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Abstract

The aim of this thesis is to entertain the possibility of a quantum departure from the

general relativistic description of compact sources in strong field regime and claim that

a quantum understanding of the classical background could be necessary. We therefore

develop an effective field theory providing a simplified framework to address the effects

of non-linearities in strong gravitational backgrounds. Starting from a massless Fierz-

Pauli-type lagrangian for the Newtonian potential and introducing the self-coupling

terms, we arrive at a non-linear equation describing the effective gravitational potential

of an arbitrarily compact homogeneous source. Unlike the general relativistic solutions

no Buchdahl limit is found as the solutions display a regular behaviour in any compact-

ness regime. Moreover, we provide a quantum interpretation of these results in terms

of a quantum coherent state formalism. Such an approach proves to be widely capa-

ble of accounting for classical field configurations as well as providing some collective

properties of the constituent soft quanta. The latter show a good agreement with some

of the crucial relations of the corpuscular model. We do not interpret this approach

as a model of phenomenological relevance but better as a simplified picture aimed at

capturing novel quantum feature of black holes physics.

i



ii



Contents

1 Introduction 1

1.1 Motivations and outline . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Notation and conventions . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Issues in classical and semiclassical gravity 5

2.1 Singularity problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Stellar equilibrium and the Buchdahl limit . . . . . . . . . . . . 6

2.2 Quantum fields on classical curved background . . . . . . . . . . . . . . 9

2.2.1 Hawking radiation and related issues . . . . . . . . . . . . . . . 10

3 Corpuscular black holes 15

3.1 Black hole’s quantum N-portrait . . . . . . . . . . . . . . . . . . . . . . 16

3.1.1 Hawking evaporation as quantum depletion . . . . . . . . . . . 17

3.1.2 Bekenstein entropy . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2 Corpuscular picture of a gravitational collapse . . . . . . . . . . . . . . 19

4 Effective scalar theory for the gravitational potential 21

4.1 Effective scalar theory for post-Newtonian potential . . . . . . . . . . . 22

4.2 Classical solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.2.1 Homogeneous ball in vacuum . . . . . . . . . . . . . . . . . . . 29

4.2.2 Gaussian matter distribution . . . . . . . . . . . . . . . . . . . . 31

5 Bootstrapped Newtonian gravity: classical picture 35

5.1 Bootstrapped gravitational potential . . . . . . . . . . . . . . . . . . . 36

5.2 Homogeneous ball in vacuum . . . . . . . . . . . . . . . . . . . . . . . 38

5.2.1 Outer vacuum solution . . . . . . . . . . . . . . . . . . . . . . . 38

5.2.2 The inner pressure . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.2.3 The inner potential . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.3 Horizon and gravitational energy . . . . . . . . . . . . . . . . . . . . . 51

iii



CONTENTS

6 Bootstrapped Newtonian gravity: quantum picture 57

6.1 Quantum coherent state . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6.1.1 Static scalar potential . . . . . . . . . . . . . . . . . . . . . . . 59

6.1.2 Newtonian potential for spherical sources . . . . . . . . . . . . . 60

6.1.3 Newtonian potential of a uniform ball . . . . . . . . . . . . . . . 61

6.2 Scaling relations from bootstrapped potential . . . . . . . . . . . . . . 63

6.2.1 Newtonian potential . . . . . . . . . . . . . . . . . . . . . . . . 66

6.2.2 Bootstrapped potential . . . . . . . . . . . . . . . . . . . . . . . 67

6.2.3 Quantum source and GUP for the horizon . . . . . . . . . . . . 69

7 Conclusions and outlook 73

7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

7.2 Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

7.3 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

A Post-Newtonian potential 77

B Linearised Einstein-Hilbert action at NLO 81

C Gravitational current 85

D Comparison method 87

E Energy balance 89

F Effective wavenumber and graviton number for the Newtonian poten-

tial 91

G Graviton number and mean wavelength for compact sources 93

G.1 Mean graviton wavenumber . . . . . . . . . . . . . . . . . . . . . . . . 94

G.2 Graviton number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

Bibliography 99

iv



Chapter 1

Introduction

1.1 Motivations and outline

Black holes (BHs) can be safely considered one of the most important predictions of

general relativity (GR) and represent a benchmark for any attempt at quantising grav-

ity. According to GR, the gravitational collapse of any compact source will generate

geodesically incomplete spacetimes if a trapping surface appears [1–3]. The less math-

ematical point of view [4–6] is that for any realistic matter density in GR, an infinite

pressure is necessary to resist the collapse once a specific limit to the compactness is

reached [7]. Matter will therefore inevitably shrink to the central singularity. However,

within the general relativistic description, the BH interior is causally disconnected from

the exterior and the singularity is therefore hidden by the event horizon. Such agnostic

view may not be completely satisfactory as even if the singularity is irrelevant to a

distant observer, it still contradicts one of the basic principles of quantum mechanics.

Indeed, a concentration of a finite amount of energy in a point-like region clearly vio-

lates the Heisenberg uncertainty principle. One would therefore hope that the inclusion

of quantum physics in the process could cure this problem in a similar fashion to the

hydrogen atom, shown to have a regular structure irrespective of the singular behaviour

as seen from the outside. With this heuristic comparison in mind, one should also ex-

pect that, in strong gravitational fields, the description of matter will likely require

physics beyond the standard model as well [8, 9]. The first attempt to merge GR and

quantum physics can be found in the pioneering work by Hawking [10] which paved the

way to the theory of quantum fields on curved spacetimes. The main idea behind this

approach is that in some regimes one can safely neglect quantum gravity effects and

proceed to the quantization of elementary particle fields on classical backgrounds. The

main prediction in this picture is the Hawking radiation, according to which BHs slowly

evaporate by emitting thermal radiation rather than being inert objects. The lesson

for us is two-fold. On one side, the possibility that BHs vanish as a consequence of the
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1. Introduction

evaporation process breaks the above classical argument that the central singularity is

protected by the event horizon. Indeed, when the BH has radiated away completely

one is left with the naked singularity at its center [11]. Nonetheless, this astonishing

result shows that quantum effects due to strong gravitational fields could already arise

at horizon scales. Therefore, while the purely general relativistic description begs for a

quantum explanation only at Planck scales, the evaporation effect hints at a possible

deviation from the classical description of macroscopic compact objects accounting for

quantum effects outside the horizon.

The quantum corpuscular picture proposed by Dvali and Gomez [12] points in this

direction. Their idea is to interpret BHs as purely quantum objects described as leaky

states of gravitons, bound in their own gravitational trap, thus realizing a gravitational

condensed state which shares similarities with a Bose-Einstein condensate (BEC) [13,

14]. The singularity would then naturally disappear as a consequence of the regular

structure of the BEC and Hawking radiation emerges as a (semiclassical) quantum

depletion effect of the marginal bound state of gravitons.

The above discussion is meant to highlight that the attempt to give a quantum

mechanical description of the background itself could offer novel insights on some of

the most mysterious issues of gravitational phenomena. Starting from this idea, the

(more modest) task of this thesis is to provide a simplified framework to address the

advocated quantum departure from GR and understand the effects of non linearities

in the study of extremely compact sources. More explicitly, we construct an effective

field theory for a scalar gravitational potential whose derivation is inspired by Deser’s

conjecture [15, 16] that GR should be recovered from the massless Fierz-Pauli action

by adding gravitational self-interaction terms. For instance, he presented a compact

reconstruction of the Einstein-Hilbert action by coupling the initial free massless spin

two field in Minkowski spacetime, with its own energy-momentum tensor. On a closer

inspection, however, this reconstruction does not appear free of ambiguities since, for

instance, it is not unique [17]. Indeed, the energy-momentum tensor is obtained as the

Noether current associated to diffeomorphism invariance but the current itself is de-

fined up to identically conserved terms. Therefore only a specific choice of the coupling

coefficients would lead to the Einstein-Hilbert action. However, no one really knows the

microscopic dynamics realised in nature so that this feature turns out to be useful for

the purpose of addressing modifications of GR. Such premises inspired a programme

called bootstrapped Newtonian gravity [18, 19] which is the object of this thesis. Start-

ing from a Fierz-Pauli-type action for the static Newtonian potential, non-linearities are

introduced by coupling the potential to its own energy density. Furthermore, the cou-

pling constants for the self-interaction terms are not restricted to their Einstein-Hilbert

values in order to effectively accommodate for corrections arising from the underlying

dynamics which, as mentioned above, we do not wish to restrict a priori. The direct
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1.1 Motivations and outline

outcome of this programme is a non-linear equation, which is argued to determine the

(regular) effective gravitational potential acting on test particles at rest, and which is

generated by a static arbitrarily large source. When interpreted in terms of a suitable

quantum coherent state, the bootstrapped potential eventually displays some of the

key feature of the corpuscular model of BHs. We should anticipate that we will mostly

name as gravitons the quanta in such configurations only in an evocative way since the

true concept of quanta in a highly non-linear regime is either way not fully understood.

This thesis is organized as follows: In Chapter 2 we review some of the issues of

the classical and semiclassical approach to BH physics. In particular, in Section 2.1

we will recall the Buchdahl theorem as a useful guideline in the description of regular

compact object. We will then move to the semiclassical origin of the Hawking effect in

Section 2.2, after providing minimal details of quantum field theory (QFT) on classical

curved spacetime.

In Chapter 3 we will briefly introduce the main concepts behind the classicalization

procedure in gravity with the purpose of showing the characteristic features of corpus-

cular BHs in Sec. 3.1. In Section 3.2 we also give a corpuscular picture of a gravitational

collapse involving matter.

In Chapter 4 we show the construction of an effective field theory for the post-

Newtonian potential up to second order in the Newton constant [20]. In Section 4.1 we

derive the effective Lagrangian for the scalar potential starting from the massless Fierz-

Pauli action. Then in Section 4.2 we explicitly solve the associated Euler-Lagrange

equations of motion in presence of a homogeneous and gaussian matter density.

Chapter 5 is devoted to the explanation of the classical bootstrap programme fol-

lowing Refs. [18, 19]. In Section 5.1 we generalize the Lagrangian and equations of

motion found in the previous Chapter which will in turn be solved in Section 5.2 for

a homogeneous source, both in low and high compactness regime. In Section 5.3 we

recover a Newtonian definition of the horizon and provide some energy considerations

on the system.

In Chapter 6 we will finally provide a quantum picture of the bootstrapped potentials

based on Ref. [21]. First, in Section 6.1 we review how to describe a static scalar

potential in terms of a coherent state. Then in Section 6.2 we apply the above to the

bootstrap solutions and make contact with the corpuscular features.

At last, in Chapter 7 we draw our conclusion of this approach and drop some clues

for future directions.

3



1. Introduction

1.2 Notation and conventions

In this work we use the mostly positive convention for the metric (−,+,+,+). The flat

Minkowski metric therefore reads

ηµν = diag(−1,+1,+1,+1) ,

in Cartesian coordinates. Four-vectors in Minkowski space are indicated as xµ = (t,x)

where we write in bold-face type the three-vectors in the three-dimensional space R3 =

{x = (x1, x2, x3) : xi ∈ R}. We will usually omit the domain of integration when it is

given by all of R3. The four-derivative in Minkowski space is denoted as

∂µ =

(
∂

∂ t
,
∂

∂ x1
,
∂

∂ x2
,
∂

∂ x3

)
= (∂t, ∂i) ,

and the d’Alambert operator consequently reads

� = ∂µ∂
µ = −∂2

t + ∂2
x1 + ∂2

x2 + ∂2
x3 = −∂2

t +4 .

In spherically symmetric systems the coordinates are (r, θ, φ) and the prime “ ′ ” denotes

partial derivation with respect to the radial coordinate f ′ ≡ ∂f/∂r.

When considering a curved spacetime with metric gµν we write the Riemann tensor

as

Rλ
µην = ∂ηΓ

λ
µν − ∂νΓλµη + ΓληρΓ

ρ
µν − ΓλνρΓ

ρ
µη ,

in terms of the Christoffel symbols

Γαµν =
1

2
gαβ (∂µ gνβ + ∂ν gµβ − ∂β gµν)

The Ricci tensor is Rµν = Rλ
µλν and the Ricci scalar R = gµν Rµν .

In this work we will use units in which the speed of light is taken to be unity (c = 1),

while keeping both the Newton’s constant GN and the Planck’s constant ~ explicit, i.e.

GN =
`p

mp

, ~ = `pmp .
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Chapter 2

Issues in classical and semiclassical

gravity

This chapter is just meant to draw the attention to some well established result and

issues in GR and QFT on curved background. It is thus far from being exhaustive.

Since the main topic of this thesis is providing novel insights on the physics of extremely

compact objects where strong gravitational effects cannot be ignored, we will not focus

on the problems of gravity as a field theory.

2.1 Singularity problem

Singularities represent the breakdown of our description of a physical system. Our

formulation of the laws of physics ceases to work when a singularity appears. In GR

a detailed mathematical formulation was provided by Penrose and Hawking in the

sixties [1–3, 22] both for cosmology and gravitational collapse. However, since we will

only deal with static compact sources it is convenient to approach the singularity issue

from a different perspective. The Buchdahl theorem [7] provides a simple condition

to be satisfied in order to avoid singularities in a gravitational collapse. The theorem

states that under the following assumptions:

� GR is the correct theory of gravity;

� The system is spherically symmetric;

� The matter source is described as a perfect isotropic fluid;

� The energy is non-negative and non outward increasing, i.e. ρ ≥ 0 and ρ′ ≤ 0;

the compactness of the source satisfies the Buchdahl bound

GN M

R
≤ 4

9
, (2.1.1)

5



2. Issues in classical and semiclassical gravity

with

M = 4π

∫ R

0

dr r2ρ(r) , (2.1.2)

the total mass of the finite size source ρ(r) with ρ(r) = 0 for r > R. It is obvious that

giving up any of the above assumptions provides a way to circumvent the singularity

issue. Therefore, the Buchdahl theorem also proves to be useful to classify the different

proposals of regular extremely compact objects [23]. In the following we wil review the

main steps leading to the result (2.1.1).

2.1.1 Stellar equilibrium and the Buchdahl limit

Since we are going to address the equilibrium of a static spherically symmetric compact

object and we are assuming Einstein theory holds, the exterior metric will be given by

the Schwarzschild solution [24]

d s2
ext = −

(
1− RH

R

)
dt2 +

(
1− RH

R

)−1

dr2 + r2
(
dθ2 + sin2 θ dφ2

)
, (2.1.3)

where

RH =
2GN M

R
, (2.1.4)

is the gravitational (or Schwarzschild) radius associated to a source of mass M . The

Schwarzschild metric of course solves the Einstein equations

Rµν −
1

2
gµνR = 8π GN Tµν , (2.1.5)

with vanishing energy-momentum tensor. Since we want to question the stability of the

system, we need to model the interior of the source. Let us then start by writing the

general (regular) line element of a spherically symmetric static solution to the Einstein

equations as

d s2
int = −eνdt2 + eλdr2 + r2

(
dθ2 + sin2 θ dφ2

)
, (2.1.6)

with ν = ν(r) and λ = λ(r). In order to accomplish the requirements of the Buchdahl

theorem, matter will be described in the useful perfect fluid approximation as

Tµν = p gµν + (p+ ρ)uµuν . (2.1.7)

and it is at rest in this coordinate system uµ =
(
e−ν/2, 0, 0, 0

)
. The functions p(r)

and ρ(r) respectively represent the isotropic pressure and energy density of the source.

Among all Einstein equations (2.1.5) only the (00), (11) components together with the

6



2.1 Singularity problem

conservation equation ∇µTµν = 0 will be useful to us (with ∇µ the covariant derivative

with respect to the metric). These equations read

8π GN r
2 p = e−λ (ν ′ r + 1)− 1 (2.1.8)

8 π GN r
2 ρ = e−λ (λ′ r − 1) + 1 (2.1.9)

2 p′ = −ν ′(p+ ρ) . (2.1.10)

It is now quite easy to see that Eq. (2.1.9) can be integrated to give

e−λ = 1− 2GN m(r)

r
, (2.1.11)

where m(r) is the mass function defined by

m(r) = 4 π

∫ r

0

dx x2ρ(x) , (2.1.12)

and obviously m(R) = M . The simple substitution of Eqs. (2.1.10) and (2.1.11) into

Eq. (2.1.8) gives the differential equation

p′ = (p+ ρ)
GNm(r) + 4 π GN r

3 p

r [2GN m(r)− r]
, (2.1.13)

known as the Tolman-Oppenheimer-Volkoff equation [5, 25] determining the pressure

of a static ball of matter in GR. Upon providing any function ρ(r) (or an equation of

state ρ(p)), the condition that solutions to Eq. (2.1.13) must be finite should result

in an upper bound for the compactness GN M/R of the source. Beyond this limit, an

infinite pressure is needed to resist the collapse. Nevertheless, we can show a general

result [7] which does not require an explicit density function but only assumes a non

outward increasing behaviour, i.e. ρ′ < 0. Indeed, if we make the substitution

eν = ζ2 , (2.1.14)

and eliminate the pressure between Eqs. (2.1.8) and (2.1.10), after rearranging a bit we

end up with the following linear equation

d

dr

[
1

r

(
1− 2GNm(r)

r

)1/2
dζ

dr

]
=

(
1− 2GNm(r)

r

)−1/2(
GNm(r)

r3

)′
ζ . (2.1.15)

The initial conditions at r = R are given by matching with the exterior Schwarzschild

solution (2.1.3) and give

ζ(R) =

(
1− 2GN M

R

)1/2

(2.1.16)

ζ ′(R) =
GNM

R2

(
1− 2GNM

R

)−1/2

. (2.1.17)

7



2. Issues in classical and semiclassical gravity

Regularity of the metric functions further requires ζ(r) > 0, and since the mean density

3m(r)/4 π r3 decreases outward as the density ρ does, the right side of Eq. (2.1.15) is

negative. The consequence is that upon integrating the left one from r to R, with the

help of Eq. (2.1.17) we get

dζ

dr
≥ GN M r

R3

(
1− 2GN m(r)

r

)−1/2

, (2.1.18)

and further integrating from 0 to R with Eq. (2.1.16)

ζ(0) ≤
(

1− 2GN M

R

)1/2

− GN M

R3

∫ R

0

dr r(
1− 2GNm(r)

r

)1/2
. (2.1.19)

We can then find another upper bound for ζ(0) by recognizing that

m(r)

r
=
m(r)

r3
r2 ≥ M

R3
r2 , (2.1.20)

where we again used the fact that the mean density is outward decreasing. In this way

we can solve the integral in the above inequality and find that

ζ(0) ≤ 3

2

(
1− 2GN M

R

)1/2

− 1

2
. (2.1.21)

The condition that ζ needs to be positive then leads to the anticipated Buchdahl limit

GN M

R
≤ 4

9
. (2.1.22)

Eq. (2.1.20) shows that this bound is saturated when the source has homogeneous

density profile with

ρ(r) =
3M

4π R3
Θ(R− r) , (2.1.23)

and therefore 3m(r)/4π r3 = 3M/4π R3. This can be seen even more explicitly as in

this case Eq. (2.1.13) can be solved and gives

p = ρ

( √
R3 − 2GN M r2 −R

√
R− 2GNM

3R
√
R− 2GNM −

√
R3 − 2GN M r2

)
. (2.1.24)

It is now easy to see that this pressure becomes infinite precisely when the equality

holds in Eq. (2.1.1). In the Newtonian limit instead we have

p(r) =
3 (R2 − r2)GNM

2

8π R6
, (2.1.25)

which shows that Newtonian pressure is always finite and no upper limit occurs 1. The

fact that with homogeneous density the bound (2.1.1) is saturated is not that surprising.

1We should point that an upper bound exist for some specific density profiles in Newtonian physics

as well. The important difference with GR is that Buchdahl limit is independent of the particular

equation of state.
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2.2 Quantum fields on classical curved background

Indeed, if we imagine a maximum sustainable density exists , then the most massive

object we can construct is the one having that density everywhere. This makes constant

density stars an important, even if unrealistic, toy model in various contexts [23, 26,

27].

2.2 Quantum fields on classical curved background

QFT on classical backgrounds [28, 29] is conceived as an attempt to combine gravi-

tational and quantum effects, in the absence of a viable quantum theory of gravity.

The idea is to take Einstein’s GR as the correct theory for gravitational phenomena

and then generalize the quantization of fields in Minkowski space to a curved classical

background. The Planck length `p ∼ 10−35 m is usually considered as the fundamental

length of quantum gravity. Therefore, if the distances involved are sufficiently larger

than `p, it is possible to accurately describe the effect of classical curved backgrounds on

quantum phenomena. We are here only interested in showing its most widely known and

accepted physical consequence, i.e. the Hawking radiation [10]. Consequently, we will

not enter the mathematical details of such approach (see Ref. [29] for a comprehensive

description) and only provide minimum details to grasp the core physics.

We start by briefly reviewing the standard canonical quantization procedure on

Minkowski space for the simplest case, i.e. a free massless scalar field Φ(t,x) satisfying

the massless Klein-Gordon equation

�Φ(t,x) = 0 . (2.2.1)

The usual choice for elementary solutions to the above are the plane waves

uk(t,x) = vk(x) e−i k t , (2.2.2)

with k =
√
k · k and

vk(x) ≡ eik·x

(2 π)3/2
, (2.2.3)

satisfying the orthonormality relations∫
dx v∗k(x) vh(x) = δ(k − h) , (2.2.4)

in the three-dimensional space2 R3. The uk then form a complete orthonormal basis

with respect to the Klein-Gordon scalar product

(uh, uk) ≡ i

∫
dx [u∗k(t,x)∂tuh(t,x)− ∂tu∗k(t,x)uh(t,x)] = δ(k − h) . (2.2.5)

2We separate the plane waves in R3 from the time dependent part for later convenience.

9



2. Issues in classical and semiclassical gravity

The quantum field operator and its conjugate momentum can then be split into positive

and negative frequencies

Φ̂(t,x) =

∫
dk

(2π)3

√
`pmp

2 k

(
âk e

−i k t+ik·x + â†k e
i k t−ik·x

)
(2.2.6)

Π̂(t,x) = i

∫
dk

(2π)3

√
`pmp k

2

(
−âk e−i k t+ik·x + â†k e

i k t−ik·x
)
, (2.2.7)

and must satisfy the equal time commutation relations[
Φ̂(t,x), Π̂(t,y)

]
= i ~ δ(x− y) . (2.2.8)

The creation and annihilation operators therefore obey the standard commutation rules

[âk, â
†
h] = δ(k − h) , [âk, âh] = [â†k, â

†
h] = 0 (2.2.9)

and the Fock space of quantum states is built from the vacuum âk |0〉 = 0. A crucial

property of this quantization procedure is its independence on the chosen inertial time

t, since any other choice, related via Poincaré transformations, will not change the

splitting (2.2.6). The immediate and key consequence is that the vacuum state will be

invariant as well.

When considering a quantum field on a curved spacetime most of the above can

be directly extended by introducing the generally covariant d’Alembertian operator so

that Eq. (2.2.1) becomes

�Φ = gµν∇µ∇ν Φ = 0 , (2.2.10)

with ∇µ the covariant derivative with respect to the background metric gµν . One

can therefore find an orthonormal basis f with respect to the extended Klein-Gordon

product in the general spacetime

(f1, f2) = i

∫
dΣµ [f ∗2 ∂µ f1 − f1 ∂µ f

∗
2 ] , (2.2.11)

where dΣµ = dΣnµ with dΣ the volume element of an initial data Cauchy surface Σ

and nµ its future directed unit normal vector. The main problem here is that different

choices of the frequency modes f will in general lead to different definitions of the

vacuum state and Fock space. There is no natural choice of the splitting of the modes

unless the curved spacetime is stationary and one can identify a timelike Killing vector

field (see Refs. [28, 30]).

2.2.1 Hawking radiation and related issues

As a natural consequence of the above picture, one should not be able to provide physical

information about particles involved when a (dynamical) gravitational collapse takes

10



2.2 Quantum fields on classical curved background

place. Nevertheless, one can still recover a solid particle description when it is possible

to identify stationary asymptotic regions [28, 30]. Indeed, the spacetime in presence of

a collapsing source consists in an initial flat space, the dynamical region in which the

collapse takes place and a Schwarzschild region when the BH has settled down. One can

then construct a set of orthonormal modes 3 f ini which only contains positive frequencies

with respect to the Minkowski time coordinate in the past and the analogous positive

frequency orthonormal modes f outi in the future asymptotically flat region. However,

the splitted positive and negative frequency modes in one region will in general be mixed

in the other region, meaning that the corresponding vacuum states will not coincide.

Hawking [10] pushed this discrepancy to investigate the effects of the dynamical

region on the hypothetical vacuum state |in〉 of the quantum field at past infinity. He

found that the state |in〉 is not perceived as vacuum state by the observer at future

infinity, meaning that the dynamical gravitational field triggered the particle creation.

In fact, the f ini ,f outi solutions to Eq. (2.2.10), satisfying the following orthonormality

relations

(fi, fj) = δij = −(f ∗i , f
∗
j ) , (fi, f

∗
j ) = 0 , (2.2.12)

where we omitted the in, out superscripts, let us write the field decompositions

Φ̂ =
√
`p mp

∑
i

[
âini f

in
i + âin†i f in∗i

]
(2.2.13)

Φ̂ =
√
`p mp

∑
i

[
âouti f outi + âout†i f out∗i

]
, (2.2.14)

with the creation and annihilation operators satisfying the usual commutation relation

[âi, â
†
j] = δij , [âi, âj] = [â†i , â

†
j] = 0 , (2.2.15)

where again we omitted the in, out superscripts. The corresponding vacuum states at

past and future infinity are then defined as âini |in〉 = 0 and âouti |out〉 = 0. Since the two

bases are complete one can expand one in terms of the other and because of the above

discussion it is not guaranteed that positive and negative modes will remain separated.

Therefore in general the two bases relate to each other through the so called Bogoliubov

transformations, i.e.

f outi =
∑
j

[
αij f

in
j + βij f

in∗
j

]
, (2.2.16)

which together with the othonormality relations (2.2.12) lead to the condition∑
k

[
αikα

∗
jk − βikβ∗jk

]
= δij . (2.2.17)

3We will here switch to generic discrete indices i to avoid unnecessary notation complexity.
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2. Issues in classical and semiclassical gravity

Moreover, by using the fact that âini = (Φ̂, f ini ) and âouti = (Φ̂, f outi ) and the (2.2.12)

again, one can expand the two sets of operators one into another as well

âouti =
∑
j

[
âinj α

∗
ij − â

in†
i β∗ij

]
. (2.2.18)

Already at this stage one can quantify the particle content of the initial vacuum

state |in〉 as observed in the final stationary region. In fact, denoting the number of

particles in the out “i” mode as

N out
i = âout†i âouti , (2.2.19)

one can find

〈in|N out
i |in〉 =

∑
j

|βij|2 , (2.2.20)

where the result comes from substituting Eqs. (2.2.12) and (2.2.18). This means that

the particle number in the |in〉 state as “measured” by an observer at future infinity

will in general be non trivial, depending on the βij coefficients. If all the βij happen to

vanish, then Eq. (2.2.17) reduces to∑
k

αikα
∗
jk = δij , (2.2.21)

meaning that the two sets of basis are related by a unitary transformation and the |in〉
and |out〉 vacuum states are actually equivalent.

In Ref. [10] Hawking actually evaluated the βij coefficients for a generic collapse in

which as already said we divide spacetime into a Minkowski initial region, the interme-

diate collapse region and the final Schwarzschild BH configuration. In particular, he

found that BHs radiate at late times with a Planckian distribution of thermal radiation,

i.e.

〈in|N out
i |in〉 =

Γi
e8π ωiGNM − 1

, (2.2.22)

where Γi is the grey-body factor measuring the fraction of each mode which enters

the collapsing body as a consequence of the back-scattering with its potential barrier.

The above spectrum actually coincides, apart from the grey-factor, with a black-body

spectrum emitting at temperature

TH =
~κ

2π kB

, (2.2.23)

called Hawking temperature, with kB being the Boltzmann’s constant and κ = 1/4GN M

the surface gravity of a Schwarzschild BH. One of the most problematic consequences

12



2.2 Quantum fields on classical curved background

of the above result appears when evaluating the corresponding energy emitted, which

is given by the corresponding Stefan-Boltzmann law for a black-body, i.e.

dM

dt
= −γ

m2
p

GN M2
= −γ

m3
p

`pM2
, (2.2.24)

where γ is a numerical factor of order 10−5.

Indeed the immediate aftermath is that the Hawking effect causes the BH to evap-

orate as the energy carried by the Hawking radiation is extracted from the BH itself.

It is easy to evaluate the time of complete evaporation [31] as

τ =
`p

3 γ

(
Minitial

mp

)3

, (2.2.25)

even if this reasoning only provides the correct order of magnitude as it can only be

trusted, at most, up to the Planck scale. The quantum mechanical implication of the

emission effect is quite dramatic. In fact, the quantum mechanical evolution of a phys-

ical system, in Minkowski space, is given by a unitary operator. One can expand the

initial and final state on a basis in the Fock space and the operator will map the complex

coefficients fixing the initial state into the corresponding one for the final state. Both

of them can be written as pure states, i.e. |φ〉 =
∑

i ci |ψi〉. However, when the gravi-

tational collapse takes place and the causal structure thus differs from the Minkowski

one, things change. Indeed, the Hawking prediction is that the initial |in〉 pure state is

perceived at late times as a flux of thermal radiation, i.e. uncorrelated particles. There-

fore, it will be described through a matrix density and quantum predictability based

on unitary evolution of pure states is lost, together with all the information about the

collapsed star. This goes under the name of information loss paradox [32–34].

The result (2.2.23) found by Hawking that BHs do possess a finite, even if very small,

temperature is made even more appealing by the fact that it supports the formal analogy

between the classical laws of BHs mechanics and the laws of thermodynamics [35–

40]. Indeed, the area law theorem [37, 38], stating that the area of the event horizon

never decreases in time, suggested that it formally behaves as the entropy of a closed

thermodynamic system. This triggered the idea that one could extend the reasoning

and find a connection with all the other laws of thermodynamic starting from the zeroth

law which states the existence of a thermodynamic variable, the temperature, which is

constant for systems in thermodynamic equilibrium. The fact that surface gravity κ of

a stationary BH is constant on the event horizon then provided the analogous zeroth

law for BHs. Nonetheless, the thermodynamic temperature of a classical BH, which is

only expected to absorb particles, is necessarily the absolute zero, leading to an evident

inconsistency with the laws of thermodynamic. This is why Eq. (2.2.23) justified the

formal analogy as it showed an explicit connection between the (finite) temperature

13



2. Issues in classical and semiclassical gravity

of the BH and its surface gravity allowing as well to find the exact relation between

entropy and area A of a BH

SBH =
kB

GN ~
A

4
. (2.2.26)

Nevertheless, while Eq. (2.2.23) is justified by the quantum field on curved background

approach, the full understanding of Eq.(2.2.26) would require a full quantum analysis of

the system ideally permitting the count of the quantum degrees of freedom associated

to the BH configuration.

At last, a connection with the singularity problem in the previous section can be

made. In fact, one could argue that the BH singularity is not an issue at all as it is

hidden behind the horizon and thus an external observer will never be able to see it.

However, if one trusts the evaporation until the BH completely radiates away, then the

singularity will inevitably turns into a naked singularity so that the above argument

turns out to be a bit restricted. Therefore, the evaporation process strengthen the view

that a departure from the general relativistic description of extremely compact objects

is necessary at some point (see e.g. Ref. [41] for an alternative scenario).
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Chapter 3

Corpuscular black holes

We already stressed that the focus of this work are gravitating compact objects as

laboratories for testing strong gravitational effects. In particular, we address a possible

deviation from the general relativistic description. In this context, a strong motivation

is provided by the proposal by Dvali and Gomez [12] that BHs can be depicted as

marginally bound states of soft (off-shell) gravitons. The origin of this innovative idea

resides in an alternative UV-completion mechanism, the classicalization, introduced

by the same authors and others [42–45]. From a quantum field theoretic perspective,

Einstein’s gravity is a perfectly fine low-energy effective field theory [46, 47] but is

non renormalizable from the Wilsonian viewpoint [48, 49]. Therefore at high-energy

scales 1 it ceases to be predictive. The Wilsonian approach is based on the idea that

when we push a theory to the strong coupling regime, new degrees of freedom need

to be introduced to recover a weakly coupled (and therefore perturbative) description.

The electroweak theory is a great example of this procedure at work since the four-

fermion interaction is completed in the UV with the introduction of three vector bosons

(W±, Z0) as mediators of the weak interaction. The idea behind the classicalization

scheme is that gravity self-completes by producing high-multiplicity states of its own

low-energy degrees of freedom (the graviton massless spin 2 fields). The high-energy

scattering should therefore produce states with a huge occupation number of quanta

which will consequently be soft and weakly interacting. Such an approximately classical

behaviour is the reason why the authors in Refs. [42–45] claimed that gravity self-

completes via classicalization.

Let us now address, in light of the classicalization scheme, the task of describing

BHs formation in a high energy scattering experiment [50] (see Refs. [51, 52] for some

previous works on the topic). We shall then hypothetically consider the collision of

two elementary particles with center of mass energy
√
s � mp and further assume

that a BH will form when the system occupies a region whose size is smaller than

1The natural scale for gravity being the Planck scale mp (or `p).
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3. Corpuscular black holes

the corresponding gravitational radius, i.e. r . RH ' `p

√
s/mp. If we then trust

classicalization, the system in the final state will be given by a large number NG of

soft gravitons. In other words, the process of BH formation is depicted as a 2 → N

scattering, where we trade the two initial “hard” quanta for NG “soft” gravitons with

typical Compton wavelength λG = ~/εG ' RH. Energy conservation
√
s ' NG εG then

implies that the number of such gravitons is very large, i.e. NG ' s/m2
p � 1. This

hypothetical result would thus signal that gravity prevents us from probing distances

smaller than `p as such scales are screened by the production of semiclassical BHs with

size λG � `p. Finally, denoting the dimensionless coupling between the gravitons in

the final state as

αG =
~GN

λ2
G

, (3.1)

it is easy to see that

αG NG = 1 . (3.2)

This is the so called maximal packing condition and it shows that while the theory is

still collectively in a strong coupling regime since the collective coupling αG NG is of

order one, the single constituents are very weakly interacting between each other.

3.1 Black hole’s quantum N-portrait

The above picture gives BHs a central role and paves the way to an interesting non

geometrical description of such objects in which the occupation number NG is the key

feature. Let us start by considering a purely gravitating 2 spherical source of mass M

and radius R well above its Schwarzschild radius, R � RH. The gravitational field is

then well described by the Newtonian potential

VN(r) = −GN M

r
. (3.1.1)

From a quantum point of view we interpret it as a superposition of non propagating

gravitons which, as far as R � RH, have very long wavelengths. In this regime, both

the individual gravitons interactions and the interaction of one constituent with the

collective potential produced by the other NG − 1, can be safely neglected. Actually,

there is no reason why a bound state should even form at this stage. On the other hand,

it seems quite reasonable that when R approaches RH, the gravitational energy grows

and the gravitons start perceiving the self-sourcing due to the collective gravitational

2In this picture the role of matter is completely neglected and only originally serves to put gravitons

together. We will come back later on this.
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3.1 Black hole’s quantum N-portrait

energy. The assumption made in Ref. [12] is that this interaction is strong enough

to confine the gravitons inside a finite volume, i.e. the condensate is self-sustained at

this point. The whole construction then follows from simple energy considerations.

First, since the gravitons are now supposed to be localized, we can associate them an

effective mass m via the Compton wavelength λG = ~/m = `pmp/m. The total energy

will therefore be written as M = NG m. The effective gravitational coupling of the

interaction of one graviton with the rest of the others can then be written as

αG =
|VN(R = λG)|

NG

=
`2

p

λ2
G

=
m2

m2
p

, (3.1.2)

allowing to write the collective binding potential per graviton as

U ' mVNG
(λG) ' −NG αm . (3.1.3)

The bound state will then simply form when the energy of the single graviton EK ' m

is just below the amount needed to escape the potential well, this yields the condition

EK + U = 0, (3.1.4)

and translates into

αG NG = 1 , (3.1.5)

which is the same maximal packing scaling (3.2) found before in the classicalization

context. The most important consequence of this picture is that we can now relate

everything to NG. In fact, from Eq. (3.1.2) the mass of the gravitons can be written as

m = mp/
√
NG, then the total mass and the gravitons wavelength

M =
√
NG mp , (3.1.6)

λG =
√
NG `p ' RH . (3.1.7)

As we will show in the following sections, this picture allows to draw interesting con-

siderations on the nature of Hawking radiation and Bekenstein-Hawking entropy.

3.1.1 Hawking evaporation as quantum depletion

The above framework describes BHs as leaky bound states of gravitons in which the

escape energy is just above the ground state. Hence, the system is continuously loos-

ing gravitons through a quantum depletion effect, as one expects from homogeneous

interacting Bose-Einstein condensates [53]. The microscopic dominant process leading

to the leakage is the 2 → 2 graviton scattering which at first order gives the following

depletion rate

Γ ' 1

NG
2NG

2 ~√
NG`p

+O(NG
−1) , (3.1.8)
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3. Corpuscular black holes

where the first factor comes from the interaction strength (NG
−2 = α2), the second

factor NG
2 is combinatoric since we have NG gravitons interacting with NG − 1 ' NG

gravitons and the third one comes from the characteristic energy of the process. This

rate provides the time scale 4t = ~Γ−1 of the emission process and allows us to find

the depletion law

dNG

dt
' −~−1Γ = − 1√

NG`p

+O(NG
−1) . (3.1.9)

This emission process provides the link with the (purely gravitational part of) Hawking

radiation as it accordingly leads to the standard decrease in the BH mass

dM

dt
' mp√

NG

dNG

dt
' − mp

NG`p

= −
m3

p

`p M2
. (3.1.10)

Upon defining the temperature

T =
~√
NG`p

=
mp√
NG

, (3.1.11)

which shows the same qualitative behaviour as the Hawking temperature (2.2.23), we

see that BHs emit at a rate

dM

dt
' −T

2

~
, (3.1.12)

with evaporation time given by

τ ' NG
3/2 `p = `p

(
M

mp

)3

. (3.1.13)

Therefore, the Hawking temperature in this picture is not a thermodynamic quantity 3.

It emerges as a direct consequence of the phenomenon of quantum depletion of the

Bose-Einstein condensate, in the semiclassical limit

NG →∞, `p → 0 , (3.1.14)

while keeping λG =
√
NG `p and ~ finite. The classical limit of course reproduces the

classical result that BHs have zero temperature.

3.1.2 Bekenstein entropy

Having a simple description of the quantum degrees of freedom of the BH, one would

hope to give a straightforward interpretation the Bekenstein entropy. Indeed, on simply

accounting the exponential scaling of the degeneracy of the NG graviton states we find

S ' log nstates ' NG '
R2

H

`2
p

. (3.1.15)

in qualitative agreement with the Bekenstein-Hawking formula (2.2.26) where entropy

scales with the horizon area.
3The thermodynamic temperature of a cold Bose-Einstein condensate is actually zero.
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3.2 Corpuscular picture of a gravitational collapse

3.2 Corpuscular picture of a gravitational collapse

To summarize, the above proposal describes BHs by a large number of gravitons in the

same (macroscopically large) state, thus realising a Bose-Einstein condensate at the

critical point [54–60]. In particular, the constituents of such a self-gravitating object

are assumed to be marginally bound in their gravitational potential well 4, whose size is

given by the characteristic Compton-de Broglie wavelength λG ∼ RH and whose depth

is proportional to the very large number NG ∼ M2/m2
p of soft quanta in this conden-

sate [64–68]. In this picture, the role of matter is argued to be essentially negligible

by considering the number of its degrees of freedom is subdominant with respect to

the gravitational ones, especially when representing BHs of astrophysical size (see also

Ref. [69–71]).

We shall here argue instead that matter actually plays an important role in the grav-

itational collapse 5. We will thus provide a qualitative description (based on Ref. [72])

showing that when the contribution of gravitons is properly related to the presence

of ordinary baryonic matter, not only the picture enriches, but it also becomes clearly

connected to the post-Newtonian approximation. The basic idea is very easy to explain:

suppose we consider N baryons of rest mass µ very far apart, so that their total ADM

energy [73] is simply given by M = N µ ≡M0, where M0 is the rest mass of the source.

As these baryons fall towards each other, while staying inside a sphere of radius R,

their (negative) gravitational energy is given by

UBG ∼ N µVN ∼ −
`pM

2

mp R
, (3.2.1)

where VN ∼ −`pM/mpR is the (negative) Newtonian potential. In terms of quantum

physics, this gravitational potential can be represented by the expectation value of a

scalar field Φ̂ over a coherent state |g〉,

〈 g| Φ̂ |g 〉 ∼ VN . (3.2.2)

A detailed coherent state description of classical scalar fields will be presented in Chap-

ter 6. Let us only anticipate that the graviton number NG generated by matter inside

the sphere of radius R is determined by the normalisation of the coherent state and

reproduces Bekenstein’s area law (3.1.15), that is

NG ∼
M2

m2
p

∼ R2
H

`2
p

, (3.2.3)

4For improvements on this approximation, see Refs. [61–63].
5Of course, one could also envisage the creation of BHs by focusing gravitational waves, but highly

energetic processes involving matter would presumably be needed in order to produce those waves in

the first place.
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3. Corpuscular black holes

where RH is now the gravitational radius (2.1.4) of the sphere of baryons. In addition

to that, assuming most gravitons have the same wave-length λG, the (negative) energy

of each single graviton is correspondingly given by

εG ∼
UBG

NG

∼ −mp `p

R
, (3.2.4)

which yields the typical Compton-de Broglie length λG ∼ R. The graviton self-

interaction energy is a crucial ingredient of the corpuscular picture as it is assumed

to be responsible for the existence of the bound state of gravitons. In this context, it

is easily shown to reproduce the (positive) post-Newtonian energy,

UGG(R) ∼ NG εG 〈 g| Φ̂ |g 〉 ∼
`2

pM
3

m2
pR

2
. (3.2.5)

This view is consistent with the standard lore, since the UGG � |UBG| for a star with

size R� RH. Furthermore, for R ' RH, one has

U(RH) ≡ UBG(RH) + UGG(RH) ' 0 , (3.2.6)

which is precisely the maximal packing condition (3.2). Unfortunately, this is only a

speculation at this stage as the post-Newtonian approach fails to provide consistent

results for R ' RH. One could however entertain the idea that this condition justifies

the maximal packing as an exclusive feature of BH configurations. We also remark once

more the quantum picture is based on identifying the quantum state of the gravitational

potential as a coherent state of (virtual) soft gravitons, which provides a link between

the microscopic dynamics of gravity, understood in terms of interacting quanta, and

the macroscopic description of a curved background. These issues will be addressed in

the following Chapters.
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Chapter 4

Effective scalar theory for the

gravitational potential

In this Chapter we shall refine the post-Newtonian construction of Section 3.2 which

is mainly based on simple energy considerations. Indeed, in the Newtonian theory,

energy is a well-defined quantity and is conserved along physical trajectories (barring

friction), which ensures the existence of a scalar potential for the gravitational force.

In GR [74], the very concept of energy becomes much more problematic (see, e.g. [75]

and References therein) and there is no invariant notion of a scalar potential. Even

if one just considers the motion of test particles, the existence of conserved quantities

along geodesics requires the presence of Killing vector fields. In sufficiently symmetric

space-times, one may therefore end up with equations of motion containing potential

terms, whose explicit form will still depend on the choice of observer (time and spatial

coordinates). Overall, such premises allow for a “Newtonian-like” description of gravi-

tating systems with strong space-time symmetries, like time-independence and isotropy,

which can in turn be quantised by standard methods [47, 76].

We are aware that such a reduction of the degrees of freedom will not lead to any

realistic conclusion on the microscopic nature of the gravitational interaction. However,

it represents a useful simplification which will let us investigate spherically symmetric

systems in analogy with what is usually done in GR when studying equilibrium con-

figurations of the TOV equation (2.1.13). Actually, we are here particularly interested

in static and isotropic compact sources, for which one can indeed determine an effec-

tive theory for the gravitational potential, up to a certain degree of confidence. When

the local curvature of space-time is weak and test particles propagate at non-relativistic

speed, non-linearities are suppressed. The geodesic equation of motion thereby takes the

form of the standard Newtonian law with a potential determined by the Poisson equa-

tion, and Post-Newtonian corrections can be further obtained by including non-linear

interaction terms. The inclusion of these non-linear terms in the quantum effective
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4. Effective scalar theory for the gravitational potential

description of the gravitational potential are precisely what we are going to address in

this Chapter, inspired by the results of Section 3.2.

In the following, we will derive the effective action for a static and spherically sym-

metric potential from the Einstein-Hilbert action in the weak field and non-relativistic

approximations. We shall then show that including higher order terms yields classical

results in agreement with the standard post-Newtonian expansion of the Schwarzschild

metric. Few explicit solutions to the corresponding classical field equations are studied.

4.1 Effective scalar theory for post-Newtonian po-

tential

It is well known that a scalar field can be used as the potential for the velocity of a

classical fluid [77, 78]. We will show here that it can also be used in order to describe

the usual post-Newtonian correction that appears in the weak field expansion of the

Schwarzschild metric. It is important to recall that this picture implicitly assumes the

choice of a specific reference frame for static observers (for more details, see Appendix A)

Let us start from the Einstein-Hilbert action with matter [74]

S = SEH + SM =

∫
d4x
√
−g
(
− 1

16π GN

R+ LM

)
, (4.1.1)

where R is the Ricci scalar and LM is the Lagrangian density for the baryonic matter

that sources the gravitational field. In order to recover the post-Newtonian approxima-

tion in this framework, we must assume the local curvature is small, so that the metric

can be written as gµν = ηµν +hµν , where ηµν is the flat Minkowski metric and |hµν | � 1.

The Ricci scalar then takes the simple form

R = �h− ∂µ∂νhµν +O(h2) , (4.1.2)

where � is the d’Alembertian in flat space, the trace h = ηµν h
µν , and the linearised

Einstein field equation is given by

−�hµν + ηµν �h+ ∂µ∂
λhλν + ∂ν∂

λhλµ − ηµν ∂λ∂ρhλρ − ∂µ∂νh = 16π GN Tµν .(4.1.3)

In the de Donder gauge,

2 ∂µhµν = ∂νh , (4.1.4)

the trace of the field equation yields

�h = 16π GN T , (4.1.5)
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4.1 Effective scalar theory for post-Newtonian potential

where T = ηµν Tµν , and Eq. (4.1.3) reduces to

−�hµν = 16π GN

(
Tµν −

1

2
ηµν T

)
. (4.1.6)

In addition to the weak field limit, we assume that all matter in the system moves

with a characteristic velocity much slower than the speed of light in the (implicitly)

chosen reference frame xµ = (t,x). The only relevant component of the metric is

therefore h00(x), and its time derivatives are also neglected 1. The Ricci scalar reduces

to

R ' 4h00(x) , (4.1.7)

and the stress-energy tensor is accordingly determined solely by the energy density in

this non-relativistic regime,

Tµν =
2√
−g

δSM

δgµν
= 2

δLM

δgµν
− gµν LM ' uµ uν ρ(x) , (4.1.8)

where uµ = δµ0 is the four-velocity of the static source fluid. Note further that the above

stress-energy tensor follows from the simple matter Lagrangian

LM ' −ρ(x) , (4.1.9)

as one can see from the variation of the baryonic matter density [79]

δρ =
1

2
ρ (gµν + uµ uν) δg

µν , (4.1.10)

and the well-known formula

δ
(√
−g
)

= −1

2

√
−g gµν δgµν . (4.1.11)

This is indeed the case of interest to us here, since we do not consider explicitly the

matter dynamics but only how (static) matter generates the gravitational field in the

non-relativistic limit, in which the matter pressure is negligible [77, 78] 2. In this

approximation, Eq. (4.1.6) takes the very simple form

4h00(x) = −8π GN T00(x) = −8 π GN ρ(x) , (4.1.12)

since T00 = ρ to leading order. Finally, we know the Newtonian potential V = VN is

generated by the density ρ according to the Poisson equation

4V = 4π GN ρ , (4.1.13)

1For static configurations, the gauge condition (4.1.4) becomes Eq. (B.13), and is always satisfied.
2A non-negligible matter pressure complicates the system significantly and it will be considered

later in Chapter 5.
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which lets us identify h00 = −2V .

It is now straightforward to introduce an effective scalar field theory for the grav-

itational potential. First of all, we shall just consider (static) spherically symmetric

systems, so that ρ = ρ(r) and V = V (r), correspondingly. We replace the Einstein-

Hilbert action SEH in Eq. (4.1.1) with the massless Fierz-Pauli action so that, in the

approximation (4.1.8) and (4.1.9), we obtain the total Lagrangian (see Appendix B)

LN[V ] ' 4π

∫ ∞
0

r2 dr

(
1

32π GN

h004h00 +
h00

2
ρ

)
= 4 π

∫ ∞
0

r2 dr

(
V 4V
8π GN

− ρ V
)

= −4 π

∫ ∞
0

r2 dr

[
(V ′)2

8π GN

+ ρ V

]
, (4.1.14)

where we integrated by parts 3 and

4f ≡ r−2
(
r2 f ′

)′
. (4.1.15)

Varying this Lagrangian with respect to V , we obtain Eq. (4.1.13) straightforwardly 4.

In order to go beyond the Newtonian approximation, we need to modify the latter

functional by adding non-linearities. We start by computing the Hamiltonian,

HN[V ] = −LN[V ] = 4 π

∫ ∞
0

r2 dr

(
−V 4V

8 π GN

+ ρ V

)
, (4.1.16)

as follows from the static approximation. If we evaluate this expression on-shell by

means of Eq. (4.1.13), we get the Newtonian potential energy

UN[V ] = 2π

∫ ∞
0

r2 dr ρ V

=
1

2GN

∫ ∞
0

r2 dr V 4V

= −4 π

∫ ∞
0

r2 dr
(V ′)2

8π GN

, (4.1.17)

where we also assumed that boundary terms vanish at r = 0 and r = ∞ as usual in

the last line (for an alternative but equivalent derivation, see Appendix C). One can

therefore view the above UN as given by the interaction of the matter distribution with

the gravitational field or, following Ref. [72] (see also Ref. [80]), as the volume integral

3The boundary conditions that ensure vanishing of boundary terms will be explicitly shown when

necessary.
4Were one to identify the Lagrangian density in Eq. (4.1.14) with the pressure pN of the gravitational

field, it would appear the Newtonian potential has the equation of state pN = −ρN/3 [77, 78].
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4.1 Effective scalar theory for post-Newtonian potential

of the gravitational current proportional to the gravitational energy UN per unit volume

δV = 4π r2 δr, that is 5

JV ' 4
δUN

δV
= − [V ′]2

2 π GN

. (4.1.18)

The appearance of the above contribution can in fact be found at the next-to-leading

order (NLO) in the expansion of the theory (4.1.1). As is shown in Appendix B,

the current JV is in particular proportional to the NLO term (B.10) coming from the

geometric part of the action. Upon including this new source term, together with its

matter counterpart (B.11) from the expansion of the matter Lagrangian, we obtain the

total Lagrangian in Eq. (B.12) for a self-interacting scalar field V , namely

L[V ] = 4 π

∫ ∞
0

r2 dr

[
V 4V
8 π GN

− ρ V + qΦ (2V ρ− JV )V

]
= 4 π

∫ ∞
0

r2 dr

[
V 4V
8 π GN

− V ρ (1− 2 qΦ V ) +
qΦ

2π GN

V (V ′)
2

]
= −4 π

∫ ∞
0

r2 dr

[
(V ′)2

8π GN

(1− 4 qΦ V ) + V ρ (1− 2 qΦ V )

]
, (4.1.19)

where the parameter qΦ keeps track of NLO terms in the expansion (see again Ap-

pendix B for the details). It is important to remark that, beyond the linear order, the

construction of an effective theory from the Einstein-Hilbert action (4.1.1) is plagued by

inconsistencies when coupled to matter. In order to overcome these issues, the NLO has

therefore been constructed from the Pauli-Fierz action so as not to spoil the Newtonian

approximation [15–17, 81–84]. We will show in the following that the post-Newtonian

correction (A.21) is indeed properly recovered for qΦ = 1.

The Euler-Lagrange equation for V is given by

0 =
δL
δV
− d

dr

(
δL
δV ′

)
= 4 π r2

[
−ρ+ 4 qΦ ρ V +

qΦ

2π GN

(V ′)
2

]
+

1

GN

[
r2 V ′ (1− 4 qΦ V )

]′
, (4.1.20)

and we obtain the field equation

(1− 4 qΦ V )4V = 4π GN ρ (1− 4 qΦ V ) + 2 qΦ (V ′)
2
. (4.1.21)

This differential equation is obviously hard to solve analytically for a general source.

We will therefore expand the field V up to first order in the coupling qΦ
6,

V (r) = V(0)(r) + qΦ V(1)(r) , (4.1.22)

5The factor of 4 in the expression (4.1.18) of JV is chosen in order to recover the expected first

post-Newtonian correction in the vacuum potential for the coupling constant qΦ = 1 (see Appendix B

and Section 4.2.1 for details).
6Since Eq. (4.1.21) is obtained from a Lagrangian defined up to first order in qΦ, higher-order terms

in the solution would not be meaningful.
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4. Effective scalar theory for the gravitational potential

and solve Eq. (4.1.21) order by order. In particular, we have

4V(0) = 4π GN ρ , (4.1.23)

which, when qB = 1, is just the Poisson Eq. (4.1.13) for the Newtonian potential and

4V(1) = 2
(
V ′(0)

)2
, (4.1.24)

which gives the correction at first order in qΦ.

To linear order in qΦ, the on-shell Hamiltonian (4.1.16) is also replaced by

H[V ] = −L[V ]

' 4π

∫ ∞
0

r2 dr

{
−V

2

[
ρ+

qΦ

2π GN

(V ′)
2

]
+ ρ V − qΦ

2 π GN

V (V ′)
2

}
' 2π

∫ ∞
0

dr r2

[
ρ V (1− 4 qΦ V )− qΦ

3

2π GN

V
(
V ′2
)]

, (4.1.25)

where we used Eq. (4.1.21). In the following, we will still denote the on-shell contribu-

tion containing the matter density ρ with

UBG = 2π

∫ ∞
0

r2 dr ρ
[
V(0) + qΦ

(
V(1) − 4V 2

(0)

)]
+O(q2

Φ) , (4.1.26)

which reduces to the Newtonian UN in Eq. (4.1.17) for qΦ = 0, and the rest as

UGG = −3 qΦGN

∫ ∞
0

r2 dr V(0)

(
V ′(0)

)2
+O(q2

Φ) . (4.1.27)

4.2 Classical solutions

We will now study the general classical solutions to Eqs. (4.1.23) and (4.1.24). Since we

are interested in static and spherically symmetric sources, it is convenient to consider

eigenfunctions of the Laplace operator,

4j0(k r) = −k2 j0(k r) , (4.2.1)

that is, the spherical Bessel function of the first kind

j0(k r) =
sin(k r)

k r
, (4.2.2)

which enjoys the normalisation

4π

∫ ∞
0

r2 dr j0(p r) j0(k r) =
2π2

k2
δ(p− k) . (4.2.3)

Assuming the matter density is a smooth function of the radial coordinate, we can

project it on the above modes,

ρ̃(k) = 4π

∫ ∞
0

r2 dr j0(k r) ρ(r) , (4.2.4)
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4.2 Classical solutions

and likewise

Ṽ(n)(k) = 4π

∫ ∞
0

r2 dr j0(k r)V(n)(r) . (4.2.5)

Inverting these expressions, one obtains the expansions in Laplacian eigenfunctions,

f(r) =

∫ ∞
0

k2 dk

2π2
j0(k r) f̃(k) , (4.2.6)

in which we used ∫
d3k

(2 π)3
=

∫ ∞
0

k2 dk

2 π2
, (4.2.7)

since all our functions only depend on the radial momentum k ≥ 0.

The zero-order Eq. (4.1.23) in momentum space reads

Ṽ(0)(k) = −4π
GN ρ̃(k)

k2
, (4.2.8)

which can be inverted to yield the solution

V(0)(r) = −2GN

∫ ∞
0

dk

π
j0(k r) ρ̃(k) . (4.2.9)

The r.h.s. of Eq. (4.1.24) can then be written as

2
(
V ′(0)(r)

)2
= 8G2

N

(∫ ∞
0

k dk

π
j1(k r) ρ̃(k)

)2

, (4.2.10)

where we used Eq. (4.2.8) and

[j0(k r)]′ = −k j1(k r) . (4.2.11)

The first-order Eq. (4.1.24) is however easier to solve directly in coordinate space usually.

For example, for a point-like source of mass M0, whose density is given by

ρ = M0 δ
(3)(x) =

M0

4 π r2
δ(r) , (4.2.12)

one finds

ρ̃(k) = M0

∫ ∞
0

dr j0(k r) δ(r) = M0 , (4.2.13)

and Eq. (4.2.8) yields the Newtonian potential outside a spherical source of mass M0,

that is

V(0)(r) = −2
GNM0

r

∫ ∞
0

dz

π
j0(z) = −GN M0

r
. (4.2.14)
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4. Effective scalar theory for the gravitational potential

Note that this solution automatically satisfies the regularity condition

lim
r→∞

V(0)(r) = 0 . (4.2.15)

Next, for r > 0, one has

2
(
V ′(0)(r)

)2
=

8G2
N M

2
0

r4

(∫ ∞
0

z dz

π
j1(z)

)2

=
2G2

N M
2
0

r4
, (4.2.16)

and Eq. (4.1.24) admits the general solution

V(1) = A1 −
GN M1

r
+
G2

NM
2
0

r2
. (4.2.17)

On imposing the same boundary condition (4.2.15) to V(1), one obtains A1 = 0. The

arbitrary constant M1 results in a (arbitrary) shift of the ADM mass,

M = M0 + qΦ M1 , (4.2.18)

and one is therefore left with the potential

V = −GN M

r
+ qΦ

G2
N M

2

r2
+O(q2

Φ) . (4.2.19)

This expression matches the expected post-Newtonian form (A.21) at large r for qΦ = 1.

It also clearly shows the limitation of the present approach: at small r, the post-

Newtonian correction V(1) grows faster than V(0) = VN and our perturbative approach

will necessarily break down.

We can also evaluate the potential energy (4.1.25) generated by the point-like source.

The baryon-graviton energy (4.1.26) of course diverges, but we can regularise the matter

density (4.2.12) by replacing δ(r)→ δ(r − r0), where 0 < r0 � GN M0. We then find

UBG ' −
GNM0M

2 r0

− qΦ
3G2

NM
3

2 r2
0

. (4.2.20)

With the same regularisation, we obtain the graviton-graviton energy

UGG ' −3 qΦGN

∫ ∞
r0

r2 dr V(0)

(
V ′(0)

)2
= qΦ

3G2
N M

3

2 r2
0

, (4.2.21)

which precisely cancels against the first order correction to UBG in Eq. (4.2.20), and

U = UBG + UGG = −GN M0M

2 r0

. (4.2.22)

Of course, for r ' r0 � GNM0, the post-Newtonian term in Eq. (4.2.19) becomes much

larger than the Newtonian contribution, which pushes the above UBG and UGG beyond

28



4.2 Classical solutions

the regime of validity of our approximations. Nonetheless, it is important to notice

that, given the effective Lagrangian (4.1.19), the total gravitational energy (4.2.22) for

a point-like source will never vanish and the maximal packing condition (3.2) cannot

be realised. This is consistent with the concept of corpuscular BHs as quantum objects

with a (very) large spatial extensions R ∼ RH.

For the reasons above, we shall next study extended distributions of matter, which

will indeed lead to different, more sensible results within the scope of our approach.

4.2.1 Homogeneous ball in vacuum

For an arbitrary matter density, it is hopeless to solve the equation (4.1.24) for V(1)

analytically. Let us then consider the very simple case in which ρ is uniform inside a

sphere of radius R,

ρ(r) =
3M0

4π R3
Θ(R− r) , (4.2.23)

where Θ is the Heaviside step function and

M0 = 4π

∫ ∞
0

r2 dr ρ(r) (4.2.24)

is the rest mass of the spherical source. For this matter density, we shall now solve

Eqs. (4.1.23) and (4.1.24) with boundary conditions that ensure V is regular both at

the origin r = 0 and infinity, that is

V ′(n)(0) = lim
r→∞

V(n)(r) = 0 , (4.2.25)

and smooth across the border r = R,

lim
r→R−

V(n)(r) = lim
r→R+

V(n)(r) , lim
r→R−

V ′(n)(r) = lim
r→R+

V ′(n)(r) . (4.2.26)

The solution to Eq. (4.1.23) inside the sphere is then given by

V(0)in(r) =
GN M0

2R3

(
r2 − 3R2

)
(4.2.27)

while outside

V(0)out(r) = −GN M0

r
, (4.2.28)

which of course equal the Newtonian potential.

At first order in qΦ we instead have

V(1)in(r) =
G2

N M
2
0

10R6

(
r4 − 15R4

)
(4.2.29)
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Figure 4.1: Potential to first order in qΦ (solid line) vs Newtonian potential (dashed

line) for R = 10GN M ≡ 5RH and qΦ = 1.

and

V(1)out(r) =
G2

NM
2
0

5R

5R− 12 r

r2
. (4.2.30)

The complete outer solution to first order in qΦ is thus given by

Vout(r) = −GNM0

r

(
1 + qΦ

12GN M0

5R

)
+ qΦ

G2
NM

2
0

r2
+O(q2

Φ) . (4.2.31)

From this outer potential, we see that, unlike for the point-like source, we are left with

no arbitrary constant and the ADM mass is determined as

M = M0

(
1 + qΦ

12GN M0

5R

)
+O(q2

Φ) , (4.2.32)

and, replacing this expression into the solutions, we finally obtain

Vin(r) =
GNM

2R3

(
r2 − 3R2

)
+ qΦ

G2
NM

2

10R6

(
r4 − 12R2 r2 + 21R4

)
+O(q2

Φ) ,(4.2.33)

Vout(r) = −GN M

r
+ qΦ

G2
NM

2

r2
+O(q2

Φ) . (4.2.34)

We can now see that the outer field again reproduces the first post-Newtonian re-

sult (A.21) of Appendix A when qΦ = 1 (see Figs. 4.1 and 4.2 for two examples).

Since the density (4.2.23) is sufficiently regular, we can evaluate the corresponding

gravitational energy (4.1.25) without the need of a regulator. The baryon-graviton

energy (4.1.26) is found to be

UBG(R) = 2 π

∫ R

0

r2 dr ρ
[
V(0)in + qΦ

(
V(1)in − 4V 2

(0)in

)]
+O(q2

Φ)

= −3GNM
2

5R
− qΦ

267G2
N M

3

350R2
+O(q2

Φ)

≡ U(0)BG(R) + qΦ U(1)BG(R) +O(q2
Φ) , (4.2.35)
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Figure 4.2: Potential to first order in qΦ (solid line) vs Newtonian potential (dashed

line) for R = 2GN M ≡ RH and qΦ = 1.

where U(0)BG is just the Newtonian contribution and U(1)BG the post-Newtonian correc-

tion. Analogously, the self-sourcing contribution (4.1.27) gives

UGG(R) = −3 qΦ
1

GN

[∫ R

0

r2 dr V(0)in

(
V ′(0)in

)2
+

∫ ∞
R

r2 dr V(0)out

(
V ′(0)out

)2
]

+O(q2
Φ)

= qΦ
153G2

N M
3
0

70R2
+O(q2

Φ) . (4.2.36)

Since now UGG > qΦ |U(1)BG|, adding the two terms together yields the total gravita-

tional energy

U(R) = −3GN M
2

5R
+ qΦ

249G2
N M

3

175R2
+O(q2

Φ) , (4.2.37)

which appears in line with what was estimated in Ref. [72]: the (order qΦ) post-

Newtonian energy is positive, and would equal the Newtonian contribution for a source

of radius

R ' 83GN M

35
' 1.2RH , (4.2.38)

where se wet qΦ = 1. One has therefore recovered the “maximal packing” condition (3.2)

of Refs. [12–14, 85–88] in the limit R ∼ RH from a regular matter distribution. However,

note that, strictly speaking, the above value of R falls outside the regime of validity of

our approximations.

4.2.2 Gaussian matter distribution

As an example of even more regular matter density, we can consider a Gaussian distri-

bution of width σ,

ρ(r) =
M0 e

− r
2

σ2

π3/2 σ3
, (4.2.39)
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Figure 4.3: Newtonian potential (solid line) for Gaussian matter density with σ =

2GN M0 (dotted line) vs Newtonian potential (dashed line) for point-like source of

mass M0 .

where again

M0 = 4π

∫ ∞
0

r2 dr ρ(r) . (4.2.40)

Let us remark that the above density is essentially zero for r & R ≡ 3σ, which will

allow us to make contact with the previous case.

For this matter density, we shall now solve Eqs. (4.1.23) and (4.1.24) with the

boundary conditions (4.2.25) that ensure V is regular both at the origin r = 0 and at

infinity. We first note that Eq. (4.2.4) yields

ρ̃(k) = M0 e
−σ

2 k2

4 , (4.2.41)

from which

V(0)(r) = −2GN M0

∫ ∞
0

dk

π
j0(k r) e−

σ2 k2

4

= −GN M0

r
Erf(r/σ) . (4.2.42)

For a comparison with the analogous potential generated by a point-like source with

the same mass M0, see Fig. 4.3. For r & R = 3σ = 3RH/2, the two potentials are

clearly indistinguishable, whereas V(0) looks very similar to the case of homogeneous

matter for 0 ≤ r < R (see Fig. 4.1).

The first-order equation (4.1.24) now reads

4V(1) = 2
G2

N M
2
0

r4

[
Erf(r/σ)− 2 r√

π σ
e−

r2

σ2

]2

≡ 2G2
NM

2
0 G(r) , (4.2.43)
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Figure 4.4: Potential up to first order in qΦ (solid line) vs Newtonian potential (dashed

line) for Gaussian matter density with σ = 2GNM ≡ RH (with qΦ = 1).

and we note that

G(r) '


16 r2

9 π σ6
for r → 0

1

r4
for r →∞ ,

(4.2.44)

which are the same asymptotic behaviours one finds for a homogeneous source of size

R ∼ σ. We can therefore expect the proper solution to Eq. (4.2.43) behaves like

Eq. (4.2.29) for r → 0 and (4.2.30) for r →∞. In fact, one finds

V(1) = 2G2
N M

2
0


[
erf
(
r
σ

)]2 − 1

σ2
−
√

2 erf
(√

2 r
σ

)
√
π σ r

+

[
erf
(
r
σ

)]2
2 r2

+
2 e−

r2

σ2 erf
(
r
σ

)
√
π σ r

 ,(4.2.45)

in which we see the second term in curly brackets again leads to a shift in the ADM

mass,

M = M0

(
1 + qΦ

2
√

2GN M0√
π σ

)
, (4.2.46)

while the third term reproduces the usual post-Newtonian potential (A.21) for r � σ.

For an example of the complete potential up to first order in qΦ, see Fig. 4.4. Note that

for the relatively small value of σ used in that plot, the main effect of V(1) in Eq. (4.2.45)

is to increase the ADM mass according to Eq. (4.2.46), which lowers the total potential

significantly with respect to the Newtonian curve for M = M0 shown in Fig. 4.3.
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Chapter 5

Bootstrapped Newtonian gravity:

classical picture

In Chapter 4 we studied an effective equation for the gravitational potential of a static

source which contains a gravitational self-interaction term besides the usual Newtonian

coupling with the matter density. This equation was derived in details from a Fierz-

Pauli Lagrangian, and it can therefore be viewed as stemming from the truncation of the

relativistic theory at some “post-Newtonian” order (for the standard post-Newtonian

formalism, see Ref. [89]). However, since the “post-Newtonian” correction VPN ∼M2/r2

is positive and grows faster than the Newtonian potential VN ∼ M/r near the surface

of the source, one is allowed to consider only matter sources with radius R � RH

in this approximation. This consistency condition clearly excludes the possibility to

study very compact matter sources and, in particular, those with R ' RH which are

on the verge of forming a BH. Moreover, since we are mainly interested in investigating

the possibility that matter collapsed inside a BH ends up in a static configuration,

a pressure term which prevents the gravitational collapse needs to be included from

the onset. For this reason, we here modify the effective theory used in Chapter 4 in

order to consistently supplement the matter density with the pressure as sources of

the gravitational potential, as it naturally happens in GR. In addition, for the ultimate

purpose of describing very compact sources, we shall here study the non-linear equation

of the resulting effective theory at face value, without requiring that the corrections it

introduces with respect to the Newtonian potential remain small.

This procedure, which essentially consists in including a gravitational self-interaction

in the Poisson equation and treat it non-perturbatively, is what we call bootstrapping

Newtonian gravity. We then use this assumption to study systems with generic com-

pactness GN M/R ∼ RH/R, from the regime R� RH, in which we recover the standard

post-Newtonian picture, to R� RH where we find the source is enclosed within a hori-

zon. The latter is defined according to the Newtonian view as the location at which
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5. Bootstrapped Newtonian gravity: classical picture

the escape velocity of test particles equals the speed of light. Of course, it should be

possible to treat the single microscopic constituents of the source in this test particle

approximation and the presence of an horizon therefore refers to their inability to escape

the gravitational pull.

Like in Chapter 4, we shall just consider (static) spherically symmetric systems,

so that all quantities depend only on the radial coordinate r, and the matter density

ρ = ρ(r) will also be assumed homogeneous inside the source (r ≤ R) for the sake of

simplicity. The pressure will instead be determined consistently from the condition of

staticity.

5.1 Bootstrapped gravitational potential

We already showed in Chapter 4 that a non-linear equation for the potential V = V (r)

describing the gravitational pull on test particles generated by a matter density ρ = ρ(r)

can be obtained starting from the Newtonian Lagrangian LN[V ] (4.1.14) after including

the effects of self-interaction by coupling the field with its own energy density. In other

words, we coupled the field V with the gravitational current JV in Eq. (4.1.18). As

mentioned at the beginning of this Chapter, we now need to add a pressure term ac-

counting for the pressure p which prevents the system from collapsing. From a purely

Newtonian point of view, pressure only represents an external contribution required

by hydrostatic equilibrium. Such a Newtonian approach has been pursued in Ref. [19]

and, as one would expect, it was found that the pressure energy becomes very large

when describing static compact sources with a size R . RH. We must therefore add a

corresponding potential energy UB as a source of the gravitational potential, as it natu-

rally happens in GR, where the gravitational field is coupled to the energy-momentum

tensor [74]. The most straightforward way to do so in this context, is to define UB

as the potential energy associated with the work done by the force responsible for the

pressure p, such that

p ' −δUB

δV
= JB . (5.1.1)

We will accordingly have to couple the potential field with the energy densities JV and

JB. In a similar fashion, we can then interpret the analogous higher order term coming

from the matter Lagrangian (see Appendix B) as the coupling of a matter current

Jρ = −2V 2 (5.1.2)
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5.1 Bootstrapped gravitational potential

with the matter sector, i.e. with the total matter energy density ρ + 3 qB p. Upon

including these new source terms, we obtain the total Lagrangian

L[V ] = LN[V ]− 4 π

∫ ∞
0

r2 dr [qV JV V + 3 qB JB V + qρ Jρ (ρ+ 3 qB p)]

= −4 π

∫ ∞
0

r2 dr

[
(V ′)2

8 π GN

(1− 4 qV V ) + V (ρ+ 3 qB p)

−2 qρV
2 (ρ+ 3 qB p)

]
. (5.1.3)

The parameters qV , qB and qρ play the role of coupling constants 1 for the three different

currents JV , JB and Jρ respectively. They also allow us to control the origin of non-

linearities, as we recover the Newtonian Lagrangian (4.1.14) by setting all of them equal

to zero.

The associated effective Hamiltonian is simply given by

H[V ] = −L[V ] , (5.1.4)

and the Euler-Lagrange equation for V reads

(1− 4 qV V )4V = 4π GN (ρ+ 3 qB p)− 16 π GN qρ V (ρ+ 3 qB p) + 2 qV (V ′)
2
.(5.1.5)

The latter must be supplemented with the conservation equation that determines the

pressure,

p′ = −V ′ (ρ+ p) , (5.1.6)

which can be seen as a correction to the usual Newtonian formula that accounts for

the contribution of the pressure to the energy density, or as an approximation for the

Tolman-Oppenheimer-Volkoff equation (2.1.13) of GR.

Although we showed the three parameters qV , qB and qρ explicitly, we shall only

consider qV = 3 qB = qρ = 1 in the following for the sake of simplicity. In this case,

Eq. (5.1.5) reduces to

4V = 4π GN (ρ+ p) +
2 (V ′)2

1− 4V
, (5.1.7)

from which we see that the differences with respect to the Poisson Eq. (4.1.13) are

given by the inclusion of the pressure p and the derivative self-interaction term in

the right hand side. In the next sections, we shall analyse Eq. (5.1.7) as an effective

1Different values of qV , qB and qρ can be implemented in order to obtain the approximate potentials

for different motions of test particles in GR and describe different interiors. This is the difference with

the parameter qΦ in Chapter 4 which was just an expansion parameter to keep track of NLO terms.
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5. Bootstrapped Newtonian gravity: classical picture

description of the static gravitational field V generated by a static source of density ρ

in flat space-time. In other words, we abandon, or disregard, its geometric origin given

by the Einstein-Hilbert action and proceed by assuming there exists a reference frame

in which the motion of test particles are described by Newton’s law with a potential

that solves Eq. (5.1.7).

5.2 Homogeneous ball in vacuum

Since we are interested in compact sources, we will consider the simplest case in

which the matter density is homogeneous and vanishes outside the sphere of radius

r = R (4.2.23), as in Section 4.2.1. Of course, the uniform density (4.2.23) is not ex-

pected to be compatible with an equation of state, since the pressure p = p(r) must

depend on the radial position so as to maintain equilibrium [19]. We remark once more

that uniform density is not very realistic and is here used just for mathematical conve-

nience and because of its extremal role in the Buchdahl limit (2.1.1) in GR 2. Moreover,

the uniform density profile can also be viewed as a crude approximation of the density

in the corpuscular model of BHs, in which the energy is distributed throughout the

entire inner volume [12–14, 55, 56, 58, 59, 62, 69, 71, 85–88, 91–93].

The potential must satisfy the regularity condition in the centre

V ′in(0) = 0 (5.2.1)

and be smooth across the surface r = R, that is

Vin(R) = Vout(R) ≡ VR (5.2.2)

V ′in(R) = V ′out(R) ≡ V ′R , (5.2.3)

where we defined Vin = V (0 ≤ r ≤ R) and Vout = V (R ≤ r).

5.2.1 Outer vacuum solution

In the vacuum, where ρ = p = 0, Eq. (5.1.6) is trivially satisfied and Eq. (5.1.7) reads

4V =
2 (V ′)2

1− 4V
, (5.2.4)

which is exactly solved by

Vout =
1

4

[
1−

(
1 +

6GN M

r

)2/3
]
. (5.2.5)

2More realistic energy densities with physically motivated equations of state are considered in

Ref. [90].
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5.2 Homogeneous ball in vacuum
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Figure 5.1: Potential Vout (solid line) vs Newtonian potential (dashed line) vs order G2
N

expansion of Vout (dotted line) for r > 0 (all quantities are in units of GNM).

where two integration constants were fixed by requiring the expected Newtonian be-

haviour in terms of the ADM-like mass M for large r. In fact, the large r expansion

now reads

Vout '
r→∞

−GNM

r
+
G2

NM
2

r2
− 8G3

N M
3

3 r3
, (5.2.6)

and contains the expected post-Newtonian term VPN of order G2
N without any further

assumptions [20].

From Eq. (5.2.5), we also obtain

VR = Vout(R) =
1

4

[
1−

(
1 +

6GN M

R

)2/3
]
, (5.2.7)

and

V ′R = V ′out(R) =
GNM

R2 (1 + 6GN M/R)1/3
, (5.2.8)

which we will often use since they appear in the boundary conditions (5.2.2) and (5.2.3).

5.2.2 The inner pressure

We first consider the conservation Eq. (5.1.6) and notice that, for 0 ≤ r ≤ R, we can

write it as

(ρ0 + p)′

ρ0 + p
= −V ′ , (5.2.9)
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5. Bootstrapped Newtonian gravity: classical picture

which allows us to express the total effective energy density as

ρ0 + p = α e−V . (5.2.10)

The integration constant can be determined by imposing the usual boundary condition

p(R) = 0 , (5.2.11)

which finally yields

p = ρ0

[
eVR−V − 1

]
, (5.2.12)

where VR is given in Eq. (5.2.7).

5.2.3 The inner potential

The field equation (5.1.7) for 0 ≤ r ≤ R becomes

4V = 4 π GN ρ0 e
VR−V +

2 (V ′)2

1− 4V

=
3GN M0

R3
eVR−V +

2 (V ′)2

1− 4V
, (5.2.13)

and we notice that ρ0 e
VR < ρ0 since VR < 0. The relevant solutions Vin to Eq. (5.2.13)

must also satisfy the regularity condition (5.2.1) and the matching conditions (5.2.2)

and (5.2.3), with VR and V ′R respectively given in Eq. (5.2.7) and (5.2.8). Since

Eq. (5.2.13) is a second order (ordinary) differential equation, the three boundary con-

ditions (5.2.1), (5.2.2) and (5.2.3) will not only fix the potential Vin uniquely, but also

the ratio of the proper mass parameter GN M0/R for any given value of the compactness

GNM/R.

It is hard to find the complete solution of the above problem for general compactness.

An approximate analytic solution to Eq. (5.2.13) can be found quite straightforwardly

only in the regimes of low and intermediate compactness (i.e. for GN M/R � 1 and

GNM/R ' 1). On the other hand, for GN M � R, the non-linearity of Eq. (5.2.13)

and the interplay between M0 and the boundary conditions (5.2.1), (5.2.2) and (5.2.3)

make it very difficult to find any (approximate or numerical) solutions. In fact, even a

slight error in the estimate of M0 = M0(M,R) can spoil the solution completely. For

this reason, we will take advantage of the comparison method [94–97] which essentially

consists in finding two bounding functions V± (upper and lower approximate solutions)

such that E+(r) < 0 and E−(r) > 0 for 0 ≤ r ≤ R, where

E± ≡ 4V± −
3GN M

±
0 (M)

R3
eVR−V± −

2
(
V ′±
)2

1− 4V±
. (5.2.14)
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5.2 Homogeneous ball in vacuum

Comparison theorems then guarantee that the proper solution will lie in between the

two bounding functions (see Appendix D for more details 3), that is

V− < Vin < V+ . (5.2.15)

The advantage of this method is twofold. It will serve as a tool for finding approximate

solutions in the regime of large compactness and will also allow us to check the accuracy

of the approximate analytic solution for low and intermediate compactness.

Small and intermediate compactness

For the radius R of the source much larger or of the order of GN M , an analytic ap-

proximation Vs for the solution Vin can be found by simply expanding around r = 0,

and turns out to be

Vs = V0 +
GN M0

2R3
eVR−V0 r2 . (5.2.16)

where V0 ≡ Vin(0) < 0 and VR is given in Eq. (5.2.7). We remark that the regularity

condition (5.2.1) requires that all terms of odd order in r in the Taylor expansion about

r = 0 must vanish.

We can immediately notice that the above form is qualitatively similar to the New-

tonian solution shown in Section 4.2.1. Like the latter, the present case does not show

any singularity in the potential for r = 0 and the pressure,

p ' ρ0

[
eVR−V0−B r

2 − 1
]
, (5.2.17)

is also regular in r = 0,

p(0) = ρ0

[
e−(V0−VR) − 1

]
> 0 , (5.2.18)

since V0 < VR < 0.

The two matching conditions at r = R can now be written as
2R (VR − V0) ' GN M0 e

VR−V0

R2 V ′R ' GN M0 e
VR−V0 ,

(5.2.19)

One can solve the second equation of the system above for V0 to obtain

V0 =
1

4

[
1− (1 + 6GN M/R)2/3

]
+ ln

[
M0

M
(1 + 6GN M/R)1/3

]
, (5.2.20)

3We just remark here that the comparison theorems do not require that the approximate solutions

V± have the same functional forms of the exact solution Vin.
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Figure 5.2: Numerical solution to Eq. (5.2.13) (solid line) vs approximate solution

Vs = V+ in Eq. (5.2.22) (dotted line) vs lower bounding function V− = C Vs (dashed

line), for GN M/R = 1/100 (top left panel, with C = 1.002), GN M/R = 1/50 (top

central panel, with C = 1.003) and GN M/R = 1/20 (top right panel, with C = 1.004).

The bottom panels show the region 0 ≤ r ≤ R/100 where the difference between the

three potentials is the largest.

which is written in terms of M0 and M . Using the first equation in (5.2.19), one then

finds

M0 =
M e

− GNM

2R(1+6GNM/R)1/3

(1 + 6GNM/R)1/3
. (5.2.21)

This last expression, along with the one for V0, can be used to write the approximate

solution (5.2.16) in terms of M only as

Vs =
R3
[
(1 + 6GN M/R)1/3 − 1

]
+ 2GN M (r2 − 4R2)

4R3 (1 + 6GNM/R)1/3
, (5.2.22)

where we remark that this expression contains only the terms of the first two orders in

the series expansion about r = 0.

We can now estimate the accuracy of the approximation (5.2.16) by means of the

comparison method. The plots in Fig. 5.2 and 5.3 show that Vs is already in good agree-

ment with the numerical solution for both small and intermediate compactness and the

smaller the ratio GNM/R, the less Vs differs from the numerical solution. Indeed, the

approximate solution Vs fails in the large compactness regime, which will be studied in

the next subsection. The same plots also tell us that Vs is actually an upper bounding
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Figure 5.3: Numerical solution to Eq. (5.2.13) (solid line) vs approximate solution

Vs = V− in Eq. (5.2.22) (dotted line) vs upper bounding function V+ = C Vs (dashed

line), for GNM/R = 1/10 (top left panel, with C = 0.998), GN M/R = 1/5 (top central

panel, with C = 0.980) and GNM/R = 1 (top right panel, with C = 0.680). The

bottom panels show the region 0 < r < R/100 where the difference between the three

expressions is the largest.

function V+ up to GN M/R ' 1/20, but becomes a lower bounding function V− for

higher compactness (this can be verified by showing that it satisfies the required condi-

tions described in Appendix D). The other bounding function (V− or V+) can be found

by simply multiplying Vs by a suitable constant factor C determined according to the

theorem in Appendix D (with C > 1 for small compactness and C < 1 for intermediate

compactness). This means that the approximate solution (5.2.16) overestimates the

expected true potential Vin for low compactness, whereas it underestimates Vin when

the compactness grows beyond GN M/R ' 1/20. We also note that the gap between

the above V− and V+ increases for increasing compactness, which signals the need for a

better estimate of M0 = M0(M) in order to narrow this gap and gain more precision for

describing the intermediate compactness. The latter regime is particularly useful for

understanding objects that have collapsed to a size of the order of their gravitational

radius. We should remark that, in this analysis, we actually employed the comparison

method in the whole range 0 ≤ r < ∞ by defining V± = C± Vout, for r > R, where

Vout is the exact solution in Eq. (5.2.5) (see Figs. 5.4 and 5.5). This means that we did

not require that the lower function V− (for GN M/R . 1/20) and the upper function

V+ (for GNM/R & 1/20) satisfy the boundary conditions (5.2.2) and (5.2.3) at r = R.

However, since we have the analytical form for Vout in its entire range of applicability,
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Figure 5.4: Upper panels: numerical solution Vn to Eq. (5.2.13) matched to the exact

outer solution (5.2.5) (solid line) vs approximate solution Vs = V+ in Eq. (5.2.22) (dotted

line) vs lower bounding function V− (dashed line) for GNM/R = 1/100 (top left),

GNM/R = 1/50 (top middle) and GNM/R = 1/20 (top right). Bottom panels: relative

difference (Vs−Vn)/Vn (dotted line) vs (V−−Vn)/Vn (dashed line) in the interior region

for GN M/R = 1/100 (bottom left), GN M/R = 1/50 (bottom middle) and GN M/R =

1/20 (bottom right). The negative sign of (Vs − Vn)/Vn shows that the approximate

solution is an upper bounding function Vs = V+ in this range of compactness.

all that is needed to ensure that V± are the upper and lower bounding functions is

for the constants C± which multiply the expression for Vout to be smaller, respectively

larger than one.

As stated earlier, the analytic approximation (5.2.22) works best in the regime of

small compactness, in which we can further Taylor expand all quantities to second order

in GNM/R� 1 to obtain

V0 ' −
3GNM

2R

(
1− 4GN M

3R

)
, (5.2.23)

and finally use Eq. (5.2.21) to obtain

M0 'M

(
1− 5GN M

2R

)
, (5.2.24)

in qualitative agreement with the result of Ref. [19], where however the effect of the

pressure on the potential was neglected.

The above expressions for M0 and V0 can be used to write the inner potential (5.2.16)
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Figure 5.5: Upper panels: numerical solution Vn to Eq. (5.2.13) matched to the exact

outer solution (5.2.5) (solid line) vs approximate solution Vs = V− in Eq. (5.2.22) (dotted

line) vs upper bounding function V+ (dashed line) for GNM/R = 1/10 (top left),

GN M/R = 1/5 (top middle) and GNM/R = 1 (top right). Bottom panels: relative

difference (Vs−Vn)/Vn (dotted line) vs (V+−Vn)/Vn (dashed line) in the interior region

for GNM/R = 1/10 (bottom left), GNM/R = 1/5 (bottom middle) and GNM/R = 1

(bottom right). The negative sign of (Vs− Vn)/Vn shows that the approximate solution

is a lower bounding function Vs = V− in this range of compactness. The rapid growth

in modulus of (V+− Vn)/Vn with the compactness signals the need of a better estimate

of M = M(M0) for a more accurate description.

in a much simpler form in terms of M as

Vin '
GN M

2R

(
1− 2GN M

R

)
r2 − 3R2

R2
. (5.2.25)

As expected, the solution for small compactness, which can be useful for describing

stars with a radius orders of magnitude larger in size than their gravitational radius,

qualitatively tracks the Newtonian case. This can also be seen from Fig. 5.6. The

limitations of the small compactness approximation can be inferred from Eq. (5.2.25).

For 2GNM ≡ RH ∼ R the last term vanishes and Vin becomes a constant.

Finally, it is important to remark that, as opposed to what was done in Ref. [19],

the pressure now acts as a source and can be consistently evaluated with the help of

Eqs. (5.2.12) and (5.2.16). The plots in Fig. 5.7 clearly show that the pressure can be

well approximated by the Newtonian formula in the regime of low compactness, to wit

p ' 3GN M
2 (R2 − r2)

8π R6
, (5.2.26)
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Figure 5.6: Potential Vout (solid line) vs approximate solution (5.2.22) (dotted line)

vs Newtonian potential (dashed line), for GN M/R = 1 (left panel), GN M/R = 1/10

(center panel) and GNM/R = 1/100 (right panel).
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Figure 5.7: Pressure obtained from the expansion (5.2.16) (solid line) vs numerical

pressure (dotted line) vs Newtonian pressure (5.2.26) (dashed line), for GNM/R =

1/100 (left panel), GNM/R = 1/10 (center panel) and GNM/R = 1 (right panel).

again in qualitative agreement with Ref. [19]. Nevertheless, the same plots indicate

that it rapidly departs from the Newtonian expression when we approach the regime of

intermediate compactness, while remaining almost identical to the numerical approxi-

mation.

Large compactness

For GNM/R � 1, rather than employing a Taylor expansion like we did for small

compactness, it is more convenient to fully rely on comparison methods [94–97] and

start from the exact solution of the simpler equation

ψ′′ =
3GNM0

R3
eVR−ψ , (5.2.27)

which is given by

ψ(r;A,B) = −A
(
B +

r

R

)
+ 2 ln

[
1 +

3GNM0

2A2R
eA (B+r/R)+VR

]
, (5.2.28)
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where the constants A, B and M0 can be fixed (for any value of R) by imposing the

boundary conditions (5.2.1), (5.2.2) and (5.2.3). Regularity at r = 0 in particular yields

M0 =
2A2R

3GN

e−AB−VR . (5.2.29)

Eq. (5.2.3) for the continuity of the derivative across r = R then reads

A tanh(A/2) = RV ′R . (5.2.30)

For large compactness, RV ′R ∼ (GN M/R)2/3 � 1, and we can approximate the above

equation as

A ' RV ′R . (5.2.31)

The continuity Eq. (5.2.2) for the potential finally reads

2 ln
(

1 + eRV
′
R

)
−RV ′R (1 +B) = VR , (5.2.32)

and can be used to express B in terms of M and R. Putting everything together, we

obtain

ψ(r;M,R) ' 1

4

1− 1 + (2GNM/R) (1 + 2 r/R)

(1 + 6GN M/R)1/3
+ 8 ln

1 + e
GNM r/R2

(1+6GNM/R)1/3

1 + e
GNM/R

(1+6GNM/R)1/3




' 1

2

(
GNM√

6R

)2/3(
2 r

R
− 5

)
, (5.2.33)

and

M0

M
' GN M/R

3 (1 + 6GNM/R)2/3
{

1 + cosh
[

GNM/R

(1+6GNM/R)1/3

]}
' 1

3

(
2GNM

9R

)1/3

e
−
(
GNM√

6R

)2/3

, (5.2.34)

in which we showed the leading behaviours for GN M � R. It is important to remark

that the condition (5.2.1) is not apparently satisfied by the above approximate expres-

sions, although it was imposed from the very beginning, which shows once more how

complex is to obtain analytical approximations for the problem at hand.

The solutions to the complete equation (5.2.13) could then be written as

Vin = f(r;A,B)ψ(r;A,B) , (5.2.35)

where A, B and M0 should again be computed from the three boundary conditions,

so that Vin eventually depends only on the parameters M and R. Since solving for
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Figure 5.8: Left panel: E− for C− = 1. Right panel: E+ for C+ = 1.6. Both plots are

for GN M/R = 103.

f = f(r) is not any simpler than the original task, we shall instead just find lower and

upper bounds, that is constants C± such that

C− < f(r) < C+ , (5.2.36)

in the whole range 0 ≤ r ≤ R. In particular, we consider the bounding functions

V± = C± ψ(r;A±, B±) , (5.2.37)

where A±, B± and C± are constants computed by imposing the boundary condi-

tions (5.2.1), (5.2.2) and (5.2.3) and such that E+(r) < 0 and E−(r) > 0 for 0 ≤ r ≤ R.

In details, we first determine a function VC = C ψ(r;A,B) which satisfies the three

boundary conditions for any constant C. Eq. (5.2.1) yields the same expression (5.2.29),

whereas the l.h.s. of Eq. (5.2.30) is just rescaled by the factor C and continuity of the

derivative therefore gives the approximate solution

C A ' RV ′R . (5.2.38)

Eq. (5.2.2) for the continuity of the potential likewise reads

2C ln
(

1 + eRV
′
R/C
)
−RV ′R (1 +B) = VR , (5.2.39)

Upon solving the above equations one then obtains VC = C ψ(r;A(M,R,C), B(M,R,C))

and M0 = M0(M,R,C). For fixed values of R and M , one can then numerically deter-

mine a constant C+ such that E+ < 0 and a constant C− < C+ such that E− > 0.

For example, for the compactness GNM/R = 103, we can use C− ' 1 and C+ '
1.6, and the plots of E− and E+ are shown in Fig. 5.8. In particular, the minimum

value of |E+| ' 14. The corresponding potentials V± along with Ṽ = C̃ ψ, where

C̃ = (C+ +C−)/2, are displayed in Fig. 5.9. It is easy to see that the three approximate
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Figure 5.9: Left panel: approximate inner potentials V− (dashed line), Ṽ (solid line)

and V+ (dotted line) for 0 ≤ r ≤ R and exact outer potential Vout (dotted line) for

r > R. Right panel: approximate inner potentials V− (dashed line), Ṽ (solid line) and

V+ (dotted line) for 0 ≤ r ≤ R/5. Both plots are for GNM/R = 103.
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Figure 5.10: Approximate inner potentials V− (dashed line), Ṽ (solid line) and V+

(dotted line) for 0 ≤ r ≤ R and exact outer potential Vout (dotted line) for r > R and

for GNM/R = 102 (left panel, with C− = 1.042 and C+ = 1.52) and GN M/R = 50

(right panel, with C− = 1.073 and C+ = 1.5)

solutions essentially coincide almost everywhere, except near r = 0 where they start

to fan out, albeit still very slightly (the right panel of Fig. 5.9 shows a close-up of

this effect). A similar behaviour is obtained for larger values of GNM/R. For smaller

values of the compactness up to GN M/R ' 50, the approximation (5.2.38) is still quite

accurate (see Fig. 5.10), even if the smaller the compactness the bigger the difference

between V±. Actually, the error in the derivative of the potential at r = R is of

the order of 0.01 % and 0.6 % for GN M/R = 102 and GNM/R = 50, respectively.

In order to obtain a comparable precision for lower compactness, the approximate

expression (5.2.38) should be improved, but we do not need to do that given how

accurate is the perturbative expansion employed in Section 5.2.3.

From the left panel of Fig. 5.9, it is clear that for GNM/R = 103 the potential

Vin is practically linear, except near r = 0 where it turns into a quadratic shape, in
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Figure 5.11: Approximate inner potentials V− (dashed line), Vlin (solid line) and V+

(dotted line) for 0 ≤ r ≤ R. Both plots are for GNM/R = 103.

order to ensure the regularity condition (5.2.1). An approximate expression for the

source proper mass M0 in terms of M can then be obtained from the simple linear

approximation

Vlin ' VR + V ′R (r −R) , (5.2.40)

where VR and V ′R are given by the usual expressions (5.2.7) and (5.2.8), and which is

shown in Fig. 5.11 for GN M/R = 103. Upon replacing the approximation (5.2.40) into

the equation (5.2.13) for r = R, we obtain

M0

M
' 2 (1 + 5GN M/R)

3 (1 + 6GNM/R)4/3
, (5.2.41)

and further approximating for GNM/R� 1

GNM0

R
∼
(
GNM

R

)2/3

. (5.2.42)

The linear approximation is not very useful when it comes to evaluate the maximum

value of the pressure, which we expect to occur in the origin at r = 0, precisely where

this approximation must fail. We therefore consider again the approximation Ṽ = C̃ ψ,

which replaced into Eq. (5.2.12) gives rise to the pressure shown in Fig. 5.12. Since

the full expression is very cumbersome, we just show the leading order contribution for

large compactness

p ' GN M
2 e

1
2

(
GNM√

6R

)2/3

(3− 5
C̃

)

2 π C̃2R4 (6GN M/R)2/3

[
e

(
GNM√

6R

)2/3

(1− r
R) − 1

]
, (5.2.43)

which yields

p(0) ' GN M
2 e

5
2

(
C̃−1
C̃

)(
GNM√

6R

)2/3

2π C̃2R4 (6GN M/R)2/3
, (5.2.44)
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Figure 5.12: Pressure evaluated using the approximation Ṽ = C̃ ψ for GN M/R = 50

(left panel), GN M/R = 100 (center panel) and GNM/R = 1000 (right panel). The

constant C̃ = (C+ +C−)/2, where C+ and C− are the same as in Figs. 5.9 and 5.10 for

the corresponding cases.

where we find that C̃ > 1 for GN M/R � 1. It is clear from this expression and

Fig. 5.12 how rapidly the pressure grows near the origin when the compactness increases,

but still remaining finite and regular everywhere even for very large compactness. In

Fig. 5.13 we can see the comparison of the above approximate expression with the

graphs shown in Fig. 5.12. Of course the biggest the compactness the more rapidly the

approximation (5.2.43) approaches the results of Fig. 5.12. In Figs. 5.14 and 5.15 we

instead plot the comparison between the approximation (5.2.43) with C̃ = (C+ +C−)/2

and the pressure evaluated from Eq. (5.2.12) and V± = C± ψ. The values of C− and

C+ are the same as in Figs. 5.9 and 5.10 for the corresponding compactness.

5.3 Horizon and gravitational energy

The approach we used so far completely neglects any geometrical aspect of gravity.

In particular, it is well known that collapsing matter is responsible for the emergence

of BH geometries, providing us with the associated Schwarzschild radius (2.1.4). In

GR, this marks the boundary between sources which we consider as stars (R � RH)

and BHs (R . RH). Moreover, if the pressure is isotropic, stars must have a radius

R > (9/8)RH, otherwise the necessary pressure diverges (see Chapter 2 for details on

the Buchdahl limit).

We found that the pressure is always finite in our bootstrapped picture, hence there

is no analogue of the Buchdahl limit. This means that the source can have arbitrarily

large compactness, including R < RH. Lacking precise geometrical quantities, we will

follow a Newtonian argument and define the horizon as the value rH of the radius at

which the escape velocity of test particles equals the speed of light, namely

2V (rH) = −1 , (5.3.1)
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Figure 5.13: Comparison between the approximate pressure (5.12) (dotted line) vs

solution of Eq. (5.2.43) with Ṽ = C̃ ψ and C̃ = (C+ +C−)/2 (solid line) for GN M/R =

50 (top left panel), GN M/R = 100 (top central panel), GN M/R = 1000 (top right

panel), and the corresponding close-ups in the bottom panels.

as in Ref. [19] 4. Of course, when the source is diluted no horizon should exist and

the above definition correctly reproduces this expectation, since that condition is never

fulfilled for small compactness (see Figs. 5.2 and 5.3). In fact, we can find a limiting

lower value for the compactness at which Eq. (5.3.1) has a solution, by requiring

2Vin(rH = 0) = −1 , (5.3.2)

which gives GNM/R ' 0.46 if we use V (0) = V0 from Eq. (5.2.20). Upon increasing the

compactness, the horizon radius rH will increase and eventually approach the radius R

of the matter source, which occurs when

2Vin(rH = R) = 2Vout(R) = −1 , (5.3.3)

where Vout(R) = VR is given by the exact expression in Eq. (5.2.7). This yields the

compactness GN M/R ' 0.69 and rH ' R ' 1.43GN M . For even larger values of the

compactness, the horizon radius will always appear in the outer potential (5.2.5) and

therefore remain fixed at this value in terms of M . We can summarise the situation as

4An effective metric outside the bootstrapped source has been found in Ref. [98]. In that context

the usual notion of horizon can be recovered.
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Figure 5.14: Pressure evaluated from V− = C− ψ (dashed line) vs pressure evaluated

from Ṽ = C̃ ψ (dotted line) for GN M/R = 50 (left panel), GN M/R = 100 (center

panel) and GNM/R = 1000 (right panel).
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Figure 5.15: Pressure evaluated from V+ = C+ ψ (dashed line) vs pressure evaluated

from Ṽ = C̃ ψ with C̃ = (C+ + C−)/2 (dotted line) for GNM/R = 50 (left panel),

GN M/R = 100 (center panel) and GN M/R = 1000 (right panel).

follows 

no horizon for GNM/R . 0.46

0 < rH ≤ R ' 1.4GN M for 0.46 . GNM/R ≤ 0.69

rH ' 1.4GN M for GNM/R & 0.69 .

(5.3.4)

The above values of the compactness further correspond to proper masses

M0

M
'


0.56 for GN M/R ' 0.46

0.47 for GN M/R ' 0.69 ,

(5.3.5)

so that, when the horizon is precisely at the surface of the source, we have

rH ' 1.4GNM ' 3GN M0 . (5.3.6)

It is also important to remark that the horizon rH lies inside the source for a relatively

narrow range of the compactness (see Fig. 5.16 for the corresponding potentials).
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Figure 5.16: Potentials corresponding to rH = 0 (solid line) and rH = R (dashed line).

We can next estimate the gravitational potential energy UG from the effective Hamil-

tonian (5.1.4) (with qV = 3 qB = qρ = 1). For calculation and conceptual purposes, it

is convenient to separate UG into three different parts: the “baryon-graviton” contri-

bution, for which the radial integral has only support inside the matter source, given

by

UBG = 4 π

∫ ∞
0

r2 dr (ρ+ p)V (1− 2V ) =
3M0

R3

∫ R

0

r2 dr eVR−VinVin (1− 2Vin) ,(5.3.7)

where we employed Eq. (5.2.12); the “graviton-graviton” contribution due to the po-

tential self-interaction inside the source

U in
GG =

1

2GN

∫ R

0

r2 dr (V ′in)
2

(1− 4Vin) (5.3.8)

and outside the source

Uout
GG =

1

2GN

∫ ∞
R

r2 dr (V ′out)
2

(1− 4Vout) , (5.3.9)

While the contribution from the outside is exactly given by

Uout
GG =

GN M
2

2R
. (5.3.10)

the inner contributions UBG and U in
GG can only be evaluated within the approximations

for the potential employed in the previous sections.

The energy contributions for objects of low compactness GN M/R � 1 can be

evaluated straightforwardly. Starting from the approximate expression in (5.2.24)

and (5.2.25) the total energy is calculated to be

UG = UBG + U in
GG + Uout

GG ' −
3GNM

2

5R
+

9G2
N M

3

7R2
, (5.3.11)

where we immediately notice the usual newtonian term at the lowest order.
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Figure 5.17: Total gravitational potential energy UG. Left panel: UG in the low com-

pactness regime from the analytic approximations valid in the low and intermediate

regime (continuous line) vs UG from Eq. (5.3.11) (dashed line). Center panel: UG in

the low and intermediate compactness regime. Right panel: UG in the high compact-

ness regime.

One can also calculate the three components of the gravitational potential energy

in the regime of intermediate compactness GNM/R ∼ 1, but the explicit expressions

would be too cumbersome to display. Instead, the left panel of Fig. 5.17 shows a

comparison in the regime of low compactness between the above expression for UG

and the one obtained starting from the analytic approximations from Eqs. (5.2.21)

and (5.2.22), which are valid both for sources of low and intermediate compactness.

It can be seen that the two approximations lead to similar results for objects that

have low compactness. The center panel also shows the behaviour of UG for objects

of intermediate compactness. As expected, the gravitational potential energy becomes

more and more negative as the density of the source increases.

We conclude with the high compactness regime, in which the increase in modulus

of the negative gravitational potential energy is even more dramatic, as shown in the

right panel of Fig. 5.17. To make things easier, we are going to evaluate the con-

tributions (5.3.7) and (5.3.8) in the limit GNM/R � 1, with the help of the linear

approximation (5.2.40) and (5.2.41). The leading order in GN M/R� 1 then reads

UBG ' −
125R

3GN

e

(
GNM√

6R

)2/3

(5.3.12)

and

U in
GG '

5GNM
2

36R
. (5.3.13)

One expects that this negative and large potential energy UG is counterbalanced by the

positive energy (E.11) associated with the pressure (5.2.43) inside the matter source.

Of course, the total energy of the system should still be given by the ADM-like

mass M , which must therefore equal the sum of the matter proper mass M0 and the

energy associated with the pressure (see Appendix E for more details about the energy

balance).
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Chapter 6

Bootstrapped Newtonian gravity:

quantum picture

Like the Newtonian analogue, the bootstrapped potential determines the gravitational

pull acting on test particles at rest 1. It can therefore be used in order to describe the

mean field force acting on the constituents of the system, namely the baryons in the

static matter source as well as the gravitons in the potential itself. In order to gain

some insight into the quantum structure of such self-gravitating systems, the solutions

for the bootstrapped potential will be here described in terms of the quantum coherent

state of a free massless scalar field, analogously to what was done for the Newtonian

potential in Ref. [20] (see also Ref. [62, 99] for a model of BHs, Ref. [100] for general

solitons and Refs. [91] for photons in a static electric or magnetic field). This analysis

will be carried out in details both in the Newtonian approximation, which corresponds

to sources of small compactness, and for the large compactness case. The analysis of the

coherent state will allow us to recover the scaling (3.1.6) for the ADM mass M in terms

of the number of gravitons NG in all cases, whereas the scaling (3.1.7) for the mean

wavelength will appear to require the fine-tuned maximal packing R ∼ RH. However,

by considering the quantum nature of the source in rather general terms, we will also

find that the classical bootstrapped relation between the BH mass M and the proper

mass M0 of the source implies a Generalised Uncertainty Principle (GUP) [52, 101–

112] for the horizon size. Moreover, consistency of this GUP with the properties of the

coherent state indeed suggests that the compactness of the source should be at most of

order one and the scaling relation (3.1.7) can therefore be recovered in a fully quantum

description of BHs. Such a bound on the maximum compactness of self-gravitating

objects is at the heart of the so called classicalization of gravity [42–44, 113], according

1In a quantum field theory description, this dynamics would be obtained from transition amplitudes

yielding the propagator of the test particle. We here assume that all the required approximations

leading to the effective appearance of a potential hold.
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6. Bootstrapped Newtonian gravity: quantum picture

to which quantum fluctuations involved in processes above the Planck scale should be

suppressed precisely by the formation of BHs viewed as quasi-classical configurations.

6.1 Quantum coherent state

We will first review how to describe a generic static potential V by means of the

coherent state of a free massless scalar field. This will allow us to introduce a formal

way of counting the number of quanta NG for any such potential. We remark that a

clear understanding of the physical meaning of the number of quanta so defined, in a

field configuration that is not in general perturbatively related with the vacuum, could

possibly be obtained only by studying the dynamical process leading to the formation of

such a configuration. Of course, there is little hope of solving this problem analytically

in a non-linear theory. Like in Refs. [20, 72], we shall instead take a similar approach to

that for general solitons in quantum field theory found in Ref. [100] (see also Ref. [62,

99] for a model of BHs and Refs. [91] for photons in QED). We remark, in fact, that

for our purposes, the number NG is mostly an auxiliary quantity which allows us to

tackle the issue of classicalization by means of the corresponding scaling relations (3.1.6)

and (3.1.7) for BHs, discussed in Chapter 3.

We start by setting the stage for the quantum interpretation of the dimensionless

V = V (x) based on simple Fourier transforms. In order to fix the notation, we expand

the potential in the normalised plane waves (2.2.3) as

V (x) =

∫
R3

dk

(2 π)3
Ṽ (k) vk(x) , (6.1.1)

where, in turn, one has

Ṽ (k) =

∫
R3

dxV (x) v∗k(x) , (6.1.2)

with Ṽ (k) = Ṽ ∗(−k).

Next, we will specialise to spherically symmetric cases and apply the construction to

the Newtonian potential generated by a uniform ball of matter, for which the Fourier

transform can be computed explicitly 2. This exercise will allow us to introduce in

the next Section a different way of analysing cases, like the bootstrapped Newtonian

potential, for which this cannot be done analytically.

2The even simpler cases of the Newtonian potential for a point-like source and for a Gaussian source

can be found in Chapter 4.
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6.1 Quantum coherent state

6.1.1 Static scalar potential

As it was done in Ref. [20], the first step consists in rescaling the dimensionless potential

V so as to obtain a canonically normalised real scalar field 3

Φ =
V√
GN

=

√
mp

`p

V . (6.1.3)

This let us then quantise Φ as a free massless field as in Section 2.2. Classical config-

urations of the scalar field must be given by suitable states in the Fock space, and we

note that a natural choice for V = V (x) is given by a coherent state,

âk |g〉 = gk e
i γk(t) |g〉 , (6.1.4)

such that the expectation value of the quantum field Φ̂ reproduces the classical potential,

namely √
`p

mp

〈g| Φ̂(t,x) |g〉 = V (x) . (6.1.5)

From the expansion (2.2.6), one can easily compute the left hand side of Eq. (6.1.5) by

making use of Eq. (6.1.4). Comparing with Eq. (6.1.1) then yields

gk =
1

`p

√
k

2
Ṽ (k) (6.1.6)

and γk(t) = k t, with the latter condition turning (propagating) plane waves into stand-

ing waves.

We are particularly interested in the total number of quanta in this coherent state,

whose general expression is given by

N =

∫
dk

(2 π)3 〈g| â
†
k âk |g〉

=

∫
dk

(2 π)3 g
2
k

=
1

2 `2
p

∫
dk

(2 π)3 k Ṽ
2(k) , (6.1.7)

and in their mean wavelength λ ' 1/k̄ ≡ N/〈 k 〉, where the mean wavenumber is given

by

〈 k 〉 =

∫
dk

(2 π)3 〈g| k â
†
k âk |g〉

=

∫
dk

(2 π)3 k g
2
k

=
1

2 `2
p

∫
dk

(2 π)3 k
2 Ṽ 2(k) . (6.1.8)

3We recall that a canonically normalised scalar field has dimensions of
√

mass/length.
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6. Bootstrapped Newtonian gravity: quantum picture

The above general expressions will next be specified for the Newtonian potential gen-

erated by spherically symmetric sources.

6.1.2 Newtonian potential for spherical sources

The Newtonian potential V (x) = VN(r) for a spherically symmetric source of static

energy density ρ = ρ(r), can be described by means of the Lagrangian (4.1.14) whose

corresponding Euler-Lagrange equation of motion is the Poisson equation in spherical

coordinates (4.1.13). Since the system is static, the (on-shell) Hamiltonian is simply

given by HN[VN] = −LN[VN] as in Section 4.1. After introducing the rescaled field Φ

of Eq. (6.1.3), we also need to rescale the Hamiltonian by a factor of 4 π in order to

canonically normalise the kinetic term 4, to wit

HN[Φ] = 4 πHN[VN] . (6.1.9)

If we then promote Φ = Φ(t, r) and rescale the matter density

ρ̃ = 4π
√
GN ρ = 4π

√
`p

mp

ρ (6.1.10)

we obtain

HN[Φ] = 4 π

∫ ∞
0

r2 dr

[
1

2
∂µΦ ∂µΦ + ρ̃Φ

]
. (6.1.11)

The previous general analysis for the coherent state can now be adapted to the spheri-

cally symmetric case by just replacing the plane waves (2.2.3) with the spherical Bessel

functions (4.2.2),

vk(x)→ j0(k R) ≡ sin(k R)

k R
. (6.1.12)

By substituting Eq. (6.1.1) into Eq. (4.1.13), we obtain the general result

ṼN(k) = −4 π `p ρ̃(k)

mp k2
, (6.1.13)

which, together with Eq. (6.1.6), leads to

gk = − 4π ρ̃(k)

mp

√
2 k3

. (6.1.14)

The spherically symmetric versions of Eqs. (6.1.7) and (6.1.8) then read

NG =

∫ ∞
0

dk

2π2
k2 g2

k , (6.1.15)

4See Ref. [20] for more details.
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6.1 Quantum coherent state

and

〈 k 〉 =

∫ ∞
0

dk

2π2
k3 g2

k , (6.1.16)

where the suffix G emphasises that the quantity is evaluated in the coherent state

representing the gravitational potential.

6.1.3 Newtonian potential of a uniform ball

Note that all expressions above can be explicitly computed if we know the coefficients

gk. As a workable example, we will again consider the homogeneous source (4.2.23) and

recall from Section 4.2.1 the corresponding Newtonian solution

VN =


GNM

2R3

(
r2 − 3R2

)
for 0 ≤ r < R

−GN M

r
for r > R ,

(6.1.17)

where M = M0 is the ADM mass equal to the rest mass in this Newtonian case.

The Fourier transform of the density (4.2.23) is given by

ρ̃(k) = 4 π

∫ ∞
0

dr r2 ρ(r) j0(k r) =
3M

k2R2

[
sin(k R)

k R
− cos(k R)

]
, (6.1.18)

and the coherent state eigenvalues then read

gk =
12 πM√

2mp k7/2R2

[
cos (k R)− sin (k R)

k R

]
. (6.1.19)

The mean wavenumber (6.1.16) can be easily evaluated from this expression,

〈 k 〉 =
36M2

m2
p R

4

∫ ∞
0

dk

k4

[
cos (k R)− sin (k R)

k R

]2

=
36M2

m2
pR

∫ ∞
0

dz

z4

[
cos z − sin z

z

]2

=
12 πM2

5m2
pR

= −4π
UN

`pmp

, (6.1.20)

where

UN = −3GN M
2

5R
(6.1.21)

is precisely the gravitational potential energy of the spherically symmetric homogeneous

source (4.2.23), a result consistent with the linearity of the Newtonian interaction 5.

5We note that the factor of 4π in the right hand side of Eq. (6.1.20) is just a consequence of the

canonical rescaling (6.1.9).
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6. Bootstrapped Newtonian gravity: quantum picture

While the mean wave number 〈 k 〉 above is finite, the number of gravitons (6.1.15)

diverges in the infrared (IF), i.e. k2 g2
k → ∞ for k → 0. This is also expected as the

potential (6.1.17) has infinite spatial support and we could simply introduce a cut-off

k0 = 1/R∞ to account for the necessarily finite life-time of a realistic source [20]. In

this case,

NG =
36M2

m2
p R

4

∫ ∞
k0

dk

k5

[
cos (k R)− sin (k R)

k R

]2

=
36M2

m2
p

∫ ∞
R/R∞

dz

z5

[
cos z − sin z

z

]2

(6.1.22)

' 4
M2

m2
p

log

(
R∞
2R

)
. (6.1.23)

The corpuscular scaling (3.1.6) with the square of the energy M of the system already

appears at this stage, but we can still understand better the logarithmic divergence for

R∞ →∞ in order to make full sense of it.

As pointed out in Ref. [100], the fact that the energy (or the mean wavenumber) is

finite despite the diverging number of constituents is a direct consequence of a decreasing

energy contribution coming from gravitons with lower and lower momenta. We can in

fact separate two contributions by introducing a scale Λ which splits the phase space

of gravitons into effective (hard) and IR (soft) modes,

〈 k 〉 =

∫ Λ

0

dk

2 π2
k3 g2

k +

∫ ∞
Λ

dk

2π2
k3 g2

k

≡ kIR + keff , (6.1.24)

where we require keff(Λ) � kIR(Λ). Indeed the scale Λ remains somewhat arbitrary,

since it is just defined by requiring that keff(Λ) ' 〈 k 〉 to a good approximation. The

accuracy of the approximation is clearly measured by the ratio kIR/keff which we plot

in Fig. 6.1 (see Appendix F for the details). The interesting fact it that we can identify

a threshold value ΛR ' 1/R which only depends on the size R of the source and not

on M . Values of Λα = ΛR/α = 1/αR with α > 1 correspond to kIR/keff < 1 and are

acceptable approximations, with the level of precision set by α (e.g. kIR/keff ' 0.1 for

α = 5). In particular, we find

keff =
M2

m2
p R

f(α) , (6.1.25)

with f(α) given explicitly in Eq. (F.1).

We can now use the scale Λα in order to identify the number N eff
G of effective (hard)

gravitons and the number N IR
G of IR gravitons, namely

NG =

∫ Λα

0

d k

2 π2
k2 g2

k +

∫ ∞
Λα

d k

2π2
k2 g2

k

= N IR
G +N eff

G . (6.1.26)
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Figure 6.1: Ratio between kIR and keff for varying Λ. The threshold is ΛR ' 1/R.

The finite number of gravitons contributing to keff ' 〈 k 〉 is given by

N eff
G =

M2

m2
p

g(α) , (6.1.27)

where g(α) is a numerical factor displayed in Eq. (F.4). The infinity (for R∞ → ∞)

in the total amount (6.1.23) comes from N IR
G , which counts the very soft gravitons

contributing the small kIR. It is now quite straightforward to evaluate the mean graviton

wavelength as

λG '
N eff

G

keff

= R
f(α)

g(α)

≡ Rh(α) . (6.1.28)

Since h(α) < 1 for α > 1 (see Fig. 6.2), we have

λG(α) ' h(α)R ≤ αR , (6.1.29)

and the average wavelength consistently belongs to the effective part of the spectrum

(that is, 1/λG(α) > Λα).

We conclude this section by remarking once more that the important results are

that N eff
G only depends on the ADM energy M precisely like in Eq. (3.1.6), whereas λG

is only proportional to R, and none of this quantities associated with the coherent state

for the Newtonian potential therefore depend on the compactness of the source. The

corpuscular scaling (3.1.7) for BHs, namely λG ' RH ∼M , could therefore be obtained

only by assuming R ∼ RH. This all should not be surprising since the Newtonian theory

is linear, hence nothing special happens in it when R ∼ RH and a BH is formed.

6.2 Scaling relations from bootstrapped potential

The bootstrapped potential solutions described in Chapter 5 where shown to satisfy

the same regularity conditions (5.2.1), (5.2.2) and (5.2.3) of the Newtonian potential
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6. Bootstrapped Newtonian gravity: quantum picture
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Figure 6.2: Plot of the function h = h(α).

and approach the Newtonian behaviour far from the source

Vout(r) ' VN = −GN M

r
for r � R∗ , (6.2.1)

where M is the total ADM energy which is equal to the rest mass M0 only in the New-

tonian case. The scale R∗ conveniently introduced above represents a distance (well)

beyond which the potential can be safely approximated by the Newtonian expression

in the outer vacuum. It is therefore natural to identify R∗ as the larger between the

gravitational radius of the matter source with energy M and the actual size R of the

matter source,

R∗ = max{GN M,R} . (6.2.2)

The quantum construction in this case is analogous to what was done in Sections 6.1.2

and 6.1.3 but we first need to clarify a subtle aspect. After following the prescrip-

tion (6.1.3), the Lagrangian (5.1.3) reads (with qV = 3 qB = qρ = 1)

L[Φ] = 4 π

∫ ∞
0

r2 dr

[
−1

2
∂µΦ ∂µΦ− µΦ

(
1− 2

√
GN Φ

)
+ 2

√
GN Φ ∂µΦ ∂µΦ

]
,(6.2.3)

where µ = ρ + p. As in Section 6.1.2 we rescaled the Lagrangian by a total factor 4 π.

While for the Newtonian case this was sufficient to guarantee a canonically normalized

kinetic term, here the derivative interaction spoils this property and in general H[Φ] =

−L[Φ] does not hold anymore. Nevertheless, we will only use the whole approach for the

purpose of studying the quantum properties of the static bootstrapped potential V (r)

so that the derivative term does not ruin the whole picture 6. Everything is now set

for a quantum interpretation of the bootstrapped potential in terms of a coherent state

following the approach of Section 6.1. Unfortunately, the calculations of the number

6If one were to study the quantum dynamics described by the above Lagrangian then a further

rescaling of the field Φ would be necessary to diagonalize the kinetic term [114].

64



6.2 Scaling relations from bootstrapped potential

of gravitons and their mean wavelength are now made more difficult by the fact that

we cannot compute the Fourier transform of the scalar potential V = V (r) and the

integrals in k in Eqs. (6.1.7) and (6.1.8) cannot be done exactly. For this reason, we

shall employ a different procedure, detailed in Appendix G, which amounts to rewriting

Eq. (6.1.8) as the spatial integral (G.8) 7, that is

〈 k 〉 =
2π

`2
p

∫ ∞
0

dr r2 [V ′(r)]
2

=
2π

`2
p

∫ R

0

dr r2 [V ′in(r)]
2

+
2π

`2
p

∫ ∞
R

dr r2 [V ′out(r)]
2
, (6.2.4)

and then use a similar argument to that of Section 6.1.3. The main difference is that,

since we integrate along the radial coordinate, we must determine a length scale Rγ such

that the integral from 0 to Rγ provides the main contribution to 〈 k 〉 in Eq. (6.2.4).

We separate the two possible cases with Rγ < R and Rγ > R, respectively, and

define

keff =



2 π

`2
p

∫ Rγ

0

dr r2 [V ′in(r)]
2

for 0 ≤ Rγ < R

2 π

`2
p

∫ R

0

dr r2 [V ′in(r)]
2

+
2 π

`2
p

∫ Rγ

R

dr r2 [V ′out(r)]
2

for Rγ > R

(6.2.5)

and

k∞ =



2 π

`2
p

∫ R

Rγ

dr r2 [V ′in(r)]
2

+
2π

`2
p

∫ ∞
R

dr r2 [V ′out(r)]
2

for 0 ≤ Rγ < R

2 π

`2
p

∫ ∞
Rγ

dr r2 [V ′out(r)]
2

for Rγ > R .

(6.2.6)

The ratio

k∞
keff

= γ , (6.2.7)

with γ < 1, defines the scale Rγ for which keff approximates 〈 k 〉 within the required

precision (similarly to the parameter α used in Section 6.1.3). The analysis in Ap-

pendix G.2 shows that the number of gravitons scales as M2/m2
p, under quite general

assumptions, and contains the same logarithmic divergence as in the Newtonian case,

with R∗ replacing R, that is

NG ' 4
M2

m2
p

log

(
R∞
R∗

)
. (6.2.8)

7It is crucial that the NG is still IR divergent while 〈 k 〉 is finite, as shown explicitly in Appendix G.
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6. Bootstrapped Newtonian gravity: quantum picture

We shall therefore rely on the argument of Section 6.1.3 and assume that the number

of gravitons effectively contributing up to the scale Rγ is finite and proportional to

M2/m2
p,

N eff
G ∼

M2

m2
p

. (6.2.9)

In the following, we will estimate the scale Rγ for the Newtonian potential as a test of

the method and then apply it to the bootstrapped potential.

6.2.1 Newtonian potential

We start with the Newtonian potential in order to test the validity of the above

Eqs. (6.2.4), (6.2.5) and (6.2.6). The first important check is that Eq. (6.2.4) indeed

reproduces the result (6.1.20),

〈 k 〉 =
2π

`2
p

∫ R

0

dr r4 G
2
NM

2

R6
+

2 π

`2
p

∫ R∞

R

dr
G2

N M
2

r2

=
2πM2

5m2
pR

+
2 πM2

m2
pR

=
12πM2

5m2
p R

. (6.2.10)

It is then easy to verify that Eqs. (6.2.5) and (6.2.6) give

keff =



2πM2R5
γ

5m2
pR

6
for 0 ≤ Rγ < R

12πM2

5m2
p R
− 2πM2

m2
pRγ

for Rγ > R

(6.2.11)

and

k∞ =



12πM2

5m2
pR
−

2πM2R5
γ

5m2
p R

6
for 0 ≤ Rγ < R

−2 πM2

m2
pRγ

for Rγ > R .

(6.2.12)

After replacing these expression into Eq. (6.2.7), it turns out that γ < 1 implies Rγ & R,

as shown in Fig. 6.3. One can in fact solve Eq. (6.2.7) for Rγ and find

Rγ =
5

6

(
γ + 1

γ

)
R . (6.2.13)

It would be tempting to set a direct connection with the momentum scale Λα introduced

in Section 6.1.3 and state that Λα=γ = 1/Rγ, but we could not find a strict proof of this
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Figure 6.3: Ratio k∞/keff = γ for the Newtonian potential (left panel) and a close-up

view for small Rγ (right panel).

relation. It is nonetheless reassuring that Eq. (6.2.13) further supports the conclusion

that in the Newtonian regime the only relevant scale for 〈 k 〉 is the radius R of the

source. In any case it is sufficient for our purposes to assume that Λα = 1/Rγ for

precisions γ ∼ α and show that the mean wavelength computed with the effective

gravitons alone is qualitatively the same as in Eq. (6.1.28).

6.2.2 Bootstrapped potential

We can finally consider the bootstrap solutions of Chapter 5. When the compactness

is small, the solutions in Eq. (5.2.5) and (5.2.25) follow rather closely the Newtonian

behaviour and the results of Section 6.2.1 become a very good approximation.

When the compactness is instead large, things change significantly. The outer po-

tential is always given by the exact solution (5.2.5) while for the inner potential we will
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6. Bootstrapped Newtonian gravity: quantum picture

consider the linear approximation (5.2.40). In so doing, Eq. (6.2.4) gives

〈 k 〉 ' 2π

`2
p

∫ R

0

dr r2 (V ′R)
2

+
2 π

`2
p

∫ ∞
R

dr r2

[
GN M

(1 + 6GN M/r)1/3 r2

]2

=
2π R3 (V ′R)2

3 `2
p

+
2π G2

NM
2

`2
p

∫ ∞
R

dr

(1 + 6GN M/r)2/3 r2

=
π GN M

`2
p

[
2GN M

(1 + 6GN M/R)2/3R
+

(
1 +

6GNM

R

)1/3

− 1

]

' M

`pmp

(
GNM

R

)1/3

, (6.2.14)

where V ′R is given in Eq. (5.2.8) and the last expression contains just the leading order in

the compactness GNM/R� 1. Like in the Newtonian case, the mean wave number 〈 k 〉
is finite, despite the number of gravitons diverges again and with the same behaviour

and functional dependence (see Appendix G.2 for the details). Given these similarities

with the Newtonian regime, we exploit the same method described in Section 6.2.1

in order to find the scale Rγ for the bootstrapped potentials. We only consider the

case Rγ > R as it is the only one in which one can have γ < 1. Hence, Eqs. (6.2.5)

and (6.2.6) yield

keff =
2 π R (GNM/R)2

3 `2
p (1 + 6GN M/R)2/3

+
πM

`pmp

[(
1 +

6GNM

R

)1/3

−
(

1 +
6GN M

Rγ

)1/3
]

(6.2.15)

and

k∞ =
πM

`pmp

[(
1 +

6GNM

Rγ

)1/3

− 1

]
, (6.2.16)

where the linear approximation (5.2.40) was considered for the inner potential and the

exact solution (5.2.5) for the outer region. After solving Eq. (6.2.7) for Rγ, one finds

Rγ '
6GNM[

20
3·62/3

(
γ
γ+1

) (
GNM
R

)1/3
+ 1
]3

− 1
. (6.2.17)

It is easy to see that the threshold value of Rγ, corresponding to γ = 1, is still propor-

tional to R in the regime GN M/R � 1. On the other hand, Figs. 6.4 and 6.5 show

that Rγ raises very quickly for γ < 1 and reaches values of order GN M or large for

better precisions. Hence, from Eqs. (6.2.13) and (6.2.17), we see that Rγ qualitatively

behaves as the scale R∗ of Eq. (6.2.2): it is proportional to R for sources with small

compactness (consistently with the quasi-Newtonian behaviour) while it is also related

to the scale GN M when the compactness becomes large. In other words, we get a

good description of the system by considering gravitons inside a ball of radius Rγ ∼ R
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6.2 Scaling relations from bootstrapped potential

for GNM/R � 1 and Rγ ∼ R (GN M/R)2/3/γ for GNM/R � 1 and 0 < γ � 1.

In particular, for large compactness, we can tune the precision coefficient γ so that

Rγ ∼ GN M . As we mentioned at the end of Section 6.2.1, this suggests that there is a

scale Λ ∼ 1/R∗ in momentum space below which the contribution of gravitons becomes

essentially irrelevant.

Finally, we simply evaluate the mean graviton wavelength as the ratio between

Eq. (6.2.9) and Eq. (6.2.14) and get

λG

R
'
(
GNM

R

)2/3

� 1 , (6.2.18)

so that we can conclude that

1 .
λG

R
.
GNM

R
, (6.2.19)

and the compactness of the source yields a (rough) upper bound for the mean wave-

length. The above expression also does not reproduce the expected scaling relation (3.1.7)

of the corpuscular model, to wit λG ∼M , unless the compactness is of order one, rather

than very large. However, we will see below that it might be the quantum nature of

the source that requires this rather strong bound for the compactness.

6.2.3 Quantum source and GUP for the horizon

It was shown in Ref. [115] that a quantum source whose size R is comparable with its

gravitational radius (2.1.4) satisfies a GUP [52, 101–112] of the form

∆R ∼ `pmp

∆P
+ γ `p

∆P

mp

, (6.2.20)

where ∆R is the uncertainty in the size of the source and ∆P the uncertainty in the

conjugate radial momentum. The first term in the right hand side follows from the usual

Heisenberg uncertainty relation, whereas the second term corresponds to the horizon

fluctuations, ∆RH ∼ ∆M0 ∼ ∆P , obtained from the Horizon Wave-Function (HWF)

determining the size RH of the gravitational radius [116–118]. In Eq. (6.2.20) the two

terms are just linearly combined with an arbitrary coefficient γ > 0 [115]. In particular,

one finds that the quantum fluctuations of the horizon depend strongly on the precise

quantum state of the source: the quantum fluctuations of a macroscopic BH of mass

M ∼M0 � mp are very large (with ∆RH/RH ∼ 1) if the source is given by a localised

single particle with Compton width ∆R ∼ R ∼ `pmp/M0 [115], whereas they can

be negligibly small if the source contains a large number of components of individual

energy ε � M0 and size R ∼ RH [56, 57], like is the case for corpuscular BHs [12–14,

85–88].
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Figure 6.4: Ratio k∞/keff = γ for the bootstrapped potential (left panel) and close-up

view for small Rγ (right panel).

It is now interesting to note that the relation (5.2.42) for very compact sources

directly implies a similar GUP for the gravitational radius, namely

∆RH

RH

' ∆M

M
=

∆M0

M0

+
∆R

R

∼
`2

p

R2

(
R

GNM

)2/3
R

∆R
+

∆R

R
, (6.2.21)

where we again assumed the Heisenberg uncertainty relation for the source,

∆M0 ∼
`pmp

∆R
, (6.2.22)

and used Eq. (5.2.42) to express the compactness in terms of the ADM mass M . In par-

ticular, the second term in Eq. (6.2.21) is analogous to the second term in Eq. (6.2.20)

and would not be found in the case of Newtonian gravity (where M = M0 exactly), or

it would be negligibly small for small compact sources (for which M 'M0). The fluctu-

ations of the horizon are now dominated by the fluctuations of the source, ∆M ∼ ∆R,

for very large compactness GN M/R� 1, if the size of the source R & `p (otherwise the

usual Heisenberg term cannot be neglected). This is analogous to the above mentioned

results obtained from the HWF (except for the auxiliary condition R & `p).
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Figure 6.5: Rγ in units of GNM for the bootstrapped potential.

Let us continue to consider the case of large compactness and note that one needs

∆M/M � 1 for the gravitational radius to show a classical behaviour. This can

be obtained for a quasi-classical source with ∆R/R � 1 provided the compactness is

sufficiently large. Indeed, we can minimise the above expression (6.2.21), thus obtaining

∆R

R
' `p

R

(
R

GNM

)1/3

. (6.2.23)

The corresponding minimum value of the horizon fluctuations is then given by

∆M

M
' 2

`p

R

(
R

GNM

)1/3

∼ ∆R

R
, (6.2.24)

so that the condition of classicality of the source, ∆R/R� 1, or

GN M

R
�

`3
p

R3
, (6.2.25)

seems to ensure that the gravitational radius is also classical and satisfies ∆RH/RH ∼
∆M/M � 1.

However, the above argument does not yet take into consideration the quantum

description of the gravitational potential in terms of a coherent state. Indeed, we

should note that Eq. (6.2.18) implies that the above minimum uncertainty (6.2.24) for

the horizon would correspond to a mean graviton wavelength

λG

R
∼
(
GN M

R

)2/3

∼
`2

p

∆R2
. (6.2.26)

Assuming the matter uncertainty cannot realistically be smaller than the Planck length,

this appears to constrain the compactness to be of order one or less, in clear contradic-

tion with the starting assumption GN M/R� 1. On the other hand, for a compactness
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of order one, both Eq. (5.2.42) and the analysis of the Newtonian case in Section 6.1.3

would imply that

λG ∼ R ' `p
M

mp

, (6.2.27)

which is precisely the prediction of the corpuscular model [12–14, 85–88]. Furthermore,

we remark that the second approximation in the small compactness expression (5.2.24)

clearly fails for GNM/R ' 1 and Eq. (5.2.42) cannot yet be trusted in this intermediate

regime 8. If we evaluate the first line of Eq. (5.2.24) for GN M/R ' 1, we obtain

M ' 3

2
M0 (6.2.28)

and

∆M

M
' ∆M0

M0

∼ mp

M

`p

∆R
.

1√
NG

, (6.2.29)

where we used the scaling relation (3.1.6) and ∆R/`p & 1. This result is consistent

with the horizon of a macroscopic BH (with NG � 1) being classical. Finally, we note

that the scaling for the fluctuations derived for thermal BHs in Refs. [56, 57],

∆M

M
∼ 1

NG

, (6.2.30)

is recovered from ∆R ∼ λG ∼ RH. Such a large uncertainty would apply to matter in

a truly quantum state, like a condensate or the core of a neutron star.

8We showed numerically in Ref. [18] that this is in fact the most difficult regime to describe ana-

lytically.
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Chapter 7

Conclusions and outlook

7.1 Conclusions

Under rather general assumptions in GR, systems that develop trapping surfaces will

collapse into singularities [1]. This is what one expects would happen to a body that

shrinks below the Buchdahl limit (2.1.1). On the other hand, a singularity is hardly

acceptable in the quantum theory, just because of the Heisenberg uncertainty principle,

and one could generically expect that the actual collapse of an astrophysical body will

necessarily deviate from the general relativistic description at some point. The crucial

question is whether such deviations occur after the horizon has appeared, and they

therefore remain hidden forever, or the quantum effects induce departures from GR

outside the gravitational radius which can therefore be observed by the next generation

of Gravitational Waves (GWs) detectors such as LISA [119, 120]. Many works have

shown the existence of regular BH solutions of modified gravitational equations which

entail no significant departures from the corresponding general relativistic space-times

outside the (outer) horizon (for some reviews, see Refs. [23, 121]). The corpuscular

picture instead assumes that BHs are fully quantum objects in order to give a consistent

description of the Hawking evaporation. The original proposal [12] however totally

neglects the role of matter, whose effects are argued to be unimportant. On the other

hand, it is hard to completely forget about the fate of the shrinking source causing

the emergence of the BH geometry. Clearly, if GR remains a good theory of gravity

up to extremely high energy densities, the collapsing matter should form a tiny ball

with essentially no modifications of physics below the Planck energy scale. However, in

the corpuscular picture one could actually conceive the possibility that the collapsing

matter occupies a large volume inside the BH and gives rise to an effective gravitational

potential that differs significantly from the general relativistic description.

For these reasons, in this thesis we addressed the possibility of an effective quantum

deviation from GR at horizon scales, whose observable consequences should not be
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excluded a priori. We therefore developed the boostrapped Newtonian gravity approach

and applied it to the case of a homogeneous source. Of course we do not expect it

to produce phenomenological evidences for compact objects like neutron stars, but we

understand it as a toy model of gravity tailored to further investigating the quantum

picture of BHs. Let us then summarize the main content of the thesis.

In Chapter 2 we reviewed the singularity problem and gave its definition in terms of

the Buchdahl theorem. This proves to be more convenient than the singularity theorems

when studying compact objects by showing that the problem can be solved by giving

away any of the assumptions of the theorem itself. We then proceeded to analyse the

Hawking radiation as a consequence of the semiclassical approach unifying a quantum

field description and the classical GR picture. We highlighted how the singularity issue

naturally persists and shortly addressed the problems related to the evaporation effects,

such as the information paradox.

In Chapter 3 we described the corpuscular model as an inspirational proposal to

tackle the above issues and introduce useful relations to compare with. Here we showed

how the BHs picture in terms of marginal bound states of soft off-shell gravitons offers

the possibility of having a regular structure, with energy homogeneously distributed,

as well as a natural way to reproduce Hawking thermal radiation as a depletion effect.

In Chapter 4 we introduced a scalar field theory description of the post-Newtonian

potential by deriving the corresponding Lagrangian at second order in Newton’s con-

stant starting from the massless Fierz-Pauli Lagrangian. The solutions for a homoge-

neous and gaussian matter distributions were then considered, thus verifying the correct

post-Newtonian behaviour of the theory.

The results of Chapter 4 laid the ground for the development of the bootstrapped

approach for homogeneous and isotropic sources in Chapter 5. Inspired by Refs. [15,

16], we derived again the scalar field Lagrangian by coupling the gravitational potential

to its own energy density and also adding the necessary pressure contribution. The

bootstrap procedure is shown to essentially consist in studying Eq. (5.1.7) at face value,

without requiring the non-linear effects it introduces to be small. The solutions can

therefore be regarded as solitons which remarkably violate the Buchdahl limit. Indeed,

they show a regular behaviour all the way down to the central singularity, irrespectively

of the compactness of the source. Even if we are aware the homogeneous source is quite

unrealistic, it still carries some physical interest as it is the only matter configuration

which saturates the Buchdahl limit (as shown in Chapter 2). Therefore it is hard to

expect that other more phenomenologically relevant sources would lead to a singular

behaviour in this approach, leaving aside the obvious technical difficulties they would

carry.

Finally, in Chapter 6 we provided the quantum picture of the above regular solutions.

We first refined the coherent state formalism as it represents a convenient framework
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to catch the features of soft quanta in classical field configurations [91, 99] and also

to study solitonic solutions in quantum field theory [100]. This approach suggested a

quite direct connection with the scaling relations (3.1.6) and (3.1.7) of the corpuscular

model. We could also envisage that this derivation tells us something more. First, it

clearly shows that the scaling (3.1.6) for the ADM mass, responsible of reproducing the

Bekenstein’s area law, is a mere consequence of the boundary conditions at infinity. It

is thus completely independent from the details of the gravitational interaction near the

source. Secondly, our result on the typical wavelength of the gravitons clarifies that the

advocated dependence on the mass of the source appears as a consequence of strong

gravitational effects. On the other hand, the scaling in Eq. (3.1.7) can only be recovered

in this context if one assumes some quantum effects (here the GUP is proposed but

further work could be required) intervene to stop the source from shrinking at horizon

scales. Hence the result in Eq. (3.1.7) actually turns out to be dependent on the matter

content of the system.

7.2 Remarks

Few comments on the interpretation and possible issues of the bootstrapped approach

are now required. First of all, from a quantum field theory perspective, the potential we

employ to describe the gravitational pull on test particles should emerge from a suitable

limit of the interacting propagator for test particles with the constituents of the matter

source. Considering that we are interested in understanding gravity also in the interior

of the self-gravitating object, and given the complexity of a macroscopic matter source,

this approach seems hardly attainable (analytically). We have therefore assumed that

a heuristic description in terms of a scalar potential represents a sensible mean field

approximation, like the Coulomb potential yields a viable quantum description of the

hydrogen atom or other bound states in quantum electrodynamics.

Another important remark is that, if one views the equation governing the boot-

strapped potential as the truncated version of GR, including just the first nonlinearities

sounds completely arbitrary and one might argue that there are no reasons to believe

the results would remain unchanged by adding more terms. Actually, one could eas-

ily argue that, at the classical level, the inclusion of all terms stemming from GR

would reintroduce the Buchdahl limit and the well-known singularities. However, if

the singularities have to be removed, a modification of GR becomes necessary and the

bootstrapped Newtonian potential is just one of the simplest toy models we can employ

to study quantum features of the nonlinear dynamics for macroscopic sources. On the

other hand, if it is indeed possible to recover the (quantum) gravitational dynamics at

all orders in perturbation theory from the leading nonlinearities and diffeomorphism in-
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variance (see the approach in Refs. [17, 122]), the results in the present work might help

to understand the gravitational physics of macroscopic matter sources which cannot be

treated as small perturbations about the vacuum.

7.3 Outlook

We finally conclude with some hints for future developments. As already mentioned, it

is tempting to view this picture, in which the compactness of a self-gravitating object

never exceeds values of order one, as pointing to the classicalization [42–45] in matter-

gravity systems. However, more work is required to make the link stronger and the

possibility that beyond standard model physics is necessary to describe matter in the

interior should not be excluded.

Likewise, the reconstruction of an effective metric (as in Ref. [98]) will be essential

for understanding the causal structure and possible phenomenological implications of

the quantum model. In particular, the stage is set for a dynamical study of the system

which could lead to a number of interesting results, like the investigation of radiation

properties of the bootstrapped source. In this framework, deviations from GR can be

easily parametrized in the quasi normal modes (QNMs) and could be constrained by

the LISA mission with a precision that cannot be reached by any ground based GW

interferometer [119, 120].

The next interesting development of the bootstrap picture concerns the quantum

description. As we already stressed before, one of the main problems here is the un-

derstanding of the non-perturbative effects allowing for the existence of a non-trivial,

highly populated vacuum state. Further insight on this issue could actually be obtained

by deriving the Gross-Pitaevskii equation [53] associated to the Hamiltonian (5.1.4) and

studying its properties. Also the emitting features could be considered from this per-

spective and some new light could be shed on the relation with the quantum depletion

process. While all this could prove to be helpful, it probably involves numerical meth-

ods.

At last, we recall that the corpuscular picture of gravity can be applied to cosmol-

ogy [85, 93], where the Universe is depicted as a cosmological condensate of gravitons

and can give rise to dark energy and dark matter phenomenology [123–125], and repro-

duce the Starobinsky model of inflation [126]. It will therefore be very interesting to

embed the description of compact sources in bootstrapped Newtonian gravity within

such a cosmological perspective as local impurities affecting the cosmological conden-

sate of gravitons. The cosmological perspective could also lead to novel hints on the

stabilization of the two condensates as it is shown to happen in specific circumstances

for two interacting BECs [127].
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Appendix A

Post-Newtonian potential

In order to derive the post-Newtonian correction to the usual Newtonian potential from

General Relativity, we consider a test particle of mass m freely falling along a radial

direction in the Schwarzschild space-time around a source of mass M .

The Schwarzschild metric in standard form is given by 1

ds2 = −
(

1− 2M

r̃

)
dt̃2 +

(
1− 2M

r̃

)−1

dr̃2 + r̃2 dΩ2 , (A.1)

and the radial geodesic equation for a massive particle turns out to be

d2r̃

dτ 2
= −M

r̃2
, (A.2)

which looks formally equal to the Newtonian expression, but where r̃ is the areal radial

coordinate related to the Newtonian radial distance r by

dr =
dr̃√

1− 2M
r̃

. (A.3)

Moreover, the proper time τ of the freely falling particle is related to the Schwarzschild

time t̃ by

dτ =

(
1− 2M

r̃

)
m

E
dt̃ , (A.4)

where E is the conserved energy of the particle. We thus have

d2r̃

dt̃2
= −M

r̃2

(
1− 2M

r̃

)2
[
m2

E2
− 2

(
1− 2M

r̃

)−3(
dr̃

dt̃

)2
]
. (A.5)

Next, we expand the above expressions for M/r ' M/r̃ � 1 (weak field) and

|dr̃/dt̃| � 1 (non-relativistic regime). In order to keep track of small quantities, it is

useful to introduce a parameter ε > 0 and replace

M

r̃
→ ε

M

r̃
,

dr̃

dt̃
→ ε

dr̃

dt̃
. (A.6)

1In this Appendix, we will use units with GN = 1 for simplicity.
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From the non-relativistic limit, it also follows that E = m+O(ε2) and any four-velocity

uµ =

(
1 +O(ε2), ε

d~x

dt̃
+O(ε2)

)
, (A.7)

so that the acceleration is also of order ε,

d2xµ

dτ 2
= ε

(
0,

d2~x

dt̃2

)
+O(ε2) . (A.8)

We then have

ε
d2r̃

dt̃2
= −ε M

r̃2

(
1− ε 2M

r̃

)2
[

1 +O(ε2)− 2

(
1− ε 2M

r̃

)−3

ε2
(

dr̃

dt̃

)2
]
, (A.9)

and

r '
∫ (

1 + ε
M

r̃
+ ε2

3M

2 r̃2

)
dr̃ ' r̃

[
1− ε M

r̃
log

(
ε
M

r̃

)
− ε2 3M2

2 r̃2
+O(ε3)

]
.(A.10)

Since

r = r̃ +O (ε log ε) , (A.11)

it is clear that Eq. (A.9) to first order in ε reproduces the Newtonian dynamics,

d2r

dt̃2
' d2r̃

dt̃2
' −M

r2
. (A.12)

The interesting correction comes from including the next order. In fact, we have

ε
d2r̃

dt̃2
= −ε M

r2
+ ε2

4M2

r3
+O

(
ε2 log ε

)
, (A.13)

or, neglecting terms of order ε2 log ε and higher, and then setting ε = 1,

d2r

dt̃2
= −M

r2
+

4M2

r3
= − d

dr

(
−M
r

+
2M2

r2

)
. (A.14)

The correction to the Newtonian potential would therefore appear to be

V =
2M2

r2
, (A.15)

but one step is stil missing.

Instead of the Schwarzschild time t̃, let us employ the proper time t of static ob-

servers placed along the trajectory of the falling particle, that is

dt =

(
1− 2M

r

)1/2

dt̃ . (A.16)
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From Eq. (A.4) we obtain

d

dτ
=

(
1− 2M

r

)−1/2
E

m

d

dt
, (A.17)

and Eq. (A.2) then becomes

d2r̃

dt2
= −M

r2

(
1− 2M

r̃

)[
m2

E2
−
(

1− 2M

r̃

)−2(
dr̃

dt

)2
]
. (A.18)

Introducing like before the small parameter ε yields

ε
d2r̃

dt2
= −ε M

r̃2

(
1− ε 2M

r̃

)[
1 +O(ε2)−

(
1− ε 2M

r̃

)−2

ε2
(

dr̃

dt

)2
]
, (A.19)

The first order in ε is of course the same. However, up to second order, one obtains

ε
d2r

dt2
= −ε M

r2
+ ε2

2M2

r3
+O

(
ε2 log ε

)
, (A.20)

which yields the correction to the Newtonian potential

V =
M2

r2
. (A.21)

This is precisely the expression following from the isotropic form of the Schwarzschild

metric [74], and the one we will consider as our reference term throughout this thesis.

79



A. Post-Newtonian potential

80



Appendix B

Linearised Einstein-Hilbert action

at NLO

We shall here consider the Einstein-Hilbert and the matter actions in the non-relativistic

limit, up to NLO in the weak field expansion

gµν = ηµν + ε hµν . (B.1)

Unlike the main text, the parameter ε is here shown explicitly in order to keep track of

the different orders in the expansions

X =
∑
n

εnX(n) . (B.2)

First of all, one has

gµν = ηµν − ε hµν + ε2hµλ hνλ +O(ε3) , (B.3)

the integration measure reads

√
−g = 1 +

ε

2
h+

ε2

8

(
h2 − 2h ν

µ h µ
ν

)
+O(ε3) , (B.4)

and the scalar R = gµν Rµν is obtained from the Ricci tensor

Rµν = ∂λΓ
λ
µν − ∂νΓλµλ + ΓλλρΓ

ρ
µν − ΓλνρΓ

ρ
µλ , (B.5)

provided one has computed the Christoffel symbols

Γλµν '
ε

2

(
ηλρ − ε hλρ + ε2 hλσ hρσ

)
(∂µhρν + ∂νhρµ − ∂ρhµν) . (B.6)

In the de Donder gauge (4.1.4), the effective Lagrangian (4.1.14) for the classical

Newtonian field appears as the sum of two terms,

L[VN] = ε2 LFP + ε LM , (B.7)
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with the gravitational part given by the massless Fierz-Pauli action [15, 16]

LFP =
mp

16π `p

∫
d3x

(
1

2
∂µh ∂

µh− 1

2
∂µhνσ ∂

µhνσ + ∂µhνσ ∂
νhµσ − ∂µh ∂σhµσ

)
=

mp

16π `p

∫
d3x

(
∂µhνσ ∂

νhµσ − 1

2
∂µhνσ ∂

µhνσ
)

' − mp

32 π `p

∫
d3x ∂µh00 ∂

µh00

= −4π

∫ ∞
0

r2 dr
mp

8 π `p

(V ′)
2
, (B.8)

where we used the de Donder gauge (4.1.4) and h00 = −2V . The matter Lagrangian is

obtained from the matter Lagrangian density (4.1.9), that is

LM =

∫
d3x

(√
−gLM

)
(1)

' 4π

∫ ∞
0

r2 dr
h00

2
ρ

= −4π

∫ ∞
0

r2 dr V ρ . (B.9)

Putting the two pieces together yields Eq. (4.1.14).

The above expressions at the Newtonian level show that the factor mp/(8 π `p) must

be viewed as of order ε−1, since the Einstein tensor at order εn+1 couples to the stress-

energy tensor at order εn. In order to go to the next order, we must then compute

third-order terms for the gravitational part and second order terms for the matter part.

After some tedious algebra, one finds

−
(√
−gR

)
(3)
' hµν

(
∂µh

λ
ρ ∂

νhρλ − ∂
λhνµ ∂λh

)
+ 2hµν ∂λh

ρ
µ

(
∂λhνρ − ∂νhλρ

)
−1

2
h ∂µhλν ∂µh

ν
λ +

1

4
h ∂µh ∂

µh

' −h00 (∂rh00)2

' V (V ′)
2
, (B.10)

which we notice is proportional to −JV in Eq. (4.1.18), and(√
−gLM

)
(2)

=
1

8
h2

00 T00 =
1

2
V 2 ρ . (B.11)

Adding all the contributions, and explicitly rescaling mp/(8 π `p) by a factor of ε−1, one

obtains the action

S[V ] = 4 π

∫
ε dt

∫ ∞
0

r2 dr

{
mp

8 π `p

V 4V − ρ V +
ε

2

[
mp

4 π `p

(V ′)
2

+ V ρ

]
V

}
.(B.12)

A few remarks are now in order. First of all, we have derived Eq. (B.12) in the de Donder

gauge (4.1.4), which explicitly reads

∂th00 = 0 (B.13)
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for static configurations h00 = h00(r), and is therefore automatically satisfied in our

case. This means that the above action can be used for describing the gravitational

potential V = V (r) measured by any static observer placed at constant radial coordinate

r (provided test particles move at non-relativistic speed). In fact, there remains the

ambiguity in the definition of the observer time t, which in turn determines the value of

ε in Eq. (B.12), as can be seen by the simple fact that the time measure is ε dt. On the

other hand, changing ε, and therefore the time (albeit in such a way that motions remain

non-relativistic) does not affect the dynamics of the Newtonian part of the potential,

whereas the post-Newtonian part inside the curly brackets acquires a different weight.

This is completely consistent with the expansion of the Schwarzschild metric described

in Appendix A, in which we showed that the Newtonian potential is uniquely defined

by choosing a static observer, whereas the form of the first post-Newtonian correction

varies with the specific choice of time.

At this point, it is convenient to introduce the (dimensionless) “self-coupling” qΦ,

which will designate terms of higher order in ε. In particular, we set ε = 4 qΦ so that

the post-Newtonian potential (A.21) is recovered for qΦ = 1 1. With these definitions,

the above action yields the Lagrangian (5.1.3).

1The post-Newtonian correction (A.15) can instead be obtained for qΦ = 2.
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Appendix C

Gravitational current

We present here an alternative derivation of the gravitational current leading to the

same Lagrangian (5.1.3) of Section 5.1. The starting point will now be the Newtonian

energy evaluated on-shell inside a sphere of radius r, that is

UN(r) = 2π

∫ r

0

r̄2 dr̄ ρ(r̄)V (r̄)

=
1

2GN

∫ r

0

r̄2 dr̄ V (r̄)4V (r̄) , (C.1)

in which we do not perform any integration by parts. We can then define a current

J̃V proportional to the energy density by deriving UN(r) with respect to the volume V ,

which yields

J̃V ' 2
dUN

dV
=
V (r)4V (r)

4 π GN

. (C.2)

One can immediately notice that we chose to have a different numerical factor in front

of J̃V from the one in JV of Eq. (4.1.18) in order to keep the same coupling parameter

q̃V = qV . It is now easy to see that by adding all other sources described in Section 5.1

together with (C.2), we end up with the same Lagrangian (5.1.3),

L̃[V ] = LN[V ]− 4 π

∫ ∞
0

r2 dr
[
qV J̃V V + 3 qB JB V + qρ Jρ (ρ+ 3 qB p)

]
= L[V ] , (C.3)

where we discarded vanishing boundary terms. In fact, we have∫ ∞
0

r2 dr JV V = 2

∫ ∞
0

r2 dr J̃V V +
[
r2 V 2 V ′

]r→∞
r=0

, (C.4)

and the second term in the right hand side vanishes because of the boundary conditions

at r →∞ and Eq. (5.2.1) at r = 0.
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Appendix D

Comparison method

We have shown in Section 5.2.3 that a solution to Eq. (5.2.13) satisfying Eq. (5.2.15)

exists by employing comparison functions [94–97] and we recall the fundamentals of

this method here for the sake of convenience.

Let us consider an equation of the form

u′′(r) = F (r, u(r), u′(r)) , (D.1)

where F is a real function of its arguments, r varies in the finite interval [r1, r2] and

a prime denotes the derivative with respect to r. We want to find a solution which

further satisfies the general boundary conditions

a1 u(r1)− a2 u
′(r1) = A0 , (D.2)

b1 u(r2) + b2 u
′(r2) = B0 , (D.3)

with A0, B0, a1, b1 real numbers and a2, b2 non negative real numbers satisfying a2
1+a2

2 >

0 and b2
1 + b2

2 > 0. The theorems in Refs. [94–96] guarantee that such a solution

u ∈ C2([r1, r2]) exists under the following three conditions:

1. we can find a lower bounding function

u′′−(r) ≥ F (r, u−(r), u′−(r)) (D.4)

a1 u−(r1)− a2 u
′
−(r1) ≤ A0 (D.5)

b1 u−(r2) + b2 u
′
−(r2) ≤ B0 , (D.6)

and an upper bounding function

u′′+(r) ≤ F (r, u+(r), u′+(r)) (D.7)

a1 u+(r1)− a2 u
′
+(r1) ≥ A0 (D.8)

b1 u+(r2) + b2 u
′
+(r2) ≥ B0 ; (D.9)
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2. the function F is continuous on the domain D = {(r, u, u′) ∈ [r1, r2] × R2 |u− ≤
u ≤ u+};

3. the function F satisfies a Nagumo condition: there exists a continuous and positive

function φ such that ∫ ∞
0

s ds

φ(s)
=∞ (D.10)

and, ∀(t, u, u′) ∈ D,

|F (r, u(r), u′(r))| ≤ φ(|u′|) . (D.11)

Moreover, the solution u will satisfy

u−(t) ≤ u(t) ≤ u+(t) . (D.12)

We can now apply the above general theorem to our problem inside the source, for

which r1 = 0 and r2 = R. We first rewrite Eq. (5.2.13) as

V ′′ =
3GNM0

R3
eVR−V +

2 (V ′)2

1− 4V
− 2V ′

r
≡ F (r, V, V ′) , (D.13)

and recall the boundary conditions (5.2.1) and (5.2.2), that is

V ′(0) = 0 (D.14)

V (R) = VR . (D.15)

We can now verify all the requirements of the theorem, and will do so for the case of

large compactness analysed in Section 5.2.3. The upper and lower bounding functions

are therefore V± given in Eq. (5.2.37) and the domain

D = {(r, V, V ′) ∈ [0, R]× R2 |V− ≤ V ≤ V+ } . (D.16)

Continuity of F on D is easily verified. In fact, the first term on the right hand side of

Eq. (D.13) is an exponential of V which is always regular in D. The same is true for

the second term considering that V± < 0, thus V < 0 as well. The last term could be

tricky but the boundary condition (D.14) require that V ′ vanishes at r = 0 at least as

fast as r [see the expansion around r = 0 in Eq. (5.2.16)] so that this is also regular in

D. Finally, we can choose

φ = max
D

(F ) , (D.17)

which must be finite given that F is continuous in D.

All of the hypotheses of the theorem hold and a solution to Eq. (5.2.13) therefore

exists and satisfies Eq. (5.2.15). By imposing the remaining boundary condition (5.2.3),

one can then obtain a relation between M0, which appears in the equation (5.2.13), and

M , which appears in the boundary conditions (5.2.2) and (5.2.3), for any given value

of R.
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Appendix E

Energy balance

In Section 5.3, we only computed the gravitational energy from the Hamiltonian (5.1.4).

The purely baryonic contribution will be given by the proper mass M0 and the pressure

energy contribution found again from the newtonian argument (5.1.1), whereby

UB(R) = D(M,R)− 4π

∫ R

0

r2 dr p(r) . (E.1)

In the newtonian regime, the integration constant D(M,R) can be fixed so as to guar-

antee that the work done by gravity is equal and opposite to the work done by the

forces responsible for the pressure p. In other words, in that case we find D(M,R)

by requiring that the gravitational force is conservative. This will also ensure that the

total energy related to the Hamiltonian constraint equals the ADM-like mass M of the

system, that is

E = M0 + UG + UB = M . (E.2)

Of course, in the Newtonian case Eq. (E.2) simply reads E = M0 ≡ M , as shown in

Ref. [19].

In the bootstrapped picture, gravity is not a linear interaction any more and it is not

at all obvious that it will still be conservative. A precise energy estimate would therefore

require a complete knowledge of the dynamical process which led to the formation of

the equilibrium configuration of given ADM-like mass M and radius R. Without that

knowledge, we can only assume that the total energy of the equilibrium configuration

equals M and fix D(M,R) so that the Hamiltonian constraint (E.2) is satisfied.

With that prescription, we can now evaluate the baryonic contributions. In the low

compactness case, we expand all the terms in Eq. (E.2) to order M3, namely

M0 'M − 5GN M
2

2R
+

81G2
NM

3

8R2
, (E.3)

and the pressure energy

UB ' Ds(M,R)− GN M
2

5R
+

61G2
N M

3

70R2
. (E.4)
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Eq. (E.2) is then satisfied for

Ds(M,R) ' −33GN M
2

10R
+

3439G2
N M

3

280R2
(E.5)

so that

UB '
31GNM

2

10R

(
1− 6390GN M

1736R

)
, (E.6)

which is positive only for small compactness, as its approximation requires.

The high compactness regime of course yields quite different results. To make things

easier, we again look at the limiting case of very high compactness, where the linear

approximation (5.2.40) holds, and consider the Hamiltonian constraint (E.2) only at

leading order in M . The proper mass in Eq. (5.2.41) can be simplified further to give

M0 '
5M

9 (6GNM/R)1/3
, (E.7)

while the pressure energy can be written as

UB ' Db(M,R)− 20R3

G3
N M

2

(
GN M√

6R

)2/3

e

(
GNM√

6R

)2/3

. (E.8)

Again, we just impose Eq. (E.2) and find

Db(M,R) ' M +
20R3

G3
NM

2

(
GNM√

6R

)2/3

e

(
GNM√

6R

)2/3

+
125R

3GN

e

(
GNM√

6R

)2/3

(E.9)

−7GN M
2

36R
− 5M

9 (6GN M/R)1/3
, (E.10)

so that

UB '
125R

3GN

e

(
GNM√

6R

)2/3

, (E.11)

which is positive as it should, and precisely counterbalances Eq. (5.3.12).
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Appendix F

Effective wavenumber and graviton

number for the Newtonian potential

We show here the explicit calculation of keff and N eff
G for Λα = 1/αR and the corre-

sponding functions f(α) and g(α) of Section. 6.1.3.

Eq. (6.1.24) with the gk given by Eq. (6.1.19) yields

keff =

∫ ∞
Λα

dk

2 π2
k3 g2

k

=
6M2

5m2
pR

[
2 π + α3

(
3α2 + 5

)
− α

(
3α4 − α2 + 2

)
cos

(
2

α

)
− α3 (6α + 1) sin

(
2

α

)
−4 Si

(
2

α

)]
≡ M2

m2
p R

f(α) , (F.1)

where

Si(x) =

∫ x

0

dt
sin t

t
(F.2)

is the sine integral. Since Si(x → ∞) = π/2, we correctly obtain that keff → 0 for

α→ 0 (that is, for Λα →∞).

Likewise, Eq. (6.1.26) with the same gk of Eq. (6.1.19) reads

N eff
G =

∫ ∞
Λα

dk

2π2
k2 g2

k

=
αM2

2m2
p

[
3α3

(
2α2 + 3

)
− α

(
6α4 − 3α2 + 2

)
cos

(
2

α

)
− α2

(
6α2 + 1

)
sin

(
2

α

)
−4 Si

(
2

α

)]
(F.3)

≡ M2

m2
p

g(α) , (F.4)

and we again remark that N eff
G → 0 for Λα →∞.
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Appendix G

Graviton number and mean

wavelength for compact sources

As already pointed out in the main text, the exact analytical calculation of the Fourier

transform is not possible for arbitrary potentials V = V (x) generated by a compact

source. We will therefore describe here an approximation obtained by rewriting the

Fourier transform Ṽ = Ṽ (k) in terms of a spatial integral of the Laplacian of the scalar

field. In fact, if we apply the Laplacian operator on both sides of Eq. (6.1.2), we obtain

Ṽ (k) = − 1

k2

∫
dx4V (x) vk(x) . (G.1)

Upon substituting the above expression together with Eq. (2.2.3) into Eq. (6.1.7)

we get

NG =
1

2 (2π)3`2
p

∫
dx

∫
dy4V (x)4V (y)

∫
dk

eik·(x−y)

k3

=
1

(2 π)2`2
p

∫
B∞0

dx

∫
B∞0

dy4V (x)4V (y)

∫ ∞
k0

dk
sin (k σ)

k2 σ
, (G.2)

where σ = |x− y| and k0 = 1/R∞ is the IR cut-off introduced in Section 6.1.3 for the

purpose of regularising the diverging number of gravitons associated with the infinite

spatial support of the potential. We have correspondingly restricted the spatial domain

of integration to a ball of radius R∞ centred in the origin, B∞0 = {|x| < R∞}.
Similarly for the mean wavenumber in Eq. (6.1.8) we have

〈 k 〉 =
1

2 (2π)3`2
p

∫
dx

∫
dy4V (x)4V (y)

∫
dk

eik·(x−y)

k2

=
1

(2π)2`2
p

∫
dx

∫
dy4V (x)4V (y)

∫ ∞
0

dk
sin (k σ)

k σ

=
1

8π `2
p

∫
dx

∫
dy
4V (x)4V (y)

σ
, (G.3)
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where we used the property of the sine integral (F.2) that Si(x → ∞) = π/2. This

mean wavenumber is regular since only a finite part of the (infinite number of) gravitons

effectively contribute to it, and does not require any cut-off.

Eqs. (G.2) and (G.3) show that the divergence of NG and the finiteness of 〈 k 〉 do

not depend on the actual shape of the potential V , as long as it falls off fast enough

at large distance. We also anticipate that another relevant scale will be given by R∗

defined in Eq. (6.2.2).

G.1 Mean graviton wavenumber

We will first show how to obtain Eq. (6.2.4) from Eq. (G.3). This is most easily done

if we directly consider a spherically symmetric case such that

〈 k 〉 =
1

8π `2
p

∫ ∞
0

dr1

∫ ∞
0

dr2 r
2
1 r

2
24V (r1)4V (r2)

∫
dΩ1

∫
dΩ2

1

|x− y|
, (G.4)

where dΩa = sin θa dθa dϕa, with a = 1, 2. The freedom to rotate the system allows us

to choose θ2 as the angle between x and y, which introduces a factor of 8 π2 from the

integration in dΩ1 and dϕ2. The only angular integration left is in ds ≡ sin θ2 dθ2 =

−d cos θ2, which yields

〈 k 〉 =
π

`2
p

∫ ∞
0

dr1

∫ ∞
0

dr2 r
2
1 r

2
24V (r1)4V (r2)

∫ 1

−1

ds√
r2

1 + r2
2 + 2 r1 r2 s

=
π

`2
p

∫ ∞
0

dr1

∫ ∞
0

dr2 r1 r24V (r1)4V (r2) (r1 + r2 − |r1 − r2|) . (G.5)

Thanks to the symmetric role of r1 and r2, the above integrals can be written as

〈 k 〉 =
2π

`2
p

∫ ∞
0

dr1 r14V (r1)

[∫ r1

0

dr2 r
2
24V (r2) + r1

∫ ∞
r1

dr2 r24V (r2)

]
. (G.6)

From the definition (4.1.15) of the Laplacian, it is then easy to see that

〈 k 〉 =
2π

`2
p

∫ ∞
0

dr1 r14V (r1)

{∫ r1

0

dr2
∂

∂ r2

[
r2

2

∂ V (r2)

∂ r2

]
+ r1

∫ ∞
r1

dr2

r2

∂

∂ r2

[
r2

2

∂ V (r2)

∂ r2

]}
=

2π

`2
p

∫ ∞
0

dr1 r14V (r1)

{
r2

1

∂ V (r1)

∂ r1

− r1

[
r1
∂ V (r1)

∂ r1

+ V (r1)

]}
= −2 π

`2
p

∫ ∞
0

dr r2 V (r)4V (r) , (G.7)

where we integrated by parts taking into account the boundary conditions (5.2.1)

and (6.2.1). After integrating by parts again, one finally obtains

〈 k 〉 =
2 π

`2
p

∫ ∞
0

dr r2 [V ′(r)]
2
, (G.8)

from which we see that we can indeed estimate 〈 k 〉 directly from the potential V =

V (r).
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G.2 Graviton number

Next, we will show how to estimate NG in Eq. (G.2). Our method relies on the intro-

duction of the characteristic length scale R∗ defined in Eq. (6.2.2) and in identifying the

leading terms in the expansion for large R∞/R
∗. In fact, for the potential generated by

a compact source, it is reasonable to consider R∗ � R∞, provided the source itself has

existed for long enough [20].

We first compute explicitly the integral in k in Eq. (G.2), that is

f(σ) ≡
∫ ∞
k0

dk
sin (k σ)

k2 σ

=

∫ ∞
σ k0

dz
sin (z)

z2

=
sin (σ k0)

σ k0

− Ci(σ k0) , (G.9)

where

Ci(x) =

∫ x

0

dt
1− cos (t)

t
− γE − ln(x) , (G.10)

is the cosine integral and γE the Euler-Mascheroni constant. It is then easy to show

that the function f(σ) is larger and contributes significantly to Eq. (G.2) only when its

argument σ � R∞ (see Fig. G.1). In fact, for σ ' R∞, we have

|f(σ)| ≤
∫ ∞
σ k0

dz

z2
=

1

σ k0

=
R∞
σ
' 1 . (G.11)

On the other hand, when σ � R∞, we can expand Eq. (G.9) for σ k0 � 1, and note that

the leading term is given by −Ci(σ k0) ' ln(σ k0). To conclude, we can approximate

f(σ) ' ln

(
R∞
σ

)
= ln

(
R∞
R∗

)
+ ln

(
R∗

σ

)
, (G.12)

where we explicitly introduced the scale R∗. The second term in Eq. (G.12) diverges for

σ = |x− y| → 0, but the spatial integrations in Eq. (G.2) will regularise it. In fact, we

have explicitly shown in Section G.1 that the singular function 1/σ leads to the finite

result (G.4) once integrated over the spatial domain. Since 0 < − ln (σ/R∗) < R∗/σ for

σ � R∗, we can safely neglect the second term in Eq. (G.12) and just keep the leading

contribution coming from the first term which dominates (and actually diverges) for

R∞ � R∗.

We must now estimate the spatial integrals in Eq. (G.2), whose domains are effec-

tively restricted by the condition σ = |x− y| � R∞ for which the function f(σ) is the

largest. Given the symmetry in x and y, we can achieve this by integrating y inside
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Figure G.1: Function f(σ).

a ball B∗x of radius R∗ � R∞ centred around x and then summing over x inside B∞0 ,

that is

NG '
1

(2 π)2`2
p

∫
B∞0

dx4V (x)

∫
B∗x

dy4V (y) log

(
R∞
R∗

)
. (G.13)

The explicit evaluation of this integral is not any simpler than the starting Eq. (G.2).

However, we can now more easily find upper and lower bounds by observing that the

Laplacians are everywhere positive, as can be seen from the fact that the right hand

side of Eq. (5.1.7) is positive. An upper bound is obtained by extending the domain of

y to all of B∞0 ,

NG ≤
1

(2 π)2`2
p

∫
B∞0

dx4V (x)

∫
B∞0

dy4V (y) log

(
R∞
R∗

)
' 4

M2

m2
p

log

(
R∞
R∗

)
, (G.14)

where we used the Gauss theorem in the form∫
B∞0

dx4V (x) =

∫
∂B∞0

ds ·∇V

' R2
∞

∫
dΩ

GN M

R2
∞

' 4π GN M , (G.15)

with ds = R2
∞ dΩn the measure on the sphere ∂B∞0 of radius R∞ whose unit normal

vector is n. Note also that the second line follows from the Newtonian behaviour at

large distance from the source, namely for r & R∗. A lower bound can be obtained by

first restricting the domain of x to a ball B∗0 of radius R∗ and then, instead of integrating

y over all the balls centred around x, only taking the one centred in the origin as well.
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The result is

NG ≥
1

(2 π)2`2
p

∫
B∗0

dx4V (x)

∫
B∗x

dy4V (y) log

(
R∞
R∗

)
≥ 1

(2 π)2`2
p

∫
B∗0

dx4V (x)

∫
B∗0

dy4V (y) log

(
R∞
R∗

)
(G.16)

' 4
M2

m2
p

log

(
R∞
R∗

)
, (G.17)

where we used the defining assumption of R∗ that

V ′(R∗) ' GNM

(R∗)2
. (G.18)

Therefore, we can safely approximate NG as

NG ' 4
M2

m2
p

log

(
R∞
R∗

)
. (G.19)

We point out that this result only depends on the boundary conditions on the potential

at large distance from the source and bares no dependence on the details of the source

or of the gravitational interaction at shorter distances.

We conclude by estimating the number of effective gravitons. Like in Section 6.1.3,

we introduce the splitting scale Λ in Eq. (G.9) and write

f(σ) =

∫ σΛ

σ k0

dz
sin (z)

z2
+

∫ ∞
σΛ

dz
sin (z)

z2

= f IR + f eff , (G.20)

where f IR is dominated by the logarithmic IR divergence in Eq. (G.12) for k0 = 1/R∞ →
0. For the finite part, we obtain

f eff =
sin (σΛ)

σΛ
+

∫ σΛ

0

dt
1− cos (t)

t
− γE − ln (σΛ) , (G.21)

in which the dominant term is again given by ln (σΛ) for σΛ small (but still larger

then σ k0). Since again 0 < − ln (σΛ) < 1/σΛ, we obtain

NG .
1

(2 π)2`2
p Λ

∫
dx

∫
dy
4V (x)4V (y)

σ
(G.22)

' 〈 k 〉
Λ

. (G.23)

In Section 6.2, we show that we can consider Λ ∼ 1/R∗, from which we obtain for the

mean wavelength

λG '
N eff

G

〈 k 〉
. R∗ , (G.24)

so that again this representative scale belongs to the effective part of the spectrum,

that is 1/λG & Λ.
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