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Abstract

Mixture models provide a useful tool to account for unobserved heterogeneity,
and are the basis of many model-based clustering methods. In order to gain
additional flexibility, some model parameters can be expressed as functions
of concomitant covariates. In particular, prior probabilities of latent group
membership can be linked to concomitant covariates through a multinomial
logistic regression model, where each of these so-called component weights is
associated with a linear predictor involving one or more of these variables. In
this Thesis, this approach is extended by replacing the linear predictors with
additive ones, where the contributions of some/all concomitant covariates
can be represented by smooth functions. An estimation procedure within the
Bayesian paradigm is proposed. In particular, a data augmentation scheme
based on difference random utility models is exploited, and smoothness of the
covariate effects is controlled by suitable choices for the prior distributions
of the spline coefficients. This methodology is then extended to include
flexible covariates effects also on the component densities. The performance
of the proposed methodologies is investigated via simulation experiments and
applications to real data. The content of the Thesis is organized as follows. In
Chapter 1, a literature review about mixture models and mixture models with
covariate effects is provided. After a brief introduction on Bayesian additive
models with P-splines, the general specification for the proposed method
is presented in Chapter 2, together with the associated Bayesian inference
procedure. This approach is adapted to the specific case of categorical and
continuous manifest variables in Chapter 3 and Chapter 4, respectively. In
Chapter 5, the proposed methodology is extended to include flexible covariate
effects also in the component densities. Finally, conclusions and remarks on
the Thesis are collected in Chapter 6.
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Chapter 1

Introduction

1.1 Mixture models

The relevance of finite mixture models in data analysis is testified by the
ever-increasing rate at which articles on theoretical and practical aspects
of mixture models appear in the scientific literature. This is because they
can be exploited to provide computationally convenient representations for
modelling complex distributions of data on statistical phenomena. Fields
in which mixture models have been successfully applied include agriculture,
astronomy, bioinformatics, biology, economics, engineering, genetics, imag-
ing, marketing, medicine, neuroscience, physics, psychiatry, psychology and
social sciences. In these applications, finite mixture models provide a variety
of tools, including cluster and latent class analyses, discriminant analysis,
image analysis, and survival analysis, in addition to their more direct role
of providing models for complex multimodal distributions. Finite mixture
models provide a straightforward, but very flexible, extension of homoge-
neous statistical models. The price to pay for this flexibility is that inference
for these models is challenging, because of the discrete latent structure that
causes certain technical difficulties in estimation, and the need to decide on
the unknown number of groups, states, or clusters. Extensive reviews of
mixture models and their application are given in Everitt and Hand (1981),
Titterington et al. (1985), McLachlan and Basford (1988), Lindsay (1995),
Böhning (1999), McLachlan and Peel (2004), Frühwirth-Schnatter (2006),
Mengersen et al. (2011), and McNicholas (2016). In addition, mixture mod-
els are addressed in several books involving classification, machine learning,
and other fields in multivariate analysis.
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1.1.1 General definition

Many statistical models involve finite mixture distributions in some way.
Consider a population made up of G subgroups mixed at random in pro-
portion to their group size π1, . . . , πG. Assume that interest lies in a Q-
dimensional random variable or vector Y, whose distribution is heteroge-
neous across and homogeneous within the subgroups. Random vector Y
takes values in a sample space Y ⊂ RQ, which may be discrete or contin-
uous. The distribution of Y is generally characterized by its probability
density (or mass) function f(y), where f(·) denotes a generic probability
density function. Even if the vector Y is discrete, f(y) can still be viewed
as a density, according to a counting measure. Due to heterogeneity, Y has
a different probability density function fg(y) in each group g = 1, . . . , G.

Random variable Y is said to arise from a finite mixture distribution if
the probability density function f(y) takes the following form:

f(y) =
G∑
g=1

πgfg(y), ∀y ∈ Y . (1.1)

A single density fg(y) is referred to as the component density, while G de-
notes the number of components. The parameters π1, . . . , πG are called the
(component) weights; the vector π = (π1, . . . , πG) is sometimes referred to
as the (component) weight distribution (Frühwirth-Schnatter, 2006), taking
value in the unit simplex EG (which is a subspace of RG), defined by the
following constraints:

πg ≥ 0, g = 1, . . . , G;

π1 + · · ·+ πG = 1.
(1.2)

In most applications one assumes that all component densities arise from the
same parametric distribution family with density f(y|θg), which is taken to
be known up to a vector of parameters θ = (θ1, . . . ,θG) ∈ ΘG. In this case,
the mixture can be written as

f(y|ψ) =
G∑
g=1

πgf(y|θg), (1.3)

where ψ = (θ, π1, . . . , πG−1) denotes the vector of unknown parameters tak-
ing values in the parameter space Ψ = ΘG × EG.

1.1.2 Identifiability

The issue of identifiability of a mixture distribution is essential for parameter
estimation. A parametric family of densities, indexed by a parameter ψ ∈ Ψ,
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defined over a sample space Y , is said to be identifiable if any two values ψ
and ψ∗ in Ψ define the same probability law on Y if and only if ψ and ψ∗

are identical; see, e.g., Rothenberg (1971). In terms of the corresponding
probability densities f(y|ψ) and f(y|ψ∗), this condition can be written as:

f(y|ψ) = f(y|ψ∗), for almost all y ∈ Y ⇐⇒ ψ = ψ∗. (1.4)

Identifiability problems for finite mixture distributions are studied in Teicher
(1963), Yakowitz and Spragins (1968) and Chandra (1977); a detailed dis-
cussion can be found in Frühwirth-Schnatter (2006, Section 1.3). One of the
main issues with identifiabiliy of mixture models is related to the invariance
of a mixture distribution to relabeling the components, as first noted by
Redner and Walker (1984).

For the general finite mixture distribution with G components defined in
Equation 1.3, there exist G! equivalent ways of arranging the components.
Therefore, usually identifiability in this context is defined by taking into
account this potential issue. Let f(y|ψ) =

∑G
g=1 πgf(yg|θg) and f(y|ψ∗) =∑G∗

g=1 π
∗
gf(yg|θ∗g) be any two members of a parametric family of mixture

densities. This class of finite mixtures is said to be identifiable for ψ ∈ Ψ,
if f(y|ψ) = f(y|ψ∗) for almost all y ∈ Y , if and only if, G = G∗ and the
component labels can be permuted so that πg = π∗g and f(yg|θg) = f(yg|θ∗g),
for g = 1, . . . , G.

The lack of identifiability of ψ due to the interchanging of component
labels can be overcome by the imposition of an appropriate constraint on ψ
(e.g. ordering parameters). In the Bayesian context, this issue is referred
to as the label-switching problem. Besides the theoretical issues related to
identifiability, label switching can also be observed in practice during sam-
pling.

1.1.3 Hierarchical representation

Any standard finite mixture model may be described as a hierarchical latent
variable model, where the distribution of the observations y = (y1, . . . ,yn)
depends on a hidden G-dimensional label vector Di = (D1i, . . . , DGi), whose
g-th element Dgi is defined to be one or zero, according to whether the
component the i-th unit comes from is the g-th or not, for i = 1, . . . , n.

On a first layer of the model, the joint sampling distribution of y =
(y1, . . . ,yn) is specified conditional on the whole sequence of indicators D =
(D1, . . . ,Dn):

f(y|D,ψ) =
n∏
i=1

f(yi|Di,ψ) =
n∏
i=1

f(yi|ψDi
). (1.5)
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In the standard finite mixture model it is assumed that the component indica-
tors D1, . . . ,Dn are independent, and their joint distribution can be written
as:

f(D|π) =
n∏
i=1

f(Di|π), (1.6)

with Pr(Dgi = 1|π) = πg. Titterington (1990) proposed the name “hidden
multinomial model” for the standard finite mixture model, because Di is
distributed according to a multinomial distribution consisting of one draw
on G categories with probabilities π1, . . . , πG; that is,

Pr(Di = di|π) =
G∏
g=1

πdgig ,

G∑
g=1

dgi = 1, (1.7)

or Di ∼ MulNomG(1;π), where π = (π1, . . . , πG). Equivalently, a categori-
cal random variable Ci, i = 1, . . . , n, may be defined, taking on the value
ci among 1, . . . , G with probabilities π1, . . . , πG, respectively. These two
representations will be used interchangeably throughout the Thesis, since
Dgi = 1(ci = g), where 1(·) denotes the indicator function.

1.1.4 Classification for known component parameters

Assume that n observations y = (y1, . . . ,yn) are randomly drawn from a
finite mixture of distributions with density f(y|ψ) indexed by a parameter
ψ ∈ Ψ; these observations should be used to make inferences about the
underlying group structure. Assume also that the resulting finite mixture
model,

f(yi|ψ) =
G∑
g=1

πgf(yi|θg), (1.8)

is known exactly, with precise values assigned to the number of components
G, the component parameters θ1, . . . ,θG and the weight distribution π, and
the only challenge is to classify the set of n observations {y1, . . . ,yn} into
each component. This classification problem is a common and old issue; see
Cormack (1971), McLachlan and Basford (1988) and Everitt et al. (2001) for
a review.

Classification of a single observation yi aims at deriving the conditional
probability Pr(Dgi = 1|yi;ψ) of the event {Dgi = 1}, having observed the
event {Yi = yi}. Bayes’ rule shows how to compute this probability for each
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component and observation from a discrete mixture distribution:

Pr(Dgi = 1|Yi = yi;ψ) =
Pr(Dgi = 1|ψ)Pr(Yi = yi|Dgi = 1;ψ)∑G
g=1 Pr(Dgi = 1|ψ)Pr(Yi = yi|Dgi = 1;ψ)

,

(1.9)
where Pr(Dgi = 1|ψ) is the prior probability that the i-th observation yi
comes from class g, and is equal to the class size πg. For a discrete mixture,
Pr(Yi = yi|Dgi = 1;ψ) is obtained from the component-specific probability
density function f(yi|θg). Thus, it is convenient to rewrite Bayes’ rule, given
in Equation (1.9), in the following way:

Pr(Dgi = 1|Yi = yi;ψ) =
πgf(yi|θg)
f(yi|ψ)

, (1.10)

as this result also holds when dealing with observations from continuous
rather than discrete mixtures. The denominator in Equation (1.10) remains
the same, whatever the value of g, and is equal to the sum of the numerators
for g = 1, . . . , G. For this reason, Bayes’ rule is usually formulated up to
proportionality:

Pr(Dgi = 1|Yi = yi;ψ) ∝ πgf(yi|θg). (1.11)

The right-hand side is evaluated for each group, and the resulting values are
normalized, to obtain a proper posterior distribution.

1.1.5 Maximum likelihood estimation

In this Section, it is assumed that the true number of distinct components
G and the parametric distribution family of the component densities in the
mixture distribution (1.8) are known, while the weight distribution π, the
component parameters θ1, . . . ,θG, and the indicator variables D are not. In
this case, estimation of the parameters of the mixture distribution is not
straightforward, since no method leads to an analytical solution. Thus, some
computational procedure is required in practical estimation. The method
of moments was the most widely applied estimation technique in the early
days. With the availability of powerful computers and elaborated numerical
algorithms, maximum likelihood (ML) method became the preferred one for
parameter estimation in finite mixture models.

Let y = {y1, . . . ,yn} be n independent and randomly selected observa-
tions from the mixture distribution in Equation (1.8), and let ψ = (θ, π1, . . . ,
πG−1) denote all the unknown parameters in the mixture model that need
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to be estimated from the data. The mixture likelihood function L(ψ|y) is
defined as the joint distribution of y1, . . . ,yn, considered as a function of ψ:

L(ψ|y) = f(y|ψ) =
n∏
i=1

G∑
g=1

πgf(yi|θg). (1.12)

The ML estimator ψ̂ is obtained by maximizing the mixture likelihood L(ψ|y),
defined in Equation (1.12), with respect to ψ, i.e.

ψ̂ = arg max
ψ

L(ψ|y). (1.13)

A first issue arises for the important special case of mixtures of normal dis-
tributions, whose corresponding mixture likelihood is unbounded. This was
first noted by Kiefer and Wolfowitz (1956), for the following mixture of two
normal distributions:

Y ∼ (1− π2)N(µ, 1) + π2N(µ, σ2
2), (1.14)

where π2 is fixed, whereas the mean µ and the variance σ2
2 are unknown. In

this example, each observation in an arbitrary data set y = (y1, . . . , yn), of
arbitrary sample size n, gives rise to a singularity in the mixture likelihood
function, since

lim
σ2
2→0

f(y|µ = yi, σ
2
2) =∞, for any i = 1, . . . , n. (1.15)

The unboundedness of the mixture likelihood function is also relevant for the
mixture of multivariate normal distributions, as first noted by Day (1969).
Thus, the ML estimator as global maximizer of the mixture likelihood func-
tion does not always exist. Nevertheless, under certain boundedness condi-
tions on the partial derivatives of L(ψ|y) with respect to the components
of ψ, Redner and Walker (1984, p. 211) prove that, in any sufficiently small
neighborhood of the true parameter vector ψtrue, for a sufficiently large sam-
ple size n, there exists a unique solution of the likelihood equation

∂

∂ψ
L(ψ|y) = 0, (1.16)

which locally maximizes the log-likelihood function. Moreover, provided that
certain regularity conditions hold (Casella and Berger, 2002), this ML esti-
mator ψ̂ is consistent, efficient and asymptotically normal, i.e.

√
n(ψ̂ −ψtrue)→d MVN(0, I−1(ψ)), (1.17)
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where →d denotes convergence in distribution and I(ψtrue) is the expected
Fisher information matrix, defined as

I−1(ψ) = −
∫
Y

(
∂

∂ψ
logL(ψ|y)

)(
∂

∂ψ
logL(ψ|y)

)′
L(ψ|y) dy. (1.18)

Redner et al. (1981) and Atienza et al. (2007) provide a detailed discussion
on the properties of ML estimators in the mixture models context.

ML estimation for finite mixture models was initially performed using di-
rect method such as the Newton (Hasselblad, 1966) or the gradient method
(Quandt, 1972). Nowadays, the Expectation-Maximization (EM) algorithm
introduced by Dempster et al. (1977) is probably the most commonly ap-
plied method to find the ML estimator in finite mixture models; see Redner
and Walker (1984) for a review. A disadvantage of this algorithm, compared
to direct maximization of the likelihood function, is its much slower con-
vergence rate. In order to overcome this issue, several authors use hybrid
algorithms that combine the EM algorithm with Newton’s method for mix-
ture estimation; see, for example, Aitkin and Aitkin (1996). McLachlan and
Peel (2004) give a thorough discussion of non-Bayesian parameter estimation
for finite mixtures, with emphasis on ML estimation based on the EM algo-
rithm. They also warn that the sample size n has to be very large before
asymptotic theory of maximum likelihood applies, particularly for mixture
models, and that, furthermore, the regularity conditions are often violated.

1.1.6 Bayesian parameter estimation

From a Bayesian perspective, all information contained in the data y about
ψ is summarized into the posterior density, which is derived using Bayes’ the-
orem, by combining the data-dependent mixture likelihood function f(y|ψ)
in Equation (1.12) with a prior density f(ψ):

f(ψ|y) ∝ f(y|ψ)f(ψ), (1.19)

where the posterior density may be known up to a normalizing constant given
by f(y). For Bayesian estimation, it is necessary to elicit the prior distribu-
tion f(ψ). Specifying a prior distribution is often a subjective task, where
the user selects a (usually, proper) density over the parameters to represent
their knowledge - and uncertainty - about the phenomenon prior to observing
data. For finite mixture models, such priors are usually obtained by adopt-
ing distributions that are conjugate to the complete-data likelihood function.
First, it is often assumed that the parameters θ1, . . . ,θG are independent of
the weight distribution π:

f(ψ) = f(π)f(θ1, . . . ,θG). (1.20)
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For finite mixture models, a common choice for the prior to assign to the
weights π = (π1, . . . , πG) is the Dirichlet distribution Dir(δ0, . . . , δ0) with
hyperparameters assumed to be the same, leading to an invariant and flat
prior. The nature of the prior for the component parameters θ1, . . . ,θG
depends on the distribution family underlying the mixture distribution. To
formulate a joint prior for θ1, . . . ,θG, the parameters are assumed to be
independent a priori, conditional on some hyperparameter φ:

f(θ1, . . . ,θG|φ) =
G∏
g=1

f(θg|φ). (1.21)

Results from a Bayesian analysis of finite mixture models using subjective
prior information may be sensitive to particular choices of hyperparameters:
to reduce this sensitivity, it is common practice to use hierarchical priors in
the context of finite mixture modeling. Such priors treat the hyperparameter
φ as an unknown quantity with a prior of its own:

f(θ1, . . . ,θG,φ) = f(φ)
G∏
g=1

f(θg|φ). (1.22)

In any case, the prior distribution has to be selected with some care.

1.1.7 Data augmentation and the MCMC algorithm

Following Dempster et al. (1977), any mixture model may be seen as an in-
complete data problem by considering the component indicators D as missing
data. The benefit of this data augmentation (Tanner and Wong, 1987) is that,
conditional on D, priors that are conjugate to the complete-data likelihood
become available. The sampling distribution f(y,D|ψ) of the complete data
(y,D), regarded as a function of the unknown parameter ψ, can be specified
by exploiting the hierarchical representation of a finite mixture model, given
in Section 1.1.3, as follows:

f(y,D|ψ) = f(y|D,ψ)f(D|ψ) =
n∏
i=1

f(yi|Di,ψ)f(Di|ψ). (1.23)

Since f(yi|Dgi = 1,ψ) = f(yi|θg) and Pr(Dgi = 1|ψ) = πg, the complete-
data likelihood function in (1.23) can be rewritten as

f(y,D|ψ) =
n∏
i=1

G∏
g=1

[πgf(yi|θg)]Dgi . (1.24)
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Bayesian inference on a general mixture model through data augmentation
explores the augmented parameter space of (D,ψ) by sampling from the
complete-data posterior distribution f(D,ψ|y), given by

f(D,ψ|y) ∝ f(y,D|ψ)f(ψ), (1.25)

with the complete-data likelihood f(y,D|ψ) defined as in Equation (1.24).
Furthermore, conditional on knowing the parameter vector ψ, the posterior
distribution of the component indicators takes a very simple form, as for the
classification problem studied in Section 1.1.4.

It is then quite straightforward to sample from the posterior in Equation
(1.25) using Markov chain Monte Carlo (MCMC) methods, in particular
Gibbs sampling (Geman and Geman, 1984), where ψ is sampled conditional
on knowing D, and D is sampled conditional on knowing ψ. Pioneering pa-
pers realizing the importance of Gibbs sampling for Bayesian estimation in
mixture models are Evans et al. (1992), Smith and Roberts (1993), Diebolt
and Robert (1994) and Escobar and West (1995). Some authors, e.g. Celeux
et al. (2000), use a Metropolis-Hastings (MH) algorithm (Metropolis et al.,
1953) to simulate ψ from the mixture posterior f(ψ|y) by iteratively propos-
ing a new parameter from an arbitrary proposal density. In their seminal pa-
per, Richardson and Green (1997) suggest applying the reversible jump MH
algorithm, introduced by Green (1995), to select the number of components
in a mixture model, whereas Stephens (2000) apply birth-and-death MCMC
methods; see Green (2003) for a review about trans-dimensional methods.

The posterior in Equation (1.25), can be sampled through the follow-
ing MCMC scheme, formulated for the general case, where each observa-
tion yi may also be multivariate. The hierarchical prior in Equation (1.22)
is imposed on the component parameters θ. The unconstrained algorithm
starts with some classification D(0) and by selecting a starting value for the
hyperparameters φ(0). Then the following steps have to be repeated for
t = 1, . . . , T0, . . . , T + T0:

1. parameter simulation conditional on the classification D(t−1):

(a) sample π(t) from the Dirichlet distribution Dir(δ1(D(t−1)), . . . ,
δG(D(t−1))), where δg(D

(t−1)) is given by

δg(D
(t−1)) = δ0 +

n∑
i=1

D
(t−1)
gi ; (1.26)

(b) sample the component parameters θ
(t)
1 , . . . ,θ

(t)
G from the complete-

data posterior f(θ1, . . . ,θG|D(t−1),y,φ(t−1));
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(c) sample the hyperparameter φ(t) from f(φ|θ(t)
1 , . . . ,θ

(t)
G );

2. classification of each observation yi conditional on knowing ψ(t) =
(θ

(t)
1 , . . . ,θ

(t)
G ,π

(t)): sample D
(t)
i independently, for i = 1, . . . , n, from

the conditional posterior distribution f(Di|ψ(t),yi), which is given by

Pr(Dgi = 1|ψ(t),yi) ∝ π(t)
g f(yi|θ(t)

g ); (1.27)

3. increase t by one, and return to step 1.

Finally, the first T0 draws, corresponding to the so called burn-in phase, are
discarded. Practical MCMC convergence diagnostics for finite mixture mod-
els are discussed in Robert et al. (1999). For further details and examples of
MCMC algorithms for mixture models see also Frühwirth-Schnatter (2006).

A deterministic alternative to MCMC techniques is provided by meth-
ods from machine learning that approximate probability densities through
optimization, known as variational approximations. Thanks to the reduced
computational burden and the resulting speed, this approach has been suc-
cessfully applied in the mixture models framework; see, for instance, Wang
et al. (2006) and McGrory and Titterington (2007). Neverthless, differently
from MCMC methods, variational inference does not provide guarantees of
producing asymptotically exact samples from the target density, as it can
only find a density close to the target. See Blei et al. (2017) for a recent
review.

1.1.8 Model selection

While ratio test is usually one of the preferred likelihood-based methods for
selecting parametric models, its application to model selection in finite mix-
ture models creates some difficulty, as basic conditions of incompatibility
between the spaces for the null and the alternative hypotheses are not met.
For selecting the dimension (number of components) of the model, one may
look at the general index proposed by Akaike (1974), known as Akaike infor-
mation criterion (AIC), that accounts for model complexity. He suggests to
pick the model MG that minimizes

AIC(G) = −2 log f(y|ψ̂(G),MG) + 2 dim(ψ(G)), (1.28)

where ψ̂(G) is the maximum-likelihood estimator of the parameters in model
MG and dim(ψ(G)) is the “global” dimension of the model, which acts as a
correction term by introducing a penalty for high-dimensional models that
provide little additional fit in comparison to simpler models. Without the
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term dim(ψ(G)), one would choose the model that maximizes the likelihood
function. The AIC is independent of the sample size, but it has been shown to
be inconsistent as it favors models that overfit the data, even asymptotically;
see Bozdogan (1987) and Leroux (1992).

An alternative to AIC is the Bayesian information criterion (BIC), pro-
posed by Schwarz (1978). This index is defined by

BIC(G) = −2 log f(y|ψ̂(G),MG) + (log n) dim(ψ(G)). (1.29)

Keribin (2000) proved that BIC asimptotically does not overestimate the
“true” number of components, if the component density is correctly speci-
fied. If this condition does not hold, BIC tends to select a larger number
of components, as shown by simulation studies reported in Biernacki and
Govaert (1997) and Biernacki et al. (2000). Olteanu and Rynkiewicz (2011)
proved that the consistency property of the BIC holds also for the class of
mixture of experts models, which will be introduced in Section 1.2.

Several classification-based information criteria for choosing the number
of components have been developed for finite mixture models in the cluster-
ing context. Some of these criteria involve entropy EN(G, ψ̂(G)), defined as
follows:

EN(G, ψ̂(G)) =
G∑
g=1

n∑
i=1

Pr(Dgi = 1|yi, ψ̂(G)) log Pr(Dgi = 1|yi, ψ̂(G)). (1.30)

In particular, the classification likelihood criterion (CLC) by Biernacki and
Govaert (1997) penalizes the log-likelihood function by entropy EN(G, ψ̂(G))
rather than complexity:

CLC(G) = −2 log f(y|ψ̂(G),MG) + 2 EN(G, ψ̂(G)). (1.31)

The ICL-BIC criterion (Biernacki et al., 2000) considers both model com-
plexity and entropy to penalize the log-likelihood function:

ICL-BIC(G) = BIC(G) + 2 EN(G, ψ̂(G)). (1.32)

The ICL-BIC has been studied in a detailed comparison with the BIC pro-
vided by Baudry et al. (2015).

An alternative popular criterion for Bayesian model selection is the de-
viance information criterion (DIC) (Spiegelhalter et al., 2002), which is de-
fined on the general principle of balancing goodness of fit and complexity,
where the former is measured by the log-likelihood, whereas the latter is
approximated by looking at the difference between the posterior mean de-
viance and the deviance of the posterior means. However, as discussed in
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Celeux et al. (2006), the application of DIC to finite mixture models is not
without problems, since the inclusion of discrete latent quantities in the data
generating process calls for different definitions of the DIC.

Raftery et al. (2007) leverage the (approximate) posterior distribution
of the log-likelihood to derive simulation-based anologous to AIC and BIC
model selection criteria, called AICM and BICM. AICM’s formula is very
simple, since it involves only the likelihoods from the posterior simulation
iterations:

AICM(G) = − 1

(T − T0)

T∑
t=T0+1

2 log f(y|ψ(t),MG) + 2s2
l (MG), (1.33)

where s2
l (MG) is the variance of the log-likelihood of model MG computed

on the posterior sample. The following BICM expression, instead, requires
some caution due to the presence of the sample size n:

BICM(G) = − 2

(T − T0)

T∑
t=T0+1

log f(y|ψ(t),MG) + 2(log n− 1)s2
l (MG).

(1.34)
The issue with this criterion is that sample size n is not always well-defined,
for example in hierarchical models, since the BICM refers to independent
units and, therefore, it may not be able to handle correlated observations.
Berger et al. (2003) and Pauler (1998)provide a discussion about this topic.
Following Pauler (1998), Raftery et al. (2007) propose a modified definition
of BICM, that requires the evaluation of the effective sample size involved in
the estimation of each unknown parameter.

1.2 Mixture of experts models

Mixtures of experts (MoE) models provide a way to extend mixture models,
allowing the model parameters to depend on concomitant covariate informa-
tion. The terminology “mixture of experts” includes a wide class of mixture
models. Indeed, although this nomenclature arises from the machine-learning
literature (Jacobs et al., 1991), the class of mixture of experts models were
already present in the statistical literature under the form of switching re-
gression models (Quandt, 1972), concomitant variable latent-class models
(Dayton and Macready, 1988), clusterwise regression models (DeSarbo and
Cron, 1988) and mixed models (Wang et al., 1996).

The MoE framework makes flexible modelling easy, allowing a wide range
of application. Among others, MoE models for rank data (Gormley et al.,

12



2008), for network data (Gormley and Murphy, 2010b), for time series data
(Frühwirth-Schnatter et al., 2012), for non-normal data (Chamroukhi, 2015;
Nguyen and McLachlan, 2016) and for longitudinal data (Tang and Qu, 2016)
have been developed. See Nguyen and Chamroukhi (2018) for a recent review
on MoE models.

1.2.1 The family of mixture of experts models

Let y1, . . . ,yn be an independent and identically distributed sample of out-
comes from a population modelled by a G component finite mixture model.
Depending on the application context, the outcome variable can be univari-
ate or multivariate, discrete or continuous, or with a more complex structure.
Each observation i = 1, . . . , n has J associated covariates, which are denoted
xi = (xi1 , . . . , xiJ ). MoE models extend finite mixture models by allowing
model parameters to be functions of the concomitant variables xi.

Any mixture model which incorporates covariates or concomitant vari-
ables falls within the mixture of experts framework. Figure 1.1 shows the
graphical model representation (dependence graph) of the suite of four mod-
els in the MoE framework, freely adapted from Murphy and Murphy (2019).
The representation in Figure 1.1 involves the latent cluster membership of
each outcome variable, denoted by c = (c1, . . . , cn), where ci = g if observa-
tion i belongs to cluster g, as introduced in Section 1.1.3. Following Murphy
and Murphy (2019), the four different classes of models represented in Figure
1.1 can be interpreted as:

(a) mixture model: the outcome variable distribution depends on the la-
tent cluster membership variable c. The model is independent of the
covariates; i.e. f(yi, ci) = πcif(yi|θci);

(b) expert network mixture of experts model: the outcome variable distribu-
tion depends on both the covariates x and the latent cluster membership
variable c; the distribution of the latent variable is independent of the
covariates; i.e f(yi, ci|xi) = πcif(yi|θci(xi)). This class of models is
also known in the literature as mixture of regression models (Frühwirth-
Schnatter, 2006, Chapter 8).

(c) gating network mixture of experts model: the outcome variable distribu-
tion depends on the latent cluster membership variable c and the distri-
bution of the latent variable depends on the covariates x; i.e. f(yi, ci|xi) =
πci(xi)f(yi|θci). For discrete outcome variables, these models are also re-
ferred to as concomitant-variables latent class model (Dayton and Macready,
1988).
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Figure 1.1: Graphical model representation of the mixture of experts models.
Depending on the presence (or absence) of edges between the covariates x,
the latent variable c and the response variable y, four different models can be
defined within the MoE framework; grey-colored circle represents observed
quantities. Freely adapted from Murphy and Murphy (2019).
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(d) Full mixture of experts model: the outcome variable distribution depends
on both the covariates x and on the latent cluster membership variable
c. Additionally, the distribution of the latent variable depends on the
covariates x; i.e f(yi, ci|xi) = πci(xi)f(yi|θci(xi)). In this case, it is
crucial to carefully design the dependence graph, as the general model
could suffer from non-identifiability.

MoE models can be considered as members of the class of conditional mixture
models (Bishop, 2006), since, for a given set of covariates xi, the distribution
of yi is a finite mixture model. Jacobs et al. (1991) consider the component
densities f(yi|θg(xi)) as the experts, which model different parts of the input
space, and the component weights πg(xi) as the gating networks, hence the
mixture of experts terminology. The way the different models within the
MoE framework depend on the covariates is typically application specific.
In particular, Jacobs et al. (1991) model the component weights using a
multinomial logit regression model. Arbitrarily selecting a “reference” class
– for example, the G-th –, one can assume that the log-odds of the latent
class (prior) membership πg, with respect to that class G, are linear functions
of the covariates:

log
πg(xi)

πG(xi)
= x′iγg, g = 1, . . . , G− 1, (1.35)

where γg = (γg0, γg1, . . . , γgJ) denotes the vector of coefficients corresponding
to the g-th latent class. To make the model identifiable, γG is set equal to
the null vector. Following some simple algebra, the Equation (1.35) can be
rewritten as:

πg(xi) =
exp(x′iγg)

1 +
∑G−1

g=1 exp(x′iγg)
, g = 1, . . . , G− 1. (1.36)

It is worth noting that MoE models do not necessarily require the use of a
multinomial logit model to express the component weights as functions of
the covariates. Geweke and Keane (2007) employ a model similar to an MoE
model, where the component weights have a multinomial probit structure.
See also Xu et al. (1995) and Nguyen et al. (2019) for alternative solutions
based on Gaussian gating functions. The form of the distribution f(yi|θg(xi))
depends on the type of outcome data under study.

1.2.2 Statistical inference

Jacobs et al. (1991) and Jordan and Jacobs (1994)derive maximum likelihood
(ML) estimates for MoE models via the expectation-maximization (EM) al-
gorithm. The EM algorithm for fitting MoE models is straightforward in
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principle, but the M step is usually more difficult in practice than the M
step for standard mixture models. This is usually due to a complex compo-
nent density and/or component weights model, or a large parameter set. A
modified version of the EM algorithm, the expectation-and-conditional max-
imization (ECM) algorithm proposed by Meng and Rubin (1993) is therefore
often employed, where the likelihood can be fruitfully factorized and the pa-
rameter estimates depend on each other. In the ECM algorithm, the M step
consists of a series of conditional maximization steps. Because in the context
of MoE models no closed form expression is available for the ML estimator of
the parameters γg, the conditional M step requires the use of a numerical op-
timization technique, or, as in Gormley and Murphy (2008) and Nguyen and
McLachlan (2016), a minorization-maximization (MM) algorithm (Hunter
and Lange, 2004). The class of MM algorithms, in which a minorizing func-
tion is iteratively maximized and updated, is thoroughly covered in Lange
(2016). Alternatively, one may consider estimating parameters γg only at
convergence, as in Vermunt (2010).

Estimation of MoE models can also be achieved within the Bayesian
paradigm, either via a variational approach (Bishop and Svensén, 2012) or
using a Markov chain Monte Carlo (MCMC) algorithm. The latter approach
is used, for example, in Peng et al. (1996), Gormley and Murphy (2010a) and
Frühwirth-Schnatter et al. (2012). Both the Gibbs sampler (Geman and Ge-
man, 1984) and the Metropolis-Hastings (Metropolis et al., 1953) algorithm
are typically required. Again, the specific MCMC algorithm, and the form of
the prior distributions, depend on the nature of the MoE model under study
and on the type of the response.

As is standard in Bayesian estimation of mixture models (Diebolt and
Robert, 1994), fitting MoE models is greatly simplified by augmenting the
observed data with the latent group indicator variable c = (c1, . . . , cn), or,
equivalently, component indicators D = (D1, . . . ,Dn), with Dgi = 1(ci = g),
for g = 1, . . . , G. Nevertheless, performing inference on MoE models can
be difficult in practice. A conditional multivariate normal prior is an intu-
itive prior for the model parameters γg, g = 1, . . . , G− 1, in the component
weights, but it is non-conjugate. Hence, the full conditional distribution is
not available in closed form and a Metropolis-Hastings (MH) step is required,
at least, to sample the component weight parameters. This solution brings
issues such as choosing suitable proposal distributions and tuning parame-
ters. Gormley and Murphy (2010b) detail an approach for deriving proposal
distributions with attractive properties, within the context of a MoE model
for network data.

Alternatively, Frühwirth-Schnatter et al. (2012) exploit data augmenta-
tion of the multinomial logit regression (MNLR) model, based on the differ-
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ence random utility model (dRUM) representation, in the context of MoE
models. As previously shown by Frühwirth-Schnatter and Frühwirth (2010),
the MNLR model has the following representation as a binary logit model,
conditional on knowing λli = exp(x′iγ l) for all l 6= g:

zgi = x′iγg − log

(∑
l 6=g

λli

)
+ εgi,

Dgi = 1(zgi > 0),

(1.37)

where zgi is a latent variable, εgi are i.i.d. errors following a logistic distribu-
tion andDgi is the binary outcome variable introduced in Section 1.1.3. Given
λ1i, . . . , λG−1,i and Di, the latent variables (z1i, . . . , zG−1,i) follow exponential
distributions and can be easily sampled in a data augmented implementation.
Following Scott (2011), natural proposal distributions are available to imple-
ment an MH step to sample γg|(γ−g,D, zg) conditional on zg = (zg1, . . . , zgn),
for g = 1, . . . , G− 1 .

To avoid any MH step, Frühwirth-Schnatter et al. (2012) apply auxil-
iary mixture sampling as introduced by Frühwirth-Schnatter and Frühwirth
(2010) to approximate the logistic distribution of each εgi by a finite scale
mixture of H normal distributions with zero means and parameters (s2

h, wh).
The same authors obtain a finite scale mixture approximation by minimiz-
ing the Kullback-Leibler divergence between the densities, and recommend
choosing H = 3 in larger applications, where computing time matters, and
to work with H = 6 whenever possible. In a second step of data augmenta-
tion, the component indicator rgi is introduced as yet another latent variable.
Conditional on the latent variables zg and the indicators rg = (rg1, . . . , rgn),
the binary logit regression model reduces to a linear Gaussian regression
model. Hence, the posterior γg|(γ−g,D, zg, rg) is Gaussian and a Gibbs step
is available to sample γg, conditional on zg and rg, for g = 1, . . . , G− 1. Fi-
nally, each component indicators rgi is sampled from a discrete distribution
conditional on zgi and γ.

1.2.3 An MCMC algorithm based on data augmenta-
tion

Based on the representation of Section 1.2.2, the following MCMC scheme is
presented by Frühwirth-Schnatter et al. (2012):

1. for g = 1, . . . , G − 1, sample the (J + 1)-dimensional regression co-
efficients γg conditional on zg and rg. Using a normal prior γg ∼
MVN(0, vIJ+1), with I denoting the identity matrix and v set to a
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high value (for example equal to 100), leads to a diffuse a prior. The
conditional posterior is then given by a multivariate normal density
with precision matrix Pγg and mean mγg :

Pγg = X′W−1
g X + v−1IJ+1, mγg = P−1

γg
X′W−1

g

(
zg + log

∑
l 6=g

λl

)
,

(1.38)
where Wg is a n × n diagonal matrix with nonzero elements equal to
the randomly drawn variances (ω1g = s2

rg1
, . . . , ωng = s2

rgn) for the g-th
group;

2. sample all (partial) differences of utilities z1i, . . . , zG−1,i simultaneously
for each i from

zgi = log

(
λgi

log
∑

l 6=g λli
Ugi +Dgi

)
− log

(
1− Ugi +

λgi
log
∑

l 6=g λli
Dgi

)
,

(1.39)
with Ugi ∼ Unif(0, 1);

3. for i = 1, . . . , n and g = 1, . . . , G− 1, sample the component indicators
rgi conditional on zgi from

Pr(rgi = h|zgi,γg) ∝
wh
sh

exp

[
−1

2

(
zgi − x′γg + log

∑
l 6=g λli

sh

)2
]
.

(1.40)

4. sample the component parameters θ1, . . . ,θG given the allocations Di,
. . . , Dn;

5. classify each individual i according to Bayes’ rule, by drawing Di, . . . ,Dn

from their full conditional

Pr(Dgi = 1|yi,xi,γ,θ) ∝ λgi∑G
g=1 λgi

f(yi|θg). (1.41)

1.3 Summary of the remaining chapters

In this Thesis, a more flexible specification of the covariate effects is con-
sidered for the whole suite of mixture of experts models. Starting from the
gating network mixture of experts models, this aim is achieved by replac-
ing linear predictors with additive ones in the multinomial logistic regres-
sion model (1.35) which defines the effects of the concomitant covariates
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on the component weights π1, . . . , πG−1. To achieve a parsimonious repre-
sentation of the smooth functions included in the predictors, the Bayesian
P-splines approach suggested by Lang and Brezger (2004) is used. Following
Frühwirth-Schnatter et al. (2012), data augmentation is exploited to repre-
sent the flexible multinomial logistic regression model as a (partial) difference
random utility model (dRUM), and their MCMC algorithm (reported in Sec-
tion 1.2.3) is adapted to perform parameter estimation.

The remainder of the Thesis is organized as follows. After a brief intro-
duction on Bayesian Generalized Additive Models with P-splines, the gen-
eral specification for a flexible gating network mixture of experts model is
presented in Chapter 2, together with the associated Bayesian inference pro-
cedure. In Chapter 3 and Chapter 4, this methodology is adapted to the
specific cases of categorical and continuous manifest variables, respectively,
and some results on simulation experiments and applications on real data
are provided. In Chapter 5, the methodology is extended to include flexible
covariate effects also on the parameters of the component densities. In the
applications, this full mixtures of experts model is compared, among others,
to a mixture of additive models with P-splines. Finally, in Chapter 6, some
conclusions and remarks are discussed.
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Chapter 2

Flexible modelling of the
mixture weights

2.1 Generalized additive models

Generalized additive models (Hastie and Tibshirani, 1990) can be a useful
modelling tool for data analysis. A generalized additive model is a generalized
linear model with a linear predictor involving a sum of smooth functions s(·)
of covariates:

h(E(Y|X)) = η = s1(X1) + s2(X2) + . . . . (2.1)

Here h(·) is the link function which put into relationship the predictor η
with the expected value of the response Y, conditional on the covariates.
Model 2.1 allows for rather flexible specification of the dependence between
the response and the observed covariates. This flexibility comes at the cost
of two theoretical issues: it is necessary both to specify an analytical form
for the smooth functions and to choose how smooth they should be. Several
proposals are available for modeling and estimating the smooth functions
s(·); see, e.g., Hastie et al. (2009) and Wood (2017) for an overview.

Consider a set of independent and identically distributed observations
{yi}, i = 1, . . . , n. Each observation i has an associated vector of covariates
xi = (1, xi1, . . . , xiJ∗−1, xiJ∗ , xiJ∗+1, . . . , xiJ), of which the last J − J∗ are
metrical, with J∗ ∈ {0, 1, . . . , J}. Given covariates and unknown parameters,
the predictor predictor is defined as:

ηi = γ0 + xi1γ1 + · · ·+ xiJ∗γJ∗ + sJ∗+1(xi,J∗+1) + · · ·+ sJ(xiJ), (2.2)

where γ = (γ0, γ1, . . . , γ
∗
J) denotes the vector of coefficients corresponding to

the parametric part of the predictor, and cubic splines are chosen to approx-
imate the smooth functions sJ∗+1(·), . . . , sJ(·).
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The choice of cubic splines is motivated by some appealing theoretical
properties. Consider a set of points {xi, yi}, i = 1, . . . , n, where xi < xi + 1
for each i. The cubic spline interpolating these points is a piecewise function
made up of sections of cubic polynomial, one for each interval [xi, xi + 1],
which are joined together so that the whole function is continuous up to
second derivative. The points at which the sections are joined (and the two
end points) are known as the knots of the spline. In each section within
two consecutive knots, the funcion has constant coefficients which in turn
can vary from section to section. Cubic splines are the smoothest possible
interpolant through any set of data, in the sense that among all the possible
functions s(·) that

• are continuous in [x1, xn],

• have absolutely continuous first derivative,

• interpolate {xi, yi}, i = 1, . . . , n,

the cubic spline is the one that presents the lowest integrated squared second
derivative ∫ xn

x1

s′′(x)2dx, (2.3)

which can be interpreted as a measure of the wiggliness of the curve; see
Green and Silverman (1993) for a proof.

This property is exploited by Reinsch (1967) to also prove that, among
all the previously defined functions s(·), for a given λ, the one minimizing

n∑
i=1

(yi − s(xi))2 + λ

∫ xn

x1

s′′(x)2dx (2.4)

is a cubic spline. In other words, smoothing splines naturally arise as the
solution to the minimization problem defined in Equation (2.4), where λ is a
tuning parameter used to control the weight associated to the penalty term
(2.3) that account for the wiggliness of the curve.

Cubic splines can be conveniently represented as a linear combination
of known basis functions and unknown coefficients, which means the model
in Equation (2.2) is still linear in the parameters. A wide variety of basis
functions is present in the literature, see Wood (2017, Chapter 5) for a review.

2.1.1 P-splines

The use of B-spline basis is appealing because these basis functions are
strictly local – each basis function is non-zero only over the intervals be-
tween r + 2 adjacent knots, where r is the degree of the basis (r = 2 for the
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Figure 2.1: Illustration of a smooth curve by rank m = 9 B-spline bases.

cubic spline). To define an m parameter cubic B-spline basis, one needs to
define m + r equally spaced knots, k1 < k2 < · · · < km+r−1 < km+r, and the
interval the spline is to be evaluated over lies within [kr, km] (so that the first
and last r knot locations are essentially arbitrary). Such spline can then be
written as a linear combination of m B-spline basis functions Bjρ(xj) with
coefficients βjρ, that is,

s(xij) =
m∑
ρ=1

Bjρ(xij)βjρ, i = 1, . . . , n, (2.5)

where, following e.g. De Boor (1972), each B-spline basis function Bjρ(xij)
is most conveniently defined recursively for each unit i, as

Bjρ(xij) = B
(r)
jρ (xij) =

xij−kρ
kρ+r−kρB

(r−1)
jρ (xij) +

kρ+r+1−xij
kρ+r+1−kρ+1

,

B
(0)
jρ (xij) =

{
1, if kρ ≤ xij < kρ+1,

0, otherwise.

(2.6)

Figure 2.1 shows an example of a cubic B-spline with 5 knots, whose locations
are indicated by the vertical dotted lines in grey. The light blue curves show
B-spline basis functions multiplied by the associated coefficients: each is non-
zero over 4 intervals. Their sum gives the spline itself, represented by the
thicker blue curve above.
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B-splines were developed as a stable basis for large scale spline inter-
polation, see De Boor et al. (1978) for further details. However, the real
statistical interest in B-splines focuses on their penalized version, commonly
known as P-splines, introduced by Eilers and Marx (1996). The authors sug-
gest to work with a moderately large number of equally spaced knots (usually
between 20 and 40) to ensure enough flexibility, and to define a roughness
penalty based on differences of adjacent B-spline coefficients to guarantee
sufficient smoothness of the fitted curves. Estimation can be carried out by
direct maximization of the penalized likelihood (Marx and Eilers, 1998) or
via backfitting (Hastie and Tibshirani, 1990).

2.1.2 Bayesian approach

In a Bayesian approach, unknown parameters βj = (βj1, . . . , βj,m), j =
J∗ + 1, . . . , J , as well as γ = (γ0, γ1, . . . , γJ∗), can be considered as random
variables, with appropriate prior distributions. Lang and Brezger (2004) de-
fine priors for the regression parameters βj by replacing the difference penal-
ties proposed by Eilers and Marx (1996) with their stochastic analogues. In
particular, first differences correspond to a first-order random walk:

βjρ = βj,ρ−1 + ujρ, ujρ ∼ N(0, τ 2
j ). (2.7)

The amount of smoothness is controlled by the variance parameters τ 2
j , which

corresponds to the reciprocal of the smoothing parameters in the frequen-
tist approach; this parameter protects against possibile overfitting if a large
number of knots is chosen. The priors in Equation (2.7) can be equivalently
written in the form of global smoothness priors:

βj|τ 2
j ∝ exp

(
− 1

2τ 2
j

β′jKjβj

)
, Kj =



1 −1
−1 2 −1

. . . . . . . . .

−1 2 −1
−1 1

,


. (2.8)

with penalty matrix Kj given by Kj = ∆′1∆1, where ∆1 is the first order
difference matrix. Penalty matrix Kj is rank deficient, as rank(Kj) = m−1,
therefore, the prior in Equation (2.8) is improper. It is worth mentioning
that these kind of models are usually referred to, in the literature, as intrinsic
Gaussian Markov random fields (Rue and Held, 2005).

For full Bayesian inference, each unknown variance parameter τ 2
j is also

considered as random, and estimated together with the corresponding j-th
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vector of unknown coefficients βj, for j = J∗+1, . . . , J . Therefore, hyperpri-
ors are assigned to variances τ 2

J∗+1, . . . , τ
2
J in a further layer of the hierarchy,

choosing them to be dispersed inverse gamma priors τ 2
j ∼ IG(aj, bj), j =

J∗ + 1, . . . , J . Common choices for the hyperparameters are aj = bj = 10−3,
or aj = 1 and bj = 5× 10−3 or lower, leading to almost diffuse priors for τ 2

j .

2.2 Semiparametric gating network mixture

of experts models

2.2.1 Model specification

Consider a sample of independent and identically distributed observations
{yi}, i = 1, . . . , n, from an heterogeneous population, and suppose that the
distribution of y is described by a G-components finite mixture model with
weights π1, . . . , πG, such that 0 < πg < 1 and

∑G
g=1 πg = 1.. The distribution

in each component g = 1, . . . , G, is described by the probability (density)
function f(yi|θg) with parameters θg. Observation i has vector of associated
covariates xi = (1, xi1, . . . , xiJ∗−1, xiJ∗ , xiJ∗+1, . . . , xiJ), of which the last
J − J∗ are metrical, with J∗ ∈ {0, 1, . . . , J}.

The gating network mixtures of experts model introduced in Section 1.2.1
extends the finite mixture model by allowing the distribution of the latent
variable to depend on the concomitant variables:

f(yi|xi) =
G∑
g=1

πg(xi)f(yi|θg). (2.9)

Rather than modelling the component weights by a multinomial logit re-
gression model, the linear predictors in Equation (1.35) are extended by ex-
ploiting the additive structure introduced in Section 2.1. More precisely, the
assumption of linearity of the covariate effects on the log-odds of the mixture
weights is relaxed by defining an additive predictor for each component g as
follows:

log
πg(xi)

πG(xi)
= ηg(xi) = ηgi =

J∗∑
j=0

xijγgj +
J∑

j=J∗+1

sgj(xij), (2.10)

where γg = (γg0, γg1 . . . , γgJ∗) denotes the vector of coefficients for the usual
parametric part of the predictor, and sg,J∗+1(·), . . . , sgJ(·) are unknown smooth
functions of the metrical covariates for the g-th class. As in Section 2.1.1,
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splines are used to express these smooth functions:

sgj(xij) =
m∑
ρ=1

Bjρ(xij)βgjρ, (2.11)

where Bjρ(·) is a B-spline basis function for a cubic spline, for ρ = 1, . . . ,m,
and βgj = (βgj1, . . . , βgjm) denotes the associated vector of coefficients for the
g-th component, j = J∗ + 1, . . . , J . To ensure identifiability of the additive
predictors, each function sgj(xj) is constrained to have zero mean, that is,

1

range(xj)

∫
sgj(xj) dxj = 0, j = J∗ + 1, . . . , J. (2.12)

These constraints can be incorporated into estimation by centering functions
sgj(xj) about their means: in practice, the average of the smooth functions
will be incorporate into the overall intercept γ0. See Section 2.2.3 for further
details about Bayesian constrained sampling.

By defining the n ×m design matrices Bj – whose generic ρ-th element
in i-th row is given by Bjρ(xij) – the predictor (2.10) can be rewritten in
matrix notation as

ηg = ηg(x) = Xγg +
J∑

j=J∗+1

Bjβgj, (2.13)

where X is the design matrix of fixed effects and βgj = (βgj1, . . . , βgjm).
Following some simple algebra, the component weights can be expressed, for
each unit i, as

πg(xi) =
exp

(
x′iγg +

∑J
j=J∗+1 B′ijβgj

)
1 +

∑G−1
g=1 exp

(
x′iγg +

∑J
j=J∗+1 B′ijβgj

) , g = 1, . . . , G, (2.14)

where Bij is a vector containing the elements of the i-th row of Bj. Essen-
tially, by resorting to spline functions, it is possible to extend the model in
Equation (1.36) to its flexible version, preserving linearity of the predictor
ηg with respect to the unknown parameters γg and βg.

2.2.2 Bayesian Inference

To represent in a convenient way the previously described multinomial logis-
tic semiparametric regression model (2.10) in the Bayesian context, the data
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augmentation scheme in Equation (1.37) is followed. By doing so, the multi-
nomial model reduces to a binary model involving the component indicator
Di = (D1i, . . . , DGi), introduced in Section 1.1.3, and (partial) differences of
random utilies zgi:

zgi = ηgi − log

(∑
l 6=g

λli

)
+ εgi,

Dgi = 1(zgi > 0).

(2.15)

With respect to the partial dRUM representation in Equation (1.37), here
zgi is specified in a more flexible way, with additive predictor ηgi defined
involving a sum of smooth function – as in Equation (2.10) – and λgi =
exp(ηgi). Gaussian priors are assumed for the fixed effects parameters: γg ∼
MVN(0, vIJ∗+1), with variance hyperparameter v set so a sufficiently large
value (e.g. equal to 100), in case a non-informative prior is needed. To penal-
ize the m B-spline parameters related to the nonlinear part of the predictor,
m is set high (e.g. equal to 23), and the priors for these coefficients are
defined following Lang and Brezger (2004):

βgjρ = βgj,ρ−1 + ugjρ, ugjρ ∼ N(0, τ 2
gj), (2.16)

or, equivalently,

βgj|τ 2
gj ∝ exp

(
− 1

2τ 2
gj

β′gjKjβgj

)
, (2.17)

with penalty matrix Kj defined as in Equation (2.8), and τ 2
gj ∼ IG(aj =

1, bj = 5 × 10−3). The logistic distribution of the i.i.d. errors εgi is approx-
imated by a finite mixture of normals, following Frühwirth-Schnatter and
Frühwirth (2010), as

f(εgi) ≈
H∑
h=1

whfN(0, s2
h), (2.18)

with fN(·) denoting the normal density function. The parameters of the finite
mixture approximation in Equation (2.18), (wh, s

2
h), for h = 1, . . . , H are ob-

tained by minimizing the Kullback-Leibler divergence (Kullback and Leibler,
1951) and can be found in Table 2 of Frühwirth-Schnatter and Frühwirth
(2010), along with an evaluation of goodness of these approximations. The
number of components H in the approximating mixture model (2.18) is fixed
equal to 6 whenever possibile, although good approximations can be obtained
for as small as H = 3. In a second step of data augmentation, the compo-
nent indicator rgi ∼ MulNomH(1;w1, . . . , wH) is introduced as yet another
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latent variable. Regarding the parameters of the component densities, con-
jugacy between priors and the likelihood function can be exploited in order
to sample from the posterior distribution using Gibbs steps, depending on
the specific nature of the component densities f(y|θg).

2.2.3 The MCMC Algorithm

Based on the representation in Section 2.2.2, a new MCMC algorithm is
implemented for fixed G, by integrating the scheme proposed by Frühwirth-
Schnatter et al. (2012) – detailed in Section 1.2.3 – with the Bayesian P-spline
approach proposed by Lang and Brezger (2004) (Section 2.1.1). The steps
to be followed are:

1. sample the regression coefficients βg conditional on zg and rg, g =
1, . . . , G − 1. Using the prior in Equation (2.17), the full conditional
of βgj is given by a multivariate normal density. Straightforward cal-
culations (Brezger and Lang, 2006) show that the precision matrix Pgj

and the mean mgj of βgj|· are given by

Pgj = B′jW
−1
g Bj +

1

τ 2
gj

Kj,

mgj = P−1
gj B′jW

−1
g

(
zg − η̃g,−j + log

∑
l 6=g

λl

)
,

(2.19)

where η̃g,−j is the part of the predictor associated with all, but the j-th,
effects in the model, and Wg is a n× n diagonal matrix with nonzero
elements equal to the randomly drawn variances (ω1g = s2

rg1
, . . . , ωng =

s2
rgn) for the g-th group;

2. center each smooth function sgj(xj). Imposing the constraint in Equa-
tion (2.12) is equivalent to sampling βgj|(1′nBjβgj = 0), for each
j = J∗ + 1, . . . , J , where 1 denotes a vector of length n with all el-
ements equal to 1. Following Algorithm 2.6 in Rue and Held (2005),
this can be done by trasforming each vector of coefficients βgj as fol-
lows:

β̃gj = βgj −P−1
gj B′j1n

(
1′nBjP

−1
gj B′j1n

)−1
1′nBjβgj; (2.20)

3. sample the fixed effects parameters γg from a multivariate normal den-
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sity with precision matrix Pγg and mean vector mγg :

Pγg = X′W−1
g X +

1

v
IJ∗+1,

mγg = P−1
γg

X′W−1
g

(
zg − η̃g,−γ + log

∑
l 6=g

λl

)
.

(2.21)

Here η̃g,−γ represents the nonlinear part of the predictor for the g-th
component;

4. sample the variance parameters τ 2
gj conditional on β̃gj:

τ 2
gj|β̃gj ∼ IG

(
agj +

rank(Kj)

2
, bgj +

1

2
β̃
′
gjKjβ̃gj

)
; (2.22)

5. for each unit i = 1, . . . , n, sample all (partial) differences of utilities
z1i, . . . , zG−1,i simultaneously from:

zgi = log

(
λgi

log
∑

l 6=g λli
Ugi +Dgi

)
− log

(
1− Ugi +

λgi
log
∑

l 6=g λli
Dgi

)
,

(2.23)
with Ugi ∼ Unif(0, 1);

6. sample the component indicators rgi conditional on zgi from:

Pr(rgi = h|zgi, β̃g,γg) ∝
wh
sh

exp

[
−1

2

(
zgi − ηgi + log

∑
l 6=g λli

sh

)2
]

;

(2.24)

7. sample the component parameters θ1, . . . ,θG given the component in-
dicators Di, . . . ,Dn. This step depends on the specific features of the
outcome variables and the choice for the component density functions
f(y|θg), g = 1, . . . , G. See the next chapters for further details;

8. classify each unit i according to Bayes’ rule: draw Di, . . . ,Dn from
the following discrete probability distribution which combines the like-
lihood and the prior:

Pr(Dgi = 1|yi,xi, β̃,γ,θ) ∝ λgi∑G
g=1 λgi

f(yi|θg). (2.25)

This MCMC algorithm and all the variants presented in this Thesis have been
implemented in R code (R Core Team, 2020) and are available on GitHub at
the following link: github.com/MarcoBerrettini/sMoE. All the computations
in this Thesis are carried out using R.
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2.2.4 A note on the computational cost of the algo-
rithm

Obviously, the improved flexibility has a cost in terms of computational
complexity. Assume that all the J concomitant covariates are metrical (i.e.
J∗ = 0) and that one is interested in estimating all of their corresponding ef-
fects through the algorithm proposed in Section 2.2.3. In this case, inverting
the posterior precision matrix Pgj in Equation (2.19) is the operation which
mostly inflates the computational cost of the algorithm. Indeed, the complex-
ity of computing the inverse of an m ×m matrix through the basic Gauss-
Jordan elimination method (Althoen and Mclaughlin, 1987) is O(m3), al-
though it can be reduced via more efficient procedures, e.g. the Coppersmith-
Winograd algorithm (Coppersmith and Winograd, 1987). Moreover, for any
fixed g, this operation is repeated J times, once for each covariate. Note, in
fact, that, as each row of any B-spline basis matrix Bj, j = 1, . . . , J , sums
to 1, and given that the penalty matrix Kj does not have full rank, it is nec-
essary to separately draw βg1, . . . ,βgJ , since a posterior precision matrix for
the whole vector of coefficients βg would not be invertible and would require
to resort to alternative solutions, such as the Moore-Penrose inverse (Moore,
1920). When J > 1, this implies the presence of the additional centering step
in Equation (2.20), for each βgj, j = 1, . . . , J , together with a further step
for estimating the intercept. As anticipated in Section 2.2.1, this procedure
guarantees identifiability for the additive predictors.

For comparison purposes, assume now that the same J covariate effects
are estimated via the parametric approach by Frühwirth-Schnatter et al.
(2012), thus setting J∗ = J and reducing the MCMC algorithm proposed in
Section 2.2.3 to the one reported in Section 1.2.3. Here, for any given g, the
posterior variance matrix of all the regression coefficients, that are included in
vector γg = (γ0, γ1, . . . , γJ), is matrix Pγg in Equation (1.38). Its inverse can

be easily computed all at once, with complexity O((J + 1)3), if the standard
Gauss-Jordan algorithm is exploited. Notice that J is usually (way) lower
than m, causing the parametric approach to be sensibly faster with respect
to the semiparametric one. This difference, in terms of time required by each
algorithm to complete the pre-specified number of iterations, is reported
together with the results of some simulation studies in the next chapters.

2.2.5 Posterior inference and model selection

Once the MCMC algorithm has completed the prefixed number T of it-
erations, posterior inference is carried out by estimating each parameter’s
posterior mean over the last T − T0 draws of the chains, with T0 defining
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the burn-in phase. Posterior quantities can be computed for the smooth
functions by considering them as linear combinations of spline bases and the
corresponding regression coefficients’ estimates. The uncertainty associated
to the smooth functions is quantified via their pointwise percentiles (usually
2.5 - 97.5 or 5 - 95), for each function over the last T − T0 posterior draws.

Observations can be allocated into theG components using the maximum-
a-posteriori (MAP) rule. In particular, each unit i = 1, . . . , n is assigned to
the component ĉi such that

ĉi = arg max
g

(
T∑

t=T0

D
(t)
1i , . . . ,

T∑
t=T0

D
(t)
Gi

)
. (2.26)

where D
(t)
i = (D

(t)
1i , . . . , D

(t)
Gi) represents the allocation vector for unit i at iter-

ation t. Sometimes, using the MAP rule, one or more components could have
no units assigned to them: thus, it might be worth distinguishing between
the number of components G and the number of non-empty components,
denoted as

G̃ =
G∑
g=1

1

(
n∑
i=1

1(ĉi = g) > 0

)
. (2.27)

Choosing the number of components in a mixture model is an important
problem, which originated many efforts in the statistical literature. In most
approaches, selecting G is related to the number of free parameters, which
is not clear for the proposed model, due to the presence of regulariziation
induced by the prior distribution on the regression coefficients. As reported
in Section 1.1.8, one simple solution in the Bayesian framework is given by
the AICM (Raftery et al., 2007), whose formula depends only on the log-
likelihoods from the posterior simulation:

AICM = 2(l̄ − s2
l ), (2.28)

where l̄ and s2
l are the sample mean and variance of the sequence of log-

likelihoods f(yi|θ(t)
Di

), for each iteration t = T0, . . . , T , after the burn-in.
AICM has already been applied successfully in the mixture modelling con-
text, for example by Erosheva et al. (2007), Gormley and Murphy (2010b),
Gormley and Murphy (2011), and Mollica and Tardella (2017).

2.2.6 Label switching

As for any finite mixture model, label switching may occur during MCMC
sampling; see Frühwirth-Schnatter (2006, Section 3.5) for a review. To iden-
tify a mixture of experts model, Frühwirth-Schnatter et al. (2012) suggest
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to focus on a subset of a group-specific parameter and apply k-means clus-
tering (with G clusters) to the posterior draws. MCMC draws belonging to
the same group are assigned to the same cluster by k-means clustering, and
the resulting classification sequences ζt = (S

(t)
1 , . . . , S

(t)
G ) – where each S

(t)
g ,

g=1,. . . ,G, is a classification index taking values in {1,. . . ,G} – show how to
re-arrange the group-specific parameters for each iteration t = 1, . . . , T , even
if label switching occurred during sampling. In particular, if the mixture is
not overfitting the number G of groups, ζt is a permutation of {1, . . . , G},
and a unique labeling is achieved by reordering the draws in the following
way:

• relabel the hidden allocations D1, . . . ,Dn through the inverse ζ−1
t : re-

arrange D1, . . . ,DG by Dζ−1
t (1), . . . ,Dζ−1

t (G), respectively;

• relabel the group-specific parameters through ζ−1
t (1), . . . , ζ−1

t (G): re-
arrange θ1, . . . ,θG by θζ−1

t (1), . . . ,θζ−1
t (G);

• relabel the regression coefficients γ and β), corresponding to the linear
and nonlinear part of the predictor in the multinomial logistic regression
model: substitute γ1, . . . ,γG by γζ−1

t (1)−γζ−1
t (G), γζ−1

t (2)−γζ−1
t (G), . . . ,

γζ−1
t (G)−γζ−1

t (G) = 0 and, thanks to the fact that the additive predictors
are still linear in the parameters, substitute β1, . . . ,βG by βζ−1

t (1) −
βζ−1

t (G),βζ−1
t (2)−βζ−1

t (G), . . . ,βζ−1
t (G)−βζ−1

t (G) = 0. Subtracting γζ−1
t (G)

and βζ−1
t (G), respectively, from all draws ensures that the regression

coefficients of the baseline are all equal to 0 in the identified model.
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Chapter 3

Categorical manifest variables

3.1 Model specification and Bayesian infer-

ence

For the discrete case, each manifest variables Yq, q = 1, . . . , Q, has Pq possi-
ble outcomes, and takes value yiqp = 1 if the i-th unit presents the p-th cat-
egory for the q-th variable, yiqp = 0 otherwise. For each group g = 1, . . . , G,
and for each manifest variable a multinomial distribution is assumed, with
probabilities ξgq = (ξgq1, . . . , ξgqPq). Furthermore, conditioning on xi and
assuming conditional independence between the Q responses, yi has the fol-
lowing distribution

f(yi|xi) =
G∑
g=1

π(xi)

Q∏
q=1

Pq∏
p=1

(ξgqp)
yiqp . (3.1)

Model in Equation (3.1) may be referred to as latent class models with con-
comitant covariates (Dayton and Macready, 1988) or latent class regression
models (Linzer et al., 2011).

Component weights π1(xi), . . . , πG−1(xi) are defined as in Equation (2.14)
and a Dirichlet distribution is assigned to each vector of conditional proba-
bilities ξgq, with hyperparameters ι1, . . . , ιPq all set equal to 1 for a flat prior.
Thus, conditional on the latent component indicator Dg, g = 1, . . . , G, the
conditional probabilities can be sampled during step 7 of the MCMC algo-
rithm introduced in Section 2.2.3 from the following full conditional:

ξgq|D,y ∼ Dir

(
ι1 +

n∑
i=1

(Dgi · yiq1), . . . , ιPq +
n∑
i=1

(Dgi · yiqPq)

)
. (3.2)
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Finally, the conditional posterior of the indicators can be made explicit for
g = 1, . . . , G as:

Pr(Dgi = 1|yi,xi,βg,γg, ξg) ∝
λgi∑G
g=1 λgi

Q∏
q=1

Pq∏
p=1

(ξgqp)
yiqp . (3.3)

3.2 Simulation study

The performance of the proposed semiparametric approach based on Bayesian
P-splines is investigated in a simulated environment. Two experiments are
carried out, differing for the true number of components and the distribu-
tion of the manifest variables. The quality of the estimates for the covari-
ates’ effects is evaluated through a comparison between the true effects and
the estimated posterior marginal effects, obtained using both the proposed
semiparametric method and restricting the additive predictor to be a linear
function of the covariates. To assess the performance of the estimators ŝgj(·)
of the unknown regression functions sgj(·), the square root of the average
squared errors (hereafter, RASE) is also considered, defined as:

RASEsgj =

√√√√ 1

n

n∑
i=1

(
ŝgj(x∗ji)− sgj(x∗ji)

)2
, g = 1, . . . , G− 1; j = 1, . . . , J,

(3.4)
where {x∗ji}, i = 1, . . . , n, are grid points taken evenly in the range of each
covariate.

Regarding the clustering performance, a comparison between the result-
ing and the true allocations is made in terms of both Adjusted Rand Index
(ARI) (Hubert and Arabie, 1985) and soft ARI (Flynt et al., 2019). While
ARI measures similarity between two data clusterings (hard partitions), soft
ARI (sARI) can incorporate the posterior allocation distributions (soft par-
titions). Both indexes take values ranging from a maximum of +1, if the
two partitions are identical (apart from labelling), to a negative minimum
if the similarity between the two partitions is lower than the expected simi-
larity of all pairwise comparisons between clusterings specified by a random
model. For this second part of the analysis, Bayesian latent class (BLC)
models, which ignore the effects of concomitant information on the compo-
nents’ weights, are also considered. For each method and each value of G,
4000 MCMC draws are simulated after a burn-in of 1000 draws. The optimal
choice for G is based on the AICM.
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Table 3.1: Cluster-specific conditional probabilities.

ξgqp g=1 g=2
ξg1 (0.7, 0.1, 0.2) (0.2, 0.7, 0.1)
ξg2 (0.2, 0.8) (0.7, 0.3)
ξg3 (0.3, 0.6, 0.1) (0.1, 0.3, 0.6)
ξg4 (0.1, 0.1, 0.5, 0.3) (0.5, 0.3, 0.1, 0.1)
ξg5 (0.1, 0.1, 0.8) (0.1, 0.8, 0.1)

Table 3.2: Mean (and standard deviation) of the RASE scores, computed on
the estimated log-odds of the mixture weights over 100 simulated datasets.

RASEsgj s11(x∗) s12(x∗)
Semiparametric 0.255 (0.057) 0.314 (0.088)
Parametric 0.860 (0.007) 1.346 (0.002)

3.2.1 First simulation experiment: G = 2

A batch of 100 independent datasets is generated, with n = 1000, from a
2-component mixture distribution for Q = 5 categorical manifest variables,
whose component-specific distributions are reported in Table 3.1. The log-
odds of component weights is assumed to depend on 2 uniformly distributed
covariates x1 and x2 in [0, 1], as

η1(x1, x2) = 2(sin(3πx1)e(−x1) + (3x2 − 1.5)2)− 0.5. (3.5)

Figures 3.1 and 3.2 show the marginal effects, s11(x1) and s12(x2), along with
the average posterior estimated effects across the 100 simulations obtained
using both the semiparametric and the parametric approach, respectively. It
appears that the underlying trend can be recovered through the proposed
semiparametric method. Conversely, the parametric competitor clearly can-
not properly approximate the nonlinear non-monotonic trend. These results
are summarized in terms of RASE in Table 3.2. Goodness of fit (versus
complexity) and quality of the allocations, for fixed G = 2, are analyzed in
Table 3.3. It can be noticed the semiparametric approach outperforms its
competitors in tems of AICM, ARI and sARI.

For each dataset, the three algorithms are run setting the number of
components equal to 2, 3 and 4. Table 3.4 shows the number of non-empty
components for the optimal models selected according to AICM for each
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Figure 3.1: Average posterior effects (green solid line) and 2.5 – 97.5 point-
wise percentiles (green dotted lines) of the concomitant covariates on the
log-odds of mixture weights, estimated with the semiparametric approach
over 100 simulated datasets. The true effect is represented by a black dashed
line.
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Figure 3.2: Average posterior effects (green solid line) and 2.5 – 97.5 point-
wise percentiles (green dotted lines) of the concomitant covariates on the
log-odds of mixture weights, estimated with the parametric approach over
the 100 simulated datasets. The true effect is represented by a black dashed
line.
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Table 3.3: Average AICM, ARI and sARI (number of times each model ranks
first) values for 100 simulated datasets, for fixed G = 2.

AICM (best) ARI (best) sARI (best)
Semiparametric MoE 8466.5 (96) 0.834 (99) 0.760 (100)
Parametric MoE 8533.7 (4) 0.794 (0) 0.704 (0)
BLC model 9063.4 (0) 0.794 (0) 0.704 (0)

Table 3.4: Optimal number of non-empty components selected for each
method, according to AICM.

Method G̃=2 G̃=3 G̃=4
Semiparametric MoE 100 - -
Parametric MoE 26 69 5
BLC model 99 1 -

method for all the simulated datasets. It is evident that, in this scenario,
restricting the additive predictor to be linear leads to a wrong choice of the
number of non-empty components G̃ most of the times. If the statistics in
Table 3.3 are compared with the ones computed with reference to the best
models selected, according to Table 3.4, the results do not change much
for the BLC model. There is a negligible difference for the semiparametric
MoE models due to the fact that, in one sample, the best model selected
according to AICM formally presents 3 components, although 1 of them is
empty. Obviously, for the parametric MoE models there is an improvement
in terms of average AICM (8510.0), while both the quantities that measures
the accuracy of the allocations get sensibly worse (average ARI = 0.516,
average sARI = 0.460).

3.2.2 Second simulation experiment: G = 6

A batch of 100 independent datasets is generated, with n = 1000, from a
6-component mixture distribution for Q = 12 categorical manifest variables,
whose component-specific distributions are in Table 3.5. Similarly to the
simulation study in Section 3.2.1, the component weights are assumed to
depend on 2 uniformly distributed covariates x1 and x2 in [0, 1]. In particular,
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the log-odds of the weights are defined as follows:

η1(x1, x2) = 0.7(sin(3πx1)e−x1 + (3x2 − 1.5)2)− 0.5;

η2(x1, x2) = 0.5e−x
2
1 − 0.8;

η3(x1, x2) = 0.5 sin(6x1 − 1) + e−16(3x1−0.5)2 +
e−30(x2−0.3)

1 + e−30(x2−0.3)
;

η4(x1, x2) = 0.6

(
3.4827x̃1 − 4.7422x̃2

1 + 3.3035x̃3
1 − 1.2605x̃4

1 + 0.251x̃5
1

− 0.0204x̃6
1 +

e−20(x2−0.4)

1 + e−20(x2−0.4)

)
, with x̃1 = 2.5x1 + 0.5;

η5(x1, x2) = 0.5

(
e−10x1

1 + e−10x1
+

e−50(x2−0.3)

1 + e−50(x2−0.3)

)
.

(3.6)

Despite the different setting, most of the conclusions that can be drawn for
this simulation study are in line with ones in Section 3.2.1. Figures 3.3 to
3.7 show the marginal effects sg1(x1) (first row) and sg2(x2) (second row), for
g = 1, . . . , G−1, along with the average posterior estimated effects across the
100 simulations obtained on the simulated dataset using both the semipara-
metric and the parametric approach. The latter provides decent approxima-
tions, since most of the underlying trends are (almost) linear or monotonic.
Moreover, oversmoothing can be noticed in the estimates obtained by the
semiparametric MoE model, although on average results seem to be better
than those obtained with the parametric MoE model, and the bands fully
contain most of the effects. RASE scores reported in Table 3.6 confirm these
remarks. Table 3.7 shows that the advantages in terms of goodness of fit do
not correspond to such differences in terms of quality of the allocations, when
the true number of components is fixed G = 6. Nevertheless, the semipara-
metric MoE appears to prevail most of times, especially in terms of sARI.
For each dataset, the three algorithms are run setting the number of com-
ponents G ranging from 2 to 8. All the competing methods detect the right
number of non-empty groups, apart from 7 times: 5 for the parametric MoE
model, twice for the BLC model. Thus, if the previous comparison based on
clustering performance is repeated for each competing model, the conclusions
do not change sensibly. For this second simulation study, a comparison is
made also in terms of execution time of the algorithms estimating the three
competing models.

Figure 3.8 shows through a box plot how the different computational
complexity between the three algorithms affect the time employed by each
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Table 3.5: Cluster-specific conditional probabilities.

ξgqp ξg1 = ξg2 = ξg3 ξg4 = ξg5 = ξg6 ξg7 = ξg8 = ξg9 ξg10 = ξg11 = ξg12

g=1 (0.7, 0.1, 0.2) (0.7, 0.1, 0.2) (0.7, 0.1, 0.2) (0.7, 0.1, 0.2)
g=2 (0.7, 0.2, 0.1) (0.7, 0.2, 0.1) (0.2, 0.1, 0.7) (0.2, 0.1, 0.7)
g=3 (0.1, 0.2, 0.7) (0.1, 0.2, 0.7) (0.2, 0.7, 0.1) (0.2, 0.7, 0.1)
g=4 (0.7, 0.1, 0.2) (0.2, 0.1, 0.7) (0.1, 0.2, 0.7) (0.1, 0.7, 0.2)
g=5 (0.1, 0.7, 0.2) (0.1, 0.7, 0.2) (0.1, 0.7, 0.2) (0.1, 0.7, 0.2)
g=6 (0.1, 0.7, 0.2) (0.1, 0.2, 0.7) (0.2, 0.1, 0.7) (0.7, 0.1, 0.2)

Table 3.6: Mean (and standard deviation) of the RASE scores, computed on
the estimated log-odds of the mixture weights over 100 simulated datasets.

RASEsgj Semiparametric Parametric
s11(x∗) 0.251 (0.070) 0.378 (0.077)
s12(x∗) 0.242 (0.089) 0.505 (0.035)
s21(x∗) 0.159 (0.077) 0.208 (0.139)
s22(x∗) 0.122 (0.058) 0.106 (0.079)
s31(x∗) 0.326 (0.094) 0.426 (0.121)
s32(x∗) 0.210 (0.095) 0.289 (0.201)
s41(x∗) 0.143 (0.064) 0.213 (0.132)
s42(x∗) 0.164 (0.074) 0.163 (0.077)
s51(x∗) 0.139 (0.062) 0.212 (0.122)
s52(x∗) 0.167 (0.065) 0.187 (0.064)

Table 3.7: Average AICM, ARI and sARI (number of times each model ranks
first) over 100 simulated datasets, for fixed G = 6.

AICM (best) ARI (best) sARI (best)
Semiparametric MoE 20229.3 (77) 0.777 (62) 0.687 (93)
Parametric MoE 21128.1 (23) 0.771 (24) 0.681 (7)
BLCA 22360.3 (0) 0.771 (14) 0.679 (0)
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Figure 3.3: Average posterior effects (grey solid line) and 2.5 – 97.5 pointwise
percentiles (grey dotted lines) of the concomitant covariates on the log-odds
of mixture weights for group 1, estimated with the semiparametric approach
over 100 simulated datasets. The true effect is represented by a black dashed
line.
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Figure 3.4: Average posterior effects (grey solid line) and 2.5 – 97.5 pointwise
percentiles (grey dotted lines) of the concomitant covariates on the log-odds
of mixture weights for group 2, estimated with the semiparametric approach
over 100 simulated datasets. The true effect is represented by a black dashed
line.
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Figure 3.5: Average posterior effects (grey solid line) and 2.5 – 97.5 pointwise
percentiles (grey dotted lines) of the concomitant covariates on the log-odds
of mixture weights for group 3, estimated with the semiparametric approach
over 100 simulated datasets. The true effect is represented by a black dashed
line.

42



0.0 0.2 0.4 0.6 0.8 1.0

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

0.
6

Semiparametric

x1

s 4
1(x

1)

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

0.
6

Parametric

x1

s 4
1(x

1)

0.0 0.2 0.4 0.6 0.8 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

x2

s 4
2(x

2)

true
estimated average
2.5 − 97.5 percentile

0.0 0.2 0.4 0.6 0.8 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

x2

s 4
2(x

2)

Figure 3.6: Average posterior effects (grey solid line) and 2.5 – 97.5 pointwise
percentiles (grey dotted lines) of the concomitant covariates on the log-odds
of mixture weights for group 4, estimated with the semiparametric approach
over 100 simulated datasets. The true effect is represented by a black dashed
line.

43



0.0 0.2 0.4 0.6 0.8 1.0

−
0.

6
−

0.
4

−
0.

2
0.

0
0.

2
0.

4

Semiparametric

x1

s 5
1(x

1)

true
estimated average
2.5 − 97.5 percentile

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

6
−

0.
4

−
0.

2
0.

0
0.

2
0.

4

Parametric

x1

s 5
1(x

1)

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

5
0.

0
0.

5

x2

s 5
2(x

2)

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

5
0.

0
0.

5

x2

s 5
2(x

2)

Figure 3.7: Average posterior effects (grey solid line) and 2.5 – 97.5 pointwise
percentiles (grey dotted lines) of the concomitant covariates on the log-odds
of mixture weights for group 5, estimated with the semiparametric approach
over 100 simulated datasets. The true effect is represented by a black dashed
line.
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Figure 3.8: Time employed by each algorithm to complete 5000 iterations
(initialization and posterior inference included), for each of the 100 replica-
tions, with fixed G=6.

of them, for each of the 100 samples, with the current setting. The reported
times refer to analyses performed using an IBM x3750 M4 server with 4 Intel
Xeon E5-4620 processors with 8 cores and 128GB RAM. As expected, the
introduction of concomitant covariates result in an increase in the execution
times. Furthermore, the impact of the increase in complexity due to the use
of Bayesian P-spline is also evident.

3.3 Application: Brexit data

The proposed empirical analysis is based on data about the Parliamentary
votes on Brexit, sometimes referred to as “meaningful votes”, that are the
parliamentary votes under the terms of Section 13 of the United Kingdom’s
European Union (Withdrawal) Act 2018 (Parliament, 2018). This Act re-
quires the government of the United Kingdom (UK) to bring forward an
amendable parliamentary motion at the end of the Article 50 negotiations
between the government and the European Union (EU) to ratify the Brexit
withdrawal agreement.

The sample considered consists of n = 638 members of the UK Parliament
(MPs) who voted 16 divisions during the period 25/03/2019 – 01/04/2019. In
the United Kingdom, a member of Parliament (MP) is an individual elected
to serve in the House of Commons, the lower house of the Parliament of the
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United Kingdom. The Commons is an elected body consisting of 650 mem-
bers representing constituencies (electoral areas). Among the MPs not taken
into account in this study there are 4 Speakers (one speaker and 3 deputies)
who neither took part nor voted, 7 members of the political party Sinn Féin
which followed a policy of abstentionism (refusing to attend Parliament or
vote on bills) and one MP who passed away on February 17th, 2019 and was
replaced after April 4th, 2019.

At the end of March 2019, the government had not won any of the mean-
ingful votes. This led to a series of non-binding “indicative votes” on po-
tential options for Brexit, and also to a delay of the departure date. The
amendment tabled by Conservative MP Sir Oliver Letwin on March 25th, to
take power to control business in the Commons away from the government
on March 27th, to allow MPs to put forward business motions relating to
Brexit, passed 329 – 302. Instead, the one tabled by Labour MP Dame Mar-
garet Beckett was defeated 311 – 314. This amendment would have required
Parliament to vote favourably for a “no deal” Brexit, or request an exten-
sion to Article 50 if the government was without a deal within seven days
of leaving the European Union. The amended main motion (Letwin but not
Beckett) passed 327 – 300. As a result of the Letwin amendment’s success,
indicative votes on Parliament’s preferred Brexit options were held on March
27th. Eight propositions were voted upon, of which all eight failed:

• (B) No deal – Conservative MP Mr John Baron’s option to immediately
leave the EU without any deal (For: 160, Against: 400);

• (D) Common market 2.0 – Conservative MP Mr Nicholas Boles’s pro-
posal to join the Single Market and a customs union (For: 189 – against:
283);

• (E) EFTA and EEA – Conservative MP Mr George Eustice’s proposal
to remain in the Single Market outside of a customs union (For: 64 –
Against: 377);

• (J) Customs union – Conservative MP Mr Kenneth Clarke’s proposal
for a permanent customs union (For: 265 – Against: 271);

• (K) Labour’s plan – Labour’s alternative position proposed by MP Mr
Jeremy Corbyn, including a comprehensive customs union with the
EU, close alignment with the Single Market, dynamic alignment on
rights and protections, commitments on participation in EU agencies
and funding programmes, and clear agreements on the detail of future
security arrangements (For: 237 – Against: 307);
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• (L) Revocation to avoid no deal – Scottish National Party MP Ms
Joanna Cherry’s proposal’s to revoke Article 50 (For: 184 – Against:
293);

• (M) Confirmatory public vote – Labour MP Dame Margaret Beckett’s
proposal for a public vote on any withdrawal bill (For: 268 – Against:
295);

• (O) Maneged no deal – Conservative MP Mr Marcus Fysh’s proposal
to immediately leave the EU seeking a tariff-free trade agreement (For:
139 – Against: 422).

It is worth noting that only the first and the last propositions express clear
pro-leave positions, while the other 6 aim at mitigating the effects of Brexit,
or even stopping it.

As Parliament had agreed to an extension of Article 50 to June 30th, the
possibility of a third meaningful vote was raised and took place on March
29th, 2019. Mrs Theresa May promised she would resign as Prime Minister
if the Withdrawal Agreement passed. In the end, Mrs Theresa May’s deal
was voted down again (For: 286 – Against: 344), albeit by a smaller margin
than in the previous two votes that took place on January, 15th, and March,
12th, respectively. Further indicative votes were held on April 1st on four
propositions chosen by the Speaker, all of which failed:

• (C) Customs union by Conservative MP Mr Kenneth Clarke (For: 273
– Against: 276);

• (D) Common market 2.0 by Conservative MP Mr Nicholas Boles (For:
261 – Against: 282);

• (E) Confirmatory public vote by Labour MPs Mr Peter Kyle and Mr
Phil Wilson (For: 280 – Against: 292);

• (G) Parliamentary supremacy by Scottish National Party MP Ms Joanna
Cherry (For: 191 – Against: 292).

Notice that all the four proposals were modified version of those put to the
vote on March 27th, although only the proposers of the confirmatory public
vote and the title of Ms Cherry’s one changed (previously, “revocation to
avoid no deal”). The proposal of a third round of indicative votes, to be
held on April, 8th, was then rejected. Due to huge opposition to the fourth
withdrawal agreement, on May, 24th, Mrs Theresa May announced she would
resign as Conservative Party leader and Prime Minister on June, 7th.
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The main purpose of the analysis described in this paper is to identify
groups of MPs whose opinions about Brexit, in terms of votes for the afore-
mentioned divisions, are similar. Furthermore, the influence of some con-
comitant information related to the MPs themselves, or the constituencies
they represent, on group membership is considered. In particular, J = 3
concomitant covariates are included in the analysis:

• age of the MP;

• share of Leave votes at the Brexit referendum in parliamentary con-
stituencies;

• “safeness” of the seat of each MP.

Regarding the second covariate, it is worth noting the Brexit referendum vote
was not counted by constituencies except in Northern Ireland. Some local
councils (districts) republished local results by electoral ward or constituency.
Some constituencies are coterminous with (overlap) their local government
district. For the others, Hanretty (2017) estimated through a demographic
model the Leave and Remain vote.

About the third covariate, Apostolova et al. (2017) analyzed and made
available the results of the 2017 UK general election and, in particular, the
number of votes taken by each party for each of the 650 constituencies. In
this dataset, 12 main parties are considered, while all the others are gathered,
unless one of these won the seat: the votes taken by the winning party
are counted separately and placed in another category, for a total of K =
13 categories. To quantify how much an MP, or the party they represent,
was appreciated in the constituency they were elected into, a measure of
the degree of heterogeneity of votes among parties in that constituency is
considered.

In particular, by denoting with ακi the share of votes taken by party
κ (κ = 1, . . . , K), the entropy of the votes in the i-th constituency can be
computed as:

EN(αi) = −
K∑
κ=1

ακi log(ακi). (3.7)

In this case, the entropy EN(αi) quantifies the uncertainty in predicting the
number of votes taken by a party that is drawn at random in a given con-
stituency. It ranges from a minimum of 0, which corresponds to a situation
of no heterogeneity (i.e. all votes are taken by a single party), to a maximum
of log(K), indicating that there is equidistribution of votes between the par-
ties. Thus, by considering exp(EN(αi)) a quantity that can be interpreted as
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the effective number of competing political parties (or candidates) in a given
constituency is obtained.

3.3.1 Brexit results

The results of the 16 divisions mentioned in Section 3.3 are imported in R
through the package “hansard”. To identify groups of MPs with similar
opinion about Brexit, values of G ranging from 1 to 15 are considered for
the semiparametric MoE model described in Section 3.1. For each value
of G, 4000 MCMC draws are considered after a burn-in of 1000 draws. The
optimal number of components suggested by the AICM is 11, although Figure
3.9 shows that the AICM curve is quite flat between 9 and 14. Clusters’
composition in terms of political party membership is shown in Table 3.8.
The results relative to the most meaningful clusters detected in the analysis
are described in the main text; additional results can be found in Appendix
A. For interpretation reasons, it is worth mentioning that the log-odds ηg(x),
g = 1, . . . , 10, are expressed using Cluster 11 as the reference. This cluster is
the most numerous, with 217 MPs, and is characterized by an extreme pro-
Leave (even pro-no-deal) position, as shown in Figure 3.10. Looking at the
composition, 211 out of these 217 MPs are conservatives, including Mr John
Baron, proposer of the no-deal, Mr Marcus Fysh, proposer of the managed
no-deal, and Mr Boris Johnson, who subsequentely became prime minister,
on July 24th, 2019.

Cluster 8 is the most heterogeneous in terms of political party member-
ship. In fact, 47 MPs out of 54 belonging to the Scottish National Party
(including Ms Joanna Cherry, who proposed the revocation of Article 50 to
avoid no deal), Plaid Cymru and the Liberal Democrats are in this group,
together with 7 more MPs belonging to 3 other different parties. Since there
is no area where the amount of votes for both the two leading parties (Con-
servatives and Labourists) is negligible, the constituencies represented in this
group are usually characterized by the presence of at least 3 political par-
ties, i.e. the one that actually won plus the two leading parties. In other
words, the probability for an MP to belong to this cluster is higher if the
effective number of competing candidates is greater than 3. This threshold
(nonlinear) effect is represented in the third plot of Figure 3.11, while it looks
slightly smoother for Cluster 4 (Figure A.1 in the Appendix), mostly made
up by the whole Democratic Unionist Party. A mild nonlinearity appears
also in the second plot of Figure 3.11, representing the effect of the opinion
about Brexit in the constituency. In particular, the probabiliy for an MP
to be assigned to Cluster 8 decreases as the fraction of Leave votes in his
constituency increases. In fact, most of the constituencies represented in this
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Figure 3.9: AICM values corresponding to different number of components
G for the semiparametric gating network mixture of experts model
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Table 3.8: Posterior allocation and political party membership of the n = 638
MPs. Adjusted Rand Index: 0.458. (C = Conservatives, DUP = Democratic
Unionist Party, GP = Green Party, Ind = Independents, Lab = Labourists,
LD = Liberal Democrats, PC = Plaid Cymru, SNP = Scottish National
Party).

Cluster
Party 1 2 3 4 5 6 7 8 9 10 11
C 0 21 16 5 21 0 33 3 3 0 211
DUP 0 0 0 10 0 0 0 0 0 0 0
GP 0 0 0 0 0 0 0 0 1 0 0
Ind 0 0 0 0 0 1 0 2 12 0 1
Lab 19 1 4 0 0 108 1 2 6 101 5
LD 0 1 0 0 0 1 0 9 1 0 0
PC 0 0 0 0 0 0 0 4 0 0 0
SNP 0 0 0 0 0 0 1 34 0 0 0
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Figure 3.10: Vote estimates (posterior means) for Cluster 11.
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Figure 3.11: Estimated smooth effects for Cluster 8.

group are known to be pro-Remain, and so are the aforementioned parties,
as confirmed by the posterior means of votes shown in Figure 3.12.

Cluster 9 is the last remaining group which is not mostly composed by
MPs belonging to the leading parties. In particular it includes a large portion
of the Independents group, made up by MPs who quitted the party they were
elected with. Despite this, they seem to reflect the pro-Remain position of
the constituencies where they were elected from (Figures A.3 and A.4 in the
Appendix).

Also Cluster 6 and 10 are characterized by a pro-Remain position to-
wards Brexit (see Figure 3.14 and Figure 3.16). Both are mostly made up
by Labourists and represent constituencies where the competition is usually
concentrated around the two leading parties. Hence, in this case the effec-
tive number of competing candidates has the opposite nonlinear effect on
the probability of belonging to these groups (see the third plot in Figure 3.13
and Figure 3.15), if compared to the one observed for Cluster 9. The main
difference between these two clusters is due to the opinion towards Brexit of
the respectively represented constituencies. In particular, as it can be seen in
the second plot of Figure 3.13 and Figure 3.15, the fraction of leave votes has
a mild nonlinear effect on the probability of belonging to Cluster 10 (similar
to the one observed in Figure 3.11), while it has no effect for Cluster 6. This
seems to be reflected by a more extreme position of the MPs of Cluster 10,
especially towards the revocation to avoid no deal (Motions L, G). The afore-
mentioned Dame Margaret Beckett, first proposer of the confirmatory public
vote, as well as of the homonymous amendment, belongs to this group, while
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Figure 3.12: Vote estimates (posterior means) for Cluster 8.

the second co-proposers of the confirmatory public vote, Mr Peter Kyle and
Mr Phil Wilson are divided between Clusters 10 and 6, respectively. Cluster
6 is also characterized by the presence of Mr Jeremy Corbyn, proposer of the
Labour’s alternative plan for Brexit, and leader of the Labour Party until
the 2019 United Kingdom general election.

There is a third Labour group, Cluster 1, which represents the pro-Leave
minority of the party. More precisely, Figure 3.17 shows that the MPs be-
longing to this cluster distinguish themselves from party members assigned
to different clusters because they were elected in the few pro-Leave Labour
constituencies. This seems to affect their opinion in terms of divisions, which
sensibly departs from the party line. However, this cluster does not look ho-
mogeneous, but rather divided into two fractions. In particular Figure 3.18
shows 5 divisions where the “no” fraction is close to 50%.

Cluster 7 includes all of the MPs of the Cabinet (of the time), including
Mrs Theresa May. A high rate of abstensionism is present in this group,
apart from the Letwin-Beckett amendment and the third meaningful vote
(Figure A.6 in the Appendix). According to Figure A.5 in the Appendix,
covariates seem to have no effect here. Cluster 2 is (mostly) conservative
as well, but the opinion of its MPs looks more heterogenous with respect
to Clusters 11 and 7. In particular, a clear anti no-deal position emerges
in Figure A.8 in the Appendix. This might be due to the characteristics of
the MPs themselves and the constituencies they represent. In fact, although
Conservatives, most of these MPs come from constituencies that expressed
a pro-Remain position and this mild tendency is reflected in the second plot
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Figure 3.13: Estimated smooth effects for Cluster 6.
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Figure 3.14: Vote estimates (posterior means) for Cluster 6.
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Figure 3.15: Estimated smooth effects for Cluster 10.
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Figure 3.16: Vote estimates (posterior means) for Cluster 10.
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Figure 3.17: Estimated smooth effects for Cluster 1.
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Figure 3.18: Vote estimates (posterior means) for Cluster 1.
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of Figure A.7 in the Appendix. Both Mr Nicholas Boles and Mr Kenneth
Clarke, proposers of the 2 couples of divisions for a customs union with the
EU (“Common market 2.0” and, indeed, “Customs union”), belong to this
group.

The remaining conservative clusters, Cluster 3 and Cluster 5, mainly
distinguish themselves for their moderate positions expressed through the
divisions (Figures A.10 and A.12) rather than their concomitant information
(Figures A.9 and A.11). In particular, the latter is characterized by the
presence of Mr George Eustice, whose proposal to remain in the Single Market
outside of a customs union resulted in the division titled “(E) EFTA and
EEA”, which has been favorably voted only by this cluster and Cluster 2.
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Chapter 4

Continuous manifest variables

4.1 Model specification

Consider a sample comprised of continuous outcome observations {yi}, i =
1, . . . , n, from a population that is clustered into a G-component finite mix-
ture model. Let c be a vector of latent variables such that, for each unit i,
ci = g if i belongs to cluster g. Furthermore, suppose that c has a discrete
distribution with Pr(ci = g|xi) = πg(xi), for g = 1, 2, . . . , G, where xi is a
(J + 1)-dimensional vector of covariates, including J − J∗ metrical variables
xJ∗+1, . . . , xJ , with J∗ ∈ {0, 1, . . . , J}, and weights πg(xi) are defined as in
Equation (2.14), for i = 1, . . . , n. In the univariate case, conditioning on ci
and xi, it is assumed that yi follows a normal distribution with mean µci and
variance σ2

ci
. Hence, the conditional density of yi given xi can be written as

a mixture of normals:

f(yi|xi) =
G∑
g=1

πg(xi)fN
(
yi|µg, σ2

g

)
, (4.1)

with fN(·) being the density of a univariate normal distribution.

If y is Q-dimensional, then conditioning on xi, each yi follows a finite
mixture of multivariate normals:

f(yi|xi) =
G∑
g=1

πg(xi)fMVNQ

(
µg,Σg

)
. (4.2)

where fMVNQ(µg,Σg) is the density of a Q-variate normal distribution, with
vector of means µg and positive definite covariance matrix Σg, g = 1, . . . , G.
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4.2 Bayesian inference

Assume that manifest variable Y is Q-variate, with Q > 1. As in Bensmail
et al. (1997), a conjugate prior can be used:

f(µ1, . . . ,µG,Σ1, . . . ,ΣG) =
G∏
g=1

f(µg|Σg)f(Σg). (4.3)

An Inverse Wishart prior is assigned to the covariance matrix Σg, g =
1, . . . , G, and it is assumed that, conditional on Σg, the g-th mean vector µg
is Q-variate normally distributed with variance depending on Σg:

Σg ∼ IW (aΣ,BΣ), µg ∼MVNQ

(
µ0,

1

υ
Σg

)
, g = 1 . . . , G, (4.4)

where aΣ, BΣ, µ0, υ are known. In particular, Bensmail et al. (1997) sug-
gest using the following data-dependent hyperparameters: aΣ = 2.5,BΣ =
0.5Sy,µ0 = ȳ = (ȳ1, . . . , ȳQ), υ = 1, with ȳ and Sy denoting the sample mean
vector and the sample covariance matrix, respectively.

Following Frühwirth-Schnatter (2006, Section 6.3), the component den-
sities’ parameters (µg,Σg) can be sampled conditional on the component
indicator Dg, g = 1, . . . , G, in step 7 of the MCMC algorithm described in
Section 2.2.3, from the following full conditionals:

µg|Σg,Dg ∼MVNQ

(
1

υ +
∑G

i=1Dgi

(υµ0 + y′Dg) ,
1

υ +
∑n

i=1Dgi

Σg

)
,

Σg|µg,Dg ∼IW (aΣ + 0.5

(
n∑
i=1

Dgi + 1

)
,

BΣ + 0.5υ(µg − µ0)(µg − µ0)′ +
(
y′Dg − µg

) (
y′Dg − µg

)′
).

(4.5)

Finally, the posterior in the last step can be made explicit as:

Pr(Dgi = 1|yi,xi,βg,γg,µg,Σg) ∝
λgi∑G
g=1 λgi

fMVNQ

(
µg,Σg

)
, g = 1, . . . , G.

(4.6)
The resulting MCMC algorithm can be easily adapted to the univariate case
(Q = 1), in Equation (4.1), by replacing the prior distributions – and, conse-
quently, the full conditionals – with their univariate analogues: the (univari-
ate) normal distribution, for the mean parameter µg, and the Inverse Gamma
distribution, for the variance parameter σ2

g , g = 1, . . . , G; see Frühwirth-
Schnatter (2006, Section 6.1) or Marin et al. (2005).
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4.3 Soccer player positions data

Pettersen et al. (2014) present a dataset of body-sensor traces and corre-
sponding videos from three professional soccer games captured in late 2013
at the Alfheim Stadium in Tromsø, Norway. Tromsø - Stromsogodset is se-
lected for this study, since it is the only one which is valid for the national
competition. This game was played on November 3rd, 2013, and it ended
with no scores. Player data, including field position, are sampled at 20 Hz
using the ZXY Sport Tracking system.

The aim of this analysis is to apply the proposed method study how a
player’s position is affected by a teammate’s one and possibily identify a
finite number of different phases of the game. Obviously, this relationship
depends on many factors, such as the two player’s role and which area of the
field they are supposed to cover: for example, the position of a striker should
to be more influenced by another striker’s position, rather then a defender’s
one. For this reason, this study focuses on couples of players playing close to
each other. Due to privacy reasons, each player is identified only by a ran-
dom numeric tag instead of his name or the number he wears, and attempts
of re-identificantions are not allowed. Thus, after plotting each player’s lo-
cation on the field during the whole game, the study starts by concentrating
on the player covering the right full-back position, identified with tag 9,
and assuming that his longitude and latitude (y1 and y2, respectively) can
reasonably be approximated by a bivariate normal distribution. Then, the
two-dimensional location of the centre-back playing closer to him, Player 13,
are taken as concomitant covariates (x1, x2) in the following gating network
mixture of experts model:

f(yi|xi) =
G∑
g=1

πg(xi)fMVN2(µg,Σg),

where G is unknown and the effect of the covariates on the weights πg(x), g =
1, . . . , G is specified according to Equation 2.14. The results are presented in
Section 4.3.1. The analysis is then repeated by focusing on the opposite side
of the field, studying the position of the left full-back, Player 8, depending
on the left centre-back, identified with tag 2, to understand if any simmetry
is present between two sides of the backfield. The results for this second part
of the study are given in Section 4.3.2.

To carry out the analysis, some assumptions are made. In particular,
the observations are assumed to be independent across time: to make this
assumption more realistic, the data are thinned out to 501 observations over
more than 90 minutes of play, leading to a distance of approximately 10
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Figure 4.1: Locations of Player 13 (left plot) and Player 9 (right plot). Dif-
ferent colors and dot symbols correspond to different clusters.

seconds between each pair of consecutive observations. Since between the
first and the second half of the game the direction of play changes, preparing
this dataset requires a 180◦ rotation of the locations observed during the
second half. The two dimensions of the location of the centre-backs, x1 and
x2, representing the long and short side of the field, respectively, are assumed
to have an additive effect on the log-odds of the component weights. For both
analyses, the algorithm is run for fixed G ranging from 1 to 6. The results
produced by the respective best models, in terms of AICM, are selected.

4.3.1 Right-back results

Focusing the right side of the field, the best model according to AICM has
G = 3 components. Figure 4.1 shows the locations of the two players dur-
ing the game, allocated according to the 3-component mixture of experts
model. The clusters does not seem well separated. Indeed, without consid-
ering the position of Player 13, the best (according do AICM) finite mixture
of normals with constant component weights suggests the presence of a sin-
gle component. These clusters may be interpreted as phases of the game:
in particular, the blue dots identify the defensive phase, the green triangles
the offensive one, while the red square indicate an intermediate phase. For
each component, posterior estimates of the mean and variance parameters
(µ̂g, Σ̂g) are reported in Table 4.1. For illustrative purpose, the correspond-
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Table 4.1: Estimated parameters of the component densities (and standard
deviances).

µ̂1 µ̂2 σ̂2
1 σ̂2

2 σ̂12

Cluster 1 38.81 16.71 36.21 56.18 -3.12
(0.55) (0.59) (4.90) (3.86) (6.22)

Cluster 2 17.42 23.98 73.85 79.61 -32.92
(0.85) (0.77) (9.23) (9.59) (7.16)

Cluster 3 59.84 18.10 147.56 102.83 -40.14
(1.24) (0.95) (18.55) (13.4) (12.18)

ing MCMC draws for Cluster 3 (green) are shown in Figures B.1 and B.2 in
the Appendix B. The resulting estimated component densities fN(µ̂g, Σ̂g),
g = 1, 2, 3, are depicted in Figure 4.2. It can be noticed that the overlapping
ellipses representing these bivariate normal distributions tend to exceed the
limits of the field, warning that an asymmetric (or even truncated) alterna-
tive could be a more appropriate form to be assumed for these component
densities.

The intermediated phase, originally associated to the first component (in
red), is taken as the reference to define the log-odds of mixture weights as

ηg(xi) = log
πg(xi)

π1(xi)
, g = 2, 3.

The splines’ coefficients are transformed according to Section 2.2.5, and the
estimated effect of the location of Player 13 on the probability of both the
defensive and the offensive phase of Player 9 are reported in Figure 4.3. The
clusters differ mainly with respect to the long side (x1) of the field, while the
location on the short side seems to be less impactful. Lower values of the
longitude for Player 13 seem to lead to a higher probability that Player 9 is in
the defensive phase, implying him covering the backfield too. This probability
drops as x1 grows, increasing the odds of the offensive phase, characterized
by a higher longitude and variability. A huge amount of variability of the
estimated effects can be noticed in the plots, especially when the functions
reach large absolute values that correspond to 0 or 1 on the scale of the
probability. This might be also due to the fact that the locations of the
players are not uniformly distributed along the field. It is worth mentioning
that this uneven distribution of the observations seems coherent with the
specific roles of the two players considered in this analysis.

63



● ●●

●

●

●

Direction of play

Figure 4.2: Estimated component density. The ellipse corresponding to the
g-th cluster is centered in µ̂g, g = 1, . . . , 3, while the size corresponds to a
0.9 confidence level.

4.3.2 Left-back results

On the opposite side, the best model, according to AICM, has G = 5 com-
ponents. Figure 4.4 shows the locations of the two players during the game,
allocated as the 5-component mixture of experts model indicates. Some
overlap is present also between these clusters and, in fact, a finite mixture of
normals with constant component weights keeps not being able to identify
more than one cluster, according do AICM. As for the previous case study,
an interpretation of these clusters as moments of the game can be provided:
moving along the long side of the field, from the blue cluster to the violet one,
different degrees of offensiveness (or defensiveness) are represented, while the
green cluster may identify a phase when the game (or the ball) moves on the
left side. For each component, posterior estimates of the mean and variance
parameters (µ̂g, Σ̂g) are reported in Table 4.2. For illustrative purpose, the
corresponding MCMC draws for Cluster 2 (green) are shown in Figures B.3
and B.4 in the Appendix B. The resulting estimated component densities
fN(µ̂g, Σ̂g), g = 1, . . . , 5, are represented in Figure 4.5. Again, the ellipses
tend to exceed the limits of the field, comfirming the previous remark about
the appropriateness of the chosen form for the component densities.

Again, Cluster 1 (the red one) is taken as the reference, and the estimated
effect of the location of Player 2 on the weights corresponding to the four
remaining game phases of Player 8 are reported in Figures 4.6 to 4.9. With
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Figure 4.3: Estimated effect (and 95% pointwise credible interval) of the
location of Player 13, (x1, x2) on the log-odds of the mixture weights, for
Cluster 2 (upper, in blue) and Cluster 3 (lower, in green).
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Figure 4.4: Locations of Player 2 (left plot) and Player 8 (right plot). Dif-
ferent colors and dot symbols correspond to different clusters.

Table 4.2: Estimated parameters of the component densities (and standard
deviances).

µ̂1 µ̂2 σ̂2
1 σ̂2

2 σ̂12

Cluster 1 42.85 46.43 42.39 39.82 9.85
(0.73) (0.57) (5.59) (5.17) (4.18)

Cluster 2 54.55 60.39 290.39 19.31 21.09
(2.03) (0.53) (46.60) (3.19) (8.91)

Cluster 3 13.22 44.05 40.30 71.40 12.94
(0.68) (0.87) (5.83) (10.02) (5.74)

Cluster 4 27.76 45.46 33.78 52.81 14.69
(1.05) (0.97) (6.81) (9.53) (6.52)

Cluster 5 61.14 43.52 78.34 35.61 7.60
(1.18) (0.74) (14.44) (6.56) (6.90)
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Figure 4.5: Estimated component density. The ellipse corresponding to the
g-th cluster is centered in µ̂g, g = 1, . . . , G, while the size corresponds to a
0.9 confidence level.

respect to the results of the previous study, now both dimensions of the
field present a notable effect, especially for the green cluster (Figure 4.6).
In particular, when Player 2 moves to the left side of the field, the odds
of belonging to this cluster increase. The interpretation of the remaining
estimated effects is in line with the one given in the previous Section. An
increase in the width of the posterior pointwise credible intervals can still be
noticed in the estimates. Also in this second analysis, this increase seems to
be related with the uneven distribution of the observation on the field.

Finally, it is possible to conclude that the two full-backs, although playing
specular positions, seem to react differently to the moves made by their
respective nearby centre-back. In particular, this second analysis seems to
highlight an offensive phase which take place on the left wing for Player 8,
which has no analogue on the right for Player 9. This may be the result
of some specific tactical choices made by the coach. However, it is worth
mentioning that one of the limits of this analysis is that it does not allow
to distinguish between active and passive phases of the game. This could
be possible if the location of the ball was included too among covariates.
Unfortunately, no information is available regarding the location of the ball
for the examined game.
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Figure 4.6: Estimated effect (and 95% pointwise credible interval) of the
location of Player 2, (x1,x2) on the log-odds of the mixture weights, for
Cluster 2.
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Figure 4.7: Estimated effect (and 95% pointwise credible interval) of the
location of Player 2, (x1,x2) on the log-odds of the mixture weights, for
Cluster 3.
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Figure 4.8: Estimated effect (and 95% pointwise credible interval) of the
location of Player 2, (x1,x2) on the log-odds of the mixture weights, for
Cluster 4.
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Figure 4.9: Estimated effect (and 95% pointwise credible interval) of the
location of Player 2, (x1,x2) on the log-odds of the mixture weights, for
Cluster 5.
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Chapter 5

Full mixture of experts models

5.1 Model specification

Suppose that {(xi, yi)}, i = 1, . . . , n is a random sample from a population
clustered into G components. Throughout this Chapter, it is assumed that
y is univariate, while x is (J + 1)-dimensional, of which the last J − J∗

covariates are metrical, with J∗ ∈ {0, 1, . . . , J}. Let the latent class variable
c, introduced in Section1.1.3, have a discrete distribution Pr(ci = g|xi) =
πg(xi), with πg(xi) defined as in Equation (2.14), g = 1, . . . , G − 1, and
i = 1, . . . , n. Conditioning on c and x, yi follows a normal distribution
with mean µci(xi) and variance σ2

ci
. It is further assumed that each µg(·),

g = 1, . . . , G, is an unknown smooth function of the covariates x. Hence,
conditioning on xi, yi follows a finite mixture of normals:

f(yi|xi) =
G∑
g=1

πg(xi)fN
(
µg(xi), σ

2
g

)
. (5.1)

The corresponding graphical representation is reported in Figure 5.1.

π(x)

θ = {µ(x),σ2}

c

y

x

Figure 5.1: Graphical model representation of the full mixture of experts
model in Equation (5.1); grey-colored circle represent observed quantities.
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The additive paradigm is again exploited to define µg(xi) as a sum involv-

ing J − J∗ smooth functions of the metrical covariates s
(µ)
gJ∗+1(·), . . . , s(µ)

gJ (·),
together with the usual linear part of the predictor with coefficients γg =
(γg0, γg1, . . . , γgJ∗):

µg(xi) =
J∗∑
j=0

γ
(µ)
gj xij +

J∑
j=J∗+1

s
(µ)
gj (xij), g = 1, . . . , G. (5.2)

Here, the superscript (µ) is used to distinguish the parameters and functions
involved from the ones relative to the weights in Equation (2.14). To ensure
the indentifiability of the additive predictors in Equation (5.2), each function

s
(µ)
gj (xj) is constrained to have zero mean, that is

1

range(xj)

∫
s

(µ)
gj (xj)dxj = 0, j = J∗ + 1, . . . , J ; g = 1, . . . , G. (5.3)

Model (5.1), with µg(xi) defined as in Equation (5.2), can be referred to as
a semiparametric mixture of experts regression model. Similar models are
reviewed in Xiang et al. (2019).

5.2 A note on identifiability

Huang and Yao (2012) study a semiparametric mixture of regression models
with component weights as smooth functions of a covariate, and implement
a modified expectation-maximization type estimation procedure using kernel
regression. Huang et al. (2013) extend Huang and Yao (2012) by including
smooth covariate effects in both parameters of the normal distribution. These
models belong to the wider family of nonparametric mixtures of generalized
linear models:

f(yi|xi) =
G∑
g=1

πg(xi)f (θg1(xi), θg2(xi)) , (5.4)

where θg1(x) is the component canonical (or natural) parameter, a function
of the conditional expected value of Y given x, while θg2(x) is the compo-
nent dispersion parameter, g = 1, . . . , G. Wang et al. (2014) provide the
conditions that guarantee identifiability for the model in Equation (5.4):

• the domain X of x is an open set of RJ+1;

• each weight πg(x) > 0 is a continuous function, and parameters θg1(x)
and θg2(x) have continuous first derivative, for g = 1, . . . , G;
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• for any x, and 1 ≤ l 6= g ≤ G,

1∑
k=0

||θ(k)
l1 (x)− θ(k)

g1 (x)||2 +
1∑

k=0

||θ(k)
l2 (x)− θ(k)

g2 (x)||2, (5.5)

where θ
(k)
g1 and θ

(k)
g2 , g = 1, . . . , G denote the k-th derivatives of the

component parameter functions;

• the parametric mixture model
∑G

g=1 πgf(θg1, θg2) is identifiable.

This theorem can be considered valid also for to model (5.1) by taking into
account that variance σ2

g is assumed independent – and, thus, constant –
with respect to covariates xj, j = 1, . . . , J .

5.3 Bayesian inference

P-splines are used to approximate the smooth effects in Equation (5.2):

s
(µ)
gj (xij) =

m∑
ρ=1

Bjρ(xij)β
(µ)
gj . (5.6)

As in Section 2.2.2, a first order random walk prior is assigned to the coffi-
cients β

(µ)
gj :

β
(µ)
gjρ = β

(µ)
gj,ρ−1 + u

(µ)
gjρ, u

(µ)
gjρ ∼ N(0, τ 2

gj
(µ)

) ρ = 1, . . . ,m (5.7)

or, equivalently,

β
(µ)
gj |τ 2

gj
(µ) ∝ exp

(
− 1

2τ 2
gj

(µ)
β

(µ)′

gj Kjβ
(µ)
gj

)
, j = J∗, . . . , J ; g = 1, . . . , G,

(5.8)
with penalty matrix Kj defined as in Equation (2.8). Coherently with Section
2.2.2, for g = 1, . . . , G, it is assumed that:

• τ 2
gj

(µ) ∼ IG(aj, bj), j = J∗ + 1, . . . , J ;

• γ(µ)
g ∼MVN (0, vIJ∗+1);

• σ2
g

(µ) ∼ IG(aσ, bσ).
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5.4 The MCMC algorithm

Throughout this Section, the superscript (g) is applied to any matrix or vector
to indicate the rows of that matrix (or the elements of that vector) corre-
sponding to the units allocated to the g-th group. Step 7 of the MCMC
algorithm in Section 2.2.3 can be modified by sampling the component pa-
rameters (µg(xi), σ

2
g), g = 1, . . . , G conditional on the component indicator

Di, . . . ,Dn as follows:

• sample the regression coefficients βj, j = J∗ + 1, . . . , J , from a multi-

variate normal density with covariance matrix V
(µ)
gj and mean m

(µ)
gj

V
(µ)
gj =

(
1

σ2
g

B
(g)
j

′
B

(g)
j +

1

τ 2
gj

(µ)
Kj

)−1

, m
(µ)
gj = V

(µ)
gj B

(g)
j

′ (
y(g) − η̃(µ)

g,−j

)
,

(5.9)

where η̃
(µ)
g,−j is the part of the predictor associated with all effects in

the model, but the j-th;

• center each smooth function s
(µ)
gj (xj). Imposing the constraint in Equa-

tion (5.3) is equivalent to sampling β
(µ)
gj |(1

′(g)
n B

(g)
j β

(µ)
gj = 0), j = J∗ +

1, . . . , J . As in (2.20), this can be done by trasforming each vector of

coefficients β
(µ)
gj as follows:

β̃
(µ)

gj = β
(µ)
gj −V

(µ)
gj B

(g)
j

′
1(g)
n

′
(
1(g)
n

′
B

(g)
j V

(µ)
gj B

(g)
j

′
1n

)−1

1(g)
n

′
B

(g)
j β

(µ)
gj ;

(5.10)

• sample the fixed effects parameters γ
(µ)
g from a multivariate normal

distribution with covariance matrix V
(µ)
γg and the mean m

(µ)
γg obtained

as

V(µ)
γg

=

(
1

σ2
g

X(g)′X(g) +
1

v
IJ∗+1

)−1

, m(µ)
γg

= V(µ)
γg

X(g)′
(
y(g) − η̃(µ)

g,−γ

)
.

(5.11)

Here, η̃
(µ)
g,−γ represents the nonlinear part of the g-th predictor;

• sample the parameter τ 2
gj

(µ)
conditional on β

(µ)
gj :

τ 2
gj

(µ)|β(µ)
gj ∼ IG

(
aj +

rank(Kj)

2
, bj +

1

2
β

(µ)′

gj Kjβ
(µ)
gj

)
(5.12)
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• compute µg(x) as

µg(x) = Xγ(µ)
g +

J∑
j=J∗+1

Bjβ
(µ)
gj ; (5.13)

• sample the variance parameter σ2
g conditional on µ

(g)
g (x):

σ2
g |µ(g)

g (x),∼ IG
(
a(µ)
σ +

∑n
i=1Dgi

2
,

b(µ)
σ +

1

2

(
y(g) − µ(g)

g (x)
)′ (

y(g) − µ(g)
g (x)

) )
.

(5.14)

5.5 Simulation study

The performance of the proposed approach is investigated in a simulated
environment. In particular, two scenarios are considered, differing for the
true number of components and the distribution of the manifest variables.
In both scenarios, the manifest variable y and the concomitant covariate x
are assumed to be univariate, for simplicity.

The quality of the estimates for the covariate effects on the conditional
means are evaluated through a comparison between the true effects and the
estimated posterior effects, after fitting each of the following mixture of re-
gression models:

• semiparametric mixture of experts regression model (SMoERm), with
flexible specification of both the mixture weights πg(x) and the condi-
tional means µg(x), g = 1, . . . , G;

• mixture of semiparametric regression model (MoSRm), with constant
mixture weights πg and flexible specification of the conditional means
µg(x), g = 1, . . . , G;

• parametric mixture of experts regression model (PMoERm), with lin-
earity assumption for the effect of x on both the log-odds of the mixture
weights log(πg(x)/πG(x)) = ηg(x) and the conditional means µg(x),
g = 1, . . . , G;

• mixture of parametric regression model (MoPRm), with constant mix-
ture weights πg and linearity assumption for the effect of x on the
conditional means µg(x), g = 1, . . . , G;
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with G set equal to the true number of components. In particular, the
pointwise means of the estimated µg(x

∗), denoted µ̂g(x
∗), are plotted, to-

gether with the pointwise 2.5 and 97.5 percentiles among all samples, where
{x∗i }, i = 1, . . . , n, are grid points taken evenly in the range of covariate x.
To quantitatively assess the performance of the estimators of the unknown
regression functions µg(x), their square root of the average squared errors
(RASE) is compared:

RASEµg =

√√√√ 1

n

n∑
i=1

(µ̂g(x∗i )− µg(x∗i ))
2, g = 1, . . . , G. (5.15)

The same graphical and quantitative evaluations are carried out for the co-
variate effects on the mixture weights, this time by restricting the analysis to
the semiparametric and the parametric mixture of experts regression model.

Regarding the clustering performance, a comparison between the true
allocations and the estimated ones is made in terms of Adjusted Rand Index
(ARI) (Hubert and Arabie, 1985) and soft ARI (Flynt et al., 2019). For
each method and each value of G, 4000 MCMC draws are simulated after a
burn-in of as many draws. The optimal choice for the number of components
is based on AICM, and the number of non-empty components G̃ is computed
according to Equation (2.27). For each of the competing models, a proper
MCMC algorithm has been implemented in R (R Core Team, 2020). The R
codes for the four algorithms are available on GitHub at the following link:
github.com/MarcoBerrettini/sMoE.

5.5.1 First simulation experiment: G = 2

A batch 100 independent datasets are generated with n = 1000 from a 2-
component mixture of regression models with weights

π1(x) = 0.1 + 0.85 sin(πx), π2(x) = 1− π1(x),

where x is the only covariate, sampled from a standard uniform distribution:
xi ∼ Unif(0, 1), i = 1, . . . , 1000. The functional form of η1(x), coupled
with the specific range of values for xi, leads to a non-monotonic concave
log-odd. Conditional on x and the component indicators, each component
density is a normal distribution, with means µ1(x), µ2(x) and variances σ2

1, σ
2
2,

respectively. Two alternatives are considered for σ2, leading to as many
different levels of overlap between the groups:

µ1(x) = 15(x− 0.5)2 + 1, σ1 = 0.3;

µ2(x) = 5(x− 0.5)2, σ2 = 0.2, 0.25.
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Figure 5.2: Example of a simulated dataset, with G = 2 and σ2 = 0.2.

The simulation experiment starts with σ2 = 0.2. Figure 5.2 shows one of the
100 independent samples with low overlap between the groups, which look
quite separated. Figure 5.3 highlights the limits of the parametric approach
when a non monotonic function, symmetric about x has to be approximated.
In particular, for fixed number of components G = 2, the parametric mixture
of experts regression models tends to fit a constant function with an average
RASEη equal to 6.921 (standard deviation = 11.439) over the 100 simulations.
Conversely, the corresponding semiparametric approach seems to catch the
underlying trend, even though some oversmoothing is present around the
peak. For this model, the RASEη drops to 0.173, with standard deviation of
0.488.

Regarding the estimated conditional means, the SMoER model shows
good performances in Figure 5.4, apart from some oversmoothing in the
lower component µ2(x), for central values of x. In this area, the probability of
observing units from component 2 reaches its minimum, as previously shown
in Figure 5.3. Thus, here, most of the observations comes from component 1,
with only few observations from component 2. This disproportion, coupled
with a certain degree of overlap of the two components, seems to have led
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Figure 5.3: Pointwise average and 2.5 – 97.5 percentiles of the log-odds of
the mixture weight η1 estimated by both the mixture of experts regression
models over 100 simulated datasets.

the MCMC algorithm to assign erroneously some units from component 1 to
component 2, with a consequent slight upward bias in µ̂2(x). This explains
also the oversmoothing observed when estimating the effect of the covariate
x on the log-odds η1(x) of the mixture weights. This issue becomes way more
evident if constant weights are assumed without considering the effects of the
concomitant covariate x, as for the MoSR model; see Figure 5.5. Again, the
main problem regards mostly the lower component, whose true mean is now
barely included in the bands, even though they widen considerably in the
overlap region.

No assumption of constant weights is made when fitting the PMoER
model, but, as previously shown in Figure 5.3, this model estimates a con-
stant effect of the covariate, making it practically equivalent to a MoPR
model. This is evident in Figure 5.6, where the conditional means estimated
by the two models are compared. Since these two functions are generated to
be quadratic and symmetric about x, both parametric models fit horizontal
lines, effectively collapsing to a simple mixture of normals not involving the
effect of the covariate for the marginal distribution of the dependent variable.
Moreover, because of the non-capability to detect the underlying unit-specific
mixture weights and, consequently, the true class membership through these
approaches, the fitted constant means are not even centered around the true
average group means. Table 5.1 summarizes this comparison among the con-
ditional mean functions estimated by the four models from a quantitative
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Figure 5.4: Pointwise average and 2.5 – 97.5 percentiles of the conditional
means estimated by the semiparametric mixture of experts regressions model
over 100 simulated datasets.
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Figure 5.5: Pointwise average and 2.5 – 97.5 percentiles of the conditional
means estimated by the mixture of semiparametric regressions model over
100 simulated datasets.
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Figure 5.6: Pointwise average and 2.5 – 97.5 percentiles of the condi-
tional means estimated with both parametric approaches over 100 simulated
datasets.

Table 5.1: Mean (and standard deviation) of the RASE scores computed on
the estimated conditional means over 100 simulated datasets.

RASEµg µ1(x) µ2(x)
SMoERm 0.100 (0.058) 0.080 (0.080)
MoSRm 0.131 (0.063) 0.391 (0.188)
PMoERm 1.187 (0.095) 0.700 (0.049)
MoPRm 1.167 (0.061) 0.700 (0.105)

point of view, by displaying, for each combination of method and component
g = 1, 2, the average RASEµg and the corresponding standard deviation over
100 simulated datasets. Quality of the estimates are strictly related to the
quality of the allocations, as Table 5.2 confirms. The SMoER model, in fact,
outperforms its competitors in terms of AICM, ARI and sARI for fixed num-
ber of components G = 2, followed by the MoSR model. The parametric
approaches prove to be not satisfactory in this simulation setting.

A comparison among the four competing models is performed also by examin-
ing the best models selected according to AICM when considering a number
of components ranging from 1 to 4. Table 5.3 reports the distribution of
the number of non-empty components G̃ selected. G̃ = 2 is always the best
choice, according to the SMoER model, while 7 times out of 100 the MoSR
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Table 5.2: Average AICM, ARI and sARI (number of times each model ranks
first) over 100 simulated datasets, for fixed G = 2.

AICM (best) ARI (best) sARI (best)
SMoERm 144.5 (94) 0.971 (96) 0.957 (98)
MoSRm 261.5 (6) 0.673 (4) 0.658 (2)
PMoERm 1487.9 (0) -0.004 (0) 0.008 (0)
MoPRm 1553.1 (0) 0.001 (0) 0.001 (0)

Table 5.3: Number of non-empty component selected for each method, ac-
cording to AICM.

G̃ = 1 G̃ = 2 G̃ = 3 G̃ = 4
SMoERm - 100 - -
MoSRm - 93 7 -
PMoERm 85 15 - -
MoPRm 93 5 2 -

model provides a better AICM with an additional component. Conversely,
the parametric approaches tend to perform better with a single component.

By comparing the best models (according to AICM) fitted with each
method for each simulation, rather than fixing the number of components, the
results do not change much. All the AICMs reported in Table 5.2 improve,
also for the SMoER, because sometimes adding an extra component, even if
it is emptied during the posterior allocation, slightly decreases the AICM.
For the same reason, both the average ARI and sARI appear to slightly
improve for the SMoER model, while it worsen for models that tend to pick
the wrong number of components; see Table 5.4.

For σ2 = 0.25 the overlap between the two components increases, involv-
ing a higher number of units; Figure 5.7 shows one of the 100 independent
samples with this setting. This does not seem to affect much the quality
of the estimated unit specific log-odds of the mixture weights via semipara-
metric approach, apart from a slighly increased oversmoothing; see Figure
5.8). In particular, the average RASEη increases to 0.209, with a standard
deviation of 0.665. The same conclusion can be drawn, from the first plot in
Figure 5.9, about the average conditional means estimated by the SMoER
model. In the second plot, the effects of the augmented overlap on the es-
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Table 5.4: Average AICM, ARI and sARI (number of times each model
ranks) over 100 simulated datasets, for optimal G, according to AICM.

AICM (best) ARI (best) sARI (best)
SMoERm 140.0 (94) 0.983 (97) 0.970 (95)
MoSRm 252.53 (6) 0.671 (3) 0.651 (5)
PMoERm 1337.9 (0) -0.003 (0) -0.002 (0)
MoPRm 1341.0 (0) 0.001 (0) -0.000 (0)
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Figure 5.7: Example of a simulated dataset, with G = 2 and σ2 = 0.25.
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Figure 5.8: Pointwise average and 2.5 – 97.5 percentiles of the log-odds of
the mixture weight η1 estimated by the semiparametric mixture of experts
regression model over 100 simulated datasets.
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Figure 5.9: Pointwise average and 2.5 – 97.5 percentiles of the conditional
means estimated with both semiparametric approaches over 100 simulated
datasets.

timates produced by the MoSR model are more evident: in particular, the
estimates of the lower component seem to be attracted by the upper compo-
nent, leading to an increased bias around central values of x, if compared to
the first setting, and the bands do not contain the true function in this area.
These results are reflected in the RASE scores reported in Table 5.5. The
reduced quality in the estimates affects the goodness of fit and the accuracy
of the allocations, for fixed G = 2. However, the SMoER model still produces
satisfying results and outperforms the competitors. Details are provided in
Table 5.6.

Finally, when considering the best models selected according to the AICM,

Table 5.5: Mean (and standard deviation) of the RASE scores computed on
the estimated conditional means over 100 simulated datasets with σ2 = 0.25.

RASEµg µ1(x) µ2(x)
SMoERm 0.102 (0.066) 0.099 (0.086)
MoSRm 0.162 (0.232) 0.450 (0.237)
PMoERm 1.222 (0.199) 0.716 (0.062)
MoPRm 1.179 (0.078) 0.719 (0.133)
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Table 5.6: Average AICM, ARI and sARI (number of times each model ranks
first) over 100 simulated datasets, for σ2 = 0.25 and fixed G = 2.

AICM (best) ARI (best) sARI (best)
SMoERm 232.0 (99) 0.960 (98) 0.940 (98)
MoSRm 453.9 (1) 0.627 (2) 0.580 (2)
PMoERm 1521.9 (0) -0.012 (0) -0.000 (0)
MoPRm 1607.8 (0) -0.007 (0) 0.006 (0)

Table 5.7: Number of non-empty groups selected for each method, according
to AICM, with σ2 = 0.25.

G̃ = 1 G̃ = 2 G̃ = 3 G̃ = 4
SMoERm - 100 - -
MoSRm - 74 26 -
PMoERm 90 10 - -
MoPRm 93 2 5 -

with G ranging from 1 to 4, all the competing models tend to be more prone
to errors in terms of the number of non-empty components, apart from the
SMoER model; see Table 5.7. This creates some further separation, with
respect to the competitors, about the quality of the allocation, as shown by
the average values of ARI and sARI reported in Table 5.8.

Table 5.8: Average AICM, ARI and sARI (counting how many times each
model prevails) over 100 simulations, for σ2 = 0.25 and optimal G, according
to AICM.

AICM (best) ARI (best) sARI (best)
SMoERm 228.4 (100) 0.975 (100) 0.955 (100)
MoSRm 430.7 (0) 0.587 (3) 0.533 (5)
PMoERm 1342.0 (0) -0.003 (0) -0.002 (0)
MoPRm 1344.17 (0) -0.002 (0) -0.001 (0)
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5.5.2 Second simulation expertiment: G = 3

A batch of 100 independent datasets is generated with n = 1000 from a 3-
component mixture of regression models, with log-odds of mixture weights
ηg = log πg(x)/π3(x), g = 1, 2, defined as:

η1(x) = 2 sin π(x+ 0.5),

η2(x) = 2 sin π(x+ 1.5),

where x is the only covariate, sampled from a uniform distribution: xi ∼
Unif(0, 1), i = 1, . . . , 1000. In this second experiment, the functional forms
of η1(x) and η2(x), coupled with the range of x, lead to log-odds that are
monotonically decreasing and increasing, respectively. Since these effects are
quite smooth, a second scenario is also considered:

η1(x) = 3
exp(7.5− 15x)

1 + exp(7.5− 15x)
− 1.5

η2(x) = 3
exp(15x− 7.5)

1 + exp(15x− 7.5)
− 1.5.

Conditional on x and the component indicators, y follows a univariate normal
distribution, with means µ1(x), µ2(x), µ3(x), and variances σ2

1, σ
2
2, σ

2
3, respec-

tively, defined as follows:

µ1(x) = 0.5 sin(6x+ 0.8) + exp(−16(3x+ 0.15)2)− 1.75, σ2
1 = 0.04;

µ2(x) = 1.75− 0.5 sin(6x+ 0.8) + exp(−16(3x+ 0.15)2)− 1.75), σ2
2 = 0.04;

µ3(x) = −0.5 sin(2πx), σ2
3 = 0.25.

Figure 5.16 shows one of the 100 independently generated samples for this
first scenario.

Figure 5.11 shows that the semiparametric mixture of experts regression is
able to catch almost perfectly the effects of the covariate x on both predictors
η1 and η2. Since nonlinearity is not much evident, the linear approximation
made by the parametric mixture of experts regression model fits quite well: in
particular, the true effects never exceed the bands. Because of the flexibility,
the bands associated to the effects estimated by the SMoER model are wider,
and this affects the performances in terms of RASE, as reported in Table 5.9.

Regarding the estimates of the conditional means, the SMoER model
seems to outperform the competitors with quite appropriate fitting, despite
some overlap present between Cluster 1 and Cluster 3 for lower values of x
and between Cluster 2 and Cluster 3 for higher values of x; see Figure 5.12.
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Figure 5.10: Example of a simulated dataset with smooth effect of the co-
variate x on the log-odds of the mixture weights.

Table 5.9: Mean (and standard deviation) of the RASE scores computed on
the estimated log-odds of the mixture weights over 100 simulated datasets.

RASEηg η1(x) η2(x)
Semiparametric MoERm 0.451 (0.258) 0.447 (0.262)
Parametric MoERm 0.439 (0.207) 0.401 (0.175)
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Figure 5.11: Comparison between the log-odds of the mixture weights esti-
mated by the semiparametric (left) and parametric (right) full MoE models
over 100 simulated datasets.
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Figure 5.12: Conditional means estimated by the semiparametric mixture of
experts regression model over 100 simulations.
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Figure 5.13: Conditional means estimated by the parametric mixture of ex-
perts regression model over 100 simulated datasets.

The PMoER model is unable to properly approximate the nonlinear trends,
especially in the low probability regions, where the observations are sparse
(i.e. in Cluster 1 for high values of x, or in Cluster 2 for low values of x).
Nevertheless, thanks to the good estimates of the mixture weights, Figure
5.13 shows that the PMoER model discriminates almost correctly among
groups in the aforementioned overlapping areas.

The mixture of semiparametric regression model needed Figure 5.14 to
be decomposed into 3 different plots because of its bad performance. In
particular, the flexibility allowed for the estimates of the conditional means,
combined together with the impossibility to include the effect of covariate
x into the estimates of the mixture weights, results into overlapping esti-
mated functions and wide bands. Here, the performance of the mixture of
parametric regression model is just slightly worse with respect to the ones
obtained by the parametric mixture of experts regression model. The main
differences can be observed in the overlapping regions of Figure 5.15, where
the estimated conditional means intersect each other.

All the conclusions drawn from a graphical point of view are confirmed by
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Figure 5.14: Conditional means estimated by the mixture of semiparametric
regression model over 100 simulated datasets.

0.0 0.2 0.4 0.6 0.8 1.0

−
3

−
2

−
1

0
1

2
3

x

y

true
average estimate
2.5 − 97.5 percentile

Figure 5.15: Conditional means estimated by the mixture of parametric re-
gression model over 100 simulated datasets.

91



Table 5.10: Mean (and standard deviation) of the RASE scores computed on
the estimated conditional means over 100 simulated datasets.

RASEµg µ1(x) µ2(x) µ3(x)
SMoERm 0.125 (0.080) 0.115 (0.072) 0.161 (0.057)
MoSRm 1.087 (0.981) 0.811 (0.846) 0.506 (0.227)
PMoERm 0.498 (0.038) 0.490 (0.036) 0.293 (0.086)
MoPRm 0.475 (0.051) 0.471 (0.043) 0.407 (0.049)

Table 5.11: Average AICM, ARI and sARI (number of times each method
ranks first) over 100 simulated datasets, for fixed G = 3.

AICM (best) ARI (best) sARI (best)
SMoERm 234.4 (100) 0.912 (83) 0.854 (82)
MoSRm 703.72 (0) 0.388 (0) 0.301 (0)
PMoERm 1160.7 (0) 0.895 (17) 0.840 (18)
MoPRm 1162.1 (0) 0.798 (0) 0.551 (0)

the quantitative results in terms of RASEµ reported in Table 5.10. Table 5.11
shows that, in terms of AICM, the SMoER model is evidently better than its
competitors, for fixed G = 3. However, this result does not correspond to an
equal gap in the quality of the allocations, expressed in terms of both ARI
and sARI. Indeed, both the mixture of experts regression models perform
well, even though the semiparametric one slightly prevails.

Regarding model selection, for each method and each sample, the best
model (according to AICM) is considered among different mixture models
with G = 1, . . . , 5. Table 5.12 shows that the SMoER model is the only one
which is able to pick the correct number of non-empty groups. This leads to
more favorable results for the SMoER model, if the ARI and sARI computed
with reference to the best models selected by each method are compared; see
Table 5.13.

Figure 5.16 shows one of the 100 simulated datasets generated with more
pronounced nonlinear effect of the covariate x on the predictors η1(x) and
η2(x). According to Figure 5.17, the SMoER model is still able to catch
almost perfectly these effects On the contrary, because of the increased non-
linearity, the linear approximation by the PMoER model is worse, so that
the true effects exceed the bands at the boundaries of the range of x. In
this case, the average RASE scores for the SMoER model (together with the
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Figure 5.16: Example of a simulated dataset with sharp effect of the covariate
x on the log-odds of the mixture weights.
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Figure 5.17: Comparison between the log-odds of the mixture weights esti-
mated by the semiparametric (left) and parametric (right) full MoE models
over 100 simulated datasets.
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Table 5.12: Number of non-empty components selected for each method,
according to AICM.

G̃ = 1 G̃ = 2 G̃ = 3 G̃ = 4 G̃ = 5
SMoERm - - 100 - -
MoSRm - - 26 74 -
PMoERm - 36 25 20 3
MoPRm 2 - 77 20 1

Table 5.13: Average AICM, ARI and sARI (number of times each method
ranks first) over 100 simulated datasets, for optimal G.

AICM (best) ARI (best) sARI (best)
SMoERm 228.16 (100) 0.911 (84) 0.854 (86)
MoSRm 586.5 (0) 0.301 (0) 0.262 (0)
PMoERm 1065.6 (0) 0.810 (16) 0.775 (14)
MoPRm 1140.1 (0) 0.778 (0) 0.534 (0)

associated standard deviations) reported in Table 5.14 are clearly lower, than
those of the competitors considered.

Regarding the estimates of the conditional means, all the remarks made
for the first scenario are confirmed by Figures 5.18, to 5.21, and Table 5.15.
As far as the allocations are concerned, the differences in terms of ARI and
sARI are now more evident, even though the parametric approaches continue
to perform decently; see Table 5.16. In terms of model selection, the results
obtained (not reported here) are in line with those of the first scenario. For
this simulation study, a comparison is made also in terms of execution time
of the algorithms estimating the four competing models. Figure 5.22 shows
through a box plot how the different computational complexity between the

Table 5.14: Mean (and standard deviation) of the RASE scores computed on
the estimated log-odds of the mixture weights over 100 simulated datasets.

RASEηg η1(x) η2(x)
Semiparametric MoERm 0.421 (0.153) 0.431 (0.169)
Parametric MoERm 0.679 (0.210) 0.663 (0.213)

95



Table 5.15: Mean (and standard deviation) of the RASE scores computed on
the estimated conditional means over 100 simulated datasets.

RASEµg µ1(x) µ2(x) µ3(x)
SMoERm 0.086 (0.035) 0.086 (0.038) 0.145 (0.034)
MoSRm 1.073 (1.078) 0.995 (1.041) 0.472 (0.188)
PMoERm 0.509 (0.042) 0.507 (0.048) 0.101 (0.472)
MoPRm 0.474 (0.123) 0.459 (0.069) 0.343 (0.164)

Table 5.16: Average AICM, ARI and sARI (number of time each method
ranks first) over 100 simulated datasets, for fixed G = 3.

AICM (best) ARI (best) sARI (best)
SMoERm 252.8 (100) 0.906 (99) 0.845 (96)
MoSRm 755.0 (0) 0.326 (0) 0.260 (0)
PMoERm 1641.7 (0) 0.854 (1) 0.797 (4)
MoPRm 1463.8 (0) 0.804 (0) 0.568 (0)

four algorithms affect the time employed by each of them, for each of the 100
samples, with the current setting. The reported times refer to analyses per-
formed using an IBM x3750 M4 server with 4 Intel Xeon E5-4620 processors
with 8 cores and 128GB RAM. It is worth noting that all the four algorithms
require less time to complete a higher number of prefixed iteration (8000
versus 5000) if compared to both the latent class models with covariates con-
sidered in the simulation study reported in Section 3.2.2. The introduction
of covariate effects on the component density has a lower impact, in terms of
time, with respect to the higher number of components (G = 6 versus G = 3)
and increased dimensionality of the manifest variable itself (Q = 12 versus
Q = 1). Furthermore, the impact of the increase in complexity due the use of
Bayesian P-spline is evident, since the semiparametric approaches are slower
than their parametric analogues. Nevertheless, the MoSR model is faster
than the PMoER model, indicating that the inclusion of covariate effects
on the component weights, although assuming linearity, has a higher cost
than allowing for flexible specification of the conditional means as nonlinear
functions of the only covariate considered in this setting. Similar conclusions
can be drawn by comparing the execution times for the other experimental
settings considered in this Chapter.
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Figure 5.18: Conditional means estimated by the semiparametric mixture of
experts regression model over 100 simulated datasets.
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Figure 5.19: Conditional means estimated by the parametric mixture of ex-
perts regression model over 100 simulated datasets.
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Figure 5.20: Conditional means estimated by the mixture of semiparametric
regression model over 100 simulated datasets.
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Figure 5.21: Conditional means estimated by the mixture of parametric re-
gression model over 100 simulated datasets.
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Figure 5.22: Time employed by each algorithm to complete 8000 iterations
(initialization and posterior inference included), for each of the 100 replica-
tions, with fixed G=3.

5.6 Baseball salaries data

Watnik (1998) provides a dataset consisting of information about players for
the 1992 Major League Baseball season. In particular their 1992 salaries are
considered as the response, along with numerous measures of the 337 players’
previous year’s performances. Notice that this dataset is already well known
in the mixture of experts literature; see, e.g., Khalili and Chen (2007) and
Chamroukhi and Huynh (2018). For simplicity, the proposed analysis starts
by focusing on one of the metrical covariates, the number of runs, taken as a
measure of a player’s contribution to the team. More specifically, the effect
of this variable on player salaries is studied, by fitting the four different
mixture of regression models considered in Section 5.5 for a fixed number
of components ranging from 1 to 4. As suggested by Watnik (1998), due
to asimmetry, the response is previously tranformed by taking the natural
logarithm. The results are presented in Section 5.6.1.

For illustrative purpose, a second explanatory variable is then added to
the analysis: the number of walks. This covariate is highly correlated (cor-
relation 0.685) with the number of runs. However, it is worth noting that
most of the metrical variables in the original dataset are strongly correlated
with each other, or even function of some others. The results of this second
analysis are presented in 5.6.2.
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Figure 5.23: Estimated posterior conditional means (and pointwise 95% pos-
terior credible bands) obtained from the SMoER Model (left panel) and the
MoSR model (right panel).

5.6.1 Number of runs

After choosing the optimal value for G according to the AICM, the opti-
mal number of non-empty components G̃ resulted to be equal to 2 for the
two semiparametric models (semiparametric mixture of experts model and
mixture of semiparametric regression model), and equal to 1 for the two
parametric models (parametric mixture of experts regression model and mix-
ture of parametric regression model). Among this four models, the SMoER
model presents the absolute best AICM (663.4), followed by the MoSR model
(733.7), while the remaining best parametric models, having G = 1, collapse
to the same model, with the highest AICM (888.1).

As Figure 5.23 shows, the main difference between the semiparametric
models seems to be related to the allocation of the players with a low number
of runs. In particular the SMoER model keeps the two clusters well separated,
by assigning all of these units to the lower one, while the MoSR model creates
some overlap, such that the functions describing the conditional means, µ̂1(x)
and µ̂2(x), almost interesect each other. Figure 5.23 confirms, in both cases,
the presence of a nonlinear effect of the number of runs on the log-salary for
the upper cluster, while the bands does not exclude a linear effect for the
lower cluster.

The partition induced by the SMoER model identifies a cluster, the lower
one (in green), which might be broadly interpreted as the cluster of “un-
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Table 5.17: Comparison between the resulting allocations of the SMoER
model and the free agency or arbitration elegibility.

free agency or arbitration
cluster not eligible eligible

lower (green) 109 6 115
upper (blue) 29 193 222

138 199 337

derrated” (or “underpaid”, with respect to the others) baseball players. In
fact, while it is obvious players with better performances get paid more, as
is comfirmed by the increasing trends of both means, there seems to be a
group of players whose salary is substantially lower than that of players with
similar performances (in terms of number of runs), belonging to the upper
group (in blue). Indeed, the two estimated mean functions µ̂1(x) and µ̂2(x)
in Figure 5.23 appear almost parallel. A partial explanation of this result
can be given thanks some additional information present in the dataset. In
particular, there is a variable indicating the “free agency elegibility” of each
player, i.e. if that player could have gone to a team of his choice in 1992.
At the time – Watnik (1998) explain – only players with a certain amount
of experience were eligible for free agency (134 out of 337) and, thus, able
to market themselves to the highest bidder. On the contrary, if a player not
“free agent eligible” wanted to play, he had to accept what his team was will-
ing to pay him, or go with his team to an appointed “arbitrator”, who would
choose between the player’s suggested salary and the team’s one. However,
“arbitration eligibility”, which is included in the dataset as a variable as well,
was for players (65 out of 337, in the dataset) who had some experience in the
league, although not enough to be free agents. For interpretation purpose,
the two above described categories, “free agent eligible” and “arbitration el-
igible” players are merged, Table 5.17 compares the partition made by the
SMoER model with the one obtained by distinguishing between (free agency
or artbitration) eligible and non-eligible players. The resulting ARI (0.626) is
the highest observed among the four models. Indeed, it can be noticed that
almost all the eligible players (193 out of 199) belong to the upper (blue)
cluster, together with 29 players who apparentely have been able to obtain
an “adequate” salary without probing the market.

Fixing the number of components G = 2, the MoPR model allocates
the players similarly to the SMoER model. In particular, only 9 units out
of 337 (ARI = 0.894) are allocated differently. Focusing on the paramet-
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Figure 5.24: Estimated posterior conditional means (and pointwise 95% pos-
terior credible bands) obtained from the PMoER Model (left panel) and the
MoPR model (right panel).

ric approaches, the main difference between the two allocations seems to be
related to few among the lowest paid players having a number of runs rang-
ing between 30 and 90, which are assigned to the upper component by the
PMoER model. This probably induces variability in the estimates of the
latter, whose estimated mean functions present wider bands, if compared to
the ones estimated by PMoER model; see Figure 5.24.

Both mixture of experts regression models agree about the presence of a
decreasing trend in the effect of the number of runs on the log-odds of the
mixture weight η1(x), but the semiparametric method estimates a nonlinear
function that cannot be approximated properly by a straight line (Figure
5.23). The ability to pick this underlying effect is the main reason for the
differences observed between the performances of the two semiparametric
approaches.

5.6.2 Number of walks

Including the number of walks in the model does not seem to add much
information with respect to the one already provided by the number of runs
to this analysis. In terms of model selection, nothing changes with respect
to the number of component picked by each method. However, the addition
of a non significant covariate in the model causes more variability and affects
the performance of the models, increasing the AICM for the semiparametric
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Figure 5.25: Estimated posterior effects on the log-odds (and pointwise 95%
posterior credible bands) obtained from the SMoER model (left panel) and
the PMoER model (right panel).

2-component mixture of experts regression model (724.8), which continues to
prevail, even though the advantage with respect to the 2-components mixture
of semiparametric regression model is close to zero (AICM = 725.8). The
parametric approaches produce similar results (AICM = 889.1) with respect
to ones obtained by considering the number of runs as the only explanatory
varible.

Comparing the first plot in Figure 5.26 with the first one in Figure 5.23
leads to the conclusion that no clear changes happen, in terms of the par-
tition obtained by the SMoER model; indeed, only 5 units are allocated
differently (ARI = 0.941). Moreover, in Figure 5.26, it is easy to notice a
similar structure of the clusters, conditional on each covariate.

The number of runs seems to explain most of the variability of both the
conditional means µ1(x) and µ2(x) (Figure 5.27), and the log-odds of the
mixture weight of the green component η1(x) (Figure 5.28). In fact, the
bands of all the estimated effects of x2 always include the constant function
in zero, while the effects estimated for x1 are very close to the ones observed
in the previous analysis, without taking into account the number of walks.
This is consistent with the fact that, according to the AICM, the model
considering the number of runs as the only explanatory variable should be
preferred to the model including both covariates.
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Figure 5.26: Allocations provided by the 2-component semiparametric mix-
ture of experts regression model with respect to both covariates.
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Figure 5.27: Estimated posterior conditional means (and pointwise 95% pos-
terior credible bands) for the two components (one per row), obtained by the
SMoER Model.
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Figure 5.28: Estimated posterior effects on the log-odds (and pointwise 95%
posterior credible bands) obtained by the SMoER model.
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Chapter 6

Conclusions

In this Thesis, a general specification of a mixture model is proposed, al-
lowing the weights to be nonlinear functions of some covariates. This gen-
eral approach exploits an additive structure for the log-odds, and resort to
spline functions for approximating the smooth effect of the concomitant vari-
ables. Parameter estimation is based on a formal Bayesian approach through
MCMC machinery. Although a similar result, in principle, could be emulated
also through a fully parametric approach, e.g. by considering a monomial
set of bases to represent the map between component probabilities and co-
variates, resorting to a parametric representation, flexible enough to catch
nonlinearity, would require some arbitrary choices, such as the maximum de-
gree for monomial bases, or the definition of an automatic selection criterion.
The approach advanced in this Thesis bypasses this issue by controlling flex-
ibility through the variance parameters of the spline coefficients, following
Lang and Brezger (2004).

Using simulation experiments, the proposed method proves to be a useful
tool for recovering the underlying relation between component weights and
concomitant variables – especially when it is not linear – and, consequently,
for estimating models with a better goodness of fit and leading to a more
accurate allocation. The potential of the proposal is illustrated also through
applications to real data. The analysis of the determinants of cluster mem-
bership of the United Kingdom MPs shows that political party membership
is not enough to explain their position towards Brexit, because both the
safeness of seat (in terms of effective number of competing candidates at the
previous general election) and the share of leave vote in the constituency they
represent have a strong – sometimes nonlinear – effect. The study about soc-
cer player position highlights the potentiality of the proposed methodology
to deal with continuous outcome variable. In particular, the results reveals
different patterns of interaction between pairs of players, suggesting specific
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playing strategies of the team. Finally, the methodology is extended to in-
clude the effects of the covariates not only on the component weights, but
also on the component-specific distributions, focusing on mixture of regres-
sion models.

Although the results shown in this Thesis seem encouraging, there are
some issues that might deserve further investigation. First of all, the focus is
on estimation when manifest variables are categorical or continuous, but the
proposed methodology can be adapted to any other type of response variables
by choosing an appropriate form for the component density f(y|θg). Fur-
thermore, the semiparametric latent class model presented in Section 3.1 is
based on conditional independence, whereas different specifications for such
a multivariate model with categorical margins might be possible, e.g. based
on the so-called underlying random variables (URV) approaches (Ranalli and
Rocci, 2017) in case of ordinal categorical manifest variables. Regarding the
semiparametric mixture of normals in Section 4.1, problems related to the
possible high dimensionality of the manifest variable are not addressed in this
Thesis. It is worth mentioning that such problems are common to any mix-
ture model based on multivariate Gaussian components and are not related
to the introduction of covariate effects on the component weights. Remedies
to this issue, such as the use of component-specific factor models to reduce
the free parameters of the covariance matrices (see, for example, Fokoué and
Titterington (2003)) could be included in the MCMC algorithm described in
Chapter 4.1. Moreover, the semiparametric full mixture of experts in Sec-
tion 5.1 assumes the manifest variable to be univariate, since the adaptation
to the multivariate case would require particular attention to deal with the
presence of component-specific to the covariance matrices.

As far as the computational implementation is concerned, one of the main
advantage of the proposed MCMC algorithm is the absence of MH steps. On
the other hand, the use of mixture of Gaussians to approximate the logistic
distribution introduces an additional latent variable that can increase the
computational burden, and the implemented MCMC algorithm requires the
number of components to be fixed as input. If this quantity is unknown, it is
necessary to estimate it by running the algorithm many times with different
inputs, which might be time consuming, especially when the “true” value
is high. One solution could be incorporating the choice of the number of
components within the algorithm itself. As observed in the simulation stud-
ies, it might happen the proposed MCMC algorithm converges to a solution
that is characterised by empty components. This peculiar behaviour could
be exploited to devise a strategy similar to the one proposed by Malsiner-
Walli et al. (2016), which circumvents the issue of choosing the optimal value
for G and focuses the attention on the posterior distribution of the number
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of non-empty components, by combining a large value for G with appropri-
ate prior distributions. Alternatively, a reversible jump MCMC algorithm
could be exploited (Richardson and Green, 1997), by designing appropri-
ate dimension-changing moves, such as split-and-merge moves (Green and
Richardson, 2001) and birth-and-death moves (Stephens, 2000).
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Appendix A

Brexit data further results
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Figure A.1: Estimated smooth effects for Cluster 4
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Figure A.2: Vote estimates (posterior means) for Cluster 4
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Figure A.3: Estimated smooth effects for Cluster 9
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Figure A.4: Vote estimates (posterior means) for Cluster 9
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Figure A.5: Estimated smooth effects for Cluster 7
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Figure A.6: Vote estimates (posterior means) for Cluster 7
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Figure A.7: Estimated smooth effects for Cluster 2
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Figure A.8: Vote estimates (posterior means) for Cluster 2
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Figure A.9: Estimated smooth effects for Cluster 3
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Figure A.10: Vote estimates (posterior means) for Cluster 3
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Figure A.11: Estimated smooth effects for Cluster 5
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Appendix B

Soccer player positions data:
MCMC chain plots
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Figure B.1: MCMC draws of the mean parameters for Cluster 3 (in green)
in Section 4.3.1. Light green denotes the discarted draws during the burn-in
phase, delimited by a dashed line.

Figure B.2: MCMC draws of the (co)variance parameters for Cluster 3 (in
green) in Section 4.3.1. Light green denotes the discarted draws the during
burn-in phase, delimited by a dashed line.
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Figure B.3: MCMC draws of the mean parameters for Cluster 2 (in green)
in Section 4.3.2. Light green denotes the discarted draws during the burn-in
phase, delimited by a dashed line.

Figure B.4: MCMC draws of the (co)variance parameters for Cluster 2 (in
green) in Section 4.3.2. Light green denotes the discarted draws during the
burn-in phase, delimited by a dashed line.
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