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Abstract

Understanding the complex relationships between quantities measured by

volcanic monitoring network and shallow magma processes is a crucial headway

for the comprehension of volcanic processes and a more realistic evaluation of

the associated hazard. This question is very relevant at Campi Flegrei, a volcanic

quiescent caldera immediately north-west of Napoli (Italy). The system activity

shows a high fumarole release and periodic ground slowmovement (bradyseism)

with high seismicity. This activity, with the high people density and the presence

of military and industrial buildings, makes Campi Flegrei one of the areas with

higher volcanic hazard in the world.

In such a context my thesis has been focused on magma dynamics due to the

refilling of shallow magma chambers, and on the geophysical signals detectable

by seismic, deformative and gravimetric monitoring networks that are associated

with this phenomenologies. Indeed, the refilling of magma chambers is a process

frequently occurring just before a volcanic eruption; therefore, the faculty of

identifying this dynamics by means of recorded signal analysis is important to

evaluate the short term volcanic hazard.

The space-time evolution of dynamics due to injection of new magma in the

magma chamber has been studied performing numerical simulations with, and

implementing additional features in, the code GALES (Longo et al., 2006), re-

cently developed and still on the upgrade at the Istituto Nazionale di Geofisica

e Vulcanologia in Pisa (Italy). GALES is a finite element code based on a physico-

mathematical two dimensional, transient model able to treat fluids as multiphase

homogeneous mixtures, compressible to incompressible. The fundamental equa-

tions of mass, momentum and energy balance are discretised both in time and

space using the Galerkin Least-Squares and discontinuity-capturing stabilisation

technique. The physical properties of the mixture are computed as a function
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of local conditions of magma composition, pressure and temperature.The model

features enable to study a broad range of phenomenologies characterizing pre

and sin-eruptive magma dynamics in a wide domain from the volcanic crater to

deep magma feeding zones.

The study of displacement field associated with the simulated fluid dynam-

ics has been carried out with a numerical code developed by the Geophysical

group at the University College Dublin (O’Brien and Bean, 2004b), with whom

we started a very profitable collaboration. In this code, the seismic wave prop-

agation in heterogeneous media with free surface (e.g. the Earth’s surface) is

simulated using a discrete elastic lattice where particle interactions are controlled

by the Hooke’s law. This method allows to consider medium heterogeneities and

complex topography.

The initial and boundary conditions for the simulations have been defined

within a coordinate project (INGV-DPC 2004-06 V3_2 “Research on active vol-

canoes, precursors, scenarios, hazard and risk - Campi Flegrei”), to which this

thesis contributes, and many researchers experienced on Campi Flegrei in vol-

canological, seismic, petrological, geochemical fields, etc. collaborate. Numerical

simulations of magma and rock dynamis have been coupled as described in the

thesis.

The first part of the thesis consists of a parametric study aimed at under-

standing the effect of the presence in magma of carbon dioxide in magma in

the convection dynamics. Indeed, the presence of this volatile was relevant in

many Campi Flegrei eruptions, including some eruptions commonly considered

as reference for a future activity of this volcano. A set of simulations considering

an elliptical magma chamber, compositionally uniform, refilled from below by a

magma with volatile content equal or different from that of the resident magma

has been performed. To do this, a multicomponent non-ideal magma saturation

model (Papale et al., 2006) that considers the simultaneous presence of CO2 and

H2O, has been implemented in GALES. Results show that the presence of CO2 in

the incoming magma increases its buoyancy force promoting convection ad mix-

ing. The simulated dynamics produce pressure transients with frequency and

amplitude in the sensitivity range of modern geophysical monitoring networks

such as the one installed at Campi Flegrei .

In the second part, simulations more related with the Campi Flegrei volcanic
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system have been performed. The simulated system has been defined on the

basis of conditions consistent with the bulk of knowledge of Campi Flegrei and in

particular of the Agnano-Monte Spina eruption (4100 B.P.), commonly considered

as reference for a future high intensity eruption in this area. The magmatic sys-

tem has been modelled as a long dyke refilling a small shallow magma chamber;

magmas with trachytic and phonolitic composition and variable volatile content

of H2O and CO2 have been considered. The simulations have been carried out

changing the condition of magma injection, the system configuration (magma

chamber geometry, dyke size) and the resident and refilling magma composi-

tion and volatile content, in order to study the influence of these factors on the

simulated dynamics. Simulation results allow to follow each step of the gas-rich

magma ascent in the densermagma, highlighting the details ofmagma convection

and mixing. In particular, the presence of more CO2 in the deep magma results

in more efficient and faster dynamics. Through this simulations the variation of

the gravimetric field has been determined.

Afterward, the space-time distribution of stress resulting from numerical sim-

ulations have been used as boundary conditions for the simulations of the dis-

placement field imposed by the magmatic dynamics on rocks. The properties of

the simulated domain (rock density, P and S wave velocities) have been based

on data from literature on active and passive tomographic experiments, obtained

through a collaboration with A. Zollo at the Dept. of Physics of the Federici II

Univeristy in Napoli. The elasto-dynamics simulations allow to determine the

variations of the space-time distribution of deformation and the seismic signal

associated with the studied magmatic dynamics. In particular, results show that

these dynamics induce deformations similar to those measured at Campi Flegrei

and seismic signals with energies concentrated on the typical frequency bands

observed in volcanic areas.

The present work shows that an approach based on the solution of equations

describing the physics of processes within a magmatic fluid and the surrounding

rock system is able to recognise and describe the relationships between geophys-

ical signals detectable on the surface and deep magma dynamics. Therefore, the

results suggest that the combined study of geophysical data and informations

from numerical simulations can allow in a near future a more efficient evaluation

of the short term volcanic hazard.
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Chapter 1

Introduction

Volcanic eruptions can bring devastation to lands and civilisations, and in the

past have been responsible for creating volcanic winters on the Earth (Rampino

et al., 1987; Courtillot, 1990). The historical record indicates that about 1 million

people have been killed by volcanic eruptions in the past 2000 years and that

most of the deaths occurred in a few eruptions. In the twentieth century, the 1902

eruption of Mt. Pelée (Martinique) killed about 29,000 people, whereas in 1985

Nevado del Ruiz (Colombia) killed another 25,000. In the nineteenth century, the

two eruptions in Indonesia, Tambora in 1815 and Krakatau in 1883, killed about

130,000 people (Decker and Decker, 1991). In 1792 the eruption of Unzen volcano

(Japan) killed about 15,000 people (Yanagi et al., 1992). The eruption of Vesuvius

in 1631 killed another 10,000 people, whereas its A. D. 79 eruption that destroyed

Pompei and Ercolano produced at least 3,000 deaths (Sigurdsson et al., 1985). The

city of San Salvador (El Salvador) lies close to a lake originated from a massive

eruption in around A.D. 300 that was estimated to displace or kill thousands to

hundreds of thousands of people and changed the course of local civilisations.

Today, the countries and regions more exposed to volcanic risk by explosive

volcanoes are Italy, Indonesia, NewZealand, PapuaNewGuinea, the Philippines,

Japan, the Western United States, Mexico, Central America, Colombia, Ecuador,

Peru andChile. Milions of people live too close to some of themost dangerous vol-

canoes in theworld, which could erupt andproduce a catastrophe even in the near

future. Such a critical situation requires that the volcanic risk be mitigated so that

people could cohabit with volcanoes in security. For this reason, eruption fore-

casting and volcanic risk assessment are mandatory for many modern societies.
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1. Introduction

Nevertheless, they are a very difficult task to deal with because of the necessity

of combining socio-economic data with engineering and urban-planning.

Current volcanic eruption forecasting is a human endeavour where the best

forecasts range from hours to a few days in advance, as in the situations of the

Mt. ST. Helens eruption in 1980 and Mt. Pinatubo eruption in 1991. In 1993 six

volcanologists studying the Galeras volcano (Colombia) lost their lives when the

volcano exploded with lava, ash and incandescent boulders (Fisher et al., 1997).

In 1995 the small volcanic island of Montserrat in central America began to come

alive and most of 11,000 residents of Plymouth were evacuated, and in 1997 an

eruption occurred without warning and killing some people.

Volcanologists base eruption forecasts on the information or data from erup-

tion history, useful to learn about volcano behaviour and features, and volcano

monitoring (seismicity, ground deformation, gas emission, hydrological regimes,

and magnetic, electric and gravity fields). A change of the seismicity or earth-

quake activity of a volcano may be associated with the rearrangement or rise of

molten rock material within the volcano, since this kind of activity produces rock

fracturing and pressure variations which in turn are transformed into groundmo-

tions. However, seismicity does not always lead to the conclusion that a volcano

has become restless since a seismic signal can also be produced by the tectonic

motions of the volcanic region that may have nothing to do with the volcano

itself. Nevertheless, a volcano in the process of erupting produces seismic signals

that are sufficiently representative of an “eruption in progress” and can serve

as precursory signals that some sort of external activity will take place. Simi-

larly, the ground movements are good indications that something is happening

within the volcano, especiallywhen thesemovements become large relative to the

background noise or instrumental error. Changes in the electrical conductivity,

magnetic andgravity fields can tracemolten rockmovements inside a volcano and

maybe detected evenwhen a volcano is not preparing for an eruption. Changes in

the composition of the emitted gas from fractures may be related to the rearrange-

ment of themolten rock within the volcano or gas escape routes through fractured

medium. Moreover, changes of ground water temperature, water level in wells

or lakes, and others can also be considered useful signals for eruption forecasts.

Eruption forecasting is improved by appropriate scientific studies, such as physi-

cal modeling of volcanic processes or laboratory experiments, that allow to better
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1. Introduction

understand the relationship between these signals and the volcanic processes and

to more realistically evaluate the volcanic hazard.

Nowadays, eruption forecasts are based on very narrow windows of hours

or several days and can lead to catastrophic consequence in a densely populated

area, since it is very difficult to evacuate hundreds of thousands of people on a

very short notice and possibly in a state of panic. The politicians who must issue

an evacuation order are thus given no alternative but to wait until the last minute

in order to avoid a false alarm and become responsible for the expenditure of very

large national resources. The end result of this dilemma between the uncertainty

in eruption forecasting and the desire to avoid false alarm can produce a tragedy

for those living close to volcanoes; examples are the tragedies of St. Pierre in 1902

andArmero in 1985where the city administrators failed to give evacuation orders

(Dobran, 2001).

As pointed out before, Italy is a country characterised by a very high volcanic

risk because of the presence of densely populated active volcanic areas; exam-

ples of such areas are Campi Flegrei, Vesuvio, Stromboli, Etna, Colli Albani and

Vulcano. In such a contest the Dipartimento di Protezione Civile together with

the Istituto Nazionale di Geofisica e Vulcanologia funded the 2-years coordinate

project “Research on active volcanoes, precursors, scenarios, hazard and risk”

with the main objective of improving the definition of hazard and risk in all the

active or potentially active volcanic areas in Italy.

This thesis contributed to the subproject focused on the study of the Campi

Flegrei caldera. The volcanic hazard of this area is extremely high because of its

explosive character and the occurrence in the past of large scale eruptions. Close

to 1.5 million people live within the caldera, with about 350,000 people living in

its active portion. Due to the high volcanic hazard and the intense urbanisation

of both the active portion of the caldera and its surroundings, the volcanic risk at

Campi Flegrei is very high. The project results leave open the possibility that the

on-going unrest occurring at Campi Flegrei could culminate in a new eruption in

a short-medium time range.

The research performed in this thesis focused on the numerical simulation

of convection processes in magma chambers and associated seismicity, deforma-

tion and gravity changes in order to establish links between deep, potentially

hazardous magmatic processes and measurable quantities at the surface. Many
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1. Introduction

recent volcanic eruptions at Campi Flegrei have been shortly preceded, in fact, by

efficient mixing of different magmas, which was likely due to the onset of con-

vection in magma chamber. Magma chamber refilling, convection and mixing of

different magmas are well-known processes widely recognised from the analysis

of volcanic products (Snyder, 1997). Such processes are often hypothesized to

have occurred repetitively in magma chambers, and to have triggered volcanic

eruptions over a tile scale of days to hours (Sparks et al., 1977; Pallister et al.,

1992; Venetzky and Rutherford, 1997; Coombs et al., 2000; Mashima, 2004). Typ-

ically, the new magma entering a chamber is chemically less evolved and carries

less water and more crystals. Although it is commonly hotter, its capability to

induce buoyancy-driven convection can be scarce or null (Phillips and Woods,

2002). Nevertheless, convection in magma chambers may arise from composi-

tional variations caused by fractional crystallization, partial melting of reservoir

boundaries and internal crystal matrix, injection of freshmagma into the chamber,

or volatile exsolution. The bulk of knowledge on the past history at Campi Fle-

grei suggests that at least in some cases a shallow magma chamber was invaded,

hours to tens of hours before the onset of the eruption, by a CO2 -rich magma of

deep provenance. For this reason, convection and mixing dynamics induced by

the arrival of new CO2 -rich magma into a hypothetical shallow magma chamber

at Campi Flegrei , and the associated rock elasto-dynamics, have been the subject

of my studies.
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Methods
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Chapter 2

State of the Art

The elaboration of a comprehensive theory of seismic sources associated with

magma dynamics is critical to a more realistic evaluation of the behaviour of

volcanoes and, hence, of the hazard in volcanic areas. The modelling of magma

dynamics and associated wave propagation in rocks is an important tool for un-

derstanding the nature and dynamics of seismic sources associated with move-

ment of magma and/or hydrothermal fluids. Many efforts have been aimed

on modelling the fluid-dynamics of magma and the elasto-dynamics of the sur-

rounding solid in either separate or coupled schemes. However, the nonlinearity

of fluid-dynamics equations and the complexity of volcanic fluids and the highly

heterogeneous materials and rough topography of volcanoes, force models to

make many simplifying assumptions on fluid behaviour and rock properties.

2.1 Modelling of fluid dynamics

Magma is a multicomponent, multi-phase mixture constituted of silicate liq-

uid, crystals and gas. The silicate liquid composition is adequately represented

by the elements O, Si, Al, Fe, Mg, Ca, Na and K since the remaining elements

usually occur in minor amounts. Crystals come either from magma cooling or

from surrounding rocks as xenocrystals; volatile components are H2O and CO2 ,

and, subordinately, H2S, SO2 , HCl, HF, CO, N2 , H2 and HBr. Volatiles can be

in liquid or gaseous phase depending on whether the system pressure is below

or above their saturation pressure. If volatiles are totally dissolved in the liq-

uid phase, magma behaves essentially as an incompressible fluid; when volatiles
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2. State of the Art

exsolve and a gas phase forms, the mixture becomes compressible. All relevant

magma properties depend significantly on pressure, temperature and magma

composition.

The modelling of subsurface magma dynamics has to take into account the

complex magma behaviour due to many microscopic and macroscopic physical

and chemical processes such as melt segregation, mixing or mingling of differ-

ent magmas, magma differentiation due to crystal fractionation, changes in flow

regime (bubbly flow, slug flow, annular flow and gas flow with dispersed parti-

cles), magma fragmentation, heat andmass transfer between solid, liquid and gas

phases,momentum and energy transfer betweenphases and betweenmagma and

surrounding rocks, diffusion of heat, momentum and chemical species, changes

from subsonic to supersonic velocities.

The quantitative study of magma dynamics is complicated by often large un-

certainty about most of the potentially critical factors. These include, for instance,

the transport properties of the mixing magmas (e.g. viscosity, chemical diffusiv-

ities), the role of chemical and thermal buoyancy and the configuration of the

system. Moreover, magma dynamics are mademore complex by gas loss through

system walls, refilling or withdrawal of magma, melting and assimilation of sur-

rounding rocks, thermo-mechanical deformation of volcanic system, interaction

between magma and water reservoir and collapse of chamber walls or roof.

Regarding magma chamber modelling, a further complication is due to the

fact that the chamber walls are not clearly defined as a rigid and impermeable-to-

mass partition; the chamber walls, in fact, extend in length as a porous structure

where crystals deposit and through which the exsolved gas and hypercritical

fluids can escape. Three regions distinguished by a different fraction of solid

and liquid, hence with different mechanical behaviour, can be recognised in the

magma chamber even though the transition between these zones is gradual. The

inner part of reservoirs is a liquid-dominated region where mixture behaves as a

liquid with dispersed solid particles and gas bubbles. The outer zone of chamber

is a solid-dominated region and the intermediate part (mushy or cumulitic region)

is a crystal network through which the silicate liquid flows.

The physico-mathematical models try to reproduce the processes occurring

within the magmatic system through the three fundamental conservation equa-

tions for continua (Bird et al., 1960):
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2. State of the Art

• mass conservation (or continuity equation):

∂ρ

∂t
+ ∇ · ρu = 0 (2.1)

where ρ is density, t is time and u is the velocity vector;

• momentum balance (or fundamental Newton’s law):

∂
(

ρu
)

∂t
+ ∇ · (ρuu) = ρg − ∇p + ∇ · τ (2.2)

where g is the gravity acceleration, p the pressure and τ the stress tensor.

In the left-hand side, the first term is the so-called unsteady term (which

vanishes for steady conditions) and expresses the variation with time of

the velocity through a fluid volume, while the second is the convective term,

giving the variation of velocity through a fluid volume due to its transport

by the velocity field through a gradient of velocity. In the right-hand side, all

terms are force per unit mass acting on the particle: the first one corresponds

to body force (gravity), and the remaining ones to surface forces, divided in

two terms corresponding to pressure and to viscous stress;

• energy balance (or first principle of thermodynamics)

∂ρ
(

U + 12u
2
)

∂t
+∇·

(

ρu
(

U +
1
2
u2

))

= −∇·q+ρu ·g−∇ (

pu
)−∇·[τ · u](2.3)

where U is the internal energy per unit mass and q the energy flux per unit

volume. The left-hand side terms are the time variation and the accumula-

tion rate of energy due to the overall flow through a fluid volume. The first

term of the right-hand side is the energy transport due to conduction while

the other terms are the rate of work done by the gravitational, pressure and

viscous forces, respectively.

If the mixture is treated as multi-phase and multi-component, the mass needs to

be conserved for each component in each phase:

∂ρk,i
∂t
+ ∇ · ρk,iuk,i = Sk,i (2.4)

where the subscript k, i indicates component k in phase i , and Sk,i is the source-

sink term of component k in phase i . If the mixture is not in mechanical and/or

9



2. State of the Art

thermal equilibrium, the momentum and/or energy conservation equations have

also to be solved for each phase.

The definition of appropriate constitutive equations (i.e., equations of state,

stress tensor, heat flux, and fluid properties like density, viscosity (entering into

the stress tensor), specific heats, etc.) allows the description of the physico-

chemical properties of magma. Phase changes need also to be modeled through

appropriate sets of equations.

Due to the nonlinearity of the balance equations and the complexity of themag-

matic mixture, all models consider simplifying assumptions depending on what

aspects of the investigatedprocesses themodelwants to focus on, andwhat are the

major factors controlling the processes under investigation. The more common

simplifications are the steady state, the reduction of domain dimensions (from

3D to 2D or 1D), the mechanical and/or chemical and/or thermal equilibrium, the

fluid incompressibility, the low-Reynolds flow regime (or neglect of turbulence)

and the Boussinesq approximation (or neglect of compressible effects).

The system dynamics can be modeled using either lumped or non-lumped

methods. The lumped approach reduces the problem dimensions from 3D to 0D

and considers an overall description of the fluid dynamics, treating the system

with the aid of globally-averaged quantities. Usually, lumped models allow

solution of the conservation equations analytically or semi-analytically. The non-

lumped approach solves the equations for each point into the system allowing

a description of the internal dynamics of the fluid; usually this approach adopts

numerical methods to solve the system of conservation equations.

2.1.1 Lumped models

Examples of lumped models applied to magma chamber dynamics are those

defined by Blake (1981), Bower and Woods (1997) and Snyder (2000).

Blake (1981)

Blake (1981) modeled a magma chamber open to an inflow of material from

below. He calculated the volume of liquid magma required to increase the cham-

ber pressure, through elastic deformation of the magma, to a value sufficient to

trigger an eruption in a rigid homogeneous chamber with uniform pressure. He

derived a relationship giving the critical volume of added magma required to
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2. State of the Art

cause an eruption as a function of magma compressibility and the volume by

which the chamber expands.

Bower and Woods (1997)

Bower andWoods (1997) developed a steady-statemodel for themass erupted

from amagma chamber for a given decrease in chamber pressure, as a function of

compressibility of the mixture in the chamber. The magma chamber is assumed

one-dimensional (that is, pressure, volatile content and mixture density vary

only with depth) and isothermal. The model considers homogeneous mixture of

liquid, crystals and gas bubbles, accounting for the effect of crystallization and gas

exsolution on mixture density and, hence, on reservoir pressure and volume. The

crystal and bubble content is modeled as a function of pressure, temperature and

mixture composition. Thermal, chemical and mechanical equilibrium between

the different phases is assumed.

Snyder (2000)

Snyder (2000) modeled the thermal and compositional effects due to an intru-

sion of basaltic magma into a more silicic magma chamber. This model takes into

account crystal growth and re-absorption and their fractionation from the melt.

It considers a two-phase mixture, neglecting the presence of gas bubbles. The

phase equilibria and the thermodynamic and rheological effects of crystallization,

such as density and viscosity changes, are computed through the MELTS algorithm

(Ghiorso, 1994). The assumption of chamber geometry much more extended in

the horizontal direction than in the vertical one allows neglecting the heat flux

due to sidewall crystallization and the heat loss through the country rocks.

2.1.2 Non-lumped models

The most common methods employed to solve the system of equations (2.1)-

(2.3) together with the constitutive equations describing the magma properties

are based on finite element, finite difference and, subordinately, finite volume

approach. The numerical models allow treating the interdependency between

small scale (i.e., evolution of magma composition and properties) and large scale

(i.e., convection, thermal or chemical zonation) processes through the solution

of conservation equations in terms of the intensive variables (P, T, composition).

Examples ofmodels ofmagma chamberdynamics are those definedbyOldenburg
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2. State of the Art

et al. (1989), Spera et al. (1995), Trial et al. (1992), Folch et al. (1999) and Simakin

and Botcharnikov (2001).

Oldenburg et al. (1989)

Oldenburg et al. (1989) developed one of the first numericalmodels formagma

mixing in magma chambers. They implemented a two-dimensional model that

considersmixingbetween incompressible homogeneousmagmas inducedmainly

by diffusion and thermal-compositional convection. The main assumptions are

that magma behaves as a Newtonian fluid and crystallization and assimilation

are not allowed. Magma chamber walls are considered rigid and insulating.

The mass, momentum and energy conservation equations are solved using a

Galerkin finite element method.

Bergantz (2000) improved the model by Oldenburg et al. (1989) explicitly

taking into account themultiphase fluid-dynamics of the magmatic mixture. This

model allows the study of the convection and mixing following the intrusion of a

crystal-bearing magma in a chamber hosting a crystal-free magma.

Spera et al. (1995)

Spera et al. (1995) developed a two-dimensional model to study the ther-

mal and compositional evolution of a compositionally zoned magma chamber

where convection occurs. The model computes the local phase and composition

variations in a cooling magma, initially homogeneous and slightly superheated.

The model accounts for solidified, mushy and all-liquid regions including

latent heat effects, percolative flow of melt through the mush and the variation

of system enthalpy with composition, temperature and solid fraction. Relative

motion between crystals and melt is not allowed in the melt-dominated regions,

whereas in the solid-dominated region melt percolates through a crystal network

assumed static and undeformable. Thermal and chemical equilibrium is assumed

everywhere. The phase relations are determined by the equilibrium phase dia-

gram and only binary component systems are considered. The magma is treated

as an incompressible, Newtonian fluid. The gas phase is not accounted for and

the Boussinesq approximation is adopted.

The model equations are solved using a finite difference method.

As an improvement of this model, Kuritani (2004) modeled the magmatic dif-

ferentiation processes in a cooling magma reservoir using a numerical model that

computes crystallization by means of multicomponent thermodynamic models.
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The model assumes that the solid phases are stationary except for olivine and

plagioclase that are the earliest crystallization phases in basaltic magmas and,

hence, are considered as fractionating phases.

Trial et al. (1992) modeled the two-dimensional magma withdrawal from a

compositionally zoned chamber driven by pressure forces associated with cham-

ber replenishment. This model is an improvement of the model from Spera et al.

(1986). The magma is treated as an incompressible, single-phase Newtonian fluid

with variable properties, such as density and viscosity; the effect of temperature

on viscosity is neglected. The equations of conservation of mass and momentum

are solved using the Galerkin finite element formulation.

Folch et al. (1999)

Folch et al. (1999) developed a numerical model for the simulation of the

dynamics of incompressible/compressible homogeneous bubbly magma driven

by exsolution of water and/or caldera subsidence in non-replenished shallow

magma chambers (Folch et al., 1998).

The model considers the magma as an homogeneous, incompressible, New-

tonian fluid below the exsolution level and as a compressible, homogeneous

two-phase mixture of liquid and gas bubbles above that level. The compressible

behaviour is accounted for through a barometric state law.

The system of equations is solved using a finite element method with a frac-

tional step approach; time is discretized through a finite difference scheme,

whereas a Galerkin finite element scheme is used for the space discretization.

The implemented algorithm is able to treat simultaneously compressible and in-

compressible flow and allows simulating the temporal evolution of quantities

like pressure and velocity, eruption rate and position of the exsolution level. The

model employs cylindrical coordinates with axisymmetrical geometry.

Regarding the mixture properties, the main assumptions are chemically ho-

mogeneous composition of magma, presence of water as the only volatile, and

perfect behaviour of gas. Further assumptions are constant temperature, fixed

geometry of the system and rigid and erosion-free domain walls.

Folch et al. (2001) developed a fluid-structure interaction model for eruptions

from caldera collapse, to overcome the assumption of fixed system geometry. In

this model, the flow and structure equations are alternately integrated in time by

using separate solvers and accounting for fluid-structure mechanical interaction

13
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by means of changes in the boundary conditions. The structure is treated as a

rigid body that slides along the caldera vertical fractures.

Simakin and Botcharnikov (2001)

Simakin and Botcharnikov (2001) modeled the passive degassing of a 2D

stratified magma chamber and the compositional convection driven by vesicula-

tion. Themagmaticmixture is treated asmulti-phase non-homogeneous allowing

crystal settling and gas bubble rise and escape through magma chamber roof. A

small bubble content is assumed in order to consider a simplified set of equations

describing convection with bubble formation and dissolution. Elastic deforma-

tion of solid rock bounding the chamber due to pressure changes, and viscoelastic

behaviour of the aureole of heated rocks, are accounted for.

2.2 Modelling of rock deformation

Seismic waves originate from the forced motion of a portion of a deformable

medium. As some of the elements of the medium are deformed, the disturbance

progresses through themedium as awave. In this process the resistance offered to

deformation by the consistency of the medium, as well as the resistance to motion

offered by inertia, must be overcome. As the disturbance propagates through the

medium it carries along amounts of kinetic and potential energies. Energy can

be transmitted over considerable distances by wave motions. The transmission

of energy is possible because motion is passed on from one particle to the next,

without sustained bulk motion of the entire medium. Mechanical waves are

characterized by the transport of energy through motion of particles around an

equilibrium position.

A model of seismic wave propagation and seismic motion should allow for

anisotropy and heterogeneity of the medium (i.e., presence of fluids, material

discontinuities and property gradients), realistic wave attenuation, complex free-

surface topography, and resolve a broad frequency range. The majority of rock-

dynamics models compute the energy propagation and rock deformation within

solidmaterials by solving the equations of continuummechanics (Malvern, 1969).

The displacement is computed through the equation of motion (Newton’s law):

ρ
∂2u

∂t2
= f +

(

λ + 2µ
)∇ (∇ · u) − µ∇ × (∇ × u) (2.5)
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where λ and µ are the so-called Lamé coefficients describing the elastic properties

of the medium and corresponding to the incompressibility and shear modulus

respectively, ρ is density, f the source function and u the displacement vector.

This equation, togetherwith constitutive relationships linking stresses to displace-

ment, fully describe the propagation of seismic wave. If linearity is assumed and

if the medium is homogeneous and isotropic, the stress tensor σ is computed

using the Hooke’s law:

σi j = λδi jεkk + 2µεi j (2.6)

where δi j is Kronecker delta, ε strain expressed through the following equation:

εi j =
1
2

(

∂u j

∂xi
+
∂ui
∂x j

)

(2.7)

Since the continuum theory assumes that matter fills the whole available vol-

ume, equations 2.5-2.7 cannot be used to model rock discontinuities at either

macroscopic (such as fractures, cavities, rock pores) or microscopic (molecular

and atomic structure of material) scale.

These limitations have been overcome by using the discrete lattice scheme,

whose utilisation is becoming widespread thanks to recent advances in compu-

tational power. These models do not solve continuum equations directly, but try

to replicate the underlying physics at a “microscopic scale” allowing to easily

consider complex boundary conditions and heterogeneous materials (see section

3.2 for a more detailed description).

For homogeneous or flat-layered structures, the ground displacement and the

seismic signal can be calculated through analytical methods, such as the reflec-

tivity method (Muller, 1985) and the discrete wavenumber method (Bouchon,

1981; Chouet, 1982), or by using propagator matrices (Dunkin, 1965; Kennett and

Kerry, 1979; Chouet, 1987). Some models include anelastic effects by using the

dispersive complex velocities for P- and S-waves (O’Neill and Hill, 1979; Aki and

Richardson, 1980). However, analytical methods do not provide solutions of the

equation of motion (elastodynamic equation) for complex or sufficiently realis-

tic models of the Earth’s interior. Therefore, approximate numerical methods

are usually adopted. The more common method used to solve the non-linear

system of equations is the finite difference method. Secondarily, finite elements,

hybrid finite difference-finite elements and spectral methods are employed. A
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detailed description of the different numerical methods for simulating seismic

wave propagation is reported in Moczo et al. (2007).

2.3 Modelling of magma-rock dynamics

Volcano seismology investigates the mechanism of seismic sources associated

with the dynamical interaction between magmatic and/or hydrothermal fluids

and their hosting rocks. A detailed study of the excitation mechanisms of long-

period events and tremor requires a rigorous formulation of both macro- and

microphysics in multiphase compressible fluids under a variety of dynamical

conditions. However, because of the nonlinearity of fluid-dynamics equations

and the complexity of fluid mixtures usually encountered in volcanoes, most of

the efforts aimed at developing elastic radiation models have focused on the un-

derstanding of the resonance properties of fluid-filled systems under simplifying

assumptions, in order to avoid the complexities of fluid behaviour.

Examples of these models are those of Chouet (1986), Julian (1994), Neuberg

et al. (2000) and Nishimura and Chouet (2003).

Chouet (1986)

Using a stress-velocity finite difference method, Chouet (1986) modeled the

resonance of a three-dimensional fluid-filled crack excited by the instantaneous

failure of a small barrier on the crack surface. The method treats the elasto-

dynamics equations in terms of velocity and stress, and the fluid-dynamics in

terms of flow velocity and pressure. The fluid motion is computed solving the

mass and momentum conservation equations; convective terms are neglected

under the assumption that they are small compared to the time-derivatives of

pressure and flow velocity. The fluid is assumed homogeneous and inviscid

with constant density but finite compressibility. The crack walls are allowed to

deform. The solid is modeled as an uniform elastic medium. The fluid and

solid are coupled by applying the continuity of wall velocities and normal and

shear stresses across the crack boundaries. Mass transfer between fluid and solid

system is not allowed.

Julian (1994)

Julian (1994) modeled the tremor-generating process in terms of a flow-

induced oscillation in channels transporting a magmatic fluid. In particular,
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he proposed that tremor oscillations are excited by a nonlinear instability that

arises when the fluid flows through a constricted channel with deformable walls.

The model schematises the channel walls as masses connected by a spring and a

dashpot; the spring represents the effect of the elastic stiffness of the surrounding

rocks, while the dashpot represents the viscous attenuation of the wave propaga-

tion. The acoustic resonance effects in the channels are omitted. The magma flow

model treats the masses and other parameters as lumped in order to solve ordi-

nary equations instead of partial differential equations in the description of the

fluid flow along the channel length. The mixture is assumed incompressible and

Newtonian. The equations of motion are numerically integrated using a step-size

extrapolation method.

Neuberg et al. (2000)

Neuberg et al. (2000) used a staggered-grid finite difference scheme to solve

the 2D elastic equations ofmotion in order tomodel the tremor and low-frequency

earthquake induced by a seismic source in a fluid-filled conduit. Rock properties

(such as density and wave velocities) are assumed homogeneous and anelastic

wave attenuation is neglected. The free-surface is modeled as a stress-free surface

boundary condition. Magma is treated as an elastic solid with null rigidity,

constant density, and acoustic velocity either constant or changing with depth

because of the presence of gas bubbles.

Nishimura and Chouet (2003)

The model of Nishimura and Chouet (2003) used the finite difference method

to compute the magma dynamics and the seismic radiation and crustal deforma-

tion associated with an eruption. The volcanic system consists of a cylindrical

fluid-filled reservoir connected to the surface by a narrow cylindrical conduit with

a lid capping its exit; the conduit inlet may be blocked by a plug. The system is

pressurised by the addition of new magma and an eruption is triggered by the

instantaneous removal of the lid or the plug. The magmatic mixture is modeled

as an homogeneous, multiphase (liquid + gas), compressible and inviscid fluid

and its volume changes are taken into account. The rock properties are assumed

perfectly elastic and homogeneous, and the free surface is accounted for through

the stress-free condition. The fluid and solid are dynamically coupled by apply-

ing the continuity of wall velocities and of normal stresses across the conduit and

reservoir boundaries.
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Chapter 3

Numerical codes

Two different numerical codes have been used to simulate the fluid-dynamics

in magma and the associated elasto-dynamics induced in rocks. The numerical

code for magma dynamics (named GALES; Longo et al. (2006)) has been imple-

mented at Istituto Nazionale di Geofisica e Vulcanologia (INGV) in Pisa (Italy)

in the last six years and it is under continous improvement; the code for rock

deformation (named ELM; O’Brien and Bean (2004b)) has been developed at the

Geophysical group of the University College Dublin (Ireland).

3.1 Numerical code for fluid dynamics (GALES)

The numerical code for the simulation of fluid dynamics describes the time-

dependent 2D dynamics of a compressible-to-incompressible homogeneous mul-

ticomponentmixturemade of liquid in equilibriumwith an H2O + CO2 gas phase

at the local conditions of pressure, temperature and composition.

The numerical algorithm used in the solution of equations of conservation

is based on the finite element formulation by Hauke and Hughes (1998). This

consists in a space-time discretization with Galerkin least-squares and disconti-

nuity capturing terms that is third order in time and space. This method allows to

study both compressible and incompressible flows (Shakib et al., 1991; Chalot and

Hughes, 1994; Hauke and Hughes, 1998) and it is effective in the stabilisation of

the numerical solution without introducing excessive overdiffusion. With respect

to the original formulation, the numerical model has been extended to include

a general formulation for multicomponent fluids (Longo et al., 2006), making it
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particularly suitable for the investigation of processes involving chemical changes

and phase transitions.

The governing equations are mass conservation of each component and mo-

mentum and energy conservation of the mixture as a whole:

(

ρyk
)

,t +
(

ρuiyk
)

,i = −J
k
i,i for k = 1, . . . , n (3.1)

(

ρu j
)

,t
+

(

ρuiu j + pδi j
)

,i
=

(

τ ji
)

,i
+ ρb j for j = 1, . . . , d (3.2)

(

ρet
)

,t +
(

ρuiet + pui
)

,i =















τi ju j − qi −
n

∑

k=1

Jki hk















,i

+ ρ (biui + r) (3.3)

where ρ is mixture density, yk mixture mass fraction of component k , t time, ui
velocity in i-th direction, Jk

i
mass diffusion flux of component k in i-th direction,

n number of components, p pressure, δi j Kronecker delta, τi j the i j component of

viscous stress tensor, b j body force vector per unit mass in j-th direction, d = 1,2

or 3 number of spatial dimensions, et specific total energy mixture, qi diffusive

heat flux in i-th direction, hk specific enthalpy of component k and r heat source

per unit mass. Indexes after an inferior comma represent variables with respect to

which partial differentiation is computed; the summation convention on repeated

indexes is applied throughout. The conservation equations (3.1)-(3.3), togheter

with the gas-liquid equilibriummodel and the constitutive equations for mixture

properties, are discretized and solved for the primitive variables pressure, veloc-

ity, temperature, and concentration of components. Numerical solutions of these

equations are obtained through the appositely developed finite element C++ code

GALES, which makes use of OFELI (Touzani, 2004), Diffpack (Numerical Objects,

1997) and TRILINOS (Sandia National Laboratories, 2007) libraries. The numeri-

cal code was verified and validated with laboratory experiments, exact solutions

and numerical results from literature. As the test cases show, the features of this

method allow the solution of a large number of problems such as shock wave

interaction with contact discontinuities, evolution of internal interface in incom-

pressible or compressible flows, bubbly flowswith evaporation or gas dissolution

(see http://www.pi.ingv.it/ longo/gales/gales).

The physical model considers a single fluid compressible-incompressible mul-

ticomponent mixture at mechanical, thermal and chemical local equilibrium; the

mixture is ideal, constituted of n components that may be either in the liquid or
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gaseous state and instantaneous phase change is assumed. Gas bubbles are as-

sumed to be undeformable. Solid phase is not considered as a separate phase but

it is taken into account for computing the mixture properties. Chemical reactions

resulting in component production or consumption are not allowed to occur.

The composition of the mixture is described by n − 1 independent mass frac-
tions of components (yk ) and by the partition coefficients of components in their

phases, which depend on pressure and temperature (see Appendix A). Different

components are miscible, that is, interdiffusion is allowed. The diffusive fluxes

of mass of components ( Jk
i
) are expressed by the Curtiss and Hirschfelder law for

multi-component fluids (A.18) (Hirschfelder et al., 1969; Bird et al., 1960). The

stress tensor (τi j ) (A.16) assumes Newtonian rheology. The energy flux (first term

at the right-hand side of energy equation (eq. 3.3)) is due to viscous dissipation

(τi ju j ), heat conduction (qi ) expressed by Fourier’s law (A.17), and interdiffusion

of components carrying a specific enthalpy (hk ). The heat source per unit mass

(r) includes the latent heat due to phase change. Mass diffusion due to pressure

gradients, Soret and Dufour effects, and surface tension, are neglected.

The capability of dissolved water in affecting major liquid properties like

density and viscosity is accounted for as explained below, while the effects of

small amounts of dissolved CO2 are neglected.

The equation of state formixture density is based on the ideal solution assump-

tion (Modell and Reid, 1983), which implies that mixture density is calculated as:

1
ρ
=

∑

k,π

yπ
k

ρπ
k

=
∑

k

yk

ρk
(3.4)

where subscripts k and superscripts π indicate mixture component and phase,

respectively.

The density of the dense (liquid + crystals) phase (ρD ) is computed correcting

the liquid density (ρL ) to consider the presence of crystals. The influence of

crystals is taken into account by the equation:

ρD = (1 − αC)ρL +
∑

αCiρCi (3.5)

where αC =
∑

i α
Ci is total volume fraction of crystals, αCi and ρCi are respectively

volume fraction and density of i-th crystal species.

The liquid density is calculated using the Lange equation of state (Lange, 1994)

that considers partial molar volume of oxides and their thermal expansivity;
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the partial molar volume of water in the silicate liquid is calculated using the

calibration from Burnham and Davis (1974).

Mixture viscosity (µ) is calculated under the assumption of Newtonian rhe-

ology, the viscosity µ is calculated with the standard rules of mixing (Reid et al.,

1977) for one phase mixtures and with a semi-empirical relation (Ishii, 1977) for

bubbly mixtures:

µ =exp















∑

k

xk lnµk















for one phase mixture (3.6)

µ = µc
(

1 − α
d

αdm

)−2.5αdm µ
d+0.4µc

µd+µc

for bubbly mixture (3.7)

where µc and µd are viscosities of the continuous and dispersed phases, respec-

tively, αd is the volume fractions of the dispersed phase and αdm = 0.75 is the

volume fractions of the dispersed phase at its maximum package.

The viscosity of the dense phase is obtained from the liquid viscosity (µL )

using the extension by Marsh (1981) of the equation of Einstein-Roscoe to take

into account the effect of crystals.

Since no models are available to take into account the compositional variation

of magma, the liquid viscosity is computed using parameterizations that derive

from experiments on natural melts (Hess and Dingwell, 1996; Giordano et al.,

2000; Giordano and Dingwell, 2003; Romano et al., 2003) and appropriate for

magma with specific compositions (e.g. Etna Basalt, Agna-Monte Spina trachyte,

Campanian Ignimbrite, phonolite of Vesuvius 1631 eruption, etc . . . ).

3.2 Numerical code for wave propagation (ELM)

The numerical code for rock deformation describes the static and dynamic

deformation in a 2D or 3D elastic medium using an elastic lattice method (Ladd

and Kinney, 1997). The discrete particle method do not solves the continuum

equations directly (i.e. the wave equation) but it tries to replicate the underlying

physics at a “microscopic scale” employing discrete micro-mechanical interaction

rules between the material particles. This scheme represents the elastic solid by

a series of particles arranged on a regular lattice and interconnected by springs
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(fig. 3.1). The interconnected particles represent block of intact rock interacting

through local radial and shear forces. The force Fi j on an individual node i from

(a) (b)

Figure 3.1: Representation of the 2D (a) and 3D (b) elastic lattice; nodes

are connected by springs that allow each node interacting with its eight

neighbours.

node j is given by

Fi j = −Kgi j
[(

ui − u j
)

· xi j
]

+
c

|xi j|2
(

ui − u j
)

(3.8)

where K is the elastic spring constant, ui the displacement at node i , xi j the vector

connecting nodes xi and x j in the undistorted lattice and c the bond-bending

constant. The constants gi j remove the lattice anisotropy byweighting each of the

lattice links (Monette and Anderson (1994),O’Brien and Bean (2004a)). The first

term in the right-hand side of equation (3.8) is the central force term described

by the Hooke’s law, while the second term represents the bond-bending force.

Without the inclusion of this bond-bending term the Poisson’s ratio in the model

is restricted to 0.25, (see equations 3.9 and 3.9).

The Lamé constants are expressed in terms of the spring and bond-bending

constants.

λ = K − c
a2

µ = K +
c

a2

2D Square lattice (3.9a)
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λ =
K

a
− 2c
a3

µ =
K

a
+
2c
a3

3DCubic lattice (3.9b)

where a is the spacing between off diagonal nodes. Thus, the elastic lattice

method behaves as an elastic continuum where the elastic wave speeds are easily

calculated from the Lamé constants:

v2p =
1
ρ

(

3K +
c

a2

)

v2s =
1
ρ

(

K +
c

a2

)
2D Square lattice (3.10a)

v2p =
1
ρ

(3K
a
+
2c
a3

)

v2s =
1
ρ

(

K

a
+
2c
a3

)
3D Cubic lattice (3.10b)

The force acting on each spring is calculated at each time step and the new

position of the lattice nodes and node velocities are updated using the velocity-

Verlet numerical integration scheme (Allen and Tildesley (1987)). This scheme is

a second-order in time and fourth order in space finite difference solution to the

elastic wave propagation, including free surface boundary conditions.

The elastic energy Ei for node i on a cubic lattice is expressed as (Arbabi and

Sahimi, 1988):

Ei =
K

2

N
∑

j=1

([

ui − u j
]

· ni j
)2
+
c

2

∑

jik

(

cosθ jik −
1
√
2

)2

(3.11)

where θ jik is the angle between particles jik with node i as the apex of the angle,

N is the number of nearest neighbours and ni j is xi j/|xi j| . The energy density Φ
is the total energy stored in each spring divided by the total volume and can be

written as

Φsquare lattice =
1
2a2

4
∑

i j=1

K

(

ui j · xi j
|xi j|2

)2

+
1
4a2

8
∑

i j=1

c

(

ui j ⊗ xi j
|xi j|2

− uik ⊗ xik|xik|2

)2

(3.12a)

Φcubic lattice =
1
2a3

8
∑

i j=1

K

(

ui j · xi j
|xi j|2

)2

+
1
4a3

1
∑

i j=1

6c
(

ui j ⊗ xi j
|xi j|2

− uik ⊗ xik|xik|2

)2

(3.12b)

where ui j is the displacement vector
(

ui − u j
)

.
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Since the elastic lattice method solely rely on particle-particle interactions,

complex boundary conditions canbe accounted for. Thismodel allows to consider

free surface with complex and strong topography and subsurface heterogeneity

as fractures or pore fluids. A vacuum free-surface boundary condition is implicit

in the method and topography is introduced by removing any particle above the

required free surface. The material heterogeneities can be incorporated into the

model by changing the elastic spring constants on each spring.

The model is able to compute the effects of attenuation in the Earth’s crust

(O’Brien, 2008). However, in the present work these effects have been not taken

into account in order to reduce the complexity of the result interpretation since

at the moment we are just interested in the first order effects of the simulated

dynamics.

The rockproperties aredefined specifyingdensity, P-wave andS-wavevelocity

for each grid node. The grid spacing and time step must be chosen to satisfy the

following criteria:

dt <
dx
2 · vmax

dx <
λmin
10

(3.13)

where vmax is the maximum compressional wave velocity and λmin the minimum

wave length. The first condition ensures numerical stability while the second one

avoids numerical dispersion.

3.3 Coupling between GALES and ELM

The coupling between the two codes is accomplished with a ”one way” proce-

dure. This means that the fluid dynamics simulated by GALES triggers and drives

the energy propagation in rocks simulated by ELM but not vice versa. This approx-

imation is a significant simplification, because in reality the energy waves would

affect also fluidsmovement, influencing andmodifying the flowdynamics; conse-

quently, the changes in dynamics would cause a rocks deformation different from

that due to the undisturbed fluidmovement. Hence, the seismic wave field gener-

ated can be highly scattered and attenuated by the presence of heterogeneous fluid

reservoirs through complex interactions at the solid-liquid boundaries, including
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diffractions, reflections, refractedwaves, wave conversion and interface waves. A

fully two-way coupled fluid-rock model is presently under developement at the

INGV in Pisa. In details, the coupling has been achieved considering all nodes

of the fluid-dynamics grid located along the system walls as point source in the

elasto-dynamics simulations. The time-space distribution of stresses computed

by GALES in these nodes have been used as boundary conditions for the simu-

lation of rock elasto-dynamics. Before being imposed as boundary conditions,

these stresses have been filtered to avoid the numerical noise and re-sampled to

the time step adopted in the ELM simulation. While the frequency of integration

in time for the fluid calculation is 100 Hz, the filter used is a low pass filter with

cut frequency of 10 Hz. Since the fluid simulations have been performed only on

half a magmatic domain, the source points have been reconstructed considering

the symmetry with respect to the chamber middle plan to obtain the complete

source.
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Saturation model

The present research includes the investigation of the mixing dynamics be-

tween CO2 -rich magmas in a refilled magma chamber as one of its major goals.

Mixing between magmas with different composition and volatile contents in-

volves changes in composition and physico-chemical properties of the resulting

magmatic liquid. It is worth noting that the composition of the melt in which

volatile components are dissolved plays a crucial role in the definition of the

shape and position of the volatile saturation surface. Furthermore,the coexis-

tence of water and carbon dioxide enhances the complexity of saturation surface

because of the mutual influence of a species on the solubility of the other.

At the beginning of my PhD, the saturation model implemented in GALES

assumed that volatiles behave as an Henrian gas; it did not take into account

the dependence of the gas-liquid equilibrium conditions on the local magma

composition and it considered only one volatile species at a time. For these

reasons, the saturation model was not suitable to compute the volatile solubility

in the studied system. The choice and the implementation in the numerical code

of a new saturation model able to follow the effects of compositional difference

and compositional changes accompanying the evolution and dynamics of natural

magmas and to take into account the contemporaneous presence of water and

carbon dioxide in the system was then required.
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4.1 Thermodynamic model

The adopted saturation model (Papale et al., 2006) computes the volatile sat-

uration surface in H2O-CO2 -silicate melt systems by applying thermodynamic

equilibrium between gaseous and liquid volatile components. The model param-

eters are calibrated on > 1000 existing saturation data in the C-O-H-silicate liquid

system over a broad spectrum of silicate melt compositions.

The model is based on the computation of the Gibbs free energy of mixing and

then, it is able to provide component activities through the Gibbs-Duhem rule. It

is fully non-ideal, assuming only that the excess Gibbs free energy of the silicate

mixture can be represented by an expansion of first-order symmetric interaction

terms. The thermodynamic properties of the liquid mixture are modeled through

binary interaction coefficients expressing the attractive-repulsive behaviour of

each pair of component molecules in magma. No a-priori assumption is made

on the P-T dependence of the volatile-oxide interaction terms, meaning that no

assumption is made on the partial molar volume and enthalpy of the dissolved

volatiles. Deriving from calibration and statistical evaluation, the interaction

coefficients involving water are taken as constant, while those involving carbon

dioxide are pressure-dependent:

wH2Oi = w
(0)
H2Oi

wCO2i = w
(0)
CO2i
+ w(1)CO2iln

P

P0
(4.1)

where P0 = 0.1 MPa is the reference pressure. The mixed volatile interaction

term (wH2OCO2 ) is neglected since its inclusion does not result in appreciable

improvement of model predictions.

The basic mechanical, thermal and chemical equilibrium equations are the

followings:

PG = PL = P

TG = TL = T

fG
H2O
= f L

H2O
=⇒ φH2OyH2OP = γH2OxH2O f oLH2O

fG
CO2
= f L

CO2
=⇒ φCO2yCO2P = γCO2xCO2 f oLCO2

(4.2)

where f is the fugacity, φ the fugacity coefficient in the gas phase, γ the activity

coefficient in the liquid phase, y and x the mole fractions in gas and liquid

phase, respectively, the superscripts G and L refer to the gas and liquid phase,
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4. Saturation model

respectively and the superscript oL refers to the reference state in the liquid phase.

These equations are closed by the mass balance equations:

yH2O + yCO2 = 1

xT
H2O
− yH2O

yH2O − xH2O
=
xT
CO2
− yCO2

yCO2 − xCO2

(4.3)

where the superscript T refers to mole fractions with respect to the gas-liquid

mixture.

The fugacity coefficient in the gas phase is calculated bymeans of the equation

of state by Kerrick and Jacobs (1981) for H2O , CO2 and H2O - CO2 mixtures

while the reference state for volatiles dissolved in the liquid phase is obtained by

standard thermodynamic relationships as

ln f oLi (P,T) = ln f
oL
i (P

o,To)+
∫ P

Po

νo
i

RT
dP−

∫ T

To

1
RT2

∫ P

Po

[

νoi − T
(

∂νo
i

∂T

)

P

]

dPdT(4.4)

where ν is molar volume, R is the universal gas constant and the superscript

o refers to a standard state defined at Po and To . The activity coefficient of

dissolvedvolatiles is calculated from the excessGibbs free energy that is computed

as function of mole fraction of components and interaction coefficients between

pairs of component; the interaction coefficient not involving volatiles are taken

from Ghiorso et al. (1983). The resulting expressions for the activity coefficients

of dissolved H2O and CO2 are the following:

RTlnγH2O =
(

1 − xH2O
)

xCO2wH2OCO2

+
(

1 − xH2O
) (

1 − xH2O − xCO2
)

n
∑

i,CO2=1

x′iw
(0)
H2Oi
− xCO2
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1 − xH2O − xCO2
)
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(

1 − xCO2
)

xH2OwH2OCO2

−xH2O
(

1 − xH2O − xCO2
)

n
∑

i,CO2=1

x′iw
(0)
H2Oi
+

(

1 − xCO2
)

× (

1 − xH2O − xCO2
)















n
∑

i,H2O=1

x′iw
(0)
CO2i
+ ln

P

P0

n
∑

i,H2O=1

x′iw
(1)
CO2i















− (

1 − xH2O − xCO2
)2

n
∑

i,H2O,CO2=1

n
∑

j,H2O,CO2=i+1

x′ix
′
jwi j

(4.6)
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4. Saturation model

where x′ is the concentration of non-volatile components in the volatile-free liq-

uid:

x′i,H2O,CO2 =
xi

1 − xH2O − xCO2
(4.7)

4.2 Implementation

The saturation model has been implemented in a new C++ library able to

deal with GALES but also to work independently. The implementation is based

on a previous FORTRAN code developed at the Istituto Nazionale di Geofisica e

Vulcanologia in Pisa (Italy).

The library consists of a main class where the thermodynamic model has been

implemented and a class with methods required to solve the numerical system

of equations. The non-linear system of the saturation model is solved using

the secant method or the globally convergent Newton method depending on

the presence of one or both volatiles. In addition to these methods, accessory

methods for the usage of the Newton algorithm have been implemented (e.g. LU

decomposition, forward approximation of jacobian). All the implementations are

derived from Numerical Recipes in C++ (Press et al., 1992).

Furthermore, on the basis of the design pattern “strategy” (Gamma et al.,

1994), a class and a few derived classes have been implemented to allow an

optimised usage of the mathematical methods to solve any equation or system

of equations. The pattern “strategy” defines a family of algorithms, encapsulates

each one andmakes them interchangeable. Its structure, indeed, lets the algorithm

vary independently from clients that use it; in particular, the methods in which

equations are defined have no conditions on structure or interface to be used with

these mathematical methods.
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Chapter 5

Introduction

The simulations related to the Campi Flegrei system have been preceded by

the investigation of the capability of CO2 to induce buoyant-driven convection

in a refilled magma chamber. The presence of CO2 in a magma, in fact, is ex-

pected to produce significant buoyancy forces, since even small amounts of this

largely insoluble component produce a decrease of the H2O and liquid satura-

tion content, increasing the gas volume in magma (Holloway and Blanck, 1994)

(fig. 5.1). The consequent increase of the gas volume may produce the density

decrease necessary for triggering efficient buoyancy of the refilling magma. Due

to the much lower solubility of carbon dioxide with respect to water, open system

degassing invariably results in a decrease of the total CO2/H2O ratio in the mul-

tiphase magma (Papale, 2005). As a consequence, deeper magmas which have

undergone lower degrees of open system degassing can carry significant amounts

of CO2 with respect to magmas which have resided at shallow chamber levels.

The efficiency of CO2 in inducing buoyant-driven convection has been in-

vestigated by numerically simulating the 2D transient dynamics inside magma

chambers due to the entrance from below of new magma. By parameterizing the

CO2 content in the feeding magma, CO2 efficiency in producing buoyant plumes

and large scale convection has been evaluated. Moreover, the effects of different

magma viscosities and chamber depths have been studied.

It is useful to stress once again that tis first set of simulations does not represent

any expected real situation at Campi Flegrei . Rather, its scope is that of studying

the capability of CO2 to induce convection and mixing within a chamber hosting

magma with composition similar to that commonly erupted at Campi Flegrei .
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Figure 5.1: Weight fraction of dissolved water in function of pressure for a

trachytic magma with different content of total water and carbon dioxide.

The phase distribution has been computed using themulti-component non-

ideal model from Papale et al. (2006) implemented in GALES.

34



Chapter 6

Numerical simulations

6.1 Initial and boundary conditions

The simulated system consists of an elliptic chamber 4 km wide and 2 km

high, with its top at 3 or 4 km depth (fig. 6.1), hosting trachytic magma with

composition corresponding to the composition of the B1 eruptive phase of the

Agnano-Monte Spina eruption (see table 6.1, Romano et al. (2003)). The magma

initially present in the chamber contains 5 wt% total H2O, distributed among

the liquid and gas phases according to the local magmastatic pressure, and no

carbon dioxide. The viscosity is described as a function of dissolved water and

temperatures through a VTF-like parameterization recently developed by Misiti

et al. (2006). Although crystals can be accounted for in the present homogeneous

formulation, they have not been considered here for simplicity. However, in order

to investigate a large spectrum of possible conditions embracing high crystal

concentrations, viscosities calculated as described above have been arbitrarily

increased by up to three orders of magnitude in some simulations. Resident and

refilling magmas have same temperature and composition (apart from CO2 ) to

avoid thermal exchange (therefore, no use of eq. 3.3), and consider relatively

simple conditions with only gas-liquid reaction. Although real cases are expected

to involve more complex chemical reactions including the formation of solid

components, the present simplification allows focusing on the role of CO2 in

inducing buoyant plume rise and convection.

At t = 0 s new magma having the same temperature, composition, and total

H2O content of the resident magma, but different total CO2 content, enters the
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6. Numerical simulations

Figure 6.1: Scheme of the simulated system

SiO2 TiO2 Al2O3 Fe2O3 FeO MnO MgO CaO Na2O K2O

61.26 0.38 18.38 1.17 2.33 0.14 0.74 2.97 4.58 8.04

Table 6.1: Composition (wt %) of trachyte in the eruptive phase B1 of the

Agnano-Monte Spina eruption (from Romano et al. (2003))

chamber from a bottom centered inlet 200 m wide (fig. 6.1), at the constant

velocity of 1 cm/s. Three cases are considered: (A) the refilling magma has a

zero CO2 content as the resident one; (B) refilling magma has a 0.5 wt% total

CO2 content; (C) the refilling magma has a large 3.5 wt% total CO2 content.

Comparison between the numerical results pertaining to the three cases above

allows therefore an evaluation of the role of CO2 in inducingbuoyancy, convection

andmixing in amagmachamber. In a fourth reported simulation (caseD) the same

conditions as in case C are employed, but with lower magma viscosity and lower

chamber depth (therefore lower chamber pressure). It is shown that such changes

concur to produce more efficient dynamics of plume rise and magma convection,

thus representing an end-member in the range of the simulated conditions. The

parameters used in the simulations are summarized in table 6.2.

36



6. Numerical simulations

Resident/ Total H2Oa Total CO2 Depthb Viscosityc Inlet vel

Refilling (wt%) (wt%) (km) (m/s)

Case A resident 5 0 4 103

refilling 5 0 103 0.01

Case B resident 5 0 4 103

refilling 4.97 0.5 103 0.01

Case C resident 5 0 4 103

refilling 4.82 3.5 103 0.01

Case D resident 5 0 3 1

refilling 4.82 3.5 1 0.01
a Progressive decrease of H2O content in case B-D with respect to case A reflects dilution due to

the presence of CO2 .
b Depth of magma chamber top.
c Factor multiplying viscosity as calculated from Misiti et al. (2006).

Table 6.2: Parameters for the performed simulations. Resident and refill-

ing magma are trachyte with 1220 K of temperature. Different total H2O

contents in the refilling magma reflect dilution due to the presence of CO2 .

The numerical simulations are executed on a 2D Cartesian system of coor-

dinates, assuming translational symmetry along the third direction. The com-

putational domain represents one half of the chamber, under the assumption of

symmetry with respect to its vertical median plane. The discretization grid is

non-uniform, being progressively denser when approaching the symmetry plane

and the inlet area. A total of 1,500 nodes from 5 to 140 m apart constitutes the

computational grid. Note that the present grid resolution implies thatmixing pro-

cesses described here refer to a macroscopic scale, with no reference to processes

occurring at the molecular scale where chemical mixing actually occurs.

The time step is also non-uniform, starting with 10−4 s and progressively

increasing to 10−1 s according to local residuals of the solution and speed of

convergence.
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6. Numerical simulations

Figure 6.2: a-c: distribution of pressure (colours) and velocity field (arrows);

d-f: distribution ofmass fraction of resident and refillingmagma. All panels

refer to the case with no CO2 in the refilling magma (case A) at three times

after the beginning of magma injection

6.2 Results

Results for case A with refilling magma equal to the resident one (no CO2 in

the system), are shown in figure 6.2. The different panels show the evolution

of pressure and velocity field (a-c), and the distribution of resident and refilling

magmas (d-f) at different times up to nearly 4 hours after the beginning of new
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6. Numerical simulations

Figure 6.3: Distribution of density (colours) and velocity field (arrows) for

case C (0.5 wt% CO2 in the refilling magma) at six times after the beginning

of magma injection

magma entrance into the chamber. In this case no buoyancy acts on the refill-

ing magma, since its characteristics and properties are the same as those of the

surrounding magma. After about 4 hours a bulge of new magma representing

3.7% of the total mass in the chamber has accumulated above the chamber inlet,

reaching the height of about 150 m.

Slow convective dynamics inside the chamber are induced by the formation of
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6. Numerical simulations

the bulge in fig. 6.2 d-f, withmaximumvelocities of the order of the assumed inlet

velocity (1 cm/s). However, the magmatic pressure (fig. 6.2 a-c), and therefore

the distribution of the gas volume fraction, changes at the scale of the whole

chamber, reflecting the increase of the mass hosted within it. After about 4

hours the pressure has grown nearly homogeneously in the chamber by about

20 MPa, an amount larger than the tensile strength of most natural rocks (Chau

and Wong, 1996; Roche and Druitt, 2001; Zhang, 2002) and likely to produce

wall rock fracturing and dyke injection. Meanwhile, the gas volume, which was

initially about 3% close to the chamber top and zero at its bottom, has become

zero everywhere.

Figure 6.3 shows the case where the refillingmagma carries 0.5 wt% total CO2 .

The pressure corresponding to chamber bottom is such that the resident magma

is initially undersaturated, with 5 wt% dissolved H2O . This content decreases

to 4.4 wt% in the refilling magma, with the addition of 200 ppm dissolved CO2 .

Accordingly, the gas volume at chamber bottom is zero in the resident magma,

and 5.7% in the refilling magma. The associated density difference between the

resident (2180 kg/m3 ) and refilling (2100 kg/m3 ) magmas induces buoyancy of

the latter. After about 1h30’ a buoyant plume starts rising above the chamber inlet.

At this time the entrance of new magma has produced a pressure increase in the

chamber of about 6 MPa, reducing the gas volume at the chamber top from 3.3%

to 2.2%. Once formed, the plume rapidly accelerates, since its rise is accompanied

by pressure decrease, further volatile exsolution and gas expansion, decrease of

density and finally enhanced buoyancy. In the case of fig. 6.3 the plume takes

only about 15’ to reach the chamber top, then it spreads laterally. This induces the

formation of a vortex centered at about half chamber height, 3-400 m horizontally

displaced from the chamber axis. After about 2h30’ the magmatic pressure inside

the chamber has grown by about 9.3MPa, and themass of newmagma represents

2.3% of total mass. Nonetheless, the injection of CO2 -rich magma has resulted in

a net increase of the gas volume and decrease of bulk density at the chamber top.

Figure 6.4 shows case C in which the refilling magma carries 3.5 wt% total

CO2 . The amounts of dissolved H2O and CO2 in the refillingmagma at time zero

are in this case 3.4 wt% and 330 ppm, respectively; the gas volume is as large as

nearly 19%, and the bulk density is 250 kg/m3 less than that of the surrounding

residentmagma. The larger density contrast of case Cwith respect to case B in fig.
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6. Numerical simulations

Figure 6.4: Distribution of density (colours) and velocity field (arrows) for

case C (3.5 wt% CO2 in the refilling magma) at six times after the beginning

of magma injection

6.3 induces more efficient buoyancy, so that a rising plume starts forming after

only about 45’. The plume in this case is initially displaced from the chamber axis

of about 100 m, and it soon starts forming a vortex due to its large ascent velocity.

After about 1h the vortex is centered at about 500 m above the chamber bottom,

3-400m from the chamber axis, and it moves up as long as the plume continues to
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6. Numerical simulations

rise. The generation of the vortex contributes to keep the rising plume close to the

chamber axis. The plume reaches the chamber top after 1h5’ from the beginning

of magma injection, implying an average ascent velocity during plume rise of

about 1.7 m/s. The progressive displacement of the vortex towards the chamber

top and the rapid acceleration of the rising magma cause the detachment of a

CO2 -rich region which remains trapped within the vortex, being re-circulated at

about half chamber height around the vortex center. Additional CO2 -rich magma

risingwith the buoyant plume is insteadmostly transported towards the chamber

top, afterwards it moves laterally forming a large vortex at the scale of the whole

magma chamber. After 1h16’ the pressure and total mass in the chamber have

grown by about 5 MPa and 0.12%, respectively.

Cases A, B and C reported in figures 6.2-6.4 involve high-viscosity magma

(corresponding to that of the trachyte in Misiti et al. (2006) increased by three

orders of magnitude) and chamber top at 4 km depth. In fig. 6.5 the same

conditions as in case C (large CO2 content of the refilling magma) are considered,

but in this case the viscosity is that from Misiti et al. (2006), and the chamber

top is at 3 km depth. The combination of lower pressure that enhances volatile

exsolution and lower viscosity results in an increased efficiency of buoyancy

forces, producing much more rapid dynamics inside the chamber. In this case,

only after 3’40” from the beginning of new magma injection a buoyant plume

has reached the height of about 250 m above the chamber bottom (fig. 6.5b).

The value of Re along the rising plume (based on local plume width and average

properties and velocity) is of order 102−103 , compared with values ≤ 1 in cases B
and C. Such a relatively high Re (still in the range of dominantly laminar motion

(Bergantz, 2000)) rapidly induces the formation of a well developed vortex only a

few hundredmetres above the chamber inlet (fig. 6.5c). This vortex results in turn

in more efficient mixing of the newmagma with the deepmagma in the chamber,

with respect to cases B and C above, and develops instabilities which fragment

the plume into separated batches of rising magma. After 6’40” a main plume

reaches the top of the chamber (fig. 6.5d). At this time two vortexes are visible.

The largest one is associated with the main plume and is centered at about 1.25

km height, 300 m from the chamber axis. The second vortex is centered at about

650 m from the bottom, 500 m from the chamber axis, and partly re-circulates

magmawhich descends from the chamber top. The bulk density in the plume top
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6. Numerical simulations

resulting from the injection of volatile-rich light magma and associated increase

of chamber pressure is about 1650 kg/m3 , about 7% less than the initial density

at the same level. After 8’20” the large vortex has moved away from the chamber

axis, being centered at more than 1 km from it (fig. 6.5e). The second vortex has

been adsorbed into the main rising plume close to the chamber axis. The magma

is re-circulated from the vortex into the rising plume, then again in the vortex, and

magma circulation involves the whole chamber. After 11’40” the total mass in

the chamber has grown only by about 0.02%. The main vortex has moved down

along the chamber border and a number of smaller vortexes have formed around

it, producing complex patterns of magma flow and re-circulation (fig. 6.5f).
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6. Numerical simulations

Figure 6.5: Distribution of density (colours) and velocity field (arrows) for

case D (3.5 wt% CO2 in the refilling magma, lower viscosity and chamber

depth with respect to cases A-C) at six times after the beginning of magma

injection
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Chapter 7

Discussion

7.1 Conditions of buoyancy of the refilling magma

For simplicity, in this work conditions where the refilling magma has the same

total H2O content as the resident magma have been considered . This allows

a simpler numerical treatment and more stable numerical solutions. However,

the efficiency of carbon dioxide in decreasing density and inducing buoyancy

of magma is not limited to such cases. Figure 7.1 shows the results of thermo-

dynamic calculations which allow such an evaluation. The two lines refer to the

magma composition in table 6.1, conditions atmagma chamber bottom for the two

considered cases of 3 (plain line) and 4 km (dotted line) deep chamber. Each line

represents pairs of total H2O and CO2 content in the refilling magma resulting

in a magma density equal to that of resident magma at chamber bottom. There-

fore, the lines divide the total H2O -total CO2 field in two regions of buoyant or

sinking conditions for the refilling magma. As an example, a magma having the

same characteristics of those considered in the present simulations but total H2O

and CO2 contents of 3 and 1.3 wt%, respectively, will be buoyant if entering a

chamber localised as in casesA-C,while it will be sinking if entering the shallower

chamber of case D. Note that buoyant conditions can involve a refilling magma

having a total volatile content lower than that of the resident magma. This is due

to the much lower solubility of CO2 with respect to H2O and to its strong effect

in reducing the H2O saturation content, therefore resulting in a larger volume

occupied by the gas phase.

During the evolution of magma bodies, two main processes concur to mod-
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Figure 7.1: Fields of sinking and buoyant conditions for the refilling magma

with respect to the residentmagma, in termsof total H2O and CO2 content in

the refilling magma for the composition in table 6.1, H2O + CO2 saturation

from the model in Papale et al. (2006), liquid density model from Lange

(1994). The lines connect pairs of total H2O and CO2 content in the refilling

magma resulting in a magma density equal to that of resident magma at

chamber bottom for a chamber 3 (plain line) and 4 (dotted line) km depth.

The symbols indicate the conditions pertaining to the simulationsA-C (black

circles) and D (open circle) in table 6.2. Note that the total H2O content

for the simulated cases is slightly different, reflecting dilution due to the

presence of CO2 .

ify the total volatile content. These are crystallization of magma, which implies

volatile concentration with respect to the liquid phase, and open system de-

gassing, which instead results in volatile depletion. While crystallization does

not produce a change of the total CO2 /H2O ratio in magma (except in cases

where a volatile enters the crystal lattice), open system degassing invariably re-

sults in a remarkable depletion of the less soluble CO2 component (Papale, 2005).

As a consequence, deep magmas which have suffered gas loss to a lower extent

easily contain less H2O and more CO2 than shallow magmas which have lost

a significant fraction of their original volatile content. This excess CO2 content
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may in turn be sufficient to trigger buoyancy of magmas coming from depth, as

illustrated in fig. 7.1.

7.2 Conclusions

This preliminary study shows that the presence of carbondioxide inmagma re-

filling pre-existing chambers is a very efficient mean of producing buoyant plume

rise and large-scale convection, likely to create the conditions for the eruption

of magmas mixed to various extents; the convection patterns are complex show-

ing multiple vortexes, either stable in position or migrating with time. Larger

amounts of carbon dioxide translate into higher average velocities and decreased

time scales of mixing and convection; larger CO2 contents, lower magma viscosi-

ties and lower chamber depths increase the Reynolds number (Re) in the rising

plume, producing a shift from simple plume rise and spreading at the chamber

top, to early vortex formation and efficient mixing all along the rising plume.

As long as CO2 is present in appreciable quantities in the feedingmagma, and

magma chamber evolution is accompanied by open system degassing, convection

and mixing are expected to be common occurrences following the injection of

deep magma into a magma chamber. Since the efficiency of convection and

mixing increases with increasing difference in CO2 content between the refilling

and resident magmas, and since this difference increases with increasing amount

of volatiles lost from the magma chamber, it is also expected that more efficient

chamber degassing or longer periods with no chamber refilling be followed by

more efficient dynamics of convection andmixingwith the next episode ofmagma

ingression into the chamber.

One of the major limits of this preliminary study, which is removed in the fol-

lowuing investigation, is that the inlet velocity is assumed not to vary with time.

This choice prevents the formation of vortexes immediately above the chamber

inlet, avoiding mass outflows and favouring numerical convergence. On the

other hand, it implies that the confidence in the numerical results decreases as

long as the pressure inside the magma chamber increases, since this is expected

to produce a parallel decrease of the inlet velocity. A second important limit is

that mechanical separation between gas and liquid phases is not allowed. As

noted before (Phillips andWoods, 2002), gas-liquid decoupling can reduce the ef-
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ficiency of convection, since the degassing magma would progressively increase

its density and reduce its buoyancy. The present results are therefore more ap-

propriate in cases where inertia is small and the Archimedes number (Ar), with

the average gas bubble diameter, or where inertia dominates over gas bubble

buoyancy, i.e., Ar/Re2 < 1. In the present case, efficient separation of gas bubbles

would require bubble diameters of the order of 10−1 m. Finally, one other limit is

that the only chemical reactions allowed to occur are those related to multicom-

ponent gas-liquid equilibrium. In real cases it should be expected that resident

and refilling magmas have different composition, temperature, and crystal con-

tent besides having different volatile content. Therefore, mixing and convection

would be accompanied by heat exchange, complex patterns of chemical diffu-

sion, and chemical reactions involving gas-liquid-solid equilibria. The effects of

these complex patterns should form the object of future investigation with more

sophisticated modeling.
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Chapter 8

Introduction

Campi Flegrei are a complex volcanic area about 1.5 km north-west of Napoli

(Italy) characterized by a resurgent nested caldera with many eruptive centers

(fig. 8.1). Its structure formed during two major caldera collapses related to the

eruptions of the Campanian Ignimbrite (CI, 39 ka, 200 km3 DRE: Barberi et al.

(1978); Fisher et al. (1993); Rosi et al. (1996); Civetta et al. (1997); Fedele et al.

(2002); Pappalardo et al. (2002)) and the Neapolitan Yellow Tuff (NYT, 15 ka, 50

km3 DRE: Orsi et al. (1992, 1995); Scarpati et al. (1993); Wohletz et al. (1995);

Deino et al. (2004); Orsi et al. (1996)). After each caldera collapse, volcanism was

restricted within the collapsed area. The NYT eruption and associated caldera

collapse (which covered an area of 90 km2 , nested within the CI caldera) was the

more recent cataclysmic event in the history of the caldera, and its pyroclastic

flow deposits cover an area of more than 1,000 km2 . After the NYT eruption, both

volcanism and deformation were very intense within the caldera, with at least 72

eruptions (the last of which is the Monte Nuovo eruption, occurred in A.D. 1538)

grouped in 3 epochs of activities separated by long periods of quiescence (fig.

8.2). The eruptions were mainly explosive and with low and mediummagnitude

except two events, one in the I epoch and the other in the III epoch.

The I epoch lasted from 15 to 9.5 ka and it was mainly characterized by a

pyroclastic activity, among which only the Pomici Principali eruption (10.3 ka;

Lirer et al. (1987); Di Vito et al. (1999)) was a high magnitude eruption. After a

quiescence of about 1 ka, the II epoch began and lasted from 8.6 to 8.2 ka, giving

rise to lowmagnitude eruptions, occurring along parts of theNYT caldera borders

(fig. 8.1). The III epoch lasted from 4.8 to 3.8 ka after a 3.5 ka quiescence period
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8. Introduction

Figure 8.1: Structural sketch map of the Campi Flegrei caldera (from Orsi

et al. (2004))

and characterized by the La Starza block uplift (Orsi et al., 1996; Di Vito et al.,

1999). During this epoch, vents migrated toward the inner part of the caldera and

eruption activity was explosive and effusive and less intense than the past one;

the only high-magnitude eruption was the Agnano-Monte Spina eruption (4.1 ka;

de Vita et al. (1999); Dellino et al. (2001, 2004)) accompanied by a volcano-tectonic

collapse. The last period of quiescence was interrupted in 1538 A.D. by theMonte

Nuovo eruption, one of the lower magnitude events in the Campi Flegrei history

(Di Vito et al., 1987; D’Oriano et al., 2005).

The volcanic system is still active, as it is proven by intense degassing mainly

from fumaroles (Chiodini et al., 2001), grounddeformation (Caputo, 1979), seismic

activity (De Natale et al., 1991) and thermal anomalies (de Lorenzo et al., 2001a,b)

which define a period of unrest lasting from decades.
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Figure 8.2: Chronostratigraphy of the volcanic and deformational history of

the Campi Flegrei caldera (from Orsi et al. (2004))
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8. Introduction

Ground deformation affected the Campi Flegrei caldera over the past 2 ka

(Parascandola, 1947; Dvorak and Gasparini, 1991). The whole structure is sub-

siding, while the central part of the NYT caldera is affected by resurgence. Two

major unrest episodes (bradyseismic events) occurred between 1969-1972, and

1982-1984 (Barberi et al., 1984, 1989; Berrino et al., 1984; De Natale and Pingue,

1993; Bonafede andMazzanti, 1998;Orsi et al., 1999). Themaximumground uplift

was about 170 cm during the first, and about 180 cm during the second episode.

Since 1984 the ground has been generally affected by subsidence, which has been

interrupted by small episodes of inflation in 1989 (7 cm), 1994 (<1 cm), in 2000

(4 cm) (Avallone et al., 1999; De Natale et al., 2001; Chiodini et al., 2003), and in

2005-2006 (4 cm) Troise et al. (2007).

The volcanic hazard in the Campi Flegrei caldera is extremely high because

of the intense activity described above, its explosive character and the frequent

occurrence of high-magnitude andhigh-intensity eruptions in the past. Moreover,

the presence of about 1.5 million people who live within the caldera combined

with the high hazard, makes the volcanic risk in this area extremely high.
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Chapter 9

Definition of the simulated system

The system configuration and initial and boundary conditions for bothmagma

fluid-dynamics and rock elasto-dynamics simulations have been defined accord-

ing to the past knowledge about Campi Flegrei and results coming from the

project INGV-DPC 2004-06 V3_2 “Research on active volcanoes,precursors, sce-

narios, hazard and risk - Campi Flegrei” to which this thesis contributed.

The reconstruction of the Campi Flegrei magmatic system is mostly based on

the last epoch of activity (5 ka) because it is considered as reference for the future

behaviour of this volcano, as a consequence of major structural changes occurred

within the caldera determining the present stress regime.

The caldera structure has been mainly reconstructed by seismic tomography

(Judenherc and Zollo, 2004; Vanorio et al., 2005). The top of the carbonate base-

ment is placed at about 3 km depth; three main horizons have been recognised

by seismic reflection studies: the first one, at 5-700 m of depth, identifies a region

above it with incoherent, water saturated volcanics and marine sediments that

filled the bay of Pozzuoli during the post-caldera activity. The second one, 3 km

deep, is associated with the presence of a supercritical gas-bearing rock layer.

The third at 7.5 km depth, possibly could identify the top of a region with par-

tially molten rocks (figure 9.1). Moreover, no evidence of the presence of magma

reservoirs with size >1 km3 has been found at shallow depth (< 4 km).

The re-interpretation of seismic lines obtained in the 1970’s (Finetti andMorelli,

1974) off-shore the bay of Pozzuoli, shows several solidified magma bodies with

size less than 1 km3 and depth ranging between < 1 km and about 6 km (figure

9.2). It is worth noting that magmatic reservoirs of such a small size are below
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9. Definition of the simulated system

the detection limit of seismic tomography.

Processing of volatile contents in melt inclusions of crystals from the products

of past eruptions suggests a distribution of the magma storage regions between <

1 and about 9 km of depth and predominance of CO2 in the gas phase coexisting

with magmas which fed some of the reference eruptions including the largest

4100 B.P. Agnano Monte Spina eruption. In particular, the analysis of volatile

contents in melt inclusions in minerals from the most differentiated trachytic

to phonolitic eruption products (Agnano Monte Spina, Astroni, Senga, Averno

eruptions) highlights levels of crystallization between 8 and < 1 km depth, and

possible additional crystallization levels at depth > 12 km (figure 9.3).

Figure 9.1: Sketch model deduced from

joint interpretation of Vp and Vp/Vs ra-

tio profiles (from Zollo et al., INGV-DPC

Project V3_2 Campi Flegrei: Final report)

These results supports the existence

in the past of magmatic reservoirs at

variable depth. The presence of a

shallow magmatic reservoir feeding

the Agnano-Monte Spina eruption and

large abundance of CO2 is confirmed

by experimental petrology.

On the basis of their isotopic sig-

nature, magmas of trachytic to phono-

litic composition erupted during sin-

gle eruption in last 5 ka are found

to mostly represent residual magma

of the Neapolitan Yellow Tuff sys-

tem, suggesting that the large Neapoli-

tan Yellow Tuff eruption left abundant

molten magma within the crust as pre-

viously did the Campanian Ignimbrite

eruption. Geochemical and isotopic

studies on minerals and host glasses suggest a variety of processes including

magma recharge, intra-chamber mixing, entrapment of phenocrysts left by pre-

vious eruptions, and late stage crustal assimilation. In several cases, residual

magma batches were recharged by deeper trachytic magmas. In the case of the

Agnano-Monte Spina eruption, the arrival of new magma probably preceded the

eruption by no more than a few tens of hours (figure 9.4).
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9. Definition of the simulated system

Figure 9.2: Seismic line through Ischia and Sorrento peninsula. Magmatic

bodies (red and rose bodies, the geometry is only representative) intruded in

a deformed sedimentarymarine sequence (from Faccenna et al., INGV-DPC

Project V3_2 Campi Flegrei: Final report).

The volumes erupted during last 5 ka at Campi Flegrei are less or much less

than 1 km3 , and display a power law distribution (figure 9.5).

This knowledge, together with other information from this project and from

literature suggests a comprehensive model of the Campi Flegrei system, summa-

rized in the scheme in figure 9.6: a deep, possibly large reservoir with roof 7.5-9

km deep emerges from both seismic reflection and melt inclusion studies, there-

fore it appears to have existed during a long portion of Campi Flegrei history up to

now. This reservoir is likely to be compositionally heterogeneous, mostly hosting

latitic and shoshonitic magma with variable CO2 content. The shoshonites came

to the surface 10-8 ka ago along NE regional faults bordering the caldera and

reactivated during the caldera collapse allowing rapid ascent and little chemical

differentiation. Trachytes instead, at least during last 5 ka, preferentially rose in

the eastern and subordinately western sectors of the caldera, mostly along faults
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9. Definition of the simulated system

Figure 9.3: CO2 content in the gas phase of melt inclusions for Minopoli

2 (blue diamonds), Agnano-Monte Spina (cyan squares) and Campanian

Ignimbrite (red diamonds) eruptions (fromCivetta et al., INGV-DPC Project

V3_2 Campi Flegrei: Final report).

Figure 9.4: Qualitative scheme of the Monte Nuovo (M.N.) and Agnano-

Monte Spina (A.M.S.) eruptions (from Rutherford et al., INGV-DPC Project

V3_2 Campi Flegrei: Final report)
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9. Definition of the simulated system

Figure 9.5: Distribution of volumes (Dense Rock Equivalent, DRE) for the

eruption younger than 5 ka at Campi Flegrei

and fractures bordering the resurgent block. Repeated arrivals of dominantly

trachytic magmas mixed mostly with residuals of the Neapolitan Yellow Tuff

magma, possibly still discontinuously present below Campi Flegrei , at depths

between 4 and < 2 km, and fed a complex system of small volume (< or << 1

km3 ) reservoirs, where open-system degassing occurred and crystallization and

contamination resulted in more alkaline-rich, phonolitic terms. A new eruption

often occurred in conjunction with new magma arrival in a shallow reservoir.
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Figure 9.6: Schematic view of Campi Flegrei system in the last 5 ka (from Papale

and Civetta, INGV-DPC Project V3_2 Campi Flegrei: Final report)
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Chapter 10

Simulations of fluid dynamics

10.1 Initial and boundary conditions

The above reconstruction of the Campi Flegrei system allowed the definition

of a simplified set of system, initial and boundary conditions for the simulation of

magma dynamics at Campi Flegrei. The simulated system consists in a shallow

magma chamber refilled by a deepmagmatic storage zone as shown in figure 10.1.

The chamber is elliptical prolate or oblate, with semi-axes of 400 and 200 m and

hosting magma with phonolitic composition; the chamber top is 3 km depth. The

feeding system is a 7 km long and 6 to 60mwidedyke carring aCO2 -rich trachytic

magma. The choice of defining a very long feeding dyke, while not affecting the

results significantly, guarantees a higher numerical stability and more confident

calculation of the complex convection dynamics within the magma chamber.

As pointed out before, seismic tomographies carried out at Campi Flegrei do

not identify any shallow magma chamber. However, a chamber as small as the

one assumed in this work would not be revealed by present day tomographies

(Zollo et al., 2003). The chamber size is consistent with a reservoir volume < 1

km3 , similar to those which likely fed several Campi Flegrei eruptions in the past,

as well as to the small solidified magma bodies identified off-shore the bay of

Pozzuoli.

The composition of the anhydrous magmas adopted in the simulations is

reported in table 10.1. The phonolite is assumed carry 3 wt% total water and 0 or

0.5 wt% total CO2 ; the trachyte bears variable H2O and CO2 contents ranging

from 3 to 4 wt% and from 0.1 to 1 wt%, respectively. The temperature of the
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10. Simulations of fluid dynamics

Figure 10.1: Scheme of the simulated system. Magma chamber and dyke

are not in the same scale

two magma is taken constant and equal to 1220 K (corresponding to 950 ◦C).

Although temperature differences of a few tens of degrees probably characterized

the trachytic and phonolitic magmas erupted during the Agnano-Monte Spina

eruption (Rutherford and coll., 2004), such a simplifying choice allows neglecting

thermal exchange, resulting in more stable numerical results.

The liquid viscosity is represented as a function of magma composition, dis-

solved water content and temperature (fig. 10.2(a)); it is calculated using the

SiO2 TiO2 Al2O3 Fe2O3 FeO MnO MgO CaO Na2O K2O

TR 61.26 0.38 18.38 1.17 2.33 0.14 0.74 2.97 4.58 8.04

PH 53.52 0.60 19.84 1.60 3.20 0.14 1.76 6.76 4.66 7.91

Table 10.1: Composition (wt%) of anhydrous trachytic and phonolitic liquid

phase assumed in simulations (from Romano et al. (2003)). TR and PHmean

trachyte and phonolite, respectively
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10. Simulations of fluid dynamics

parametric equation:

logµ = a1 + a2lnwH2O +
b1 + b2wH2O

T − (c1 + c2lnwH2O)
(10.1)

where wH2O is the dissolved water content (in wt%) and a1 , a2 , b1 , b2 , c1 and c2
are fit parameters depending on magma composition . The fit parameters used

in simulations have been taken from Misiti et al. (2006) for trachyte and Romano

et al. (2003) for phonolite and they are reported in table 10.2.

a1 a2 b1 b2 c1 c2

Trachyte -4.73153 -0.0047295 10786.2 -585.492 173.44 -26.8303

Phonolite -6.7898 -0.02653 12143.2 -541.20 145.14 -33.342

Table 10.2: Fit parameters to compute liquid viscosity for trachyte (from

Misiti et al. (2006)) and phonolite (Romano et al. (2003)).

The system configuration described above is gravitationally unstable since

the overlying phonolitic magma is denser than the underlying trachyte. Figure

10.2(b) shows that the phonolite is denser than the trachyte even without taking

into account the large volatile content of the latter; moreover the studied cases

consider that the trachytic magma brings more CO2 , therefore a larger amount of

exsolved gas, increasing further the density difference between the two magma

types. This gravitationally unstable situation induces natural buoyancy. In order

to study the more realistic case where new magma entrance is due to a force

from below, in most simulations we have assumed an initial overpressure at dyke

base, varying from 1 to 20 MPa. This condition leads to take into account mixing

dynamics in the magma chamber originating from a combination of natural and

forced convection. The 20MPa overpressure is likely to represent an overestimate

of possible overpressure in the real case, and it is adopted her as an end-member

condition of forced convection. The opposite end-member condition is given by

purely natural convection induced by buoyancy only, when the initial overpres-

sure at dyke base is fixed at zero.

In order to perform the fluid-dynamics simulations, the system domain has

been mapped with a grid of about 2000 quadrangular elements. The elements

have different size with side ranging from 2 to 30 m (fig. 10.3); the grid density

has been increased where the more complex dynamics are waited, i.e. at the
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Figure 10.2: (a) Viscosity and (b) density of anhydrous liquid phase for

trachyte (blue line) and phonolite red line). Viscosity is plotted as a function

of the dissolved water content, bulk density as a function of pressure

chamber inlet. The time step has been fixed equal to 10−3 s for the first 0.4 s, then

it is increased to 10−2 s. The smaller initial time step is taken to avoid possible

initial convergency problems, because the initial conditions of zero velocity make

the linear system ill-conditioned. With such a grid spacing and time interval the

Courant number (Co=
c∆t

∆x
, where c is the sound velocity) is less then 1, assuring

that the sound waves are well propagated and the information is advectively

transported in the fluid at subsonic regime.

The simulations have been performed with the aim of understanding the ef-

fects of parameters such as driving overpressure, volatile content and system

configuration (chamber orientation and dyke width) on the dynamics of mixing

and convection in the refilled magma chamber. The simulated cases are reported

in table 10.3. The influence of the overpressure applied at dyke inlet has been

studied comparing cases CF-1 to CF-3: in these simulations, a volatile-rich tra-

chyte with 4 and 1 wt% total water and carbon dioxide, respectively, refills a

magma chamber containing phonolite with 3 and 0.5 wt% of total water and

carbon dioxide. In case CF-1 (chosen as reference case for additional parametric

studies) an overpressure of 1 MPa has been assumed; such a value is relatively

large, but not enough to trigger rock fracturing and, possibly, an eruption (Chau

and Wong, 1996; Roche and Druitt, 2001; Zhang, 2002). In case CF-2 no over-

pressure has been applied with the purpose to study purely natural convection
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10. Simulations of fluid dynamics

Figure 10.3: Mesh grid used for the fluid-dynamics simulations; the grid

was computed by the free software BAMG (Hecht, 1998).

dynamics. In case CF-3 a very high overpressure (20 MPa) has been considered.

Such a large overpressure is expected to produce large rock deformation and

cracking, therefore, simulation CF-3 and CF-4 (which assumes the same value)

should not be considered realistic cases. Rather, they are included in the present

study as end-member conditions for forced convection, as explained above.

The effect of chamber orientation has been studied by comparing simulations

CF-3 and CF-4. In order to understand the extent to which the efficiency and

patterns of mixing and convection are influenced by magma volatile content, one

simulation (CF-5) equal to the reference case CF-1 but with the feeding trachyte

carrying lower volatile content has been run. Case CF-6 considers a system con-
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10. Simulations of fluid dynamics

figurationwhere the refilling and residentmagmas are exchanged; this simulation

has been performed to understandwhat happenswhen applying an overpressure

in a gravitationally stable system. All cases described above assume a dyke width

of 60 m, whereas the last three simulations (CF-7 to CF-9) have been carried out

considering a dyke width decreased by an order of magnitude (6 m width) with

the intent of studying the influence on the refilling dynamics. CF-7 and CF-8 are

equal to the reference case CF-1 and case CF-5, respectively, except for dyke size;

finally, case CF-9 considers magmas with very low volatile content: the phonolite

carries 3 wt% of total water and no carbon dioxide; the trachyte bears 3 wt% of

total H2O and 0.1 wt% of total CO2 .

All the simulations have been run in a half domain since the system is assumed

to be symmetrical with respect to the middle plan. Preliminary simulations of

convection dynamics in a refilled container made by simulating the entire domain

have shown that the GALES code correctly predicts symmetric flow patterns.

The computed initial conditions of pressure, gas phase distribution, mixture

density and viscosity for all the simulations are show in figures 10.4-10.7. The

initial pressure at chamber top is equal to 70 MPa, corresponding to a depth of

about 3km. Fromthispressure, the initialmagmastaticprofilehasbeen calculated;

afterwards, the pressure within dyke has been increased to take into account the

initial driving pressure (fig. 10.4). The added overpressure is assumed equal to

the driving pressure at dyke base, and linearly decreased to zero along all the

dyke length. No initial overpressure is assumed within the magma chamber.

The calculated initial gas phase content in the trachyte carrying 4 wt% total

H2O and 1 wt% total CO2 ranges from 5 to 20 volume % when this magma fills

the dyke (cases CF-1 to CF-4, CF-7; fig. 10.4 (a)-(d) and (g)) and from 20 to 25

volume%when it fills the chamber (case CF-6, fig. 10.4 (f)); when the CO2 content

is 0.6 wt% (cases CF-5 and CF-8; fig. 10.4 (e), (h)), the gas volume varies from 2

to 10 %. The CO2 -poor trachyte (case CF-9; fig. 10.4 (i)) shows a gas volume < 5

%. Phonolite bears 8-10 volume % of gas in all simulations, apart from simulation

CF-6 in which the phonolite fills the dyke and carries 2 to 8 volume % gas phase,

and from case CF-9 where there is no gas phase because of the lack of CO2 and

consequent increase of the water saturation content. The different initial gas

phase distribution depending on the total CO2 content reflects the mutual effect

of the two volatile species on their saturation content. The density distribution
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Resident/ Comp. H2O CO2 ∆P Dyke Chamber

Refilling (wt%) (wt%) (MPa) (m)

CF-1 resident phonolite 3 0.5 1 60 horizontal

refilling trachyte 4 1

CF-2 resident phonolite 3 0.5 0 60 horizontal

refilling trachyte 4 1

CF-3 resident phonolite 3 0.5 20 60 vertical

refilling trachyte 4 1

CF-4 resident phonolite 3 0.5 20 60 horizontal

refilling trachyte 4 1

CF-5 resident phonolite 3 0.5 1 60 horizontal

refilling trachyte 3 0.6

CF-6 resident trachyte 4 1 1 60 horizontal

refilling phonolite 3 0.5

CF-7 resident phonolite 3 0.5 1 6 horizontal

refilling trachyte 4 1

CF-8 resident phonolite 3 0.5 1 6 horizontal

refilling trachyte 3 0.6

CF-9 resident phonolite 3 0 1 6 horizontal

refilling trachyte 3 0.1

Table 10.3: Simulations performed with GALES. For each case, composition

and total volatile content of resident and refilling magma, overpressure

assigned at dyke base, dyke width and chamber orientation are reported

(fig. 10.6) confirms that all of the simulations apart from case CF-6 (fig. 10.6

(f)) are gravitationally unstable, since the trachyte turns out to be lighter than

the phonolite. Cases CF-5 and CF-6 show a lower density contrast due to the

lower gas content of the trachyte. The viscosity of trachyte (fig. 10.7) ranges from

103 − 104Pa · s, depending on pressure and water content; phonolite viscosity is
less than that of trachyte by about an order of magnitude.
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Figure 10.4: Initial pressure profile in the case of no overpressure (green

line), overpressure of 1 MPa (blue line) or 20 MPa (red line).

10.2 Results

The employed code GALES allows the investigation of many features of the

simulated dynamics, including the time-step evolution of magma composition,

density, viscosity, gas volume and composition, dissolved volatile fraction, mass,

velocity and pressure.

Simulation Time (s)

CF-1 380

CF-2 735

CF-3 295

CF-4 365

CF-5 1405

CF-6 1650

CF-7 1280

CF-8 1855

CF-9 2260

Table 10.4: Simulated time

Table 10.4 shows the simulated times for all

cases in table 10.3. Simulations CF-1, CF-3, CF-4

last less than the others because they have been

performed with the first version of GALES, not yet

parallelized therefore much less performing; the

parallelization of the code has been completed dur-

ing the second year of my PhD.

Unfortunately, simulations with narrow feed-

ing dyke (CF-7 to CF-9) have shown remarkable

convergency problems that are yet under study.

Therefore, the results from these simulations are

not discussed in this thesis.

Movies showing the simulated dynamics for all of the cases can be found in

the cd attached to this thesis.
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Figure 10.5: Initial gas fraction distribution with respect to depth for all the

simulations reported in table 10.3.
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Figure 10.6: Density profile with depth at time = 0 s for all the simulations

reported in table 10.3.
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Figure 10.7: Initial viscosity profile with depth for all the simulations re-

ported in table 10.3.
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Simulations CF-1

Results for simulation with volatile-rich magmas, initial overpressure of 1

MPa, horizontal chamber anddykewidth of 60m (CF-1) are shown in figures 10.8-

10.15. Figure 10.8 illustrates the evolution of magma composition and the velocity

field at different times up to 380 s; deep red is equivalent to 100% phonolite, deep

blue to 100% trachyte. The overpressure applied at dyke base and the buoyancy

force (due to the negative density contrast) imply the formation of a plume after

about 30-40 s (fig. 10.8(b)). The plume rises along the chamber axis and reaches

the chamber roof after about 120 s (10.8(c) and (d)). During its ascent, the plume

grows because pressure decreases with depth and, therefore, volatile exsolution

and gas expansion cause plume volume expansion. Later, the plume spreads

close to the chamber top (fig. 10.8(e)). As a consequence of newmagma entrance,

mixing and convection at global scale are triggered. Two main vortexes develop,

one in the lower part of the chamber, the other in the upper one (best visible in

fig. 10.8(f)); the latter shows an oscillatory behaviour with direction reversals

due to the balance between inertial and buoyancy forces: the inertial force, due

to the ascent thrust, induces a clockwise rotation with the new entered magma

moving from the chamber top to its middle along the chamber wall; the buoyancy

force due to lower density of the injected magma counteracts this movement

and induces an anticlockwise rotation moving the light magma up again (fig.

10.8(f) and (g)). The maximum velocity within magma chamber is about 15 m/s,

achieved after 2 minutes, when the plume is approaching the chamber roof. After

an initial injection of trachyte, at about 60 s the resident phonolite is forced to

enter the feeding dyke (fig 10.8(c)) being displaced down for about 500 m within

it. The whole dynamics result in the rapid disappearance of the phonolitic end-

member component, whereas the upper portion of the chamber is occupied by

magma with nearly pure trachytic composition (fig. 10.8(h)). At dyke base the

initial overpressure involves an initial small injection of new trachyte, followed

by a downwards magma flowwith maximum velocity of about 20 m/s computed

after 140 s. Figure 10.9(a) shows that the mass flow rate at chamber and dyke

inlet shows oscillations of decreasing amplitude and period of about 100 s; the

maximum mass flow rate per unit length is about 3 · 105 kg/m s at chamber inlet
and 3.5 · 105 kg/m s at dyke base (fig. 10.9(a)). As a result, while the trachyte
progressively replaces the phonolite in the chamber, the total mass within the
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Figure 10.8: Evolution of magma composition for simulation with volatile-

rich magmas, ∆P = 1 MPa, horizontal chamber and wide dyke (CF-1).

Each panel shows the phonolite fraction and velocity vector within magma

chamber and the first 400 m of dyke at different times.

chamber slightly increases in the initial stage, then decreases with time while

dense phonolite exits the chamber (fig. 10.9(b)); the total decrease of mass per

unit length within the chamber is about 3 · 107kg/m, or 10% of the initial mass.
Figures 10.10 and 10.11 show time evolution of mixture density and gas phase

distribution for the same simulationCF-1 reported infigures 10.8 and 10.9. During

its rise along the chamber axis, the plume becomes less and less dense and it

expands (figs. 10.10, 10.11 (c) and (d)); the plume is, in fact, volatile rich and

the pressure drop with depth triggers volatile exsolution and expansion, hence,
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Figure 10.9: (a) Mass flow rate computed at dyke base (blue) and chamber

inlet (red) for case CF-1; (b) mass change in the chamber with time for mix-

ture (black), trachytic (blue) and phonolitic (red) component in the chamber

for simulation CF-1.

density decrease. The average density in the chamber decreases and the gas

fraction increases with time as a consequence of the increasing content of the light

trachytic magma (figs. 10.10, 10.11 (f), (g) and (h)). The pressure variation along

chamber and dyke walls (fig 10.12, left) shows oscillations which tend to stabilise

at an overpressure of 1 MPa equal to the driving pressure; the oscillating period

is of order of 100 s in agreement with that of the mass flow rate (fig 10.9(a)). The

pressure peak occurs after about 120 s, corresponding to the plume arrival to the

chamber top and it is 4-5 times greater than the initial overpressure. The pressure

changes have been filtered with a band-pass filter with cut-off frequencies of

0.025 and 10 Hz (corresponding to a period of 40 and 0.1 s, respectively) in order

to highlight high frequency pressure changes computed by the model. These

oscillations (right in fig. 10.12) have an amplitude of tens of kPa.

By integrating the contribution to the gravity field of each mass parcel dur-

ing the simulated dynamics, the gravity change at the Earth surface has been

calculated. This quantity corresponds to the residual of the gravity change af-

ter correction for ground deformation (free-air corrected gravity change). The

gravity changes have been computed assuming a third dimension of the magma

chamber equal to 2 km; this length allows to preserve the assumption of two-

dimensional dynamics since it is 5-10 times greater than the chamber dimensions

over which the dynamics are calculated. The consequent chamber volume of 0.5
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Figure 10.10: Evolution of mixture density (expressed in kg/m3 ) for simu-

lation CF-1. Each panel displays results for magma chamber and the first

400 m of dyke at different times.

km3 is sufficiently small to ensure that such a chamber would not be imaged by

today seismic tomographies (see chapter 9), and it is in agreement with small

(< to ≪ 1 km3 ) erupted volumes during last epoch of Campi Flegrei activity

(see chapter 9). Figure 10.14 shows the vertical and horizontal components of the

gravity changes at three distances from the chamber axis corresponding to 140

m (black line), 1500 m (red line) and 3200 m (blue line); figure 10.15 shows the

gravity changes at given times as a function of the distance from chamber axis,

computed along a direction perpendicular to the 2 km long main chamber axis

and cutting the chamber along its middle (fig. 10.13).

As expected, the maximum vertical gravity change occurs above the cham-
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Figure 10.11: Evolution of gas phase distribution (expressed in volume %)

for simulation CF-1. Each panel displays results for magma chamber and

the first 400 m of dyke at different times.

ber axis where, instead, the horizontal gravity change is zero. The maximum

variation of the horizontal component is achieved about 2 km away from the

chamber axis. The gravity changes display an oscillating trend correlated to the

mass and pressure changes (fig. 10.14). The vertical anomaly is initially slightly

positive, then it becomes markedly negative achieving values as large as -70 µGal

(fig. 10.14(b)). The negative values are due to progressive replacement of dense

phonolite by light trachyte as shown in figures 10.8 and 10.11. The maximum

horizontal gravity change has a peak value of 25 µGal. The change in the sign of

the gravity change occurs when the plume reaches the chamber top. It is worth
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Figure 10.12: Total pressure changes (left) and filtered pressure changes

(right) computed at (a) chamber top, (b) chamber inlet and (c) along the dyke

wall, at 3.4 km depth for simulation CF-1. Pressure has been filtered with a

band-pass filter with cut-off frequencies of 0.025 and 10 Hz (corresponding

to a period of 40 and 0.1 s, respectively)

noting that both the horizontal and vertical anomalies arewell above the detection

limit of monitoring instruments.

Simulations CF-2

Results for simulation CF-2 with volatile-rich magmas, no overpressure, hor-

izontal chamber and wide dike, are show in figures 10.16 - 10.21; the simulation

conditions are equal to those of the reference case CF-1 illustrated above, except

for the initial condition of no overpressure. Therefore, comparison between sim-
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Figure 10.13: Planar view of the section along which gravity profiles are

computed.
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Figure 10.14: Horizontal (a) and vertical (b) component of free-air corrected

gravity changes vs. time for simulation CF-1. Profiles have been calculated

for three distances from the chamber axis on the earth surface: 140m (black),

1500 m (red), 3200 m (blue)

ulation CF-2 and CF-1 allows addressing the respective relevance of buoyancy

and overpressure, or natural vs. forced convection, in the simulated dynamics.

Convection and mixing dynamics due to pure buoyancy are very similar to

those induced when an additional overpressure of 1 MPa is also applied. In this

case, however, the dynamics have been studied up to a much longer time of 735

s, more than twice that of case CF-1. The trachyte-rich plume starts growing and

rising along the chamber axis at about 30-40 s (fig. 10.16(b) and (c)). It reaches

the chamber roof after about 120 s (fig. 10.16(d)) and spreads laterally triggering
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Figure 10.15: Horizontal (a) and vertical (b) component of free-air corrected

gravity changes with respect to distance from the chamber axis at fixed

times, computed for simulation CF-1.

convection and mixing at global scale (fig. 10.16(e) and (f)). Meanwhile, part

of the resident phonolite is pushed out of the chamber into the dyke. As in the

previous case, after about 150 s the inertial force of the light injected magma is

balanced by the buoyancy force due to density lower than that of resident magma

(fig. 10.17) and the new light magma begins to go back upwards. Two vortexes

form: one, in the upper part of chamber spins anticlockwise whereas in the lower

half of chamber, a more efficient vortex rotates clockwise (fig. 10.16 (e) and (f)).

From about 400 s the vortexes break out in a few convective cells; afterwards,

convection tends to run out. After 700 s (fig. 10.16 (h)) the phonolitic end-

member component has totally disappeared from the chamber, and the magma is

approaching compositional homogeneity, at around70-80% trachyte. With respect

to the reference simulation, the dynamics induced by pure buoyancy produces a

more regular convection pattern. Density and gas phase distribution for the two

simulations (figs. 10.10-10.11 for case CF-1 and figs. 10.17-10.18 for case CF-2)

match; the maximum achieved velocities also correspond. At simulation end, the

chamber is gravitationally layered, with density from 1800 to 1900 kg/m3 and a

gas fraction ranging from 18 to 23 vol% .

Mass changes with time and mass flow rate at chamber inlet and dyke base

are shown in figure 10.19. As for the reference case, the mass flows are mainly

negative and tend to run out oscillating with a period of about 100 s. The mass

flow rate through the chamber inlet shows a small positive initial peak related to

the plume formation, as for case CF-1; smaller plume corresponds to smaller mass
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Figure 10.16: Evolution ofmagmas distribution for simulation of pure buoy-

ancy (CF-2). Each panel shows the phonolite fraction and velocity vector

within magma chamber and the first 400 m of dyke at different times.

flow rate peak. The mass flow at dyke base is greater then that at chamber inlet

with maximummass flow rate per unit length of 4 ·105 kg/m s and 3.5 ·105 kg/m s
respectively, corresponding to downwards flows. This values are slightly bigger

than that computed for the reference case because of the absence of overpressure

that opposes magma outflow. Even in this simulation, a massive replacement of

phonolite in favour of trachyte occurs within the chamber, causing the chamber

mass to decrease with time (black line in figure 10.19(b)). Figures 10.20 and 10.21

show the vertical and horizontal components of gravity changes, respectively, at
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Figure 10.17: Evolution of mixture density (expressed in kg/m3 ) for simu-

lation CF-2. Each panel displays results for magma chamber and the first

400 m of dyke at different times.

the same three distances as for figure 10.14 above and at different times. The

gravity starts to appreciably change after 70 s, with a trend strictly correlated

with mass variation. The horizontal component varies up to about 30 µGal; the

peak values occur 2 km away from the chamber axis, as for the previous case.

The maximum vertical anomaly is about -85 µGal, and it tends to stabilise after

400-600 s, depending on distance (fig. 10.21).

Figure 10.22 shows the pressure variation with time before (left) and after

(right) applying the band-pass filter. The pressure behaviour is similar to that
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Figure 10.18: Evolution of gas phase distribution (expressed in volume %)

for simulation CF-2. Each panel displays results for magma chamber and

the first 400 m of dyke at different times.

of the previous simulation. Pressure diplays oscillations with a period of about

100 s which tends to grow faintly with time. Differently from CF-1, there is no

initial small peak in pressure (see fig. 10.12 left); the maximum overpressure

achieved is 4 MPa at 120 s, corresponding to the arrival of plume at chamber

top; moreover, there is not any residual overpressure at long times, according to

the no-overpressure initial condition. The filtered pressure shows high frequency

oscillations with peak amplitudes similar to those for case CF-1, reported in figure

10.12 right, but significantly lower average amplitude.
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Figure 10.19: Mass flow rate and mass change with time for simulation CF-

2.(a) Mass flow rate computed at dyke base (blue) and chamber inlet (red);

(b) mass of mixture (black), trachytic (blue) and phonolitic (red) component

in the chamber.
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Figure 10.20: Horizontal (a) and vertical (b) component of free-air corrected

gravity changes vs. time for simulation CF-2. Profiles have been calculated

for three distances from the chamber axis on the earth surface: 140m (black),

1500 m (red), 3200 m (blue)

Simulations CF-3

Results for simulationwith an applied overpressure of 20MPa and an horizon-

tal chamber (CF-3) are shown in figures 10.23 - 10.28. In this case the conditions

are the same as for the reference case CF-1, except for the very high overpres-

sure at dyke base. Therefore, comparison between cases CF-3 and CF-1 allows

an investigation of the effects of largely different overpressure on the simulated

dynamics.
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Figure 10.21: Horizontal (a) and vertical (b) component of free-air corrected

gravity changes with respect to distance from the chamber axis at fixed

times, computed for simulation CF-2.
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Figure 10.22: Pressure changes and filtered oscillations computed at (a)

chamber top and (b) chamber inlet for simulation CF-2. Pressure has been

filtered with a band-pass filter with cut-off frequencies of 0.025 and 10 Hz

(corresponding to a period of 40 and 0.1 s)

The simulated dynamics are similar to the previous ones, but they are acceler-

ated as a consequence of the larger overpressure. The plume starts growing after

only 10 s (fig. 10.23(b)) and reaches the chamber top in one minute (fig. 10.23(d)).

As observed above, while the lighter trachytic magma enters the chamber, part of
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the denser phonolitic magma is pushed down in the dyke. Efficient convection

andmixing are triggered at the whole chamber scale; a main central vortex drives

the new entered mass from the chamber top towards the middle of the chamber

(fig. 10.23(e)). After about 2 minutes, the buoyancy force on the light trachytic

magma prevails, and begins to push the plume back to the chamber top. At this

time, two main vortexes form (fig. 10.23(f)): the bigger one takes up the upper

part of the chamber and it rotates anticlockwise; the other, near the chamber inlet,

has a clockwise rotation. After 200 s, the convection pattern begins to be more

irregular (fig. 10.23(g)). At the last simulated time (fig. 10.23(h)), the composition

is mainly trachytic in the upper part of the chamber and half-half trachytic and

phonolitic in the lower one. The maximum velocity is about 15 m/s and it is

achieved when the plume reaches the chamber top.

Figure 10.24(a) shows that the mass flow through the chamber inlet is mainly

downwards except in the first 40 s when the plume develops; the mass flow at

dyke base displays the same behaviour but larger values. The maximum flow

rate per unit length is 5.5 · 105 kg/m · s and 3.5 · 105 kg/m · s at dyke and chamber
entrance, respectively. The mass flow rate oscillates with a period of about 70

s, shorter than for the previous simulations. After an initial increase due to

the injection of trachyte, the mass within the chamber decreases with time (fig.

10.24(b)); the final mass is about 8% less than the initial one. As for CF-1 and

CF-2, this decrease is due to the replacement of the resident phonolite by the light

trachyte, which after 165 s becomes the major component within the chamber.

The initial high overpressure causes a global increase of pressure, with a peak in

overpressure of 30-40 MPa, up to twice the applied overpressure (fig. 10.25, left).

This peak is larger then the tensile strength ofmost natural rocks (Chau andWong,

1996; Roche and Druitt, 2001; Zhang, 2002) and it probably would produce wall

rock fracturing and, maybe, trigger an eruption. Differently from the reference

case (fig. 10.12), the maximum of pressure occurs after 30 s, when the plume is

only halfway along the axis and it is not preceded by a first smaller peak. The

pressure oscillations along the system walls tend to smooth down with time and

stabilise to a value corresponding to the driving pressure of 20 MPa (fig. 10.25,

left). Applying a band-pass filter, pressure oscillations are spotlighted as in the

previous cases. Except for the first large peak of the order of thousands kPa, the

oscillation amplitude is of tens to a few hundreds of kPa (fig. 10.25, right). The
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Figure 10.23: Evolution of magma composition for simulation with an ap-

plied overpressure of 20 MPa and an horizontal chamber (CF-3). Each panel

shows the phonolite fraction and velocity vector within magma chamber

and the first 400 m of dyke at different times.

mixture density variations with time are shown in figure 10.26. The initial global

pressure increase involves an initial density increase (fig. 10.26(c)); afterward,

because of pressure decrease and dominant presence of light trachytic magma,

magma density decreases below the initial values.

The computed vertical and horizontal components of gravity anomaly are

shown in figures 10.27 and 10.28. An initial negative peak of the horizontal

component and contemporaneous positive peak of the vertical one occur after
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Figure 10.24: Mass flow rate and mass change with time for simulation CF-

3.(a) Mass flow rate computed at dyke base (blue) and chamber inlet (red);

(b) mass of mixture (black), trachytic (blue) and phonolitic (red) component

in the chamber.
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Figure 10.25: Pressure changes (left) and filtered oscillations (right) com-

puted at (a) chamber top and (b) along the dyke wall for simulation CF-3.

Pressure has been filtered with a band-pass filter with cut-off frequencies of

0.025 and 10 Hz (corresponding to a period of 40 and 0.1 s). The right plots

have y limits that cut the maximum oscillation but enable to observe the

other oscillations
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Figure 10.26: Evolution of mixture density (expressed in kg/m3 ) for simu-

lation CF-3. Each panel displays results for magma chamber and the first

400 m of dyke at different times.

about 30 s, in correspondence of the maximum pressurisation of the chamber

(green lines in figure 10.28). From this time, the vertical anomaly decreases

and becomes negative reaching a maximum value of -35 µGal. The horizontal

component increases up to 15 µGal.

Simulations CF-4

Results for case CF-4 are shown in figures 10.29 - 10.34. The initial conditions

are the same of case CF-3, except for the chamber orientation which is taken
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Figure 10.27: Horizontal (a) and vertical (b) component of free-air corrected

gravity changes vs. time for simulation CF-3. Profiles have been calculated

for three distances from the chamber axis on the earth surface: 140m (black),

1500 m (red), 3200 m (blue)
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Figure 10.28: Horizontal (a) and vertical (b) component of free-air corrected

gravity changes with respect to distance from the chamber axis at fixed

times, computed for simulation CF-3.

vertical in this case. Comparison between cases CF-4 and CF-3 allows therefore

an evaluation of the effects of different prolate vs. oblate chamber geometry.

The plume starts growing after 10 s and reaches the chamber top after 190 s (fig.

10.29(b) and (f)). In this case, closeness of the chamber walls to the rising plume

causes plume ramification and break; as a consequence, mixing between resident

and new magma is very efficient during plume rise. The elongated geometry

prevents the formation of large vortexes and enhances amore complex convection

pattern. Panels (f)-(g) in figure 10.29 and 10.23 show that the dynamics within

89



10. Simulations of fluid dynamics

the vertical chamber are more efficient in removing the resident phonolite than

for the horizontal chamber. Initially, when the plume forms, the mass flow (fig.

Figure 10.29: Evolution of magma composition for simulation CF-4. Each

panel shows phonolite fraction within magma chamber and the first 400 m

of dyke at different times.

10.30(a)) is mainly upwards; afterwards, it becomes mainly downwards when

the phonolite starts to exit from the chamber. The period of flow oscillations is

about 70 s, with peak values of mass flow rate per unit length of 3.75 · 105 kg/m · s,
slightly greater than that computed for case CF-3. The mass flow through the

dyke base shows the same trend with maximum of 6 · 105 kg/m · s. As for the
previous simulations, the chamber mass (fig. 10.30(b)) is initially increased by the

injected trachyte, and then it gradually decreases because of the replacement of

phonolite by trachyte.

As for case CF-3, the pressure within chamber and along the system walls

increases of maximum 30-40MPa, twice the applied overpressure (fig. 10.31,left).

The overpressure oscillates with a period of about 70 s and tends to a value of

20 MPa, equal to the driving pressure. The filtered pressure (fig 10.31, right)

shows a trend similar to that of case CF-3 in figure 10.25. As for simulation

CF-3, the initial large pressure increase causes volatiles dissolution accompanied

by density increase (fig. 10.32(b) and (c)). The following pressure decrease and

mixing between volatile-rich trachyte and phonolite produces volatiles exsolution
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Figure 10.30: Mass flow rate and mass change with time for simulation CF-

4.(a) Mass flow rate computed at dyke base (blue) and chamber inlet (red);

(b) mass of mixture (black), trachytic (blue) and phonolitic (red) component

in the chamber.
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Figure 10.31: Pressure variation and filtered oscillations computed at (a)

chamber top and (b) chamber inlet for simulation CF-4. Filtered pressure

has been obtained with a band-pass filter with cut-off frequencies of 0.025

and 10 Hz (corresponding to a period of 40 and 0.1 s respectively). The right

plots have y limits that cut the maximum oscillation but enable to observe

the other oscillations
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and density decrease of the new entered mass and in all the chamber.

Figure 10.32: Evolution of (a) density (kg/m3 ) and (b) gas phase fraction

(volume %) for simulation CF-4. Each panel shows results within magma

chamber and the first 400 m of dyke at different times.

Figures 10.33 and 10.34 show that the calculated gravity anomaly is very

similar to that obtained for the previous CF-3 case.

Simulations CF-5

Results for simulation with volatile-poor trachyte (3 wt% total H2O and 0.6

wt% total CO2 ), 1 MPa of driving pressure and horizontal chamber (CF-5), are

shown in figures 10.35 - 10.38. The conditions of this simulation are the same as for

reference case CF-1, except for the lower volatile content of the trachyte, which is

the same as for phonolitewith the addition of 0.1wt%CO2 . Comparison between

cases CF-5 and CF-1 allows therefore an evaluation of the role of different CO2
concentrations in inducing convection and mixing dynamics within the magma

chamber.

The lower buoyancy due to lower volatile content of the trachytic magma and

smaller density difference between trachyte andphonolite cause the plume to take

more time to develop, and results in much lower mass of trachyte entering the

chamber. After about 180 s (fig. 10.35(a)), the trachyte starts to enter the chamber;
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Figure 10.33: Horizontal (a) and vertical (b) component of free-air corrected

gravity changes vs. time for simulation CF-4. Profiles have been calculated

for three distances from the chamber axis on the earth surface: 140m (black),

1500 m (red), 3200 m (blue)
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Figure 10.34: Horizontal (a) and vertical (b) component of free-air corrected

gravity changes with respect to distance from the chamber axis at fixed

times, computed for simulation CF-4.

it rises along the chamber axis reaching the roof after 370 s (fig. 10.35(d)) and then

spreading laterally (fig. 10.35(e) and (f)). At the meantime, batches of phonolite

go down in the dyke (fig. 10.36). Because of the small density contrast, convection

is not very efficient, with maximum velocity of 8-9 m/s; well-developed vortexes

are not observed to form. After 1400 s, the chamber composition is still mainly

phonolitic, with a fraction of trachyte less than 30% (fig. 10.35(g)).

Figure 10.37 shows that themass flow rate per unit length through the chamber

inlet is small, with maximum value of 2 ·104 kg/m · s, 10 times or more less than in
previous cases. Contrary to the above simulations, the mass flow rate oscillates
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Figure 10.35: Evolution of magma composition for simulation CF-5. Each

panel shows phonolite fraction within magma chamber and the first 400 m

of dyke at different times.

around zero for about 500 s, smoothing down to zero at larger times. The period

of oscillation is of 75 s. This behaviour corresponds to an intermittent plume (fig.

10.35); for the same reason, the downward motion of phonolite is not continuous

producing pockets of phonolite-rich magma within the trachyte (fig. 10.35, (e)

to (h)). The mass flow through the dyke base is also small, with a peak in

flow rate per unit length of 2 · 104 kg/m s . A consequence of this small mass
exchange between dyke and chamber is that the gravity changes are very small,

with maximum vertical anomaly of ± 2µGal (figs. 10.38, 10.39). Such values are
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Figure 10.36: Magma composition (reported as phonolite fraction) at 480 s,

for simulation CF-5. Zoom of the region near the chamber inlet.
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Figure 10.37: Mass flow rate at dyke base (blue) and chamber inlet (red) for

simulation CF-5.

below the detection limit of monitoring techniques.

Figure 10.40 shows that even if the dynamics are not very efficient, pressure

oscillations occur with peak increase of pressure of 1.5 MPa; pressure tends to

stabilise to an overpressure of 1 MPa, equal to the driving pressure.

With respect to the previous cases, CF-5 is remarkable since it shows that a
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Figure 10.38: Horizontal (a) and vertical (b) component of free-air corrected

gravity changes vs. time for simulation CF-5. Profiles have been calculated

for three distances from the chamber axis on the earth surface: 140m (black),

1500 m (red), 3200 m (blue)
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Figure 10.39: Horizontal (a) and vertical (b) component of free-air corrected

gravity changes with respect to distance from the chamber axis at fixed

times, computed for simulation CF-5.

small density contrast induced by small difference in volatile content results in

much lower mass of magma injected into the chamber (3 · 107 vs 1.5 · 108 kg/m)
and much larger time scale of magma convection and mixing (tens of minutes vs.

minutes).

Simulations CF-6

The results for simulation CF-6, where the gravitationally stable condition

is investigated, are shown in figures 10.41-10.45. Even if an overpressure of

1 MPa is applied to the dyke base, the positive density contrast impedes the

96



10. Simulations of fluid dynamics

0 500 1000 1500
70

70.5

71

71.5

72

time (s)

M
P

a

(a) chamber top, depth = 3 km

0 500 1000 1500
78

78.5

79

79.5

80

time (s)

M
P

a

(b) chamber inlet, depth = 3.4 km

Figure 10.40: Pressure changes computed at (a) chamber top and (b) chamber

inlet for simulation CF-5.

Figure 10.41: Evolution of magma composition for simulation CF-6. Each

panel shows results within magma chamber and the first 400 m of dyke at

different times.

injection of phonolite into the trachytic magma chamber (fig. 10.41) and mixing

and convection are not triggered. The maximum computed velocities are 1 m/s

and 2 m/s within chamber and dyke respectively. Figure 10.42 shows that mass

flow through the chamber inlet and dyke base is small, up to 3.5 · 104 kg/m · s;
this flow is not related to a plume formation but only to small oscillations of the

magmas interface (fig. 10.41), with period of about 90 s. Pressure changes are

similar to those for the previous CF-5 case (fig. 10.43): oscillations with a period of

90 s and a peak overpressure of 1.5 MPa. After about 600 s, the pressure tends to

stabilise to an overpressure of 1MPa, equal to the driving pressure. Figures 10.44

and 10.45 show that the small mass displacement induces a small gravity change,
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Figure 10.42: Mass flow rate at dyke base (blue) and chamber inlet (red) for

simulation CF-6.
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Figure 10.43: Pressure changes computed at (a) chamber top and (b) chamber

inlet for simulation CF-6.

not detectable frommonitoring instruments. Unlike the previous simulations, the

vertical anomaly is positive because of pressurisation and density increase within

the chamber.

10.3 Discussion

The present simulation results illustrate a number of processes characterising

the dynamics of recharge of shallow magma chambers. which were never shown

before. Some of them are not immediately intuitive, like the relatively small time

scales (minutes to tens of minutes) associated with plume rise, magma convection

and mixing, or like the negative gravity residuals associated with the arrival of

deepmagma at shallowdepth. These results were obtained by taking into account

the main forces acting on the simulated system, and represented by pressure
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Figure 10.44: Horizontal (a) and vertical (b) component of free-air corrected

gravity changes vs. time for simulation CF-5. Profiles have been calculated

for three distances from the chamber axis on the earth surface: 140m (black),

1500 m (red), 3200 m (blue).
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Figure 10.45: Horizontal (a) and vertical (b) component of free-air corrected

gravity changes with respect to distance from the chamber axis at fixed

times, computed for simulation CF-6.

force, gravity/buoyancy force, inertial force, and friction force. It is the complex

interplay between all of these forces, combinedwith the system definition for each

simulation, which determines the time-space evolution of the system. In order

to take into account realistic conditions of magma dynamics, multicomponent

gas-liquid equilibrium, liquid magma density and viscosity are modelled as a

function of composition in terms of major oxides, and the effects of gas bubbles

are accounted for. Magmatic properties also vary in space and time, according

to the local conditions. Magma compressibility is fully accounted for, allowing

consideration of anypossible gas volume fraction anddensity change, and leading
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to confident calculation of the magma flow dynamics over the entire spectrum of

the considered conditions.

The major limits of the present analysis are represented by the assumption of

Newtonian rheology, the assumed isothermal flow conditions, the homogeneous

flow assumption implying no separation between liquid and gas phases, the

neglect of crystallization, and the 2D approximation. These limits require a brief

discussion in order t evaluate their relevance for the obtained results.

Newtonian rheology

Liquid magma behaves as a Newtonian liquid, unless the rate of strain be-

comes so large to approach the critical rate for magma rupture (Dingwell and

Webb, 1989). This condition leads to magma fragmentation in volcanic conduits,

where the rate of strain can be of order 10 s−1 (Papale, 1999). Calculated rates

of strain in the present simulations are several orders of magnitude lower, ensur-

ing that liquidNewtonian rheology can be confidently assumed. Non-Newtonian

pseudo-plastic (shear thinning) behaviour can occur at significantly lower rates of

strain in liquid-crystal mixtures when the solid fraction exceeds 30 vol% (Caricchi

et al., 2007). Crystals have been neglected in the present simulations. However,

volcanic products at Campi Flegrei typically show low crystal contents around

10 vol% or less, suggesting that crystal-induced non-Newtonian rheology was

unimportant. Finally, bubble suspensions may display shear-thinning behaviour

when the capillary number Ca =
µdBγ̇
σ
≈ 1 (Llewellin and Manga, 2005), where

µ is liquid viscosity, dB is the undeformed bubble diameter, γ̇ is rate of strain,

and σ is surface tension at the gas-liquid interface. In the range of conditions of

our simulations, non-Newtonian rheology requires dB > 200 µm. However, the

maximum 20% gas volumes in the simulations, together with an assumed bubble

number density of 1015m−3 (Cashman et al., 2000), results in an average bubble

diameter< 10 µm,well below the size required for significant bubble deformation

and appearance of shear thinning.

Isothermal flow

The repsent simulations consider the existence of a magma chamber con-

nected with a deep feeding region. In such a system, the magma is assumed to

have resided for sufficiently long time at shallow level, so that awell-develop tem-

perature profile already exists in the rocks immediately surrounding the chamber.

In such a case, significant cooling is not expected to occur over the short time-scales
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(minutes) of the present simulations. Temperature changes may originate if the

two phonolitic and trachytic magmas involved in the convection dynamics have

originally a different temperature. A temperature of about 950 ◦C is estimated for

the trachytic magma entering the shallow phonolitic chamber prior to the 4100 BP

Agnano-Monte Spina eruption (Rutherford and coll., 2004). Unfortunately, the

temperature of the phonolitic magma for that eruption is not know. Magma tem-

perature estimates for a number of Campi Flegrei eruptions show values between

900 and 1000 ◦C in 80 % of cases (Sbrana, INGV-DPC Project V3_2 Campi Flegrei:

Final report). Thus, it is likely that if there was a temperature difference between

the two magma types, this was less than 5% . Taking the same temperature for

the two magma types is therefore not expected to be a major assumption.

Homogeneous flow

The numerical code GALES employed for the present simulations treats the

magmatic mixture as an homogeneous “pseudofluid”, that is, a hypothetical one-

phase fluid with properties accounting for the presence of different phases, like

the silicate liquid and the gas bubbles (or crystals). This is a classical approach

in fluid dynamics, which is justified as long as the true phases can be assumed

to be characterized by the same velocity pattern. In the present case of gas

bubble suspension in a melt, the balance between buoyancy and friction force

on suspended gas bubbles determines whether the homogeneous assumption is

justified or not. Such a balance is conveniently expressed by the Archimedes

number referred to gas bubbles ArB =
gdBρL

(

ρL − ρG
)

µ2
(similar to Ar for the flow

already introduced in section 10.2), where g is gravity acceleration, dB is bubble

diameter, ρL and ρG are liquid and gas density, respectively, and µ is liquid

viscosity. However, even in cases where buoyancy dominates over friction, the

homogeneous assumption can be still justified if inertia dominates over buoyancy,

forcing the dispersed gas bubbles to follow the general flow pattern rather than

separating from it.

In the range of conditions determined from the present simulations, the largest

values or Ar are of order 10−14 , signifying that the gas bubbles and the liquid are

fully coupled and that homogeneous flow is a well justified assumption.

Neglect of crystallization

Although small or negligible temperature changes may occur over the sim-
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ulated tome scales of magma ascent and convection, crystallization to a cer-

tain extent is expected to occur as a consequence of supersaturation induced by

H2O exsolution and associated rise of liquidus surface, as well as of fugacity

changes due to compositional changes upon magma mixing. Crystal nucleation

and crystal-liquid reactions would cause a number of changes in fluid properties

due to changes in liquid composition, crystal concentration, and concentration of

volatiles with respect to the liquid. The effects of such changes on magma flow

dynamics are highly non-linear, and can result in significant (Neri et al., 2003). Al-

though crystal concentration in Campi Flegrei volcanic products of the last epoch

of activity are in general confined to < 10-20 vol% with typical scarce or no micro-

lites, there is evidence of crystal-liquid reactions and re-equilibration consequent

to trachytic magma injection into the shallow phonolitic magma chamber of the

4100 BP Agnano-Monte Spina eruption (Rutherford and coll., 2004). As a conse-

quence, a more sophisticated investigation accounting for liquid-crystal reactions

is required in future more advanced modelling of magma chamber processes.

2D approximation

The present simulations assume cartesian 2D coordinates, implying that the

third not-considered dimension must be much longer than the two dimensions

over which the computation is done. The computational plane is therefore repre-

sentative of the conditions on every plane perpendicular to the longest dimension,

provided that such a plane is located sufficiently far from the neglected system

borders. Such an assumption limits the investigation to a restricted type ofmagma

chamber geometries for which one dimension is much larger than the remaining

two. Accordingly, gravity changes computed in the previous section assume a

third not-simulated chamber axis one order onmagnitude larger than thosewhich

constitute the computational domain. The present 2D assumption is therefore not

adequate for, e.g., spherical magma chamber, or for chamber fed by a cylindrical

conduit rather than by a dyke. For the geometries considered in the present sim-

ulations, the present 2D assumption is adequate as long as side effects close to the

edge of the not-simulated chamber and dyke axis can be neglected.

After having pointed out the advantages and limits of the present investi-

gation, the results of the numerical simulations can be better understood and

102



10. Simulations of fluid dynamics

discussed.

Time scale of magma convection and mixing

The first relevant point emerging from the present results is represented by

the relatively short time scale of magma convection and mixing, of the order of

minutes to a few tens of minutes in the considered cases. As said above, un-

fortunately, numerical simulations made with a 10 times narrower feeding dyke

(case CF-7-CF-9 in table 10.3)were affected by bad numerical convergence and too

large numerical residuals, therefore, they are not useful for this study. However,

a rough indication on the time scale can be extracted. Although poorly confi-

dent, those simulations point to time scales of the order of a few to some tens of

minutes for magma convection and mixing in the magma chamber. There is no

independent evaluation of such time scales for real case at Campi Flegrei or for

other volcanoes in the world, which is an important limit in that it does not allow

comparison with other observations or results. There are however some indirect

indications that concur to suggest relatively short time scales for such processes.

One of such indications comes from the Agnano-Monte Spina eruption. As al-

ready reported above, experimental liquid-solid equilibrium studies (Rutherford

and coll. (2004), Rutherford from INGV-DPC Project V3_2 Campi Flegrei: Final

report) suggest that a shallow chamber hosting magma with phonolitic composi-

tion, which was invaded by deep CO2 -rich trachytic magma on a time-scale of

1 day before the eruption. The erupted composition is however mostly trachytic,

without any evidence of the two compositions involved in the mixing process

at the scale of chemical analyses. This suggests that mixing was very efficient

on a time scale less than 1 day. This suggestion is consistent with our results.

As already explained, mixing is referred to in the numerical simulations only as

a macroscopic process on a spatial scale comparable with that of computational

node spacing (3 to 30 m). Such a macroscopic mixing is found to occur efficiently

on the time scale of minutes to tens of minutes depending on the simulation con-

ditions. It is therefore well possible, based on our results, that chemical mixing

enhanced by such an efficient mechanical mixing takes only a matter of hours to

homogenise the liquid composition. It can be noted that the disappearance of the

phonolitic magmatic and-member in the chamber after convection and mixing in

favour of < 80 wt% trachyte occupying most of the volume (cases CF-1-CF-4) is

perfectly consistent with the mainly trachytic composition for the Agnano-Monte
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Spina eruption and chamber processes as revealed by experimental petrology.

Magma dynamics

The present numerical results show that all examined cases, where an upward

positive density gradient is assumed, buoyancy plays a dominant role in the

processes. This is well shown by the substantial similarity of the simulated

dynamics in cases CF-1 to CF-3, where the applied overpressure is varied from

0 to 20 MPa. On the contrary, when case CF-1 is repeated by taking the same

overpressure and largely reducing the density contrast between the two magma

types (case CF-5), much less efficient convection dynamics emerge.

Once the buoyant plume has accelerated upon further decompression and

expansion during rise towards the chamber top, inertia becomes also important.

This is revealed by the oscillatory motion of the gas-rich magma on top of the

chamber, whereby clockwise vortex rotation induced by inertia alternates to coun-

terclockwise rotation induced by buoyancy which tries to move the low density

magma towards the top.

The repsent numerical simulations reveal the existence of pressure oscillations

with periods of 1-2 minutes. Such total pressure oscillations have an amplitude

initially 2-5 times larger than the applied overpressure, then they smooth down

to a residual overpressure equal to the applied one. Even the case with no applied

overpressure (CF-2) shows pressure oscillations and a peak in overpressure as

large as 4 MPa. Pressure oscillations with much lower amplitude of the order of

several tens to several hundreds KPa and periods of order 1-10 s also occur.

The peak in overpressure occurs in correspondence of plume rise towards

chamber top. The excess in overpressure with respect to that applied from below

is due to further volatile exsolution and expansion of the plume as it rises towards

lowpressure regions. Such an expansion indices compression of the ambient fluid,

forcing part of the residentmagma to flow out of the chamber and into the feeding

dyke. The present results suggest therefore that wall rock rupture due to chamber

overpressure is more likely to occur at an early stage of newmagma injection into

a pre-existing chamber.

As long as convection develops, the system re-equilibrates to the new imposed

pressure through pressure oscillations, whereby magma compression due to fur-

ther plume rise and expansion is dynamically counteracted by magma flow out

of the chamber. This process results in oscillations of fluid flow velocity within
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the feeding dyke, with periods of positive (upward) flow alternating to periods of

negative flow. The trends in high-frequency pressure oscillations are much more

difficult to be interpreted in terms of simple processes occurring within the simu-

lated system. Such relatively rapid pressure changes depend in fact on a number

of processes including vortex formation and frequency of rotation, pressure wave

development and transport within the fluid system, wave reflections, and wave

interference. It is worth noting that the GALES code is capable to solve compress-

ible flow dynamics including transonic flow and shock waves. It is therefore an

ideal tool to predict the patterns of transport and interference of pressure distur-

bances within a dynamic fluid system. This characteristic of the fluid flow code

is particularly relevant in the present work, where pressure/stress transients pro-

duced at the fluid-rock boundary are employed to predict the expected patterns of

ground deformation over a wide frequency spectrum (see the following chapter

11.

Mass and gravity changes

Oscillations similar to those found in total pressure are also produced by the

numerical simulations for mass flow rate at chamber inlet, and for gravity on the

Earth’s surface. The discussion in the above subsection clarifies what is the rela-

tionship between pressure and mass flow-rate - hence gravity - oscillations: they

are due to a dynamic balance between additional overpressure induced by plume

rise and expansion pushing magma downwards, and applied dyke overpressure

pushing magma upwards. The net result of this balance is a progressive replace-

ment of dense resident phonolitic magma by light incoming trachytic magma,

and total mass decrease in the magma chamber. The final displacement of light

magma towards a region closer to the Earth’s surface, and parallel displacement

of dense magma far from it, results in a net decrease of the local gravity ac-

celeration. Such a decrease occurs through oscillations, with a possible initial

positive peak reflecting the initial stage of newmagma injection into the chamber.

Such a decrease in the local acceleration of gravity (or negative gravity residual)

represents a somewhat counterintuitive result: the arrival of new magma into

a shallow chamber is not accompanied by an increase, rather, a decrease of to-

tal mass stored at shallow level. Obviously, if the new magma pushed into the

chamber is not buoyant with respect to the residentmagma, then the net effect

would not be decrease, but increase in total mass due to compression by over-
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pressure, thus positive gravity residual. However, it is discussed in section 7.1

that the thermodynamics of multicomponent gas-liquid reactions are such that

a shallow degassing magma invariably decrease its total CO2 /total H2O ratio,

with respect to the same magma degassing at deeper levels. Due to large effect of

CO2 in reducing the H2O saturation content, a deeper magma commonly tends

to be less dense, at equal pressure conditions, than a shallower magma. When

the two magmas come into contact, the deep, CO2 -enriched magma is therefore

buoyant. It is argued here that such a process may be general, and represent one

fundamental mean of triggering convection and mixing in volcanic systems. If

so, negative gravity residuals may be expected in association with the arrival of

new magma batches in shallow magma chambers.

The negative gravity residual found from the numerical simulations in associ-

ation with the arrival at shallow level of new magma, markedly contrasts with a

conclusion from Gottsmann et al. (2003), who identify such a magma arrival with

an invariably positive residual. On the contrary, they associate a negative grav-

ity residual with “void formation” and “eruption unlikely”. Their conclusion

derives from not taking into account the internal chamber dynamics, whereby

complex convection processes may result in progressive replacement at shallow

level of dense degassed by light volatile-rich magma. In any case, more in-depth

evaluation requires the execution of numerical simulations in a broader range of

possible conditions, as well as the development of more sophisticated modelling

with non-fixed chamber walls.
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Chapter 11

Simulations of rock deformation

11.1 Initial and boundary conditions

The rock system for the 2Dnumerical simulations performed here has beende-

fined assuming that the chamber-dyke system is located at the site of the Agnano-

Monte Spina eruption, in the north-east sector of the Neapolitan Yellow Tuff

caldera (fig. 11.1). The horizontal direction of the 2Dmodel is oriented east-west.

The P- and S-wave velocities were derived from the 3D velocity model of

Figure 11.1: View of the Campi Flegrei caldera. The green arrow indicates

the Agnano plan.
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the Campi Flegrei system (Zollo et al., INGV-DPC Project V3_2 Campi Flegrei:

Final report, Judenherc and Zollo (2004); Battaglia et al. (2007); Dello Iacono et al.

(2006); Vassallo and Zollo (2007)), in cooperationwith Aldo Zollo and co-workers.

The rock density was obtained from the compressional velocities according to the

equation of Gardner et al. (1974):

ρ = 0.23v1/4p (11.1)

In order to verify the influence of rock properties on the calculated deformation

patterns, four different velocity/density structures of increasing complexity was

defined. The first model (named HOMO) considers an homogeneous medium

2 4 6
−10

−8

−6

−4

−2

0

v
p
 (km/s)

de
pt

h 
(k

m
)

Figure 11.2: vp vertical profile as-

sumed for the model 1D-MODEL

with vp = 3000 m/s, vs = 1875 m/s

(or constant vp/vs = 1.6) and ρ =

1700kg/m3 according to equation (11.1).

The second model (1D-MODEL) as-

sumes that rock properties vary with

depth: the vp vertical profile shown in

figure 11.2 is an average profile com-

puted by Zollo and co-workers; the vp
value ranges from 1500 m/s to 6500 m/s

with a rapid increase at the passage from

the volcanoclastics filling the caldera

to the pre-caldera rock layers; constant

vp/vs = 1.6 is assumed. The next

two models assume that rock proper-

ties change both vertically and horizon-

tally according to the results achieved

by Zollo et al. (INGV-DPC Project V3_2

Campi Flegrei: Final report).

In particular, the vp 2D profile has been inferred from the vp 3Dmodel (Juden-

herc and Zollo, 2004; Vassallo and Zollo, 2007) selecting a band 50 km long and 15

km wide centered on the site of the Agnano-Monte Spina eruption (figure 11.3).

Afterwards, vp values in this band have been averaged along the third (north-

south) direction. The adopted vp section is shown in figure 11.4 (top panel). This

third rock model (2D-MODEL) assumes a constant vp/vs = 1.6. The last, and

most complex model (VPVS-MODEL) considers a vp/vs ratio varying with depth
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11. Simulations of rock deformation

Figure 11.3: View of the Campi Flegrei area where the green arrow indicate

the AgnanoMonte-Spina eruption site. The yellow band highlights the area

considered to average the vp values

(fig 11.5). The assumed vp/vs profile is an average obtained from those computed

by Vanorio et al. (2005). Since density is a function of only vp according to our

assumption (eq. (11.1)), the last two models show same vp and density, and dif-

ferent vs model (figs. 11.4-11.6). The main differences between the vs models are

shown in the central part of the section, corresponding to the caldera area.

To complete the rock system definition, a topographic profile has been de-

fined. The considered topography is very simplified with respect to the real one,

representing only the caldera borders (fig. 11.7). This simplified profile allows

the main topographic features of the caldera to be accounted for since evaluating

the deformation patterns associated with the simulated dynamics.

In order to avoid spure reflections, absorbing layers were placed at the lateral

and bottom boundaries of the rock domain. Several simulations have been carried

out to calibrate the domain size and the space-time differentiation step. To avoid

the influence of the absorbing boundaries, the domain size has been extended 50

km and 10 km along the horizontal and vertical direction, respectively. The grid

spacing and the time step have been fixed to 10 m and 1.5 · 10−4 s, respectively, in
order to satisfy the model stability conditions reported in eq. (3.13).

The simulation of the rock elastic response to the fluid-dynamic processes has
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11. Simulations of rock deformation

Figure 11.4: Velocities of p- and s-wave, vp , vs and density model for the

2D-MODEL.
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Figure 11.5: Velocities of p- and s-wave,

vp/vs profile assumed in themodelVPVS-

MODEL, obtained from Vanorio et al.

(2005).

been extended to several combination of magma dynamics processes and velocity

structures. The simulated cases are reported in table 11.1. Simulations from

ROCK-1 to ROCK-5 have been performed using stresses deriving from simulation

CF-1 (volatile-rich magmas and driving pressure of 1MPa; see table 10.3). These

calculations account for rock models and topography of increasing complexity, in

order to study the effects of these factors on the resulting deformation and seismic

signals. Simulation ROCK-6 is based on the results from CF-3 (see table 10.3),

which is equal toCF-1 except for the initial overpressure. The comparisonbetween

this simulation and ROCK-3 shows the effect of different driving pressures on

the recorded deformation and seismic signals. Simulation ROCK-7 considers

as source the dynamics induced in the vertical chamber by an overpressure of

20 MPa (simulation CF-4; see table 10.3). Comparison between ROCK-6 and

ROCK-7 points out the influence of chamber orientation on the rocks dynamics.

Unfortunately, this simulations suffered from numerical problems that have been

solved only at a late stage of this work. For this reason, results for this simulations

are not illustrated here.

The sources for rock deformation simulations have been obtained reprocessing

the results of the magma dynamics simulations as explained in section 3.3. Disre-

garding the duration of the fluid-dynamics simulations, the files used as seismic
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Figure 11.6: Velocities of p- and s-wave, vp , vs and density model for the

model VPVS-MODEL.

112



11. Simulations of rock deformation

Figure 11.7: Assumed simple topographic profile representing the caldera

borders. The vertical scale is exaggerated.

source rock model topography

ROCK-1 CF-1 HOMO flat

ROCK-2 CF-1 1D-MODEL flat

ROCK-3 CF-1 2D-MODEL flat

ROCK-4 CF-1 VPVS-MODEL flat

ROCK-5 CF-1 VPVS-MODEL TOPO

ROCK-6 CF-3 VPVS-MODEL flat

ROCK-7 CF-4 VPVS-MODEL flat

Table 11.1: Simulations performed with ELM. For each case, fluid simulation

assumed as source, rock model and topography are indicate. The model

abbreviations are explained in section 11.1. TOPO refers to the topography

profile of figure 11.7

source reproduce only the first 285 s of the computed fluid-dynamics. This time

limitations has been necessary in order to limit the size of source files, that cause

computational problem if too large.

11.2 Results

Because of the small time step (1.5 · 10−3 s) and large computational domain
(50 x 10 km; 5000 x 1040 nodes) snapshots of the velocity and displacement

fields over he whole domain have been saved every 2500 computational time step

(corresponding to 3.5 s). Deformation and seismic signal have been computed

in correspondence of hypothetical recording stations placed along the domain

surface from the chamber axis to 7 km eastwards, with an interval of 500 m (blue

circles in fig. 11.8). For the simulation with topography (ROCK-5) the seismic

signal has been recorded also at synthetic stations located west of the chamber,
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11. Simulations of rock deformation

with spacing of 1 km and extending to 7 km from the chamber axis (green circles in

fig. 11.8),with the purpose of studying thepossible effect of the topographic reliefs

on the seismic signal. It is worth noting again that results computed in the first

kilometers from the lateral boundaries are not reliable because of the boundary

effects. The synthetic seismic signals have been band-pass filtered with cut-off

Figure 11.8: Position of the synthetic receivers (circles) with respect to the

magma chamber. The blue circles indicate the stations considered in all of

the simulations, while the green ones those considered only in simulation

ROCK-5. The magma chamber and dyke sizes are exaggerated

frequency of 0.025 and 10 Hz (corresponding to periods of 40 ans 0.1 s) in order to

highlight possible high-frequency oscillations and to avoid the numerical noise.

Notwithstanding the small time step used in the elasto-dynamics simulations

(1.5 · 10−3 s), we used a cut-off frequency of 10 Hz to ensure removal of numerical
noise and consistency with the filter adopted for the stress time histories (see

section 3.3).

Movies showing the simulated dynamics for all of the cases can be found in

the cd attached to this thesis.
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11. Simulations of rock deformation

Simulation ROCK-1

Results for simulationwithCF-1 asmagmatic source, homogeneous rock prop-

erties (fig. 9.1) and flat topography are shown in figures 11.9-11.14. The computed

vertical and radial rock displacement in the whole domain is plotted in figure

11.9 for different times. For all the figures, the vertical and horizontal displace-

ments are assumed positive upward and eastward, respectively. Figures 11.10

displays the time evolution of the vertical (left) and radial (right) deformation at

the Earth’s surface. Figure 11.11 shows the time behaviour of the vertical and

radial displacements calculated at some synthetic stations. Figures 11.12-11.14

show the full-band synthetic seismic signal computed at 3 stations located above

the chamber axis, and 3 and 6 km away, and the band-pass filtered signals with

the corresponding spectrograms.

Both vertical and horizontal deformation (figs. 11.9, 11.11) display oscillations

which mimic those of fluid-dynamics in the magmatic system (see, i.e. figures

10.9(a), 10.12, 10.14). The deformation pattern is symmetrical with respect to

the chamber axis reflecting the axial symmetry of the magmatic source and the

homogeneity of the rock model. As expected, the largest values of vertical and

horizontal deformations occur in correspondence of the magma chamber, in the

middle of the simulation domain (fig. 11.9, panels (d)-(i)). The vertical component

is mainly positive. During about the first 150 s, the region just below the magma

chamber showsanegative (downwards) vertical displacement since the computed

source forces are downwards, and, hence, induce a downwards deformation (fig.

11.9(a),panels (a)-(d)); afterwards, also this region shows a positive deformation

due to the balance between the negative deformation due to the source forces

and the positive vertical deformation induced by the horizontal one (fig. 11.9(a)e-

f). The maximum value achieved by the vertical displacement is about 20-22

mm and occur after about 210 s above the magma chamber. The horizontal

deformation ranges from 0 to about 10 mm and shows the largest values just

below the magma chamber. The different deformation pattern observed below

and above the chamber (fig. 11.9(b), in particular panels d and f) is an effect of

the presence of the dyke which contributes to the horizontal deformation below

the chamber.

The vertical displacement profiles observed at the surface (fig. 11.10) show

the typical bell shape centered over the chamber axis which vanishes some 15
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(a) vertical displacement (b) horizontal displacement

Figure 11.9: Snapshots of the (a) vertical and (b) horizontal deformation

computed at different times for simulation ROCK-1.
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(b) Horizontal displacement

Figure 11.10: Profiles of (a) vertical and (b) horizontal displacement in func-

tion of the distance from the chamber axis computed at different times for

simulation ROCK-1.

km away from the axis. The maximum displacement occurs after about 210 s

with value of 18 mm. At the end of the simulation time, the residual vertical

deformation shows a maximum value of about 15 mm.

The profiles of the horizontal deformation (11.10(b)) take the classical shape

with two lobes which are symmetrical with respect to the chamber axis where the

deformation vanishes. All the profiles show the maximum displacement at about

3 km away from the chamber axis except at 180 s when the peak values occur

2 km away from the axis. The largest displacement is 6 mm and it is achieved

after 210 s, as for the vertical deformation. The deformation profiles show non-

zero values along the whole domain surface except at 180 s; moving toward the

domain boundaries the deformation decreases; 15 km away from the chamber

axis it shows values of 2 mm for profile taken at 120 and 210 s and < 1 mm for the

remaining profiles. At the end of the simulation time, the vertical deformation

shows a maximum value of about 4 mm.

The displacement signals computed at the synthetic stations show an increas-

ing trend due to the static deformation; this behaviour is better highlighted by the

vertical component (left plots in fig. 11.11). As illustrated before, the amplitude

of the vertical signal decreases going away from the chamber axis; the station

located 6 km away from the axis (left in fig. 11.11(d)) shows a deformation 3-4

times smaller than that computed above the chamber axis (left in fig. 11.11(a)).

The horizontal component of the deformation computed above the chamber axis

117



11. Simulations of rock deformation

0 50 100 150 200 250 300
0

10

20

time(s)

m
m

vertical displacement

0 50 100 150 200 250 300

0

2

4

6

time(s)

m
m

horizontal displacement

(a) station along the chamber axis

0 50 100 150 200 250 300
0

10

20

time(s)

m
m

vertical displacement

0 50 100 150 200 250 300

0

2

4

6

time(s)

m
m

horizontal displacement

(b) station 2 km away from chamber axis

0 50 100 150 200 250 300
0

10

20

time(s)

m
m

vertical displacement

0 50 100 150 200 250 300

0

2

4

6

time(s)

m
m

horizontal displacement

(c) station 4 km away from chamber axis

0 50 100 150 200 250 300
0

10

20

time(s)

m
m

vertical displacement

0 50 100 150 200 250 300

0

2

4

6

time(s)

m
m

horizontal displacement

(d) station 6 km away from chamber axis

Figure 11.11: Vertical (left) and horizontal (right) displacement computed

for simulation ROCK-1 at the synthetic station located (a) along, (b) 2, (c) 4,

(d) 6 km away the chamber axis.
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is obviously zero.

Both vertical and horizontal components of seismic signal (figs. 11.12(a),

11.13(a), 11.14(a)) display a main period of oscillation of about 100 s (correspond-

ing to frequency of 0.01Hz), that is well-rendered in the corresponding amplitude

spectrograms (figs. 11.12(b), 11.13(b), 11.14(b)). The spectrograms of both the

component of seismic signal show a further characteristic period of oscillation

of 15 s (corresponding to a frequency of 0.07 Hz), even though this oscillation is

more evident in the vertical signal than in the horizontal one. The filtered seismic

signals (figs. 11.12(c), 11.13(c), 11.14(c)) confirm the presence of the oscillations

with frequency of 0.07 Hz and highlights smaller oscillations with frequency 0.5-1

Hz, corresponding to a period of 1-3 s; this higher frequency is well identifiable

in the horizontal component while is almost absent in the vertical one.

Simulation ROCK-2

Results for simulation in which the 1D-MODEL model has been adopted

(ROCK-2) are shown in figures 11.15 - 11.19. The displacement field (fig. 11.15)

is symmetrical with respect to the chamber axis, reflecting the symmetry of the

rock model. As for the previous simulation, the displacement shows oscillations

that mimic those observed for the magma dynamics. The adopted stratified rock

properties model induces a smaller displacement with respect to that computed

with the homogeneous model (figs. 11.15 and 11.9). The rocks surrounding the

magmatic systemhave an higherwave velocitieswith respect to the homogeneous

ones, then they deform less. The vertical variation of the rock properties causes

also a displacementmore concentrated near the chamber axis andwith a different

shape.

The larger vertical displacement occurs after 210 s (left panel in fig. 11.15(g))

even if the displacement computed after 120 s is very similar; the maximum

values,> 10mm, occur above themagma chamber. On the contrary, the horizontal

component shows the larger values after 120s even if they are only slightly greater

than those computed at 210s. The maximum horizontal displacement is > 5 mm

and occurs near the sides of the chamber. The displacement signals calculated

on the ground surface (fig. 11.16) highlight the similarity of the displacement

amplitude obtained at 120 and 210 s. The increasing trend observed for the

homogeneous case (fig. 11.11) is much less evident.
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Figure 11.12: Vertical (left) and horizontal (right) components and corre-

sponding spectrograms of (a) full-band and (c) filtered seismic signal com-

puted at the station located in correspondenceof the chamber axis for simula-

tion ROCK-1. The applied filter is a band-pass filter with cut-off frequencies

of 0.025 and 10 Hz.
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Figure 11.13: Vertical (left) and horizontal (right) components and corre-

sponding spectrograms of (a) full-band and (c) filtered seismic signal com-

puted at the station located 3 km away from the chamber axis for simulation

ROCK-1. The applied filter is a band-pass filter with cut-off frequencies of

0.025 and 10 Hz.
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Figure 11.14: Vertical (left) and horizontal (right) components and corre-

sponding spectrograms of (a) full-band and (c) filtered seismic signal com-

puted at the station located 6 km away from the chamber axis for simulation

ROCK-1. The applied filter is a band-pass filter with cut-off frequencies of

0.025 and 10 Hz.
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(a) vertical displacement (b) horizontal displacement

Figure 11.15: Snapshots of the (a) vertical and (b) horizontal displacement

computed at different times for simulation ROCK-2.
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Figure 11.16: Vertical (left) and horizontal (right) displacement computed

for simulation ROCK-2 at synthetic station located (a) 2 and (b) 6 km away

from the chamber axis.

Figure 11.17 shows the evolution of displacement profile with time. As for

the previous case, the vertical component (fig. 11.17(a)) displays the typical

bell shape symmetrical with respect to the chamber axis that vanishes about at

distances greater then 15 km. The maximum displacement of 8 mm is achieved

after 210 s; as observed before, the displacement computed at 120 s is only slightly

smaller than themaximumone, with a peak value of 7.5mm. As for case ROCK-1,

the two lobes of the horizontal component of the displacement are symmetrical

with maximum about 3 km away from the chamber axis. The largest horizontal

displacement is achieved at 120 and 210 s, with a maximum value of 4.5 mm.

Figures 11.18 and 11.19 display the full band and filtered seismic signal com-

puted for two synthetic station located 3 and 6 km away from the chamber axis.

Both stations signal showsbigoscillationswithperiodof about 100 s (figs. 11.18(a),

11.19(a)). The full-band spectrograms point out further characteristic frequency

of 0.15 and 0.75-1 Hz, corresponding to period of about 7 and 1 s (figs. 11.18(b),

11.19(b)). The filtered signals confirm these oscillations: the 0.15 Hz oscillation is

well identifiable in the vertical component (fig. 11.18(c) and 11.19(c), left) while

the 0.75-1 Hz oscillations get across in the horizontal component. The spectro-

grams of the filtered signals detect also oscillations with frequency of 0.35 Hz,
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Figure 11.17: Profiles of (a) vertical and (b) horizontal displacement in func-

tion of the distance from the chamber axis computed at different times for

simulation ROCK-2.

corresponding to a period of about 3 s. It is worth noting that frequencies of 3

and 7 s are not identified in the seismic signals computed with the homogeneous

model.

Simulation ROCK-3

Results for simulation ROCK-3 in which the 2D rock model (2D-MODEL) is

adopted are shown in figures 11.20 - 11.23. The displacement pattern is similar

to that of the previous simulation both in amplitude and shape. The latter is only

slightly modified by the asymmetry of the rock properties model (fig. 11.20). The

displacement recorded at the synthetic stations confirm the similarity with the

previous case (figs. 11.21).

The profiles of the vertical and horizontal component of displacement (fig.

11.22) display the classical bell and two lobes shapes, respectively. The maximum

vertical displacement occurs at 210s with values of 8.5 mm (fig. 11.22(a)), greater

than the peak value obtained with the 1D-MODEL but smaller than that of the

homogeneous case. As for the previous case, the horizontal component reaches

the maximum values at 120 and 210 s; in the right part of simulated domain the

peak value is slightly greater than in the left part with values around 4.5 mm; this

value is slightly greater than that computed for the 1D-MODEL case but smaller

than that for the homogeneous case. The vertical component decreases nearly to
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Figure 11.18: Vertical (left) and horizontal (right) components and corre-

sponding spectrograms of (a) full-band and (c) filtered seismic signal com-

puted at the station located 3 km away from the chamber axis for simulation

ROCK-2. The applied filter is a band-pass filter with cut-off frequencies of

0.025 and 10 Hz.
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Figure 11.19: Vertical (left) and horizontal (right) components and corre-

sponding spectrograms of (a) full-band and (c) filtered seismic signal com-

puted at the station located 6 km away from the chamber axis for simulation

ROCK-2. The applied filter is a band-pass filter with cut-off frequencies of

0.025 and 10 Hz.
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(a) vertical displacement (b) horizontal displacement

Figure 11.20: Snapshots of the (a) vertical and (b) horizontal displacement

computed at different times for simulation ROCK-3.
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Figure 11.21: Vertical (left) and horizontal (right) displacement computed

for simulation ROCK-3 at synthetic station located (a) 3 and (b) 6 km away

from the chamber axis.

zero about 15 km away from the chamber axis while the horizontal displacement

is not null along the whole profile even if it is very small toward the domain

boundaries. As for the previous cases, the synthetic seismic signal exhibits a main

oscillation with frequency of 0.01 Hz, corresponding to a period of 100 s. The

filtered signals highlight also oscillations with frequency of 0.15, 0.35 and 0.75Hz,

corresponding to 6-7, 3 and 1-2 s; as shown by spectrograms of the filtered signal

(fig. 11.23(d)), the oscillation with frequency of 0.35 Hz is more evident in the

horizontal component than in the vertical one.

The small difference between simulations ROCK-2 and ROCK-3 can be ex-

plained comparing 1D-MODEL and 2D-MODEL; the magma chamber, in fact,

is located within rocks with slightly different properties with respect to the 1D-

MODEL model and from left to right of this model.

Simulation ROCK-4

Results for simulation that assumes the rock model with varying vp /vs ratio

with depth (VPVS-MODEL) are shown in figures 11.24-11.27. The displacement

pattern is very similar to that computed for the previous case; the vertical and
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Figure 11.22: Profiles of (a) vertical and (b) horizontal displacement in func-

tion of the distance from the chamber axis computed at different times for

simulation ROCK-3.

horizontal displacements show oscillations that correspond to the oscillations

of source dynamics, with maximum displacement after 210s (fig. 11.24). As

for the previous case, the displacement recorded at the synthetic stations (fig.

11.25) confirms the oscillating trend and do not show the increasing global trend

well-rendered in the homogeneous simulation. The vertical component of dis-

placement (fig 11.26(a)) achieves a peak value of 9 mm and runs out at about 15

km away from the chamber axis. The horizontal component highlights the asym-

metry of the displacement field (fig. 11.26(b)); in fact, the maximumdisplacement

shows a peak value of about 5.5 and 5mmon right and left half of domain, respec-

tively; it drops to less than 0.5 mm on domain boundary. As for the previous case,

the displacement profiles obtained at 120 and 210 s are comparable and show the

greatest displacement. The displacement computed for this simulation is slightly

greater than that of the previous two simulations except for the homogeneous

case (ROCK-1).

Both vertical and horizontal component of the seismic signals (fig. 11.27)

display the low-frequency oscillations of period 100 s. A further characteristic

frequency of 0.15 Hz (corresponding to a period of 7 s) is well-rendered in the

vertical component (left in fig. 11.27(a)) while it is masked by an higher frequency

oscillation in the horizontal one. The full-band spectrograms (fig. 11.27(b)) con-

firm the presence of this frequency in both the signal components. The filtered

signals and the associated spectrograms highlight the oscillation with frequency
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Figure 11.23: Vertical (left) and horizontal (right) components and corre-

sponding spectrograms of (a) full-band and (c) filtered seismic signal com-

puted at the station located 3 km away from the chamber axis for simulation

ROCK-3. The applied filter is a band-pass filter with cut-off frequencies of

0.025 and 10 Hz.
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(a) vertical displacement (b) horizontal displacement

Figure 11.24: Snapshots of the (a) vertical and (b) horizontal displacement

computed at different times for simulation ROCK-4.
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Figure 11.25: Vertical (left) and horizontal (right) displacement computed

for simulation ROCK-4 at synthetic station located 3 away from the chamber

axis.
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Figure 11.26: Profiles of (a) vertical and (b) horizontal displacement in func-

tion of the distance from the chamber axis computed at different times for

simulation ROCK-4.

of 0.15 and 0.75 Hz (corresponding to a period of 1-2 s). Differently from simula-

tions ROCK-2 and ROCK-3, oscillations with frequency of 0.35 Hz (or period of

about 3 s) are not evident.

Simulation ROCK-5

Figures 11.28 - 11.32 display results for simulation with rock properties model

equal to the previous case (VPVS-MODEL) and the topographic profile (TOPO)

instead of the flat surface (ROCK-5). The displacement patterns (fig. 11.28) are

very similar to that computed for the previous simulation confirming that to-

pography roughnesses have a scale length which is small once compared to the

dominant wavelengths of the signals, therefore not inducing remarkable changes

in the displacement field. As illustrated in figure 11.29, both vertical and hor-
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Figure 11.27: Vertical (left) and horizontal (right) components and corre-

sponding spectrograms of (a) full-band and (c) filtered seismic signal com-

puted at the station located 3 km away from the chamber axis for simulation

ROCK-4. The applied filter is a band-pass filter with cut-off frequencies of

0.025 and 10 Hz.
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(a) vertical displacement (b) horizontal displacement

Figure 11.28: Snapshots of the (a) vertical and (b) horizontal displacement

computed at different times for simulation ROCK-5.
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Figure 11.29: Profiles of (a) vertical and (b) horizontal displacement in func-

tion of the distance from the chamber axis computed at different times for

simulation ROCK-5.

izontal component of displacement are slightly lower, as a consequence of the

presence of the topographic relieves. The maximum vertical displacement is 8

mm, while the horizontal one is 4.5 and 5 mm to the left and right side of domain,

respectively. The shape of the vertical component (fig. 11.29(a)) is not affected

by the topography, while the horizontal component (fig. 11.29(b)) shows a small

slope variation in correspondence of the eastern relief. Figure 11.30 shows the

displacement and velocity field in the region extending from the chamber axis to

the eastern topographic relief down to depth of 1 km, and computed at 210 s for

this simulation and the previous one (ROCK-4). The effects of the topography are

more evident in the snapshot of the velocity fields (figs. 11.30(c), 11.30(d)), whose

amplitude and spatial pattern markedly change once accounting for topographic

reliefs.

As for the previous cases, the seismic signals (figs. 11.31 and 11.32) are dom-

inated by oscillations with period of about 100 s. Further oscillations with fre-

quency of 0.15 Hz are shown by both the full-band and the filtered signals. The

spectrograms of the latter highlight also oscillations with frequency of 0.75 Hz

(corresponding to a period of 1-2 s).
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(a) Vertical component of displacement

(b) Horizontal component of displacement

(c) Vertical component of velocity

(d) Horizontal component of velocity

Figure 11.30: Snapshots of (a) vertical and (b) horizontal component of

displacement and (c) vertical and (d) horizontal component of velocity in

the region near the relief on the right part of domain (see fig. 11.7), for

simulations ROCK-5 (left) and ROCK-4 (right) at 210 s.
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Figure 11.31: Vertical (left) and horizontal (right) components and corre-

sponding spectrograms of (a) full-band and (c) filtered seismic signal com-

puted at the station located 3 km away from the chamber axis for simulation

ROCK-5. The applied filter is a band-pass filter with cut-off frequencies of

0.025 and 10 Hz.
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Figure 11.32: Vertical (left) and horizontal (right) components and corre-

sponding spectrograms of (a) full-band and (c) filtered seismic signal com-

puted at the station located 3 km westwards from the chamber axis for

simulation ROCK-5. The applied filter is a band-pass filter with cut-off

frequencies of 0.025 and 10 Hz.
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Simulation ROCK-6

Results for the simulation ROCK-6, that assumes the fluid-dynamics simula-

tion CF-3 as magmatic source and the VPVS-MODEL rock model are shown in

figures 11.33-11.35. The comparison between this simulation and ROCK-4 allows

studying the effect on the displacement and seismic signal of the overpressure

triggering mixing and convection; in fact, the simulation CF-3 is equal to CF-1

except for the higher driving pressure (20 MPa instead of 1 MPa). Both vertical

and horizontal displacements show oscillations that mimic those computed for

the magmatic source (fig. 11.33). The displacement patterns are similar to those

observed for case ROCK-4 even though the maximum displacement is achieved

after 30 s, instead of 210 s; this behaviour is consistent with the source oscillations

that show the maximum values at 30 and 210 s for CF-3 and CF-1 respectively.

Figure 11.34 confirms that the shape of displacement is similar to that computed

for case ROCK-4 (fig. 11.26): the vertical component of displacement is centered

above the chamber and vanishes at about 15 km away from the chamber axis

(fig. 11.34(a)); the horizontal one shows maximum values about 3 km away from

the chamber axis (fig. 11.34(b)). As expected, the displacement amplitude is

larger than that calculated for ROCK-4. The vertical component reaches a peak

value of 60 mm, about 6 times the vertical maximum calculated for case ROCK-4;

the horizontal component shows maximum values of about 45 mm, an order of

magnitude greater than that observed for ROCK-4.

The full-band seismic signals (fig. 11.35(a)) shows a main frequency of oscilla-

tion of 0.015 Hz (corresponding to a 70 s period). The spectrograms (fig. 11.35(b))

point out a further characteristic frequency of 0.05 Hz (corresponding to a 15 s

period). The filtered seismic signals (fig. 11.35(c), 11.35(d)) highlight an high-

frequency oscillation with period of 6-7 s (or frequency of 0.15 Hz), well-rendered

in the vertical component (left plot). With respect to the seismic signals computed

for case ROCK-4, these signals do not show the 0.75 Hz oscillations and a 0.05 Hz

oscillation appears.
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(a) vertical displacement (b) horizontal displacement

Figure 11.33: Snapshots of the (a) vertical and (b) horizontal displacement

computed at different times for simulation ROCK-6.
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Figure 11.34: Profiles of (a) vertical and (b) horizontal displacement in func-

tion of the distance from the chamber axis computed at different times for

simulation ROCK-6.

11.3 Discussion

The results from the present simulations illustrate the deformation field and

seismic signals associated with the dynamics of mixing and convection induced

by recharge of shallow magma chambers at Campi Flegrei. The above results are

obtained through a 1-way coupling between two numerical codes that simulate

the fluid-dynamics within the magmatic system (GALES), and the propagation of

displacement and seismic waves through the surrounding rock system (ELM). The

coupling has been achieved taking the time-space distribution of stress along the

walls of the magmatic system computed through the fluid-dynamics code, and

using it as the source for the elasto-dynamics simulations (see section 3.3). The

Earth’s surface has been accounted for using a free-surface boundary conditions.

Models of the rock properties have been defined in collaboration with A. Zollo

and co-workers, on the basis of the results obtained by seismic tomographies

carried out at Campi Flegrei (see chapter 9).

The major limits of the present study are represented by the assumption of

elastic behaviour of rocks neglecting wave attenuation, the 2D approximation,

the 1-way coupling between the fluid and rock dynamics, and the assumption

in rock dynamics simulations that the magma behaves as an elastic solid with

homogeneous vp , vs and ρ . As for the simulations of fluid dynamics, a brief

discussion of the above limits is required in order to evaluate their relevance for
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Figure 11.35: Vertical (left) and horizontal (right) components and corre-

sponding spectrograms of (a) full-band and (c) filtered seismic signal com-

puted at the station located 1 km westwards from the chamber axis for

simulation ROCK-6. The applied filter is a band-pass filter with cut-off

frequencies of 0.025 and 10 Hz.
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the obtained results.

Elastic behaviour of rock

Earth’s rocks show elastic or viscoelastic behaviour depending on tempera-

ture, confining stress, tectonic setting, and time-scale of the deformation. Elastic

materials strain instantaneously when stretched and just as quickly return to their

original state once the stress is removed. Viscoelastic materials show elastic and

viscous characteristics when subject to stress, and exhibit time-dependent strain.

Wave attenuation due to anelasticity of the medium scales with frequency, and is

negligible for distance range shorter than the dominant wavelength. Therefore,

in this investigation, the assumption of purely elastic behaviour of rock is well

justified, at least for the longest-amplitude signals at periods ∼ 70 s (λ ∼ 200 km).
This can be further understood by considering Maxwell’s theory of viscoelastic

bodies. A viscoelastic body (fluid or solid) subject to a rate of strain behaves elas-

tically when the strain rate is greater than the inverse of the structural relaxation

time of the body itself, or the time required to the body to re-arrange its structural

setting to the new stress condition. This is expressed by the following inequality:

elastic behaviour : γ̇ >
1
τs
=
G∞
µ

where γ̇ is the rate of strain, τs is the structural relaxation time, G∞ is the elastic

modulus, and µ is viscosity. G∞ takes a value of order 10 GPa, both for cool and

molten rocks (Webb and Dingwell, 1990; Tang, 1997), while µ for bulk rocks is of

order of 1017−19 Pa s (Qi et al., 2007). Therefore, elastic behaviour of rocks occurs

when γ̇ > 10−7 s−1 . In mechanically excited rocks, the rate of strain scales with the

frequency of rock oscillation f . Therefore

elastic behaviour : f > 10−7Hz , orT < 107s

where T is the period of oscillation. Since the largest period of rock oscillation

from the present simulation are of order of 102 s, it follows that the elastic rock

assumption is largely justified.

2D approximation

The present simulations assume cartesian 2D coordinates implying that forces

and wave propagation in the third direction are neglected. In order to compute

the source forces, the numerical code assumes the third dimension of magmatic
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system equal to 1 m. This assumption is in contrast with the 2D approxima-

tion considered in the fluid-dynamics simulations (see sec. 10.3) that assumes a

third not-considered dimension much longer than the other two. The present ap-

proximation is, therefore, an important assumption that affects the amplitude of

computed ground displacement and seismic signal, andwhichmay have resulted

in overestimation of ground motion.

To overcome this limit, future investigations will consider the simulations of

rockdeformationperformed in a 3Ddomain assumingamagmatic systemextend-

ing 2 km along the third axis, still neglecting forces on the not-considered chamber

boundaries according to the 2D assumption in the fluid dynamics simulations.

1-way coupling

As pointed out above (see sec. 3.3), the 1-way coupling approximation is

a significant simplification since rock and fluid dynamics influence each other.

Moreover, changes in the volume of the magmatic system due to the stresses

along its walls were neglected in the fluid-dynamics simulations. An a-posteriore

analysis shows that the region of rock bordering the magmatic system is subject

to a displacement of order mm to a few cm. This scale length is 2-3 orders of

magnitude smaller than the resolution of the fluid-dynamics mesh, thus we can

conclude that the volumetric deformation of the magma chamber is a second-

order effect not expected to influence significantly the overall magma dynamics.

This implies that the 1-way coupling approximation is justified for the large

wavelength displacement found from the simulations. On the contrary, the high

frequency oscillations related to the frequency of vibration of the fluid system can

be affected by this assumption. Neglecting the dynamic coupling between the

fluid and the hosting rocks, in fact, prevents on assessment of interface waves

which have been previously described as a source mechanism of volcanic signals

(Chouet, 1986). As a consequence, the computed seismic signals have to be

considered as a first approximation of the real signals expected to originate from

the considered system. A more comprehensive approach needs a fully two-way

coupled fluid-rock model that is presently under development at INGV-Pisa.

Elastic properties of magma

The fluid-filled magma chamber and dyke are modelled as an elastic solid

with homogeneous vp , vs and ρ . This assumption does not account for the

space variation of magma properties, the dissipation mechanisms within the
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fluid, and the impedance contrast of the fluid-rock interface. However, since the

wavelength of the computed quasi-static displacement is large with respect to

the size of the magmatic system, the presence of this liquid region is expected to

produce secondary effects on the shape and amplitude of the displacement. The

above approximation becomes more relevant for high-frequency oscillations, as

we do not account for wave scattering, reflection and conversion at the fluid-rock

boundaries. Therefore, as observed above, the present investigation should be

considered as a first attempt to link pre-eruptive magma dynamics to measurable

high-frequency geophysical signals.

Taking in mind these limitations , the results of the numerical simulations can

be better discussed and understood.

Long-period displacement

The computed long-period ground displacement associated with the simu-

lated magma mixing and convection dynamics shows oscillations which mimic

those of total pressure observed in the magmatic system (fig. 10.12). For all of

the considered cases, the vertical and horizontal displacements take the classical

shape of a bell and two lobes, respectively. Figure 11.36 summarises the results

corresponding to the reference case CF-1 in table 10.3, and highlighting the effects

of the assumed rock model on the displacement field. The first relevant result

is that the assumption of homogeneous rock properties causes an overestimation

of the ground displacement, especially for the vertical component. Moreover, as

illustrated by the normalised profiles (figs. 11.36(b) and (d)), the homogeneous

rock model induces a less confined vertical and horizontal displacement, with

the maximum value in the horizontal component being achieved further from

the chamber axis with respect to the heterogeneous models. The increasing com-

plexity of the non-homogeneous models (from ROCK-2 to ROCK-4) affects only

slightly the displacement profiles: with increasing complexity of the rock model,

the amplitude of the displacement increases, and its profile becomes slightly

narrower although the differences are below the detection limit of current instru-

ments. The effect of a variable vp /vs ratio (cases ROCK-3 vs. ROCK-4) seems to

modify the displacementmore than the increased heterogeneity of rock properties

(cases ROCK-2 vs. ROCK-3). The inclusion of the topographic profile, induces
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Figure 11.36: Profiles of maximum (a-b) vertical and (c-d) horizontal dis-

placement computed for all of the simulations. Panels (b) and (d) show the

profiles normalised to the maximum vertical and horizontal displacement.

a displacement smaller than that computed for the flat profile (cases ROCK-4 vs

ROCK-5). The horizontal profile of displacement shows however a well-visible

slope variation in correspondence of the topographic relief.

Comparison of cases ROCK-4 and ROCK-6 shows that the fluid-dynamics

associated with a larger initial overpressure produce a displacement which, al-

though being larger (figs. 11.26, 11.34), maintains the same profile (fig. 11.37).

Figure 11.38 shows that the shape of the computed displacement profile when

rock heterogeneity is accounted for, agrees well with that observed at Campi

Flegrei . On the contrary, homogeneous rockmodel produce awiderdisplacement

147



11. Simulations of rock deformation

0 1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1

Max normalized vertical displacement

distance from axis (km)

di
sp

la
ce

m
en

t

 

 

rock4
rock6

(a) horizontal displacement

0 1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1

Max normalized horizontal displacement

distance from axis (km)

di
sp

la
ce

m
en

t

 

 

rock4
rock6

(b) normalised horizontal displacement

Figure 11.37: Profiles of normalisedmaximum (a) vertical and (b) horizontal

displacement for simulations ROCK-4 and ROCK-6. The values are nor-

malised with respect to the maximum vertical and horizontal displacement,

respectively.

which does not fit the observations.

Seismic signals

Irrespective of the rock model adopted, the computed synthetic seismograms

show a main characteristic period of 70-100 s, depending on the specific magma

dynamics simulation considered. Removing this low frequency oscillation and

the numerical noise from the seismic signal, further high frequency oscillations

emerge. The periods of the relevant oscillations are 6-7 and 1-2 s when rock

heterogeneity is accounted for, and cases with relatively low, reasonable magma

overpressure are considered. High-overpressure case does not show the 1-2 s

period, revealing instead oscillations at 15 s.

The above frequencies fall within the typical frequency bands observed in

volcanic areas where signals, depending on their characteristic period, are classi-

fied as Ultra-Long-Period (ULP; T > 10 s), Very-Long-Period (VLP; 1 < T < 10 s),

and Long-Period (LP; 0.1 < T < 1 s) (Chouet, 1996). These signals are generally

interpreted in terms of the elastic response of the medium to mass transport pro-

cesses, and/or forced oscillation of fluid-filled reservoir in response to transient

pressurisation. This study demonstrates that first-ordermagmatic processes, such

as convection and mixing in a magma chamber, can generate such signals, thus

opening new perspective towards their quantitative interpretation.
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11. Simulations of rock deformation

Figure 11.38: Comparison between ground displacement profiles observed

at Campi Flegrei , that computed in this study, and those calculated by

De Natale et al. (1997) for a point source embedded in homogeneous and

heterogeneous models. The superimposed colored line show the ground

displacement computed in this study for heterogeneous (cyan, red, magenta

lines) and homogeneous (blue line) rocks.
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Chapter 12

Implications for the unrest dynamics

at Campi Flegrei, and conclusions

Thiswork of thesis has implicationswhich are relevant for the interpretation of

the dynamics observed at Campi Flegrei, and for the evaluation of the short-term

hazard. These implications are discussed in the following.

In previous chapters it has been shown that small-volume magma chambers

were repeatedly emplaced at shallow level during the past history of Campi

Flegrei. Such shallow magmatic bodies appear to have been connected to deeper

regions ofmagma supply, and to have fed eruption, often shortly following phases

of newmagma arrival inside the chamber. There is not knowledge of such shallow

magmatic bodies today present at Campi Flegrei . On the other hand, present days

techniques to survey and image the underground of Campi Flegrei do not have

the required resolution. What we know is that there is a relatively deepmagmatic

body at about 7.5 km depth, and that increased fumarolic activity accompanying

and following bradyseismic crises at Campi Flegrei mostly involves fluids of

magmatic origin. We also know that the present unrest at Campi Flegrei lasting

from the fifties, constitutes an element of enormous concern for such an intensely

urbanised area. Apart from a possible ground uplift event at the passage between

the VIII and IX century, the only known unrest of similar relevance during last 2

ka preceded the 1538 eruption of Monte Nuovo inside the caldera. Obviously, by

analogywith the reconstructeddynamics of past eruptions, the existence of a small

shallow magmatic body would represent a factor of increased hazard at Campi

Flegrei . The hazard would be the highest if an event of new magma entrance
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in that shallow magmatic body occurs. The present work of thesis investigates

the magma dynamics and the associated geophysical signals related to such an

extremely hazardous event, that cannot be ruled out as one major factor involved

in the decades-long and still ongoing unrest at Campi Flegrei . This chapter takes

the bulk of results obtained through the magma dynamics and rock dynamics

simulations described and discussed above, and attempt to place them into a

global perspective relevant for the short-term volcanic hazard at Campi Flegrei .

The presentwork shows that the arrival of newgas-richmagma in a hypotheti-

cal shallowmagma chamber at Campi Flegrei is capable to produce changes in the

gravity field and ground motions patterns that can be relieved by a geophysical

monitoring network. Such gravity, ground deformation and seismic signals occur

over a short time and over a range of frequencies that are recognised, or increas-

ingly be recognised, at many active volcanic areas in the world. The simulated

dynamics show the displacement of a large amount of magmatic gases, mainly

constituted by CO2 , towards the top regions of the magma chamber. It can be ex-

pected therefore that due to diffusion trough porous and partially fractured rocks

at the roof of the magma chamber, a CO2 -rich magmatic gas phase enters the rock

system andmigrates towards the surface, interacting with the large hydrothermal

system of Campi Flegrei . Such a process would be responsible of a transfer to

shallow levels of energy in the from of enthalpy transported with the fluid, pro-

gressively displacing towards the surface the source of overpressure responsible

for additional ground deformation. Since the amplitude of ground deformation

due to an overpressurised source decays with the square of the distance, ground

deformation due to overpressurisation of the hydrothermal system is expected

to be responsible for most of the observed ground motion during bradyseismic

crises at Campi Flegrei , as already recognised (Gaeta et al., 1998; Chiodini et al.,

2001).

The general picture emerging, if a shallow magma chamber would be today

present at Campi Flegrei , is that the initial phases of a bradyseismic crisis may

reflect convected dynamics occurring inside the chamber itself, while most of

the crisis, including highest amplitude ground deformation, reflects instead the

delayed response of the shallow hydrothermal system upon ingression of CO2 -

rich fluid of deep magmatic origin. The present simulation results, together with
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observations of the unrest dynamics and previous investigations (Chiodini et al.,

2001, 2003; De Natale et al., 1991, 2001; Gottsmann et al., 2003; Todesco et al.,

2004; Bruno et al., 2007; Saccorotti et al., 2007; Troise et al., 2007), allow to draw a

consistent set of expected signals for the possible initial “magmatic” phase, and

the subsequent “hydrothermal” phase of the unrest.

Initial "magmatic" phase:

• Ground deformation: order of 1 cm.

• Seismic signal: three main periods, the dominant one is a ULP signal
at 50-100 s, accompanied by VLP at 5-10 s, and LP/tremor at 1-2 s.

• Vertical gravity change: negative, order of tens of µgals, or below the
detection limit if the newmagma entering the chamber has a very small

( 0.1wt%) difference in volatile content with respect to residentmagma.

Following phase of hydrothermal system respose:

• Ground deformation: order of several cm to m.

• Seismic signal: VT (or high frequency volcano-tectonic earthquakes)
due tooverpressurisationand fracturingof rockshosting thehydrother-

mal system; LP from fluid flow and resonance in fluid filled cracks.

• Vertical gravity change: either positive or negative, depending on the
balance between new gas input, density contrast between new and

resident fluids, and superimposition with residual gravity change due

to internal magma chamber dynamics.

• Gas output: CO2 /H2O increase, increase of total gas flux, increase of
the magmatic component in the fumaroles.

The above picture has one relevant implication for the short-term volcanic hazard,

which is that the most hazardous phase of the unrest, possibly leading to an erup-

tion, is confined at the beginning of a newbradyseismic crisis, withmost of the cri-

sis corresponding instead to the slowprocess of gas and energy discharge from the

system when the true hazard has been surpassed. Such a view is consistent with

the only recent example in a caldera setting, representedby that ofRabaul volcano,

PapuaNewGuinea, in 1994 (hvo.wr.usgs.gov/volcanowatch/1994/94_09_23.html;

users.bandnet.com/bjensen/volcano/swpacific/newbritan rabaul.html). In that
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case, intense ground deformation and seismic activity intermittently occurred

during the eighties and beginning of nineties. A new explosive eruption occurred

on September 19, 1994, following a period of relative quiet in the caldera activity,

and preceded by only one day of new intense seismic activity.

Obviously, between the phase of new magma arrival and associated signals,

and the onset of a new eruption, the magma needs tomigrate towards the surface,

breaking the rocks and producing increasingly intense signals registered by the

monitoring network. However, the length of this pre-eruptive magma ascent

phase is not necessarily long, and not easy to predict. The above cited case of

Rabaul suggests an order of one day for magma ascent and beginning of the

eruption, although it must be stressed that the monitoring network at the time

of the eruption is not even comparable with that installed at Campi Flegrei . A

1-day delay between new magma input into a shallow chamber and eruption of

magma is also suggested for the Plinian phases of the 4100 BP Agnano-Monte

Spina eruption at Campi Flegrei , based on observed liquid-solid reactions in the

volcanic products (see chapter 9), but it must be noted that such a phase did not

occur at the beginning of the eruption. At least 10 days of extremely frequent

earthquakes, following about two months of less frequent earthquakes felt by the

population, preceded the A.D. 1538 eruption of Monte Nuovo at Campi Flegrei

(Guidoboni from INGV-DPC Project V3_2 Campi Flegrei: Final report). As a

conclusion, a range of time-delay is possible between magma arrival at shallow

level, and eruption onset. Recognising events of new magma ingression into

a shallow chamber at Campi Flegrei - if such a chamber exists today - would

represent a mean of getting aware of a potential danger, and establish an early

warning in the area. The present work represents a first comprehensive approach

along this line of investigation, and a first attempt to characterise the dynamics

and the geophysical signals associated to the presence of a periodically refilled

shallow magma chamber at Campi Flegrei . More sophisticated, hence more

confident investigation, requires a better definition of possible system conditions

at Campi Flegrei , the development of a fully coupled approach to simulate the

magma and rock dynamics, which is being implemented at the Istituto Nazionale

di Geofisica e Vulcanologia in Pisa, and inclusion into the analysis of the coupled

dynamics of the hydrothermal system at Campi Flegrei .
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Appendix A

Mixture model

The physical model adopts an ideal mixture of n components in liquid or

gaseous state. The partial specific (per unit mass) Gibbs free energy of component

k in phase π , component k , and mixture are (Gerasimov et al., 1974):

gπk = g
π,0
k
(p,T) + RkT ln ξπk (A.1)

gk =
∑

π

ηπk g
π
k (A.2)

g =
∑

k

ykgk =
∑

k,π

yπk g
π
k (A.3)

where gπ,0
k
is the specific Gibbs free energy in the standard state, ξπ

k
is mole

fraction of component k in phase π with respect to phase π , and ηπ
k
= yπ

k
/yk is the

weight fraction of component k in phase π with respect to component k . In the

assumption of idealmixture, ξπ
k
and ηπ

k
dependonly onpressure and temperature.

Either ξπ
k
or ηπ

k
are given by the relations for chemical equilibrium, and can be

derived the ones from the others through a linear relationship. Equation (A.1) is

used for both liquid and gaseous mixtures.

The partial derivatives entering the V,Y matrix of the discontinuity capturing

term are derived from (eq. A.1):

∂gπ
k

∂p

∣

∣

∣

∣

∣

∣

T,ξ

=
1
ρπ
k

(A.4)

∂(gπ
k
/T)

∂T

∣

∣

∣

∣

∣

∣

p,ξ

= −
hπ
k

T2
(A.5)
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∂gπ
k

∂ξπ
h

∣

∣

∣

∣

∣

∣

p,T,ξπ· [h,n]

=
RkT

ξπ
k

δkh (A.6)

where notation ξπ· [h,n] means that all ξs but ξ
π
h
and ξπn are constant. Specific

internal energy and enthalpy of component k in phase π , component k and

mixture are:

eπk = c
π
vkT (A.7)

hπk = c
π
pkT = e

π
k +
p

ρπ
k

(A.8)

ek =
∑

π

ηπk e
π
k (A.9)

hk =
∑

π

ηπk h
π
k (A.10)

e =
∑

k

ykek =
∑

k,π

yπk e
π
k (A.11)

h =
∑

k

ykhk =
∑

k,π

yπk h
π
k = e +

p

ρ
(A.12)

where ρπ
k
, cπ
vk
, cπ
pk
are density and specific heat coefficients at constant volume

and pressure of component k in phase π . The equation of state ρπ
k
= ρπ

k
(p,T) may

have a general form.

The ideal solution mixture implies the following thermodynamic relations

(Modell and Reid, 1983):

1
ρ
=

∑

k,π

yπ
k

ρπ
k

=
∑

k

yk

ρk
(A.13)

∂(1/ρ)
∂yk

∣

∣

∣

∣

∣

p,T,y·[k,n]

=
1
ρk
− 1
ρn

(A.14)

∂e

∂yk

∣

∣

∣

∣

∣

p,T,y·[k,n]

= ek − en (A.15)

where notation y·[k,n] means that all ys but yk and yn are constant. The total

specific energy of the mixture in (3.3) is et = e +
|u|2

2
.
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A. Mixture model

Diffusion is modelled with the linear fluxes of mass, momentum and heat

(Bird et al., 1960):

τi j = µ
(

ui, j + u j,i
)

+ λuk,kδi j (A.16)

qi = −κT,i (A.17)

Jki = −ρDk















yk,i − ykM
n

∑
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yh,i

Mh















+ ρyk

n
∑

h=1

Dh

















yh,i − yh
n

∑

p=1

yp,i

Mp

















(A.18)

where λ = µb− 23µ , with the assumption of neglecting the bulk viscosity µb (Chalot
and Hughes, 1994).

The thermal diffusion coefficient κ is calculated as:

κ =
∑

k,π

xπk κ
π
k (A.19)

where κπ
k
is the thermal diffusion coefficient of component k in phase π , and xπ

k
is

the molar fraction of component k in phase π in the mixture. The mass fluxes Jk
i
s

are written in the approximated form by Curtiss and Hirschfelder (Hirschfelder

et al., 1969; Bird et al., 1960) using an effective diffusion coefficient of component k

in themixture Dk , modelled as a function of themolar fractions of the components

in the phases. The addition of a correction flux (Giovangigli, 1999) is needed to

satisfy mass conservation, so that fluxes verify:

n
∑

k=1

Jki = 0. (A.20)

The mixture molar mass M is:

1
M
=

∑

k

yk

Mk
=

∑

k,π

yπ
k

Mk
(A.21)

The sound velocity in the mixture is calculated as (Wallis, 1979):

c =















∑

k,π

απ
k

ρπ
k
cπ
k

ρ















− 12

where απ
k
and cπ

k
are volume fraction and sound velocity of component k in phase

π in the mixture.
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Appendix B

Numerical formulation of GALES

The system of equations (3.1-3.3) is written in terms of the vector of conserva-

tion variables U using compact notation Hauke and Hughes (1998):

U,t + F
adv
i,i = F

diff
i,i +FFF (B.1)

U = ρ
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(B.2)

where F advi and F diffi are the advective and diffusive flux vectors in the ith

direction, and FFF is the source vector.

In order to solve the incompressible limit, the conservation variables U are

replaced by the pressure primitive variables Y which are employed as unknowns:

Y =
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(B.3)
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B. Numerical formulation of GALES

The n − 1 independent mass fractions of components yk , pressure p and tem-
perature T represent the n+1 thermodynamic quantities necessary to completely

describe the compressible mixture of n components at chemical equilibrium. The

pressure primitive variables (p, u,T) for simple fluid compressible-incompressible

flows proved to be a reliable choice in terms of accuracy, convergence, computa-

tional costs and robustness of the related numerical algorithmHauke andHughes

(1998). Extention to the Y vector (B.3) involves inclusion of the mass fraction of

components, andmakes the calculation of physical properties and boundary con-

ditions easier.

The system of equations (B.1) is rewritten in terms of primitive variables in

quasi-linear form Hauke and Hughes (1998):

U,YY,t + F
adv
i,Y Y,i = (Ki jY, j),i − SY (B.4)

where U,Y , F advi,Y are thematrices ofpartial derivativesofU and F
adv
i with respect to

Y. The linearization requires that the diffusive flux and source vector are expressed

as F diffi = Ki jY, j where Ki j are the diffusivity matrices, and FFF = −SY where S is
the source matrix (Shakib et al., 1991).

A similar multicomponent formulation has been introduced in Chalot et al.

(1990), where a vibrational energy term, neglected here, is also considered. The

analysis in Chalot et al. (1990) takes into account only entropy variables and com-

pressible mixtures of ideal or perfect gases. The multicomponent formulation in

this work, based on pressure primitive variables, allows the solution of compress-

ible as well as incompressible flows of gas, liquid, and gas-liquid mixtures with

general EOS. The tight similarity between the method of this work and those in

Hauke and Hughes (1998) and Chalot et al. (1990) allows to develop all the neces-

sary stabilisation terms, while keeping the advantages of the numerical method

for single fluid flow.
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