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Introduction

The main purpose of this work is to develop numerical methods for the opti-

mal control of fluid-structure interaction simulations. In particular, we focus

on the Koiter shell model and on the adjoint formalism for control problems.

Moreover, fractional operators are introduced to be applied to the framework

described above.

In recent years numerical simulations of fluid-structure interaction (FSI)

problems have gained popularity and interest in the research community

thanks to the great variety of possible applications, ranging from wind tur-

bines and aircraft to hemodynamics. In FSI problems the fluid flow changes

the stress state of the solid structure that is left free to move while the solid

deformation affect the fluid flow motion. A large variety of books and articles

about different fluid-structure models have been published and the interested

reader can consult [1, 2, 3].

Whenever many solids have small dimension in comparison with the fluid

domain, various techniques have been developed to reduce the computational

cost of FSI problems. Very interesting models are based on the reduction of

dimensionality of the solid through the Koiter shell equations [4]. To couple

the fluid and the structure domains, the Koiter shell equations are embed-

ded into the fluid motion through boundary equations that may be treated

implicitly, so that the stability of the numerical fluid scheme is preserved [5].

This model can be applied in many cases where a fluid interacts with a thin

membrane that deforms mainly in the normal direction.

In the first Chapter the basics of the fluid-structure interaction theory
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is introduced. In particular, a monolithic approach is studied with different

models for hyperelastic structures. First we report numerical benchmarkings

of such a model that have been carried out in a previous work [6]. Then, the

mathematical and numerical theory for Koiter fluid-structure interaction is

reported. We also report a mathematical introduction to absorbing boundary

conditions, that are of great importance when pressure waves are involved,

e.g. mainly in hemodynamic applications. Both the Koiter’s shell model

and the absorbing boundary conditions are tested and compared with results

available in the literature.

In the second Chapter, we introduce an adjoint-based optimal control

theory of the Koiter’s fluid-structure model in the steady case by using a

Lagrange multiplier approach. Many works on the optimal control of Navier-

Stokes systems have been published (see, for example, [7, 8, 9]) but only a

few studies on the optimal control of FSI systems can be found in literature,

see [10, 11]. Using this multi-scale Koiter model, we study the FSI steady

optimal control problem with mixed boundary conditions and investigate

some theoretical aspects of the optimal solution.

The mathematical formulation of a simple control problem is first pre-

sented. Then, the boundary optimal control theory is applied to the fluid-

structure Koiter’s model for the study of solution existence, regularity and

differentiability properties of the fluid-structure problem. Since the mathe-

matical problem is not straightforward, some hypotheses are added to the

Koiter’s model to prove all cited properties. In the same chapter some nu-

merical results are shown, obtained through an iterative numerical algorithm

that minimizes the objective functional.

In the last Chapter, the fractional operators are introduced. The numer-

ical implementation of operators in fractional Sobolev spaces is a topic of

increasing interest and many works have been published recently on this sub-

ject [12, 13]. In particular, we apply the fractional calculus to the optimal

control problems introduced in the second Chapter. The objective function-

als of many optimal control algorithm problems depend on a regularization

term on the controlled variable. The control parameter often belongs to a

fractional Sobolev space (e.g. the restriction of a variable in the Sobolev

space H1 to the boundary belongs to H1/2), so the proper operator to be

used in such spaces is a fractional one.

The numerical implementation of the fractional operators (and, in partic-

ular, the fractional Laplacian) is not easy due to the nonlocal behavior of the
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operator. Therefore, in this Chapter some numerical techniques are presented

in order to simulate properly the fractional Laplacian. These are based on

direct implementation of the nonlocal operator [14, 15] or on spectral theories

applied to the fractional calculus [16, 17]. Then, some applications to simple

control problems are reported, together with some preliminary results.

All the numerical simulations presented in this work, with the exception

of the fractional simulations presented in the last Chapter, have been simu-

lated with the in-house multigrid finite element based code FEMuS. The code

is integrated into a numerical platform where various different codes are inte-

grated to develop multi-physic and multi-scale simulations. The source code

of FEMuS on GitHub can be found in [18], and the numeric platform can be

found in [19]. Some works in literature introduce the code and the numerical

platform, see, e.g. [20, 21]. The results of the last Chapter on the fractional

operators have been carried out with the FEMTTU code, developed at the

Department of Mathematics and Statistics of the Texas Tech University [22].





CHAPTER 1

Fluid-structure interaction

models

Fluid-structure interaction (FSI) is a set of numerical problems where one or

more solid structures deform due to interaction with a fluid that surrounds

the solid themselves. The fluid flow depends on the shape of the structure

and its motion, so a mutual dependence between the two regions is estab-

lished. Fluid-structure interaction problems are common in many fields, like

engineering, science, and medicine. Software projects of both open-source

and commercial type have been developed in order to perform numerical

simulations of FSI phenomena. Such simulations are becoming of great in-

terest in the scientific community since they play an important role in the

design of several components. For example, aircraft wings, airport windsock,

wind-turbine blades, automobile airbags are all components that are usually

modeled and designed by using the FSI models. Moreover, a lot of different

natural phenomena can be simulated with such a technique, like the falling of

a leaf, the dynamics of parachutes and the blood flow inside the blood vessels

of various types. There are many works in literature on this topic, concerning

all these applications. The interested reader can see [1, 3, 2, 23, 24, 25] and

reference therein.

Fluid-Structure Interaction problems are characterized by an intrinsic

mathematical challenge due to the inherent nonlinearity of the domain that
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moves as a function of the physical variables. For this reason the analytical

solution of such equations is extremely difficult to find, and only a few cases

have been studied analytically, where simplifying assumptions have been in-

voked to arrive at closed-form solutions of the underlying partial differential

equations. Therefore, the effort of many research groups is targeted to the

development of numerical techniques for such problems.

The fluid and the solid equations, together with their respective boundary

conditions, must be satisfied simultaneously. The two systems are coupled

at the fluid-structure interface, which requires a set of interface conditions,

i.e. are the kinematics compatibility laws and stress balances on the con-

sidered interface. As the structure moves through space, the shape of the

fluid subdomain changes to conform to the motion of the structure. This is

known as the Lagrangian description of the structural motion. One of the

challenges of the FSI simulations is related to the fact that the motion of the

fluid domain needs to be accounted in the differential equations and in the

boundary conditions. There are two major classes of methods for tracking

the structure deformation, which are known in the discrete setting as the

non-moving grid and moving grid approaches. Furthermore, the motion of

the fluid domain is not known a priori since it is a function of the unknown

structural displacement. This makes FSI a three-field problem, where the

third unknown is the motion of the fluid domain.

Many works on fluid-structure interaction simulations are based on a mesh

separation between the fluid and the solid domains. This represents a flexible

approach but the imposition of the conditions on the interface is not straight-

forward, in particular when the meshes of the two sub-problems don’t match

on the interface. On the other hand, many algorithms work on a monolithic

system, composed by the fluid and the solid equations, and the interface

conditions. Therefore we can define two major classes of FSI coupling tech-

niques: loosely-coupled and strongly-coupled, which are also referred to as

staggered and monolithic, respectively.

In loosely-coupled approaches, the equations of fluid mechanics, structural

mechanics and mesh moving are solved sequentially. For a given time step, a

common loosely-coupled algorithm requires the solution of the fluid mechanic

equations with velocity boundary conditions, coming from the structure dis-

placement at the interface, followed by the solution of the structural mechanic

equations with the updated fluid mechanics interface traction, and followed

by the solution of the mesh moving equations with the updated structural dis-
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placement at the interface. This allows the use of existing fluid and structure

solvers, instead of creating a new one. However, convergence difficulties are

encountered sometimes, most commonly when the structure is thin and the

fluid is heavy, and when an incompressible fluid is fully enclosed by the struc-

ture. In strongly-coupled approaches, as introduced above, the equations of

fluid, structure and mesh moving are solved simultaneously. The main ad-

vantage is that strongly-coupled solvers show fewer convergence issues. How-

ever, strongly-coupled approaches necessitate writing a fully-integrated FSI

solver, virtually precluding the use of existing fluid and structure solvers.

Using this approach, iterations are performed within a time step to simul-

taneously converge the solutions of all the equations involved. In addition,

several choices are possible for the discretization procedure (decouple then

discretize or vice-versa), the order between the discretization and the lin-

earization procedures (linearize then discretize or vice versa), the lineariza-

tion scheme (fixed-point, relaxed fixed-point, quasi-Newton, Newton), and

the choice of the linear solvers and pre-conditioners. Another computational

challenge in some FSI applications involves very large structural displace-

ments. In this case, a robust mesh moving technique is needed and the

option to periodically regenerate the fluid mesh (i.e., re-mesh) to preserve

the mesh quality and consequently the accuracy of the FSI computations.

The re-meshing procedure requires the interpolation of the solution from the

old mesh to the new one. However, the re-meshing technique can be very

expensive from the computational point of view. A different approach to the

large displacement cases is the immersed boundary (IB) approach, where no

re-meshing is needed. In recent years the interest in the IB techniques applied

to the FSI numerical simulations is growing and some works are available in

literature.

In the first part of this chapter a monolithic approach with quasi-direct

coupling will be presented and used [26, 27] for the solution of the FSI system.

The fluid, structure, and mesh systems are treated as two separate blocks,

and the nonlinear iterations are carried out one block at a time. In the

second part of this chapter, a shell model based on the Koiter shell theory

will be introduced, in order to reduce the computational cost of the numerical

simulations involving thin structures. In fact, the shell model for the structure

allows reducing by one the dimension of the solid structure, and to treat the

solution of the FSI problem as a fluid problem with a moving mesh and a

Robin boundary condition [4, 5].
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As introduced before, in this work all the numerical simulations, with

the exception of the fractional operators presented in the last chapter, are

developed with the code FEMuS [18]. FEMuS is a finite element based in-

house code built with hierarchical C++ classes. Several solvers have been

developed until now, including solvers for the solution of the Navier-Stokes

equations, turbulence, fluid-structure interaction, etc.

FEMuS is integrated into a computational platform [28], used and devel-

oped in this thesis, based on a C++ main program that handles several exter-

nal open source libraries, such as the libmesh and PETSc libraries. Libmesh

is a C++ finite element library used in our computational platform to gener-

ate and handle the numerical mesh and to refine it with multiple levels [29].

PETSc is a C++ library for linear and non-linear algebra developed using

LASPack cores written in Fortran and other solvers. A key feature of this

library is its ability to handle parallel solutions of systems of equations with

solvers designed to scale very well with the increasing number of nodes by

defining parallel vectors and matrices classes [30, 31].

1.1 Kinematics and conservation laws

In this section, an introduction to the governing equations of the FSI problems

is presented. In particular, we will focus on the kinematics of the continuum,

which is the branch of mechanics that studies the motion properties, such as

position and velocity. Let L be a characteristic dimension (e.g. a side of a

cube or the radius of a sphere) of a certain solid object O. We can define O as

a continuum media if λ� L, where λ is the mean free path of the particles

of O. Then the conservation laws for this particular physical problem are

presented. In the last part of the section, basic models for both structure

and fluid are introduced. In this section, we will follow the formalism of [6].

1.1.1 Kinematics of the continuum

Let Ω̂ ⊂ R3 be a reference solid structure configuration and Γ̂ be its boundary.

We now consider the evolution over the time of Ω̂, and in particular let Ω ⊂ R3

be the configuration at a certain time t, and Γ its boundary. In the following

we consider Ω̂ as the configuration at the initial time t = 0. We define now

a mapping between Ω̂ and Ω.



1.1. Kinematics and conservation laws 9

Definition 1.1. Let x̂ be the position of an arbitrary point in the reference

configuration and η be the displacement of the material point with respect

to the initial configuration. Following the introduced notation, we can now

define a mapping X such as

x = X (x̂, t) = x̂+ η(x̂, t) , (1.1)

which maps the coordinates (x̂, t) of material points in the reference configu-

ration Ω̂ to their counterparts in the current configuration Ω. The X map is a

morphism between algebraic varieties, also called regular map, which implies

that is bijective, and then monodromic and invertible. Therefore

∀x̂ ∈ Ω̂ , ∃!x = X (x̂, t) ,x ∈ Ω (1.2)

and vice versa, so that

x̂ = X−1(x) . (1.3)

We call the set (x̂, t) Lagrangian coordinates (called also material or ref-

erence coordinates). The Lagrangian description is well suited to describe

the motion of a body defined as a fixed set of material particles. The body

can change its shape under the action of external or internal forces but not

its composition. On the other hand, the set (x, t) is called Eulerian or space

coordinates. The application of the Eulerian coordinates is the basis of the

Eulerian description of the space, which is well suited to describe the fluid

flow through a fixed spatial region. In this case, the fluid particles enter and

leave the considered domain and are taken into account only during transit

inside the domain.

The transformation properties

Since the transformation X underlies all the fluid structure interaction math-

ematical introduction, we now analyze it and some of its properties. For this

purpose the deformation gradient is now introduced.

Definition 1.2. We define the deformation gradient F : Ω̂→ R3×3 as

F = ∇X (x̂, t) =
∂x̂

∂x̂
, (1.4)

and, considering (1.1) we have

F = I +
∂η

∂x̂
. (1.5)
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Clearly, we can define an inverse deformation gradient G of the inverse

mapping relating Ω̂ to the deformed configuration Ω. We can determine a

relation between the two introduced operators, and in particular

G(x, t) = F−1(x̂, t) , F (x̂, t) = G−1(x, t) (1.6)

where F is a Lagrangian tensor and G is an Eulerian tensor. The velocity and

the acceleration term are now presented both for Lagrangian and Eulerian

formulations. If we consider the the Lagrangian formulation we have

v(x̂, t) =
∂x

∂t
(x̂, t) , a(x̂, t) =

∂2x

∂t2
(x̂, t) . (1.7)

At the same time, if we consider the Eulerian formulation we have

v(x, t) =
∂x

∂t
(X (x), t) , a(x, t) =

∂2x

∂t2
(X (x), t) . (1.8)

In order to define properly the introduced properties, the mapping X (x̂, t)

has to be invertible and twice continuously differentiable, in addition to the

properties shown in Definition 1.1. In order to guarantee the local invertibility

of the mapping X , the tensor F has to be non-singular, which means that

J = detF 6= 0. In the physical applications of this model, we always consider

mapping that preserves the orientation of the transformed quantity. This

means that J > 0. In addition, if we are interested in volume-preserving

transformations, we have J = 1. This is a characteristic of the incompressible

structures. More generally, J represents the relation between the reference

and the transformed volume. In particular, if we consider the infinitesimal

volume dV̂ in the reference configuration and the one dV in the current

configuration, we have

dV = J dV̂ . (1.9)

It is now interesting to consider the vector transformation through X . We

consider a generic vector dx̂ ∈ Ω̂, it can be demonstrated that the following

properties hold

dx = F dx̂ , ‖ dx ‖=
√
dx̂TF TF dx̂ , (1.10)

with the difference between the two vectors that can be written as

‖ dx ‖2 − ‖ dx̂ ‖2= dx̂T (F TF − I) dx̂ = dx̂T2E dx̂ , (1.11)
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where E is the Green-Lagrange tensor, that can be written as

E =
1

2
(F TF − I) =

1

2

(
∇η +∇ηT +∇ηT∇η

)
. (1.12)

If we consider only small deformations the term ∇ηT∇η is negligible, since

it involves the product between two small quantities. So we can introduce

the small deformation tensor D as

D =
1

2

(
∇η +∇ηT

)
. (1.13)

If we analyze the eigenvalues of the matrixD, we find that the det(D−λI)

can be written as a polynomial, function of λ

p(λ) = det(D − λI) = λ3 + IDλ
2 − IIDλ+ IIID . (1.14)

It can be demonstrated that the three coefficients of the polynomial ID, IID,

IIID don’t change with rotations of the coordinate system. In fact, they

are called principal invariants of tensors. In particular, if we find the three

eigenvalues λ1, λ2, λ3 of D (posing p(λ) = 0), we can define the principle

invariants as

ID = tr(D) = λ1 + λ2 + λ3

IID =
1

2

(
tr(D)

)2 − tr(D2) = λ1λ2 + λ2λ3 + λ1λ3

IIID = det(D) = λ1λ2λ3

(1.15)

In the following paragraphs, we will compute forces acting on surfaces in

both reference and current coordinate systems, so we need some relations use-

ful for our scope [6]. The relation between infinitesimal surface area elements

in the current and reference configurations is known as Nanson formula

nds = JF−TNdS , (1.16)

where we defined NdS and nds as the unit normal vector multiplied by the

area element in the reference and deformed configuration, respectively. Note

that F−T = (F−1)T . We can now use (1.16) to obtain the so-called Piola

identity. To this aim, we use the divergence theorem

∫

Ω̂t

∇ · ψdv =

∫

Γ̂t

ψ · nds , (1.17)
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of an identically constant function ψ = 1, so that the volume integral van-

ishes, obtaining
∫

Γ̂t

nds =

∫

Γ̂t

JF−TNdS =

∫

Ω̂t

∇ · (JF−T )dv = 0 , (1.18)

which gives the expression of the Piola identity

∇ · (JF−T ) = 0 . (1.19)

Stress tensors

In this paragraph, we introduce some stress measures for both Eulerian and

Lagrangian formalism. In particular, in the Eulerian description the Cauchy

stress tensor is the physical measure of the stress per unit area of the de-

formed configuration most commonly used. However, some other stress mea-

sures must be introduced in order to describe continuum mechanics in the

Lagrangian formalism. For this purpose, we consider the Eulerian area ele-

ment ds. Let n be the external normal unit vector to the surface delimiting

the portion of the body. The surface forces dfs applied to the considered

Eulerian area element can be written as

dfs = σnds , (1.20)

where σ is the Cauchy stress tensor. In a similar fashion, we introduce

a stress tensor P , called the first Piola-Kirchhoff stress tensor such that

dfs = PNdS, that relates forces in the current configuration to areas in the

reference configuration and in general is not symmetric. By using the Nanson

formula (1.16) we obtain

dfs = σJF−TNdS =⇒ P = JσF−T . (1.21)

We now introduce the transformation used to obtain the first Piola-Kirchhoff

stress tensor from the Cauchy stress tensor, which is called Piola transforma-

tion.

Let f̂ : Ω̂ → R be a regular function defined over the domain Ω̂ and

f : Ω→ R the image of f̂ such that f̂(x̂) = f̂(X (x̂)). So we obtain

∇f̂ = F T∇f . (1.22)

In the following, the divergence terms are taken with respect to the corre-

sponding domain configuration unless stated otherwise. Using (1.22) we can

now introduce the so called Piola tensor transformation.
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Definition 1.3. Let τ : Ω → R3×3 be a generic tensor defined over the

deformed domain Ω. The Piola transformation of τ associated to the trans-

formation X is the second order tensor Π̂ : Ω̂→ R3×3 defined as

Π̂(x̂) = J(x̂) τ
(
X (x̂)

)[
F T (x̂)

]−1
= JτF−T , ∀x̂ ∈ Ω̂ . (1.23)

The main interest of the Piola transform is that it yields a simple relation

between the divergences of the tensors τ and Π̂. Now we introduce a the-

orem on the properties of the Piola transform, following the mathematical

formulation in [32].

Theorem 1.1. Let τ : Ω → R3×3 and Π̂ : Ω̂ → R3×3 as in definition 1.3.

Then, by recalling J = det(F ) = det(∇X (x̂, t)) we state that

∇ · Π̂(x̂) = J∇ · τ
(
X (x̂)

)
, ∀x̂ ∈ Ω̂ , (1.24)

Π̂(x̂)n̂dS = τ
(
X (x̂)

)
nds , ∀x̂ ∈ ∂Ω̂ . (1.25)

Moreover, the area element ds and dS at the points x̂ ∈ ∂Ω̂ and x = X (x̂) ∈
∂Ω, with unit outer normal vectors n̂ and n, respectively, are related by

det∇X (x̂)
∣∣∇X (x̂)−T n̂

∣∣ dS =
∣∣Cof ∇X (x̂) n̂

∣∣dS = ds , (1.26)

where Cof (A) = (detA)A−T .

Proof. We recall that J = det(∇X (x̂)), F = ∇X (x̂, t), and the Piola identity

∇ · (JF−T ) = 0. Then the relations

Π̂ij(x̂) = Jτik
(
X (x̂)

)(
F (x̂)−T

)
kj
,

imply that

∂̂jΠ̂ij(x̂) = J∂̂jτik
(
X (x̂)

)(
F (x̂)−T

)
kj
,

since the other term vanishes as a consequence of the Piola identity. The

“hat” notation ·̂ applied to the operators denotes that the operator is applied

to the reference configuration. Next, by the chain rule,

∂̂jτik
(
X (x̂)

)
= ∂lτik

(
X (x̂)

)(
F (x̂)

)
lj
,

and the relation between ∇̂ · Π̂ij(x̂) and ∇ · τik
(
X (x̂)

)
follows from

(F (x̂))li(F (x̂)−T )ki = δik ,
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where δik denotes the Kronecker delta. Next, considering the relation dx =

Jdx̂, along with the divergence theorem for tensor fields expressed over ar-

bitrary A ⊆ Ω̂ and the formula for changes of variables in multiple integrals,

we obtain
∫

∂A

Π̂(x̂)n̂ dâ =

∫

A

∇̂ · Π̂(x̂) dx̂ =

∫

A

∇ · τ
(
X (x̂)

)
J dx

=

∫

X (A)

∇ · τ
(
X (x̂)

)
dx =

∫

X (∂A)

τ
(
X (x̂)

)
n da .

Since the domain A is arbitrary, we can prove the relation Π̂(x̂)n̂ dâ =

τ
(
X (x̂)

)
n da. As a special case, we can also obtain the relation

JF−T n̂ dâ = n da ,

between the area elements dâ and da by taking the Piola transform of the

unit tensor I. Thus, since |n| = 1, da can be seen as the Euclidean norm

of JF−T n̂ dâ. This demonstrates the relation (1.26) by considering dS = dâ

and ds = da as

ds = J |F−T n̂|dS = detF |F−T n̂|dS

In addition to Definition 1.3 and Theorem 1.1, if we consider the Cauchy

stress tensor τ = σ, we obtain

Π̂(x̂) = JσF−T . (1.27)

In this context, we can derive the relationship between the divergence of a

field taken in the two configurations, using the Piola identity (1.19) and the

chain rule, as

∇ · Π̂ = J∇ · σ . (1.28)

We receall that the divergence terms are taken with respect to the corre-

sponding domain configuration.

Lastly, we introduce the second Piola-Kirchhoff stress tensor S defined as

S = F−1P = F−1JσF−T . (1.29)

All the introduced relations are useful to transform integrals involving the

divergence of a tensor from the current configuration to the reference one and

vice versa. For this reason all the presented tensors and transformation are

essential for the FSI modeling.
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The ALE formulation

In the FSI problems both the Lagrangian and the Eulerian formulations are

not well suited for the numerical simulation of the fluid. In particular, the

Eulerian approach contrasts with our needs of having a fluid mesh that moves

following the deformation of the fluid-solid interface. However, some works on

fluid-structure interaction problem are based on an Eulerian description of the

fluid, with the transformation embedded in the simulated equations. In this

work, this approach is not used, therefore an intermediate and more general

description that combines the advantages of the Eulerian and Lagrangian

approaches is introduced. So we introduce a computational moving domain

ω(t), constrained to follow the interface fluid-solid on the boundary ∂ω(t).

The name of this formulation is Arbitrary Lagrangian Eulerian (ALE) [33,

34].

Definition 1.4. Let ω̂ = ω(t = 0) be the reference domain for ω, we define

the ALE map as the transformation

A : ω̂ × R+ → R3 , (x̂, t) 7→ x̂ = A(x̂, t) , (1.30)

where ω̂ ⊂ R3 and such that ω̂(t) = A(ω̂, t).

We can now define the computational domain velocity, or ALE velocity,

the vector

ŵ(x̂, t) =
∂A
∂t

(x̂, t) , ∀x̂ ∈ ω̂ . (1.31)

With this notation, we can now map every point of the current domain ω

into the reference one ω̂. Furthermore the Lagrangian and the Eulerian cases

can be seen as a particular case of the ALE description. In fact, in the

Eulerian formulation the computational domain is fixed (ω(t) = ω̂(0)) and

the ALE velocity is null ŵ = 0. Vice versa, in the Lagrangian formulation the

computational domain moves with the same velocity of the material domain

and the ALE and mesh velocities coincide.

Let now analyze the time derivative of a generic field q(x, t) for all the

cited notations (Eulerian, Lagrangian, and ALE). If q is an Eulerian field, we

define the Eulerian derivative as

∂q

∂t
(x, t) , x ∈ Ω(t) . (1.32)

Therefore only the temporal variation of q in the spatial fixed coordinate x

is evaluated. This definition coincides with the standard definition of partial
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derivative. If now we consider q̂ as the Lagrangian description of q, we can

define the Lagrangian derivative of q as

Dq

Dt
(·, t) =

∂q̂

∂t
(·, t) ◦ ϕ̂−1

t =
d

dt
q(ϕ̂(x̂, t), t) , with x = ϕ̂(x̂, t) . (1.33)

In this case the variation is a function of the position x at the time t. By

applying the chain rule for derivation we obtain

Dq

Dt
(x̂, t) =

∂q

∂t
+
∂q

∂x

∂x

∂t
=
∂q

∂t
+ v · ∇q . (1.34)

The first contribution refers to the time dependence of q, the Eulerian deriva-

tive (1.32) while the second one takes into account the advection of the field q

due to the material velocity v. Lastly, the ALE time derivative of a Eulerian

field reads
∂q

∂t


A

=
d

dt

(
q(A(x̂, t), t)

)
=
∂q

∂t
+w · ∇q , (1.35)

where the first term is the Eulerian derivative and w is the Eulerian rep-

resentation of the computational domain velocity. In this case, the second

contribution takes into account the advection of the field q due to the motion

of the mesh.

1.1.2 The conservation laws

All the equations of the FSI problem are partial differential equations derived

from the conservation laws. In order to describe the behavior of the fluid and

the solid, we need to impose the balance of mass, momentum and energy (in

the case of non-isothermal problems). In this section, a brief introduction to

the conservation laws is reported.

Let now consider a generic extensive quantity ψ defined over the generic

domain Ωt = {x : x = X (x̂, t) , x̂ ∈ Ω }. The general conservation equation

for ψ can be written as

d

dt

∫

Ωt

ρψdx =−
∫

∂Ωt

J(ψ) · n̂dA+

∫

Ωt

ρS(φ,x)dx

+

∫

Ωt

∫

Ωt

K(ψ)(x′,x)ψ(x′, t)dx′dx ,
(1.36)

where ∂Ωt is the external boundary of Ωt, J(ψ) is the current of the variable ψ

through ∂Ωt, and S(φ,x) is a source term. Therefore, the global conservation
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of ψ is determined by the flux density Jψ, the external source ρS(ψ,x) and

the internal source
∫

Ωt
K(ψ)(x′,x)ψ(x′, t)dx′, as can be seen in (1.36).

Now we introduce the Reynolds transport theorem, following the demon-

stration in [35] for moving boundaries, in order to state the balance laws. In

the following, the Euclidean space will be denoted by E . A moving volume re-

gion with boundary in E is a family of subsets {D(t) | t ∈ T} in E , where each

set D(t) is a regular region with a boundary ∂D(t) such that {∂D(t) | t ∈ T}
is a closed moving surface region in E with an orientation n(·, t) directed out

of the region D(t). Obviously, following the notation in the previous part of

this chapter, we can set D(t) = Ωt(t).

Theorem 1.2. Suppose {Ωt(t) | t ∈ T}, where T is an open interval of R, is

a moving region with boundary in E. Let ψ(·, t) : Ωt(t)→ R be a scalar field

on Ωt(t). Then

d

dt

∫

Ωt

ψ(x, t) dv(x) =

∫

Ωt

∂ψ

∂t
dv(x) +

∫

∂Ωt

ψ(x, t)un(x, t) da(x) , (1.37)

where un is the normal speed of ∂Ωt.

Proof. Consider τ ∈ [t0, t] and the differential form ω(x, t) = ψ(x, τ)dv(x),

where dv(x) is the volume form on E . The Stokes formula gives [36]
∫

Ωt

dω(x, τ) =

∫

∂Ωt

ω(x, τ) . (1.38)

Let now consider the translation vector space V , with a fixed orthonormal

base a = (a1,a2,a3). Then, we define ψ̂(x, y, z, τ) = ψ(x0 + a1x + a2y +

a3z, τ), where x0 is some fixed point in E . Since d(dv(x)) = 0, we have

dω(x, τ) = dψ(x, τ)dψ(x, τ) ∧ dv(x)

=
(∂ψ̂
∂x

dx+
∂ψ̂

∂y
dy +

∂ψ̂

∂z
dz +

∂ψ̂

∂τ
dτ
)
∧ (dx ∧ dy ∧ dz)

= −∂ψ̂
∂τ

dτ ∧ dx ∧ dy ∧ dz = −∂ψ
∂τ

dv(x) ∧ dτ ,

where the symbol ∧ accounts the derivative of the product terms. Then, we

have

∫

Ωt(t)

dω(x, τ) =

∫

Ωt(t)

−∂ψ
∂τ

dv(x) ∧ dτ = −
∫ t

t0

(∫

Ωt(t)

∂ψ

∂τ
dv(x) ∧ dτ

)
dτ .

(1.39)
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Moreover
∫

∂Ωt

dω(x, τ) =

∫

Ωt(t0)

ψ(x, t0)dv(x) +

∫

T (t)

ψ(x, τ)dv(x)

−
∫

Ωt(t)

ψ(x, t)dv(x) ,

where T (t) = {(x, τ)|x ∈ Ωt(τ), τ ∈ [t0, t]. By considering a local coordinate

system for the surface ∂Ωt(t), it can be shown [35] that

dv(x) = dx ∧ dy ∧ dz = unda(x) ∧ dτ ,

where un = u · n is the normal speed on ∂Ωt , ∀t ∈ [t0, t]. Thus
∫

T (t)

(
ψ(x, τ)dv(x)

)
dτ =

∫

T (t)

ψ(x, τ)un(x, t) da(x) ∧ dτ

=

∫ t

t0

(∫

∂Ωt(τ)

ψ(x, τ)un(x, τ) da(x)
)
dτ ,

(1.40)

and then by combining (1.38) - (1.40) we obtain

−
∫ t

t0

(∫

Ωt()t

∂ψ(x, τ)

∂τ
dv(x)

)
dτ =

∫

Ωt(t0)

ψ(x, t0)dv(x)

+

∫ t

t0

(∫

∂Ωt(τ)

ψ(x, τ)un(x, t) da(x)
)
dτ −

∫

Ω(t)

ψ(x, t)dv(x) .

(1.41)

By differentiating the relation (1.41) with respect to t we obtain (1.37).

Another commonly used formulation for the Reynolds theorem is

d

dt

∫

Ωt

ψ(x, t)dx =

∫

Ωt

(∂ψ(x, t)

∂t
+∇ · (ψ(x, t)v)

)
dx . (1.42)

Mass conservation

Firstly, we consider the conservation of the mass. Let consider the mass m

contained in a fixed region V (t) ⊂ R3, then

m =

∫

V

ρ(x, t) dx , (1.43)

where ρ(x, t) is the mass density in the Eulerian description. Then, by ap-

plying (1.42) we obtain

dm

dt
=

d

dt

∫

V

ρ(x, t) dx =

∫

V

[∂ρ
∂t

+∇ · (ρu)
]
dx = 0 . (1.44)
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The equation (1.44) is the integral form of the mass conservation equation in

Eulerian form. Let now consider small enough involved fields. Then, we can

write the local form
∂ρ

∂t
+∇ · (ρu) ,

and, in the case of constant ρ we obtain the incompressibility constraint

∇ · u = 0 .

All the presented equations refer to the Eulerian description. Now, we

introduce the corresponding form of the mass conservation in the Lagrangian

formulation. For this purpose, we introduce a fixed set of particles V ∗. The

mass conservation turns to

dm

dt
=

d

dt

∫

V ∗
ρ dx∗ =

∫

V ∗

∂ρJ

∂t
dx = 0 .

Since V can be chosen arbitrarily, the results to any material point can be

localized as
∂

∂t
(ρJ) = 0 , ∀t ≥ 0 .

Therefore, the product ρJ is only a function of the considered material point,

and does not change in time. If we consider an FSI simulation, then we can

state that at t = 0 the structure is not deformed, then J = 1. Let ρ0 = ρ0(X)

be the structural mass density in the undeformed configuration as a function

of the material point X, then we recover the following expression of the

continuity equation in the Lagrangian form

ρ0 = ρJ ,

then by knowing the displacement field of the structure (i.e. J is known) it is

possible to obtain the density at a material point in the current configuration.

Momentum conservation

The principle of conservation of linear momentum (or Newton’s Second Law

of motion) states that the time rate of change of linear momentum of a

given set of particles is equal to the vector sum of all the external forces

acting on the particles of the set, provided Newton’s Third Law of action

and reaction governs the internal forces [37]. Therefore, by applying Newton’s

Second Law to the to a material domain V (t) we obtain the conservation of
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momentum equation. Such an equation states that the resultant of external

forces (volume forces Fv and surface forces Fs) is equal to the rate of change

of the total linear momentum of the system. The momentum equation can

be written as
d

dt

∫

(t)

ρu dx = Fv + Fs .

The volume forces can be obtained by integrating over the volume the specific

force fv multiplied by the material density

Fv =

∫

V (t)

ρfv dx .

The surface forces can be obtained as the surface integral over the boundary

∂V (t) of the Cauchy stress tensor σ : Ω(t)→ R3×3

Fs =

∫

∂V (t)

σn dS ,

where n is the normal to the surface dS.

Now, by applying the Reynolds transport theorem and the divergence

theorem to the surface forces, we obtain

d

dt

∫

V (t)

ρu =

∫

V (t)

[
∂ρu

∂t
+∇ · (ρuu)

]
dx

=

∫

V (t)

ρfv dx+

∫

∂V (t)

σn dS

=

∫

V (t)

(ρfv +∇ · σ) dx .

Therefore
∫

V (t)

[
∂ρu

∂t
+∇ · (ρuu)

]
dx =

∫

V (t)

(ρfv +∇ · σ) dx .

Since the volume V (t) is arbitrarily chosen we can recover the local formula-

tion of the balance of momentum in Eulerian form

ρ
∂u

∂t
+ ρ(u · ∇)u = ρfv +∇ · σ , (1.45)

in Ω(t) and for t > 0. Now, the Lagrangian formulation of (1.45) can be

derived by mapping back the integrals on the undeformed configuration Ω,

obtaining
d

dt

∫

Ω

ρJu dx =

∫

Ω

ρJfv dx+

∫

Ω

J∇ · σ dx .
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Then, since Ω is an arbitrary volume, we obtain

ρ0
∂u

∂t
= ρ0fv + J∇ · σ in Ω ,

where the divergence is taken with respect to the deformed coordinates. It is

possible to transform the term J∇ ·σ into its Lagrangian form using (1.28),

and obtaining

ρ0
∂u

∂t
= ρ0fv +∇ · P in Ω ,

where P = JσF−T is the first Piola-Kirchhoff stress tensor. In conclusion,

we can write the momentum balance equation in the ALE formulation

ρ
∂u

∂t

∣∣
A + ρ[(u−w) · ∇] = ρfv +∇ · σ , (1.46)

in Ω(t) and for t > 0. This formulation will be useful for the formulation of

FSI problems.

1.2 Constitutive models for FSI

The main difference between a fluid and a solid is the macroscopic reaction

to external forces. The conservation equations presented in the last section

are undetermined. Then, it is necessary to bound such equations with con-

stitutive models both for fluid and solid. In this section, some of the most

used constitutive equations for fluids and solids are presented. In particular,

in order to introduce properly the fluid-structure interaction simulations, we

will link stress to strain and strain to kinematic variables. The models will

be presented firstly in the strong formulation, then the weak formulation will

be considered to couple the fluid and the solid equations into the FSI system.

1.2.1 Strong formulation for Newtonian fluids

We now focus on the fluid sub-problem and, in particular, we introduce a

model for Newtonian fluids. This class of fluids is the simplest to solve, since

the viscosity does not depend on the stress state and on the velocity u. In

particular, in the FSI framework, it is important to determine the relation

between the Cauchy stress tensor σ and the fluid velocity. The Cauchy stress

tensor can be decomposed in the hydrostatic and the deviatoric components.

The hydrostatic component σhyd = −pfI tends to change the volume of the
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stressed body. The deviatoric component is responsible for the fluid distortion

rate of deformations σdev = τ . In this framework, the pressure pf is Lagrange

multiplier associated to the incompressibility constraint ∇ ·u = 0. It can be

written as

pf = −tr(σ)

3
= −ID

3
,

where tr(σ) indicates the trace of the Cauchy tensor, and ID the first invariant

of the stress tensor introduced in (1.15). On the other hand, the deviatoric

component is modeled as

τ = 2µfD −
2

3
µf (∇ · u)I , (1.47)

where µf is the fluid dynamic viscosity, andD is the fluid deformation tensor,

that can be written as

D =
1

2

(
∇u+ (∇u)T

)
.

If an incompressible fluid is considered, by using the incompressibility con-

straint ∇ · u = 0 the second term of (1.47) vanishes, obtaining τ = 2µfD.

Therefore, the Cauchy stress tensor for a Newtonian incompressible fluid

reads

σf = −pfI + µf
(
∇uf + (∇uf )T

)
. (1.48)

Note that for a Newtonian fluid, viscosity operates as diffusion of momentum.

The presented model for Newtonian fluids is suitable for various common flu-

ids, such as water and air, under ordinary conditions. However, some fluids

do not follow Newton’s law of viscosity, i.e., constant viscosity independent

of stress. In this work, we will consider only Newtonian fluids for the imple-

mentation of the fluid-structure interaction models presented in the following

sections.

1.2.2 Strong formulations for hyperelestic solid

In this section, the mathematical formulation for the modeling of hyperelestic

solid structures is presented. However, since in the following a membrane

model that behaves like an elastic material is presented, we present now a

brief introduction to the elastic materials.
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Elastic materials

An elastic material is a solid for which the stress field depends only on the

current state of deformation and not on the deformation history. Let now

consider a generic particle X (in Lagrangian formulation) and the deforma-

tion gradient F , defined in (1.4). Therefore, under such conditions, any stress

measure at X is a function of the gradient F associated with that particle.

Now we recall the first Piola-Kirchhoff stress tensor P introduced above. We

may express the constitutive equation as

P = P (F (X, t),X) .

Moreover, if P and the mass density ρ0 are independent of the particle po-

sition, the material is homogeneous and we have P = P (F (X, t)). Solid

materials with the same response to deformation in all directions are called

isotropic, and follow the relation

P (FQ) = QTP (F )Q ,

where Q is the orthogonal matrix associated to the rigid body rotation.

Hyperelastic materials

We consider now the case where the work done by the stress during a defor-

mation process is dependent only on the initial and final state. In this case the

material is called hyperelastic, and its behavior is said to be path-independent.

In this work the inelastic materials are not studied, however interested reader

can see [38]. As a consequence of the described path-independent behavior,

the stored strain energy density function per unit volume of the undeformed

configuration Ψ can be established as the work done by the stress tensor from

the initial position at time t0 to the current position at time t as

Ψ(F (X),X) =

∫ t

t0

P (F (X),X) : Ḟ dt .

Note that different forms of Ψ(F ) lead to different constitutive relationships

between stress and strain. Under these hypotheses, the first Piola-Kirchhoff

stress tensor can be obtained by differentiating Ψ with respect to F as

P (F ) =
∂Ψ(F (X),X)

∂F
.
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For a homogeneous, isotropic and frame indifference material, the potential

energy depends only upon the deformation gradient F . Besides we require for

convenience that the strain-energy function vanishes in the reference configu-

ration. However, physical observations show that the strain-energy function

Ψ increases with deformation. Therefore we impose that Ψ(F ) ≥ 0.

Now we recall the second Piola-Kirchhoff stress tensor S (see equation

(1.29)). It can be obtained as a function of the right Cauchy-Green deforma-

tion tensor C. We also recall that S = F−1P and C = 1
2
(FF−T − I). The

tensor S can also be written as

S = 2
∂Ψ(C,X)

∂C
=
∂Ψ(E,X)

∂E

The Cauchy stress tensor can be computed from the equations of the first and

second Piola-Kirchhoff tensors (equations (1.21) and (1.29), respectively).

We define now the tensor of elastic moduli C as the second derivative of

Ψ with respect to E

C(E) =
∂2Ψ

∂E∂E
.

The tensor C(E) is a four-rank tensor independent of the state of deformation

for hyperelastic models. His number of entries can be reduced to only two

by considering a symmetric and isotropic case.

We introduce now some of the most common quantities used to determine

the properties of the materials. The Young modulus E is defined as the ra-

tio between stress and strain in a material in the linear elastic regime. The

Poisson coefficient ν is the opposite of the ratio between transverse strain

and axial strain. Usually, ν ∈ [0, 0.5]. We have ν → 0.5 for nearly incom-

pressible materials. When ν → 0, the material shows null lateral expansion

when compressed. The Bulk modulus k is the indicator of the resistance to

compression of a solid and is defined as k = −V ∂p

∂V
, where p is pressure

and V is the initial volume of the substance. We also introduce the Lamé

parameters λ and µ, which are generally referred to as Lamé first parame-

ter and Lamé second parameter, respectively. In homogeneous and isotropic

materials, Hooke’s law can be written as

σ = 2µε+ λtr(ε)I ,

where ε is the strain tensor. The second Lamé parameter µ is also known as

shear modulus G in the context of elasticity. Note that homogeneous isotropic

linear elastic materials have their elastic properties uniquely determined by

any two variables among E, ν, λ and µ.
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The incompressible hyperelastic solid. We now consider the incom-

pressible case for hyperelastic solid. We have

J = detF = IIIC = 1 .

Moreover, from the tensor calculus we have that the derivative of the deter-

minant of the second-order tensor F is

∂

∂F
det(F ) = det(F )F−T = JF−T .

Thus, considering the introduced relations, along with

Ψ(F (X),X) = Ψ(F )− p(J − 1) ,

we can write the first Piola-Kirchhoff tensor as

P =
∂Ψ

∂F
− pJF−T ,

where p is again the scalar hydrostatic pressure that can be seen as a La-

grangian multiplier that enforces the incompressibility constraint. Now, by

recalling S = F−1P , we have [39]

S = F−1 ∂Ψ

∂F
− pJF−1F−T = 2

∂Ψ

∂C
− F−1JpF−T .

Thus, the Cauchy stress tensor can be written using the Piola transformation

(1.23) with τ = pI

σ = −pI + σ∗ .

In addition, the formulation can also be applied to the compressible case

(νs ≈ 0.4)

σ = −λ
(
J − 1

J

)
I +

σ∗

J
. (1.49)

The value of σ∗ depends on the used model for the solid modeling. In

the next paragraphs some models for the modeling of σ∗ in hyperelastic solid

applications are presented, namely the Saint Venant-Kirchhoff and the neo-

Hookean model. In literature there are many other hyperelastic models, such

as Mooney or Mooney-Rivlin materials. Interested reader can see [40].
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Saint Venant-Kirchhoff model. One of the simplest models for hypere-

lastic material is the Saint Venant–Kirchhoff model which is just an extension

of the geometrically linear elastic material model to the geometrically non-

linear regime. Thus this model is characterized by a nonlinear strain energy

function

Ψ(E) =
1

2
E : CE .

Therefore, the second Piola–Kirchhoff stress tensor S is linear with the re-

spect of E, namely S(E) = CE. If we consider an isotropic material, Ψ can

be rewritten as

Ψ(F ) = λ(tr(E))2 + 2µ tr(E2) ,

Lemma 1.1. The Cauchy stress tensor in the Saint Venant-Kirchhoff hy-

potheses can be written as

σ = λ(∇ · η)I + µ(∇η + (∇η)T ) . (1.50)

Proof. Under this hypothesis, the second Piola–Kirchhoff stress tensor can

be written as

S(E) =
∂Ψ(E)

∂E
= λ tr(E)I + 2µE .

It is easy to adapt this model in order to deal with small deformations and

incompressible materials. Let consider the small deformation tensor D. We

have

tr(D) = ∇ · η
Then, the restriction to small deformations of the Cauchy stress tensor can

be linearized leading to (1.50).

The equation (1.50) is also known as the Navier-Lameé equation. The

St. Venant-Kirchhoff model is quite used in the computational dynamics of

solids. It is easy to implement such a model, however, this model has some

disadvantages, i.e the lack of any term preventing J to approach zero in the

stored energy function. This model is therefore mainly adopted when dealing

with small strains E.

Neo-Hookean model. We now introduce another model developed in or-

der to enforce the Saint Venant-Kirchhoff one [41]. In fact, in contrast to

linear elastic materials, the stress-strain curve of a neo-Hookean material is

not linear. Instead, the relationship between applied stress and strain is ini-

tially linear, then at a certain stress level, the stress-strain curve presents a
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plateau. For this reason, it is a good model to simulate plastics and rubber-

like substances. For a Neo-Hookean material, with respect to the current

configuration, the strain energy function takes the form

Ψ(I, J) =
1

2
µ(J−2/3I − 3) +

1

2

(
λ+

2

3
µ
)(1

2
(J2 − 1)− ln(J)

)
. (1.51)

We can now write the second Piola–Kirchhoff stress tensor as

S = µJ−2/3
(
I − 1

3
IC−1

)
+

1

2

(
λ+

2

3
µ
)

(J2 − 1)C−1 . (1.52)

The equations (1.51) and (1.52) are written for a generic material. However,

for incompressible materials we have J = 1.

Lemma 1.2. The incompressible Cauchy stress tensor for neo-Hookean ma-

terials can be written as

σ = −pI + µB (1.53)

where B is the left Cauchy-Green deformation tensor.

Proof. The strain energy in the incompressible case (J = 1) can be written

as

Ψ(I, J) = Ψ(I) =
1

2
µ(I − 3) . (1.54)

Then, the second Piola–Kirchhoff stress tensor can be written as

S = µJ−2/3
(
I − 1

3
IC−1

)
− pJC−1 . (1.55)

By considering (1.54) and (1.55) together with (1.28) one can easily obtain

(1.52).

1.3 The fluid-structure interaction model

1.3.1 Basic notation

In order to keep the mathematical formulation of this work as consistent

as possible, we introduce now some of the notation used in the rest of this

thesis. The Sobolev spaces W k,p(C ) are defined as the space of functions u

on C ⊂ Rn such that u and all its partial derivatives up to order k are in

Lp(C ). For a given s ∈ R, the standard Sobolev space of order s and p = 2 is

denoted by Hs(C ). When s ∈ Z+, the inner product over Hs(C ) is denoted
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by (·, ·)s and (·, ·) denotes the inner product in L2(C ). In the same way we

define the natural norm as ‖·‖s,C . Whenever possible, the domain label in the

norm is neglected. We use boldface notation for the corresponding Sobolev

spaces of vector-valued functions, i.e. H1(Ω) = [H1(Ω)]n is the space of the

functions in Rn such that each component of H1(Ω) belongs to H1(Ω). Dual

spaces are denoted by (·)∗. In particular, we consider the following spaces

and subspaces

H1(Ω) =
{
uj ∈ L2(Ω)

∣∣∣ ∂uj
∂xk
∈ L2(Ω) for j, k = 1, · · · , n

}
,

H1
0 (Ω) =

{
u ∈H1(Ω)

∣∣∣u = 0 on ∂Ω
}
,

L2
0(Ω) =

{
p ∈ L2(Ω)

∣∣∣
∫

Ω

p2dx = 0
}
,

T (Ω) = {u ∈H1(Ω) | ∇ · u = 0} ,

where ∂Ω represents the boundary of Ω.

Moreover, for a nonzero portion of the boundary Γα ⊂ ∂Ω, we introduce

the subspace

H1
Γα(Ω) = {u ∈H1(Ω) |u = 0 on Γα} .

In this work, the Navier-Stokes equations will be used in Chapters 1 and 2

to solve coupled fluid-structure systems. In order to derive the weak form of

the Navier-Stokes system, we introduce the following continuous bilinear and

trilinear forms

a(u,v) =
1

2

∫

Ω

(
∇u+ (∇u)T

)
:
(
∇v + (∇v)T

)
dx ∀u,v ∈H1(Ω) ,

b(u, ψ) = −
∫

Ω

ψ∇ · u dx ∀ψ ∈ L2
0(Ω) , ∀u ∈H1(Ω) ,

c(w;u,v) =

∫

Ω

w · ∇u · v dx ∀u,v,w ∈H1(Ω) .

These forms are continuous, namely there exist some constants ka, kb, kc ∈ R+

such that

|a(u,v)| ≤ ka‖u‖1 ‖v‖1 ∀u,v ∈H1(Ω) ,

|b(u, ψ)| ≤ kb‖u‖1 ‖ψ‖ ∀ψ ∈ L2
0(Ω) , ∀u ∈H1(Ω) ,

|c(w;u,v)| ≤ ‖u‖1 ‖v‖1‖w‖1 ∀u,v,w ∈H1(Ω) .
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For more details concerning the bilinear and trilinear forms, see [42, 43].

Moreover, for some constants ca, cb ∈ R+ the following coercivity properties

hold

a(u,u) ≥ ca‖u‖2
1 u ∈H1

Γα(Ω) ,

inf
p∈L2

0(Ω)
sup

v∈H1
0 (Ω)

b(v, p)

‖v‖1 ‖p‖
≥ cb .

Interested reader on the coercivity properties can consult [44, 45, 44, 46].

We now consider a domain Ωt ⊂ R3 with boundary Γt, that consists of a

fluid part Ωt
f and a solid part Ωt

s, so that Ωt = Ωt
s ∪ Ωt

f and Ωt
s ∩ Ωt

f = Γti
at t ∈ (0, T ]. The surface Γti = ∂Ωt

s ∩ ∂Ωt
f shared between the solid and the

fluid is called fluid-structure interface. The outer boundary Γt = ∂Ωt is then

split into the solid boundary Γts = Γt ∩ ∂Ωt
s and the fluid one Γtf = Γt ∩ ∂Ωt

f .

The solid and liquid reference undeformed configurations are denoted with

Ω0
s and Ω0

f , respectively.

1.3.2 The mathematical model for monolithic FSI

Considering the introduced notation for the spaces and the domains, we can

now introduce the mathematical model for the coupled monolithic solver for

fluid-structure interaction simulations.

The evolution of the solid and fluid domain Ω̂f and Ω̂s are defined by

X s : Ω̂s × R+ → R3 ,

Af : Ω̂f × R+ → R3 ,

such that the range of X s(·, t) and Af (·, t) define Ωt
s and Ωt

f , respectively.

Note that X s is the same mapping X introduced in the last section in order

to describe the motion of the solid structure. In fact, X s maps any material

point x̂s from the given fixed reference configuration Ω̂s to the current solid

material configuration Ωt
s. The solid displacement is then defined as

η(x̂s, t) = X (x̂s, t)− x̂s . (1.56)

The mapping Af is such that Af (x̂f , t) = x̂f + η̂f (x̂f , t), where η̂f (x̂f , t)

is defined as an arbitrary extension operator over the fluid domain Ω̂f and

given by

η̂f (x̂f , t) = Ext(η|Γ̂i0) in Ω̂f . (1.57)
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Following the work in [47], an harmonic or Laplace extension operator has

been used to evaluate the fluid region displacement. The velocity ŵf is

defined by

ŵf =
∂η̂f
∂t

in Ω̂f . (1.58)

This quantity represents the velocity in terms of the reference coordinate

x̂f . The behavior of the fluid is described by the Navier-Stokes equations for

incompressible flows as

ρf
∂uf
∂t

∣∣∣∣
Ã

+ρf (uf −wf ) · ∇uf −∇ · σf = ρfg in (0, T )× Ωt
f ,

∇ · uf = 0 in (0, T )× Ωt
f ,

uf |t=0 = u0 in Ω̂f ,

uf |Γ1,f
t,D∪Γ2,f

t,D
= gf in (0, T ), ,

σf · nf |Γ1,f
t,N∪Γ2,f

t,
= hf in (0, T ) ,

(1.59)

where uf is the fluid velocity, ρf is the constant density, g is the gravity

acceleration vector, Ã denotes the ALE application that maps the reference

fluid configuration Ω̂f into the current fluid configuration Ωt
f and wf denotes

the fluid domain velocity. Moreover n is the unit normal vector that points

outward from the boundary ∂Ωt
f and gf , hf , u0 are given data. The flow

state variables in the incompressible case are the pressure pf and the velocity

uf . In the following, the contribution of external forces such as gravity is

assumed to be negligible. The constitutive relation for the stress tensor in

the Newtonian incompressible case reads

σf = −pfI + τf = −pfI + 2µfε (uf ) , (1.60)

where µf is the dynamic viscosity of the fluid, pf the Lagrange multiplier

associated to the incompressibility constraint and ε (uf ) the strain rate tensor

defined as

ε (uf ) =
1

2

(
∇uf + (∇uf )T

)
. (1.61)

On the other hand, the governing equations for structural mechanics are

the following momentum equations

ρs
∂us
∂t
−∇ · σs(ηs) = 0 in Ωt

s , (1.62)

where ρs is the density of the solid material, us is the velocity field and σs its

Cauchy stress tensor, which is a function of the solid region displacement ηs
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as we have seen in the last sections. Since the constitutive law for the solid

stress tensor is expressed in terms of displacements one must solve both the

balance equations (1.62) and the simple kinematic relation

us =
∂ηs
∂t

.

For the reference configuration we can recall the right Cauchy-Green defor-

mation tensor C as

Cij = FkiFkj i, j = 1, 2, 3 ,

where F is the deformation gradient tensor defined in (1.4). It can be written

as F = I +∇ηs. In a similar way in the current configuration we can define

the left Cauchy-Green deformation tensor b as

bij = FikFjk i, j = 1, 2, 3 .

According with this notation and recalling we can now express the Cauchy

stress tensor σs, as

σs,ij =
2

JC

[
bij (I bij − bimbmj)

JCδij
2

]



∂W
∂I

∂W
∂II

∂W
∂JC


 , (1.63)

where I = Cii, II = 1/2 (I − CijCji) are the first and second invariant of the

right Cauchy-Green strain tensor C and JC its determinant. The quantity

W = W (I, II, JC) is the strain energy of the system which depends on the

constitutive law of the considered material. For example for a Neo-Hookian

material, with respect to the current configuration, by considering (1.51) it

is possible to obtain the energy function as

W (I, JC) =
1

2
µs

(
J
−2/3
C trC − 3

)
+

1

2

(
λ+

2

3
µs

)(
1

2
(J2
C − 1)− ln JC

)
.

In the case of incompressible solid, JC = 1 holds. Therefore the energy

density function becomes

W (I, JC) =
1

2
µs (trC − 3) (1.64)

and the Cauchy stress tensor is defined by

σs = −psI + σs∗ , (1.65)
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where σs∗ is the tensor obtained by using the equations (1.63) and (1.64). We

shall now impose a set of boundary conditions at the interface Γit in order to

solve the problem defined by (1.59)-(1.62). The coupling between the fluid

and the solid model determines such a boundary condition. It consists of

imposing the continuity of velocity and stress at the interface Γti as

uf |Γit = us|Γit , (1.66)

σf · nf |Γit + σs · ns|Γit = 0 . (1.67)

We introduce now some functional space useful in the rest of this section to

describe the weak formulation of the studied problem.

Vt = {φ ∈H1(Ωt
f ) : φ|Γ1,f

t,D∪Γ2,f
t,D

= 0} ,
V t
g = {φ ∈H1(Ωt

f ) : φ|Γ1,f
t,D∪Γ2,f

t,D
= gf} ,

Qt = L2(Ωt
f ) ,

M 0 = {ψ ∈H1(Ω̂s) : ψ|Γ̂1,s
0,D∪Γ̂2,s

0,D∪Γ̂3
0,D

= 0} ,
M 0

g = {ψ ∈H1(Ω̂s) : ψ|Γ̂1,s
0,D∪Γ̂2,s

0,D∪Γ̂3
0,D

= gs} ,
D0 = L2(Ω̂s) .

In addition, let us introduce the following bilinear form

af (uf ,φ) =

∫

Ωf

τf (uf ) : ∇φ dx = µ(∇uf + (∇uf )T ,∇φ) , (1.68)

where we denote with τf the fluid viscosity tensor. The variational formula-

tion of the presented problem follows standard techniques. We multiply the

first equation of (1.59) by appropriate test functions, performing integrations

on the whole domain and keeping into account the boundary and interface

conditions. By doing so, we find the following fluid momentum equation for

the unknowns u ∈ V t
g and p ∈ Qt

ρf

(
∂uf
∂t

∣∣∣∣
Ã
,φ

)
+ ρf ((uf −wf ) · ∇uf ,φ) + a(uf ,φ)

= (pf ,∇ · φ) +

∫

Γti

(σf · nf ) · φ dγ +

∫

ΓfN

hf · φ dγ ,

(q,∇ · uf ) = 0 ,

uf |t=0 = uf0 ,

(1.69)
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for all φ ∈ V t and q ∈ Qt. In a similar way, we define the following bilinear

form

as(ηs,ψ) = (σs(us),∇ψ) . (1.70)

Considering a displacement ηs ◦Xs ∈M 0
g and pressure ps ◦Xs ∈D0, we can

now obtain the weak formulation for the solid sub-problem

ρs

(
∂2

∂t2
ηs,ψ

)
+ as(ηs,ψ)− (ps,∇ ·ψ) =

∫

Γit

(σs · ns) ·ψ dγ

+

∫

ΓsN

hs ·ψ dγ ,

(d,∇ · ηs) = 0 ,

ηs|t=0 = ηs,0 , us|t=0 = us,0 ,

(1.71)

for all ψ ◦ Xs ∈ M 0 and d ◦ Xs ∈ D0. Let us introduce a global weak

formulation for the fluid-structure problem. If we define the functional space

St = {(φ,ψ ◦ Xs) ∈ V t ×M 0 : ψ|Γit = φ|Γit} , (1.72)

from (1.66), (1.67), (1.69) and (1.71), we can write the FSI problem in the

coupled formulation as

ρf

(
∂uf
∂t

∣∣∣∣
Ã
,ϕ

)
+ ρf ((uf −wf ) · ∇uf ,ϕ) + a(uf ,ϕ)

− (pf ,∇ ·ϕ) + ρs

( ∂2

∂t2
ηs,ϕ

)
+ as(ηs,ϕ)

− (ps,∇ ·ϕ)−
∫

ΓsN

hs ·ϕ dγ −
∫

ΓfN

hf ·ϕ dγ = 0 ,

(q,∇ · uf ) = 0 (d,∇ · ηs) = 0 ,

uf |t=0 = uf0 ηs|t=0 = ηs,0 us|t=0 = us0 ,

(1.73)

for all ϕ ∈ St. It is worth noting that by using the coupling conditions

(1.66), (1.67) and this particular choice of the fluid-structure test functions,

the boundary terms that appear in the fluid-solid interface Γit cancel out.

This assures that forces at the interface are always computed in an exact

way. The numerical simulations of the fluid-structure interaction problems

can be carried out through the discretization of the system (1.73) in the finite

element code FEMuS.
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1.4 A Koiter shell model applied to FSI

In literature many works can be found on the reduction of the computational

cost of fluid-structure interaction simulations. These works are generally

based on velocity-pressure splitting preconditioners, that keep the original

number of degrees of freedom and preserve exact boundary conditions, see e.g.

[48, 49, 50]. In the framework of the reduction of computational costs of FSI

simulations, in this section a technique for the reduction of the dimensionality

of the solid structure is shown. A model based on the Koiter shell equations is

used to this scope [4]. In order to couple the fluid and the structure domains,

the Koiter shell equations are embedded into the fluid equations as a Robin

boundary condition [5]. In order to preserve the stability of the numerical

scheme, the coupling fluid-structure conditions are automatically treated in

an implicit way. This model has many applications in cases where a fluid

interacts with a thin membrane that deforms mainly in the normal direction.

It is particularly used for hemodynamic applications.

This section is organized as follows. The Koiter shell model is firstly

presented. Then, the presented structure model is embedded in the fluid

equation in order to have the full fluid-structure system.

1.4.1 The linear Koiter shell model

The introduction of the linear Koiter model will follow the mathematical for-

mulation presented in [51]. The Koiter shell approach relies on the assump-

tions that the structure displacements are small and normal to the surface of

the shell. As reported in Figure 1.1, let θ(x) be a mapping defined as

θ(x) : ω ⊂ R2 → Γt ⊂ R3 ,

where ω is the undeformed reference membrane and Γt is the deformed mem-

brane. We now consider the tangential base aα =
∂r

∂xα
, for α = 1, 2.

Then, a1 and a2 define the tangential plane to the reference shell, while

an = (a1 × a2)/|a1 × a2| defines the unit vector normal to the shell surface.

We define now the covariant components of the metric tensor of the middle

deformed surface as Aαβ = aα · aβ. Another fundamental tensor is

Bαβ = an ·
∂

∂xα

(
∂r

∂xβ

)
= an ·

∂aα
∂xβ

.
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x

θ(x)

ω

a1

a2

an

Γt

ã1

ã2

ãn

Figure 1.1: Regular mapping to identify the reference shell surface ω.

In the following, we will use the notation Aαβ = (Aαβ)−1. We now introduce

the strain measures.

Theorem 1.3. Let consider the domain ω ⊂ R2. Let also consider the im-

mersion θ ∈ C2(ω̄,R3). For a given displacement η = ηia
i of the surface ω,

defined by the immersion ω = θ(ω̄), with smooth enough covariant compo-

nents ηi : ω̄ → R, let the change of metric tensor γαβ(η) : ω̄ → R be defined

as

γαβ(η) =
1

2
(Ãαβ(η)− Aαβ) , (1.74)

where Ãαβ(η) is the covariant component of the first fundamental form of the

surface (θ + η)(ω̄). Aαβ, as introduced above, is the covariant component of

the first fundamental form of the surface θ(ω̄). Then, by considering only the

linear part with respect to η of (1.74), we obtain

γαβ(η) =
1

2
(∂βη · aα + ∂αη · aβ)

=
1

2
(ηα|β + ηβ|α)−Bαβηn

=
1

2
(∂βηα + ∂αηβ)− Γkαβηk −Bαβηn ,

(1.75)

where the covariant derivatives are defined by ηα|β = ∂βηα − Γkαβηk, and Γkαβ
are the Christoffel symbols, defined by Γkαβ = ak∂αaβ (see [52]). Note that

γαβ(η) = γβα(η). Thus,

ηα ∈ H1(ω) , ηn ∈ L2(ω)⇒ γαβ(η) ∈ L2(ω)
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Proof. The covariant components can be written as

Ãαβ(η) = ∂α(θ + η) · ∂β(θ + η) . (1.76)

The we can use the relation ∂α(θ + η) = aα + ∂αη to show that (1.76) can

be written as

Ãαβ(η) = (aα + ∂αη) · (aβ + ∂βη) = Aαβ(η) + ∂βη · aβ + ∂αη · ∂βη ,

therefore

γαβ(η) =
1

2
[Ãαβ(η)− Aαβ]lin =

1

2
(∂βη · aα + ∂αη · aβ) .

In order to prove the other relations of equation (1.75), we consider now the

Gauss and Weingarten equations

∂αaβ = Γkαβak +Bαβa
n ,

∂αan = −Bk
αak ,

that imply

∂αη = ∂α(ηia
i) = (∂αηk − Γταkητ −Bαkηn)ak + (∂αηn +Bτ

αητ )a
n .

Therefore, we obtain

∂αa
τ = −Γταka

k +Bτ
αa

n

∂αa
n = −Bαka

k .

Note that the introduced tensor γαβ(η) is associated with the displace-

ment of the surface S, as well as the covariant components of the linearized

change of curvature tensor ραβ that will be introduced in the next theorem.

Theorem 1.4. Consider the hypotheses of the Theorem 1.3, with the only

difference θ ∈ C3(ω̄;R3). Let the functions ραβ(η) : ω̄ → R be defined by

ραβ = [B̃αβ(η)−Bαβ] ,

where B̃αβ(η) is the covariant component of the second fundamental form of

the surface (θ+η)(ω̄). Bαβ, as introduced above, is the covariant component

of the second fundamental form of the surface θ(ω̄). Again, we consider only
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the linear part with respect to η of the introduced expression. Therefore, if

we define the covariant derivatives as

ηα|β = ∂βηα − Γkαβηk ,

ηn|αβ = ∂αβηn − Γkαβ∂kηn ,

Bτ
β |α = ∂αB

τ
β + ΓταkB

k
β − ΓkαβB

τ
k ,

we obtain

ραβ(η) = (∂αβη − Γkαβ∂kη) · an
= ηn|αβ −Bk

αBkβηn +Bk
αηk|β +Bτ

βητ |α +Bτ
β |αητ

= ∂αβηn − Γkαβ∂kηn −Bk
αBkβηn +Bk

α(∂βηk − Γτβkητ )

+Bτ
β(∂αητ − Γkατηk) + (∂αB

τ
β + ΓταkB

k
β − ΓkαβB

τ
k )ητ .

Then,

ηα ∈ H1(ω) , ηn ∈ H2(ω)⇒ ραβ ∈ L2(ω) .

In addition, both ραβ and Bτ
β |α satisfy the symmetry relations ραβ = ρβα and

Bτ
β |α = Bτ

α|β

The proof of the Theorem 1.4 is not reported in this work. Interested

reader can find it in [51].

We can now introduce the linear Koiter shell equations. Let ω be the

considered shell domain, and let υs be a measurable subset of ∂ω. In the

following, ∂t will denote the outer normal derivative operator along ω. Since

γαβ(η), ραβ(η) ∈ L2(ω), we can introduce the functional space V (ω) such

that

V (ω) = {η = ηia
i : ηα ∈ H1(ω) , ηn ∈ H2(ω) , ηi = ∂tηn = 0 on υs} .

For more information about the introduced functional spaces and the deriva-

tion of the used equations see [51]. Tthe unknown displacement field ξε =

ξε1a
i of the middle surface of the shell should be a stationary point over the

space V (ω) of the energy functional defined as

K(η) =
1

2

∫

ω

(
εAαβστγστ (η)γαβ(η) +

ε3

3
Aαβστρστ (η)ραβ(η)

)√
a dy

−
∫

ω

f i,εηi
√
a dy ∀η ∈ V (ω) ,

(1.77)
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where a = a(η) = det(Aαβ(η)). The contravariant components of the shell

elasticity tensor Aαβστ is defined as

Aαβστ =
2Eν

1− ν2
AαβAστ +

E

1 + ν
(AασAβτ + AατAβσ) ,

where ν is the Poisson coefficient and E Young modulus of the solid material.

The given functions f i,ε ∈ L2(ω) take into account the forces applied to the

shell. Note also that the boundary conditions ηi = ∂tηn = 0 on υs means

that the shell is clamped along the boundaries of its middle surface. We can

now derive the variational equation for the vector field η as

∫

ω

(
εAαβστγστ (ξ

ε)γαβ(η) +
ε3

3
Aαβστρστ (ξ

ε)ραβ(η)
)√

a dy

=

∫

ω

f i,εηi
√
a dy , ∀ξε ∈ V (ω) .

(1.78)

The model used in this work is based on some simplifying assumptions:

small deformations of the solid shell, negligible bending terms, only normal

displacement, and isotropic and homogeneous material. In the following, the

reference domain of the shell structure ω will be denoted with Γs. Under

these assumptions, it is possible to obtain the following model from (1.78)

(see [5])

∫

Γs

ρsε
∂2η

∂t2
dx+

∫

Γs

εAαβστγαβ(η)γλδ(ψ) dΓ =

∫

Γs

fs ·ψ dΓ , (1.79)

where the displacement ξε has been replaced with the test function notation

ψ. The density of the solid shell is denoted by ρs.

If we restrict the membrane displacements only to normal direction, then

we can further simplify the model (1.79), and reduce it to a simple scalar

equation for ηn. In strong form we have

ρsε
∂2ηn
∂t2

+ βηn = fs on Γs ,

with ηn|t=0 = η0 ,
∂ηn
∂t

∣∣∣
t=0

= ηv on Γs ,

(1.80)

where

β(x1, x2) =
εE

1− ν2

(
(1− ν)Bk

βB
β
k + νBβ

βB
k
k

)
. (1.81)
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The prestressed term

The presented Koiter model does not account for prestressed loading along

the shell structure. Let consider the deformed non-shell configuration Ωs.

Note that Ωs has thickness ε, and the shell surface is defined as the middle

surface of it. In weak formulation, the prestress term reads
∫

Ωs

∇ηP : ∇ξε dx , (1.82)

where P is the Cauchy stress tensor in the deformed configuration for only

tangential stresses in Ωs [53]. In the rest of this section, we will follow the

procedure presented in [5]. Now we want to lead back the equation (1.82)

to the membrane case, by taking the limit for ε → 0. We can write the

deformation field as

η = ηi(x1, x2)ai + xn

(∂ηn
∂xα

+Bk
αηk

)
aα .

The terms where xn appears are of higher order in ε, so we can neglect them.

We introduce now the surface covariant derivative of a vector field (see [52]).

The covariant derivative of η is defined as

ηsα|k =
∂ηα
∂xk
− Γβαkηβ , with Γβαk = aβ · ∂ak

∂xα
.

With this notation, we can write the three-dimensional covariant derivatives

of η as

ηα|β = ηsα|β −Bαβηn , ηα|n = −
(∂ηn
∂xα

+Bk
αηk

)
,

ηn|α =
∂ηn
∂xα

+Bk
αηk , ηn|n = 0 .

Now by integrating (1.82) considering Ωs = Γs × [−ε/2,+ε/2] we have
∫

Ωs

ηk|αP
αβξεk|β dx =

∫

Γs

∫ ε/2

−ε/2
BkαηnP

αβBkβξ
ε
n dx dΓ

=

∫

Γs

εBkαP
αβBkβηnξ

ε
n dΓ ,

(1.83)

and ∫

Ωs

ηn|αP
αβξεn|β dx =

∫

Γs

∫ ε/2

−ε/2

∂ηn
∂xα

Pαβ ∂ξ
ε
n

∂xβ
dx dΓ

=

∫

Γs

εPαβ ∂ηn
∂xα

∂ξεn
∂xβ

dΓ .

(1.84)
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The equation (1.83) can be incorporated into the coefficient β introduced in

(1.81). The equation (1.84) gives a second derivative in space to be added

inside the model (1.80), obtaining

ρsε
∂2ηn
∂t2

+ β∗ηn −∇ · (P∇ηn) = fs on Γs ,

with ηn|t=0 = η0 ,
∂ηn
∂t

∣∣∣
t=0

= ηv on Γs ,

(1.85)

and

β∗(x1, x2) = ε

(
E

1− ν2

(
(1− ν)Bk

βB
β
k + νBβ

βB
k
k

)
+BkαP

αβBkβ

)
.

The model (1.85) must be completed with proper boundary conditions, e.g.

ηn|∂Γs = 0. Note that the presented prestressed model can be used when

the deformed configuration is close enough to the reference one, in order to

consider an isotropic elastic tensor.

The cylindrical geometry

Let now consider a cylindrical geometry, in order to show how to explicitly

calculate all the introduced tensors in a simple geometry. Moreover, many

of the results presented at the end of this chapter are based on a cylindrical

domain. If we consider a system of cylindrical coordinates and a cylinder of

radius R, we have r(θ, z) = {(x, y, z) ∈ R3 |x = R cos(θ), y = R sin(θ), z =

z}. The covariant basis is given by

a1 =



−R sin θ

R cos θ

0


 , a2 =




0

0

1


 , an =




cos θ

sin θ

0


 ,

this implies that

Aαβ =

[
R2 0

0 1

]
, Bαβ =

[−R 0

0 0

]
,

therefore

Bα
β = AαkBkβ =

[
1/R2 0

0 1

] [−R 0

0 0

]
=

[
1/R 0

0 0

]
.
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Then, it is easy to show that

β =
εE

1− ν2

(
(1− ν)Bk

βB
β
k + νBβ

βB
k
k

)
=

εE

1− ν2

(1− ν
R2

+
ν

R2

)

=
εE

1− ν2

1

R2
.

(1.86)

Moreover, since the prestress term acts only in the longitudinal dimension,

in the cylindrical case we have

P =

[
0 0

0 P zz

]
.

In this case the system (1.85) can be simplified as a one dimensional equation

ρsε
∂2ηn
∂t2

+ βηn − µs
∂2ηn
∂z2

= fs , (1.87)

where µs = P zz. Interested reader can consult [54, 55] for more information

on the applications of this model to hemodynamic.

1.4.2 The coupled fluid-shell problem

In this section the shell model presented in the previous section is embedded

inside the fluid equations to properly simulate the fluid-structure interaction

system. Now, we first introduce the model for the fluid equations. Let con-

sider a Newtonian incompressible fluid flowing through a deformable domain

Ωf = Ωf (t). The domain is not fixed in time, because of the nature of the

solved physical problem. In the following, the time dependence of Ωf will be

omitted for notation simplicity.

As we have seen in the previous section, the fluid is modeled following the

ALE formulation [2, 33, 56] as

ρf
∂u

∂t

∣∣∣∣
A

+ρf [(u−w) · ∇]u−∇ · σf = 0 on Ωf , (1.88)

∇ · u = 0 on Ωf , (1.89)

where ρf and u are the density and the velocity vector of the fluid, and

σf is the Cauchy stress tensor of the fluid written as σf = −pI + µ(∇u +

∇uT ), where p and µ are the pressure and the dynamic viscosity of the fluid,

respectively. The system of equations (1.88) is completed with appropriate
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boundary conditions. In this framework is important to compute properly

the value of the velocity of the points of the fluid domain w. On the moving

boundaries we have

w|Γs = u|Γ ◦ r(x) .

Moreover, on the other boundaries we have in the direction normal to the

surface

(w · an)|ΓD∪ΓN = 0 ,

and in tangential direction

( ∂w
∂an
· aα

)∣∣∣
ΓD∪ΓN

= 0 for α = 1, 2 .

The velocity w is extended over the domain by solving the armonic operator

−∆w = 0 on Ωf . Once w is known, the ALE map is defined as

xf (t) = x0 +

∫ t

0

w dτ , (1.90)

that maps each point x0 of the reference configuration into the deformed

configuration xf (t).

Weak fluid-structure coupling

In the following, (·, ·) will denote the L2(Ω(t)) inner product, (·, ·)Γs will

denote the L2(Γs) inner product, and the bilinear form a(·, ·) is defined as

a(w,v) = µ(∇w + (∇w)T ,∇v) .

Thus, we can write the weak formulation for the fluid problem as

ρf

(
∂u

∂t

∣∣∣∣
A
,φ

)
+ a(u,φ) + ρf (((u−w) · ∇)u,φ)− (p,∇ · φ)

=

∫

Γ(t)

(σfan) · an(φ · an) dΓ +

∫

ΓN (t)

h · φ dΓ ,

(q,∇u) = 0 ,

(1.91)

for all φ ∈ H1(Ω(t)) : φ|ΓD(t) = 0 and (φ · aα)|Γ(t) = 0) and for all

q ∈ L2(Ω(t)). Note that only the normal component of the stress on the

boundaries Γ(t) is highlighted.
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With a similar approach, we can write the weak formulation for the shell

equation (1.85) as

ρsε
(∂2η

∂t2
, ψ
)

Γs
+ (β∗η, ψ)Γs + (P∇η,∇ψ)Γs = (fs, ψ)Γs , (1.92)

for all ψ ∈ H1(Γs).

The shell model allows us to reduce by one the dimension of the solid,

so the structure equations can be reduced to a boundary condition on Γs for

the solid problem. In particular, the shell boundary condition is imposed on

the middle surface of the solid, as noted above.

Therefore, the two sub-systems (1.91) and (1.92) are coupled by imposing

σf ·n−fs = 0 on Γs. We define now the functional space V 0 = {φ ∈ H1(Ωf ) :

φ|ΓD,f = 0}, where ΓD,f are the boundaries of Ωf where a Dirichlet conditions

are imposed. In order to satisfy the continuity of the test functions φ ·n = ψ

over the interface surface Γs in the coupled system, a new functional space is

introduced as

W 0 = {(φ, ψ) ∈ V 0 ×H1(Γs) : φ · n = ψ over Γs} . (1.93)

We can now derive the weak form of the coupled final system by simplifying

the two terms
∫

Γ(t)
(σfan) · an(φ · an) dΓ and (fs, ψ)Γs . Note that ψ = (φ ·

an) ◦ r(x). Thus, the coupled system reads

ρf

(∂u
∂t

∣∣∣∣
A
, φ
)

+ ρf
(
[(u−w) · ∇]u, φ

)
+ a(u,φ)− (p,∇φ)

ρsε
(∂2η

∂t2
, ψ
)

Γs
+ (βη, ψ)Γs + (P∇η,∇ψ)Γs =

∫

ΓN,t

h · φ dΓ ,

(∇ · u, q) = 0 ,

(1.94)

for all (φ, ψ) ∈ W 0, q ∈ L2(Ωf ). A finite element technique is used to obtain

the discrete weak formulation of (1.94). With this approach the structural

equation can be incorporated in the fluid equations as a Robin boundary

condition.

1.4.3 Numerical modeling with FEM

We use a finite element technique to obtain the discrete weak formulation of

(1.94). We threat explicitly the position of the fluid domain, and consider an

implicit discretization of the coupling conditions. With this approach, the
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structural equation can be incorporated in the fluid equations as a boundary

condition (Robin scheme). The structural equation (1.92) can be put in

strong form and discretized as

ρsε
ηk+1 − 2ηk + ηk−1

∆t2
−∇(σηk+1) + βηk+1 = fk+1

s , (1.95)

where ηk+1 is the unknown at the given iteration, and ηk and ηk−1 are the

solution at the last and second-last iteration, respectively. In the following,

we will maintain this notation for all the unknowns. In addition, the interface

conditions are discretized as

(ηk+1 − ηk) ◦ (xkf )
−1

∆t
= (uk+1 · an) = uk+1

n on Γ . (1.96)

While the movement of the domain is treated explicitly, the interface condi-

tions (1.96) are treated implicitly.

Let now consider the terms of (1.94) related to the shell displacement,

with the exception of the prestress term. The discretized problem can be

transformed as
∫

Γs

( ρsε
∆t2

(ηk+1 − 2ηk + ηk−1) + βηk+1
)
φn ◦ xkf dγ

=

∫

Γs

(ρsε
∆t

+ β∆t
)

(uk+1
n ◦ xkf )(φn ◦ xkf ) dγ

+

∫

Γs

(( ρsε
∆t2

+ β
)
ηk +

ρsε

∆t2
ηk−1

)
(φn ◦ xkf ) dγ

=

∫

Γks

(ρsε
∆t

+ β∆t
)
uk+1
n φnJ

k dγ

+

∫

Γks

(( ρsε
∆t2

+ β
)
ηk +

ρsε

∆t2
ηk−1

)
◦ (xkf )

−1φnJ
k dγ ,

(1.97)

where Jk is a jacobean taking into account the change of surface area going

from the reference configuration Γs to the deformed one Γks .

The prestress term can be modeled using the two tensors

C = [a1,a2] ∈ R3×2 and F k = ∇x0x
k
f ∈ R3×3 ,

where x0 is the fixed system of coordinates. Now, we can express the pre-

stress tensor in Cartesian coordinates as P̃ = CPCT ∈ R3×3. Therefore, the
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prestress contribution in (1.94) can be discretize as

(P∇η,∇ψ)Γs ≈
∫

Γks

∆t
(
F kP̃ (F k)T

)
∇uk+1

n · ∇φn dγ

−
∫

Γks

(
F kP̃ (F k)T

)
∇(ηk ◦ (xfn)−1) · ∇φn dγ

(1.98)

Now considering (1.97) and (1.98) we can consider the discrete problem as:

find uk+1
h ∈ V t

g,h ⊂ V t
g = {v ∈ H1(Ω(t)) : v|ΓD(t) = g and (v · aα)|Γ(t) = 0},

and pk+1
h ∈ Qk

h ⊂ L2(Ω(t)) such that

1

∆t
(uk+1

h , φh)k + a(uk+1
h ,φh)k +

((
(ukh −wk

h) · ∇
)
uk+1
h , φh

)
k

− (pk+1,∇φh)k + ∆t

∫

Γks

( ρsε
∆t2

+ β
)
uk+1
n,h φn,h + P̃∇uk+1

n,h · ∇φn,hJk dγ

=
1

∆t
(ukh, φh)k −

∫

Γks

((
− ρsε

∆t2
+ β

)
ηkh +

ρsε

∆t2
ηk−1

)
◦ (xkf )

−1φn,hJ
k dγ

−
∫

Γks

P̃∇(ηk ◦ (xkf )
−1) · ∇φn,hJk dγ +

∫

ΓkN,t

h · φ Jk dγ ,

(∇ · uk+1
h , qh)k = 0 ,

(1.99)

where P̃ is the prestress tensor in the reference configuration expressed in

Cartesian coordinates, φh ∈ V k
h ⊂ W0, qh ∈ Qk

h ⊂ Q0. Furthermore un,h and

φn,h are referred to the normal component of the vector to the outer surface

and xkf is taken from equation (1.90) and maps each point of the simulated

domain from the starting to the current configuration.

Once the velocity and the pressure field are computed, the displacement

field can be obtained from

ηk+1
h = ∆t(uk+1

n,h ◦ xkf )|Γ0 + ηkh . (1.100)

Then, the numerical problem is closed with the mesh motion, which is per-

formed through a moving mesh algorithm based on a multigrid Arbitrary

Lagrangian Eulerian method [57]. This technique allows to couple in an im-

plicit way the interface conditions. As mentioned above, the points of the

fluid domain are moved by solving an harmonic extension operator

(∇wk+1
h ,∇ψh) = 0 ∀ψh ∈M 0

h ⊆M 0 ,

wk+1
h |Γs = (uk+1

h ◦ xkf )|Γs ,
(1.101)
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with M 0 = {ψ ∈H1(Ω) : ψ|Γs = 0 and (ψ · an|ΓD∪ΓN ) = 0}.
The numeric algorithm for the resolution of this problem can be summa-

rized as in Algorithm 1.

Algorithm 1 Explicit Robin scheme for the numerical resolution of Koiter

fluid-structure system.

1) Solve the system (1.99) on the domain Ωk. Given ukh, pkh and ηkh we find uk+1
h

and pk+1
h .

2) Compute the displacement field ηk+1
h with (1.100).

3) Compute the velocity wk+1
h of the points of the fluid domain with (1.101).

4) Move the points of the fluid domain with

xk+1
f (x0) = xkf (x0) + ∆twk+1

h ∀x0 ∈ Ω .

1.4.4 Artificial boundaries for absorbing conditions

The presented Koiter model is often applied to hemodynamic simulations. In

this framework, the fluid and the structure motion are most likely driven by

pressure waves. Therefore, it is frequent to deal with numerical simulations

involving only pressure inlet/outlet boundary conditions. In order to have

a good representation of the pressure field in the simulated domain, it is

necessary to introduce suitable outflow boundary conditions, in order to avoid

spurious reflections of the pressure waves. In fact, even if the fluid is described

by parabolic equations, FSI systems have some hyperbolic behavior. An

approach based on artificial boundary conditions for truncated domains is

adapted to prescribe outflow conditions able to absorb the pressure waves

coming from the rest of the domain.

Boundary conditions for pressure and flux in bounded domains

As introduction of the mathematical and numerical problem, we consider

the Navier-Stokes equation and we follow the method described in [58]. Let

b be the extension of prescribed Dirichlet boundary values into the whole

numerical domain Ω. Since we are considering a finite element discretization,

this can be achieved by prescribing the appropriate nodal values along the

boundary. As reported in Figure 1.2, we consider also Γ as the boundary walls

(no-slip condition), S1 as inlet boundary and S2 and S3 as outlet boundaries.
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n̂

n̂

n̂

S1

S2

S3
Γ

Ω

Figure 1.2: Reference duct with multiple truncated outlets (S2 and S3).

It is required that u(t) = b + u∗(t), where u∗(t) ∈ V ∗1 (Ω) = {ϕ ∈ H1(Ω) :

ϕ|Γ = 0} and p(t) ∈ L2(Ω), ∀t. We have

ν(∇u,∇ϕ) + (ut + u · ∇u, ϕ)− (p,∇ ·ϕ) = 0, ∀ϕ ∈ V ∗1 (Ω) . (1.102)

The pressure boundary conditions can be implicitly derived from (1.102). In

particular, we can state that the mean pressure on each free section Si is

zero: (|Si|)−1
∫
Si
p ds = 0. Now we formulate the problem more generally in

terms of prescribed pressure drops. This can be achieved simply considering

the equation (1.102) such that for any prescribed pressure πi, the integral of

the pressure gives (|Si|)−1
∫
Si
p ds = πi(t).

Therefore, it is now required to find u(t) and p(t) such that, for any

prescribed πi

ut + u · ∇u− ν∆u+∇p = 0, ∇ · u = 0, (1.103)

with

u|Γ = 0,
1

|Si|

∫

Si

p ds = πi(t) .

The numerical problem leads back to find the prescribed differences between

the mean pressures across the various Si (inlets and outlets). The variational

problem reduces to find u(t) ∈ V ∗1 (Ω) and p(t) ∈ L2(Ω) such that

ν(∇u,∇ϕ)+(ut+u ·∇u, ϕ)−(p,∇·ϕ) = −
∑

j

πj(t)

∫

Sj

ϕ · n̂ ds , (1.104)

for all ϕ ∈ V ∗1 (Ω). Using the variational formulation (1.104) we can now

derive a system of artificial boundary conditions. All the considerations made

for the Navier-Stokes equations can now be applied to the studied Koiter-FSI

problem, considering that we actually deal with the fluid equations together

with an embedded Robin boundary condition. For this reason the extension
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of the procedure (1.104) to the studied model is straightforward. Indeed one

may wish to find the pressure drops that are required to achieve a desired net

flux through each of various ducts. Since in this work we use prescribed inlet

pressure, in our case this search is limited to the definition of the reference

pressures at the outlets πj.

The absorbing boundary conditions

We prescribe an absorbing boundary condition by coupling the 3D model

with a 1D reduced one [59], in order to obtain a consistent value of pressure

πj to be imposed at the outlets of our domain. The guess of pressure field

at the outlet is obtained from the simplified 1D model. For this purpose

we consider a cylinder whose length is L. The simplified 1D model can be

obtained by integrating at each time t the Navier–Stokes equations over each

section S normal to the axis of the cylinder. For each t > 0 and 0 < z < L

the 1D model reads

∂A

∂t
+
∂Q

∂z
= 0,

∂Q

∂t
+

∂

∂z

(
α
Q2

A

)
+
A

ρf

∂P

∂z
+KR

Q

A
,

(1.105)

where Q is the flow rate through S, A the area of S, P the mean pressure

over S, KR a resistance parameter which accounts for the fluid viscosity and

α accounts for the shape of the velocity profile over S [60]. For the closure

of system (1.105), a third equation is provided through a pure algebraic wall

model, relating the radial displacement to the mean pressure in a section

P = β(
√
A−
√
A0)

π
, where A0 is the area of the surface S at t = 0, hs the wall

thickness, E the Young modulus of the solid wall, ν the Poisson coefficient

and β is given by (1.86).

The system now turns out to be hyperbolic, and it possesses two distinct

eigenvalues. The absorbing outflow boundary condition is derived by impos-

ing that the characteristic variable entering the 3D computational domain be

zero, meaning that no information is entering. In particular, we impose

W2|Γiout =

[
Q

A
± 2
√

2
√
ρf

(√
P + β

√
A0 −

√
β
√
A0
)]∣∣∣∣∣

Γiout

= 0 , (1.106)

obtaining

P |Γiout = πj(t) =
[(√ρf

2
√

2

Q

A
+

√
β
√
A0
)2

− β
√
A0
]∣∣∣

Γiout

. (1.107)
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By replacing πj(t) obtained in (1.107) into (1.104) we can obtain suitable

Neumann inhomogeneous outflow boundary conditions that allow us to treat

multidimensional phenomena along the studied domain.

1.5 Numerical results

In this section the numerical results of the presented fluid-structure interac-

tion simulations are presented. The algorithm for the numerical implemen-

tation of the monolithic FSI model presented in section 1.3 into the finite

element code FEMuS has been presented in many works involving both mul-

tiphysics studies (e.g. see [61]) and optimal control applications (e.g. see

[62, 63, 6]). Therefore, in this section we focus on the results of the Koi-

ter model implemented in this work, together with the absorbing boundary

conditions.

1.5.1 Monolithic fluid-structure benchmark results

The numerical benchmarking of the presented monolithic FSI solver has been

already presented in some previous works [6]. Here some of the most signif-

icant results presented in the cited work are briefly reported. Then, in the

next section, the numerical results on the Koiter shell fluid structure model

developed in this work are reported. Numerical benchmark for both stan-

dalone CFD (Navier Stokes) and CSM (Computational Structural Mechanics)

benchmarks have been considered. Thus, the fluid-solid mutual interaction

is neglected. All the tested cases have shown good results in agreement with

the benchmark solutions. Then, the benchmark results for the complete FSI

problem have been developed.

Table 1.1: Parameter setting for the FSI1 benchmark.

Parameter Symbol Measure unit Value

Solid density ρs [103 kg
m3 ] 1

Poisson coefficient νs - 0.4

Shear modulus µs [106 kg
ms2

] 0.5

Fluid density ρf [103 kg
m3 ] 1

Fluid viscosity νf [10−3m2

s
] 1

Average inlet velocity Ū [m
s

] 0.2
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Table 1.2: Results for the Turek FSI1 benchmark.

Level Nel Ndof Dx(A)(e-05) [m] Dy(A)(e-04) [m] Drag Lift

1 1870 17330 2.15828 8.34873 14.4034 0.750155

2 9350 68320 2.16161 8.28078 14.3377 0.757567

3 39270 271280 2.16367 8.23453 14.3074 0.761073

Ref 2.27049 8.20877 14.2943 0.763746

We report only the benchmark on the mutual interaction between solid

and fluid, called Turek FSI1 test [1]. In Table 1.1 we show the values of the

parameter used in this test. In Table 1.2 the results obtained with different

spatial resolutions are reported and compared with the reference values. The

results converge to the values given by the benchmark authors, when the

mesh resolution is increased. The presented and validated numerical code for

FSI simulations can be found in the Github page [18]. Since the implemented

model has been validated with the Turek benchmark, in the following it will

be used as a reference case to validate also the implemented Koiter model.

1.5.2 Koiter FSI model numerical benchmarks

Since the presented fluid-structure model based on Koiter shell equations is

still not widespread, in literature there are only a few works on a benchmark-

ing of it. In this section, we will refer to the benchmarks presented in [64].

In particular, we first consider a simple numerical case where an analytical

solution is available. We refer to it as Koiter benchmark 1. Another bench-

mark based on a comparison between the Koiter model and the monolithic

fluid-structure is then presented. We refer to it as Koiter benchmark 2. Since

the monolithic fluid-structure model has been widely tested, as reported in

the previous section, we can use it as a reference result for the new presented

model. However, since the two models are different, we expect a similar (but

not identical) behavior of the two models under the same parameter setting.

Koiter benchmark 1

We consider now a simple FSI problem that has an exact solution, and can be

used for the testing of the presented fluid-structure shell model. We consider

a fluid flowing through a cylindrical channel, with the inlet at the bottom

and outlet at the top, as can be seen in Figure 1.3. On the outer wall the
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Robin boundary condition for Koiter shell is imposed. In the Figure on the

left, the mesh used for this benchmark is reported.

Figure 1.3: Pressure p (left), displacement dx (center) and velocity v (right)

fields in the simulated channel. On the left is also reported the mesh.

Table 1.3: Parameter setting for Koiter benchmark 1.

Parameter Symbol Measure unit Value

Cylinder radius R [m] 5 · 10−3

Cylinder length L [m] 6 · 10−2

Solid density ρs [103 kg
m3 ] 1.1

Poisson coefficient νs - 0.1

Elastic modulus E [kPa] 125

Wall thickness ε [m] 2 · 10−4

Fluid density ρf [103 kg
m3 ] 1

Fluid viscosity νf [m
2

s
] 1 · 10−3

The shell equation to be solved in this case (for cylindrical geometries)

is (1.87), where the prestress term is neglected. Under this hypothesis, the

problem turns to be linear, and can be exactly solved. By imposing a constant

inlet pressure pin, it is possible to obtain the analytical solution of the pressure

and the displacement fields for stationary solutions. All the variables involved
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in this benchmark are reported in Table 1.3. Under the presented parameter

setting we have for cylindrical geometries

β =
εE

(1− νs)R2
= 1010kPa/m ,

as reported in (1.86). By setting a time step of 0.0005s, an inlet pressure

of pin = 25Pa and an outlet pressure of pout = 0Pa, after a time t = 0.25s

the steady state is reached. In Figure 1.3, the pressure, displacement and

velocity fields at the steady state are qualitatively reported.
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d
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exact

Figure 1.4: Comparison of the displacement field dx between the simulated

case and the reference one. The displacement field is reported along the line

between the points (0.005, 0, 0) and (0.005, 0, 0.6).

As mentioned in [64], the fluid pressure is linear within the channel as

pe(r, z) = pe(z) =
poutz + pin(L− z)

L
z ∈ [0, L], , ∀r ∈ [0, R] . (1.108)

Thus the exact radial displacement of the structure is simply given by

ηe(z) =
pe(z)

β
. (1.109)

The comparison between the displacement field simulated with the imple-

mented algorithm and the exact displacement is reported in Figure 1.4. It

can be noted that there is a good agreement between the expected (1.109)

and the simulated values of the considered field. However, some discrepancies

between the exact and the simulated solutions can be found at the extremes
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Figure 1.5: Comparison of the pressure field p between the simulated case

and the reference one, along the cylinder axis.

of the cylinders (at the inlet and outlet). This is due to the boundary con-

ditions on the displacement field imposed on the corner of the domain. In

future works, the boundary conditions on the edges will be analyzed in detail

and improved.

At the same time, in Figure 1.5 the comparison between the exact (1.108)

and the simulated pressure fields along the cylinder axis is reported. It can

be seen that there is total agreement between the simulated pressure and the

exact one.

Koiter benchmark 2

The second benchmark presented in this section, as well as the first one,

is taken from the same work cited above. The idea of this benchmark is to

make a comparison between the two different fluid-structure models presented

in sections above. In the cited work a full, nonlinear FSI problem with

the structure consisting of two layers has been solved. In particular, one

layer with thickness h1 was simulated with the Koiter FSI model, and one

layer with thickness h2 has been simulated with a full three dimensional fluid

structure model. The combined thickness of the composite structure was

considered constant, and the benchmark consists of finding similar results by

changing h1 and h2.

In this section, we do not consider a multi-layer case, and the compari-
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Figure 1.6: The two meshes used for the numerical simulation of Koiter

benchmark 2. The mesh for the monolithic FSI model (left, in red the solid

domain) and the mesh for the Koiter FSI model (right) are shown.

son is carried out between the Koiter FSI model and the monolithic model

presented above. Since the monolithic model satisfies the Turek benchmark,

as reported in section 1.5.1, we can use it as a reference for the testing of the

new algorithm. The test has been carried out using the same parameters of

the Koiter benchmark 1 reported in Table 1.3, with the only exception of the

elastic modulus and the wall thickness. In fact, in this case E = 15625Pa

and ε = 1.2 · 10−3m. Using the same simplified relation for the β calculus,

we obtain β ' 757kPa/m.

In order to test the temporal evolution of the two implemented algorithms,

a variable inlet pressure value is considered

pin =

{
pmax

2

(
1− cos

(
2πt
tmax

))
if t < tmax ,

0 if t ≥ tmax ,

where pmax = 1.333kPa and tmax = 0.15s. With all the presented hypotheses,

the two different tests have been carried out on the meshes presented in Figure

1.6, with a time step ∆t = 5 · 10−4s. Note that the fluid meshes for both

the monolithic and Koiter FSI models are coincident, while the mesh for the

monolithic model is equipped also with the solid mesh. In Figure, the fluid

enters from the bottom and exits from the top. On the outer wall (external

surface of the cylinders) the structure conditions are imposed.
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Figure 1.7: Displacements dx fields for both the monolithic model (left) and

the Koiter model (right).

In Figure 1.7 the qualitatative behavior of the dx field is reported for both

the monolithic and the Koiter model for t = 0.04s. It can be seen that the

two cases have similar displacement fields. Also, the velocity and pressure

fields present similar behavior, but are not reported in this framework.

In Figure 1.8, the quantitative comparison of the displacement of the

structure, calculated along the line between the two points (0.005, 0, 0) and

(0.005, 0, 0.6), is reported. We recall that the problem is symmetric with

respect to the cylinder axis, so the reported graphs are valid for every line

parallel to the cylinder axis and located on the external surface of the unde-

formed cylinder. Note that the two models have a similar behavior in time,

for all the reported time steps. In particular, the two models differ to each

other for t = 0.02s (top-left in Figure) and for t = 0.04s (top-right). After

the initial transition, the two solutions seem to converge to a similar solution,

as it can be seen in the bottom part of Figure 1.8, for t = 0.06s and t = 0.08s.

In order to show the evolution in time of the difference between the two

solutions, the L2 norm of the displacement dx is considered. In particular,

we have

‖dx‖ =

√∫

Ω

dx2 dx ,

where dx is derive from the extension of the displacement η inside the domain

through the Laplacian operator introduced above. With this notation we
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Figure 1.8: Comparison between Koiter (continuous line) and the monolithic

model (dashed line) displacement, for t = 0.02s (top left), t = 0.04s (top

right), t = 0.06s (bottom left) and t = 0.08s (bottom right).
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Figure 1.9: Temporal accuracy of the model through absolute (left) and rel-

ative (right) errors between the norm of dx in monolithic and Koiter models.

study the absolute norm error between the two models defined as

Ea =
∣∣‖dx‖m − ‖dx‖k

∣∣ ,

where ‖ · ‖m is the L2 norm on Ω in the monolithic case, and ‖ · ‖k is the L2
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norm on Ω in the Koiter case. We also study the relative error defined as

Er =
Ea
‖dx‖m

.

In figure 1.9 we report the absolute error (on the left, in log-scale) and the

relative error (on the right) between the two solutions. The numerical Koiter

solution tends to the numerical monolithic solution. Therefore, we can assert

that the implemented Koiter model is consistent with the solution obtained

with the monolithic model, which has been fully tested in previous works.

We can finally assert that the implemented code shows good results ac-

cording to the presented simple benchmarks. Interested reader in more bench-

marks on the Koiter shell equations applied to fluid-structure interaction, and

in benchmarks for composite structures can see [64].

1.5.3 Grid convergence

Another non-trivial issue, especially when dealing with moving meshes, is the

grid convergence of the implemented algorithm. In particular, in this section

we study the grid convergence of the full Koiter model, with the linear term

and the prestress term. In order to show it, a multigrid technique is used to

study the behavior of the solution when the grid is refined. Interested reader

in multigrid technique can see [65, 57].

Three tests on different cases will be carried out, in order to test the

convergence on different geometries and boundary conditions. In particular,

we consider a plane channel, a two-dimensional airbag-type rectangle and a

cylindrical channel. The main parameter used to test the convergence is the

displacement dx = η.

The plane channel test

A simple plane channel of size 0.1m× 0.3m is first considered, as reported in

Figure 1.10. It is meshed with a simple 2×2 grid, with quadratic elements, for

a total of 25 degree of freedom. By considering the undeformed plane channel

with each side parallel to the Cartesian axes, we impose a pressure inlet

condition on the bottom side Γ1 (constant pressure in time, pin = 6000Pa), a

no-slip condition on the left wall Γ2, an outflow condition on the top side Γ4,

and the Koiter boundary conditions on the right wall Γ3 (see Figure 1.10).

The values of the parameters for all the grid convergence tests are reported

in Table 1.4.
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Γ1

Γ2 Γ3

Γ4

x

y

Figure 1.10: Domain for all the convergence tests. For the cylindrical channel,

a rotation around the y-axis of the presented geometry is considered.

Table 1.4: Parameter setting for all the grid convergence tests.

Parameter Symbol Measure unit Value

Solid density ρs [103 kg
m3 ] 1

β coefficient β [kPa/m] 200

Wall thickness ε [m] 7.5 · 10−3

Fluid density ρf [103 kg
m3 ] 1

Fluid viscosity νf [m
2

s
] 1 · 10−3

We report the stationary solution for all the tested cases. We consider

now a time step of ∆t = 0.1s. After 50 iterations, a steady state is found. In

Figure 1.11, the solution of the displacement field along the line between the

points (0.1, 0) and (0.1, 0.3) (red line in Figure 1.10) is reported. In particular,

the solution is reported for various mesh refinements, ranging from 1 level

(the introduced 2×2 mesh) to 4 level. Since the solutions with 3 and 4 levels

are practically the same, we can conclude that the solution converges to a

certain field.

We have also considered the L2-norm of the solution calculated over the

entire domain, similarly to the last section. We report the results in Table

1.5. Since the exact solution is unknown, we use a common approach to

determine the convergence rate p of the solution, given by

p = log2

‖dx‖L−1 − ‖dx‖L−2

‖dx‖L − ‖dx‖L−1

, (1.110)
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Figure 1.11: Comparison between the displacement field solution for different

grid refinements.

Table 1.5: Convergence of the L2-norm of the displacement field for all the

tested cases. In particular, the convergence p for unknown exact solution is

reported.

Level L Nelements ‖dx‖
∣∣‖dx‖L - ‖dx‖L−1

∣∣ p

1 4 7.2024 · 10−4 − −
2 16 7.1024 · 10−4 9.9952 · 10−6 −
3 64 7.0674 · 10−4 3.5039 · 10−6 1.51

4 256 7.0578 · 10−4 9.5290 · 10−7 1.88

5 1024 7.0551 · 10−4 2.7350 · 10−7 1.80

where L is the level of refinement. We report the calculated values of p in

Table 1.5, together with the absolute error between the refined level L and

L − 1. Also, in this case the code shows good convergence properties. Note

that in this section we are not interested in the accuracy of the presented

results, but only on the convergence of the solution to a value.

The airbag test

We consider now the same geometry of the previous case (see Figure 1.10),

with different boundary conditions. In particular, a constant pressure is

imposed on the boundary Γ2 of pin = 6000Pa, a no-slip condition is imposed

on Γ4 and Γ1, and the Koiter shell condition is imposed on the wall Γ3. All

the parameters are considered equal to the set introduced in Table 1.4.
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Figure 1.12: Comparison between the displacement solution for different grid

refinements in the airbag test.

In Figure 1.12, the comparison between the solution of the displacement

dx for different refinement levels is reported. Again, the solution is plotted

along the red line in Figure 1.10. Note that the solution is symmetric, as

expected, and seems to converge with the grid.

Table 1.6: Convergence of the L2-norm of the displacement field for the

airbag test. The convergence p for unknown exact solution and the absolute

error between consecutive solutions are reported.

Level L Nelements ‖dx‖
∣∣‖dx‖L - ‖dx‖L−1

∣∣ p

1 4 1.43798 · 10−3 − −
2 16 1.42065 · 10−3 1.73299 · 105 −
3 64 1.41449 · 10−3 6.15841 · 106 1.49

4 256 1.41279 · 10−3 1.69774 · 106 1.85

5 1024 1.41213 · 10−3 6.58422 · 107 1.36

In Table 1.6, the L2-norm of the dx solution on the entire domain is again

reported. The absolute error and the convergence rate p, calculated as in

equation (1.110), are also reported. As in the previous case, it can be noted

that the solution seems to converge with the grid, with a 1 < p < 2 in all the

tested cases.
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The cylindrical channel test

We finally consider a simple cylindrical geometry in order to show the conver-

gence properties of the three-dimensional numerical problem. The physical

quantities involved in this test are the same used for the previous tests. The

cylinder is obtained by a rotation of the geometry 1.10 around the y-axis. We

impose a constant pressure on the bottom surface pin = 6000Pa, an outflow

condition on the top surface, and the Koiter shell boundary equation on the

outer wall.
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Figure 1.13: Comparison between the displacement solution for different grid

refinements in the cylinder test.

In Figure 1.13, the comparison between the solution dx along a line on the

outer surface of the cylinder and parallel to the axis of rotation of the cylinder

is shown for different mesh refinement. It can be noted that, again, the

solution tends to settle to a certain profile, in agreement with the convergence

requirements.

1.5.4 Absorbing boundary condition test

In this section we introduce a test in order to show the robustness of the

algorithm developed for the absorbing boundary conditions presented in sec-

tion 1.4.4. In particular, this test is inspired by the test presented in [5]. The

considered geometry is a cylindrical channel obtained from the rotation of

the rectangle of dimension 0.05m × 1m around the y-axis (see Figure 1.14).
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Figure 1.14: Domain for all the absorbing tests. The rectangular geometry

is rotated around the y-axis.

The rectangle has its bottom-left corner on the axis origin, and is meshed

with a 16 × 100 uniform rectangular grid. In all the tests presented in the

following, we consider the parameters presented in Table 1.7, with a tem-

poral discretization of ∆t = 0.001s. Each presented test is characterized

Table 1.7: Parameter setting for all the tests on the absorbing boundary

conditions.

Parameter Symbol Measure unit Value

Solid density ρs [103 kg
m3 ] 1

β coefficient β [kPa/m] 2000

Wall thickness ε [m] 7.5 · 10−3

Fluid density ρf [103 kg
m3 ] 1

Fluid viscosity νf [m
2

s
] 1 · 10−3

by a different value of the inlet pressure (imposed on the bottom wall Γ1).

We also impose an outflow boundary condition on the top wall Γ4, and we

compare it with the same case with absorbing outflow boundary conditions.

The Koiter shell equation boundary condition is also imposed on the right

wall Γ3. Finally, a condition consistent with the studied axisymmetric case

is imposed on the left wall Γ1. Note that in order to carry out these tests

based on the axisymmetric boundary condition, it is important to derive the

correct formulations for all the mathematical operators involved in the PDE
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to be solved.

We now report two cases to test the absorbing boundary conditions, based

on a step function and on a sinusoidal inlet pressure in time.

Step function inlet pressure

In this section, we consider the presented system with a step function in

time inlet pressure and compare the response with classical outflow boundary

conditions and absorbing outflow boundary conditions. The imposed pressure

reads

pin =

{
5000Pa if t < tmax ,

0Pa if t ≥ tmax ,

where tmax = 0.03s. In particular, we expect that the pressure step func-

tion induces a pressure wave in the studied domain. We also expect that,

after transiting inside the domain, the pressure wave leaves it and the mean

pressure inside the domain goes to zero.

In Figure 1.15, the transition of the pressure along the symmetry axis

of the cylinder is reported. In the first time steps after the transition from

pin = 5000Pa to pin = 0Pa, the pressure fields in the two cases (with outflow

boundary condition and with absorbing boundary condition) are the same,

as can be seen in Figure for t = 0.03s and t = 0.06s. For t = 0.09s, the

outflow boundary condition starts to influence the exit of the pressure wave

from the domain, therefore the two pressure profile are different. Note that

while the pressure at the outlet is prescribed to be zero in the outflow case,

in the absorbing case the pressure is equal to the pressure expected from

the equivalent one-dimensional system, as introduced in section 1.4.4. From

t = 0.12s spurious waves can be noted in the outflow case. The spurious

wave is originated by the non-physical imposition of a constant pressure at

the outlet, which acts as a reflector of waves.

The error made by using a classical outflow approach can be quantified

through the L2-norm of the pressure over the entire domain. In fact, after

the step of the pressure at t = tmax, the physics of the problem requires that

the pressure wave leaves the domain and the pressure in the domain goes to

zero. The L2-norm of the pressure calculated on the domain for different time

steps and for both the outflow and the absorbing case is reported in Table

1.8. Note that, while the value of the norm of the pressure in the outflow

case has an unstable behavior in time caused by the reflections of the pressure
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Figure 1.15: Pressure field along the cylinder axis for different time steps,

starting from the time tmax. The pressures are reported for t = 0.03s (top

left), t = 0.06s (top right), t = 0.09s (center left), t = 0.12s (center right),

t = 0.15s (bottom left) and t = 0.18s (bottom right).

wave, the norm in the absorbing case goes to zero.

Therefore, we can conclude that the absorbing case is a better represen-

tation of the simulated physical system when dealing with impulsive inlet

pressure. However, in Table 1.8 we can see that the norm in the absorbing

case doesn’t go identically to zero once the pressure wave exits the domain.

This is due to very small spurious reflections related to the fact that the one-

dimensional system used to predict the p value at the outlet of the cylinder

is not accurate as a full three dimensional solver.
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Table 1.8: L2 norm of the pressure over the entire domain at various time

step for both the outflow (pout) and the absorbing case (pabs).

Time [s] ‖p‖out ‖p‖abs
0.2 115.36 15.50

0.3 158.94 4.34

0.4 116.62 2.03

0.5 84.64 0.09

Sinusoidal inlet pressure

We consider now a sinusoidal inlet pressure to simulate a physical system

close to the hemodynamic simulations. In fact, the blood vessels are often

subject to sinusoidal-like inlet pressures boundary conditions. Simulate such

cases without accounting for the absorbing conditions leads to serious errors

in the simulations.
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Figure 1.16: Comparison of the pressure field along the cylinder axis for differ-

ent time steps between the same simulation with different outflow boundary

conditions. Every image is out of phase of π with its subsequent.



66 Chapter 1. Fluid-structure interaction models

We consider then a sinusoidal inlet pressure defined as

pin =
pmax

2

(
1 + · cos

(πt
T

))
,

where pmax = 5000Pa and T = 0.04s. We use a time step of ∆t = 0.001s.
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Figure 1.17: Comparison of the pressure field along the cylinder axis for the

in-phase time steps t = 0.26s (top left), t = 0.34s (top right), t = 0.42s

(bottom left), t = 0.50s (bottom right) between the same simulation with

different outflow boundary conditions.

In Figure 1.16 we report the pressure fields along the cylinder axis at the

start of the numerical simulation, in order to evaluate the first interaction

of the induced pressure waves with the outflow boundaries. In particular,

we report the pressure field for t = 0.08s (top left), t = 0.12s (top right),

t = 0.16s (bottom left), t = 0.20s (bottom right). We remark that, ini-

tially, the solutions coincide (t = 0.08s) then, when the pressure waves hit

the outflow boundary, the classical outflow boundary conditions affect the

solution (t = 0.12s and t = 0.16s) and in particular for t = 0.20s a spurious

negative wave is reflected and interact with the upcoming newly generated

wave. At the same time, the absorbing boundary condition works properly

and no spurious reflections can be noticed in Figure for all the reported time
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steps. Moreover, since the four reported steps are out of phase of π, we ex-

pect similar solutions between the steps t = 0.08s and t = 0.16s and the

steps t = 0.12s and t = 0.20s. The reported pressure fields in Figure 1.16

for absorbing boundary conditions shows such behavior, in contrast to the

outflow boundary condition.

We recall that, since this model is frequently used to simulate hemody-

namic systems, the periodicity of the system is important because the blood

vessels have usually a periodic behavior. In order to investigate further this

point, we report in Figure 1.17 the pressure field along the cylinder axis for

different, in-phase time steps. In order to guarantee the periodic conditions

in the studied channel, we expect the same solutions at each of the reported

time steps. In particular, it can be seen that the solutions with absorbing

boundary conditions are the same at each studied step, and allows the exit

of the pressure wave through the outlet of the channel. Instead, in the out-

flow case the spurious reflections don’t allow to have the same profile in the

in-phase steps.

Table 1.9: L2 norm of the pressure over the entire domain at various time

steps in the absorbing case for in-phase steps.

Time [s] ‖p‖abs
0.26 252.72

0.34 253.87

0.42 254.82

0.50 254.90

In Table 1.9 the comparison between the L2-norm of the pressure in the

absorbing case for the four studied steps is reported. The global pressure

field shows a small discrepancy between each analyzed in-phase step. In

conclusion, the absorbing boundary conditions are necessary to have a correct

numerical simulation of periodic physical systems. This approach can be

applied also to simple Navier-Stokes simulations.





CHAPTER 2

Optimal boundary control

models

The interest of the scientific community towards optimization problems, to-

gether with the growing computational power available, brings to a wide liter-

ature on optimization processes. Such works can be based on many different

approaches, such as linear feedback methods, adjoint or sensitivities-based op-

timal control, multi-objective optimization and many others. The interested

reader can consult [66, 67, 68, 69]. Linear feedback methods are commonly

used to analyze complex systems, e.g. turbine valves and heat exchangers in

power plants, and are also used in electronic applications. Multi-objective

optimization and sensitivities-based optimal control are other interesting re-

search fields with various applications, ranging from engineering design to

financial predictions of market shares.

In this chapter an adjoint based method is used. Such a method has been

proven to be a good approach for the optimal control of complex computa-

tional fluid dynamics problems [70]. Moreover, these methods have a solid

mathematical background and the existence of local optimal solutions can be

proven for many interesting cases [71]. However, this method is only appro-

priate when the design variables are continuous. Since the core of the control

problem is the minimization of an objective function, in some cases such a

function may contain multiple minima. In this case the classical gradient
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approach will generally converge to the nearest minima, without searching

for other minima elsewhere in the design space. If the objective function

is known to have multiple local minima, and possibly discontinuities, then

a stochastic search method may be more appropriate. The adjoint based

method presented in this work can then be used only to get improvements

from a reference state and not to find the global optimal solution to the prob-

lem, unless this is the only minimum of the functional. However, in many

practical situations an improvement on a reference state is what is needed

because too big changes on the design cannot be performed for physical or

practical reasons.

The optimal control problems can be categorized in stationary problems,

where the system variables do not depend on time, and in unsteady problems,

where the studied system is optimized during its evolution in time. Another

classification can be made between different approaches to control, such as

distributed, boundary and shape controls. The difference between them lies

in the way the control can act on the problem domain. In the distributed

control problems source terms in the interior part of the domain are used as

control parameters. This kind of control is not often suitable for practical

applications due to technical difficulties to control the internal points of a do-

main. However, from a numerical point of view is usually easy to implement.

On the other hand, in the boundary control one acts on the system through

its external surface. It can be considered as a more realistic approach to

optimization. However, the mathematical approach to such controls is more

challenging, as well as the numerical algorithm implementation. Lastly, in the

shape control the controlled parameter is the shape of the domain boundary.

Furthermore, identification of material properties such as Young modulus in

solids or fluid viscosity is an inverse problem that can be studied with the

adjoint based formalism, see, for example, [72, 11].

In the following sections of this chapter, the basic principles of the adjoint

optimal control theory are presented by deriving the optimality system for a

simple example problem. Then, the Koiter fluid-structure interaction model

introduced in the last chapter is applied to optimal control problems. For this

purpose, we follow a mathematical formulation in order to show the existence

of the solution of the coupled fluid-structure system presented in the last

chapter. At the same time, we show the existence of the optimal solution,

for a given set of boundary conditions and under certain hypotheses. By

using the Koiter model, it is possible to study the FSI steady optimal control
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problem without taking into consideration the real extension of the solid

domain and thus simplify both the theoretical treatment about the optimal

solution existence, regularity and differentiability properties.

Note that while optimal control problems of classical fluid-structure in-

teraction are studied in many works in literature, there are no works on the

optimal control of the Koiter fluid-structure interaction. Thus, the mathe-

matical models presented in this chapter constitutes a novelty in the field of

the optimal control.

2.1 A simple adjoint optimal control problem

We now introduce a simple example of an adjoint Dirichlet boundary opti-

mal control problem, useful to introduce and clarify the main aspects of the

method. To set up the problem we first need to choose the goal to reach

and how we intend to do so. We introduce a cost functional, a mathematical

formulation that measures how far from the desired target the studied sys-

tem is. This is usually expressed in terms of the state system variables. We

Ω ΓcΓc

Figure 2.1: Domain Ω with control boundary Γc.

denote the control boundary as Γc ⊆ ∂Ω (see Figure 2.1). On Γc, Dirichlet

optimal conditions are sought. Then, the optimal value of q on Γc to have a

desired u = ud on the domain Ωd, constrained by the simple equation ∆u = 0

on Ω can be written as in the following problem.

Problem 2.1. Find a state-control pair (u, q) ∈ H1(Ω)×Q which minimizes

the cost functional

J (u, q) =
1

2
‖u− ud‖2

L2(Ωd) +
α

2
G(q)2 , (2.1)
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under the constraints

(∇u,∇v) = 0 ∀v ∈ H1
0 (Ω) , (2.2)

u = q on Γc , (2.3)

u = 0 on ∂Ω r Γc . (2.4)

In this work, time-dependent optimal control problems are not considered.

However, interested reader in such optimal control problems can see [67]. The

cost functional (2.1) depends on the distance in norm between the solution

u and the target field ud, and on a regularization parameter G(q). The aim

of the method is to minimize J under the constraint of the equation of the

state of the studied physical system (2.3). A typical example of regularization

term is the L2 norm G(q) =
∫

Γc
q2 dx.

2.1.1 The Lagrange multiplier method

The problem 2.1 may be reformulated as unconstrained optimization prob-

lems through the Lagrange multiplier method. We now introduce the defini-

tion of local minimum.

Definition 2.1. A local minimum (u∗, q∗) for a functional J (u, q) is a point

such that, for some ε > 0

J (u∗, q∗) ≤ J (u, q) ∀(u, q) ∈ U ×Q and ‖u∗ − u‖ < ε .

A Lagrange multiplier method is now applied in order to find the optimal

solution of the presented problem. In order to do so we introduce the map

M : B1 → B3, with B1 = U ×Q = H1(Ω)×H1/2(Γc) and B3 = H−1(Ω)×
H−1/2(Γc)×H−1/2(ΓD), where ΓD = ΓrΓc We define M by M(u, q) = (l1, l2)

if and only if

(∇u,∇v) = (l1, v) ∀v ∈ H1
0 (Ω) ,∫

ΓD

uφ dx =

∫

ΓD

l2φ dx ∀φ ∈ H1/2(ΓD) ,
(2.5)

Lemma 2.1. Let the nonlinear mapping M : B1 → B3 be defined by (2.5).

We consider also the bounded linear operator M ′(u, q) : B1 → B2, with

B2 = H−1(Ω)×H−1/2(Γc)×H−1/2(ΓD), and M ′(u, q) · (δu, δq) = (l̄1, l̄2) for
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(δu, δq) ∈ B1 and (l̄1, l̄2) ∈ B2. Thus, the mapping M is strictly differentiable

at a point (u, q) ∈ B1 and its strict derivative is given by M ′ if and only if

(∇δu,∇v) = (l̄1, v) ∀v ∈ H1
0 (Ω) ,∫

ΓD

δuφ dx =

∫

ΓD

l̄2φ dx ∀φ ∈ H1/2(ΓD) ,
(2.6)

We consider now the operator J defined in (2.1) with the regularization

term G(q) defined by

G(q) =

∫

Γc

q2 dx ,

so we can define J as

J =
1

2

∫

Ωd

(u− ud)2 dx+
α

2

∫

Γc

q2 dx (2.7)

and its derivative as

J ′ =
∫

Ωd

δu(u− ud) dx+ α

∫

Γc

qδq dx . (2.8)

Now, given a set (u1, q1) ∈ U × Q, we can define a nonlinear mapping

based on (2.5) and (2.7) as Q : B1 → R × B3. For a ∈ R, we have

Q(u, q) = (a, l1, l2, l3) if and only if



J (u, q)− J (u1, q1)

M(u, q)


 =




a

(l1, l2, l3)


 . (2.9)

We can now introduce the following lemmas.

Lemma 2.2. Let the nonlinear mapping Q : B1 → R × B3 be defined by

(2.9). The strict derivative of Q at a point (u, q) is given by Q′ if and only if



J ′(u, q) · (u, q)

M ′(u, q) · (δu, δq)


 =




δa

(l̄1, l̄2, l̄3, )


 . (2.10)

Lemma 2.3. Let (u, q) ∈ B1 be a solution of the optimal control problem.

We have that

1. the operator M ′(u, q) has closed range in B2,

2. the operator Q′(u, q) has closed range in R×B2,
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3. the operator Q′(u, q) is not onto in R×B2.

Interested reader can find the proof of the Lemma 2.2 applied to a more

complex mathematical problem in [73] and reference therein. Since the opera-

tor Q′(u, q) is not onto, the first-order necessary condition is straightforward,

see, e.g., [74]. Then, we can introduce the following theorem.

Theorem 2.1. There exist a nonzero Lagrange multiplier (Λ, ua, qa) ∈ R×B∗2
satisfying

ΛJ ′(u, q)·(δu, δq)+
〈

(ua, qa),M
′(u, q)·(δu, δq)

〉
= 0 ∀(δu, δq) ∈ B1 (2.11)

where < ·, · > denotes the duality pairing between B2 and its dual space B∗2 .

2.1.2 The optimality system

We can now derive the optimality system for the presented operator. In par-

ticular, starting from the equation (2.11) we can derive the following theorem.

Theorem 2.2. Let (u, q) ∈ B1 denote a solution of the optimal control prob-

lem. Therefore, the control q is solution of the simple scalar equation

q = −∇qa · n
α

, on Γc , (2.12)

while the variable ua is the solution of the equation
∫

Ωd

(u− ud)va dx−
∫

Γc

∇ua · nva dx+ (∇ua,∇va) = 0 , (2.13)

with the boundary equation
∫

ΓD

uaφa = 0 . (2.14)

Proof. We are free to consider Λ = 1. Therefore, we can rewrite the equation

(2.11) considering (2.8) and (2.6) as
(∫

Ωd

(u− ud)δu dx+ α

∫

Γc

qδq dx

)
+ (∇δu,∇ua) +

∫

ΓD

δuqa dx = 0 ,

by integrating the term (∇δu,∇ua) by parts we obtain
(∫

Ωd

(u− ud)δu dx+ α

∫

Γc

qδq dx

)
+

∫

Γc

δq∇qa · n dx

− (δu,∆ua) +

∫

ΓD

δuqa dx = 0 ,

(2.15)
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Then, by imposing δu = 0 we can obtain
∫

Γc

(αq +∇qa · n)δq dx .

Since δq is arbitrary, we can find the optimality condition (2.12). Moreover,

by imposing δq = 0 to (2.15) we obtain
∫

Ωd

(u− ud)δu dx− (δu,∆ua) = 0

together with the boundary condition (2.14). Since δu is arbitrary, we can

use it as a test function va. Thus, we can now integrate again by part in

order to obtain the equation (2.13). Note that the variation δu and δq are

used as test functions for the obtained equations.

In the following, we call ua and qa as adjoint variables. Note that the

adjoint variable ua in (2.13) satisfies an equation similar to the starting one

(2.2). Moreover the boundary conditions of the adjoint system are of the

same type as in the state problem but they should be assumed homogeneous.

This is a typical feature of adjoint problems: when a Dirichlet boundary

condition is imposed in the state system, a homogeneous Dirichlet boundary

condition must be imposed in the adjoint system.

The optimality system is composed by the state equation, the adjoint equa-

tion and the optimality condition. The state equation is the initial constraint

(2.1) together with the boundary conditions (2.2). The adjoint system is com-

posed by the equation (2.13) together with the boundary condition (2.14).

The optimality condition is reported in (2.12), as reported above.

All the presented equations form the so-called optimality system and allow

finding the stationary point of the Lagrangian functional, and therefore to

find the optimal solution of the presented problem.

2.1.3 Numerical solution of the optimality system

To solve the optimality system introduced in the last section, one can use a

one shot method. In that case, the system is solved in a fully coupled fashion.

Using this approach, in the example introduced in the last sections the sys-

tem is solved in a fast and reliable way without any optimization algorithm.

However, for complex mathematical problems the optimality system is made

of many nonlinear and strongly coupled equations. Moreover the solution be-

comes too expensive when a fine domain discretization is used. Under these
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hypotheses the one-shot method becomes unattractive. In order to overcome

these challenges, a segregated approach is generally a better alternative. The

segregated method provides that all the equations of the optimality system

are solved independently with appropriate algorithms, known as optimiza-

tion algorithms, that reduce the computational cost of the whole simulation.

Both the presented methods require a starting point x0. Starting from it, a

sequence of solutions {xk}∞k=0 is found and the algorithm ends when either a

certain convergence criteria are satisfied.

In literature some classes of algorithms can be found, that differ in the

way the updated solutions are found from the previous ones. We consider

now the trust region and the line search methods. Both of them require a

search direction and a step size, which evaluate the distance from the current

solution. The trust region method provides that every new iterate is searched

in a region around the current solution. The maximum distance between two

consecutive iterates is fixed by a step size and the algorithm aims to find the

optimal direction. The line search method provides that the step direction is

found first and then the step size is chosen in order to minimize the functional

along that direction.

In this work we use a gradient based line search approach with a simple

Armijo backtracking strategy [75]. The search direction is obtained by solving

the adjoint equations and the optimality condition that gives the objective

functional gradient direction. A generic iteration of a line search method for

the minimization of a functional J is given by

xk+1 = xk + αkpk ,

where k is the current iteration, pk is the search direction and αk is the step

length. The search direction has to be chosen in the descent direction. For

this reason it usually can be written as

pk = −B−1
k ∇Jk ,

where Bk is a symmetric, non-singular, positive definite matrix. The choice of

Bk defines the used method. For example, when Bk = I (the identity matrix)

the search direction is given by the functional gradient and the method is

known as steepest descent. In Newton methods Bk is the Hessian matrix of

the functional ∆J , while in quasi-Newton methods Bk is an approximation

of the Hessian at every iteration with a low-rank formula, such as BFGS [76].

The step length parameter αk can be chosen in different ways. An exact

line search aims to find the value of αk that minimizes the functional Jk
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Algorithm 2 Backtracking Line search
1. Set αk = α0 > 0, ρ ∈ (0, 1)

while Jk(xk + αkpk) > Jk(xk) do

2. Set αk = ραk
if αk < ε then

Line search not successful . End of the algorithm

end if

end while

along the search direction. This method significantly reduces the value of the

functional, however is a computationally expensive algorithm. For this reason

more feasible strategies perform only an inexact line search, reducing Jk at

minimal cost. The backtracking line search strategy presented in Algorithm

2 is a commonly used inexact method. The step length αk is first initialized

to a positive value α0, whose value depends on the choice of the algorithm.

Then the step length is reduced by a contraction factor ρ until a lower value

of the functional for the new iterate is found. When αk < ε the process ends.

A final brief remark on the sensitivity of the functional is now needed. In

the numerical approach to optimal control problems, it is very important to

handle control or design parameters such that small changes in their values

imply large changes in the solution. This means that the solution should be

very sensitive to small changes in the data. The insensitivities of the cost

functional can be used to induce changes in the choice of design parameters

by replacing the useless parameters with others that have a greater effect on

the cost functional, or change the cost functional itself so that it becomes

more sensitive to the design parameters.

All the numerical computations of optimal control simulations introduced

in this chapter will be done with the numerical approach presented in this

section. In the final chapter, a different approach based on a monolithic

system will be used.

2.2 Optimal boundary control of steady Koi-

ter FSI model

In this section, an optimal boundary control for the steady Koiter FSI model

presented in the last chapter is introduced. We follow an approach similar

to the technique introduced to obtain the optimality system for the problem
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2.1. In particular, we consider as a controlled variable the pressure on the

domain Γc. The presented formulation also accounts the possibility to control

the velocity field on Γc, defining two different classes of problem, the pres-

sure boundary control, and the velocity boundary control. The goal of the

presented control is to obtain a desired displacement field ηd over a domain

Ωd ⊆ Ω. In order to do so, we follow a mathematical formulation similar to

the approach used in [73, 71]. However, the moving domain and the mesh

motion complicate the mathematical and numerical approach to the control

problem.

In order to maintain a consistent mathematical formulation of the optimal

control problem, we consider a Koiter shell model slightly different from the

model presented in the last chapter, following the model introduced in [77].

Therefore, a brief introduction of the modified model is needed, together with

some basic notation useful in the rest of this section.

2.2.1 An introduction to the FSI control problem

In this work, the membrane model based on the Koiter shell equations is used

to reduce the space dimension of the solid structure [4]. Let Ω ⊂ R2 be the

domain where Koiter fluid-structure interaction equations are solved, with

boundary Γ. As noted in the previous chapter, using this approach the solid

region of a full classical FSI model collapses into the fluid-solid boundary

Γs. Following the notation in Figure 2.2 on the left, the reference domain

is bounded by Γ2 (inlet), Γ4 (outlet), Γ3 (no-slip wall) and Γ0 (fluid-solid

reference boundary). We also call A and B the extreme points of Γ0. In this

section, n̂ will denote the unit vector normal to the boundary Γ.

The optimal control theory may face difficulties when dealing with moving

domains. For this purpose, since we often need in this section to compute and

differentiate quantities on moving boundaries, an extension of the functions

on an extended fixed domain is required in order to keep the mathematical

formulation consistent. In the rest of this section, we use the ( ·̂ ) notation

for quantities extended on a fixed domain. For example, given a function u

defined over the moving domain Ω, we denote with û the extension on the

extended domain Ω̂ of u. Thus, we introduce the Calderon extension theorem

in order to build properly the extension functions.

Theorem 2.3. Let Ω ⊂ R2 be a uniform Lipschitz domain, and E a linear
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Ω

Γ3 Γ0

Γ4

Γ2

η

Γs

A

B

Ωd

Γc

d0c0

A

B

Figure 2.2: On the left, the FSI Koiter domain with the name of all bound-

aries. On the right, some parameters useful for the optimal control are pre-

sented.

continuous extension operator

E : Hs(Ω)→Hs(R2) .

Then, ∀u ∈ Hs(Ω) ,∃E such that ‖Eu‖m ≤ K‖u‖m, where the constant

K ∈ R+ depends only on the cone embedded in Ω.

Now some basic notations on the moving domain are introduced. The

solid region, which collapses into the domain boundary Γ1, can be mapped

over an interval (a, b) denoted by I. We introduce r as a function defined

over Ω representing the projection of η on from I to Γ1 and extended inside

of the domain, as

a(r, φ) = 0 ∀φ ∈ H1
0 (Ωη) .

In this case, with reference to Figure 2.2 we can state that the coordinates

of the solid domain can be written as

Γ1 = {x ∈ R2 |x = (x(t), y(t)) with t ∈ I = (a, b),

x = η(t), y = y(A) + y(B)(t− a)/(b− a)} .
(2.16)

Under the condition (2.16), in the following the domain Ω and Γ1 can be de-

noted by Ω(r) and Γ1(r). However, for the sake of simplicity, in the following
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the dependence on r is omitted. In order to enable to explicitly derive a first

order necessary condition of the optimal problem, the function r(t) shall be

regular enough. In order to do so, we shall require that the fluid-solid bound-

ary Γ1 has to be C1,1 [78]. Moreover, to have a regular flow the domain must

have convex corners. Under these hypotheses (Γ1 has to be C1,1 and Ω with

convex corners), we can state that the membrane Γ1 is connected smoothly

to the rest of the boundary.

The reference configuration of the fluid-solid boundary Γ0 can be defined

as the set of points x0(t) = (η0(t), t) ∈ R2 with t ∈ I = [0, L]. As can

be seen in Figure 2.2, we consider a line parallel to the y-axis of length

L as the reference undeformed configuration. The tangent and the normal

unit to Γ0 will be denoted by t0 and n0, respectively. The displacement

η(t) : I → R defines the deformed boundary Γ1(t) as the set of points x1(t) =

x0(t) + n0(t)η(t) ∈ R2 depending on the parameter t ∈ I defined in (2.16).

When the reference configuration x0 is a line parallel to the y-axis, we have

x0(t) = (η0(0), t), n0 = îx, t0 = îy and x1(t) = (η(t), t) = (x0(0) + η(t), t)

with t0 = (t0x, t0y) = (η
′
/(
√

1 + η′2), 1), n0 = (t0y,−t0x) and t ∈ [0, L].

The physical model

We consider an incompressible viscous fluid flowing through the domain Ω, as

shown in Figure 2.2. The velocity u and the pressure p satisfy the stationary

incompressible Navier-Stokes system

− ν∇ ·D + (u · ∇)u+∇p = f on Ω , (2.17)

∇ · u = 0 on Ω , (2.18)

where ν the constant fluid viscosity, D(u) =
(
∇uT +∇u

)
/2 is the deforma-

tion tensor and f is a body force. The velocity vanishes along the walls where

no-slip boundary conditions are imposed. In particular, a no-slip condition

is imposed on the fixed wall Γ3 and on the moving boundary Γ1.

The solid behavior is modeled with the Koiter membrane model studied

in section 1.4. As mentioned above, the model relies on some assumptions:

small deformations, negligible bending term, linear constitutive stress-strain

relation, and only normal displacement. Under these hypotheses, in the cur-

rent rectangular case (as reported in Figure 2.2 on the left) the displacement

field η can be written as η = (η, 0). Following the procedure in [5] and, in

particular, in [77], the stationary Koiter model on the reference configuration



2.2. Optimal boundary control of steady Koiter FSI model 81

Γ0 can be written as

βη − γ∆η − γ1∆2η = fs on Γ0 , (2.19)

where β, γ and γ1 ∈ R can be considered constants, under some simplifying

assumptions valid for simple geometries (e.g. the considered rectangle). In

particular, β depends on the Young modulus of elasticity E, the Poisson

ratio and the geometry of the solid; γ depends on the prestress state of the

solid material, e.g. for simplified geometry it depends on the solid viscosity.

For γ = γ1 = 0 we recover the pure elastic case. Note that, in contrast to

some works in literature, a fourth-order term has been added to the equation,

accordingly to [79, 80]. Now, in order to couple the fluid-solid with the same

test functions we introduce a new variable κ such that

γ∆η + γ1∆κ− βη + fs = 0 on Γ0 , (2.20)

κ = ∆η on Γ0 . (2.21)

Therefore, the numerical physical system is built in such a way that the

displacement field η (defined on Γ0) must satisfy the Navier-Stokes system

(2.17)-(2.18) on Ω, and the Koiter system (2.20)-(2.21) on Γ0.

The optimal control problem

We can now introduce the optimal control problem studied in this section.

Problem 2.2. Find a state-control set (τc, gc, η) ∈ L2(Γc)×H1(Γc)×H2(Γ0)

which minimizes the cost functional

J (τc, gc, η) =
1

2

∫

Ωd

|η − ηd|2dx+
λ

2
‖τc‖L2(Γc) +

λ1

2
‖gc‖H1(Γc) , (2.22)

where λ, λ1 ∈ R+ are constant, and under the constraints

− ν∇ ·D + (u · ∇)u+∇p = f on Ω ,

∇ · u = 0 on Ω ,

γ∆η + γ1∆κ− βη + fs = 0 on Γ0 ,

κ = ∆η on Γ0 ,

and a consistent set of boundary conditions for all the involved variables (u,

p, η and κ).
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In other words, the optimal control problem consists in finding the optimal

pressure field on Γc (pressure boundary control, λ 6= 0 and λ1 = 0) or the

optimal velocity field on Γc (velocity boundary control, λ1 6= 0 and λ = 0)

in order to have a desired displacement ηd on the domain Ωd. Since the

presented problem is different from the standard optimal control problems

available in literature, some additional requirements have to be imposed in

order to show the existence of the optimal solution of the numerical problem

and the consistency of the Lagrange multiplier method used to solve the

optimal control problem.

2.2.2 Weak formulation of the constraints

Now we introduce the weak formulation of the constraints of the problem 2.2

together with a set of consistent boundary conditions. The multi-scale fluid-

structure problem can now be introduced. We introduce g ∈ H1/2(Γ) as the

boundary velocity satisfying the compatibility condition
∫

Γ
g ·nds = 0, that

vanishes on the fluid-solid boundary where no-slip boundary conditions are

considered. The state (u, p, η, κ, r) ∈H1(Ω)×L2
0(Ω)×H2

0 (I)×H1
0 (I)×H2(I)

is constrained to satisfy the fluid system (2.17)-(2.18) and the Koiter shell

system (2.20)-(2.21), together with the appropriate boundary conditions. By

using appropriate test functions ϕ the split weak form of fluid-structure prob-

lem can be obtained. Given the normal displacement and the boundary

parametrization (η, κ, r), the velocity and pressure fields (u, p) must satisfy

the following weak system

νa(u,ϕ) + c(u;u,ϕ) + b(ϕ, p) = (f ,ϕ) ∀ϕ ∈H1
Γ(Ω(r)) ,

b(u, ψ) = 0 ∀ψ ∈ L2
0(Ω(r)) ,

(u, s)Γ = (g, s)Γ ∀s ∈H−1/2(Γ(r)) .

(2.23)

Moreover, the solid system reads

(fs, ψ)I + (βη, ψ)I + (γ∇η,∇ψ)I + (γ1∇κ,∇ψ)I = 0 ∀ψ ∈ H1
0 (I) ,

(κ, ψ1)I = (γ1∇η,∇ψ1)I ∀ψ1 ∈ H1
0 (I) ,

(2.24)

where we assume Dirichlet boundary conditions on both η and κ at the

extreme points of the interval I. In the following, we refer to Ω = Ω(r) = Ωr

by using these notations.

The coupling between the system for the fluid (2.23) and the system

for the solid (2.24) is obtained through the normal stress tensor τn = −pn+
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ν
(
∇u+(∇u)T

)
·n. In fact, we may impose (τn,n0ψ)Γ1 = (τn,n0 |J−1

1 |ψ)I =

(fs, ψ)I , where J1 is the Jacobean of the transformation from the reference

configuration I to the deformed configuration Γ1. For numerical purpose, it

is more convenient to write all the equations over the deformed configuration.

Then, by introducing the functional space

H1
t0

(Ω(r)) = {f ∈H1(Ω(r))|f − n0(n0 · f) = 0 on Γ1} , (2.25)

we can obtain the following coupled system

νa(u,ϕ) + c(u;u,ϕ) + b(ϕ, p) + (τn,ϕ)ΓN

− (βη, ϕn0J1)Γ1 − (γJ1∇t0η,∇t0ϕn0)Γ1

− (γ1J1∇t0κ,∇t0ϕn0)Γ1 = (f ,ϕ) ∀ϕ ∈H1
t0

(Ω) ,

b(u, ψ) = 0 ∀ψ ∈ L2(Ω) ,

(κ, ψ1) = (∇t0η,∇t0ψ1) ∀ψ1 ∈ H1
0 (I) ,

(u, s)Γ = (n0gn, s)Γ ∀s ∈H−1/2(Γ) ,

a(r, φ) = 0 ∀φ ∈ H1
0 (Ω)

(r, φ1)Γ = (J1η, φ1)Γs − (u · n, φ1)Γs ∀φ1 ∈ L2(Γ) ,

(2.26)

where ΓN represents the boundary where Neumann conditions are imposed.

Note that the presented weak form (2.26) balances the fluid normal stress

along the n0 direction with the solid force

(
− pn̂+ ν(∇u+ (∇u)T ) · n̂

)
Γ1

=
(
βη − γ∇2η − γ1∇4η

)

The tangential solid force (i.e. in the t0 direction) is balanced by the no-slip

boundary condition that does not allow tangential displacements.

In the following, we consider the monolithic formulation (2.26) and the

splitted formulation (2.23)-(2.24) as equivalent. Considering the split for-

mulation, we can refer to the standard results in [43] in order to show the

existence and the uniqueness of the solution. In particular, for the fluid

equation (2.23), we can introduce the following Theorem.

Theorem 2.4. Let Ω be an open, bounded set of R2 with Lipschitz-continuous

boundary Γ. Let f ∈ H−1(Ω) and g ∈ H1/2(Γ). Then, there exists at least

one solution (u, p) ∈ H1(Ω) × L2
0(Ω) of the system (2.23). The set of u is

closed in H1(Ω) and is compact in L2(Ω).

Moreover, for some positive ν0 = ν0(Ω(r),f , g) depending on the given

data, if ν > ν0 then the set of solutions of (2.23) consists of a single element.
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With reference to the same cited work, we can also obtain the correspond-

ing Theorem for the existence of a smoother solution of (2.23). To introduce

such a theorem, we rely on the validity of the inf-sup condition on the operator

B(u, (q, d)) = b(u, (q))+(u|Γ, d) and the norm ‖g‖1,Γ (see [43, 9, 81]). Then,

we consider the constants ca and cb that follows the coercivity properties (see

[44])

a(u,u) ≥ ca‖u‖2
1 u ∈H1

Γα(Ω) ,

inf
p∈L2

0(Ω)
sup

v∈H1
0 (Ω)

b(v, p)

‖v‖1 ‖p‖
≥ cb .

Theorem 2.5. Let r ∈ H2(I) and τn ∈ H−1/2(Ω). Thus, there exists at

least one solution (u, p) ∈H3/2(Ω)×H1/2(Ω) ∩ L2
0(Ω) of the system (2.23).

Moreover, for some positive constant C2 = C2(ν, cb, ka, kc), which does

not depend on the domain Ω and its boundary Γ, the solution satisfies the

following estimates

‖p‖0,Ω + ‖τs‖0,Γ ≤ C2

(
‖f‖0,Ω + ‖g‖1,Γ + ‖g‖2

1,Γ

)
. (2.27)

Now we consider the shell system (2.24): since the system is a fourth order

mono-dimensional differential equation, the regularity comes from standard

theory (see [43]). We also remark that, from the embedding Sobolev theorem,

η ∈ H2(I) ⊂ C0(I). Then, we can introduce the following Theorem.

Theorem 2.6. Let fs ∈ L2(I). There exists a solution (η, κ) ∈ H1(Ω) ∩
H1

0 (I)×H1(I) of the system (2.24).

Furthermore, there exists a positive constant C1 = C1(β, γ1, γ) such that

‖η‖3 ≤ C1‖fs‖. If there exists a positive constant ks such that ‖fs‖ ≤ ks,

then there is a positive constant C2 such that |η(t)| ≤ C2, ∀ t ∈ I.

We consider now the monolithic system (2.26). Such a system is equiva-

lent to the presented split system. For the boundary velocity we set u|Γ =

tgt + ngn. We assume that gt = 0 and the inflow velocity gn ∈ H1(Γ) is de-

fined directly or through appropriate Neumann conditions. We now need to

bound the force f independently of Γ1. Let Ω̃ be an open bounded extension

of the domain Ω. In this way ‖fn‖Ω̃f
bounds ‖fn‖Ω for all Ω. Then, by using

the Theorems 2.5 and 2.6 we can assert that the deformations are limited.

Thus, all possible domains can be included inside an extended domain Ω̂.

Now we reformulate the Navier-Stokes problem over the extended domain

Ω̂. We consider the variables (u, g, p, τn) of the system (2.23) for all possible
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values (η, κ, r). Under these hypotheses, we can study the problem with fixed

domain theorems. We remark that the ( ·̂ ) notation indicates the quantities

extended over Ω̂. The construction of the extended function is obtained by

Calderon’s extension theorem (see Theorem 2.3).

Since the movement of the boundary Γ1 is defined by the displacement η,

which is bounded above and below as defined above, then we can consider a

fixed domain Ω̂ with boundaries Γ̂ and Γ̂ ∩ Γ = Γ r Γ1 that contains Ω. We

consider τn ∈ T . There exists g ∈ H1(Γ) such that (u, p, τn) ∈ H3/2(Ω) ×
H1/2(Ω) × T satisfies (2.23). Now we consider the following procedure to

construct the extension (û, p̂, f̂) in H1(Ω̂)×L2(Ω̂)×L2(Ω̂) from the solution

(u, p,f) in H1(Ω)× L2(Ω)×H−1(Ω). We set û = u and p̂ = p over Ω and

zero over Ω̂rΩ. By using this extension f̂ = f over Ω and f̂ = 0 over Ω̂rΩ.

The test functions can be naturally extended. With this setting, (û, ĝ, p̂, τn)

satisfies the Navier-Stokes system with velocity field and test functions that

vanish on ∂Ω̂, namely satisfies the following system.

νa(û, ϕ̂) + c(û; û, ϕ̂) + b(ϕ̂, p̂) = (f̂ , ϕ̂)Ω̂ ∀ϕ̂ ∈H1
∂Ω̂

(Ω̂) ,

b(û, ψ̂) = 0 ∀ψ ∈ L2
0(Ω̂) ,

(û, ŝ)∂Ω̂ = (ĝ, s)∂Ω̂ ∀ŝ ∈H−1/2(∂Ω̂) .

(2.28)

and the normal boundary stress can be computed as

(n0τn, ϕ̂)∂Ω̂ = νa(û, ϕ̂) + c(û; û, ϕ̂) + b(ϕ̂, p̂)− (f̂ , ϕ̂)Ω̂ ∀ϕ̂ ∈H1
t0

(Ω̂) ,

(n0τn, ϕ̂)Γ1 = νa(û, ϕ̂) + c(û; û, ϕ̂) + b(ϕ̂, p̂)− (f̂ , ϕ̂)Ω ∀ϕ̂ ∈H1
t0

(Ω) ,
(2.29)

or, when τn ∈ L2(∂Ω̂), in the proper explicit form, as

τn = −pn0 +∇û · n0 .

on ∂Ω̂ or Γ1. The stress τn on ∂Ω̂ ∩ (Γ − Γ1) can be used for appropriate

Neumann conditions and the stress τn on Γ1 as driven force over the solid

region. We remark that only τn ∈ T results in boundary Neumann condition

with pressure-velocity solutions in standard spaces. With the introduced

basics, we can now state the existence of the solution of the fluid-structure

coupled system.

Theorem 2.7. Let Ω0 ⊂ R2 be the fluid reference open bounded domain

with piece-wise C1,1 boundary Γ0. Also let f ∈ L2(Ω̃f ) and gn ∈ H1(Γ)

with Ω̃f ⊂ Ω0 and g defined as above. Then there exists a domain Ωη and
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a (u, p, η, κ) ∈H3/2(Ωη)×H1/2(Ωη)×H1
0 (I)×H1(I) solution of the (2.23)

and (2.24).

Proof. In order to prove the presented Theorem, we consider the Schauder’s

fixed point theorem (2.23)-(2.24). First, note that for any (η, κ, r) in their

consistent spaces, the terms g ∈ H1(Γ) and f ∈ L2(Ω) and their norms

are uniformly bounded by ‖g‖1,Γ0 and ‖f‖0,Ω̃. Moreover, from Theorem

2.5 and 2.6 we can conclude that the displacement η is limited, thus the

domain Ω can be extended to Ω̂. The extension of the domain is carried out

since the extension of the variables u and p, i.e. (û, p̂) ∈ H1(Ω̂) × L2(Ω̂),

solve (2.28) over the fixed domain Ω̂ . The restriction of (û, p̂) to Ω gives

(u, p) ∈H3/2(Ω)×H1/2(Ω).

Schauder’s fixed point theorem can be summarized as follows. Let D

be a separated topological vector space, BR ⊂ D a convex subset, and

T (BR) → BR a continuous function on BR, equipped with the topology

inherited from D. Also let T (BR) be a compact subset of BR. Then T has

a fixed point, namely, there exists x ∈ BR such that T (x) = x. Interested

reader in Schauder’s fixed point theorem can see [82].

Let (û1, p̂1, η1, κ1) ∈H1(Ω̂)×L2
0(Ω̂)×H1

0 (I)×H1(I) be given. Consider

now the following mapping

T : D = H1 × L2
0 ×H1

0 ×H1 → A = H1 × L2
0 ×H1

0 ×H1 ,

where we rewrite the system of equations (2.28) and (2.24) as

û = û(û1, p̂1, η1, κ1) , η = η(û1, p̂1, η1, κ1) ,

p̂ = p̂(û1, p̂1, η1, κ1) , κ = κ(û1, p̂1, η1, κ1) .
(2.30)

We endow the product space H1 × L2
0 ×H1

0 ×H1 with the norm

‖(û1, p̂1, η1, κ1)‖ = ‖û1‖1 + ‖p̂1‖+ ‖η1‖1 + ‖κ1‖1 .

In order to use the fixed point theorem the solutions of each split equation

must be uniformly bounded. Given (û1, p̂1, η1, κ1) it is possible to prove by

using standard techniques that ‖û‖1,Ω̂ is uniformly bounded on the fixed

domain Ω̂ by the data norms ‖g‖1,Γ0 and ‖f‖0,Ω̃ [43]. This is true since ĝ is

zero on the moving boundary, its norm does not change for different η1 and

f̂ is zero outside the domain Ω̃. Therefore the ‖û‖1 and ‖p̂‖ are bounded

uniformly by the constants Cu and Cp, respectively, for any (û1, p̂1, η1, κ1) ∈
H1 × L2

0 ×H1
0 ×H1.
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Since τs ∈ L2(Γ) we can write explicitly

τn = −pn0 + ν
(
∇u+ (∇u)T

)
· n0 , (2.31)

obtaining

‖τn‖0,Γ ≤ ‖p‖0,Γ + ‖g‖1,Γ . (2.32)

From Theorem 2.5 and 2.6 we can conclude that norms ‖τs‖0,Γ1 , ‖η‖2, ‖κ‖1,

‖r‖2 are uniformly bounded by the constants Kt, Cη, Cκ and Cr, respec-

tively. Since H2 ⊂ C0,1(I) the curve defined by r is Lipschitz-continuous and

bounded for any (û1, p̂1, η1, κ1, r1) ∈ D. Since the second derivative κ of η is

in H1 then η is in H3(I). The Sobolev embedding theorem implies η in C1,1,

which is the required regularity for the boundary Γs.

Again, using standard techniques [83], it is possible to show that (2.30)

is a continuous mapping with respect to its norm, and it is also linear when

(u1, p1, η1, κ1) is known. Let now R denote the constant R = Cu+Cp+Cη+Cκ
and let BR be the ball of radius R. Since for all (û1, p̂1, η1, κ1) ∈ D we have

‖(û, p̂, η, κ)‖ = ‖u‖1 + ‖p‖+ ‖η‖1 + ‖κ‖1 ≤ Cu + Cp + Cκ + Cη = R2

therefore

T (BR) ⊂ BR .

The theorem follows from the compactness of BR, which can be proved again

with standard techniques [83, 84]. When we restrict the domain to Ω we have

(u, p) ∈H3/2(Ω)×H1/2(Ω) by construction.

We now introduce briefly some critical problems caused by the use of

mixed (Neumann-Dirichlet) boundary conditions. It is well known that, when

(u, p) is a solution of the full Dirichlet problem in an arbitrary polyhedron or

a solution of the full Neumann problem in an arbitrary Lipschitz graph poly-

hedron, then (u, p) ∈H1(Ω)× L2(Ω) [43]. However, in the mixed boundary

conditions in an arbitrary polyhedron case (with the Dirichlet and Neumann

boundary conditions prescribed arbitrarily on different faces) this is not al-

ways true. In fact, we can write only (u, p) ∈W 2,8/7+ε(Ω)×W 1,8/7+ε(Ω) for

some positive ε depending on the geometry of the domain.

The fact that the regularity is below the required one needs particular

care. Following the theory and the examples in [84], we can conclude that for

all Neumann and Dirichlet boundary conditions, where there are no bound-

ary condition changing points, the differentiability can be attained. However,
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where there are boundary condition changing points, case by case should be

evaluated for mixed boundary conditions. We remark that the solution ex-

istence depends strongly on the form of the domain and where the change

of boundary conditions is forced. Solution existence can be obtained with

techniques similar to those proposed for Dirichlet boundary conditions and it

is based on the regularity of the Navier-Stokes equations. Basically we need

the local regularity (u, p) ∈H2×H1 which is valid outside arbitrarily small

edge and vertex neighborhoods when the data are sufficiently smooth. By

taking into consideration these notations, we can now analyze the optimiza-

tion problem.

2.2.3 Existence of the optimal solution

Since we are studying a more complex mathematical problem in comparison

with the simple one presented in section 2.1, the existence of the optimal

solution is not straightforward. Therefore, we introduce now some basic con-

cepts in order to prove the existence of the optimal solution in the studied

case. We recall now the definition of the optimization problem in weak form

in the stress case. In fact, in the following we do not consider the control

of velocity (λ1 6= 0 in (2.22)). However, it is easy to extend all the formula-

tions presented in the following to the optimization problem with controlled

velocity.

Problem 2.3. Find a state-control set (τc, η) ∈ L2(Γc) ×H1(Γc) × H2(Γ0)

which minimizes the cost functional

J (τc, gc, η) =
1

2

∫

Ωd

|η − ηd|2dx+
λ

2
‖τc‖L2(Γc) , (2.33)

where λ, λ1 ∈ R+ are constant, and under the constraints

νa(u,ϕ) + c(u;u,ϕ) + b(ϕ, p) + (τc, ϕn0)Γnc

+ (τn, ϕn0)ΓdrΓ1 + (τn, ϕn0)ΓnrΓnc (2.34)

+ (βJ1η, ϕn0)Γ1 + (γJ1∇t0η,∇t0ϕn0)Γ1

+ (γ1J1∇t0κ,∇t0ϕn0)Γ1 = (f ,ϕ)Ω ∀ϕ ∈H1
t0

(Ω) ,

b(u, ψ) = 0 ∀ψ ∈ L2(Ω) , (2.35)

(u, s)Γ = (n0 gn, s)Γ ∀s ∈H−1/2(Γ) , (2.36)

(κ, ψ1) = (∇t0η,∇t0ψ1) = 0 ∀ψ1 ∈ H1
0 (I) , (2.37)
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a(r, φ) = 0 ∀φ ∈ H1
0 (Ω) , (2.38)

(r, φ1)Γ = (J1η, φ1)Γs − (u · n, φ1)Γs ∀φ1 ∈ L2(Γ) . (2.39)

In the system (2.34)-(2.39) we can assume that τn = 0 on Γn r Γnc. The

τn is determined by the gn on the corresponding boundary. We also set

η(0) = η(L) = 0, κ(0) = κ0 and κ(L) = κL. It is important to note that g

on Γ1 should match the boundary vanishing velocity.

Since we are considering a case with mixed boundary conditions, we need

to respect the regularity of the solution of the problem for the velocity g and

therefore we also require that τs belongs to an admissible set. We assume that

the projection of u along the tangent is given in all the regions when Neumann

boundary conditions are imposed. To control the normal component of τs
we require an improved regularity. On Γ with normal n0, we can usually

compute the fluid stresses τs as

(τs,ϕ)Γ = νa(u;ϕ) + c(u;u,ϕ) + b(ϕ, p)− (f ,ϕ)Ω ∀ϕ ∈H1(Ω) ,

and τn = τs · n0 as

(τn, ϕn0)Γ = νa(u;ϕn0) + c(u;u, ϕn0)

+ b(ϕn0 , p)− (f , ϕn0)Ω ∀ϕn0 ∈ H1(Ω) ,
(2.40)

for all (u, p) ∈ Hm+1(Ω) × Hm(Ω), m ≥ 1. We recall that ϕ = t0ϕt0 +

n0ϕn0 and τs = t0τt + n0τn. When (u, p) ∈ H3/2(Ω)×H1/2(Ω) the normal

component of the stress τn is in L2(Γ). We require that τn is in L2(Γ) and

therefore we define the admissible set

T ad = {τn ∈ L2(Γ) | (u, p) ∈H3/2(Ω)×H1/2(Ω) ∩ L2
0(Ω)

satisfies (2.40)} .

For the admissible pressure control we force τc ∈ T adc with

T adc = L2(Γnc) ∩ T ad ,

and the boundary velocity to be g = 0t0 + n0 gn such that gn ∈ Gad
gm , where

Gad
gm = {gn ∈ H1(Γ) | ‖g‖1,Γ ≤ gm} . (2.41)

In some optimal problems the admissible displacement η ∈ H1
0 (I) is de-

sired to be limited and therefore we require η ∈ Qad where

Qad
η0,ηm

= {η ∈ H1
0 (I) | c0 ≤ η ≤ d0} . (2.42)
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Let η0 = (c0 + d0)/2 and ηm = (d0 − c0)/2 such as we can write (2.42)

as |η − η0| ≤ ηm. We remark also that η ∈ Qad and κ ∈ H1(I) imply

η ∈ H1(Ω) ∩H1
0 (I).

Under all the presented hypotheses, we can now define the admissible set

of states and controls

Sad = {(u, p, gn, τc, η, κ, r) ∈H3/2(Ωη)×H1(Ωη) ∩ L2
0(Ωη)×Gad

gm × T adc (Γnc)

×Qad
η0,ηm

×H1(I)×H1
ΓηrΓs(Ω) such that J (τc, η) <∞ and

(2.34)-(2.38) are satisfied } .

Moreover, we say that (ũ, p̃, g̃n, τ̃c, η̃, κ̃, r̃) ∈ Sad is an optimal solution if there

exists ε > 0 such that, for a given f ∈ L2(Ω̃), gn ∈ H1(Ωd) and τn ∈ L2(Γn)

we have

J (τ̃c, η̃) < J (τc, η) ∀ (u, p, gc, τc, η, κ, r) ∈ Sad satisfying

‖u− ũ‖1 + ‖p− p̃‖0 + ‖η − η̃‖3 + ‖κ− κ̃‖1 + ‖r − r̃‖1 < ε .
(2.43)

Now we can introduce the fundamental Theorem on the existence of an

optimal solution. In particular, we show that the optimal solution of the

problem (2.43) exists when the admissible set Sad is not empty. When only

Neumann or only Dirichlet boundary conditions are considered and no bound-

ary condition type changes are present, the global constraint (2.41) simpli-

fies. However, since we are considering mixed boundary conditions, we need

conditions in the agreement with the required regularity. Since the optimal

solution, which must be obtained through non-linear iterations, is a local

minimum it depends on the initial guess. In our specific geometry, the zero

solution of Navier-Stokes equation over a rectangular region is in Sad when

no force is considered. In this case, Sad is not empty and the zero solution

can be used as the initial guess.

Theorem 2.8. Let Sad be not empty. There exists an optimal solution

(u, p, τc, gn, η, κ, r) ∈ Sad.

Proof. We first sketch the main idea of this proof, which follows standard

techniques in literature. Since the functional J is bounded from below and

Sad is not empty by hypothesis, we can build a sequence {(u(k), p(k), g
(k)
n , τ

(k)
c ,

η(k), κ(k), r(k))} ∈ Sad that tends to the infimum of the set of the functional

values when (u, p, gn, τc, η, κ, r) ∈ Sad. The sequence is uniformly bounded

with the corresponding norms. We consider first the fluid equations for the



2.2. Optimal boundary control of steady Koiter FSI model 91

variables (u(k), g(k), p(k), τ
(k)
c ) and the extension Ω̂ of the domain Ω that allows

us to study the problem (2.28) for (û(k), p̂(k), ĝ(k)) and compute τ
(k)
c , as in

(2.29), with fixed domain theorems. Since the movement of the boundary Γ1

is defined by the displacement η, which is bounded above and below by c2

and d2, we can easily build a fixed domain Ω̂ such that its boundaries can be

defined as Γ̂∩Γ = ΓrΓ1. The fixed domain is built to contain all the points

of Ω for any (η, κ, r).

Now we consider the following procedure to build the extension (û(k), p̂(k),

f̂) inH1(Ω̂)×L2(Ω̂)×H−1(Ω̂) from of the solution (u(k), p(k),f) inH3/2(Ω)×
H1/2(Ω) × L2(Ω). We set û(k) = u(k) and p̂(k) = p(k) over Ω and zero over

Ω̂ r Ω. By using this extension f̂ = f . The test functions can be naturally

extended so that they are independent of boundary variations. With this

setting, the set (û(k), ĝ
(k)
n , p̂(k), τ̂

(k)
n ) satisfies the Navier-Stokes system with

velocity field and test functions that vanish on ∂Ω̂rΓ. Therefore, the system

on the extended domain reads

νa(û(k), ϕ̂) + c(û(k);u(k), ϕ̂) + b(ϕ̂, p̂(k))

= (f̂ , ϕ̂)Ω̂ ∀ϕ̂ ∈H1
∂Ω̂

(Ω̂) ,

b(û(k), ψ̂) = 0 ∀ψ ∈ L2
0(Ω̂) ,

(û(k), ŝ)∂Ω̂ = (n0ĝ
(k)
n , s)∂Ω̂ ∀ŝ ∈H− 1

2 (∂Ω̂) .

(2.44)

Given g(k) ∈H1(Γ) with ‖g‖1,Γ ≤ gm we build the zero extension ĝ(k) on

∂Ω̂. By using standard techniques with test functions onH1
∂Ω̂

(Ω̂) it is possible

to show that the norms ‖û(k)‖1,Ω̂ and ‖p̂(k)‖Ω̂ are uniformly bounded by their

data norms ‖ĝ(k)‖1,Γ̂ = ‖g‖1,Γ ≤ gm and ‖f‖0,Ω̂ = ‖f‖0,Ω ≤ fm. Therefore,

boundary stress norm ‖τ̂ (k)
n ‖0 and the control norm ‖τ (k)

c ‖0, extracted from

(2.29), are uniformly bounded by gm and fm. The (η(k), κ(k)) satisfies

(J−1
1 τ (k)

n , ϕn) + (βη(k), ϕn) + (γ∇η(k),∇ϕn)

+ (Γs∇κ(k),∇ϕn) ∀ϕn ∈ H1
0 (I) ,

(κ(k), ψ1) = (∇η(k),∇ψ1) ∀ψ1 ∈ H1
0 (I) .

(2.45)

It is clear that, by using the energy balance, the norms ‖η(k)‖1 and ‖κ(k)‖1 are

bounded by the norm ‖τ (k)
n ‖0 which is uniformly bounded by a positive real

constant. Finally we have also that ‖η(k)‖2
3 ≤ ‖η‖2

1 + ‖κ(k)‖2
1 are uniformly

bounded. The r(k) satisfies

a(r(k), φ) = (fl, φ) ∀φ ∈ H1
0 (Ω) ,

(r(k), d)Γη = (J1η
(k), d)Γs ∀d ∈ L2(Γη) .

(2.46)
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Again we can extend the domain from Ωη to Ω̂ and the fields r(k) ∈ H1
ΓηrΓs

(Ωη),

fl ∈ L2(Ωη) to l̂(k) ∈ H1
0 (Ω̂), f̂l ∈ L2(Ωη)(Ω̂) to satisfy the extended equation.

By using the Calderon theorem and standard arguments we can prove that

‖r(k)‖1,Ω̂ is uniformly bounded by the uniform bound of the norm of η.

Since the functional J is bounded and Sad is not empty, it is possible

to state that there exists a uniformly bounded minimizing sequence. Such

sequence satisfies the problem on the extended domain Ω̂. We may then

extract a convergent sub-sequence, (ûk1 , p̂k1 , ĝk1n , τ
k1
c , η

k1 , κk1 , rk1) such that

lim
k→∞
J (τ (k1)

c , η(k1)) = inf
(u,p,τc,η,κ,r)∈Sad

J (τc, η) .

and

û(k1) → û in H1(Ω̂)

p̂(k1) → p̂ in L2(Ω̂)

τ
(k1)
c → τn in H−1/2(Γnc)

η(k1) → η in Qad

κ(k1) → κ in H1(I)

r(k1) → r in H1(Ω̂)

û(k1) → û in L2(Ω̂) (strongly)

û(k1)|∂Ω̂ → û∂Ω̂ in L2(∂Ω̂) (strongly) ,

(2.47)

for some (û, p̂, ĝn, τc, η, κ, r̂) ∈ H1(Ω̂) × L2(Ω̂) × H1/2(∂Ω̂) × H−1/2(Γ̂nc) ×
Qad × H1(I) × H1

0 (Ω̂). The last convergence result is obtained through the

embedding theorem since H1(Ω̂) ⊆ L2(Ω̂) and H1/2(∂Ω̂) ⊆ L2(∂Ω̂).

Now, it is easy to show that the solution of all the linear operators in-

volved in the constraints equations converges to the solution of the equation

problem. Therefore the nonlinear term c(·; ·, ·) is the only one that needs

greater attention. For such term we can write

c(û(k1); û(k1), ϕ̂) =

∫

Γ̂

(û(k1) · n̂)û(k1) · ϕ̂ dx−
∫

Ω̂

(û(k1) · ∇)ϕ̂ · û(k1) dx ,

∀ϕ̂ ∈ C∞(Ω̂). Then, since û(k1) → û in L2(Ω̂) and ĝ(k1)|Γ → ĝ| strongly in

L2(Γ̂), we can take the following limit

lim
k1→∞

c(û(k−1); û(k−1), ϕ̂) =

∫

Γ̂

(û · n̂)û · ϕ̂ dx−
∫

Ω̂

(û · ∇)ϕ̂ · û dx

= c(û; û, ϕ̂) ∀ϕ̂ ∈ C∞(Ω̂) .
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Since C∞(Ω̂) is dense in H1(Ω̂) we have that

lim
k1→∞

c(û(k1); û(k1), ϕ̂) = c(û; û, ϕ̂) ∀ϕ̂ ∈H1(Ω̂) .

Finally we observe that Qad is a convex set and the functional is weakly lower

semi-continuous, therefore (û, p̂, ĝn, τc, η, κ, r) solves the system of equation

in H1(Ω̂)×L2
0(Ω̂)×H1/2(∂Ω̂)×H−1/2(Γ)×Qad×H1(I)×H1(Ω). We have

also by construction ‖ĝ‖1,∂Ω̂ = ‖g‖1,Γ ≤ gm. Therefore, we can conclude

that the solution limit of the sub-sequences solves the problem (2.44)-(2.45)

on the extended domain Ω̂. In order to conclude the proof we restrict the

solution to the domain Ω. The restriction (u, p, gn, τc, η, κ, r) of the solution

(û, p̂, ĝn, τ̂n, η, κ, r) in H1(Ω̂)×L2
0(Ω̂)×H1/2(∂Ω̂)×L2(∂Ω̂)×Qad×H1(I)×

H2(I) over Ω is by construction into H3/2(Ω) × H1/2(Ω) ∩ L2
0(Ω) × Gad

gm ×
T adc ×Qad ×H1(I)××H1

ΓηrΓs
(Ωη).

2.2.4 The first order necessary condition

In this section, we show that the Lagrange multiplier technique is well posed

in the considered mathematical case, and can be used to obtain the first-

order necessary condition. In particular, we show that the Lagrangian map

is strictly differentiable. As mentioned above, the well-posedness of the math-

ematical problem studied in these sections is not straightforward. Therefore

some preliminary concepts are needed to obtain the first order necessary

condition. In order to do that, we follow a formulation similar to the shape

control problem studied in [73].

We consider two admissible deformed domains characterized by η, η̄ ∈
Qad. We also define the field V that transforms Γ(η) into Γ(η̄). In our specific

case, that can be extended to all the rectangular domains (see Figure 2.2),

the η variations can be written as δη = η̄− η and V = (δη, 0). We introduce

now the variable t in order to parametrize the boundary Γ as Γη+tδη = {xη +

tV (xη) |xη ∈ Γη}, ∀t ∈ [0, 1]. We now introduce the concept of Gateaux-

differentiability.

Definition 2.2. Let us consider a generic functional on Ω(η), K(η) : Cad →
R, where Cad is the set of η ∈ Rad. The functional K(η) is Gateaux-differentiable

at η in the direction δη if exists K′ = (DK/Dη)δη ∈ R such that

lim
t→0+

|K(Ω(ηt))−K(Ω(η))− tK′|
t

= 0 . (2.48)
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This definition can be extended to Banach spaces, therefore we introduce

the following definition.

Definition 2.3. Let Y be a Banach space, then the map u(η) : Cad → Y

is Gateaux-differentiable at η in the direction δη if exists u′ ∈ Y (Ω(η)) such

that

lim
t→0+

‖u(ω(ηt))− u(Ω(η))− tu′‖Y (Ω(η))

t
= 0 . (2.49)

We now introduce the following lemma that allows us to represent the

limit as a boundary integral over Γη.

Lemma 2.4. Take η, η̄ ∈ Cad, ŷ1 ∈ W 1,1(R2), ŷ2 ∈ W 2,1(R2),

KΩ(η) =

∫

Ω(η)

ŷ1(x) dx and KΓ(η) =

∫

Γ(η)

ŷ2(x) dx .

We can define the “shape derivatives” as

DKΩ

Dη
· δη =

∫

Ω(η)

∇ · (V ŷ1(x)) dx =

∫

Γη

ŷ1(x)(V · n̂) dx , (2.50)

DKΓ

Dη
· δη =

∫

Γη

(∂ŷ2

∂n
+ κŷ2(x)

)
(V · n̂) dx , (2.51)

where κ is the curvature of Γη and n̂ the unit vector normal to it.

In the above lemma ŷ1 and ŷ2 must be defined on R2 or extended outside

Ω(η) and their gradients must be integrable. Moreover, the hypotheses of the

presented Lemma provides that ŷ1 ∈ W 1,1(R2). To assure such hypotheses,

the solution of the Navier-Stokes system shall be regular enough. If such

regularity is not verified, the previous Lemma can be extended to a function

ŷ1 ∈ L2(R2). In this case, the functional is weakly differentiable in H−2, and

regular solutions of the Navier-Stokes system are not assured.

In order to use the standard strategies for equality constrained minimiza-

tion problems (see, for example, [85]) we first need to transform the inequality

constraint introduced in (2.42) into an equality. We replace c0 ≤ η ≤ d0 with

|η − η0|2 − η2
m + s2

0 = 0 ∀y ∈ I , (2.52)

for some s0 ∈ H2(I), where η0 = (c0 + d0)/2, and ηm = (d0 − c0)/2. If we

consider (u, p, η, q, r) as a solution of the optimal control problem, then there

exists s0 that satisfies (2.52). The Lagrange multiplier method proposed in
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this work is based on an embedded technique method where the test functions

are kept constant all over the extended domain. Therefore we write the

Lagrangian on the extended domain Ω̂ and then choose the solutions that fit

in Ω forcing the boundary values as constraints. We remark that the “hat

notation” is used for all the functions defined over Ω̂.

Let B̂1 = H3/2(Ω̂)× (L2
0(Ω̂)∩H1/2(Ω̂))×H1

0 (ΓηrΓs)×L2(Γn)×H2(I)×
H1(I) ×H1

0 (Ω̂) × R × L2(I), B̂2 = H−1(Ω̂) × L2(Ω̂)×H1(∂Ω̂) × L2(Γ̂n) ×
L2(I)×H1(I)×H−1(Ω̂)×R×L1(I) and B̂3 = H−1(Ω̂)×L2(Ω̂)×H1(∂Ω̂)×
L2(Γ̂n)×L2(I)×L2(Γs)×H1

0 (Ω̂)×R×L1(I). We can now define the nonlinear

mapping M : B̂1 → B̂3 at ẑ0 = (û, p̂, gn, τn, η, κ, r̂, s2, s0) by M(ẑ0) = b̂

with b̂ = (l̂1, l̂2, l̂3, l4, l5, l6, l̂7, l8, l9) if and only if

νa(û, ϕ̂) + c(û; û, ϕ̂) + b(ϕ̂, p̂)− (f̂ , ϕ̂)

+ (βJ1η, ϕ̂n0
)Γ1 + (γJ1∇t0η,∇t0 + ϕ̂n0)Γ1

+ (γ1J1∇t0κ,∇t0ϕ̂n0)Γ1 = (l̂1, ϕ̂) ∀ϕ̂ ∈H1
0 (Ω̂) ,

b(û, ψ̂) = (l̂2, ψ̂) ∀ψ̂ ∈ L2(Ω̂) ,

(û, ŝ)∂Ω̂ − (n0gn, ŝ)ΓrΓ1 = (l̂3, ŝ)∂Ω̂ ∀ŝ ∈H− 1
2 (∂Ω̂) ,

(n0τn, ϕ̂)Γn + νa(û, ϕ̂) + c(û; û, ϕ̂) + b(ϕ̂, p̂)

+ (f̂ , ϕ̂) = (n0l4, ϕ̂)Γn ∀ϕ̂ ∈H1
t0

(Ω̂) ,

(κ, ψ1) + (∇t0η,∇t0ψ1) = (l5, ψ1) ∀ψ1 ∈ H1
0 (I) ,

(û,φ1)Γs − (n0J1 (l̂ − η),φ1)Γs = (l6,φ1)Γs ∀s1 ∈ L2(Γs) ,

a(l̂, φ) = (l̂7, φ) ∀φ ∈ H1
0 (Ω̂)

‖gn‖2
1,∂Ω̂∩Γη

− g2
m + ŝ2

2 = l8 ,

|η − η0|2 − η2
m + s2

0 = l9 ∀t ∈ I ,

(2.53)

We recall that τc is obtained when τn is restricted to Γc. From the definition

of (l̂1, l̂2, l̂3, l4, l5, l6, l̂7, l8, l9), we can state that the set of constraint equa-

tions in the optimal shape control problem can be expressed as M(ẑ0) =

(0, 0,0, 0, 0,0, 0, 0, 0), where ẑ0 = (û, p̂, gn, τn, η, κ, r̂, s0, s2) is the optimal

solution. Note that the boundary velocity over the fixed boundary is set in

the third equation while the boundary velocity over the solid is included in

the sixth equation. In particular, when l6 = 0 the tangential component

u · t0 = gt is set to zero and the normal one is zero only when r = r0 + η

and u · n0 = gn = 0. It is very useful to define a fictitious velocity to enable

an iterative algorithm to force the boundary on the correct displacement im-

posed by the solid model: when r̂ = η the velocity u · n0 must vanish. The
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fourth equation forces Neumann boundary conditions and control in the set

T ad.
Given ẑ1 = (û1, p̂1, g1nτ1n, η1, κ1, r̂1, s21, s01) ∈ Sad we can now define the

nonlinear mapping Q : B̂1 → R × B̂3. For a ∈ R we set Q(ẑ0) = (a, b̂) if

and only if

Q =

( J (τn, η)− J (τn1, η1)

M(ẑ0)

)
=

(
a

(l̂1, l̂2, l̂3, l4, l5, l6, l7, l8)

)
. (2.54)

Mappings differentiability

In this paragraph, we rely on the definition of strict differentiability in order

to show that the above mappings M and Q are strictly differentiable. We

recall now the definition of strict differentiability (see [85]).

Definition 2.4. Let X and Y be Banach spaces. The mapping φ : X → Y

is strictly differentiable at x ∈ X if there exist a bounded, linear mapping D :

X → Y so that ∀ε > 0, ∃ δ > 0 ensuring that for x1, x2 ∈ X, ‖x− x1‖X < δ

and ‖x− x2‖X < δ, then

‖φ(x1)− φ(x2)−D(x1 − x2)‖Y ≤ ε‖x1 − x2‖X , (2.55)

where the strict derivative is denoted as D = φ′(x).

In this work we will consider X = B̂1 and Y = B̂2. Let z0 = (û,

p̂, gn, τn, η, κ, r, s2, s0) be in B̂1 and consider, as derivative map, the

bounded linear operator M ′ : B̂1 → B̂2, where M ′(z̃) · z̃0 = b̄ for z̃0 =

(ũ, p̃, g̃n, τ̃n, η̃, η̃, r̃, s̃2, s̃0) ∈ B̂1 and b̄ = (l̄1, l̄2, l̄3, l̄4, l̄5, l̄6, l̄7, l̄8) ∈ B̂2 defined

as

νa(ũ, ϕ̂) + c(ũ; û, ϕ̂) + c(û; ũ, ϕ̂) + b(ϕ̂, p̃)

+ (βJ1η̃, ϕ̂n0
)Γ1 + (γJ1∇t0 η̃,∇t0 + ϕ̂n0)Γ1

+ (γ1J1∇t0κ̃,∇t0ϕ̂n0)Γ1 = (l̄1, ϕ̂) ∀ϕ̂ ∈H1
0 (Ω̂) ,

b(ũ, ψ̂) = (l̄2, ψ̂) ∀ψ̂ ∈ L2(Ω̂) ,

(ũ, ŝ)∂Ω̂ − (n0g̃n, ŝ)ΓrΓ1 = (l̄3, ŝ)∂Ω̂ ∀ŝ ∈H−1/2(∂Ω̂) ,

(n0τ̃n, ϕ̂)Γn + νa(ũ, ϕ̂) + c(ũ; û, ϕ̂)

+ c(û; ũ, ϕ̂) + b(ϕ̂, p̃) = (n0l̃4, ϕ̂)Γn ∀ϕ̂ ∈H1
t0

(Ω̂) , (2.56)

(κ̃, ψ1)− (∇t0 η̃,∇t0ψ1) = (l̃5, ψ1) ∀ψ1 ∈ H1
0 (I) ,
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(ũ, s1) +

∫

Γs

(
V (η̃) · n̂

)(
χ+

∂

∂n̂

)
û · s1 dx

− (n0J1(r̃ − η̃), s1) = (l̄6, s1) ∀s1 ∈ L2(Γs) ,

a(r̃, φ̂) = (l̄7, φ̂) ∀φ̂ ∈ H1
0 (Ω̂) ,∫

∂Ω̂∩Γη

2(g′n g̃
′
n + gn g̃n) ds+ 2s2s̃2 = l̄8 ,

2(η − η0)η̃ + 2s0s̃0 = l̄9 ,

with V (η̃) = (η̃, 0). The normal vector to Γ1 is denoted by n̂ and the

boundary curvature is χ. By g̃
′
n we denote the derivative of g̃n.

We introduce now a Lemma on the differentiability of the mappings M

and Q. We define the differentiability operators M ′ and Q′, respectively.

Lemma 2.5. Let the nonlinear mapping M : B̂1 → B̂3 be defined by (2.53)

and Q : B̂1 → R×B̂3 by (2.54) defined at a point ẑ0 = (û, p̂, gn, τn, η, κ, r̂,

s2, s0) ∈ B̂1. We consider also the bounded linear operator M ′ : B̂1 → B̂2,

where M ′(ẑ0) · z̃0 = b̄ for z̃0 = (ũ, p̃, g̃n, τ̃n, η̃, η̃, r̃, s̃2, s̃0) ∈ B̂1 and b̄ = (l̄1,

l̄2, l̄3, l̄4, l̄5, l̄6, l̄7, l̄8, l̄9) ∈ B̂2. Then, the mappings M and Q are strictly

differentiable at the point ẑ0 ∈ B̂1 and its strict derivative is given by M ′ in

(2.56).

Consider the nonlinear operator Q′(ẑ0) : B̂1 → R × B̂2, where Q′(ẑ0) ·
z̃0 = (ā, b̄) for ā ∈ R. If we set

J ′(τc, η) · (z̃0) =

∫

Ωd

η̃(η − ηd)dx+ λ

∫

Γnc

τ̃c τcdx , (2.57)

then the strict derivative of Q at a point ẑ0 is given by Q′ if and only if


J ′(τc, η) · z̃0

M ′(ẑ0) · z̃0


 =




ã

b̄


 . (2.58)

Proof. Since the operators a(·, ·), b(·, ·) and c(·; ·, ·) are continuous we have

that M ′(z0) is bounded. The linearity of such operator is straightforward to

demonstrate. For the same reasons we can assume that Q′(z0) is bounded

and linear. Therefore for all z0 ∈ (û, p̂, gn, τc, η, q, r̂, s0, s2) ∈ B̂1 and for all

ẑa = (ω̂a, p̂a, ζ,θ, µ2, ga, la, s2a, s0a) ∈ B̂∗
2 , we have

〈
za,
(
M(z1)−M(z2)−M ′(z0) · (z1 − z2)

)〉
=

= c(û1; û1, ω̂)− c(û2; û2, ω̂)−
(
c(û1 − û2; û, ω̂) + c(û; û1 − û2, ω̂)

)
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+ c(û1; û1, θ̂)− c(û2; û2, θ̂)−
(
c(û1 − û2; û, θ̂) + c(û; û1 − û2, θ̂)

)

+

∫

Γ11

ζ · u1dx−
∫

Γ12

ζ · u2dx−
∫

Γ1

ζ · (u1 − u2)dx

−
∫

Γ1

(
χ+

∂

∂n̂

)
ζ · u

(
V (η1 − η2) · n̂

)
dx+ τ2

(
s2

21 − s2
22 − 2s2(s21 − s22)

)

+ τ2

∫

∂Ω̂∩Γ

(g
′2
1n + g2

1n)− (g
′2
2n + g2

2n)− 2g′n(g′1n − g′2n)− 2gn(g1n − g2n) ds

+

∫

I

τ0(η1 − η0)2 +−τ0(η2 − η0)2 − 2τ0(η − η0)(η1 − η2)

+

∫

I

τ0s
2
01 − τ0s

2
02 − 2τ0s2(s01 − s02) .

We can cancel out all the linear terms, e.g. a(û1, ω̂) − a(û2, ω̂) − a(û1 −
û2, ω̂) = 0. The terms with J1 can be computed over the reference interval

I and therefore do not have shape derivative.

From the Lemma 2.4 we have that ∀ε1 > 0 , ∃ δ1 > 0 such that
∣∣∣∣
∫

Γ1i

ζ · uidx−
∫

Γ1

ζ · uidx− t1
∫

Γ1

(
χ+

∂

∂n̂

)
ζ · ui

(
V (ηi − η) · n̂

)
dx

∣∣∣∣

<
ε1

4
‖η1 − η2‖H2(I) ,

(2.59)

for i = 1, 2 and t1 ≤ δ1. By using (2.59) we have
∣∣∣
〈
za,
(
M(z1)−M(z2)−M ′(z0) · (z1 − z2)

)〉∣∣∣ ≤ ε

2
‖η1 − η2‖H2(I)+

+ |c(u1 − u2;u− u1, ω̂) + c(u− u2;u1 − u2, ω̂)|
+ |c(u1 − u2;u− u1, θ̂) + c(u− u2;u1 − u2, θ̂)|

+ τ2

∫

I

(
(g′n1 − g′n2)(g′n1 − g′n + g′n2 − g′n)

+ (gn1 − gn2)(gn1 − gn + gn2 − gn)
)
dx

+ τ2

∫

I

(s21 − s22)(s21 − s2 + s22 − s2)dx

+ τ0

∫

I

(s01 − s02)(s01 − s0 + s02 − s0) dx

+ τ0

∫

I

(
(η1 − η2)(η1 − η + η2 − η)

+ (s01 − s02)(s01 − s0 + s02 − s0)
)
dx ,

(2.60)

By using the Sobolev embedding theorem, the trace theorem, and the con-

tinuity of the operator c(·; ·, ·) it is possible to bound the norm of the above
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scalar product. Therefore, we can state that ∃C1, C2, C3 ∈ R+ such that

∥∥M(z1)−M(z2)−M ′(z0) · (z1 − z2)
∥∥
B̂2

≤ ε

2
‖η1 − η2‖H2(I) + C1 ‖u1 − u2‖1(‖u− u1‖1 + ‖u− u2‖1)

+ C2

(
‖g′n1 − g′n2‖ (‖g′n1 − g′n‖+ ‖g′n2 − g′n‖)

+ ‖gn1 − gn2‖(‖gn1 − gn‖+ ‖gn2 − gn‖)
+ ‖s21 − s22‖(‖s2 − s21‖+ ‖s2 − s22‖)

)

+ C3

(
‖η1 − η2‖2(‖η1 − η‖2 + ‖η1 − η2‖2)

+ ‖s01 − s02‖2(‖s0 − s01‖2 + ‖s0 − s02‖2)
)
.

For the norm properties there exists a positive constant C4 such that

∥∥M(z1)−M(z2)−M ′(z0) · (z1 − z2)
∥∥
B̂2

≤ ε

2
‖η1 − η2‖H2(I) + C4

∥∥z1 − z2

∥∥
B̂1(∥∥(û− û1, p̂− p̂1, pc − pc1, η − η1, r − r1, s0 − s01)

∥∥
B̂1

+
∥∥(û− û2, p̂− p̂2, pc − pc2, η − η2, r − r2, s0 − s02)

∥∥
B̂1

)
.

(2.61)

Now ∀ε > 0, by choosing δ =
ε

4C4

we have that, whenever
∥∥z − z1

∥∥
B̂1

< δ

and
∥∥z − z2

∥∥
B̂1

< δ we obtain

∥∥M(z1)−M(z2)−M ′(z0) · (z1 − z2)
∥∥
B̂2

≤ ε
∥∥(û1 − û2, p̂1 − p̂2, pc1 − pc2, η1 − η2, q1 − q2,

r1 − r2, s01 − s02)
∥∥
B̂1
.

(2.62)

Therefore, the mapping M is strictly differentiable on B̂1 and its strict deriva-

tive is M ′. By using (2.62) and Lemma 2.4, it is easy to demonstrate that

also Q is strictly differentiable on B̂1 and its strict derivative is Q′.

As anticipated, we now restrict all the variables to the domain Ω. In

particular, the solution (u, p) can be seen as the restriction to the domain

Ω of the solution (û, p̂) of the Navier-Stokes system over Ω̂. Using the same

approach, we call B1 and B2 the restrictions of B̂1 and B̂2 from Ω̂ to Ω.
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With this notation, we can restrict the mapping M ′ from (2.56) to

νa(ũ, ϕ̂) + c(ũ;u, ϕ̂) + c(u; ũ, ϕ̂) + b(ϕ̂, p̃)

+ (βJ1η̃, ϕ̂n0
)Γ1 + (γJ1∇t0 η̃,∇t0 + ϕ̂n0)Γ1

+ (γ1J1∇t0κ̃,∇t0ϕ̂n0)Γ1 = (l̄1, ϕ̂) ∀ϕ̂ ∈H1
Γ∗(Ω) ,

b(ũ, ψ̂) = (l̄2, ψ̂) ∀ψ̂ ∈ L2(Ω) ,

(ũ, ŝ)Γ∗ − (n0g̃n, ŝ)Γ∗ = (l̄3, ŝ)Γ∗ ∀ŝ ∈H− 1
2 (Γ∗) ,

(n0τ̃n, ϕ̂)Γn + νa(ũ, ϕ̂) + c(ũ;u, ϕ̂) + c(u; ũ, ϕ̂)

+ b(ϕ̂, p̃) = (n0l̃4, ϕ̂)Γn ∀ϕ̂ ∈H1
t0

(Ω) ,

(κ̃, ψ1)− (∇t0 η̃,∇t0ψ1) = (l̃5, ψ1) ∀ψ1 ∈ H1
0 (I) ,

(ũ, s1)Γs +

∫

Γs

(
V (η̃) · n̂

)(
χ+

∂

∂n

)
û · s1 dx

+ (n0J1(r̃ − η̃), s1)Γs = (l̄6, s1)Γs ∀s1 ∈ L2(Γs) ,

a(l, φ) = (l̄7, φ) ∀φ ∈ H1
0 (Ω)∫

Γη

2(g′n g̃
′
n + gn g̃n) ds+ 2s2s̃2 = l̄8 ,

2(η − η0)η̃ + 2s0s̃0 = l̄9 ,

(2.63)

where Γ∗ = ΓrΓ1. It is worth noticing that the map M ′(u, p, gn, τn, η, κ, r,

s0, s2) assumes the same values of the restriction of M ′(û, p̂, gn, τn, η, κ, r,

s0, s2) to Ω since no further information is necessary to identify the function

over the restricted domain. For this reason the maps (2.56) and (2.63) are

equivalent on Ω. The same statements holds for Q′(u, p, gn, τn, η, κ, r, s0, s2).

Now we introduce some additional properties of the derivatives of the

mappings M and Q. To do so, we formulate the following Lemma.

Lemma 2.6. Let z0 = (u, p, gn, τn, η, κ, r, s0, s2) ∈ B1 be a solution of the

optimal control problem. We state that

1. the operator M ′(z0) has closed range in B2,

2. the operator Q′(z0) has closed range in R×B2,

3. the operator Q′(z0) is not onto in R×B2.

Proof. (1.) The first statement can be proved by showing that the range of

all the equations of (2.63) is closed. In particular, we consider again the split

system. Now, we have to show that the range of the fluid equations is closed,
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therefore we focus on the fluid problem (2.63) by changing the test functions

from ϕ̂ ∈ H1
ΓrΓ1

(Ω) to ϕ̂ ∈ H1
0 (Ω). Given z0 = (u, p, gn, τn, η, κ, r, s0, s2) ∈

B1 and (l̄1, l̄2, l̄3, l̄6, l̄8) ∈ H1
0 (Ωη) × L2(Ωη) ×H1

0 (Γ r Γs) × L2(Γs) × R we

have

νa(ũ, ϕ̂) + c(ũ;u, ϕ̂) + c(u; ũ, ϕ̂) + b(ϕ̂, p̃)

= (l̄1, ϕ̂) ∀ϕ̂ ∈H1
0 (Ωη) ,

b(ũ, ψ̂) = (l̄2, ψ̂) ∀ψ̂ ∈ L2(Ωη) ,

(ũ, ŝ)Γ∗ − (n0g̃n, ŝ)Γ∗ = (l̄3, ŝ)Γ∗ ∀ŝ ∈H−1/2(Γ∗) ,

(ũ, s1) +

∫

Γs

(
V (η̃) · n̂

)(
χ+

∂

∂n

)
(u · s1) dx

+ (n0J1(l̃ − η̃), s1) = (l̃6, s1) ∀s1 ∈ L2(Γs) ,∫

Γη

2(g′n g̃
′
n + gn g̃n) ds+ 2s2s̃2 = l̄8 ,

(2.64)

We can assume s2 6= 0 and r̃ = η̃. For any value of (l̄3, l̄6, l̄8) ∈H1
0 (ΓrΓs)×

L2(Γs)× R we can easily compute gn, s̃2 and the Dirichlet boundary condi-

tions. The problem has Dirichlet boundary conditions over all the domain

and therefore we can use a classical argument. Let S be the Stokes operator,

S · (u, p)T = (f , 0, gn)T such that

S =



A B∗

B 0

γ0n 0


 ,

where γ0 is the normal trace operator.

It is easy to show that S is an isomorphism from H1(Ω) × L2
0(Ω) →

H−1(Ω)× L2
0(Ω)×H−1/2(Γ). This property can be demonstrated using the

trace theorem, the ellipticity of A and the inf-sup property [43]. We define

now the operator C : H1(Ω)×H1(Ω)×H−1(Ω) such that < C(w)u,v >=

c(w;u,v) , ∀u,w ∈ H1(Ω), ∀v ∈ H1
0 (Ω). The operator C(w)u is continu-

ous in w from H1/2(Ω) into H−1(Ω)∀u ∈ H1(Ω). Therefore C is compact

from H1(Ω) into H−1(Ω). As a consequence, the perturbation operator de-

fined as

P (u, p, g) = S +



C(u)w + C(w)u

0

0


 ,

is a Fredholm operator. Thus, it has a closed range and a finite-dimensional

kernel.



102 Chapter 2. Optimal boundary control models

Now we can compute the boundary stress τn on Γn and Γ1. In particular,

on the boundary Γnc we have the variation of the control τ̃c. With τ̃n on Γ1

we compute (η̃, κ̃) by solving

(τ̃n, ϕ̂n0) + (βJ1η̃, ϕ̂n0
)Γ1 + (γJ1∇t0 η̃,∇t0 + ϕ̂n0)Γ1

+ (γ1J1∇t0κ̃,∇t0ϕ̂n0)Γ1 = 0 ∀ϕ̂n0 ∈H1
0 (Γ1) ,

(κ̃, ψ1)− (∇t0 η̃,∇t0ψ1) = (l̃5, ψ1) ∀ψ1 ∈ H1
0 (I) .

(2.65)

Finally, we consider the last equation

2(η − η0)η̃ + 2s0s̃0 = l̄9 ∀t ∈ I . (2.66)

For a given η, it is possible to solve (2.66) for any l̄9. Note that if s0 = 0, then

η = c0 or η = d0. The definition of Rad and the choice of the constants c0

and d0 implies the existence of solutions also when s0 = 0. Given any values

l7 ∈ H−1(Ωη) we can solve the Laplacian operator for r with r = η over Γs
and zero elsewhere. Therefore, since all the equations of M ′(z0) have closed

range, then M ′ has closed range in B̂2. This proves the first statement.

(2.) Since the operator M ′(u, p, pc, η, q, r, s0) belongs to L(B̂1, B̂2), its

kernel is a closed subspace. Since a generic linear functional F on a Banach

space has either Ran(F) = {R}, or Ran(F) = {0}, and since Q′ is acting on

the same kernel of M ′, then we can assert that either Ran(Q′) = {R}, either

Ran(Q′) = {0}. We consider now the operator Q′(ς) = (J (ς),M ′(ς)), ∀ς ∈
B̂1. Then, since the range of M ′ is closed in B̂2 and the subspace J ·M ′ is

closed in R, we can assert that the range of Q′ is closed in R× B̂2 (a similar

approach was used in [71]).

(3.) We consider the optimal solution (u, p, pc, η, q, r, s0). Assume that

Q′(u, p, pc, η, q, r, s0) is onto. By the implicit function theorem we have that

∃(u∗, p∗, p∗c , η∗, r∗) ∈ Sad such that ‖u − u∗‖2 + ‖p − p∗‖1 + ‖pc − p∗c‖Γc +

‖η − η∗‖2,Γ1 + ‖r − r∗‖2,I < ε and J (g∗, η∗) < J (τc, η), disagreeing with the

hypothesis that z0 is an optimal solution. Thus, Q′(z0) is not onto.

Following other works in literature (see, e.g. [74]), the first-order necessary

condition is now straightforward since Q′(u, p, pc, η, q, r, s0) is not onto. Then,

we can finally introduce the following theorem.

Theorem 2.9. Let z0 = (u, p, gn, τc, η, κ, r, s0, s2) ∈ Sad be a solution of the

optimal control problem. Then, there exist a nonzero Lagrange multiplier
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(Λ, za) = (Λ,ua, pa, ga, τa, ηa, κa, ra, s0a, s2a) ∈ R× B̂∗
2 , satisfying

ΛJ ′(τc, η) · z̃ +
〈
za ,M

′(z0) · z̃
〉

= 0 , (2.67)

for all z̃ = (ũ, p̃, g̃n, τ̃c, η̃, κ̃, r̃, s̃0, s̃2) ∈ B1, where < ·, · > denotes the duality

pairing between B2 and B∗
2 .

With the Theorem 2.9 all the concepts for the first order necessary con-

dition and the Lagrange multiplier approach have been reported. Now we

introduce the optimality system that have to be implemented and solved in

order to find the optimal solution.

2.2.5 The optimality system

As mentioned above, we now introduce some Theorems which constitute the

mathematical formulation of the optimality system. The obtained equations

are discretized and solved numerically with a finite element based code. Now,

similarly to the Theorem 2.2 for the presented simple case, we introduce the

optimality system.

Theorem 2.10. Let (u, p, gn, τc, η, κ, r, s2, s0) ∈ B1 denote a solution of the

optimal control problem. When s0 6= 0 and s2 6= 0, the control τc is solution

of ∫

Γc

(λτc + ua · n̂)q dx = 0 ∀q ∈ L2(Γnc) . (2.68)

Moreover s0a = 0, s2a = 0 and (ua, pa) ∈ H1(Ω) × L2(Ω) is solution of the

adjoint problem

νa(ϕ̃,ua) + c(ϕ̃;u,ua) + c(u; ϕ̃,ua) + b(ϕ̃, pa)

+ (ϕ̃n0 , (η − ηd))Γd + (γJ1∇t0ϕ̃n0 ,∇t0ηa)Γs

+ (γ1J1∇t0ϕ̃n0 ,∇t0κa)Γs + (βJ1 ϕ̃n0 , ηa)Γs = 0 ∀ϕ̃ ∈ H1
t0

(Ωη) ,

b(ua, ψ̃) = 0 ∀ψ̃ ∈ L2
0(Ωη) ,

(∇t0κ̃,∇t0ηa)I = (κ̃, κa)I ∀κ̃ ∈ H1
0 (I) .

(2.69)

If s0 = 0, the displacement η is determined and we have η = c0 or η = d0.

If s2 = 0 the stress boundary control τc is defined by a boundary velocity field

g ∈ H1(Γnc) that must satisfy ‖g‖1,Γη = gm where gm is the limit on the norm

of the inflow boundary velocity.
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Proof. We rewrite (2.67) as

Λ

(∫

Γd

η̃(η − ηd) ds+ λ

∫

Γc

τ̃c τc ds

)

+ νa(ũ,ω) + c(ũ;u,ω) + c(u; ũ,ω) + b(ω, p̃) + (βJ1η̃, ωn0)Γs

+ (γJ1∇t0 η̃,∇t0ωn0)Γs + (γ1J1∇t0κ̃,∇t0ωn0)Γs

+ b(ũ, pa) + (ũ, ga)ΓηrΓs − (n0g̃n, ga)ΓηrΓs

+ (n0τ̃n, τa)Γn + νa(ũ, τa) + c(ũ;u, τa) + c(u; ũ, τa)

+ b(τa, p̃)− (κ̃, ka)I + (∇t0 η̃,∇t0ka)I + a(r, ra)

+ (ũ, sa)Γs +

∫

Γs

(
V (η̃) · n̂

)(
χ+

∂

∂n

)
û · sa ds

+ (n0J1(r̃ − η̃), sa)Γs +

∫

Γη

2s2a(g
′
n g̃
′
n + gn g̃n) ds

+ 2s2s̃2s2a +

∫

I

(
2s0a(η − η0)η̃ + 2s0s̃0s0a

)
ds = 0 ,

(2.70)

By regrouping the different variations and setting to zero their contributions

we have

(η̃, (η − ηd))Γd + (βJ1η̃, ωn0)Γs + (γJ1∇t0 η̃,∇t0ωn0)Γs

+ (∇t0 η̃,∇t0ka)I +
(
V (η̃),n

(
χ+

∂

∂n

)
(u · sa)

)
Γs

+ 2(J1s0a(η − η0), η̃)Γs − (n0J1 η̃, sa)Γs = 0 ∀η̃ ∈ H1
0 (I) ,

a(r̃, ra)− (n0J1r̃, sa)Γs = 0 ∀r̃ ∈ H0(Ω) ,

λ

∫

Γc

τ̃c τc dx+ (n0τ̃n, τa)Γn = 0 ∀τ̃c ∈ L2(Γnc) ,

νa(ũ,ua + τa) + c(ũ;u,ua + τa) + c(u; ũ,ua + τa)

+ b(ũ, pa) + (J1ũ, sa)Γs + (ũ, ĝa)ΓηrΓs ∀ũ ∈ H1(Ω) ,

b(τa + ua, p̃) = 0 ∀p̃ ∈ L2
0(Ω) ,

(γ1J1∇t0κ̃,∇t0ωn0)Γs − (κ̃, ka)I = 0 ∀κ̃ ∈ H1
0 (I) ,

− (n0g̃n, ĝa)ΓηrΓs + s2a

∫

Γη

2(g′n g̃
′
n + gn g̃n) ds = 0 ∀g̃n ∈ H1

0 (Γ) .

If we define ua = ω + τa, ηa = ωn0 and ka = γ1κa we obtain the desired

result in (2.69). We remark that in the substitution we have taken sa · t0 = 0

and ga · t0 = 0. The boundary derivatives term with curvature is equal to

zero since the velocity vanishes on Γs. The term with normal derivatives is
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zero since we can always extend the u · sa = 0 in the normal direction with

a constant zero extension. For details see [86]. Since s0 6= 0 and s2 6= 0 the

Lagrange multiplier s0a and s2a are identically zero and the corresponding

terms vanish.

2.3 Numerical results

In this section, we report some numerical results obtained by using the math-

ematical model shown in the previous sections. We implemented a standard

steepest descent algorithm in the multigrid finite element code FEMuS in-

troduced above. The numerical implementation of the system presented in

the last sections is not straightforward, since the optimality system is highly

nonlinear and doubles the unknowns of a standard simulation. In this work, a

segregated approach is used, by splitting the solution of the state and adjoint

equations to combine the result in the control gradient equation.

Algorithm 3 Description of the Steepest Descent algorithm.

1. Set a state (u0, p0,η0) satisfying (2.26) . Setup of the state (reference case)

2. Compute the functional J 0 in (2.22)

3. Set r0 = 1

for i = 1→ imax do

4. Solve the system to obtain the adjoint state (uia, p
i
a)

5. Set the control update δpi = −(pi−1
c + uia · n/λ)

6. Set ri = r0

while J i(pi−1
c + riδpi) > J i−1(pi−1

c ) do . Line search

7. Set ri = ρ ri

8. Solve (2.26) for the state (ui, pi,ηi) with pic = pi−1
c + riδpi

if ri < toll then

Line search not successful . End of the algorithm

end if

end while

end for

In Algorithm 3 a detailed description of the Steepest Descent method used

for the iterative solution of the optimality system. After an initial setup,

where the initial state 1. and the initial functional value 2. are computed,

the algorithm consists of two nested loops. In the outer loop, the adjoint

system is solved 4. together with the control equation 5. to obtain the gradient
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direction δp. In the inner loop, a backtracking line search is used (see [75]).

The algorithm stops either when the step length ri is lower than a minimum

value toll, either when two functional computed consecutively are similar.

This means that no more improvements can be obtained. In this work we

consider toll = 10−8. Note that, for simplicity, in this section we consider

the pressure pc instead of the controlled variable τc as introduced in the last

sections. Since we set to zero the inlet/outlet tangential velocity, in two-

dimensional domains the term independent of the pressure in the normal

stress τs vanishes. Therefore, τc and pc are mutually dependent.

Different numerical tests are reported in the following sections to show the

robustness of all the developed algorithms. In particular, a simple case where

Ωd reduces to only one point is reported in order to evaluate the effectiveness

of the control algorithm in the simplest case. Then, some cases on the grid

convergence of the method are shown.

2.3.1 Zero-dimensional desired domain

As mentioned above, the first test presented in this section is the simplified

case where the domain Ωd, in which the variable η is required to be similar

to the desired one ηd, is reduced to a single point. We consider a rectangular

domain Ω = {(x, y) : x ∈ [0, 0.1], y ∈ [0, 0.3]} as shown in Figure 2.3.

0
.3
m

0.1m

Γ1

Γ2 Γ3

Γ4

Ω xd

xd1

xd2

Figure 2.3: Geometry and controlled points (xd, xd1 and xd2) of the cases

tested in this section.



2.3. Numerical results 107

Displacement reduction

In the first studied case, the fluid flows vertically from the bottom to the top,

the region of the boundary Γ2 represents a solid wall with no-slip boundary

condition (u = 0) and Γ3 is the membrane where the generalized Robin

boundary condition is imposed. The fluid has density ρf = 1000 kg/m3 and

dynamic viscosity µ = 100 Pa · s, and for the approximation of the solid

to mono-dimensional membrane we consider β = 60kPa/m and thickness

hs = 0.0075 m. For the simulations, the domain was uniformly divided with

a regular rectangular mesh.

The simulations aim to control the displacement of the point xd of the

membrane optimizing the pressure of the fluid on Γi. Note that the desired

displacement field is directed along the x-axis, following the prescriptions of

the Koiter model introduced in the previous sections. We consider first the

uncontrolled case (equivalent to λ → ∞) with a prescribed inlet pressure of

6000Pa. Under this hypothesis, the controlled point shows a displacement of

η = 0.015824 m. We impose ηd = 0.005 m, therefore the control algorithm

should act to reduce η to the value ηd, changing the pressure of the fluid on

Γi. The objective functional of the problem reads

J (η, pc) =
1

2
(η − ηd)2 +

λ

2

∫

Γi

p2
c dΓ . (2.71)

We first study the behavior of the functional J depending on the value

of the regularization parameter λ. As can be noted in Table 2.1, the smaller

is λ, the closer the displacement of the controlled point xd is to the desired

one. This result is expected, since with larger λ the contribution of the

regularization term in the minimization of the functional is more relevant.

Therefore, with larger λ we find more regular optimization parameter p, but

less precise displacement η. In general, all the control problem simulated

show an improvement of the initial objective functional J , thus a solution

closer to the objective is found, as can be see also from the reported η values

on xd (reported as ηopt in Table). At the same time, the lower is the λ

value, the higher is the number of iterations of the optimality algorithm

necessary to find the optimal solution, as reported in Figure 2.4. This results

in an increase of the computational cost of the whole algorithm. Note that

the solution converges to the requested solution ηd with the iterations of the

algorithm. Note also that the only case in which the solution doesn’t converge

to ηd is with λ = 10−8. In fact, in such case the algorithm is not able to find
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Table 2.1: Objective functional J , displacement η and number of iteration

obtained with different λ values.

λ J (η, pc) ηopt[m] Iterations

∞ 5.85839 · 10−05 0.015824 −
10−08 2.19246 · 10−06 0.002906 4

10−09 5.54438 · 10−09 0.004895 8

10−10 2.18941 · 10−10 0.004979 10

10−11 6.10506 · 10−12 0.004997 12

10−12 3.86734 · 10−15 0.005000 26

2 4 6 8 10 12 14 16 18 20 22 24 26
0
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0.4
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Figure 2.4: Value of η = dx on the point xd depending on the algorithm

iteration number, for different value of the regularization parameter.

a better solution than η = 0.002906m able to reduce the functional, since the

regularization term affects strongly the functional value.

We focus now on the controlled inlet pressure field. In fact, depending on

the regularization parameter different inlet pressure fields are obtained. In

Figure 2.5 the controlled pressure field along the boundary Γ1 is reported.

Note that the choice of the regularization parameter strongly affects the con-

trolled pressure field. With less regularization, the objective term dominates

in the functional and the pressure can have larger values, thus effectively

controlling the membrane displacement. In Figure it is also reported the ref-



2.3. Numerical results 109

0 0.02 0.04 0.06 0.08 0.1
0

1,000

2,000

3,000

4,000

5,000

6,000
reference

x[m]

p
[P

a
]

λ = 10−8

λ = 10−9

λ = 10−10

λ = 10−11

Figure 2.5: Control pressure p on Γ1 with different regularization parameters.

The dotted line represents the pressure in the reference case with no control

(i.e. λ =∞).

erence starting pressure. The comparison between the uncontrolled field and

all the controlled pressure fields shows that the control is strongly modifying

the solution on Γc = Γ1 in order to obtain the desired displacement ηd.

In conclusion, the presented results show that the algorithm strongly af-

fects the uncontrolled simulation in order to find the optimal solution. While

the pressure is directly modified by the algorithm, all the other variables (e.g.

the velocity) are different from the reference case. It is important to tune

properly the regularization term: high values of λ lead to incorrect solutions,

low values of it lead to higher computational costs.

Similar numerical tests have been developed with a displacement increase

(instead of the reduction presented in this paragraph). The results are similar

to the one presented in this section and, for this reason, are not shown in this

work.

Airbag with the desired region on two points

We consider now the same geometry presented in Figure 2.3, with the same

physical properties. We consider airbag-like boundary conditions, with a no-

slip condition imposed on Γ1 and Γ4 and the Koiter boundary condition on
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Γ3. The controlled pressure is imposed on Γc = Γ2. In this framework we

want to control the displacement field on two different points, xd1 and xd2

in Figure. This test is carried out in order to show the advantage to use the

optimal control approach, since with standard control techniques it is difficult

to achieve non-constant desired displacements, since the prescribed pressure

on Γc is often constant. In particular, with a try and fail approach, the

solution of the current problem could lead to high computational costs. We

impose that ηd1 = −0.01m and ηd2 = 0.01m, therefore we are simultaneously

imposing an increase and a reduction of the displacement in the reference

case on two different points.

Figure 2.6: Qualitative behavior of the displacement dx (left) and the pres-

sure p (right) in Ω with control on xd1 and xd2.

In Figure 2.6 we report the displacement and the pressure fields for the

presented case for λ = 10−10. Note that the two different requirements on

the two points implies the imposition of a negative pressure on Γ2. In Figure

2.6 the displacement field doesn’t match perfectly the requirements of ηd1 =

−0.01m and ηd2 = 0.01m, however the general behavior of the membrane

seems to reproduce the required profile of the surface. The same concept

can be seen in Table 2.2, where the values of ηd1 and ηd2 doesn’t match

the requirements. However, the values of the functional (e.g. the distance

from the objective) reduces with respect to the non-controlled case (λ =∞),

therefore an improvement is achieved.

In Figure 2.7 the comparison between the imposed pressure fields on Γ2
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Table 2.2: Objective functional J , displacement on the two controlled points

and number of iteration obtained with different λ values.

λ J (η, pc) η1opt[m] η2opt[m] Iterations

∞ 1.01327 · 10−4 0.001152 0.001152 −
10−8 2.21289 · 10−5 −0.010695 0.005348 4

10−10 1.39504 · 10−5 −0.011603 0.013374 6

10−12 2.54909 · 10−5 −0.010032 0.004951 4
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Figure 2.7: Controlled pressure field on Γ2 with the objective ηd1 = −0.01 m

and ηd2 = 0.01 m for different values of λ.

is reported. Again, note that the value of λ affects the pressure field to be

imposed on the control domain Γc. We remark that higher values of λ lead to

more regular solutions. In general, this case is an ill-posed control problem,

due to various local minima close to each other.

The dependence of the optimal solution on λ is an interesting topic, and

will be further studied in future works. In this work we will not further

analyze the order of magnitude of λ, since the algorithm finds always an

improved solution, for all the tested values of λ.
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2.3.2 Grid convergence

As introduced in the last chapter, we show now some results on the grid

convergence of the proposed method. In particular, we require the reduction

of the integral of the difference between η and ηd on the domain where the

control acts Ωd with the grid refinement. We report now different tests,

depending on the requested displacement and on the size of Ωd.

Ωd

0
.3
m

0.1m

Γ1

Γ2 Γ3

Γ4

Ω

Ωd

0
.3
m

0.1m

Γ1

Γ2 Γ3

Γ4

Ω

Figure 2.8: The two domains used for the grid convergence tests: with Ωd of

dimension 0.025m× 0.15m (left) and 0.025m× 0.075m (right).

In all the considered cases we use the same physical values: fluid den-

sity ρf = 1000 kg/m3, fluid dynamic viscosity µ = 100 Pa · s, and for

the approximation of the solid to mono-dimensional membrane we consider

β = 60kPa/m and thickness hs = 0.0075 m. Moreover, we will consider

λ = 10−10, unless stated otherwise. We consider a 2× 2 mesh of the domains

introduced in Figure 2.8. The control domain Γc is equivalent to the surface

Γ1, and we refine it with a multi-grid approach. Interested reader in such a

technique can see [65, 57] as reported also in section 1.5.3.

Displacement reduction

We first compute a displacement reduction test for the plane channel in Figure

2.8 on the left. In particular, we request a desired displacement of ηd =

0.005m on Ωd. We control the pressure p field over Γ1. Note that the average
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displacement on Ωd in the uncontrolled case is η̄d = 0.00751m, then we are

simulating a displacement reduction control.

Figure 2.9: Comparison between the control with 2 and 4 levels of refinement.

We report the displacement fields dx (right) and the pressure fields (left).

In Figure 2.9 on the left, the controlled displacement fields for the con-

sidered mesh refined 2 and 4 times is reported. Note that the grid reported

in Figure reports the quadratic elements as consisting of four elements. For

example, the 2-levels mesh is composed of a 4 × 4 grid. Also the pressure

fields are reported on the right in the Figure. It can be noted that the grid

refinement affects the solution of the numerical problem and all the involved

fields.

In Figure 2.10 the comparison between the controlled pressure field is

reported along the controlled boundary Γ1. In particular, all the presented

solutions seem to converge with the grid to a certain pressure field. All the

fields differ from the reference pressure field, and in particular it can be noted

that the pressure is reduced by the control algorithm at the inlet. This result

is expected since we are studying a reduction of the displacement on Ωd.

In Figure 2.11 the comparison between the velocity fields over Γ1 is re-

ported. Note that the control pressure influences all the variables. In partic-

ular, the velocity field is reduced with respect to the reference velocity, due

to the lower imposed pressure.

In Table 2.3 the values of the distance between the desired solution and

the solution find with the optimal control algorithm is reported. In particular,

we compute the objective distance as
∫

Ωd
(η−ηd)2 dx, where the integral over
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Figure 2.10: Comparison between the pressure field over Γc = Γ1 for different

mesh refinements.
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Figure 2.11: Comparison between the velocity field over Γc = Γ1 for different

mesh refinements.

Ωd has been developed on the same grid with the same quadrature rule.

Note that the distance from the objective decrease with the refinement of the

grid. This is a good indicator of the grid convergence of the algorithm since
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Table 2.3: Distance from the objective ηd depending on the number of refine-

ment levels.

Levels λ
∫

Ωd
(η − ηd)2 dx Iterations R

2 ∞ 3.45 · 10−8 − −
2 10−10 4.01 · 10−9 10 1.16 · 10−1

3 10−10 3.41 · 10−9 10 9.88 · 10−2

4 10−10 3.26 · 10−9 12 9.45 · 10−2

5 10−10 3.22 · 10−9 10 9.32 · 10−2

refined solutions have a better result. In Table, we also report the number

of iterations of the algorithm to find the optimal solution. All these value

are compared with the reference uncontrolled simulation (λ = ∞). We also

report the reduction rate, defined as

R =

∫
Ωd

(η − ηd)2 dx∫
Ωd

(η̄d − ηd)2 dx
. (2.72)

In Table, the values of R are always R < 1, therefore the solution is always

improved with respect to the reference one. This means that the control

algorithm finds always a solution better then the reference one.

Displacement increase

Now a test on a displacement increase with respect to the reference config-

uration is introduced. In particular, we request a desired displacement of

ηd = 0.02m on Ωd. We consider the Ωd domain highlighted in Figure 2.8

on the left. All the physical quantities are considered equal to the previ-

ous case. The average displacement field in Ωd in the uncontrolled case is

η̄d = 0.00833m.

In Figure 2.12 the displacement field over the objective region Ωd is re-

ported. Note that the control acts in order to increase the displacement field

to the desired values. Note that the values of η = dx on the studied domain

are around the desired value of ηd = 0.02m. In Figure 2.13 the adjoint ve-

locity field is reported for number of levels 4 (on the left) and 5 (right). The

adjoint velocity is obtained through the solution of the adjoint system, and it

is used to solve the control equation. Note that the adjoint system leads to a
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Figure 2.12: Displacement field on Ωd for Lev = 2 (left) and Lev = 4 (right).

Figure 2.13: Adjoint velocity fields for Lev = 4 (left) and Lev = 5 (right).

solution similar to a classical Navier-Stokes system with consistent boundary

conditions. The fluid enters from the same inlet of the state problem, and

exit from the domain Ωd. The controlled pressure pc depends on the value

of the adjoint velocity in the inlet, as reported in the previous section. Note

that the adjoint velocity field seems to be consistent with the grid refinement.

In Figure 2.14 we report the comparison between the control pressure

fields (over Γ1) for different grid refinement. In particular, in contrast to

the previously reported test, a meaningful increase of the controlled pressure
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Figure 2.14: Comparison between the pressure field over Γc = Γ1 for different

mesh refinements.

can be noted in this case. Obviously, this is a direct consequence of the

request for an increase of the displacement on Ωd. Note that the control

pressure converges with the grid, since the pressure fields for 4 and 5 levels

are coincident.

Table 2.4: Distance from the objective ηd depending on the number of refine-

ment levels.

Levels λ
∫

Ωd
(η − ηd)2 dx Iterations R

2 ∞ 2.91 · 10−7 − −
2 10−10 2.39 · 10−8 12 8.21 · 10−2

3 10−10 1.76 · 10−8 7 6.05 · 10−2

4 10−10 1.58 · 10−8 12 5.43 · 10−2

5 10−10 1.53 · 10−8 11 5.26 · 10−2

In Table 2.4 the comparison between all the tested cases is reported.

In particular, all the cases are compared with the reference case without

control (i.e. λ = ∞). As in the previous case, we report the value of the

distance from the objective calculated with the integral
∫

Ωd
(η − ηd)2 dx. All
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the controlled simulations show a minor distance from the objective compared

to the reference case. The reduction rate, introduced in (2.72), is R < 0.1

for all the tested grids. This means that the solution is always improved

compared to the reference one, and the solutions for higher refinement levels

reduces the distance from the objective. In Table we report also the number

of iterations necessary to find the optimal solution for each grid refinement.

2.3.3 Variable desired field

We consider now a variable desired displacement field. This test can be

useful for practical applications where a non-constant objective is required.

Moreover, optimal control is a good approach to such problems, since the

try and fail approaches often can’t find a good solution to this optimization

problem. We present two different problems, with a sinusoidal and a step

desired field. We consider the geometry in Figure 2.8 (left) with Ωd = {(x, y) :

x ∈ [0.075, 0.1], y ∈ [0.075, 0.225]}.
We consider a fluid density ρf = 1000 kg/m3, fluid dynamic viscosity

µ = 1 Pa · s, and for the approximation of the solid to mono-dimensional

membrane we consider β = 60kPa/m and thickness hs = 0.0075 m. More-

over, we will consider λ = 10−6, unless stated otherwise. We consider a 2× 2

mesh of the domain, refined Nlev = 3 times with a multigrid technique. The

control domain Γc is equivalent to the surface Γ2, so we simulate an airbag

like case. We also impose an inlet pressure of pin = 600Pa.

A simple sinusoidal desired displacement

We start considering a simple sinusoidal case, where ηd is defined as

ηd = 0.01 + 0.0025 sin

(
2π(y − 0.075)

0.3

)
[m] .

The shape of this function has been chosen in order to be easily reproduced

using the control strategy presented in the last sections. In Table 2.5 we

report the distance from the objective ε defined as

ε =

∫

Ωd

(η − ηd)2 dx ,

and the reduction rate, defined in (2.72). We also report the value of λ,

that is equal to 10−6 in all the studied cases, with the only exception of the
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Table 2.5: Distance from the objective and reduction rate R of the objective

functional depending on the iteration of the control algorithm.

It λ ε R

− ∞ 4.15 · 10−7 −
1 10−6 1.90 · 10−7 4.59 · 10−1

3 10−6 9.90 · 10−8 2.39 · 10−1

5 10−6 1.37 · 10−8 3.30 · 10−2

7 10−6 9.45 · 10−9 2.28 · 10−2

9 10−6 7.46 · 10−9 1.80 · 10−2

‘

reference case (λ = ∞). For simplicity, we report only the odd iterations.

Note that the distance from the objective decreases in all the iteration of

the optimization algorithm, and reach a final value of 7.46 · 10−9. The final

reduction rate of 1.80 · 10−2 suggests that the final solution is 55 times closer

to the objective with respect to the initial solution.
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Figure 2.15: Displacement field (left) along the line between the points

(0.1, 0.075) and (0.1, 0.225), and controlled pressure field (right) along the

boundary Γ2.

In Figure 2.15 on the left, the displacement field along the line ` between

the points (0.1, 0.075) and (0.1, 0.225) (such that ` ∈ Ωd) is reported. The

optimal and reference solutions have a similar behavior, therefore we can
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conclude that the optimization algorithm found a good solution, in perfect

agreement with the desired displacement. In Figure on the right, we re-

port the controlled pressure field along Γ2 to have the optimal displacement

reported.

Step function desired displacement

We consider now a desired step function ηd, defined as

ηd =

{
0.0075m if y ∈ [0.075, 0.15[

0.015m if y ∈ [0.15, 0.225] .

All the physical parameters are the same used in the last cases. The presented

case is not a straightforward control problem, since it is not easy to represent

a step function displacement by controlling the pressure on Γ2. We split the

distance from the objective in two terms ε1 and ε2, such that

εi =

∫

Ωd,i

(η − ηd)2 dx , i = 1, 2 ,

where Ωd,1 = {(x, y) : x ∈ [0.075, 0.1], y ∈ [0.075, 0.15[} and Ωd,2 = {(x, y) :

x ∈ [0.075, 0.15], y ∈ [0.075, 0.225]}. Obviously, ε = ε1 + ε2.

Table 2.6: Distance from the objective for both the domains Ωd,1 and Ωd,2,

and overall distance from the objective ε depending on the iteration of the

algorithm. The reduction rate R of the objective functional is also reported.

It λ ε1 ε2 ε R

− ∞ 3.64 · 10−7 7.63 · 10−8 4.40 · 10−7 −
1 10−6 2.23 · 10−8 2.17 · 10−7 2.39 · 10−7 5.43 · 10−1

3 10−6 1.05 · 10−8 7.97 · 10−8 9.02 · 10−8 2.05 · 10−1

5 10−6 7.74 · 10−8 5.49 · 10−9 8.28 · 10−8 1.88 · 10−1

7 10−6 2.31 · 10−8 1.33 · 10−8 3.46 · 10−8 7.87 · 10−2

9 10−6 1.28 · 10−8 1.49 · 10−8 2.77 · 10−8 6.29 · 10−2

‘

In Table 2.6, ε1 and ε2 are reported. Note that the values of ε1 and ε2 are

not uniformly decreasing with the algorithm iterations, but their sum does.
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In fact, the algorithm is designed to reduce the value of ε: such value and,

consequently, the reduction rate R, decreases to a value of 2.77 · 10−8 and

6.29 ·10−2 respectively after 9 iterations. The overall reduction rate is greater

than the previous case, since the objective is more difficult to be reached.
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Figure 2.16: Step function desired field test for Levels= 3. Displacement field

along the line between the points (0.1, 0.075) and (0.1, 0.225).

In Figure 2.16, the displacement field along ` is reported. It is very diffi-

cult to have a perfect match between the optimal solution and the objective

step function ηd. The optimization algorithm works to minimize the dis-

tance between the optimal and the desired solutions, and the solution found

after 9 iterations of the optimization algorithm is reported in Figure. We

remark that, even if the proposed optimal solution does not represent a per-

fect matching with the desired one, it is an upgrade of the initial solution by

1/R ≈ 16 times.

Sinusoidal desired displacement

We finally consider a sinusoidal case difficult to be represented, defined as

ηd = 0.015 + 0.0075 sin

(
2π(y − 0.075)

0.15

)
[m] .

Note that, in contrast to the simple sinusoidal case presented previously, in

this case we request a full period of 2π, with a change in the second derivatives

sign. As in the case of the step function ηd, a perfect representation of the

desired displacement is not an easy task under these hypotheses.
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Table 2.7: Distance from the objective and reduction rate R of the objective

functional depending on the iteration of the control algorithm.

It λ ε R

− ∞ 8.36 · 10−7 −
2 10−6 4.66 · 10−7 5.59 · 10−1

4 10−6 2.14 · 10−7 2.56 · 10−1

6 10−6 1.30 · 10−7 1.55 · 10−1

8 10−6 9.87 · 10−8 1.18 · 10−1

10 10−6 7.09 · 10−8 8.48 · 10−2

‘

In Table 2.7 we report the values of λ, the distance from the objective ε

and the reduction rate R. We report only the even iterations for simplicity.

Note that the distance from the objective is reduced more than 10 times in

10 iterations of the optimization algorithm. In particular, the reduction of R

is equal to 1/R ≈ 12 times, similarly to the last test for desired step function

displacement.
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Figure 2.17: Displacement field (left) along the line `, and controlled pressure

field (right) along the boundary Γ2 in the sinusoidal case.

In Figure 2.17, the displacement field along ` and the pressure field along

Γ2 are reported. Note that, as in the step case, the optimal solution does not

match the desired one. However, the algorithm finds a solution closer to the
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objective in comparison to the reference one, as can be seen also in Table 2.7.

This is also due to the numerical problem: the choice of the control domain,

the control variable and the domain where the desired solution is requested

strongly affects the well-posedness of the numerical algorithm.

The optimal pressure field found by the algorithm is bounded. However,

the regularity of the pc found with this approach is not strong. The pressure

field suggested by the optimization algorithm is difficult to be represented

in real applications. The regularity can be improved by using a different

approach for the regularization term. In particular, in the case of pc ∈ H1/2,

the correct norm for the regularization term is ‖ · ‖H1/2 . In the next chapter

we introduce the fractional Sobolev spaces in order to implement such a

regularization term.





CHAPTER 3

Fractional models

In the adjoint optimal control theory, as it has been previously shown in

Chapter 2, a regularization term is added to the cost functional J in order

to force better mathematical and numerical properties to the optimization

process. This term usually contains the L2-norm of the control q, penalized

with a parameter λ.

Boundary optimal control problems are one of the classes of greatest in-

terest. In fact, the possibility of controlling the behavior of a physical system

may often take place by changing the quantities of certain variables at the

boundary of the domain. In such cases, normally one may wish to impose fur-

ther requirements on the regularity of the controls, i.e. H1 norm, to be added

to the cost functional. This technique works properly in many boundary con-

trol problems, but it is not based on a coherent mathematical formulation.

Theoretical results in mathematical analysis imply that the connection

between functions defined on the domain of a PDE and their restriction to

the boundary gives rise to fractional order Sobolev spaces. The presence of

these spaces induces the necessity to deal with the numerical discretization of

fractional derivatives. In particular, it can be demonstrated that the natural

space where optimal boundary control should be sought is H1/2(Γc). Note

that H1(Γc) is a subspace of H1/2(Γc).

Alternative approaches, based on the lifting functions [87], can be used to

not handle the fractional norms, but they will not be considered in this work.
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In the following paragraphs, the fractional Sobolev spaces will be introduced.

This will lead to the analysis of some numerical methods for nonlocal and

fractional models.

Besides the context of boundary control problems, the attention given

in recent years to fractional derivatives and their discretization has been

growing. Fractional derivatives in fact appear in the mathematical modeling

of forward problems whenever non-local effects are taken into account. These

derivatives may involve both the time and space variables. Examples of

mathematical models involving fractional derivatives are met in several fields,

such as finance, fluid, and solid mechanics, stochastic modeling, quantum

mechanics, and the social sciences.

All the models and the simulations presented in this chapter has been de-

veloped in a collaboration with the Department of Mathematics and Statistics

of the Texas Tech University.

3.1 The Riesz fractional Laplacian

In this section the fractional Sobolev spaces and their properties are intro-

duced. Much of this introductory section is derived from the hitchhiker’s

guide [13], a recommended reading for anyone who wants to start working

with the fractional spaces.

It is also reported a mathematical introduction to the fractional Laplacian

and his properties. For this purpose, the nonlocal models will be introduced

since the fractional Laplacian can be seen as a special case of a nonlocal

operator. It will be also introduced the weak formulation of such an operator,

which will lead, in the following sections, to the numerical resolution of the

fractional Laplacian.

3.1.1 Introduction to the fractional Sobolev spaces

We introduce now the general definition of fractional Sobolev space.

Definition 3.1. Given Ω, a general, possibly non-smooth open set in Rn, the

fractional Sobolev space W s,p(Ω) is defined as

W s,p(Ω) =

{
u ∈ Lp(Ω) :

|u(x)− u(y)|
|x− y|np+s

∈ L2(Ω× Ω)

}
, (3.1)

for any p ∈ [1,+∞) and with a fractional exponent s ∈ (0, 1).
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Definition 3.2. The natural norm in W s,p(Ω) is defined as

‖u‖W s,p(Ω) =

(∫

Ω

|u|pdx+

∫

Ω

∫

Ω

|u(x)− u(y)|p
|x− y|n+sp

dx dy

) 1
p

. (3.2)

We can also define the so-called Gagliardo semi-norm as

[u]W s,p(Ω) =

(∫

Ω

∫

Ω

|u(x)− u(y)|p
|x− y|n+sp

dx dy

) 1
p

(3.3)

This definition of the fractional Sobolev space cannot be extended to the

case s ≥ 1. In literature there are some relationship to describe the behavior

of the Gagliardo semi-norm for s→ 0 or s→ 1 [13]. For u ∈ W 1,p(Ω) holds

lim
x→1−

(1− s)
∫

Ω

∫

Ω

|u(x)− u(y)|p
|x− y|n+sp

dx dy = C ′
∫

Ω

|∇u|pdx , (3.4)

for a suitable positive constant C ′ depending only on n and p. Similarly, by

extending the functional space of u to W s,p(Rn), it can be demonstrated that

lim
x→0+

s

∫

Ω

∫

Ω

|u(x)− u(y)|p
|x− y|n+sp

dx dy = C ′′
∫

Ω

|u|pdx , (3.5)

for a suitable positive constant C ′′ depending only on n and p [88]. For p = 2,

it can be seen that the limit (3.4) goes to the H1(Ω) norm multiplied by the

constant C ′, and the limit (3.5) goes to the L2(Rn) norm multiplied by the

constant C ′′.

Proposition 3.1. Let 0 < s ≤ s1 < 1 and u : Ω → R be a measurable

function. Then

‖u‖W s,p(Ω) ≤ C‖u‖W s1,p(Ω) , (3.6)

for some suitable positive constant C = C(n, s, p) ≥ 1. In particular,

W 1,p(Ω) ⊂ W s1,p(Ω) ⊆ W s,p(Ω) . (3.7)

The first relationship (W 1,p(Ω) ⊂ W s1,p(Ω)) it’s effective under regularity

hypotheses on ∂Ω.

In this work we will only consider the case p = 2, so that W s,p(Ω) = Hs(Ω)

is an Hilbert space. In such case, as said before, it holds

W 1,p(Ω) = H1(Ω) ⊂ Hs(Ω) . (3.8)
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The relationship (3.8) will be considered later to show that the search for

the regularization term in the boundary optimal control theory occurs in a

narrow subset (the H1(Γ) space) of the correct functional space (H1/2(Γ)).

From (3.1) we define the functional space Hs(Ω) as

Hs(Ω) =

{
u ∈ L2(Ω) :

|u(x)− u(y)|
|x− y|n2 +s

∈ L2(Ω× Ω)

}
. (3.9)

3.1.2 The fractional Laplacian as a nonlocal operator

As mentioned before, in this work the only case with p = 2 is considered.

This introduce the Hs(Rn) = W s,2(Rn) space. This class of functional spaces

turns out to be important since they are Hilbert spaces. They are related to

the fractional Laplacian (−∆)s, defined as

(−∆)su(x) = C(n, s) P.V.

∫

Rn

u(x)− u(y)

|x− y|n+2s
dy, 0 < s < 1 , (3.10)

where P.V. means “in the principle value sense” [13]. C(n, s) is a constant

that depends on s and on the dimensionality of the problem n. Its value can

be written as

C(n, s) = s 22s Γ(n+2s
2

)

πn/2 Γ(1− s) , (3.11)

where Γ(·) is the Gamma function, defined as Γ(k) =
∫∞

0
tk−1e−tdt.

The integral over y in equation (3.10) suggests that the local behavior

(on a generic point x) of the operator (−∆)s is influenced by the values of

the function over all the considered domain. This causes that (−∆)s can

be considered a nonlocal operator. The fractional diffusion models can be

thought of as being a special case of the general nonlocal diffusion models.

In general, the numerical simulation of nonlocal operators is non-trivial, and

the same goes for the fractional Laplacian simulations.

Nonlocal operators

Nonlocal models have been recently used in many applications, including

continuum mechanics [89], kinetic equations, phase transitions [90], nonlocal

heat conduction, turbulence models [91], etc. In particular, such models

become very important when “local” classical models are not able to represent

the physical phenomenon.
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In the classical partial differential equation models interaction between

two domains occur only due to contact. In the nonlocal models interaction

can occur at a distance. In particular, let Ω ∈ Rn be a bounded, open domain.

So we can define the nonlocal diffusion operator L applied on the function

u(x) : Ω→ R as

Lu(x) = 2

∫

Rn
(u(y)− u(x))γ(x,y)dy , ∀x ∈ Ω ⊆ Rn , (3.12)

where the kernel γ(x,y) : Ω×Ω→ R is a non-negative, symmetric mapping

[15]. Now we consider the steady-state nonlocal diffusion
{
−Lu(x) = f(x) on Ω ,

u(x) = 0 on Ωl .
(3.13)

In this set of problems the boundary conditions are imposed on an interaction

volume Ωl, which is disjoint from Ω. In numerical analysis usually Ωl is a

finite domain that surround Ω. In particular, a domain Ωl on a ball of radius

δ is typically used. In such cases, the domain Ωl = ΩIδ is defined as

ΩIδ = { y ∈ Rn r Ω such that y ∈ Bδ(x) for some x ∈ Ω } , (3.14)

where Bδ(x) denotes the ball of radius δ centered at x.

Fractional Laplacian as a special case of the nonlocal Laplacian

Previously, fractional Laplacian and nonlocal operators have been introduced.

By comparing the equation (3.10) with the equation (3.12) it can be seen that

the fractional Laplacian is a special case of the nonlocal operators. In fact,

if the kernel γ(x,y) in (3.12) is defined as

γ(x,y) =
cn,s

2|y − x|n+2s
∀x,y ∈ Rn . (3.15)

Then the nonlocal operator can be written as

− Lu(x) = (−∆)s, 0 < s < 1 . (3.16)

In the following, we consider the system (3.13), where L is defined as in (3.12),

the kernel is defined as in (3.15) and f ∈ L2(Ω). Under these hypotheses,

the weak formulation of the fractional diffusive problem can be written as

cn,s
2

∫

Rn

∫

Rn

u(y)− u(x)

|x− y|n+2s

(
v(y)− v(x)

)
dy dx =

∫

Ω

fv dx , ∀v ∈ Hs
Ω(Rn) .

(3.17)
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The nonlocal models are more general than their fractional and local

counterparts. In fact, the nonlocal models can be a connection between

fractional and local models. In particular, the partial differential equations

(PDEs) can be seen as the local limit (δ → 0) and fractional PDEs as the

global limit (δ →∞) of nonlocal models [92]. The restriction of the nonlocal

model on the domain Ω is obtained imposing

u(x) = 0, v(x) = 0 ∀x ∈ Rn r Ω . (3.18)

3.1.3 Numerical modeling of Riesz fractional Laplacian

Several methods have been developed to perform the numerical simulations of

the fractional Laplacian on bounded domains, and many works have been re-

cently published on this topic [17, 93, 94]. In this work, the numerical simula-

tion of fractional Laplacian with homogeneous Dirichlet boundary conditions

is considered.

We introduce a numerical method for the modeling of the equation (3.17).

Such a model is called Riesz fractional Laplacian [14]. In the following sec-

tion, a numerical approach to the fractional Laplacian based on a spectral

method is presented [17]. All the presented models are validated through a

comparison with some benchmark results found in the literature.

The Riesz fractional Laplacian on a bounded domain Ω is based on the

application of the real space formula (3.17) to functions defined in the con-

sidered domain. In order to restrict such equation to bounded domains, it

is important to consider the condition (3.18). The integrals over Rn can be

split as

∫

Rn

∫

Rn
(.) dydx =

∫

Ω

∫

Ω

(.) dydx+

∫

RnrΩ

∫

Ω

(.) dydx +

+

∫

Ω

∫

RnrΩ

(.) dydx+

∫

RnrΩ

∫

RnrΩ

(.) dydx .

(3.19)

Considering (3.18), it is straightforward to demonstrate that

cn,s
2

∫

RnrΩ

∫

RnrΩ

u(y)− u(x)

|x− y|n+2s

(
v(y)− v(x)

)
dydx = 0 . (3.20)

We impose now the kernel γ(x,y) = v(y)−v(x)
|x−y|n+2s . It is also possible to derive
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the following
∫

RnrΩ

∫

Ω

γ(x,y)
(
v(y)− v(x)

)
dydx =

=

∫

Ω

∫

RnrΩ

γ(x,y)
(
v(y)− v(x)

)
dydx

=

∫

Ω

u(x)v(x)

∫

RnrΩ

1

|x− y|n+2s
dy dx .

(3.21)

Then the fractional Laplacian for bounded domains turns to

cn,s
2

∫

Ω

∫

Ω

u(y)− u(x)

|x− y|n+2s

(
v(y)− v(x)

)
dydx+

+ cn,s

∫

Ω

u(x)v(x)

∫

RnrΩ

1

|x− y|n+2s
dydx =

∫

Ω

fv dx ,

(3.22)

for all v ∈ Hs
Ω(Rn).

In literature, many works are based on the extension of the bounded

domain by an auxiliary domain Ωl in order to model the mixed integral over

RnrΩ in (3.22). In such works, usually the nonlocal behavior of the fractional

Laplacian is calculated inside a ball Bλ(x) of radius λ around the point x

[15]. In these cases Ωl is defined as
⋃
i

Bλ(xi), ∀xi ∈ Ω. So the integral over

Ω turns out to be defined over Ω∪Ωl, and the integral over RnrΩ turns out

to be defined over (Rn r Ω)∩Bλ(xi). In this work, a different approach will

be used, with a semi-analytical method applied to the mixed integrals.

Finite element approximation for the Riesz method - I

In this section, the finite element approximation of Riesz bounded fractional

Laplacian with homogeneous Dirichlet boundary conditions is introduced. In

particular, we will focus on the first double integral in equation (3.22). Such

integral is discretized as

cn,s
2

∫

Ω

∫

Ω

u(y)− u(x)

|x− y|n+2s

(
v(y)− v(x)

)
dydx '

' cn,s
2

Nel∑

elx=1

ng(elx)∑

xg=0

Jxgwxg

(
Nel∑

ely=1

ng(ely)∑

yg=0

Jygwyg
u(yg)− u(xg)

|xg − yg|n+2s

(
v(yg)− v(xg)

)
)
.

(3.23)

The implementation of this model for a finite element solver is quite chal-

lenging. First of all, the kernel γ(xg,yg) can be singular when elx = ely.
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In order to avoid the singularity, different quadrature rules for the x and y

discretizations can be used.

However, in this work, a trivial adaptive technique has been used in order

to avoid the singularity, keeping at the same time a good approximation of

the kernel near the singularities. This technique consists of the subdivision

of the y-cell in 2n sub-cells that share xg as a node. The nodes that don’t

match the elx nodes are calculated with an interpolation technique, so this

method is developed for polygonal cells. Moreover the algorithm has been

developed to perform multiple levels of refinement. The four sub-cells are

divided in further 2n sub-cells each, using the midpoint of each edge of the

considered cell. In figure 3.1 the refinement on a single cell is shown. Under

Figure 3.1: Refined cell for a generic quadrature point xg (2 levels).

these hypotheses, the summation
∑ng(ely)

yg=0 turns out to be

ng(ely)∑

yg=0

· =

NRefCells(Nsplit)∑

n=0

ng(ely(n))∑

yg=0

· , (3.24)

where NRefCells is the number of refined cells obtained from Nsplit splits. The

considered quadrature node xg cannot be an internal point for any of the

NRefCells (at most, can be a node for the cell). Since usually the quadrature

points yg of the cells cannot coincide with one of the nodes of the cell, the

singularity of the kernel γ(xg,yg) is avoided with this technique. It is also

important to note that the refined cells accumulate towards the quadrature
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point xg. This lead to a more precise numerical simulation of the behavior

of the kernel near the singularity.

Since the Riesz approach is nonlocal, as reported above, the numerical

system to be solved is characterized by a dense matrix. In particular, for

implementation purposes, the matrix assembly should be divided into four

different terms, so that the generic element of the stiffness matrix Aij can be

written as

Aij = A11
ij + A12

ij + A21
ij + A22

ij ,

as shown in algorithm 4. However, as reported in [95], since the kernel is a

symmetric function in x and y, it holds A11
ij = A22

ij and A12
ij = A21

ij . Thus, in

the reported algorithm, we consider

Aij = 2A11
ij + 2A12

ij .

Obviously, the resolution of a dense matrix is numerically expensive, so

the resolution of these operators over complex domains might be unfeasible.

PETSc [30] supports the resolution of numerical systems characterized by

dense matrices, and in this work such an environment has been used.

In addition, it is important to underline that the cycle on the ely in

algorithm 4 it is defined, for ely = elx, over all the refined cells. The use of

several levels of refinement allows building a coarser mesh, with a meaningful

reduction of the computational cost of the simulation of fractional Laplacian.

The most significant contribution to the fractional modeling consists precisely

in the assembly for ely = elx (near the singularity) and in the mixed term (the

second integral in equation (3.22)). For this reason, the use of the refinement

is strongly recommended in order to have better simulations with limited

computational effort.

Finite element approximation for the Riesz method - II

In this section, the finite element approximation of the second integral of

equation (3.22) will be introduced. Many works in literature present various

techniques for the numerical simulation of the mixed integral. The most

commonly used technique consists of the limitation of the nonlocal behavior of

the fractional Laplacian to a ball Bδ of dimension n and radius δ built around

the considered Gauss node xg [12]. With such an approach the numerical

domain must be extended outside of Ω, and the representation of the integral

on (Rn r Ω) ∩Bδ is a numerical approximation of the mixed integral.
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Algorithm 4 Local matrix assembly for Riesz fractional Laplacian.
1) Cycle on the processors, for kproc < nprocs. The current processor is iproc.

2) Double cycle on the elements ely and elx (equation (3.23)), for eloffset[kproc] ≤
ely < eloffset[kproc + 1] and eloffset[iproc] ≤ elx < eloffset[iproc + 1]. Inside these

cycles the mappings mapely and mapelx are calculated.

3) Double cycle on the Gauss points xg and yg of the element elx and ely,

respectively. Evaluation of the test functions v(xg) = v1 and v(yg) = v2 and of

the jacobean and weights w(xg) = wxg and w(yg) = wyg.

for ig = 0, ng(elx) do

for jg = 0, ng(ely) do

4) Double cycle on the test functions.

for i = 0, nDof1 do

for j = 0, nDof2 do

5) Assembly of the local matrix, splitted in four components

A11
ij +=

Cns v1[j] v1[i]wxg wyg Jxg Jyg
‖xg − yg‖n+2s

A12
ij +=

Cns (−v2[j]) v1[i]wxg wyg Jxg Jyg
‖xg − yg‖n+2s

end for

end for

end for

end for

6) The assembled local matrices are mapped into the global matrix through the

following mappings: A11 → mapelx for rows and columns. A12 → mapelx for

rows and mapely for columns.

However, in this work, a different approach will be used. In [14], an

approach based on the restriction of the mixed integral over Rn r Ω to the

boundary ∂Ω is introduced. A similar approach will be used in this work,

based on both a numerical and an analytical approach to the mixed integral.

Let consider the integral over Rn r Ω
∫

RnrΩ

1

|xg − y|n+2s
dy , x ∈ Ω .

For a fixed xg, a loop on the entire boundary of the numerical problem

(∂Ω) has been implemented. In particular, as shown in Figure 3.2, each

boundary element is divided into a number of subdivisions determined by

the user. Obviously, a greater number of subdivisions leads to a better nu-
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xg

∆ϑi

∂Ω

χi

A(χi)

Figure 3.2: Area of numerical integration for one of the subdivisions of ∂Ω.

xg

ỹi

Figure 3.3: Numerical integration of the mixed integral for one of the subdi-

visions of ∂Ω.

merical evaluation of the mixed integral, but to greater computational cost.

Each subdivision χi represents an approximation of the area A(χi), such that⋃
iA(χi) = {Rn r Ω}. So we obtain

∫

RnrΩ

1

|xg − y|n+2s
dy =

Nsub∑

i=1

∫

A(χi)

1

|xg − y|n+2s
dy , (3.25)

where Nsub is the total number of subdivision of the whole boundary ∂Ω. The

integrals over A(χi) are approximated along the line connecting xg and ỹi.
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As can be seen in Figure 3.3, the node ỹi is the medium point of the segment

χi. The integration 3.25 will be approximated along the line I connecting

xg and ỹi. So considering t as the distance between xg and y ∈ I, the

approximated integral results as
∫

A(χi)

1

|xg − y|n+2s
dy ' ∆ϑi

∫ +∞

|xg−ỹi|

1

tn+2s
dt , (3.26)

which implies

∆ϑi

∫ +∞

|xg−ỹi|

1

tn+2s
dt = ∆ϑi

[ 1

−(n+ 2s− 1)tn+2s−1

]+∞

|xg−ỹi|

=
∆ϑi

(n+ 2s− 1)|xg − ỹi|n+2s−1
.

(3.27)

Therefore, the mixed integral of equation (3.22) turns out to be

cn,s

∫

Ω

u(x)v(x)

∫

RnrΩ

1

|x− y|n+2s
dydx '

'
Nel∑

elx=1

ng(elx)∑

xg=0

Jxgwxgu(xg)v(xg)

Nsub∑

i=1

∆ϑi
(n+ 2s− 1)|xg − ỹi|n+2s−1

.

(3.28)

Now the variational formulation for mixed integrals has been presented. The

extension of it to one-dimensional domains is straightforward. It is important

to underline that the refinement method introduced in the last paragraph

can be extended at the mixed integrals, in order to have a more refined

discretization of the boundary ∂Ω.

The complete finite element model for Riesz fractional Laplacian is ob-

tained by the sum of the discretized term in equation (3.23) and (3.28). The

numerical modeling is completed by the discretized source term,
∫

Ω
fvdx,

and by homogeneous boundary conditions as

Nel∑

elx=1

ng(elx)∑

xg=0

Jxgwxg

(
Nel∑

ely=1

ng(ely)∑

yg=0

Jygwyg
u(yg)− u(xg)

|xg − yg|n+2s

(
v(yg)− v(xg)

)
)

+

Nel∑

elx=1

ng(elx)∑

xg=0

Jxgwxgu(xg)v(xg)

Nsub∑

i=1

∆ϑi
(n+ 2s− 1)|xg − ỹi|n+2s−1

=

=

Nel∑

elx=1

ng(elx)∑

xg=0

Jxgwxgf(xg)v(xg) .

(3.29)
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3.2 The Dunford-Taylor fractional Laplacian

In this section, a technique for the simulation of the fractional Laplacian

based on the spectral theory is presented. When the spatial domain is

bounded, the fractional powers can be defined in terms of the Fourier se-

ries, which leads to a conceptual simplification of a complex problem such

as that of fractional operators. The spectral properties of the Laplacian will

be extended to fractional Laplacian. The eigenvalue problems applied to

PDE will be introduced at first. Then, models based on the Dunford-Taylor

method for both spectral and integral fractional Laplacian will be presented.

This section will be based on the Dunford-Taylor representation of fractional

Laplacian defined as

(−∆)−s =
1

2πi

∫

D
z−s(z + ∆)−1dz, 0 < s < 1 . (3.30)

This topic has been widely developed by Bonito et al., and the interested

reader can see [96, 17, 16, 97].

3.2.1 The eigenvalues of the Laplacian

The eigenvalue problems applied to PDE are introduced in this section, with

particular emphasis on the Laplacian eigenvalues. First of all, some basic

concepts are introduced. The eigenvalue problem for the Laplacian can be

written as {
∆f = λf

B.C.
(3.31)

In this framework we introduce now some basic definitions and theorems.

Definition 3.3. We define the Rayleigh quotient as

R =
‖∇z‖2

L2(Ω)

‖z‖L2(Ω)

=

∫
Ω
|∇z|2 dx∫

Ω
|z|2 dx . (3.32)

Now, considering Y as the space of the test function for a Dirichlet prob-

lem, the following theorem can be introduced.

Theorem 3.1. Let z ∈ Y a minimum point for the Rayleigh quotient, so that

m =
‖∇z‖2

L2(Ω)

‖z‖L2(Ω)

= minw∈Y
‖∇w‖2

L2(Ω)

‖w‖L2(Ω)

, (3.33)
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therefore m is the first eigenvalue of ∆D, with the corresponding eigenfunction

z. ∆D is the Laplacian with a set of Dirichlet boundary conditions.

The Theorem 3.1 shows that at least one of the eigenvalues of the Lapla-

cian can be found. Another more general theorem is now introduced to find

all the Laplacian eigenvalues.

Theorem 3.2. Let v1, v2, · · · , vn−1 be the first n− 1 orthogonal eigenvectors

of ∆D. Let also consider

Yn = {w ∈ Y : (w, vi) = 0, ∀i = 1, · · · , n− 1} .

If exists vn such as the Rayleigh quotient mn is minimized on Yn,

mn = minw∈Yn =
‖∇w‖2

L2(Ω)

‖w‖L2(Ω)

,

then mn = λn, where λn is the n-th eigenvalue of ∆D. The corresponding

associated eigenfunction is vn.

The two enunciated theorems have an extremely relevant scope: thanks to

them we can not only conclude that it is possible to determine the eigenvalues

and eigenfunctions of the Laplacian operator, but we also have an explicit

way to do it. Moreover, it is possible to demonstrate that the eigenfunctions

of the Dirichlet problem are a complete orthonormal system on L2(Ω). Such

a system can be used to develop solutions of the boundary problems consid-

ered in the Fourier series. The properties listed above lead to the following

theorem.

Theorem 3.3. Let {fn}+∞
n=1 a sequence of orthonormal eigenvectors in the

Hilbert space H, and are c1, c2, · · · , cN numerical coefficients. Then

∥∥∥f −
N∑

n=1

cnfn

∥∥∥ ≥
∥∥∥f −

N∑

n=1

(f, fn)fn

∥∥∥ . (3.34)

We call λn = (f, fn) as Fourier coefficients of f , with the respect of {fn}+∞
n=1.

The theorem states that in approximating f with a partial sum, the min-

imum that occurs is the case where the approximation is given in the Fourier

series development. Moreover, the Theorem 3.3 lead to the conclusion that

∀f ∈ H the Fourier coefficient series converges, however it is not possible to

demonstrate a priori that converges to ‖f‖. So we introduce the following

proposition.
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Proposition 3.2. If the sequence {fn}+∞
n=1 is a complete orthonormal system,

the following Parseval equality applies

‖f‖2 =
+∞∑

n=1

|(f, fn)|2 , (3.35)

where the internal product (f, fn) defines the n-th Fourier coefficient of f with

an orthonormal base.

Lastly, using the Fourier transform we can obtain the following definition

of fractional Sobolev space, which will be used in the following

Hs(Ω) =

{
w ∈ L2(Ω) : ‖w‖Hs(Ω) =

(∫

Ω

(1 + |ξ|2)
s
2 |F (w)(ξ)|2dξ

) 1
2

<∞
}
,

(3.36)

with w ∈ Hs(Ω).

The theory on the eigenvalue problems and on the Fourier series pre-

sented above is now used to develop a numerical approach to the fractional

Laplacian.

3.2.2 The spectral method

For functions defined over Rd, there is a natural way to define the fractional

Laplacian as a pseudo-differential operator using the Fourier transform F .

Given a function u in the Schwartz class S , we have

(−∆)su = F−1
(
|ξ|2sFu

)
. (3.37)

The theory on the Laplacian eigenvalues introduced above is now lead back

to the fractional Laplacian (−∆)s. The Laplacian operator can be written

as −∆ : D(−∆) → L2(Ω), where the domain D(−∆) = H1
0 (Ω) ⊂ H2(Ω)

is dense. The operator −∆ is unbounded, positive and closed, and its in-

verse is compact. Therefore, there exists a countable collection of eigen-

pairs {λk, φk}k∈N ⊂ R+ ×H1
0 (Ω) such that {φk}k∈N is an orthonormal basis

of L2(Ω) as well as an orthogonal basis of H0(Ω) [17]. Thus, considering

u ∈ {v ∈ L2(Ω) : (−∆)sv ∈ L2(Ω)}, 0 < s < 1, the fractional Dirichlet

Laplacian can be defined as

(−∆)su =
∞∑

k=1

λsk (u, φk)φk , (3.38)
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with k ∈ N. As shown previously, (. , .) represents the inner product, and

in this framework it is defined on L2(Ω). {φk} is an orthonormal basis of

eigenfunctions of −∆ corresponding to eigenvalues {λj}. Now it is possible

to redefine the fractional Sobolev space Hs in a spectral way as

Hs(Ω) =
{
u =

∞∑

k=1

(u, φk)φk :
∞∑

k=1

λsk (u, φk)
2 <∞

}
. (3.39)

The spectral fractional Laplacian is based on a direct approximation of

the inverse of the fractional operator. Then, instead of solving (−∆)su =

f we approximate u = (−∆)−sf . It is important to underline that the

spectral approach is a method to find the solution of (−∆)su = f , but it

is not a numerical representation of the fractional Laplacian operator. In

the next section, the integral method will be presented, in order to have the

representation of the operator. The approximation of u = (−∆)−sf can be

obtained through (3.30)

(−∆)−sf =
1

2πi

∫

D
z−s(z + ∆)−1fdz. (3.40)

Since the operator −∆ is positive, we can consider D so as to obtain the

Balakrishnan formula [98]

(−∆)−sf =
sin(sπ)

π

∫ ∞

0

µ−s(µI −∆)−1fdµ . (3.41)

The spectral method here presented is based on this formula. However, this

approach isn’t well defined for integral fractional Laplacian.

Now a change of variables in the integral of equation (3.41) is needed to

develop a numerical method for the simulation of the spectral Laplacian. We

put µ = e−2t, which implies dµ = −2e−2tdt. Since t = − logµ
2

, the new limits

of integration are t(µ = 0) = +∞ and t(µ = +∞) = −∞. Under these

hypotheses we obtain

u = (−∆)−sf =
2 sin(sπ)

π

∫ +∞

−∞
e2st(I − e2t∆)−1fdt . (3.42)

In the following cs = 2 sin(sπ)
π

will be used. Now, a sinc quadrature will be

used for the numerical representation of (3.42). The approximated value of

u results

u ' uk = csk
N+∑

j=−N−
e2stj(I − e2tj∆)−1f = csk

N+∑

j=−N−
e2stjwj , (3.43)
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where

wj = (I − e2tj∆)−1f . (3.44)

Moreover, k is the quadrature step size, tj = jk are the quadrature points,

N+ = d π2

4(1−s)k2 e and N− = d π2

4sk2
e, where d.e denote the round up to the

nearest integer. For further information on the sinc quadrature applied to

the fractional model, one can see [16]. In particular, in the cited paper a

complete error analysis of the used approximation is developed.

Now we can solve the equation (3.44) as a partial differential equation.

We can apply the inverse operator (I−e2tj∆)−1 directly to wj, obtaining the

following PDE (in weak form)

(wh,j, vh)Ω + e2tj(∇wh,j,∇vh)Ω = (f, vh)Ω , ∀vh ∈ Vh , (3.45)

where Vh ⊂ H1
0 (Ω) is the finite element space consisting of continuous piece-

wise linear functions. The unknowns wh,j are defined over Vh for each j on

the same mesh.

Implementation of spectral fractional Laplacian

The implementation of the spectral fractional Laplacian consists of the nu-

merical simulation of N− + N+ + 1 finite element problems. Such problems

are mutually independent. Therefore the parallel implementation is straight-

forward since every numerical problem can be solved by a different processor.

The N−+N+ +1 equations (3.45) only requires the implementation of a clas-

sical finite element solver for the diffusion-reaction problem. Then, once the

solutions are found, an algebraic relation between the wj,h is needed in order

to find the solution u, as provided from equation (3.43). Since the numerical

problems are mutually independent, the solution matrix A can be split into

N−+N+ + 1 matrices Aj. The solution uk can be found through a weighted

sum of the wj,h on the Gauss nodes.

It is important to underline that the choice of k affects the approximation

error and the computational cost. The lower the value of k, the better is the

representation of the solution uk. However, low k values lead to high N− and

N+ values, therefore it is necessary to solve a large number of finite element

problems. This could increase meaningfully the computational cost of the

simulation.

The discrepancy between the exact solution and its approximation due

to all the introduced approximations consist of the sinc quadrature error,
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which is exponentially convergent, and the finite element approximation er-

ror, which is optimal up to a logarithmic factor depending on the smoothness

of the data f . For further information on the error estimation, which is not

part of this work, one can see [17, 16]. It is worth mentioning that the error

analysis does not require the domain to be convex.

Lastly, it is important to note that for sufficiently high values of N+ and

N− numerical catastrophic cancellation can happen, due to the nature of the

exponential function. To avoid cancellations, one can consider w′ = e2stjw

such that the equations (3.45) and (3.43) become, respectively

(w′h,j, vh)Ω + e2tj(∇w′h,j,∇vh)Ω = e2stj(f, vh)Ω

uk = csk
N+∑

j=−N−
w′j .

(3.46)

The system of equation (3.46) has been implemented in a finite element based

code, and tested on various 1D and 2D domains. With the presented change

of variables, the numerical cancellations are avoided.

3.2.3 The integral method

The system (3.46) is a direct approximation of the inverse of the operator.

This means that the spectral fractional Laplacian is not suitable for partial

differential equations involving fractional Laplacians. The spectral method

is useful to solve equations of the type ∆su = f . In order to build properly

a model for fractional Laplacian operator alternative to the Riesz exposed

before, we apply the Parseval’s equality (see Proposition 3.2) to equation

∆su = f , finding the following weak formulation: given f ∈ H−s(Ω) find

u ∈ Hs(Ω) such that

∫

Ω

|ξ|sF (u)|ξ|sF (w)dξ = (f, w) , ∀w ∈ Hs , (3.47)

where χ is the complex conjugate of χ. Now, starting from equation (3.36)

we can derive the following theorem.

Theorem 3.4. Let s ∈ (0, 1) and 0 ≤ r ≤ s. For u ∈ Hr+s(Ω) and θ ∈
Hs−r(Ω),

(
(−∆)(s+r)/2u, (−∆)(s−r)/2θ

)
= cs

∫ ∞

0

t2−2s
(
−∆(I − t2∆)−1u, θ

)dt
t
, (3.48)
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where

cs =

(∫ ∞

0

y1−2s

1 + y2
dy

)−1

=
2 sin(sπ)

π
.

Proof. The proof of this theorem is taken from [97] and limited to the Ω

domain. For more details, see the cited paper and references therein. Using

the Parseval’s theorem we have

(−∆(I − t2∆)−1u, θ) =

∫

Ω

|ξ|2
1 + t2|ξ|2 F (u)(ξ)F (θ)(ξ)dξ . (3.49)

Consequently, the right-hand side of equation (3.48) becomes

cs

∫ ∞

0

t2−2s(−∆(I − t2∆)−1u, θ)
dt

t
=

= cs

∫ ∞

0

t1−2s

∫

Ω

|ξ|2
1 + t2|ξ|2 F (u)(ξ)F (θ)(ξ)dξdt

(3.50)

In order to invoke Fubini’s theorem, we now show that the right-hand side

of equation (3.50) is equal to

cs

∫

Ω

|F (u)(ξ)| |F (θ)(ξ)|
∫ ∞

0

t1−2s |ξ|2
1 + t2|ξ|2dtdξ =

=

∫

Ω

|ξ|2s|F (u)(ξ)| |F (θ)(ξ)|dξ ,
(3.51)

which is finite for u ∈ Hr(Ω) and θ ∈ Hs−r(Ω). We now apply Fubini’s

theorem and the change of variable y = t|ξ| in (3.50) to obtain

∫

Ω

|ξ|2s|F (u)(ξ)| |F (θ)(ξ)|dξ =
(
(−∆)(s+r)/2u, (−∆)(s−r)/2θ

)
. (3.52)

This completes the proof of the theorem.

We can now consider the equation (3.48) as a first operator representation

of the integral fractional Laplacian. Some new concepts are now introduced

in order to have a numerical representation of it.

Similarly to the spectral fractional Laplacian, we define w(ψ, µ) = w(µ) ∈
H1(Ω) for a generic ψ ∈ L2(Ω). The introduced w(µ) has to be the solution

of
∫

Ω

w(µ)φ dx+ µ2

∫

Ω

∇w(µ) · ∇φ dx = −
∫

Ω

ψφdx , ∀φ ∈ H1(Ω) . (3.53)
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It is possible to demonstrate that the equation (3.48) is equivalent to
∫

Ω

|ξ|r+sF (η)(ξ)|ξ|s−rF (η)(ξ)dξ =

=
2 sin(sπ)

π

∫ ∞

0

µ1−2s

∫

Ω

(
(−∆)(I − µ2∆)−1η

)
θ dx dµ .

(3.54)

Therefore, considering u, θ ∈ Hs(Ω) with s ∈ (0, 1), the prior equation turns

to ∫

Ω

|ξ|r+sF (η)(ξ)|ξ|s−rF (η)(ξ)dξ =

=
2 sin(sπ)

π

∫ ∞

0

µ−1−2s

(∫

Ω

(
u+ w(u, µ)

)
θ dx

)
dµ .

(3.55)

We can define now the integral fractional operator as the right-hand side of

equation (3.55)

a(η, θ) =
2 sin(sπ)

π

∫ ∞

0

µ−1−2s

(∫

Ω

(
η + w(η, µ)

)
θ dx

)
dµ , (3.56)

with η, θ ∈ Hs(Ω). u has been substitute by η in order to show the generality

of this operator. The operator a(η, θ) can be used for the numerical simulation

of fractional Laplacian in PDEs. For now, we are interested in solving the

simple equation (3.13), so we obtain

a(u, v) = (f, v) , ∀v ∈ Hs(Ω) . (3.57)

The equation (3.57) lead to ill-posed numerical systems. Usually, the

system (3.57) is numerically solved with an extension of the variables w(u, µ)

over the whole Rn, with a subsequent reduction on a ball of a variable radius

around every Gauss node. In this work, we will precondition the ill-posed

system in order to have solutions on Ω, without involving larger domains.

The numerical simulation of the generic integral operator a(η, v) is based,

similarly to the spectral fractional Laplacian, on a sinc quadrature. We also

perform a change of variable µ = e−
1
2
y and we obtain

a(η, θ) =
sin(sπ)

π

∫ +∞

−∞
esy
(∫

Ω

(
η + w(η, µ(y))

)
θ dx

)
dy . (3.58)

Given a quadrature spacing k, N− defined as in the spectral case, N− =

d π2

4sk2
e, and N+ twice the corresponding spectral value, N+ = d π2

2(1−s)k2 e, the

sinc quadrature is defined as

ak(η, θ) =
sin(sπ)

π
k

N+∑

l=−N−
esyl
∫

Ω

(
η + w(η, µ(yl))

)
θ dx . (3.59)
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We can model the numerical problem of (−∆)su = f with the operator

ak(η, θ) and the equations (3.53) to determine the values of w(η, µ(yl)). The

numerical model to be solved is

(a) ak(u, θ) =
sin(sπ)

π
k

N+∑

l=−N−
esyl
(
u+ w(u, e−

1
2
yl), θ

)
= (f, θ) ,

(b) (wl, φ) + e−yl(∇wl,∇φ) = −(u, φ) ,

(3.60)

where wl = w(u, e−
1
2
yl), yl = kl, and ∀φ ∈ H1(Ω), θ ∈ Hs(Ω). The system of

equations (3.60) is composed by N+ +N− + 2 equations. It should be noted

that all the introduced functional spaces are defined over Ω, and so for the

L2(Ω) scalar products (. , .). The implementation of the presented system is

easy, however leads to ill-posed numerical systems. In the next paragraph,

some measures for the implementation of the presented numerical problem

will be introduced.

Implementation of integral fractional Laplacian

In contrast to the spectral fractional Laplacian, considering N∗ = N+ +

N−+ 1, the N∗+ 1 equations of system (3.60) are not mutually independent.

Therefore it is impossible to split the resolution of the numerical problem

into N∗ + 1 separated numerical systems. The matrix corresponding to the

system (3.60) will result as

M =




A1 0 · · · 0 B

0 A2 · · · 0 B
. . . . . . . . .

0 0 · · · AN∗ B

C1 C2 · · · CN∗ D








(b)

}
(a)

This behavior can be noticed printing the PETSc matrix corresponding to a

generic one-dimensional simulation of the integral fractional Laplacian. The

quadrature step size k has been chosen in order to have N+ = N− = 10

for s = 0.5. The resulting matrix m is reported in Figure 3.4. The light

blue values in figure are zeroes, the blue and red are positive and negative

non-zero values, respectively.

As pointed out above, usually this system is not solved in this form be-

cause of his ill-posedness. Many cited works (as [97] and references therein)
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Figure 3.4: PETSc matrix representation for the one-dimensional case with

s = 0.5 and N+ = N− = 10.

are based on the technique of the restriction on balls of a certain radius men-

tioned earlier. In this case, we used a preconditioners-based technique in

order to solve the presented system defined over Ω.

First of all, a simple approach based on a combination of an additive

and a multiplicative set of preconditioners has been used. In particular,

the additive preconditioners have been used for the first N∗ equations. The

diagonal term of such equations corresponds to the unknown wl. The additive

preconditioners used for the solution of the w-equations imply that the first

N∗ equations are solved independently of each other using the old value of

u. The multiplicative preconditioner used for the solution of the u-equation

(the last one) implies that the u unknown is solved using the updated values

of the wl, solved by using the presented additive scheme.

We consider now a generic system of equation
[A B
BT D

] [
u1

u2

]
=

[
f

g

]
. (3.61)

It is possible to trace back the numerical system of Figure 3.4 to the pre-

sented scheme, with u1 = wl and u2 = u The numerical scheme of the

“additive+multiplicative” method consists in
{
u1 = A−1(f − uold2 B)

u2 = D−1(g − u1BT ) ,
(3.62)
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where in the second equation u1 is obtained from the first equation. This

combined additive and multiplicative technique converges to a solution. How-

ever, a study of the solver behavior showed that the convergence was reached

through a very high number of sub iterations. This behavior could lead

to high computational cost for the simulation of the fractional Laplacian in

complex domains.

The numerical convergence of the integral fractional Laplacian can be

improved with the Schur complement. We now consider the first line of

(3.61), and we solve it as

u1 = A−1(f1 − BTu2) ,

where the inverse of A is an approximation. In the following, we will refer to

such approximated inverse as (A∗)−1. Now we substitute u1 into the second

line of (3.61)

−BA∗−1BTu2 +Du2 = g − BA∗−1f ,

obtaining

(D − BA∗−1BT )︸ ︷︷ ︸
Schur complement S

u2 = g − BA∗−1f . (3.63)

In order to find the solution u2 it is necessary to invert the Schur complement

as {
u2 = (D − BA∗−1BT )∗−1 (g − u1BT ) ,

u1 = A−1(f − u2B) .
(3.64)

The inverse of S is approximated numerically through an incomplete LU

factorization (ILU). Furthermore, some tests have shown that the number

of iterations decreases strongly using a GMRES solver instead of the classic

PREONLY implemented in the PETSc environment [31]. This becomes nec-

essary when ill-conditioned systems are solved. In particular, in the case of

system (3.60), and considering u1 = wl and u2 = u as mentioned before, the

ill-conditioned part of the numerical system lies in the D matrix inversion.

The Schur complement avoid the D inversion, expecting the approximated

inversion of (D − BA∗−1BT ) that is not ill-conditioned. After the calcula-

tion of the inverse of S, we can calculate u2 and substitute it into the first

equation for u1.

The final used numerical scheme includes an additive scheme for the wl
calculations, and the Schur complement for the solution of u. The proposed

method has been tested and needs only one iteration to reach the convergence.
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We can conclude that the numerical performances are strongly improved with

this technique.

3.3 Fractional Laplacian numerical results

In this section the results of the presented methods for the numerical simu-

lation of the fractional Laplacian are presented. In recent years, many works

have been published on this topic. In particular, we will refer to [14] as

a benchmark for all the presented numerical techniques. The solutions are

validated through comparison with other numerical simulations or through

comparison with analytical solutions of the mathematical problem of the frac-

tional Laplacian (only for one-dimensional simulations). All the presented

simulations are performed on FEMuS, a Multiphysics Finite Element library

with selective-adaptive mesh refinement and multigrid solvers developed at

Department of Mathematics and Statistics of the Texas tech University [22].

3.3.1 One-dimensional simulations

In this section the solutions of the equation (−∆)su = f will be presented

for one-dimensional cases. We consider firstly the simple case f = 1 for

the methods introduced in the last section: the Riesz, the spectral and the

integral fractional Laplacian.

Riesz method

The system (3.13) can be solved analytically for the one-dimensional case. In

particular we consider the analytic solution of such problem in the ball BR(0)

of radius R in Rn. It is possible to demonstrate [15] that for every function

f ∈ L2(BR(0)) there exists a unique function u ∈ Hs(Rn) such as

u(x) = cn,s

∫

BR(0)

|x− y|2s−n f(y)

∫ r0(x,y)

0

rs−1

(r + 1)n/2
dr dy , (3.65)

with

cn,s = s−2s Γ(n
2
)

R2πn/2Γ(s)2
and r0(x, y) =

(R2 − |x|2)(R2 − |y|2)

|x− y|2 . (3.66)

In the particular case of f = 1 in B1(x) we obtain

u(x) = 2−2s Γ(n
2
)

Γ(n+2s
2

)Γ(1 + s)
(1− x2)s . (3.67)
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In Figure 3.5, the analytical solution obtained in equation (3.67) is compared

with the solution of the solution of the Riesz model, presented in section 3.1.

The simulations have been carried out on the one-dimensional domain [−1, 1],

with a coarse mesh of 2 elements and 6 refinement levels. Homogeneous

Dirichlet boundary conditions have been applied and Nsplits = 4 (see equation

(3.24)) have been considered. As can be seen, the numerical results (uR in

the figure) match the analytical solution for all the tested values of s.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

s = 0.75

s = 0.5

s = 0.4

x

uR uanalytic

Figure 3.5: Comparison between the analytical and the Riesz solution of

fractional Laplacian, for s = 0.4, 0.5, 0.75.

Table 3.1: L2 norm of the solution u and comparison with the analyt-

ical solution for different refinement levels nlev for s = 0.5. Note that

‖ uanalytical ‖L2= 1.154700.

nlev (ndof ) ‖ u ‖L2 εL2 nlev (ndof ) ‖ u ‖L2 εL2

1 (5) 1.097736 0.049333 5 (65) 1.150361 0.003758

2 (9) 1.122600 0.027800 6 (129) 1.152515 0.001893

3 (17) 1.137947 0.014509 7 (257) 1.153603 0.000951

4 (33) 1.146131 0.007421 8 (513) 1.154151 0.000476

In table 3.1 the comparison between the L2-norm of the analytical result

and the numerical results of the f = 1 case are presented. It can be seen
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that the solution u converges to the analytical solution as nlev grows. The

relative error εL2 have also been reported.

Spectral method

In Figure 3.6 the plot of the result of a numerical simulation with the spectral

method on the same mesh used in the last example is reported, with s = 0.5

and a relatively high quadrature step size k = 2 that leads to N+ = N− = 1.

To have better results, a minor k value should be considered. In this case,

we have chosen that value in order to have a more compact representation in

the figure.
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Figure 3.6: Plot of the unknowns u and all the wj in a in a simple spectral

fractional Laplacian case with s = 0.5, k = 2 and f = 1.

Note that the presented solution corresponds to the system (3.46), where

a numerical catastrophic cancellation is avoided. The u value is proportional

to the sum of the wj. In Figure 3.6 one can see that the major contribution

to the solution consists of the term w0, and, for higher values of N+ and N−,

it can be observed that wj goes to zero when j → N+ or j → −N−.

From the comparison between Figures 3.5 and 3.6 it can be seen that the

resulting u fields are not the same. This happens since the two implemented

numerical models are not the same and represents two different kinds of

fractional Laplacian, as can be seen in the benchmark in [14].
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Integral method

The integral fractional Laplacian simulations are similar to the spectral ones.

From a theoretical point of view, the two techniques solve the same approach

to the fractional Laplacian (the Dunford Taylor based methods). However,

while the integral method allows us to model the fractional operator, the

spectral method is a direct approximation of the inverse.
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Figure 3.7: Plot of the unknowns u and all the absolute value of wl, in a

simple integral fractional Laplacian case with s = 0.5, k = 2 and f = 1.

In Figure 3.7 the result of the simulation of the same case ((−∆)su = 1)

on the same mesh are reported. Again, relatively high quadrature step size

k = 2 is considered, in order to have a limited number of unknowns wl. The

value of k leads to N+ = 2 and N− = 1. The values of the variables wl
are negative due to their definition (3.60), in Figure |wl| are reported. The

u field reported in the Figure present some irregularities caused by the low

value of k.

The u field obtained with the integral technique should be the same as

the field obtained with the spectral technique. Again, the u results in Figure

3.7 and 3.6 doesn’t match due to the low k value. Later will be shown that

the two solutions converge for lower values of k. The presented simulation

has been performed with the additive preconditioner system on wl and with

the Schurr complement on the u variable.
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Comparison between methods

There is a structural difference between the Riesz fractional Laplacian and

the methods based on the Dunford-Taylor technique. In a recent review work

[14], whose purpose is to develop a numerical benchmark for the fractional

Laplacian, it can be seen that the two numerical results are significantly

different from each other. However, since the spectral and the integral frac-

tional Laplacian are based on a similar mathematical model, the two results

are expected to be similar.
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Figure 3.8: Comparison of the Riesz (uR), spectral (uS) and integral (uint)

solutions of (−∆)s = 1 for s = 0.5.

In Figure 3.8 the numerical results for s = 0.5 are showed. In the following

we will refer with uR, uS and uint to the solutions of the Riesz, the spectral

and the integral fractional Laplacian, respectively. In Figures 3.9, the results

for s = 0.4 and s = 0.75 are showed. As can be seen higher values of s lead to

lower values of u, because a stronger diffusive term is applied. In particular,

for s → 1, the solution of the models matches the solution of a Laplacian

(∆u = 1).

It is particularly interesting to study the behavior of the solution of the

models for s→ 0. In fact, in such case the equation of the fractional Laplacian

can be traced back to the weak formulation of the mass matrix (u, v) = (f, v),

for all v in a consistent functional space. The solution of such an equation

is u = f and, in this particular case, u = 1. As can be seen in Figure 3.10,

the three solutions tend to the correct solution. The numerical oscillations of
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Figure 3.9: Comparison between the presented cases with f = 1 and s = 0.4

(left) and s = 0.75 (right).
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Figure 3.10: Comparison between the presented cases with f = 1 and s =

0.01. The solutions converge to the solution of a mass matrix.

the solutions near the boundaries are due to the imposition of homogeneous

Dirichlet boundary conditions.

The sinusoidal source term

The presented methods have been tested with a sinusoidal source term. The

simulated numerical problem is (−∆)su = sin(πx). These simulations aim

to test all the presented algorithms with a source term dependent on x. In

Figure 3.11 the results with the Riesz, spectral and integral methods are

presented. The notation is the same used previously. The plot regards three

different values of s, in particular s = 0.25, s = 0.5 and s = 0.75, and follow

the previous cases with f = 1, with the spectral and the integral cases that

present a similar behavior. The Riesz method shows slightly different values

of the solution.
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Figure 3.11: One-dimensional fractional Laplacian with sinusoidal source

term for s = 0.25, s = 0.5 and s = 0.75, using the Riesz (uR), spectral

(uS) and integral (uint) methods.
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Figure 3.12: Comparison between the results of the numerical problem

(−∆)0.25u = sin(πx) between the implemented algorithm (solid lines) and

the results taken from the cited review paper (dashed lines, ũR and ũS). The

Riesz case (black lines) and the spectral case (blue lines) are presented.

All the presented cases have been compared to the results of some review

papers. In particular, in Figure 3.12 a comparison between the results ob-

tained with our algorithm (solid line) and the numerical results presented in

[14] (dashed lines, and represented as ũ). In particular, in black are presented



3.3. Fractional Laplacian numerical results 155

the results of the Riesz method and in blue the results of the spectral method.

As can be seen in Figure, the results of the implemented algorithm match the

numerical results presented in the literature. This is further evidence of the

proper implementation of the presented algorithm for the one-dimensional

simulations.

3.3.2 Two-dimensional simulations

In order to validate the developed algorithms, some tests on two-dimensional

geometries have been carried out. In particular, a 2D simple square Ω =

([−1, 1], [−1, 1]) have been considered. The mesh is a 2 × 2 mesh with a

variable number of multigrid levels. In particular, 5 levels will be consid-

ered in the presented results. All the presented simulations include homo-

geneous Dirichlet boundary conditions. The numerical resolution of all the

two-dimensional problems have been tested with different grid refinements,

showing always good convergence properties.

Figure 3.13: Comparison of the 2D results of the fractional Laplacian on a

square with f = 1 and s = 0.5. From left to right: Riesz, spectral and

integral method.

Constant source term

In Figure 3.13 the u solutions of the numerical problem (−∆)su = 1 on Ω are

presented. The three curves present a similar behavior compared to the one-

dimensional simulations. In Figure 3.14 the values of the unknown u along

the line x = 0 are presented for s = 0.5. Again, it can be noted that the Riesz

algorithm leads to higher values of the solution. The spectral and integral

solutions are similar to each other. The two-dimensional fractional Laplacian
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Figure 3.14: Comparison of the u field on the line x = 0 in the cases of Figure

3.13, with the Riesz (uR), spectral (uS) and integral (uint) method.

will be used, in the framework of the optimal control problems, to model the

regularization term on the boundaries of a three-dimensional simulation. For

this reason, the three-dimensional results will not be reported in this work.
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Figure 3.15: Comparison between the results of the numerical two-

dimensional problem (−∆)0.25u = 1 between the implemented algorithm

(solid lines) and the results taken from the literature (dashed lines, ũR and

ũS). The Riesz case (black lines) and the spectral case (blue lines) are re-

ported.

In Figure 3.15, the comparison between the obtained results and the re-
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sults taken from the literature is reported. In particular, the results used

as a reference are taken from the same paper reported above. Likewise the

previous comparison, our results are reported with solid lines, and the lit-

erature results with dashed lines. For both Riesz (black lines) and spectral

(blue lines) methods, it can be noted that the behavior of the implemented

algorithm matches the literature results.

Sinusoidal source term

Lastly, the sinusoidal source term case for two-dimensional simulation has

been studied in order to test the algorithm with a variable source term. In

Figure 3.16, the qualitative profiles of the solutions of the equation

(−∆)su = sin(πx) sin(πy) (3.68)

has been reported. Note that the x and y used in this section differs from the

same variables used in section 3.1. In fact, in that section the x and y vari-

ables were vector quantities representing the position in different integrals, in

this case x and y represents the scalar position along one direction. In Figure

it can be seen that the profiles of the solutions of the fractional Laplacian

with a sinusoidal source term are consistent with all the results presented in

literature.

Figure 3.16: Comparison of the 2D results of the fractional Laplacian on a

square with f = sin(πx) sin(πy) and s = 0.5. From left to right: Riesz,

spectral and integral method.

In Figure 3.17 the comparison between the results obtained with the im-

plemented algorithm and the reference literature case is shown. Again, the

numerical results of the implemented code match the literature results, both

for the spectral and the Riesz algorithms. In this case, as in the literature

results, the three methods show similar behavior. However, it is important
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Figure 3.17: Comparison between the results of the numerical two-

dimensional problem (3.68) between the implemented algorithm (solid lines)

and the results taken from the literature (dashed lines, ũR and ũS). The

Riesz case (black lines) and the spectral case (blue lines) are reported.

to remember that the simulation results of the fractional operators depend

on the used method.

All the presented results are a validation of the implemented codes, as

all the tested cases reproduce correctly the results taken from the literature.

Since the model for the fractional Laplacian have been successfully validated,

it is possible to use it to model the regularization in optimal control simula-

tions.

3.4 Fractional operators in boundary optimal

control problems

In this section, we consider again the optimal control problems introduced

in chapter 2. As mentioned before, in the framework of such problems, the

variables of a mathematical model are first divided into two classes: state and

control variables. Then, an optimization problem is posed with respect to a

certain objective functional of the above variables. Since the mathematical

models we are interested in consist of Partial Differential Equations (PDE),

we refer to this field as PDE-constrained optimal control.

Boundary optimal control problems are perhaps the most interesting class
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of optimal control problems constrained by partial differential equations. In

fact, the possibility of controlling the behavior of a physical system may often

take place only by changing the values of certain quantities at the boundary of

the domain. This is especially true if the interior of the physical system is not

accessible or no physical mechanism can be triggered inside the domain from

the outside. For instance, the temperature control of a physical system may

be achieved either by optimizing boundary temperature values or boundary

heat fluxes.

The nonlinear mathematical models that are constraints of boundary op-

timal control problems pose important theoretical and computational chal-

lenges and an increasing interest in research. Among them, we turn our

attention to the occurrence of fractional derivatives. Theoretical results in

mathematical analysis imply that the connection between functions defined

on the domain of a PDE and their restriction to the boundary gives rise to

fractional order Sobolev spaces. The presence of these spaces induces the

necessity to deal with fractional derivatives and in particular with the very

challenging problem of their numerical discretization, as we have seen in the

last sections.

In this Section, we describe the occurrence of fractional norms in the

treatment of boundary optimal control problems. These norms lead to the

presence of fractional derivatives in the first-order necessary conditions that

characterize optimal solutions. We recall that these first-order necessary

conditions give rise to a system of equations often referred to as optimality

system or Karush-Kuhn-Tucker (KKT) system. The formulation of boundary

control problems constrained by PDEs can be characterized by the property

of balanced regularity that will be described in this section.

Note that, although many works in literature concerning the optimal con-

trol with fractional operators have been published, most of them study the

fractional Laplacian as constraint equation. Only a few works analyze the is-

sue of balanced regularity by using fractional operators for the regularization

term. This can be considered as a novelty introduced in this work.

3.4.1 The issue of balanced regularity

We introduce now the property of balanced regularity that naturally arises

when dealing with boundary optimal control problems in function spaces.

Only to keep the exposition simple, we describe these features with a model
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problem given by a Laplace constraint operator, Dirichlet boundary condi-

tions, and a tracking-type cost functional. In this work no further extension

of the fractional operators to complex physics (i.e. the Koiter shell equation

presented in the previous chapter) is developed. However, the aim of this

work is the future development of this technique in order to apply the frac-

tional Laplacian to boundary optimal control of complex systems. We remark

that the issues we will be highlighting are also encountered in boundary op-

timal control problems with general PDE constraints, boundary conditions

other than Dirichlet (such as Neumann or Robin), and cost functionals of

non-tracking type.

Let us first recall some basic definitions for the symbols that will be used

in the following. Let Ω be a bounded domain with boundary an and unit

normal vector field n. For any domain O ⊆ Ω, we denote with Hm(O) the

classical Sobolev spaces. For any Γ ⊂ ∂O we denote with

γ0 : Hm(O)→ Hm−1/2(Γ) (3.69)

the trace operator on Γ. This operator is surjective [43]. Also, for any

boundary portion Γ ⊆ ∂O, we use the notation H1(O; Γ) for functions H1(O)

with zero trace on Γ. When Γ = ∂O, we also use the notation H1(O) =

H1(O; ∂O). The symbols ∇Γ and ∆Γ denote the surface gradient and surface

Laplacian on ∂Ω, respectively.

A model boundary optimal control problem

In order to describe the issue of balanced regularity, we introduce now a class

of simple Dirichlet boundary optimal control problem. We denote the control

boundary as Γc ⊆ ∂Ω. On Γc, Dirichlet optimal conditions are sought. We

recall now the problem 2.1 presented in the chapter 2.

Problem 3.1. Find a state-control pair (u, q) ∈ H1(Ω)×Q which minimizes

the cost functional

J (u, q) =
1

2
‖u− ud‖2

L2(Ωd) +
α

2
G(q)2 , (3.70)

under the constraints

(∇u,∇v) = 0 ∀v ∈ H1
0 (Ω) , (3.71)

u = q on Γc , (3.72)

u = 0 on ∂Ω r Γc . (3.73)
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Now we properly model the cost functional G(q). The regularization

constant α > 0 is given and guarantees the existence of a minimizer of the

presented optimal control problem. The desired state function ud is also

given. Moreover, Q is a Hilbert space on the domain Γc, depending on the

Dirichlet boundary conditions in (3.72) and on the choice of the functional

G(q) in (3.70).

Note that the boundary condition (3.72) is intended in the sense of traces,

meaning that it should more precisely be written using the trace operator as

γ0u = q on Γc. This immediately shows that, while H1(Ω) is the space for the

optimal states, the natural space where optimal boundary controls q should

be sought is Q = H1/2(Γc), as dictated by the range of the trace operator

(3.69). Thus, we can introduce the following definition.

Definition 3.4. A boundary optimal control problem has the balanced reg-

ularity property if the optimal states belong to Sobolev spaces Hα with dif-

ferentiability index α, while the boundary Dirichlet optimal controls belong to

Sobolev spaces Hβ(Γ) with differentiability index β = α − 1
2
, as dictated by

the range of the trace operator.

Therefore, it is the choice of the particular form of G(q) which is respon-

sible for guaranteeing the balanced regularity property of boundary control.

Usually, G(q) is modeled as a H1(Γc) norm. However, this approach

features the drawback given by a more restrictive control space than the

natural H1/2, that is dictated by the range of the trace operator. In literature,

many works have been introduced to overcome the described lack of balanced

regularity, without involving fractional norms. These approaches reformulate

the problem based on the concept of lifting functions. The lifting function

method is based on the addition of an auxiliary domain Ωc such that Γc ⊆
∂Ωc. Ωc can be internal (when Ωc ⊆ Ω) or external (when Ωc ∩ Ω = ∅).
Under these hypotheses, G(q)2 = ‖q̃‖2

H1(Ωc)
, where q̃ is the restriction of q to

the domain Ωc. The interested reader on the lifting function approach can

see [49, 87, 99, 100].

The H1/2 approach

The most natural choice of G(q) that guarantees the existence of a boundary

optimal control in H1/2(Γc) is given by

G(q) = ‖q‖H1/2(Γc) . (3.74)
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In fact, when u ∈ H1(Ω), the most natural choice for the regularization term

on the boundary is exactly H1/2(Γc).

In literature many works used this approach to regularize a large variety of

functionals in different frameworks. For example, a fractional regularization

term has been applied to control problems with adaptive wavelet schemes

[101] or with an energy space finite element approach [102].

Under the presented hypotheses, we can reformulate the optimal control

problem 3.1.

Problem 3.2. Find a state-control pair (u, q) ∈ H1(Ω)×Q which minimizes

the cost functional

J (u, q) =
1

2
‖u− ud‖2

L2(Ωd) +
α

2
‖q‖2

H1/2(Γc)
, (3.75)

under the constraints

(∇u,∇v) = 0 ∀v ∈ H1
0 (Ω) , (3.76)

u = q on Γc , (3.77)

u = 0 on ∂Ω r Γc . (3.78)

Thanks to the choice of G(q), the presented problem satisfies the balanced

regularity property. The differentiation of the fractional norm on q induces

an optimality system that contains the fractional derivative of q. Usually,

alternative optimal control techniques are implemented in order to circumvent

the presence of fractional derivatives. However, thanks to the numerical

model introduced in the previous sections of this chapter, it is possible to

simulate the fractional derivatives of q.

3.4.2 The optimality system

The main difference between the presented problem and problem 2.1 pre-

sented in the previous chapter is the regularization term of the functional

J . In order to obtain the optimality system in this case we consider the

Gagliardo semi-norm obtaining

J (u, q) =
1

2
‖u− ud‖2

L2(Ωd) +
α

2

∫

Rn

∫

Rn

(
q(x)− q(y)

)2

|x− y|n+1
dy dx , (3.79)

where the reduction to Γc is obtained by imposing

q =

{
0 on Rn r Γc ,

q on Γc ,
(3.80)
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and n is the dimensionality of Γc (in this case n = 1). Therefore the derivative

of J reads

J ′ =
∫

Ωd

δu(u−ud) dx+α

∫

R

∫

R

(
q(x)− q(y)

)(
δq(x)− δq(y)

)

|x− y|2 dy dx . (3.81)

It can be noted that, following a procedure similar to section 2.1.2, the opti-

mality condition in this case reduces to

α

∫

R

∫

R

(
q(x)− q(y)

)(
δq(x)− δq(y)

)

|x− y|2 dy dx−
∫

Γc

∇λ · nδq dx = 0 , (3.82)

where λ is the Lagrange multiplier introduced. We can consider δq as a test

function v. It is easy to show that the first term of (3.82) is the fractional

Laplacian of q bounded to Γc under the hypotheses (3.80). We can now

introduce the discretized optimality system based on the fractional Laplacian

with s = 0.5.

The discretized optimality system

Some considerations about the block structure of the introduced optimality

system are now introduced, together with some simple preconditioning tech-

niques. It is important to note that, in contrast with the last chapter, the

optimality system in this section is solved with a monolithic solver for u,

q and λ. Under this condition, the optimality system arising from the first-

order necessary conditions is a coupled system of differential equations whose

numerical solution is quite challenging. Generally, the numerical system is

nonlinear. Its non-linearity is originated by nonlinear PDE constraints and

non-quadratic cost functionals.

Despite the complexity of the introduced numerical problem, the fully

coupled solution of the optimality system is the most robust option for the

numerical computation of candidate optimal states and controls. To this end,

the attention focuses on preconditioned Krylov subspace methods who prove

to be the most attractive solvers for linear algebraic systems arising from

linearization of nonlinear problems.

The optimality system arising from the model Problem 3.2 consists of

an algebraic linear system that exhibits a block structure. A finite element

discretization of such an optimality system gives rise to a block structure of
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the type 


MΩd 0 −∆Ω +
∂

∂n

∣∣∣∣
Γc

0 αFΓc − ∂

∂n

∣∣∣∣
Γc

−∆Ω 0 0







uh

qh

λh


 =




ud

0

0


 , (3.83)

where uh, qh and λh denote the discretize state, control and adjoint variables,

respectively. The blocks MO, −∆O and
∂

∂n

∣∣∣
O

denote the mass matrix, the

Laplacian matrix and boundary Neumann matrix with integration over the

generic domain O, respectively. However, in this context the most interest-

ing term in (3.83) is FO, which represents the matrix corresponding to the

numerical implementation of the fractional Laplacian. As we have seen in

the last section, usually FO turns out to be a dense matrix.

In this work, the Riesz method is used for the numerical simulation of

fractional Laplacian. Since the boundary of a two-dimensional case is a one-

dimensional domain, the mixed integral for the Riesz assembly can be reduced

to

cn,s

∫

Ω

∫

RnrΩ

q(y)− q(x)

|x− y|n+2s

(
v(y)− v(x)

)
dydx =

= c1,s

∫

Ω

q(x)v(x)

∫

RrΩ

1

|x− y|1+2s
dydx

= c1,s

∫

Ω

q(x)v(x)

(∫ e1

−∞

1

(x− y)1+2s
dy +

∫ ∞

e2

1

(x− y)1+2s
dy

)
dx

=
c1,s

2s

∫

Ω

q(x)v(x)

(
1

(x− e2)2s
− 1

(x− e1)2s

)
dx ,

(3.84)

where e1 and e2 are the extremes of the segment Γc. Then, as we have seen

in the Algorithm 4 and, in particular, in equation (3.29), the discretized form

of the fractional Laplacian for a generic element elx ∈ Γc reads

ng(elx)∑

xg=0

c1,s

2
Jxgwxg

( Nel∑

ely=1

ng(ely)∑

yg=0

Jygwyg
qh(yg)− qh(xg)
|xg − yg|n+2s

(
v(yg)− v(xg)

))

+

ng(elx)∑

xg=0

c1,s

2s
Jxgwxgqh(xg)v(xg)

(
1

(xg − e2)2s
− 1

(xg − e1)2s

)
,

(3.85)

where all the loops are developed on the boundary elements. In fact, all

the values in (3.85) refers to boundary values, e.g. ng(elx) is the boundary
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number of Gauss nodes, Nel the number of elements of Γc, etc. As we have

seen in algorithm 4, in this case the assembly of the matrix should be done by

splitting the assembly in four different contributions, F11, F12, F12 and F22.

Since F11 = F22 and F12 = F21 as reported in section 3.1, we can consider

only the F11 and F12 contributions as FΓc = 2F11 + 2F12. Therefore, the local

assembly on a Gauss node xg (integral of elx) and yg (integral of elyc) can be

written as

F11(i, j) =
C1,s

2
wxgwyg

v1[j] v1[i]

‖xg − yg‖1+2s
+
C1,s

2s
wxg

(
v1[i]

(xg − e2)2s
− v1[i]

(xg − e1)2s

)
,

F12(i, j) =
C1,s

2
wxgwyg

(−v2[j]) v1[i]

‖xg − yg‖1+2s
+
C1,s

2s
wxg

(
v1[i]

(xg − e2)2s
− v1[i]

(xg − e1)2s

)
.

Under these hypotheses, the sub-matrix FΓc is clearly dense, with a sparsity

pattern determined by the number of the degree of freedom of Γc.

The system (3.83) can be solved directly, in contrast to the method in-

troduced in the last section where an iterative algorithm has been developed

in order to find the optimal solution.

The inequality constraints

The study of optimal control problems is appealing for the transfer to techno-

logical applications. Thus, since these applications deals often with inequality

constraints, it is important to consider the addition of such constraints to the

PDE of the optimal control problems. Both state and control variables may

be subject to inequality constraints. In some cases, inequality constraints

may need to be enforced not because of practical considerations but due to

theoretical conditions, e.g. to guarantee well-posedness. Thus, inequality

constraints play an important role, and at the same time they make the

analysis as well as the numerical discretization more challenging.

This is valid in particular for boundary optimal control problems. The

problem 3.2 can be completed with inequality constraints. For instance, if

we consider the case of box inequality constraints on the considered control

variable problem, it can be restated together with inequality of the type

qa ≤ q ≤ qb a.e. on Γc ,

where qa, qb ∈ L∞(Γc). The numerical realization of these constraints can be

achieved using the Primal-Dual Active Set (PDAS) method. This method

was first proposed by K. Ito, K. Kunisch, and M Bergounioux [103]. Each
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iteration of the method consists in the solution of a linear systemMkδuk+1 =

f(uk), where Mk can be write as a 4× 4 block structure

Mk =




MΩd 0 −∆Ω +
∂

∂n

∣∣∣∣
Γc

0

0 λFΓc − ∂

∂n

∣∣∣∣
Γc

IΓc

−∆Ω 0 0 0

0 cΠAk 0 ΠIk



, (3.86)

and the terms δuk+1 and f(uk) read

δuk+1 =




δuk+1

δqk+1

δλk+1

δµk+1


 =




uk+1 − uk
qk+1 − qk
λk+1 − λk
µk+1 − µk


 , (3.87)

f(uk) = −




MΩd(uk − ud)−∆Ωλk +
∂λk
∂n

∣∣∣
Γc

α(MΓc + ∆Γc)qk −
∂λk
∂n

∣∣∣
Γc

+ IΓcµk

−∆Ωuk
cΠAkqk + ΠIkµk − c(ΠAbkqb + ΠAakqa)



, (3.88)

where all the terms added to the right-hand side of (3.83) derive from the

definition of δuk+1 = uk+1−uk. With respect to the case without inequalities,

we remark the addition of the variable µ and correspondingly of one row and

one column in the matrix. We refer to [104] for the definition of the additional

blocks, and in particular the terms ΠAk and ΠIk .

3.4.3 Numerical results

In this section, we present some preliminary results on the application of the

presented simple control algorithm with fractional regularization term. We

remark that the system is solved with a full-monolithic approach, in contrast

to the control problem presented in Chapter 2 where an algorithm based on

the splitting between the system for the state and the adjoint equations has

been introduced. Since the state, the control, and the adjoint variables are all

solved with the same numerical system, this approach doesn’t need a steepest

descent algorithm to converge to the optimal solution. We remark that all
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Ω

Γc

Ωd

Figure 3.18: Domain Ω with control boundary Γc and objective domain Ωd.

the simulations presented in this Chapter have been carried out using the

code FeMTTU introduced above [22].

We report the control problem both with and without the inequality con-

straints, in order to test all the numerical problems introduced in this section.

Unless stated otherwise, we consider the domain in Figure 3.18, where Ωd is

the objective region, Γc is the control boundary and homogeneous Dirich-

let boundary conditions are imposed on all the boundaries. In particular,

Ω = {(x, y) : x ∈ [0, 1], y ∈ [0, 1]} and Ωd = {(x, y) : x ∈ [0.25, 0.75], y ∈
[0.25, 0.75]}. It is meshed with a 4 × 5 grid, that is refined with a multi-

grid approach. As mentioned above, in this section we solve the following

Problem.

Problem 3.3. Find a state-control pair (u, q) ∈ H1(Ω)×Q which minimizes

the cost functional

J (u, q) =
1

2
‖u− ud‖2

L2(Ωd) +
α

2
‖q‖2

Hs(Γc) , (3.89)

under the same constraints of Problem 3.2.

We consider different values of the exponent of the Sobolev space of the

regularization term s, ranging from 0.25 to 1. Moreover, we introduce the

functional

L(u, q) =
1

2
‖u− ud‖2

L2(Ωd) +
α

2

∫

Γc

q2 dx+
β

2

∫

Γc

∆q dx , (3.90)

where α = β = 0.01, unless stated otherwise.
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The fractional optimal control

We consider now a classical optimal control of the presented problem, without

inequality constraints. We test the implemented algorithm with different

values of s and for different mesh refinement. For the used grid, the mesh

refined 3 times consists of 320 cells and 1353 degree of freedom, the mesh

refined 4 times of 1280 cells and 5265 dof, the mesh refined 4 times of 5120

cells and 20769 dof.

Figure 3.19: State (left, with the used grid) and adjoint (right) fields for the

studied case with s = 0.5 and 4 grid refinements.

In Figure 3.19 on the left, we report the state field resulting from the

numerical resolution of Problem 3.3 with s = 0.5 and 4 grid refinements.

Note that the state field assumes the value of the control variable on the

boundary Γc and spreads inside the domain following the constraints of the

problem. The control fields on Γc depends on the adjoint field, e.g. see in the

second line of (3.83). The adjoint field is reported in Figure on the right.

In Table 3.2 we report the numerical results for various s and grid refine-

ments. In particular, we report the values of the global functional L defined

in (3.90) and the distance from the objective calculated as 1
2
‖u − ud‖2

L2(Ωd).

The global functional, which is minimized by the control algorithm, is greater

for low s values. This is due to a lower regularization on the derivatives of

the function that affects the global functional. On the contrary, the case with

s = 1 involves the first derivative in the regularization term, so the Laplacian

term in the global functional is minimized. The distance from the objective

shows the opposite trend. In fact, the solution is closer to the objective for

low values of s. Less regular solutions can control better the behavior of the

state variable. Note that the distance from the objective improves with the

grid refinement, as expected.
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Table 3.2: Global functional and distance from the desired solution as a

function of the mesh levels and of the Sobolev exponent s.

Global functional L(u, q) 1
2
‖u− ud‖2

L2(Ωd)

s 3 Levels 4 Levels 5 Levels 3 Levels 4 Levels 5 Levels

0.25 0.68558 1.47609 3.21692 0.00724 0.00652 0.00650

0.5 0.20364 0.34591 0.60932 0.01392 0.01285 0.01195

0.75 0.08704 0.09048 0.09385 0.01928 0.02067 0.02198

1 0.03017 0.03016 0.03015 0.02914 0.02912 0.02911
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Figure 3.20: Comparison between the control field for 5 levels and various s.

In Figure 3.20 we report the profile of the control variable q on the upper

boundary of Figure 3.19. In particular, we plot the variable along the segment

between the two points (0, 1) and (1, 1). The controlled region Γc is the

segment between the points (0.25, 1) and (0.75, 1). Note that the control

field is strongly influenced by the value of s. In particular, low values of s

lead to higher values of the q field, and to less regular solutions, as expected.

Therefore, the presented control is strongly influenced by the regularization

term.
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Figure 3.21: Comparison between the control field for s = 0.5 and various

mesh refinements.

In Figure 3.21 the comparison between different mesh refinements in the

case s = 0.5 are presented. The solution seems to converge to a more regular

one. Moreover, as noted above in Table 3.2, the solution is closer to the

desired one for higher mesh refinement.

We also tested the same geometry, with the same parameters but changing

the domain Ωd = {(x, y) : x ∈ [0, 1], y ∈ [0.5, 1]} and the desired value ud = 1.

The control problem converged in all the tested cases. In particular, in Figure

3.22 the comparison between the q fields for high s values is reported. Again,

the control field is strongly influenced by the used considered functional space.

Note that for s→ 1 the fractional solution converges slowly to the case s = 1.

In general, all the tested cases showed good accordance with the desired

field and the algorithm always finds a better solution than the initial one. We

remark that the results presented in this section are only preliminary results,

and further studies and simulations will be developed in future works.

Results with inequality constraints

Lastly, we report some results to show the effectiveness of the formulation of

the optimal control based on the inequality constraint, introduced in equa-

tions (3.86)-(3.88). In particular, we consider the same numerical setup pre-
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Figure 3.22: Comparison between the control field for 5 levels and various s

for ud = 1 and Ωd = {(x, y) : x ∈ [0, 1], y ∈ [0.5, 1]}.

sented in the last reported example (i.e. Ωd = {(x, y) : x ∈ [0, 1], y ∈ [0.5, 1]}
and desired value ud = 1), and we require an inequality constraint q ≤ 1.5.

We do not impose any lower bound of the solution.
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Figure 3.23: On the left, results with inequality constraint q ≤ 1.5 for var-

ious s. On the right, the comparison for s = 0.75 between the case with

inequalities (continuous line) and the case without inequalities (dashed line).
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In Figure 3.23 on the left, we report the result of the presented problem for

three different values of s. In particular, the cases for s = 0.5, s = 0.75 and

s = 1 are reported. All the reported results was simulated with 5 refinement

levels. Note that the solution for s = 0.5 and s = 0.75 are both limited by the

inequality constraint (see Figure 3.22), therefore their profiles are practically

identical. On the other hand, the profile for s = 1 is not influenced by

the inequality constraint, thus it is equal to the case without inequalities.

In Figure on the right, we report the comparison between the case with

and without the inequality constraint, both with s = 0.75. Note that the

implemented constraint cut the solution for q = 1.5.

We remark that all the results presented on the control with fractional

operators are only preliminary, and in future works the application of this

technique to more complex physical problems will be studied.

3.5 Fractional operators in quasi-geostrophic

problems

In this section, we present a physical application of the fractional Laplacian

introduced in this chapter. In particular, we study the quasi-geostrophic

models, that has been successfully used for the study of oceanic and atmo-

spheric dynamics in the mid-to-high latitude region of the Earth where the

Coriolis effect is significant. The three-dimensional model has been intro-

duced by Charney [105], and many papers and books have been published on

this topic over the years. Interested reader can see [106, 107] and references

therein. Some works can be found in the literature on the numerical simula-

tions of the quasi-geostrophic flows, e.g. in [108] is presented the numerical

simulation of quasi-geostrophic flows using a spectral fractional Laplacian

approach.

The main property of the quasi-geostrophic model is the assumption that

the potential vorticity is uniform along with the geostrophic flow [109]. There-

fore, given a surface Ŝ = (x1, x2, x3) ∈ R3 such that x3 is constant, the

vorticity ψ̂(x1, x2, x3, t) evaluated above Ŝ satisfies

∆ψ̂ = 0 for x3 > 0 . (3.91)

Moreover, we have limx3→∞ ψ̂(x1, x2, x3, t) = 0. We can also define the po-

tential temperature on Ŝ as θ = ∂x3ψ̂|x3=0.
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By restricting the domain to a finite, two-dimensional surface and consid-

ering the potential vorticity on the surface ψ(x1, x2, t) = ψ̂(x1, x2, 0, t) and

the potential temperature θ(x1, x2, t) conservation, the model reduces to the

surface quasi-geostrophic equation [110]. When restricted to the finite surface

S, the model corresponds to the elliptic partial differential equation

(−∆)
1
2ψ = θ . (3.92)

We use the Riesz fractional Laplacian introduced in section 3.1 to develop a

quasi-geostrophic numerical model.

In order to derive the SQG equation, we recall Navier-Stokes equations

for an incompressible and inviscid fluid under gravitational and Coriolis body

force. The quasi-geostrophic assumption provides that the x3 component of

the velocity vector is negligible with respect to the x1 and x2 components.

The SQG equations are usually written in terms of two characteristic quan-

tities such as the geopotential Ψ(x, t) and the potential temperature θ(x, t).

The geopotential Ψ is the work done by the gravitational field necessary to

lift a unit mass of air upwards at a given height h. The potential temperature

θ is the temperature of a unit mass of air at pressure p if it were brought, by

adiabatic displacement, to a standard reference pressure p0.

Under these hypotheses, it is possible to write the velocity vector u in

terms of the geopotential such as

u =
(
− ∂Ψ

∂y
,
∂Ψ

∂x

)
= ∇⊥Ψ . (3.93)

This allows us to study SQG systems using only geopotential and potential

temperature. If we now consider the boundary restriction over the surface Ω

of the quantities, we obtain the SQG system

∂θ

∂t
+ u · ∇θ + κ(−∆)sθ = 0 ,

(−∆)
1
2 Ψ = −θ , u = ∇⊥Ψ

(3.94)

where s ∈
(
0, 1
)

and 0 < κ� 1 is a dissipation coefficient.

3.5.1 Quasi-geostrophic numerical results

In this section, we present the numerical results obtained from the numerical

implementation of the system (3.94) in the presented finite element library



174 Chapter 3. Fractional models

FEMuS. The Riesz fractional Laplacian has been implemented and used to

model all the fractional operators in the system. In order to show the robust-

ness of the implemented algorithm, we test the physical model with various

initial conditions. In all the presented simulations, we consider homogeneous

Dirichlet boundary conditions on all the boundaries. The numerical simula-

tions have been carried out on a domain Ω = {x1 ∈ [−π, π], x2 ∈ [−π, π]},
meshed with 1325 quadratic elements (5401 dof). We also consider κ = 0.001,

s = 0.5 and a time step of 0.05s.

We define now some physical quantities useful to evaluate the correct

numerical simulation of the quasi-geostrophic flows. In particular, we define

the kinetic energy K(θ) as

K(θ) =
1

2

∫

Ω

θ2(x, t) dx , (3.95)

and the helicity H(θ) as

H(θ) = −
∫

Ω

Ψ(x, t)θ(x, t) dx . (3.96)

Figure 3.24: Evolution over time of the solution θ(x1, x2, t) with initial con-

dition θ0(x1, x2) = e−4x21−16x22 for (from left to right) t = 0s, t = 6s, t =

10s, t = 15s.

We first consider the case of a single vortex, resembling cyclonic cir-

culations within the atmosphere. Thus, we consider the initial condition

θ0(x1, x2) = e−4x21−16x22 . In the following, we refer to this case as IC1. In

Figure 3.24 the time evolution of the field θ under the introduced initial con-

dition is reported, for t = 0s, t = 5s, t = 10s and t = 15s. Note that, due

to the small eccentricity of the imposed initial condition, the vortex does not

generate filaments or secondary vortices. The single vortex tends to collapse

into a circular configuration.
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Figure 3.25: Evolution over time of the solution θ(x1, x2, t) with initial con-

dition θ0(x1, x2) = e−4x21−16x22 for t = 0s, t = 5s, t = 10s, t = 15s.

Then, we consider single vortex with a higher eccentricity, by imposing

the initial condition θ0(x1, x2) = e−4x21−16x22 . In the following, we refer to this

case as IC2. In Figure 3.25, we report the time evolution of the imposed

vortex, at the same time steps reported above. Note that the buoyancy turns

into a spinning vortex with thin filaments which tend to move away from the

vortex center. This behavior is in line with the expectations.

Figure 3.26: Evolution over time for t = 0s, t = 5s, t = 10s, t = 15s of

θ(x1, x2, t) with initial condition θ0(x1, x2) = e−36(x1−0.5)2−x22 +e−36(x1+0.5)2−x22 .

The interaction between two different vortices, by considering the dou-

ble Gaussian initial condition θ0(x1, x2) = e−36(x1−0.5)2−x22 + e−36(x1+0.5)2−x22 ,

have also been simulated. In the following, we refer to this case as IC3. In

Figure 3.26, the time evolution of the interaction between the two vortices

is reported. Initially, the two imposed gaussian fields do not influence each

other. The two fields rotate as introduced in the cases IC1 and IC2, and after

t = 5s the two Gaussians start to interact. From t = 10s and t = 15s, it

can be noted that the two vortices tends to merge in a unique vortex. Note

that a sharp layer develops between the two vortices. However, although the

intensity of the layer is reducing over time, the vortices do not fully merge.

We compare now the three presented initial conditions in terms of helicity
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Figure 3.27: Kinetic energy K (left) and helicity H (right) in the three pre-

sented cases.

and kinetic energy. In Figure 3.27 the kinetic energy and the helicity in

the three presented cases are reported as a function of the time. The first

two cases, IC1 and IC2, present similar, linear behavior. However, both the

kinetic energy and the absolute value of the helicity show higher values when

the initial condition characterized by the higher eccentricity is used. This

result is expected since the vortex generated from the rotation of the ellipse

IC2 generates a greater vortex. The double vortex simulation shows higher

values of K and of |H|, with a less regular evolution over time caused by the

interaction between the two vortices.

3.5.2 Numerical optimization of the SQG system

The numerical simulation of the SQG problems entails high computational

costs. In fact, the system (3.94) provides the resolution of two fractional

Laplacian when s = 0.5. Thus, it is important to develop a scalable par-

allel algorithm and to implement some numerical techniques to reduce the

requested computational cost.

The implementation of a parallel code for nonlocal assembly algorithms

is not a straightforward task. This is related to the fact that every proces-

sor needs information from all the other processors. However, as reported

in the previous sections of this chapter, we implemented a parallel scalable

algorithm for fractional simulations. In order to further improve the speed

of the algorithm, we introduce now a simple technique based on a predictor-
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corrector method.

Given a generic time step n, we approximate the solution θn+1 at the step

n + 1 by using an intermediate step θn+ 1
2 and a predictor-corrector scheme

defined as
θn+ 1

2 = θn − δt(−∆)sθn ,

(−∆)
1
2 Ψn+ 1

2 = θn+ 1
2 , un+ 1

2 = ∇⊥Ψn+ 1
2 ,

θn+1 + δtun+ 1
2∇θn+1 = θn+ 1

2 .

(3.97)

Therefore, by using the system (3.97) instead of (3.94), we can compute only

one fractional Laplacian rather than two. This turns into a high reduction of

the computational cost of the whole algorithm.

Figure 3.28: Comparison of the evolution over time of the solution with

predictor-corrector (top) and the solution with standard technique for (from

left to right) t = 5s, t = 10s, t = 15s. The considered initial condition is

θ0(x1, x2) = e−4x21−16x22 .

In order to test the developed predictor-corrector algorithm, we compare

the case IC2 introduced above (initial condition θ0(x1, x2) = e−4x21−16x22) with

the same initial condition used with the predictor-corrector technique. In

Figure 3.28, the two cases are compared at three different times, showing

qualitatively similar behavior. In particular, the rotation velocity of the

vortex is the same in the two studied cases.

The presented results show the robustness of the implemented algorithm

and the results are consistent with the expectations. In future works, we will
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Figure 3.29: Comparison between the case with (P-C) and without predictor-

corrector. The θ field along the axis x1 = 0 and t = 12.5s is reported.

further analyze the geostrophic flows and more complex numerical results

will be carried out.



Conclusions

In this work, we have applied the optimal control principles to a stationary

fluid-structure interaction system based on Koiter shell equations. We first

have presented the mathematical model of Koiter’s shell equations with and

without absorbing boundary conditions. The Koiter model has allowed us

to reduce the dimensionality of the solid and the computational cost of the

numerical simulation. Since the fluid-structure simulations often depend on

pressure waves, we have implemented consistent absorbing boundary condi-

tions to simulate properly the outflow boundary. Numerical benchmarks of

the Koiter model do not exist. However, all the presented results have shown

good accordance with all the cases in the literature on this topic.

The adjoint-based optimal control theory has been introduced. We have

presented a simple mathematical problem and, then, we have applied the con-

trol theory to the Koiter fluid-structure interaction problem. In particular, a

boundary optimal control of the steady Koiter’s model has been introduced

from a mathematical point of view, demonstrating the existence of the so-

lution of the mathematical model and the existence of the optimal solution.

Moreover, regularity and differentiability properties have been proved. The

implemented algorithm minimizes the distance between the solution and a

requested objective. To solve the minimization problem we have adopted the

Lagrangian multiplier method and the optimality system has been recovered

by imposing the first-order necessary conditions. The optimality system has

been solved with an iterative gradient-based algorithm implemented in the

FEM code. We have implemented an algorithm to find the optimal stress
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on a boundary that coincides with the pressure when the tangent velocity is

null, and forces the desired displacement on a certain portion of the domain.

Numerical results have shown good accordance with the objective in various

cases, showing a good convergence with the grid.

In the last chapter, we have introduced the fractional operators. Since

the fractional operators and, in particular, the fractional Laplacian have a

nonlocal behavior, the numerical implementation is not straightforward. We

have presented a classical approach to the fractional Laplacian (called Riesz

method) and a spectral approach (spectral and integral methods). We have

implemented all the cited methods in a finite element based code, and all the

results are in accordance with the analytical results and the numerical bench-

marks. Moreover, we have applied the Riesz fractional Laplacian modeling

to a simple optimal control problem, where the fractional operator has been

used as regularization term. Numerical results for classical and inequality-

constrained optimal control problems are shown. We also applied the Riesz

fractional Laplacian to quasi-geostrophic simulations. The presented numer-

ical results show good agreement with the expectations, and a numerical

scheme based on a predictor-corrector technique has been developed to re-

duce the computational cost of the simulations.

All the presented numerical algorithms and mathematical schemes can be

seen as an improvement of the known optimal control theory applied to the

multi-scale FSI model. In future works, the fractional Laplacian approach

will be extended from the simple presented mathematical problem to the

optimal control of the Koiter fluid-structure interaction.
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Salgado, “Numerical methods for fractional diffusion,” Computing and

Visualization in Science, vol. 19, no. 5-6, pp. 19–46, 2018. 3, 130, 137,

139, 142

[18] “Code FEMuS.” https://github.com/FemusPlatform/femus.git. 3,

8, 50

[19] “Numeric platform.” https://github.com/FemusPlatform/

NumericPlatform.git. 3

[20] G. Bornia, Analysis of optimal control problems for the incompressible

MHD equations and implementation in a finite element multiphysics

code. PhD thesis, alma, 2012. 3

[21] R. Da Vià, Development of a computational platform for the simulation

of low Prandtl number turbulent flows. PhD thesis, alma, 2019. 3

[22] “Code FEMuS (Texas Tech University).” https://github.com/

FeMTTU/femus.git. 3, 148, 167

[23] P. Le Tallec and J. Mouro, “Fluid structure interaction with large struc-

tural displacements,” Computer methods in applied mechanics and en-

gineering, vol. 190, no. 24-25, pp. 3039–3067, 2001. 5

[24] E. Aulisa, A. Cervone, S. Manservisi, and P. Seshaiyer, “A multi-

level domain decomposition approach for studying coupled flow ap-

plications,” Communications in Computational Physics, vol. 6, no. 2,

p. 319, 2009. 5

[25] E. Aulisa, S. Bna, and G. Bornia, “A monolithic ale newton–krylov

solver with multigrid-richardson–schwarz preconditioning for incom-

pressible fluid-structure interaction,” Computers & Fluids, vol. 174,

pp. 213–228, 2018. 5

https://github.com/FemusPlatform/femus.git
https://github.com/FemusPlatform/NumericPlatform.git
https://github.com/FemusPlatform/NumericPlatform.git
https://github.com/FeMTTU/femus.git
https://github.com/FeMTTU/femus.git


190 Bibliography

[26] T. E. Tezduyar, S. Sathe, R. Keedy, and K. Stein, “Space–time finite

element techniques for computation of fluid–structure interactions,”

Computer methods in applied mechanics and engineering, vol. 195,

no. 17-18, pp. 2002–2027, 2006. 7
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