Lenzi, Michele
(2021)
Bootstrapped Newtonian gravity, [Dissertation thesis], Alma Mater Studiorum Università di Bologna.
Dottorato di ricerca in
Fisica, 33 Ciclo. DOI 10.48676/unibo/amsdottorato/9865.
Documenti full-text disponibili:
|
Documento PDF (English)
- Richiede un lettore di PDF come Xpdf o Adobe Acrobat Reader
Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato.
Download (1MB)
|
Abstract
The aim of this thesis is to entertain the possibility of a quantum departure from the
general relativistic description of compact sources in strong field regime and claim that
a quantum understanding of the classical background could be necessary. We therefore
develop an effective field theory providing a simplified framework to address the effects
of non-linearities in strong gravitational backgrounds. Starting from a massless Fierz-
Pauli-type lagrangian for the Newtonian potential and introducing the self-coupling
terms, we arrive at a non-linear equation describing the effective gravitational potential
of an arbitrarily compact homogeneous source. Unlike the general relativistic solutions
no Buchdahl limit is found as the solutions display a regular behaviour in any compactness
regime. Moreover, we provide a quantum interpretation of these results in terms
of a quantum coherent state formalism. Such an approach proves to be widely capable
of accounting for classical field configurations as well as providing some collective
properties of the constituent soft quanta. The latter show a good agreement with some
of the crucial relations of the corpuscular model. We do not interpret this approach
as a model of phenomenological relevance but better as a simplified picture aimed at
capturing novel quantum feature of black holes physics.
Abstract
The aim of this thesis is to entertain the possibility of a quantum departure from the
general relativistic description of compact sources in strong field regime and claim that
a quantum understanding of the classical background could be necessary. We therefore
develop an effective field theory providing a simplified framework to address the effects
of non-linearities in strong gravitational backgrounds. Starting from a massless Fierz-
Pauli-type lagrangian for the Newtonian potential and introducing the self-coupling
terms, we arrive at a non-linear equation describing the effective gravitational potential
of an arbitrarily compact homogeneous source. Unlike the general relativistic solutions
no Buchdahl limit is found as the solutions display a regular behaviour in any compactness
regime. Moreover, we provide a quantum interpretation of these results in terms
of a quantum coherent state formalism. Such an approach proves to be widely capable
of accounting for classical field configurations as well as providing some collective
properties of the constituent soft quanta. The latter show a good agreement with some
of the crucial relations of the corpuscular model. We do not interpret this approach
as a model of phenomenological relevance but better as a simplified picture aimed at
capturing novel quantum feature of black holes physics.
Tipologia del documento
Tesi di dottorato
Autore
Lenzi, Michele
Supervisore
Dottorato di ricerca
Ciclo
33
Coordinatore
Settore disciplinare
Settore concorsuale
Parole chiave
quantum gravity, black holes, effective theories
URN:NBN
DOI
10.48676/unibo/amsdottorato/9865
Data di discussione
14 Maggio 2021
URI
Altri metadati
Tipologia del documento
Tesi di dottorato
Autore
Lenzi, Michele
Supervisore
Dottorato di ricerca
Ciclo
33
Coordinatore
Settore disciplinare
Settore concorsuale
Parole chiave
quantum gravity, black holes, effective theories
URN:NBN
DOI
10.48676/unibo/amsdottorato/9865
Data di discussione
14 Maggio 2021
URI
Statistica sui download
Gestione del documento: