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Abstract  

 

Target therapy has significantly improved the management and the outcome of 

different types of tumors, including HER2-positive breast cancers. Nevertheless, 

overall, target therapy has also shown several limitations over the years, as 

demonstrated by the significant rate of patients who developed resistance to therapy. 

This is also true for the monoclonal antibody trastuzumab, the gold standard therapy 

against HER2-positive breast cancer. 

Tumor heterogeneity is a key factor in resistance to target therapy. This 

heterogeneity can be intended as spatial, both within a single tumor and among 

multiple metastases, and temporal.  

The goal of this thesis was to find alternative strategies and potential druggable 

targets to overcome tumor heterogeneity in HER2-positive mammary carcinoma 

through models able to reproduce multiple traits of HER2-positive breast cancer. 

The research was addressed towards the study of the HER2-VLP, an anti-HER2 

cancer vaccine, and approaches aimed at reinforcing vaccine activity. The ability of 

immune checkpoint inhibitors to modulate immune response and, directly or 

indirectly, tumor progression was also investigated. 

To identify new therapeutic targets against progressed breast cancers, mammary 

carcinoma cell lines derived from HER2 transgenic mice and patient-derived xenograft 

(PDX) mice were studied. In these models, tumor progression showed epithelial to 

mesenchymal transition (EMT) traits and increased stemness. Molecules involved in these 

processes might become new targets for therapeutic approaches. In addition, tumor 

progression may be also counteracted by turning off alternative survival circuits to 

HER2 (e.g., IL6/STAT3/SORBS3 and PHLDA1). Finally, the progression of HER2-

positive mammary carcinomas can lead to the loss of HER2 expression and acquisition 

of a claudin-low phenotype and PDGFR-B expression. Sunitinib was effective in 

slowing the growth of these HER2-negative tumor cells. 
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1. BREAST CANCER 

Breast cancer is currently the most common cancer in women: according to the World 

Health Organization (WHO) it affects about 2.1 million women each year and it 

represents 11.6% of all types of cancer. The worldwide breast cancer incidence rate is 

23.7% and the mortality rate 6.8% (WHO, 2019). 

Breast cancer is the leading cause of cancer death in women, accounting for 28% of 

cancer deaths before the age of 50, 21% between 50 and 69 and 14% after 70. 

Nevertheless, in Italy, five-year survival rate is 87%, and 10-year survival rate is 80%. 

This is due to the increased dissemination of early detection programmes used for 

screening tests and to the numerous therapeutic advances (Italian Association of 

Medical Oncology, Associazione Italiana di Oncologia Medica, AIOM, 2019). 

Breast cancer incidence increases exponentially from 30 to 50 years reaching a 

plateau immediately after menopause, and then rising sharply between 60 and 75 

years. This trend is related to both the endocrinological history of women and the 

presence of the currently available mammographic screening programs, in which 

women are included after the age of 50 (Cancer Research United Kingdom, CRUK, 

2019). Other breast cancer risk factors are related to fertility, hormonal, dietary and 

metabolic factors, previous radiotherapy and previous dysplasia or breast cancer 

onset. Finally, about 5-7% of breast cancers is related to hereditary factors, in particular 

mutations of BRCA1 (Breast Cancer Type 1 susceptibility protein 1) and/or BRCA2 

genes (Breast Cancer Type 1 susceptibility protein 2). 

 

1.1 Intrinsic subtypes and molecular signatures 

Breast cancer is a heterogeneous disease which includes numerous distinct entities 

that not only have different biological features but also different clinical behaviours 

(Vargo-Gogola and Rosen 2007; Reis-Filho and Lakhani 2008; Simpson et al. 2008; 

Weigelt and Reis-Filho 2009; Weigelt et al. 2010). 

Histopathological examination is fundamental for the prognostic stratification of 

breast cancer, providing the classification of the histological grade and type and 
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contributing to the definition of the Union for International Cancer Control (UICC)/ 

American Joint Committee on Cancer (AJCC) Tumour, Node, Metastasis (TNM) stage 

of the cancer itself. Currently, the grading of breast cancer is based on the Nottingham 

Histologic Score, derived from the score developed by Bloom and Richardson and 

modified by Elston and Ellis in 1991 (Bloom and Richardson 1957; Elston and Ellis 

2002; Rakha et al. 2008). The histological type is defined according to the WHO/ 

International Agency for Research on Cancer (IARC) classification, the internationally 

adopted histopathological classification of breast cancer which identifies 20 histotypes 

and more than 50 variants of invasive breast cancer (Lakhani et al. 2012). Moreover, 

estrogen receptor (ER), progesterone receptor (PR) and human epidermal growth 

factor receptor 2 (HER2) are assessed by immune-histochemical or molecular analysis, 

as they are recognized as predictive and prognostic markers in breast cancer. 

Nevertheless, the previously reported classifications cannot fully appreciate the high 

biological heterogeneity of breast cancer in order to meet all the requirements of 

prognostic stratification and therapeutic differentiation (Viale 2012). To overcome  the 

limits of these multiple classifications, great efforts have been made to both increase 

the molecular and genetic knowledge of breast cancer and integrate the classification 

schemes (Figure I) in order to make them more adherent to the biology of the tumor 

and more useful in the clinical practise (Viale et al. 2009). 

In 2000, Perou, Sorlie and colleagues published a study of gene expression by 

microarray analysing the cDNA of about 9000 gene loci of 65 breast cancer samples 

from 42 individuals. They identified five clusters of gene expression, called intrinsic 

subtypes, defined as Luminal (which can be subdivided into Luminal-A and Luminal-

B), HER2-enriched, Basal-like and Normal-like (Perou et al. 2000). Subsequent studies 

found the same molecular subtypes in many other cohorts of breast cancer (Sorlie et 

al. 2003; Hu et al. 2006; Yersal and Barutca 2014). Further, a new subtype, classified as 

Claudin low, has also been identified (Prat et al. 2010). Intrinsic subtypes differed from 

each other by their associated prognosis, biological behaviour and response to 

neoadjuvant and adjuvant therapies (Sørlie et al. 2001; Hennigs et al. 2016). The 
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contribution of the Next Generation Sequencing (NGS) techniques enabled to combine 

gene expression data with copy number alterations (Natrajan et al. 2009; Russnes et al. 

2011; Morganella et al. 2016) and point mutation data (The Cancer Genome Atlas 

Network 2012; Stephens et al. 2012; Pereira et al. 2016). The analysis of thousands of 

breast cancer samples allowed the creation of large databases hosting information on 

the molecular and genetic characteristics of these samples, with particular reference to 

"The Cancer Genome Atlas project" (TCGA), "International Cancer Genome 

Consortium" (ICGC) and "Molecular Taxonomy of Breast Cancer International 

Consortium" (METABRIC) (Arias-Romero et al. 2010; The Cancer Genome Atlas 

Network 2012; Ellis and Perou 2013; Hennigs et al. 2016). The high heterogeneity of 

the different intrinsic subtypes was proved by Caldas, Dawson and colleagues, who, 

in an effort to harmonise the different molecular breast cancer classification 

approaches, carried out a clustering analysis based on both gene expression and copy 

number alterations, identifying 10 molecular subgroups called integrative clusters 

which show differences not only at the molecular but also at the clinical and prognostic 

level (Dawson et al. 2010).  

 

Figure I. Timeline of the multi-step process of breast cancer subtype classification (Sonnenblick et al. 

2014). 
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1.1.1 Luminal subtype 

The tumors included in the luminal subtype are characterized by a high expression of 

ESR1 (codifying for ER) and GATA3, FOXA1, XBP1 and c-MYB (Prat et al. 2015). The 

expression level of genes related to proliferation, cell cycle, luminal differentiation and 

hormone regulation allow us to distinguish two subtypes of Luminal tumors: 

Luminal-A and Luminal-B. The Luminal-A subtype represents about 50-60% of all 

breast carcinomas and it is characterized by a high expression of luminal 

differentiation markers and estrogen-related molecules (CK8, CK18, PR, ER, FOXA1) 

and low expression of proliferation-related genes (Yersal and Barutca 2014). The 

Luminal-B subtype, which includes 15-20% of all breast cancers, is characterized, 

unlike Luminal-A, by a higher expression of genes related to proliferation and cell 

cycle, such as MKI67 and AURKA, and by a relatively lower expression of luminal 

differentiation genes (although the ER is expressed similarly in the two luminal 

subtypes) (Loi et al. 2013; Sonnenblick et al. 2014). A rate of Luminal-B tumors results 

HER2-positive by immunohistochemistry.  

The most frequently observed somatic mutations concern genes involved in cell 

cycle differentiation and regulation processes, in particular PIK3CA (49%), MAP3K1 

(14%), GATA3 (14%) and TP53 (12%), while CDH1, MAP2K4, FOXA1, RUNX1 and NF1 

are less common mutations (The Cancer Genome Atlas Network 2012). 

Luminal-A tumors are characterized by a low histological grade (low nuclear 

pleomorphism, limited mitotic activity, marked morphological differentiation) and are 

frequently ascribed to special histotypes associated with a good prognosis (Yersal and 

Barutca 2014). Luminal-B subtype is characterized, unlike Luminal-A, by a more 

aggressive biological behaviour, a higher histological grade and proliferative index, 

and a worse prognosis, regardless of the used adjuvant therapy (Ellis et al. 2008; Yersal 

and Barutca 2014; Hennigs et al. 2016). 

Hormone therapy, which is indicated in all patients with a detectable expression of 

ER (defined as a positivity of more than 1% of cancer cells), includes three main 

approaches: modulation of the estrogen receptor through Selective Estrogen Receptor 
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Modulators (SERMs), including tamoxifen; inhibition of the aromatase enzyme; and 

hypothalamic-hypophyseal axis blockade, which results in ovarian suppression, 

through the use of the LH-RH analogous (Yersal and Barutca 2014). Therapy for HER2-

positive tumors includes also anti-HER2 drugs (Goldhirsch et al. 2011). 

 

1.1.2 HER2-enriched subtype 

The HER2-enriched subtype represents 15-20% of all breast cancers. At the 

transcriptional level, these tumors present a high expression of HER2 and molecules 

involved in HER2-signaling pathway. The expression of ER and PR is variable, 

although generally negative. Further genes related to luminal differentiation are 

expressed at an intermediate level compared to Luminal and Basal-like subtypes, 

while the expression of genes related to basal differentiation, such as CK5 and FOXC1, 

is reduced (Prat et al. 2015). 

The majority of HER2-enriched tumors show HER2 amplification (80%) (The 

Cancer Genome Atlas Network 2012). Moreover, HER2-enriched tumors are 

characterised by the highest mutational rate among the five breast cancer subtypes. 

The highest frequency of mutations was observed in TP53 (75%) and PIK3CA (42%) 

(Prat et al. 2015). 

HER2-enriched breast carcinomas have a poor prognosis due to the ability to 

metastasize, through lymphatic and hematogenous dissemination, to different visceral 

organs and brain (Gonzalez-Angulo et al. 2009). Nevertheless, the introduction of anti-

HER2 therapy in clinical practice has improved the outcome of these tumors (Dawood 

et al. 2010; Ferretti et al. 2010; Kast 2017). The anti-HER2 therapeutic agents approved 

for clinical use include the monoclonal antibodies (mAbs) trastuzumab and 

pertuzumab, the small tyrosin-kinase inhibitors (TKIs) lapatinib and neratinib, and the 

conjugated complex trastuzumab-emtansine (T-DM1).  
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1.1.3 Basal-like subtype 

The Basal-like subtype accounts for 8% to 27% of all breast cancers. These tumors 

express high levels of myoepithelial basal markers such as CK5, CK14, CK17 and 

laminin. Conversely, these tumors do not express ER, PR and HER2, and thus they are 

known as triple-negative breast cancers. The Basal-like subtype presents high 

expression of P-CDH, FSCN1, CAV1 and 2, NES, and EGFR. On the other hand, these 

tumors express low levels of genes codifying for markers of the luminal epithelium 

such as CK8/18 and c-KIT (Eroles et al. 2012). An altered regulation of integrin 

expression was also observed. This alteration could contribute to the high biological 

aggressiveness of the Basal-like phenotype (Yersal and Barutca 2014; Prat et al. 2015). 

TP53 mutations, the loss/mutation of RB and mutations of genes involved in the 

mismatch repair system, such as BRCA1, are frequent among these tumors. Indeed a 

further trait of these tumors is the genomic instability, which promote neo-antigen 

occurrence (The Cancer Genome Atlas Network 2012). 

Conventional chemotherapy is currently the only treatment option for Basal-like 

carcinomas. 

 

1.1.4 Claudin-low subtype 

Claudin-low tumors account for 7-14% of all invasive breast cancers. These tumors are 

triple-negative breast cancers with low gene expression of tight junction proteins such 

as Claudin 3, 4 and 7 and E-Cadherin (Prat et al. 2010). These tumors are significantly 

enriched in epithelial to mesenchymal transition (EMT) and stemness components, 

showing a low expression of luminal and proliferation-associated genes (Prat and 

Perou 2011). Furthermore, Claudin-low tumors are enriched of genes associated with 

immune cell infiltration, IFN-γ activation and typically variable levels of genomic 

instability (Dias et al. 2017). 

 Claudin-low tumors have a response rate to standard neoadjuvant chemotherapy 

that is between that of Basal-like and Luminal tumors. 
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1.2 HER2 

HER2 (ErbB2) is a transmembrane receptor with tyrosine-kinase activity and it belongs 

to the ErbB family (Arteaga and Engelman 2014). ErbB receptors activate different 

intracellular signaling pathways in response to extracellular signals (Moasser 2007). So 

far, 12 ligands, that can interact with ErbB receptors, have been identified (Barnes and 

Kumar 2004; Citri and Yarden 2006).  

After the binding with the ligand, the ErbB receptor acquires an open conformation 

which allows the dimerization with another ErbB receptor partner (Garrett et al. 2002; 

Ogiso et al. 2002; Burgess et al. 2003). HER2 ligands have never been identified, thus 

this receptor probably does not swing between the closed inactive and the open active 

conformation, but it remains instead constitutively open and, therefore, active (Garrett 

et al. 2003; Cho et al. 2003). Dimer formation does not happen by chance, but it follows 

a hierarchy of preferential dimerization: first of all, heterodimers are favoured over 

homodimers; secondly, HER2 is the preferential partner in the heterodimers and, 

finally, HER2 is the preferential partner of HER3 (Yarden and Sliwkowski 2001; 

Yarden and Pines 2012). The signal transduction activity is related to the different 

dimers: homodimers are less active than heterodimers. The most active heterodimers 

are those containing HER2, and the most active HER2 heterodimer is the one formed 

by HER2 and HER3 (Tzahar et al. 1996; Pinkas-Kramarski et al. 1996; Graus-Porta et 

al. 1997; Yarden and Sliwkowski 2001), although HER2 and HER3 have distinctive 

features which make them functionally incomplete if taken individually.  

ErbB receptors promote the activation of several signal transduction pathways, 

including RAS/RAF/MEK/ERK, PI3K/AKT/mTOR, Src pathway, JAK/STAT and 

phospholipase C γ (PLCγ) pathway. The activation of these signaling cascades 

induces, at a nuclear level, the transcription of proto-oncogenes such as those coding 

for FOS, JUN, MYC, SP1, and EGR1 transcription factors (Yarden and Pines 2012; 

Arteaga and Engelman 2014). The activation of such transcriptional programs 

influences important biological functions, many of which are needed for the process 
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of tumorigenesis, including cell proliferation, cell migration, cell adhesion, cell 

motility, angiogenesis, differentiation and apoptosis (Yarden and Sliwkowski 2001). 

 

1.2.1 HER2 and cancer 

Data supporting the proto-oncogenic nature of rat HER2/neu and human HER2 have 

been accumulated for more than 30 years and are now incontrovertible  (Schechter et 

al. 1984; Bargmann et al. 1986; Di Fiore et al. 1987; Hudziak et al. 1987; Muller et al. 

1988; Bouchard et al. 1989; Weiner et al. 1989; Benz et al. 1992; Chazin et al. 1992; 

Andrechek et al. 2000; Finkle et al. 2004).  

In human HER2-positive mammary carcinomas, the overexpression of the wild-

type form of human HER2 is enough to observe the effects of the oncogenic nature of 

the receptor and, in addition, activating HER2 mutations are sporadically found 

(Segatto et al. 1988; Moasser 2007). On the other hand, the presence of HER2 somatic 

mutations was found in mice transgenic for the rat HER2/neu protooncogene that 

developed spontaneous mammary carcinogenesis. These mutations occurred in the 

juxtamembrane region of the receptor and promoted the receptor dimerization (Guy 

et al. 1992; Siegel and Muller 1996; Siegel et al. 1999). Somatic mutations were also 

found in 80% of the cell lines derived from spontaneous tumors developed in FVB 

mice transgenic for the human HER2: these mutations occurred in the juxtamembrane 

region of the HER2 extracellular domain (Finkle et al. 2004). In rat HER2/neu or human 

HER2 transgenic mouse models, HER2 mutation is therefore a frequent event, unlike 

human HER2-positive breast cancer, in which the presence of HER2 overexpression is 

enough to promote tumorigenesis. 

In 1987 Slamon and colleagues reported an amplification of the HER2 gene in 

human breast cancer samples that was associated with a worse prognosis (Slamon et 

al. 1987). Subsequently, HER2 overexpression was also found in other human cancers, 

including ovarian cancer, gastric carcinoma, esophageal carcinoma, and endometrial 

carcinoma. Regardless of the tissue of origin, the overexpression of HER2 always 

correlated with a worse prognosis (Slamon et al. 1989; Mimura et al. 2005; Morrison et 
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al. 2006; Yano et al. 2006). HER2 amplification is an early event in breast cancer, since 

it was detected in half of in situ ductal carcinomas (Liu et al. 1992; Park et al. 2006). In 

addition, invasive mammary carcinomas maintained HER2 amplification after tumor 

progression and dissemination (Latta et al. 2002; Carlsson et al. 2004; Park et al. 2006). 

The implementation of anti-HER2 targeted therapies has improved the prognosis of 

both early and advanced HER2-positive breast cancers, proving that HER2-positive  

tumors are, at least partially, dependent on HER2 signaling (Moasser 2007). 

 

1.2.2 HER2 isoforms 

Transcriptional, translational, and post-translational modifications of HER2 full-

length result in alternative HER2 isoforms (Figure II). The alternative splicing of HER2 

leads to three identified isoforms: Delta16 (Δ16), Herstatin and p100. Delta16 splicing 

isoform is related to increased tumorigenesis while p100 and Herstatin are associated 

to HER2 signaling inhibition (Jackson et al. 2013). 

Delta 16 isoform was detected by Kwong and Hung in 1998 in mammary carcinoma 

cell lines and breast cancer samples (Kwong and Hung 1998) and it was subsequently 

confirmed by Siegel and colleagues (Siegel et al. 1999). The splicing isoform Delta16 

lacks the exon 16, consisting of 48 base pairs, that encodes a sequence of 16 amino acids 

placed within the juxtamembrane region of the HER2 extracellular domain (Kwong 

and Hung 1998). The lack of exon 16 causes the loss of two cysteine residues at the 

level of the juxtamembrane region. The imbalance in intramolecular cysteines foster 

the formation of Delta16 ligand-independent homodimers that are particularly stable 

and constitutively active (Mitra et al. 2009; Castagnoli et al. 2014). 

The expression of Delta16 isoform was found able to transform cell lines in vitro 

(Siegel et al. 1999; Castiglioni et al. 2006) by inducing a higher activation of PI3K-AKT, 

MAPK and Src pathways (Mitra et al. 2009). The overexpression of Delta16 in breast 

cancer cell lines has been associated to increased expression of mesenchymal markers, 

EMT-involved and stemness-related molecules (Alajati et al. 2013; Castagnoli et al. 

2014; Castagnoli et al. 2017).  
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Analysing 46 samples of human HER2-positive breast cancer through Real-Time 

PCR, Castiglioni and colleagues highlighted how the mRNA codifying the isoform 

Delta16 constituted on average 9% compared to the HER2 full-length transcript 

(Castiglioni et al. 2006). In other studies the expression of the isoform Delta16 has been 

reported in about half of all the human HER2-positive breast cancers analysed, and in 

90% of locally advanced ones, in which the level of this transcript represented 8-10% 

compared to the HER2 full-length mRNA (Mitra et al. 2009; Castagnoli et al. 2014). In 

vitro, Delta16 isoform expression was related to a reduction of binding affinity to 

trastuzumab (Castiglioni et al. 2006) and in addition, the isoform induced resistance to 

trastuzumab (Mitra et al. 2009). Nevertheless, subsequent in vitro and in vivo studies 

have shown significant responses to trastuzumab, both in the murine model transgenic 

for Delta16 isoform and in cell lines derived from spontaneous mammary carcinomas 

developed in Delta16 transgenic mice, as well as in patients with HER2-positive breast 

carcinomas expressing the Delta16 isoform at high levels (Alajati et al. 2013; Castagnoli 

et al. 2014). 

A subpopulation of HER2-positive mammary carcinomas expresses C-terminal 

HER2 fragments, collectively known as HER2 Carboxy-Terminal Fragments (HER2-

CTFs) or p95HER2 fragments. The percentage of HER2-positive human breast cancers 

expressing these fragments is 20-40% (Molina et al. 2002; Scaltriti et al. 2010; Arribas et 

al. 2010). 

p95HER2 fragments increased cell proliferation of p95HER2-transduced tumor cells 

and induced a rapid growth of spontaneous mammary tumors in p95HER2 transgenic 

mouse models (Anido et al. 2006; Pedersen et al. 2009). C-terminal fragments can 

originate through two different mechanisms, which give rise to different p95HER2 

isoforms. Post-translational proteolytic cleavage of HER2 full-length produces two 

HER2 fragments: a soluble fragment called p105, which includes a large portion of the 

extracellular domain of HER2, and a fragment that remains anchored to the plasma 

membrane called 648-CTF (Christianson et al. 1998; Codony-Servat et al. 1999). The 

use of alternative translation start sites, located at the level of the two residues of 
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methionine 611 and 687, leads instead to the formation of two products called 611-CTF 

and 687-CTF. 687-CTF fragment can translocate to the nucleus (Anido et al. 2006), 

while the 611-CTF is constitutively active and able to form homodimers due to 

particularly resistant intermolecular disulphide bridges  (Pedersen et al. 2009). 

In patients, the expression of p95HER2 fragments correlated with an increased 

metastatic involvement at the lymph node level (Molina et al. 2002; Sáez et al. 2006). 

Some data showed a higher prevalence of trastuzumab resistance in p95HER2 

expressing tumors (Scaltriti et al. 2007; Sperinde et al. 2010), but this evidence is not 

yet solid, since following studies have shown a good response to trastuzumab in 

HER2-positive mammary carcinoma expressing 611-CTF, when treated with a 

combination therapy based on doxorubicin and trastuzumab (Parra-Palau et al. 2014; 

Scaltriti et al. 2015). p95HER2 is an independent negative prognostic factor in human 

breast cancer (Scaltriti et al. 2007; Arribas et al. 2011). Since the C-terminal fragments 

of HER2 maintain their own kinase activity, p95HER2 expressing tumors may be 

sensitive to small tyrosine-kinase inhibitors, as the response rate to capecitabine and 

lapatinib association therapy seemed to suggest (Scaltriti et al. 2010). 

 

 

 

 
Figure II. HER2 isoforms (Wang et al. 2013). 
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1.3 Anti-HER2 approved therapies and mechanisms of resistance 

Anti-HER2 drugs have significantly improved the prognosis of HER2-positive breast 

cancer patients (Figure III) (Moasser 2007; Swain et al. 2013a; Iqbal and Iqbal 2014; 

Singh et al. 2014). 

 

1.3.1 Trastuzumab  

Trastuzumab is a humanized IgG1 antibody that binds the domain IV of the HER2 

extracellular region (Arteaga and Engelman 2014). Trastuzumab was approved in 1998 

for the treatment of metastatic HER2-positive breast cancer as monotherapy, in 

patients already undergoing at least two conventional chemotherapeutic regimens, 

and in the first-line setting in combination with taxan, in patients not yet undergoing 

conventional chemotherapy (Figure IV) (Slamon 2001). The combination of 

chemotherapy and trastuzumab represents the standard of care in HER2-positive 

Figure III. HER2 downstream pathway activation, anti-HER2 targeted agents. Therapeutic approaches, 

based on the modulation of HER2 activation, include different targets of the protein. Monoclonal 

antibodies bind the extracellular domain of HER2 leading to a reduction of the signaling cascade. 

Antibody-drug conjugates are designed to release the drug after internalization by the tumor cell, with 

the decrease of systemic side effects. The small molecules tyrosine kinase inhibitors (TKIs), such as 

lapatinib and neratinib, inhibit the catalytic activity of the HER2 receptor in a reversible or irreversible 

way, respectively, through the specificity for the ATP binding site of the kinase domain. ADC: 

Antibody-Drug Conjugate (Marchiò et al. 2020). 
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breast cancer, both in the metastatic setting and in the adjuvant and neoadjuvant ones 

(Emde et al. 2012; Senkus et al. 2015). 

 

 

The mechanisms of action activated by the binding of trastuzumab to its HER2 epitope 

are many and, although not yet fully defined, they can be grouped into two categories: 

inhibition of receptor signaling and stimulation of the antitumor immune response. 

Specifically, the binding of trastuzumab to its epitope causes internalization and 

degradation of the HER2 receptor (Sliwkowski et al. 1999; Baselga 2001). Moreover, 

trastuzumab inhibits the proteolytic cleavage of the extracellular HER2 region, 

preventing the formation of 648-CTF fragments (Molina et al. 2002). Eventually, 

trastuzumab inhibits HER2 homodimerization, partially inhibiting HER2 signaling 

(Tsuruo et al. 1983; Junttila et al. 2009; Ghosh et al. 2011). Although historically the 

antitumor action of trastuzumab has been attributed to the inhibition of HER2 

intracellular signaling pathways, increasing amount of both preclinical and clinical 

Figure IV. Timeline of key events, Food and Drug Administration (FDA)-Approved Therapies. 

Therapies on the Horizon, and their Clinical Settings for HER2-positive breast cancer (BC). The specific 

clinical trials were reported in the brackets. Trastuzumab emtansine (T-DM1)  (Kreutzfeldt et al. 2020). 
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pieces of evidence showed that the immune system actively contributes to the 

therapeutic effect of trastuzumab (Bianchini and Gianni 2014). One of the most 

important immune mechanisms activated by trastuzumab is the antibody-dependent 

cellular cytotoxicity (ADCC) (Cooley et al. 1999; Clynes et al. 2000; Stockmeyer et al. 

2003; Gennari et al. 2004; Fan et al. 2012). Other immunological mechanisms involved 

in trastuzumab therapeutic effects are complement-dependent cytotoxicity (CDC), 

phagocytosis of cancer cells and improvement of antigen presentation to T helper cells 

(Park et al. 2010; Mortenson et al. 2013; Bianchini and Gianni 2014; Gall et al. 2017). In 

line with these observations, the antitumor activity of trastuzumab can be enhanced 

by immunomodulatory molecules (Stagg et al. 2011). 

Primary resistance to trastuzumab affects both the neoadjuvant setting, with 15% of 

not responsive patients, and the metastatic setting, with 70% of patients that develop 

resistance (Cobleigh et al. 1999; Vogel et al. 2002; Harris et al. 2007; Narayan et al. 2009; 

Petrelli and Barni 2011). In the adjuvant setting, 20-70% of patients show local or 

distant relapse (Gajria and Chandarlapaty 2011). Trastuzumab resistance mechanisms 

are multiple and multiform (Rexer and Arteaga 2012). First, the alteration of the 

extracellular domain of HER2 can prevent the binding of trastuzumab to HER2, 

although controversial results were reported for both Delta16 and p95HER2, as 

previously described. A further strategy that has been associated with trastuzumab 

resistance is the masking of the trastuzumab binding epitope by other molecules. In 

vitro, the overexpression of mucin 1 or mucin 4 glycoproteins made the cells resistant 

to trastuzumab, probably through the masking of the trastuzumab epitope (Rexer and 

Arteaga 2012).  
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Somatic mutations on the tyrosine-kinase domain of HER2 were found in lung, 

gastric, colorectal, mammary and head-neck carcinomas (Stephens et al. 2004; Lee et 

al. 2006; Ross et al. 2014). The great majority of somatic mutations were observed in 

the absence of HER2 gene amplification (Chmielecki et al. 2015). Preclinical and 

clinical data proved that some of these mutations were responsible for trastuzumab 

and TKI resistance (Figure V) (Wang et al. 2006; Kancha et al. 2011; Petrelli and Barni 

2011; Bose et al. 2013).  

 

The gain-of-function mutation of PIK3CA was associated to a reduction in the rate 

of complete pathological response achieved by conventional chemotherapy combined 

to trastuzumab in neoadjuvant setting, while no differences were found related to 

trastuzumab response in the metastatic and adjuvant setting (Campbell et al. 2004; 

Figure V. Domain distribution, prevalence, and significance of HER2 somatic mutations. Lollipop plot 

representing the absolute frequency and the aminoacidic residues involved in the most common 

mutations reported for the HER2 gene. The lollipop plot underlines the presence of rare hot-spot 

variants, belonging to exons 19-20 and encompassing the tyrosine kinase domain. The biological 

significance for each mutation is represented by different shapes: mutations with oncogenic boost effect 

are pictured with triangles, whereas squares and circles represent variants of neutral or unknown 

significance. Some of the reported mutations showed differential behaviours with respect to anti-HER2 

treatments: in particular, green alterations describe mutations conferring sensitivity to the tyrosine 

kinase inhibitor neratinib and lapatinib. The red, pink, and orange filled shapes summarize the 

different mutations associated with resistance to lapatinib, neratinib and trastuzumab, respectively. 

Most of the mutations are with unknown significance (grey). ECD: extracellular domain, TM 

transmembrane domain, ICD: intracellular domain. (Marchiò et al. 2020). 
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Bachman et al. 2004; Ibrahim et al. 2015). Trastuzumab resistance was also related to 

AKT1 mutations, loss of INPP4B onco-suppressor and loss of inactivation of the onco-

suppressor PTEN (Garrett and Arteaga 2011). 

The inhibition of HER2 signaling pathways by anti-HER2 therapies causes the 

compensatory recruitment of other receptors that allow the maintenance of HER2 

downstream signaling (Niederst and Engelman 2013). Increased receptor activity may 

depend on receptor overexpression and/or increased ligand concentration (Rexer and 

Arteaga 2012). Increased expression of HER1 and HER3 was found in patients with 

HER2-positive breast cancer characterized by the appearance of acquired resistance to 

trastuzumab. The activation of the enzyme TACE/ADAM17 may lead to an increased 

concentration of ErbB receptor ligands, such as amphiregulin and neuregulin (Wang 

et al. 2008). MET has also been implicated in mechanisms of resistance to trastuzumab: 

hyper-activation of MET due to gene amplification and/or increased stimulation by 

ligands can bypass trastuzumab-mediated HER2 inhibition (Shattuck et al. 2008). An 

increased expression and/or activity of IGF1R can also be associated with resistance to 

trastuzumab: IGF1R indeed dimerizes with trans-activating HER2, thus nullifying the 

pharmacological action of trastuzumab (Nahta et al. 2005). These mechanisms of 

bypass-track resistance involve not only trastuzumab, but almost all anti-ErbB drugs. 

These resistance mechanisms are revertible by means of a combined therapy, which 

includes the simultaneous use of several anti-ErbB agents with different mechanisms 

of action (Rexer and Arteaga 2012). 

The deficiency of immune mechanisms reduces trastuzumab efficacy. 

Polymorphisms of FcγRIII receptor, which is involved in NK (Natural Killer)-

mediated ADCC, altered the efficacy of trastuzumab (Rexer and Arteaga 2012). In 

patients with estrogen receptor-negative and HER2-positive locally advanced breast 

cancer, the synergistic advantage of trastuzumab in terms of a complete pathological 

response, when combined with conventional chemotherapy, was found to be 

associated with high expression of the immunoglobulin metagene (Bianchini and 

Gianni 2014). Also, the abundance of lymphocytic tumor infiltrate was associated with 
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a lower risk of recurrence in patients treated with conventional chemotherapy and 

trastuzumab. Besides, high IFN-γ expression was significantly related to a higher rate 

of complete pathological response following combination therapy with conventional 

chemotherapy and trastuzumab (Loi et al. 2011). Gianni and colleagues also proved 

how a high expression of PD-L1 was associated to resistance to trastuzumab-based 

neoadjuvant therapy (Gianni et al. 2011; Loi et al. 2013).  

Lastly, deficit in apoptotic mechanisms (Fink and Chipuk 2013) and  polymorphism 

of clathrin-dependent mechanisms (Freudenberg et al. 2009) were also found to be 

associated with trastuzumab resistance. 

 

1.3.2 Pertuzumab 

Pertuzumab is a monoclonal antibody that binds the extracellular domain of HER2, 

recognizing an epitope placed on the domain II, which is primarily implicated in 

HER2-HER3 heterodimerization. As a consequence, pertuzumab treatment causes a 

limited activation of the PI3K/AKT signaling pathway (Adams et al. 2006). 

The efficacy of pertuzumab monotherapy in metastatic HER2-positive carcinomas 

was low. On the other hand, the clinical trial of phase III CLEOPATRA evidenced the 

advantage of pertuzumab when combined with trastuzumab and docetaxel in HER2-

positive mammary carcinoma (Swain et al. 2013b; Swain et al. 2015). Currently, 

conventional chemotherapy combined with trastuzumab and pertuzumab represents 

the first line of therapy in metastatic HER2-positive breast cancer (Senkus et al. 2015; 

Labidi et al. 2016). 

In the context of neoadjuvant treatment of locally advanced carcinomas, the two 

randomized controlled clinical trials NEOSPHERE and TRYPHAENA showed an 

improvement in the rate of complete pathological response with the therapy based on 

trastuzumab and pertuzumab, compared to anti-HER2 monotherapies (Gianni et al. 

2011; Schneeweiss et al. 2013). Thus, pertuzumab, in combination with trastuzumab 

and chemotherapy, has been approved as a neoadjuvant therapy to treat patients at 

high risk of metastases or death with HER2-positive, locally advanced, inflammatory, 
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or early-stage breast cancer. The APHINITY trial, NCT01358877, evaluated the use of 

pertuzumab in association with trastuzumab in the adjuvant setting (Minckwitz et al. 

2017). The addition of pertuzumab to therapy improved disease-free survival, but no 

overall survival benefit has yet been demonstrated for patients with early-stage 

disease. Furthermore, the 0.9% improvement in 3-year disease-free survival in the 

APHINITY trial should be balanced against the additional adverse effects and 

financial costs of 1 year of pertuzumab therapy. 

 

1.3.3 Trastuzumab-emtansine 

Trastuzumab-emtansine is a monoclonal antibody conjugated to emtansine molecule 

(DM1), a maytansinoid that inhibits the microtubules polymerization. The binding of 

the trastuzumab to its epitope causes the internalization of the complex T-DM1/HER2, 

which is degraded at the lysosomal level, resulting in release of DM1, which induces 

cell lysis (Lewis Phillips et al. 2008). Since T-DM1 maintains, in addition to this 

cytotoxic effect, a binding affinity for HER2 that is similar to that of trastuzumab alone, 

consequently the ADCC activity and the HER2-signaling inhibition observed with 

trastuzumab are consequently also maintained (Junttila et al. 2009). 

In the second line of treatment, after taxane and trastuzumab, or in the first-line 

therapy, in patients with a rapid progression (≤6 months) after adjuvant therapy with 

trastuzumab, TDM-1 has shown greater efficacy than lapatinib and capecitabine in the 

phase III EMILIA trial (Verma et al. 2012). Consequently, TDM-1 has become the 

standard second-line treatment in HER2-positive advanced breast cancer patients. 

However, patients enrolled in the randomized trials with T-DM1 had not previously 

received pertuzumab. Therefore, we lack solid evidence on T-DM1 efficacy following 

trastuzumab/pertuzumab-containing regimens (Bon et al. 2020). 

 

1.3.4 TKI: lapatinib and neratinib 

Lapatinib is a small reversible tyrosine-kinase inhibitor which inhibits, by competition 

with ATP, the tyrosine-kinase activity of HER2 and EGFR, reducing the activation of 
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PI3K/AKT and MAPK cascades (Konecny et al. 2006). Lapatinib is indicated in 

combination with capecitabine for the treatment of patients with advanced or 

metastatic HER2-overexpressing breast cancers who have received prior therapy, 

including anthracycline, taxane, and trastuzumab. Nevertheless, clinical trials have 

proved that other HER2-targeting agents, such as T-DM1 and pertuzumab, have also 

shown a higher efficacy in patients pre-treated with trastuzumab. However, these 

regimens remain unavailable in some countries such as China. Therefore, lapatinib 

plus capecitabine regimen is a common option for patients who have developed 

resistance to trastuzumab (Wood et al. 2004). In the neoadjuvant setting, trastuzumab 

and lapatinib combined therapy proved superior to the anti-HER2 monotherapy by 

trastuzumab alone in terms of pathological complete response rate. However, since 

this advantage has not resulted in increased overall long-term survival, current 

guidelines do not recommend such association therapy (Guarneri et al. 2012; Baselga 

et al. 2012; Piccart-Gebhart et al. 2016). 

Neratinib is a small tyrosine-kinase inhibitor that binds covalently, and therefore 

irreversibly, to a cysteine residue placed inside the binding pocket for ATP of HER2. 

In the United States, neratinib is approved for the extended adjuvant treatment of 

adult patients with early stage HER2-positive breast cancer, following adjuvant 

trastuzumab-based therapy. In Europe, neratinib is approved for the extended 

adjuvant treatment of adult patients with early-stage hormone receptor-positive 

HER2-overexpressed/amplified breast cancer and who are less than one year from 

completion of prior adjuvant trastuzumab-based therapy. Recently, on February 25, 

2020, the FDA approved neratinib in combination with capecitabine for adult patients 

with advanced or metastatic HER2-positive breast cancer who have received two or 

more prior anti-HER2 based regimens in the metastatic setting.  Of note, the American 

Society of Clinical Oncology (ASCO) post by Dr. Vogl in 2017 evidenced some limits 

of neratinib use both from a therapeutic and cost-effectiveness points of view 

(https://ascopost.com/issues/december-25-2017/neratinib-is-approved-should-we-

reject-it-anyway/). 

https://ascopost.com/issues/december-25-2017/neratinib-is-approved-should-we-reject-it-anyway/
https://ascopost.com/issues/december-25-2017/neratinib-is-approved-should-we-reject-it-anyway/
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1.4 Drivers of HER2-positive breast cancer progression 

Several factors might influence breast cancer progression and resistance to anti-HER2 

therapies, including receptor conversion, EMT, stemness and angiogenesis.  

 

1.4.1 Receptor conversion 

The status of hormonal and HER2 receptors might change over time during the 

mammary carcinoma progression (Figure VI). This phenomenon is defined as receptor 

discordance. A recent systematic review and metanalysis has collected the evidence 

from multiple studies assessing the receptor conversion during disease progression 

(Schrijver et al. 2018). For the estrogen receptor, the conversion rate was 22.5% from 

positive to negative and 21.5% from negative to positive. For the progesterone 

receptor, the conversion rate was 49.4% from positive to negative and 15.9% from 

negative to positive. HER2 loss occurred in 21.3% of cases with a HER2-positive 

primary tumor, while HER2 acquisition was a less frequent event, occurring in 9.5% 

of cases with a HER2-negative primary tumor. Receptor loss leading to a triple-

negative phenotype on metastasis has been associated with a worse survival rate 

(Dieci et al. 2013). Moreover, molecular intrinsic subtype can shift from primary tumor 

to metastasis. According to an analysis of 123 patients, the distribution of molecular 

intrinsic subtype in primary tumor vs metastasis was 39% vs 26% for Luminal-A 

(p=0.029), 26% vs 35.8% for Luminal-B (p=0.097), 11.4% vs 22% for HER2-enriched 

(p=0.026) and 9.8% vs 12.2% for Basal-like (p=0.540) (Cejalvo et al. 2017). Of note, 2 

primary tumors with HER2-enriched subtype converted to Basal-like subtype 

(15.38%). Data from a prospective cohort of patients showed that clonal remodelling 

was associated with phenotype conversion from primary tumor to metastasis. The 

cancer cell fraction (CCF) of different mutations in primary and metastatic pairs was 

estimated as a surrogate of tumor clonal architecture, with the aim of obtaining a 

measure of tumor clonal heterogeneity. Changes in CCF composition between 

matched primary and metastatic tumors were analysed in the presence or absence of 
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subtype conversion. Metastases showed a higher frequency of distinct mutations 

compared to primary tumors. These changes were more prominent in metastases with 

clinical subtype conversion suggesting that changes in breast cancer subtypes are 

linked to clonal remodelling during breast cancer evolution (Lluch et al. 2019). 

Schrijver and colleagues evidenced in their metanalysis how the responsibility of 

chemotherapy and trastuzumab on receptor conversion was debateable, since 

controversial data have been reported (Schrijver et al. 2018). A recent analysis of the 

SePHER study showed that the addition of pertuzumab to trastuzumab reduces the 

amount of available HER2 receptor on plasma membrane, limiting the binding of T-

DM1 in cancer cells. This may justify the less favourable outcomes of second-line T-

DM1 in trastuzumab/pertuzumab pre-treated patients compared to their pertuzumab-

naïve counterpart (Bon et al. 2020). 

 

Figure VI. Circos plots displaying the conversion of clinical (A) and intrinsic (B) subtypes in breast 

cancer metastases. The subtype of primary lesions (left area of the plot) and of the corresponding 

metastasis (right area of the plot) is represented. Outer segments are labelled according to the different 

subtypes. Paired specimens are connected by ribbons. TN, triple-negative; HR, hormone receptor (Lluch 

et al. 2019). 
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1.4.2 Epithelial to mesenchymal transition and stemness 

Breast cancer stem cells (BCSC) represent around 1-5% of tumor cells. These cells were 

identified thanks to their molecular profile, including CD44 high expression, absence 

or low expression of CD24 and missing lineage-specific markers expression (Al-Hajj et 

al. 2003). ALDH1 (aldehyde dehydrogenase 1) is another marker used to identify 

breast cancer stem cells (Moreb et al. 2012). ALDH1 allows us to distinguish two 

different sub-populations of BCSC: EMT-BCSC, CD44+/CD24-/low and ALDH1- 

quiescent mesenchymal cells; epithelial proliferative BCSC, CD44+/CD24-/low and 

ADH1+ cells (Zhou et al., 2019). The transition from epithelial to mesenchymal status 

and vice versa involves several molecules and pathways. EMT mainly involves 

WNT/PI3K/β-catenin and TNF pathways that induce and stabilize SNAIL, an inhibitor 

of E-Cadherin. TNF also affect the expression of other factors as SLUG, TWIST, ZEB-1 

and ZEB-2 (Kotiyal and Bhattacharya 2014). In Figure VII, a summary of pathways and 

factors involved in EMT is reported.  

Some authors suggested that HER2 overexpression promotes both EMT and the 

emergence of cancer stem cells by the activation of metalloproteinases that lead to 

proteolytic cleavage and shedding of the HER2 receptor. The cleavage caused a 

downregulation of HER2 extracellular domain and eventually increased trastuzumab 

resistance (Nami and Wang 2017). On the other hand, clonal evolution of HER2 

positive tumors suggest that EMT-BCSC coexist with HER2-positive cells and might 

be selected and give rise to Triple-negative metastases (see previous paragraph). 

Figure VII. EMT major interconnected regulatory networks (Craene and Berx 2013). 
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1.4.3 Angiogenesis 

The ability to form new blood vessels is one of the ten hallmarks of cancer (Hanahan 

and Weinberg 2011). The formation of blood vessels in the tumor context can occur by 

the active recruitment of angioblasts from the bone marrow (vasculogenesis) or by co-

opting the existing vasculature (angiogenesis) (Hanahan and Weinberg 2011). In 

comparison with physiological angiogenesis, the expression of molecules that 

stimulate or inhibit new vessels formation is not well-coordinated in tumors. This 

leads to the growth of abnormal vessels, which may lack pericytes and have 

fenestrations (Langenkamp and Molema 2009). The presence of structural 

abnormalities and malformations in vessels, leads to chaotic and variable blood flow 

that impairs oxygen and nutrient supply. Therefore, there are often areas of hypoxia 

and necrosis within the tumor, which may select more malignant and metastatic cells. 

Moreover, hypoxic tissues produce HIF-α that stimulates the production of VEGF, 

and, consequently, the formation of new vessels. 

Since VEGF is a key molecular driver of physiological and pathological 

angiogenesis, its circuit is the main target of anti-angiogenic therapeutic approaches. 

The two main druggable targets are VEGF itself, inhibited by bevacizumab, or its 

receptors, inhibited by sunitinib and pazopanib. Sunitinib is an oral small-molecule 

TKI that targets several receptors, including VEGFRs, PDGFRs, c-Kit, RET, CSF1R and 

FLT-3. Nowadays, it is approved for the treatment of renal cell cancer (RCC) and 

gastrointestinal stromal tumors (GIST). Several preclinical and clinical studies have 

investigated the efficacy of sunitinib in breast cancer. Although sunitinib was effective 

in preclinical xenograft models (Abrams et al. 2003), some clinical studies reported 

controversial results. A study reported a benefit as second-line treatment in 

monotherapy, especially in patients with triple-negative or HER2-positive disease. 

However, another trial on HER2-negative breast cancer showed a worsening in terms 

of progression-free survival rate in patients treated with sunitinib alone, in comparison 

with patients treated with capecitabine. Other studies showed no improvement by the 

addition of sunitinib to chemotherapy (Koutras et al. 2012). Two clinical trials assessed 
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the efficacy of sunitinib in combination with trastuzumab in patients with advanced 

HER2-positive breast cancer, showing a beneficial effect from the combined therapy. 

In one study, an objective response was observed in 73% of the evaluable patients 

treated with sunitinib plus docetaxel and trastuzumab (Cardoso et al. 2012). In a 

following study, which involved a higher number of patients, the objective response 

rate was only 37%, but it was slightly higher in patients that had not received any other 

treatment previously (Bachelot et al. 2014).  

 

2. CANCER VACCINES AND IMMUNE CHECKPOINT INHIBITORS 

Cancer vaccines constitute the most complete antitumor immunological approach 

since they are able to enhance both innate and acquired immunity through the 

stimulation of the cellular compartment and induction of humoral components. In 

addition, patients acquire an immune memory of the tumor antigen. Cancer vaccines, 

as all vaccines, work well in a preventive set-up. Unfortunately, numerous phase II 

and phase III clinical trials have been set up to investigate the effectiveness of cancer 

vaccines in a therapeutic set-up rather than in a preventive one (Lu et al. 2014; Tan et 

al. 2015; Donofrio et al. 2018; Cuzzubbo et al. 2020). Only one of these vaccines, 

sipuleucel-T (Provenge®, Dendreon), was approved by the FDA in 2010 for the 

therapy of metastatic prostatic adenocarcinoma resistant to chemical castration. 

Nevertheless, new opportunities to use cancer vaccines in adjuvant regimen or to 

prevent tumors in high risk patients is becoming feasible (Figure VIII). New hope for 

the use of vaccines against tumors has emerged thanks to the identifications of tumor 

neoantigens, through molecular sequencing, and the introduction in the clinical 

practice of immune checkpoint inhibitors (ICIs). Neoantigens discovery is the basis to 
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design personalized cancer vaccines that might improve the activity of ICIs or might 

be improved by ICIs (Lollini et al. 2006; Finn 2018; Palladini et al. 2018a). 

 

Currently no antitumor vaccine has been approved by the FDA for the prevention or 

treatment of breast cancer, but several cancer vaccines are being investigated both at the 

preclinical and clinical level (Page et al. 2014; Harao et al. 2015; Pallerla et al. 2021). The 

most studied are protein/peptide vaccines and cell vaccines, mainly dendritic cell 

vaccines. HER2 is the most frequently exploited tumor antigen in the preparation of 

cancer vaccines in breast cancer (Benavides et al. 2009; Gates et al. 2010; Mittendorf et 

al. 2012; Sharma et al. 2012). Up to now, anti-HER2 vaccines tested in clinical trials 

have not improved patient survival rate (Al-Awadhi et al. 2018; Costa and Czerniecki 

2020). Possible reasons for these negative reported results include: the negative effect 

of previous therapies, including chemotherapy and radiation therapy prior to 

vaccination; the development of immune tolerance to the HER2 antigen; the immune 

suppressive environment in the metastatic setting. Longer follow‐up periods may be 

needed to determine the clinical benefits in adjuvant trials.  

 

Figure VIII. Timeline of cancer vaccine development (Finn 2018b). 
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2.1 Antigens for cancer vaccines 

Viral proteins are suitable antigens for vaccines that aim to prevent infectious-related 

cancers. The first approved cancer vaccines were HBV and HPV vaccines able to 

prevent hepatocellular carcinoma and cervical carcinoma, respectively. The success of 

anti-HBV vaccine was proved by the results of a Taiwanese study with a twenty-year 

follow-up, which showed a 70% reduction in the incidence of hepatocellular 

carcinoma since the beginning of the vaccination program (Chang 2009). Furthermore, 

three anti-HPV vaccines were afterwards approved: Cervarix (diavalent), Gardasil 

(tetravalent) and Gardasil-9 (9-valent). Clinical trials have shown a very high 

preventive antitumor effectiveness for all vaccines, with values that approximate 100% 

for Gardasil-9 (Joura et al. 2015).  

As far as non-infectious related cancers are concerned, antigen classification can be 

made based on antigen location in the cell (class I, class II, class III) (Lollini et al. 2006; 

Lollini et al. 2011). Class I antigens are expressed at the level of the plasma membrane 

of cancer cells; class II antigens are not expressed directly by cancer cells, but are found 

at the level of the tumour microenvironment, on the plasma membrane of cells in the 

tumour microenvironment itself or as soluble mediators (Cavallo et al. 2011; Conti et 

al. 2014); class III antigens are intracellular antigens expressed by cancer cells (Lollini 

et al. 2010). A specific class of tumor associated antigens (TAA) are oncoantigens 

(Lollini et al. 2006). Oncoantigens are TAA that play a causal role in the definition of 

the tumor phenotype, such as HER2, EGFR, IGF1R. Antigens that also contribute to 

the tumor microenvironment are considered oncoantigens, such as VEGFR, FAP and 

CTGF. The B and T lymphocytes receptors (BCR and TCR) constitute oncoantigens 

towards which it is possible to induce an extremely specific immune response. An 

additional class of oncoantigens consists of adhesion molecules and other surface 

molecules which, although not directly involved in the process of tumor growth, 

significantly influence survival, invasion and metastatization processes (Lollini et al. 

2006). Lastly, TAA can be divided in antigens with a high tumor specificity and 

antigens expressed also in normal tissue. A new emergent category of TAA includes 
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molecules involved in EMT and stemness such as SOX-2, OCT-4, TERT, CD44 and 

CD133 (Quaglino et al. 2020). One of the most promising antigens able to induce an 

immune response against BCSC is surely xCT, as proved by the efficacy of different 

vaccination strategies in distinct preclinical models of breast cancer (Lanzardo et al. 

2016; Bolli et al. 2018; Donofrio et al. 2018).  

Mutations or rearrangements of genes in tumor cells cause the production of 

neoantigens, which result from the translation of a previously non-existent amino acid 

sequence. Neoantigens are completely unknown to the host’s immune system, and for 

this reason T cells that recognize such epitopes are able to bind them with a high 

affinity (Schumacher and Schreiber 2015). Neoantigens are identified by NGS and are 

patient-specific targets. Tumors are characterized by different rates of somatic 

mutations: the contribution of neoantigens to tumour immunogenicity is higher in 

tumors with a high mutation rate, such as those related to strong environmental 

carcinogens (e.g. lung cancer associated with cigarette smoking and melanoma 

associated with UV exposure, as well as in 15% of colon carcinomas). Most of these 

neoantigens are molecules carrying passenger mutations, that are not involved in the 

carcinogenesis process and in the definition of the tumor phenotype (Schumacher and 

Schreiber 2015). A minority of neoantigens are encoded by oncogenes and onco-

suppressors so they act like driver mutations of the tumorigenesis: some examples of 

driver mutations capable of generating immunogenic protein products are those 

concerning RAS, CDK4, -catenin, p53 and the translocations BCR-ABL, PAX3-FKHR 

and ETV6–AML1. 

 

2.2 Vaccine types 

The interaction between the host’s immune system and the antigenic stimulus 

included in the vaccine can be mediated by several antigenic vehicles  (Schlom et al. 

2014; Ye et al. 2016) . There are three main categories of cancer vaccines: cell vaccines, 

further subdivided into cancer cell vaccines and dendritic cell vaccines, 

protein/peptide vaccines and nucleic acid-based vaccines (Figure IX) (Lollini et al. 
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2015). Cellular vaccines are expensive and not pharmacologically definable, 

characteristics that make the pharmaceutical production on a large-scale problematic. 

Dendritic cell vaccines cannot be produced on a large-scale since these vaccines are 

based on autologous dendritic cells. Molecular-defined synthetic vaccines, such as 

protein/peptide vaccines and nucleic acid-based vaccines, are more easily adaptable to 

large volumes of production. 

Protein/peptide vaccines are poorly immunogenic, requiring the use of highly 

immunostimulating adjuvants; in addition, peptide vaccines are effective only in 

patients with specific HLA haplotypes. Nevertheless, peptides, small-molecule 

haptens, and self-antigens can elicit high-titer antibody responses when presented on 

the surface of virus-like particles (VLP) (Caldeira et al. 2020). VLP are nanoparticles 

that are spontaneously assembled from viral structural proteins and can function as 

scaffolds for the presentation of epitopes from any source (Crossey et al. 2015; Caldeira 

et al. 2015; Hu et al. 2017; Lino et al. 2017). VLP are naturally biocompatible and have 

no viral genome, being, therefore, not contagious. VLP are effectively eliminated or 

degraded by the human body, limiting the occurrence of side effects. In addition, they 

present epitopes in dense repetitive arrays, making them effective scaffolds that can 

elicit antibodies to multiple substances (Caldeira et al. 2020).  

Vaccines based on nucleic acids are not adequately internalized by the patient’s cells 

in most cases, resulting in low transgene expression levels, and the ways used to 

increase the rate of internalization of the transgene in host cells, even if potentially 

effective, create new problems, such as the poor compliance of the patient in the case 

of electroporation and the permanence or the neutralization of the virus by pre-formed 

antibodies in the case of viral vectors (Osada et al. 2009; Aurisicchio and Ciliberto 2012; 

Lee et al. 2015b). The use of chimeric or xenogenic antigens improves the effectiveness 

of DNA vaccines (Cavallo et al. 2014; Riccardo et al. 2017). 
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2.3 Immune checkpoint inhibitors 

All the immune responses, including the antitumor ones, are based on the delicate 

balance between the recognition of non-self and the modulation of duration and 

intensity of the immune response. Indeed, an uncontrolled immune response is 

harmful to the organism, as it can damage the affected tissues or give rise to 

autoimmune responses. For this reason, during the evolutionary process, the immune 

system has developed a variety of inhibitory mechanisms aimed at controlling the 

immune response, including the so-called immune checkpoints. 

Immune checkpoints represent the main modulators of the immune response and 

include a fine system of interactions between receptors and ligands that are expressed 

on the surface of immune cells. Cancer cells can express molecules involved in these 

immune modulations to evade the antitumor immune response. For this reason, 

VLP  

Figure IX. Schematic representation of the different anti-cancer vaccination strategies. Modified from     

(Lollini et al. 2015). 
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immune checkpoint inhibitors have been developed, with the aim of promoting the 

reactivation of the immune system against cancer. CTLA-4, PD-L1 and PD-1 are 

currently the modulators with the greater clinical relevance. The introduction of ICIs 

in clinical practise has completely revolutionized the field of oncoimmunology. This 

new class of immunotherapeutic drugs includes a series of monoclonal antibodies 

directed against these immune checkpoints (Figure X). The antibody binding interferes 

with the lymphocytic activity switch off, allowing infiltrated T lymphocytes to rescue 

their natural effector anti-tumor function (Wei et al. 2018).  

 

 

To date, ICI has revolutionized the treatment of patients with advanced cancer and 

poor prognosis, recording a relevant increase in the overall survival rate, as observed 

in patients with melanoma, non-small cell lung cancer, prostate cancer, bladder cancer, 

head and neck cancer, renal cell carcinoma, and hematological tumors (Iwai et al. 2002; 

Hodi et al. 2010; Motzer et al. 2015; Herbst et al. 2016; Zak et al. 2016; Ferris et al. 2019). 

Figure X. Inhibition of immunological checkpoints by ICI - modified by (Ahmed et al. 2019). 

CTLA-4 inhibitor (ipilimumab) prevents the binding between CTLA-4 and ligand B7 expressed on 

antigen-presenting cells (APC), blocking the inhibitory signal of T lymphocytes. PD-1 (pembrolizumab 

and nivolumab) and PD-L1 (atezolizumab) inhibitors prevent PD-1 and PD-L1 binding, blocking the 

signaling pathway that inhibits T cell activity. 
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It has been observed that in 10-30% of patients the treatment with antibodies against 

PD-1, PD-L1 or CTLA-4 leads to a more lasting reduction in tumour size than that 

observed with traditional therapeutic methods (Champiat et al. 2018), together with 

an increase in the overall survival rate, especially in the treatment of melanomas and 

tumors of the head and neck (Ferris et al. 2016; Larkin et al. 2018). 

 

2.3.1 PD-1 and PD-L1 

PD-1 (Programmed cell death protein 1), also known as CD279, is an important 

inhibitory regulator of immune response mainly expressed on the surface of activated 

T and B lymphocytes, some T regulatory (Treg) cells, NK T cells, monocytes and some 

dendritic cell subtypes (Riella et al. 2012). The two natural ligands of PD-1 are PD-L1 

(also known as B7-H1 or CD274) and PD-L2 (also known as B7-DC or CD273), which 

are expressed on the surface of APC cells, including dendritic cells, macrophages and 

monocytes (Hodi et al. 2008; Seidel et al. 2018). 

The inhibitory role of PD-1 following binding with its ligands is mediated by 

phosphatase recruitment, such as SHP2, on the ITSM sequence of the intracellular 

domain of the receptor. Specifically, SHP2 phosphatase inhibits both the signaling 

pathways mediated by ZAP70 and PI3K-AKT kinases and the signaling pathway 

mediated by the RAS protein or mTOR. The result is a decrease of transcriptional 

factors, such as AP-1 (activator protein-1) and NF-κB (nuclear factor-κB) (Sharpe and 

Pauken 2018), that leads to a reduction of stimulatory cytokines, including IL-2, TNF-

α and IFN-γ and an inhibition of the proliferation and effector lymphocytic function 

(Keir et al. 2008). 

PD-1 is one of the main regulators of functional lymphocyte exhaustion, 

characterised by a loss of the effector function of CD8+ T lymphocytes due to the 

persistent exposure to viral or tumour antigens. It has been shown that PD-1-inhibition 

by anti-PD-1 monoclonal antibodies reinforced the lymphocytic activity, restoring the 

effector function (Lee et al. 2015a).  
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PD-L1 (Programmed cell death-1 ligand-1) is a type I transmembrane glycoprotein, 

homologous to the B7 ligands (for this reason also known as B7-H1), which 

physiologically binds the PD-1 receptor. The ligand has an immunoglobulin structure 

with an extracellular domain, a transmembrane domain and an intracellular tail (Keir 

at al., 2008; Lin et al., 2008). The ligand is constitutively expressed on cells of myeloid 

origin, such as dendritic cells or myeloid-derived suppressor cells (MDSC) (Gato-

Cañas et al. 2015). However, PD-L1 expression may also be induced in other cell types, 

primarily cancer cells, as a result of inflammatory cytokines (Ritprajak and Azuma 

2015; Liu et al. 2017). An example is IFN-γ, one of the main modulatory cytokines of 

the immune response, which is produced in the tumour microenvironment by tumor 

infiltrating T lymphocytes. The binding of IFN-γ with its own receptor activates the 

JAK/STAT signaling pathway ultimately resulting in the activation of the interferon 

regulatory factor 1 (IRF1) (Benci et al. 2016), which binds to PD-L1 promoter and 

stimulates its expression (Ribas et al. 2015; Garcia-Diaz et al. 2017; Fares et al. 2019). 

This mechanism, which involves several cytokines and transcriptional factors, is a 

physiologically adaptive process aimed at controlling immune and inflammatory 

responses, which cancer cells use to their advantage in the immune escape phase. The 

increased expression of PD-L1 by cancer cells causes the inhibition of the cytotoxic 

lymphocytic function through the binding between PD-L1 and PD-1, inducing 

apoptosis, anergy and exhaustion in CD8+ T lymphocytes infiltrating the tumor (Dong 

et al. 2017).  

Furthermore, the expression of PD-L1 by cancer cells stimulates survival signals in 

cancer cell. The intrinsic PD-L1 signal makes the cancer cell resistant to the cytotoxic 

effect of IFN-γ, by inhibiting STAT3 and interfering with its signaling pathway (Gato-

Cañas et al. 2017). In addition, recent studies have shown that PD-L1 can increase 

tumor survival and proliferation regardless of its binding to PD-1, by interfering with 

apoptosis, autophagia and mTOR transducer expression. However, these mechanisms 

have not yet been fully clarified (Azuma et al. 2008; Clark et al. 2016; Escors et al. 2018; 

Lamberti et al. 2020b). 
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PD-L2 (Programmed cell death 1 ligand 2) is expressed on activated dendritic cells, 

macrophages, bone marrow-derived mast cells and peritoneal B1 cells (Zhong et al. 

2007). PD-L2 expression can be induced by LPS and BCR in B cells and by GM-CSF 

and IL-4 on DCs (Latchman et al. 2001). PD-L2 is expressed on solid tumors as well as 

in hematopoietic malignancies, even though it is expressed to a lesser extent when 

compared to PD-L1 (Ohigashi et al. 2005; Yang et al. 2019). However, PD-L2 binds to 

PD-1 with a higher affinity as compared to PD-L1 (Keir et al. 2008). The 

immunosuppressive role of PD-L2 in cancer and its prognostic value, together with 

the therapeutic potential of PD-L2 blockade, will require further investigations 

(Solinas et al. 2020).   

Nivolumab is a human IgG4 monoclonal antibody, directed against the human PD-

1 receptor (Wang et al. 2014; Robert et al. 2015). In 2014, nivolumab was approved by 

the FDA for the treatment of advanced metastatic melanoma, refractory to 

conventional therapies and treatment with ipilimumab (Larkin et al. 2018). About a 

year later, FDA approval was extended to the second-line treatment in patients with 

non-small cell lung cancer (NSCLC) (Raju et al. 2018). Considering the promising data 

observed in a phase II study with advanced metastatic melanoma patients treated with 

nivolumab and ipilimumab, in 2016 the FDA approved the combined therapy of the 

two monoclonal antibodies for the treatment of patients with non-resectable 

melanoma without the BRAF mutation (Hodi et al. 2016). This was the first FDA 

approval of a combined regimen of two immunotherapeutic drugs in cancer treatment.  

In the following years, the FDA approved nivolumab associated with ipilimumab, as 

a second-line therapy, for the treatment of head and neck tumors (Ferris et al. 2019), 

urothelial carcinoma (Sharma et al. 2017), colorectal carcinoma (Overman et al. 2017), 

hepatocellular carcinoma (El-Kenawy et al. 2017; El-Khoueiry et al. 2017) and 

advanced renal carcinoma (Motzer et al. 2018). 

Pembrolizumab is a humanized IgG4 monoclonal antibody directed against the 

human PD-1 receptor (Du Rusquec et al. 2019). Pembrolizumab, similarly to 

nivolumab, recognizes the PD-1 receptor and prevents the binding between PD-L1 or 
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PD-L2 ligands to the receptor. The several clinical studies carried out on the use of 

pembrolizumab, known with the acronym KEYNOTE, have focused on the use of the 

antibody as first or second line of therapy for the treatment of patients with different 

types of advanced-stage cancers, including NSCLC, melanoma, bladder cancer, 

cervical cancer, gastrointestinal tumors, hepatocellular tumors and head and neck 

tumors (Du Rusquec et al. 2019). Considering the results of clinical trials, in 2014, the 

FDA approved the use of pembrolizumab in the treatment of advanced melanoma, 

refractory to other therapies (Cowey et al. 2018). In the following years the approval 

was also extended to patients with NSCLC refractory to the conventional therapies, 

and in patients with high expression of PD-L1 (tumor proportion score 50%) as a first-

line therapy (Pai-Scherf et al. 2017)  

Atezolizumab is a monoclonal IgG1 antibody that selectively binds the PD-L1 

ligand, but not PD-L2, preventing its binding with the PD-1 receptor and enhancing 

the anticancer activity of T lymphocytes (Blair 2018). In 2016, atezolizumab was 

approved by the FDA as a second-line treatment of urothelial metastatic carcinoma 

(Rosenberg et al. 2016). In the following years, approval was extended to third-line 

treatment of metastatic NSCLC (Fehrenbacher et al. 2016; Rittmeyer et al. 2017) and to 

treat patients with triple-negative breast cancer, positive for PD-L1 (expression 5% on 

cancer cells or immune cells infiltrating the tumor) (Shah et al. 2018). 

Durvalumab is a monoclonal IgG1 antibody directed against the PD-L1 ligand. In 

2017, the FDA approved the use of the antibody as a second-line therapy for patients 

with metastatic or advanced localized urothelial cancer (U.S. FDA. Highlights of 

prescribing information. Imfinzi™ (durvalumab), 2017) thanks to the positive results 

of the clinical trial that evidenced a clinical response of 5.1% and a median overall 

survival of 18.2 months (Powles et al. 2017). In 2018, FDA approval was extended to 

the use of durvalumab as a maintenance therapy for advanced stage NSCLC patients 

who had previously undergone traditional chemotherapy. The Phase III PACIFIC 

clinical study showed a good efficacy in the use of the antibody as consolidation 
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therapy in patients with advanced localized, not operable NSCLC, compared to the 

placebo group (Antonia et al. 2018). 

 

2.3.2 Resistance to ICI 

Immune checkpoint inhibitors have now entered in clinical practice, becoming the 

standard therapy for the treatment of multiple forms of cancer. Despite this, it is 

estimated that the response to PD-1/PD-L1 inhibitor monotherapy varies between 20% 

and 40% (Borghaei et al. 2015). 

A recent analysis of 262 patients with 19 different types of cancer and treated with 

ICI showed an overall response rate of 29% and a long-term response rate (> 2 years) 

of 11.8% (Gauci et al. 2019). The response to ICI-based monotherapies is closely related 

to the type of treated tumor: highly sensitive tumors such as Hodgkin’s lymphoma, 

melanoma at an advanced stage and NSCLC show a rate of response between 20% and 

65% (Wolchok et al. 2013; Larkin et al. 2015), compared to particularly resistant tumors 

such as colorectal cancer with stable microsatellites, which shows a rate of response of 

less than 10% (Le et al. 2017). Despite this, many patients with “ICI-high sensitive 

tumors” still do not respond to therapy. In fact, in the treatment of advanced 

melanoma it is estimated that about 40-60% of patients show no significant therapeutic 

response during treatment and a substantial proportion of responsive patients 

experience cancer recurrence within 2 years of treatment (Robert et al. 2015; Larkin et 

al. 2018). Similarly, it has been observed that only 20-30% of NSCLC patients are 

responsive to therapy (Topalian et al. 2014). Understanding the mechanisms that 

influence the response to therapy and identifying patients that may be more 

susceptible to develop resistance to ICI treatment is essential to choose the most 

suitable therapy for them. 

The mechanisms of resistance to immune checkpoint inhibitors can be determined 

both by intrinsic factors, which are linked to the tumor cell characteristics, and by 

factors extrinsic to the tumor cells, related to its microenvironment. Resistance 

mechanisms include reduced tumour antigenicity or alteration of the mechanisms of 
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antigen presentation, which are responsible for the low T cell infiltration into the 

tumour microenvironment, alterations of signaling pathways, that may interfere with 

the antitumour immune response, or production of immunosuppressive cytokines. In 

addition, the presence of an immunosuppressive tumor microenvironment and the 

progressive loss of function of T cells, epigenetic modifications and activation of 

alternative immune checkpoints may contribute to the resistance to ICI therapies 

observed in patients (Pitt et al. 2016; Jenkins et al. 2018; Schoenfeld and Hellmann 

2020). 

 

2.3.2.1 Hyperprogressive disease 

Hyperprogressive disease (HPD) was a condition in which patients showed a rapid 

disease progression after the initiation of ICI therapy. We have recently summarized 

some aspects of HPD in the manuscript of Angelicola and colleagues (Angelicola et al. 

2021) and here I have briefly reported the main relevant points included in the 

manuscript.  

4-29% of cancer patients develops HPD, being even a more frequent event in 

patients with NSCLC (from 8 to 21%), advanced gastric cancer (from 10 to 29%), head 

and neck squamous cell carcinoma (29%) and melanoma (9%) (Saâda-Bouzid et al. 

2017; Champiat et al. 2017; Ferrara et al. 2018). Several groups assessed the 

phenomenon and proposed different criteria for HPD definition, which resulted in 

noticeable variations in HPD rates. Kas et al. have recently suggested an optimized and 

homogenized definition of HPD (Kas et al. 2020).  

Many studies have identified several factors associated with an increased risk of 

developing HPD during ICI therapy, among which was older age (≥ 65 years) (Motzer 

et al. 2015; Brahmer et al. 2015; Borghaei et al. 2015; Champiat et al. 2017). Previous 

irradiation is also associated with higher incidence of hyperprogression (Saâda-Bouzid 

et al. 2017). Hyperprogression was significantly associated with the presence of more 

than 2 metastatic sites before the treatment (Ferrara et al. 2018). Mouse double minute 

homolog (MDM2/MDM4) amplification and EGFR alterations were indicated as 
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genomic markers of the increased risk of hyperprogression (Kato et al. 2017). 

Furthermore, patients with oncogene-addicted NSCLC, e.g. ALK, EGFR and STK11, 

did not benefit from IC blockade therapy, probably because of the “cold” nature of 

these tumors (Lamberti et al. 2020a). Hyperprogression was also associated with 

elevated serum lactate dehydrogenase (LDH) concentration.  

No associations between HPD and tumor histology, baseline tumor size and 

previous lines of therapy have been reported (Champiat et al. 2017; Saâda-Bouzid et 

al. 2017; Kato et al. 2017). As far as the association of PD-L1 expression with HPD is 

concerned, studies have shown discordant results. Nevertheless, a significant inverse 

correlation between PD-L1 expression in tumor cells and HPD has been detected in 

NSCLC patients (Lo Russo et al. 2019). 

ICs, such as CTLA-4, PD-1 and PD-L1, can be overexpressed on Treg cells. A rapid 

expansion of forkhead box P3+ (Foxp3+) Treg cells has been observed in the tumors of 

HPD patients with advanced gastric cancer treated with nivolumab. Moreover, PD-1 

blockade augments the proliferation and suppressive activity of human Treg cells in 

vitro (Kamada et al. 2019). 

IC blockade therapy can also induce compensatory mechanisms and lead to T-cell 

exhaustion, local immune suppression and tumor escape. Two independent studies 

have reported the compensatory upregulation of ICs, including lymphocyte activation 

gene-3 (LAG-3), T-cell immunoglobulin and mucin domain-3 (TIM-3) and CTLA-4, on 

CD8+ T cells after PD-1 blockade in immunocompetent murine models of ovarian 

cancer and lung adenocarcinoma (Koyama et al. 2016; Huang et al. 2017). IC blockade 

therapy can also upregulate CD38 on tumor cells, leading to immune suppression and 

resistance to therapy (Chen et al. 2018). In addition, the aberrant expansion of 

peripheral exhausted CD4+ memory T cells has been reported to occur after the first 

administration of anti-PD-1/PD-L1 antibodies in patients with HPD, unlike non-HPD 

patients (Zuazo-Ibarra et al. 2018). 

The compensatory immune response triggered by IC blockade can induce the 

production of immunosuppressive cytokines and other soluble mediators. In 
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preclinical studies, PD-1/PD-L1 blockade has been observed to increase IL-10 secretion 

by tumor infiltrating dendritic cells (DCs) and the upregulation of PD-L1 on DCs, 

leading to tumor immune escape. In addition, tumor-specific CD8+ PD-1+ T cells, in 

patients with advanced melanoma under PD-1 blockade therapy, overexpressed the 

IL-10 receptor (IL-10R). The blockade of IL-10 strengthened the effect of anti-PD-1 

antibodies in expanding tumor-specific CD8+ T cells, and thus reinforced their 

antitumor action (Lamichhane et al. 2017). 

Angiopoietin-2 (ANGPT2) has been proposed to act as a predictive and prognostic 

marker in ICI-treated patients with advanced melanoma. High levels of ANGPT2 in 

serum before treatment were associated with reduced response and/or overall survival 

and with higher levels of immunosuppressive M2 macrophages in ICI-treated patients 

(Scholz et al. 2011; Wu et al. 2017).  

Aberrant inflammation that is caused by increased T helper 1 (Th1) and Th17-

dependent secretion of inflammatory cytokines, such as IFN-γ, IL-6 and IL-17, which 

are associated with neutrophil recruitment, has been observed in patients with 

prostate cancer and melanoma that were treated with PD-1/PD-L1 inhibitors (Dulos et 

al. 2012). Neutrophil depletion and IL-6 blockade have been found to be effective 

antitumor immune responses in mouse models (Stein et al. 2019). Moreover, the 

interaction between the Fc domain of ICIs and Fc-receptors (FcR) induces macrophage 

reprogramming, from the M1 to M2 phenotype, in patients with HPD (Lo Russo et al. 

2019). 

Tumor-specific non-lytic CD8+ T cells induce the overexpression of PD-L1 and 

IDO1, which are associated with adaptive immune resistance and stemness phenotype 

in tumor cells (Stein et al. 2019).  

MDM2 is an oncoprotein that is involved in the degradation and inhibition of the 

p53 tumor suppressor protein. The amplification of this gene has frequently been 

observed in HPD patients. IFN-γ-induced interferon regulatory factor 8 (IRF-8) 

induces MDM2 overexpression by binding its promoter (Zhou et al. 2009; Kato et al. 

2017). 
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The activation of the PD-1 axis on T cells reduces T-cell proliferation (Yao et al. 

2018), while PD-1 inhibition on neoplastic T cells induces growth acceleration. PD-1 

expression on tumor cells drives melanoma tumorigenesis via PD-1/PD-L1 interaction 

(Kleffel et al. 2015). Conversely, preclinical data suggest that PD-1 blockade may 

increase tumor growth by interfering with the PD-1-dependent upregulation of 

proapoptotic proteins, e.g. BIM, p15INK4 and cyclin-dependent kinase 2 (Du et al. 

2018). 

PD-1/PD-L1 interaction transmits antiapoptotic signals to cancer cells, leading to 

resistance to T-cell-mediated cytolysis and Fas-mediated apoptosis. The elimination of 

the intracellular domain of PD-L1 ablated cancer resistance to immune response, 

leading to tumor regression (Azuma et al. 2008). PD-L1 expression also protects tumor 

cells from IFN-antitumor action by inhibiting STAT3-caspase 7 signaling (Gato-Cañas 

et al. 2017). Finally, activating mutations of EGFR drive PD-L1 expression on several 

tumor types, including NSCLC and breast cancer (Sun et al. 2018). The EGFR-

dependent mechanism of PD-L1 regulation involves post-translational modifications. 

Indeed, the inhibition of EGFR signaling has been seen to destabilize PD-L1 expression 

in mouse models, leading to enhanced PD-1 blockade therapeutic efficacy. 

IFN-γ and CD38 are factors associated with resistance to ICI therapy. We have 

recently proposed their possible involvement in HPD (Angelicola et al. 2021). We 

suggested that IFN-γ contributes to HPD onset in predisposed patients via the 

induction of the inflammasome pathway and consequent MDSC recruitment, the 

induction of IDO1 activity, which may result in the downregulation of p53 in tumor 

cells, and the activation of activation-induced cell death (AICD), which leads to T-cell 

depletion. On the other hand, CD38 upregulation after IC blockade therapy may 

contribute to the development of hyperprogression through the release of high levels 

of adenosine into the TME, and the consequent activation of the ADORA2a pathway, 

which may lead to tumor insensitivity to IFN-γ action, the downregulation of p53 with 

consequent tumor growth, and strong immunosuppression. CD38 upregulation may 

also be an adaptive immune response to a hyperactivated immune setting induced by 
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ICI therapy. In this context, CD38 may promote the apoptosis of effector T cells via the 

AICD process, leading to a protumorigenic setting. Finally, CD38 may enhance 

hypoxia signaling pathways in tumor cells or endothelial cells, leading to increased 

angiogenesis, immunosuppression and tumor proliferation.
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Target therapy has significantly improved the management and the outcome of 

different types of tumors, including HER2-positive breast cancers. Nevertheless, 

overall, target therapy has also shown several limitations over the years, as 

demonstrated by the significant rate of patients who developed resistance to therapy. 

Tumor heterogeneity is a major hindrance to the success of target therapy.  

The aim of this thesis was to find alternative approaches to overcome tumor 

heterogeneity by modulating antitumor immunity and searching for new druggable 

targets. 

HER2 is a suitable target antigen for cancer vaccines, as proved by the therapeutic 

use of monoclonal antibodies in HER2-positive breast cancer patients. In the Chapter 

1 of the Results, I reported the activity of a cancer vaccine, based on HER2-conjugated 

virus-like particles (VLPs), in different preclinical models of HER2-positive mammary 

carcinoma, highlighting the advantages brought by the treatment and the limitations 

of the distinct preclinical models investigated. Subsequently, I described strategies to 

enhance antitumor immune responses.  

The ability to identify new therapeutic targets is strictly related to the availability of 

preclinical models able to mirror the dynamic condition of tumor growth, reflecting 

tumor progression and evolution observed in patients. In the Chapter 2 of the Results, 

I took advantage of distinct models of breast cancer based on either cell lines, derived 

from HER2 transgenic mice, and patient-derived xenograft (PDX) models, obtained 

through the implantation of HER2-positive tumor fragments. I introduced new targets 

that could be relevant for therapeutic and preventive approaches, both immunological 

and otherwise, against HER2-positive mammary carcinoma. These results clearly do 

not claim to clarify the complex condition of tumor heterogeneity, but they lay the 

groundwork for the development of new therapeutic strategies that consider the 

tumor as a community of distinct and separate subpopulations. 
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1. IMMUNOLOGICAL STRATEGIES 

The immune system is a physiological weapon against tumor onset. Overall, antitumor 

immunological strategies consist in leveraging immune system components to 

counterattack tumors. 

Anti-HER2 cancer vaccines might boost anti-HER2 monoclonal antibody activity by 

inducing both a comprehensive anti-HER2 polyclonal antibody response and 

immunological memory. 

Nevertheless, the immune system response against tumor antigens is not so easily 

inducible and immune responses are not so long-lasting. Two key points involved in 

these limitations are the break of immune tolerance against a self-antigen such as 

HER2 and the immune response switch off by immune checkpoints. 

In this chapter the activity of the HER2-VLP vaccine was investigated in different 

HER-2-positive mammary carcinoma models and compared with an anti-HER2 DNA 

vaccine (pHuRT). These data, resulted from a collaboration with Prof. Adam Sander 

(University of Copenhagen, Copenhagen, Denmark) have been included in the 

manuscript of Palladini and colleagues (Palladini et al. 2018b).  

Then, the study was also focused on approaches aimed at both breaking the 

immune tolerance and to enhancing the immune response, together with their limits. 

Some of these results have been included in published manuscripts (Nanni et al. 2018; 

De Giovanni et al. 2019b; De Giovanni et al. 2019a). 

 

1.1 Anti-HER2 cancer vaccines: HER2-VLP and pHuRT 

 

1.1.1 Anti-HER2 cancer vaccines in the prevention of mammary carcinoma 

The antigen displayed on HER2-VLP vaccine was the extracellular domain of human 

HER2 (HER2-ECD). The antigen was produced in S2 insect cells transfected with the 
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SpyCatcher-HER2-ECD sequence coding the fusion antigen (Figure 1A). Virus-like 

particles were used as a vehicle of the SpyCatcher-HER2-ECD (Figure 1B). 

 

HER2-VLP vaccine induced complete protection from mammary tumors in Delta16 

mice with only three vaccine administrations. On the other hand, pHuRT DNA 

vaccine, effective in preventing lower aggressive mammary carcinogenesis of HER2 

mice (De Giovanni et al. 2014), failed to elicit an immune stimulation able to delay 

tumor onset (Figure 2A). In double transgenic HER2/Delta16 F1 mice almost 50% of 

mice chronically treated with HER2-VLP vaccine were tumor-free at 1-year of age, 

while pHuRT treated mice were not protected (Figure 2B). 

 

 

 

 

 

 

 

A. B. 

Figure 1. HER2-VLP vaccine production. A. The HER2 extracellular domain (ECD) was genetically 

fused at the N-terminus to SpyCatcher (SpyC). TM = trans membrane, ICD = intracellular domain. 

Arrows indicate HER2 subdomains targeted by pertuzumab and trastuzumab mAbs. B. Schematic 

showing the HER2-VLP vaccine development process. The Spytagged VLP subunit and the 

SpyCatcher-HER2 antigen are separately expressed and purified, and then mixed. The tag/catcher 

conjugation insures a directional, high-density ‘virus-like’ display of HER2 on the surface of the VLPs 

(Palladini et al. 2018b).  
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1.1.2 Anti-HER2 antibodies induced by cancer vaccines in the preventive set-up   

The anti-HER2 antibody production by HER2-VLP vaccine was higher than the one 

induced by pHuRT vaccine, both in Delta16 mice (p<0.05, at least by Student’s t-test) 

and F1 mice (p<0.001, at least by Student’s t test), and this production in Delta16 mice 

was ten-times higher than in HER2/Delta16 F1 mice (Figure 3). Although both 

transgenic mice showed a fast tumor growth, Delta16 mice were probably less 

tolerogenic against the ECD of HER2 full-length isoform, antigen included in HER2-

VLP vaccine preparation or produced by pHuRT plasmid. This point might explain 

why HER2/Delta16 F1 mice were not completely protected. Although we did not test 

vaccine activity in mice transgenic for only HER2 full-length isoform, due to long 

tumor latency  (De Giovanni et al. 2014; Palladini et al. 2017), we managed induction 

of antibodies with HER2-VLP vaccine, confirming a level quite similar to that of F1 

mice (Figure 3A). We concluded that the most suitable tumor-aggressive model to test 

anti-HER2 vaccines is the double transgenic F1 mouse, since it combines an aggressive 

tumor phenotype with immune tolerance against both Delta16 and HER2 full-length 

isoforms.  
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A. B. Delta16 mice F1 mice 

Figure 2. Preventive activity of HER2-VLP vaccination against HER2-driven mammary carcinogenesis. 

A. Groups of 3 Delta16 mice were treated intramuscular (i.m.) with HER2-VLP vaccine or 

electroporated pHuRT DNA vaccine. Mantel-Haenszel test: HER2-VLP vs pHuRT, p<0.01; HER2-VLP 

vs Untreated, p<0.001.  B. Groups of 7–11 HER2/Delta16 F1 mice were vaccinated with HER2-VLP or 

with electroporated pHuRT vaccine. Mantel-Haenszel test: HER2-VLP vs pHuRT or Untreated, 

p<0.001. Modified by (Palladini et al. 2018b)   
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1.1.3 HER2-VLP vaccine activity in the therapeutic set-up  

We evaluated HER2-VLP vaccine activity in a therapeutic set-up, using wild-type mice 

grafted with HER2-expressing mammary carcinoma cells. For this purpose, we 

induced tumor growth in immunocompetent FVB mice by injecting 

MamBo89HER2stable cell line (Figure 4A and B). We established this cell line from a 

HER2-positive spontaneous mammary tumor arisen in a HER2 transgenic mouse. A 

second model was based on the engraftment in FVB mice of HER2-positive tumor 

fragments from primary transgenic mammary carcinomas of HER2 mice (Figure 4C 

and D). Mice were biweekly immunized with HER2-VLP vaccine until the end of the 

experiment and the treatment significantly inhibited tumor growth. In both models, 

HER2-VLP vaccine induced the production of high and comparable levels of anti-

HER2 antibodies. Nevertheless, the vaccine was more effective in mice grafted with 

tumor fragments, in which we observed 4 of 5 mice remaining tumor-free, compared 
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Figure 3. Kinetics of anti-human (hu) HER2 antibodies. Antibodies in mouse sera were tested by ELISA. 

Each point represents the mean ± SEM of 3–13 individual sera of different mice. F1 mice were treated 

according to a chronic protocol. FVBhuHER2 (HER2) and Delta16 (D16) mice were treated according 

to a short (3 vaccinations) protocol. A. HER2-VLP vaccinated mice. Antibody concentrations elicited by 

HER2-VLP in Delta16 mice were significantly higher than in F1 and HER2 mice: p<0.05, at least 

(Student’s t-test). B. pHuRT vaccinated mice. Antibody concentrations elicited by pHuRT in Delta16 

mice were significantly higher than in F1 mice: p<0.05, at least (Student’s t-test). 
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to mice bearing MamBo89HER2stable tumors, which showed only a delayed tumor 

growth.  

 

Previous data indeed reported an intrinsic resistance of MamBo89HER2stable cells in 

vitro to HER2 inhibitors as trastuzumab and TKI, e.g. lapatinib (Palladini et al. 2017) 

and neratinib (unpublished data). 

We have evidenced above that all mice vaccinated with HER2-VLP produced a 

high-titer of anti-HER2 antibodies, as measured by ELISA. The binding of sera to 

HER2-positive human tumor cells expressing HER2 at different levels was tested 

through immunofluorescence. We concluded that there was a strong binding to the 

HER2-positive human tumor cells, but no binding to HER2-negative 
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Figure 4. Therapeutic activity of HER2-VLP vaccine against HER2-positive mammary carcinomas. 

Treatment was administered in mice subcutaneously (s.c.) injected with MamBo89HER2stable cells (A-B) 

or transplanted with mammary carcinoma fragments (C-D). A and C: Kaplan-Meier analysis of mice 

with tumors smaller than 1 cm3. Significance of difference by the Mantel-Haenszel test: p < 0.01 (A), p< 

0.01 (C). B and D: anti-HER2 antibodies induced by HER2-VLP vaccination and measured by ELISA. 

Statistical significance of difference by the non-parametric Mann Whitney Rank Sum Test: p<0.01. 

(Palladini et al. 2018b) 



68 

 

rhabdomyosarcoma SJ-RH4 cells, used as negative control (Figure 5A and B). The 

staining intensity of induced anti-HER2 antibodies was comparable to that obtained 

using the anti-HER2 monoclonal antibody clone MGR2. 

 

1.1.4 Isotypes, affinity and avidity of anti-HER2 antibodies 

To better understand the role of these antibodies in the immune response induced by 

the vaccine, we analysed the isotypes through flow cytometry, by leveraging the high 

expression of native HER2 molecules in human SK-OV-3 cells. The IgG isotypic class 

is the most relevant in tumor surveillance, allowing the activation of the classical 

complement pathway and ADCC. Among the different classes of mouse IgG (IgG1, 

IgG2a, IgG2b, IgG3), the subclasses IgG2a and IgG2b show a stronger anti-tumor 

potential in vivo, compared to IgG1 and IgG3 subclasses (Kipps et al. 1985; 

Nimmerjahn and Ravetch 2005; Hamaguchi et al. 2008). According to the ELISA assay, 

immunofluorescence showed higher levels of antibodies in Delta16 mice, compared to 

F1 mice, regardless of the type of immunization with the protein vaccine HER2-VLP 

or with the pHuRT DNA vaccine (Figure 5C). Analysis of IgG isotypes as percentage 

of total IgG (Figure 5D) evidenced that HER2-VLP induced a higher proportion of 

IgG1 subclass antibodies (F1 mice, 40%; Delta16 mice, 22%) than pHuRT vaccine (10% 

for both models). IgG2a and IgG2b isotype subclasses were less represented than IgG1 

in HER2-VLP vaccinated mice: Delta16 mice, IgG2a 7% and IgG2b 4%; F1 mice, IgG2a 

1.5% and IgG2b 0.5%. pHuRT vaccine promoted a quite similar level of all three 

subclasses, both in Delta16 mice (IgG1, 10%; IgG2a, 11%; IgG2b, 4%) and F1 mice 

(IgG1, 10%; IgG2a, 8%; IgG2b, 4%). We can conclude that pHuRT vaccine induced a 

more marked antibody-switch towards IgG2a isotype than HER2-VLP vaccine 

(although the statistical significance was reached only for F1 mice). This polarized 

switch was also true for IgG2b subclass, but only when comparing HER2-VLP 

treatment with pHuRT treatment in F1 mice. Since HER2-VLP was the most effective 

vaccine in both Delta16 and F1 mice, we concluded that this higher efficacy may be 
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due to the IgG1 subclass. On the other hand, the absolute level of IgG2a was quite 

similar for both vaccines. Therefore, the stronger activity of HER2-VLP might lie in the 

combination of a faster induced antibody rise, higher IgG1 level that promoted an 

immune storm and the presence of IgG2a antibodies which, although less in terms of 

percentage, reached the same absolute levels observed after pHuRT treatment. 

 

We then performed an ELISA-based avidity assay to measure the avidity of anti-

HER2 antibodies induced by HER2-VLP and pHuRT vaccines. pHuRT immunization 

induced antibodies with a lower activity compared to HER2-VLP-induced ones. The 
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Figure 5. Characterization of HER2-VLP and pHuRT induced antibodies. Flow cytometry profiles of 

cells expressing known amounts of HER2, from completely negative (SJ-RH4) to highly positive (SK-

OV-3) cells, stained with the serum of one representative F1 mouse vaccinated with HER2-VLP. B. 

Comparison of staining either with sera of 3–4 individual F1 mice vaccinated with HER2-VLP (closed 

diamonds) or with anti-HER2 mAb MGR2 (open diamonds). Fluorescence intensities measured by flow 

cytometry were normalized by the concentration of IgG against HER2 measured by ELISA in each 

serum (Median fluorescence intensity/HER2 IgG). C. IgG subtypes elicited by the indicated 

vaccinations, determined by flow cytometry of SK-OV-3 cells after indirect immunofluorescence with 

subtype-specific secondary Abs. Each bar represents the mean and SEM of 2–5 individual sera of 

different mice obtained two weeks after the third vaccination. D. IgG subtype levels measured by 

indirect immunofluorescence (C) reported as percentage of total IgG. Statistical significance of 

difference by Student’s t-test: *p<0.05; **p<0.001. Modified by (Palladini et al. 2018b) 
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avidity of anti-HER2 antibodies increased with the number of administrations. In 

addition, it rose at a faster rate for HER2-VLP treated mice than pHuRT treated mice 

(Figure 6A). We also tested the affinity of these antibodies to HER2 by Attana A200 

Quartz Crystal Microbalance Biosensor. Recombinant HER2-ECD was immobilized on 

an amine reactive surface and we measured its binding interaction with vaccine-

induced anti-HER2 IgG (Figure 6B) or trastuzumab mAb (Figure 6C). The analysis of 

vaccine induced anti-HER2 IgG binding showed the characteristics of multiple 

binding factors with different binding kinetics, consistent with a polyclonal IgG 

population. Approximately 1000 seconds after sample injection, the (ΔHz) response 

curve showed a constant dissociation rate, which at this point was in a similar range 

to that measured for trastuzumab. We concluded that HER2-VLP vaccine can induce 

anti-HER2 IgG with affinities that are comparable to that of trastuzumab. 

A. B. 

C. 

Figure 6. Avidity and affinity of anti-HER2 IgG Abs elicited by vaccination. A. Avidity index, as 

determined by avidity ELISA, of Abs elicited by the indicated vaccinations. Each point represents the 

mean±SEM of 3–5 sera. The slopes of linear regression lines are significantly different (p<0.02). B and C. 

The Attana Quartz Crystal Microbalance biosensor was used to measure dissociation rates for the kinetic 

binding between recombinant HER2-ECD and purified total IgG from HER2-VLP immunized mice (B) 

or Trastuzumab mAb (C). Different dilutions of anti-HER2 IgG were flushed over a surface of 

recombinant HER2-ECD immobilized at 50 µg/ml. Binding is shown as change in frequency over time 

(DHz). The black curve represents the real-time trace, while the red curve shows the fit of the 

dissociation rate measured for 500 seconds (1000–1500 seconds after injection). Dissociation rate 

constants (Kd) were obtained by applying a dissociation rate model using the TraceDrawer software. 

(Palladini et al. 2018b) 
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1.1.5 In vitro activity of anti-HER2 antibodies 

Trastuzumab activity is dual since on the one hand the drug interferes with HER2 

homodimerization and, consequently, HER2 homodimer signaling, while on the other 

hand the monoclonal antibody promotes immune system activation, mainly through 

NK. Thus, we decided to evaluate growth inhibition by mouse sera of both HER2-

positive trastuzumab-sensitive BT-474 breast cancer cell line and trastuzumab-

resistant clone BT-474-C5. Cells were cultured in 3D condition, since non-adherence 

condition better mirrors in vivo growth. Both cell lines were cultured in parallel in 

presence of only culture medium, trastuzumab 10 µg/ml or two different sera of HER2-

VLP vaccinated mice. 3D growth of BT-474 cells was equally and strongly inhibited in 

the presence of trastuzumab or sera of HER2-VLP immunized Delta16 mice. The latter 

were diluted 1:100 to achieve a concentration like that of trastuzumab (10 µg/ml 

trastuzumab), i.e., M1 Delta16 serum 11.5 µg/ml and M2 Delta16 serum 9.7 µg/ml. 

Delta16 serum concentrations were quantified by the ELISA test. Treatment with 

trastuzumab at the final concentration of 10 μg/ml succeeded in inhibiting three-

dimensional anchorage-independent growth of the BT-474 cell line, reaching an 

inhibition percentage of 95%, compared to cells cultured with culture medium alone 

(Student’s t-test, p<0.001). Cell growth was also inhibited by sera of the two Delta16 

vaccinated mice. The percentage of inhibition was directly proportional to the 

concentration of anti-HER2 antibodies: serum M1, 98.9%; serum M2, 74.4% (Figure 7). 

Under the same culture conditions, the BT-474-C5 clone was resistant to trastuzumab, 

showing a number of colonies that was similar to that of untreated cells, while BT-474-

C5 cells were found to be sensitive to both sera, with an inhibition percentage of 38% 

for M1 and 26% for M2. We concluded that humoral anti-HER2 polyclonal response 

managed to overcome trastuzumab resistance in BT-474-C5 cells. 
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1.1.6 Cytokine production 

We further quantified HER2-VLP and pHuRT vaccine-induced cytokines (Figure 8). 

In F1 mice vaccination with HER2-VLP resulted in an increased concentration of IFN-

A

. 

B

. 

Figure 7. 3D growth inhibition by HER2-VLP induced antibodies. HER2-positive BT-474 cells and 

the trastuzumab-resistant clone BT-474-C5 were seeded in soft agar containing either trastuzumab 

(10 µg/ml) or sera (diluted 1:100) from two Delta16 mice (labelled as M1 and M2), vaccinated with 

HER2-VLP. The concentration of anti-HER2 Abs in mouse sera, as determined by ELISA, was 

comparable to that of trastuzumab (9.7–11.5 µg/ml). A. Inhibition of agar colony number counted 

18 days after seeding. Each bar represents the mean (and SEM) inhibition of colony number in two 

independent plates. Inhibition by trastuzumab or anti-HER2 sera was calculated in reference to 

wells containing medium alone and untreated mouse serum, respectively. B. Dark-field 

micrographs of colonies in agar. The label ‘HER2-VLP’ correspond to serum M1 in (A). White bar 

corresponds to 200 mm. (Palladini et al. 2018b) 
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γ, pleiotropic cytokine secreted mainly by CD4+ Th1 cells, CD8+ T cells and NK cells, 

and MIP-1α (CCL3) and MIP-1β (CCL4) chemokines, which are involved not only in 

the control of macrophages and NK migration but also in the crosstalk between 

lymphocytes and dendritic cells. The DNA chimeric vaccine led to a reduction in 

serum concentration of IL-12(p40) and TNF-alpha. We concluded that HER2-VLP 

vaccination induced specific increases in the levels of various cytokines involved in 

chemotaxis, antigen presentation and type 1 helper T cell response. 

 

The preventive effect of HER2-VLP was more limited in F1 mice than Delta16 mice. In 

the therapeutic set-up almost all mice implanted with HER2 fragments were tumor-

free at the end of the follow-up, while mice bearing MamBo89HER2stable tumors had 

Figure 8. Cytokine pattern in sera of F1 mice treated with HER2-VLP or pHuRT. Analysed sera were 

collected after 4 vaccinations. N= 2 mice (untreated and pHuRT); n=3 mice HER2-VLP). Significance 

difference: *p<0.05, by Student’s t-test; p<0.01, by Student’s t-test. (Palladini et al. 2018b) 
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only a delay in tumor growth. We concluded that HER2-VLP vaccine might need to be 

improved or combined with other components to overcome these limits. 

 

1. 2 Triggering the immune response 

Several strategies might reinforce the vaccine-induced antitumor immune 

responses. In this section I have reported four different approaches to modulate the 

activation of the immune system against tumor (Figure 9). First, we used a DNA 

vaccine codifying the human insulin-like growth factor 2 (IGF-II or IGF2) antigen with 

the aim of preventing mouse rhabdomyosarcoma lung metastases (De Giovanni et al. 

2019b). A second approach to break the immune tolerance against a target antigen was 

the use of a “combo” vaccine including two antigens: rat HER2/neu and mouse insulin-

like growth factor 1 receptor (IGF1R). This combination resulted effective in the 

prevention of spontaneous murine rhabdomyosarcoma. Then, we moved to 

approaches able to modulate immune checkpoint activity. We tested the activity of 

anti-OX40 combined with a cellular vaccine against rat HER2/neu in a mouse 

HER2/neu-driven mammary carcinoma model.  

We compared two different schedules of administration, which resulted in different 

effects on mammary tumor prevention, one of which was worse  (Nanni et al. 2018). 

Figure 9. Graphical summary of strategies investigated to modulate immune system to overcome 

cancer vaccine limitations.  
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The chance that an immune stimulation can produce a non-beneficial effect, known as 

hyperprogressive disease (HD) led us to focus on this dark side of immune checkpoint 

therapy, taking advantage of an in vivo and in vitro model of murine melanoma. 

 

1.2.1 The break of tolerance against IGF2 

IGF circuit is one of the most relevant in rhabdomyosarcoma genesis. BALB/p53Neu 

male mice, which carry a p53 null allele and a rat HER2/neu heterozygous transgene, 

develop pelvic rhabdomyosarcomas, at a median age of 14 weeks, along with almost 

concomitant salivary gland carcinomas (Nanni et al. 2003). IGF circuit plays a key role 

in rhabdomyosarcomas, but not in salivary carcinomas, in this murine model (Nanni 

et al. 2003; Ianzano et al. 2014). Tumor dependence on this circuit has been assessed 

over a murine rhabdomyosarcoma cell line (RMSp53Neu5) derived from a 

rhabdomyosarcoma tumor from a BALB/p53Neu male mouse. We treated in vitro 

RMSp53Neu5 cells with specific siRNAs or with NVP-AEW541, a small molecule 

inhibitor of IGF1R (Figure 10). Both treatments inhibited the 3D colony growth of 
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Figure 10. Activity of IGF1R-neutralizing approaches on 3D growth of murine rhabdomyosarcoma 

RMSp53Neu5 cell line. A. Effect on 3D growth of two different siRNAs against IGF1R (R1 and R4). 

Control bar refers to cells cultured in the presence of control siRNA not homologous to any mouse 

mRNA. Percentage of growth relative to oligofectamine only is shown. Significantly difference:* 

p < 0.05 vs control siRNA by Student’s t-test. B. Dose-related growth inhibition in the presence of the 

IGF1R inhibitor NVP-AEW541. Dose “0” corresponds to controls containing vehicle alone. (De 

Giovanni et al. 2019b) 
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RMSp53Neu5 cells, thus confirming that IGF1R is the mediator of an IGF autocrine 

loop on rhabdomyosarcoma cells.  

We decided, therefore, to switch off this circuit by targeting IGF2. Thus, we treated 

BALB/p53Neu male mice with antibodies against IGFs. The treatment was started in 

mice at 5-6 weeks of age, when they were tumor-free, and they were treated up to 

14 weeks of age. Untreated mice developed almost simultaneously (around 15 weeks 

of age) IGF2-dependent rhabdomyosarcoma and IGF2-independent salivary 

carcinoma, thus allowing us to evaluate the preventive effect of anti-IGFs antibodies 

on both tumor types. Passive administration of anti-IGFs antibodies delayed, in a dose-

dependent manner, the onset of rhabdomyosarcoma (Figure 11A), while salivary 

carcinoma latency was unaffected (Figure 11B). The overall survival significantly 

increased; a result likely due to the delayed rhabdomyosarcoma onset (Figure 11C).  

 

C. A. 

B. 

Figure 11. Prevention of spontaneous rhabdomyosarcoma by IGFs-neutralizing monoclonal antibodies. 

BALB/p53Neu male mice received passive administration of IGFs MAbs consisted of a 1:1 mixture of 

KM3168 + KM1468 monoclonal antibodies. A. Rhabdomyosarcoma-free survival. B. Salivary carcinoma-

free survival. C. Overall survival. n =5- 7. Statistical significance by the Mantel-Haenszel test versus 

untreated controls is reported inside each panel. (De Giovanni et al. 2019b)      
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We, subsequently, moved to a DNA vaccine against IGF2, making use of two 

expression plasmids carrying murine or human IGF2 gene isoform. The use of a 

plasmid codifying for the human IGF2, even though highly homologous to mouse 

IGF2, had the advantage of fostering the break of immune tolerance against the target. 

We vaccinated BALB/c mice to test the ability of both vaccines to induce anti-IGF2 

antibodies. The DNA vaccine against mouse IGF2 did not elicit antibodies, even when 

combined with Treg depletion. The pre-treated mice then received intravenous 

injection of RMSp53Neu5 cells, but the number of lung metastases was the same both 

in untreated and previously treated mice (data not shown). On the other hand, in mice 

immunized with human IGF2 vaccine we detected anti-hIGF2 antibodies, which also 

recognized the murine IGF2 isoform (Figure 12A-C).  

B. 

A. 

C. D. 

Figure 12. Activity of anti-IGF2 antibodies elicited by anti-human IGF2 DNA vaccine. A. Western blot 

analysis of sera from BALB/c mice untreated or vaccinated with empty vector (p-BLAST) or p-hIGF2 (two 

independent mice are shown). For each mouse, sera were used to stain mIGF2 protein (left lane) or hIGF2 

protein (right lane). B. ELISA assay for anti-hIGF2 antibodies in sera from BALB/c mice untreated, 

vaccinated with empty vector or with p-hIGF2. Dashed line: sensitivity threshold as determined by the 

level of untreated mice. C. ELISA assay for anti-mIGF2 antibodies. D. Prevention of RMSp53Neu5-

induced metastasis in mice vaccinated with the empty vector or with the p-hIGF2 plasmid and 

electroporated. Two similar experiments were pooled. Significance of difference by Wilcoxon test 

(p=0.03). (De Giovanni et al. 2019b) 
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Two mice vaccinated with control p-BLAST vector displayed an over-threshold 

reactivity against hIGF2, but they were devoid of any reactivity against mIGF2. Mice 

vaccinated with p-hIGF2 DNA vaccine or pBLAST received the intravenous (i.v.) 

injection of RMSp53Neu5 cells. We detected in the former group a significant decrease, 

in the number of lung metastases (60%) compared to latter one (Figure 12D).  

 

1.2.2 The break of tolerance against IGF1R 

To further investigate the role of IGF circuit in rhabdomyosarcoma we carried out 

immunizations with two expression plasmid vectors carrying human sequence of 

IGF1R (hIGF1R) or a murine optimized mIGF1R sequence (mIGF1Ropt). hIGF1R DNA 

vaccine takes advantage of a possible adjuvant effect of the non-self, even though it is 

a highly homologous molecule (Yang et al. 2014). We did not detect anti-mIGF1R 

antibodies in mice treated with electroporated mIGF1Ropt or hIGF1R DNA vaccines 

(Figure 13A, lanes 4 to 7 and Figure 13E, lanes 2 to 3, respectively). DNA vaccine for 

hIGF1R induced antibodies against the human IGF1R (Figure 13D, lanes 2 to 3). To 

improve immune stimulation by vaccine we investigated other adjuvant stimuli 

combined with DNA vaccines, such as combinations with IL12 and allogeneic 

histocompatibility (H-2Dq)-carrying plasmids (pIL12 and pDq respectively) (Figure 

13A, lanes 8 to 10), with pIL12 alone (Figure 13B, lanes 7 to 8) or Treg depleting pre-

treatment (anti-CD25 antibodies) (Figure 13B, lanes 4 to 6), but anti-mIGF1R antibodies 

were never elicited. DNA vaccination against rat HER2/neu was chosen as a positive 

control for the vaccinal procedure (De Giovanni et al. 2019a), and, as expected, it 

induced a strong antibody response against rat HER2/neu (data not shown). 
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A. B. 

C. D. E. 

Figure 13. Immunoprecipitation and Western blot analysis of sera to evaluate the induction of antibodies 

recognizing murine or human IGF1R. In each panel sera used for immunoprecipitation are reported over 

each lane, while tumor cell lysate (target) is reported under each panel. A. lane 1, positive control; lanes 2 

to 3, sera from untreated BALB/c mice; lanes 4 to 7, sera from BALB/c mice after four vaccinations with 

pmIGF1Ropt plasmid; lanes 8 to 10, sera from BALB/c mice after four vaccinations with a combination of 

plasmids (pmIGF1Ropt, pIL12 and pDq). B. lane 1, positive control; lane 2, serum from BALB/p53Neu 

pre-treated with anti-CD25 and vaccinated with pIL12; lane 3, untreated; lanes 4 to 6, sera from 

BALB/p53Neu mice pretreated with anti-CD25 and vaccinated with pmIGF1Ropt and pIL12 plasmids; 

lanes 7 to 8, sera from BALB/p53Neu after three vaccinations with pmIGF1Ropt and pIL12 plasmids; lane 

9, serum from BALB/p53Neu vaccinated with hIGF1R-expressing D39 cell vaccine (three vaccination 

cycles); lane 10, protein G alone (negative control). C. lane 1, positive control; lanes 2 to 3, sera from 

BALB/c mice vaccinated with mIGF1R-expressing 9B10 cells (three cycles); lanes 4 to 5, sera from mice 

vaccinated with #20 control cells (three cycles); lane 6, protein G alone (negative control). D and E. The 

same sera were used to immunoprecipitate either hIGF1R (D) or mIGF1R (E) as follows: Lane 1, positive 

control; lanes 2 to 3, sera from BALB/c mice after four vaccinations with p-hIGF1R plasmid; lane 4, serum 

from BALB/c mouse after three vaccination cycles with hIGF1R-expressing D39 cells; lane 5, serum from 

mouse vaccinated with #20 control cells (three cycles). (De Giovanni et al. 2019a) 
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 Subsequently, we developed cellular vaccines to further improve the immune 

response. We obtained, through transfection, cells expressing mIGF1R or hIGF1R, 

along with HER2/neu, allogeneic histocompatibility complex and IL12. The mIGF1R-

transduced cell vaccine 9B10 gave rise to antibodies recognizing mIGF1R (Figure 13C, 

lanes 2 to 3). The hIGF1R-transduced cell line D39 elicited antibodies against hIGF1R 

(Figure 13D, lane 4), which cross-recognize the mIGF1R (Figure 13B, lane 9 and Figure 

13E, lane 4). Control cell vaccine (#20 recipient cells, expressing HER2/neu, allogeneic 

H-2Dq and IL12, not subjected to transfection with IGF1R gene) did not elicit anti-

IGF1R antibodies (Figure 13C, lanes 4 to 5, Figure 13D, lane 5, and Figure 13E, lane 5). 

Both human and mouse IGF1R-engineerd cell vaccines promoted the rise of antibodies 

recognizing murine IGF1R although 9B10 cell vaccine induced a significantly higher 

level of antibodies compared to D39 cell vaccine. Sera from mice vaccinated with 

parental #20 cells, as well as sera from non-vaccinated mice, did not show specific 

binding even at 1:200 dilution (Figure 14A). We investigated the anti-IGF1R isotypes 

in sera of 9B10 vaccinated mice. We mainly detected IgG1, IgG2a, and IgG3 isotypes 

while no IgG2b were found (Figure 14B). Besides vaccination with hIGF1R-expressing 

D39 cells did not induce IgG3 isotype. 

 

B. A. 

Figure 14. Anti-IGF1R and anti-HER2/neu antibodies elicited by cell vaccines co-targeting HER2/neu 

and IGF1R. A. Anti-mIGF1R antibodies determined by ELISA. Sera were collected from BALB/p53Neu 

mice after two vaccination cycles and diluted 1:400. Statistical significance (Student’s t-test) of 

difference between D39 (n = 8) and 9B10 (n = 6) is reported in the figure. B. Analysis of antibody isotypes 

induced by cell vaccines in (A) (n = 3 mice per group). (De Giovanni et al. 2019a) 
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Cell vaccines co-targeting HER2/neu and mIGF1R or hIGF1R (9B10 and D39 cell 

lines, respectively) were administered to BALB/p53Neu mice starting at an early age 

corresponding to the preneoplastic stage (Figure 15). mIGF1R-expressing cell vaccine 

induced a delay of rhabdomyosarcoma onset (Figure 15A) but not of salivary 

carcinoma (Figure 15B). One the other hand, #20 cell vaccine rapidly induced a high 

level of anti-HER2/neu antibodies able to prevent salivary carcinomas. The preventive 

ability of D39 cell vaccine was lower than B10 cell vaccine, probably because of the 

lower levels of induced anti-mIGF1R antibodies.  

 

1.2.3 Modulation of the immune checkpoint OX40 

Treg inactivation is a good strategy to enhance immune stimulation induced by 

vaccines, i.e. the break of the immune tolerance against the antigen carried by the 

vaccine. In order to improve vaccine efficacy, we investigated the combined treatment 

based on an anti-HER2/neu cellular vaccine and Treg inhibition. We tested this 

schedule in BALBneuT mice transgenic for rat HER2/neu oncogene. These mice show 

a spontaneous onset of mammary carcinoma, with the first tumor being observed at a 

median time of 16 weeks of age. Triplex vaccine, based on engineered IL12-producing 

allogeneic HER2/neu-positive cells, prevent almost completely this aggressive 

A. B. 

Figure 15. Preventive efficacy of anti-mIGF1R- or -hIGF1R cell vaccines in BALB/p53Neu mice. A.  

Rhabdomyosarcoma. B. Salivary carcinoma. Tumor-free survival (%) is shown. n=6-20. Statistical 

significance (Mantel–Haenszel test) vs. untreated is reported in the figure. Statistical significance vs. #20 

parental cell vaccine is as follows: for rhabdomyosarcomas, D39 p = 0.65, and 9B10 p = 0.10; for salivary 

tumors, D39 p = 0.12 and 9B10 p = 0.006. (De Giovanni et al. 2019a) 
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mammary carcinogenesis when administered according to a life-long schedule. 

Vaccine-induced immune mechanisms include host production of both anti-neu 

antibodies and IFN-γ (De Giovanni et al. 2004). We induced Treg inhibition by 

triggering OX40 with an agonistic antibody (OX86, here referred to as aOX40). OX40 

belongs to the TNFR immune checkpoint family and is constitutively expressed on 

murine Treg and on activated CD4 and CD8 T cells. We chose a suboptimal vaccine 

schedule to better value either increased or decreased preventive efficacy of the 

vaccine in the combined treatment with OX40 agonist. Thus, we started immunization 

at 10 weeks of age for three monthly cycles. Two distinct schedules of aOX40 

administration were used: concomitant to cell vaccine (aOX40+vax) or after the 

completion of 3 cycles of vaccination (aOX40postvax) (Figure 16A). Cell vaccine alone 

significantly delayed the spontaneous onset of mammary carcinoma, with the first 

tumor being observed at a median time of 35 weeks (Figure 16B). aOX40 administered 

concomitant to vaccine (aOX40+vax) partially weakened the preventive vaccine 

efficacy, causing a significantly earlier tumor onset (at a median time of 28.5 weeks) 

and higher numbers of tumors per mouse, with respect to the vaccine alone. The 

aOX40 administration after the end of vaccinations slightly increased (p<0.01 by 

Mantel-Haenszel test) the vaccine efficacy with a delay of tumor onset at a median age 

of 39 weeks and fewer tumors per mouse (Figure 16B and C). 

Anti-HER2/neu antibodies played a key role in vaccine-induced protection. 

Triplex vaccine induced a progressive increase of anti-HER2/neu antibodies. After the 

end of immunizations, we then observed a decrease in the levels of antibodies and, 

consequently, the onset of mammary tumors. aOX40 administered concomitant with 

cell vaccine (aOX40+vax) significantly reduced anti-HER2/neu antibody production 

(Figure 17A). Isotype analysis of HER2/neu vaccine-induced antibodies evidenced a 

significantly lower level of IgG2a and IgG3, together with total IgG, in sera of 

OX40+vax-treated mice, compared to mice treated only with Triplex vaccine (Figure 
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17B and C). The decreased antibody levels correlated well with the decreased 

immunoprevention by cell vaccine. 

    

 

 

 

 

 

 

Figure 16. Preventive efficacy of combined treatments with aOX40 and anti-HER2/neu cell vaccine on 

mammary carcinoma. A. Treatment schedule. Black ticks: intraperitoneal (i.p.) injection of a cell vaccine 

dose. Red squares: i.p. injection of aOX40 concomitant to vaccine (aOX40+vax). Blue triangles: i.p. 

injection of aOX40 after completion of vaccine cycles (aOX40postvax). B. Tumor-free survival curves. 

Groups: untreated, n = 21; vaccine: n = 34; aOX40+vax, n = 13; aOX40postvax, n = 18. #p < 0.01 vs vaccine 

only group (Mantel-Haenszel test). All treated groups were significantly different from untreated (p < 

0.01 at least). C. Tumor multiplicity. Mean ± SEM. *p < 0.05 at least vs vaccine only (Student's t-test). 

Untreated mice received vehicle (PBS) alone. (Nanni et al. 2018) 
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Mice treated with aOX40 after the end of the three vaccine cycles (aOX40postvax) 

showed kinetics and isotypes of anti-HER2/neu antibodies superimposable to those of 

vaccine alone (Figure 17A-C). We concluded that the mechanisms associated with the 

increased protection observed in these mice were not mediated by anti-HER2/neu 

antibodies. 
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Figure 17. Anti-vaccine antibodies induced by different schedules of aOX40 administration combined 

to vaccination. A. Kinetics of anti-vaccine antibodies. MFI = Median fluorescence intensity. Mean ± SEM 

is shown for each point. *p < 0.01 at least vs vaccine only group (Student's t-test). Inset: anti-H-2q 

antibodies at two time points (21 and 37 weeks of age). *p < 0.05 at least vs vaccine only group (Student's 

t-test). B. Anti-vaccine antibody isotypes at 21 weeks of age. MFI as in (A). Mean ± SEM is shown for 

each point. *p < 0.05 at least vs vaccine only group (Student's t-test). C. Anti-vaccine antibody isotypes 

at 37 weeks of age. MFI as in (A). Mean ± SEM is shown for each point. *p < 0.05 at least vs vaccine only 

group (Student's t-test). (Nanni et al. 2018) 
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Since Treg cells were the target of aOX40, we investigated how the treatment 

affected these cells. At 17 weeks of age, BALBneuT mice showed about 15% of Treg in 

spleen (Figure 18). The different treatments did not affect Treg number. Nevertheless, 

the frequency of Treg expressing the activation marker CD103 significantly increased 

in aOX40+vax treated mice. Thus, we can conclude that in aOX40+vax, aOX40 induced 

an activation of Treg cells that was responsible for the reduced vaccine efficacy.   

 

On the other hand, aOX40postvax schedule did not modify the frequency of Treg and 

effector memory T cells (Tem), with respect to the vaccine-only group (Figure 19). 

Splenocytes of aOX40postvax mice, restimulated for 6 days with HER2/neu cells, 

showed a significantly higher production of GM-CSF and IL10, compared to the 

splenocytes of mice treated with vaccine only, whereas there was no difference in IFN-

γ secretion (Figure 19B). 
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Figure 18. Effect of aOX40+vax combined treatment on Treg number and phenotype. Each bar 

represents the mean and SEM from mice of the different groups studied (at 17 weeks of age). Panels 

from left to right show: Treg frequency over total splenocytes, CD103+ cells over Treg, GITR expression 

level (Mean fluorescence intensity, MFI) over Treg, CD103+ Treg frequency in gated CD4+ splenocytes. 

For comparison, data from untreated mice and from mice treated with aOX40 alone are shown. Groups: 

untreated, n = 3; aOX40, n = 10; vaccine, n = 20; aOX40+vax, n = 25. Significance at the Student's t-test is 

reported. (Nanni et al. 2018) 
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This study suggested that the immune checkpoint switch off can induce either clinical 

benefits or drawbacks. Several factors can influence the balance between immune 

surveillance and tumor immune escape. Among them, the immune populations 

infiltrating the tumor microenvironment, the tumor dimension and the cytokine 

production played a major role. Checkpoint inhibitors can perturbate this equilibrium 

and the effect might be different according to the timing of administrations. 
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Figure 19. Effects of aOX40postvax treatment. A. Frequency of Treg, effector memory (Tem)/Treg, T 

effector (Teff) and effector memory/Teff. Each bar represents the mean and SEM from mice of the 

different groups studied (at 32 weeks of age). Groups: untreated, n = 4; vaccine, n = 8; aOX40postvax, n 

= 8. *p≤0.01 vs untreated group (Student's t test). B. Cytokine production by restimulated spleen cells 

(collected from mice at 32 weeks of age). Each bar represents the mean and SEM from mice of the 

different groups studied. Groups: vaccine, n = 6; aOX40postvax, n = 6. Significance at the Student's t-

test is reported. (Nanni et al. 2018) 
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1.2.4 Modulation of the immune checkpoint PD-L1  

The controversial results regarding aOX40 led us to carry out a further investigation 

into the effects of immune checkpoint inhibition, focusing on the negative effects on 

tumor growth obtained with these treatments. In clinical practise, immune checkpoint 

inhibitors are widely used in melanoma and NSCLC therapies. Although ICI 

improved survival of patients with advanced tumors (Topalian et al. 2014; Ahamadi 

et al. 2017; Vaddepally et al. 2020), several studies reported a failure of the treatment 

in a proportion of patients (Borcoman et al. 2019). Therefore, we explored the effect of 

anti-PD-L1 polyclonal and monoclonal antibodies in a murine melanoma model, 

consisting of cell lines B16 and B16-F10. These cell lines showed a low immunogenicity, 

so they are representative of tumors reported to be less responsive to ICI. Afterwards, 

we evaluated how the anti-PD-L1 treatment modified the in vivo tumorigenesis of B16 

and/or B16-F10 cell lines injected in C57BL/6 mice.  ICI activity on tumor cells was also 

investigated in vitro, in absence of the immune system components.  

3 4 5 6 7 8 9 10 11 12

64

256

1024

8192

16384

32768

B16-F10 PDL1-VLP

B16 PDL1-VLP

C
e
ll

in
je

c
ti
o
n

B16 PBS+ALUM

Weeks after the first vaccination

A
n

ti
 P

D
-L

1
 a

n
ti

b
o

d
y
 t

it
e
r

8 weeks after the first vaccination

Ig
G
1

Ig
G
2a

Ig
G
2b

Ig
G
3

0

1

2

3

4
B16 PDL1-VLP

B16-F10 PDL1-VLP

O
p

ti
c
a
l 
d

e
n

s
it

y

4
0
5
 n

m

A. B. 

Figure 20. Anti-PD-L1 antibody titer and isotypes. A. Kinetics of anti-PD-L1 antibodies detected in 

mouse sera by ELISA test. We analysed sera collected after 5, 8 and 10 weeks from the first 

immunization. Each point represents the mean and SEM from 5 mice of the different studied groups. 

The black arrows indicate the second and the third vaccination. The dashed vertical line indicates the 

week at which B16 or B16-F10 cells were inoculated. The endpoint titer, considering as cut off the value 

obtained by sum of the mean and the standard deviation of the values obtained in blank wells, 

multiplied by 3, is indicated in y-axis and directly related to the antibody titer. B. Analysis of antibody 

isotypes induced by PDL1-VLP vaccine+alum. We performed the analysis by ELISA. Each bar 

represents the mean and SEM from mice of the different groups studied (n = 6). Significance difference 

between IgG1 and other isotypes for each cell line: p<0.05, at least by Student’s t-test. 



88 

 

 

1.2.4.1 Therapy of B16 and B16-F10 with polyclonal anti-PD-L1 antibodies 

We immunized C57BL/6 mice with a PDL1-VLP vaccine, against mouse PD-L1, 

combined to alum. To induce a high PD-L1 antibody titer we performed two boosts 

after the first vaccine administration. Since alum consistently enhances total IgG1 

production (Jin et al. 2013), IgG1 resulted to be the most representative isotype among 

anti-PD-L1 IgGs (Figure 20A and B). A control group treated with PBS+ALUM run in 

parallel. A week after the third vaccination, mice received a s.c. injection of B16 or B16-

F10 cells. Polyclonal anti-PD-L1-induced antibodies did not affect the in vivo growth 

of B16-derived tumors (Figure 21A). Spontaneous metastases were found only in one 

mouse per group although the number of lung nodules was a half in PDL1-VLP treated 

mouse (12 metastases) than in the control group. The mean spleen weight of PDL1-

VLP treated mice was one third less than the PBS+ALUM group. This difference, while 

not reaching statistical significance (Student’s t-test, p<0.09), suggested a tendency that 

may correlate with the presence of an anti-PD-L1 polyclonal response (Figure 21B). 

The absence of therapeutic effect on B16 tumors was confirmed also in mice bearing 

B16-F10 tumors. The tumor growth was indeed not only not delayed, but we also 

observed a growth acceleration, starting after 13 days after cell injection (Student’s t-

test, p<0.05) in mice treated with PDL1-VLP, compared to those in the control group 

(Figure 21C). Spontaneous lung metastases were observed in 2 of 5 mice in the former 

group (with 2 and 32 lung nodes, respectively) and only 1 of 5 mice in the latter one 

(with only one metastasis). Similarly to mice bearing B16 tumors, we observed a 

significant decrease by half of the mean spleen weight in PDL1-VLP treated group, 

compared to the untreated one (Student’s t-test, p<0.05) (Figure 21D). 
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1.2.4.2 Therapy of B16 and B16-F10 with monoclonal anti-PD-L1 antibodies 

Since in clinical practise patients are treated with monoclonal antibodies, we 

proceeded with a second set of experiments in B16-F10-injected mice, making use of 

two different anti-PD-L1 antibodies. The first was the anti-mouse PD-L1 rat IgG2b 

antibody clone 10F.9G2 (BioXCell), here referred to as 10F.9G2, while the second one 

was atezolizumab, i.e. a human IgG1 able to bind both human and mouse PD-L1. We 

used rat IgG2b anti-LTF2 as isotype control to treat a group of mice which run in 

parallel to 10F.9G2. All antibodies were administered i.p. every 3-4 days with different 

schedules. 

The first schedule with 10F.9G2 (dose: 9 mg/kg) consisted of three injections before 

the challenge with B16-F10 cells. After the challenge, C57BL/6 mice continued the 

treatment until the end of the experiment. Overall, 10F.9G2 antibody did not reduce 

nor accelerate tumor growth, in respect to the isotype control group or the untreated 
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Figure 21. Tumor growth of B16 and B16-F10 in mice pre-treated with PDL1-VLP+ALUM vaccine. A. 

and B. Tumor growth of 105 B16 cells s.c. injected in C57BL/6 mice (A) and spleen weight at the end of 

the follow-up (B). C. and D. Tumor growth of 0.5x106 B16-F10 cells s.c. injected in C57BL/6 mice (C) and 

spleen weight at the end of the follow-up (D). In (A) and (C) each point represents the mean and SEM 

from mice of different groups (n=5). In (B) and (D) each bar represents the mean and SEM of mice of 

different groups. In (C) significance difference: *p<0.05 and **p<0.01 by Student’s t-test. In (D) statistical 

difference by Student’s t-test: *p<0.05. 
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group. Nevertheless, we highlighted a little increase in tumor growth at 7 and 15 days 

after cell injection, compared to isotype control (Student’s t-test, p<0.01) (Figure 22A). 

The evaluation of metastases revealed an involvement of lungs, lymph nodes and, 

rarely, spleen. Almost all mice developed lymph node metastases (3/3 untreated mice, 

5/6 isotype control mice, 6/6 10F.9G2-treated mice). In the spleen, metastases were 

observed in 1/3 mice in the untreated group and 1/6 mice in the group treated with 

10F.9G2 antibody. Lung metastases affected 33% of untreated group (a mouse with 1 

metastasis) and 50% of isotype (median number of nodes 0.5, range 0-44) and 10F.9G2 

groups (median number of nodes 1, range 0-9). No significant differences were 

observed in terms of lung lesion number. We concluded that 10F.9G2 did not affect 

metastatization. We evidenced a decreased spleen weight in the isotype control group 

compared to the 10F.9G2-treated group. No statistically significant differences were 

found between untreated and isotype groups, nor between untreated and 10F.9G2-

treated groups (Figure 22E).  

In the second schedule, we increased the antibody dose to 12 mg/Kg and performed 

4 treatments before challenge and 4 treatments after challenge. Mice concluded the 

treatment two weeks before the end of the experiment. Treatment with anti-PD-L1 

antibody did not modify tumor growth and we did not evidence any changes between 

the treated, untreated and isotype groups (Figure 22B).  Unlike what was observed in 

the previous experiment, metastases involved the lymph node in only 1/6 mice in the 

10F.9G2-treated group. The incidence of lung metastases was higher in mice treated 

with anti-PD-L1 antibody (83%), compared with the isotype control (57%) and the 

untreated group (25%): these differences in incidence were not significant (χ2 test). We 

did not observe differences in the metastatic load between isotype group (median 1, 

range 0-26) and 10F.9G2-treated mice (median 2, range 0-4) while the latter showed a 

significant difference with untreated mice (median 0, range 0-1) (p<0.05 by Student’s 

t-test). The spleen weight of the three groups did not show any significant difference, 
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although the treatment with antibodies induced an increase of the weight compared 

to the untreated group (Figure 22F). 

The third schedule was based on anti-PD-L1 treatment with 10F.9G2 only before the 

challenge with B16-F10 cells. Thus, mice received only four antibody treatments (9 

mg/Kg). Despite small significant differences in tumor growth (Figure 22C), these 

results confirmed the absence of the therapeutic effect of anti-PD-L1 antibody 10F.9G2. 

We evaluated metastases only in the two antibody-treated groups. Invaded lymph 

nodes were found in 83% of mice in the isotype control group and all mice of 10F.9G2 

group. Despite this, the incidence of lung metastases was higher in the former (29%, a 

mouse with 1 node and the other one with 2 nodes) compared to the latter (14%, a 

mouse with 5 nodes). Evaluation of spleen weight did not reveal any significant 

differences between the three groups (Figure 22G). 

We also tested 10F.9G2 against lung metastases induced by B16-F10 i.v. injection, 

but we did not find significant differences in the number of lung metastases between 

these mice and untreated or isotype control-treated mice (data not shown). 

Finally, mice injected with B16-F10 were treated with atezolizumab starting from 

the day after cell injection. They received atezolizumab 10 mg/Kg every 3-4 days until 

the end of the experiment (Figure 22D). Even, in these conditions, B16-F10 tumor 

growth was not influenced by atezolizumab treatment. However, 43% of atezolizumab 

treated mice showed spleen invasion by tumor cells while all spleens of untreated mice 

were tumor-free. Lung metastases were found in 71% of untreated mice and 23% of 

atezolizumab-treated mice (difference not significant by χ2 test for incidence and 

Student’s t-test for number of lung nodules). Overall, the mean spleen weight was 

higher in the atezolizumab group compared to the untreated one (Figure 22H). 
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 Then, we evaluated the effect of atezolizumab on B16F10 tumor growth. Mice were  
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1.2.4.3 Mechanisms underlying resistance to PD-L1 treatment 

As previously described, mice that were pre-treated with PDL1-VLP before cell 

injection showed an acceleration of B16-F10 tumor growth, unlike B16 tumors.  Thus, 

we investigated potential mechanisms related to resistance to immune checkpoint 

inhibition therapy by Real-Time PCR on tumor samples, collected at the end of the 

follow-up. We found that Cd38, an alternative immune checkpoint (Chen et al. 2018), 

was highly expressed in tumors induced by B16-F10 cells, unlike tumors induced by 

B16 cells (Student’s t-test, p<0.01) (Figure 23A). In the latter, a significant reduction of 

Cd38 expression was also observed in mice pre-treated with the PDL1-VLP vaccine, 

compared to the control group (Student’s t-test, p<0.01). B16-F10 tumors also showed 

an increased expression of the Cd4 marker compared to B16 tumors, likely suggesting 

an increase in Treg lymphocytes (Student’s t-test, p<0.05) (Figure 23B). Finally, a 

significant reduction in the expression of the Arg1 gene, representative of myeloid 

populations such as M2 macrophages, was observed in B16 tumors developed in mice 

treated with PDL1-VLP, compared to the control group (Student’s t-test, p<0.05). 

Interestingly, this decrease was not observed in B16-F10 tumors (Figure 23C). 

Figure 22. Tumor growth (left panels) of B16-F10 in C57BL/6 mice and spleen weight (right panels). Mice 

were treated with anti-PD-L1 antibodies 10F.9G2 or atezolizumab. Day 0 is the day of cell injection. 

Dashed lines indicate antibody treatments after cell injections (C is without dashed lines because mice 

received antibody-treatment only before cell injection). Dose of injected cells and treatment schedule 

details are reported below for each experiment. Statistical analysis was done by Student’s t-test. A and E. 

0.5x106 cells s.c.; 9 mg/kg 10F.9G2 or isotype control Abs i.p. administered at days -9, -6, -2, +1, +4, +8, +12, 

+15. Untreated= 3, Isotype control=6 and 10F.9G2=6. *p<0.05, 10F.9G2 vs isotype control. B and F. 105 cells 

s.c.; 12 mg/kg 10F.9G2 or isotype control Abs i.p. administered at days -12, -9, -6, -2, +1, +4, +8, +12, +15. 

Untreated= 4, Isotype control=7 and 10F.9G2=7. C and G. 0.5x106 cells s.c.; 9 mg/kg 10F.9G2 or isotype 

control Abs i.p. administered at days -9, -7, -4, -1. Untreated= 2, Isotype control=7 and 10F.9G2=7. *p<0.05 

and **p<0.01, isotype control vs 10F.9G2; #p<0.05, 10F.9G2 vs untreated. D and H. 0.5x106 cells s.c.; 10 

mg/kg atezolizumab Ab i.p. administered at days +1, +4, +7, +11, +14, +18. Untreated= 7, atezolizumab=7. 

*p<0.05. 
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In order to understand the different behaviour of B16 and B16-F10 tumors, we also 

investigated the response of these cell lines to IFN-γ, a cytokine that plays a crucial 

role in the PD-1/PD-L1 circuit. The growth of the B16 cell line was strongly inhibited 

by IFN-γ (more than 80% of inhibition after 72 hours of treatment), unlike B16-F10 cell 

line, in which the inhibition level did not exceed 30%, even in the presence of high 

doses of IFN-γ (1000 U/ml) (Figure 24A). Moreover, B16-F10 cells showed greater Cd38 

expression compared to B16. Prolonged treatment with IFN-γ at doses 100 and 1000 

U/ml seemed to reduce this expression (Figure 24B). Then, we evaluated the 
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Figure 23. Molecular analysis of B16 and B16-F10 tumors from mice pre-treated or no with PDL1-VLP. 

Expression levels of reported genes were measured by Real-Time PCR. Statistical analysis was performed 

by Student’s t-test: *p<0.05; **p<0.01. ΔCt = Ctgene of interest – CtTbp. A. Immune checkpoint Cd38 expression. B. 

Ncr1 (codifying Nkp46 antigen, marker of NK cells), Cd4 (marker of Th and Treg cells) and Cd8a (marker 

of cytotoxic T lymphocytes). C. Arg1 expression (marker of M2 cell population).  
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modulation of H-2 molecules by IFN-γ. H-2 baseline expression was found to be very 

low in B16 cells (about 30 arbitrary fluorescence units) and even lower in the B16-F10 

cell line (about 10 arbitrary fluorescence units). Nevertheless, the presence of IFN-γ 

induced an increase of H-2 molecules in both cell lines (Figure 24C). PD-L1 protein, 

whose expression is very low in normal culture condition, was significantly 

upregulated in the presence of IFN-γ (Figure 24D). We finally evaluated the in vitro 

effect of anti-PD-L1 treatment with 10F.9G2: B16-F10 cells were treated with IFN-γ (100 

U/ml) and/or anti-PD-L1 (10 µg/ml). However, no changes in cell growth were 

observed (data not shown).  

 

These data, together with aOX40 experiments, showed that immune checkpoint 

inhibitors actually have a dual behaviour. Several factors might influence the potential 

clinical benefits induced by ICI therapy. Key points that surely require future studies 

are the influence exerted by the treatment schedule and the role played by IFN-γ and 

CD38 in the context of ICI therapy. 
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Figure 24. B16 and B16-F10 cultured in vitro in the presence of IFN-γ. A. Growth inhibition at 72 hours 

after treatments. B. Real-Time PCR molecular analysis of Cd38 transcript. C and D. H-2 and PD-L1 

expression on membrane by flow cytometry. 
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2. DISCOVERY OF NEW THERAPEUTIC TARGETS 

HER2 is a perfect target to counteract HER2-positive mammary carcinoma 

progression. Several therapeutic approaches against HER2 have been developed, 

including monoclonal antibodies, small tyrosine-kinase inhibitors, and CAR-T. 

Nevertheless, all these treatments had limits and a number of patients ended up 

developing resistance, resulting in tumor progression. 

The ability to identify new therapeutic targets is strictly related to the availability of 

preclinical models able to mirror the clinical condition of patients.  

In this Chapter, I described new targets against HER2-positive mammary 

carcinoma through the study of cell lines derived from HER2 transgenic mice and 

patient-derived xenograft (PDX) models.  

Some data reported in this section were included in two manuscripts (Giusti et al., 

submitted and (Landuzzi et al. 2021)).  

 

2.1 Dynamic model of HER2 expression 

We developed a dynamic model of HER2 expression based on cell lines originally 

derived from spontaneous mammary carcinomas of HER2 mice. HER2 loss was 

associated to an increase of stemness and EMT skills. Thus, we investigated alternative 

therapeutic targets to HER2, which could be eventually used in patients with tumors 

which are no longer HER2 addicted or that lose HER2 during progression. 

 

2.1.1 Dynamic model of HER2 expression panel 

This panel included two HER2 positive master cell lines: MamBo89HER2stable cell line 

which displayed a high and stable HER2 expression that was maintained upon in vivo 

injection, and MamBo43HER2labile cell line which, despite its comparably high HER2 

expression, gave rise to HER2-negative tumors in vivo. The third key player of this 

panel was the MamBo38HER2loss cell line, derived from in vivo growth of the 

MamBo43HER2labile cell line (Figure 25A): when we injected the latter cell line in either 
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immunocompetent or immunodeficient mice, we always obtained HER2 negative 

tumors (Figure 25B), from one of these immunocompetent mice we derived the 

MamBo38HER2loss cell line (Figure 25A). MamBo38HER2loss did not express HER2 

either on the cell surface (Figure 25A), nor at the intracellular level (Figure 25C), 

despite maintaining the same HER2 gene copy number as the parental 

MamBo43HER2labile cell line (Table 1). Upon orthotopic in vivo injection, the 

MamBo38HER2loss cell line (green curve) displayed higher tumorigenicity compared to 

the HER2-positive cell lines (Figure 25D). Tumor vessels of MamBo43HER2labile and 

MamBo38HER2loss cell lines, unlike MamBo89HER2stable cell line, were lacking in 

pericytes (Figure 25E). Upon intravenous injection in HER2 mice, the 

MamBo38HER2loss cell line displayed the highest experimental metastatic ability that 

led to the complete substitution of lungs with metastatic nodules (>200) within 3 

weeks. On the contrary, HER2-positive cell lines gave rise to few (MamBo89HER2stable 

cells, median number of metastasis 2, range 0-4, and incidence 4/5 mice) or no 

(MamBo43HER2labile cells) lung metastases 18 weeks after cell injection.  

MamBo89HER2stable and MamBo43HER2labile appeared in vitro as polygonal cells, 

whereas the MamBo38HER2loss cell line formed a multilayer of spindle-like cells.  

MamBo38HER2loss cells had a molecular profile resembling EMT (Figure 26). 
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Table 1.  

Number of huHER2 gene copies quantified by Real-Time PCR. ΔCt=CthuHER2-Cthu/mPTGER2. Expression 

level of 2-(Δct MDA-MB-231+Δct MCF7)/2 was associated to two HER2 copies. TS/A is a murine mammary cancer 

cell line. 

 

 

 

 

Cell line ΔCt huHER2 copy number 

Mambo89HER2stable -7.27 51 

Mambo43HER2labile -5.83 19 

Mambo38HER2loss -5.79 18 

TS/A 7.26  0 

Non-transgenic normal tissue 4.25  0 

HER2-transgenic normal tissue -5.96 26 

HER2-transgenic mammary tumor -6.60 32 

HCC1954 -9.34 215 

BT-474 -7.53 61 

SKBr3 -5.25 13 

MDA-MB-453 -4.14  6 
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Figure 25. MamBo cell lines and dynamic HER2 expression. A. Panels show representative profiles of 

HER2 level as measured by cytofluorimetric analysis. Black profile, secondary antibody alone; red 

profile, anti-HER2 antibody. B. HER2 expression in tumors by MamBo43HER2labile cells injected at 

different doses in immunocompetent mice (close black bar and bars with pattern) and in 

immunodeficient mice (open bar) detected by cytofluorimetric analysis. C. Expression of HER2 protein 

and of its phosphorylated isoform pHER2 in MamBo cell lines (Western blot). D. In vivo growth of 

MamBo cell lines (after injection of 106 cells in m.f.p.) in HER2 female mice. Cell lines: MamBo38HER2loss 

(green triangle), MamBo43HER2labile (black square) and MamBo89HER2stable (blue circle). Mean and SEM 

from 3-9 mice per group is shown. MamBo38HER2loss growth was significantly faster, from 2 weeks after 

cell injection onwards, than MamBo43HER2labile and MamBo89HER2stable cell lines, p<0.01 by Student’s t-

test. From 7 weeks after cell injection, MamBo43HER2labile cells also grew faster compared to the 

MamBo89HER2stable cell line, p<0.01 by Student’s t-test. E. Representative micrographs of tumor vessels 

were reported: CD31/CD105, red staining; NG2, green staining.  
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Figure 26. EMT profile by Real-Time PCR of MamBo43HER2labile (empty bar), continuous long-term 

culture of MamBo43HER2labile treated with trastuzumab (red bar) and MamBo38HER2loss (green bar) 

cells; n=2-4. Each bar shows mean and SEM. *p<0.05; **p<0.01; ***p<0.001, by Student’s t-test. 
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The MamBo38HER2loss cell line displayed a higher capacity to form mammospheres, 

compared to MamBo89HER2stable and MamBo43HER2labile cell lines (Figure 27A), 

together with highly staminal features, with over 95% of cells being 

CD24negative/CD44high. The MamBo89HER2stable cell line had a staminal profile with 3% of 

cells being CD24low/CD44high while MamBo43HER2labile presented only a tiny sub-

population of cells (1%) displaying staminal characteristics (Figure 27B).  

 

The loss of HER2 observed in vitro was probably the result of a selection among 

several populations coexisting within MamBo43HER2labile cells. We isolated AG24F and 

AG11F clones that were indeed spindle-like clones with a stemness profile similar to 

Figure 27. Stemness profile of MamBo cell lines. A. Dark-field micrographs of mammosphere formation 

assay. White bar corresponds to 200 μm. Number of mammospheres (n=4): MamBo89HER2stable, 23±1; 

MamBo43HER2labile, 17±1; MamBo38HER2loss, 69±9; MamBo38HER2loss vs MamBo89HER2stable and 

MamBo43HER2labile cell lines, p<0.01 by Student’s t-test. B. Expression of HER2 and stemness markers 

CD24 and CD44 in cells cultured under 2D-adherent conditions, measured by cytofluorimetric 

analysis. 

A B 
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the one of MamBo38HER2loss cells. AD56D5 and AD56C1 were quite similar to 

MamBo43HER2labile cell line, while AD56iota cells were almost all HER2 negative, with 

a quite spindle morphology, but, contrary to MamBo38HERloss cells, this clone showed 

a different stemness profile, which was more similar to the one of MamBo89HER2stable 

cell line (Figure 28).  

 

 

We studied the dynamic among subpopulations of MamBo43HER2labile cells in vitro, 

evaluating which conditions promoted the emergence of HER2-negative and 

stemness-high subpopulation (Figure 29). We proved that continuous in vitro culture 

with trastuzumab at 30 μg/ml for 2 months resulted in an almost complete HER2-

negative culture (HER2-positive cells were less than 10%) with a spindle-like 

morphology (although tiny islets of polygonal cells remained interspersed within the 

multilayer) and 65% of cells showed staminal features (CD24negative/CD44high) (Figure 

29B and G). 

Figure 28. Clustering of clones isolated from MamBo43HER2labile cell line based on HER2 expression 

(percentage of positive cells), morphology (spindle-like, pink; epithelial, blue) and stemness (percentage 

of CD24neg/CD44pos, CD24pos/CD44pos, CD24pos/CD44neg). 



103 

 

 

This result was an off-target consequence of any treatment that alters cell density, as 

proved when we seeded MamBo43HER2labile cells at lower doses than in the previous 

experiment (4x104 cells/cm2 versus 1.6x105 cells/cm2) and again treated with 

trastuzumab at 30 µg/ml for two months (Figure 29C, D, H, I). Trastuzumab-treated 

cells acquired spindle-like morphology and the HER2-negative population took over 

(Figure 29D). Moreover, 70% of the cells showed a stemness profile at the end of the 

long-term culture (Figure 29I), as well as in high density cell seeding (Figure 29B and 

G). Unexpectedly, even untreated cells spontaneously and gradually acquired spindle-

like morphology at lower seeding density, and HER2 expression was detectable in less 

than 25% of cells after two months (Figure 29C). At the same time, 70% of cells acquired 

a staminal phenotype (Figure 29H). A further reduction in cell seeding dose (104 

cells/cm2) prompted the fast-track acquisition of the spindle-like morphology, the loss 

 

Figure 29. Effect of cell seeding and trastuzumab on phenotypic profile of MamBo43HER2 labile cells. 

Continuous cultures in control medium (A, C, E, F, H, J) or trastuzumab 30 µg/ml (B, D, G, I). Level 

of HER2 (A-E) and stemness markers CD24 and CD44 (F-J) were measured by cytofluorimetric 

analysis. Cell seeding dose: 1.6x105 cells/cm2, 60 days of culture (A-B, F-G); 4x104 cells/cm2, 60 days of 

culture (C-D, H-I); 104 cells/cm2, 30 days of culture (E, J). 



104 

 

of HER2 expression and an enhancement in stemness within only one month, even in 

the absence of trastuzumab treatment (Figure 29E and J).  

The comprehension of the mechanisms underlying the absence of HER2 expression 

in cells with multiple copies of HER2 was for us unclear, together with the molecular 

reasons for the dominance of the HER2-negative stemness-high population in critical 

conditions as in vivo injection and in vitro low-density cultures. This model did not 

offer the chance to focus on epigenetic patterns or transcriptional factors binding HER2 

promoter since the HER2 transgene consisted of cDNA of human HER2 under the 

MMTV promoter without HER2 enhancers. Thus, we decided to use this dynamic 

model as a mirror of human HER2-positive tumors that maintain HER2 or, over the 

time, give rise to new tumors or metastases with a lower or absent HER2 expression.  

 

2.1.2 Molecular portrait of HER2 dynamic expression 

The need to identify predictive factors of HER2-loss and new therapeutic targets 

encouraged us to analyse in depth molecular changes associated with the dynamic 

expression of HER2. We performed an RNA-Seq analysis including several samples to 

reinforce the robustness of results. In the class of HER2-stable cell lines we included 

MamBo89HER2stable, its clone MamBo89HER2stableAG3 and MamBo89HER2stable cells 

treated in vitro with trastuzumab for 30 days, and then cultured in medium for another 

month, or 60 days. Trastuzumab-treated cells maintained HER2 expression and the 

stemness profile of MamBo89HER2stable cell line as well as MamBo89HER2stableAG3 

clone too. In the class of HER2-labile cells we had only MamBo43HER2labile cells. 

Finally, in HER2-negative class we included MamBo38HER2loss cells untreated or 

treated with trastuzumab for 30 or 60 days, since these cultures maintained the same 

features of the MamBo38HER2loss one (data not shown). Moreover, we considered here 

also MamBo43HER2labile cells treated with trastuzumab for 30 or 60 days, both HER2 

negative and showing high stemness and spindle-like morphology. All the above 
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reported similarities were well described by principal component analysis (PCA) 

(Figure 30).  

 

 

We compared the HER2-stable group to the HER2-negative group. This comparison 

evidenced 138 up-regulated genes and 124 genes down-regulated in HER2-negative 

one (Figure 31). Hierarchical clustering showed how MamBo43HER2labile cells had a 

profile in part similar to the one of HER2-negative cells and in part similar to HER2-

stable cells. 

Untreated MamBo43HER2labile 

cells 

Trastuzumab-treated 

MamBo43HER2labile cells; 

untreated and 

trastuzumab-treated 

MamBo38HER2loss cells 

MamBo89HER2stable AG3 

cells 

Untreated and 

trastuzumab-treated 

MamBo89HER2stable 

cells 

Figure 30. Principal component analysis of samples analysed by RNA-Seq. 
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The differentially expressed genes are involved in insulin growth factor binding 

(Igfbp 4, 2, 6) and vinculin binding (Sorbs3 and Synm). Tgfb1 was overexpressed in 

HER2-negative cells, while Tgfb3 in HER2-stable cells. Furthermore, we found several 

genes involved in EMT signature (Lrp1, Itgb3, Htra1, Loxl1, Glipr1, Efemp2, Lgals1, Sgcd, 

Dpysl3, Tgfb1, Prrx1, Gadd45a, Igfbp4, Tpm2, Igfbp2, Pcolce, Emp3, Dcn, Sfrp1, Mmp14, 

Col3a1, Vcan, Col1a2, Lox and Sntb1). We also identified genes involved in adipogenesis 

(Rtn3, Gadd45a, Lpcat3, Chchd10, Pim3, Cd302, Dhcr7, Dnajc15) and Interferon Alpha 

Response (Plscr1, Cnp, Dhx58, Ncoa7, Psmb8) through Enrichr analysis (MSigDB-

Hallmark2020).  

According to RNA-Seq, MamBo89HER2stable and MamBo89HER2stableAG3 had a 

lower expression of Sorbs3 (Sorbin And SH3 Domain Containing 3) compared to the 

other cell lines (Figure 32A left panel). These data were confirmed by Real-Time PCR 

and immunofluorescence on adherent cells (Figure 32A right panel, and B). The 

downmodulation of SORBS3, relative to tumors that are diploid for this gene, was 

associated with a worse overall survival rate in HER2-positive mammary carcinoma 

patients (Figure 32E). Since other genes neighbouring with Sorbs3 (in mouse 

chromosome) were less expressed in MamBo89HER2stable in respect to 

Figure 31. The list of genes differentially expressed between HER2-stable and -negative cell lines were used 

to manage a hierarchical clustering of RNA-Seq samples (TRNT= 30 days trastuzumab-treatment; TRT= 60 

days trastuzumab-treatment; _n=replicate number). 



107 

 

MamBo38HER2loss and MamBo43HER2labile cell lines, such as Mmp14, Lmo7, Ghitm, 

Sucla2, Sngt1 and Ipo4, we speculated that this chromosome region was absent in 

MamBo89HER2stable and MamBo89HER2stableAG3 cell lines. The absence of SORBS3 was 

associated to a higher activation of STAT3 (Ploeger et al. 2016) that we also found in 

MamBo89HER2stable cell line (Figure 32D) and that could be related to the intrinsic 

trastuzumab-resistance of these cells observed in vitro. Indeed, the higher STAT3 

activation, together with the ability of these cells to produce IL6 (Figure 32C), suggest 

the presence of a HER2-alternative signaling able to sustain tumor growth.  

Figure 32.  SORBS3 as a possible therapeutic target in mammary carcinoma. A. Expression of Sorbs3 

detected through RNA-Seq (left) and Real-Time PCR (right). B. SORBS3 immunofluorescence on 

MamBo89HER2stable (left panel) and MamBo38HER2loss (right panel) adherent cells. C. IL6 level measured 

by ELISA. D. STAT3 and pSTAT3 level in MamBo cell lines detected through Western Blot. E. Correlation 

between SORBS3 down-modulation and overall survival in HER2-positive mammary carcinomas 

through C-Bioportal analysis; Logrank Test P-value=0.0227. 
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The opportunity to restore SORBS3 expression in order to resensitize 

MamBo89HER2stable cells to trastuzumab might be considered.  

We also looked for predictive genes of HER2 loss. For this purpose, we crossed up-

regulated genes in the HER2-labile vs the HER2-stable group and up-regulated genes 

in the HER2-negative group vs the HER2-stable group. Genes common to both lists 

might be considered up-regulated through HER2 lability condition (Table 2, UP). 

Similarly, we performed the same analysis for down regulated genes (Table 2, 

DOWN). These analyses evidenced 42 up-regulated genes in both HER2-labile and 

HER2-negative cells compared to HER2-stable cells alongside 47 down-modulated 

genes. Functional analysis of these genes confirmed the presence of genes involved in 

EMT process (Efemp2, Mmp14, Tgfb1, Col1a2, Lrp1, Prrx1, Pcolce, Dcn), apoptosis 

(Gstm1, Cav1, Timp2, Igfbp6, Dcn), K-ras signaling (Mmp11, Prrx1, Psmb8), TGF-B 

signaling (Tgfb1 and Rab31), Cholesterol Homeostasis (Plscr1 and Gpx8) and IFN-

gamma response (Plscr1, Tnfaip2, Psmb8). 

               Table 2. List of genes suggested as predictors of HER2 lability and loss 

UP   DOWN 

Abhd4 Gprc5a Pdhb Ammecr1 Csn2 Pgf 

Aebp1 Gpx8 Plscr1 Arhgef1 Csn3 Pik3r3 

Akr1b3 Gstm1 Prrx1 Atxn7l3 Dhcr7 Plvap 

Arhgdib Igfbp6 Psmb8 Bnipl Dhx58 Sfrp1 

Armcx2 Ikbip Rab31 Bpifb1 Dmd Shf 

Cav1 Lamb1 Rbpms Bpifb4 Fam53b Slc9a3r1 

Cbx6 Lhfp Slc25a37 Cd14 Foxo4 Spsb4 

Cd302 Lmo7 Slc43a3 Cdk16 Gcnt4 Syngr2 

Col1a2 Lrp1 Sorbs3 Chil1 Hmgb3 Synm 

Cpq Mmp11 Tgfb1 Chl1 Igfbp2 Tacstd2 

Cuedc2 Mmp14 Timp2 Chmp6 Klf13 Tfap2c 

Dcn Mt2 Tnfaip2 Chsy1 Krt15 Tm4sf1 

Dnajc15 Npdc1 
 

Cited1 Lgr4 Tsc22d4 

Efemp2 Ogn 
 

Cnp Lpcat2 Tspan1 

Gde1 Pcolce 
 

Crispld2 Ly6d Wfdc3 

  
 

Csn1s1 Ocrl 
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Finally, the comparison between HER2-positive, including HER2-stable and -labile 

cell lines, vs HER2-negative cell lines identified 402 up-regulated genes in HER2-

negative cell lines, whereas 349 were down-regulated. Differentially expressed genes 

were significantly associated with processes related to angiogenesis, migration ability, 

exocytosis, cell-cell adherence and communication and cellular differentiation. The 

up-regulated genes in HER2-negative cells are involved in extracellular matrix 

organization (Fn1 and Vim) and angiogenesis (Vegfa, Ptgs2 and Hif-α). Furthermore, 

several genes are known to play a role in promoting both tumor-cell aggressiveness 

and EMT, and in sustaining the proliferation of mesenchymal cells (Dcn, Cav1, Cdkn1a, 

Myc, Qsox1 and Pdgfrb). On the other hand, down-regulated genes in HER2-negative 

cells are directly linked to HER2 overexpression and HER2-positive breast cancers (e.g. 

Stat, Ptpn1, Pak1, Efnb1) and polygonal shape (such as Cecam1, Jup, Cdh1, Notch1 and 

Kit). 

 

2.1.3 p95HER2 and PHLDA1 

In MamBo43HER2labile cells, we detected the presence of the p95HER2 fragments. This 

fragment was absent, or expressed at a lower level, in MamBo89HER2stable cells and 

obviously absent in MamBo38HER2loss cells (Figure 25C and Figure 33A and B). 

PHLDA1 (Pleckstrin homology-like domain family A member 1) was found to be 

associated to p95HER2 611-CTF (Pedersen et al. 2009), although its role in 

tumorigenesis process was controversial. We found that, as expected, 

MamBo43HERlabile cells expressed high levels of PHLDA1 (Figure 33A) and that the 

inhibition of its expression reduced cell migration (Figure 33C and 33D). This target 

will require future investigations both in vivo and in vitro.  
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2.1.4 PDGFR-B as a therapeutic target for HER2 loss cells 

Molecular analysis revealed that PDGFR-B may be one of the molecules that sustains 

the growth of HER2-negative cell lines (Figure 34A). Thus, we tested the ability of 

sunitinib, a pan TKI inhibitor that includes both VEGFR and PDGFR-B among its 

targets, to inhibit the growth of MamBo38HER2loss cells, both in vitro and in vivo. We 

found that sunitinib reduced the growth of both MamBo43HER2labile (Figure 34B) and 

MamBo38HER2loss cells in vivo (Figure 34C). Furthermore, sunitinib reduced IL6 

production (Figure 34D) and inhibited its downstream pathway through down-
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Figure 33.  PHLDA1 as possible new therapeutic target in mammary carcinoma. A. Expression of p95HER2 

fragments and PHLDA1, detected through Western Blot. B. Expression of HER2-full length (MGR2 

antibody) and p95HER2-611CTF (32H2 antibody), detected through flow cytometry. C. Inhibition of 

PHLDA1 expression in MamBo43HER2labile cells by siRNA treatment. D. Effect of siRNA on cell migration 

(y axis= number of migrated cells). Lipo, lipofectamine. Significance difference by Student’s t-test. 
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modulation of pStat3 (Figure 34E). Finally, sunitinib reduced MamBo38HER2loss 

mammosphere formation by 50%, as well as cell migration ability (Figure 34F and G). 

 

A. B. C. 

D. E. 

F. G. 

Figure 34. Targeting PDGFR-B in vivo and in vitro. A. PDGFR-B level measured by cytofluorimetric 

analysis. Profiles: grey, secondary antibody; blue, MamBo89HER2stable cell line; black, 

MamBo43HER2labile cell line; green, MamBo38HER2loss cell line; red, trastuzumab-treated 

MamBo43HER2labile cell line. B. Effect of sunitinib on MamBo43HER2labile tumor growth. Sunitinib 

significantly reduced tumor growth from the 37th day after cell injection onward, p<0.05, at least, 

by Student’s t-test. C. Effect of sunitinib on MamBo38HER2loss tumor growth. Sunitinib 

significantly reduced tumor growth from the 14th day after cell injection onward, p<0.05, at least, 

by Student’s t-test. In (B-C) untreated mice (black square, MamBo43HER2labile or green square, 

MamBo38HER2loss) or 60 mg/Kg sunitinib-treated mice (orange circle). Data shown are the mean 

and SEM from 3-5 mice per group. D-G. Effect of sunitinib (5 μM) on MamBo38HER2loss in vitro: 

(D) IL6 production detected by ELISA; (E) Western blotting analysis for STAT3 and pSTAT3 on 

cells treated with sunitinib; (F) Mammosphere formation assay. Data shown are the mean and 

SEM, n= 2-4 for each group; p<0.01, sunitinib vs untreated or vehicle by Student’s t-test; (G) 

Wound-healing assay. Data shown are the mean and SEM, n= 6-8 for each sunitinib-treated group. 

p<0.01, vs untreated or vehicle by Student’s t-test.  
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2.2 Dynamic model of HER2-positive breast cancer progression 

We derived a panel of PDX that were obtained from surgical samples of patients with 

HER2-positive breast cancers. Among these lines, PDX-BRB4 was negative for HER1, 

positive for BCL2 and had very high expression of p53.  

In order to better characterize the HER2 molecules, we also investigated the 

expression of both HER2 full-length and its aggressiveness-related isoform Delta 16 

through in situ hybridization. HER2-full-length expression showed score 4 (in a 0-4 

score scale), while HER2-Delta16 isoform expression showed score 2 (Figure 35A-D). 

Serial in vivo passaging of PDX-BRB4 did not cause the loss of HER2-Full-length and 

HER2-Delta16 expression, nor affected the ratio between the isoforms. PDX-BRB4 at 

>9 in vivo passages showed a slight decrease of both HER2 isoform expression, which 

however remained as high as the BT-474 HER2-positive breast cancer cell line control 

(Figure 35E).  

E. 

Figure 35. HER2-full length and HER2-Delta16 transcript levels in PDX-BRB4. A-D. In situ hybridization 

(BaseScope assay on formalin-fixed, paraffin-embedded tissue sections). A. HER2 probe hybridizing all 

isoforms, score 4 (>6 dots/cell, >10% positive cells have dot clusters); B. HER2 probe hybridizing HER2 

full-length isoform, score 4; C. D16 probe hybridizing HER2-D16 splice variant, score 2 (2-3 dots/cell);  

D. negative control probes. Magnification 40×, Scale bar = 33 μm. E. Expression of HER2 full-length (open 

black circles) and HER2-D16 (red closed squares) mRNA isoforms in HER2-positive PDX after serial in 

vivo passage. ΔCt = Ct of relevant gene – Ct of hTBP reference gene. Individual samples are plotted, with 

median (horizontal line). RT-PCR analysis was performed in parallel on a high HER2-positive (BT-474) 

and a HER2-negative (RH4) human tumor cell lines. Mean ΔCt of BT-474 positive controls were: HER2 

= -6.97; D16 = -2.75. Mean ΔCt of RH4 negative controls were: HER2 = 4.74; D16 = 9.11. (Landuzzi et al. 

2021) 
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2.2.1 Progression of HER2-positive PDX-BRB4 line 

To investigate PDX tumor progression trend, HER2-positive amplified PDX-BRB4 was 

split after the second passage in six different sublines, which were then re-transplanted 

separately to analyze random and selective events in long-term evolution (Figure 

36A). One out of six sublines (named PDX-BRB4-A1), passaged up to 25 times along 

approximately 4 years, progressively acquired a significantly increased tumor growth 

rate (Figure 36B). High-passage A1 subline showed an increased ability to form 

mammospheres in vitro, compared to its low-passage counterpart (Figure 36C), and it 

showed a CD24low/CD44high phenotype (data not shown), denoting an enriched cancer 

stem cell phenotype. 

 

High-passage PDX-BRB4-A1 subline showed a progressively decrease of BCL2 

expression, detected by immunohistochemistry, with a shift from a highly positive to 

an intermediate/negative phenotype, confirmed by RT-PCR analysis (Figure 37).  

Figure 36. Random progression in sublines of PDX-BRB4. A. Origin of independent sublines of PDX-

BRB4 and growth kinetics during in vivo passages. Right panels show individual tumor growth curves of 

sublines at low-passage (passage 4-8, black lines) and high-passage (14-18, red lines). B. Tumor doubling 

time of the subline PDX-BRB4-A1 during long-term in vivo passages (up to approximately 4 year), 

calculated in the exponential growth phase. Significance at linear regression test is shown in the panel. 

C. Mammospheres formed in vitro by PDX-BRB4-A1 at low- (8) and high-passage (23-26). Mean and SEM 

from 3-4 independent determinations (6 replicates each) is shown. *, p<0.05.  (Landuzzi et al. 2021) 
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Macroscopic and molecular evidence of metastatic spread was absent in low-

passage PDX-BRB4-A1 subline. In contrast, metastatic cells were detected sporadically 

in the lungs from high-passage PDX-bearing mice. To better evidence the different 

metastatic ability between the low- and the high-passage settings, cells dissociated 

from in vivo passaged PDX-BRB4 sublines were injected i.v. in mice to evaluate 

hematogenous metastatization. Low-passage A1 did not produce metastatic deposits 

in the lungs, whereas high-passage progressed A1 subline gave rise to overt lung 

metastases (Table 3). Moreover, low- and high-passage A1 sublines of PDX-BRB4 also 

differed in the ability to grow in cultures: low-passage PDX cultures stopped growing 

and underwent senescence more rapidly than high-passage A1 (Table 3). No 

difference, on the contrary, was found between low and high passages of non-

progressed PDX-BRB4 sublines, which rapidly underwent senescence.  

 

 

 

Figure 37.  Decrease of BCL2 expression during tumor progression. A-F. Immuno-

histochemical expression of BCL2 in PDX-BRB4-A1 at low-passage (5-7 passages, panels A-C) and in 

its progressed high-passage subline (23-26 passages, panels D-F).  Sections were stained with 

antibodies against BCL2 biomarker. G. RT-PCR expression level of BCL2 in PDX-BRB4 sublines at 

different in vivo passages. Mean and SEM from three independent replicates is shown. 

Significance: linear regression of BCL2 in PDX-BRB4-A1 subline, p<0.01; *p<0.05 high-passage PDX-

BRB4-A1 subline versus low-passage PDXBRB4-A1 subline and versus PDX-BRB4-C2 

subline.  (Landuzzi et al. 2021) 
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2.2.2 Molecular profile associated to HER2-positive PDX subline progression 

RNA-Seq analysis of progressed A1 subline of PDX-BRB4 was conducted. 

Acquirement of a progressing phenotype by PDX-BRB4-A1 subline from low to high 

passages (as defined based on the concomitant increase in growth rate, stemness, lung 

metastatic ability and resistance to in vitro cell senescence) was investigated through 

the comparative analysis of the low- and high-passage transcription profiles, which 

were compared with the ones of low and high passages of a non-progressing subline 

(C1). 

          Table 3. Functional progression of PDX-BRB4-A1 subline (Landuzzi et al. 2021) 

  

*after i.v. injection of dissociated cells  
aP<0.05 at least vs A1 3-5 passages (Student’s t test)  
bP<0.05 at least vs C2 14-17 passages (Student’s t test)  
cnot done  
dnegativity confirmed by molecular assay  

 

Differential expression analysis was performed by comparing progressed A1 subline 

at passage 17 with respect to those at passage 4. RNA-Seq analysis was carried out on 

triplicate independent samples per group. A total of 834 differentially expressed genes 

were detected. Transcription profiles of A1 subline at passage 24 were nearly 

superimposable to those of A1 at passage 17 and they were not considered in the 

differential expression analysis so that comparison between the two groups could be 

kept balanced. Hierarchical clustering (Figure 38A) of the 834 differentially expressed 

genes was used to identify the subset of genes characterizing the progressed 

phenotype, by comparing progressed phenotype (passages 17 and 24 of A1 subline) to 

PDX-BRB4 

Subline  

In 

vivo passages 

(range)  

Tumor 

doubling time 

(weeks)  

Lung 

metastases* (mice 

with 

metastases/total 

number of mice)  

Time to in 

vitro senescence 

(days, mean and 

SEM)  

A1  3-5  1.5 ± 0.1  0/4  52.0 ± 4.4  

A1  15-24     0.5 ± 0.03a,b  4/4    145.8 ± 16.9 a,b  

C2  3-5  1.4 ± 0.6  ndc  50.3 ± 22.8  

C2  14-17  0.8 ± 0.1  0/3d  11.7 ± 5.0  
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non-progressed sublines (passage 4 of A1 subline and passages 4 and 17 of C1 subline). 

Only genes showing a difference in expression between progressed phenotype and all 

the other samples were kept: 193 genes up-modulated in progressed phenotype 

(Figure 38B) and 288 genes down-modulated in progressed phenotype (Figure 38C). 

The 481 differentially expressed genes (193 up-modulated and 288 down-modulated) 

detected by hierarchical clustering were loaded in an IPA pathway. 

Figure 38. Hierarchical clustering (Euclidean distance, average linkage) of differentially expressed 

genes in progressed subline (see Legend Table enclosed for codes of independent samples examined 

along with their progression phenotypes). A. 834 differentially expressed genes detected 

comparing progressed (passage 17) with non-progressed (passage 4) A1 subline of PDX-BRB4. Red 

and green lateral bars indicate the gene subsets 

showing homogeneous progressed phenotype (passages 17 and 24) with respect to non-progressed 

low-passage 4 (same subline) or 17 (C1 subline). B. 193 differentially expressed genes up 

modulated in progressed A1 subline (passage 17 and 24, see red bars of panel 

A).  C.  288 DE genes downmodulated in progressed A1 subline (passage 17 and 24, see green bars of 

panel A). (Landuzzi et al. 2021) 

Legend of studied sample: 

PDX-BRB4 
subline  

In vivo passage  Progressed phenotypea  Code of independent 
samples  

Time of in 
vivo passaging (years)  

A1  4  No  A144D, A145O, A146A  1.5  

A1  17  Yes  A1175A, A1177A, A1178A  3.5  

A1  24  Yes  A12422A, A12423C, 
A12427A  

>4.0  

C1  4  No  C244I, C245Z, C246M   1.5  

C1  17  No  C21714L, C21715F, 
C21717E  

>4.0  
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The genes were then connected together by using only direct interaction, e.g. an 

article describing that gene X is affecting gene Y activity, between genes. Within this 

network we identified that BCL2, which is down-modulated in progressed phenotype, 

is connected to three main hub genes, which are down-regulated too: CDKN2A, 

STAT5A and WT1 (Figure 39). Looking at genes up- and down-modulated in the EMT, 

we found that progressed A1 subline had increased expression of some genes usually 

up-modulated in EMT (such as COL6A3, ITGB3, SNAI2/SLUG, TGFbeta1 and BMP2) 

and decreased expression of some genes usually down-modulated in EMT (such as 

CLDN10, CLDN3 and BMP5), compared to non-progressed cell variants. Nevertheless, 

the main driver or inducer genes of EMT (such as TWIST, ZEB1, ZEB2, SNAIL, E-CAD, 

VIM, PTGS2 and NOTCH) did not resulted to be differentially expressed. Such 

expression pattern suggests that progressed A1 subline is undergoing a partial EMT, 

as also shown by the maintained epithelial cell morphology. 

These results were in accordance with data obtained in the previous model of HER2 

loss. In fact, for both models, stemness and EMT appeared together with tumor 

progression. 

 

Figure 39.  IPA sub-network showing that BCL2, which is down-modulated in progressed A1 subline 

(passage 17 and 24), is connected to three main hub genes, which also are down-regulated (CDKN2A, 

STAT5A and WT1).  (Landuzzi et al. 2021) 
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Discussion 
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Target therapy has significantly improved the management of cancer patients with 

oncogene-addicted tumors. The use of trastuzumab in HER2-positive breast cancer 

patients or the treatment with TKIs in NSCLC patients bearing EGFR, ALK and ROS1 

mutations led to an unprecedented increased survival rate. Nevertheless, a high 

number of patients develops trastuzumab resistance (Winter et al. 2007; Narayan et al. 

2009; Gajria and Chandarlapaty 2011) and virtually all TKI-treated patients develop 

resistance by on-target or off-target mechanisms (Lamberti et al. 2020a). In the light of 

this, in 2016 the National Cancer Institute outlined the “Cancer Moonshot Blue 

Ribbon” panel that was based on ten recommendations to encourage the cancer 

community to focus on specific issues. The development of approaches to overcome 

cancer resistance to therapy is one of these great challenges (Jacks et al. 2016). 

Resistance to target therapy is a multifactorial phenomenon since several 

alterations, either genomic-related or non-genetic, are responsible for the loss of drug 

effectiveness (Konieczkowski et al. 2018). Tumor heterogeneity is a further key factor 

in resistance to target therapy. This heterogeneity can be spatial, both within a single 

tumor and among multiple metastases (Gerlinger et al. 2012; Romano et al. 2013; van 

Allen et al. 2014; Patel et al. 2014; Cooper et al. 2015; Sanborn et al. 2015; Yates et al. 

2015) as well as temporal (e.g. adaptation as a result of the selective pressure induced 

by therapy) (Menzies et al. 2014; Bhang et al. 2015; Juric et al. 2015; Kwak et al. 2015). 

New approaches are needed to account for this complexity and facilitate future 

biological and therapeutic insight. The results reported in this thesis fit well in this 

frame. The plethora of previously described HER2-positive mammary carcinoma 

models allowed us to determine multiple traits of HER2-positive breast cancer.  

Through these models we identified new potential druggable targets and we 

developed strategies to modulate anti-tumor immune responses.  

“HER2-positive breast cancer” is a label that identifies mammary carcinomas with 

different levels of amplification and/or expression of HER2 (Cardoso et al. 2019). 
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Besides other than HER2 itself, its isoforms such as Delta16 and p95HER2, can also be 

expressed at different levels, adding to the complexity of the HER2 positive breast 

cancer landscape (Scaltriti et al. 2007; Castagnoli et al. 2014; Palladini et al. 2017; 

Chervo et al. 2020). The inter-tumor heterogeneity, due to the expression variability of 

other molecular markers beyond HER2, has an immediate effect on the short- and 

long-term responses to anti-HER2 therapies (Marchiò et al. 2020). Because of this, in 

the last two decades several studies have tried to identify molecular signatures 

associated with HER2-positive breast cancer (Sørlie et al. 2001; Curtis et al. 2012; The 

Cancer Genome Atlas Network 2012; Pereira et al. 2016). At the same time, there have 

been several collaborations set up to define guidelines for the access to different anti-

HER2 treatments approved for clinical use (Wolff et al. 2018; Burstein et al. 2019). 

Heterogeneity is also evident inside the tumor. During 1980’s, in vitro and in vivo 

pioneering studies proved the presence of co-existing subpopulations within a same 

tumor, characterized by peculiarities and distinct abilities (Nowell 1976; Tsuruo et al. 

1983; Fidler 1983; Nanni et al. 1986). The advancement of -omic technologies combined 

to single cell analysis techniques has improved knowledge of the molecular profile and 

the evolution process of breast cancer subpopulations (Chung et al. 2017; Walens et al. 

2020; Jackson et al. 2020). Clonal selection due to therapeutic pressure or to the 

“physiological” tumor evolution causes the inter-lesion heterogeneity, which is a 

condition that requires a change in therapeutic regimen. In HER2-positive breast 

cancer, pathologists observed inter-lesion heterogeneity in presence of tumor 

recurrences or metastases that lose HER2 expression. This phenomenon, known as 

HER2 conversion from positive to negative, has been reported, according to a pooled 

meta-analysis, in 20% of patients (Schrijver et al. 2018). Little is known about the 

molecular profile of these primitive tumors and the mechanisms responsible for the 

conversion. Nonetheless, HER2 conversion urgently requires the identification of new 

therapeutic approaches, alternative to HER2-target therapy. 
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1. IMMUNOLOGICAL STRATEGIES 

The first goal of this thesis was the development of immunological strategies to 

overcome mammary carcinoma heterogeneity. In a recent paper, Galon and colleagues 

provided an elegant overview on the role of the intra-tumor pre-existing immune 

system subpopulations emphasising how some immune signatures have both a 

prognostic and predictive value. They also analysed mechanistic immune signatures, 

defined how immune signatures increased in patients responsive to therapy, and 

evidenced how there are signatures common to two or more different therapeutic 

strategies, such as immunotherapy, targeted therapy, chemotherapy or radiotherapy 

(Bruni et al. 2020). Thus, strategies able to enhance specific anti-tumor immune 

responses are, first, an alternative to overcome monoclonal antibodies and TKI-

resistance and, secondly, an approach to improve the response to other therapeutic 

strategies. In another report, Wheeler and colleagues profiled 110 patients with an 

exceptional response to therapy looking for distinct traits. They concluded that these 

exceptional responders shared common features including an abundant B cell 

population and an activated NK population (Wheeler et al. 2020). 

 

1.1 Cancer vaccines 

The first challenge of a cancer vaccine is overcoming the tolerance against the target 

antigen. The difficulties associated with breaking these immune-tolerogenic 

mechanisms have limited the success of vaccine trials (Curigliano et al. 2016; Marmé 

2016; Chackerian and Frietze 2016). VLP, which offers the chance of a multivalent 

display of a self-antigen and is also a highly effective means of overcoming B cell 

tolerance, resulted to be effective in both preclinical studies and clinical trials 

(Bachmann et al. 1993; Chackerian et al. 2008; Jennings and Bachmann 2009; Caldeira 

et al. 2020). HER2-VLP vaccine was obtained thanks to a modular VLP-based antigen 

display platform (Zakeri et al. 2012; Thrane et al. 2016) able to generate stable VLPs 

presenting multiple copies of the HER2-ECD. HER2-VLP vaccine activity was proved 
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on different HER2-driven mammary carcinoma models, both in a preventive and 

therapeutic set-up. Overall, the vaccine induced a polyclonal anti-HER2 antibody 

response, which was able to prevent mammary carcinogenesis and inhibit tumor 

growth. The vaccine efficacy relied on a rapid and strong induction of antibodies, 

which are key factors for the success of a cancer vaccine (Nanni et al. 2004; Palladini et 

al. 2010). The tested pHuRT DNA vaccine was less effective than HER2-VLP one. The 

preventive efficacy of pHuRT vaccine was previously proved on HER2 transgenic 

mice (De Giovanni et al. 2014). However, these mice showed a slower tumor onset than 

Delta16 and F1 mice (Palladini et al. 2017) and this could justify the failure of pHuRT 

vaccine. The delay of a definitely very aggressive mammary carcinogenesis may 

require the rapid induction of a stronger antibody response with higher avidity than 

that induced by pHuRT DNA vaccine. 

HER2-VLP-induced antibodies inhibited 3D growth of the HER2-positive human 

breast cancer BT-474 cell line to a similar extent as trastuzumab, and the trastuzumab-

resistant clone BT-474-C5. Trastuzumab-resistance of BT-474-C5 cells depends on the 

increased formation of EGFR/HER2 heterodimers (Ritter et al. 2007) and vaccine-

induced polyclonal antibody response can abrogate this heterodimerization. 

Moreover, preclinical studies have shown that a polyclonal anti-HER2 Ab response, 

which simultaneously targets multiple epitopes, is capable of mediating multiple 

cytotoxic mechanisms (Triulzi et al. 2010; Clay et al. 2011). In a translational 

perspective, an active vaccination approach capable of inducing a polyclonal anti-

HER2 Ab response may thus have a multitude of effects against HER2: induction of a 

more comprehensive signaling blockade and preventing cancer cells in acquiring 

resistance due to escape mutations.  

The use of multiple preclinical models gave us the opportunity to observe the 

HER2-VLP ability to counterattack tumor growth and also its limits at the same time. 

Among these limits we found an incomplete break of tolerance in double transgenic 

HER2/Delta16 F1 mice and an only partial therapeutic effect on MamBo89HER2stable 
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tumor growth, probably due to a non-complete addiction of these tumor cells to HER2.  

Consequently, a stronger ability to break HER2 tolerance is surely a future 

requirement for the scale-up of HER2-VLP vaccine. 

 

1.2 Triggering the immune response 

The IGF1R-based system evolved as a tightly tolerized system (Geenen 2012). We 

therefore worked therefore on this circuit to test some strategies to foster the break of 

immune tolerance and induce specific immune responses. Rhabdomyosarcoma is an 

IGF2-dependent tumor, due to the autocrine overexpression of IGF2 (De Giovanni et 

al. 2009a) and male mice knock-out for p53 and transgenic for rat HER2 

(BALB/p53Neu) are used as model of spontaneous rhabdomyosarcoma (Nanni et al. 

2003). To induce the production of antibodies neutralizing IGF2 by a DNA vaccine, we 

included a xenogeneic gene in the vaccine (Quaglino et al. 2010; Denies et al. 2016). 

While DNA vaccine for murine IGF2 failed in eliciting antibodies, DNA vaccination 

with the highly homologous human IGF2 elicited antibodies recognizing murine IGF2 

that were able to partially protect mice from lung metastases induced by an 

intravenous challenge with IGF2-overexpressing murine rhabdomyosarcoma cells. 

The second strategy explored was the co-targeting of the two receptor tyrosine kinases 

(RTKs) IGF1R and HER2/neu through cellular vaccines. Cell vaccines overexpressing 

transduced murine IGF1R, along with HER2/neu and adjuvant stimuli (allogenicity 

and IL12 production) were able to elicit antibodies recognizing murine IGF1R instead. 

A slight, nearly significant, delay of rhabdomyosarcoma onset was also obtained with 

cell vaccine co-targeting mIGF1R and HER2/neu, while cell vaccine expressing only 

HER2/neu and adjuvants gave superimposable onset to the non-vaccinated control 

group.  

Immune checkpoint inhibitors are a promising strategy to tune immune antitumor 

response. Checkpoint inhibitors have shown the ability to elicit powerful long-lasting 

immune responses leading to clinical benefit in 20–30% of patients (Aspeslagh et al. 
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2016). However, most patients are resistant to therapy, and about 10% of patients 

undergo a rapid progression under checkpoint inhibitor treatment (Champiat et al. 

2017). As combining immunomodulating strategies could increase the proportion of 

responders (Kaumaya et al. 2020), a powerful cancer vaccine was combined with an 

agonistic antibody triggering OX40 (aOX40). The preventive activity of this vaccine 

against mammary carcinoma was weakened by the concomitant administration of 

aOX40 antibody. On the other hand, treatment with aOX40 after the completion of 

vaccinations induced a weak but significant increase in vaccine efficacy, in accordance 

with published results showing that OX40 activation boosted a previous cell 

vaccination (Curti et al. 2003). Thus, the “Janus” effect of aOX40 was affected by the 

timing of administration. Both reduction and increase of immune suppression upon 

OX40 engagement are possible in different model systems (Linch et al. 2016; Aspeslagh 

et al. 2016; Foote et al. 2017). The only observed variation associated with the increased 

efficacy was a higher production of GM-CSF and IL10. Increased expression of both 

these cytokines was reported by OX40 triggering in some studies (Shibahara et al. 2015; 

Linch et al. 2016). Moreover, IL10, which is generally considered as a suppressor 

cytokine, also has antitumor activities (Giovarelli et al. 1995; Oft 2014; Wang et al. 

2015). Concomitant administration of aOX40 and cancer vaccines reduced antibody 

production and determined an activated Treg enrichment.  

Authors found that reactivation of low antigen-dependent stimulated lymphocytes 

induced an excessive stimulation of these cells, which caused apoptosis via activation-

induced cell death (AICD) (Pai et al. 2019). This consideration may be translated to the 

study reported in this thesis since if on one hand the concomitant administration of 

aOX40 with the vaccine found lymphocytes in an early stimulation state, on the other 

hand aOX40 post-vaccine administration already acted on a polarized immune system 

trained to produce a specific antigenic response by the vaccine.  

The negative interference observed with OX40 triggering concomitant with cancer 

vaccine suggests that preclinical models should be thoroughly investigated to 
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establish the optimal timing of administration, the mechanisms of resistance to ICI 

therapies and tumor growth acceleration (Olson et al. 2018). We thus moved to PD-L1 

immune checkpoint, which is a target of several ICIs developed for clinical use.  We 

moved to a different model in order to better study the role of PD-1/PD-L1 with the 

future aim to apply the lesson learned to breast cancer. Since patients with melanoma 

or NSCLC have benefitted from anti-PD-1/PD-L1 treatment (Topalian et al. 2014; 

Ahamadi et al. 2017; Vaddepally et al. 2020) we developed a preclinical model based 

on murine melanoma B16 and B16-F10 cell lines, widely used in immunological 

studies and characterized by a different degree of immunogenicity (Overwijk and 

Restifo 2000; Giavazzi and Decio 2014). B16-F10 cells showed a lower sensitivity to the 

anti-proliferative action of IFN-γ compared to B16 cells in vitro. IFN-γ raised the 

expression of both H-2 and PD-L1 molecules and, even though the baseline level of 

these two markers was lower in B16-F10 than in B16, induced levels of H-2 and PD-L1 

were similar between these cell lines. In vivo tumor growth of B16 and B16-F10 cell 

lines was not reduced by pre-treatment with PDL1-VLP vaccine. Furthermore, B16-

F10 tumors showed an accelerated growth rate that resembled the hyperprogressive 

disease (HPD) phenomenon in patients treated with ICI. The mechanisms underlying 

hyperprogression after IC blockade therapy are still unknown. Nevertheless, proposed 

hypotheses include alterations in T-cell subpopulations, cytokine secretion, 

inflammation, and tumor-cell alterations (Scholz et al. 2011; Koyama et al. 2016; Huang 

et al. 2017; Lamichhane et al. 2017; Chen et al. 2018; Zuazo-Ibarra et al. 2018; Kamada 

et al. 2019). We found that B16-F10 cells had a higher expression of the Cd38 immune 

checkpoint compared to B16 cells. IFN-γ induced a decrease of Cd38 expression in B16 

cell already at 10U/ml in vitro, while in B16-F10 cell line a higher dose (100 U/ml) was 

needed to observe a similar effect, and the lowest level of reached Cd38 expression was 

almost the same as to the baseline level of B16. In vivo pre-treatment with PDL1-VLP 

decreased the level of Cd38 expression only in B16 tumors, while we did not observe 

any effects in B16-F10 tumors. Interestingly, CD38 expression has been correlated with 
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resistance to ICI therapy. In fact, PD-1/PD-L1 blockade has been reported to upregulate 

CD38, not only on CD8+ cytotoxic T cells, but also on tumor cells (Chen et al. 2018; 

Feng et al. 2017). CD38 expression can be induced in monocytes, bone-marrow 

progenitor cells and CLL cells by IFN-γ (Snoeck et al. 1993; Musso et al. 2001; Bürgler 

et al. 2015). Treatment with the anti-CD38 antibody in animals that were resistant to 

IC blockade therapy inhibited tumor growth, enhanced effector CD8+ and CD4+ T-cell 

responses and reduced both CD4+ Treg cells and MDSCs (Chen et al. 2018). CD38 

expression in tumors has indeed been recognized as a biomarker of poor response to 

ICI therapy (Yi et al. 2018). CD38 upregulation after IC blockade therapy may 

contribute to the development of HPD through the release of high levels of adenosine 

into the TME, and the consequent activation of the ADORA2a pathway, which may 

lead to tumor insensitivity to IFN-γ action, the downregulation of p53 with consequent 

tumor growth, and strong immunosuppression. CD38 upregulation may also be an 

adaptive immune response to the hyperactivated immune setting induced by ICI 

therapy. In this context, CD38 may promote the apoptosis of effector T cells via the 

AICD process, leading to a protumorigenic tumor microenvironment. Moreover, 

CD38 may enhance hypoxia signaling pathways in tumor cells or endothelial cells, 

leading to increased angiogenesis, immunosuppression and tumor proliferation 

(Angelicola et al. 2021). Lastly, B16-F10 tumors showed higher expression levels of 

Arg1, a marker of M2 macrophages, and Cd4, compared to B16 tumors. M2 

macrophages are typically related to immunosuppressive activity (Arlauckas et al. 

2018). The reduction of the macrophage levels in B16 tumors arisen in mice pre-treated 

with PDL1-VLP is therefore indicative of an immunologically activated 

microenvironment. Conversely, unchanged levels of M2 macrophages in B16-F10 

tumors of pre-treated mice may suggest a role of M2 macrophages in the 

hyperprogressive phenomenon, as previously proposed (Lo Russo et al. 2019). The 

treatment with PDL1-VLP vaccine enhanced several immune mechanisms beyond the 



129 

 

production of polyclonal PD-L1 antibodies, including the stimulation of dendritic cells 

and B lymphocytes (Mohsen et al. 2018; Palladini et al. 2018b).  

In order to work with a model closer to clinical condition of patients we then 

evaluated the effects of the in vivo administration of two therapeutic monoclonal anti-

PD-L1 antibodies on B16-F10 tumor growth. This second approach gave us the 

opportunity to exclude the effect of immunological components not-antibody related. 

The adjustment of the vaccination schedule into the monoclonal antibody schedule 

required the evaluation of several timings of administration. Treatment with anti-PD-

L1 10F.9G2 antibody induced only a modest tumor growth compared to untreated 

control group, when administered before and after challenge, together with an 

increase of spleen weight. The administration of 10F.9G2 at a higher dose or only 

before the challenge did not instead delay nor promote tumor growth. Atezolizumab 

treatment increased spleen dimension without affecting B16-F10 tumor growth. We 

can conclude that neither antibody treatments were able to reproduce the 

hyperprogression phenomenon observed in PDL1-VLP pre-treated mice. Future 

experiments will include treatment with anti-PD-L1 durvalumab antibody or combo-

treatment with different monoclonal antibodies. The PDL1-VLP treatment will be 

further investigated in terms of its effect on the composition of immune 

microenvironment and cytokine production. It might also be opportune to test in vitro 

the effects of ICI treatment on the expression of CD38 and other markers, including 

IDO1, ADORA2a, and on inflammasome pathway and AICD components. In addition, 

this study may be extended to preclinical models of mammary carcinoma and lung 

adenocarcinoma and enriched with data from primary cultures of tumor specimens. 

 

2. DISCOVERY OF NEW THERAPEUTIC TARGETS 

The second goal of this thesis was the identification of alternative targets to HER2. We 

worked with several models, as for immunological studies previously described, to 

determine different aspects of HER2-positive breast cancer heterogeneity.   
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2.1 Dynamic model of HER2 expression 

Our models panel included murine mammary carcinoma cell lines bearing huHER2 

amplification, since directly or indirectly derived from HER2 transgenic mice, that 

exhibited a different ability to preserve HER2 expression both in vitro and in vivo. 

HER2-negative cell lines, resulted from HER2 loss, showed a spindle-like morphology, 

an EMT gene expression profile, increased stemness and high aggressivity in vivo. The 

loss of HER2 was influenced by cell density in in vitro cultures according to previous 

results in cell lines that were derived from mammary tumors of HER2/neu transgenic 

mice, in which density considerably influenced the expression of HER2/neu and/or 

EMT traits (Jenndahl et al. 2005). Moreover, our model had similarities with the human 

breast cancer cell line JIMT-1, which showed a progressively loss of HER2 after the 60th 

culture passage, associated with an enrichment of the CD24neg/CD44pos subpopulation 

and a higher expression of IL6 and MMP proteins (Oliveras-Ferraros et al. 2010). 

Nevertheless, long-term culture did not cause a complete loss of HER2, as observed by 

us, but only a decrease in protein expression. 

The main issue for the success of HER2-targeted therapies is to ensure that most 

tumor cells are addicted to HER2 expression for the maintenance of the malignant 

phenotype (Escrivá-de-Romaní et al. 2018). Anti-HER2 target therapies normally cause 

the extinction of HER2-positive cells. These treatments in tumors exhibiting intra-

tumor heterogeneity, with HER2-positive and HER2-negative sub-clones, may fail to 

eradicate tumor, resulting in HER2-negative relapse (Marchiò et al. 2020). In our 

model, the addition of trastuzumab to low-density MamBo43HER2labile culture 

accelerated the spontaneous loss of HER2 expression and the emergence of the highly 

staminal and aggressive population as reported for HER2/neu model (Song et al. 2014; 

Creedon et al. 2016; Sharieh et al. 2016; Nami and Wang 2017). Contrasting data were 

reported on the effect of neoadjuvant and adjuvant therapy with trastuzumab on 

promoting the loss of HER2 expression in metastasis (Song et al. 2014; Timmer et al. 
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2017; Ignatov et al. 2019; Branco et al. 2019). We can thus conclude that HER2-negative 

cells characterized by high stemness became the dominant clone inside 

MamBo43HER2labile cell line in specific conditions.  HER2-negative cells growth was 

probably not addicted to HER2 from the origin. This hypothesis was supported by 

studies in other models, in which the artificial inactivation of HER2 has been 

invariably associated with either tumor regression or tumorigenicity loss (Nanni et al. 

2000; Moasser 2007; Song et al. 2014; Creedon et al. 2016; Sharieh et al. 2016), in line 

with the theory of “oncogene addiction” (Weinstein and Joe 2008). 

We could continue to ask ourselves why HER2-amplified cells did not express 

HER2, but probably, from a translational point of view, the more pertinent two 

questions would be: could this model help to predict the future HER2 conversion, in 

HER2 positive tumors? Could this model help us to find new targeted therapies for 

patients with HER2 conversion? In order to answer these last two questions, we 

focused our attention on HER2-negative cells. The molecular profile of these cells 

resembles the peculiar traits of claudin-low-expressing tumors, which are defined as 

tumors with low expression of cell-cell adhesion genes, high expression of EMT genes 

and stem-cell-like/less differentiated gene expression patterns (Prat et al. 2015). 

Fougner and colleagues (Fougner et al. 2020) have recently redefined claudin-lowness 

as a condition that is present in various intrinsic subtypes, rather than in a distinct 

subtype. This observation led us to hypothesize that HER2-positive primary lesions 

can progress through acquisition of claudin-lowness. Due to the fact that there is a 

paucity of repository data including molecular profiles of matched primary tumor and 

metastasis, and since HER2 conversion is a low frequency phenomenon, we were not 

able to compare our results with a database of clinical data. Nevertheless, we evaluated 

the data set “Metastatic Breast Cancer Project” in C-Bioportal which includes RNA-

Seq of primary tumors and matched metastases. Two patients (MBC-

MBCProject_6vTVHzur and d5CbUNTb) showed a decrease of HER2 levels between 

primary tumor and metastasis, according to RNA-Seq data. Metastases of these 
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patients showed an increase of several genes that are up-regulated in MamBo HER2-

negative cells, including DCN, VIM, VCAN, MMP2, TGFB1, CAV1, PDGFRB, IGFBP4, 

ZEB1 and ZEB2. This is obviously a preliminary result that will require future 

investigation on a higher number of samples.  

The molecular comparison between HER2-positive and HER2-negative cells 

revealed a higher expression of PDGFR-B in the latter. Molecular data about the two 

patients reported above showed that HER2 decrease was associated to an increase of 

this receptor. PDGFR-B sustains breast cancer progression by promoting EMT and 

stemness phenotype (Jechlinger et al. 2006; Meng et al. 2015). PDGFR-B is also a 

pericyte marker and its expression on tumor cells with a mesenchymal phenotype 

suggested these cells have a role in angiogenesis as pericyte-like cells (Shenoy et al. 

2016). These data match well with immunofluorescence of MamBo43HER2labile and 

MamBo38HER2loss tumors that showed vessels without NG2 positive cells (pericytes). 

MamBo38HER2loss cells may substitute pericyte cells and their function in the vascular 

architecture of tumors. PDGFR-B is a druggable target by sunitinib, a pan-TKI able to 

inhibit also VEGFR, which we found to be up-regulated in HER2-negative cells. 

Sunitinib was effective in halting the growth of MamBo38HER2loss cells and the 

emergence of HER2-negative tumors from MamBo43HER2labile cells. Sunitinib also 

reduced IL-6 production by MamBo38HER2loss in vitro. IL6 up-regulation has been 

reported in a model of long-term-trastuzumab-treated BT-474/PTEN-/- cells, which 

became spindle-like following this treatment; IL6 appeared to trigger an inflammatory 

loop, which led to the acquisition of a staminal, basal-like phenotype, together with 

resistance to trastuzumab (Burnett et al. 2015). The efficacy of sunitinib as an anti-EMT 

target therapy has been proven in claudin-low human breast cancer cell lines (Hollier 

et al. 2013), and this drug may be able to take advantage of IL6 inhibition. Taken 

together, these data indicate the putative efficacy of the therapeutic targeting of 

PDGFR-B by sunitinib in HER2-negative cells. Nevertheless, treatment with sunitinib 

did not eradicate HER2-negative tumors, thus indicating that the PDGFR-B signaling 
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pathway clearly sustains the growth of HER2-negative cells, but is probably not the 

only driver of their malignancy. Interestingly, combined treatment including sunitinib, 

trastuzumab and chemotherapy in advanced breast cancer has been studied (Bachelot 

et al. 2014).  

Preliminary results suggest two other potential targets, PHLDA1 and SORBS3. 

MamBo43HER2labile cells expressed both HER2 full-length and p95HER2 and we also 

found a higher expression of PHLDA1 in these cells. The role of PHLDA1 was 

controversial, although its expression was found to correlate with p95HER2-611CTF 

(Pedersen et al. 2009). A recent paper suggested that PHLDA1 may inhibit HER2-

HER3 dimerization (Magi et al. 2018). This inhibition may encourage the driver role of 

HER2 homodimers (including p95HER2 homodimers that are resistant to 

trastuzumab). Inhibition of PHLDA1 reduced the in vitro migration of 

MamBo43HER2labile cells. Further studies will be required to evaluate how PHLDA1 

switch off may influence trastuzumab sensitivity. On the other hand, the incomplete 

HER2 addiction of MamBo89HER2stable cells may be justified by the absence of SORBS3. 

The lack of this protein may permit a higher activation of STAT3. Thus, if on one hand 

MamBo89HER2stable cells produced high level of IL6, which induced STAT3 activation, 

on the other hand the absence of SORBS3 might keep this circuit constantly activated 

(Ploeger et al. 2016). 

 

2.2 Dynamic model of HER2-positive breast cancer progression 

Finally, we took advantage PDX-BRB4 derived from an HER2-positive breast cancer 

patient to develop a new model of tumor progression based on serial in vivo passages. 

However, despite several efforts, metastatic growth and tumor progression per se or 

after therapeutic treatments have been rarely obtained and, even by selecting 

metastatic PDX variants, the results have not been satisfactory at all (Paez-Ribes et al. 

2016). In our study the long-term in vivo re-transplantation for up to 25 passages of 

PDX-BRB4 allowed the random emergence of a progressed phenotype. Of 6 different 
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sublines, only one (PDX-BRB4-A1) showed the shift toward a progressed phenotype, 

with faster in vivo growth, acquirement of metastatic ability after i.v. injection, enriched 

stem cell phenotype and lower in vitro cell senescence. HER2-amplified PDX-BRB4 

showed a progressive decrease of BCL2 expression after long-term in vivo passage, 

becoming almost negative for its expression after ≥22 passages. High level expression 

of BCL2 in breast cancer is associated with a better prognosis (Treré et al. 2007; Dawson 

et al. 2010; Hwang et al. 2018; Ceccarelli et al. 2019). Therefore, the downregulation 

observed during the in vivo passages of our PDX could be linked to the selection of 

more aggressive variants, revealing a positive prognostic role for the biomarker BCL2, 

as observed in clinical studies.  

BCL2 gene product (mainly its alpha isoform) normally plays an anti-apoptotic role  

(Cooper et al. 2015; Warren et al. 2019). The paradox of low BCL2 levels associated 

with a bad prognosis in breast cancer could be related to Beclin-1 inhibition. Beclin-1 

induces autophagy leading to the improvement of the survival rate and maintenance 

of cancer stem cells (Bottini et al. 2000). BCL2 is a negative regulator of Beclin-1 

(Artibani et al. 2017) and it can inhibit its pro-tumorigenic effects, inducing cell 

senescence and growth arrest (Warren et al. 2019). Our data highlighted a complex 

interaction between BCL2 and CDKN2A, STAT5 and WT1, which are concordantly 

downregulated in the progressed A1 subline. In our progressed model low levels of 

BCL2 are not related to therapy resistance, as also reported in clinical studies (Bottini 

et al. 2000).  On the other hand, a high expression of WT1 in breast cancer is clinically 

associated with increased malignancy, bad prognosis, lower responsivity to therapies 

and to a mesenchymal phenotype. Breast cancer cell lines with mesenchymal versus 

epithelial phenotypes were reported to show divergent behaviors when subjected to 

WT1 silencing or hyperexpression (Artibani et al. 2017), suggesting that the EMT could 

play a role on the way towards bad prognosis and lower responsivity to therapies. In 

our study, the progressed PDX-BRB4-A1 subline underwent an only partial EMT. A1 

progressed subline showed increased malignancy and stemness but maintained 
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epithelial morphology and did not acquire resistance to therapy with trastuzumab nor 

neratinib treatment (Landuzzi et al. 2021). A higher stemness and metastatic ability 

could be linked to early events of EMT, while resistance to therapies could require 

further steps during the transition process. 

 

3. CONCLUSIONS 

The development of anti-tumor target therapies requires preclinical models able to 

reproduce the clinical condition. Deep sequencing and -omics technologies are 

teaching us that each tumor subtype has tumor subclusters with specific molecular 

profiles. In addition, each tumor is characterized by distinct clones that coexist and, 

over time, may dynamically expand or shrink. Finally, the immunological components 

of the tumor microenvironment have been shown to evolve over time, both 

qualitatively and quantitatively. The keyword that best describes all of these aspects 

is “heterogeneity”. 

The results reported in this thesis introduce therapeutic approaches or identify new 

therapeutic targets towards HER2-positive breast cancer, taking into account the 

dynamics inherent to the tumor progression. 

The VLP vaccine is a starting point to overcome the phenomenon of resistance to 

therapy. The possibility of using strategies to reinforce vaccine effects, such as the use 

of xenogeneic antigens, multiple antigens or ICI, is concrete but at the same time the 

switch-on/switch-off of lymphocytes, by ICI, is a system that still requires a lot of 

study, since the clinical response can be not only ineffective but even harmful. 

Tumor progression of MamBo43HER2labile cell line as well as PDX-BRB4-A1 subline 

presented EMT traits and increased stemness. Molecules involved in these processes 

might become new targets for therapeutic approaches. The tumor progression can be 

also counteracted by turning off alternative survival circuits to HER2 once the 

addiction to this gene is lost. We evidenced how SORBS3 might play a key role in the 
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switch off of IL6/STAT3 signaling. Moreover, the functional role of PHLDA1 in 

mammary carcinoma invasion was also suggested. Lastly, the progression of HER2-

positive mammary carcinomas can lead to the loss of expression of HER2 and to a 

mesenchymal phenotype. Antiangiogenic drugs such as sunitinib can slow the growth 

of these new claudin-low tumors. 
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Materials and Methods 
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1. IMMUNOLOGICAL STRATEGIES 

Parts of Materials and Methods reported in this Chapter were included in the 

manuscripts of Palladini and colleagues (Palladini et al. 2018b), De Giovanni and 

colleagues (De Giovanni et al. 2019a; De Giovanni et al. 2019b) and, Nanni and 

colleagues (Nanni et al. 2018). 

 

1.1 Anti-HER2 cancer vaccines 

 

1.1.1 Mice 

FVBhuHER2 (HER2) mice, transgenic for the full-length human HER2 isoform (Finkle 

et al. 2004; De Giovanni et al. 2014) were obtained from Genentech (South San 

Francisco, CA, USA) and bred in our animal facilities. Delta16 mice, transgenic for the 

Delta16 alternative splicing isoform of HER2, were kindly gifted by Dr. A. Amici 

(University of Camerino, Camerino, Italy) and Dr. S. Pupa (Fondazione IRCCS, Istituto 

Nazionale dei Tumori, Milan, Italy) (Marchini et al. 2011; Castagnoli et al. 2014). 

Delta16 male mice and HER2 female mice were crossed to obtain a double transgenic 

human HER2/Delta16 progeny, here referred to as HER2/Delta16 F1 or F1 mice 

(Palladini et al. 2017). All transgenic mice expressed human HER2 and/or Delta16 in 

the mammary glands under the transcriptional control of mouse mammary tumor 

virus long terminal repeats, leading to the development of mammary carcinomas. FVB 

mice (FVB/NCrl) were purchased from Charles River Laboratories (Calco, Como, 

Italy). 

 

1.1.2 Cell lines 

MamBo89HER2stable cell line was established from a mammary tumor of a HER2 mouse. 

Tumor was minced and set in culture. Cell line was stabilized and cultured in DMEM 

(Thermo Fisher Scientific, Milan, Italy) that was supplemented with 20% Fetal Bovine 
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Serum (FBS, Thermo Fisher Scientific), 30 µg/ml bovine pituitary extract (Corning, 

Turin, Italy) and 0.5% v/v MITO Serum Extender (Corning). 

Human ovarian cancer cell line SK-OV-3 and human breast cancer cell lines MDA-

MB-453, BT-474 and SKBR3 were kindly given by Dr. S. Pupa (Fondazione IRCCS, 

Istituto Nazionale dei Tumori, Milan, Italy). Breast cancer cell lines HCC1954 and 

MDA-MB-231 were purchased from ATCC (Sesto San Giovanni, Milan, Italy). Breast 

cancer cell line BT-474-C5 was kindly provided by Prof. Adam Sander (University of 

Copenhagen, Denmark). Cells were routinely cultured in RPMI medium (Thermo 

Fisher Scientific) supplemented with 10% FBS.  

Both MamBo89HER2stable cell line and, human ovarian and breast cancer cell lines 

described above were maintained at 37°C in a humidified 5% CO2 atmosphere. 

Human rhabdomyosarcoma cell line SJ-RH4, lacking HER2 expression, was 

provided by Dr. A. Rosolen (University of Padua, Padua, Italy) and Dr. D.N. Shapiro 

(St. Jude Children's Hospital, Memphis, TN). Cells were cultured in DMEM with 10% 

FBS and maintained at 37°C in a humidified 7% CO2 atmosphere. 

 

1.1.3 HER2-VLP and pHuRT vaccines 

The HER2-VLP vaccine was based on virus-like particles (VLPs) displaying SpyTags 

proteins and linked with HER2 extracellular domain (ECD) through a SpyCatcher.  

HER2-VLP vaccine was produced by Prof. A. Sander and co-workers (University of 

Copenhagen, Denmark). The detailed description of the design, expression and 

purification of vaccine components was included in the manuscript of Palladini and 

colleagues (Palladini et al. 2018b) and here briefly reported. The Acinetobacter phage, 

AP205 coat protein displayed two SpyTags per VLP subunit (Thrane et al. 2016).  The 

Spytags VLP was expressed in Escherichia coli One Shot BL21 Star (DE3) cells (Thermo 

Fisher Scientific) and purified by density gradient ultracentrifugation. The HER2-ECD 

was designed with the SpyCatcher sequence at the N-terminus and a hexa-histidine 

purification tag at the C-terminus (Zakeri et al. 2012) and was codon-optimized for 
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expression in Drosophila melanogaster S2 insect cells. The sequence was then subcloned 

into the pExpreS2-2i vector (ExpreS2ion Biotechnologies, Horsholm, Denmark).  

SpyCatcher-HER2 antigen was coupled to the VLP and the level of coupling was 

determined by densitometric analysis of SDS-PAGE gels. Alhydrogel (2%) (Brenntag, 

Denmark), here referred to as Alum, was added to the vaccine formulation 1 hour 

prior to immunizations. For each mouse, 6 µg of VLP-displayed SpyCatcher-HER2 

were injected into the tibial muscles.  

pHuRT vaccine is a DNA vaccine based on a chimeric human/rat HER2 plasmid, 

derived from pVAX1 (Thermo Fisher Scientific), that encodes a chimeric protein in 

which the first 390 extracellular N-terminal residues are from HER2 (1–390 residues) 

and the remaining extracellular and transmembrane residues from rat HER2/neu 

(Quaglino et al. 2010). Large-scale production and purification of the plasmids were 

performed with EndoFree Plasmid Giga kits according to manufacturer’s instruction 

(Qiagen, Valencia, CA, USA). 

The pHuRT DNA vaccine consisted of 50 μg plasmid diluted to a final volume of 

40 μl per mouse in final concentrations of 0.9% NaCl and 6 mg/ml polyglutamate. The 

DNA vaccine was injected into the tibial muscles (20 μl in each muscle) then the muscle 

tissues were immediately subjected to electroporation consisting of two square wave, 

25-ms, 375 V/cm pulses generated with a T830 electroporator (BTX, San Diego, CA, 

USA) (De Giovanni et al. 2014).  

 

1.1.4 HER2-VLP and pHuRT immunization 

In the preventive set-up, HER2-VLP and pHuRT vaccines were administered every 

second week. Delta16 mice received three vaccine administrations starting from 

8 weeks of age. HER2/Delta16 F1 mice were treated starting from 5-8 weeks of age, for 

the entire lifetime of the mouse. Control groups consisted of untreated mice.  

The ability of HER2-VLP vaccine to inhibit tumor growth was also evaluated 

through two different therapeutic set-ups. In the first, MamBo89HER2stable cells (5 × 
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106 cells) were subcutaneously (s.c.) injected in 10-20-week-old FVB female mice. 

Starting 5 weeks after cell injection, mice were immunized every second week with the 

HER2-VLP vaccine for the entire lifetime of the mouse. Control group consisted of 

untreated mice. In the second therapeutic experiment, five primary mammary 

carcinomas of three HER2 transgenic mice were minced and pooled together and 

implanted in the fourth left mammary fat pad of FVB female mice, approximately 20-

weeks-old. Starting 2 weeks after fragment implantation, mice were vaccinated every 

second week with HER2-VLP vaccine for the entire lifetime of the mouse. Control 

group consisted of untreated mice. 

Mice were monitored weekly by palpation and tumor dimensions were measured 

with calipers. Masses with a mean diameter exceeding 3 mm were considered tumors. 

Tumor volume was calculated as (π/6)(√ab)3 where a = maximal tumour diameter 

and b = maximal tumour diameter perpendicular to a. Mice were euthanized when 

tumor burden was equivalent to 10% of body mass. Tumor multiplicity is the number 

of mammary tumors per mouse at each time point and is expressed as mean ± SEM for 

each experimental group. For all experiments, serum samples were collected 

periodically, one day before every vaccination. 

 

1.1.5 Growth inhibition by HER2-VLP-induced antibodies 

The ability of HER2-VLP induced antibodies to inhibit 3D-growth was evaluated on 

BT-474 (trastuzumab-sensitive) and BT-474 C5 (trastuzumab-resistant) cells. Cells 

were seeded at 500 cells/well in 24-well plates in RPMI + 10% FBS + 0.33% agar (Sea-

Plaque Agarose, Lonza, Basel, Switzerland) containing mouse sera diluted 1:100 or 

trastuzumab (10 μg/ml, kindly provided by Genentech). Colonies (diameter > 90 μm) 

were counted 18–30 days after seeding under an inverted microscope in dark-field.  
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1.2 The break of tolerance against IGF1R and IGF-2 

 

1.2.1 Mice 

BALB/c p53+/− female mice (BALB/cJ-Trp53tm1Tyj, purchased from The Jackson 

Laboratory (Bar Harbor, MI, USA) were crossed with BALBneuT male mice, transgenic 

for a mutant rat HER2/neu, and bred in our facilities as previously described (Nanni 

et al. 2003). Male BALB/p53Neu mice develop salivary gland carcinomas and pelvic 

rhabdomyosarcoma in urethral tissue proximal to bladder at about 13 to 15 weeks of 

age (Nanni et al. 2003). 

BALB/c (BALB/cAnNCrl) mice were purchased from Charles River Laboratories. 

 

1.2.2 Cell lines 

RMSp53Neu5, derived from a rhabdomyosarcoma of BALB/p53Neu male mouse 

(Ianzano et al. 2014). Cell culture was grown in DMEM supplemented with 20% FBS. 

Human rhabdomyosarcoma cell line SJ-RH30, as well as SJ-RH4, lacks HER2 

expression and was provided by Dr. A. Rosolen (University of Padua, Italy) and Dr. 

D.N. Shapiro (St. Jude Children's Hospital, Memphis, TN). Cells were cultured in 

DMEM with 10% FBS. 

TS/A, derived from a mammary carcinoma arisen in a BALB/c female retired 

breeder mouse (Nanni et al. 1983b). Cells were routinely grown in DMEM with 10% 

FBS.  

Neu/H-2q/IL12 clone #20 cells (here indicated as #20), derived from a mammary 

carcinoma arisen in a FVB female mouse transgenic for rat HER2/neu, and engineered 

for production of murine IL12 (De Giovanni et al. 2004; De Giovanni et al. 2019b). Cells 

were cultured in DMEM supplemented with 20% FBS and 125 µg/ml hygromycin 

(Thermo Fisher Scientific). 
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N10-F2.1 cell line, derived from a mammary carcinoma expressing rat HER2/neu 

arisen in a HER2/neu transgenic mouse of a BALB/c background. Cells were routinely 

grown in DMEM with 20% FBS.  

Rhabdomyosarcomas and mammary carcinoma cell lines were maintained at 37°C 

in a humidified 7% CO2 and 5% CO2 atmosphere, respectively. 

 

1.2.3 Anti-IGF1R and anti-IGF2 vaccines 

The plasmid pCVNIGF1R, coding for human IGF1R cDNA under the control of the 

SV40 promoter, was kindly given by Dr. Baserga (Thomas Jefferson University, 

Philadelphia, USA). Murine IGF1R plasmid pmIGF1R-opt was derived from 

pcDNA3.1 plasmid by insertion of a codon-optimized cDNA sequence coding for 

normal murine IGF1R (Genscript Corporation, Piscatway, NJ, USA) under 

Cytomegalovirus promoter. #20 cell line was transfected with pCVNIGF1R, 

pmIGF1Ropt or pcDNA3.1, as described by De Giovanni and colleagues (De Giovanni 

et al. 2019a). Cells were cloned and two clones were selected for high expression of 

human IGF1R (clone D39) or murine IGF1R (clone 9B10). 

Plasmidic pBLAST49-derived expression vectors for murine IGF2 (p-mIGF2) and 

human IGF2 (p-hIGF2), as well as the empty vector pBLAST49-mcs, were purchased 

from InvivoGen (San Diego, CA, USA). 

Production and purification of the plasmids were performed with EndoFree 

Plasmid Giga kits.  

 

1.2.4 Anti-IGF1R and anti-IGF2 in vivo treatments 

 

1.2.4.1 Anti-IGF1R and IGF-2 DNA vaccines 

Mice received the injection of DNA vaccine into the tibial muscles (20 μl in each 

muscle) according to the protocol previously described for pHuRT vaccine (Materials 

and Methods 1.1.3).  
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pCVNIGF1R or pmIGF1R-opt were administered at 6, 8, 13, and 15 weeks of age. In 

order to induce Treg depletion, DNA vaccine pmIGF1R-opt was also coupled with the 

administration of the anti-CD25 (PC61) rat monoclonal antibody at the dose of 500 

µg/mouse (kind gift from Dr. S. Ferrini, Istituto Nazionale per la Ricerca sul Cancro, 

Genoa, Italy) five and four days before the first vaccination. pmIGF1R-opt was also 

combined with other plasmids, such as pIL12-IRES1neo (able to confer expression of 

murine IL12, here referred to as pIL12) or pDq (able to transfer H-2Dq expression) (De 

Giovanni et al. 2009b).  

DNA vaccine with human or mouse pIGF-2 plasmids, or empty vector, was 

administered in BALB/c mice. Vaccination was repeated after 2, 6 and 8 weeks, for a 

total of 4 vaccinations. Mice were challenged with 3 × 105 murine rhabdomyosarcoma 

cells, administered by intravenous (i.v.) injection. In some experiments, the first two 

vaccinations were preceded by Treg depletion at day − 1.  

 

1.2.4.2 Anti-IGF1R cell vaccines 

Cell vaccines consisted of IL12-producing HER2-expressing H-2q murine mammary 

carcinoma cells stably transfected with murine or human IGF1R (clones 9B10 and D39, 

respectively). Vaccine cells were proliferation-blocked by treatment with mitomycin C 

(40 μg/mL Sigma-Aldrich, Milan, Italy) and administered i.p. in 0.4 mL of phosphate-

buffered saline (PBS) (Thermo Fisher Scientific). Control mice received PBS alone. A 

vaccination cycle consisted of 4 vaccinations over 2 weeks, followed by 2 weeks of rest  

(De Giovanni et al. 2004). Vaccination cycles were life-long repeated. 

 

1.2.4.3 Anti-IGF2 antibodies 

Monoclonal antibodies neutralizing IGFs (kindly provided by Kyowa Hakko Kirin Co, 

Tokyo, Japan) were KM1468 (rat IgG2b, neutralizes human IGF1 and IGF2 and murine 

IGF2 but not murine IGF1 and human insulin) and KM3168 (rat IgG2a, neutralizes 

human and murine IGF1, but not human and murine IGF2 and insulin). BALB/p53Neu 
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male mice at a pre-neoplastic stage (5–6 weeks of age) were randomized based on the 

weeks of age to three experimental groups: control and two doses of a mixture of IGFs 

mAbs KM1468 and KM3168 (0.2 and 1 μg/g for each antibody). Mice received two 

administrations per week in the site of onset of rhabdomyosarcoma for a total of 18 

injections. Control group received only vehicle PBS. 

 

For all previously described experiments (1.2.4.1-1.2.4.3) mice were monitored weekly 

by palpation and, when required, tumor dimensions were measured and mice were 

subjected to an accurate necropsy as previously reported (Material and Methods 1.1.4). 

Lungs were perfused with black India ink to outline metastases and fixed in Fekete’s 

solution. Metastases were counted under a dissection microscope. Serum samples 

were collected periodically. 

 

1.2.5 3D-growth inhibition of IGF circuit 

For IGF1R inhibition, cells were seeded at 1000 or 2000 cell/cm2 in 6-well plates in 

culture medium supplemented with 0.33% agar (Sea-Plaque Agarose), over an 

underlayer of 0.5% agar medium. The IGF1R kinase inhibitor NVP-AEW541 (kindly 

provided by Novartis Pharma, Basel, Switzerland) was added to medium at doses 

ranging from 0.1 to 3 μM. Controls contained vehicle alone (DMSO).  

For IGF1R silencing two siRNA, siRNA-R1 and siRNA-R4 (Qiagen), directed 

against two different regions of IGF1R transcript, were used. Control siRNA was run 

in parallel. Cells were cultured for 48 h in the presence of siRNA at 40 nM 

concentration using Oligofectamine (Thermo Fischer Scientific) as transfection agent 

(0.8%). Then, cells were harvested and reseeded in medium containing 0.33% agar 

without siRNA over a 0.5% agar underlayer medium. 

Colony growth was determined by counting at low magnification (25×), 14-22 days 

after seeding. 
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1.3 Modulation of the immune checkpoint OX-40 

 

1.3.1 Mice 

BALBneuT female mice (H-2d haplotype), transgenic for a mutant rat HER2/neu 

oncogene driven by the mouse mammary tumor virus promoter, were bred and 

genetically screened as reported (Nanni et al. 2001). Female mice develop multiple 

mammary carcinomas. 

 

1.3.2 Cell lines 

TT12.E2 cell line derived from a mammary carcinoma expressing rat HER2/neu 

arisen in a HER2/neu transgenic mouse of a FVB background. Cells were routinely 

grown in DMEM with 20% FBS and maintained at 37°C in a humidified 5% CO2 

atmosphere. 

 

1.3.3 Triplex vaccine combined to aOX40 treatment 

Triplex vaccine consisted of murine mammary carcinoma cells (haplotype H-2q) 

expressing high levels of HER2/neu and releasing transduced IL12 (De Giovanni et al. 

2004). Each vaccine dose consisted of 2 x 106 proliferation-blocked (by mitomycin C) 

cells, administered i.p. to BALBneuT female mice. 

Control mice, run in parallel to Triplex-treated mice, received PBS alone. Mice were 

vaccinated at 10, 11, 14, 15, 18, 19 weeks of age (two doses per week, 12 vaccinations 

in total). The rat IgG1 monoclonal antibody OX86 (European Collection of Cell 

Cultures, Salisbury, UK), which binds OX40 with agonist activity (here referred to as 

aOX40) was administered i.p., according to the following schedules: aOX40+vax, 

treatment with aOX40 the day before the first vaccination (at 10 weeks of age) and in 

weeks 12, 16, 20; aOX40postvax, treatment with aOX40 every 4 weeks starting at 22 

weeks of age. 
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Mice were monitored weekly by palpation. Tumor dimensions were measured and 

tumor volume calculated as reported above. Mice were subjected to an accurate 

necropsy. Lungs were perfused with black India ink to outline metastases and fixed in 

Fekete’s solution. Metastases were counted under a dissection microscope. Sera were 

collected after each vaccination cycle. 

 

1.4 Modulation of the immune checkpoint PD-L1 

 

1.4.1 Mice 

C57BL/6 (C57BL/6NCrl) mice were purchased from Charles River Laboratories. 

 

1.4.2 Cell lines 

The B16-a murine melanoma cell line, in this thesis referred to as B16, was kindly 

provided by Prof. A. Mantovani (IRCCS, Humanitas Clinical and Research Center, 

Rozzano, Milan, Italy) (Nanni et al. 1983a). This cell line was derived from a 

spontaneous melanoma developed in a C57BL/6 mouse. The B16-F10 cell line was 

kindly provided by Prof. Adam Sander (University of Copenhagen, Denmark). This 

cell line was obtained as a subpopulation of the B16 parental line, by subsequent in 

vivo selection processes (Fidler 1973). Adherent cell cultures were grown in DMEM 

with 10% FBS and maintained at 37°C in a humidified 5% CO2. 

 

1.4.3 Anti-PD-L1 treatments  

PDL1-VLP vaccine was produced by Prof. A. Sander and co-workers. The vaccine was 

based on VLPs displaying mouse PD-L1 extracellular domain. C57BL/6 8-weeks male 

mice received i.m. administration of PDL1-VLP vaccine. Mice were treated with PDL1-

VLP+ Alhydrogel (2%) (Alum) or only with the adjuvant diluted in PBS. Treatment 

was performed every three weeks. After 7 weeks from the first administration, mice 
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were subcutaneously challenged with 105 B16 cells or 0.5x106 B16-F10 cell lines. Sera 

were collected two weeks after each vaccination. 

C57BL/6 male mice of 8-9 weeks of age, challenged with B16-F10 cells, were treated 

with anti-PDL1 monoclonal antibodies 10F.9G2 (B7-H1, clone 10F.9G2, BioXCell, 

Lebanon, NH, USA), that binds mouse PD-L1, or atezolizumab (Tecentriq, Genentech) 

that binds human and mouse PD-L1. Mice treated with the isotype control antibody, 

rat anti-keyhole limpet hemocyanin IgG2b (clone LTF-2, BioXCell) and untreated mice 

run in parallel to 10F.9G2 treated mice. Antibodies were i.p. administered.  

Schedules of treatment (day 0 is the day of B16-F10 cell injection): 

a. 0.5x106 cells s.c.; 9mg/kg 10F.9G2 or isotype control Abs. Days of treatment: -9, -6, -

2, +1, +4, +8, +12, +15.  

b. 105 cells s.c.; 12mg/kg 10F.9G2 or isotype control Abs. Days of treatment: -12, -9, -6, 

-2, +1, +4, +8, +12, +15. 

c. 0.5x106 cells s.c.; 9mg/kg 10F.9G2 or isotype control Abs. Days of treatment: -9, -7, -

4, -1.  

d. 0.5x106 cells s.c.; 10mg/kg atezolizumab Ab.  Days of treatment: +1, +4, +7, +11, +14, 

+18 

Mice were monitored weekly by palpation and tumor dimensions were measured 

with calipers. Masses with a mean diameter exceeding 3 mm were considered tumors. 

Tumor volume was calculated as (π/12)(√ab)3 where a = maximal tumour diameter 

and b = maximal tumour diameter perpendicular to a. Mice were euthanized when 

tumor burden was equivalent to 10% of body mass. Mice were subjected to an accurate 

necropsy. Lungs were fixed in Fekete’s solution and metastases were counted under a 

dissection microscope.  

 

1.4.4 IFN-γ sensitivity 

B16 and B16-F10 cell lines were seeded at 0.25x106cells/25cm2. After 24 hours from 

seeding, murine IFN-γ (kindly gift of Dr. G.R. Adolf, Ernst-Boehringer Institute, 
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Vienna, Austria) was added to medium to the final concentrations of 10, 100 and 1000 

U/ml. After 72 hours from the treatment, cells were harvested and counted. Then, the 

expression level of PD-L1, PD-1 and H-2 molecules was evaluated by flow cytometry. 

 

1.4.5 Real-Time PCR  

RNA was extracted, quantified and reverse transcribed as previously reported 

(Palladini et al. 2017). cDNA was amplified using Sso Advanced SyBR Green Supermix 

(Bio-Rad Laboratories, CA, USA) reagents. Reactions were performed in a Thermal 

Cycler CFX96 (Bio-Rad). Analyses were performed using Bio-Rad CFX Manager 3.1 

Software, and relative quantification was calculated as ΔCt= Ctgene-Cthousekeeping. 

We used the following Bio-Rad assays: Cd4 (qMmuCID0022320); Arg1 

(qMmuCID0022400) and Cd38 (qMmuCID0006259); Mouse Tbp (qMmuCID0040542) 

was used as housekeeping.  

 

1.5 Quantification and characterization of anti-vaccine antibodies 

Anti-vaccines antibodies and isotype subclasses were measured by enzyme-linked 

immunosorbent assay (ELISA), flow cytometry or Western Blotting.  

Flow cytometry was performed using the Partec CyFlow® space cytofluorimeter 

(Sysmex Europe GmbH, Norderstedt, Germany) and analysis was performed with 

FCS EXPRESS 4 (De Novo Software, Glendale, CA, USA). 

 

1.5.1 Anti-HER2 antibodies induced by HER2-VLP or pHuRT 

Anti-HER2 antibodies were detected by specific ELISA assay (De Giovanni et al. 

2014). Sera were diluted 1:400-1:102400. A standard curve with anti-HER2 murine 

mAb clone 4D5 (Genentech) was run in parallel (0.04 to 30 ng/ml). 

Anti-HER2 avidity and affinity assays were performed by Prof. A. Sander as 

previously described (Thrane et al. 2016). To evaluate the affinity of anti-HER2 

antibodies the kinetic analysis of the dissociation rates for the binding between 
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purified total IgG from HER2-VLP immunized mice or trastuzumab mAb to 

recombinant HER2 ECD was performed on a quartz crystal microbalance biosensor 

(Attana A200, Attana AB). Protein G columns (Pierce, USA) were used for purification 

of total IgG from anti-HER2 mouse serum samples. Further details about avidity and 

affinity assays were reported in the manuscript of Palladini and colleagues (Palladini 

et al. 2018b). 

Anti-HER2 total antibodies and subclasses were also measured by flow cytometry 

Sera were diluted 1:65 to detect total anti-HER2 IgG. F(ab’)2 fragments of goat anti-

mouse IgG (H+L) labelled with Alexa Fluor 488 (20 µg/ml, Life Technologies) were 

used as secondary Ab (here after referred to as anti-mouse IgG AF488 antibody). To 

detect specific anti-HER2 antibody isotypes in 1:20 diluted sera, FITC-conjugated rat 

anti-mouse IgG1, IgG2a, IgG2b, IgG3 (BD Pharmingen, BD, Milan, Italy) were used. 

The intensity of fluorescence of each serum sample was normalized to the expression 

of HER2 by the SK-OV-3 target cells determined using mouse anti-human HER2 

primary antibody, clone MGR-2 (Enzo Life Science, Farmingdale, NY, USA). 

 

1.5.2 Anti-IGF1R antibody detection  

Production of anti-IGF1R antibodies was detected by immunoprecipitation, followed 

by Western Blot. Cells expressing murine IGF1R (cell line 9B10) or human IGF1R (SJ-

RH30) were lysed and protein concentration was determined as previously described 

(Croci et al. 2007). For IGF1R immunoprecipitation, Dynabeads Protein G was used 

(Thermo Fisher Scientific), according to the manufacturer’s instructions. Rabbit 

polyclonal IGF1Rβ antibody (C-20) and IGF1Rα antibody (N-20), (Santa Cruz 

Biotechnology, Santa Cruz, CA, USA) added to cellular proteins were used as positive 

control. Samples, separated on an 8% polyacrylamide gel and then transferred to 

polyvinylidene difluoride membranes (Bio-Rad Laboratories), were incubated 

overnight at 4 °C with anti-IGF1R rabbit polyclonal antibody (C-20) 0.5 μg/ml plus 

rabbit polyclonal antibody IGF1Rα (N-20) 0.5 μg/ml.  
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ELISA assay for anti-mIGF1R antibodies was performed in MicroWell Maxisorp 

plates (Nunc, Thermo Fisher Scientific) after overnight coating with recombinant 

murine IGF1R (R&D Systems, Minneapolis, MN, USA) at 40 ng/well in carbonate 

buffer (Sigma-Aldrich). Sera were diluted 1:200 to 1:400 in assay buffer (4% bovine 

serum albumin in phosphate-buffered saline) and ELISA was performed following the 

protocol reported previously (De Giovanni et al. 2014). The semiquantitative 

evaluation was done, expressing results as O.D. specific binding, calculated as “O.D. 

of mIGF1R-coated wells—O.D. of buffer-coated wells”. Isotype subclass analysis was 

carried out in ELISA assays with secondary biotin-labelled anti-mouse IgG1 (clone LO-

MG1-2), IgG2a (clone LO-MG2a-2), IgG2b (clone LO-MG2b-2), and IgG3 (clone LO-

MG3-7), all purchased from AbD Serotec, Bio-Rad Laboratories. Samples were then 

incubated with alkaline phosphatase-conjugated Streptavidin (AbD Serotec), 

developed with p-nitrophenyl phosphate (Sigma-Aldrich) and specific binding 

calculated as above. 

 

1.5.3 Anti-IGF2 antibody detection 

Production of anti-IGF2 antibodies was analysed by Western Blotting. One μg of 

recombinant mouse or human IGF2 (R&D System, Minneapolis, USA) was run on a 

20% polyacrylamide gel. Membranes were incubated with serum of vaccinated or 

untreated mice, diluted 1:100 in blocking buffer. Monoclonal rat anti-IGF2 antibody 

(clone #122404, R&D Systems), that shows cross-reactivity with recombinant 

human/mouse IGF2, was used as positive control at the concentration of 1.7 μg/ml. 

A specific ELISA to evaluate the levels of anti-IGF2 antibodies was also performed 

coating the recombinant mouse or human IGF2 at 2 μg/ml in 100 μl by overnight 

incubation. After blocking in Plasma Sample diluent 2x (ImmunoChemistry 

Technologies) + PBS 0.05% Tween20 and washing incubations, sera of vaccinated or 

untreated mice were added at 1:100 dilution in blocking buffer. Serum samples 

obtained after the fourth vaccination were used. Reaction was revealed and measured 
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as previously described (Materials and Methods 1.5.1). Mouse monoclonal anti-human 

IGF2 antibody, clone 75.015.11 (R&D Systems), which shows 100% cross-reactivity 

with murine IGF2, was used to set up a standard curve run in parallel (0.05 to 

200 ng/ml). 

 

1.5.4. Anti-HER2/neu antibody detection  

Anti-HER2/neu antibody level was studied by indirect immunofluorescence on rat 

HER2/neu-expressing N10F2.1 or TT12.E2 cells. Cells were incubated with sera at a 

1:65. Cytofluorimetric analysis was performed as reported above. Rat HER2/neu 

expression of N10F2.1 or TT12.E2 target cells was evaluated in parallel tests with anti-

c-ErbB2/Neu mouse monoclonal antibody (clone 7.16.4; 5 µg/ml, Oncogene Research 

Products, Boston, MA, USA). The intensity of fluorescence of each serum sample was 

normalized to the expression of rat HER2/neu by the target cells. IgG subclasses were 

also detected by flow cytometry as reported above (Materials and Methods, 1.5.1).  

 

1.5.5 Anti-PDL1 antibodies 

Antibodies were detected by ELISA. Sera of PDL1-VLP+Alum-treated mice were 

diluted 1:900 - 1:656100. Sera of control group mice (PBS+Alum) were diluted 1:100-

1:300. In brief, 100 ng/well of recombinant PD-L1 was coated on Nunc MaxiSorp plates 

overnight at 4oC. Following, after blocking with 0.5% milk (non-fat dry milk, Bio-Rad 

Laboratories) in PBS for 1 hour and four washes with PBS, sera (50 µl/well) were 

incubated for 1 hour and then, after 4 washes, goat anti-mouse IgG-HRP (Calbiochem) 

was added. ELISA was developed as previously described. Anti-PDL1 antibody levels 

were calculated as the endpoint titer considering as cut off the value obtained by sum 

of the mean and the standard deviation of the values obtained in blank wells, 

multiplied by 3. 

Anti-PDL1 antibodies isotypes were quantified by ELISA as previously described 

(Materials and Methods 1.5.2). Sera were diluted 1:300 in milk 0.5%.   
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1.6 Cytokine production 

Levels of cytokines in sera were measured using the Bio-Plex Mouse Cytokine bead 

assay (Bio-Rad Laboratories), following the manufacturer's instructions. 

ELISA assays for serum murine cytokines IFN-γ and IL10 were purchased from 

Affymetrix eBiosciences (Thermo Fisher Scientific) and R&D Systems, respectively.  

 

1.7 In vitro restimulation assay and cytokine release 

Mixed lymphocyte-tumor cell cultures (MLTC) were performed with spleen 

mononuclear cells cocultured at a 50:1 ratio with proliferation-blocked Neu/H-2q cells 

for 6 days in RPMI 1640 supplemented with 10% FBS and with 20 units/ml of 

recombinant IL-2. Supernatants from MLTC were assayed for IFN-γ, GM-CSF and 

IL10 by ELISA (R&D Systems Inc.). 

 

1.8 Detection of lymphocyte subpopulations 

Cell suspensions were obtained from individual lymphoid organs (spleen, bone 

marrow, lymph nodes) as previously described (Burocchi et al. 2011). PE-Cy7 anti-CD4 

(RM4–5), APC anti-Foxp3 (FJK-16s), PE anti-CD103 (2E7) and FITC anti-GITR were 

purchased from eBioscience. Surface staining was performed on cells obtained from 

each organ by incubating antibodies at 5 μg/ml on ice for 30 min in PBS containing 2% 

FBS. For these analyses, flow cytometry data were acquired on a FACSCalibur (Becton 

Dickinson) and analysed with FlowJo software (Becton Dickinson). Data from different 

organs of each mouse, if statistically not different, were pooled in the final elaboration. 

 

2. DISCOVERY OF NEW TARGETS 

Materials and Methods reported in this Chapter were included in the manuscripts of 

Giusti and colleagues (submitted) and Landuzzi and colleagues (Landuzzi et al. 2021). 
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2.1 Mice 

HER2 mice, transgenic for the full-length human HER2 isoform (Finkle et al. 2004; De 

Giovanni et al. 2014) were obtained from Genentech and bred in our animal facilities. 

FVB mice (FVB/NCrl) mice were purchased from Charles River Laboratories. 

NOD-SCID-Il2rg−/− (NSG) female mice (breeders received from Jackson 

Laboratories) or BALB/cRag2−/−Il2rg−/− (BRG) female mice (breeders received from 

Drs T. Nomura and M. Ito, Central Institute for Experimental Animals, CIEA, 

Kawasaki, Japan) were kept under sterile conditions and were used as 

immunodeficient models, lacking B, T and NK immune components.  

 

2.2 Cells 

MamBo89HER2stable and MamBo43HER2labile cell lines were established from mammary 

tumors of HER2 mice. MamBo89HER2stableAG3 clone was obtained by cloning in 3D 

(soft-agar) conditions. MamBo43HER2labile clones were derived by low density seeding 

in adherence (AD clones) or 3D (AG clones) conditions. MamBo cell lines and clones 

were stabilized and cultured in DMEM supplemented with 20% FBS, 30 µg/ml bovine 

pituitary extract and 0.5% v/v MITO Serum Extender. MamBo cell lines were 

maintained at 37°C in a humidified 5% CO2 atmosphere. 

Primary cell cultures from PDX-BRB4 (PDX established in the Laboratory of 

Immunology and Biology of Metastases, University of Bologna; see Materials and 

Methods 2.3.2) were set up from mechanically dissociated tumors in primary cell 

culture flasks in HuMEC complete medium (Thermo Fisher Scientific) + 20% FBS. Cells 

were maintained at 37°C in a 7% CO2 atmosphere, with frequent medium renewal.  

TS/A cell line and human breast cancer cell lines used as positive and negative 

controls of HER2 copy number testing were previously described (Materials and 

Methods 1.1.2). 
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2.3 In vivo studies 

 

2.3.1 MamBo cell lines in vivo growth and inhibition by sunitinib 

To evaluate the tumorigenicity of the MamBo cell lines, HER2 female mice received 

the injection of 106 cells into the mammary fat pad (m.f.p.). Experimental metastatic 

potential was assessed via the injection of 105 cells into a caudal vein. In order to 

evaluate the dose-dependent tumor growth of MamBo43HER2labile cells in 

immunocompetent mice, different doses of cells (106, 107 and 2x107) were s.c. injected 

into HER2 female mice. MamBo43HER2labile cells (105 cells) were also s.c. injected into 

Rag2-/-;Il2Rg-/- immunodeficient female mice to inspect the contribution of adaptive 

immunity to HER2 loss. 

HER2 female mice received s.c. injection of 106 MamBo43HER2labile cells. Mice were 

treated daily with sunitinib 60 mg/kg per os by gavage, starting from 3 days after cell 

injection. FVB female mice that harboured tumors that were induced by the s.c. 

injection of MamBo38HER2loss cells (2.5x104 cells) were daily treated with sunitinib 

starting from 1 day after cell injection. Animals in the vehicle group received 

Methylcellulose 0.5%+Tween80 0.4%. 

Mice were monitored weekly by palpation and tumor dimensions were measured 

with calipers. Masses with a mean diameter exceeding 3 mm were considered tumors. 

Tumor volume was calculated as (π/12)(√ab)3 where a = maximal tumour diameter 

and b = maximal tumour diameter perpendicular to a. Mice were euthanized when 

tumor burden was equivalent to 10% of body mass. For studies of metastatization. 

mice were euthanized at any initial sign of metastatic growth or after 18 weeks Mice 

were subjected to an accurate necropsy; lungs were perfused with black India ink to 

outline metastases and fixed in Fekete’s solution. Metastases were counted under a 

dissection microscope.  
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2.3.2 PDX establishment, propagation and metastatization 

BRB4 tumor fragment, from a breast cancer patient, was implanted in the fourth left 

mammary fat pad. When tumor reached a volume of 1.5-1.9 cm3, animal was 

euthanized and, after an accurate necropsy, tumor was resected and divided into 

representative samples for propagation by serial in vivo passage or other analysis.  

PDX-BRB4 tumor fragments were dissociated by incubation in 0.05% Trypsin -

0.002% EDTA at 37°C for 5 minutes and passed through a 70 µm cell strainer (Becton 

Dickinson) to obtain single-cell suspension. Cells were i.v. injected in a tail vein of BRG 

mice at doses ranging from 0.5 to 2×106 cells in 0.4 ml PBS.   

Mice were monitored weekly by palpation and tumor dimensions were measured 

with calipers. Masses with a mean diameter exceeding 3 mm were considered tumors. 

Tumor volume was calculated as (π/6)(√ab)3 where a = maximal tumour diameter 

and b = maximal tumour diameter perpendicular to a. Mice were euthanized when 

tumor burden was equivalent to 10% of body mass. For studies of metastatization. 

mice were euthanized at any initial sign of metastatic growth or after 40-70 weeks. 

Lungs, brain, ovaries and femoral bone marrow were collected for molecular detection 

of metastatic dissemination or, in case of overt lung colonization, metastases were 

counted at a dissection microscope. 

 

2.4 In vitro assay 

 

2.4.1 3D-growth inhibition by sunitinib  

Sunitinib sensitivity in MamBo38HER2loss cells (0.5x103 cells/cm2) was evaluated under 

3D non-adherent conditions according to the protocol previously described (1.1.5). 

Colonies were counted after 14 days. 
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2.4.2 Cell migration 

The migratory ability of MamBo38HER2loss cells in the presence of sunitinib was 

evaluated in a wound-healing test. Cells were seeded in 24-well plates in complete 

medium and allowed to growth until confluence. The cell monolayer was scratched 

with a 200 μl pipette tip, the medium was changed with or without sunitinib, 5 µM, 

and wound width was measured 0 and 24 hours after scratching. Migratory ability 

was calculated as width (24h)/width(t0)*100. 

The migratory ability of MamBo43HER2labile cells previously treated with siRNA 

(Dharmacon) to silence PHLDA1 (L048462-01) and GAPDH (D-001830-20-05) or with 

control siRNA (D-001810-10-05), was evaluated by a migration assay performed in 

Transwell chambers (Costar) with 8 µm pore size. Serum-free DMEM was put in in the 

lower compartment of the Transwell chamber; 0.4x106 cells were seeded in serum-free 

DMEM in the upper compartment of the Transwell chambers and incubated for 18 

hours. Cells which migrated through the filter to reach the lower chamber were 

counted at the inverted microscope. 

 

2.4.3 Mammosphere formation assay 

The ability of MamBo cell lines to form mammospheres in vitro was assessed using the 

MammoCult Human Medium Kit (Stem Cell Technologies), according to the 

manufacturer’s protocol. Briefly, 4000 cells were seeded in 4 ml complete MammoCult 

medium without serum in 6 well UltraLow Adherence plates. Mammospheres that 

were bigger than 60 µm were counted on day 7. .The same protocol was employed to 

evaluate the ability of MamBo38HER2loss cells to form mammospheres in presence of 

sunitinib 5 µM. 

To study mammosphere production, PDX-BRB4 tumor cells were seeded as 

previously described.  After 6-8 days of culture, mammospheres were collected and 

then dissociated by incubation in Trypsin-EDTA to obtain single cell suspensions for 

direct immunofluorescence.  
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2.4.4 Induction of HER2 loss in vitro  

MamBo43HER2labile cells were cultured for 2 months in the presence of 30 μg/ml 

trastuzumab. Cells were counted weekly and seeded at a concentration of either 

1.6x105 cells/cm2 (high density) or 4x104 cells/cm2 (low density). In parallel, cells were 

harvested for molecular analysis, cytofluorimetric analysis of HER2 and staminal-

marker expression. A third culture, without trastuzumab, was performed by seeding 

MamBo43HER2labile cells at a lower density (104 cells/cm2).  

MamBo89HER2stable and MamBo38HER2loss cell lines were treated with trastuzumab 

for 30 and 60 days. The treatment did not modify the initial shape, HER2 expression 

level and stemness profile of correspondent untreated cells. These data were not 

reported in this thesis, but samples were analysed by RNA-Sequencing 

 

2.4.5 IL-6 quantification  

To quantify IL-6 production by MamBo cell lines, supernatants were collected from 

cells that were seeded 8x104 cells/cm2 in medium that contained either sunitinib 5 µM 

(LC Laboratories, MA, USA) or DMSO 0.05% (here referred as vehicle) or no drug. 

mIL6 production was analysed using Mouse IL-6 Quantikine ELISA Kit (R&D 

Systems), according to the manufacturer’s protocol. The concentration of each sample 

was calculated by interpolating values on a standard curve. A stable IL6 producer 

mouse mammary cancer cell line (TS/A-IL6) was used as positive control of IL6 

production (Fattori et al. 1995). 

 

2.5 Tumor and cell phenotyping 

 

2.5.1 Flow Cytometry 

Harvested cells and tumor samples, which had previously been dissociated to yield 

single-cell suspensions, were analysed by immunofluorescence and cytofluorimetric 
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analysis. The antibodies used for indirect immunofluorescence included: rat anti-

mouse CD16-CD32 antibody Fc block (clone 2.4G2; diluted 1:100 dilution; BD, 

Pharmingen, CA, USA); mouse anti-human HER2 (MGR2, diluted 1:100, Enzo Life 

Science and also kindly provided by Dr. Elda Tagliabue (IRCCS, Istituto Nazionale dei 

Tumori, Milan, Italy); mouse anti-p95HER2-611CTF (32H11, diluted 1:350) (Parra-

Palau et al. 2014) kindly provided by Dr. Joaquin Arribas (Vall d’Hebron Institute of 

Oncology, Barcelona, Spain); rat anti-mouse CD140b (PDGFR-B) (APB5, diluted 1:100; 

Bio-Legend, CA, USA). Anti-mouse IgG AF488 (diluted 1:100; Thermo Fisher 

Scientific) and anti-rat IgG FITC (diluted 1:40; KPL) were used as secondary 

antibodies. Direct immunofluorescence made use of: anti-human HER2 PE (clone Neu 

24.7, diluted 1:20, Becton Dickinson); anti-mouse CD24 AF488 (clone M1/69; diluted 

1:10; Biolegend); anti-mouse-CD44 PE (clone IM7; diluted 1:10, Biolegend); anti-mouse 

Sca1 PE (clone E13-161.7, 1:100 dilution; Biolegend); and anti-mouse CD29 PE (clone 

HMβ1-1; diluted 1:10; Biolegend).  

PDX analysis was performed using anti-hu-CD24AF488 (clone ML5, BioLegend) 

and anti-hu-CD44PE (clone IM7, BioLegend).  

Data were acquired using CyFlow Space and analyzed using FCSExpress. 

Rabbit anti-mouse Sorbs3 polyclonal antibody (clone AP55384SU-N acris) was used 

to perform immunofluorescence on adherent MamBo cell lines. 

The cell senescence process was detected using the Senescence Cells Histochemical 

Staining Kit (Sigma-Aldrich). Cells were fixed and processed according to the protocol 

reported by the kit. 

 

2.5.2 Molecular analysis 

 

2.5.2.1 RNA-Sequencing  

RNA-sequencing was performed by Prof. Raffaele Calogero (University of Turin. 

Turin, Italy). Total RNA was extracted from cell pellets using Trizol Reagent (Thermo 
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Fisher Scientific), according to the manufacturer’s instructions. RNA-seq libraries were 

generated using TruSeq RNA Sample Prep Kit v2 (Illumina), according to the 

manufacturer’s recommendations. High-throughput sequencing was carried out on a 

NextSeq 500 (Illumina) using 75 nucleotides, in single-end mode. For PDX-BRB4 

samples Xenome software (Conway et al. 2012) was used to remove mouse reads. 

Reads were analyzed on a SeqBox (Beccuti et al. 2018). The generation of 

Demultiplexing (bcl2fastq Illumina tool version 2.17.1.14-2) counts using STAR 

(version 2.5) /RSEM (version 1.3.0), and differential gene expression analysis using 

DESeq2 (version 1.14.1, adjusted P-value < 0.1 and |log2 fold change| ≥1) were all 

performed within the SeqBox framework.  

For MamBo cell lines distinct analyses were performed on differentially expressed 

genes. The first analysis considered differentially expressed genes between HER2-

stable and HER2-negative cell lines. To identify predictive genes of HER2 loss, up-

regulated genes in the HER2-labile vs the HER2-stable group and up-regulated genes 

in the HER2-negative group vs the HER2-stable group were crossed. Common genes 

to both lists might be considered up-regulated through HER2 lability condition. The 

same analysis was done for down regulated genes. Finally, the comparison between 

HER2-positive, including HER2-stable and -labile cell lines, and HER2-negative cell 

lines was also performed. Functional enrichment analysis was performed using the 

EnrichR web tool (https://maayanlab.cloud/Enrichr/). 

For PDX-BRB4, hierarchical clustering was done using Morpheus at Broad 

(https://software.broadinstitute.org/morpheus/). Ingenuity Pathway Analysis (IPA) 

(Qiagen) was used for functional characterization of differentially expressed genes. 

 

2.5.2.2 Real-Time PCR  

RNA was extracted, quantified and reverse transcribed as previously reported 

(Palladini et al. 2017). cDNA was amplified using Sso Advanced SyBR Green Supermix 

reagents. Reactions were performed in a Thermal Cycler CFX96. Analyses were 

https://maayanlab.cloud/Enrichr/
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performed using Bio-Rad CFX Manager 3.1 Software, and relative quantification was 

calculated as ΔCt= Ctgene-Cthousekeeping. We used the following Bio-Rad assays: 

Cdh1 (qMmuCID0006332); Col3a1 (qMmuCID0006332); Col5a2 (qMmuCID0011413); 

Dsp (qMmuCID0019458); Fgfbp1 (qMmuCID0007813); Igfbp4 (qMmuCID0006155); 

Il1rn (qMmuCID0009153); Mmp2 (qMmuCID00021124); Ocln (qMmuCID0005446); 

Pdgfrb (qMmuCID0025167); Sparc (qMmuCID0023536); Vcan (qMmuCID0005235); 

Snai1 (qMmuCID0024342); Zeb1 (qMmuCID0009095); Zeb2 (qMmuCED0046769); 

Twist1 (qMmuCED0004065); Ltbp1 (qMmuCED0045004); Sorbs3 (qMmuCID0022725). 

Custom HER2 primers (Mitra et al. 2009) and human Bcl-2 primers (Dir, 

CTTTGAGTTCGGTGGGGTCA, Rev: GGGCCGTACAGTTCCACAAA; kindly 

provided by Prof. Lorenzo Montanaro, Bologna, Italy) were also used. Mouse Tbp 

(Bieche et al. 2014)] or Bio-Rad assay qMmuCID0040542) and human TBP (Bieche et 

al. 2014) were used as housekeeping.  

 

2.5.2.3 HER2 copy number  

DNA was extracted using a PureLink Genomic DNA Mini kit (Thermo Fisher 

Scientific), according to the manufacturer’s protocol. HER2 copy number was detected 

by Real-Time PCR using a HER2 primer qHsaCEP0052301 assay (Bio-Rad 

Laboratories) and was normalized over human/mouse Ptger2 (Alcoser et al. 2011). 

Amplification was performed using Sso Advanced Universal Probes Supermix (Bio-

Rad Laboratories). The copy number of the human and murine cell lines was inferred 

by considering that MCF7 and MDA-MB231 harbour 2 copies of HER2 in the genome. 

 

2.5.2.4 Molecular metastasis detection  

As previously reported (Nanni et al. 2012), genomic DNA was extracted from cellular 

pellets of lungs, brain, femoral bone marrow and ovaries. A sequence of the α-satellite 

region of the human chromosome 17 was amplified by Real Time-PCR. DNA extracted 

from mouse tissues showed no amplification up to 40 cycles. To quantify human cells, 
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a standard curve was constructed by adding scalar amounts of MDA-MB-453 human 

cells to a constant number of mouse cells. Ct values obtained from the experimental 

samples were interpolated in the standard curve run in each PCR (Bio-Rad CFX 

Manager). The final number of disseminated tumor cells per organ was obtained 

considering the fraction analyzed for each organ.  

 

2.5.2.5 In situ HER2 detection  

In situ detection of HER2 isoform RNA expression was performed using 

the Basescope assay on formalin-fixed, paraffin-embedded (FFPE) tumor tissues in 

accordance with guidelines provided by the supplier (Advanced Cell Diagnostics-

ACD, Newark, CA, USA).  Briefly, 5 μm tissue sections were deparaffinized with 

xylene and 100% ethanol. Then slides were pretreated with Hydrogen Peroxide, Target 

Retrieval solution and Protease III (Pretreatment Reagents Kit, ACD). Slides were then 

hybridized in HybEZ Hybridization System with probes detecting HER2 TOT (able to 

detect both HER2 full-length and HER2-D16) (BaseScope Hs-ERBB2-E1E18), HER2 

full-length (BaseScope Hs-ERBB2-E15E16) and HER2-D16 (BaseScope Hs-ERBB2-

E15E17). A positive control probe of RNA quality (Hs-PPIB-1zz) and a negative 

control probe for aspecific signal (DapB-1zz) were also used. After hybridizations, 

slides were subjected to signal amplification using Basescope Detection Reagent Kit-

RED. After counterstaining with Gill's hematoxylin, tissue sections were examined 

under a standard bright field microscope at 40× magnification. Expression score was 

based on the estimated number of dots per cell, according to scoring guidelines 

provided by ACD (scores 0-4, with 4 corresponding to >6 dots/cell).  

2.5.3 Western Blotting 

Protein extraction and Western blotting were performed as reported previously (De 

Giovanni et al. 2019a). The following primary antibodies were used: anti-HER2 (clone 

3B5, diluted 1:1000, Calbiochem, Merck), anti-pNeu (Tyr 1248) (diluted 1:1000, Santa 

Cruz Biotechnology), anti-Stat3 (clone 124H6, diluted 1:1000, Cell Signaling, Danvers, 
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MA), anti-pStat3 (clone D3A7, diluted 1:2000, Cell Signaling), anti-PHLDA1 (clone 

RN-6E2, diluted 1:250, Santa Cruz). Membranes were either incubated with polyclonal 

HRP conjugated anti-rat IgG antibody (diluted 1:3000, Bio-Rad Laboratories), or anti-

mouse IgG antibody (diluted 1:1000, Santa Cruz Biotechnology). Protein presence was 

detected by chemiluminescent reaction before film exposure.  

 

2.5.4 Immunohistochemistry and immunofluorescence 

BCL2 quantification by immunohistochemistry was performed by Prof. M.P. Foschini 

and co-workers (Bellaria Hospital, Bologna, Italy). Human tumors or xenografts were 

fixed in 10% neutral buffered formalin solution (Sigma-Aldrich) and processed to 

obtain paraffin blocks. Immunostaining was performed on FFPE sections in an 

automated Benchmark Ultra Autostainer (Ventana Medical Systems, Inc., Tucson, 

Arizona, USA). The immunologic reaction was visualized using the Ventana 

UltraView DAB Detection kit, according to the manufacturer’s instructions. BCL2 

(clone SP66, Ventana) was used as primary antibody. BCL2 expression was semi-

quantitatively evaluated by examining all the neoplastic population at 100x and 

classified as follows: Negative < 10%; Intermediate >10%<30%; Positive >30% of 

immunostained neoplastic cells. Appropriate positive and negative controls were 

included in each run. 

Immunofluorescence analysis of vessels in tumors from MamBo89HER2stable, 

MamBo43HER2labile and MamBo38HER2loss cells was performed by Prof. Manuela Iezzi 

(University G. D’Annunzio, Pescara, Italy) as previously described (Palladini et al. 

2017). Primary antibodies used for the staining were: rat monoclonal anti-CD31 (BD 

Pharmingen), rat monoclonal anti-CD105 (BD Pharmingen) and rabbit polyclonal anti-

NG2 (EMD Millipore). Image acquisition was performed using Zeiss LSM 510 META 

confocal microscope.   
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3. ETHICAL STATEMENTS 

Experiments were approved by the institutional review board of the University of 

Bologna, authorized by the Italian Ministry of Health and done according to Italian 

and European laws and guidelines (71674-x/6, 12511-x/10, 4783-X/10, 782/2015-PR, 

714/21017-PR, 688/2015-PR and 32/2020-PR). 

Human studies were approved and authorized by the local Ethics Committee 

(Bologna CE-BI, number of study: 14100/CE 2014; prot. N.: 964/CE). All human 

samples and their metadata including relevant clinical data were de-identified before 

being shared between laboratories involved in this study.  

 

4. STATISTICAL ANALYSIS 

Differences in tumor-free survival curves were analysed by the Mantel–Haenszel test. 

Other data were compared by Student’s t test or nonparametric Wilcoxon test.  

Statistical analyses were performed through Prism 5 software (GraphPad software, La 

Jolla, CA, USA). Linear regression analysis was used to assess the correlation between 

tumor doubling time and in vivo passages, and the correlation between the number 

of in vivo passages and the expression of BCL2.  
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