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Abstract

In this thesis we will see that the DNA sequence is constantly shaped by the interactions
with its environment at multiple levels, showing footprints of DNA methylation, of its
3D organization and, in the case of bacteria, of the interaction with the host organisms.
In the first chapter, we will see that analyzing the distribution of distances between con-
secutive dinucleotides of the same type along the sequence, we can detect epigenetic and
structural footprints. In particular, we will see that CG distance distribution allows to
distinguish among organisms of different biological complexity, depending on how much
CG sites are involved in DNA methylation. Moreover, we will see that CG and TA can
be described by the same fitting function, suggesting a relationship between the two. We
will also provide an interpretation of the observed trend, simulating a positioning process
guided by the presence and absence of memory. In the end, we will focus on TA dis-
tance distribution, characterizing deviations from the trend predicted by the best fitting
function, and identifying specific patterns that might be related to peculiar mechanical
properties of the DNA and also to epigenetic and structural processes.
In the second chapter, we will see how we can map the 3D structure of the DNA onto its
sequence. In particular, we devised a network-based algorithm that produces a genome
assembly starting from its 3D configuration, using as inputs Hi-C contact maps. Spe-
cifically, we will see how we can identify the different chromosomes and reconstruct their
sequences by exploiting the spectral properties of the Laplacian operator of a network.
In the third chapter, we will see a novel method for source clustering and source attri-
bution, based on a network approach, that allows to identify host-bacteria interaction
starting from the detection of Single-Nucleotide Polymorphisms along the sequence of
bacterial genomes.
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CHAPTER 1

Introduction

In this study we will see how just simply reading the information content of the DNA
sequence we can gain knowledge about processes that go beyond the sequence itself,
detecting footprints of DNA methylation, of the 3D organization of the genome and,
in case of bacteria such as Salmonella enterica serovar Typhimurium, of the interaction
between the micro-organisms and their hosts. In particular, in this work, we will always
refer to the DNA sequence as a 1D object composed by four letters, corresponding to four
units composing its chains: A (adenine), C (cytosine), G (guanine), and T (thymine),
called nucleotides.
In the first chapter, we will analyze the DNA sequence by considering as fundamental
units the dinucleotides, (i.e. pairs of nucleotides) and focusing on the characterization
of their distances along the sequence. In fact, recent studies revealed that dinucleotide
distance can be a powerful tool for detecting DNA properties [1, 2], such as the iden-
tification of CpG islands [3] and the characterization of epigenomic regulation through
methylation [4, 5]. In particular, Paci et al. [4] higlighted a peculiar feature of mam-
mals CG dinucleotides: the distributions of the distances between consecutive CG show
an exponential tail, whereas all non-CG distributions are characterized by heavier tails,
more similar to a power law. This might be due to the specific role that CGs play
inside mammals genomes, since they are the preferential sites of methylation, a funda-
mental epigenetic mechanism involved in gene regulation [6, 7, 8, 9, 10] and structural
conformation of chromatin [11, 12]. Therefore, in the first chapter we will focus on the
characterization of the whole CG distributions in a set of mammal model organisms
and subsequently we will extend the analysis to a larger set of 4425 genomes, belonging
to a wide range of organism categories (bacteria, protozoa, plants, fungi, invertebrates,
mammal and non-mammal vertebrates) in order to better understand the heterogeneous
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scenario found among non-mammals [4] and to obtain a global picture associated to this
particular feature. The results of these analyses are published in [13].
We will then focus on human genome and we will see that CG and TA distance distribu-
tions can be described by the same mathematical function, that is a shifted power-law
with exponential tail, suggesting a relationship between the two. In particular, we will
propose an interpretation for the observed trend, associating respectively the power-law
and the exponential trend to a positioning process with and without memory. In the end,
we will focus on TA distance distribution, detecting deviations from the trend predicted
by the best fitting function, which are characterized by specific sequence patterns that
might be related to peculiar mechanical properties of the DNA and also to epigenetic
and structural processes.
In the second chapter, we will see how we can use the information about the 3D proximity
of DNA fragments within the nucleus to obtain its sequence. In other words, we will
see how we can get a genome assembly starting from Hi-C data. In fact, Hi-C (High-
throughput Chromosome conformation capture) is a technique that allows to identify
chromatin interactions across the entire genome [14, 15], providing information about
the spatial proximity between pairs of DNA fragments sampled from a population of
millions of cells [16]. In the last 7 years, Hi-C data have gained more and more attention
in context of genome assembly [17, 18, 19, 20, 21] since, unlike the usual DNA fragments
produced by NGS (Next-Generation sequencing) technique, they have the advantage
of carrying information about their spatial proximity within the nucleus, thus allowing
to identify chromosomal rearrangements, which are particularly relevant for studying
complex pathologies such as cancer [22, 23]. In particular, I had the opportunity to
deepen the study of this problem starting from my internship in Prof. Marc A. Marti-
Renom’s Lab, where I collaborated to GENIGMA (https://www.genigma.app), a citizen
science project that aims to develop an app that people from all over the world can install
on their devices (smartphones or tablets) and play to identify translocations in human
cancer cell-lines. The novelty of the project consists in using as inputs Hi-C data sets,
that probe the contacts between pairs of genomic regions, and in establishing a consensus
over the structural features annotated during the game, thanks to the participation of the
players. My contribution to the project consisted in developing a pipeline that allowed
to: (1) prepare the input data for the game, (2) mimic the players’ activity and (3)
analyze the outcome of the game. The first and the third points, in particular, led me
to devise an algorithm, based on a network approach, that produces a genome assembly
starting from Hi-C contact maps, by exploiting the spectral properties of the Laplacian
matrix.
In the third chapter, we will see a novel method, based on a network approach, that
allows to detect host-bacteria interactions starting from SNPs (Single-Nucleotide Poly-
morphism) within the sequence of bacterial genomes. Specifically, this work has been
developed within the COMPARE (COllaborative Management Platform for detecion and
Analyses of (Re-)emerging and foodborne outbreaks in Europe) EU project, with the aim
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of attributing a human case of Salmonellosis to the putative source of infection. This
procedure, also known as source attribution [24, 25], is in fact an enduring challenge,
allowing fast identification of possible cures, the start of an outbreak, the identification
and the prioritization of targeted interventions in the food chain, as well as the evaluation
of the effectiveness of each intervention.
Many methods have been developed to estimate the relative contribution of different
food sources to human foodborne diseases worldwide, including microbial subtyping,
comparative exposure assessment, epidemiological analysis of sporadic cases, analysis
of data from outbreak investigations, and expert elicitation [24, 26]. Each of these
approaches has strengths and limitations, and the usefulness of each depends on the
public health questions being addressed [26]. Usually, source attribution studies are
conducted by using frequency-matching models like the Dutch and Danish models based
on phenotyping data (serotyping, phage-typing, and antimicrobial resistance profiling)
[24, 25].
In this chapter, we will see a different approach that exploits the single genetic profiles
of the infecting agent, using as input pairwise distance matrices between the bacterial
genomes identified in food and human origin samples. In particular, the proposed method
represents these pairwise distance matrices as undirected weighted networks where nodes
correspond to bacterial isolates and links to a function of genetic distances (i.e. the
number of different nucleotides along DNA sequences): the weaker the link, the higher
the genetic distance between two isolates. The aim is to extract clusters corresponding
to different animal sources (source clustering) and then attributing the human isolates
to the putative sources of infection (source attribution). The main idea behind the
method is that genomes coming from the same source should show smaller distance
values. Therefore, to identify clusters, the algorithm removes all the links whose weight
is lower than an optimal threshold value t, determined by applying a cross validation
procedure that maximizes intra-cluster coherence and minimizes the number of isolated
nodes. The algorithm has been trained and tested on animal origin samples, providing
optimal threshold values that have been validated on an independent data set. Moreover,
we will see that the network approach is also useful for investigating which structural
features of a data set play a fundamental role in determining the internal coherence of
clusters, such as animal sources, the country of origin of the food samples and the year
of collection. The major results shown in this chapter are published in [27].
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CHAPTER 2

From sequence to epigenetic and structural footprints

In this chapter we will see that the way CG dinucleotides are positioned along the
sequence of human genome can be related to the effects that DNA methylation has on it.
Moreover, we will see that one of the parameters characterizing the fitting function used
to describe CG distance distributions in more than 4000 different organisms, correlates
with their biological complexity. We will also see that CG and TA distance distributions,
within human genome, can be described by the same mathematical function, suggesting
a common process giving rise to the positioning of these two dinucleotides along the
sequence. In the end, we will focus on TA distance distribution, detecting deviations
from the trend predicted by the best fitting function. In particular, we will see that the
parts of the DNA sequence associated with these deviations are characterized by specific
patterns that might be related to peculiar mechanical properties of the DNA and also
to epigenetic and structural processes.

2.1 Dinucleotide distance distribution

Recent studies revealed that dinucleotide distance can be a powerful tool for detecting
DNA properties [1, 2], such as the identification of CpG islands [3] and the character-
ization of epigenomic regulation through methylation [4, 5]. In particular, Paci et al.
[4] higlighted a peculiar feature of mammals CG dinucleotides: the distributions of the
distances between consecutive CG show an exponential tail, whereas all non-CG dis-
tributions are characterized by heavier tails, more similar to a power law. This might
be due to the specific role that CGs play inside mammals genomes, since they are the
preferential sites of methylation, a fundamental epigenetic mechanism involved in gene
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regulation [6, 7, 8, 9, 10] and structural conformation of chromatin [11, 12]. In light of
these preliminary observations, we believe that a characterization of the complete CG
distribution would provide a better comprehension of their role inside genomes of all
organisms, guided by the idea that similar functionalities should share similar statist-
ical properties. Moreover, the identified distribution can be the basis for hypothesizing
specific physical models to describe the observed DNA sequence characteristics.
Paci et al. [4] also noticed that the distinction between CG and non-CG distance dis-
tributions is less sharp in non-mammal organisms, by considering a set of 21 genomes,
belonging to 10 mammal and 11 non-mammal organisms. Therefore, in the first part of
this chapter, the study will be extended to CG distance distributions extracted from 4425
genomes, belonging to a wide range of organism categories (bacteria, protozoa, plants,
fungi, invertebrates, mammal and non-mammal vertebrates) in order to better under-
stand the heterogeneous scenario found among non-mammals and to obtain a global
picture associated to this particular feature.

2.2 CG distance distribution

The first step of the analysis consisted in the estimation of the relative frequency distribu-
tions p̂(τ) of CG distances in a selected set of organisms, namely the DNA sequences of 9
mammal model organisms: Bos taurus, Canis familiaris, Equus caballus, Homo sapiens,
Macaca mulatta, Mus musculus, Ornithorhynchus anatinus, Pan troglodytes and Rattus
norvegicus, chosen since in a previous work [4] they showed very homogeneous charac-
teristics in terms of CG distribution. The data were downloaded from NCBI database
[28] and pre-processed by extracting the longest sequence from each genome, except sex
chromosomes [4], and by removing the unknown bases, identified with the “N” symbol in
the fasta files. This operation did not affect the computation of p̂(τ), because the ratio
of N inside the sequences was in general low (see Table 2.1) and they were mainly located
contiguously at the centromere and telomere regions, thus producing only a very small
number of large distances (that could eventually be easily removed from the analysis).
Subsequently we found the positions xj of each CG dinucleotide inside the sequence,
and we calculated the distance between two consecutive CG as τj = xj+1 − xj; finally,
for each distance value τ , we counted its abundance along the sequence and estimated
its relative frequency p̂(τ), as described in eq. 2.1. In this way we obtained a relative
frequency distribution that we called CG distance distribution.

p̂(τ) =
#{j|τj = τ}

#{τj}
(2.1)



9

2.2.1 Fitting method

In order to find a complete characterization of mammal CG distribution, we firstly rep-
resented p̂(τ) for the 9 mammal model organisms in semilogarithmic scale. In this way,
we immediately recognized an exponentially decaying trend in the tails (see Supplement-
ary Materials in [4]), which led us to consider the following functions: exponential and
double exponential distributions, which can be associated to physical processes respect-
ively governed by a single and a double characteristic scale (that would correspond to
characteristic CG distances along the genome); stretched exponential and gamma distri-
butions, which are related to physical processes involving both a characteristic scale and
a power-law trend [29, 30, 31, 32, 33, 34, 35, 36, 37, 38]. We also took into account the
q-exponential distribution, as suggested by a recent work [5] that studied CG distance
distributions on a small interval of about 2− 300 dinucleotide distance values for human
genome. In our study we consider the whole distance distribution up to about 2000
nucleotides for the same organism, and of the same order of magnitude for the other
higher-order organisms of the considered subset. The proposed distributions were fitted
to the data by using a non-linear least square method (fit function, Mathworks Matlab
software).

p(τ) = log10(ae
−τ/b) (2.2)

p(τ) = log10(ae
−τ/b + ce−τ/d) (2.3)

p(τ) = log10(ce
−τa/b) (2.4)

p(τ) = log10[1 + (1− a)τ ]
−1

(1−a) (2.5)

p(τ) = log10(cτ
a−1e−τ/b) (2.6)

We noticed that the extreme region of the right tail of our CG distributions adversely
affected fit results, due to poor sampling, therefore we decided to exclude from the fit
procedure all distances beyond the 90th percentile (leaving an interval of distances from
0 up to about 1000 − 2000 bases in all 9 higher-order organisms). The goodness of fit
was initially estimated by r2 parameter (eq. 2.7), defined as:

r2 = 1− SSR

SST
(2.7)

where SSR represents the sum of squares of the regression and SST the sum of squares
about the mean, also called total sum of squares. Due to the large number of distances
fitted for these organisms, any correction for sample size to the goodness of fit estimation
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was not relevant. A comparison of r2 values allowed to discard some distributions with
a clear low fitting performance. In order to find the best fitting distribution among the
remaining, we considered additionally the mean value of residual distribution (reported
in Table 2.2), that allowed a further discrimination.

2.2.2 Mammal genome analysis

Goodness-of-fit parameters showed that gamma distribution (eq. 2.6) is the function
that best describes CG distance distribution for the 9 mammal subset (see Fig. 2.1 for
the case of human genome). In particular, if we look at r2 values in Table 2.3, we can see
that the worst fit results are given by q-exponential distribution, since the corresponding
r2 values are the lowest ones, followed by single exponential distribution. The choice
of best fit distribution among the remaining was more difficult, because r2 values were
very similar or even identical. Therefore, we also considered the mean values of residual
distribution, that provided a clear distinction among the considered distributions (see
Table 2.2), with values around 10−11 for gamma fit, 10−8 for stretched exponential fit,
10−7 for double exponential fit, 10−8 for exponential fit and 10−1 for q-exponential fit.
These values confirmed that q-exponential was the worst fitting distribution, and showed
that gamma is the best fit function for mammal CG distance distributions (see Table
2.4 for fit results).

Organism Sequence N (%)
Bos taurus chr1 0.7
Canis familiaris chr1 0.5
Equus caballus chr1 1.2
Homo sapiens chr1 7.4
Macaca mulatta chr1 6.5
Mus musculus chr1 7.9
Ornithorhynchus anatinus chr3 6.4
Pan troglodytes chr1 2.1
Rattus norvegicus chr1 5.2

Table 2.1: Percentage of unkown bases N inside each analyzed sequence of the first set
of organisms.

2.2.3 Genome analysis across different levels of biological com-
plexity

Once obtained the best fitting function for the mammal organism set, we applied it to
all the 4425 organisms chosen for our analysis (see Table 2.5). The fit parameters associ-
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Mammal Gamma S. Exp D. Exp Exp Q-exp
Bos taurus -1.96E-11 -5.19E-6 1.05E-7 -7.65E-12 1.17E-1
Canis familiaris -8.88E-11 -4.05E-6 3.26E-7 2.47E-8 1.18E-1
Equus caballus 6.53E-10 -5.86E-9 -3.67E-4 6.64E-12 1.51E-1
Homo sapiens 7.69E-10 -1.05E-6 1.21E-7 2.41E-9 1.40E-1
Macaca mulatta 3.13E-11 -2.93E-8 1.26E-7 1.02E-8 1.39E-1
Mus musculus -2.04E-11 -2.93E-8 2.70E-7 4.00E-8 1.23E-1
Ornithorhynchus anatinus 8.37E-11 -1.25E-7 2.56E-7 3.63E-8 1.10E-1
Pan troglodytes 7.77E-10 -1.79E-6 1.90E-7 2.83E-9 1.39E-1
Rattus norvegicus 7.31E-10 -3.14E-9 1.35E-7 -3.09E-12 1.49E-1

Table 2.2: Residual mean values of gamma, stretched exponential (S. Exp), double ex-
ponential (D. Exp), exponenital (Exp) and q-exponential (Q-exp) fit of mammal CG
distance distributions.

ated to the best distribution, together with the goodness-of-fit parameters, were used to
describe the analyzed organisms, thus allowing to obtain a global picture from a point
of view of organism complexity. In fact, we expected that genomes with similar CG
distance distributions would show similar fit parameter values, reflecting similarities in
the functional roles of CG dinucleotides in these organisms. Even if for some organism
categories the chosen distribution is not optimal as for the initial subset, we hypothes-
ize that organisms with similar distributions (even if not corresponding to the chosen
one) should present similar parameters anyway, allowing a global classification with a
unified approach. Anyway, to filter out possible fit errors due to bad genome sequence
reconstruction, we only considered for our analyses the organisms which goodness-of-fit
exceeded a value r2 = 0.9. With this filter we discarded on average about 15% of our
genomes (from 2% in bacteria to 25% in non-mammal vertebrates), homogeneously dis-
tributed along the considered categories, resulting in 3857 genomes left for our analysis.
Looking at Fig. 2.2, we notice that b is the parameter that mainly discriminates between
the organism categories while the value a of the power term in gamma distribution is
equally spread across all organisms of all categories (see also Fig. 2.3). Furthermore,
b values seem to increase with the “biological complexity” of the considered categor-
ies, being minimum for bacteria and protozoa, and maximum for vertebrates (higher
in mammals than in non-mammals) and with an intermediate value for invertebrates.
Vertebrate categories have a median value of b in the range 200−300, while it is an order
of magnitude lower for bacteria (about 30). We remark that this value is very close to
the typical length of DNA enveloped around a histone (146 bp envelope around histone
octamer plus a linker region summing up to about 200-220 bp), thus there might be a
relation between DNA enveloping around histones and our observation in term of CG
distances, even if we cannot provide an explanation for this.
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Mammal Gamma S. Exp D. Exp Exp Q-exp
Bos taurus 0.982 0.982 0.981 0.961 0.805
Canis familiaris 0.981 0.981 0.977 0.947 0.832
Equus caballus 0.986 0.987 0.775 0.964 0.797
Homo sapiens 0.985 0.985 0.983 0.962 0.799
Macaca mulatta 0.987 0.987 0.986 0.965 0.804
Mus musculus 0.983 0.985 0.983 0.960 0.803
Ornithorhynchus anatinus 0.978 0.981 0.978 0.949 0.831
Pan troglodytes 0.986 0.985 0.984 0.963 0.800
Rattus norvegicus 0.984 0.987 0.985 0.958 0.800

Table 2.3: R-squared values of gamma, stretched exponential (S. Exp), double exponen-
tial (D. Exp), exponenital (Exp) and q-exponential (Q-exp) fit of mammal CG distance
distributions.

Mammal Sequence a b c r2

Bos taurus chr1 0.25 ± 0.03 316 ± 5 0.10 ± 0.02 0.982
Canis familiaris chr1 0.03 ± 0.03 324 ± 7 0.23 ± 0.04 0.981
Equus caballus chr1 0.17 ± 0.03 226 ± 4 0.16 ± 0.03 0.986
Homo sapiens chr1 0.16 ± 0.03 280 ± 5 0.14 ± 0.02 0.985
Macaca mulatta chr1 0.17 ± 0.03 267 ± 4 0.15 ± 0.02 0.987
Mus musculus chr1 0.22 ± 0.03 330 ± 6 0.12 ± 0.02 0.983
Ornithorhynchus anatinus chr3 0.15 ± 0.04 250 ± 6 0.16 ± 0.03 0.978
Pan troglodytes chr1 0.16 ± 0.03 281 ± 5 0.14 ± 0.02 0.986
Rattus norvegicus chr1 0.09 ± 0.03 281 ± 5 0.21 ± 0.04 0.984

Table 2.4: Gamma fit parameter values for the first set of 9 mammals. Errors on para-
meters are estimated at 95% confindence level and rounded to the first significant digit.

Since we are considering a large class of organisms, with DNA sequence size differing
by several orders of magnitude (from 108 for mammals to 104 − 105 for bacteria and
protozoa), we checked if b parameter could be associated with the length of the analyzed
genomic sequence. This does not seem the case, since the Pearson’s correlation coefficient
r between the logarithm of b and the logarithm of the length of the analyzed genome
sequences is very close to zero: r = −0.12.
In light of these observations, we also tested whether the gamma scale parameter (i.e.,
b) could depend on CG density inside the sequence (number of CG dinucleotides with
respect to sequence length), representing b as a function of %CG in double logarithmic
scale (see Fig. 2.4). In a simple null model, the average distance between dinucleotides
should decrease proportionally to the inverse of dinucleotide density inside the sequence,
thus with a slope equal to −1 in double logarithmic plot. Therefore, we fitted the b
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Figure 2.1: Log-linear plot of CG distance distribution within human chromosome 1,
together with gamma distribution as fitting function (upper panel). Fit results are ac-
companied by residual plots (lower panel).

vs %CG double logarithmic plot to a straight line using linear least square method,
obtaining the results shown in Table 2.6. We observe that the relation between b and
%CG is in general very close to the fitted lines for each organism category, with an average
value of Pearson’s coefficient 〈r〉 = −0.65 (minimum correlation rMIN = −0.54 for
invertebrates, maximum correlation rMAX = −0.75 for protozoa). In particular, from this
analysis we can identify two groups of organisms, according to the values of the coefficient
m, corresponding to the slope of the line in log-log plot and thus to the exponent of the
relation b ∝ %CGm: bacteria, plants, fungi, protozoa and invertebrates have an exponent
approximately equal to −1, while mammal vertebrates and non-mammal vertebrates
have a smaller exponent in absolute value closer to 0.5, significantly different from the
others in terms of 95% confidence interval. Some organism categories thus seem to verify
the null model hypothesis, while for vertebrates the significant deviation from the null
model suggests a different mechanism for CG dinucleotide placement along the genome
rather than a “maximum entropy” process.
A possible biological interpretation of this grouping could be a different role of CG
methylation in these two classes of organisms. CG methylation is known to be an im-
portant mechanism in higher-order organisms (like vertebrates, that in our analysis show
a slope significantly smaller than −1), with an active role on gene transcription regula-
tion [39]. For most of the biological categories that showed an exponent close to −1 it
is not clear how (or even if) the CG methylation mechanism is used [40, 41, 42], since
in some cases different nucleotide sequences are involved in methyl group binding (like
the GATC motif in E. Coli, or other motifs in plants [43]) and in general is not used
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for gene regulation, if not only during embryonic development [44]. We speculate that a
characterization of CG distribution parameters for a specific organism could be an index
to hypothesize a role of CG methylation at a single organism level, even if we did not
go further in the analysis in this direction. In order to extend the range of applications,
we think that the method developed in this work can be applied to further repeated
genomic sequences (e.g. transcription-factor-binding-site motifs mapped in ENCODE
project [45] and repeated sequences associated to transposable elements [46]) in order to
gain a deeper insight into DNA properties of single organisms or for comparison between
oganism categories. Moreover, considering our approach as providing a null model for
CG (or other dinucleotide) distribution, we can look for deviations from such null model
and study their possible biological meaning (e.g. in relation to CpG islands).

Category Number of genomes Size
Vertebrates non-mammals 200 210 Gb
Vertebrates mammals 219 525 Gb
Plants 297 288 Gb
Protozoa 348 17 Gb
Invertebrates 507 168 Gb
Bacteria 1251 5 Gb
Fungi 1603 44 Gb

Table 2.5: Number and size of genome assemblies downloaded from GenBank database,
divided into categories.

Category m q r2

Bacteria -1.06 ± 0.02 2.23 ± 0.02 0.858
Protozoa -1.11 ± 0.05 2.30 ± 0.04 0.875
Fungi -0.87 ± 0.03 2.07 ± 0.02 0.726
Invertebrates -0.9 ± 0.1 2.30 ± 0.06 0.460
Plants -1.11 ± 0.09 2.50 ± 0.04 0.707
Vertebrates non-mammals -0.76 ± 0.08 2.34 ± 0.02 0.704
Vertebrates mammals -0.51 ± 0.07 2.43 ± 0.01 0.523

Table 2.6: Linear regression parameters of CG-b relationship, together with r-squared
values.

2.2.4 The role of memory in CG positioning process

As shown in the previous sections, mammal CG distance distribution seems to be well
described by a gamma distribution, which is characterized by a power-law trend of the
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Figure 2.2: Boxplot of gamma shape parameter a (left-hand side) and gamma scale para-
meter b (right-hand side) for the seven considered categories: bacteria (BT), protozoa
(PZ), fungi (FG), invertebrates (IN), plants (PL), non-mammal vertebrates (NMV) and
mammal vertebrates (MV).

type∼ x−0.8 plus an exponential tail of the type ∼ e−x/300. An important question arising
at this point is the following: what process can give rise to such a trend? The answer
is not trivial, since there is no a priori biological information that can guide us in the
modeling. Anyway, we can provide an interpretation for the two trends - power-law and
exponential - dominating the distribution respectively at low and high distance values.
In fact, we can think of the distance distribution between dinucleotides as the analogous
of the waiting time distribution between events. In this parallelism, the DNA sequence
corresponds to the time line of the events and the detection of a dinucleotide at a certain
position corresponds to the event itself. The waiting time distribution following an
exponential trend is typical of memoryless processes [47, 48, 49, 50, 51, 52], such as that
observed for a random breaking of a stick; on the other hand, a waiting time distribution
following a power-law trend is typical of processes characterized by a long-term memory,
such as those observed for a stochastic breaking-stick process with memory constraints,
for earthquakes and solar flares [47, 53, 54].
The simplest way to generate such distributions is to represent a chromosome as a seg-
ment of finite length, whose points correspond to the different positions that can be
occupied by a dinucleotide, getting a power-law or an exponential distance distribution
by imposing respectively that:
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Figure 2.3: Semilogarithmic plot of gamma scale parameter b as function of gamma shape
parameter a for the 4425 analyzed genomes, divided into seven categories: bacteria (BT),
fungi (FG), invertebrates (IN), plants (PL), protozoa (PZ), mammal vertebrates (MV)
and non-mammal vertebrates (NMV).

1. dinucleotides are not randomly placed along the segment, but with the n-th dinuc-
leotide having memory of the positions of the previous n− 1.

2. dinucleotides are randomly placed along the segment, with the n-th dinucleotide
having no memory of the positions of the previous n− 1.

Specifically, the two distributions can be simulated through a broken-stick process, where
the chromosome sequence is represented by a segment corresponding to the interval
I = [0, 1], and the positions of the dinucleotides are represented by the breaking points.
In particular, we can obtain repsectively an exponential and a power-law distribution
by:

1. extracting N uniformly distributed random numbers in the interval [0,1].

2. extracting N numbers through the following steps:

• Divide the segment into M sub-segments by extracting a random number from
a uniform probability distribution defined in the interval [0,1].

• Each sub-segment survives with a probability 1− p and with a probability p
is divided by extracting a random number from a uniform probability distri-
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Figure 2.4: Double logarithmic plot of gamma scale parameter b as a function of CG
percentage for each of the 4425 genomes belonging to the seven considered categories:
bacteria (BT), protozoa (PZ), fungi (FG), invertebrates (IN), plants (PL), non-mammal
vertebrates (NMV) and mammal vertebrates (MV), (left-hand side). Plot of the angular
coefficient m obtained from linear regression of CG-b relationship, for each considered
category (right-hand side)

bution in the interval [a, b], where a and b represent the starting and ending
points of the broken sub-segment.

• Iterate the previous point k times, depending on the number N of dinuc-
leotides that we want to simulate.

• If a sub-segment survives at the i-th iteration, it will not be broken until the
end of the process.

As shown by Fig. 2.5, the two simulations, based respectively on the absence and pres-
ence of memory in the positioning process of dinucleotides, give rise to an exponential
and a power-law distribution. In terms of CGs, these results suggest the presence of a
mechanism of memory preservation giving rise to a non-random positioning when CGs
are close to each other along the sequence, and a mechanism of memory loss producing
a random positioning when CGs are placed far from each other. It can be hypothes-
ized that this memory preservation concerning CG positioning at low distance values,
might be related to the formation and conservation of CpG islands, which are short DNA
sequences often associated with gene promoters and defined according to the following
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parameters: (1) a minimal length of 200 bp; (2) a minimal CG content of 55%; (3) a
minimal observed/expected CG ratio of 0.60 [55]. Another important property differen-
tiating CpG islands from all other CGs, is the low level of DNA methylation [56, 57],
which makes them less prone to the spontaneous mutation CG → TG, known as deam-
ination, occurring at methylated CG sites, which represent around the 80% of all CGs.
Therefore, the memory loss process associated with CGs positioned at high distance val-
ues, might be interpreted as an “erosion” of the original positioning, originating from the
deamination process occurring at the majority of methylated CGs outside CpG islands.

Figure 2.5: Simulation of memory absence (left panel) and presence (right panel) in
dinucleotide positioning, giving rise respectively to an exponential and a power-law
distance distribution, here represented respectively in log-linear scale and in log-log scale,
thus showing a linear trend in both cases. If the log-linear plot of the exponential trend
in the left panel is compared to the log-linear plots of CG distribution in Fig. 2.6, the
exponential tail can immediately be detected. The parameter values used to generate the
power-law distribution represented in the right panel are M = 10, p = 0.8 and k = 25.

2.2.5 The human genome and a new fitting function

As seen in section 2.2.2, gamma distribution was selected as the best fitting function
for describing the trend of CG distance distribution of the 9 mammal model organisms
chosen for the study. However, if we focus on human genome, we can clearly see that
the fit is characterized by systematic deviations at low distance values (below 50 bp),
as shown by the residual plot in Fig. 2.6, suggesting that gamma distribution cannot
correctly capture the behavior of CGs when placed at distances lower than ∼ 50 bp.
Therefore, two variants have been tested for describing CG distance distribution: (1)
a shifted gamma (see eq. 2.8) and (2) a shifted power-law with exponential tail (see
eq. 2.9). The comparison among the residual plots of the three fitting functions (see
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Fig. 2.6) clearly shows that the introduction of a shift parameter removes the systematic
deviations at low distance values. Moreover, from an inspection of the plots and the
parameter values obtained from the fit (see Table 2.7), we can conclude that the shifted
gamma and the shifted power-law with exponential tail are equivalent. In the light of
these results and the comments made in section 2.2.4, the latter has been chosen as the
best describing function for human CG distance distribution.

p(τ) = log(c(τ + d)a−1e−
(τ+d)
b ) (2.8)

p(τ) = log(c(τ + d)−ae−
τ
b ) (2.9)

Distribution a b c d r2

G 0.16 ± 0.03 280 ± 5 0.14 ± 0.02 – 0.985
SG 2.9E-5 ± 0.07 295 ± 8 0.4 ± 0.2 11 ± 6 0.985
SPLE 1.02 ± 0.08 298 ± 8 0.4 ± 0.2 12 ± 6 0.985

Table 2.7: Fit parameter values obtained for CG distance distribution within human chro-
mosome 1, corresponding to the three considered fitting functions: gamma (G), shifted
gamma (SG) and shifted power-law with exponential tail (SPLE).
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Figure 2.6: Log-linear plot of CG distance distribution within human chromosome 1,
together with gamma (upper panel), shifted gamma (middle panel), and shifted
power-law with exponential tail (lower panel) as fitting distributions. Fit results
are accompanied by residual plots.
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2.3 From CG to TA distance distribution

In order to compare CG with the remaining 15 dinucleotides within the human genome
and measure how actually diverse their distance distributions are, they have been fit-
ted to same function that provided the best results for CG - a shifted power-law with
exponential tail - according to the principle that guided our analysis in section 2.2.3:
we expect that dinucleotides with similar distance distributions would show similar fit
results, reflecting similarities in their positioning process. Surprisingly, we found that
TA was the only dinucleotide showing good fit results, as confirmed by Fig. 2.7 and by
Figures in Appendix A. Furthermore, if we look at fit parameter values in Table 2.8, we
can notice that b, which represents the characteristic distance between two consecutive
TA, is equal 7000 bp, a value much larger than the highest distance considered for the
fit (∼ 700 bp). Therefore, we can conclude that the exponential decay in the tail is
negligible and that the actual function describing TA distance distribution is a shifted
power law, as confirmed by fit results shown in Fig. 2.7 and by the concordance between
SPLE and SPL fit parameter values shown in Table 2.8.

p(τ) = log(c(τ + d)−a) (2.10)

Distribution a b c d r2

SPL 5.2 ± 0.1 – 3 · 107 ± 2 · 107 43 ± 4 0.989
SPLE 5.0 ± 0.5 7 · 103 ± 44 · 103 1 · 107 ± 3 · 107 39 ± 8 0.988

Table 2.8: Fit parameter values obtained for TA distance distribution within human
chromosome 1, corresponding to the two considered fitting functions: shifted power-law
(SPL) and shifted power-law with exponential tail (SPLE).

From a modeling point of view, this finding suggests that the same process could have
given rise to both CG and TA distance distributions, with only one difference: the latter
is characterized by a stronger long-term memory in TA positioning for all distance values
along the sequence.
The presence of a connection between CG and TA has been already pointed out by
Simmen [58] and Morozov et al. [59]. The former identified these two dinucleotides as
the most underrepresented within the human genome, with an increase in CG relative
abundance as GC content increases, corresponding to a decrease in TA relative abund-
ance [58]. The latter identified these two dinucleotides as the most favorable to bend
around the histone octamer, with TA showing the lowest elastic energy (i.e. the most
prone to bending), followed by CG, thus allowing a tight wrapping of DNA sequence
around the histone octamer [59].
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2.3.1 TA random percolation

As we have seen in the previous sections, CG revealed peculiar properties in terms of
distance distribution within the genome of higher-order organisms. These properties
might be related to the effect that DNA methylation has on the sequence, since methyl-
ated cytosine undergo a spontaneous mutation, known as deamination, that transforms
CG into TG [60]. In particular, we have seen that the exponential trend characterizing
the tails of CG distance distribution can be associated to a positioning process without
memory, regulating the displacement of consecutive CG separated by high distance val-
ues, and that it can be associated to a process of “memory loss”. Moreover, we have
seen that, among the non-CG distance distributions, only TA is closely related to CG,
as shown by the results of the fit to a shifted power-law with exponential tail. Therefore,
we hypothesize that the striking difference observed by CG and non-CG in terms of
distance distributions [4] can be due to the deamination process, that led to the loss of a
considerable amount of CG. In this scenario, we are implicitly supposing that the original
CG distance distribution followed a non-CG-like trend, and to test our hypothesis we
selected TA as the best candidate for representing the original trend of CG distance dis-
tribution (given their relationship mentioned above) and we simulated the deamination
process through a random percolation of TA, consisting in a random removal of N TA.
In particular, we decided to remove a number N of TA equal to difference between the
number of TA and the number of CG detected along the sequence, in order to have a
final number of TA that approximately equals the number of CG.
The results show that, after the random percolation, TA distance distribution got closer
to CG (see Fig. 2.8), as confirmed by fit parameter values in Table 2.9, with the value
of the power-law exponent decreasing from ∼ -5 to ∼ -3, as well as the value of the
characteristic length b related to the exponential tail, which decreased from 7000 bp to
616 bp.

a b c d r2

CG 1.02 ± 0.08 298 ± 8 0.4 ± 0.2 12 ± 6 0.985
TA 5.0 ± 0.5 7 · 103 ± 44 · 103 1 · 107 ± 3 · 107 39 ± 8 0.988
pTA 3.4 ± 0.5 616 ± 130 6 · 105 ± 2 · 106 164 ± 41 0.981

Table 2.9: Fit parameter values obtained for: CG, TA and percolated TA (pTA) distance
distribution within human chromosome 1, using a shifted power-law with exponential tail
(SPLE) as fitting function.

Anyway, even if the simulated process brought TA distance distribution very close to CG,
some significant differences still remain, as shown by the plot in Fig. 2.8. In particular,
fit results of shown in Fig. 2.9, confirm that TA distance distribution, after the random
percolation, is not well described by a shifted power-law with exponential tail, unlike
CG. This might be due to the following reasons:
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1. we do not know the real initial CG distribution before percolation, thus the final
result of percolation could be affected by this unknown;

2. we applied the percolation by randomly selecting N TA from the distribution,
without taking into account that there are some “TA excesses” deviating from the
main trend (see next sections for further details);

3. we applied the percolation by randomly selecting N TA from the distribution,
meaning that we are simulating a deamination process that acts with the same
probability along the sequence, without taking into account that CpG islands are
typically unmethylated [60].

2.3.2 TA in primates

Interestingly, if we consider the set of 9 mammal organisms analyzed in section 2.2.2,
we can see that TA distance distributions of Pan troglodytes and Macaca mulatta show
exactly the same trend identified for Homo sapiens (see Appendix B). In fact, it is well
described by a shifted power-law, as confirmed by fit results represented in Fig. 2.10
and by fit parameter values shown in Table 2.10, with a power-law exponent a = −5.2
and shift parameter d ∼ 43 bp. In particular, if we look at residual plots, we can clearly
identify two deviations, characterizing all the three organisms: a sharp peak at 91 bp and
gaussian-like peak centered around 140 bp, meaning that there is an excess of consecutive
TA separated by a distance of 91 bp and by an interval of distance values around 140 bp.
In order to better estimate the center and the shape of the latter peak, a Gaussian fit
of residuals has been performed, providing a value of 142 bp for Homo sapiens and Pan
troglodytes, and a value of 143 bp for Macaca mulatta (see Table 2.11). The goodness of
fit is confirmed by the results shown in Fig. 2.11. Therefore, the next step will consist
in deepening the characterization of these deviations with a focus on human genome.

Organism a c d r2

Homo sapiens 5.2±0.1 3 · 107 ± 2 · 107 43±4 0.989
Pan troglodytes 5.2±0.1 3 · 107 ± 2 · 107 42±4 0.989
Macaca mulatta 5.2±0.1 4 · 107 ± 3 · 107 43±4 0.989

Table 2.10: Fit parameter values obtained by fitting TA distance distribution to a shifted
power-law (SPL) within chromosome 1 of the three considered primates: Homo sapiens,
Pan troglodytes and Macaca mulatta.
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Organism µ σ
Homo sapiens 142± 3 20± 3
Pan troglodytes 142± 3 23± 3
Macaca mulatta 143± 3 22± 3

Table 2.11: Gaussian fit parameter values for residual distribution of the three considered
primates: Homo sapiens, Pan troglodytes and Macaca mulatta.

2.3.3 Deviations from the expected trend within human gen-
ome

As we have seen in the previous section, there are two deviations from the expected
trend, characterizing TA distance distribution: a sharp peak at 91 bp and a Gaussian
peak centered around 142 bp, whose exceeding part with respect to the expected trend
estimated by the fitting distribution, corresponds respectively to the 73% of the observed
TA that are separated by a distance of 91 bp and to the 32% of the observed TA that
are separated by a distance of 142 bp. Since it is known that TA has peculiar structural
and mechanical properties, that make the sequence more flexible [61, 59], as first hypo-
thesis, we tested whether these two excesses of TA distances might mark the positioning
of nucleosomes, which are the fundamental packaging units of eukariotic genomes, con-
stituted by a 147 bp DNA sequence wrapped around a histone octamer [62, 63], and
characterized by a 10 bp periodic signal of AA/TT/TA that oscillates out of phase with
a 10 bp periodic signal of GC [64, 65, 61]. These peculiar patterns of AA/TT/TA and
GC signals make the sequence highly flexible, thus facilitating the bending around the
histone octamer [61, 64]. Therefore, as a first check, we searched for a 10 bp periodicity
within the sequences between consecutive TA separated by a distance of 91 bp (TA91),
by plotting the occurrence probability (i.e. the fraction of a given dinucleotide at a spe-
cific position calculated using a 3-bp moving average [64]) of consecutive AA or TT along
the sequences together with the occurrence probability of GC. The results, shown in Fig.
2.12, clearly show: (1) a symmetric signal with respect to the center of the considered
sequences; (2) a periodicity close to 10 bp in AA/TT signal but not in GC signal; (3)
a repetition of the same patterns in all chromosomes (see AppendixD). Furthermore,
the expected occurrence probability of AA/TT for nucleosome sequences should show a
sinusoidal shape in phase opposition with that of GC [65], a feature that is absent in our
patterns.

These results suggest that the peak at 91 bp is likely to be associated with some kind
repetitive sequences. Therefore, to further investigate this hypothesis, the sequences
corresponding to TA91 were aligned to the sequences corresponding to SINE (Short
Interspersed Nuclear Elements), which are mobile non-coding elements, characterized
by short repetitive sequences ranging from 100 bp to 700 bp [66, 67]. The data were
downloaded from the public database SINEBase [66] and the alignment was performed
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through the Matlab function localalign, finding that the 40% of TA91 sequences have
an identity percentage with SINEs greater than the 80%, thus corresponding to a good
match [66]. In particular, we found that the 86% of TA91 sequences well matched with
SINEs corresponded to Alu repeats, which are sequences extensively methylated and CG
rich, often occurring within introns, and involved in chromosomal rearrangements [68].
Therefore, even though the match between TA91 sequences and SINE do not explain all
the identified excess (73% of TA91), it seems non trivially related to genomic elements
involved in epigenomic and structural processes.

A completely different trend was observed for sequences between consecutive TA
separated by a distance of 142 bp (TA142), as confirmed by Fig. 2.12. In fact, even
though the occurrence probability of AA/TT and GC still shows a symmetric signal with
respect to the center of the considered sequences, an opposite behavior clearly emerges
between the two. In particular, the former is characterized by high values at the borders
of the sequences and by low values at the center, whereas the latter is characterized by
high values at the center and low values at borders.

To test whether the observed patterns in Fig. 2.12 were actually different from those
found for TA in line with the trend predicted by the shifted power-law distribution,
we computed the occurrence probability of AA/TT and GC for sequences identified by
consecutive TA separated by distance values not included in the two deviating peaks:
60 bp (TA60) and 100 bp (TA100). The results, shown in Fig. 2.13, reveal a completely
different trend, with an average AA/TT occurrence probability of 0.11 and an average GC
occurrence probability of 0.06 for both TA60 and TA100, confirming that the deviations
from the trend predicted by the shifted power-law distribution for TA91 and TA142
distances show different patterns in the sequences within these intervals.
In order to have an estimate of the average periodicity associated with the peaks at 91
bp and 142 bp, we proceeded as follows:

• for each of the M sequences between consecutive TA separated by a distance X, we
computed the average distance between consecutive AA/TT and between consec-
utive GC, thus obtaining a list of M values for AA/TT and GC.

• We computed the logarithm of these M values and fitted the corresponding histo-
gram with a Gaussian distribution, thus obtaining an estimate of the mean values
µAA/TT , µGC and the standard deviations σAA/TT , σGC of the average distance
between consecutive AA/TT and consecutive GC. The mean values µAA/TT and
µGC represent an estimate of the average periodicity associated with the M se-
quences between consecutive TA separated by a distance X. In particular, the
lower the standard deviation, the stronger the periodicity.

The measures obtained through these steps are µAA/TT ∼ 12.8 bp and µGC ∼ 14.1 bp for
TA91, and µAA/TT ∼ 9.7 bp and µGC ∼ 12.3 bp for TA142 (see Table 2.12), indicating
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the sequences corresponding to TA142 as the closest to the 10 bp periodicity observed
in nucleosome sequences.
This measure gives also the opportunity to easily compare several TA distances, thus
allowing to understand if the values computed for TA91 and TA142 are actually a sign of
something happening at those precise points of the distribution and not in all the others.
Therefore, we considered all the sequences corresponding to TA distances ranging from
10 bp to 400 bp and computed the values of µ and σ. As we can see from the results
shown in Fig. 2.15, the average distance µ between consecutive AA/TT increases as TA
distance increases - as we would expect in a random null model - except for TA distances
corresponding to the Gaussian peak centered around 142 bp, where µ and σ decrease,
with the former assuming values close to 10 bp. The same happens for GC, even if for
TA distance values greater than ∼ 180 bp, µ decreases as TA distance increases.
Interestingly, the same trend for µ and σ has been observed for all the chromosomes
within the human genome (see Appendix C), as well as both the deviations at 91 bp and
around 142 bp, even if with some differences related to chromosome 11, 21, and Y, as
shown by the percentages in Table 2.13 corresponding to the TA exceeding the expected
trend estimated by the fitting distribution.

µAA/TT [bp] σAA/TT [bp] µGC [bp] σGC [bp]
TA91 12.82 ± 0.07 1.451 ± 0.005 14.14 ± 0.07 1.414 ± 0.005
TA142 9.7 ± 0.2 1.64 ± 0.03 12.3 ± 0.3 1.54 ± 0.02

Table 2.12: Mean values µAA/TT , µGC and standard deviations σAA/TT , σGC of the aver-
age distance between consecutive AA/TT and consecutive GC, obtained by the Gaussian
fit shown in Fig. 2.14.
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TA91 TA142
Chr1 73.7% 32.4%
Chr2 71.6% 34.8%
Chr3 75.0% 37.7%
Chr4 74.4% 39.3%
Chr5 73.2% 30.8%
Chr6 74.0% 36.3%
Chr7 76.3% 32.8%
Chr8 72.2% 28.0%
Chr9 72.3% 28.5%
Chr10 73.4% 33.7%
Chr11 68.5% 20.1%
Chr12 77.4% 38.5%
Chr13 73.6% 34.6%
Chr14 73.8% 26.9%
Chr15 75.0% 37.2%
Chr16 74.8% 30.8%
Chr17 76.9% 33.5%
Chr18 71.9% 35.9%
Chr19 79.3% 31.3%
Chr20 70.2% 30.5%
Chr21 68.8% 20.4%
Chr22 72.1% 24.4%
ChrX 78.0% 30.7%
ChrY 67.1% 20.0%

Table 2.13: Percentages of observed TA91 and TA142 exceeding the expected trend es-
timated by the fitting distribution, for all chromosomes of human genome.
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Figure 2.7: Log-linear plot of TA distance distribution within human chromosome 1,
together with shifted power-law with exponential tail (upper panel) and shifted
power-law (lower panel) as fitting distributions. Fit results are accompanied by residual
plots.
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Figure 2.8: TA distance distribution within human chromosome 1, before (left panel)
and after (right panel) applying the random percolation. The distributions are represented
together with CG’s and using a shifted power-law with exponential tail as fitting function.

Figure 2.9: Log-linear plot of TA distance distribution within human chromosome 1, after
applying the random percolation, together with shifted power-law with exponential tail as
fitting function. Fit results are accompanied by residual plots.
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Figure 2.10: Log-linear plot of TA distance distribution within chromosome 1 of Homo
sapiens (upper panel), Pan troglodytes (middle panel) and Macaca mulatta (lower
panel) together with shifted power-law as fitting distribution. Fit results are accompanied
by residual plots, which clearly show a sharp peak at 91 bp and a Gaussian peak centered
around 142 bp.
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Figure 2.11: Gaussian fit of Homo sapiens (upper panel), Pan troglodytes (middle
panel) and Macaca mulatta (lower panel) residuals shown in figure 2.10.
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Figure 2.12: Occurrence probability as a function dinucleotide position within the se-
quences identified by consecutive TA separated by a distance of 91 bp (upper panel) and
142 bp (lower panel) within human chromosome 1.
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Figure 2.13: Occurrence probability as a function dinucleotide position within the se-
quences identified by consecutive TA separated by a distance of 60 bp (upper panel) and
100 bp (lower panel) within human chromosome 1.
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Figure 2.14: Histograms of the logarithm of the average distance between consecutive
AA/TT and consecutive GC within the sequences corresponding to TA91 and TA142,
together with Gaussian fit results.
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Figure 2.15: Gaussian fit parameters µ and σ representing respectively the mean value
and the standard deviation of the logarithm of the distance between consecutive AA/TT
(upper panels) and consecutive GC (lower panels) along the sequences identified by TA
pairs separated by a minimum distance of 10 bp up to a maximum distance of 400 bp,
within human chromosome 1.
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2.4 Conclusions

We considered several probability density functions to fit the CG distance distribution
of a selected set of mammal organisms, and we initially observed that it is best described
by a Gamma distribution. Applying this function on a wide set of organisms, taken from
different taxonomic categories, we noticed that the scale parameter b of the Gamma
distribution could be associated to the biological complexity of the organism category,
increasing from bacteria to vertebrates. Moreover, we tested for possible factors affecting
this parameter, like genome sequence length and CG density. While the first factor was
not related to our observations, the second revealed stronger correlations; in particular,
for a group of organisms, comprising those of minor biological complexity (bacteria,
protozoa, fungi, invertebrates and plants), the relation between b and CG density could
be explained by a minimal null model (i.e. a linear dependence on density), while for
higher-order organisms (vertebrates) this null model did not explain the observations
(depending on the square root of density). We argue that this difference could be related
to the different role that CG methylation plays in these classes of organisms, affecting
differently CG positioning and mechanisms that could modify this displacement.
Subsequently we focused on human genome, and we saw that gamma fit results of CG
distance distribution show a systematic deviation at low distance values, therefore we
introduced a shifted power-law with exponential tail as new fitting function, obtaining
a better performance. Furthermore, we saw that the power-law trend characterizing low
distance values, and the exponential trend characterizing high distance values, can be
generated respectively by a positioning process with memory [47, 53, 54] and without
memory [47, 48, 49, 50, 51, 52]. We hypothesized that the former process might be
related to the mechanism of formation and conservation of CpG islands, while the latter
might be due to an “erosion” of the original CG positioning, originated as a consequence
of the deamination process occurring at methylated CGs outside CpG islands, which
causes a spontaneous mutation CG → TG.
In the end, we saw that CG and TA distance distributions can be well described by
the same function, precisely a shifted power-law with an exponential tail, meaning that
the same process could have given rise to both. In particular, we saw that the value of
the characteristic distance b between two consecutive TA along the sequence estimated
by the fitting procedure is much larger than the maximum distance actually considered
for the fit, leading us to the conclusion that the exponential tail is negligible and that
the actual fitting distribution is a pure shifted power-law. Furthermore, we saw that
the same function well describes also TA distance distributions of Pan troglodytes and
Macaca mulatta, providing almost the same values for the parameters a, c, d and showing
exactly the same deviations from the trend estimated by the fitting function: a sharp
peak at 91 bp and a Gaussian peak centered around 142 bp, that seems to unite the
features of the genetic sequences of these primates.
Focusing again on human genome and investigating the properties of the sequences
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between consecutive TA separated by a distance of 91 bp (TA91) and 142 bp (TA142),
we identified specific patterns associated with the occurrence probability of AA/TT and
CG. In particular, we saw that the 40% of TA91 sequences have a good match with SINE
(Short Interspersed Nuclear Elements), and, in particular, with Alu sequences, which are
mobile non-coding elements involved in epigenetic and structural processes [68]. Further-
more, we observed that the average distance between consecutive AA/TT increases as
TA distance increases, as we would expect in a random null model, except for TA dis-
tances corresponding to the Gaussian peak centered around 142 bp, where it assumes
values close to 10 bp, which corresponds to the typical distance between AA/TT/TA
characterizing the 147bp-sequences wrapped around the histone octamer [61, 64, 65].
Therefore, these results suggest that the sequences corresponding to the sharp peak at
91 bp and the Gaussian peak centered around 142 bp have peculiar properties, concern-
ing not only epigenetic and structural processes, but also DNA flexibility, that deserve
further investigations.



38

CHAPTER 3

Unfolding the genome: from chromosome structure to sequence

In this chapter we will see an algorithm for building genome assembly starting from
Hi-C contact maps, that is based on a network approach. Hi-C matrices, in fact, can be
represented as undirected weighted networks where nodes correspond to chromosome bins
and links to Hi-C contact values. In particular, we will see how the spectral properties
of the Laplacian matrix will lead to identify the different chromosomes and reconstruct
their sequences.

3.1 Hi-C contact maps

Hi-C (High-throughput Chromosome conformation capture) is a technique that allows to
identify chromatin interactions across the entire genome [14, 15], providing information
about the spatial proximity between pairs of DNA fragments sampled from a population
of millions of cells [16]. From an experimental point of view, the steps that lead to the
production of this type of data are the following (see Fig. 3.1): the DNA is cross-linked
with formaldehyde and subsequently cut by a restriction enzyme; the two ends of the
obtained DNA are then ligated and marked with biotin, giving rise to a chimeric DNA
molecule composed by two different fragments that were originally close in the nuclear
space. This new sample is then purified and sheared, and the biotinylated junctions are
identified by paired-end sequencing. Therefore, in the end, this experimental technique
provides pairs of reads that allow to map onto a reference genome the two fragments
composing the ligation products and see which parts of the DNA are interacting the most.
In particular, the interacting parts can be defined by dividing the reference sequence into
n regions of equal size - that we will call bins - and count the number mij of ligation
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Figure 3.1: Overview of Hi-C technique [14].

products between bin i and bin j. If we consider all the possible interactions between
pairs of bins, we can collect this information into a n × n symmetric matrix where the
value of a single entry is mij.

From the visualization of a Hi-C contact matrix (see Fig. 3.13), we can clearly see
blocks along the diagonal representing the different chromosomes, each one showing a
contact probability p that decreases as the genomic distance d (i.e. distance along the
sequence) between a pair of bins increases, suggesting a polymer-like behavior in which
the closest regions in the space are also the closest regions along the sequence [14]. In
particular, the contact probability as a function of genomic distance, averaged across the
genome, scales as 1/d in the region between 500 kb and 7 Mb, if represented on log-log
axes, thus showing a power-law trend that is compatible with a polymer conformation
known as fractal globule [69, 70, 14, 71]. Fractal globules are interesting structures for
modeling chromatin interactions since they are unknotted [70, 72] and this would facilit-
ate the folding and the unfolding of chromatin during gene expression [14]. Furthermore,
fractal globules are characterized by a structure organized into territories, meaning that
contiguous regions of the DNA tend to cluster in close spatial proximity, giving rise to
spatial sectors homogeneously populated in terms of chromosome composition [14, 71].
This is in line with the experimental observations that revealed a compartimentalized
structure of the DNA within the nucleus [73, 74, 75, 71].
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Figure 3.2: Simulated fractal globule structure. Neighboring regions along the sequence
(here represented with the same color) tend to be close also when folded in the 3D nuclear
space, leading to a structure characterized by monochromatic blocks clearly visible both
on the surface and in a cross section, and by the absence of knots [14].

3.2 Hi-C data and genome assembly

By genome assembly we mean the process that leads to the reconstruction of the DNA
sequence starting from its fragments, and it can be done in two ways: the fragments can
be aligned to a reference genome or combined together by exploiting their mutual over-
laps. Both the former and the latter (known as de novo assembly) procedures are usually
applied to next-generation sequencing (NGS) data, which consist in DNA fragments that
do not carry any information about their spatial proximity within the nucleus, thus not
allowing to accurately reconstruct complex or polyploid genomes and to identify chro-
mosomal rearrangements, which are particularly relevant for studying the majority of
cancers [22, 23]. The advantage of using Hi-C data in the context genome assembly,
consists exactly in having DNA fragments that carry information about their spatial
proximity within the nucleus, thus allowing to identify chromosomal rearrangements
[23].
In the last 7 years [17, 18], several tools have been developed for combining NGS and Hi-
C data, exploiting, in particular, the latter for scaffolding contigs [19, 20, 21], which are
small DNA subsequences obtained by merging DNA fragments (produced through NGS
technique) that contain unique overlapping motifs [22]. In particular, the scaffolding
process comprises four different steps: (1) karyotyping, that consists in assigning each
contig to a chromosome; (2) contig ordering, that consists in determining the order of
contigs within a chromosome; (3) contig positioning, that consists in calculating the
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position of each contig within a chromosome; and (4) contig orientation, that consists
in identifying the order of a contig with respect to all the others within a chromosome
[22]. In the next sections, we will see two different implementations of the scaffolding
procedure, based on network approaches, that I developed starting from my internship
in Prof. Marc A. Marti-Renom’s Lab, where I collaborated to the GENIGMA project.

3.3 My contribution in the Genigma project

GENIGMA is a citizen science project (https://www.genigma.app), part of ORION
(Open Responsible research and Innovation to further Outstanding kNowledge) H2020
Initiative. The scientific goal of the project is to develop an app that people can install
on their devices (smartphones or tablets) and use to identify possible chromosome trans-
locations in human cancer cell-lines starting from Hi-C datasets. The players will receive
a set of genome fragments that they have to order guided by a score, which is computed
starting from the number of contacts observed in a Hi-C experiment: the higher score,
the better the reconstruction of the DNA sequence. The novelty of the project consists
in using as inputs Hi-C data sets, and in establishing a consensus over the structural
features annotated during the game, thanks to the participation of the players.
My contribution consisted in building a bioinformatics pipeline that allows to prepare
the input data and to analyze the outcome of the video game.

3.3.1 The pipeline

My scientific activity has been focused on developing a bioinformatics pipeline that was
divided into three main blocks (see Fig. 3.3):

1. Pre-game: assemble small pieces of genome (scaffolds) and group them into sets
that will be the input of the game;

2. Game: mimic the players’ activity by moving each piece of the genome to find the
optimal order;

3. Post-game: merge together the scaffolds reordered by the players.

The pipeline was written by combining three different languages: Python, Bash and
Awk, and its performance was tested by comparing the results obtained in two differ-
ent scenarios: (1) using toy-model scaffolds produced by dividing the reference genome
into bins of equal length and (2) using de novo scaffolds. The activity of the player
was substituted with an automated search of the best combination, that, under certain
assumptions, significantly reduces the computational cost of the procedure and provides
quite accurate solutions.
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Figure 3.3: Schematic representation of the pipeline.

Pre-game analyses

The pre-game part consisted in producing small pieces of genome, called scaffolds, and
grouping them into appropriate sets that will constitute the input data for the video
game. To do this, we focused on a small region of the genome so that we could develop
and quickly test the prototype of the pipeline on a real case scenario. Specifically, the
selected region was 1 Mbp long, going from 7Mbp to 8Mbp of human chromosome 19,
and the Hi-C data [76] were downloaded from GEO database [77]. Firstly, we used
Hi-C reads to produce a set of initial scaffolds using the MaSuRCA genome assembler
[78]. Subsequently I mapped Hi-C reads onto the scaffolds using GEM mapper [79], and
built an undirected weighted network where each node corresponded to a scaffold and
each link weight to the number of contacts between scaffolds. Since the DNA molecule
is a polymer, we expect that the higher the weight, the closer the scaffolds in the 3D
conformation and along the sequence [20]. I characterized the network by computing:
weight distribution, degree distribution and strength distribution. In particular, I focused
on the relationship between strength (which measures the total number of contacts that
a single scaffold has with all the others in the network) and scaffold length, finding a
high correlation between the two (Pearson’s correlation coefficient = 0.94, see Fig. 3.4),
meaning that the total number of connections that a scaffold has depends on its length:
the higher the length, the higher the number of contacts. This correlation is against
our purpose, since the weight should be proportional to the proximity of the scaffolds
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along the genomic sequence, without any bias related to the scaffold size. Therefore, I
tested several weight normalizations to reduce this correlation, and applied the one that
provided that lowest correlation value (i.e. Pearson’s correlation coefficient = -0.15, see
also Fig. 3.4): wij = cij/lilj, where cij, li and lj correspond respectively to the number
of contacts observed between scaffold i and scaffold j, to the length of scaffold i and to
length of scaffold j.

Figure 3.4: Scatter plots of scaffold strength as a function of scaffold length (measured
in bp), before (left panel) and after the normalization (right panel). The latter clearly
shows that the correlation was removed.

The next step consisted in extracting the subset of nodes to be sent to the game. To do
that, I explored two possibilities: extracting fully and not fully connected subnetworks
[80, 81]. First of all, I tried to understand if I could distinguish noise from signal, by
identifying a specific weight threshold value under which I could remove links that were
not relevant in terms of genomic contiguity. Therefore, I applied an iterative thresholding
procedure by removing all links whose weight was lower than a threshold value t, ranging
from the minimum weight value to the maximum. For each value t, I calculated the
number of connected components and the size of the largest connected component, to
check if I could identify a weight value beyond which the emerging structures were robust
to link removal. If this value exists, when we plot the number of connected components
as a function of the threshold, we should see an increasing trend that a certain point
reaches a plateau and then increases again, until the number of connected components
equals the number of nodes in the network. In the same way, if we plot the size of the
largest connected component as a function of the threshold, we should see a decreasing
trend that a certain point reaches a plateau and then decreases again, until the size
of largest connected component equals the minimum possible value, that is 1 (i.e. the
largest connected component is composed by only one node). As we can see from the
results shown in Fig. 3.5, the expectations were not met. In particular, we notice that
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the number of connected components quickly increases as the threshold value increases,
and that the size of the largest connected component immediately decreases to values
close to a few tens of nodes, meaning that by simply removing the links with the lowest
weight, we are almost completely disconnecting the network. This is a clear sign that
the level of noise is very high.

Figure 3.5: Number of connected components (left panel) and size of the largest connected
component (right panel) as a function of the threshold value. From the plot on the left we
can see that the number of connected components quickly increases as the threshold value
increases (left panel), and that the size of the largest connected component immediately
decreases to values close to a few tens of nodes (right panel), meaning that by simply
removing the links with the lowest weight, we are almost completely disconnecting the
network. This is a clear sign that the level of noise is very high.

Therefore, since the introduction of the normalization reduced the correlation between
scaffold strength and scaffold length but did not help in distinguishing signal from noise,
we opted for a different solution: we decided to divide scaffolds into bins of equal length
(500 bp), that will represent the new nodes of the network, and to use the actual number
of Hi-C contacts between pairs of bins as link weight (see Fig. 3.6).
Subsequently, we decided to extract the subnetworks by sorting the link weights in des-
cending order and selecting the first link connecting bins belonging to different scaffolds,
thus producing a submatrix composed by the bins of two scaffolds at a time, as shown
in Fig. 3.7.
To resume, the steps followed by the pipeline corresponding to the pre-game block are:

1. Producing de novo scaffolds using the MaSuRCA genome assembler.

2. Divide each scaffold into 500 bp bins.
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Figure 3.6: Representation of the procedure followed to identify bins (i.e. the nodes of
the network) and Hi-C contact values between them (i.e. the weights assigned to the links
connecting the nodes of the network). R1 and R2 are Hi-C reads, that corresponds to the
DNA sequence fragments composing the ligation products obtained by Hi-C experiments.

3. Map Hi-C reads (i.e. R1 and R2) onto scaffolds.

4. Get a list of contacts between bin pairs, sorted in descending order.

5. Select the first link connecting bins that belong to different scaffolds.

6. Extract the matrix corresponding to the contacts between the bins composing the
two scaffolds.

Simulation of the game

The game consists in identifying the combination of nodes that corresponds to the best
path within each subnetwork, which must satisfy the following requirements: (i) it must
have the maximum length and (ii) it must visit each node only once. From a theoretical
point of view, this corresponds to compute all the possible permutations of the N nodes
composing the subnetwork (since we do not know which are the starting and ending nodes
of the path), which scales as N !. In practice, this computation becomes very heavy as
soon as N increases (e.g., for N = 10 there are already 3,628,800 paths to evaluate),
therefore we devised an algorithm, that, under certain assumptions, significantly reduces
the computational cost of this procedure and provides a quite accurate solution through
the following steps:

1. Select one of the N nodes composing the subnetwork.

2. Explore all the weights of the links connecting the selected node with its nearest
neighbors.

3. Move to the node which is connected by the link with the highest weight.

4. Repeat step 2 without considering the links already selected.
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Figure 3.7: Representation of the procedure followed for extracting the subnetworks to
be sent to the game. The steps are the following: sorting the link weights in descending
order and selecting the first link connecting bins that belong to different scaffolds, thus
producing a submatrix composed by the bins of two scaffolds at a time.

5. When the N-th node has been reached, go back to step 1 until all the N nodes have
been used as starting point.

6. Among the N paths, select the one providing the longest path.

The idea is that the approximated solutions of this quick algorithm will be compared to
the performance of the players that during the game will provide the actual best path.
They, in fact, will search for the best path by moving each piece of the genome to find
the combination that provides the highest score. After the best-path calculation, the
reordered sequences were validated by mapping the pieces of the genome (nodes) onto
the reference to check whether the positioning provided by the best path corresponded
to the actual one (see figure Fig. 3.8 as an example).

Post-game analyses

In the post-game analysis, we aim to merge scaffold pairs reordered by the game, by
searching for overlaps between the termini of the two reordered scaffold sequences. To
increase the probability of identifying a statistically significant overlap, we impose that
its length must be greater than a given threshold value, set to 16 bp. In particular, we
tested the procedure on both a toy-model and real data by applying the following steps:
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Figure 3.8: Example of scaffold ordering provided by the fast algorithm developed to
compute the longest path within a network. The second column indicates the positions
of the first nucleotide of each scaffold within the reference genome. As we can see, there
are some differences between the order identified by the algorithm and that provided by
the reference genome.

1. Search for an overlap between the termini of the two re-ordered scaffolds.

2. If an overlap was found, merge the two scaffolds.

3. Divide the new scaffold into 500 bp bins.

4. Map R1 and R2 reads onto it.

5. Get a new contact list.

6. Repeat pre-game, game and post-game steps until the highest inter-scaffold contact
value in the list is lower than 10.

The toy-model was built by dividing the reference genome into scaffolds of equal length
(1500 bp), with and overlap of 500 bp with the preceding and the following along the
sequence, as shown in Fig. 3.9. The contacts between pairs of 500 bp bins are computed
as explained in the pre-game section and shown in Fig. 3.6.
The results have been evaluated by comparing the assembly produced by our pipeline
with the reference genome via D-GENIES dot-plots [82], which are graphs representing
on the x-axis the sequence corresponding to the reference genome and the on y-axis the
sequence corresponding to the obtained assembly; a dot is placed at a specific position
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Figure 3.9: Representation of the procedure followed to build the scaffolds used as toy-
model. The reference genome into scaffolds of equal length (1500 bp), with an overlap of
500 bp with the preceding and the following along the sequence.

when there is a match between the two: the closer the dots to the diagonal, the higher
the similarity between the reference and the obtained assembly. Together with dot-
plots, other statistical measures were computed on the initial scaffold file (initial state)
produced by the pre-game block and on the final scaffold file produced after the game
and post-game blocks (final state): (i) number of scaffolds, (ii) average scaffold length,
(iii) largest scaffold length, (iv) sum of scaffold lengths, and (v) percentage of scaffold
identity with the reference.

Toy-model scaffolds de novo scaffolds
Initial state Final state Initial state Final state

N 1000 911 410 328
l̄ (bp) 1499 1597 1627 2013
lmax (bp) 1500 4500 11756 21935
ltot (bp) 1499500 1455000 667072 660443

Table 3.1: Statistical measures computed to evaluate the performance of the pipeline, on
both the initial scaffold file (initial state) produced by the pre-game block of the pipeline
and on the final scaffold file (final state) produced by the game and post-game blocks of
the pipeline: number of scaffolds N , average scaffold length l̄, largest scaffold length lmax,
and sum of scaffold lengths ltot.

The results obtained by these analyses highlighted that: (1) toy-model scaffolds provided
an assembly having a better agreement with the reference genome, since its dot-plot
shows a line close to the diagonal, and all the assembled scaffolds are represented in
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dark green, meaning that the percentage of identity with the reference is greater than
the 75%; whereas, some of the assembled de novo scaffolds are represented in orange
and yellow, meaning that the percentage of identity with the reference is lower than the
50% and the 25%, respectively (see Fig. 3.10). (2) De novo scaffolds do not cover all
the region of interest, since the sum of scaffold length is 667072 bp before applying the
game and post-game blocks (see Table 3.1); (3) when dealing with both toy-model and
de novo scaffolds, the overlaps are very few, thus retrieving a sequential order between
one another is not always possible. To overcome this issue, I introduced a variant to the
algorithm that aims to reorder the scaffolds through the following steps:

1. Convert the initial undirected network into a directed network, adding between
each pair of scaffolds (i, j) a link going from scaffold i to scaffold j with weight wij
and a link going from scaffold j to scaffold i with the same weight wij.

2. If there is an overlap between the last part of the sequence of scaffold i and the
initial part of scaffold j, remove the link going from scaffold j to scaffold i.

3. If there are more than two consecutive overlapping scaffolds, remove the link going
from the first to the last scaffold and the link going from the last to first scaffold.

4. Once all the links at point 3 and 4 have been removed, search for the best path
on the directed network by imposing that we can move from node i to node j only
through outgoing links.

Since also this variant did not significantly improve the assembly, I proposed an al-
gorithm that performs the scaffolding process in a computationally efficient manner, by
starting from a Hi-C contact map at higher resolution and exploiting the properties of
the Laplacian matrix of a network.
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Figure 3.10: Dot-plots produced to evaluate the produced assembly (y-axis) by the compar-
ison with the reference genome (x-axis). Top: dot-plot evaluating the toy model scaffolds
before (left) and after (right) applying the pipeline. Bottom: dot-plot evaluating the de-
novo scaffolds before (left) and after (right) applying the pipeline. The colors of the points
correspond to the different levels of identity between the reconstructed sequence and the
reference: dark green for identity percentage greater than 75%, light green for identity
percentage lower than 75%, orange for identity percentage lower than 50%, yellow for
identity lower than 25%. These results show that the pipeline produces better results
when applied to toy-model scaffolds.
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3.4 The Laplacian matrix of a network

As we have seen in the previous sections, networks represent a powerful mathematical
framework for studying interactions between parts of a system. They are constituted
by two types of elements, nodes and links, representing respectively the parts of the
analyzed system and their interactions. From an algebraic point of view, a network can
always be represented by its adjacency matrix, which can be binary or weighted. In the
former case, the matrix is symmetric and tells whether between each couple of nodes, i
and j, there is a link or not. This can be translated into numbers by assigning to each
entry Aij of the matrix the following quantities:

Aij =

{
1 if there is a link between node i and node j

0 if there is no link between node i and node j
(3.1)

In the latter case, the matrix is symmetric and not only tells whether between each
couple of nodes, i and j, there is a link or not, but also how strong this connection is,
namely which is the weight of the connection. This can be translated into numbers by
assigning to each entry Wij of the matrix the following quantities:

Wij =

{
wij ≥ 0 if there is a link between node i and node j

0 if there is no link between node i and node j
(3.2)

In both cases, the defined matrices are symmetric, meaning that there is no preferential
direction associated with the links. In other words, they represent undirected networks,
and for both of them the Laplacian matrix L can be calculated. Specifically, for binary
adjacency matrices A, L is defined as:

L = D − A (3.3)

where D represents the degree matrix, whose entries are defined as:

Dij =

{
di if i = j

0 otherwise
(3.4)

where di represents the degree of node i:

di =
n∑
j=1

Aij (3.5)

The same definition can also be extended to weighted networks as follows:

L = S −W (3.6)
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where W and S represent respectively the weighted adjacency matrix and the strength
matrix of the network, whose entries are defined as:

Sij =

{
si if i=j

0 otherwise
(3.7)

where si represents the strength of node i:

si =
n∑
j=1

wij (3.8)

As we have seen in section 3.1, Hi-C contact maps meet all the assumptions made for
defining undirected weighted networks, since they are symmetric and their entries corres-
pond to the number of ligation products between two bins, that are positive numbers.
Moreover, the fact that the weight (i.e. contact value) is a decreasing function of the
genomic distance d, allows to define a notion of proximity between nodes that distin-
guishes this network from a merely topological one, such as world wide web, where the
connection between nodes and their proximity is not related to a “physical” distance.

3.4.1 Properties of the Laplacian matrix

Given an undirected network G, its Laplacian matrix L satisfies the following properties
[83]:

1. Let G be a network corresponding to a lattice of n nodes in the Euclidean space
Rm and f be a function that assigns to each node of G a real number. Then f can
be seen as a vector ∈ Rn and the Laplacian L can be seen as an operator Lf = 52f
acting like the second derivative of f along the m axes of the lattice.

2. For every vector f ∈ Rn we have

f>Lf =
1

2

n∑
i,j=1

aij(fi − fj)2 (3.9)

where aij represents the entries of a general adjacency matrix, weighted or not. This
means that the Laplacian matrix can always be seen a quadratic form corresponding
to the squared difference of all the values on the nodes connected by a link.

3. L is symmetric and positive semi-definite.

4. The smallest eigenvalue of L is 0 and the corresponding eigenvector is the constant
one vector 1.
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5. L has n non-negative, real-valued eigenvalues 0 = λ1 ≤ λ2 ≤ ... ≤ λn.

6. Analyzing the spectrum of L, we can get the number of connected components in
the network. In fact, the multiplicity m of the eigenvalue 0 equals the number of
connected components A1, ..., Am in the network, and the eigenspace of eigenvalue
0 is spanned by the indicator vectors 1A1 , ...,1Am of those components.

7. The first non-null eigenvalue is called Fiedler value and the corresponding eigen-
vector is called Fiedler vector. The Fiedler value represents the algebraic con-
nectivity of the network, that is, the further from 0, the more connected is the
network. Moreover, the multiplicity of the Fiedler value is always equal to 1.

8. The eigenvectors ui of L of a connected network, form an orthonormal basis:
u>i uj = δij.

3.4.2 Spectral clustering

Hi-C contact maps give us a picture of how all the chromosomes composing the genome
are interacting in the nuclear space. Thus, the first step to do, in order to get their
sequence (i.e. an assembly), is to identify the bins composing each chromosome. In
terms of network, this means that we want to find a partition of the nodes such that the
links between different groups have very low weights (i.e. few contacts) and the links
within each group have very high weights (i.e. more contacts) [83]. This operation can
easily be performed by an algorithm called spectral clustering, that allows to identify k
clusters in a network through the following steps:

1. Compute the first k − 1 eigenvectors corresponding to the smallest k − 1 non-null
eigenvalues of L.

2. Let U ∈ Rn×(k−1) be the matrix whose columns correspond to the first k − 1
eigenvectors of L. Each node of the network is now represented by a point in a
(k − 1)-dimensional space, whose coordinates are given by the rows of U . The k
clusters can thus be identified by applying the k-means algorithm to the n points
in Rk−1.

Two delicate issues underlie these points:

1. The number of eigenvectors to be chosen in order to clearly distinguish the k
clusters corresponding to the k different chromosomes. In order to address this
issue, we will adopt a geometric approach and, in particular, we will consider the
relationship between a network and a simplex S. In fact, it has been proved that
every connected, undirected network of N nodes corresponds to a specific simplex
in N − 1 dimensions [84, 85] and that this correspondence can be studied through
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the Laplacian matrix [86, 85]. In the specific case of a similarity matrix, such as
a Hi-C contact map, where nodes cluster according to the k blocks formed along
the diagonal, we hypothesized that this property can be extended as follows: every
network, whose adjacency matrix is characterized by k blocks along the diagonal,
corresponds to a specific simplex S in (k − 1) dimensions. This led us to conclude
that in order to distinguish k clusters, the nodes need to be represented in a k− 1
space, and therefore, the optimal number of eigenvectors for our purposes is k− 1.

2. Consistency, since spectral clustering can fail to converge [87]. In order to avoid
this problem, we have to be sure that the k − 1 eigenvalues of L corresponding to
the k − 1 eigenvectors used for the spectral clustering are all much smaller than
the minimum degree (or strength) in the network [83].

3.4.3 Laplacian embedding

From a geometric point of view, computing a genome assembly starting from its 3D
configuration (i.e. its Hi-C contact map), corresponds to map the 3D-contact-network
of a genome onto a line (i.e. its sequence), so that highly connected nodes in the space
stay as close as possible also along the sequence. From an algebraic point of view, this
operation corresponds to computing the following minimization [88]:

argmin
f

f>Lf with f>f = 1 and f>1 = 0 (3.10)

whose solution is given by the eigenvector associated with the smallest non-zero eigen-
value of the eigenvalue problem Lf = λf , namely the Fiedler vector. Therefore, once
we have identified each chromosome through spectral clustering, we will use the Fiedler
vector as a guide to get the sequence.

3.5 Chromosome identification through spectral clus-

tering

As we have shown so far, a Hi-C contact map can be seen as the adjacency matrix of
an undirected weighted network, where nodes represent bins and the weight of the links
represents their spatial proximity: the higher the weight mij, the closer they are in the
nuclear space and the closer they are along the sequence. Therefore, in order to get an
assembly, the proposed algorithm will use weights as a guide to identify the actual sig-
nal associated with intra-choromosomal contacts and extract the clusters corresponding
to the different chromosomes. In particular, this task will be performed through the
following steps:

1. Compute the log10 of the contact values.
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2. Remove isolated nodes.

3. Add a value c0 to all non-zero contact values so that the weights of the links satisfy
the condition wij > 0.

4. Identify, within an interval of selected values Tw, an optimal threshold value T
that allows to: (a) preserve only those links whose weight correspond to the actual
chromatin-interaction signal (i.e. to remove links corresponding to noise), without
partitioning the network into disconnected components. This was achieved by
accepting as a product of the thresholding procedure, only networks composed
by one connected component or by one connected component and a set of isolated
nodes. (b) Provide the best possible clustering, by maximizing the silhouette value.
In fact, after applying each threshold Tw, spectral clustering is performed and
the obtained grouping is evaluated through silhouette value, which is defined as
Stot =

∑
i Si, with

Si =
bi − ai

max(ai, bi)
i = 1, ..., n (3.11)

where i is the index associated to each point to be clustered, ai is the average
distance from point i to the other points in the same cluster, and bi is the average
distance from point i to the points in a different cluster, minimized over clusters.
Si ranges between -1 and 1, with high values (close to 1) indicating that point i is
well matched to the points in its own cluster, and poorly matched to the points in
the other clusters [89]. Therefore, in an ideal scenario, where each point is perfectly
clustered, the silhouette value Stot is equal to number of points to be grouped.

5. Remove all links whose weight is lower than the optimal threshold T .

6. Apply spectral clustering algorithm.

3.5.1 Results on a toy-model

The procedure was tested on a simple toy-model Hi-C contact map, composed by four
diagonal blocks of different sizes: 20, 15, 10, and 8 bins respectively (the number of
synthetic chromosomes is 4 because this is the largest number of clusters that we can
actually visualize in a plot). The contact values within each block decay as c/d, where
d represents the genomic distance and c is an arbitrary constant value, in this case set
to 20. Outside the blocks, a constant value equal to 0.1 has been assigned to all the
links and, in the end, a gaussian noise with mean value equal to 5 and variance equal
to 1 has been added to all the links, getting the contact map represented in Fig. 3.11,
whose contact values are distributed as in Fig. 3.14, clearly showing a peak centered
around 0.7, which corresponds to 100.7 = 5, that is exactly the average value set for
generating the gaussian noise. Therefore, we can conclude that the main peak on the
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left, centered around 0.7, describes the noise within the contact map and that the actual
signal, corresponding to simulated chromatin interactions, can be found on the right
tail of the distribution. In order to identify the optimal threshold value that allows to
separate clusters corresponding to different chromosomes (i.e. to distinguish signal from
noise), all the set of possible values was explored, identifying the optimal T at 0.8, where
the silhouette value reaches its absolute maximum (see Fig. 3.14).

After removing all links whose weight was lower than 0.8, spectral clustering al-
gorithm was applied, obtaining the result shown in Fig. 3.11, where the four colors
correspond to the four clusters identified by k-means algorithm as the four chromo-
somes. Both cluster representation and confusion matrix (see Tab. 3.2) confirm that all
chromosomes were correctly detected.

PREDICTED
chr1 chr2 chr3 chr4

TRUE chr1 20 0 0 0
chr2 0 15 0 0
chr3 0 0 10 0
chr4 0 0 0 8

Table 3.2: Confusion matrix evaluating spectral clustering performance in identifying the
different chromosomes starting from a toy-model Hi-C contact map.

3.5.2 Results on a real Hi-C contact map

Publicly available Hi-C data of GM12878 cell line [76] were downloaded from GEO
database [77] and processed by Marti-Renom’s lab via TADbit [90], obtaining an ICE
normalized Hi-C contact map at 1Mb resolution. As a first step, chromosome Y was
excluded from the analysis, since the chosen cell line is a female one. Subsequently, the
computation of the log10 of contact values was performed, followed by the removal of the
isolated nodes that led to the loss of 117 bins (see Fig. 3.13 for the representation of the
obtained contact map). Since the computation of the log10 of contact values produced
a negative weight for some of the links, a value of 3 was added to all non-null contact
values, in order to get only positive weights wij > 0 (as the assumptions of spectral
clustering require), whose distribution is shown in Fig. 3.14. As we can see, the shape
of the histogram is similar to the one obtained for the toy-model (see Fig. 3.12), with a
less pronounced peak on the right tail of the distribution. This comparison suggests that
the main peak, here centered around 2.1, could represent the noise associated with ICE
normalized Hi-C data and that the actual chromatin-interaction signal is represented by
the lower peak, observed in the right tail of the distribution. Therefore, the search of the
optimal threshold value, was performed within an interval between 2.6 and 3.8, obtaining
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as result T = 3.1 (see Fig. 3.14). After the removal of the links with weight lower than
3.1, the spectral clustering algorithm was applied imposing the search of 23 clusters to
k-means, obtaining the result shown in Table 3.3. As we can see, most of the clusters
are homogeneous in their composition, with 4 exceptions: cluster 1, 2, 4 and 5, which
are composed by bins belonging to different chromosomes. In particular, cluster 1 is
composed by 229 bins of chromosome 1 and 1 bin of chromosome 10; cluster 2 is composed
by 242 bins of chromosomes 2, 3 bins of chromosome 21 and 1 bin of chromosome 1;
cluster 4 is composed by 190 bins of chromosome 4 and 1 bin of chromosome 1; cluster 5 is
composed by 179 bins of chromosome 5 and 1 bin of chromosome 19. This heterogeneous
composition can represent the presence of potential translocations, meaning that there
has been an exchange between parts of two non-homologous chromosomes. In particular,
the identified rearrangements consist in:

• 1Mb of chromosome 10 translocated on chromosome 1;

• 3Mb of chromosome 21 translocated on chromosome 2;

• 1Mb of chromosome 22 translocated on chromosome 2;

• 1Mb of chromosome 1 translocated on chromosome 4;

• 1Mb of chromosome 19 translocated on chromosome 5.

In order to verify whether the algorithm succeeded or not in this identification, the
contact map of the chromosome pairs involved in the potential translocations were rep-
resented (see Figures 3.15, 3.16, 3.17, 3.18, and 3.19). The composition of cluster 1
is telling us that 1 bin of chromosome 10 is translocated onto chromosome 1, and this
finding is confirmed by the pattern observed in the contact map shown in Fig. 3.15:
the translocated bin corresponds to the 41st of chromosome 10, which shows weak con-
tacts with the bins of chromosome 10 and strong contacts with almost all the bins of
chromosome 1. A similar pattern was also observed for the potential translocations de-
tected between chromosome 1 and chromosome 4 (see Fig. 3.18), between chromosome
22 and chromosome 2 (see Fig. 3.17), and between chromosome 19 and chromosome 5
(see Fig. 3.19), confirming that the algorithm actually did a good job. The potential
translocation between chromosome 21 and chromosome 2, instead, deserves a separate
discussion; in fact, the representation of the contact map between this pair of chromo-
somes shows a brighter block of contacts between the first 3 bins of chromosome 21 and
a limited number of bins of chromosome 2. Neither corresponding intra-chromosomal
weak contacts are observed, nor strong contacts with all (or at least the majority of) the
bins of chromosome 2. This might be due to two reasons: (1) the translocation does not
involve the 100%, or at least the majority, of the cell population; (2) the observed signal
is associated to another chromosomal aberration, such as an insertion.
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Cluster Bins Chr Cluster Bins Chr
1 229 chr1 13 97 chr13

1 chr10 14 89 chr14
2 242 chr2 15 83 chr15

3 chr21 16 81 chr16
1 chr22 17 80 chr17

3 196 chr3 18 77 chr18
4 190 chr4 19 57 chr19

1 chr1 20 61 chr20
5 179 chr5 21 35 chr21

1 chr19 22 35 chr22
6 167 chr6 23 151 chrX
7 158 chr7
8 145 chr8
9 125 chr9
10 133 chr10
11 133 chr11
12 132 chr12

Table 3.3: Clusters identified as chromosomes through spectral clustering algorithm and
their composition. Cluster 1, 2, 4 and 5 (highlighted in red) are composed by two types
of chromosomes, revealing the presence of potential translocations.
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Figure 3.11: Toy-model Hi-C contact map and its spectral clustering results, where the
four colors correspond to the four clusters identified by k-means algorithm as the four
chromosomes.
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Figure 3.12: Histogram of the logarithm of contact values for the toy-model Hi-C contact
map, together with silhouette value as function of the threshold. The threshold value
chosen as optimal is 0.8, since it corresponds to the maximum silhouette value.
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Figure 3.13: Representation of Hi-C contact map of GM12878 cell after considering
the log10 of contact values and after removing isolated nodes. The brighter blocks along
the diagonal correspond to the different chromosomes, here sorted from the longest to the
shortest: chr1, chr2, chr3, chr4, chr5, chr6, chr7, chrX, chr8, chr9, chr10, chr11, chr12,
chr13, chr14, chr15, chr16, chr17, chr18, chr20, chr19, chr22, chr21. Chromosome Y
was excluded from the analysis, since the considered cell line is a female one.
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Figure 3.14: Histogram of the logarithm of contact values for the Hi-C contact map
of GM12878 cell line, together with silhouette value as function of the threshold. The
threshold value chosen as optimal is 3.1, since it corresponds to the maximum silhouette
value.



63

Figure 3.15: Hi-C contact map of chromosome 1 (first block on the left) and chromosome
10 (second block on the right). The algorithm identifies a translocation of the 41st bin of
chromosome 10 onto chromosome 1. This finding is confirmed by the pattern observed
in the contact map.
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Figure 3.16: Hi-C contact map of chromosome 2 (first block on the left) and chromosome
21 (second block on the right). The algorithm identifies a translocation of the 1st, the
2nd and the 3rd bin of chromosome 21 onto chromosome 2. The contact map shows a
brighter block of contacts between the first 3 bins of chromosome 21 and a limited number
of bins of chromosome 2, indicating that the translocation would not be present in the
100%, or at least the majority, of the cell population; or that the observed signal could
be associated to an insertion rather than a translocation.
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Figure 3.17: Hi-C contact map of chromosome 2 (first block on the left) and chromosome
22 (second block on the right). The algorithm identifies a translocation of the 1st bin of
chromosome 22 onto chromosome 2. This finding is confirmed by the pattern observed
in the contact map.
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Figure 3.18: Hi-C contact map of chromosome 4 (first block on the left) and chromosome
1 (second block on the right). The algorithm identifies a translocation of the 123rd bin of
chromosome 1 onto chromosome 4. This finding is confirmed by the pattern observed in
the contact map.
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Figure 3.19: Hi-C contact map of chromosome 5 (first block on the left) and chromosome
19 (second block on the right). The algorithm identifies a translocation of the 26th bin of
chromosome 19 onto chromosome 5. This finding is confirmed by the pattern observed
in the contact map.
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3.6 Sequence reconstruction through Fiedler vector

Once the clusters corresponding to the different chromosomes have been identified, we
can go further and get the order to be assigned to each bin (i.e. point) within a cluster.
This order will allow to reconstruct the sequence for each chromosome. To do this, we
will work on single clusters, independently, according to the following steps:

1. Identify an optimal threshold (ti)i=1,...,k ≥ T for each of the k cluster, in order
to preserve only the links with the highest possible weights, without partitioning
the network into disconnected components. This was achieved by accepting as a
product of the thresholding procedure, only networks composed by one connected
component and a set of isolated nodes.

2. Apply the thresholds ti to the Hi-C contact maps corresponding to the different
clusters, by removing all the links with weight lower than ti.

3. Compute the Laplacian matrix and the corresponding Fiedler vector.

4. Order the bins so that the Fiedler vector’s components are sorted in ascending
order.

3.6.1 Results on a toy-model

The optimal thresholds ti identified for each of the four chromosomes are all the same,
with a value equal to 1.3. As we can see from Fig. 3.20, in an ideal case, where the
intra-choromosomal contacts follow a perfect 1/d decay, the Fiedler vector’s components
show a monotonic trend when represented as a function of bin index along the reference
sequence. Therefore, it will constitute the landmark trend to get a good assembly when
dealing with more complex case studies, such as real Hi-C contact maps, where inversions,
deletions, insertions, duplications or translocations may occur. Of course, in this case,
sorting Fiedler vector’s components lead to a perfect match between the original Hi-C
map and the assembled one, as confirmed by Fig. 3.21.

3.6.2 Results on a real Hi-C contact map

The optimal thresholds ti identified for each of the 23 clusters range between a minimum
value of 3.9 for chromosome 2 and a maximum value of 4.8 for chromosome 21 (see Table
3.4), producing only 1 isolated node belonging to chromosome 6 that will be classified
as unplaced in terms of sequence. As we can see from Fig. 3.22, the Fiedler vector’s
components show, in general, a monotonic trend when represented as a function of bin
index along the reference sequence, with some exceptions concerning chromosome 1, 2, 4,
5, 6 and 19. Furthermore, the points corresponding to the potentially translocated bins
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Figure 3.20: Fiedler vector’s components (indicated as 1st Evc) for each of the identified
clusters of the toy-model Hi-C map as a function of bin index along the reference sequence.

are clearly visible: the bin of chromosome 10 associated to chromosome 1 is represented
by the last point on the right in the ’chr1’ plot; the 3 bins of chromosome 21 and the
bin of chromosome 22, associated to chroomosome 2 are represented by the last points
on the right in the ’chr2’ plot; the bin of chromosome 1 associated to chromosome 4 is
represented by the first point on the left in the ’chr4’ plot; and the bin of chromosome 19
associated to chromosome 5 is represented by the last point on the right in the ’chr5’ plot.
An interesting and unexpected trend was observed for Fiedler vector’s components of the
cluster corresponding to chromosome 4, where a sharp disruption of the monotonicity
divides the two arms. This peculiar trend led to an incorrect sequence reconstruction
(see Fig. 3.23), as shown by the Pearson’s correlation coefficient in Table 3.5 and by the
reordered Hi-C contact map represented in Fig. 3.24. From a visual inspection of the
contact map (see Fig. 3.25), it seems as if the last bin of chr4 was more much connected
to the first one rather than its nearest neighbor.
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Cluster t Cluster t
Chr1 4.2 Chr13 4.7
Chr2 3.9 Chr14 4.5
Chr3 4.0 Chr15 4.5
Chr4 4.1 Chr16 4.4
Chr5 4.1 Chr17 4.3
Chr6 3.9 Chr18 4.2
Chr7 4.5 Chr19 4.3
Chr8 4.5 Chr20 4.3
Chr9 4.6 Chr21 4.8
Chr10 4.2 Chr22 4.6
Chr11 4.7 ChrX 4.7
Chr12 4.5

Table 3.4: Thresholds obtained for each of the 23 clusters identified for Hi-C contact
map of GM12878 cell line. Cluster names were chosen according to the name of the
chromosome that is mainly present within the cluster.

Chr ρ Chr ρ
1 1.00 13 1.00
2 0.95 14 -0.99
3 -0.98 15 1.00
4 -0.24 16 1.00
5 0.98 17 1.00
6 1.00 18 -0.97
7 -0.99 19 -0.89
8 -0.99 20 1.00
9 -0.97 21 1.00
10 1.00 22 -1.00
11 -1.00 X 1.00
12 1.00

Table 3.5: Pearson’s correlation coefficient between Fiedler vectors’s components before
and after sequence reconstruction.
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Figure 3.21: Comparison between the original toy-model Hi-C contact map and the one
obtained after sequence reconstruction.
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Figure 3.22: Fiedler vector’s components of all the 23 clusters identified for Hi-C contact
map of GM12878 cell line as a function of bin index along the reference sequence.

Figure 3.23: Schematic representation of the original structure of chromosome 4 and the
one obtained after sorting Fiedler vector’s components.
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Figure 3.24: Comparison between the original GM12878 cell line Hi-C contact map and
the one obtained after sequence reconstruction.
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Figure 3.25: Hi-C contact map of chromosome 4. A bright point on the top-right corner
of the matrix indicates that the last bin is much more connected to the first rather than
its nearest neighbors along the sequence, as confirmed by the zoom. This is why the
corresponding Fiedler vector’s components led the algorithm to produce the structure
shown in Fig. 3.23.
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3.7 Conclusions

A Hi-C contact map can always be represented as an undirected weighted network, given
its symmetric structure and its positive contact values. In this way, all the properties
of network theory can be exploited to understand the relationships between nodes (i.e.
bins). In particular, the proposed algorithm showed that the properties of the Laplacian
matrix of a network allow to map the DNA spatial proximity into a DNA sequence prox-
imity, thus obtaining a genome assembly. The two main steps composing the proposed
algorithm are: (1) spectral clustering, that allows to identify the different chromosomes
and their potential rearrangements; (2) the reordering of the Fiedler vector’s compon-
ents in ascending order, that allows to get an assembly where the closest bins along the
sequence are also the closest in the space.

From a computational point of view, the algorithm takes ∼ 54 seconds to get the
assembly, starting from a whole genome Hi-C contact map at 1Mb resolution, thus
being quite fast if compared to the latest tools for reference-guided scaffolding, such as
RaGOO [91], which requires ∼ 12 min for scaffolding a human draft assembly. The main
limitation consists in the resolution at which the algorithm works, which is determined
by the resolution of a Hi-C contact map, whose maximum value is currently around 1kb
[76].
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CHAPTER 4

From sequence to host-bacteria interactions

In this chapter we will see a novel method for source clustering and source attribution,
based on a network approach, that exploits the high discriminatory power of whole-
genome sequencing data. In fact, the problem of attributing the correct source (e. g.
food origin) to bacteria found in human infections is an enduring challenge, allowing fast
identification of possible cures or the start of an outbreak. We will see how the single
genetic profiles of the infecting agent can be exploited to improve the source attribution
task. The major results shown in this chapter are published in [27].

4.1 The source attribution problem

The operation of attributing a human case of foodborne disease to the putative source
of infection is called source attribution [24, 25]. Many methods have been developed to
estimate the relative contribution of different food sources to human foodborne diseases
worldwide, including microbial subtyping, comparative exposure assessment, epidemi-
ological analysis of sporadic cases, analysis of data from outbreak investigations, and
expert elicitation [24, 26]. Each of these approaches has strengths and limitations, and
the usefulness of each depends on the public health questions being addressed [26]. Re-
cently, phenotyping and molecular data are increasingly replaced by genomic data with
high discriminatory power, such as that required to distinguish strains of a monomorphic
serovar like the S. typhimurium monophasic variant [92, 93, 94]. In particular, in the
following study, three different types of whole-genome sequencing (WGS) data were
used: single-nucleotide polymorphisms (SNP), core-genome multi-locus sequence typing
(cgMLST) and whole-genome multi-locus sequence typing (wgMLST), detecting respect-
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ively all the variants of a single letter along the sequence, the variants within a subset
of common genes and the variants within all genes. These measures were then used to
calculate pairwise distances between the different genomes, isolated from human and
animal samples, as shown in Fig. 4.1, thus obtaining three different distance matrices,
namely SNP distance matrix, cgMLST distance matrix and wgMLST distance matrix.

Figure 4.1: Toy-model example showing the process that lead to the computation of pair-
wise distance between genomes.

Usually, source attribution studies are conducted by using frequency-matching models
like the Dutch and Danish models based on phenotyping data (serotyping, phage-typing,
and antimicrobial resistance profiling) [24, 25]. In this chapter, a different approach to
source attribution based on the theory of weighed networks will be shown and evaluated.
There are many examples of network modeling applications in different fields, such as
computer and information sciences, social sciences, and biology [95]. In biomedical fields,
networks are powerful tools to perform characterization, classification, and ranking of
interacting elements in a complex biological system [96]. Specifically, for source attri-
bution, pairwise distance matrices can be interpreted as fully connected networks where
nodes correspond to bacterial isolates and links to a function of genetic distances (i.e.,
number of different nucleotides along DNA sequences): the weaker the link, the higher
the genetic distance within two isolates. The aim is to extract disconnected components
corresponding to different animal sources and subsequently see how the human isolates
bind to the different clusters. The probability of a human isolate to be associated with
a specific animal source is computed as a function of the number of links the human
isolate has with other isolates of specific animal sources. The network approach is useful
also in investigating which structural features of a data set play a fundamental role in
determining the internal coherence of clusters. Apart from animal sources, in fact, the
country of origin of imported food samples and the year of collection might impact the
clustering formation.
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4.1.1 The case of Salmonella enterica servoar Typhimuirum
and its monophasic variant

Salmonella enterica subspecies enterica serovar Typhimurium and its monophasic variant
(STm) are among the top three serovars in confirmed human cases of salmonellosis each
year in Europe [97]. Although in 2017, in comparison to the previous year, the percentage
of confirmed human cases associated with the monophasic variant was similar, specific
concern arose in recent years due to the emergence of outbreaks worldwide since 2006
[98, 99, 100, 101, 102, 103, 104]. Therefore, attributing cases of Salmonellosis to specific
sources is crucial to identify and prioritize targeted interventions in the food chain, as
well as to evaluate the effectiveness of each intervention.
In general, Salmonella typhimurium can infect humans from different sources; however,
in 2017 the most reported matrices were broiler, pig, turkey, and layers in decreasing
order for S. typhimurium, and pig and broilers for its monophasic variant accounting for
49.7 and 35.3%, respectively [97].

4.2 A Network-based method to identify host-bacteria

interactions

The symmetric structure and the positive numbers constituting the entries of these dis-
tance matrices, make them representable as undirected weighted networks, where nodes
correspond to isolates, and links correspond to a function of pairwise distance dij, cal-
culated as the number of different nucleotides or number of different alleles between two
isolate DNA sequences i and j. In order to find an association between distances and an-
imal sources, the following assumption was made: genomes coming from the same source
should show smaller distance values. Therefore, a fully connected weighted network W
(in which the weight wij = 1/dij was assigned to each link between samples i and j)
was built. Subsequently, a threshold was applied to the constructed weighted matrices
in order to remove weaker links (associated with larger genetic distances). In the res-
ulting binarized network, nodes were linked by an edge only if their weight was greater
than a given threshold value, and source clusters were identified as the disconnected
components (i.e., groups of nodes with links within each other but not with the nodes
of other components) obtained by the thresholding procedure. The threshold value was
chosen in order to maximize internal coherence of clusters and minimize the number of
isolated nodes. Precisely, the best threshold value t was found through a 70/30 cross-
validation procedure applied on animal source data, aiming to maximize the following
score function on distance matrices:

score =

(
1− NISO

NTOT

)
CSC (4.1)
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where NTOT represents the total number of nodes in the network, NISO represents the
number of isolated nodes (i.e., not forming any link with other nodes), and CSC repres-
ents the coherent source clustering, the parameter that estimates algorithm clustering
performance, computed as follows:

CSC =

∑
TPi∑
Ti

100 (4.2)

where TPi represents the number of true positives inside the i-th cluster (i.e., the isolates
from the same source found in the same cluster) and Ti the total number of nodes inside
the i-th cluster. Specifically, the 70/30 cross-validation procedure is structured as follows:
70% of the animal origin samples were randomly selected in order to build a network
(training set) on which the best threshold value t was computed by maximizing the
score function and then applied to the network constructed with the remaining 30%
samples (test set), in which the clustering performance was evaluated. This procedure
was repeated 100 times, with different random 70/30 data set subdivisions, and the most
frequent value was selected as the global best threshold t for source clustering. It was
then applied to the distance matrix obtained from the whole data set, including both
human and animal Typhimurium genomes, so that human samples could be attributed
to a putative source according to the following rule:

max
j

(lj/L) j = 1, ..., N (4.3)

where n represents the number of different animal origin sources, lj represents the number
of links between a single human isolate h and all nodes belonging to the j-th animal source
and L represents the number of all neighbors of animal origin of the human sample. The
ratio lj/L can be considered as the best estimate of the probability that a human isolate
h is attributed to the j-th animal origin source, given the available dataset. Graphical
representations of networks (Figures 4.3, 4.4, 4.5, 4.6) were generated using MathWorks
Matlab plot function with a force-directed graph layout [105].

4.2.1 Data set

The method was applied to a data set comprising 141 human and 210 food and animal
isolates of pig, broiler, layer, duck, and cattle collected in Denmark from 2013 to 2014
(see Table 4.1) [106]. Another important stratification of data is provided by serotype,
since, as explained in section 4.1.1, the percentage of confirmed cases associated with the
monophasic variant is increasing over the years, showing peculiar characteristics in terms
of genomic variability [107]. The number of isolates belonging to S. Typhimurium sero-
type and its monophasic variant are respectively 108 and 102 for animal origin samples,
and 73 and 68 for human origin samples (see Table 4.2). Another important distinction
is determined by the geographical origin of the analyzed samples. In the considered data
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set, all human isolates were from Denmark, while food isolates were from Denmark as
well as imported to Denmark from four different countries: Germany, Ireland, United
Kingdom, and others (see Table 4.3).

2013 2014 Total
Broilers 13 21 34
Pigs 104 55 159
Ducks 0 11 11
Cattle 1 1 2
Layers 3 1 4
Human 29 112 141
Total 150 201 351

Table 4.1: Data set composition according to primary source and sampling year.

Monophasic Typhimurium Total
Broilers 16 18 34
Pigs 84 75 159
Ducks 1 10 11
Cattle 1 1 2
Layers 0 4 4
Human 68 73 141
Total 170 181 351

Table 4.2: Data set composition according to primary source and serotype.

4.2.2 Source clustering results

The best threshold values, obtained by the cross-validation procedure, were 412, 24.7,
and 32.79 for SNP, cgMLST, and wgMLST matrices respectively, since they maximized
the score function and corresponded to the most probable values obtained from 100
cross-validation runs (Figure 4.2). In particular, the structure of the disjoint connected
components shown in Figures 4.3, 4.4, 4.5, 4.6 could be achieved by considering only
pairwise genomic distances lower than these threshold values. The method reaches 90%
of coherent source clustering for animal source on SNP and wgMLST matrices and 89%
on the cgMLST matrix, showing that animal source type is the main factor driving
cluster formation, followed by country of origin, serotype, and sampling year (Table 4.4).
Although the overall algorithm performance is good, broilers and cattle represent the
most difficult sources to detect: 18 out of 34 among the former as well as 1 out of 2 of the
latter are classified as pigs (see 4.5 for SNP and wgMLST distance matrices and Table 4.6
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Denmark Germany Others Ireland UK Total
Broilers 34 0 0 0 0 34
Pigs 125 32 0 1 1 159
Ducks 0 0 11 0 0 11
Cattle 1 0 1 0 0 2
Layers 4 0 0 0 0 4
Human 141 0 0 0 0 141
Total 305 32 12 1 1 351

Table 4.3: Data set composition according to primary source and country of sample
origin.

for cgMLST distance matrix), being included in the same network component. Figures
4.2 and 4.3, on the left-hand sides, show that most of the confusion between broilers and
pigs arises from cluster 1, which is mainly composed of isolates of monophasic variant:
their peculiar low variability at the genomic level could be the reason for encountered
difficulties in distinguishing the two different sources [107]. In terms of cluster structure,
most of the subnetworks are composed of the same type of animal source except for cluster
1, where pig and broiler isolates are mixed together with one of the cattle samples (Figure
4.3, left panel). Regarding country of origin of imported food samples, regionality affects
cluster formation since most of import isolates tend to group apart from those from
Denmark, as confirmed by cluster 2, mainly composed of pig isolates from Germany and
by clusters 3, 4, and 5, mainly composed of import ducks and cattle isolates (Figure 4.3,
right panel). Another relevant parameter for cluster formation is serotype, as confirmed
by subnetwork composition, since a clear separation between genomes of Typhimurium
and its monophasic variant was observed. In particular, genomes of S. typhimurium
monophasic variant cluster all together in subnetwork 1, whereas S. typhimurium showed
a more heterogeneous behavior, especially for pig isolates, which appeared stratified in
more than one group (Figure 4.4, left panel). Finally, sampling year had no impact on
cluster formation, as confirmed by the high variability in terms of cluster composition
(Figure 4.4, right panel).

4.2.3 Source attribution results

Adding human isolate genomes to the network (Fig. 4.6), a percentage between 93.6 and
97.2% clustered with the existing animal network components, and only a percentage
between 2.8% (from cgMLST distance matrix) and 6.4% (from SNPs distance matrix)
appeared as not linked to any animal Typhimurium genome (Table 4.7). The majority of
attributable human genomes were associated with pigs with probabilities ranging from
83.9 (SNP matrix) to 84.5% (cgMLST and wgMLST matrices), followed by broilers,
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Figure 4.2: Best threshold values obtained by the 70/30 cross-validation procedure on the
training sets of SNP, cgMLST, and wgMLST distance matrices. The red line corresponds
to the global best threshold value used for source clustering (Figures 4.3, 4.4, 4.5) and
source attribution (Figure 4.6)

Figure 4.3: Clustering results (force-directed graph drawing algorithm) obtained by SNP
distance matrix, where different node colors represent different animal sources (left)
and different countries of origin (right). Legend for left-hand figure: pigs, red; broil-
ers, blue; cattle, yellow; ducks, cyan; layers, black. Legend for right-hand figure: purple,
Denmark; green, Germany; light blue, others; orange, United Kingdom; yellow, Ireland.
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Figure 4.4: Clustering results (force-directed graph drawing algorithm) obtained by SNP
distance matrix, where different node colors represent different serotypes (left) and
different sampling years (right). Legend for left-hand figure: pink, monophasic; black,
Typhimurium. Legend for right-hand figure: 2013, blue; 2014, cyan

Figure 4.5: Source clustering results (force-directed graph drawing algorithm) obtained
by SNP, cgMLST, and wgMLST distance matrices. Legend: pigs from Denmark, red;
import pigs, green; broilers, blue; cattle from Denmark, darker yellow; import cattle,
lighter yellow; ducks, cyan; layers, black.
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SNP cgMLST wgMLST
Animal source 90% 89% 90%
Country of origin 85% 84% 85%
Serotype 82% 82% 82%
Sampling year 65% 63% 65%

Table 4.4: Coherent source clustering (CSC) for SNP, cgMLST, and wgMLST distance
matrices, computed on animal origin isolates, according to the following parameters:
animal source, serotype, country of origin, and sampling year.

PREDICTED
Broilers Cattle Ducks Layers Pigs

TRUE Broilers 16 0 0 0 18
Cattle 0 0 1 0 1
Ducks 0 0 10 0 0
Layers 0 0 0 4 0
Pigs 0 0 0 0 159

Table 4.5: Confusion matrix obtained from source clustering results on SNP and
wgMLST distance matrices.

ducks, cattle, and layers in descending order (Table 4.8). We remark that even if the data
set presents a large abundance of pig and broiler samples, we also found human isolates
with 100% links toward less abundant animal sources, such as layers and ducks, reflecting
the fact that our analysis does not seem heavily affected by such source representation
imbalance.
Moreover, if we further stratify pigs by distinguishing between import and non-import
(Table 4.9), we can notice that most of the human isolates are associated with non-import
pigs, with probabilities ranging from 66.4 (SNP matrix) to 66.7% (cgMLST and wgMLST
matrices). The same stratification can be applied also to cattle, but the probability that
a human isolate is associated with an import and non-import cattle is almost the same
due to the very low number of genomes. Furthermore, links between human samples
and animal sources showed high specificity in all the three networks (SNP, cgMLST,
and wgMLST) as confirmed in Figures 4.7, 4.8, making the putative originating animal
source clearly attributable.
Pigs were by the far most frequent animal source to which human genomes of S. typh-
imurium and its monophasic variant were attributed in this study. This result is not
surprising. Excluding traveling, other authors have been describing pigs as the main
source of human Salmonella infections in Denmark as well as in Southern Europe for
two decades with estimated percentages ranging from 15% (Denmark) to 44% (Italy)
[108, 26]. The higher values in the present study are linked to the dataset which exclus-
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PREDICTED
Broilers Cattle Ducks Layers Pigs

TRUE Broilers 15 0 0 0 19
Cattle 0 0 1 0 1
Ducks 0 0 10 0 0
Layers 0 0 0 4 0
Pigs 0 0 1 0 158

Table 4.6: Confusion matrix obtained from source clustering results on cgMLST distance
matrix.

ively includes serovar S. typhimurium and its monophasic variant, historically associated
with pig reservoir. In particular, in the period 2013–2014 S. typhimurium was the most
frequently detected serovar in pigs and pig meat in Europe [109, 110].
In principle, the discriminatory power of the subtyping method is of crucial importance
in source attribution studies. In fact, the high discriminatory power of the genomic
subtyping used to produce the analyzed distance matrices, might lead to unjustified
differentiation with the identification of too many clusters and a higher number of not
attributable human isolates [111, 26]. Although highly discriminatory, the three genomic
subtyping data sets used in the present study as input data (SNP calling, cgMLST, and
wgMLST) showed that this was not the case, revealing a good discriminatory power
that led to maximize cluster coherence and minimize the number of human isolated
nodes corresponding to not attributable human genomes. Besides discriminatory power,
the output of the network analysis revealed that, although wgMLST generally offers
higher resolution than cgMLST, source attribution results did not differ significantly,
demonstrating the robustness of the approach.
One of the major concerns on all source attribution approaches is the estimate per-
centages of human infections of unknown sources or not attributable human infections.
With the network approach, less than 7% of human genomes were not attributed to any
animal source. This value is lower than those previously reported for other microbial
subtyping methods for source attribution [26]. However, along with the model approach,
the dataset itself might strongly influence this estimate especially in case the dataset
does not fully represent the real temporal and spatial distribution of human and animal
subtypes/isolates.

Human isolates SNP cgMLST wgMLST
Attributed 93.6% 97.2% 95.0%
Not attributed 6.4% 2.8% 5.0%

Table 4.7: Percentage of attributed and not attributed human isolates.
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Figure 4.6: Source attribution results (force-directed graph drawing algorithm) ob-
tained by SNP, cgMLST, and wgMLST distance matrices. Legend: pigs from Denmark,
red; import pigs, green; broilers, blue; cattle from Denmark, darker yellow; import cattle,
lighter yellow; ducks, cyan; layers, black; humans, asterisk.

Figure 4.7: Human isolate probability to originate from each source as determined by
source attribution analysis via the network-based approach on the SNP pairwise distance
matrix.
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Source SNP cgMLST wgMLST
Broilers 12.5 (10.0–15.1) 11.8 (9.4–14.2) 11.7 (9.2–14.1)
Cattle 0.9 (0.1–1.6) 1.2 (0.3–2.0) 0.9 (0.3–1.4)
Ducks 1.9 (0–4.1) 1.8 (0–3.7) 2.2 (0–4.6)
Layers 0.7 (0–2.2) 0.7 (0–2.2) 0.7 (0–2.2)
Pigs 83.9 (80.3–87.5) 84.5 (81.3–87.8) 84.5 (80.1–88.0)

Table 4.8: Mean probability (expressed in percentage) of a human isolate to be attributed
to a source, together with 95% confidence intervals, calculated for each of the considered
pairwise distance matrices (SNP, cgMLST, and wgMLST).

Source SNP cgMLST wgMLST
Broilers 12.5 (10.0–15.1) 11.8 (9.4–14.1) 11.7 (9.2–14.1)
Cattle 0.5 (0.4–0.6) 0.6 (0.5–0.6) 0.5 (0.4–0.6)
Cattle import 0.4 (0–1.1) 0.6 (0–1.5) 0.4 (0–0.9)
Ducks 1.9 (0–4.1) 1.7 (0–3.7) 2.2 (0–4.6)
Layers 0.7 (0–2.2) 0.7 (0–2.2) 0.7 (0–2.2)
Pigs 66.4 (62.9–69.9) 66.7 (63.3–70.1) 66.7 (63.2–70.2)
Pig import 17.5 (14.7–20.2) 17.9 (15.3–20.4) 17.7 (15.0–20.5)

Table 4.9: Mean probability (expressed in percentage) of a human isolate to be attributed
to a source (taking into account the stratification of pigs and cattle into import and non-
import), together with 95% confidence intervals, calculated for each of the considered
pairwise distance matrices (SNP, cgMLST, and wgMLST).



88

Figure 4.8: Human isolate probability to originate from each source on the cgMLST
pairwise distance matrix (left) and on the wgMLST pairwise distance matrix (right).
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4.3 Validation of the method

In order to validate the method, SNP, cgMLST and wgMLST distance matrices were
calculated on an independent data set, with the same predominant animal sources char-
acterizing the Danish data set: pigs, broilers and layers. The thresholds identified on
the previous data set were then used to evaluate the algorithm’s performance in terms of
source clustering and source attribution. In particular, in order to assess the strength of
the results obtained on the training set, it is fundamental that source clustering proced-
ure provides highly homogeneous clusters (i.e. high coherence source clustering values),
meaning that these threshold values actually allow to distinguish the considered animal
sources, and that the percentage of attributed isolates is comparable.

4.3.1 Data set

The validation data set is composed by isolates coming from Germany [106], comprising
161 human and 121 food and animal samples of pig, broiler, layer, bird, and game,
collected in 2014, 2015, and 2016. Originally the data set included also a significant
number of cattle that were excluded from the validation, since the algorithm was trained
on a data set that was cattle poor (only 2 isolates out of 210). Moreover, the data set can
be further stratified according to serotype into 57 and 72 isolates belonging respectively
to animal and human origin samples of S. Typhimurium, and into 64 and 89 isolates
belonging respectively to animal and human origin samples of its monophasic variant.
In this case, no regionality effect will impact source clustering, since the geographical
origin of all the isolates was the same.

2014 2015 2016 Total
Birds 0 0 1 1
Broilers 5 4 1 10
Game 1 0 0 1
Layers 5 20 12 37
Pigs 25 26 21 72
Human 43 49 69 161
Total 79 99 104 282

Table 4.10: Data set composition according to primary source and sampling year.

4.3.2 Results

After applying the same threshold values obtained by training the algorithm on the
Danish data set, we got a good clustering performance, even though not as high as in
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Monophasic Typhimurium Total
Birds 0 1 1
Broilers 6 4 10
Game 1 0 1
Layers 10 27 37
Pigs 47 25 72
Human 89 72 161
Total 153 129 282

Table 4.11: Data set composition according to primary source and serotype.

the previous case (see Table 4.12 and Table 4.4), reaching the 82% of internal cluster
coherence. The high concordance between the two data sets is also reflected in the
distribution distance values among animal origin samples, as shown by Fig. 4.12 and
4.13. In fact, both distributions are characterized by a major peak at low distances
(centered around 50 for SNP matrix and around 11 and 13 for cgMLST and wgMLST
respectively) and a set of lower peaks at higher distances (centered around 700 for SNP
matrix and around 35 and 50 for cgMLST and wgMLST respectively), with the threshold
values always positioned right before the latter.
As shown by the results in Table 4.12 and by the confusion matrix in Table 4.13, it is
confirmed that there is no difference among the three types of distance matrices, and
that sampling year does not affect cluster formation (see Fig. 4.11). The only difference
that emerges from the comparison between Table 4.12 and Table 4.4 is related to the
coherence source clustering values computed according to serotype, which are slightly
higher than those computed according to animal source for the validation data set. This
might be due to the fact that serotype has a strong impact on cluster formation and that
the training part of the algorithm is fundamental to identify the best solution for source
clustering and subsequently for source attribution purposes.
As happened for Danish data set, also in this case there is a clear separation between S.
Typhimurium isolates and those correpsonding to its monophasic variant, which mainly
populate two clusters: a bigger one on the bottom-left corner of the panels in Fig. 4.10
and a smaller one on the top-left corner of the panels in Fig. 4.10.
Unlike the results achieved regarding broilers in the training data set, in this case, none
of them form a cluster where they represent the predominant source (see Table 4.13 and
Fig. 4.9). Furthermore, also game and bird isolates were not correctly grouped in terms
of clusters, but this is most likely due to their poor statistical representation, since there
is only one isolate per class.
In the end, the percentage of attributed human isolates is comparable to that obtained
for the training set, showing no great differences among the three matrices (see Table
4.14).
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SNP cgMLST wgMLST
Animal source 82% 82% 82%
Serotype 85% 83% 83%
Samplying year 49% 49% 49%

Table 4.12: Coherent source clustering (CSC) for SNP, cgMLST, and wgMLST distance
matrices, computed on animal origin isolates, according to the following parameters:
animal source, serotype, and sampling year.

PREDICTED
Birds Broilers Game Layers Pigs

TRUE Birds 0 0 0 1 0
Broilers 0 0 0 3 7
Game 0 0 0 0 1
Layers 0 0 0 32 5
Pigs 0 0 0 5 67

Table 4.13: Confusion matrix obtained from source clustering results on the validation
SNP, cgMLST, and wgMLST distance matrices.

Figure 4.9: Source clustering results (force-directed graph drawing algorithm) obtained
by applying the threshold values calculated for the Danish data set on SNP, cgMLST and
wgMSLT distance matrices chosen as validation data set. Nodes are colored according to
the different animal sources: pigs, red; broilers, blue; layers, black; birds, cyan; game,
green.
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Figure 4.10: Source clustering results (force-directed graph drawing algorithm) ob-
tained by applying the threshold values calculated for the Danish data set on SNP,
cgMLST and wgMSLT distance matrices chosen as validation data set. Nodes are colored
according to serotypes: black for Typhiumrium isolates and pink for Monophasic ones.

Figure 4.11: Source clustering results (force-directed graph drawing algorithm) ob-
tained by applying the threshold values calculated for the Danish data set on SNP,
cgMLST and wgMSLT distance matrices chosen as validation data set. Nodes are colored
according to sampling years: 2014, blue; 2015, cyan ; 2016, red.
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Figure 4.12: Comparison between distance value distributions of SNP, cgMLST and
wgMLST validation matrices, comprising only animal source isolates. The red lines in-
dicate the thresholds applied for source clustering and obtained by traning the algorithm
on the Danish data set.

Figure 4.13: Comparison between distance value distributions of Danish SNP, cgMLST
and wgMLST matrices, comprising only animal source isolates. The red lines indicate
the thresholds applied for source clustering.
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Human isolates SNP cgMLST wgMLST
Attributed 96.3% 97.5% 97.5%
Not attributed 3.7% 2.5% 2.5%

Table 4.14: Percentage of attributed and not attributed human isolates on the validation
data set.
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4.4 Conclusions

This approach allows to extract threshold values that lead to obtain disconnected subnet-
works characterized by the highest homogeneity in terms of animal source composition
and, more in general, to evaluate the driving force of each parameter (animal source,
serotype, country of origin, and sampling year) in cluster formation, by comparing the
obtained clusters with the parameter labels distributed on the nodes. In the training
data set (i.e. Danish data set), animal source was the major driving force of clustering
formation, followed by the country of origin of imported food samples and serotype.
The year of isolation did not impact significantly, although it must be underlined that
the time period was only 2 years. A higher impact of the year of isolation would have
been probably observed in the case of longer time frames (i.e., 10 or more years). Res-
ults on the impact of the country of origin are in line with the high relatedness of S.
typhimurium subtypes in isolates of the same geographic area, recently highlighted also
in a study describing a geographical segregated genomic clade of the S. typhimurium
monophasic variant in Italy [94]. Interestingly, this approach allows also to distinguish
between the two serotypes, as shown by the results obtained on both training and valid-
ation data sets, highlighting this label as an important parameter to take into account
in order to understand the process of cluster formation, since the low variability at gen-
omic level characterizing the monophasic variant might represent a source of confusion
for animal source distinction. Lastly, the number of not attributed human isolates is
lower than those previously reported for other microbial subtyping methods for source
attribution [26], being less than 7% for the Danish data set and less than the 4% for the
validation data set. Thus this simple approach, based on the whole network structure of
bacterial similarities, at difference with the typical phylogenetic trees that discard a lot
of proximity relations, revealed very powerful for the characterization of bacterial strains
and their relation to human hosts.
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CHAPTER 5

Conclusions

The results shown in the three chapters of this thesis show that the DNA sequence is
constantly shaped by the interactions with its environment at multiple levels, revealing
footprints of DNA methylation, of its 3D organization, and in the case of bacteria such as
Salmonella enterica serovar Typhimurium, of the interaction with their host organisms.
In the first chapter, we considered several probability density functions to fit CG distance
distribution of a selected set of mammal organisms, and we observed that it is best
described by a Gamma distribution. Applying this function on a wide set of organisms,
taken from different taxonomic categories, we noticed that the scale parameter b of the
Gamma distribution could be associated to the biological complexity of the organism
category, increasing from bacteria to vertebrates. Moreover, we tested for possible factors
affecting this parameter, like genome sequence length and CG density. While the first was
not related to our observations, the second revealed stronger correlations; in particular,
for a group of organisms, comprising those of minor biological complexity (bacteria,
protozoa, fungi, invertebrates and plants), the relation between b and CG density could
be explained by a minimal null model, while for higher order organisms (vertebrates)
this null model did not explain the observations. We argue that this difference could be
related to the different role that CG methylation plays in these classes of organisms.
Subsequently we focused on human genome and we saw that gamma fit results of CG
distance distribution show a systematic deviation at low distance values, therefore we
introduced a shifted power-law with exponential tail as new fitting function, obtaining
a better agreement by residue analysis. Furthermore, we saw that the power-law trend
characterizing low distance values, and the exponential trend characterizing high distance
values, can be generated respectively by a positioning process with [47, 53, 54] and
without memory [47, 48, 49, 50, 51, 52], with the former process able to introduce the
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long-range correlations characterized by the power-law tail in the distributions studied.
We hypothesized that the former process might be related to the mechanism of formation
and conservation of CpG islands, while the latter might be due to an “erosion” of the
original CG positioning (corresponding to a random percolation process in physical terms)
originated as a consequence of the deamination process occurring at methylated CGs
outside CpG islands, which causes a spontaneous mutation CG → TG.
In the end, we saw that CG and TA distance distributions can be well described by the
same function, precisely a shifted power-law with an exponential tail, meaning that the
same process could have given rise to both. In particular, we saw that the value of the
characteristic distance b between two consecutive TA along the sequence, estimated by
the fitting procedure, is much larger than the maximum distance actually considered for
the fit, leading us to the conclusion that the exponential tail is negligible and that the
actual fitting distribution is a shifted power-law. Furthermore, we saw that the same
function well describes also TA distance distributions of Pan troglodytes and Macaca
mulatta (all the primates found in our genome database), providing almost the same
values for the parameters a, c, d and showing exactly the same deviations from the trend
estimated by the fitting function: a sharp peak at 91 bp and a Gaussian peak centered
around 142 bp.
Focusing again on human genome and investigating the properties of the sequences
between consecutive TA separated by a distance of 91 bp (TA91) and 142 bp (TA142),
we identified specific patterns associated with the occurrence probability of AA/TT and
CG. In particular, we saw that the 40% of TA91 sequences have a good match with SINE
(Short Interspersed Nuclear Elements), and, in particular, with Alu sequences, which are
mobile non-coding elements involved in epigenetic and structural processes [68]. Further-
more, we observed that the average distance between consecutive AA/TT increases as
TA distance increases, as we would expect in a random null model, except for TA dis-
tances corresponding to the Gaussian peak centered around 142 bp, where it assumes
values close to 10 bp, which corresponds to the typical distance between AA/TT/TA
characterizing the 147bp-sequences wrapped around the histone octamer [61, 64, 65].
Therefore, these results suggest that the sequences corresponding to the sharp peak at
91 bp and the Gaussian peak centered around 142 bp have peculiar properties, concern-
ing not only epigenetic and structural processes, but also DNA flexibility, that deserve
further investigations.
In the second chapter, we saw that a Hi-C contact map can always be represented as
an undirected weighted network, given its symmetric structure and its positive contact
values. In this way, all the properties of network theory can be exploited to understand
the relationships between nodes (i.e. bins in which DNA sequence has been divided
within the Hi-C experiment considered). In particular, the proposed algorithm showed
that the properties of the Laplacian matrix of a network allow to map the DNA spatial
proximity into a DNA sequence proximity, thus obtaining a genome assembly. The two
main steps composing the proposed algorithm are: (1) spectral clustering, that allows to
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identify the different chromosomes and their potential rearrangements; (2) the reordering
of the Fiedler vector’s components in ascending order, that allows to get an assembly
where the closest bins along the sequence are also the closest in the space.
From a computational point of view, the algorithm takes ∼ 54 seconds to get the as-
sembly, starting from a whole genome Hi-C contact map at 1Mb resolution, thus being
quite fast if compared to the latest tools for reference-guided scaffolding, such as Ra-
GOO [91], which requires ∼ 12 min for scaffolding a human draft assembly. The main
limitation consists in the resolution at which the algorithm works, which is determined
by the resolution of a Hi-C contact map, whose maximum value is currently around 1kb
[76].
In the third chapter, we designed a novel method for source clustering and source at-
tribution of Salmonella bacterial strains: by identifying the optimal threshold for the
genome distance matrix, we transformed the initial genome distance matrix into a set of
disconnected subnetworks characterized by the highest homogeneity in terms of animal
source composition. This approach allowed us to evaluate the role of several factors
(animal source, serotype, country of origin, and sampling year) in cluster formation, by
comparing the obtained clusters with the parameter labels distributed on the nodes. In
particular, we saw that, in the training data set (i.e. a data set of Danish strains), animal
source was the major driving force of cluster formation, followed by the country of origin
of imported food samples and serotype. The year of isolation did not impact significantly,
although it must be underlined that the time period was only 2 years. Results on the
impact of the country of origin are in line with the high relatedness of S. typhimurium
subtypes in isolates of the same geographic area, recently highlighted also in a study
describing a geographical segregated genomic clade of the S. typhimurium monophasic
variant in Italy [94]. Interestingly, this approach allows also to distinguish between the
two serotypes, as shown by the results obtained on both training and validation data
sets, highlighting this label as an important parameter to take into account in order to
understand the process of cluster formation, since the low variability at genomic level
characterizing the monophasic variant might represent a source of confusion for animal
source distinction. Lastly, the number of not attributed human isolates is lower than
those previously reported for other microbial subtyping methods for source attribution
[26], being less than 7% for the Danish data set and less than the 4% for the validation
data set. Thus this simple approach, based on the whole network structure of bacterial
similarities at difference with the typical phylogenetic trees that discard a lot of prox-
imity relations, revealed very powerful for the characterization of bacterial strains and
their relation to human hosts, that might find further applications when applied to larger
data sets and to different bacterial species, in order to fully grasp the complexity of the
bacterial ecosystem.
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CHAPTER 6

Appendix A

6.1 Comparison among the 16 dinucleotide distance

distributions within human genome

Through the comparison among the fit results of a shifted power-law with exponential
tail (SPLE) to the 16 dinculeotide distance distributions within human chromosome 1
represented below, we can clearly see a relationship between CG and TA, since they are
the only ones providing good fit results, as confirmed by residual plots.
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Figure 6.1: Log-linear plot of AA, AC and AG distance distributions within human
chromosome 1, together with shifted power-law with exponential tail as fitting distribution
(left panel). Fit results are accompanied by residual plot (right panel).
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Figure 6.2: Log-linear plot of AT, CA and CC distance distributions within human chro-
mosome 1, together with shifted power-law with exponential tail as fitting distribution
(left panel). Fit results are accompanied by residual plot (right panel).
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Figure 6.3: Log-linear plot of CG, CT and GA distance distributions within human
chromosome 1, together with shifted power-law with exponential tail as fitting distribution
(left panel). Fit results are accompanied by residual plot (right panel).
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Figure 6.4: Log-linear plot of GC, GG and GT distance distributions within human
chromosome 1, together with shifted power-law with exponential tail as fitting distribution
(left panel). Fit results are accompanied by residual plot (right panel).
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Figure 6.5: Log-linear plot of TA, TC and TG distance distributions within human chro-
mosome 1, together with shifted power-law with exponential tail as fitting distribution
(left panel). Fit results are accompanied by residual plot (right panel).
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Figure 6.6: Log-linear plot of TT distance distribution within human chromosome 1,
together with shifted power-law with exponential tail as fitting distribution (left panel).
Fit results are accompanied by residual plot (right panel).
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CHAPTER 7

Appendix B

7.1 TA distance distribution within mammal gen-

omes

We represented TA distance distributions for the 9 mammal considered in this study (Bos
taurus, Canis familiaris, Equus caballus, Homo sapiens, Macaca mulatta, Mus musculus,
Ornithorhynchus anatinus, Pan troglodytes and Rattus norvegicus), together with shifted
power-law as fitting function. All fit results are accompanied by residual plots.
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Figure 7.1: Log-linear plot of TA distance distribution within chromosome 1 of Bos
taurus, together with shifted power-law as fitting distribution (upper panel). Fit results
are accompanied by residual plot (lower panel).

Figure 7.2: Log-linear plot of TA distance distribution within chromosome 1 of Canis
familiaris, together with shifted power-law as fitting distribution (upper panel). Fit
results are accompanied by residual plot (lower panel).
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Figure 7.3: Log-linear plot of TA distance distribution within chromosome 1 of Equus
Caballus, together with shifted power-law as fitting distribution (upper panel). Fit results
are accompanied by residual plot (lower panel).

Figure 7.4: Log-linear plot of TA distance distribution within chromosome 1 of Homo
sapiens, together with shifted power-law as fitting distribution (upper panel). Fit results
are accompanied by residual plot (lower panel).
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Figure 7.5: Log-linear plot of TA distance distribution within chromosome 1 of Macaca
mulatta, together with shifted power-law as fitting distribution (upper panel). Fit results
are accompanied by residual plot (lower panel).

Figure 7.6: Log-linear plot of TA distance distribution within choromosome 1 of Mus
musculus, together with shifted power-law as fitting distribution (upper panel). Fit
results are accompanied by residual plot (lower panel).
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Figure 7.7: Log-linear plot of TA distance distribution within choromosome 1 of Orni-
thorhynchus anatinus, together with shifted power-law as fitting distribution (upper
panel). Fit results are accompanied by residual plot (lower panel).

Figure 7.8: Log-linear plot of TA distance distribution within chromosome 1 of Pan
troglodytes, together with shifted power-law as fitting distribution (upper panel). Fit
results are accompanied by residual plot (lower panel).
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Figure 7.9: Log-linear plot of TA distance distribution within chromosome 1 of Rattus
norvegicus, together with shifted power-law as fitting distribution (upper panel). Fit
results are accompanied by residual plot (lower panel).



112

CHAPTER 8

Appendix C

We considered all the sequences between consecutive TA separated by distances ranging
from 10 bp to 400 bp and computed the mean distance µ and the standard deviation
σ between consecutive AA/TT and consecutive GC along the sequence (as explained in
section 2.3.3), across all chromosomes of the human genome.
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Figure 8.1: Gaussian fit parameters µ and σ representing respectively the mean value
and the standard deviation of the logarithm of the distance between consecutive AA/TT
along the sequences identified by consecutive TA separated by a minimum distance of 10
bp up to a maximum distance of 400 bp, within human chromosome 1, 2 and 3.
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Figure 8.2: Gaussian fit parameters µ and σ representing respectively the mean value
and the standard deviation of the logarithm of the distance between consecutive AA/TT
along the sequences identified by consecutive TA separated by a minimum distance of 10
bp up to a maximum distance of 400 bp, within human chromosome 4, 5 and 6.
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Figure 8.3: Gaussian fit parameters µ and σ representing respectively the mean value
and the standard deviation of the logarithm of the distance between consecutive AA/TT
along the sequences identified by consecutive TA separated by a minimum distance of 10
bp up to a maximum distance of 400 bp, within human chromosome 7, 8 and 9.
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Figure 8.4: Gaussian fit parameters µ and σ representing respectively the mean value
and the standard deviation of the logarithm of the distance between consecutive AA/TT
along the sequences identified by consecutive TA separated by a minimum distance of 10
bp up to a maximum distance of 400 bp, within human chromosome 10, 11 and 12.
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Figure 8.5: Gaussian fit parameters µ and σ representing respectively the mean value
and the standard deviation of the logarithm of the distance between consecutive AA/TT
along the sequences identified by consecutive TA separated by a minimum distance of 10
bp up to a maximum distance of 400 bp, within human chromosome 13, 14 and 15.
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Figure 8.6: Gaussian fit parameters µ and σ representing respectively the mean value
and the standard deviation of the logarithm of the distance between consecutive AA/TT
along the sequences identified by consecutive TA separated by a minimum distance of 10
bp up to a maximum distance of 400 bp, within human chromosome 16, 17 and 18.
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Figure 8.7: Gaussian fit parameters µ and σ representing respectively the mean value
and the standard deviation of the logarithm of the distance between consecutive AA/TT
along the sequences identified by consecutive TA separated by a minimum distance of 10
bp up to a maximum distance of 400 bp, within human chromosome 19, 20 and 21.
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Figure 8.8: Gaussian fit parameters µ and σ representing respectively the mean value
and the standard deviation of the logarithm of the distance between consecutive AA/TT
along the sequences identified by consecutive TA separated by a minimum distance of 10
bp up to a maximum distance of 400 bp, within human chromosome 19, 20 and 21.
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Figure 8.9: Gaussian fit parameters µ and σ representing respectively the mean value and
the standard deviation of the logarithm of the distance between consecutive GC along the
sequences identified by consecutive TA separated by a minimum distance of 10 bp up to
a maximum distance of 400 bp, within human chromosome 1, 2 and 3.
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Figure 8.10: Gaussian fit parameters µ and σ representing respectively the mean value
and the standard deviation of the logarithm of the distance between consecutive GC along
the sequences identified by consecutive TA separated by a minimum distance of 10 bp up
to a maximum distance of 400 bp, within human chromosome 4, 5 and 6.
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Figure 8.11: Gaussian fit parameters µ and σ representing respectively the mean value
and the standard deviation of the logarithm of the distance between consecutive GC along
the sequences identified by consecutive TA separated by a minimum distance of 10 bp up
to a maximum distance of 400 bp, within human chromosome 7, 8 and 9.
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Figure 8.12: Gaussian fit parameters µ and σ representing respectively the mean value
and the standard deviation of the logarithm of the distance between consecutive GC along
the sequences identified by consecutive TA separated by a minimum distance of 10 bp up
to a maximum distance of 400 bp, within human chromosome 10, 11 and 12.
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Figure 8.13: Gaussian fit parameters µ and σ representing respectively the mean value
and the standard deviation of the logarithm of the distance between consecutive GC along
the sequences identified by consecutive TA separated by a minimum distance of 10 bp up
to a maximum distance of 400 bp, within human chromosome 13, 14 and 15.
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Figure 8.14: Gaussian fit parameters µ and σ representing respectively the mean value
and the standard deviation of the logarithm of the distance between consecutive GC along
the sequences identified by consecutive TA separated by a minimum distance of 10 bp up
to a maximum distance of 400 bp, within human chromosome 16, 17 and 18.
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Figure 8.15: Gaussian fit parameters µ and σ representing respectively the mean value
and the standard deviation of the logarithm of the distance between consecutive GC along
the sequences identified by consecutive TA separated by a minimum distance of 10 bp up
to a maximum distance of 400 bp, within human chromosome 19, 20 and 21.
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Figure 8.16: Gaussian fit parameters µ and σ representing respectively the mean value
and the standard deviation of the logarithm of the distance between consecutive GC along
the sequences identified by consecutive TA separated by a minimum distance of 10 bp up
to a maximum distance of 400 bp, within human chromosome 22, X and Y.
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CHAPTER 9

Appendix D

9.1 Deviation at 91 bp from TA distance distribu-

tion

The representation of the occurrence probability of consecutive AA/TT and consecutive
GC along the sequences between two consecutive TA separated by a distance of 91 bp,
clearly shows the same patterns for all chromosomes of human genome.
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Figure 9.1: Occurrence probability as a function dinucleotide position within the sequences
identified by consecutive TA separated by a distance of 91 bp within human chromosomes
1, 2, 3, 4, 5 and 6.
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Figure 9.2: Occurrence probability as a function dinucleotide position within the sequences
identified by consecutive TA separated by a distance of 91 bp within human chromosomes
7, 8, 9, 10, 11 and 12.
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Figure 9.3: Occurrence probability as a function dinucleotide position within the sequences
identified by consecutive TA separated by a distance of 91 bp within human chromosomes
13, 14, 15, 16, 17 and 18.



133

Figure 9.4: Occurrence probability as a function dinucleotide position within the sequences
identified by consecutive TA separated by a distance of 91 bp within human chromosomes
19, 20, 21, 22, X and Y.
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