bagging
and boosting. The great advantage of EBM is that it is not only highly accurate, but,
being a complete glassbox method, it is also even more intelligible than a classic
linear or logistic regression models.

In EBM, both the 1D and 2D functions help in making the final prediction of the
target variable. The link function g (see Equation 4.5) receives the summation of
each term from the functions and then it provides the estimate of the target. Finally,
given the nature of the method, the role of each feature is sorted based on the
overall importance it has in making the final prediction.

Science with EBM

EBM has already been applied in diverse science fields and compared with other
ML methods. In the following, we briefly describe a specific application to show the
potentiality of such method.

At the beginning of this section, we discussed about the existing tradeoff between
intelligibility and accuracy. In some cases, like healthcare, a very high accuracy is
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Fig. 4.1: The 1D age profile (left panel) and the 2D age−cancer map (right panel). The
y-axis in the 1D profile and the colorbar in the 2D map represent the entire range
of the POD. The green errorbars are ±1 standard deviation of POD derived from
bagging runs. The plots are adapted from Caruana et al. (2015).

required, but concurrently there is a crucial necessity of understanding, validating,
testing and trusting about the prediction made upon a model. In Caruana et al.
(2015), the authors present two healthcare studies approached with a GA2M: the
prediction of death caused by pneumonia and the probability of being readmitted
in hospital for patients within 30 days after their releasing. We focus now on the
first study. The main goal of this analysis is to predict the probability of death (POD)
caused by pneumonia. Caruana et al. (2015) analysed a dataset of more than 1400
patients afflicted with pneumonia taken from a previous work of (Cooper et al.,
1997). As done in the previous work, the dataset has been splitted into two subsets:
a 70% of patients forms the training set and the remaining 30% is the test set. A
number of 46 features per patient has been analysed: 18 features, such as age,
temperature or SpO2 oxygen saturation, are continuous variables, while 28 features,
such as gender, cancer or asthma, are discrete variables (e.g., having/not having
asthma).

The necessity of inferring the POD caused by pneumonia is strictly related to ne-
cessity of knowing whether a patient has a high risk of death and so he needs
to be hospitalised, or he can be treated as a low-risk patient. Another important
information to know in this study is that a percentage of around 11% of patients in
the sample died because of pneumonia.

Leaving out all further details of this study, we focus now on two examples of 1D
and 2D shape functions predicted by the GA2M. Among all the features taken into
account by the model, the age turns out to have the most important role. On the
left-hand side of Figure 4.1, the graph POD−age is shown. The x-axis spans over
the range 18-106 years old. On the y-axis the POD is shown. In this case, the
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score is such that POD=+1 implies an addition of 1 to the global score, taking into
account also the role of all the other features and pairwise interactions. Roughly
speaking, adding 1 means doubling the probability of dying because of pneumonia,
while subtracting 1 implies a halving of that probability. Moreover, for an easier
interpretation of the results, a score equal to 0 is associated to the mean of the
feature on the x-axis, in this case 70 years old. The errorbars represents the ±1
standard deviation of the variation of POD evaluated by 100 rounds of bagging.

In the age profile we can recognise some peculiarities of this feature. From 18 up
to around 50 years old, the flat profile and negative value (≈ −0.27) suggest that,
on average, the risk of dying because of pneumonia is low and constant over this
range. From 50 to 66 years old, we observe a slow increase of the profile. In the
range 67-70, the profile rises quickly. Given the small errorbars, this jump is real and
not due to an oscillation of the fit procedure. A possible interpretation provided by
the authors is that for this dataset, many patients around 65 years old have retired
and this may cause a change in the lifestyle, health insurance and other factors.
From 70 the POD rises to +0.2 at 82 and reaches +0.35 at age 86. This jump in the
age profile is not straightforward to explain: maybe this change would be due to a
combination of a different treatment intended for these patients, natural causes, as
well as a lower statistics in the sample (suggested by the sudden widening of the
errorbars). To provide an answer to the latter issue, it would be useful to train the
model on other samples. Finally, after a more or less constant profile from 87 to
100, the score profile drops down to a value of POD around +0.2. As the previous
case, this drastic change may be caused by a combination of factors: on the one
hand, also in this range the statistics of the sample is not so high, however, on the
other hand, people in this age interval are, as defined by the authors, successful agers
endowed with an extraordinary genetics.

On the right-hand side of Figure 4.1, the pairwise interaction between the age
and cancer coloured as a function of the POD is shown. The Boolean nature of
the "cancer" feature has to be interpreted as having the cancer (0 : +1 range) and
not having the cancer (−1 : 0 range). Focusing on the left part of the x-axis (i.e.
people without cancer), this analysis suggests that, as expected, the older the patient,
the higher the POD. The right side of the plot (i.e., patients affected by a cancer),
instead, highlights a very high risk for the youngest people. This may be caused by
an untreated cancer acquired during youth.

The studies conducted exploiting EBM cover a wide range of science fields. Con-
cerning healthcare, EBM has been recently exploited also for testing the hypothesis
that a ML technique with nonlinear interactions may improve the prediction of
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admission in intensive care units due to COVID-19 (Zhou et al., 2020), or helping
the identification of intravenous immunoglobulin-resistant patients (Wang et al.,
2020b). EBM has been also compared with other ML methods (Agarwal et al., 2020;
Darshana Abeyrathna et al., 2020; Yang et al., 2020), used for predicting recidivisms
for different crimes (Wang et al., 2020a), or for making a prediction for the number
of goals for soccer analytics (Decroos & Davis, 2019).

In astrophysics, Walmsley et al. (2020) used Bayesian convolutional neural networks
(CNNs) to model and use the uncertainties of Galaxy Zoo volunteer responses to
gather posteriors for galaxy morphologies. In their work, the authors exploited
EBM to check whether the developed method is sensitive to non-morphological
parameters such as mass, magnitude, etc.

For more details about GAM and GA2M, the EBM architecture and the InterpretML
environment we recommend the reader to refer to Lou et al. (2012, 2013), Caruana
et al. (2015), Tan et al. (2018), Lengerich et al. (2019), Nori et al. (2019), Zhang
et al. (2019), Chang et al. (2020), and Kaur et al. (2020).

4.3 An application to the cosmological simulation

IllustrisTNG

Our scope is to understand the importance of some galactic features in the inference
of DM mass in order to find a functional form useful to estimate the DM content in
real galaxies. In this section we will present a preliminary study of the prediction of
the DM mass in a sample of subhalos drawn from the IllustrisTNG simulation.

4.3.1 The training and test samples

As a first application, we selected from the z = 0 snapshot of IllustrisTNG100-12

central subhalos with a total mass Mtot > 1011 M�, meaning by Mtot the sum of the
masses of all particles and cells of all components in each subhalo. Our sample is
composed by 15088 central subhalos and we randomly split it into a training sample
(10561 subhalos) and a test sample (4527 subhalos) with a ratio of 70:30, following
the same prescription used in Caruana et al. (2015, see section 4.2.2).

2A detailed description of the IllustrisTNG simulation suite is provided in subsection 3.2.2 of this
manuscript.
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For each subhalo we take into account 7 features:

• the stellar mass M∗;

• the gas mass Mgas;

• the black hole mass MBH;

• the stellar metallicity Z∗;

• the gas metallicity Zgas;

• the black hole accretion rate ṀBH;

• the star formation rate SFR.

In Table 4.1 we list the intervals and the mean values of MDM and of each feature
for the training sample, while in Figure 4.2 and Figure 4.3 the MDM−feature scatter
distributions are shown, reporting above the Pearson correlation coefficient3.

Tab. 4.1: Variables of the training sample. Column 1: Variable. Column 2: range of values
in logarithm. Column 3: mean value.

Snapshot z = 0

Feature f (min f ; max f) f̄

log(MDM/M�) (10.91; 14.54) 11.40

log(M∗/M�) (7.81; 12.57) 9.49

log(Mgas/M�) (8.02; 13.76) 10.37

log(MBH/M�) (6.08; 10.09) 7.04

log(Z∗/Z�) (−0.96; 0.43) −0.02

log(Zgas/Z�) (−1.10; 0.66) −0.05

log(ṀBH/M� yr−1) (−8.79;−0.66) −3.47

log(SFR/M� yr−1) (−3.53; 2.00) −0.54

The next step consists in fitting the training sample with the EBM regressor. In
addition to the 7 features listed above, we consider also the three most relevant
pairwise interactions. Indeed, EBM evaluates all the possible pairwise interactions
among the features, returning the k-th most relevant, where k is set by the user. In

3The specific choice of these 7 features made for the presented application is somewhat arbitrary,
and one can of course explore cases with a different number of features. In the future, we will plan
to consider other observables of galaxies such as the luminosity, colours, size, velocity dispersion,
surface brightness, age, etc.
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Fig. 4.2: Target variable MDM as a function of the stellar mass M∗ (upper left panel), the
gas mass Mgas (upper right panel), and the black hole mass MBH (lower panel)
for the training sample. In each panel, the 1D red histogram on the y-right-axis
represents the distribution of the target MDM, while the 1D violet histogram on
the x-upper-axis represents the distribution of each feature. Above each plot the
Pearson correlation coefficient is reported.
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Fig. 4.3: Same as Figure 4.2, but for the stellar metallicity Z∗ (upper left panel), the gas
metallicity Zgas (upper right panel), the black hole accretion rate ṀBH (lower left
panel), and the star formation rate SFR (lower right panel).
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Fig. 4.4: Overall importance diagram of the 7 features and the 3 most relevant pairwise
interactions used by EBM. The contribute of each term is additive thanks to the
modularity of the GAM/GA2Ms.

Figure 4.4, the overall importance of the features and of the three most important
pairwise interactions is shown. As clearly visible from the plot, each term is playing
a role in inferring the DM mass, but the gas mass, the stellar mass and the black hole
mass have a significantly stronger role. The three most relevant pairwise interactions
involve in turn the black hole mass and the stellar metallicity, the gas and stellar
masses, and the gas and black hole mass. The length of each bar in Figure 4.4
is obtained by computing the mean of the absolute score for each term. EBM is
an additive model, so it makes final predictions as functions of each individual
feature. It predicts the target variable by disentangling the role of the features
into a single or a pairwise "projections" on the target. An easy way to interpret it
is to assign a score equal to 0 to the mean value of MDM of the training sample,
i.e. log(MDM/M�) ' 11.4. When the model makes predictions, it will use each
feature graph as a “look up table” to retrieve a score that the feature contributes
to an individual prediction. Let us make an example on how the overall feature
importance is estimated. For simplicity, let us assume two features, A and B, whose
corresponding scores varies monotonically from -1 to +1 for A, while from +0.2 to
+0.6 for the B feature. Although the mean value of B (= 0.4) is greater than the
mean value of A (= 0), because of its stronger variation over its range, A is clearly
contributing to the final prediction much more heavily than B, since its scores tend
to be much bigger in absolute value.

Figure 4.5 and Figure 4.6 show the 1D shape functions for the seven individual
features used by EBM, while in Figure 4.7 the 2D maps for the three most relevant
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Fig. 4.5: Single feature score profiles for the gas mass (top panel), stellar mass (middle
panel) and for the black hole mass (bottom panel). In each panel, the y-axis
indicates the score, i.e. the value in units of logMDM to be added to the mean of
DM mass value of the training sample, log(MDM/M�) ' 11.4. The shaded regions
represent the ±1 standard deviation of the variation of score estimated by 100
rounds of bagging.
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Fig. 4.6: Same as Figure 4.5, but (from top to bottom) for the stellar metallicity, the gas
metallicity, the black hole accretion rate and the star formation rate.
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Fig. 4.7: Pairwise interaction 2D maps for the couples logMgas− logMBH (left panel),
logM∗− logMgas (middle panel), and logZ∗− logMgas (right panel). These maps
are coloured as a function of the score with the same range of the y-axes as in the
plots of Figure 4.5 and Figure 4.6.

pairwise interactions sorted by importance are displayed. Let focus first on the 1D
shape functions. The three mass features vary widely and almost monotonically over
their ranges, while the remaining four features tend to be constant (except for a few
small oscillations). The way to interpret these graphs is the following: from the Mgas

profile (upper panel of Figure 4.5) we can learn that, for instance, a subhalo with a
gas mass of ≈ 1012 M� gives on average a contribution of ≈ +0.7 dex to the mean
logMDM of the training sample, or analogously for a subhalo with a stellar mass of
≈ 108 M� the score to be added to the mean logMDM is ≈ −0.1 dex. Another way
to read these plots is that a subhalo with a DM mass equal to the mean value, i.e.
log(MDM/M�) ≈ 11.4, has, on average, a gas mass of ≈ 1010.4 M�, a stellar mass of
≈ 109.8 M�, a black hole mass of ≈ 107.2 M�, etc. The low overall importance of the
stellar and gas metallicities, the black hole accretion rate and the star formation rate
(see Figure 4.4) is reflected in their score profiles (see Figure 4.6): except for a few
small variations over their intervals, these features contribute very little to the final
prediction.

The strong dependence of the DM mass on the gas, stellar and black hole masses
can be explained in terms of a correlation between the DM halo and the baryonic
component in a given galaxy. As already discussed in Wechsler & Tinker (2018),
usually the most studied relation between the DM halo and its host galaxy is
the SHMR, because the measurement of stellar mass (or luminosity) is relatively
simple. For example, the estimate of the total gas amount in galaxies is very
challenging and demanding. However, the possible correlation between halo masses
and baryonic masses has been taken into account in some studies. An example can
be the exploitation of the Tully-Fisher relation as done in McGaugh et al. (2000)
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or the dependence of galaxy clustering on HI (e.g., Guo et al., 2017). Moreover, in
Contreras et al. (2015) the authors studied with two different approaches which
galactic properties show a correlation with DM halo mass, finding that, together
with the stellar mass and the r-band magnitude, a good correlation is found also for
the black hole mass.

Though the three baryonic components are crucial for the prediction of DM mass,
explaining the detailed behaviour of each score profile is not so trivial and needs
a deep-dive analysis of single subhalos in the target sample. An example is the
hump-like structure in the stellar mass score profile at around log(M∗/M�) = 11. A
possible explanation may be found in the role of mergers in these massive galaxies,
whose stellar mass growth is mainly dominated by the accretion of ex-situ stellar
populations, as previously presented in section 3.4, and also found in Pillepich et al.
(2018a) and Tacchella et al. (2019).

The 2D maps of the three most important pairwise interactions are shown in Fig-
ure 4.7. Looking at the position on the overall importance histogram in Figure 4.4,
these interactions are found to be not so significant for the prediction of the DM
mass, being comparable with the black hole accretion rate and star formation rate
mean absolute scores (. 0.004).

The prediction obtained by EBM from the training sample can be now applied to
the test sample. In Figure 4.8 two relative importance bar plots for two subhalos
randomly chosen from the test sample are shown as an example. Above each plot,
the value of the DM mass from the simulation M true

DM and that one predicted by EBM
Mpred

DM are provided. To obtain the predicted DM mass values for these two subhalos,
all the terms in the histograms have to be added to the mean logMDM of the training
sample.

Finally, in Figure 4.9, a comparison between the DM masses directly drawn from the
simulation (M true

DM ) and those predicted by the model (Mpred
DM ) for the subhalos in the

test sample is illustrated: this distribution is very tight with a scatter . ±0.06 dex4.
The distribution of the residuals around 0 is almost symmetric, even though a sort
of bending at negative values is present for subhalos with log(M true

DM /M�) < 11.4,
meaning that the predicted mass is systematically lower than the actual estimate.
The reason for this bending is still unclear and we will investigate about its origin. It
might be due to a selection bias in how the data are collected (we underline that for
this first application, we selected subhalos with log(Mtot/M�) > 11).

4The analysis repeated considering only the gas mass, stellar mass, and black hole mass gives a
consistent result, while accounting only for the stellar metallicity, gas metallicity, star formation
rate, and black hole accretion rate (and excluding any pairwise interaction) the scatter increases
up to ≈ ±0.15 dex.

4.3 An application to the cosmological simulation IllustrisTNG 159



−0.20 −0.15 −0.10 −0.05 0.00
Score

logMgas

logMBH

logM∗
logZ∗

log ṀBH
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Fig. 4.8: Relative importance histograms of the single features and the three most significant
pairwise interactions for two subhalos of the z = 0 test sample. Above each plot,
the true DM mass (M true

DM ) and the mass predicted by the model (Mpred
DM ) are

reported.
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Fig. 4.9: Difference between the predicted and the true DM masses as a function of the true
DM mass for the subhalos of the test sample at z = 0. The dotted black line repre-
sents M true

DM = Mpred
DM . The red dashed line traces the median of the distribution,

while the shaded region indicates the 68-th percentile of the distribution.
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4.3.2 Predicting DM mass at different redshift

In this section we briefly discuss an extension of the previous analysis to higher
redshifts. In particular, together with the subhalos taken from the z = 0 snapshot
of IllustrisTNG100-1, we now apply the same approach to all the central subhalos
with log(Mtot/M�) > 11 extracted from the snapshots at z = 0.5, z = 1, z = 2 and
z = 3.

In Table 4.2, the number of subhalos in the training and test samples of each snapshot
are listed, while Table 4.3-4.6 report the intervals and the mean values of the initial
7 features in each training samples as in Table 4.1.

Tab. 4.2: Number of subhalos in the training and test samples at snapshots z = 0, z = 0.5,
z = 1, z = 2, z = 3. Column 1: redshift of the snapshot. Columns 2: number
of subhalos in the training sample. Columns 3: number of subhalos in the test
sample.

Snapshot N train N test

z = 0 10561 4527

z = 0.5 10987 4709

z = 1 10825 4640

z = 2 9011 3862

z = 3 6139 2632

Tab. 4.3: Same as Table 4.1, but for the z = 0.5 snapshot.

Snapshot z = 0.5

Feature f (min f ; max f) f̄

log(MDM/M�) (10.92; 14.25) 11.41

log(M∗/M�) (7.59; 12.40) 9.49

log(Mgas/M�) (8.86; 13.42) 10.43

log(MBH/M�) (6.08; 9.79) 6.96

log(Z∗/Z�) (−1.00; 0.39) −0.06

log(Zgas/Z�) (−1.34; 0.65) −0.06

log(ṀBH/M� yr−1) (−8.38;−0.19) −3.03

log(SFR/M� yr−1) (−3.58; 1.94) −0.26

162 Chapter 4 Inferring the Dark Matter halo mass in galaxies from other
observables with Machine Learning



Tab. 4.4: Same as Table 4.1, but for the z = 1 snapshot.

Snapshot z = 1

Feature f (min f ; max f) f̄

log(MDM/M�) (10.88; 13.94) 11.40

log(M∗/M�) (7.63; 12.03) 9.48

log(Mgas/M�) (8.66; 13.13) 10.45

log(MBH/M�) (6.07; 9.70) 6.87

log(Z∗/Z�) (−1.04; 0.46) −0.10

log(Zgas/Z�) (−1.45; 0.59) −0.10

log(ṀBH/M� yr−1) (−7.34; 0.07) −2.87

log(SFR/M� yr−1) (−3.42; 2.29) 0.00

Tab. 4.5: Same as Table 4.1, but for the z = 2 snapshot.

Snapshot z = 2

Feature f (min f ; max f) f̄

log(MDM/M�) (10.92; 13.51) 11.35

log(M∗/M�) (8.06; 11.97) 9.38

log(Mgas/M�) (9.73; 12.59) 10.44

log(MBH/M�) (6.08; 9.58) 6.66

log(Z∗/Z�) (−1.00; 0.46) −0.19

log(Zgas/Z�) (−1.43; 0.60) −0.16

log(ṀBH/M� yr−1) (−6.63; 0.61) −2.69

log(SFR/M� yr−1) (−2.19; 2.28) 0.33

By analysing in Figure 4.10 and in Figure 4.11 the overall importance histograms of
the various features at different redshifts, we find that:

• the gas mass Mgas is the most important feature at all redshifts, and its
importance increases for increasing redshift;

• the stellar mass M∗ and the black hole mass MBH are ranked as the second
and the third most relevant features out to z = 2, but they are less important
at z = 3;
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Tab. 4.6: Same as Table 4.1, but for the z = 3 snapshot.

Snapshot z = 3

Feature f (min f ; max f) f̄

log(MDM/M�) (10.92; 13.09) 11.30

log(M∗/M�) (8.01; 11.60) 9.27

log(Mgas/M�) (9.83; 12.15) 10.41

log(MBH/M�) (6.08; 9.33) 6.49

log(Z∗/Z�) (−1.15; 0.49) −0.26

log(Zgas/Z�) (−1.41; 0.60) −0.23

log(ṀBH/M� yr−1) (−5.70; 0.71) −2.69

log(SFR/M� yr−1) (−0.65; 2.76) 0.53

• the SFR is found to rise in ranking back in time, as expected by looking at the
trend of the SFR density that peaks at z ≈ 2 (Madau plot; e.g.; Madau et al.,
1996), and it is even the second most important feature at z = 3;

• although the terms in some pairwise interactions change as a function of
redshift, at all redshifts these interactions are not significant in making the
final prediction of the DM mass.

Another interesting aspect to look at is the comparison among the 1D shape functions
of the same feature at different redshifts. The easiest way to do it consists in rescaling
to the same mean value of MDM in each plot. In Figure 4.12 and in Figure 4.13
the shape functions of the 7 features at the five redshifts analysed in this section,
opportunely rescaled to the mean value MDM = 1011.4 M� of the training sample at
z = 0, are illustrated.

The main aspects from this comparison can be summarised as follows:

• while the shape of the gas mass profile remains almost the same, only widening
the ranges towards lower redshifts, the hump-like structure in the stellar mass
profile previously described as well as the similar structure in the black hole
mass profile tend to fade from z = 0 to z = 3;

• as expected, both the black hole accretion rate and the star formation rate are
found to increase going from z = 0 to z = 3, because they play a major role in
the early Universe (see Madau & Dickinson, 2014);
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Fig. 4.10: Same as Figure 4.4, but for the training samples at the z = 0.5 (upper panel) and
z = 1 (lower panel) snapshots.
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logMBH

logZgas

logMgas × log SFR

logMBH× logMgas

logMgas × logZ∗

Snapshot z = 3
Overall Importance

Mean Absolute Score

Fig. 4.11: Same as Figure 4.4, but for the training samples at the z = 2 (upper panel) and
z = 3 (lower panel) snapshots.
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Fig. 4.12: Same as Figure 4.5, but for (from top to bottom) the gas mass, the stellar mass
and the black hole mass of the training samples at at z = 0, z = 0.5, z = 1, z = 2
and z = 3.
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Fig. 4.13: Same as Figure 4.5, but for (from top to bottom) the stellar metallicity, the gas
metallicity, the black hole accretion rate and the star formation rate of the training
samples at z = 0, z = 0.5, z = 1, z = 2 and z = 3.
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Fig. 4.14: Same as Figure 4.9, but for the z = 0.5 (upper left panel), z = 1 (upper right
panel), z = 2 (lower left panel) and z = 3 (lower right panel) snapshots for the
test samples.

• the rising role of the star formation rate at higher redshift in inferring the DM
mass is reflected on the shape functions, that become steeper from z = 0 to
z = 3, while the black hole accretion rate tends to remain almost flat.

Finally, the predictions made upon the four training samples can be applied to their
test samples at the corresponding redshifts. Similarly to what found at z = 0, EBM
predicts values of the DM mass with a scatter of . ±0.06 in the four redshifts. The
comparison between M true

DM and Mpred
DM for the z = 0.5, z = 1, z = 2 and z = 3 test

samples are displayed in Figure 4.14.
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4.4 Conclusion & Future perspectives

In this Chapter, we presented the preliminary results of a still ongoing project whose
main scope is to infer the DM halo mass of simulated galaxies in the IllustrisTNG
simulation making use of other physical properties, in order to possibly derive a
functional form able to link the halo mass to other observables in real galaxies. In
light of this challenge, we have been relying on the state-of-the-art Explainable
Boosting Machine algorithm, recently developed by Microsoft Research. This new
method has a very high accuracy and intelligibility and exploits some machine
learning techniques like boosting or bagging in the field of the generalised additive
models with pairwise interactions, GA2M.

As a first analysis, we selected from the z = 0 snapshot of the IllustrisTNG100
simulation subhalos with Mtot > 1011 M�, meaning by Mtot the sum of the masses
of all particles and cells of all components in each subhalo, and we used 7 galactic
properties. This sample has been split into a training sample and a test sample,
with a ratio of 70:30. Although each property used plays a role in inferring MDM,
the gas mass, the stellar mass and the black hole masses give the most important
contributions to the final inference. Moreover, we extended our study to higher
redshifts, considering also subhalos in the same range of total mass at z = 0.5,
z = 1, z = 2 and z = 3 , in order to test the reliability of the method in tracing the
back-in-time evolution of these features. The high intelligibility that characterises
the EBM method allows also to shed light on peculiarities in the properties used to
infer the DM mass, as found for instance in the stellar mass and black hole mass
profiles.

These are just some preliminary results, but this method is proving to be very
promising, finding, at this stage, a scatter of . ±0.06 dex between the actual
value of MDM from the simulation and the value predicted by the model at all
redshifts. Furthermore, this scatter is found to decrease (' 0.04 dex) in systems with
MDM & 1012 M�, i.e. DM halos hosting galaxies that are mostly ETGs with stellar
masses M∗ & 1010.5 M�, as those analysed in Chapter 3.

In the next future, we plan to extend the analysis to other features of subhalos,
such as kinematic properties or chemical abundances, making also use of data from
IllustrisTNG300, so as to increase the statistics of objects, with the aim of obtaining a
functional form that would allow to derive the DM halo mass in observed galaxies.
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Conclusions & Future
Perspectives

5

„One, remember to look up at the stars and not
down at your feet. Two, never give up work.
Work gives you meaning and purpose and life is
empty without it. Three, if you are lucky enough
to find love, remember it is there and don’t throw
it away.

— Stephen Hawking

This Ph.D. thesis is mainly devoted to study the formation and evolution of early-type
galaxies (ETGs) as the result of a complex merging history. In the first part of this
thesis, I have studied the evolution of the stellar mass–velocity dispersion relation of
massive ETGs, that I investigated by exploiting a Bayesian hierarchical approach,
which results are presented in Chapter 2. In Chapter 3, I illustrated the results of
a project aimed at studying the radial distributions of stellar properties, such as
age, metallicity and velocity dispersion, comparing observed ETGs drawn from the
MaNGA survey and simulated galaxies from the IllustrisTNG simulation suite. The
main goal of this work is to explain the above-mentioned radial profiles in observed
ETGs in terms of a combination of in-situ and ex-situ stellar populations, information
that is directly accessible in simulations. The results presented in Chapter 3 have
been obtained in collaboration with Prof. Alexie Leauthaud and her research group
at the University of California Santa Cruz (UCSC). Finally, in Chapter 4, I presented
the preliminary results of a project aimed at inferring the dark matter halo mass in
simulated galaxies from IllustrisTNG exploiting a machine learning algorithm. This
project is still ongoing and its final goal is to derive a functional form able to predict
the mass of dark matter of real galaxies in the Universe. The results illustrated in
Chapter 4 have been obtained during a visiting period at the UCSC, in collaboration
with Prof. Alexie Leauthaud and her research group, which has been possible thanks
to the Marie Skłodkowska-Curie grant received in 2019 to carry out a project on the
scientific area of data analysis and machine learning.
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In the following, I summarise the results presented in this thesis and I illustrate
future extensions of these projects.

The cosmic evolution of the stellar mass–velocity dispersion relation
of early-type galaxies

As we have seen in section 2.1, from the late 70’s, we know that ETGs obey scaling
relations concerning luminosity, size and stellar kinematic properties. The first
empirical scaling relations to be discovered were the Faber-Jackson relation (Faber &
Jackson, 1976) and the Kormendy relation (Kormendy, 1977) that link the luminosity
to the stellar velocity dispersion and to the size of a galaxy, respectively. Soon
thereafter, both the Faber-Jackson and Kormendy relations were discovered to be
projections of a plane in a three-dimensional space, the so-called Fundamental Plane
(Djorgovski & Davis, 1987; Dressler et al., 1987). Since then, with the improvement
of technologies and the increasing of statistics in the newest surveys, systematic
studies about scaling relations at different redshifts have been conducted. For
instance, since it is found that at higher redshift galaxies are more compact than
those in the present-day Universe, it is interesting to study the evolution of the stellar
mass–size relation (e.g., Ferguson et al., 2004; van der Wel et al., 2014; Damjanov
et al., 2019). Analogously, many studies show that, on average, the stellar velocity
dispersion of ETGs evolves with redshift as well: in particular, for given stellar mass,
the lower the redshift, the lower the velocity dispersion (e.g., van de Sande et al.,
2013; Belli et al., 2014a; Gargiulo et al., 2016; Belli et al., 2017; Tanaka et al.,
2019).

In this context, in Chapter 2 we presented a study focused on the evolution of
the stellar mass–velocity dispersion relation of ETGs. Specifically, we developed a
Bayesian hierarchical approach (described in section 2.3) to study the evolution
of the M∗−σe relation in massive (M∗ & 3 × 1010 M�) ETGs in the redshift range
0 . z . 2.5. The first subsample we analysed is our fiducial sample and consists of
galaxies in the redshift range 0 . z . 1.2 drawn from the SDSS (e.g., Alam et al.,
2015) and the LEGA-C (van der Wel et al., 2016) surveys. We selected ETGs, we
derived stellar masses in a homogeneous way and then we corrected the velocity
dispersions to an aperture of one effective radius. The second subsample taken into
account is our high-redshift sample (0.8 . z . 2.5) that is composed by galaxies
taken from four previous works in the literature (van de Sande et al., 2013; Belli
et al., 2014a; Gargiulo et al., 2016; Belli et al., 2017), for which we simply require
ETGs with stellar masses and velocity dispersions having the same definitions used
for the fiducial sample. As shown in section 2.4, based on the fiducial sample, we

172 Chapter 5 Conclusions & Future Perspectives



find out that at z . 1.2 the M∗−σe relation evolves in normalisation according to
σ0 ∝Mβ

∗ (1 + z)ζ with β ' 0.18 and ζ ' 0.4. When the slope β is allowed to evolve,
it increases as β(z) ' 0.16 + 0.26 log(1 + z): this model describes the evolution as
well as a constant-slope model, according to the analysis of the Bayesian evidence of
each model. The analysis of the extended sample (fiducial sample + high-redshift
sample), over the wider redshift range 0 . z . 2.5, shows results similar to those of
the fiducial sample, with a slope β ' 0.18, but with a slightly stronger dependence of
the normalisation on redshift (ζ ' 0.5). When the slope is allowed to evolve, it varies
more weakly (dβ/d log(1 + z) ' 0.18) than for the fiducial sample. The intrinsic
scatter of the relation is consistent with being constant ' 0.08 dex in σe at fixed
M∗. The results of the work presented in Chapter 2 are illustrated in Cannarozzo,
Sonnenfeld, & Nipoti (2020a).

In addition to this work, we analysed the impact of adopting different selection
criteria for ETGs, showing that, for instance, at least as far as a selection based on the
UV J colour–colour diagram is concerned, the results of Cannarozzo, Sonnenfeld, &
Nipoti (2020a) are not biased. This analysis, described in Appendix 2.D, was taken
from Cannarozzo et al. (2020b).

The results obtained in this project corroborate previous findings about the evolution
of the M∗−σe relation of ETGs through cosmic time. The theoretical interpretation
of this evolution is not straightforward. Indeed, we know that the stellar mass of
individual galaxies varies with time, increasing as a consequence of mergers and
star formation activity, but also decreasing because of mass return by ageing stellar
populations. However, the merger-driven evolution should play the most important
role, causing, on average, an increment of the stellar mass of ETGs. In the future,
we plan to implement high-resolution binary simulations and analyse merger trees
of galaxies in cosmological simulations to understand how individual ETGs move on
the M∗−σe plane. Our current results indicate that, on average, the stellar velocity
dispersion of individual massive (M∗ & 3× 1011 M�) ETGs at z ≈ 1 must decrease
while they evolve from z ≈ 1 to z ≈ 0.

The role of in-situ and ex-situ star formation in early-type galaxies:
MaNGA versus IllustrisTNG

The merger-driven evolution of ETGs involves also aspects relating the stellar pop-
ulations and their mixing. The spatial distribution of stellar populations, their
metallicity, chemical abundances as well as age and other physical properties in a
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galaxy contain all the information on the evolutionary processes occurred across cos-
mic time. In this context, I have been carrying out a project, presented in Chapter 3,
aimed at interpreting the observed radial distributions of some stellar properties in
massive (M∗ & 3× 1010 M�) ETGs from the MaNGA survey (Bundy et al., 2015; Yan
et al., 2016a) in terms of a combination of two stellar components: stars formed
in situ, i.e. within the main galaxy progenitor, and stars formed ex situ, i.e. in
other galaxies, then accreted via mergers. To do that, we make use of ETGs taken
from the IllustrisTNG simulation suite (Marinacci et al., 2018; Naiman et al., 2018;
Nelson et al., 2018; Pillepich et al., 2018a; Springel et al., 2018). Concerning
MaNGA data, in order to reduce the effects of systematic biases caused by different
assumptions and priors, as well as diverse fitting methods (Conroy, 2013b), we rely
on estimates derived by using two full spectral fitting codes: FIREFLY (Maraston &
Strömbäck, 2011; Comparat et al., 2017; Goddard et al., 2017a; Wilkinson et al.,
2017; Maraston et al., 2020) and PROSPECTOR (Leja et al., 2017; Johnson et al.,
2019). In addition, we include estimates for velocity dispersion obtained using
PPXF (Cappellari & Emsellem, 2004; Cappellari, 2017). To derive the radial profiles
for MaNGA galaxies, we used the same approach as Oyarzún et al. (2019). To
make a comparison with simulated galaxies, we took into account ETGs drawn from
the z = 0.1 snapshot of IllustrisTNG100, and, for obtaining the radial profiles, we
applied the method described in Huang et al. (2018) and also applied in Ardila et al.
(2021).

As described in section 3.2, for both MaNGA and IllustrisTNG samples, we applied
a selection of galaxies based on colours, such that ETGs are those galaxies with
(g−r) > 0.6 (see Nelson et al., 2018), constituting our Red galaxy sample. In addition,
we analysed the effects of another selection based on the star formation rate–stellar
mass plane, so that ETGs are those galaxies characterised by star formation rates
below 1 dex from the star-forming main sequence (as in one of the selection methods
described in Donnari et al. 2019), forming our Quiescent galaxy sample. Among the
many issues to be considered when comparing real with simulated galaxies, the
different definitions of stellar masses have to be taken into account. For simulated
ETGs, we explored the impact of these differences, considering the projected stellar
mass within two half-mass radii (R2hmr) or within a radius of 30 kpc. Concerning
MaNGA ETGs, we considered stellar masses derived from diverse works in literature.
In particular, we made use of stellar masses obtained from the Sérsic+Exponential
fits accounting (or not) for the effects of the dust extinction (the SerExp Dusty and
Dust-free model masses) from Meert et al. (2015), mass measurements listed in the
original NSA catalogue derived from Petrosian and Sérsic fits, and, last but not least,
the masses obtained by summing the stellar masses included in the concentric annuli
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derived by FIREFLY and PROSPECTOR for building the profiles. In this work, we
also analysed the pros and cons of selecting ETGs in stellar mass bins or in number-
density-based stellar mass bins, for the latter case by comparing the cumulative
stellar mass function of IllustrisTNG100 with those computed for the SerExp Dusty
and Dust-free stellar masses by Bernardi et al. (2017). The stellar properties we
compared in this projects are the stellar mass surface density, metallicity, age and
velocity dispersion.

In section 3.4, we described in detail the comparison between the observed and
simulated Red galaxy samples, assuming for the former the SerExp Dusty stellar
mass (and showing the same analysis for the SerExp Dust-free stellar mass in
Appendix 3.A), and for the latter the mass within R2hmr. The analysis extended
to the other cases (presented in Appendix 3.C) showed consistent results with
those summarised in the following. Our analysis revealed a remarkable agreement
between the stellar mass surface density profiles of MaNGA and IllustrisTNG ETGs.
In particular, focusing on IllustrisTNG profiles, we do find that for galaxies with
M∗ . 1011 M�, the inner regions are dominated by the in-situ stellar populations
out to ≈ 20 kpc, while above M∗ ≈ 1011 M� the ex-situ stellar component becomes
dominant at all radii, corroborating previous results in the literature (see Pillepich
et al. 2018a; Tacchella et al. 2019). This result, in addition to the similar shapes
of the radial profiles of the stellar mass surface density found for the in-situ and
ex-situ stellar populations and the detailed analysis of the merger history, suggests
that the high-mass tail of galaxies that we observe in the present-day Universe may
be the result of a stellar mass assembly history mainly marked by major mergers
that tend to homogenise the stellar populations of progenitor galaxies in the merger
remnant. Moreover, we found that IllustrisTNG profiles reproduce quite well also
the observed radial distributions for stellar metallicity, age and velocity dispersion.
Finally, we analysed separately the role of central and satellite galaxies for both
IllustrisTNG and MaNGA ETGs, finding that there are not relevant differences in
all the profiles between the two galaxy populations, with the only exception of the
velocity dispersion profiles of massive systems, for which central simulated ETGs
tend to have higher velocity dispersions than the observed counterpart. The results
of this work will be presented soon in Cannarozzo, Leauthaud, Oyarzún, Huang,
Diemer, Bundy, Nipoti, Sonnenfeld, & Rodriguez-Gomez (a, in prep.).

A future extension of this project will be the analysis of radial distributions of
chemical abundances in both observed and simulated ETGs. Furthermore, the
reconstruction of the merger trees of simulated galaxies in IllustrisTNG will allow us
to study how stellar population profiles vary across cosmic time as a consequence of
a merger-driven evolution.
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Inferring the Dark Matter halo mass in galaxies from other
observables with Machine Learning

In the context of the galaxy-halo connection, it is widely known that the dark matter
(DM) halos show correlations with other physical properties of their host galaxies.
The most commonly used relation between galaxies and their host DM halos is the
so-called stellar-to-halo-mass relation (SHMR, e.g., Kravtsov et al., 2004; Moster
et al., 2010; Leauthaud et al., 2011; Tinker et al., 2017; Wechsler & Tinker, 2018;
Behroozi et al., 2019). Moreover, we know that there are several other empirical
relations between galaxy properties. For instance, stellar mass in galaxies exhibits
further correlations, such as the M∗−MBH relation (e.g., Magorrian et al., 1998;
Reines & Volonteri, 2015), or the relations involving the stellar and gas metallicities
(e.g., Tremonti et al., 2004; Gallazzi et al., 2005; Gallazzi et al., 2006; Mannucci
et al., 2010; Mingozzi et al., 2020). Therefore, given the complexity of the problem
and the high number of galaxy properties that might be related to the DM halo
in a galaxy, the study of the galaxy-halo connection can be approached relying on
machine learning techniques to shed light on this intricate network of relations
among several galactic properties.

In light of this challenge, I have started a project whose aim is to infer the DM halo
mass in the IllustrisTNG simulations making use of other physical properties. Specif-
ically, we have been relying on the state-of-the-art Explainable Boosting Machine
(EBM) algorithm (Caruana et al., 2015; Nori et al., 2019), recently developed by
Microsoft Research. This new method has a very high accuracy and intelligibility
and exploits some machine learning techniques like boosting or bagging in the field
of the generalised additive models with pairwise interactions (GA2M, e.g., Lou,
Caruana, Gehrke, & Hooker 2013). In Chapter 4, we presented the preliminary
results of an analysis performed on central galaxies taken from the z = 0 snapshot
of the IllustrisTNG100 simulation, selecting objects with Mtot > 1011 M�, meaning
by Mtot the sum of the masses of all particles and cells of all components in each
subhalo. We trained a model on a sample of around 10,000 central subhalos, taking
into account seven galaxy properties for each subhalo: the gas mass, the stellar mass,
the black hole mass, the gas and stellar metallicities, the star formation rate and the
black hole accretion rate. Albeit each property gives its contribution to derive MDM,
the gas mass, the stellar mass and the black hole mass play the most significant
roles to the overall inference. The high intelligibility characterising EBM allows
also to shed light on peculiarities in the properties used to derive the DM mass. For
example, in the stellar mass shape function shown in Figure 4.5, in correspondence
of M∗ ≈ 1011 M�, a hump-like structure is observed. A possible interpretation for
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the presence of this feature is the rising dominant role of ex-situ stellar component
in massive galaxies, as found in Chapter 3.

The results described in Chapter 4 are still preliminary, but we find that the EBM
method is very promising for our scope. Indeed, at this stage, the predictions made
by the model applied to a test sample of ≈ 4500 halos are such that a scatter of at
most 0.06 dex is found between the actual value of MDM from the simulation and
the value derived by the model. Furthermore, similar results are obtained when
the same analysis is performed on central subhalos taken from different snapshots
(z = 0.5, 1, 2, 3). The strength characterising EBM, in this context, is also the high
capability of revealing the rising role that some properties like the star formation
rate have going towards high redshifts.

In the immediate future, we are going to extend our study to other features of
subhalos, making use of data from IllustrisTNG300 as well, so as to improve the
statistics of objects. Overall, our main goal for this project will be to derive a
functional form to be possibly used on real galaxies to provide an estimate of their
DM halos exploiting all the available data for these objects. This work will be
presented in Cannarozzo, Leauthaud, Sonnenfeld, Nipoti, et al. (b, in prep.).

This Ph.D. thesis confirmed and extended previous findings about ETGs, their evolu-
tion across cosmic time through mergers, as well as the existing connection between
galaxies and their DM halos. The results presented in this manuscript were obtained
relying on state-of-the-art methods of statistics, data analysis and machine learning,
which are applicable to several studies. The project presented in Chapter 2 repre-
sents the first systematic work in literature that looks at the evolution of the M∗−σe

relation for massive ETGs. The novel Bayesian hierarchical approach exploited
(and also used in a simpler implementation in Chapter 3) is suitable to analyse the
evolution of other scaling relations in ETGs, such as the size–mass relation or the
Fundamental Plane. This thesis underlined also the crucial importance of making
as consistent as possible comparisons between observations and simulations. The
evolution of scaling relations and stellar properties in galaxies can be approached
also by reconstructing the evolutionary path of individual progenitor galaxies, which
would give a fundamental piece of information that is not directly accessible from
observations. Therefore, from a galaxy-evolution point of view, the exploitation
and/or the implementation of cosmological simulations able to model the physical
processes occurring into galaxies across cosmic time can be a way to answer open
questions about galaxy formation and evolution models. On the other hand, the
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implementation of high-resolution hydrodynamic N -body simulations can help us to
study more in detail the merger history of galaxies to understand the role of each
progenitor, and the role that the gas component, supermassive black holes and other
elements may have in the production of galaxy remnants. Finally, in this thesis,
the project presented in Chapter 4 confirms the importance that machine learning
techniques have been acquiring during the last years, both in handling the conspicu-
ous huge amount of data from the present-day and upcoming surveys, as well as in
facing very intricate and complex astrophysical and cosmological questions.

178 Chapter 5 Conclusions & Future Perspectives



Bibliography

Eddington, A. S. (Mar. 1913). “On a formula for correcting statistics for the effects of a
known error of observation”. In: Monthly Notices of the RAS 73, pp. 359–360 (cit. on
p. 46).

Hubble, E. P. (Dec. 1926). “Extragalactic nebulae.” In: Astrophysical Journal 64, pp. 321–369
(cit. on p. 1).

– (1936). Realm of the Nebulae (cit. on p. 1).

de Vaucouleurs, Gerard (Jan. 1948). “Recherches sur les Nebuleuses Extragalactiques”. In:
Annales d’Astrophysique 11, p. 247 (cit. on p. 7).

Salpeter, E. E. (Jan. 1955). “The Luminosity Function and Stellar Evolution.” In: Astrophysical
Journal 121, p. 161 (cit. on pp. 5, 84).

Jeffreys, H. (1961). Theory of Probability. Third. Oxford, England: Oxford (cit. on p. 52).

McClure, Robert D. & Sidney van den Bergh (Dec. 1968). “UB V Observations of Field
Galaxies”. In: Astronomical Journal 73, p. 1008 (cit. on p. 10).

Sérsic, J. L. (1968). Atlas de galaxias australes (cit. on pp. 7, 33).

Tinsley, Beatrice M. (Feb. 1968). “Evolution of the Stars and Gas in Galaxies”. In: Astrophysi-
cal Journal 151, p. 547 (cit. on p. 11).

Faber, S. M. (Sept. 1972). “Quadratic programming applied to the problem of galaxy
population synthesis.” In: Astronomy and Astrophysics 20, p. 361 (cit. on p. 5).

Sandage, Allan (Aug. 1972). “Absolute Magnitudes of E and so Galaxies in the Virgo and
Coma Clusters as a Function of U - B Color”. In: Astrophysical Journal 176, p. 21 (cit. on
p. 10).

Searle, Leonard & Wallace L. W. Sargent (Apr. 1972). “Inferences from the Composition of
Two Dwarf Blue Galaxies”. In: Astrophysical Journal 173, p. 25 (cit. on p. 11).

Faber, S. M. (Feb. 1973). “Variations in Spectral-Energy Distributions and Absorption-Line
Strengths among Elliptical Galaxies”. In: Astrophysical Journal 179, pp. 731–754 (cit. on
p. 5).

Larson, Richard B. (Mar. 1974). “Dynamical models for the formation and evolution of
spherical galaxies”. In: Monthly Notices of the RAS 166, pp. 585–616 (cit. on p. 85).

Tinsley, B. M. (Sept. 1974). “Constraints on models for chemical evolution in the solar
neighborhood.” In: Astrophysical Journal 192, pp. 629–641 (cit. on p. 11).

179



Faber, S. M. & R. E. Jackson (Mar. 1976). “Velocity dispersions and mass-to-light ratios for
elliptical galaxies”. In: Astrophysical Journal 204, pp. 668–683 (cit. on pp. 15, 27, 84,
172).

Kormendy, J. (Dec. 1977). “Brightness distributions in compact and normal galaxies. II
- Structure parameters of the spheroidal component”. In: Astrophysical Journal 218,
pp. 333–346 (cit. on pp. 16, 27, 84, 172).

Rees, M. J. & J. P. Ostriker (June 1977). “Cooling, dynamics and fragmentation of massive
gas clouds: clues to the masses and radii of galaxies and clusters.” In: Monthly Notices of
the RAS 179, pp. 541–559 (cit. on p. 143).

Spinrad, Hyron (Jan. 1977). “The Ultraviolet Spectra and Color Evolution of Galaxies at
Large Redshifts”. In: Evolution of Galaxies and Stellar Populations. Ed. by Beatrice M.
Tinsley & D. Campbell Larson Richard B. Gehret, p. 301 (cit. on p. 5).

Tully, R. B. & J. R. Fisher (Feb. 1977). “Reprint of 1977A&A....54..661T. A new method
of determining distance to galaxies.” In: Astronomy and Astrophysics 500, pp. 105–117
(cit. on p. 15).

Tinsley, B. M. (May 1978). “Evolutionary synthesis of the stellar population in elliptical
galaxies. II. Late M giants and composition effects.” In: Astrophysical Journal 222, pp. 14–
22 (cit. on p. 11).

White, S. D. M. & M. J. Rees (May 1978). “Core condensation in heavy halos: a two-stage
theory for galaxy formation and clustering.” In: Monthly Notices of the RAS 183, pp. 341–
358 (cit. on p. 143).

Wilkinson, A. & J. B. Oke (Mar. 1978). “Spectral variations in brightest cluster galaxies.” In:
Astrophysical Journal 220, pp. 376–389 (cit. on p. 5).

Dressler, A. (Mar. 1980). “Galaxy morphology in rich clusters: implications for the formation
and evolution of galaxies.” In: Astrophysical Journal 236, pp. 351–365 (cit. on pp. 20, 21).

Fall, S. M. & G. Efstathiou (Oct. 1980). “Formation and rotation of disc galaxies with haloes.”
In: Monthly Notices of the RAS 193, pp. 189–206 (cit. on p. 143).

Larson, R. B., B. M. Tinsley, & C. N. Caldwell (May 1980). “The evolution of disk galaxies
and the origin of S0 galaxies”. In: Astrophysical Journal 237, pp. 692–707 (cit. on p. 11).

O’Connell, R. W. (Mar. 1980). “Galaxy spectral synthesis. II. M 32 and the ages of galaxies.”
In: Astrophysical Journal 236, pp. 430–440 (cit. on p. 5).

Spinrad, H. (Jan. 1980). “Spectroscopy and photometry of faint galaxies: hints at their
evolution.” In: Objects of High Redshift. Ed. by G. O. Abell & P. J. E. Peebles. Vol. 92,
pp. 39–48 (cit. on p. 5).

Bruzual A., G. (Oct. 1983). “Spectral evolution of galaxies. I. Early-type systems.” In:
Astrophysical Journal 273, pp. 105–127 (cit. on p. 6).

Mould, J. R., J. Kristian, & G. S. Da Costa (July 1983). “Stellar populations in local group
dwarf elliptical galaxies. I. NGC 147.” In: Astrophysical Journal 270, pp. 471–484 (cit. on
p. 10).

180 Bibliography



Blumenthal, G. R., S. M. Faber, J. R. Primack, & M. J. Rees (Oct. 1984). “Formation of
galaxies and large-scale structure with cold dark matter.” In: Nature 311, pp. 517–525
(cit. on p. 143).

Mould, J. R. (Oct. 1984). “Chemical evolution of bulges and halos.” In: Publications of the
ASP 96, pp. 773–778 (cit. on p. 11).

Buonanno, R., C. E. Corsi, F. Fusi Pecci, E. Hardy, & R. Zinn (Nov. 1985). “Color-magnitude
diagrams for the clusters and the field of the Fornaxdwarf spheroidal galaxy.” In: Astronomy
and Astrophysics 152, pp. 65–84 (cit. on p. 10).

Renzini, Alvio & Alberto Buzzoni (1986). “Global properties of stellar populations and the
spectral evolution of galaxies”. In: Spectral evolution of galaxies. Springer, pp. 195–235
(cit. on p. 6).

Djorgovski, S. & M. Davis (Feb. 1987). “Fundamental properties of elliptical galaxies”. In:
Astrophysical Journal 313, pp. 59–68 (cit. on pp. 16, 27, 84, 172).

Dressler, A., D. Lynden-Bell, D. Burstein, et al. (Feb. 1987). “Spectroscopy and photometry of
elliptical galaxies. I - A new distance estimator”. In: Astrophysical Journal 313, pp. 42–58
(cit. on pp. 16, 27, 84, 172).

Cleveland, William S. & Susan J. Devlin (1988). “Locally Weighted Regression: An Approach
to Regression Analysis by Local Fitting”. In: Journal of the American Statistical Association
83.403, pp. 596–610. eprint: https://www.tandfonline.com/doi/pdf/10.1080/
01621459.1988.10478639 (cit. on p. 45).

McCullagh, P. & J.A. Nelder (1989). Generalized Linear Models, Second Edition. Chapman
and Hall/CRC Monographs on Statistics and Applied Probability Series. Chapman & Hall
(cit. on p. 145).

Hastie, T. J. & R. J. Tibshirani (1990). Generalized additive models. London: Chapman &
Hall, p. 335 (cit. on p. 145).

Bower, Richard G., J. R. Lucey, & Richard S. Ellis (Feb. 1992). “Precision photometry of
early-type galaxies in the Coma and Virgo clusters : a test of the universality of the
colour-magnitude relation - I. The data.” In: Monthly Notices of the RAS 254, pp. 589–600
(cit. on p. 10).

Worthey, Guy, S. M. Faber, & J. J. Gonzalez (Oct. 1992). “MG and Fe Absorption Features in
Elliptical Galaxies”. In: Astrophysical Journal 398, p. 69 (cit. on p. 12).

Fagotto, F., A. Bressan, G. Bertelli, & C. Chiosi (1994a). “Evolutionary sequences of stellar
models with new radiative opacities. III. Z=0.0004 and Z=0.05”. In: Astronomy and
Astrophysics, Supplement 104, pp. 365–376 (cit. on p. 37).

– (1994b). “Evolutionary sequences of stellar models with new radiative opacities. IV.
Z=0.004 and Z=0.008”. In: Astronomy and Astrophysics, Supplement 105, pp. 29–38
(cit. on p. 37).

– (1994c). “Evolutionary sequences of stellar models with new radiative opacities. IV.
Z=0.004 and Z=0.008”. In: Astronomy and Astrophysics, Supplement 105, pp. 29–38
(cit. on p. 37).

Bibliography 181

https://www.tandfonline.com/doi/pdf/10.1080/01621459.1988.10478639
https://www.tandfonline.com/doi/pdf/10.1080/01621459.1988.10478639


Worthey, Guy (Nov. 1994). “Comprehensive Stellar Population Models and the Disentan-
glement of Age and Metallicity Effects”. In: Astrophysical Journal, Supplement 95, p. 107
(cit. on p. 109).

Bertin, E. & S. Arnouts (June 1996). “SExtractor: Software for source extraction.” In:
Astronomy and Astrophysics, Supplement 117, pp. 393–404 (cit. on p. 37).

Madau, Piero, Henry C. Ferguson, Mark E. Dickinson, et al. (Dec. 1996). “High-redshift
galaxies in the Hubble Deep Field: colour selection and star formation history to z~4”. In:
Monthly Notices of the RAS 283.4, pp. 1388–1404. arXiv: astro-ph/9607172 [astro-ph]
(cit. on p. 164).

Cooper, Gregory F., Constantin F. Aliferis, Richard Ambrosino, et al. (1997). “An evaluation
of machine-learning methods for predicting pneumonia mortality”. In: Artificial Intelligence
in Medicine 9.2, pp. 107 –138 (cit. on p. 149).

Greggio, L. (Feb. 1997). “On the metallicity distribution in the nuclei of elliptical galaxies”.
In: Monthly Notices of the RAS 285.1, pp. 151–166. arXiv: astro-ph/9609196 [astro-ph]
(cit. on p. 12).

Binney, James & Michael Merrifield (1998). Galactic Astronomy (cit. on pp. 6, 7, 17).

Magorrian, John, Scott Tremaine, Douglas Richstone, et al. (June 1998). “The Demography
of Massive Dark Objects in Galaxy Centers”. In: Astronomical Journal 115.6, pp. 2285–
2305. arXiv: astro-ph/9708072 [astro-ph] (cit. on pp. 144, 176).

Ciotti, L. & G. Bertin (Dec. 1999). “Analytical properties of the R1/m law”. In: Astronomy
and Astrophysics 352, pp. 447–451. arXiv: astro-ph/9911078 [astro-ph] (cit. on p. 8).

Jørgensen, Inger (July 1999). “E and S0 galaxies in the central part of the Coma cluster: ages,
metal abundances and dark matter”. In: Monthly Notices of the RAS 306.3, pp. 607–636.
arXiv: astro-ph/9902250 [astro-ph] (cit. on p. 12).

Trager, S. C. (Jan. 1999). “The Ages of Early-Type Galaxies: A Cautionary Tale”. In: Photo-
metric Redshifts and the Detection of High Redshift Galaxies. Ed. by Ray Weymann, Lisa
Storrie-Lombardi, Marcin Sawicki, & Robert Brunner. Vol. 191. Astronomical Society of
the Pacific Conference Series, p. 195. arXiv: astro-ph/9906396 [astro-ph] (cit. on p. 5).

Balogh, Michael L., Julio F. Navarro, & Simon L. Morris (Sept. 2000). “The Origin of Star
Formation Gradients in Rich Galaxy Clusters”. In: Astrophysical Journal 540.1, pp. 113–
121. arXiv: astro-ph/0004078 [astro-ph] (cit. on p. 11).

Kuntschner, Harald (June 2000). “The stellar populations of early-type galaxies in the Fornax
cluster”. In: Monthly Notices of the RAS 315.1, pp. 184–208 (cit. on p. 12).

McGaugh, S. S., J. M. Schombert, G. D. Bothun, & W. J. G. de Blok (Apr. 2000). “The
Baryonic Tully-Fisher Relation”. In: Astrophysical Journal, Letters 533.2, pp. L99–L102.
arXiv: astro-ph/0003001 [astro-ph] (cit. on pp. 144, 158).

Trager, S. C., S. M. Faber, Guy Worthey, & J. Jesús González (July 2000). “The Stellar
Population Histories of Early-Type Galaxies. II. Controlling Parameters of the Stellar
Populations”. In: Astronomical Journal 120.1, pp. 165–188. arXiv: astro-ph/0004095
[astro-ph] (cit. on p. 11).

182 Bibliography

https://arxiv.org/abs/astro-ph/9607172
https://arxiv.org/abs/astro-ph/9609196
https://arxiv.org/abs/astro-ph/9708072
https://arxiv.org/abs/astro-ph/9911078
https://arxiv.org/abs/astro-ph/9902250
https://arxiv.org/abs/astro-ph/9906396
https://arxiv.org/abs/astro-ph/0004078
https://arxiv.org/abs/astro-ph/0003001
https://arxiv.org/abs/astro-ph/0004095
https://arxiv.org/abs/astro-ph/0004095


York, Donald G., J. Adelman, Jr. Anderson John E., et al. (Sept. 2000). “The Sloan Digital
Sky Survey: Technical Summary”. In: Astronomical Journal 120.3, pp. 1579–1587. arXiv:
astro-ph/0006396 [astro-ph] (cit. on pp. 8, 87, 142).

Bacon, R., Y. Copin, G. Monnet, et al. (Sept. 2001). “The SAURON project - I. The panoramic
integral-field spectrograph”. In: Monthly Notices of the RAS 326.1, pp. 23–35. arXiv:
astro-ph/0103451 [astro-ph] (cit. on p. 85).

Kroupa, Pavel (Apr. 2001). “On the variation of the initial mass function”. In: Monthly Notices
of the RAS 322.2, pp. 231–246. arXiv: astro-ph/0009005 [astro-ph] (cit. on pp. 84,
89).

Kuntschner, Harald, John R. Lucey, Russell J. Smith, Michael J. Hudson, & Roger L. Davies
(May 2001). “On the dependence of spectroscopic indices of early-type galaxies on age,
metallicity and velocity dispersion”. In: Monthly Notices of the RAS 323.3, pp. 615–629.
arXiv: astro-ph/0011234 [astro-ph] (cit. on p. 11).

Springel, Volker, Simon D. M. White, Giuseppe Tormen, & Guinevere Kauffmann (Dec. 2001).
“Populating a cluster of galaxies - I. Results at [formmu2]z=0”. In: Monthly Notices of the
RAS 328.3, pp. 726–750. arXiv: astro-ph/0012055 [astro-ph] (cit. on p. 110).

Bertin, G., L. Ciotti, & M. Del Principe (Apr. 2002). “Weak homology of elliptical galaxies.”
In: Astronomy and Astrophysics 386, pp. 149–168. arXiv: astro-ph/0202208 [astro-ph]
(cit. on p. 71).

de Zeeuw, P. T., M. Bureau, Eric Emsellem, et al. (Jan. 2002). “The SAURON project - II.
Sample and early results”. In: Monthly Notices of the RAS 329.3, pp. 513–530. arXiv:
astro-ph/0109511 [astro-ph] (cit. on p. 85).

Proctor, R. N. & A. E. Sansom (July 2002). “A comparison of stellar populations in galaxy
spheroids across a wide range of Hubble types”. In: Monthly Notices of the RAS 333.3,
pp. 517–543. arXiv: astro-ph/0202390 [astro-ph] (cit. on p. 12).

Strauss, Michael A., David H. Weinberg, Robert H. Lupton, et al. (Sept. 2002). “Spectroscopic
Target Selection in the Sloan Digital Sky Survey: The Main Galaxy Sample”. In: Astronom-
ical Journal 124.3, pp. 1810–1824. arXiv: astro-ph/0206225 [astro-ph] (cit. on pp. 31,
38).

Westera, P., T. Lejeune, R. Buser, F. Cuisinier, & G. Bruzual (Jan. 2002). “A standard
stellar library for evolutionary synthesis. III. Metallicity calibration”. In: Astronomy and
Astrophysics 381, pp. 524–538. eprint: astro-ph/0110559 (cit. on p. 37).

Bruzual, G. & S. Charlot (Oct. 2003). “Stellar population synthesis at the resolution of 2003”.
In: Monthly Notices of the RAS 344, pp. 1000–1028. eprint: astro-ph/0309134 (cit. on
p. 37).

Chabrier, G. (July 2003). “Galactic Stellar and Substellar Initial Mass Function”. In: Publi-
cations of the ASP 115, pp. 763–795. eprint: astro-ph/0304382 (cit. on pp. 30, 84, 89,
145).

Bibliography 183

https://arxiv.org/abs/astro-ph/0006396
https://arxiv.org/abs/astro-ph/0103451
https://arxiv.org/abs/astro-ph/0009005
https://arxiv.org/abs/astro-ph/0011234
https://arxiv.org/abs/astro-ph/0012055
https://arxiv.org/abs/astro-ph/0202208
https://arxiv.org/abs/astro-ph/0109511
https://arxiv.org/abs/astro-ph/0202390
https://arxiv.org/abs/astro-ph/0206225
astro-ph/0110559
astro-ph/0309134
astro-ph/0304382


Le Fèvre, Oliver, Michel Saisse, Dario Mancini, et al. (2003). “Commissioning and per-
formances of the VLT-VIMOS instrument”. In: Instrument Design and Performance for
Optical/Infrared Ground-based Telescopes. Ed. by Masanori Iye & Alan F. M. Moorwood.
Vol. 4841. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series,
pp. 1670–1681 (cit. on p. 31).

Nipoti, C., P. Londrillo, & L. Ciotti (June 2003). “Galaxy merging, the fundamental plane of
elliptical galaxies and the MBH -σ0 relation”. In: Monthly Notices of the RAS 342, pp. 501–
512. eprint: astro-ph/0302423 (cit. on pp. 28, 71).

Tagliaferri, Roberto, Guiseppe Longo, Stefano Andreon, et al. (2003). “Neural Networks
for Photometric Redshifts Evaluation”. In: Lecture Notes in Computer Science. Vol. 2859,
pp. 226–234 (cit. on p. 143).

Balogh, Michael L., Ivan K. Baldry, Robert Nichol, et al. (Nov. 2004). “The Bimodal Galaxy
Color Distribution: Dependence on Luminosity and Environment”. In: Astrophysical Jour-
nal, Letters 615.2, pp. L101–L104. arXiv: astro-ph/0406266 [astro-ph] (cit. on p. 20).

Bell, Eric F., Daniel H. McIntosh, Marco Barden, et al. (Jan. 2004). “GEMS Imaging of
Red-Sequence Galaxies at z~0.7: Dusty or Old?” In: Astrophysical Journal, Letters 600.1,
pp. L11–L14. arXiv: astro-ph/0308272 [astro-ph] (cit. on p. 8).

Cappellari, M. & E. Emsellem (Feb. 2004). “Parametric Recovery of Line-of-Sight Velocity
Distributions from Absorption-Line Spectra of Galaxies via Penalized Likelihood”. In:
Publications of the ASP 116, pp. 138–147. eprint: astro-ph/0312201 (cit. on pp. 88, 89,
174).

Emsellem, Eric, Michele Cappellari, Reynier F. Peletier, et al. (Aug. 2004). “The SAURON
project - III. Integral-field absorption-line kinematics of 48 elliptical and lenticular galax-
ies”. In: Monthly Notices of the RAS 352.3, pp. 721–743. arXiv: astro- ph/ 0404034
[astro-ph] (cit. on p. 23).

Ferguson, Henry C., Mark Dickinson, Mauro Giavalisco, et al. (2004). “The Size Evolution of
High-Redshift Galaxies”. In: Astrophysical Journal 600.2, pp. L107–L110. arXiv: astro-
ph/0309058 [astro-ph] (cit. on pp. 18, 28, 84, 172).

Jones, D. Heath, Will Saunders, Matthew Colless, et al. (Dec. 2004). “The 6dF Galaxy Survey:
samples, observational techniques and the first data release”. In: Monthly Notices of the
RAS 355.3, pp. 747–763. arXiv: astro-ph/0403501 [astro-ph] (cit. on p. 16).

Kobayashi, Chiaki (Jan. 2004). “GRAPE-SPH chemodynamical simulation of elliptical galax-
ies - I. Evolution of metallicity gradients”. In: Monthly Notices of the RAS 347.3, pp. 740–
758. arXiv: astro-ph/0310160 [astro-ph] (cit. on p. 85).

Kravtsov, Andrey V., Andreas A. Berlind, Risa H. Wechsler, et al. (July 2004). “The Dark Side
of the Halo Occupation Distribution”. In: Astrophysical Journal 609.1, pp. 35–49. arXiv:
astro-ph/0308519 [astro-ph] (cit. on pp. 144, 176).

Skilling, John (2004). “Nested Sampling”. In: AIP Conference Proceedings 735.1, pp. 395–405.
eprint: https://aip.scitation.org/doi/pdf/10.1063/1.1835238 (cit. on p. 52).

184 Bibliography

astro-ph/0302423
https://arxiv.org/abs/astro-ph/0406266
https://arxiv.org/abs/astro-ph/0308272
astro-ph/0312201
https://arxiv.org/abs/astro-ph/0404034
https://arxiv.org/abs/astro-ph/0404034
https://arxiv.org/abs/astro-ph/0309058
https://arxiv.org/abs/astro-ph/0309058
https://arxiv.org/abs/astro-ph/0403501
https://arxiv.org/abs/astro-ph/0310160
https://arxiv.org/abs/astro-ph/0308519
https://aip.scitation.org/doi/pdf/10.1063/1.1835238


Tremonti, Christy A., Timothy M. Heckman, Guinevere Kauffmann, et al. (Oct. 2004).
“The Origin of the Mass-Metallicity Relation: Insights from 53,000 Star-forming Galaxies
in the Sloan Digital Sky Survey”. In: Astrophysical Journal 613.2, pp. 898–913. arXiv:
astro-ph/0405537 [astro-ph] (cit. on pp. 144, 176).

Blanton, M. R., D. J. Schlegel, M. A. Strauss, et al. (June 2005). “New York University Value-
Added Galaxy Catalog: A Galaxy Catalog Based on New Public Surveys”. In: Astronomical
Journal 129, pp. 2562–2578. eprint: astro-ph/0410166 (cit. on p. 8).

Gallazzi, A., S. Charlot, J. Brinchmann, S. D. M. White, & C. A. Tremonti (Sept. 2005). “The
ages and metallicities of galaxies in the local universe”. In: Monthly Notices of the RAS
362, pp. 41–58. eprint: astro-ph/0506539 (cit. on pp. 11, 37, 144, 176).

Geller, Margaret J., Ian P. Dell’Antonio, Michael J. Kurtz, et al. (2005). “SHELS: The Hec-
tospec Lensing Survey”. In: Astrophysical Journal 635.2, pp. L125–L128. arXiv: astro-
ph/0510351 [astro-ph] (cit. on p. 66).

Jones, D. Heath, Will Saunders, Michael Read, & Matthew Colless (Aug. 2005). “Second
Data Release of the 6dF Galaxy Survey”. In: Publications of the Astron. Soc. of Australia
22.3, pp. 277–286. arXiv: astro-ph/0505068 [astro-ph] (cit. on p. 16).

Kereš, Dušan, Neal Katz, David H. Weinberg, & Romeel Davé (Oct. 2005). “How do galaxies
get their gas?” In: Monthly Notices of the RAS 363.1, pp. 2–28. arXiv: astro-ph/0407095
[astro-ph] (cit. on p. 11).

Thomas, Daniel, Claudia Maraston, Ralf Bender, & Claudia Mendes de Oliveira (Mar. 2005).
“The Epochs of Early-Type Galaxy Formation as a Function of Environment”. In: Astrophys-
ical Journal 621.2, pp. 673–694. arXiv: astro-ph/0410209 [astro-ph] (cit. on pp. 11,
12, 85).

Adelman-McCarthy, Jennifer K., Marcel A. Agüeros, Sahar S. Allam, et al. (Jan. 2006). “The
Fourth Data Release of the Sloan Digital Sky Survey”. In: Astrophysical Journal, Supplement
162.1, pp. 38–48. arXiv: astro-ph/0507711 [astro-ph] (cit. on p. 113).

Boylan-Kolchin, Michael, Chung-Pei Ma, & Eliot Quataert (2006). “Red mergers and the
assembly of massive elliptical galaxies: the fundamental plane and its projections”. In:
Monthly Notices of the RAS 369.3, pp. 1081–1089. arXiv: astro-ph/0601400 [astro-ph]
(cit. on p. 29).

Cappellari, M., R. Bacon, M. Bureau, et al. (Mar. 2006). “The SAURON project - IV. The
mass-to-light ratio, the virial mass estimator and the Fundamental Plane of elliptical
and lenticular galaxies”. In: Monthly Notices of the RAS 366, pp. 1126–1150. eprint:
astro-ph/0505042 (cit. on p. 42).

Carroll, Bradley W. & Dale A. Ostlie (2006). An introduction to modern astrophysics and
cosmology (cit. on p. 3).

Gallazzi, Anna, Stéphane Charlot, Jarle Brinchmann, & Simon D. M. White (Aug. 2006).
“Ages and metallicities of early-type galaxies in the Sloan Digital Sky Survey: new insight
into the physical origin of the colour-magnitude and the Mg2-σV relations”. In: Monthly
Notices of the RAS 370.3, pp. 1106–1124. arXiv: astro-ph/0605300 [astro-ph] (cit. on
pp. 11, 144, 176).

Bibliography 185

https://arxiv.org/abs/astro-ph/0405537
astro-ph/0410166
astro-ph/0506539
https://arxiv.org/abs/astro-ph/0510351
https://arxiv.org/abs/astro-ph/0510351
https://arxiv.org/abs/astro-ph/0505068
https://arxiv.org/abs/astro-ph/0407095
https://arxiv.org/abs/astro-ph/0407095
https://arxiv.org/abs/astro-ph/0410209
https://arxiv.org/abs/astro-ph/0507711
https://arxiv.org/abs/astro-ph/0601400
astro-ph/0505042
https://arxiv.org/abs/astro-ph/0605300


Gardner, Jonathan P., John C. Mather, Mark Clampin, et al. (Apr. 2006). “The James Webb
Space Telescope”. In: Space Science Reviews 123.4, pp. 485–606. arXiv: astro-ph/0606175
[astro-ph] (cit. on p. 141).

Gunn, James E., Walter A. Siegmund, Edward J. Mannery, et al. (Apr. 2006). “The 2.5 m
Telescope of the Sloan Digital Sky Survey”. In: Astronomical Journal 131.4, pp. 2332–2359.
arXiv: astro-ph/0602326 [astro-ph] (cit. on p. 87).

Mandelbaum, Rachel, Uroš Seljak, Guinevere Kauffmann, Christopher M. Hirata, & Jonathan
Brinkmann (May 2006). “Galaxy halo masses and satellite fractions from galaxy-galaxy
lensing in the Sloan Digital Sky Survey: stellar mass, luminosity, morphology and en-
vironment dependencies”. In: Monthly Notices of the RAS 368.2, pp. 715–731. arXiv:
astro-ph/0511164 [astro-ph] (cit. on p. 144).

Robertson, Brant, Thomas J. Cox, Lars Hernquist, et al. (2006). “The Fundamental Scaling
Relations of Elliptical Galaxies”. In: Astrophysical Journal 641.1, pp. 21–40. arXiv: astro-
ph/0511053 [astro-ph] (cit. on p. 29).

Sánchez-Blázquez, P., R. F. Peletier, J. Jiménez-Vicente, et al. (Sept. 2006). “Medium-
resolution Isaac Newton Telescope library of empirical spectra”. In: Monthly Notices of the
RAS 371.2, pp. 703–718. arXiv: astro-ph/0607009 [astro-ph] (cit. on p. 89).

Trujillo, Ignacio, Natascha M. Förster Schreiber, Gregory Rudnick, et al. (2006). “The Size
Evolution of Galaxies since z~3: Combining SDSS, GEMS, and FIRES”. In: Astrophysical
Journal 650.1, pp. 18–41. arXiv: astro-ph/0504225 [astro-ph] (cit. on p. 18).

Blanton, Michael R. & Sam Roweis (Feb. 2007). “K-Corrections and Filter Transformations in
the Ultraviolet, Optical, and Near-Infrared”. In: Astronomical Journal 133.2, pp. 734–754.
arXiv: astro-ph/0606170 [astro-ph] (cit. on p. 8).

Cappellari, Michele, Eric Emsellem, R. Bacon, et al. (Aug. 2007). “The SAURON project - X.
The orbital anisotropy of elliptical and lenticular galaxies: revisiting the (V/σ, ∈) diagram
with integral-field stellar kinematics”. In: Monthly Notices of the RAS 379.2, pp. 418–444.
arXiv: astro-ph/0703533 [astro-ph] (cit. on p. 23).

Ciotti, L., B. Lanzoni, & M. Volonteri (Mar. 2007). “The Importance of Dry and Wet Merging
on the Formation and Evolution of Elliptical Galaxies”. In: Astrophysical Journal 658,
pp. 65–77. eprint: astro-ph/0611328 (cit. on p. 29).

Emsellem, Eric, Michele Cappellari, Davor Krajnović, et al. (Aug. 2007). “The SAURON
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